DEVOIR À LA MAISON N°11: CORRIGÉ

Problème 1 — Fonctions 1-périodiques

Partie I - Un espace vectoriel

1. Soit $k \in \mathbb{Z}$. Pour tout $x \in \mathbb{R}$,

$$e_k(x+1) = e^{2ik\pi(x+1)} = e^{2ik\pi x}e^{2ik\pi} = e^{2ik\pi x} = e_k(x)$$

Ainsi e_k est 1-périodique i.e. $e_k \in E$.

2. La fonction nulle sur \mathbb{R} est 1-périodique donc appartient à E. Soient $(\lambda, \mu) \in \mathbb{C}^2$ et $(f, g) \in \mathbb{E}^2$. Pour tout $x \in \mathbb{R}$

$$(\lambda f + \mu g)(x+1) = \lambda f(x+1) + \mu g(x+1) = \lambda f(x) + \mu g(x) = (\lambda f + \mu g)(x)$$

Ainsi $\lambda f + \mu g$ est 1-périodique donc appartient à E. Ceci prouve que E est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{R}}$.

3. Supposons $k \neq l$. Alors

$$\int_0^1 e_k(x)e_{-l}(x) \, \mathrm{d}x = \int_0^1 e^{2i(k-l)\pi x} \, \mathrm{d}x = \frac{1}{2i(k-l)\pi} \left[e^{2i(k-l)\pi x} \right]_0^1 = 0$$

Supposons maintenant k = l. Alors

$$\int_0^1 e_k(x)e_{l-}(x) \, \mathrm{d}x = \int_0^1 dx = 1$$

4. Soit $(\lambda_k)_{k \in \mathbb{Z}} \in \mathbb{C}^{(\mathbb{Z})}$ une famille presque nulle telle que

$$\sum_{k\in\mathbb{Z}}\lambda_k\,e_k=0$$

On notera bien que cette somme est *finie*. Fixons $l \in \mathbb{Z}$. Alors

$$\int_0^1 \left(\sum_{k \in \mathbb{Z}} \lambda_k e_k(x) \right) e_{-l}(x) \, \mathrm{d}x = 0$$

Par linéarité de l'intégrale

$$\sum_{k \in \mathbb{Z}} \lambda_k \int_0^1 e_k(x) e_{-l}(x) \, \mathrm{d}x = 0$$

Mais d'après la question précédente, $\int_0^1 e_k(x)e_{-l}(x)\,\mathrm{d}x = \begin{cases} 1 & \text{si } k=l \\ 0 & \text{sinon} \end{cases}$. Il en résulte que $\lambda_l = 0$. Ceci étant vrai quelque soit le choix de $l \in \mathbb{Z}$, la famille $(e_k)_{k\in\mathbb{Z}}$ est libre.

Partie II - Un endomorphisme

1. Soient $(\lambda, \mu) \in \mathbb{C}^2$ et $(f, g) \in (\mathbb{C}^{\mathbb{R}})^2$. Pour tout $x \in \mathbb{R}$

$$\begin{split} \mathrm{T}(\lambda f + \mu g)(x) &= \frac{1}{2} \left((\lambda f + \mu g) \left(\frac{x}{2} \right) + (\lambda f + \mu g) \left(\frac{x+1}{2} \right) \right) \\ &= \frac{1}{2} \left(\lambda f \left(\frac{x}{2} \right) + \mu g \left(\frac{x}{2} \right) + \lambda f \left(\frac{x+1}{2} \right) + \mu g \left(\frac{x+1}{2} \right) \right) \\ &= \frac{\lambda}{2} \left(f \left(\frac{x}{2} \right) + f \left(\frac{x+1}{2} \right) \right) + \frac{\mu}{2} \left(g \left(\frac{x}{2} \right) + g \left(\frac{x+1}{2} \right) \right) \\ &= \lambda \mathrm{T}(f)(x) + \mu \mathrm{T}(g)(x) = (\lambda \mathrm{T}(f) + \mu \mathrm{T}(g))(x) \end{split}$$

Ainsi $T(\lambda f + \mu g) = \lambda T(f) + \mu T(g)$.

De plus, pour $f \in \mathbb{C}^{\mathbb{R}}$, $T(f) \in \mathbb{C}^{\mathbb{R}}$ donc T est bien un endomorphisme de $\mathbb{C}^{\mathbb{R}}$.

2. Soit $f \in E$. Pour tout $x \in \mathbb{R}$,

$$T(f)(x+1) = \frac{1}{2} \left(f\left(\frac{x+1}{2}\right) + f\left(\frac{x+2}{2}\right) \right)$$

$$= \frac{1}{2} \left(f\left(\frac{x+1}{2}\right) + f\left(\frac{x}{2}+1\right) \right)$$

$$= \frac{1}{2} \left(f\left(\frac{x+1}{2}\right) + f\left(\frac{x}{2}\right) \right)$$

$$= T(f)(x)$$

Ainsi T(f) est 1-périodique i.e. $T(f) \in E$. Ceci prouve que E est stable par T.

3. Soit $k \in \mathbb{Z}$. Pour tout $x \in \mathbb{R}$

$$T(e_k)(x) = \frac{1}{2} \left(e_k \left(\frac{x}{2} \right) + e_k \left(\frac{x+1}{2} \right) \right)$$

$$= \frac{1}{2} \left(e^{ik\pi x} + e^{ik\pi(x+1)} \right)$$

$$= \frac{1}{2} e^{ik\pi x} \left(1 + e^{ik\pi} \right)$$

$$= \begin{cases} e^{ik\pi x} & \text{si } k \text{ est pair} \\ 0 & \text{si } k \text{ est impair} \end{cases}$$

Ainsi $T(e_k) = e_{\frac{k}{2}}$ si k est pair et $T(e_k) = 0$ si k est impair. De manière équivalente, on peut dire que pour tout $k \in \mathbb{Z}$, $T(e_{2k}) = e_k$ et $T(e_{2k+1}) = 0$.

- **4.** Soit $k \in \mathbb{Z}$.
 - ▶ Si k est pair, $T(e_k) = e_{\frac{k}{2}} \in \tilde{E}$.
 - ► Si k est impair, $T(e_k) = 0 \in \tilde{E}$.

Comme $(e_k)_{k\in\mathbb{Z}}$ engendre \tilde{E} , $T(\tilde{E})\subset \tilde{E}$ par linéarité de T. \tilde{E} est donc stable par T.

5. Le sous-espace vectoriel Im \tilde{T} est engendré par la famille $(T(e_k))_{k\in\mathbb{Z}}$. Puisque $T(e_k)=0$ pour k pair, Im T_n est engendré par la famille $(T(e_{2k}))_{k\in\mathbb{Z}}$, c'est-à-dire par la famille $(e_k)_{k\in\mathbb{Z}}$ dont on sait qu'elle est libre. La famille $(e_k)_{k\in\mathbb{Z}}$ est donc une base de Im $\tilde{T}=\tilde{E}$.

Soit $f \in \tilde{\mathbb{E}}$. Comme $(e_k)_{k \in \mathbb{Z}}$ est une base de $\tilde{\mathbb{E}}$, il existe une famille presque nulle $(\lambda_k)_{k \in \mathbb{Z}} \in \mathbb{C}^{(\mathbb{Z})}$ telle que $f = \sum_{k \in \mathbb{Z}} \lambda_k e_k$. f appartient à Ker $\tilde{\mathbb{T}}$ si et seulement si $\tilde{\mathbb{T}}(f) = 0$ autrement dit si et seulement si

$$\sum_{k\in\mathbb{Z}}\lambda_k\mathrm{T}(e_k)=0$$

par linéarité de T. Puisque $T(e_k) = 0$ pour k impair et $T(e_k) = e_{\frac{k}{2}}$ pour k pair, ceci équivaut à

$$\sum_{k\in\mathbb{Z}}\lambda_{2k}\,e_k=0$$

Mais la famille $(e_k)_{k\in\mathbb{Z}}$ étant libre, ceci équivaut à $\lambda_{2k}=0$ pour tout $k\in\mathbb{Z}$. Ainsi $f\in \operatorname{Ker} \tilde{\mathbb{T}}$ si et seulement si $\lambda_{2k}=0$ pour tout $k\in\mathbb{Z}$. On en déduit que $\operatorname{Ker} \tilde{\mathbb{T}}=\operatorname{vect}((e_{2k+1})_{k\in\mathbb{Z}})$. La famille $(e_{2k+1})_{k\in\mathbb{Z}}$ étant de plus libre en tant que sous-famille de la famille libre $(e_k)_{k\in\mathbb{Z}}$, elle est une base de $\operatorname{Ker} \tilde{\mathbb{T}}$.

Partie III - Deux projecteurs

- **1.** Il suffit de remarquer que $(e_k)_{k\in\mathbb{Z}}$ est une base de \tilde{E} .
- 2. Soit $k \in \mathbb{Z}$. Alors $Q(e_k) = \tilde{T} \circ S(e_k) = \tilde{T}(e_{2k}) = e_k$. Comme $(e_k)_{k \in \mathbb{Z}}$ est une base de \tilde{E} , on peut affirmer que $Q = Id_{\tilde{E}}$.
- 3. Soit $k \in \mathbb{Z}$.

Si k est pair, il existe $p \in \mathbb{Z}$ tel que k = 2p. Alors $P(e_k) = S \circ \tilde{T}(e_k) = S(e_p) = e_{2p} = e_k$. A fortiori, $P \circ P(e_k) = P(e_k) = e_k$. Si k est impair, $P(e_k) = S \circ \tilde{T}(e_k) = S(0) = 0$. A fortiori, $P \circ P(e_k) = P(e_k) = 0$.

Comme $(e_k)_{k\in\mathbb{Z}}$ est une base de \tilde{E} , $P\circ P=P$ et donc P est un projecteur.

Le sous-espace vectoriel Im P est engendré par la famille $(P(e_k))_{k\in\mathbb{Z}}$ et donc par la famille $(e_{2p})_{p\in\mathbb{Z}}$ d'après ce qui précède. Ainsi Im P = vect $(e_{2p})_{p\in\mathbb{Z}}$.

Soit $f \in \tilde{\mathbb{E}}$. Comme $(e_k)_{k \in \mathbb{Z}}$ est une base de $\tilde{\mathbb{E}}$, il existe une famille presque nulle $(\lambda_k)_{k \in \mathbb{Z}} \in \mathbb{C}^{(\mathbb{Z})}$ telle que $f = \sum_{k \in \mathbb{Z}} \lambda_k e_k$. f appartient à Ker P si et seulement si $\tilde{\mathbb{P}}(f) = 0$ autrement dit si et seulement si

$$\sum_{k\in\mathbb{Z}}\lambda_k\mathrm{P}(e_k)=0$$

par linéarité de T. Puisque $P(e_k) = 0$ pour k impair et $P(e_k) = e_k$ pour k pair, ceci équivaut à

$$\sum_{k\in\mathbb{Z}}\lambda_{2k}\,e_{2k}=0$$

Mais la famille $(e_{2k})_{k\in\mathbb{Z}}$ étant libre, ceci équivaut à $\lambda_{2k}=0$ pour tout $k\in\mathbb{Z}$. Ainsi $f\in\mathrm{Ker}\,\mathrm{P}$ si et seulement si $\lambda_{2k}=0$ pour tout $k\in\mathbb{Z}$. On en déduit que $\mathrm{Ker}\,\mathrm{P}=\mathrm{vect}((e_{2k+1})_{k\in\mathbb{Z}})$. La famille $(e_{2k+1})_{k\in\mathbb{Z}}$ étant de plus libre, elle est une base de $\mathrm{Ker}\,\mathrm{P}$.