Incorporating Random effect into GP Sparse Approximation

Daeyoung Lim*
Department of Statistics
Korea University

January 29, 2016

1 GP linear mixed model

1.1 Model specifications

The model specifications remain the same except that the random effect term has been added.

$$y|\theta \sim \mathcal{N}\left(Z\alpha + A\beta, \gamma^2 I_n\right), (n \times n)$$

 $\alpha|\sigma^2 \sim \mathcal{N}\left(0, \frac{\sigma^2}{m} I_{2m}\right), (2m \times 1)$
 $\beta \sim \mathcal{N}\left(0, \Sigma_{\beta}\right), (s \times 1)$
 $\lambda \sim \mathcal{N}\left(\mu_{\lambda}, \Sigma_{\lambda}\right), (d \times 1)$
 $\sigma \sim \text{half-Cauchy}\left(A_{\sigma}\right)$
 $\gamma \sim \text{half-Cauchy}\left(A_{\gamma}\right)$

where A is the design matrix for the random effects and β is the parameter vector of the random effects.

1.2 Lower bound

$$p(y,\theta) = \mathcal{N}\left(y|Z\alpha + A\beta, \gamma^{2}I_{n}\right) \mathcal{N}\left(\alpha \left| 0, \frac{\sigma^{2}}{m}I_{2m}\right) \mathcal{N}\left(\beta|0, \Sigma_{\beta}\right) \mathcal{N}\left(\lambda, \mu_{\lambda}, \Sigma_{\lambda}\right) \operatorname{HC}\left(A_{\sigma}\right) \operatorname{HC}\left(A_{\gamma}\right)\right)$$

^{*}Prof. Taeryon Choi

(1)
$$\mathbb{E} [\log p (y|\theta)] = -\frac{n}{2} \log (2\pi) - \frac{n}{2} \mathbb{E} [\log \gamma^2]$$

 $-\frac{1}{2} \mathbb{E} \left[\frac{1}{\gamma^2} \right] \left\{ y^T y - 2 \left(\mathbb{E} [Z] m_\alpha + A m_\beta \right)^T y + \text{Tr} \left(\mathbb{E} [Z^T Z] S_\alpha \right) + m_\alpha^T \mathbb{E} [Z^T Z] m_\alpha + 2 m_\beta^T A^T \mathbb{E} [Z] m_\alpha + \text{Tr} \left(A^T A S_\beta \right) + m_\beta^T A^T A m_\beta \right\}$
(2) $\mathbb{E} [\log p (\alpha | \sigma)] = -m \log (2\pi) - m \mathbb{E} [\log \sigma^2] + m \log m - \frac{m}{2} \mathbb{E} \left[\frac{1}{\sigma^2} \right] \text{Tr} \left(S_\alpha + m_\alpha m_\alpha^T \right)$
(3) $\mathbb{E} [\log p (\beta)] = -\frac{s}{2} \log (2\pi) - \frac{1}{2} \log |\Sigma_\beta| - \frac{1}{2} \left\{ \text{Tr} \left(\Sigma_\beta^{-1} S_\beta \right) + m_\beta^T \Sigma_\beta^{-1} m_\beta \right\}$
(4) $\mathbb{E} [\log p (\lambda)] = -\frac{d}{2} \log (2\pi) - \frac{1}{2} \log |\Sigma_\lambda| - \frac{1}{2} (m_\lambda - \mu_\lambda)^T \Sigma_\lambda^{-1} (m_\lambda - \mu_\lambda) - \frac{1}{2} \text{Tr} \left(\Sigma_\lambda^{-1} S_\lambda \right)$
(5) $\mathbb{E} [\log p (\sigma)] = \log (2A_\sigma) - \log \pi - \mathbb{E} [\log (A_\sigma^2 + \sigma^2)]$
(6) $\mathbb{E} [\log p (\gamma)] = \log (2A_\gamma) - \log \pi - \mathbb{E} [\log (A_\gamma^2 + \gamma^2)]$
(1) $\mathbb{E} [\log p (\alpha)] = -m \log (2\pi) - \frac{1}{2} \log |S_\alpha| - m$
(2) $\mathbb{E} [\log q (\lambda)] = -\frac{d}{2} \log (2\pi) - \frac{1}{2} \log |S_\lambda| - \frac{d}{2}$
(3) $\mathbb{E} [\log q (\beta)] = -\frac{s}{2} \log (2\pi) - \frac{1}{2} \log |S_\beta| - \frac{s}{2}$
(4) $\mathbb{E} [\log q (\sigma)] = -C_\sigma \frac{\mathcal{H} (2m, C_\sigma, A_\sigma^2)}{\mathcal{H} (2m - 2, C_\sigma, A_\sigma^2)} - \log \mathcal{H} (2m - 2, C_\sigma, A_\sigma^2) - 2m \mathbb{E} [\log \sigma] - \mathbb{E} [\log (A_\gamma^2 + \sigma^2)]$
(5) $\mathbb{E} [\log q (\gamma)] = -C_\gamma \frac{\mathcal{H} (n, C_\gamma, A_\gamma^2)}{\mathcal{H} (n - 2, C_\gamma, A_\gamma^2)} - \log \mathcal{H} (n - 2, C_\gamma, A_\gamma^2) - n \mathbb{E} [\log \gamma] - \mathbb{E} [\log (A_\gamma^2 + \gamma^2)]$

2 GP Logistic Model

2.1 Model specifications

For logistic models, we first postulate a link function, $g(\cdot)$ for the predictors.

$$y = g^{-1}(\eta) + \epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \gamma^{2} I_{n}\right)$$

$$g\left(\mathbb{E}\left[y\right]\right) = \eta$$

$$\eta = f\left(x\right) + A\beta$$

$$g^{-1}\left(x\right) = \frac{e^{x}}{1 + e^{x}}$$

$$f \sim \mathcal{GP}\left(m\left(\cdot\right), \kappa\left(\cdot, \cdot\right)\right)$$

Since y is a Bernoulli random variable, $\mathbb{E}[y] = \mathbb{P}(y=1)$. Without loss of generality, we will assume the mean function to be zero and that the Gaussian process has a sparse approximation representation as in Tan & Nott. Therefore,

$$f(x) \approx \sum_{r=1}^{m} \left[a_r \cos \left\{ (s_r \odot x)^T \lambda \right\} + b_r \sin \left\{ (s_r \odot x)^T \lambda \right\} \right]$$

and this could further be represented in matrix form which reduces this to a linear model.

$$f(x) = Z\alpha$$

$$\eta = Z\alpha + A\beta
y = \exp\{(Z\alpha + A\beta) - \log(\mathbf{1} + \exp\{Z\alpha + A\beta\})\} + \epsilon$$

Every scalar function applied to a vector or a matrix is done so elementwise. We think of the following priors:

$$\alpha | \sigma \sim \mathcal{N} \left(0, \frac{\sigma^2}{m} I_{2m} \right)$$

$$\beta \sim \mathcal{N} \left(\mu_{\beta}, \Sigma_{\beta} \right)$$

$$\lambda \sim \mathcal{N} \left(\mu_{\lambda}, \Sigma_{\lambda} \right)$$

$$\sigma \sim \text{half-Cauchy} \left(A_{\sigma} \right)$$

$$\gamma \sim \text{half-Cauchy} \left(A_{\gamma} \right)$$

$$\theta = (\alpha, \beta, \lambda, \sigma, \gamma)$$

$$\log p(y,\theta) = y^T \left(Z\alpha + A\beta \right) - \mathbf{1}_n^T \log \left(\mathbf{1}_n + \exp \left\{ Z\alpha + A\beta \right\} \right) - \left(m + \frac{s+d}{2} \right) \log \left(2\pi \right) - m \log \sigma^2 + m \log m$$
$$- \frac{m}{2\sigma^2} \alpha^T \alpha - \frac{1}{2} \log |\Sigma_{\beta}| - \frac{1}{2} \left(\beta - \mu_{\beta} \right)^T \Sigma_{\beta}^{-1} \left(\beta - \mu_{\beta} \right) - \frac{1}{2} \log |\Sigma_{\lambda}| - \frac{1}{2} \left(\lambda - \mu_{\lambda} \right)^T \Sigma_{\lambda}^{-1} \left(\lambda - \mu_{\lambda} \right)$$
$$+ \log \left(2A_{\gamma} \right) + \log \left(2A_{\gamma} \right) 2 \log \pi - \log \left(A_{\gamma}^2 + \sigma^2 \right) - \log \left(A_{\gamma}^2 + \gamma^2 \right)$$

Because $-\mathbf{1}_n^T \log (\mathbf{1}_n + \exp \{Z\alpha + A\beta\})$ is analytically intractable for expectation which is essentially integration, we come up with the following approximation:

$$-\log\left(1+e^{x}\right) = \max_{\xi \in \mathbb{R}} \left\{ B\left(\xi\right) x^{2} - \frac{1}{2}x + C\left(\xi\right) \right\}, \quad \forall x \in \mathbb{R}$$
$$B\left(\xi\right) = -\tanh\left(\xi/2\right) / \left(4\xi\right)$$
$$C\left(\xi\right) = \xi/2 - \log\left(1+e^{\xi}\right) + \xi \tanh\left(\xi/2\right) / 4$$

then

$$-\mathbf{1}_{n}^{T} \log \left\{ \mathbf{1}_{n}^{T} + \exp \left(Z\alpha + A\beta \right) \right\} \ge \mathbf{1}_{n}^{T} \left\{ B\left(\xi \right) \odot \left(Z\alpha + A\beta \right)^{2} - \frac{1}{2} \left(Z\alpha + A\beta \right) + C\left(\xi \right) \right\}$$

$$= \left(Z\alpha + A\beta \right)^{T} \operatorname{Dg} \left\{ B\left(\xi \right) \right\} \left(Z\alpha + A\beta \right) - \frac{1}{2} \mathbf{1}_{n}^{T} \left(Z\alpha + A\beta \right) + \mathbf{1}_{n}^{T} C\left(\xi \right),$$

where $\xi = (\xi_1, ..., \xi_n)$.

$$\log \underline{p}(y, \theta; \xi) = y^{T} (Z\alpha + A\beta) + (Z\alpha + A\beta)^{T} \operatorname{Dg} \{B(\xi)\} (Z\alpha + A\beta) - \frac{1}{2} \mathbf{1}_{n}^{T} (Z\alpha + A\beta) + \mathbf{1}_{n}^{T} C(\xi)$$

$$- \left(m + \frac{s+d}{2}\right) \log (2\pi) - m \log \sigma^{2} + m \log m - \frac{m}{2\sigma^{2}} \alpha^{T} \alpha - \frac{1}{2} \log |\Sigma_{\beta}| - \frac{1}{2} (\beta - \mu_{\beta})^{T} \Sigma_{\beta}^{-1} (\beta - \mu_{\beta})$$

$$- \frac{1}{2} \log |\Sigma_{\lambda}| - \frac{1}{2} (\lambda - \mu_{\lambda})^{T} \Sigma_{\lambda}^{-1} (\lambda - \mu_{\lambda}) + \log (2A_{\sigma}) + \log (2A_{\gamma}) 2 \log \pi - \log (A_{\sigma}^{2} + \sigma^{2})$$

$$- \log (A_{\gamma}^{2} + \gamma^{2})$$