ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ"(УНИВЕРСИТЕТ ИТМО)

Факультет Систем управления и робототехники

Кафедра Систем управления и информатики

ГруппаР3340

ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Лабораторная работа №7

Анализ точности систем управления Вариант 9

Проверил:		
Выполнил.		

СПб 2017

1 Исследование системы с астатизмом нулевого порядка

Начальные данные:

$$H(s)=k$$
, где $k=1,5,10$ $W(s)=\frac{2}{0.5s^2+s+2}$

 $1.1\ \text{Исследование}$ стационарного режима работы g(t)=2 Начальные данные:

$$H(s)=k$$
, где $k=1,5,10$ $W(s)=rac{2}{0.5s^2+s+2}$

Рис. 1: Система с астатизмом нулевого порядка

Рис. 2: Переходная характеристика при g(t)=2

Рис. 3: Ошибка при g(t)=2

Аналитическое подтверждение полученных результатов $\varepsilon=\frac{A}{1+k}=\frac{2}{1+1}=1$ $\varepsilon=\frac{A}{1+k}=\frac{2}{1+5}=0.33$ $\varepsilon=\frac{A}{1+k}=\frac{2}{1+10}=0.18$

$$\varepsilon = \frac{A}{1+k} = \frac{2}{1+1} = 1$$

$$\varepsilon = \frac{A}{1+k} = \frac{2}{1+5} = 0.33$$

$$\varepsilon = \frac{A}{1+k} = \frac{2}{1+10} = 0.18$$

1.2 Исследование режима движения с постоянной скоростью: g(t)=Vt

Рис. 4: Переходная характеристика при g(t)=2t

Рис. 5: Ошибка при g(t)=2t

Аналитическое подтверждение полученных результатов

$$\varepsilon = \lim_{s \to 0} s(\frac{1}{1 + W(s)})(\frac{V}{s^2})$$

Bo всех случаях $\varepsilon \to \infty$

Вывод: с системах управления с нулевым порядком астатизма присутствует ошибка.

2 Исследование системы с астатизмом первого порядка

Начальные данные:

$$H(s)=\frac{k}{s},$$
 где $k=1,5,10$ $W(s)=\frac{s+2}{0.5s^2+s+2}$

Рис. 6: Система с астатизмом первого порядка

2.1 Исследование стационарного режима работы g(t)=2

Рис. 7: Переходная характеристика при g(t)=2

Рис. 8: Ошибка при g(t)=2

Аналитическое подтверждение полученных результатов: $\varepsilon=\lim_{s\to 0}s(\frac{1}{1+W(s)})(\frac{A}{s})=\lim_{s\to 0}A(\frac{s}{s+k})=0$

$$s = \lim_{s \to 0} s(\frac{1}{1 + W(s)})(\frac{A}{s}) = \lim_{s \to 0} A(\frac{s}{s + k}) = 0$$

Вывод. СУ с астатизмом первого порядка (и выше) отрабатывает постоянное задающее воздействие с нулевой установившейся ошибкой.

Рис. 9: Переходная характеристика при g(t)=2t

Рис. 10: Ошибка при g(t)=2t

Аналитическое подтверждение полученных результатов:
$$\varepsilon = \lim_{s\to 0} s(\frac{1}{1+W(s)})(\frac{V}{s^2}) = \lim_{s\to 0} (\frac{V}{s})(\frac{s}{s+k}) = 2/1 = 2$$

$$\varepsilon = \lim_{s \to 0} s(\frac{1}{1 + W(s)})(\frac{V}{s^2}) = \lim_{s \to 0} (\frac{V}{s})(\frac{s}{s + k}) = 2/5 = 0.4$$

$$\varepsilon = \lim_{s \to 0} s(\frac{1}{1+W(s)})(\frac{V}{s^2}) = \lim_{s \to 0} (\frac{V}{s})(\frac{s}{s+k}) = 2/10 = 0.2$$

Вывод. СУ с астатизмом первого порядка (и выше) отрабатывает линейное воздействие с постоянной установившейся ошибкой.

Рис. 11: Переходная характеристика при $\mathbf{g}(\mathbf{t}) = 0.5t^2$

Рис. 12: Ошибка при ${\bf g}({\bf t}){=}0.5t^2$

Вывод: СУ с астатизмом первого порядка отрабатывает квадратичное воздействие с бесконечной ошибкой.

3 Исследование влияния внешних возмущений

Начальные данные:

f1=2, f2=0.5

3.1 Исследование системы при f1=0, f2=0.5

Рис. 13: Схема моделирования возмущенной системы

Рис. 14: Переходной процесс при f1=0, f2=0.5

Рис. 15: Ошибка при f1=0, f2=0.5

3.2 Исследование системы при f1=0, f2=0.5

Рис. 16: Переходной процесс при f1=2, f2=0

Рис. 17: Ошибка при f1=2, f2=0

Предельное значение установившейся ошибки $\varepsilon=-0.5$ Это значение подтверждается аналитическим расчетом: $\varepsilon=\lim_{s\to 0}(-s(\tfrac{sW(s)}{s+W(s)})(\tfrac{F1}{s})+s(\tfrac{sW(s)}{s+W(s)})(\tfrac{F2}{s}))=-0.5$

4 Исследование установившейся ошибки при произвольном входном воздействии

Начальные данные:

$$H(s)=1$$
 $W(s)=\frac{2}{0.5s^2+s+2}$
 $g(t)=2+0.1t^2$

Рис. 18: Схема моделирования

Рис. 19: Преходной процесс при $g(t)=2+0.1t^2$

Рис. 20: Ошибка и рассчитанная ошибка при ${\bf g}({\bf t}){=}2+0.1t^2$

4.1 Расчет установившейся ошибки слежения при произвольном входном воздействии

Ошибка рассчитывается по формуле: $e(t)=c0g(t)+c1\frac{d}{dt}g(t)+\frac{c2d^2}{2!dt^2}g(t)$ Где

c0=
$$\Phi(s)|s=0$$

c1= $\frac{d\Phi(s)}{ds}|s=0$
c2= $\frac{d^2\Phi(s)}{ds^2}|s=0$
 $\Phi=\frac{1}{1+W(s)}$

 $\begin{array}{c} \text{c}0{=}0.5\\ \text{c}1{=}0.125\\ \text{c}2{=}0.0625\\ \text{В итоге: }e(t)=1+0.05t^2+0.025t \end{array}$

5 Выводы

В данной работе были исследованы системы с астатизмом нулевого и первого порядка. Была исследованна система с произвольным входным воздействием, экспериментально полученная ошибка и ошибка рассчитанная аналитически совпали.