

10.1 Probabilistic View of Classification Task

Basic terms and symbols

- Samples $x \in \mathbb{R}^d$
- States: $\omega = \omega_1$ for class 1, $\omega = \omega_2$ for class 2
- Prior (a priori probability) $P(\omega_1), P(\omega_2)$
- Density (sample distribution density) p(x)

(aka. pooled probability density)

- Class-conditional density $p(x|\omega_1)$, $p(x|\omega_2)$
- Posterior (a posteriori probability) $P(\omega_1|x)$, $P(\omega_2|x)$
- Error rate: probability of error

$$P(e|\mathbf{x}) = \begin{cases} P(\omega_2|\mathbf{x}), & \text{if } \mathbf{x} \text{ is assigned to } \omega_1 \\ P(\omega_1|\mathbf{x}), & \text{if } \mathbf{x} \text{ is assigned to } \omega_2 \end{cases}$$

- Average error rate $P(e) = \int P(e|x)p(x)dx$
- Probability of correctness P(c) = 1 P(e)

1.

Bayesian decision for minimal error

Setting of the problem:

Given the number of classes (states) ω_i , $i=1,\cdots,c$, the prior and conditional densities $P(\omega_i),\ P(x|\omega_i),\ i=1,\cdots,c$,

find the decision rule that minimize the average error rate, i.e.,

$$\min P(e) = \int P(e|\mathbf{x})p(\mathbf{x})d\mathbf{x}.$$

- · Solution:
 - Since $P(e|x) \ge 0$ and $p(x) \ge 0$, it is equivalent as to min P(e|x) for all x.

As $P(e|x) = \begin{cases} P(\omega_2|x), & \text{if } x \text{ is assigned to } \omega_1 \\ P(\omega_1|x), & \text{if } x \text{ is assigned to } \omega_2 \end{cases}$, we get the Bayesian Decision Rule (for minimal error)

If
$$P(\omega_1|\mathbf{x}) > P(\omega_2|\mathbf{x})$$
, assign $\mathbf{x} \in \omega_1$
 $\mathbf{x} \in \omega_2$

→ Maximum a posterior probability (MAP)

Xuegong Zhan

Calculation

If
$$P(\omega_1|\mathbf{x}) > P(\omega_2|\mathbf{x})$$
, assign $\mathbf{x} \in \omega_1$
 $\mathbf{x} \in \omega_2$

$$P(\omega_i|x) = \frac{p(x|\omega_i)P(\omega_i)}{p(x)} = \frac{p(x|\omega_i)P(\omega_i)}{\sum_{j=1}^2 p(x|\omega_j)P(\omega_j)}, i = 1,2$$

$$P(e) = P(\omega_2)P_2(e) + P(\omega_1)P_1(e)$$

$$= P(\omega_2) \int_{\Re_1} p(x|\omega_2)dx + P(\omega_1) \int_{\Re_2} p(x|\omega_1)dx$$

Auegong Zhang

13

Equivalent forms of Bayesian Decision Rule

If
$$P(\omega_1|\mathbf{x}) \geq P(\omega_2|\mathbf{x})$$
, assign $\mathbf{x} \in \omega_1$
 $\mathbf{x} \in \omega_2$

- ① If $P(\omega_i|\mathbf{x}) = \max_i P(\omega_i|\mathbf{x})$, then $\mathbf{x} \in \omega_i$.
- ② If $p(x|\omega_i)P(\omega_i) = \max_j p(x|\omega_j)P(\omega_j)$, then $x \in \omega_i$.
- $(3) If <math>l(\mathbf{x}) = \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \frac{P(\omega_2)}{P(\omega_1)}, \text{ then } \mathbf{x} \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}.$
- $\text{4 Let } h(\mathbf{x}) = -\ln[l(\mathbf{x})] = -\ln p(\mathbf{x}|\omega_1) + \ln p(\mathbf{x}|\omega_2),$ $\text{If } h(\mathbf{x}) \leq \ln\left(\frac{P(\omega_1)}{P(\omega_2)}\right), \text{ then } \mathbf{x} \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}.$

where we call l(x) as *likelihood ratio*, $\frac{P(\omega_1)}{P(\omega_2)}$ as threshold of likelihood ratio, and h(x) as *log likelihood ratio*.

Xuegong Zhan

Bayesian Decision Rule for multi-class cases

If $P(\omega_1|\mathbf{x}) \gtrsim P(\omega_2|\mathbf{x})$, assign $x \in \omega_1$ $\mathbf{x} \in \omega_2$

- ① If $P(\omega_i|\mathbf{x}) = \max_{j=1,\dots,c} P(\omega_j|\mathbf{x})$, then $\mathbf{x} \in \omega_i$.
- ② If $p(x|\omega_i)P(\omega_i) = \max_{j=1,\dots,c} p(x|\omega_j)P(\omega_j)$, then $x \in \omega_i$.

 $P(e) = 1 - P(c) = 1 - \sum_{j=1}^{c} P(\omega_j) \int_{\Re_j} p(x \big| \omega_j) dx$

Xuegong Zhang

Normal (Gaussian) Distribution

$$N(\mu, \sigma^2)$$
: $p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}$

$$\mu = E\{x\} = \int xp(x)dx$$
, $\sigma^2 = \int (x-\mu)^2 p(x)dx = E\{(x-\mu)^2\}$

$$N(\mu, \Sigma)$$
: $p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x - \mu)^{\mathrm{T}} \Sigma^{-1}(x - \mu)\right\}, \quad x \in \mathbb{R}^d$

$$\mu = E[x], \Sigma = E[(x - \mu)(x - \mu)^{\mathrm{T}}]$$

Xuegong Zhang

Bayesian Decision with Gaussian Distribution: the general case

$$N(\mu, \Sigma)$$
: $p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x - \mu)^{\mathrm{T}} \Sigma^{-1}(x - \mu)\right\}, \quad x \in \mathbb{R}^d$

Conditional Density
$$p(\boldsymbol{x}|\omega_i) = \frac{1}{(2\pi)^{d/2}|\Sigma_i|^{1/2}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^{\mathrm{T}} \Sigma_i^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i)\right]$$

Discriminant
$$g_i(x) = \ln[p(x|\omega_i)P(\omega_i)] = \ln p(x|\omega_i) + \ln P(\omega_i)$$

Decision boundary
$$g_i(x) = g_i(x)$$

$$-\frac{1}{2} \left[(x - \mu_i)^T \sum_{i=1}^{-1} (x - \mu_i) - (x - \mu_j)^T \sum_{j=1}^{-1} (x - \mu_j) \right] - \frac{1}{2} \ln \frac{|\sum_{i}|}{|\sum_{j}|} + \ln \frac{P(\omega_i)}{P(\omega_j)} = 0$$

--- Quadratic discriminant

Xuegong Zhan

Some special cases:

1100 11年大学

• $\Sigma_i = \sigma^2 I$, $i=1,\cdots,c$, and all priors $P(\omega_i)$, $i=1,\cdots,c$ are equal

$$g_i(x) = \ln[p(x|\omega_i)P(\omega_i)] = -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln|\Sigma_i| - \frac{1}{2}(x - \mu_i)^{\mathrm{T}}\Sigma_j^{-1}(x - \mu_i) + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu}_i)^{\mathrm{T}} (\mathbf{x} - \boldsymbol{\mu}_i) = -\frac{1}{2\sigma^2} ||\mathbf{x} - \boldsymbol{\mu}_i||^2 = -\frac{1}{2\sigma^2} \sum_{j=1}^d (x_j - \mu_{ij})^2$$

$$g_i(\mathbf{x}) = \mathbf{w}_i^{\mathrm{T}} \mathbf{x} + b_i,$$

$$\mathbf{w}_i = \frac{1}{\sigma^2} \boldsymbol{\mu}_i,$$

$$b_i = -\frac{1}{2\sigma^2} \boldsymbol{\mu}_i^{\mathrm{T}} \boldsymbol{\mu}_i$$

- · Minimal distance classifier
- · Template-matching

Some special cases:

• $\Sigma_i = \sigma^2 I$, $i = 1, \dots, c$, but priors $P(\omega_i)$, $i = 1, \dots, c$ are NOT equal

$$g_i(\mathbf{x}) = \ln[p(\mathbf{x}|\omega_i)P(\omega_i)] = -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln|\sum_i| -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^{\mathrm{T}}\sum_j^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(\omega_i)$$

$$g_i(x) = \boldsymbol{w}_i^{\mathrm{T}} x + b_i,$$

Khang

$$\mathbf{w}_i = \frac{1}{\sigma^2} \boldsymbol{\mu}_i,$$

$$b_i = -\frac{1}{2\sigma^2} \boldsymbol{\mu}_i^{\mathrm{T}} \boldsymbol{\mu}_i + \ln P(\omega_i)$$

• The decision boundary will move toward the class with smaller prior.

Example: "CpG islands" in the human genome

- In the human genome, the dinucleotide CG occurs rarer (~1/5) than would be expected from the independent probabilities of C and G.
 - Wherever CG occurs, the C is typically chemically modified by methylation, which results in a high chance of this methyl-C mutating into a T.

→ Less "CG" dinucleotide (called CpG) observed

- The methylation process is suppressed in short stretches around the promoters ("start" regions) of many genes.
 - In these regions, we see many more CpG dinucleotides than elsewhere.
 - Such regions are called CpG islands (typically a few hundred to a few thousand bases long).

A CpG site, i.e., the "5'—C—phosphate—G—3'" sequence of nucleotides, is indicated on one DNA strand (in yellow). On the reverse DNA strand (in blue), the complementary 5'—CpG—3' site is shown. A C-G base-paring between the two DNA strands is also indicated (right)

Deterministic Definition of CpG islands

(Gardiner-Garden & Frommer, 1987)

- Size >200bp
- %(G+C) > 50%

$$\%(G+C) = \frac{N(C) + N(G)}{N}$$

• CpG ratio (Obs/Exp) > 0.60

$$CpG ratio = \frac{\frac{N(CpG)}{N}}{\frac{N(C)}{N} \times \frac{N(G)}{N}}$$

Markov Chain

- · What kind of probabilistic model may we use for CpG island regions?
 - Dinucleotides
 - The probability of a symbol depends on the previous symbol
 - > The simplest model is the Markov Chain
- Time series of symbols x_1, x_2, \dots, x_n
- The value at a time point is one of an alphabet (state set)

1st-order Markov Chain:

The time i value depends only on the time i-1 value.

$$a_{st} = P(x_i = t | x_{i-1} = s)$$

(1) 1 苯大学

· Definition:

$$X_1, X_2, \cdots, X_n, \cdots$$
 is called a (1st order) Markov chain if $P(X_n = x_n | X_1 = x_1, \cdots, X_{n-1} = x_{n-1}) = P(X_n = x_n | X_{n-1} = x_{n-1})$

· Transition Probability:

$$a_{st} = P(x_i = t | x_{i-1} = s)$$

Probability of an instance x of a Markov chain model:

Begin and end states can be added to a Markov chain for modelling both ends of a sequence.

Durbin et al, Biological sequence analysis, pp.48

Recap: Bayesian Decision

If
$$P(\omega_1|\mathbf{x}) \gtrsim P(\omega_2|\mathbf{x})$$
, assign $\mathbf{x} \in \omega_1$
 $\mathbf{x} \in \omega_2$
If $l(x) = \frac{p(x|\omega_1)}{p(x|\omega_2)} \gtrsim \frac{P(\omega_2)}{P(\omega_1)}$, then $x \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}$.
If $h(x) = -\ln[l(x)] \lesssim \ln\left(\frac{P(\omega_1)}{P(\omega_2)}\right)$, then $x \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}$.

Denote CpG island as class + and non-CpG island as class -. We can use the log likelihood ratio

$$S(x) = \log \frac{P(x|+)}{P(x|-)}$$

to make decision if we can build Markov models of the two classes to calculate P(x|+) and P(x|-).

Using Markov chains for discrimination

@ / / 洋羊大学

Building models for CpG island (+) and non-CpG island(-) region.

c_{st}^+	+	A	C	G	T
$l_{st} = \frac{1}{\sum_{t'} c_{st'}^+}$	A	0.180	0.274	0.426	0.120
c_{st}^-	C	0.171	0.368	0.274	0.188
$u_{st}^- = \frac{c_{st}}{\sum_{t'} c_{st'}^-}$	G	0.161	0.339	0.375	0.125
Zt' st'	T	0.079	0.355	0.384	0.182

-	A	С	G	T
A	0.300	0.205	0.285	0.210
C	0.322	0.298	0.078	0.302
G	0.248	0.246	0.298	0.208
T	0.177	0.239	0.292	0.292

To use the models for discrimination on
$$x$$
, calculate the log-odds ratio:

$$S(x) = \log \frac{P(x|+)}{P(x|-)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1}^{L} \beta_{x_{i-1}x_i} \qquad \beta_{st}: \text{ log likelihood ratios}$$
from state s to t

If $l(x) = \frac{p(x|\omega_1)}{p(x|\omega_2)} \gtrsim \lambda$, then $x \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}$ If $S(x) > \lambda$, then $x \in \begin{cases} CpG \text{ island} \\ non - CpG \text{ island} \end{cases}$

 β_{st} : log likelihood ratios from state s to t

beta	A	С	G	T
A	740	0.419	0.580	803
С	913	0.302	1.812	685
G	624	0.461	0.331	730
T	-1.169	0.573	0.393	679

Dark grey: CpG islands light grey: non-CpG regions

$$S(x) = \log \frac{P(x|+)}{P(x|-)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1}^{L} \beta_{x_{i-1}x_i}$$

Durbin et al, Biological sequence analysis, pp.52

For high-dimensional features $\mathbf{x} = [x_1, x_2, \cdots, x_d]^{\mathrm{T}}$, dealing with $p(\mathbf{x}|\omega_i)$ is challenging.

⑩消華大学

{

➤ Naïve Bayes Classifier 朴素贝叶斯分类器

--- Naïve assumption of conditional independence of elements of x

$$P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i)P(\omega_i)}{p(\mathbf{x})} \propto P(\omega_i)p(x_1, x_2, \dots, x_d|\omega_i)$$
$$= P(\omega_i) \prod_{k=1}^d p(x_k|\omega_i)$$

@ / / 样大学 Recall: errors are not equal Positive: something (e.g., a disease) is there Negative: the thing is not there Diagnostic test: using a test to judge positive or negative Test performances: Disease Disease absent D present D Sensitivity TP: True FP: False Test $P(T^+|D^+) = TP / (TP + FN)$ **Positives** Positives positive T FN: False TN: True Test Specificity Negatives negative T $P(T^-|D^-) = TN / (TN + FP)$ Prevalence: pre-test probability (probability in the population) $D^+/(D^+ + D^-)$ - Predictive value of a test • Discovery rate: $P(D^+|T^+) = TP / (TP + FP)$ We should care more • False discovery rate: $P(D^-|T^+) = FP / (TP + FP)$ about the cost of errors! - Accuracy: $(TP + TN)/(D^+ + D^-)$ Xuegong Zhang

The Decision Problem

- Samples: random vectors $\mathbf{x} = [x_1, x_2, \dots, x_d]^T$
- State space of c possible states: $\Omega = \{\omega_1, \omega_2, \cdots, \omega_c\}$
- Decision space of k possible decisions $\mathcal{A} = \{\alpha_1, \alpha_2, \dots, \alpha_k\}$ for sample x
- The loss with decision α_i on x of true state ω_i :

$$\lambda(\alpha_i, \omega_j), i = 1, \dots, k, j = 1, \dots, c.$$

All possible losses are usually defined as a Decision Table:

43

How should we make the decision for sample x?

• Expected loss if we choose α_i :

$$R(\alpha_i|\mathbf{x}) = E[\lambda(\alpha_i, \omega_j)|\mathbf{x}] = \sum_{i=1}^{c} \lambda(\alpha_i, \omega_j) P(\omega_j|\mathbf{x}), \quad i = 1, \dots, k$$

• The expectation of loss for all samples under decision rule $\alpha(x)$:

$$R(\alpha) = \int R(\alpha(x)|x)p(x)dx$$

--- Expected risk, or average risk

 $R(\alpha)$ is a functional: the function of decision function $\alpha(x)$

- Minimal Risk Decision: $\min_{\alpha(\cdot)} R(\alpha)$
- Decision Rule: If $R(\alpha_i|\mathbf{x}) = \min_{j=1,\dots,k} R(\alpha_j|\mathbf{x})$, then $\alpha = \alpha_i$

If $R(\alpha_i|\mathbf{x}) = \min_{j=1,\dots,k} R(\alpha_j|\mathbf{x})$, then $\alpha = \alpha_i$

◎消華大学

How can we get $R(\alpha_i|x)$?

$$R(\alpha_i|\mathbf{x}) = E[\lambda(\alpha_i, \omega_j)|\mathbf{x}] = \sum_{j=1}^c \lambda(\alpha_i, \omega_j) P(\omega_j|\mathbf{x}), \quad i = 1, \dots, k$$

Posterior

$$P(\omega_j|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_j)P(\omega_j)}{\sum_{i=1}^{c} p(\mathbf{x}|\omega_i)P(\omega_i)}, \quad j = 1, \dots, c$$

Risk

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i, \omega_j) P(\omega_j|\mathbf{x}), \quad i = 1, \dots, k$$

Decision

$$\alpha = \operatorname*{argmin}_{i=1,\cdots,k} R(\alpha_i | \mathbf{x})$$

45

11年大学

For two classes

If
$$\lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x}) \lesssim \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$$
, then $\mathbf{x} \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}$

Equivalent forms:

If $(\lambda_{11} - \lambda_{21})P(\omega_1 \mathbf{x})$	< >	$(\lambda_{22}-\lambda_{12})P(\omega_2 \mathbf{x})$
--	--------	---

11033	ω_1	ωZ
α_1	λ_{11}	λ_{12}
α_2	λ_{21}	λ_{22}

or
$$\frac{P(\omega_1|x)}{P(\omega_2|x)} = \frac{p(x|\omega_1)P(\omega_1)}{p(x|\omega_2)P(\omega_2)} > \frac{\lambda_{22} - \lambda_{12}}{\lambda_{11} - \lambda_{21}} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}$$

or

$$l(x) = \frac{p(x|\omega_1)}{p(x|\omega_2)} < \frac{P(\omega_2)}{P(\omega_1)} \cdot \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}$$

Threshold of the likelihood ratio

then $x \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}$

When
$$\lambda_{11} = \lambda_{22} = 0$$
, $\lambda_{12} = \lambda_{21} = 1$,

minimal risk decision becomes minimal error decision.

Example:

- 1. Two classes of cells: normal $P(\omega_1)=0.9$, disease $P(\omega_2)=0.1$. For a cell x, from disease model (knowledge) we got $p(x|\omega_1)=0.2$ and $p(x|\omega_2)=0.4$, decide whether x is disease or normal by the Bayesian minimal error decision principle.
- Solution:

$$P(\omega_1|x) = \frac{p(x|\omega_1)P(\omega_1)}{\sum_{i=1}^2 p(x|\omega_i)P(\omega_i)} = \frac{0.2 \times 0.9}{0.2 \times 0.9 + 0.4 \times 0.1} = 0.818$$

$$P(\omega_2|x) = 1 - P(\omega_1|x) = 0.182$$

$$0.818 > 0.182$$
, $x \in \omega_1$

2. The same data, but use the given decision table, decide whether *x* is disease or normal by minimal risk decision.

Loss	ω_1	ω_2	
α_1	$\lambda_{11} = 0$	$\lambda_{12} = 6$	
α_2	$\lambda_{21} = 1$	$\lambda_{22} = 0$	

• Solution:

$$R(\alpha_1|x) = \sum_{i=1}^{2} \lambda_{1i} P(\omega_q|x) = \lambda_{12} P(\omega_2|x) = 6 \times 0.182 = 1.092$$

$$R(\alpha_2|x) = \lambda_{21}P(\omega_1|x) = 1 \times 0.818 = 0.818$$

$$1.092 > 0.818, \quad \therefore x \in \omega_2$$

Xuegong Zhang

4

11.6 Minimizing one type of error conditional on the other

Neyman-Pearson Criterion:

to minimize the error on one class under a constrain for the error on the other class

$$\min P_1(e)$$
, s.t. $P_2(e) = \epsilon$

Lagrangian

$$L = P_1(e) + \lambda(P_2(e) - \varepsilon) = \dots = (1 - \lambda \varepsilon) + \int_{R_1} [\lambda p(x|\omega_2) - p(x|\omega_1)] dx$$

$$R_1 \text{ is the decision region of class } \omega_1$$

Solution:

At the boundary
$$t^*$$
 of R_1 : $\frac{\partial L}{\partial t^*} = 0 \implies \lambda^* = \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)}\Big|_{\mathbf{x} \in t^*}$

Decision rule:

If
$$\lambda p(x|\omega_2) < p(x|\omega_1)$$
, then $x \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}$
If $l(x) = \frac{p(x|\omega_1)}{p(x|\omega_2)} < \lambda$, then $x \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}$

49

If $l(x) = \frac{p(x|\omega_1)}{p(x|\omega_2)} < \lambda$, then $x \in \begin{cases} \omega_1 \\ \omega_2 \end{cases}$

How to solve for the threshold?

Decision region of ω_2 in the λ space $[0,\lambda)$

$$\therefore P_2(e) = 1 - \int_0^{\lambda} p(l|\omega_2) dl$$

- Numeric solution for $P_2(e)=1-\int_0^{\pmb{\lambda}}p(l|\omega_2)dl=\epsilon$
- Or, find the proper threshold
 λ on the ROC curve!

Xuegong Zhang

What shall I do if I don't know the prior?

(D)

· Let's look into the risk

$$R(\alpha_{i}|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_{i}, \omega_{j}) P(\omega_{j}|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_{i}, \omega_{j}) \frac{p(\mathbf{x}|\omega_{j}) P(\omega_{j})}{\sum_{i=1}^{c} p(\mathbf{x}|\omega_{i}) P(\omega_{i})}, \quad i = 1, \dots, k$$

$$R(\alpha) = \int R(\alpha(\mathbf{x})|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
Loss

Two-class scenario:

$$R = \int_{R_1} [\lambda_{11} P(\omega_1) p(x|\omega_1) + \lambda_{12} P(\omega_2) p(x|\omega_2)] dx + \int_{R_2} [\lambda_{21} P(\omega_1) p(x|\omega_1) + \lambda_{22} P(\omega_2) p(x|\omega_2)] dx$$

- When the priors $P(\omega_1)$ and $P(\omega_2)$ are unknown
 - Minimax criterion:

➤ Consider the worst case: minimize the overall risk for the worst prior

→ To minimize the maximum possible overall risk.

- Take $P(\omega_1)$ as a variable, and optimize the risk $R(P(\omega_1))$ as its function.

$$R = \int_{R_1} [\lambda_{11} P(\omega_1) p(x|\omega_1) + \lambda_{12} P(\omega_2) p(x|\omega_2)] dx + \int_{R_2} [\lambda_{21} P(\omega_1) p(x|\omega_1) + \lambda_{22} P(\omega_2) p(x|\omega_2)] dx$$

Since $P(\omega_2)=1-P(\omega_1)$ and $\int_{R_1}p(x|\omega_1)dx=1-\int_{R_2}p(x|\omega_1)dx$, we have

$$R(P(\omega_1)) = \lambda_{22} + (\lambda_{12} - \lambda_{22}) \int_{R_1} p(x|\omega_2) dx$$

$$+P(\omega_{1})\left\{ \underbrace{(\lambda_{11}-\lambda_{22})-(\lambda_{21}-\lambda_{11})\int_{R_{2}}p(x|\omega_{1})dx-(\lambda_{12}-\lambda_{22})\int_{R_{1}}p(x|\omega_{2})dx}_{=0 \text{ for minimax solution}} \right\}$$

$$R_{\text{minimax}} = \lambda_{22} + (\lambda_{12} - \lambda_{22}) \int_{R_1} p(x|\omega_2) dx = \lambda_{11} + (\lambda_{21} - \lambda_{11}) \int_{R_2} p(x|\omega_1) dx$$

· It can be hard to solve for an analytical solution for complicate data, but the idea is useful.

Discussion

- Question
 - What is the key difference of Bayesian Decision and the ML methods we learned before (e.g., NN, SVM, ...)?
- Bayesian Decision:
 - Model-based method
- Previous methods:
 - Model-free methods

- Model of what?
 - Model of the data
 - → Probability density function (PDF)

Two-step Bayesian Decision

Ideal Condition for Bayesian Decision

Given the number of classes (states) ω_i , $i=1,\cdots,c$, the prior and conditional densities $P(\omega_i)$, $P(x|\omega_i)$, $i=1,\cdots,c$

· Usual situations we face

Given the number of classes (states) ω_i , $i = 1, \dots, c$ and a set of samples in each class \mathcal{X}_i

- · Two steps:
 - Estimate $P(\omega_i)$ and $p(x|\omega_i)$ from the samples
 - And use the estimated $\hat{P}(\omega_i)$ and $\hat{p}(x|\omega_i)$ in Bayesian Decision

59

Homework

- Computer exercises (Ex5)
 - Write your own code of Naïve Bayes Classifier and do experiment on the ICU data.
- Deadline:
 - Nov. 17 (Wednesday), 23:00

