TEMPERATURE SCALE

Result $\rightarrow \frac{C}{5} = \frac{F-32}{9} = \frac{K-273}{5}$ (celcius-fahrenheit-kelvin conversion) any scale conversion formula

Reading on any scale - lower fixed point = constant

Upper fixed point - lower fixed point

THERMAL EXPANSION

2. $I' = I(1 + \propto \Delta_{\theta})$

3. $\propto = \frac{\Delta I}{1.0}$ \rightarrow unit \rightarrow /°c or/k, dimension-K⁻¹

Whatever be the change in temperature, the difference in length remains constant $|_{1} \propto_{1} = |_{2} \propto_{2}$

APPLICATIONS OF LINEAR EXPANSION

Pendulum clock

Fact — When temperature increases, time period increases, clock runs slow

→ When temperature decreases, time period decreases, clock runs fast

1) Loss of time in any given time interval t,

$$\Delta t = \frac{1}{2} \propto \Delta \theta t$$

2) Time lost by clock in a day

 $\Delta \dagger = \frac{1}{2} \propto \Delta \theta \, \dagger = \frac{1}{2} \propto \Delta \theta \, 86400 = 43200 \propto \Delta \theta$

Thermal Stress in a rigidly fixed rod

ERROR IN SCALE READING DUE TO EXPANSION OR CONTRACTION

Result \rightarrow (1) At θ '> θ True value> Scale reading At 0'<0 True value < Scale reading

True value= Scale reading $(1+\propto \Delta\theta)$

 $\propto_{cu} \times \propto_{Fe} \longrightarrow$ So when temperature increases $\rightarrow \land l$ of $Cu > \land l$ of Fe

 \rightarrow strip with higher value of \propto will be on

EXPANSION OF CAVITY

Area of hole increases \longrightarrow body expands on heating. Expansion of area of body is independent of shape and size of hole

SUPERFICIAL/AREA EXPANSION

 $1.\Delta A = A \beta \Delta \theta$ $2.A^{\dagger} = A(1+\beta\Delta\theta)$

B -coefficant of area expansion

 $3.\beta = \frac{\Delta A}{A \wedge T} \rightarrow \text{unit} - \frac{1}{2} \text{ or } / \text{k, dimension} - [K^{-1}]$

CUBICAL EXPANSION/VOLUME EXPANSION

k, dimension-[K⁻¹] 4. $\gamma = 3 \propto$ $\propto :\beta: \gamma = 1:2:3$

Variation of density with temperature

then $\rho' = \rho(1 - \gamma_{\Lambda \theta})$

 $V' = V(1 + \gamma_{\Delta \theta})$

3. $\gamma = \frac{\Delta V}{V \wedge \Theta} \longrightarrow \text{unit} \longrightarrow 0$ or /K

1. ΔV=V ΥΔθ

2. $V'=V(1+\gamma_{\Lambda\theta})$

Density $\propto \frac{1}{\text{Volume}}$

CALORIMETRY

1 calorie=4.2J

Heat Supplied (AQ)

change temperature of body

1. ∆Q=ms ∆T S-specific heat capacity

SIunit - $\frac{\text{Joule}}{\text{Ka Kelvin}} \longrightarrow \text{J Kg}^{-1}\text{K}^{-1}$

2. $S_{\text{water}} = 1 \frac{\text{cal}}{a^0 C} = 4.2 \frac{\text{J}}{a^0 C} = 4200 \frac{\text{J}}{\text{k}a^0 C}$

[or use Kelvin instead of °C]

 $S_{ice} = \frac{1}{2} \frac{cal}{a^0 C} = 2.1 \frac{J}{a^0 C} = 2100 \frac{J}{ka^0 C}$

Heat supplied at constant rate

Graph & equation

 $\frac{\text{msT}_1}{\Delta \ \ \text{t}_1} = \frac{\text{mL}_{\text{f}}}{\Delta \ \ \text{t}_{12}} = \frac{\text{ms(T}_2 - \text{T}_1)}{\Delta \ \ \text{t}_{23}} = \frac{\text{mL}_{\text{v}}}{\Delta \ \ \text{t}_3}$

if speecific heat is variable $\Delta Q = \int_{T_1}^{T_2} msdT$ $S = f(T) \qquad T_1 \longrightarrow T_2$

change state of body

Melting $\Delta\theta$:mL

Boiling $\Delta\theta$:mL L -Latent heat of vapourisation

 $I_f = L_{ice} = 80 \frac{cal}{a} = 80 \times 4.2 \frac{J}{a} = 80 \times 4200 \frac{J}{ka}$

• $L_v = L_{steam} = 540 \frac{cal}{g} = 540 \times 4.2 \frac{J}{g} = 540 \times 4200 \frac{J}{ka}$

HEAT CAPACITY

Heat capacity=massx specific heat capacity Unit= $\frac{cal}{{}^{\circ}C}$ \Rightarrow SI unit $\frac{I}{K}$

WATER EQUIVALENT

substance for the same changes in temperature

mwsw=mbs

w=water b=body

The mass of water that will absorb or lose as same quantity of heat as

ANOMALOUS EXPANSION OF WATER

- 1. Water has maximum density at 4°C (minimum volume)
- 2. On heating.
- $0^{\circ}C \longrightarrow 4^{\circ}C$ water contracts

REAL AND APPARENT EXPANSION OF LIQUID

1. ApparentExpansion of liquid --- Real expansion of liquid --

- 3. Graphs

2. Apparent change in volume

1. $\Delta V_{apparent} = V_0 \gamma_{apparent} \Delta \theta$

2. $\Delta V_{apparent} = V_0 (\gamma_1 - \gamma_s) \Delta \theta$

3. $\Delta V_{\text{apparent}} = V_0 (\gamma_1 - 3 \propto_s) \Delta \theta$

4. $\gamma_{apparent} = \gamma_1 - 3 \propto_s$

is contained

Expansion of solid in which liquid

 γ_1 -Real expansion of liquid

PRINCIPLE OF CALORIMETRY

Heat lost by the hotter body = Heat gained by colder bodies $Q_3 = Q_1 + Q_2$

Final equilibrium temperature

 $\textbf{T}_{\text{eq}} = \frac{\textbf{m}_{1}\textbf{s}_{1}\textbf{T}_{1} + \textbf{m}_{2}\textbf{s}_{2}\textbf{T}_{2} + \textbf{m}_{3}\textbf{s}_{3}\textbf{T}_{3}}{\textbf{m}_{1}\textbf{s}_{1} + \textbf{m}_{2}\textbf{s}_{2} + \textbf{m}_{3}\textbf{s}_{3}} = \frac{\sum \textbf{msT}}{\sum \textbf{ms}}$

Facts: Calorimeter

A device in which the measurement \propto_s -coefficent of linear expansion of heat can be

Heat flows from hot end to cold end, medium is necessary, slow process

 $\frac{\Delta Q}{\Delta t}$ = Rate of flow of heat

Unit of 'K' = $\frac{\text{watt}}{\text{metre}^{0}C}$ or $\frac{\text{watt}}{\text{metre }K}$

A = Area of cross section $\frac{\Delta \theta}{I}$ = Temperature gradient

'K' depends on the nature of material

K = coefficient of thermal conductivity

THERMAL PROPERTIES OF MATTER

_-Latent heat of fusion

1. Whole ice melts into water

Problem solving methodology

2. Convert $-\theta$, °C ice \longrightarrow 0°C ice

 $\Delta Q_1 = m_1 S_{12} \theta_1$

3. Convert 0°C ice - 0°C water

4. Convert θ_0 °C water \longrightarrow 0°C water

 $\Delta Q_2 = m_1 L_2$

 $\Delta Q_3 = m_2 S_{water} \theta_2$

- 2. Additional heat is used to increase the temperature of system from 0°C
- 3. Final temperature can be found out by

 $\triangle Q^{l} = M_{total} S_{water} T$

where $\Delta Q' \longrightarrow$ additional heat

 $\Delta \mathbf{Q}_{2} = , > , \text{or} < \Delta \mathbf{Q}_{1} + \Delta \mathbf{Q}_{2}$

ICE-WATER SYSTEM

1. m, g ice $[-\theta, {}^{\circ}C]$ mixed with m₂g water $[-\theta_{2}, {}^{\circ}C]$

- 1. Only m' g of ice melts
- 2. Mass of ice melts can be found by m'L =Q
- 3. Final temperature is 0°C

CONVERSION OF MECHANICAL ENERGY TO HEAT ENERGY

1. Potential energy to Heat energy $\Delta U = mgh \longrightarrow \Delta Q = m'L$

When equaling multiply with 4200 for $\triangle Q$ (if L_f is in $\frac{\text{calorie}}{q}$)

ie, mgh ==> m'L, × 4200

2. Kinetic energy to Heat energy

 $K.E = \frac{1}{2}mv^2$ \longrightarrow $\triangle Q = m^1L_1$ if L_f is in calorie

$$\frac{1}{2} mv^2 \longrightarrow m' L_f \times 4200$$

HEAT TRANSFER

 $\frac{\Delta Q}{\Delta +} = K A \frac{\Delta \theta}{I}$

OHM'S LAW OF CONDUCTION

Electrical Conduction

- 1) current, $I = \frac{dq}{dt}$
- 2) $I = \frac{\Delta V}{P} (\Delta V = V_{high} V_{low})$
- 3) electrical resistance, $R = \frac{\rho_{\parallel}}{\Delta}$
- 4) $I = \frac{V_1 V_2}{R} = \frac{(V_1 V_2)A = \sigma A}{I} (V_1 V_2)$
- 5) Combination of resistors
- i) Series Combination

Here 'I' is same

ii) Parallel Combination

Here $(V_1 - V_2)$ is same

Thermal Conduction

- 1) Heat current, $H = \frac{dQ}{dt}$
- 2) $H = \frac{\theta_1 \theta_2}{R} = \frac{\Delta \theta}{R}$
- 3) Thermal resistance, $R = \frac{1}{KA}$
- 4) $H = \frac{\theta_1 \theta_2}{R} = \frac{\theta_1 \theta_2}{(I/KA)} = \frac{KA}{I} (\theta_1 \theta_2)$
- 5) Combination of conductors
 - i) Series Combination

 $R_1 = \frac{I_1}{K_1 A} \qquad R_2 = \frac{I_2}{K_2 A} \qquad \begin{array}{c} \text{Find } R_{eq} = R_1 + R_2 + \dots \\ \text{From that find '} K_{eq} \end{array}$

Here 'H' is same

ii) Parallel Combination

replace to resistors

Here, Temp Difference same

TEMPERATURE OF INTERMEDIATE JUNCTION

CONVECTION

- Requires a medium, actual movement of fluid, occus naturally or forced.
- Natural convection takes place due to the effect of gravity
- Sea Breeze

• Land Breeze

Wind blows from sea to land during day time

Wind blows from land to sea during night

RADIATION

Absorptive, reflective and Transmitted power

- Absorptive power(a)= $\frac{Q_a}{Q}$ Energy absorbed
- Energy reflected
 Energy incident Reflective power(r)= $\frac{Q_r}{Q}$

a+r+t=1

.= Energy transmitted
Energy incident Transmitted power(t)= $\frac{Q_{t}}{Q}$

EMISSIVE POWER/INTENSITY OF THERMAL RADIATION

Emissive power(E)= $\frac{\text{Energy radiated}}{\text{area} \times \text{time}}$

Spectral emissive power(E_{A})= $\frac{\text{Energy radiated}}{\text{area} \times \text{time} \times \text{wavelength}} \text{ unit} \rightarrow \frac{\text{Watt}}{\text{m}^{3}}$

Relation between E & $E_{\lambda} = \sum_{i=1}^{\infty} E_{\lambda} d\lambda$

For ordinary body E= e o T4

 $\frac{\triangle Q}{\triangle +} = eA \circ T^4$ e=emissivity

In the presence of a surrounding (T_a) (black body)

 $E = \sigma (T^4 - T_0^4) \frac{\Delta Q}{\Delta t} = \sigma A (T^4 - T_0^4)$

In the presence of a surrounding T_o) (general body)

 $E = \sigma e(T^4 - T_0^4)$ $\frac{\Delta Q}{\Delta +} = \sigma e A(T^4 - T_0^4)$

NEWTON'S LAW OF COOLING

- EQUATION FOR PROBLEM SOLVING

$$\frac{-[\theta_2 - \theta_1]}{\Delta t} = K \left[\left(\frac{\theta_2 + \theta_1}{2} \right) - \theta_0 \right]$$

$$\theta_1 \xrightarrow{\theta_0} \Phi_0$$

 $\theta_1 > \theta_2$

∆t=time

 θ \rightarrow surrounding temperature

WIEN'S LAW

Wien's displacement law

b=Wien's constant b → value - 2.89 × 10⁻³ mK Area = $A = \int_{0}^{\infty} E_{\lambda} d\lambda = E = \sigma T^{4}$

EMISSIVITY (E)

e= Energy radiated by a general body Energy radiated by a black body value of e > 0<e<1

If e=0, means general body radiates no energy

If e=1, it indicates a perfect black body

KIRCHHOFF'S LAW

Ratio of emissive power to absorptive power is same for all surfaces at the same temperature and is equal to the emissive power of a perfectly balck body at that temperature.

$$\frac{\mathsf{E}_1}{\mathsf{a}_1} = \frac{\mathsf{E}_2}{\mathsf{a}_2} = \dots = \frac{\mathsf{E}}{\mathsf{A}} = \mathsf{E}$$

STEFAN'S LAW

Emissive power of a black body « fourth power of absolute temperature

$$E = \sigma T^4$$
 , $\frac{\Delta Q}{\Delta t} = \sigma A T^4$

 $\sigma \longrightarrow Stefan's constant \qquad \frac{\Delta Q}{\Delta +} \longrightarrow Radiant power$

value of $\circ \longrightarrow 5.67 \times 10^{-8}$ W/m²K⁴ Dimension $\longrightarrow [\sigma] = MT^{-3}K^{-4}$

"As the temperature of the body increases, the wavelength at which the spectral intensity (E) is maximum shift towards left."

NEWTON'S LAW OF COOLING

Rate of cooling

directly proportional to excess of temperature of the body over that of surrounding.

$$\frac{-dT}{dt}$$
 (T-T₀)

T=Temperature of body T₀=Temperature of surounding

