

Compression with Bayesian Implicit Neural Representations

Zongyu Guo*,1, Gergely Flamich*,2, Jiajun He², Zhibo Chen¹, José Miguel Hernández Lobato² *equal contribution, ¹University of Science and Technology of China, ²University of Cambridge

TL;DR: We propose to compress data as variational Bayesian implicit neural representations, which supports joint rate-distortion optimization.

Motivation

Data compression with INRs:

- 1. Fit INR to data
- 2. Quantize weights
- 3. Encode quantized weights

Issues:

- 1. Overfitting \Rightarrow brittle weights
- 2. Quantization degrades performance
- 3. Cannot jointly optimize rate-distortion

Solution

Use variational Bayesian INRs! Objective:

$$\mathcal{L}_{\beta}(\mathcal{D}, q_{\mathbf{w}}, p_{\mathbf{w}}) = \sum_{\substack{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}}} \mathbb{E}_{q_{\mathbf{w}}}[\Delta(\boldsymbol{y}, f(\boldsymbol{x} \mid \boldsymbol{w}))] + \beta D_{\mathrm{KL}}[q_{\mathbf{w}} || p_{\mathbf{w}}]$$
distortion

Coordinate Descent:

1. Optimize variational posteriors

$$q_{\mathbf{w}}^{(i)} = rg\min_{q} \mathcal{L}_{eta}(\mathcal{D}_i, q, p_{\mathbf{w}; m{ heta}_p})$$

for
$$i = 1, \dots, M$$
.

2. Update prior parameters

$$oldsymbol{\mu}_p = rac{1}{M} \sum_{i=1}^M oldsymbol{\mu}_q^{(i)} \ oldsymbol{\sigma}_p = rac{1}{M} \sum_{i=1}^M [oldsymbol{\sigma}_q^{(i)} + (oldsymbol{\mu}_q^{(i)} - oldsymbol{\mu}_p)^2].$$

COMBINER: COMpression with Bayesian Implicit NEural Representations

Image Compression

bit-rate	Encoding (1 image, GPU A100 80G)			Decoding (1 image, CPU)
	Learning Posterior	REC + Fine-tuning	Total	becoung (1 mage, cr o)
0.07 bpp	\sim 9 min	\sim 12 min 30 s	\sim 21 min 30 s	348.42 ms
0.11 bpp		${\sim}18$ mins	$\sim\!\!27$ min	381.53 ms
0.13 bpp		\sim 22 min	$\sim\!\!31$ min	405.38 ms
0.22 bpp	\sim II min	$\sim\!$ 50 min	\sim 61 min	597.39 ms
0.29 bpp		\sim 68 min	\sim 79 min	602.32 ms

The encoding time and decoding time of COMBINER on Kodak dataset.

Ablation Study

Audio Compression

Fine-tuning

