Álgebra Relacional

Descripción de las operaciones básicas en álgebra relacional:

Restringir: regresa una relación que contiene todas las tuplas de una relación especificada que satisfacen una condición especificada.

Proyectar: Regresa una relación que contiene todas las tuplas o subtuplas que quedan en una relación especificada después de quitar los atributos especificados.

Producto: Regresa una relación que contiene todas las tuplas posibles que son una combinación de dos tuplas, una de cada una de dos relaciones especificadas.

Unión: Regresa una relación que contiene todas las tuplas que aparecen en una o en las dos relaciones especificadas.

Intersección: Regresa una relación que contiene todas las tuplas que aparecen en las dos relaciones especificadas (en ambas, no en una u otra).

Diferencia: Regresa una relación que contiene todas las tuplas que aparecen en la primera pero no en la segunda de las dos relaciones especificadas.

Juntar: Regresa una relación que contiene todas las tuplas posibles que son una combinación de dos tuplas de cada una de dos relaciones especificadas, tales que las dos tuplas que contribuyen a cualquier combinación dada tengan un valor común para los atributos comunes de las dos relaciones (y ese valor común aparece sólo una vez, y no dos, en la tupla resultante).

Dividir: Toma dos relaciones unarias y una relación binaria y regresa una relación que contiene todas las tuplas de una relación unaria que aparecen en la relación binaria y que a la vez coinciden con todas las tuplas de la otra relación unaria.

Esta operación es diferente a la descrita por Codd, sin embargo es una mejora a esta operación.

Sean:

$$A = \{X1, X2, ..., Xm\}$$

 $B = \{Y1, Y2, ..., Yn\}$

A y B tienen encabezados disjuntos; y tenga la relación C el encabezado: {X1, X2, ...Xm, Y1, Y2, ..., Yn}, es decir, C tiene un encabezado que es la unión de los encabezados compuestos X y Y, respectivamente. Entonces la división de A entre B por C (Donde A es divididendo, B es el divisor y C es el "mediador")

A DIVIDEBY B POR C

Es una relación con un encabezado {X} y un cuerpo que consiste en todas las tuplas {X:x}, tal que una tupla {X:x, Y:y} aparece en C para todas las tuplas {Y:y} que aparecen en B. En otras palabras, el resultado consiste en aquellos valores X de A cuyos correspondientes valores Y en C incluyen a todos los valores Y de B, en términos generales.

Asociatividad y conmutatividad

La unión es asociativa y conmutativa, es decir, si A, B y C son expresiones relacionales cualesquiera que producen relaciones del mismo tipo, entonces las siguientes expresiones son equivalentes:

(A UNION B) UNION C A UNION (B UNION C)

Se aplican observaciones similares para la intersección, producto cartesiano, y reunión (JOIN) pero no para la diferencia.

Conmutativa para la reunión: $A \infty B = B \infty A$

Base de datos de proveedores y partes

V#	Proveedor	Status	Ciudad
V1	Smith	20	London
V2	Jones	10	París
V3	Blake	30	París
V4	Clark	20	London
V5	Adams	30	Athens

Tabla Proveedores (V)

P #	Parte	Color	Peso	Ciudad
P1	Nut	Red	12	London
P2	Bolt	Green	17	París
P3	Screw	Blue	17	Rome
P4	Screw	Red	14	London
P5	Cam	Blue	12	París
P6	Cog	Red	19	London

Tabla Partes (P)

V#	P #	Cantidad
V1	P1	300
V1	P2	200
V1	P3	400
V1	P4	200
V1	P5	100
V1	P6	100
V2	P1	300
V2	P2	400
V3	P2	200
V4	P2	200
V4	P4	300
V4	P5	400

Tabla Proveedores-Partes (VP)

Proyectos: Y {Y#, Proyecto, Ciudad}

VPY {V#, P#, Y#, Cantidad}

Ejemplos de división

DEND DIVIDEBY DOR POR MED

V#
V1
V2
V3
V4
V5

DEND

 V#
 P#

 V1
 P1

 V1
 P2

 V1
 P3

 V1
 P4

 V1
 P5

 V1
 P6

 V2
 P1

 V2
 P2

 V3
 P2

 V4
 P2

 V4
 P4

 V4
 P5

P#

DOR

P# P2 P4

MED

DOR

P# P1 P2 P3

P4 P5 P6 DOR

Resultado

V# V1 V2 V# V1 V4 V# V1

Ejemplos del álgebra relacional para las base de datos proveedores y partes

1. Obtener los nombres de los proveedores que suministran la parte P2

Se reunen los datos de proveedores (V) y proveedores-partes (VP), esto se hace con el símbolo ∞ , se asocian los valores y columnas coincidentes de V con VP, esto es V# es la columna coincidente entre los dos.

La misma solución vista de dos maneras:

a) En varias sentencias:

```
tempVP_P \leftarrow VP (VP \propto V) <sub>VP.P#= 'P2'</sub>
Selección \leftarrow \sigma <sub>VP.P#= 'P2'</sub>(tempVP_P)
proyecta \leftarrow \Pi<sub>Proveedor</sub>(tempVP_P)
```

b) En una sola sentencia:

$$\Pi_{Proveedor}(\sigma_{VP.P\#= P2}(VP \infty V))$$

2. Obtener los nombres de los proveedores que suministran por lo menos una parte roja

```
ParteRota ← σ<sub>Color = 'Rojo'</sub>(P)

VP_ParteRoja ← ParteRoja ∞ VP

V VP ParteRoja ← VP ParteRoja ∞ V VP ParteRoja
```

3. Obtener los nombres de los proveedores que suministran todas las partes

```
\begin{array}{l} proyectaV\# \leftarrow \Pi_{V\#}(V) \\ proyectaP\# \leftarrow \Pi_{P\#}(P) \\ proyectaVP\# \leftarrow \Pi_{P\#,V\#}(VP) \\ Divide \leftarrow proyectaV\# DIVIDEBY \ proyectaP\# \ POR \ proyectaVP\# \\ Reune \leftarrow Divide \propto V \\ proyectaProv \leftarrow \Pi_{Proveedor}(Reune) \end{array}
```

4. Obtener los nombres de los proveedores que no suministran la parte P2

```
\begin{array}{l} proyectaV\# \leftarrow \Pi_{V\#}(V) \\ SeleccionaVP \leftarrow \sigma_{P\#='P2'}(VP) \\ proyectaVP \leftarrow \Pi_{v\#}(SeleccionaVP) \\ RestarParte2 \leftarrow ProyectaV\# - ProyectaVP \\ Reune \leftarrow RestarParte2 \infty V \\ proyectaProv \leftarrow \Pi_{Proveedor}(Reune) \end{array}
```

Ejercicios:

- 1. Obtener todos los detalles de todos los proyectos
- 2. Obtener todos los detalles de todos los proyectos en Londres
- 3. Obtener los números de los proveedores que suministran al proyecto Y1
- 4. Obtener todos los envíos donde la cantidad está en el rango de 300 a 750 inclusive.
- 5. Obtener todos los detalles de las partes suministradas por un proveedor de Londres para un proyecto en Londres
- 6. Obtener los números de las partes suministradas para cualquier proyecto por un proveedor en la misma ciudad del proyecto.
- 7. Obtener los colores de las partes suministradas por el proveedor V1
- 8. Obtener los números de los proyectos a los que ningún proveedor de Londres suministra una parte roja.

Bibliografía: Date, C. J. (2000) An Introduction to Database Systems. USA: Addison Wesley