><icamp>

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ ПРОТИВ ВНЕПЛАНОВЫХ ПРОСТОЕВ: РАЗРАБОТКА ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ ДИАГНОСТИКИ

Документы по ссылке:

- электродвигателей
- 2. Архитектура системы
- 3. Требования к информационной безопасности
- 4. Расчет экономической модели
- 5. Описание работы модели
- 6. Руководства:
 - а. Администратора
 - b. Пользователя
 - с. По развертыванию и установке

Состав команды

Управление проектной командой, проработка алгоритма поиска дефектов, ИБ

Гречушкин Александр Архитектор

Проектирование архитектуры решения, проработка ФТТ

Имморталем Вадим Backend

Разработка всех backendсервисов, настройка CI/CDпроцессов

Худеньких Юлия ML-специалист

Разработка MLсервиса, обучение модели, проработка алгоритма определения дефектов

Максина Елизавета Инфраструктура

Разработка инфраструктуры проекта, расчет рисков проекта

Бакиров Дамир Frontend

Дизайн системы, реализация frontend-части приложения

Блинов Максим Аналитик

Расчёт ФЭМ, написание БТ

БИЗНЕС-ТРЕБОВАНИЯ, НЕФУНКЦИОНАЛЬНЫЕ ТРЕБОВАНИЯ

Бизнестребования Сокращение Минимизация убытков затрат на от внеплановых простоев мониторинг Интеграция с Масштабируемос АСУ ТП ТЬ

Функциональны е требования

Пользовательски й интерфейс

Модуль сбора данных Модуль анализа и ML Интеграци я и АРІ

Ролевая модель

Общие требования

Частота сбора

Дефекты

Протоколы

Авторизация

Поддерживаемые протоколы

Модель

Метрики качества

Время отклика

Реестр двигателей

Диагностика

Обучение модели

Управление доступом

Документ «ФТТ Система Диагностики Электродвигателей»

АРХИТЕКТУРА РЕШЕНИЯ

ИСПОЛЬЗУЕМЫЕ ТЕХНОЛОГИИ И КОМПОНЕНТЫ

ТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ РЕШЕНИЯ

Видео

КОНКУРЕНТОСПОСОБНОСТЬ И ПЕРСПЕКТИВЫ ВНЕДРЕНИЯ

Разработанное решение 7Volt	Fluke 438-II / Ti400 PRO	Siemens SIMOTICS IQ	КОМПАКС-РПЭ	Megger Baker EXP4000 / NetEP
✓ Автоматический мониторинг входных данных по трехфазному току. ✓ Определение дефектов, диагностика.			★Требует остановки двигателя, ориентирован на ремонтные предприятия, нет онлайн-мониторинга. ★Требует остановки двигателя	

Готовность к внедрению: Разработка завершена на 100%, требования ФТТ соблюдены.

Анализ юридических и регуляторных аспектов: использование в разрабатываемом продукте 100% решений и библиотек с открытым исходным и распространяемых на бесплатной основе, которые доступны внутри корпоративной сети.

ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРОЕКТА

NPV - 50 513 667₽

Дисконтированный денежный поток накоп, итогом

PI - 1,27

Рентабельность инвестиций

IRR - 28%

Ставка дисконтирования при которой NPV = 0

DPP - 3 года 7 мес.

Дисконтированный срок окупаемости

^{*} Расчет приведен для одной площадки (800 двигателей) сроком на 10 лет. Документ «Расчёт экономической модели»

ПРЕДОБРАБОТКА ДАННЫХ ДЛЯ ОБУЧЕНИЯ МОДЕЛИ

- Разметка основана на анализе характерных частот дефектов, вычисляемых по геометрическим параметрам подшипника NSK6205DDU.
- Применяются следующие методы анализа сигналов:
 - анализ огибающей
 - спектральный анализ
 - о фазовый анализ
 - о статистический анализ
 - Метки нормализуются в диапазон [0, 1] с использованием 95-го перцентиля.

ПРЕДОБРАБОТКА ДАННЫХ ДЛЯ ОБУЧЕНИЯ МОДЕЛИ

ПРИЗНАКИ ДЛЯ ОБУЧЕНИЯ МОДЕЛИ

Используются временные и спектральные признаки.

Временные признаки включают:

- среднее значение (уровень постоянной составляющей сигнала)
- стандартное отклонение (энергия переменной составляющей)
- асимметрия (смещение распределения значений)
- эксцесс ("острота" распределения пиков)
- пиковое значение (максимальная амплитуда сигнала)
- фактор амплитуды (отношение пика к среднеквадратичному)

Спектральный признак представлен куртозисом (коэффициент эксцесса) огибающей.

ПРИЗНАКИ ДЛЯ ОБУЧЕНИЯ МОДЕЛИ

Выбор признаков основан на физическом анализе проявления дефектов:

- дефекты подшипников проявляются в изменении статистических характеристик огибающей сигнала
- дисбаланс и расцентровка влияют на симметрию фаз и гармонический состав

МОДЕЛЬ

- Используем MultiOutputRegressor в сочетании с RandomForestRegressor из библиотеки scikit-learn.
- Данный подход предусматривает обучение отдельного регрессора для каждого типа дефекта при использовании общего набора признаков.
- Подбор гиперпараметров для модели был выполнен с использованием библиотеки Optuna с проведением 100 испытаний.

МЕТРИКИ ОЦЕНКИ КАЧЕСТВА МОДЕЛИ

- RMSE (Root Mean Square Error)
- Тестовая выборка представляет собой 20% от всех данных.
- Результаты оценки модели на тестовой выборке:
 - для дефекта наружного кольца RMSE = 0.0568.
 - для дефекта внутреннего кольца RMSE = 0.0291
 - о для дефекта тел качения RMSE = 0.0501
 - для дефекта сепаратора RMSE = 0.0308
 - для дисбаланса RMSE = 0.0001
 - для расцентровки RMSE = 0.0005

ОПТИМИЗАЦИЯ ВЫЧИСЛЕНИЙ

Оптимизация получения предсказаний с помощью:

- векторизация вычислений при извлечении признаков из временных рядов с помощью библиотеки NumPy, позволяющих обрабатывать все фазы данных одновременно вместо последовательной обработки в циклах
- оптимизирован механизм работы с памятью через использование массивов NumPy вместо объектов Pandas
- Конвертация RandomForestRegressor моделей в оптимизированный формат ONNX

В результате ускорение получения предсказаний в 300 раз.

Время обработки 1 секунды (25600 записей) составляет около 0.23 секунды

ИНФРАСТРУКТУРА РЕШЕНИЯ

Параметр	Требование	Условие		
Сервер				
Количество процессоров	2	не менее		
Рекомендуемая модель	Intel® Xeon® Silver	не хуже		
процессора	4314 (16 ядер / 2.40 GHz)			
Минимальный объём установленной памяти	192 Гб (16 Гб х 12)	не менее		
Накопители	SSD SATA 480 GB x 2, SSD SATA 960 GB x 2	не менее		
Контроллер накопителей	RAID 0/1, 2 x SATA	не менее		
Контроллер сетевой	10/25 Gbit x 2	не менее		
	утатор			
Количество интерфейсов (10/100/1000BASE-T (RJ-45))	24	не менее		
Уровень работы	L3	соответ.		
Производительность, Mpps (64 байт)	90	не менее		
Пропускная способность, Гбит/с	128	не менее		
Межсетевой экран				
Количество пользователей	500	не менее		

Подходящее оборудование			
Сервер	Yadro VEGMAN R120 G2		
Коммутатор	Элтекс MES2424		
МСЭ	UserGate D500		

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ

РИСК ИБ	СЗИ ИЛИ ОРГ. МЕРА	ПРЕДЛОЖЕНИЯ ПО НАСТРОЙКЕ СЗИ И РАЗМЕЩЕНИЮ
Несанкционированный доступ к системе	KeyCloak, WAF, RBAC	 - Настроить многофакторную аутентификацию в KeyCloak - Реализовать политику сложных паролей (мин. 12 символов, цифры, спецсимволы) - Настроить блокировку после 5 неудачных попыток входа - Внедрить JWT с коротким временем жизни (15-30 минут)
Отказ в обслуживании (DDoS)	Межсетевой экран, WAF, CDN	 - Настроить rate limiting на API Gateway (макс. 100 запросов/сек с IP) - Использовать Cloudflare или аналоги для фильтрации трафика - Реализовать автоматическое масштабирование ресурсов при нагрузке - Настроить мониторинг аномальной сетевой активности
Компрометация учетных записей	РАМ-системы, мониторинг сессий	 Внедрить регулярную ротацию паролей (каждые 90 дней) Реализовать принудительный logout неактивных сессий (>30 мин) Внедрить аудит прав доступа (ежеквартально) Мониторинг подозрительной активности (логины с новых устройств/IP)
Несанкционированный доступ к оборудованию	Сегментация сети, NAC	- Выделить систему в отдельный VLAN - Реализовать микросегментацию сетевого трафика - Настроить доступ по принципу "least privilege" - Внедрить 802.1X аутентификацию для сетевых устройств

СПАСИБО ЗА ВНИМАНИЕ

«7 Вольт»

АНАЛИЗ РИСКОВ

Оценка вероятности возникновения рисков

Категории риск-факторов	Описание риск-факторов	Вероятность возникновения	Мероприятия по управлению рисками	№ риска
Архитектура	Неоптимальный выбор компонентов решения и несоответствие его регламентам Компании, неготовность системы для интеграции	2/5	Контроль соответствия компонентов системы, контроль коннекторов для интеграции	1
Инфраструктура	Недостаточное количество ресурсов (CPU, RAM, HDD, GPU) в результате ошибок сайзинга системы	4/5	Проведение нагрузочного тестирования, проверка достаточности выделенных ресурсов Регулярный мониторинг потребляемых системой ресурсов, формирование заявок на расширение ресурсов	1
	Сбои в работе инфраструктурного оборудования/компонентов на котором построено бизнес-решение	2/5	Проектирование инфраструктуры с учетом отказоустойчивости Регулярный мониторинг состояния инфраструктуры дежурной службой	- 1
Данные			Контроль кода нового разрабатываемого решения Проектирование сетевой инфраструктуры с учетом изоляции системы для предотвращения реализации кибератак.	2
Компетенции	Неверная интерпретация прогнозов системы	1/5	Обучение сотрудников и разработка руководства по эксплуатации для пользователей	3
	ожность установки и настройки системы 3/5		Разработка руководства по настройке для администраторов и централизованное администрирование системы	3
Санкции в сфере ИТ	Использование в решении СПО, которое может быть подвержено санкционным рискам при использовании	2/5	Проведение проверки используемого СПО на наличие санкицонных рисков	1

Оценка влияния от рисков

Nº	Описание рисков	Финансовый ущерб	Влияние на бизнес	Соблюдение законодательства	Влияние на репутацию	Стратегия управления
1	Недоступность	1/5		489400		Снижение
2	Нарушение ИБ		1/5	2/5	2/5	Избежание
3	Низкая эффективность решения	1/5				Снижение

Вероятность возникновения