浙江大学 2013 - 2014 学年 春夏 学期

《 数字系统设计 I 》课程期中考试试卷

课程号: 11100120_, 开课学院: _信息与电子工程学系_

考试试卷: JA卷、B卷(请在选定项上打 J)

考试形式: √闭、开卷(请在选定项上打√),允许带_计算器、直尺_入场

考试日期: _2014 年 4 月 26 日, 考试时间: _ 120 分钟

诚信考试, 沉着应考, 杜绝违纪。

考生姓名:	学号:	 				

题序	<u>GT</u>	=	Ξ	四	五	六	七	八	总分
得分		The f			- IFU				454
评卷人	1/2	Treat.							

- 一、(得分____) 逻辑基础 (共20分,要求写出主要步骤)
- (1). 用卡诺图法将下面函数化简为最简<u>与或</u>式。 $F(A, B, C, D) = \Sigma m (1, 2, 3, 4, 5, 12, 13, 14, 15) + \Sigma d (6, 7, 9, 10, 11),$ 其中 d 为任意项。

由题可或出卡诺图.

F(A. B. G,D) = B+ C+ D.

(2). 用卡诺图法将下面函数化简为最简与或式。

 $Y_1 = CD(A \oplus B) + \overline{ABC} + A\overline{BD} + \overline{ACD}$, 约束条件为: AB + AC = 0.

Y = ABCD + ABCD + ABCCO+D) + ABCD + ABCD+ AB+B) CD

= Zm(6, 10, 5, 4, 8, 1)

约泰多14 王d(10,11,12,13,14.15).

卡塔图

Y = BD +AD +ACD

(3). 将下面函数化简为最简或与函数表达式。

 $Y_2 = (\overline{A} + B + C + D)(A + \overline{B})(A + B + D)(\overline{B} + C)(\overline{B} + \overline{C} + \overline{D})$

12' = AB'C'D' +A'B + A'B'D' + BC' + BCD

画出公的卡格图:

12' = A'0 + C'0' + BD 12 = (A+D)(C+D)(B'+D')

(4). 已知 $F(A, B, C, D) = \Sigma m (0, 5, 6, 9, 12, 15)$,除了与、或、非运算,假设还可以用<u>异或</u>门进行表达,在这一条件下,将函数化简为最简形式(已知可以化为两个式子之和的形式),并写出你的化简过程。

EXO A OB = AOB' = (AOB)

F(AB,CD) = (AOB)C'D' + AB(COD) + A'BCCOD) + (AOB)C'D

观察卡塔图

相隔一性格到初的 同歌弄或时,共4站.

 $= C' \left[(A \oplus B)' D' + (A \oplus B) D' \right] + B \left[(C \oplus D)' A + (C \oplus D)' A' \right]$

= C'[(ABB)OD] +B[COD) DA]

二、(得分____)组合逻辑电路(共40分)=C'[A\(\theta\)B\(\theta\)O']+B[A\(\theta\)C\(\theta\)D]

(1). 仅用二输入与非门、或门和非门设计一个四输入优先编码器,要求画出真值表,写出输出 f0, f1 的函数表达式,并画出利用门电路设计的优先编码器。要求写出主要步骤,并画出完整电路图。(输入 B=0 时, $f_1f_0=00$;输出 P=1 表示输入 D_0 到 D_1 中有 D_2 中有 D_3 中有 D_4 种

 $f_1 = E \cdot (D_3 + D_2) = ED_3 + ED_2$ = $((ED_2)'(ED_2)')'$

(2). 仅利用 8 选 1 数据选择器芯片 74HC151 实现函数: F(A, B, C, D, E)=Σm(0, 1, 3, 4, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 30),

(3). 利用 4 线-16 线译码器 74LS154 设计一个数值比较器,比较两个二进制数 A(a1a0),但变仅利用 B(b1b0),要求分别给出 $A-B\geq 2$, $B-A\geq 2$ 和 |A-B|< 2的输出值,1 表示不等式成立,提到,其它签 表示不成立。请写出主要步骤并画出电路连接图。

(4). 试设计一个代码转换电路: 输入为 4 位余三码 $G(G_3G_2G_1G_0)$, 输出为 4 位 8421 BCD 码 $Y(Y_3,Y_2,Y_1,Y_0)$ 。利用下图中的 8 线-3 线优先编码器和 3 线-8 线译码器 74LS138 各两片以及必要的门电路实现。(注意,输入码只会出现 0-9,无需考虑其他码)

分别 宝成编码器、译码器扩展,然后移3位相接即可.

三、(得分____) 门电路(共10分)

考虑下面的电路图,电路中的门电路均具有同样的延迟时间 Tpd。在下方的波形图中,一个单元格表示一个门电路延迟时间。在 T0 时刻,开关已经被打开足够久的时间,故所有信号达到了稳定状态。在 T1 时刻,开关闭合,请画出各个信号的波形图。(提示:请不要忽略延迟时间)

四、(得分____) 电路分析 (共10分,要求写出主要步骤)

分析图中所示的触发器电路,画出在时钟 CP 作用下 Q1、Q2、和 Y 的波形。 (注: Q2 Q1 的初始状态为 00)

Q2

Z

五、(得分____) 可选题(共20分,由任课教师指定一组,要求写出主要步骤)

(第一组):

Z = (Q,"Q2"X)

1). 试设计用一个 TTL 非门驱动发光二极管的电路,已知电源电压 V_{CC} = +5 V_{F} TTL 非门的 V_{OH} =3.6 V_{F} , I_{OH} max=0.4 I_{OH} 发光二极管的正向导通电压 V_{F} =1.4 V_{OL} =0.3 V_{OL} , I_{OL} max=16 I_{OH} 二极管发光时工作电流为 I_{F} =5~20 I_{OH} 要求: (1) 画出电路图。(2) 计算限流电阻阻值的范围。

2). 试写 Y₁~Y3 的的表达式或值。

(第二组):

考虑下面一个由 JK 触发器构成的电路, 解决以下问题:

1). 假设输出状态记为 $Q = (Q_1Q_0)_2$, 画出这一电路的状态转换图。

2). 现假设我们增加一个输入 P, 当 P=1, 这一电路保持其现有状态,忽略时钟信号 CLK 的影响; 当 P=0 时,这一电路随时钟信号正常转换。请在下面电路上进行适当的连接,达到上面的要求,需要时可以利用额外逻辑门。

3). 假设我们需要该电路来点亮一个 LED, 当 Q = 01 时, LED 被点亮。请在下面电路上进行适当的连接, 达到上面的要求,需要时可以利用额外的阻容元件和逻辑门。

4). 现需要将这一电路进行拓展,增加一个 JK 触发器,使得 可以从 111 转换到 000, 共有 8 个状态并循环转换。请在下面电路上进行适当的连接,达到上面的要求,需要时可以利用额外逻辑门。

