6. 3 实对称矩阵的对角化

本节讨论实对称矩阵的对角化问题,将得到一个重要结论: n 阶实对称矩阵一定可以对角化,且相似变换矩阵可以是正交矩阵. 下面我们将推导这一结论.

定理 6. 4 实对称矩阵的特征值皆为实数.

证 设复数 λ 为实对称阵 A 的特征值,复向量 x 为对应的特征向量,即 $Ax = \lambda x$, $x \neq 0$. 等 式两边左乘 \overline{x}^T ,得

$$\overline{x}^T A x = \lambda \overline{x}^T x$$
.

而

$$\overline{x}^T A x = \overline{x}^T A^T x = (A \overline{x})^T x = (\overline{A} \overline{x})^T x = (\overline{A} \overline{x})^T x = (\overline{\lambda} \overline{x})^T x = (\overline{\lambda} \overline{x})^T x = \overline{\lambda} \overline{x}^T x$$

故

$$(\overline{\lambda} - \lambda)\overline{x}^T x = 0.$$

因为 $x \neq 0$,所以 $\bar{x}^T x \neq 0$,于是 $\bar{\lambda} - \lambda = 0$,即 $\bar{\lambda} = \lambda$,故 λ 为实数.

显然,当特征值 λ 为实数时,齐次线性方程组 $(A-\lambda E)x=0$ 是实系数方程组,对应 λ 的特征向量是方程组的解,必可取为实向量.

定理 6. 5 设 λ_1 , λ_2 是实对称矩阵 A 的两个不同的特征值, p_1 , p_2 分别为对应 λ_1 , λ_2 的特征向量,则 p_1 与 p_2 正交.

证 等式 $Ap_2 = \lambda_2 p_2$ 两边左乘 p_1^T ,得

$$p_1^T A p_2 = \lambda_2 p_1^T p_2.$$

而

$$p_1^T A p_2 = p_1^T A^T p_2 = (A p_1)^T p_2 = \lambda_1 p_1^T p_2$$
,

故

$$\lambda_1 p_1^T p_2 - \lambda_2 p_1^T p_2 = (\lambda_1 - \lambda_2) p_1^T p_2 = 0.$$

因为 $\lambda_1 \neq \lambda_2$,所以 $p_1^T p_2 = 0$,即 $p_1 与 p_2$ 正交.

我们不加证明地给出以下定理:

定理 6.6 设 A 为 n 阶实对称矩阵,则必有正交阵 P,使 $P^{-1}AP = P^{T}AP = \Lambda$,其中 Λ 是以 A 的 n 个特征值为对角元的对角矩阵.

定理 6.7 设 A 为 n 阶实对称矩阵, λ 是 A 的 k 重特征值,则矩阵 $\lambda E - A$ 的秩为 n - k ,从 而 A 对应于特征值 λ 的线性无关的特征向量恰好有 k 个.

证 由定理 6.3 与定理 6.6 即得结论.

实对称矩阵对角化的步骤:

- (i) 解特征方程 $|\lambda E A| = 0$, 求出 n 阶实对称矩阵 A 的特征值 λ_1 , λ_2 , ..., λ_n ;
- (ii) 对每个互异特征值 λ_1 , λ_2 , … , λ_s ,解齐次线性方程组 ($\lambda_i E A$)x = 0 ($i = 1, 2, \dots, s$) , 分别求出它们的基础解系,再将各个基础解系正交规范化,最后将正交规范化后的基础解系合并为 一个向量组,从而得到 A 的 n 个两两正交的单位特征向量 p_1 , p_2 , … , p_n .
 - (iii) 令 $P = (p_1, p_2, \cdots, p_n)$,则P是一个正交矩阵,且

$$P^{-1}AP = P^{T}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

例 3. 1 求一个正交阵 P, 使 $P^{-1}AP = P^{T}AP = \Lambda$ 为对角阵, 其中

$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}.$$

解 由特征方程

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ -2 & 2 - \lambda & -2 \\ 0 & -2 & 3 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ 0 & 2 - \lambda & -2 \\ \lambda - 3 & -2 & 3 - \lambda \end{vmatrix} \begin{vmatrix} 1 - \lambda & 2(\lambda - 2) & 0 \\ 0 & 2 - \lambda & -2 \\ \lambda - 3 & -2(\lambda - 2) & 3 - \lambda \end{vmatrix}$$
$$= (\lambda - 2) \begin{vmatrix} 1 - \lambda & 2 & 0 \\ 0 & -1 & -2 \\ \lambda - 3 & -2 & 3 - \lambda \end{vmatrix} = -(\lambda + 1)(\lambda - 2)(\lambda - 5) = 0,$$

解得 A 的特征值为 $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 5$.

对应
$$\lambda_1 = -1$$
,解齐次线性方程组 $(A+E)x = 0$,即 $\begin{pmatrix} 2 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$,得基础解系

 $\xi_1 = (2, 2, 1)^T$, $\xi_1 \stackrel{.}{=} 0$ $\xi_1 = \frac{1}{3}(2, 2, 1)^T$.

对应
$$\lambda_2 = 2$$
,解齐次线性方程组 $(A-2E)x = 0$,即 $\begin{pmatrix} -1 & -2 & 0 \\ -2 & 0 & -2 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$,得基础解系

$$\xi_2 = (-2,1,2)^T$$
,将 ξ_2 单位化,得 $p_2 = \frac{1}{3}(-2,1,2)^T$.

对应
$$\lambda_3 = 5$$
,解齐次线性方程组 $(A-5E)x = 0$,即 $\begin{pmatrix} -4 & -2 & 0 \\ -2 & -3 & -2 \\ 0 & -2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$,得基础解系

 $\xi_3 = (1, -2, 2)^T$, $\xi_3 \stackrel{.}{=} 0$ $\xi_3 = \frac{1}{3}(1, -2, 2)^T$.

$$P^{-1}AP = P^{T}AP = \Lambda = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

例 3. 2 设
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, 求一个正交阵 P ,使 $P^{-1}AP = P^{T}AP = \Lambda$ 为对角阵.

解 由
$$|A-\lambda E|$$
 = $\begin{vmatrix} 1-\lambda & 1 & 1 \\ 1 & 1-\lambda & 1 \\ 1 & 1 & 1-\lambda \end{vmatrix}$ = $\lambda^2(3-\lambda)$,得 A 的特征值为 $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = 3$.

对应
$$\lambda_1 = \lambda_2 = 0$$
,解齐次线性方程组 $(A - 0E)x = 0$,即 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$,得基础解系

$$\xi_1 = (-1,1,0)^T$$
, $\xi_2 = (-1,0,1)^T$. 将 ξ_1 , ξ_2 正交化,取

$$\eta_1 = \xi_1 = (-1, 1, 0)^T$$

$$\eta_2 = \xi_2 - \frac{(\xi_2, \eta_1)}{(\eta_1, \eta_1)} \eta_1 = (-1, 0, 1)^T - \frac{1}{2} (-1, 1, 0)^T = -\frac{1}{2} (1, 1, -2)^T.$$

再将 η_1 , η_2 单位化,得

$$p_1 = \frac{1}{\sqrt{2}} (-1, 1, 0)^T, \quad p_2 = \frac{1}{\sqrt{6}} (1, 1, -2)^T.$$

对应
$$\lambda_3=3$$
 ,解齐次线性方程组 $(A-3E)x=0$,即 $\begin{pmatrix} -2&1&1\\1&-2&1\\1&1&-2\end{pmatrix}\begin{pmatrix} x_1\\x_2\\x_3\end{pmatrix}=0$,得基础解系

 $\xi_3 = (1,1,1)^T$. 将 ξ_3 单位化, 得 $p_3 = \frac{1}{\sqrt{3}}(1,1,1)^T$.

$$\diamondsuit P = (p_1, p_2, p_3) = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}, \quad \text{则 P 为正交矩阵, } 且$$

$$P^{-1}AP = P^{T}AP = \Lambda = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

例 3. 3 A 是 3 阶实对称矩阵,**A** 的特征值为-1,0,1,其中 $\lambda = 1$ 和 $\lambda = 0$ 所对应的特征向量分别为 $(1,a,1)^T$ 及 $(a,a+1,1)^T$,求**a** 的值及矩阵**A**.

解 因为A是实对称矩阵,故特征向量 $(1,a,1)^T$ 与 $(a,a+1,1)^T$ 正交,即

$$1 \times a + a \times (a+1) + 1 \times 1 = a^2 + 2a + 1 = (a+1)^2 = 0$$

因此a=-1.

设 A 对应于特征值 -1 的特征向量为 $\alpha_3 = (x_1, x_2, x_3)^T$,则它与 $\alpha_1 = (1, -1, 1)^T$, $\alpha_2 = (-1, 0, 1)^T$ 均正交,由此可得下面的齐次线性方程组

$$\begin{cases} x_1 - x_2 + x_3 = 0, \\ -x_1 + x_3 = 0, \end{cases}$$

该方程组的通解为 $k(1,2,1)^T$ (k为任意常数),取 $\alpha_3 = (1,2,1)^T$.

因为A是实对称矩阵,故A可对角化. 令 $P = (\alpha_1, \alpha_2, \alpha_3)$,则 $P^{-1}AP = \Lambda$,从而

$$A = P\Lambda P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & & \\ & 0 & \\ & & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} \\ -\frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{6} & -\frac{2}{3} & \frac{1}{6} \end{pmatrix}.$$