

8 BIT SIPO SHIFT REGISTER

- HIGH SPEED
 - t_{PD} = 15 ns (TYP.) AT V_{CC} = 5 V
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } T_A = 25 \text{ °C}$
- OUTPUT DRIVE CAPABILITY
 10 LSTTL LOADS
- BALANCED PROPAGATION DELAYS
 tpi H = tpHi
- SYMMETRICAL OUTPUT IMPEDANCE I_{OL} = |I_{OH}| = 4 mA (MIN.)
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS164

DESCRIPTION

The M54/74HC164 is a high speed CMOS 8 BIT SIPO SHIFT REGISTER fabricated in silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

The HC164 is an 8 bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B), either of these inputs can be used as an active high enable for data entry through the other input. An unused input must be high, or both inputs connected together. Each low-to-high transition on the clock input shifts data one place to the right and enters into QA, the logic NAND of the two data inputs $(\overline{A} \cdot \overline{B})$, the data that existed before the rising clock edge. A low level on the clear input overrides all other inputs and clears the register asynchronously, forcing all Q outputs low.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

October 1992 1/12

INPUT AND OUTPUT EQUIVALENT CIRCUIT

TRUTH TABLE

	INP	UTS		OUTPUS				
CLEAR	LEAR CLOCK SERIAL IN QA QB			QH				
CLEAR	CLOCK	Α	В	QA .	QB		QП	
L	Х	Х	X	L	L	•••••	L	
Н		Х	Х		NO CH	HANGE		
Н		L	X	L	QAn		QGn	
Н		Х	Ĺ	L	QAn		QGn	
Н		Н	Н	Н	QAn		QGn	

X: Don't Care

QAn - QGn : The level of QA -QG, respectively. before the most-recent transition of th clock.

LOGIC DIAGRAM

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 2	A, B	Data Inputs
3, 4, 5, 6, 10, 11, 12, 13	QA to QH	Outputs
8	CLOCK	Clock Input (LOW to HIGH, Edge-triggered)
9	CLEAR	Master Reset Input
7	GND	Ground (0V)
14	V _{CC}	Positive Supply Voltage

IEC LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	ဂိ ဂိ
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		$V_{CC} = 4.5 \text{ V}$	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		To	est Co	nditions	Value							
Symbol	Parameter	Vcc (V)				T _A = 25 °C 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VI - I	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	V _{IH}	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	Vı = '	V _I = V _{CC} or GND			±0.1		±1		±1	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Test Condition	s	Value							
Symbol Parameter		Vcc		T _A = 25 °C -40 to 85 °C 54HC and 74HC 74HC					125 °C HC	Unit	
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
t _{TLH}	Output Transition	2.0		30	75		95		110		
t _{THL}	Time	4.5		8	15		19		22	ns	
		6.0		7	13		16		19		
t _{PLH}	Propagation	2.0		57	160		200		240		
t _{PHL}	Delay Time	4.5		19	32		40		48	ns	
	(CLOCK - Q)	6.0		16	27		34		41		
t _{PHL}	Propagation	2.0		60	175		220		265		
	Delay Time	4.5		20	35		44		53	ns	
	(CLEAR - Q)	6.0		17	30		37		45		
f_{MAX}	Maximum Clock	2.0	6.2	18		5.0		4.2			
	Frequency	4.5	31	53		25		21		MHz	
		6.0	37	62		30		25			
t _{W(H)}	Minimum Pulse	2.0		24	75		95		110		
$t_{W(L)}$	Width	4.5		6	15		19		22	ns	
	(CLOCK)	6.0		5	13		16		19		
$t_{W(L)}$	Minimum Pulse	2.0		40	75		95		110		
	Width	4.5		10	15		19		22	ns	
	(CLEAR)	6.0		9	13		16		19		
ts	Minimum Set-up	2.0		16	50		65		75		
	Time	4.5		4	10		13		15	ns	
	(A, B - CK)	6.0		3	9		11		13		
t_h	Minimum Hold	2.0			5		5		5		
	Time	4.5			5		5		5	ns	
	(A, B - CK)	6.0			5		5		5		
t _{REM} Minimum	2.0			5		5		5			
	Removal Time	4.5			5		5		5	ns	
		6.0			5		5		5		
C _{IN}	Input Capacitance			5	10		10		10	pF	
C _{PD} (*)	Power Dissipation Capacitance			99						pF	

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. Icc(opr) = C_{PD} •V_{CC} •f_{IN} + I_{CC}

TIMING CHART

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT Icc (Opr.)

Plastic DIP14 MECHANICAL DATA

DIM.		mm			inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	1.39		1.65	0.055		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		15.24			0.600			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z	1.27		2.54	0.050		0.100		

Ceramic DIP14/1 MECHANICAL DATA

DIM.		mm		inch			
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			20			0.787	
В			7.0			0.276	
D		3.3			0.130		
E	0.38			0.015			
e3		15.24			0.600		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
M	1.52		2.54	0.060		0.100	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO14 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	8.55		8.75	0.336		0.344
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S			8° (r	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

