Data Analytics & Statistics in Python Session 4: Probability and Variability

Learning data-driven decision-making with Python

Instructor: Hamed Ahmadinia, Ph.D.

Email: hamed.ahmadinia@metropolia.fi

Concepts of Today

- Key Concepts:
 - Probability Distributions (Discrete and Continuous)
 - Expected Value, Standard Deviation, and Variance
 - Gaussian (Normal) Distribution
 - Z-score and Outliers
 - Statistical Tests (T-test, Mann-Whitney U, Chi-Squared Test)

Understanding Probability Distributions

- What is a Probability Distribution?
 - Shows the likelihood of different outcomes.

- Rules (Kolmogorov Axioms):
 - Probabilities are always non-negative.
 - Total probability adds up to 1.
 - Probabilities of disjoint (non-overlapping) events add up.

Types of Distributions

- Discrete Distributions (specific, countable outcomes):
 - **Example:** Number of likes on a social media post Ω = {10,20,30,40,50}.
- Common Discrete Distributions:
 - **Binomial:** Number of successful shots in 10 basketball attempts (two possible outcomes: success or failure).
 - Poisson: Number of messages received in a group chat in an hour (number of events occurring in a fixed interval of time or space).
 - Geometric: Number of tries to win a video game challenge (Trials are independent with a constant probability of success).
 - **Hypergeometric:** Number of rare items found when opening a limited number of loot boxes (without replacement) (probability of success changes with each draw).

Continuous Distributions

What is a Continuous Distribution?

- Describes outcomes that can take any value within a range.
- **Example:** The time a student spends on TikTok daily, down to seconds (e.g., 2 hours 17 minutes and 32 seconds).

Probability Density Function (PDF):

- The curve is called a probability density function (PDF).
- Shows where values (like time spent) are more or less likely to fall.

Normal Distribution (Bell Curve):

• Common in everyday life (e.g., average screen time per day).

Example:

- Average TikTok use: 2 hours/day.
- 68% of students use TikTok between 1.5 and 2.5 hours daily (if screen time follows a normal distribution).

Understanding Expected Value

- What is Expected Value?
 - The "average" outcome, considering the probabilities of different outcomes.
- Discrete Case (Countable Outcomes)
 - Formula: $E(x) = \sum_{i=1}^{n} \rho(x_i) \cdot x_i$
 - Where: $x_i = Possible\ Outcome$ $p(x_i) = Probability\ of\ the\ outcome\ x_i$
 - Example: Lottery Game:
 - Winning chance: 1 out of 100
 - Prize: €1000
 - Expected value: $E(x) = \frac{1}{100} \times 1000 + \frac{99}{1100} \times 0 = €10$
 - → On average, you "expect" to win €10, but you could win more or nothing at all.

Understanding Expected Value

Continuous Case (Uncountable Outcomes)

- When values can take a range (e.g., any height or exact time).
- Instead of adding probabilities, we "integrate" across all possible values.
- Example: Average TikTok screen time from 1.5 to 2.5 hours daily.

Law of Large Numbers (LLN)

- Key Idea: The more trials you run, the closer your sample average gets to the true average.
- Example: If you track your daily TikTok usage over months, the average gets closer to your actual average daily screen time.

Understanding Data Spread

- Why Measure Spread?
 - Variance (σ^2): Shows how far data points are from the average.

$$Var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^a$$

(Think of it as the "average of squared differences" from the average value.)

- Standard Deviation (σ): The square root of variance (brings it back to the original units, e.g., hours, euros).
- Example: TikTok Screen Time in Europe
 - Small Standard Deviation: Most students spend around 2 ± 0.5 hours/day (similar usage).
 - Large Standard Deviation: Screen time ranges widely, from 30 minutes to 5 hours/day (big differences).

Takeaway: Standard deviation shows whether data points are "close" or "spread out" from the average.

Python Example


```
import numpy as np

# Sample data: hours spent on social media
screen_time = np.array([1.5, 2.0, 2.3, 1.8, 2.5])
mean = np.mean(screen_time)
variance = np.var(screen_time)
std_dev = np.std(screen_time)

print(f"Mean: {mean}, Variance: {variance}, Std Dev: {std_dev}")
```

Mean: 2.02, Variance: 0.1256, Std Dev: 0.354400902933387

Normal Distribution

What is a Normal (Gaussian) Distribution?

- A continuous, bell-shaped probability distribution.
- Commonly used in fields like statistics, data analysis, and machine learning.

Key Characteristics:

- Mean (µ): The center of the distribution (the highest point of the curve).
- Variance (σ^2): Describes how spread out the data is.
- A small variance creates a narrow, tall curve (data close to the mean).
- A large variance creates a wide, flat curve (data more spread out).

Visualizing Normal Distribution


```
import numpy as np
import matplotlib.pvplot as plt
# Define Gaussian distributions
x = np.linspace(-5, 5, 500)
mean values = [0, 0, 0, -2]
variances = [0.2, 1, 5, 0.5]
colors = ['blue', 'red', 'orange', 'green']
# Plot the Gaussian curves
plt.figure(figsize=(10, 6))
for mean, var, color in zip(mean_values, variances, colors):
    std_dev = np.sqrt(var)
    y = (1 / (std dev * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - mean) / std dev) ** 2)
    plt.plot(x, y, label=f'\mu = {mean}, \sigma^2 = {var}', color=color)
plt.title("Normal Distribution Curves", fontsize=16, weight='bold')
plt.xlabel("x")
plt.ylabel("\phi(\mu, \sigma^2)(x)")
plt.legend(loc='upper right')
plt.show()
```


- The graph shows **normal distributions** with different means and variances:
 - Blue Curve: A narrow peak (low variance, data tightly clustered).
 - Red Curve: A typical bell-shaped curve.
 - Orange Curve: A flatter, spread-out curve (large variance).
 - Green Curve: Shifted left (mean = -2), less spread out.
- Key Takeaway:
 - Changing the mean (μ) shifts the curve left or right.
 - Changing the variance (σ^2) adjusts the width of the curve

Z-Scores and Outliers

What is a Z-Score?

- A number showing how far a data point is from the average (mean) in standard deviation units.
- Formula: $z = \frac{x-\mu}{\sigma}$

Why is it Useful?

- Detects **outliers** (unusual data points).
- Helps clean and improve data for better analysis.

Key Points:

- Z ≈ 0: Data point is close to the average.
- **Z > 3 or < -3:** Likely an outlier.

• Example:

- Average daily sales: €10,000
- Sales on one day: €20,000

Z-Score:
$$z = \frac{20000 - 10000}{3000} \approx 36^{33}$$
 (This day's sales may be an outlier)

Z-Score Application in Python

Key Insights from the Code:

- **Z-Score Formula**: Calculates how far each revenue point is from the mean.
- Boolean Mask: Keeps values within 3 standard deviations.
- Application: After removing outliers, cleaner data allows more accurate analysis.

```
import numpy as np
import pandas as pd
# Create sample data for daily revenue (1000 days)
df = pd.DataFrame({
    'Revenue (€)': np.random.normal(10000, 3000, size=1000)
# Z-score calculation
df['Z-score'] = (df['Revenue (<math>f)'] - df['Revenue (<math>f)'].mean()) / df['Revenue (<math>f)'].std()
# Filter out outliers (e.g., Z-score > 3 or < -3)
outliers = df[(df['Z-score'].abs() > 3)]
cleaned data = df[(df['Z-score'].abs() <= 3)]</pre>
# Display the counts
print(f"Outliers: {len(outliers)}")
print(f"Cleaned Data: {len(cleaned_data)}")
```

Outliers: 3 Cleaned Data: 997

What Are Statistical Tests and P-values?

- Null Hypothesis (H₀): A starting assumption (e.g., "no difference in averages").
- P-value: A number that shows how likely your data is if H_0 is true.
 - Small p-value (< 0.05): Your result is surprising \rightarrow Reject H₀.
 - Large p-value (> 0.05): Your result isn't surprising \rightarrow Keep H₀.

Example:

- Suppose you think students in your school get more sleep than the national average of 7 hours.
- H₀: "Average sleep time is 7 hours."
- If your data shows an average of **8 hours** and the p-value is **0.01**, the low p-value suggests your data isn't just random—it supports your claim!

Procedure:

- 1. Define H_0 and alternative hypothesis (H_1).
- 2. Choose significance level (e.g., 0.05).
- 3. Collect sample data. Calculate test statistic and p-value.
- 4. Compare p-value to threshold \rightarrow Reject or fail to reject H₀.

Common Misconceptions:

Misconception	Reality
P-value < 0.05 means H ₀ is 100% false.	No—it just means your result is very unlikely under H_0 .
Small p-value = Big effect.	Not always! A small p-value shows something is significant, but the size of the effect may still be small.

Parametric vs Non-Parametric Tests

Parametric Tests (e.g., T-tests):

Assume the data follows a specific distribution (usually normal). They require assumptions about the data, such as homogeneity of variance.

- **Example:** Comparing the average time spent studying between two groups of students.
- Non-Parametric Tests (e.g., Mann-Whitney U Test, Chi-Squared Test):

Do not require assumptions about the data distribution and can handle ordinal or non-normally distributed data.

- **Example:** Comparing user satisfaction ratings (ranked scores) for two different apps.
- Read more

T-tests and Non-Parametric Tests / Metropolia

Test Type	Purpose	Example	Key Points
One-sample T-test	Compare sample mean to a known population mean	Do students study more than 10 hours per week?	If p-value < 0.05: Reject H_0 (significant difference). If p-value > 0.05: Fail to reject H_0 .
Two-sample T-test	Compare means of two independent groups.	Do gamers and non- gamers have different sleep hours?	
Paired-sample T-test	Compare means within the same group (before/after).	Does an exercise program reduce resting heart rate?	
Mann-Whitney U Test	Non-parametric test: Compare two groups when data isn't normally distributed	Compare satisfaction scores between two apps.	Used for ordinal or non- normal data
Chi-Squared Test (Goodness of Fit)	Check if observed data fits expected proportions.	Is a die fair (equal probability for all sides)?	 Observations must be independent. Expected frequency ≥ 5
Chi-Squared Test (Independence)	Check if two variables (e.g., education level and voting preference) are related.	Are education level and voting preference related?	 Observations must be independent. Used with contingency tables (rows and columns for variables).

Python Code Examples for Each Tests

```
# Import necessary functions
from scipy.stats import ttest 1samp, mannwhitneyu, chisquare, chi2 contingency
# 1. One-Sample T-Test: Compare sample mean to population mean
t stat, p value = ttest 1samp([2.3, 2.5, 2.8, 3.0, 3.2], popmean=3.0)
print(f"One-Sample T-Test: T={t_stat:.2f}, p={p_value:.2f}")
# 2. Mann-Whitney U Test: Compare two groups (non-parametric)
u_stat, p_value = mannwhitneyu([1, 2, 3, 3, 4], [3, 4, 5, 5, 6])
print(f"Mann-Whitney U Test: U={u stat:.2f}, p={p value:.2f}")
# 3. Chi-Squared Goodness of Fit Test: Check if observed data fits expected proportions
observed = [25, 30, 45] # Observed frequencies
expected = [33.33, 33.33, 33.33] # Adjusted to sum up to the same total as observed
total observed = sum(observed)
expected scaled = [total_observed * (x / sum(expected)) for x in expected] # Rescale expected frequencies
chi2 stat, p value = chisquare(f obs=observed, f exp=expected scaled)
print(f"Chi-Squared Goodness of Fit: χ²={chi2 stat:.2f}, p={p value:.2f}")
# 4. Chi-Squared Test for Independence: Check if two variables are related
chi2_stat, p_value, _, _ = chi2_contingency([[50, 30, 20], [30, 40, 30], [20, 30, 50]])
print(f"Chi-Squared Test for Independence: χ²={chi2 stat:.2f}, p={p value:.2f}")
One-Sample T-Test: T=-1.47, p=0.22
Mann-Whitney U Test: U=2.50, p=0.04
Chi-Squared Goodness of Fit: \chi^2=6.50, p=0.04
Chi-Squared Test for Independence: x2=30.00, p=0.00
```

Notebook Review

Walk through how to apply key Python concepts in a Jupyter Notebook:

- Probability Distributions
- Expected Value, Standard Deviation, and Variance
- Normal Distribution
- Z-score and Outliers
- Statistical Tests

Kahoot Quiz Time!

Let's Test Our Knowledge!

Hands-on Exercise

Form groups (2–3 members).

- Download *Hands-on Exercise #4* from the course page.
- Complete the coding tasks and discuss your solutions.
- Don't forget to add the names of your group members to the file.
- Submit your completed *Hands-on Exercise* to the course Moodle page or send it to the teacher's email address.

Reference

- Vohra, M., & Patil, B. (2021). A Walk Through the World of Data Analytics., 19-27. https://doi.org/10.4018/978-1-7998-3053-5.ch002.
- VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. O'Reilly Media. Available at https://jakevdp.github.io/PythonDataScienceHandbook/
- Severance, C. (2016). Python for everybody: Exploring data using Python 3.
 Charles Severance. Available at https://www.py4e.com/html3/
- McKinney, W. (2017). Python for data analysis: Data wrangling with pandas, NumPy, and Jupyter. O'Reilly Media.