Lineare Algebra 1 Hausaufgabenblatt Nr. 6

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: December 3, 2023)

Problem 1. Wir betrachten den Unterraum U von $\mathbb{Z}/101\mathbb{Z}[t]$, der von

$$B = (\overline{1}, t^2 + t, t^3 - t^2, t + t^3, t^7, t^6 + t^5 + t^3, t^4 - \overline{5})$$

erzeugt wird.

- (a) Entscheiden Sie, ob B eine Basis von U ist. Finden Sie andernfalls eine Basis B' von U, die nur aus Elementen von B besteht.
- (b) Zeigen Sie: Die Polynome

$$(t^7 - t^3 - t - \overline{5}, \overline{2}t^7 - \overline{27}, t^6 + t^5 - t^4 + t^3 + \overline{5})$$

liegen alle in *U* und sie sind linear unabhängig.

- (c) Bestimmen Sie eine Umnummerierung von B', die die Aussage des Austauschsatzes 2.6.8 mit $(w_1, w_2, w_3) = (t^7 t^3 t \overline{5}, \overline{2}t^7 \overline{27}, t^6 + t^5 t^4 + t^3 + \overline{5})$ erfüllt.
- *Proof.* (a) Nein. Per Definition ist *B* ein Erzeugendensystem. Es bleibt nur zu zeigen, dass es linear unabhängig ist.

Es ist aber nicht linear unabhängig. Es gilt

$$-(t^3 + t) + (t^2 + t) + (t^3 - t^2) = 0,$$

also es ist nicht linear unabhängig. Eine Basis B' ist

$$B' = \left\{\overline{1}, t^2 + t, t^3 + t, t^7, t^6 + t^5 + t^3, t^4 - \overline{5}\right\}$$

(also *B* ohne $t^3 - t^2$.)

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

(b) Es gilt

$$t^{7} - t^{3} - t - \overline{5} = t^{7} - (t^{3} + t) - \overline{5}(\overline{1})$$
$$\overline{2}t^{7} - \overline{27} = \overline{2}t^{7} - \overline{27}(\overline{1})$$
$$t^{6} + t^{5} - t^{4} + t^{3} + \overline{5} = (t^{6} + t^{5} + t^{3}) - (t^{4} - \overline{5})$$

also die liegen alle in U. Sei $x_1, x_2, x_3 \in \mathbb{Z}/101\mathbb{Z}$, so dass

$$x_1(t^7 - t^3 - t - \overline{5}) + x_2(\overline{2}t^7 - \overline{27})$$
$$+ x_3(t^6 + t^5 - t^4 + t^3 + \overline{5}) = 0$$

Aus Vergleich des Koeffizienten von t gilt $x_1 = \overline{0}$. Dann vergleich wir den Koeffizient von t^7 und erhalten $x_2 = \overline{0}$. Dann muss $x_3 = \overline{0}$, also sie sind linear unabhängig.

(c)
$$B' = \left\{ t^3 + t, t^7, t^4 - \overline{5}, \overline{1}, t^2 + t, t^6 + t^5 + t^3 \right\}.$$

Problem 2. Bestimmen Sie die Dimension der folgenden Vektorräume.

(a)
$$V_1 = \{ p \in \mathbb{Q}[x] | p(0) = 0 \land \deg(p) \le 6 \}$$

(b)
$$V_2 = \{ p \in \mathbb{Q}[x] | \forall a \in \mathbb{Q} : p(-a) = -p(a) \}$$

(c)
$$V_3 = \{ v \in \mathbb{R}^n | \forall i \in \{1, 2, 3, \dots, n\} : v_i - v_{n-i+1} = 0 \}$$

Proof. (a) Sei $p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^5$. Es gilt $p(0) = a_0$. Also wir müssen $a_0 = 0$. Dann ist V_1 gespannte durch

$$B_1 = \left\{t, t^2, t^3, t^4, t^5, t^6\right\}.$$

Die Vektoren sind linear unabhängig, also ist $\dim(V_1) = 6$.

(b) Ein Polynom in V_2 muss dan nur gerade Potenzen enthalten. Dann ist ein Basis for V_2

$$B_2 = \left\{ x^{2n}, n \in \mathbb{N} \cup \{0\} \right\}$$

also $dim(B_2)$ ist abzählbar.

(c) Ein Basis für V_3 ist $\{(1,0,...,0,1),(0,1,...,1,0),...,(0,...,1,...,0)\}$, also die Dimension ist

$$\dim(V_3) = \left\lceil \frac{n}{2} \right\rceil.$$

Problem 3. Gegeben sei die Matrix

$$A = \begin{pmatrix} \overline{1} \ \overline{2} \ \overline{3} \ \overline{4} \\ \overline{5} \ \overline{6} \ \overline{7} \ \overline{8} \\ \overline{4} \ \overline{3} \ \overline{2} \ \overline{1} \end{pmatrix} \in (\mathbb{Z}/11\mathbb{Z})^{3\times 4}.$$

- (a) Bringen Sie *A* mit elementaren Zeilenoperationen auf Zeilenstufenform. Lesen Sie anschließend den Zeilenrang von *A* ab.
- (b) Bringen Sie $B = A^T$ mit elementaren Zeilenoperationen auf Zeilenstufenform. Lesen Sie anschließend den Zeilenrang von B ab.

Proof. (a)

$$\begin{pmatrix}
\bar{1} \ \bar{2} \ \bar{3} \ \bar{4} \\
\bar{5} \ \bar{6} \ \bar{7} \ \bar{8} \\
\bar{4} \ \bar{3} \ \bar{2} \ \bar{1}
\end{pmatrix}
\xrightarrow{R_{2} + \bar{6}R_{1}}
\begin{pmatrix}
\bar{1} \ \bar{2} \ \bar{3} \ \bar{4} \\
\bar{0} \ \bar{7} \ \bar{3} \ \bar{10} \\
\bar{4} \ \bar{3} \ \bar{2} \ \bar{1}
\end{pmatrix}
\xrightarrow{R_{3} + \bar{7}R_{1}}$$

$$\begin{pmatrix}
\bar{1} \ \bar{2} \ \bar{3} \ \bar{4} \\
\bar{0} \ \bar{7} \ \bar{3} \ \bar{10} \\
\bar{0} \ \bar{6} \ \bar{1} \ \bar{7}
\end{pmatrix}
\xrightarrow{R_{2} \times \bar{8}}
\begin{pmatrix}
\bar{1} \ \bar{2} \ \bar{3} \ \bar{4} \\
\bar{0} \ \bar{1} \ \bar{2} \ \bar{3} \\
\bar{0} \ \bar{6} \ \bar{1} \ \bar{7}
\end{pmatrix}
\xrightarrow{R_{3} + 5R_{2}}
\begin{pmatrix}
\bar{1} \ \bar{2} \ \bar{3} \ \bar{4} \\
\bar{0} \ \bar{1} \ \bar{2} \ \bar{3} \\
\bar{0} \ \bar{0} \ \bar{0} \ \bar{0}
\end{pmatrix}$$

also der Zeilenrang von A ist 2.

$$\begin{pmatrix}
\bar{1} \ \bar{5} \ \bar{4} \\
\bar{2} \ \bar{6} \ \bar{3} \\
\bar{3} \ \bar{7} \ \bar{2} \\
\bar{4} \ \bar{8} \ \bar{1}
\end{pmatrix}
\xrightarrow{R_2 + \bar{9}R_1}
\begin{pmatrix}
\bar{1} \ \bar{5} \ \bar{4} \\
\bar{0} \ \bar{7} \ \bar{6} \\
\bar{3} \ \bar{7} \ \bar{2} \\
\bar{4} \ \bar{8} \ \bar{1}
\end{pmatrix}
\xrightarrow{R_3 + \bar{8}R_1}
\xrightarrow{R_3 + \bar{8}R_1}$$

$$\begin{pmatrix}
\bar{1} \ \bar{5} \ \bar{4} \\
\bar{0} \ \bar{7} \ \bar{6} \\
\bar{0} \ \bar{3} \ \bar{1} \\
\bar{4} \ \bar{8} \ \bar{1}
\end{pmatrix}
\xrightarrow{R_4 + \bar{7}R_1}
\begin{pmatrix}
\bar{1} \ \bar{5} \ \bar{4} \\
\bar{0} \ \bar{7} \ \bar{6} \\
\bar{0} \ \bar{3} \ \bar{1} \\
\bar{0} \ \bar{10} \ \bar{7}
\end{pmatrix}
\xrightarrow{R_2 \times \bar{8}}$$

$$\begin{pmatrix} \overline{1} & \overline{5} & \overline{4} \\ \overline{0} & \overline{1} & \overline{4} \\ \overline{0} & \overline{3} & \overline{1} \\ \overline{0} & \overline{10} & \overline{7} \end{pmatrix} \xrightarrow{R_3 + \overline{8}R_2} \begin{pmatrix} \overline{1} & \overline{5} & \overline{4} \\ \overline{0} & \overline{1} & \overline{4} \\ \overline{0} & \overline{0} & \overline{0} \\ \overline{0} & \overline{10} & \overline{7} \end{pmatrix} \xrightarrow{R_4 + R_2} \begin{pmatrix} \overline{1} & \overline{5} & \overline{4} \\ \overline{0} & \overline{1} & \overline{4} \\ \overline{0} & \overline{0} & \overline{0} \\ \overline{0} & \overline{0} & \overline{0} \end{pmatrix}$$

also der Zeilenrank von A^T ist 2.

Problem 4. Wir betrachten $U = \text{span}((1,2,5,6),(5,4,3,2),(4,3,6,5)) \subseteq \mathbb{Q}^4$.

(a) Bringen Sie

$$A = \begin{pmatrix} 1 & 2 & 5 & 6 \\ 5 & 4 & 3 & 2 \\ 4 & 3 & 6 & 5 \end{pmatrix}$$

mit elementaren Zeilenoperationen auf Zeilenstufenform. Die entstandenen Zeilenvektoren nennen wir ab jetzt b_1 , b_2 , b_3 .

- (b) Begründen Sie, dass b_1 , b_2 , b_3 linear unabhängig sind.
- (c) Begründen Sie, dass b_1 , b_2 , b_3 in U liegen.
- (d) Folgern Sie mit Hilfe der vorigen beiden Aussagen, dass sowohl ((1,2,4,5),(5,4,3,2),(4,3,6,5)) als auch (b_1,b_2,b_3) eine Basis von U bilden.
- (e) Nutzen Sie die Basis (b_1, b_2, b_3) , um herauszufinden, welche der Vektoren $u_1 = (1,1,1,1)$, $u_2 = (1,1,0,0)$ bzw. $u_3 = (1,2,3,4)$ in U enthalten sind. Geben Sie in diesem Fall zudem die Koeffizienten der Linearkombination

$$\lambda_i(1,2,5,6) + \mu_i(5,4,3,2) + \tau_i(4,3,6,5) = u_i$$

an.

Proof. (a)

$$\begin{pmatrix} 1 & 2 & 5 & 6 \\ 5 & 4 & 3 & 2 \\ 4 & 3 & 6 & 5 \end{pmatrix} \xrightarrow{R_2 - 5R_1} \begin{pmatrix} 1 & 2 & 5 & 6 \\ 0 & -6 & -22 & -28 \\ 4 & 3 & 6 & 5 \end{pmatrix} \xrightarrow{R_3 - 4R_1} \begin{pmatrix} 1 & 2 & 5 & 6 \\ 0 & -6 & -22 & -28 \\ 0 & -6 & -22 & -28 \\ 0 & -5 & -14 & -19 \end{pmatrix} \xrightarrow{R_2 \times -\frac{1}{6}} \begin{pmatrix} 1 & 2 & 5 & 6 \\ 0 & 1 & \frac{11}{3} & \frac{14}{3} \\ 0 & -5 & -14 & -19 \end{pmatrix} \xrightarrow{R_3 + 5R_2} \begin{pmatrix} 1 & 2 & 5 & 6 \\ 0 & 1 & \frac{11}{3} & \frac{14}{3} \\ 0 & 0 & \frac{13}{3} & \frac{13}{3} \end{pmatrix}$$

(b) Sei $q_1, q_2, q_3 \in \mathbb{Q}$, so dass

$$q_1b_1 + q_2b_2 + q_3b_3 = 0.$$

Wir betrachten zuerst die erste Komponent. Weil die erste Komponent nur in b_1 ungleich 0 ist, muss $q_1 = 0$. Die zweite Komponent ist nur in b_2 ungleich 0, also $q_2 = 0$. Daraus folgt, weil $b_3 \neq 0$, dass $q_3 = 0$, also b_1, b_2, b_3 sind linear unabhängig.

(c) Durch elementare Zeilenoperationen arbeiten wir immer nur mit linear Kombinationen von Zeilen, also das Ergebnis muss eine lineare Kombination sein.

Wir berechnen es explizit, weil wir es später brauchen werden:

$$b_1 = (1, 2, 5, 6)$$

$$b_2 = \frac{5}{6}(1, 2, 5, 6) - \frac{1}{6}(5, 4, 3, 2)$$

$$b_3 = \frac{1}{6}(1, 2, 5, 6) - \frac{5}{6}(5, 4, 3, 2) + (4, 3, 6, 5)$$

(d) Wir wissen aus Satz 2.4.18, dass die Erzeugendensysteme sind. Dann ist es nur zu zeigen: Die Systeme sind linear unabhängig. Wir wissen, dass b_1, b_2, b_3 linear unabhängig sind.

Wir nehmen an, dass es Zahlen $x, y, z \in \mathbb{Q}$ gibt, nicht alle null, so dass

$$x(1,2,4,5) + y(5,4,3,2) + z(4,3,6,5) = (0,0,0,0).$$

Dann können wir x(1,2,4,5) + y(5,4,3,2) + z(4,3,6,5) als Summe von b_1,b_2,b_3 schreiben. Dann haben wir ein linear Kombination von b_1,b_2,b_3 mit Koeffizienten nicht alle o, aber das Kombination ist 0, also b_1,b_2,b_3 wären dann nicht linear unabhängig.

(e) (1) Es gilt

$$x_1(1,2,5,6) + y_1(0,1,\frac{11}{3},\frac{14}{3}) + z_1(0,0,\frac{13}{3},\frac{13}{3}) = (1,1,1,1).$$

Daraus folgt: $x_1 = 1$ und $y_1 = -1$, also

$$z_1(0,0,\frac{13}{3},\frac{13}{3}) + (1,1,4/3,4/3) = (1,1,1,1).$$

Wir entscheiden uns für $z_1 = -\frac{1}{13}$ und die Behauptung folgt.

$$(1,1,1,1) = (1,2,5,6) - (0,1,11/3,14/3) - \frac{1}{13}(0,0,13/3,13/3)$$

$$= (1,2,5,6) - \left[\frac{5}{6} (1,2,5,6) - \frac{1}{6} (5,4,3,2) \right]$$
$$- \frac{1}{13} \left[\frac{1}{6} (1,2,5,6) - \frac{5}{6} (5,4,3,2) + (4,3,6,5) \right]$$
$$= \frac{2}{13} (1,2,5,6) + \frac{3}{13} (5,4,3,2) - \frac{1}{13} (4,3,2,5)$$

(2) Es würde gelten

$$(1,1,0,0) = x_2(1,2,5,6) + y_2\left(0,1,\frac{11}{3},\frac{14}{3}\right) + z_2\left(0,0,\frac{13}{3},\frac{13}{3}\right).$$

Daraus folgt: $x_2 = 1$ und $y_2 = -1$, also

$$\left(1,1,\frac{4}{3},\frac{4}{3}\right)+z_2\left(0,0,\frac{13}{3},\frac{13}{3}\right)=(1,1,0,0).$$

Wir entscheiden uns für $z_2 = -4/13$, und die Gleichung ist erfüllt, also (1,1,0,0) liegt in U. Es folgt:

$$(1,1,1,1) = (1,2,5,6) - (0,1,11/3,14/3) - \frac{4}{13}(0,0,13/3,13/3)$$

$$= (1,2,5,6) - \left[\frac{5}{6}(1,2,5,6) - \frac{1}{6}(5,4,3,2)\right]$$

$$-\frac{4}{13}\left[\frac{1}{6}(1,2,5,6) - \frac{5}{6}(5,4,3,2) + (4,3,6,5)\right]$$

$$= \frac{3}{26}(1,2,5,6) + \frac{11}{26}(5,4,3,2) - \frac{4}{13}(4,3,2,5)$$

(3) Es würde gelten

$$(1,2,3,4) = x_3(1,2,5,6) + y_3\left(0,1,\frac{11}{3},\frac{14}{3}\right) + z_3\left(0,0,\frac{13}{3},\frac{13}{3}\right).$$

Daraus folgt: $x_3 = 1$ und $y_3 = 0$, also

$$(1,2,3,4) = (1,2,5,6) + z_3\left(0,0,\frac{13}{3},\frac{13}{3}\right).$$

Dann sei $z_3 = -\frac{6}{13}$, und die Gleichung wurde erfüllt, also es liegt in U. Dann ist

$$(1,2,3,4) = (1,2,5,6) - \frac{6}{13} \left(0,0,\frac{13}{3},\frac{13}{3}\right)$$

$$= (1,2,5,6) - \frac{6}{13} \left(\frac{1}{6}(1,2,5,6) - \frac{5}{6}(5,4,3,2) + (4,3,6,5)\right)$$

$$= \frac{12}{13}(1,2,5,6) + \frac{5}{13}(5,4,3,2) - \frac{6}{13}(4,3,6,5).$$