## MATH180C: Introduction to Stochastic Processes II

Lecture A00: math-old.ucsd.edu/~ynemish/teaching/180cA Lecture B00: math-old.ucsd.edu/~ynemish/teaching/180cB

# Today: MC review. Conditioning on continuous random variables

Next: PK 7.1, Durrett 3.1

Week 4:

- homework 3 (due Saturday, April 23)
- Midterm 1: Friday, April 22

Example: Birth and death processes

If we consider the birth and death process, the

equation 
$$\pi Q = 0$$
takes the following form

where  $\theta_i = \frac{\lambda_{i-1}}{\mu_i} \cdot \frac{\lambda_{i-2}}{\mu_{i-1}} \cdot \dots \cdot \frac{\lambda_0}{\mu_i}$ ,  $\theta_0 = 1$ .

Then,  $\sum_{i=0}^{\infty} \pi_i = 1$  implies that

If  $\sum_{i=0}^{\infty} \theta_i < \infty$ , then  $(X_t)$  is positive recurrent and  $\pi_i = 1$ 

If \( \sum\_{i=0}^{\infty} \theta\_i = \infty \), then \( \tau\_{j=0} \to \forall\_{j} \).

#### Example. Linear growth with immigration

Birth and death process,  $\lambda_j = \lambda_j + \alpha$ ,  $\mu_j = \mu_j$  (\*) Using Kolmogorovis equations we showed (lecture 5)

that  $E(X_{\epsilon}) \rightarrow \frac{\alpha}{\mu-\lambda}, t \rightarrow \infty, if \mu > \lambda.$ 

What is the limiting distribution of X.? From the previous slide,  $T_j = \frac{\theta_j}{2\theta_i}$ ,  $\theta_j = \frac{\lambda_{j-1} - \lambda_0}{\mu_j - \mu_1}$ 

If we replace lj. u; by (\*), we get

 $T_{j} = \left(\frac{\lambda}{\mu}\right)^{j} \left(1 - \frac{\lambda}{\mu}\right)^{\alpha} \sqrt{\frac{\alpha}{\lambda} \left(\frac{\alpha}{\lambda} + 1\right) \cdots \left(\frac{\alpha}{\lambda} + j - 1\right)}, \quad j > 1$ 

 $\pi_{o} = \left(1 - \frac{\lambda}{\mu}\right)^{-\frac{1}{\lambda}}$ 

What you should know for midterm I (minimum): - definition of continuous time MC, Markov property, transition probabilities, generator - representations of MC: infinitesima (generator). jump-and-hold, transition probabilities, rate diagram and relations between them (in particular Q and P(t)) - computing absorption probabilities and mean time to absorption - computing stationary distributions for finite and infinite state MCs and interpretation of (Ti:):=0 - basic properties of birth and death processes

### Conditioning on continuous r.v.

Def. Let X and Y be jointly distributed continuous random variables with joint probability density function  $f_{x,y}(x,y)$ . We call the function

the conditional probability density function of X given Y=y.

The function

is called conditional distribution of X given Y= y

#### Conditional expectation

In particular, if

Def. Let X and Y be jointly distributed continuous random variables, let  $f_{XIY}(zIY)$  be a conditional distribution of X given Y=y and let  $g: \mathbb{R} \to \mathbb{R}$  be a function for which  $E(|g(x)|) < \infty$ .

Then we call

the conditional expectation of g(X) given Y=y.

Remark If Y is

If Y is a continuous random variable, then

Therefore, we cannot define P(X & A 1 Y = y) as

On the other hand consider example:

```
Intuitive explanation/derivation
 P(X & [x, x+ bx], Y & [y, y+by])
Using the multiplication rule
                                (fy(y) >0 on [y, y+sy])
P(XE[x,x+Dx], YE[y,y+by])
P(XE[x, x+ax] Ye [y, y+ by])
```

$$E(g(X)) =$$

5) 
$$E(\lambda(X,Y)|Y=y)=$$

In particular,  $E(\lambda(X,Y))=$ 

6)  $E(g(X)h(Y))=\int h(y)E(g(X)|Y=y)f_{Y}(y)dy$ 

Further properties of conditional expectation (PK, p.50)

4) E(c,g,(X,)+c2g2(X2)|Y=y) = c, E(g,(X,))Y=y)+c2E(g2(X2))Y=y)

= E(h(Y)E(g(X)|Y)) = E(g(X)|Y=y) - E(g(X)) if X and Y are independent

#### Example 1

Let (X,Y) be jointly continuous f.V.s with density  $f_{X,Y}(x,y) = \frac{1}{y}e^{-\frac{\pi}{2}y}$ , z.y>0

Compute the conditional density of X given Y=y.

1) Compute the marginal density of Y

- 2) Compute the conditional density

#### Example 1 (cont.)

Suppose that Y~ Exp(1), and X has exponential distribution with parameter & Compute E(X)

$$E(X) = \iint x \int_{0}^{\infty} e^{x^{2}} dx dy$$

Example 2: continuous and discrete r.v.s Let NEN, P-Unif[0.1], X-Bin (N.P) What is the distribution of X? P(X=K)=

#### Example 3

Let X and Y be i.i.d. Exp()) r.v.

Define 
$$Z = \frac{X}{Y}$$
. Compute the density of  $Z$ .

· If X~ Exp(λ), then for d>0 dX~Exp(λ)