SEARCH IN A

CONSTRAINT SATISFACTION PROBLEMS (CGP)

guien a configuration valid configuration solve a set of constraints Constraint Satisfaction Problems (CSPs)

_				
light No	Destination	Time	Gate	Remarks
CTIES .	Berlin	7:50	A-H	SHOW STREET,
F3.474	London	7.50	A-12	Seni making
A372	Ports	7.55	0-10	Borrling
Y6554	New York	9:00	C-33	Batrong
23160	Son Francisco	1:00	F-15	Biddelling
A8903	Monchester	8:05	8-12	Gate inunge open
APIG	Los Angeles	0.10	0.02	Check-in open
F3(37)	Hong Kong	810	F-10	Check in open
W4066	Bercelang	R15	F-12	Check in at kiosk
17221	Copenhagen	9:20	0.02	Check-in at kipsk

Basic CSP Formulation

- Variables
 - A Finite Set of Variables V_1, V_2, ..., V_n
- Domains
 - Each Variable has a Domain D_1, D_2,, D_n from which it can take a value.
 - The Domains may be discrete or continuous domains
- Satisfaction Constraints
 - A Finite Set of Satisfaction Constraints, C_1, C_2, ...C_m
 - Constraints may be unary, binary or be among many variables of the domain
 - All Constraints have a Yes / No Answer for Satisfaction given values of variables
- Optimization Criteria (Optional)
 - A Set of Optimization Functions O_1, O_2,O_p
 - These Optimization Functions are typically max or min type
- Solution
 - To Find a Consistent Assignment of Domain Values to each Variable so that All Constraints are Satisfied and the Optimization Criteria (if any) are met.

Formulating CSPs

- **VARIABLES DOMAINS** SATISFACTION **CONSTRAINTS**
 - OPTIMIZATION CRITERIA
 - SOLUTION

B, O, M, E, Y, I, L, R

Variables

Domain: 20,1,2,3,4,5,6, 7,8,9} Constraints: - Uniqueness Multiplication operator

You is a variable

1): a, b, A

constraints

MAP COLOURING

min no of abouts

Formulating CSPs: Crossword

Word List:

astar, happy, hello, hoses, live, load, loom, peal, peel, save, talk, ant, oak, old

- 1. VARIABLES
- 2 DOMAINS
- 3. SATISFACTION CONSTRAINTS
- 4. OPTIMIZATION CRITERIA
- 5. SOLUTION

Formulating CSPs: Flight Gate Scheduling

Flight	Dep Time	G Start	G End
F1	7:00 -	6:15	7:15
F2	8:30 _T	7:45	8:45
F3	7:45	7:00	8:00
F4	9:45	9:00	10:00
F5	10:00	9:15	10:15
F6	9:00	8:15	9:15
Floialte	11:00	10:15	11:15
49mins		T	Ţ

Formulating CSPs: Knapsack

- 1. VARIABLES
- 2. DOMAINS
- 3. SATISFACTION CONSTRAINTS
- 4. OPTIMIZATION CRITERIA
- 5. SOLUTION

$$\sum_{i=1}^{n} (s_i, w_i) \leq C W$$

$$\max \left(\sum_{i=1}^{n} s_i, v_i \right)$$

Formulating CSPs: Time Table

- 2. DOMAINS
 - 3. SATISFACTION CONSTRAINTS
- 4. OPTIMIZATION CRITERIA
- 5. SOLUTION

Exercise: Time-Tabling in the era of online classes

3 lectures/week

1-2

CSP Solution Overview

- CSP Graph Creation
 - Create a Node for Every Variable. All possible Domain Values are initially Assigned to the Variable
 - Draw edges between Nodes if there is a Binary Constraint. Otherwise Draw a <u>hyper-edge</u> between nodes with constraints involving more than two variables.
- Constraint Propagation:
 - Reduce the Valid Domains of Each Variable by Applying Node Consistency, Arc / Edge Consistency, K-Consistency, till no further reduction is possible. If a solution is found or the problem found to have no consistent solution, then terminate
- Search for Solution:
 - Apply Search Algorithms to Find Solutions
 - There are interesting properties of CSP graphs which lead of efficient algorithms in some cases: Trees, Perfect Graphs, Interval Graphs, etc
 - Issues for Search: <u>Backtracking Scheme</u>, <u>Ordering</u> of Children, <u>Forward Checking</u> (Look-Ahead) using Dynamic Constraint Propagation
 - Solving by <u>Converting to Satisfiability (SAT)</u> problems

CSP Graph for Crossword

Word List:

astar, happy, hello, hoses, live, load, loom, peal, peel, save, talk, ant, oak, old

CSP Graph for Airline Gate Scheduling

Flight No	Dep Time	G Start	G End
F1 ,	7:00	6:15	7:15
F2	8:30	7:45	8:45
F3	7:45	7:00	8:00
F4	9:45	9:00	10:00
F5	10:00	9:15	10:15
F6	9:00	8:15	9:15
F7	11:00	10:15	11:15

CSP Graph for Airline Gate Scheduling

Flight No	Dep Time	G Start	G End
F1	7:00	6:15	7:15
F2	8:30	7:45	8:45
F3	7:45	7:00	8:00
F4	9:45	9:00	10:00
F5	10:00	9:15	10:15
F6	9:00	8:15	9:15
F7	11:00	10:15	11:15
	51	0 77	

runi mize Dem: 7

Constraint Propagation Steps

Constraints

- Unary Constraints or Node Constraints
- Binary Constraints or Edges between CSP Nodes
- Higher order or Hyper-Edges between CSP Nodes

Node Consistency ✓

- For every Variable V_i, remove all elements of D_i that do not satisfy the Unary Constraints for the Variable
- First Step is to reduce the domains using Node Consistency

Arc Consistency X Edge Consultury

- For every element x_ij of D_i, for every edge from V_i to V_j, remove x_ij if it has no consistent value(s) in other domains satisfying the Constraints
- Continue to iterate using Arc Consistency till no further reduction happens.

K-Consistency or Path Consistency

 For every element y_ij of D_i, choose a Path of length L with L variables, use a consistency checking method similar to above to reduce domains if possible **CSP Graph for Crossword**

Word List:

astar, happy, hello, hoses, live, load, loom, peal, peel, save, talk, ant, oak, old

Applying Node Consistency:

D1 = {astar, happy, hello, hoses}

D2 = {live, load, loom, peal, peel, save, talk}

 $D3 = \{ant, oak, old\}$

D4 = {live, load, loom, peal, peel, save, talk}

NOW APPLY ARC CONSISTENCY

Applying Arc Consistency

D1 = {astar, happy, hello, hoses}

D2 = {live, load, loom, peal, peel, save, talk}

 $D3 = \{ant, oak, old\}$

D4 = {live, load, loom, peal, peel, save, talk}

Arc Consistency Algorithm AC-3

```
AC-3(csp) // inputs - CSP with variables, domains, constraints
                                                                   Q= 3 all edges &
    queue ← local variable initialized to all arcs in csp
     while queue is not empty do
        (X_i, X_i) \leftarrow \text{pop(queue)} \lor
        if Revise(csp, X_i, X_i) then \angle
          if size of D_i = 0 then return false
6.
           for each X_k in X_i.neighbors-\{X_i\} do
             add (X_k, X_i) to queue
8.
     return true
Revise(csp, X_i, X_i)
    revised \leftarrow false
     for each x in Di do
3.
        if no value y in D_i allows (x, y) to satisfy constraint between X_i and X_i then
           delete x from Di
4.
          revised ← true
     return revised
                                                               Time complexity: O(n<sup>2</sup>d<sup>3</sup>)
```

Consistency for Airline Gate Scheduling

Flight No	Dep Time	G Start	G End
F1	7:00	6:15	7:15
F2	8:30	7:45	8:45
F3	7:45	7:00	8:00
F4	9:45	9:00	10:00
F5	10:00	9:15	10:15
F6	9:00	8:15	9:15
F7	11:00	10:15	11:15

Backtracking Algorithm for CSP

CSP-BACKTRACKING({})

CSP-BACKTRACKING(a)

- If a is complete then return a
- X ← select unassigned variable
- D ← select an ordering for the domain of X
- For each value v in D do
 - If v is consistent with a then
 - Add (X= v) to a
 - result ← CSP-BACKTRACKING(a)
 - If result ≠ failure then return result
- Return failure

Backtracking for Airline Gate Scheduling

Flight No	Dep Time	G Start	G End
F1	7:00	6:15	7:15
F2	8:30	7:45	8:45
F3	7:45	7:00	8:00
F4	9:45	9:00	10:00
F5	10:00	9:15	10:15
F6	9:00	8:15	9:15
F7	11:00	10:15	11:15

Strategies for CSP Search Algorithms

- Initial Constraint Propagation
- Backtracking Search
 - Variable Ordering
 - · Most Constrained Variable / Minimum Remaining Values
 - Most Constraining Variable
 - Value Ordering
 - Least Constraining Value leaving maximum flexibility
 - Dynamic Constraint Propagation Through Forward Checking
 - Preventing useless Search ahead
- SAT Formulations and Solvers
- Optimization
 - Branch-and-Bound
 - SMT Solvers, Constraint Programming
- Learning, Memoizing, etc
- CSP Problems are NP-Hard in General

Forward Checking: 3 Colouring Problem

Forward checking propagates information from assigned to unassigned variables

- Why did we not detect this?
- Forward checking detects some inconsistencies, not all
- Constraint propagation: reason from constraint to constraint

Special Cases

For PERFECT GRAPHS, CHORDAL GRAPHS, <u>INTERVAL GRAPHS</u>, the Graph Colouring Problem can be solved in Polynomial Time

9/11/2020 22

Solving CSP using SAT / SMT Solvers

- Boolean Satisfiability (SAT) is a CSP
- CSPs can be modelled as SAT problems
 - Try: Map Colour, Gate Scheduling, n-Queens
 - Home Exercise: Write a Generic Scheme to Convert and CSP Problem to a SAT Problem
- SAT has very efficient solvers
 - MiniSAT, CHAFF, GRASP, etc
- For Optimization cases, we can formulate them as
 - Satisfiability Modulo Theories (SMT) with arithmetic and first order logic —
 - 0/1 or Integer Linear Programming (ILP) $\stackrel{\checkmark}{\vee}$
 - Constraint Programming Problems
 - SWIT Solvers: Z3, Yices, Barcelogic, \(\)
 MathSAT, OpenSWIT, etc

Thank you