$D o K^+ K^- \pi^+ \pi^-$ strong phase analysis with new BESIII data

Martin Tat

Oxford LHCb

29th January 2024

Brief recap of BESIII analysis

What I presented in December:

- BESIII measurement of c_i and s_i in $D^0 \to K^+K^-\pi^+\pi^-$
- Asymmetric uncertainties on s_i using Plugin method
- New review committee, no showstoppers so far

While in review, more BESIII has become available!

Status of BESIII data taking

BESIII will collect 20 fb⁻¹ at ψ (3770):

- **1** 2010-2011: $2.93 \, \mathrm{fb}^{-1} \leftarrow \mathrm{Measurement} \, \mathrm{of} \, F_{+}$
- 2 2021-2022: $4.995\,\mathrm{fb^{-1}}$ \leftarrow Previous presentation
- **3** 2022-2023: 8.157 fb⁻¹ ← New stuff!
- 4 2023-2024: Data taking ongoing

Cross check of $D^0 \rightarrow K^+K^-\pi^+\pi^-$ ST yield

Check that ST yield agrees with integrated luminosity

- ST yields used for normalisation
- Expect a factor 2 increase

Figure 1: Ratio of new and old ST $KK\pi\pi$ yield: 2.021 ± 0.023

Cross check of all ST yields

Check that all other ST yields are consistent

- ullet Combined ratio of ST yields: 2.0256 ± 0.0013
- Ratio of integrated luminosity:

$$2.93 + 4.995 + 8.157/2.93 + 4.995 = 2.029$$

Figure 2: Good agreement!

DT tag yields of $D^0 \to K^+K^-\pi^+\pi^-$ with new data

What about DT yields in phase-space bins?

Figure 3: Flavour tag $D \to K\pi$ with 8 fb⁻¹ (16 fb⁻¹) on the left (right)

DT tag yields of $D^0 \to K^+K^-\pi^+\pi^-$ with new data

Check CP tags, which contain important strong-phase information

Figure 4: CP tag $D \to K_S^0 \pi^0$ with 8 fb⁻¹ (16 fb⁻¹) on the left (right)

DT tag yields of $D^0 \to K^+K^-\pi^+\pi^-$ with new data

More importantly, what about multi-body tags?

Figure 5: Multi-body tag $D \to K_S^0 \pi^+ \pi^-$ with 8 fb⁻¹ (16 fb⁻¹) on the left (right)

DT tag yields of $D^0 o K^+K^-\pi^+\pi^-$ with new data

More importantly, what about multi-body tags?

Figure 6: Multi-body tag $D \to K_S^0 \pi^+ \pi^-$ with 8 fb⁻¹ (16 fb⁻¹) on the left (right)

What needs to be updated to fit c_i and s_i ?

- ST and DT yields (done!)
- Efficiency matrices (work in progress, probably negligible)
 - \bullet Don't bother with new MC, just reweight 2022 MC with a factor 13/5
- Toy studies (work in progress)
- Tracking and PID efficiency systematics
 - Can probably get away with reusing same numbers

Run fit of c_i and s_i with new ST and DT yields

Figure 7: Warning: s_i uncertainties may be very non-Gaussian

New c_i and s_i results are perfectly consistent with model!

Figure 8: Warning: s_i uncertainties may be very non-Gaussian

What about $\delta_D^{K\pi}$?

Figure 9: Warning: $r_D^{K\pi} \sin(\delta_D^{K\pi})$ uncertainties may be very non-Gaussian

Summary and next steps

In summary:

- BESIII analysis review is slowly moving forwards
- New data is available and preliminary results are very promising
- 3 Aim to include new data without delaying the review process

Summary and next steps

What now? The positive things first:

- Analysis for my thesis is more or less done
- Start preparation of $B^\pm o [h^+ h^- \pi^+ \pi^-]_D h^\pm$ for B2OC review
- Write thesis in parallel (perhaps this plan is too ambitious)

Summary and next steps

What now? The not so positive things last:

- Currently struggling with TORCH analysis...
 - Timing information is very challenging to interpret
 - Calibrations are not finalised yet
- I haven't given up (yet), but I'm unsure about including TORCH chapter in my thesis

Thanks for your attention!