ITI CMOS Analog IC Design 2024 Lab 02 Common Source Amplifier

PART 1: Sizing Chart

1. The specs we want to achieve for common source amplifier.

spec	Value	
DC gain	-8	
Supply	1.8 V	
Current consumption	100μΑ	

- 2. we will assume that L=2 μm for get high r_o and avoid short channel effect
- 3. $|A_v| \approx gm * R_D = 2I_D * R_D / V_{ov} = 2V_{RD} / V_{ov}$
- As $V_{ov} \neq 2I_D/gm$ in real MOSFET so we define $V^*=2I_D/gm$
- 4. We make V_{RD} = VDD/2 to get the high swing so V_{RD} =1.8/2=.9 V I_D*R_D =.9 V and I_D =100 μA then R_D = 9 K Ω
- 5. then $2 V_{RD}/V_Q^* = 8$ then $V_Q^* = 225 \text{mV}$
- 6. We use W=10 μm
- 7. As $V_{th} \approx 670 \text{ mV}$, so $V_{th} + .4 \approx 1.1 \text{ V}$, so we sweep V_{GS} from 0 mV to 1.1 V

8. Plot V_{ov} and V^* Vs V_{GS}

9. As we see that at $V_Q^* = 225.9 \text{ mV}$ that $V_{ovQ} = 179.8 \text{ mV}$ and $V_{GSQ} = 848.2 \text{ mV}$

10. Plot gm and I_D and gds

11.

@ $W=10~\mu m$ and $V_{GS}~850~mV$ and $L=2~\mu m$				
I_{DX}	gmx	gdsx		
13.82μΑ	121.9μS	259.4nS		

12. to get $I_D = 100 \ \mu A$ we need W=72.35 μm

@ W =72.35 μ m and V_{GS} = 850 mV and L =2 μ m				
I_D	gm	gds		
100μΑ	881.95μS	1876.76nS		

- 13.then we have $r_0 = 1/gds = 532.83 \text{ k}\Omega$
- so, A_V=-gm R_D||r_o =-881.95*10⁻⁶*(532.83 k Ω ||9 k Ω)= -7.81 so we meet the specs mentioned above

PART 2: CS Amplifier

1. **OP and AC Analysis**

1. Createing a testbench for the resistive loaded CS amplifier

2. Simulating the DC OP.

parameter	I_D	gm	gds
Simulation	$100.1 \mu A$	895.8 μS	1.856 μS
Sizing Chart	100 μΑ	881.95μS	1876.76 nS

- The two value are approximately equal.
- 3. $r_o = 538.8 k\Omega$, so $r_o/R_D = 59.87$ then $r_o \gg R_D$ so $r_o || R_D \approx R_D$
- we can ignore r_0 in our case
- $r_o \propto L$ so as L decrease r_o decrease and this will affect the gain of the circuit.
- 4. intrinsic gain equal gm* $r_0 = gm/gds = 895.8 \mu S/1.856 \mu S = 482.65$
- 5. the gain of this circuit equal $-\frac{gm}{1+(gm+gmb)Rs} * ro||R_D|$

- there are no body effect and no Rs then gain equal -gm* r_0 || R_D = -895.8 μ S *(538.8 $k\Omega$ ||9 $k\Omega$) =-7.93
- we notice that $gm*r_o\gg gm*r_o||R_D|$

6. when applying ac voltage =1 V we get output voltage =7.952V this mean we have dc gain equal 7.952

2. Gain Non-Linearity

- 1. Performing a DC sweep for the input voltage from 0 to VDD with 2mV step.
- 2. V_{OUT} vs V_{IN}

- We see that the relation is not linear there are three region

- first one the transistor is still off so V_{out} is constant and equal VDD =1.8V

- second one is the satouration region and the MOSFET amplify the signal and it is not linear because gm changing with changing of the input voltage.
- third one is the triode region and the V_{out} equal approximately 0

3. gain isn't linear because it depend on gm and gm \propto V_{in} as W/L is constant. From the gm Vs Vin grap $\Delta gm = 943 - 851 = 92 \,\mu$ S

4. the peak to peak V_{out} =976.6-818.1= 158.5mV and peak to peak V_{in} = 20mV so dc gain =158.5/20=7.925

- 5. gm vary with the input signal as $gm \propto V_{in}$ that mean the gain isn't linear but it varying slightly with the input voltage.
- 6. The amplifier isn't typicaly linear but it vary with the input signal.

- From Vout Vs time figure above we can think it idle sine wave but its down peak bigger than the up peak because down peak from the output come from the up peak of the imput and up peak has bigger gm and bigger amplification
- Biasing Vds voltage =1.8-100.1 μ A*9 $k\Omega$ =899.1 mV
- Down peak =899.1-818.1 =81 mV
- Up peak =976.6 -889.1=77.5mV