

Московский государственный университет имени М.В. Ломоносова

Факультет вычислительной математики и кибернетики

Кафедра суперкомпьютеров и квантовой информатики.

Васильев Семён Михайлович

Реализация и исследование эффективности параллельного алгоритма решения системы алгебраических уравнений методом матрицы отражений.

Необходимо реализовать параллельный алгоритм решения системы линейных алгебраических уравнений Ax = b методом отражений.

Обозначим за $a_k = (a_{kk}, a_{k+1k}, \dots, a_{nk})^T$ вектор, состоящий из элементов k-ого столбца матрицы A, начиная с k-й строки.

Существует такой вектор
$$x^{(k)} = \pm \frac{a_k - \|a_k\| \, e_1^{(k)}}{\|a_1 - \|a_1\| \, e_1^{(k)}\|}$$
 , что

$$U(x^{(k)})a_k = (I-2xx^T)a_k = ||a_k||e_1^{(k)}$$
 , где $e_1^{(k)} = (\underbrace{1,0,\ldots,0}_k)$.

В процессе выполнения алгоритма матрица A сначала приводится к верхнетреугольному виду в результате последовательного умножения её и правой части b на матрицы $U(x^{(k)}), k=\overline{1,n}$. После это с помощью процедуры аналогичной обратному ходу метода Гаусса находится вектор решения x .

Команда сборки: make main

Команда запуска: mpisubmit.pl -p <число процессов> ./main -- <pазмерность матрицы A> Программа запускалась на вычислительной системе Polus.

PROC_N	1	2	4	8
T1	0.7548	0.4078	0.2240	0.1378
T2	0.0026	0.0028	0.0024	0.0023
T_all	0.7574	0.4106	0.2264	0.1402
S	1	1.8509	3.3696	5.3837
E	1	0.9255	0.8424	0.6730

$$N = 1024$$

PROC_N	1	2	4	8
T1	6.0374	3.0502	1.5716	0.8841
T2	0.0149	0.0108	0.0069	0.0056
T_all	6.0523	3.0610	1.5785	0.8897
S	1	1.9793	3.8415	6.8288
Е	1	0.9897	0.9604	0.8536

N = 2048

PROC_N	1	2	4	8
T1	47.7915	24.3607	12.1619	6.2352
T2	0.1046	0.0509	0.0324	0.0188
T_all	47.8961	24.4116	12.1943	6.2539
S	1	1.9618	3.9296	7.6647
E	1	0.9809	0.9824	0.9581

N = 4096

Команда запуска: mpisubmit.bg -n <число процессов> ./main -- <размерность матрицы A> Программа запускалась на вычислительной системе Blue Gene.

PROC_N	1	2	4	8
T1	11.3065	5.7933	2.9911	1.5447
T2	0.0925	0.0269	0.0189	0.0102
T_all	11.3990	5.8202	3.0099	1.5549
S	1	1.9585	3.7871	7.3310
E	1	0.9792	0.9468	0.9164

$$N = 1024$$

PROC_N	1	2	4	8
T1	94.6505	47.5299	24.2379	12.3297
T2	0.6165	0.3182	0.0608	0.0313
T_all	95.2669	47.8481	24.2987	12.3610
S	1	1.9910	3.9207	7.7070
E	1	0.9955	0.9802	0.9634

N = 2048

PROC_N	1	2	4	8
T1	840.0466	515.0699	258.0431	129.8222
T2	2.5136	1.2822	0.6691	0.1390
T_all	842.5602	516.3521	258.7121	129.9612
S	1	1.6317	3.2567	6.4832
E	1	0.8158	0.8142	0.8104

N = 4096

Теоретические оценки:

$$T_p = \left(\frac{3}{2}n(n+1) + 7n + \frac{2}{3}\frac{1}{p}n(n+1)(2n+1) + \frac{n(n+1)}{p}\right)t_c + \frac{n(n+1)}{2}\log_2(p)t_s$$

$$T_1 = (\frac{3}{2}n(n+1) + 7n + \frac{2}{3}n(n+1)(2n+1) + n(n+1))t_c$$

$$S = \frac{T_1}{T_p} \approx p$$

$$E = \frac{S}{p} \approx 1$$

Оценки реального времени:

Polus (1024)

PROC_N	1	2	4	8
T_all	0.1029	0.0516	0.0260	0.0131
S	1	1.9948	3.9662	7.8283
Е	1	0.9974	0.9915	0.9785

Blue Gene (1024)

PROC_N	1	2	4	8
T_all	0.2905	0.1458	0.0736	0.0376
S	1	1.9924	3.9471	7.7177
E	1	0.9962	0.9868	0.9647