Департамент образования города Москвы

Государственное автономное образовательное учреждение высшего образования города Москва «Московский Городской Педагогический

Университет»

Институт цифрового образования

Департамент информатики, управления и технологий

ЛАБОРАТОРНАЯ РАБОТА №3.1 (Вар.9)

по дисциплине «Инструменты для хранения и обработки больших данных»

Тема: «Проектирование архитектуры хранилища больших данных» Направление подготовки 38.03.05 — «бизнес-информатика»

Выполнила:

Студентка группы АДЭУ-221

Муханова А. И.

Преподаватель:

Босенко Т. М.

к.т.н., доц. департамента

технологий

Москва

2025

1. Цель работы

Сценарий: образовательная онлайн-платформа, предназначенная для персонализации траекторий обучения, анализа успеваемости студентов, рекомендации курсов и проведения A/B-тестирования новых функций.

Источники данных: логи взаимодействия с платформой (clickstream), результаты тестов, видеолекции, метаданные курсов и профили пользователей.

Типы данных:

Структурированные — профили пользователей, результаты тестов, оценки, расписания.

Полуструктурированные — логи взаимодействия (JSON), события кликов, события воспроизведения видео.

Неструктурированные — видеолекции, текстовые отзывы, загруженные файлы.

Объёмы и скорость:

- до 1–3 ТБ данных в год,
- потоковая генерация событий: 1 000-5 000 сообщений/сек,

- пакетные загрузки: результаты тестов, выгрузки LMS.

Скорость поступления: смешанный режим — потоковые события (до нескольких тысяч событий в секунду) и пакетные загрузки (результаты тестов, дампы).

Бизнес-цели: персонализация обучения в near-real-time, мониторинг успеваемости, А/В-тестирование интерфейсов и рекомендаций, отчётность для преподавателей и администраторов.

Требования к задержке/доступности:

Персональные рекомендации: задержка < 2 секунд для интерактивных сценариев.

Отчёты и модельное обучение: пакетная обработка с периодичностью от часов до дней.

Требования к безопасности: VK Cloud IAM: разграничение ролей, шифрование данных в S3-хранилище.

2. Выбор компонентов архитектуры

Модель: Data Lakehouse — объединение гибкости Data Lake и управляемости DW.

Компоненты архитектуры:

Слой	Реализация
Источники	Веб и мобильное приложение, LMS, CDN, БД
Ingestion	Apache Kafka, Apache NiFi или Airbyte, Debezium (CDC)
Data Lake	VK Cloud Object Storage (S3), форматы Parquet/Delta Lake
DWH/Serving	ClickHouse (аналитика), PostgreSQL (OLTP)
Stream Processing	Apache Flink
Batch Processing	Apache Spark (на Kubernetes / VK Cloud)
Оркестрация	Apache Airflow
Метаданные & безопасность	OpenMetadata + Apache Ranger / VK Cloud IAM
ML	MLflow, JupyterHub, библиотека Feast

Визуализация	Apache Superset, Grafana
Мониторинг	Prometheus, Grafana, ELK Stack

3. Обоснование выбора

Компонент	Почему выбран
Kafka	Высокая скорость, гарантии доставки, буферизация событий платформы
VK Cloud S3 + Delta Lake	Хранение любых типов данных, поддержка версий и ACID-транзакций
ClickHouse	Быстрые аналитические запросы для администраторов и преподавателей
PostgreSQL	Надёжная реляционная БД для транзакционных данных (оценки, пользователи)
Flink	Потоковые рекомендации, обработка событий в реальном времени
Spark	Пакетные расчёты: успеваемость, отчёты, ML- обработка

Superset	Бесплатная альтернатива Tableau/Power BI, работает с ClickHouse
Airflow	Планирование ETL-процессов (ежедневные отчёты, обновление витрин)
MLflow + JupyterHub	Управление экспериментами, моделями и обучением рекомендаций
Prometheus + Grafana	Мониторинг сервисов, задержек, нагрузки
OpenMetadata / Ranger	Каталог данных, lineage, права доступа

4. Диаграмма архитектуры

5. Описание потоков данных

Пример 1 — Clickstream → Рекомендации:

1. Клиент (браузер) отправляет событие → Kafka.

- Flink читает события → вычисляет активность, предпочтения, результаты публикует в ClickHouse и Kafka (для рекомендательного сервиса).
- 3. Spark периодически выгружает данные из S3 → строит витрины → обновляет ClickHouse.

Пример 2 — Результаты тестов:

- 1. LMS отправляет таблицу тестов \rightarrow Airbyte/ NiFi \rightarrow S3 (Raw Zone).
- 2. Spark обрабатывает → считает средний балл по курсам и студентам → пишет в ClickHouse и PostgreSQL.

Пример 3 — Видео и просмотры:

- 1. Видео хранится в VK Cloud Storage / CDN.
- 2. Метрики просмотра \rightarrow Kafka \rightarrow Flink \rightarrow ClickHouse.

6. Отказоустойчивость и масштабируемость

Kafka — несколько брокеров и партиции тем.

Spark и Flink — запускаются в Kubernetes, масштабируются автоматически.

S3 — теоретически неограниченное хранилище.

checkpointing (Flink), snapshot (Spark), репликация ClickHouse.

Резервное копирование Airflow, OpenMetadata.

7. Потенциальные проблемы и решения

- 1) Рост стоимости хранения: Архивация: S3 Standard → Infrequent → Cold Storage
- 2) Сложность интеграции batch и stream: использовать Delta Lake как единый формат таблиц.
- 3) Конфиденциальность и соответствие: шифрование, IAM, аудит через Ranger, минимизация хранения PII и применение псевдонимизации.

8. Выводы

Предложенная архитектура обеспечивает персонализацию обучения, формирование рекомендаций в режиме реального времени и создание гибкой аналитической платформы для преподавателей и администраторов. Использование связки Арасhe Kafka + Apache Flink позволяет обрабатывать потоковые события с минимальной задержкой. Data Lake на базе VK Cloud S3 с поддержкой Delta Lake обеспечивает надёжное хранение как сырых, так и обработанных данных. Арасhe Spark реализует пакетную аналитику и построение витрин данных. Внедрение инструментов Data Governance, мониторинга и контроля доступа (OpenMetadata, Apache Ranger, Grafana, ELK) гарантирует качество данных и безопасность обработки персональной информации.