Statistical Data Analysis

Dr. Jana de Wiljes

11. Januar 2022

Universität Potsdam

What is a graph (formally)?

The objects on the following slides will play a major role in this course.

- $G = (V, E(\omega))$ where $V \neq \emptyset$ is a set (called the **vertex set**),
- $(E) \subset \binom{V}{2} = \{\{u, v\} : u, v \in V\} \text{ (called the edge set) and } \omega : (E) \to \mathbb{R}^3, \text{ is called a}$ (weighted) graph
 - usually we choose (or rename) $V = \{1, 2, ..., n\}$ and use the notations $(ij) = \{i, j\}$ for $\{i, j\} \in E$ and $(\omega_{ij}) = \omega(ij)$
 - for every i ∈ V define
 N(i) := {j ∈ V : ij ∈ E}, called the
 neighbourhood of i (in G); elements of
 N(i) are called neighbours of i (those

elements are **adjacent** to i)

Graph classes

Well known graph classes are:

- P 5
- the **path graph** P_n has vertex set $\{1, 2, ..., n\}$ and edge set $\{\{1, 2\}, \{2, 3\}, ..., \{n 1, n\}\}$
- the **cycle graph** C_n has vertex set $\{1, 2, ..., n\}$ and edge set $\{\{1, 2\}, \{2, 3\}, ..., \{n 1, n\}, \{n, 1\}\}$
- the **complete graph** K_n consists of n vertices which are all adjacent to each other $\binom{\kappa_0}{2}$
- the **complete bipartite graph** $K_{m,n}$ has two sets V_1 and V_2 of vertices of sizes m and n, such that the edge set consists of all possible edges between V_1 and V_2

A set of vertices in a graph which are all adjacent to each other (they **induce** a complete (sub)graph), is called **clique**.

The graph $\widehat{K_{1,n}}$ is called a **star**.

What is a digraph (formally)?

Edges can have a direction.

- $G = (V, E, \omega)$ where $V \neq \emptyset$ is a set, $E \subset V \times V$ (this is sometimes also called the **set of arcs**) and $\omega : E \to \mathbb{R}^+$, is called a **(weighted) digraph**
- for (i, j) ∈ E the vertex i is called predecessor of j and j is called successor of i
- similar notation simplifications as before
- $(N^+(i)) := \{j \in V : (i,j) \in E\}$ is the out-neighbourhood of i, $N^-(i) := \{j \in V : (j,i) \in E\}$ is the in-neighbourhood of i
- $d^+(i) := |N^+(i)|$ is the **out-degree** of i and $d^-(i) := |N^-(i)|$ is the **in-degree** of i

81,28 = 81,13

Example of a multigraph

It is sometimes necessary to allow multiple edges between two vertices or a **loop** (a self-edge). In that case we use the term **multigraph**.

What is a hypergraph (formally)?

Sometimes more than two vertices need to form an edge (certain real life situations' have this property).

- natural generalisation is a **hypergraph** H = (V)E), where
 - $V \neq \emptyset$ is (also) a set, but
 - E can be an arbitrary subset (the elements are called hyperedges) of the power set P(V)
- if all hyperedges are of the same size r, then H is called r-uniform

Storing graphs

Certain matrices and lists can be associated with a graph (we will see more examples later).

- affinity matrix W(G):

 - **adjacency matrix** A(G); special case of W(G), where $w_{ij} = 1$ for all
- adjacency list:

 $ii \in E$.

- NV
- · associate list to every vertex containing its neighbours
- call list of these lists adjacency list of the graph (treated differently ' in the literature)
- not very useful for mathematical arguments
- especially useful (for storing) when A(G) is sparse

All the above constructions are valid for directed graphs.

E = { [1, 399] [7,3] {39,3}

How to transform a digraph into a graph?

Consider the following three approaches.

- ignore the directions
- carry out cocitation coupling
 - existence of common predecessors induce edges
 - weights are naturally given by number of common predecessors
- carry out bibliographic coupling
 - existence of common successors induce edges
 - weights are naturally given by number of common successors

Cocitation coupling

A (undirected) graph is constructed via:

- ullet cocitation c_{ij} of $i,j\in V$ is the number of common predecessors of i and j
- the **cocitation network** has vertex set V and an edge between i and j iff $c_{ij} > 0$
- ullet it is also possible to obtain a weighted graph with weights c_{ij}
- note that $c_{ij} = \sum_{k=1}^{n} a_{ki} a_{kj}$, therefore $C = A^{T} A$

Bibliographic coupling

A (undirected) graph is constructed via:

- **bibliographic coupling** b_{ij} of $i, j \in V$ is the number of common successors of i and j
- the **bibliographic coupling network** has vertex set V and an edge between i and j iff $b_{ii} > 0$
- ullet it is also possible to obtain a weighted graph with weights b_{ij}
- note that $b_{ij} = \sum_{k=1}^{n} a_{ik} a_{jk}$, therefore $B = AA^{T}$

How to transform a hypergraph into a graph?

The following constructions are standard.

- clique expansion
 - the vertex set is V
 - each hyperedge e is replaced by an edge for every pair of vertices in e
 - this construction yields cliques for every hyperedge
- star expansion
 - vertex set is $V \cup E$
 - edge between u and e iff $u \in e$
 - every hyperedge corresponds to a star
- there are more...

Clique expansion

The clique expansion $G^x = (V^x, E^x)$ is constructed from H = (V, E) via:

- $V^{\times} = V$
- $E^{\times} = \{\{i,j\} : \exists e \in E \text{ with } i,j \in e\}$

Star expansion

The star expansion $G^* = (V^*, E^*)$ is constructed from H = (V, E) via:

What if data without network structure is given?

Solution: Build your own graph!

- given a set of data points $x_1, x_2, ..., x_n$ and some notion of similarity $s_{ij} \ge 0$ between all pairs of data points x_i and x_j
- build graph G = (V, E), where the vertex i represents the data point x_i , so

$$V = \{1, 2, \dots, n\}$$

$$\bullet \left(\{i, j\} \in E \text{ if } (s_{ij} > 0)\right)$$

- edge weight $\omega_{ij} = s_{ij}$ (edge weights represent similarities)
- *G* is called **similarity graph** (although with this particular choice of edges it is often referred to as the **fully connected graph**)

graph for $\{x_i, x_j, x_l\}$ with $s_{ij}, s_{jl} > 0$ and $s_{il} = 0$

The ε -neighbourhood graph

The ε -neighbourhood graph is constructed as follows:

- vertices are data points
- fix some $\varepsilon > 0$
- ullet connect all vertices whose similarities are smaller than ε
- \bullet since ε is usually small, values of existing edges are roughly of the same scale
- hence usually unweighted

The (mutual) k-nearest neighbour graph

The k-nearest neighbour graph is constructed as follows:

- vertices are data points
- fix some k > 0
- connect i to the k nearest (w.r.t. s_{ij}) k vertices via an edge starting at i
- obtain an undirected graph by ignoring the directions

The mutual k-nearest neighbour graph is constructed as follows:

- vertices are data points
- fix some k
- connect i to the k nearest (w.r.t. s_{ij}) k vertices via an edge starting at i
- obtain an undirected graph by deleting all non symmetric edges

Graph Partitioning and Community

Detection

Difference

Graph Partitioning (GP)

- partition vertices into given number of groups
- sizes of groups are (roughly) fixed
- many edges inside groups, few edges between groups
- goal: dividing network into smaller more manageable pieces
- example:
 - numerical solution of network processes on a parallel computer

Community Detection (CD)

- partition vertices into groups
- sizes of groups are not fixed
- many edges inside groups, few edges between groups
- goal: understanding structure of a network
- examples:
 - collaboration
 - related web pages

Why is partitioning hard?

Problem

Partition vertex set into two parts (graph bisection).

n vertices into parts of sizes n_1 and n_2 ($n_1 + n_2 = n$):

- $\binom{n!}{n_1!n_2!}$ possibilities (half of it if order is ignored and $n_1=n_2$)
- using Stirling's formula $n! \approx \sqrt{2\pi n} (n/e)^n$ we get

$$\frac{n!}{n_1! n_2!} \approx \frac{n^{n+1/2}}{n_1^{n_1+1/2} n_2^{n_2+1/2}}$$

• for a balanced partition $(n_1 \approx n_2)$:

roughly
$$\frac{2^{n+1}}{\sqrt{n}}$$
 possibilities

Therefore, exhausitive search is usually unfeasible.