Unit 5 Cluster Analysis

Cluster Analysis

- Clustering is a Process of grouping objects which are similar
- Objects of a cluster are similar and objects of different cluster are dissimilar
- The objects can be grouped based on attributes/features or by relationships with other objects (distance or similarity)
- Clustering does not require assumptions about category labels that tag objects with prior identifiers
- Clustering is an unsupervised learning and classification is a supervised learning
- Clustering is subjective (or problem dependent)

- Clustering can summarize data to a manageable level
- Applications
 - Customer relationship management
 - Information retrieval
 - Data compression
 - Image processing
 - Marketing
 - Medicine
 - Pattern recognition
 - Psychology and statistics

Similarity and its measurement

- Grouping is done based on the closeness or similarity
- Sometimes we are given with perfect features to measure similarity
- But most of times, we need to
 - Generate features
 - Clean features
 - Normalize features
 - Reduce features
- Two useful tricks to measure similarity
 - Feature Projection (how similar) s(x,y)
 - Edit distance- (how dissimilar) d(x,y)

• Feature Projection

- We project the data into feature space, the distance in feature space becomes the similarity
- Suppose given with the different birds we group taking the feature beak length

Edit distance

- Grouping done based on the dissimilarities or distance between the objects when forming the clusters
- The distance can be based on single dimension or multiple dimensions
- Suppose we want to group the fast food categories, we can start clustering be their calories, taste, price etc.

- Distance measure
 - Euclidean Distance calculated from raw data
 - Distance(O_i, O_j) = sqrt ($\sum (O_{ik} O_{jk})^2$

Object	X1	X2	X3	X4
O1	5	6	4	9
O2	8	9	3	2
O3	3	4	5	3

Distance
$$(O_1, O_2) = \operatorname{sqrt}((5-8)^2 + (6-9)^2 + (4-3)^2 + (9-2)^2 = 8.25$$

Distance $(O_1, O_3) = \operatorname{sqrt}((5-3)^2 + (6-4)^2 + (4-5)^2 + (9-3)^2 = 6.7$
Distance $(O_1, O_2) = \operatorname{sqrt}((8-3)^2 + (9-4)^2 + (3-5)^2 + (2-3)^2 = 7.4$

- Distance measure
 - Manhattan Distance Simply the average difference across dimensions
 - Distance(O_i, O_j) = $1/n \left(\sum (|O_{ik} O_{jk}|) \right)$
 - n represents the number of features

Object	X 1	X2	X 3	X4
O1	5	6	4	9
O2	8	9	3	2
О3	3	4	5	3

Distance
$$(O_1, O_2) = 1/4(|5-8|+|6-9|+|4-3|+|9-2| = 14/4 = 3.5$$

Distance $(O_1, O_2) = 1/4(|5-3|+|6-4|+|4-5|+|9-3| = 2.75$
Distance $(O_1, O_2) = 1/4(|8-3|+|9-4|+|3-5|+|2-3| = 3.25$

- Distance measure
 - Chebychev Distance Simply the average difference across dimensions
 - Distance(O_i, O_j) = Max($|O_{ik} O_{jk}|$)

Object	X1	X2	X 3	X4
O1	5	6	4	9
O2	8	9	3	2
О3	3	4	5	3

Distance
$$(O_1, O_2) = Max(|5-8|, |6-9|, |4-3|, |9-2| = 7)$$

Distance $(O_1, O_2) = Max(|5-3|, |6-4|, |4-5|, |9-3| = 6)$
Distance $(O_1, O_2) = Max(|8-3|, |9-4|, |3-5|, |2-3| = 5)$

- Distance measure
 - Percent Disagreement— suited for features which is categorical in nature
 - Distance(O_i, O_j)= 100* [Number of ($O_{ik} <> O_{jk}$)] div n
 - N represents the number of features

Object	Gender	Age bracket	Income level	BP
O1	M	20-30	Low	Normal
O2	M	30-40	Low	Normal
О3	F	20-30	Medium	Normal

Distance
$$(O_1, O_2) = 100*1 \text{ div } 4 = 25\%$$

Distance $(O_1, O_3) = 100*2 \text{ div } 4 = 50\%$

Distance
$$(O_2, O_3) = 100*3 \text{ div } 4 = 75\%$$

Types of Clustering

- Partitional we construct various partitions and then evaluate them by some criteria
 - K-means
 - K- medoids
- Hierarchical we create hierarchical decomposition of the set of objects using some criterion
 - Bottom up agglomerative
 - Initially, each point is a cluster
 - Repeatedly combine the two nearest clusters into one
 - Top-down divisive
 - Start with one cluster and recursively split it

K-means

Step 1: Choose k objects arbitrarily from D as in initial cluster centers

Step 2 : Repeat

Step 3: Reassign each object to the most similar cluster based on the mean value of the objects in the cluster

Step 4: Update the cluster means

Step 5: Until no change

based on data & business requirement

Initial group centroids

Distance used to calculate the nearest centroid is usually Euclidean distance

Example

• As a simple illustration of a k-means algorithm, consider the following data set consisting of the scores of two variables on each of Five individuals. This data set is to be grouped into two clusters.

Subject	X 1	X2
A	1	1
В	1	0
C	0	2
D	2	4
E	3	5

• Choose the cluster centroids

	Individual	Mean Vector (centroid)
Group 1	A	(1, 1)
Group 2	D	(2, 4)

• Calculate the distance (using euclidean/ manhattan/ chebychev) of each individual to the chosen centroid. Assign 1 to the min distance of the cluster. Eg: for obj A min(0,3) = 0, so put 1 in cluster A. Rearrange the cluster and reassign the centroid.

Object	Cluster 1 (1,1)	Cluster 2 (2,4)
Α	0	3
В	1	3
C	2	2
D	3	0
E	4	1

Object	Cluster 1 (1,1)	Cluster 2 (2,4)
Α	1	0
В	1	0
С	1	0
D	0	1
E	0	1

New centroid,

Cluster 1 (1+1+0/3, 1+0+2/3) = (2/3,3/3) = (0.6,1)

Cluster 2 (2+3/2, 4+5/2) = (5/2, 9/2) = (2.5, 4.5)

• Repeat until no change in the centroids

Object	Cluster 1 (0.6,1)	Cluster 2 (2.5,4.5)
Α	0.4	3.5
В	1	4.5
С	1	2.5
D	3	0.5
E	4	0.5

Object	Cluster 1 (0.6,1)	Cluster 2 (2.5,4.5)
Α	1	0
В	1	0
C	1	0
D	0	1
E	0	1

New centroid,

Cluster 1
$$(1+1+0/3, 1+0+2/3) = (2/3,3/3) = (0.6,1)$$

Cluster 2
$$(2+3/2, 4+5/2) = (5/2, 9/2) = (2.5, 4.5)$$

Practice Problem

Subject	A	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

K-medoids

- K-means is sensitive to outliers
- k-medoids instead of taking the mean value of the object in the cluster as a reference point, medoids can be used which is more centrally located object in a cluster
- The k-medoids clustering algorithm:
 - Select k points as the initial representative of the objects
 - Repeat
 - Assigning each point closest to the medoid
 - Randomly select a non-representative object Oi
 - Compute the total cost S of swapping the medoid m with Oi
 - If S<0, then swap m with Oi to form the new set of medoids
 - Until convergence criterion is satisfied

K-medoids example

Data Objects

	A_1	A ₂
O ₁	2	6
02	3	4
O_3	3	8
O_4	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
08	7	4
O_9	8	5
O ₁₀	7	6

Goal: create two clusters

Choose randmly two medoids

$$O_2 = (3,4)$$

 $O_8 = (7,4)$

Data Objects

7

8

7

4

5

07

08

 O_9

O₁₀

- →Assign each object to the closest representative object
- →Using L1 Metric (Manhattan), we form the following clusters

Cluster1 =
$$\{O_1, O_2, O_3, O_4\}$$

Cluster2 =
$$\{O_5, O_6, O_7, O_8, O_9, O_{10}\}$$

08

 O_9

O₁₀

→Compute the absolute error criterion [for the set of Medoids (O2,O8)]

$$\begin{split} E = & \sum_{i=1}^{k} \sum_{p \in C_i} p - o_i \, | \, \Rightarrow | \, o_1 - o_2 \, | \, + | \, o_3 - o_2 \, | \, + | \, o_4 - o_2 \, | \\ & + | \, o_5 - o_8 \, | \, + | \, o_6 - o_8 \, | \, + | \, o_7 - o_8 \, | \, + | \, o_9 - o_8 \, | \, + | \, o_{10} - o_8 \, | \end{split}$$

A₁ A₂
O₁ 2 6
O₂ 3 4
O₃ 3 8
O₄ 4 7
O₅ 6 2
O₆ 6 4

7

7

8 5

3

6

07

 O_8

 O_9

O₁₀

→The absolute error criterion [for the set of Medoids (O2,O8)]

$$E = (3+4+4)+(3+1+1+2+2) = 20$$

→Choose a random object O₇

→Swap O8 and O7

→Compute the absolute error criterion [for the set of Medoids (O2,O7)]

$$E = (3+4+4)+(2+2+1+3+3)=22$$

→Compute the cost function

Absolute error [for O_2, O_7] – Absolute error $[O_2, O_8]$

$$S = 22 - 20$$

 $S>0 \Rightarrow it is a bad idea to replace <math>O_8$ by O_7

Agglomerative clustering

- Idea: ensure nearby points ends up in the same cluster
- Start with a collection of n singleton clusters
 - Each cluster contains one data point
- Repeatedly only one cluster is left:
 - Find a pair of clusters that is closest: min $D(c_i, c_j)$
 - ullet Merge the clusters ci, cj into a new cluster c_{ij}
 - ullet Remove c_i and c_j from collection C and add c_{ij}
- Produce a dendrogram: hierarchical tree of clusters

Example

• For a given dataset, Form the distance matrix

	1	2	3	4	5
1	0				
2	9	0			
3	3	7	0		
1 2 3 4 5	6	5	9	0	
5	0 9 3 6 11	5 10	2	8	0

• Merge col 3 and 5. For example, d(1,3)=3 and d(1,5)=11. So, D(1,"35")=11. This gives us the new distance matrix. The items with the smallest distance get clustered next. This will be 2 and 4.

	35	1	2	4
35	0			
1	11	0		
2	10	9	0	
4	9	6	5	0

	35	24	1
35	0		
24	10	0	
1	11	9	0

Form the dendrogram.

Practice

Modern Clustering methods

- Hierarchical clustering
 - BIRCH Balanced Iterative reducing and clustering using hierarchies
 - CURE clustering using Representation
 - ROCK Robust clustering for categorical data
- Partitive clustering
 - CLARA Clustering Large Application
 - CLARANS clustering large application on randomized search
 - K-mode

Other Clustering methods

- Density based clustering
 - DENCLUE Density based clustering
 - DBSCAN- Density based spatial clustering of application with noise
 - Optics ordering points to identify the clustering structure
- Grid based methods
 - STING statistical information Grid based method
 - Wave cluster
- Model based methods
 - COBWEB
 - CLASSIT