54. O sinal de sen x também pode ser assim sintetizado:

EXERCÍCIOS

46. Localize os arcos $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$ e $\frac{7\pi}{4}$. Em seguida, dê o sinal do seno de cada um deles.

Solução

$$\sin \frac{\pi}{4} > 0; \sin \frac{5\pi}{4} < 0$$

$$\sin \frac{3\pi}{4} > 0$$
; $\sin \frac{7\pi}{4} < 0$

- **47.** Localize os arcos $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$ e $\frac{11\pi}{6}$. Em seguida, dê o sinal do seno de cada um deles.
- **48.** Localize os arcos $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ e $\frac{5\pi}{3}$. Qual é o sinal do seno de cada um desses arcos?

- **49.** Você pôde observar no exercício 46 que $\frac{\pi}{4}$ e $\frac{3\pi}{4}$ são simétricos em relação ao eixo v, assim como $\frac{5\pi}{4}$ e $\frac{7\pi}{4}$. Sabendo que sen $\frac{\pi}{4} = \frac{\sqrt{2}}{2}$ e sen $\frac{5\pi}{4} = \frac{-\sqrt{2}}{2}$, dê o valor de sen $\frac{3\pi}{4}$ e sen $\frac{7\pi}{4}$.
- **50.** Utilizando simetria e sabendo que sen $\frac{\pi}{6} = \frac{1}{2}$, dê o valor do seno de $\frac{5\pi}{6}$, $\frac{7\pi}{6}$ e $\frac{11\pi}{6}$.
- **51.** Sabendo que sen $\frac{\pi}{3}=\frac{\sqrt{3}}{2}$, dê o valor do seno de $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ e $\frac{5\pi}{3}$.
- 52. Calcule as expressões:

a)
$$\operatorname{sen} \frac{\pi}{3} + \operatorname{sen} \frac{\pi}{4} - \operatorname{sen} 2\pi$$

b)
$$2 \sin \frac{\pi}{6} + \frac{1}{2} \sin \frac{7\pi}{4}$$

c)
$$3 \sin \frac{\pi}{2} - 2 \sin \frac{5\pi}{4} + \frac{1}{2} \sin \pi$$

d)
$$-\frac{2}{3} \operatorname{sen} \frac{3\pi}{2} + \frac{3}{5} \operatorname{sen} \frac{5\pi}{3} - \frac{6}{7} \operatorname{sen} \frac{7\pi}{6}$$

53. Localize os arcos no ciclo trigonométrico e coloque em ordem crescente os números sen 60°, sen 150°, sen 240° e sen 330°.

III. Cosseno

55. Definição

Dado um número real $x \in [0, 2\pi]$, seja P sua imagem no ciclo. Denominamos **cosseno** de x (indicamos $\cos x$) a abscissa OP_2 do ponto P em relação ao sistema uOv.

58. Em síntese, verificamos que, fazendo x percorrer o intervalo $[0, 2\pi]$, a imagem de x (ponto P) dá uma volta completa no ciclo, no sentido anti-horário, e a abscissa de P varia segundo a tabela:

Х	0		$\frac{\pi}{2}$		π		$\frac{3\pi}{2}$		2π
cos x	1	decresce	0	decresce	-1	cresce	0	cresce	1

59. O sinal de cos x também pode ser assim sintetizado:

EXERCÍCIOS

54. Localize os arcos $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$ e $\frac{7\pi}{4}$. Em seguida, dê o sinal do cosseno de cada um deles.

Solução

$$\cos\frac{\pi}{4} > 0; \cos\frac{5\pi}{4} < 0$$

$$\cos\frac{3\pi}{4}<0;\cos\frac{7\pi}{4}>0$$

- **55.** Localize os arcos $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$ e $\frac{11\pi}{6}$. Em seguida, dê o sinal do cosseno de cada
- 56. Qual é o sinal do cosseno de cada arco abaixo?

- c) $\frac{\pi}{12}$ g) $\frac{16\pi}{9}$
- d) $\frac{4\pi}{5}$
- h) $\frac{2\pi}{3}$
- **57.** Você pôde observar no exercício 54 que $\frac{\pi}{4}$ e $\frac{7\pi}{4}$ são simétricos em relação ao eixo u, assim como $\frac{3\pi}{4}$ e $\frac{5\pi}{4}$. Sabendo que $\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$ e $\cos\frac{3\pi}{4} = \frac{-\sqrt{2}}{2}$, dê o valor de $\cos \frac{7\pi}{4} e \cos \frac{5\pi}{4}$.
- **58.** Utilizando simetria e sabendo que cos $\frac{\pi}{6} = \frac{\sqrt{3}}{2}$, dê o valor do cosseno de $\frac{5\pi}{6}$ $\frac{7\pi}{6}$ e $\frac{11\pi}{6}$.
- **59.** Sabendo que $\cos \frac{\pi}{3} = \frac{1}{2}$, qual é o valor de $\cos \frac{2\pi}{3}$, $\cos \frac{4\pi}{3}$ e $\cos \frac{5\pi}{3}$?
- 60. Calcule as expressões:
 - a) $\cos \frac{\pi}{3} + \cos \frac{\pi}{4} \cos 2\pi$
 - b) $2\cos\frac{\pi}{6} + \frac{1}{2}\cos\frac{7\pi}{4}$
 - c) $3\cos\frac{\pi}{2} 2\cos\frac{5\pi}{4} + \frac{1}{2}\cos\pi$
 - d) $-\frac{2}{3}\cos\frac{3\pi}{2} + \frac{3}{5}\cos\frac{5\pi}{3} \frac{6}{7}\cos\frac{7\pi}{6}$
- 61. Localize os arcos no ciclo trigonométrico e coloque em ordem crescente os números cos 60°, cos 150°, cos 240° e cos 330°.

62. Determine o sinal da expressão $y = sen 107^{\circ} + cos 107^{\circ}$.

Solução

Examinando o ciclo, notamos que:

$$|\text{sen } 135^{\circ}| = |\cos 135^{\circ}|$$

$$90^{\circ} < x < 135^{\circ} \Rightarrow |\text{sen x}| > |\text{cos x}|$$

Como sen $107^{\circ} > 0$, cos $107^{\circ} < 0$ e $|\text{sen } 107^{\circ}| > |\cos 107^{\circ}|$, decorre:

sen
$$107^{\circ} + \cos 107^{\circ} > 0$$

63. Qual é o sinal de cada uma das seguintes expressões?

a)
$$y_1 = \text{sen } 45^{\circ} + \text{cos } 45^{\circ}$$

a)
$$y_1 = \sin 45^\circ + \cos 45^\circ$$
 c) $y_3 = \sin \frac{7\pi}{4} + \cos \frac{7\pi}{4}$
b) $y_2 = \sin 225^\circ + \cos 225^\circ$ d) $y_4 = \sin 300^\circ + \cos 300^\circ$

b)
$$y_2 = \text{sen } 225^\circ + \cos 225^\circ$$

d)
$$y_4 = \text{sen } 300^{\circ} + \text{cos } 300^{\circ}$$

IV. Tangente

60. Definição

Dado um número real $x \in [0, 2\pi]$, $x \neq \frac{\pi}{2}$ e $x \neq \frac{3\pi}{2}$, seja P sua imagem no ciclo. Consideremos a reta \widetilde{OP} e seja T sua interseção com o eixo das tangentes. Denominamos tangente de x (e indicamos tg x) a medida algébrica do segmento AT.

Notemos que, para $x=\frac{\pi}{2}$, P está em B e, para $x=\frac{3\pi}{2}$, P está em B', então a reta OP fica paralela ao eixo das tangentes. Como neste caso não existe o ponto T, a tg x não está definida.