Név:

Hallgatói azonosító:

A 3 feladatsor kitöltésére háromszor 15, összesen 45 perc áll rendelkezésre. Összesen XX pont érhető el. Az elégségeshez 30% (YY pont) elérése szükséges. A vizsga során segédeszköz nem használható. Jó munkát!

Figyelem! A tesztfeladatok kitöltése során a rossz válasz -1 pontot ér.

1. feladatsor (30 pont)

1. feladat (14 pont)										
Elosz	zlástípusok:									
a)	chinégyzet	c)	normális			6	e)		Wishart	
b)	exponenciális	d)	Poisson							
Egyé	rtelműen jelölje, hogy a tanultak	alapján tip	oikusan melyi	ik eloszlástípus l	ép fel	az a	lábt	ad	ott esetek	ben?
•	Örökifjú eloszlás:				a	b	c	d	e	
•	Független ilyen eloszlásúak összege is ilyen eloszlású:					b	c	d	e	
•	Standardizált összeg határeloszlása:					b				
•	Véletlen standard normális vektor hossznégyzete:				a	b	c	d	e	
•	Normális vektor kovariancia mátrixa becslésének eloszlása:					b				
•	Hotelling féle T ² eloszlás határeloszlása:					b				
2. fel	adat (6 pont)									
Próba	ák:									
a	a) Brock-Dechert-Scheinkmann b) Ljung-Box						c)	Fo	rdulópont	t
Egvé	rtelműen jelölje, hogy a tanultak	alapján m	ielvik próba i	tesztel						

függetlenséget?
csak korrelálatlanságot?
a b c
a b c

3. feladat (10 pont)

Melyik teszttel vagy eljárással döntene a következő problémákról?

Adja meg a helyes választ! (Egyetlen teszt vagy eljárás megnevezését fogadom csak el, minden más 0 pont. Helyes válasz: 2 pont)

a)
Egy bank ismeri ügyfelei életkorát, havi jövedelmét, lakásviszonyát, rezsiköltségeit, a nekik folyósított kölcsön nagyságát, futamidejét, havi törlesztőrészletét. Statisztikát vezet arról, hogy ügyfelei közül kik váltak nemfizetővé a folyósított banki kölcsön futamideje alatt. Új kölcsönigénylőjéről ugyancsak rendelkezésére állnak a fenti adatok. Ha 5%-nál nagyobb eséllyel lenne nemfizető a futamidő alatt, akkor elutasítja a kölcsönigényt. Milyen eljárással döntsön erről?

Válasz: Logisztikus regresszió

b)

Egy kísérletben 100-100-100 betegnek külön-külön háromféle gyógyszert adnak (egy betegcsoport csak egyféle gyógyszert kap), illetve egy ugyancsak 100-as kontrol csoport placebot kap. Feljegyzik mennyi idő alatt gyógyulnak meg. Hogyan állapítaná meg, hogy hat-e egyáltalán valamelyik gyógyszer? Vaktesztet végeznek, tehát NEM TUDJÁK melyik a kontrol csoport.

Válasz: Kétmintás T-próba

c)

Autógumi gyártmányfejlesztése során a gumi fékutjának hosszát mérik adott sebességről fékezve, két komponens különböző arányának függvényében. Egy-egy rögzített arány mellett 100 gumi fékhosszát jegyzik fel. Az optimális komponensarányt szeretnék meghatározni, a fékút, mint a komponensarány egy polinomiális függvénye minimumhelyeként.

Hogyan illesszék az adott fokszámú polinomot az adatokra.

Válasz: F-próba

d)

Az előző példában milyen eljárással választaná ki a legjobb fokszámot.

Válasz:

e)

A városban 200 helyen mintát vesznek a csapvízből és elemzik azt nitritre, nitrátra, keménységre, vezetőképességre, vasés kloridtartalomra. Milyen eljárással próbálná besorolni a mintavételi helyeket a vízjellemzők hasonlósága szerint (hogy pl. ezzel szennyeződést lokalizáljon)?

Válasz: Wilks-Lambda

Név:

Hallgatói azonosító:

2. feladatsor (26 pont)

4. feladat. (16 pont)

Jelölje be, hogy Igaz, vagy Hamis-e az állítás (helyes válasz: 2 pont, hiányzó válasz: 0 pont, rossz válasz, vagy egyszerre 2 válasz: -1 pont)

a) A valószínűségi változó feltételes várható értékének várható értéke nagyobb, mint a változó közönséges várható értéke.

Igaz Hamis

b) A lineáris regresszióban vizsgált függvénykapcsolat a magyarázó változók ismeretlen együtthatóiban lineáris.

Igaz Hamis

- c) A determinációs együttható a magyarázó változók által megmagyarázott variancia arányát adja meg. *Igaz Hamis*
- d) A regresszióban a t-próbával azt vizsgáljuk, hogy a predikció várható értékben mennyire jól adja meg a választ.

Igaz Hamis

e) A Cook távolság a predikció távolságát méri a választól.

Igaz Hamis

f) A parciális korreláció azt méri, hogy az egyes magyarázó változóink tartalmaznak-e a többiektől eltérő információt.

Igaz Hamis

g) A logisztikus regresszió jóságát a ROC görbe alatti terület nagyságával tudjuk jellemezni; minél nagyobb, annál lényegesebb a feltárt kapcsolat.

Igaz Hamis

h) A Cramér-von Mises próba teszteli az eloszlás extrém értékeinek illeszkedését.

Igaz Hamis

5. feladat (10 pont)

Válassza ki a helyes választ! (helyes válasz: 2 pont, hiányzó válasz: 0 pont, rossz válasz: -1 pont)

Az alábbiak közül melyik likelihood hányados teszt?

- a) Anderson-Darling
- b) U-próba
- c) F-próba
- d) Ljung-Box

Mi a tesztek helyes erősorrendje **diffúz** alternatíva mellett a MANOVA esetén?

- a) Roy \leq Lawley-Hotelling \leq Pillai \leq Wilks-Lambda.
- b) Roy \leq Wilks-Lambda \leq Lawley-Hotelling \leq Pillai.
- c) Roy \leq Lawley-Hotelling \leq Wilks-Lambda \leq Pillai.
- d) $Pillai \le Wilks-Lambda \le Lawley-Hotelling \le Roy.$

Az egydimenziós szóráselemzés ANOVA esetén milyen próbával döntünk a nullhipotézisről

- a) t-próba
- b) F-próba
- c) chi-négyzet próba
- d) U-próba

Hogyan kapja meg a főkomponenseket?

- a) Az adatmátrix spektrálfelbontásából.
- b) Az adatok variancia-kovariancia mátrixának normált sajátvektoraiként.
- c) Az adatmátrix normált sajátvektoraiként.
- d) Az adatok variancia-kovariancia mátrixának QR felbontásában szereplő Q ortogonális mátrix oszlopvektoraiként (Gram-Schmidt ortogonalizáció).

Melyik próba teszteli az eloszlás szokásos/gyakori értékeinek illeszkedését?

- a) Jarque-Bera
- b) Kolmogorov-Szmirnov
- c) Cramér-von Mises
- d) Anderson-Darling

Név:

Hallgatói azonosító:

3. feladatsor (22 pont)

6. feladat (8 pont)

Válassza ki a helyes választ! (helyes válasz: 2 pont, hiányzó válasz: 0 pont, rossz válasz: -1 pont) Hol lép fel a Wishart eloszlás?

- a) Normális vektor hosszára vonatkozó próbában
- b) Normális vektor várható értékére vonatkozó próbában
- c) Normális vektor likelihood becslésének eloszlásaként
- d) A főkomponensek meghatározásában

Honnan következik, hogy ha normális együttes eloszlású valváltozók korrelálatlanok, akkor függetlenek is?

- a) Abból, hogy normális vektor lineáris leképezése normális vektor marad
- b) A normális vektor sűrűségfüggvényének formulájából
- c) Abból, hogy minden normális vektor független koordinátájúba forgatható
- d) A normális vektor feltételes várható értékének linearitásából

Honnan következik, hogy szóráselemzésben (az alapfeltevések igaz volta mellett) jogos az F próba, mert a két szórásbecslés független "mintából" történik?

- a) A Fisher-Cochran tételből
- b) A Wishart eloszlás tulajdonságából
- c) Normális vektor sűrűségfüggvényének formulájából
- d) A variancia kovariancia mátrix spektrálfelbontásából

Honnan következik, hogy együttesen normálisak feltételes várható értéke a feltétel lineáris függvénye

- a) Abból, hogy normális vektor lineáris leképezése normális vektor marad
- b) A normális vektor sűrűségfüggvényének formulájából
- c) Abból, hogy minden normális vektor független koordinátájúba forgatható
- d) Abból, hogy ha normális együttes eloszlású valváltozók korrelálatlanok, akkor függetlenek is

Röviden válaszolja meg az alábbi kérdéseket.

Csak rövid, néhány mondatos, vagy egyszerű formulás válaszokat kérek/fogadok el.

7. feladat (4 pont)

Definiálja a Wishart eloszlást. Legyen $S = ZZ^T$ egy $p \times p$ dimenziós pozitív definit szimmetrikus véletlen mátrix. Ekkor S Wishart eloszlású, n szabadsági fokkal. $S \sim \mathcal{W}_p(\Sigma, n)$.

8. feladat (4 pont)

Mi alapján választja meg a faktorok/ megtartott főkomponensek számát?

9. feladat (6 pont)

Többváltozós problémákban mi a koordinátánként végzett tesztelés 3 fő problémája