

A course on Image Processing and Machine Learning (Lecture 06)

Shashikant Dugad, IISER Mohali

Edge Detection: Recap

- Gradient vector, Single and Double Derivative of Image Matrix
- Robert's 2x2 Edge Detection Operator
- Sobels's 3x3 Edge Detection Operator (c=2)
- Prewitt Edge Detection Operator (c=1)
- Laplacian (∇^2) Edge Detection Operator
- Laplacian-Gaussian ($\nabla^2 G(x,y)$) Edge Detection Operator
- Canny Edge Detection Operator

Canny Edge Detection Operator

- The Canny edge detection operator $(\nabla G(x,y))$ corresponds to smoothing of an image with a Gaussian filter followed by computation of the gradient
 - G(x,y) is a gaussian filter
- The operator $\nabla G(x,y)$ is <u>NOT</u> rotationally symmetric.
- The operator is symmetric along the edge and antisymmetric perpendicular to the edge i.e. along the line of the gradient
- This means that the operator is sensitive to the edge in the direction of steepest change, but is insensitive to the edge and acts as a smoothing operator in the direction along the edge.

Canny Edge Detection Operator

Applying Gaussian filter with spread σ on a image I(I,j)
 S[i,i] = G[i,i,: σ] ★ I[i,i]

• The gradient of the smoothed array S[i, j] can be computed using the 2 x 2 first-difference approximations to produce two arrays $P_x[i,j]$ and $P_y[i,j]$ for the x and y partial derivatives

$$P_x[i, j] = (S[i, j+1] - S[i, j] + S[i+1, j+1] - S[i+1, j])/2$$

 $P_y[i, j] = (S[i, j] - S[i+1, j] + S[i, j+1] - S[i+1, j+1])/2$

 Matrix of magnitude and orientation of the gradient can be computed from the standard formulas

Canny Edge Detection Operator

• The magnitude and orientation of the gradient can be computed from the standard formulas for rectangular-to-polar conversion:

$$M[i,j] = \sqrt{P_x^2[i,j] + P_y^2[i,j]}$$
 and $\theta[i,j] = \tan^{-1} \frac{P_y[i,j]}{P_x[i,j]}$

- To identify real edges in the image, the broad ridges in the magnitude M[i,j] array must be thinned so that only the magnitudes at the points of greatest local change remain. This process is called <u>non-maxima suppression</u>, (NMS) which in this case results in thinned edges.
- NMS thins the ridges by suppressing all values along the line of the gradient that are not peak values of a ridge.

Non-maxima suppression

• Map the angle of the gradient $\theta[i,j]$ to one of the four sectors shown:

$$\Psi[i,j] = Sector(\theta[i,j])$$

The algorithm passes a 3x3 neighbourhood across the magnitude array ²⁷⁰
 M[i,j].

- If the magnitude of element in 3x3 neighbourhood having the same sector number Ψ[i,j] (broadly ensuring same direction of gradient) is higher than M[i,j] then M[i,j] is set to ZERO
- This process thins the broad ridges of gradient magnitude in M[i, j] into ridges that are only one pixel wide.

NMS → Thresholding

- Matrix obtained through a process of NMS is referred as matrix of ridges
- The threshold is applied on NMS matrix
 - Lower threshold may result in false positive
 - Higher threshold may result in false negative
- Double thresholding ($\tau_2 \approx 2\tau_1$) approach is used to ascertain the location of edges to produce two threshold edge images T1[i,j] and T2[i,j]. Image T2 may contain fewer false edges due to higher threshold but , it may have gaps in the contours (too many false negatives) that are filled using neighbourhood elements in edge image T1

Canny Edge Detection Summary

Steps to follow for implentation:

- 1. Smooth the image with a Gaussian filter.
- 2. Compute the gradient magnitude and orientation using finite-difference approximations for the partial derivatives.
- 3. Apply non-maxima suppression to the gradient magnitude.
- 4. Use the double thresholding algorithm to detect and link edges.

Results of Canny Edge Detection

Contours Linear segments and Circles

Contours: Segments and Circles

- Edge list: It is an ordered set of edge points or fragments
- Contour: It is the curve that has been used to represent the edge list
- Boundary: It is the closed contour that surrounds a region
- Geometry of Curves: Planar curves can be represented in three different ways: a) the explicit form y = f(x), b) the implicit form f(x,y) = 0 and c) the parametric form (x(u),y(u)). The explicit form is rarely used since in CV a curve can be many-to-many. Parametric form is preferred to represent digital curves in CV

Curve Fitting

- Broadly CV handles four types of curves namely:
 - 1. Line segments
 - 2. Circular arcs
 - 3. Conic sections
 - 4. Cubic splines
- We shall cover identification of *line segments* and *circular arcs* using Hough Transforms (HT).
- The HT provides the technique to find imperfect instances of objects within a certain class of shapes by a voting procedure.
- The voting procedure is carried out in a <u>parameter space</u> of a given class of shape (line segment or circular arc etc.) from which object candidates are obtained as local maxima in a so-called accumulator space

Hough Transform for line segment

- Equation of a line in image x-y plane: y_i = mx_i + c. (x_i, y_i) is variable; and (c, m) is constant)
- Representation of a point in a line Parameter space c-m: (c, m) is variable and (x_i, y_i) is constant)
 - However, m and c can go to $\pm \infty$
 - Hesse normal form of line equation is preferred: $\rho = x_i Cos(\theta) + y_i Sin(\theta)$

Hough Transform for a line segment

- Equation of a line in image x-y plane: $y_i = mx_i + c$. (x_i, y_i) is variable; and (c, m) is constant). Infinite lines can be drawn from a given point
 - o How to find a common line that goes through all 3 points?
- Representation of a point in a line Parameter space c-m: (c, m) is variable and (x_i, y_i) is constant)
 - However, m can go to $\pm \infty$
 - Hesse normal form of line equation is preferred: $\rho = x_i Cos(\theta) + y_i Sin(\theta)$

Hough Transform for a line segment

- Given a single point (x_i, y_i) in the image (x-y) plane, the set of all straight lines going through that point corresponds to a sinusoidal curve in the $\rho \theta$ plane, that is unique to that point $(\rho > 0 \text{ and } 0 < \theta < 2\pi)$
- The intersection of the sinusoids corresponds to the line in the x-y space passing through the three points.

 Thus, the problem of detecting collinear points gets translated to the problem of finding concurrent curves

Example: (https://en.wikipedia.org/wiki/Hough_transform)

Θ	r
15	189.0
30	282.0
45	355.7
60	407.3
75	429.4

Θ	r
15	318.5
30	376.8
45	407.3
60	409.8
75	385.3

Θ	r
15	419.0
30	443.6
45	438.4
60	402.9
75	340.1

Hough Transform for a circle

Source: https://en.wikipedia.org/wiki/Circle_Hough_Transform

In a two-dimensional space, a circle can be described by:

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

- where (a, b) is the center of the circle, and r is the radius. If a 2D point (x_i, y_i) is fixed, then the parameters a, b, r can be found accordingly. The parameter space would be three dimensional, (a, b, r). All the parameters that satisfy (x_i, y_i) would lie on the surface of an inverted right-angled cone whose apex is at (x_i, y_i, 0), i.e. (a=x_i, b=y_i and r=0) In the 3D space, the circle parameters can be identified by the intersection of many conic surfaces that are defined by points on the 2D circle.
- Create the accumulator space, for each pixel in the image and find the parameters of a circle having the maximum score

Detection of known Shapes

- There are other shapes like triangle, rectangles etc needs to be identified
- If there exact shape with dimensions are known, then you can create a filter with that shape dimension
- Apply it over the image and obtain the convoluted image to see the location of the shape if it exists!
- It's a crude approach!!

Geometric Transformation

- Geometric transformations (or operations) are extensively used in image processing:
 - They allow us to bring multiple images into the same frame of reference so that they can be combined or compared
 - They can be used to eliminate distortion in order to create images with evenly spaced pixels.
 - Geometric trans formations can also simplify further processing
- Given a distorted (original) image f (i, j) and a corrected (transformed) image f '(i', j'); we can model the geometric transformation between their coordinates of distorted and corrected image as:

$$i' = T_{i'}(i,j)$$
 and $j' = T_{j'}(i,j)$

Geometric Transformation

- Given the coordinates (i, j) in distorted (original) image; coordinates (i', j') in the corrected image can be obtained using the geometric transformation functions; $T_{i'}(i,j)$ and $T_{i'}(i,j)$
- Transformation functions may be defined in advance
- Or it can be determined with a priori knowledge of corelation between few points in the distorted image and corresponding points in the corrected image
- Affine transformation approach is used for geometric transformation to obtained the corrected image using distorted image as input

Affine Transformation

 Many features of geometric transformation of an image, such as translation, rotation, de-skewing etc. can be obtained using <u>Affine Transformation</u> which is defined as follows:

$$\begin{bmatrix} i' \\ j' \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix}$$

$$i' = a_{00}i + a_{01}j + a_{02} \quad \text{and} \quad j' = a_{10}i + a_{11}j + a_{12}$$

Translation by m along the horizontal axis and n along the vertical axis:

$$\begin{bmatrix} i' \\ j' \end{bmatrix} = \begin{bmatrix} 1 & 0 & m \\ 0 & 1 & n \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix} . \qquad i' = i + m. \quad j' = j + n$$

Affine Transformation

• Change of Scale (Expand/Shrink): Change of scale a in the horizontal axis and b in the vertical axis. This is often required in order to normalise the size of objects in images:

$$\begin{bmatrix} i' \\ j' \end{bmatrix} = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix} . \qquad i' = ai. \quad j' = bj$$

• Rotation: Rotation by angle ϕ about the origin. This is sometimes required to align an image with the axes to simplify further processing

$$\begin{bmatrix} i' \\ j' \end{bmatrix} = \begin{bmatrix} \cos(\phi) & \sin(\phi) & 0 \\ -\sin(\phi) & \cos(\phi) & 0 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix}$$

Affine Transformation

• Skewing: Skewing by angle ϕ if often needed to remove nonlinear viewing effects such as those generated by a line scan camera:

$$\begin{bmatrix} i' \\ j' \end{bmatrix} = \begin{bmatrix} 1 & tan(\phi) & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix}$$

 Panoramic distortion: Panoramic distortion is in effect an incorrect aspect ratio. It appears in line scanners when the mirror rotates at an incorrect speed

Unknown Affine Transformations

- Often, the coefficients transformation (a_{lm}) are not known in advance.
- These coefficients can be determined if we have knowledge of at least three well separated points in original and corrected image, by solving following equations:

$$\begin{bmatrix} i_1 \\ j_1 \\ i_2 \\ j_2 \\ i_3 \\ j_3 \end{bmatrix} = \begin{bmatrix} i'_1 & j'_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & i'_1 & j'_1 & 1 \\ i'_2 & j'_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & i'_2 & j'_2 & 1 \\ i'_3 & j'_3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & i'_3 & j'_3 & 1 \end{bmatrix} \begin{bmatrix} a_{00} \\ a_{01} \\ a_{02} \\ a_{10} \\ a_{11} \\ a_{12} \end{bmatrix}$$

Top right: Computed from correspondences for the top left, top right and bottom left corners of the license plate,

Bottom right: Computed from correspondences for all four corners of the license plate

Image Transformation

Input Image

Translated Output Image

Image Rotated by 45 degrees

Step 1 - Detect the key points in both the input images.

Step 2 - Match Keypoints between the two images to be stitched.

Step 3 - Stitch the two images if they have matching key points otherwise the images cannot be stitched.

```
import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    # read the two input image, convert it into RGB scale and resize for further operations
    dim=(1024,768)
    left=cv2.imread('img1.jpg',cv2.IMREAD COLOR)
    left=cv2.resize(left,dim,interpolation = cv2.INTER AREA) #ReSize to (1024,768)
   left1 = cv2.cvtColor(left,cv2.COLOR BGR2RGB)
10
    right=cv2.imread('img2.jpg',cv2.IMREAD COLOR)
    right=cv2.resize(right,dim,interpolation = cv2.INTER AREA) #ReSize to (1024,768)
   right1 = cv2.cvtColor(right,cv2.COLOR BGR2RGB)
14
    # for plotting the two input images side by side
   f, axarr = plt.subplots(1,2)
   axarr[0].imshow(left1)
   axarr[1].imshow(right1)
19
                                    Shashikant R Dugad, IISER Mohali
```



```
# create a list which will contain the two input images
   images=[]
   images.append(left)
   images.append(right)
 5
   #stitcher = cv2.createStitcher()
   stitcher = cv2.Stitcher.create()
 8
    # ret contains True if pano contains a valid output else False
10
   ret,pano = stitcher.stitch(images)
11
12
   if ret==cv2.STITCHER OK:
13
        pano = cv2.cvtColor(pano,cv2.COLOR BGR2RGB)
       plt.title('Panorama Image')
14
15
        plt.imshow(pano)
16
17
   else:
        print("Given images cannot be stitched!")
18
```

