

Andrzej M. Borzyszkowsł

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski PJATK/ Gdańsk

materiały dostępne elektronicznie http://szuflandia.pjwstk.edu.pl/~amb

Relacyjna baza danych = relacje + operacje na relacjach

- Operacje działające na relacjach
 - operacje moga być ze soba składane tworząc dowolnie skomplikowane wyrażenia relacyjne tj. wyrażenia, których wartością jest relacja
 - czyli jest to algebra relacji
- Podstawowe operacje relacyjne:
 - obcięcie/wybór: wybiera pewne wiersze
 - rzut/projekcja: wybiera pewne atrybuty
 - zmiany nazwy atrybutów
 - złączenie: produkuje relację o atrybutach z dwu relacji, w tym wspólne atrybuty
- Operacje teoriomnogościowe: suma, przecięcie, różnica, iloczyn kartezjański

Algebra relacji

Operacja obcięcia

- Obcięcie tylko wiersze spełniające warunek (predicate)
 - σ[miasto='Gdańsk'](Klient) (sigma)
 - w notacji bardziej przyjaznej Klient WHERE miasto='Gdańsk'
- σ[warunek](relacja)
 - relacja jest dowolnym wyrażeniem algebry relacji
 - warunek jest wyrażeniem logicznym

nr	tytul	nazwisko	imie	kod_po	miasto	ulica_dom	telefon	5
5	Pan	Soroczyński	Jan	80-230	Gdańsk	Al. Hallera	58 309078	anvch
6	Pani	Niezabitowska-	Marzena	80-619	Gdańsk	Focha 39-41 m.66	58 309910	<u> </u>
7	Pani	Kołak	Agnieszka	80-832	Gdańsk	Wąwóz 4	NULL	Baz
9	NULL	Hałasa	Ewa	80-511	Gdańsk	Dywizjonu 303/303	58 348324	vine
10	Pan	Sosnowy	Andrzej	80-266	Gdańsk	Leśna Góra 41h/088	58 346718	ac
11	Pani	Songin	Barbara	80-376	Gdańsk	Grunwaldzka 1024/128	58 552874	Be

© Andrzej M. Borzyszkowski

Predykaty w operacji obcięcia

- Przykładowe postacie warunku obcięcia:
 - równość (i jej zaprzeczenie) X1=X2, X1≠C
 - porządek (dla dziedzin uporządkowanych) X1<X2, X1≤X2
 - należenie X1 in X2
 - warunki złożone
 - A WHERE c1 AND c2 koniunkcja
 - A WHERE c1 OR c2 alternatywa
 - A WHERE NOT c1 negacja
- Predykat stosowany jest do każdej krotki z osobna
 - nie można więc wyrażać go w zależności od wielu krotek
- σ[warunek-2](σ[warunek-1](relacja)) jest możliwym zastosowaniem obciecia
 - wynik będzie ten samo co σ[warunek-2 and warunek-1](relacja)

Operacja rzutu

- Rzut tylko wybrane atrybuty
 - π[nr,nazwisko,imie](Klient)
 - w notacji asciiKlient(nr,nazwisko,imie)
- Rzutem relacji A: π[X₁,...,X_m](A) jest relacja z nagłówkiem
 {X₁:D_{X1},...,X_m:D_{Xm}} i z treścią składającą się z tych krotek, dla których w relacji A występuje krotka, której fragmentem jest krotka z rzutu
- uwaga: relacja nie ma powtórzeń, fragmenty wszystkich krotek mogłyby wprowadzić powtórzenie

nr	nazwisko	imie
1	Kuśmierek	Małgorzata
2	Chodkiewicz	Jan
3	Szczęsna	Jadwiga
4	Łukowski	Bernard
5	Soroczyński	Jan
6	Niezabitowska-N	Marzena
7	Kołak	Agnieszka
8	Kołak	Agnieszka
9	Hałasa	Ewa
10	Sosnowy	Andrzej
11	Songin	Barbara
12	Wróblewicz-Terle	Urszula
13	Soroczyński	Bogdan
14	Miszke	Wojciech
15	Zaorski	Marcin
16	Wiśniewska	Grażyna
17	Wierciński	Henryk
18	Bazior	Gerard

6

Uogólniony rzut (i zmiana nazwy)

- Zmiana nazwy
 - całej relacji: ρ[S](R) (rho)
 - poszczególnych atrybutów w relacji: ρ[S(B1,..,Bn)](R)
 - tutaj zakładamy, że nowy schemat S ma tyle samo atrybutów i o tych samych dziedzinach
 - w praktyce będzie notacja wymieniająca tylko nowe nazwy
- Rzut w sensie ogólniejszym
 - nagłówek: może zawierać również wyrażenia dla atrybutów relacji (i nazwy dla nich)
 - treść: krotki, do których zastosowano to wyrażenie
 - np. jeśli w nagłówku są atrybuty cena i koszt, to w rzucie może się pojawić nowy atrybut zysk zdefiniowany jako różnica cena-koszt

Iloczyn kartezjański

- Iloczyn kartezjański (produkt kartezjański, złączenie krzyżowe)
 - nagłówek: suma nagłówków { X:DX,Y:DY }, które muszą mieć różne atrybuty
 - treść: wszystkie możliwe pary krotek { X:x,Y:y }

Andrzej M. Borzyszkowski

Relacyjne Bazy

Operacja złączenia

- Złączenie zapewnia integrację danych
 - dane z kilku tabel są zbierane w jednej tabeli wynikowej
- Łączy ze sobą krotki z różnych relacji
 - krotki dobierane są na podstawie pasujących wartości odpowiednich atrybutów
 - najczęściej klucz obcy jednej relacji i klucz kandydujący drugiej relacji
- Operacja daje się wyrazić za pomocą kolejno
 - iloczynu kartezjańskiego (wszystkie pary krotek)
 - obcięcia (wybór par pasujących do siebie)
 - rzutu (wyrugowanie powtarzających się atrybutów)
- Oznaczenia matematyczne: *R* ⊳⊲[warunek złączenia] *S*

9

Dodatkowe operacje relacyjne – złączenie zewnętrzne

- Złączenie naturalne "gubi" te krotki z jednej relacji, które nie pasują do drugiej z relacji
 - może to być pożądanych rezultatem, np. szukamy tylko klientów, którzy coś zakupili
 - ale może prowadzić do utraty informacji, np. o klientach, którzy nie dokonali zakupów
- Złączenie zewnętrzne
 - krotki z jednej z relacji nie pasujące do żadnej krotki z drugiej uzupełniane są wartością NULL
 - można "chronić" tylko jedną z relacji przed utratą informacji: złączenie lewe i prawe

Złączenie, przykład

nr	nazwisko	imie
3	Szczęsna	Jadwiga
4	Łukowski	Bernard
5	Soroczyński	Jan
6	Niezabitowska-Nasiadko	Marzena
7	Kołak	Agnieszka
8	Kołak	Agnieszka

klient_nr	data_zlozenia	
3	21.02.2020	
3	23.03.2020	-
3	13.03.2020	•
5	4.05.2020	•
6	1.02.2020	
6	22.03.2020	
8	7.04.2020	•
8	12.01.2020	•
		-

nr	nazwisko	imie	data_zlozenia
3	Szczęsna	Jadwiga	21.02.2020
3	Szczęsna	Jadwiga	23.03.2020
3	Szczęsna	Jadwiga	13.03.2020
5	Soroczyński	Jan	4.05.2020
6	Niezabitowska-Nasiadko	Marzena	1.02.2020
6	Niezabitowska-Nasiadko	Marzena	22.03.2020
8	Kołak	Agnieszka	7.04.2020
8	Kołak	Agnieszka	12.01.2020

. 1

Złączenie zewnętrzne, przykład

nr	nazwisko	imie	data_zlozenia
1	Kuśmierek	Małgorzata	
2	Chodkiewicz	Jan	
3	Szczęsna	Jadwiga	21.02.2020
3	Szczęsna	Jadwiga	23.03.2020
3	Szczęsna	Jadwiga	13.03.2020
4	Łukowski	Bernard	
5	Soroczyński	Jan	4.05.2020
6	Niezabitowska-Nasiadko	Marzena	1.02.2020
6	Niezabitowska-Nasiadko	Marzena	22.03.2020
7	Kołak	Agnieszka	
8	Kołak	Agnieszka	7.04.2020

drzej M. Borzyszkows

lelacyjne Bazy Danych

11

12

Złączenie naturalne, definicja

- Niech A i B będą relacjami o nagłówkach { X:DX,Y:DY } oraz { Y:DY,Z:DZ },
 - złączeniem naturalnym relacji A i B, A ⋈ B, jest relacja
 z nagłówkiem { X:DX,Y:DY,Z:DZ } i z treścią składającą się z takich krotek { X:x,Y:y,Z:z }, że krotka { X:x,Y:y } należy do relacji A, a krotka { Y:y,Z:z } należy do relacji B
- Najczęstszy przypadek: wspólne atrybuty Y stanowią klucz kandydujący w jednej relacji i klucz obcy w drugiej
 - w istniejących językach NIE zakłada się, że atrybuty o tej samej nazwie oznaczają to samo
 - złączenie wymaga jawnego podania nazw atrybutów, które chcemy utożsamić (t.j. warunku łączącego)

Złączenie, własności

- łączność: $(A \bowtie B) \bowtie C = A \bowtie (B \bowtie C)$
 - można opuszczać nawiasy
- przemienność: $A \bowtie B = B \bowtie A$
- jeśli relacje A i B nie mają wspólnych atrybutów, wówczas jest to iloczyn kartezjański relacji: każda krotka A jest skombinowana z każdą krotką B
- jeśli relacje A i B mają identyczne wszystkie atrybuty, wówczas jest to przecięcie relacji: tylko wspólne krotki

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski

14

Operacje teoriomnogościowe

- Przekrój (iloczyn, część wspólna)
 - nagłówek: równy wspólnemu nagłówkowi obu relacji (dopuszczalne są lekkie odchylenia, dziedziny atrybutów nie muszą być identyczne, ale zgodne, np. liczbowe)
 - treść: wszystkie krotki należące do obu relacji
- Suma (unia)
 - nagłówek: równy wspólnemu nagłówkowi obu relacji
 - treść: wszystkie krotki należące do co najmniej jednej z relacji
- Różnica
 - nagłówek: równy wspólnemu nagłówkowi obu relacji
 - treść: krotki z jednej relacji nie należące do drugiej
 - np. studenci, którzy nie zaliczyli egzaminu

Dodatkowe operacje relacyjne – funkcje agregujące (grupowanie)

- Funkcja agregująca przekształca zbiór wartości w pojedynczą wartość
 - avg: średnia
 - min, max, sum
 - count: liczba elementów
- Relacja jest grupowana w/g równych wartości niektórych atrybutów
 - do każdej grupy stosowana jest funkcja agregująca
 - szczególny przypadek: cała relacja jest jedną grupą

ilu	miasto
3	Sopot
1	Gardeja Pierwsza
6	Gdańsk
1	Kwidzyn
1	Gdakowo
4	Gdynia
1	Dziewięć Włók
1	Prabuty

acvine Bazy Danyo

© Andrzej M. Borzyszkowski

Andrzej M. Borzyszkowski

Andrzej M. Borzyszkowski

Rachunek krotek

Andrzej M.

Bazy Danych

Rachunek krotek, c.d.

- Kwantyfikatory:
 - nazwiska klientów, którzy złożyli zamówienie:
 - { t.nazwisko | Klient(t) AND $\exists u (Zamówienie(u) AND u.klient nr=t.nr) \}$
 - jest to de facto złączenie (a właściwie jego rzut)
- Nazwiska klientów, którzy zamówili każdy towar dostępny w ofercie
 - { t.nazwisko | Klient(t) AND \forall u (Towar(u) ⇒ ∃ v (Zamówienie(v) AND v.klient_nr=t.nr AND $\exists w \ (Pozycia(w) \ AND \ w.zamowienie \ nr=v.nr \ AND$ w.towar_nr=u.nr))) }

Rachunek krotek

- Zmienne krotkowe t
 - $\{ \langle t.A1,...,t.An \rangle \mid \Phi(t) \}$ lub $\{ t \mid \Phi(t) \}$
 - <t.A1,..,t.An> jest złożeniem kilku atrybutów w krotkę
 - predykat Φ jest zbudowany z następujących elementów
 - należenie do relacji $t \in r$, zapisywane również r(t)
 - warunki na wartości atrybutów (podobnie jak w obcięciu)
 - kwantyfikatory "dla każdego" ∀ t oraz "istnieje" ∃ t
 - elementy połaczone sa spójnikami koniunkcji, alternatywy oraz negacji
- Przykład,
 - relacja σ[miasto='Gdańsk'](Klient) jest równa { t | Klient(t) AND t.miasto='Gdańsk' }
 - relacja π[nr,nazwisko,imie](Klient) jest równa {<t.nr, t.nazwisko, t.imie> | Klient(t) }

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Logika kwantyfikatorów

- NOT $(\exists u) \Phi(u) \Leftrightarrow (\forall u) \text{ NOT } \Phi(u)$
- NOT $(\nabla u) \Phi(u) \Leftrightarrow (\exists u) \text{ NOT } \Phi(u)$
- W szczególności kwantyfikator uniwersalny ▼ może zostać zastąpiony przez bardziej skomplikowane wyrażenie bez niego
 - $(\forall u) \Phi(u) \Leftrightarrow NOT (\exists u) NOT \Phi(u)$
 - "nieprawda, że istnieje kontrprzykład"
- Przydatne mogą też być prawa de Morgana
 - NOT $(\Phi(t) \text{ AND } \Psi(t)) \Leftrightarrow (\text{NOT } \Phi(t) \text{ OR NOT } \Psi(t))$
 - NOT $(\Phi(t) \text{ OR } \Psi(t)) \Leftrightarrow (\text{NOT } \Phi(t) \text{ AND NOT } \Psi(t))$
- Konstrukcje z kwantyfikatorem ogólnym powinny ograniczać zbiór potencjalnych wartości
 - tzn. dopuszczalne są jedynie konstrukcje $(\forall t) t \in r \Rightarrow$

© Andrzej M. Borzyszkowski

Andrzej M.

Relacyjne Bazy Danych

Rachunek dziedzin

21

Andrzej M. Borzyszkowski

Rachunek dziedzin, QBE

- Język QBE (query by example) opracowany w IBM
 - nie ma potrzeby nazywać zmiennych, których nie potrzebujemy w wyniku
 - nazwy zmiennych często są przykładowymi wynikami (i są syntaktycznie wyróżnione)
 - wyświetl imiona i nazwiska klientów z Gdańska:
 {<_Jan, _Kowalski> |Klient(_, _, _Kowalski, _Jan,'Gdańsk', _, _) }
 - wyświetl nazwy towarów zamawiane z Gdańska { _donica |
 Klient(_17, _, _, _,'Gdańsk',_, _) AND Zamówienie(_44, _17,..._)
 AND Pozycja (_44, _32, _) AND Towar(_32, _donica, ..._) }
- · Język używany jest często w środowisku graficznym
 - nazwy potrzebnych zmiennych lub stałych wprowadzane są bezpośrednio do nagłówków tabeli

Rachunek dziedzin

- Zmienne dziedzinowe xi, dla każdej dziedziny atrybutu
 - {<x1,..,xn> | Φ(x1,..,xm) } gdzie w formule może wystąpić więcej zmiennych niż chcemy mieć w wyniku
 - predykat Φ jest zbudowany analogicznie jak w rachunku krotek
- Przykład,
 - relacja σ[miasto='Gdańsk'](Klient) jest równa {<nr,tytul,nazwisko,...,miasto,kod_p,tel> | Klient(nr,tytul,nazwisko,...,miasto,kod_p,tel) AND miasto='Gdańsk'}
 - relacja π[nr,nazwisko,imie](Klient) jest równa {<nr,nazwisko,imie> | ∃ tytul,miasto,kod_p,tel,... Klient(nr,tytul,nazwisko,..,miasto,kod_p,tel) }

© Andrzej M. Borzyszkowski

lacyjne Bazy Danyc

_ 2

Relacyjne