Recitation 13 Kmean, GMM and EM

Colin

Spring 2022

Apr 27

Motivation

- We are now moving away from supervised learning to unsupervised learning (no labels)
- The goal of modeling is no longer prediction/classification but discovering underlying pattern
- To understand how are data generated, what characteristic does the generation process have
- Formally, either p(x) or p(z|x)
 - Learning/Inference problems

Outline

- Start by discussing clustering algorithms
 - Hard clustering: K-means
 - Soft clustering: GMM
- Move into EM algorithms and how the clustering problems are related

Clustering Algorithm: K-mean

- Very intuitive to understand
- Start by randomly defining centroids
 - Compute clusters
 - Classify points based on those centroids by distance
 - Update centroids
 - Update centroids based on classified points by average
- Notice how the two steps depend on each other's result to proceed.
- Each update step is independent of the other.
- Notice the update steps are hard classifications
 - One points is either class 1 or class 2.
 - The centroid updates only consider points of its class

Colin (Spring 2022)

$\mathsf{Kmean}/\mathsf{GMM}$

Generalization

- To slightly generalize the procedure
- Start by randomly defining centroids
 - Compute soft clusters
 - Assign weights to points to each centroid
 - Update centroids
 - Update centroids based on the weighted points
- This is the 'softer' version of K-means
 - Instead of 0-1 label to points, its a sequence of weights
 - Each centroid update considers all the points

Generalization

- The 'weight' mentioned in GMM is essentially a distribution over each centroid.
- We can generalize it to some distribution q(z), and update its parameters as we train the model.

Colin (Spring 2022)

Generalization

- To further generalize the procedure
- Start by randomly defining centroids, define a distribution, q(z) (with parameter λ)
 - Compute soft clusters
 - · Assign weights to points to each centroids, which is equivalent to
 - Update $q_i(z)$ (or update λ_i).
 - Update centroids
 - Update centroids based on the weighted points (or update θ)
- This is essentially the GMM algorithm

Clustering Algorithm: GMM

- Start by randomly defining centroids (μ_k, Σ_k) and $q_i(z)$ to be $Ber(p_1, p_2, ..., p_n)$
 - Compute soft clusters
 - Assign weights to points based on those centroids and $q_i(z)$

$$q_i(z) = \gamma_i^k = \frac{\pi_k^{old} \mathcal{N}\left(x_i | \mu_k^{old}, \Sigma_k^{old}\right)}{\sum_{c=1}^k \pi_c^{old} \mathcal{N}\left(x_i | \mu_c^{old}, \Sigma_c^{old}\right)}$$

- Update centroids
 - Update centroids based on the weighted points

•
$$\mu_k = \frac{1}{\sum_{i=1}^{n} \gamma_i^k} \sum_{i=1}^{n} \gamma_i^k x_i$$

$$\bullet \ \Sigma_k = \frac{\sum_{i=1}^{n} \gamma_i^k}{\sum_{i=1}^{n} \gamma_i^k} \sum_{i=1}^{n} \gamma_i^k (\mu_k - x_i)^T (\mu_k - x_i)$$

Extension to EM

- Now we have the whole setup, we can switch out terms specific to GMM
 - Start by randomly defining parameters θ , define q(z)
 - Define loss function
 - $L(\theta, \lambda) = \sum_{i} -KL(q_i(z|\lambda)||p(z|x_i, \theta)) + logp(x_i|\theta)$
 - Optimize $q_i(z) \lambda$
 - Optimize $p(x_i|z) \theta$
- This is the EM algorithm
- By some computation, we know that the optimal $q_i^*(z)$ is $p(z|x_i)$
 - Therefore the E-step is sometimes in closed form solution
- But the optimization over θ may not be trivial.

Colin (Spring 2022)

EM

- Therefore, the rationale behind EM algorithm is basically
 - Introduce q(z) to divide the problem
 - Solve the problem by coordinate descent
 - Sequential updates
- The idea is a part of variations inference which is popular in both traditional statistics and deep learning
 - e.g. variational auto-encoder (VAE)

Summary

KL Divergence

- It is a "metric" to measure the difference between two distributions
- It is **not symmetric**, hence not a actual metric!
- Originated from information theory, but widely used in deep learning

