

Report No:CCISE160503503

FCC REPORT

(WIFI)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 15.6 inches Android touch LCD Media Player

Model No.: DT156-AC4-1080, 502-1596ATATM

FCC ID: 2AB6ZDT156-AC4-1080

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Jun.,2016

Date of Test: 12 Jun., to 14 Jun., 2016

Date of report issued: 16 Jun., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description	
00	16 Jun., 2016	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMBA-V2) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.	

Tested by: Date: 16 Jun., 2016

Test Engineer

Date: 16 Jun., 2016

Project Enginee

Reviewed by:

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	8
	5.6	LABORATORY LOCATION	8
	5.7	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	16
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	Radiated Emission Method	36
7	TES	T SETUP PHOTO	44
8	FUT	CONSTRUCTIONAL DETAILS	45

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247(d)	Pass*
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMBA-V2.

Test according to ANSI C63.4:2014 and ANSI C63.10:2013

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address of Manufacturer/ Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

Remark:	Model No.: DT156-AC4-1080, 502-1596ATATM were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different Model Number for customer and for HUNG WAI.	
AC Adapter:	Model: PS24A120K2000UD Input: AC100-240V 50/60Hz 1.0A Output: DC 12.0V, 2000mA	
Antenna gain:	2.0dBi	
Antenna Type:	Omni-directional	
Data speed (IEEE 802.11n):	Up to 150Mbps	
Data speed (IEEE 802.11g): 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48		
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Channel separation:	5MHz	
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))	
Model No.:	DT156-AC4-1080, 502-1596ATATM	
Product Name:	15.6 inches Android touch LCD Media Player	

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCISE160503503

5.3 Test environment andmode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup"1Mbps for 802.11b,6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40).Duty cycle setting during the transmission is100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Report No: CCISE160503503

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Project No.: CCISE1605035

5.7 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Manufacturer Model No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017					
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017					
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.0dBi

Project No.:CCISE1605035

6.2 Conducted Emission

0.2	Conducted Linissio	••						
	Test Requirement:	FCC Part15 C Section 15.207						
	Test Method:	ANSI C63.4:2014						
	TestFrequencyRange:	150kHz to 30MHz						
	Class / Severity:	Class B						
	Receiver setup:	RBW=9kHz, VBW=30kHz						
		Frequency range (MHz)	Limit (d	dBuV)				
		. , , ,	Quasi-peak	Average				
	Limit:	0.15-0.5	66 to 56*	56 to 46*				
		0.5-5	56	46				
		5-30 * Decreases with the logarithm	60	50				
	Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. 						
	Test setup:	Reference LISN 40cm 40cm E.U.T Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	80cm LISN Filter	— AC power				
	Test Instruments:	Refer to section 5.7 for details						
	Test mode:	Refer to section 5.3 for details						
	Test results:	Passed						

Measurement Data

Neutral:

Trace: 13

Site Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 15.6" Android touch LCD Media Player EUT

Model : DT156-AC4-1080 Test Mode : WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

COMMIN	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu∀	<u>d</u> B	
1	0.175	47.56	0.17	10.77	58.50	64.72	-6.22	QP
2	0.179	36.37	0.17	10.77	47.31	54.55	-7.24	Average
3	0.219	28.56	0.16	10.76	39.48	52.88	-13.40	Average
1 2 3 4 5	0.220	41.41	0.16	10.76	52.33	62.83	-10.50	QP
5	0.235	40.96	0.16	10.75	51.87	62.26	-10.39	QP
6	0.239	30.64	0.16	10.75	41.55	52.13	-10.58	Average
7 8 9	0.280	26.15	0.16	10.74	37.05	50.81	-13.76	Average
8	0.289	35.48	0.16	10.74	46.38	60.54	-14.16	QP
9	0.360	28.90	0.16	10.73	39.79	48.74	-8.95	Average
10	0.454	37.41	0.16	10.74	48.31	56.80	-8.49	QP
11	0.454	26.15	0.16	10.74	37.05	46.80	-9.75	Average
12	0.521	35.59	0.16	10.76	46.51	56.00	-9.49	QP

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.:CCISE1605035

Line:

Trace: 15

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 15.6" Android touch LCD Media Player : DT156-AC4-1080 EUT

Model Test Mode : WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

Kemaik	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
1000	MHz	dBu∜	<u>d</u> B		dBu₹	dBu∜	<u>dB</u>	
1	0.180	48.30	0.26	10.77	59.33	64.50	-5.17	QP
2	0.180	36.33	0.26	10.77	47.36	54.50	-7.14	Average
3	0.226	41.27	0.26	10.75	52.28	62.61	-10.33	QP
1 2 3 4 5 6 7 8 9	0.226	26.46	0.26	10.75	37.47	52.61	-15.14	Average
5	0.285	32.62	0.26	10.74	43.62	60.68	-17.06	QP
6	0.356	24.54	0.26	10.73	35.53	48.83	-13.30	Average
7	0.360	31.95	0.26	10.73	42.94	58.74	-15.80	QP
8	0.449	31.62	0.27	10.74	42.63	56.89	-14.26	QP
9	0.449	25.71	0.27	10.74	36.72	46.89	-10.17	Average
10	0.469	24.35	0.27	10.75	35.37	46.54	-11.17	Average
11	0.585	22.07	0.27	10.77	33.11	46.00	-12.89	Average
12	7.100	32.58	0.53	10.80	43.91	60.00	-16.09	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2014 and KDB558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2

6.4 Occupy Bandwidth

1 7						
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.4:2014 and KDB558074					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2					

6.5 Power Spectral Density

•	
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2014 and KDB558074
Limit:	8dBm
Test setup:	Spectrum Analyzer
	Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test metidificities.	
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2014 and KDB558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2				

6.6.2 Radiated Emission Method

addated Emission Method							
Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4:2014						
TestFrequencyRange:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency Detector RBW VBW Rema Above 1GHz Peak 1MHz 3MHz Peak Value Peak 1MHz 3MHz Average Value						
Limit:	Freque Above		_imit (dBuV/ 54.0 74.0	0	Remark Average Value Peak Value		
Test Procedure:	the ground todetermin 2. The EUT vantenna, was tower. 3. The antennathe ground Both horized make the result of find the specified Both the limits per of the EUT have 10dB peak or averse and total peak or averse and total the limits per of the EUT have 10dB peak or averse and total the limits per of the EUT have 10dB peak or averse and total the limits per of the EUT have 10dB peak or averse and the limits per of the EUT have 10dB peak or averse and the limits per of the EUT have 10dB peak or averse and the limits per of the EUT have 10dB peak or averse and the limits per of the l	at a 3 meter can e the position of vas set 3 meters whichwas mount in a height is various to determine the contal and vertical measurement. uspected emiss henthe antennal different the rotatablew maximum reading eceiver system wandwidth with No sion level of the ecified, then test wouldbe report	me top of a romber. The top of a romber. The top of a romber. The top of a romber of the top of the	trating table table was rot radiation. It he interfer to for a variant was arrant to heights from 0 degree tak Detect old Mode. It has a se the emisone by one	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above are field strength. Intenna are set to aged to its worst from 1 meter to 4 es to 360 degrees Function and s 10dB lower than and the peak values assions that did not using peak, quasi-		
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table 1.5m im Amplifier						
Test Instruments:	Refer to section	5.7 for details					
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6" Android touch LCD Media Player Condition

EUT

: DT156-AC4-1080 Model Test mode : B-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	275		Antenna Factor						Remark
-	MHz	dBu₹	dB/m	d <u>B</u>	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
	2390.330 2390.330				0.00 0.00				

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android touch LCD Media Player Condition

EUT

Model DT156-AC4-1080

: B-L Mode Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

Jima	200		Antenna Factor				Limit Line	Over Limit	
-	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1000	2390.000 2390.000					51.77 39.57			Peak Average

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6 Android touch LCD Media Player : DTA AC4-1080 Condition

EUT

Model Test mode : B-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5C

Huni:55%

Test Engineer: MT

REMARK

LIL.	11									
	100		Antenna				Limit			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∀	$\overline{dB/m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B		-
	2483.500	21.04	23.70	6.85	0.00	51.59	74.00	-22.41	Peak	
	2483, 500	10, 23	23, 70	6, 85	0.00	40.78	54,00	-13.22	Average	

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition

EUT

Model Test mode : B-H Mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

			Antenna Factor				Limit Line		
- 1	MHz	dBu∇	— <u>d</u> B/m	dB	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>ab</u>	
1 2	2483.500 2483.500								Peak Average

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11q

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6" Android touch LCD Media Player Condition

EUT

: DT156-AC4-1080 Model

Test mode : G-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor						
	MHz	dBu₹		dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	2390.000								
2	2390, 000	13, 02	23, 68	6, 63	0.00	43.33	54.00	-10.67	Average

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android touch LCD Media Player Condition

EUT

: DT156-AC4-1080 Model Test mode : G-L Mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT

REMARK

м	TU :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	$\overline{-dB/m}$	āĒ	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
	2390.000	24.86	23.68	6.63	0.00	55.17	74.00	-18.83	Peak
	2390.000	12.74	23.68	6.63	0.00	43.05	54.00	-10.95	Average

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT

Model : DT156-AC4-1080 Test mode : G-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	975		Antenna Factor				Limit Line		Remark
-	MHz	dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500					51.84 39.90			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition

EUT

Model

Test mode : G-H Mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
3	MHz	<u>d</u> Bu∇	$-\overline{dB}/\overline{m}$	d <u>B</u>	<u>d</u> B	dBu√/m	dBuV/m	<u>d</u> B		
	2483.500 2483.500				0.00					

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition

EUT

Model Test mode : N20-L Mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor						
-	MHz	dBu∀	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000								

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition

EUT

Model : N20-L Mode Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Read	Antenna	Cable	Preamo		Limit	Over	
Freq		Factor						
MHz	dBu₹	<u>dB</u> /m	₫B	dB	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	 100
2390,000 2390,000					59.49			

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 : N20-H Mode Condition

EUT

Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT REMARK :

MI.									
	Freq		Antenna Factor						
9	MHz	dBuV	<u>dB</u> /m	₫B	<u>dB</u>	dBuV/m	dBuV/m	dB	
	2483.500 2483.500								

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition

EUT

Model : N20-H Mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

1	u :	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483, 500	20, 17	23, 70	6, 85	0.00	50.72	74.00	-23, 28	Peak

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6" Android touch LCD Media Player Condition

EUT

: DT156-AC4-1080 Model : N40-L Mode : AC120V/60Hz Test mode Power Rating:

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT

REMARK

лини		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∜	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>		
	2390.000 2390.000		23.68 23.68	6.63 6.63		48.75 39.43				

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition

EUT

Model : N40-L Mode : AC120V/60Hz Test mode Power Rating :

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor						
1	MHz	dBu₹	$-\overline{dB}/\overline{m}$	d <u>B</u>	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
	2390.000 2390.000				0.00 0.00				

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition

EUT

Model Test mode : N40-H Mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

ш	LATE.										
	Fre	q		Antenna Factor						Remark	
	MH	z ·	dBu∀	— <u>dB</u> /m		<u>ab</u>	dBuV/m	dBu∀/m	<u>d</u> B		-
	2483.50 2483.50	100		23.70 23.70	6.85 6.85			74.00 54.00		Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android touch LCD Media Player Condition

EUT

: DT156-AC4-1080 Model Test mode : N40-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

0.975(0.)	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1000	483.500 483.500				0.00				Peak Average

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

T (D : (F00 B (45 0 0 () 45 047 (1)					
Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2014 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4:2014							
TestFrequencyRange:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
r to conver detap.	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value							
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value							
	Above 1GHz Peak 1MHz 3MHz Peak Value							
	Above 1GHz RMS 1MHz 3MHz Average							
Limit:		ı						
	Frequency Limit (dBuV/m @3m) Rema							
	30MHz-88MHz 40.0 Quasi-pe							
	88MHz-216MHz 43.5 Quasi-peak \ 216MHz-960MHz 46.0 Quasi-peak \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
	216MHz-9	Quasi-peak Value						
	960MHz-	1GHz	54.0		Quasi-peak Value			
	Above 1	GHz	54.0 74.0		Average Value			
Test Procedure:	1. The EUT w	as placed on			Peak Value e 0.8 meters above			
TOSCI TOGGGGG.	the ground todetermine The EUT wantenna, watower. The antenrathe ground Both horizon make the nate of the find the nate of the EUT have 10dB	at a 3 meter can the position of the position	amber. The ta of the highes rs away from nted on the to ried from one the maximum cal polarization ssion, the EU a was tuned from was turned from was set to P Maximum Ho e EUT in pea sting could be rted. Otherwi-	able was rot t radiation. the interfer op of a varia e meter to for a value of the ons of the an T was arran to heights from 0 degre eak Detect old Mode. ak mode wa e stopped a ise the emis one by one	ated 360 degrees rence-receiving able-height antenna our meters above re field strength. Intenna are set to reged to its worst rom 1 meter to 4 res to 360 degrees			

Below 1GHz

Horizontal:

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL

EUT : 15.6° Android touch LCD Media Player

Model : DT156-AC4-1080

Test mode : WIFI mode

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Humi: 55% 101KPc

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Viki REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	44.275	41.49	17.52	1.28	29.87	30.42	40.00	-9.58	QP
2	94.098	51.02	8.53	2.01	29.55	32.01	43.50	-11.49	QP
3	191.745	53.72	9.79	2.81	28.89	37.43	43.50	-6.07	QP
4	211.527	52.43	10.78	2.86	28.76	37.31	43.50	-6.19	QP
5	352.943	52.03	14.22	3.10	28.57	40.78	46.00	-5.22	QP
6	420.580	48.35	16.03	3.13	28.82	38.69	46.00	-7.31	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition

EUT

Model Test mode : WIFI mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Viki REMARK :

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∜		<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	39.994	45.40	16.90	1.21	29.90	33.61	40.00	-6.39	QP
2	140.835	49.02	11.63	2.41	29.27	33.79	43.50	-9.71	QP
2 3 4	280.024	49.13	12.20	2.89	28.48	35.74	46.00	-10.26	QP
4	352.943	50.79	14.22	3.10	28.57	39.54	46.00	-6.46	QP
5	494.199	44.09	16.72	3.57	28.94	35.44	46.00	-10.56	QP
6	807.429	43.52	20.66	4.33	28.17	40.34	46.00	-5.66	QP

Above 1GHz

Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.61	31.54	10.58	40.22	48.51	74.00	-25.49	Vertical
4824.00	44.84	31.54	10.58	40.22	46.74	74.00	-27.26	Horizontal
Test mode: 8	02.11b		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	38.04	31.54	10.58	40.22	39.94	54.00	-14.06	Vertical
4824.00	35.76	31.54	10.58	40.22	37.66	54.00	-16.34	Horizontal

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Pea	Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.11	31.57	10.64	40.15	48.17	74.00	-25.83	Vertical	
4874.00	46.27	31.57	10.64	40.15	48.33	74.00	-25.67	Horizontal	
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.60	31.57	10.64	40.15	39.66	54.00	-14.34	Vertical	
4874.00	37.85	31.57	10.64	40.15	39.91	54.00	-14.09	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.59	31.61	10.70	40.08	46.82	74.00	-27.18	Vertical
4924.00	44.78	31.61	10.70	40.08	47.01	74.00	-26.99	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.59	31.61	10.70	40.08	38.82	54.00	-15.18	Vertical
4924.00	36.53	31.61	10.70	40.08	38.76	54.00	-15.24	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test chan	inel: Lowest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.41	31.54	10.58	40.22	48.31	74.00	-25.69	Vertical
4824.00	45.06	31.54	10.58	40.22	46.96	74.00	-27.04	Horizontal
Test mode: 80)2.11g		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.72	31.54	10.58	40.22	38.62	54.00	-15.38	Vertical
4824.00	35.66	31.54	10.58	40.22	37.56	54.00	-16.44	Horizontal

Test mode: 80	est mode: 802.11g			nel: Middle		Remark: Pea	Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.58	31.57	10.64	40.15	48.64	74.00	-25.36	Vertical	
4874.00	47.33	31.57	10.64	40.15	49.39	74.00	-24.61	Horizontal	
Test mode: 80	Test mode: 802.11g		Test chan	nel: Middle		Remark: Ave	rago		
100011110000.00	<i>72.</i> 1 19		1 CSt Chan	ilici. iviidaic		Noman. Ave	raye		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.	

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.02	31.61	10.70	40.08	47.25	74.00	-26.75	Vertical
4924.00	44.85	31.61	10.70	40.08	47.08	74.00	-26.92	Horizontal
Test mode: 8	02.11g		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	35.69	31.61	10.70	40.08	37.92	54.00	-16.08	Vertical
4924.00	35.85	31.61	10.70	40.08	38.08	54.00	-15.92	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	LimitLine (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.25	31.54	10.58	40.22	48.15	74.00	-25.85	Vertical
4824.00	45.57	31.54	10.58	40.22	47.47	74.00	-26.53	Horizontal
Test mode: 802.11n(H20)			Toot obor	nalı I avvaat		Domorki Avo		
restinioue. o	02. i in(H20)		rest char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.63	31.57	10.64	40.15	48.69	74.00	-25.31	Vertical
4874.00	46.58	31.57	10.64	40.15	48.64	74.00	-25.36	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.73	31.57	10.64	40.15	38.79	54.00	-15.21	Vertical
4874.00	37.11	31.57	10.64	40.15	39.17	54.00	-14.83	Horizontal

Test mode: 802.11n(H20)		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.44	31.61	10.70	40.08	48.67	74.00	-25.33	Vertical
4924.00	45.23	31.61	10.70	40.08	47.46	74.00	-26.54	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	37.49	31.61	10.70	40.08	39.72	54.00	-14.28	Vertical
4924.00	35.11	31.61	10.70	40.08	37.34	54.00	-16.66	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	45.70	31.55	10.61	40.19	47.67	74.00	-26.33	Vertical
4844.00	46.00	31.55	10.61	40.19	47.97	74.00	-26.03	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	36.21	31.55	10.61	40.19	38.18	54.00	-15.82	Vertical
4844.00	36.71	31.55	10.61	40.19	38.68	54.00	-15.32	Horizontal

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.44	31.57	10.64	40.15	48.50	74.00	-25.50	Vertical
4874.00	47.22	31.57	10.64	40.15	49.28	74.00	-24.72	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.97	31.57	10.64	40.15	39.03	54.00	-14.97	Vertical
4874.00	37.85	31.57	10.64	40.15	39.91	54.00	-14.09	Horizontal

Test mode: 802.11n(H40)		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	46.35	31.59	10.67	40.10	48.51	74.00	-25.49	Vertical
4904.00	46.37	31.59	10.67	40.10	48.53	74.00	-25.47	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	36.72	31.59	10.67	40.10	38.88	54.00	-15.12	Vertical
4904.00	37.64	31.59	10.67	40.10	39.80	54.00	-14.20	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.