

Extreme Learning Machines and Its applications in Fault Detection

Yang Hu

Research Associate

ZHAW Zurich University of Applied Sciences
Institute for Data Analysis and Process Design (IDP)

- Extreme Learning Machines Theory
- **➤** Comparison with SVM
- > Performance Analysis
- > Further Discussions

Single Layer Feedforward Neural Networks (SLFN)

Output of additive hidden nodes:

$$G(\mathbf{a}_i, b_i, \mathbf{x}) = g(\mathbf{a}_i \cdot \mathbf{x} + b_i)$$

Output of RBF hidden nodes:

$$G(\mathbf{a}_i, b_i, \mathbf{x}) = g(b_i || \mathbf{x} - \mathbf{a}_i ||)$$

The output function of SLFNs is:

$$f_L(x) = \sum_{i=1}^L \beta_i G(\mathbf{a}_i, b_i, \mathbf{x})$$

 β_i : Output weight vector connecting the *i*th hidden node and the output nodes

Single Layer Feedforward Neural Networks (SLFN)

- Approximation capability [Leshno 1993, Park and Sandberg 1991]: Any continuous target function f(x) can be approximated by SLFNs with adjustable hidden nodes. In other words, given any small positive value ε, for SLFNs with enough number of hidden nodes (L) we have ||f_L(x) f(x)|| < ε.
- Classification capability [Huang, et al 2000]: As long as SLFNs can approximate any continuous target function $f(\mathbf{x})$, such SLFNs can differentiate any disjoint regions.

Single Layer Feedforward Neural Networks (SLFN)

- Many learning methods mainly based on gradient-descent / iterative approaches have been developed over the past three decades.
 - Back-Propagation (BP) [Rumelhart 1986] and its variants are most popular.
- Least-square (LS) solution for RBF network, with single impact factor for all hidden nodes. [Broomhead and Lowe 1988]
- QuickNet (White, 1988) and Random vector functional network (RVFL) [Igelnik and Pao 1995]
- Support vector machines and its variants. [Cortes and Vapnik 1995]
- Deep learning: dated back to 1960s and resurgence in mid of 2000s [wiki 2015]

Single Layer Feedforward Neural Networks (SLFN)

Learning Issues:

- Most effects are focus on how to adjust hidden nodes;
- Learning is somehow inefficiency

Question:

- Do we really need so many learning methods to iteratively train the SLFN?
- How can we make learning efficient?

Extreme Learning Machines (ELM)

-- "Generalized" SLFN

Output function of "generalized" SLFNs:

$$f_L(x) = \sum_{i=1}^L \beta_i G(\mathbf{a}_i, b_i, \mathbf{x})$$

The hidden layer output function (hidden layer mapping, ELM feature space):

$$\boldsymbol{h}(x) = [G(\mathbf{a}_1, b_1, \mathbf{x}), \cdots, G(\mathbf{a}_L, b_L, \mathbf{x})]$$

The output functions of hidden nodes can be but are not limited to:

Sigmoid: $G(\mathbf{a}_i, b_i, \mathbf{x}) = g(\mathbf{a}_i \cdot \mathbf{x} + b_i)$

 $G(\mathbf{a}_i, b_i, \mathbf{x}) = g(b_i || \mathbf{x} - \mathbf{a}_i ||)$ RBF:

Fourier Series: $G(\mathbf{a}_i, b_i, \mathbf{x}) = \cos(\mathbf{a}_i \cdot \mathbf{x} + b_i)$

How to train ELM?

$$f_L(\mathbf{x}) = \sum_{i=1}^{L} \beta_i G(a_i, b_i, \mathbf{x}) = \mathbf{H}\beta$$

$$\mathbf{H} = \begin{bmatrix} \mathbf{h}(\mathbf{x}_1) \\ \vdots \\ \mathbf{h}(\mathbf{x}_N) \end{bmatrix} = \begin{bmatrix} h_1(\mathbf{x}_1) & \cdots & h_L(\mathbf{x}_1) \\ \vdots & \vdots & \vdots \\ h_1(\mathbf{x}_N) & \vdots & h_L(\mathbf{x}_N) \end{bmatrix}$$

How to train ELM?

$$f_L(\mathbf{x}) = \sum_{i=1}^{L} \beta_i G(a_i, b_i, \mathbf{x}) = \mathbf{H}\beta$$

Given a training set $\{(\mathbf{x}_i, \mathbf{t}_i) | \mathbf{x}_i \in \mathbf{R}^d, \mathbf{t}_i \in \mathbf{R}^m, i = 1, \dots, N\}$, hidden node output function $G(\mathbf{a}, b, \mathbf{x})$, and the number of hidden nodes L,

Equivalent ELM optimization formula:

$$\min_{\beta \in \mathbf{R}^{L \times m}} \quad \frac{1}{2} \|\beta\|^2 + \frac{C}{2} \sum_{i=1}^{N} \|\mathbf{e}_i\|^2 \qquad \Longrightarrow \quad \min_{\beta \in \mathbf{R}^{L \times m}} \quad L_{\text{ELM}} = \frac{1}{2} \|\beta\|^2 + \frac{C}{2} \|\mathbf{T} - \mathbf{H}\beta\|^2$$

s.t.
$$\mathbf{h}(\mathbf{x}_i)\boldsymbol{\beta} = \mathbf{t}_i^T - \mathbf{e}_i^T, \quad i = 1, ..., N.$$

ridge regression or regularized least squares

$$\frac{\partial L_{ELM}}{\partial \beta} = \beta - C\mathbf{H}^{T} (\mathbf{T} - \mathbf{H}\beta) = 0 \qquad \Longrightarrow \qquad \boldsymbol{\beta}^{*} = \left(\mathbf{H}^{T} \mathbf{H} + \frac{\mathbf{I}}{C}\right)^{-1} \mathbf{H}^{T} \mathbf{T}$$

How to train ELM?

$$f_L(\mathbf{x}) = \sum_{i=1}^{L} \beta_i G(a_i, b_i, \mathbf{x}) = \mathbf{H}\beta$$

Simple Math is Enough!

Given a training set $\{(\mathbf{x}_i, \mathbf{t}_i) | \mathbf{x}_i \in \mathbf{R}^d, \mathbf{t}_i \in \mathbf{R}^m, i = 1, \dots, N\}$, hidden node output function $G(\mathbf{a}, b, \mathbf{x})$, and the number of hidden nodes L,

- Assign randomly hidden node parameters (\mathbf{a}_i, b_i) , $i = 1, \dots, L$.
- Calculate the hidden layer output matrix $\mathbf{H} = \begin{bmatrix} h(\mathbf{x}_1) \\ \vdots \end{bmatrix}$.
- Calculate the output weights β . $\beta^* = \left(\mathbf{H}^T\mathbf{H} + \frac{\mathbf{I}}{C}\right)^{-1}\mathbf{H}^T\mathbf{T}$

Extreme Learning Machines (ELM)

-- "Generalized" SLFN

- Essence of ELM
 - Hidden layer need not be tuned.
 - "randomness" is just one of ELM's implementation, but not all
 - Some conventional methods adopted "semi-randomness"
 - Hidden layer mapping h(x) satisfies universal approximation conditions.
 - Minimize: $\|\mathbf{H}\boldsymbol{\beta} \mathbf{T}\|_p$ and $\|\boldsymbol{\beta}\|_q$
 - (norm *p* and *q* could have different values, $q = 1, \frac{1}{2}, 2, \cdots$)
 - It satisfies both ridge regress theory [Hoerl and Kennard 1970] and neural network generalization theory [Bartlett 1998].

Support Vector Machine

Support Vector Machine

an Alternative Solution of SLFN

SVM optimization formula

minimize:
$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i$$

subject to: $t_i(\mathbf{w} \cdot \phi(\mathbf{x}) + b) \ge 1 - \xi_i, \forall i$
 $\xi_i \ge 0, \forall i$

LS-SVM optimization formula

minimize:
$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 + C \frac{1}{2} \sum_{i=1}^{N} \xi_i^2$$

subject to: $t_i(\mathbf{w} \cdot \phi(\mathbf{x}) + b) = 1 - \xi_i, \forall i$

Typical kernel function:

$$K(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \|\mathbf{x} - \mathbf{y}\|^2)$$

The decision function of SVM and LS-SVM is:

$$f(x) = \operatorname{sign}\left(\sum_{s=1}^{N_s} \alpha_s t_s K(\mathbf{x}, \mathbf{x}_s) + b\right)$$

Support Vector Machine

an Alternative Solution of SLFN

- LS-SVM: Based on Equality Constraint Conditions [Suykens and Vandewalle 1999]
 - LS-SVM optimization formula:

Minimize:
$$L_{P_{LS-SVM}} = \frac{1}{2} \|\mathbf{w}\|^2 + C \frac{1}{2} \sum_{i=1}^{N} \xi_i^2$$

subject to: $t_i(\mathbf{w} \cdot \phi(\mathbf{x}_i) + b) = 1 - \xi_i$, $\forall i$

- The corresponding dual optimization problem:

In LS-SVM optimal α_i are found from one hyper plane

Minimize:
$$L_{DLS-SVM} = \frac{1}{2} \|\mathbf{w}\|^2 + C \frac{1}{2} \sum_{i=1}^{N} \xi_i^2 - \sum_{i=1}^{N} \alpha_i (t_i(\mathbf{w} \cdot \phi(\mathbf{x}_i) + b) - 1 + \xi_i)$$

subject to:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i t_i \phi(\mathbf{x}_i), \alpha_i = C\xi_i, t_i(\mathbf{w} \cdot \phi(\mathbf{x}_i) + b) - 1 + \xi_i = 0, \forall i$$

$$\sum_{i=1}^{N} \alpha_i t_i = 0$$

Support Vector Machine

an Alternative Solution of SLFN

- ELM: Based on Equality Constraint Conditions [Huang, et al 2012]
 - ELM optimization formula:

Minimize:
$$L_{P_{ELM}} = \frac{1}{2} ||\boldsymbol{\beta}||^2 + C \frac{1}{2} \sum_{i=1}^{N} ||\boldsymbol{\xi}_i||^2$$

subject to: $\boldsymbol{h}(\mathbf{x}_i) \boldsymbol{\beta} = \boldsymbol{t}_i^T + \boldsymbol{\xi}_i^T, \forall i$

- The corresponding dual optimization problem:

Minimize:
$$L_{D_{ELM}} = \frac{1}{2} \|\boldsymbol{\beta}\|^2 + C \frac{1}{2} \sum_{i=1}^{N} \|\boldsymbol{\xi}_i\|^2 - \sum_{i=1}^{N} (\boldsymbol{h}(\mathbf{x}_i) \boldsymbol{\beta} - \boldsymbol{t}_i^T + \boldsymbol{\xi}_i^T) \boldsymbol{\alpha}_i$$

subject to: $\boldsymbol{\beta} = \mathbf{H}^T \boldsymbol{\alpha}, \boldsymbol{\alpha}_i = C \boldsymbol{\xi}_i, \boldsymbol{h}(\mathbf{x}_i) \boldsymbol{\beta} - \boldsymbol{t}_i^T + \boldsymbol{\xi}_i^T = 0, \forall i$

Support Vector Machine

an Alternative Solution of SLFN

ELM (based on inequality constraint conditions) and SVM have the same dual optimization objective functions, but in ELM optimal α_i are found from the entire cube $[0, C]^N$ while in SVM optimal α_i are found from one hyperplane $\sum_{i=1}^N \alpha_i t_i = 0$ within the cube $[0, C]^N$. SVM always provides a suboptimal solution, so does LS-SVM.

TABLE II SPECIFICATION OF BINARY CLASSIFICATION PROBLEMS

Datasets	# train	# test	# features	Random Perm
Diabetes	512	256	8	Yes
Australian Credit	460	230	6	Yes
Liver	230	115	6	Yes
Banana	400	4900	2	No
Colon	30	32	2000	No
Colon (Gene Sel)	30	32	60	No
Leukemia	38	34	7129	No
Leukemia (Gene Sel)	38	34	60	No
Brightdata	1000	1462	14	Yes
Dimdata	1000	3192	14	Yes
Mushroom	1500	6624	22	Yes
Adult	4781	27780	123	No

TABLE III
SPECIFICATION OF MULTICLASS CLASSIFICATION PROBLEMS

Datasets	# train	# test	# features	# classes	Random Perm
Iris	100	50	4	3	Yes
Glass	142	72	9	6	Yes
Wine	118	60	13	3	Yes
Ecoli	224	112	7	8	Yes
Vowel	528	462	10	11	No
Vehicle	564	282	18	4	Yes
Segment	1540	770	19	7	Yes
Satimage	4435	2000	36	6	No
DNA	2000	1186	180	3	No
Letter	13333	6667	16	26	Yes
Shuttle	43500	14500	9	7	No
USPS	7291	2007	256	10	No

TABLE IV SPECIFICATION OF REGRESSION PROBLEMS

Datasets	# train	# test	# features	Random Perm
Baskball	64	32	4	Yes
Cloud	72	36	9	Yes
Autoprice	106	53	9	Yes
Strike	416	209	6	Yes
Pyrim	49	25	27	Yes
Bodyfat	168	84	14	Yes
Cleveland	202	101	13	Yes
Housing	337	169	13	Yes
Balloon	1334	667	2	Yes
Quake	1452	726	3	Yes
Space-ga	2071	1036	6	Yes
Abalone	2784	1393	8	Yes

TABLE VI PERFORMANCE COMPARISON OF SVM, LS-SVM, AND ELM: BINARY CLASS DATA SETS

Datasets	SVM		LSSVM			Extreme Learning Machine										
						Gaussian Kernel			Sigmoid Additive Node			Multiquadrics RBF Node				
	Test	ing	Training	Test	ing	Training	Test	ting	Training	Tes	ting	Training	Tes	sting	Training	
	Rate	Dev	Time	Rate	Dev	Time	Rate	Dev	Time	Rate	Dev	Time	Rate	Dev	Time	
	(%)	(%)	(s)	(%)	(%)	(s)	(%)	(%)	(s)	(%)	(%)	(s)	(%)	(%)	(s)	
										$f(\mathbf{x}) = \operatorname{sign}\left(\mathbf{h}(\mathbf{x})\mathbf{H}'\right)$			$T \left(\frac{\mathbf{I}}{C} + \mathbf{H} \mathbf{H}^T \right)^{-1} \mathbf{T}$			
Diabete	76.97	2.70	0.6759	77.18	2.07	0.1406	77.52	2.46	0.0528	77.95	2.18	0.2075	78.09	2.17	0.2306	
Australian	85.79	2.03	0.7042	85.91	1.85	0.1250	86.29	1.43	0.0403	86.18	1.80	0.1709	86.70	1.90	0.1691	
Credit Liver Banana Colon Colon (Gene Sel) Leukemia Leukemia (Gene Sel)	72.65 89.84 84.38 84.38 82.34 100	3.61 0 0 0 0	0.5616 0.8120 0.1617 0.0462 1.007 0.0494	71.98 89.63 81.25 87.50 85.29 100	3.37 0 0 0 0	0.0625 0.0620 0.4531 0.0469 1.703 0.0625	72.14 89.83 84.38 90.63 82.35 100	3.74 0 0 0 0	0.0066 0.0469 0.0031 0.0010 0.0309 0.0003	73.01 89.61 81.63 89.62 80.08 100	3.78 0.05 3.32 2.85 3.85 0	0.0528 0.1350 0.1103 0.0075 0.4288 0.0075	71.57 89.30 82.13 87.50 83.47 100	0.04 0.01 1.55 0 3.41	0.0531 0.1416 0.1472 0.0072 0.5550 0.0106	
										$f(\mathbf{x}) = \operatorname{sign}\left(\mathbf{h}(\mathbf{x})\left(\frac{\mathbf{I}}{C} + \mathbf{H}^T \mathbf{H}\right)^{-1} \mathbf{H}^T \mathbf{T}\right)$				$\mathbf{H}^T\mathbf{T}$		
Brightdata	99.46	0.23	1.289	99.24	0.17	0.5413	98.91	0.25	0.2984	99.31	0.2	0.7573	99.31	0.17	0.7401	
Dimdata	95.85	0.27	0.8908	95.19	0.35	0.5781	95.89	0.34	0.2734	95.75	0.29	0.749	95.67	0.26	0.75	
Mushroom	89.88	0.43	46.56	88.87	0.41	1.531	88.84	0.36	0.8133	88.91	0.36	1.038	88.88	0.33	1.047	
* Adult	84.51	0	29.382	84.79	0	5.5703	84.58	0	3.3116	84.59	0.05	0.4246	84.51	0.02	0.5682	

TABLE VII
PERFORMANCE COMPARISON OF SVM, LS-SVM, AND ELM: MULTICLASS DATA SETS

Datasets	SVM			LSSVM			Extreme Learning Machine								
					Gaussian Kernel			Kernel	Sigmoid Additive Node Multiquadrics RBF					RBF Node	
	Test	ing	Training	Test	ing	Training	Test	ting	Training	Tes	ting	Training	Tes	ting	Training
	Rate	Dev	Time	Rate	Dev	Time	Rate	Dev	Time	Rate	Dev	Time	Rate	Dev	Time
	(%)	(%)	(s)	(%)	(%)	(s)	(%)	(%)	(s)	(%)	(%)	(s)	(%)	(%)	(s)
									$\mathbf{f}(\mathbf{x}) = \mathbf{h}(\mathbf{x})\mathbf{H}^T \left(\frac{\mathbf{I}}{C} + \mathbf{H}\mathbf{H}^T\right)^{-1} \mathbf{T}$						
Iris	95.12	2.45	0.075	96.28	2.36	0.0021	96.04	2.37	0.0022	97.6	2.29	0.0156	97.33	2.12	0.0161
Glass	67.83	4.67	0.2871	67.22	5.04	0.0097	68.41	4.81	0.0026	67.12	4.99	0.0262	66.89	4.97	0.0264
Wine	98.37	1.41	0.075	97.63	1.82	0.0043	98.48	1.7	0.0019	98.47	1.81	0.0222	98.57	1.26	0.0206
Ecoli	86.56	3.65	0.2469	85.93	2.82	0.0244	87.48	2.8	0.008	87.23	2.88	0.053	87.79	2.74	0.054
Vowel	56.28	0	2.172	52.81	0	0.3290	58.66	0	0.0688	53.73	0.91	0.2187	54.75	0.89	0.2231
Vehicle	84.37	1.71	1.5144	83.19	1.93	0.2029	83.16	1.89	0.0831	83.48	1.78	0.2557	83.95	1.85	0.2547
										$\mathbf{f}(\mathbf{x}) = \mathbf{h}(\mathbf{x}) \left(\frac{\mathbf{I}}{C} + \mathbf{H}^T \mathbf{H} \right)^{-1} \mathbf{H}^T \mathbf{T}$				Т	
Segment	96.53	0.64	14.30	96.12	0.75	4.302	96.53	0.54	0.9272	96.07	0.69	1.889	95.54	0.41	1.070
Satimage	89.75	0	698.4	90.05	0	82.67	92.35	0	15.70	89.8	0.32	2.808	89.06	0.38	2.803
DNA	92.86	0	7732	93.68	0	6.359	96.29	0	2.156	93.81	0.24	1.586	94.81	0.32	1.597
* Letter	92.87	0.26	302.9	93.12	0.27	335.838	97.41	0.13	41.89	93.51	0.15	0.7881	93.96	0.15	1.4339
* shuttle	99.74	0	2864.0	99.82	0	24767.0	99.91	0	4029.0	99.64	0.01	3.3379	99.65	0.02	5.5455
* USPS	96.14	0	12460	96.76	0	59.1357	98.9	0	9.2784	96.28	0.28	0.6877	97.25	0.24	0.9008

TABLE VIII
PERFORMANCE COMPARISON OF SVM, LS-SVM, AND ELM: REGRESSION DATA SETS

Datasets		SVR		LSSVR			Extreme Learning Machine								
							Ga	ussian Ker	nel	Sigmoid Additive Node			Multiquadrics RBF Node		
	Test	ting	Training	Tes	ting	Training	Tes	ting	Training	Tes	ting	Training	Tes	ting	Training
	RMSE	Dev	Time(s)	RMSE	Dev	Time(s)	RMSE	Dev	Time(s)	RMSE	Dev	Time(s)	RMSE	Dev	Time(s)
											$f(\mathbf{x}) = \mathbf{h}$	$\mathbf{n}(\mathbf{x})\mathbf{H}^T$	$\left(\frac{\mathbf{I}}{C} + \mathbf{H}\mathbf{H}\right)$	T^{T}	
Baskball	0.162	0.0138	0.0160	0.1564	0.0165	0.0010	0.1617	0.0175	0.0005	0.1629	0.0169	0.0066	0.1630	0.0155	0.0094
Cloud	0.3262	0.0668	0.0151	0.3049	0.0203	0.0008	0.3061	0.0239	0.0013	0.3165	0.0178	0.0063	0.2969	0.0243	0.0130
Autoprice	0.1776	0.0179	0.0620	0.1601	0.0217	0.0031	0.1697	0.015	0.0020	0.1710	0.0165	0.0188	0.1678	0.0189	0.0247
Strike	0.2282	0.0078	1.578	0.2479	0.0106	0.0531	0.2322	0.0128	0.0358	0.2985	0.0053	0.0791	0.2646	0.0186	0.1651
Pyrim	0.128	0.0315	0.0160	0.1272	0.0388	0.0006	0.0921	0.0167	0.0003	0.1194	0.0311	0.0059	0.1486	0.0369	0.0083
Bodyfat	0.0279	0.0081	0.0470	0.0280	0.0129	0.0059	0.0242	0.0131	0.0028	0.0286	0.0083	0.0231	0.0262	0.0113	0.0354
Cleveland	0.1646	0.0067	0.0930	0.1605	0.0071	0.0075	0.1618	0.0088	0.0053	0.1603	0.0070	0.0284	0.1609	0.0093	0.0474
Housing	0.0976	0.0085	0.2040	0.0704	0.0068	0.0343	0.0744	0.0106	0.0197	0.0805	0.0077	0.0616	0.0779	0.0084	0.1005
										$f(\mathbf{x}) = \mathbf{h}(\mathbf{x}) \left(\frac{\mathbf{I}}{C} + \mathbf{H}^T \mathbf{H} \right)^{-1} \mathbf{H}^T \mathbf{T}$					
Balloon	0.059	0.0034	11.30	0.0536	0.0044	1.072	0.0516	0.0043	0.6084	0.0553	0.0013	0.7688	0.0588	0.0121	1.344
Quake	0.1797	0.0068	19.59	0.1446	0.0079	1.387	0.1712	0.0099	0.6972	0.1649	0.0061	0.7625	0.1696	0.0098	1.607
Space-ga	0.0648	0.0016	52.75	0.0330	0.0008	3.510	0.0338	0.0018	1.770	0.0624	0.0021	1.220	0.0335	0.0013	1.369
Abalone	0.0764	0.0015	113.1	0.0746	0.0021	7.674	0.0768	0.0021	4.112	0.0761	0.0019	1.324	0.0761	0.0023	1.793

ELM can always achieve comparable performance as SVM and LS-SVM with much faster learning speed, especially for the large dataset

Further Discussion

ELM-auto encoder for feature learning

d > L: Compressed Representation

d = L: Equal Dimension Representation

d < L: Sparse Representation

Features represented by the output weights of ELM-AE of MNIST OCR Datasets (with 60000 training samples and 10000 testing samples)

Further Discussion

Deep ELM structure

Different from Deep Learning, All the hidden neurons in ELM as a whole are not required to be iteratively tuned

(b) ELM subnetwork

ELM vs Deep Learning on MINST dataset

Learning Methods	Testing Accuracy	Training Time
H-ELM [Chenwei Deng, et al, 2015]	99.14	281.37s
Multi-Layer ELM (784-700-700-15000-10) [Huang, et al 2013]	99.03±0.04	444.7s
Deep Belief Networks (DBN) (748-500-500-2000-10)	98.87	20580s (5.7 hours)
Deep Boltzmann Machines (DBM) (784-500-1000-10)	99.05	68246s (19 hours)
Stacked Auto Encoders (SAE)	98.6	> 17 hours
Stacked Denoising Auto Encoders (SDAE)	98.72	> 17 hours
[Huang, et al 2013]		

Signal reconstruction method

Signal reconstruction method

Residual plot using ELM and AAKR

ELM

AAKR

Summary

Extreme Learning Machines (ELM)

-- "Generalized" SLFN

Salient Features

- "Simple Math is Enough." ELM is a simple tuning-free three-step algorithm.
- The learning speed of ELM is extremely fast.
- Unlike conventional existence theories, the hidden node parameters are not only independent of the training data but also of each other. Although hidden nodes are important and critical, they need not be tuned.
- Unlike conventional learning methods which MUST see the training data before generating the hidden node parameters, ELM could generate the hidden node parameters before seeing the training data.

Extreme Learning Machines (ELM)

-- "Generalized" SLFN

Guang-Bin Huang Associate Professor

Nanyang Technological University, Singapore

Email: EGBHUANG@NTU.EDU.SG

Phone: (+65)6790 4489

Office: S2.1-B2-06

http://www.ntu.edu.sg/home/egbhuang/

All materials in this PPT related with ELM are coming from this website.