

Universidad Nacional de La Plata

Facultad de informática

Computabilidad y Complejidad

Resolución - Prácticas

Autor:

Lautaro Castro

 $\mathrm{CyC}\mid 2023$ UNLP

Índice

Práctica 1		3
Ejercicio 1		3
Ejercicio 2		3
Ejercicio 3		3
Ejercicio 4		3
Inciso a		3
Inciso b		3
Inciso c		4
Ejercicio 5		4
Ejercicio 6		4
Ejercicio 7		5
Ejercicio 8		5
Ejercicio 9		5
Ejercicio 10		6
Ejercicio 11		6
		7
Ejercicio 13		7
Ejercicio 14		1
Práctica 2		8
Ejercicio 1		8
Inciso a		8
Inciso b		8
Ejercicio 2		8
Inciso a		8
Inciso b		9
Ejercicio 3		9 [0
Inciso a		10
Inciso b		10
		10
		10
Ejercicio 4		
Ejercicio 5		1
Ejercicio 6		1
Ejercicio 7		12
Ejercicio 8		2
Ejercicio 9		2
Ejercicio 10		13
Ejercicio 11		13
Ejercicio 12		13
Ejercicio 13		4
Inciso a		4
Inciso b		4
Inciso c		4
Inciso d		4
Ejercicio 13	1	15
Ejercicio 14	1	15
Dutation 0	4	_
Práctica 3		7
Ejercicio 1		17
Ejercicio 2	1	19
Práctica 4	າ	21
Ejercicio 1		21
—Jorozozo z		

CyC | 2023

T	INI	ΓF

Ejerci	cio 2					 		 				 							 . 22
Ejerci	cio 3					 		 				 							 . 23
Ejerci	cio 4					 		 				 							 . 23
Ejerci	cio 5					 		 				 							 . 23
Ejerci	cio 6					 		 				 							 . 24
Ejerci	cio 7					 		 				 							 . 25
Ejerci	cio 8					 		 				 							 . 25
Ejerci	cio 9					 		 				 							 . 26
Ejerci	cio 10 .					 		 				 							 . 26
Ejerci	cio 11 .					 		 				 							 . 26
Ejerci	cio 12 .					 						 							 . 27
Ejerci	cio 13 .											 							 . 28
D., 4 - 4 !																			20
																			29
Ejerci	cio 1																		. 29
Ejerci I	cio 1 Inciso a					 													 . 29 . 29
I	cio 1 Inciso a Inciso b					 		 				 							 . 29 . 29 . 29
Ejerci I I I	cio 1 Inciso a Inciso b Inciso c	 	 			 	 	 · ·	 		 	 · ·	 	 					 . 29 . 29 . 29 . 30
Ejerci I I	cio 1 Inciso a Inciso b Inciso c	 	 			 	 	 · ·	 		 	 · ·	 	 					 29 29 29 29 30 30
Ejerci I I Ejerci I	acio 1 Inciso a Inciso b Inciso c acio 2 Inciso a	 	 	 	 	 	 	 	 	 	 •	 	 29 29 29 30 30 30						
Ejerci I I Ejerci I	cio 1 Inciso a Inciso b Inciso c	 	 	 	 	 	 	 	 	 	 •	 	 29 29 29 30 30 30						
Ejerci I I I Ejerci I	cio 1 Inciso a Inciso b Inciso c cio 2 Inciso a Inciso b	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 29 29 29 30 30 30 31
Ejerci I I Ejerci I I	cio 1 Inciso a Inciso b Inciso c cio 2 Inciso a Inciso b	 	 		 		 		 		 	 	 		 	 	 	 	 29 29 29 30 30 30 31
Ejerci I I Ejerci I I I	cio 1 Inciso a Inciso b Inciso c cio 2 Inciso a Inciso b Inciso c	 	 		 		 		 		 				 	 	 	 	 29 29 29 30 30 30 31 31
Ejerci I I Ejerci I I Ejerci	cio 1 Inciso a Inciso b Inciso c cio 2 Inciso a Inciso b Inciso c Inciso d	 	 		 		 		 		 				 	 	 	 	 29 29 29 30 30 30 31 31

Práctica 1

Ejercicio 1

1) Probar la siguiente ley distributiva $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

```
x \in (A \cup (B \cap C)) \Leftrightarrow (definición de intersección y unión)

x \in A \lor (x \in B \land x \in C) \Leftrightarrow (distributiva lógica proposicional)

(x \in A \lor x \in B) \land (x \in A \lor x \in C) \Leftrightarrow (definición de intersección y unión)

x \in ((A \cup B) \cap (A \cup C))
```

Ejercicio 2

Probar la siguiente ley de Morgan: El Complemento de A unión B es igual al complemento de A intersección el complemento de B

```
x \in (A \cup B)^C \Leftrightarrow (Definición de complemento)

\neg (x \in A \lor x \in B) \Leftrightarrow (Ley de Morgan lógica proposicional)

x \notin A \land x \notin B \Leftrightarrow (Definición de complemento y conjunción)

A^C \land B^C
```

Ejercicio 3

Probar que el complemento del complemento de A es igual a A

```
x \in (A^C)^C \Leftrightarrow (Definición de complemento)

x \notin (x \notin A) \Leftrightarrow

\neg(\neg(x \in A)) \Leftrightarrow (Doble negación lógica proposicional)

x \in A \Leftrightarrow
```

Ejercicio 4

Sea A el conjunto de los números naturales tales que, si son mayores que 5 o bien terminan en 5, entonces contienen algún dígito 1 ó 2.

Inciso a

Cuáles de los siguientes números pertenecen a A: 3, 5, 10, 15, 30, -10

3, 10, 15 pertenecen a A

Inciso b

Expresar el enunciado como una fórmula proposicional donde m significa mayores que 5, t es terminan en 5, u es contiene algún dígito 1 y d es contiene algún dígito 2

$$(m \lor t) \to (u \lor d)$$

Inciso c

Transformar la fórmula del inciso anterior de manera que no tenga una implicación y aplicar una ley de Morgan al resultado. Expresarlo en una frase.

$$(m \lor t) \to (u \lor d) \Leftrightarrow (Implicación)$$

 $\neg((m \lor t) \land \neg(u \lor d)) \Leftrightarrow (Morgan)$
 $\neg(m \lor t) \lor (u \lor d)$

A es el conjunto de los números naturales tales que no cumplen que es mayor 5 o termina en 5 o que contenga algún dígito 1 o 2.

Ejercicio 5

Sean:

 $X = \{x/x \in x \text{ es impar}\}$

 $Y = \{y/y \in y \text{ es primo}\}$

 $Z = \{z/z \in z \text{ es múltiplo de } 3\}$

Describir cada uno de los siguientes conjuntos:

- a) $X \cap Y$
- b) $X \cap Z$
- c) $Y \cap Z$
- d) Z-Y
- $e) X (Y \cap Z)$
- f) $(Y \cap Z) X$
- $g) X \cup Y$

Resolución:

- a) $X \cap Y = \{x : x \in \exists x \in \exists$
- b) $X \cap Z = \{x : x \in n \in x = 2n + 1 \land x = 3n\}$
- c) $Y \cap Z = \{3\}$
- d) $Z Y = \{z : z \in n \in z = 3n \land \neg (z = 2n + 1)\}$
- e) $X (Y \cap Z) = X \{3\} = \{x : x \in : n \in : x = 2n + 1 \land x \neq 3\}$
- f) $(Y \cap Z) X = \{3\} X = \emptyset$
- g) $X \cup Y = \{x : x \in n \in x = 2n + 1 \lor x = 3n\}$

Ejercicio 6

Calcular los conjuntos de partes en los siguientes casos

- $a) \varnothing$
- $b) \{a, b, c\}$
- c) { \varnothing }
- d) { \varnothing , { \varnothing }

$$e) \{a, \{b, c\}\}$$

Resolución:

- a) $\emptyset = \emptyset$
- b) $\{a, b, c\} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$
- c) $\{\emptyset\} = \{\emptyset, \{\emptyset\}\}$
- d) $\{\emptyset, \{\emptyset\} = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$
- e) $\{a, \{b, c\}\} = \{\emptyset, \{a\}, \{\{b, c\}\}, \{a, \{\{b, c\}\}\}\}$

Ejercicio 7

Presentar una lista con todos los elementos en cada uno de los conjuntos siguientes:

- a) $\{x, y\} \times \{a, b, c\}$
- b) $\{a, b, c\} \times \{x, y\}$
- c) $\{x,y\} \times \{y,x\}$
- d) $\{x,y\}^2 \times \{\}$
- e) $\{\}^{10} \times \{2,3,4\}^{20}$
- $f) \{1\}^5 = \{(1,1,1,1,1)\}$
- $g) \{1,2\} \times \{a\} \times \{a,b\}$

Resolución:

- a) $\{x,y\} \times \{a,b,c\} = \{(x,a),(x,b),(x,c),(y,a),(y,c),(y,c)\}$
- b) $\{a,b,c\} \times \{x,y\} = \{(a,x),(a,y),(b,x),(b,y),(c,x),(c,y)\}$
- c) $\{x,y\} \times \{y,x\} = \{(x,y),(x,x),(y,x),(y,y)\} = \{x,y\}^2$
- d) $\{x,y\}^2 \times \{\} = \varnothing$ El conjunto vacío no contiene elementos para construir pares ordenados
- e) $\{\}^{10} \times \{2,3,4\}^{20} = \emptyset$ El conjunto vacío no contiene elementos para construir pares ordenados
- f) $\{1\}^5 = \{(1,1,1,1,1)\}$
- g) $\{1,2\} \times \{a\} \times \{a,b\} = \{(1,a,a), (1,a,b), (2,a,a), (2,a,b)\}$

Ejercicio 8

¿Cuál es el cardinal de $A \times B$ si |A| = n y |B| = m?

El cardinal de $|A_1 \times A_2 \times ... \times A_n| = |A_1| * |A_2| * ... * |A_3| \Rightarrow |A \times B| = n * m$

Ejercicio 9

Demostrar por inducción que si A es un conjunto finito $|A| = n \Rightarrow |p(A)| = 2^n$

Caso base

Sea
$$A = \emptyset \Rightarrow |A| = 0$$

$$p(A) = \{\emptyset\} \Rightarrow |p(A)| = 1 = 2^0$$

Paso inductivo

Sea
$$A = \{a_1, a_2, ..., a_k\} \Rightarrow |A| = k$$

 $p(A) = \{\emptyset, \{a_1\}, ..., \{a_k\}, ..., \{a_1, a_2, ..., a_k\} \Rightarrow |p(A)| = 2^k$
Sea $B = \{a_1, a_2, ..., a_k, a_{k+1}\} = A \cup \{a_{k+1}\}$

Como $B = A \cup \{a_{k+1}\} \Rightarrow p(A) \subseteq p(B)$ entonces solo faltaría determinar los subconjuntos que se forman al añadir el elemento a_{k+1} .

Si se analiza, los subconjuntos que añade este elemento extra, son la combinación con cada uno de los subconjuntos formado por el resto de elementos, es decir $x \in p(A) \Rightarrow (x \cup \{a_{k+1}\}) \subseteq p(B)$

$$\varnothing \cup a_{k+1} \dots \{a_k\} \cup a_{k+1} \dots \{a_1, a_2, \dots, a_k\} \cup a_{k+1}$$

 $|p(A)| = 2^k$, entonces el elemento a_{k+1} añade 2^k subconjuntos

$$\therefore |p(B)| = 2^k + 2^k = 2 * 2^k = 2^{k+1}$$

Ejercicio 10

Mostrar que $|N \times N| = |N^+|$

1)
$$|N^+| \le |N \times N| \Rightarrow f_1 : N^+ \to N \times N, f_1(n) = (n, n)$$

2)
$$|N \times N| \le |N^+| \Rightarrow f_2 : N \times N \to N, f_2(i,j) = \frac{(i+j)(i+j+1)}{2} + i + 1$$

$$\therefore |N^+| = |N \times N|$$

Ejercicio 11

Mostrar que $|Q^+| = |N|$, siendo Q^+ el conjunto de los racionales positivos

1)
$$|N| \le |Q^+| \Rightarrow f_1 : N \to Q^+, f_1(n) = \frac{n}{1}$$

2)
$$|Q^+| \le |N| \Rightarrow f_2: Q \to N \times N, f_2(i,j) = (i,j) \ (N \le N \times N \le Q \text{ transitividad})$$

Figura 0.1

Como se puede observar en la imagen Figura 0.1, si colocamos de forma ordenada los números racionales en un arreglo bidimensional, y asignamos un número natural a partir de seguir un orden diagonal

 $\mathrm{CyC}\mid 2023$ UNLP

(eliminando las fracciones redundantes, que están entre paréntesis), existe una función inyectiva $f_2:Q^+\to N$

$$|N| = |Q^+|$$

Explicación más detallada

Ejercicio 13

Dar un ejemplo de 2 conjuntos disjuntos no vacíos, A y B tales que:

- a) $|A| < |B| < |A \cup B|$
- b) $|A| < |B| = |A \cup B|$
- c) $|A| = |B| = |A \cup B|$

Resolución:

- a) $|A| < |B| < |A \cup B|$; $A = \{a\}$ $B = \{b, c\}$
- b) $|A| < |B| = |A \cup B|$; $A = \{a\} B = \{a, b\}$
- c) $|A| = |B| = |A \cup B|$; $A = \{a\} B = \{a\}$

Ejercicio 14

Mostrar que $|N - \{7, 9, 15, 34, 21, 344, 990\}| = |N|$

Sea $|N - \{7, 9, 15, 34, 21, 344, 990\}| = N^*$

- 1) $|N^*| \le |N| \Rightarrow f_1 : N^* \to N, f_1(n) = n$
- 2) $|N| \le |N^*| \Rightarrow f_2 : N \to N^*, f_2(n) = n + 991$

$$|N| = |N^*|$$

Práctica 2

Ejercicio 1

construir las siguientes MT:

Inciso a

Construir una máquina de Turing que haga un corrimiento a derecha de la cadena binaria en la cinta, marcando con un símbolo especial '#' la celda que corresponde al primer símbolo desplazado. $\Gamma = \{B, \#, 0, 1\}$

```
\begin{split} & \text{MT de c\'omputo} < Q, \Sigma, \Gamma, \delta, q_0 > \\ & Q = \{q_0, q_1, q_2, q_3\} \\ & \Sigma = \{0, 1\} \\ & \Gamma = \{0, 1, B, H\} \\ & \delta : Q \times \Gamma \to Q \times \Gamma \times \{I, D\} \\ & \delta(q_0, 0) = (q_2, \#, D); \ \delta(q_0, 1) = (q_1, \#, D) \\ & \delta(q_1, 1) = (q_1, 1, D); \ \delta(q_1, 0) = (q_2, 1, D); \ \delta(q_1, B) = (q_3, 1, D) \\ & \delta(q_2, 0) = (q_2, 0, D); \ \delta(q_2, 1) = (q_1, 0, D); \ \delta(q_2, B) = (q_3, 0, D) \end{split}
```

Inciso b

Y otra que haga un corrimiento a izquierda.

MT de cómputo
$$< Q, \Sigma, \Gamma, \delta, q_0 >$$

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, 1, B, H\}$$

$$\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{I, D\}$$

$$\delta(q_0, 0) = (q_0, 0, D); \ \delta(q_0, 1) = (q_0, 1, D); \ \delta(q_0, B) = (q_1, B, I)$$

$$\delta(q_1, 0) = (q_2, \#, I); \ \delta(q_1, 1) = (q_3, \#, I)$$

$$\delta(q_2, 0) = (q_2, 0, I); \ \delta(q_2, 1) = (q_3, 0, I); \ \delta(q_2, B) = (q_4, 0, I)$$

$$\delta(q_3, 0) = (q_2, 1, I); \ \delta(q_3, 1) = (q_3, 1, I); \ \delta(q_3, B) = (q_4, 1, I)$$

Ejercicio 2

construir las siguientes MT:

Inciso a

Construir una máquina de Turing M tal que $L(M) = 0^n 1^n/n \ge 1$ y mostrar la traza de computación de M para las entradas $w_1 = 0011$ y $w_2 = 011$.

MT:
$$< Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R >$$

 $Q = \{q_0, q_1, q_2, q_3\}$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, 1, B\}$$

$$\delta: Q \times \Gamma \to (Q \cup \{q_A, q_R\}) \times \Gamma \times \{I, D\}$$

δ	0	1	В
q_0	(q_1, B, D)	$(q_R, 1, D)$	(q_R, B, D)
q_1	$(q_1, 0, D)$	$(q_1, 1, D)$	(q_2, B, I)
q_2	$(q_R,0,D)$	(q_3, B, I)	(q_R, B, D)
q_3	$(q_3, 0, I)$	$(q_3, 1, I)$	(q_4, B, D)
q_4	(q_1, B, D)	$(q_R, 1, D)$	(q_A, B, D)

Entrada $w_1 = 0011$:

$$Bq_00011B \vdash_M BBq_1011B \vdash_M BB0q_111B \vdash_M BB01q_11B \vdash_M BB01q_11B \vdash_M BB011q_1B \vdash_M BB01q_21B \vdash_M BB0q_31BB \vdash_M BBq_301BB \vdash_M Bq_3B01BB \vdash_M BBq_401BB \vdash_M BBBq_11BB \vdash_M BBB1q_1BB \vdash_M BBBq_21BB \vdash_M BBq_3BBBB \vdash_M BBBq_4BBB \vdash_M BBBBq_ABB$$
 Entrada $w_2 = 011$:
$$q_0011B \vdash_M Bq_111B \vdash_M B1q_11B \vdash_M B11q_1B \vdash_M B1q_21B \vdash_M Bq_31BB \vdash_M q_3B1BB \vdash_M Bq_41BB \vdash_M Bq_41BB \vdash_M B1q_RBB$$

Inciso b

Construir una máquina de Turing que busque en la cinta el patrón abab y se detenga si y sólo si encuentra ese patrón. $\Gamma = \{a, b, c, B\}$

$$\begin{split} & \text{MT:} < Q, \Sigma, \Gamma, \delta, q_0, q_d > \\ & Q = \{q_0, q_1, q_2, q_3\} \\ & \Sigma = \{a, b, c\} \\ & \Gamma = \{a, b, c, B\} \\ & \delta : Q \times \Gamma \rightarrow (Q \cup \{q_d\}) \times \Gamma \times \{I, D\} \end{split}$$

Tabla 1: Alternativa 1

δ	a	b	c	В
q_0	(q_1, a, D)	(q_0, b, D)	(q_0, c, D)	(q_0, B, D)
q_1	(q_4, a, D)	(q_2, b, D)	(q_4, c, D)	(q_4, B, D)
q_2	(q_3, a, D)	(q_4, b, D)	(q_4, c, D)	(q_4, B, D)
q_3	(q_4, a, D)	(q_d, b, D)	(q_4, c, D)	(q_4, B, D)
q_4	(q_0, a, I)	(q_0,b,I)	(q_0, c, I)	(q_0, B, D)

Tabla 2: alternativa 2

δ	a	b	c	B
q_0	(q_1, a, D)	(q_0, b, D)	(q_0, c, D)	(q_0, B, D)
q_1	(q_1, a, D)	(q_2, b, D)	(q_0, c, D)	(q_0, B, D)
q_2	(q_3, a, D)	(q_0, b, D)	(q_0, c, D)	(q_0, B, D)
q_3	(q_1, a, D)	(q_d, b, D)	(q_0, c, D)	(q_0, B, D)

Ejercicio 3

Construir máquinas de Turing para computar las siguientes funciones:

Inciso a

Suma unaria. $\Sigma = \{+, 1\}$.

MT:
$$\langle Q, \Sigma, \Gamma, \delta, q_0, q_d \rangle$$

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{+, 1\}$$

$$\Gamma = \{+, 1B\}$$

$$\delta: Q \times \Gamma \to (Q \cup \{q_d\}) \times \Gamma \times \{I, D\}$$

δ	1	+	В
q_0	$(q_0, 1, D)$	$(q_1, 1, D)$	(q_d, B, D)
q_1	$(q_1,1,D)$	$(q_d,+,D)$	(q_2, B, I)
q_2	(q_d, B, I)	$(q_d, +, I)$	(q_d, B, I)

Inciso b

Resta unaria a - b con a > b $\Sigma = \{-, 1\}$.

$$MT : < Q, \Sigma, \Gamma, \delta, q_0, q_d$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Gamma = \{-, 1, B\}$$

$$\delta: Q \times \Gamma \to (Q \cup \{q_d\}) \times \Gamma \times \{I, D\}$$

δ	1	-	В
q_0	$(q_0, 1, D)$	$(q_1,-,D)$	q_d, B, I
q_1	$(q_2, -, I)$	$(q_1,-,D)$	(q_3, B, I)
q_2	$(q_1, -, D)$	$(q_2, -, I)$	(q_2, B, D)
q_3	$(q_d, 1, I)$	(q_3, B, I)	(q_d, B, I)

Inciso c

Calcular el complemento a 2 de un número binario de 8 bits con $\Sigma = \{0,1\}$

Una forma de hallar el opuesto de un número binario positivo en complemento a dos es comenzar por la derecha (el dígito menos significativo), copiando el número original (de derecha a izquierda) hasta encontrar el primer 1, después de haber copiado el 1, se niegan (complementan) los dígitos restantes

(es decir, copia un 0 si aparece un 1, o un 1 si aparece un 0). Este método es mucho más rápido para las personas, pues no utiliza el complemento a uno en su conversión

$$MT : \langle Q, \Sigma, \Gamma, \delta, q_0, q_d \rangle$$

$$Q = \{q_0, q_1, q_2\}$$

$$\Gamma = \{0, 1, B\}$$

$$\delta: Q \times \Gamma \to (Q \cup \{q_d\}) \times \Gamma \times \{I, D\}$$

δ	0	1	В
q_0	$(q_0, 0, D)$	$(q_0, 1, D)$	(q_1, B, I)
q_1	$(q_1,0,I)$	$(q_2, 1, I)$	(qd, B, I)
q_2	$(q_2,1,I)$	$(q_2, 0, I)$	(qd, B, D)

Ejercicio 4

Sea $\Sigma=\{a\}$ y w=a. Decir cuáles son las palabras que se obtienen como resultado de aplicar las siguientes operaciones: ww,www,w^3,w^5,w^0 ¿Cuáles son sus longitudes? Definir Σ^*

$$ww = aa; |ww| = 2$$

$$www = aaa; |www| = 3$$

$$w^3 = aaa; |www| = 3$$

$$w^5 = aaaaa; |w^5| = 5$$

$$w^0 = \lambda; \ |w^0| = 0$$

$$\Sigma^* = \{\lambda, a, aa, aaa, ...\} = \{a^n, n \ge 0\}$$

Ejercicio 5

Idem al ejercicio anterior, pero con $\Sigma = \{a, b\}$ y w = aba.

$$ww = abaaba; |ww| = 6$$

$$www = abaabaaba; |www| = 9$$

$$w^3 = abaabaaba; |w^3| = 9$$

$$w^5 = abaabaabaabaaba; |w^5| = 15$$

$$w^0 = \lambda; |w^0| = 0$$

$$\Sigma^* = \{a^n b^m, n \ge 0 \land m \ge 0\}$$

Ejercicio 6

Sea $\Sigma = \{a, b, c\}$, escriba las 13 cadenas más cortas de Σ^* .

- 1. $|\lambda| = 0$
- 2. |a| = 1
- 3. |b| = 1
- 4. |aa| = 2
- 5. |ab| = 2

CyC | 2023

UNLP

- 6. |ba| = 2
- 7. |bb| = 2
- 8. |aaa| = 3
- 9. |aba| = 3
- 10. |abb| = 3
- 11. |aab| = 3
- 12. |bbb| = 3
- 13. |bba| = 3

Ejercicio 7

Dar tres ejemplos de lenguajes basados en el alfabeto $\{0,1\}$

- 1. $\{w \in \Sigma^* : 1^n, n \ge 0\}$
- 2. $\{w \in \Sigma^* : 0^n \, n \ge 0\}$
- $3. \varnothing$

Ejercicio 8

¿Cuántas cadenas de longitud 3 hay en $\{0,1,2\}*$, y cuántas de longitud n?

Dado que las distintas cadenas se forman generando variaciones de los distintos símbolos con repetición, entonces si se dispone de n símbolos, la cantidad de cadenas con longitud m es: n^m

٠.

cantidad de cadenas de longitud $3 = 3^3 = 27$

cantidad e cadenas de longitud n = 3^m

Ejercicio 9

Explicar la diferencia -si la hay- entre los lenguajes L1 y L2.

a) $L_1 = \emptyset$ $L_2 = \{\lambda\}$

 L_1 no contiene ningún elemento mientras que L_2 contiene a λ

b) $L_1 = \Sigma^* \cup \{\lambda\}$ $L_2 = \varnothing \cup \Sigma^*$

Son iguales:

$$\lambda \subseteq \Sigma^* \to \Sigma^* \cup \{\lambda\} = \Sigma^*$$

 \varnothing es neutro en la unión $\to \varnothing \cup \Sigma^* = \Sigma^*$

c) $L_1 = \Sigma^* - \varnothing$ $L_2 = \Sigma^*$

Son iguales:

 \varnothing es neutro en la diferencia $\,\to \Sigma^* - \varnothing = \Sigma^*$

d) $L_1 = \Sigma^* - \{\lambda\}$ $L_2 = \Sigma^*$ Son diferentes ya que $\Sigma^* - \lambda = \Sigma : L_1 \neq L_2$

Ejercicio 10

Mostrar que Σ^* es infinito contable.

Simplemente Magia...

La idea general para encontrar una función inyectiva tal que $|\Sigma^*| \leq |\mathbb{N}|$ se defina un sistema posicional a partir de todos los símbolos de Σ^* . De modo que la función pueda expresarse a través del calculo del teorema fundamental de la numeración.

Sea $|\Sigma| = n$, y $\Sigma = \{s_1, ..., s_n\}$ entonces se definirá una función que mapea cada símbolo de Σ a un número.

Se define función g(x):

$$g(s_1) = 0$$

$$g(s_2) = 1$$
...
$$g(s_n) = n$$

Sea c(w,n) (denominada función caracter), una función que mapea el símbolo n-esimo de la palabra 'w', donde n > 0. Es decir si w = argentina, c(w,3) = g. Entonces, se puede definir la siguiente función inyectiva para $\Sigma^* \to \mathbb{N}$:

$$f(x) = \sum_{i=1}^{|x|} g(c(x,i)) * |\Sigma^*|^{i-1}$$
$$\therefore |\Sigma^*| \le |\mathbb{N}|$$

Ejercicio 11

Indicar cuál es el lenguaje que se obtiene al intersectar los siguientes lenguajes:

- 1. $L_1 = \{a^n c^m d^n / n \ge 0, m \ge 0\}$ con $L_2 = \{c^n / n \ge 0\}$ $L_1 \cap L_2 = \{c^n, n \ge 0\}$ 2. $L_1 = \{a^n c^m d^n / n > 0, m \ge 0\}$ con $L_2 = \{c^n / n \ge 0\}$
- 2. $L_1 = \{a^n c^m d^n / n > 0, m \ge 0\}$ con $L_2 = \{c^n / n \ge 0\}$ $L_1 \cap L_2 = \{\lambda\}$
- 3. $L_1 = \{a^n c^m d^n / n \ge 0, m > 10\} \text{ con } L_2 = \{c^n / n > 5\}$ $L_1 \cap L_2 = \{c^n, n > 10\}$
- 4. $L_1 = \{1^n 2^m / n, m \ge 0, \text{ n par, m impar}\}\ \text{con } L_2 = \{2^n / n \ge 0\}$ $L_1 \cap L_2 = \{2^n, n \ge 0 \land \text{ n impar}\}\$
- 5. $L_1 = \{1^n 2^m / n, m \ge 0, \text{n par, m impar}\} \text{ con } L_2 = \{1^n / n \ge 0\}$ $L_1 \cap L_2 = \emptyset$

Ejercicio 12

Encontrar si es posible un lenguaje L1 que cumpla:

- a) $L_1 \cap \{1^k 2^m 3^n / m = k + n + 1 \land n, k \ge 0\} = \{1^n 2^{n+1} / n \ge 0\}$ $L_1 = \{1^n 2^{n+1} / n \ge 0\}$
- b) $L_1 \cap \{1^n 2^m / n \neq m \land n, m \ge 0\} = \{1^n 2^n / n > 0\}$

No es posible encontrar un L_1 que cumpla esa igualdad

Ejercicio 13

Conteste las siguientes preguntas sobre Máquinas de Turing

Inciso a

¿Puede el alfabeto de la cinta (Γ) ser el mismo que el alfabeto de entrada (Σ)

No, no pueden ser el mismo. El alfabeto de entrada representa la cadena de símbolos con la que se forma la cadena de entrada, y esta no puede tener símbolos B en medio de la cadena ya que este representa la ausencia de símbolos. Por lo tanto: $\Sigma \subset \Gamma \land B \in (\Gamma - \Sigma)$

Inciso b

¿Puede una máquina de Turing tener un único estado?

Sí, es posible. Suponga la siguiente maquina de turing que limpia los símbolos de un alfabeto de la cinta:

$$MT :< Q, \Sigma, \Gamma, \delta, q_0 >$$

$$Q = \{q_0\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, 1, B\}$$

$$\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{I, D\}$$

$$\delta(q_0, 0) = (q_2, B, D)$$

$$\delta(q_0, 1) = (q_2, B, D)$$

Inciso c

¿Cuántos lenguajes existen definidos sobre el alfabeto $\Sigma = \{0,1\}$? ¿y sobre $\Sigma = \{1\}$?

Infinitos lenguajes. A partir de cada alfabeto pueden formarse infinitas combinaciones de cadenas, en consecuencia sobre esa infinitas cadenas pueden definirse infinitos lenguajes

Inciso d

¿Cuáles de los siguientes conjuntos son lenguajes definidos sobre Σ ? \varnothing , Σ , Σ *, $\{\lambda\}$, $\{\lambda\} \cup \Sigma$, $\{\varnothing\}$

- 1) $\varnothing \in \Sigma^*$ (El vacío está contenido en todo conjunto)
- 2) $\Sigma \in \Sigma^*$ (Σ^* se forma a partir de los elementos Σ)
- 3) $\Sigma^* \in \Sigma^*$ (Identidad)
- 4) $\{\lambda\} \in \Sigma^*$ (La cadena vacía forma parte de las palabras que pueden formarse a partir del alfabeto)
- 5) $(\{\lambda\} \cup \Sigma) \in \Sigma^*$ (Por 2 y 4)
- 6) $\{\emptyset \notin \Sigma^*\}$

Ejercicio 13

Sea la siguiente máquina de Turing:

$$\begin{split} M = & < Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R > \\ Q = & \{q_0, q_1, q_2, q_3\} \\ \Sigma = & \{a, b, c\} \\ \Gamma = & \{a, b, c, B\} \\ \delta(q, s) = & (q', s', m)tq \\ q \in & Q \quad q' \in Q \cup \{q_R\} \quad s, s' \in \Gamma \quad m \in \{D, I\} \end{split}$$

¿Reconoce el lenguaje $\{\lambda\}$? Si no es así indique cuál es el lenguaje que reconoce

No, no reconoce el lenguaje $\{\lambda\}$, dado que todas las transiciones definidas o llevan a un $q \in Q$ o sino a q_R , de esta manera no se define ningún estado que lleve a q_A , por lo cual el lenguaje reconocido es \emptyset .

Ejercicio 14

Sea $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$, donde en cada caso se asume que las transiciones $\delta(\cdot)$ no especificadas llevan a la detención en q_R . Determinar L(M).

- a) $Q = \{q_0, q_1\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}$ $\delta(q_0, 0) = (q_0, 0, I)$ $\delta(q_0, B) = (q_0, B, D)$ $\delta(q_0, 1) = (q_1, 1, D)$
- b) $Q = \{q_0, q_1\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}$ $\delta(q_0, 0) = (q_1, B, D)$ $\delta(q_1, B) = (q_A, B, D)$ $\delta(q_1, 0) = (q_A, 0, D)$ $\delta(q_1, 1) = (q_A, 1, D)$
- c) $Q = \{q_0, q_1\}; \ \Sigma = \{0, 1\}; \ \Gamma = \{0, 1, B\}$ $\delta(q_0, 0) = (q_0, 0, I)$ $\delta(q_0, B) = (q_0, B, D)$ $\delta(q_0, 1) = (q_1, 1, D)$ $\delta(q_1, 0) = (q_0, B, I)$ $\delta(q_1, B) = (q_0, B, D)$
- d) $Q = \{q_0\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}$ $\delta(q_0, 1) = (q_0, B, I)$ $\delta(q_0, 0) = (q_A, B, I)$ $\delta(q_0, B) = (q_0, B, D)$
- e) $Q = \{q_0, q_1\}; \ \Sigma = \{0, 1\}; \ \Gamma = \{0, 1, B\}$ $\delta(q_0, 0) = (q_1, B, D)$ $\delta(q_1, 0) = (q_1, 1, D)$ $\delta(q_1, 1) = (q_1, 0, D)$ $\delta(q_1, B) = (q_A, 1, D)$

 $\mathrm{CyC}\mid 2023$ UNLP

Algún día lo realizaré...

 $\mathrm{CyC}\mid 2023$ UNLP

Práctica 3

Ejercicio 1

Construir máquinas de Turing que acepten los siguientes lenguajes

a)
$$L1 = \Sigma^*$$
 $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$
 $Q = \{q_0\}$
 $\Sigma = \{s_1, s_2, ..., s_n\}$
 $\Gamma = \Sigma \cup \{B\}$
 $\delta = Q \times \Gamma \to Q \cup \{q_A, q_R\} \times \Gamma \times \{I, D, S\}$
 $\delta(q_0, s') = (q_A, s_i, S) \quad (\forall s')(s' \in \Gamma)$
b) $L2 = \{\lambda\}$
 $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$
 $Q = \{q_0\}$
 $\Sigma = \{s_1, s_2, ..., s_n\}$
 $\Gamma = \Sigma \cup \{B\}$
 $\delta = Q \times \Gamma \to Q \cup \{q_A, q_R\} \times \Gamma \times \{I, D, S\}$
 $\delta(q_0, B) = (q_A, B, S)$
 $\delta(q_0, s') = (q_R, s', S) \quad (\forall s')(s' \in \Gamma)$
c) $L3 = \emptyset$
 $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$
 $Q = \{q_0\}$
 $Q = \{q_0, q_1, q_2, ..., q_n\}$
 $Q = \{q_0, q_1, q_2, q_3\}$
 $Q = \{q_0, q_1, q_2, q$

$$\delta(q_2,(1,0,0)) = (q_A,(1,B,0),(D,I,S))$$

$$\delta(q_2,(1,B,0)) = (q_3,(1,B,0),(S,S,S))$$

$$\delta(q_3,(1,B,0)) = (q_3,(1,B,B),(S,S,S))$$

$$\delta(q_3,(B,B,B)) = (q_A,(B,B,B),(S,S,S))$$

$$\delta(q_i,s') = (q_B,s',(S,S,S)) \quad (\forall (q',s'))((q',s'): \text{ pertenece al conjunto de las transiciones faltantes)}$$
Em lenguaje coloquial, las transiciones faltantes van todas a q_R
e) $L5 = \{a^nb^nc^n/n \geq 0\}$

$$M = Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R > ; \quad k = 3$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b, e\}$$

$$\Gamma = \Sigma \cup \{B\}$$

$$\delta = Q \times (\Gamma)^k = \rightarrow Q \cup \{q_A, q_B\} \times (\Gamma \times \{I, D, S\})^k$$

$$\delta(q_0, (B, B, B)) = (q_A, (B, B, B), (S, S, S))$$

$$\delta(q_0, (a, B, B)) = (q_A, (B, B, B), (S, S, S))$$

$$\delta(q_1, (a, B, B)) = (q_1, (a, b, c), (S, S, S))$$

$$\delta(q_1, (a, B, B)) = (q_1, (a, b, c), (S, S, S))$$

$$\delta(q_1, (b, b, c)) = (q_2, (b, B, B), (S, S, S))$$

$$\delta(q_1, (b, b, c)) = (q_2, (b, B, B), (S, S, S))$$

$$\delta(q_2, (b, b, c)) = (q_3, (c, B, c), (S, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B), (S, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B), (S, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B), (S, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B), (S, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B), (S, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B), (S, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B), (S, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B), (S, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B), (S, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

$$\delta(q_3, (B, B, B)) = (q_4, (B, B, B, C, S, S))$$

 $CyC \mid 2023$ UNLP

g)
$$L7 = \{ww^r/w \in \{0,1\}^*\}$$
, donde w^r es el reverso de w $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$; $k = 2$ $Q = \{q_0, q_1, q_2, q_3\}$ $\Sigma = \{0, 1\}$ $\Gamma = \Sigma \cup \{B\}$ $\delta = Q \times (\Gamma)^k = \rightarrow Q \cup \{q_A, q_R\} \times (\Gamma \times \{I, D, S\})^k$ $\delta(q_0, (0, B)) = (q_1, (B, 0), (D, S))$ $\delta(q_0, (B, B)) = (q_1, (B, 1), (D, S))$ $\delta(q_0, (B, B)) = (q_1, (B, B), (S, S))$ $\delta(q_1, (0, 0)) = (q_1, (0, 0), (D, S))$ $\delta(q_1, (0, 1)) = (q_1, (0, 1), (D, S))$ $\delta(q_1, (1, 1)) = (q_1, (1, 1), (D, S))$ $\delta(q_1, (1, 0)) = (q_1, (1, 1), (D, S))$ $\delta(q_1, (B, 0)) = (q_2, (B, 0), (I, S))$ $\delta(q_1, (B, 0)) = (q_2, (B, 0), (I, S))$ $\delta(q_2, (0, 0)) = (q_3, (0, B), (I, S))$ $\delta(q_3, (0, B)) = (q_3, (1, B), (I, S))$ $\delta(q_3, (B, B)) = (q_3, (1, B), (I, S))$ $\delta(q_3, (B, B)) = (q_3, (B, B), (B, B), (B, B))$ $\delta(q_3, (B, B)) = (q_3, (B, B), (B, B), (B, B))$ $\delta(q_3, (B, B)) = (q_3, (B, B), (B, B), (B, B))$ $\delta(q_3, (B, B)) = (q_3, (B, B), (B, B), (B, B), (B, B))$ $\delta(q_3, (B, B)) = (q_3, (B, B), (B, B), (B, B), (B, B), (B, B), (B, B), (B, B)$

Ejercicio 2

Construya una Máquina de Turing de 2 cintas que implemente un contador binario en la segunda cinta para contabilizar la cantidad de letras 'a' que aparecen en el input de la primera cinta. Con $\Sigma = \{a,b\}; \Gamma = \{a,b,0,1,B\}$

Idem al inciso g); ya que $L7 \cup \{w^0 w^R / w \in \{0,1\}*\} \cup \{w^1 w^R / w \in \{0,1\}*\} = L7$ porque expresan los mismos patrones, ya que $w^0 = \lambda$ y $w^1 = w$, y dentro de $\{0,1\}*$ una de las posibles cadenas a

$$\begin{split} M = & \langle Q, \Sigma, \Gamma, \delta, q_0, q_d \rangle; \quad k = 2 \\ Q = & \{q_0, q_1, q_2, q_3\} \\ \Sigma = & \{a, b\} \\ \Gamma = & \{a, b, 0, 1, B\} \\ \delta = & Q \times (\Gamma)^k = & \rightarrow Q \cup \{q_A, q_R\} \times (\Gamma \times \{I, D, S\})^k \\ \delta(q_0, (a, B)) = & (q_0, (a, 1), (D, S)) \\ \delta(q_0, (a, 0)) = & (q_0, (a, 1), (D, S)) \end{split}$$

formar es la cadena vacía, es decir λ

 $\mathrm{CyC}\mid 2023$ UNLP

$$\delta(q0,(a,1)) = (q1,(a,1),(S,S))$$

$$\delta(q0, (b, B)) = (q0, (b, B), (D, S))$$

$$\delta(q0,(b,0)) = (q0,(b,0),(D,S))$$

$$\delta(q0, (b, 1)) = (q0, (b, 1), (D, S))$$

$$\delta(q0, (B, B)) = (qd, (B, 0), (S, S))$$

$$\delta(q0, (B, 0)) = (qd, (B, 0), (S, S))$$

$$\delta(q0, (B, 1)) = (qd, (B, 1), (S, S))$$

$$\delta(q1, (a, B)) = (q2, (a, 1), (S, S))$$

$$\delta(q1, (a, 0)) = (q2, (a, 1), (S, S))$$

$$\delta(q1, (a, 1)) = (q1, (a, 0), (S, D))$$

$$\delta(q2, (a, 0)) = (q2, (a, 0), (S, I))$$

$$\delta(q2,(a,1)) = (q2,(a,1),(S,I))$$

$$\delta(q2, (a, B)) = (q0, (a, B), (D, D))$$

 $\delta(q',s') = (q_d,s',(S,S,S)) \quad (\forall (q',s'))((q',s'): \text{ pertenece al conjunto de las transiciones faltantes})$

El resto de ejercicios aún deben pasarse en limpio...

 $CyC \mid 2023$ UNLP

Práctica 4

Ejercicio 1

Construir una máquina de Turing que escriba en la primera cinta las palabras de $\{0,1\}$ * en orden canónico separadas por un símbolo ";". Obviamente esta máquina nunca se detiene.

La ejecución de esta MT puede probarse en https://turingmachinesimulator.com: pegue el siguiente código fuente y **compile** (el input de la cinta debe ser vacío o blanco, se podría separar por ; pero es complejizar en vano, esta máquina simplemente genera las cadenas sobre-escribiendolas):

```
name: L = 0,1*
init: qI
accept: qA
qI,_
qR,0,-
qR,0
qR,0,>
qR,1
qR,1,>
qR,_
qW,\_,<
qW,0
qR,1,-
qW,1
qW,0,<
qW,_
qR,1,-
```

Aclaraciones:

- La sintaxis de una transición es:
 - 'estado leido', 'símbolo leido' 'siguiente estado', 'símbolo a escribir', 'movimiento de la cinta'
 - Ejemplos: qI,_ qD,0,- Significa $\delta(q_I,B)=(q_D,0,Static)$
- los movimientos de la cinta pueden ser '<' (izquierda), '>' (derecha), '-' (permanecer sin movimiento). El símbolo '_' (gruión bajo) representa celda vacía o blanco.
- Estados:
 - qI (qInitial): es el estado inicial quien se encarga de setear la cinta en 0
 - qR (qRight): estado que arrastra la cinta al final del input hasta encontrar Blanco

• qW (qWrite): estado que se encarga de actualizar el contador haciendo el carry.

Ejercicio 2

Sean $\Sigma = a, b$ y \mathcal{L} el conjunto de todos los lenguajes definidos sobre Σ . Diga si las siguientes afirmaciones son verdaderas o falsas:

• $\mathcal{L} - R = \emptyset$ (Falso)

Existen lenguajes como L_U, L_D , etc, que no pertenecen a R. Entonces no es posible que aquella resta de conjuntos de \varnothing

• $RE - R \neq \emptyset$ (Verdadero)

Existen lenguajes como como L_D que pertenecen a RE y no a R. Entonces no es posible que aquella resta de conjuntos de \varnothing

• $\{\lambda\} \in (\mathcal{L} - CO - RE)$ (Verdadero)

Es posible la definición del lenguaje L = $\{\lambda\}$ a través de una MT M que solamente acepte la cadena vacía, y rechase en caso contrario, en consecuencia $L \in R$. Y como es sabido $R = CoR \Rightarrow L \in (\mathcal{L} - Co\text{-}RE)$

• $RE \cup R = \mathcal{L}$ (Falso)

Existen lenguajes como L_D que no pertenecen a RE ni a R. Por lo cual esta afirmación no es posible.

• $\Sigma * \in R$ (Verdadero)

La definición de una MT M tal que $L(M) = \Sigma^*$ es muy simple, solamente se necesita de un estado inicial q_0 la cual para cualquier símbolo pasa a q_A . De esta manera para todo input, M se estaría deteniendo, y en consecuencia $\Sigma^* \in R$

• $\varnothing \in RE$ (Verdadero)

Es posible la definición de una MT M tal que $L(M)=\emptyset$, esta consitiría simplemente en rechazar cualquier entrada de Σ^*

• CO-RE = RE (Falso)

Existen lenguajes como L_D que no pertencen a RE, sin embargo su complemento $\overline{L_D}$ si pertenece a RE. Por lo cual la afirmación no es posible.

• $(\mathcal{L} - RE) = CO - RE$ (Falso)

Existen lenguajes como $L = \{1w/w \in L_D\} \cup \{0w/w \notin L_D\}$ que no pertenecen a RE ni Co-RE

■ $ab \in \Sigma * (Verdadero)$

 Σ * representa todas las cadenas formables a partir de Σ y $a,b\in\Sigma$

• CO- $R \subset CO$ -RE (Verdadero)

Por definición un lenguaje que es R, necesariamente debe ser RE. Por lo cual la afirmación es verdadera.

• $a \in R$ (Falso)

a es un elemento, mientras que R es un conjunto de conjuntos. Por lo cual la afirmación no es posible

• $\{a\} \in RE \text{ (Verdadero)}$

Es posible la definición de una MT M tal que acepte 'a' y se detenga en caso contrario.

Ejercicio 3

$$Si\ L \in (RE - R)$$

a) ¿Existirá alguna máquina de Turing que rechace parando en qR si su entrada está en L y rechace loopeando si su entrada no está en L?

Sí, de acuerdo a las suposiciones existe una MT M tal que L(M) = L. Entonces de esta manera se podría construir una MT M' que simula M sobre cualquier entrada w. Entonces M' responde de la siguiente manera ante w:

- Si M acepta $w \Rightarrow M'$ rechaza w.
- Si M rechaza $w \Rightarrow M'$ loopea.
- \blacksquare Si M loopea sobre w \Rightarrow M' loopea de igual manera.

b) ¿Existirá alguna máquina de Turing que rechace loopeando si su entrada está en L y rechace parando en q_R si su entrada no está en L?

No, no podría existir. Ya que la suposición $L \in (RE - R)$ implica que L al no pertenecer a R supone que no hay una MT M que se detenga para cualquier entrada de Σ^*

c) De existir, que lenguaje reconocería esta máquina de Turing.

Esta máquina reconocería al conjunto vacío. Es decir que $L(M) = \emptyset$, ya que rechazaría loopeando si su entrada está en L, y cuando no está en L también rechazaría parando en qR, en síntesis, rechaza todo.

Ejercicio 4

Sea $L = \{w | Existe alguna Máquina de Turing M que acepta w \}$ ¿ $L \in \mathbb{R}$? Justifique.

Para cualquier w_i es posible definir una MT M_i que acepte w_i , simplemente definiendo una secuencia de transciones para cada cada simbolo s_j perteneciente a w_i , y rechazando en q_R en caso contrario. Entonces el lenguaje $L = \Sigma^*$ y $L \in R$ ya que la máquina que reconoce Σ^* es una MT que acepta todo en un solo paso.

Ejercicio 5

Conteste y justifique:

a) \mathcal{L} es un conjunto infinito contable?

Ya se ha demostrado los siguientes puntos:

- $\quad \quad |\Sigma^*| = |N|$
- |A| < |p(A)|

 \mathcal{L} no es infinito contable

b) ¿RE es un conjunto infinito contable?

Sí, RE es un ocnjunto infinito contable. Por definición para cada $L \in RE$, existe una MT M tal que L(M) = L, por lo tanto cada M podría codificarse en binario permitiendo mapear cada L de acuerdo a un número natural igual al valor decimal de la codificación binario de la MT M que la acepta.

c) $\mathcal{L} - RE$ es un conjunto infinito contable?

De forma general se puede intuir que si a un conjunto no numerable, se le extrae un subconjunto que si es numerable, aún permanecerán los elementos que hacen que el conjunto siga siendo no numerale.

dem. Suponiendo que $\mathcal{L} - RE$ es numerable, se puede llegar a una contradicción:

 $(\mathcal{L} - RE) \cup RE$ (es numerable, por unión de conjuntos numerables)

 $\Rightarrow \mathcal{L}$ (es numerable)

Lo cual lleva a una contradicción, ya que está demostrado que \mathcal{L} no es numerable.

 $\therefore \mathcal{L} - RE$ es un conjunto no numerable

d) Existe algún lenguaje $L \in \mathcal{L}$, tal que L sea infinito no contable

Desde un punto de vista informal, esto no puede ser posible, ya que se ha demostrado que Σ^* es contable, en consecuencia todo subconjunto de este también será contable.

dem. Suponiendo que $(\exists L)(L : L \in \mathcal{L} \land L)$ es incontable) entonces se puede llegar al siguiente contradicción:

 $(L \cup L^C = \Sigma^*)$ es incontable (por unión de conjunto incontable con cualquier otro)

Lo cual lleva a una contradicción porque Σ^* es contable

 $\therefore (\not\exists L)(L: L \in \mathcal{L} \land L \text{ es incontable})$

Ejercicio 6

Sea L un lenguaje definido sobre Σ . Demostrar que:

a)
$$\overline{\mathbf{L}} \notin \mathbf{R} \Rightarrow \mathbf{L} \notin \mathbf{R}$$

dem. Suponiendo que si $\overline{L} \notin R \Rightarrow L \in R$ se generan contradicciones:

 $L \in R$

 $\Rightarrow \overline{L} \in Co\text{-}R$ (Teorema Co-R = R)

Lo cual lleva a una contradicción porque se asumió que $\overline{L} \notin R$

b)
$$(L_1 \in RE)AND(L_2 \in RE) \Rightarrow L_1 \cap L_2 \in RE$$

dem. Dado que tanto L_1 como L_2 pertenecen a RE, implica que existen una MT M_1 que reconoce L_1 y una M_2 que reconoce L_2

Entonces es posible construir una MT M de la siguiente manera:

- 1) Dada un entrada w, M simula M_1 sobre w. Entonces:
 - \bullet Si M_1 rechaza w \Rightarrow M rechaza w
 - Si M_1 loopea sobre w \Rightarrow M loopea sobre w
 - Si M_1 acepta w \Rightarrow M pasa al paso (2)
- 2) M simula M_2 sobre w. Entonces:
 - Si M_2 rechaza w \Rightarrow M rechaza w
 - Si M_2 loopea sobre w \Rightarrow M loopea sobre w
 - Si M_2 acepta w \Rightarrow M acepta w

Así de esta manera se tiene una MT M que acepta $L_1 \cap L_2$, ya que emulando ambas máquinas M solo reconocerá entradas que son reconocidas tanto por M_1 como por M_2 .

c)
$$(L_1 \in RE)AND(L_2 \in RE) \Rightarrow L_1 \cup L_2 \in RE$$

 $CyC \mid 2023$ UNLP

dem. Dado que L_1 y L_2 pertenecen a RE, existen las correspondientes MT M_1 y M_2 que reconocen a cada una.

Entonces es posible construir una MT M que reconozca su unión, ejecutando paralelamente M_1 y M_2 . Entonces de esta manera si la entrada w se encuentra dentro de $L_1 \cup L_2$ M podrá reconocerla, caso contrario o ambas loopearan o se necesitará de que ambas paren en q_R para que M rechace w o loopea indefinidamente.

d) La unión de un número finito de lenguajes recursivamente enumerables es un lenguaje recursivamente enumerable.

dem. Aplicar la misma estrategia que (c) solo que aplicado a N lenguajes. Es decir que se simulan paralelamente los N lenguajes L_n tal que o alguno acepta la entrada, o todos la rechazan o loopean infinitamente.

Ejercicio 7

Para los casos a), b) y c) del punto anterior ¿valen las recíprocas? Justifique.

a)
$$L \notin R \Rightarrow \overline{L} \notin R$$

dem. Suponiendo que $L \notin R \Rightarrow \overline{L} \in R$ se puede llegar a una contradicción:

$$L \notin R \Rightarrow \overline{L} \in R$$

$$\Rightarrow \overline{\overline{L}} \in R \text{ (porque R = Co-R)}$$

$$\Rightarrow L \in R$$
 (doble complemento)

Lo cual implica una contradicción

 $\therefore L \notin R \Rightarrow \overline{L} \notin R$, entonces la recíproca es válida

b)
$$L_1 \cap L_2 \in RE \Rightarrow (L_1 \in RE)AND(L_2 \in RE)$$

dem. Esto no es cierto, puede darse el siguiente contraejemplo:

$$\overline{L_U} \notin RE$$

$$\overline{L_U} \cap U = \emptyset$$

$$\varnothing \in RE$$

∴ la recíproca es válida

c)
$$L_1 \cup L_2 \in RE \Rightarrow (L_1 \in RE)AND(L_2 \in RE)$$

dem. Esto no es cierto, puede darse el siguiente contraejemplo:

$$\overline{L_U} \notin Re$$

$$\overline{L_U} \cup L_U = \Sigma^*$$

$$\Sigma^* \in RE$$

∴ la recíproca es inválida

Ejercicio 8

 $Si\ L\ es\ un\ subconjunto\ de\ un\ lenguaje\ recursivamente\ enumerable,\ ¿Puede\ afirmarse\ entonces\ que\ L\ es\ recursivamente\ enumerable?\ Justifique.$

No puede afirmarse, ya que existen lenguajes como $L_D, \overline{L_U}$ que no pertenecen a RE. Sin embargo son todos subconjuntos de Σ^* que representa un conjunto enumarable.

Ejercicio 9

9) Dado L1, un lenguaje recursivo cualquiera

$$L_2 = \{ <\!\!M\!\!>\!\!|L(M) = L_1 \}$$

$$L_3 = \{ <\hspace{-0.5em} M >\hspace{-0.5em} | L(M) = L_1 \,\, y \,\, M \,\, siempre \,\, se \,\, detiene \}$$

Determine $si(L_2 - L_3) = \varnothing$. Justifique su respuesta

Dado que L_1 es R entonces existe una MT M tal que siempre se detiene para cualquier entrada.

Teniendo esto en cuenta, $M \in L_2 \land M \in L_3$, sin embargo se puede construir una MT M' tal que simula M, pero cuando M rechaza una entrada M' loopea indefinidamente.

$$\therefore M' \in L_2 \land M' \notin L_3 \Rightarrow L_2 \nsubseteq L_3 \Rightarrow (L_2 - L_3) \neq \emptyset$$

Ejercicio 10

Sean los lenguajes $L = \{ < M > | M \text{ siempre se detiene} \}$ y $L_R = \{ < M > | L(M) \in R \}$. Cuál es la afirmación correcta: VERIFICAR

- a) $L \subset L_R$
- b) $L \supset L_R$
- c) $L=L_R$

La respuesta correcta es (a), esto porque L_R reconoce MTs cuyo lenguaje pertenece a R, lo cual implica que puede contener más de una MT para determina lenguaje, que serían la MT M que siempre se detiene, y otras MTs que si bien no son R podrían ser RE y pertenecen a L_R ya que por la máquina M se considera que el lenguaje que representan es R. En cambio L solo incluye las MTs que siempre se detienen M.

Entonces Supongamos una MT <M>que siempre se detiene, esta pertenecerá tanto a L como L_R . Sin embargo, se puede construir una MT <M'>tal que que actúa igual que <M>a diferencia que en vez de pasar a q_R loopea indefinidamente.

Entonces sucede lo siguiente:

- \blacksquare <M'> $\notin L$
- <M'> $\in L_R$, porque <M'>reconoce el mismo lenguaje que <M>y justamente este lenguaje pertenece a R porque existe la MT <M>que se detiene para toda entrada.

 $\therefore L \subset L_R$

Ejercicio 11

- 11) Encuentre una justificación para cada una de las siguientes afirmaciones
- a) $\varnothing \in \mathbf{RE}$

Sí, la construcción de la respectiva MT M, consistiría en un estado q_0 que rechaza toda entrada posible. De esta manera $M \in R \Rightarrow M \in RE$

b) Si L es un lenguaje formado por una sola palabra, entonces $L \in R$ VERIFICAR

Sí, es posible la construcción de una MT M tal que L(M) = L y siempre se detiene.

Supongamos que L solo acepta una única palabra w, así podemos decir que w es la concatenación de una serie de símbolos s_i , es decir $w=s_0.s_1.s_2......s_n$. Entonces se puede construir una MT M donde cada estado q_i necesita del símbolo s_i para pasar a la siguiente transición hasta llegar a s_n que

transiciona a q_A , y donde cualquier símbolo s_j tal que $j \neq i$, implica una transición hacia q_R en el estado q_i

$$\begin{split} M = & < Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R > \\ Q = & \{q_0, q_1, ..., q_n \, q_A, q_R\} \\ \Sigma = & \{s_0, s_1, ..., s_n\} \\ \Gamma = & \Sigma \cup \{B\} \\ \delta = & Q \times \Sigma \to Q \times \Sigma \times \{D, I, S\} \\ (q_i, s_i) = & (q_{i+1}, s_i, D) \; (\forall i) (i:i> = 0 \land i < n) \\ (q_n, s_n) = & (q_A, s_n, D) \\ (q_i, s_j) = & (q_R, s_j, D) \; (\forall i) (i:0> = i <= n \land i \neq j) \\ \therefore L \in R \end{split}$$

c) Si L es un lenguaje finito, entonces $L \in R$ VERIFICAR

Se puede demostrar que la afirmación es verdadera, a través de los siguientes razonamientos:

Dado que L es un lenguaje finito, este se compondrá de una cantidad n finita de palabras. Entonces si tomamos estas palabras en orden canónico, por (b) para cada w_i existe una MT M_i tal que $L(M_i) = \{w_i\}$ y M_i siempre se detiene. Entonces se podría crear una MT M_F de la siguiente manera:

- 1) Para cada w M_F simula cada M_i en orden canónico. Entonces puede suceder lo siguiente:
 - Si algún M_i acepta w $\Rightarrow M_F$ acepta w
 - Si todos los M_i rechazan w $\Rightarrow M_F$ rechaza w

Ejercicio 12

Demuestre que si el Halting Problem (HP) es un lenguaje recursivo entonces podría construirse una máquina de Turing que acepte el lenguaje universal L_U , y que se detenga para todo $w \in \Sigma^*$ ¿Qué puede decir entonces sobre la recursividad de HP? VERIFICAR

$$L_U = \{(<\!M>,w)/M \ acepta \ w\}$$

 $HP = \{(<\!M>,w)/M \ se \ detiene \ con \ input \ w\}$

Si $HP \in \mathbb{R}$, entonces existe una MT M_{HP} que siempre se detiene.

Entonces se puede construir una MT M_U tal que $L(M_U) = L_U$ y siempre se detiene. Esta consistiría en:

- 1) Se analizar el par (<M>, w), si es inválido se rechaza
- 2) Se emula HP sobre el par (<M>, w). Entonces:
 - Si HP rechaza (<M>, w) \Rightarrow que (<M>, w) loopea indefinidamente, entonces M_U rechaza (<M>, w)
 - Caso contrario se emula M sobre w
- 3) Cuando se emula M sobre w:
 - Si M acepta w $\Rightarrow M_U$ acepta w
 - Si M rechaza w $\Rightarrow M_U$ rechaza w

De esta manera M_U se detiene para toda entrada, y $L_U \in R$, pero está demostrado que $L_U \in (RE - R)$ por lo cual es un absurdo.

$$\therefore HP \notin R$$

Ejercicio 13

Demuestre que $L_{NV} \in RE$

$$L_{NV} = \{(\langle M \rangle)/L(M) \neq \emptyset\}$$

El lenguaje L_{NV} se comprende como todas las codificaciones M tal que aceptan al menos una palabra w.

Se puede construir una MT M_{NV} tal que para cada <M>, lo ejecuta de **a pasos** sobre todo $w \in \Sigma^*$ en orden canónico, así de esta manera:

- 1. Si <M>acepta algún w $\Rightarrow L_{NV}$ acepta <M>. Eventualmente si se ejecuta <M>de a pasos sobre los diferentes $w \in \Sigma^*$ se terminará encontrando algún w que reconoce. No se quedará en loop ya que al ejecutarse de a pasos en algún momento se probará con los demás w (inputs).
- 2. Si <M>no reconoce ningun input $\Rightarrow L_{NV}$ loopeara indefinidamente.

De esta manera $L_{NV} \in RE$

 $CyC \mid 2023$ UNLP

Práctica 5

Nota: Los casos de codificación inválida son triviales, por lo cual no es necesario tenerlos en cuenta para realizar demostraciones. Ya que se sobre-entienden esos casos especiales.

Ejercicio 1

Sean L_1 y L_2 , dos lenguajes definidos sobre $\{0,1\}$ *

$$L_1 = \{0^n 1 | n \ge 0\}$$

$$L_2 = \{1^n0 | n \geq 0\}$$

Inciso a

Demuestre que existe una reducción ($L_1 \alpha L_2$)

Para demostrar la reducción L_1 α L_2 , es necesario demostrar dos aspectos:

- 1) $(\exists M_f)(M_f|M_f \text{ siempre se detiene})$
- 2) $w \in L_1 \Leftrightarrow M_f(w) \in L_2$
- 1) Suponga la siguiente MT M_f :

$$\delta(q_0, 0) = (q_0, 1, D)$$

$$\delta(q_0, 1) = (q_0, 0, D)$$

$$\delta(q_0, B) = (q_d, B, S)$$

Así de esta manera, por construcción de M_f este se detiene eventualmente para cualquier $w \in \{0,1\}$ *

- 2) $w \in L_1$
- $\Leftrightarrow w = 0^n 1, n \ge 0$ (Por construcción de L_1)
- $\Leftrightarrow M_f(w) = 1^n 0, n \ge 0$ (Por construcción de M_f)
- $\Leftrightarrow M_f(w) \in L_2$ (Por definición de L_2)

$$\therefore w \in L_1 \Leftrightarrow M_f(w) \in L_2$$

Inciso b

Idem para $L_2 = \{\lambda\}$

Para demostrar la reducción $L_1 \alpha L_2$, es necesario demostrar dos aspectos:

- 1) $(\exists M_f)(M_f|M_f \text{ siempre se detiene})$
- 2) $w \in L_1 \Leftrightarrow M_f(w) \in L_2$
- 1) Se puede construir una MT M_f de la siguiente manera:
 - Dado w, se hace un chequeo sintáctico de que $w = 0^n 1, n \ge 0$
 - Si w es inválido, entonces se deja w1 en la cinta.
 - Si w es válido, se borra la cinta y se deja λ en ella.

Claramente M_f se detiene, ya que la entrada es finita

2)
$$w \in L_1 \Leftrightarrow M_f(w) \in L_2$$

La demostración se hará en dos pasos:

2.1)
$$w \in L_1$$

 $\Rightarrow w = 0^n 1, n \ge 0$ (por definición de L_1)
 $\Rightarrow M_f(w) = \lambda$ (por construcción de M_f)
 $\Rightarrow M_f(w) \in L_2$ (por definición de L_2)
2.2) $w \notin L_1$
 $\Rightarrow w \ne 0^n 1, n \ge 0$ (por definición de L_1)
 $\Rightarrow M_f(w) = w1$ (por construcción de M_f)
 $\Rightarrow M_f(w) \notin L_2$
 $\therefore w \in L_1 \Leftrightarrow M_f(w) \in L_2$

Inciso c

Idem para
$$L_2 = \{1^n 0 | n > 0\}$$

Para demostrar la reducción $L_1 \alpha L_2$, es necesario demostrar dos aspectos:

1)
$$(\exists M_f)(M_f|M_f \text{ siempre se detiene})$$

2)
$$w \in L_1 \Leftrightarrow M_f(w) \in L_2$$

1) Suponga la siguiente MT M_f :

$$\delta(q_0, s) = (q_1, s, I) \ (\forall s)(s \mid s \in \{0, 1, B\})$$

$$\delta(q_1, s) = (q_2, 1, D) \ (\forall s)(s \mid s \in \{0, 1, B\})$$

$$\delta(q_2, 0) = (q_2, 1, D)$$

$$\delta(q_2, 1) = (q_2, 0, D)$$

$$\delta(q_2, B) = (q_d, B, S)$$

Así de esta manera, por construcción de M_f este se detiene eventualmente para cualquier $w \in \{0, 1\}*$. A diferencia del inciso (a), esta máquina además de complementar los bits, convierte la salida de (a) de w a 1w.

2)
$$w \in L_1$$

 $\Leftrightarrow w = 0^n 1, n \ge 0$ (Por construcción de L_1)
 $\Leftrightarrow M_f(w) = 11^n 0, n \ge 0$ (Por construcción de M_f)
 $\Leftrightarrow M_f(w) \in L_2$ (Por definición de L_2)
 $\therefore w \in L_1 \Leftrightarrow M_f(w) \in L_2$

Ejercicio 2

Sean L_1 y L_2 , dos lenguajes tales que existe una reducción ($L_1 \alpha L_2$)

Inciso a

Qué se puede afirmar de L_1 si se sabe que $L_2 \in R$

Se puede afirmar que $L_1 \in R$. Ya que está demostrado (en la teoría) que es posible la construcción de una MT si se dan la condiciones especificadas, de forma tal que si $L_2 \in R \Rightarrow L_1 inR$

Inciso b

Qué se puede afirmar de L_1 si se sabe que $L_2 \in (CO-RE-RE)$

Se puede afirmar que $L_1 \notin RE$:

$$L_2 \in (Co\text{-}RE - RE)$$

- $\Rightarrow \overline{L_2} \in RE$ (definición de Co-RE)
- $\Rightarrow \overline{L_1} \in RE \text{ (Teorema } L_2 \in RE \Rightarrow L_1 \in RE)$
- $\Rightarrow L_1 \in Co\text{-}RE$ (Por definición de Co-RE)

Inciso c

Qué se puede afirmar de L_2 si se sabe que $L_1 \in R$

No es posible realizar alguna afirmación.

Inciso d

Qué se puede afirmar de L_2 si se sabe que $L1 \in (CO-RE-RE)$

$$L_1 \in (Co\text{-}RE - RE)$$

- $\Rightarrow L_1 \notin RE$
- $\Rightarrow L_2 \notin RE$ (Teorema. $L_1 \notin R \Rightarrow L_2 \notin R \Leftrightarrow L_1 \alpha L_2$)
- $\Rightarrow L_2 \notin R$

Ejercicio 3

Sean HP y L_u los lenguajes Halting Problem y Lenguaje Universal respectivamente.

$$HP = \{(\langle M \rangle, \mathbf{w})/\mathbf{M} \text{ se detiene con input } \mathbf{w}\}$$

$$L_{\mathrm{u}} = \{(\langle M \rangle, \mathrm{w})/\mathrm{M} \ acepta \ w\}$$

Demuestre que existe una reducción HP α L_u

Para demostrar que $HP \alpha L_U$, se deben demostrar dos aspectos:

- 1. $(\exists M_f)(M_f \mid M_f \text{ siempre se detiene})$
- 2. $w \in HP \Leftrightarrow M_f(w) \in L_u$

Se puede construir una MT M_f tal que $M_f((<M>, w)) = (<M'>, w)$, donde <M'> trabaja de la siguiente forma:

- Si (<M>, w) es un par inválido, entonces M_f borra la cinta y deja λ como salida
- Si (<M>, w) es un par válido, pero <M>es inválido, entonces M_f codifica <M'>, borrando <M>y definiendo las quíntuplas $(q_0, s, q_A, s, S)(\forall s)(s \mid s \in \Gamma)$, es decir L(M') = Σ^*
- caso contrario construye $\langle M' \rangle$, buscando todas los estados q_R y los reemplaza con q_A .
- 1) M_f realiza una serie de pasos finitos, entonces por construcción siempre se detiene.
- 2) La demostración se hará en dos pasos:
- 2.1) $(<M>, w) \in HP$

- $a) \Rightarrow M$ se detiene rechazando o aceptando w
 - \Rightarrow M' acepta w (por construcción de M', M_f intercambia q_R por q_A)

$$\Rightarrow$$
 (, w) $\in L_U$

- $b) \, \Rightarrow < \! \mathrm{M} \! > \,$ es un codificación inválida
 - \Rightarrow M' acepta w (por construcción de M', L(M') = Σ^*)

$$\Rightarrow$$
 (,w) $\in L_U$

- 2.2) $(<M>, w) \notin HP$
 - $a) \Rightarrow M$ loopea indefinidamente sobre w
 - \Rightarrow M' loopea indefinidamente sobre w (por construcción de M', M_f solo intercambia q_R por q_A , si M loopeaba, M' va a seguir loopeando igualmente)

$$\Rightarrow$$
 (, w) $\notin L_U$

 $b) \Rightarrow (<\mathcal{M}>, \mathbf{w})$ es un pár inválido

$$\Rightarrow$$
 (, w)= λ

$$\Rightarrow$$
 (, w) $\notin L_U$

Ejercicio 4

Sea HP_{λ} el problema de detención a partir de la cinta en blanco

$$HP_{\lambda} = \{ \langle M \rangle / M \text{ se detiene con input } \lambda \}$$

Demuestre que existe una reducción HP α HP $_{\lambda}$

Para demostrar la reducción $HP \alpha HP_{\lambda}$, es necesario demostrar dos aspectos:

- 1. $(\exists M_f)(M_f \mid M_f \text{ siempre se detiene})$
- 2. $w \in HP \Leftrightarrow M_f(w) \in HP_{\lambda}$

Se puede construir una MT M_f , donde dado un par (<M>, w), M_f (<M>, w) = <M'>; donde <M'>está construido de la siguiente manera:

- Se construye <M'>escribiendo las quíntuplas necesarias para que M' borre la entrada y escriba w en la cinta, posicione el cabezal y simule M sobre w. Así M' para en q_A o q_R para cualquier input Σ^*
- 1) Claramente M_f se detiene luego de realizar una cantidad finita de pasos.
- 2) $w \in HP \Leftrightarrow M_f(w) \in HP_{\lambda}$

La demostración se hará en dos pasos:

- 2.1) $(<M>, w) \in HP$
 - $a) \Rightarrow M$ para en q_A o q_R con w (por definición de HP)
 - \Rightarrow M' para en q_A o q_R con cualquier entrada (por construcción de M')

$$\Rightarrow \in HP_{\lambda}$$

- 2.2) Si $(<M>,w)\notin HP \Rightarrow$
 - a) Si M loopea sobre w
 - \Rightarrow <M'>también loopea sobre w
 - \Rightarrow <M'> $\notin HP_{\lambda}$

$$\therefore HP \alpha HP_{\lambda}$$

Ejercicio 5

Demuestre que $L_V \notin RE$

$$L_V = \{(\langle M \rangle)/L(M) = \varnothing\}.$$

Considere que si <M>es un código inválido de máquina de Turing también pertence a L_V (ya que no reconoce ningún string). Así L_V es el complemento del lenguaje $L_{NV} = \{(<$ M $>)/L(M) <math>\neq \varnothing\}$ (Ayuda: puede utilizar el complemento de L_u para encontrar una reducción)

Para demostrar que $L_V \notin RE$, se llevará a la reducción de $\overline{L_U} \alpha L_V$, ya que hay un teorema que si $L_1 \alpha L_2$ entonces $L_1 \notin RE \Rightarrow L_2 \notin RE$

Para demostrar la reducción se debe cumplir que:

1. Existe una M_f tal que siempre se detiene

2.
$$w \in \overline{L_U} \Leftrightarrow M_f(w) \in L_V$$

Se puede construir una MT M_f tal que (<M>, w) = <M'> , donde M_f realiza primero un chequeo sintáctico, si el par es inválido entonces M_f borra la cinta y codifica <M'> de forma que rechace toda entrada. Por ejemplo, definiendo las quíntuplas $(q_0, s, q_R, s, S)(\forall s)(s \mid s \in \Sigma \cup \{B\})$

Caso contrario se codifica <M'> agregando las quíntuplas necesarias para borrar la entrada, hardcodear w, posicionar el cabezal al inicio de la cinta y ejecutar M sobre w.

- 1) M_f se detiene, ya que realiza una serie de pasos finitos.
- 2) La demostración se hará en dos pasos:

2.1)
$$(, w) \in \overline{L_U} \Rightarrow$$

- $a) \Rightarrow M$ rechaza o loopea sobre w
 - \Rightarrow M' rechaza o loopea sobre w
 - ⇒ M' rechaza o loopea cualquier entrada (porque esta hardcodea w para cualquier entrada)

$$\Rightarrow L(M') = \emptyset$$

$$\Rightarrow \in L_V$$

2.2) (
$$<$$
M $>$, w) $\notin \overline{L_U} \Rightarrow$

- \Rightarrow M acepta w
- \Rightarrow M' acepta w
- ⇒ M' acepta toda entrada (porque esta hardcodea w para cualquier entrada)

$$\Rightarrow L(M') \neq \emptyset$$

$$\Rightarrow <$$
M'> $\notin L_V$

$$\therefore \overline{L_U} \ \alpha \ L_V \Rightarrow L_V \notin RE$$