Lab 5: Data modeling, Database Design and Implementation

E-R Diagram (Entity-Relationship Model)

Entity	Attributes	Primary Key	Foreign Keys	
Dentist	dentist_id, first_name, last_name, phone, email, specialization	dentist_id	_	
Patient	patient_id, first_name, last_name, phone, email, address, dob	patient_id	_	
Surgery	surgery_id, name, address, phone	surgery_id	_	
Appointment	appointment_id, appointment_date, appointment_time, dentist_id, patient_id, surgery_id	appointment_id	dentist_id → Dentistpatient_id → Patientsurgery_id → Surgery	
Bill	bill_id, appointment_id, amount, status	bill_id	appointment_id → Appointment	

For Monolithic with single DB we shall use the ER

Relationships

- One Dentist → Many Appointments
- One Patient → Many Appointments
- One Surgery → Many Appointments
- One **Appointment** → One **Bill**
- One **Patient** → Many **Bills**

PATIENT Int patient_id PK varchar first_name varchar last_name varchar gender varchar phone varchar phone varchar email varchar email handles (reference) APPOINTMENT Int appointment_id PK int patient_id Reference from Patient service int dentist_id Reference from Dentist service string Jid PK string Jid PK string surgery_name string location string[] assigned_dentists string[] operating_days

But since my architecture is based on Microservice Below is my ER.

Create my DBs in docker.

bill id

docker run -d --name dentist-db -e POSTGRES_DB=dentistdb -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres -p 5433:5432 postgres:15

docker run -d --name patient-db -e POSTGRES_DB=patientdb -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres -p 5432:5432 postgres:15

docker run -d --name appointment-db -e POSTGRES_DB=appointmentdb -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres -p 5434:5432 postgres:15

docker run -d --name billing-db -e POSTGRES_DB=billingdb -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres -p 5435:5432 postgres:15

docker run -d --name surgery-db -e MONGO_INITDB_DATABASE=surgerydb -p 27017:27017 mongo:8.0

Surgery Microservice (MongoDB)

The Surgery service uses a document-oriented model implemented in MongoDB to store data about surgical rooms and schedules. Each Surgery document contains an _id, surgery_name, location, and embedded arrays for assigned_dentists and operating_days. This flexible schema supports dynamic relationships without requiring strict foreign key constraints. Dentist references are stored as IDs that correspond to records in the Dentist PostgreSQL service, allowing polyglot persistence across microservices.