Адаптивный нелинейный метод восстановления матрицы по частичным наблюдениям

О. Городницкий, М. Трофимов

Московский Физико-Технический Институт

Курс: Машинное Обучение и Анализ Данных Группа 374, 2016 Весна

Цель исследования и задача

Цель исследования

Проверить гипотезу о параметризируемости отображений, получить использующий её метод.

Задача

Заполнить пропуски в матрице (тензоре).

Предложение

Использовать настраиваемую функцию представлений вместо фиксированной. Согласно гипотезе это позволит адаптировать функцию для конкретной задачи.

Литература

- Generalized Low Rank Models, Madeleine Udell, Corinne Horn, Reza Zadeh, and Stephen Boyd May 5, 2015.
- Matrix factorization techniques for recommender systems, Koren, R. Bell, and C. Volinsky, 2009
- Parallel Matrix Factorization for Recommender System, Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit S. Dhillon, 2013
- 4 ADADELTA: An Adaptive Learning Rate Method, Matthew D. Zeiler, 2012

Постановка задачи

Постановка задачи

Даны:

- f O Целевая матрица $M\in R^{m imes n}$
- ② множество индексов её известных элементов (наблюдений): $\mathcal{O} = \{(i_k, j_k)\}_{k=1}^l$, где $i_k \in [1, ..., m], j_k \in [1, ..., n]$.

Найти:

① Аппроксимирующую матрицу A, минимизирующую MSE на множестве $\mathcal{D}_{test} = \{(i_k, j_k)\}_{k=1}^h$

Оптимизационная задача

$$\mathbf{A}^* = \operatorname*{argmin}_{\mathbf{A} \in \mathbb{R}^{m \times n}} \frac{1}{|\mathcal{D}_{test}|} \sum_{(i_k, j_k) \in \mathcal{D}_{test}} (A[i_k, j_k] - M[i_k, j_k])^2$$

Решения

Матричная факторизация

- $oldsymbol{0}$ Фиксируем ранг k целевой матрицы M
- $M = UV^T, U \in R^{m \times k}, V \in R^{n \times k}$

Решения

Итерационное сингулярное разложение

- Применяем усеченное SVD к матрице, полученной на предыдущем шаге.
- ② Заменяем потерянные элементы M величинами, полученными из усеченного SVD на предыдущем шаге.
- Повторяем процесс
- Так как SVD может быть применено только к полным матрицам, на первом шаге все потерянные элементы M заменяются средними по строкам.

Решения

Нейросетевая факторизация

Требуется найти параметризацию $\mathcal{F}(i,j,W): d_1 \times d_2 \times R^m \to R$ и параметры $W \in R^m$ такие, что

 $\mathcal{F}(i,j,W)$: $d_1 \times d_2 \times R''' \to R$ и параметры $W \in R'''$ такие, чт на некотором $\mathcal{D}_{test} = \{(i_k,j_k)\}_{k=1}^h$ достигается минимум MSE:

$$\mathcal{F}^*, W^* = \operatorname*{argmin}_{\mathcal{F}, W} \frac{1}{|\mathcal{D}_{test}|} \sum_{(i_k, j_k) \in D_{test}} (M[i_k, j_k] - \mathcal{F}(i_k, j_k, W))^2$$

Параметризация и параметры

$$g(x_1,x_2,x_3) = f(w_{1,1}^2 \times f(w_{1,1}^1 x_1 + w_{2,1}^1 x_2) + w_{2,1}^2 \times f(w_{3,2}^1 x_3))$$

Параметризация - структура, параметры - веса

Теорема (Колмогоров) - любая непрерывная функция может быть приближена с произвольной точностью с помощью суперпозиций операции сложения и нелинейной функции одного аргумента.

Цели эксперимента

- lacktriangled Исследовать задачу для случая, где ${\mathcal F}$ определяется обучающим алгоритмом
- Найти параметризацию, являющуюся оптимальной для данного набора данных
- Получить качество рассматриваемых решений
- Сравнить качество методов Матричной факторизации и Итерационного сингулярного разложения с точностью метода Нейросетевой факторизации.

Данные

Набор данных MovieLens 100К:

- 1000 пользователей
- 2 1700 фильмов
- 3 80000 оценок (ненулевых элементов)
- каждый пользователь оценил не менее 20 фильмов
- оценки выставлялись по шкале [1,2,3,4,5]

Эксперимент

Зависимость ошибки от ранга k для матричной факторизации Лучший результат: MSE = 0.94 при ранге k = 7

Эксперимент

Зависимость ошибки от ранга k для Iterative SVD Лучший результат: MSE = 0.895, при ранге k=2

Эксперимент

Зависимость ошибки от длины представлений k для NNMF Лучший результат: MSE = 0.841, при ранге k=95

Сравнение результатов

Лучшие MSE

	Low Rank	Iterative SVD	NNMF
MSE	0.94	0.895	0.841
Rank	7	2	95
SD	0.02	0.01	0.01

Метод ивлекает пользу из больших значений ранга и устойчив при его значениях, превосходящих оптимум.

Заключение

Метод показал себя успешно в рамках данной метрики. Возможно дальнейшее исследование работы метода с применением дополнительных техник (композиций, расширения множества скрытых переменных, ...) и метрик качества (nDCG, MAP, ...).