NMS izlases nodarbība, 2019-06-10

P1: Dots pirmskaitlis $p \geq 2$. Eduardo and Fernando spēlē sekojošu spēli, pārmaiņus izdarot gājienus: Katrā gājienā spēlētājs izvēlas indeksu i no kopas $\{0,1,\ldots,p-1\}$, kuru neviens no viņiem vēl nav izvēlējies, un tad izvēlas elementu a_i no kopas $\{0,1,2,3,4,5,6,7,8,9\}$. Spēli sāk Eduardo. Spēle beidzas tad, kad visi indeksi $i \in \{0,1,\ldots,p-1\}$ ir izvēlēti. Tad izrēķina skaitli:

$$M = a_0 + 10 \cdot a_1 + \dots + 10^{p-1} \cdot a_{p-1} = \sum_{j=0}^{p-1} a_j \cdot 10^j.$$

Eduardo mērķis ir padarīt skaitli M dalāmu ar p, bet Fernando mērķis ir to nepieļaut. Pierādīt, ka Eduardo ir uzvaroša stratēģija — viņš vienmēr var sasniegt savu mērķi.

P2: Dots pirmskaitlis p > 3, kuram $p \equiv 3 \pmod{4}$. Dotam naturālam n skaitlim a_0 virkni a_0, a_1, \ldots definē kā $a_n = a_{n-1}^{2^n}$ visiem $n = 1, 2, \ldots$ Pierādīt, ka a_0 var izvēlēties tā, ka apakšvirkne $a_N, a_{N+1}, a_{N+2}, \ldots$ nav konstanta pēc moduļa p nevienam naturālam N.

P3: Ar n > 1 apzīmēts kāds naturāls skaitlis. Pierādīt, ka bezgalīgi daudzi locekļi virknei $a_k = \left\lfloor \frac{n^k}{k} \right\rfloor$ ir nepāru skaitļi. ($\lfloor x \rfloor$ apzīmē lielāko veselo skaitli, kas nepārsniedz x.)

P4: Pierādīt, ka jebkuram naturālam n atradīsies n pēc kārtas sekojoši naturāli skaitļi, no kuriem neviens nav pirmskaitļa pakāpe, ieskaitot pirmo.

P5: Dots naturāls skaitlis n un $a_1, a_2, a_3, \ldots, a_k$ $(k \ge 2)$ ir dažādi veseli skaitļi no kopas $\{1, 2, \ldots, n\}$ ka n dala $a_i(a_{i+1} - 1)$ pie $i = 1, 2, \ldots, k - 1$. Pierādīt, ka n nedala $a_k(a_1 - 1)$.

P6: Par $arom\bar{a}tisku$ sauksim tādu naturālu skaitļu kopu, kas sastāv no vismaz diviem elementiem un katram no tās elementiem ir vismaz viens kopīgs pirmreizinātājs ar vismaz vienu no pārējiem elementiem. Apzīmēsim $P(n) = n^2 + n + 1$. Kāda ir mazākā iespējamā naturālā skaitļa b vērtība, pie nosacījuma, ka eksistē tāds nenegatīvs vesels skaitlis a, kuram kopa $\{P(a+1), P(a+2), \ldots, P(a+b)\}$ ir $arom\bar{a}tiska$?

P7: Skaitļa decimālpieraksts satur 3^{2013} ciparus "3"; citu ciparu skaitļa pierakstā nav. Atrast augstāko skaitļa 3 pakāpi, kas ir šī skaitļa dalītājs.

P8: Ar P(n) apzīmējam lielāko pirmskaitli, ar ko dalās n. Atrast visus naturālos skaitļus $n \geq 2$, kam

$$P(n) + \lfloor \sqrt{n} \rfloor = P(n+1) + \lfloor \sqrt{n+1} \rfloor.$$

P9: Vai eksistē naturāls skaitlis n, ka tam ir tieši 2000 dalītāji, kas ir pirmskaitļi, un $2^n + 1$ dalās ar n?

P10: Atrast visas sirjektīvās funkcijas $f: \mathbb{N} \to \mathbb{N}$, ka visiem $m, n \in \mathbb{N}$ un katram pirmskaitlim p, skaitlis f(m+n) dalās ar p tad un tikai tad, ja f(m) + f(n) dalās ar p. $Piez\overline{\imath}me$. Sirjektīvās funkcijas pieņem visas vērtības no \mathbb{N} .

P11: Noskaidrojiet, vai eksistē tāds naturāls skaitlis n, ka skaitlis $n \cdot 2^{2016} - 7$ ir naturāla skaitļa kvadrāts.

P12: Dots nekonstants polinoms P(x) ar veseliem koeficientiem. Pierādīt, ka nevar atrast tādu m, ka visi $P(m+1), P(m+2), P(m+3), \ldots$ būtu bezkvadrātu (square free), t.i. visi to pirmreizinātāji būtu dažādi.