

PROJETO DE RESISTÊNCIA DOS MATERIAIS

ANA PAULA RODRIGUES DE OLIVEIRA PEDRO AUGUSTO GOMES MINARÉ PATRICK SOARES MENDES SAMUEL OLIVEIRA BARBOSA

PROJETO DE RESISTÊNCIA DOS MATERIAIS

Projeto apresentado à Universidade Federal de Goiás, como requisito parcial para média semestral na disciplina de Resistência dos Materiais.

1. PROBLEMA DO CLIENTE

Elaborar a estrutura da imagem abaixo (figura 1) de modo a atender os requisitos do cliente. São eles:

- i) suportar uma carga de 10 toneladas força aplicada a ¾ de distância do ponto A ao C;
- ii) manter a viga rígida na horizontal.

Figura 1: Representação da estrutura do cliente sem a carga aplicada e com a carga aplicada.

2. RESOLUÇÃO DO PROBLEMA

Pela figura 1 constatamos três forças sobre a viga (F_1, F_2, F_3) que são as mesmas que agem sobre as barras . Essas forças causam deformações nas barras que podem deixar a viga inclinada se elas não forem de mesmas magnitudes. Dado o volume de equações e a precisão que a solução exige, fizemos um programa em linguagem *python* que calcule todas as informações e apresentem os resultados que foram obtidos.

Definimos alguns dados de entrada. São eles:

- Comprimento das barras: $L_1 = L_2 = L_3 = 1 m$
- Diâmetro das barras: $d_1 = 101,60 \text{ mm}, d_2 = 46,40 \text{ mm} \text{ e } L_3 = 60,33 \text{ mm}$
- Módulo de elasticidade das barras: E = 200 GP a
- Tensão de escoamento: $\sigma_e = 0.250 \; GP \, a$

- Valor da força concentrada: P = 10 Tf
- Local de aplicação da carga e distância entre as barras:

$$a = 4 m$$
, $b = 6 m$ e $c = 8 m$

O programa retornou

• Forças de apoio e nas barras: F_1 , F_2 e F_3 (em kN)

• Deslocamentos nos pontos A, C e D: δ_1 , δ_2 e δ_3 (em milímetros)

• Deformação das barras: ϵ_1 , ϵ_2 e ϵ_3 (em milímetros)

• Tensões axiais nas barras: σ_1 , σ_2 e σ_3 (em kN)

• Alongamento das barras : Ω_1 , Ω_2 e Ω_3 (em %)

• Gráfico da situação deformada:

Figura 2: A linha azul representa a viga na situação deformada. Na horizontal, a posição da aplicação das cargas e na vertical o deslocamento em micrômetros.

A imagem abaixo mostra como ficou as barras e as deformações que elas sofrem. Como o objetivo é manter a viga na horizontal, devemos fazer as barras deformarem na mesma proporção. A primeira recebe uma carga de 6,4 tf, aproximadamente, o que exige um maior diâmetro. Já a segunda tem sobre si 1,3 tf de tração, que é o menor esforço, exigindo um diâmetro menor. E a terceira recebe uma carga intermediária, o que por sua vez necessita de um diâmetro intermediário.

Figura 3: cortes das barras (1), (2) e (3), da esquerda para a direita. As dimensões das forças e tamanho estão em escala.

Na seguinte imagem temos como as forças estão distribuídas sobre a viga.

Figura 4: Da esquerda para a direita, uma carga de 6,4 tf sobre a barra (1), uma de 1,3 tf sobre a barra (2) e uma de 2,3 tf sobre a barra (3).

3. Resultados, orçamentos e sugestões

Para a concretização do projeto, sugerimos a seguinte composição:

- Três barras de aços (A-36) [1], com as seguintes dimensões:
 - **A** Barra (1): $d_1 = 101,60 \text{ mm}$; $L_1 = 1 \text{ m}$
 - **A** Barra (2): $d_2 = 46,40 \text{ mm}$; $L_2 = 1 \text{ m}$
 - **A** Barra (3): $d_3 = 60, 33 \text{ mm}$; $L_3 = 1 \text{ m}$
- Suas posições:
 - Distância \overline{AC} : b = 6 m
 - ♦ Posição de aplicação da força concentrada: *a* = 4 *m*
 - ♦ Distância \overline{CD} : c = 8m

Observamos que a variação do deslocamento vertical da barra se encontra na ordem $0.6~\mu m$, proporcionando uma inclinação de $\lambda = 4\,x\,10^{-8}$, assim afirmamos que a barra continua no estado horizontal.

Com estas informações em mãos, geramos um modelo de orçamento possível para a execução do projeto. Calculamos os preços com base nas referências [2] e [3].

- Barra (1): R\$ 271, 35
- Barra (2): R\$ 55, 68
- Barra (3): R\$ 95, 63

Somando ao total: *R*\$ 422,66¹. O peso extra adicionado pelas barras também foi calculado, inserindo 95,63 Kg na estrutura. Não há nenhum comprometimento à estrutura.

A estrutura proposta tem a capacidade de suportar, dada a mesma posição de aplicação da força, disposição das barras e comprimento das barras, em torno de $3150\ kN - 3200\ kN$.

A depender das dimensões da carga aplicada, pode-se sentir necessidade de aumentar o tamanho das barras. Em nossos testes, um aumento de $1~m \rightarrow 4m$ será possível, mantendo assim a variação do deslocamento vertical menor que $7~\mu m$, consideramos este um resultado satisfatório para nosso objetivo.

Ao fazer a manutenção, atentar-se ao local onde as barras estão acopladas com a viga, se possível retirar a carga e realizar uma análise na estrutura.

¹ O valor está superestimado, pois foi utilizado a cotação do preço da barra (1) para o cálculo do preço da barra (2) e (3)

4. REFERÊNCIAS

- [1] HIBBELER, R.C. Resistência dos materiais. . ed. São Paulo: PEARSON, 2010.
- [2] GERDAU. **GERDAU**. 2021. Disponível em:
- https://www2.gerdau.com.br/produtos/barra-redonda. Acesso em: 7 jun. 2021.
- [3] BOZHONG GOUP. Alibaba. 2021. Disponível em:
- https://portuguese.alibaba.com/product-detail/round-steel-bar-low-alloy-for-sale-stee l-bar-4-inches-1045-60708129127.html>. Acesso em: 7 jun. 2021.