閉包の直接的特徴付け 距離空間XとACXとXEXについて以下は至いに同値:

- (i) $x \in \overline{A}$.
- (1) ~ C C T.
 (2) × を含む Xの任意の開導合 U について UnA + Ø
- (3) 任意 $\epsilon > 0$ | 27 N7, $U_{\epsilon}(x) \cap A \neq \emptyset$, (2)の U 甚么の ϵ 近傍 巨制限 L 及場合
- (4) Aに含まれる点列(an)かでエに収まするものか存在する。
- 言正明 (1) \Leftrightarrow (2) $(\overline{A})^{c} = (A^{c})^{o} \leftarrow すでに示していた$
 - $(1) \times \in \overline{A} \iff \chi \in (\overline{A})^c \iff \chi \in (A^c)^\circ \to A^c \circ \mathcal{A} \times \mathcal{A}$
 - ⇔ Xを含む開集合ひでひてAcとなるものか存在しなり、
 - ⇔ Xを含む任意の開集合Uについて、 $U + A^c$. /⇔ UnA+p
 - ⇔ (2)メを含む任意の開集合びについて、ひのA≠ダ
 - (2) $\Rightarrow (3)$ Xの (3) Xの
 - (2) ラ(3)となることは自明である、

 $AnU = \emptyset$

- $(3) \Rightarrow (4)$ (3) を仮定する。n=1,2,3,...に対して、 $U_{1/n}(x) \cap A = \emptyset$ なので、 ある $a_n \in U_{1/n}(x) \cap A$ をとれる。このとき、当到 $\{a_n\}_{n=1}^{\infty}$ は A に含まれ、 $d(a_n,x) < \frac{1}{n} \to 0 (n \to \infty)$ なので、 $\{a_n\}_{n=1}^{\infty}$ は メ に 収車する、 (4) と示せた、
- (4) $\Rightarrow (3)$ (4) を仮定する. そのとき, A内の足引(a_n) $_{n=1}^{\infty}$ で エレ収率するもの かっぱする。 任意に $\epsilon>0$ ϵ
- 以上によって、(1) ⇔(2) 忌(3) 忌(4) が示せたので(1),(2),(3),(4) は同値であることがわかった。

9,e,d,

閉包を使った連発写像の特徴付け 位相空間(距離空間)のあいだの

写像f:X→Yについて,以下の条件は互いに同値である:

- (1) 于は連続である、
- (1) 于は連発である、
 (2) 任意のACXについて、 $f(\overline{A})$ C $\overline{f(A)}$. (\overline{A}) (1) (1) (1) (2) は (1) な (1) な (2) は (1) な (1 意识
- (1) =>(1) とACXを仮定する。F(A) はYの閉算になり、于は連発なので f-1(f(A)) はXの閉算合になる、Acf-1(f(A))も成立している。ゆえに、 $\overline{A} \subset f'(\overline{f(A)}) \times \overline{a} \cdot a$, $\overline{b} \cdot a \cdot b \cdot c$, $\overline{f(A)} \subset \overline{f(A)}$.
- (2) 戸(1) (2) を仮定し、FはYの閉集合であるとする、f⁻¹(F)かXの閉集合 であることですせいで(1)が得られる、A=f-1(F)とかく、(2)を仮定したので、 $f(A) \subset \overline{f(A)} = \overline{f(f'(F))} = \overline{F} = F \times \zeta V, \ \overline{A} \subset f'(F) = A \times \zeta J.$ \overline{A} $\supset A$ なので、 $\overline{A} = A$ 、ゆえた、 $A = f^{-1}(F)$ は Xの閉算会になる 9.e,d,

别证明正色勺夫之乙升上