Andreas Brenneis Rebecca Saive Felicitas Thorne

Übungsaufgaben für Dienstag, den 29. Juli 2008

1 Zum Aufwärmen:

1.1 Aufgabe 1

Wie lautet die Gleichgewichtsbedingung für die Kontaktwinkel φ_1 und φ_2 , wenn zwei nichtmischbare Flüssigkeitn eine Grenzfläche wie in Abbildung 1.1 bilden?

Ab welcher Oberflächenspannung $\sigma_{1,3}$ bildet Flüssigkeit 2 einen dünnen Film auf Flüssigkeit 1?

1.2 Aufgabe 2

Vergegenwärtigen Sie sich, warum die in der Vorlesung hergeleitete Gleichung für die Steighöhe in einer Kapillare für jede der drei Grenzflächenfälle (benetzende, nicht benetzende und vollständig benetzende Flüssigkeit) richtig ist.

1.3 Aufgabe 3

Mit welcher Kraft drückt Wasser in horizontaler Richtung gegen eine Staumauer, wenn die Wasserstandshöhe h=6m über die gesamte Länge l=30m konstant ist?

2 Zum Trainieren

2.1 Aufgabe 4

Ein menschliches Haar habe ein Elatizitätsmodul $E=5\cdot 10^8\frac{\rm N}{\rm m^2}$. Nehmen Sie an, dass sich das Haar elastisch verhält, bis es für Dehnungen größe als 10% beschädigt wird.

Berechnen Sie das Volumen an Haar, das Archimedes 250 B.C. für ein Katapult benötigte, um einen Fels von 50kg auf eine Geschwindigketi von $20\frac{m}{s}$ zu beschleunigen.

2.2 Aufgabe 5

Ein m=103kg schwerer, gleichförmiger Baumstamm hängt an zwei Stahldrähten A und B vom Radius 1.20mm. Das Elastizitätsmodul von Stahl beträgt $E=200\cdot 10^9 \frac{\rm N}{\rm m^2}$. Anfänglich hatte Draht A die Länge $L_A=2,50$ m und war um l=2,00mm kürzer als Draht B. Der Baumstamm hänge nun horizontal.

- a) Fertigen Sie eine Skizze an, in der alle wirkenden Kräfte eingetragen sind.
- b) Wie groß sind die Beträge der Kräfte F_A und F_B auf den Baumstamm von Draht A und Draht B?
- c) Wie groß ist das Verhältnis $\frac{d_A}{d_B}$, wenn d_i der Abstand zwischen Draht i und dem Mittelpunkt des Balkens ist?

2.3 Aufgabe 6

Gegeben sei ein zylindrischer Draht mit Radius R und der Länge L an dessen oberem Ende eine Kraft \vec{F} tangential angreift.

- a) Fertigen Sie eine Skizze zu dem Problem an, welche die wichtigsten Angaben enthält.
- b) Berechnen Sie das aufgrund der Torsion des Drahtes wirkende Rücktreibende Drehmoment D. Denken Sie sich dazu den Draht in konzentrische Zylinderhülsen zwischen den Radien r und r+dr, sowie in radiale Segmente der Winkelbreite $d\varphi$ aufgeteilt.

2.4 Aufgabe 7

Berechnen Sie für folgende Geometrien den Kontaktwinkel φ als Funktion der Grenzflächenspannung γ . Skizzieren Sie jeweils das Problem und tragen Sie in die Skizze die wirkenden Kräfte ein. Vernachlässigen Sie die Gewichtskraft.

- a) Ein stabiler Flüssigkeitstropfen befindet sich auf einer festen, ideal glatten und planen Substratoberfläche. Die Oberflächenspannung ist $\gamma_{S,V}$.
- b) Ein stabiler Flüssigketistropfen befindet sich auf einer deformierbaren Flüssigkeitsoberfläche. Berechnen Sie den Kontaktwinkel zwischen der Gasphase und der deformierbaren Flüssigkeitsoberfläche.

2.5 Aufgabe 8

Regentropfen bilden sich durch Zusammenschluss von kleineren Tropfen in einer Wolke. Die treibende Kraft hierfür ist die Veränderung der Oberflächenenergie E.

- a) Wie lautet der allgemeine Ausdruck für die Oberflächenenergie eines kugelförmigen Tropfens unter Vernachlässigung der Schwerkraft?
- b) In welchem Verhältnis ändert sich die Oberflächenenergie durch Verschmelzung zweier identischer Tropfen zu einem einzelnen?
- c) Wird hierbei Energie freigesetzt oder aufgenommen?

2.6 Aufgabe 9

Betrachten Sie nun das Problem der Messung von Oberflächenspannungen. Es werden Kapillarrohre verwendet. Die Flüssigkeit steigt in diesen Rohren aufgrund der Oberflächenspannung der Flüssigkeit.

- a) Leiten Sie die Steighöhe h einer Flüssigkeit in einem Kapillarrohr mit Radius r uner Berücksichtigung der Gewichtskraft der Flüssigkeit in der Kapillare her. Bestimmen Sie den Kontaktwinkel φ und skizzieren Sie den Fall einer vollständig, teilweise und nicht benetzenden Flüssigkeit.
- b) Berechnen Sie die Steighöhe von Quecksilber mit $\rho=13546{\rm kg~m^{-3}},~\gamma=0,475{\rm \frac{N}{m}},~\varphi=138^{\circ}$ und $r=0,4m{\rm m}.$

2.7 Aufgabe 10

Ein homogener, massiver Körper schwimmt auf Wasser, wobei sich 80% seines Volumens unterhalb der Wasseroberfläche befinden. Wenn derselbe Körper auf einer anderen Flüssigkeit schwimmt, befinden sich 72% seines Volumens unterhalb der Oberfläche. Berechnen Sie die Dichte des Körpers und das relative Gewicht der Flüssigkeit.

2.8 Aufgabe 11

Ein Tank ist bis zur Höhe H mit Wasser gefüllt ($\rho_W=1003\frac{\mathrm{kg}}{\mathrm{m}^3}$) und steht auf dem Boden. Der Umgebungsdruck beträgt $p_0=10^5\mathrm{Pa}$.

- a) Im Tank befinder sich ein Kupferzylinder homogener Dichte ρ mit Radius r und der Höhe h. Berechnen Sie die Masse des Zylinders und dessen Auftriebskraft mit $r = 10 \, \text{cm}$, $h = 20 \, \text{cm}$ und $\rho = 8920 \, \frac{\text{kg}}{m}^{-3}$.
- b) Wie muss der Kupferzylinder bei gleicher Masse beschaffen sein, damit er schwebt? Welches Volumen verdrängt er in diesem Fall?

3 Für Profis

3.1Aufgabe 12

An einem an der Decke fixiertem Stahlseil (Ruhedurchmesser d=1mm, Ruhelänge 0,5m) ist eine horizontal liegende Stange (Durchmesser $D=2c\mathrm{m}$, Länge $50c\mathrm{m}$, Dichte $11,373\frac{\mathrm{g}}{c\mathrm{m}^3}$) im Schwerpunkt befestigt. Das Schermodul G des Stahlseils beträgt $85\frac{GN}{m^2}$, das Elastizitätsmodul E beträgt $220\frac{GN}{m^2}$.

a) Berechnen Sie die durch die Stange verursachte Dehnung und Durchmesseränderung des Stahlseils.

- Vernachlässigen Sie im Folgenden die Längen- und Durchmesseränderungen des Seils.
- b) Das Stahlseil wird nun um einen Winkel ϕ verdrillt. Berechnen Sie die Arbeit, die verrichtet wird.
- c) Die Stange werde jetzt um $\phi = 90^{\circ}$ ausgelenkt (Stahlseil verdrillt) und anschließend losgelassen. Stellen Sie die Bewegungsgleichung auf. Berechnen Sie die Periode der Torsionsschwingung.

3.2Aufgabe 13

Die in der nebenstehenden Abbildung gezeigten Aluminiumbalken mit unterschiedlichem Querschnitt haben jeweils die Länge L und sind unter gleichen Bedingungen einseitig eingespannt.

- a) Berechnen Sie für beide Balken die Flächenträgheitsmomente J.
- b) Berechnen Sie das auf die Balken wirkende Drehmoment in Abhängigkeit der Flächenträgheitsmomen-
- c) Was ist die maximale Biegestrecke der Balken in Abhängigkeit von J? Hinweis zu c): Für die Krümmungsradien der Balken gilt $\frac{1}{r} \approx z''(x)$, wobei z(x) die Biegestrecke in Abhängigkeit der Länge des Balkens ist.
- d) An die Balken greift nun eine Kraft $F = 10^4 \mathrm{N}$ an. Was ist die Durchbiegung der Balken für $L01 \mathrm{m}$,
- a = 10cm, b = 10cm, $a_1 = 8cm$, $b_1 = b$, $b_2 = 7,5cm$ und $E = 70\frac{GN}{m^2}$?

 e) Welchen Wert muss b_1 annehmen, damit Sie für den Doppel-T-Träger bei konstantem a und a_1 und konstantem Verhältnis $\frac{b_1}{b_2}$ dieselbe Durchbiegung wie für den soliden Balken erreichen? Um wieviel ist in diesem Fall der Doppel-T-Träger leichter als der Balken?