	*****	 • • • • •	 	** * * * * 1	 ** * * * * * *	** ** * * * * * * * * *	********
-							

plator's Signature :

C8/B.TECH(N)/SEM-2/M-201/2013 2013

MATHEMATICS - II

s Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

was are required to give their answers in their own words as far as practicable.

GROUP -- A

(Multiple Choice Type Questions)

Choose the correct alternatives for any ten of the following:

$$10 \times 1 = 10$$

The general solution of $y = px - \log p$ is

a)
$$y = cx - \log c$$

b)
$$y = 1 + \log x$$

c)
$$y = 1 + \log x + c$$

$$y = 1 + \log x + c$$
 d) none of these.

The particular integral of $\frac{d^2y}{dx^2} + y = \cos x$ is

a)
$$\frac{1}{2}\sin x$$
 b) $\frac{1}{2}\cos x$

b)
$$\frac{1}{2}\cos x$$

c)
$$-\frac{1}{2}x\sin x$$

c)
$$\frac{1}{2}x\sin x$$
 d) $\frac{1}{2}x\cos x$.

- iii) $\frac{1}{D-1}x^2$ is equal to

 - a) $x^2 + 2x + 2$ b) $-(x^2 + 2x + 2)$

 - c) $2x x^2$ d) $-(2x x^2)$.
- (v) The general solution of $\frac{d^2y}{dx^2} + y = 0$ is

 - a) $Ae^x + Be^{-x}$ b) $(A + Bx)e^x$

 - c) $(A+Bx)\cos x$ d) $A\cos x+B\sin x$.
- A simple graph can have
 - a) no pendant vertex
- b) no isolated vertex

no circuit

- none of these.
- vi) A simple graph with 20 vertices and 5 components ha at least
 - 15 edges

- b) 10 edges
- 190 edges

- d) 120 edges.
- Which of the following is incorrect about a tree T wit n vertices?
 - There exist multiple paths between every pair vertices in T
 - T is minimally connected
 - T is connected and circuitless c)
 - Thas in ~ 1] edges.

I the incidence matrix of a graph has five identical showns, the G has

five loops

b) five isolated vertices

five parallel edges

five edges in series.

$$\left(\frac{a}{a^2-a^2}\right)^2$$

sin hat

cos at

cos hat

 $L\{H(t-a)\}$, H being Heavyside unit step function, is

- d) none of these
- m) Laplace transform of sin2t is
 - a) $\cot^{-1}\frac{s}{2}$
- $b) = \cot^{-1}\frac{2}{s}$

$$xii$$
 $\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)$ equals to

$$xin)=\int\limits_{-\infty}^{\infty}xe^{-x^{2}}dx=$$

b)

C)

none of these

GROUP - B

(Short Answer Type Questions)

Answer any three of the following 3×5

- Solve: $(x^2y 2xy^2)dx + (3x^2y x^3)dy = 0$
- Solve the following simultaneous ODE:

$$\frac{\mathrm{d}x}{\mathrm{d}t} - 7x + y = 0, \quad \frac{\mathrm{d}y}{\mathrm{d}t} - 2x + 5y = 0$$

- Prove that the number of edges in a simple graph car exceed $\frac{n(n-1)}{2}$.
- Prove that a graph is a tree if and only if it is minim connected.
- Define Gamma function. Show that $\Gamma(n+1) = n\Gamma(n)$. 6

GROUP - C

Long Answer Type Questions)

. Answer any three of the following. $3 \times 15 = 45$ Dijkstra's algorithm to find shortest path between mertices a and h in the following graph

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x$$
 5

Construct a diagraph from the following incidence

$$, \quad \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & -1 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \end{bmatrix}$$

Prove that a tree with n vertices has (n-1) edges Solve the following by the method of variation of parameters :

$$\frac{d^2y}{dx^2} + y = \tan x 5$$

Solve the following differential equation by Laplace Transform

$$(D^2 + 6D + 9)y = 0, y(0) = y'(0) = 1$$
 4

i) Define Euler circuit. Write the necessary and sufficient condition for a graph to contain an Euler circuit.

5

CS/B.TECH(N)/SEM-2/M-201/2013

ii) Find, if possible, an Euler circuit in the follograph:

 $\{2 + 1$

b) Using convolution theorem prove that

$$L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right) = \frac{t\sin t}{2a}$$

- c) Prove that : $\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$
- 10. a) By Kruskal's algorithm find a minimal spanning to the following graph:

b) Find the Laplace Transform of f(t) defined as:

$$f(t) = \begin{cases} \frac{t}{k}, & \text{when } 0 < t < k \\ 1, & \text{when } t > k \end{cases}$$

c) Solve:
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$$

Evaluate: $L^{-1} \left[\frac{s^2}{(s^2 + a^2)(s^2 + b^2)} \right]$ 5

Examine whether the following graphs are isomorphic or not:

5

Solve: $y = px + \sqrt{a^2p^2 + b^2}$