2009年11月4日 If the Hessian $\nabla^2 f$ is positive (semi) definite 下午04:35 — then f is a convex function

Proof: Let x, W & SZ, SL is a convex domain

By Toylor expansion around u, $f(x) = f(u) + \nabla f(u) (x-u) + \frac{1}{2} (x-u)^T \nabla^2 f(u^*) (x-u)$ u^* is some point in Ω

Since the Hessian matrix $\nabla^2 f(v)$ is positive (semi)definite for all v in Ω , the last quadratic term (error term) in the above equation is non-negative

$$f(x) \geqslant f(u) + \nabla f(u) (x - u)$$

Now consider X, $Y \in \Omega$ and any point Z on the segment between X and Y. We may express Z by tX+(+t)Y, $t\in [0,1]$, and hence $Z\in \Omega$.

Using the above inequality with the Taylor expansions around Z

$$t f(x) \geqslant t f(z) + t \nabla f(z) (x-z)$$

$$(-t) f(y) \geqslant (-t) f(z) + (-t) \nabla f(z) (y-z)$$

Therefore f() is a convex function.