Algorithmes de tri Algorithmique 1 - 2019-2020

Stéphane Grandcolas

Aix-Marseille Université

2019-2020

Tris.

- Arbre de décision : tri par insertion.
- Complexité des tris par comparaison dans le pire des cas : borne minimale.
- Tri rapide.
- ► Tri par dénombrement, tri par base.

Tris.

organiser un ensemble d'objets selon un ordre déterminé

relation d'ordre : comparaison de clés

dans nos exemple nous confondrons les objets avec leurs clés

- tri par comparaison versus tri par indexation
- tri sur place : espace mémoire de taille constante
- tri stable : préserve l'ordre initial en cas d'égalité

Tris.

- 1. Tris en $\mathcal{O}(n^2)$.
 - tri à bulles,
 - tri par insertion,
 - tri par sélection.
- **2.** Tris en $\mathcal{O}(n \times \log n)$.
 - tri par fusion,
 - tri par tas,
 - tri rapide (mais en $\mathcal{O}(n^2)$ dans le pire des cas).
- 3. Tris spéciaux.
 - tri shell (probablement $\mathcal{O}(n^{1.25})$),
 - tri par dénombrement $(\mathcal{O}(n))$.

Principe : insérer les éléments les uns après les autres dans la partie triée

Principe : insérer les éléments les uns après les autres dans la partie triée

Insertion : recopie des éléments plus grands vers la droite

```
procédure Tri par insertion(T[1, ..., n])
début
    pour i := 2 jusqu'à n faire
         i := i
         tant que ((i > 1) et (T[i] < T[i-1])) faire
              // la suite T[1, \ldots, j-1] est ordonnée
              PERMUTER (T, i, i-1),
              i := i - 1,
         fin faire
    fin faire
fin procédure
```

Pire des cas : i - 1 permutations à chaque passage.

$$T(n) = \sum_{i=2}^{n} i = \mathcal{O}(n^2)$$

Meilleur des cas : aucune permutation (mais une comparaison).

$$T(n) = \sum_{i=2}^{n} 1 = \mathcal{O}(n)$$

Inversion: (i,j) tel que i < j et T[i] > T[j]

- suite triée : 0 inversions
- ▶ suite triée dans l'ordre décroissant : $n \times (n-1)/2$ inversions

Permutation de deux éléments consécutifs inversés :

$$nb inversions = n_1 + n_2 + n_3 + nblnv(i) + nblnv(i+1) + 1$$

Permutation de deux éléments consécutifs inversés :

$$nb inversions = n_1 + n_2 + n_3 + nblnv(i) + nblnv(i+1)$$

Permutation de deux éléments consécutifs inversés :

$$nb inversions = n_1 + n_2 + n_3 + nblnv(i) + nblnv(i+1)$$

En permutant deux éléments successifs non ordonnés on diminue de 1 le nombre d'inversions

Arbre de décision d'un tri.

- tris par comparaison
- ightharpoonup comparaison ightarrow **décision** de permuter ou non

Arbre de décision : représente tous les scénarios possibles pour une suite de *n* valeurs.

Branche : la suite de permutations faites par le tri pour produire la séquence ordonnée

Arbre de décision du tri par insertion.

Arbre de décision du tri par insertion.

nombre de feuilles = nombre de branches = n!

- (1) On peut composer n! suites différentes à partir de n valeurs différentes.
- (2) On ne peut pas trier deux suites u et v différentes avec la même séquence de permutations ρ . En effet, $\exists i, j$ tels que $u_i < u_j$ et $v_j > v_i$, il faudrait donc $\rho(i) < \rho(j)$ et $\rho(i) > \rho(j)$.

Complexité des tris par comparaison

Nombre de feuilles : n!

hauteur de l'arbre de décision :

$$h(n) \geq \log(n!)$$

or (formule de Stirling)

$$\log(n!) \ge \log(\frac{n}{e})^n = n \times \log n - n \times \log e$$

donc

$$h(n) \ge n \times (\log n - 2) \approx n \times \log n$$

fonction TRI_RAPIDE (T, g, d)

```
1 si (g < d) alors

2 | Choisir pivot dans T[g, ..., d],

3 | m := PARTITIONNER(T, g, d, pivot),

4 | TRI_RAPIDE(T, g, m - 1),

5 | TRI_RAPIDE(T, m + 1, d),
```

- tri par comparaisons en place,
- tableau indexé,
- le plus rapide dans le cas général,
- très utilisé

fonction TRI_RAPIDE (T, g, d)

```
1 si (g < d) alors

2 | Choisir pivot dans T[g, ..., d],

3 | m := PARTITIONNER(T, g, d, pivot),

4 | TRI_RAPIDE (T, g, m-1), \{m-1 < d\}

5 | TRI_RAPIDE (T, m+1, d), \{m+1 > g\}
```

fonction TRI_RAPIDE (T, g, d)

```
\begin{array}{lll} & \text{si } (g < d) \text{ alors} \\ 2 & & | \text{ Choisir pivot dans } T[g, \ldots, d], \\ 3 & & m := \text{PARTITIONNER}(T, g, d, \text{pivot}), \\ 4 & & | \text{TRI\_RAPIDE } (T, g, m-1), & \{ m-1 < d \} \\ 5 & & | \text{TRI\_RAPIDE } (T, m+1, d), & \{ m+1 > g \} \end{array}
```

Partition:

fonction TRI_RAPIDE (T, g, d)

```
1 si (g < d) alors

2 | Choisir pivot dans T[g, ..., d],

3 | m := PARTITIONNER(T, g, d, pivot),

4 | TRI_RAPIDE(T, g, m - 1),

5 | TRI_RAPIDE(T, m + 1, d),
```


fonction TRI_RAPIDE (T, g, d)

```
\begin{array}{lll} & \text{si } (g < d) \text{ alors} \\ & & \text{Choisir } \textit{pivot} \text{ dans } T[g, \ldots, d], \\ & & m := \text{PARTITIONNER}(T, g, d, \textit{pivot}), & \mathcal{O}(n) \\ & & \text{TRI\_RAPIDE } (T, g, m-1), & T(n/2) \\ & & & \text{TRI\_RAPIDE } (T, m+1, d), & T(n/2) \end{array}
```

Dans le meilleur cas

$$T(n) = n + 1 + 2 \times T(n/2) = \mathcal{O}(n \times \log n)$$

fonction TRI_RAPIDE (T, g, d)

```
1 si (g < d) alors

2 Choisir pivot dans T[g, ..., d],

3 m := PARTITIONNER(T, g, d, pivot), \mathcal{O}(n)

4 TRI_RAPIDE (T, g, m-1), T(0)

5 TRI_RAPIDE (T, m+1, d), T(n-1)
```

Dans le pire des cas

$$T(n) = n + 1 + T(n - 1) = O(n^2)$$

Après la partition :

g		d	
< pivot	= pivot	> pivot	

Pendant la partition :

cas 1: x > pivot: permutation avec le dernier en attente

cas 2 : x = pivot : extension de la zone

cas 3 : x < pivot : permutation avec le premier égal au pivot

à gauche : stoppe avec $x_i \ge pivot$ à droite : stoppe avec $x_i \le pivot$

Permutation

g	pivot								d	
10 7	6 23	4 8	13 11	2	9	12	11	18	17	14

Extension des zones

Recherche d'un plus grand à gauche et d'un plus petit à droite

g			pivot								d		
10 7	6	9	4	8	13	11	2	23	12	11	18	17	14

Permutation et extension des zones

Recherche d'un plus grand à gauche et d'un plus petit à droite

Permutation et extension des zones

g		pivot												d
10	7	6	9	4	8	2	11	13	23	12	11	18	17	14
							AA							

Dernière permutation

Produit deux zones strictement plus petites que [g, d]

La partition est en $\mathcal{O}(n)$

Quick sort avec partition rapide

```
si (g < d) alors
         a := g, b := d,
        v := T[(a+b)/2],
4
5
6
7
8
9
        tant que (a \le b) faire
              tant que (T[a] < v) faire
                   a := a + 1,
              tant que (T[b] > v) faire
                   b := b - 1.
              si (a < b) alors
                   PERMUTER(T, a, b),
10
11
                   a := a + 1,
12
13
         TRI RAPIDE (T, g, b),
14
         TRI RAPIDE (T, a, d),
    fin fonction
15
```

```
si (g < d) alors
                                                   n = d - g + 1 > 1
         a := g, b := d,
         v := T[(a+b)/2],
         tant que (a \le b) faire
5
6
7
8
9
              tant que (T[a] < v) faire
                                                   la première fois stoppée par le pivot,
                                                   ensuite stoppée par T[b]
                   a := a + 1.
              tant que (T[b] > v) faire
                   b := b - 1.
              si (a < b) alors
                   PERMUTER(T, a, b),
10
11
                   a := a + 1,
12
                   b := b - 1,
13
         TRI RAPIDE (T, g, b),
14
         TRI RAPIDE (T, a, d),
    fin fonction
15
```

```
si (g < d) alors
                                                   n = d - g + 1 > 1
         a := g, b := d,
        v := T[(a+b)/2],
         tant que (a \le b) faire
5
6
7
8
9
              tant que (T[a] < v) faire
                   a := a + 1,
              tant que (T[b] > v) faire
                                                   la première fois stoppée par le pivot,
                   b := b - 1.
                                                   ensuite stoppée par T[a]
              si (a < b) alors
10
                   PERMUTER(T, a, b),
11
                   a := a + 1,
12
                   b := b - 1.
13
         TRI RAPIDE (T, g, b),
14
         TRI RAPIDE (T, a, d),
    fin fonction
15
```

```
si (g < d) alors
                                                  n = d - g + 1 > 1
         a := g, b := d,
        v:=T[(a+b)/2],
        tant que (a \le b) faire
5
6
7
8
9
              tant que (T[a] < v) faire
                  a := a + 1,
             tant que (T[b] > v) faire
                 b := b - 1.
              si (a < b) alors
                                                   forcément vrai la première fois
                   PERMUTER(T, a, b),
10
11
                  a := a + 1,
                   b := b - 1,
12
13
         TRI RAPIDE (T, g, b),
14
         TRI RAPIDE (T, a, d),
    fin fonction
15
```

```
si (g < d) alors
                                                   n = d - g + 1 > 1
         a := g, b := d,
         v := T[(a+b)/2],
         tant que (a \le b) faire
5
6
              tant que (T[a] < v) faire
                   a := a + 1.
7
8
9
              tant que (T[b] > v) faire
                  b := b - 1.
              si (a < b) alors
                                                   forcément vrai la première fois
                   PERMUTER(T, a, b),
10
11
                  a := a + 1,
                                                   on incrémente a au moins une fois
12
                   b := b - 1.
                                                   on décrémente b au moins une fois
13
         TRI RAPIDE (T, g, b),
14
         TRI RAPIDE (T, a, d),
    fin fonction
15
```

```
si (g < d) alors
                                                  n = d - g + 1 > 1
         a := g, b := d,
         v := T[(a+b)/2],
         tant que (a < b) faire
5
6
              tant que (T[a] < v) faire
                  a := a + 1.
7
8
9
              tant que (T[b] > v) faire
                  b := b - 1.
              si (a < b) alors
                                                  forcément vrai la première fois
10
                  PERMUTER(T, a, b),
11
                  a := a + 1,
                                                  on incrémente a au moins une fois
12
                   b := b - 1.
                                                  on décrémente b au moins une fois
13
         TRI RAPIDE (T, g, b),
                                                  ici b < d donc b - g + 1 < n
14
         TRI RAPIDE (T, a, d),
                                                  ici a > g donc d - a + 1 < n
    fin fonction
15
```

Quick sort: justesse

```
si (g < d) alors
           a := g, b := d,
          v := T[(a+b)/2],
          tant que (a < b) faire
                 \{ \forall i, \text{ si } g \leq i < a \text{ alors } T[i] \leq v, \text{ et si } b < i \leq d \text{ alors } T[i] \geq v, \}
5
                 tant que (T[a] < v) faire
6
7
8
                       a := a + 1.
                                                               \{T[a-1] < v\}
                 tant que (T[b] > v) faire
                       b := b - 1.
                                                               \{T[b+1] > v\}
9
                 si (a < b) alors
10
                       PERMUTER(T, a, b),
                      \{T[a] \le v \text{ et } T[b] \ge v\}
11
                       a := a + 1,
12
                       b := b - 1
                 {donc si i < a alors T[i] \le v et si i > b alors T[i] \ge v,}
           TRI RAPIDE (T, g, b),
                                                               \{b < a \text{ et } \forall i, i < a \text{ on a } T[i] \leq v\}
13
                                                               \{a > b \text{ et } \forall i, i > b \text{ on a } T[i] > v\}
14
           TRI RAPIDE (T, a, d),
15
      fin fonction
```


Tri sans comparaison : suppose que l'on sait *indexer* les éléments à trier, i.e. affecter à chacun un rang

- qui dépends uniquement de sa valeur
- qui correspond à l'ordre défini sur les éléments

tri du facteur qui prépare sa tournée, tri de valeurs entières assez proches et nombreuses.

Calcul des nombres d'apparitions

T 0 2	0	1	2	1	0	2	1	1

Nombres d'apparitions

Calcul des positions des premiers de chaque classe

	0	1	2	3	4	5	6	7	8	9	
Т	0	2	0	1	2	1	0	2	1	1	
								0	1		2
Nombres d'apparitions						r	ıb 📗	3	4		3
								0	1		2
Indices des premiers					po	s [0	3		7	

Positionnement dans le tableau résultat

Nombres d'apparitions

nb 3 4 3

Indices des premiers

pos 0 1 2 pos 0 3 7

	-		_	-	4	-	-		-	-
Т	0	2	0	1	2	1	0	2	1	1

Positionnement dans le tableau résultat

Positionnement dans le tableau résultat

Positionnement dans le tableau résultat


```
fonction TRI PAR DENOMBREMENTS(T, n)
\{In : T \text{ un tableau de } n \text{ éléments}\}
\{Out : R \text{ le tableau trié des éléments de } T\}
début
    pour i := 0 à k-1 faire
                                            initialisations
         nb[i] := 0,
    pour i := 1 à n faire
                                            calcul des nombres d'apparitions
         nb[T[i]] := nb[T[i]] + 1,
    pos[0] := 0.
                                            calcul des indices du premier
    pour i := 1 à k-1 faire
                                            élément de chaque catégorie
         pos[i] := pos[i-1] + nb[i-1],
    pour i := 1 à n faire
                                            recopie des élément originaux
         R[pos[T[i]]] := T[i],
                                            du tableau T dans R
         pos[T[i]] := pos[T[i]] + 1,
    renvoyer R
fin procédure
```

Complexité : $\mathcal{O}(n+k)$.

Utilise le tri par dénombrement en plusieurs passes

```
536
893
427
167
853
592
197
462
```

Utilise le tri par dénombrement en plusieurs passes

```
536
              592
893
              462
427
              893
167
              853
853
              536
592
              427
197
              167
462
              197
```

Utilise le tri par dénombrement en plusieurs passes

536	592	427
893	462	536
427	893	853
167	853	462
853	536	167
592	427	592
197	167	893
462	197	197

Utilise le tri par dénombrement en plusieurs passes

536	592	427	167
893	462	536	197
427	893	853	427
167	853	462	462
853	536	167	536
592	427	592	592
197	167	893	853
462	197	197	893

n nombres à *c* chiffres en base $k : \mathcal{O}(c \times n + c \times k)$.

Si $k = \mathcal{O}(n)$ le tri par base est linéaire $(\mathcal{O}(n))$.