

Enter your title here

Group Member Names

Subsection 1
Subsection 2

Concepts

Subsection Subsection

Subsection

Problem

Reference

Enter your title here

Group Member Names

Indian Institute of Information Technology, Allahabad

October 14, 2018

Introduction

Enter your title here

Group Member Names

Introduction Subsection 1

Subsection 2

Subsection

Subsection

Problem

Deference

System of Linear Equations [Lay]

A linear equation in the variables x_1, \dots, x_n is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$
 (1)

where b and the coefficients $a1,a_n$ are real or complex numbers, usually known in advance.

The subscript n may be any positive integer.

Solution of system of linear equations

Enter your title here

Group Member Names

Introduction
Subsection 1
Subsection 2

Concepts

Subsection Subsection

riobieiii

References

The graphs of the above equations are lines, which we denote by L_1 and L_2 . A pair of numbers. (x_1,x_2) satisfies both equations in the system if and only if the point .x 1; x 2 / lies on both L_1 and L_1 .

Figure: Exactly one solution

Matrix Notation

Enter your title here

Group Membei Names

Introduction Subsection 1 Subsection 2

Concepts

Subsection Subsection

_ ...

Deference

The essential information of a linear system can be recorded compactly in a rectangular array called a matrix. Given the system

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 8x_3 = 8$$
$$5x_1 - 5x_3 = 10$$

Matrix Notation

Enter your title here

Group Member Names

Introduction Subsection 1 Subsection 2

Concept

Subsection Subsection

Problem

Problem

The essential information of a linear system can be recorded compactly in a rectangular array called a matrix. Given the system

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 8x_3 = 8$$
$$5x_1 - 5x_3 = 10$$

with the coefficients of each variable aligned in columns, the matrix

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 5 & 0 & -5 \end{bmatrix}$$

Conditional Probability

Enter your title here

Group Membe Names

Introductio Subsection 1 Subsection 2

Concepts

Subsection 1 Subsection 2 Subsection 3

Problem:

Reference

Solved Examples

A family has two children. What is the conditional probability that both are boys given that at least one of them is a boy? Let the sample space S be $S = \{(b,b),(b,g),(g,b),(g,g)\}$, and all outcomes are equally likely. ((b,g) means, for instance, that the older child is a boy and the younger child a girl.)

Conditional Probability

Enter your title here

Group Member Names

Introduction Subsection 1 Subsection 2

Subsection 1

Subsection Subsection

TODIETT

Reference

Solution

Letting B denote the event that both children are boys, and A the event that at least one of them is a boy, then the desired probability is given by

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{2}$$

$$= \frac{P(\{(b,b)\})}{P(\{(b,b),(b,g),(g,b)\})}$$
(3)

$$=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}\tag{4}$$

Poisson Random Variable [Ross2014]

Enter your title here

Group Member Names

Introduction Subsection 1 Subsection 2

Concepts

Subsection 2

Subsection 3

- -

Definition

A random variable X, taking on one of the values 0,1,2,..., is said to be a Poisson random variable with parameter λ , if for some $\lambda>0$,

$$p(i) = PX = i = e^{\lambda} \frac{\lambda^{i}}{i!}$$
 $i = 0, 1, ...$ (5)

Poisson Random Variable [Ross2014]

Enter your title here

Group Member Names

Introduction Subsection 1 Subsection 2

Subsection 2

Subsection 2 Subsection 3

Reference

Definition

A random variable X, taking on one of the values 0,1,2,..., is said to be a Poisson random variable with parameter λ , if for some $\lambda>0$,

$$p(i) = PX = i = e^{\lambda} \frac{\lambda^{i}}{i!}$$
 $i = 0, 1, ...$ (5)

An important property of the Poisson random variable is that it may be used to approximate a binomial random variable when the binomial parameter n is large and p is small.

Basic Probability

Enter your title here

Group Member Names

Introduction Subsection 1 Subsection 2

Subsection 2
Concepts

Subsection 1 Subsection 2

Subsection 3

D (

Definition [Ross2014]

Consider an experiment whose sample space is S. For each event E of the sample space S, we assume that a number P(E) is defined and satisfies the following three

1
$$0 \le P(E) \le 1$$

Basic Probability

Enter your title here

Group Membe Names

Introduction Subsection 1 Subsection 2

Subsection 2
Concepts

Subsection 1 Subsection 2 Subsection 3

Problems

Doforonco

Definition [Ross2014]

Consider an experiment whose sample space is S. For each event E of the sample space S, we assume that a number P(E) is defined and satisfies the following three

- 1 $0 \le P(E) \le 1$
- P(S) = 1

Basic Probability

Enter your title here

Group Member Names

Introduction Subsection 1 Subsection 2

Concepts
Subsection

Subsection 2 Subsection 3

Problems

Deference

Definition [Ross2014]

Consider an experiment whose sample space is S. For each event E of the sample space S, we assume that a number P(E) is defined and satisfies the following three

- 1 $0 \le P(E) \le 1$
- P(S) = 1
- For any sequence of events $E_1, E_2, ... E_n$ that are mutually exclusive, that is, events for which $E_n E_m = \phi$ when n < m, then

$$P\Big(\cup E_n\Big) = \sum_{n=1}^{\infty} P(E_n) \tag{6}$$

Poisson Distribution

Enter your title here

Group Member Names

Introduction
Subsection 1
Subsection 2

Concepts
Subsection

Subsection

1 TODIETTI.

Problem

If the number of accidents occurring on a highway each day is a Poisson random variable with parameter $\lambda=3$, what is the probability that no accidents occur today ?

Solution

$$P\{X=0\} = \exp^3 \approx 0.05$$

Enter your title here

Group Member Names

Introduction Subsection 1 Subsection 2

Concepts

Subsection 2 Subsection 3

Problem

References

- Lay, D. C. Linear algebra and its applications, 1997.
 - Ross, S. M. (2014).

 Introduction to probability models.

 Academic press.