# REAL LIFE APPLICATION OF TRANSPORTATION PROBLEM IN MALAYSIAN PETROCHEMICAL COMPANY

Karsh R Shah

NMIMS ANIL SURENDRA MODI COLLEGE OF COMMERCE

COURSE: BBA

**MENTOR NAME:** 

VEERENDRA ANCHAN

#### INTRODUCTION

The Petrochemical Industry is one of the leading industries in Malaysia. From being an importer of petrochemicals, Malaysia today is an exporter of major petrochemical products. A wide range of petrochemicals such as olefins, polyofins aromatics, ethylene oxides, poly vinyl chloride are produced in these industries. The Malaysian Petrochemical Company 'Petronas' was established in 1974 and is wholly owned by the Government of Malaysia, the corporation is vested with the entire oil and gas resources in Malaysia and is entrusted with the responsibility of developing and adding value to these resources. Fortune ranks Petronas as the 158th largest company in the world in 2019.

In 2006, Economic times published an article stating that Mitco Labuan the trading arm of the \$44.3 billion Malaysian Petrochemical giant Petronas was setting up a wholly owned subsidiary to engage in trading and related in the country.

The trading company 'Mitco Labuan', wholly owned subsidiary of the Malaysian Petrochemical Company is involved in buying and selling poly vinyl chloride polymer. The polymer is produced by four petrochemical plants in Malaysia and is exported to four destinations namely China, the Middle East, Europe and South East Asia.

#### APPLICATION OF TRANSPORTATION PROBLEM

The production capacity of each polymer producing Petrochemical Plant are

| Polymer producing   | Production Capacity        |
|---------------------|----------------------------|
| Petrochemical Plant | (thousands tons per annum) |
| P1                  | 110                        |
| P2                  | 75                         |
| P3                  | 95                         |
| P4                  | 125                        |

The demand of the customers is

| Destination      | Shipment Quantity          |
|------------------|----------------------------|
|                  | (thousands tons per annum) |
| China (D1)       | 200                        |
| Middle East (D2) | 90                         |

| South East Asia (D3) | 40 |
|----------------------|----|
| Europe (D4)          | 45 |

Each Plant has a fixed capacity per annum that shall be distributed to the customers. Similarly, each destination has a fixed demand per annum that must be fulfilled from the various plants.

The Shipping costs from the polymer producing petrochemical plants to the various destinations are

Unit Cost of Shipping (RM '000) (RM = Malaysian Ringgit)

| Plant | China | Middle East | South East | Europe |
|-------|-------|-------------|------------|--------|
|       |       |             | Asia       |        |
| P1    | 200   | 300         | 100        | 600    |
| P2    | 400   | 350         | 150        | 650    |
| P3    | 300   | 250         | 150        | 600    |
| P4    | 500   | 400         | 200        | 700    |

The unit cost of shipping varies as a result of differences in among others distance and also currencies exchange rates. Hence, allocating the production capacities to the various demand destinations in the optimal way to minimize total cost of shipping is crucial for the trading company.

#### Mathematical and spreadsheet formulation

The formulation of the transportation problem for this case study is aimed at determining the optimum allocation of production capacity to each demand destinations to minimize the cost of shipping. There are four polymer producing plants and four demand destination under consideration.

| Units Costs | D1  | D2  | D3  | D4  | Production |
|-------------|-----|-----|-----|-----|------------|
|             |     |     |     |     | Capacity   |
| P1          | 200 | 300 | 100 | 600 | 110        |
| P2          | 400 | 350 | 150 | 650 | 75         |
| P3          | 300 | 250 | 150 | 600 | 95         |
| P4          | 500 | 400 | 200 | 700 | 125        |
| Demand      | 200 | 90  | 40  | 45  |            |

(Unit Cost RM '000) (Demand and Production Capacity '000)

The demand is not equal to the production capacity therefore the solution is not balanced. To balance the solution, we assume a dummy column D5 with a demand of 30. Now Demand = Production Capacity thus the solution is balanced.

| Unit   | D1  | D2  | D3  | D4  | D5 | Production       |
|--------|-----|-----|-----|-----|----|------------------|
| Costs  |     |     |     |     |    | Capacity         |
| P1     | 200 | 300 | 100 | 600 | 0  | 110              |
| P2     | 400 | 350 | 150 | 650 | 0  | 75               |
| P3     | 300 | 250 | 150 | 600 | 0  | 95               |
| P4     | 500 | 400 | 200 | 700 | 0  | 125              |
| Demand | 200 | 90  | 40  | 45  | 30 | <mark>405</mark> |

(Unit Cost RM '000) (Demand and Production Capacity '000)

|        |                    | Des               | tinatio           | ns   |                   |                  |     |     |     |     |     |     |
|--------|--------------------|-------------------|-------------------|------|-------------------|------------------|-----|-----|-----|-----|-----|-----|
| Unit   | D1                 | D2                | D3                | D4   | D5                | Production       | T1  | T2  | T3  | T4  | T5  | T6  |
| Cost   |                    |                   |                   |      |                   | Capacity         |     |     |     |     |     |     |
| P1     | 200                | 300               | 100               | 600  | 0                 | 110              | 100 | 100 | 100 | -   | -   | -   |
|        | <mark>(110)</mark> |                   |                   |      |                   |                  |     |     |     |     |     |     |
| P2     | 400                | 350               | 150               | 650  | 0                 | 75               | 150 | 200 | 50  | 50  | 250 | 250 |
|        | <b>(35)</b>        |                   | <mark>(40)</mark> |      |                   |                  |     |     |     |     |     |     |
| P3     | 300                | 250               | 150               | 600  | 0                 | 95               | 150 | 100 | 50  | 50  | 300 | -   |
|        | <mark>(5)</mark>   | <mark>(90)</mark> |                   |      |                   |                  |     |     |     |     |     |     |
| P4     | 500                | 400               | 200               | 700  | 0                 | 125              | 200 | 200 | 100 | 100 | 200 | 200 |
|        | <b>(50)</b>        |                   |                   | (45) | <mark>(30)</mark> |                  |     |     |     |     |     |     |
| Demand | 200                | 90                | 40                | 45   | 30                | <mark>405</mark> |     |     |     |     |     |     |
|        |                    |                   |                   |      |                   |                  |     |     |     |     |     |     |
| T1     | 100                | 50                | 50                | 0    | 0                 |                  |     |     |     |     |     |     |
| T2     | 100                | 50                | 50                | 0    | -                 |                  |     |     |     |     |     |     |
| Т3     | 100                | 50                | -                 | 0    | -                 |                  |     |     |     |     |     |     |
| T4     | 100                | 100               | -                 | 50   | 1                 |                  |     |     |     |     |     |     |
| T5     | 100                | -                 | -                 | 50   | \ -               |                  |     |     |     |     |     |     |
| T6     | 100                | -                 | -                 | 50   | -                 |                  |     |     |     |     |     |     |

Using Vogel's Approximation Method (VAM)

(Unit Cost RM '000) (Demand and Production Capacity '000) (T is used to indicate penalties as P is used to indicate Petrochemical plants)

Rim Condition: m+n-1 = number of allocations

 $m+n-1 \longrightarrow 4+5-1 = 8$ ; number of allocations = 8

Therefore, the solution is non degenerate.

## **Using Modified Distribution Method (MODI)**

For Optimality, MODI – we'll find ui and vj.

|           |                      | De                    |                        |                       |       |                  |     |
|-----------|----------------------|-----------------------|------------------------|-----------------------|-------|------------------|-----|
| Unit Cost | D1                   | D2                    | D3                     | D4                    | D5    | Production       | ui  |
|           |                      |                       |                        |                       |       | Capacity         |     |
| P1        | 200(110)             | 300                   | 100                    | 600                   | 0     | 110              | 0   |
| P2        | 400(35)              | 350                   | -150 <mark>(40)</mark> | 650                   | 0     | 75               | 200 |
|           |                      |                       |                        |                       |       |                  |     |
| P3        | 300 <mark>(5)</mark> | 250 <mark>(90)</mark> | 150                    | 600                   | 0     | 95               | 100 |
| P4        | 500(50) -            | 400                   | -200                   | 700 <mark>(45)</mark> | 0(30) | 125              | 300 |
|           |                      |                       |                        |                       |       |                  |     |
| Demand    | 200                  | 90                    | 40                     | 45                    | 30    | <mark>405</mark> |     |
|           |                      |                       |                        |                       |       |                  |     |
| vj        | 200                  | 150                   | -50                    | 400                   | -300  |                  | -   |

(Unit Cost RM '000) (Demand and Production Capacity '000)

For occupied cells  $\Longrightarrow$  Cij = ui + vj

For unoccupied cells  $\Longrightarrow \triangle ij = Cij - (ui + vj)$ 

$$P1D2 = 150$$
  $P2D2 = 0$   $P3D3 = 100$   $P4D2 = -50$ 

$$P1D4 = 200$$
  $P2D5 = 100$   $P3D5 = 200$ 

P1D5 = 300

Since  $\triangle$  ij<=0, the solution is not optimum as P4D2 and P4D3 are -50.

# After looping P4D3

| Cell | Old Value       | New Value |
|------|-----------------|-----------|
| P4D3 | 0 +             | 40        |
| P2D3 | <del>40 -</del> | 0         |
| P2D1 | 35 +            | 75        |
| P4D1 | 50 -            | 10        |

New table:

|           |                        | De                                 |         |         |       |                  |     |
|-----------|------------------------|------------------------------------|---------|---------|-------|------------------|-----|
| Unit Cost | D1                     | D2                                 | D3      | D4      | D5    | Production       | ui  |
|           |                        |                                    |         | //      |       | Capacity         |     |
| P1        | 200(110)               | 300                                | 100     | 600     | 0     | 110              | 0   |
| P2        | 400(75)                | 350                                | 150     | 650     | 0     | 75               | 200 |
|           |                        |                                    |         |         |       |                  |     |
| P3        | 300 <mark>(5)</mark> — | <sub>7</sub> 250 <mark>(90)</mark> | 150     | 600     | 0     | 95               | 100 |
| P4        | 500(10)                | 400                                | 200(40) | 700(45) | 0(30) | 125              | 300 |
| \         |                        |                                    |         | 511     |       |                  |     |
| Demand    | 200                    | 90                                 | 40      | 45      | 30    | <mark>405</mark> |     |
|           |                        |                                    |         |         |       |                  |     |
| vi        | 200                    | 150                                | -100    | 400     | -300  |                  | -   |

(Unit Cost RM '000) (Demand and Production Capacity '000)

For occupied cells  $\Longrightarrow$  Cij = ui + vj

For unoccupied cells  $\Longrightarrow \triangle ij = Cij - (ui + vj)$ 

$$P1D2 = 150$$
  $P2D2 = 0$   $P3D3 = 150$   $P4D2 = -50$ 

$$P1D3 = 200$$
  $P2D3 = 50$   $P3D4 = 100$ 

$$P1D4 = 200$$
  $P2D4 = 50$   $P3D5 = 200$ 

$$P1D5 = 300 \quad P2D5 = 100$$

Since  $\triangle$  ij<=0, the solution is not optimum as P4D2 is -50.

## After looping P4D2

| Cell | Old Value         | New Value |
|------|-------------------|-----------|
| P4D2 | 0 +               | 10        |
| P2D3 | <mark>10 -</mark> | 0         |
| P2D1 | 5 +               | 15        |
| P4D1 | 90 -              | 80        |

New table:

|           |                       | De                                |         |                 |       |                        |     |
|-----------|-----------------------|-----------------------------------|---------|-----------------|-------|------------------------|-----|
| Unit Cost | D1                    | D2                                | D3      | D4              | D5    | Production<br>Capacity | ui  |
| P1        | 200(110)              | 300                               | 100     | 600             | 0     | 110                    | 0   |
| P2        | 400 <mark>(75)</mark> | 350                               | 150     | <del>65</del> 0 | 0     | 75                     | 200 |
| P3        | 300(15)               | <del>2</del> 50 <mark>(80)</mark> | 150     | 600             | 0     | 95                     | 100 |
| P4        | 500                   | 400(10)                           | 200(40) | 700(45)         | 0(30) | 125                    | 250 |
| Demand    | 200                   | 90                                | 40      | 45              | 30    | <mark>405</mark>       |     |
| vj        | 200                   | 150                               | -50     | 450             | -250  |                        |     |

(Unit Cost RM '000) (Demand and Production Capacity '000)

For occupied cells  $\Longrightarrow$  Cij = ui + vj

For unoccupied cells  $\longrightarrow \Delta ij = Cij - (ui + vj)$ 

$$P1D2 = 150$$
  $P2D2 = 0$   $P3D3 = 100$   $P4D1 = 50$ 

$$P1D3 = 150$$
  $P2D3 = 0$   $P3D4 = 50$ 

$$P1D4 = 150$$
  $P2D4 = 0$   $P3D5 = 150$ 

$$P1D5 = 250 \quad P2D5 = 50$$

Since  $\triangle$  ij>=0, the solution is optimum.

Therefore, the Optimum transportation cost (Unit Cost RM '000) (Demand and Production Capacity '000) =

$$200*110 + 400*75 + 300*15 + 250*80 + 400*10 + 200*40 + 700*45 + 0*30 = 120000$$

Therefore, the minimum transportation cost is 120000\*1000\*1000=RM 120000 million.

The solution isn't unique as P2D2, P2D3, P2D4 = 0. Thus, Alternate optimum soln. exists.

## **Alternate Optimum Solution:**

After looping P2D4

| Cell | Old Value         | New Value |
|------|-------------------|-----------|
| P2D4 | 0 +               | 45        |
| P4D4 | <mark>45 -</mark> | 0         |
| P4D2 | 10 +              | 55        |
| P3D2 | 80 -              | 35        |
| P3D1 | 15 +              | 60        |
| P2D1 | 75 -              | 30        |

New Table:

|           | Destinations                     |                       |         |                       |       |                  |     |
|-----------|----------------------------------|-----------------------|---------|-----------------------|-------|------------------|-----|
| Unit Cost | D1                               | D2                    | D3      | D4                    | D5    | Production       | ui  |
|           |                                  |                       |         |                       |       | Capacity         |     |
| P1        | 200(110)                         | 300                   | 100     | 600                   | 0     | 110              | 0   |
| P2        | 400 <mark>(3<del>0)</del></mark> | <del>- 350</del>      | 150     | 650 <mark>(45)</mark> | 0     | 75               | 200 |
|           |                                  | 1                     |         |                       |       |                  |     |
| P3        | 300 <mark>(60)</mark>            | 250 <mark>(35)</mark> | 150     | 600                   | 0     | 95               | 100 |
| P4        | 500                              | 400(55)               | 200(40) | <b>7</b> 00           | 0(30) | 125              | 250 |
|           |                                  |                       |         |                       |       |                  |     |
| Demand    | 200                              | 90                    | 40      | 45                    | 30    | <mark>405</mark> |     |
|           |                                  |                       |         |                       |       |                  |     |
| vj        | 200                              | 150                   | -50     | 450                   | -250  |                  | •   |

(Unit Cost RM '000) (Demand and Production Capacity '000)

For occupied cells  $\Longrightarrow$  Cij = ui + vj

For unoccupied cells  $\Longrightarrow \Delta ij = Cij - (ui + vj)$ 

$$P1D2 = 150$$
  $P1D5 = 250$   $P2D5 = 50$   $P3D5 = 150$ 

$$P1D3 = 150$$
  $P2D2 = 0$   $P3D3 = 100$   $P4D1 = 50$ 

$$P1D4 = 150$$
  $P2D2 = 0$   $P3D4 = 50$   $P4\cancel{D}4 = 0$   $ij>=0$ , the solution is optimum.

Therefore, Optimum Transportation Cost (Unit Cost RM '000) (Demand and Production Capacity '000) = RM 120000 million (200\*110 + 400\*30 + 300\*60 + 250\*35 + 400\*55 + 200\*40 + 650\*45 + 0\*30 = 120000\* 1000 \*1000)

Another Alternate optimum soln. exists as P2D2, P2D3, P4D4 = 0 (Another Alternate solution to be found to match the optimum solution provided in the research paper so one more looping is to be done from P2D2.)

## After looping P2D2

| Cell | Old Value         | New Value |  |  |
|------|-------------------|-----------|--|--|
| P2D2 | 0 +               | 30        |  |  |
| P2D1 | <mark>30 -</mark> | 0         |  |  |
| P3D1 | 60 +              | 90        |  |  |
| P3D2 | 35 -              | 5         |  |  |

New table:

|           | Destinations          |                      |         |                       |       |                  |     |
|-----------|-----------------------|----------------------|---------|-----------------------|-------|------------------|-----|
| Unit Cost | D1                    | D2                   | D3      | D4                    | D5    | Production       | ui  |
|           |                       |                      |         |                       |       | Capacity         |     |
| P1        | 200(110)              | 300                  | 100     | 600                   | 0     | 110              | 0   |
| P2        | 400                   | 350(30)              | 150     | 650 <mark>(45)</mark> | 0     | 75               | 200 |
|           |                       |                      |         |                       |       |                  |     |
| P3        | 300 <mark>(90)</mark> | 250 <mark>(5)</mark> | 150     | 600                   | 0     | 95               | 100 |
| P4        | 500                   | 400(55)              | 200(40) | 700                   | 0(30) | 125              | 250 |
|           |                       |                      |         |                       |       |                  |     |
| Demand    | 200                   | 90                   | 40      | 45                    | 30    | <mark>405</mark> |     |
|           |                       |                      |         |                       |       |                  |     |
| vj        | 200                   | 150                  | -50     | <b>4</b> 50           | -250  |                  |     |

(Unit Cost RM '000) (Demand and Production Capacity '000)

For occupied cells  $\Longrightarrow$  Cij = ui + vj

For unoccupied cells  $\Longrightarrow \triangle ij = Cij - (ui + vj)$ 

$$P1D2 = 150$$
  $P2D1 = 0$   $P3D3 = 100$   $P4D1 = 50$ 

$$P1D3 = 150$$
  $P2D3 = 0$   $P3D4 = 50$   $P4D4 = 0$ 

$$P1D4 = 150$$
  $P2D5 = 50$   $P3D5 = 150$ 

$$P1D5 = 250$$

Since  $\triangle$  ij>=0, the solution is optimum.

Therefore, the Optimal transportation cost (Unit Cost RM '000) (Demand and Production Capacity '000) =

$$200*110 + 300*90 + 350*30 + 250*5 + 400*55 + 200*40 + 650*45 + 0*30 = 120000$$

Therefore, the minimum transportation cost is 120000\*1000\*1000=RM 120000 million.

| Cell | Cost (RM'000) | Allocation ('000) | Total Cost ('000) |
|------|---------------|-------------------|-------------------|
| P1D1 | 200           | 110               | 22000             |
| P3D1 | 300           | 90                | 27000             |
| P2D2 | 350           | 30                | 10500             |
| P3D2 | 250           | 5                 | 1250              |
| P4D2 | 400           | 55                | 22000             |
| P4D3 | 200           | 40                | 8000              |
| P2D4 | 650           | 45                | 29250             |
| P4D5 | 0             | 30                | 0                 |
|      |               | OPTIMUM COST      | RM 120000 million |

#### **CONCLUSION**

Effective and efficient movement of products or services from point of supply to points of demand is crucial for any business. Transporting finished products to the market at the lowest possible costs leads to huge potential of cost savings and consequently maximize company's profits. As such, the Company seeks to optimize their distribution plan for their products in relation to the cost of transportation with the help of a trading company.

The study highlighted the applications of VAM and MODI in form of linear programming and spreadsheet in a case study of a transportation problem of a Malaysian Petrochemical Company.

Optimum plan and solution to minimize the total cost of transportation were formulated and analysed.

After VAM, MODI was used to check the optimality of the allocations. But on examining it was inferred that  $\triangle$ wo vales of ij were negative. So looping was performed not once but twice to remo\( \Delta\) the negativity of ij.

Since all the  $\triangle$  ij values were non negative, the solution was optimal. Although there were multiple values of  $\triangle$  ij to be zero therefore the solution wasn't unique and hence alternate solutions were possible. Consequently, the alternate solutions resulted in identical output as in the research paper

The optimal transportation cost is RM 120000 million.

Therefore, we can conclude that linear programming is an alternative decision tool available to engineers and managers alike in ensuring their operations are conducted effectively and efficiently at the lowest cost possible and consequently helps company maximize its profits.

## **REFERENCES**

 $\underline{http://docsdrive.com/pdfs/ansinet/jas/2012/2430-2435.pdf}$ 

 $\underline{https://economictimes.indiatimes.com/industry/indl-goods/svs/petrochem/petronas-trading-arm-lands-in-india/articleshow/401921.cms?from=mdr$ 

