Math 361 Numerical Analysis

Ch 2.5 Extra Example

Consider the sequence $p_n = (0.3)^n$, with $\lim_{n \to \infty} p_n = \lim_{n \to \infty} (0.3)^n = 0$. Thus convergence to zero is clear, but what is the rate of convergence?

Check for linear rate of convergence:

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = \lim_{n \to \infty} \frac{(0.3)^{n+1} - 0}{(0.3)^n - 0} = \lim_{n \to \infty} \frac{(0.3)^n (0.3)}{(0.3)^n} = 0.3 = \lambda, \ 0 < \lambda < 1$$

$$\therefore p_n \to p \text{ linearly, since } \lambda \in (0,1).$$

 x_1 ($P(x_1)$) 1 0.3 2 0.09 3 0.027 4 0.0061 5 0.00243 6 7.29 × 10⁻⁴ 7 2.187 × 10⁻⁴ 8 6.561 × 10⁻⁵ 9 1.9683 × 10⁻⁵ 10 8.8049 × 10⁻⁶

Check for quadratic rate of convergence:

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \lim_{n \to \infty} \frac{(0.3)^{n+1}}{(0.3)^{2n}} = \lim_{n \to \infty} \frac{(0.3)^n (0.3)}{(0.3)^n (0.3)^n} = \lim_{n \to \infty} \frac{1}{(0.3)^{n-1}} = 0 = \lambda$$

 $\therefore p_n$ does not converge to p quadratically, since $\lambda \notin (0,1)$.

Check for other rates of convergence:

$$\lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = \lim_{n\to\infty} \frac{(0.3)^{n+1}}{(0.3)^{n\alpha}} = \lim_{n\to\infty} (0.3)^{n+1-n\alpha} = \lim_{n\to\infty} (0.3)^{n+1-n\alpha} = \lim_{n\to\infty} (0.3)^{n(1-\alpha)+1} = \begin{cases} 0.3, & \alpha=1\\ 0, & \alpha>1\\ \infty & \alpha<1 \end{cases}$$

$$\therefore p_n \to p \text{ linearly, and this is the only rate of convergence possible.}$$

We can use Steffensen's Method to accelerate the convergence of $p_n = (0.3)^n$ to zero:

$$A(p_n) = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

n	p _n	p _n ^(k)	
0	1	1.00000	
1	0.3	0.30000	
2	0.09	0.09000	
3	0.027	0.00000	
4	0.0081	0.00000	
5	0.00243	0.00000	
6	0.000729	#DIV/0!	
7	0.0002187	#DIV/0!	
8	0.00006561	#DIV/0!	
9	0.000019683	#DIV/0!	
10	5.9049E-06	#DIV/0!	
11	1.77147E-06	#DIV/0!	
12	5.31441E-07	#DIV/0!	

4	Α	В	С
1	n	p _n	p _n ^(k)
2	0	=0.3^A2	=B2
3	1	=0.3^A3	=B3
4	2	=0.3^A4	=B4
5	3	=0.3^A5	=C2-(C3-C2)^2/(C4-2*C3+C2)
6	4	=0.3^A6	=C5^A6
7	5	=0.3^A7	=C6^A7
8	6	=0.3^A8	=C5-(C6-C5)^2/(C7-2*C6+C5)
9	7	=0.3^A9	=C8^A9
10	8	=0.3^A10	=C9^A10
11	9	=0.3^A11	=C8-(C9-C8)^2/(C10-2*C9+C8)
12	10	=0.3^A12	=C11^A12
13	11	=0.3^A13	=C12^A13
14	12	=0.3^A14	=C11-(C12-C11)^2/(C13-2*C12+C11)

Chr. 5 Accelerating Convergence How might we obtain quadratic convergence in general? Aitken's 12 Method accelerates a linearly convergent sequence. Suppose { Pn]n=0 is linearly convergent, with limit P, and suppose Pn-P, Pn+1-P, Pn+2-P all have the same sign. Also, assume $\frac{Pn+1-P}{Pn-P} \simeq \frac{Pn+2-P}{Pn+1-P}$, n large enough Then (Pn+1-P)2 = (Pn+2-P)(Pn-P) Solving for P, and simplifying, we have $P \stackrel{\text{def}}{=} Pn - \frac{(Pn+1 - Pn)^2}{Pn+2 - ZPn+1 + Pn}$

From the previous page,

$$P \cong Pn - \frac{(Pn+1-Pn)^2}{Pn+2-ZPn+1+Pn}$$

Aitken's Δ^2 Method defines

 $\hat{P}_n = Pn - \frac{(Pn+1-Pn)^2}{Pn+2-ZPn+1+Pn}$

As we will see, $\hat{P}_n \rightarrow P$ faster than

 $P_n \rightarrow P$.

Example Consider the sequence $\{P_n\}_{n=1}^{\infty}$

with $P_n = Cos(\frac{1}{n})$, which converges

linearly to $P = 1$. (Show)

 $P_1 = cos(1) = 0.54030$
 $P_2 = cos(\frac{1}{2}) \cong 0.87758$
 $P_3 = cos(\frac{1}{3}) \cong 0.94496$
 $\hat{P}_1 = P_1 - \frac{(P_2 - P_1)^2}{P_3 - ZP_2 + P_1} \cong 0.96178$

Etc-See Table Z.11 for results.

Definition For a given sequence {Pn}n=0

the forward difference Apn is $\Delta P n = P n + 1 - P n$, $n \ge 0$. Higher powers Arpn are defined recursively by $\Delta^{k}p_{n} = \Delta(\Delta^{k-1}p_{n}), k \geq 2$ Thus $\Delta^2 P_n = \Delta(\Delta P_n)$ = D(Pn+1-Pn) = (Pn+2-Pn+1) - (Pn+1-Pn) = Pn+2 - ZPn+1 + Pn Aitken's Δ^2 Method iterates are thus $\hat{P}_n = P_n - \frac{(P_{n+1} - P_n)^2}{P_{n+2} - 2P_n + P_n}$ $= Pn - \frac{(\Delta Pn)^{2}}{\Lambda^{2}Dn}, n \geq 0$

Theorem 2.13 Suppose that a Sequence {Pn}n=0 converges linearly to P and that for all sufficiently large values of n, we have Then the sequence $\{\hat{P}n\}_{n=0}^{\infty}$ converges to p faster than $\{pn\}_{n=0}^{\infty}$ in the sense that (Pn-P)(Pn+1-P)>0 lim Pn-P = 0. what about quadratic convergence? To accomplish this, we consider steffensen's method, which modifies Aitken's Δ^2 method.

Aitken's Δ^2 method.

Aitken's 12 Method

Steffensen's Method

$$\hat{p}_n = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

$$\hat{P}_o = P_o - \frac{(\Delta P_o)^2}{\Delta^2 P_o}$$

$$\hat{p}_i = p_i - \frac{(\Delta p_i)^2}{\Delta^2 p_i}$$

0

$$\tilde{p}_{o} = p_{o} - \frac{(\Delta p_{o})^{2}}{\Delta^{2} p_{o}}$$

$$\tilde{p}_{\cdot} = g(\tilde{p}_{\circ})$$

$$\tilde{p}_z = g(\tilde{p}_i)$$

$$\tilde{p}_3 = \tilde{p}_0 - \frac{(\Delta \tilde{p}_0)^2}{\Delta^2 \tilde{p}_0}$$

Book's Notation for Steffensen method:

$$P_{0}^{(0)}, P_{1}^{(0)}, P_{2}^{(0)}, P_{0}^{(1)}, P_{1}^{(1)}, P_{2}^{(1)}, P_{0}^{(2)}, P_{0}^{(2)}, P_{2}^{(2)}, \dots$$

Steffensen's

To find a solution to p = g(p) given an initial approximation p_0 :

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While $i \le N_0$ do Steps 3-6.

Step 3 Set
$$p_1 = g(p_0)$$
; (Compute $p_1^{(i-1)}$.)
$$p_2 = g(p_1)$$
; (Compute $p_2^{(i-1)}$.)
$$p = p_0 - (p_1 - p_0)^2 / (p_2 - 2p_1 + p_0)$$
. (Compute $p_0^{(i)}$.)

Step 4 If
$$|p - p_0| < TOL$$
 then OUTPUT (p) ; (Procedure completed successfully.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 Set
$$p_0 = p$$
. (Update p_0 .)

Step 7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (Procedure completed unsuccessfully.) STOP.

Example Solve X3+4x2-10=0 using Steffensen's Method. Recall from Section Z.Z, Example, 36) that we can rewrite this equation $X = Q(X) = \left(\frac{10}{X+4}\right)^2$ Start with Po=1.5. Then $P_0 = 1.5$ $P_1^{(0)} = g(P_0^{(0)}) = 1.348399725$ $P_2^{(0)} = g(P_0^{(0)}) = 1.348399725$ $P_2^{(0)} = 1.365230013$ $P_{z}^{(0)} = g(p_{z}^{(0)}) = 1.367376372$ $p_{o}^{(1)} = p_{o}^{(0)} - \frac{(\Delta p_{o}^{(0)})^{2}}{\Delta^{2}(p_{o}^{(0)})} = p_{o}^{(0)} - \frac{(p_{1}^{(0)} - p_{o}^{(0)})^{2}}{(p_{2}^{(0)} - 2p_{1}^{(0)} + p_{o}^{(0)})}$ = 1.365265224 $P_{i}^{(i)} = g(P_{o}^{(i)}) = 1.365225534$ $P_{2}^{(1)} = 9(P_{1}^{(1)}) = 1.365230583$ $P_{(2)}^{(2)} = P_{(1)}^{(1)} - \frac{(\Delta P_{(1)}^{(1)})^2}{\Delta^2(P_{(1)}^{(1)})^2} = 1.365230013$

Steffensen's Method results for this example, $f(x) = \chi^3 + 4\chi^2 - 10 = 0$ $(\Rightarrow) \quad \chi = g(\chi) = \left(\frac{10}{\chi + 4}\right)^{1/2}$ are comparable to Newton's Method for this problem in Section 2.4 (Ex4). The rapid convergence suggests guadratic convergence, without evaluating a derivative. Theorem 2.14 Suppose x = g(x) has the solution P with g'(P) #1. If 38 >0 S.t. geC3[p-8, p+8], then steffensen's Method gives quadratic convergence for any Po€[P-8, P+8].

Example Let $g(x) = 1 + e^{-x}$ use Steffensen's Method to find $p_0^{(i)}, p_0^{(i)}$.

Solution Recall $p_n = g(p_{n-1})$

$$p_n = g(p_{n-1})$$

 $\hat{p}_n = A(p_n) = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$

$$P_{0}^{(0)} = P_{0} = 1$$

$$P_{1}^{(0)} = P_{1} = 9(P_{0}) = 1.367879441111$$

$$P_{2}^{(0)} = P_{2} = 9(P_{1}) = 1.2.5464638044$$

$$P_{2}^{(1)} = A(P_{0}^{(1)}) = A(P_{0}) = 1.281296542056$$

$$P_{1}^{(1)} = 9(P_{0}^{(1)}) = 1.278683918788$$

$$P_{2}^{(1)} = 9(P_{1}^{(1)}) = 1.278683918788$$

P(2) = A(P(1)) = 1.278464785530

Math 361 Numerical Analysis

Ch 2.5 Extra Example

In our class notes for Ch 2.4, one of the examples sought to solve $f(x) = e^x - x - 1 = 0$. Since f(0) = f'(0) = 0 and $f''(0) \neq 0$, it follows that p = 0 is a zero of multiplicity two. See graph. In the work below, we use Steffensen's Method where $g_1(x)$ is the Newton's method iterating function. In the Excel table, the modified Newton results for $g_2(x)$ are also shown for comparison.

	Α	В	С	D	Е	F
1		Find Root	$f(x) = e^x - x - 1$			
2			$g1(x) = x - (e^x - x - 1)/(e^x - 1)$			
3			$g2(x) = x - (e^x-x-1)(e^x-1)/((e^x-1)^2-$		(e^x-x-1)e^	'x)
4			$A(x,y,x) = x - (x-y)^2/(z-2y+x)$			
5						
6	n	g1	g2	p(n,k)		
7	0	1	1	1		
8	1	0.581976707	-0.234210614	0.581976707		
9	2	0.319055041	-0.00845828	0.319055041		
10	3	0.167996173	-1.18902E-05	-0.126638558		
11	4	0.086348874	-4.21859E-11	-0.061983192		
12	5	0.043795704	-4.21859E-11	-0.030671457		
13	6	0.022057685	-4.21859E-11	-0.001267797		
14	7	0.011069387		-0.000633764		
15	8	0.005544905		-0.000316849		
16	9	0.002775014		-1.33872E-07		
17	10	0.001388149		-6.58683E-08		
18	11	0.000694235		-3.21579E-08		
19	12	0.000347158		9.79286E-10		
20	13	0.000173589		9.79286E-10		
21	14	8.6797E-05		9.79286E-10		
22	15	4.33991E-05		#DIV/0!		
23	16	2.16997E-05				