Машинное обучение

Антон Андрейцев

Содержание

0.1	Оптим	изация	4											
	0.1.1	Задача 1	4											
0.2	Регрессия													
	0.2.1	Задача 1	7											
	0.2.2	Задача 2	7											
	0.2.3	Задача 3	8											
	0.2.4	Задача 4	8											
0.3	Percer	otron	9											
	0.3.1	Задача 1	9											
	0.3.2	Задача 2	13											
	0.3.3	Задача З	15											
0.4	SVM		17											
	0.4.1	Задача 1	20											
	0.4.2	Задача 2	21											
	0.4.3	Задача З	22											
	0.4.4	Задача 4	24											
0.5	Naive	Bayes	27											
	0.5.1	Задача 1	27											
	0.5.2	Задача 2	28											
0.6	Логис	тическая регрессия	30											
	0.6.1	Задача 1	30											
	0.6.2	Задача 2	31											
	0.6.3	Задача З	33											
0.7		ики качества	35											
0	0.7.1	Задача 1	35											
	0.7.2	Задача 2	38											
	0.7.3	Задача З	39											
	0.7.4	Задача 4	40											
0.8		вя	42											
0.0	0.8.1	Задача 1	42											
	0.8.2	Задача 2	44											
	0.8.3	Задача З	45											
	0.0.0	Оадача О	40											

	0.8.4	Задача	4																								46
0.9	Гради	ентный (бус	сти	ні	7																					48
	0.9.1	Задача	1																								48
	0.9.2	Задача	2																								49
	0.9.3	Задача	3																								50
0.10	PCA																										56
	0.10.1	Задача	1																								56
	0.10.2	Задача	2																								57
	0.10.3	Задача	3	(B	ep	RC	Τŀ	Ю	ст	Ήδ	ая	Π	0	СТ	ан	[O]	ВК	a	Р	C.	A))					60
	0.10.4	Задача	4																								61
0.11	ЕМ ал	горитм																									62
	0.11.1	Задача	1																								62

0.1 Оптимизация

0.1.1 Задача 1

Показать, что минимизация эмпирического риска с l_2 – регуляризацией эквивалентна раннему останову в градиентном спуске.

Решение

Разложим L(w) по формуле Тейлора в окрестности точки оптимума w^*

 $L(w) = L(w^*) + \frac{1}{2}(w-w^*)H(w-w^*) + o(\|w\|^2), \ \mathrm{H}$ – гессиан функции L(w) в точке w^*

$$\nabla_w L(w) = H(w - w^*)$$

$$w^t = w^{t-1} - \epsilon \cdot \nabla_w L(w) = w^{t-1} - \epsilon \cdot H(w^{t-1} - w^*)$$

$$w^t - w^* = (I - \epsilon \cdot H)(w^{t-1} - w^*)$$

Так как H — матрица гессиан, то она неотрицательно определена (для выпуклой функии), а значит её можно представить через спектральное разложение: $H = Q\Lambda Q^T$, где Q — матрица из ортогональных столбцов, Λ — диагональная матрицая.

$$w^{t} - w^{*} = (I - \epsilon \cdot Q\Lambda Q^{T})(w^{t-1} - w^{*})$$
$$Q^{T}(w^{t} - w^{*}) = (I - \epsilon \cdot \Lambda)Q^{T}(w^{t-1} - w^{*})$$

Рассмотрим еще одну итерацию градиентного спуска:

$$Q^{T}(w^{t+1} - w^{*}) = (I - \epsilon \cdot \Lambda)Q^{T}(w^{t} - w^{*}) = (I - \epsilon \cdot \Lambda)^{2}Q^{T}(w^{t-1} - w^{*})$$

Тогда, если мы стартовали из точки $w^0=0$, то через t итераций мы получим веса:

$$Q^T(w^t - w^*) = (I - \epsilon \cdot \Lambda)^t Q^T(0 - w^*) \Rightarrow \boxed{Q^T w^t = \left[I - (I - \epsilon \cdot \Lambda)^t\right] Q^T w^*}$$

В случае регуляризованного функционала:

$$L(w) = L(w^*) + \frac{1}{2}(w - w^*)H(w - w^*) + \frac{\alpha}{2}w^Tw$$

Необходимое условие минимума функции – $\nabla_w L(w) = 0$

$$\nabla_w L(w) = H(w - w^*) + \alpha \cdot w = 0 \Rightarrow w^{opt} = (H + \alpha I)^{-1} H w^*$$

Отсюда:

$$Q^T w^{opt} = Q^T (Q\Lambda Q^T + \alpha \underbrace{Q^T Q}_I)^{-1} Q\Lambda Q^T w^* = Q^T Q(\Lambda + \alpha I)^{-1} Q^T Q\Lambda Q^T w^*$$

Итак:

$$Q^T w^{opt} = (\Lambda + \alpha I)^{-1} \Lambda Q^T w^*$$

Пользуясь частным случаем тождества Вудбери: $\left\{(I+AB)^{-1}=I-A(I+BA)^{-1}B\right\}$

$$(\Lambda + \alpha I)^{-1}\Lambda = \left[\Lambda^{-1}(\Lambda + \alpha I)\right]^{-1} = \left(I + \underbrace{\alpha I}_{A} \cdot \underbrace{\Lambda^{-1}}_{B}\right)^{-1} = I - \alpha(I + \alpha\Lambda^{-1})^{-1}\Lambda^{-1} = I - \alpha(\Lambda + \alpha I)^{-1}$$

Итак:

$$Q^T w^{opt} = [I - \alpha(\Lambda + \alpha I)^{-1}] Q^T w^*$$

Сравнивая Q^Tw^t и Q^Tw^{opt} получаем:

$$(I - \epsilon \Lambda)^t = \alpha (\alpha I + \Lambda)^{-1}$$

Откуда и получаем, что при определённом подборе параметра регуляризации α точка оптимума $L(w)+\frac{\alpha}{2}w^Tw$ совпадает со значением веса на итерации t.

$$t \log(1 - \epsilon \cdot \lambda_i) = -\log(1 + \frac{\lambda_i}{\alpha})$$

При длине шага стремящемся к нулю $(\epsilon \to 0)$ и параметре регуляризации к бесконечности $(\alpha \to \infty)$ можно сделать такую оценку на соотнощение количества итераций с параметром регуляризации:

$$-t \cdot \epsilon \cdot \lambda_i = -\frac{\lambda_i}{\alpha}$$

 $t=\frac{1}{\epsilon\cdot\alpha}$ – то есть количество итераций обратно величине регуляризации

0.2 Регрессия

0.2.1 Задача 1

Показать, что минимизация суммы квадратов остатков для линейной регрессии ($\|X\beta-y\|_2^2 \to \min_{\beta}$) эквивалентна максимизации правдоподобия в модели: $y=X\beta+\epsilon, \quad \epsilon \sim \mathcal{N}(0,\sigma^2\cdot I_n)$

Решение

$$y|X \sim \mathcal{N}(X\beta, \sigma^2 \cdot I_n) \Rightarrow Likelyhood = p(y|X) \max_{\beta}$$

$$p(y|X) = \frac{1}{(2\pi)^{\frac{n}{2}}\sigma^n} \cdot \exp\{-\frac{1}{2\sigma^2}(y - X\beta)^T(y - X\beta)\} \rightarrow \max_{\beta}$$

$$\log L = -\frac{n}{2}\log 2\pi - n\log \sigma - \frac{1}{2\sigma^2}(y - X\beta)^T(y - X\beta) \rightarrow \max_{\beta}$$
 Первые два члена не зависят от $\beta \Rightarrow$
$$\Rightarrow \log L \rightarrow \max_{\beta} \sim (y - X\beta)^T(y - X\beta) \rightarrow \min_{\beta}$$

$$(y - X\beta)^T(y - X\beta) = \|y - X\beta\|_2^2$$

0.2.2 Задача 2

Показать, что для задачи поиска минимума суммы квадратов в линейной регрессии метод Ньютона за 1 итерацию даёт точное решенеие при инициализации весов нулевым вектором ($\theta^{(0)} = 0$)

$$J(\theta) = \|y - X\theta\|_2^2$$
 Метод Ньютона: $\theta^{(k)} = \theta^{(k-1)} - \nabla_{\theta}^2 J(\theta)^{-1} \cdot \nabla_{\theta} J(\theta)$
$$\nabla_{\theta} \|y - X\theta\|_2^2 = \nabla_{\theta} (y^T y - 2y^T X \theta + \theta^T X^T X \theta) = -2X^T y + 2X^T X \theta$$

$$\nabla_{\theta}^2 J(\theta) = \nabla_{\theta} (-2X^T y + 2X^T X \theta) = 2X^T X$$
 Иатк: $\theta^{(1)} = 0 - \frac{1}{2} (X^T X)^{-1} (2X^T X \theta^{(0)} - 2X^T y) = (X^T X)^{-1} X^T y$

0.2.3 Задача 3

Для матрицы X найдено SVD разложение $(X = UDV^T)$. Выразить решение задачи МНК через это разложение.

Решение

Решение задачи МНК имеет вид:
$$w = (X^TX)^{-1}X^Ty \to w = (VD\underbrace{U^TU}_IDV^T)^{-1}VDU^Ty = \underbrace{(VD^2V^T)^{-1}}_{VD^{-2}V^T}VDU^Ty = VD^{-2}\underbrace{V^TV}_IDU^Ty = VD^{-1}U^Ty$$

0.2.4 Задача 4

Докажите, что для линейной регрессии выполнено свойство:

$$\sum_{i=1}^{n} \hat{y}_i \cdot (y_i - \hat{y}_i) = 0$$

Где $\hat{y} = X \cdot \hat{\alpha}, \quad \hat{\alpha} = (X^T X)^{-1} X^T y$

Решение

Заметим, что
$$\sum_{i=1}^{n} \hat{y}_i \cdot (y_i - \hat{y}_i)$$
 можно переписать в виде $\hat{y}^T (y - \hat{y})$

Тогда:
$$\hat{y}^T(y - \hat{y}) = (X(X^TX)^{-1}X^Ty)^T(y - X(X^TX)^{-1}X^Ty) = y^T\left(\underbrace{X(X^TX)^{-1}X^T}_{P}\right)(I - X(X^TX)^{-1}X^T)y$$

Матрица Р – идемпотентная, так как: $P^2 = P$, $X(X^TX)^{-1}X^T \cdot X(X^TX)^{-1}X^T = X(X^TX)^{-1}X^T$

Тогда:
$$P \cdot (I - P) = P - P^2 = P - P = 0 \Rightarrow y^T 0 y = 0$$
 (ч.т.д)

0.3 Perceptron

0.3.1 Задача 1

Рассмотрим простейший персептрон с константой, двумя входами (x_1, x_2) и пороговой функций активации (см. рисунок).

- 1. Подберите веса персептрона так, чтобы он реализовывал логическое ${\it И}{\it Л}{\it I}{\it I}$
- 2. Подберите веса персептрона так, чтобы он реализовывал логическое И
- 3. Докажите, что веса невозможно подобрать так, чтобы он реализовывал исключающее ИЛИ (XOR)
- 4. Добавьте персептрону вход $x_3 = x_1 \cdot x_2$ так, чтобы он реализовывал исключающее ИЛИ (XOR)
- 5. Реализуйте XOR с помощью 3 персептронов с двумя входами и константой

Решение

1) Логическое «ИЛИ»

$ x_1 $	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

Пороговая функция может выглядеть например $[x_1 + x_2 - 0.8 > 0]$

9

2) Логическое «И»

$ x_1 $	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

Пороговая функция может выглядеть например $[x_1 + x_2 - 1.5 > 0]$

3) Из картинки очевидно, что не существует прямой, верно разделяющей эти точки.

4) Данные точки однако можно разделить гиперболой $x_2=0.5+\frac{0.1}{x_1-0.5}$ – остаётся преобразовать её к формату: $a_0+a_1\cdot x_1+a_2\cdot x_1\cdot x_2+a_3\cdot x_2=0$

Итак: уравнение разделяющей поверхности принимает вид:

$$[0.25 - 0.6x_1 + x_1 \cdot x_2 - 0.5x_2 > 0]$$

5) Разделение точек с помощью композиции двух персептронов эквивалентно разделению с помощью двух прямых.

$$g_1: x_1 + x_2 - 0.5, \quad g_2: x_1 + x_2 - 1.5$$

0.3.2 Задача 2

В коробке завалялось 3 персептрона, у каждого 3 входа (константа, x_1, x_2) и пороговая функция активации. Реализовать с их помощью функцию y

$$y=\left\{egin{array}{ll} 1, \mathtt{если} & x_2>|x_1-3|+2 \ 0, \mathtt{иначe} \end{array}
ight.$$

Нужно задать функцию, которая на синей области будет выдавать 1, а на белой 0

Заметим, что модуль можно представить как 2 отдельные прямые: $x_2=-x_1+5$ и $x_2=x_1-1$. Тогда итоговый алгоритм можно представить, как логическое «И» от двух прямых с порогом:

$$[g_1+g_2-1.5>0]$$
, где $g_1=[x_2+x_1-5>0], g_2=[-x_1+x_2+1>0]$

0.3.3 Задача 3

Рассмотрим набор данных:

1	i	
$ x_i $	z_i	y_i
-1	-1	0
1	-1	0
-1	1	0
1	1	0
0	2	1
2	0	1
0	-2	1
-2	0	1

- 1. Существует ли i персептронов с константой, двумя входами и пороговой фунцкией активации (i=1,2,3), такой что он идеально классифицирует данную выборку.
- 2. Ввести нелинейное преобразование $h(x_i, z_i)$, такое что хватит даже одного персептрона для идеальной классификации.

1. Для того, чтобы разделить данную выборку, необходимо собрать персептрон, который будет внутри синего квадрата выдавать 0, а вне его 1. Это возможно сделать минимум двуслойной нейросетью, а следовательно и минимум 3 персептронами:

0.4 SVM

Постановка и решение задачи SVM в общем виде

$$\begin{cases} \frac{1}{2}w^{T}w + C \cdot \sum_{i=1}^{n} \xi_{i} \to \min_{w,b,\xi_{i}} \\ y_{i} \cdot (x_{i}^{T}w + b) \ge 1 - \xi_{i} \\ \xi_{i} \ge 0 \end{cases}$$

$$L = \frac{1}{2}w^{T}w + C \cdot \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \lambda_{i} \cdot (y_{i}(x_{i}^{T}w + b) - 1 + \xi_{i}) - \sum_{i=1}^{n} \mu_{i}\xi_{i}$$

Условия Каруша-Куна-Таккера:

$$\begin{cases} \nabla_{w}L = w - \sum_{i=1}^{n} \lambda_{i} y_{i} x_{i} = 0 \\ \nabla_{b}L = -\sum_{i=1}^{n} \lambda_{i} y_{i} = 0 \\ \nabla_{\xi_{i}}L = C - \lambda_{i} - \mu_{i} = 0 \\ \lambda_{i} \geq 0, \mu_{i} \geq 0 \\ \lambda_{i} \cdot \left(y_{i}(x_{i}^{T}w + b) - 1 + \xi_{i} \right) = 0 \\ \mu_{i}\xi_{i} = 0 \end{cases} \Rightarrow \begin{cases} w^{*} = \sum_{i=1}^{n} y_{i} \lambda_{i} x_{i} \\ \sum_{i=1}^{n} \lambda_{i} y_{i} = 0 \\ \lambda_{i} + \mu_{i} = C \end{cases}$$

Отсюда вытекает, что объекты x_i могут быть только 3 типов: $(m_i = y_i(x_i^T w + b))$

1)
$$\lambda_i = 0, \xi_i = 0, \mu_i = C, m_i > 1$$
 (Эталонные объекты)

2)
$$0 < \lambda_i < C, \xi_i = 0, 0 < \mu_i < C, m_i = 1$$
 (Опорные объекты)

3)
$$\xi_i > 0, \mu_i = 0, \lambda_i = C, m_i < 1$$
 (Нарушители)

(Причём, если $m_i \in (0,1)$ – объект внутри полосы, но верно классифицируется, если $m_i = 0$ – объект на границе разделяющей полосы, если $m_i < 0$ – объект неверно классифицируется)

Двойственная задача:

$$q(\lambda, \mu) = \inf_{w,b,\xi} L(w, b, \xi, \lambda, \mu) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y_i y_j x_i^T x_j +$$

$$+ C \cdot \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \xi_i \overbrace{(\lambda_i + \mu_i)}^C - \sum_{i=1}^{n} \lambda_i \lambda_j y_i y_j x_i^T x_j - b \cdot \sum_{i=1}^{n} \lambda_i y_i - \sum_{i=1}^{n} \lambda_i$$

Итак, двойственная задача выглядит:

$$\begin{cases} q(\lambda, \mu) = -\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \lambda_i \lambda_j y_i y_j x_i^T x_j - \sum_{i=1}^{n} \lambda_i \to \max_{\lambda} \\ \sum_{i=1}^{n} \lambda_i y_i = 0 \\ \lambda_i \ge 0 \\ \lambda_i + \mu_i = C \end{cases}$$

С учётом последних двух условий систему можно переписать в следующем виде:

$$\begin{cases} q(\lambda, \mu) = -\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \lambda_i \lambda_j y_i y_j x_i^T x_j - \sum_{i=1}^{n} \lambda_i \to \max_{\lambda} \\ \sum_{i=1}^{n} \lambda_i y_i = 0 \\ 0 \le \lambda_i \le C \end{cases}$$

Или в матричном виде:

$$(*) \left\{ \begin{array}{c} q = -\frac{1}{2}\lambda^T Q \lambda - \vec{1}^T & \lambda \to \max_{\lambda} \\ y^T \lambda = 0 \\ 0 \le \lambda \le C \cdot \vec{1} \end{array} \right.$$

Где
$$\lambda = (\lambda_1, \dots, \lambda_n), \quad \vec{1} = (1, \dots, 1), \quad y = (y_1, \dots, y_n), \quad Q = (Q_{ij})_{i,j=1}^n, \quad Q_{ij} = y_i y_j x_i^T x_j$$

Заметим, что всё множество объектов $I=\{1,2,\ldots,n\}$ можно разбить на 3 непересекающихся множества: $I=I_0 \bigsqcup I_+ \bigsqcup_-$

Где I_+ – множество эталонных объектов, I_- – множество нарушителей и I_0 – множество опорных объектов.

Тогда все обозначения можно переписать с учётом этих разделений

$$\lambda = \begin{pmatrix} \lambda_0 \\ \lambda_+ \\ \lambda_- \end{pmatrix} = \begin{pmatrix} C \cdot 1_+ \\ 0 \end{pmatrix}, \quad y = \begin{pmatrix} y_0 \\ y_+ \\ y_- \end{pmatrix}, \quad \vec{1} = \begin{pmatrix} 1_0 \\ 1_+ \\ 1_- \end{pmatrix}, \quad Q = \begin{pmatrix} Q_{00} & Q_{0+} & Q_{0-} \\ Q_{+0} & Q_{++} & Q_{+-} \\ Q_{-0} & Q_{-+} & Q_{--} \end{pmatrix}$$

Тогда задача (*) перепишется в виде:

$$\begin{cases} q = -\frac{1}{2}\lambda_0^T Q_{00}\lambda_0 - C \cdot 1_+^T Q_{+0}\lambda_0 - \frac{1}{2}C \cdot 1_+^T 1_+ \to \max_{\lambda_0} \\ y_0^T \lambda_0 + C \cdot y_+^T 1_+ = 0 \end{cases}$$

У этой задачи есть аналитическое решение:

$$L = -\frac{1}{2}\lambda_0^T Q_{00}\lambda_0 - C \cdot 1_+^T Q_{+0}\lambda_0 - \frac{1}{2}C \cdot 1_+^T 1_+ + \gamma \cdot \left(y_0^T \lambda_0 + C \cdot y_+^T 1_+\right)$$

Условия Каруша-Куна-Таккера:

$$\begin{cases} \nabla_{\lambda_0} L = -Q_{00} \lambda_0 - C \cdot Q_{0+} 1_+ + \gamma \cdot y_0 = 0 \\ y_0^T \lambda_0 + C \cdot y_+^T 1_+ = 0 \end{cases}$$
$$\lambda_0^* = Q_{00}^{-1} \left(\gamma y_0 - C \cdot Q_{0+} 1_+ \right)$$

$$y_0^T Q_{00}^{-1} \left(\gamma y_0 - C \cdot Q_{0+} 1_+ \right) + C \cdot y_+^T 1_+ = 0$$

$$\gamma^* = C \cdot \frac{y_+^T 1_+ - y_0^T Q_{00}^{-1} Q_{0+} 1_+}{y_0^T Q_{00}^{-1} y_0}$$

Теперь можно выписать оценку вектора w:

$$w = \sum_{i=1}^{n} \lambda_i y_i x_i = y \odot X \lambda =$$

$$\begin{pmatrix} y_0 \\ \vdots \\ y_0 \\ y_+ \\ \vdots \\ y_+ \\ y_- \\ \vdots \\ y_- \end{pmatrix}^T \\ \odot \begin{pmatrix} \begin{vmatrix} & & & & & & & & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

Итоговый ответ представим в виде:

$$w^* = y \odot X \cdot Q_{00}^{-1} \left(C \cdot \frac{y_+^T 1_+ - y_0^T Q_{00}^{-1} Q_{0+} 1_+}{y_0^T Q_{00}^{-1} y_0} \cdot y_0 - C \cdot Q_{0+} 1_+ \right)$$

$$b^* = med\{y_i - x_i^T w, \lambda_i > 0, i = 1, \dots, n\}$$

0.4.1 Задача 1

Найти расстояние от точки $x_0 \in \mathbb{R}^d$ до гиперплоскости $w^T x = 0$

Решение

Постановка задачи:

$$\begin{cases} \frac{1}{2} ||x_0 - x||_2^2 \to \min_x \\ w^T x = 0 \end{cases}$$
$$L = \frac{1}{2} (x - x_0)^T (x - x_0) + \lambda \cdot w^T x$$

Условия Каруша-Куна-Таккера:

$$\begin{cases} \nabla_x L = x - x_0 + \lambda w = 0 \\ w^T x = 0 \end{cases} \Rightarrow \begin{cases} x = x_0 - \lambda \cdot w \\ w^T x = 0 \end{cases}$$

$$\text{Итак: } w^T x_0 - \lambda \cdot w^T w = 0 \Rightarrow \boxed{\lambda = \frac{w^T x_0}{w^T w}}$$

Тогда, проекция точки x_0 на гиперплоскость $w^T x$ будет $x = x_0 - \frac{w^T x_0}{w^T w} w$

Расстояние от x_0 до w^Tx это длина вектора x_0-x

Итак:
$$||x_0 - x_0 + \frac{w^T x_0}{w^T w} w|| = \frac{|w^T x_0|}{||w||^2} \cdot ||w|| = \frac{|w^T x_0|}{||w||}$$

0.4.2 Задача 2

На плоскости даны 4 точки: (1,1),(1,-1) – класса 1, и (-1,1),(-1,-1) – класса -1. Найти разделяющую гиперплоскость и указать опорные вектора.

0.4.3 Задача 3

$ x_1 $	x_2	y
1	1	1
1	2	1
2	3	1
3	1	-1
4	2	-1

Найти разделяющую гиперплоскость наибольшей ширины.

Решение

Постановка задачи:

$$\frac{3.5}{3.0}$$
 $\frac{2.5}{2.0}$
 $\frac{2.5}{3.0}$
 $\frac{2.5}{3.0}$

$$\begin{cases} \frac{1}{2}(w_1^2 + w_2^2) & \to \min_{w_1, w_2, b} \\ w_1 + w_2 + b & \ge 1 \\ w_1 + 2w_2 + b & \ge 1 \\ 2w_1 + 3w_2 + b & \ge 1 \\ -3w_1 - 1w_2 - b & \ge 1 \\ -4w_1 - 2w_2 - b & \ge 1 \end{cases}$$

$$L = \frac{1}{2} \cdot (w_1^2 + w_2^2) - \lambda_1 \cdot (w_1 + w_2 + b - 1) - \lambda_2 \cdot (w_1 + 2w_2 + b - 1) - \lambda_3 \cdot (2w_1 + 3w_2 + b - 1) + \lambda_4 \cdot (3w_1 + w_2 + b + 1) + \lambda_5 \cdot (4w_1 + 2w_2 + b + 1)$$

Условия Каруша-Куна-Таккера:

$$\begin{cases} L'_{w_1} = w_1 - \lambda_1 - \lambda_2 - 2\lambda_3 + 3\lambda_4 + 4\lambda_5 = 0 \\ L'_{w_2} = w_2 - \lambda_1 - 2\lambda_2 - 3\lambda_3 + \lambda_4 + 2\lambda_5 = 0 \\ L'_b = \lambda_1 + \lambda_2 + \lambda_3 - \lambda_4 - \lambda_5 = 0 \\ \lambda_1 = 0 \quad \text{или} \quad (w_1 + w_2 + b - 1) = 0 \\ \lambda_2 = 0 \quad \text{или} \quad (w_1 + 2w_2 + b - 1) = 0 \\ \lambda_3 = 0 \quad \text{или} \quad (2w_1 + 3w_2 + b - 1) = 0 \\ \lambda_4 = 0 \quad \text{или} \quad (3w_1 + w_2 + b + 1) = 0 \\ \lambda_5 = 0 \quad \text{или} \quad (4w_1 + 2w_2 + b + 1) = 0 \end{cases}, \quad \lambda_2, \lambda_5 = 0, \text{ так как объ-}$$

екты (1,2) и (4,2) не являются опорными

С учётом этого система принимает вид:

$$\begin{pmatrix} 1 & 0 & 0 & -1 & -2 & 3 \\ 0 & 1 & 0 & -1 & -3 & 1 \\ 0 & 0 & 0 & 1 & 1 & -1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 3 & 1 & 0 & 0 & 0 \\ 3 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ b \\ \lambda_1 \\ \lambda_3 \\ \lambda_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$
Откуда:
$$\begin{pmatrix} w_1 \\ w_2 \\ b \\ \lambda_1 \\ \lambda_3 \\ \lambda_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0.5 \\ 1.5 \\ 0.375 \\ 0.25 \\ 0.625 \end{pmatrix}$$

И следовательно классификатор принимает вид:

$$a(x) = sign(-x_1 + 0.5x_2 + 1.5)$$

0.4.4 Задача 4

Найти разделяющую гиперплоскость наибольшей ширины, используя решение двойственной задачи. (В качестве опорных обектов взять точки $(0,2),\,(2,1)$)

$ x_1 $	$ x_2 $	y
0	2	1
0	3	1
2	1	-1
3	1	-1

Известно, что веса в SVM можно найти по формуле: $w=\sum_{i=1}^n \lambda_i\cdot y_i\cdot x_i$, где $\lambda=Q_0^{-1}\cdot\left(\vec{1}-\frac{y_0^TQ_0^{-1}\vec{1}}{y_0^TQ_0^{-1}y_0}\cdot y_0\right)$

 $\vec{1}$ – вектор из единиц длины количество опорных объектов

 y_0 — вектор меток класса для опорных объектов

$$Q_0 = (y_i y_j < x_i, x_j >)_{i,j=1}^{op}, op$$
 – количество опорных объектов

Тогда:
$$Q_0 = \begin{pmatrix} y_1 y_1 x_1^T x_1 & y_1 y_3 x_1^T x_3 \\ y_1 y_3 x_1^T x_3 & y_3 y_3 x_3^T x_3 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ -2 & 5 \end{pmatrix}$$

Итак:
$$Q_0^{-1} = \frac{1}{16} \begin{pmatrix} 5 & 2 \\ 2 & 4 \end{pmatrix}$$

$$y_0^T Q_0^{-1} \vec{1} = \frac{1}{16} \begin{pmatrix} 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 5 & 2 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{16}$$
$$y_0^T Q_0^{-1} y_0 = \frac{1}{16} \begin{pmatrix} 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{5}{16}$$

$$\lambda = \frac{1}{16} \begin{pmatrix} 5 & 2 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{\frac{1}{16}}{\frac{5}{16}} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 5 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} \frac{4}{5} \\ \frac{6}{5} \end{pmatrix} = \frac{1}{80} \begin{pmatrix} 32 \\ 32 \end{pmatrix} = \begin{pmatrix} 0.4 \\ 0.4 \end{pmatrix}$$
$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = 0.4 \cdot 1 \cdot \begin{pmatrix} 0 \\ 2 \end{pmatrix} - 1 \cdot 0.4 \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -0.8 \\ 0.4 \end{pmatrix}$$

В виду малого количества данных будем искать b как среднее арифметическое $\{y_i-w_1x_i^1-w_2x_i^2, \quad \lambda_i>0\}$

Итак:
$$b = 0.5 \cdot (1 + 0.8 \cdot 0 - 0.4 \cdot 2 - 1 + 0.8 \cdot 2 - 0.4 \cdot 1) = 0.5 \cdot 0.4 = 0.2$$

Итак, классификатор имеет вид: $a(x) = sign(-0.8x_1 + 0.4x_2 + 0.2)$

(решение прямой задачи даёт такую-же разделяющую линию)

0.5 Naive Bayes

0.5.1 Задача 1

Рассмотрим задачу классификации текстов $D=\{d_1,d_2,\ldots,d_{|D|}\}$ на K классов $Y=\{1,2,\ldots,K\}$. Каждый документ представляет из себя подмножество множества слов $W=\{w_1,w_2,\ldots,w_{|W|}\}$. В качестве признаков для каждого документа выберем индикатор вхождения слов в него. Матрица «объекты-признаки» задаётся, как:

$$x_{ij} = [w_j \in d_i], \quad i = 1, \dots, |D| \quad j = 1, \dots, |W|$$

Для решение задачи воспользуемся наивным байесовским классификатором, который основывается на предположении независимости признаков:

$$p(x_{i1}, \ldots, x_{i|W|}|y_i) = p(x_{i1}|y_i) \cdot p(x_{i2}|y_i) \cdot \cdots \cdot p(x_{i|W|}|y_i)$$

Будем считать, что при фиксированном классе каждый признак имеет распределение Бернулли, тем самым априорное распределение и функция правдоподобия выглядят, как:

$$p(k|\pi) = \pi_k, \quad k = 1, \dots, K$$

$$p(x_{i,j}|k,\theta) = \theta_{jk}^{x_{ij}} \cdot (1-\theta_{jk})^{1-x_{ij}}, \quad i = 1,\ldots,|D|, \quad j = 1,\ldots,|W|, \quad k = 1,\ldots,K$$

Распределение одного документа запишется следующим образом:

$$p(d_i, y_i | \pi, \theta) = p(y_i | \pi) \prod_{j=1}^{|W|} p(x_{ij} | \theta, y_i) = \prod_{k=1}^{K} \pi_k^{[y_i = k]} \cdot \prod_{j=1}^{|W|} \prod_{k=1}^{K} p(x_{ij} | \theta_{jk}, k)^{[y_i = k]}.$$

Найти оценки максимального правдоподобия для параметров π и θ

Решение

 π_k меняются не независимо, они в сумме должны давать 1 – это надо учесть в функционале (Лагранж).

$$L = \prod_{i=1}^{|D|} p(d_i, y_i | \pi, \theta) \to \max_{\pi, \theta}$$

$$L = \prod_{i=1}^{|D|} \prod_{k=1}^{K} \left(\pi_k^{[y_i = k]} \cdot \prod_{j=1}^{|W|} \theta_{jk}^{x_{ij} \cdot [y_i = k]} (1 - \theta_{jk})^{(1 - x_{ij}) \cdot [y_i = k]} \right)$$

$$\log L = \sum_{i=1}^{|D|} \sum_{k=1}^{K} ([y_i = k] \log \pi_k + \sum_{j=1}^{|W|} x_{ij} \cdot [y_i = k] \cdot \log \theta_{jk} + (1 - x_{ij}) \cdot [y_i = k] \cdot \log(1 - \theta_{jk})) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1\right)$$

$$\log L'_{\pi_k} = \sum_{i=1}^{|D|} \frac{[y_i = k]}{\pi_k} + \lambda = 0 \Rightarrow \pi_k = -\frac{1}{\lambda} \sum_{i=1}^{|D|} [y_i = k]$$

$$\sum_{k=1}^{K} \pi_k = 1 \Rightarrow \sum_{k=1}^{K} -\frac{1}{\lambda} \sum_{i=1}^{|D|} [y_i = k] = -\frac{1}{\lambda} \sum_{i=1}^{|D|} \sum_{k=1}^{K} [y_i = k] = -|D|\lambda = 1 \Rightarrow \lambda = -\frac{1}{|D|}$$

Итак:
$$\frac{\sum_{i=1}^{|D|} [y_i = k]}{|D|}$$
 log $L'_{\theta_{jk}} = \sum_{i=1}^{|D|} \frac{x_{ij} \cdot [y_i = k]}{\theta_{jk}} - \frac{(1 - x_{ij}) \cdot [y_i = k]}{1 - \theta_{jk}} = \sum_{i=1}^{|D|} [y_i = k] (x_{ij} - \theta_{jk} \cdot x_{ij} - \theta_{jk} + \theta_{jk} \cdot x_{ij}) = \sum_{i=1}^{|D|} x_{ij} \cdot [y_i = k] - \theta_{jk} \cdot [y_i = k] = 0$

$$\hat{\theta}_{jk} = \frac{\sum_{i=1}^{|D|} [y_i = k] \cdot x_{ij}}{\sum_{i=1}^{|D|} [y_i = k]}$$

0.5.2 Задача 2

Расширим модель из предыдущей задачи и введём априорное распределение на параметры θ_{jk} . В качестве априорного распределения возьмём Бета распределение:

$$Beta(x|\beta_1, \beta_2) = \frac{1}{Beta(\beta_1, \beta_2)} \cdot x^{\beta_1 - 1} \cdot (1 - x)^{\beta_2 - 1}, \quad \beta_1, \beta_2 \ge 0$$

Апостериорное распределение на θ_{jk} примет вид:

$$p(\theta_{jk}|D) \propto p(\theta_{jk}) \prod_{i=1}^{|D|} p(y_i,d_i|\theta_{jk}),$$
 где $p(\theta_{jk}) = Beta(\theta_{jk}|\beta_1,\beta_2)$

1) Выписать $p(\theta_{jk}|D)$ в явном виде

2) Найти
$$\hat{\theta}_{jk}$$
, где $\hat{\theta}_{jk} = \mathbb{E}_{p(\theta_{jk}|D)}\theta_{jk} = \int\limits_0^1 \theta_{jk} \cdot p(\theta_{jk}|D) d\theta_{jk}$

Решение

$$1) \ p(\theta_{jk}|D) = \frac{p(D|\theta_{jk}) \cdot p(\theta_{jk})}{\int\limits_{0}^{1} p(D|\theta_{jk}) \cdot p(\theta_{jk}) d\theta_{jk}} - \text{формула Байеса}$$

$$\int\limits_{0}^{1} p(D|\theta_{jk}) \cdot p(\theta_{jk}) d\theta_{jk} = \int\limits_{0}^{1} \frac{1}{Beta(\beta_{1},\beta_{2})} \cdot \theta_{jk}^{\beta_{1}-1} \cdot (1 - \theta_{jk})^{\beta_{2}-1} \cdot \prod_{i=1}^{|D|} \prod_{k=1}^{K} \left(\pi_{k}^{[y_{i}=k]} \cdot \prod_{j=1}^{|W|} \theta_{jk}^{x_{ij} \cdot [y_{i}=k]} (1 - \theta_{jk})^{(1-x_{ij}) \cdot [y_{i}=k]} \right) d\theta_{jk} =$$

$$\frac{1}{Beta(\beta_{1},\beta_{2})} \prod_{i=1}^{|D|} \prod_{k=1}^{K} \left(\pi_{k}^{[y_{i}=k]} \cdot \prod_{j=1}^{|W|} \int\limits_{0}^{1} \theta_{jk}^{x_{ij} \cdot [y_{i}=k]+\beta_{1}-1} \cdot (1 - \theta_{2})^{(1-x_{ij}) \cdot [y_{i}=k]+\beta_{2}-1} d\theta_{jk} \right)$$

$$\underbrace{Beta(x_{ij} \cdot [y_{i}=k]+\beta_{1}, (1-x_{ij}) \cdot [y_{i}=k]+\beta_{2})}$$

Заметим, что $\int_0^1 p(D|\theta_{jk}) \cdot p(\theta_{jk}) d\theta_{jk}$ – нормировочная константа распределения $p(D|\theta_{jk}) \cdot p(\theta_{jk})$, поэтому распределение

$$p(\theta_{jk}|D) = \prod_{i=1}^{|D|} \prod_{k=1}^{K} \prod_{j=1}^{|W|} Beta(\theta_{jk}|x_{ij} \cdot [y_i = k] + \beta_1, (1 - x_{ij}) \cdot [y_i = k] + \beta_2)$$

$$p(\theta_{jk}|D) = \prod_{i=1}^{|D|} \prod_{k=1}^{K} \prod_{j=1}^{|W|} \frac{1}{Const} \cdot \theta_{jk}^{x_{ij} \cdot [y_i = k] + \beta_1 - 1} (1 - \theta_{jk})^{(1 - x_{ij}) \cdot [y_i = k] + \beta_2 - 1}$$
где $Const = Beta(x_{ij} \cdot [y_i = k] + \beta_1, (1 - x_{ij}) \cdot [y_i = k] + \beta_2)$

 $(2) \; \hat{\theta}_{jk} = \mathbb{E}_{p(\theta_{jk}|D)} \theta_{jk}$ – матожидание Бета распределения

Для Beta(x|a,b) известно, что $\mathbb{E}x=\frac{a}{a+b}$

Итак:
$$\hat{\theta}_{jk}$$
 =
$$\prod_{i=1}^{|D|} \prod_{k=1}^{K} \prod_{j=1}^{|W|} \frac{x_{ij} \cdot [y_i = k] + \beta_1}{x_{ij} \cdot [y_i = k] + \beta_1 + (1 - x_{ij}) \cdot [y_i = k] + \beta_2} =$$

Итак:
$$\hat{\theta}_{jk}$$
 =
$$\prod_{i=1}^{|D|} \prod_{k=1}^{K} \prod_{j=1}^{|W|} \frac{x_{ij} \cdot [y_i = k] + \beta_1}{[y_i = k] + \beta_1 + \beta_2}$$

0.6 Логистическая регрессия

0.6.1 Задача 1

Имеется набор данных: $\{x_i, y_i\}_{i=1}^n$, $x_i \in \mathbb{R}^m, y_i \in \{0, 1\}$. Предположим, что данные подчиняются следующему закону:

$$p(y) = \phi^y \cdot (1 - \phi)^{1 - y}$$

$$p(x|y = k) \sim \mathcal{N}(\mu_k, \Sigma) \Rightarrow p(x|y = k) = \frac{1}{\sqrt{Det(2\pi \cdot \Sigma)}} \cdot \exp\{-\frac{1}{2}(x - \mu_k)^T \Sigma^{-1} (x - \mu_k)\}$$

- 1) Доказать, что апостериорное распределение метки (у), при данном х принимает вид логистической регрессии: $p(y=1|x)=\frac{1}{1+\exp\{-\theta^Tx\}}$ для какого-то параметра θ .
- 2) Найти оценки максимального правдоподобия для параметров $\phi, \mu_0, \mu_1, \Sigma$

$$\begin{array}{ll} 1) & \text{По} & \text{формуле Bañeca:} \\ \frac{p(x|y=1) \cdot p(y=1)}{p(x)} & = \frac{p(x|y=1) \cdot p(y=1)}{\sum_{y} p(x,y)} & = \frac{p(x|y=1) \cdot p(y=1)}{p(x|y=1) \cdot p(y=1) + p(x|y=0) \cdot p(y=0)} & = \\ \frac{\exp\{-\frac{1}{2}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1)\} \cdot \phi}{\exp\{-\frac{1}{2}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1)\} \cdot \phi + \exp\{-\frac{1}{2}(x-\mu_0)^T \Sigma^{-1}(x-\mu_0)\} \cdot (1-\phi)} & = \\ \frac{\exp\{-\frac{1}{2}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1)\} \cdot \phi + \exp\{-\frac{1}{2}(x-\mu_0)^T \Sigma^{-1}(x-\mu_0)\} \cdot (1-\phi)}{1} & = \\ \frac{1}{1+\frac{1-\phi}{\phi}} \cdot \exp\{-\frac{1}{2}(x-\mu_0)^T \Sigma^{-1}(x-\mu_0) + \frac{1}{2}(x-\mu_1^T \Sigma^{-1}(x-\mu_1))\}} & = \\ \frac{1}{1+\exp\{\log\frac{1-\phi}{\phi}\}} & \frac{1}{2}[2(\mu_1-\mu_0)^T \Sigma^{-1}x + \mu_0^T \Sigma^{-1}\mu_0 - \mu_1^T \Sigma^{-1}\mu_1]\}} \\ \text{Итак: } x = \begin{bmatrix} 1\\x \end{bmatrix}, \quad \theta = \begin{bmatrix} \log\frac{1-\phi}{\phi} + \frac{1}{2}\mu_1^T \Sigma^{-1}\mu_1 - \frac{1}{2}\mu_0^T \Sigma^{-1}\mu_0 \\ \Sigma^{-1}(\mu_0-\mu_1) \end{bmatrix} \\ 2) \quad L = \prod_{i=1}^n p(x_i) \cdot p(x_i|y_i) \rightarrow \max_{\Sigma,\mu_k,\phi} \\ \log L = \sum_{i=1}^n \log p(y_i) + \sum_{i=1}^n \log p(x_i|y_i) = \sum_{i=1}^n y_i \cdot \log \phi + (1-y_i) \cdot \log(1-\phi) + \\ \sum_{i:y_i=1} -\frac{m}{2} \log 2\pi - \frac{1}{2} \log Det(\Sigma) - \frac{1}{2}(x_i-\mu_1)^T \Sigma^{-1}(x_i-\mu_1) + \sum_{i:y_i=0} -\frac{m}{2} \log 2\pi - \\ \frac{1}{2} \log Det(\Sigma) - \frac{1}{2}(x_i-\mu_0)^T \Sigma(x_i-\mu_0) \rightarrow \max_{\Sigma,\mu_k,\phi} \\ \end{array}$$

$$\nabla_{\phi} \log L = \sum_{i=1}^{n} \frac{y_{i}}{\phi} - \frac{1-y_{i}}{1-\phi} = 0 \Rightarrow \sum_{i=1}^{n} y_{i} - \phi \cdot y_{i} - \phi + \phi \cdot y_{i} = 0 \Rightarrow \begin{vmatrix} \hat{\phi} = \frac{1}{n} \sum_{i=1}^{n} y_{i} \end{vmatrix}$$

$$\nabla_{\mu_{k}} \log L = \left\{ \nabla_{x}(x-a)^{T} B(x-a) = 2 \cdot B(x-a), \quad B = B^{T} \right\} = \sum_{i:y_{i}=k}^{n} [y_{i} = k] x_{i}$$

$$\sum_{i:y_{i}=k}^{n} -\Sigma^{-1}(x_{i} - \mu_{k}) = 0 \Rightarrow \begin{vmatrix} \hat{\mu}_{k} = \frac{\sum_{i=1}^{n} [y_{i} = k] x_{i}}{\sum_{i=1}^{n} [y_{i} = k]} \end{vmatrix}$$

$$\nabla_{\Sigma} \log L = \left\{ \nabla_{X} a^{T} X^{-1} b = -X^{-1} a b^{T} X^{-1}, \nabla_{X} \log Det(X) = X^{-1}, X = X^{T} \right\} = \sum_{i:y_{i}=1}^{n} \left(-\frac{1}{2} \Sigma^{-1} - \frac{1}{2} \Sigma^{-1} (x_{i} - \mu_{1})^{T} (x_{i} - \mu_{1}) \Sigma^{-1} \right) + \sum_{i:y_{i}=0}^{n} \left(-\frac{1}{2} \Sigma^{-1} - \frac{1}{2} \Sigma^{-1} (x_{i} - \mu_{0})^{T} (x_{i} - \mu_{0}) \Sigma^{-1} \right) = 0 | \cdot -2\Sigma^{2}$$

$$n \cdot \Sigma = \sum_{i:y_{i}=1}^{n} (x_{i} - \mu_{1})^{T} (x_{i} - \mu_{1}) + \sum_{i:y_{i}=0}^{n} (x_{i} - \mu_{0})^{T} (x_{i} - \mu_{0})$$

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} [y_{i} = 1] \cdot (x_{i} - \mu_{0})^{T} (x_{i} - \mu_{0}) + [y_{i} = 0] \cdot (x_{i} - \mu_{0})^{T} (x_{i} - \mu_{0})$$

0.6.2 Задача 2

Винни-Пух знает, что мёд бывает правильный $honey_i=1$ и неправильный $honey_i=0$. Пчёлы так же бывают правильные $bee_i=1$ и неправильные $bee_i=0$. По 100 попыткам добыть мёд Винни-Пух составил таблицу сопряжённости:

	$honey_i = 1$	$honey_i = 0$
$bee_i = 1$	12	36
$bee_i = 0$	32	20

Он использует логистическую регрессию с константой для прогнозирования правильности мёда с помощью информации и правильности пчёл.

- 1) Какие коэффициенты получит Винни-Пух.
- 2) Какой прогноз выдаст логистическая регрессия при столкновении с неправильными пчёлами

1) Логистическая регрессия настраивается с помощью максимизации правдоподобия по выбоке:

$$p(honey_i = 1|bee_i) = \sigma(w_0 + w_1 \cdot bee_i)$$

$$L = \prod_{i=1}^{100} p(honey_i|bee_i) \rightarrow \max_{w_0, w_1}$$

$$L = \prod_{i=1}^{100} p(honey_i = 1|bee_i = 1) \cdot p(honey_i = 1|bee_i = 0) \cdot p(honey_i = 0|bee_i = 1) \cdot p(honey_i = 0|bee_i = 0) = \prod_{i=1}^{100} \sigma(w_0 + w_1) \cdot \sigma(w_0) \cdot (1 - \sigma(w_0 + w_1)) \cdot (1 - \sigma(w_0)) = \sigma(w_0 + w_1)^{12} \cdot \sigma(w_0)^{32} \cdot (1 - \sigma(w_0 + w_1))^{36} \cdot (1 - \sigma(w_0))^{20} \rightarrow \max_{w_0, w_1}$$

$$\log L = 12 \cdot \log \sigma(w_0 + w_1) + 32 \cdot \log \sigma(w_0) + 36 \cdot \log(1 - \sigma(w_0 + w_1)) + 20 \cdot \log(1 - \sigma(w_0)) \rightarrow \max_{w_0, w_1}$$

$$\left\{ \log L'_{w_0} = \frac{12 \cdot \sigma'_{w_0}(w_0 + w_1)}{\sigma(w_0 + w_1)} + \frac{32 \cdot \sigma'_{w_0}(w_0)}{\sigma(w_0)} - \frac{36 \cdot \sigma'_{w_0}(w_0 + w_1)}{1 - \sigma(w_0 + w_1)} - \frac{20 \cdot \sigma'_{w_0}(w_0)}{1 - \sigma(w_0)} = 0 \right\}$$

$$\log L'_{w_1} = \frac{12 \cdot \sigma'_{w_1}(w_0 + w_1)}{\sigma(w_0 + w_1)} - \frac{36 \cdot \sigma'_{w_1}(w_0 + w_1)}{1 - \sigma(w_0 + w_1)} = 0$$

$$\text{Докажем, что } \sigma'_{w_0}(w_0 + w_1) = \sigma'_{w_1}(w_0 + w_1)$$

 $\sigma'_{w_0}(w_0 + w_1) = \left(\frac{1}{1 + e^{-(w_0 + w_1)}}\right)'_{w_0} = \frac{e^{-(w_0 + w_1)}}{(1 + e^{-(w_0 + w_1)})^2} = \left(\frac{1}{1 + e^{-(w_0 + w_1)}}\right)'_{w_1} = \sigma'_{w_1}(w_0 + w_1)$

Тогда предыдущая система перепишется, как:

$$\begin{cases} \log L'_{w_0} &= \frac{32 \cdot \sigma'_{w_0}(w_0)}{\sigma(w_0)} - \frac{20 \cdot \sigma'_{w_0}(w_0)}{1 - \sigma(w_0)} = 0 \quad (1) \\ \log L'_{w_1} &= \frac{12 \cdot \sigma'_{w_1}(w_0 + w_1)}{\sigma(w_0 + w_1)} - \frac{36 \cdot \sigma'_{w_1}(w_0 + w_1)}{1 - \sigma(w_0 + w_1)} = 0 \quad (2) \end{cases}$$

$$(1) : (1 - \sigma(w_0)) \cdot 32 \cdot \sigma'(w_0) - 20 \cdot \sigma(w_0) \cdot \sigma'(w_0) = 0 |: \sigma'(w_0) \neq 0$$

$$32 - 52 \cdot \sigma(w_0) = 0 \Rightarrow \boxed{\sigma(w_0) = \frac{32}{52}}$$

$$\frac{1}{1 + e^{-w_0}} = \frac{32}{52} \rightarrow e^{-w_0} = \frac{52}{32} - 1 = \frac{20}{32} \rightarrow \boxed{w_0 = \ln \frac{32}{20}}$$

$$(2) : 12 \cdot (1 - \sigma(w_0 + w_1)) \cdot \sigma'(w_0 + w_1) - 36 \cdot \sigma(w_0 + w_1) \cdot \sigma'(w_0 + w_1) = 0 |: \sigma'(w_0 + w_1) \neq 0$$

$$12 - 48 \cdot \sigma(w_0 + w_1) = 0 \to \frac{1}{1 + e^{-w_0 - w_1}} = \frac{1}{4} \to \underbrace{e^{-w_0}}_{\frac{20}{32}} \cdot e^{-w_1} = 3 \to e^{-w_1} = \frac{96}{20} \to e^{-w_1}$$

$$w_1 = \ln \frac{5}{24}$$

Итак:
$$\hat{p}(honey_i = 1|bee_i) = \sigma(\ln\frac{32}{20} + \ln\frac{5}{24} \cdot bee_i) = \frac{1}{1 + e^{-\ln\frac{32}{20}} \cdot e^{-\ln\frac{5}{24} \cdot bee_i}} = \frac{1}{1 + \frac{20}{32} \cdot \left(\frac{24}{5}\right)^{bee_i}}$$

2)
$$\hat{p}(honey_i = 1|bee_i = 0) = \frac{1}{1 + \frac{20}{32}} = \frac{32}{52}$$

0.6.3 Задача 3

Рассмотрим целевую функцию логистической регрессии с константой: $x_i, w \in \mathbb{R}^d$

$$Q(w) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, b_i)$$

$$b_i = b(x_i) = rac{1}{1+\exp(-x_i^T w)}, \quad L(y_i,b_i) = \left\{ egin{array}{ccc} -\log b_i &, ext{если} & y_i = 1 \\ -\log(1-b_i) &, ext{если} & y_i = -1 \end{array}
ight.$$

- 1) Найдите $\nabla Q(w), \nabla^2 Q(w)$
- 2) Найдите $\nabla Q(0), \nabla^2 Q(0)$
- 3) Найдите квадратичную аппроксимацию Q(w) в районе w=0
- 4) Найти w^* , минимизирующий квадратичную аппроксимацию

Решение

Заметим, что:
$$1-b_i=1-\frac{1}{1+\exp(-a)}=\frac{\exp(-a)}{1+\exp(-a)}=\frac{1}{1+\exp(a)}$$

Распишем $Q(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-x_i^T w)) \cdot [y_i = 1] + \log(1 + \exp(x_i^T w))$.

$$[y_i = -1] = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \cdot x_i^T w))$$

1)
$$\nabla Q = \frac{1}{n} \sum_{i=1}^{n} -\frac{\exp(-y_i \cdot x_i^T w)}{1 + \exp(-y_i \cdot x_i^T w)} \cdot y_i x_i = \frac{1}{n} \sum_{i=1}^{n} \frac{-y_i}{1 + \exp(y_i \cdot x_i^T w)} \cdot x_i =$$

$$\left| \frac{1}{n} \sum_{i=1}^{n} -y_i \cdot \sigma(-y_i \cdot x_i^T w) \cdot x_i \right|$$

$$\nabla^2 Q = \left(Q_{w_k,w_p}''\right)_{k,p=1}^d \to \left(\frac{1}{n}\sum_{i=1}^n -\frac{\exp(-y_i x_i^T w)}{1+\exp(-y_i x_i^T w)} \cdot y_i x_i^k\right)_{w_p}' =$$

$$\left(\frac{1}{n}\sum_{i=1}^{n}\frac{-y_{i}x_{i}^{k}}{1+\exp(y_{i}x_{i}^{T}w)}\right)_{w_{p}}' = \frac{1}{n}\sum_{i=1}^{n}\underbrace{\frac{\exp(y_{i}x_{i}^{T}w)}{(1+\exp(y_{i}x_{i}^{T}w))^{2}}}_{\sigma(-y_{i}x_{i}^{T}w)\cdot(1-\sigma(-y_{i}x_{i}^{T}w))}\underbrace{y_{i}^{2}x_{i}^{k}x_{i}^{p}}_{1}$$

$$\text{Итак: } \nabla^{2}Q = \left(\frac{1}{n}\sum_{i=1}^{n}\sigma(-y_{i}x_{i}^{T}w)\cdot(1-\sigma(-y_{i}x_{i}^{T}w))}(1-\sigma(-y_{i}x_{i}^{T}w))x_{i}^{k}x_{i}^{p}\right)_{k,p=1}^{d} = \frac{1}{n}\sum_{i=1}^{n}\sigma(-y_{i}x_{i}^{T}w)\cdot(1-\sigma(-y_{i}x_{i}^{T}w))x_{i}^{k}x_{i}^{p}$$

$$\left| \frac{1}{n} \sum_{i=1}^{n} \sigma(-y_i x_i^T w) \cdot (1 - \sigma(-y_i x_i^T w)) x_i x_i^T \right|$$

2)
$$\nabla Q(0) = -\frac{1}{2n} \sum_{i=1}^{n} y_i x_i, \quad \nabla^2 Q(0) = \frac{1}{4n} \sum_{i=1}^{n} x_i x_i^T$$

3)
$$Q(w) = Q(0) + \nabla Q(0)^T w + \frac{1}{2} w^T \nabla^2 Q(0) w + o(\|w\|)$$

Итак:
$$Q(w) = \log 2 - \frac{1}{2n} \sum_{i=1}^{n} y_i x_i^T w + \frac{1}{8n} \sum_{i=1}^{n} w^T x_i x_i^T w + o(\|w\|)$$

4)
$$Q(w) = Q(0) + \nabla Q(0)^T w + \frac{1}{2} w^T \nabla^2 Q(0) w \to \min_{w}$$

$$\nabla_w Q(w) = \nabla Q(0) + \nabla^2 Q(0) w = 0 \to w^* = -(\nabla^2 Q)^{-1} \nabla Q(0)$$

$$w^* = 2\left(\sum_{i=1}^n x_i^T x_i\right)^{-1} \cdot \sum_{i=1}^n y_i x_i$$

0.7 Метрики качества

0.7.1 Задача 1

Дана выборка из 8 объектов и дан классисикатор, предсказывающий вероятность принадлежности объекта положительному классу $b(x_i) = p(y_i = 1|x_i)$

$\mathbf{y_{i}}$	$\mathbf{b}(\mathbf{x_i})$
1	0.1
1	0.8
-1	0.2
-1	0.25
1	0.9
1	0.3
-1	0.6
1	0.95

- 1. Постройте ROC кривую
- 2. Посчитайте AUC-ROC
- 3. Постройте PR кривую (точность-полнота)
- 4. Посчитайте площадь под РК кривой
- 5. Как связан AUC-ROC с долей неправильно классифицированных пар
- 6. Посчитать AUC-ROC по формуле из пункта 5

Решение

Confusion matrix:

$$TP=a, \quad FP=b, \quad , TN=d, \quad FN=c$$

1) ROC кривая отражает график функции TPR(FRP)

$$FPR = \frac{FP}{|y_-|} = \frac{b}{b+d}$$
 - False Positive Rate

$$TPR = \frac{TP}{|y_+|} = \frac{a}{a+c}$$
 – True Positive Rate

Отсортируем все значения по неубыванию функционала $b_i(x)$:

$$(b_i, y_i) : (0.1, 1), (0.2, -1), (0.25, -1), (0.3, 1), (0.6, -1), (0.8, 1), (0.9, 1), (0.95, 1)$$

 $|y_-| = 3, \quad |y_+| = 5$

Будем двигаться справа налево и считать значения TPR и FPR

y_i	1		-1		-1		1		-1		1		1		1	
TRP FRP	1 1	$\frac{4}{5} 1$	-	$\frac{4}{5} \frac{2}{3}$	-	$\frac{4}{5} \frac{1}{3}$	_	$\frac{3}{5} \frac{1}{3}$	-	$\frac{3}{5} 0$	-	$\frac{2}{5} 0$	-	$\frac{1}{5} 0$	-	0 0
Pr Rec	$\frac{5}{8} 1$	$\frac{4}{7} \frac{4}{5} $	-	$\frac{3}{6} \frac{3}{5} $	-	$\frac{2}{5} \frac{2}{5} $	_	$\frac{1}{2} \frac{2}{5} $	-	$\frac{1}{3} \frac{1}{5}$	-	$\frac{1}{2} \frac{1}{5} $	-	$ 1 \frac{1}{5}$	-	0 0

2) AUC-ROC =
$$\frac{3}{5} \cdot \frac{1}{3} + \frac{4}{5} \cdot \frac{2}{3} = \frac{11}{15} \approx 0.73$$

3)
$$Precision = \frac{TP}{|\hat{y}_+|} = \frac{TP}{TP+FP}$$
, $Recall = \frac{TP}{|y_+|} = \frac{TP}{TP+FN}$

- 4) AUC-PR ≈ 0.87
- 5) Введём функционал $DP = \frac{1}{C_l^2} \sum_{i < j}^l [y_i > y_j]$ доля неправильно классифицированных пар

Докажем, что

$$AUC - ROC = 1 - \frac{C_l^2}{l_+ \cdot l_-} \cdot DP = 1 - \frac{1}{l_+ \cdot l_-} \sum_{i < j} [y_i > y_j],$$
 где l_+, l_- - коли-

чество объектов положительного и отрицательного классов соответственно

Рис. 1: AUC-ROC

Рассмотрим (рисунок 1). Заметим, что чтобы нарисовать ROC-крисую – достатоно перебрать l+1 значение порога $t_i, \quad i=1,2,\dots,l+1$

На текущем объекте x_i возможны 2 варианта развития событий:

- 1) $y_i = +1$ следовательно, при смене порога с t_i на t_{i+1} TPR возрастает на $\frac{1}{l_+}$, а FPR не меняется.
- 2) $y_i = -1$ следовательно, при смене порога с t_i на t_{i+1} TPR не меняется, а FPR возрастает на $\frac{1}{l_-}$.

На текущем объекте x_i AUC-ROC возрастает, если у него изменился FPR. Площадь возрастает на площадь прямоугольника, стороны которого

равны соответственно:
$$\frac{1}{l_{-}}$$
 – длина, $\sum_{j=i+1}^{l} [y_{j}=+1] \cdot \underbrace{\frac{1}{l_{+}}}_{\text{высота 1 подъёма}}$ – ширина

(суммирование ведётся от i+1 до l, так как мы перебираем объекты от x_l до x_0)

Тогда AUC-ROC – сумма всех таких прямоугольников:

$$AUC - ROC = \frac{1}{l_{-}l_{+}} \sum_{i=1}^{l} [y_{i} = -1] \left(\sum_{j=i+1}^{l} [y_{j} = +1] \right) = \frac{1}{l_{-}l_{+}} \sum_{i=1}^{l} \sum_{j=i+1}^{l} [y_{i} = -1] \cdot [y_{j} = +1] = \frac{1}{l_{-}l_{+}} \sum_{j=i+1}^{l} \sum_{j=i+1}^{l} [y_{i} < y_{j}] = \frac{1}{l_{-}l_{+}} \sum_{i < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} \sum_{i < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} \sum_{i < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} \sum_{i < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} \sum_{i < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} \sum_{i < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} \sum_{i < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} \sum_{i < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}]) = \sum_{j < j} (1 - [y_{i} = y_{j}] - [y_{i} > y_{j}])$$

$$\frac{1}{l_-l_+}\sum_{\substack{i < j \ 2}} 1 - \frac{1}{l_-l_+}\sum_{i < j} [y_i = y_j] - \frac{1}{l_-l_+}\sum_{i < j} [y_i > y_j] = \{\sum_{i < j} [y_i = y_j]$$
 – кол-во способов

выбрать 2 объекта из l_+ объектов или выбрать 2 объекта из l_- объектов $=\frac{l_+(l_+-1)}{2}+\frac{l_-(l_--1)}{2}\}=$

$$= \frac{l^2 - l}{2l_+ l_-} - \frac{l_+^2 - l_+ + l_-^2 - l_-}{2l_+ l_-} - \frac{1}{l_- l_+} \sum_{i < j} [y_i > y_j] = \frac{l_+^2 + 2l_+ l_- + l_-^2 - l_+^2 - l_-^2}{2l_+ l_-} - \frac{1}{l_- l_+} \sum_{i < j} [y_i > y_j] = 1 - \frac{1}{l_- l_+} \sum_{i < j} [y_i > y_j]$$

6) AUC-ROC =
$$1 - \frac{1}{3.5}(3+1) = \frac{11}{15}$$

0.7.2 Задача 2

Рассмотрим функционал вида: $f^{-1}\left(\frac{1}{n}\sum_{i=1}^n f(x_i)\right)$

- 1. Подберите функцию f(x) так, чтобы получились: среднее арифметическое, гармоническое и геометрическое.
- 2. При использовании какого среднего в качестве меры качества классификации будут выходить самые качественные и некачественные прогно-

Решение

1. Среднее арифметическое: f(x) = x, $f^{-1}(x) = x$

$$f^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) = \frac{x_1 + \dots + x_n}{n}$$

2. Среднее геометрическое: $f(x) = \ln x$, $f^{-1}(x) = e^x$

$$f^{-1}\left(\frac{1}{n}\sum_{i=1}^n \ln x_i\right) = e^{\frac{1}{n}\ln(x_1\cdots x_n)} = \sqrt[n]{x_1\cdots x_n}$$

3. Среднее гармоническое: $f(x) = \frac{1}{x}$, $f^{-1}(x) = \frac{1}{x}$

$$f^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_i}\right) = \frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}}$$

В вопросе про качество прогноза по сути требуется вспомнить классическое неравенство о средних, которое выглядит так: $x_{qarm} \le x_{qeom} \le x_{arithm}$.

0.7.3 Задача 3

Дата саентист Саша настроил бинарный классификатор $a(x_i)$ в задаче с двумя классами. Ночью во сне ему открылась истина по поводу распределения его данных: данные первого класса распределены с плотностью $p_1(a) = C_1 \cdot (-10a^2 + 20a - 7.5) \cdot [0.5 \le a \le 1]$, а данные нулевого класса с плотностью $p_0(a) = C_2 \cdot e^{-2a}$. Помогите Саше вычислить AUC-ROC.

Решение

Для начала найдем плотности, с которыми распределены данные обоих классов:

$$\int_{0.5}^{1} C_1 \cdot (-10a^2 + 20a - 7.5) da = C_1 \cdot \left(\frac{5}{6}\right) = 1 \Rightarrow p_1(a) = \frac{6}{5}(-10a^2 + 20a - \frac{15}{2})$$

$$\int_{0.5}^{1} C_0 \cdot e^{-2a} da = C_0 \cdot \left(-\frac{1}{2}e^{-2a}|_{0}^{1}\right) = -\frac{1}{2}C_0(e^{-2} - 1) = C_0 \cdot \left(\frac{1}{2} - \frac{e^{-2}}{2}\right) \Rightarrow p_0(a) = \frac{2}{1 - e^{-2}}e^{-2a}$$

$$\mathrm{TPR}(\mathbf{t}) = \int\limits_t^1 rac{6}{5} (-10a^2 + 20a - 7.5) da = 4t^3 - 12t^2 + 9t - 1, \quad$$
при $t \in [0.5, 1]$

$$FPR(t) = \int_{t}^{1} \frac{2}{1 - e^{-2}} \cdot e^{-2a} da = \frac{1}{e^{2} - 1} \cdot (e^{2 - 2t} - 1)$$

$$AUC\text{-ROC} = \int TPR(t) d(FPR(t)) = \int_{1}^{0.5} TPR(t) \cdot FPR'(t) dt = \frac{e^{2} \cdot \frac{-12}{5}}{e^{2} - 1} \int_{1}^{0.5} (-10a^{2} + 20a - \frac{15}{2})e^{-2t} dt \approx -2.78 \cdot (-0.17) = 0.47$$

0.7.4 Задача 4

Пусть бинарный классификатор $b(x_i)$ выдает в качестве прогноза случайное число между 0 и 1, то есть $b(x_i) \sim Uniform[0,1]$. Чему равно матожидание значения AUC-ROC для такого классификатора.

Решение

$$AUC - ROC = \frac{1}{l_{-}l_{+}} \sum_{i < j} [y_{i} = -1] \cdot [y_{j} = +1] \Rightarrow \mathbb{E}(AUC - ROC) = \frac{1}{l_{+}l_{-}} \sum_{i < j} \mathbb{E}([y_{i} = -1] \cdot [y_{j} = +1])$$

Заметим, что случайная величина $[y_i = -1] \cdot [y_j = +1]$ принимает всего 2 значения: 0 и 1. Рассмотрим матожидание для произвольной бинарной случайной величины: $g \in \{0,1\}$

$$\mathbb{E}g = p(g = 1) \cdot 1 + p(g = 0) \cdot 0 = p(g = 1)$$

0.8 Деревья

0.8.1 Задача 1

Постройте регрессионное дерево для прогнозирования y по x на обучающей выборке. Критерий деления узла на два — минимизация квадрата отклонения. Узел делится, до тех пор пока в нём больше 2 наблюдений.

$\mathbf{y_{i}}$	$\mathbf{x_i}$
100	1
102	2
103	3
50	4
55	5
61	6
70	7

Решение

$$H(R) = \frac{1}{|R|} \sum_{(x_i,y_i) \in R} \left(y_i - \frac{1}{|R|} \sum_{(x_j,y_j) \in R} y_j \right)^2$$
, где R – множество объектов, попавших в вершину R

Общий критерий:
$$Q(R_{now}) = H(R_{now}) - \frac{|R_l|}{|R_{now}|} \cdot H(R_l) - \frac{|R_r|}{|R_{now}|} \cdot H(R_r) \to \max_t$$

 R_{now} — текущий лист, R_r — множество объектов в правом подлисте, R_l — множество объектов в левом подлисте.

Критерий будет максимизироваться, если мы каждый раз будем разбирать по порогу, который близок к среднему значению y в текущем листе.

1)
$$\bar{y} = \frac{541}{7} = 77.29 \Rightarrow$$
 первым критерием разбиения может стать например $[y_i < 78] \Rightarrow [x_i > 3]$

Договоримся, что в левый лист будут просеиваться объекты для которых выполнен придикат, а в правый для которых не выполнен.

2) В левом листе:
$$\bar{y}_l = \frac{236}{4} = 59$$
, $\bar{y}_r = \frac{305}{3} = 101.67$

Тогда критерием разделения для левого листа может стать например $[y_i < 59] \Rightarrow [x_i < 6]$, а для правого $[y_i < 101] \Rightarrow [x_i < 1.5]$

0.8.2 Задача 2

Дон Жуан предпочитает брюнеток. Он посчитал, что в его записной книжке 20 блондинок, 40 брюнеток, 2 рыжих и 8 шатенок. С нового года он решил записать всех на 2 записные книжки – в одну брюнеток, во вторую всех остальных. Как в результате этого события изменится индекс Джинни и энтропия.

Решение

В случае задачи классификации в листе выдается в качестве прогноза самый часто встречающийся класс.

Посчитаем энтропию и индекс Джинни в корне дерева:

Обозначения: $p_{mk}=\frac{1}{|R_m|}\sum_{x_i\in R_m}[y_i=k],\; p_{mk}$ — доля объектов класса k, попавших в вершину m

Тогда индекс Джини:
$$F_G(R_m) = 1 - \sum_{k=1}^K p_{mk}^2$$

Энтропия: $F_H(R_m) = -\sum_{k=1}^K p_{mk} \cdot \log p_{mk}$
 $F_H(R_{root}) = -\left(\frac{40}{70}\log\frac{40}{70} + \frac{20}{70}\log\frac{20}{70} + \frac{8}{70}\log\frac{8}{70} + \frac{2}{70}\log\frac{2}{70}\right) = 1.03$
 $F_H(R_{left}) = 0$, $F_H(R_{right}) = -\left(\frac{20}{30}\log\frac{20}{30} + \frac{8}{30}\log\frac{8}{30} + \frac{2}{30}\log\frac{2}{30}\right) = 0.8$
Среднее значение энтропии: $\bar{H} = \frac{40}{70} \cdot 0 + \frac{30}{70} \cdot 0.8 = 0.6$
 $F_G(R_{root}) = 1 - \left(\left(\frac{40}{70}\right)^2 + \left(\frac{20}{70}\right)^2 + \left(\frac{8}{70}\right)^2 + \left(\frac{2}{70}\right)^2\right) = 0.578$
 $F_G(R_{left}) = 0$, $F_G(R_{right}) = 1 - \left(\left(\frac{20}{30}\right)^2 + \left(\frac{8}{30}\right)^2 + \left(\frac{2}{30}\right)^2\right)^2 = 0.39$

Среднее значение Джини:
$$\bar{G} = \frac{40}{70} \cdot 0 + \frac{30}{70} \cdot 0.39 = 0.165$$

0.8.3 Задача 3

Пятачок собрал данные о визитах Винни-Пуха к Кролику. x_i – количество съеденного Пухом мёда, y_i – факт застревания Винни-Пуха при выходе. Пятачок получил следующие данные:

$\mathbf{y_i}$	$\mathbf{x_i}$
0	1
1	4
1	2
0	3
1	3
0	1

Пятачок использует модель:

Где в качестве криетрия качества используется квадратичная аппроксимация логистической функции потерь:

$$Q(w) = \sum_{i=1}^{n} \left(loss(y_i, 0) + loss(y_i, 0)' \cdot w_i + \frac{1}{2} \cdot loss(y_i, 0)'' \cdot w_i^2 \right) + \frac{\lambda}{2} \cdot ||w||_2^2$$
$$loss(y_i, w_i) = \log(1 + \exp(-y_i \cdot x_i \cdot w_i))$$

Помогите Пятачку настроить веса

$$Q(w) = \underbrace{\sum_{i:x_i > 3.5} Q(w_i)}_{Q_1} + \underbrace{\sum_{i:x_i > 2.5 \bigcap dom(\bar{Q}_1)} Q(w_i)}_{Q_2} + \underbrace{\sum_{i:x_i \leq 2.5} Q(w_i)}_{Q_3} \to \min_{w_i}$$

Задача распадается на 3 отдельные подзадачи:

$$\begin{split} Q_j &\to \min_{w_i}, \quad j=1,2,3 \\ loss(y_i,0)' &= \frac{y_i \cdot x_i}{1 + \exp(y_i \cdot x_i \cdot 0)} = \frac{1}{2} y_i x_i \\ loss(y_i,0)'' &= -(y_i x_i)^2 \cdot (1 + \exp(y_i x_i \cdot 0))^{-2} \cdot \exp(y_i x_i \cdot 0) = -\frac{1}{2} y_i x_i^2 \\ Q'_{1,w_{LR}} &= \sum_i loss(y_i,0)' + w_{LR} \cdot \sum_i loss(y_i,0)'' + \lambda \cdot w_{LR} = 0 \\ w_L^* &= -\frac{\sum_{i:x_i > 3.5} loss(y_i,0)'}{\left(\sum\limits_{i:x_i > 2.5} loss(y_i,0)'' + \lambda\right)} = -\frac{\sum\limits_{i:x_i > 3.5} \frac{1}{2} y_i x_i}{\sum\limits_{i:x_i > 3.5} - \frac{1}{2} y_i x_i^2 + 1} = -\frac{2}{-8 + 1} = \frac{2}{7} \\ w_{RL}^* &= -\frac{\sum\limits_{i:x_i > 2.5} loss(y_i,0)'}{\left(\sum\limits_{i:x_i > 2.5} loss(y_i,0)'' + \lambda\right)} = -\frac{\sum\limits_{i:x_i > 2.5} \frac{1}{2} y_i x_i}{\sum\limits_{i:x_i > 2.5} - \frac{1}{2} y_i x_i^2 + 1} = -\frac{\frac{1}{2} \cdot 3 \cdot 1}{-\frac{1}{2} \cdot 9 \cdot 1 + 1} = \frac{3}{7} \\ w_{RR}^* &= -\frac{\sum\limits_{i:x_i \le 2.5} loss(y_i,0)''}{\left(\sum\limits_{i:x_i \le 2.5} loss(y_i,0)'' + \lambda\right)} = -\frac{\sum\limits_{i:x_i \le 2.5} \frac{1}{2} y_i x_i}{\sum\limits_{i:x_i \le 2.5} - \frac{1}{2} y_i x_i^2 + 1} = -\frac{1}{-2 + 1} = 1 \end{split}$$

0.8.4 Задача 4

Для предыдущей задачи найти веса методом максимального правдоподобия.

Решение

Функция правдоподобия в данном случае выглядит так:

$$L(y,a) = \prod_{i=1}^{n} a(x_i)^{y_i} \cdot (1 - a(x_i))^{1-y_i}$$
 где $a(x_i)$ – решающее дерево.

Алгоритм классификации с помощью решающего дерева можно явно задать функцией: $a(x_i) = w_L^{[x_i>3.5]} \cdot w_{RL}^{[2.5< x_i \le 3.5]} \cdot w_{RR}^{[x_i \le 2.5]}$

Тогда функция правдоподобия принимает вид:

$$L(y,a) = \prod_{i=1}^{n} \left(w_L^{[x_i > 3.5]} \cdot w_{RL}^{[2.5 < x_i \le 3.5]} \cdot w_{RR}^{[x_i \le 2.5]} \right)^{y_i} \cdot \left(1 - w_L^{[x_i > 3.5]} \cdot w_{RL}^{[2.5 < x_i \le 3.5]} \cdot w_{RR}^{[x_i \le 2.5]} \right)^{1-y_i} = \prod_{i:x_i > 3.5} w_L^{y_i} \cdot (1 - w_L)^{1-y_i} \cdot \prod_{i:2.5 < x_i \le 3.5} w_{RL}^{y_i} \cdot w_{RL}^{y_i} \cdot \left(1 - w_L \right)^{1-y_i} \cdot \prod_{i:2.5 < x_i \le 3.5} w_{RL}^{y_i} \cdot w_{RL}^{$$

$$(1 - w_{RL})^{1 - y_i} \cdot \prod_{i: x_i \le 2.5} w_{RR}^{y_i} \cdot (1 - w_{RR})^{1 - y_i}$$

$$\log L = \sum_{i: x_i > 3.5} y_i \cdot \log w_L + (1 - y_i) \cdot \log(1 - w_L) + \sum_{i: 2.5 < x_i \le 3.5} y_i \cdot \log w_{RL} + (1 - y_i) \cdot \log(1 - w_{RL}) + \sum_{i: x_i \le 2.5} y_i \cdot \log w_{RR} + (1 - y_i) \cdot \log(1 - w_{RR}) \to \max_{w_L, w_{RL}, w_{RR}}$$

$$\log L'_{w_L} = \frac{\sum_{i: x_i > 3.5} y_i}{w_L} - \frac{\sum_{i: x_i > 3.5} (1 - y_i)}{1 - w_L} = 0 \Rightarrow w_L^* = \frac{\sum_{i=1}^n y_i \cdot [x_i > 3.5]}{\sum_{i=1}^n [x_i > 3.5]}$$

Аналогично вычисляются оценки для $w_{RL}, w_{RR},$ Итак:

$$w_{RL}^* = \frac{\sum_{i=1}^n y_i \cdot [2.5 < x_i \le 3.5]}{\sum_{i=1}^n [2.5 < x_i \le 3.5]}, \quad w_{RR}^* = \frac{\sum_{i=1}^n y_i \cdot [x_i \le 2.5]}{\sum_{i=1}^n [x_i \le 2.5]}$$
$$w_L^* = \frac{1}{1} = 1, \quad w_{RL}^* = \frac{1+0}{1+1} = \frac{1}{2}, \quad w_{RR}^* = \frac{0+1+0}{1+1+1} = \frac{1}{3}$$

0.9 Градиентный бустинг

$$a_N(x) = \sum_{j=1}^N \gamma_j \cdot b_j(x)$$

Обучение происходит путём минимизации функционала:

$$\sum_{i=1}^{l} L(y_i, a_{N-1} + \gamma_N \cdot b_N(x_i)) \to \min_{\gamma, b}$$

$$s_i = -\frac{\partial L}{\partial z} \Big|_{z=a_{N-1}(x_i)}$$

Новый алгоритм $b_j(x)$ находится путём минимизации:

$$b_N = \operatorname{argmin}_b \sum_{i=1}^l (b(x_i) - s_i)^2$$

$$\gamma_N = \operatorname{argmin}_\gamma \sum_{i=1}^l L(y_i, a_{N-1} + \gamma \cdot b_N(x_i))$$

Бустинг над деревьями:

$$\sum_{i=1}^{l} L(y_i, a_{N-1} + \gamma_N \sum_{j=1}^{J_N} b_{Nj} [x_i \in R_j]) = \sum_{i=1}^{l} L(y_i, a_{N-1} + \sum_{x_i \in R_j} \gamma_{Nj}) \to \min_{\gamma_{Nj}}$$
$$\gamma_{Nj} = \operatorname{argmin}_{\gamma} \sum_{i=1}^{l} L(y_i, a_{N-1} + \sum_{x_i \in R_j} \gamma)$$

0.9.1 Задача 1

Найти сдвиги (s_i) в случае следующих функций потерь:

$$\bullet \ L(y,z) = (y-z)^2$$

$$\bullet \ L(y,z) = |y-z|$$

•
$$L(y,z) = \log(1 + \exp(-yz))$$

1)
$$s_i = -\frac{\partial L(y_i, z)}{\partial z}|_{a_{N-1}(x_i)} = -(-2) \cdot (y_i - z)|_{a_{N-1}(x_i)} = 2 \cdot (y_i - a_{N-1}(x_i))$$

2)
$$s_i = -\frac{\partial L(y_i, z)}{\partial z}|_{a_{N-1}(x_i)} = -(-1) \cdot sign(y_i - a_{N-1}(x_i)) = sign(y_i - a_{N-1}(x_i))$$

$$3)$$
 $s_i = -\frac{\partial L(y_i,z)}{\partial z}|_{a_{N-1}(x_i)} = -\frac{\exp(-y_i \cdot a_{N-1}(x_i)) \cdot (-y_i)}{1+\exp(-y_i \cdot a_{N-1}(x_i))} = y_i \cdot \sigma(-y_i \cdot a_{N-1}(x_i))$ где $\sigma(x) = \frac{1}{1+\exp(-x)}$

0.9.2 Задача 2

Найти оптимальное значение весов произвольных алгоритмов (пункт 1) и оптимальное значение алгоритмов в случае бустинга над деревьями (пункты 2-4)

1.
$$L(y,z) = (y-z)^2$$

2.
$$L(y,z) = (y-z)^2$$

3.
$$L(y,z) = |y-z|$$

4.
$$L(y,z) = e^{-yz}, y_i \in \{-1,1\}$$

1)
$$\gamma_N = \operatorname{argmin}_{\gamma} \sum_{i=1}^{l} (y_i - a_{N-1} - \gamma \cdot b_N(x_i))^2$$

$$\sum_{i=1}^{l} -2 \cdot (y_i - a_{N-1}(x_i) - \gamma \cdot b_N(x_i)) \cdot b_N(x_i) = 0 \to \sum_{i=1}^{l} b_N(x_i) \cdot (y_i - a_{N-1}) = \gamma \cdot \sum_{i=1}^{l} b_N(x_i)^2$$

$$\hat{\gamma}_N = \frac{\sum_{i=1}^l b_N(x_i) \cdot (y_i - a_{N-1}(x_i))}{\sum_{i=1}^l b_N(x_i)^2}$$

2)
$$\gamma_{Nj} = \operatorname{argmin}_{\gamma} \sum_{x_i \in R_j}^{l} (y_i - a_{N-1} - \gamma)^2$$

$$\sum_{x_i \in R_j} (-2) \cdot (y_i - a_{N-1} - \gamma) = 0 \to \boxed{\hat{\gamma}_{Nj} = \frac{1}{|R_j|} \sum_{x_i \in R_j} (y_i - a_{N-1})}$$

3)
$$\gamma_{Nj} = \operatorname{argmin}_{\gamma} \sum_{x_i \in R_j}^{l} |y_i - a_{N-1} - \gamma| \to \left[\hat{\gamma}_{Nj} = median_{y_i \in R_j} \{y_i - a_{N-1}\} \right]$$

4)
$$\gamma_{Nj} = \operatorname{argmin}_{\gamma} \sum_{x_i \in R_j} e^{-y_i \cdot (a_{N-1} + \gamma)} = \operatorname{argmin}_{\gamma} \sum_{y_i = -1} e^{a_{N-1} + \gamma} + \sum_{y_i = 1} e^{-a_{N-1} - \gamma}$$

$$\sum_{y_i=-1} e^{a_{N-1}(x_i)} \cdot e^{\gamma} - \sum_{y_i=1} e^{-a_{N-1}(x_i)} \cdot e^{-\gamma} = 0 \left| \cdot e^{\gamma} \right|$$

$$e^{2\gamma} \cdot \sum_{y_i=-1} e^{a_{N-1}(x_i)} = \sum_{y_i=1} e^{-a_{N-1}(x_i)} \Rightarrow \hat{\gamma}_{Nj} = \frac{1}{2} \log \left(\frac{\sum_{y_i=1} e^{-a_{N-1}(x_i)}}{\sum_{y_i=-1} e^{a_{N-1}(x_i)}} \right)$$

0.9.3 Задача 3

Проделать 5 шагов градиентного бустинга над решающими пнями (деревья глубины 1) для задачи классификации данных, представленных ниже:

В качестве нулевого алгоритма возьмём $b_0(x)=0$ и все веса положим равными единице: $\gamma_i=1$. Для обучения пней используем квадратичную функцию потерь $L(y_i,a_N)=\sum\limits_{i=1}^6(y_i-a_N(x_i))^2$ а для выбора порога разбиения изменение дисперсии при расщеплении:

$$F(R_m, R_r, R_l) = H(R_m) - \frac{|R_l|}{|R_m|} \cdot H(R_l) - \frac{|R_r|}{|R_m|} \cdot H(R_r),$$

$$H(R_k) = \frac{1}{|R_k|} \cdot \sum_{x_i \in R_k} (y_i - \bar{y})^2 \Rightarrow H(R_k) = \bar{y}^2 - (\bar{y})^2$$

1 war:

Выберем порог для первого решающего пня, для этого надо выбрать такой порог $d:[x_i^k < d]$, при котором максимизируется функционал $F(R_m,R_r,R_l)$. Ясно, что порог, который оставляет всю выборку в одном листе обеспечивает качество функционала равное нулю: F=0. Поэтому достаточно перебрать критерии: $[x_i^1 < 1], [x_i^1 < 2], [x_i^2 < 1], [x_i^2 < 2]. (R_l = R_d - левый лист или нижний лист.)$

Критерий	$H(R_m)$	$\mid H(R_l)$	$H(R_r)$	$F(R_m, R_r, R_l)$
$[x_i^1 < 1]$	$\frac{1}{2} - \frac{1}{4} = \frac{1}{4}$	0	$\frac{3}{4} - \frac{9}{16} = \frac{3}{16}$	$\frac{1}{4} - \frac{2}{6} \cdot 0 - \frac{4}{6} \cdot \frac{3}{16} = \frac{1}{8}$
$[x_i^1 < 2]$	$\frac{1}{4}$	$\frac{3}{4} - \frac{9}{16} = \frac{3}{16}$	0	$\left[\frac{1}{4} - \frac{2}{6} \cdot 0 - \frac{4}{6} \cdot \frac{3}{16} = \frac{1}{8} \right]$
$[x_i^2 < 1]$	$\left \begin{array}{c} \frac{1}{4} \end{array}\right $	$\frac{2}{3} - \frac{4}{9} = \frac{2}{9}$	$\frac{1}{3} - \frac{1}{9} = \frac{2}{9}$	$\left[\frac{1}{4} - \frac{1}{2} \cdot \frac{2}{9} - \frac{1}{2} \cdot \frac{2}{9} = \frac{1}{36} \right]$

Первый и второй критерии дают одинаковое наибольшее качество, будем считать, что из них был выбран первый ($[x_i^1 < 1]$). Итак:

$$a_N = a_1 = b_0 + b_1 = [x_i^1 < 1].$$

В случае квадратичной функции потерь оптимальный прогноз – выдавать среднее значение в листе. Итак:

$$a_1(x) = 1 \cdot [x_i^1 < 1] + [x_i^1 \ge 1] \cdot \frac{1}{4}$$

2 war:

После получения алгоритма получим новую обучающую выборку: $\epsilon_i = y_i - a_1(x_i)$

$$\bar{y}_{all} = \frac{1}{6} \left[\frac{3}{4} + 3 \cdot \frac{-1}{4} \right] = 0$$

$$y_{all}^{\bar{2}} = \frac{1}{6} \left[\frac{9}{16} + \frac{3}{16} \right] = \frac{1}{8} = H(R_m)$$

Критерий	$H(R_m)$	$\mid H(R_l)$	$\mid H(R_r)$	$F(R_m, R_r, R_l)$
$[x_i^1 < 2]$	$\frac{1}{8}$	$\bar{y}_l = \frac{1}{8}$		
		$\overline{y_l^2} = \frac{5}{32}$	0	$ \frac{1}{8} - \frac{4}{6} \cdot \frac{9}{64} = \frac{1}{32} $
		$H(R_l) = \frac{10}{64} - \frac{1}{64} = \frac{9}{64}$ $\bar{y}_l = -\frac{1}{6}$		
$\left \left[x_i^2 < 1 \right] \right $	$\frac{1}{8}$	$ \bar{y}_l = -\frac{1}{6} $	$\int ar{y_r} = rac{1}{6}$	
		$ar{y_l^2} = rac{1}{24}$	$ar{y_r^2}=rac{5}{24}$	$ \frac{1}{8} - \frac{1}{2} \cdot \frac{14}{72} = \frac{1}{36} $
14		$H(R_l) = \frac{1}{24} - \frac{1}{36} = \frac{1}{72}$	$H(R_r) = \frac{5}{24} - \frac{1}{36} = \frac{13}{72}$	

Итак:

$$b_2(x) = \frac{1}{8} \cdot [x_i^1 < 2] - \frac{1}{4} \cdot [x_i^1 \ge 2]$$

 $a_2(x) = b_0(x) + b_1(x) + b_2(x) = 1 \cdot [x_i^1 < 1] + [x_i^1 \ge 1] \cdot \frac{1}{4} + \frac{1}{8} \cdot [x_i^1 < 2] - \frac{1}{4} \cdot [x_i^1 \ge 2]$

 $\it 3$ шаг: Получаем новую выборку: $\epsilon_i = y_i - a_2(x_i)$

Критерий	(,	$H(R_l)$	$H(R_r)$	$F(R_m, R_r, R_l)$
$[x_i^1 < 1]$	$\frac{3}{32}$		$\bar{y_r} = \frac{1}{16}$	
		0	$\bar{y_r^2} = \frac{17}{128}$	$\frac{3}{32} - \frac{2}{3} \cdot \frac{33}{256} = \frac{1}{128} \approx 0.0078$
			$H(R_r) = \frac{33}{256}$	
$\boxed{[x_i^2 < 1]}$	$\frac{3}{32}$	$\bar{y}_l = -\frac{1}{6}$	$\bar{y_r} = \frac{1}{6}$	
		$\bar{y_l^2} = \frac{10}{192}$	$\bar{y_r^2} = \frac{13}{96}$	$\frac{3}{32} - \frac{1}{2} \cdot \frac{1}{48} - \frac{1}{2} \cdot \frac{31}{208} \approx 0.0088$
		$H(R_l) = \frac{1}{48}$	$H(R_r) = \frac{13}{208}$	

Итак:
$$b_3(x) = -\frac{1}{6} \cdot [x_i^2 < 1] + \frac{1}{6} \cdot [x_i^2 \ge 1]$$

 $a_3(x) = b_0(x) + b_1(x) + b_2(x) + b_3(x) = 1 \cdot [x_i^1 < 1] + [x_i^1 \ge 1] \cdot \frac{1}{4} + \frac{1}{8} \cdot [x_i^1 < 2] - \frac{1}{4} \cdot [x_i^1 \ge 2] - \frac{1}{6} \cdot [x_i^2 < 1] + \frac{1}{6} \cdot [x_i^2 \ge 1]$

Результатирующий алгоритм можно представить как:

0.10 PCA

0.10.1 Задача 1

Найти две главные компоненты для набора данных:

$$X = \{(1,0), (1,1), (2,3), (4,2), (4,3), (3,2), (2,1)\}$$

Решение

Перед непосред
вственным решением задачи данные нужно нормировать и центрировать
 $X \to X^{'}.$

$$\mathbb{E}x^{(1)} = 2.43, \quad \sigma(x^{(1)}) = 1.18$$

$$\mathbb{E}x^{(2)} = 1.71, \quad \sigma(x^{(2)}) = 1$$

$$X' = \{x | x = \frac{x - \mathbb{E}x}{\sigma(x)}\} = \begin{bmatrix} -1.21 & -1.66\\ -1.21 & -0.69\\ -0.36 & 1.25\\ 1.33 & 0.28\\ 1.33 & 1.25\\ 0.49 & 0.28\\ -0.36 & -0.69 \end{bmatrix}$$

Задача покомпонентного нахождения главных компонент ставится следующим образом:

следующим образом:
$$\begin{cases} \|Xa\|_2^2 \to \max \\ \|a\|_2^2 = 1 \end{cases}$$
, где a – первая главная компонента $L = a^T X^T X a + \lambda (a^T a - 1)$

 $\nabla_a L = 2X^T X a + 2\lambda a = 0 \Rightarrow X^T X a = -\lambda a \Rightarrow$ решением этого уравнение является собственный вектор, отвечающий наибольшему (так как мы ищем максимум) собственному значению матрицы $X^T X$

Не сложно показать, что остальные главные компоненты это будут собственные вектора матрицы X^TX , следовательно нам нужно найти спектральное разложение матрицы X^TX .

Так как матрица X^TX — симметричная, то для неё существует спектральное разложение: $X^TX = UDU^T$

Итак:
$$X^T X = \begin{bmatrix} 7 & 4.83 \\ 4.83 & 7 \end{bmatrix} = \begin{bmatrix} 0.71 & -0.71 \\ 0.71 & 0.71 \end{bmatrix} \cdot \begin{bmatrix} 11.83 & 0 \\ 0 & 2.17 \end{bmatrix} \cdot \begin{bmatrix} 0.71 & 0.71 \\ -0.71 & 0.71 \end{bmatrix}$$
 (с

точностью до округлений).

Тогда
$$a_1 = (0.71, 0.71), \quad a_2 = (-0.71, 0.71)$$

0.10.2 Задача 2

Изобразить данные в проекции первых двух главных компонент

x_1	x_2	x_3
1	1	2
1	1	3
1	2	4
2	3	4
2	2	3
2	2	2
3	3	4

Решение

1) Нормируем и центрируем данные: $X \to X'$, где X':

```
[-1.02062073, -1.32287566, -1.37198868]

[-1.02062073, -1.32287566, -0.17149859]

[-1.02062073, 0. , 1.02899151]

[ 0.40824829, 1.32287566, 1.02899151]

[ 0.40824829, 0. , -0.17149859]

[ 0.40824829, 0. , -1.37198868]

[ 1.83711731, 1.32287566, 1.02899151]
```

Рис. 2: X'

2) Найдём ковариационную матрицу для данного набора: X'^TX' и представим её в виде собственного разложения (eigendecomposition): $X'^TX' = S \cdot D \cdot S^T$

$$X^{\prime T}X^{\prime} = \begin{bmatrix} 7. & , & 5.67064811, & 2.20544113] \\ [5.67064811, & 7. & , & 4.76429737] \\ [2.20544113, & 4.76429737, & 7. &] \end{bmatrix}$$

[-0.56214007, -0.62809246, 0.53805055] [15.57953725, 0. , 0.] [-0.56214007, -0.65322416, -0.50724426] [-0.65322416, -0.06182077, -0.75463659] [0. , 4.83447369, 0.] [-0.62809246, -0.06182077, 0.77567909] [-0.50724426, 0.77567909, 0.37553324] [0. , 0. , 0.58598906] [0.53805055, -0.75463659, 0.37553324]

S D S^T

Рис. 3:
$$X'^T X' = S \cdot D \cdot S^T$$

Первые 2 столбца матрицы S это и есть первые 2 главные компоненты. Заметим, что если бы мы просто хотели представить данные в новом бзисе из собственных векторов, то тогда любой вектор x мог бы быть

вектора, а α_i – и будут как раз координатами вектора x в новом базисе. Но у нас задача, представить данные, используя только 2 главные компоненты. Тогда, вполне может оказаться так, что для какого-то вектора y из исходного пространства (в данном случае \mathbb{R}^3) не будет выполняться равенство: $y = \alpha_1 \cdot s_1 + \alpha_2 \cdot s_2$.

Таким образом, переходим к задаче: найти проекцию вектора x на первые 2 главные компоненты, то есть: $||x - \alpha_1 \cdot s_1 - \alpha_2 \cdot s_2||_2 \to \min_{\alpha}$

Её можно представить в следующем эквивалентном виде:

 $\|x-S\cdot \alpha\|_2^2 \to \min_{\alpha}$, где S – матрица, по столбцам которой записаны собственные вектора, α – вектор, отвечающий за координаты вектора x в базисе s_i

$$||x - S \cdot \alpha||_2^2 = (x^T - \alpha^T S^T)(x - S\alpha) = x^T x - 2x^T S\alpha + \alpha^T S^T S\alpha \to \min_{\alpha}$$
$$\nabla_{\alpha} = -2S^T x + 2S^T S\alpha = 0 \Rightarrow \alpha = (S^T S)^{-1} S^T x$$

Заметим, что матрица S – ортогональная, а значит: $S^TS = I$ и следовательно: $\alpha = S^T x$

Итого получаем: $X'_{projection} = S^T \cdot X'^T$:

```
[-0.56214007, -0.65322416, -0.50724426]
[-0.62809246, -0.06182077, 0.77567909] · [-1.3229 -1.3229 0. 0.4082 0.4082 0.4082 1.8371]
[-1.3229 -1.3229 0. 0. 1.3229]
```

=
[2.13379953, -0.34139756]
[1.52485782, 0.58979751]
[0.05178178, 1.43921138]
[-1.6155771, 0.45996834]
[-0.14250105, -0.38944554]
[0.46644065, -1.32064061]
[-2.41880163, -0.43749353]

0.10.3 Задача 3 (Вероятностная постановка РСА)

Имеется набор точек $\{x_i\}_{i=1}^n$, $x_i \in \mathbb{R}^D$, распределённых по нормальному закону распределения:

 $x_i \in \mathcal{N}(x_i|A \cdot z_i + b, \sigma^2 \cdot I), \quad A \in \mathbb{R}^{D \times d}, z_i \in \mathbb{R}^d, b \in \mathbb{R}^D$. Требуется найти оценки параметров A, z_i, b методом максимального правдоподобия.

$$\theta = \{A, z_i, b\}$$

$$L = \prod_{i=1}^{n} p(x_i | \theta) = \prod_{i=1}^{n} \frac{1}{(2\pi)^{\frac{D}{2}} \cdot \sigma^D} \cdot \exp\{-\frac{1}{2\sigma^2} (x_i - Az_i - b)^T (x_i - Az_i - b)\} \to \max_{\theta} \log L =$$

$$-\frac{Dn}{2} \log 2\pi - D \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i^T x_i - 2x_i^T Az_i - 2x_i^T b + z_i^T A^T Az_i + 2b^T Az_i + b^T b)$$

$$\{\nabla_X a^T X b = ab^T, \quad \nabla_X a^T X^T X b = X ab^T + X ba^T\}$$

$$\nabla_{z_i} \log L = -2A^T x_i + 2A^T Az_i + 2A^T b = 0 \Rightarrow \boxed{z_i = (A^T A)^{-1} A^T (x_i - b)}$$

$$\nabla_b \log L = \sum_{i=1}^n (-2x_i + 2Az_i + 2b) = 0 \Rightarrow b = \frac{1}{n} \sum_{i=1}^n (Az_i - x_i)$$

$$\nabla_A \log L = \sum_{i=1}^n (-2x_i z_i^T + 2Az_i z_i^T + 2bz_i^T) = 0 \Rightarrow \Rightarrow$$

$$A = \left(\sum_{i=1}^{n} (x_i - b) z_i^T\right) \left(\sum_{i=1}^{n} z_i z_i^T\right)^{-1}$$

0.10.4 Задача 4

Пусть $x_1, x_2 \in \mathbb{R}^d$ и $y_1, y_2 \in \mathbb{R}^k$, $k << d: \hat{x}_1 = c + Sy_1$, $\hat{x}_2 = c + Sy_2$, S – матрица, у которой по столбцам записаны собственные векторы ковариационной матрицы нормированные (k штук). Доказать, что $\|\hat{x}_1 - \hat{x}_2\|_2^2 = \|y_1 - y_2\|_2^2$

$$||x_1 - x_2||_2^2 = (x_1 - x_2)^T (x_1 - x_2) = (Sy_1 - Sy_2)^T (Sy_1 - Sy_2) = (y_1 - y_2)^T \underbrace{S^T S}_I (y_1 - y_2) = (y_1 - y_2)^T (y_1 - y_2) = ||y_1 - y_2||_2^2$$

ЕМ алгоритм 0.11

Теория:

 \mathbb{E} - шаг: оцениваем $\mathbb{P}(Z|X,\Theta)$

 \mathbb{M} - шаг: $\Theta^* = arg \max_{\Theta} \mathbb{E}_{Z \sim \mathbb{P}(Z|X,\Theta^{old})} \log \mathbb{P}(X,Z|\Theta)$

0.11.1Задача 1

Пусть x_1, \ldots, x_N – независимая выборка из смеси

$$p(x) = \gamma \cdot p_1(x) + (1 - \gamma) \cdot p_2(x)$$
, где:

\mathbf{x}	1	2	3
$p_1(x)$	α	$1-\alpha$	0
X	1	2	3
$p_2(x)$	0	$1-\beta$	β

Выборка \mathcal{X} состоит из 30 единиц, 20 двоек и 60 троек. Провести первые 2 итерации EM-алготима из начального приближения $\gamma^{(0)} = \alpha^{(0)} = \beta^{(0)} = \frac{1}{2}$

Решение:

 $p_1(x)$ можно представить как $\alpha^{[x_i=1]} \cdot (1-\alpha)^{[x_i=2]}$

 $p_2(x)$ можно представить как $\beta^{[x_i=3]} \cdot (1-\beta)^{[x_i=2]}$

$$\mathbb{P}(\mathbb{X}, \mathbb{Z}|\Theta) = \prod_{i=1}^{N} \left[\alpha^{[x_i=1]} \cdot (1-\alpha)^{[x_i=2]} \right]^{z_i} \cdot \left[\beta^{[x_i=3]} \cdot (1-\beta)^{[x_i=2]} \right]^{1-z_i}$$

Е-шаг:

Оцениваем
$$\mathbb{P}(\mathbb{Z}|\mathbb{X},\Theta) = \prod_{i=1}^{N} \mathsf{P}(z_i|x_i,\theta)$$
, где $\theta = \{\gamma,\alpha,\beta\}$

Оцениваем
$$\mathbb{P}(\mathbb{Z}|\mathbb{X},\Theta) = \prod_{i=1}^{N} \mathsf{P}(z_i|x_i,\theta)$$
, где $\theta = \{\gamma,\alpha,\beta\}$
$$\mathsf{P}(z_i=1|x_i,\theta) = \frac{\mathsf{P}(z_i=1)\cdot\mathsf{P}(x_i|z_i=1,\theta)}{\sum\limits_{k=0}^{1}\mathsf{P}(z_i=k)\cdot\mathsf{P}(x_i|z_i=k,\theta)} = \{\mathsf{B} \text{ силу формулы Байеса}\} = \{\mathsf{B} \text{ силу формулы Байеса}\}$$

$$\frac{\gamma \cdot \alpha^{[x_i=1]} \cdot (1-\alpha)^{[x_i=2]}}{\gamma \cdot \alpha^{[x_i=1]} \cdot (1-\alpha)^{[x_i=2]} + (1-\gamma) \cdot \beta^{[x_i=3]} \cdot (1-\beta)^{[x_i=2]}}$$

$$P(z_i = 0 | x_i, \theta) = \underbrace{\frac{(1 - \gamma) \cdot \beta^{[x_i = 3]} \cdot (1 - \beta)^{[x_i = 2]}}{(1 - \gamma) \cdot \beta^{[x_i = 3]} \cdot (1 - \beta)^{[x_i = 2]} + \gamma \cdot \alpha^{[x_i = 1]} \cdot (1 - \alpha)^{[x_i = 2]}}_{a_{ij}}$$

М-шаг:

$$Q = \mathbb{E}_z \log \mathbb{P} \left(\mathbb{X}, \mathbb{Z} | \Theta \right) \to \max_{\gamma, \alpha, \beta}$$

$$Q = \mathbb{E}_{z} \left(\sum_{i=1}^{N} z_{i} \cdot \{ \log \gamma + [x_{i} = 1] \log \alpha + [x_{i} = 2] \log(1 - \alpha) \} \right) +$$

$$\mathbb{E}_{z} \left(\sum_{i=1}^{N} (1 - z_{i}) \cdot \{ \log(1 - \gamma) + [x_{i} = 2] \log(1 - \beta) + [x_{i} = 3] \log \beta \} \right) =$$

$$\{ \mathbb{E}_{z_{i}}(z_{i}) = \mathsf{P}(z_{i} = 1 | x_{i}, \theta) = g_{i1}, \mathbb{E}_{z_{i}}(1 - z_{i}) = \mathsf{P}(z_{i} = 0 | x_{i}, \theta) = g_{i0} \} =$$

$$\sum_{i=1}^{N} g_{i1} \cdot \{\log \gamma + [x_i = 1] \log \alpha + [x_i = 2] \log(1 - \alpha)\} + \sum_{i=1}^{N} g_{i0} \cdot \{\log(1 - \gamma) + [x_i = 2] \log(1 - \beta) + [x_i = 3] \log \beta\} \rightarrow \max_{\alpha, \beta, \gamma}$$

Итак:

$$Q'_{\gamma} = \sum_{i=1}^{N} \frac{g_{i1}}{\gamma} - \frac{g_{i0}}{1-\gamma} = \frac{1}{\gamma(1-\gamma)} \cdot \sum_{i=1}^{N} (g_{i1} - \gamma(g_{i1} + g_{i0})) = 0 \Rightarrow \hat{\gamma} = \frac{\sum_{i=1}^{N} g_{i1}}{\sum_{i=1}^{N} g_{i1} + g_{i0}} \Rightarrow$$

$$\hat{\gamma} = \frac{1}{N} \sum_{i=1}^{N} g_{i1}$$

$$Q'_{\alpha} = \sum_{i=1}^{N} g_{i1} \cdot \left\{ \frac{[x_{i}=1]}{\alpha} - \frac{[x_{i}=2]}{1-\alpha} \right\} = \frac{1}{\alpha(1-\alpha)} \sum_{i=1}^{N} g_{i1} \cdot ([x_{i}=1] - \alpha ([x_{i}=1] + [x_{i}=2])) = 0 \Rightarrow \hat{\alpha} = \frac{\sum_{i=1}^{N} g_{i1} \cdot [x_{i}=1]}{\sum_{i=1}^{N} g_{i1} \cdot ([x_{i}=1] + [x_{i}=2])} \Rightarrow \hat{\alpha} = \frac{\sum_{i=1}^{N} g_{i1}}{\sum_{i=1}^{N} g_{i1} \cdot ([x_{i}=1] + [x_{i}=2])} \Rightarrow \hat{\alpha} = \frac{\sum_{i=1}^{N} g_{i1}}{\sum_{i=1}^{N} g_{i1} \cdot ([x_{i}=1] + [x_{i}=2])} \Rightarrow \hat{\beta} = \frac{1}{\beta(1-\beta)} \sum_{i=1}^{N} g_{i0} \cdot ([x_{i}=3] - \beta ([x_{i}=3] + [x_{i}=2])) = 0 \Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{N} g_{i0} \cdot [x_{i}=3]}{\sum_{i=1}^{N} g_{i0} \cdot ([x_{i}=3] + [x_{i}=2])} \Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{N} g_{i0}}{\sum_{i=1}^{N} g_{i0} \cdot ([x_{i}=3] + [x_{i}=2])} \Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{N} g_{i0}}{\sum_{i=1}^{N} g_{i0} \cdot ([x_{i}=3] + [x_{i}=2])} \Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{N} g_{i0}}{\sum_{i=1}^{N} g_{i0}} \Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{N} g_{i0}}{\sum_{i=1}^{N} g_{i0} \cdot ([x_{i}=3] + [x_{i}=2])} \Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{N} g_{i0}}{\sum_{i=1}^{N} g_{i0}} \Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{N} g_{i0}}{\sum_{i=1}^{N} g_{i0} \cdot ([x_{i}=3] + [x_{i}=2])} \Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{N} g_{i0}}{\sum_{i=1}^{N} g_{i0}} \Rightarrow \hat{\beta}$$

После того, как формулы для <u>Е и М шагов получены</u> – осталось проделать 2 шага <u>ЕМ алгоритма</u>. Для этого, выразим необходимые суммы через исходные параметры:

$$\begin{split} \sum_{i=1}^{N} g_{i1} &= \sum_{x_i=1}^{a} g_{i1} + \sum_{x_i=2}^{a} g_{i1} + \sum_{x_i=3}^{a} g_{i1} \\ a &= 30 \cdot \frac{\gamma \alpha}{\gamma \alpha + (1-\gamma)} \\ b &= 20 \cdot \frac{\gamma (1-\alpha)}{\gamma (1-\alpha) + (1-\gamma)(1-\beta)} = \frac{20\gamma (1-\alpha)}{\gamma (\beta-\alpha) + 1-\beta} \\ c &= 60 \cdot \frac{\gamma}{\gamma + (1-\gamma)\beta} \\ a|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}} &= \frac{30 \cdot \frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{4} + \frac{1}{2}} = 10 \\ b|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}} &= \frac{20 \cdot \frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} + \frac{1}{4}} = 10 \\ c|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}} &= \frac{60 \cdot \frac{1}{2}}{\frac{1}{2} + \frac{1}{4}} = 40 \\ \text{Итак: } \hat{\gamma}^{(1)} &= \frac{1}{110} \cdot (10 + 10 + 40) = \frac{6}{11} \end{split}$$

$$\begin{split} \hat{\alpha}^{(1)} &= \frac{a|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}}}{a|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}} + b|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}}} = \frac{10}{10+10} = \frac{1}{2} \\ \sum_{i=1}^{N} g_{i0} &= \sum_{x_i=1}^{i} g_{i0} + \sum_{x_i=2}^{i} g_{i0} + \sum_{x_i=3}^{i} g_{i0} \\ e &= 20 \cdot \frac{(1-\gamma)(1-\beta)}{(1-\gamma)(1-\beta)+\gamma(1-\alpha)} = 20 \cdot \frac{(1-\gamma)(1-\beta)}{\gamma(\beta-\alpha)+1-\beta} \\ f &= 60 \cdot \frac{(1-\gamma)\beta}{(1-\gamma)\beta+\gamma} \\ e|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}} &= \frac{20 \cdot \frac{1}{4}}{\frac{1}{2}} = 10 \\ f|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}} &= 60 \cdot \frac{\frac{1}{4}}{\frac{1}{4}+\frac{1}{2}} = 20 \\ \text{Итак: } \hat{\beta}^{(1)} &= \frac{f|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}}}{f|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}+e|_{\gamma^{(0)},\alpha^{(0)},\beta^{(0)}}} = \frac{20}{20+10} = \frac{2}{3} \end{split}$$

После первой итерации:

$$\hat{\gamma}^{(1)} = \frac{6}{11}, \alpha^{(1)} = \frac{1}{2}, \beta^{(1)} = \frac{2}{3}$$

Вторая итерация:

Пересчет формул Е-шага:

$$\sum_{i=1}^{N} g_{i1} = \sum_{x_i=1}^{q_{i1}} g_{i1} + \sum_{x_i=2}^{q_{i1}} g_{i1} + \sum_{x_i=3}^{q_{i1}} g_{i1}$$

$$a = 30 \cdot \frac{\gamma\alpha}{\gamma\alpha + (1-\gamma)}$$

$$b = 20 \cdot \frac{\gamma(1-\alpha)}{\gamma(1-\alpha)+(1-\gamma)(1-\beta)} = \frac{20\gamma(1-\alpha)}{\gamma(\beta-\alpha)+1-\beta}$$

$$c = 60 \cdot \frac{\gamma}{\gamma}$$

$$a|_{\gamma^{(1)},\alpha^{(1)},\beta^{(1)}} = \frac{\frac{30 \cdot \frac{6}{11} \cdot \frac{1}{2}}{\frac{6}{11} \cdot \frac{1}{2} + \frac{5}{11}}}{\frac{6}{11} \cdot \frac{1}{2} + \frac{5}{11}} = \frac{45}{4}$$

$$b|_{\gamma^{(1)},\alpha^{(1)},\beta^{(1)}} = \frac{\frac{20 \cdot \frac{6}{11} \cdot \frac{1}{2}}{\frac{6}{11} \cdot (\frac{2}{3} - \frac{1}{2}) + \frac{1}{3}}}{\frac{6}{11} \cdot \frac{1}{3} - \frac{270}{7}}$$

$$c|_{\gamma^{(1)},\alpha^{(1)},\beta^{(1)}} = 60 \cdot \frac{\frac{6}{11}}{\frac{6}{11} + \frac{5}{11} \cdot \frac{2}{3}} = \frac{270}{7}$$

$$\sum_{i=1}^{N} g_{i0} = \sum_{x_i=1}^{q_{i0}} g_{i0} + \sum_{x_i=2}^{q_{i0}} g_{i0} + \sum_{x_i=3}^{q_{i0}} g_{i0}$$

$$e = 20 \cdot \frac{(1-\gamma)(1-\beta)}{(1-\gamma)(1-\beta)+\gamma(1-\alpha)} = 20 \cdot \frac{(1-\gamma)(1-\beta)}{\gamma(\beta-\alpha)+1-\beta}$$

$$f = 60 \cdot \frac{(1-\gamma)\beta}{(1-\gamma)\beta+\gamma}$$

$$e|_{\gamma^{(1)},\alpha^{(1)},\beta^{(1)}} = \frac{\frac{20 \cdot \frac{5}{11} \cdot \frac{1}{3}}{\frac{6}{11} \cdot \frac{1}{6} + \frac{1}{3}}}{\frac{60 \cdot \frac{5}{11} \cdot \frac{2}{3}}{\frac{1}{11} \cdot \frac{2}{3} + \frac{60}{11}}} = \frac{150}{7}$$
Пересчёт формул М-Шага:
$$\hat{\gamma}^{(2)} = \frac{1}{110} \cdot (\frac{45}{4} + \frac{90}{7} + \frac{270}{7}) = \frac{1755}{28 \cdot 110} \approx 0.5698$$

$$\hat{\alpha}^{(2)} = \frac{a|_{\gamma^{(1)},\alpha^{(1)},\beta^{(1)}}}{a|_{\gamma^{(1)},\alpha^{(1)},\beta^{(1)}} + b|_{\gamma^{(1)},\alpha^{(1)},\beta^{(1)}}} = \frac{\frac{45}{4}}{\frac{45}{4} + \frac{90}{7}} = \frac{63}{135}$$

$$\hat{\beta}^{(2)} = \frac{e|_{\gamma^{(1)},\alpha^{(1)},\beta^{(1)}}}{e|_{\gamma^{(1)},\alpha^{(1)},\beta^{(1)}} + f|_{\gamma^{(1)},\alpha^{(1)},\beta^{(1)}}} = \frac{\frac{50}{7}}{\frac{50}{7} + \frac{150}{7}} = \frac{1}{4}$$
После второй итерации:

$$\gamma^{(2)} = \frac{1755}{3080}, \hat{\alpha}^{(2)} = \frac{63}{135}, \hat{\beta}^{(2)} = \frac{1}{4}$$