CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

D. Patterson and J. Hennessy, Computer Organization and Design

So Far....

- A system and a digital system
- High level specification of a system
- Data Representation

Next....

Binary Specification and switching functions

SWITCHING FUNCTIONS

Figure 2.7: a) BINARY COMBINATIONAL SYSTEM; b) A SWITCHING FUNCTION FOR n=3

TABULAR REPRESENTATION OF SWITCHING FUNCTIONS

$x_2x_1x_0$	$ f(x_2, x_1, x_0) $
0 0 0	0
0 0 1	0
0 1 0	1
0 1 1	1
1 0 0	0
1 0 1	0
1 1 0	1
111	1

2D TABULAR REPRESENTATION

	$x_2x_1x_0$							
x_4x_3	000	001	010	011	100	101	110	111
00	0	0	1	1	0	1	1	1
01	0	1	1	1	1	0	1	1
10	1	1	0	1	1	0	1	1
11	0	1	0	1	1	0	1	0

INCOMPLETE SWITCHING FUNCTIONS

x	y	z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	_
1	0	0	1
1	0	1	0
1	1	0	_
1	1	1	1

SWITCHING EXPRESSIONS

- 1. Symbols 0 and 1 are SEs.
- 2. A symbol representing a binary variable is a SE.
- 3. If A and B are SEs, then
 - ullet (A)' is a SE. This is referred to as "A complement." Sometimes we use \overline{A} to denote complementation.
 - (A) + (B) is a SE. This is referred as "A OR B"; it is also called "A plus B" or "sum" due to the similarity with the corresponding arithmetic symbol.
 - $(A) \cdot (B)$ is a SE. This is referred to as "A AND B"; it is also called "A times B" or "product" due to the similarity with the corresponding arithmetic symbol.

SWITCHING ALGEBRA AND EXPRESSION EVALUATION

• Switching algebra:

two elements 0 and 1

operations +, \cdot , and '

$$E(x_2, x_1, x_0) = x_2 + x_2' x_1 + x_1 x_0'$$

The value of E for assignment (1,0,1) is

E(1,0,1) = 1

SWITCHING ALGEBRA AND EXPRESSION EVALUATION

• Switching algebra:

two elements 0 and 1

operations +, \cdot , and '

$$E(x_2, x_1, x_0) = x_2 + x_2' x_1 + x_1 x_0'$$

The value of E for assignment (1,0,1) is

$$E(1,0,1) = 1 + 1' \cdot 0 + 0 \cdot 1' = 1 + 0 + 0 = 1$$

REPRESENTING SFs BY SWITCHING EXPRESSIONS

 $E(x_2, x_1, x_0) = x_2 + x_2'x_1 + x_1x_0'$ represents f:

$x_2x_1x_0$	f
000	0
001	0
010	1
011	1
100	1
101	1
110	1
111	1

Example

$$z_2 = egin{cases} 1 & ext{if} & x_1 > y_1 & ext{or} & (x_1 = y_1 & ext{and} & x_0 > y_0) \\ 0 & ext{otherwise} \end{cases}$$
 $z_1 = egin{cases} 1 & ext{if} & x_1 = y_1 & ext{and} & x_0 = y_0 \\ 0 & ext{otherwise} \end{cases}$
 $z_0 = egin{cases} 1 & ext{if} & x_1 < y_1 & ext{or} & (x_1 = y_1 & ext{and} & x_0 < y_0) \\ 0 & ext{otherwise} \end{cases}$

	y_1y_0				
x_1x_0	00	01	10	11	
00	-			_	
01					
10					
11					

 $z_2 z_1 z_0$

	2 variables	n variables
AND	x_1x_0	$x_{n-1}x_{n-2}\dots x_0$
OR	$x_1 + x_0$	$x_{n-1} + x_{n-2} + \ldots + x_0$
XOR	$x_1x_0' + x_1'x_0 = x_1 \oplus x_0$	
EQUIV	$x_1'x_0' + x_1x_0$	
NAND	$(x_1x_0)' = x_1' + x_0'$	$(x_{n-1}x_{n-2}\dots x_0)'=x'_{n-1}+x'_{n-2}+\dots+x'_0$
NOR	$(x_1 + x_0)' = x_1' x_0'$	$(x_{n-1} + x_{n-2} + \dots + x_0)' = x'_{n-1} x'_{n-2} \dots x'_0$

They can also be presented using tables:

ALGEBRAIC METHOD OF OBTAINING EQUIVALENT EXPRESSIONS

• MAIN IDENTITIES OF BOOLEAN ALGEBRA

1.	a + b	= b + a	ab	=ba	Commutativity
2.	a + (bc)	= (a + b)(a + c)	a(b + c)	=(ab) + (ac)	Distributivity
3.	a + (b + c)	=(a + b) + c	a(bc)	=(ab)c	Associativity
		= a + b + c		= abc	
4.	a + a	= a	aa	= a	Idempotency
5.	a + a'	=1	aa'	=0	Complement
6.	1 + <i>a</i>	=1	0a	=0	
7.	0 + a	= a	1a	= a	Identity
8.	(a')'	= a			Involution
9.	a + ab	= a	a(a + b)	= a	Absorption
10.	a + a'b	= a + b	a(a' + b)	=ab	Simplification
11.	(a + b)'	=a'b'	(ab)'	=a' + b'	DeMorgan's Law

9. a + ab = a a(a + b) = a Absorption

10. a + a'b = a + b a(a' + b) = ab Simplification

 $| 11. \qquad (a + b)' = a'b'$

(ab)' = a' + b' DeMorgan's Law

00

SHOW THAT E_1 AND E_2 ARE EQUIVALENT:

$$E_1(x_2, x_1, x_0) = x_2x_1 + x_2x_1' + x_2x_0$$

 $E_2(x_2, x_1, x_0) = x_2$

.

EXAMPLE

SHOW THAT E_1 AND E_2 ARE EQUIVALENT:

$$E_1(x_2, x_1, x_0) = x_2x_1 + x_2x_1' + x_2x_0$$

 $E_2(x_2, x_1, x_0) = x_2$

$$x_2x_1 + x_2x'_1 + x_2x_0 = x_2(x_1 + x'_1) + x_2x_0$$
 using $ab + ac = a(b + c)$
 $= x_2 \cdot 1 + x_2x_0$ using $a + a' = 1$
 $= x_2(1 + x_0)$ using $ab + ac = a(b + c)$
 $= x_2 \cdot 1$ using $1 + a = 1$
 $= x_2$ using $a \cdot 1 = a$

o

SHOW THAT E_1 AND E_2 ARE EQUIVALENT: (Using a table)

$$E_1(x_2, x_1, x_0) = x_2x_1 + x_2x_1' + x_2x_0$$

 $E_2(x_2, x_1, x_0) = x_2$

Clicker Question

Which one is equal to x + y

- a) x' + y'
- b) (x . y)'
- c) (x'. y')'
- d) (xx'+x+y)
- e) cand d

Clicker Question

Which one is equal to ABC + A' + AB'C

- a) A
- b) A + C
- c) A' + C
- d) ABC+A
- e) cand d

NOT
$$x \xrightarrow{\text{of}} z \qquad z = x'$$

$$x \xrightarrow{\text{of}} z \qquad z = x_1 x_0$$
AND
$$x_1 \qquad z \qquad z = x_1 + x_0$$

NAND
$$x_1 \qquad z \qquad z = (x_1 x_0)'$$

NOR
$$x_1 \qquad z \qquad z = (x_1 x_0)'$$

NOR
$$x_1 \qquad z \qquad z = (x_1 x_0)'$$

XOR
$$x_1 \qquad z \qquad z = (x_1 x_0)'$$

XOR
$$x_1 \qquad z \qquad z = x_1 x_0 + x_1 x_0$$

$$z \qquad z = x_1 x_0 + x_1 x_0$$

XNOR
$$x_1 \qquad z \qquad z = x_1 x_0 + x_1 x_0$$

Clicker Question

Gates

Which of the following is/are a NOR gate?

e b and c

Example

Show the truth table and symbol gate design

$$F = x' + xy + xyz$$

Example

Show the truth table and symbol gate design for simplified version.

$$F = x' + xy + xyz$$

Clicker Question

Digital Design

a
$$F = ABC + \bar{A}\bar{B}\bar{C}$$

b
$$F = A\bar{B}\bar{C} + AB\bar{C} + A\bar{B}C$$

c
$$F = A\bar{B}C + BAC + \bar{A}\bar{B}C$$

$$d F = \bar{A}\bar{B}C + AB\bar{C} + A\bar{B}\bar{C}$$

e None of the above

Sum of Products

PRODUCT TERMS $x_0, x_2x_1, x_3x_1x_0'$ SUM OF PRODUCTS (SP) $x_2' + x_3x_1' + x_3'x_1'x_0$

Sum of Products

$$x_0 = x_3 x_1 x_0$$

Product of Sums

SUM TERMS $x_0, x_2 + x_1, x_3 + x_1 + x'_0$ PRODUCT OF SUMS $(x'_2 + x_3 + x'_1)(x'_3 + x_1)x_0$

Product of Sums

$$x_2 - x_4 - x_1$$
 $z = x_4 + x_2 + x_1$

MINTERM NOTATION

$$x_i \longleftrightarrow 1; \qquad x_i' \longleftrightarrow 0$$

MINTERM m_j , j INTEGER

EXAMPLE: MINTERM $x_3x_2'x_1'x_0$ DENOTED m_9 BECAUSE 1001 = 9

$$m_j(\underline{a}) = \begin{cases} 1 & \text{if } a = j \\ 0 & \text{otherwise} \end{cases}$$

$$a = \sum_{i=0}^{n-1} a_i 2^i$$

EXAMPLE: $m_{11} = x_3 x_2' x_1 x_0$ - HAS VALUE 1 ONLY FOR $\underline{a} = (1, 0, 1, 1)$

MAXTERM NOTATION

$$x_i \longleftrightarrow 0; \qquad x_i' \longleftrightarrow 1$$

MAXTERM M_j , j INTEGER

EXAMPLE: MAXTERM $x_3 + x'_2 + x_1 + x'_0$ DENOTED M_5 BECAUSE 0101 = 5

$$M_j(\underline{a}) = \begin{cases} 0 & \text{if } a = j \\ 1 & \text{otherwise} \end{cases}$$

EXAMPLE: $M_5 = x_3 + x_2' + x_1 + x_0'$ - HAS VALUE 0 ONLY FOR ASSIGNMENT 0101