Minimum Volume Ellipsoid

Kathleen Chang

Stanford University

May 30, 2022

Outline

Minimum Volume Ellipsoid

Dual problem

Minimum Volume Ellipsoid

If $C \in \mathbb{R}^n$ is bounded with a nonempty interior, the minimum volume ellipsoid \mathcal{E} covers C. \mathcal{E} is also called the Löwner-John ellipsoid.

$$\mathcal{E} = \{v \, | \, ||Av + b||_2 \, \leq 1 \, \}$$
 where $A \in \mathcal{S}^n_{++}$

The convex optimization problem to solve for the minimum volume ellipsoid is (Boyd, 2011):

min
$$\log \det A^{-1}$$

s.t. $\sup_{v \in C} ||Av + b||_2 \le 1$ (1)

This selects the minimum volume ellipsoid from points in C, knowing vol $\mathcal E$ is proportional to det A^{-1} .

Minimum Volume Ellipsoid from a Finite Set

If C is a **finite set** where $C = \{x_1, ..., x_m\} \in \mathbb{R}^n$, the problem is formulated as:

min log det
$$A^{-1}$$

s.t. $||Ax_i + b||_2 \le 1$ for $i = 1, ..., m$ (2)

Outline

Minimum Volume Ellipsoid

Dual problem

Outlier identification

Dual problem 5

Dual Problem

The dual is obtained by lifting the primal problem to another dimension (Moshtagh, 06).

$$X_{dual} = X_{primal} \cup H$$

$$H = \{(x, x_{n+1}) \in \mathbb{R}^{n+1} | x_{n+1} = 1\}$$

The dual is

$$\max \quad g(u) = \log \det(XUX^T)$$
s.t. $\mathbf{1}^T u = 1$
 $u \ge 0$ (3)

where
$$X = X_{dual} = [x_1, ..., x_m], U = Diag(u)$$

Mahalanobis Distance

$$M(x) = \sqrt{(\vec{x} - \vec{\mu})^T \, \mathbf{S}^{-1} \, (\vec{x} - \vec{\mu})}$$

- ightharpoonup Generalization to multidimensional space of a point's position \vec{x} in a distribution using covariance matrix ${f S}$
- ▶ Distribution $\vec{\mu}$ has a Mahalanobis distance is 0

$$M(z,\mathcal{E}) = \inf\{ t \ge 0 \mid z \in c + t(\mathcal{E} - c) \}$$

Factor to scale an ellipsoid $\mathcal E$ about its center such that a point z lies on the boundary of the ellipsoid

Dual Intuition

- $lackbox{ } u$ lies on the unit simplex making it a probability distribution over the set X
- ▶ By solving the dual problem, we can find the Mahalanobis distance for each point x_k as $x_k(XUX^T)^{-1}x_k$

Dual problem 8

Outline

Minimum Volume Ellipsoid

Dual problem

Motivation

- Minimum-volume ellipsoid and its dual are convex optimization problems
- Outlier detection techniques presented remove 'most' binding ellipsoid points and drastically reduce ellipsoid volume
- Useful for statistical analysis of outliers
- Operates in multivariate space as a ranking tool

Remove or peel points from set C by solving the minimum ellipsoid problem until h points remain where $h \leq N$ (Ahipaşaoğlu, 2015)

given
$$X = \{x_1, ..., x_N\} \in \mathbb{R}^n$$

repeat

- 1. Solve for minimum volume ellipsoid ${\mathcal E}$
- 2. break if h points remain
- 3. Remove the point with the largest dual variable for the constraint $x_i \in \mathcal{E}$

$$\mathbf{return}\ X = \{x_1, ..., x_h\}\ \mathsf{and}\ \mathcal{E}.$$

Ellipsoid $\in \mathbb{R}^2$	Original Volume	Reduced Volume	% Reduction
1	289.65	32.36	88.8%
2	234.44	29.69	87.3%
3	331.81	99.76	69.9%

- ▶ Remove 8 points $\in \mathbb{R}^2$ from a set of 35
- ▶ Not as effective on uniformly distributed points (ellipsoid 3)
- ➤ Similar performance regardless of outlier position (ellipsoid 1, uniformly placed outside center cloud vs 2, right skew)

Remove points associated with the Mahalanobis distance until h points remain where h \leq N (Ahipaşaoğlu, 2015)

given
$$X = \{x_1, ..., x_N\} \in \mathbb{R}^n$$

- 1. Solve the minimum volume ellipsoid dual problem.
- 2. Evaluate $\xi_k = x_k(XUX^T)x_k$ for all points.
- 3. Remove the points corresponding to the N-h largest values of $\xi_k.$

return $X = \{x_1, ..., x_h\}$ and \mathcal{E} .

Ellipsoid $\in \mathbb{R}^2$	Original Volume	Reduced Volume	% Reduction
1	289.65	12.12	95.8%
2	234.44	9.38	96%
3	331.81	118.34	64.3%

- ▶ Remove 8 points $\in \mathbb{R}^2$ from a set of 35
- ▶ More effective than ellipsoid peeling at reducing volume
- ▶ Removing points based on a distance proportional to ellipsoid volume

Random Ellipsoid Ordering

Add N-h or remove h points starting out with random points (Ahipaşaoğlu, 2015)

given
$$X = \{x_1, ..., x_N\} \in \mathbb{R}^n$$

Select $\mathsf{z} = \mathsf{n} + \mathsf{1}$ points to span \mathbb{R}^n , include these in the minimum volume ellipsoid

- 1. Solve the minimum volume ellipsoid dual problem.
- 2. Evaluate $\xi_k = x_k(XUX^T)x_k$ for all points.
- 3. if z < h Add h z x_k with the smallest Mahalanobis distance if z > h Remove the z h x_k with the largest Mahalanobis distance return $X = \{x_1,...,x_h\}$ and \mathcal{E} .

Random Ellipsoid Ordering

- ▶ Perform 50 trials of random ellipsoid ordering (h = 27) on 35 points in \mathbb{R}^2 , \mathbb{R}^5 , and \mathbb{R}^{10}
- Trade-off between dimensionality of data and range of percent volume reduction
- ► Effectiveness of reducing ellipsoid volume depends on initial basis vectors

Ellipsoid	\mathbb{R}^2	\mathbb{R}^5	\mathbb{R}^{10}
Mean % Reduction	60.81%	86.41%	83.03%

Random Ellipsoid Ordering

Random Ellipsoidal Peeling/Building

Add or remove points beginning with a random basis (Ahipaşaoğlu, 2015)

given
$$X = \{x_1, ..., x_N\} \in \mathbb{R}^n$$

Select $\mathbf{z}=\mathbf{n}+1$ points to span \mathbb{R}^n , include these in the minimum volume ellipsoid \mathbf{repeat}

- 1. Solve the minimum volume ellipsoid dual problem.
- 2. break if z == h

if
$$\mathbf{z} < \mathbf{h}$$
 Add the x_k with the smallest $\xi_k = x_k(XUX^T)x_k$ $\mathbf{z} = \mathbf{z} + 1$

if $\mathbf{z} > \mathbf{h}$ Remove the x_i with the largest dual value $\mathbf{z} = \mathbf{z}$ - 1

$$\mathbf{return}\ X = \{x_1, ..., x_h\}\ \mathsf{and}\ \mathcal{E}.$$

Results

- ▶ Ellipsoid ordering reduces volume more than ellipsoid peeling
- Random ellipsoid ordering does not outperform either ellipsoid peeling or ordering in \mathbb{R}^2 case
- ► Larger volume reduction in non-uniformly distributed sets

Citations

- Moshtagh, Nima. (2006). Minimum volume enclosing ellipsoid. http://www.mathworks.com/matlabcentral/fileexchange/9542
- Ahipaşaoğlu, S.D. Fast algorithms for the minimum volume estimator. J Glob Optim 62, 351–370 (2015). https://doi.org/10.1007/s10898-014-0233-8
- Boyd, S., & Vandenberghe, L. (2022). Additional Exercises for Convex Optimization.
- Boyd, S. P., & Vandenberghe, L. (2011). Convex optimization. Cambridge Univ. Pr.