$$\mathcal{V}(\mathbf{r}^{N}) = \sum_{\text{bonds}} \frac{k_{i}}{2} (l_{i} - l_{i,0})^{2} + \sum_{\text{angles}} \frac{k_{i}}{2} (\theta_{i} - \theta_{i,0})^{2} + \sum_{\text{torsions}} \frac{V_{n}}{2} (1 + \cos(n\omega - \gamma))$$

$$+ \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left(4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{4\pi\varepsilon_{0}r_{ij}} \right)$$

Electrostatics

$$\mathscr{V} = \sum_{i=1}^{N_{\rm A}} \sum_{j=1}^{N_{\rm B}} \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}}$$

van der Waals

$$+\sum_{i=1}^{N}\sum_{j=i+1}^{N}\left(4\varepsilon_{ij}\left[\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12}-\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6}\right]$$

Aromatic Pi-Pi Interactions

Face-to-face (left) and T-shaped (right) orientations of the benzene dimer

Hydrogen bonding

$$E_{HB} = D_{\theta} \left[5 \left(\frac{R_{\theta}}{R} \right)^{12} - 6 \left(\frac{R_{\theta}}{R} \right)^{10} \right] F(\theta)$$

$$sp^3 donor - sp^3 acceptor$$
 $F = cos^2 \theta cos^2 (\phi - 109.5)$

$$\theta > 90^{\circ}, \phi - 109.5^{\circ} < 90^{\circ}$$
 (3)

$$sp^3 donor - sp^2 acceptor$$
 $F = cos^2 \theta cos^2 \phi$ (4)

$$\phi > 90^{\circ}$$

$$sp^2 donor - sp^3 acceptor F = cos^4 \theta$$
 (5)

$$sp^2 donor - sp^2 acceptor$$
 $F = cos^2 \theta cos^2 (max[\phi, \phi]).(6)$

Energy functions for protein design

D Benjamin Gordon*, Shannon A Marshall* and Stephen L Mayo†

Current Opinion in Structural Biology 1999, 9:509-513

Water Models

Simple Point Charge

	SPC	SPC/E	TIP3P	BF	TIP4P	ST2
r(OH), Å	1.0	1.0	0.9572	0.96	0.9572	1.0
HOH, deg	109.47	109.47	104.52	105.7	104.52	109.47
$A \times 10^{-3}$, kcal Å ¹² /mol	629.4	629.4	582.0	560.4	600.0	238.7
C, kcal Å ⁶ /mol	625.5	625.5	595.0	837.0	610.0	268.9
q(O)	0.82	-0.8472	-0.834	0.0	0.0	0.0
q (H)	0.41	0.4238	0.417	0.49	0.52	0.2375
q(M)	0.0	0.0	0.0	-0.98	1.04	0 23 75
r(OM), Å	0.0	0.0	0.0	0.15	0.15	8.0

An ensemble is a collection of all possible systems which have different microscopic states but have an identical macroscopic or thermodynamic state.

- Microcanonical ensemble (NVE): The thermodynamic state characterized by a fixed number of atoms, N, a fixed volume, V, and a fixed energy, E. This corresponds to an isolated system.
- Canonical Ensemble (NVT): This is a collection of all systems whose thermodynamic state is characterized by a fixed number of atoms, N, a fixed volume, V, and a fixed temperature, T.
- Isobaric-Isothermal Ensemble (NPT): This ensemble is characterized by a fixed number of atoms, N, a fixed pressure, P, and a fixed temperature, T.
- Grand canonical Ensemble (μVT): The thermodynamic state for this
 ensemble is characterized by a fixed chemical potential, μ, a fixed volume, V,
 and a fixed temperature, T.

Temperature and Pressure Coupling

Berendsen Thermostat and Barostat

$$rac{dT}{dt} = rac{T_0 - T}{ au}$$

$$\left.rac{dP}{dt}
ight|_{ ext{bath}} = rac{P_0 - P}{ au_P}$$

The Ergodic hypothesis states

$$\langle A \rangle_{ensemble} = \langle A \rangle_{time}$$

Ensemble average = Time average