Mục lục

1.1		VỀ CƠ LƯU CHẤT ượng nghiên cứu
1.2		chuyển động
	1.2.1	Hình thức luận Lagrange
		1.2.1.1 Giả thiết liên tục theo quan điểm Lagrange .
	1.2.2	Hình thức luận Euler
		1.2.2.1 Trường vecteur
		1.2.2.2 Vận tốc trong hình thức luận Euler
	1.2.3	Sự duy nhất của vận tốc
	1.2.4	Thể hiện các dòng chảy
		1.2.4.1 Quỹ đạo hạt
		1.2.4.2 Đường dòng
		1.2.4.3 Đường phát xạ - tiếp cận thực nghiệm
1.3		dông học lưu chất
	1.3.1	Mô tả biến dạng của lưu chất
		1.3.1.1 Tốc độ biến dạng của một vecteur vật chất .
		1.3.1.2 Tốc độ giản nở của thể tích
		1.3.1.3 Tốc độ xoay của lưu chất
	1.3.2	Các dòng lưu chất điển hình
		1.3.2.1 Dòng chảy không nén được
		1.3.2.2 Dòng chảy xoay
1.4		các đại lượng vật lý
	1.4.1	Trong hình thức luận Lagrange
	1.4.2	Trong hình thức luận Euler
	1.4.3	Phép đạo hàm hạt
		1.4.3.1 Tính toán cho đại lượng điểm
		1.4.3.2 Tính toán cho đại lượng thể tích
		1.4.3.3 Tính toán cho đại lượng mặt
1 -	1	1.4.3.4 Tính toán cho đại lượng đường
1.5	Mo ta	động lực học lưu chất

 $2 \hspace{3cm} \textit{MUC LUC}$

	1.5.1 Mở đầu	24 25 26 27 27
2	THỦY TĨNH HỌC	31
3	ĐỘNG HỌC LƯU CHẤT	33
4	ĐỘNG LỰC HỌC LƯU CHẤT	35
5	LƯU CHẤT LÝ TƯỞNG	37
6	LƯU CHẤT THỰC	39
7	LƯU BIẾN HỌC	41
8	ĐỘNG HỌC XOÁY	43
		45
9	CÁC PHƯƠNG TRÌNH CHI PHỐI	47
	9.1 Mở đầu	47
	9.2 Tính nén được của lưu chất	47
	9.3 Nhắc lại về cơ lưu chất	48
	9.4 Nhắc lại về nhiệt động lực học	49
	9.4.1 Cân bằng năng lượng tổng quát	49
	9.4.2 Cân bằng entropy	50
	9.5 Hệ phương trình chi phối hành vi của lưu chất	51
10	DÒNG CHUYỂN ĐỘNG KHÔNG NHỚT	53
	10.1 Dòng chuyển động ổn định	53
	10.2 Độ nhớt và sự truyền nhiệt	54
	10.3 Sóng xung kích	54
	10.4 Sóng xung kích thẳng	54

LỜI NÓI ĐẦU

Cơ học lưu chất là một ngành khoa học đã phát triển từ rất lâu đời, có lẽ là đã từ thời chiếc máy bơm nước trực vít của Archimède. Từ đó đến nay, trải qua bao thăng trầm cùng lịch sử nhân loại, cơ học lưu chất đã đạt được nhiều thành tựu trong nhiều phương diện, ảnh hưởng trực tiếp đến mọi ngóc ngách trong đời sống thường nhật con người. Do đó, việc có được những tri thức cơ bản nhất của cơ học lưu chất là một điều nên thực hiện. Đó là lý do cơ bản nhất để thôi thúc chúng tôi viết ra tác phẩm này.

Tuy nhiên, nhóm tác giả cũng rất dè dặt khi biên soạn tác phẩm này, bởi vì chúng tôi không muốn sáng tạo lại cái bánh xe mà thay vào đó là tổ chức lại nó một cách hợp lý hơn để việc tiếp cận cơ học lưu chất trở nên dể dàng hơn.

Do đó, trong tác phẩm này, quý vị sẽ thấy chúng tôi trình bày lại gần như là mọi thứ đã được thực hiện trong hàng thế kỷ qua về cơ học lưu chất để có cái .

Về phần mình, chúng tôi gửi lời chân thành cảm ơn đến các thầy cô bộ môn Kỹ thuật Giao thông, đặc biệt xin cảm ơn thầy Nguyễn Thiện Tống, cô Lê Thị Hồng Hiếu, cô Nguyễn Song Thanh Thảo và thầy Đặng Trung Duẩn vì những giờ học bổ ích ở trên giảng đường cùng với những kiến thức khoa học chính xác. Bên cạnh đó, chúng tôi cũng xin cảm ơn những lời trao đổi khoa học hết sức chân thành và thẳng thắn đến từ các bạn sinh viên lớp VP19HK, đặc biệt cảm ơn các bạn Bùi Gia Bảo, Nguyễn Quốc Mạnh, Lê Trọng Đạt, cùng với các bạn Phạm Lê Tâm vì những đóng góp chân thành nhất về cách tiếp cận cũng như là những khúc mắc mà chúng ta gặp phải trong quá trình làm việc với nhau và với cơ học lưu chất. Chúng tôi cũng xin chân thàng cảm ơn các tác giả của hệ thống gõ văn bản LATEX, các phầm mềm soạn thảo TeXMaker, TexStudio, VSCode, LyX, cũng như các phần mềm biên tập đồ thị GnuPlot, và Git vì nếu không có các bộ công cụ này, không biết đến bao giờ chúng tôi mới có thể hoàn thành được tác phẩm này.

Phần I NỀN TẢNG CỦA CƠ HỌC LƯU CHẤT

Chương 1

MỞ ĐẦU VỀ CƠ LƯU CHẤT

$\boldsymbol{\alpha}$	- 1		
Co	nt	en	Its

Conticuts		
1.1	Đối tượng nghiên cứu	8
1.2	Mô tả chuyển động	9
1.3	Mô tả động học lưu chất	13
1.4	Mô tả các đại lượng vật lý	19
1.5	Mô tả động lực học lưu chất	24

1.1 Đối tượng nghiên cứu

Cơ học lưu chất có một ứng dụng rất rộng rãi trong rất nhiều hệ khác nhau như dòng khí chuyển động qua cánh máy bay, máu chảy trong mạch máu, hoặc là dòng dầu thô chảy trong các đường ống dài hàng ngàn km. Trong tác phẩm này, chúng ta sẽ đi vào nghiên cứu một loạt các hệ thống lưu chất khác nhau.

Trước tiên chúng ta nên thảo luận về hệ thống triết học nền tảng nhất của môn cơ học lưu chất. Như tên gọi của nó, môn học **cơ học lưu chất** là một môn học nghiên cứu về các ứng xử cơ học của các lưu chất. Lưu chất là một khái niệm để gọi chung cho chất lỏng và chất khí khi ta quan sát hệ lưu chất ở thang đo vĩ mô và thang đo trung mô¹.

Thang đo vĩ mô ở đây là thang đo mà chúng ta vẫn làm việc hằng ngày. Nước chảy trong một dòng sông, dòng khí đi qua cánh máy bay,... là các hệ lưu chất vĩ mô rất thường gặp. Kích cở đặc trung của thang đo này là phụ thuộc vào kích thước của hệ được nghiên cứu, do đó ta sẽ nhấn mạnh ở đây lối nghiên cứu điển hình (études des cas). Các nghiên cứu điển hình sẽ được thực hiện song song với các nghiên cứu phổ quát, trong đó tùy từng đối tượng cụ thể mà chúng tôi sẽ giới thiệu các cách tiếp cận cùng với các tham số liên quan.

Ở thang đo vi mô, chất lỏng và chất khí là khác nhau một cách nền tảng. Đầu tiên mật độ phân tử của các phân tử không khí là vào cở $10^{25}\,\mathrm{m}^{-3}$, còn mật độ phân tử của nước chẳng hạn là vào cở $10^{28}\,\mathrm{m}^{-3}$. Mật độ phân tử của chất lỏng là lớn hơn rất nhiều so với chất khí, do đó lực hút giữa các phân tử chất lỏng là đáng kể. Tập tính của chất lỏng và chất khí do đó là khác nhau, chẳng hạn như khả năng tẩm ướt và khả năng hòa tan của chất lỏng; còn chất khí thì dể dàng bị nén hơn. Một điều cần phải nhấn mạnh là ở thang đo vi mô, lưu chất không được xem là các khối liên tục nữa và sự xử lý lúc này phải được thực hiện bằng các công cụ của cơ học thống kê.

Hiển nhiên, ta sẽ không làm phức tạp hóa vấn đề lên bằng các công cụ cơ học thống kê, do đó trong phần lớn các nghiên cứu, ta vẫn sẽ đứng trong cơ sở sự mô hình hóa **cơ học môi trường liên tục²** và đưa vào thang đo trung mô. Với thang đo mới này, lưu chất được chia thành các khối có thể tích đủ nhỏ ở thang đo vĩ mô để xem các đại lượng cơ học liên kết với khối này là không đổi nhưng nó vẫn đủ lớn ở thang đo vi mô để xem khối này là liên tục.

Nếu gọi kích thước đặc trưng của hệ cơ học môi trường ở thang đo vĩ mô là L^3 , kích thước đặc trưng của môi trường vi mô là l (thường chọn quảng đường tự do trung bình của phân tử lưu chất). Kích thước đặc trưng của một khối

 $^{^1\}mathrm{Ta}$ sẽ không đưa vào đây các nghiên cứu về plasma.

²Một sự nghiên cứu đầy đủ cơ học môi trường liên tục là cần thiết trước khi bước vào đọc quyển sách này. Tuy nhiên, để tránh làm thất vọng quý độc giả, chúng tôi sẽ trình bày đầy đủ các kiến thức nền tảng của cơ học môi trường liên tục rồi mới chính thức đi vào cơ học lưu chất.

 $^{^3\}mathrm{Với}$ một ống hình trụ, có thể chọn kích cở đặc trung là đường kính ống.

trung mô được kí hiệu là δ phải thoả mãn:

$$l \ll \delta \ll L,\tag{1.1}$$

để sự mô hình hóa môi trường liên tục là khả dĩ.

Sự mô tả môi trường liên tục là tốt trong gần như mọi trường hợp, nhưng những sự không liên tục vẫn có thể diễn ra ở mức độ trung mô, ta đang đề cập đến trường hợp các **sóng xung kích** đối dòng khí đi qua cánh của các máy bay trên âm hoặc **sự xâm thực** đối với các chong chóng tàu thủy khi chúng xoay quá nhanh. Ta cũng sẽ tính đến các hiện tượng này trong sự mô tả môi trường liên tục và bây giờ ta sẽ mở rộng các khảo sát ra các đại lượng có sự liên tục từng khúc.

1.2 Mô tả chuyển động

1.2.1 Hình thức luận Lagrange

Đầu tiên ta sẽ giả thiết rằng sự mô hình hóa môi trường liên tục là hợp lệ. Tiếp theo ta sẽ trang bị một hệ quy chiếu \mathcal{R} có hệ tọa độ DESCARTES $\mathcal{B} = (\underline{e}_1, \underline{e}_2, \underline{e}_3)$ liên kết làm hệ quy chiếu cho các khảo sát cơ học.

Mỗi thể tích trung mô sẽ được đánh dấu bằng một nhãn để phân biệt chúng và đối với mỗi hạt này, ta theo dõi quỹ đạo của nó theo thời gian tương tự như những gì đã làm trong môn cơ học chất điểm. Để có thể làm được điều này, ta sẽ chọn một thời điểm cố định t_0 mà ta gọi là thời điểm tham chiếu và thông tin của hệ cơ học, bao gồm vị trí các hạt lưu chất ở thời điểm này là **hình thái** tham chiếu, kí hiệu là κ_0 . Ở mọi thời điểm sau đó, ta sẽ so sánh các thông tin liên kết với hạt tương ứng, ta gọi nó là **hình thái hiện tại** và kí hiệu κ_t , với các thông tin tương ứng trong hình thái tham chiếu.

Để đánh dấu các hạt, ta sẽ sử dụng vị trí của hạt trong hình thái tham chiếu \underline{X} để làm nhãn dán. Vị trí của hạt trong hình thái hiện tại được biểu diễn bởi vecteur \underline{x} và quỹ đạo của hạt được biểu diễn bởi công thức:

$$\underline{x} = \phi\left(\underline{X}, t\right). \tag{1.2}$$

trong đó hàm vecteur $\underline{\phi}$ là một hàm đủ chính quy⁴.

Vận tốc của hạt này đơn giản chính là đạo hàm riêng phần theo thời gian của biến thời gian t:

$$\underline{U}(\underline{X},t) = \frac{\partial \phi}{\partial t}(\underline{X},t) \tag{1.3}$$

⁴"Đủ chính quy"ở đây là một từ dường như mang đến một sự nhập nhằng, tuy nhiên, chúng tôi sử dụng nó để tránh chủ nghĩa hình thức toán học nặng nề. Nói cho đơn giản, đó là một hàm số liên tục từng khúc và không có vô hạn số miền gián đoạn.

điều này là hiển nhiên vì \underline{X} không phụ thuộc vào thời gian (do là vị trí của hạt ở thời điểm tham chiếu). Tương tự, ta định nghĩa gia tốc của hạt:

$$\underline{A}(\underline{X},t) = \frac{\partial^2 \underline{\phi}}{\partial t^2} (\underline{X},t)$$
 (1.4)

1.2.1.1 Giả thiết liên tục theo quan điểm Lagrange

1.2.2 Hình thức luận Euler

Xét một hệ lưu chất trong hình thái hiện tại κ_t . Việc thu thập "toàn bộ" thông tin về các đại lượng cơ học của hệ trong thời điểm t ở mỗi điểm \underline{x} trong không gian sẽ tương ứng với cách mô tả Euler.

Theo cách tiếp cận này, ta không phân biệt từng hạt lưu chất với nhau mà chuyển trọng tâm chú ý sang các điểm trong không gian mà các điểm này là cố định, hiển nhiên là độc lập với thời gian. Lúc này ta không thể tìm được quỹ đạo của các hạt vì ta không còn phân biệt được các hạt lưu chất nữa và các đại lượng liên kết lúc này không còn gắn với duy nhất một hạt lưu chất nữa mà sẽ gắn với điểm đang xét. Do đó để mô tả lưu chất trong hình thức luận Euler, ta sẽ đưa vào một công cụ toán học quan trọng là *trường vecteur* (hoặc là các trường tenseur, hoặc bất kỳ cấu trúc đại số nào đó gắn với từng điểm của không gian).

Trước khi hình thức hóa hình thức luận Euler, ta sẽ đi vào khái niệm trường vecteur.

1.2.2.1 Trường vecteur

Trường vecteur được định nghĩa sau đây sẽ hoàn toàn toán học và mang một chủ nghĩa hình thức nặng nề, tuy nhiên, quý độc giả sẽ dần dà nhận ra được tác dụng của chúng. Ta định nghĩa:

Cho một tập hợp $\mathscr E$ được gọi là không gian nền. Một trường vecteur là không gian vecteur E đẳng cấu với $\mathbb R^3$ sao cho tồn tại một ánh xạ $\mathscr V$ được định nghĩa như sau:

$$\mathcal{V}: \mathscr{E} \longrightarrow E$$
$$P \longmapsto \mathcal{V}(P)$$

Ta gọi ánh xạ \mathcal{V} là **ánh xạ vecteur liên kết** và $\mathcal{V}(P)$ là một vecteur. Một trường vecteur như thế là một cặp (\mathcal{E}, E) .

Trong trường hợp không sợ hiểu lầm, ta có thể bỏ qua kí hiệu tập nền $\mathscr E$ và kí hiệu trường vecteur bởi E.

 $^{^5}$ Toàn bộ ở đây là một con số khổng lồ nếu không muốn nói là không thể trong thực tế. Khi sử dụng từ này, chúng tôi muốn nhấn mạnh đến khả năng về mặt lý thuyết và qua đó sử dụng tư duy phổ quát cho sự nghiên cứu.

11

Nhận xét 1: Nói cho đơn giản, một trường vecteur là một không gian vecteur mà mỗi vecteur được liên kết với một điểm của không gian nền. Ở đây, vecteur có và phải luôn luôn có một điểm đặt xác định.

Nhận xét 2: Định nghĩa này có thể được mở rộng ra cho một trường tenseur hoặc một trường vô hướng nào đó bất kỳ (bằng cách thay đổi định nghĩa của không gian vecteur E).

1.2.2.2 Vận tốc trong hình thức luận Euler

Như đã đề cập, ta có thể định nghĩa trường vận tốc tại mọi điểm của không gian trong hình thái κ_t bởi:

$$\underline{u} = \underline{u}(\underline{x}, t). \tag{1.5}$$

trong đó không có bất kỳ liên hệ nào giữa \underline{x} và t.

Ta có thể nhận thấy rằng, việc chồng chất các mô tả Euler ở vô hạn các thời điểm rất gần nhau t và t+dt liên tiếp, ta sẽ thu được hình ảnh của sự mô tả Lagrange.

1.2.3 Sự duy nhất của vận tốc

Đối với một lưu chất đang chuyển động, sự khảo sát vận tốc của dòng chảy trong cùng một hệ quy chiếu $\mathcal R$ chỉ cho ta một giá trị vận tốc dù cho có sử dụng hình thức luận Lagrange hay hình thức luận Euler. Do đó phải có sự đồng nhất giữa vận tốc trong hai hình thức này.

Như vậy, nếu một hạt lưu chất ban đầu ở vị trí \underline{X} đi qua điểm \underline{x} ở thời điểm t, vận tốc đo được trong hình thức luận Euler tại điểm \underline{x} sẽ chính là vận tốc của hạt lưu chất này trong hình thức luận Lagrange, tức là:

$$\underline{u}(\underline{x},t) = \underline{U}(\underline{X},t) \iff \underline{x} = \phi(\underline{X},t)$$
 (1.6)

Mặc dù là cùng một vận tốc nhưng việc xử lý toán học các vận tốc này là khác nhau tùy theo hình thức luận.

Nhận xét: Mặc dù có vẻ là hình thức luận Euler đơn giản hơn về sự mô tả, ta sẽ không từ bỏ hình thức luận Euler. Lý do cho việc này là do mỗi hình thức luận có các điểm mạnh và các điểm yếu của chúng. Đối với hình thức luận Lagrange, ta phải theo dõi từng hạt một (chắc chắn số lượng hạt là khổng lồ) và điều này là rất khó để thực hiện được về mặt thực nghiệm.

Chú ý (kí hiệu): Trong các nghiên cứu từ đây về sau, ta thông nhất với nhau là dùng kí hiệu in hoa, ví dụ như \underline{U} , để chỉ các đại lượng trong hình thức luận Lagrange và dùng kí hiệu viết thường \underline{u} , để chỉ đại lượng tương ứng trong hình thức luận Euler. Vecteur vị trí được kí hiệu bởi \underline{X} được dùng để ám chỉ vị trí của nó trong hình thái tham chiếu, còn \underline{x} để ám chỉ vị trí của nó trong hình thái hiện tại.

1.2.4 Thể hiện các dòng chảy

Sau khi đã đề cập đến hai hình thức luận để mô tả sự chuyển động của lưu chất, ta sẽ tiến hành mô tả các hệ đường cong liên kết với các vận tốc đã được mô tả. Mục tiêu của chúng ta là sẽ hình ảnh hóa các vận tốc cho.

1.2.4.1 Quỹ đạo hạt

Đúng như tên gọi của nó, sự mô tả hạt bằng quỹ đạo hạt là một cách mô tả trong hình thức luận Lagrange. Theo đó, quỹ đạo của mỗi hạt mà trong hình thái κ_0 nó có vị trí \underline{X} sẽ được mô tả bởi:

$$\underline{x} = \phi\left(\underline{X}, t\right). \tag{1.7}$$

1.2.4.2 Đường dòng

Hình dạng của trường, như mọi khi, vẫn được thể hiện thông qua các đường sức trường. Như vậy, ở một thời điểm t_1 nào đó cố định, các đường dòng sẽ thể hiện trong hình thức luận Euler các sức trường. Chúng là các đường tiếp tuyến với trường vận tốc. Khi đó, gọi \underline{dx} là vecteur độ dời vô cùng bé dọc theo đường dòng, ta có:

$$\underline{dx} \wedge \underline{u}(\underline{x}, t_1) = \underline{0}. \tag{1.8}$$

1.2.4.3 Đường phát xạ - tiếp cận thực nghiệm

Khi muốn nghiên cứu chuyển động của một lưu chất, lý tưởng nhất là ta có thể đánh dấu từng hạt để nghiên cứu quỹ đạo của nó hoặc hiện thực hóa các đường dòng của nó ở một thời điểm nào đó. Tuy nhiên điều này là không khả thi, đặc biệt là khi nghiên cứu chuyển động của lưu chất quanh một cố thể.

Để có thể giải quyết được vấn đề này, ta sẽ dùng đến chất đánh dấu. Tại những điểm riêng biệt của lưu chất, ta thêm vào một ít chất đánh dấu để chúng được lưu chất kéo theo (lưu ý là càng ít làm nhiễu loạn dòng lưu chất càng tốt). Như vậy, tại một điểm cố định trong không gian ở một thời điểm cho trước, tất cả các hạt đi qua điểm này đều được đánh dấu và theo dõi. Quỹ đạo được chất đánh dấu vạch ra được gọi là **đường phát xạ**. Do đó:

Các đường phát xạ ở thời điểm t_1 nào đó là tập hợp các điểm trong không gian bị các hạt lưu chất chiếm mà trước đây các hạt này cùng đi qua một điểm M_0 nào đó đã biết.

Nếu ở thời điểm t' nào đó $(t_0 \le t' \le t_1)$, có một hạt lưu chất đi qua điểm M_0 (với $X_0 = OM_0$), thì phương trình quỹ đạo của hạt này thỏa:

$$\underline{X}_0 = \phi\left(\underline{X}, t'\right),\tag{1.9}$$

trong đó \underline{X} là vị trí ban đầu của hạt lưu chất này mà nó được tính bởi:

$$\underline{X} = \underline{\phi}^{-1} \left(\underline{X}_0, t' \right). \tag{1.10}$$

 $\mathring{\mathrm{O}}$ thời điểm t_1 , vị trí của hạt này được tính bởi:

$$\underline{x} = \underline{\phi} \left(\underline{\phi}^{-1} \left(\underline{X}_0, t' \right), t_1 \right) \tag{1.11}$$

Do đó đường phát xạ là tập hợp các đường cong có phương trình:

$$\underline{x} = \underline{\phi} \left(\underline{\phi}^{-1} \left(\underline{X}_0, t' \right), t_1 \right) \quad (t_0 \le t' \le t_1). \tag{1.12}$$

Chú ý: Trong công thức (1.12), chúng ta đã sử dụng định nghĩa hàm nghịch đảo của quỹ đạo $\underline{\phi}$. Điều này ngụ ý rằng $\underline{\phi}$ phải là song ánh và ta đã làm rõ điều này trong phần đề cập về giả thiết liên tục [......]. Điều này một lần nữa nhấn mạnh lại khuôn khổ môi trường liên tục của chúng ta.

1.3 Mô tả động học lưu chất

1.3.1 Mô tả biến dạng của lưu chất

Mặc dù có tên gọi là mô tả động học, ta sẽ đề cập không chỉ về động lực học của lưu chất mà còn về sự biến dạng của lưu chất. Như đã đề cập, lưu chất là môi trường liên tục, do đó, tính chất rất quan trọng của chúng là sự biến dạng 6 . Ở đây ta sẽ không tiếp cận như cách mà cơ học môi trường liên tục, tức là không nghiên cứu độ dời của các phần tử lưu chất, mà sẽ chỉ nghiên cứu thông qua vân tốc của các hat lưu chất 7 .

1.3.1.1 Tốc độ biến dạng của một vecteur vật chất

Như đã đề cập, ta sẽ nghiên cứu sự biến dạng với trọng tâm là sự khảo sát trường vân tốc của lưu chất.

Đầu tiên, ở một thời điểm xác định t, ta chọn bên trong lưu chất hai điểm vật chất⁸, M_1 và M_2 , ở lân cận nhau. Ta kí hiệu vecteur nối hai điểm này là $\underline{dx} = \underline{M_1M_2}$. Để nghiên cứu chúng, ta sẽ truy ngược về hình thái κ_0 , và ta sẽ tìm được hai vị trí $\underline{X_1}$ và $\underline{X_2}$ sao cho:

$$\underline{OM_1} = \underline{\phi}\left(\underline{X}_1, t\right) \quad \text{và} \quad \underline{OM_2} = \underline{\phi}\left(\underline{X}_2, t\right).$$

 $^{^6{\}rm Không}$ phải sự dời chổ, ta sẽ nói kỹ hơn về sự phân biệt về sự biến dạng và sự dời chổ.

⁷Điều này là hiển nhiên, vì lưu chất rất linh động, chúng di chuyển dể dàng và không có hình dạng xác định do đó việc nghiên cứu lưu chất qua biến dạng là không hợp lý.

⁸Tức là hai điểm nằm trên hai hạt lưu chất, ta muốn dùng từ này để nhấn mạnh lên tính chất của điểm này.

Ta kí hiệu vecteur vật chất trong hình thái κ_0 bởi $\underline{dX} = \underline{X_2} - \underline{X_1} = \underline{X_1 X_2}$. Như vây, vecteur vật chất này chịu sự xử lý toán học dưới đây:

$$\underline{dx} = \underline{\phi}(\underline{X}_2, t) - \underline{\phi}(\underline{X}_1, t)$$
$$= \frac{\partial \underline{\phi}}{\partial X}(\underline{X}_1, t) \cdot \underline{dX}.$$

Do đó, khi đưa vào khái niệm **gradient biến đổi** được định nghĩa như sau:

$$\underline{\underline{F}}(\underline{X},t) = \underline{\underline{\nabla}_X \phi}(\underline{X},t)$$
 (1.13)

(trong đó kí hiệu ∇_X muốn nhấn mạnh việc lấy gradient của một hàm vecteur trong hình thái tham chiếu), hệ thức trên được viết thành:

$$\underline{dx} = \underline{F}(\underline{X}, t) \cdot \underline{dX}. \tag{1.14}$$

Ở một thời điểm $t + \delta t$ vô cùng bé sau đó, hai điểm này bị các hạt lưu chất tương ứng kéo đi và trở thành hai điểm vật chất mới mà ta kí hiệu tương ứng là M_1' và M_2' . Do đó:

$$\underline{OM_1'} = \underline{\phi}\left(\underline{X}_1, t + \delta t\right) \quad \text{và} \quad \underline{OM_2'} = \underline{\phi}\left(\underline{X}_2, t + \delta t\right).$$

Vecteur vật chất mới này được xử lý toán học tương tư như ở phía trên:

$$\underline{dx'} := \underline{M_1'M_2'} = \underline{\phi}(\underline{X}_2, t + \delta t) - \underline{\phi}(\underline{X}_1, t + \delta t) \\
= \frac{\partial \underline{\phi}}{\partial X}(\underline{X}_1, t + \delta t) \cdot \underline{dX}.$$

Như vậy hai vecteur này có liên hệ với nhau bởi:

$$\begin{split} \underline{dx'} &= \frac{\partial \underline{\phi}}{\partial \underline{X}} \left(\underline{X}_1, t + \delta t \right) \cdot \underline{dX} \\ &= \frac{\partial^2 \underline{\phi}}{\partial \underline{X} \partial t} \left(\underline{X}_1, t \right) \cdot \underline{dX} \delta t \\ &= \underline{\nabla}_{\underline{X}} \left(\frac{\partial \underline{\phi}}{\partial t} \right) \left(\underline{X}_1, t \right) \cdot \underline{dX} \delta t \end{split}$$

Khi đưa vào định nghĩa gradient của trường vận tốc:

$$\underline{\underline{\nabla_X U}}(\underline{X}, t) := \underline{\nabla_X} \left(\frac{\partial \underline{\phi}}{\partial t} \right) (\underline{X}, t) \left| \text{ khi } \underline{x} = \underline{\phi} (\underline{X}, t) \right.$$
(1.15)

Ta có thể biểu diễn sự liên hệ giữa hai vecteur vật chất vô cùng bé bên trên:

$$\underline{dx'} = \underline{\nabla_X U}(\underline{X}, t) \cdot \underline{dX} \delta t
= \underline{\nabla_X U}(\underline{X}, t) \cdot (\underline{\underline{F}}^{-1}(\underline{X}, t) \cdot \underline{dx}) \delta t.$$

Ta gọi đạo hàm vật chất của một vecteur vô cùng nhỏ đặt tại điểm \underline{M}_1 ở thời điểm t bởi:

$$\underline{\widehat{dx}} := \lim_{\delta t \to 0} \frac{\underline{dx'} - \underline{dx}}{\delta t} = \left[\left(\underline{\underline{\nabla}_{\underline{X}} \underline{U}} \left(\underline{X}, t \right) \cdot \underline{\underline{F}}^{-1} \left(\underline{X}, t \right) \right) \cdot \underline{dx} \right].$$

Khi đó, đạo hàm vật chất của một vecteur vật chất vô cùng bé được viết lại khi định nghĩa gradient của trường vận tốc trong hình thái κ_t :

$$\boxed{\hat{\underline{dx}} = \underline{\nabla u}(\underline{x}, t) \cdot \underline{dx}}.$$
(1.16)

trong đó:

$$\underline{\underline{\nabla u}}(\underline{x},t) := \underline{\underline{\nabla_X U}}(\underline{X},t) \cdot \underline{\underline{F}}^{-1}(\underline{X},t) \quad \text{khi } \underline{x} = \underline{\phi}(\underline{X},t). \tag{1.17}$$

1.3.1.2 Tốc độ giản nở của thể tích

Chọn một hệ tọa độ Descartes trực chuẩn $(O, \underline{e}_1, \underline{e}_2, \underline{e}_3)$ cố định trong không gian. Xét ba vecteur vật chất $\underline{d}x_1$, $\underline{d}x_2$ và $\underline{d}x_3$ không đồng phẳng đặt tại điểm \underline{x} trong hình thái κ_t . Thể tích của hình lăng trụ được tạo bởi ba vecteur này được tính thông qua sự hỗ trợ của hệ tọa độ vừa chọn ở bên trên. Đầu tiên, ta đinh nghĩa tenseur thể tích⁹:

$$\underline{\mathscr{V}} = \underline{dx}_1 \otimes \underline{e}_1 + \underline{dx}_2 \otimes \underline{e}_2 + \underline{dx}_3 \otimes \underline{e}_3$$

Nhờ vào nó, ta tính được thể tích của hình lăng trụ bên trên:

$$d\Omega_t = \det \underline{\mathscr{V}}.\tag{1.18}$$

Sau đó, ở thời điểm $t + \delta t$, các vecteur này lần lượt bị dịch chuyển thành ba vecteur vật chất mới \underline{dx}'_1 , \underline{dx}'_2 và \underline{dx}'_3 đặt tại vị trí \underline{x}' và ta tính tenseur thể tích tương tư như bên trên:

$$\underline{\underline{v}} = \underline{dx}_1' \otimes \underline{e}_1 + \underline{dx}_2' \otimes \underline{e}_2 + \underline{dx}_3' \otimes \underline{e}_3$$

Nhờ vào nó, ta tính được thể tích của hình lăng trụ mới:

$$d\Omega_{t+\delta t} = \det \underline{\underline{\boldsymbol{v}}}.\tag{1.19}$$

⁹Đơn giản là việc sắp xếp các vecteur thành một ma trận vuông mà lần lượt mỗi vecteur vật chất tạo thành một cột của ma trận này. Chúng tôi không viết đơn giản, vì ở đây, chúng tôi muốn nhấn mạnh đếp quan điểm "thao tác".

Dựa vào công thức đạo hàm hạt của vecteur vật chất đã tìm ra ở bên trên, ta có thể biến đổi:

$$d\Omega_{t+\delta t} - d\Omega_{t} = | \underline{dx'_{1}} \underline{dx'_{2}} \underline{dx'_{3}} | - | \underline{dx_{1}} \underline{dx_{2}} \underline{dx_{3}} |$$

$$= | \underline{dx'_{1}} - \underline{dx_{1}} \underline{dx'_{2}} \underline{dx'_{3}} | - | \underline{dx_{1}} \underline{dx'_{2}} - \underline{dx_{2}} \underline{dx'_{3}} |$$

$$+ | \underline{dx_{1}} \underline{dx_{2}} \underline{dx'_{3}} - \underline{dx_{3}} |$$

$$= \delta t \left(| \underline{\underline{\nabla u}} \cdot \underline{dx_{1}} \underline{dx'_{2}} \underline{dx'_{3}} | + | \underline{dx_{1}} \underline{\underline{\nabla u}} \cdot \underline{dx_{2}} \underline{dx'_{3}} | + | \underline{dx_{1}} \underline{\underline{\nabla u}} \cdot \underline{dx_{2}} \underline{dx'_{3}} | + | \underline{dx_{1}} \underline{\underline{\nabla u}} \cdot \underline{dx_{2}} \underline{dx'_{3}} | \right)$$

Nếu như chỉ dùng lại ở các khai triển bậc một, ta có:

$$d\Omega_{t+\delta t} - d\Omega_t = \delta t \left(\left| \begin{array}{ccc} \underline{\nabla u} \cdot \underline{dx_1} & \underline{dx_2} & \underline{dx_3} \right| + \left| \begin{array}{ccc} \underline{dx_1} & \underline{\nabla u} \cdot \underline{dx_2} & \underline{dx_3} \end{array} \right| + \left| \begin{array}{ccc} \underline{dx_1} & \underline{dx_2} & \underline{\nabla u} \cdot \underline{dx_3} \end{array} \right| \right)$$

Do đó tốc đô biến đổi thể tích

$$\lim_{\delta t \to 0} \frac{d\Omega_{t+\delta t} - d\Omega_{t}}{\delta t} = | \underline{\underline{\nabla} u} \cdot \underline{dx}_{1} \underline{dx}_{2} \underline{dx}_{3} | + | \underline{dx}_{1} \underline{\underline{\nabla} u} \cdot \underline{dx}_{2} \underline{dx}_{3} | + | \underline{dx}_{1} \underline{\underline{\nabla} u} \cdot \underline{dx}_{2} \underline{\underline{\nabla} u} \cdot \underline{dx}_{3} |$$

$$= \underline{\underline{\nabla} u} : \underline{\underline{\mathbb{I}}} d\Omega_{t}$$

Mà ta có thể viết gọn lại thành:

$$\frac{\dot{\widehat{d\Omega}_t}}{d\widehat{\Omega}_t} = \underline{\nabla} \cdot \underline{u}(\underline{x}, t) \, d\Omega_t \tag{1.20}$$

Công thức này cho ta thấy vai trò của dive của trường vận tốc, nó đại diện cho mức độ giản nở của lưu chất. Ta sẽ biểu diễn lại vai trò này thông qua tóc độ biến đổi thể tích tương đối:

$$\frac{\widehat{d\Omega}_t}{d\Omega_t}(\underline{x},t) = \underline{\nabla} \cdot \underline{u}(\underline{x},t)$$
(1.21)

Như vậy, khi đưa vào dive của trường vận tốc, ta đã có thể diễn giản sự giản nở của một thể tích vi mô lưu chất. Ta thu được một hệ quả quan trọng về dòng chảy không nén được: một dòng chảy không nén được khi và chỉ khi đối với một thể tích vi mô của lưu chất cho trước, thể tích của nó là không đổi. Do đó, **một lưu chất không nén được nếu và chỉ nếu dive của trường vận tốc bị triệt tiêu ở mọi điểm**. Điều này được diễn giải thành:

$$\underline{\nabla} \cdot \underline{u} \left(\underline{x}, t \right) \equiv 0. \tag{1.22}$$

1.3.1.3 Tốc độ xoay của lưu chất

Lấy lại phép đạo hàm vật chất của một vecteur vật chất vô cùng nhỏ đã thực hiện bên trên:

$$\underline{\widehat{dx}} = \underline{\nabla u}(\underline{x}, t) \cdot \underline{dx}$$

Phân tích phép tính này, khi phân tích thành phần của $\underline{\nabla}\underline{u}$, ta thấy có tồn tại hai tenseur hạng hai đối xứng \underline{d} và phản đối xứng $\underline{\omega}$ sao cho:

$$\underline{\nabla u}(\underline{x},t) = \underline{d}(\underline{x},t) + \underline{\omega}(\underline{x},t) \tag{1.23}$$

Ta gọi $\underline{\underline{d}}(\underline{x},t)$ là **tenseur tốc độ biến dạng** và $\underline{\underline{\omega}}(\underline{x},t)$ là **tenseur tốc độ xoay**. Hiển nhiên, vì là các thành phần đối xứng và phản đối xứng của trường vận tốc, định nghĩa của chúng như sau:

$$\underline{\underline{d}}(\underline{x},t) := \frac{1}{2} \left(\underline{\nabla u}(\underline{x},t) + {}^{t}\underline{\nabla u}(\underline{x},t) \right)$$
 (1.24)

$$\underline{\underline{\omega}}(\underline{x},t) := \frac{1}{2} \left(\underline{\nabla u}(\underline{x},t) - {}^{t}\underline{\nabla u}(\underline{x},t) \right)$$
 (1.25)

Khi phân tích phép nhân tenseur rút gọn của tenseur phản đối xứng với vecteur vật chất vô cùng nhỏ, theo những gì phát triển trong đại số, ta thấy tồn tại một giả-vecteur $\underline{\omega}$ mà ta gọi là $\boldsymbol{vecteur}$ \boldsymbol{xoay} , sao cho:

$$\underline{\underline{\omega}}(\underline{x},t) \cdot \underline{dx} = \underline{\omega}(\underline{x},t) \wedge \underline{dx}. \tag{1.26}$$

Kết hợp những điều này lại với nhau, ta thu được một công thức quan trọng về đạo hàm hạt một vecteur vật chất vô cùng nhỏ:

$$\underline{\hat{dx}} = \underline{\underline{d}}(\underline{x}, t) \cdot \underline{dx} + \underline{\omega}(\underline{x}, t) \wedge \underline{dx}. \tag{1.27}$$

Đây là một công thức biểu thị sự biến dạng tổng quát của lưu chất. Nó thể hiện hai sự biến dạng điển hình của lưu chất là sự giản nở của lưu chất và sự xoay của lưu chất một cách địa phương.

Bây giờ ta sẽ liên hệ nó với trường vận tốc. Khi khai triển công thức (1.26)

trong hệ tọa độ Descartes trực chuẩn $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ ta có:

$$\underline{\underline{\omega}}(\underline{x},t) \cdot \underline{dx} = \left(\frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_1}\right) (\underline{e}_1 \otimes \underline{e}_2 - \underline{e}_2 \otimes \underline{e}_1)\right)$$

$$+ \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1}\right) (\underline{e}_1 \otimes \underline{e}_3 - \underline{e}_3 \otimes \underline{e}_1)$$

$$+ \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} - \frac{\partial u_3}{\partial x_2}\right) (\underline{e}_2 \otimes \underline{e}_3 - \underline{e}_3 \otimes \underline{e}_2)\right)$$

$$\cdot (dx_1\underline{e}_1 + dx_2\underline{e}_2 + dx_3\underline{e}_3)$$

$$= \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_1}\right) (dx_2\underline{e}_1 - dx_1\underline{e}_2)$$

$$+ \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1}\right) (dx_3\underline{e}_1 - dx_1\underline{e}_3)$$

$$+ \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} - \frac{\partial u_3}{\partial x_2}\right) (dx_3\underline{e}_2 - dx_2\underline{e}_3).$$

$$\underline{\omega} \wedge \underline{dx} = (\omega_1 \underline{e}_1 + \omega_2 \underline{e}_2 + \omega_3 \underline{e}_3) \wedge (dx_1 \underline{e}_1 + dx_2 \underline{e}_2 + dx_3 \underline{e}_3)$$
$$= (\omega_2 dx_3 - \omega_3 dx_2) \underline{e}_1 + (\omega_3 dx_1 - \omega_1 dx_3) \underline{e}_2 + (\omega_1 dx_2 - \omega_2 dx_1) \underline{e}_3.$$

So sánh hai biểu thức này, ta thu được:

$$\omega_1 = \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3} \right), \quad \omega_2 = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \right), \quad \omega_3 = \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right).$$

Các thành phần này không gì khác hơn chính là các thành phần của vecteur thu được khi lấy rota của trường vận tốc, do đó ta đã thiết lập được công thức quan trọng sau:

$$\underline{\omega}(\underline{x},t) = \frac{1}{2} \underline{\nabla} \wedge \underline{u}(\underline{x},t).$$
(1.28)

Như vậy bằng việc đưa vào vecteur xoay (địa phương) của lưu chất, ta có thể biểu diễn thành phần xoay của tốc độ biến dạng của một vecteur vật chất vô cùng bé bất kỳ bên trong lưu chất. Hơn nữa, việc liên hệ vecteur xoay này với rota của trường vận tốc cho ta thấy một kết luận quan trọng: chuyển động của lưu chất thể hiện sự xoay khi và chỉ khi tồn tại ít nhất một điểm bên trong lòng lưu chất sao cho rota của trường vận tốc tại điểm này là khác không. Nói cách khác, một lưu chất chuyển động không xoay khi và chỉ khi rota của trường vân tốc của lưu chất là triệt tiêu tai moi điểm.

Nhận xét: Đối với một vất rắn hình trụ chuyển động xoay đều xung quanh trục \underline{e}_z cố định của nó, trường vận tốc của vật rắn này được viết:

$$\underline{u}\left(\underline{x},t\right) = \omega r \underline{e}_{\theta}.\tag{1.29}$$

trong đó \underline{e}_{θ} chính là vecteur trực xuyên tâm của hệ tọa độ trụ, ω là tốc độ góc của hình trụ và r là khoảng cách đến trục. Lấy rota của trường vận tốc này, ta có:

$$\underline{\nabla} \wedge \underline{u}(\underline{x}, t) = 2\omega \underline{e}_z.$$

Điều này biện minh cho tên gọi vecteur xoay của thành phần rota của trường vận tốc.

1.3.2 Các dòng lưu chất điển hình

Sau khi đã nghiên cứu sự biến dạng của lưu chất, bây giờ ta sẽ tiến hành mô tả một vài loại dòng chảy điển hình. Mục tiêu của chúng ta là tìm ra một vài khuôn mẫu dòng chảy đặc biệt, để có thể sử dụng về sau trong các nghiên cứu điển hình về sau.

1.3.2.1 Dòng chảy không nén được

Một dòng chảy phẳng không nén được là một dòng chảy có $\nabla \cdot \underline{u} = 0$. Điều này chứng tỏ rằng tồn tại một trường vecteur \underline{A} sao cho:

$$\underline{u}(\underline{x},t) = \underline{\nabla} \wedge \underline{\Psi}(\underline{x},t). \tag{1.30}$$

Ta vừa mới chuyển từ một trường vecteur sang một trường vecteur khác. Nói một cách trực diện hơn, ta đã chuyển từ một sự phức tạp sang một sự phức tạp khác. Do đó, công thức này chỉ có ý nghĩa về mặt lý thuyết.

Nếu dòng chảy này nằm trong mặt phẳng có pháp tuyến là \underline{e}_z thì tồn tại một hàm vecteur $\underline{\Psi} = \underline{\Psi}\underline{e}_z$ sao cho:

Bằng các công thức đã thực hiện trong giải tích vecteur, ta có:

$$\underline{u}(\underline{x},t) = \underline{\nabla \Psi}(\underline{x},t) \wedge \underline{e}_{z}. \tag{1.31}$$

Do đó ta gọi hàm số Ψ là \pmb{ham} \pmb{dong} . Ta sẽ trở lại các nghiên cứu sâu hơn về dòng chảy này về sau.

1.3.2.2 Dòng chảy xoay

1.4 Mô tả các đại lượng vật lý

1.4.1 Trong hình thức luận Lagrange

Theo hình thức luận Lagrange, ta sẽ đi theo từng hạt lưu chất. Do đó khi muốn khảo sát một đại lượng nào đó, ta sẽ gắn nó với một hạt lưu chất và theo dõi sự biến thiên của nó. Cụ thể hơn, đối với một đại lượng vật lý \mathcal{B} , ta sẽ hình thức hóa nó bởi:

$$\mathscr{B} = \mathscr{B}\left(\underline{X}, t\right). \tag{1.32}$$

Như vậy, sự biến thiên của đại lượng này theo thời gian đơn giản chỉ là đạo hàm riêng theo thời gian:

$$\frac{d\mathscr{B}}{dt} = \frac{\partial \mathscr{B}}{\partial t} \left(\underline{X}, t \right). \tag{1.33}$$

Phép đạo hàm này được gọi là **đạo hàm hạt**. Để phân biệt nó về mặt kí hiệu, ta viết:

$$\boxed{\frac{D\mathscr{B}}{Dt} = \frac{\partial\mathscr{B}}{\partial t} \left(\underline{X}, t\right)}.$$
(1.34)

1.4.2 Trong hình thức luận Euler

Theo hình thức luận Euler, ta sẽ đứng yêu tại một điểm trong không gian và khảo sát một đại lượng nào đó. Do đó, ta chỉ còn có thể khảo sát sự biến thiên của đại lượng này theo thời gian và việc sử dụng khái niệm trường là không thể tránh khỏi. Cụ thể hơn, với một đại lượng vật lý \mathcal{B} , ta sẽ hình thức hóa nó bởi:

$$\mathscr{B} = \mathscr{E}\left(\underline{x}, t\right). \tag{1.35}$$

Sự biến thiên của đại lượng này theo thời gian không dể để khảo sát như lúc trước nữa vì giá trị của nó không còn là một giá trị nội tại của riêng từng lưu chất nữa. Bây giờ, giá trị đo được của nó tại một điểm cho trước là một giá trị mang tính tập hợp, có nghĩa là tùy theo hạt lưu chất đi qua điểm khảo sát.

Tương tự như sự duy nhất của vận tốc, giá trị của đại lượng này chỉ có một bất chấp là hình thức luận nào đang được dùng để khảo sát. Do đó, giá trị đo được của đại lượng đó tại một thời điểm t ở điểm \underline{x} cố định chính là giá trị của đại lượng tương ứng của hạt lưu chất có mặt tại thời điểm đó, tức là:

$$\mathscr{B} = \mathscr{E}\left(\underline{x}, t\right) = \mathscr{B}\left(\underline{\phi}^{-1}\left(\underline{x}, t\right), t\right). \tag{1.36}$$

1.4.3 Phép đạo hàm hạt

Sau khi đã nêu ra sự khó khăn của việc khảo sát các đại lượng vật lý bằng hình thức luận Euler, ta thấy được điều ngược lại xảy ra đối với hình thức luận Lagrange. Tuy nhiên, hình thức luận Lagrange lại rất khó triển khai trong thực tế. Do đó bây giờ ta sẽ liên kết hai hình thức luận này lại với nhau để khảo sát sự biến thiên theo thời gian của đại lượng vật lý \mathcal{B} .

Đầu tiên, ta sẽ cố định tại một vị trí \underline{x} trong không gian và thực hiện đo đại lượng vật lý này ở thời điểm t, thu được:

$$\mathscr{B} = \mathscr{E}\left(\underline{x}, t\right) \tag{1.37}$$

Ta hãy tưởng tượng có một người khác đang đi theo hạt lưu chất nào đó mà ở thời điểm t, hạt lưu chất và cả người này đến tại vị trí \underline{x} . Người này đo được giá trị:

$$\mathcal{B} = \mathcal{B}\left(\underline{X}, t\right). \tag{1.38}$$

Ở thời điểm gặp nhau, hai người đồng ý với nhau rằng họ cùng đo được một giá trị cho đại lượng \mathcal{B} . Sau đó họ đi xa khỏi nhau,. Sau một khoảng thời gian vô cùng nhỏ δt , người trên hạt lưu chất sẽ dời đi một lượng $\underline{u}(\underline{x},t)\,\delta t$. Như vậy, người này đo được giá tri là:

$$\mathcal{B} = \mathcal{B}\left(\underline{X}, t + \delta t\right). \tag{1.39}$$

Ở vị trí mới này, giá trị đại lương này được một người cố định ở đó đo được:

$$\mathcal{B} = \mathcal{E}\left(\underline{x} + \underline{u}\left(\underline{x}, t\right) \delta t, t + \delta t\right). \tag{1.40}$$

Sư biến thiên của đại lượng này theo thời gian sẽ được tính bởi:

$$\frac{D\mathscr{B}}{Dt} = \lim_{\delta t \to 0} \frac{1}{\delta t} \left(\mathscr{B} \left(\underline{x} + \underline{u} \left(\underline{x}, t \right) \delta t, t + \delta t \right) - \mathscr{B} \left(\underline{x}, t \right) \right).$$
(1.41)

1.4.3.1 Tính toán cho đại lượng điểm

Đại lượng điểm, tức là các đại lượng xác định tại mỗi điểm trong không gian. Nói cách khác, đó chính là các trường, bao gồm các trường vô hướng, vecteur và tenseur. Bây giờ triển khai đinh nghĩa (1.41), ta có:

$$\begin{split} \frac{D\mathscr{B}}{Dt} &= \lim_{\delta t \to 0} \frac{1}{\delta t} \left(\mathscr{E} \left(\underline{x} + \underline{u} \left(\underline{x}, t \right) \delta t, t + \delta t \right) - \mathscr{E} \left(\underline{x}, t \right) \right) \\ &= \lim_{\delta t \to 0} \frac{1}{\delta t} \left[\left(\mathscr{E} \left(\underline{x} + \underline{u} \left(\underline{x}, t \right) \delta t, t + \delta t \right) - \mathscr{E} \left(\underline{x} + \underline{u} \left(\underline{x}, t \right) \delta t, t \right) \right) \\ &\quad + \left(\mathscr{E} \left(\underline{x} + \underline{u} \left(\underline{x}, t \right) \delta t, t \right) - \mathscr{E} \left(\underline{x}, t \right) \right) \right] \\ &= \lim_{\delta t \to 0} \frac{\partial \mathscr{E}}{\partial t} \left(\underline{x} + \underline{u} \left(\underline{x}, t \right) \delta t, t \right) + \frac{\partial \mathscr{E}}{\partial \underline{x}} \left(\underline{x}, t \right) \cdot \underline{u} \left(\underline{x}, t \right) \\ &= \frac{\partial \mathscr{E}}{\partial t} \left(\underline{x}, t \right) + \nabla \mathscr{E} \left(\underline{x}, t \right) \cdot \underline{u} \left(\underline{x}, t \right) \end{split}$$

Đối với đai lượng vô hướng, phép đạo hàm này được diễn giải thành:

$$\boxed{\frac{D\mathscr{B}}{Dt} = \frac{\partial\mathscr{E}}{\partial t} (\underline{x}, t) + \underline{\nabla}\mathscr{E} (\underline{x}, t) \cdot \underline{u} (\underline{x}, t)}, \tag{1.42}$$

trong đó ta đã đưa kí hiệu $\mathcal E$ vào bên trong dấu vecteur thành $\underline{\nabla} \mathcal E$ để nhấn mạnh rằng gphép lấy gradient cho ta một vecteur.

Đối với một đại lương vecteur, phép đạo hàm này được diễn giải thành:

$$\frac{D\mathscr{B}}{Dt} = \frac{\partial \mathscr{E}}{\partial t} \left(\underline{x}, t \right) + \underline{\nabla \cdot \mathscr{E}} \left(\underline{x}, t \right) \cdot \underline{u} \left(\underline{x}, t \right), \tag{1.43}$$

trong đó ta đã đưa kí hiệu \mathcal{E} vào bên trong dấu tenseur hạng hai để nhấn mạnh rằng phép lấy gradient cho ta một tenseur hạng hai.

Đối với một đại lượng tenseur hạng hai, phép đạo hàm này được diển giải thành:

$$\frac{D\mathscr{B}}{Dt} = \frac{\partial \mathscr{C}}{\partial t} (\underline{x}, t) + \underline{\underline{\nabla} \cdot \mathscr{C}} (\underline{x}, t) \cdot \underline{u} (\underline{x}, t), \qquad (1.44)$$

trong đó ta đã đưa kí hiệu \mathcal{E} vào bên trong dấu tenseur hạng ba để nhấn mạnh rằng phép lấy gradient cho ta một tenseur hạng ba.

1.4.3.2 Tính toán cho đại lượng thể tích

Đối với một đại lượng thể tích, người ta sẽ quan tâm đến mật độ thể tích của đại lượng này, $\delta(\underline{x},t)$. Với sự hỗ trợ của phép tính tích phân ba lớp, ta có:

$$\mathscr{B} = \iiint_{\mathscr{V}} \delta\left(\underline{x}, t\right) d\tau. \tag{1.45}$$

trong đó $d\tau$ là thể tích vi mô của thể tích \mathscr{V} . Để giải quyết phép đạo hàm hạt của thể tích này, chúng ta sẽ đưa vào hai khái niệm quan trọng sau:

- **Thể tích kiểm soát:** đây là một thể tích mà nó được giới hạn bởi một bề mặt sao cho thể tích này cố định trong hệ quy chiếu nghiên cứu. Đây là một thể tích được liên kết với hình thức luân Euler.
- **Thể tích vật chất:** đây là một thể tích mà nó được giới hạn bởi một **mặt vật chất**, có nghĩa là một bề mặt được tạo ra bởi sự sắp xếp của các hạt lưu chất trên đó¹⁰. Đây là một thể tích được liên kết với hình thức luận Lagrange.

Hiển nhiên, đối với một thể tích kiểm soát thì có các hạt lưu chất đi vào và đi ra nó, còn thể tích vật chất bị vận chuyển đi cùng với lưu chất. Điều này chứng tỏ không có hạt vật chất nào vận chuyển vào hoặc vận chuyển ra khỏi thể tích vật chất.

Bây giờ ta sẽ thực hiện đạo hàm tích phân (1.45). Đương nhiên là thể tích \mathcal{V} được khảo sát phải là thể tích vật chất, nó bị kéo đi trong lưu chất và ta sẽ liên kết nó với các thể tích kiểm soát tai từng vị trí mà nó đi qua. Do đó:

$$\frac{D\mathscr{B}}{Dt} = \lim_{\delta t \to 0} \frac{1}{\delta t} \left(\iiint_{\mathscr{V}(t+\delta t)} \delta \left(\underline{x} + \underline{u} \left(\underline{x}, t \right) \delta t, t + \delta t \right) d\tau - \iiint_{\mathscr{V}(t)} \delta \left(\underline{x}, t \right) d\tau \right)$$

 $^{^{-10}}$ Ta đã đề cập đến các tính chất của nó trong phần giả thiết liên tục theo hình thức luận Lagrange.

Khi sử dụng đến các thể tích được mô tả trong Hình. 1.1, hai số hạng trong ngoặc được biến đổi thành:

$$\iiint_{\mathcal{V}^{p}} \delta\left(\underline{x} + \underline{u}\left(\underline{x}, t\right) \delta t, t + \delta t\right) d\tau + \iiint_{\mathcal{V}^{+}} \delta\left(\underline{x} + \underline{u}\left(\underline{x}, t\right) \delta t, t + \delta t\right) d\tau \\
- \iiint_{\mathcal{V}^{p}} \delta\left(\underline{x}, t\right) d\tau - \iiint_{\mathcal{V}^{-}} \delta\left(\underline{x}, t\right) d\tau \\
= \iiint_{\mathcal{V}^{p}} \left(\delta\left(\underline{x} + \underline{u}\left(\underline{x}, t\right) \delta t, t + \delta t\right) - \delta\left(\underline{x}, t\right)\right) d\tau \\
+ \iiint_{\mathcal{V}^{+}} \delta\left(\underline{x} + \underline{u}\left(\underline{x}, t\right) \delta t, t + \delta t\right) d\tau - \iiint_{\mathcal{V}^{-}} \delta\left(\underline{x}, t\right) d\tau$$

Vì thể tích \mathcal{V}^p là một thể tích "cố định"
tức thời ở thời điểm đang xét, các điểm được tính tích phân sẽ không ra khỏi thể tích này, ta sẽ kí hiệu đơn giản các điểm trong thể tích bởi đơn giản một vecteur vị tr
í \underline{x} và do đó:

$$\iiint_{\mathcal{Y}^{p}} \left(\mathcal{B} \left(\underline{x}, t + \delta t \right) - \mathcal{B} \left(\underline{x}, t \right) \right) d\tau = \delta t \iiint_{\mathcal{Y}^{p}} \frac{\partial \mathcal{B}}{\partial t} \left(\underline{x}, t \right) d\tau$$

Tích phân trên hai thể tích \mathcal{V}^{\pm} được tính dựa vào sự vận chuyển của thể tích \mathcal{V} , sau đó dưa vào phần tử diên tích :

$$\iiint_{\mathcal{V}^{+}} \delta\left(\underline{x} + \underline{u}\left(\underline{x}, t\right) \delta t, t + \delta t\right) d\tau - \iiint_{\mathcal{V}^{-}} \delta\left(\underline{x}, t\right) d\tau = \\
= \delta t \iint_{\partial \mathcal{V}^{p}} \delta\left(\underline{x}, t\right) \underline{u}\left(\underline{x}, t\right) \cdot d\underline{S} - \delta t \iint_{\partial \mathcal{V}^{p}} \delta\left(\underline{x}, t\right) \underline{u}\left(\underline{x}, t\right) \cdot d\underline{S} \\
= \delta t \oiint_{\partial \mathcal{V}^{p}} \delta\left(\underline{x}, t\right) \underline{u}\left(\underline{x}, t\right) \cdot d\underline{S}$$

Như vậy, đạo hàm hạt của tích phân của đại lượng thể tích được tính:

$$\frac{D\mathscr{B}}{Dt} = \iiint_{\mathscr{V}^p} \frac{\partial \mathcal{B}}{\partial t} \left(\underline{x}, t\right) d\tau + \oiint_{\partial \mathscr{V}^p} \mathcal{B} \left(\underline{x}, t\right) \underline{u} \left(\underline{x}, t\right) \cdot d\underline{S} \,. \tag{1.46}$$

Biểu thức này là tổng quát cho các đại lượng vô hướng, vecteur và tenseur hạng hai.

Khi chỉ cần tính đến các tích phân thể tích, ta có thể viết dựa vào divergence của đai lượng:

1.4.3.3 Tính toán cho đại lượng mặt

Đối với đại lượng mặt, thực hiện phép đạo hàm tương tự như đối với trường hợp đại lượng thể tích, ta thu được công thức quan trọng sau:

Hình 1.1: Thể tích vật chất được xem xét để tính đạo hàm hạt là thể tích \mathcal{V} , ở thời điểm t nó là phần hình bao ở phía dưới, ở thời điểm $t+\delta t$ nó là phần hình bao ở phía trên. Phần giao nhau giữa hai hình bao, \mathcal{V}^p , chính là phần thể tích cố định giữa hai thời điểm khảo sát; còn hai phần hình bán nguyệt là phần thể tích lưu chất đã bị dịch chuyển mà ta kí hiệu là \mathcal{V}^+ và \mathcal{V}^- . Điểm P^- nằm trên bề mặt có vận tốc ở thời điểm t là $\underline{u}(P^-,t)$ đã bị dịch chuyển thành điểm P cũng nằm trên bề mặt.

1.4.3.4 Tính toán cho đại lượng đường

1.5 Mô tả động lực học lưu chất

1.5.1 Mở đầu

Trong phần này chúng ta sẽ sử dụng các kết quả đã được thiết lập trong cơ học môi trường liên tục để mô hình hóa các tác động cơ. Do đó, chúng ta sẽ chỉ nêu ra các kết quả cần thiết và đi trực tiếp vào các phương trình hữu dụng cho cơ lưu chất.

Xét một thể tích Ω ảo được giới hạn bởi một mặt tưởng tượng $\partial\Omega$ bên trên lòng lưu chất. Tồn tại các tác động cơ tác động lên thể tích ảo này, bao gồm các lực khối và các lực bề mặt. Các lực khối bao gồm, chẳng hạn trọng lực và lực điện, và hiển nhiên là các lực tầm xa; điều này ngụ ý rằng chúng tác dụng lên mọi phần tử lưu chất. Hệ quả là, các lực này tỷ lệ thuận với kích thước của phần tử thể tích. Do đó, nếu kí hiệu $\underline{f}_{\text{vol}}$ là lực thể tích thì tác dụng của nó lên một thể tích vi mô $d\Omega$ được tính bởi:

$$d\underline{f}_{\text{vol}}(\underline{x}) = \underline{\mathcal{F}}_{\text{vol}}(\underline{x}) d\Omega. \tag{1.47}$$

Trong đó \mathcal{F}_{vol} là mật độ lực thể tích.

Đối với tương tác giữa các hạt lưu chất ở hai bên của mặt ảo này, ta sẽ mô hình hóa nó bằng các lực bề mặt. Sở dĩ ta làm được điều này là bởi vì, đầu tiên chúng là các lực tầm rất ngắn, suy giảm rất nhanh khi khoảng cách giữa hai hạt tăng lên, nên chúng chỉ có tác dụng ở khoảng cách một vài phân tử. Do đó, chúng chỉ đáng kể khi có tiếp xúc cơ học trực tiếp giữa các phần tử lưu chất. Đối với các chất khí, các lực tầm ngắn tác dụng giữa hai khối khí tiếp xúc trực tiếp tại ranh giới là do các phân tử khí di chuyển qua bề mặt và mang theo

động lượng. Đối với các chất lỏng, sự dao động phân tử giúp động lượng được vận chuyển và lực hút giữa các phân tử ở hai phía của mặt tưởng tượng tạo ra một lực tổng hợp nhỏ hơn nhiều. Như vậy, các lực tương tác này được định xứ trên một lớp mỏng ở lân cân bề mặt $\partial\Omega$.

1.5.2 Tác động cơ bề mặt

Theo những gì đã phát triển trong cơ học môi trường liên tục, ta sẽ sử dụng định lý Cauchy:

Tại mọi điểm P trên $\partial\Omega$, tồn tại một vecteur mật độ lực bề mặt (gọi là **vecteur ứng suất**), kí hiệu là $\underline{T}(\underline{x},\underline{n}(\underline{x}))$, phụ thuộc vào vecteur pháp tuyến, $\underline{n}(\underline{x})$, tại điểm \underline{x} trên bề mặt sao cho một lực bề mặt vô cùng nhỏ được tính:

$$d\underline{f}_{sur}(\underline{x}) = \underline{T}(\underline{x}, \underline{n}(\underline{x})) dS. \tag{1.48}$$

Hơn nữa, tồn tại một trường tenseur hạng hai tại điểm \underline{x} sao cho:

$$\underline{T}(\underline{x}, \underline{n}(\underline{x})) = \underline{\sigma}(\underline{x}) \cdot \underline{n}(\underline{x}). \tag{1.49}$$

Tenseur này được gọi là **tenseur ứng suất Cauchy**.

Trong biểu diển ma trận, tenseur ứng suất Cauchy được viết trong cơ sở trực chuẩn $(\underline{e}_1,\underline{e}_2,\underline{e}_3)$ bởi:

$$\underline{\underline{\sigma}} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
 (1.50)

Thông thường, ta sẽ phân tích tenseur ứng suất thành dạng:

$$\underline{\underline{\sigma}} = -p\underline{\underline{1}} + \underline{\underline{s}} \tag{1.51}$$

Trong đó:

• $p = -\frac{1}{3} \operatorname{tr} \underline{\sigma}$ là một vô hướng được gọi là *áp suất thủy tĩnh*. Sở dĩ có tên gọi này là vì khi lưu chất đứng yên thì tenseur ứng suất được viết¹¹

$$\underline{\sigma} = -p\underline{\mathbb{1}}.\tag{1.52}$$

Lúc này lực bề mặt thu lại chỉ còn thành phần pháp tuyến:

$$d\underline{f}_{sur}(\underline{x}) = -p(\underline{x})\underline{n}(\underline{x}) dS. \tag{1.53}$$

• $\underline{\underline{s}}$ được gọi là tenseur lệch và đặc trung cho đặc tính nhớt của lưu chất và có liên quan trực tiếp đến sự biến dạng của một lưu chất có tính nhớt.

 $^{^{11}\}mathrm{Ta}$ sẽ tìm hiểu kỹ hơn về đặc tính của áp suất thủy tĩnh ở phần thủy tĩnh học.

1.5.3 Đương lượng thể tích và đương lượng khối lượng

Đương lượng thể tích $\underline{f}_{\rm vol}$ của một lực \underline{F} nào đó tác dụng lên một phần tử lưu chất có khối lượng dm với thể tích $d\tau$ được định nghĩa như sau :

$$d\underline{F} = \underline{f}_{\text{vol}} d\tau. \tag{1.54}$$

Đương lượng khối lượng $\underline{f}_{\mathrm{m}}$ được định nghĩa như sau :

$$d\underline{F} = \underline{f}_{m} dm. \tag{1.55}$$

Đối với áp lực, xét một thể tích nguyên tố $d\Omega$ mà bề mặt của nó được kí hiệu là $\partial\Omega$ trong lòng lưu chất, áp lực tác dụng lên thể tích này được tính theo áp suất $p(\underline{x},t)$ trên bề mặt được tính như sau :

$$d\underline{F}_{p} = \iint_{\partial\Omega} -p\left(\underline{x}\right)\underline{n}\left(\underline{x}\right)dS = \iiint_{d\Omega} -\underline{\nabla}\underline{p}\left(\underline{x}\right)d\tau.$$

Trong đó, để đi từ tích phân thứ nhất sang tích phân thứ hai, chúng ta đã sử dụng định lý Gauss-Ostrogradsky. Khi cho thể tích $d\Omega$ tiến tới gần không (đương nhiên vẫn ở thang trung mô), trên thể tích vi mô này, chúng ta giả sử $-\underline{\nabla p}(\underline{x})$ biến đổi nhỏ và do đó ta có thể bỏ qua sự biến đổi của nó, và do đó, đương lượng thể tích của áp lực là:

$$\boxed{\underline{f}_{\text{p,vol}} = -\underline{\nabla}p}.$$
(1.56)

Nếu tính đến đương lượng khối lượng của áp lực, chúng ta có :

$$\boxed{\underline{f}_{\mathrm{p,m}} = -\frac{1}{\rho} \underline{\nabla p}.} \tag{1.57}$$

Một phép tính tương tự đối với tenseur ứng suất một cách tổng quát cho ta đương lượng thể tích của lực tiếp xúc:

$$d\underline{F}_{\text{sur}} = \iint_{\partial\Omega} \underline{\underline{\sigma}}(\underline{x}) \cdot \underline{n}(\underline{x}) dS = \iint_{\Omega} \underline{\nabla} \cdot \underline{\underline{\sigma}}(\underline{x}) d\tau$$

Điều này cho ta tương đương thể tích của lực bề mặt:

$$\underline{f}_{\text{sur,vol}} = \underline{\nabla} \cdot \underline{\underline{\sigma}}.\tag{1.58}$$

Chú ý: Thực hiện phân tích đã thực hiện ở phần bên trên, ta có thể phân tích được hai thành phần của đương lượng thể tích của áp lực:

$$\underline{\nabla} \cdot \underline{\underline{\sigma}} = \underline{\nabla} \cdot \left(-p\underline{\underline{1}} + \underline{\underline{s}} \right) = \underline{\nabla} \cdot \left(-p\underline{\underline{1}} \right) + \underline{\nabla} \cdot \underline{\underline{s}} = -\underline{\nabla}\underline{p} + \underline{\nabla} \cdot \underline{\underline{s}}.$$

Kết quả cuối cùng này cho ta lại kết quả về đương lượng thể tích áp suất được tính ở trên.

Một phép tính đơn giản với trọng lực cho ta đương lượng thể tích và đương lương khối lương của nó lần lươt là:

$$\underline{f}_{\text{gra,vol}} = \rho \underline{g}, \quad \underline{f}_{\text{gra,m}} = \underline{g}.$$
 (1.59)

1.5.4 Phương trình cân bằng động lượng

Bây giờ, sau khi đã tiến hành mô hình hóa các lực khối cũng như các lực mặt, ta đã có thể hiện thực hóa hệ thức cơ bản của động lực học cho lưu chất.

Xét một khối lưu chất là miền Ω là một thể tích vật chất (ta cũng kí hiệu Ω cho thể tích của miền) được giới hạn bởi bề mặt $\partial\Omega$. Áp dụng hệ thức cơ bản của động lực học cho từng hạt lưu chất trong thể tích này tác dụng lên lưu chất, sau đó cho toàn bộ thể tích ta viết được phương trình động lượng:

$$\iiint_{\Omega} \rho \frac{D\underline{u}}{Dt} d\tau = \oiint_{\partial\Omega} \underline{\underline{\sigma}} \cdot \underline{n} dS + \iiint_{\Omega} \rho \underline{f}_{v,m} d\tau.$$
 (1.60)

Sử dụng tương đương thể tích của lực bề mặt, ta thu được:

$$\iiint_{\Omega} \rho \frac{D\underline{u}}{Dt} d\tau = \iiint_{\Omega} \underline{\nabla} \cdot \underline{\underline{\sigma}} d\tau + \iiint_{\Omega} \rho \underline{f}_{v,m} d\tau.$$
 (1.61)

Điều này nghiệm đúng cho mọi thể tích tưởng tượng của lưu chất, do đó hệ thức tích phân được thu gọn thành:

$$\rho\left(\underline{x},t\right)\frac{D\underline{u}}{Dt}\left(\underline{x},t\right) = \underline{\nabla}\cdot\underline{\underline{\sigma}}\left(\underline{x},t\right) + \rho\left(\underline{x},t\right)\underline{f}_{\mathrm{v,m}}\left(\underline{x},t\right). \tag{1.62}$$

Đây là một hệ thức quan trọng và có tên là **phương trình động lượng Cauchy** và ta sẽ diển giải hệ thức này trong hệ tọa độ DESCARTES trực chuẩn $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$:

$$\rho \frac{Du_1}{Dt} = \frac{\partial \sigma_{11}}{\partial x} + \frac{\partial \sigma_{12}}{\partial y} + \frac{\partial \sigma_{13}}{\partial z} + \rho f_{v,m,1}
\rho \frac{Du_2}{Dt} = \frac{\partial \sigma_{21}}{\partial x} + \frac{\partial \sigma_{22}}{\partial y} + \frac{\partial \sigma_{23}}{\partial z} + \rho f_{v,m,2}
\rho \frac{Du_3}{Dt} = \frac{\partial \sigma_{31}}{\partial x} + \frac{\partial \sigma_{32}}{\partial y} + \frac{\partial \sigma_{33}}{\partial z} + \rho f_{v,m,3}$$
(1.63)

1.5.5 Phương trình cân bằng moment động lượng

Lấy lại các kí hiệu của phần (...), ta sẽ viết phương trình cân bằng moment động lượng. Đầu tiên, nhân có hướng vecteur vị trí $(\underline{x} - \underline{x}_0)$ (trong đó A cố định) vào số hạng gia tốc. Đó chính là số hạng đạo hàm của moment động lượng của hạt lưu chất, do đó nó phải bằng tổng moment động lượng của các lực tác dụng lên hạt lưu chất, tức là bằng với moment của lực khối và lực mặt. Sau đó công tất cả các phương trình này trên thể tích Ω , ta có:

$$\iint_{\Omega} (\underline{x} - \underline{x}_{0}) \wedge \rho \frac{D\underline{u}}{Dt} d\tau = \iint_{\partial\Omega} (\underline{x} - \underline{x}_{0}) \wedge \underline{\underline{\sigma}} \cdot \underline{n} dS + \iint_{\Omega} \left[(\underline{x} - \underline{x}_{0}) \wedge \rho \underline{f}_{v,m} + \underline{m} \right] d\tau \tag{1.64}$$

Thực hiện biến đổi số hang dive của tensor ứng suất, ta suy ra:

Tiếp theo ta biến đổi dive của tích vô hướng của vế phải:

$$\underline{\nabla} \cdot ((\underline{x} - \underline{x}_0) \wedge \underline{\underline{\sigma}}(\underline{x}, t)) = (q_i \sigma_{jk} - q_j \sigma_{ik})_{,k} \underline{e}_k$$

$$= [q_{i,k} \sigma_{jk} - q_{j,k} \sigma_{ik} + (q_i \sigma_{jk,k} - q_j \sigma_{ik,k})] \underline{e}_k$$

$$= [\sigma_{ji} - \sigma_{ij} + (q_i \sigma_{jk,k} - q_j \sigma_{ik,k})] \underline{e}_k.$$

Trong đó ta đã kí hiệu các thành phần của $\underline{x} - \underline{x}_0$ bởi q_i (theo cách kí hiệu tổng Einstein). Sử dụng tenseur Levi-Civita, $\underline{\epsilon}$, ta có thể viết được công thức dive ở trên thành:

$$\underline{\nabla} \cdot \left((\underline{x} - \underline{x}_0) \wedge \underline{\underline{\sigma}} \right) = \left(t\underline{\underline{\sigma}} - \underline{\underline{\sigma}} \right) : \underline{\underline{\epsilon}} + (\underline{x} - \underline{x}_0) \wedge \underline{\nabla} \cdot \underline{\underline{\sigma}}$$

Thay lại vào công thức (...), ta thu được:

$$\iint_{\Omega} (\underline{x} - \underline{x}_{0}) \wedge \rho \frac{D\underline{u}}{Dt} d\tau = \iint_{\Omega} \left[\left(\underline{t}\underline{\underline{\sigma}} - \underline{\underline{\sigma}} \right) : \underline{\underline{\epsilon}} + (\underline{x} - \underline{x}_{0}) \wedge \underline{\nabla} \cdot \underline{\underline{\sigma}} \right] d\tau + \iint_{\Omega} \left[\underline{x} \wedge \rho \underline{f}_{v,m} + \underline{m} \right] d\tau$$

Tiếp theo, nhân có hướng hai vế của phương trình động lượng Cauchy với $(\underline{x}-\underline{x}_0)$ rồi lấy tích phân trên thể tích Ω :

$$\iiint_{\Omega} (\underline{x} - \underline{x}_0) \wedge \rho \frac{D\underline{u}}{Dt} d\tau = \iiint_{\Omega} (\underline{x} - \underline{x}_0) \wedge \left(\underline{\nabla} \cdot \underline{\underline{\sigma}} + \rho \underline{f}_{v,m} \right) d\tau.$$

Trừ hai vế của phương trình này cho nhau, ta thu được công thức cân bằng moment động lượng cục bộ dạng vi phân:

$$\left[\left(t \underline{\underline{\sigma}}(\underline{x}, t) - \underline{\underline{\sigma}}(\underline{x}, t) \right) : \underline{\underline{\epsilon}} + \underline{m}(\underline{x}, t) = \underline{0} \right].$$
(1.65)

Trong một trường hợp cực kỳ quan trọng đó là không có moment lực khối $\underline{m}(x,t)$ biểu thức trên được rút gọn thành:

Lúc này ta thấy **tenseur ứng suất là đối xứng**. Đây là kết quả ta sẽ luôn luôn áp dụng trong trường hợp các dòng lưu chất chuyển động chỉ với tác dụng của trọng trường.

Chú ý: Trong từ-thủy động học, vì có sự hiện diện của từ trường trong thành phần lực khối, các dòng vật chất đã được ion hoá có các tenseur ứng suất là không đối xứng. Cụ thể hơn, đối với một dòng lưu chất tích điện có vận tốc \underline{u} chuyển động dưới tác dụng của từ trường \underline{B} , tenseur ứng suất được tính bởi:

$$\sigma_{ij} = \frac{\partial B_j}{\partial x_k} \frac{\partial u_k}{\partial x_i}.$$
 (1.67)

Chương 2 THỦY TĨNH HỌC

Chương 3

ĐỘNG HỌC LƯU CHẤT

Chương 4

ĐỘNG LỰC HỌC LƯU CHẤT

Chương 5

LƯU CHẤT LÝ TƯỞNG

Chương 6 LƯU CHẤT THỰC

Chương 7 LƯU BIẾN HỌC

Chương 8 ĐỘNG HỌC XOÁY

Phần II CƠ HỌC CÁC LƯU CHẤT NÉN ĐƯỢC

Chương 9

CÁC PHƯƠNG TRÌNH CHI PHỐI

Contents

1.1	Đối tượng nghiên cứu	8
1.2	Mô tả chuyển động	9
1.3	Mô tả động học lưu chất	13
1.4	Mô tả các đại lượng vật lý	19
1.5	Mô tả động lực học lưu chất	24

9.1 Mở đầu

Tất cả các dòng chuyển động của không khí đều là dòng chảy nén được, bởi vì không khí là nén được. Tuy nhiên, đối với các dòng chảy có tốc độ không quá lớn, theo $thực\ nghiệm$, số Mach của nó phải thỏa M<0.3, ta có thể đơn giản xấp xỉ nó như các dòng lưu chất không nén được và áp dụng các kết quả đã biết đối với dòng chảy không nén được của lưu chất. Điều này có thể thực hiện được bởi vì ở các vận tốc chuyển động không quá lớn, tốc độ của các hiện tượng lan truyền là không quá lớn và do đó sự trao đổi năng lượng là không quá đáng kể. Điều này làm cho các xử lý liên quan đến năng lượng (có bản chất nhiệt động lưc học) là không cần thiết.

Tuy nhiên, đối với các dòng chuyển động có tốc độ lớn hơn, số Mach $M \geq 0.3$, những xử lý nhiệt động lực học là không thể tránh khỏi. Bên cạnh đó, các hiện tượng lan truyền sẽ xảy ra và một sự xử lý nó bằng toán học là cần thiết, điều này sẽ được thực hiện thông qua bài toán Riemanne. Do đó, đầu tiên, chúng ta hãy nhắc lại về các khái niệm đã biết trong cơ lưu chất và nhiệt động lực học.

9.2 Tính nén được của lưu chất

Mọi vật chất đều có tính nén được. Khi ta nén một vật chất, ta có thể làm thay đổi thể tích và qua đó thay đổi khối lượng riêng của nó, điều này đặc trưng cho tính nén được của nó. Tính nén được đối với chất khí là rõ ràng; đối với chất lỏng tính chất này là ít đặc trưng hơn; đối với chất rắn, tính nén được hầu như không xảy ra.

Để đặc trung cho tính nén được, ta sẽ đặc trung nó bởi hệ số nén:

$$\tau = \frac{1}{\rho} \frac{d\rho}{dp}.\tag{9.1}$$

Trong đó, $d\rho$ là lượng tăng khối lượng riêng của khối lưu chất có khối lượng riêng ban đầu ρ khi áp đặt vào nó một sự tăng áp suất một lượng dp. Định nghĩa này đương nhiên là không đủ, bởi vì lưu chất có quá trình trao đổi năng lượng với môi trường bên ngoài và do đó sự thay đổi nhiệt độ của nó là đáng kể và ta phải tính đến điều này. Đối với một quá trình đẳng nhiệt, ta định nghĩa hệ số nén đẳng nhiệt bởi:

$$\tau_t = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_{T=hs}.$$
 (9.2)

Đối với quá trình nén đẳng entropy, nó không trao đổi nhiệt với môi trường bên ngoài, do đó ta có thể liên hệ nhiệt độ của nó bởi các hệ thức đã biết về quá trình đoạn nhiệt, do đó ta có thể định nghĩa hệ số nén đẳng entropy:

$$\tau_s = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_{s=hs}. \tag{9.3}$$

Như vậy, với điều kiện nào thì lưu chất không nén được? Từ phương trình định nghĩa tính nén được:

$$d\rho = \tau \rho dp.$$

Ta thấy độ tăng khối lượng riêng tỉ lệ với độ tăng áp suất áp đặt lên lưu chất. Do đó:

- Đối với các lưu chất có hệ số nén là nhỏ: nếu một sự tăng áp suất là không quá lớn, tức là áp suất có thể thay đổi giá trị trong một khoảng đủ rộng, ta vẫn xem lưu chất là không nén được. Đây là một trường hợp rất điển hình đối với các chất lỏng.
- Đối với các lưu chất có hệ số nén là đủ lớn: nếu một sự tăng áp suất nhỏ, tức là áp suất chỉ có thể thay trong một **khoảng giá trị hạn chế**. Điều này ngầm định rằng các dòng chuyển động có vận tốc không quá lớn. Đây là trường hợp rất điển hình đối với các chất khí.

Nếu hai điều kiện vừa phân tích ở bên trên đều bị vi phạm, ta bắt buộc phải áp dụng một khuôn khổ lưu chất nén được.

9.3 Nhắc lại về cơ lưu chất

Ở đây xin không chứng minh lại các biểu thức mà chỉ đơn giản liệt kê chúng với muc đích làm tham chiếu trực tiếp cho các phát triển sau này.

Phương trình bảo toàn lưu lượng:

$$\frac{\partial \rho}{\partial t} + \underline{\nabla} \cdot (\rho \underline{u}) = 0. \tag{9.4}$$

Phương trình Navier-Stokes: như đã thảo luận, trong dòng chảy nén được, không thể bỏ qua hiện tượng lan truyền sóng, do dó, chúng tôi đưa ra phương trình tổng quát sau đây

$$\rho \frac{D\underline{u}}{Dt} = -\underline{\nabla}p + \underline{\nabla} \cdot \left[\mu \left(\underline{\nabla}\underline{u} + {}^{t}\underline{\nabla}\underline{u} - \frac{2}{3} \left(\underline{\nabla} \cdot \underline{u} \right) \underline{\mathbb{1}} \right) + \zeta \left(\underline{\nabla} \cdot \underline{u} \right) \underline{\mathbb{1}} \right] + \rho \underline{g}. \tag{9.5}$$

trong đó $\zeta = \lambda + 2\mu/3$ là hệ số nhớt khối, là một hệ số phụ thuộc không những vào đặc tính lưu chất mà còn vào đặc tính dòng chuyển động. Điều này ứng với phương trình ứng suất-biến dạng có dạng:

$$\underline{\underline{\tau}} = \mu \left(\underline{\nabla u} + {}^{t}\underline{\nabla u} - \frac{2}{3} \left(\underline{\nabla} \cdot \underline{u} \right) \underline{\underline{1}} \right) + \zeta \left(\underline{\nabla} \cdot \underline{u} \right) \underline{\underline{1}}. \tag{9.6}$$

Tuy nhiên trong các nghiên cứu mà không có sự hấp thụ âm thanh hay sự suy giảm sóng xung kích, ta sẽ sử dụng dạng phương trình đơn giản hơn của phương trình Navier-Stokes:

$$\rho \frac{D\underline{u}}{Dt} = -\underline{\nabla}p + \mu \Delta \underline{u} + \frac{1}{3}\mu \underline{\nabla} (\underline{\nabla} \cdot \underline{u}) + \rho \underline{g}.$$
(9.7)

9.4 Nhắc lại về nhiệt động lực học

9.4.1 Cân bằng năng lượng tổng quát

Nguyên lý thứ nhất của nhiệt động lực học phát biểu rằng, năng lượng của lưu chất được bảo toàn. Năng lượng của lưu chất bao gồm nội năng và động năng, mà khi xem xét sự biến đổi, phải bằng tổng lượng nhiệt và lượng công mà lưu chất trao đổi (cho và nhận), như vậy nếu kí hiệu e là nội năng riêng của lưu chất, phương trình cân bằng năng lượng được viết:

$$\frac{D}{Dt} \iiint_{\mathcal{V}} \rho\left(e + \frac{\underline{u}^2}{2}\right) d\tau = \dot{W} + \dot{Q}.$$

Nhiệt mà lưu chất trao đổi bao gồm lượng nhiệt mà bản thân lưu chất sinh ra và không có nguồn gốc cơ học vĩ mô, chẳng hạn khi có sự xuất hiện của một phản ứng hóa học và thông qua sự truyền nhiệt với môi trường bên ngoài. Công mà lưu chất trao đổi bao gồm công do các tác động cơ ngoại sinh ra và công do chính các tác động cơ nội bên trong lưu chất. Do đó, nếu gọi q là tốc độ sinh nhiệt riêng của lưu chất và \underline{j}_{th} là vecteur mật độ dòng nhiệt (theo quy ước, luôn luôn hướng ra khỏi Ω), sự trao đổi nhiệt có thể được viết:

$$\begin{split} \dot{Q} &= \iiint_{\mathcal{V}} \rho q d\tau + \oiint_{\mathcal{S}} -\underline{j}_{th} d\underline{S}, \\ \dot{W} &= \iiint_{\mathcal{V}} \underline{\sigma} : \underline{\underline{D}} d\tau + \iiint_{\mathcal{V}} \rho \underline{g} \cdot \underline{u} d\tau \end{split}$$

trong đó

$$\underline{\underline{D}} = \frac{1}{2} \left(\underline{\nabla u} + {}^{t}\underline{\nabla u} \right)$$

là tenseur tốc độ biến dạng. Kết hợp các phương trình này lại, sử dụng định lý Gauss-Odtrogradsky và công thức đạo hàm đối lưu đối với đại lượng thể tích, ta có phương trình cân bằng năng lượng dưới dạng vi phân:

$$\frac{\partial}{\partial t} \left[\rho \left(e + \frac{\underline{u}^2}{2} \right) \right] + \underline{\nabla} \cdot \left[\rho \left(e + \frac{\underline{u}^2}{2} \right) \underline{u} \right] = \rho q - \underline{\nabla} \cdot \underline{j}_{th} + \underline{\underline{\sigma}} : \underline{\underline{D}} + \rho \underline{g} \cdot \underline{u}. \quad (9.8)$$

Sử dụng định nghĩa của tenseur tốc độ biến dạng, ta có:

$$\frac{\partial}{\partial t} \left[\rho \left(e + \frac{\underline{u}^2}{2} \right) \right] + \underline{\nabla} \cdot \left[\rho \left(e + \frac{\underline{u}^2}{2} \right) \underline{u} + \underline{j}_{th} - \underline{\underline{\sigma}} \cdot \underline{u} \right] = \rho q + \rho \underline{\underline{g}} \cdot \underline{\underline{u}}. \tag{9.9}$$

9.4.2 Cân bằng entropy

Bây giờ ta áp dụng các khái niệm đã biết của nguyên lý thứ hai nhiệt động lực học cho khối lưu chất. Nếu gọi s là entropy riêng của lưu chất, thế thì entropy của toàn bộ khối lưu chất được viết

$$S = \iiint_{\mathcal{V}} \rho s d\tau.$$

Entropy liên hệ trực tiếp đến thông tin của hệ thống, do đó nó không thể bị phá hủy, điều đó chứng tỏ phải có sự cân bằng entropy. Sự biến thiên entropy của lưu chất có thể do sự cung cấp của môi trường bên ngoài và sự biến đổi của tự bản thân lưu chất, nếu gọi Φ_S là vecteur thông lượng entropy sinh ra do tương tác với môi trường bên ngoài (được quy ước hướng ra ngoài Ω) và q_s là tốc độ sinh ra entropy riêng bên trong bản thân lưu chất, ta có:

$$\Delta S = \iiint_{\mathcal{V}} \rho q_s d\tau + \oiint_{\mathcal{S}} -\underline{\Phi}_S d\underline{S}.$$

Như vây entropy nôi sinh của lưu chất được tính :

$$S_{\rm ns} = \dot{S} - \Delta S = \frac{D}{Dt} \iiint_{\mathcal{X}} \rho s d\tau - \iiint_{\mathcal{X}} \rho q_s d\tau + \oiint_{\mathcal{S}} \underline{\Phi}_S d\underline{S}. \tag{9.10}$$

Theo nguyên lý thứ hai nhiệt động lực học, $S_{\rm ns} \geq 0$, do đó khi sử dụng định lý Gauss-Odtrogradsky, ta có bất đẳng thức entropy cục bộ:

$$\frac{D}{Dt}(\rho s) - \rho q_s + \underline{\nabla} \cdot \underline{\Phi}_S \ge 0. \tag{9.11}$$

Sử dụng các mật độ trao đổi nhiệt trong phần trên, ta có:

$$\boxed{\frac{D(\rho s)}{Dt} - \rho \frac{q}{T} + \underline{\nabla} \cdot \left(\frac{\underline{j}_{th}}{T}\right) \ge 0}.$$
(9.12)

Đây là một bất đẳng thức quan trọng và được gọi là **bất đẳng thức Claussius- Duhem**, bởi vì, mọi hành vi của lưu chất mà không thỏa mãn bất đẳng thức này đều không được phép xảy ra.

9.5 Hệ phương trình chi phối hành vi của lưu chất

Như đã đề cập ở bên trên, một lưu chất nén được được đặc trưng thông qua khối lượng riêng, trường vận tốc, trường nhiệt độ và trường áp suất. Tức là 6 thông số cần phải được mô tả để mô tả đặc tính của một lưu chất nén được. Các phương trình (9.4), (9.5) và (9.9) chỉ cung cấp 5 phương trình, như vậy là còn thiếu một phương trình.

Phương trình còn thiếu này chắc chắn phải liên quan đến hành vi của lưu chất, mà ta sẽ gọi là phương trình trạng thái của lưu chất. Có nhiều phương trình trạng thái, nhưng có hai phương trình quan trọng và sẽ được sử dụng trong toàn bộ phần nghiên cứu này:

• Phương trình trạng thái của khí lý tưởng:

$$p = \rho RT. \tag{9.13}$$

Trong đó $R = 287.07 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ là hằng số khí cho không khí. Đối với các khí khác, hằng số được cho trong bảng (???).

• Phương trình trạng thái polytrophic: một khí polytrophic là một khí lý tưởng mà nhiệt dung riêng đẳng tích là hằng số, tức là

$$e = c_v T (9.14)$$

trong đó c_v là nhiệt dung riêng đẳng tích và là hằng số. Tỉ số giữa nhiệt dung riêng đẳng áp và nhiệt dung riêng đẳng tích hiển nhiên là hằng số, đối với không khí

$$\gamma = \frac{c_p}{c_v} = 1.4. \tag{9.15}$$

Như vậy, trong khuôn khổ của phần lớn nghiên cứu của chúng ta, ta chỉ làm việc với khí lý tưởng polytropic. Hơn nữa, quá trình trao đổi nhiệt được giới hạn trong định luật truyền nhiệt FOURIER:

$$j_{th} = -K\underline{\nabla T}.\tag{9.16}$$

Trong đó K được gọi là hệ số dẫn nhiệt. Khi đó, hệ phương trình chi phối hành vi của lưu chất được viết:

$$\frac{\partial \rho}{\partial t} + \underline{\nabla} \cdot (\rho \underline{u}) = 0$$

$$\rho \frac{D\underline{u}}{Dt} = -\underline{\nabla} p + \mu \underline{\Delta} \underline{u} - \frac{1}{3} \mu \underline{\nabla} \cdot (\underline{\nabla} \cdot \underline{u}) + \rho \underline{g}$$

$$\frac{\partial}{\partial t} \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} \right) \right] + \underline{\nabla} \cdot \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} \right) \underline{u} + \underline{j}_{th} - \underline{\underline{\sigma}} \cdot \underline{u} \right] = \rho q + \rho \underline{g} \cdot \underline{u}$$

$$p = \rho RT$$
(9.17)

mà ta gọi là *hệ phương trình lưu chất thực*.

Trong chừng mực mà lưu chất được xem là không nhớt, không có sự trao đổi nhiệt, các lực thể tích có thể bỏ qua được thì hệ phương trình trên được đơn giản thành hê phương trình có phương trình đông lương theo Euler:

$$\frac{\partial \rho}{\partial t} + \underline{\nabla} \cdot (\rho \underline{u}) = 0$$

$$\rho \frac{D\underline{u}}{Dt} = -\underline{\nabla} p$$

$$\frac{\partial}{\partial t} \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} \right) \right] + \underline{\nabla} \cdot \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right) \underline{u} \right] = 0$$

$$p = \rho RT$$
(9.18)

mà ta gọi là *hệ phương trình lưu chất lý tưởng*.

Chú ý: Tồn tại nhiền hơn phương trình trạng thái của lưu chất bên cạnh phương trình khí lý tưởng. Chẳng hạn như phương trình Wan der Waals dành cho khí thực:

$$\left(P + \frac{n^2 a}{V}\right)(V - nb) = nRT.$$

Chương 10

DÒNG CHUYỂN ĐỘNG KHÔNG NHỚT

Một dòng chuyển động đơn chiều (không phải dòng chuyển động một chiều) là một dòng chuyển động mà trường vận tốc trong hình thức luận Euler chỉ phụ thuộc vào một tọa độ duy nhất x. Để nghiên cứu các dòng chuyển động loại này, ta giả thiết rằng dòng chuyển động là không nhớt, đẳng entropy và bỏ qua lưc thể tích.

10.1 Dòng chuyển động ổn định

Khi dòng chảy là dùng, hệ phương trình Euler được đơn giản thành:

$$\begin{cases}
\frac{\nabla \cdot (\rho \underline{u})}{\rho \frac{D \underline{u}}{D t}} = 0 \\
\rho \frac{D \underline{u}}{D t} = -\underline{\nabla} p \\
\nabla \cdot \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right) \underline{u} \right] = 0 \\
p = \rho R T
\end{cases}$$
(10.1)

Khai triển phương trình năng lượng, ta có:

$$\underline{\nabla} \cdot \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right) \underline{u} \right] = \left(c_v T + \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right) \underbrace{\underline{\nabla} \cdot (\rho \underline{u})}_{=0} + \rho \underline{u} \underline{\nabla} \left(c_v T + \rho \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right)$$

$$= \rho \underline{u} \underline{\nabla} \left(c_v T + \rho \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right)$$

$$= 0.$$

Do đó, đối với một dòng chuyển động dừng và không nhớt thì ở mọi điểm bên trong lưu chất, năng lượng riêng của nó phải được bảo toàn, tức là:

$$c_v T + \rho \frac{\underline{u}^2}{2} + \frac{p}{\rho} = hs. \tag{10.2}$$

Khi lưu chất được chọn là khí lý tưởng, sử dụng phương trình trạng thái của khí lý tưởng, thay vào đó, ta có:

$$c_p T + \rho \frac{\underline{u}^2}{2} = hs \,. \tag{10.3}$$

Đây là một phương trình quan trọng bởi vì thứ nhất nó là một phương trình vô hướng đơn giản; thứ hai, nó liên hệ trạng thái của lưu chất T với thông số của dòng chuyển động \underline{u} . Như vậy, ta sẽ sử dụng hệ thức này để nghiên cứu dòng chuyển động của lưu chất. Lưu ý rằng phương trình này thu được bằng phép đạo hàm vật chất, do đó phương trình này chỉ đúng đối với một đường dòng nào đó. Khi đi dọc theo đường dòng, tồn tại một điểm mà ở đó hạt lưu chất nằm trong trạng thái nghỉ và ta gọi là trạng thái tham $chi\acute{e}u$, tức là:

$$c_p T + \rho \frac{\underline{u}^2}{2} = h_0 \,. \tag{10.4}$$

Trong đó h_0 là enthalpy của điểm dùng.

- 10.2 Độ nhớt và sự truyền nhiệt
- 10.3 Sóng xung kích
- 10.4 Sóng xung kích thẳng