Convolutional networks

UE de Master 2, AOS2 Fall 2023

S. Rousseau

Introduction

Introduction

How can we apply neural models to computer vision?

- Flatten image as a vector and feed a MLP?
 - Spatial structure is lost
 - Color band is lost
 - Quadratic number of parameters wrt to number of neurons
- Special features of images:
 - Translation equivariance: translate an object should translate extracted features as well
 - Locality: Does it make sense to mix for example upper left and lower right pixels?

Which linear transform are translation equivariant and local?

Translation equivariance for 1-D signal

- What are the translation equivariant 1-D linear transforms?
 - Let $\textbf{\textit{x}}=(\ldots,x_{-n},\ldots x_0,\ldots,x_n,\ldots)$ a (infinite) 1-D signal
 - La linear transform of 1-D signals
 - S is the (right) shifting operator: $(S(\mathbf{x}))_j = x_{j-1}$
 - $S^k = S \circ \cdots \circ S, k \in \mathbb{Z}$
- Translation equivariance reads: $L \circ S^k = S^k \circ L$. Linear transform of shifted signal is the shifted linear transform
 - Vector \mathbf{x} can be written $\mathbf{x} = \sum_{i \in \mathbb{Z}} \mathsf{x}_i S^i(\boldsymbol{e}_0)$
 - Then *L* is a convolution:

$$L_j(\mathbf{x}) = \sum_{i \in \mathbb{Z}} x_i y_{j-i}$$
 with $\mathbf{y} = L(\mathbf{e}_0)$

• A translation-equivariant linear transform is a convolution!

Proof

$$\begin{array}{ll} L_{j}(\boldsymbol{x}) = \left\langle \boldsymbol{e}_{j}, L(\boldsymbol{x}) \right\rangle & = \sum_{i \in \mathbb{Z}} x_{i} \left\langle \boldsymbol{e}_{j}, S^{i} \boldsymbol{y} \right\rangle \text{ (linearity of dot-product)} \\ = \left\langle \boldsymbol{e}_{j}, L\left(\sum_{i \in \mathbb{Z}} x_{i} S^{i}(\boldsymbol{e}_{0})\right) \right\rangle & = \sum_{i \in \mathbb{Z}} x_{i} \left\langle S^{-i} \boldsymbol{e}_{j}, \boldsymbol{y} \right\rangle \\ = \left\langle \boldsymbol{e}_{j}, \sum_{i \in \mathbb{Z}} x_{i} L S^{i}(\boldsymbol{e}_{0}) \right\rangle \text{ (linearity of L)} \\ = \left\langle \boldsymbol{e}_{j}, \sum_{i \in \mathbb{Z}} x_{i} S^{i} L(\boldsymbol{e}_{0}) \right\rangle \\ = \left\langle \boldsymbol{e}_{j}, \sum_{i \in \mathbb{Z}} x_{i} S^{i} L(\boldsymbol{e}_{0}) \right\rangle \\ \text{ (equivariance of L)} \end{array}$$

Locality

• A translation-equivariant linear transform reads

$$L_j(\mathbf{x}) = \sum_i x_i y_{j-i}$$

- Locality implies that $L_j(\mathbf{x})$ must only depend on x_{j+k} for $k \in \llbracket -a, a \rrbracket$, $a \in \mathbb{N}^*$
- Translates to $y_k = 0$ except for when $k \in \llbracket -a, a \rrbracket$. Then we have

$$L_j(\mathbf{x}) = \sum_{k \in \llbracket -a,a \rrbracket} x_{j-k} y_k$$

 $oldsymbol{\cdot}$ $oldsymbol{y}$ must be a vector with a tiny contiguous support

Notations and properties

• The convolution operator is *:

$$(\mathbf{u} * \mathbf{v})_i = \sum_{k \in \mathbb{Z}} \mathbf{u}_k \mathbf{v}_{i-k}$$

- Linear wrt each argument: $\mathbf{u} * (\mathbf{v} + \mathbf{w}) = \mathbf{u} * \mathbf{v} + \mathbf{u} * \mathbf{w}$
- Symmetric: $\mathbf{u} * \mathbf{v} = \mathbf{v} * \mathbf{u}$
- Associativity: $(\mathbf{u} * \mathbf{v}) * \mathbf{w} = \mathbf{u} * (\mathbf{v} * \mathbf{w})$
- · Equivalent to polynomial multiplication

$$(1,2)*(2,-1,2) = (2,3,0,4) \iff (1+2X)(2-X+2X^2) = 2+3X+4X^3$$

• Easily generalisable to n-D signals:

$$(C*K)_{kl} = \sum_{(i,j)\in\mathbb{Z}^2} K_{ij}C_{k-i,l-j}$$

6

2-D convolution

2-D correlation

• For a matrix C of size $H_{\text{in}} \times W_{\text{in}}$ and a kernel K of size $k_h \times k_w$, 2-D convolution is defined as:

$$(C * K)_{kl} = \sum_{\substack{i=0,\dots,k_h-1\\j=0,\dots,k_w-1}} K_{ij}C_{k-i,l-j}$$

• In fact we use the **correlation** limited to a given window defined as:

$$C \circledast K = C * K^{\dagger}$$
 where $K_{ij}^{\dagger} = K_{-i,-j}$

limited to the indexes $k = 0, \dots, H_{\text{out}} - 1$ and $l = 0, \dots, W_{\text{out}} - 1$.

· This can be written

$$(C \circledast K)_{kl} = \sum_{\substack{i=0,\dots,k_h-1\\j=0,\dots,k_w-1}} K_{ij}C_{i+k,j+l}$$

where $k = 0, \dots, H_{\text{out}} - 1$ and $l = 0, \dots, W_{\text{out}} - 1$.

2-D "convolution"

- We use * instead of ® even if it is a correlation
- We use the term "convolution" even if it is a correlation

Final formulation is

$$(C * K)_{kl} = \sum_{\substack{i=0,\dots,k_h-1\\j=0,\dots,k_w-1}} K_{ij}C_{i+k,j+l}$$

	1	0	0	1								
ŀ		_	-	1			-	1	2	0	2	
ı	2	2	U	1	*	O	1	_	2	\cap	2	
	1	1	0	1	T	0	1	-	5	U		
ł	-	_	1	_				l	1	1	3	
	Ι	U	1	2		K				C * K		
		(2						C*K			

Examples

Some handcrafted kernels used in computer vision:

$$K = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} \quad K = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \quad K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$K = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

$$K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Padding

- Convolution operator decreases size
- Input of size: $H_{\text{in}} \times W_{\text{in}}$
- Kernel of size: $k_h \times k_w$
- Output of size:

$$H_{
m out} = H_{
m in} - k_h + 1$$
 $W_{
m out} = W_{
m in} - k_w + 1$

Padding

- Enlarge size of input by adding $p_h = p_h^{\text{top}} + p_h^{\text{bottom}}$ rows and $p_w = p_w^{\text{left}} + p_w^{\text{right}}$ columns at borders.
- For example $p_h = 2$ and $p_w = 3$.

Padding

- Size of input: $H_{\text{in}} \times W_{\text{in}}$
- Size after padding: $(H_{\mathsf{in}} + p_h) \times (\mathcal{W}_{\mathsf{in}} + p_w)$
- Size of output: $H_{\text{out}} = H_{\text{in}} + p_h k_h + 1$, $W_{\text{out}} = W_{\text{in}} + p_w k_w + 1$
- Preserve input size when: $p_h=k_h-1$ and $p_w=k_w-1$

Zero padding

Pad with zero

Reflection padding

Pad using reflections

Symmetric padding

Pad using symmetry

Stride

Input size is either slowly decreasing or constant. How can we reduce input size?

- Strided convolution: increasing step
- Pooling: summarize locally

Strided convolution

• Shifting by more than one step

- Strided convolution is equivalent to classic convolution + subsampling

Examples

Stride formula, no padding

• Kernel k_h , k_w and stride s_h , s_w

$$H_{ ext{out}} = \left[rac{H_{ ext{in}} - k_h + s_h}{s_h}
ight]
onumber \ W_{ ext{out}} = \left[rac{W_{ ext{in}} - k_w + s_w}{s_w}
ight]$$

- No stride ($s_h = s_w = 1$) yields previous formula
- Input size is divided by stride: $H_{
 m out}\sim {1\over s_h}H_{
 m in}$ and $W_{
 m out}\sim {1\over s_w}W_{
 m in}$

Padding and stride formula

- Kernel k_h, k_w , padding p_h, p_w and stride s_h, s_w

$$H_{ ext{out}} = \left\lfloor rac{H_{ ext{in}} - k_h + p_h + s_h}{s_h}
ight
floor$$
 $W_{ ext{out}} = \left\lfloor rac{W_{ ext{in}} - k_w + p_w + s_w}{s_w}
ight
floor$

Pooling

Locally summarizing data:

- Same mechanism as for convolution
- No kernel, just a parameterless function operating on a window

Two functions are used:

- Max-pooling
- Average-pooling

Max-pooling

• Take maximum value in window:

$$\mathsf{MaxPool} \begin{pmatrix} \boxed{0} & \boxed{1} & \boxed{0} & \boxed{1} & \boxed{1} & \boxed{0} \\ 0 & \boxed{1} & \boxed{2} & \boxed{2} & \boxed{0} & \boxed{1} \\ \boxed{1} & \boxed{1} & \boxed{0} & \boxed{1} & \boxed{1} & \boxed{0} \\ \boxed{1} & \boxed{2} & \boxed{0} & \boxed{1} & \boxed{0} & \boxed{0} \\ \boxed{2} & \boxed{1} & \boxed{0} & \boxed{1} & \boxed{0} & \boxed{1} \\ \boxed{2} & \boxed{0} & \boxed{1} & \boxed{0} & \boxed{1} & \boxed{1} \\ \boxed{2} & \boxed{1} & \boxed{1} & \boxed{1} & \boxed{1} \\ \boxed{2} & \boxed{2} & \boxed{1} \\ \boxed{2} & \boxed{2} & \boxed{1} \\ \boxed{2} & \boxed{2} & \boxed{2} \boxed{2}$$

• Usually the stride is equal to the kernel size

Average pooling

• Take average value in window:

AvgPool
$$\begin{pmatrix}
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 2 & 2 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 2 & 0 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 & 1 \\
2 & 0 & 1 & 0 & 1 & 1
\end{pmatrix}, window_size = (3,3) = \begin{pmatrix}
0.67 & 0.78 \\
1.0 & 0.56
\end{pmatrix}$$

• Usually the stride is equal to the kernel size

3-D convolution

From 2-D convolution to 3-D convolution

Both C and K are now 3-D tensors with same number of channels:

• 3-D convolution is the sum of 2-D convolutions channel-wise

• Whatever the number of channels there is only one channel after 3-D convolution!

From 2-D convolution to 3-D convolution

Mathematical formulation

• As a sum of simple 2-D convolutions channel-wise

$$C * K = \sum_{k=0,...,c_{ln}-1} K_{..k} * C_{..k}$$

Expanded version

$$(C * K)_{ab} = \sum_{\substack{i=0,\dots,k_h-1\\j=0,\dots,k_w-1\\k=0,\dots,c_{in}-1}} K_{ijk}C_{i+a,j+b,k}$$

• Result is a 2-D tensor because C and K have the same number of channels

3-D input representation

Input tensor is represented as a block of size: $height \times width \times n_channels$

- Input is a color image
 - $n_{channels} = 3$
- Input is a grayscale image
 - $\bullet \ \, n_channels = 1$

Represention of 3-D convolution

- Input tensor is represented as a 3-D block of size $height \times width \times in channels$
- Output is 1 channel wide

Convolutional layer

Convolutional layer

A convolutional layer consists in several 3-D convolutions + bias stacked as channels:

- C' gathers 3-D convolution with filters K¹.... K^cout
- Channels of C' are called feature maps
- Kernel + bias is called a filter
- Number of out channels is number of filters

Convolutional layer

Mathematical formulation

· Per output channel

$$C'_{\cdot\cdot\cdot c}=b^c+K^c*C$$

Expanded version

$$C'_{abc} = b^{c} + \sum_{\substack{i=0,\dots,k_h-1\\j=0,\dots,k_w-1\\k=0,\dots,c_{in}-1}} K^{c}_{jjk} C_{i+a,j+b,k}$$

3-D representation of a convolutional layer

- Convolutional layers are often represented as consecutive blocks of size height × width × channels
- · Only one kernel is represented
- Number of learnable parameters is

$$(k_h \times k_w \times c_{in} + 1) \times c_{out}$$

· Biases are not represented

First convolutional networks

LeNet-5 from LeCun et al. 1998

Figure 1: From LeCun et al. 1998

- Consists in two parts:
 - Features: 2 convolutional layers
 - Classification: 3 fully connected layers

LeNet-5

- Parameters: 60k
- · Activation function: sigmoid
- 5 weight layers

LeNet-5 number of parameters

- First layer: $32 \times 32 \times 1 \rightarrow 28 \times 28 \times 6$
 - 6 filters of size $5 \times 5 \times 1$
 - # of parameters is $(5 \times 5 \times 1 + 1) \times 6 = 156$
- Second layer: $14 \times 14 \times 6 \rightarrow 10 \times 10 \times 16$
 - 16 filters of size $5 \times 5 \times 6$
 - # of parameters is $(5 \times 5 \times 6 + 1) \times 16 = 2416$

LeNet-5 number of parameters

- Third layer: flattened $5 \times 5 \times 16 \rightarrow 120$ ($5 \times 5 \times 16 + 1$) $\times 120 = 48120$
- Fourth layer: $120 \to 84$ $(120 + 1) \times 84 = 10164$
- Fifth layer: $84 \rightarrow 10$ $(84 + 1) \times 10 = 850$
- Total # of parameters: $61706 \approx 60k$

Modern convolutional networks

The ImageNet challenge from Russakovsky et al. 2015

- Since 2010 the Imagenet dataset is used in a the ILSVRC challenge (Large Scale Visual Recognition Challenge)
- Object classification/detection
- Classification task:
 - ullet > 1.2 M annotated images of various size
 - 1000 classes

Classification error on ImageNet

AlexNet from Krizhevsky, Sutskever, and Hinton 2012

Figure 2: From Krizhevsky, Sutskever, and Hinton 2012

• Won ILSVRC 2012 by a large margin!

AlexNet from Krizhevsky, Sutskever, and Hinton 2012

- Number of parameters: 60M
- Deeper than LeNet
- ReLU activation instead of sigmoid
- 8 learnable layers

AlexNet: first layer filters

- · Learned filters are Gabor-like
- 64 filters of size 11×11

Receptive field

 Given a feature the receptive field is the window in the input that created that feature.

AlexNet: receptive fields

Some $11 \times 11 \times 3$ filters and 9 receptive fields corresponding to best activation across all training set:

AlexNet: receptive fields

Receptive fields of best activations in feature maps

- Second convolutional layer: 51×51 receptive field

(a) filter #25

(b) filter #41

(c) filter #107

• Third convolutional layer: 99×99 receptive field

(a) filter #90

(b) filter #165

(c) filter #377

VGG networks from Simonyan and Zisserman 2015

Evolution from AlexNet:

- Replace 11 \times 11 by sequence of 3 \times 3
- Use a block that is repeated
- · Same fully connected layers

VGG block with N filters:

Sequence of VGG blocks:

VGG-16 from Simonyan and Zisserman 2015

- Example of VGG-16:
 - 16 weight layers
 - 133-144 M parameters
- Drawbacks:
 - Too many parameters
 - Hard to train

GoogLeNet (Inception-v1) from Szegedy et al. 2015

GoogleNet won ILSVRC 2015, main ingredients are:

- Use 1×1 convolution
- Use global average pooling instead of fully connected layers
- Propose an inception module implementing a split-transform-merge strategy:
 - · Mix filters of different sizes
 - · Height and width unchanged
 - · Concatenated along channel dimension
- Parametrized by 6 hyperparameters

1×1 convolution from Lin, Chen, and Yan 2014

Convolution with a kernel of size 1×1

- Properties:
 - · No spatial transformation
 - Height and width are unchanged
 - Change de number of channels
 - Each output channel is a linear combination of input channels
- Can be used to:
 - · Reduce the number of channels
 - Reduce number of parameters
 - · Apply an MLP pixel-wise

Global average pooling from Lin, Chen, and Yan 2014

Average pooling with maximum window

- Properties
 - · Same as averaging each channel
 - $H_{\text{in}} \times W_{\text{in}} \times c_{\textit{in}}$ becomes $1 \times 1 \times c_{\textit{in}}$
- Is used to
 - Replace flatten + fully connected layer

GoogLeNet (Inception-v1)

Inception-v1:

- Parameters $\simeq 6.8 \, \mathrm{M}$
- ReLU activation

Improvements (Inception-v2, Inception-v3)

- Replace 5×5 by two 3×3 convolution layers
- Spatially separable convolutions
- Batch normalization

Residual Networks (ResNets) from He et al. 2016

- Use skip connections around VGG-like block
- Learn residual mapping instead of full mapping

Resnet-18

- 18 learnable layers
- 11M parameters
- Deeper models by changing multipliers

Depthwise Separable Convolution

 Make convolution separable to reduce parameters:

$$K_{ijk} \longrightarrow K'_{ij} * K''_{k}$$

- K'_{ij} is applied to each channel
- K_k''' is a 1×1 convolution
- Number of parameters:

$$k_h k_w c_{in} \rightarrow k_h k_w + c_{in}$$

References i

- [1] Yann LeCun et al. "Gradient-Based Learning Applied to Document Recognition". In: PROC. OF THE IEEE (1998), p. 1.
- [2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet Classification with Deep Convolutional Neural Networks". In: Advances in neural information processing systems 25 (2012), pp. 1097–1105.
- [3] Min Lin, Qiang Chen, and Shuicheng Yan. "Network In Network". Mar. 4, 2014. arXiv: 1312.4400 [cs]. url: http://arxiv.org/abs/1312.4400 (visited on 08/24/2021).
- [4] Olga Russakovsky et al. "ImageNet Large Scale Visual Recognition Challenge".

 Jan. 29, 2015. arXiv: 1409.0575 [cs]. url: http://arxiv.org/abs/1409.0575 (visited on 11/23/2021).

References ii

- [5] Karen Simonyan and Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition". Apr. 10, 2015. arXiv: 1409.1556 [cs]. url: http://arxiv.org/abs/1409.1556 (visited on 08/30/2021).
- [6] Christian Szegedy et al. "Going Deeper with Convolutions". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 1–9.
- [7] Kaiming He et al. "Deep Residual Learning for Image Recognition". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 770–778. arXiv: 1512.03385.