Vektorska analiza

 $(\vec{a} \times \vec{b})_i = \varepsilon_{ijk} a_j b_k$, kjer $\varepsilon_{ijk} = 1$, če je permutacija indeksov soda, -1, če je liha in 0 če sta vsaj dva indeksa

enaka
$$\varepsilon_{ijk}\varepsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl} \qquad (\vec{a}\times\vec{b})\times(\vec{c}\times\vec{d}) = ((\vec{a}\times\vec{b})\vec{d})\vec{c} - ((\vec{a}\times\vec{b})\vec{c})\vec{d}$$

$$\vec{a}\times(\vec{b}\times\vec{c}) = (\vec{a}\vec{c})\vec{b} - (\vec{a}\vec{b})\vec{c} \qquad \vec{\nabla}f = \text{grad } f, \vec{\nabla}\cdot\vec{f} = \text{div } \vec{f}, \vec{\nabla}\times\vec{f} = \text{rot } \vec{f}$$

$$\vec{\nabla}(fg) = g\vec{\nabla}f + f\vec{\nabla}g$$

 $\vec{\nabla}(f\vec{g}) = f(\vec{\nabla}\vec{g}) + (\vec{\nabla}f)\vec{g}$ (uporabno za $\vec{\nabla}\vec{E}$, določanje porazdelitve naboja ρ)

Pomembno: $\vec{\nabla}(\frac{\vec{r}}{r^3}) = 4\pi\delta(r)$ in $\vec{\nabla}(r^n) = nr^{n-2}\vec{r}$

Pozor: $\vec{\nabla}(\frac{\vec{r}}{r^3}) = 4\pi\delta(r)$

$$\vec{\nabla} \times (f\vec{g}) = \vec{\nabla}f \times \vec{g} + f(\vec{\nabla} \times \vec{g})$$
$$\vec{\nabla} \cdot (\vec{f} \times \vec{g}) = \vec{g} \cdot (\vec{\nabla} \times \vec{f}) - \vec{f} \cdot (\vec{\nabla} \times \vec{g})$$

Stokes: $\oint_{\partial S} \vec{f} d\vec{l} = \int_{S} (\vec{\nabla} \times \vec{f}) d\vec{S}$ Gauss: $\oint_{\partial V} \vec{f} \cdot d\vec{S} = \int_{V} \vec{\nabla} \cdot \vec{f} \, dV$

Green: $\oint_{\partial V} (f \vec{\nabla} g - g \vec{\nabla} f) d\vec{S} = \int_{V} (f \Delta g - g \Delta f) dV$

2 Elektromagnetizem

Sila med dvema nabojema: $\vec{F} = \frac{e_1 e_2}{4\pi\varepsilon_0 r^2} \frac{\vec{r}}{r}$

Maxwellove enačbe:

$$\oint_{\partial V} \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \int \rho_e \, dV = \frac{e}{\varepsilon_0} \quad \text{oz.} \quad \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}, \quad \text{kjer je } e \text{ celotni zaobjeti naboj in } \rho_e \text{ gostota naboja v volumnu. Električni pretok: } \Phi_e = \int \vec{E} \cdot d\vec{S}$$

$$\oint \vec{B} \cdot d\vec{S} = 0$$
 oz. $\vec{\nabla} \cdot \vec{B} = 0$

$$\oint_{\partial S} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \, d\vec{S} = -\frac{\partial}{\partial t} \Phi_{m} \quad \text{oz.} \quad \vec{\nabla} \times \vec{E} = -\frac{d\vec{B}}{dt}, \text{ kjer je } \Phi_{m} \text{ magnetni pretok}$$

$$\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_{0} \int_{S} (\vec{J} + \varepsilon_{0} \frac{d\vec{E}}{dt}) \, d\vec{S} \quad \text{oz.} \quad \vec{\nabla} \times \vec{B} = \mu_{0} (J + \varepsilon_{0} \frac{d\vec{E}}{dt}), \text{ kjer je } \vec{J} = \frac{d\vec{I}}{dS} \text{ gostota električnega toka}$$

Maxwellove enačbe v snovi: \vec{E} je el. poljska jakost, \vec{D} el. poljaka gostota, \vec{H} je mag. poljska jakost, \vec{B} mag. poljska gostota.

V snovi velja $\vec{D} = \varepsilon \vec{E}, \vec{B} = \mu \vec{H}$ $\oint_{\partial V} \vec{D} \cdot d\vec{S} = \int_{V} \rho \, dV \text{ oz. } \vec{\nabla} \cdot \vec{D} = \rho$ $\oint \vec{B} \cdot d\vec{S} = 0 \text{ oz. } \vec{\nabla} \cdot \vec{B} = 0$

 $\oint_{\partial S} \vec{E} \cdot d\vec{l} = - \int_{S} \frac{d\vec{B}}{dt} d\vec{S}$ oz. $\vec{\nabla} \times \vec{E} = - \frac{d\vec{B}}{dt}$ $\oint_{\partial S} \vec{H} \cdot d\vec{l} = \int_{S} (\vec{J} + \frac{d\vec{D}}{dt}) \, d\vec{S} \text{ oz. } \vec{\nabla} \times \vec{H} = (\vec{J} + \frac{d\vec{D}}{dt})$

Kontinuitetna enačba: $\frac{\partial \rho}{\partial t} + \vec{\nabla} \vec{J} = 0$

Vektorski potencial: $(\varphi, \vec{A}), \vec{B} = \vec{\nabla} \times \vec{A}, \vec{E} = -\vec{\nabla}\varphi - \frac{\partial}{\partial t}\vec{A}$

Umeritvena invarianca: skalarno polje ψ , $\vec{A} \to \vec{A} + \vec{\nabla} \psi$, $\varphi \to \varphi - \frac{\partial}{\partial t} \psi$ (\vec{E} in \vec{B} se pri tem ne spremenita) Maxwellovi enačbi (samo 2):

 $\Delta \varphi + \frac{\partial}{\partial t} \vec{\nabla} \vec{A} = -\frac{\rho}{\varepsilon_0}$ $\Box \vec{A} + \vec{\nabla} (\vec{\nabla} \vec{A} + \frac{1}{c^2} \frac{\partial}{\partial t} \varphi) = \mu_0 \vec{j}, \text{ kjer } \Box = \frac{1}{c^2} \frac{d^2}{dt^2} - \nabla^2 \text{ in } \mu_0 \varepsilon_0 = \frac{1}{c^2}$ Pogoste umeritve: Weyl: $\varphi = 0$; Coulomb: $\vec{\nabla} \vec{A} = 0$; Lorenz: $\vec{\nabla} \vec{A} + \frac{1}{c^2} \frac{\partial}{\partial t} \varphi = 0$ (v tem primeru sta Max. enačbi $\Box \vec{A} = \mu_0 \vec{j}$ in $\Box \varphi = \frac{\rho}{\varepsilon_0}$

EMV v vakuumu: $\vec{\nabla}^2 \vec{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}, \vec{\nabla}^2 \vec{B} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2}, c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = \nu \lambda = \frac{\omega}{k}$ je hitrost valovanja.

Ravni val: $\vec{E}(t) = \vec{E_0}e^{i(\vec{k}\vec{x}-\omega t)}$, kjer je \vec{k} smer širjenja valovanja.

Velja: $\vec{B}, \vec{E}, \vec{k}$ so paroma pravokotni!

EMV v snovi: Dobimo robne pogoje pri prehodu med snovjo 1 in 2. Normalno oz. tangentno smer

gledamo glede na prehod med snovema. Velja $D_i = \varepsilon_i E_i$, $B_i = \mu_i H_i$, σ in j sta del meritve – izmerimo ju na meji med snovema.

V normalni smeri:
$$D_{1n} - D_{2n} = (\varepsilon_1 E_1)_n - (\varepsilon_2 E_2)_n = (\vec{D}_1 - \vec{D}_2)_n = \sigma$$
 in $B_{1n} - B_{2n} = 0$

V tangentni smeri: $E_{1t} - E_{2t} = 0$ in $H_{1t} - H_{2t} = j$

Uporabno: če se valovanje širi le v z smeri (torej v eksponentu le z namesto vektorja \vec{x}), lahko $\vec{\nabla} = \vec{\nabla}_T + \vec{\nabla}_z$. Za vodnik (plašč 4-kotnega valja) dobimo (tu \vec{z} enotski):

$$\vec{\nabla}_T E_z \times \vec{z} + ik\vec{z} \times \vec{E}_T = i\omega\mu\vec{H}_T$$

$$\vec{\nabla}_T \times \vec{E}_T = i\omega\mu\vec{H}_z$$

$$\vec{\nabla}_T \times \vec{E}_T = i\omega\mu\vec{H}_z$$

$$\vec{\nabla}_T \cdot \vec{E}_T + ikE_z = 0$$

$$\vec{\nabla}_T H_z \times \vec{z} + ik\vec{z} \times \vec{H}_T = -i\omega\varepsilon\vec{E}_T$$

$$\vec{\nabla}_T \cdot \vec{H}_T + ikH_z = 0$$

telo	električno polje
točkasti naboj e	$E(r) = \frac{e}{4\pi\varepsilon_0 r^2} \frac{\vec{r}}{r}$
enakomerno nabita sfera polmera $R,\sigma=e/S$	$E(r) = \begin{cases} 0 & \text{\'e } r \le R \\ \frac{e}{4\pi\varepsilon_0 r^2} \frac{\vec{r}}{r} & \text{\'e } r \ge R \end{cases}$
enakomerno nabita krogla, e	$E(r) = \begin{cases} 0 & \text{\'e } r \le R \\ \frac{e}{4\pi\varepsilon_0 r^2} \frac{\vec{r}}{r} & \text{\'e } r \ge R \end{cases}$ $E(r) = \begin{cases} \frac{re}{4\pi\varepsilon_0 R^3} \frac{\vec{r}}{r} & \text{\'e } r \le R \\ \frac{e}{4\pi\varepsilon_0 r^2} \frac{\vec{r}}{r} & \text{\'e } r \ge R \end{cases}$ $E(r) = \frac{\sigma_e}{2\pi\varepsilon_0 r} \frac{\vec{r}}{r}$
neskončno dolga žica, $\sigma_e = de/dz$	$E(r) = \frac{\sigma_e}{2\pi\varepsilon_0 r} \frac{\vec{r}}{r}$
enakomerno nabit valj z luknjo, polmera $R_1 < R_2$,	
volumska gostota naboja na višino $L \rho_e = \frac{e}{L\pi(R_2^2 - R_1^2)};$	
če rabim pol n valj, vstavim $R_1=0$	$E(r) = \begin{cases} 0 & \text{\'e } r \le R_1 \\ \frac{\rho_e}{2\varepsilon_0 r} (r^2 - R_1^2) & \text{\'e } R_1 \le r \le R_2 \\ \frac{\rho_e}{2\varepsilon_0 r} (R_2^2 - R_1^2) & \text{\'e } R_1 \le r \le R_2 \end{cases}$ $E(z) = \frac{\sigma_S}{2\varepsilon_0} \vec{z}$
neskončna plošča, $\sigma_S = de/dS$	$E(z) = \frac{\sigma_S}{2\varepsilon_0} \frac{\vec{z}}{z}$
kondenzator (plošči σ in $-\sigma)$	$E(r) = \begin{cases} \frac{\sigma}{\varepsilon_0} & \text{med ploščama} \\ 0 & \text{sicer} \end{cases}$

telo	magnetno polje
neskončna žica, tok I	$B_r = B_z = 0, B_\varphi = \frac{\mu_0 I}{2\pi r} \vec{e_\varphi}$
neskončna valjasta lupina polmera R	$\left(\frac{R^{0}}{2\pi r}\right)$ ce $r \geq R$
neskončni pol n valj polmera ${\cal R}$	$B(r) = \begin{cases} \frac{\mu_0 I r}{2\pi R^2} & \text{\'e } r \le R\\ \frac{\mu_0 I}{2\pi r} & \text{\'e } r \ge R \end{cases}$

3 Relativnost

Postulata:

- Hitrost svetlobe je v vseh inercialnih KS enaka.
- Fizikalni zakoni so enaki v vseh inercialnih KS.

Oznaki:
$$\beta = \frac{v}{c}, \gamma = \frac{1}{\sqrt{1-\beta^2}}$$

Transformacija med sistemi (sistem S' se giblje glede na S s hitrostjo v v smeri x):

$$ct' = \gamma(ct - \beta x)$$
$$x' = \gamma(x - \beta ct)$$
$$y' = y$$
$$z' = z$$

$$\Lambda(\beta) = \Lambda^{\mu}_{\nu} = \begin{bmatrix} \gamma & -\gamma\beta & \\ -\gamma\beta & \gamma & \\ & & 1 \\ & & & 1 \end{bmatrix}$$
$$x'^{\mu} = \Lambda^{\mu}_{\nu}x^{\nu}$$
$$\Lambda(\beta)\Lambda(-\beta) = 1$$
$$\Lambda(\beta_1)\Lambda(\beta_2) = \Lambda(\frac{\beta_1 + \beta_2}{1 + \beta_1\beta_2})$$

Sistem S' se glede na S giblje s hitrostjo v_0 :

Podalšanje časa: $t' = \gamma t$

Skrčenje dolžin: $L' = \frac{L}{\gamma}$, $\tan \alpha' = \gamma \tan \alpha$

Četverci:

- Pozicija: $x^{\mu}=(ct,x,y,z), x_{\mu}=(ct,-x,-y,-z),$ invarianta: $x^{\mu}x_{\mu}=(ct)^2-x^2-y^2-z^2$
- Hitrost: $u^{\mu} = \frac{\partial x}{\partial \tau} = \frac{\partial x}{\partial t} \frac{\partial t}{\partial \tau} = \gamma_v(c, \vec{v}), \|u\|^2 = u^{\mu}u_{\mu} = c^2 = \text{konst.}$ Seštevanje hitrosti: Če se S' giblje glede na S z v_0 in S'' glede na S z v_1 , potem se S'' giblje glede na S' s hitrostjo v'_1 , ki jo dobimo kot: $v'_1 = \frac{v_1 - v_0}{1 - \frac{v_1 v_0}{c^2}}$ ali $\beta_{v'_1} = \frac{\beta_{v_1} - \beta_{v_0}}{1 - \beta_{v_1} \beta_{v_0}}$.
- Odvod: $\partial_{\mu} = (\frac{1}{c} \frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) = (\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla}); \ \partial^{\mu} \partial_{\mu} = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \nabla^2 = \Box.$
- Gibalna količina: $p_{\mu}=m_0u_{\mu}=\left(\frac{E}{c},p\right),\ \|p\|^2=\frac{E^2}{c^2}-p\cdot p,\ \text{zakon:}\ E^2=c^2p\cdot p+(m_0c^2)^2,\ E=c\sqrt{p^2+c^2m^2}\ \text{in}\ \frac{pc}{E}=\beta.$ Mirovna energija: $E_m=mc^2,\ \text{polna:}\ E=mc^2+T=\gamma mc^2,\ \text{kinetična:}\ W_k=W-W_m$ Splača se pogledati, če $E>>mc^2,\ \text{posledično}\ m^2c^2\approx 0\ \text{in}\ E/c\approx p$ Brezmasni delci: $==(E/c)^2-p_x^2-p_y^2-p_z^2,\ \text{če le v smeri}\ x:\ E=p_xc$
- Tok: $J^{\mu}=(\rho c,j),\, \rho$ je gostota naboja, j je gostota toka.
- EM potencial: $A^{\mu} = (\frac{\varphi}{c}, A)$, kjer je φ električni potencial in A magnetni potencial.

4 Kvantna mehanika

Operatorji:

- Gibalna količina: $\hat{p} = -i\hbar \frac{\partial}{\partial x}$
- Hamiltonian: $\hat{H} = \hat{T} + \hat{V} = \frac{\hat{p}^2}{2m} + \hat{V}$
- Povprečje operatorja \hat{O} : $\langle \hat{O} \rangle = \int \psi^* \hat{O} \psi \, dx$ (v splošnem velja $\langle \hat{p}^2 \rangle = 2m \langle E \rangle$). Le operatorji x, p, H so neodvisno od časa.

 $E = h\nu, \, \omega = 2\pi\nu, \, E = \hbar\omega$

Interferenca valovanj: maksimum: $d\sin\vartheta=N\lambda$, minimum: $d\sin\vartheta=(N+\frac{1}{2})\lambda$ Velja: $\lambda=\frac{h}{p},\ p$ gibalna količina.

Schrodingrjeva enačba: $i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi$

Lastne funckije in lastne energije za delec v neskončni potencialni jami širine a:

$$\psi_n(x) = \sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a}), E_n = \frac{n^2\pi^2\hbar^2}{2ma^2}$$

$$\langle x \rangle = a/2, \langle x^2 \rangle = \frac{a^2}{6}(2 - \frac{3}{n^2\pi^2}), \langle p \rangle = 0, \langle p^2 \rangle = 2mE_n$$

$$\delta p \, \delta x = \frac{\hbar}{2}\sqrt{\frac{n^2\pi^2}{3} - 2}$$

Če je jama simetrična, torej na (-a/2,a/2): (pišem le tisto, kar je drugače)

$$\psi_n^S = \psi_n(n - a/2) = \sqrt{\frac{2}{a}} \left(\sin(\frac{n\pi x}{a}) \cos(\frac{n\pi}{2}) - \cos(\frac{n\pi x}{a}) \sin(\frac{n\pi}{2}) \right)$$
$$\langle x \rangle = 0, \langle x^2 \rangle = \frac{a^2}{12} \left(1 - \frac{6}{n^2 \pi^2} \right)$$

Lastne funkcije in lastne energije za delec v potencialni jami širine a z globino h: TODO

Razvoj lastnih stanj po času: $\psi_n(t) = \psi_n(0) \exp(\frac{E_n}{i\hbar}t)$

Povprečja operatorjev so neodvisna od časa!

Transmisivnost: T, odbojnost je R = 1 - T

$$k = \sqrt{\frac{2mE}{\hbar^2}}, k' = \sqrt{\frac{2m(E\mp V_0)}{\hbar^2}}$$
 (-, če stopnica, + če jama)

Stopnica višine V_0 (v desno neskončna): $T = \frac{k'}{k} \frac{|C|^2}{|A|^2} = \frac{4kk'}{(k+k')^2}, R = \frac{|B|^2}{|A|^2} = \frac{(k-k')^2}{(k+k')^2}$ Ce $E < V_0$ je vedno R = 1.

Končna stopnica višine V_0 , z različno visokim začetkom in koncem: $T = \frac{k''}{k} \frac{|E|^2}{|A|^2}$

Končna stopnica širine a, višine V_0 , ki se začne in konča na isti višini:

Če
$$E > V_0$$
: $T = \frac{|E|^2}{|A|^2} = \frac{1}{1 + \left(\frac{k^2 - k'^2}{2kk'}\right)^2 \sin^2(k'a)}$. Če $E < V_0$: pišemo $k' = i\varkappa$, $T = \frac{1}{1 + \left(\frac{k^2 + \varkappa^2}{2k\varkappa}\right)^2 \sinh^2(\varkappa a)}$

Heisenbergovo načelo nedoločenosti: $\delta x \, \delta p \geq \frac{\hbar}{2}, \, \delta x = \langle x^2 \rangle - \langle x \rangle^2, \, \delta E \, \delta t \geq \frac{\hbar}{2}, \, \delta m = \frac{1}{c^2} \delta E$

Bohrov model atoma:

 $r_N = \frac{N^2 h^2 \varepsilon_0}{Z e_0^2 m \pi}$ radij, ko se ujame Nvalovnih dolžin

$$W_N = -\frac{Z^2}{N^2} \frac{\alpha^2}{2} mc^2$$
energija pri N -ti črti

$$\alpha = \frac{e_0^2}{4\pi\varepsilon_0\hbar c} = \frac{1}{137}$$
 konstanta fine strukture

Uporabno

Aproksimacije: $\sqrt{1+x} = 1 + x/2, \frac{1}{\sqrt{1+x}} = 1 - x/2, (1+x)^n = 1 + nx$

Za integrale: sfera $dS = r^2 \sin \vartheta \, d\varphi \, d\vartheta$

valj
$$dS = r \, d\varphi \, dz$$

kocka
$$dS = dy dz$$

$$\int_0^{k\frac{\pi}{2}} \sin^2(x) dx = \frac{1}{2} \cdot \frac{k\pi}{2}$$
 Konstante:

•
$$\varepsilon_0 = 8.9 \times 10^{-12} \frac{\text{As}}{\text{Vm}}$$

• $\mu_0 = 4\pi \times 10^{-7} \frac{\text{Vs}}{\text{Am}}$
• $\hbar = \frac{h}{2\pi}$

$$\bullet \ \mu_0 = 4\pi \times 10^{-7} \, \frac{\mathrm{Vs}}{\mathrm{Am}}$$

•
$$\hbar = \frac{h}{2\pi}$$

•
$$\hbar = 6.582119514 \times 10^{-16} \,\text{eVs}$$

•
$$\hbar c = 0.19732697 \,\mathrm{eV}\mu\mathrm{m} \approx 200 \,\mathrm{eV}\mathrm{nm}$$

•
$$1eV = 1.6 \cdot 10^{-19} \,\mathrm{J}$$

• masa elektrona:
$$m_e = 511 \cdot 10^3 \,\mathrm{eV/c^2}$$

Enote:

•
$$N = kg \frac{m}{s^2}$$

$$V = \frac{\text{kgm}^2}{\text{As}^3}$$

$$J = \frac{\text{kgm}^2}{\text{s}^2}$$

•
$$J = \frac{kgm^2}{s^2}$$