Progress on Mazur's program B, Part III: Rational Points

David Zureick-Brown

Emory University
Slides available at http://www.mathcs.emory.edu/~dzb/slides/

Torsion groups and Galois representations of elliptic curves Zagreb, Croatia

June 25, 2018

Background - Image of Galois

$$\rho_{E,n} \colon G_{\mathbb{Q}} \twoheadrightarrow H(n) \hookrightarrow \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$$

$$G_{\mathbb{Q}}\left\{egin{array}{c} \overline{\mathbb{Q}} \\ \overline{\mathbb{Q}}^{\ker
ho_{E,n}} = \mathbb{Q}(E[n]) \\ dash \\ \mathbb{Q} \end{array}
ight.
ight.$$

Problem (Mazur's "program B")

Classify all possibilities for H(n).

Rational Points on modular curves

Mazur's program B

Compute $X_H(\mathbb{Q})$ for all H.

Remark

- Sometimes $X_H \cong \mathbb{P}^1$ or elliptic with rank $X_H(\mathbb{Q}) > 0$.
- Some X_H have sporadic points.
- Can compute $g(X_H)$ group theoretically (via Riemann–Hurwitz).

Fact

$$g(X_H), \gamma(X_H) \to \infty$$
 as $\left[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : H \right] \to \infty$.

Subgroups of $GL_2(\mathbb{Z}_2)$

Sample subgroup (Serre)

$$\ker \phi_2 \subset H(8) \subset \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_2 = 3$$

$$\downarrow^{\phi_2} \qquad \qquad \downarrow$$

$$I + 2M_2(\mathbb{Z}/2\mathbb{Z}) \subset H(4) = \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_1 = 4$$

$$\downarrow^{\phi_1} \qquad \qquad \downarrow$$

$$H(2) = \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$$

$$\chi\colon\operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z})\to\operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/8\mathbb{Z})^*\to\mathbb{Z}/2\mathbb{Z}\times(\mathbb{Z}/8\mathbb{Z})^*\cong\mathbb{F}_2^3.$$

$$\chi = \operatorname{sgn} \times \operatorname{det}$$

$$H(8) := \chi^{-1}(G), G \subset \mathbb{F}_2^3.$$

Sample subgroup (Dokchitser²)

$$H(2) = \left\langle \left(egin{array}{cc} 0 & 1 \ 3 & 0 \end{array}
ight), \left(egin{array}{cc} 0 & 1 \ 1 & 1 \end{array}
ight)
ight
angle \cong \mathbb{F}_3
times D_8.$$

$$\operatorname{im}
ho_{E,4} \subset H(4) \Leftrightarrow j(E) = -4t^3(t+8).$$
 $X_H \cong \mathbb{P}^1 \xrightarrow{j} X(1).$

A typical subgroup

$$\begin{split} \ker \phi_4 &\subset H(32) &\subset \operatorname{GL}_2(\mathbb{Z}/32\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_4 = 4 \\ & \downarrow^{\phi_4} & \downarrow \\ \ker \phi_3 &\subset H(16) &\subset \operatorname{GL}_2(\mathbb{Z}/16\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_3 = 3 \\ & \downarrow^{\phi_3} & \downarrow \\ \ker \phi_2 &\subset H(8) &\subset \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_2 = 2 \\ & \downarrow^{\phi_2} & \downarrow \\ \ker \phi_1 &\subset H(4) &\subset \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_1 = 3 \\ & \downarrow^{\phi_1} & \downarrow \\ & H(2) &= \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) \end{split}$$

Non-abelian entanglements

There exists a surjection $\theta \colon \operatorname{GL}_2(\mathbb{Z}/3\mathbb{Z}) \to \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$.

$$\operatorname{im} \rho_{E,6} \subset H(6) \Leftrightarrow K(E[2]) \subset K(E[3])$$

Main conjecture

Conjecture (Serre)

Let E be an elliptic curve over $\mathbb Q$ without CM. Then for $\ell>37$, $\rho_{E,\ell}$ is surjective.

Serre's Open Image Theorem

Theorem (Serre, 1972)

Let E be an elliptic curve over K without CM. The image of $\rho_{\rm E}$

$$\rho_E(G_K) \subset \mathsf{GL}_2(\widehat{\mathbb{Z}})$$

is open.

Note:

$$\mathsf{GL}_2(\widehat{\mathbb{Z}}) \cong \prod_p \mathsf{GL}_2(\mathbb{Z}_p)$$

"Vertical" image conjecture

Conjecture

There exists a constant N such that for every E/\mathbb{Q} without CM

$$\left[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \rho_{\mathsf{E}}(\mathsf{G}_{\mathbb{Q}})\right] \leq \mathsf{N}.$$

Remark

This follows from the " $\ell > 37$ " conjecture.

Problem

Assume the " $\ell > 37$ " conjecture and compute N.

Main Theorems

Rouse, ZB (2-adic)

The index of $\rho_{E,2^{\infty}}(G_{\mathbb{Q}})$ divides 64 or 96; all such indices occur.

Zywina (mod ℓ)

Classifies $\rho_{E,\ell}(G_{\mathbb{Q}})$ (modulo some conjectures).

Zywina (all possible indices; modulo some conjectures)

The **index** of $\rho_{E,N}(G_{\mathbb{Q}})$ divides 220, 336, 360, 504, 864, 1152, 1200, 1296 or 1536.

Zywina-Sutherland

Parametrizations in all **prime power** levels, g=0 and g=1, r>0 cases.

Gonzalez-Jimenez, Lozano-Robledo

Classify E/\mathbb{Q} with $\rho_{E,N}(G_{\mathbb{Q}})$ abelian.

Main Theorems continued

Morrow (composite level)

Classifies $\rho_{E,2^{n}\cdot\ell}(G_{\mathbb{Q}})$.

Camacho-Li-Morrow-Petok-ZB (composite level)

Classifies $\rho_{E,\ell_1^n.\ell_2^m}(G_{\mathbb{Q}})$ (partially).

Brau–N. Jones, N. Jones–McMurdy (in progress)

Equations for X_H for entanglement groups H.

Rouse-ZB for other prime powers (in progress)

Partial progress; e.g. for $N = 3^n$.

Derickx-Etropolski-Morrow-van Hoejk-ZB (in progress)

Classify possibilities for cubic torsion.

Some applications and complements

Theorem (R. Jones, Rouse, ZB)

- **1** Arithmetic dynamics: let $P \in E(\mathbb{Q})$.
- ② How often is the order of $\widetilde{P} \in E(\mathbb{F}_p)$ odd?
- **3** Answer depends on $\rho_{E,2^{\infty}}(G_{\mathbb{Q}})$.
- Examples: 11/21 (generic), 121/168 (maximal), 1/28 (minimal)

Theorem (Various authors)

Computation of $S_{\mathbb{Q}}(d)$ and S(d) for particular d.

Theorem (Daniels, Lozano-Robledo, Najman, Sutherland)

Classification of $E(\mathbb{Q}(3^{\infty}))_{tors}$

More applications

Theorem (Sporadic points)

Najman's example $X_1(21)^{(3)}(\mathbb{Q})$; "easy production" of other examples.

Theorem (Jack Thorne)

Elliptic curves over \mathbb{Q}_{∞} are modular.

(One step is to show $X_0(15)(\mathbb{Q}_{\infty})=X_0(15)(\mathbb{Q})=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}$.)

Theorem (Zywina)

Constants in the Lang-Trotter conjecture.

Cremona Database, 2-adic images

Index, # of isogeny classes

- 1,727995
- 2,7281
- 3, 175042
- 4,1769
- 6.57500
- 8.577
- 12.29900
- 16,235
- 24,5482
- 32, 20
- 48 . 1544
- 64, 0 (two examples)
- 96 , 241 (first example $X_0(15)$)
- CM , 1613

Cremona Database

Index, # of isogeny classes

64 , 0
$$j = -3 \cdot 2^{18} \cdot 5 \cdot 13^3 \cdot 41^3 \cdot 107^3 \cdot 17^{-16}$$

$$j = -2^{21} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13^3 \cdot 23^3 \cdot 41^3 \cdot 179^3 \cdot 409^3 \cdot 79^{-16}$$
 Rational points on $X_{\rm ns}^+(16)$ (Heegner, Baran)

Fun 2-adic facts

- All indices dividing 96 occur infinitely often; 64 occurs only twice.
- The 2-adic image is determined by the mod 32 image
- 1208 different images can occur for non-CM elliptic curves
- There are 8 "sporadic" subgroups.

More fun 2-adic facts

If E/\mathbb{Q} is a non-CM elliptic curve whose mod 2 image has index

- 1, the 2-adic image can have index as large as 64.
- 2, the 2-adic image has index 2 or 4.
- 3, the 2-adic image can have index as large as 96.
- 6, the 2-adic image can have index as large as 96;
- (although some quadratic twist of E must have 2-adic image with index less than 96).

Template

- **①** Compute all arithmetically minimal $H \subset GL_2(\mathbb{Z}_2)$
- 2 Compute equations for each X_H
- 3 Find (with proof) all rational points on each X_H .

Subgroups of $GL_2(\mathbb{Z}_2)$

Subgroups of $GL_2(\mathbb{Z}_{13})$

Subgroups of $GL_2(\mathbb{Z}_3)$

Subgroups of $GL_2(\mathbb{Z}_5)$

Subgroups of $GL_2(\mathbb{Z}_7)$

Subgroups of $GL_2(\mathbb{Z}_{11})$

Numerics, $\ell = 2$

318 curves X_H with $-I \in H$ (excluding pointless conics)

Genus	0	1	2	3	5	7
Number	175	52	57	18	20	4

318 curves (excluding pointless conics)

Genus	0	1	2	3	5	7
Number	175	52	56	18	20	4
Rank of Jacobian						
0		25	46	_	_	??
1		27	3	9	10	??
2			7	_	_	??
3				9	_	??
4					_	??
5					10	??

More 2-adic facts

- 1 There are 8 "sporadic" subgroups
 - Only one genus 2 curve has a sporadic point
 - Six genus 3 curves each have a single sporadic point
 - 3 The genus 1, 5, and 7 curves have no sporadic points
- ② Many accidental isomorphisms of $X_H \cong X_{H'}$.
- **1** There is one H such that $g(X_H) = 1$ and $X_H \in X_H(\mathbb{Q})$.

3	g = 0	Handled by Sutherland–Zywina
	g = 1	all rank zero
	g = 4	$map\;to\;g=1$
	g = 2	Chabauty works
	g = 4	no 3-adic points
	g = 3	Picard curves; map to rank 0 AV
	g = 4	Admits étale triple cover
	g = 6	Admits étale triple cover
	g = 12	gonality \leq 9, plane model, degree 121
	g = 43	New ideas needed

		-
5	g = 0 (10 level 5, 3 level 25)	All level 5 curves are genus 0
	g = 4 (4 level 25)	No 5-adic points
	g = 8,22	known (e.g., X _{ns} (25))
	g = 2 (2 level 25)	Rank 2, A ₅ mod 2 image
g = 4 (3 level 25)		All isomorphic.
		Each has 5 rational points
		Each admits an order 5 aut
		Simple Jacobian
	g = 14,36 (levels 25 and 125)	No models (or ideas, yet)

7	g = 1, 3	[Z, 4.4] handles these, $X_H(\mathbb{Q})$ is finite.
	g = 19, 26, level 49	Maps to one of the 6 above
	g=1, level 49	[SZ] handles this one (rank 0)
	g = 3, 19, 26, level 49, 343	Map to curve on previous line
	g=12, level 49	Handled by
		Greenberg–Rubin–Silverberg–Stoll
	g = 94	Known $(X_{ns}(49))$
	g = 9, 12, 69	No models (or ideas, yet)

11	all maximal are genus one	
	only positive rank is $X_{ns}(11)$	
	All but one are ruled out by Zywina	some have sporadic points;
		[Z, Theorem 1.6]
	g=5, level 11	[Z, Lemma 4.5]
	g = 5776, level 121	"Challenge "

Zywina handles all level 13 except for the cursed curve

13	g = 2,3, level 13 (8 total)	
	g=8, level 169	$X_0(13^2)$, handled by Kenku
	$X_{ns}(13)$	Cursed. Genus 3, rank 3.
		No torsion. Some points
		Probably has maximal mod 2 image
		Solved by Balakrishnan, Müller
	$X_{S_4}(13)$	Also cursed.

Rational Points: summary of remaining work.

3	g = 12,43
5	g = 2, 4, 14, 36
7	g = 9, 12, 69
11	a single genus 5776 curve remains
13	$X_{S_4}(13)$

Explicit methods: highlight reel

- Local methods
- Chabauty
- Elliptic Chabauty
- Mordell–Weil sieve
- étale descent
- Pryms
- Equationless descent via group theory.
- New techniques for computing Aut C.

Pryms (via Nils Bruin)

$$D \xrightarrow{\iota - \mathsf{id} - (\iota(P) - P)} imes \mathsf{ker}_0(J_D o J_C) =: \mathsf{Prym}(D o C)$$
 $\mathsf{et} \bigvee_{C} \bigcup_{C} \mathcal{L}$
 $C(\mathbb{Q}) = \bigcup_{\delta \in \{\pm 1, \pm 2\}} \mathsf{im} \, D_\delta(\mathbb{Q})$

Pryms
$$D \xrightarrow{\iota - id - (\iota(P) - P)} \ker_0(J_D \to J_C) =: \Prym(D \to C)$$

$$et \downarrow C$$

Example (Genus $C = 3 \Rightarrow \text{Genus } D = 5$)

- C: Q(x, y, z) = 0
- $Q = Q_1 Q_3 Q_2^2$

$$D_{\delta}: Q_1(x, y, z) = \delta u^2$$

$$Q_2(x, y, z) = \delta uv$$

$$Q_3(x, y, z) = \delta v^2$$

- $Prym(D_{\delta} \to C) \cong Jac_{H_{\delta}}$,
- H_{δ} : $v^2 = -\delta \det(M_1 + 2xM_2 + x^2M_3)$.

Thanks

Thank you!