

MAXIMEBCH - DATA ANALYST

- Notre banque est présente dans de nombreux pays et doit continuer d'acquérir de nouveaux clients
- **Cible**: les jeunes en âge d'ouvrir leur premier compte bancaire et les plus susceptibles d'avoir de hauts revenus dans le futur
- Méthode: Création d'un modèle de prédiction basé sur plusieurs variables (revenu des parents, revenu moyen du pays, et indice de Gini)

- 1 DESCRIPTION DES DONNÉES
- 2 ANALYSE DES DONNÉES
- 3 MODÈLE DE PRÉDICTION

- 1) Distribution des revenus dans le monde (World Income Distribution):
- country : le pays (uniquement le code ISO3)
- year_survey : années des données
- quantile : la population est divisée en 100 parties égales, des centiles (ici des classes de revenus)
- income : revenu du quantile de population
- gdpppp: PIB en parité de pouvoir d'achat de la population totale calculé par la Banque Mondiale, permet de comparer en mettant les différents devises au même niveau avec un panier d'achat

	country	year_survey	quantile	nb_quantiles	income	gdpppp
0	ALB	2008	1	100	728.89795	7297.00000
1	ALB	2008	2	100	916.66235	7297.00000
2	ALB	2008	3	100	1010.91600	7297.00000
3	ALB	2008	4	100	1086.90780	7297.00000
4	ALB	2008	5	100	1132.69970	7297.00000
•••	•••	***	•••	•••	•••	***

- 2) Liste des codes ISO3 (ISO 3166-1) des pays :
- Table associant les noms des pays avec leur code ISO3
- Jointure avec le fichier World Income Distribution sur le code ISO3

5	4	3	2	1	0	
Afghanistan	Afghanistan	AFG	AF	4	1	0
Albania	Albanie	ALB	AL	8	2	1
Antarctica	Antarctique	ATA	AQ	10	3	2
Algeria	Algérie	DZA	DZ	12	4	3
American Samoa	Samoa Américaines	ASM	AS	16	5	4

- 3) Données de population des pays (source : FAO) :
- Contient la population totale des pays
- Jointure avec le dataframe principal

	Country	Année	population 100%
1	Afghanistan	2018	37171921.0
3	Afrique du Sud	2018	57792518.0
5	Albanie	2018	2882740.0
7	Algérie	2018	42228408.0
9	Allemagne	2018	83124418.0

- 4) Indice de Gini des pays (source : Banque mondiale) :
- Indicateur rendant compte du niveau d'inégalité pour une variable (ici le revenu)
- 0 = égalité parfaite
- 1 (ou 100%) = inégalité totale

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	1964	1965	
0	Aruba	ABW	Gini index (World Bank estimate)	SI.POV.GINI	NaN	NaN	NaN	NaN	NaN	NaN	
1	Africa Eastern and Southern	AFE	Gini index (World Bank estimate)	SI.POV.GINI	NaN	NaN	NaN	NaN	NaN	NaN	•••
2	Afghanistan	AFG	Gini index (World Bank estimate)	SI.POV.GINI	NaN	NaN	NaN	NaN	NaN	NaN	

1er dataframe, créé à partir des fichiers sources :

- 98 pays
- 70% de la population mondiale couverte
- population_quantile : population totale divisée par 100

 iso	_code	Country	year_survey	quantile	nb_quantiles	income	gdpppp	Année	population_quantile
0	ALB	Albanie	2008	1	100	728.89795	7297.0	2018	28827.40
1	ALB	Albanie	2008	2	100	916.66235	7297.0	2018	28827.40
2	ALB	Albanie	2008	3	100	1010.91600	7297.0	2018	28827.40
3	ALB	Albanie	2008	4	100	1086.90780	7297.0	2018	28827.40
4	ALB	Albanie	2008	5	100	1132.69970	7297.0	2018	28827.40

DATAFRAME POUR ANALYSE

2ème dataframe, créé à partir du 1er et contenant uniquement :

• 5 pays (+ France): Argentine, Equateur, Estonie, Islande, Russie

	iso_code	Country	year_survey	quantile	nb_quantiles	income	gdpppp	Année	population_quantile
349	ARG	Argentine	2008	50	100	4132.6655	13220.0	2018	443611.50
326	ARG	Argentine	2008	27	100	2429.5596	13220.0	2018	443611.50
327	ARG	Argentine	2008	28	100	2497.3577	13220.0	2018	443611.50
328	ARG	Argentine	2008	29	100	2566.5305	13220.0	2018	443611.50
329	ARG	Argentine	2008	30	100	2637.7153	13220.0	2018	443611.50

2 - ANALYSE DES DONNÉES

2 - ANALYSE DES DONNÉES

DISTRIBUTION DES RICHESSES

Transposition du revenu moyen des quantiles sur une échelle logarithmique :

- Application de math.log10()
 (logarithme décimal / de base 10) sur les revenus pour créer des classes
- Permet de représenter une large gamme de valeurs sur un petit espace

2 - ANALYSE DES DONNÉES

DISTRIBUTION DES RICHESSES

La courbe de Lorenz:

- Créée pour représenter les inégalités de revenus (mais transposable à d'autres variables)
- Elle permet de calculer le coefficient de Gini

2 - ANALYSE DES DONNÉES

DISTRIBUTION DES RICHESSES

Indice de Gini, en 2011, le classement du plus élevé au moins élevé était :

- Equateur
- Argentine
- Russie
- France
- Estonie
- Islande (après la crise de 2008 : a augmenté les salaires et les prestations sociales, a laissé les banques faire faillite, a donné le pouvoir au gouvernement d'intervenir sur les marchés financiers)

14

2 - ANALYSE DES DONNÉES SIMULATION DE LA CLASSE DE REVENU DES PARENTS

À partir du coefficient d'élasticité (source : Banque Mondiale), qui mesure la mobilité intergénérationnelle du revenu.

iso3	Country	quantile	nb_quantiles	income	gdpppp	gini	population_quantile	IGEincome
0 ECU	Équateur	1	100	99.078545	7560.0	49.8	170843.58	0.525991
1 ECU	Équateur	2	100	196.350430	7560.0	49.8	170843.58	0.525991
2 ECU	Équateur	3	100	269.607300	7560.0	49.8	170843.58	0.525991
3 ECU	Équateur	4	100	350.863100	7560.0	49.8	170843.58	0.525991
4 ECU	Équateur	5	100	415.143740	7560.0	49.8	170843.58	0.525991

2 - ANALYSE DES DONNÉES SIMULATION DE LA CLASSE DE REVENU DES PARENTS

Génération aléatoire de la **classe de revenu des parents** à partir du coefficient d'élasticité (*IGEincome*) et de la classe de revenu de l'enfant (probabilité conditionnelle) :

- Echantillon d'individu n supérieur à 1000 fois le nombre de quantile
- Calcul du revenu de l'enfant (y_child) à partir du revenu des parents (y_parents) pour un coeff. d'élasticité donné
- Calcul de la classe de revenu des enfants (c_i_child) et parents (c_i_parent)

	y_child	y_parents	c_i_child	c_i_parent
0	0.590742	2.896064	4	9
1	1.369858	0.706701	6	4
2	7.030097	1.372981	10	7
3	0.406454	0.088070	3	1
4	0.248834	0.627421	2	4

2 - ANALYSE DES DONNÉES GÉNÉRATION D'UN NOUVEL ÉCHANTILLON

Création d'un nouvel échantillon :

- En copiant 499 fois les individus du fichier World Income Distribution
- Attribution des classes parents aux 500 individus

	In_y_parent	residus	country	income_child	coeff_elasticite	c_i_parent	Gj	y_child	y_parents
0	-0.417670	0.261167	ECU	99.078545	0.525991	34	49.8	1.042348	0.658580
1	0.778975	-0.528784	ECU	196.350430	0.525991	79	49.8	0.887763	2.179238
2	0.030515	-0.336599	ECU	269.607300	0.525991	52	49.8	0.725751	1.030985
3	-0.891634	0.139961	ECU	350.863100	0.525991	19	49.8	0.719621	0.409985
4	-0.452565	-0.125926	ECU	415.143740	0.525991	33	49.8	0.694911	0.635995

ANOVA

Deux conditions à valider pour confirmer l'ANOVA :

- Normalité des résidus :
 - Droite de Henry (à droite) : ne semble pas normal
 - Test de Kolmogorov-Smirnov : de 5% donc ne suit pas une loi normale
- Egalité des variances :
 - Test de Breusch-Pagan : + de 5% donc les variances sont probablement hétérogènes

L'ANOVA n'ayant pas été validée, on réalise un test non-paramétrique :

 Test de Kruskal-Wallis : la p-value est inférieure à 5% et confirme les résultats de l'ANOVA, le pays d'origine influe sur le revenus

T \--'

On observe une corrélation négative entre l'indice de Gini et le revenu moyen de l'enfant : plus l'indice de Gini est bas, plus le revenu a tendance à être haut.

PASSAGE AU LOGARITHME

Passage à l'échelle logarithmique qui présente plusieurs intérêts :

- Normalise, lisse la distribution
- Représente des nombres aux ordres de grandeur différents sur un même graphique
- Données centrées et réduites
- Réduit les outliers (réduit la marginalité des quantiles)
- Réduit l'asymétrie positive

RÉGRESSIONS LINÉAIRES

Plusieurs régressions linéaires (RL) sont réalisées pour expliquer le revenu de l'enfant.

RL1 = Revenu moyen du pays + Indice de Gini

- Test de Kolmogorov-Smirnov (<0.05)
 : ne suit pas une loi normale
- Test de Breush-Pagan (p<0.05) : homogénéité des variables

Dep. \	/ariable:	ln_y_	child		R-squ	ared:		0.588
	Model:		OLS	Ad	j. R-squ	ared:		0.588
	Method:	Least Squ	Least Squares		F-statistic		c: 1.784e+0	
	Date:	Fri, 11 Feb	2022	Prob	(F-stat	istic):		0.00
	Time:	16:3	37:46	Log	g-Likeli	hood:	- 2.6	450e+05
No. Obser	vations:	25	0000			AIC:	5.	290e+05
Df Re	siduals:	24	9997			BIC:	5.	290e+05
D	f Model:		2					
Covarian	се Туре:	nonro	bust					
	CO	ef std err			Ds. I4I	ro (25	0.0751
	CO	ei sta err		t	P> t	[0.0	J Z 5	0.975]
Intercept	9.944	9 0.013	789	9.570	0.000	9.9	920	9.970
mj	6.421e-0	05 2.25e - 07	284	1.813	0.000	6.38e	-05	6.46e - 05
Gj	-4.822	0.028	-175	5.353	0.000	-4.8	377	- 4.769
Om	nibus: 1	0796.364	Durk	oin-Wa	ıtson:	0.	.381	
Prob(Omn	nibus):	0.000 J	larque	-Bera	(JB):	36524.	.433	
	Skew:	0.047		Prob	o(JB):	(0.00	
Kui	rtosis:	4.870		Con	d. No.	3.32e	+05	

RÉGRESSIONS LINÉAIRES

RL2 = Revenu moyen du pays (au logarithme) + Indice de Gini

- R²: renforcé par le passage au logarithme
- Test de Kolmogorov-Smirnov (<0.05)
 : ne suit probablement pas une loi normale, mais plus probable après le passage au logarithme
- Test de Breush-Pagan (<0) : homogénéité des variables

Dep. \	/ariable:	ln,	_y_child	F	R-square	d:	0.601
	Model:		OLS	Adj. F	R-square	d:	0.601
	Method:	Least	Squares	1	F-statist	ic: 1.	880e+05
	Date:	Fri, 11 F	eb 2022	Prob (F	-statisti	c):	0.00
	Time:	1	16:37:48	Log-L	ikelihoo	d: -2.6	061e+05
No. Obser	vations:		250000		Al	C: 5.	212e+05
Df Re	siduals:		249997		ВІ	C: 5.	213e+05
D	f Model:		2				
Covarian	ce Type:	no	onrobust				
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	0.3085	0.042	7.342	0.000	0.226	0.391	
ln_mj	1.0081	0.003	302.604	0.000	1.002	1.015	
Gj	-1.6778	0.034	-48.694	0.000	-1.745	-1.610	
Om	nibus: 1	0716.816	Durb	in-Wats	on:	0.393	
Prob(Omn	nibus):	0.000	Jarque	-Bera (J	B): 35	194.671	
	Skew:	0.081		Prob(J	B):	0.00	
Kui	rtosis:	4.831		Cond.	No.	360.	22

RÉGRESSIONS LINÉAIRES

RL3 = Revenu moyen du pays (au logarithme) + Indice de Gini + classe de revenu des parents (variable probablement pas significative)

- R²: renforcé par le passage au logarithme
- Test de Kolmogorov-Smirnov (p<0.05): ne suit probablement pas une loi normale, mais plus probable après le passage au logarithme
- Test de Breush-Pagan (p<0.05) : homogénéité des variables

Dep. Variabl	e:	ln_y_chi	ld	R-squa	red:	0.601
Mode	el:	OL	S Adj .	R-squa	red:	0.601
Metho	d: Le	ast Square	es	F-statis	stic:	1.254e+05
Dat	e: Fri,	11 Feb 202	2 Prob	(F-statis	tic):	0.00
Tim	e:	16:37:4	9 Log	-Likeliho	ood: -2	.6061e+05
No. Observation	s:	25000	00		AIC:	5.212e+05
Df Residual	s:	24999	06	ı	BIC:	5.213e+05
Df Mode	el:		3			
Covariance Typ	e:	nonrobu	st			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.3090	0.042	7.344	0.000	0.227	0.391
In_mj	1.0081	0.003	302.602	0.000	1.002	1.015
Gj -	1.6778	0.034	- 48.693	0.000	-1.745	-1.610
c_i_parent -1.1	44e-05	4.75e-05	-0.241	0.810	-0.000	8.18e-05
Omnibus:	10716	.681 D ı	urbin-Wat	son:	0.393	3
Prob(Omnibus):			ue-Bera	(JB): 3	5193.951	
Skew:	0	.081	Prob		0.00	
Kurtosis:	4	.831	Cond	. No.	2.28e+03	3

RÉGRESSIONS LINÉAIRES

RL4 = Revenu moyen du pays (au logarithme) + Indice de Gini + classe de revenu des parents + revenu des parents (au logarithme) + coefficient d'élasticité

- R²: Ce nouveau modèle explique environ 60,1% de la variance de la variable "In_y_child" (39% restants sont expliqués par d'autres facteurs comme les études, genre, chance, efforts...)
- Test de Kolmogorov-Smirnov (p<0.05) : ne suit probablement pas une loi normale
- Test de Breush-Pagan (p<0.05) : homogénéité des variables

			_				
Dep. Variabl	e:	ln_y_child	t	R-squa	red:	0.60)1
Mode	el:	OLS	Adj.	R-squa	red:	0.60)1
Metho	d: Leas	st Squares	3	F-statis	stic:	7.526e+0)4
Dat	e: Fri, 11	Feb 2022	2 Prob (F-statis	tic):	0.0	00
Tim	e:	16:37:5	l Log-	Likeliho	od: -2	2.6057e+0)5
No. Observation	s:	250000)		AIC:	5.211e+0)5
Df Residual	s:	249994	1	i	BIC:	5.212e+0)5
Df Mode	el:	Ę	5				
Covariance Typ	e:	nonrobus	t				
	coef	std err	t	D∿lfl	[0.025	0.9751	
Intercent		0.045	9.725	P> t	0.350	0.527	
Intercept	0.4383			0.000			
ln_mj	1.0054	0.003	300.839	0.000	0.999	1.012	
Gj	-1.4376	0.042	-34.119	0.000	-1.520	-1.355	
c_i_parent	-0.0002	0.000	-1.028	0.304	-0.001	0.000	
In_y_parent	0.0065	0.006	0.996	0.319	-0.006	0.019	
coeff_elasticite	-0.4370	0.044	- 9.894	0.000	- 0.524	-0.350	
Omnibus:	10639.8	01 D	rbin-Wats	noni	0.39	2	
Prob(Omnibus):	0.0		ue-Bera (,	4576.55		
Skew:	0.086		Prob(Prob(JB):		0.00	
Kurtosis:	4.8	14	Cond.	No.	2.39e+0	3	٦.