Esercitazione sulla parte di Inferenza

La funzione densità della variabile casuale X è

$$f_{\omega_0}(x) = \frac{1}{\omega_0} \text{ per } 0 \le x \le \omega_0,$$

con $\omega_0 > 0$ fissato ma ignoto.

Intervallo di confidenza da un solo campione

Abbiamo visto a lezione che fissata la confidenza al livello $1-\alpha$, l'intervallo di confidenza per ω_0 costruito a partire da un solo campione, \hat{I}_1 , è pari a

$$\hat{I}_1(X) = \left[\frac{X}{1 - \alpha/2}, \frac{X}{\alpha/2}\right].$$

(1) Poni $\omega_0 = 10000$. Utilizza un generatore di numeri pseudocasuali per estrarre un campione dalla distribuzione uniforme tra 0 e 10000. Ripeti l'estrazione 1000 volte e conta per quante volte gli intervalli di confidenza generati contengono il valore 10000 se il livello di confidenza è pari al 95%. Commenta i risultati ottenuti.

Caso asintotico (facoltativo)

Estrai ora 100 campioni dalla distribuzione uniforme sempre con $\omega_0=10000$. Indicando con X_n^* la media empirica, puoi utilizzare il teorema centrale del limite per determinare l'intervallo di confidenza usando la distribuzione normale standard della variabile Z (che ha valore atteso 0 e varianza 1). Poiché la media empirica è una stimatore di $\omega_0/2$ utilizza la formula

$$P\left(|X_n^* - \frac{\omega_0}{2}| \le k \frac{\sigma}{\sqrt{n}}\right) = P(|Z| \le k),$$

dove σ^2 è la varianza della distribuzione uniforme di ampiezza ω_0 .

(2) Ripeti l'estrazione di 100 campioni 1000 volte e conta per quante volte gli intervalli di confidenza generati contengono il valore ω_0 per il livello di confidenza del 95% e commenta i risultati ottenuti. Controlla le note della parte di Probabilità per sapere come calcolare $P(|Z| \le k)$ tenendo presente che la varianza σ^2 della distribuzione uniforme con supporto ω_0 è $\sigma^2 = \omega_0^2/12$ e che per aver un livello di confidenza del 95% devi porre k = 1.96.