NTRU public key cryptosystem

https://youtu.be/0h01vglLqGk

Contents

Lattice review

NTRU

Key Generation

Encryption

Decryption

Lattice based cryptography review

$$Lattice\ L = \{ \sum_{i=1}^n a_i S_i \mid S_i \in Z \}$$
: R^에서 정수 계수(S_i)를 갖는 모든 기저들(a_i)의 선형 결합 \rightarrow a_i 로 vector space R^n 과 L 생성

$$ex) bk = a_1 + 3a_2 \cdot \cdot \cdot$$

기저들(a;)의 선형결합으로 이루는 점들(b)의 집합

Lattice based cryptography review

- ❖ 격자 상의 계산의 어려움에 기반한 NP-hard 문제
 - SVP(shortest vector problem): basis vector A가 주어질 때, 0이 아닌 벡터 중 가장 짧은 벡터는?
 - CVP(closest vector problem): basis vector A가 주어질 때, target vector t와 가장 가까운 점 p는?

 (t는 격자 위의 점일 필요 x)
- lattice based public key cryptosystem
 - NTRU: SVP의 어려움에 기반
- ❖ lattice reduction : 다른 기저를 갖는 격자 L이 주어질 때, 직교하는 벡터를 통해 축소 기저를 찾는 다항식 시간 알고리즘
 - LLL algorithm : 격자 기반 축소 알고리즘 → NTRU 공격
- ❖ lattice reduction은 짧은 벡터를 생성하도록 설계되어 있어 SVP 해결에 도움이 됨
 - \rightarrow 이를 막기 위한 parameter 설정 필요

NIST round2 - NTRU

csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

NTRU	
(merger of NTRUEncrypt	
and NTRU-HRSS-KEM)	

Zip File (4MB) **IP Statements**

Oussama Danba Jeffrey Hoffstein **Website Andreas Hulsing** Joost Rijneveld John M. Schanck Peter Schwabe William Whyte Zhenfei Zhang

Cong Chen

NTRU Prime

Zip File (3MB)

Website

Daniel J. Bernstein Chitchanok Chuengsatiansup Tanja Lange Christine van Vredendaal

Submit Comment

View Comments

Submit Comment

View Comments

NTRU 변형

❖ NTRU-HRSS-KEM

■ parameter 제한 : NTRUKEM743

❖ NTRU Prime

■ N(소수), (Z / q) [x] / (x^N - x-1) 형식의 유한체 사용

❖ NTRUSign

■ 전자서명

❖ 키 분배, 영지식 증명 등

NTRU 효율적 구현에 대한 연구 진행..

- ❖ Hoffstein과 Silverman은 보안성은 유지한 채 연산량을 줄이기 위해 특별한 형태의 다항식 사용 제안
- ❖ Bailey 등은 NTRU가 **리소스가 제한된 장치 상에서 효과적으로 구현될 수 있다**는 것을 증명
- ❖ Gaubatz, Kaps 및 Sunar는 3,000개 이하의 게이트만을 사용하는 NTRU의 하드웨어 구현을 제안 → 센서 노드 상에서 공개 키 암호의 사용이 가능함을 증명
- ❖ NTRU를 변형하여 IoT 디바이스에 적용 / AVX2를 사용하여 최적화한 결과도 있음
- ❖ 연산량 감소의 필요성 여전히 존재
 - 가장 큰 비중을 차지하는 **다항식 컨볼루션 연산**에 대한 연산량 감소 필요

NTRU public key cryptosystem

Table 1. Performance analysis of NTRU with existing public key cryptosystems

	Algorithm	Message Size (bits)	Key size (bits)	Key generation (ms)	Encryption (ms)	Decryption (ms)
	RSA1024	1024	1024	1432	4.28	48.5
-[ECC168	160	169	65	140	67
	NTRU263	416	1841	19.8	1.9	3.5

❖ RLWE를 기반으로 polynomial ring에서 기본 연산 수행

https://www.kci.go.kr/kciportal/ci/sereArticleSearchkci?sereArticleSearchBean.artild=ART002345480)

- Z[x]: Z에 대한 다항식 링 \rightarrow 정수 계수를 갖는 모든 다항식들의 집합
- R = Z[x]/(Xn 1): 모든 다항식들의 집합은 ring R 에서 정의
 - → 계수가 정수이고, n-1차 다항식 사용 : $a = a_0 + a_1 x^1 + ... + a_{n-1} x^{n-1}$
- ❖ 기본 연산
 - Circular Convolution : 순환 합성곱 : O(NlogN)
 - → 다항식 곱셈에 사용 → 시간 소모가 가장 많은 과정 → 연산량 줄일 필요가 있음
 - RSA(modular multiplication), ECC(Elliptic Curve Addition), NTRU(Convolution)
 - → Convolution 연산은 기존의 공개키 암호의 연산보다 암/복호화가 빠르고 효율적
- ❖ 격자에서 짧은 벡터를 찾는 어려움(SVP)을 기반으로 안전성을 제공 & 복호화
 - 양자 컴퓨팅 공격에도 안전
- ▶ 빠른 연산 속도 / SW, HW 구현 용이 / 적은 메모리 사용 / 키 생성 쉬움 / 양자 알고리즘 공격에 안전

NTRU public key cryptosystem

parameter

- *n*(소수), *p*, *q*(2^x : 2의 거듭제곱)
 - \rightarrow gcd(p,q) = 1(p와 q는 소수일 필요 없고 서로소)
 - → 공개 파라미터

• 4 sets : L_f , Lg, Lr, Lm

- sampling f, g, r, m: randomness \rightarrow polynomial: 확률론적 알고리즘
- ex) hps2048509 $\stackrel{\square}{=}$ sampling : $n = 509, q = 2048 \rightarrow \stackrel{\square}{=} 2048 \rightarrow \stackrel{\square}{=} 4064bits (= 508byte)$
 - 4064bit → mod 3 → 각 byte를 -1, 0, 1으로 변환 (0, 1, 2지만 -1 ≡ 2 mod 3)
 - 509번째 계수는 항상 0으로 set > 다항식 f:509개의 작은 계수들
- 다항식 만든 후 fisher-Yates shuffle 등의 알고리즘으로 무작위로 섞는 방법이 가장 간단
 - → 다항식이 큰 경우 일정 시간 안에 실행 불가 등의 문제점 존재
 - → NTRU는 shuffle대신 정렬을 사용

*확률적 / 무작위 알고리즘 (probabilistic / randomized algorithm)
난수를 발생시켜 진행과정을 결정 (의사난수발생기 사용) -> 결과값을 예측하지 못하도록 함
아주 작은 확률로 틀릴 가능성 존재 but 효율적인 알고리즘

*sampling algorithm은 NTRU 변형마다 다름

NTRU public key cryptosystem

sorting

- 셔플, 정렬 시간 등에서 다항식 길이 등의 정보 노출 가능성 존재
- constant time sorting 방법을 만드는 것이 shuffle보다 쉬움
- 덧셈, 뺄셈, 논리 연산 등의 상수 시간 연산만 사용 가능
- 비밀데이터에 의존하는 분기 사용x, 메모리 접근 시 캐시 주의

*constant time 어떤 문제를 풀이하는데 필요한 수학적 연 산 시간이

- 추어진 입력 자료에 관계 없이 일정할 때의 연 산 시간

Hamming Weight

- r(x), F(x) 의 계수들은 임의로 선택하여 제어 가능 \rightarrow 곱셈 연산 없이 계산되도록 이진 계수(0,1)사용
- r(x)의 가중치 $HW(r) \rightarrow HW(r) \cdot n$ 번의 연산 필요
- 낮은 hamming weight를 갖는 r(x), F(x)를 사용 \rightarrow 암/복호화 효율적
 - → HW가 너무 적은 경우 보안성 저하
 - \rightarrow IEEE P1361.1 표준 초안에서는 (N,p,q)에 의해 대략적인 HW값이 주어짐

NTRU parameters

- ❖ 현재 NIST competition에 parameter set 4개 정의됨
 - hps2048509, hps2048677, hps4096821, hrss701
 - → 다항식 계수를 결정하는 n: 509, 677, 821, 701
 - → 2의 거듭제곱 q: 2048, 2048, 4096, 8192
 - → 모든 set에서 mod 2¹⁶ 보다 큰 모듈러 축소는 없으므로 16번째 비트의 overflow는 결과에 영향 없음
- ❖ NIST competition에 설정된 보안 목표 달성 위해 선택됨
 - 변형들도 대체로 동일하지만 샘플 공간 등 일부 세부 사항이 다름
- ❖ 매개변수를 조절하여 보안 강도를 환경에 맞도록 최적화 가능

NTRU - 기본 연산: circular convolution (*)

- convolution
 - 두 함수 중 하나를 역전시켜 이동하면서 다른 함수와의 곱을 더함→ 새로운 함수 생성
- circular convolution
 - 주기성을 갖는 신호에서의 convolution
 - modular 연산 : 주기성을 가짐
- ❖ n²번의 정수 곱셈이 필요
 - but NTRU의 convolution은 일반적으로 a, b중 하나가 작은 계수를 갖는 다항식
 - → 곱셈 쉽고, n²번 필요 없음 → 빠른 연산 가능

$$c_k = \sum_{i=0}^k a_i \ b_{k-i} + \sum_{i=k+1}^{n-1} a_i \ b_{n+k-i} = \sum_{i+j=k \bmod n} a_i b_j$$

$$a = a_0 + a_1 x^1 + \dots + a_{n-1} x^{n-1} = [a_0, a_1, \dots, a_{n-1}]$$

$$b = b_0 + b_1 x^1 + \dots + b_{n-1} x^{n-1} = [b_0, b_1, \dots, b_{n-1}]$$

$$c(x) = a(x) * b(x)$$

$$c_k : c(x) 의 계수$$

NTRU - 기본 연산: circular convolution (*)

❖ modular multiplication of polynomial = circular convolution

$$c_k = \sum_{i=0}^k a_i b_{k-i} + \sum_{i=k+1}^{n-1} a_i b_{n+k-i} = \sum_{i+j=k \bmod n} a_i b_j$$

$$c_k = a_0 b_k + a_1 b_{k-1} \dots + a_k b_0 + a_{k+1} b_{n-1} + \dots + a_{n-1} b_{k+1}$$

$$ex) n = 3$$

 $c_1 = a_0b_1 + a_1b_0 + a_2b_2$

▶ 카라츠바, 톰쿡 등의 알고리즘으로 연산량 감소 가능

$$\Delta(x) = 2x^{2} + 3x + 5 = [a, a, a, a] = [5, 3, 2]$$

$$b(x) = 3x^{2} + 4x + 7 = [b, b, b, b] = [7, 4, 3]$$

mod n off reduction (m-d3)

$$\Rightarrow x^4 \rightarrow x$$
, $x^3 \rightarrow 444$
 $\Rightarrow \pm 4 + 446$ \Rightarrow

NTRU – key generation (1)

parameter

- n(소수) / p, q → gcd(p,q) = 1 / q = 2^x : 공개 파라미터
 - \rightarrow gcd(p,q)가 1보다 커지면 안전성 감소 (p가 q를 나누는 경우, e = m이 됨)

* sampling

- 작은 계수를 갖는 n-1차 다항식 f,g를 뽑음 $(f \in Lf,g \in Lg)$
- g는 공개키 생성 시 사용 후 버려짐
- $f * f^{-1} \equiv 1 \pmod{p}$, $f * f^{-1} \equiv 1 \pmod{q}$
 - $\rightarrow F_p, Fq$ 는 각각 mod p, mod q 상에서의 f의 역원
 - → f = 1 + pF의 형태로 선택 → $mod\ p$ 상에서 f = 1이 됨 $(0 \equiv p\ mod\ p)$
 - → 역원 존재하지 않을 경우 다시 선택

NTRU – key generation (2)

- private key
 - (f, \mathbf{F}_p)
- public key
 - $\bullet \quad h = p * Fq * g \pmod{q}$

NTRU – encryption

* sampling

- lacktriangle message $m{m}$, random polynomial $m{r}$ 뽑음 ($m{m} \in \mathrm{Lm}_{,} \mathrm{r} \in \mathrm{Lr}$)
- r:비밀데이터,사용후 버려짐

* encryption

 $\bullet \quad e \equiv r * h + m \pmod{q}$

NTRU – decryption (1)

 \diamond computing polynomial $a \equiv f * e \pmod{q}$

$$\equiv f * (r * h + m) (mod q)$$

$$\equiv f * r * h + f * m (mod q)$$

$$\equiv f * r * p * F_q * g + f * m (mod q)$$

$$\equiv r * p * g + f * m (mod q)$$

- ❖ 복호화 실패 방지 위해 다항식 a의 계수들은 $-q/2 \sim q/2$ 사이에 있어야 함 : decryption error x
 - 적절한 parameter 선택 시 $-q/2 \sim q/2$ 범위에 오게 됨
 - $\rightarrow q > (6d + 1)p$ 의 경우 복호화 실패 X
 - $\rightarrow r * p * g + f * m \pmod{q} \equiv r * p * g + f * m \rightarrow 정확히 같은 값이므로 복호화 가능$

NTRU – decryption (2)

* decryption

■
$$r * p * g + f * m$$

= $r * p * g + (1 + pF) * m$
= $r * p * g + (1 + pF) * m \pmod{p}$
= $0 + (1 + 0)m = m \rightarrow$ 복호화 성공

Q&A

