ДЕТЕКЦИЈА НА ИРИС

Дигитално процесирање на слика

Ана Анѓелевска 171162

Андреј Наумовски 171182

Вовед

Во денешно време, потребата за доверлива идентификација на корисникот расте како резултат на зголеменото складирање на се повредни и повредни податоци.

Биометриката, како наука која користејќи некоја од соодветните карактеристики на човекот идентификува една и единствена личност, зема се поголем замав во индустријата.

Меѓу биометричките карактеристики на човекот како што се отпечатоци од прсти, отпечаток од дланка, ретина, лице, потпис како и начинот на движење, ирисот дава најголема прецизност при идентификација на личности од погоренаведните методи.

Eyelid

A thin fold of skin that covers and protects an eye

Pupil

Black hole located in the center of the iris of the eye that allows light to strike the retina

Sclera

White part of the eye - protective covering with muscles that control eye movement

Iris

The colored part of the **eye** which helps regulate the amount of light entering the **eye – unique for each human being.**

ФАЗИ

01

АКВИЗИЦИЈА НА ФОТОГРАФИИ 02

СЕГМЕНТАЦИЈА НА ИРИСОТ 03

НОРМАЛИЗАЦИЈА НА СЕГМЕНТИРАТИОН РЕГИОН 04

НАОЃАЊЕ И ПОВРЗУВАЊЕ НА КАРАКТЕРИСТИКИ ИЛИ ДЕСКРИПТОРИ

01 АКВИЗИЦИЈА НА ФОТОГРАФИИ

- Casia Iris Interval
- 8bit, grayscale фотографии за 250 личности

02 СЕГМЕНТИРАЊЕ НА ИРИС

Лоцирање на кружните граници за ирисот и зеницата

02 CLAHE – ИЗЕДНАЧУВАЊЕ НА ХИСТОГРАМИ

О Поконзистентна локализација и сегментирање на ирисот

02 ЛОКАЛИЗАЦИЈА НА ИРИС прв чекор во сегментирање на ирисот

- О Инверзија
- Threshold ирање со праг 190
- Примена на ерозија со кернел 4х4 за чистење на шумот
- Наоѓање на контури најголема најдена контура

02 ЛОКАЛИЗАЦИЈА НА ИРИС втор чекор во сегментирање на ирисот

- Hough Circle Transform
- О Одбирање на кругот чиј центар е најблизок до центарот на претходно лоцираната зеница

ОЗ НОРМАЛИЗАЦИЈА НА СЕГМЕНТИРАНИОТ РЕГИОН

- Нормализација на регионот помеѓу двете лоцирани кружници
- О Одвиткување на ирисот
- Проблем со ирис кој излегува надвор од слика

Слика по нормализација

Влезна слика пред нормализација

04 методи за генерирање дескриптори

04 методи за совпаѓање на дескриптори

01 Brute Force Matcher

 Работи добро со бинарно базираните дескриптори ORB и BRISK

02 FLANN

- о Побрз од BFMatcher
- Работи добро со небинарно базирани дескриптори како SIFT

BF/FAST

BF/ORB

BF/BRISK

BF/SIFT

FLANN/ORB

FLANN/BRISK

FLANN/SIFT

04 праг на одлука

- O Одлучува дали две влезни слики претставуваат еден ист човек или не
- O Се одредува рачно со повеќе проверки на слики од исти и различни луѓе
- \bigcirc Добиена вредност \rightarrow **20**

РЕЗУЛТАТИ

Не може да се случи двајца различни луѓе да бидат идентификувани како еден ист човек

Точност: 0.93%

ВИ БЛАГОДАРИМЕ ЗА **ВНИМАНИЕТО**