H20T1A2

Gegeben sei die Fibonacci-Folge $(f_n)_{n\in\mathbb{N}_0}$, d.h. $f_0=1=f_1$ und $f_n=f_{n-1}+f_{n-2}$ für $n\geq 2$, sowie die Potenzreihe $F(z)=\sum_{n=0}^{\infty}f_nz^n$ und $R\in[0,\infty]$ sei der Konvergenzradius von F.

- a) Zeigen Sie mit Hilfe des Quotientenkriteriums, das $R \ge \frac{1}{2}$ ist.
- b) Zeigen Sie, dass $(1 z z^2)F(z) = 1$ für alle $z \in \mathbb{C}$ mit |z| < R gilt.
- c) Bestimmen Sie den Konvergenzradius R von F.

Zu a)

Da $f_n \ge 1$ für alle $n \in \mathbb{N}_0$, ist der Quotient $\left| \frac{f_{n+1}}{f_n} \right| = \frac{f_n + f_{n-1}}{f_n} = 1 + \frac{f_{n-1}}{f_n}$ wohldefiniert und wegen $f_n = f_{n-1} + f_{n-2} \ge f_{n-1}$ ist $\frac{f_{n-1}}{f_n} \le 1$ und somit $\left| \frac{f_{n+1}}{f_n} \right| \le 2$.

Damit ist der Konvergenzradius $R = \frac{1}{\lim_{n \to \infty} \frac{f_{n+1}}{f_n}} \ge \frac{1}{2}$

Zu b)

Für |z| < R konvergiert $F(z) = \sum_{n=0}^{\infty} f_n z^n$ absolut, damit ist $(1 - z - z^2)F(z) = (1 - z - z^2) \sum_{n=0}^{\infty} f_n z^n = f_0 + z(f_1 - f_0) + z^2(f_2 - f_1 - f_0) + \sum_{n=3}^{\infty} (f_n - f_{n-1} - f_{n-2})z^n = 1$, (denn $f_0 = 1 = f_1$ und $f_n = f_{n-1} + f_{n-2}$, also $f_n - f_{n-1} - f_{n-2} = 0$ für $n \ge 2$) ebenfalls konvergent, also $(1 - z - z^2)F(z) = 1$ für alle $z \in \mathbb{C}$ mit |z| < R.

Zu c)

 $1-z-z^2 \text{ hat die Nullstellen } z_{1,2} = \frac{1\pm\sqrt{1^2-4(-1)}}{-2} = -\frac{1\pm\sqrt{5}}{2} \text{. Insbesondere gilt } \left|-\frac{1\pm\sqrt{5}}{2}\right| \geq R,$ $\operatorname{da}\left(1-z-z^2\right) F(z) = 1 \text{ für alle } z \in \mathbb{C} \text{ mit } |z| < R \text{ im Widerspruch zu } (1-z-z^2) = 0 \text{ in } z_{1,2} = -\frac{1\pm\sqrt{5}}{2}.$

Die Funktion $g: \mathbb{C} \setminus \left\{-\frac{1 \pm \sqrt{5}}{2}\right\} \to \mathbb{C}$; $z \to \frac{1}{1-z-z^2}$ ist holomorph als Quotient holomorpher Funktionen mit nullstellenfreiem Nenner. Da $g|_{M=\left\{z \in \mathbb{C}: |z| < \frac{\sqrt{5}-1}{2}\right\}}$ holomorph ist, hat $g|_{M}$ eine

Potenzreihenentwicklung um 0, die auf M konvergiert.

Auf
$$\{z \in \mathbb{C}: |z| < R\} \subseteq M \text{ gilt } (1-z-z^2)F(z) = (1-z-z^2)g(z) = 1, \text{ also } F(z) = g(z) = \frac{1}{1-z-z^2}.$$

Da die Potenzreihenentwicklung von g um 0 auf M konvergiert und F = g auf $\{z \in \mathbb{C}: |z| < R\}$ gilt, konvergiert die Potenzreihe zu F auch auf M, d.h. $R = \frac{\sqrt{5}-1}{2}$.