

Knowledge Graphs

AMAMACUTION

Lecture 4: Ontologies as Key to Knowledge Representation

- 4.1 From Aristotle to AI: Exploring Ontologies in Computer Science
- 4.2 The Crucial Role of Mathematical Logic

Excursion 5: Essential Logics in a Nutshell

Excursion 6: Description Logics

- 4.3 The Web Ontology Language OWL
- 4.4 From simple to complex: Scaling up with OWL
- 4.5 Unlocking the Potential of OWL

Knowledge Representation with FOL

- Why not simply take FOL for Ontologies?
- With FOL you can do everything, but...
 you could also program everything with assembler instead of higher
 programming languages
- FOL has high expressivity
- FOL is too bulky for modelling
- FOL is not appropriate to find consensus in modelling
- FOL proof theoretically is very **complex** (semi-decidable)
- FOL is of course not a Markup Language for the Web
- Basic idea:
 - Look for an appropriate fragment of FOL....
 - ...and then make it a vocabulary for RDF(S)

Description Logics – DL

- DLs are fragments of FOL (compromise of expressivity and scalability)
- A DL models **concepts**, **roles** and **individuals**, as well as their relationships
- In DL from simple descriptions more complex descriptions are created with the help of constructors
- DLs differ in the applied constructors (Expressivity)
- DLs have been developed from "semantic networks"
- DLs are decidable (most times)
- DLs possess sufficient expressivity (most times)
- DLs are related to modal logics
- Example for a DL:
 W3C Standard OWL 2 DL is based on description logics SROIQ(D)

General DL Architecture

L Knowl	edge Base				
TBox T	Terminological Knowledge Knowledge about concepts of a domain Writer Person □ ∃author.Book		ne		
$\begin{array}{c} \textbf{ABox} \\ \mathcal{A} \end{array}$	Assertional Knowledge Knowledge about Individuals / Entities Writer(GeorgeOrwell) author(AnimalFarm, GeorgeOrwell)		nference Engin		Interface
RBox R	Role-centric Knowledge Knowledge about roles interdependencies		Ë		
	coAuthor \sqsubseteq author				

Description Logics – DL

- DLs are a **family** of logic-based formalisms applied for knowledge representation
- ALC (Attribute Language with Complement)
 is the smallest deductively complete DL
 - Conjunction, Disjunction, Negation are class constructors, denoted as □, □, ¬
 - Quantifiers restrict domain and range of roles

Attributive Language with Complements – ALC

Basic Building Blocks:

- Classes
- Roles/Properties
- Individuals
- Person(IsaacAsimov)
 Individual IsaacAsimov is of class Person
- Book(Foundation)
 Individual Foundation is of class Book
- author(Foundation, IsaacAsimov)
 The book Foundation has the author IsaacAsimov

ALC - Building Blocks

- ALC Atomic Types
 - Concept names A, B, ...
 - Special concepts
 - T Top (universal concept)
 - **1** Bottom concept
 - Role names R,S, ...

• ALC Constructors

- Negation: ¬C
- Conjunction: C ¬ D
- Disjunction: C ⊔ D
- Existential quantifier: ∃R.C
- O Universal quantifier: ∀R.C

ALC - Building Blocks

Class Inclusion

Novel ⊑ Book

- every novel is also a book
- \blacksquare equals FOL $(\forall x)$ (Novel $(x) \rightarrow Book(x)$)

Class Equivalence

Novel ≡ Prose

- all Prose are exactly Novels
- equals FOL $(\forall x)$ (Novel $(x) \leftrightarrow \text{Prose}(x)$)

ALC - Complex Class Relations

- Conjunction □
- Disjunction □
- Negation ¬

```
Novel \subseteq (Book \sqcap Fiction) \sqcup (Paperback \sqcap ¬Poetry)

ALC

(\forall x) (Novel(x) \rightarrow ((Book(x) \land Fiction(x)))

V

(Paperback(x) \land \neg Poetry(x)))

FOL
```

ALC - Quantifiers on Roles

- Strict Binding of the Range of a Role to a Class
 - Book \(\begin{aligned} \po \text{author.Writer} \\ \end{aligned}\)
 - A Book must be authored by a Writer
 - \circ ($\forall x$) (Book(x) \rightarrow ($\forall y$) (author(x,y) \rightarrow Writer(y)))
- Open Binding of the Range of a Role to a Class
 - Book = ∃author.Person
 - Every Book has at least one author (who is a person)
 - \circ (\forall x) (Book(x) \rightarrow (\exists y) (author(x,y) \land Person(y)))

ALC - Formal Syntax

Production rules for creating classes in ALC:
 (A is an atomic class, C and D are complex Classes and R a Role)

$$\circ$$
 C,D::= A|T| \bot |¬C|C \Box D|C \Box D| \exists R.C| \forall R.C

- An ALCTBox contains assertions of the form
 C □ D and C □ D, where C, D are complex classes.
- An ALC ABox contains assertions of the form C(a) and R(a,b),
 where C is a complex Class, R a Role and a, b Individuals.
- An ALC-Knowledge Base contains an ABox and a TBox.

Syntax = symbols without meaning, defines rules on how to construct well-formed and valid sequences of symbols (strings)

- The model-theoretic semantics for \mathcal{ALC} is defined via interpretations
- An Interpretation $I=(\Delta^I, I)$ contains
 - \circ a set Δ^{I} (**Domain**) of individuals and
 - an interpretation function . that maps
 - Individual names a to domain elements $a^{I} \subseteq \Delta^{I}$
 - Class names Cto a set of domain elements $C^{I} \subseteq \Delta^{I}$
 - Role names R to a set of pairs of domain elements $R^{I} \subseteq \Delta^{I} \times \Delta^{I}$

Model-theoretic Semantics performs the semantic interpretation of artificial and natural languages by "identifying meaning with an exact and formally defined interpretation with a model"

Extension (of Interpretation I) for complex classes:

- \circ $\top^{I} = \Delta^{I}$ and $\perp^{I} = \emptyset$
- \circ (C \sqcup D)^I = C^I \sqcup D^I and (C \sqcap D)^I = C^I \cap D^I
- $\circ \quad (\neg C)^{\mathrm{I}} = \Delta^{\mathrm{I}} \setminus C^{\mathrm{I}}$
- $\bigcirc \forall R.C = \{a \in \Delta^{I} \mid (\forall b \in \Delta^{I})((a,b) \in R^{I} \rightarrow b \in C^{I})\}$
- $\circ \exists R.C = \{a \in \Delta^{I} \mid (\exists b \in \Delta^{I})((a,b) \in R^{I} \land b \in C^{I})\}$

Extension (of Interpretation I) for axioms:

- C(a) holds, iff $a^{I} \in C^{I}$
- \circ R(a,b) holds, iff (a^I,b^I) \in R^I
- \circ C \sqsubseteq D holds, iff C $^{\mathtt{I}}\subseteq$ D $^{\mathtt{I}}$
- \circ C \equiv D holds, iff C I =D I

Beyond ALC - More DL Constructors

- Number restrictions for roles: ≥1 children , ≤1 mother
- Qualified number restrictions for roles:
 ≥2 children.Female, ≤1 parent.Male
- Nominals (definition by extension):
 {Foundation, FoundationAndEmpire, SecondFoundation}
- Concrete domains (data types): hasAge. (≥21)
- Inverse roles: children ≡ parent
- Transitive roles: ancestor ⊆+ ancestor
- Role composition: parent.brother(uncle)

Operator/Constructor	Syntax	Language	
Conjunction	А⊓В	\mathcal{S}^{\star}	S*
Value Restriction	∀R.C	TL.	
Existential Quantifier	∃R		
Тор	Тор		
Bottom	Т		
Negation	¬A		
Disjunction	А⊔В		
Existential Restriction	∃R.C		
Number Restriction	(≤nR) (≥nR)		
Set of Individuals	$\{a_1, \ldots, a_2\}$		
Role Hierarchy	R⊑S	\mathcal{H}	
Inverse Role	R ⁻¹	I	
Qualified Number Restriction	(≤nR.C) (≥nR.C)	Q	
nowledge Graphs 2023, Prof. Dr. Harald Sack, FIZ Karlsruhe – Leik	। oniz Institute for Information Infrastructure & Karlsruhe	Institute of Technology	

FIZ Karlsruhe
Leibniz Institute for Information Infrastructure

Description Logics Family

- \circ \mathcal{ALC} : Attribute Language with Complement
- \circ S: ALC+ Transitivity of Roles
- \circ \mathcal{H} : Role Hierarchies
- O: Nominals
- *I*: Inverse Roles
- \mathcal{N} : Number restrictions \leq nR etc.
- Q: Qualified number restrictions $\leq nR \cdot C$ etc.
- \circ (\mathcal{D}): Datatypes
- \circ \mathcal{F} : Functional Roles
- \circ \mathcal{R} : Role Constructors
- \circ **OWL 2** DL is SROIQ(D)

Knowledge Graphs

4. Ontologies as Key to Knowledge Representation / Excursion 6: Description Logics

Bibliographic References:

- Sebastian Rudolph (2011), Foundations of Description Logics, Karlsruhe Institute of Technology.
- Franz Baader, Ian Horrocks, and Ulrike Sattler (2008). <u>Description Logics</u>. In Frank van Ha<mark>rmelen, Vladimir Lifschitz, and</mark> Bruce Porter, editors, Handbook of Knowledge Representation, chapter 3, pp. 135–180. Elsevier.

Picture References:

- "In this 1960s pulp cover picture, in the waning days of a future Galactic Empire, the mathematician Hari Seldon spends his life developing a theory of psychohistory, a new and effective mathematics of sociology. Using statistical laws of mass action, it can predict the future of large populations.", created via ArtBot, Deliberate, 2023, [CC-BY-4.0], https://tinybots.net/artbot
- [2] "A Scifi movie poster "The Owls of Mars) depicting a huge owl sitting in the lonely red prairies of Mars in a retro futuristic rural environment of planet Mars. A rocket ship is starting in the background far away leaving contrails behind.", created via ArtBot, Deliberate, 2023, [CC-BY-4.0], https://tinybots.net/artbot