Uniqueness, Continuation, and Reflection of Analytic Functions Math 307, Complex Analysis

Zhaoyang Li, Baoguanyan Kang

Duke Kunshan University

May 3, 2024

Outline

Identity Theorem

2 Analytic Continuation

Reflection Principle

Identity Theorem

Theorem

If two functions f and g are analytic in the same domain D and f(z) = g(z) on a subset of D that has a limit point z_0 in D, then f(z) = g(z) everywhere in D.

A subset of D \longrightarrow Everywhere in D

Define new function:

Define h(z)=f(z)-g(z). Since f and g are analytic in D, h is also analytic in D.

Define new function:

Define h(z)=f(z)-g(z). Since f and g are analytic in D, h is also analytic in D.

Set S be a subset of D, where there exists a (z_n) in S, $(z_n) \rightarrow z_0$:

Since $f(z_n) = g(z_n)$ in S, we have $h(z_n) = 0$.

Li, Kang

Continuity of analytic function:

Since h is analytic, h is continuous. We have

$$\lim_{n \to \infty} h(z_n) = h(\lim_{n \to \infty} z_n) = h(z_0) = 0$$

Thus, z_0 is a zero of h(z).

Isolated Zero Property

A zero z_0 of an analytic function h that is not identically zero is isolated.

Since $h(z_n)=0$ for all $n\in\mathbb{N}$ in any neighborhood of z_0 , z_0 is not an isolated zero.

Therefore, h is identically zero in D, which shows f(z) = g(z) everywhere in D.

Importance of z_0 Being Inside D

Why z_0 on the boundary causes issues:

• The neighborhood of z_0 may partially lie outside D.

• We cannot ensure that h is analytic in any neighborhood of z_0 .

• We cannot ensure $h(z_n) = 0$ for all $n \in \mathbb{N}$ in any neighborhood of z_0 .

Definition

If f(z) is analytic in a domain D and F(z) is analytic in a domain D' with $D' \supset D$ and F(z) = f(z) in D, then we say that F is an analytic continuation of f.

Remark

- Targets analytic functions
- Aims to extend the domain beyond its original scope
- Serves as a mathematical technique

Visualization

Given two domains D_1 and D_2 , $D_1 \cap D_2 \neq \emptyset$

For f_1 is analytic in D_1 , there may exist a analytic function f_2 in D_2 , such that $f_2(z)=f_1(z)$ for each z in $D_1\cap D_2$

 f_2 is an **analytic continuation** of f_1 into D_2

Visualization of analytic continuation

Li, Kang

Example

The geometric series at zero

$$f(z) = 1 + z + z^2 + \dots$$

converges and is analytic in the open disk $D = \{z \mid |z| < 1\}.$

$$zf(z) = z + z^2 + z^3 + \dots$$

$$zf(z)-f(z)=1 \implies f(z)=\frac{1}{1-z}, \quad z\in D$$

 $F(z) = \frac{1}{1-z}$ is analytic in the larger domain $D' = \mathbb{C} \setminus \{1\}$.

Thus, F is an analytic continuation of f.

Uniqueness of Analytic Continuation

If $F_1 \colon D' \to \mathbb{C}$ and $F_2 \colon D' \to \mathbb{C}$ are two analytic continuations of $f \colon D \to \mathbb{C}$, $F_1(z) = F_2(z)$ for all $z \in D'$.

Proof

An immediate consequence of the Identity Theorem

 F_1 and F_2 are analytic in D.

For every
$$z \in D \subseteq D'$$
, $F_1(z) = F_2(z) = f(z)$.

By the Identity Theorem, $F_1(z) = F_2(z)$ for all $z \in D'$.

Theorem

Suppose that a function f is analytic in some domain D which contains a segment of the x axis and whose **lower half plane** is the reflection of the upper half plane with respect to that axis. Then $\overline{f(z)} = f(\overline{z})$ for each z in D if and only if f(x) is real for each point x on the segment.

Reflection of light

Proof (\rightarrow)

Setting $F(z) = \overline{f(\overline{z})}$, we want to prove F(z) is analytic and f(z) = F(z).

Let
$$f(z) = u(x, y) + iv(x, y), F(z) = U(x, y) + iV(x, y)$$

$$\overline{f(\overline{z})} = u(x, -y) - iv(x, -y)$$

$$U(x,y) = u(x,t), V(x,y) = -v(x,t)$$
 where $t = -y$

Since f is analytic, it satisfies the Cauchy–Riemann equations.

$$u_x = v_t, u_t = -v_x$$

$$U_x = u_x, V_y = -v_t \frac{dt}{dy} = v_t$$

Thus, $U_x = V_y$

Similarly, $U_y = u_t \frac{dt}{dy} = -u_t, V_x = -v_x$

Thus, $U_y = -V_x$

Since F(z) satisfies the Cauchy–Riemann equations and those derivatives are continuous, F(z) is analytic in D.

Since f(x) is real on the segment of the real axis in D, v(x,0)=0.

$$F(x) = U(x,0) + iV(x,0) = u(x,0) - iv(x,0) = u(x,0)$$

Therefore, F(z) = f(z) at each point on the segment.

By the theorem: an analytic function defined on ${\cal D}$ is uniquely determined by its values along any line segment lying in ${\cal D}$

Thus,
$$F(z) = f(z)$$
 in D .

Proof (\leftarrow)

$$u(x, -y) - iv(x, -y) = u(x, y) + iv(x, y)$$

If (x,0) is a point on the segment of the real axis in D, u(x,0)-iv(x,0)=u(x,0)+iv(x,0)

Therefore, v(x,0) = 0

f(x) is real on the segment of the real axis lying in D.

Proof is done.

Example

Show $f(z)=e^x\cos y+ie^x\sin y$ follows the **reflection principle** that $\overline{f(z)}=f(\overline{z})$ for each z.

Example

Show $f(z)=e^x\cos y+ie^x\sin y$ follows the **reflection principle** that $\overline{f(z)}=f(\overline{z})$ for each z.

$$u(x,y) = e^x \cos y$$
 and $v(x,y) = e^x \sin y$.

Since $u_x=v_y$, $u_y=-v_x$, and these derivatives are continuous, f(z) is analytic. When y=0, we have

$$f(x) = e^x \cos 0 + ie^x \sin 0 = e^x,$$

which is real for all $x \in \mathbb{R}$.

Since the domain of f is symmetric about the real axis and f is real on the real axis, we have

$$\overline{f(z)} = f(\overline{z})$$

for all $z \in \mathbb{C}$.

Li, Kang Duke Kunshan University

Verification

If $f(z) = e^x \cos y + ie^x \sin y$, then

$$\overline{f(z)} = e^x \cos y - ie^x \sin y,$$

and

$$f(\overline{z}) = e^x \cos(-y) + ie^x \sin(-y) = e^x \cos y - ie^x \sin y,$$

Thus, $\overline{f(z)}=f(\overline{z})$ for all $z\in\mathbb{C}.$

f(x) is real $\rightarrow f(x)$ is pure imaginary

$$\overline{f(z)} = f(\overline{z}) \to \overline{f(z)} = -f(\overline{z})$$

Proof

Setting $F(z) = \overline{-f(\overline{z})}$, we want to prove F(z) is analytic and f(z) = F(z).

• • •

Reflection about the unit circle

The reflection of z = x + iy in the unit circle is

$$\frac{1}{z} = \frac{z}{|z|^2} = \frac{x + iy}{x^2 + y^2}.$$

Reflection about the unit circle

The reflection of z = x + iy in the unit circle is

$$\frac{1}{\overline{z}} = \frac{z}{|z|^2} = \frac{x + iy}{x^2 + y^2}.$$

Geometric interpretation

The **product of the distances** from the **origin** to z and its reflection $\frac{1}{z}$ is always equal to 1.

- If z lies outside the unit circle, its reflection will be inside the unit circle.
- If z lies inside the unit circle, its reflection will be outside the unit circle.

Example

Reflection about the unit circle

Remark

- For z on the unit circle: Its distance from the origin is 1, $z=\frac{1}{\overline{z}}$. That is, z is its own reflection in the unit circle.
- The center of the circle 0 reflects to the point at ∞ .