Estructuras de Datos

DPTO INFORMAGTICA - U. CORDOBA

Contenidos

- Introducción.
- Especificación.
- Implementaciones.
- DP Búsqueda de Caminos.CA U. CORDOBA
 - Recorridos.

- Represente relaciones muchos-a-muchos.
- Estructura de datos más general de todas.
- Aplicaciones:
 - Hay muchas situaciones cotidianas que se pueden modelar con grafos.
- Aplicaciones en la ingeniería: T.C.A U.C.A DE Planificación y gestión de proyectos.

 - Control de flujo en redes (de agua, eléctrica, ...)
 - Aplicaciones matemáticas:
 - Cálculo de caminos mínimos.
 - Recorridos en una red.
 - Resolución de problemas topológicos en un red.

- Definición:
 - Sea G:{V, E,f}
 - V es el conjunto de nodos o vértices.
 - E es el conjunto de lados.
- P $f: E \rightarrow VxV$ (un mapeo de lados a pares de nodos: $f(e) = (v_j, v_k)$)
 - Varios tipos de grafos:
 - Grafo dirigido: f es un mapeo ordenado (v_j,v_k)<>(v_k,v_j)
 - Grafo no dirigido: f es un mapeo no ordenado (v_i,v_k)=(v_k,v_j)
 - · Grafo mixto.

Ejemplos:

Dirigido No dirigido


```
V:{1, 2, 3}
E:{e1, e2, e3, e4}
f:{e1:(1,2), e2:(2,3), e3:(3,2), e4:
(3,1)}
```

Más definiciones:

- Sea e:(u,v) un lado, se dice que los nodos u y v son adyacentes
- Sea e:(u,v) un lado, se dice que el lado e es *incidente* en los nodos u, v.
- Sea e:(u,v) un lado dirigido, u es el nodo origen/inicial y v el el nodo destino/terminal de e.
 - Puede existir e:(u,u), es decir u está auto-conectado, bucle o lazo.
 - Puede asociarse un peso a cada lado e: grafo ponderado.

• Más definiciones:

- **Camino** de v,u: sucesión de $\{v_1, v_2, ..., v_k\}$ con $v_1=v$ y $v_k=u$, y existe un lado para cada par (v_i, v_{i+1}) .
- Longitud del camino= número de lados.
- Camino simple: todos los lados son distintos.
- Camino elemental: todos los nodos son distintos (salvo los nodos inicial y final que pueden ser iguales).
- Ciclo: un camino donde el nodo inicial y final es el mismo.
- Ciclo simple: el camino es simple.
- Ciclo elemental: el camino es elemental.
- Dos nodos u, v están conectados si existe un camino con origen u y destino v.
- Grafo conectado o conexo: todo par de nodos está conectado. En caso contrario es un grafo inconexo.

Componente

{1,2,3} camino elemental de L=2 {1,2,4,1,3} camino simple. {1,2,3,1} ciclo elemental. {1,2,3,2,4,1} ciclo simple.

- Más definiciones:
 - En un grafo dirigido:
 - Nodo sucesor: n_i es sucesor de n_j si hay un camino desde n_i a n_i.
 - A la inversa n_i es un nodo predecesor de n_i.
- Grado de salida de u: número de lados con u como nodo inicial.
 - Grado de entrada de u: número de lados con u como nodo terminal.
 - Grado total de u: grado salida + grado entrada.
 - En grafos no dirigidos hablamos sólo de grado de un nodo.
 - Suma de grados totales = 2*número de lados.

ADT Graph

- Dos conceptos están implicados:
 - Nodos.
 - Lados.

Observers:

- G getData() // gets the data.
- int **getLabel**() // gets the vertex label.
 - post-c: the label is unique for this vertex in the graph.

Mutators:

• **setData**(d:G) // set the data.

Edge[G]_

Observers:

- G getData() // gets edge's data.
- Vertex first() //get the first vertex.
- Vertex **second**() //get the second vertex.
- bool **has**(u:Vertex) // Is vertex u an end of this edge.
- Vertex other(u:Vertex) // the vertex other than u.
 - pre-c: has(u).

Mutators:

• **setData**(d:G) // set the edge's data.

¿Por qué no hay constructores?

ADT Graph

ADT Graph[V,E]

Creators:

- makeDirected() //create a directed graph.
- makeUndirected() //create an undirected graph.

Observers:

- Integer numVertexes()
- Integer numEdges()
- Bool isDirected()
- Bool isEmpty()
- Bool adjacent(u,v:Vertex)// Is there any edge linking u,v?
 - pre-c: u,v are graph's vertexes.
- Bool hasCurrVertex() // true if the cursor points to a vertex.
- Vertex currVertex() //gets current vertex.
 - pre-c: hasCurrVertex()
- Bool hasCurrEdge() // true if the cursor points to a edge.
- Edge currEdge() //gets current edge.
 - pre-c: hasCurrEdge()

g.makeDirected()
g.addVertex(1)
g.addVertex(2)
g.addVertex(3)
g.searchVertex(1)
v1=g.currVertex()
g.searchVertex(2)
v2=g.currVertex()
g.addEdge(v1,v2)

Mutators:

- addVertex(d:N) //create a new vertex.
- addEdge(u,v:Vertex, d:E) //insert edge to link u,v.
 - pre-c: u,v are graph's vertexes.
- **searchVertex**(d:N) //search vertex using data.
 - post-c: if it's found hasCurrVertex() and currVertex().getData()=d
- **goTo**(v:Vertex) //go to vertex.
 - pre-c: v is a graph's vertex.
 - post-c: currVertex().getData()=v.getdata()
- searchEdge(u,v:Vertex)//search the edge linking u,v.
 - pre-c: u,v are a graph's vertex.
 - post-c: if it's found hasCurrEdge() and currEdge().has(v) and currEdge.other(v)=u
- Vertex beginVertex()
- Vertex nextVertex()
- bool afterEndVertex()
- Edge beginEdge(v:Vertex)
- Edge nextEdge()
- bool afterEndEdge()

g.searchVertex(3) v3=g.currVertex() g.addEdge(v3,v1) g.addEdge(v3,v2) g.addEdge(v2,v3)

Implementación

- Implementación basada en la matriz de adyacencia.
 - Ventaja optimiza la consulta adjacent(u,v).
 - Inconveniente: gasto de memoria. En grafos no dirigidos menos ¿por qué?

no dirigido?

Implementación

- Basada en lista de adyacencias.
 - Ventajas:
 - optimiza encontrar los lados incidentes en un nodo v.
 - Reduce el espacio necesario O(n+m) (útil si m<<n2).
 - Inconvenientes:
- Más difícil determinar la adyacencia de dos nodos u,v.

ADT Graph

• Ejemplo: cálculo de la matriz de adyacencia.

```
//Compute the adjacency matrix of a graph.
//We assume the vertex labels are
//consecutive indexes.

a.create(g.numvertex(),g.numvertex(), 0)
g.beginVertex()

While not g.afterEndVertex()
p.beginEdge(u)
While not g.afterEndEdge()
po
e ← g.currentEdge()
a[u.getLabel(), e.other(u).getLabel()]←1
g.nextEdge()

End-While
g.nextVertex()

End-While
```



```
Matriz de adyacencia: a_{ij} = \begin{bmatrix} 1, (v_i, v_j) \in E \\ 0, en \ otro \ caso \end{bmatrix}
```

$$egin{array}{cccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 1 & 0 \ \end{array}$$

Implementación

• Comparación de alternativas

		Representación		
	Criterio de comparación	Matriz de	Listas de	
DP1	FO INFORMAT	adyacencia O(1)	adyacencia O(degree(u))	
	Todos los lados incidentes en u	O(N)	O(degree(u))	
	Almacenamiento	$O(N^2)$	O(N+M)	