### Московский физико-технический институт Физтех-школа прикладной математики и информатики

#### ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Андрей Михайлович Райгородский



Автор: Киселев Николай Репозиторий на Github

# Содержание

| 1 | Метрические пространства | 3 |
|---|--------------------------|---|
|   | 1.1 Метрики и нормы      | : |

**Следствие.** Если f бесконечно дифферецируема на интервале, содержащем точку  $x_0$  и  $(x_0-r,x_0+r)$  и  $\exists M>0 \forall x\in (x_0-r,x_0+r) \forall k|f^{(k)}(x)|\leqslant M,$  то  $\forall x\in (x_0-r,x_0+r)$   $f(x)=\sum_{n=0}^{\infty}\frac{f^{(k)}(x)}{k!}(x-x_0)^k$ 

**Следствие.** Ряды Маклорена  $e^x$ ,  $\sin x$ ,  $\cos x$  сходятся к этим функциям  $\forall x \in \mathbb{R}$ , т.е.

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
,  $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ ,  $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ 

Доказательство.  $(e^x)^{(k)} = e^x, (\sin x)^{(k)} = \sin\left(x + \frac{\pi}{2}k\right), (\cos x)^{(k)} = \cos\left(x + \frac{\pi}{2}k\right)$ . Поэтому при  $|x| \le \delta : (e^x)^{(k)} \le e^\delta, (\sin x)^{(k)} \le 1, (\cos x)^{(k)} \le 1$ 

Теорема 0.1. Пусть  $\alpha \neq \mathbb{N}_0, C_{\alpha}^n = \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}, C_{\alpha}^0 = 1$ . Тогда  $(1+x)^{\alpha} = \sum_{n=0}^{\infty} C_{\alpha}^n x^n, |x| < 1$ 

Доказательство.  $f(x)=(1+x)^{\alpha}\Rightarrow f^{(n)}(x)=\alpha(\alpha-1)\dots(\alpha-n+1)(1+x)^{\alpha-n}\Rightarrow \frac{f^{(n)}(0)}{n!}=C_{\alpha}^{n}$ . Имеем при  $x\neq 0$ 

$$\lim_{n \to \infty} \frac{\left| C_{\alpha}^{n+1} x^{n+1} \right|}{\left| C_{\alpha}^{n} x^{n} \right|} = \lim_{n \to \infty} \frac{n - \alpha}{n+1} |x| = |x|$$

По признаку Даламбера при |x|<1 ряд абсолютно сходится, при |x|>1 — абсолютно расходится. Тогда R=1. Обозначим  $g(x)=\sum_{n=0}^{\infty}C_{\alpha}^{n}x^{n}$  и покажем, что  $g\equiv f$  на (-1,1), т.е.  $g(x)(1+x)^{-\alpha}=1 \forall x\in (-1,1)$ . Имеем

$$g(x)(1+x)^{-\alpha} = (1+x)^{-\alpha} \sum_{n=1}^{\infty} nC_{\alpha}^{n} x^{n-1} - \alpha(1+x)^{-\alpha-1} \sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n} = (1+x)^{-\alpha-1} \left( \sum_{n=1}^{\infty} nC_{\alpha}^{n} x^{n-1} + \sum_{n=1}^{\infty} nC_{\alpha}^{n} x^{n} - \alpha \sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n} \right) = (1+x)^{-\alpha-1} \left( \sum_{n=0}^{\infty} (n+1)C_{\alpha}^{n+1} - \sum_{n=0}^{\infty} (\alpha-n)C_{\alpha}^{n} \right) = 0$$

Следовательно,  $g(x)(1+x)^{-\alpha}$  постоянна на (-1,1).  $g(0)=1\Rightarrow g(x)(1+x)^{-\alpha}=1$ 

**Замечание.** Покажем, что биномиальный ряд при  $\alpha > 0$  сходится равномерно на [-1,1].

Доказательство. Рвссмотрим числовой ряд  $\sum_{n=0}^{\infty} |C_{\alpha}^{n}|$ . Для него  $\left|\frac{C_{\alpha}^{n+1}}{C_{\alpha}^{n}}\right| = \frac{n-\alpha}{n+1} = 1 - \frac{\alpha+1}{n} + O\left(\frac{1}{n^{2}}\right)$ . Следовательно, по признаку Гаусса при  $\alpha > 0$ , ряд схоодтся на [-1,1]. Но тогда  $\forall x \in [-1,1] |C_{\alpha}^{n}x^{n}| \leqslant |C_{\alpha}^{n}|$ 

**Пример.** Рассмотрим  $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$  на (-1,1). Тогда по следствию из теоремы  $\ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n!}$ . Т.к. ряд сходится при  $x=1 \Rightarrow$  равномерно сходится на  $[0,1] \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} = \ln 2$ .

**Задача.** Разложить arctg. Получив разложение, найти сумму  $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ 

## 1 Метрические пространства

### 1.1 Метрики и нормы

**Определение 1.1.** Пусть  $X \neq \emptyset$  — произвольное множество. Функция  $\rho: X \times X \to \mathbb{R}$  называется метрикой на X, если  $\forall x, y, z \in X$  выполнено

1. 
$$\rho(x,y) \ge 0, \rho(x,y) = 0 \Leftrightarrow x = y$$

2. 
$$\rho(x, y) = \rho(y, x)$$

3. 
$$\rho(x,y) + \rho(y,z) \geqslant \rho(x,z)$$

**Определение 1.2.**  $(X, \rho)$  — метрическое пространство.

**Пример.** Пусть X — произвольное непустое множество,  $\rho(x,y) = \left\{ \begin{array}{l} 0, x = y \\ 1, x \neq y \end{array} \right.$  . Тогда  $(X,\rho)$  — метрическое пространство.

Доказательство. Предоставляется читателю в качестве нетрудного упражнения.

**Определение 1.3.**  $\rho$  из прошлого примера называется называется дискретной метрикой

**Определение 1.4.** Пусть V — линейное пространство над  $\mathbb{R}$ ,  $\mathbb{C}$ . Функция  $||x||:V\to\mathbb{R}$  называется нормой на V, если

1. 
$$||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$$

2. 
$$\|\alpha x\| = |\alpha| \cdot \|x\|$$

3. 
$$||x + y|| \le ||x|| + ||y||$$

**Определение 1.5.** Пара (V, ||x||) называется нормированным линейным пространством

**Лемма 1.1.** Всякое нормированное пространство является метрическим, для  $\rho(x,y) = \|x-y\|$ 

Доказательство.

1. 
$$||x - y|| \ge 0$$
,  $||x - y|| = 0 \Leftrightarrow x - y = 0 \Leftrightarrow x = y$ 

2. 
$$||x - y|| = |-1|||y - x|| = ||y - x||$$

3. 
$$||x - y|| + ||y - z|| \ge ||x - z||$$

Рассмотрим  $X = \mathbb{R}^n$ ,  $x = (x_1 \dots x_n), y = (y_1, y_2 \dots y_n)$ .

Пример.  $||x|| = \sqrt{\sum_{k=1}^n |x_k|^2}$  — норма,  $\rho(x,y) = \sqrt{\sum_{k=1}^n |x_k - y_k|^2}$  — метрика.

**Пример.** 
$$||x|| = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$$
 — норма,  $\rho(x,y) = \left(\sum_{k=1}^n |x_k - y_k|^p\right)^{\frac{1}{p}}$  — метрика.

Доказательство.

1. 
$$||x-y|| \geqslant 0, ||x|| = 0 \Leftrightarrow x = 0$$
 — очев

- 2. ||x y|| = ||y x|| очев
- 3. Буквально неравество Минковского (см 1 семестр)

Пример.  $||x|| = \max\{x_i\}$  — метрика,  $\rho(x,y) = \max\{x_i - y_i\}$ 

**Определение 1.6.** Пусть  $(X, \rho)$  — метрическое пространство,  $a \in X, r > 0$ .  $B_r(a) = \{x \in X | \rho(x, a) < r\}$  называется открытым шаром в центре a и радиуса r

**Определение 1.7.** Пусть  $(X, \rho)$  — метрическое пространство,  $a \in X, r > 0$ .  $\overline{B_r}(a) = \{x \in X | \rho(x, a) \leq r\}$  называется замкнутым шаром в центре a и радиуса r

**Определение 1.8.** Пусть  $(X, \rho)$  — метрическое пространство. Множество E называется ограниченным, если  $\exists a \in X, r \in \mathbb{R} : E \subset B_r(a)$ 

 $\overline{\Phi\Pi M M \Phi T M}$ , весна 2025