Post-Quantum Signatures via Publicly Verifiable LPZK

CCS'23 Submission 1342

Anonymous Authors

June 1, 2023 · Presented by Hongrui Cui

1

Motivations

ac^{ılı}'

- Efficient VOLE-based DVZK
- How to transform DVZK to (NI)ZK?
- P.S. Landscape of Efficient Zero Knowledge

_	zk-SNARK, GKR, etc	C. GCZK	DVZK	
Prover Computation	$\Omega(\mathcal{C})$	O(C)	O(C)	
Prover Memory	$\Omega(\mathcal{C})$	O(1)	O(1)	
Proof Size	$O(\log(C))$	$O(\kappa \cdot \mathcal{C})$	$O(C ^{\{1,\frac{3}{4},\frac{1}{2}\}})$	
Verifier Type	Universal	Designated	Designated	
Advantage (Scalability)	Low-Bandwidth Small Circuit	High-Bandwidth Large Circuit	High-Bandwidth Large Circuit	
Main tachniques (of D	\\/7\/\.		Polynomials	

Main techniques (of DVZK):

- Random (subfield) VOLE
- Low-Degree Test

Preliminary: VOLE as IT-MAC (Linear Commitment)

Sender/ \mathcal{P}

$$\mathbf{a} \in \mathbb{F}_{p^r}^n$$
 (message)

$$\mathbf{b} \in \mathbb{F}_{p^r}^n$$
 (MAC Tag)

IT-MAC $[\mathbf{x}] := (\mathbf{x}, \mathbf{v}, \mathbf{b})$ subject to $\mathbf{v} = \mathbf{b} + \mathbf{x} \cdot \Delta$

- Linear Homomorphism: $[x] + [y] \mapsto [x + y]$
- Open([x]): $\mathcal{P} \to \mathcal{V}$: (x, b), \mathcal{V} checks $\mathbf{v} = \mathbf{b} + \mathbf{x} \cdot \Delta$
- Batched Open:

Receiver/
$$\mathcal{V}$$
 Sender/ \mathcal{P}
 \mathbf{x} , Open($[\sum_{i} \chi_{i} \cdot \mathbf{x}_{i}]$)

- lacksquare Opens a different value $ightarrow \mathcal{P}$ guesses Δ
- Soundness error = $\frac{1}{p^r}$

$$f(\mathbf{x}) = f_d(\mathbf{x}) + f_{d-1}(\mathbf{x})... + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + ... + f_0$$

$$= f_d(\mathbf{x})\Delta^d + f_{d-1}(\mathbf{x})\Delta^{d-1} + ... + f_0 + f_r(\mathbf{x}, \mathbf{b})$$

$$\begin{array}{c|c}
x_1 \\
\hline
x_n \\
\hline
y = \Delta \cdot \mathbf{x} + \mathbf{b} \\
\hline
\mathcal{V}
\end{array}$$

$$f(\mathbf{x}) = f_d(\mathbf{x}) + f_{d-1}(\mathbf{x})... + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + ... + f_0$$

$$= f_d(\mathbf{x})\Delta^d + f_{d-1}(\mathbf{x})\Delta^{d-1} + ... + f_0 + f_r(\mathbf{x}, \mathbf{b})$$

$$\begin{split} g(\mathbf{v}) &:= f_d(\mathbf{v}) + \Delta f_{d-1}(\mathbf{v}) + ... + \Delta^{d-1} f_1(\mathbf{v}) + \Delta^d f_0 - \Delta^{d-1} \mathbf{v}_{n+1} \\ &= (f_d(\mathbf{x}) + ... + f_0 - \mathbf{x}_{n+1}) \Delta^d + \underbrace{f'_{r,\mathbf{x},\mathbf{b}}(\Delta)}_{\deg(\Delta) < d} \end{split}$$

$$f(\mathbf{x}) = f_d(\mathbf{x}) + f_{d-1}(\mathbf{x}) \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + \dots + f_0$$

$$f(\mathbf{v}) =$$

$$\left\{egin{aligned} \Pi_{\mathsf{Setup}}^{d-1} & \mathsf{v}_1 = a_1 \Delta + b_1 \ & \mathsf{v}_2 \Delta = a_2 \Delta^2 + b_2 \Delta \ & dots \ & \mathsf{v}_{d-1} \Delta^{d-2} = a_{d-1} \Delta^{d-1} + b_{d-1} \Delta^{d-2} \end{aligned}
ight\} + \Rightarrow g^*(\Delta)$$

$$f(\mathbf{x}) = f_d(\mathbf{x}) + f_{d-1}(\mathbf{x}) \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$= f_d(\mathbf{x})\Delta^d + f_{d-1}(\mathbf{x})\Delta^{d-1} + \dots + f_0 + f_r(\mathbf{x}, \mathbf{b})$$

$$g(\mathbf{v}) := f_d(\mathbf{v}) + \Delta f_{d-1}(\mathbf{v}) + \dots + \Delta^{d-1} f_1(\mathbf{v}) + \Delta^d f_0 - \Delta^{d-1} \mathbf{v}_{n+1}$$

$$= (f_d(\mathbf{x}) + \dots + f_0 - \mathbf{x}_{n+1})\Delta^d + f'_{r,\mathbf{x},\mathbf{b}}(\Delta)$$

 $\deg(\Delta) < d$

$$\left\{
\begin{array}{ll}
\Pi_{\mathsf{Setup}}^{d-1} & \mathsf{v}_1 = a_1 \Delta + b_1 \\
\mathsf{v}_2 \Delta = a_2 \Delta^2 + b_2 \Delta \\
\vdots \\
\mathsf{v}_{d-1} \Delta^{d-2} = a_{d-1} \Delta^{d-1} + b_{d-1} \Delta^{d-2}
\end{array}
\right\} + \Rightarrow g^*(\Delta)$$

$$\bullet \quad \mathsf{Sends collapse} \quad \mathsf{of} \ g(\mathbf{v}) \\
\bullet \quad \mathsf{Soundness:} \ \frac{d}{p}$$

- Sends collapsed, masked coeff.

Contributions (of VOLEitH)

- Observation 1: In DVZK, Verifier is public coin and VOLE output can be delayed to the very end after all communications
- Observation 2: Subspace VOLE (SoftSpokenOT) allows reduction to OT
- Observation 3: OT can be replaced with com-and-open

Contributions (of LPZKitH)

Contributions (of LPZKitH)

Performance of the ZK Compilers

Scheme	Key size	Sig. size	Gen	Sign	Verify
Picnic2 [24]	64 B	45.9 kB	0.01 ms	28 ms	28 ms
Banquet [3]	-	19.78 kB	-	6.36 ms	4.86 ms
PorcRoast [7]	-	7.2 kB	-	2.8 ms	-
RSD-S [12]	0.09 kB	8.55 kB	-	31 ms	-
Falcon[21]	897 B	0.67 kB	8.64 ms	168 μs	35 μs
Dilithium3-AES	1.95 kB	3.3 kB	30μs	93μs	30μs
SPHINCS+	1.06 kB	41 kB	0.82 ms	13 ms	0.58 ms
LPZK PAL	68.3 kB	69.2 kB	≈ 15 ms	≈ 1 ms	≈ 1 ms
LPZK SHIELD	6.2 kB	7.4 kB	-	-	-

Table 1: Metrics for post-quantum signature schemes. LPZK PALISADE numbers estimated from pv-LPZK PALISADE performance, LPZK SHIELD estimated analytically.

Performance of the ZK Compilers

Scheme			$egin{array}{cccc} t_{\mathcal{P}} & t_{\mathcal{V}} & sign \ (\mathrm{ms}) & (\mathrm{ms}) & (\mathrm{B}) \end{array}$		Assump	tion	
SDitH [FJR22b] (fast)	13.4	10	12.70	17866	$\operatorname{SD} \mathbb{F}_2$		
SDitH [FJR22b] (short)		64.2	20	60.70	12102	$\mathrm{SD}\ \mathbb{F}_2$	
SDitH [FJR22b] (fast)		6.4	4 0	5.90	12115	$SD \mathbb{F}_{256}$	
SDitH [FJR22b] (short)		29.5	50	27.10	8481	SD \mathbb{F}_{256}	
Rainier ₃ [DKR ⁺ 22]		2.9	96	2.92	6 176	RAIN ₃	
Rainier ₄ [DKR $^+$ 22]		3.4	17	3.42	6816	RAIN_4	
Limbo [dOT21] (fast)		2.6	31	2.25	23 264	Hash	
Limbo [dOT21] (short)		24.5	51	21.82	13316	Hash	
SPHINCS+-SHA2 [HBD ⁺ 22]	(fast)	4.4	10	0.40	17088	8 Hash	
SPHINCS+-SHA2 [HBD ⁺ 22]	(short)	88.2	21	0.15	7856	Hash	
Falcon-512 [PFH ⁺ 22]		0.11 0.		0.02	666	Lattice	
Dilithium2 [LDK ⁺ 22]		0.07		0.03	2420	Lattice	
FAEST (this work, fast, $q = 1$	(2^8)	2.2	28	2.11	6 583	Hash	
FAEST (this work, short, $q =$	$=2^{11}$)	11.0)5	10.18	5559	Hash	
LPZK PAL 68.3 kB	69.2 k	в	≈	15 ms	≈ 1 ms ≈		ns
LPZK SHIELD 6.2 kB	7.4 kI	3	-				

Table 1: Metrics for post-quantum signature schemes. LPZK PALISADE numbers estimated from pv-LPZK PALISADE performance, LPZK SHIELD estimated analytically.

DIZK From AHE

Figure 3: Post-quantum publicly verifiable LPZK from add tive homorphic encryption using Ring-LWE.

Protocol $\Pi_{PV-LPZK}$: Post-quantum publicly verifiable LPZK from Ring-LWE.

Parametrized by a finite field \mathbb{F} , a circuit C, and a length n, with a randomized LPZK scheme as in §2.1 and an commitment scheme under AHE as in § 2.2.

- (1) (preprocessing) P computes $(pk; sk) := Gen(\kappa)$ under an AHE scheme.
- (2) (preprocessing) P generates random vectors (\mathbf{a}, \mathbf{b}) of length n and generates the encryptions $\langle \mathbf{a} \rangle, \langle \mathbf{b} \rangle := \operatorname{Enc}(\mathbf{a}, pk), \operatorname{Enc}(\mathbf{b}, pk)$.
- (3) P generates $\mathbf{m} := \text{Prove}(\mathbf{a}, \mathbf{b}, C, \mathbf{w})$ under rLPZK.
- (4) P computes $\alpha := H(\langle \mathbf{a} \rangle, \langle \mathbf{b} \rangle || \mathbf{m})$ and $\mathbf{v} := \mathbf{a}\alpha + \mathbf{b}$.
- (5) P computes $\mathbf{q} := H(\alpha || \mathbf{v}), m_q := \sum q_i(a_i\alpha + b_i)$ and

$$\pi := \operatorname{Open}_{AHE} \left(\sum_{i=1}^{n} \left(q_i \alpha \cdot \langle a_i \rangle + q_i \cdot \langle b_i \rangle \right), m_q, sk \right).$$

- (6) P sends $(pk, \langle \mathbf{a} \rangle, \langle \mathbf{b} \rangle, \mathbf{m}, \mathbf{v}, \pi)$ to V.
- (7) *V* computes $\alpha = H(\langle \mathbf{a} \rangle || \langle \mathbf{b} \rangle || \mathbf{m})$ and $\mathbf{q} = H(\alpha || \mathbf{v})$, computes $m_q := \sum q_i v_i$, and invokes $\text{Verify}_{AHE}(\sum_{i=1}^n (q_i \alpha \cdot \langle a_i \rangle + q_i \cdot \langle b_i \rangle), m_q, \pi)$.
- (8) V runs $Verify(C, \alpha, \mathbf{v}, \mathbf{m})$ and returns acc if all verification steps succeed, and rej otherwise.

DVZK from Polynomial Commitment

Figure 5: Publicly verifiable LPZK from a polynomial commitment scheme

Protocol $\Pi_{PV\text{-}LPZK'}$: pv-LPZK from a polynomial commitment scheme.

Parametrized by a finite field \mathbb{F} and a length n, with a polynomial commitment scheme (Commit_{POLY}, Open, Open-Verify) and an LPZK scheme (Prove, Verify).

- (1) (preprocessing) P generates random vectors (\mathbf{a}, \mathbf{b}) of length n+1 (i.e. extending the usual vectors by one entry) and generates commitments $g_a := \operatorname{Commit}_{POLY}(f_a), g_b := \operatorname{Commit}_{POLY}(f_b)$.
- (2) P generates (**m**) := Prove(**a**, **b**, C, **w**) under LPZK.
- (3) P computes $\alpha := H(g_a||g_b||\mathbf{m})$ and $\mathbf{v} := \mathbf{a}\alpha + \mathbf{b}$.
- (4) P computes $q := H(\alpha||\mathbf{v})$ and $(w_a, \pi_a) := \operatorname{Open}_{\operatorname{POLY}}(f_{\mathbf{a}}(q))$ and $(w_b, \pi_b) := (\operatorname{Open}_{\operatorname{POLY}}(f_{\mathbf{a}}(q)))$
- (5) P sends $(g_a, g_b, \mathbf{m}, \mathbf{v}, w_a, m_a, w_b, m_b)$ to V.
- (6) V computes $\alpha = H(g_a||g_b||\mathbf{m})$ and $q = H(\alpha||\mathbf{v})$ and invokes $\text{Verify}_{\text{POLY}}(g_a, q, \pi_a, g_a)$ and $\text{Verify}_{\text{POLY}}(g_b, q, w_b, \pi_b)$.
- (7) *V* verifies that $f_{\mathbf{v}}(q) = w_a \alpha + w_b$.
- (8) *V* runs Verify(C, α , \mathbf{v}) and returns the result.

■ AHE: $Samp() \mapsto (\mathbf{r}_1, Enc(\mathbf{r}_1; coin)),$ $Open() \mapsto (\mathbf{r}_2 = Lin_{sd}(\mathbf{r}_1), coin)$

 \blacksquare AHE: $Samp() \mapsto (\mathbf{r}_1, Enc(\mathbf{r}_1; coin)),$ $Open() \mapsto (\mathbf{r}_2 = Lin_{sd}(\mathbf{r}_1), coin)$

Samp () +

Open()

DVZK

 \blacksquare PC: $\mathsf{Samp}() \mapsto (\mathsf{r}_1, \mathsf{PC}.\mathsf{Com}(f_{\mathsf{r}_1}), \mathsf{r}_1)$ $Open() \mapsto (\mathbf{r}_2 = Lin_{sd}(\mathbf{r}_1), PC.Open(f_{\mathbf{r}_1}(q)))$

Why should we care about this?

ac'^{||}|

- For PQ-Sig, witness length is small!
- For AES-128, witness $\approx 200~\mathbb{F}_{2^8}$

Why should we care about this?

- For PQ-Sig, witness length is small!
- For AES-128, witness $pprox 200~\mathbb{F}_{2^8}$
- For Syndrome Decoding/LPN

Scheme SD Parameters				MPC Parameters					
Scheme	q	m	k	w	d	$ \mathbb{F}_{ ext{poly}} $	$ \mathbb{F}_{ ext{points}} $	t	p
Variant 1	2	1280	640	132	1	2^{11}	2^{22}	6	$\approx 2^{-69}$
Variant 2	2	1536	888	120	6	2^{8}	2^{24}	5	$\approx 2^{-79}$
Variant 3	2^8	256	128	80	1	2^8	2^{24}	5	$\approx 2^{-78}$

Table 3: SD and MPC parameters.

Why should we care about this?

ac^{ılıı}

- For PQ-Sig, witness length is small!
- For AES-128, witness $pprox 200~\mathbb{F}_{2^8}$
- For Syndrome Decoding/LPN

Scheme SD Parameters				MPC Parameters					
Scheme	q	m	k	w	d	$ \mathbb{F}_{ ext{poly}} $	$ \mathbb{F}_{ ext{points}} $	t	p
Variant 1	2	1280	640	132	1	2^{11}	2^{22}	6	$\approx 2^{-69}$
Variant 2	2	1536	888	120	6	2^{8}	2^{24}	5	$\approx 2^{-79}$
Variant 3	2^8	256	128	80	1	2^8	2^{24}	5	$\approx 2^{-78}$

Table 3: SD and MPC parameters.

lacksquare Witness length $=1500\sim1600$ bits

Warning: results are very crude

	Ratios		
ОТ	OTe	QS Proof	Total Comm.
62.12%	31.72%	6.16%	3786.0
62.10%	31.70%	6.20%	3787.8
59.80%	34.45%	5.75%	4066.9
59.77%	34.43%	5.80%	4068.9
59.74%	34.41%	5.85%	4070.9
59.71%	34.40%	5.89%	4072.9
57.16%	37.38%	5.46%	4282.8
57.13%	37.36%	5.51%	4285.0
57.10%	37.34%	5.56%	4287.2
57.07%	37.32%	5.61%	4289.5

Starting Point: Public Coin $\mathcal{F}_{\mathsf{OT}}$ by Com&Open

For public-coin \mathcal{V} , we have public-coin $\binom{2}{1}$ -OT

In particular, we have public-coin $\binom{N}{N-1}$ -OT with $O(\log N)$ comm.

$$(c, d, \{m_i\}_{i \in [N]}) \leftarrow VC.Com()$$

$$\mathcal{P} \xrightarrow{c} \xrightarrow{X}$$

$$d_x := VC.Open(d, x) \xrightarrow{d_b}$$

Next Step: From $\mathcal{F}_{\bar{1}\text{-OT}}$ to Subspace $\mathcal{F}_{\text{VOLE}}$ (SoftSpokenOT)

From $\mathcal{F}_{\overline{1}\text{-OT}}$ to Subspace $\mathcal{F}_{\text{VOLE}}$ (SoftSpokenOT), Continued

■ Goal: q^{-d} -sound IT-MAC

From \mathcal{F}_{1-OT} to Subspace \mathcal{F}_{VOLE} (SoftSpokenOT), Continued

lacksquare $\mathcal V$ locally sets $\mathsf V=\mathsf V'-\mathsf C\cdot\mathsf H_{\mathcal C}$

$$\begin{bmatrix} \mathbf{B} \end{bmatrix} = \begin{bmatrix} \mathbf{V}' \\ - \end{bmatrix} - \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix} \times \begin{bmatrix} \mathbf{G}_{\mathcal{C}} \\ \mathbf{G}_{\mathcal{C}} \end{bmatrix} + \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix} \times \begin{bmatrix} \mathbf{H}_{\mathcal{C}} \\ \mathbf{A} \\ \mathbf{A} \end{bmatrix} \times \begin{bmatrix} \Delta_{1} \\ \Delta_{n_{\mathcal{C}}} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{V} \\ - \end{bmatrix} - \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix} \times \begin{bmatrix} \mathbf{G}_{\mathcal{C}} \\ \mathbf{C} \end{bmatrix} \times \begin{bmatrix} \Delta_{1} \\ \mathbf{C} \\ \mathbf{A} \end{bmatrix}$$

 \blacksquare Consistency Check: Use Linear-UHF to hash and reveal some rows to check \mathcal{C} - Δ -relations

Theorem 2. Protocol Π_{sVOLE} securely realizes $\mathcal{F}_{\text{sVOLE}}$ with distinguishing advantage $\binom{n_c}{k_c+1} \cdot \varepsilon$

ZK for Polynomial Constraints Over **Small** Fields

The 3-Round Protocol

Protocol $\Pi_{2D\text{-Rep}}^t$

PARAMETERS: Code $C_{\mathsf{Rep}} = [\tau, 1, \tau]_p$ with $\mathbf{G}_{\mathcal{C}} = (1 \dots 1) \in \mathbb{F}_p^{1 \times \tau}$. VOLE size $q = p^r$. Inputs: Polynomials $f_i \in \mathbb{F}_{p^k}[X_1, \dots, X_\ell]_{\leq 2}, i \in [t]$. The prover \mathcal{P} also holds a witness $\mathbf{w} \in \mathbb{F}_p^{\ell}$ such that $f_i(\mathbf{w}) = 0$ for all $i \in [t]$.

Round 1. \mathcal{P} does the following:

1. Call the functionality $\mathcal{F}_{\mathsf{sVOLE}}^{p,q,S_{\Delta},\mathcal{C}_{\mathsf{Rep}},\ell+r\tau,\mathcal{L}}$ and receive $\mathbf{u} \in \mathbb{F}_p^{\ell+r\tau}, \mathbf{V} \in \mathbb{F}_q^{(\ell+r\tau)\times\tau}$.

 \mathcal{V} receives done.

- 2. Compute $\mathbf{d} = \mathbf{w} \mathbf{u}_{[1..\ell]} \in \mathbb{F}_p^{\ell}$ and send \mathbf{d} to \mathcal{V} .
- 3. For $i \in [\ell + 1..\ell + r\tau]$, embed $u_i \hookrightarrow \mathbb{F}_{q^{\tau}}$. For $i \in [\ell + r\tau]$, lift $\mathbf{v}_i \in \mathbb{F}_q^{\tau}$ into $v_i \in \mathbb{F}_{q^{\tau}}$. For $i \in [\ell]$, also embed $w_i \hookrightarrow \mathbb{F}_{q^{\tau}}$.

Round 2. \mathcal{V} sends challenges $\chi_i \in \mathbb{F}_{q^{\tau}}, i \in [t]$.

Round 3. \mathcal{P} does the following:

1. For each $i \in [t]$, compute $A_{i,0}, A_{i,1} \in \mathbb{F}_{q^{\tau}}$ such that

$$c_i(Y) = \bar{f}_i(w_1, \dots, w_n) \cdot Y^2 + A_{i,1} \cdot Y + A_{i,0}.$$

2. Compute

$$u^* = \sum_{i \in [r\tau]} u_i X^{i-1}$$
 $v^* = \sum_{i \in [r\tau]} v_i X^{i-1}$,

where $\mathbb{F}_{q^{\tau}} \simeq \mathbb{F}_p[X]/F(X)$.

3. Compute $\tilde{b} = \sum_{i \in [t]}^{T} \chi_i \cdot A_{i,0} + v^* \in \mathbb{F}_{q^{\tau}}$ and $\tilde{a} = \sum_{i \in [t]} \chi_i \cdot A_{i,1} + u^* \in \mathbb{F}_{q^{\tau}}$ and send (\tilde{a}, \tilde{b}) to \mathcal{V} .

Verification. V runs the following check:

- 1. Call $\mathcal{F}_{\mathsf{sVOLE}}^{p,q,S_{\Delta},\mathcal{C}_{\mathsf{Rep}},\ell+r\tau,\mathcal{L}}$ on input (get) and obtain $\Delta \in \mathbb{F}_q^{\tau}$, $\mathbf{Q} \in \mathbb{F}_q^{(\ell+r\tau)\times \tau}$ such that $\mathbf{Q} = \mathbf{V} + \mathbf{u}^T \mathbf{G}_{\mathcal{C}} \mathsf{diag}(\Delta)$.
- 2. Compute $\mathbf{Q}' = \mathbf{Q}_{[1..\ell]} + \mathbf{d}^T \mathbf{G}_{\mathcal{C}} \mathsf{diag}(\boldsymbol{\Delta}) = \mathbf{V}_{[1..\ell]} + \mathbf{w}^T \mathbf{G}_{\mathcal{C}} \mathsf{diag}(\boldsymbol{\Delta})$.
- 3. Lift $\Delta, \mathbf{q}'_1, \dots, \mathbf{q}'_{\ell}, \mathbf{q}_{\ell+1}, \dots, \mathbf{q}_{\ell+r\tau} \in \mathbb{F}_q^{\tau}$ into $\Delta, q'_1, \dots, q'_{\ell}, q_{\ell+1}, \dots, q_{\ell+r\tau} \in \mathbb{F}_q^{\tau}$.
- 4. For each $i \in [t]$, compute

$$c_i(\Delta) = \sum_{h \in [0,2]} ar{f}_{i,h}(q_1',\ldots,q_\ell') \cdot \Delta^{2-h}$$

- 5. Compute $q^* = \sum_{i \in [r\tau]} q_{\ell+i} \cdot X^{i-1}$ such that $q^* = v^* + u^* \Delta$.
- 6. Compute $\tilde{c} = \sum_{i \in [t]} \chi_i \cdot c_i(\Delta) + q^*$.
- 7. Check that $\tilde{c} \stackrel{?}{=} \tilde{a} \cdot \Delta + \tilde{b}$.

Theorem 4. The Protocol $\Pi_{\text{2D-Rep}}^t$ is a ZKPoK with soundness error $\frac{3}{p^{r\tau}}$.

How to Handle Arbitrary C?

- lacksquare For subspace VOLE with general code $[n_{\mathcal{C}},k_{\mathcal{C}},d_{\mathcal{C}}]$ and witness $oldsymbol{w}=\mathbb{F}_p^{oldsymbol{\ell} imes k_{\mathcal{C}}}$
- The committed witness is as follows

$$\ell$$
 B
 $=$
 V
 K_{C}
 K_{C}
 K_{C}
 K_{C}
 K_{C}
 K_{C}
 K_{C}
 K_{C}

Problem: Only row-wise linearity

In Rep (κ) , $k_{\mathcal{C}}=1$

Solution: Simulate VOLE in \mathcal{P} 's head once again

 ${\cal V}$ accepts if

- \blacksquare π is valid under Δ'
- The opening of V is correct under $diag(\vec{\Delta})$

The Code-Switching Technique

Protocol Π_{2D-1C}^t

The protocol is parameterized by an $[n_{\mathcal{C}}, k_{\mathcal{C}}, d_{\mathcal{C}}]_p$ linear code \mathcal{C} , set $S_{\Delta} \subset \mathbb{F}_p^{n_{\mathcal{C}}}$ and a leakage space \mathcal{L} (used in $\mathcal{F}_{\text{sVOLE}}$).

INPUTS: Both parties hold a set of polynomials $f_i \in \mathbb{F}_p[X_1, \dots, X_\ell]_{\leq 2}, i \in [t]$. \mathcal{P} also holds a witness $\mathbf{w} \in \mathbb{F}_p^{k_{\mathcal{C}}\ell}$ such that $f_i(\mathbf{w}) = 0$, for all $i \in [t]$.

Round 1. \mathcal{P} does as follows:

- 1. \mathcal{P} and \mathcal{V} call $\mathcal{F}_{\mathsf{sVOLE}}^{p,p,S_{\Delta},\mathcal{C},2\ell+1,\mathcal{L}}$, \mathcal{P} receives $\mathbf{U} \in \mathbb{F}_p^{(2\ell+2) \times k_{\mathcal{C}}}$, $\mathbf{V} \in \mathbb{F}_p^{(2\ell+2) \times n_{\mathcal{C}}}$, while \mathcal{V} gets the message done.
- 2. \mathcal{P} sets $\mathbf{V}_1 = \mathbf{V}_{[1..\ell+1]}, \mathbf{V}_2 = \mathbf{V}_{[\ell+2..2\ell+2]}$ and $\mathbf{R} = \mathbf{U}_{[\ell+2..2\ell+2]}$
- 3. \mathcal{P} commits to its witness by sending $\mathbf{D} = \mathbf{W} \mathbf{U}_{[1..\ell]}$.

Round 2. \mathcal{V} samples $\chi \leftarrow \mathbb{F}_p^t$ and sends it to \mathcal{P} .

Round 3. \mathcal{P} proceeds as follows.

1. For each $i \in [t]$, compute

$$g_i(Y) := \sum_{h \in [0,2]} f_{i,h}(\mathbf{r}_1 + \mathbf{w}_1 \cdot Y, \dots, \mathbf{r}_\ell + \mathbf{w}_\ell \cdot Y) \cdot Y^{2-h}$$
$$= \sum_{h \in [0,1]} A_{i,h} \cdot Y^h$$

- 2. Compute $\widetilde{\mathbf{b}} = \sum_{i \in [t]} \chi_i \cdot A_{i,0} + \mathbf{r}_{\ell+1}$ and $\widetilde{\mathbf{a}} = \sum_{i \in [t]} \chi_i \cdot A_{i,1} + \mathbf{u}_{1,\ell+1}$, where $\mathbf{u}_{1,i}$ is the *i*th row of \mathbf{U} .
- 3. Send $(\widetilde{\mathbf{b}}, \widetilde{\mathbf{a}})$ to \mathcal{V} .

Round 4. V samples $\Delta' \leftarrow \mathbb{F}_p$ and sends it to the prover.

Round 5. \mathcal{P} sends $\mathbf{S} = \mathbf{R} + \mathbf{U}_{[1..\ell+1]} \cdot \Delta' \in \mathbb{F}_p^{(\ell+1) \times n_{\mathcal{C}}}$ to \mathcal{V} Round 6. \mathcal{V} samples $\boldsymbol{\eta} \leftarrow \mathbb{F}_p^{\ell+1}$ and sends it to \mathcal{P}

Round 7. \mathcal{P} computes $\widetilde{\mathbf{v}} = \boldsymbol{\eta}^{\top} (\mathbf{V}_2 + \mathbf{V}_1 \cdot \Delta')$ and sends it to \mathcal{V} .

Verification. \mathcal{V} runs the following checks.

- 1. Check the constraints:
 - Compute $\mathbf{S}' = \mathbf{S} + \begin{bmatrix} \mathbf{D} \\ 0 \end{bmatrix} \cdot \Delta' = \mathbf{R} + \begin{bmatrix} \mathbf{W} \\ \mathbf{u}_{\ell+1} \end{bmatrix} \cdot \Delta'$.
 - For each $i \in [t]$, compute

$$\mathbf{c}_i(Y) = \sum_{h \in [0,2]} f_{i,h}(\mathbf{s}'_1, \dots, \mathbf{s}'_\ell) \cdot Y^{2-h}.$$

- Let $\widetilde{\mathbf{s}} = \sum_{i \in [t]} \chi_i \cdot \mathbf{c}_i(\Delta') + \mathbf{s}'_{\ell+1}$.
- Check that $\widetilde{\mathbf{s}} = \widetilde{\mathbf{b}} + \widetilde{\mathbf{a}} \cdot \Delta'$.
- 2. Check the opening of S:
 - Call $\mathcal{F}_{\mathsf{sVOLE}}^{p,p,\mathcal{F}_\Delta,\mathcal{C},2\ell+1,\mathcal{L}}$ on input (get) and obtain $\Delta \in \mathbb{F}_p^{n_{\mathcal{C}}}$ and $\mathbf{Q} \in \mathbb{F}_p^{(2\ell+2)\times n_{\mathcal{C}}}$ such that $\mathbf{Q} = \mathbf{V} + \mathcal{C}(\mathbf{U}) \cdot \mathsf{diag}(\Delta)$
 - Set $\mathbf{Q}_1 = \mathbf{Q}_{[1..\ell+1]}$ and $\mathbf{Q}_2 = \mathbf{Q}_{[\ell+2..2\ell+2]}$.
 - Check that

$$oldsymbol{\eta}^{ op}(\mathbf{Q}_2+\mathbf{Q}_1\cdot\Delta')=\widetilde{\mathbf{v}}+oldsymbol{\eta}^{ op}\cdot\mathcal{C}(\mathbf{S})\cdot\mathsf{diag}(oldsymbol{\Delta})$$

Theorem 3. The protocol \prod_{2D-LC}^{t} is a SHVZKPoK with soundness error $\frac{3}{n}+2|S_{\Delta}|^{-d_{C}}$ in the $\mathcal{F}_{\mathsf{sVOLF}}^{p,\mathsf{S}_\Delta,\mathcal{C},2(\ell+2),\mathcal{L}}$ -hybrid model

Use LHL to remove selective failure leackage on Δ

Use LHL to remove selective failure leackage on Δ

Use LHL to remove selective failure leackage on Δ

Use LHL to remove selective failure leackage on Δ

- Use Multiple $\mathcal{F}_{\mathsf{spVOLE}}$ to get sparse **e**
- Use LPN* to expand to pseudorandom u

Com&Open doesn't work when \mathcal{P} is OT receiver

FAEST Signature

- Apply FS transform to Π_{2D-LC}^t scheme
- Relation: $y = \operatorname{Enc}_k(x)$
- For AES128, S-box is \mathbb{F}_{2^8} inversion, so we can use 2D polynomial to express it

Theorem 5. The Π_{FAEST} protocol, defined as

$$\Pi_{\mathsf{FAEST}} = \mathsf{FS}^{H_{\mathsf{FS}}}[\mathsf{O2C}^{H_{\mathsf{O2C}}}[\Pi_{2D\text{-}Rep\text{-}OT}]],$$

is a zero-knowledge non-interactive proof system in the CRS+RO model with knowledge error

$$\begin{split} 2 \cdot (Q_{\mathsf{FS}} + Q_{\mathsf{Verify}}) \cdot \frac{2}{p^{r\tau}} + M \cdot (Q_{\mathsf{FS}} + Q_{\mathsf{Verify}}) \cdot \mathsf{AdvEB}^{\mathsf{VC}}_{\mathcal{A}'}[Q_{H_{\mathsf{O2C}}}] \\ + \mathsf{AdvDist}^{\mathsf{VC}.\mathsf{Setup},\mathsf{VC}.\mathsf{TSetup}}_{\mathcal{D}}, \end{split}$$

where M is an upper bound on the number of VC commitments sent during a run of $O2C[\Pi_{2D-Rep-OT}]$.

Claimed Performance of FAEST

Scheme	$t_{\mathcal{P}} \pmod{\mathrm{ms}}$	$t_{\mathcal{V}}$ (ms)	sign (B)	Assumption
SDitH [FJR22b] (fast)	13.40	12.70	17866	$\mathrm{SD}\ \mathbb{F}_2$
SDitH [FJR22b] (short)	64.20	60.70	12102	$\mathrm{SD}\mathbb{F}_2$
SDitH [FJR22b] (fast)	6.40	5.90	12115	$\mathrm{SD}~\mathbb{F}_{256}$
SDitH [FJR22b] (short)	29.50	27.10	8481	$SD \mathbb{F}_{256}$
Rainier ₃ [DKR ⁺ 22]	2.96	2.92	6 176	$\overline{\mathrm{RAIN}_3}$
Rainier ₄ [DKR^+22]	3.47	3.42	6816	RAIN_4
Limbo [dOT21] (fast)	2.61	2.25	23264	Hash
Limbo [dOT21] (short)	24.51	21.82	13316	Hash
SPHINCS+-SHA2 [HBD ⁺ 22] (fast)	4.40	0.40	17088	Hash
SPHINCS+-SHA2 [HBD+22] (short)	88.21	0.15	7856	Hash
Falcon-512 [PFH ⁺ 22]	0.11	0.02	666	Lattice
Dilithium2 [LDK ⁺ 22]	0.07	0.03	2420	Lattice
FAEST (this work, fast, $q = 2^8$)	2.28	2.11	6 583	Hash
FAEST (this work, short, $q = 2^{11}$)	11.05	10.18	5559	Hash