Jean-Marie Dufour January 21, 2003

TIME SERIES ANALYSIS EXERCISES STOCHASTIC PROCESSES 2

1. Discuss the convergence conditions for the series

$$\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$$

where $\{u_t: t \in \mathbb{Z}\} \sim WN(0, \sigma^2)$. In particular, give sufficient conditions under which:

- (a) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converges in mean of order 2;
- (b) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converges in mean of order r>0;
- (c) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converges almost surely;
- (d) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converges in probability.
- 2. Consider a MA(1) model:

$$X_t = \overline{\mu} + u_t - \theta u_{t-1}, \ t \in \mathbb{Z}$$

where $u_t \sim WN(0, \sigma^2)$ and $\sigma^2 > 0$.

- (a) Prove that the first autocorrelation of this model cannot be greater than 0.5 in absolute value.
- (b) Find the values of the model parameters for which this upper bound is attained.
- 3. Let $\{x_t : t \in \mathbb{Z}\}$ an MA(q) process. For q = 3, 4, 5, 6, check whether the following inequalities are correct:

1

(a) $|\rho(1)| \le 0.75$;

- (b) $|\rho(2)| \le 0.90$;
- (c) $|\rho(3)| \le 0.90$;
- (d) $|\rho(4)| \le 0.90$;
- (e) $|\rho(5)| \le 0.90$;
- (f) $|\rho(6)| \leq 0.90$.

4. Consider the following models:

- (1) $X_t = 0.5 X_{t-1} + u_t$,
- (2) $X_t = 10 0.75 X_{t-1} + u_t$
- (3) $X_t = 10 + 0.7 X_{t-1} 0.2 X_{t-2} + u_t$,
- (4) $X_t = 10 + u_t 0.75 u_{t-1} + 0.125 u_{t-2}$,
- (5) $X_t = 0.5 X_{t-1} + u_t 0.25 u_{t-1}$,
- (6) $X_t = 0.5 X_{t-1} + u_t 0.5 u_{t-1}$,

where $\{u_t : t \in \mathbb{Z}\}$ is an i.i.d. N(0,1) sequence. For each one of these models, answer the following questions.

- (a) Is this model stationary? Why?
- (b) Is this model invertible? Why?
- (c) Compute:
 - i. $E(X_t)$;
 - ii. $\gamma(k)$, k = 1, ..., 8;
 - iii. $\rho(k)$, k = 1, 2, ..., 8.
- (d) Graph $\rho(k)$, k = 1, 2, ..., 8.
- (e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} and u_{t-4} in the moving average representation of X_t .
- (f) Find the autocovariance generating function of X_t .
- (g) Find and graph the spectral density of X_t .
- (h) Compute the first four partial autocorrelations of X_t .