Ζήτηση

Αντώνης Παπαβασιλείου, ΕΜΠ Βασισμένο στον Varian [1]

Περιεχόμενα

- Κανονικά και κατώτερα αγαθά
- Καμπύλες εισοδήματος-κατανάλωσης και καμπύλες Engel
- Ορισμένα παραδείγματα
 - Τέλεια υποκατάστατα
 - Τέλεια συμπληρώματα
 - Προτιμήσεις Cobb-Douglas
 - Ομοθετικές προτιμήσεις
 - Οιωνεί γραμμικές προτιμήσεις
- Κοινά αγαθά και αγαθά Giffen
- Η καμπύλη τιμής-κατανάλωσης και η καμπύλη ζήτησης
- Ορισμένα παραδείγματα
 - Τέλεια υποκατάστατα
 - Τέλεια συμπληρώματα
 - Ένα διακριτό αγαθό
- Υποκατάστατα και συμπληρώματα
- Η αντίστροφη συνάρτηση ζήτησης
- Παράρτημα

Καμπύλες ζήτησης και συγκριτική στατική

• Οι καμπύλες ζήτησης περιγράφουν τις βέλτιστες ποσότητες αγαθών ως συνάρτηση των τιμών και του εισοδήματος των καταναλωτών:

$$x_1 = x_1(p_1, p_2, m)$$

 $x_2 = x_2(p_1, p_2, m)$

- Στην παρούσα ενότητα θα εξετάσουμε πώς αλλάζει η ποσότητα όταν αλλάζουν οι τιμές και το εισόδημα
- Θα εστιάσουμε στη συγκριτική στατική
 - Συγκριτική: μας ενδιαφέρει η σύγκριση πριν και μετά από μία αλλαγή
 - Στατική: δε μας ενδιαφέρει πώς μεταβαίνουμε από μια ισορροπία σε μια άλλη, παρά μόνο η ισορροπία η ίδια

Κανονικά και κατώτερα αγαθά

Κανονικά αγαθά

- Γνωρίζουμε πως η αύξηση του εισοδήματος αντιστοιχεί σε μια παράλληλη μετάθεση της γραμμής εισοδήματος προς τα πάνω δεξιά
- Διαισθητικά περιμένουμε πως αυτό αυξάνει τη ζήτηση
- Αγαθά για τα οποία η αύξηση εισοδήματος πράγματι αυξάνει την κατανάλωση ονομάζονται κανονικά αγαθά:

$$\frac{\Delta x_1}{\Delta m} > 0$$

Κατώτερα αγαθά

- Τα κατώτερα αγαθά είναι αγαθά που δεν είναι κανονικά, δηλαδή αγαθά των οποίων η κατανάλωση μειώνεται όταν το εισόδημα αυξάνεται
- Δεν είναι και τόσο σπάνια όσο θα νομίζαμε: χυλός, σαλάμι, παράγκες, ή οποιοδήποτε άλλο αγαθό χαμηλής ποιότητας
- Το αν ένα αγαθό είναι κατώτερο ή όχι εξαρτάται από το επίπεδο εισοδήματος που εξετάζουμε: για πολύ χαμηλό εισόδημα αυξάνεται ενδεχομένως η κατανάλωση χυλού, αλλά από ένα εισόδημα και πάνω ελαττώνεται

Ερώτηση 6.1

 Αν ένα καταναλωτής καταναλώνει ακριβώς δύο αγαθά, και δαπανά πάντα όλα του τα χρήματα, υπάρχει περίπτωση να είναι και τα δύο κατώτερα αγαθά;

Απάντηση στην ερώτηση 6.1

• Όχι: αν το εισόδημα αυξάνεται, και δαπανάται πλήρως, πρέπει να αυξάνεται η κατανάλωση τουλάχιστον ενός από τα δύο αγαθά

Καμπύλες εισοδήματοςκατανάλωσης και καμπύλες Engel

Καμπύλες εισοδήματος-κατανάλωσης

- Η καμπύλη εισοδήματος-κατανάλωσης είναι ο γεωμετρικός τόπος της κατανάλωσης κάθε αγαθού όταν αλλάζουμε το εισόδημα ενός καταναλωτή
- Η καμπύλη εισοδήματος-κατανάλωσης ονομάζεται επίσης γραμμή επέκτασης εισοδήματος
- Αν είναι και τα δύο αγαθά κανονικά, τότε η γραμμή επέκτασης εισοδήματος έχει θετική κλίση

Καμπύλες Engel

- Η καμπύλη Engel περιγράφει τη ζήτηση ενός αγαθού, $x_1(p_1, p_2, m)$, καθώς αλλάζει το εισόδημα m
- Η καμπύλη Engel απεικονίζει τη ζήτηση στον οριζόντιο άξονα, και το εισόδημα στον κάθετο άξονα, με τις τιμές των αγαθών να παραμένουν σταθερές

Ορισμένα παραδείγματα

Τέλεια υποκατάστατα

Τέλεια συμπληρώματα

Προτιμήσεις Cobb-Douglas

Ομοθετικές προτιμήσεις

Οιωνεί γραμμικές προτιμήσεις

Τέλεια υποκατάστατα

- Αν $p_1 < p_2$, τότε ο καταναλωτής καταναλώνει μόνο το αγαθό 1, με αποτέλεσμα να έχουμε $x_1 = m/p_1$
- Άρα, $m=p_1x_1$, και η καμπύλη Engel είναι μια γραμμή με κλίση p_1

Τέλεια συμπληρώματα

- Εφόσον στα τέλεια συμπληρώματα τα αγαθά καταναλώνονται σε ίσες ποσότητες, η καμπύλη εισοδήματος-κατανάλωσης είναι η διαγώνια γραμμή
- Έχουμε δει πως για τα τέλεια συμπληρώματα ισχύει ότι $x_1 = m/(p_1+p_2)$, άρα η καμπύλη Engel είναι μια ευθεία γραμμή με κλίση p_1+p_2

Προτιμήσεις Cobb-Douglas

- Ας εξετάσουμε τη συνάρτηση χρησιμότητας $u(x_1, x_2) = x_1^a x_2^{1-a}$
- Έχουμε δείξει ότι

$$x_1 = \frac{am}{p_1}$$

$$x_2 = \frac{(1-a)m}{p_2}$$

- Άρα η καμπύλη εισοδήματος-κατανάλωσης για το αγαθό 1 είναι μια γραμμή με κλίση p_1/a
- Και η καμπύλη Engel είναι ευθεία γραμμή, δεδομένου ότι η κάθε καμπύλη ζήτησης είναι γραμμική συνάρτηση του εισοδήματος *m*

Αγαθά πολυτελείας και απαραίτητα αγαθά

- Μέχρι στιγμής οι καμπύλες Engel τις οποίες έχουμε δει είναι γραμμικές
- Αυτό δεν ισχύει πάντα
 - Αγαθά των οποίων η ποσοστιαία ζήτηση αυξάνεται ταχύτερα από την ποσοστιαία ζήτηση του εισοδήματος ονομάζονται αγαθά πολυτελείας
 - Αγαθά των οποίων η ποσοστιαία ζήτηση αυξάνεται πιο αργά από την ποσοστιαία ζήτηση του εισοδήματος ονομάζονται απαραίτητα αγαθά

Ομοθετικές προτιμήσεις

- Το σύνορο μεταξύ αγαθών πολυτελείας και απαραίτητων αγαθών είναι οι ομοθετικές προτιμήσεις
- Οι ομοθετικές προτιμήσεις είναι προτιμήσεις οι οποίες εξαρτώνται μόνο από το λόγο της ποσότητας των αγαθών
- Πιο συγκεκριμένα, έχουμε **ομοθετικές προτιμήσεις** αν ο καταναλωτής προτιμά το (tx_1, tx_2) από το (ty_1, ty_2) για οποιοδήποτε θετικό t
- Οι προτιμήσεις που περιγράφηκαν προηγουμένως, τέλεια υποκατάστατα, τέλεια συμπληρώματα, και προτιμήσεις Cobb-Douglas, είναι όλες ομοθετικές

Καμπύλες εισοδήματος-κατανάλωσης και καμπύλες Engel για ομοθετικές προτιμήσεις

- Αν οι προτιμήσεις είναι ομοθετικές, τότε η καμπύλη εισοδήματος-κατανάλωσης είναι γραμμική
- Αυτό το βλέπουμε αν παρατηρήσουμε το εξής: αν η καμπύλη αδιαφορίας είναι εφαπτομένη στον περιορισμό εισοδήμαστς στο συνδυασμό (x₁, x₂), τότε η καμύλη αδιαφορίας είναι εφαπτομένη στο (tx₁, tx₂) στον περιορισμό εισοδήματος που έχει t φορές περισσότερο εισόδημα στις ίδιες τιμές
- Άρα και οι καμπύλες Engel είναι γραμμικές: αν διπλασιάσουμε το εισόδημα, διπλασιάζουμε τη ζήτηση για το κάθε αγαθό

Ερώτηση 6.2

 Δείξτε πως τα τέλεια υποκατάστατα αποτελούν παράδειγμα ομοθετικών προτιμήσεων

Απάντηση στην ερώτηση 6.2

- Η συνάρτηση χρησιμότητας για τέλεια υποκατάστατα είναι $u(x_1, x_2) = x_1 + x_2$
- Συνεπώς, αν $u(x_1,x_2)>u(y_1,y_2)$, τότε $x_1+x_2>y_1+y_2$
- Συνεπάγεται πως $tx_1 + tx_2 > ty_1 + ty_2$, άρα $u(tx_1, tx_2) > u(ty_1, ty_2)$

Ερώτηση 6.3

• Δείξτε πως οι προτιμήσεις Cobb-Douglas είναι ομοθετικές προτιμήσεις

Απάντηση στην ερώτηση 6.3

• Η συνάρτηση χρησιμότητας Cobb-Douglas έχει την ιδιότητα πως

$$u(tx_1, tx_2) = (tx_1)^a (tx_2)^{1=a} = t^a t^{1-a} x_1^a x_2^{1-a} = tx_1^a x_2^{1-a}$$

= $tu(x_1, x_2)$

• Άρα, αν $u(x_1,x_2)>u(y_1,y_2)$, γνωρίζουμε πως $u(tx_1,tx_2)>u(ty_1,ty_2)$, συνεπώς οι προτιμήσεις Cobb-Douglas είναι πράγματι ομοθετικές

Οιωνεί γραμμικές προτιμήσεις

- Οι οιωνεί γραμμικές προτιμήσεις έχουν καμπύλες αδιαφορίας που είναι παράλληλες η μία προς την άλλη
- Ισοδύναμα, οι συναρτήσεις χρησιμότητας έχουν τη μορφή $u(x_1,x_2)=v(x_1)+x_2$
- Έστω ότι μια καμπύλη αδιαφορίας είναι εφαπτόμενη στη γραμμή εισοδήματος στο σημείο (x_1^*, x_2^*)
- Σε αυτήν την περίπτωση, αν μεταθέσουμε την καμπύλη εισοδήματος προς τα πάνω δεξιά τότε πρέπει να εφάπτεται σε μια καμπύλη αδιαφορίας σε ένα σημείο $(x_1^*, x_2^* + k)$ για κάποιο k

Οιωνεί γραμμικές προτιμήσεις

- Άρα η αύξηση του εισοδήματος δεν έχει καμία επίδραση στη ζήτηση για το αγαθό 1, όλο το επιπλέον εισόδημα διατίθεται στο αγαθό 2
- Η καμπύλη Engel για το αγαθό 1
 είναι μια κάθετη γραμμή: όσο
 αυξάνουμε το εισόδημα, η ζήτηση
 για το αγαθό 1 παραμένει σταθερή

Σε τι αντιστοιχούν οι οιωνεί γραμμικές προτιμήσεις;

- Οι οιωνεί γραμμικές προτιμήσεις ανακύπτουν όταν εξετάζουμε την επιλογή ανάμεσα σε ένα αγαθό που αποτελεί ένα μικρό μέρος του εισοδήματος και όλων των υπόλοιπων αγαθών
- Για παράδειγμα: μολύβια, αλάτι, οδοντόπαστα

Κοινά αγαθά και αγαθά Giffen

Κοινά αγαθά

- Ας υποθέσουμε τώρα πως το εισόδημα και η τιμή του αγαθού 2 διατηρούνται σταθερά
- Και έστω ότι ελαττώνουμε την τιμή του αγαθού 1
- Η διαίσθηση λέει ότι η ζήτηση για το αγαθό 1 αυξάνεται
- Αγαθά που υπακούν αυτήν τη συμπεριφορά ονομάζονται κοινά αγαθά

Αγαθά Giffen

- Δεν είναι απαραίτητο πως η ποσότητα του αγαθού 1 αυξάνεται όταν η τιμή του μειώνεται
- Όταν αυτό δε συμβαίνει, το αντίστοιχο αγαθό ονομάζεται αγαθό Giffen

Η καμπύλη τιμής-κατανάλωσης και η καμπύλη ζήτησης

Η καμπύλη τιμής-κατανάλωσης

- Ας υποθέσουμε πως αλλάζουμε την τιμή του αγαθού 1 ενώ διατηρούμε την τιμή του αγαθού 2 και το εισόδημα σταθερά
- Ο γεωμετρικός τόπος των βέλτιστων επιλογών ονομάζεται καμπύλη τιμής-κατανάλωσης

Η καμπύλη ζήτησης

- Η καμπύλη ζήτησης απεικονίζει τη ζήτηση $x_1(p_1,p_2,m)$ στον οριζόντιο άξονα, την τιμή p_1 στον κάθετο άξονα, με την τιμή του αγαθού 2 και το εισόδημα να διατηρούντιαι σταθερά
- Κανονικά (στην περίπτωση που δεν έχουμε αγαθά Giffen), η ζήτηση ενός αγαθού αυξάνεται όταν η τιμή του μειώνεται
- Άρα κατά κανόνα η καμπύλη ζήτησης είναι φθίνουσα:

$$\frac{\Delta x_1}{\Delta p_1} < 0$$

Ερώτηση 6.4

• Η καμπύλη εισοδήματος κατανάλωσης είναι για την καμπύλη Engel ό,τι η καμπύλη τιμής-κατανάλωσης για ... ;

Απάντηση στην ερώτηση 6.4

• Για την καμπύλη ζήτησης

Ερώτηση 6.5

• Αν οι προτιμήσεις είναι κοίλες, θα προτιμήσει ποτέ ο καταναλωτής να καταναλώσει και τα δύο αγαθά μαζί;

Απάντηση στην ερώτηση 6.5

• Όχι: οι κοίλες προτιμήσεις οδηγούν σε βέλτιστες επιλογές στις οποίες το ένα από τα δύο αγαθά έχει μηδενική κατανάλωση

Ορισμένα παραδείγματα

Τέλεια υποκατάστατα Τέλεια συμπληρώματα Ένα διακριτό αγαθό

Τέλεια υποκατάστατα

- Είδαμε στο κεφάλαιο 5 πως η ζήτηση για το αγαθό 1 είναι
 - μηδέν όταν $p_1>p_2$,
 - οποιοδήποτε σημείο στη γραμμή εισοδηματικού περιορισμού όταν $p_1=p_2$,
 - και m/p_1 όταν $p_1 < p_2$

Τέλεια συμπληρώματα

- Ανεξαρτήτως τιμής του αγαθού 1, η βέλτιστη επιλογή είναι ίση ποσότητα του αγαθού 1 και 2
- Άρα η καμπύλη τιμής-κατανάλωσης είναι μια ευθεία γραμμή
- Στο κεφάλαιο 5 είδαμε πως

$$x_1 = \frac{m}{p_1 + p_2}$$

• Άρα η καμπύλη ζήτησης έχει μορφή υπερβολής

Τιμή επιφύλαξης

- Έστω ότι το αγαθό 1 είναι διακριτό αγαθό
- Αν η τιμή p_1 είναι πολύ υψηλή, ο καταναλωτής προτιμά να καταναλώσει 0 μονάδες
- Για αρκετα χαμηλή τιμή p_1 , ο καταναλωτής προτιμά να καταναλώσει μία μονάδα
- Σε κάποια τιμή r_1 είναι αδιάφορος μεταξύ 0 και 1 μονάδας
- Η τιμή r_1 ονομάζεται **τιμή επιφύλαξης**

Καμπύλη τιμής-κατανάλωσης και καμπύλη

ζήτησης

- Η συμπεριφορά ζήτησης μπορεί να περιγραφεί από μια ακολουθία από τιμές επιφύλαξης στις οποίες ο καταναλωτής είναι διατεθιμένος να καταναλώσει άλλη μία μονάδα
- Στην τιμή r_1 ο καταναλωτής είναι διατεθιμένος να αγοράσει μία μονάδα
- Αν η τιμή πέσει στο r_2 , είναι διατεθιμένος να αγοράσει άλλη μία μονάδα, κ.ο.κ.

Σχέση τιμής επιφύλαξης με τη συνάρτηση χρησιμότητας

• Οι τιμές επιφύλαξης μπορούν να εκφραστούν σε σχέση με τη συνάρτηση χρησιμότητας:

$$u(0,m) = u(1,m-r_1)$$
 (6.1)
 $u(1,m-r_2) = u(2,m-2r_2)$ (6.2)

• Στην περίπτωση που οι προτιμήσεις είναι οιωνεί γραμμικές, έχουμε $u(x_1,x_2)=v(x_1)+x_2$, και αν επιπλέον v(0)=0, τότε η (6.1) γίνεται:

$$v(0) + m = m = v(1) + m - r_1$$

• Λύνοντας για r_1 :

$$r_1 = v(1)$$
 (6.3)

Τιμή επιφύλαξης με οιωνεί γραμμική συνάρτηση χρησιμότητας

• Παρομοίως, μπορούμε να γράψουμε την (6.2) ως $v(1) + m - r_2 = v(2) + m - 2r_2$

• Ακυρώνοντας όρους, η έκφραση γίνεται

$$r_2 = v(2) - v(1)$$

• Αντίστοιχα, έχουμε

$$r_3 = v(3) - v(2)$$

K.O.K.

- Οι τιμές επιφύλαξης αντιστοιχούν χονδρικά στην οριακή χρησιμότητα διαφόρων επιπέδων κατανάλωσης του αγαθού 1
- Στην περίπτωση κυρτών προτιμήσεων, η ακολουθία τιμών επιφύλαξης είναι φθίνουσα: $r_1 > r_2 > r_3 > \cdots$

Συμπεριφορά ζήτησης βάσει των τιμών επιφύλαξης

- Λόγω της ειδικής δομής της οιωνεί γραμμικής χρησιμότητας, η ζήτηση για το αγαθό 1 δεν εξαρτάται από το επίπεδο κατανάλωσης του αγαθού 2
- Αυτό καθιστά εύκολη την περιγραφή της συμπεριφοράς ζήτησης
- Για παράδειγμα, αν η τιμή p είναι μεταξύ της r_6 και της r_7 , τότε ο καταναλωτής θέλει ακριβώς 6 μονάδες του αγαθού 1:
 - Εφόσον $r_6 > p$, ο καταναλωτής είναι διατεθιμένος να δώσει $p \in \gamma$ ια να έχει 6 μονάδες του αγαθού 1
 - Και εφόσον $p>r_7$, ο καταναλωτής δεν είναι διατεθιμένος να δώσει p € για να έχει 7 μονάδες του αγαθού 1

Μαθηματική απόδειξη της συμπεριφοράς ζήτησης

- Θέλουμε να αποδείξουμε μαθηματικά πως αν ο καταναλωτής ζητήσει 6 μονάδες του αγαθού 1 τότε $r_6 \geq p \geq r_7$
- Έχουμε ότι για κάθε x_1 ισχύει ότι

$$v(6) + m - 6p \ge v(x_1) + m - px_1$$

• Συγκεκριμένα, πρέπει να ισχύει ότι

$$v(6) + m - 6p \ge v(5) + m - 5p$$

• Το οποίο σημαίνει ότι

$$r_6 = v(6) - v(5) \ge p$$

• Με την ίδια λογική

$$v(6) + m - 6p \ge v(7) + m - 7p$$

• Το οποίο σημαίνει ότι

$$p \ge v(7) - v(6) \ge r_7$$

Υποκατάστατα και συμπληρώματα

Υποκατάστατα και συμπληρώματα

• Έχουμε μιλήσει ήδη για τέλεια υποκατάστατα και συμπληρώματα, θα δώσουμε τώρα ακριβείς μαθηματικούς ορισμούς για τα (ατελή) υποκατάστατα και συμπληρώματα

• Υποκατάστατα

- Τέλεια υποκατάστατα: κόκκινα και μπλε μολύβια, αν δε μας ενδιαφέρει το χρώμα
- Ατελή υποκατάστατα: μολύβια και στυλό, παρόμοια χρήση αν και όχι ακριβώς η ίδια

• Συμπληρώματα

- Τέλεια συμπληρώματα: αριστερό και δεξί παπούτσι, καταναλώνονται πάντα σε ζεύγη
- Ατελή συμπληρώματα: παπούτσια και κάλτσες, καταναλώνονται συνήθως αλλά όχι πάντα μαζί

Μαθηματικός ορισμός

- Έστω η συνάρτηση ζήτησης $x_1(p_1,p_2,m)$
- Πώς αλλάζει η ζήτηση για το αγαθό 1 όταν μεταβάλλεται η τιμή του αγαθού 2;
- Αν η ζήτηση για το αγαθό 1 αυξάνεται όταν αυξάνεται η τιμή του αγαθού 2, τότε το αγαθό 2 είναι **υποκατάστατο** για το αγαθό 1:

$$\frac{\Delta x_1}{\Delta p_2} > 0$$

- Η ιδέα είναι ότι όταν το αγαθό 2 γίνεται πιο ακριβό ο καταναλωτής το αντικαθιστά με το αγαθό 1
- Αν η ζήτηση για το αγαθό 1 μειώνεται όταν αυξάνεται η τιμή του αγαθού 2, τότε το αγαθό 2 είναι συμπλήρωμα του αγαθού 1:

$$\frac{\Delta x_1}{\Delta p_2} < 0$$

- Η ιδέα είναι ότι το αγαθό 1 και το αγαθό 2 καταναλώνονται μαζί, άρα αν το ένα γίνεται πιο ακριβό τότε η κατανάλωση του άλλου μειώνεται
- Επιβεβαιώστε αυτήν τη συμπεριφορά στην περίπτωση των τέλειων συμπληρωμάτων και των τέλειων υποκατάστατων

Ερώτηση 6.6

• Τα μπιφτέκια και τα ψωμάκια είναι συμπληρώματα ή υποκατάστατα;

Απάντηση στην ερώτηση 6.6

• Κανονικά είναι συμπληρώματα, τουλάχιστον για μη χορτοφάγους

Η αντίστροφη συνάρτηση ζήτησης

Η αντίστροφη συνάρτηση ζήτησης

- Είδαμε πως η **καμπύλη ζήτησης** είναι η συμπεριφορά της ποσότητας του αγαθού 1, x_1 , καθώς μεταβάλλουμε την τιμή του αγαθού 1, p_1 , με τα p_2 και m να διατηρούνται σταθερά
- Έχουμε δει πως η καμπύλη ζήτησης είναι φθίνουσα στις περισσότερες περιπτώσεις, με εξάιρεση τα αγαθά Giffen
- Αν η καμπύλη ζήτησης είναι όντως φθίνουσα, μπορούμε να ορίσουμε ως αντίστροφη συνάρτηση ζήτησης την αντίστροφη της συνάρτησης ζήτησης, δηλαδή τιμή ως συνάρτηση ποσότητας

Η αντίστροφη συνάρτηση ζήτησης

- Διαισθητικά περιγράφει την τιμή που απαιτείται για να προκληθεί μια ορισμένη κατανάλωση
- Για παράδειγμα, έχουμε δει πως οι προτιμήσεις Cobb-Douglas οδηγούν σε
 - Συνάρτηση ζήτησης για το αγαθό 1 ίση με $x_1 = am/p_1$, άρα
 - Αντίστροφη συνάρτηση ζήτησης για το αγαθό 1 ίση με $p_1 = am/x_1$

Ερμηνεία της αντίστροφης συνάρτησης ζήτησης

• Αν και τα δύο αγαθά καταναλώνονται σε θετικές ποσότητες, τότε η απόλυτη τιμή του ΟΛΥ είναι ίση με το λόγο των τιμών των αγαθών:

$$|\mathsf{O}\Lambda\Upsilon| = \frac{p_1}{p_2}$$

Άρα

$$p_1 = p_2 |0\Lambda\Upsilon|$$
 (6.4)

- Και έστω ότι η τιμή του αγαθού 2 είναι 1
- Σε αυτήν την περίπτωση η τιμή του αγαθού 1 (άρα η καμπύλη ζήτησης) μετρά πόσο είναι διατεθιμένος να μειώσει την κατανάλωση του αγαθού 2 ο καταναλωτής για να αυξήσει την κατανάλωση του αγαθού 1 (ή πόσο απαιτεί να αυξήσει την κατανάλωση του αγαθού 2 για να ελαττώσει την κατανάλωση του αγαθού 1)
- Αν το αγαθό 2 αντιστοιχεί σε χρήματα που ξοδεύονται για όλες τις άλλες καταναλώσεις, τότε η καμπύλη ζήτησης μετρά πόσο είναι διατεθιμένος να πληρώσει ο καταναλωτής για μια αύξηση της κατανάλωσης του αγαθού 1
- Για μικρές τιμές του x_1 , το ποσό αυτό είναι μεγάλο, ενώ για υψηλότερες τιμές μειώνεται

Ερώτηση 6.7

• Ποια είναι η μορφή της αντίστροφης συνάρτησης ζήτησης για το αγαθό 1 στην περίπτωση τέλειων συμπληρωμάτων;

Απάντηση στην ερώτηση 6.7

- Γνωρίζουμε πως $x_1 = m/(p_1 + p_2)$
- Λύνοντας ως προς p_1 , έχουμε

$$p_1 = \frac{m}{x_1} - p_2$$

Ερώτηση 6.8

• Σωστό ή λάθος: αν η συνάρτηση ζήτησης είναι $x_1 = -p_1$, τότε η αντίστροφη συνάρτηση ζήτησης είναι $x_1 = -1/p_1$

Απάντηση στην ερώτηση 6.8

• Λάθος

Παράρτημα

Καμπύλη ζήτησης για οιωνεί γραμμικές προτιμήσεις

• Έχουμε δει πως οι οιωνεί γραμμικές προτιμήσεις εκφράζονται από μια συνάρτηση χρησιμότητας με την ακόλουθη μορφή:

$$u(x_1, x_2) = v(x_1) + x_2$$

• Το πρόβλημα μεγιστοποίησης χρησιμότητας για τέτοιες προτιμήσεις είναι

$$\max_{x_1,x_2} v(x_1) + x_2$$

s. t. $p_1 x_1 + p_2 x_2 = m$

• Εκφράζοντας το x_2 ως συνάρτηση του x_1 και αντικαθιστώντας στην αντικειμενική συνάρτηση, έχουμε

$$\max_{x_1, x_2} v(x_1) + \frac{m}{p_2} - \frac{p_1 x_1}{p_2}$$

• Παραγωγίζοντας, έχουμε την εξής συνθήκη πρώτου βαθμού:

$$v'(x_1^*) = \frac{p_1}{p_2}$$

Καμπύλη ζήτησης για οιωνεί γραμμικές προτιμήσεις

- Η συνάρτηση ζήτησης είναι ανεξάρτητη του εισοδήματος (όπως εξηγήσαμε προηγουμένως)
- Η αντίστροφη συνάρτηση ζήτησης είναι:

$$p_1(x_1) = v'(x_1)p_2$$

• Και η καμπύλη ζήτησης για το αγαθό 2 μπορεί να εξαχθεί από τον περιορισμό εισοδήματος

Παράδειγμα

• Έστω η συνάρτηση χρησιμότητας

$$u(x_1, x_2) = \ln x_1 + x_2$$

• Η συνθήκη πρώτου βαθμού δίνει

$$\frac{1}{x_1} = \frac{p_1}{p_2}$$

• Άρα η συνάρτηση ζήτησης είναι

$$x_1 = \frac{p_2}{p_1}$$

• Και η αντίστροφη συνάρτηση ζήτησης είναι

$$p_1(x_1) = \frac{p_2}{x_1}$$

• Η ζήτηση για το αγαθό 2 υπολογίζεται αντικαθιστώντας $x_1 = p_2/p_1$ στον εισοδηματικό περιορισμό:

$$x_2 = \frac{m}{p_2} - 1$$

Πιο ακριβής επίλυση

- Ο υπολογισμός της συνάρτησης ζήτησης υποθέτει ότι $x_2>0$
- Αν η τιμή του αγαθού 2 είναι $p_2>m$, τότε η βέλτιστη κατανάλωση για το αγαθό 2 είναι μηδέν
- Άρα ένας πιο ακριβής τρόπος να εκφράσουμε τη ζήτηση για το αγαθό 2 είναι

$$x_2 = \begin{cases} 0, \text{ όταν } m \leq p_2 \\ \frac{m}{p_2} - 1, & \text{ όταν } m > p_2 \end{cases}$$

Βιβλιογραφία

• [1] Hal Varian, Μικροοικονομική: μια σύγχρονη προσέγγιση, 3^η έκδοση, εκδόσεις Κριτική, 2015