

Reposição 4

Computação Gráfica - Prof. Bernardo Lima Turma: CP28CP

Aluno: Guilherme Rodrigues dos Santos Data: 11/09/2024

1. Crie um infográfico sobre o modelo de Phong. Adicione os conteúdos da aula mais uma curiosidade.

Em anexo.

2. Crie um infográfico sobre o raytracing. Adicione os conteúdos da aula mais uma curiosidade.

Em anexo.

3. Crie um quadro com as vantagens e desvantagens dos modelos de iluminação de Phong e raytracing

Método	Vantagens	Desvantagens
Phong	Simples e eficiente, ideal para renderização em tempo real.	Menos realista, especialmente para reflexos, sombras e iluminação complexa
	Baixo custo computacional, adequado para hardware menos potente e dispositivos móveis.	Não simula iluminação global (somente luz local) e não suporta reflexos e refrações realistas.
	Fácil de implementar e otimizar, amplamente utilizado em engines de jogos	Brilho especular controlado por um único parâmetro, sem realismo em superfícies muito reflexivas
	Bom desempenho mesmo em cenas complexas, com múltiplas fontes de luz	

Raytracing	Alta fidelidade visual, com reflexos, refrações e sombras realistas.	Altamente intensivo em termos de processamento, requer hardware potente.
	Simula iluminação global, incluindo luz indireta e múltiplas reflexões.	Mais lento, especialmente em tempo real, sem hardware dedicado (GPUs modernas).
	Sombras e reflexos suaves, baseados na física da luz	Complexo de implementar e otimizar, exigindo cálculos avançados;
	Ideal para filmes, animações e simulações que exigem realismo absoluto.	Pode ser inviável para renderizações rápidas ou aplicações que priorizam desempenho sobre realismo.

4. Como conseguimos calcular ray tracing em tempo real se é uma operação tão difícil de paralelizar?

O Ray Tracing em tempo real se tornou viável graças a uma série de inovações tecnológicas, superando a complexidade tradicional desse método. Tradicionalmente, sua aplicação era reservada a filmes e animações devido ao alto custo computacional, uma vez que simula o caminho da luz com extrema precisão, necessitando de considerável poder de processamento.

A NVIDIA, à frente dessa transformação, desenvolveu a tecnologia RTX, que acelera o Ray Tracing. Essa solução combina algoritmos otimizados com hardware especializado, incluindo RT Cores e Tensor Cores, para proporcionar um desempenho significativamente superior. Um dos avanços mais notáveis é o uso de Inteligência Artificial para denoising, que remove ruídos indesejados, permitindo utilização de um menor número de raios por pixel, sem comprometer a qualidade visual, anteriormente impossível em tempo real.