

Cálculo Diferencial Regras de Derivação

Derivadas das principais funções elementares

f(x)	f'(x)	Observações
С	0	$c \in \mathbb{R}$
χ^n	$n x^{n-1}$	
$\ln x$	$\frac{1}{x}$	x > 0
a^x	$a^x \ln a$	$a > 0 e a \neq 1$
sen x	$\cos x$	
cos x	-sen x	
tg x	$\sec^2 x$	

Derivadas das principais funções elementares

Exemplos:

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$sec^2 x$

$$f'(x) = -5x^{-5-1} = -5x^{-6}$$

7.
$$f(x) = \sqrt[3]{x^2} = x^{2/3}$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$sec^2 x$

$$f'(x) = \operatorname{tg} x$$
$$f'(x) = \operatorname{sec}^2 x$$

Regras de deriva çã o	
(u+v)'	u' + v'
(u-v)'	u'-v'
(kf)'	kf'
$(u \ v)'$	u'v + u v'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u v'}{v^2}$
Regra da cadeia	f'(x) = f'(u).u'

1.
$$f(x) = 3x^2 + x^4$$

 $f'(x) = 2 \cdot 3x^{2-1} + 4x^{4-1} = 6x + 4x^3$

2.
$$f(x) = \frac{1}{x^5}$$

 $f'(x) = -5x^{-5-1} = -5x^{-6}$

3.
$$f(x) = \frac{4}{x^3} - \ln x$$

 $f'(x) = -3 \cdot 4x^{-3-1} - \frac{1}{x} = -12x^{-4} - \frac{1}{x}$

4.
$$f(x) = (3x + 2)(x^2 - 1)$$

$$f'(x) = (u v)' = u'v + u v'$$

 $u = 3x + 2$
 $v = x^2 - 1$
 $u' = 3$
 $v' = 2x$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
$\ln x$	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$sec^2 x$

Regras de derivação	
(u v)'	u'v + uv'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u v'}{v^2}$

$$f'(x) = 3(x^2 - 1) + (3x + 2)2x = 3x^2 - 3 + 6x^2 + 4x = 9x^2 + 4x - 3$$

5.
$$f(x) = (x^2 - 1) \ln x$$

$$f'(x) = (u \ v)' = u'v + u \ v'$$

$$u = x^2 - 1$$

$$v = \ln x$$

$$u'=2x$$

$$v'=\frac{1}{x}$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
$\ln x$	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$sec^2 x$

$$f'(x) = 2x \ln x + (x^2 - 1)\frac{1}{x} = 2x \ln x - \frac{(x^2 - 1)}{x} = 2x \ln x - x + \frac{1}{x}$$

Regras de derivação	
(u v)'	u'v + u v'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u \ v'}{v^2}$

6.

$$f(x) = \frac{\ln x}{x}$$

$$f'(x) = \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$u = \ln x$$

$$v = x$$

$$u' = \frac{1}{x}$$

$$v' = 1$$

$$f'(x) = \frac{\frac{1}{x}x - \ln x \cdot 1}{x^2} = \frac{1 - \ln x}{x^2}$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

Regras de derivação	
(u v)'	u'v + u v'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u v'}{v^2}$

7.

$$f(x) = \frac{x^2 - 1}{x + 3}$$

$$f'(x) = \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$u = x^2 - 1$$

$$v = x + 3$$

$$u' = 2x$$

$$v' = 1$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

$$f'(x) = \frac{2x(x+3) - (x^2 - 1)1}{(x+3)^2} = \frac{2x^2 + 6x - x^2 + 1}{(x+3)^2} = \frac{x^2 + 6x + 1}{(x+3)^2}$$

Regras de deriva çã o	
(u v)'	u'v + u v'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u \ v'}{v^2}$

Dada a função $f(x) = \ln(x^2 + 1)$, como calcular f'(x)?

$$\frac{d}{dx}\ln(x^2+1)$$
 NÃO é igual a $\frac{1}{x^2+1}$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

Ou, ainda, se
$$f(x) = (2x + 1)^{100}$$
, como calcular $\frac{df}{dx}$?

$$\frac{d}{dx}(2x+1)^{100}$$
 NÃO é igual a $100(2x+1)^{99}$

Exemplo 1: Calcular a derivada de $f(x) = \ln(x^2 + 1)$.

Solução:

$$u = x^2 + 1$$

$$f(u) = \ln u$$

$$f'(x) = f'(u) u'$$

$$f'(u) = \frac{1}{u}$$

$$u' = 2x$$

$$f'(x) = \frac{1}{u}2x = \frac{2x}{u} = \frac{2x}{x^2 + 1}$$

$$f'(x) = \frac{2x}{x^2 + 1}$$

Regras de deriva çã o	
(u+v)'	u' + v'
(u-v)'	u'-v'
(kf)'	kf'
$(u\ v)'$	u'v + u v'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u \ v'}{v^2}$
Regra da cadeia	f'(x) = f'(u).u'

Exemplo 2: Calcular a derivada de $f(x) = (2x + 1)^{100}$

Solução:

$$u = 2x + 1$$

$$f(u) = u^{100}$$

$$f'(x) = f'(u) u'$$

$$f'(u) = 100 u^{99}$$

$$u'=2$$

$$f'(x) = 100 u^{99} \cdot 2 = 200 u^{99} = 200(2x+1)^{99}$$

$$f'(x) = 200(2x+1)^{99}$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

Regras de derivação	
(u+v)'	u' + v'
(u-v)'	u'-v'
(kf)'	kf'
(u v)'	u'v + u v'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u \ v'}{v^2}$
Regra da cadeia	f'(x) = f'(u).u'

Exemplo 3: Calcular a derivada de $f(x) = \cos\left(\frac{x}{x+1}\right)$

Solução:

$$u = \frac{x}{x+1}$$

$$f(u) = \cos u$$

$$f'(x) = f'(u) u'$$

$$f'(u) = -\sin u$$

$u' = \left(\frac{x}{x+1}\right) = \frac{wv - wv'}{v v^2} =$	$1(x+1)-x\cdot 1$	x+1
$u - (x + 1) - v v^2$	$=\frac{(x+1)^2}{(x+1)^2}$	$\overline{(x+1)}$
w = x		

$$v = x + 1$$

$$v = x + 1$$
 $u' = \frac{1}{(x+1)^2}$ $u' = \frac{1}{(x+1)^2}$

$$w'=1$$

$$v'=1$$
 $f'(u)$ u'

$$f'(x) = -\sin u \cdot \frac{1}{(x+1)^2} = -\sin\left(\frac{x}{x+1}\right) \frac{1}{(x+1)^2}$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

– X Regras de derivação	
(u+v)'	u' + v'
(u-v)'	u'-v'
(kf)'	kf'
(u v)'	u'v + u v'
$=\frac{\left(\frac{u}{v}\right)'}{(x+1)}$	$\frac{u'v - u v'_{\chi}}{\operatorname{sen}\left(\frac{v^2}{x} + 1\right)}$

Regra da cadeia - Processo rápido

Exemplo 4: Calcular a derivada de $f(x) = \ln(x^2 + 1)$.

Solução:

$$(\ln \boxplus)' = \frac{1}{\boxplus} \cdot \boxplus'$$

$$f'(x) = \frac{1}{x^2 + 1}(x^2 + 1)' = \frac{1}{x^2 + 1}2x$$

$$f'(x) = \frac{2x}{x^2 + 1}$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

ln \square

Regras de derivação	
(u+v)'	u' + v'
(u-v)'	u'-v'
(kf)'	kf'
$(u\ v)'$	u'v + u v'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u \ v'}{v^2}$
Regra da cadeia	f'(x) = f'(u).u'

Regra da cadeia – Processo rápido

Exemplo 5: Calcular a derivada de $f(x) = (2x + 1)^{100}$

Solução:

$$(\boxplus^{100})' = 100 \boxplus^{99} \cdot \boxplus'$$

$$f'(x) = 100(2x+1)^{99}(2x+1)' = 100(2x+1)^{99} \cdot 2$$

f'(x) =	= 200(2x)	$+1)^{99}$
---------	-----------	------------

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

⊞¹⁰⁰

Regras de derivação	
(u+v)'	u' + v'
(u-v)'	u'-v'
(kf)'	kf'
(u v)'	u'v + u v'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u \ v'}{v^2}$
Regra da cadeia	f'(x) = f'(u).u'

Regra da cadeia – Processo rápido

Exemplo 6: Calcular a derivada de $f(x) = \cos\left(\frac{x}{x+1}\right)$ **Solução:**

$$(\cos \boxplus)' = -\operatorname{sen}(\boxplus) \cdot \boxplus'$$

$$f'(x) = -\operatorname{sen}\left(\frac{x}{x+1}\right)\left(\frac{x}{x+1}\right)'$$

$\left(\frac{x}{x+1}\right)' = \frac{u^{2}v - uv'}{v v^{2}}$	$=\frac{1(x+1)-x\cdot 1}{(x+1)^2} = \frac{1}{(x+1)^2}$	$=\frac{x+1-x}{(x+1)^2}$
u = x	1	
v = x + 1	$=\frac{1}{(1)^2}$	
u'=1	$-(x+1)^2$	
v'=1		

$$f'(x) = -\operatorname{sen}\left(\frac{x}{x+1}\right) \cdot \frac{1}{(x+1)^2} = -\frac{1}{(x+1)^2} \operatorname{sen}\left(\frac{x}{x+1}\right) \cdot \frac{\left(\frac{u}{v}\right)'}{\left(x+1\right)^2} \cdot \frac{\frac{u'v - uv'}{v^2}}{\frac{u'v - uv'}{v^2}}$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
$\ln x$	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

Regras de derivação
$$(u+v)' \qquad u'+v'$$

$$(u-v)' \qquad u'-v'$$

$$(kf)' \qquad kf'$$

$$(u v)' \qquad u'v+u v'$$

$$(u')' \qquad u'v-u v'$$

1) Calcular a derivada de $f(x) = (1 - 3x)^4$

$$(\boxplus^4)' = 4 \boxplus^3 \cdot \boxplus'$$

$$\bigoplus$$

$$\mathbb{H}^4$$

$$f'(x) = 4(1-3x)^3 (-3) = -12(1-3x)^3$$

2) Calcular a derivada de $f(x) = \ln(3x^2 - 1)$

$$(\ln \boxplus)' = \frac{1}{\boxminus} \cdot \boxplus'$$

$$\dot{\blacksquare}$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
$\ln x$	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

$3x^2-1$	$3x^2-1$	

 $f'(x) = \frac{1}{2x^2} + \frac{6x}{2} = \frac{6x}{2}$

3) Calcular a derivada de $f(x) = sen(5x^3)$

$$(\operatorname{sen} \boxplus)' = \cos(\boxplus) \cdot \boxplus'$$

$$f'(x) = \cos(5x^3) 15x^2 = 15x^2 \cos(5x^3)$$

4) Calcular a derivada de
$$f(x) = \left(\frac{1-x^2}{1+x^2}\right)^{10}$$

$$f'(x) = 10 \left(\frac{1 - x^2}{1 + x^2} \right)^9 \left(\frac{1 - x^2}{1 + x^2} \right)'$$

$$\left(\frac{1-x^2}{1+x^2}\right)' = \frac{u'w - uv'}{vv^2} = \frac{-2x(1+x^2) - (1-x^2)2x}{(1+x^2)^2} = \frac{-2x - 2x^3 - 2x + 2x^3}{(1+x^2)^2}$$

$$v = 1 + x^2$$

$$u' = -2x$$

$$u' = 2x$$
 $v' = 2x$

$$=\frac{-2x-2x^3-2x+2x^3}{(1+x^2)^2}=$$

$$=\frac{-4x}{(1+x^2)^2}$$

$$f'(x) = 10\left(\frac{1-x^2}{1+x^2}\right)^9 \frac{-4x}{(1+x^2)^2} = \frac{-40x}{(1+x^2)^2} \left(\frac{1-x^2}{1+x^2}\right)^9 \frac{-4x}{(1+x^2)^2} = \frac{-40x}{(1+x^2)^2} = \frac{-4$$

$$f'(x) = \frac{-40x(1-x^2)^9}{(1+x^2)^{11}}$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

 \mathbb{H}^{10}

	Regras de derivação	
	(u+v)'	u' + v'
	(u-v)'	u'-v'
	$9^{(kf)'}$	$x (1 - x^2)^9$
Υſ	1\40	
\mathcal{C}^2	$\int (1+x)^{-\alpha}$	$(2)^2 \frac{u^2 + u^2}{(1 + u^2)^9}$
	$\left(\frac{u}{v}\right)'$	$\frac{u'v - u \ v'}{v^2}$
	Regra da cadeia	f'(x) = f'(u).u'

5) Calcular a derivada de
$$f(x) = \frac{\ln(2 + x^2)}{2 + x^2}$$
 $u = \ln(2 + x^2)$ $v = 2 + x^2$ $u' = \frac{1}{2 + x^2} 2x = \frac{2x}{2 + x^2}$ $v' = 2x$
$$f'(x) = \frac{u'v - uv'}{v^2} = \frac{2x}{2 + x^2} (2 + x^2) - \ln(2 + x^2) 2x$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

f'(x) =	$2x - 2x \ln(2 + x^2)$
	$\frac{1}{(2+x^2)^2}$

$$f'(x) = \frac{2x(1 - \ln(2 + x^2))}{(2 + x^2)^2}$$

Regras de derivação	
(u+v)'	u' + v'
(u-v)'	u'-v'
(kf)'	kf'
(u v)'	u'v + u v'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u \ v'}{v^2}$
Regra da cadeia	f'(x) = f'(u).u'

6) Calcular a derivada de
$$f(x) = \ln\left(\frac{x^3 - x}{4 - x^2}\right)$$

$$f'(x) = \frac{1}{\frac{x^3 - x}{4 - x^2}} \left(\frac{x^3 - x}{4 - x^2}\right)' = \frac{4 - x^2}{x^3 - x} \left(\frac{x^3 - x}{4 - x^2}\right)'$$

$$\left(\frac{x^3 - x}{4 - x^2}\right)' = \frac{u'v - uv'}{v^2} = \frac{(3x^2 - 1)(4 - x^2) - (x^3 - x)(-2x)en x}{(4 - x^2)^2} \cos x \qquad \cos x$$

$$u = x^3 - x$$

$$v = 4 - x^2$$

$$u' = 3x^2 - 1$$

$$v' = -2x$$

$$= \frac{12x^2 - 3x^4 - 4 + x^2 - (-2x^4 + 2x^2)x}{(4 - x^2)^2}$$

$$= \frac{12x^2 - 3x^4 - 4 + x^2 + 2x^4}{(4 - x^2)^2}$$

$$= \frac{12x^2 - 3x^4 - 4 + x^2 + 2x^4}{(4 - x^2)^2}$$

$$= \frac{-x^4 + 11x^2 - 4}{(4 - x^2)^2}$$

$$= \frac{-x^4 + 11x^2 - 4}{(4 - x^2)^2}$$

$$= \frac{-x^4 + 11x^2 - 4}{(x^3 - x)(4 - x^2)}$$
Regras de derivação (u - v)' (u' + v') (u' + v'

7) Calcular a derivada de $f(x) = \ln(\ln x)$

$$f'(x) = \frac{1}{\ln x} \frac{(\ln x)'}{} = \frac{1}{\ln x} \frac{1}{x} = \frac{1}{x \ln x}$$

$$f'(x) = \frac{1}{x \ln x}$$

f(x)	f'(x)
С	0
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
a^x	$a^x \ln a$
sen x	cos x
cos x	-sen x
tg x	$\sec^2 x$

Regras de derivação	
(u+v)'	u' + v'
(u-v)'	u'-v'
(kf)'	kf'
(u v)'	u'v + u v'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u \ v'}{v^2}$
Regra da cadeia	f'(x) = f'(u).u'