ENGG1003 - Friday Week 9

Scripts
Matrix Indexing

Brenton Schulz

University of Newcastle

May 10, 2019

Scripts

- It is tempting to use MATLAB from the command line only
 - It sounds easier, right?
 - Very low barrier to entry
 - Very fast to get results

Scripts

- It is tempting to use MATLAB from the command line only
 - It sounds easier, right?
 - Very low barrier to entry
 - Very fast to get results
 - ► Useless for non-trivial problems

Scripts

- It is tempting to use MATLAB from the command line only
 - It sounds easier, right?
 - Very low barrier to entry
 - Very fast to get results
 - Useless for non-trivial problems
- Scripts are used for multiple reasons:
 - ► They are necessary for realistic problems
 - They can be modified and re-executed
 - They can be reused by other people

Comments

- MATLAB comments start with a % symbol and end at a new line
- Comment guidelines:
 - Describe the script's purpose, inputs, and outputs at the top
 - Comment any lines which aren't "obvious"
 - Yes, this depends on the audience

Scripts And Scalar Arithmetic Example

- Example: (From last year's slides) Write a MATLAB script which calculates the rate at which the Sun loses mass due to nuclear fusion
- Data required:
 - $ightharpoonup E = mc^2$
 - ▶ Sun's energy output: $E = 385 \times 10^{24} \text{ J/s}$
 - ▶ Speed of light: $c = 3.0 \times 10^8 \text{ m/s}$

1D Array Indexing

- Element indexing follows this general rule:
 - name(list of elements)
- ► The list is, itself, a 1D array
 - It can be a single number
 - **eg**: a(2)
 - ► You can create it using [] concatenation syntax
 - This can be hard-coded numbers or other variables.
 - ► eg: a([1 4 8])
 - It can be a list of integers created with A:B:C
 - ► eg 1: a(1:10)
 - ▶ eg 2: a(1:2:10) % Every 2nd element
- Things can get complicated fast

Multi-Dimensional Indexing

- MATLAB dimensions are named:
 - Row
 - Column
 - Page
- The indexing syntax is:
 - name(row, column, page)
- ➤ A good visualisation is in the MATLAB documentation: https://au.mathworks.com/help/matlab/math/multidimensional-arrays.html

Dimensional Indexing Notes

- ▶ 1D arrays can be row or column vectors
 - ► The indexing is still always in the form a (n)
 - Indexing does not make a distinction between row and column vectors
 - Arithmetic does

Dimensional Indexing Notes

- ▶ 1D arrays can be row or column vectors
 - ► The indexing is still always in the form a (n)
 - Indexing does not make a distinction between row and column vectors
 - Arithmetic does
- There are special syntaxes we can use when indexing:
 - Index all elements with a (:)
 - Useful with multi-dimensional arrays
 - ▶ eg: a(:, [2 3])
 - When lengths are unknown you can use the end keyword
 - eg: a(2:end)

Example - Image Analysis and Editing

- Perform the greyscale assessed lab task in MATLAB with a real image
- ➤ Shrink the image by a factor of 1/10th along each axis while developing code
- Knowledge:
 - Images are read with imread()
 - Colour images stored as a 3D array
 - Indexing: var(row, column, [r g b])
 - var(0,0,:) is the top left pixel
 - Image data can be displayed with image ()
 - 2D data will be displayed with a false colour map
 - Greyscale display needs custom map
- Do it live...

More Examples

- Simple bightness adjustment
 - Couple of methods:
 - Add or subtract a constant value to each RGB value in each pixel
 - Apply a transfer function. This needs a sketch...
- Contrast adjustment
 - This applies a particular transfer function, will sketch
- All of the above can be applied to all channels equally or differently to the RGB channels

