

Review of our Meta Learning Strategy

Review of our Meta Learning Strategy

- Created two separate classifiers:
 - Trained both on the same train/validation data
 - O Audio features → FNN classifier (dense model)
 - MFCCs, Chroma, Spectral Contrast, Location
 - Spectrograms → vision transformers
- Combined predictions using Hard Voting

1. Data Pre-Processing

1. Data Pre-Processing

- Explored techniques:
 - Noise attenuation
 - Amplification
 - Clipping
 - Increased processing time
- Final solution:
 - Noise attenuation with Butterworth filter (3000-8000 Hz)
 - Normalization
 - Create spectrograms directly from audio files

2. Training and Testing Protocol

2. Training and Testing Protocol

- Developed each classifier separately first and tried to optimize them
 - Experimented with different hyperparameters (learning rates, optimizer functions, early stopping, layers, etc.)
 - Experimented with sequential vs non-sequential data
 - Experimented with class weights → they are not needed!
 - \circ Experimented with different feature combinations \rightarrow ie. Location!
- Combined the two classifiers:
 - First, did K-Fold Cross Validation to ensure consistency
 - Then, trained the classifiers on all the data

2. Training and Testing Protocol

- Combined 2021 and 2022 data
- Performed 5-fold Cross Validation:
 - 70% for training
 - 15% for validation
 - 15% for test
- Made a final classifier
 - 85% for training
 - 15% for validation

3. Post-Processing and Output

3. Output

- 100 epochs for the FNN
- 20 epochs the transformer
- 5 fold cross validation
- Only trained on 85% of the data (70% train & 15% validation)
- Pessimistic estimate!

 $F1 Score = 0.592 \pm 0.012$

3. Performance - Trained on All the Data

4. Challenges

- Class similarities
- Class imbalance
- Lack of sufficient and noise-free training data
- Relevant feature selection

Our strategy?

Improve precision as much as possible to increase F1
Recall seemed to remain unaffected → move the classifier to the **negative** side a bit and attempt to **overfit** even!

