

#### **CONTENTS**



**General Polygons** 

**Convex Polygons** 

Regular Polygons

Cryptography on Regular Polygons

# **GENERAL POLYGONS**

### GENERAL POLYGONS - DEFINITION



#### **POLYGON**

A polygon is a closed 2D shape made of only segments.

The endpoints of those segments are called vertices.

The segments themselves are called edges.

# GENERAL POLYGONS - EXAMPLES





A polygon with  $n \in \mathbb{N}$  sides is called an n-gon.

For example a polygon with 123456 sides is called a 123456-gon or decadismyriatrischilliatetrahectapentacontakaihexagon.

# GENERAL POLYGONS - COUNTEREXAMPLES





# GENERAL POLYGONS - CONVEXITY



#### **CONVEX POLYGON**

A polygon is called convex if it has no internal angle greater than 180°.





# **CONVEX POLYGONS**

# CONVEX POLYGONS - SPECIAL TYPES





#### Trapezoid/Trapezium

A convex guadrilateral with at least A convex guadrilateral with two two parallel sides.



# **Parallelogram**

pairs of parallel sides.



#### **Rhombus**

An equilateral (all sides of the same length) parallelogram.

### **CONVEX POLYGONS - DIAGONALS**



#### DIAGONAL IN A CONVEX POLYGON

A diagonal of a **convex** polygon is a segment connecting two of its non-adjacent vertices.



Diagonal in a convex hexagon.

**Voluntary HW**: How many different diagonals does a convex *n*-gon have?

### **CONVEX POLYGONS – TRIANGULATIONS**



#### TRIANGULATION OF A CONVEX POLYGON

A triangulation of a convex polygon is its division into triangles by non-intersecting diagonals.







Examples of triangulations.

**Voluntary HW**: How many different triangulations of an *n*-gon are there?

### **CONVEX POLYGONS – TRIANGULATIONS**



#### TRIANGULATION OF A CONVEX POLYGON

A triangulation of a convex polygon is its division into triangles by non-intersecting diagonals.







Examples of triangulations.

**Voluntary HW**: Find a **non-convex** polygon which **cannot** be triangulated.

### CONVEX POLYGONS – INTERNAL ANGLES





**Internal angles** of a pentagon.

**Question:** What is the sum of internal angles of a convex *n*-gon?

- For a triangle, it's 180°.
- For a square, it's 360°.
- For a pentagon, it's 540°.



# **CONVEX POLYGONS – INTERNAL ANGLES**

We can count internal angles using triangulations. Into how many triangles is a convex n-gon divided? Each triangle shares two vertices with an adjacent one. We choose the first triangle – it covers 3 vertices. After that, each triangle covers only one more vertex. This means, that an n-gon is divided into n-2 triangles.









Construction of a triangulation of a hexagon.

### CONVEX POLYGONS - INTERNAL ANGLES



A convex n-gon is divided into n-2 triangles.

The sum of all internal angles in a triangle is  $180^{\circ}$ .

#### SUM OF INTERNAL ANGLES IN A CONVEX POLYGON

The sum of all internal angles of a convex n-gon is  $(n-2) \cdot 180^{\circ}$ .

# REGULAR POLYGONS

#### **DEFINITION**



#### **REGULAR POLYGON**

A regular polygon is a convex polygon whose sides all have the same length and whose internal angles all have the same size.



Equilateral triangle (regular trigon)



Square (regular tetragon)



Regular pentagon



Regular hexagon

### REVIEW - PLANE TRANSFORMATIONS



#### **ROTATION**

Rotation of a polygon consists of well ... rotating each of its points by a fixed angle around a fixed point (called *anchor*).



### REVIEW - PLANE TRANSFORMATIONS



#### REFLECTION

Reflection of a polygon consists of 'mirroring' each of its points through a given line (called axis of reflection).



#### REVIEW - PLANE TRANSFORMATIONS



#### POINT SYMMETRY

Point symmetry of a polygon consists of 'mirroring' each of its points through a given point (called *center of symmetry*).



Examples of point symmetries.

### SYMMETRIES OF REGULAR POLYGONS



**Question:** What are the transformations that don't change regular polygons in any way?

- rotational symmetries
  - o rotation by  $\frac{k \cdot 360^{\circ}}{n}$  where k is any number between 1 and n
- reflectional (line) symmetries
  - o for *n* even reflections over lines passing through centres of opposite sides
  - for *n* even over lines passing through opposite vertices
  - o for *n* odd over lines passing through a centre of a side and the opposite vertex
- point symmetries
  - only through the 'centre' the point where its axes of symmetry intersect in case n is even

# SYMMETRIES OF REGULAR POLYGONS





Examples of regular polygon symmetries

# CRYPTOGRAPHY ON REGULAR POLYGONS

### CHAINING SYMMETRIES



Given two symmetries,  $s_1$  and  $s_2$  of a regular polygon, one can apply them one after the other ('compose' them, like functions).

We'll denote this composition simply by  $s_1s_2$ .

# CHAINING SYMMETRIES - EXAMPLE





Example of a chain of symmetries.



# CHAINING SYMMETRIES – HOW MANY DO WE NEED?

Discounting point symmetry, an *n*-gon has 2*n* symmetries.

Two symmetries can 'combine' to create a different symmetry.

**Natural question:** How many (and which) symmetries of a regular polygon do I need to get all the others?

For example,

- if  $s_1$  is any reflectional symmetry and  $s_2$  is a rotation by 60° counter-clockwise, then  $s_2^3 s_1$  ( $s_2^3$  means  $s_2 s_2 s_2$ ) reflects a hexagon through a line perpendicular to the line of  $s_1$ .
- if  $s_1$  is a rotation by 120° clockwise and  $s_2$  is a reflection through a vertical line passing through the top vertex, then  $s_1s_2$  is a reflection through the line given by the rotation of the line of  $s_2$  60° clockwise.





Actually, for a general *n*-gon, we need only two:

- rotation by  $360^{\circ}/n$  in any direction (we'll denote it r),
- any reflection (we'll denote it s).

### CHAINING SYMMETRIES - TRIANGLE



Let r be the rotation by 120° and s any reflectional symmetry.

- The other two rotational symmetries are  $r^2$  and  $r^3$ .
- The other two reflectional symmetries are rs and  $r^2s$ .
- Therefore, all the symmetries of an equilateral triangle are

$$\{r, r^2, r^3, s, rs, r^2s\}.$$





In general, to create all symmetries, one needs a rotation by an angle  $k \cdot 360^{\circ}/n$  where k doesn't share a prime factor with n (in other words, the fraction  $\frac{k}{n}$  cannot be simplified) and any one reflectional symmetry.

#### Why?

- If k shares factors with n, then you can never get rotation by  $360^{\circ}/n$ .
- Two symmetries cannot in general produce every rotation.
- Two rotations can never produce a symmetry.





You're given a rotation r by  $k \cdot 360^{\circ}/n$  such that k doesn't share factors with n and a reflectional symmetry s.

#### If you need to calculate a rotation, then

- 1. First measure the angle counter-clockwise.
- 2. Find *a* such that  $r^a$  is the rotation by  $360^{\circ}/n$ .
- 3. Then, find *b* such that  $(r^a)^b = r^{ab}$  is your desired rotation.



# CHAINING SYMMETRIES - GENERAL ALGORITHM

You're given a rotation r by  $k \cdot 360^{\circ}/n$  such that k doesn't share factors with n and a line symmetry s.

#### If you need to calculate a reflection, then

- 1. Find a such that  $r^a$  is the rotation by  $360^{\circ}/n$ .
- 2. Determine the angle **in any direction** between the lines of your given reflection *s* and the reflection you want.
- 3. Find b such that  $r^{ab}$  is a rotation in the opposite direction by twice the angle from the previous step.
- 4. rabs is your desired reflection.

Voluntary HW: Why does this algorithm work?



# CHAINING SYMMETRIES - ALGORITHM EXAMPLE

#### We're given two symmetries of the square:





#### and want to produce



reflection over the second diagonal



### CHAINING SYMMETRIES - ALGORITHM EXAMPLE

We're given two symmetries of the square: rotation r by 270° counter-clockwise and reflection s over the first diagonal.

How to produce reflection over the other diagonal?

#### We use the algorithm.

- 1. Repeating r three times gives the rotation by 90° counter-clockwise, that is, a = 3.
- 2. The angle between the two diagonals is  $90^{\circ}$  in any direction.
- 3. Repeating the rotation from step 1 two times (that is, b=2) and then using s gives the desired symmetry in this case it's  $(r^3)^2s=r^6s$ . Of course,  $r^4$  is rotation by 360° which does nothing, so the final symmetry is  $r^2s$ .