МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(национальный исследовательский университет)» (МАИ)

Кафедра 805 «Математическая кибернетика»

Отчет

по лабораторной работе №2

на тему «Численные методы поиска безусловного экстремума Φ M Π \rangle \rangle

Выполнил

студент группы М8О-209Б-22 Концебалов О.С.

Проверила доцент каф. 805 Лунева С.Ю. Цель — изучение методов безусловной минимизации на примере квадратичной функции, не имеющей ярко выраженной овражной структуры.

```
Nocranobia zagaru
   Dano: f(X) = X^2 + Xy + 2y^2 + (5-9)X + 15y - nbagpaturnax grynusus z-x nepenennux
             NL = 15 - комер компьютера, за поторым выполняется расбота;
             NG = 9 - nochegune gle gugppu no nepa greetioù zpynnn
 Tpecyetus raŭtu: f(X) \rightarrow min_{X \in \mathbb{R}^n}
Анаштиченое решение задачи с использования анпарета необходимих и достаточних 
умовий энстранума
   1) Banuaca graguent yeseboti grynusau: \nabla f(X) = (2x + y - 4, x + 4y + 15)^T
   2) Bennulan reodrogunoe quobre sucrpengua: 12x+y-4=0
  3) Penna no syrenay cuctary:
\begin{cases} 2x + y - 4 = 0 \\ x + 4y + 15 = 0 \end{cases} = \begin{cases} x^* = \frac{31}{7} \approx 4,42857 \\ y^* = -\frac{34}{7} \approx -4,85714 \end{cases}
 Получена Тогна X = \left(\frac{3!}{7!}, -\frac{3!}{7!}\right)— стационармая Тогна руниции 4) Составии матрицу вторих производних (метрицу Генге) и вычасния её в
Torne \chi = \left(\frac{31}{7}, -\frac{39}{7}\right)
                                 H(X^*)=\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}
 5) Опредемми знановиределённого матрины по прихерию вывыхра.
  Due storo naugen guobal unique natpuiser: 5,=2, 52=7.
  Т.н. Д.>0 и Д. >0, То матрица положительно оргеделена и, аледовачально,
 X = \left(\frac{3!}{7}, -\frac{3!}{7}\right) - \delta_{eyusobasia} sonalbusia suurusugu.
Orbet: acryvena Torna X=\left(\frac{31}{7},-\frac{34}{7}\right)^T- dezyeno busii nonansumi munusiya goynuşun,
        f(X") = -45 =
```

Методы 1-го порядка

Метод градиентного спуска (предельное число итераций N = 5)

Протокол расчета

Выполнил: Концебалов, Воропаев, группа 80-209, 05.04.2024

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-4x_1+15x_2+0$

Метод градиентного спуска

Точность метода: 0.01, N_{max} = 5, Количество итераций: 5

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f'_{x_1}	f'_{x_2}	$ \nabla f(x_1) $,x ₂)
0	0.23	-1.15	2.9	62.9075	-3.4	25.45	25.676	511
1	0.63194	-0.368	-2.9535	-24.16186	-7.6895	2.818	8.1896	5
2	0.27	4.4913	-4.73431	-45.2439	0.2483	0.55407	0.6071	7
3	0.271	4.42426	-4.88391	-45.28415	-0.03538	-0.11137	0.1168	15
4	0.25	4.43385	-4.85373	-45.28565	0.01397	0.01894	0.0235	i 4
5	0	4.43036	-4.85846	-45.28571	0.00225	-0.00349	0.0041	6
				13.20371	********	******		-

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00222$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Выполнил: Концебалов, Воропаев, группа 80-209, 05.04.2024

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-4x_1+15x_2+0$

Метод покоординатного спуска

Точность метода: 0.01, N_{max} = 5, Количество итераций: 4

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f'_{x_1}	f'_{x_2}	$\ \nabla f(x_1,x_2)\ $
0	0.29	-1.15	2.9	62.9075	-3.4	25.45	25.67611
1	0.5175	-1.15	-4.4805	-15.98266	-10.7805	-4.072	11.5239
2	0.255	4.42891	-4.4805	-45.00187	0.37732	1.50691	1.55343
3	0.24786	4.42891	-4.86476	-45.2856	-0.00694	-0.03014	0.03093
4	0	4.42891	-4.85729	-45.28571	0.00053	-0.00026	0.00059

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00037$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Выполнил: Концебалов, Воропаев, группа 80-209, 05.04.2024

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-4x_1+15x_2+0$

Метод градиентного наискорейшего спуска

Точность метода: 0.01, N_{max} = 10, Количество итераций: 9

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f'_{x_1}	f'_{x_2}	$ \nabla f(x_1,x_2) $
0	0.27007	-1.15	2.9	62.9075	-3.4	25.45	25.67611
1	0.43535	-0.23177	-3.97324	-26.12367	-8.43677	-1.12473	8.51141
2	0.27003	3.4412	-3.48359	-41.89371	-0.6012	4.50684	4.54676
3	0.43547	3.60354	-4.70058	-44.68518	-1.4935	-0.19877	1.50667
4	0.27003	4.25391	-4.61402	-45.17945	-0.1062	0.79783	0.80487
5	0.43531	4.28259	-4.82946	-45.26691	-0.26428	-0.03525	0.26662
6	0.27009	4.39763	-4.81411	-45.28239	-0.01885	0.14117	0.14243
7	0.43525	4.40272	-4.85224	-45.28512	-0.0468	-0.00625	0.04721
8	0.27011	4.42309	-4.84952	-45.28561	-0.00334	0.025	0.02522
9	0	4.42399	-4.85628	-45.2857	-0.00829	-0.00111	0.00836

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.00466$$

$$|f(x) - f(x^*)| = 2.0E-5$$

Выполнил: Концебалов, Воропаев, группа 80-209, 05.04.2024

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-4x_1+15x_2+0$

Метод Гаусса-Зейделя

Точность метода: 0.01, N_{max} = 10, Количество итераций: 9

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f'_{x_1}	f _{x2}	$ \nabla f(\mathbf{x}_1,\mathbf{x}_2) $
0	0.24997	-1.15	2.9	62.9075	-3.4	25.45	25.67611
1	0.49995	-1.15	-3.4617	-18.05531	-9.7617	0.00318	9.76171
2	0.49998	3.73036	-3.4617	-41.87803	-0.00098	4.88355	4.88355
3	0.24998	3.73085	-3.4617	-41.87803	-0	4.88403	4.88403
4	0.49995	3.73085	-4.68263	-44.85975	-1.22092	0.00034	1.22092
5	0.25	4.34125	-4.68263	-45.23242	-0.00012	0.61074	0.61074
6	0.50001	4.34125	-4.83531	-45.27904	-0.15281	0	0.15281
7	0.25001	4.41766	-4.83531	-45.28488	0	0.07641	0.07641
8	0.5	4.41766	-4.85441	-45.28561	-0.0191	-0	0.0191
9	0	4.42721	-4.85441	-45.2857	0	0.00955	0.00955

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.00305$$

$$|f(x) - f(x^*)| = 1.0E-5$$

Выполнил: Концебалов, Воропаев, группа 80-209, 05.04.2024

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-4x_1+15x_2+0$

Метод сопряженных градиентов

Точность метода: 0.01, N_{max} = 2, Количество итераций: 2

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f'_{x_1}	f'_{x_2}	$ \nabla f(x_1,x_2) $
0	0.27008	-1.15	2.9	62.9075	-3.4	25.45	25.67611
1	0.52892	-0.23173	-3.97354	-26.12367	-8.43699	-1.12587	8.51178
2	0	4.42842	-4.85736	-45.28571	-0.00051	-0.00101	0.00114

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00026$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Методы 2-го порядка

 \underline{M} етод \underline{H} ьютона (предельное число итераций N=1)

Протокол расчета

Выполнил: Концебалов, Воропаев, группа 80-209, 05.04.2024

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-4x_1+15x_2+0$

Метол Ньютона

Точность метода: 0.01, N_{max} = 1, Количество итераций: 1

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f'_{x_1}	$\mathbf{f'}_{\mathbf{x}_2}$	$\ \nabla f(x_1,x_2)\ $
0	0	-1.15	2.9	62.9075	-3.4	25.45	25.67611
1	0	4.42857	-4.85714	-45.28571	-0	0	0

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Метод Ньютона-Рафсона (предельное число итераций N = 5)

Протокол расчета

Выполнил: Концебалов, Воропаев, группа 80-209, 05.04.2024

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-4x_1+15x_2+0$

Метод Ньютона-Рафсона

Точность метода: 0.01, N_{max} = 5, Количество итераций: 1

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f ['] x ₁	f'x2	$ \nabla f(x_1,x_2) $
0	0.9999	-1.15	2.9	62.9075	-3.4	25.45	25.67611
1	0	4.42801	-4.85637	-45.28571	-0.00034	0.00255	0.00257

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00096$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Методы 0-го порядка

Метод Нелдера-Мида (предельное число итераций N = 8)

Протокол расчета

Выполнил: Концебалов, Воропаев, группа 80-209, 05.04.2024

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-4x_1+15x_2+$

Метод Нелдера-Мида

Точность метода: 0.01, $N_{max} = 8$, Количество итераций: 8

$N_{\rm HT}$	α	операцня	коэффициент	xl	x ₂	$f(x_1,x_2)$
0	1	сжатие	0.5	4.35 4.4 -1.15	-4.8 -4.75 2.9	-45.2775 -45.265 62.9075
1	1	сжатие	0.5	4.35 4.4 1.6125	-4.8 -4.75 -0.9375	-45.2775 -45.265 -17.66625
2	1	сжатие	0.5	4.35 4.4 2.99375	-4.8 -4.75 -2.85625	-45.2775 -45.265 -38.09078
3	1	сжатие	0.5	4.35 4.4 3.68438	-4.8 -4.75 -3.81563	-45.2775 -45.265 -43.33746
4	1	сжатие	0.5	4.35 4.4 4.02969	-4.8 -4.75 -4.29531	-45.2775 -45.265 -44.7194
5	1	сжатие	0.5	4.35 4.4 4.20234	-4.8 -4.75 -4.53516	-45.2775 -45.265 -45.10003
6	1	редукция		4.35 4.4 4.54766	-4.8 -4.75 -5.01484	-45.2775 -45.265 -45.24057
7	1	сжатие	0.5	4.44883 4.35 4.375	-4.90742 -4.8 -4.775	-45.28127 -45.2775 -45.27375
8				4.38721 4.44883 4.35	-4.81436 -4.90742 -4.8	-45.28211 -45.28127 -45.2775

$$||\mathbf{x} - \mathbf{x}^{*}|| = 0.05951$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0.0036$$

Выполнил: Концебалов, Воропаев, группа 80-209, 05.04.2024

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-4x_1+15x_2+0$

Метод случайного поиска

Точность метода: 0.01, N_{max} = 8, Количество итераций: 4

$N_{\rm HT}$	радиус г	коэф-т. k	x ₁	x ₂	$f(x_1,x_2)$
0	9	1	-1.15	2.9	62.9075
1	1.74	1	5.29989	-3.37685	-38.85418
2	0.022	1	4.41622	-4.87576	-45.28464
3	0.016	1	4.43759	-4.87053	-45.2854
4			4.42638	-4.85912	-45.2857

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.00295$$

$$|f(x) - f(x^*)| = 2.0E-5$$

Выполнил: Концебалов, Воропаев, группа 80-209, 05.04.2024

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-4x_1+15x_2+0$

Метод конфигураций

Точность метода: 0.01, N_{max} = 8, Количество итераций: 3

N_{HT}	x ₁	x ₂	$f(x_1,x_2)$	dx ₁	dx ₂	коэф-т k
0	-1.15	2.9	62.9075	5	7.6	
1	-1.15	-4.7	-14.9925	5.35	1.0E-5	0
2	4.2	-4.69999	-45.22	0.23	0.158	0
3	4.43	-4.85799	-45.28571	0.23	0.158	0

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00166$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$