

Redes neuronales avanzadas:

convolucionales

Diplomatura en Ciencia de Datos, Aprendizaje Automático y sus Aplicaciones

1. Intuición en imágenes

Recursos

Curso Stanford

Tutorial towardsdatascience.com

Filminas originales: <u>Jorge Sánchez</u>, inspiradas en <u>A.</u>

Vedaldi - cs231n (Stanford)

Imágenes = 2D

Las imágenes tienen propiedades espaciales:

- → En orden de los datos es en dos (o tres) dimensiones
- → Los mismos patrones se repiten en distintas posiciones: bordes, esquinas

Multilayer perceptron

32x32x3 image -> stretch to 3072 x 1

Convolución

Tenemos que procesar una entrada 2D o 3D

Convolución

0	0	0	0	0	0	
0	105	102	100	97	96	K
0	103	99	103	101	102	P
0	101	98	104	102	100	
0	99	101	106	104	99	I
0	104	104	104	100	98	
8						9

Image Matrix

$$0*0+0*-1+0*0$$

$$+0*-1+105*5+102*-1$$

$$+0*0+103*-1+99*0=320$$

Output Matrix

Convolution with horizontal and vertical strides = 1

Convolución

La convolución es la combinación de dos matrices (funciones):

- → La imagen original
- → El filtro de la convolución

El resultado es otra matriz (función)

Los filtros capturan distintos aspectos de una imagen: detección de bordes, desenfoque, <u>más ejemplos</u>

0	0	0	0	0	0	0
0	1	1	0	0	1	0
0	1	0	0	1	1	0
0	0	0	1	1	1	0
0	1	0	0	1	1	0
0	1	1	0	0	1	0
0	0	0	0	0	0	0

-1	-1	-1
-1	8	-1
-1	-1	-1

0	0	0	0	0	0	0
0	1	1	0	0	1	0
0	1	0	0	1	1	0
0	0	0	1	1	1	0
0	1	0	0	1	1	0
0	1	1	0	0	1	0
0	0	0	0	0	0	0

-1	-1	-1
-1	8	-1
-1	-1	-1

0	0	0	0	0	0	0
0	1	1	0	0	1	0
0	1	0	0	1	1	0
0	0	0	1	1	1	0
0	1	0	0	1	1	0
0	1	1	0	0	1	0
0	0	0	0	0	0	0

-1	-1	-1
-1	8	-1
-1	-1	-1

6	6	-2	

0	0	0	0	0	0	0
0	1	1	0	0	1	0
0	1	0	0	1	1	0
0	0	0	1	1	1	0
0	1	0	0	1	1	0
0	1	1	0	0	1	0
0	0	0	0	0	0	0

-1	-1	-1
-1	8	-1
-1	-1	-1

6	6	-2	-3	6
6	-4	-4	3	4
-2	-3	5	2	3
6	-4	-4	3	4
6	6	-2	-3	6

0	0	0	0	0	0	0
0	1	1	0	0	1	0
0	1	0	0	1	1	0
0	0	0	1	1	1	0
0	1	0	0	1	1	0
0	1	1	0	0	1	0
0	0	0	0	0	0	0

-1	-1	-1
-1	8	-1
-1	-1	-1

6	6	-2	-3	6
6	-4	-4	3	4
-2	-3	5	2	3
6	-4	-4	3	4
6	6	-2	-3	6

2. CNN

Los filtros pueden ser vistos como extractores de información.

Las redes convolucionales APRENDEN

numerosos filtros (feature extractors)

Convolution Layer

Convolution Layer

activation map

Convolution Layer

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Multiple layers

Convolution, activation, convolution, activation, ...

A deep convolutional neural networks chains several filtering & non-linear activation function sequences.

The non-linear activation functions are essential. Why?

Pooling

El pooling es un mecanismo para reducir la dimensionalidad de las capas.

Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Stride

El stride controla la distancia entre la aplicación de los filtros, y el tamaño del output

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/

Padding

Padding 2

El padding permite la aplicación de los filtros a los elementos del borde de la imagen, y afecta el tamaño del output

Flatten

Para poder aplicar la capa de clasificación, tenemos que convertir la salida de la convolución a 1D

3. Práctico con notebook

4. CNNs para texto?

Convolución 1D

Aplicamos la convolución a cada palabra (Conv1D)

http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/

References

- + Chris Piech, et al. 2015. *Deep Knowledge Tracing*. In Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS'15)
- + Siddharth Reddy, Igor Labutov, and Thorsten Joachims. 2016. *Learning Student and Content Embeddings for Personalized Lesson Sequence Recommendation*. In Proceedings of the Third (2016) ACM Conference on Learning @ Scale (L@S '16).