Network Security

Chapter 8

- Cryptography
- Symmetric-Key Algorithms
- Public-Key Algorithms
- Digital Signatures
- Management of Public Keys
- Communication Security
- Authentication Protocols
- Email Security
- Web Security
- Social Issues

Network Security

Security concerns a variety of threats and defenses across all layers

Application
Transport
Network
Link
Physical

Network Security

Some different adversaries and security threats

Adversary	Goal		
Student	To have fun snooping on people's email		
Cracker	To test out someone's security system; steal data		
Sales rep	To claim to represent all of Europe, not just Andorra		
Businessman	n To discover a competitor's strategic marketing plan		
Ex-employee	To get revenge for being fired		
Accountant	To embezzle money from a company		
Stockbroker	To deny a promise made to a customer by email		
Con man	To steal credit card numbers for sale		
Spy	To learn an enemy's military or industrial secrets		
Terrorist	To steal germ warfare secrets		

Different threats require different defenses

Cryptography

Cryptography is a fundamental building block for security mechanisms.

- Introduction »
- Substitution ciphers »
- Transposition ciphers »
- One-time pads »
- Fundamental cryptographic principles »

Introduction

The encryption model (for a symmetric-key cipher)

Kerckhoff's principle:

Algorithms (E, D) must be public; only the keys (K) are secret

Substitution Ciphers

Substitution ciphers replace each group of letters in the message with another group of letters to disguise it

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z ciphertext: QWERTYUIOPASDFGHJKLZXCVBNM

Simple single-letter substitution cipher

Transposition Ciphers

Transposition ciphers reorder letters to disguise them

Simple column transposition cipher

One-Time Pads

Simple scheme for perfect secrecy:

- XOR message with secret pad to encrypt, decrypt
- Pad is as long as the message and can't be reused!
 - It is a "one-time" pad to guarantee secrecy

Pad 2: Plaintext 2:

Different secret pad decrypts to the wrong plaintext

Fundamental Cryptographic Principles

- 1. Messages must contain some redundancy
 - All encrypted messages decrypt to something
 - Redundancy lets receiver recognize a valid message
- 2. Some method is needed to foil replay attacks
 - Without a way to check if messages are fresh then old messages can be copied and resent
 - For example, add a timestamp to messages

Symmetric-Key Algorithms

Encryption in which the parties share a secret key

- DES Data Encryption Standard »
- AES Advanced Encryption Standard »
- Cipher modes »
- Other ciphers »

Symmetric-Key Algorithms

Use the same secret key to encrypt and decrypt

Block ciphers operate a block at a time

box

(transposition)

box

Product cipher combines transpositions/substitutions

Product with multiple P- and S-boxes

Data Encryption Standard (1)

DES encryption was widely used (but no longer secure)

Data Encryption Standard (2)

Triple encryption (3DES) with two 56-bit keys

- Gives an adequate key strength of 112 bits
- Setting $K_1 = K_2$ allows for compatibility with DES

Triple DES encryption

Triple DES decryption

Advanced Encryption Standard (1)

AES is the successor to DES:

- Symmetric block cipher, key lengths up to 256 bits
- Openly designed by public competition (1997-2000)
- Available for use by everyone
- Built as software (e.g., C) or hardware (e.g., x86)
- Winner was Rijndael cipher
- Now a widely used standard

Advanced Encryption Standard (2)

AES uses 10 rounds for 128-bit keys

- Each round uses a key derived from 128-bit key
- Each round has a mix of substitutions and rotations
- All steps are reversible to allow for decryption

Cipher Modes (1)

Several modes of operation may be applied in order to strengthen the effect of the encryption algorithm

- ECB (Electronic Code Book)
- CBC (Cipher Block Chaining)
- CFB (Cipher FeedBack)
- OFB (Output FeedBack)
- CTR (Counter)

Each mode has its strength and weakness

Cipher Modes (2)

ECB (Electronic Code Book) encrypts each block independently

It is vulnerable to shifts

With ECB mode, switching encrypted blocks gives a different but valid message

Leslie gets a large bonus!

Cipher Modes (3)

CBC (Cipher Block Chaining) chains blocks together with XOR to prevent shifts

Has a random IV for different output

CBC mode encryption

CBC mode decryption

Cipher Modes (4)

CFB (cipher feedback) is similar to CBC mode but can operate a byte (rather than a whole block) at a time

Cipher Modes (5)

OFB (output feedback) uses the key and IV to generate a stream that is a one-time pad

Can't reuse (key, IV) pair

Cipher Modes (6)

CTR encrypts a counter and XOR it with each message block

Encryption above; repeat the operation to decrypt

Other Ciphers

Some common symmetric-key cryptographic algorithms

Cipher	Author	Key length	Comments
Blowfish	Bruce Schneier	1–448 bits	Old and slow
DES	IBM	56 bits	Too weak to use now
IDEA	Massey and Xuejia	128 bits	Good, but patented
RC4	Ronald Rivest	1–2048 bits	Caution: some keys are weak
RC5	Ronald Rivest	128–256 bits	Good, but patented
Rijndael	Daemen and Rijmen	128–256 bits	Best choice
Serpent	Anderson, Biham, Knudsen	128–256 bits	Very strong
Triple DES	IBM	168 bits	Second best choice
Twofish	Bruce Schneier	128–256 bits	Very strong; widely used

Can be used in combination, e.g., AES over Twofish

Public-Key Algorithms

Encryption in which each party publishes a public part of their key and keep secret a private part of it

- Diffie-Hellman key exchange »
- RSA (by Rivest, Shamir, Adleman) »

Public-Key Algorithms

Downsides of keys for symmetric-key designs:

- Key must be secret, yet be distributed to both parties
- For N users there are O(N²) pairwise keys to manage

Public key schemes split the key into public and private parts that are mathematically related:

- Private part is not distributed; easy to keep secret
- Only one public key per user needs to be managed

Security depends on the chosen mathematical property

- Much slower than symmetric-key, e.g., 1000X
- So, use it to set up per-session symmetric keys

Public Key Cryptography

Diffie, W. and Hellman, M. (1976). **New directions in cryptography**. *IEEE Transactions on Information Theory*, Vol.22, No. 6, pp. 644-654.

2005 Turing award - For inventing and promulgating both asymmetric public-key cryptography, including its application to digital signatures, and a practical cryptographic key-exchange method.

Diffie-Hellman Key Exchange (1)

Lets two parties establish a shared secret

Fuente: Wikipedia

Diffie-Hellman Key Exchange (2)

The security of the technique depends crucially on the difficulty of computing logarithms mod n.

Eavesdropper can't compute secret gxy mod n without knowing x or y

RSA Algorithm

Rivest, R.L., Shamir, A. and Adleman, A. (1978). **A** method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM*, Vol. 21, No. 2, pp. 120-126.

2002 Turing award - For their ingenious contribution to making public-key cryptography useful in practice.

RSA (1)

RSA is a widely used public-key encryption method whose security is based on the difficulty of factoring large numbers

Key generation:

- Choose two large primes, p and q (typically 1024 bits)
- Compute $n = p \times q$ and $z = (p 1) \times (q 1)$.
- Choose d to be relatively prime to z
- Find e such that e × d = 1 mod z
- Public key is (e, n), and private key is (d, n)

Encryption (of k bit message, for numbers up to n):

Cipher = Plain^e (mod n)

Decryption:

Plain = Cipher^d (mod n)

RSA (2)

Small-scale example of RSA encryption

- Encrypting 8-bit messages
- For p=3, q=11 \rightarrow n=33, z=20 \rightarrow d=7, e=3

Plaintext (P)		Ciphertext (C)			After decryption	
Symbolic	Numeric	<u>P</u> 3	P ³ (mod 33)	<u>C</u> 7	C ⁷ (mod 33)	Symbolic
S	19	6859	28	13492928512	19	S
U	21	9261	21	1801088541	21	U
Z	26	17576	20	1280000000	26	Z
Α	01	1	1	1	01	Α
N	14	2744	5	78125	14	N
N	14	2744	5	78125	14	N
E	05	125	26	8031810176	05	E

Sender's computation

Receiver's computation

Encryption: $C = P^3 \mod 33$

Decryption: $P = C^7 \mod 33$

RSA (3)

For p=5, q=7 → n=35, z=24 →
 d=29 (d<n; d,z relatively prime)
 e=5 (ed-1 exactly divisible by z)

Elliptic Curve Cryptography

Domain parameters: a prime number (n) as a maximum, a curve equation (a and b), and a point on the curve (G).

The private key is a random number (d<n), and the public key (Q) is the public point dotted with itself d times.

Computing the private key d from the public key Q is a very good trapdoor function.

Restricted to whole numbers in [1,n-1]

Digital Signatures

Lets receiver verify the message is authentic

- Symmetric-Key signatures »
- Public-Key signatures »
- Message digests »

Digital Signatures

Requirements for a signature:

- Receiver can verify claimed identity of sender.
- Sender cannot later repudiate contents of message.
- Receiver cannot have concocted message himself.

Symmetric-Key Signatures

Alice and Bob each trust and share a key with Big Brother; Big Brother doesn't trust anyone

A=Alice, B=Bob, P=message, R_A=random, t=time

Public-Key Signatures

No Big Brother and assumes encryption and decryption are inverses that can be applied in either order

- But relies on private key kept secret
- RSA & DSS (Digital Signature Standard) widely used

Message Digests (1)

Message Digest (MD) converts arbitrary-size message (P) into a fixed-size identifier MD(P) with properties:

- Given P, easy to compute MD(P).
- Given MD(P), effectively impossible to find P.
- Given P no one can find P' so that MD(P') = MD(P).
- Changing 1 bit of P produces very different MD.

Message digests (also called cryptographic hashes) can "stand for" messages in protocols, e.g., authentication

- MD5 128-bit hash
- SHA-1 160-bit hash
- SHA-2 256-bit hash

Message Digests (2)

Public-key signature for message authenticity but not confidentiality with a message digest

Message Digests (3)

In more detail: example of using SHA-1 message digest and RSA public key for signing nonsecret messages

Message Digests (4)

SHA-1 digests the message 512 bits at a time to build a 160-bit hash as five 32-bit components

https://andersbrownworth.com/blockchain/hash

Management of Public Keys

We need a trusted way to distribute public keys

- Certificates »
- X.509, the certificate standard »
- Public Key Infrastructures »

Management of Public Keys

Trudy can subvert encryption if she can fake Bob's public key; Alice and Bob will not necessarily know

Trudy replaces E_B with E_T and acts as a "man in the middle"

Certificates

CA (Certification Authority) issues signed statements about public keys; users trust CA and it can be offline

I hereby certify that the public key

19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A

belongs to

Robert John Smith

12345 University Avenue

Berkeley, CA 94702

Birthday: July 4, 1958

Email: bob@superdupernet.com

SHA-1 hash of the above certificate signed with the CA's private key

A possible certificate

X.509

X.509 is the standard for widely used certificates

Ex: used with TLS for secure Web browsing

Field	Meaning
Version	Which version of X.509
Serial number	This number plus the CA's name uniquely identifies the certificate
Signature algorithm	The algorithm used to sign the certificate
Issuer	X.500 name of the CA
Validity period	The starting and ending times of the validity period
Subject name	The entity whose key is being certified
Public key	The subject's public key and the ID of the algorithm using it
Issuer ID	An optional ID uniquely identifying the certificate's issuer
Subject ID	An optional ID uniquely identifying the certificate's subject
Extensions	Many extensions have been defined
Signature	The certificate's signature (signed by the CA's private key)

Basic fields in X.509 certificates

Public Key Infrastructures (PKIs)

PKI is a system for managing public keys using CAs

- Scales with hierarchy, may have multiple roots
- Also need CRLs (Certificate Revocation Lists)

Java Cryptography Architecture

The JCA contains a "provider" architecture and a set of APIs for digital signatures, message digests (hashes), certificates and certificate validation, encryption (symmetric/asymmetric block/stream ciphers), key generation and management, and secure random number generation

These APIs allow developers to easily integrate security into their application code.

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

Additional topics

Communication Security

Applications of security to network protocols

- IPsec (IP security) »
- Firewalls »
- Virtual private networks »
- Wireless security »

IPsec (1)

IPsec adds confidentiality and authentication to IP

- Secret keys are set up for packets between endpoints called security associations
- Adds AH header; inserted after IP in transport mode

AH (Authentication Header) provides integrity and anti-replay

IPsec (2)

ESP (Encapsulating Security Payload) provides secrecy and integrity; expands on AH

 Adds ESP header and trailer; inserted after IP header in transport or before in tunnel mode

Firewalls

A firewall protect an internal network by filtering packets

- Can have stateful rules about what packets to pass
 - E.g., no incoming packets to port 80 (Web) or 25 (SMTP)
- DMZ helps to separate internal from external traffic
 - E.g., run Web and Email servers there

Virtual Private Networks (1)

VPNs (Virtual Private Networks) join disconnected islands of a logical network into a single virtual network

Islands are joined by tunnels over the Internet

VPN joining London, Paris, Home, and Travel

Virtual Private Networks (2)

VPN traffic travels over the Internet but VPN hosts are separated from the Internet

Need a gateway to send traffic in/out of VPN

Topology as seen from inside the VPN

Wireless Security (1)

Wireless signals are broadcast to all nearby receivers

- Important to use encryption to secure the network
- This is an issue for 802.11, Bluetooth, 3G, ...

Common design:

- 1. Clients have a password set up for access
- Clients authenticate to infrastructure and set up a session key
- 3. Session key is then used to encrypt packets

Wireless Security (2)

802.11i session key setup handshake (step 2)

- Client and AP share a master key (password)
- MIC (Message Integrity Check) is like a signature
- K_X(M) means a message M encrypted with key K_X

Authentication Protocols

Authentication verifies the identity of a remote party

- Shared Secret Key »
- Diffie-Hellman Key Exchange »
- Key Distribution Center »
- Kerberos »
- Public-Key Cryptography »

Shared Secret Key (1)

Authenticating with a <u>challenge-response</u> (first attempt)

- Alice (A) and Bob (B) share a key K_{AB}
- R_X is random, K_X (M) is M encrypted with key K_X

Shared Secret Key (2)

A shortened two-way authentication (second attempt)

But it is vulnerable to reflection attack

Shared Secret Key (3)

Trudy impersonates Alice to Bob with reflection attack

Second session gets Bob to give Trudy the response

Shared Secret Key (4)

First attempt is also vulnerable to reflection attack!

Trudy impersonates Bob to Alice after Alice initiates

First session Second session RA R_A First session $K_{AB}(R_A)$ Trudy Alice K_{AB} (R_A) Second session R_{A2} First session Second session K_{AB} (R_{A2}) First session

Alice thinks she is talking to Bob

Alice thinks she is talking to Bob again

Shared Secret Key (5)

Moral: Designing a correct authentication protocol is harder than it looks; errors are often subtle.

General design rules for authentication:

- 1. Have initiator prove who she is before responder
- 2. Initiator, responder use different keys
- 3. Draw challenges from different sets
- Make protocol resistant to attacks involving second parallel session

Shared Secret Key (6)

An authentication protocol that is not vulnerable

HMAC (Hashed Message Authentication Code) is an authenticator, like a signature

Diffie-Hellman Key Exchange (1)

Lets two parties establish a shared secret

 Eavesdropper can't compute secret g^{xy} mod n without knowing x or y

Diffie-Hellman Key Exchange (2)

But it is vulnerable to a man-in-the-middle attack

Need to confirm identities, not just share a secret

KDC – Key Distribution Center (1)

Trusted KDC removes need for many shared secrets

- Alice and Bob share a secret only with KDC (K_A, K_B)
- End up with K_S, a shared secret session key
- First attempt below is vulnerable to <u>replay attack</u> in which Trudy captures and later replays messages

Key Distribution Center (2)

The Needham-Schroeder authentication protocol

Not vulnerable to replays; doesn't use timestamps

Key Distribution Center (3)

The Otway-Rees authentication protocol (simplified)

 Slightly stronger than previous; Trudy can't replay even if she obtains previous secret K_S

Kerberos

Kerberos V5 is a widely used protocol (e.g., Windows)

Authentication includes TGS (Ticket Granting Server)

Public-Key Cryptography

Mutual authentication using public-key cryptography

 Alice and Bob get each other's public keys (E_A, E_B) from a trusted directory; shared K_S is the result

Email Security

Use of security for authenticated, confidential email

PGP—Pretty Good Privacy »

PGP—Pretty Good Privacy (1)

PGP uses public- and symmetric-key cryptography for email secrecy and signatures; it also manages keys

Levels of public-key strengths:

- Casual (384 bits):
 - Can be broken easily today.
- Commercial (512 bits): b
 - Breakable by three-letter organizations.
- Military (1024 bits):
 - Not breakable by anyone on earth.
- Alien (2048 bits):
 - Unbreakable by anyone on other planets

PGP—Pretty Good Privacy (2)

Signing and encrypting a message from Alice to Bob

 For speed, message symmetric-key IDEA encrypted with K_M; K_M is RSA public-key encrypted with K_B

PGP—Pretty Good Privacy (3)

Three parts of a PGP message and their encryption:

PGP also manages public keys for a user:

- Private key ring has user's public/private keys
- Public key ring has correspondent's public keys

Web Security

Applications of security to the Web

- Secure naming »
- SSL—Secure Sockets Layer »
- TLS Transport Layer Security

Many other issues with downloaded code

Secure Naming (1)

DNS names are included as part of URLs – so spoofing DNS resolution causes Alice contact Trudy not Bob

- 2. 36.1.2.3 (Bob's IP address)
- 3. GET index.html
- 4. Bob's home page

- 1. Give me Bob's IP address
- 2. 42.9.9.9 (Trudy's IP address)
- 3. GET index.html
- 4. Trudy's fake of Bob's home page

Secure Naming (2)

How Trudy spoofs the DNS for bob.com in more detail

To counter, DNS servers randomize seq. numbers

- 1. Look up foobar.trudy-the-intruder.com (to force it into the ISP's cache)
- Look up www.trudy-the-intruder.com (to get the ISP's next sequence number)
- Request for www.trudy-the-intruder.com (Carrying the ISP's next sequence number, n)
- Quick like a bunny, look up bob.com (to force the ISP to query the com server in step 5)
- 5. Legitimate query for bob.com with seq = n+1
- 6. Trudy's forged answer: Bob is 42.9.9.9, seq = n+1
- 7. Real answer (rejected, too late)

Secure Naming (3)

DNSsec (DNS security) adds strong authenticity to DNS

- Responses are signed with public keys
- Public keys are included; client starts with top-level
- Also optional anti-spoofing to tie request/response
- Now being deployed in the Internet

Domain name	Time to live	Class	Туре	Value
bob.com.	86400	IN	Α	36.1.2.3
bob.com.	86400	IN	KEY	3682793A7B73F731029CE2737D
bob.com.	86400	IN	SIG	86947503A8B848F5272E53930C

Resource Record set for *bob.com*.

Has Bob's public key (KEY), and is signed by .com server (SIG)

SSL—Secure Sockets Layer (1)

SSL provides an authenticated, secret connection between two sockets; uses public keys with X.509

TLS (Transport Layer Security) is the IETF version

SSL in the protocol stack

SSL—Secure Sockets Layer (2)

Phases in SSL V3 connection establishment (simplified)

- Only the client (Alice) authenticates the server (Bob)
- Session key computed on both sides (E_B, R_A, R_B)

SSL—Secure Sockets Layer (3)

Data transmission using SSL. Authentication and encryption for a connection use the session key.

Social Issues

Networks give rise to many social issues

- Privacy »
- Freedom of speech »

Privacy

Anonymous remailers hide the identity of the sender

- Unlike PGP, which only hides message contents
- A chain can be used for stronger anonymity

Freedom of Speech

Steganography hides messages on unrelated content

Can help avoid censorship or protect ownership

"Three zebras and a tree"

bits

"Three zebras and a tree," with five plays by Shakespeare"

End

Chapter 8