Math115A 11/1 notes

Vincent

2023-01-11

A set is a collection of mathmatical object. The members of a set are called elements of the set: we write $a \in A$ to mean: "a is an element of the set A"

We often use curly brackets for sets whose elements can be "enumerated"

Example:/newline

 $\{-1,2,3,7\}$ is the set consisting of the numbers (elements) -1,2,3, and 7.

More often we describe a set as "elements with same properties", like $A = \{x: x \text{ has property } P\}$ No such cases are often mentions that x is from a larger set (more often set of numbers) that defined and has an established notation.

Important fact element sets: one can not have at the same time: $x \in A$ and $x! \in A$

Example: $(x \in \mathbb{R}: x \ge -2)$ means "the set of real numbers larger than or equal to -2"

Suppose A, B are sets, We say A is a subset of B and write A<B if for any a \in A we have a \in B (every elemet of A is an element of B)

For any set A we have $0 \in A$ and $A \in A$

Two sets A, B are equal if $A \in B$ and $B \in A$, we write A = B

**Operations with sets

Suppose A, B are sets, We write $A \cup B$ for the set $\{x: x \in A \text{ or } x \in B\}$ we read $A \cup B$

We write $A \cap B$ for the set $\{x: x \in A \text{ and } x \in B\}$ we read $A \cap A$

We write A-B is $\{x : x \in A \text{ and } x! \in B\}$

If $A \in X$ the we call X-A the complement of A in X

let $A,B \in x$ Then $A \in B$ if and only if $x-B \in x-A$ proof:

The statement asks us to move the things

- 1. if $A \in B$ then $X B \in X A$
- 2. if X-B \in X-A then A \in B("<=") meet of "1."

proof of 1:

Assume $A \in B$, let $x \in X$ -B we want to show that $x \in X$ -A i.e. that x does not belong to A. indeed, for if $x \in A$ then we would have $x \in B$ (because $A \in B$) giving us $x \in A$ and $x! \in A$ at the same time which is contradiction.

proof of 2: (i.e. f " \leq =")

Assume X-B \in X-A. We want to move that A \in B, Let a \in A if we assume by contradiction that x \in B, then x \in X-B. But this implies x \in X-A, in other words x ! \in A. again we get a ! \in A, a \in A, contradiction.

if and only if = "<=>" or "iff"

if $A \in X$ Then X-(X-A) = A (The complement of the complement of a set A is the set A itself)

For arbitary sets A,B,x A \in B implies X-B \in X-A proof Need to show 1. X-(X-A) \in A and 2. A \in X-(X-A) proof of 1: Let x \in X-(X-A). This means x! \in X-A. We want to show that x \in . indeed, for if we assume that x! \in A, then x \in X-A, to we get x \in X-A and x! \in X-A, a contradiction.

proof of 2:

If A,B,X are arbitrary sets then A \in B implies X-B \in X-A Proof:

De morgan's law

 $X-(A \cup B) = (X-A) \cap (X-B)$

 $X-(A \cap B) = (X-A) \cup (X-B)$

theorem 1 proof:

- 1. if $x \in X$ - $(A \cup B)$ Then $x \in X$ -A (because $A \in A \cup B$ or X- $(A \cup B) \in X$ -A) and $x \in X$ -B (because $B \in A \cup B$). Thus $x \in (X-A) \cap (X-B)$
- 2. Assume $\in (X-A) \cap (X-B)$. This means $x! \in A$ and $x! \in B$. We want to move that $x \in X-(A \cup B)$. Assume by contradiction that this is not true. Thus $x! \in X-(A \cup B)$ which means $x \in A \cup B$. So we have at the same time $x \in A \cup B$ and $x! \in A \cup B$ which is a contradiction.

theorem 2 proof:

- 1. if $x \in X (A \cap B)$. Then $(X A) \in x$ and $(X B) \in x$. Thus $x \in (X A) \cup (X B)$.
- 2 Assume $x \in (X-A) \cup (X-B)$, which means $x \in (X-A)$ or $x \in (X-B) \cdot (x! \in A \cap B)$ Base on the other side of the equation, $x \in X-(A \cap B)$, we can assume by contradiction that this is not true.(where $X-(A \cap B) \neq (X-A) \cup (X-B)$). Thus, $x! \in X-(A \cap B)$ which means $x \in A \cap B$. So we have at the same time $x \in A \cap B$ and $x! \in A \cap B$ which is a contradiction.

2.1 Definition: A function is a triple considering of: a set X called the domain of the function a set Y called the codomain of the function

a rule of assigning to each element $x \in X$ a unique element $y \in Y$ (often this "rule" or "assignment" is given by a formula)

We write such a triple f:X->Y with the y assigned x denoted f(x) or read it to x maps to f(x) (we often use the notation $x \mapsto f(x)$ to emphesize that the function f assigns f(x) to x read it "x maps to f(x)")

2.2 Definition: (2.2.1)let f:X-> Y be a function

we say that f is injective if whenever $x_1, x_2 \in X$ are be that $f(x_1) = f(x_2)$, it implies $x_1 = x_2$ (non_equal elements in X map to non_equal elements in Y, under f i.e. $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$)

we say that f is surjective if for any $y \in Y$ there exist $x \in X$ such that f(x) = y (Any $y \in Y$ is the image of $x \in X$, under f)

we say that bijective if f is both injective and surjective (this is some as saying that any $y \in Y$ is the image of exactly any $x \in X$, under f)

suppose f:X->Y on g:Y -> Z are functions. The composition of f and g is the function g of f: X_z ->Z defined by g of f(x) = g(f(x))

let f:X->Y be a function and $X_0 < X_a$ subset the restriction of f to X0, denoted $f|_X$, X_0 ->Y is the function with domain X_0 , codomain Y and arraignment given by : for $x \in X_0$ $f|_X(x) = f(x)$

Exercise:

Show that if f is surjective then n>=m

proof:

We say that a function is surjective when any $y \in Y$ have a exist $x \in X$, Thus, the number of $x \in X$ will always greater or equal to the number of $y \in Y$ in the function. Which means $n \ge m$

Show that if f is injective, then $n \le m$

proof:

We say that a function is injective when any $x \in X$ have a unique exist $y \in Y$, Thus the number of $y \in Y$ will always greater or equal to the number of $x \in X$ in the function. Which means n <= m

Show that if f in bijective, the n=m

We say that a function is bijective when any $x \in X$ have a unique exist $y \in Y$ and any $y \in Y$ have a unique exist $x \in X$. Thus the number of the $x \in X$ must be equal to the number of $x \in X$ in the function. which means n=m

Show that if n>m Then there must exist $y \in Y$ be that $f(x_1)=y$, $f(x_2)=y$ for some $x_1, x_2 \in X$, $x_1 \neq x_2$ proof:

We say that if $x_1 \neq x_2$, where both x_1 and x_2 have a solution in the codomain. Also, we can tell that n>m, where the number of x \in X is greater than y \in Y. Thus, f(x_1)=y, f(x_2)=y, where two x will "point toward" a single y.

Let $f:X\to Y$, $g:Y\to Z$ be functions

- a) if g of f is injective then f is injective the f is injective
- b) if g of f is surjective then g is surjective.
- c) if f, g are injective then g of f is injective.
- d) if f, g are surjective the g of f is surjective