STOR 320 Web Scraping

Lecture 9

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

- Relying on Downloadable CSV's Puts You at a Disadvantage
- Majority of Data Is Found Online
- Negative: Online Data is Unstructured in HTML Format
- Positive: Online Data is Often Updated, Relevant,
 & Untapped

Example 1: Population of states

	Population of states, territories, divisions and regions											
State/federal district/territory/ division/region	Rank \$	2019 population +	Rank \$	2010 population *	Rank \$	2000 population \$	Rank \$	2000- 2010 \$ change	Geographic sort			
 Massachusetts 	15	6,892,503	14	6,547,629	13	6,349,097	43	3.1%	NEng			
Connecticut	29	3,565,287	29	3,574,097	29	3,405,565	35	4.9%	NEng			
New Hampshire	41	1,359,711	42	1,316,470	41	1,235,786	32	6.5%	NEng			
Maine	42	1,344,212	41	1,328,361	40	1,274,923	39	4.2%	NEng			
Rhode Island	44	1,059,361	43	1,052,567	43	1,048,319	49	0.4%	NEng			
• Vermont	49	623,989	49	625,741	49	608,827	44	2.8%	NEng			
New England	9	14,845,063	9	14,444,865	9	13,922,517	7	3.8%	NEast			
New York	4	19,453,561	3	19,378,102	3	18,976,457	46	2.1%	MAtl			
Pennsylvania	5	12,801,989	6	12,702,379	6	12,281,054	41	3.4%	MAtl			
New Jersey	11	8,882,190	11	8,791,894	9	8,414,350	37	4.5%	MAtl			
Mid-Atlantic	4	41,137,740	4	40,872,375	4	39,671,861	8	3.0%	NEast			
Northeast	4	55,982,803	4	55,317,240	4	53,594,378	4	3.2%	USA			
▼ Florida	3	21,477,737	4	18,801,310	4	15,982,378	8	17.6%	SAtI			
Georgia	8	10,617,423	9	9,687,653	10	8,186,453	7	18.3%	SAtI			
North Carolina	9	10,488,084	10	9,535,483	11	8,049,313	6	18.5%	SAtI			
Virginia	12	8,535,519	12	8,001,024	12	7,078,515	16	13.0%	SAtl			
Maryland	19	6,045,680	19	5,773,552	19	5,296,486	23	9.0%	SAtl			
South Carolina	23	5,148,714	24	4,625,364	26	4,012,012	10	15.3%	SAtI			
■ West Virginia	38	1,792,147	37	1,852,994	37	1,808,344	45	2.5%	SAtI			

Example 2: Blood Pressure Chart

Approx.	BP Acco	ding to A	ge Chart							
Age	Low		Normal Elevated		Stage 1 Hypertension		n	Stage 2 Hypertension		
	S	D	S	D	S	D	S	D	S	D
17-19	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
20-24	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
25-29	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
30-34	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
35-39	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
40-44	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
45-49	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
50-54	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
55-59	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
60+	< 90	< 60	120	< 80	120-129	< 80	130-139	80-89	140+	90+

Example 3: Movie List

Web Scraping Definition

- Process of Converting Currently Unstructured Data on Web to Structured Data in R
- Ideas:
 - Population Table to CSV
 - Blood Pressure Chart to Tibble
 - Movies to List in R
- Absolutely Crucial Skill for Modern Data Scientists

Web Scraping in R

- The rvest package
 - > library(rvest)
 - Written by Hadley Wickham
 - General Process:

Example 1

- Right click the table → inspect
- Select element, right click → copy XPath

Example 1: code

```
"" {r}
url <- "https://en.wikipedia.org/wiki/List_of_states_and_territories_
of_the_United_States_by_population"

population <- url %>%
    read_html() %>%
    html_nodes(xpath="/" *[@id="mw-content-text"]/div[1]/table[3]') %>%
    html_table() %>%
    . [[1]]

colnames(population)=c("State", "Rank_2019", "Pop_2019", "Pop_2010", "Rank_2010", "Pop_2000", "Rank_2000", "Change", "Geographic_sort")
head(population)
"""
```

	State <chr></chr>	Rank_2019 <chr></chr>	Pop_2019 <chr></chr>	Pop_2010 <chr></chr>	Rank_2010 <chr></chr>	Pop_2000 <chr></chr>	Rank_2000 <chr></chr>	Change chr>
1	Massachusetts	15	6,892,503	14	6,547,629	13	6,349,097	43
2	Connecticut	29	3,565,287	29	3,574,097	29	3,405,565	35
3	New Hampshire	41	1,359,711	42	1,316,470	41	1,235,786	32
4	Maine	42	1,344,212	41	1,328,361	40	1,274,923	39
5	Rhode Island	44	1,059,361	43	1,052,567	43	1,048,319	49
6	Vermont	49	623,989	49	625,741	49	608,827	44

Add SelectorGadget

Example 2

- Step 4: Identifying CSS Selector
 - Go to Web Page

https://www.imdb.com/search/title/?count=100&release_date=2019,2019&title_type=feature

Choose SelectorGadget

Locate This Box on the bottom

Example 2

Step 2: Deselect

Example 2: code

```
"``{r}
url <- "https://www.imdb.com/search/title/?count=100&release_date=201
9,2019&title_type=feature"

movies <- url %>%
  read_html() %>%
  html_nodes '.lister-item-header a') %>%
  html_text()
```

[1] "21 Bridges" [2] "Knives Out" [3] "Joker" [4] "Avengers: Endgame" [5] "I See You" [6] "Once Upon a Time... in Hollywood" [7] "The Peanut Butter Falcon" [8] "Parasite" [9] "Ready or Not" [10] "Jojo Rabbit" [11] "The Gentlemen" [12] "Doctor Sleep" Γ137 "1BR" [14] "The Lighthouse" [15] "Jumanji: The Next Level" [16] "Bombshell" Γ177 "1917" [18] "Get Duked!"

Tutorial 6

- Step 1: Open Tutorial
- Step 2: Ensure You Have the Following R Packages Installed
 - tidyverse
 - rvest
 - devtools
 - noncensus (Install from Github)
- Step 3: Knit and Run
- Step 4: Read the Introduction

- Step 1: Wikipedia Violent Crimes
- Step 2: Locate the Table

						Viol	ent crime			
State	•	City	Population	Total \$	Murder and Nonnegligent manslaughter	¢	Rape ¹ ♦	Robbery \$	Aggravated assault	
Alabama	Mobile ³		248431	740.25	20.13		57.16	177.11	485.85	
Alaska	Anchorage)	296188	1203.29	9.12		132.01	262.67	799.49	
Arizona	Chandler		249355	259.47	2.01		52.13	56.95	148.38	
Arizona	Gilbert		242090	85.51	2.07		16.11	21.07	46.26	
Arizona	Glendale		249273	488.22	4.81		38.91	192.96	251.53	
Arizona	Mesa		492268	415.83	4.67		51.19	92.23	267.74	
Arizona	Phoenix		1644177	760.93	9.55		69.46	200.28	481.64	
Arizona	Scottsdale		251840	157.24	1.99		40.90	39.71	74.65	
Arizona	Tucson		532323	801.77	8.64		93.55	268.82	430.75	
California	Anaheim		353400	354.56	2.83		32.54	135.82	183.36	
California	Bakersfiel	<u> </u>	381154	479.33	10.76		24.14	197.56	246.88	

- Step 3: What Do You Expect to Be a Problem in the Data?
- Step 4: Run Chunk 1
 - Is This What You Expected?
 - What New Problems Arise?
- Step 5: Run Chunk 2
 - Select Wanted Information
 - Remove 1st Row Subgroups
 - Rename Variables

- Step 6: Run Chunk 3
 - Converting Variable Types
 - as.numeric()
 - as.character()
 - as.date()
 - as.integer()
 - All Numeric Variables are Character Because of First Row
- Step 7: Run Chunk 4
 - City Variable Has Problems
 - Why Do We Care?

- Step 8: Run Chunk 5
 - String Functions Used
 - str_replace_all()
 - str_replace()
 - Conditional Mutation
 - ifelse()
- Step 9: Base Knit

Part 2: Geographical Locations of US Cities

- Step 1: What Additional Information Would We Need to Plot Crime Information on a Map?
- Step 2: Run Chunk 1
 - What Info is Important?
 - What Do You Notice About the City Variable?
- Step 3: Run Chunk 2
 - Goal: Find the Average Latitude and Longitude for Each City and State

Part 2: Geographical Locations of US Cities

- Step 4: Run Chunk 3
 - Examine the Output
 - Notice Aaronsburg, PA

- Are We Ready to Merge?
 - #No
 - #WhyNot
- Step 5: Pinch Knit

Part 3: Linking State Names to State Abbreviations

- Step 1: Select Website Link
- Step 2: Examine the Table

Name	Abbreviation	Name	Abbreviation
Alabama	AL	Montana	MT
Alaska	AK	Nebraska	NE
Arizona	AZ	Nevada	NV
Arkansas	AR	New Hampshire	NH
California	CA	<u>New Jersey</u>	NJ
Colorado	СО	New Mexico	NM
Connecticut	СТ	New York	NY

 Step 3: What is the Issue with the Way this Information is Presented and How Does this Pose a Threat to Our Existence?

Part 3: Linking State Names to State Abbreviations

- Step 4: Run Chunk 1
 - Did You Get What You Expected?
 - How Should We Fix This Data?
- Step 5: Run Chunk 2
 - Stacking Datasets
 - Horizontally

> cbind(x,y)

Vertically

> rbind(x,y)

Step 6: Knitting Streak

Intermission

- Final 3 Data Frames From Last Tutorial Should All Be Saved to CSV's on PC
 - FINAL_VIOLENT.CSV
 - FINAL ZIP.CSV
 - FINAL_STATE_ABBREV.CSV
- Think About What Other City Information Could Potentially Be a Factor in Violent Crimes
- Think About What Other City Information Could Potentially Be Influenced by the Prevalence of Violent Crimes

Tutorial 7 Introduction

- Step 1: Open Tutorial 7
- Step 2: Ensure You Have the Following R Packages Installed
 - tidyverse
 - rvest
- Step 3: Switch Knitter
- Step 4: Read the Introduction

Part 1: Connection to Population Change and Density

Step 1: Select the Link and Observe the Following Table

2019 rank \$	City \$	State ^[c]	2019 estimate \$	2010 Census \$	Change +	2016 land	l area 💠	2016 population density \$		Location \$
1	New York ^[d]	New York	8,336,817	8,175,133	+1.98%	301.5 sq mi	780.9 km ²	28,317/sq mi	10,933/km ²	Q 40.6635°N 73.9387°W
2	Los Angeles	California	3,979,576	3,792,621	+4.93%	468.7 sq mi	1,213.9 km ²	8,484/sq mi	3,276/km ²	Q 34.0194°N 118.4108°W
3	Chicago	Illinois	2,693,976	2,695,598	-0.06%	227.3 sq mi	588.7 km ²	11,900/sq mi	4,600/km ²	🔑 41.8376°N 87.6818°W
4	Houston ^[3]	Texas	2,320,268	2,100,263	+10.48%	637.5 sq mi	1,651.1 km ²	3,613/sq mi	1,395/km ²	Q 29.7866°N 95.3909°W
5	Phoenix	** Arizona	1,680,992	1,445,632	+16.28%	517.6 sq mi	1,340.6 km ²	3,120/sq mi	1,200/km ²	@ 33.5722°N 112.0901°W
6	Philadelphia ^[e]	Pennsylvania	1,584,064	1,526,006	+3.80%	134.2 sq mi	347.6 km ²	11,683/sq mi	4,511/km ²	40.0094°N 75.1333°W
7	San Antonio	Texas	1,547,253	1,327,407	+16.56%	461.0 sq mi	1,194.0 km ²	3,238/sq mi	1,250/km ²	Q 29.4724°N 98.5251°W
8	San Diego	California	1,423,851	1,307,402	+8.91%	325.2 sq mi	842.3 km ²	4,325/sq mi	1,670/km ²	@ 32.8153°N 117.1350°W
9	Dallas	Texas	1,343,573	1,197,816	+12.17%	340.9 sq mi	882.9 km ²	3,866/sq mi	1,493/km ²	Q 32.7933°N 96.7665°W

- Step 2: Questions?
 - What is the Connection to Violent Crimes?
 - How is this Useful When Related to Violent Crimes?

Part 1: Connection to Population Change and Density

- Step 3: Run Chunk 1
 - What is required to convert the Pop_2019 to a numeric variable?
 - What is required to convert the Land to a numeric variable?
 - What is required to convert the Density to a numeric variable?
- Step 4: Run Chunk 2
 - Notice: ",|km2",",|/km2"

Part 1: Connection to Population Change and Density

- Step 5: Run Chunk 3
 - How to create a variable representing population change from 2016 to 2019?
 - How to create a variable representing population density in 2019?
 - How to clean the city name column?

- Step 1: Selector Gadget Website
 - Open Source
 - Chrome Extension Exists
 - Easy: Drag Link to Bookmark Bar as Webpage Explains

- Step 2: Observe the Article on 2018's Safest and Most Dangerous States
 - What info could be of use?
 - Do you agree identification?

- Step 3: Information of Interest
 - Safe vs Dangerous
 - 1. Vermont
 - 2. Maine
 - 3. Minnesota
 - 4. Utah
 - 5. New Hampshire
 - 6. Connecticut
 - 7. Rhode Island
 - 8. Hawaii
 - 9. Massachusetts
 - Washington

- 1. Mississippi
- 2. Louisiana
- 3. Oklahoma
- 4. Texas
- 5. Florida
- 6. Arkansas
- 7. Alabama
- 8. Missouri
- 9. Alaska
- 10. South Carolina
- Goal: Scrape this Information into Vectors in R to Create a Table

Step 4: Identifying CSS Selector

- Step 4: Continued
 - Find Content You Want

- Point and Click to Select Info
- Info We Want is Highlighted
- Info We Don't Want, As Well

- Step 4: Continued
 - Find Content You Don't Want

- Point and Click to Deselect
- Locate This Box

- Step 4: Continued
 - Locate This Box

- Copy CSS Selector: "#articleContentWrapper li"
- Step 5: Run Chunk 1

```
SAFE_VS_DANGEROUS = URL.SAFE_VS_DANGEROUS %>%
read_html() %>%
html_nodes(css="#articleContentWrapper li") %>%
html_text()
```

- Step 6: Run Chunk 2
 - What About the Other States?
- Step 7: Walk-off Knit