FCC RF Test Report

APPLICANT : Quectel Wireless Solutions Co., Ltd.

EQUIPMENT: LTE Module

BRAND NAME : Quectel MODEL NAME : SC20-A

FCC ID : XMR201706SC20A

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DSS) Spread Spectrum Transmitter

The product was received on Apr. 10, 2017 and testing was completed on Jun. 26, 2017. We, Sporton International (KunShan) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (KunShan) INC., the test report shall not be reproduced except in full.

Prepared by: James Huang / Manager

Approved by: Jones Tsai / Manager

Sporton International (KunShan) INC.
No.3-2, Pingxiang Road, Kunshan Development Zone, Jiangsu, China

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 1 of 63
Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT Version 2.0

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Descriptions of Test Mode	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	12
3	TEST	result	13
	3.1	Number of Channel Measurement	13
	3.2	Hopping Channel Separation Measurement	15
	3.3	Dwell Time Measurement	22
	3.4	20dB Bandwidth Measurement	25
	3.5	Peak Output Power Measurement	32
	3.6	Conducted Band Edges Measurement	34
	3.7	Conducted Spurious Emission Measurement	41
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	57
	3.10	Antenna Requirements	61
4	LIST	OF MEASURING EQUIPMENT	62
5	UNC	ERTAINTY OF EVALUATION	63
ΑP	PEND	IX A. RADIATED TEST RESULTS	
ΔÞ	DENID	IX R SETUP PHOTOGRAPHS	

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 2 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007A

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR741007A	Rev. 01	Initial issue of report	Aug. 11, 2017

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 3 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007A

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 8.87 dB at 34.85 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 3.98 dB at 0.172 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 4 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007A

1 General Description

1.1 Applicant

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Report No.: FR741007A

1.2 Manufacturer

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	LTE Module			
Brand Name	Quectel			
Model Name	SC20-A			
FCC ID	XMR201706SC20A			
	GSM/GPRS/EGPRS/WCDMA/HSPA/DC-HSDPA/			
	HSPA+ (16QAM uplink is not supported)/LTE			
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20/HT40			
	WLAN 5GHz 802.11a/n HT20/HT40			
	Bluetooth v3.0 + EDR/Bluetooth v4.1 LE			
	Conduction: 861097036481350/861097036481368			
IMEI Code	Radiation: 861097036472730/861097036472748			
	Conducted: 861097036481350/861097036481368			
HW Version	R1.0			
SW Version	SC20ASAR04A03H8G			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

 Sporton International (KunShan) INC.
 Page Number
 : 5 of 63

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

 FCC ID: XMR201706SC20A
 Report Template No.: BU5-FR15CBT Version 2.0

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 7.61 dBm (0.0058 W) Bluetooth EDR (2Mbps) : 7.63 dBm (0.0058 W) Bluetooth EDR (3Mbps) : 8.14 dBm (0.0065 W)			
Antenna Type / Gain	Dipole Antenna with gain 3.00 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site	Sporton International (KunShan) INC.				
	No.3-2, Pingxiang Road, Kunshan Development Zone, Jiangsu, China				
Test Site Location	TEL: +86-0512-5790-0158				
	FAX: +86-0512-5790-0958				
Toot Site No	Sporton Site No. FCC Registra			FCC Registration No.	
Test Site No.	TH01-KS	03CH03-KS	CO01-KS	306251	

Note: The test site complies with ANSI C63.4 2014 requirement.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 6 of 63

Report Issued Date : Aug. 11, 2017

Report Version : Rev. 01

Report No.: FR741007A

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 7 of 63

Report Issued Date : Aug. 11, 2017

Report Version : Rev. 01

Report No.: FR741007A

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

		В	luetooth RF Output Powe	er
Channel	Eroguenev		Data Rate / Modulation	
Chamilei	Frequency	GFSK	π/4-DQPSK	8-DPSK
		1Mbps	2Mbps	3Mbps
Ch00	2402MHz	7.24 dBm	7.12 dBm	7.69 dBm
Ch39	2441MHz	6.58 dBm	6.48 dBm	6.97 dBm
Ch78	2480MHz	7.61 dBm	7.63 dBm	8.14 dBm

Remark:

- 1. All the test data for each data rate were verified, but only the worst case was reported.
- 2. The data rate was set in 3Mbps for all the test items due to the highest RF output power.
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests and different data rates were conducted to determine the final configuration from all possible combinations, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 8 of 63
Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Report Version : Rev. 01

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
	Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π/4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
rest cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	Bluetooth EDR 3Mbps 8-DPSK					
	В	Bluetooth EDR 3Mbps 8-DPS	K			
Radiated	В	Bluetooth EDR 3Mbps 8-DPS Mode 1: CH00_2402 MHz	K			
Radiated Test Cases	В	·	K			
	В	Mode 1: CH00_2402 MHz	K			
	В	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz	K			
Test Cases		Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz				

Remark:

- 1. For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, The tests were performed with Adapter.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 9 of 63 Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT Version 2.0

2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 10 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Bluetooth Base Station	R&S	СВТ	N/A	N/A	Unshielded,1.8m
3.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
4.	Notebook	Lenovo	G480	PRC4	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
5.	Adapter	N/A	P-050B	N/A	N/A	Unshielded,1.8m
6.	WLAN AP	D-link	DIR-855	KA2DIR855A2	N/A	Unshielded,1.8m
7.	Test jig	N/A	N/A	N/A	N/A	N/A
8.	Dipole WWAN Antenna	Saintenna	SAA30968A	N/A	N/A	N/A
9.	Dipole WLAN/BT Antenna	INPAQ	DAM-L0-H-N0-000-08 -13	N/A	N/A	N/A
10.	GNSS Antenna	INPAQ	03D-S3-00-A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 11 of 63
Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Report Version : Rev. 01

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 5.8 dB.

 $Offset(dB) = RF \ cable \ loss(dB).$ = 5.8 (dB)

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 12 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Test Mode :	3Mbps	Temperature :	21~25℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 13 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Number of Hopping Channel Plot on Channel 00 - 78

Date: 8.JUN.2017 00:18:31

Date: 8.JUN.2017 00:22:02

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 14 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels;
 - RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

Sporton International (KunShan) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 15 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.2.5 Test Result of Hopping Channel Separation

Test Mode :	1Mbps	Temperature :	21~25℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.6427	Pass
39	2441	1.002	0.6427	Pass
78	2480	1.008	0.6427	Pass

Channel Separation Plot on Channel 00 - 01

Date: 7.JUN.2017 23:50:56

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 16 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Channel Separation Plot on Channel 39 - 40

Date: 7.JUN.2017 23:52:16

Channel Separation Plot on Channel 77 - 78

Date: 7.JUN.2017 23:53:09

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 17 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	2Mbps	Temperature :	21~25 ℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.008	0.8440	Pass
39	2441	1.002	0.8480	Pass
78	2480	1.008	0.8440	Pass

Channel Separation Plot on Channel 00 - 01

Date: 7.JUN.2017 23:55:45

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 18 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Channel Separation Plot on Channel 39 - 40

Date: 7.JUN.2017 23:56:26

Channel Separation Plot on Channel 77 - 78

Date: 7.JUN.2017 23:57:06

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 19 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	3Mbps	Temperature :	21~25 ℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.008	0.8280	Pass
39	2441	1.002	0.8280	Pass
78	2480	1.002	0.8280	Pass

Channel Separation Plot on Channel 00 - 01

Date: 7.JUN.2017 23:58:52

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 20 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Channel Separation Plot on Channel 39 - 40

Date: 8.JUN.2017 00:00:21

Channel Separation Plot on Channel 77 - 78

Date: 8.JUN.2017 00:01:00

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 21 of 63
Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT Version 2.0

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 22 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.3.5 Test Result of Dwell Time

Test Mode :	3DH5	Temperature :	21~25 ℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Mode	Channel	Hops Over Occupancy Time(hops)	IIMA	Dwell Time (sec)	Limits (sec)	Pass/Fail
Normal	79	106.67	2.8855	0.31	0.4	Pass
AFH	20	53.34	2.8855	0.15	0.4	Pass

Remark:

- In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.
 With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s),
 Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 23 of 63
Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT Version 2.0

Package Transfer Time Plot

Date: 6.JUN.2017 15:07:38

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 24 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.4 20dB Bandwidth Measurement

3.4.1 Limit of 20dB Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 5. Measure and record the results in the test report.

3.4.4 Test Setup

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 25 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.4.5 Test Result of 20dB Bandwidth

Test Mode :	1Mbps	Temperature :	21~25 ℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	0.964
39	2441	0.964
78	2480	0.964

20 dB Bandwidth Plot on Channel 00

Date: 8.JUN.2017 00:01:21

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 26 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Date: 8.JUN.2017 00:01:49

20 dB Bandwidth Plot on Channel 78

Date: 8.JUN.2017 00:02:00

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 27 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	2Mbps	Temperature :	21~25℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.266
39	2441	1.272
78	2480	1.266

Date: 8.JUN.2017 00:02:19

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 28 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Date: 8.JUN.2017 00:02:32

20 dB Bandwidth Plot on Channel 78

Date: 8.JUN.2017 00:02:43

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 29 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	3Mbps	Temperature :	21~25 ℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.242
39	2441	1.242
78	2480	1.242

Date: 8.JUN.2017 00:02:57

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 30 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Date: 8.JUN.2017 00:03:08

20 dB Bandwidth Plot on Channel 78

Date: 8.JUN.2017 00:03:25

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 31 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 32 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.5.5 Test Result of Peak Output Power

Test Mode :	1Mbps	Temperature :	21~25 ℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Report No. : FR741007A

Francos		RF Power (dBm)			
Channel	Frequency	GFSK Max. Limits		Dece/Feil	
	(MHz)	1 Mbps	(dBm)	Pass/Fail	
00	2402	7.24	20.97	Pass	
39	2441	6.58	20.97	Pass	
78	2480	7.61	20.97	Pass	

Note: For AFH mode using 20 hopping channels, the maximum output power limit is 20.97dBm.

Test Mode :	2Mbps	Temperature :	21~25℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Evenuency		RF Power (dBm)		
Channel	Frequency	π/4-DQPSK	Max. Limits	Pass/Fail
	(MHz)	2 Mbps	(dBm)	
00	2402	7.12	20.97	Pass
39	2441	6.48	20.97	Pass
78	2480	7.63	20.97	Pass

Test Mode :	3Mbps	Temperature :	21~25℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Evanuenav		RF Power (dBm)			
Channel	Frequency	8-DPSK	Max. Limits	Dece/Feil	
	(MHz)	3 Mbps	(dBm)	Pass/Fail	
00	2402	7.69	20.97	Pass	
39	2441	6.97	20.97	Pass	
78	2480	8.14	20.97	Pass	

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 33 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 34 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.6.5 Test Result of Conducted Band Edges

Test Mode :	1Mbps	Temperature :	21~25 ℃
Test Channel :	00 and 78	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

Low Band Edge Plot on Channel 00

Date: 8.JUN.2017 00:04:19

High Band Edge Plot on Channel 78

Date: 8.JUN.2017 00:05:10

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 35 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	2Mbps	Temperature :	21~25 ℃
Test Channel :	00 and 78	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

Low Band Edge Plot on Channel 00

Date: 8.JUN.2017 00:06:02

High Band Edge Plot on Channel 78

Date: 8.JUN.2017 00:06:54

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 36 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	3Mbps	Temperature :	21~25 ℃
Test Channel :	00 and 78	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

Low Band Edge Plot on Channel 00

Date: 8.JUN.2017 00:07:46

High Band Edge Plot on Channel 78

Date: 8.JUN.2017 00:25:31

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 37 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Test Mode :	1Mbps	Temperature :	21~25℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

1Mbps Hopping Mode Low Band Edge Plot

Date: 8.JUN.2017 00:30:53

1Mbps Hopping Mode High Band Edge Plot

Date: 8.JUN.2017 00:32:26

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 38 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	2Mbps	Temperature :	21~25 ℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

2Mbps Hopping Mode Low Band Edge Plot

Date: 8.JUN.2017 00:35:11

2Mbps Hopping Mode High Band Edge Plot

Date: 8.JUN.2017 00:36:30

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 39 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	3Mbps	Temperature :	21~25 ℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

3Mbps Hopping Mode Low Band Edge Plot

Date: 8.JUN.2017 00:41:28

3Mbps Hopping Mode High Band Edge Plot

Date: 8.JUN.2017 00:39:09

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 40 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

Sporton International (KunShan) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 41 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.7.5 Test Result of Conducted Spurious Emission

Test Mode :	1Mbps	Temperature :	21~25℃
Test Channel :	00	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

1Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 8.JUN.2017 00:42:58

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 8.JUN.2017 00:44:53

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 42 of 63 Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Test Mode :	1Mbps	Temperature :	21~25 ℃
Test Channel :	39	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

1Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 8.JUN.2017 00:48:24

1Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 8.JUN.2017 00:48:45

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 43 of 63
Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Test Mode :	1Mbps	Temperature :	21~25 ℃
Test Channel :	78	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

1Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 8.JUN.2017 00:53:03

1Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 8.JUN.2017 00:55:34

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 44 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	2Mbps	Temperature :	21~25 ℃
Test Channel :	00	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

2Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 8.JUN.2017 01:10:07

2Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 8.JUN.2017 01:14:16

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 45 of 63
Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Test Mode :	2Mbps	Temperature :	21~25℃
Test Channel :	39	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

2Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 8.JUN.2017 01:16:05

2Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 8.JUN.2017 01:18:34

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 46 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	2Mbps	Temperature :	21~25 ℃
Test Channel :	78	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

2Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 8.JUN.2017 01:23:16

2Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 8.JUN.2017 01:22:14

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 47 of 63 Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Test Mode :	3Mbps	Temperature :	21~25℃
Test Channel :	00	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

3Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 8.JUN.2017 01:24:45

3Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 8.JUN.2017 01:30:39

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 48 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :	3Mbps	Temperature :	21~25℃
Test Channel :	39	Relative Humidity :	51~55%
		Test Engineer :	Silent Hai

3Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 8.JUN.2017 01:39:32

3Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 8.JUN.2017 01:46:26

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 49 of 63
Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Report Version : Rev. 01

Test Mode :	3Mbps	Temperature :	21~25℃
Test Channel :	78 Relative Humidity :		51~55%
		Test Engineer :	Silent Hai

3Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 8.JUN.2017 01:47:23

3Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 8.JUN.2017 01:57:01

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 50 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)				
0.009 – 0.490	2400/F(kHz)	300				
0.490 – 1.705	24000/F(kHz)	30				
1.705 – 30.0	30	30				
30 – 88	100	3				
88 – 216	150	3				
216 - 960	200	3				
Above 960	500	3				

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 51 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.8.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.77dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 52 of 63
Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

Report Version : Rev. 01

3.8.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 53 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 54 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.8.6 Duty cycle correction factor for average measurement

3DH5 on time (One Pulse) Plot on Channel 39

3DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.887 / 100 = 5.77 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.77 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 55 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

 $2.887 \text{ ms } \times 20 \text{ channels} = 57.7 \text{ ms}$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.887 ms x 2 = 5.77 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.77 \text{ ms}/100\text{ms}) = -24.77 \text{ dB}$

3.8.7 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A.

Page Number : 56 of 63
Report Issued Date : Aug. 11, 2017

Report No.: FR741007A

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of emission (MUz)	Conducted limit (dBμV)							
Frequency of emission (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 57 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.9.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 58 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

3.9.5 Test Result of AC Conducted Emission

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 59 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Test Mode :		Mode	1			Temp	erature	:	22~24	$^{\circ}\!\mathbb{C}$		
Test Engine	er :	Amos	Zhang			Relati	ve Hur	nidity :	42~46%			
Test Voltage	:	120Va	c / 60H	Z		Phase) :		Neutral			
Function Ty	pe:	GSM 8	350 Idle	+ Blue	tooth L	ink + V	VLAN L	ink(2.40	6) + Ada	pter		
	Loual	(dDu\/)										
8	OLEVE	(dBuV)										
70.	0											
60.	.0									FCC	PART 15C	
50.										FCC PART	15C(AVG)	
50.		. 2										
40.	0	MAL.	- 1			الما مالاك						
	MIN	WIIM	nm. All	Raldh		ı Marija		Mahala				
30.	0							<u> </u>	Mary Marky			
20.				l Www.	MANAY	ןיי יין			THE STATE OF	, , , , , , , , , , , , , , , , , , , ,		
20.		"		ייון וויוין	Miller .					Anadada National	KAALUU JIV	
10.	.0	"	11 1							The C	. In pulliply	
	0.15 .	.2		5	1		2 ency (MHz)	5		10	20 30	
Site			: CO01-F	S		rreque	iicy (miriz)					
Cond	lition		: FCC PA	RT 15C LIS	N-N-1610	17-06010	3 NEUTRA	L				
mod	le		: Mode 1									
					Limit			Cable				
		Freq	Level	Limit	Line	Level	Factor	Loss	Remark			
		MHz	dBuV	dB	dBuV	dBuV	dB	dB		_		
1		0.170	49.30	-15.64	64.94	38.59	0.34	10.37	QР			
2	*			-7.14					Average			
3				-19.55					_			
4			42.34		52.39		0.34		_			
5 6		0.464 0.464		-17.86 -8.46			0.38	10.19	ر۲ Average			
7		1.441		-17.21								
8		1.441		-8.11					ر. Average			
9				-20.20					_			
10		1.790		-12.50					Average			
11				-16.10								
12		2.309	3/.20	-8.80	46.00	26.59	0.41	10.20	Average			

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 60 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007A

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

Non-standard antenna connector is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 61 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
Spectrum Analyzer	R&S	FSP40	100319	9kHz~40GHz	Oct.13, 2016	Jun. 06, 2017~ Jun. 08, 2017	Oct.13, 2017	Conducted (TH01-KS)	
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 09, 2016	Jun. 06, 2017~ Jun. 08, 2017	Aug. 08, 2017	Conducted (TH01-KS)	
Bluetooth Tester	R&S	CBT	100783	Max input Power +27dBm	Aug. 9, 2016	Jun. 06, 2017~ Jun. 08, 2017	Aug. 08, 2017	Conducted (TH01-KS	
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 19, 2017	Jun. 06, 2017~ Jun. 08, 2017	Jan. 19, 2018	Conducted (TH01-KS)	
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 19, 2017	Jun. 06, 2017~ Jun. 08, 2017	Jan. 19, 2018	Conducted (TH01-KS)	
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz;M ax 30dBm	Oct. 22.2016	Jun. 21, 2017	Oct. 21.2017	Radiation (03CH03-KS)	
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44GHz	Apr. 18, 2017	Jun. 21, 2017	Apr.17, 2018	Radiation (03CH03-KS)	
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 23, 2016	Jun. 21, 2017	Nov.22, 2017	Radiation (03CH03-KS)	
Bilog Antenna	TeseQ	CBL6112D	35406	25MHz-2GHz	Apr. 22, 2017	Jun. 21, 2017	Apr. 21, 2018	Radiation (03CH03-KS)	
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-135 6	1GHz~18GHz	Apr. 22, 2017	Jun. 21, 2017	Apr. 21, 2018	Radiation (03CH03-KS)	
SHF-EHF Horn	com-power	AH-840	101070	18GHz ~40GHz	Oct. 19, 2016	Jun. 21, 2017	Oct. 18, 2017	Radiation (03CH03-KS)	
Amplifier	com-power	PA-103A	161069	1MHz ~1000MHz / 32 dB	Apr. 18, 2017	Jun. 21, 2017	Apr. 17, 2018	Radiation (03CH03-KS)	
Amplifier	Agilent	8449B	3008A023 70	1GHz~26.5GHz	Oct. 13, 2016	Jun. 21, 2017	Oct. 12, 2017	Radiation (03CH03-KS)	
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jun. 21, 2017	NCR	Radiation (03CH03-KS)	
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jun. 21, 2017	NCR	Radiation (03CH03-KS)	
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jun. 21, 2017	NCR	Radiation (03CH03-KS)	
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 20, 2017	Jun. 26, 2017	Apr. 19, 2018	Conduction (CO01-KS)	
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 13, 2016	Jun. 26, 2017	Oct. 12, 2017	Conduction (CO01-KS)	
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 13, 2016	Jun. 26, 2017	Oct. 12, 2017	Conduction (CO01-KS)	
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 13, 2016	Jun. 26, 2017	Oct. 12, 2017	Conduction (CO01-KS)	
Pulse Limiter	COM-POWER	LIT-153 Transient Limiter	53139	150kHz~30MHz	Oct. 11, 2016	Jun. 26, 2017	Oct. 10, 2017	Conduction (CO01-KS)	

NCR: No Calibration Required

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 62 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.3dB
of 95% (U = 2Uc(y))	2.300

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.6dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.5dB
of 95% (U = 2Uc(y))	4.Jub

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	4.7dB
of 95% (U = 2Uc(y))	4.7ub

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 63 of 63
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007A

Appendix A. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2337.43	39.4	-34.6	74	41.7	25.24	4.71	32.25	100	42	Р	Н
		2337.43	14.63	-39.37	54	-	-	-	-	-	-	Α	Н
DT		2402	103.88	-	-	106.02	25.4	4.76	32.3	100	42	Р	Н
BT CH00		2402	79.11	-	-	-	-	-	-	-	-	Α	Н
2402MHz		2318.32	39.1	-34.9	74	41.46	25.18	4.69	32.23	381	73	Р	V
2402111112		2318.32	14.33	-39.67	54	-	-	-	-	-	-	Α	V
		2402	104.75	-	-	106.89	25.4	4.76	32.3	381	73	Р	V
		2402	79.98	-	-	-	-	-	-	-	-	Α	V
		2347.57	39.26	-34.74	74	41.56	25.24	4.71	32.25	110	43	Р	Н
		2347.57	14.49	-39.51	54	-	-	-	-	-	-	Α	Н
		2442	104.86	-	-	106.55	25.83	4.82	32.34	110	43	Р	Н
		2442	80.09	-	-	-	-	-	-	-	-	Α	Н
		2484.67	40.69	-33.31	74	42.09	26.11	4.86	32.37	110	43	Р	Н
BT		2484.67	15.92	-38.08	54	-	-	-	-	-	-	Α	Н
CH 39 2441MHz		2365.64	39.9	-34.1	74	42.14	25.29	4.73	32.26	362	74	Р	٧
2441111112		2365.64	15.13	-38.87	54	-	-	-	-	-	-	Α	٧
		2442	105.17	-	-	106.86	25.83	4.82	32.34	362	74	Р	٧
		2442	80.4	-	-	-	-	-	-	-	-	Α	٧
		2483.76	40.88	-33.12	74	42.28	26.11	4.86	32.37	362	74	Р	V
		2483.76	16.11	-37.89	54	-	-	-	-	-	-	Α	V

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : A1 of A6
Report Issued Date Aug. 11, 2017
Report Version Rev. 01

Report No.: FR741007A

	2483.51	52.62	-21.38	74	54.02	26.11	4.86	32.37	108	45	Р	Н
	2483.51	27.85	-26.15	54	-	-	-	-	-	-	Α	Н
	2480	105.06	-	-	106.46	26.11	4.86	32.37	108	45	Р	Н
BT	2480	80.29	-	-	-	-	-	-	-	-	Α	Н
CH 78	2483.51	52.82	-21.18	74	54.22	26.11	4.86	32.37	395	74	Р	V
2480MHz	2483.51	28.05	-25.95	54	-	-	-	-	-	-	Α	V
	2480	105.65	-	-	107.05	26.11	4.86	32.37	395	74	Р	V
	2480	80.88	-	-	-	-	-	-	-		Α	V

Remark 2.

All results are PASS against Peak and Average limit line.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A

: A2 of A6 Page Number Report Issued Date Aug. 11, 2017 Report Version Rev. 01

Report No.: FR741007A

2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
BT CH 00		4806	36.09	-37.91	74	59.7	30.86	6.88	61.35	150	360	Р	Н
2402MHz		4806	35.14	-38.86	74	58.75	30.86	6.88	61.35	150	360	Р	V
		4884	36.6	-37.4	74	59.93	31.01	6.86	61.2	100	360	Р	Н
ВТ		7320	39.66	-34.34	74	58.9	35.39	8.48	63.11	100	360	Р	Н
CH 39 2441MHz		4884	36.58	-37.42	74	59.91	31.01	6.86	61.2	100	360	Р	٧
244 HVII12		7320	38.94	-35.06	74	58.18	35.39	8.48	63.11	100	360	Р	٧
		4962	36.55	-37.45	74	59.54	31.19	6.83	61.01	100	360	Р	Н
BT		7440	38.33	-35.67	74	57.36	35.68	8.51	63.22	100	360	Р	Н
CH 78		4962	36.47	-37.53	74	59.46	31.19	6.83	61.01	100	360	Р	V
2480MHz		7440	38.74	-35.26	74	57.77	35.68	8.51	63.22	100	360	Р	V

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number Report Issued Date : A3 of A6 Aug. 11, 2017

Report Version

Rev. 01

Report No.: FR741007A

No other spurious found.

All results are PASS against Peak and Average limit line.

Emission below 1GHz

2.4GHz BT (LF)

(MHz) 30.97	(dBµV/m) 24.05	Limit (dB)	Line (dBµV/m)	Level	Factor	Loss	Factor	Pos	Pos	Δνα	
30.97		, ,	(dBµV/m)	/ ID \/\				1 03	F U3	Avg.	
	24.05			(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		-15.95	40	28.87	25.74	0.52	31.08	100	251	Р	Н
112.45	18.66	-24.84	43.5	31.28	17.67	0.46	30.75	-	-	Р	Н
162.89	19.19	-24.31	43.5	31.64	16.89	1.61	30.95	-	-	Р	Н
475.23	25.44	-20.56	46	31.13	23.7	2.21	31.6	-	-	Р	Н
667.29	27.88	-18.12	46	29.5	26.47	2.61	30.7	-	-	Р	Н
767.2	29.53	-16.47	46	30.02	27.47	2.81	30.77	-	-	Р	Н
34.85	31.13	-8.87	40	38.07	23.5	0.56	31	200	145	Р	V
132.82	24.46	-19.04	43.5	36.68	17.47	1.14	30.83	-	-	Р	V
240.49	21.17	-24.83	46	33.32	17.48	1.55	31.18	-	-	Р	V
473.29	28.16	-17.84	46	33.89	23.67	2.2	31.6	-	-	Р	V
557.68	28.82	-17.18	46	33.04	24.91	2.37	31.5	-	-	Р	V
643.04	29.31	-16.69	46	31.28	26.19	2.56	30.72	-	-	Р	V
	162.89 475.23 667.29 767.2 34.85 132.82 240.49 473.29 557.68	162.89 19.19 475.23 25.44 667.29 27.88 767.2 29.53 34.85 31.13 132.82 24.46 240.49 21.17 473.29 28.16 557.68 28.82	162.89 19.19 -24.31 475.23 25.44 -20.56 667.29 27.88 -18.12 767.2 29.53 -16.47 34.85 31.13 -8.87 132.82 24.46 -19.04 240.49 21.17 -24.83 473.29 28.16 -17.84 557.68 28.82 -17.18	162.89 19.19 -24.31 43.5 475.23 25.44 -20.56 46 667.29 27.88 -18.12 46 767.2 29.53 -16.47 46 34.85 31.13 -8.87 40 132.82 24.46 -19.04 43.5 240.49 21.17 -24.83 46 473.29 28.16 -17.84 46 557.68 28.82 -17.18 46	162.89 19.19 -24.31 43.5 31.64 475.23 25.44 -20.56 46 31.13 667.29 27.88 -18.12 46 29.5 767.2 29.53 -16.47 46 30.02 34.85 31.13 -8.87 40 38.07 132.82 24.46 -19.04 43.5 36.68 240.49 21.17 -24.83 46 33.32 473.29 28.16 -17.84 46 33.04	162.89 19.19 -24.31 43.5 31.64 16.89 475.23 25.44 -20.56 46 31.13 23.7 667.29 27.88 -18.12 46 29.5 26.47 767.2 29.53 -16.47 46 30.02 27.47 34.85 31.13 -8.87 40 38.07 23.5 132.82 24.46 -19.04 43.5 36.68 17.47 240.49 21.17 -24.83 46 33.32 17.48 473.29 28.16 -17.84 46 33.89 23.67 557.68 28.82 -17.18 46 33.04 24.91	162.89 19.19 -24.31 43.5 31.64 16.89 1.61 475.23 25.44 -20.56 46 31.13 23.7 2.21 667.29 27.88 -18.12 46 29.5 26.47 2.61 767.2 29.53 -16.47 46 30.02 27.47 2.81 34.85 31.13 -8.87 40 38.07 23.5 0.56 132.82 24.46 -19.04 43.5 36.68 17.47 1.14 240.49 21.17 -24.83 46 33.32 17.48 1.55 473.29 28.16 -17.84 46 33.04 24.91 2.37	162.89 19.19 -24.31 43.5 31.64 16.89 1.61 30.95 475.23 25.44 -20.56 46 31.13 23.7 2.21 31.6 667.29 27.88 -18.12 46 29.5 26.47 2.61 30.7 767.2 29.53 -16.47 46 30.02 27.47 2.81 30.77 34.85 31.13 -8.87 40 38.07 23.5 0.56 31 132.82 24.46 -19.04 43.5 36.68 17.47 1.14 30.83 240.49 21.17 -24.83 46 33.32 17.48 1.55 31.18 473.29 28.16 -17.84 46 33.04 24.91 2.37 31.5	162.89 19.19 -24.31 43.5 31.64 16.89 1.61 30.95 - 475.23 25.44 -20.56 46 31.13 23.7 2.21 31.6 - 667.29 27.88 -18.12 46 29.5 26.47 2.61 30.7 - 767.2 29.53 -16.47 46 30.02 27.47 2.81 30.77 - 34.85 31.13 -8.87 40 38.07 23.5 0.56 31 200 132.82 24.46 -19.04 43.5 36.68 17.47 1.14 30.83 - 240.49 21.17 -24.83 46 33.32 17.48 1.55 31.18 - 473.29 28.16 -17.84 46 33.89 23.67 2.2 31.6 - 557.68 28.82 -17.18 46 33.04 24.91 2.37 31.5 -	162.89 19.19 -24.31 43.5 31.64 16.89 1.61 30.95 - - 475.23 25.44 -20.56 46 31.13 23.7 2.21 31.6 - - 667.29 27.88 -18.12 46 29.5 26.47 2.61 30.7 - - 767.2 29.53 -16.47 46 30.02 27.47 2.81 30.77 - - 34.85 31.13 -8.87 40 38.07 23.5 0.56 31 200 145 132.82 24.46 -19.04 43.5 36.68 17.47 1.14 30.83 - - 240.49 21.17 -24.83 46 33.32 17.48 1.55 31.18 - - 473.29 28.16 -17.84 46 33.04 24.91 2.37 31.5 - - 557.68 28.82 -17.18 46 33.04 24.91 2.37 31.5 - -	162.89 19.19 -24.31 43.5 31.64 16.89 1.61 30.95 - - P 475.23 25.44 -20.56 46 31.13 23.7 2.21 31.6 - - P 667.29 27.88 -18.12 46 29.5 26.47 2.61 30.7 - - P 767.2 29.53 -16.47 46 30.02 27.47 2.81 30.77 - - P 34.85 31.13 -8.87 40 38.07 23.5 0.56 31 200 145 P 132.82 24.46 -19.04 43.5 36.68 17.47 1.14 30.83 - - P 240.49 21.17 -24.83 46 33.32 17.48 1.55 31.18 - - P 473.29 28.16 -17.84 46 33.04 24.91 2.37 31.5 - - P 557.68 28.82 -17.18 46 33.04 24.91 2.37 </td

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number Report Issued Date

: A4 of A6 Aug. 11, 2017

Report No.: FR741007A

Remark

1. No other spurious found.
2. All results are PASS again

All results are PASS against limit line.

Note symbol

P/A	Peak or Average
H/V	Horizontal or Vertical

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : A5 of A6
Report Issued Date Aug. 11, 2017
Report Version Rev. 01

Report No. : FR741007A

A calculation example for radiated spurious emission is shown as below:

Report No.: FR741007A

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01												_	
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 Sporton International (KunShan) INC.
 Page Number
 : A6 of A6

 TEL: 86-0512-5790-0158
 Report Issued Date
 Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 Rev. 01

 FCC ID: XMR201706SC20A
 Report Template No.: BU5-FR15CBT Version 2.0