Package 'alphaOutlier'

October 12, 2022

Type Package

Title Obtain Alpha-Outlier Regions for Well-Known Probability Distributions
Version 1.2.0
Date 2016-09-09
Author Andre Rehage, Sonja Kuhnt
Maintainer Andre Rehage < rehage@statistik.tu-dortmund.de>
Description Given the parameters of a distribution, the package uses the concept of alphaoutliers by Davies and Gather (1993) to flag outliers in a data set. See Davies, L.; Gather, U. (1993): The identification of multiple outliers, JASA, 88 423, 782-792, <doi:10.1080 01621459.1993.10476339=""> for details.</doi:10.1080>
License GPL-3
Depends Rsolnp, nleqsly, quantreg, graphics
Imports stats
NeedsCompilation no
Repository CRAN
Date/Publication 2016-09-09 18:05:11
Date, Laboration, 2010, 65, 10103.11
R topics documented:
alphaOutlier-package
aout.binom
aout.cg
aout.chisq
aout.conttab
aout.exp
aout.gandh
aout.hyper
aout.kernel
aout.laplace
aout.logis
aout.mvnorm

21

aout.nbinom																					
aout.norm .																 					
aout.pareto																 					
aout.pois																 					
aout.weibull																 					
citiesData .																 					
createDesMat	t															 					
daysabs																 					

alphaOutlier-package $\it Obtain \ lpha - outlier \ regions \ for \ well-known \ probability \ distributions$

Description

Index

Given the parameters of a distribution, the package uses the concept of α -outliers by Davies and Gather (1993) to flag outliers in a data set.

Details

The structure of the package is as follows: aout.[Distribution] is the name of the function which returns the α -outlier region of a random variable following [Distribution]. The names of the distributions are abbreviated as in the d, p, q, r functions. Use pre-specified or robustly estimated parameters from your data to obtain reasonable results. The sample size should be taken into account when choosing alpha, for example Gather et al. (2003) propose $\alpha_N = 1 - (1 - \alpha)^{1/N}$.

Author(s)

A. Rehage, S. Kuhnt

References

Davies, L.; Gather, U. (1993) The identification of multiple outliers, *Journal of the American Statistical Association*, **88** 423, 782-792.

Gather, U.; Kuhnt, S.; Pawlitschko, J. (2003) Concepts of outlyingness for various data structures. In J. C. Misra (Ed.): *Industrial Mathematics and Statistics*. New Delhi: Narosa Publishing House, 545-585.

See Also

```
nleqslv, solnp, rq.fit.fnc
```

aout.binom 3

aout.binom	Find $lpha$ -outliers in Binomial data	

Description

Given the parameters of a Binomial distribution, aout.binom identifies α -outliers in a given data set.

Usage

```
aout.binom(data, param, alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data a vector. The data set to be examined.

param a vector. Contains the parameters of the Binomial distribution, N and p.

alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

A. Rehage

See Also

dbinom

```
data(uis)
medbeck <- median(uis$BECK)
aout.binom(data = uis$BECK, param = c(54, medbeck/54), alpha = 0.001)</pre>
```

4 aout.cg

aout.cg	Find $lpha$ -outliers in conditional Gaussian data	

Description

Given the parameters of a conditional Gaussian distribution, aout . cg identifies α -outliers in a given data set

Usage

```
aout.cg(data, param, alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data	a matrix. First column: Class of the value, coded with an integer between 1 and d, where d is the number of classes. Second column: The value as a realization of a univariate normal with parameters μ and σ . The data set to be examined.
param	a list with three elements: p: d-dimensional vector of probabilities of the classes. mu: d-dimensional vector of univariate mean values of each class. sigma: d-dimensional vector of univariate standard errors of each class
alpha	an atomic vector. Determines the maximum amount of probability mass the outlier region may contain. Defaults to 0.1.
hide.outliers	boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a data frame of the outlier-free data.

Author(s)

A. Rehage

References

Edwards, D. (2000) Introduction to Graphical Modelling. 2nd edition, Springer, New York.

Kuhnt, S.; Rehage, A. (2013) The concept of α -outliers in structured data situations. In C. Becker, R. Fried, S. Kuhnt (Eds.): *Robustness and Complex Data Structures. Festschrift in Honour of Ursula Gather.* Berlin: Springer, 91-108.

aout.chisq 5

```
aout.cg(ratweight, list(p = c(1/3, 1/3, 1/3), mu = c(7, 7, 14), sigma = c(1.6, 1.4, 3.3))
```

aout.chisq

Find α -outliers in χ^2 data

Description

Given the parameters of a χ^2 distribution, aout.chisq identifies α -outliers in a given data set.

Usage

Arguments

data	a vector. The data set to be examined.
param	an atomic vector. Contains the degrees of freedom of the χ^2 distribution.
alpha	an atomic vector. Determines the maximum amount of probability mass the outlier region may contain. Defaults to $0.1.$
hide.outliers	boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.
ncp	an atomic vector. Determines the non-centrality parameter of the χ^2 distribution. Defaults to 0.
lower	an atomic vector. First element of x from nleqslv.
upper	an atomic vector. Second element of x from nleqslv.
method.in	See method in nleqslv.
global.in	See global in nleqslv.
control.in	See control in nleqslv.

Details

The α -outlier region of a χ^2 distribution is generally not available in closed form or via the tails, such that a non-linear equation system has to be solved.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

6 aout.conttab

See Also

dchisq

Examples

aout.chisq(chisq.test(occupationalStatus)\$statistic, 49)

aout.conttab

Find α -outliers in two-way contingency tables

Description

This is a wrapper function for aout.pois. We assume that each entry of a contingency table can be seen as a realization of a Poisson random variable. The parameter λ of each cell can either be set by the user or estimated. Given the parameters, aout.conttab identifies α -outliers in a given contingency table.

Usage

```
aout.conttab(data, param, alpha = 0.1, hide.outliers = FALSE, show.estimates = FALSE)
```

Arguments

eters of each cell of the Poisson distribution: λ . "ML" yields the maximum likelihood estimate from the log-linear Poisson model using a suitable designment. "L1" yields the L1-estimate from rq.fit.fnc. "MP" yields the Media	data	a matrix or data.frame. The contingency table to be examined.
the contingency table was filled byrow = FALSE.	param	a character string from c("ML", "L1", "MP") or a vector containing the parameters of each cell of the Poisson distribution: λ . "ML" yields the maximum likelihood estimate from the log-linear Poisson model using a suitable design matrix. "L1" yields the L1-estimate from rq.fit.fnc. "MP" yields the Median Polish estimate. If the parameter vector is given by the user, it is necessary that the contingency table was filled byrow = FALSE.

alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE. show.estimates boolean. Returns $\hat{\lambda}$ for each cell if set to TRUE. Defaults to FALSE.

Value

Data frame of the vectorized input data and, if desired, an index named is.outlier that flags the outliers with TRUE and a vector named param containing the estimated lambdas.

Author(s)

aout.exp 7

References

Kuhnt, S. (2000) Ausreisseridentifikation im Loglinearen Poissonmodell fuer Kontingenztafeln unter Einbeziehung robuster Schaetzer. Ph.D. Thesis. Universitaet Dortmund, Dortmund. Fachbereich Statistik.

Kuhnt, S.; Rapallo, F.; Rehage, A. (2014) Outlier detection in contingency tables based on minimal patterns. *Statistics and Computing* 24 (3), 481-491.

See Also

```
rq.fit.fnc, aout.pois
```

Examples

```
aout.conttab(data = HairEyeColor[,,1], param = "L1", alpha = 0.01, show.estimates = TRUE)
aout.conttab(data = HairEyeColor[,,1], param = "ML", alpha = 0.01, show.estimates = TRUE)
```

aout.exp

Find α -outliers in exponentially distributed data

Description

Given the parameters of an exponential distribution, aout.exp identifies α -outliers in a given data set.

Usage

```
aout.exp(data, param, alpha = 0.1, hide.outliers = FALSE, theta = 0)
```

Arguments

data a vector. The data set to be examined.

param an atomic vector. Contains the parameter of the exponential distribution.

alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

theta an atomic vector. Determines the lower bound of the support of the exponential

distribution. Defaults to 0.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

8 aout.gandh

References

Gather, U.; Kuhnt, S.; Pawlitschko, J. (2003) Concepts of outlyingness for various data structures. In J. C. Misra (Ed.): *Industrial Mathematics and Statistics*. New Delhi: Narosa Publishing House, 545-585.

See Also

dexp

Examples

```
aout.exp(attenu[,5], median(attenu[,5]), alpha = 0.05)
```

aout.gandh

Find α -outliers in data from the family of g-and-h distributions

Description

Given the parameters of a g-and-h distribution, aout gandh identifies α -outliers in a given data set.

Usage

```
aout.gandh(data, param, alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data a vector. The data set to be examined.

param a vector. Contains the parameters of the g-and-h distribution: median, scale, g,

h.

alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Details

The concept of α -outliers is based on the p.d.f. of the random variable. Since for g-and-h distributions this does not exist in closed form, the computation of the outlier region is based on an optimization of the quantile function with side conditions.

Value

Data frame of the input data and an index named is outlier that flags the outliers with TRUE. If hide outliers is set to TRUE, a simple vector of the outlier-free data.

Note

Makes use of solnp.

aout.hyper 9

Author(s)

A. Rehage

References

Xu, Y.; Iglewicz, B.; Chervoneva, I. (2014) Robust estimation of the parameters of g-and-h distributions, with applications to outlier detection. *Computational Statistics and Data Analysis* 75, 66-80.

Examples

```
durations <- faithful$eruptions aout.gandh(durations, c(4.25, 1.14, 0.05, 0.05), alpha = 0.1)
```

aout.hyper

Find α -outliers in hypergeometric data

Description

Given the parameters of a hypergeometric distribution, aout hyper identifies α -outliers in a given data set.

Usage

```
aout.hyper(data, param, alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data a vector. The data set to be examined.

param a vector. Contains the parameters of the hypergeometric distribution: m, n, k. alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Value

Data frame of the input data and an index named is outlier that flags the outliers with TRUE. If hide outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

A. Rehage

See Also

Hypergeometric

10 aout.kernel

Examples

```
set.seed(1)
lotto6aus49 <- rhyper(100, 6, 43, 6)
aout.hyper(lotto6aus49, c(6, 43, 6), 0.1)</pre>
```

aout.kernel

Find α -outliers in arbitrary univariate data using kernel density estimation

Description

Given the arguments of the density, aout.kernel identifies α -outliers in a given data set.

Usage

```
aout.kernel(data, alpha, plot = TRUE, plottitle = "", kernel = "gaussian",
nkernel = 1024, kern.bw = "SJ", kern.adj = 1,
xlim = NA, ylim = NA, outints = FALSE, w = NA, ...)
```

Arguments

data	a vector. The data set to be examined.
alpha	an atomic vector. Determines the maximum amount of probability mass the outlier region may contain.
plot	boolean. If TRUE, a plot of the data and estimated density with shaded outlier region is printed.
plottitle	character string. Title of the plot.
kernel	See kernel in density.
nkernel	See n in density.
kern.bw	See bw in density.
kern.adj	See adjust in density.
xlim	a vector. Specify if you want to change the x-limits of the plot.
ylim	a vector. Specify if you want to change the y-limits of the plot.
outints	boolean. If TRUE, then the bounds of the inlier-regions and the chosen bandwidth are shown.
W	a vector. See weights in density.
	Further arguments for density and plot.

aout.laplace 11

Value

If outints = TRUE, a list of

Results A data frame containing one row for each observation. The observations are

labelled whether they are outlying, the value of the estimated density at the

observation is shown and the bound of the outlier identifier.

Bounds.of.Inlier.Regions

The bounds of the inlier region(s).

KDE.Chosen.Bandwidth

The bandwidth that was chosen by density.

Author(s)

A. Rehage

Examples

```
set.seed(23)
tempx <- rnorm(1000, 0, 1)
tempx[1] <- -2.5
aout.kernel(tempx[1:10], alpha = 0.1, kern.adj = 1, xlim = c(-3,3), outints = TRUE)
# not run:
# aout.kernel(tempx[1:200], alpha = 0.1, kern.adj = 1, xlim = c(-3,3))</pre>
```

aout.laplace

Find α -outliers in Laplace / double exponential data

Description

Given the parameters of a Laplace distribution, aout.laplace identifies α -outliers in a given data set.

Usage

```
aout.laplace(data, param, alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data a vector. The data set to be examined.

param a vector. Contains the parameters of the Laplace distribution: μ , σ .

alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

12 aout.logis

Author(s)

A. Rehage

References

Dumonceaux, R.; Antle, C. E. (1973) Discrimination between the log-normal and the Weibull distributions. *Technometrics*, 15 (4), 923-926.

Gather, U.; Kuhnt, S.; Pawlitschko, J. (2003) Concepts of outlyingness for various data structures. In J. C. Misra (Ed.): *Industrial Mathematics and Statistics*. New Delhi: Narosa Publishing House, 545-585.

Examples

aout.logis

Find α -outliers in logistic data

Description

Given the parameters of a logistic distribution, aout.logis identifies α -outliers in a given data set.

Usage

```
aout.logis(data, param, alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data a vector. The data set to be examined.

param a vector. Contains the parameters of the logistic distribution: μ, σ .

alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

aout.mvnorm

References

Balakrishnan, N. (1992) Maximum likelihood estimation based on complete and type II censored samples. In N. Balakrishnan (Ed.): *Handbook of the Logistic Distribution*. Dekker, New York, 49-78.

Gather, U.; Kuhnt, S.; Pawlitschko, J. (2003) Concepts of outlyingness for various data structures. In J. C. Misra (Ed.): *Industrial Mathematics and Statistics*. New Delhi: Narosa Publishing House, 545-585.

See Also

dlogis

Examples

```
# Data example from Balakrishnan (1967)
lifetime <- c(785, 855, 905, 918, 919, 920, 929, 936, 948, 950)
aout.logis(lifetime, c(949.9, 63.44))
```

aout.mvnorm

Find α -outliers in multivariate normal data

Description

Given the parameters of a multivariate normal distribution, aout.mvnorm identifies α -outliers in a given data set.

Usage

```
aout.mvnorm(data, param, alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data a data.frame or matrix. The data set to be examined.

param a list. Contains the parameters of the normal distribution: the mean vector μ and

the covariance matrix σ .

alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a data frame of the outlier-free data.

Author(s)

14 aout.nbinom

References

Kuhnt, S.; Rehage, A. (2013) The concept of α -outliers in structured data situations. In C. Becker, R. Fried, S. Kuhnt (Eds.): *Robustness and Complex Data Structures. Festschrift in Honour of Ursula Gather.* Berlin: Springer, 91-108.

See Also

dnorm

Examples

```
temp <- iris[1:51,-5]
temp.xq <- apply(FUN = median, MARGIN = 2, temp)
aout.mvnorm(as.matrix(temp), param = list(temp.xq, cov(temp)), alpha = 0.001)</pre>
```

aout.nbinom

Find α -outliers in negative Binomial data

Description

Given the parameters of a negative Binomial distribution, aout.nbinom identifies α -outliers in a given data set.

Usage

```
aout.nbinom(data, param, alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data a vector. The data set to be examined.

param a vector. Contains the parameters of the negative Binomial distribution: N, p. alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

A. Rehage

See Also

dnbinom, daysabs

aout.norm 15

Examples

```
data(daysabs)
aout.nbinom(daysabs, c(8, 0.6), 0.05)
```

aout.norm

Find α -outliers in normal data

Description

Given the parameters of a normal distribution, aout.norm identifies α -outliers in a given data set.

Usage

```
aout.norm(data, param = c(0, 1), alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data a vector. The data set to be examined.

param a vector. Contains the parameters of the normal distribution: μ, σ .

alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

A. Rehage

References

Gather, U.; Kuhnt, S.; Pawlitschko, J. (2003) Concepts of outlyingness for various data structures. In J. C. Misra (Ed.): *Industrial Mathematics and Statistics*. New Delhi: Narosa Publishing House, 545-585.

See Also

dnorm

16 aout.pareto

Examples

aout.pareto

Find α-outliers in Pareto data

Description

Given the parameters of a Pareto distribution, aout. pareto identifies α -outliers in a given data set.

Usage

```
aout.pareto(data, param, alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data a vector. The data set to be examined.

param a vector. Contains the parameters of the Pareto distribution: λ, θ .

alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Details

We use the Pareto distribution with Lebesgue-density $f(x) = \frac{\lambda \theta^{\lambda}}{x^{\lambda+1}}.$

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

A. Rehage

References

Gather, U.; Kuhnt, S.; Pawlitschko, J. (2003) Concepts of outlyingness for various data structures. In J. C. Misra (Ed.): *Industrial Mathematics and Statistics*. New Delhi: Narosa Publishing House, 545-585.

aout.pois 17

See Also

```
citiesData
```

Examples

```
data(citiesData)
aout.pareto(citiesData[[1]], c(1.31, 14815), alpha = 0.01)
```

aout.pois

Find α -outliers in Poisson count data

Description

Given the parameters of a Poisson distribution, aout pois identifies α -outliers in a given data set.

Usage

```
aout.pois(data, param, alpha = 0.1, hide.outliers = FALSE)
```

Arguments

data a vector. The data set to be examined.

param a vector. Contains the parameter of the Poisson distribution: λ .

alpha an atomic vector. Determines the maximum amount of probability mass the

outlier region may contain. Defaults to 0.1.

hide.outliers boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

A. Rehage

See Also

dpois

```
aout.pois(data = c(discoveries), param = median(discoveries), alpha = 0.01)
```

18 aout.weibull

aout.weibull	Find $lpha$ -outliers in Weibull data	
--------------	---------------------------------------	--

Description

Given the parameters of a Weibull distribution, aout.weibull identifies α -outliers in a given data set.

Usage

Arguments

7	-	
	data	a vector. The data set to be examined.
	param	a vector. Contains the parameters of the Weibull distribution: β, λ .
	alpha	an atomic vector. Determines the maximum amount of probability mass the outlier region may contain. Defaults to $0.1.$
	hide.outliers	boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.
	lower	an atomic vector. First element of x from nleqslv.
	upper	an atomic vector. Second element of x from nleqslv.
	method.in	See method in nleqslv
	global.in	See global in nleqslv
	control.in	See control in nleqslv

Details

The α -outlier region of a Weibull distribution is generally not available in closed form or via the tails, such that a non-linear equation system has to be solved.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

A. Rehage

References

Dodson, B. (2006) The Weibull Analysis Handbook. American Society for Quality, 2nd edition.

citiesData 19

See Also

```
dweibull, nleqslv
```

Examples

```
# lifetime data example taken from Table 2.2, Dodson (2006) temp <- c(12.5, 24.4, 58.2, 68.0, 69.1, 95.5, 96.6, 97.0, 114.2, 123.2, 125.6, 152.7) aout.weibull(temp, c(2.25, 97), 0.1)
```

citiesData

Population of the 999 largest German cities

Description

Population of the 999 largest German cities as a real life example for Pareto distributed data

Usage

```
data(citiesData)
```

Format

List with one element

References

http://bevoelkerungsstatistik.de

createDesMat

Create design matrix for log-linear models of contingency tables

Description

This function creates a design matrix for contingency tables and is particularly useful for log-linear Poisson models. It uses effect coding of the variables: First the rows of the contingency table from top to bottom, then the columns from left to right.

Usage

```
createDesMat(n, p)
```

Arguments

n Number of rows of the corresponding contingency table.

p Number of columns of the corresponding contingency table.

20 daysabs

Value

A (n+p-1) times (n*p) design matrix.

Author(s)

A. Rehage

References

Kuhnt, S.; Rapallo, F.; Rehage, A. (2014) Outlier detection in contingency tables based on minimal patterns. *Statistics and Computing* 24 (3), 481-491.

Examples

```
createDesMat(3, 5)
```

daysabs

Number of absence days of students

Description

Number of absence days of students

Usage

data(daysabs)

Format

Vector with 314 elements

References

http://www.ats.ucla.edu/stat/r/dae/nbreg.htm

Index

* datasets	aout.logis, 12
citiesData, 19	aout.mvnorm, 13
daysabs, 20	aout.nbinom, 14
* design	aout.norm, 15
createDesMat, 19	aout.pareto, 16
* distribution	aout.pois, 6, 7, 17
alphaOutlier-package, 2	aout.weibull, 18
aout.binom, 3	,
aout.cg, 4	citiesData, <i>17</i> , 19
aout.chisq, 5	createDesMat, 19
aout.conttab, 6	
aout.exp, 7	daysabs, <i>14</i> , 20
aout.gandh, 8	dbinom, 3
aout.hyper,9	dchisq, 6
aout.laplace, 11	density, <i>10</i>
aout.logis, 12	dexp, 8
aout.morm, 13	dlogis, <i>13</i>
aout.nbinom, 14	dnbinom, 14
aout.norm, 15	dnorm, <i>14</i> , <i>15</i>
	dpois, <i>17</i>
aout.pareto, 16	dweibull, 19
aout.pois, 17	,
aout.weibull, 18	Hypergeometric, 9
* nonparametric	
aout.kernel, 10	nleqslv, 2, 5, 18, 19
* package	
alphaOutlier-package, 2	rq.fit.fnc, 2, 6, 7
* robust	
alphaOutlier-package, 2	solnp, 2, 8
alphaOutlier(alphaOutlier-package), 2	
alphaOutlier-package, 2	
aout.binom, 3	
aout.cg, 4	
aout.chisq, 5	
aout.conttab, 6	
aout.exp, 7	
aout.gandh, 8	
aout.hyper,9	
aout.kernel, 10	
aout.laplace, 11	