

Proyecto final Hot Cakes

ESPECIALIDAD EN SISTEMAS DE CALIDAD

DISEÑO DE EXPERIMENTOS

Matrícula: 3139631

Alumno: Germán Aboytes Manzo

Gerardo Guillen Pedrero

Justificación

La motivación que nos llevó a realizar este experimento fue estudiar algunos factores que influyen en que se obtengan unos hot cakes más esponjosos que otros, esto surgió debido a que en las tiendas departamentales se observan diferentes marcas de productos y con ello diferentes presentaciones en las cuales se encuentran fotografías más atractivas que otras.

Objetivo

Básicamente lo que se busca hacer con este experimento, es demostrar y aplicar los conocimientos recibidos de la materia de diseño de experimentos. Mediante este experimento buscamos la formula idónea para la fabricación de los hot cakes, a parte de descubrir que elementos son los que influyen verdaderamente en el proceso de fabricación y poder determinar los pasos a seguir cuando se desee un pan mas esponjoso. Para tener una altura de 1 cm.

Introducción

Los Hot cakes Son unos panes esponjosos, fabricados en casi todo el mundo y en donde reciben también diferentes nombres, como por ejemplo: Hotcakes, griddlecakes, o flapjacks (USA), Pikelets (New Zealand), Palatschinken (Austria) y Dorayaki (Japon).

Material y equipo

Para la preparación de las mezclas

- Harina (Dos marcas)
- Leche (Dos marcas)
- Huevos (1 & 2)
- Margarina & Mantequilla

2. Para la preparación de los hot cakes (opcionales)

1 Sartén

2 envases de danonino.

Batidora

Recipientes de plástico.

Cucharón metálico.

Cronómetro.

Tazas de la misma medida.

Otros

3. Para medir el grosor de los hot cakes

Vernier. (Recomendado)

Para medir el grosor (Variable Y)

Se coloca el hot cake en el centro de un plato completamente plano y se realizaba un corte por el centro del pan, posterior a esto se toma la medida con el vernier (Equipo de medición), para después poder registrarlo en la hoja de datos de minitab.

Evidencias

Variables

• Harina (Dos marcas)

• Leche (Dos marcas)

• Huevos (1 & 2)

• Margarina & Mantequilla

Harina 1: Marca Pronto

Harina 2: Gamesa

Leche 1: Alpura

Leche 2: Lala

Huevos 1: 1 unidad

Huevos 2: 2 unidades

MAR Y MAN 1: Margarita

MAR Y MAN 2: Mantequilla

Obtención de variable grosor a partir del desarrollo Experimental

+	C1	C2	C3	C4	C5	C6	C 7	C8	C9 🗾
	OrdenEst	OrdenCorrida	PtCentral	Bloques	Harina	Leche	Huevo	MaryMan	Grosor
1	13	1	1	1	1	1	2	2	1.4
2	12	2	1	1	2	2	1	2	8.0
3	16	3	1	1	2	2	2	2	1.3
4	11	4	1	1	1	2	1	2	1.2
5	6	5	1	1	2	1	2	1	1.0
6	9	6	1	1	1	1	1	2	0.9
7	1	7	1	1	1	1	1	1	8.0
8	2	8	1	1	2	1	1	1	0.6
9	14	9	1	1	2	1	2	2	1.0
10	5	10	1	1	1	1	2	1	8.0
11	3	11	1	1	1	2	1	1	1.2
12	4	12	1	1	2	2	1	1	1.3
13	15	13	1	1	1	2	2	2	1.2
14	7	14	1	1	1	2	2	1	1.5
15	8	15	1	1	2	2	2	1	0.9
16	10	16	1	1	2	1	1	2	0.8

Desarrollo del diseño

1.

2.

4.

5.

6.

7.Observamos que con este diseño obtenemos una R errónea, por lo cual deberíamos buscar rediseñarlo y ajustarlo según consideremos.

Resumen del modelo

			R-cuadrado
S	R-cuadrado	R-cuadrado(ajustado)	(pred)
*	100 00%	*	*

8. Podemos observar que no tenemos variables significativas

9. Ajustamos el diseño eliminando la variable (AC) que es la menos significativas de todas

10. Resumen del modelo

			R-cuadrado
S	R-cuadrado	R-cuadrado(ajustado)	(pred)
0.025	99.94%	99.08%	84.30%

Con este nuevo diseño obtenemos una R del 99% y un modelo aceptable.

11. Con este diseño tenemos 5 variables significativas (Leche, Huevo, Harina, y combinaciones ABCD y BD

Podemos darnos cuenta de que las variables más significativas son la leche y el huevo.

Conclusiones

Según los datos obtenidos experimentales de grosor (varible y) hicimos el diseño con las diferentes variables para obtener la mejor combinacion posible para conseguir unos Hot Cakes esponjosos de 1 cm de grosor.

Según el grafico de cubos podemos decir que teniendo la combinacion:

- Harina 2 : Gamesa
- Margarina
- 2 Huevos
- Leche Alpura

Obtendremos unos Hot Cakes con grosor de 1.00625 cm