

CSCE 590-1: From Data to Decisions with Open Data: A Practical Introduction to Al

Lecture 15: Reasoning

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 4^{TH} MAR, 2021

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lecture 15

- Introduction Segment
 - Recap/ Discussion of Lecture 14
 - Mid-sem review of Project (Mar 2)
- Main Segment
 - Reasoning: drawing insights from knowledge (known or learnt)
 - Propositional Logic
 - Problem-solving agent
 - Deterministic
 - Search
- Concluding Segment
 - About Next Lecture Lecture 16
 - Ask me anything

Introduction Segment

Recap of Lecture 14

- Guest talk on timing errors by Sandeep Sandha, UCLA
- We heard about timing errors and their impact on devices
- Implications for their usage in detecting human activities and applications built using them
- Touched on other Computer Science areas
 - Distributed systems, software engineering, networking specifically
 - Al on edge devices

Mid-sem review of Project (Mar 2)

- Instructor met students to review projects
 - Project outline should be clear and actionable, relevant to the problem
 - Should increase probability of doing well in course project
- Student responsibilities
 - Work as per plan
 - Flag issues early and discuss alternative
 - Track progress
- Next milestone
 - In-class update: March 25, 2021

Main Segment

Recap: Al as Intelligent Agent

From Subbarao Kambhampati's Al Planning Course

Examples of Agents

Agent Type	Percepts	Actions	Goals	Environment
Medical diagnosis	Symptoms, findings,	Questions, tests,	Healthy patient,	
system	patient's answers	treatments	minimize costs	Patient, hospital
Satellite image analysis	Pixels of varying	Print a categorization of	Correct	Images from
system	intensity, color	scene	categorization	orbiting satellite
	Pixels of varying	Pick up parts and sort	Place parts in	Conveyor belt
Part-picking robot	intensity	into bins	correct bins	with parts
	Temperature,	Open, close valves;	Maximize purity,	
Refinery controller	pressure readings	adjust temperature	yield, safety	Refinery
			Maximize	
Interactive English		Print exercises,	student's score	
tutor	Typed words	suggestions, corrections	on test	Set of students

Source: Russell & Norvig, AI: A Modern Approach

Relationship Between Al Processes

Output

Data

Operate/

Manipulate

Content

Allow

Interaction on

Content

Represent

Content in

Efficient Format

Input

Data

Parse

Data

Reasoning and Its Role in Al

- •Reasoning: drawing insights from knowledge (known or learnt)
- Help various settings for an Intelligent Agent
 - Deterministic
 - Uncertain knowledge
 - Optimal decisions

Figure Source: Russell & Norvig, AI: A Modern Approach

Example Situation – Course Selection

- A person wants to pass an academic program in two majors: A and B
- There are three subjects: A, B and C, each with three levels (*1, *2, *3). There are thus 9 courses: A1, A2, A3, B1, B2, B3, C1, C2, C3
- To graduate, at least one course at beginner (*1) level is needed in major(s) of choice(s), and two courses at intermediate levels (*2) are needed
- Answer questions
 - Q1: How many minimum courses does the person have to take?
 - Q2: Can a person graduate in 2 majors studying 3 courses only?
 - •

How to Tackle Such Situations?

- Represent and reason with the world
 - Perform Q/A
- Solve problems about courses selection scenarios

Representation - Example

- Domain Description: "There are three subjects: A, B and C, each with three levels (*1, *2, *3)."
- Representation
 - has_studied_courseA1: yes student has taken course; no student has not taken
 - has_studied_courseA2
 - has studied courseA3
 - has_studied_courseB1
 - has_studied_courseB2
 - has_studied_courseB3
 - has studied courseC1
 - has_studied_courseC2
 - has_studied_courseC3

Inference Procedure

- ullet Given a knowledge base (KB), generate new sentences $\, \alpha \,$ that are entailed by KB
 - KB |= α
- Given KB and α , report whether or not α is entailed by KB
 - KB |- α

•

Formal Logic – 1/3

- An automaton for manipulating symbols and drawing conclusions
- Consists of a knowledge base with:
 - a set of true statements (sentences).
 Sentences have
 - Syntax
 - Semantics compositional property
 - Proof theory: a set of rules for deducing the entailments / interpretations of the sentences

- Properties of sentences
 - Valid: A sentence is valid or necessarily true if and only if it is true under all possible interpretations in all possible worlds. Also called a tautology
 - Satisfiable: A sentence is satisfiable if and only if there is some interpretations in some possible worlds where it is true.

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Representation - Example

- Domain Description: "There are three subjects: A, B and C, each with three levels (*1, *2, *3)."
- Representation
 - has_studied_courseA1: yes student has taken course; no student has not taken
 - has studied courseA2
 - has studied courseA3
 - has_studied_courseB1
 - has_studied_courseB2
 - has_studied_courseB3
 - has_studied_courseC1
 - has_studied_courseC2
 - has studied courseC3

LowerThan_Course_A1_CourseA2
LowerThan_Course_A2_CourseA3
LowerThan_Course_B1_CourseB2
LowerThan_Course_B2_CourseB3
LowerThan_Course_C1_CourseC2
LowerThan_Course_AC_CourseC3

• Previous statements set did not capture hierarchy between levels; new sentences would not have followed the reality in the world. Need more statements – LowerThan as shown.

Propositional Logic - Syntax

```
Sentence — AtomicSentence ComplexSentence
```

Connective $- A \mid V \mid \Leftrightarrow \mid \Rightarrow$

BNF (Backus-Naur Form) grammar of sentences in propositional logic

Source: Russell & Norvig, AI: A Modern Approach

Propositional Logic - Semantics

Model of sentence: Any world in which a sentence is true (under a particular interpretation)

α	β	7	$\alpha \lor \beta$	$\neg \beta \mathbf{V} 7$	a V 7
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
False	True	· True	<u>True</u>	<u>True</u>	<u>True</u>
True	False	<u>False</u>	True	True	<u>True</u>
<u>True</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>

Truth table to prove soundness of inference

Source: Russell & Norvig, AI: A Modern Approach

Propositional Logic

Inference Procedures

Source: Russell & Norvig, AI: A Modern Approach

♦ Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{a \Rightarrow \beta, \qquad \alpha}{\beta}$$

♦ **And-Elimination**: (From a conjunction, you can infer any of the conjuncts.)

$$\frac{\alpha_1 A \alpha_2 A \dots A \alpha_n}{\alpha_i}$$

♦ **And-Introduction**: (From a list of sentences, you can infer their conjunction.)

$$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 A \alpha_2 A \dots A \alpha_n}$$

0 Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$$

♦ **Double-Negation Elimination:** (From a doubly negated sentence, you can infer a positive sentence.)

$$\frac{\neg \neg a}{\alpha}$$

♦ **Unit Resolution:** (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

$$\frac{a \vee \beta, \quad \neg \beta}{a}$$

 \diamondsuit **Resolution:** (This is the most difficult. Because θ cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$\frac{a \vee \beta, \quad \neg \beta \vee 7}{a \vee \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

Formal Logic – 2/3

- Levels at which sentences are encoded
 - Epistemic (also called knowledge): what agents knows or believes
 - Logical: how sentences are encoded to allow inferencing. E.g., symbols
 - Executional: how sentences are encoded during execution. E.g., vectors, symbols
- Properties of sentences
 - Valid: A sentence is valid or necessarily true
 if and only if it is true under all possible
 interpretations in all possible worlds. Also called a tautology
 - **Satisfiable:** A sentence is satisfiable if and only if there is some interpretations in some possible worlds where it is true.

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Formal Logic -3/3

- Properties of Logic System
 - Soundness: if it produces only true statements
 - Completeness: if it produces all true statements
 - **Consistency**: if it does not produce a sentence and its negation

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts degree of truth	true/false/unknown true/false/unknown true/false/unknown degree of belief 01 degree of belief 01

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Major Types of Reasoning

- Inference: From premises to conclusions
 - Major types
 - Deduction: deriving logical conclusions from premises known or assumed to be true
 - Induction: deriving from particular premises to a universal conclusion.
 - Abduction: from an observation, find the most likely conclusion from the observations

Usage

- Deduction is useful to build knowledge bases from parts
- Induction: to generalize
- Abduction is a good source for hypothesis / priors in Bayesian learning

Exercise and Code

- Logical Reasoning
 - From Book: AI A Modern Approach, https://github.com/aimacode/aima-python/blob/master/logic.ipynb

1,4	2,4	3,4	4,4	A
1,2 S OK	2,2 OK	3,2	4,2	V = Visite W = Wum
1,1 V OK	2,1 B V OK	3,1 P!	4,1	

square

Source: Russell & Norvig, AI: A Modern Approach

Problem Solving Agents

Goal-directed agents

- 1. Goal Formulation: Set of one or more (desirable) world states (e.g. majors in).
- 2. Problem formulation: What actions and states to consider given a goal and an initial state.
- 3. Search for solution: Given the problem, search for a solution --- a sequence of actions to achieve the goal starting from the initial state.
- 4. Execution of the solution

Goal:

Reach Bucharest (Romania)

Problem:

action: drive between pair of connected cities (direct road)

state: be in a city

(20 world states)

Solution:

sequence of cities leading from start to goal state, e.g., Arad, Sibiu, Fagaras, Bucharest

Execution

drive from Arad to Bucharest according to the solution

Example: Path Finding Problem

Environment: fully observable (map), deterministic, and the agent knows effects of each action.

Example: Vacuum World State Space Graph

States: The agent is in one of 8 possible world states.

Actions: Left, Right, Suck [simplified: left out No-op]

goal test: No dirt at all locations

path cost: 1 per action

Minimum path from Start to Goal state: 3 actions

Alternative, longer plan: 4 actions

Example: The 8-puzzle"sliding tile puzzle"

States: the boards, i.e., locations of tiles

Actions: move blank left, right, up, down

goal test: goal state (given; tiles in order)

Path cost: 1 per move

Note: finding optimal solution of n-puzzle family is NP-hard! Also, from certain states you can't reach the goal. Total number of states 9! = 362,880

Search Techniques

Search Concepts: States and Nodes

A state is a representation of a physical configuration.

A node is a data structure constituting part of a search tree includes state, tree parent node, action (applied to parent), path cost (initial state to node) g(x), depth

The **Expand** function creates new nodes, filling in the various fields and using the **SuccessorFn** of the problem to create the corresponding states.

Fringe is the collection of nodes that have been generated but not (yet) expanded. Each node of the fringe is a leaf node.

Tree-search Algorithms

Basic idea: simulated exploration of state space by generating successors of already-explored states (a.k.a. ~ expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to *strategy* if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree

Implementation: General Tree Search

```
function TREE-SEARCH(problem, fringe) returns a solution, or failure
   fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
   loop do
       if fringe is empty then return failure
        node \leftarrow \text{Remove-Front}(fringe)
       if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
       fringe \leftarrow InsertAll(Expand(node, problem), fringe)
function Expand( node, problem) returns a set of nodes
   successors \leftarrow the empty set
   for each action, result in Successor-Fn[problem](State[node]) do
        s \leftarrow a \text{ new NODE}
       PARENT-NODE[s] \leftarrow node; ACTION[s] \leftarrow action; STATE[s] \leftarrow result
       PATH-COST[s] \leftarrow PATH-COST[node] + STEP-COST(node, action, s)
       DEPTH[s] \leftarrow DEPTH[node] + 1
        add s to successors
   return successors
```

A search strategy is defined by picking the order of node expansion.

Uninformed Search Strategies

Uninformed (blind) search strategies use only the information available in the problem definition:

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search
- Bidirectional search

Key issue: type of queue used for the fringe of the search tree (collection of tree nodes that have been generated but not yet expanded)

Search Strategies

- A search strategy is defined by picking the order of node expansion.
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
 - b: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - m: maximum depth of the state space (may be ∞)

Exercise and Code

- Search Methods
 - From Book: AI A Modern Approach, https://github.com/aimacode/aima-python/blob/master/search.ipynb

Source: Russell & Norvig, AI: A Modern Approach

Goal-Based Agents Generating Sequence of Actions

Figure Source: Russell & Norvig, AI: A Modern Approach

Reasoning Illustration - Planning Example

Blocks World

All robots are equivalent

BIPLAV SRIVASTAVA 36

Reasoning Illustration - Representation

BIPLAV SRIVASTAVA 37

Reasoning Illustration - Planning Process

BIPLAV SRIVASTAVA 38

Active Area of Research

Considerations

- What to find:
 - Any workable plan
 - Optimal plan but then what is the criteria
 - All plans
 - Diverse plans
- How to find
 - Plan at the end
 - Plan anytime
- How to represent problem
- How to explain solution

Lecture 15: Concluding Comments

- We revisited what it means to have an AI system as Intelligent Agent
- Understood knowledge representation and relationship to facts in the world
- Discussed logic procedures to draw inferences
- Discussed search methods to solve problems
- Saw a planning problem generating sequence of actions to meet a goal

Concluding Segment

Exercise – Intelligent Agent Types

- Search Methods
 - From Book: AI A Modern Approach, https://github.com/aimacode/aima-python/blob/master/vacuum_world.ipynb

Source: Russell & Norvig, AI: A Modern Approach

Adjustment to Upcoming Schedule

15	Mar 4 (Th)	Reasoning and Search	Semester - Midpoint
16	Mar 9 (Tu)	Agent – Optimization	
17	Mar 11 (Th)	Agent – Handling Uncertain World	
18	Mar 16 (Tu)	Agent – Learning	
19	Mar 18 (Th)	Text: Data Prep (NLP)	Quiz 3
20	Mar 23 (Tu)	Text: Analysis - Supervised (NLP)_	
21	Mar 25 (Th)	Review, Paper presentations, Discussion	
22	Mar 30 (Tu)	Text: Advanced – Summarization, Sentiment	
23	Apr 1 (Th)	Text: Visualization, Explanation	
24	Apr 6 (Tu)	Multimodal Agents: Structured+Text: Examples	
25	Apr 8 (Th)	Case Study 1: Water	Quiz 4
26	Apr 13 (Tu)	Case Study 2: Finance	

Focus on Integrated Agent Behavior (Lectures 17, 18)

Reduce focus on Case-studies (1 per domain)

About Next Lecture – Lecture 16

Lecture 16: Reasoning, Agents Continued

- Reasoning advanced settings
 - Agents Making Optimal Decisions
- What is an Optimal Decision?
- Some methods