近世代数课后习题作业3参考解答

2. 证明: 由 $\forall a \in G$, $a^2 = e \Rightarrow$ 对 $\forall a \in G$ 有 $a = a^{-1}$ 。从而对 $\forall a, b \in G$, $ab = (ab)^{-1}$ $= b^{-1}a^{-1} = ba$ 。

3. 证明: 设 $G = \{e, a, b, c\}$, (G, \circ) 为群。其乘法表为:

•	e	a	b	c
e	e	а	b	c
a	a	aa	ab	ac
b	b	ba	bb	bc
c	c	ca	cb	cc

验证交换性只须验证乘法表中的矩阵的对称性即可,即只须验证:

1) ab 与 ba: 显然 $ab \neq a,b$, 故 ab = e,c

 $\ddot{a}ab=e$,即 a 与 b 互逆,则必有 ba=e,从而 ab=ba; 若 ab=c,则 ba=c,否则若 ba=e,则必有 ab=e,从而 c=e 矛盾。 综上 ab=ba。

同理可得: ac=ca, bc=cb。

4. **证明**:设 (G,\circ) 为非交换群,且|G|>2(注:不一定为有限群),只须找到元素 $a\in G$,且 $a^{-1}\neq a$ 即可。

即只须在G中找到一个元素,其阶大于 2 即可。若G中不存在这样的元素,即对 $\forall a \in G$ 均有 $a^2 = e$,则由前面 2 题的结论知G为交换群,矛盾。故 $\exists a \in G$,其

阶大于 2, 即 $a^{-1} \neq a$, 从而令 $b = a^{-1}$, 显然有 $b \neq a$, 但 ab = ba。

5. 证明: 设 (G,\circ) 为有限群, |G|=n, 对 $\forall a\in G$, 若a的阶为r且r>2, 即 $a^r=e$,

则 a^{-1} 的阶也为 r (参见课堂上的思考题结论),即 $(a^{-1})^r=e$,且 $a^{-1}\neq a$,从而 阶大于 2 的元素成对出现,故阶大于 2 的元素个数必为偶数。

6. **证明**:设(G, \circ)为有限群,|G|=2n,设元素阶为 2 的个数为m,元素阶大于 2 的个数为2k,元素阶为 1 仅有单位元,则有:1+m+2k=2n,所以m必为奇数。

- 7. 证明: 由上题结论即可知。
- 8. 设 a_1, a_2, \dots, a_n 为n阶群G中的n个元素(它们不一定各不相同)。证明:存在整数p和q($1 \le p \le q \le n$),使得 $a_n a_{n+1} \dots a_q = e$

证明:考查元素序列: e, a_1 , a_1a_2 , $a_1a_2a_3$, ..., $a_1a_2 \cdots a_n \in G$, 而|G|=n, 故上述n+1个元素中至少有两个元素相同,若其中一个为e, 则有: $a_1a_2 \cdots a_i = e$ 此时令p=1,q=i即可;若两个元素均不为e,则存在 $i,j \in [1,n]$,不妨设i < j,使得 $a_1a_2 \cdots a_i = a_1a_2 \cdots a_j = a_1a_2 \cdots a_i a_{i+1} \cdots a_j$,由消去律得: $a_{i+1} \cdots a_j = e$,此时令p=i+1,q=j即可。

9. 证明:

充分性 \leftarrow : 由 $G_1 \subseteq G_2$ 或 $G_2 \subseteq G_1 \Rightarrow G_1 \cup G_2 = G_1$ 或 $G_1 \cup G_2 = G_2$ 是G的子群。 必要性 \Rightarrow : 假设不成立,则由 $e \in G_1 \cap G_2$ 知:

至少 $\exists a \in G_1 \land a \notin G_2$, $\exists b \in G_2 \land b \notin G_1$ 。

由 $a \in G_1 \cup G_2$, $b \in G_1 \cup G_2$ 及 $G_1 \cup G_2$ 为子群得: $ab \in G_1 \cup G_2$,从而 $ab \in G_1$ 或 $ab \in G_2$ 。若 $ab \in G_1$,则由 $a^{-1} \in G_1$ 知 $a^{-1}(ab) \in G_1 \Rightarrow b \in G_1$ 矛盾;若 $ab \in G_2$,则 由 $b^{-1} \in G_2$ 知 $(ab)b^{-1} \in G_2 \Rightarrow a \in G_2$ 矛盾,故假设不成立。

- 10. 证明: 记 $S = \varphi^{-1}(e_2)$, 则 $S = \{x | \varphi(x) = e_2, x \in G_1\}$, 显然 $S \subseteq G_1$
- 1) S 非空: 对 $\forall y \in G_2$, 由 φ 为满射,则 $\exists x \in G_1$,使得 $y = \varphi(x)$,从而 $\varphi(e_1) * y = \varphi(e_1) * \varphi(x) = \varphi(e_1 \circ x) = \varphi(x) = y$,同理有 $y * \varphi(e_1) = \varphi(x) = y$,即有: $\varphi(e_1) * y = y * \varphi(e_1) = y$,从而 $\varphi(e_1) = e_2$,故有 $e_1 \in S$ 。
- 2) 封闭性: 对 $\forall x, t \in S$, 有 $\varphi(x) = e_2$, $\varphi(t) = e_2$, 则 $\varphi(x \circ t) = \varphi(x) * \varphi(t) = e_2$,

所以 $x \circ t \in S$ 。

- 3) 结合律: 显然。
- 4) 单位元: $e_1 \in S$ 。
- 5) 逆元: 对 $\forall x \in S$, 有 $\varphi(x) = e_2$, 则: $e_2 = \varphi(e_1) = \varphi(x \circ x^{-1}) = \varphi(x) * \varphi(x^{-1})$

$$=e_2*\varphi(x^{-1})=\varphi(x^{-1})$$
,即 $\varphi(x^{-1})=e_2$,所以 $x^{-1}\in S$ 。

11. **解**:
$$(S_1) = Z$$
, $(S_2) = \{3k | k \in Z\}$

//请大家自己对照生成算法给出生成过程。第一个由 5,7 很快能生成 Z 出的生成元"1"来。第二个由生成算法能很快看出其规律,新加入的元素为它们公因子 3 的倍数。//