Theory of Computation, Fall 2021 Assignment 4 (Due October 29 Friday 9:35am)

Q1. [2, Exercise 2.4.5] Use pumping theorem to show that the language $\{ww^R: w \in \{a,b\}^*\}$ is not regular.

true. pi geonhol e a loop

Q2. Let M be a DFA. Let p be the number of states in M. Is the following statement true of false? Briefly explain your answer.

If L(M) has a string w with $|w| \ge p$, then L(M) must be infinite (That is, L(M) contains an infinite number of strings).

Q3. [2, Problem 3.1.3 and 3.1.9] Construct context-free grammars that generate each of the following languages. Your grammars should have as few rules as possible.

- (a) $\{w \in \{a, b\}^* : w = w^R\}$
- S\to aSa
- S\to bSb S\to e

- (b) $\{a^m b^n : m \ge n\}$
- S\to aSb
- S\to aS S\to e
- Q4. Let $N=(K,\Sigma,\Delta,s,F)$ be an NFA. Construct a PDA $P=(K',\Sigma,\Gamma,\Delta',s',F')$ such that L(P)=L(N). do not operate stack
- Q5. [2, Problem 3.3.2] Construct a PDA that accepts $\{w \in \{a,b\}^* : w \text{ has twice as many } b$'s as a's $\}$. (Hint: use the stack to track the value of B-2A where B (A, resp.) is the number of b's (a's, resp.) that have already been read by the PDA.)
- Q6. Convert the CFG you constructed for Q3(a) to an equivalent PDA. You should strictly follow the construction we used in the class.

References

- [1] Sipser M.. Introduction to the Theory of Computation. CENGAGE Learning (2013)
- [2] Lewis H., Papadimitriou C.. Elements of the Theory of Computation. Prentice-Gall (1998)