第三次金融工程学作业

杨宸宇

2016301550186

1 准备工作

```
In [1]: # -*-coding:utf-8-*-
    # 调用所需要的库
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sympy import *
    import seaborn as sns
    sns.set()
In [2]: # 更改中文字体
    # plt.rc( 'font' ,family=[ 'Microsoft YaHei' ])
```

2 等额本金法

2.1 等额本金法计算公式

- 设贷款总额为 A 元,贷款年利率为 R,月利率为 i (i=R/12),贷款期限为 n 年,总期数为 m 个月(m=n*12)
- 每月偿还本金 = A/m
- 当月偿还利息 = 当月本金 * i
- 当月本金 = 上月本金 上月偿还本金
- 当月偿还本利和 = 当月偿还本金 + 当月偿还利息
- 因此进行简单的循环即可得出所有的月付本息

```
参数 n: 贷款年数
输出 x: 包含了月份,每月本金,每月偿还利息,每月偿还总本息和的数据集
# 计算月利率
i = r / 12
# 计算总的贷款月份
m = 12 * n
# 计算每月偿还本金额
A = K / m
# 构建一个空的 DataFrame 用于储存数据
x = pd.DataFrame()
x['月份'] = [j \text{ for } j \text{ in } range(1, m + 1)]
x['当月本金'] = [K - A * j for j in range(m)]
x['当月应付利息'] = np.nan
x['当月应付本息和'] = np.nan
# 为了循环的方便先填好第一行
x.iloc[0, 2] = K * i
x.iloc[0, 3] = A + K * i
# 循环重复计算每月的利息和本息和
for j in range(1, m):
   x.iloc[j, 2] = x.iloc[j, 1] * i
   x.iloc[j, 3] = A + x.iloc[j, 2]
return x
```

2.2 等额本金法计算例子

```
In [4]: data = same_capital(300000, 0.05, 15)
plt.plot(data['月份'], data['当月应付利息'], color='blue', linewidth=2.5)
#添加标题
plt.xlabel('month')
plt.ylabel('interest')
plt.title('Monthly Interest Pay')
plt.show()
```


可以看出每月还款的利息呈现下降趋势

3 等额本息法

3.1 等额本息法计算方法

- 首先我们可以把它看成是一种息票债券,现值为 A,每月偿还 x,一共偿还 m 期,月内部收益率等于月利率 i
- 所以先求出月偿还总额: $x = \frac{Ai(1+i)^m}{(1+i)^m-1}$
- 将每月的还款日当作月末,则:
- 第一个月月初,本金为A,不需要还款
- 第一个月的还款日(当作月末),本金 A 的本利和为 A(1 + i),还款 X 后,下个月的本金为: A(1 + i)-X
- 第二个月月末, A(1 + i)-X 的本金的本利和为: (A(1 + i)-X)(1 + i), 还款 X 后,下个月的本金为: (A(1 + i)-X)(1 + i)-X = A(1 + i)2-X[1+(1+i)]
- 可以进行等差数列求和,我们可以得到第 k 月的本金为: $A(1+i)^{(k-1)} \frac{x[(1+i)^{k-1}-1]}{i}$
- 而第 k 月的应付的利息就为本金乘利率 i: $[A(1+i)^{(k-1)} \frac{x[(1+i)^{k-1}-1]}{i}] * i$
- 接着进行简单的循环即可得到债券每月的本金和利息变化情况

```
In [5]: def same_interest(A, r, n):
          参数 A: 本金
          参数 r: 年利率
          参数 n: 贷款年数
          输出 x: 包含了月份,每月本金,每月偿还本金,每月偿还利息,每月偿还总金额的数据集
          # 计算月利率
          i = r / 12
          # 计算总的贷款月份
          m = 12 * n
          # 类比一个月付息债券,即可直接计算出每月的付款额
          monthly_pay = A * i * (1 + i) ** m / ((1 + i) ** m - 1)
          # 构建一个空的 DataFrame 用于储存数据
          x = pd.DataFrame()
          x['月份'] = [j \text{ for } j \text{ in } range(1, m + 1)]
          x['每月本金'] = np.nan
          x['每月偿还本金'] = np.nan
          x['每月偿还利息'] = np.nan
          x['每月偿还总金额'] = [monthly pay for j in range(m)]
          for j in range(len(x)):
             # 计算处每月的本金额度
             x.iloc[j, 1] = A * (1 + i) ** j - monthly_pay * ((1 + i) ** j - 1) / i
             # 每月应付利息等于当月的本金额乘以月利率
             x.iloc[j, 3] = x.iloc[j, 1] * i
             # 由于月付本息和相等,减去利息即可得到偿还本金额度
             x.iloc[j, 2] = x.iloc[j, 4] - x.iloc[j, 3]
          return x
3.2 等额本息法例子
In [6]: data = same_interest(300000, 0.05, 15)
      # 选择画出两条曲线,即每月偿还本金和每月偿还利息
      plt.plot(data['月份'], data['每月偿还本金'], color='blue', \
                 linewidth=2.5, label='Monthly Captial')
      plt.plot(data['月份'], data['每月偿还利息'], color='red', \
                 linewidth=2.5, label='Monthly Interest')
```

```
#添加标题
```

```
plt.title('Monthly Pay')
plt.xlabel('month')
plt.ylabel('capital or interest')
#添加图例
plt.legend()
plt.show()
```


4 债券的凸性

4.1 债券的凸性计算公式

- 凸性的本质其实就是债券价格对市场利率的二阶导数
- $c = \frac{1}{p} \frac{d^2 p}{dp^2} = \frac{1}{p(1+i)^2} \left[\sum_{t=t_1}^{T} t(1+t) * \frac{coupon_t}{(1+i)^t} \right]$
- 经过 n 次循环即可求出结果

In [7]: def convex(A, c, n, i):

参数 A: 票面价值

```
参数 c: 票面利率
   参数 n: 债券期限
   参数 i: 市场利率
111
# 计算出息票值
c = A * c
# 用 P 去存储每期支付的现值
P = 0
#用X去储存前n-1次循环使用息票的过程量,与最后一期分开计算
X = 0
for j in range(1, n):
  P += c / (1 + i) ** j
   X += j * (j + 1) * c / ((1 + i) ** j)
# 最后一期因为要加上债券票面价值, 所以单独拿出来计算
P += (A + c) / (1 + i) ** n
X += n * (n + 1) * (A + c) / ((1 + i) ** n)
#根据凸性的计算公式来计算即 convex = 1/(P*(1+i)^2) * X
con = 1 / (P * (1 + i) ** 2) * X
print("经计算,对一个票面价值为%s,票面利率为%0.2f%%,期限为%s年的债券,凸性为%s\n")
    %(A,c,n,con))
print('''-----
```

4.2 计算凸性例子

```
In [8]: print('一组例子如下: \n')
convex(100, 0.07, 6, 0.1)
convex(100, 0.09, 7, 0.1)
convex(100, 0.14, 9, 0.1)
convex(100, 0.16, 8, 0.1)
convex(100, 0.18, 9, 0.1)
```

一组例子如下:

5 利率期限结构

5.1 利率期限结构计算公式

- 利率期限结构是指在某一时点上,不同期限资金的收益率与到期期限之间的关系
- 对于操作而言,其实就是根据已知的即期利率,去计算更远期限的即期利率,是一个从前往 后不断推进的过程
- 需要注意的是一年之内的所有债券的即期利率就是到期收益率,所以可以直接相等
- 为了方便起见我默认使用的债券数据都是一年付息两次,传入的数据集里默认已经有债券基本信息包括到期收益率
- 列举其中2步计算过程(因为半年和一年是直接相等,所以从1.5年开始计算):
 - $r_1 = YTM_{0.5}$
 - $r_2 = YTM_1$
 - $par = \frac{coupon}{1+r_1/2} + \frac{coupon}{(1+r_2/2)^2} + \frac{coupon+par}{(1+r_3/2)^3}$
 - 其中 par 为面值, coupon 为第 1.5 年的现金流, 带入 r_1 和 r_2 求解出 r_3 即为 1.5 年的即期利率
 - $par = \frac{coupon}{1+r_1/2} + \frac{coupon}{(1+r_2/2)^2} + \frac{coupon}{(1+r_3/2)^3} + \frac{coupon+par}{(1+r_4/2)^4}$
 - 于是带入之前的 r, 求出第二年的即期利率即可
 - 重复上述过程,最后便能求得利率期限结构

In [9]: def IRR(data):

5.2 利率期限结构简单例子

```
In [10]: # 生成一组原始数据
```

```
data = pd.DataFrame()
data['债券期限'] = [0.5, 1, 1.5, 2, 2.5, 3]
x = data['债券期限'] = [0.5, 1, 1.5, 2, 2.5, 3]
data['债券初始面值'] = [100, 100, 100, 100, 100, 100]
data['票面利率'] = [1.9, 2.1, 2.3, 2.8, 3.7, 5.5]
data['到期收益率'] = [4.0, 4.2, 4.6, 5.6, 5.8, 7.0]
data.set_index('债券期限', inplace=True)
# 计算这组数据的利率期限结构
result = IRR(data)
result
```

Out[10]:	债券初始面值	票面利率 ((%) 到期收益率	(%)	即期收益率 (%)
债券期限	Ł				
0.5	100	1.9	4.0		4.000000000000000
1.0	100	2.1	4.2		4.200000000000000
1.5	100	2.3	4.6		4.61087216259755
2.0	100	2.8	5.6		5.65329297457169
2.5	100	3.7	5.8		7.60002114620885
3.0	100	5.5	7.0		11.8398918196558

5.3 利率期限结构图

通常如果计算市场的利率期限结构,我会选择使用 MATLAB 金融工具箱中的 zbtyield 函数,较为方便