BTRY/STSCI 4030/5030: Linear Models with Matrices

Giles Hooker

Fall 2018 MW 2:55 - 4:10 101 Phillips Hall

Instructor

- Professor: Giles Hooker, BSCB
- Office: 1186 Comstock Hall
- Email: gjh27@cornell.edu
- Office Hours: Thursday 2:00 3:00, Comstock 1181/1186
- Webpage:

www.bscb.cornell.edu/ \sim hooker/

Labs, homework at

cmsx.cs.cornell.edu

discussion boards via

piazza.com

also

campuswire.com

TA and Labs

Zhengze Zhou (zz433@cornell.edu)

Office hours: Thursday 10:00-11:00, Comstock 1187

Samriddha Lahiri (sl2938@cornell.edu)

Office hours: Friday 1:00-2:00, Comstock 1187

Elly Kipkogei (ek492@cornell.edu)

Office hours: Wednesday 11:30 - 12:30, Comstock 1187

Labs (All Mann B30A): M/W/Th 7:30-9:25, W 12:20-2:15

Labs approx every two weeks, starting Aug 27 (announcements on Piazza/CMS)

Learning Outcomes – Or What's The Point?

Learning Outcomes listed as

- I Formulate linear and linear mixed models for data analysis using matrix algebra,
- 2 Use a statistical computing package to analyze data using linear mixed models, and
- 3 Derive the repeated sampling properties of estimators and test-statistics obtained from linear mixed models.

My goal:

Achieve fluency in using matrix algebra to describe linear and mixed models, and the calculations involved in estimating and performing inference with them.

Syllabus

- Review of matrix algebra
- Simple and multiple linear regression as matrix equations
- Estimation and inference for linear regression
- Diagnostic tools
- Distribution of quadratic forms
- Model selection methods.
- Mixed effects models and Restricted Maximum Likelihood
- Balanced factorial designs

Notes and Software

- Lectures will be "chalk-and-talk": on the board (please ask if my writing isn't clear, and stop me if I'm going too fast).
- No official text but references (next slides)
 - Complement lecture material
 - Are available in electronic version through Cornell library
 - See list of specific material on website
 - Ask if you would like suggestions for further reading.
- Typed summary of material from previous years is available on course website; some topics will be different.

Software: R in Labs and Rmarkdown for Homework.

Useful References

Background/Introductory

- Dalgaard (2002). "Introductory Statistics with R". Springer.
- Brown (2014). "Linear Models in Matrix Form", Springer.
- Harville (2008) "Matrix Algebra From a Statistician's Perspective". Springer.

About right (topics covered may vary)

- Christensen (2011) "Plane Answers to Complex Questions: The Theory of Linear Models", Springer.
- Moser (1996) "Linear Models: A Mean Model Approach", Academic Press.
- Draper and Smith (1998). "Applied Regression Analysis", Wiley.
- Renchler and Schaalje (2008). "Linear Models in Statistics", Springer.

Useful References

More Technical and Mixed Models

- Seber and Lee (2003). "Linear Regression Analysis", Wiley.
- Verbeke and Molenberghs (2000). "Linear Mixed Models for Longitudinal Data". Springer.
- Searle, Casella and McCulloch (1992). "Variance Components". Wiley.
- McCullogh, Searle and Neuhaus (2008). "Generalized Linear and Mixed Models", Wiley.

All available electronically through Cornell Library (links on Piazza). Some pointers to material on course websites.

Homework and What to Expect

- Class focus on how and why statistical procedures work rather than carrying out calculations.
- Presentation and assessment more theoretical than applied.
- Some questions on "derive the following" (e.g We can remove the mean from Y and X, ignore the intercept and the slope doesn't change).
- Pen-and-paper calculations can be hand-written and scanned.
- Some applied questions to say "Look, it really does work!"
- Submit these as Rmarkdown and PDF.
- Exams: more tending towards theory, some "What would be the right model?" questions.

Grading

- Grades will be based on
 - five homework assignments (15% each, best of four)
 - one midterm exam (15%)
 - final (25%).
- Homework
 - will be posted on blackboard
 - will be due on Fridays at 5pm
 - must be submitted to CMS, separated by question
- Two one-day extension available to everyone. Further extensions only in extremis.

Assessment Schedule

Subject to change under unforseen circumstances:

Homework 1 Due 5pm, Friday, Sep. 14

Homework 2 Due 5pm, Friday, Sept 28

Homework 3 Due 5pm, Friday, Oct. 12

Miterm Exam Tuesday, Oct. 16, 7:30pm - 9:30pm, PLS233

Homework 4 Due 5pm, Friday, Nov. 9

Homework 5 Due 5pm, Friday, Nov. 30

Final Tuesday, Dec. 11, 7:00pm - 9:00pm

Homework will typically be given out two weeks before the due date.

Homework 1 is available now

Curving and letter grades

- Individual items will not be curved (unless in exceptional circumstances).
- Letter grades will be assigned based on distribution of scores among students.
- Formula not pre-set; aim is for steps of about 5%, median B+/A-; credence given to gaps between students.

Communication

■ Labs, homework, announcements will be posted on

cmsx.cs.cornell.edu

- Discussion boards also on piazza.com, campuswire.com.
- Labs may sometimes cover material not in class this is still part of the course.
- Labs are also intended as practice they are better if you participate.
- Discussion boards are also available for
 - general questions
 - each homework assignment

We will check them regularly. Please use them!

- Questions can be posted anonymously; we will also post answers to questions that are e-mailed to us or asked in office hours if we think they will be useful to others.
- Communication goes two ways. Please provide=feedback ≥>

Assumed Background

It will be helpful for you to have seen

- Matrix Algebra
 - Addition and Multiplication
 - Matrix inverses and simultaneous equations
 - Eigenvalues and eigenvectors
- Probability
 - Means, Variances
 - Properties of variances
 - Properties of the normal distribution
- Statistics
 - Tests, p-values, confidence intervals
 - linear regression
 - random effects models

Although we will review each, briefly.

A 4-Slide Overview I Linear Models

■ Simple linear regression: single predictor x:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

■ Multiple Linear Regession: predictors $x_1, ..., x_p$:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i$$

■ Matrix formulation: place predictors in columns of $n \times (p+1)$ matrix X:

$$y = X\beta + \epsilon$$

A 4-Slide Overview II Probability and Inference

- lacksquare Error distribution: $\epsilon \sim (\mathbf{0}, \mathbf{\Sigma})$
- Independent normal errors with homogeneous variances:

$$\epsilon \sim N(\mathbf{0}, \sigma^2 I_n)$$

Least squares estimates are linear functions of y:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

- What are the properties of $\hat{\beta}$ in repeated sampling?
- Fitted values are the projection of y onto the column space of X:

$$\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

A 4-Slide Overview III Linear Mixed Models

$$m{y} = m{X}m{eta} + m{Z}m{b} + m{\epsilon}$$
 $m{b} \sim (m{0}, m{G}), \; m{\epsilon} \sim (m{0}, m{R})$

- Fixed and random effects
- Generalized least squares estimator

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1} \boldsymbol{\Sigma}^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$$
$$\boldsymbol{\Sigma} = \boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T} + \boldsymbol{R}$$

A 4-Slide Overview IV ANOVA Decomposition

 Variation in y decomposed into components determined by the predictors

$$oldsymbol{I} = oldsymbol{A}_1 + oldsymbol{A}_2 + \cdots + oldsymbol{A}_k$$
 $\sum y_i^2 = oldsymbol{y}^T oldsymbol{I} oldsymbol{y} = \sum_{j=1}^k oldsymbol{y}^T oldsymbol{A}_j oldsymbol{y}$

- Need the properties of quadratic forms $\mathbf{y}^T \mathbf{A}_j \mathbf{y}$ under repeated sampling.
- Will apply to both the linear regression and mixed models cases.

Questions? Concerns?

Let's Go!