Blockchain Demystified

Why the Need

01

How do some Blockchains work?

02

Private versus Public networks

03

A source of misunderstandings...

Who is the public? In what sense is this a ledger?

"The block chain provides Bitcoin's <u>public ledger</u>, an ordered and <u>timestamped</u> record of transactions. This system is used to <u>protect against</u> double spending and modification of previous transaction records." – Bitcoin.org

Does this conform to our normal intuitions of time and stamps?

"Protected" is not synonymous with "Guaranteed" – recall Capital Guaranteed vs Capital Protected products

A more general definition

"the term is used to describe a process of adding blocks of cryptographically signed data to form **perpetual and immutable** records"

Oliver Wyman

Decoding Blockchain Buzzwords

Distributed consensus

 A fault tolerant way for multiple computers to maintain consistency on some data

Non-repudiation

 Using cryptography to verify identity and secure transmissions

 so transactions are tamper-resistant and not deniable

Smart contracts

 Stored logic to automate and limit one's actions after agreement is reached

Shared ledger

 All parties see the same information

The Need

"A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable" – Leslie Lamport*

Halting nodes

Nodes stop, nodes go into infinite loops

Network fragility

Connections break

Omission

Messages get lost

Timing failures

Clock skew

Byzantine failures

Arbitrary corruption

Distributed Systems have issues

Simplest consensus problem: Can we agree on the time?

- If all the parties are updating a common resource...
 - P₁ sends a message to P₂ when its clock strikes 2
 - P₂ receives the message when its clock strikes 3
 - To keep time consistent, the recipient of messages adjusts its clock such that [time of receipt > latest time stamp on received messages]
- The time each party sees on its own physical clock is different and they are none the wiser

Logical versus Physical Time

Height	406114 (Main chain)	Height	406115 (Main chain)
Time	2016-04-07 03:35:46	Time	2016-04-07 03:35:37
Number Of Transactions	1470	Number Of Transactions	1
Output Total	20,257.23037012 BTC	Output Total	25 BTC
Estimated Transaction Volume	1,667.17680957 BTC	Estimated Transaction Volume	0 BTC
Size	800.349 KB	Size	0.229 KB

- Real life implications:
 - Block 406114 is time stamped 03:35:46
 - The following Block 406115 is time stamped 03:35:37
- Blocks of transactions do not enter the record in the order they are time stamped

Brewer's CAP Theorem & Wedding Analogy

Consistency

All clients see the same view even in the presence of updates. Requires that total ordering exists and updates appear atomic

Availability

All clients can find some replica of data even in presence of failure

Partition Tolerance

If the network stops delivering messages between two sets of servers, will it work correctly?

If we allow the network to drop messages, then one has to choose to either allow updates to both sides of the partition (for availability) and lose consistency, or shut the system down until the errors are resolved to prioritize consistency

Reconciliation: double entry accounting

Match beginning to end balance of prior period

Beginning balance

What it does

"An accounting process that uses two sets of records to ensure figures are correct and in agreement"

Match account transactions within period to underlying transactions

Current period investigation

Review adjusting entries for appropriateness

Adjustments Review Reversals review

Double-Entry accounting's problems

How Triple Entry works with Blockchains

1

-ically sealed records prevent fraud 2

Standardisation of how transactions are recorded helps with automated verification

3

Open Source Smart contracts on blockchains operate transparently

Triple Entry Accounting*

Debit	Credit
5	
	2
	9
10	

Public

Debit	Credit
-5	5
2	-2
9	-9
-10	10

Bob

Debit	Credit
5	
	2
	9
10	

What if the Public were not just a third party notary, but a large set of non-colluding third parties?

^{*}Example thanks to http://villagemall-ceo.blogspot.sg/2015/06/triple-entry-accounting-and-block-chain.html

Decentralized and Distributed – dispersal of risk

Centralized (Bicycle Wheel)

Decentralized (Big Hubs and many spokes)

Distributed
(No hierarchy, strongly connected)

BigChain DB's view of the future

Towards a decentralized compute infrastructure

Triple Entry Accounting Companies

 Balanc3 – A Consensys company, uses Ethereum and Bitcoin chains to trace exchange of value and provides bookkeeping using smart contracts

Factom: Timestamped data hashing to the blockchain

How some blockchains work

From Bitcoin to Ethereum

A Classic Diagram

Diagram of a Bitcoin

from Bitcoin: A Peer-to-Peer Electronic Cash System, published in 2008 by "Satoshi Nakamoto".

Unspent Transaction Outputs

Forks in the chain – normal vs hard

A Hard Fork: Non-Upgraded Nodes Reject The New Rules, Diverging The Chain

Bitcoin has been upgraded. New features are available on Bitcoin Cash.

If you owned bitcoin on August 1st, you already have Bitcoin Cash.

Standard Block Size: 1MB Maximum.

PowerBlocks: 8MB Maximum.

SegWit: Transaction signatures can be discarded from the blockchain.

SecureSigs: All transaction signatures must be validated and secured on the blockchain.

Single centralized development team and client implementation: Bitcoin Core.

Multiple independent development teams and client implementations including: Bitcoin Unlimited, Bitcoin ABC, Bitcoin XT, and Bitcoin Classic.

Scaling plan: Off-chain payment channels.

Scaling Plan: On-chain transactions and market driven blocksize increases.

Find out more at: www.bitcoincash.org | www.bitcoinabc.org | www.reddit.com/r/btc

Ethereum

Source: https://medium.com/@mvmurthy/ethereum-for-web-developers-890be23d1d0c

dApp Front-end Steps

A Contract Creation Transaction is shown in steps 1-5 at above.

An Ether Transfer or Function Call Transaction is assumed in step 6.

Smart Contracts - Ethereum

Compiled & Deployed Contracts

Public Versus Private

Comparing the chains

A spectrum between openness and private control

• Public chains: Open

Writers: Anyone

Trust base: Global

validation & consensus

Applications:

- 1. Dapps
- 2. Cryptocurrency (ICO)

 Consortia chains: Closed, private membership

Writers: Known participants

Trust base: Voting, dictatorships

Applications:

- 1. Enterprise apps
- 2. Clearing & Settlement
- 3. Provenance chains
- 4. Asset Registries with partial trust

Clip slide

Shades of trust, shades of consensus

Big Data Cassandra, RethinkDB, MongoDB, ... Crash-Faults, consistency, ... Leader Election based 2PC, PAXOS, RAFT, ... - 49% tolerance

Decentralized - Private	Decentralized - Public
Known federation Banks, notaries, supply chain, government,	Anonymous participation Incentive-based 'mining', bitcoin, ethereum,
Crash-Faults + malicious/lying	Crash-Faults + malicious/lying + cloning
Leader Interrogation / Quorum PBFT, Stellar, Zyzzyva, Honeybadger, 33%	Make cloning expensive Proof-of-work, proof-of-stake, 49%

Source: BigChain DB