DEFLECTION OF BEAMS

Elastic Curve: Deformed Axis of loaded beam.

Deflection (δ): Vertical Distance of a point on a loaded beam. $\delta = f(x)$

Slope (θ): Angle made by a tangent with horizontal axis. $\theta = f(x)$

Any Design			
Strength Based Design	Stiffness Based Design		
$\sigma \le \sigma_{\text{Allowable}}$	Less Stiffness <=> More Deflection		
$ au \leq au_{ m Allowable}$	$\delta \leq \delta_{ m Allowable}$		
(For Safe Design) (For Safe Design)			

Standard Building Code: Permissible Deflection of beam, $\delta_{max} = (1/360) L_{Span}$

Design any object which looks like rigid body ($\delta = 0$).

Differential Equation of elastic Curve:

Assumptions:

- 1) Curvature (K=1/R) is small ==> Stresses are within elastic limit
- 2) Hook's Law is valid.
- 3) Material is homogenous and isotropic.

 $y = Deflection = \delta$

 $\theta = \text{Slope} = \text{dy} / \text{dx} = \text{y'}$

 $d^2y/dx^2 = 1 / R = K = M / (EI) =$ Differential Equation of elastic curve.

EI y'' = M

Simply Supported Beam Subjected to pure bending: $y_{max} = L^2 / (8R) = ML^2 / (8EI)$

Cantilever Beam Subjected to pure bending: $v_{max} = L^2 / (2R) = ML^2 / (2EI)$

Simply Supported Beam Subjected Temperature difference: $K = 1/R = \alpha \Delta T/h$

Double Integration method:

Sign Convention:

- 1) **Deflection** is negative when water is falling.
- 2) **Slope** is negative when water is falling.

EI y'' = M ==>Single integration gives slope, double integration gives deflection, constants can be obtained from boundary conditions.

Notes: 1) Hinge/roller Supports: Only restricts **deflection**.

2) Fixed Support: Restricts both slopes and deflections.

If Loding is discontinuous on beam, beam is divided into segments at each discontinuity and write saperate moment equation for each segment.

Disadvantage: If bending moment is not smooth function of "x", find differential equation for each segment.

Advantage: When EI \neq Constant, it's very useful. And it gives full function to find θ , δ along a long.

Macaulay's Method:

Finding Global Bending moment equation

Rules: 1) B.M Equation to be written for the last segment of the beam.

- 2) If load is acting only part of the section, write distance in special bracket "< x a >".
- 3) If negative term comes in special bracket, Ignore the entire term.
- 4) If couple is present in part of the beam, it is to be multiplied with a distance raised to power zero.
- 5) If distributed load is present on part of the beam, it must be extended till last segment and must be compensated by introducing equal and opposite load.
 - 6) Quantity in the special bracket ($\langle x a \rangle$) integrated as whole.

Advantage: Useful for finding θ , δ at multiple location.

Moment Area Method:

Useful for finding θ , δ at specified location.

Theorem 1 (Slope): Area of curvature diagram (M/EI Diagram) between two points is equal to change in slope.

$$\theta_b - \theta_a = \int_a^b \frac{M}{EI} dx$$
 = Area of M/EI diagram between points AB

= (1/EI) (Area of M diagram between points A&B)

<u>Theorem 2 (Deflection)</u>: In elastic curve AB, the vertical distance of point "B" from the tangent to the elastic curve at "A" ($t_{B/A}$) is equal to 1st moment of (M/EI) diagram between A & B taken moment about B.

 $t_{X/Y} = t_{V/T}$ = tangential deviation of "X" with respect to "Y"

- = vertical distance form "X"
- = tangent at "Y"
- = area between "X" and "Y"
- = moment about "X"

Formula of Area and Centroid from the Book. (Rectangle, Triangle, Parabola, 3rd degree Parabola)

Note: Draw Bending Moment by parts either from left / right.

Conjugate Beam Method (CB):

Imaginary beam with same **length** of real beam but the **load** on the C.B is "M/EI" diagram of loads on real beam.

Slope at any section of R.B. = Shear Force at that section on C.B.

Deflection any section of R.B. = Bending Moment at that section on C.B.

Real Beam	Conjugate Beam
At the End Hinge/ Roller Support	At the End Hinge/ Roller Support
At the End Fixed Support	At the End Free Support
Inertial / Internal Hinge	Intermediate Hinge

Method of Superposition:

It depends on principal of superposition.

Principal of Superposition: If the response of the structure is linear then effects of several loads acting simultaneously can be obtained by adding effects of individual loads.

Response ==> Linear Eg. Cant's use to find strain energy

Cause \propto Effect Eg. W (Load) $\propto \delta$, θ

Loading	$\mathbf{M}_{\mathbf{max}}$	$\theta_{\text{max}} = \mathbf{M}_{\text{max}} \mathbf{L} / \mathbf{nEI}$	$\delta_{max} = n \theta_{max} L$
M ₀	М	Here n = 1, ML / EI	Here $n = 1/2$, $ML^2 / 2EI$
A Beam L X Feee end Fixed end	WL	Here $n = 2$, $WL^2 / 2EI$	Here $n = 2/3$, WL ³ / 3EI
w L	WL ² / 2	Here $n = 3$, $WL^{3} / 6EI$	Here $n = 3/4$, $WL^4 / 8EI$
W T T T T T T T T T T T T T T T T T T T	$WL^2/6$	Here $n = 4$, $WL^{3} / 24EI$	Here $n = 4/5$, WL ⁴ / 30EI
L			

For Cantilever end: θ_{max} , δ_{max} at free end.

For Simply Supported Beam: θ_{max} at the support.

Strain Energy Method:

Castigliano's Theorem: Used to find deflection of flames

Γ	$\partial U / \partial P_i = \delta_i$	$U = \int_{a}^{L} \frac{M2}{a} dx$	
	$\partial U / \partial M_i = \theta_i$	$O = J_0$ 2EI ux	

Maxwell's Law of Reciprocal deflection:

Clerk-Maxwell's reciprocal theorem state that in a linearly elastic structure, the deflection at any point C due to a load applied at some other point D will be equal to the deflection at C when the same load is applied at D. $\delta_{CD} = \delta_{DC}$

Cantilever Beams		
EI = Constant	EI ≠ Constant	
Method of superposition	Area Moment Method	

For Frames Use Strain Energy Methods

Simply Supported Beams/ Over Hang Beams				
Symmetric Loading	Non-Symmetric Loading			
Area moment method	EI = Constant	EI ≠ Constant		
	Macaulay's Method	Differential Equation		