

CUSCO: A Customizable Solution for NFV Composition

Vinicius Fulber-Garcia, <u>Marcelo C. Luizelli</u>, Carlos R. P. dos Santos, Elias P. Duarte Júnior

Summary

- Introduction
- Related Work
- CUSCO: CUstomazable Service COmposing
- Case Study
 - Setup
 - Experimentation
 - Results
- Final Remarks

Introduction

Current Network Infrastructure

- Physical appliances
- Core network ossification

Network Function Virtualization (NFV)

- Decoupling of network functions from their associated hardware
- Current virtualization techniques
- Network service and service topology

- Network Service Deployment

- Acquisition, preparation and operationalization
- Inter-related stages

Introduction

NFV Resource Allocation (NFV-RA)

- "Main part of the service deployment"
- Constituted of three tasks
 - Composition
 - Embedding
 - Schedule

- Composition

- Absolute positioning of network functions in a service topology
- Operational model (service topology / relationship graphs)
- Dependencies and policies
- Objective functions
- Service Function Chaining Request (SFCR)

Introduction

Related Work

- Partially Ordered Service Topologies
 - Solution by Mehraghdam
 - Traffic ratio
 - Solution by Draxler
 - Traffic ratio, Resources usage, topology size
- Network Functions Relationship Graph
 - Solution by Ocampo
 - Bandwidth requirements
 - Solution by Gil
 - Bandwidth requirements
 - Solution by Wang
 - Network function priority level

Service Composition Problems?

SERVICE TOPOLOGY DESCRIPTION

- → Generic branching structures support
- → Network function dependencies

TOPOLOGY ANALYSIS

→ Branching structures manipulation

OBJECTIVE FUNCTION

- → Static metrics
- → Non-customizable processment

Network services composition solution that enables the user to configure and customize the entire composition process.

SCAG: Service ChAin Grammar

- Service Topology Specification
 Model
- Context-free Grammar
- Support of:
 - Partially ordered segments
 - Network function dependencies (ordering and coupling)
 - Infrastructure dependencies (domains)
 - Generic branching structures (terminal and non-terminal)

```
1 START → 'IN' MAIN
2 MAIN → TBRANCHING | NTBRANCHING |
      OPERATIONAL MAIN | OPERATIONAL EN
3 NTBMAIN → INTBRANCHING | OPERATIONAL
      NTBMAIN | OPERATIONAL
4 OPERATIONAL → PORDER | FUNCTION
5 PORDER → '[' FUNCTION NEUNCTION ']'
      EDEPENDENCY | '[' FUNCTION NFUNCTION ']'
6 EDEPENDENCY → EORDERING | ECOUPLING
7 EORDERING → '(' FUNCTION FUNCTION ')'
      EDEPENDENCY | '(' FUNCTION FUNCTION ')'
8 ECOUPLING → '(' FUNCTION FUNCTION '*' ')'
      EDEPENDENCY | '(' FUNCTION FUNCTION '*'
 9 TBRANCHING → OPERATIONAL '{' MAIN TBRANCH '
10 TBRANCH → '/' MAIN TBRANCH | '/' MAIN
11 NTBRANCHING → OPERATIONAL '{' NTBMAIN
      NTBRANCH ' | ' MAIN
12 NTBRANCH → '/' NTBMAIN NTBRANCH | '/'
      NTBMAIN
13 INTBRANCHING → OPERATIONAL '{' NTBMAIN
      NTBRANCH ' \' NTBMAIN
14 FUNCTION → VNF | VNF ADDEPENDENCY
15 NEUNCTION → FUNCTION NEUNCTION | FUNCTION
16 ADDEPENDENCY → '<' ADMDOMAIN '>'
17 VNF \rightarrow 'VNF#1', 'VNF#2', ..., 'VNF#n'
18 ADMDOMAIN \rightarrow 'AD#1', 'AD#2', ..., 'AD#n'
19 EN \rightarrow 'EN#1', 'EN#2', ..., 'EN#n'
```

Figura 1. SCAG Production Rules

YAMLR: YAML Request

- Extensible Request Model

Configuration Flexibility

Turn on/off some specific steps executed by the solution

- Evaluation Flexibility

- Multi-criteria evaluation
 - Multiple metrics with different granularities
 - Evaluation metrics defined by the users
- Weighting
 - Each metric has a particular weight defined by the user
- <u>Indexing</u>
 - A single value is returned (Suitability Index SI)

Two procedures

- (I) Topologies expansion; (II) Topologies evaluation

- Topology Expansion

- **Proc. #1**: partial ordering permutations
- **Proc. #2**: branching structures remodelling

- Partial Ordering Permutations

- Permutation with constraints
 - <u>Permutation</u> -> Partially ordered segments
 - Constraints -> NF dependencies (ordering and coupling)
- Exhaustive -> Generates all possible permutations

Branching Structures Remodelling

- Identical segments in every branch of the same branching structure
- Reduction to single instance in a common segment of the service topology:
 - Initial segment (terminal and non-terminal branching structures)
 - Final segment (non-terminal branching structures)

- Topologies Evaluation

- **Proc. #1**: partial results generation
- **Proc. #2**: candidates evaluation

Partial Results Generation

- Partial function
- <u>Iteration</u> (partial function evaluation + input update)
- Partial results
- Mapping + Normalization + Complementation

- Candidates Evaluation

- Weighting + Summing (= Suitability Index)
- Ranking

Case Study [Setup]

HTTP/S-based Network Service

- Filtering of ports and anomalous/suspicious packets
- Inspection of signatures (HTTPS) and key-words (HTTP)
- Load balancing between HTTP/S servers

- Seven Network Functions

- Python 3
- Click Modular Router

- Objective Function

- Traffic Ratio (%)
- HTTP/S request response ratio (req/s)
- Topology size

(ii) FPP CT { [HIPS SDPI MF] (SDPI MF *) / [HIPS CDPI MF] (CDPI MF *) } LB

Case Study [Experimentation]

- Nine candidates returned from the topologies expansion
 - All of them evaluated and ranked by their SI
- Three candidates were selected to be deployed and tested

#1: SI 0.666

Best SI

Partial TR: 0.333
Partial RR: 0
Partial Size: 0.333

#2: SI 0.500

Best SI with maximum RR

Partial TR: 0.167 Partial RR: 0.333 Partial Size: 0

#3: SI 0.327

Worst SI

Partial TR: 0
Partial RR: 0.161
Partial Size: 0.166

Case Study [Experimentation]

- Start: simultaneous for Il clients
- **End:** conclusion of 5000 legitimate requests (each client)
- Three Scenarios:
 - Normal traffic
 - UDP overload
 - DDoS low rate attack

Case Study [Results]

	0.666 s sı sı sial TR: 0.333 ial RR: 0 cial Size: 0.333 0.500 s sı with maximum RR ial TR: 0.167 cial RR: 0.333 ial Size: 0 0.327 st sı st sı ial TR: 0 ial RR: 0.333 ial Size: 0 Sce. #1: 28.839 Sce. #2: 46.534 Sce. #3: 33.462 Avg: 36.278 Sce. #1: 29.381 Sce. #2: 47.226 Sce. #3: 0	Minimi	zation
	HTTP/S request response ratio (req/s)	Average Traffic Ratio (Mbps)	Topology Size and Computational Resource Usage
SI 0.666 Best SI Partial TR: 0.333 Partial RR: 0 Partial Size: 0.333		Sce. #1: 2.002 Sce. #2: 20.645 Sce. #3: 37.929 Avg: 20.192	7 3584 MB RAM 7 Virtual Cores
SI 0.500 Best SI with maximum RR Partial TR: 0.167 Partial RR: 0.333 Partial Size: 0	Sce. #1: 28.839 Sce. #2: 46.534 Sce. #3: 33.462 Avg: 36.278	Sce. #1: 1.935 Sce. #2: 21.976 Sce. #3: 59.631 Avg: 27.847	9 4608 MB RAM 9 Virtual Cores
SI 0.327 Worst SI Partial TR: 0 Partial RR: 0.161 Partial Size: 0.166	Sce. #2: 47.226	Sce. #1: 1.966 Sce. #2: 20.864 Sce. #3: * Avg: *	8 4096 MB RAM 8 Virtual Cores

Final Remarks

- The Construction of Topologies Was Correct
 - All the generated topologies provide the same service
- The Composition Method Works Correctly
 - Conciliated multiple metrics with different granularities
 - Weighted the partial results
 - Generated the suitability index and the ranking
- Future Work
 - Generalization of the composition method
 - Composition, embedding and Scheduling
 - Integration to marketplaces/providers
 - "Deployment-as-a-Service"

CUSCO: A Customizable Solution for NFV Composition Thanks!!

Vinicius Fulber-Garcia vfgarcia@inf.ufpr.br

https://github.com/ViniGarcia/ViNeFuRhttps://github.com/ViniGarcia/NFV-FLERAS

	Objective	Weight	Candidate #1	Candidate #2	
Metric 01	Maximization	0,3	100	30	
Metric 02	Minimization	0,7	1	0,6	

	Maximum	Мар	ping	Norma	lization	Complen	nentation	Weig	hting	Inc	lex
	Absolute Distance	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2
Mtc. 01											
Mtc. 02											

Appendix - Candidates Evaluation

	Candidate #1	Candidate #2
Metric 01	100	30
Metric 02	1	0,6

	Maximum	Мар	ping	Normalization		Complementation		Weighting		Index	
	Absolute Distance	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2
Mtc. 01											
Mtc. 02											

	Candidate #1	Candidate #2
Metric 01	100	30
Metric 02	1	0,6

	Maximum Mapping N Absolute		Norma	lization	Complen	nentation	Weighting		Index		
	Distance	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2
Mtc. 01	[0, 70]										
Mtc. 02	[0, 0,4]										

	Maximum	Mapping C. #1 C. #2		Normalization		Complen	nentation	Weig	hting	Index	
	Absolute Distance	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2
Mtc. 01	[0, 70]	70	0								
Mtc. 02	[0, 0,4]	0,4	0								

	Maximum	Mapping C. #1 C. #2		Normalization		Complen	nentation	Weighting		Index	
	Absolute Distance	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2
Mtc. 01	[0, 70]	70	0	1	0						
Mtc. 02	[0, 0,4]	0,4	0	1	0						

	Weight
Metric 01	0,3
Metric 02	0,7

	Maximum	Мар	ping	Normalization		Complementation		Weighting		Index	
	Absolute Distance	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2
Mtc. 01	[0, 70]	70	0	1	0	1	0				
Mtc. 02	[0, 0,4]	0,4	0	1	0	0	1				

	Maximum	Мар	Mapping		Normalization		Complementation		hting	Index	
	Absolute Distance	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2
Mtc. 01	[0, 70]	70	0	1	0	1	0	0,3	0		
Mtc. 02	[0, 0,4]	0,4	0	1	0	0	1	0	0,7		

	Objective	Weight	Candidate #1	Candidate #2	
Metric 01	Maximization	0,3	100	30	
Metric 02	Minimization	0,7	1	0,6	

	Maximum Absolute Distance	Mapping		Normalization		Complementation		Weighting		Index	
		C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2	C. #1	C. #2
Mtc. 01	[0, 70]	70	0	1	0	1	0	0,3	0	0.2	
Mtc. 02	[0, 0,4]	0,4	0	1	0	0	1	0	0,7	0,3	0,7

Appendix - Case Study [Experimentation]

Composição Candidata	Agregados	Normalização	Complementação	Ponderação	IAT	Função Objetivo
NE EQ1 EQ4 EQ2 (EQ2 / EQ4)	tt: 127,1	tt: 0	tt: 1	tt: 0,333		
NE EO1 EO6 EO2 { EO3 / EO4 } EO5 EO7 NS	dtr: -1853,7	dtr: 1	dtr: 0	dtr: 0	0,666	1°
	tam: 7	tam: 0	tam: 1	tam: 0,333		
NE EO1 EO6 EO2 { EO3 EO5 /	tt: 127,1	tt: 0	tt: 1	tt: 0,333		
EO4 EO5 } EO7 NS	dtr: -1932,6	dtr: 0,517	dtr: 0,483	dtr: 0,161	0,660	2°
	tam: 8	tam: 0,5	tam: 0,5	tam: 0,166		
NE EO1 EO2 { EO6 EO3 / EO6 EO4 } EO5 EO7 NS	tt: 138,3	tt: 0,5	tt: 0,5	tt: 0,167		
	dtr: -1938,2	dtr: 0,483	dtr: 0,417	dtr: 0,172	0,505	3°
	tam: 8	tam: 0,5	tam: 0,5	tam: 0,166		
NE EO1 EO2 { EO6 EO3 EO5 /	tt: 138,3	tt: 0,499	tt: 0,501	tt: 0,167		
	dtr: -2017,1	dtr: 0	dtr: 1	dtr: 0,333	0,500	4°
EO6 EO4 EO5 } EO7 NS	tam: 9	tam: 1	tam: 0	tam: 0		
NE EO1 EO2 (EO2 EO5 EO6 /	tt: 143,9	tt: 0,749	tt: 0,251	tt: 0,083		
NE EO1 EO2 { EO3 EO5 EO6 /	dtr: -2017,1	dtr: 0	dtr: 1	dtr: 0,333	0,416	5°
EO6 EO4 EO5 } EO7 NS	tam: 9	tam: 1	tam: 0	tam: 0		
NE EO1 EO2 { EO6 EO3 EO5 /	tt: 143,9	tt: 0,749	tt: 0,251	tt: 0,083		
	dtr: -2017,1	dtr: 0	dtr: 1	dtr: 0,333	0,416	5°
EO4 EO5 EO6 } EO7 NS	tam: 9	tam: 1	tam: 0	tam: 0		
NE FO1 FO2 (FO2 FO5 FO6 /	tt: 149,5	tt: 1	tt: 0	tt: 0		
NE EO1 EO2 { EO3 EO5 EO6 /	dtr: -2017,1	dtr: 0	dtr: 1	dtr: 0,333	0,333	6°
EO4 EO5 EO6 } EO7 NS	tam: 9	tam: 1	tam: 0	tam: 0		
NE FO1 FO2 (FO2 / FO4)	tt: 149,5	tt: 1	tt: 0	tt: 0		
NE EO1 EO2 { EO3 / EO4 } EO5 EO6 EO7 NS	dtr: -1853,7	dtr: 1	dtr: 0	dtr: 0	0,333	6°
EO3 EO0 EO / NS	tam: 7	tam: 0	tam: 1	tam: 0,333		
NE EQ1 EQ2 (EQ2 EQ5 /	tt: 149,5	tt: 1	tt: 0	tt: 0		
NE EO1 EO2 { EO3 EO5 /	dtr: -1932,6	dtr: 0,517	dtr: 0,483	dtr: 0,161	0,327	7°
EO4 EO5 } EO6 EO7 NS	tam: 8	tam: 0,5	tam: 0,5	tam: 0,166		

Appendix - Case Study [Experimentation]

- Physical Machine #1 (Clients)
 - Ubuntu 14.04
 - KVM hypervisor
 - 8 GB RAM DDR3
 - Core I3 4010U

- Physical Machine #2 (Services)

- Debian 8
- KVM Hypervisor
- 8 GB RAM DDR3
- Core I5 3330

Appendix - Case Study [Experimentation]

- Tools

- HTTP-PERF (legitimate clients)
- HPING3 (UDP traffic)
- NPING (malicious clients)

- DDoS Configuration

- Aims to overload the inspector functions
 - Thus making the network infrastructure unavailable
- Low-rate (10 Mbps)
- Anomalous packets of 1450 bytes
- Never stops during the test