M621 Exam 1 review problems, set 1, Sept. 25

- 1. Draw a regular tetrahedron T Label the apex 1, and the base vertices 2, 3, 4 clockwise. Let G be the group of symmetries of the tetrahedron. A tetrahedron has 4 vertices, 4 faces, and 6 edges.
 - (a) Be able to explain –geometry, spatial sense– that G maps faces of T to faces of T, and that a symmetry α of G is determined by the image of the face $\{1,2,3\}$, and $\alpha(1)$. Then explain why $|T| \leq 12$.
 - (b) List (in cycle notation) the 12 distinct elements of G.
 - (c) The group D_{12} is also a group with 12 elements. Explain why G could not be isomorphic to D_{12} .
 - (d) G acts on the four faces of T. Is the action transitive? Let $\sigma: G \to S_4$ be the homomorphism associated with the action. What is $ker(\sigma)$, the kernel of this action? Is σ onto?
- 2. Let G be a finite group, and let $H \leq G$. Assume that H is a proper subgroup. Let H act on G as follows: For all $h \in H, g \in G, h \cdot g = hg$.
 - (a) Let $g \in G$. Describe the orbit of g (which is sometime denoted $\mathcal{O}(g)$).
 - (b) Does H acts transitively on G?
 - (c) Does H act faithfully on G?
 - (d) As you showed, the orbits of the action of a group on A partition the set A. Explain how LaGrange's Theorem, that the order of H divides the order of G, follows from the above.
- 3. Provide a presentation of D_6 .
- 4. Provide a presentation of $Z_2 \times Z_2$.
- 5. Suppose that $\Gamma:G\to K$ is an isomorphism. Prove that $\Gamma^{-1}:K\to G$ is an isomorphism.
- 6. Let $n \in \mathbb{N}$. A group G is n-generated if there exists a subset $A \subseteq G$, $n \geq |A|$, and $G = \langle A \rangle$. Show that if K is a group, $\Gamma : G \to K$ is an onto homomorphism, and G is n-generated, then K is n-generated.
- 7. Suppose G is a cyclic group, $G = \langle g \rangle$, where $g \in G$. Prove that every subgroup of G is cyclic.
- 8. Let G be a group, $g \in G$, and $|g| = n \in \mathbb{N}$. Let $k \in \mathbb{Z}$.
 - (a) Prove that $g^k = e$ if and only if n|k.
 - (b) Let $m \in \mathbb{N}$. Show that $|g^m| = \frac{n}{(n,m)}$. (You might want to use that if x, y, z are integers, $x \neq 0$, then x|yz and (x, y) = 1, then x|z.)
 - (c) With m as above, prove that $\langle g^m \rangle = \langle g^{(n,m)} \rangle$.

- 9. Suppose $n \in \mathbb{N}$, $n \geq 2$, and $\{a,b\} \subseteq \{1,\ldots,n\}$ with $a \neq b$. Let $\beta \in S_n$. Prove that $\beta(ab)\beta^{-1} = (\beta(a)\beta(b))$.
- 10. How many elements of S_6 have order 2?
- 11. A fundamental set of group theory review problems (stuff from M521, stuff that isn't well-understood by M521 students, but must be completely understood by M621 students) now follows:
 - (a) Let H be a subgroup of a group G, and let b, c be in G.
 - i. bH = H if and only if $b \in H$.
 - ii. bH = cH if and only if $bc^{-1} \in H$.
 - iii. $bH \cap cH = \neq \emptyset$ implies that bH = cH. (From which we can conclude that the left cosets of H in G partition G.)
 - (b) Another fundamental set of group theory review problems now follows: Let H be a subgroup of a group G, and let b, c be in G. H is said to be a *normal* subgroup of G if for all $c \in G$, $cHc^{-1} \subseteq H$.
 - i. Prove that if $\Gamma: G \to K$ is a homomorphism of G, then $ker(\Gamma)$ is a normal subgroup of G. (We've already proven that $ker(\Gamma)$ is a subgroup of G, so it suffices to show that if $c \in G$, then $c(ker(\Gamma))c^{-1} \subseteq ker(\Gamma)$.)
 - ii. List the normal subgroups of S_3 —the subgroups of S_3 are displayed in the text in the section on lattices of subgroups.
 - iii. List the normal subgroups of D_8 —the subgroups of D_8 are also displayed in the text.
 - iv. Prove that H is normal in G if and only if for all $c \in G$, $cHc^{-1} = H$
 - v. Prove that H is normal in G if and only if for all $c \in G$, cH = Hc.
 - vi. Prove that H is normal in G if and only if for all $b, c \in G$, bHcH = bcH.
- 12. Let $\Gamma: G \to K$ be an onto homomorphism, let $g \in G$, $k \in K$, with $\Gamma(g) = k$. Using that Γ is a homomorphism, prove that $\Gamma^{-1}(k) = gker(\Gamma)$.
- 13. Let G be a group. Let A = Sub(G) be the set of all subsets of G. G acts on Sub(G) "by conjugation": If $H \in Sub(G)$, $g \cdot H = gHg^{-1}$.
 - (a) Let $G = S_4$. Are $H_1 = <(23) >$ and $H_2 = <(13) >$ in the same orbit under the action? Are $H_3 = <(12), (34) >$ and $H_4 = <(1234) >$ in the same orbit?
 - (b) Determine G_{H_1} , the stabilizer of H_1 , for the above action. Determine G_{H_3} and G_{H_4} .

- 14. Let A and B be subgroups of a group G. Let $AB = \{ab : a \in A, b \in B\}$.
 - (a) Show by a counterexample that AB is not always a subgroup of G.
 - (b) Prove that if A is a normal subgroup, then AB is a subgroup of G.
 - (c) Prove that if both A and B are normal subgroups, then AB is a normal subgroup.
- 15. Suppose $H \leq G$ and [G:H] = 2. Prove that H is normal in G.
- 16. True or false? If false, provide a specific counterexample.
 - (a) If $H \leq G$, and a and b are in G, then aH = bH implies a = b.
 - (b) If N is a normal subgroup of G, and H is a subgroup of G, then $H \cap N$ is normal in H.
 - (c) $C_G(a) = G$ if and only if $a \in Z(G)$.
 - (d) Z(G) is a normal subgroup of G.
 - (e) For n > 2, $Z(S_3) = \{e\}$.
 - (f) For a group G, G/Z(G) is an Abelian group.
 - (g) If G is cyclic, then $G \times G$ is cyclic.
 - (h) If N is a normal subgroup of $G, \Gamma : G \to K$ is an onto homomorphism, then $\Gamma(N)$ is a normal subgroup of K.