Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema. Esse passo é fundamental para fixar bem o conteúdo apresentado na Web Aula e preparar-se para os Exercícios Propostos.

Em uma prova de múltipla escolha, cada questão tem 5 alternativas, sendo apenas uma delas correta. Ao não saber a resposta, o aluno "chuta" aleatoriamente uma resposta qualquer entre as possíveis escolhas. Levando-se em conta um aluno mediano, que saiba 60% do conteúdo, qual será a chance de ele acertar uma das 5 questões escolhida aleatoriamente? E qual a chance de ele acertar exatamente 3 questões?

Enunciado

Em uma prova de múltipla escolha, cada questão tem 5 alternativas, sendo apenas uma delas correta. Ao não saber a resposta, o aluno "chuta" aleatoriamente uma resposta qualquer entre as possíveis escolhas. Levando-se em conta um aluno mediano, que saiba 60% do conteúdo, qual será a chance de ele acertar uma das 5 questões escolhida aleatoriamente? E qual a chance de ele acertar exatamente 3 questões?

Solução

Este problema consiste em calcular a probabilidade incondicional de um aluno acertar uma questão qualquer. Isto é, sem saber se ele domina ou não o conteúdo, qual é a chance de acertar uma questão?

Para resolver este exercício, portanto, você deve aplicar o teorema da *Probabilidade Total*.

Considere os eventos:

A = acertar

B = saber o conteúdo

 \bar{B} = não saber o conteúdo e, portanto, "chutar" uma alternativa

Assuma que, se o aluno sabe o conteúdo, ele tem 100% de probabilidade de acertar a questão considerada. Se ele não domina o assunto, "chutará" uma resposta, com 20% de chance de acertar – pois há 5 alternativas possíveis.

Então, temos:

$$P(A) = P(B).P(A|B) + P(\bar{B}).P(A|\bar{B})$$

 $P(A) = 0.6 \times 1.0 + 0.4 \times 0.2 = 0.68$

Para calcular a chance de o aluno acertar exatamente 3 questões, vamos utilizar a informação obtida na primeira parte do exercício.

Essa chance será calculada multiplicando a chance de ele acertar 3 questões multiplicada pela chance de errar 2 questões multiplicada pelo número possível de combinações com 3 questões certas e 2 erradas. Utilizando o que você aprendeu sobre regra do produto e os conhecimentos que já possuía sobre combinações temos:

$$(0.68)^3 * (1 - 0.68)^2 * {5 \choose 3} = 0.314432 * 0.1024 * 10 \cong 0.321978$$

Determinado veículo pode ter problemas mecânicos ou elétricos. Se ele tiver problemas mecânicos, não para, mas se tiver problema elétrico tem de parar imediatamente. A chance de esse veículo ter problemas mecânicos é de 0,2. Já a chance do mesmo veículo ter problemas elétricos é de 0,15 se não houve problema mecânico precedente, e de 0,25 se houve problema mecânico precedente. Agora, calcule:

- a) Qual é a probabilidade de o veículo parar em determinado dia?
- b) Se o veículo parou em certo dia, qual a chance de que tenha havido defeito mecânico?
- c) Qual é a probabilidade de que tenha havido defeito mecânico em determinado dia se o veículo não parou nesse dia?

Enunciado

Determinado veículo pode ter problemas mecânicos ou elétricos. Se ele tiver problemas mecânicos, não para, mas se tiver problema elétrico tem de parar imediatamente. A chance de esse veículo ter problemas mecânicos é de 0,2. Já a chance do mesmo veículo ter problemas elétricos é de 0,15 se não houve problema mecânico precedente, e de 0,25 se houve problema mecânico precedente. Agora, calcule:

- a) Qual é a probabilidade de o *veículo* parar em determinado dia?
- b) Se o veículo parou em certo dia, qual a chance de que tenha havido defeito mecânico?
- c) Qual é a probabilidade de que tenha havido defeito mecânico em determinado dia se o veículo não parou nesse dia?

Solução

Considere os eventos:

M = ter problema mecânico

E = ter problema elétrico

São dadas as informações:

$$P(M) = 0.2$$

$$P(E|\bar{M}) = 0.15$$

$$P(E|M) = 0.25$$

Vamos verificar cada um dos itens:

a) O veículo somente vai parar se tiver problema elétrico. Então, precisamos calcular a *Probabilidade Total* de ocorrer defeito elétrico, independentemente de ter havido ou não defeito mecânico.

$$P(E) = P(M).P(E|M) + P(\overline{M}).P(E|\overline{M})$$

$$P(E) = 0.2 \times 0.25 + 0.8 \times 0.15 = 0.17$$

b) Devemos calcular a probabilidade de ter havido defeito mecânico *condicionada* ao fato de sabermos que o veículo parou (lembre-se que o veículo para quando há defeito elétrico). Isso é feito por meio do *Teorema de Bayes*.

$$P(M|E) = \frac{P(M).P(E|M)}{P(E)} = \frac{0.2 \times 0.25}{0.17} \approx 0.294$$

Observe que P(E) é a *Probabilidade Total*, calculada no item anterior.

c) Mais uma vez, vamos utilizar o Teorema de Bayes para calcular a probabilidade de que tenha havido problema mecânico, dado que não houve defeito elétrico.

$$P(M|\bar{E}) = \frac{P(M).P(\bar{E}|M)}{P(\bar{E})}$$

A probabilidade de não haver defeito elétrico é dada pela propriedade do evento complementar:

$$P(\bar{E}) = 1 - P(E) = 1 - 0.17 = 0.83$$

Agora vamos calcular a probabilidade de não haver defeito elétrico, dado que houve defeito mecânico. Considerando o espaço amostral de todos os eventos que podem ocorrer, *dado que houve defeito mecânico*, sabemos que a chance de haver defeito elétrico é P(E|M) = 0.25. A chance de não haver defeito elétrico será, portanto, o complementar do evento E em relação a este espaço amostral.

$$P(\bar{E}|M) = 1 - P(E|M) = 1 - 0.25 = 0.75$$

Substituindo na expressão do Teorema de Bayes, temos:

$$P(M|\bar{E}) = \frac{P(M).P(\bar{E}|M)}{P(\bar{E})} = \frac{0.2 \times 0.75}{0.83} \cong 0.181$$

Alberto diz que pode prever o futuro das colheitas. A comunidade em que ele vive, interessadíssima nesses poderes, se mobilizou para verificar o fato. Foi averiguado que ele acerta 80% das vezes em que diz que os tomates não vão germinar e 90% das vezes em que diz que os tomates vão germinar. Os tomates não germinam em 10% das colheitas. Se Alberto anunciar a perda da colheita, qual é a probabilidade real de que eles não germinem?

Enunciado

Alberto diz que pode prever o futuro das colheitas. A comunidade em que ele vive, interessadíssima nesses poderes, se mobilizou para verificar o fato. Foi averiguado que ele acerta 80% das vezes em que diz que os tomates não vão germinar e 90% das vezes em que diz que os tomates vão germinar. Os tomates não germinam em 10% das colheitas. Se Alberto anunciar a perda da colheita, qual é a probabilidade real de que eles não germinem?

Solução

A maior dificuldade deste exercício é identificar os eventos relevantes. Sejam:

A = haver previsão de perda

 $B = \text{haver } perda \ real \ \text{da colheita}$

O que queremos saber é a probabilidade de haver perda da colheita, dado que houve previsão de perda. Esse cálculo é feito pelo Teorema de Bayes:

$$P(B|A) = \frac{P(B).P(A|B)}{P(A)}$$

A probabilidade de haver previsão de perda da colheita, tendo de fato havido perda, nada mais é que a probabilidade de acertar previsão de perda. E este valor é fornecido no enunciado

$$P(A|B) = 0.8$$

A probabilidade de haver previsão de perda, independentemente de acertar ou não, é calculada pela *Probabilidade Total*.

$$P(A) = P(B).P(A|B) + P(\overline{B}).P(A|\overline{B})$$

$$P(A) = 0.1 \times 0.8 + 0.9 \times 0.1 = 0.17$$

Atenção: $P(A|\overline{B})$ é a probabilidade de haver previsão de perda, mas, na realidade, não haver perda real, ou seja, 0,1.

Então, substituindo na expressão do Teorema de Bayes, temos:

$$P(B|A) = \frac{0.1 \times 0.8}{0.17} \cong 0.4706$$

Jack é um empresário conhecido por ser muito cauteloso com relação a suas informações. Ele tem um registro minucioso da composição de cada área de sua empresa e sabe que:

Área/Departamento	Executivo sênior	Executivo pleno	Executivo júnior
Financeiro	2	3	4
Advocacia	3	2	2
Contabilidade	4	1	1

Jack resolve visitar de surpresa um dos departamentos, escolhendo aleatoriamente um deles e consegue identificar de modo imediato dois executivos. Um deles é sênior e o outro, júnior. Assuma que os três departamentos são igualmente prováveis de serem visitados (as portas das salas são idênticas e equiprováveis). Com base nesses dados, calcule:

- a) Qual é a chance de Jack visitar a área financeira?
- b) Qual é a chance de a visita não ser na área de advocacia?
- c) Qual é a chance de ser o departamento de contabilidade o visitado?
- d) Qual é a probabilidade de avistar um executivo júnior e um sênior no espaço amostral considerado?

Enunciado

Jack é um empresário conhecido por ser muito cauteloso com relação a suas informações. Ele tem um registro minucioso da composição de cada área de sua empresa e sabe que:

Área/Departamento	Executivo sênior	Executivo pleno	Executivo júnior
Financeiro	2	3	4
Advocacia	3	2	2
Contabilidade	4	1	1

Jack resolve visitar de surpresa um dos departamentos, escolhendo aleatoriamente um deles e consegue identificar de modo imediato dois executivos. Um deles é sênior e o outro, júnior. Assuma que os três departamentos são igualmente prováveis de serem visitados (as portas das salas são idênticas e equiprováveis). Com base nesses dados, calcule:

- a) Qual é a chance de Jack visitar a área financeira?
- b) Qual é a chance de a visita *não* ser na área de advocacia?
- c) Qual é a chance de ser o departamento de contabilidade o visitado?
- d) Qual é a probabilidade de avistar um executivo júnior e um sênior no espaço amostral considerado?

Solução

Vamos calcular as probabilidades de ser cada um dos três departamentos. Considere os eventos:

F = ser o departamento financeiro.

A = ser o departamento de advocacia.

C = ser o departamento de contabilidade.

S = ser executivo sênior

P = ser executivo pleno

J = ser executivo júnior

Queremos calcular a probabilidade de ter sido avistado determinado departamento dado que nele havia um executivo sênior e um júnior. Esse cálculo é feito por meio do Teorema de Bayes. Observe para o caso do departamento financeiro:

$$P(F|S\cap J) = \frac{P(F).P(S\cap J|F)}{P(S\cap J)}$$

P(F) é dada e $P(S \cap J|F)$ é calculada pela Regra do Produto:

 $P(S \cap J|F) = P(S).P(J|S) + P(J).P(S|J)$, no departamento financeiro

$$P(S \cap J|F) = \frac{2}{9} \cdot \frac{4}{8} + \frac{4}{9} \cdot \frac{2}{8} = 2 \cdot \frac{2}{9} \cdot \frac{4}{8} = \frac{2}{9}$$

Para os outros dois departamentos, o raciocínio é o mesmo:

$$P(S \cap J|A) = P(S).P(J|S) + P(J).P(S|J)$$
, no departamento de advocacia

$$P(S \cap J|C) = P(S).P(J|S) + P(J).P(S|J)$$
, no departamento de contabilidade

$$P(S \cap J|A) = \frac{3}{7} \cdot \frac{2}{6} + \frac{2}{7} \cdot \frac{3}{6} = 2 \cdot \frac{3}{7} \cdot \frac{2}{6} = \frac{2}{7}$$

$$P(S \cap J|C) = \frac{4}{6} \cdot \frac{1}{5} + \frac{1}{6} \cdot \frac{4}{5} = 2 \cdot \frac{4}{6} \cdot \frac{1}{5} = \frac{4}{15}$$

 $P(S \cap J)$ é a probabilidade de haver um executivo sênior e um júnior, independentemente de qual departamento seja considerado. Portanto, será obtida pela Probabilidade Total.

$$P(S \cap J) = P(F).P(S \cap J|F) + P(A).P(S \cap J|A) + P(C).P(S \cap J|C)$$
$$= \frac{1}{3} \cdot \frac{2}{9} + \frac{1}{3} \cdot \frac{2}{7} + \frac{1}{3} \cdot \frac{4}{15} = \frac{244}{945}$$

Assim, substituindo os valores calculados anteriormente na expressão do Teorema de Bayes, temos:

$$P(F|S \cap J) = \frac{P(F).P(S \cap J|F)}{P(S \cap J)} = \frac{\frac{1}{3} \cdot \frac{2}{9}}{\frac{244}{945}} = \frac{35}{122}$$

$$P(A|S \cap J) = \frac{P(A) \cdot P(S \cap J|A)}{P(S \cap J)} = \frac{\frac{1}{3} \cdot \frac{2}{7}}{\frac{244}{945}} = \frac{45}{122}$$

$$P(C|S \cap J) = \frac{P(C).P(S \cap J|C)}{P(S \cap J)} = \frac{\frac{1}{3} \cdot \frac{4}{15}}{\frac{244}{945}} = \frac{42}{122}$$

Agora podemos responder às alternativas:

a) A chance de ser a área financeira é de 35/122. Como foi calculado:

$$P(F|S \cap J) = \frac{35}{122}$$

b) Calculamos *anteriormente* a probabilidade de ser a área de advocacia, dado que foram avistados um executivo sênior e um júnior. A probabilidade de não ser a área de advocacia é obtida pela propriedade do evento complementar

$$P(\bar{A}|S \cap J) = 1 - P(A|S \cap J) = 1 - \frac{45}{122} = \frac{77}{122} \approx 0.63$$

A chance de ser o departamento de contabilidade é de 42/122. Como calculamos anteriormente

$$P(C|S \cap J) = \frac{42}{122}$$

c) A probabilidade de se avistar um executivo júnior e um sênior, independentemente do departamento considerado, foi calculada por meio da Probabilidade Total.

$$P(S \cap J) = P(F).P(S \cap J|F) + P(A).P(S \cap J|A) + P(C).P(S \cap J|C)$$
$$= \frac{1}{3} \cdot \frac{2}{9} + \frac{1}{3} \cdot \frac{2}{7} + \frac{1}{3} \cdot \frac{4}{15} = \frac{244}{945} \approx 0,2582$$

No lançamento de dois dados simultaneamente, se as faces mostrarem números diferentes, qual é a probabilidade de que uma face seja o número 2?

Enunciado

No lançamento de dois dados simultaneamente, se as faces mostrarem números diferentes, qual é a probabilidade de que uma face seja o número 2?

Solução

Considere os eventos:

A =sair pelo menos uma face 2

B = saı́rem duas faces differentes

Este é mais um exercício que você pode resolver listando todos os resultados possíveis contidos no espaço amostral. Porém, para ser coerente com o conteúdo desta Unidade, vamos associar este problema ao *Teorema de Bayes*, que vai nos permitir calcular a probabilidade de sair uma face 2 *condicionada* ao fato de que as faces são diferentes.

O que queremos calcular é

$$P(A|B) = \frac{P(A).P(B|A)}{P(B)}$$

P(A) é a probabilidade de sair pelo menos uma face 2, e os eventos favoráveis estão marcados em azul na tabela a seguir.

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

P(B) é a probabilidade de saírem duas faces diferentes, e os eventos favoráveis estão marcados em vermelho na tabela a seguir.

P(B|A) é a probabilidade de saírem duas faces diferentes, dado que saiu pelo menos uma face 2. Os eventos favoráveis estão marcados em verde na tabela a seguir e o espaço amostral considerado, em azul.

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Portanto, temos:

$$P(A) = \frac{11}{36}$$
 $P(B) = \frac{30}{36}$ $P(B|A) = \frac{10}{11}$

Substituindo na expressão do Teorema de Bayes, temos:

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)} = \frac{\frac{11}{36} \cdot \frac{10}{11}}{\frac{30}{36}} = \frac{10}{36} \cdot \frac{36}{30} = \frac{1}{3}$$

Que tal confirmarmos nosso resultado utilizando simplesmente a definição clássica? Como o espaço amostral foi desenhado durante o exercício, isso vai ser fácil.

Temos 36 resultados possíveis quando jogamos dois dados (ilustrados anteriormente). No entanto, podemos facilmente contar que são 6 resultados em que os números que saem são iguais. Portanto, nosso espaço amostral fica reduzido a 30 resultados possíveis.

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Também podemos facilmente contar o número de resultados que tenham números diferentes na face dos dados e contenham o número 2. São 10 resultados favoráveis.

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Pronto, agora é só fazer casos favoráveis sobre casos possíveis.

$$P = \frac{10}{30} = \frac{1}{3}$$

Quando tratamos de doenças sérias, muitos médicos pedem ao paciente que tenha apresentado diagnóstico positivo em determinado exame que o refaça em outro laboratório para confirmar tal resultado. Imaginando essa situação, crie hipoteticamente dois laboratórios: o laboratório A, que dá resultado positivo para 80% dos portadores da doença e resultado positivo para 10% dos sãos. O laboratório B dá resultado positivo para 70% dos portadores da doença e resultado positivo para 5% dos sãos. Imaginando que a chance de um indivíduo qualquer ter essa doença é de 15% e que os resultados dos laboratórios são independentes tanto para indivíduos doentes como para indivíduos sãos:

- a) Qual é a chance de um indivíduo qualquer obter resultado positivo pelos dois laboratórios?
- b) Se um indivíduo enfermo fizer teste em somente um laboratório (considere que a chance de ser o laboratório A é igual a chance de ser o B), qual é a chance de obter resultado negativo?
- c) Qual é a chance de um indivíduo enfermo ter sua doença detectada se fizer os testes nos dois laboratórios?
- d) Aqui a pergunta provável poderia ser: Se 2 doentes fizerem os testes nos 2 laboratórios, qual seria a chance de a doença ser detectada em pelo menos um dos 4 exames?

Enunciado

Quando tratamos de doenças sérias, muitos médicos pedem ao paciente que tenha apresentado diagnóstico positivo em determinado exame que o refaça em outro laboratório para confirmar tal resultado. Imaginando essa situação, crie hipoteticamente dois laboratórios: o laboratório A, que dá resultado positivo para 80% dos portadores da doença e resultado positivo para 10% dos sãos. O laboratório B dá resultado positivo para 70% dos portadores da doença e resultado positivo para 5% dos sãos. Imaginando que a chance de um indivíduo qualquer ter essa doença é de 15% e que os resultados dos laboratórios são independentes tanto para indivíduos doentes como para indivíduos sãos:

- a) Qual é a chance de um indivíduo qualquer obter resultado positivo pelos dois laboratórios?
- b) Se um indivíduo enfermo fizer teste em somente um laboratório (considere que a chance de ser o laboratório *A* é igual a chance de ser o *B*), qual é a chance de obter resultado negativo?
- c) Qual é a chance de um indivíduo enfermo ter sua doença detectada se fizer os testes nos dois laboratórios?
- d) Aqui a pergunta provável poderia ser: Se 2 doentes fizerem os testes nos 2 laboratórios, qual seria a chance de a doença ser detectada em pelo menos um dos 4 exames?

Solução

a) A probabilidade de um indivíduo obter resultado positivo nos dois laboratórios, independentemente de ser ou não portador da doença, nada mais é do que a probabilidade total de ocorrência do evento E = "resultado positivo".

$$P(E) = P(D).P(E_A|D).P(E_B|D) + P(S).P(E_A|S).P(E_B|S)$$

Onde:

P(D) = probabilidade de ser um "indivíduo portador" = 0,15

P(S) = probabilidade de ser um "indivíduo são" = 0,85

 $P(E_A|D)$ = probabilidade de termos "resultado positivo no laboratório A, dado que o indivíduo é portador" = 0,8

 $P(E_B|D)$ = probabilidade de termos "resultado positivo no laboratório B, dado que o indivíduo é portador" = 0,7

 $P(E_A|S)$ = probabilidade de termos "resultado positivo no laboratório A, dado que o indivíduo é são" = 0,1

 $P(E_B|S)$ = probabilidade de termos "resultado positivo no laboratório B, dado que o indivíduo é são" = 0,05

$$P(E) = 0.15 \times 0.80 \times 0.70 + 0.85 \times 0.10 \times 0.05 = 0.08825$$

Portanto, a chance de um indivíduo qualquer fornecer resultado positivo pelos 2 laboratórios é próxima de 0,09.

b) Para calcular a probabilidade de o teste falhar, independentemente da escolha do laboratório, aplicamos a Probabilidade Total.

Seja F o evento "falha no teste", então:

$$P(F|D) = P(A|D) \cdot P(F|A \cap D) + P(B) \cdot P(F|B \cap D) P(D|D) = 0.5 \times 0.2 + 0.5 \times 0.3 = 0.25$$

c) A forma mais simples de resolver é por meio do evento complementar. A doença será detectada se *algum* dos testes acusar a enfermidade. Portanto, vamos calcular a probabilidade de nenhum dos laboratórios detectar a doença. Depois, vamos aplicar a probabilidade do evento complementar.

Seja G o evento "a doença ser detectada", G_A = "a doença ser detectada no laboratório A" e G_B = "a doença ser detectada no laboratório B".

$$P(\overline{G}) = P(\overline{G_A} \cap \overline{G_B}) = P(\overline{G_A}) \cdot P(\overline{G_B}) = 0.20 \times 0.30 = 0.06$$

Assim, a probabilidade de a doença ser detectada é:

$$P(G) = 1 - P(\bar{G}) = 1 - 0.06 = 0.94$$

d) Para a doença *não* ser detectada de forma alguma (vamos chamar de evento *H*), os testes devem falhar no laboratório A *e* no laboratório B para *ambos os pacientes*. Então, nada mais é do que uma Regra do Produto aplicada duas vezes.

Portanto, a probabilidade de a doença ser detectada é dada pelo evento complementar àquele cuja probabilidade foi calculada anteriormente

$$P(\overline{H}) = 1 - P(H) = 1 - 0.0036 = 0.9964$$

Em dias muito frios a chance de os funcionários de uma indústria faltarem ao trabalho é de 0,06. Já em dias normais, ela é igual a 0,01. Em 1/5 dos dias faz muito frio. Qual é a probabilidade de 1 funcionário não ter faltado em um dia qualquer?

Enunciado

Em dias muito frios a chance de os funcionários de uma indústria faltarem ao trabalho é de 0,06. Já em dias normais, ela é igual a 0,01. Em 1/5 dos dias faz muito frio. Qual é a probabilidade de 1 funcionário não ter faltado em um dia qualquer?

Solução

Embora seja muito simples, este exercício é importante para que você possa verificar uma aplicação direta do Teorema da Probabilidade Total.

Queremos calcular a chance de 1 funcionário não faltar em determinado dia, independentemente de ter feito frio ou não.

Sejam os eventos:

F = dia frio

N = dia normal

$$P(falta) = P(F).P(falta|F) + P(N).P(falta|N)$$

 $P(falta) = 0.20 \times 0.06 + 0.80 \times 0.01 = 0.012 + 0.008 = 0.02$

Então, a probabilidade de não haver falta é dada pelo evento complementar:

$$P(n\tilde{a}o\ faltar) = 1 - P(faltar) = 1 - 0.02 = 0.98$$

Em um saco existem 4 dados, dos quais 2 são normais, um deles apresenta números pares em 75% das jogadas, e o último tem somente números pares. Escolhendo aleatoriamente um dos dados e jogando-o 2 vezes obtém-se 2 números pares. Qual é a chance de ter sido escolhido um dado normal?"

Enunciado

Em um saco existem 4 dados, dos quais 2 são normais, um deles apresenta números pares em 75% das jogadas, e o último tem somente números pares. Escolhendo aleatoriamente um dos dados e jogando-o 2 vezes obtém-se 2 números pares. Qual é a chance de ter sido escolhido um dado normal?"

Solução

Este problema é resolvido pela aplicação direta do Teorema de Bayes. Queremos a probabilidade de ter sido escolhido 1 dado normal (chamaremos de evento *A*), dado que foram obtidos 2 números pares nas 2 jogadas (chamaremos de evento *B*). Então:

$$P(A|B) = \frac{P(A).P(B|A)}{P(B)}$$

P(A) é a probabilidade de se escolher 1 dado normal e é igual a $\frac{1}{2}$, pois existem 2 dados normais em 4 possíveis.

P(B|A) é a probabilidade de saírem 2 números pares, considerando que foi escolhido 1 dado normal. Os resultados dos dados — condicionalmente ao dado que foi retirado — são independentes. Assim, podemos aplicar a regra do produto, o que nos dá, então:

$$P(B|A) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

P(B) é a probabilidade de saírem 2 números pares, independentemente de qual dado tenha sido escolhido. Pela Probabilidade Total, sendo E = "escolher o dado com 75% de chance de sair número par" e F = "escolher o dado somente com números pares":

$$P(B) = P(A).P(B|A) + P(E).P(B|E) + P(F).P(B|F)$$

$$P(B) = \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot 1 = \frac{33}{64}$$

Substituindo na expressão do Teorema de Bayes, temos:

$$P(A|B) = \frac{P(A).P(B|A)}{P(B)} = \frac{\frac{1}{2} \cdot \frac{1}{4}}{\frac{33}{64}} = \frac{1}{8} \cdot \frac{64}{33} = \frac{8}{33}$$