REV	DATA	ZMIANY
0.1	06.2019	Grzegorz Jurek, Jakub Marcinkowski

Obsługa sterowania silnikiem DC

Autorzy: Grzegorz Jurek, Jakub Marcinkowski

Elektronika

Wydział Informatyki, Elektroniki i Telekomunikacji
Akademia Górniczo-Hutnicza

Kraków 2019

Spis treści

1.	Wstęp	3
	Wymagania sprzętowe	
	Projekt techniczny	
	3.1 Schemat połączeń	
	3.2 Kod, implementacja PWM, ADC	5
4.	Obudowy użytych układów	8
	4.1 ATmega 32	8
	4.2 L293D – mostek H	8
5	Źródła	8

1.Wstęp

Silnik prądu stałego jest sterowany za pomocą joystick'a. Obroty silnika mogą być regulowane w zależności od pozycji. Obroty w lewo i prawo, joystick w pozycji neutralnej – silnik nie obraca się. Załączenie i odłączenie silnika przy pomocy przycisku.

Z joystick'a otrzymujemy napięcie z potencjometru z zakresu 0-5V, które trafia na przetwornik Analogowo Cyfrowy (ADC) do mikrokontrolera, zamieniane jest na 10-bitową postać cyfrową. W programie parametry I_pos i h_pos wyznaczają "martwy zakres" pracy joystick'a (silnik nie obraca się). Po przekroczeniu tej strefy silnik obraca się z prędkością regulowaną przez pozycję joysticka. Postać 10 bitową przesuwamy o dwa miejsca, aby pozbyć się LSB i dopasować do postaci 8-bitowej, która trafi na OCR0 lub OC1A. Użycie Pulse Width Modulation (PWM) reguluje prędkość obrotów.

Rys 1.1 Zdjęcie projektu z elementami.

2. Wymagania sprzętowe

- Mikrokontroler ATmega32
- Układ mostka H L293D
- Silnik prądu stałego 9V
- * Nastawnik joystick z potencjometrem liniowym 10kΩ oraz z przyciskiem

3. Projekt techniczny

3.1 Schemat połączeń

Rys. 3.1 Schemat połączeń

3.2 Kod, implementacja PWM, ADC

```
#define F_CPU 16000000
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
int main (void)
     //Pierwszy kanal
     TCCR0 |= (1<<WGM01);// Tryb : Fast PWM 8bit
     TCCR0 \mid = (1 << WGM00);
     TCCR0 = (1 << COM01) | (0 << COM00); // Clear OCO on Compare Match
     TCCR0 = (0 < CS02) | (1 < CS01) | (1 < CS00); // preskaler = 64
     000 No clock source (Timer/Counter stopped).
     001 clkI/O/(No prescaling )
     010 clkI/O/8 (From prescaler)
     011 clkI/0/64 (From prescaler)
     100 clkI/O/256 (From prescale)
     101 clkI/0/1024 (From pres)
     */
     // datasheet, page 107!!!!!
     //Drugi kanal
     TCCR1A |= (1<<WGM10);// Tryb : Fast PWM 8bit
     TCCR1A = (0 << WGM11);
     TCCR1B |= (1<<WGM12); // TCCR1B !!
     TCCR1A |= (1<<COM1A1)|(0<<COM1A0);//Clear OC1A on Compare Match
     TCCR1B = (0 < CS12) | (1 < CS11) | (1 < CS10); // preksaler = 64
     /*
     wyjscie na OCR0 (PB3) lewo
     wyjscie na OC1A (PD5) prawo
     ENABLE aktywe H
     */
```

```
ADMUX |= (0<<REFS0) | (0<<REFS1); // VREF OFF from VCC // VREF JP12
    /*
    REFS1 REFS0 Voltage Reference Selection
    0 0 AREF, Internal Vref turned off
    0 1 AVCC with external capacitor at AREF pin
    1 0 Reserved
    1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin
    ADMUX = (1 << MUX2) | (1 << MUX1) | (1 << MUX0); // PA7 / ADC7 input
    ADCSRA |= (1<<ADEN); //enable ADC
    ADCSRA |= (1<<ADSC); // pojedyncza konwersja / 1-free running mode
    ADCSRA |= (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);// dzielnik f,16MHz-> 128kHz
    ADCSRA |= (1<<ADLAR); // starsza do lewej
    DDRB = 0xFF; // portB jako wyjscie dla PWM OCO(PB3), oraz
                //(PB0) wyjście dla ENABLE (uklad L293D)
    DDRD = 0b11111110; // portD jako wyjscie dla PWM OC1A(PD5)
    PORTD = (1<<PIND0); //pullup</pre>
    DDRA = 0x00; //wejscie pod Przetwornik ADC (PA7)
    PORTA = 0XFF; //pull-up
//#### < L pos, H pos > = martwy zakres, silnik nie pracuje w tym przedziale#####
int h pos = 600;//560;
int 1 pos = 500;//540;
```

```
while(1)
          if(\sim(PIND >> 0) & 0x01) //gdy przycisk PD0 == 1, zmien PB0 (on/off engine)
               _delay_ms(10);
               if(~(PIND >> 0) & 0x01)
               {
                     PORTB^=(1<<PINB0);</pre>
                    _delay_ms(50);
               }
          }
          if ((ADC >= 1 pos) && (ADC <= h pos))</pre>
               //stop
               OCR0 = 0;
               OCR1A = 0;
          }
          else if (ADC >h pos)
               //prawo
               OCR0 = 0; //wylaczyc drugi kanal!
               OCR1A = ADC >> 2;//ADC w trybie 10 bit, usuwamy LSB do postaci 8 bit
          }
          else if (ADC <1_pos)</pre>
               //lewo
               OCR1A = 0; //wylaczyc drugi kanal!
               OCR0 = 0xFF - (ADC >> 2);
          }
     }
}
```

4. Obudowy użytych układów

4.1 ATmega 32

4.2 L293D - mostek H

Pin Functions

T III T directions				
PIN		TVDE	DESCRIPTION	
NAME	NO.	TYPE	DESCRIPTION	
1,2EN	1	I	Enable driver channels 1 and 2 (active high input)	
<1:4>A	2, 7, 10, 15	I	Driver inputs, noninverting	
<1:4>Y	3, 6, 11, 14	О	Driver outputs	
3,4EN	9	I	Enable driver channels 3 and 4 (active high input)	
GROUND	4, 5, 12, 13	_	Device ground and heat sink pin. Connect to printed-circuit-board ground plane with multiple solid vias	
V _{CC1}	16	_	5-V supply for internal logic translation	
V _{CC2}	8	_	Power VCC for drivers 4.5 V to 36 V	

5. Źródła

Programowanie w C

>> https://upel.agh.edu.pl/wiet/pluginfile.php/42089/mod_resource/content/2/AVR_programming_C.pdf

Atmega32

>> https://upel.agh.edu.pl/wiet/pluginfile.php/42092/mod_page/content/1/ATMega_ds.pdf

L293D

>> http://www.ti.com/lit/ds/symlink/l293.pdf