CO202 – Software Engineering – Algorithms Divide and Conquer - Exercises

Exercise 1: Illustrate the Operations of Merge Sort

$$A = \langle 3, 41, 52, 26, 38, 57, 9, 49 \rangle$$

Exercise 2: Draw a Recursion Tree, Guess, and Verify

$$T(n) = 3T(n/4) + cn^2$$

b.socrative.com - room ALGO202

A: $O(\lg n)$ **B**: O(n) **C**: $O(n \lg n)$ **D**: $O(n^2)$ **E**: $O(2^n)$

Total: $\Theta(n^{\log_b a}) + \sum_{j=1}^{n} a^j f(n/b^j)$

Exercise 3: Master Method

$$T(n) = 3T(n/4) + cn^2$$

1. If
$$d < \log_b a$$
, then $T(n) = \Theta(n^{\log_b a})$.
2. If $d = \log_b a$, then $T(n) = \Theta(n^d \lg n)$.

2. If
$$d = \log_b a$$
, then $T(n) = \Theta(n^d \lg n)$.

3. If
$$d > \log_b a$$
, then $T(n) = \Theta(n^d)$.

•
$$T(n) = 2T(n/4) + \sqrt{n}$$

$$T(n) = 8T(n/2) + n^2$$

$$-T(n) = T(n/2) + 1$$

Exercise 4: Substitution Method

$$T(n) = 2T(n/2) + 1$$

- 1) Obtain the running time using the Master Method
- 2) Confirm with the Substitution Method

Exercise 5: Divide and Conquer

1) Write in pseudo-code a recursive function $f(x,n) = x^n$ for powering a number using divide-and-conquer.

Hint:

- $x^n = x^{n/2} \cdot x^{n/2}$ for even n
- $x^n = x^{(n-1)/2} \cdot x^{(n-1)/2} \cdot x$ for odd n

2) Show that the running time complexity is $O(\lg n)$.

CO202 – Software Engineering – Algorithms Dynamic Programming - Exercises

	j	0	1	2	3	4	5	6
i		у _j	В	D	С	А	В	Α
0	X _i							
1	A							
2	В							
3	С							
4	В							
5	D							
6	Α							
7	В							

	j	0	1	2	3	4	5	6	7	8	9
i		Уj	E	M	Р	Ι	R	I	C	Α	L
0	Xi										
1	I										
2	M										
3	Р										
4	E										
5	R										
6	I										
7	Α										
8	L										

		j	0	1	2	3	4	5	6	7	8	9
i			у _j	E	М	Р	I	R	I	С	Α	L
0		Xi	0	1	2	3	4	5	6	7	8	9
1	,	Ι	1									
2		M	2									
3		Р	3									
4		Е	4									
5		R	5									
6	1	I	6									
_									-			

```
8: for j = 1 to n

9: for i = 1 to m

10: c = x<sub>i</sub> == y<sub>j</sub> ? 0 : 1

11: d[i,j] = min(d[i-1,j] + 1, d[i,j-1] + 1, d[i-1,j-1] + c)
```

			_									
	j		0	1	2	3	4	5	6	7	8	9
i			Уj	E	М	Р	I	R	I	С	Α	L
0	Xi	Ĺ	0	1	2	3	4	5	6	7	8	9
1	I		1	R 1								
2	M		2									
3	P		3									
4	E		4									
5	R		5									
6	I		6									
_									-			

```
8: for j = 1 to n

9: for i = 1 to m

10: c = x<sub>i</sub> == y<sub>j</sub> ? 0 : 1

11: d[i,j] = min(d[i-1,j] + 1, d[i,j-1] + 1, d[i-1,j-1] + c)
```

			_									
		j	0	1	2	3	4	5	6	7	8	9
j	i		Уj	E	М	Р	I	R	I	С	Α	L
(0	Xi	0	1	2	3	4	5	6	7	8	9
1	1	I	1	R 1								
2	2	М	2	R D 2								
3	3	Р	3									
4	4	Е	4									
5	0.	R	5									
(5	I	6									
									-			

```
8: for j = 1 to n

9: for i = 1 to m

10: c = x<sub>i</sub> == y<sub>j</sub> ? 0 : 1

11: d[i,j] = min(d[i-1,j] + 1, d[i,j-1] + 1, d[i-1,j-1] + c)
```

	j	0	1	2	3	4	5	6	7	8	9
i		Уj	E	M	Р	Ι	R	Ι	С	Α	L
0	Xi	0	1	2	3	4	5	6	7	8	9
1	I	1	R 1								
2	М	2	R D 2								
3	Р	3	R D 3								
4	E	4									
5	R	5									
6	I	6									
	_							-			

```
8: for j = 1 to n

9: for i = 1 to m

10: c = x<sub>i</sub> == y<sub>j</sub> ? 0 : 1

11: d[i,j] = min(d[i-1,j] + 1, d[i,j-1] + 1, d[i-1,j-1] + c)
```

	j	0	1	2	3	4	5	6	7	8	9
i		Уj	E	M	Р	Ι	R	Ι	С	Α	L
0	Xi	0	1	2	З	4	5	6	7	8	9
1	Ι	1	R 1								
2	M	2	R D 2								
3	Р	3	R D 3								
4	E	4	K 3								
5	R	5									
6	I	6									
_								-			

```
8: for j = 1 to n

9: for i = 1 to m

10: c = x<sub>i</sub> == y<sub>j</sub> ? 0 : 1

11: d[i,j] = min(d[i-1,j] + 1, d[i,j-1] + 1, d[i-1,j-1] + c)
```

			-		_						
	j	0	1	2	3	4	5	6	7	8	9
i		Уj	E	M	Р	Ι	R	Ι	С	Α	L
0	Xi	0	1	2	3	4	5	6	7	8	9
1	I	1	R 1								
2	М	2	R D 2								
3	Р	3	R D 3								
4	E	4	K 3								
5	R	5	D 4								
6	I	6									
_	_							-			

```
8: for j = 1 to n

9: for i = 1 to m

10: c = x<sub>i</sub> == y<sub>j</sub> ? 0 : 1

11: d[i,j] = min(d[i-1,j] + 1, d[i,j-1] + 1, d[i-1,j-1] + c)
```

Exercise 3: Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

$$F(n) = \begin{cases} 0, & \text{if } n = 0 \\ 1, & \text{if } n = 1 \\ F(n-1) + F(n-2), & \text{otherwise} \end{cases}$$

Exercise 3: Fibonacci Sequence

```
NAÏVE-FIBONACCI(n)
1: if n == 0
2: return 0
3: if n == 1
4: return 1
5: return NAÏVE-FIBONACCI(n-1) + NAÏVE-FIBONACCI(n-2)
```

Running time of NAÏVE-FIBONACCI:

$$T(n) = O(2^{0.694n})$$

Exercise 3: Fibonacci Sequence

```
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
BOTTOM-UP-FIBONACCI(n)
                                                  F(n) = \begin{cases} 0, & \text{if } n = 0 \\ 1, & \text{if } n = 1 \\ F(n-1) + F(n-2), & \text{otherwise} \end{cases}
 1: if n == 0
 2: return 0
 3: let f[0..n] be a new array
 4: f[0] = 0
 5: f[1] = 1
 6: ?
 8: ?
```

What is the running time of BOTTOM-UP-FIBONACCI?

if n = 0

Exercise 4: Fibonacci Challenge

D&C Fibonacci Revisited

Naïve:

$$F(n) = \begin{cases} 0, & \text{if } n = 0 \\ 1, & \text{if } n = 1 \\ F(n-1) + F(n-2), & \text{otherwise} \end{cases}$$

Let's rewrite Fibonacci

$$F(n) = F(2k) = F(k)^2 + 2F(k)F(k-1)$$
 for even n
 $F(n) = F(2k-1) = F(k)^2 + F(k-1)^2$ for odd n

$$F(n) = \begin{cases} 0, & \text{if } n = 0 \\ 1, & \text{if } n = 1 \\ F(\lceil n/2 \rceil)^2 + 2F(\lceil n/2 \rceil)F(\lceil n/2 \rceil - 1), & \text{if } n \ge 2 \text{ and } n \text{ is even} \\ F(\lceil n/2 \rceil)^2 + F(\lceil n/2 \rceil - 1)^2, & \text{if } n \ge 2 \text{ and } n \text{ is odd} \end{cases}$$

Exercise 4: Fibonacci Challenge

D&C Fibonacci Revisited

```
F(n) = \begin{cases} 0, & \text{if } n = 0 \\ 1, & \text{if } n = 1 \end{cases}
F([n/2])^2 + 2F([n/2])F([n/2] - 1), & \text{if } n \ge 2 \text{ and } n \text{ is even}
F([n/2])^2 + F([n/2] - 1)^2, & \text{if } n \ge 2 \text{ and } n \text{ is odd}
```

```
DC-FIBONACCI(n)
1: if n == 0 || n == 1
2:    return n
3: else
4: ?
```

What is the running time?

Exercise 5: Coin Change Problem

Coin change is the problem of finding the least number of coins for a given amount of money.

For example, the UK coin set contains the following coins:

- 1p, 2p, 5p, 10p, 20p, 50p, £1, £2, and £5 (very uncommon).
- For £2.82, the optimal change is £2, 50p, 20p, 10p, 2p.

1. Write a mathematical recurrence equation that determines the least number of coins.

2. Devise a pseudo-code, bottom-up dynamic programming algorithm coin_change(n,coins).

CO202 – Software Engineering – Algorithms Greedy Algorithms - Exercises

Exercise 1: Implement Fractional Knapsack

FRACTIONAL-KNAPSACK(v,w,K)

i	1	2	3
v_i	60	100	120
w_i	10	20	30
v_i/w_i	6	5	4

Exercise 2: Solving 0-1 Knapsack

```
5: for i = 1 to n
6: c[i,0] = 0
7: for j = 1 to K
8: if w[i] ≤ j
9: c[i,j] = max(v[i] + c[i-1,j-w[i]], c[i-1,j])
10: else
11: c[i,j] = c[i-1,j]
```


j	0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

Exercise 3: Coin Change Problem

Prove that a greedy strategy of picking the highest valued coin which is less or equal than the remaining amount is not guaranteed to produce optimal results.

Exercise 4: Planning a Party

Invite as many people as possible from a set of n people, such that

- Every person invited should know at least five other people that are invited
- 2. Every person invited should not know at least five other people that are invited

Hint: Maximizing the number of invitees is the same as minimizing the number of people that are not invited.

CO202 – Software Engineering – Algorithms Randomised Algorithms - Exercises

Exercise 1: Illustrate the Operations of Partition

```
A = \langle 3, 5, 2, 1, 8, 9 \rangle
PARTITION(A,p,r)
 1: x = A[r]
 2: i = p-1
 3: for j = p to r-1
 4: if A[j] \leq x
            i = i+1
 5:
            SWAP(A[i],A[j])
 6:
 7: SWAP(A[i+1],A[r])
 8: return i+1
```

Exercise 2: The Original Partition Algorithm

```
A = \langle 3, 5, 2, 1, 8, 9 \rangle
HOARE-PARTITION(A,p,r)
 1: x = A[p]
2: i = p
 3: j = r+1
4: while TRUE
 5:
   repeat
            j = j-1
 6:
        until A[j] \le x or j == p
7:
8:
    repeat
            i = i+1
9:
        until A[i] \ge x or i == r
10:
11:
        if i < j
12:
            SWAP(A[i],A[j])
      else
13:
14:
            SWAP(A[p],A[j])
15:
            return j
```

Exercise 3: Randomised BST Insert

```
\langle 2, 3, 1, 5, 7, 8, 9 \rangle \langle 0, 1, 0, 1, 1, 0, 0 \rangle
INSERT-RAND(t,z)
1: if t == NIL
2:
        return z
 3: r = RANDOM(1, t.size+1)
4: if r == 1
        return ROOT-INSERT(t,z)
6: if z.key < t.key
        t.left = INSERT-RAND(t.left,z)
8: else
        t.right = INSERT-RAND(t.right,z)
10: t.size = t.size + 1
11: return t
ROOT-INSERT(t,z)
1: if t == NIL
 2:
        return z
 3: if z.key < t.key
        t.left = ROOT-INSERT(t.left,z)
4:
                                              LEFT-ROTATE(t)
                                                                                 RIGHT-ROTATE(t)
        t.size = t.size + 1
 5:
                                                                                  1: l = t.left
                                               1: r = t.right
        return RIGHT-ROTATE(t)
                                               2: t.right = r.left
                                                                                  2: t.left = 1.right
7: else
                                               3: r.left = t
                                                                                  3: 1.right = t
        t.right = ROOT-INSERT(t.right,z)
8:
                                               4: r.size = t.size
                                                                                  4: 1.size = t.size
        t.size = t.size + 1
9:
                                                                                  5: t.size -= 1.left.size + 1
                                               5: t.size -= r.right.size + 1
10:
        return LEFT-ROTATE(t)
                                               6: return r
                                                                                  6: return 1
```

Exercise 4: Approximating Pi

How can we approximate pi using random numbers?

Exercise 5: Finding the k-th Smallest Element

Given set $A = \{a_1, ..., a_n\}$, find the k-th smallest Element

CO202 – Software Engineering – Algorithms String Matching - Exercises

Exercise 1: Prefix Function - Example 3

Complete the prefix function table

$$\pi[q] = \max\{k : k < q \text{ and } P_k \supset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10	11
P[i]	а	Ь	r	а	C	а	đ	а	b	r	а
$\pi[i]$											

String Matching

Exercise 2: Boyer-Moore Preprocessing

BCR Table

GSR Table

i	1	2	3	4	5	6	7	8	9	10	11
P[i]	а	b	r	а	C	а	d	а	b	r	а
gsr[i]											

Exercise 3: Worst-Case of Boyer-Moore

Show that the worst-case running time of the BM-MATCHER algorithm is O(nm).

Exercise 4: Prefix Function as String Matcher

1) Devise an algorithm PF-MATCHER that uses the prefix function directly to find all occurrences of P in T?

2) What is the running time complexity of this method?

String Matching 4

CO202 – Software Engineering – Algorithms Radix Search - Exercises

Exercise 1: Digital Search Trees

Draw the DST that results when you insert the following keys in that order into an initially empty tree

Е	00101
Α	00001
S	10011
Υ	11001
Q	10001
U	10101
Т	10100
I	01001
0	01111
Ν	01110

EASYQUTION

Exercise 2: Binary Search Tries

Draw the binary trie that results when you insert the following keys in that order into an initially empty trie

Е	00101
Α	00001
S	10011
Y	11001
Q	10001
U	10101
Т	10100
I	01001
0	01111
N	01110

EASYQUTION

Exercise 3: Patricia Tries

Draw the Patricia trie that results when you insert the following keys in that order into an initially empty trie

Е	00101
Α	00001
S	10011
Y	11001
Q	10001
U	10101
Т	10100
I	01001
0	01111
N	01110

EASYQUTION

Exercise 3: Patricia Tries

Draw the Patricia trie that results when you insert the following keys in that order into an initially empty trie

Е	00101
Α	00001
S	10011
Y	11001
Q	10001
U	10101
Т	10100
I	01001
0	01111
N	01110

E A S Y Q U T I O N

CO202 – Software Engineering – Algorithms **Graph Algorithms - Exercises**

Exercise 1: Optimal Substructure of Shortest Path

Lemma: Given a weighted, directed graph G = (V, E) with weight function $w: E \to \mathbb{R}$, let $p = \langle v_0, v_1, ..., v_k \rangle$ be a shortest path from vertex v_0 to v_k and, for any i and j such that $0 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ be the subpath of p from vertex v_i to v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Exercise 2: Good guys, bad guys

There are two types of professional wrestlers: "babyfaces" (good guys) and "heels" (bad guys). Between any pair of professional wrestlers, there may or may not be a rivalry.

Suppose we have n professional wrestlers and we have a list of r pairs of wrestlers for which there are rivalries.

Task: Devise a strategy using graph algorithms that assigns each wrestler to one of the two types such that no rivalry exists between wrestlers of the same type.

Hint: This might not always be possible.

Exercise 3: Max-Flow/Min-Cut

С	S	1	2	3	4	t
S	0	9	3	0	0	0
1	0	0	2	0	7	0
2	0	0	0	6	0	0
3	0	0	0	0	3	6
4	0	0	0	0	0	5
t	s 0 0 0 0 0	0	0	0	0	0

f	S	1	2	3	4	t
S	0	5	3	0	0	0
1	-5	0	2	0	3	0
2	-3	-2	0	5	0	0
3	0	0	-5	0	2	0 0 0 3 5
4	0	-3	0	-2	0	5
t	0	0	0	-3	-5	0

