1 (a) The Young modulus of the metal of a wire is 1.8×10^{11} Pa. The wire is extended and the strain produced is 8.2×10^{-4} . Calculate the stress in GPa.

stress =GPa [2]

- (b) An electromagnetic wave has frequency 12THz.
 - (i) Calculate the wavelength in μ m.

(c) An object B is on a horizontal surface. Two forces act on B in this horizontal plane. A vector diagram for these forces is shown to scale in Fig. 1.1.

Fig. 1.1

		of 7.5 N towards north and a force of 2.5 N from 30° north of east act on B. ss of B is 750 g.
(i)		Fig. 1.1, draw an arrow to show the approximate direction of the resultant of these forces.
(ii)	1.	Show that the magnitude of the resultant force on B is 6.6 N.
		[1]
	2.	Calculate the magnitude of the acceleration of B produced by this resultant force.
		magnitude = m s ⁻² [2]
		magnitude = 1113 [2]
(iii)		termine the angle between the direction of the acceleration and the direction of the N force.
		angle = ° [1]
		andle =

2 A ball is thrown from A to B as shown in Fig. 2.1.

Fig. 2.1

The ball is thrown with an initial velocity V at 60° to the horizontal. The variation with time t of the vertical component $V_{\rm v}$ of the velocity of the ball from t=0 to $t=0.60\,{\rm s}$ is shown in Fig. 2.2.

Fig. 2.2

Ass	sume	air resistance is negligible.	
(a)	(i)	Complete Fig. 2.2 for the time until the ball reaches B.	[2]
	(ii)	Calculate the maximum height reached by the ball.	
		height =	m [2]
	(iii)	Calculate the horizontal component V_h of the velocity of the ball at time $t = 0$.	
		V _h =	m s ⁻¹ [2]
	(iv)	On Fig. 2.2, sketch the variation with t of V_h . Label this sketch V_h .	[1]
(b)	. ,	e ball has mass 0.65 kg.	. .
` ,		culate, for the ball,	
	(i)	the maximum kinetic energy,	
			l ro:
		maximum kinetic energy =	J [3]
	(ii)	the maximum potential energy above the ground.	

3 (a) Define electric field strength.

.....

.....[1]

(b) A sphere S has radius 1.2×10^{-6} m and density $930 \,\mathrm{kg}\,\mathrm{m}^{-3}$.

Show that the weight of S is 6.6×10^{-14} N.

[2]

(c) Two horizontal metal plates are 14mm apart in a vacuum. A potential difference (p.d.) of 1.9kV is applied across the plates, as shown in Fig. 3.1.

Fig. 3.1

A uniform electric field is produced between the plates.

The sphere S in **(b)** is charged and is held stationary between the plates by the electric field.

(i) Calculate the electric field strength between the plates.

electric field strength =Vm⁻¹ [2]

(ii)	Calculate the magnitude of the charge on S.
	charge =
(iii)	The magnitude of the p.d. applied to the plates is increased.
	Explain why S accelerates towards the top plate.
	[2]
	[4]

4	(a)	Cor	mpare the molecular motion of a liquid with
		(i)	a solid,
			[2]
		(ii)	a gas.
			[1]
	(b)	(i)	A ductile material in the form of a wire is stretched up to its breaking point. On Fig. 4.1, sketch the variation with extension x of the stretching force F .
			†
			F ductile material
			0 x
			Fig. 4.1 [1]
		(ii)	On Fig. 4.2, sketch the variation with extension x of the stretching force F for a brittle material up to its breaking point.
			†
			F brittle material
			0
			$\frac{1}{0}$
			Fig. 4.2 [1]
	(c)	Des	scribe a similarity and a difference between ductile and brittle materials.
		sim	ilarity:
		diffe	erence:

5 A battery of electromotive force (e.m.f.) 12V and internal resistance *r* is connected in series to two resistors, each of constant resistance *X*, as shown in Fig. 5.1.

Fig. 5.1

The current I_1 supplied by the battery is 1.2 A.

The same battery is now connected to the same two resistors in parallel, as shown in Fig. 5.2.

Fig. 5.2

The current I_2 supplied by the battery is 3.0 A.

(a) (i) Show that the combined resistance of the two resistors, each of resistance X, is four times greater in Fig. 5.1 than in Fig. 5.2.

(ii)	Explain why I_2 is not four times greater than I_1 .	

[2]

	(iii)	Usi	ng Kirchhoff's second law, state equations, in terms of e.m.f., current, X and r, for
		1.	the circuit of Fig. 5.1,
		2.	the circuit of Fig. 5.2.
			[2
	(iv)		the equations in (iii) to calculate the resistance X .
			$X = \dots \Omega$ [1
(b)	Cal	culat	te the ratio
			power transformed in one resistor of resistance <i>X</i> in Fig. 5.1 power transformed in one resistor of resistance <i>X</i> in Fig. 5.2
			ratio =[2
(c)	The	resi	istors in Fig. 5.1 and Fig. 5.2 are replaced by identical 12V filament lamps.
	-		why the resistance of each lamp, when connected in series, is not the same as the ce of each lamp when connected in parallel.
			[2

6	(a)	State one difference and one similarity between longitudinal and transverse waves.
		difference:
		similarity:
		[2]
	4. \	
	(b)	A laser is placed in front of two slits as shown in Fig. 6.1.
		laser 0.35 mm screen
		Fig. 6.1 (not to cools)
		Fig. 6.1 (not to scale)
		The laser emits light of wavelength 6.3×10^{-7} m. The distance from the slits to the screen is 2.5 m. The separation of the slits is 0.35 mm. An interference pattern of maxima and minima is observed on the screen.
		(i) Explain why an interference pattern is observed on the screen.
		[2]
		(ii) Calculate the distance between adjacent maxima.
		(ii) Calculate the distance between adjacent maxima.
		distance =m [2]
	(c)	State and explain the effect, if any, on the distance between adjacent maxima when the laser is replaced by another laser emitting ultra-violet radiation.
		[1]

	mıs	sion is represe	ented by the nuclea	ar equation	
			$^{210}_{84}$ Po \rightarrow	$_{\rm B}^{\rm A}$ X + α + energy	
a) (i			omplete the numbe nuclear equation.	er and name of the particle, or particles, represe	ent
			number	name of particle or particles	
		Α			
		В			
				Fig. 7.1	
(ii	i)	State the form	of energy given to	the α -particle in the decay of $^{210}_{84}$ Po.	
(ii	i)	State the form		the α -particle in the decay of $^{210}_{84}$ Po.	
•					
b) A	sa	mple of polonii	um ²¹⁰ Po emits 7.	1 \times 10 ¹⁸ α -particles in one day.	
b) A	sa	mple of polonii	um ²¹⁰ Po emits 7.		
b) A	sa	mple of polonii	um ²¹⁰ Po emits 7.	1 \times 10 ¹⁸ α -particles in one day.	
b) A	sa	mple of polonii	um ²¹⁰ Po emits 7.	1 \times 10 ¹⁸ α -particles in one day.	
b) A	sa	mple of polonii	um ²¹⁰ Po emits 7.	1 \times 10 ¹⁸ α -particles in one day.	