UNIVERSIDAD DON BOSCO

DEPARTAMENTO DE CIENCIAS BASICAS

DISCUSION Nº 2: VECTORES

1) Representar gráficamente y expresarlos a través de sus coordenadas cartesianas los siguientes vectores de desplazamientos.

a) \vec{A} = 45.5 km; θ = 20° al Norte del Este

b) \vec{B} = 5.00 km; θ = 40° al Sur del Este

c) \vec{C} = 10.0 km; θ = 250°

d) \vec{D} = 25.5 km; al noroeste

e) \vec{E} = 20.0 km; θ = 20° al Oeste del Sur

- 2) ¿Cuál es la componente y y la magnitud de un vector \vec{a} ubicado en el plano xy si su dirección es 230° en sentido contrario al movimiento de giro de las manecillas del reloj medido de desde x positivo y si su componente x es 6.5 m?
- 3) Un vector tiene una componente x de +20.0 unidades y otra componente y de -35.0 unidades. Encuentre la magnitud y dirección de este vector.
- **4)** Las coordenadas rectangulares de un punto están dadas por (3, y) y sus coordenadas polares son (r, 300°). Determine 'y' y 'r'
- 5) Dados los vectores: $\vec{A} = \mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$; $\vec{B} = -5\mathbf{i} + 10\mathbf{j}$; $\vec{C} = 20\mathbf{k}$. Obtener:

a) El módulo de cada uno de ellos

b) Los vectores: $\vec{X} = \vec{A} + \vec{B} + \vec{C}$; $\vec{Y} = \vec{A} - \vec{B} + \vec{C}$

c) $\vec{R} = 3 \vec{A} - 4 (\vec{B} + \vec{C})$

6) Un automóvil se desplaza hacia el Este 50 km, después hacia el Norte 30 km y luego en dirección 30° al Este del Norte, 25 km. Determine el módulo y dirección del desplazamiento resultante.

7) En términos de los vectores \vec{A} y/o \vec{B} exprese los vectores:

- a) $\vec{P} =$
- b) $\vec{R} =$ ______
- c) $\vec{S} =$
- d) $\vec{Q} =$
- 8) Basándose en la figura, calcule:
 - a) El vector resultante de la suma de los vectores $\vec{A} + \vec{B} + \vec{C} + \vec{D}$ (Por método gráfico)
 - b) La suma de \vec{C} + \vec{A} por el método trigonométrico (ley de seno y/o ley de coseno)
 - c) El vector resultante de la suma \vec{A} + \vec{B} + \vec{C} + \vec{D} por método de componentes rectangulares. (Comparar la respuesta con la obtenida en literal a)
 - d) Resta de \vec{D} \vec{B} (Expresar en polares)

9) Los vectores a y b de la figura, tienen magnitudes de iguales de 10.0 m. Encuentre |a + b| y la dirección θ medida de manera estándar de la suma. Utilice un método analítico.

- 10) Un avión vuela 200 km rumbo al oeste desde la ciudad A hasta la ciudad B y después 300 km en la dirección de 30 grados al oeste del norte de la ciudad B hasta la ciudad C. (Resolver por método analítico)
 - a) En línea recta, que tan lejos está la ciudad C de la ciudad A.
 - b) Respecto de la ciudad A ¿En qué dirección está la ciudad C?

- **11)** Una persona que sale a caminar sigue la siguiente trayectoria: Camina 100 m al Este, luego 300 m hacia el Sur, gira 30° al Sur del Oeste avanzando 150 m, por último camina 200 m en dirección de 60° al Norte del Oeste. Determine la magnitud y dirección del desplazamiento que realizó la persona del punto de partida hasta su punto final.
- 12) Una marinera en un velero pequeño se topa con vientos cambiantes. Navega 2.00 km al este, luego 3.5 km al sureste y después otro tramo en una dirección desconocida. Su posición final es de 5.80 km directamente al este del punto inicial. Determine la magnitud y dirección del tercer tramo. Dibuje el diagrama de suma vectorial y demuestre que concuerda cualitativamente con su solución numérica.

- 13) La resultante de la suma de dos vectores de desplazamiento tienen una longitud de 5.0 m y una dirección norte. Uno de los vectores de desplazamiento tiene una longitud de 2.2 m y una dirección 35º al este del norte. ¿Cuál es la magnitud y dirección del otro vector?
- **14)** El vector \vec{A} tiene componentes x, y y z de 10.00, 12.00 y 5.00 unidades, respectivamente.
 - a) Calcule el vector unitario de \vec{A}
 - b) Obtenga una expresión en notación vectores unitarios para un vector \vec{B} que tenga tres veces la longitud de \vec{A} y que apunte en la dirección opuesta a la dirección de \vec{A} .

RESPUESTAS DISCUSIÓN 2

- 1) a) $42.8\hat{i}+15.6\hat{j}$ km
- b) $3.83\hat{i} 3.21\hat{j} km$ e) $-6.84\hat{i}-18.8\hat{j}$ km
- c) $-3.42\hat{i} 9.40\hat{j} km$

- d) $-18.0\hat{i}+18.0\hat{j}$ km
- y = -7.75, a = 10.1 m
- 40.3, 3000 3)

2)

- y = -5.20, r = 64)
- b) $-4\hat{i}+12\hat{j}+25\hat{k}$, $6\hat{i}-8\hat{j}+25\hat{k}$ c) $23\hat{i}-34\hat{j}-65\hat{k}$ 5)

- 81 km, 40° 6)
- a) $\vec{A} + \vec{B}$ 7)
- b) \vec{B} c) $-\vec{A}$
- d) $\vec{A} \vec{B}$

- b) 17, 230° 8)
- c) $-11.4\hat{i}+5.94\hat{j}$
- d) 17, 204°

- 9) 12.2 m, 82.5°
- 10) 436 km, 143°
- 240 m, 237º 11)
- 2.80 km, 61.7° 12)
- 3.4 m, 111.5° 13)
- b) -30i-36j+15k14)