

Grado en Ciencia de Datos

GESTIÓN DE LA BASE DE DATOS H₂OLANDA **EN CASSANDRA Y NEO4J**

Introducción

El objetivo del trabajo es el diseño, creación y carga de la base de datos PARQUE-ACUARIO en el sistema de familia de columnas Cassandra y en el sistema orientado a grafos Neo4j.

'H₂OLANDA' fue el nombre inventado que le dimos a nuestro parque.

Índice

Diagrama UNIL y esquema logico de la base de datos PARQUE-ACUARIO	4
Primera parte: Cassandra	6
1. Diseño de la base de datos a partir un diagrama de accesos de un	_
workflow de complejidad media	6
1.1. Workflow del SI	6
1.2. Transformación de clases	7
1.3. Diagrama Chebotko - Queries	9
2. Creación base de datos en Cassandra DDL	13
2.1. Tablas simples	14
2.2. Tablas complejas	15
3. Consultas SQL para obtener datos de cada tabla	18
3.1. Tablas Simples	18
3.2. Tablas Complejas (Queries):	19
4. Exportar las consultas SQL a CSV	21
5. Cargar datos a Cassandra	21
5.1. Tablas Simples	22
5.2. Tablas Complejas	23
Segunda parte: Neo4J	27
1. Diseño esquema lógico	28
2. Cargar la base de datos en Neo4J	28
2.1 Creación de los nodos	28
NODO TARIFA	31
2.2 Creación de las relaciones	31
3. Consultas no triviales con Cypher	33
ANEXO	37
Cassandra	37
Neo4i	37

DANIEL OLIVER

Diagrama UML y esquema lógico de la base de datos PARQUE-ACUARIO

DANIEL OLIVER

DIAGRAMA DE CLASES DE PARQUE-ACUARIO

TARIFA (tipo:char, día: char, precio:

number)

CP: {tipo, día} VNN: {precio}

ESPACIO (cod espacio: char, nombre: char, superficie: number, situación: char)

CP: {cod espacio}

VNN: {nombre, situación, superficie}

Único : {nombre}

```
PECERA (cod pec: char, num anim:
                                              ESP FUNCIONAL (cod esp: char)
number, capacidad: number)
                                                 CP: {cod esp}
  CP: {cod pec}
                                                 CAj : \{cod\_esp\} \rightarrow
  VNN: {num anim, capacidad}
                                                        Espacio(cod espacio)
  CAj : \{cod pec\} \rightarrow
        Espacio(cod espacio)
EJEMPLAR (cod especie: char,
                                              ESPECIE (cod especie: char,
cod ejemplar: char, nombre: char,
                                              nombre científico: char, lugar origen:
importado: number, fecha inc: date, peso:
                                              char, tamaño gen: number, clase: char,
number)
                                              nº ejemplares: number, alimentación: char,
  CP: {cod especie, cod ejemplar}
                                              cod pec: char)
                                                 CP: {cod especie}
  VNN: {nombre, importado, fecha inc,
           peso}
                                                 VNN: {nombre científico,
  Único : {nombre}
                                                          lugar origen, tamaño gen,
  CAj : {cod especie} →
                                                          clase, alimentación,
          Especie(cod especie)
                                                          n° ejemplares, cod pec)
                                                  CAi: \{cod pec\} \rightarrow Pecera(cod pec)
ESPECIE GRANDE (cod especie: char)
                                              ESPACIO FUNCIONAL - FUNCIÓN
  CP: {cod especie}
                                              (cod espacio: char, función : char)
  CAj: {cod especie} →
                                                 CP: {cod espacio, función}
          Especie(cod especie)
                                                 CAj: {cod espacio} →
                                                        Esp Funcional(cod esp)
ENCARGO (nº empleado: char,
                                              ENCARGADO (nº empleado: char)
cod espacio: char)
                                                 CP: {n° empleado}
  CP: {n° empleado, cod espacio}
                                                 CAj: \{n^o \text{ empleado}\} \rightarrow
  CAj: \{n^o \text{ empleado}\} \rightarrow
                                                        Empleado(nº empleado)
          Encargado(nº empleado)
  CAj: \{cod\ espacio\} \rightarrow
          Esp Funcional(cod espacio)
CUIDADO (nº cuid: char, cod especie:
                                              CUIDADOR (nº empleado: char)
                                                 CP: {n° empleado}
char)
  CP: {n° cuid, cod especie}
                                                 CAj: \{n^o \text{ empleado}\} \rightarrow
  CAj: \{n^o \text{ cuid}\} \rightarrow \text{Cuidador}(n^o \text{ cuid})
                                                        Empleado(nº empleado)
  CAj: \{cod especie\} \rightarrow
          Especie(cod especie)
```

```
EMPLEADO (nº empleado: char. nombre:
char, anyo exp: number, NIF: char, sueldo:
number, n° emp jefe: char, fecha: date)
   CP: {n° empleado}
   VNN: {nombre, anyo exp, NIF, sueldo}
   Único: {NIF}
   CAj: \{n^o \text{ emp jefe}\} \rightarrow
          Empleado(nº empleado)
```

Primera parte: Cassandra

El modelo de datos que usa Cassandra está orientado a la agregación y a los accesos. Por ello, la metodología de diseño es ligeramente diferente a la de bases de datos relacionales. Ya que la base de datos se diseña para facilitar los accesos, se introduce el concepto de Workflow del Sistema Informático, que resume los accesos al sistema por parte de las aplicaciones. El diseño conceptual (diagrama UML) y el Workflow juntos dan lugar al diseño lógico, que puede mostrarse en forma de diagrama de Chebotko.

1. Diseño de la base de datos a partir un diagrama de accesos de un workflow de complejidad media

1.1. Workflow del SI

1.2. Transformación de clases

Esquema relacional

Esquema Cassandra

ESPECIE (cod_especie, nombre_científico, lugar origen, tamaño gen, clase,		Especie	
nº_ejemplares, alimentación, cod_pec)	cod_especie	text	K
CP: {cod_especie}	nombre_cientifico	text	
VNN : {nombre científico, lugar origen,	lugar_origen	text	
tamaño_gen, clase,	tamaño_gen	float	
alimentación, n°_ejemplares, cod_pec)	clase	text	
CAj : $\{cod_pec\} \rightarrow \mathbf{Pecera}(cod_pec)$	alimentación	text	
erij: (coa_pee) - recera(coa_pee)	nº_ejemplares	int	
	cod_pec	text	
PECERA (cod_pec, num_anim, capacidad)		Pecera	
CP: {cod_pec}	cod_pec	text	K
VNN : {num_anim, capacidad}	num_anim	int	
$CAj: \{cod pec\} \rightarrow$	capacidad	float	
Espacio(cod_espacio)	nombre	text	
	situación	text	
	superficie	float	
EJEMPLAR (cod_especie, cod_ejemplar,		Ejemplar	
nombre, importado, fecha_inc, peso)	cod_especie	text	K
CP: {cod_especie, cod_ejemplar}	cod_ejemplar	text	K
VNN : {nombre, importado, fecha_inc, peso}	nombre	text	
• /	importado	bool	
Único : {nombre}	fecha_inc	date	
CAj : {cod_especie} → Especie(cod_especie)	peso	float	

CARLOS GALLEGO

GRUPO 20

CUIDADOR (nº_empleado)		Cuidador	
CP: {nº_empleado}	nº_empleado	text	K
CAj : {n°_empleado} → Empleado(n°_empleado)	nombre	text	
	anyo_xp	int	
	NIF	text	
	sueldo	float	
	nº_emp_jefe	text	
	fecha_relacion	date	
ENCARGADO (nº_empleado)	· ·	Encargado	
CP : {no_empleado}	nº_empleado	text	K
CAj : {n°_empleado} → Empleado(n°_empleado)	nombre	text	
r ····································	anyo_xp	int	
	NIF	text	
	sueldo	float	
	nº_emp_jefe	text	
	fecha_relacion	date	
ESP_FUNCIONAL (cod_esp) CP: {cod_esp}		Espacio funcional	
$CAj : \{cod_esp\} \rightarrow$	cod_esp	text	K
Espacio(cod_espacio)	nombre	text	
	situación	text	
	superficie	float	
	{función}	text	
TARIFA (tipo, día, precio)		Tarifa	
CP: {tipo, día}	tipo	text	K
VNN : {precio}	día	text	K
	precio	float	

EMPLEADO (nº_empleado. nombre, anyo exp, NIF, sueldo, nº emp jefe, fecha)		Empleado	
	nº_empleado	text	K
<pre>CP : {no_empleado} VNN : {nombre, anyo_exp, NIF, sueldo}</pre>	nombre	text	
Único : {NIF} CAj : {n° emp jefe} →	anyo_xp	int	
Empleado(n°_empleado)	NIF	text	
	sueldo	float	
	nº_emp_jefe	text	
	fecha_relacion	date	

1.3. Diagrama Chebotko - Queries

Query 1:

CARLOS GALLEGO

• Mostrar las especies ordenadas por nombre científico

RT1: clase Especie

RT4: Ordenación por nombre_científicola

<u>RT5</u>: Unicidad atributo clave especie (cod_especie)

	ESPECIES_POR_NOMBRE	
agrupa	int	K
nombre_cientifico	text	C↑
cod_esp	text	C↑
lugar_origen	text	
clase	text	
alimentación	text	
nº_ejemplares	int	

Query 1.1:

CARLOS GALLEGO

- Mostrar las especies ordenadas por nombre científico (Query 1)
- Mostrar su correspondiente pecera (situación, superficie, nº de animales, capacidad)

<u>RT1</u>: clase Pecera, clase Especie, asociación Están $0..* \rightarrow 1..1$

RT2: Búsqueda por igualdad por cod_pec

<u>RT5</u>: Unicidad atributo clave pecera (cod_pec)

	PECERA_POR_ESPECIE	
cod_especie	text	K
nombre_cientifico	text	C↑
nombre	text	C↑
situación	text	
superficie	float	

Query 1.2:

- Mostrar las especies ordenadas por nombre científico (Query 1)
- De aquellas grandes, mostrar sus ejemplares (importado, fecha de incorporación, peso) ordenados por nombre

<u>RT1</u>: clase Especie, clase Ejemplar, asociación Pertenece $0..* \rightarrow 1..1$

RT2: Búsqueda por igualdad por cod_especie

RT4: Ordenación por nombre

RT5: Unicidad atributo clave ejemplar (cod_ejemplar)

	EJEMPLAR_POR_ESPECIE	
cod_especie	text	K
nombre_ejemplar	text	C↑
cod_ejemplar	text	C↑
importado	bool	
fecha_inc	date	
peso	float	

Query 1.3:

• Mostrar las especies ordenadas por nombre científico (Query 1)

• Mostrar sus cuidadores (años de exp., sueldo) ordenados por nombre

<u>RT1</u>: clase Especie, clase Cuidador, asociación Cuidado $1..* \rightarrow 0..*$

RT2: Búsqueda por igualdad por cod_especie

RT4: Ordenación por nombre

RT5: Unicidad atributo clave cuidador (nº empleado)

	CUIDADOR_POR_ESPECIE	
cod_especie	text	K
nombre_cuidador	text	C↑
anyo_xp	int	Ct
sueldo	float	

Query 2:

• Mostrar los encargados ordenados por nombre de forma descendiente

RT1: clase Encargado

RT4: Ordenación por nombre

RT5: Unicidad atributo clave encargado (nº empleado)

	ENCARGADO_POR_NOMBRE	
agrupa	int	K
nombre_encargado	text	$C \!\downarrow$
n_empleado	text	C↑
anyo_xp	int	
NIF	text	
sueldo	float	

Query 2.1:

• Mostrar los encargados ordenados por nombre de forma descendiente

• Mostrar los espacios funcionales (nombre, situación, superficie, funciones) de los que se encarga dicho encargado ordenados por superficie/nombre

RT1: clase Encargado, clase Espacio Funcional, asociación Se Encarga $0..* \rightarrow 1..*$

RT2: Búsqueda por igualdad por nº empleado

RT4: Ordenación por superficie/nombre

RT5: Unicidad atributo clave espacio funcional (cod espacio)

	ESP_FUNC_POR_ENCARGADO	
nº_empleado	text	K
superficie	float	C^{\dagger}
nombre_espacio	text	C↑
nombre_encargado	text	
situacion	text	
{función}	text	

Query 3:

• Mostrar los empleados ordenados por nombre

RT1: clase Empleado

RT4: Ordenación por nombre

RT5: Unicidad atributo clave empleado (nº empleado)

	EMPLEADO_POR_NOMBRE	
agrupa	int	K
nombre	text	C↑
n_empleado	text	C↑
anyo_xp	int	
NIF	text	
sueldo	float	
n_emp_jefe	text	

Query 3.1:

- Mostrar los empleados ordenados por nombre
- Mostrar sus subordinados de primer nivel, ordenados por sueldo

<u>RT1</u>: clase Empleado, asociación Es Jefe de $1..1 \rightarrow 0..*$

RT2: Búsqueda por igualdad por nº_emp_jefe/nº_empleado

RT4: Ordenación por sueldo

RT5: Unicidad atributo clave empleado (nº empleado)

	SUBS_POR_EMPLEADO	
n_emp_jefe	text	K
sueldo	float	$C\!\downarrow$
n_empleado	text	C↑
anyo_exp	int	
NIF	float	

2. Creación base de datos en Cassandra DDL

Primero creamos el *KEYSPACE* ACUARIO, con todas las tablas. Debido a que solo hay un centro de datos, la estrategia de replicación será simple ('SimpleStrategy'), con un factor de replicación recomendado de 3.

```
CREATE KEYSPACE acuario WITH replication = {'class':
'SimpleStrategy', 'replication_factor': '3'};
```

2.1. Tablas simples

Ahora se crean las tablas simples con información por clases tal y como se definieron en el apartado 1.2 Transformación clases.

ESPECIE

```
CREATE TABLE especie (
cod_especie TEXT PRIMARY
KEY,

nombre_cientifico TEXT,
lugar_origen TEXT,
tamanyo_gen FLOAT,
clase TEXT,
alimentación TEXT,
n_ejemplares INT,
cod_pec TEXT);
```

PECERA

```
CREATE TABLE pecera (
cod_pec TEXT PRIMARY KEY,
num_anim INT,
capacidad FLOAT,
nombre TEXT,
situación TEXT,
superficie INT);
```

EJEMPLAR

```
CREATE TABLE ejemplar (
        cod_especie TEXT,
        cod_ejemplar TEXT,
        nombre TEXT,
        importado INT,
        fecha_inc DATE,
        peso FLOAT,
        PRIMARY KEY (cod_especie,
cod_ejemplar));
```

CUIDADOR

ENCARGADO

ESPACIO FUNCIONAL

```
CREATE TABLE esp_funcional (
cod_esp TEXT PRIMARY KEY,
nombre TEXT,
situación TEXT,
superficie INT,
funcion SET<TEXT>);
```

TARIFA

```
CREATE TABLE tarifa (
    tipo TEXT,
    day TEXT,
    precio FLOAT,
    PRIMARY KEY (tipo, day);
```

EMPLEADO

```
NIF TEXT,
sueldo FLOAT,
n_emp_jefe TEXT,
fecha_relacion DATE);
```

2.2. Tablas complejas

Ahora se crean las tablas complejas correspondientes a las queries del diagrama chebotko, del apartado <u>1.3. Diagrama Chebotko - Queries</u>

ESPECIES POR NOMBRE

```
[Q1: Mostrar las especies ordenadas por nombre científico]
CREATE TABLE especies_por_nombre (
    agrupa INT,
    nombre_cientifico TEXT,
    cod_esp TEXT,
    alimentacion TEXT,
    clase TEXT,
    lugar_origen TEXT,
    n_ejemplares INT,
    PRIMARY KEY (agrupa, nombre_cientifico, cod_esp)
) WITH CLUSTERING ORDER BY (nombre_cientifico ASC, cod_esp)
ASC)
```

PECERA_POR_ESPECIE

```
[Q1.1: Mostrar su correspondiente pecera (situación, superficie, nº de animales,
capacidad) ]
CREATE TABLE pecera_por_especie (
    cod_especie TEXT,
    nombre_cientifico TEXT,
    nombre TEXT,
    situacion TEXT,
    superficie INT,
    PRIMARY KEY (cod_especie, nombre_cientifico, nombre)
) WITH CLUSTERING ORDER BY (nombre_cientifico ASC, nombre ASC)
```

EJEMPLAR_POR_ESPECIE

```
[Q1.2: De aquellas grandes, mostrar sus ejemplares (importado, fecha de incorporación, peso) ordenados por nombre]

CREATE TABLE ejemplar_por_especie (
    cod_especie TEXT,
    nombre_ejemplar TEXT,
    cod_ejemplar TEXT,
    fecha_inc DATE,
    importado INT,
    peso FLOAT,
    PRIMARY KEY (cod_especie, nombre_ejemplar, cod_ejemplar)

) WITH CLUSTERING ORDER BY (nombre_ejemplar ASC, cod_ejemplar ASC)
```

CUIDADOR_POR_ESPECIE

```
[Q1.3: Mostrar sus cuidadores (años de exp., sueldo) ordenados por nombre]
CREATE TABLE cuidador_por_especie (
    cod_especie TEXT,
    nombre_cuidador TEXT,
    anyo_xp INT,
    sueldo FLOAT,
    PRIMARY KEY (cod_especie, nombre_cuidador, anyo_xp)
) WITH CLUSTERING ORDER BY (nombre_cuidador ASC, anyo_xp ASC)
```

ENCARGADO_POR_NOMBRE

```
[Q2: Mostrar los encargados ordenados por nombre de forma descendiente]
CREATE TABLE encargado_por_nombre (
    agrupa INT,
    nombre_encargado TEXT,
    n_empleado TEXT,
    anyo_xp INT,
    nif TEXT,
    sueldo FLOAT,
    PRIMARY KEY (agrupa, nombre_encargado, n_empleado)
) WITH CLUSTERING ORDER BY (nombre_encargado DESC, n_empleado ASC)
```

ESP_FUNC_POR_ENCARGADO

EMPLEADO POR NOMBRE

```
[Q3: Mostrar los empleados ordenados por nombre]
CREATE TABLE empleado_por_nombre (
    agrupa INT,
    nombre TEXT,
    n_empleado TEXT,
    anyo_xp INT,
    n_emp_jefe TEXT,
    nif TEXT,
    sueldo FLOAT,
    PRIMARY KEY (agrupa, nombre, n_empleado)
) WITH CLUSTERING ORDER BY (nombre ASC, n_empleado ASC)
```

SUBS_POR_EMPLEADO

```
[Q3.1: Mostrar sus subordinados de primer nivel, ordenados por sueldo]
CREATE TABLE subs_por_empleado (
    n_emp_jefe TEXT, sueldo FLOAT,
    n_empleado TEXT,
    anyo_exp INT,
    nif TEXT,
    PRIMARY KEY (n_emp_jefe, sueldo, n_empleado)
) WITH CLUSTERING ORDER BY (sueldo DESC, n_empleado ASC)
```

3. Consultas SQL para obtener datos de cada tabla

3.1. Tablas Simples

ESPECIES	EJEMPLARES
<pre>SELECT * FROM ESPECIE;</pre>	SELECT * FROM EJEMPLAR;

EMPLEADOS

SELECT * FROM EMPLEADO;

ENCARGADOS

SELECT e.* FROM EMPLEADO e
WHERE e.N°_EMPLEADO IN
(SELECT en.N°_EMPLEADO
FROM ENCARGADO en);

SELECT * FRO

CUIDADORES

SELECT e.* FROM EMPLEADO e
WHERE e.N°_EMPLEADO IN
(SELECT cd.N°_EMPLEADO
FROM CUIDADOR cd);

Los cuidadores y los encargados son una especialización parcial disjunta de los empleados totales, esto quiere decir que tendremos que obtener tanto cuidadores, como encargados, como empleados para tener toda la información de la base de datos.

ESPACIOS FUNCIONALES

SELECT ef.COD_ESP, e.NOMBRE,
e.SITUACION, e.SUPERFICIE,
(LISTAGG(f.funcion, ', ')
WITHIN GROUP(ORDER BY f.funcion))
as FUNCIONES
FROM ESP_FUNCIONAL ef, FUNCION f,
ESPACIO e
WHERE Ef.COD_ESP = f.COD_ESPACIO
AND e.COD_ESPACIO = ef.COD_ESP
GROUP BY ef.COD_ESP, e.NOMBRE,
e.SITUACION, e.SUPERFICIE;

Los espacios funcionales cuentan con varias funciones cada uno, por lo que hemos tenido que recurrir a LISTAGG para agrupar en una sola fila todas las funciones de cada espacio, y así poder subirlo como 'set' a Cassandra.

PECERAS SELECT p.COD_PEC, p.CAPACIDAD, p.NUM_ANIM, e.NOMBRE, e.SUPERFICIE, e.SITUACION FROM PECERA p, ESPACIO e WHERE e.COD_ESPACIO = p.COD_PEC;	Los espacios funcionales y las peceras son una especialización total disjunta de la tabla ESPACIO, esto quiere decir que tendremos que nos sirve con obtener solo estas 2 tablas para tener toda la información de la base de datos.
TARIFAS SELECT * FROM TARIFA;	

3.2. Tablas Complejas (Queries):

Q1. ESPECIES POR NOMBRE

CARLOS GALLEGO

SELECT 1 as agrupa, nombre_cientifico, cod_especie, lugar_origen, clase, alimentacion, n°_ejemplares FROM especie
ORDER BY nombre_cientifico ASC;

Q1.1. PECERA_POR_ESPECIE

SELECT cod_especie, nombre_cientifico, nombre, situacion,
superficie
FROM especie, pecera, espacio
WHERE especie.cod_pec = pecera.cod_pec and espacio.cod_espacio
= pecera.cod_pec
ORDER BY nombre_cientifico ASC;

Q1.2. EJEMPLAR_POR_ESPECIE

SELECT ej.cod_especie, ej.nombre, cod_ejemplar, importado,
fecha_inc, peso
FROM ejemplar ej, especie e
WHERE ej.cod_especie = e.cod_especie
ORDER BY ej.nombre ASC;

CUIDADOR POR ESPECIE Q1.3.

SELECT e.cod_especie, emp.nombre, emp.anyo_exp, emp.sueldo FROM cuidador c, especie e, cuidado cu, empleado emp WHERE c.N°_EMPLEADO = cu.n°_cuid and e.cod_especie = cu.cod_especie and emp.n°_empleado = c.n°_empleado ORDER BY emp.nombre ASC, emp.anyo_exp ASC;

ENCARGADO POR NOMBRE **Q2**.

SELECT 1 as agrupa, e.nombre, e.no_empleado, e.anyo_exp, e.NIF, e.sueldo FROM encargado en, empleado e WHERE en.n°_empleado = e.n°_empleado ORDER BY e.nombre DESC;

ESP FUNC POR ENCARGADO 02.1.

SELECT emp.no_empleado, emp.nombre as nombre_encargado, e.nombre as nombre_espacio, e.superficie, e.situacion, LISTAGG(f.funcion, ', ') WITHIN GROUP(ORDER BY f.funcion) as funciones FROM empleado emp, espacio e, funcion f, encargo en WHERE emp.n°_empleado = en.n°_empleado and en.cod_espacio = e.cod_espacio and e.cod_espacio = f.cod_espacio GROUP BY emp.n°_empleado, e.nombre, e.superficie, e.situacion, emp.nombre ORDER BY e.superficie DESC, e.nombre ASC;

EMPLEADO POR NOMBRE Q3.

SELECT 1 as agrupa, e.nombre, e.no_empleado, e.no_emp_JEFE, e.anyo_exp, e.NIF, e.sueldo FROM empleado e ORDER BY e.nombre ASC;

SUBS POR EMPLEADO Q3.1.

SELECT n°_emp_jefe, sueldo, n°_empleado FROM empleado

4. Exportar las consultas SQL a CSV

Una vez ejecutadas las consultas SQL anteriores, clicando el botón derecho sobre el resultado se elige la opción exportar y se exportan a csv con codificación UTF-8 para que sean legibles por el sistema de Cassandra.

5. Cargar datos a Cassandra

Con los nodos encendidos:

- 1. Desde MobaXterm → ssh@cda_gda-020-c1.dsic.cloud
- 2. Una vez introducida la contraseña, ponemos la instrucción: cqlsh cda_gda-020-c1.dsic.cloud
- 3. Una vez dentro \rightarrow use ACUARIO;

Y ya estamos preparados para importar los datos en Cassandra usando las instrucciones del apartado anterior.

5.1. Tablas Simples

ESPACIO FUNCIONAL

```
COPY ESP_FUNCIONAL(COD_ESP, NOMBRE, SITUACION, SUPERFICIE, FUNCION)

FROM 'Esp_funcional_Cassandra.csv' WITH HEADER = TRUE AND DELIMITER = ';';
```

PECERA

```
COPY PECERA(COD_ESP, NOMBRE, SITUACION, SUPERFICIE, FUNCION)
FROM 'PECERA.csv' WITH HEADER = TRUE AND DELIMITER = ';'
```

EMPLEADO

```
COPY EMPLEADO(N_EMPLEADO, NOMBRE, ANYO_XP, NIF, SUELDO, N_EMP_JEFE, FECHA_RELACION)

FROM 'EMPLEADO.csv' WITH HEADER = TRUE AND DELIMITER = ';';
```

CUIDADOR

COPY CUIDADOR(N_EMPLEADO, NOMBRE, ANYO_XP, NIF, SUELDO, N_EMP_JEFE, FECHA_RELACION) FROM 'CUIDADOR.csv' WITH HEADER = TRUE AND DELIMITER = ·;;;

ENCARGADO

COPY ENCARGADO(N_EMPLEADO, NOMBRE, ANYO_XP, NIF, SUELDO, N EMP JEFE, FECHA RELACION) FROM 'ENCARGADO.csv' WITH HEADER = TRUE AND DELIMITER = ·; ';

ESPECIE

COPY ESPECIE(COD ESPECIE, NOMBRE CIENTIFICO, LUGAR ORIGEN, TAMANYO GEN, CLASE, ALIMENTACION, N_EJEMPLARES, COD_PEC) FROM 'ESPECIE.csv' WITH HEADER = TRUE AND DELIMITER = · ; ; ;

EJEMPLAR

COPY EJEMPLAR(COD_ESPECIE, COD_EJEMPLAR, NOMBRE, IMPORTADO, FECHA_INC, PESO) FROM 'EJEMPLAR.csv' WITH HEADER = TRUE AND DELIMITER = · · · ·

TARIFA

COPY TARIFA(TIPO, DIA, PRECIO) FROM 'tarifa.csv' WITH HEADER = TRUE AND DELIMITER = ';';

5.2. Tablas Complejas

CARLOS GALLEGO

ESPECIES_POR_NOMBRE

COPY ESPECIES_POR_NOMBRE (AGRUPA, NOMBRE_CIENTIFICO, COD_ESP, ALIMENTACION,CLASE,LUGAR_ORIGEN,N_EJEMPLARES)
FROM 'Especies_por_nombre.csv' WITH HEADER = TRUE AND DELIMITER = ';';

cqlsh:acu	ario> SELECT * FROM ESPECIES	POR_NOMBRE	- ;			
agrupa	nombre_cientifico	cod_esp	alimentacion	clase	lugar_origen	n_ejemplares
1	Abudefduf troschelii	esp032	Océano Atlántico	Actinopterygii	Herbívoro	35
1	Acanthocybium solandri	esp008	Océano Atlántico	Actinopterygii	Herbívoro	25
1	Acanthurus leucosternon	esp002	Océano Indo-Pacífico	Actinopterygii	Herbívoro	11
1	Acipenser baerii	esp049	Asia	Actinopterygii	Omnívoro	7
1	Aequorea victoria	esp038	Norteamérica	Hydrozoa	Omnívoro	21
1	Aplodinotus grunniens	esp006	Norteamérica	Actinopterygii	Omnívoro	13
1	Atelomycterus macleayi	esp047	Costas Tropicales	Chondrichthyes	Carnívoro	11
1	Betta splendens	esp001	Sudeste Asiático	Actinopterygii	Omnívoro	27

PECERA POR ESPECIE

COPY PECERA_POR_ESPECIE (COD_ESPECIE,
NOMBRE_CIENTIFICO,NOMBRE,SITUACION, SUPERFICIE) FROM
'pecera_por_especie.csv' WITH HEADER = TRUE AND DELIMITER
= ';';

cqlsh:acuario	> SELECT * FROM PECERA_POR_ESI	PECIE;		
cod_especie	nombre_cientifico	nombre	situacion	superficie
esp066 esp064 esp068 esp040 esp030 esp041 esp062	Dipturus laevis Chlamydoselachus anguineus Teuthidodrilus samae Metasepia pfefferi Squatina dumeril Latimeria chalumnae Malacosteus Terrapene coahuila	La Leyenda de La medusa La Cúpula de Dora El Dorado de Patricio La Cúpula de La sepia	Abierto Abierto Abierto Abierto Abierto Cerrado Abierto Abierto	28 25 35 43 17 96 36 54

ENCARGADO_POR_NOMBRE

COPY ENCARGADO_POR_NOMBRE

(AGRUPA,NOMBRE,N_EMPLEADO,ANYO_XP,NIF,SUELDO) FROM
'encargados_por_nombre.csv' WITH HEADER = TRUE AND
DELIMITER = ';';

cqlsh:acı	cqlsh:acuario>					
agrupa	nombre_encargado	n_empleado	an yo_xp	nif	sueldo	
1	Walter Harris	enc21	0	96513683W	2325.12988	
1	Timothy Dennis	enc29	11	78681222Q	2206.33008	
1	Thomas Rocha	enc39	5	73181782Z	1105.13	
1	Thelma Juariqui	enc38	0	88732856Y	884.37	
1	Steven Riccio	enc10	4	56963376N	1526.42004	
1	Roger Huntley	enc33	0	74692022M	2004.19995	
1	Robin Sydnor	enc32	3	54034755G	897.71002	
1	Richard Baylor	enc12	0	76830041J	1746.84998	
1	Patrick White	enc14	11	218300745	957.57001	
1	Nelson Martin	enc08	7	14670424N	1794.37	

EMPLEADO_POR_NOMBRE

CARLOS GALLEGO

COPY EMPLEADO_POR_NOMBRE

(AGRUPA,NOMBRE,N_EMPLEADO,N_EMP_JEFE,ANYO_XP,NIF,SUELDO)

FROM 'empleados_por_nombre.csv' WITH HEADER = TRUE AND

DELIMITER = ';';

cqlsh:acu	cqlsh:acuario>					
agrupa	nombre	n_empleado	anyo_xp	n_emp_jefe	nif	sueldo
1	Albert Wyatt	rst07	0	rst14	99294065Y	2115.48999
1	Alberta Demars	rst14	0	rst18	70750702B	1226.81006
1	Alicia Baker	rst19	4	seg24	49068808X	1958.73999
1	Allen Zimmerman	mnt07	0	rst15	92170941M	2429.66992
1	Andrew Sawyer	seg07	4	rst17	26717422R	2416.53003
1	Andrew Stpierre	cud24	10	seg05	20550817H	1375.58997
1	Angel Almanza	mrg24	4	seg04	39324223L	2368.40991
1	Angela Byrd	mrg14	2	enc25	88408250E	2068.41992
1	Angela Taylor	mnt00	5	cud34	25621462Z	1977.52002
1	Anita Curlee	cud22	4	mnt09	79760376X	2801.3501

ESP_FUNC_POR_ENCARGADO

COPY ESP_FUNC_POR_ENCARGADO

(N_EMPLEADO, NOMBRE_ENCARGADO, NOMBRE_ESPACIO, SUPERFICIE,

SITUACION, FUNCION) FROM 'encargados_funciones.csv' WITH

HEADER = TRUE AND DELIMITER = ';';

cqlsh:acuari	cqish:acuario> SELECT * FROM ESP_FUNC_POR_ENCARGADO ;					
n_empleado	nombre_encargado	superficie	nombre_espacio	funcion	situacion	
enc35	Joesph Bradish	52	El Dorado de Neptuno	{'Atención al cliente', 'Punto de información'}	Abierto	
enc32	Robin Sydnor	70	La Cúpula de Pinocho	{'Almacén', 'Punto de información'}	Abierto	
enc32	Robin Sydnor	41	El Palacio de Poseidón	{'Restaurante'}	Abierto	
enc32	Robin Sydnor	22	El Palacio de La sirenita	{'Expositor', 'Restaurante', 'Seguridad'}	Abierto	
enc28		52	El Dorado de Neptuno			
enc28		34	La Casa Blanca de Arenita			
enc28		17	El Castillo de Dora			
enc11			La Casa Blanca de Dora			
enc33		92		[{'Atención al cliente', 'Centro médico', 'Expositor', 'Punto de información'}		
enc00		91	El Cuchitril de La medusa			
enc00		52	La Playa de Poseidón			
enc00		22	El Palacio de La sirenita			
enc29		37	El Dorado de Tritonmán			
enc01	Betty Shirk	78	El Zulo de Manolo	{'Punto de información'}	Cerrado	

SUBS_POR_EMPLEADO

CARLOS GALLEGO

COPY subs_por_empleado (N_EMP_JEFE, SUELDO, N_EMPLEADO, ANYO_EXP, NIF)

FROM 'subs_por_empleado.csv' WITH HEADER = TRUE AND
DELIMITER = ';';

cqlsh:acuario	> SELECT * FF	ROM subs_por_	empleado ;	
n_emp_jefe	sueldo	n_empleado	anyo_exp	nif
seg08	1942.60999	rst29	3	87871833B
seg08	1409.37	enc00	13	24606045R
rst32	1959.65002	rst33	12	92163879G
enc35	2843.73999	rst20	j 5 j	26136060X
ger02	957.57001	enc14	j 11 j	21830074S
cud28	2956.25	seg02	j 4 j	85207763P
mnt02	2859.78003	enc05	[6 [30896702C
mnt02	2327.72998	rst03	j 8 j	78307389W
mnt02	1815.84998	ger01	j 4 j	21373097W
mnt02	1784.10999	cud03	9	31921020X
seg14	2144.95996	mnt10	8	32829546J

EJEMPLAR POR ESPECIE

COPY ejemplar_por_especie (COD_ESPECIE, NOMBRE_EJEMPLAR,COD_EJEMPLAR,IMPORTADO,FECHA_INC,PESO) FROM 'EJEMPLAR_POR_ESPECIE.CSV' WITH HEADER = TRUE AND DELIMITER = ';';

cqlsh:acuario>	SELECT * FROM eje	mplar_por_espec	ie ;		
cod_especie	nombre_ejemplar	cod_ejemplar	fecha_inc	importado	peso
esp015	Ceno	ej004	2004-04-27	1 1	272
esp015	Cifefu	ej025	2005-02-22	îi	660
esp015	Cituceja	ej023	1996-10-31	1	69
esp015	Cuforagiva	ej002	2001-08-06	0	715
esp015	Dacafado	ej033	2004-06-14	1	650
esp015	Dojifidoha	ej013	2007-05-03	1	883
esp015	Donifomidu	ej008	2000-05-21	0	849
esp015	Dujige	ej009	2017-06-06	0	713
esp015	Fabofi	ej014	2015-02-06	0	986
esp015	Foju	ej028	2006-10-16	1	857
esp015	Jogeju	ej024	2001-04-06	0	840
esp015	Lada	ej016	1994-01-04	1	167

CUIDADOR_POR_ESPECIE

COPY cuidador_por_especie (cod_especie,
nombre_cuidador,anyo_xp,sueldo)
FROM 'Cuidador_por_especie.csv' WITH HEADER = TRUE AND
DELIMITER = ';';

```
cqlsh:acuario> SELECT * FROM cuidador_por_especie
 cod_especie | nombre_cuidador
                                    | anyo_xp | sueldo
                    Dorothy Bonner
Gail Johnson
      esp066
esp066
                                                 2852.15991
                                            14
                                                  2986.1001
      esp066
                       James Erwin
                                                 2243.26001
                                            13
                Vanessa Krikorian
                                                 1510.41003
      esp066
      esp064
                    Dorothy Bonner
                                                 2852,15991
       esp064
                     Gerald Taylor
                                            15
                                                  837.67999
                      Anita Curlee
       esp068
                                                   2801.3501
       esp040
                                                     1508.88
                    Theresa Maurer
                                                   817.26001
                      Carlos Meeks
                    Theresa Maurer
                                                     1508.88
                    Dorothy Bonner
                                                  2852.15991
       esp041
                                                     1508.88
       esp041
                    Theresa Maurer
                Patricia Martinez
                                                  2628.18994
                      Sandra Boy
```

Segunda parte: Neo4J

El modelo de datos que usa Neo4J está orientado a los grafos. La base de datos se diseña para que se pueda utilizar la teoría de grafos, se introduce el concepto de nodo y de relación (arco).

1. Diseño esquema lógico

DANIEL OLIVER

2. Cargar la base de datos en Neo4J

2.1 Creación de los nodos

Los nodos de la base de datos van a ser: Species, Employee, Specimen, Space y Tarifa.

Algunos nodos de tipo Employee son a la vez tipo <u>Taker</u> o tipo <u>Manager</u>, dependiendo de si son cuidadores o funcionarios. De los nodos de tipo <u>Space</u>, unos son a su vez de tipo <u>FishTank</u> y otros de tipo <u>Facility</u>, dependiendo de si son peceras o espacios funcionales.

A continuación, se muestra nodo por nodo la consulta SQL que se ha exportado y la instrucción Cypher con la que se ha cargado a Neo4J:

NODO ESPECIE

SELECT COD_ESPECIE,

NOMBRE_CIENTIFICO, LUGAR_ORIGEN,

TAMAÑO_GEN AS GENERAL_SIZE,

CLASE, ALIMENTACION,

N°_EJEMPLARES AS N_EJEMPLARES

FROM ESPECIE;

CARLOS GALLEGO

LOAD CSV WITH HEADERS FROM
'file:///ESPECIE_Cypher.csv'
AS line FIELDTERMINATOR ';'
CREATE (n:Species {cod_especie:
line.COD_ESPECIE,
nombre_cientifico:
line.NOMBRE_CIENTIFICO,
lugar_origen: line.LUGAR_ORIGEN,
general_size:
toFloat(line.GENERAL_SIZE),
class: line.CLASE, alimentacion:
line.ALIMENTACION, n_ejemplares:
toInteger(line.N_EJEMPLARES)})

GRUPO 20

NODO EJEMPLAR

SELECT * FROM EJEMPLAR;

LOAD CSV WITH HEADERS
FROM 'file:///SPECIMEN.csv'
AS line
CREATE (n:Specimen {cod_spec:
line.COD_EJEMPLAR, cod_especie:
line.COD_ESPECIE, name:
line.NOMBRE, fecha_inc:
line.FECHA_INC,
imported:
toBoolean(line.IMPORTADO),
weight: toInteger(line.PESO)})

NODO EMPLEADO

SELECT N°_EMPLEADO AS N_EMPLEADO, NOMBRE, NIF, SUELDO, ANYO_EXP FROM EMPLEADO;

LOAD CSV WITH HEADERS
FROM 'file:///Employee.csv'
AS line
CREATE (n:Employee {cod_em:
line.N_EMPLEADO, name:
line.NOMBRE, NIF: line.NIF,
anyo_exp:
toInteger(line.ANYO_EXP),
sueldo: toFloat(line.SUELDO)})

CUIDADORES (Empleados)

SELECT N°_EMPLEADO AS

N_EMPLEADO

FROM CUIDADOR;

LOAD CSV WITH HEADERS
FROM 'file:///Cuidador.csv'
AS line
MATCH (n:Employee {cod_em:
line.N_EMPLEADO})
SET n:Taker

ENCARGADOS (Empleados)

SELECT N°_EMPLEADO AS

N_EMPLEADO

FROM ENCARGADO;

LOAD CSV WITH HEADERS
FROM 'file:///Encargado.csv'
AS line
MATCH (n:Employee {cod_em:
line.N_EMPLEADO})
SET n:Manager

NODO ESPACIO

SELECT * FROM ESPACIO;

LOAD CSV WITH HEADERS FROM
'file:///ESPACIO_Cypher.csv'
AS line
CREATE (n:Space {cod_espacio:
line.COD_ESPACIO, name:
line.NOMBRE, superficie:
toInteger(line.SUPERFICIE),
status: line.SITUACION})

ESPACIOS FUNCIONALES (Espacios)

SELECT ef.COD_ESP,
LISTAGG(f.funcion, ', ') WITHIN
GROUP(ORDER BY f.funcion) as
FUNCIONES
FROM ESP_FUNCIONAL ef, FUNCION f
WHERE Ef.COD_ESP = f.COD_ESPACIO
GROUP BY ef.COD_ESP;

LOAD CSV WITH HEADERS FROM
'file:///Esp_funcional_Cypher.cs
v'
AS line
FIELDTERMINATOR ';'
MATCH (n:Space {cod_espacio:
line.COD_ESP})
SET n:Facility
SET n.funciones =
SPLIT(line.FUNCIONES, ',')

PECERAS (Espacios)

SELECT * FROM PECERA;	LOAD CSV WITH HEADERS FROM 'file:///PECERA_Cypher.csv' AS line MATCH (n:Space {cod_espacio: line.COD_PEC}) SET n:FishTank SET n.capacidad = toInteger(line.CAPACIDAD) SET n.num_animales = toInteger(line.NUM_ANIM)
-----------------------	---

NODO TARIFA

SELECT * FROM TARIFA;	LOAD CSV WITH HEADERS FROM 'file:///TARIFA.csv' AS line FIELDTERMINATOR ';' CREATE (n:Tarifa {type: line.TIPO, day: line.DÍA, price: toFloat(line.PRECIO)})
-----------------------	---

2.2 Creación de las relaciones

Las relaciones de la base de datos van a ser: <u>VIVE_EN</u>, <u>PERTENECE</u>, <u>CUIDA_DE</u>, <u>ES_JEFE_DE</u>, <u>SE_ENCARGA_DE</u>. Se muestra a continuación, relación por relación, la consulta SQL que se ha exportado y la instrucción cypher con la que se ha cargado a Neo4J.

RELACIÓN PERTENECE

SELECT COD_ESPECIE, COD_EJEMPLAR FROM EJEMPLAR;	LOAD CSV WITH HEADERS FROM 'file:///BELONGS.csv' AS line MATCH (ej:Specimen {cod_spec: line.COD_EJEMPLAR, cod_especie: line.COD_ESPECIE}), (sp:Species {cod_especie: line.COD_ESPECIE}) CREATE (ej) - [:PERTENECE] -> (sp)
---	--

RELACIÓN ES JEFE DE

SELECT N°_EMPLEADO AS N_EMPLEADO, N°_EMP_JEFE AS N_EMP_JEFE, FECHA FROM EMPLEADO;

LOAD CSV WITH HEADERS FROM 'file:///IS_BOSS.csv' AS line MATCH (b:Employee {cod_em: line.N_EMP_JEFE}), (s:Employee {cod_em: line.N_EMPLEADO}) CREATE (b) - [:ES_JEFE DE {fecha: line.FECHA}] -> (s)

RELACIÓN CUIDA DE

SELECT N°_CUID AS N_CUID, COD_ESPECIE FROM CUIDADO;

LOAD CSV WITH HEADERS FROM 'file:///CUIDADO.csv' AS line MATCH (cd:Taker {cod_em: line.N_CUID}), (sp:Species {cod_especie: line.COD_ESPECIE}) CREATE (cd) - [:CUIDA DE] -> (sp)

RELACIÓN SE ENCARGA DE

SELECT N° EMPLEADO AS N_EMPLEADO, COD_ESPACIO FROM ENCARGO;

LOAD CSV WITH HEADERS FROM 'file:///ENCARGO.csv' AS line MATCH (mg:Manager {cod_em: line.N_EMPLEADO}), (sp:Facility {cod_espacio: line.COD_ESPACIO}) CREATE (mg) - [:SE_ENCARGA DE] -> (sp)

RELACIÓN VIVE EN

SELECT COD_ESPECIE, COD_PEC FROM ESPECIE;

LOAD CSV WITH HEADERS FROM 'file:///VIVE_EN.csv' AS line MATCH (sp:Species {cod_especie: line.COD_ESPECIE}), (p:FishTank {cod_espacio: line.COD_PEC}) CREATE (sp) - [:VIVE_EN] -> (p)

3. Consultas no triviales con Cypher

Cypher Q1: Hallar el nombre y tamaño de las especies que tienen un tamaño superior a la media y el nombre de sus cuidadores

```
1 MATCH (sp1:Species)
2 WITH AVG(sp1.general_size) AS tamaño_medio
3 MATCH (sp2:Species) <- [:CUIDA_DE] - (b:Employee)</pre>
4 WHERE sp2.general_size > tamaño_medio
5 RETURN sp2.nombre_cientifico AS Nombre, COLLECT(b.name) AS Cuidadores, sp2.general_size AS Tamaño_General
```

Nombre	Cuidadores	Tamaño_General
"Enteroctopus dofleini"	["Gloria Gabriel", "William King", "Mattle Harris"]	4.3
"Epinephelus itajara"	["Jane Torros", "William Bishop"]	1.8
"Latimeria chalumnae"	["Dorothy Bonner", "Theresa Maurer"]	1.6
"Squatina aculeata"	["Martin Evey"]	1.2
"Dipturus laevis"	["James Erwin", "Vanessa Krikorian", "Gail Johnson", "Dorothy Bonner"]	1.5
"Squatina dumeril"	["Carlos Meeks", "Theresa Maurer"]	1.3
"Regalecus glesne"	["Martin Evey"]	4
"Isurus paucus"	["Hazel Peralta"]	2.5
"Paralithodes camtschaticus"	["William Bishop", "Martin Evey", "Vivian Andrew"]	1.7
"Somniosus microcephalus"	["Vivian Andrew"]	3
"Mola mola"	["Sandra Boyle", "Derek Hanley"]	2.2
"Sphyrna mokarran"	["Michael Nelson", "Vanessa Krikorian", "Gail Johnson"]	3.9
"Mobula mobular"	["Robert Edgehill", "Gloria Gabriel", "Damien Carter", "Howard King"]	5.2
"Carcharodon carcharias"	["Martin Evey", "Anita Curlee", "Theresa Maurer", "Robert Edgehill"]	6.4
"Tursiops truncatus"	["Brian Dimas", "Mark Fritsch"]	1.25
"Stegostoma fasciatum"	["James Erwin"]	2.5

Cypher Q2: Hallar el nombre, años de experiencia y sueldo de los empleados que sean jefes de cuidadores que cuidan especies que vivan en una pecera con al menos 30 animales, así como el nombre de dichos cuidadores y el nº total de subordinados que tiene a su cargo. el resultado debe estar ordenado de forma descendente por el sueldo

```
1 MATCH (b:Employee) - [:ES_JEFE_DE] -> (en:Taker) - [:CUIDA_DE] -> (sp:Species) - [:YIVE_EN] -> (p:FishTank)
2 WHERE p.num_animales > 30 WITH b, en MATCH (b) - [:ES_JEFE_DE] -> (s:Employee)
3 WITH DISTINCT b.cod_em AS Id, b.name AS Nombre, COLLECT(DISTINCT en.name) AS Nombre_Subs_Cuidadores, b.sueldo AS Sueldo, b.anyo_exp AS Experiencia, COUNT(DISTINCT(s)) AS
 N_Subordinados
4 RETURN Nombre, Nombre_Subs_Cuidadores, Sueldo, Experiencia, N_Subordinados
5 ORDER BY Sueldo DESC
```

Nombre	Nombre_Subs_Cuidadores	Sueldo	Experiencia	N_Subordinados
"Lyndsay Grant"	["John Washington"]	2987.34	12	4
"Gary Hutcherson"	["Gloria Gabriel"]	2656.12	6	3
"Harris Santa"	["Matthew Lay"]	2565.76	0	3
"Edward Keller"	["Jeff Collica"]	2494.41	6	1
"Tonya Huff"	["Sandra Boyle"]	2433.23	4	4
"Meghan Lane"	["Jane Torros", "Brian Dimas"]	2330.39	10	3
"Walter Harris"	["Derek Hanley"]	2325.13	0	3
"Timothy Dennis"	["Gerald Taylor"]	2206.33	11	2
"Freddie Rodriguez"	["Tonya Huff"]	2146.74	6	4
"Albert Wyatt"	["Stephen Mena"]	2115.49	0	4
"Clinton Haywood"	["William King"]	2036.12	10	4
"Lawrence Mazza"	["Lyndsay Grant"]	1959.65	12	4
"Susan Sibbett"	["Dorothy Bonner", "Howard King"]	1949.49	15	4
"Wesley Biss"	["Anita Curlee"]	1821.76	3	4
"Mia Radune"	["Vanessa Krikorian"]	1740.96	3	2
"William King"	["Mark Fritsch"]	1733.09	13	4

Cypher Q3: Hallar el nombre del jefe máximo del parque acuario (aquel que no tiene jefe), su sueldo, sus años de experiencia, así como el nombre y sueldo de sus subordinados directos (ordenados por sueldo de mayor a menor)

Cypher Q4: Hallar el nombre y el nº de animales de las peceras con una capacidad mayor a la media, así como el tipo de alimentación de las especies que viven en ellas y el nº de cuidadores que cuidan de dichas especies

1 MATCH (p1:FishTank)			
2 WITH AVG(p1.capacidad) AS c	apacidad avg		
(1 /		.VIVE ENT -> (p2.FichTapk)	
3 MATCH (en:Taker) - [:CUIDA_		:VIVE_ENJ -> (pz:FISHTank)	
4 WHERE p2.capacidad > capaci	dad_avg		
5 WITH p2.name AS Pecera. p2.	num animales AS № Pece	es, COLLECT(DISTINCT(sp.alimentacion))) AS Tipo Alimentación.
COUNT(DISTINCT(en.cod_em))	AS Nº_Culdadores RETURI	N Pecera, №_Peces, Tipo_Alimentación	, Nº_Culdadores
Pecera	N°_Peces	Tipo_Alimentación	N°_Cuidadores
"El Castillo de Tritonmán"	38	["Carnívoro"]	5
"El Dorado de Arenita"	7	["Carnívoro"]	2
"El Castillo de Calamardo"	21	["Omnívoro"]	2
"La Cascada de Tritonmán"	21	["Carnívoro"]	8
"La Playa de Patricio"	31	["Carnívoro"]	3
"El Zulo de Tritonmán"	31	["Omnívoro"]	2
"La Leyenda de Bob Esponja"	80	["Detrívoro", "Omnívoro", "Herbívoro", "Carnívoro"]	8
"La Leyenda de La sirenita"	25	["Herbívoro"]	1
"La Casa Blanca de La medusa"	56	["Herbívoro", "Omnívoro"]	5
"El Dorado de La sirenita"	7	["Herbívoro", "Carnívoro"]	5
"El Palacio de Neptuno"	28	["Carnívoro"]	4
"El Zulo de Neptuno"	24	["Carnívoro"]	4
"La Cascada de Neptuno"	73	["Omnívoro", "Carnívoro"]	13
"La Leyenda de Pinocho"	44	["Herbívoro", "Omnívoro"]	3
"El Cuchitril de Arenita"	70	["Omnívoro", "Herbívoro", "Carnívoro"]	4
"La Casa Blanca de Neptuno"	6	["Omnívoro"]	3

Cypher Q5: Hallar el nombre de todos los espacios funcionales junto con el nº de funciones que tienen y el nombre y experiencia de su respectivo encargado con más años en la empresa, ordenados por el nº de funciones y los años de experiencia de mayor a menor

CARLOS GALLEGO

"Mayra Rouse"

"Lawrence Mazza"

"Gary Hutcherson"

"Anna Kreisher"

"Robert Taylor"

"Robert Williams"

<pre>1 MATCH (f:Facility) WITH f, SIZE(f.funciones) AS N_FUNCIONES 2 MATCH (en:Manager) - [:SE_ENCARGA_DE] -> (f) 3 WITH MAX(en.anyo_exp) AS MAX_XP, f, N_FUNCIONES MATCH (en2:Manager) - [:SE_ENCARGA_DE] -> (f) 4 WHERE en2.anyo_exp = MAX_XP 5 RETURN f.name AS Nombre_Espacio, N_FUNCIONES AS Nº_Funciones, en2.name AS NombreEncargado, en2.anyo_exp AS Experiencia 6 ORDER BY Nº_Funciones DESC, Experiencia DESC</pre>							
Nombre_Espacio	N°_Funciones	NombreEncargado	Experiencia				
"El Palacio de Calamardo"	4	"Joshua Williamson"	15				
"El Zulo de Pinocho"	4	"Melinda Montgomery"	11				
"El Cuchitril de Serafin el delfín"	4	"Briana Santiago"	6				
"El Crustáceo Crujiente de La medusa"	4	"Thomas Rocha"	5				
"La Cascada de Manolo"	3	"Barbara Saenz"	15				
"La Playa de Poseidón"	3	"Joshua Williamson"	15				
"El Palacio de La sirenita"	3	"James Gabbard"	13				
"El Dorado de Tritonmán"	3	"Timothy Dennis"	11				
"El Zulo de Bob Esponja"	3	"Elsie Stern"	10				
"El Crustáceo Crujiente de La sepia"	3	"Kenneth Raggio"	8				
"La Cúpula de Serafín el delfín"	3	"Liana Hayes"	7				
"El Zulo de Calamardo"	3	"Margaret Estes"	6				
"El Zulo de Calamardo"	3	"Ashly Zahner"	6				
"La Casa Blanca de Dora"	3	"Gregory Ly"	5				
"El Palacio de Arenita"	3	"Maureen Turk"	2				
"La Cascada de Dora"	3	"Damaris Frost"	1				

Cypher Q6: Hallar el nombre de los empleados que tienen como jefe alguien cuyo nombre empiece por la misma letra que ellos, la fecha en la que está relación jerárquica se hizo y el nivel en la jerarquía de su jefe (un 1 indica el mayor nivel de jerarquía mientras que un nivel 7 es el nivel más bajo)

```
1 MATCH (b:Employee) - [r:ES_JEFE_DE] -> (s:Employee) WHERE LEFT(b.name, 1) = LEFT(s.name, 1)
2 WITH b, s, r MATCH (:Employee) - [r2:ES_JEFE_DE *] -> (:Employee)
3 WITH MAX(SIZE(r2)) AS Max_Length, b, s, r
4 MATCH (sb:Employee) - [r3:ES_JEFE_DE *] -> (e:Employee) WHERE SIZE(r3) = Max_Length
5 WITH b, s, r, sb MATCH (sb) - [r4:ES_JEFE_DE *] -> (b)
6 RETURN DISTINCT b.name AS NombreSuperior, s.name AS NombreSubordinado, r.fecha AS FechaJerarquía, SIZE(r4) AS NivelJerarquía
Nombre Superior
                                            NombreSubordinado
                                                                                                 FechaJerarquía
                                                                                                                                          NivelJerarquía
"Alberta Demars"
                                                                                                 "08/10/93"
                                             "Albert Wyatt"
"Margaret Storrs"
                                             "Mandy Fitzgibbon"
                                                                                                 "31/01/13"
"Margaret Storrs'
                                             "Matthew Jefferson"
                                                                                                 "02/08/94"
"Jean Simpson
                                                                                                 "02/11/93"
```

"Lyndsay Grant"

"Gloria Gabriel"

"Andrew Sawver

"Robin Sydnor"

"01/05/99"

"10/03/13"

"10/02/12"

"12/09/11"

Cypher Q7: Hallar el nombre científico, el nº de ejemplares y la experiencia media de sus cuidadores de las especies cuyos cuidadores tenga como experiencia media la máxima de todas

```
1 MATCH (e:Species) <- [:CUIDA_DE] - (em:Taker) WITH e, AVG(em.anyo_exp) AS media_exp
2 WITH MAX(media_exp) AS exp_media_max
3 MATCH (e2:Species) <- [:CUIDA_DE] - (em2:Taker)
4 WITH e2, AVG(em2.anyo_exp) AS media_exp, exp_media_max
5 WHERE media_exp = exp_media_max
6 RETURN e2.nombre_cientifico AS Nombre_Científico, e2.n_ejemplares AS Nº_Ejemplares, media_exp AS Media_Experiencia</pre>
Nombre_Científico
Nº_Ejemplares
*Chrysaora quinquecirrha*
22
15
```

Cypher Q8: Obtener nombre, tipo de alimentación y peso de los ejemplares importados y con lugar de origen 'múltiples océanos, cuyo peso sea mayor a la media de los ejemplares de dicha especie, además del nombre y sueldo de sus cuidadores

```
1 MATCH (e:Specimen) - [:PERTENECE] -> (sp:Species) <- [:CUIDA_DE] - (em:Taker)
2 WHERE sp.lugar_origen = 'Múltiples Océanos' AND e.imported=true
3 WITH sp,e,em, AVG(e.weight) AS peso_medio
4 MATCH (e2:Specimen) - [:PERTENECE] -> (sp2:Species) <- [:CUIDA_DE] - (em2:Taker)WHERE e2.weight > peso_medio
5 RETURN e2.name AS Nombre_Ejemplar, sp2.alimentacion AS Alimentación, e2.weight AS Peso,
6 COLLECT(DISTINCT({takerName:em2.name, takerSueldo:em2.sueldo})) AS NombreSueldo_Cuidador ORDER BY e2.name
```


(Esto es un parte, el resultado es más largo)

ANEXO

Aquí dejamos los archivos esv de las consultas SQL, tanto de Cassandra como de Neo4j. Se encuentran en carpetas de google drive. La vista previa no permite ver perfectamente los ficheros en Cassandra, ya que se ha utilizado el delimitador;

Cassandra

Ficheros de Cassandra

Neo4j

Ficheros de Neo4j