

Neural Network

Ratchainant Thammasudjarit, Ph.D.

Prerequisite Mathematics

Recall your linear algebra

• A function of univariate is defined as

 $x \mapsto f(x)$

Function

FUNCTION f:
OUTPUT f(x)

Each input must have only one output

sigmoid

Properties

- $f(x) \in [0, 1]$
- $X \in [-\infty, \infty]$
- $x \rightarrow 0$, f(x) becomes linear
- abs(x) > 4, f(x) changes slowly

tanh

Properties

- $f(x) \in [-1, 1]$
- $x \in [-\infty, \infty]$
- $x \rightarrow 0$, f(x) becomes linear
- abs(x) > 2, f(x) changes slowly

ReLu (Rectifier Linear Unit)

Properties

- $f(x) \in [0, \infty]$
- $x \in [-\infty, \infty]$
- $x \le 0$, f(x) = 0
- x > 0, f(x) = x

Vector

$$\|\vec{u}\| = \sqrt{3^2 + 4^2} = 5$$

Dot product

$$\vec{u} \cdot \vec{v} = (3 \times 4) + (4 \times 3) = 24$$

Transpose

if
$$\mathbf{u} = \begin{bmatrix} 3 & 4 \end{bmatrix}$$
 then
$$\mathbf{u}^T = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Matrix

A stack of vectors

Pairwise multiplication

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

$$A \odot B = \begin{bmatrix} 1 \times 2 & 2 \times 2 & 3 \times 2 \\ 4 \times 2 & 5 \times 2 & 6 \times 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}$$

Transpose

$$A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Calculus (Derivative)

Derivative

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\Delta x = 1$$
if $x = 2$ then $f(x) = 4$
if $x = 3$ then $f(x) = 9$

if
$$x = 2$$
 then slope $= \frac{\Delta f(x)}{\Delta x} = \frac{0.004}{0.001} = 4$

Mathematically,
$$\frac{d}{dx}f(x) = 2x = 2(2) = 4$$

Derivative of sigmoid

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{d}{dz}g(z) = \frac{d}{dz} \left[\frac{1}{1 + e^{-z}} \right]$$

$$= \frac{d}{dz} (1 + e^{-z})^{-1}$$

$$= -(1 + e^{-z})^{-2} \frac{d}{dz} (1 + e^{-z})$$

$$= -(1 + e^{-z})^{-2} \frac{d}{dz} (e^{-z})$$

$$= -(1 + e^{-z})^{-2}(-e^{-z})$$

$$= \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}}$$

$$= \frac{1}{1 + e^{-z}} \cdot \frac{(1 + e^{-z}) - 1}{1 + e^{-z}}$$

$$= \frac{1}{1 + e^{-z}} \left[\frac{1 + e^{-z}}{1 + e^{-z}} - \frac{1}{1 + e^{-z}} \right]$$

$$= \frac{1}{1 + e^{-z}} \left[1 - \frac{1}{1 + e^{-z}} \right]$$

$$\therefore \frac{d}{dz}g(z) = g(z)(1 - g(z))$$

Derivative of tanh

$$g(z) = \tanh(z)$$
$$= \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$\frac{d}{dz}g(z) = \frac{(e^z + e^{-z})d(e^z - e^{-z}) - (e^z - e^{-z})d(e^z + e^{-z})}{(e^z + e^{-z})^2}$$

$$= \frac{(e^z + e^{-z})(e^z + e^{-z}) - (e^z - e^{-z})(e^z - e^{-z})}{(e^z + e^{-z})^2}$$

$$= 1 - \left(\frac{e^z - e^{-z}}{e^z + e^{-z}}\right)^2$$

$$\therefore \frac{d}{dz}g(z) = 1 - \tanh^2(z)$$

Derivative of relu

$$g(z) = \max(0, z)$$

$$\frac{d}{dz}g(z) = \begin{cases} 0 & \text{if } z < 0\\ 1 & \text{if } z > 0\\ \text{undefined} & \text{if } z = 0 \end{cases}$$

In neural network practice, z can get close to zero but never be zero, e.g. 0.00000 ...

Perceptron

A smallest unit in neural network

Training Sample VS Training Data

Training sample is a pair of feature vector **x** and its class label

$$(\mathbf{x}, y), \mathbf{x} \in \mathbb{R}^{n_x}, y \in \{0,1\}$$

Training data is <u>m pair</u> of feature vector **x** and its class label

$$\mathbf{x} \in \mathbb{R}^{n_{\chi} \times 1}$$

$$\mathbf{X} \in \mathbb{R}^{n_x \times m}$$

$$\mathbf{y} \in \mathbb{R}^{1 \times m}$$

A Perceptron

The smallest unit of neural network

$$\hat{y} = P(y = 1 | \mathbf{x}^{(i)}) = \frac{1}{1 + e^{-(\mathbf{W}^T \cdot \mathbf{X}^{(i)} + b)}}$$

• Given $\mathbf{x}^{(i)} \in \mathbb{R}^{n_\chi \times 1}$, determine

•
$$\hat{y} = P(y = 1 | \mathbf{x}^{(i)})$$

- Parameters
 - $\mathbf{w} \in \mathbb{R}^{1 \times n_{\chi}}$
 - $b \in \mathbb{R}$
- Output

•
$$\hat{y} = g(z) = g(\mathbf{w}^T \cdot \mathbf{x}^{(i)} + b)$$

A Perceptron

The smallest unit of neural network

$$g(z) = \frac{1}{1 + e^{-z}}$$

• If
$$z \gg 0$$
, $g(z) \rightarrow 1$

• if
$$z \ll 0, g(z) \rightarrow 0$$

Loss Function

Error of a training sample

The loss function $\mathcal{L}(\hat{y}, y)$ determines how close of \hat{y} to the ground-truth y

$$\mathcal{L}(\hat{y}, y) = -(y \log \hat{y} - (1 - y) \log(1 - \hat{y}))$$

$$\operatorname{Goal:} \mathcal{L}(\hat{y}, y) \to 0$$

$$\operatorname{if} y = 1,$$

$$\therefore z = w^{T} \cdot x + b, \quad \to \infty$$

$$\hat{y} = \frac{1}{1 + e^{-z}}, \quad \to 1$$

$$\mathcal{L}(\hat{y}, y) = -\log \hat{y}, \quad \to 0$$

$$\operatorname{if} y = 0,$$

$$\therefore z = w^{T} \cdot x + b, \quad \to -\infty$$

$$\hat{y} = \frac{1}{1 + e^{-z}}, \quad \to 0$$

$$\mathcal{L}(\hat{y}, y) = -\log(1 - \hat{y}), \quad \to 0$$

Cost Function

Error of training data

The cost function $\mathcal{J}(\mathbf{w},b)$ indicates how well the model does in entire training samples

$$\mathcal{J}(\mathbf{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$
$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$

- Training Goal
 - Find **w**, b that minimize $\mathcal{J}(\mathbf{w}, b)$

Gradient Descent

Searching for minimum point in hyperplane

Goal

• Determine \mathbf{w} , b that minimize $\mathcal{J}(\mathbf{w}, b)$

Gradient Descent

Initialize weight and adjust until the cost function approach to minimum

Procedure

Repeat {

$$w \coloneqq w - \alpha \frac{d}{dw} \mathcal{J}(w)$$

Until
$$\mathcal{J}(w) \to \min(\mathcal{J}(w))$$

where α represents the learning rate (a small positive value)

On the right

$$\frac{d}{dw}\mathcal{J}(w) > 0$$
, $\rightarrow w$ is adjusted by decreasing $\frac{d}{dw}\mathcal{J}(w)$

On the left

$$\frac{d}{dw}\mathcal{J}(w) < 0, \qquad \rightarrow w \text{ is adjusted by increasing } \frac{d}{dw}\mathcal{J}(w)$$

Gradient Descent

- Minimizing $\mathcal{J}(\mathbf{w},b)$
 - $w \coloneqq w \alpha \frac{d}{dw} \mathcal{J}(w, b)$, where $w \in \mathbf{w}$
 - $b \coloneqq b \alpha \frac{d}{db} \mathcal{J}(w, b)$
- In each training iteration, we need to determine

$$\frac{d}{dw}\mathcal{J}(w,b)$$
 and $\frac{d}{db}\mathcal{J}(w,b)$

Computational Graph

Forward path

Given a function $\mathcal{J}(a,b,c) = 3(a+bc)$

- Forward path
 - $\mathcal{J}(a,b,c)$ can be determined
- Backward path
 - Derivative of $\mathcal{J}(a,b,c)$ w.r.t. a or b or c can be determined

Computational Graph

Backward path

Given a function $\mathcal{J}(a,b,c) = 3(a+bc)$

• Finding
$$\frac{d\mathcal{J}}{dv}$$

•
$$v = 11$$
 Nudge its value $v = 11.001$

•
$$\mathcal{J} = 33$$
 — Changed by \mathcal{V} \rightarrow $\mathcal{J} = 33.003$

Therefore

$$\frac{d\mathcal{J}}{dv} = \frac{0.003}{0.001} = 3$$

Computational Graph

Backward path

Given a function $\mathcal{J}(a,b,c) = 3(a+bc)$

• Finding $\frac{d\mathcal{J}}{da}$

•
$$a = 5$$
 Nudge its value $\Rightarrow a = 5.001$

•
$$v = 11$$
 Changed by $a \rightarrow v = 11.001$

•
$$\mathcal{J} = 33$$
 Changed by $a, v \rightarrow \mathcal{J} = 33.003$

Therefore

$$\frac{d\mathcal{J}}{da} = \frac{d\mathcal{J}}{dv} \cdot \frac{dv}{da} = \frac{0.003}{0.001} \cdot \frac{0.001}{0.001} = 3$$
Chain rule

Perceptron with Gradient Descent

For a training sample

Given
$$\mathbf{w} = \begin{bmatrix} w_1 & w_2 \end{bmatrix}$$
 and b

• Recap

$$z = \mathbf{w}^{T} \cdot \mathbf{x}^{(i)} + b$$

$$\hat{y} = a = g(z)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\mathcal{L}(a, y) = -(y \log a + (1 - y) \log(1 - a))$$

$$\hat{y} = a = g(z)$$

$$\mathcal{L}(a, y)$$

- Goal
 - To adjust $\mathbf{w} = [w_1 \ w_2]$ and b to minimize $\mathcal{L}(a, y)$

Perceptron with Gradient Descent

Backward Propagation

$$\Delta z = \frac{d}{dz} \mathcal{L}(a, y)$$

$$= \frac{d}{da} \mathcal{L}(a, y) \cdot \frac{da}{dz}$$
since $\frac{d}{da} \mathcal{L}(a, y) = \frac{d}{da} [-y \log a - (1 - y) \log(1 - a)]$

$$= -\frac{y}{a} + \frac{1 - y}{1 - a}$$
and $\frac{da}{dz} = a(1 - a)$

$$\therefore \Delta z = \left(-\frac{y}{a} + \frac{1 - y}{1 - a}\right) \cdot a(1 - a)$$

$$= a - y$$

In other words, Δz is the difference between obtained output and desired output

Implementation

Vectorization

Applying a perceptron to m samples

Broadcasting property enable implementation without looping over training data

$$\mathbf{y} = g(\mathbf{z}) = g(\mathbf{w}^T \cdot \mathbf{X} + b)$$

Naïve Implementation

Loop and Loop and Loop

This is NOT an efficient method

Note: Python programming does not have the Δ character. For simplicity, let's change

$$\Delta w_1 \to dw_1$$
$$\Delta w_2 \to dw_2$$
$$\Delta b \to db$$

Initialize

Implement with Vectorization

The efficient method

Initialize

$$\mathcal{J} = 0$$
, $dw_1 = 0$, $dw_2 = 0$, $db = 0$

for epoch = 1 to max_epoch:

$$\mathbf{Z} = \mathbf{w}^T \cdot \mathbf{X} + b$$

$$\mathbf{A} = g(\mathbf{Z})$$

$$\mathcal{J} = -\frac{1}{m} \sum (\mathbf{y} \log \mathbf{A} - (1 - \mathbf{y}) \log(1 - \mathbf{A}))$$

$$\mathbf{dz} = \mathbf{A} - \mathbf{Y}$$

$$\mathbf{dw} = \frac{1}{m} \mathbf{X} \cdot \mathbf{dz}^T$$

$$db = \frac{1}{m} \cdot np. sum(\mathbf{dz})$$

$$\mathbf{w} - \mathbf{a} \cdot \mathbf{dw}$$

$$b - \mathbf{a} \cdot \mathbf{db}$$

Implement with Vectorization

The efficient method

Only loop over training iteration

for epoch = 1 to max_epoch:

$$\mathbf{Z}_{1\times m} = \left(\mathbf{w}_{1\times n_{x}}\right)^{T} \cdot \mathbf{X}_{n_{x}\times m} + b$$

$$\mathbf{A}_{1\times m} = g(\mathbf{Z}_{1\times m})$$

$$J = -\frac{1}{m} \sum_{i=1}^{m} (\mathbf{y}_{1\times m} \log \mathbf{A}_{1\times m} - (1 - \mathbf{y}_{1\times m}) \log(1 - \mathbf{A}_{1\times m}))$$

$$\mathbf{d}\mathbf{z}_{1\times m} = \mathbf{A}_{1\times m} - \mathbf{y}_{1\times m}$$

$$\mathbf{d}\mathbf{w}_{1\times n_{x}} = \frac{1}{m} \mathbf{X}_{n_{x}\times m} \cdot (\mathbf{d}\mathbf{z}_{1\times m})^{T}$$

$$db = \frac{1}{m} \sum_{i=1}^{m} \mathbf{d}\mathbf{z}_{1\times m}$$

$$\mathbf{w}_{1\times n_{x}} - = \alpha \cdot \mathbf{d}\mathbf{w}_{1\times n_{x}}$$

$$b = \alpha \cdot db$$

Neural Network

A collection of perceptrons

Shallow Neural Network

None or a few hidden layers

1-Layer Network (0 Hidden Layer) (perceptron or logistic regression)

3-Layer Network (2 Hidden Layer)

Deep Neural Network

More hidden layers

Notations

L represents the number of layers (exclude the input layer)

 $n^{[l]}$ represents the number of units in the l^{th} layer Examples:

$$n^{[1]} = 5$$
, $n^{[2]} = 4$, $n^{[3]} = 3$, $n^{[4]} = 1$

 $g^{[l]}(\cdot)$ represents the activation function in the l^{th} layer

 $oldsymbol{z}^{[l]}$ represents the linear combination in the l^{th} layer

 $\boldsymbol{a}^{[l]}$ represents the activated values in the l^{th} layer

 $\mathbf{W}^{[l]}$ represents the weights matrix in the l^{th} layer

 $\mathbf{b}^{[l]}$ represents the bias in the l^{th} layer

w represents the collection of weights matrix of all layers

 $w_{i,j}$ represents the weights connecting between the i^{th} unit in the l^{th} layer to the j^{th} unit in the $(l-1)^{th}$ layer

lacktriangle represents the collection of bias vectors of all layers

Deep Neural Network

Weights

• Weights
$$w = \begin{bmatrix} \mathbf{W}^{[1]} \\ \mathbf{W}^{[2]} \\ \mathbf{W}^{[3]} \\ \mathbf{W}^{[4]} \end{bmatrix}$$

$$\mathbf{W}^{[l]} = egin{bmatrix} \mathbf{w}_1^{[l]} \ \cdots \ \mathbf{w}_{n^{[l]}}^{[l]} \end{bmatrix}_{n^{[l]},n^{[l-1]}}$$

• Example

$$\mathbf{W}^{[3]} = \begin{bmatrix} w_{1,1} & \cdots & w_{1,4} \\ \vdots & \ddots & \vdots \\ w_{3,1} & \cdots & w_{3,4} \end{bmatrix}$$

Dimension of $\mathbf{W}^{[l]}$ is $(n^{[l]}, n^{[l-1]})$

Deep Neural Network

Biases

• Biases

$$\mathbb{b} = [\mathbf{b}^{[1]} \quad \dots \quad \mathbf{b}^{[4]}] = \begin{bmatrix} b_1^{[1]} & \cdots & b_1^{[4]} \\ \vdots & \cdots & \vdots \\ b_5^{[1]} & \cdots & b_3^{[4]} \end{bmatrix}$$

$$\mathbf{b}^{[l]} = egin{bmatrix} b_1^{[l]} \ dots \ b_{n^{[l]}}^{[l]} \end{bmatrix}$$

Dimension of $\mathbf{b}^{[l]}$ is $(n^{[l]}, 1)$

Implementation with Vectorization

The L layers neural network

• At the layer $l: \mathbf{W}^{[l]}, \mathbf{b}^{[l]}$

Implementation with Vectorization

The L layers neural network

- At the layer $l: \mathbf{W}^{[l]}, \mathbf{b}^{[l]}$
 - Forward Propagation

$$\mathbf{z}^{[l]} = \mathbf{W}^{[l]} \cdot \boldsymbol{a}^{[l-1]} + \mathbf{b}^{[l]}$$
$$\boldsymbol{a}^{[l]} = g^{[l]}(\mathbf{z}^{[l]})$$

• Backward Propagation

$$d\mathbf{z}^{[l]} = d\mathbf{a}^{[l]} * g'^{[l]}(\mathbf{z}^{[l]})$$

$$d\mathbf{W}^{[l]} = \frac{1}{m} d\mathbf{z}^{[l]} \cdot \boldsymbol{a}^{[l-1]^T}$$

$$\mathbf{db}^{[l]} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{dz}^{[l]}$$

 $np. sum(\mathbf{dz}^{[l]}, axis = 1, keepdims = True)$

$$d\mathbf{a}^{[l-1]} = \mathbf{W}^{[l]}^T \cdot d\mathbf{z}^{[l]}$$

Model Tuning

Bias and Variance Problem

Unable to visualize in high dimensional data

Easy to learn but difficult to master

High Bias (Underfitting)

Just right

High Variance (Overfitting)

L1 and L2

L1 and L2 Regularization

Recall the cost function of perceptron

Goal:

$$\min_{\mathbf{W},b} \mathcal{J}(\mathbf{w},b), \qquad \mathbf{w} \in \mathbb{R}^{n_{\mathcal{X}}}, b \in \mathbb{R}$$

• L1 regularization (Lasso)

$$\mathcal{J}(\mathbf{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \|\mathbf{w}\|_{1}$$

$$\text{where} \quad \|\mathbf{w}\|_{1} = \sum_{j=1}^{n_{\chi}} |w_{j}|$$

 λ represents the regularization parameter

- L1 makes many weights become zeros
- Good for compacting the model
- L1 is not often used

L1 and L2 Regularization

Recall the cost function of perceptron

Goal:

$$\min_{\mathbf{w},b} \mathcal{J}(\mathbf{w},b), \qquad \mathbf{w} \in \mathbb{R}^{n_x}, b \in \mathbb{R}$$

• L2 regularization (Ridge)

$$\mathcal{J}(\mathbf{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \|\mathbf{w}\|_{2}^{2}$$

$$\text{where} \quad \|\mathbf{w}\|_{2}^{2} = \sum_{j=1}^{n_{\chi}} w_{j}^{2} = \mathbf{w}^{T} \cdot \mathbf{w}$$

 λ represents the regularization parameter

 L2 is much more often used compared to L1

L2 of Deep Neural Network

The cost function

$$\mathcal{J}(\mathbf{w}^{[1]}, \mathbf{b}^{[1]}, \dots, \mathbf{w}^{[L]}, \mathbf{b}^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||\mathbf{w}||_F^2$$

where

Frobenious norm
$$\|\mathbf{w}\|_F^2 = \sum_{i=1}^{n^{[l-1]}} \sum_{j=1}^{n^{[l]}} \left(w_{ij}^{[l]}\right)^2$$

$$\mathbf{w}^{[l]}$$
: $(n^{[l]}, n^{[l-1]})$

Modifying back propagation

$$\mathbf{dw}^{[l]} = (\cdot) + \frac{\lambda}{m} \mathbf{w}^{[l]}$$

$$\mathbf{w}^{[l]} = \mathbf{w}^{[l]} - \alpha \mathbf{dw}^{[l]}$$

$$= \mathbf{w}^{[l]} - \alpha \left[(\cdot) + \frac{\lambda}{m} \mathbf{w}^{[l]} \right]$$

$$= \mathbf{w}^{[l]} - \frac{\alpha \lambda}{m} \mathbf{w}^{[l]} - \alpha(\cdot)$$

$$= (1 - \frac{\alpha \lambda}{m}) \mathbf{w}^{[l]} - \alpha(\cdot)$$

Weight Decay

where (·) represents the term obtained from original back propagation

Why does L2 prevent overfitting?

Why does L2 prevent overfitting?

0.75

0.25

€ 0.00 -0.25 -0.50

> -0.75 -1.00

tanh function

Decision boundary is stretched out

Smoother cost function

$$\mathcal{J}(\mathbf{w}^{[1]}, \mathbf{b}^{[1]}, \dots, \mathbf{w}^{[L]}, \mathbf{b}^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||\mathbf{w}||_{F}^{2}$$

DropOut & DropConnect

DropOut

Ensemble Neural Network

- Set the probability of enable hidden units in each hidden layer
- The edges connected to any disable hidden unit will be removed
- DropOut is applied ONLY training but NOT testing
- DropOut produces many possible combination of neuron network
- DropOut is very popular in computer vision

DropConnect

Generalization of DropOut

- Set the Boolean mask to randomly disable connections
- Rescale output on active connections
- DropConnect is applied ONLY for training but NOT testing
- DropConnect makes even more possible combination than dropout
- DropConnect is very popular in computer vision

Implementation

Illustration of DropConnect at the layer 3

- Define theoretical variable to Python variable
 - P as keepprob
 - Create a Boolean mask to randomly disable weights

Implementation

Illustration of DropConnect at the layer 3

• Rescale the $a^{[3]}$

• Example: If $a^{[3]}$ is

• Rescale $a^{[3]}$ after drop connect will be

In practice a3 is obtained from

$$a^{[3]} = g^{[3]}(\mathbf{z}^{[3]}) = g^{[3]}(\mathbf{W}^{[3]} \cdot a^{[2]} + \mathbf{b}^{[3]})$$

Recommended Settings

Some idea to set your keepprob

- The keepprob can be different value in different layer
- The lower $n^{[l]}$ (number of hidden units in the layer l) the higher keepprob
- Input layer has keepprob equal to 1

Other Regularizations

Early stopping

 $\mathcal{J}(\mathbb{W},\mathbb{b})$

• Stop training based on the cost convergence

Gradient

Normalized Input

Speed up your training

• Subtract mean

$$\mu = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{(i)}$$

$$X := X - \mu$$

• Data will have zero mean

 x_1 has higher variance compared to x_2

Normalized Input

Speed up your training

Normalized variance

$$\sigma^{2} = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}^{(i)})^{2}$$
$$\mathbf{X} = \frac{\mathbf{X}}{\sigma^{2}}$$

Data will have zero mean and normalized variance

• μ and σ^2 from training set will be used in test set

Normalized Input

• Given a contour of the cost function

Speed up your training

Gradient is oscillated and take longer time to the minimum value

Gradient moves more directly to the minimum value

Minibatch Gradient Descent

Batch VS Minibatch

Dividing training data into minibatch

Notations

 $\mathbf{X}^{\{t\}}$ and $\mathbf{y}^{\{t\}}$ for training samples of mini-batch t

• Vectorization enables effective computation over m samples

$$\mathbf{X}_{n_{\chi} \times m} = \left[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\right]$$

$$\mathbf{y}_{1 \times m} = [y^{(1)}, y^{(2)}, \dots, y^{(m)}]$$

- What if m is extremely large, e.g. 5,000,000
 - Use mini-batch

$$\begin{aligned} \mathbf{X}_{n_{\chi} \times m} &= \begin{bmatrix} \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(1000)} | \mathbf{x}^{(1001)}, \mathbf{x}^{(1002)}, \dots, \mathbf{x}^{(2000)} | \dots \dots | \dots \mathbf{x}^{(5,000,000)} \end{bmatrix} \\ \mathbf{y}_{1 \times m} &= \begin{bmatrix} \mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(1000)} | \mathbf{y}^{(1001)}, \mathbf{y}^{(1002)}, \dots, \mathbf{y}^{(2000)} | \dots \dots | \dots \mathbf{y}^{(5,000,000)} \end{bmatrix} \\ \mathbf{y}_{1} &= \begin{bmatrix} \mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(1000)} | \mathbf{y}^{(1001)}, \mathbf{y}^{(1002)}, \dots, \mathbf{y}^{(2000)} | \dots \dots | \dots \dots \mathbf{y}^{(5,000,000)} \end{bmatrix} \end{aligned}$$

Mini-Batch **Implementation**

From the previous example

while { for t in range(0, 5000): # Forward propagation on $X^{\{t\}}$ $\mathbf{z}^{[1]} = \mathbf{w}^{[1]} \cdot \mathbf{X}^{\{t\}} + \mathbf{b}^{[1]}$ $\boldsymbol{a}^{[1]} = g(\mathbf{z}^{[1]})$ Use vectorization implementation $\mathbf{z}^{[L]} = \mathbf{w}^{[L]} \cdot \boldsymbol{a}^{[L-1]} + \mathbf{b}^{[L]}$ \rightarrow from $\mathbf{X}^{\{t\}}, \mathbf{y}^{\{t\}}$ $\boldsymbol{a}^{[L]} = g(\mathbf{z}^{[L]})$ $\mathcal{J}^{\{t\}} = \frac{1}{1000} \sum_{i=1}^{1000} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2 \times 1000} \sum_{l} \|\mathbf{w}^{[l]}\|_{F}^{2}$

Backward propagation w.r.t. $\mathcal{J}^{\{t\}}$ using $\mathbf{X}^{\{t\}}$ and $\mathbf{y}^{\{t\}}$

$$\mathbf{w}^{[l]} = \mathbf{w}^{[l]} - \alpha \mathbf{d} \mathbf{w}^{[l]}$$
$$\mathbf{b}^{[l]} = \mathbf{b}^{[l]} - \alpha \mathbf{d} \mathbf{b}^{[l]}$$

} until converge

Mini-batch gradient descent

Cost function comparison

 $\mathcal{J}(\mathbb{W},\mathbb{b})$

- The cost function of mini-batch gradient descent could be oscillated
 - **X**^{1}, **y**^{1} might be an easy gradient
 - **X**^{2}, **y**^{2} might be a harder gradient
 - Overall should be downward

Choosing Mini- batch size

The extreme cases

- Mini-batch size = m
 - Batch gradient descent

$$(X^{\{1\}}, y^{\{1\}}) = (X, y)$$

- Mini-batch size = 1
 - Stochastic gradient descent

$$(\mathbf{X}^{\{1\}}, \mathbf{y}^{\{1\}}) = (\mathbf{x}^{(1)}, y^{(1)})$$

Characteristics	Batch	Mini-batch	SGD
Speed	Very Slow	Fast	Slow Does not leverage vector
Convergence to minimum	Guarantee	Not Guarantee	Not Guarantee

Batch Gradient Descent

Choosing Mini- batch size

Conclusion

- Small Training Set $(m \le 2000)$
 - Use Batch gradient descent
- Otherwise
 - Use Mini-batch

- Suggested mini-batch size
 - 2^k to perfectly fit in CPU/GPU memory, e.g. 64, 128, 256, 512, etc

Gradient Optimization

Momentum Gradient Descent, RMSprop, and ADAM

Momentum Gradient Descent

Idea

- → Gradient Descent
- Momentum Gradient Descent
- Overshoot (too much learning rate)

Desired movement directions

Fast to the minimum point

From our example, movement on this direction (-----) should be fast

Slow to others

From our example, movement on this direction () should be slow

Momentum Gradient Descent

Velocity and Acceleration

Similar to a ball rolling in a bowl

On iteration t:
 Compute dW, db on a set of mini-batch

$$v_{dW} = \beta v_{dW} + (1 - \beta)dW$$

$$friction \rightarrow velocity acceleration$$

$$v_{db} = \beta v_{db} + (1 - \beta)db$$

$$\mathbf{W} = \mathbf{W} - \alpha \mathbf{v_{dW}}$$
$$\mathbf{b} = \mathbf{b} - \alpha \mathbf{v_{db}}$$

Momentum Gradient Descent

Implementation

Initialize
$$\mathbf{v_{dW}} = 0, \mathbf{v_{db}} = 0$$

Note: dimension of $v_{dW} = dW$ dimension of $v_{db} = db$

Hyper-parameters are α , β

• On iteration t:

Compute **dW**, **db** on a set of mini-batch

$$\mathbf{v}_{\mathbf{dW}} = \beta \mathbf{v}_{\mathbf{dW}} + (1 - \beta)\mathbf{dW}$$

$$\mathbf{v_{db}} = \beta \mathbf{v_{db}} + (1 - \beta) \mathbf{db}$$

$$\mathbf{W} = \mathbf{W} - \alpha \mathbf{v_{dW}}$$

$$\mathbf{b} = \mathbf{b} - \alpha \mathbf{v_{db}}$$

- In practice, $\beta = 0.9$
- Some literature omitted 1β

RMSprop

Speed up gradient descent

- → Gradient Descent
- → RMSprop

On iteration t:
 Compute dW, db on a set of mini-batch

$$s_{dW} = \beta s_{dW} + (1 - \beta)dW^{2}$$

$$s_{db} = \beta s_{db} + (1 - \beta)db^{2}$$

$$W = W - \frac{\alpha dW}{\sqrt{s_{dW} + \varepsilon}}$$

$$b = b - \frac{\alpha db}{\sqrt{s_{db} + \varepsilon}}$$

$$a \text{ small positive number for numerical stabilization (preventing divided by zero)}$$

 RMSprop enables to use the larger learning rate without overshoot movement

Bias Correction

Bias correction of data point t is defined as

$$v_{t} = \beta v_{t-1} + (1 - \beta)\theta_{t}$$

$$\text{set } \beta = 0.98, \quad v_{0} = 0$$

$$v_{1} = 0.98v_{0} + 0.02\theta_{1}$$

$$v_{2} = 0.98v_{1} + 0.02\theta_{2} = 0.0196\theta_{1} + 0.02\theta_{2}$$

- Use $\frac{v_t}{1-\beta^t}$ to estimate the ideal data point t
- Not accurate at the beginning of t but later will be much more accurate

Adaptive Moment Estimation (Adam)

Combining momentum and RMSprop

Initialize
$$\mathbf{v_{dW}} = 0$$
, $s_{\mathbf{dW}} = 0$, $\mathbf{v_{db}} = 0$, $s_{\mathbf{db}} = 0$

Note: Adam works well in wide range across deep learning applications

• On iteration t:

Compute dw, db on a set of mini-batch

$$\mathbf{v}_{dW} = \beta_1 \mathbf{v}_{dW} + (1 - \beta_1) dW$$

$$\mathbf{v}_{db} = \beta_1 \mathbf{v}_{db} + (1 - \beta_1) db$$
momentum

$$s_{dW} = \beta_2 s_{dW} + (1 - \beta_2) dW^2$$

$$s_{dh} = \beta_2 s_{dh} + (1 - \beta_2) db^2$$

$$RMSprop$$

$$\mathbf{v}_{\mathbf{dW}}^{\text{correct}} = \frac{\mathbf{v}_{\mathbf{dW}}}{1 - \beta_1^t}, \quad \mathbf{v}_{\mathbf{db}}^{\text{correct}} = \frac{\mathbf{v}_{\mathbf{db}}^{\text{correct}}}{1 - \beta_1^t}$$

$$\mathbf{s}_{\mathbf{dW}}^{\text{correct}} = \frac{\mathbf{s}_{\mathbf{dW}}}{1 - \beta_2^t}, \quad \mathbf{s}_{\mathbf{db}}^{\text{correct}} = \frac{\mathbf{s}_{\mathbf{db}}^{\text{correct}}}{1 - \beta_2^t}$$

bias correction

$$\mathbf{W}^{[l]} = \mathbf{W}^{[l]} - \alpha \frac{\mathbf{v}_{\mathbf{dW}}^{\text{correct}}}{\sqrt{\mathbf{s}_{\mathbf{dW}}^{\text{correct}} + \varepsilon}}$$

$$\mathbf{b}^{[l]} = \mathbf{b}^{[l]} - \alpha \frac{\mathbf{v}_{\mathbf{db}}^{\text{correct}}}{\sqrt{\mathbf{s}_{\mathbf{db}}^{\text{correct}} + \varepsilon}}$$

$$updating$$

Suggested Hyperparameters

Fixed learning rate VS Decayed Learning rate

• α : Need to be tuned

• β_1 : 0.9

• β_2 : 0.999

• ε : 10^{-8}

Fixed learning rate

Decayed Learning rate

Hyperparameter Tuning

Strategy to choose hyper-parameters

Deep learning hyperparameters

Ranked by importance

- 1st priority
 - α : Learning rate
- 2nd priority
 - β : Adam's parameters only $(\beta_1, \beta_2, \varepsilon)$ (Use default values)
 - Mini-batch size
 - $n^{[l]}$: Number of hidden units in the layer l
- 3rd priority
 - *L*: Number of layers
 - β : Momentum and RMSprop

Grid approach

Grid approach is acceptable for traditional ML

- Limitations
 - Important of some hyperparameters might not be fully address
 - Ex. Grid allows trial on 5 values of α and ε from 25 experiments

For deep learning random grid is better

• Random grid allows trial on 25 values of α from 25 experiments

 Random grid gives us more richly to explore sets of possible hyperparameters

- Start from randomly coarse
- Randomly fine later

Coarse to fine

Use the appropriate scale to pitch hyperparameters

Spending 10% of resource to search between 0.0001 to 0.1 whereas 90% of resources to search between 0.1 to 1

 Normal scale works for some hyperparameters

L

Log-scale is good for learning rate

