Homework Assignment 2

Due: Friday, February 4

- 1. Let $m \in \mathbb{N}$ be a natural number. Recall that the residue of an integer x modulo m is the remainder r when applying the division algorithm (HW1 #8) to divide x by m. We say that integers x and y are congruent modulo m if they have the same residue modulo m.
 - (a) Show that x and y have the same residue modulo m if and only if m divides x y.

Proof. Let $x = q_1m + r_1$ and $y = q_2m + r_2$ so that $x - y = (q_1 - q_2)m + r_1 - r_2$. Since $-m < r_1 - r_2 < m$, we observe that m divides x - y if and only if $r_1 - r_2 = 0$ as desired.

(b) Show that congruence modulo m is an equivalence relation on \mathbb{Z} .

Proof. We use part (a) to assert that x is congruent to y modulo m precisely when m divides x-y. For reflexivity observe that m divides x-x=0. For symmetry we see that if $x \equiv y \mod m$ then x-y=km so that y-x=-km implying that $y \equiv x \mod m$. Finally we establish transitivity. Suppose $x \equiv y \mod m$ and $y \equiv z \mod m$. Then x-y=km and y-z=lm so that:

$$x - z = x - y - (z - y) = km + lm = (k + l)m,$$

so that $x \equiv z \mod m$.

(c) Suppose $a \equiv a' \mod m$ and $b \equiv b' \mod m$. Show that:

 $a + b \equiv a' + b' \mod m$ and $ab \equiv a'b' \mod m$.

Proof. Assume assume that a = a' + km and b = b' + lm. Then

$$a + b = a' + km + b' + lm = a' + b' + (k + l)m \equiv a' + b' \mod m$$
.

and

 $ab = (a'+km)(b'+lm) = a'b'+kmb'+a'lm+kmlm = a'b'+m(kb'+a'l+klm) \equiv a'b' \mod m.$

2. (a) Let p be a prime number, and let $x, y \in \mathbb{Z}/p\mathbb{Z}$ be nonzero. Show that xy is also nonzero.

Proof. Choose representatives $a, b \in \mathbb{Z}$ for x and y respectively. We prove the contrapositive. If xy = 0 then p|ab so that p|a or p|b by Euclid's formula. Therefore either x = 0 or y = 0.

(b) On the other hand, let m be a composite number greater than 3. Show that one can always find two nonzero elements of $\mathbb{Z}/m\mathbb{Z}$ whose product is zero.

Proof. As m is composite m = ab for 1 < a, b < m. Then $\overline{a}, \overline{b}$ are nonzero in $\mathbb{Z}/m\mathbb{Z}$ but their product $\overline{a}\overline{b} = \overline{m} = 0$.

- 3. Fix a natural number m.
 - (a) Let $x, y \in (\mathbb{Z}/m\mathbb{Z})^{\times}$. Show that $xy \in (\mathbb{Z}/m\mathbb{Z})^{\times}$.

Proof. By definition, the elements of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ are those with mulliplicative inverses (recall that we showed this to be equivalent to a representative being comprime with m using the extended Euclidean algorithm). Therefore we fix inverses x^{-1} and y^{-1} respectively for x and y respectively. But then $y^{-1}x^{-1}$ is a multiplicative inverse for xy, so that $xy \in (\mathbb{Z}/m\mathbb{Z})^{\times}$.

(b) Show that $(\mathbb{Z}/m\mathbb{Z})^{\times}$ is a group under multiplication modulo m.

Proof. By part (a) multiplication mod m is a binary operation. Associativity is inherited from multiplication in \mathbb{Z} . Indeed, let $\overline{x}, \overline{y}, \overline{z} \in (\mathbb{Z}/m\mathbb{Z})^{\times}$. Then:

$$(\overline{xy})\overline{z} = \overline{(xy)z} = \overline{x(yz)} = \overline{x}(\overline{yz}).$$

The identity element is $\overline{1}$, and by definition, every element of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ has a multiplicative inverse.

(c) Compute the order of each element of $(\mathbb{Z}/7\mathbb{Z})^{\times}$

Proof. For each $a = 1, 2, \dots, 6$ we Compute powers of a by repeatedly multiplying by a and reducing mod 7. Count how many steps it take to get to 1.

$$|1| = 1$$
.

Powers of 2 mod 7. $2, 4, 8 \equiv 1$. So |2| = 3.

Powers of 3 mod 7. $3,9 \equiv 2,6,18 \equiv 4,12 \equiv 5,15 \equiv 1$. So |3|=6

Powers of 4 mod 7. $4, 16 \equiv 2, 8 \equiv 1$. So |4| = 3.

Powers of 5 mod 7. $5,25 \equiv 4,20 \equiv 6,30 \equiv 2,10 \equiv 3,15 \equiv 1$. So |5| = 6.

Powers of 6 mod 7, 6, $36 \equiv 1$. So |6| = 2.

4. Let * denote multiplication modulo 15, and consider the set $\{3, 6, 9, 12\}$. Fill in the following multiplication table.

*	3	6	9	12
3	9	3	12	6
6	3	6	9	12
9	12	9	6	3
12	6	12	3	9

Use the table to prove that $(\{3,6,9,12\},*)$ is a group. What is the identity element?

Proof. Associativity follows from associativity of multiplication in \mathbb{Z} (just like in 3(b) above). The identity element here is 6. As 6 appears once in each column, every element has an inverse (it suffices to check columns as multiplication is commutative, or leveraging 7(a) below). \square

5. Let A be a nonempty set, and define $S_A := \{f : A \to A \mid f \text{ is bijective}\}$. Define a binary operation on S_A using composition of functions. Explicitly, for any $f, g \in S_A$ we define their product as follows: $f * g := f \circ g$. Show that S_A is a group. We will call this the *permutation group of* A.

Proof. First we must show that composition on S_A is a binary operation. We will show something slightly more general as it will come in handy in the future as well.

Lemma 1. Let $f: A \to B$ and $g: B \to C$ be two bijective functions. Then the composition $g \circ f: A \to C$ is bijective as well.

Proof. In HW1#4(c) we showed that a function is bijective if and only if it has an inverse, so we must show $g \circ f$ has an inverse. Let f^{-1} and g^{-1} be the inverses to f and g respectively (which we know exist because they are bijective). Then:

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ id_B \circ g^{-1} = g \circ g^{-1} = id_C,$$

and

$$(f^{-1} \circ g^{-1}) \circ g \circ f = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ id_B \circ f = f^{-1} \circ f = id_A.$$

Therefore $g\circ f$ has inverse $f^{-1}\circ g^{-1}$ and is therefore bijective.

Lemma 1 tells us that if $f, g \in S_A$ then $g \circ f \in S_A$ so that composition is in fact a binary operation on S_A .

To show S_A is a group we must now show that this operation (i)is associative, (ii) has an identity, and (iii) has inverses. Associativity is clear because composition of functions is associative. The identity function id_A is bijective, and for all $f \in S_A$ we have $id_A \circ f = f \circ id_A = f$, so the identity function serves as the identity element of the group. Finally, we showed HW1#4(c) that f is bijective if and only if it has an inverse f^{-1} , which naturally serves as the inverse element of f in S_A .

6. Let (A, *) and (B, \cdot) be two groups. Define multiplication on the Cartesian product $A \times B$ via the following rule:

$$(a_1, b_1)(a_2, b_2) = (a_1 * a_2, b_1 \cdot b_2).$$

Show that this makes $A \times B$ into a group. We call this group the direct product of A and B.

Proof. We begin by checking associativity of the binary operation. This is inherited from the associativity of the operations on A and B:

$$((a_1, b_1)(a_2, b_2))(a_3, b_3) = ((a_1 * a_2) * a_3), (b_1 \cdot b_2) \cdot b_3)$$

$$= (a_1 * (a_2 * a_3), b_1 \cdot (b_2 \cdot b_3))$$

$$= (a_1, b_1)((a_2, b_2)(a_3, b_3)).$$

Then one easily checks that $(1_A, 1_B)$ is an identity. Indeed

$$(1_A, 1_B)(a, b) = (1_A * a, 1_B \cdot b) = (a, b)$$

and the other side is identical. Finally, we observe that $(a,b)^{-1}=(a^{-1},b^{-1})$. Indeed:

$$(a,b)(a^{-1},b^{-1}) = (a*a^{-1},b*b^{-1}) = (1_A,1_B),$$

and the other side is identical.

- 7. Fix elements x, y of a group G.
 - (a) Show that if xy = e then $x^{-1} = y$ and $y^{-1} = x$.

Proof. Multiplying on the left of both sides by x^{-1} gives:

$$y = x^{-1}xy = x^{-1}e = x^{-1}$$
.

Multiplying on the right of both sides by y^{-1} gives:

$$x = xyy^{-1} = ey^{-1} = y^{-1}$$
.

(b) Show that $(xy)^{-1} = y^{-1}x^{-1}$.

Proof. Observe that $(xy)(y^{-1}x^{-1}) = xex^{-1} = e$, so that leveraging part (a) gives the result.

(c) Show that $(x^n)^{-1} = x^{-n}$.

Proof. We freely use that $x^ax^b=x^{a+b}$ for any $a,b\in\mathbb{Z}$. This follows essentially by definition, leveraging associativity, but I encourage you to check it if you are skeptical. We then proceed by induction, noticing that the base case n=1 is trivial. We then observe that by induction:

$$x^{n}x^{-n} = x^{n-1}xx^{-1}x^{-(n-1)} = x^{n-1}x^{-(n-1)} = e.$$

Then by part (a) we are done.

- 8. Fix an element x of a group G and suppose |x| = n.
 - (a) Show that x^{-1} is a nonnegative power of x.

Proof. Notice that $xx^{n-1} = x^n = e$. Therefore $x^{-1} = x^{n-1}$ by 7(a). Since $n \ge 1$, we are done.

(b) Show that the all of $1, x, x^2, \dots, x^{n-1}$ are distinct. Conclude that $|x| \leq |G|$. (We will later show that if |G| is finite then |x| divides |G|.)

Proof. Suppose otherwise, so that $x^i = x^j$, and assume without loss of generality that $j \geq i$. Multiplying both sides by x^{-i} and leveraging 7(c) gives $x^{j-i} = e$. Since j - i < n we must have j - i = 0, otherwise this would contradict that n is the minimal positive power of x which is the identity. This implies j = i to begin with.

Notice that we have produced n distinct elements of G, so that $n \leq |G|$.

(c) Show that $x^i = x^j$ if and only if $i \equiv j \mod n$.

Proof. We freely use that if $x^{ab} = (x^a)^b$. If b is positive, this is clear, as

$$x^{ab} = x^{\overbrace{a+a+\cdots+a}^{b-\text{times}}} = \underbrace{x^a x^a \cdots x^a}_{b-\text{times}} = (x^a)^b.$$

I encourage you to work out the b is negative case if you are skeptical. If $i \equiv j \mod n$, then i-j=kn, so that $x^{i-j}=x^k n=(x^n)^k=e$. Therefore multiplying both sides by x^j gives $x^i=x^j$

Conversely, if $x^i = x^j$ then $x^{i-j} = e$. Apply the division algorithm to divides i-j by n, so i-j=kn+r for $0 \le r < n$. Then:

$$e = x^{i-j} = x^{kn+r} = x^{kn}x^r = ex^r = x^r.$$

Since |x| = n, and r < n, this implies r = 0. Thus n | (i - j) as desired.