1996 年全国硕士研究生招生考试

数 学 (一)

(科目代码:301)

一、県仝迦	个赵共	0 小巡	,母小赵	1 3 7J	,两刀	19 22)	

(1) $\lim_{x \to \infty} \left(\frac{x + 2a}{x - a} \right)^x = 8, \text{ if } a = \underline{\qquad}$	$\left(\frac{2a}{a}\right)^x = 8, \text{ M } a = \underline{\qquad}$	1) 设 $\lim_{x \to \infty} \left(\frac{x + 2a}{x - a} \right)$	(1)
---	--	--	-----

- (2) 设一平面经过原点及点(6, -3, 2),且与平面 4x y + 2z = 8 垂直,则此平面方程为_____.
- (3) 微分方程 $y'' 2y' + 2y = e^x$ 的通解为_____.
- (4) 函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点 A(1,0,1) 处沿点 A 指向点 B(3,-2,2) 方向的方向导数为 .

(5) 设
$$\mathbf{A}$$
 是 4×3 矩阵,且 \mathbf{A} 的秩 $r(\mathbf{A}) = 2$,而 $\mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$,则 $r(\mathbf{AB}) = \underline{\qquad}$

二、选择题(本题共5小题,每小题3分,满分15分)

(1) 已知 $\frac{(x+ay)dx+ydy}{(x+y)^2}$ 为某函数的全微分,则 a 等于(). (A) -1 (B) 0 (C) 1 (D) 2

(2) 设
$$f(x)$$
 有二阶连续导数,且 $f'(0) = 0$, $\lim_{x \to 0} \frac{f''(x)}{|x|} = 1$,则().

- (B) f(0) 是 f(x) 的极小值
- (C)(0,f(0)) 是曲线 y=f(x) 的拐点
- (D)f(0) 不是 f(x) 的极值,(0,f(0)) 也不是曲线 y = f(x) 的拐点
- (3) 设 $a_n > 0$ $(n = 1, 2, \cdots)$,且 $\sum_{n=1}^{\infty} a_n$ 收敛,常数 $\lambda \in \left(0, \frac{\pi}{2}\right)$,则级数 $\sum_{n=1}^{\infty} (-1)^n \left(n \tan \frac{\lambda}{n}\right) a_{2n}$ ().
 - (A) 绝对收敛

(B) 条件收敛

(C) 发散

(D) 收敛性与 λ 有关

(4) 设 f(x) 有连续导数, f(0) = 0, $f'(0) \neq 0$, $F(x) = \int_0^x (x^2 - t^2) f(t) dt$, 且当 $x \to 0$ 时, F'(x) 与 x^k 是同阶无穷小,则 k 等于().

(A)1

(B)2

(C)3

(D)4

(5) 4 阶行列式
$$\begin{vmatrix} a_1 & 0 & 0 & b_1 \\ 0 & a_2 & b_2 & 0 \\ 0 & b_3 & a_3 & 0 \\ b_4 & 0 & 0 & a_4 \end{vmatrix}$$
 的值等于().

$$(A)a_1a_2a_3a_4 - b_1b_2b_3b_4$$

(B)
$$a_1 a_2 a_3 a_4 + b_1 b_2 b_3 b_4$$

(C)
$$(a_1 a_2 - b_1 b_2)(a_3 a_4 - b_3 b_4)$$
 (D) $(a_2 a_3 - b_2 b_3)(a_1 a_4 - b_1 b_4)$

(D)
$$(a_2a_3 - b_2b_3)(a_1a_4 - b_1b_4)$$

三、(本题共2小题,每小题5分,满分10分)

(1) 求心形线 $r = a(1 + \cos \theta)$ 的全长,其中 a > 0 是常数.

(2) 设 $x_1 = 10, x_{n+1} = \sqrt{6 + x_n}$ $(n = 1, 2, \dots)$, 试证数列 $\{x_n\}$ 极限存在, 并求此极限.

四、(本题共2小题,每小题6分,满分12分)

(1) 计算曲面积分 $\int (2x+z) dy dz + z dx dy$,其中 S 为有向曲面 $z = x^2 + y^2 (0 \leqslant z \leqslant 1)$,其 法向量与 z 轴正向的夹角为锐角.

(2) 设变换 $\begin{cases} u = x - 2y, \\ v = x + ay \end{cases}$ 可把方程 $6 \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 0$ 化简为 $\frac{\partial^2 z}{\partial u \partial v} = 0$,求常数 a,其中 z = z(x, y) 有二阶连续的偏导数.

五、(本题满分7分)

求级数
$$\sum_{n=2}^{\infty} \frac{1}{(n^2-1)2^n}$$
 的和.

六、(本题满分7分)

设对任意的x > 0,曲线y = f(x)上点(x, f(x))处的切线在y 轴上的截距等于 $\frac{1}{x} \int_{0}^{x} f(t) dt$,求 f(x)的一般表达式.

七、(本题满分8分)

设 f(x) 在[0,1]上具有二阶导数,且满足条件: $|f(x)| \le a$, $|f''(x)| \le b$,其中 a, b 都 是非负常数,c 为(0,1) 内任意一点.

- (1) 写出 f(x) 在点 x = c 处带拉格朗日余项的一阶泰勒公式;
- (2) 证明: $|f'(c)| \leq 2a + \frac{b}{2}$.

八、(本题满分6分)

设 $A = E - \xi \xi^{T}$,其中E是n阶单位矩阵, ξ 是n维非零列向量, ξ^{T} 是 ξ 的转置,证明:

- (1) $\mathbf{A}^2 = \mathbf{A}$ 的充分必要条件是 $\mathbf{\xi}^T \mathbf{\xi} = 1$;
- (2) 当 $\boldsymbol{\xi}^{\mathsf{T}}\boldsymbol{\xi} = 1$ 时, \boldsymbol{A} 是不可逆矩阵.

九、(本题满分8分)

已知二次型 $f(x_1,x_2,x_3) = 5x_1^2 + 5x_2^2 + cx_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩为 2.

- (1) 求参数 c 的值及此二次型对应矩阵的特征值;
- (2) 指出方程 $f(x_1,x_2,x_3)=1$ 表示何种二次曲面.

十、填空题(本题共2小题,每小题3分,满分6分)

- (1) 设工厂 A 和工厂 B 的产品的次品率分别为 1% 和 2%,现从由 A 厂和 B 厂的产品分别占 60% 和 40% 的一批产品中随机抽取一件,发现是次品,则该次品属于 A 厂生产的概率为
- (2) 设 ξ , η 是两个相互独立且均服从正态分布 $N\left(0,\left(\frac{1}{\sqrt{2}}\right)^2\right)$ 的随机变量,则随机变量 $|\xi-\eta|$ 的数学期望 $E(|\xi-\eta|)=$ _____.

十一、(本题满分6分)

设 ξ , η 是相互独立且都服从同一分布的两个随机变量,且 ξ 的分布律为 $P\{\xi=i\}=\frac{1}{3}$ (i=1,2,3),又设 $X=\max\{\xi,\eta\}$, $Y=\min\{\xi,\eta\}$.

(1) 写出二维随机变量(X,Y) 的分布律:

V	X		
1	1	2	3
1			
2			
3			

(2) 求随机变量 X 的数学期望 E(X).