Proofs Definitions

- 1. <u>Set:</u> A set is a collection of objects. The items in a set are called elements.
- 2. **The Empty Set:** The empty set, given by \emptyset , is the set with no elements.
- 3. <u>Subset:</u> Let \mathbb{A} and \mathbb{B} be sets. Then $\mathbb{A} \subset \mathbb{B}$ if $\forall x \in \mathbb{A}, x \in \mathbb{B}$.
- 4. <u>Power Set:</u> Let \mathbb{A} be a set. Then the Power Set of \mathbb{A} , noted as $\mathcal{P}(\mathbb{A})$, is the set of all subsets of \mathbb{A} .
- 5. The Universal Set: The universal set \mathcal{U} is the set of which all sets are subsets.
- 6. <u>Intersection</u>: Let A and B be sets. The intersection of A and B, given by $A \cap B$ is $\{x | x \in A \land x \in B\}$.
- 7. *Union:* Let \mathbb{A} and \mathbb{B} be sets. The union of \mathbb{A} and \mathbb{B} , given by $\mathbb{A} \cup \mathbb{B}$ is $\{x | x \in \mathbb{A} \lor x \in \mathbb{B}\}$.
- 8. Trivial Intersection (Disjoint): Let \mathbb{A} and \mathbb{B} be sets. If \mathbb{A} and \mathbb{B} have a trivial intersection, then $\mathbb{A} \cap \mathbb{B} = \emptyset$.
- 9. Set Difference: Let A and B be sets. The set difference of A and B, noted as A B, is $\{x | x \in A \land x \notin B\}$.
- 10. <u>Cartesian Product:</u> Let \mathbb{A} and \mathbb{B} be sets. Then the product of \mathbb{A} and \mathbb{B} , given by $\mathbb{A} \times \mathbb{B}$, is $\{(a,b)|a \in \mathbb{A} \land b \in \mathbb{B}\}$.
- 11. Well Ordered: A set \mathbb{A} is well ordered if for every non-empty set $\mathbb{B} \subset \mathbb{A}$, \mathbb{B} has a least element.
- 12. Compliment: The compliment of a set \mathbb{A} in regards to \mathcal{U} is the set difference of \mathcal{U} and \mathbb{A} .
- 13. <u>Negation:</u> The negation of a statement ρ , given by $\neg \rho$, is the statement that has the opposite truth values of ρ .
- 14. **Disjunction:** The disjunction of statements ρ and φ is the statement where either ρ and φ is true, or both are true, given by $\rho \vee \varphi$.
- 15. <u>Conjunction</u>: The conjunction of statements ρ and φ is the statement where ρ and φ are both true, given by $\rho \wedge \varphi$.
- 16. *Implication:* The implication of ρ and φ , noted as $\rho \implies \varphi$, is the statement where if ρ then φ is true.

ρ	φ	$\rho \wedge \varphi$	$\rho \lor \varphi$	$\rho \implies \varphi$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	1

- 17. <u>Logically Equivalent:</u> Two statements ρ and φ are logically equivalent, noted by $\rho \equiv \varphi$, if they have the same truth values.
- 18. **Tautology:** A statement ρ is a tautology if it is true for all possible truth values.
- 19. <u>Contradiction</u>: A statement ρ is a contradiction if it is false for all possible truth values.
- 20. <u>Universal Quantifier</u>: The universal quantifier, \forall , is a quantifier that asserts that a given statement ρ holds for all elements in the specified domain.

- 21. **Existential Quantifier:** The existential quantifier, \exists , is a quantifier that assets that a given statement ρ holds for at least one element in the specified domain.
- 22. Axiom: An axiom is a statement that is accepted as true without proof.
- 23. **Theorem:** A theorem is a statement that is proved to be true.
- 24. Lemma: A lemma is a statement that serves as an intermediate step in a proof.
- 25. Corollary: A corollary is a statement that follows from an earlier result.
- 26. <u>Vacuous Statement:</u> A vacuous statement is a statement in which the assumption is always false. The statement is always true.
- 27. <u>Division:</u> Let $a, b \in \mathbb{R}$. To say a divides b, noted as a|b, implies that b = ax for some $x \in \mathbb{Z}$.
- 28. <u>Induction</u>: For all $n \in \mathbb{N}$, let $\rho(n)$ be a statement. If ρ_0 is true and $\rho(n) \implies \rho(n+1)$, then $\rho(n)$ is true for all n.
- 29. **Strong Induction:** For all $n \in \mathbb{N}$, let $\rho(n)$ be a statement. If ρ_0 is true and $\rho(i) \implies \rho(n+1)$ for all $i \in \mathbb{N}$, then $\rho(n)$ is true for all $n \in \mathbb{N}$.
- 30. <u>Relation:</u> A relation \mathcal{R} from set \mathbb{A} to set \mathbb{B} is a subset of $\mathbb{A} \times \mathbb{B}$. Set \mathbb{A} is related to set \mathbb{B} , noted as $\mathbb{A}\mathcal{R}\mathbb{B}$ if $(a,b) \in \mathcal{R}$ for $a \in \mathbb{A}$ and $b \in \mathbb{B}$.
- 31. <u>Inverse Relation:</u> Given a relation \mathcal{R} from \mathbb{A} to \mathbb{B} , \mathcal{R} inverse, noted as \mathcal{R}^{-1} or \mathcal{R}^{opp} , is $\{(b,a)|(a,b)\in\mathcal{R}\}$.
- 32. **Reflixivity:** A relation \mathcal{R} is reflexive on a set \mathbb{A} if $a\mathcal{R}a$ for all $a \in \mathbb{A}$.
- 33. Symmetry: A relation \mathcal{R} is symmetric on a set \mathbb{A} if $a\mathcal{R}\eta \implies \eta \mathcal{R}a$ for all $a, \eta \in \mathcal{R}$.
- 34. **Transitivity:** A relation \mathcal{R} is transitive on a set \mathbb{A} if $a\mathcal{R}\eta$ and $\eta\mathcal{R}\delta \implies a\mathcal{R}\delta$ for $a, \eta, \delta \in \mathbb{A}$.
- 35. <u>Equivalence Relation</u>: A relation \mathcal{R} is an equivalence relation if it is reflexive, symmetric, and transitive
- 36. <u>Equivalence Class:</u> Let \mathbb{A} be a non-empty set with elements a and η . The equivalence class of a, noted as [a], is $\{\eta | \eta \mathcal{R}a\}$.
- 37. <u>Partition:</u> Let \mathbb{A} be a non-empty set. A patition of \mathbb{A} , given by \mathbb{P} , is a set of subsets of \mathbb{A} where $\bigcup_{i\in\mathbb{I}}\mathbb{A}=\mathbb{P}$ and $\mathbb{A}_i\cap\mathbb{A}_j\neq\emptyset$ for all $i\neq j$.
- 38. <u>Function</u>: A function f from $\mathbb{A} \to \mathbb{B}$ is a relation from $\mathbb{A} \to \mathbb{B}$ where if (a, b) and (a, c) are in f, then b = c, and $\forall x \in \mathbb{A}, \exists y \in \mathbb{B}$ such that $(x, y) \in f$.
- 39. *Image:* The image of a function $f : \mathbb{A} \to \mathbb{B}$ is $\{f(a) | a \in \mathbb{A}\}$.
- 40. <u>Preimage:</u> Let f be a function such that $f: \mathbb{A} \to \mathbb{B}$ and $\mathbb{D} \subset \mathbb{B}$. Then the preimage of \mathbb{D} , noted as $f^{-1}(\mathbb{D})$, is $\{a \in \mathbb{A} | f(a) \in \mathbb{D}\}$.
- 41. **Injection:** A function $f: \mathbb{A} \to \mathbb{B}$ is injective if $f(a) = f(b) \implies a = b$ for all $a, b \in \mathbb{A}$.
- 42. **Surjection:** A function $f : \mathbb{A} \to \mathbb{B}$ is surjective if $\forall b \in \mathbb{B}, \exists a \in \mathbb{A}$ such that f(a) = b.
- 43. **Bijection:** A function $f: \mathbb{A} \to \mathbb{B}$ is bijective if it is injective and surjective.
- 44. <u>Composition:</u> Let $f : \mathbb{A} \to \mathbb{B}$ and $g : \mathbb{B} \to \mathbb{D}$ be functions. Then the composition of g and f, given by $g \circ f$, is defined as $(g \circ f)(a) = g(f(a))$.