ECE 542 Homework #8

Due: March 20, 2020

- 1. Consider a Germanium p-n junction with $N_A = 10^{15}$ cm⁻³ and $N_D = 10^{15}$ cm⁻³. The minority carrier lifetime on the p-side is 50 μ s, and the minority carrier lifetime on the n-side is 50 μ s.
 - a. What is the built-in voltage, V_{bi} ?
 - b. What is the excess electron concentration at $x = -x_p$, for $V_{app} = -3 V$?
 - c. What is the excess electron concentration at $x = -x_p$, for $V_{app} = 0.5 V$?
 - d. What is the reverse saturation current density, J_S ?
 - e. What is the current density for $V_{app} = -3 V$?
 - f. What is the current density for $V_{app} = 0.5 V$?

For the following problems, assume:

- The cross-sectional area is 250 μm x 250 μm.
- The minority carrier lifetime on the p-side is 100 ns.
- The minority carrier lifetime on the n-side is 10 µs.
- 2. Consider a Si p-n junction with $N_A = 10^{18}$ cm⁻³ and $N_D = 10^{17}$ cm⁻³.
 - a. What is the reverse saturation current, I_S ?
 - b. What is the current for $V_{app} = 0.5 V$?
 - c. Using a computer, plot the current versus applied voltage, ranging from -1 V to 0.8 V. Turn in your code.
 - d. What is the apparent turn-on voltage?
- 3. Consider a GaN p-n junction with $N_A = 10^{18}$ cm⁻³ and $N_D = 10^{17}$ cm⁻³.
 - a. What is the reverse saturation current, I_s ?
 - b. Using a computer, plot the current versus applied voltage, ranging from -1 V to 0.8 V. Turn in your code.
 - c. What is the apparent turn-on voltage?
 - d. Compare this graph with the graph from problem #2. For the same voltage, which diode has greater current: the silicon diode or the GaN diode?
 - e. Change the x-axis so that the forward current is similar to that found for the silicon diode. Superimpose the graphs for the silicon diode and the GaN diode. Make a single, nice graph. Turn in your code.
 - f. What is the apparent turn-on voltage for the silicon diode and the GaN diode?
- 4. Consider a Si p-n junction with $N_A=10^{18}~{\rm cm}^{-3}$ and $N_D=10^{17}~{\rm cm}^{-3}$. The length of the n-region is 200 μ m, and the length of the p- region is 20 μ m. What are:
 - a. The breakdown voltage considering only avalanche breakdown?
 - b. The breakdown voltage considering only punch-through on the n-side?
 - c. The breakdown voltage considering only punch-through on the p-side?
 - d. The overall breakdown voltage?