Boolean Algebra

Fundamental laws

$$A + O = A$$

(A = input)

$$\frac{A \cdot 1}{A} = A$$

$$A \cdot A = A$$

$$A. \tilde{A} = 0$$

$$\bar{A} = A$$

(2) Commutative laws

3) Associative laws

$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C) = (B \cdot C) \cdot A$$

4) Distributive laws

- 1) Simplify
- (2) Truth table

To prove: A + (B.C) = (A+B). (A+C)

			,				1	
A	ß	<u></u>	B·C	A+B-C	AtB	Atc	(AtB)·(Atc)	
0	0 =	0	0	0	6	0	<u>υ</u>	
0	0	1	0	0	0	1	0	
0)	D	0	0	1	O	D	
0	1)	l	1	1	1	l	
1	0	0	O	1	1	ſ	1	
l	٥)	0	1	,	1	١	
,)	٥	0	1	1	•	1	
)	1	1	1	1	11	1	1	
		•						

5 Other Useful Identities

$$A + (A \cdot B) = A$$

$$A \cdot (A + B) = A$$

$$A + \overline{A} \cdot B = A + B$$

$$(A + B) \cdot (A + \overline{B}) = A$$

$$A \cdot B + B \cdot C + \overline{B} \cdot C = A \cdot B + C$$

$$A \cdot B + A \cdot C + \overline{B} \cdot C = A \cdot B + \overline{B} \cdot C$$

EXAMPLE 1:

Left:
$$A + A \cdot B$$

Side = $A \cdot 1 + A \cdot B$
= $A \cdot (1 + B)$
= $A \cdot 1$
= $A \cdot 1$
= $A = Right$ Side

EXAMPLE 2

Prove this: $(A+B) \cdot (A+\overline{B}) = A$ Left side: $(A+B) \cdot (A+\overline{B})$ $= C \cdot A + C \cdot \overline{B} \quad \{(A+B) \cdot C = A \cdot C + B \cdot \overline{G}\}$ $= (A+B) \cdot A + (A+B) \cdot \overline{B}$ $= A \cdot B \cdot A + A \cdot \overline{B} + B \cdot \overline{B}$

= A + A(B+B) 1 = A (Right side)

A + A'B- 1 A + B + O

6 De Morgans law $\overline{A+B+C+...} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot ...$ Convert OR/NOR $\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C} + ...$ to AND/NAND

GXAMPLE 3:

Simplify the booken expression to minimize the number of logical expressions

Solution:

$$Y = C + A \cdot B + A \cdot C + B \cdot \overline{A}$$

$$= C + A \cdot C + B \cdot (A + \overline{A})$$

$$= C + A \cdot C + B \cdot I$$

$$= I \cdot C + A \cdot C + B$$

$$= (I + A) \cdot C + B$$

$$= B + C \qquad Use \quad I = 7432$$