MATH2017 Problem Set 3:

Integration

Submit on Gradescope by 17:00, Monday 20 March 2023

- 1. (a) Construct the first Taylor approximant to $f:(-1,1)\to\mathbb{R}, f(x)=\sin^{-1}x$ about $a=\frac{1}{2}$.
 - (b) Use this approximant, and Taylor's Theorem, to find upper and lower bounds on $\sin^{-1}(3/4)$.
- 2. Let $f: [-1,2] \to \mathbb{R}$, f(x) = |x|, and $\mathscr{D} = \{-1,0,1/2,2\}$.
 - (a) Draw the graph of f.
 - (b) Compute the lower and upper Riemann sums $l_{\mathscr{D}}(f)$, $u_{\mathscr{D}}(f)$.
- 3. (a) Prove that $\sum_{j=1}^{n} j^3 = \frac{1}{4}n^2(n+1)^2$.
 - (b) Evaluate $\int_0^1 x^3 dx$ directly from the definition, without using the Fundamental Theorem of the Calculus. (Hint: use Lemma 5.13 or Theorem 5.16.)
- 4. Let $f: (-1,1) \to \mathbb{R}$, $f(x) = (1+x^3)^{-3}$. Compute $g': (0,1) \to \mathbb{R}$ where
 - (a) $g(x) = \int_0^x f$.
 - (b) $g(x) = \int_{-x}^{x} f$.
 - (c) $g(x) = \int_0^{f(x)} f$.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be Riemann integrable on every interval $[a, b] \subset \mathbb{R}$ and define $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = \int_0^x f$. Prove that g is continuous. (Warning: you may **not** assume that f is continuous.)