Лабораторная работа 1.3.1 Определение модуля Юнга Выполнил Жданов Елисей Б01-205

1 Цель работы:

1)Экспериментально получить зависимость между напряжением и деформацией (закон Гука) для простейшего напряженного состояния упругих тел - одноосного растяжения.

2)По результатам измерений вычислить модуль Юнга.

2 Оборудование:

В работе используются: Прибор Лермантова, проволока из исследуемого материала, зритетьная труба со шкалой, набор грузов, микрометр, 2-х метровая линейка.

3 Теоретическая справка:

Связь между удлинением проволоки ∆l и силой P, вызывающей это удлинение, выражается законом Гука:

$$\frac{P}{S} = E \frac{\Delta l}{L}$$

Для определения модуля Юнга используется прибор Лермантова, схема которого изображена на рис. 1. Верхний конец проволоки **П**, изготовленной из исследуемого материала, прикреплен к консоли **K**, а нижний - к цилиндру, которым оканчивается шарнирный кронштейн **Ш**. На этот же цилиндр опирается рычаг **r**, связанный с зеркальцем **3**. Таким образом, удлинение проволоки можно измерить по углу поворота зеркальца.

Натяжение проволоки можно менять, перекладывая грузы с площадки **M** на площадку **O** и наоборот. Такая система позволяет исключить влияние деформации кронштейна **K** на точность измерений, так как нагрузка на нем все время остается постоянной.

При проведении эксперимента следует иметь в виду, что проволока **П** при отсутствии нагрузки всегда несколько изогнута, что не может не сказаться на результатах, особенно при небольших нагрузках. Проволока вначале не столько растягивается, сколько распрямляется.

4 Измерения и обработка:

1) Убедимся, что установка откалибравана. Выведем искомую формулу.

Угловой наклон зеркала:

$$\Delta \alpha \approx \frac{\Delta n}{2h}$$

Удлинение проволки

Рис. 1

$$\Delta l = \frac{\Delta n \cdot r}{2h}$$

Задам Δn как $n_i - n_0$; $n_0 = 11$ см

2) Использую заданный диаметр проволки(d=0.73 мм) для нахождения площади сечения

$$S = \frac{\pi d^2}{4} = 0.42 \text{ mm}^2$$

3) Длину проволки замеряю линейкой

$$L = (179 \pm 0.5) \text{ cm}$$

Запишу также остальные замеры

$$h = (137 \pm 0.5) \text{ cm}$$

$$r = 1.3 \text{ cm}$$

4) Предельная масса для замера

$$M_{max} = 0.3\sigma S \approx 10$$
 кг

Имеющиеся грузы имеют суммарную массу порядка 3 кг. Это сильно меньше предела, и как впоследствии будет видно, не способно необратимо изменить длину проволки.

5) Построю таблицу, которую постепенно буду заполнять новыми данными

	т, кг	P, H	n, см/ Δn						\overline{n} , cm	
			\downarrow	↑	\downarrow	1	\downarrow	1		
1	+0	0	11.2	11.2	11.2	11.1	11.1	11.5	(11.22 ± 0.06)	
2	+245.8	2.41	12.5	12.5	12.6	12.5	12.6	12.7	(12.57 ± 0.03)	
3	+246.1	4.83	13.7	13.4	13.7	13.8	13.8	13.9	(13.72 ± 0.07)	
4	+245.5	7.23	15.0	14.6	14.9	15.0	15.0	15.3	(14.97 ± 0.09)	
5	+245.7	9.64	16.2	15.9	16.2	16.2	16.2	16.4	(16.18 ± 0.07)	
6	+246.1	12.06	17.2	17.1	17.3	17.3	17.4	17.4	(17.28 ± 0.05)	
7	+245.6	14.47	18.3	18.3	18.5	18.5	18.6	18.6	(18.47 ± 0.06)	
8	+245.6	16.88	19.5	19.5	19.8	19.7	19.8	19.8	(19.68 ± 0.06)	
9	+245.2	19.28	20.7	20.7	20.9	20.9	20.9	20.9	(20.83 ± 0.04)	
10	+245.7	21.69	21.9	21.9	22.0	22.0	22.1	22.1	(22.00 ± 0.04)	

Погрешность \overline{n} является среднеквадратичным отклонением, то есть σ

Задам Δn как $n_i - n_0$; $n_0 = 11.22~{\rm cm}$

Построю итоговую таблицу

	\overline{n}	$\overline{\Delta n}$	$\overline{\Delta l}$, mm	Е, 100 ГПа	1/P
1	(11.22 ± 0.06)	(0.00 ± 0.06)	(0.000 ± 0.003)	0	inf
2	(12.57 ± 0.03)	(1.35 ± 0.03)	(0.064 ± 0.002)	(1.61 ± 0.05)	0.4149
3	(13.72 ± 0.07)	(2.50 ± 0.07)	(0.118 ± 0.004)	(1.74 ± 0.06)	0.2070
4	(14.97 ± 0.09)	(3.75 ± 0.09)	(0.177 ± 0.005)	(1.74 ± 0.05)	0.1383
5	(16.18 ± 0.07)	(4.96 ± 0.07)	(0.235 ± 0.004)	(1.75 ± 0.04)	0.1037
6	(17.28 ± 0.05)	(6.06 ± 0.05)	(0.286 ± 0.003)	(1.80 ± 0.02)	0.0829
7	(18.47 ± 0.06)	(7.25 ± 0.06)	(0.343 ± 0.003)	(1.80 ± 0.02)	0.0691
8	(19.68 ± 0.06)	(8.46 ± 0.06)	(0.400 ± 0.004)	(1.80 ± 0.02)	0.0592
9	(20.83 ± 0.04)	(9.61 ± 0.04)	(0.454 ± 0.003)	(1.81 ± 0.02)	0.0519
10	(22.00 ± 0.04)	(10.78 ± 0.04)	(0.510 ± 0.003)	(1.81 ± 0.02)	0.0461

Погрешность $\overline{\Delta l}$ составляет

$$\varepsilon_{\Delta l}=\varepsilon_n+\varepsilon_h$$

Формула для Е

$$E = \frac{PL}{S\Delta l}$$

Соответственно погрешность

$$\varepsilon_E = \varepsilon_L + \varepsilon_{\Delta l}$$

Приму $g = 9.8154 \text{ м/c}^2$

6) График

Экстраполяцию удобно провести линеаризацией

Окончательный результат экстраполяции получается

$$E = (183 \pm 2)$$
 ΓΠα

Погрешность оценена из графика но наклону экстраполяционной прямой

5 Вывод:

В результате проделанной работы был получен график закона Гука для растягиваемой проволки.

На основании этого графика был расчитан предельный модуль Юнга для материала проволки.

В процессе работы особых неожиданностей не возникало, эксперимент проходил в рамках малых деформаций. Отмечаю, что стоит аккуратно относиться к калибровке установки, любые движения могут серьезно сбивать настройку. Это является основной причиной случайной погрешности.

Буду считать, что работа и цель выполнены.