МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

А.Р. Сафин **Н.Н.** Удалов

ТРАНЗИСТОРНЫЕ АВТОГЕНЕРАТОРЫ. СБОРНИК ЗАДАЧ.

Учебное пособие по курсу

«Устройства генерирования и формирования сигналов» для студентов, обучающихся по направлениям «Радиотехника», «Радиоэлектронные системы и комплексы»

Москва Издательство МЭИ 2018 УДК ББК М

Утверждено учебным управлением НИУ «МЭИ»

Подготовлено на кафедре Формирования и обработки радиосигналов

Сафин, А.Р., Удалов, Н.Н.

М Транзисторные усилители мощности. Сборник задач: учебное пособие. А.Р. Сафин, Н.Н. Удалов. / Под ред. проф. Н.Н. Удалова. – М.: Издательство МЭИ, 2018. – 63 с.

Данное учебное пособие содержит задачи по расчету параметров схем и режимов одноконтурных автогенераторов, методов управления их частотой, а также нестабильности частоты. По каждому разделу даны краткие теоретические сведения, примеры решения задач и задачи для самостоятельного решения.

Пособие предназначено для студентов, обучающихся по направлениям «Радиотехника», «Радиоэлектронные системы и комплексы».

УДК ББК

© Национальный исследовательский университет «МЭИ», 2018

ОГЛАВЛЕНИЕ

Введение	4
1. СХЕМЫ И РЕЖИМЫ ОДНОКОНТУРНЫХ	
АВТОГЕНЕРАТОРОВ	5
1.1. Схемы автогенераторов	8
1.2. Режимы автогенераторов	
1.3. Диаграммы срыва и смещения	20
1.4. Нагрузочные характеристики	26
1.5. Влияние питающих напряжений на режим автогенератора	31
2. УПРАВЛЕНИЕ ЧАСТОТОЙ В ОДНОКОНТУРНЫХ	
АВТОГЕНЕРАТОРАХ	34
2.1. Схемы управляемых автогенераторов	
2.2. Расчет параметров контура и девиации частоты	
2.3. Статические модуляционные характеристики	
2.4. Паразитная амплитудная модуляция	
3. НЕСТАБИЛЬНОСТЬ ЧАСТОТЫ ОДНОКОНТУРНЫХ	
АВТОГЕНЕРАТОРОВ	50
3.1. Влияние температуры	53
3.2. Влияние питающих напряжений	58
СПИСОК ЛИТЕРАТУРЫ	61
ПРИЛОЖЕНИЕ	62

ВВЕДЕНИЕ

Учебное пособие составлено в помощь студентам, изучающим курс «Устройства генерирования и формирования сигналов» специальности «Радиотехника». В своей основе оно является существенно переработанной и обновленной версией издания 1989 года [1], ставшего библиографической редкостью. Также при составлении данного пособия использовались материалы из других задачников [2,3]

Основная цель задачника — углубление и закрепление теоретических знаний, полученных на лекциях и в ходе самостоятельной подготовки, а также выработка навыков в решении практических задач. Полное изложение теоретического материала, охватываемого задачами, содержится в учебнике [4].

современных устройствах генерирования И формирования для усиления колебаний применяются различные типы активных приборов. На частотах до 300 МГц это в основном биполярные и полевые транзисторы. В диапазоне СВЧ к ним добавляются различные электронные приборы такие, как клистроны, магнетроны, лампы бегущей и обратной волн и др. В данном учебном пособии студентам предлагаются задачи ПО следующим разделам: одноконтурные автогенераторы (схемы, режимы, влияние нагрузки и питающих напряжений), управляемые по частоте автогенераторы (схемы, режимы, статические модуляционные характеристики), нестабильность частоты. активного элемента выбран биполярный транзистор, качестве работающий на частотах, где в первом приближении можно не учитывать его инерционные свойства.

В каждом разделе приведены теоретические сведения, примеры решения задач и задачи для самостоятельного изучения. Приведенных в задачнике теоретических сведений, формул и справочных данных вполне достаточно для решения всех задач. В пособии включены задачи различной сложности – от простейших до весьма сложных и трудоемких. В каждом подразделе задачи сгруппированы по конкретным темам и расположены в порядке нарастания сложности.

Автор благодарен рецензентам к.т.н., проф. Белову Л.А. и д.ф.-м.н., проф. Устинову А.Б. за полезные советы и замечания, способствовавшие существенному улучшению данного пособия.

1. СХЕМЫ И РЕЖИМЫ ОДНОКОНТУРНЫХ АВТОГЕНЕРАТОРОВ

Задачи составлены для автогенераторов (АГ) гармонических колебаний, построенных по схеме обобщенной трехточки (рис.1.1a).

Рис.5.1. Обобщенная трехточечная схема АГ (a) и ее варианты – индуктивная (б) и емкостная (в) трехточки

Потери в колебательном контуре малы, и каждое из сопротивлений Z_1, Z_2, Z_3 можно считать реактивным

$$Z_1 \approx jX_1; \ Z_2 \approx jX_2; \ Z_3 \approx jX_3,$$
 (1.1)

а при круговом обходе контура учесть потери

$$Z_1 + Z_2 + Z_3 = r + jX = r(1 + j\alpha),$$
 (1.2)

где обобщенная расстройка контура

$$\alpha = X/r = Q(\omega/\omega_0 - \omega_0/\omega); \ Q = \rho/r; \ \omega_0 = 1/\sqrt{L_{cym}C_{cym}}. \tag{1.3}$$

Здесь ρ, Q, ω_0 - характеристическое сопротивление, добротность и собственная частота контура, L_{cym}, C_{cym} - суммарные индуктивность и емкость контура при круговом обходе:

$$L_{cym} = L_1 + L_2 + L_3; \ 1/C_{cym} = 1/C_1 + 1/C_2 + 1/C_3.$$
 (1.4)

В стационарном режиме напряжения и токи, протекающие через электроды БТ, связаны такими же соотношениями, что и в усилителе мощности, только напряжение возбуждения создается за счет обратной связи. Коэффициент обратной связи k с учетом направлений напряжений, принятых за положительные (рис.1.1), равен

$$k = U_e/U_{\kappa}; k = -Z_2/(Z_2 + Z_3).$$
 (1.5)

Напряжение на контуре $U_{\kappa} = I_{\kappa 1} Z_{\kappa}$. (1.6)

Сопротивление контура

$$Z_{\kappa} = Z_1(Z_2 + Z_3)/(Z_1 + Z_2 + Z_3). \tag{1.7}$$

Первая гармоника коллекторного тока

$$I_{\kappa 1} = SU_{\mathfrak{G}} \cdot \gamma_1(\theta, \theta_1) = S_1 U_{\mathfrak{G}}; \quad S_1 = S\gamma_1(\theta, \theta_1), \tag{1.8}$$

где $\gamma_1(\theta,\theta_1)$ - коэффициент разложения первой гармоники (в общем случае импульса с провалом), характерного для перенапряженного режима (ПР), θ - нижний угол отсчеки косинусоиды, θ_1 - верхний угол отсечки (ширина провала).

Если в (1.6) подставить (1.8), (1.5), то получим запись уравнения стационарного режима в виде

$$S_1kZ_k = 1, S_1Z_v = 1,$$
 (1.9)

где Z_y - управляющее сопротивление АГ. Из (1.9) с учетом (1.5), (1.7) получаем

$$Z_{y} = kZ_{\kappa} = -Z_{1}Z_{2}/(Z_{1} + Z_{2} + Z_{3}).$$
 (1.10)

Приближенно, согласно (1.1) и подставив (1.2) в (1.10), получим

$$Z_{v} = X_{1}X_{2}/(r+jX). \tag{1.11}$$

В случае безинерционного транзистора крутизна S_1 вещественная, и поэтому из (1.9) следует, что $Z_{_{\mathcal{V}}}$ - активное сопротивление:

$$Z_y = R_y, S_1 R_y = 1, R_y = kR_\kappa,$$
 (1.12)

а реактивное

$$X = X_1 + X_2 + X_3 = 0. (1.13)$$

Из (1.11) с учетом (1.13)
$$R_y = X_1 X_2 / r$$
. (1.14)

Условие $R_y > 0$ реализуется, если $X_{1,2}$ - реактивные сопротивления одного знака, а (1.13) выполняется, если X_3 - другого. Возможны два варианта схем:

- 1) Индуктивная трехточка (ИТ) (рис.1.1б) $X_{1,2} > 0$, $X_3 < 0$;
- 2) Емкостная трехточка (ЕТ) (рис.1.2в) $X_{1,2} < 0, X_3 > 0$.

Уравнение (1.13) выполняется, если частота колебаний ω равна собственной частоте контура

$$\omega = \omega_0. \tag{1.15}$$

Коэффициент обратной связи (1.5) с учетом (1.13) и (1.1) положительный k > 0:

$$k = X_2/X_1$$
; HT: $k = L_2/L_1$; ET: $k = C_2/C_1$. (1.16)

Резонансное сопротивление контура

$$R_{\kappa} = X_1^2 / r = p^2 \rho \cdot Q = p^2 \rho^2 / r; \ Q = Q_{HeH} (1 - \eta_{\kappa}); \ R_{\kappa} = R_{\kappa, HeH} (1 - \eta_{\kappa}), \ (1.17)$$

где η_{κ} - КПД контура, p - коэффициент включения контура в коллекторную цепь

$$p = X_1/\rho$$
; HT: $p = L_1/L_{cvm}$; ET: $p = C_{cvm}/C_1$. (1.18)

Режимы АГ, как и усилителя мощности различают по напряженности. В недонапряженном режиме (НР) и критическом (КР) форма импульса

коллекторного тока косинусоидальная, поэтому по заданным питающим напряжениям с помощью уравнения стационарного режима (1.12) можно рассчитать показатели режима: токи, напряжения, мощности, КПД.

B HP

$$S_1 = S \cdot \gamma_1(\theta). \tag{1.19}$$

Угол отсечки коллекторного тока θ из (1.12)

$$\gamma_1(\theta) = 1/SR_v. \tag{1.20}$$

Напряжение возбуждения $U_{\scriptscriptstyle g}$ зависит от выбора смещения $E_{\scriptscriptstyle {\it CM}}$:

$$U_{e} = (E' - E_{cM})/\cos\theta. \tag{1.21}$$

В КР, если АГ работает с внешним смещением

$$U_{\kappa,\kappa p} = \left[E_{n\kappa} + S \left(E' - E_{cM} \right) / S_{\kappa p} \right] / \left(1 + kS / S_{\kappa p} \right), \tag{1.22}$$

$$U_{e,\kappa p} = k \cdot U_{\kappa,\kappa p}. \tag{1.23}$$

Приближенно, когда $E_{n\kappa} >> S(E' - E_{c_M}) / S_{\kappa p}; 1>> k \cdot S / S_{\kappa p}$ имеем

$$U_{\kappa,\kappa p} \approx E_{n\kappa}; \quad U_{e,\kappa p} \approx k \cdot E_{n\kappa}.$$
 (1.24)

AГ — автономная система, в которой колебания зарождаются с малых флуктуаций. Они увеличиваются до стационарного значения, если выполняется условие самовозбуждения, когда мощность, отдаваемая транзистором в контур, больше, чем требуется на покрытие его потерь:

$$0.5I_{\kappa 1}U_{\kappa} > U_{\kappa}^{2} / 2R_{\kappa}. \tag{1.25}$$

При малых флуктуациях $I_{\kappa 1} = S_0 U_{\mathfrak{g}}$, где S_0 - крутизна статической характеристики коллекторного тока в рабочей точке, определяемой выбором напряжения смещения. Преобразуем (1.25):

$$S_0 U_{\varepsilon} > U_{\kappa} / R_{\kappa}; \quad S_0 k > 1 / R_{\kappa}; \quad S_0 k R_{\kappa} > 1; \quad S_0 R_{\nu} > 1.$$
 (1.26)

Биполярные транзисторы (БТ) имеют правые характеристики E'>0, поэтому при $u_{\tilde{o}_{9}}=0$, $i_{\kappa}=S_{0}=0$ колебания не возбудятся. Приходится подавать на базу начальное напряжение $E_{H}>E'$ чтобы обеспечить $S_{0}>0$, $S_{0}R_{V}>1$.

Из условия (1.26) следует, что чем больше S_0R_y по сравнению с единицей, тем больше запас у АГ к началу возбуждения колебаний, тем надежнее работает АГ при внешних воздействиях, старении БТ и деталей схемы, замене деталей с учетом их технологического разброса и т.п. Рекомендуется выбирать

$$S_0 R_{\nu} \ge 2. \tag{1.27}$$

Если принять кусочно-линейную аппроксимацию статических характеристик БТ, то $S_0 = S$, а из уравнения стационарного режима (1.20) в HP с учетом (1.27) получаются требования к углу отсечки θ :

$$\gamma_1(\theta) = 1/SR_v \le 1/2; \ \theta \le \pi/2.$$
 (1.28)

Для удовлетворения противоречивых требований, а именно, $E_{\scriptscriptstyle H} > E'$ при возбуждении колебаний и $E_{\scriptscriptstyle CM} \le E'$, $\theta \le \pi/2$ в стационарном режиме, наряду с внешним применяют автоматическое смещение, создаваемое постоянными составляющими токов базы и эмиттера.

В ПР можно удовлетворить оба условия, но такой режим не применяют из-за повышенной нестабильности частоты.

1.1. Схемы автогенераторов

Питающие напряжения на электроды БТ подают по тем же принципам, что и в усилителе мощности, применяя для этой цели блокировочные элементы.

По высокой частоте (вч) можно заземлять любой электрод БТ, при этом уравнение стационарного режима и показатели режима не меняются. Выбор заземленного электрода определяется конструктивными, технологическими и др. требованиями.

В стационарном режиме напряжение смещения на базе E_{cm} создается начальным $E_{\rm H}$ и падением напряжений от постоянных составляющих тока базы $I_{\delta0}$ на сопротивлении R_{δ} и тока эмиттера I_{90} на R_{3} :

$$E_{cM} = E_H - I_{\bar{6}0}R_{\bar{6}} - I_{90}R_{\bar{9}}; \quad I_{90} = I_{\bar{6}0} + I_{\kappa 0}.$$
 (1.29)

Для безинерционного БТ токи базы i_{δ} и коллектора i_{κ} связаны статическим коэффициентом усиления:

$$h_{219} = i_{\kappa} / i_{\tilde{o}}. \tag{1.30}$$

В НР и КР любые составляющие токов тоже связаны h_{213} :

$$I_{\kappa 0}/I_{60} = I_{\kappa 1}/I_{61} = h_{212}.$$
 (1.31)

Известно, что в НР и КР

$$I_{\kappa 0,n} = SU_{\theta} \gamma_{0,n}(\theta) = \alpha_{0,n}(\theta) I_{\kappa M} = S(E' - E_{cM}) \beta_{0,n}(\theta),$$

$$g_1(\theta) = I_{\kappa 1} / I_{\kappa 0}.$$
(1.32)

Коэффициент разложения косинусоидального импульса приведены в приложении.

Напряжение смещения E_{cm}

$$E_{CM} = E' - U_{\theta} \cos \theta. \tag{1.33}$$

Подставим (1.32), (1.33) с учетом (1.31) в (1.29), решим относительно напряжения возбуждения в стационарном режиме

$$U_{\theta} = \left(E_{\mathcal{H}} - E'\right) / \left[S\gamma_{0}(\theta)\left[R_{9} + \left(R_{9} + R_{6}\right)/h_{219}\right] - \cos\theta\right]. \tag{1.34}$$

Амплитуду колебаний U_{g} в HP и KP можно менять путем вариаций E_{H} , $R_{\tilde{0}}$, R_{3} .

В КР, согласно (1.22) с учетом (1.33), (1.29), (1.31):

$$U_{\kappa,\kappa p} = E_{n\kappa} / \left[1 + k \left(1 - \cos \theta \right) S / S_{\kappa p} + k S R_{9} \gamma_{0} (\theta) \left(1 + 1 / h_{219} \right) \right]. \tag{1.35}$$

В ПР можно приближенно считать

$$U_{\kappa} \approx U_{\kappa,\kappa p} = U_{\theta,\kappa p} / k . \tag{1.36}$$

Блокировочные элементы считаются идеальными, если дроссели – короткое замыкание (кз) для постоянных и разрыв для вч токов, а конденсаторы – кз для вч и разрыв для постоянных токов.

Для расчета L и C по их реактивным сопротивлениям ($X_L = \omega L$, $X_C = 1/\omega C$ в [Ом]) и длине волны λ в [м] можно применить выражения:

$$L = 0.53\lambda X_L \cdot 10^{-3} [M\kappa \Gamma H]; C = 530\lambda / X_C [n\Phi]..$$
 (1.37)

Примеры решения типовых задач

1.1. Какой электрод заземлен по вч в $A\Gamma$ по схеме рис.5.2 и рис.5.3? **Решение**

По вч заземлен эмиттер.

Рис.1.2. Схема индуктивной трехточки

Рис.1.3. Схема емкостной трехточки

1.2. В каких проводах, отмеченных на рис.1.2 цифрами, протекают тока, зависимости которых во времени соответствуют рис.1.4а,б,в,г? На каких элементах схемы лежат напряжения, аналогичные изображенным на рис.1.5а,б,в? Блокировочные элементы считать идеальными.

Решение

Рис.1.4: а) 1,8; б) 2,5,6,9; в) 3,4; г) 7,10.

Рис.1.5: а) $C_{\it бл1}, C_{\it бл2}, C_{\it бл3}, C_{\it бл4}, R_{\it 9}$; б) $C_{\it ce}, R_{\it H}$; в) $L_{1,2,3}, C_{\it 3}, L_{\it бл1}$.

1.3. В каких проводах, отмеченных на рис.1.2 цифрами, протекают тока, зависимости которых во времени соответствуют рис.1.4а,б,в,г? На каких элементах схемы лежат напряжения, аналогичные изображенным на рис.1.5а,б,в? Блокировочные элементы считать идеальными.

Решение

Рис.1.4: а) 1,2; б) 3,4,7,9,11; в) 5,6; г) 8,10.

Рис.1.5: а) $C_{\vec{0}\vec{n}1}, C_{\vec{0}\vec{n}2}, C_{\vec{0}\vec{n}3}, C_{\vec{0}\vec{n}4}, R_{_{3}}, R_{_{\vec{0}}};$ б) $C_{1,2,3}, C_{_{CG}}, R_{_{H}};$ в) $L_{3}, L_{\vec{0}\vec{n}1}, L_{\vec{0}\vec{n}2}.$

1.4. Для АГ по схеме рис.1.6 дано $L_1=0.53~\text{мкГ}\text{н}$, $L_2=0.106~\text{мкГ}\text{н}$, $C_3=1060~\text{n}\Phi$, Q=50, $f_0=3~\text{M}\text{Г}\text{u}$. Определить k,p,R_κ,R_y . Какой электрод БТ заземлен по вч?

Решение

Схема ИТ. Согласно (1.16) $k = L_2/L_1 = 0.2$. Для нахождения p и R_{κ} (1.17) рассчитаем

$$\rho = \omega_0 L_{cym} = 1/\omega_0 C_{cym} = \sqrt{L_{cym}/C_{cym}} = 50O_M.$$

(1.38)

Здесь $C_{cym}=C_3$, $L_{cym}=2,65$ мк Γ н. Далее находим $p=L_1/L_{cym}=0.2$, $R_{\kappa}=p^2\rho Q=100$ Ом. Согласно (1.12) $R_{\nu}=kR_{\kappa}=20$ Ом.

Рис.1.4. Иллюстрация к задаче 1.2

1.5. Как изменятся k, p, R_{κ}, R_{y} , если в условиях задачи 1.3 при $L_{1} + L_{3}, L_{2}, C_{3}, Q = const$ индуктивность L_{1} в 2 раза уменьшить? увеличить?

Решение

По условиям задачи $L_{\text{сум}} = L_1 + L_2 + L_3 = const; C_3 = const,$ поэтому $f_0, \rho = const$.

1. $L_{\rm l}=0.265$ мк Γ н; из (1.16) k=0.4; из (1.18) $p=L_{\rm l}/L_{\rm cym}=0.1$; из (1.17) $R_{\kappa}=p^2\rho Q=25O$ м; $R_{\rm y}=kR_{\kappa}=10O$ м.

2. $L_1 = 1.06 \text{mkTh}$; k = 0.1; p = 0.4; $R_{\kappa} = 400 \text{Om}$; $R_{\nu} = 400 \text{Om}$.

4. Рис.1.6. Схема индуктивной трехточки

1.6. Для АГ по схеме рис.1.7 дано: $C_1 = 530 \ n\Phi$, $C_2 = 10600 \ n\Phi$, $C_3 = 560 \ n\Phi$, $L_3 = 0.424 \ \text{мкГн}$, Q = 50. Рассчитать f_0, k, p, R_κ, R_y . Какой электрод заземлен по вч?

Решение

3.

Схема ЕТ. В этой схеме $L_{cym} = L_3$, а C_{cym} (1.4) для удобства расчета преобразуем к виду (при учете (1.16)):

$$C_{CVM} = C_1/(1+k+C_1/C_3).$$

(1.39)

Собственная частота контура f_0 (1.3)

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{1 + k + C_1/C_3}{C_1 L_3}} \ .$$

(1.40)

Характеристическое сопротивление ρ (1.38)

$$\rho = \sqrt{L_3(1 + k + C_1/C_3)/C_1}.$$

(1.41)

Согласно (1.16) $k = C_1 / C_2 = 0.05$, $C_1 / C_3 = 0.9464$; из (1.40) $f_0 = 15 M \Gamma \mu$; для расчета R_{κ} определяем коэффициент включения p (1.18), применив (1.39):

$$p = C_{cvm}/C_1 = 1/(1+k+C_1/C_3)$$
.

(1.42)

Находим p = 0.5, $\rho = 40O_M$, $R_{\kappa} = p^2 \rho Q = 500O_M$, $R_{\nu} = kR_k = 25O_M$.

Рис.1.7. Схема емкостной трехточки

Задачи для самостоятельного решения

- **1.7.** Как изменятся $f_0, k, p, R_{\kappa}, R_{y}$, если в условиях задачи 1.4 при $L_1, L_2, L_3, Q = const$ емкость C_3 в 4 раза уменьшить? увеличить?
- **1.8.** Как изменятся f_0, k, p, R_k, R_y , если в условиях задачи 1.4 при $L_1, L_2, C_3, Q = const$ индуктивность L_3 в 2 раза уменьшить? увеличить?
- **1.9.** Как изменятся f_0, k, p, R_k, R_y , если в условиях задачи 1.4 при $L_1 + L_2, L_3, C_3, Q = const$ индуктивность L_2 в 2 раза уменьшить? увеличить?
- **1.10.** Как изменятся f_0, k, p, R_κ, R_y , если в условиях задачи 1.6 при $C_1, C_2, C_3, Q = const$ индуктивность L_3 в 4 раза уменьшить? увеличить?
- **1.11.** Как изменятся $f_0, k, p, R_{\kappa}, R_{y}$, если в условиях задачи 1.6 при $C_1, C_2, L_3, Q = const$ емкость C_3 в 4 раза уменьшить? увеличить?
- **1.12.** Как изменятся $f_0, k, p, R_{\kappa}, R_{y}$, если в условиях задачи 1.6 при $C_2, C_3, L_3, Q = const$ емкость C_1 в 2 раза уменьшить? увеличить?
- **1.13.** Как изменятся f_0, k, p, R_κ, R_y , если в условиях задачи 1.6 при $C_1, C_3, L_3, Q = const$ емкость C_2 в 2 раза уменьшить? увеличить?

1.14. В АГ по схеме 1.2: $X_1 = 10O$ м, $X_2 = 2O$ м, $\rho = 50O$ м, $f_0 = 3M$ Г ψ . Определить k, R_{κ} , R_{γ} . Как изменятся k, R_{κ} , R_{γ} , f_0 при кз $L_{\delta n1}$? $C_{\delta n3}$? $C_{\delta n4}$?

1.15. В АГ по схеме 1.3: $X_1 = -20OM$, $X_2 = -5OM$, $\rho = 80OM$, Q = 40, $f_0 = 6M\Gamma y$. Определить k, R_{κ} , R_y . Как изменятся k, R_{κ} , R_y , f_0 при кз $L_{\delta n1}$? $L_{\delta n2}$? $C_{\delta n1}$? $C_{\delta n2}$? $C_{\delta n3}$? $C_{\delta n4}$?

1.2. Режимы автогенераторов

Напряжённость режима БТ зависит от того, какие участки статических характеристик коллекторного тока захватываются за период колебаний при изменении напряжений на базе u_{69} и коллекторе $u_{\kappa 9}$

$$u_{69} = E_c + U_e \cos \omega t$$
; $u_{k9} = E_k - U_k \cos \omega t$.

В случае применения сопротивления автосмещения в цепи эмиттера $R_{_{\scriptscriptstyle 9}}$ напряжение $E_{_{\scriptscriptstyle K}}\!<\!E_{_{\scriptscriptstyle n}}$

$$E_{\kappa} = E_n - I_{90} R_{9}. \tag{1.43}$$

Мощность источника в цепи коллектора

$$P_{ucm} = I_{\kappa 0} E_n, \tag{1.44}$$

а потребляемая цепью коллектора

$$P_0 = I_{\kappa 0} E_{\kappa}. \tag{1.45}$$

Часть мощности источника E_n рассеивается на сопротивлении $R_{_{\mathfrak{I}}}$ КПД цепи коллектора меньше $\eta_{_{\mathfrak{I}}}$:

$$\eta = P_1 / P_{ucm}; \ \eta_9 = P_1 / P_0 = 0.5 g_1 \xi; \ \xi = U_{\kappa} / E_{\kappa}.$$
(1.46)

Мощность источника начального смещения

$$P_{\mu a y} = I_{60} E_{\mu}. \tag{1.47}$$

Падение напряжения на резисторе R_{a}

$$E_{_{9}} = (I_{_{60}} + I_{_{\kappa 0}})R_{_{9}}. \tag{1.48}$$

Мощность, рассеиваемая резистором R_3 :

$$P_{9} = \left(I_{60} + I_{\kappa 0}\right)^{2} R_{9}. \tag{1.49}$$

Мощность, рассеиваемая коллектором и базой:

$$P_{pac} = P_0 - P_1 = P_0 (1 - \eta_2); (1.50)$$

$$P_{pac,\delta} = P_{\delta 0} + P_{\delta 1} = I_{\delta 0} E_c + 0.5 I_{\delta 1} U_{\epsilon}. \tag{1.51}$$

При решении вопроса о напряженности режима АГ рекомендуется сравнивать с КР:

$$\begin{split} R_{\kappa} < R_{\kappa \; \kappa p}; \; R_{\nu} < R_{\nu \; \kappa p}; \; U_{e} < U_{e \; \kappa p}; \; E_{\mu} < E_{\mu \; \kappa p}, \; E_{n} > E_{n \; \kappa p} \; - \; \text{HP}; \\ R_{\kappa} > R_{\kappa \; \kappa p}; \; R_{\nu} > R_{\nu \; \kappa p}; \; U_{e} > U_{e \; \kappa p}; \; E_{\mu} > E_{\mu \; \kappa p}; \; E_{n} < E_{n \; \kappa p} \; - \; \text{\PiP}. \end{split}$$

Примеры решения типовых задач

1.16. АГ по схеме рис.1.2 работает в HP: $X_1 = 10 \text{ Om}; X_2 = 2 \text{ Om};$ $\rho = 50 \text{ Om}; Q = 50; P_1 = 20 \text{ мВт}; S = 0.2 \text{ A/B}.$ Рассчитать $U_{\kappa}, I_{\kappa 0}$.

Решение

Применим (1.16), (1.17), (1.18) и (1.12):

$$k = X_2 / X_1 = 2 / 10 = 0.2$$
; $P = X_1 / \rho = 10 / 50 = 0.2$;

$$R_{\kappa} = p^2 \rho Q = 0.04 \cdot 50 \cdot 50 = 100 \text{ Om}; R_{\nu} = kR_{\kappa} = 0.2 \cdot 100 = 2 \text{ Om}.$$

Угол отсечки θ находим из уравнения стационарного режима (1.20):

$$\gamma_1(\theta) = 1/SR_v = 1/0.2 \cdot 20 = 0.25$$
; по таблице приложения

$$\theta \approx 66^{\circ};\ g_{\scriptscriptstyle 1} = 1.75;\ \gamma_{\scriptscriptstyle 0} = 0.142.$$
 Напряжение на контуре

$$U_{\kappa} = \sqrt{2P_{1}P_{\kappa}} = \sqrt{2 \cdot 0.02 \cdot 100} = 2 \text{ B}; \ U_{\varepsilon} = kU_{\kappa} = 0.2 \cdot 2 = 0.4 \text{ B}; \text{Tok } (1.32)$$

$$I_{\kappa 0} = SU_{\varepsilon}\gamma_{0}(\theta) = 0.2 \cdot 0.4 \cdot 0.142 = 11.5 \text{ mA}.$$

1.17. АГ по схеме рис.1.7 работает в КР: $C_1 = 2.12 \text{ н}\Phi$; $C_2 = 16.96 \text{ н}\Phi$;

$$L_3 = 0.848$$
 мкГн; $Q = 20$; $\lambda = 40$ м; $P_1 = 4$ Вт; $E_{\kappa} = 20$ В; $S = 0.8$ А/В.

Рассчитать P_0 и $\eta_{_{9}}$. Как изменятся $\theta,\lambda,$ если $L_{_{3}}$ уменьшить в 2 раза? В 3 раза?

Решение

Для расчета θ (1.20) следует сначала определить R_y (1.12), а поэтому k (1.16) и R_κ (1.17):

$$k = C_1 / C_2 = 2.12 / 16.96 = 0.125; R_{\kappa} = p^2 \rho Q$$
, где

$$\rho = \omega L_3 = \frac{0.848 \cdot 10^3}{0.53 \cdot 40} = 40 \text{ Om}; \ X_1 = \frac{530 \cdot 40}{2120} = 10 \text{ Om}; \ p = 10 / 40 = 0.25;$$

$$R_{\kappa} = 0.0625 \cdot 40 \cdot 20 = 50 \text{ Om}; R_{y} = 0.125 \cdot 50 = 6.25 \text{ Om};$$

$$\gamma_1(\theta) = 1/0.8 \cdot 6.25 = 0.2; \ \theta \approx 60^{\circ}.$$

Мощность
$$P_0 = I_{\kappa 0} E_{\kappa}$$
 (1.16); $I_{\kappa 0} = I_{\kappa 1} / g_1(\theta)$ (1.32);

$$I_{\kappa 1} = \sqrt{2P_1/P_{\kappa}} = \sqrt{2 \cdot 4/50} = 0.4 \text{ A};$$

$$g_1(60^\circ) = 1.8; I_{\kappa 0} = 0.4/1.8 = 0.222 \text{ A}; P_0 = 0.222 \cdot 25 = 5.55 \text{ BT};$$

$$\eta_9 = P_1 / P_0$$
 (1.46); $\eta_9 = 4 / 5.55 = 0.72$. Если L_3 уменьшается в 2 раза:

 $k,p=const;\;\lambda,
ho\;$ уменьшаются в $\sqrt{2}\;$ раз, поэтому R_{κ},R_{ν} уменьшаются в

 $\sqrt{2}$ раз, $\gamma_1(\theta)$ увеличивается в $\sqrt{2}$ раз, $\gamma_1(\theta) = 0.2828$, при этом $\theta \approx 70^\circ$.

Расчет справедлив, так как $R_y < R_{y \kappa p}$. Если L_3 уменьшается в 3 раза, то $\lambda \approx 23$ м; $\theta \approx 76^\circ$.

1.18. В АГ по схеме рис.1.6 меняется емкость C_3 (рис.1.8) при $L_1, L_2, L_3, Q = const.$ В каком диапазоне частот выполняются условия самовозбуждения, если S = 0.1 А/В, при каких значениях C_3 ? Почему характер зависимостей $f(C_3)$ и $R_{\nu}(C_3)$ одинаковый?

Решение

Колебания возбудятся, если выполняется (1.26): $R_y > 1/0.1$; $R_y > 10$ Ом. Граничное значение $R_{y \ pp} = R_{y \ min} = 10$ Ом. На этом уровне проведена горизонтальная прямая (пунктир на рис.1.8), $C_{3 \ pp} = 1.1 \ \text{н}\Phi$; $f_{zp} = 3.5 \ \text{МГц}$. Колебания возможны, если $C_3 < 1.1 \ \text{н}\Phi$; $f > 3.5 \ \text{МГц}$. Частота $f = f_0 = 1/2\pi\sqrt{L_\Sigma C_3}$; k, p = const; $\rho = \sqrt{L_\Sigma/C_3}$, поэтому $R_y = kp^2\rho Q \sim \rho$. Таким образом, $f \sim 1/\sqrt{C_3}$, $R_y \sim 1/\sqrt{C_3}$.

1.19. АГ по схеме рис.1.2 работает в КР: $\theta = 60^\circ$; $P_1 = 80$ мВт; k = 0.2; $L_\Sigma = 1.06$ мкГн; Q = 50; $\lambda = 40$ м; S = 0.25 А/В. Рассчитать L_1, L_2, L_3, C_3, U_B .

Решение

Из уравнения (1.20) находим

 $R_y=1/S\gamma_1(\theta); \ \gamma_1(60^\circ)\approx 0.2; \ R_y=1/0.25\cdot 0.2==20$ Ом. Сопротивление контура $R_\kappa=R_y/\kappa=20/0.2=100$ Ом. Характеристическое

сопротивление (1.38) с учетом (1.37) $\rho = \frac{L_{\Sigma} \cdot 10^3}{0.53 \lambda} = \frac{1.06 \cdot 10^3}{0.53 \cdot 40} = 50 \text{ Ом.}$

Коэффициент включения из (1.17) $p = \sqrt{R_{\kappa}/\rho Q} = \sqrt{100/50 \cdot 50} = 0.2$.

Зная p и ρ , применим (1.17) и определим X_1 , а затем L_1 :

$$X_1 = p\rho = 0.2 \cdot 100 = 20 \text{ Om}; \ L_1 = 0.53 \cdot 40 \cdot 20 \cdot 10^{-3} = 0.212 \text{ мкГн.}$$

Индуктивность L_2 из (1.16):

 $L_2=kL_1=0.2\cdot 0.212=0.0424$ мкГн; $L_3=L_\Sigma-L_1-L_2=1.06-0.212(1+0.2)=0.8056$ мкГн. Из (1.37) емкость $C_3=530\lambda$ / $\rho=530\cdot 40$ / 50=424 пФ.

Напряжения на контуре $U_{\scriptscriptstyle\kappa}$ и возбуждения $U_{\scriptscriptstyle g}$:

$$U_{\kappa} = \sqrt{2P_1P_{\kappa}} = \sqrt{2 \cdot 0.08 \cdot 100} = 4 \text{ B}.$$

Рис.1.8. Иллюстрация к задаче 1.18

Задачи для самостоятельного решения

- **1.20.** АГ по схеме рис.1.7 работает в HP: $I_{\kappa 0} = 5.5$ мА; $C_1 = 2650$ пФ; $C_2 = 13250$ пФ; $L_3 = 5.3$ мкГн; $\lambda = 100$ м; Q = 50; S = 0.125 А/В; $E_n = 6$ В. Рассчитать U_{κ} , P_{ucm} , η .
- **1.21.** АГ по схеме рис.1.3. работает в НР: $\theta = 60^\circ$; $P_1 = 16$ мВт; $U_{\kappa} = 4$ В; S = 0.125А/В; $E_n = 6$ В. Рассчитать k, R_{κ}, η .
- **1.22.** АГ по схеме рис.1.6 работает в КР: $U_{_6} = 0.4$ В; $L_{_1} = 0.53$ мкГн; $C_{_3} = 1060$ пФ;k = 0.2; Q = 50; $\lambda = 100$ м; S = 0.25 А/В. Рассчитать $P_{_1}$ и емкость $C_{_{571}}$. Как изменятся напряженность режима АГ и λ , если емкость $C_{_3}$ уменьшить в 4 раза?
- **1.23.** АГ по схеме рис.1.6 работает в НР: $I_{\kappa 0} = 5.5$ мА; $L_{\rm l} = 0.265$ мкГн; $C_{\rm l} = 530$ пФ; k = 0.5; Q = 50; $\lambda = 50$ м; S = 0.1 А/В. Рассчитать $P_{\rm l}$ и $L_{\rm l}$.
- **1.24.** АГ по схеме рис.1.7 работает в КР: $U_{\kappa} = 2$ В; $\theta = 60^{\circ}$; S = 0.2 А/В; $C_{1} = 530$ пФ; k = 0.1; $\lambda = 100$ м. Рассчитать P_{1} и $L_{\delta n}$.
- **1.25.** АГ по схеме рис.1.3 работает в НР: $C_1 = 530$ пФ; k = 0.1; $\theta = 60^\circ$; $P_1 = 2$ Вт; $\lambda = 100$ м; S = 0.5 А/В. Рассчитать $I_{\kappa 1}, C_2, L_{\delta n 2}$.
- **1.26.** АГ по схеме рис.1.3 работает в КР: $U_{e} = 0.4$ В; $\theta = 60^{\circ}$; k = 0.1; $E_{\kappa} = 5$ В; $\lambda = 20$ м; S = 0.2 А/В. Рассчитать η_{9} и $C_{\delta n1}$. Как изменится θ_{9} , если S уменьшится до 0.08 А/В? 0.04 А/В?
- **1.27.** АГ по схеме рис.1.2 работает в HP: $P_1 = 20$ мВт; $L_1 = 0.53$ мкГн; $L_3 = 2.014$ мкГн; $C_3 = 1.06$ пФ; Q = 50; $\lambda = 100$ м; S = 0.25 А/В.
- Определить $U_{\scriptscriptstyle g}, U_{\scriptscriptstyle K}, I_{\scriptscriptstyle K0}$. Как изменится $U_{\scriptscriptstyle g}$ при КЗ $L_{\scriptscriptstyle \! \delta\!n1}\,?L_{\scriptscriptstyle \! \delta\!n2}\,?$
- **1.28.** АГ по схеме рис.1.3 работает в НР: $C_1 = 530$ пФ; $C_2 = 10$ пФ; $C_3 = 560$ пФ; $L_3 = 0.424$ мкГн; Q = 50; S = 0.2 А/В. Рассчитать f и θ . Как изменятся f и θ , если L_3 уменьшить в 4 раза? Если произойдет КЗ $L_{\delta_{2}}$?
- **1.29.** АГ по схеме рис.1.3 работает в HP: $P_1=8$ мВт; $C_1=530$ пФ; $C_2=10.6$ пФ; $L_3=0.53$ мкГн; Q=50; $\lambda=20$ м; S=0.25 А/В. Рассчитать $I_{\kappa 0}$. Как изменится P_1 при КЗ $L_{\delta n1}$? $C_{\delta n1}$? $C_{\delta n3}$?
- **1.30.** АГ по схеме рис.1.7 работает в НР: C_1 = 1.06 пФ; C_2 = 10.6 нФ; L_3 = 1.06 мкГн; Q = 50; λ = 40 м; S = 0.125 A/B. Рассчитать θ . Как изменится θ , λ , если L_3 уменьшить в 2 раза? Произойдет КЗ $C_{\delta n3}$?
- **1.31.** АГ работает в КР по схеме рис.1.6: $P_1 = 2$ Вт; $\theta = 60^\circ$; $L_1 = 5.3$ мкГн; $L_2 = 0.53$ мкГн; $\lambda = 100$ м; S = 0.5 А/В. Рассчитать $I_{\kappa 1}$, $L_{\delta \pi 1}$. Как изменятся λ, θ , если C_3 увеличить в 2 раза? В 4 раза?

1.32. По графикам рис. 1.8 определить емкость C_3 , при которой можно реализовать работу АГ в HP с $\theta = 90^{\circ}, 80^{\circ}, 60^{\circ}, \text{если } S = 0.2 \text{ A/B}$. Чему равна частота колебаний в каждом из этих режимов?

1.33. В АГ по схеме рис.1.6 меняется индуктивность L_1 так, что $L_1 + L_2 = 0.6$ мкГн= $const; L_3 = 1$ мкГн; f = 5 МГц; $Q = 25; \eta_{\kappa} = 0.75;$

S = 0.04 A/B. По графикам $k, R_{v}(L_{l})$ (рис.1.9,а) определить интервал значений $L_{\rm I}$, где выполняются условия самовозбуждения. Как меняются k и θ ? Как изменится θ_{\min} , если, уменьшив C_{cs} при f=const, сделать $\eta_{\kappa} = 0.5 \text{ B}?$

1.34. В АГ по схеме рис.1.6 меняется индуктивность L_2 так, что $L_1 + L_2 = 0.6$ мкГн = const; $L_3 = 1$ мкГн; Q = 25; S = 0.04 А/В; $\eta_3 = 0.75$. По графикам $k, R_{\nu}(L_2)$ (рис.1.9,б) определить интервал значений L_2, k, θ , где выполняются условия самовозбуждения. Как изменится θ_{\min} , если η_{κ} увеличить до 0.8?

Рис.1.9. Иллюстрации к задачам 1.33, 1.34

1.35. По условиям задачи 1.33 рассчитать $U_{\epsilon}, U_{\kappa}, I_{\kappa 1}$ в моменты колебаний, если $E_{H} = 1 \text{ B}; E' = 0.3 \text{ B};$ возбуждения И срыва $R_{9} = 100 \text{ Ом}; h_{219} >> 1$, а также при $R_{y} = R_{y \text{ max}}$.

АΓ ПО схеме рис.1.7 меняется индуктивность L_3 ; $C_1, C_2, C_3, Q = const.$ По графикам $f, R_v(L_3)$ (рис.1.10) определить интервал значений L_3 , f, где выполняются условия самовозбуждения, если S = 0.05 A/B.

схеме рис.1.7 меняется ПО емкость $C_{\scriptscriptstyle 1}$ при $C_2, C_3, L_3, Q = const, S = 0.05 \text{ A/B}.$ По графикам $f, R_v(C_1)$ (рис.1.11) определить, в каком интервале значений $C_{\scriptscriptstyle 1}$ выполняется условие самовозбуждения, в каких пределах меняются f, k, R_{κ} , если $C_2 = 2$ нФ.

1.38. В АГ по схеме рис.1.7 меняется емкость C_3 при $C_1, C_2, L_3, Q = const; S = 0.05$ А/В. По графикам $f, R_y(C_3)$ (рис.1.12) определить, при каких значениях C_3 выполняются условия самовозбуждения, как меняются f, Q?

Рис.1.10. Иллюстрация к задаче 1.36

Рис.1.11. Иллюстрация к задаче 1.37

Рис.1.12. Иллюстрация к задаче 1.38

1.3. Диаграммы срыва и смещения

Диаграмма срыва — зависимость напряжения возбуждения $U_{\mathfrak{g}}$ от смещения в установившемся режиме при E_{κ} , $SR_{\mathfrak{g}}=const.$ Для расчета в НР справедливо (1.21)

$$U_e = (E' - E_c) / \cos \theta$$

— прямая с началом при $E_c = E'$, наклон которой определяется θ или SR_y (1.20).

Линия критического режима (ЛКР) имеет отрицательный наклон (1.22) и проходит на уровне, который в основном определяется E_{κ} и k.

В ПР импульс коллекторного тока разрушается быстрее, чем в усилителе, потому что одновременно меняются $U_{_{\! g}}, U_{_{\! K}}$ ($U_{_{\! g}} = k U_{_{\! K}}$). Расчет $I_{_{\! K1}}$ в ПР можно выполнить, как в усилителе. Зависимость $I_{_{\! K1}}(U_{_{\! g}})$ или $I_{_{\! K1}}(U_{_{\! K}})$ при фиксированных $E_{_{\! c}}, E_{_{\! K}}, k$ называют колебательной характеристикой (рис.1.13).

Рис.1.13. Колебательная характеристика транзисторного АГ

Уравнение стационарного режима (1.12) можно преобразовать:

$$S_1 = 1/R_v \rightarrow S_1 U_g = U_g/R_v \rightarrow I_{\kappa 1}(U_g) = U_g/R_v.$$
 (1.52)

Правую часть уравнений (1.53) называют прямой обратной связи.

Точки пересечения прямой обратной связи с колебательной характеристикой определяют значения тока $I_{\kappa 1}^0$ и напряжения U_s^0 в стационарном режиме. Для $E_c < E'$ (рис.1.13) — две точки пересечения.

Уравнение (1.53) означает, что в стационарном режиме мощность, отдаваемая БТ в контур, равна мощности потерь в нем. Если $I_{\kappa 1}(U_{\scriptscriptstyle g}) < U_{\scriptscriptstyle g} \, / \, R_{\scriptscriptstyle y}$, БТ отдает больше, чем идет на покрытие потерь в

контуре, амплитуда колебаний $U_{_{\it e}}$ будет возрастать, если $I_{_{\kappa 1}}(U_{_{\it e}}) < U_{_{\it e}} / R_{_{\it v}}$, наоборот – падать.

Выясним вопрос устойчивости стационарного режима. Рассмотрим т.1 (рис.1.13): при увеличении $U_{_{\it E}}=U_{_{\it E}}^0+\Delta U_{_{\it E}}$ ток $I_{_{\it KI}}(U_{_{\it E}})< U_{_{\it E}}/R_{_{\it Y}},$ напряжение $U_{_{\it E}}$ уменьшается, возвращая режим АГ в т.1, при уменьшении $U_{_{\it E}}=U_{_{\it E}}^0-\Delta U_{_{\it E}},\,I_{_{\it KI}}(U_{_{\it E}})>U_{_{\it E}}/R_{_{\it Y}},\,U_{_{\it E}}$ возрастает и снова восстанавливается режим в т.1. Стационарный режим АГ при $E_{_{\it C}}< E'$ устойчивый.

Аналогичные рассуждения для режима в т.2 $(E_c < E')$ показывают, что он неустойчивый, а в т.3 – устойчивый, но при небольших $\Delta U_{\scriptscriptstyle g}$.

В т.0 $U_s=0$ (точка покоя, нет колебаний) для $E_c>E'$ режим неустойчивый, для $E_c< E'$ – устойчивый.

Условие устойчивости стационарного режима можно записать так: наклон касательной к колебательной характеристике при $U^0_{\scriptscriptstyle g}$ должен быть меньше угла наклона прямой обратной связи или

$$\frac{dI_{\kappa 1}}{dU_{\epsilon}}\Big|_{U_{\epsilon}^{0}} < 1/R_{y}. \tag{1.53}$$

Реализовать такую работу АГ в НР с $SR_y>2$ (1.28) не удается, поскольку при $\theta<90^\circ, E_c< E'$ стационарный режим неустойчивый, а в точке покоя самовозбуждение невозможно. В результате применяют внешнее E_H и автоматическое смещение (комбинированное) (1.29), которое зависит от I_{60}, I_{90} (1.32).

 $\ensuremath{\textit{Диаграмма}}$ смещения — зависимость напряжения смещения E_c от возбуждения $U_{\scriptscriptstyle 6}$ в стационарном режиме при фиксированных $R_{\scriptscriptstyle 9}, R_{\scriptscriptstyle 6}, E_H.$

Значения $U_{\it e}, E_{\it c}$ в стационарном режиме графически определяются точкой пересечения диаграмм срыва и смещения (рис.1.14). Режимы, устойчивые при внешнем смещении, сохраняют свою устойчивость и при комбинированном, а неустойчивые становятся устойчивыми, если цепь автосмещения безынерционная:

$$T_{AC} \ll T_{\kappa}, \tag{1.54}$$

постоянная времени цепи автосмещения T_{AC} значительно меньше постоянной времени контура T_{κ} . Условие (1.54) означает, что E_c мгновенно следит за любыми изменениями U_s (как показано стрелками на рис. 1.14), возвращая АГ в исходный стационарный режим (A). Условие (1.54) желательное, но достаточно для устойчивости стационарного режима, чтобы

Рис.1.14. Диаграмма смещения транзисторного АГ

Примеры решения типовых задач

1.39. Дано: $T_{\kappa} = 5$ мкс; $R_{\mathfrak{g}} = 100$ Ом; $R_{\delta} = 0$. Выбрать емкость $C_{\delta n}$, шунтирующую $R_{\mathfrak{g}}$ так, чтобы автосмещение было безынерционным.

Решение

Задаемся $T_{AC}=0.1T_{\kappa}=0.1\cdot 5=0.5$ мкс; $T_{AC}=C_{\delta\imath}\cdot R_{\mathfrak{I}}$; $C_{\delta\imath}=T_{AC}$ / $R_{\mathfrak{I}}=0.5\cdot 10^{-6}$ / $100=5\cdot 10^{-9}$ $\Phi=5$ нФ. На какой минимальной частоте генерации и при какой добротности контура Q можно выполнить условия $T_{AC}=0.5$ мкс; $T_{\kappa}=5$ мкс?

Решение

 $C_{\delta n}$ – K3 для токов ВЧ, если $1/\omega C_{\delta n}=R_{_9}/N$. Положим N=20, тогда $1/\omega X_{\delta n}=100/20=5$ Ом; $\omega_{\min}=1/5C_{\delta n}$ или

$$\lambda_{\max} = \frac{X_c \cdot C_{\delta n}}{530} = \frac{5 \cdot 5 \cdot 10^3}{530} \approx 47 \text{ м},$$
 $f_{\min} = 6.36 \text{ МГц}.$

 $T_{\kappa} = 2Q/\omega$; $Q = T_{\kappa}\omega/2 = 5 \cdot 10^{-6} \cdot 2\pi \cdot 6.36 \cdot 10^{6}/2 \approx 100$.

1.40. АГ по схеме рис.1.3 работает в КР: $\theta = 60^\circ$; $U_{\kappa} = 4$ В; k = 0.2; параметры БТ: S = 0.1 А/В; $S_{\kappa p} = 0.08$ А/В; E' = 0.3 В; $h_{219} = 20$. Рассчитать сопротивление автосмещения R_{δ} , если $R_{\beta} = 0$, а также η .

Решение. Напряжение смещения (1.33) $E_c = E' - U_e \cos \theta$ и (1.29) $E_c = E_H - I_{\delta 0} R_{\delta}$. Известно: $U_e = \kappa U_{\kappa} = 0.2 \cdot 4 = 0.8$ В; $E_c = 0.3 - 0.8 \cos 60^{\circ} = 0.3 - 0.4 = -0.1$ В. В (1.29) два неизвестных E_H и R_{δ} . Задаемся $E_H > E'$, например, $E_H = 0.5$ В.Из (1.29) $R_{\delta} = (E_H - E_c) / I_{\delta 0}$. Из (1.32) $I_{\kappa 0} = SU_e \gamma_0 (60^{\circ}) = 0.1 \cdot 0.8 \cdot 0.11 = 8.72$ мА; $I_{\delta 0} = I_{\kappa 0} h_{219} = 8.72 / 20 = 0.436$ мА;

 $R_{\delta} = (0.5 + 0.1) / 0.436 = 1.376$ кОм. Мощность $P_{I} = 0.5 I_{\kappa} U_{\kappa}$, где $I_{\kappa} = g_{1}(60^{\circ})I_{\kappa0} = 1.8 \cdot 8.72 = 15.7$ мА; $P_{I} = 0.5 \cdot 15.7 \cdot 4 = 31.4$ мВт.

Для расчета η следует определить E_n (1.43) и P_{ucm} (1.44). В КР для БТ справедливы соотношения, как в усилителе:

$$E_{\kappa \kappa p} = U_{\kappa \kappa p} + U_{\kappa h} = U_{\kappa \kappa p} + I_{\kappa m} / S_{\kappa p}, \qquad (1.56)$$

где из (1.32) $I_{\scriptscriptstyle {\rm KM}}=I_{\scriptscriptstyle {\rm K1}}$ / $\alpha(\theta)=I_{\scriptscriptstyle {\rm K0}}$ / $\alpha_{\scriptscriptstyle 0}(\theta)=0.0157$ / 0.391=0.04 A, $E_{\scriptscriptstyle {\rm K}}=4+0.04$ / 0.08=4.5 B.

B случае $R_3 = 0$

$$E_n = E_\kappa = 4.5 \text{ B}; P_{ucm} = P_0 = I_{\kappa 0} E_\kappa. P_{ucm} = 8.72 \cdot 4.5 = 39.24 \text{ мВт};$$
 $\eta = \eta_{_9} = P_I / P_0 = 31.4 / 39.24 = 0.8.$

1.41. АГ по схеме рис.1.6 работает в КР: $P_1 = 5$ Вт; $E_{\kappa} = 20$ В. Параметры БТ: S = 2 А/В; $S_{\kappa p} = 0.5$ А/В; E' = 0.7 В; $h_{219} = 20$; $SR_y = 5$. Рассчитать E_{κ} и E_{n} .

Решение

Расчет АГ в КР по заданным P_1, E_κ, θ и параметрам БТ, как и в усилителе, начинают с определения $\xi_{\kappa p}$:

$$\xi_{\kappa p} = 0.5 + 0.5\sqrt{1 - 8P_1 / \alpha_1 S_{\kappa p} E_{\kappa}^2}.$$
 (1.57)

Для $SR_v = 5$ из (1.20) $\gamma_1(\theta) = 1/\Sigma P_v = 1/5 = 0.2; \ \theta \cong 60^\circ, \ \alpha_1 = 0.39;$

$$\left(g_1=1.8\cos 60^\circ=0.5;\; \gamma_0(60^\circ)\cong 0.11\right)$$
. Далее $\xi_{\kappa p}=0.85; U_{\kappa \kappa p}=\xi_{\kappa p}E_{\kappa}=17$ В; $I_{\kappa 1}=2P_I/U_{\kappa}=2\cdot 5/17=0.59$ А; $I_{\kappa 0}=I_{\kappa}/g_1=0.59/1.8=0.33$ А.

Напряжение возбуждения из (1.32)

$$U_e = I_{\kappa_1} / S\gamma_1 = 0.59 / 2 \cdot 0.2 = 1.48$$
 В, напряжение смещения (1.33)
$$E_c = E' - U_e \cos \theta = 0.7 - 1.48 \cdot 0.5 = -0.04$$
 В.

Для расчета $E_{_{^{\prime\prime}}}$ и $E_{_{^{\prime\prime}}}$ необходимо выбрать сопротивления $R_{_{^{\circ\prime}}}$ и $R_{_{^{\circ\prime}}}$, но в схеме рис.1.6 $R_{_{^{\circ\prime}}}=0$. Можно рекомендовать

$$R_{9} = (2...10) / S \tag{1.58}$$

и так, чтобы $E_{\scriptscriptstyle H} > E'$ или знаменатель в (1.34) был положительный:

$$R_{_{9}} + \left(R_{_{9}} + R_{_{6}}\right) / h_{_{219}} > \cos\theta / S\gamma_{_{0}}(\theta). \tag{1.59}$$

Согласно (1.58), $R_9 = (2...10) / 2 = 1...5$ Ом, а из (1.59) $R_9 > 2.27$.

Чем $R_{_{9}}$ больше, тем лучше его стабилизирующее действие, но выше $E_{_{n}}$ и ниже η . Выбираем $R_{_{9}}=2.5$ Ом.

Согласно (1.34), начальное смещение

$$E_{H} = E' + U_{g} \left[S \gamma_{0}(\theta) R_{9} \left(1 + 1 / h_{219} \right) - \cos \theta \right];$$

$$E_{H} = 0.7 + 1.48 \cdot [2 \cdot 0.11 \cdot 2.5 \cdot 1.05 - 0.5] = 0.815 \text{ B}.$$

Задачи для самостоятельного решения

- **1.42.** Каким значениям SR_y соответствуют диаграммы срыва, отмеченные на рис.1.15 цифрами 1,2,3?
- **1.43.** АГ работает с внешним смещением. Что можно сказать об устойчивости стационарных режимов, отмеченных на рис.1.15 буквами A, B, B, Γ, J, E ?
- **1.44.** Каким значениям SR_y соответствуют диаграммы срыва, отмеченные на рис.1.16 буквами А и Б?
- **1.45.** Диаграмма срыва A на рис.1.17 построена для k = 0.2. Что можно сказать о k для диаграммы Б? В каком соотношении SR_y для диаграмм A и Б?
- **1.46.** Диаграммы срыва А и Б на рис. 1.18 построены для разных значений E_{ν} . В каком они соотношении?
- **1.47.** АГ работает с внешним и безынерционным автосмещением. Что можно сказать об устойчивости стационарных режимов, отмеченных на рис.1.19 буквами A,Б,B,Г,Д? В каком соотношении сопротивления $R_{_{91}},R_{_{92}},$ если $E_{_{H}}=const$? Как изменить $E_{_{H}}$ и $R_{_{9}},$ чтобы реализовать стационарный режим Γ ?
- **1.48.** АГ работает с внешним и автосмещением от тока эмиттера. Постоянные времени $T_{\kappa} = 2$ мкс, $T_{AC} \ge 50$ мкс. Что можно сказать об устойчивости стационарных режимов, отмеченных на рис.1.20 буквами A, B, B, Γ, J ?
- **1.49.** По условиям задачи 1.48 определить для $R_{_{91}}$ и $R_{_{92}}$, в каких пределах будут меняться напряжения $U_{_6}$ для $E_{_c}$, если E'=0.3 В; $U_{_{6}\ \kappa p}=1.2$ В; $E_{_{c}\ \kappa p}=-0.25$ В; напряжение $U_{_6}$ в Б; $U_{_{6}\ 6}=1.4$ В.
- **1.50.** Для стационарного режима Б на рис.1.19 рассчитать $E_{_{^{\prime\prime}}}, U_{_{\kappa}}, P_{_{\!I}}, I_{_{\kappa0}},$ если $k=0.2;\ R_{_{\!92}}=100$ Ом; $R_{_{\!6}}=0;\ h_{_{\!219}}=50;\ S=0.1$ А/В; E'=0.3 В.
- **1.51.** АГ по схеме рис.1.2 работает с безынерционным автосмещением: $S=0.1~\mathrm{A/B}; S_{\kappa p}=0.05~\mathrm{A/B}; E'=0.3~\mathrm{B}; h_{219}\gg I; E_H=0.8~\mathrm{B}; E_\Pi=8~\mathrm{Om};$
- **1.52.** По условиям задачи 1.51 определить максимальное напряжение на $L_{\text{бл1}}, C_3, L_1$, если Q=25; $\rho=50$ Ом. Рассчитать мощность, потребляемую от источника $E_{II}(P_{ucm})$, мощность, рассеиваемую коллектором и $R_{_9}$ для $R_{_9}=100$ Ом.
- **1.53.** По условиям задачи 1.40 рассчитать сопротивление $R_{_9}$, если $R_{_{\tilde{0}}}=0$, $E_{_{_{\it{H}}}}=0.5$ B, а также η .

1.54. По условиям задачи 1.40 рассчитать сопротивления $R_{_9}$ и $R_{_6}$, если $E_{_H}=0.5$ В, а также η . Принять для определенности, что $I_{_{90}}R_{_9}=I_{_{60}}R_{_6}$. Сравнить η с результатами расчета задач 1.53,1.40.

1.55. АГ по схеме рис.1.7 работает в КР: $E_n=1.2$ В; $\kappa=0.2$; $R_{\kappa}=175$ Ом; $R_{9}=60$ Ом. Параметры БТ: S=0.146 А/В; $S_{\kappa p}=0.1$ А/В; E'=0.7 В; $h_{219}=20$. Определить E_n .

1.4. Нагрузочные характеристики

Нагрузочные характеристики — это зависимости показателей режима от сопротивления в цепи коллектора при фиксированных $E_n, E_n, R_{\mathfrak{g}}, R_{\mathfrak{g}}$. Сопротивление R_{κ} может меняться при перестройке по диапазону частот за счет вариации реактивных параметров контура, при изменении связи с нагрузкой. С помощью нагрузочных характеристик можно выбрать оптимальный режим и реализовать его при настройке по приборам.

В НР показатели режима можно рассчитать по формулам, приведенным ранее. В ПР расчет значительно сложнее, для приближенных оценок можно считать, что $A\Gamma$ ведет себя как генератор напряжения и принимать:

$$U_{\kappa} \approx U_{\kappa \kappa p}; I_{\kappa 1} \approx U_{\kappa \kappa p} / R_{\kappa}; P_{1} \approx U_{\kappa \kappa p}^{2} / 2R_{\kappa}.$$
 (1.60)

Для наглядности нагрузочную характеристику $U_{s}(R_{y})$ можно построить по семейству диаграмм срыва (рис.1.21), определяя точки пересечения с диаграммой смещения. Зависимость $U_{s}(R_{y})$ дана на рис.1.22.

Примеры решения типовых задач

1.56. АГ по схеме рис.1.1,б работает в КР, k = 0.1. Как изменятся напряженность режима и k, если при $L_2, C_3, S, Q, E_{II}, E_{_H}, R_{_9} = const$ индуктивность L_1 уменьшить в 2 раза? Увеличить в 2 раза?

Решение

Вариации L_1 приведут к изменению $k, p, \rho, R_{\kappa}, R_{\nu}$. Для расчета p и ρ преобразуем (1.18) и (1.38) к виду

$$p = L_{1} / L_{\Sigma} = L_{1} / (L_{1} + L_{2} + L_{3}) = 1 / (1 + k + L_{3} / L_{1});$$

$$L_{\Sigma} = L_{1} (1 + k + L_{3} / L_{1}).$$

$$\rho = \sqrt{L_{\Sigma} / C_{3}} = \sqrt{L_{1} (1 + k + L_{3} / L_{1}) / C_{3}}.$$

В схеме рис.1.1, б $L_3 = 0$, $p = 1/ \le (1+k)$; $\rho = \sqrt{L_1(1+k)/C_3}$.

1. Если L_1 уменьшить в 2 раза, $L_1' = 0.5L_1$, то $k' = L_2 / L_1'$ возрастает в 2 раза;

$$k$$
 '= 0.2; ρ' = 1/1.2; ρ' = $\rho\sqrt{0.6/1.1}$; R'_{κ} = $R_{\kappa}\cdot 0.62$; R'_{ν} = 1.24 R_{ν} . Поскольку $R'_{\nu} > R_{\nu \kappa \rho}$, то ПР.

- 2. Если $L_{\!_1}$ увеличить в 2 раза: $L_{\!_1}''=2L_{\!_1}$, то k " = 0.05; p" = 1/1.05; $R_{\!_{\kappa}}''=1.516R_{\!_{\kappa\kappa p}}$, а $R_{\!_{\nu}}''=0.758R_{\!_{\nu\kappa p}}$, HP.
- **1.57.** В АГ по схеме рис.1.7 меняется емкость C_3 при $C_1, C_2, L_3, S, Q, E_{II}, E_{_H}, R_{_9} = const; S = 0.0625$ А/В; $E_{_H} = 1$ В; $R_{_9} = 200$ Ом; $C_1 = 0.5$ нФ; $C_2 = 2$ нФ; E' = 0.3 В; $h_{21_9} \gg 1$. При каких значениях C_3 и f можно реализовать НР с $\theta = 60^\circ$? Применить зависимости рис.1.12. Рассчитать $U_{_6}, U_{_K}, P_1$.

Решение

Из (1.19) $R_y=1/S\gamma_1(\theta), \gamma_1(60^\circ)\approx 0.2; S\gamma_1=0.0125 \text{ A/B}; R_y=80 \text{ Om}.$ По рис.1.12 (точки): $f=18.5 \text{ MFu}; C_3=1.30 \text{ нФ}.$ Для расчета U_e в HP воспользуемся (1.34) $\gamma_0\approx 0.11.$ Имеем $U_e=0.8 \text{ B}; U_\kappa=U_e/k;$ $k=C_1/C_2=0.25; U_\kappa=3.2 \text{ B}; R_\kappa=R_v/k=320 \text{ Om}; P_1=U_\kappa^2/2R_\kappa=0.016 \text{ Bt}.$

Задачи для самостоятельного решения

- **1.58.** Какая нагрузочная характеристика $I_{\kappa 0}(R_{\kappa})$ на рис.1.23 соответствует большему значению k, если $E_n, E_n, S_1 R_9 = const$? Что будет показывать прибор, измеряющий ток $I_{\kappa 0}$, при отсутствии колебаний и в момент их возникновения?
- **1.59.** По нагрузочным характеристикам $I_{\kappa 0}(R_{\kappa})$ на рис.1.23 рассчитать и построить $P_0(R_{\kappa})$, если $E_{\kappa} = 8$ В.

Рис.1.23. Иллюстрация к задаче 1.59

1.60. Какая нагрузочная характеристика $I_{\kappa 1}(R_{\kappa})$ на рис.1.24 соответствует большему значению E_{κ} , если $S, R_{\sigma}, E_{\kappa}, k = const$? Определить $R_{\kappa \kappa p}, U_{\kappa \kappa p}$ для обоих значений E_{κ} . Изобразить характер зависимостей $U_{\kappa}, P_{\kappa}(R_{\kappa})$ для двух E_{κ} .

Рис.1.24. Иллюстрация к задаче 1.60

1.61. Какая нагрузочная характеристика $U_{\kappa}(R_{\kappa})$ на рис.1.25 соответствует большему напряжению E_{Π} , если E_{κ} , S, $kR_{3} = const$? Рассчитать $I_{\kappa 1}$ для обоих значений E_{Π} при $R_{\kappa} = 150$ и 400 Ом. Изобразить характер зависимостей $I_{\kappa 1}$, $P_{1}(R_{\kappa})$ для двух E_{Π} .

- **1.62.** Какая нагрузочная характеристика $P_1(R_{\kappa})$ на рис.1.26 соответствует большему $R_{\mathfrak{g}}$? Определить $I_{\kappa 1 \kappa p}$, $U_{\kappa \kappa p}$ для обоих значений $R_{\mathfrak{g}}$. Изобразить характер зависимостей $I_{\kappa 1}$, $U_{\kappa}(R_{\kappa})$ для двух $R_{\mathfrak{g}}$.
- **1.63.** АГ по схеме рис.1.6 работает в КР: $R_{\kappa \kappa p} = 200$ Ом; $I_{\kappa 1 \kappa p} = 20$ мА; $\eta_{\kappa} = 0.5$. Рассчитать P_1, U_{κ} . Как изменятся $I_{\kappa 1}, U_{\kappa}, P_1$ при обрыве R_{κ} ?
- **1.64.** АГ по схеме рис.1.2 работает в КР: $P_1 = 40 \text{ мВт}$; f = 17 МГц№; $\theta = 100^\circ$; $C_3 = 300 \text{ пФ}$. Как изменятся напряженность режима f и P_1 , если при $S, Q, \kappa, E_H, E_H, R_9 = const$ емкость C_3 в 4 раза увеличить? Уменьшить?
- **1.65.** В АГ по схеме рис.1.6 меняется индуктивность L_1 так, что $L_1 + L_2, L_3, Q, C_3, E_{II}, E_{_H}, R_{_9}, S = const$ (рис.1.9,а), S = 0.05 А/В. Применяя зависимость рис.1.22, построить $U_{_G}, U_{_K}(L_1)$, если АГ работает в НР.
- **1.66.** В АГ по схеме рис.1.7 индуктивность L_3 меняется от 0.4 до 5 мкГн (рис.1.10) при $C_1, C_2, C_3, S, Q, E_{II}, E_{_H}, R_{_9} = const.$ Колебания возбуждаются при $L_3 = 0.4$ мкГн с частотой f = 16.5 МГц. Применяя зависимости рис.1.10 и рис.1.27, построить $f, U_{_K}(L_3)$ для $k = k_1$.
- **1.67.** В АГ по схеме рис.1.6 меняется индуктивность L_2 так, что $L_1 + L_2, L_3, Q, C_3, E_{II}, E_{n1}, R_9, S = const$ (рис.1.9б); S = 0.05 А/В. Применяя зависимость $U_{\mathfrak{g}}\left(SR_{\mathfrak{p}}\right)$ на рис.1.22 в НР, построить $U_{\mathfrak{g}}\left(L_2\right)$.
- **1.68.** В АГ по схеме рис.1.7 индуктивность L_3 меняется от 0.4 до 5 мкГн при $C_1, C_2, C_3, S, Q, E_H, E_H, R_9 = const.$ Колебания возбуждаются при $L_3 = 0.8$ мкГн; f = 12 МГц. Применяя зависимости рис.1.10 и рис.1.22, построить $U_{\mathfrak{g}} \left(L_3 \right)$ для k_1 и k_2 .
- **1.69.** В АГ по схеме рис.1.7 емкость C_1 меняется от 0.05 до 5 нФ при $C_2, C_3, L_3, S, Q, E_{II}, E_{_H}, R_{_9} = const.$ Колебания возбуждаются при

 $C_1 = 0.1 \text{ нФ}; f = 35 \text{ МГц.}$ Применяя зависимости рис.1.11 и рис.1.22, построить в НР $U_{\kappa}(C_1)$.

Рассчитать максимальные значения токов, протекающих в проводах, отмеченными цифрами 1,2,5,6 и напряжений на C_2, C_3, L_3 . Как изменятся напряженность режима и ток в проводе 6, если при $S, k, E_{II}, E_{\mu}, R_{\nu} = const$ уменьшили η_{κ} до 0.25? Увеличили до 0.75? Увеличили R_{ν} в 2 раза?

1.71. В АГ по схеме рис.1.7 меняется емкость C_3 от 0.1 до 3 нФ при $C_1, C_2, L_3, S, Q, E_H, E_H, R_9 = const.$ Колебания возбуждаются при $C_3 = 0.25$ нФ; f = 25 МГц. Применяя графики рис.1.12 и рис.1.22, построить зависимость $U_{\mathfrak{g}}(C_3)$ для двух значений \mathfrak{k} . Как пойдет зависимость $I_{\kappa 1}(C_3)$?

1.72. В АГ по схеме рис.1.6 меняется емкость C_3 от 0.25 до 1.5 нФ при $L_1, L_2, L_3, S, Q, E_{II}, E_{_H}, R_{_9} = const.$ Колебания возбуждаются при $C_3 = 1.1$ нФ. По графикам рис.1.8 и рис.1.27 построить зависимости $U_{_K}(C_3)$ для двух k. Как пойдет зависимость $I_{_{K1}}(C_3)$?

Рис.1.27. Иллюстрация к задаче 1.72

1.73. АГ по схеме рис.1.3 работает в КР, $U_{\kappa \kappa p} = 5$ В. Как изменятся напряженность режима и U_{κ} , если при $S, \kappa, E_H, E_H, R_{\odot} = const$ емкость C_{CB} уменьшить? Увеличить?

- **1.74.** АГ по схеме 1.1,в работает в КР, k = 0.2. Как изменятся напряженность режима и k, если при $C_1, C_3, L_3, S, Q, E_\Pi, E_n, R_9 = const$ емкость C_2 в два раза увеличить? Уменьшить?
- **1.75.** АГ по схеме рис.1.6 работает в КР, f = 10 МГц. Как изменятся напряженность режима и f, если при $L_1, L_2, L_3, S, Q, E_{II}, E_{_H}, R_{_9} = const$ емкость C_3 в 2 раза увеличить? Уменьшить?
- **1.76.** Как изменятся U_{e} , U_{κ} , P_{1} , если в условиях задачи 1.57 напряжение E_{H} уменьшить до 0.8 В? Увеличить R_{9} до 400 Ом? Меняются ли при этом R_{0} и θ ?
- **1.77.** В АГ по схеме рис.1.7 меняется емкость C_1 при C_2 , C_3 , L_3 , $\theta = const$; S = 0.05 А/В; $C_2 = 2$ нФ. Рассчитать, применяя графики рис.1.11, U_e , U_κ при возбуждении и срыве колебаний, а также $R_{y \text{ max}} = 58$ Ом, если $E_\mu E' = 0.61$ В; $R_9 = 100$ Ом; $h_{219} = 500$, режим критический.
- **1.78.** АГ по схеме рис.1.2 работает в КР: $P_1 = 50 \text{ мВт}; \ \eta_{\kappa} = 0.5; \ f = 10 \text{ МГц};$
- $L_{\rm l}=0.265~{
 m mk\Gamma}$ н; $L_{\rm l}=0.053~{
 m mk\Gamma}$ н; $C_{\rm l}=318~{
 m m}$ Ф; $Q=50;~R_{\rm l}=100~{
 m Om}.$ Параметры БТ: $S=0.1~{
 m A/B};~S_{\rm kp}=0.08~{
 m A/B};~E'=0.3~{
 m B};~h_{\rm ll}=20.$ Считая блокировочные элементы идеальными, рассчитать максимальные значения токов, протекающих в проводах, отмеченных цифрами 1,2,3,6,8 и напряжений на $L_{\rm l},C_{\rm l},C_{\rm log},C_{\rm log},C_{\rm log},C_{\rm log}$.
- **1.79.** Как изменятся токи в проводах 2,3 и напряжение на C_3 в условиях задачи 1.78, если η_{κ} уменьшить до 0.25? Увеличить до 0.75?

1.5. Влияние питающих напряжений на режим автогенератора

Примеры решения типовых задач

1.80. АГ по схеме рис.1.2 работает в КР: $R_{\kappa}=250$ Ом; $U_{g}=1.6$ В; k=0.2; $R_{9}=80$ Ом. Параметры БТ: S=0.125 А/В; $S_{\kappa p}=0.0625$ А/В; E'=0.3 В; $h_{219}=100$. Рассчитать E_{II}, E_{II} .

Решение

 $E_{\Pi \ \kappa p}$ можно рассчитать, применив (1.35):

$$E_{\Pi \kappa p} = U_{\kappa \kappa p} \Big[1 + k (1 - \cos \theta) S / S_{\kappa p} + k S R_{_{3}} \gamma_{_{0}} (\theta) (1 + 1 / h_{_{213}}) \Big].$$

Напряжение $U_{\kappa \kappa p} = U_{g} / k = 8$ В, угол отсечки θ определяем из (1.20), а сначала рассчитываем $R_{y} = kR_{\kappa} = 50$ Ом; $\gamma_{1}(\theta) = 0.16$. По таблице в приложении $\theta = 55.5^{\circ}, \cos\theta = 0.5664, \gamma_{0}(\theta) = 0.088$. $E_{\Pi} \approx 10$ В. Из (1.34) $E_{\mu} \approx 0.816$ В.

Задачи для самостоятельного решения

- **1.81.** Как изменятся напряженность режима, U_{e} , $I_{\kappa 0}$, если в условиях задачи 1.80 напряжение E_{H} уменьшить до 0.55 В? На какую мощность выбирать источник E_{H} ?
- **1.82.** Как изменятся напряженность режима, U_{ϵ} , $I_{\kappa 0}$, если в условиях задачи 1.80 напряжение E_{II} уменьшить до 6 В? Как изменится мощность, на которую рассчитывает источник E_{II} и η ?
- **1.83.** АГ по схеме рис.1.7 работает в КР: $U_e = 0.8$ В; $E_\Pi = 6$ В; $\eta = 0.6$. Как изменятся напряженность режима, U_e, η , если при $S, R_y, E_\mu, R_g = const$ увеличить E_Π до 8 В?
- **1.84.** АГ работает в КР: $E_{II} = 15.6 \text{ B}$; $R_{\kappa} = 204 \text{ Om}$; k = 0.2; $R_{9} = 80 \text{ Om}$; $R_{6} = 0$; S = 0.125 A/B; $S_{\kappa p} = 0.1 \text{ A/B}$; E' = 0.6 B; $h_{219} = 50$. Рассчитать E_{μ} , мощности источников в цепи базы и коллектора, мощности, рассеиваемые сопротивлением R_{3} , базой и коллектором.
- **1.85.** АГ по схеме рис.1.7 работает в НР: $I_{\kappa 0} = 5.5$ мА; $C_1 = 13.25$ нФ; $L_3 = 5.3$ мкГн; Q = 50; $\lambda = 100$ м; R = 100 Ом. Параметры БТ: S = 0.125 А/В; E' = 0.3 В; $h_{219} = 50$. Рассчитать $U_{_{\theta}}, E_{_{H}}$. Как следует изменить $E_{_{H}}$, если германиевый БТ заменить кремниевым, у которого S, h_{219} одинаковые, а E = 0.6 В?
- **1.86.** Как изменятся U_{ϵ} , $I_{\kappa 0}$, если в условиях задачи 1.85 увеличить E_{μ} до 1.2 В? Режим сохранился НР.

Примечание

При полигональной аппроксимации статических характеристик токов БТ можно считать, что $S(E_{_H}) = const$ параметры контура не меняются, поэтому $R_{_y} = const$, а следовательно, $SR_{_y}$ и θ . Знаменатель в (1.34) не меняется, и новое значение напряжения возбуждения $U_{_g}'$ можно определить из соотношения

$$U_{\kappa}/U'_{\kappa} = (E'_{\mu} - E')/(E_{\mu} - E').$$

- **1.87.** Как изменятся U_{ϵ} , $I_{\kappa 0}$, если в условиях задачи 1.86 сопротивление R_{ϵ} увеличить в 2 раза?
- **1.88.** На рис.1.28 построены статические модуляционные характеристики $I_{\kappa_1}, \eta(E_{\Pi})$. Расчет выполнен приближенно при условии, что в ПР $U_{\kappa} \cong U_{\kappa \kappa p}$. Параметры БТ: S=0.146 А/В ; $S_{\kappa p}=0.1$ А/В; $E'=0.74h_{219}=20$. В КР при k=0.2; $R_{\kappa}=175$ Ом; $R_{g}=60$ Ом напряжение $E_{\Pi \kappa p}=12$ В. При

каких $E_{_{\scriptscriptstyle H}}$ построены сплошная и пунктирная характеристики, если $I_{_{\scriptscriptstyle K1}}$ отличаются в 2 раза?

1.89. По условиям задачи 1.88 построить зависимости U_{κ} , $P_1(E_{\Pi})$ для двух значений E_{μ} .

1.90. АГ работает в КР: $E_{_{\!\scriptscriptstyle H}}=1.3~\mathrm{B};~\theta=60^\circ;~\mathrm{k}=0.2;~U_{_{\!\scriptscriptstyle G}}=2.4~\mathrm{B}.$ Параметры БТ: $S=0.1~\mathrm{A/B};~S_{_{\!\scriptscriptstyle K\!p}}=0.05~\mathrm{A/B};~E'=0.7~\mathrm{B};~h_{_{\!21\!9}}=20.$ Рассчитать $R_{_{\!\scriptscriptstyle 9}}$ и $E_{_{\!\scriptscriptstyle H}}.$

1.91. На рис.1.29 по исходным данным задачи 1.90 построена статическая модуляционная характеристика (сплошная) $I_{\kappa_1}(E_{\Pi})$. Определить E_{Π} для $I_{\kappa_1}(E_{\Pi})$, изображенной пунктиром, если токи в КР отличаются в 2 раза.

1.92. АГ по схеме рис.1.3 работает в КР, $I_{\kappa 0} = 8$ мА. Как изменяются напряженность режима и $I_{\kappa 0}$, если при $SR_y, E_{\scriptscriptstyle H}, R_{\scriptscriptstyle 9} = const$ увеличить $E_{\scriptscriptstyle \Pi}$?

1.93. АГ по схеме рис.1.6 работает в КР, $U_{\kappa} = 8 \text{ B}.$

Как изменятся напряженность режима и U_{κ} , если :

- а) при $S, E_{\Pi}, E_{H}, R_{9} = const$ увеличить R_{κ} ?
- б) при $SR_{v}, E_{\Pi}, E_{\mu} = const$ уменьшить R_{κ} ?
- в) при SR_v , E_{II} , R_9 = const уменьшить E_{II} ?

1.94. По условиям задачи 6.75 построить зависимости U_{κ} , $P_{\!\scriptscriptstyle 1}$, $\eta(E_{\!\scriptscriptstyle H})$ для двух $E_{\!\scriptscriptstyle H}$.

1.95. АГ работает в КР, $U_{\kappa \kappa p} = 10 \text{ B}$. Как изменятся напряженность режима и U_{κ} , если при $SR_{y}, E_{\Pi}, R_{s} = const$ напряжение E_{Π} уменьшить в 2 раза? Увеличить в 2 раза?

2. УПРАВЛЕНИЕ ЧАСТОТОЙ В ОДНОКОНТУРНЫХ АВТОГЕНЕРАТОРАХ

В АГ частота колебаний f приблизительно равна собственной частоте контура f_0 , поэтому наиболее эффективный способ управления частотой — это изменение его индуктивности и емкости. Реактивный нелинейный двухполюсник, параметры которого меняются под действием электрического сигнала информации, называют частотным модулятором.

В АГ на биполярных транзисторах наибольшее применение нашли варикапы — полупроводниковые диоды, у которых барьерная емкость закрытого p-n перехода $(C_{_{M}})$ меняется от приложенного к нему напряжения $(e_{_{M}})$:

$$C_{M} = C_{M}(0) \left[\varphi(\varphi - \varepsilon_{M}) \right]^{m}, \qquad (2.1)$$

где $C_{_{M}}(0)$ – емкость при $e_{_{M}}=0$; φ – напряжение, при котором переход открывается: $\varphi=0.5...0.7$ В; m=0.5...1.

Напряжение на переходе $e_{_{M}}$ должно находиться в интервале значений (рис.2.1)

$$e_{n\partial} \le e_{M} \le 0, \tag{2.2}$$

 $e_{n\partial}$ – напряжение перехода.

Эквивалентная схема варикапа (рис.2.2,а), кроме барьерной емкости $C_{\scriptscriptstyle M}$, включает сопротивление полупроводника и контактов r (единицы и доли Ом) и сопротивление утечки R (десятки и сотни килоом). В последовательной схеме замещения (рис.2.2,б)

$$r_{M} = r + 1/\omega^{2} C_{M}^{2} R = r + X_{M}^{2}/R; X_{M} = 1/\omega C_{M},$$
 (2.3)

добротность варикапа

$$Q_{M} = X_{M} / r_{M} = \left[\omega C_{M} r + 1 / \omega C_{M} R\right]^{-1} = \left[r / X_{M} + X_{M} / R\right]^{-1}.$$
 (2.4)

Анализ (2.4) показывает, что добротность варикапа зависит от частоты f и емкости $C_{\scriptscriptstyle M}$. На фиксированной частоте ((f_1,f_2,f_3) на рис.2.3) при вариации напряжения $e_{\scriptscriptstyle M}$ меняются емкость $C_{\scriptscriptstyle M}$, а, следовательно, и добротность $Q_{\scriptscriptstyle M}$. С ростом $e_{\scriptscriptstyle M}(C_{\scriptscriptstyle M})$ добротность сначала увеличивается, проходит через максимум, а затем падает. Экспериментальное значение добротности $Q_{\scriptscriptstyle M}$ и емкость $C_{\scriptscriptstyle M,9}$, при которой оно реализуется, определяются соотношениями

$$Q_{\text{M max}} = R / 2\sqrt{rR}; \ C_{\text{M 3}} = 1 / \omega \sqrt{rR}.$$
 (2.5)

Видно, что $Q_{_{\rm M}\ {\rm max}}$ определяется только сопротивлениями R,r, а $C_{_{{\rm M}\, 9}}$ зависит от частоты.

Обычно варикап применяют на частотах, где его добротность $Q_{_{\rm M}}$ достаточно велика, чтобы в процессе управления частотой не проявлялось побочное явление, вызванное изменением потерь в контуре $A\Gamma$ и приводящее к изменениям амплитуды колебаний.

В задачах принимаем, что сигнал информации меняется по гармоническому закону

$$u_{\mathcal{O}} = U_{\mathcal{O}} \cos \Omega t, \tag{2.6}$$

а варикап безынерционный.

При подключении варикапа к контуру АГ (рис.2.4, рис.2.5) на нем лежит ВЧ напряжение

$$u_{_{M}} = U_{_{M}} \cos \omega t, \qquad (2.7)$$

а после подачи модулирующего U_{Ω} и задающего $E_{{}_{\!\scriptscriptstyle M}0}$ напряжения, обеспечивающего режим молчания, на переходе:

$$e_{_{M}} = E_{_{M0}} + U_{_{\Omega}} \cos \Omega t + U_{_{M}} \cos \omega t. \tag{2.8}$$

Собственная частота контура ω_0 при вариации его емкости C_Σ на ΔC_Σ меняется по нелинейному закону

$$\omega_0' = 1 / \sqrt{L_{\Sigma} \left(C_{\Sigma 0} + \Delta C_{\Sigma} \right)} = \omega_0 \left(1 + \Delta C_{\Sigma} / C_{\Sigma 0} \right)^{-0.5}; \tag{2.9}$$

$$\omega_0 = 1/\sqrt{L_{\Sigma}C_{\Sigma_0}}; \ \Delta C_{\Sigma} = C_{\Sigma} - C_{\Sigma_0}. \tag{2.10}$$

Для небольших вариаций емкости $\Delta C_{\scriptscriptstyle \Sigma}$ / $C_{\scriptscriptstyle \Sigma 0}$, если

$$\frac{3}{8} \cdot \left(\frac{\Delta C_{\Sigma}}{C_{\Sigma 0}}\right)^2 \ll 1,\tag{2.11}$$

Приближенно (2.9) можно линеаризовать:

$$\left(\omega_0' - \omega_0\right) / \omega_0 = \Delta\omega / \omega_0 \approx -0.5\Delta C_{\Sigma} / C_{\Sigma_0}. \tag{2.12}$$

 $\Delta C_{\scriptscriptstyle \Sigma}$ – изменения емкости контура АГ за счет вариации емкости варикапа на

$$\Delta C_{\scriptscriptstyle M} = C_{\scriptscriptstyle M} - C_{\scriptscriptstyle M0}, \tag{2.13}$$

 C_{M0} – емкость при $e_{M} = E_{M0}$.

Емкости $\Delta C_{\scriptscriptstyle \Sigma}$ и $\Delta C_{\scriptscriptstyle \rm M}$ связаны коэффициентом включения варикапа к контуру АГ

$$P_{_{M}}=U_{_{M}}/U, \qquad (2.14)$$

$$\Delta C_{\Sigma} = p_{\scriptscriptstyle M}^2 \cdot \Delta C_{\scriptscriptstyle M},\tag{2.15}$$

U — напряжение на контуре, на $C_{\scriptscriptstyle \Sigma 0}$, или $L_{\scriptscriptstyle \Sigma}$:

$$U = U_{\kappa} / p, \tag{2.16}$$

 U_{κ} – напряжение на контуре АГ между коллектором и эмиттером;

p — коэффициент включения контура. Из-за нелинейности вольфарадовой характеристики варикапа (рис.2.1) напряжение ВЧ на нем $u_{\scriptscriptstyle M}$ приводит к изменению средней емкости. Однако для приближенных расчетов девиации частоты можно пренебречь этим обстоятельством и применить частотную характеристику варикапа $C_{\scriptscriptstyle M}(e_{\scriptscriptstyle M})$.

Зависимость частоты колебаний f от запирающего напряжения на варикапе $E_{_{\rm M}}$ называют статической модуляционной характеристикой (СМХ) управляемого АГ (УАГ). Обычно ее центрируют относительно $E_{_{M0}}$, тогда СМХ – это зависимость $\Delta f\left(\Delta E_{_{\rm M}}\right)$, где

$$\Delta f = f - f_0, \ \Delta E_{_{M}} = E_{_{M}} - E_{_{M0}}.$$
 (2.17)

Емкость варикапа (2.1) без учета ВЧ напряжения

$$C_{M} = C_{M0} \left[1 - \Delta E_{M} / (\varphi - E_{M}) \right]^{-m}; C_{M0} = C_{M} (0) \left[\varphi / (\varphi - E_{M}) \right]^{m}.$$
 (2.18)

Зависимость $C_{_{M}}(\Delta E_{_{M}})$ – нелинейная, но при небольших относительных изменениях напряжения $\Delta E_{_{M}}$ / $E_{_{M}}$, когда

$$\frac{3}{8} \left(\Delta E_{_{M}} / E_{_{M0}} \right)^{2} \ll 1, \tag{2.19}$$

для m = 0.5, (2.18) линеаризуется:

$$C_{\scriptscriptstyle M} \approx C_{\scriptscriptstyle M0} \Big[1 + 0.5 \Delta E_{\scriptscriptstyle M} / \big(\varphi - E_{\scriptscriptstyle M0} \big) \Big], \tag{2.20}$$

а вариации емкости

$$\Delta C_{\scriptscriptstyle M} / C_{\scriptscriptstyle M} = 0.5 \Delta E_{\scriptscriptstyle M} / (\varphi - E_{\scriptscriptstyle M0}). \tag{2.21}$$

Подставим (2.21) в (2.15) и (2.12), получим выражения для СМХ

$$\Delta f / f_0 = -0.25 p_M^2 \frac{C_{M0}}{C_{\Sigma 0}} \cdot \frac{\Delta E_M}{\varphi - E_{M0}}, \qquad (2.22)$$

а если $\varphi \ll (E_{_{M0}})$, то

$$\Delta f / f_0 = 0.25 \, p_{_M}^2 \frac{C_{_{M0}}}{C_{_{\Sigma 0}}} \cdot \frac{\Delta E_{_{_M}}}{E_{_{M0}}}. \tag{2.23}$$

При расчетах СМХ следует иметь ввиду, что пределы измерения $\Delta E_{_{M}}$ ограничены. Напряжение на переходе (7.8) при $U_{\Omega}=0$

$$e_{\scriptscriptstyle M} = E_{\scriptscriptstyle M0} + U_{\scriptscriptstyle M} \cos \omega t, \tag{2.24}$$

для $\omega t=0$: $e_{_{\mathrm{M}}}=e_{_{\mathrm{M}}\max}=E_{_{\mathrm{M}}\max}+U_{_{\mathrm{M}}},$ для $\omega t=\pi$: $e_{_{\mathrm{M}}}=e_{_{\mathrm{M}}\min}=E_{_{\mathrm{M}}\min}-U_{_{\mathrm{M}}}.$

Условие (2.2) будет выполняться, если $e_{_{\rm M}\ {\rm max}}=0,\ e_{_{\rm M}\ {\rm min}}=e_{_{n\partial}},\ {\rm a}\ {\rm paзмаx}$ СМХ по напряжению

$$E_{_{\rm M} \, \text{max}} - E_{_{\rm M} \, \text{min}} - e_{_{n\partial}} - 2U_{_{M}} = |e_{_{n\partial}}| - 2U_{_{M}}.$$
 (2.25)

Если выбрать

$$E_{M0} = -0.5e_{no}, \ \Delta E_{M \text{ max}} = 0.5 | e_{no} | -U_{M}.$$
 (2.26)

Пределы изменения напряжения $\Delta E_{_{\rm M}}$ зависят от выбора связи варикапа с контуром $(p_{_{\rm M}})$, которая определяет ВЧ напряжение на нем $U_{_{\rm M}}$. С ростом $U_{_{\rm M}}$ вариации $\Delta E_{_{\rm M\,max}}$ уменьшаются, это приведет к уменьшению девиации частоты (2.23), однако увеличением $p_{_{\rm M}}$, наоборот, увеличивает ее, поэтому существует оптимальный коэффициент включения:

$$\begin{cases}
|e_{n\partial}| < 3U, \ p_{\text{M opt}} \cong |e_{n\partial}| / 3U, \\
|e_{n\partial}| > 3U, \ p_{\text{M opt}} = 1.
\end{cases}$$
(2.27)

При модуляции $\Delta E_{_{M}} = U_{_{\Omega}}$, согласно (2.23), наибольшее отклонение частоты (девиация)

$$|\Delta f|/f_0 = 0.25 p_M^2 \frac{C_{M0}}{C_{\Sigma 0}} \cdot \frac{U_{\Omega}}{C_{\Sigma 0}}.$$
 (2.28)

Крутизна СМХ

$$S_{M} = |\Delta f| / |\Delta E_{M}| = 0.25 p_{M}^{2} \frac{C_{M0}}{C_{\Sigma 0}} \cdot \frac{f_{0}}{E_{M0}}, \text{ KFu/B};$$
 (2.29)

$$\sigma_{_{M}} = |\Delta f / f_{_{0}}| / |\Delta E_{_{M}}| = 0.25 p_{_{M}}^{2} \frac{C_{_{M0}}}{C_{_{\Sigma0}}} \cdot \frac{1}{-E_{_{M0}}}, 1/B.$$
 (2.30)

Рис.2.3.

Рис.2.4.

2.1. Схемы управляемых автогенераторов

Схемы УАГ строятся по тем принципам, что и неуправляемых, рассмотренных в гл.1. Особенность состоит в том, чтобы подключение варикапа и его питающих напряжений вносило только полезные изменения емкости контура и не нарушало режима работы АГ по цепям питания. С этой целью применяют блокировочные дроссели и конденсаторы. Электрод БТ, заземленный по ВЧ выбирают обычно из конструктивных соображений и удобства подачи питающих напряжений.

Задачи для самостоятельного решения

- **2.1.** Считая блокировочные элементы идеальными, указать, в каких проводах, отмеченными цифрами на рис.2.4, протекают токи, зависимости которых во времени соответствуют рис.2.6,а,б,в,г? На каких элементах схемы лежат напряжения, изображенные на рис.2.7,а,б,в,г,д? Какой электрод БТ заземлен по ВЧ?
- **2.2.** АГ по схеме рис.2.4 работает в КР, девиация частоты $\Delta f_m = 50$ кГц. Как изменятся напряженность режима и $\Delta f_{\scriptscriptstyle M}$, если произойдет КЗ $L_{\scriptscriptstyle 6/2}$? $L_{\scriptscriptstyle 6/2}$? $C_{\scriptscriptstyle 6/2}$? $C_{\scriptscriptstyle 6/2}$?
- **2.3.** Считая блокировочные элементы идеальными, указать, в каких проводах, отмеченных на рис.2.5 цифрами, протекают токи, зависимости которых во времени соответствуют рис.2.6,а,б,в? На каких элементах схемы лежат напряжения, изображенные на рис.2.7,а,б,в,г,д? Какой электрод БТ заземлен по ВЧ?
- **2.4.** АГ по схеме рис.2.5 работает в КР, $\Delta f_{_{M}} = 25$ кГц. Как изменятся напряженность режима и $\Delta f_{_{M}}$, если произойдет КЗ $L_{_{5/1}}$? $L_{_{5/2}}$? $C_{_{5/3}}$? $C_{_{5/4}}$? $R_{_{2}}$?
- **2.5.** АГ по схеме рис.2.4 работает в КР, $\Delta f_{_{M}} = 75$ кГц. Как изменятся напряженность режима и $\Delta f_{_{M}}$, если уменьшить $E_{_{H}}$? Увеличить $E_{_{H}}$? Увеличить $E_{_{R}}$? Уменьшить $U_{_{\Omega}}$ в 2 раза?
- **2.6.** АГ по схеме рис.2.4 работает в КР, $f_0 = 50$ мГц, $\Delta f_{_{M}} = 40$ кГц. Как изменятся напряженность режима, f_0 , $\Delta f_{_{M}}$, если $U_{\Omega} = 0$?
- **2.7.** АГ по схеме рис.2.4 работает в КР, $f_0 = 20$ МГц, $\Delta f_{_M} = 20$ кГц. Как изменятся напряженность режима, f_0 , $\Delta f_{_M}$, если при $C_{_\Sigma}$, $E_{_\Pi}$, $E_{_H}$, S, $R_{_9}$, Q = const индуктивность $L_{_\Sigma}$ увеличить в 4 раза? Уменьшить в 4 раза?
- **2.8.** АГ по схеме рис.2.5 работает в КР, $f_0 = 25$ МГц, $\Delta f_{_M} = 25$ кГц, $C_3' = \infty$, $C_3'' = 0$. Чему равно $p_{_M}$? Как изменятся напряженность режима, f_0 , $\Delta f_{_M}$, $p_{_M}$, если при $E_{_{I\!I}}$, $E_{_{I\!I}}$

2.9. АГ по схеме рис.2.5 работает в КР, $f_0 = 10$ МГц, $\Delta f_{_M} = 10$ кГц. Как изменятся напряженность режима, если при $E_{_{I\!I}}, E_{_{\!H}}, R_{_{\!2}}, S, Q = const$ индуктивность $L_{_3}$ увеличили так, что $L_{_{\Sigma}}$ возросла в 2 раза?

- **2.10.** АГ по схеме рис.2.5 работает в КР, $f_0 = 20$ МГц, $\Delta f_{_M} = 25$ кГц, $C_3' = \infty$, $C_3'' = 0$. Как изменятся напряженность режима, f_0 , $\Delta f_{_M}$, если параллельно подсоединить варикап, идентичный первому?
- **2.11.** АГ по схеме рис.2.5 работает в КР, $f_0 = 25$ МГц, $\Delta f_{_{M}} = 25$ кГц, $p_{_{M}} = 0.5$. Как изменятся напряженность режима, f_0 , $\Delta f_{_{M}}$, если произойдет пробой конденсатора C_3' ? C_3'' ?
- **2.12.** В каком соотношении находятся частоты f_1, f_2, f_3 , для которых построены графики $Q_{_{M}}(e_{_{M}})$ на рис.2.3? Чему равны $C_{_{M,2}}$?

2.13. По графикам рис.2.8,а,б определить $|e_{n\partial}|$, если напряжение на контуре U=10 В. Изобразить $U_{\Omega \max}(P_{\scriptscriptstyle M})$.

Рис.2.8. Иллюстрации к задаче 2.13

2.14. Что можно сказать о соотношении между $|e_{n\partial}|$ и U, если зависимость $\Delta f(P_{M})$ соответствует рис.2.9?

Рис.2.9. Иллюстрация к задаче 2.14

2.2. Расчет параметров контура и девиации частоты

Параметры контура УАГ рассчитываются по формулам, приведенным в гл.1. Особенность состоит в том, что их определяют в режиме молчания, когда $U_\Omega=0$ и частота колебаний $f=f_0=f\left(E_{{}_{M}0}\right)$. Кроме того, для реализации оптимального коэффициента включения варикапа в контур $P_{{}_{M}\,opt}$ появляются дополнительные элементы связи.

Примеры решения типовых задач

2.15. В АГ по схеме рис.2.5: L_{Σ} =1.1236 мкГн; k = p = 0.2; U_s = 0.2 В; λ_0 = 40 м. Параметры варикапа: $C_{_{M0}}$ = 40 пФ; $|e_{_{n\delta}}|$ = 20 В; $p_{_{M}}$ = 0.8; φ = 0.5 В. Рассчитать максимальную девиацию частоты $|\Delta f|_{\max}$.

Решение

Согласно (2.26), $E_{_{M0}}=-0.5\cdot 20=-10$ В. Напряжение ВЧ на варикапе $U_{_{M}}=p_{_{M}}U=p_{_{M}}U_{_{K}}$ / p=4 В. Из (2.26) $\Delta E_{_{M}\max}=0.5$ | $e_{_{n\delta}}$ | $-U_{_{M}}=6$ В. Для

расчета отклонения частоты можно применить (2.23), поскольку $\varphi \ll |E_{_{M0}}|$, но сначала необходимо определить $C_{_{\Sigma0}}$. По известному

значению
$$L_{\Sigma}$$
 находим (1.37) $\rho = \frac{L_{\Sigma} \cdot 10^3}{0.53 \cdot \lambda_0} = 53 \text{ Ом},$ емкость (1.37)

 $C_{\Sigma 0} = 530 \lambda_0 / \rho = 400 \text{ п}$ Ф. Относительные изменения частоты (2.23)

$$\left|\right.\Delta f\left.\right|_{\max}\left./\right.f_{0}=0.25\cdot0.64\cdot\frac{40}{400}\cdot\frac{6}{10}=0.0096\ и\left.\right|\left.\Delta f\right.\right|_{\max}=72\ \text{к}\Gamma\text{ц}.$$

2.16. АГ по схеме рис.2.5 работает в КР: $L_1=0.106$ мкГн; $L_2=0.0106$ мкГн; $L_3=0.4134$ мкГн; $\lambda_0=20$ м; $U_\kappa=4$ В. Параметры варикапа: $C_{_M}(0)=556,8$ пФ; $|e_{_{n\partial}}|=30$ В; $m=\varphi=0.5$. Рассчитать емкости C_3' , C_3'' и $|\Delta f|_{\max}$ при $P_{_{MoDt}}$.

Решение

Для определения $P_{_{\mathrm{M}\,opt}}$ сначала находим напряжение на контуре $U=U_{_{\kappa}}/p$, где $p=L_{_{\! 1}}/L_{_{\! \Sigma}}=0.106/0.53=0.2$ и U=4/0.2=20 В. Поскольку $|e_{_{\!n\partial}}|\!<\!3U,$ согласно (2.27), $P_{_{\! M\,\mathrm{opt}}}=U_{_{\!M}}/U=\!|e_{_{\!n\partial}}|/3U=0.5;\ U_{_{\!M}}=10$ В.

Коэффициент включения варикапа к контуру $p_{_{M}}$ определяется выбором емкостей C_3' и C_3'' :

$$p_{M} = C_{\Sigma 0} / (C_{3}'' + C_{M0}); \tag{2.31}$$

$$1/C_{\Sigma 0} = 1/C_3' + 1/(C_3'' + C_{M0}); \ p_M = C_3'/(C_3' + C_3'' + C_{M0}). \tag{2.32}$$

Емкость контура $C_{\Sigma 0}$ определяем по характеристическому сопротивлению ρ , а из (1.37) ρ = 50 Ом; $C_{\Sigma 0}$ = 212 пФ.

По известным $P_{_{M}}$ и $C_{_{\Sigma0}}$ находим $C_{_{3}}' + C_{_{M0}} = C_{_{\Sigma0}} / P_{_{M}} = 0.424$ пФ.

Выбираем $E_{_{M0}} = -0.5 | e_{_{n\partial}} = -15 \text{ B}$, затем с помощью (2.1) рассчитываем $C_{_{M0}} = 100 \text{ пФ}$; $C_3'' = 324 \text{ пФ}$. Из (2.32)

$$1/\textit{C}_{3}'=1/\textit{C}_{\Sigma0}-1/\left(\textit{C}_{3}''+\textit{C}_{{\scriptscriptstyle M0}}\right)=1/\textit{C}_{\Sigma0}-\textit{P}_{{\scriptscriptstyle M}}/\textit{C}_{\Sigma0}=0.5/\textit{C}_{\Sigma0};\;\textit{C}_{3}'=424\;\text{пФ}.$$
 Максимально допустимое изменение запирающего напряжения (2.26)
$$\Delta E_{{\scriptscriptstyle M}\; {\rm max}}=0.5\,|\,\textit{e}_{{\scriptscriptstyle N}\partial}\,|\,-\textit{U}_{{\scriptscriptstyle M}}=5\;{\rm B},\qquad \text{а}\qquad \text{из} \qquad (2.23)$$

$$|\,\Delta\!f\,|_{{\scriptscriptstyle max}}/f_{0}\cong0.00983;\;|\,\Delta\!f\,|_{{\scriptscriptstyle max}}=147.4\;\text{к}\Gamma\text{ц}.$$

2.17. Как изменятся напряженность режима АГ, f_0 , $|\Delta f|_{\max}$, если в условиях задачи 2.16 при $L_1, L_2, L_3, C_3'', C_{M0}, E_{\Pi}, E_{H}, E_{M0}, S, Q = const$ емкость C_3' увеличить в 2 раза? Уменьшить в 2 раза?

Решение

Емкость $C_3'=424$ пФ, при этом $C_{\Sigma 0}=212$ пФ, $P_{_{\!M}}=0.5\cdot 1$. Если $C_3=212$ пФ, то $C_{\Sigma 0}'=141.33$ пФ. В результате $\rho=\sqrt{L_{_{\!\Sigma}}/\,C_{\Sigma 0}}$ возрастает,

 R_{κ} и R_{y} тоже, ПР, $U \approx 20$ В. Частота $f_{0}' = f_{0} \sqrt{C_{\Sigma 0} / C_{\Sigma 0}'} = 18.37$ МГц. Согласно (2.31), $P_{M}' = 11/3$; $U_{M}' = 6.67$ В; из (2.26) $|\Delta E_{M}'|_{\max} = 8.33$ В. Применим (2.23):

Было $|\Delta f|_{\text{max}}/f_0 = 0.25 \cdot 0.25 \cdot 100 \cdot 5/212 \cdot 15;$

Стало $|\Delta f'|_{\max}/f_0 = 0.25 \cdot 1 \cdot 100 \cdot 8.33/9 \cdot 141.33 \cdot 15$, из их соотношения $|\Delta f'|_{\max} = |\Delta f|_{\max} \cdot f_0 \cdot 4 \cdot 212 \cdot 8.33/f_0 \cdot 9.141.3 \cdot 5 \cong 200$ кГц.

2. Если $C_3' = 424 \cdot 2 = 848 \text{ п}\Phi$, то $C_{\Sigma 0} = 282,67 \text{ п}\Phi$, увеличение $C_{\Sigma 0}$

приведет к уменьшению $\rho, R_{\kappa}, R_{\nu}, HP, U < 20 \text{ B}, p_{M}'' = \frac{3}{2}, U_{M}'' < 13 \text{ B},$

$$\left|\Delta E_{_{M}}''\right|_{\max} \approx 2 \text{ B.}$$
 Частота $f_{_{0}}''$ уменьшается,

$$f_0'' = f_0 \sqrt{\frac{212}{282,6}} \cong 13 \text{ МГц. } \left| \Delta f'' \right|_{\max} > 147.4 \cdot \frac{13}{15} \cdot \frac{16}{9} \cdot \frac{212}{282.6} \cdot \frac{2}{5} = 68 \text{ кГц.}$$

Девиация может быть больше, чем 68 к Γ ц, за счет уменьшения U по сравнению с U=20 В.

2.18. АГ по схеме рис.2.4:
$$C_3' = 200$$
 пФ; $C_3'' = 150$ пФ; $C_{M0} = 50$ пФ; $\Delta C_M = 8$ пФ; $\rho = 0.4$; $k = 0.2$; $E_{M0} = -20$ В. Определить $|\Delta f_m| / f_0, f_0, U_{\Omega}$.

Решение

Для расчета относительного изменения частоты применим (2.12) с учетом (2.15)

$$|\Delta f_{_{M}}|/f_{_{0}} = 0.25 p_{_{M}}^{2} \frac{\Delta C_{_{M}}}{C_{_{\Sigma 0}}}.$$
 (2.33)

В (2.33) известно только ΔC_m , необходимо определить p_m и $C_{\Sigma 0}$.

Расчет выполним следующим образом. Характеристическое сопротивление контура (1.38)

$$\rho = 1/\omega_0 C_{\Sigma 0} = 1/\omega_0 C_3 + 1/\omega_0 C_2 + 1/\omega_0 C_1 = 1/\omega_0 C_3 + \frac{1+k}{\omega_0 C_1}, \text{ но по (1.18)}$$

 $p = C_1 / C_{\Sigma}$ и $1 / \omega_0 C_1 = p\rho$, поэтому $\rho = 1 / \omega_0 C_3 + p\rho(1+k)$;

$$\rho = 1/\omega_0 C_3 \left[1 - p(1-k) \right]; C_{\Sigma 0} = C_3 \left[1 - p(1+k) \right]. \tag{2.34}$$

Злесь

$$1/C_3 = 1/C_3' + 1/(C_3'' + C_{m0}); C_3 = 100 \text{ m}\Phi; C_{\Sigma 0} = 52 \text{ m}\Phi.$$

Частота
$$f_0 = 1/2\pi\sqrt{L_3C_{\Sigma 0}} \cong 30$$
 МГц.

Коэффициент включения варикапа (2.31) $p_{\scriptscriptstyle m} = 0.26$, а из (2.33) $\left|\Delta f_{\scriptscriptstyle M}\right|/f_0 = 0.0052$.

Но относительные вариации частоты определяются также (2.28). Сравнивая (2.33) и (2.38), получим

$$\Delta C_{\scriptscriptstyle M} / C_{\scriptscriptstyle M0} = 0.5 U_{\scriptscriptstyle \Omega} / -E_{\scriptscriptstyle M0},$$

отсюда $U_{\Omega} = 2(-E_{_{M0}})\Delta C_{_{M}} / C_{_{M0}} = 6.4 \text{ B}.$

Задачи для самостоятельного решения

- **2.19.** По условиям задачи 2.15 определить $P_{\text{м opt}}$. Как его реализовать, сохранив f_0 и режим АГ? Каким станет $|f_0|_{\text{max}}$?
- **2.20.** По условиям задачи (2.16) проверить неравенства (2.19), (2.11).
- **2.21.** Как изменятся напряженность режима АГ, f_0 , $|\Delta f|_{\text{max}}$, если в условиях задачи 2.16 при $L_1, L_2, L_3, C_3', C_3'', C_{m0}, E_{\Pi}, E_{H}, S, Q, R_9 = const$ емкость C_3'' в 2 раза уменьшить? Увеличить?
- **2.22.** В условиях задачи 2.16 КР реализуется, если $E_{_H}-E'=0.4$ В. Как изменятся напряженность режима АГ, f_0 , $\left|\Delta f\right|_{\max}$, если в условиях задачи 7.17 при $L_1, L_2, L_3, C_3', C_3'', C_{_{M0}}, E_{_{II}}, E_{_{m0}}, S, Q, R_{_9} = const$ сделать $E_{_H}-E'=0.2$ В? О.6 В? Как можно увеличить $\left|\Delta f\right|_{\max}$, сохранив $f_0=15$ МГц?
- **2.23.** АГ по схеме рис.2.4 работает в КР: k=0.1; $C_1=1.06$ нФ; $L_3=0.53$ мкГн; $\lambda_0=20$ м; $U_s=0.5$ В. Параметры и режим варикапа: $C_{_{M0}}=60$ пФ; $E_{_{M0}}=0.5e_{_{M0}}=-22.5$ В. Рассчитать $p_{_{M\,opt}},C_3',C_3'',\left|\Delta f\right|_{\max}$.
- **2.24.** В АГ по схеме рис.2.4: $U_{\scriptscriptstyle g}=0.4$ В; k = 0.1; p=0.4; $\left|e_{\scriptscriptstyle n\partial}\right|=24$ В. Определить $P_{\scriptscriptstyle \text{M}\,opt}, U_{\scriptscriptstyle \Omega\,\,\text{max}}$.
- **2.25.** В АГ по схеме рис.2.5: U=8 В; $U_{_{M}}=4$ В; $\rho=106$ Ом; $\lambda=20$ м; $C_{_{M0}}=40$ пФ; $E_{_{M0}}=0.5e_{_{ng}}=-10$ В. Принять $\varphi=0$. Определить $|\Delta f|_{_{\max}}$.
- **2.26.** В АГ по схеме рис.2.5: $C_3' = \infty$; $\rho = 53$ Ом; $\lambda_0 = 40$ м; U = 6 В; $C_{M0} = 40$ пФ; $E_{M0} = -0.5e_{ng} = -10$ В. Принять $\varphi = 0$. Определить $\left| \Delta f \right|_{\max}$.
- **2.27.** В АГ по схеме рис.2.5: ρ = 53 Ом; λ_0 = 40 м; U = 6 В; $E_{{}_{\!\!M}0}$ = 0.5 $e_{{}_{\!\!R}g}$ = -12 В; $\left|\Delta f_{{}_{\!\!M}}\right|_{\rm max}$ / f_0 = 0.015 при $P_{{}_{\!\!M}}$ = $P_{{}_{\!\!M}\,opt}$. Рассчитать $P_{{}_{\!\!M}\,opt}$, C_3' , C_3'' , $C_{{}_{\!\!M}0}$.
- **2.28.** В АГ по схеме рис.2.5: $C_3' = ,200 \text{ пФ}; C_3'' = C_{_{M0}} = 100 \text{ пФ};$ $E_{_{M0}} = 0.5e_{_{ng}} = -10 \text{ B}; U_{_{\Omega \max}} = 3 \text{ B. Рассчитать } p_{_{M}}, U, \left| \Delta f_{_{M}} \right|_{\max} / f_{_{0}}.$
- **2.29.** Как изменятся $p_{_{M}} | \Delta f_{_{M}} |_{\max} / f_{_{0}}$, если в условиях задачи 2.28 при $L_{_{\Sigma}}, C_{_{3}}', C_{_{3}}'', E_{_{H}}, E_{_{M0}}, S, Q, R_{_{9}}, U_{_{\Omega}} = const$ параллельно включить варикап, идентичный первому?
- **2.30.** АГ по схеме рис.2.5 работает в КР: $\lambda_0 = 50$ м; $\rho = 530$ м; $p_{_M} = 1$; $U_{_\Omega} = 3$ В; $|\Delta f_{_M}| / f_0 = 0.00625$; $E_{_{M0}} = -12$ В. Как изменятся напряженность режима и $|\Delta f_{_M}|$, если при $E_{_H}, E_{_{M0}}, S, Q, R_{_{_{3}}}, L_{_{\Sigma}}, U_{_{\Omega}} = const$ емкость C_3'' уменьшить на 250 пФ?

- **2.31.** В АГ по схеме рис.2.4: $\lambda_0 = 50$ м; $\rho = 530$ м; $p_{_M} = 0.5$; $U_{_{\Omega \max}} = 4$ В; $E_{_{M0}} = -16$ В; $\Delta C_{_{M}} = 25$ пФ. Рассчитать $U, U_{_{M}}, |\Delta f|_{\max}$.
- **2.32.** АГ по схеме рис.2.4 работает в КР: $\lambda_0 = 25$ м; $\rho = 53$ Ом; U = 20 В; $E_{_{M0}} = -15$ В; $U_{_{\Omega \max}} = 5$ В; $\left| \Delta f_{_{M}} \right|_{\max} / f_0 = 0.01$. Рассчитать $p_{_{M}}, C_{_{M0}}, C_3''$.

Как изменятся напряженность режима, λ_0 , $|\Delta f_{_M}|_{\max}$ / f_0 , если при C_1 , C_2 , C_3 , E_H , $E_{_{M0}}$, S, R_9 , Q, $U_{_{\Omega \max}} = const$ индуктивность L_3 увеличить в 2 раза? Уменьшить в 2 раза?

2.33. АГ по схеме рис.2.4 работает в КР: $p_{_{M}}=0.5;\ C_{_{M0}}=0.4C_{_{\Sigma0}};$ $E_{_{M0}}=-10\ \mathrm{B};\ U_{_{\Omega\mathrm{\ max}}}=4\ \mathrm{B.}$ Рассчитать $\left|\Delta f_{_{M}}\right|_{\mathrm{max}}/f_{_{0}}.$

Как изменятся напряженность режима и $|\Delta f_{_M}|_{\max}/f_0$, если при $E_{_{I\!I}}, E_{_{M0}}, U_{_{\Omega \max}}, R_{_{9}}, S, Q, C_{_{\Sigma 0}}/L_{_{3}} = const$ напряжение $U_{_{M}}$ за счет уменьшения $E_{_{\!H}}$ упало в 2 раза?

2.3. Статические модуляционные характеристики

При решении задач СМХ $\Delta f\left(\Delta E_{_{M}}\right)$ приближенно считаются линейными (2.22), (2.23) с отрицательным наклоном, проходящими через точку молчания $E_{_{M0}}$ с крутизной $S_{_{M}}$ (2.29) или $\sigma_{_{M}}$ (2.30). Размах по оси ординат $\Delta f_{_{\max}}$, а по оси абсцисе $\Delta E_{_{M\max}}$ (рис.2.10).

Рис.2.10. Статическая модуляционная характеристика АГ

Примеры решения типовых задач

2.34. АГ по схеме рис.2.5 работает в ПР: $p_{_M}=0.5; f_0=5$ МГц; $U_{_M}=5$ В; $C_{_{M0}}=50$ пФ; $C_3=200$ пФ; $E_{_{M0}}=0.5e_{_{n\partial}}=-20$ В; $m=0.5; \ \varphi=0.5$ В. Определить $S_{_M}$ и $\left|\Delta f\right|_{\max}$, считая, что при вариации $E_{_M}$ режим АГ сохраняется ПР. Как изменятся $S_{_M}$ и $\left|\Delta f\right|_{\max}$, если выбрать $E_{_{M0}}=-10$ В?

Решение

Согласно (2.39), для расчета $S_{_{M}}$ сначала следует найти $C_{_{\Sigma0}}$. Поскольку $p_{_{M}}=0.5,$ то из (2.31) $C_{_{\Sigma0}}=0.5\left(C_{_{M0}}+C_{_{3}}''\right),$ а $C_{_{M0}}+C_{_{3}}''=C_{_{3}}',C_{_{\Sigma0}}=100$ пФ. $S_{_{M}}=7.8$ кГц/В. $\left|\Delta f\right|_{\max}=S_{_{M}}\left|\Delta E_{_{m}}\right|_{\max}=S_{_{M}}\left[0.5\left|e_{_{n\partial}}\right|-U_{_{M}}\right]=117$ кГц.

При вариации E_{M0} меняются емкость C_{M0} (2.1) и напряжение

$$\Delta E_{_{M} \; \mathrm{max}}$$
. Из (7.1) $C_{_{M0}}' / C_{_{M0}} = \sqrt{\frac{\varphi - E_{_{m0}}}{\varphi - E_{_{m0}}'}} = 1.397; \; C_{_{M0}}' = 1.397 \cdot C_{_{M0}} \cong 70 \; \mathrm{m}\Phi;$

емкость $C_3' = 150 \text{ пФ}$; $C_3' + C_{M0}' = 220 \text{ пФ}$; $C_{\Sigma 0}' \cong 105 \text{ пФ}$;

$$p'_{M} = 0.476; \ U'_{M} = p'_{M}U = 4.76 \ B;$$

$$f_0' / f_0 = 0.976; f_0' = 0.976 \cdot 5 = 4.88 \text{ MGu};$$

$$S'_{M} = 0.25 \cdot 0.476^{2} \cdot \frac{70}{105} \cdot \frac{4.88 \cdot 10^{6}}{10} \cong 18.4$$
 κΓμ/Β.

$$\Delta E'_{_{M} \text{ max}} = -E_{_{M0}} - U_{_{M}} = 5.24 \text{ B}; \left| \Delta f' \right|_{\text{max}} = 96.4 \text{ к} \Gamma$$
ц.

2.35. АГ по схеме рис.2.4 работает в КР, СМХ приведена на рис.2.10. Как изменяется $S_{_{M}}$, $|\Delta f|_{\max}$, если при $C_{_{1}}$, $C_{_{2}}$, $C_{_{3}}'$, $C_{_{3}}''$, Q, S, $R_{_{9}}$, $E_{_{H}}$, $E_{_{M0}}$ = const индуктивность $L_{_{3}}$ в 2 раза увеличить? Уменьшить?

Решение

Если L_3 увеличить в 2 раза, то $\rho, R_{_{\!\! K}}, R_{_{\!\! V}}$ увеличатся в $\sqrt{2}$ раз, режим станет ПР, $U \approx const, U_{_{\!\! M}} \approx const.$ Поскольку $p_{_{\!\! M}}, C_{\Sigma 0}, C_{_{\!\! M} 0}, E_{_{\!\! M} 0} = const,$ то, согласно (2.30), $\sigma_{_{\!\! M}} = const, \left| \Delta E_{_{\!\! M}} \right|_{\rm max}$ тоже не меняется, СМХ на рис.2.10 не изменится. Из (2.29) следует, что $S_{_{\!\! M}}' = \sigma_{_{\!\! M}} \cdot f_0' = \sigma_{_{\!\! M}} \cdot f_0 / 2$ уменьшится в $\sqrt{2}$ раз, $\left| \Delta f \right|_{\rm max} = S_{_{\!\! M}}' \cdot \left| \Delta E_{_{\!\! M}} \right|_{\rm max}$ — уменьшится в $\sqrt{2}$ раз.

Если L_3 уменьшить в 2 раза, то $\rho, R_{\kappa}, R_{\nu}$ уменьшаются в $\sqrt{2}$ раз, режим станет HP, $|\Delta E_{\scriptscriptstyle M}|_{\rm max}$ увеличивается, поскольку $U_{\scriptscriptstyle M}$ падает, поэтому CMX на рис.2.10 можно продолжить, $\sigma_{\scriptscriptstyle M} = const$, частота f_0'' увеличивается в $\sqrt{2}$ раз, поэтому $S_{\scriptscriptstyle M}''$ увеличивается в $\sqrt{2}$ раз, а $|\Delta f|_{\rm max}$ несколько больше, чем в $\sqrt{2}$ раз.

Задачи для самостоятельного решения

2.36. АГ по схеме рис.2.7 работает в КР: U=20 В; $C_3=300$ пФ; $C_{\Sigma 0}=160$ пФ; $C_{M0}=100$ пФ; $f_0=5$ МГц; $E_{M0}=-12.5$ В. Рассчитать S_M и $\left|\Delta f\right|_{\rm max}$. Как изменятся S_M и $\left|\Delta f\right|_{\rm max}$, если в АГ увеличить E_H ? Уменьшить $\left(E_H-E'\right)$ в 2 раза?

- **2.37.** АГ по схеме рис.2.5 работает в КР: $C_{\Sigma 0} = 400$ пФ; $C_3' = 800$ пФ; $C_{m0} = 200$ пФ; $p_m = 0.5$; $E_{m0} = -12.5$ В; $f_0 = 5$ МГц. Рассчитать S_m . Как изменится S_m , если при $E_H, E_H, E_{m0}, R_9, S, L_\Sigma, C_3' = const$ емкость C_3'' в 2 раза увеличить? Уменьшить?
- **2.38.** АГ по схеме рис.2.5 работает в КР: $C_3 = 1$ нФ; $C_3'' = 0.75$ нФ; $C_{M0} = 0.25$ нФ; $E_{M0} = -12.5$ В; $\sigma_{M} = 0.0025$ 1/В. Как изменится σ_{M} , если при L_{Σ} , C_3'' , Q, S, R_3 , E_{M0} , E_H , $E_H = const$ емкость C_3' в 2 раза уменьшить? Увеличить?
- **2.39.** АГ по схеме рис.2.5 работает в КР: $\sigma_{_{M}} = 0.002$ 1/В. Как изменится $\sigma_{_{M}}$, если при $C_3', C_3'', Q, S, R_{_{3}}, E_{_{H}}, E_{_{M}}, E_{_{M}} = const$
 - 1) L_1 увеличили? Уменьшили? $L_2, L_3 = const;$
 - 2) L_2 увеличили? Уменьшили? $L_1, L_3 = const;$
 - 3) L_3 увеличили? Уменьшили? $L_1, L_2 = const.$
- **2.40.** АГ по схеме рис.2.4 работает в КР: $U_{_{M}} = 5$ В; $E_{_{M0}} = -10$ В. При снятии СМХ получили $\left|\Delta f\right|_{\max} / f_0 = 0.005$. Как изменится $\left|\Delta f\right|_{\max} / f_0$, если $E_{_{II}}$ уменьшить в 2 раза?
- **2.41.** АГ по схеме рис.2.4 при снятии СМХ работал в НР $U_{_{M}}=2$ В; $E_{_{M0}}=-10$ В; $\left|\Delta f\right|_{\max}=50$ кГц. Как изменится $\left|\Delta f\right|_{\max}$, если $\left(E_{_{H}}-E'\right)$ увеличили в 2 раза, а режим остался НР?
- **2.42.** АГ по схеме рис.2.4 работает в КР: $C_2 = 1$ нФ; k = 0.5; $f_0 = 10$ МГц. СМХ приведена на рис.2.10. Как изменится СМХ, если емкость C_2 увеличить до 2 нФ? Уменьшить до 0.5 нФ? Емкость C_1 в 2 раза увеличить? Уменьшить? Во всех случаях вариации C_1 или C_2 емкостью C_3 восстанавливается частота колебаний $f_0 = 10$ МГц, а $L_3, C_3'', Q, S, R_3, E_\mu, E_\Pi, E_{\mu 0} = const.$
- **2.43.** В УАГ по схеме рис.2.5: $p_{_{M}} = 1$; $S_{_{M}} = 5$ кГц/В у варикапа m = 0.5; принять $\varphi = 0$. Как изменится $S_{_{M}}$, если $|E_{_{M0}}|$ увеличить в 2 раза и путем вариации $C_{_{3}}''$ восстановить частоту $f_{_{0}}$ до прежнего значения?
- **2.44.** В УАГ по схеме рис.2.5: $p_{_{M}}=1$; $S_{_{M}}=5$ кГц/В. Как изменится $S_{_{M}}$, если $L_{_{\Sigma}}$ и $C_{_{\Sigma0}}$ увеличить в 2 раза? Уменьшить в 2 раза? $E_{_{H}}, E_{_{\Pi}}, E_{_{M0}}, Q, S, R_{_{9}}=const.$
- **2.45.** АГ по схеме рис.2.4 работает в КР, $S_{_{M}} = 10 \text{ кГц/B}$ за счет увеличения сопротивления $R_{_{9}}$ напряжение $U_{_{M}}$ уменьшилось в 2 раза. Как изменится $S_{_{M}}$, если $E_{_{H}}, E_{_{M}}, E_{_{M}}, Q, S, C_{_{\Sigma 0}}, L_{_{3}} = const$?
- **2.46.** В контур АГ по схеме рис.2.5 включена емкость C, как показано на рис.2.11, где ради простоты не изображены источники питания и

блокировочные элементы. Предлагается это сделать самостоятельно. Какой электрод БТ заземлен по ВЧ?

2.47. В АГ по схеме рис.2.11: $p_{_{M}}=0.4;$ $C_{_{3}}'=300$ пФ; $C_{_{M0}}=100$ пФ; $S_{_{M}}=10$ кГц/В; $f_{_{0}}=10$ МГц. Как изменятся $S_{_{M}}, C_{_{3}}', C$, если емкость $C_{_{3}}'$ уменьшили так, что $U_{_{M}}$ упало в 2 раза, а емкостью C восстановили частоту $f_{_{0}}=10$ МГц? Как изменится $S_{_{M}}$, если путем изменения C при $C_{_{3}}', C_{_{3}}'', C_{_{M0}}=const$ частота $f_{_{0}}$ стала 15 МГц? Как изменится $S_{_{M}}$, если один варикап заменить двумя идентичными, включенными параллельно, если при $C_{_{3}}', C_{_{3}}''=const$ емкостью C восстановили $f_{_{0}}=10$ МГц?

Рис.2.11. Иллюстрация к задаче 2.47

2.4. Паразитная амплитудная модуляция

За счет наличия потерь в варикапе (рис.2.2,а,б) при изменении напряжения на переходе происходит вариация сопротивления, вносимого в контур АГ, что приводит в свою очередь к изменению его резонансного сопротивления R_{κ} , а следовательно, R_{y} и при фиксированных E_{n}, E_{μ}, R_{ν} амплитуды колебаний $U_{\nu}, U_{\kappa}, U, U_{\nu}$. В процессе модуляции напряжением U_{Ω} одновременно с частотной наблюдается амплитудная модуляция, которая является паразитной, поскольку приводит к нежелательным искажениям.

Задачи для самостоятельного решения

2.48. По СМХ $\Delta f_{,U_{\kappa}}(\Delta E_{_{M}})$, приведенным на рис.2.12, изобразить временные зависимости $\Delta f_{,U_{\kappa}}(\Omega t)$ для $U_{\Omega} = 5\cos\Omega t$. Какое из сопротивлений автосмещения $R_{_{2}}$ больше, если

- $E_{_{\!\scriptscriptstyle H}}, E_{_{\!\scriptscriptstyle M}}, Q, S, k, R_{_{\!\scriptscriptstyle K}} = const\,?$ Для обоих значений сопротивлений $R_{_{\!\scriptscriptstyle 9}}$ рассчитать коэффициент паразитной АМ, m.
- **2.49.** Каким следует выбрать U_{Ω} , чтобы для каждого $R_{_9}$ на рис.2.12 реализовать m=2%? Определить $\left|\Delta f_{_M}\right|_{\max}$ для каждого из $R_{_9}$ при этом m.
- **2.50.** АГ по схеме рис.2.5 работает в НР: $C_3' = \infty$; $C_3'' = 0$. Влиянием какого сопротивления r или R в эквивалентной схеме рис.2.2, а объясняется зависимость $U_{\kappa}(\Delta E_{\scriptscriptstyle M})$ на рис.2.12?
- **2.51.** Как следует выбрать напряженность режима АГ, чтобы в условиях задачи 2.48 при U_{Ω} = 5 В сохранить $\left|\Delta f\right|_{\max}$, а m уменьшить до 2%?

Рис.2.12. Иллюстрация к задаче 2.50

3. НЕСТАБИЛЬНОСТЬ ЧАСТОТЫ ОДНОКОНТУРНЫХ АВТОГЕНЕРАТОРОВ

При расчете показателей стационарного режима АГ и параметров контура не учитывали фазу средней крутизны коллекторного тока φ_s и коэффициента обратной связи φ_{oc} , поскольку их вклад незначителен. Однако оценка и расчет нестабильности частоты относительно набольших ее изменений вынуждает ввести φ_c и φ_{oc} .

Представим комплексные крутизну коллекторного тока \dot{S}_1 , коэффициент обратной связи \dot{k} и сопротивление контура Z_{κ} в показательной форме:

$$\dot{S}_1 = S_1 e^{j\varphi_s}; \ \dot{k} = k e^{j\varphi_{oc}}; \ Z_{\kappa} = Z_{\kappa} e^{j\varphi_{\kappa}}$$

$$(3.1)$$

и подставим в комплексное уравнение стационарного режима (1.9):

$$S_1 e^{j\varphi_s} \cdot k e^{j\varphi_{oc}} \cdot Z_{\kappa} e^{j\varphi_{\kappa}} = 1.$$

Оно распадается на два:

$$S_1 k Z_{\kappa} = 1,$$

$$\varphi_s + \varphi_{oc} + \varphi_{\kappa} = 0.$$
(3.2)
(3.3)

Частоту колебаний в АГ определяет контур. Приближенно она равна его собственной частоте $(f \approx f_0)$, а более точно находится из (3.3), где от частоты f, вернее даже от ее небольших отклонений $\Delta f = f - f_0$, зависит фаза контура в цепи коллектора φ_{κ} :

$$tg\varphi_{\kappa} = -\alpha \approx -2Q\Delta f / f_0, \tag{3.4}$$

$$\Delta f = f - f_0. \tag{3.5}$$

Из (3.3)

$$\varphi_{\kappa} = -(\varphi_{s} + \varphi_{oc}); \ tg\varphi_{\kappa} = -tg(\varphi_{s} + \varphi_{oc}), \tag{3.6}$$

а согласно (3.4):

$$\Delta f / f_0 = -tg\varphi_{\kappa} / 2Q = 0.5tg(\varphi_s + \varphi_{oc}), \qquad (3.7)$$

$$\delta = 1/Q. \tag{3.8}$$

Для небольших $\varphi_s + \varphi_{oc}$, $tg(\varphi_s + \varphi_{oc}) \approx \varphi_s + \varphi_{oc}$ и (8.7)

$$\Delta f / f_0 \approx 0.5 \delta (\varphi_s + \varphi_{oc}), \tag{3.9}$$

а частота колебаний

$$f = f_0 \left[1 + 0.5 \delta \left(\varphi_s + \varphi_{oc} \right) \right]. \tag{3.10}$$

Поправка к собственной частоте контура

$$\Delta f = 0.5 f_0 \delta \left(\varphi_s + \varphi_{oc} \right). \tag{3.11}$$

тем меньше, чем меньше затухание контура δ или чем больше крутизна его фазовой характеристики (рис.3.1,а).

Факторы, влияющие на частоту колебаний, называются дестабилизирующими (ДФ). К ним относятся изменения внешних условий работы (температуры, влажности, давления и др.), питающих напряжений и времени, с которым связаны необратимые процессы изменения параметров БТ и деталей схемы (старение).

Рис.3.1. Зависимости фаз φ_s, φ_{oc} от $\Delta f / f_0$ (a) и f (б)

Оценим значения φ_s и φ_{oc} . Поскольку $\Delta f/f_0 \ll 1$, то и φ_{oc} можно рассчитывать на частоте f_0 . Комплексная крутизна, усредненная за период колебаний:

$$\dot{S}_1 = S\gamma_1(\theta)/(1+j\omega\tau),\tag{3.12}$$

ее фаза

$$tg\varphi_{s} = -\omega\tau_{s} = -\omega_{0}\tau_{s} = -f_{0}/f_{s}; f_{s} = f_{ep}/Sr_{\delta},$$
 (3.13)

$$tg\varphi_s = -f_0 Sr_6 / f_{zp} = -\psi Sr_6, \psi = f_0 / f_{zp}.$$
 (3.14)

Если $tg\varphi_s\ll 1$, то

$$\varphi_s = -\psi Sr_{\delta}; \ \varphi_s < 0. \tag{3.15}$$

Фаза коэффициента обратной связи обусловлена наличием потерь в Z_2, Z_3 (рис.1.1). Основное влияние оказывает учет входного сопротивления БТ ($R_{\rm ex}$ на рис.3.2,а):

$$tg\varphi_{oc} \cong kX_3g_{ex} = kX_3/R_{ex}. \tag{3.16}$$

В НР входное сопротивление [2]

$$R_{ex} = U_{e} / I_{61} = h_{213} / \gamma_{1}(\theta), \tag{3.17}$$

а из уравнения стационарного режима АГ на безынерционном БТ

$$1/S\gamma_1(\theta) = R_v; R_{ex} = R_v h_{219}$$
 (3.18)

И

$$tg\varphi_{oc} = kX_3 / R_{\nu}h_{219}. (3.19)$$

Для $tg\varphi_{oc}\ll 1$

$$\varphi_{oc} \approx kX_3 / R_y h_{219}. \tag{3.20}$$

Для АГ по схеме ЕТ сопротивление $X_3>0, \varphi_{oc}>0$, а для ИТ $X_3<0, \varphi_{oc}<0$. Поскольку $\varphi_s<0$, то в схеме ЕТ возможно некоторое самофазирование.

Фаза средней крутизны φ_s (3.13) зависит от выбора типа БТ. Если $f_0 \leq 0.1 f_{zp}, S = 0.1 - 0.2$ А/В, $r_{\bar{o}} = 20 - 100$ Ом, то $tg \varphi_s \leq -(0.2 - 2)$. Фаза коэффициента обратной связи (3.19) определяется параметрами контура $\left(k, X_3, R_y\right)$, БТ $\left(h_{219}\right)$, режима $\left(R_{ex}\right)$. Обычно k = 0.1 - 0.5; $X_3 = p \rho (1 + k)$;

 $p=0.2-0.5;\ Q=50-100;\ h_{219}=20-100;\ \varphi_{oc}=(2-5)\cdot 10^{-3}$ рад. Обычно $|\varphi_s|>|\varphi_{oc}|$. Если $|\varphi_s|>0.5,$ следует при расчете стационарного режима учитывать модуль крутизны

$$|\dot{S}_1| = S\gamma_1(\theta) / \sqrt{1 + (f_0 / f_s)^2}.$$
 (3.21)

Иногда для компенсации фазы средней крутизны включают фазирующую реактивность X_{ϕ} (рис.3.2,б). В этом случае фаза и модуль коэффициента обратной связи

$$tg\varphi_{oc} = (k^{o}X_{3} - X_{\phi})g_{ex}; \ \kappa = k^{o}/R_{ex}\sqrt{1 + tg^{2}\varphi_{oc}},$$
 (3.22)

$$k^{o} = X_{2} / X_{1}. {(3.23)}$$

Для реализации полного фазирования, когда

$$\varphi_{\kappa} = -(\varphi_{s} + \varphi_{oc}) = 0, \ \varphi_{oc} = -\varphi_{s}, \tag{3.24}$$

$$X_{\phi} = k^{o} X_{3} - \psi r_{\delta} h_{213} / \gamma_{1}(\theta). \tag{3.25}$$

Относительные изменения частоты колебаний от взаимодействия ДФ и старения составляют $10^{-2}-10^{-5}$, поэтому можно оценивать степень их влияния независимо.

Нестабильность частоты за счет вариации реактивных параметров контура

$$\Delta f / f = -0.5 \left(\Delta C_{\Sigma} / C_{\Sigma} + \Delta L_{\Sigma} / L_{\Sigma} \right). \tag{3.26}$$

Нестабильность частоты за счет изменений междуэлектродных емкостей входной $C_{\rm sol}$, проходной $C_{\rm npox}$, выходной $C_{\rm sol}$

$$\Delta f / f = -p^2 \left[\Delta C_{\text{\tiny ess}} + k^2 \Delta C_{\text{\tiny ess}} + \left(1 + k\right)^2 \Delta C_{\text{\tiny npox}} \right] / 2C_{\Sigma}. \tag{3.27}$$

Нестабильность частоты от изменений фаз φ_s и φ_{ac}

$$\Delta f / f = 0.5 \delta (\Delta \varphi_s + \Delta \varphi_{oc}). \tag{3.28}$$

Рис.3.2. Схемы треточечного АГ с отмеченным входным сопротивлением БТ (а) и фазирующей реактивностью (б)

3.1. Влияние температуры

От вариаций температуры окружающей среды и за счет саморазогрева от рассеиваемой мощности меняются параметры деталей AГ и БТ.

Степень влияния температуры на изменения любого параметра μ оценивается его температурным коэффициентом (ТК)

$$TK\mu = \Delta\mu / \mu \cdot \Delta t, \tag{3.29}$$

 Δt — диапазон изменения температуры, вызвавший относительную нестабильность параметра μ .

Частота колебаний и ее нестабильность определяется в основном реактивными параметрами контура $A\Gamma$, их температурные коэффициенты

$$TKL = \alpha_L = \Delta L / L \Delta t, \qquad (3.30)$$

$$TKC = \alpha_C = \Delta C / C\Delta t. \tag{3.31}$$

Температурный коэффициент собственной частоты контура, согласно (3.26),

$$TKf_0 = \alpha_f = -0.5(\alpha_{L_{\Sigma}} + \alpha_{C_{\Sigma}}). \tag{3.32}$$

Примеры решения типовых задач

3.1. В АГ по схеме рис.1.6: $L_{\Sigma}=2.65$ мкГн; $\alpha_L=10^{-5}$ 1/°C; емкость $C_3=1060$ пФ состоит из двух конденсаторов, включенных параллельно: $C_3'=265$ пФ; $\alpha_{C_3'}=-5\cdot10^{-5}$ 1/°C; $C_3''=795$ пФ; $\alpha_{C_3''}=5\cdot10^{-5}$ 1/°C.

Определить относительную нестабильность собственной частоты контура в диапазоне температур от -40 до +50°C.

Решение

При параллельном включении т конденсаторов

$$C = C_1 + C_2 + \dots + C_m$$

общий температурный коэффициент

$$\alpha_{C} = \left(\alpha_{C_{1}} \cdot C_{1} + \alpha_{C_{2}} \cdot C_{2} + \dots + \alpha_{C_{m}} \cdot C_{m}\right) / C. \tag{3.33}$$

$$\alpha_{C_2} = (-5 \cdot 10^{-5}) \cdot 265 / 1060 + 5 \cdot 10^{-5} \cdot 795 / 1060 = 2.5 \cdot 10^{-5}$$
. Согласно (3.32),

$$\alpha_f = -0.5 \cdot (1 + 2.5) \cdot 10^{-5} = -1.575 \cdot 10^{-3}, \ \Delta f_0 / f_0 = \alpha_f \cdot \Delta t = -1.575 \cdot 10^{-3}.$$

3.2. АГ по схеме рис.1.3 работает в НР; $I_{\kappa 0}=6$ мА; $E_{\kappa}=7$ В; $\theta=60^{\circ}C$; параметры контура: Q=50; k=0.15; p=0.2; параметры БТ: $f_{cp}=300$ МГц; $r_{\delta}=65$ Ом; $R_{nc}=0.4$ °C/мВт; E'=0.6 В; $\alpha_{E'}=2$ мВ/°С;

 $E_n = \Delta h_{219} \ / \ \Delta t = 0.4 \ 1/^{\circ} \text{C}; \ h_{219} = 72 \ \text{при} \ t = 20^{\circ} C.$ Известно, что БТ саморазогревается за 5 минут. Рассчитать частоту колебаний в момент включения АГ через 5 минут, если $f_0 = 6 \ \text{М}$ Гц.

Решение

Поправка к собственной частоте контура (3.11) определяется через φ_s и φ_{oc} . Для их расчета сначала следует найти крутизну коллекторного тока S, которая зависть от температуры t и тока i_{κ} . В [3], [4] рекомендуется вести расчет $i_{\kappa} = I_{\kappa 0}$:

$$S_n = 42.5I_{\kappa 0} / (1 + 3.66 \cdot 10^{-3} t),$$
 (3.34)

$$S = h_{219} / (r_{\delta} + r_{\beta}); \ r_{\beta} = h_{219} / S_{n}. \tag{3.35}$$

Для t = 20°C; $I_{\kappa 0} = 6$ мА: $S_n = 0.2376$ А/В; S = 0.1956 А/В.

Согласно (3.13), (3.14):

$$tg\varphi_s = -6 \cdot 0.1956 \cdot 65 / 300 = -0.254; \ \varphi_s \approx -0.25 \ \text{рад.}$$

Для нахождения φ_{oc} сначала определим $X_3 = p\rho(1+k)$.

Характеристическое сопротивление

$$\rho = P_{\kappa} / p^2 Q; R_{\kappa} = R_{\nu} / k; R_{\nu} = 1 / S \gamma_1(\theta).$$

$$\gamma_1(60^\circ) = 0.196$$
; $R_v \approx 26$ Om; $\rho = 87$ Om; $X_3 = 20$ Om.

Из (3.19)
$$tg\varphi_{oc} = 0.15 \cdot 20 / 26 \cdot 72 = 1.6 \cdot 10^{-3}$$
; $\varphi_{oc} = 1.6 \cdot 10^{-3}$ рад.

Относительная поправка к частоте f_0 (8.9) при t = 20°C:

$$\Delta f_0 / f_0 = 0.5 \cdot 0.02 \cdot (-0.25 + 0.0016) = -2.484 \cdot 10^{-3}$$
.

Мощность, рассеиваемая БТ,

$$P_{pac} = P_0 - P_1$$
, $P_0 = I_{\kappa 0} E_{\kappa} = 42 \text{ MBT}$; $P_1 = 0.5 I_{\kappa 1} U_{\kappa}$; $I_{\kappa 1} = g_1(\theta) I_{\kappa 0} I_{\kappa 0} = 10.8 \text{ MA}$;

 $U_{\kappa} = U_{e} / k = I_{\kappa 0} / SU_{e} \gamma_{0} (\theta) k = 1.876 \text{ B}; P_{1} \cong 10 \text{ мВт}; P_{pac} \approx 32 \text{ мВт}.$

Температура перехода БТ возрастает:

$$t_n = t_c + R_{nc} \cdot P_{pac}, \tag{3.36}$$

получаем $t_n = 20 + 0.4 \cdot 32 = 33$ °C.

Для $t'_n = 33$ °C крутизна $S'_n = 0.2275$ А/В (полагаем, что

$$I'_{\kappa 0} \approx I_{\kappa 0}; I_{\kappa 0} = 6 \text{ mA},$$

$$h'_{219} = h^0_{219} + \varepsilon_n \cdot \Delta t, \tag{3.37}$$

получаем $h'_{219} = 72 + 0.4 \cdot 13 \approx 77$, крутизна коллекторного тока $S' \approx 0.19$ A/B.

Принимаем, что f_{cp} , r_{δ} мало меняются от t,

$$tg\varphi'_s = -0.24756$$
; $\varphi'_s = -0.243$ рад; $\varphi'_{oc} = 1.5 \cdot 10^{-4}$ рад.

Поправка к частоте f_0 после саморазогрева БТ $\Delta f' / f_0 = -2.415 \cdot 10^{-3}$.

Изменения частоты за 5 минут $(\Delta f' - \Delta f^0) - f_0 = 6.9 \cdot 10^{-5}$.

Абсолютные изменения частоты за 5 минут («выбег») $F = 6.9 \cdot 10^{-5} \cdot f_0 = 414 \ \Gamma$ ц.

3.3. Выяснить, как меняется ток $I_{\kappa 0}$ при саморазогреве БТ, если в условиях задачи 3.2 сопротивления автосмещения $R_{\delta}=0$; $R_{_{9}}=200$ Ом.

Решение

Из уравнения стационарного режима новое значение угла отсечки θ при $t_n' = 33^{\circ}C$, $\gamma_1(\theta') = 1$ / $S'R_y = 0.202$; $g_1(\theta') \approx 1.8$; $\gamma_0(\theta') = \gamma_1$ / $g_1 = 0.112$; $\cos \theta' \approx 0.49$.

По известным $U_{_{\it e}}, E', S, \theta$ при $t=20^{\circ}C$ находим $E_{_{\it H}}: E_{_{\it H}}=E'+U_{_{\it E}}\big[S\gamma_{_{\it 0}}\big(\theta\big)R_{_{\it 9}}-\cos\theta\big]; E_{_{\it H}}=1.6577~{\rm B}.$

При увеличении t уменьшается E'[1]:

$$E'(t_n') = E'(t_n^0) - \alpha_{E'} \cdot \Delta t; \tag{3.38}$$

получаем $E'(33^{\circ}C) = 0.6 - 2 \cdot 10^{-3} \cdot 13 = 0.574$ В.

Напряжение $E_{_{\scriptscriptstyle H}} = const\,$ и из (1.34) $U_{_{\scriptscriptstyle \theta}}' = 0.2877\,$ В; $I_{_{\kappa 0}}' = S'U_{_{\scriptscriptstyle \theta}}'\gamma_{_{\scriptscriptstyle 0}}\left(\theta'\right) = 6.12\,$ мА.

Ток $I_{\kappa 0}$ при увеличении t_n изменился незначительно, что объясняется влиянием большого сопротивления автосмещения $R_3 = 200$ Ом.

3.4. АГ по схеме рис.1.3 работает в HP, $t_c = 20^{\circ}C$. Параметры контура: $f_0 = 18$ МГц; Q = 50; k = 0.2; p = 0.25; $X_3 = 15$ Ом; $R_y = 32$ Ом. Параметры БТ: $f_{cp} = 300$ МГц; $\varepsilon_h = \Delta h / \Delta t = 0.5$ 1/°C; $r_{\delta} = 50$ Ом; $h_{219} = 100$ при $t_c = 20^{\circ}C$. После разогрева БТ: S = 0.175 А/В; $h_{219} = 106$. Рассчитать поправку к собственной частоте контура $\Delta f / f_0$. Как выбрать

фазирующую реактивность X_{ϕ} (рис.3.2,б), чтобы реализовать $\Delta f / f_0 = 0$?

Решение

Согласно (3.14), $tg\varphi_s = -0.525$; $\varphi_s = -0.4834$. Из (3.16) $tg\varphi_{oc} = 8.84 \cdot 10^{-4}$, а поправка (3.9) $\Delta f / f_0 = -4.825 \cdot 10^{-3}$.

Выражение (3.35) приближается к виду: $X_{\phi} = k^0 X_3 - \Psi r_{\delta} h_{219} S R_y;$ $X_{\phi} = -1777.8$ Ом; $C_{\phi} = 4.97$ пФ.

Задачи для самостоятельного решения

- **3.5.** Как изменится нестабильность частоты $\Delta f_0 / f_0$, если в условиях задачи 3.1 выбрано: $C_3' = C_3'' = 530$ пФ; $\alpha_{C_3'} = \alpha_{C_3''} = -5 \cdot 10^{-5}$ 1/°C?
- **3.6.** Как в условиях задачи 3.1 следует выбрать емкости C_3' и C_3'' , чтобы получить $\Delta f_0 / f_0 = 0$?
- **3.7.** В условиях задачи 3.6 емкость C_3'' меняется на ± 100 пФ при настройке АГ. Рассчитать α_f для двух значений C_3'' .
- **3.8.** В АГ по схеме рис.1.6: $L_{\Sigma} = 2.65$ мкГн; $\alpha_L = 10^{-5}$ 1/°C; $C_3 = 500$ пФ и состоит из двух конденсаторов, включенных параллельно: $C_3' = 795$ пФ; $\alpha_{C_3'} = -5 \cdot 10^{-5}$ 1/°C; $C_3'' = 1590$ пФ; $\alpha_{C_3''} = 5 \cdot 10^{-5}$ 1/°C.

Рассчитать относительную нестабильность частоты f_0 в диапазоне температур от -30 до +30°C.

Примечание

При последовательном включении т конденсаторов

$$1/C = 1/C_1 + 1/C_2 + ... + 1/C_m;$$

$$\alpha_C = (\alpha_{C_1}/C_1 + \alpha_{C_2}/C_2 + ... + \alpha_{C_m}/C_m) \cdot C.$$
(3.39)

- **3.9.** Как изменится нестабильность частоты f_0 , если в условиях задачи 3.8 выбрать $C_3' = C_3'' = 1060 \text{ п}\Phi$?
- **3.10.** Как в условиях задачи 3.8 следует выбрать емкости C_3' и C_3'' , чтобы $\alpha_f = 0$?
- **3.11.** В АГ по схеме рис.1.7: $L_3=0.424$ мкГн; $\alpha_L=5\cdot 10^{-5}$ 1/°C; $C_1=530$ пФ; $C_2=10600$ пФ; $C_3=560$ пФ; $\alpha_{C_1}=\alpha_{C_2}=\alpha_{C_3}=-5\cdot 10^{-5}$ 1/°C. Рассчитать α_f .
- **3.12.** Как изменится α_f , если в условиях задачи 3.11 $\alpha_{C_1} = -5 \cdot 10^{-5}$ 1/°C; $\alpha_{C_2} = \alpha_{C_3} = 5 \cdot 10^{-5}$ 1/°C?

- **3.13.** Как изменится α_f , если в условиях задачи 3.11 $\alpha_{C_1} = \alpha_{C_2} = \alpha_{C_3} = 5 \cdot 10^{-5} \text{ 1/°C?}$
- **3.14.** В АГ по схеме рис.1.6 индуктивность дросселя $L_{\rm 671}=20L_{\rm 1}$; $L_{\rm 671}=10^{-3}$ 1/°C; $L_{\rm \Sigma}=2.65$ мкГн; $L_{\rm I}=0.53$ мкГн; $L_{\rm I}=0.106$ мкГн; $L_{\rm I}=0.106$ мкГн; $\alpha_{\rm L}=2\cdot10^{-5}$ 1/°C; $\alpha_{\rm C_3}=5\cdot10^{-5}$ 1/°C. Рассчитать относительную температурную нестабильность частоты в диапазоне температур $\Delta t=50$ °C.

Примечание

При параллельном включении т индуктивностей

$$1/L = 1/L_1 + 1/L_2 + ... + 1/L_m,$$

$$\alpha_L = (\alpha_{L_1}/L_1 + \alpha_{L_2}/L_2 + ... + \alpha_{L_m}/L_m) \cdot L.$$
(3.40)

При последовательном включении m индуктивностей $L = L_1 + L_2 + ... + L_m$,

$$\alpha_{L} = \left(\alpha_{L_{1}} \cdot L_{1} + \alpha_{L_{2}} \cdot L_{2} + \dots + \alpha_{L_{m}} \cdot L_{m}\right) / L. \tag{3.41}$$

- **3.15.** В АГ по схеме рис.1.7 в диапазоне температур $\Delta t = 50^{\circ}C$ нестабильность частоты $\Delta f / f_0 = -3.8 \cdot 10^{-3}$. Известно: $k = p = 0.2; \; \alpha_{L_3} = \alpha_{C_2} = 10^{-4} \; 1/^{\circ}C$. Рассчитать $\alpha_{C_1} = \alpha_{C_3}$.
- **3.16.** В АГ по схеме рис.1.7: $\alpha_{L_3} = 5 \cdot 10^{-5} \text{ 1/°C}; \ \alpha_{C_1} = 5 \cdot 10^{-5} \text{ 1/°C};$ $\alpha_{C_1} = 10^{-4} \text{ 1/°C}; \ k = p = 0.2.$ Рассчитать α_{C_3} , при котором $\alpha_f = 0$.
- **3.17.** Как изменится частота колебаний («выбег») за счет саморазогрева БТ, если в условиях задачи 3.2 напряжение E_{κ} вместо 7 В выбрали 10 В?
- **3.18.** Как изменится частота колебаний («выбег») за счет саморазогрева БТ, если в условиях задачи 3.2 при R_y , k, p, Q = const частота контура $f_0 = 3$ МГц? 9 МГц?
- **3.19.** Выяснить, как в условиях задачи 3.17 меняются ток $I_{\kappa 0}$, если $R_{\delta} = 0$, а $R_{\alpha} = 100$, 200 и 300 Ом.
- **3.20.** Как изменится частота колебаний, если в условиях задачи 3.2 через час работы АГ температура окружающей среды t_c увеличилась до $50^{\circ}C$? Уменьшилась до $-20^{\circ}C$? Принять $\alpha_f = -10^{-4}$ 1/°C.
- **3.21.** В АГ по данным задачи 3.20 температура окружающей среды меняется на $\pm 20^{\circ}C$ относительно $t_c = 20^{\circ}C$. При этом фаза средней крутизны $\varphi_s\left(0^{\circ}\right) = -0.504$ рад; $\varphi_s\left(40^{\circ}\right) = -0.462$ рад. Рассчитать нестабильность частоты АГ в диапазоне температур ($\Delta t = 40^{\circ}C$), если $\alpha_f = -2.5 \cdot 10^{-4}$ 1/°C; $\alpha_{c\phi} = 5 \cdot 10^{-5}$ 1/°C. Как изменится нестабильность частоты, если фазирующий конденсатор пробъется?

3.2. Влияние питающих напряжений

При вариации питающих напряжений меняется режим $A\Gamma$ и параметры BT.

Коллекторное напряжение E_{κ} в основном влияет на коллекторную емкость C_{κ} и температуру перехода за счет изменений мощности рассеяния на БТ.

Напряжение начального смещения $E_{_{\scriptscriptstyle H}}$ влияет на изменение тока $I_{_{\kappa 0}},$ фазы $\varphi_{_{\scriptscriptstyle S}},\varphi_{_{oc}}$ и температуры перехода.

Аналитических выражений для расчета изменения параметров БТ от питающих напряжений нет, обычно в справочниках приводятся некоторые экспериментальные зависимости.

В последующих задачах ограничимся оценкой порядка нестабильности частоты.

Примеры решения типовых задач

3.22. АГ по схеме рис.1.2 работает в НР. Параметры контура: $\kappa=0.2;~p=0.25;~Q=50;~R_y=30~{\rm Om}; f_0=3~{\rm MГц}.$ Параметры БТ: $f_{cp}=300~{\rm MГц};~r_{\delta}=50~{\rm Om};~R_{nc}=0.5~{\rm °C/mBT};~\varepsilon_h=\Delta h_{219}~/~\Delta t=0.5~1/{\rm °C}.$

Режимные показатели: $I_{\kappa 0} = 5$ мА; $E_{\kappa} = 6$ В; при этом $t_n = 30$ °C; $h_{219} = 100$. Оценить нестабильность частоты при изменении коллекторного напряжения от 5 до 7 В.

Решение

Изменения E_{κ} влияют на частоту по двум каналам. Во-первых, за счет изменения температуры перехода, во-вторых, емкости коллекторного перехода C_{κ} .

1. В НР ток $I_{\kappa 0}$ от E_{κ} меняется мало, мощность P_{1} тоже. Из уравнения стационарного режима при $R_{\nu}=const$ следует, что

$$S\gamma_1(\theta) = 1/R_v = const, \tag{3.42}$$

коэффициент формы $g_1(\theta)$ при небольших изменениях угла отсечки, если $\theta = 50-70^\circ$, можно принять $g_1(\theta) \approx const$, поэтому

$$S\gamma_0(\theta) = S\gamma_1(\theta) / g_1(\theta) \approx const.$$
 (3.43)

В результате

$$U_{e} = S\gamma_{0}(\theta); \ U_{\kappa} = U_{e} / k; \ P_{1} = 0.5I_{\kappa 0}g_{1}(\theta)U_{e} / k$$
 (3.44)

меняются мало.

Таким образом, вариации E_{κ} приводят к изменениям мощностей P_0 и P_{nac} .

Для $E_{\kappa}^0=6$ B, $P_0=30$ мВт; $t_n=30$ °С. Для $E_{\kappa}^0=5$ B, $P_0=25$ мВт; $\Delta P_0=-5$ мВт; $\Delta P_{pac}=\Delta P_0=-5$ мВт.

$$\Delta t_n = R_{\kappa n} \cdot \Delta P_{pac}. \tag{3.45}$$

Получаем $\Delta t_n = -2.5$ °C; $t_{n1} = 27.5$ °C. Для $E_{\kappa 2} = 7$ В; $P_0 = 35$ мВт; $\Delta P_{pac} = 5$ мВт; $\Delta t_n = 2.5$ °C; $t_{n2} = 32.5$ °C.

Согласно (3.37), (3.38), (3.13), (3.14):

$$S(E_{\kappa_1}) = 0.176 \text{ A/B}; \ \varphi_s(E_{\kappa_1}) = -8.796 \cdot 10^{-2} \text{ рад } (h_{21.9} \approx 99).$$

$$S(E_{\kappa 2}) = 0.1736 \text{ A/B}; \ \varphi_s(E_{\kappa 2}) = -8.68 \cdot 10^{-2} \text{ рад } (h_{219} \approx 101).$$

Фаза коэффициента обратной связи (3.19) меняется только от вариаций h_{219} , т.е. почти постоянная $\Delta \varphi_s = \varphi_s \left(E_{\kappa 2} \right) - \varphi_s \left(E_{\kappa 1} \right) = 1.16 \cdot 10^{-3}$.

Уходы частоты (3.28) $\Delta f / f_0 = 1.16 \cdot 10^{-5}$.

2. Емкость C_{κ} с ростом E_{κ} уменьшается (рис.3.3) с 5 пФ при $E_{\kappa}=5$ В до 4.2 пФ при $E_{\kappa}=7$ В. Принимаем, что $\Delta C_{\rm вых}=-0.8$ пФ, а также $\Delta C_{\rm nnox}=-0.4$ пФ.

Выражение (3.27) можно записать в виде

$$\Delta f / f_0 = -0.5\omega_0 R_{\kappa} \left[\Delta C_{\text{\tiny obs}x} + k^2 \Delta C_{\text{\tiny ex}} + \left(1 + k\right)^2 \Delta C_{\text{\tiny npox}} \right]. \tag{3.46}$$

Здесь $R_{\kappa} = R_y / k = 150$ Ом. Общая нестабильность частоты $\Delta f / f_0 = 5.06 \cdot 10^{-5}$.

Рис.3.3. Иллюстрация к задаче 3.22

3.23. Оценить нестабильность частоты АГ, работающего по исходным данным задачи 3.23, если при $E_{\kappa} = const$, $R_{_{9}} = 200$ Ом напряжение начального смещения $E_{_{H}}$ меняется на $\pm 10\%$, E' = 0.3 В.

Решение

Сначала определим $E_{\rm H}$ в исходном режиме, применяя (1.34). Согласно (3.37), (3.38): $S_n = 0.1915 \text{ A/B}; S = 0.1747 \text{ A/B}.$ Из (3.20):

 $\gamma_1(\theta) = 1 / SR_y = 0.19; \ g_1(\theta) = 1.8; \ \gamma_0(\theta) = 0.106;$ из (3.44): $U_s^0 = 0.27$ В, $E_u^0 = 1.165$ В.

Если принять приближенное условие (3.47), то можно найти для новых значений $E_{\mu 1}=1.28~\mathrm{B}$ и $E_{\mu 2}=1.048~\mathrm{B}$.

- 1. $E_{{}_{\!\!\!H^{1}}}=1.28~{\rm B};~U_{{}_{\!\!\!g^{1}}}=0.306~{\rm B};~I_{{}_{\!\!\!K^{01}}}=5.67~{\rm MA}.$ Из (3.44): $P_{{}_{\!\!\!1}}=7.81~{\rm MBT},$ $P_{{}_{\!\!0}}=34.02~{\rm MBT};~P_{{}_{\!\!\!pac}}=26.2~{\rm MBT}.$
- 2. $E_{_{\!H^2}}=1.048~{\rm B};~U_{_{\!6^2}}=0.234~{\rm B};~I_{_{\!\kappa02}}=4.33~{\rm mA};~P_1=4.56~{\rm mBT};$ $P_0=25.98~{\rm mBT};~P_{_{\!\!pac}}=21.42~{\rm mBT}.$

Принимаем, что h_{219}, f_{cp} в этой области значений $I_{\kappa 0}$ меняются мало, тогда $\varphi_{oc} = const.$

Определим φ_s для двух значений $E_{_{\!\scriptscriptstyle H}}$. Учтем, что при $t_{_{\!\scriptscriptstyle R}}=30^{\circ}C$ $P_{_{\!\scriptscriptstyle D\!A\!C}}=24$ мВт.

- 1. $E_{H1} = 1.28 \text{ B}; \Delta P_{pac} = 2.2 \text{ мВт}; \Delta t_n = 1.1 ^{\circ}C, t_n = 31.1 ^{\circ}C;$ $S' = 0.198 \text{ A/B}; \varphi'_s = -9.9 \cdot 10^{-2} \text{ рад}.$
- 2. $E_{_{H2}}=1.048~\mathrm{B};~\Delta P_{_{pac}}=21.42-24=-52.58~\mathrm{mBT};~\Delta t_{_n}=-1.3^{\circ}C,$ $t_{_n}=28.7^{\circ}C;~S''=0.1537~\mathrm{A/B};~\varphi''_{_s}=-7.7\cdot10^{-2}~\mathrm{рад}.$

Получаем в итоге $\Delta f / f_0 = 0.5 \delta \Delta \varphi_s = 0.5 \cdot \delta \cdot (\varphi_s'' - \varphi_s') = 2.2 \cdot 10^{-4}$.

Задачи для самостоятельного решения

- **3.24.** Как изменится нестабильность частоты АГ, если в условиях задачи 3.23 ток $I_{\kappa 0} = 6$ мА при $t_n = 30$ °C?
- **3.25.** При какой температуре окружающей среды работал АГ в исходном режиме $(E_{\kappa} = 6 \text{ B})$ по условиям задач 3.23 и 3.24?
- 3.26. Как изменится нестабильность частоты АГ, если в условиях задачи
- 8.23 собственная частота контура $f_0 = 1 \text{ M}\Gamma$ ц? 6 М Γ ц?
- **3.27**. Какой станет нестабильность частоты АГ, если в условиях задачи 3.23 изменится один параметр БТ, а именно: $R_{nc} = 1$ °C/мВт?
- **3.28.** Как изменится нестабильность частоты, если в условиях задачи 3.23 принять $R_3 = 100$ Ом? $R_3 = 300$ Ом?

СПИСОК ЛИТЕРАТУРЫ

- 1. **Жуховицкая В.П.** Транзисторные автогенераторы. М.: Моск. энерг. ин-т, 1989. 82 с.
- 2. **Атаманцева Ф.С.** Радиопередающие устройства. Сборник задач и упражнений: Учеб. Пособие для техникумов. М.: Радио и связь, 1991. 224 с.
- 3. **Гарматюк С.С.** Задачник по устройствам генерирования и формирования радиосигналов. М.: ДМК Пресс, 2012. 672 с.
- 4. **Генерирование** колебаний и формирование радиосигналов. / В.Н. Кулешов, Н.Н. Удалов, В.М. Богачев и др.; под ред В.Н. Кулешова и Н.Н. Удалова. М.: Издательский дом МЭИ, 2008. 415 с.

ПРИЛОЖЕНИЕКоэффициенты разложения косинусоидального импульса

$oldsymbol{ heta}^{\circ}$	$\cos \theta$	α_0	α_1	α_2	α_3	γ_0	γ_1	β_0	β_1	g_1
0	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.00
5	0.906	0.018	0.037	0.037	0.000	0.000	0.000	0.000	0.000	2.00
10	0.985	0.036	0.073	0.071	0.071	0.0005	0.001	0.0005	0.001	2.0
15	0.966	0.055	0.110	0.108	0.104	0.002	0.004	0.002	0.004	2.0
20	0.940	0.074	0.146	0.141	0.132	0.0045	0.0088	0.0047	0.0093	1.98
25	0.906	0.093	0.181	0.171	0.155	0.0087	0.017	0.010	0.019	1.95
30	0.866	0.111	0.215	0.198	0.172	0.015	0.029	0.017	0.033	1.94
35	0.819	0.129	0.248	0.221	0.181	0.023	0.045	0.028	0.055	1.92
40	0.766	0.147	0.280	0.241	0.185	0.034	0.066	0.045	0.086	1.90
45	0.707	0.169	0.311	0.256	0.181	0.048	0.091	0.068	0.129	1.88
50	0.643	0.183	0.339	0.267	0.171	0.065	0.121	0.101	0.188	1.85
55	0.574	0.201	0.366	0.273	0.157	0.086	0.156	0.150	0.272	1.82
60	0.500	0.218	0.391	0.276	0.138	0.109	0.196	0.218	0.391	1.80
65	0.423	0.236	0.414	0.274	0.116	0.136	0.239	0.322	0.565	1.76
70	0.342	0.253	0.436	0.267	0.091	0.166	0.288	0.486	0.842	1.73
75	0.259	0.269	0.455	0.258	0.067	0.199	0.337	0.765	1.302	1.69
80	0.174	0.286	0.472	0.245	0.043	0.236	0.390	1.365	2.247	1.65
85	0.087	0.302	0.487	0.230	0.020	0.276	0.445	3.168	5.106	1.61
90	0.000	0.319	0.500	0.212	0.000	0.319	0.500	8	∞	1.57
95	-0.087	0.334	0.510	0.193	0.017	0.363	0.554	-4.279	-6.356	1.53
100	-0.174	0.350	0.520	0.172	0.030	0.411	0.611	-2.366	-3.518	1.49
105	-0.259	0.364	0.526	0.152	-0.039	0.458	0.662	-1.769	-2.558	1.45
110	-0.342	0.379	0.531	0.131	-0.045	0.509	0.713	-1.488	-2.085	1.40
115	-0.423	0.392	0.534	0.111	-0.047	0.558	0.760	-1.323	-1.799	1.36
120	-0.500	0.406	0.536	0.092	-0.046	0.609	0.805	-1.218	-1.610	1.32
125	-0.574	0.419	0.536	0.074	-0.042	0.659	0.843	-1.149	-1.469	1.28
130	-0.643	0.431	0.534	0.058	-0.037	0.708	0.878	-1.101	-1.350	1.24
135	-0.707	0.443	0.532	0.044	-0.031	0.756	0.908	-1.069	-1.284	1.20
140	-0.766	0.453	0.523	0.032	-0.024	0.801	0.934	-1.046	-1.216	1.17
145	-0.815	0.463	0.525	0.022	-0.018	0.842	0.955	-1.028	-1.166	1.13
150	-0.866	0.472	0.520	0.014	-0.012	0.881	0.970	-1.017	-1.120	1.10

Формулы для расчета коэффициентов разложения:

$$\begin{split} \gamma_0(\theta) &= \frac{1}{\pi} \big(\sin \theta - \theta \cos \theta \big); \, \gamma_n(\theta) = \frac{1}{n\pi} \bigg(\frac{\sin(n-1)\theta}{n-1} - \frac{\sin(n+1)\theta}{n+1} \bigg); n > 1. \\ \gamma_1(\theta) &= \frac{1}{2\pi} \big(2\theta - \sin 2\theta \big); \, \alpha_{0,n}(\theta) = \gamma_{0,n}(\theta) \big/ \big(1 - \cos \theta \big); \\ \beta_{0,n}(\theta) &= \gamma_{0,n}(\theta) \big/ \cos \theta; \\ g_n(\theta) &= \gamma_n(\theta) \big/ \gamma_0(\theta) = \alpha_n(\theta) \big/ \alpha_0(\theta) = \beta_n(\theta) \big/ \beta_0(\theta). \end{split}$$

Учебное издание

Сафин Ансар Ризаевич **Удалов** Николай Николаевич

ТРАНЗИСТОРНЫЕ АВТОГЕНЕРАТОРЫ СБОРНИК ЗАДАЧ

Редактор издательства М.П. Малахов Компьютерная верстка М.К. Петушкеевой

Подписано в печать	Печать офсетная	Формат 60х84/16
Физ. печ. л. 3,7 Тираж 100 экз.	Изд. №	Заказ №

Оригинал-макет подготовлен в РИО НИУ «МЭИ» 111250, г. Москва, ул. Красноказарменная, д.14 Отпечатано в типографии НИУ «МЭИ» 111250, г. Москва, ул. Красноказарменная, д.14