Genome assembly and annotation

Day 5: Genome annotation

Antti Karkman

Department of Microbiology – UH

antti.karkman@helsinki.fi

Aims for this part of MMB-114

Day 1: Basics of UNIX and working with the command line

Day 2: Handling of Illumina data

Day 3: Genome assembly

Day 4: Check-up and report

Day 5: Genome annotation

Day 6: Metabolic pathway analysis

Get reads

Sequence quality trimming

Genome assembly

Genome annotation

Metabolic pathways

Recap from last week:

ontrol

ATGITECCAT

Genome assembly

Annotation

Adding biological information to sequences (contigs)
Information that there is a gene x in contig y at location z

- Size of the gene
- · Name of the gene
- Protein product

Contig y = 2,035 bp

Bacterial genes

Promoter

Ribosome binding site (RBS)

Coding sequence (CDS)

Terminator

Also non-coding genes

- tRNA
- rRNA

Two ways to identify proteincoding genes

Sequence alignment (e.g. BLAST)

Search contigs against a database Computationally-intensive

Gene finding

Start codon

ATG

Open reading frame (ORF)

Stop codon

• TAA, TAG, TGA

^{1.} ATG CAA TGG GGA AAT GTT ACC AGG TCC GAA CTT ATT GAG GTA AGA CAG ATT

^{2.} A TGC AAT GGG GAA ATG TTA CCA GGT CCG AAC TTA TTG AGG WW GAC AGA TTT AA

^{3.} AT GCA ATG GGG AAA TGT TAC CAG GTC CGA ACT TAT TGA GGT AAG ACA GAT TTA A

Annotating genes

Homology

Statistical modelling of protein families/domains

Annotated databases

- NCBI
- KEGG
- COG
- SEED
- GO
- UNIPROT
- INTERPRO
- PFAM
- TIGR

BAKTA: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification

Let's annotate our genome

https://github.com/karkman/MMB-114 Genomics

(**Day 5:** Genome annotation)