

Technology Advances

THI CAN THE STREET

Advances in Technology

- Technology has been advancing at lightning speed
- Architecture and IT as a whole were beneficiaries
- Technology advance is summarized by Moore's Law
 - You probably heard of it at some point. Something about ...
 - "X doubles every 18-24 months at constant cost"
- Is X:
 - CPU performance?
 - CPU clock frequency?

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Miniaturization of Transistors

Data source: Radamson, H.H.; He, X.; Zhang, Q.; Liu, J.; Cui, H.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J.; Gao, J.; Yang, H.; Gu, S.; Zhao, X.; Du, Y.; Yu, J.; Wang, G. Miniaturization of CMOS. *Micromachines* **2019**, *10*, 293.

- Moore's Law has been driven by transistor miniaturization
 - CPU chip area hasn't changed much

Future of Moore's Law

- The semiconductor industry has produced roadmaps
 - Semiconductor Industry Association (SIA): 1977~1997
 - International Technology Roadmap for Semiconductors (ITRS): 1998~2016
 - International Roadmap for Devices and Systems (IRDS): 2017~Present
- IRDS Lithography Projection (2020)

Year of Production	2018	2020	2022	2025	2028	2031	2034
Technology Node (nm)	7	5	3	2.1	1.5	1.0	0.7

- Moore's Law will continue into foreseeable future
- IRDS does not project significant increase in CPU chip size
- Increases in transistors will come from transistor density

IRDS isn't Perfect

ITRS (predecessor of IRDS) has made corrections before

- After all, you are trying to predict the future
- But architects rely on the roadmap to design future processors

THI COLUMN TO THE PARTY OF THE

Moore's Law and Performance

- Did Moore's Law result in higher performance CPUs?
- How do you define performance?
 - When you buy a CPU, what number(s) do you look at?
- 1. Try running your favorite apps on it and measure time.
 - Most accurate, but manufacturers can't publish these numbers
- 2. Try running a suite of benchmark apps (e.g. SPECCPU)
 - Less accurate, but it is a number manufacturers can publish
- 3. Look at several important components of performance
 - Needs interpretation, but allows analysis of performance

STATE BURE

Components of Execution Time

Processor activity happens on clock "ticks" or cycles

On each tick, bits flow through logic gates and are latched

Execution time =
$$\frac{\text{seconds}}{\text{program}}$$

$$\frac{\text{seconds}}{\text{program}} = \frac{\text{cycles}}{\text{program}} \quad X \quad \frac{\text{seconds}}{\text{cycle}}$$

$$= \frac{\text{instructions}}{\text{program}} \quad X \quad \frac{\text{cycles}}{\text{instruction}} \quad X \quad \frac{\text{seconds}}{\text{cycle}}$$

How to improve Execution Time

$$\frac{\text{instructions}}{\text{program}}$$
 X $\frac{\text{cycles}}{\text{instruction}}$ X $\frac{\text{seconds}}{\text{cycle}}$

- Reduce seconds / cycle : a.k.a. clock frequency
 Clock frequency = cycles / second = reverse of seconds / cycle
 Higher clock frequency (GHz) leads to shorter exec time
- Reduce $\frac{\text{cycles}}{\text{instruction}}$: a.k.a. CPI (Cycles Per Instruction)

 IPC (Instructions Per Cycle) = $\frac{\text{instructions}}{\text{cycle}}$ = reverse of $\frac{\text{cycles}}{\text{instruction}}$

 - Higher IPC leads to shorter execution time
- Reduce $\frac{\text{instructions}}{\text{program}}$:

 Less instructions leads to shorter execution time
 - ISAs that do a lot of work with one instruction shortens time

Moore's Law impacts two layers

- Did Moore's Law result in higher performance CPUs?
- Law impacts both architecture and physical layers

Instruction Set Architecture Computer
Processor Organization Architecture

Transistor Implementation

Physical Layer

- Processor Organization: many more transistors to use in design
- Transistor Implementation: smaller, more efficient transistors

Moore's Law Impact on Architecture

- So where did architects use all those transistors?
- Well, we will learn this throughout the semester ©
 - Pipelining — Improves frequency
 - Parallel execution
 - Branch prediction
 - Speculative execution
 - Memory caching

Improves IPC

Let's go on to impact on the physical layer for now

Moore's Law Impact on Physical Layer

- Frequency = transistor speed ×
 number of transistors between clock ticks
 - Transistor speed is decided by the physical layer
 - Number of transistors between ticks is CPU design
- Given a CPU design, faster transistors \rightarrow faster CPUs
 - Intel's tick-tock model staggers transistor / design improvements
 - Tick: new generation due to new technology node
 - Tock: new generation due to new CPU design
- So did Moore's Law result in faster transistors?
 - In other words, are smaller transistors faster?

Speed of Transistors

Transistors are like faucets:

- To make a transistor go fast, do one of the following:
 - Increase water pressure (supply voltage)
 - Change faucet (transistor) design
- Transistor design can be changed in two ways:
 - Increase pipe thickness (reduce channel resistance R)
 - Reduce bucket size (reduce capacitance C)
 - $T_{switch} \propto RC$ (transistor switch delay is proportional to RC)

Smaller Transistors are Faster!

Transistors are like faucets!

- \blacksquare For transistor dimension d (node size)
 - Capacitance $C \propto d$
 - Channel resistance $R \propto$ Channel length $L \propto d$
 - $T_{switch} \propto RC \propto d^2$
- Given the same supply voltage, smaller is faster!
- Did Moore's Law enjoy faster and faster frequencies?

SEVERSITE OF THE PROPERTY OF T

Yes, for a while ...

Source: Computer Architecture, A Quantitative Approach (6th ed.) by John Hennessy and David Patterson, 2017

- Due in large part to improvement in transistor speed
 - CPU design (pipelining) contributed but we'll discuss later

SEVERS TO SEVER SE

But not so much lately

Source: Computer Architecture, A Quantitative Approach (6th ed.) by John Hennessy and David Patterson, 2017

- Suddenly around 2003, frequency scaling stops. Why?
 - Improvements in transistor speed stopped.
 - CPU design (pipelining) has met its limits.

Dent in CPU Performance

Single-Threaded Integer Performance

Source: https://preshing.com/20120208/ a-look-back-at-single-threaded-cpu-performance/

- This caused a big dent in CPU performance circa 2003
- Improvements henceforth mostly came from IPC

Why did frequency scaling stop? TDP.

- TDP (Thermal Design Power):
 - Maximum power (heat) that CPU is designed to generate
 - Capped by the amount of heat cooling system can handle
 - Cooling system hasn't improved much over generations
- CPU Power = A * N * CFV² must be < TDP</p>
 - A = Activity factor (% of transistors with activity)
 - N = Number of transistors
 - C = Capacitance
 - F = Frequency
 - V = Supply Voltage

What happens to each factor with Moore's Law?

THAT OF THE PERSON OF THE PERS

CPU Power (with Fixed Voltage)

- Change in CPU Power

 A * N * CFV², with fixed V:
 - A = Activity factor
 - N = Number of transistors $\propto 1/d^2$ û û

 - $F \propto 1/T_{\text{switch}} \propto 1/d^2 \Omega \Omega \Omega \Omega$ (if supply voltage is kept constant)
 - V = Supply Voltage (water pressure)
 - \rightarrow CPU Power $\propto 1/d^3 \Omega \Omega \Omega$
- Recipe used until 1990's until power started to matter
 - That meant F could not keep increasing while meeting TDP
- Q) So how did CPU frequency keep increasing up to 2003?

THE STATE OF THE S

CPU Power (with Dennard Scaling)

- Goal: to scale frequency while keeping power constant
- By reducing V proportional to d, then change in CPU Power ∝ A * N * CFV² is:
 - A = Activity factor
 - N = Number of transistors $\propto 1/d^2$ ☆ ☆

 - $F \propto 1/d$ 1 (Can scale by 1/d while keeping power constant!)
 - V = Supply Voltage (\propto d) \checkmark \rightarrow V² \checkmark \checkmark
- Dennard Scaling: Above recipe for scaling up frequency, while reducing supply voltage to keep power constant

FISBURCH

Dennard Scaling and V_{th}

- So, it's that easy? Just reduce V until you meet TDP?
- No, it's not that simple ⊗.
- Reducing V_{dd} (supply voltage) affects CPU operation
 - As V_{dd} is reduced, transistor becomes slower (lower pressure)
 - Eventually, CPU stops working altogether
- Transistors need redesigning to work at lower voltage
 - V_{th} is the threshold voltage when switching happens
 - V_{th} needs to be reduced along with V_{dd} to maintain speed

Speed is determined by V_{dd} if V_{th} is fixed

RC Charging Curve of V_G (Gate Voltage)

- V_{dd} is high $\rightarrow V_G$ reaches V_{th} slowly at T_{on} (high pressure)
- ullet V_{dd} ' is high $\to V_G$ reaches V_{th} slowly at T_{on} '(low pressure)

TESBUICH

Speed is maintained with lower V_{th}

RC Charging Curve of V_G

■ Speed (T_{on}) is maintained while reducing V_{dd} to V_{dd} , but only if V_{th} is also reduced to V_{th} .

Dennard Scaling paid dividends for a while

Aided by repeated reductions of V_{dd} and V_{th}

Then Dennard Scaling ended at 2003

Main reason was that V_{th} could no longer be reduced

SET THE CONTROL OF TH

Limits to Dropping V_{th}

- Subthreshold leakage
 - Transistor leaks current even when gate is off $(V_G = 0)$

- This leakage current translates to leakage power
- Leakage worsens when V_{th} is dropped

Leakage Power across Generations

Leakage power has increased across technology nodes

Source: L. Yan, Jiong Luo and N. K. Jha, "Joint dynamic voltage scaling and adaptive body biasing for heterogeneous distributed real-time embedded systems," in *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 24, no. 7, pp. 1030-1041, July 2005

CPU Power must now include leakage

- Previous power calculation was incomplete
 - CPU power is the sum of both dynamic and leakage power
- Power_{CPU} ∝ Power_{dynamic} + Power_{leakage}
 - Power_{dynamic} \propto A * N * CFV_{dd}²
 - Power_{leakage} \propto N * V_{dd} * e^{-Vth}
 - Leakage worsens exponentially when V_{th} is dropped
 - Catch-22: when dropping V_{th}, Power_{dynamic} ↓ but Power_{leakage} ☆☆
- V_{th} can't be reduced further, so V_{dd} can't be reduced
- Dennard Scaling relies on reducing V_{dd}, so it's the end

CPU Power (End of Dennard Scaling)

- What happens to frequency without Dennard Scaling?
- Power_{dynamic} (\propto A * N * CFV²) + Power_{leakage} (\propto N * V * e^{-Vth})
 - A = Activity factor
 - N = Number of transistors ($\propto 1/d^2$) ① ①
 - C = Capacitance (\propto d) \P
 - $V = Supply Voltage \Leftrightarrow (Due to fixed V_{th})$
 - F = Frequency ???
- To offset N, you actually have to decrease F
- Otherwise, if you want to maintain F, must decrease N
 - That is, you cannot power on all the transistors at any given point
 - Dark silicon: situation where chip is only partially powered

THE CANAL PROPERTY OF THE CANAL PROPERTY OF

Free Ride is Over

- "Free" speed improvements from transistors is over
- Now it's up to architects to improve performance
 - Moore's Law is still alive (although slowing down)
 - Architects are flooded with extra transistors each generation
 - But it's hard to even keep them powered without reducing F!
- Now is a good time to discuss technology constraints
 - Since we already mentioned a big one: TDP