

elixir for the next 10 years

boyd multerer

the basic exercise

know what problems you are trying to solve

know what trends and disruptions are happening around you

build something relevant when it ships, not when you started

problems to solve

servers

performance per cost
security
data processing
machine learning
communications
robustness

devices (iot)

performance per cost
security
data processing
machine learning
communications
robustness

example: game consoles

perf per cost // this is why you don't just buy a PC

security // cheating & piracy - no physical security

scalability // hard, even though you'd think it would be necessary

robustness // keeping all games & consoles up to date is required

trends and observations

power drives cost

servers // power consumed means heat dissipated power and heat cost real money

devices // power consumed impacts battery life sensors use lots of power radios use lots of power

hw chosen to fit power and problem envelopes

security

servers // assume your servers are hacked assume your databases are hacked

devices // tremendously tempting targets
both devices and data
no physical security

this is an arms race and will not go away it's not paranoia if they are out to get you

FPGAs (you'll be friends soon)

think extremely large instructions
very low power for perf
not in addressable space
physically unclonable functions (PUFs)
not as expensive as you think.

data processing

servers // huge amounts of data to process currently a specialized field

devices // sensors!

local aggregation & processing intermittent / expensive communication

all the world's a GenStage and we are merely players

machine learning

servers // core related to data processing currently a specialized field

devices // local decision making
sensor processing
security detection and action

communication

servers // seems like a solved problem (at first) latency affects datacenter decisions

devices // assume global wireless availability expensive to operate

satellites will make us rethink many things

robustness

servers // skating by on speed and reboots opportunity to reduce cost

devices // coordinate multiple subsystems
deal with hardware failures
hard to physically access devices!

danger of becoming the "Internet of Things that Don't Work"

beam

original problems faced by telephony look familiar

had to be efficient
designed scale to out
robustness - OTP
reduce programmer errors

30 years in production

beam is your os

elixir

all benefits of beam, erlang libraries plus...

modern syntax, matching, macros GenStage, Flow, much more

separation between language and frameworks

phoenix nerves

low level interop

realtime vs. soft-realtime
perf sensitive code
FPGA access
driver interop
important for security
important for power

ui

user input
drawing primitives / overall model
GPU

distribution

nerves boot images
signed/encrypted deployment
server boot images
revocation lists
signing authorities

more...

example: cars

```
robustness // many sensors (drive train, cameras, proximity...)
many sub-systems (drive, ABS, self-drive...)
```

- security // track individual's location, destinations, habits...
 targeted attack opportunities
- communications // already shipping with cell modems and connectivity soon to have full-time satellite communications servers required for mapping, traffic, more

fin

twitter // @BoydMulterer github // /boydm

developer productivity

trends // moore's law enabled higher level languages
multi-core means parallel code
complexity is the enemy

only two kinds of code:

- performance sensitive
- everything else

XNA example

problem

games required low-level skill small shops were locked out of the market cost to build games increasingly prohibitive

XNA example

trends moore's law enabled higher level languages multi-core cpu encouraged parallel code speed forgave many crimes

XNA example

bets market for independent games would be huge only two kinds of code:

- performance sensitive
- everything else

build pipelines key to cutting costs

moore's law

mobile driving chip design

perf per watt many low-powered cores

tremendous implications on HOW we write code

single threaded practices obsolete most of the coding population is out of date