Unit 1 - Lesson 1 Welcome to CSP bits and bytes

Set Up

Binary Number

111

https://youtu.be/Xpk67YzOn5w

Activity • • O

Prompt:

Is it a 8 bit or 16 bit (Nintendo)?

Activity • • O

Wrap Up

Unit 1 - Circle Square Patterns

Activity • • O

Prompt:

With a partner, work out how many patterns (made up of circles and squares) you can make with three place values. These patterns could each represent different pieces of information.

Here are two to get you started:

Do This:Share out your 7th pattern

Circle Square Activity

You and your partner should have:

Circle Square Patterns - Activity Guide Shape Cutouts

Warm Up ●00

Prompt:

How do we communicate using only two symbols in a computer?

Activity • • O

1 place value = 2 possible patterns

2 place values= 4 possible patterns

3 place values= 8 possible patterns

We can then map our patterns to a numbered list.

Note: Computer scientists like to start counting at 0!

Where is this heading? ...binary...

"Binary" is a number system with 2 shapes...

Making Organized Lists -> Counting in Binary

Make Your Flippy Do!

Each place value represents one "**bit**" (binary digit). A bit can be a zero or a one.

Your flippy do has 8 bits...

which together make...

byte

Try Out Your Flippy Do!

Represent these decimal numbers in binary

- 7
- 20

Represent these binary numbers in decimal

- 0001 0010
- 0001 1111

Wrap Up

Decimal number: a base 10 number with ten possible different digits

Binary number: a base 2 number with two possible different digits

0 1

0123456789

10	10 0
10	1
2	2

Same number represented two different ways.

□ Decimal

Binary

24	2 ³	2 ²	21	20
16	8	4	2	1
1	0	1	1	1

Bit: A contraction of "Binary Digit"; the single unit of information in a computer, typically represented as a 0 or 1

Byte: 8 bits | **10010101**

Readmore

https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:digital-information/xcae6f4a7ff015e7d:limitations-of-storing-numbers/a/number-limits-overflow-and-roundoff