Algorithmic Foundations of Data Science: Assignment #8

Khaled AlHosani (kah579), Myunggun Seo (ms9144)

New York University Abu Dhabi April 15, 2018

Problem 1

Given: A and B are two matrices s.t. $A\mathbf{v} = B\mathbf{v}$ for any vector \mathbf{v} . Set up vectors $\mathbf{v}_i = (\mathbbm{1}_i)$ which are vectors of dimensionality equal to number of columns of A and B and have 0 everywhere except for the i-th component, which is 1. If $A\mathbf{v}_i = B\mathbf{v}_i$ for every i from 1 to the number of columns of A and B, we have that $A\mathbf{v}_i$, which is a column in A, is equal to $B\mathbf{v}_i$, which is a column in B at the same location. Since every column of A and B are equal, A and B must be equal.

Problem 2

We prove by construction that it is possible to choose an orthonormal basis $w_1, ..., w_{k+1}$ for W such that $w_{k+1} \perp v_1, ..., v_k$: for V of dimension k and W of dimension k+1, the projection of V onto W is a subspace between 0 and k dimensions. Since this projection is a subspace of lower dimension than W, we can always find a vector w_{k+1} in W that is orthogonal to this projection. This vector is orthogonal to V because it is orthogonal both to the projection of V and perpendicular of V on W. (W, which includes w_{k+1} , is orthogonal to the perpendicular of V on W.)

By definition $|A\boldsymbol{w}_1|+...+|A\boldsymbol{w}_{k+1}|$ is maximized for orthonormal vectors since W is the best fit (k+1)-dimensional subspace. Additionally, $|A\boldsymbol{v}_1|+...+|A\boldsymbol{v}_k|$ is similarly maximized since V is the best fit k-dimensional subspace.

Which is to say that:

 $|Aw_1| + ... + |Aw_k| \le |Av_1| + ... + |Av_k|$

If we replace $\boldsymbol{w}_1...\boldsymbol{w}_k$ by $\boldsymbol{v}_1...\boldsymbol{v}_k$ in W we get:

 $|Aw_1| + ... + |Aw_{k+1}| \le |Av_1| + ... + |Av_k| + |Aw_{k+1}|$

This shows that the subspace V' spanned by $v_1, ..., v_k$ and w_{k+1} is at least as good as W.

Problem 3

Let h be the k-dimensional best-fit subspace of n points in \mathbb{R}^d . Let S be a subspace of dimension d-k orthogonal to h. Let p^* be the orthogonal projection of h onto S. For any point p in \mathbb{R}^d , let p^* be the projection of p on S. The distance between p^* and h^* is equal to the distance between p and h.

The best-fit surface h is one that minimizes $\sum d(p,h)^2$. Each d(p,h) is equal to $d(p^*,h^*)$ so we have that, by substitution, h produces the minimum value of $\sum d(p^*,h^*)^2$.

In 1-dimension, the only value of h^* that gives the minimum value of $\sum d(p^*, h^*)^2$ is the centroid of all points p^* . Thus h^* is the centroid of p^* 's.

Now let c be the centroid of all points and c^* its projection on S, the projection c^* of centroid is equal to the centroid h^* of projections because a centroid is computed component-wise (we can use the bases of h and S). Thus h^* is the projection of the centroid.

Since h is the d-k dimension subspace that is orthogonal to S, all h is projected onto h* but no other subspace is. Thus the centroid c, of which the projection is equal to h^* , must be in h as well.