5.8. THE CORRECTION FOR CONTINUITY

Approximating a Discrete Distribution by a Continuous Distribution

Suppose that X_1, \ldots, X_n form a random sample from a discrete distribution, and let $X = X_1 + \cdots + X_n$. It was shown in the previous section that even though the distribution of X will be discrete, this distribution can be approximated by the normal distribution, which is continuous. In this section, we shall describe a standard method for improving the quality of the approximation that is obtained when a probability based on a discrete distribution is approximated by one based on a continuous distribution.

Suppose, therefore, that the random variable X has a discrete distribution with p.f. f(x) and it is desired to approximate this distribution by a continuous distribution with p.d.f. g(x). For simplicity, we shall consider only a discrete distribution for which all possible values of X are integers. This condition is satisfied for the binomial, hypergeometric, Poisson, and negative binomial distributions described in this chapter.

If the p.d.f. g(x) provides a good approximation to the distribution of X, then for any integers a and b, we can simply approximate the probability

$$\Pr(a \leqslant X \leqslant b) = \sum_{x=a}^{b} f(x) \tag{1}$$

by the integral

$$\int_{a}^{b} g(x) dx. \tag{2}$$

Indeed, this approximation was used in Examples 1 and 3 of Sec. 5.7, where g(x) was the appropriate normal p.d.f. specified by the central limit theorem.

This simple approximation has the following shortcoming: Although $Pr(X \ge a)$ and Pr(X > a) will typically have different values for the discrete distribution, these probabilities will always be equal for the continuous distribution. Another way of expressing this shortcoming is as follows: Although Pr(X = x) > 0 for any integer x that is a possible value of X, this probability is necessarily 0 under the approximating p.d.f.

Approximating a Histogram

The p.f. f(x) of X can be represented by a *histogram*, or *bar chart*, as sketched in Fig. 5.4. For each integer x, the probability of x is represented by the area of a rectangle with a base that extends from $x - \frac{1}{2}$ to $x + \frac{1}{2}$ and with a height f(x).

Figure 5.4 Approximating a histogram by using a p.d.f.

Thus, the area of the rectangle for which the center of the base is at the integer x is simply f(x). An approximating p.d.f. g(x) is also sketched in Fig. 5.4.

From this point of view it can be seen that $\Pr(a \le X \le b)$, as specified in Eq. (1), is the sum of the areas of the rectangles in Fig. 5.4 that are centered at $a, a + 1, \ldots, b$. It can also be seen from Fig. 5.4 that the sum of these areas is approximated by the integral

$$\int_{a-(1/2)}^{b+(1/2)} g(x) \, dx. \tag{3}$$

The adjustment from the integral (2) to the integral (3) is called the *correction for continuity*.

If we use the correction for continuity, we find that the probability f(a) of the single integer a can be approximated as follows:

$$\Pr(X = a) = \Pr\left(a - \frac{1}{2} \leqslant X \leqslant a + \frac{1}{2}\right)$$

$$\approx \int_{a - (1/2)}^{a + (1/2)} g(x) dx.$$
(4)

Similarly,

$$\Pr(X > a) = \Pr(X \ge a + 1) = \Pr\left(X \ge a + \frac{1}{2}\right)$$

$$\approx \int_{a + (1/2)}^{\infty} g(x) dx.$$
(5)

Example 1: Examination Questions. To illustrate the use of the correction for continuity, we shall again consider Example 3 of Sec. 5.7. In that example, an examination contains 99 questions of varying difficulty and it is desired to determine $Pr(X \ge 60)$, where X denotes the total number of questions that a particular student answers correctly. Then under the conditions of the example, it is found from the central limit theorem that the discrete distribution of X could be approximated by a normal distribution with mean 49.5 and standard deviation 4.08.

If we use the correction for continuity, we obtain

$$Pr(X \ge 60) = Pr(X \ge 59.5) = Pr(Z \ge \frac{59.5 - 49.5}{4.08})$$

 $\approx 1 - \Phi(2.4510) = 0.007.$

This value can be compared with the value 0.005 that was obtained in Sec. 5.7 without the correction. \Box

Example 2: Coin Tossing. Suppose that a fair coin is tossed 20 times, and that all tosses are independent. What is the probability of obtaining exactly 10 heads?

Let X denote the total number of heads obtained in the 20 tosses. According to the central limit theorem, the distribution of X will be approximately a normal distribution with mean 10 and standard deviation $[(20)(1/2)(1/2)]^{1/2} = 2.236$. If we use the correction for continuity,

$$Pr(X = 10) = Pr(9.5 \le X \le 10.5)$$

$$= Pr\left(-\frac{0.5}{2.236} \le Z \le \frac{0.5}{2.236}\right)$$

$$\approx \Phi(0.2236) - \Phi(-0.2236) = 0.177.$$

The exact value of Pr(X = 10) found from the table of binomial probabilities given at the back of this book is 0.1762. Thus, the normal approximation with the correction for continuity is quite good. \Box

EXERCISES

1. Let X denote the total number of successes in 15 Bernoulli trials, with probability of success p = 0.3 on each trial.