

Threshold Concentration of Easily Assimilable Organic Carbon in Feedwater for Biofouling of Spiral-Wound Membranes [Environmental Science & Technology 2009, 43, 4890]. Wim A.M. Hijnen,* David. Biraud, Emile R. Cornelissen, and Dick van der Kooij

The values calculated for first-order fouling rate constant, $R_{\rm f}$, published in Hijnen et al. *Environ. Sci. Technol.* **2009**, 43, 4890—4895 are incorrect because of the use of an incorrect formula. The following formula was used:

$$NPD_i = NPD_t - NPD_o = e^{R_f t}$$
 and $\ln \frac{NPD_t}{NPD_o} = R_f t$

The values for $R_{\rm f}$ were calculated with linear regression analysis of the increase of NPD $_i$ in time, and ln NDP $_i$ was derived from $\ln({\rm NPD}_t) - \ln({\rm NPD}_o)$, which is not correct. The correct formula for the calculation of ln NDP $_i$ should use $\ln({\rm NPD}_t - {\rm NPD}_o)$ because

$$NPD_i = (NPD_t - NPD_o) = e^{R_f t}$$
 and $ln(NPD_t - NPD_o)$
= $R_f t$

The corrected R_f values are presented in Table 1. The relationship between the acetate concentration and the corrected R_f is

Table 1. Recalculated Exponential Fouling Rate Constant Rf Values

$S_{\rm ac} (\mu g \ C \cdot L^{-1}) \ (\text{temp } {}^{\circ}C)$	MFS I; $R_{\rm f}$ (ln NPD _i ,d ⁻¹ ; 95% CI; r^2)	MFS II; $R_{\rm f}$ (ln NPD _i .d ⁻¹ ; 95% CI; r^2)
$1000 (13.5 \pm 0.3)$	1.475 (1.421-1.528; 0.99)	1.126 (1.057-1/194; 0.99)
$500 (13.5 \pm 0.3)$	0.859 (0.756-0.962; 0.99)	1.144 (1.041-1.247; 0.99)
$1000 (14.3 \pm 0.4)$	1.097 (0.954-1.240; 0.99)	1.116 (1.007-1.312; 0.99)
$100 (15.2 \pm 0.5)$	1.123 (0.917-1.330; 0.96)	
$10 (16.0 \pm 0.9)$	0.205 (0.197-0.214; 0.99)	0.224 (0.206-0.242; 0.96)
$5(16.1 \pm 0.9 - 19.4 \pm 2.0)^a$	0.128 (0.116-0.140; 0.95)	0.245 (0.221-0.269; 0.93)
$25 (16.8 \pm 0.5)$	0.696 (0.597-0.795; 0.96)	0.766 (0.697-0.835; 0.98)
$3(14.9 \pm 0.6)$	0.102 (0.094 - 0.110; 0.94)	0.109 (0.099-0.119; 0.93)
$1(15.5 \pm 0.8)$	$0.063 \ (0.055 - 0.071; \ 0.82)$	0.027 (0.024-0.031; 0.89)
^a Temperature during test MFS I and II, respectively.		

Figure 1. Relationship between the concentration of acetate in the feedwater and the fouling rate constant R_f (error bar = SD).

recalculated (Figure 1). This calculation gives a higher maximum $R_{\rm f}$ value of 1.14 d⁻¹, and the half saturation constant $k_{\rm f}$ calculated from the new data is 20.3 $\mu{\rm g}$ C·L⁻¹, which is also higher than the value of 15 $\mu{\rm g}$ C·L⁻¹ presented in the original publication. The major conclusion of the study that the threshold concentration for biofouling of the feed channel is about 1 $\mu{\rm g}$ acetate C·L⁻¹ remains unaffected by these corrections.

DOI: 10.1021/es104170p Published on Web 01/06/2011