On the Difficulty of Defending Self-Supervised Learning against Model Extraction

Adam Dziedzic, Nikita Dhawan, Muhammad Ahmad Kaleem, Jonas Guan, Nicolas Papernot

International Conference on Machine Learning (ICML) July 17th - 23rd, 2022

Supervised Learning API

Supervised vs Self-Supervised Learning APIs

High Cost of Creating Self-Supervised APIs

Collect Data

Tune Hyper-parameters

Run on GPU/TPU/CPU

Low-dimensional outputs (e.g., labels)

Unlabeled

Query

SSL API

High-dimensional representations

High Cost of Creating Self-Supervised APIs

Collect Data

Tune Hyper-parameters

Run on GPU/TPU/CPU

Low-dimensional outputs (e.g., labels)

Efficient Attacks & Inadequate Defenses

Efficient Attacks & Inadequate Defenses

- 1. Attacks against SSL models are query efficient.
- 2. Existing defenses against stealing supervised models are inadequate for SSL models.

Low-dimensional outputs (e.g., labels)

High-dimensional representations

Encoder

Framework for Stealing Encoders

Impact of Loss Functions on Encoder Stealing

	CIFAR10 Victim		SVHN	Victim
Loss\Downstream Task	STL10	CIFAR10	STL10	CIFAR10
Victim baseline	67.9	79.0	50.6	57.5
MSE	64.8	75.5	46.3	51.2
InfoNCE	64.6	75.5	50.4	56.3
SoftNN	67.1	76.9	44.6	48.4
SupCon (uses labels)	63.1	78.5	33.9	42.3
Wasserstein	50.8	63.9	40.1	46.4
Barlow	26.6	26.9	16.3	17.9

Impact of Loss Functions on Encoder Stealing

	CIFAR10 Victim		SVHN	Victim
Loss\Downstream Task	STL10	CIFAR10	STL10	CIFAR10
Victim baseline	67.9	79.0	50.6	57.5
MSE	64.8	75.5	46.3	51.2
InfoNCE	64.6	75.5	50.4	56.3
SoftNN	67.1	76.9	44.6	48.4
SupCon (uses labels)	63.1	78.5	33.9	42.3
Wasserstein	50.8	63.9	40.1	46.4
Barlow	26.6	26.9	16.3	17.9

Contrastive losses perform the best for stealing encoders

Stealing a Pre-trained ImageNet Encoder

Downstream Task

# Queries	Data for Stealing	CIFAR10	CIFAR100	STL10	SVHN	F-MNIST
	nageNet Baseline	90.33	71.45	94.9	79.39	91.9
60K	CIFAR10	83.3	57.0	71.2	73.8	90.7
50K	SVHN	73.3	47.1	58.2	78.8	90.4
250K	SVHN	77.1	52.6	61.9	80.2	91.4
50K	ImageNet	65.2	35.1	64.9	62.1	88.5
250K	ImageNet	80.0	57.0	85.8	71.5	90.2

Stealing a Pre-trained ImageNet Encoder

Downstream Task

# Queries	Data for Stealing	CIFAR10	CIFAR100	STL10	SVHN	F-MNIST
	mageNet Baseline	90.33	71.45	94.9	79.39	91.9
60K	CIFAR10	83.3	57.0	71.2	73.8	90.7
50K	SVHN	73.3	47.1	58.2	78.8	90.4
250K	SVHN	77.1	52.6	61.9	80.2	91.4
50K	ImageNet	65.2	35.1	64.9	62.1	88.5
250K	ImageNet	80.0	57.0	85.8	71.5	90.2

number of stealing queries < 1/5th number of training data points

Adapt Defenses against Stealing Encoders

Poison Attacker's Objective

Prediction Poisoning [Orekondy et al. 2020]

Higher cost for more information

Callibrated PoW with PATE [Dziedzic et al. 2022]

Detect Attack & Stop Responding PRADA [Juuti et al. 2019]

Embed Rotation Task to Defend Encoders

Transferability of the Rotation Watermark

Conclusions & Future Work

High
Performance of
Stolen
Encoders

Contrastive Loss Functions

Design New Defenses

Thank you

https://cleverhans-lab.github.io

{adam.dziedzic,nicolas.papernot}@utoronto.ca