MATH 539 lecture notes: Ultrafilters and Tychonoff 's compactness theorem [1]

Gregoire Fournier

March 3, 2025

1 Filters and ultrafilters

Definition 1 (filter). Suppose I is a non-empty set, $\mathcal{F} \subseteq \mathcal{P}(I)$ is called a filter on I if:

- (i) $I \in \mathcal{F}, \emptyset \notin \mathcal{F}$.
- (ii) If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.
- (iii) If $A \subseteq B$ and $A \in \mathcal{F}$ then $B \in \mathcal{F}$.

Some well known examples are:

- $\{X : \mathbb{R} \setminus X \text{ has Lebesgue measure zero}\}$
- If |I| ≥ κ, {X : |I \ X| < κ}.
 In particular, the set of all cofinite (i.e complement is finite) subsets of I forms a filter called Frechet filter.
- A filter is called principal if it is generated by one element of I, which means of the form $\{A \subseteq I : x \in A\}$ for some $x \in I$.

Note that the sets of filter can be ordered by the inclusion property. Such a poset satisfies the conditions of Zorn's lemma as we can define for each chain a maximal element.

Definition 2 (ultrafilter). An ultrafilter is a maximal filter (through the poset of filters).

An important consequence of maximality is the following:

Lemma 3. \mathcal{U} is an ultrafilter iff $\forall A \subseteq I$, either $A \in \mathcal{U}$ or $I \setminus A \in \mathcal{U}$.

This property is equivalent to: If $\bigcup_{i=1}^n A_i \in \mathcal{U}$, then some $A_i \in \mathcal{U}$.

- Proof. \bullet \Leftarrow : Suppose \mathcal{U} is not a maximal, i.e there exists $\mathcal{F} \supseteq \mathcal{U}$ filter. Take $A \in \mathcal{F} \setminus \mathcal{U}$, by assumption we must have $I \setminus A \in \mathcal{U}$, but since $I \in \mathcal{U}$ and \mathcal{U} is closed under \cap , $A \in \mathcal{U}$, which is a contradiction.
 - \Rightarrow : Given \mathcal{U} an ultrafilter and $A \notin \mathcal{U}$ define $\mathcal{F}_A = \{X \in I : Y \setminus A \subseteq X \text{ for some } Y \in \mathcal{U}\}$. It is not too hard to check that \mathcal{F}_A is a filter on I that contains $I \setminus A$ and \mathcal{U} . Therefore $I \setminus A \in \mathcal{F}_A = \mathcal{U}$.

Compactness and Tychonoff's theorem 2

The compactness of a topological space can be restated in terms of convergence of ultrafilters.

- For (X,τ) a topological space and \mathcal{F} a filter on it, we say that $\lim \mathcal{F} = x$ if every neighbourhood of x has a non-empty intersection with all of the elements of \mathcal{F} .
- Furthermore if \mathcal{F} is an ultrafilter, every set that intersects every element of \mathcal{F} must lie in \mathcal{F} . Then, $\lim \mathcal{F} = x$ iff every open neighbourhood of x is contained in \mathcal{F} .

If every two distinct points in X can be separated by disjoint open neighbourhoods, the space is called Hausdorff, and the limit is unique.

Lemma 4. X is compact if and only if every ultrafilter on X converges to a point in X.

- \Rightarrow : Suppose X is compact, and let \mathcal{U} be an ultrafilter on X. If \mathcal{U} does not Proof. converge to any point in X, then for any point $x \in X$, x contained in $U_x \in \tau$, with $U_x \notin \mathcal{U}$. Thus, $\{U_x\}_{x\in X}$ forms an open cover of X, which must contain a finite subcover, U_1, \ldots, U_n . But $\bigcup_{j=1}^n U_j = X \subset \mathcal{U}$, so one U_i must be in \mathcal{U} by lemma 3, a contradiction.
 - \Leftarrow : Let $\mathcal{C} = \{U_i : i \in I\}$ be an open cover of X. Suppose that it contains no finite subcover, i.e any finite intersection $(X \setminus U_1) \cap \ldots \cap (X \setminus U_n)$ is non-empty. Therefore $\mathcal{F} = \{F \subset X : X \setminus U \subset F, \text{ for some } U \in \mathcal{C}\}$ is a filter. Consider \mathcal{U} an ultrafilter containing \mathcal{F} , by assumption, let $x = \lim \mathcal{U}$. Since \mathcal{C} is a cover, there is $U_i \in \mathcal{C}$ with $x \in U_i$. Finally, $X \setminus U_i \in \mathcal{U}$ and since $x = \lim \mathcal{U}, U_i \in \mathcal{U}$, a contradiction.

Let $\{(X_{\gamma}, \tau_{\gamma})\}_{\gamma \in \Gamma}$ be a collection of topological spaces. The Cartesian product $X = \prod_{\gamma \in \Gamma} X_{\gamma}$ is the set of functions $x:\Gamma\to\bigcup_{\gamma\in\Gamma}X_{\gamma}$ st. $x(\gamma)\in X_{\gamma}$. We write $x(\gamma)=x_{\gamma}$ and $x=\{x_{\gamma}\}_{\gamma\in\Gamma}$. Let $\pi_{\gamma}: X \to X_{\gamma}$ be the usual projection map.

We define the product topology on the Cartesian product X to be the topology generated by the sets $\pi_{\gamma}^{-1}(U_{\gamma})$, where $U_{\gamma} \in \tau_{\gamma}$. It is interesting to note that:

$$\{\bigcap_{i\in F} \pi_{\gamma_i}^{-1}(U_i): \text{ where } F \text{ is finite and the } U_i \text{ are open in } X_{\gamma_i}\}$$

is a base for the product topology.

The product topology is the minimal topology on X in which all the projection maps are continuous.

In the same way, the weak* topology is the minimal topology on X^* in which the $J(x)(x^*)$ $x^*(x)$ are continuous and the weak topology is the minimal topology on X in which sets of finitely many elements of X^* are uniformly continuous.

Theorem 5 (Tychonoff's compactness theorem). If all $X_{\gamma}, \gamma \in \Gamma$, are compact, then the Cartesian product $X = \prod_{\gamma \in \Gamma} X_{\gamma}$ is compact in the product topology.

Proof. Let \mathcal{U} be an ultrafilter on X. For any $\gamma \in \Gamma$, consider $\mathcal{U}_{\gamma} = \pi_{\gamma}(\mathcal{U})$. It is easy to check that \mathcal{U}_{γ} is an ultrafilter on X_{γ} . Since X_{γ} is compact, there exists a limit $x_{\gamma} = \lim \mathcal{U}_{\gamma}$. Let us show that $x = \{x_{\gamma}\}_{{\gamma} \in \Gamma} = \lim \mathcal{U}$.

Take U an open neighbourhood of x in the product topology. Then along with x, U contains a finite intersection of basis sets $\bigcap_{i=1}^n \pi_{\gamma_i}^{-1}(U_i)$. We have $x_{\gamma_i} \in U_i$, and hence $U_i \in \mathcal{U}_{\gamma_i}$, which means there exist $A_i \in \mathcal{U}$ such that $\pi_{\gamma_i}(A_i) = U_i$. Then $A_i \subset \pi^{-1}\gamma_i(U_i)$, which implies that $\pi_{\gamma_i}^{-1}(U_i) \in \mathcal{U}$, for each i, and finally $\bigcap_{i=1}^n \pi_{\gamma_i}^{-1}(U_i) \in \mathcal{U}$.

Since U contains that intersection, U must be in the ultrafilter \mathcal{U} .

3 Application to Banach Alaoglu's theorem

Recall we defined the weak*-open neighbourhood of $f \in X^*$ to be:

$$U_{\varepsilon_1,...,\varepsilon_n}^{x_1,...,x_n}(x) = \{g \in X^* : |g(x_i) - f(x_i)| < \varepsilon_i, \forall i = [|n|]\}$$

The collection of all weakly*-open sets forms a topology, and the weak*-topology is the minimal topology on X^* in which the $J(x)(x^*) = x^*(x)$ are continuous.

Theorem 6 (Banach-Alaoglu). The closed unit ball of a dual space is compact in the weak*-topology.

Proof. Notice that for any $f \in \overline{B(X^*)}$, and $x \in X$, $f(x) \in [-||x||, ||x||]$. Therefore consider $\overline{B(X^*)}$ as a subset of the product space $T = \prod_{x \in X} [-||x||, ||x||]$. By Tychonoff's theorem, this product space is compact in the product topology.

It suffices to show that $B(X^*)$ is closed in T, because convergence of <u>nets in</u> the product topology is equivalent to point-wise convergence, which for elements of $\overline{B(X^*)}$ amounts to weak*-convergence.

To this end, let $\{f_{\alpha}\}_{{\alpha}\in A}$ be a net in $\overline{B(X^*)}$ with $\lim f_{\alpha}=f\in T$. By linearity of f_{α} 's and the 'point-wise' sense of the limit above, we conclude that:

$$f(\lambda x + \mu y) \leftarrow f_{\alpha}(\lambda x + \mu y) = \lambda f_{\alpha}(x) + \mu f_{\alpha}(y) \rightarrow \lambda f(x) + \mu f(y)$$

Thus, f is linear, and since $|f_{\alpha}(x)| \leq ||x||$, we also have $|f(x)| \leq ||x||$ for all $x \in X$, so $f \in \overline{B(X^*)}$.

4 Ultraproducts and Los's theorem [2],[3]

4.1 Some basics of logic

Definition 7 (Language). A language \mathcal{L} is given by specifying:

- 1. a set of function symbols \mathcal{F} and positive integers n_f for each $f \in \mathcal{F}$;
- 2. a set of relation symbols \mathcal{R} and positive integers n_R for each $R \in \mathcal{R}$;
- 3. a set of constant symbols \mathcal{C} .

Definition 8 (\mathcal{L} -structure). An \mathcal{L} -structure \mathcal{M} is given by:

1. a nonempty set M called the universe, domain, or underlying set of M;

Definition 9 (Terms). The set of \mathcal{L} -terms is the smallest set \mathcal{T} such that:

Definition 10 (Formulas).

Definition 11 (Assignment).

Definition 12 (Satisfaction).

Definition 13 (Ultraproduct). Let \mathcal{L} be a first-order language. Suppose that \mathcal{M}_i is an \mathcal{L} -structure for all $i \in I$ with universe M_i . Let $\mathcal{U} \in \mathcal{P}(I)$ be an ultrafilter. We define E on $\prod_{i \in I} M_i$ as follows:

$$\forall f, g \in \prod_{i \in I} M_i, \ fEg \ \text{iff} \ \{i \in I : f(i) = g(i)\} \in \mathcal{U}$$

It is pretty straightforward to check that E defines an equivalence relation on $\prod_{i \in I} M_i$. We will interpret the symbols of \mathcal{L} in M to construct an \mathcal{L} -structure \mathcal{M} as follows:

- The universe of \mathcal{M} is $M = (\prod_{i \in I} M_i)_{/E}$.
- $\forall c \in L^{con}$, $c^{\mathcal{M}}$ is the equivalence class of the sequence given by $f(i) = c^{\mathcal{M}_i}$ for each $i \in I$.
- $\forall F \in L^{fun}, g_1, \dots g_{n_F} \in M, F^{\mathcal{M}}(g_{1/E}, \dots, g_{n_F/E}) = g_{/E}$, where $g: I \to \bigcup_{i \in I} M_i$ defined as $g(i) = F^{\mathcal{M}_i}(g_1(i), \dots, g_{n_f}(i))$.
- $\forall R \in L^{rel}$, define $R^{\mathcal{M}} \subseteq M^{n_R}$ for any $g_1, \dots g_{n_R} \in M$, $(g_{1/E}, \dots, g_{n_R/E}) \in R^{\mathcal{M}}$ iff $\{i \in I : (g_1(i), \dots, g_{n_R}(i)) \in R^{\mathcal{M}_i}\} \in \mathcal{U}$.

We write $\mathcal{M} = \prod_{\mathcal{U}} \mathcal{M}_i$

Theorem 14 (Los theorem). Let $\phi(x_1,...,x_n)$ be any \mathcal{L} -formula, then:

$$\mathcal{M} \Vdash \phi(g_{1/E}, \dots, g_{n/E}) \text{ iff } \{ i \in I : \mathcal{M}_i \Vdash \phi(g_{1/E}(i), \dots, g_{n/E}(i)) \} \in \mathcal{U}$$

Proof. We prove this by induction on complexity of formulas.

References

- $[1]\,$ R. Shvydkoy. Math 539 functional analysis lecture notes, 2022.
- [2] J. Nagloo. Math 506 model theory lecture notes, 2022.
- [3] D. Marker. Math 502 model theory lecture notes, 2015.