IDK

Peter D. Smits^{1,*}

1. University of Chicago, Chicago, Illinois 60637.
\ast Corresponding author; e-mail: psmits@uchicago.edu.
$Manuscript\ elements:$
Keywords:
Manuscript type: Article
Prepared using the suggested LATEX template for Am. Nat.

Materials and Methods

2 Taxon occurrence information

Supertree inference

4 Model specification

Define y as a $N \times T$ matrix of the observed 0/1 occurrence of species i at time t, and z as a $N \times T$ matrix of the "true" 0/1 occurrence of species i at time t. The observation presence of a taxon $y_{i,t}$ is modeled as following a Bernoulli distribution defined

$$y_{i,t} \sim \text{Bernoulli}(\rho_t z_{i,t})$$
 (1)

- where ρ is a length T vector of the probability that a species is observed at time t given that it is present at time t ($\rho_t = \Pr(y_{-t} = 1 | x_{-t} = 1)$).
- Observation probability ρ_t is modeled as Bernoulli distributed variable with probability equal to the inverse logit transformed length T vector ρ' (Eq. 2). The elements of ρ' are modeled as
- exchangeable draws from a Normal distribution with location ρ'' and scale $\sigma_{\rho'}$; these are given weakly informative Normal and half-Cauchy priors, respectively.

$$\rho_{t} \sim \text{Bernoulli} \left(\text{logit}^{-1}(\rho_{t}') \right)$$

$$\rho_{t}' \sim \mathcal{N}(\rho'', \sigma_{\rho'})$$

$$\rho'' \sim \mathcal{N}(0, 1)$$

$$\sigma_{\rho'} \sim C^{+}(1)$$
(2)

- The "true" presence/absence states of taxa z are modeled as a logistic regression (Eq. 3) where the probability of being present (z = 1) is a function of individual-level and group-level effects. The
- intercept of this regression α is a length T vector which varies by time t (Eq. 4). Individual-level covariates are a $N \times D$ matrix x whose regression coefficients are the length D column vector β .

These regression coefficients are given independent weakly informative Normally distributed priors.

$$z_{i,t} \sim \text{Bernoulli}\left(\text{logit}^{-1}(\alpha_t + x_i\beta)\right)$$

$$\beta \sim \mathcal{N}(0,1)$$
(3)

The value of α_t is itself defined as a regression (Eq. 4). The intercept of the this group-level regression is defined as μ . The effect of plant regime p is modeled as the length P vector ϕ whose elemnts are draws from a Normal distribution with a location of 0 and scale of σ_{ϕ} . The group-level covariates corresponding to global climate values of interest is defined as the $T \times U$ matrix u where γ is a length U column vector of regression coefficients. Finally σ_{μ} is positive real value. μ , the elements of γ , σ_{μ} , and σ_{ϕ} are all given weakly informative independent priors (Eq. 4).

$$\alpha_{t} \sim \mathcal{N}(\mu + \phi_{p[t]} + u_{t}\gamma, \sigma_{\mu})$$

$$\phi_{p} \sim \mathcal{N}(0, \sigma_{\phi})$$

$$\mu \sim \mathcal{N}(0, 5)$$

$$\gamma \sim \mathcal{N}(0, 1)$$

$$\sigma_{\mu} \sim C^{+}(1)$$

$$\sigma_{\phi} \sim C^{+}(1)$$
(4)

Acknowledgements

- I would like to thank K. Angielzcyk, M. Foote, P. D. Polly, and R. Ree for helpful discussion and advice. Miller for the epicontinental versus open-ocean assignments. This entire study would would
- 28 not have been possible without the Herculean effort of the many contributors to the Paleobiology Database. In particular, I would like to thank J. Alroy and M. Uhen for curating most of the
- mammal occurrences recorded in the PBDB. This is Paleobiology Database publication XXX.