Key Indicators of High or Low Life Expectancy in Developing Countries

Author: Adrian Chavez-Loya

Objective

Highlight key factors in increasing life expectancy within developing countries.

Dataset: Life Expectancy Data.csv

Background

The Global Health Observatory (GHO) data repository under the World Health Organization (WHO) tracks health status and other related factors for all countries. This dataset is related to life expectancy and associated health factors for 193 countries, aggregated from the WHO, and corresponding economic data was collected from the United Nations. This data spans the years of 2000 to 2015 and is information about developing countries.

Here is a comprehensive list of variables that may have connections to Life Expectancy:

- 1. Adult Mortality: High adult mortality rates are often correlated with lower life expectancy.
- 2. Infant Mortality: Similarly, high infant mortality rates can indicate poor health conditions and limited access to healthcare, which may lead to lower life expectancy.
- 3. Alcohol Consumption: Excessive alcohol consumption can have detrimental effects on health and may reduce life expectancy.

- 4. Percentage Expenditure on Healthcare: Higher healthcare expenditures may lead to better access to healthcare services and contribute to higher life expectancy.
- 5. Vaccination Coverage (e.g., Hepatitis B, Polio, Diphtheria): Adequate vaccination coverage can prevent infectious diseases and reduce mortality rates, thereby increasing life expectancy.
- 6. BMI (Body Mass Index): BMI is often used as an indicator of overall health and can influence life expectancy, with both underweight and obesity associated with higher mortality risks.
- 7. Income Composition of Resources: Higher income levels and a more equitable distribution of resources are generally associated with better access to healthcare, education, and other social determinants of health, contributing to higher life expectancy.
- 8. Education Level (Schooling): Higher levels of education are correlated with better health outcomes and behaviors, which can lead to increased life expectancy.
- 9. HIV/AIDS Prevalence: HIV/AIDS significantly impacts mortality rates and life expectancy, especially in regions with high prevalence rates.
- 10. Gross Domestic Product (GDP): GDP can serve as a proxy for overall economic development, which in turn affects access to healthcare, nutrition, sanitation, and other factors influencing life expectancy.

```
In []: # Import necessary packages
   import pandas as pd
   import numpy as np
   from sklearn.linear_model import LinearRegression
   from sklearn.metrics import mean_squared_error
   import statsmodels.api as sm
   import seaborn as sns
   import matplotlib.pyplot as plt #use for plotting model
```

```
In [ ]: # Read in data set
    life_expectancy_data = pd.read_csv('/Users/adrianchavezloya/Deskt
    print(life_expectancy_data.columns) ##Used to check headings
```

```
In [ ]: life_expectancy_data.head()
```

Out[]:

	Country	Year	Status	Life Expectancy	Adult Mortality	infant deaths	Alcohol	perce expen
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.2
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.5
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.2
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.1
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.C

5 rows × 22 columns

```
In []: #Drop rows with missing values
    life_expectancy_data = life_expectancy_data.dropna()
```

Model 1a: The Effect of GDP on Life Expectancy

Results: To begin, we first examined if there is any correlation betweeen Body Mass Index (BMI) and Life Expectancy

```
In []: # First dataframe
   X = life_expectancy_data['GDP']
   Y = life_expectancy_data['Life Expectancy ']
   X = sm.add_constant(X) # add constant (y-int)
   model = sm.OLS(Y, X).fit() # fit model
   # Summary of Model 1
   print(model.summary())
```

	OLS Regression Results								
		======	=====	=====	=====	===	=====	===========	=====
Dep. V	ariable:		Life Ex	pectar	ncy	F	R-squared:		
Model: 0.194					0LS	A	Adj. R-squared:		
Method 398.4	:		Leas	t Squa	ares	I	F-statistic:		
Date: 1.50e-	Sun, 02	Jun 2	2024	ı	Prob	(F-statistic):			
Time:	12:49:26		I	Log-Likelihood:					
-5746.3 No. Observations: 1649 AIC: 1.150e+04									
Df Res	iduals:				1647	E	BIC:		
1.151e+04 Df Model: Covariance Type: 1.047 Df: 1.04									
=====	======			=====		===	====		
	0.975]	coef	std	err			t	P> t	[0.02
const		67.4193	0	.216	31	1.9	942	0.000	66.99
GDP	67.843 0.000	0.0003	1.69	e-05	1	9.9	959	0.000	0.00
_		======	======	=====		===	====	:========	=====
Omnibu	====== S:			150	538	[Durbi	n-Watson:	
	mnibus):			0.000			Jarque-Bera (JB):		
191.52 Skew: 2.57e-				-0	804	F	Prob(JB):		
Kurtos 1.42e+	is:			3.452		(Cond. No.		
======	=======	======	======	=====	====	===	====	=======================================	=====

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.42e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In []: # Plot of Model 1
   plt.scatter(life_expectancy_data['GDP'], life_expectancy_data['Li
   plt.plot(life_expectancy_data['GDP'], model.predict(X), color='re
    plt.xlabel('GDP') # Add labels and title
   plt.ylabel('Life Expectancy')
   plt.title('Relationship between GDP and Life Expectancy')
   plt.legend()
   plt.show()
```


Model 1a Results:

• For this model, we have a couple statistical indicators that the correlation between BMI and Life Expectency is statistically significant.

R-squared: Approximately 19.5% of the variance in life expectancy is explained by GDP.

F-statistic: The overall model is statistically significant with a very small p-value (1.50e-79).

Coefficients:

- Intercept (const): Approximately 67.42.
- GDP: For each unit increase in GDP, life expectancy increases by approximately 0.0003 years.

P-values: Both the intercept and GDP coefficients have very small p-values, indicating they are statistically significant predictors of life expectancy.

Model 2b: Change to Quadratic Model (Result of Model Assumptions):

- Our model lacks linearity although there is definitely correlation between the two variables
- Our model seems to display more of a quadratic relationship

Therefore, we will adjust our model and make it a quadratic one.

```
In [ ]: # Create quadratic term
        life expectancy data['GDP squared'] = life expectancy data['GDP']
        # Fit a quadratic regression model
        X_quad = life_expectancy_data[['GDP', 'GDP_squared']]
        X quad = sm.add constant(X quad)
        model quad = sm.OLS(Y, X quad).fit()
        # Scatter plot of the data
        plt.scatter(life_expectancy_data['GDP'], life_expectancy_data['Li
        # Plot the quadratic regression curve
        X_plot = np.linspace(life_expectancy_data['GDP'].min(), life_expe
        X plot quad = sm.add_constant(np.column_stack((X_plot, X_plot**2))
        plt.plot(X_plot, model_quad.predict(X_plot_quad), color='red', li
        plt.xlabel('GDP')# Add labels and title
        plt.ylabel('Life Expectancy')
        plt.title('Relationship between GDP and Life Expectancy (Quadrati
        plt.legend()
        # Print summary & plot of the quadratic model
        print(model_quad.summary())
        plt.show()
```

OLS Regression Results

======== Dep. Variable:	Li	fe Expectanc	СУ	R-squ	ared:	
0 . 258		·		·		
Model:		C)LS	Adj. I	R-squared:	
0.257 Method:		Least Squar	es	F–sta	tistic:	
286.2 Date:	Su	n, 02 Jun 20	24	Prob	(F-statistic)):
2.10e-107 Time:		12:49:	34	Log-L	ikelihood:	
-5678.8 No. Observation	ıs:	16	649	AIC:		
1.136e+04 Df Residuals: 1.138e+04		16	646	BIC:		
Df Model: Covariance Type		nonrohi	2			
==========	: . :=======	110111 ODC	:====	:=====:	=========	======
25 0. 975]					P> t	
const 59 66.840					0.000	
GDP 0.001	0.0007	3.31e-05	2	0.529	0.000	0.0
GDP_squared -5. 09 -4.54e-09	437e-09	4.59e-10	-1	1.848	0.000	-6.34e-
======================================	======	111.3	328	Durbi	======= n-Watson:	======
Prob(Omnibus):		0.0	000	Jarqu	e-Bera (JB):	
133.280 Skew:		-0.6	65	Prob(.	JB):	
1.14e-29 Kurtosis: 1.02e+09		3.4	14	Cond.	No.	
=======================================	======	========		=====	=======================================	======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.02e+09. This might indicate that there are strong multicollinearity or other numerical problems.

Model 1b Results:

- R-squared: The model explains 25.8% of the variance in life expectancy.
- F-statistic: The overall model is statistically significant with a p-value of 2.10e-107.
- Coefficients:
 - Intercept (const): 66.3997 (p-value: <0.0001)
 - The intercept is statistically significant.
- GDP: 0.0007 (p-value: <0.0001)
 - There is a positive relationship between GDP and life expectancy, which is statistically significant.
- GDP_squared: -5.437e-09 (p-value: <0.0001)
 - The negative coefficient indicates a concave relationship, meaning the positive effect of GDP on life expectancy diminishes as GDP increases. This term is also statistically significant.

Model 2: <u>Comprehensive Analysis of Multiple Variables to Explore Their Potential Impact on Life Expectancy.</u>

	OLS Regression Results				
======== Dep. Variable:	life Exnect	ancv	R-sa	uared:	
0.825	LITE EXPECT	arrey	11 39	adi edi	
Model:		0LS	Adj.	R-squared:	
0.824			_	·	
Method:	Least Sq	uares	F-st	atistic:	
644.3					
Date:	Sun, 02 Jun	2024	Prob	(F–statist	ic):
0.00	4.0				
Time:	12:	56:23	Log-	Likelihood:	
-4486.2 No. Observations:		1649	AIC:		
8998.	i	1049	AIC:		
Df Residuals:		1636	BIC:		
9069.		1050	DIC.		
Df Model:		12			
Covariance Type:	nonr	obust			
=======================================		=====	=====	=======	=======
=======================================		==			
_	_		coef	std err	t
P> t [0.025	0. 975]				
const		 51	0753	0.667	77.882
0.000 50.666	53.284	J1.	3733	0.007	771002
Adult Mortality) 551204	-0.	0180	0.001	-18.755
0.000 -0.020	0 -0.016	0.	0100	0.001	101733
infant deaths		-0.	0022	0.001	-2.806
0.005 -0.004	4 -0.001				
Alcohol		-0.	0964	0.030	-3.181
0.001 -0.156					
percentage expend		0.	0004	0.000	2.089
0.037 2.35e-05	0.001				4 204
Hepatitis B	- 0.003	-0.	0063	0.005	-1.381
0.167 -0.015	0.003	0	0101	0 005	1 070
Polio	0 021	0.	0104	0.005	1.970
0.049 4.73e-05 Diphtheria	0.021	ρ	0209	0.006	3.454
0.001 0.009	0.033	0.	0209	0.000	3.434
BMI	01033	0.	0395	0.006	6.890
0.000 0.028	0.051	•		2.000	2.23
Income composition		10.	4204	0.851	12.249
0.000 8.752					
Schooling		0.	9229	0.060	15.286
0.000 0.804	1.041				

-0.4383

1.265e-05

0.018

2.91e-05

-24.088

0.435

HIV/AIDS

0.000 GDP

-0.474

-0.403

0.664	-4.44e-05	6.97e-05		
======		=======	=======	=======================================
0mnibus	: ::		41.284	Durbin-Watson:
Prob(Om	nnibus):		0.000	Jarque-Bera (JB):
69.270 Skew:			-0.207	Prob(JB):
9.08e-1 Kurtosi			3.915	Cond. No.
1.22e+0)5			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.22e+05. This might indicate that there are

strong multicollinearity or other numerical problems.

/var/folders/vq/l_8lvyx12cxb7kcq563rstwh0000gn/T/ipykernel_1351/3 713450831.py:15: UserWarning: The figure layout has changed to tight

plt.tight_layout()

Model 2 Results:

Our multiple regression model which tests predictor variables that were deemed to be the most likely to have an effect on Life Expectancy shows statistical significance.

Correlation Values and P Values:

There are strong correlations between the predictor variables and the dependent variable (Life Expectancy) for every variable.

- Adult Mortality: Statistically significant (p-value < 0.0001) with a negative coefficient, indicating that higher adult mortality rates are associated with lower life expectancy.
- Infant Deaths: Statistically significant (p-value = 0.005) with a negative coefficient, suggesting that higher infant mortality rates are associated with lower life expectancy.
- Alcohol: Statistically significant (p-value = 0.001) with a negative coefficient, indicating that higher alcohol consumption is associated with lower life expectancy.
- Percentage Expenditure: Statistically significant (p-value = 0.037) with a positive coefficient, suggesting that higher healthcare expenditure percentage is associated with higher life expectancy.
- Polio: Statistically significant (p-value = 0.049) with a positive coefficient, implying that higher polio vaccination coverage is associated with higher life expectancy.
- Diphtheria: Statistically significant (p-value = 0.001) with a positive coefficient, indicating that higher diphtheria vaccination coverage is associated with higher life expectancy.
- BMI (Body Mass Index): Statistically significant (p-value < 0.0001) with a positive coefficient, suggesting that a higher BMI is associated with higher life expectancy.
- Income Composition of Resources: Statistically significant (p-value < 0.0001) with a positive coefficient, indicating that higher income composition of resources is associated with higher life expectancy.

- Schooling: Statistically significant (p-value < 0.0001) with a positive coefficient, implying that higher levels of schooling are associated with higher life expectancy.
- HIV/AIDS: Statistically significant (p-value < 0.0001) with a negative coefficient, suggesting that higher HIV/AIDS prevalence is associated with lower life expectancy.

Unsignificant Variables (with a higher p-value):

- Hepatitis B: Not statistically significant (p-value = 0.167). The coefficient may not accurately estimate the effect of Hepatitis B vaccination coverage on life expectancy due to insufficient evidence.
- GDP: Not statistically significant (p-value = 0.664). The coefficient suggests that there is no significant linear relationship between GDP and life expectancy in this model.

Model Performance:

- R-squared: The model explains 82.5% of the variance in life expectancy, indicating a strong overall fit.
- Adjusted R-squared: After adjusting for the number of predictors, the model still explains 82.4% of the variance, suggesting that the model's explanatory power remains high.
- F-statistic: The F-statistic is 644.3 with a p-value of 0.00, indicating that the overall model is statistically significant.

Drawback:

Condition Number: The high condition number (1.22e+05) indicates
potential multicollinearity issues, suggesting that the model's
predictive power might be compromised. To address this, we will use
the Variance Inflation Factor (VIF) to identify which independent
variables are contributing to multicollinearity.

**Using VIF (Variance Inflation Factor):

** Used to see which of our predictor variables may be causing multicollinearity (having an influence on other predictor variables)

```
Variable
                                          VIF
0
                             const 53.945068
                   Adult Mortality 1.759946
1
                     infant deaths 1.128156
2
3
                           Alcohol 1.803813
4
            percentage expenditure 12.794993
5
                       Hepatitis B 1.641961
6
                             Polio
                                     1.699198
                       Diphtheria
7
                                     2.060919
8
                              BMI
                                     1.553816
   Income composition of resources
9
                                     2.936492
10
                         Schooling
                                    3.447844
11
                          HIV/AIDS
                                   1.458779
12
                               GDP
                                    13.490625
```

The predictor variables GDP and percentage expenditure with high VIF may be responsible for inflating our condition number. We will attempt to remove these variables to create a even more reliable model that will show which variables most affect Life Expectancy.

Model 3: Comprehensive Analysis Multiple Predictors on Life Expectancy **Excluding GDP and Percentage Expenditure

OLS Regression Results

Dep. Vari 0.819	able:	Life Expecta	ncy	R-sq	uared:			
Model:			Adj. R-squared:					
0.818 Method:		Least Squ	ares	F-st	atistic:			
740.3		C.,, 62 J.,,	2024	Prob (F-statistic):				
Date: a aa		Sun, 02 Jun	2024					
0.00 Time:		13:34:00		Log-Likelihood:				
-4516.4 No. Obser	vations:		1649	AIC:				
9055.	TO CTOILS I		20 1 3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Df Residu	ials:		1638	BIC:				
9114. Df Model:			10					
Df Model: Covarianc		nonro	_					
=======	=======	===========	=====	=====		=======		
=======	=======	=========	:= ,	soof.	std err	+		
P>Itl	[0.025	0.9751	(.0e1	sta err	t		
 const			- 51.4	1833	0.672	76.626		
	50.165	52.801	311	.000	01072	, 01020		
Adult Mor			-0.0	187	0.001	-19.144		
	-	-0.017						
infant de	eaths		-0.0	0025	0.001	-3.037		
0.002	-0.004	-0.001						
Alcohol			-0.0	9461	0.030	-1.529		
_	-0.105	0.013						
Hepatitis		0.00-	-0.0	089	0.005	-1.926		
0.054	-0.018	0.000	0.0	000	0 005	1 043		
Polio 0.066	-0.001	0.020	Ø. (0099	0.005	1.843		
o.000 Diphtheri		0 . 0 2 0	0.0	215	0.006	3.498		
0.000	0.009	0.034	010	, _ 1 5	01000	31730		
BMI	3.005	0.051	0.0	386	0.006	6.612		
0.000	0.027	0.050						
Income co	omposition	of resources	10.9	784	0.861	12.755		
0.000	9.290	12.667						
Schooling		4 004	0.9	9717	0.061	15.950		
	0.852	1.091	•	1261	0 010	22 544		
HIV/AIDS		0 100	-Ø . ∠	1361	0.019	-23.544		
0.000	-0 . 472	-0.400						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 2.32e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

/var/folders/vq/l_8lvyx12cxb7kcq563rstwh0000gn/T/ipykernel_1351/3
60376070.py:16: UserWarning: The figure layout has changed to tig
ht

plt.tight_layout()

Model 3: Key Observations

• The R-squared and adjusted R-squared values are slightly lower in the new model, but still very high, indicating a strong fit.

• The condition number has significantly decreased from 1.22e+05 to 2.32e+03, indicating a substantial reduction in multicollinearity issues.

Conclusion:

After analyzing these three models, Model 3 is the best model which contains predictor variables that are statistically significant in correlation with the outcome (Life Expectancy). Model 3 also shows a significantly lower test condition number:

Before Excluding GDP and Percentage Expenditure Condition Number: 1.22e+05 (122,000) After Excluding GDP and Percentage Expenditure

Condition Number: 2.32e+03 (2,320) R-squared: 0.819 Adj. R-squared: 0.818

The R-squared is still extremely high which explains the variance in the these predictor variables explain the variance in Life Expectancy at about 82%.

Adj. R-Squared is almost the same value, which indicates that we are not overfitting (adding too many predictor variables which may increase R-squared although some predictors are not significant).

GDP has a correlation with life expectancy, although it seems to also be affect other variables and/or be affected itself by other predictor variables (multi-collinearity).

As a result, here is the list of predictor variables that are most likely to effect life expectancy in developing countries:

- Adult Mortality
- Infant Deaths
- Alcohol
- Hepatitis B
- Polio
- Diphtheria
- BMI
- Income Composition of Resources

- Schooling
- HIV/AIDS