Стохастический метод Ньютона с различным семплингом

Денис Швейкин

Московский физико-технический институт

Курс: Моя первая научная статья Эксперт: Рустем Исламов

2023

Цель исследования

Задача

Использовать различные стратегии семплинга для стохастического метода Ньютона, чтобы получить наилучшую скорость сходимости

Мотивация

- Задача минимизации функции потерь, имеющей структуру конечной суммы, возникает повсеместно в машинном обучении. Методы первого порядка для этой задачи хорошо изучены
- Методы второго порядка типа Ньютон лучше адаптируются к кривизне задачи и имеют квадратичную сходимость. Однако эти методы изучены менее подробно
- Применяются различные стратегии семплинга для стохастического варианта, поскольку для методов первого порядка их подбор ведет к улучшеням скорости сходимости

Минимизируемая функция

Структура функции потерь

$$\min_{x \in \mathbb{R}^d} \left[f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x) \right]$$

Предположения

Сильная выпуклость

$$f(x) \geqslant f(y) + \langle \nabla f, x - y \rangle + \frac{\mu}{2} ||x - y||^2$$

Липшицевы Гессианы

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \leqslant H\|x - y\|$$

Алгоритм

Initialize: Задать начальные приближения $w_1^0, w_2^0, ... w_n^0 \in \mathbb{R}^d$

for
$$k = 0, 1, 2, ...$$
 do
$$x^{k+1} = \left[\frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(w_i^k)\right]^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(w_i^k) w_i^k - \nabla f_i(w_i^k)\right]$$

Выбрать множество $S^k \subseteq \{1,2,...,n\}$ одной из стратегий

семплинга

$$w_i^{k+1} = \begin{cases} x^{k+1} & i \in S^k \\ w_i^k & i \notin S^k \end{cases}$$

end for

Определение

Семплингом называется $\hat{\mathcal{S}}:[n] o 2^{[n]}$

Метрика качества

Качество стратегий измеряется в скорости сходимости

Стратегии семплинга

Определение

Семплингом называется $\hat{\mathcal{S}}:[n] o 2^{[n]}$

Однородные стратегии

Любое множество размера j выбирается с одинаковой вероятностью, $P(|\hat{S}|=j)=q_j$ Пример: au-nice семплинг

$$q_{\tau}=1$$

Независимые стратегии

Теперь каждый объект i включается в множество S независимо с вероятностью p_i .

Importance sampling

Каждая f_i имеет свою константу Липшица H_i

$$p_i = \frac{H_i}{\sum\limits_{i=1}^n H_i}$$

Последовательная стратегия

Проходить по данным в порядке, заданном случайное перестановкой

Результаты: оценки скорости сходимости

Средний квадрат незвяки

$$\mathcal{W}^k \stackrel{\mathsf{def}}{=} \frac{1}{n} \sum_{i=1}^n \| w_i^k - x^* \|^2$$

Однородные стратегии

Пусть $p=\frac{\mathbb{E}[|\hat{S}|]}{n}$. Тогда $\mathbb{E}_k[\mathcal{W}^{k+1}]\leqslant \left(1-\frac{3}{4}p\right)\mathcal{W}^k$ Результат получается одинаковым для любой стратегии. Поэтому при равных p различие будет только в удобстве реализаций стратегий

Независимые стратегии

Пусть фиксировано матожидание размера батча $\mathbb{E}_k[|\hat{S}^k|] = \tau$. Тогда $\mathbb{E}_k[\mathcal{W}^{k+1}]$ будет минимально, если некоторые p_i равны 1, возможно одно $p_i \in (0,1)$, а остальные равны 0. "Аппроксимируется" последовательной стратегией

Importance sampling

Теоретических гарантий сходимости нет

Вычислительный эксперимент

- 1. Однородные стратегии ightarrow
- 2. Importance sampling \searrow
- Последовательная стратегия ↓

Заключение

- Получены линейные оценки скорости сходимости для однородных стратегий в общем случае. Показана практическая эквивалентность основных вариантов однородных стратегий
- ightharpoonup Для Importance sampling теоретических гарантий сходимости нет, и в эксперименте он уступает базовому методу au-nice
- Последовательная стратегия показывает себя лучше. Тем не менее, теоретическое обоснование нужно уточнять и улучшать