2/21/2020

Homework 4

- 1.) Consider the hash function $h(x_1 | |x_2| | ... | |x_t) = \sum_{i=1}^{t} x_i \mod p$ (mod p of the whole summation of x_i 's), where each x_i is 64 bits and p is a 64 bit prime.
 - a.) Is h SPR? CRHF? OWF?

 The hashing function h is not SPR and thus not CRHF because if we are given a random input x and we set x^i to be some message where the bits add up to the same number that x's bits add up to. This would then give the same hash for x and x^i even though $x != x^i$. This hash function h is also not an OWF because if we input x^i we can find the original input x. This x^i could be $x \mid | 0^n$ because the summation would be the same and it would output the same hash as when x was input into the hash function h.
 - b.) Present a collision-finding algorithm for h. An algorithm that could search for collisions in h would simply find messages where the sum of one messages' parts are equal to the other messages sum of parts ie, $m_1 = 010$ and $m_2 = 101$ but in this case they would have the same hash.
- 2.) A Toeplitz matrix is a matrix in which each descending diagonal form left to right is constant. For example:

$$\begin{pmatrix} a & b & c & d & e \\ f & a & b & c & d \\ g & f & a & b & c \\ h & g & f & a & b \\ i & h & g & f & a \end{pmatrix}$$

We now define a hashing algorithm called the Toeplitz Matrix Hashing Algorithm, defined by the function h: h = M * x. Where M is a binary Toeplitz matrix, x is the binary message and * is standard matrix multiplication. All operations are done mod 2. The message x is taken as a column vector of length I = |x|. Clearly the dimension of M needs to be $n \times I$ where I is the length of the message x and n is the desire length of the hash output.

a.) Calculate the hash for:

$$M = egin{pmatrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 \end{pmatrix}, \; x = egin{pmatrix} 1 \ 0 \ 0 \ 1 \end{pmatrix}$$

The hash for this x would be M * x which is:

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

b.) Find a collision for M given in (a).

A collision for x would be x^{l} that produces the same hash as calculated above. This x^{l} could be :

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

- 3.) It is proposed to combine two hash functions by cascade, i.e., given hash functions h₁, h₂ we define h₁₂(m) = h₁(h₂(m)) and h₂₁(m) = h₂(h₁(m)). Suppose collisions are known for h₁. Which cascaded function can we easily find collisions for? Why?
 If we know that the h₁ hash function has known collisions it would be easier to find h₁₂(m) collisions. This is because it would not matter what the output or collisions for the h₂ hash function are. If we were to try and find collisions for h₂₁(m) we would know the collisions for the input value into the h₂ hash function, but we still would not know the collisions for the h₂ hash function.
- 4.) Show that the following hash function fails to provide any of the following security properties: collision resistance, second-preimage resistance, one-way function, and randomness extraction. $h(x) = x_2 \mod 2$

This hash function h(x) would not be collision resistant because say we have an input x^l that has the same exact x_2 block it would provide the same hash and thus a collision would occur. This hash functions fails the one-way function property because if we know the hash for x we can find out what the x was. For example, if we let $x^l = h(x)$, $= x^l \mod 2 = h(x) \mod 2 = (x \mod 2) \mod 2 = x \mod 2 = h(x)$. We know this hash function h(x) is not second-primage resistant because if we let x^l to be $x + 2^n$ then we know $x != x^l$ but $h(x) = h(x^l)$ because the mod 2 cancels out the 2! Finally, we know that it also fails randomness extraction because if we choose x except x_1 and x_3 if x is three blocks long, then the hash function will still produce an output that is not pseudo random.