Takehome Assignment 3 Due Friday, May 13 at 11:59 pm

- 1. Let's start with some group theory! For this first question, let G be a finite group of order n. We'd like to understand the size of the center of G, say |Z(G)| = z.
 - (a) Show that it is not possible for z to fall in the range $\frac{n}{4} < z < n$.
 - (b) Show that these bounds are optimal. That is, give examples of a group where z = n, and one where $z = \frac{n}{4}$.

Now let's think about some special ideals in commutative unital rings. We remind the reader of the following definition.

Definition 1. Let R be a commutative unital ring. An ideal $\mathfrak{p} \subseteq R$ is called a prime ideal if $\mathfrak{p} \neq R$ and for any $a, b \in R$, if $ab \in \mathfrak{p}$ then either $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.

- 2. Let R be a commutative ring with $1 \neq 0$. Recall that in ideal $\mathfrak{m} \subseteq R$ is maximal if and only if R/\mathfrak{m} is a field. We will see there is a similar characterization of primality.
 - (a) Prove that an ideal $\mathfrak{p} \subseteq R$ is prime if and only if the quotient ring R/\mathfrak{p} is an integral domain.
 - (b) Prove that a maximal ideal $\mathfrak{m} \subseteq R$ is prime.
 - (c) What are all the prime ideals of \mathbb{Z} ?
 - (d) Prove that the ideal $(x) \subseteq \mathbb{Z}[x]$ is prime but not maximal.
- 3. Let $\varphi: R \to S$ be a homomorphism between commutative unital rings with $\varphi(1_R) = 1_S$.
 - (a) Let $\mathfrak{q} \subseteq S$ be a prime ideal. Show that $\varphi^{-1}(\mathfrak{q})$ is a prime ideal of R.
 - (b) Suppose φ is surjective, and $\mathfrak{m} \subseteq S$ is a maximal ideal. Show that $\varphi^{-1}(\mathfrak{m})$ is a maximal ideal of R.
 - (c) Give a counterexample to part (b) if φ is not surjective.
- 4. In this exercise we calculate the intersection of all the maximal ideals in a commutative unital ring R. Given a ring R, we define the *Jacobson radical* of R to be the ideal:

$$\mathfrak{J}(R) = \bigcap_{\mathfrak{m} \subset R \text{ maximal}} \mathfrak{m}.$$

- (a) Show that $\mathfrak{N}(R) \subseteq \mathfrak{J}(R)$.
- (b) Show that an element $r \in R$ is a unit if and only if it is not contained in any maximal ideal.
- (c) Suppose \mathfrak{m} is a maximal ideal and $r \in R \setminus \mathfrak{m}$. Compute the ideal (\mathfrak{m}, r) generated by \mathfrak{m} and r.
- (d) Prove that $r \in \mathfrak{J}(R)$ if and only if $1 ry \in R^{\times}$ for every $y \in R$. (Parts (b) and (c) might help!)
- 5. Let's finish by exploring unit groups. For parts (a)-(c) we do not assume that R is commutative. Recall that if R is a (unital) ring, then R^{\times} is the set of units, endowed with a group structure given by multiplication in R.

- (a) Let $\varphi: R \to S$ be a (unital) homomorphism of rings. Show that if $r \in R^{\times}$ then $\varphi(r) \in S^{\times}$. Give a counterexample where φ is not unital.
- (b) Show that the restriction of φ to R^{\times} is a group homomorphism $\varphi^{\times}: R^{\times} \to S^{\times}$, which is injective if φ is.
- (c) The analogous statement does not hold for φ surjective. Give an example of a surjective (unital) homomorphism $\varphi: R \to S$, but such that the induced map on unit groups $\varphi^{\times}: R^{\times} \to S^{\times}$ is not surjective.
- (d) Let $\varphi: R \to S$ be a surjective (unital) homomorphism of *commutative* rings, and suppose that ker $\varphi \subseteq \mathfrak{J}(R)$. Prove that the induced map $\varphi^{\times}: R^{\times} \to S^{\times}$ is surjective.

Congratulations!! We've covered a ton of material and done a ton of problems this semester. Good work!