TRANSFORMÉE DE FOURIER

NOMBRES COMPLEXES (RAPPEL)

$$(a,b) \blacktriangleleft \triangleright a + jb \blacktriangleleft \triangleright R \cos \alpha + jR \sin \alpha$$

Notation:
$$\exp(j\alpha) = \cos \alpha + j \sin \alpha$$
, $j^2 = -1$

$$a+jb=R\cos\alpha+jR\sin\alpha=R\exp(j\alpha)$$

 $R=\sqrt{a^2+b^2}$ Amplitude
 $\alpha=\arctan(b/a)$ Phase

Propriétés

$$a+jb=R\exp(j\alpha)$$
 $a-jb=R\exp(-j\alpha)$ Conjugué $R_1\exp(j\theta)*R_2\exp(j\alpha)=R_1R_2\exp\left(j(\theta+\alpha)\right)$ Multiplication
$$\frac{\mathrm{d}}{\mathrm{d}\alpha}\big(R\exp(j\alpha)\big)=jR\exp(j\alpha)$$
 Dérivée

Notation Complexes des Fonction sinus et cosinus

$$\cos x = \frac{1}{2} \left(\exp(jx) + \exp(-jx) \right)$$

$$\sin x = \frac{-j}{2} \left(\exp(jx) - \exp(-jx) \right)$$

TRANSFORMÉE DE FOURIER CONVOLUTION 1D -FONCTIONS CONTINUES-

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(t)g(x - t) dt$$

TRANSFORMÉE DE FOURIER NOTION DE SPECTRE & SÉRIE DE FOURIER (1)

NOTION DE SPECTRE

• Signal sinusoïdal de fréquence $f_0 \triangleright f(x) = c \cos(2\pi f_0 x)$ (c est l'amplitude du signal et $T = 1/f_0$, sa période)

Notation complexe $\blacktriangleright f(x) = \frac{c}{2} \left(\exp(2\pi j f_0 x) + \exp(-2\pi j f_0 x) \right)$

• $f(x) = a + \frac{c}{2} (\exp(2\pi j f_0 x) + \exp(-2\pi j f_0 x))$

TRANSFORMÉE DE FOURIER NOTION DE SPECTRE & SÉRIE DE FOURIER (2)

SÉRIE DE FOURIER

Soit f(x), un signal périodique de période $T=1/f_0$

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(2\pi n f_0 x) + \sum_{n=1}^{\infty} B_n \sin(2\pi n f_0 x)$$

$$A_n = \frac{2}{T} \int_0^T f(x) \cos(2\pi n f_0 x) dx \quad n > 0$$

$$B_n = \frac{2}{T} \int_0^T f(x) \sin(2\pi n f_0 x) dx \quad n > 0$$

$$<=> f(x) = \sum_{n=1}^{\infty} C_n \cos(2\pi n f_0 x + \theta_n) + C_0/2$$

où
$$C_n = \sqrt{A_n^2 + B_n^2}$$
 et $\theta_n = \arctan\left(\frac{B_n}{An}\right)$

Spectre de raies

- $C_0/2 \blacktriangleleft \triangleright$ Niveau moyen du signal
- $f_0 \blacktriangleleft \blacktriangleright$ Le fondamental
- $nf_0 \blacktriangleleft \triangleright$ Les harmoniques

TRANSFORMÉE DE FOURIER NOTION DE SPECTRE & SÉRIE DE FOURIER (3)

Preuve de : $A\sin(kx) + B\cos(kx) = C\sin(kx + \theta)$

$$A\sin(kx) + B\cos(kx) = \sqrt{A^2 + B^2} \left(\frac{A}{\sqrt{A^2 + B^2}} \sin(kx) + \frac{B}{\sqrt{A^2 + B^2}} \cos(kx) \right)$$
 (1)

Puisque,
$$\left(\frac{A}{\sqrt{A^2+B^2}}\right)^2+\left(\frac{B}{\sqrt{A^2+B^2}}\right)^2=1$$

Il existe un θ , tel que, $\frac{A}{\sqrt{A^2+B^2}}=\cos\theta$ et $\frac{B}{\sqrt{A^2+B^2}}=\sin\theta$

Ainsi, on obtient,

(1)
$$\ll \sqrt{A^2 + B^2} (\cos \theta \sin(kx) + \sin \theta \cos(kx))$$

 $\ll C \sin(kx + \theta)$

avec
$$C = \sqrt{A^2 + B^2}$$
 (Amplitude)
et $\theta = \arctan(B/A)$ (Phase)

Exemple:

TRANSFORMÉE DE FOURIER

NOTION DE SPECTRE & SÉRIE DE FOURIER (4)

Série de Fourier de l'onde carrée 1D

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(2\pi n f_0 x) + \sum_{n=1}^{\infty} B_n \sin(2\pi n f_0 x)$$

$$f(x) = \frac{4}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots + \frac{\sin(2p+1)x}{2p+1} + \dots \right)$$

Note:

Signal impair $\blacktriangleleft \triangleright$ constitué de fonctions sinus Signal discontinu $\blacktriangleleft \triangleright$ demande une infinité d'harmoniques pour une bonne reconstruction Signal à moyenne nulle $\blacktriangleleft \triangleright$ $A_0 = 0$

TRANSFORMÉE DE FOURIER NOTION DE SPECTRE & SÉRIE DE FOURIER (5)

FORME COMPLEXE D'UNE SÉRIE DE FOURIER

► Plus facile de manipuler des exponentielles complexes que des fonctions trigonométriques

$$f(x) = \sum_{n=1}^{\infty} C_n \cos(2\pi n f_0 x + \theta_n) + C_0/2$$

$$= \sum_{n=1}^{\infty} \left(\frac{C_n}{2} \left(\exp(2\pi j n f_0 x) \exp(j\theta_n) + \exp(-2\pi j n f_0 x) \exp(-j\theta_n) \right) \right) + C_0/2$$

$$= \sum_{n=1}^{\infty} \left(D_n \exp(2\pi j n f_0 x) + D_n^* \exp(-2\pi j n f_0 x) \right) + C_0/2$$

avec $D_n = \frac{C_n}{2} \exp(j\theta_n) = \frac{1}{2}(A_n - jB_n), \forall n > 0 \text{ et } D_0 = \frac{C_0}{2}.$

 $D_n \blacktriangleleft \triangleright$ Coefficients de Fourier, généralement complexes. Pour les signaux réels, on montre que $\blacktriangleleft \triangleright D_n^* = D_{-n}$

$$f(x) = \sum_{n=-\infty}^{n=+\infty} D_n \exp(2\pi j n f_0 x)$$

$$D_{n} = \frac{1}{2}(A_{n} - jB_{n})$$

$$= \frac{2}{T} \int_{0}^{T} f(x) \cos(2\pi n f_{0}x) dx - j\frac{2}{T} \int_{0}^{T} f(x) \sin(2\pi n f_{0}x) dx$$

$$= \frac{2}{T} \int_{0}^{T} f(x) \exp(-2\pi j n f_{0}x) dx$$

Représentation des D_n

Partie réelle et parties imaginaires $\blacktriangleleft \triangleright (a_n, b_n)$ Modules et arguments $\blacktriangleleft \triangleright (c_n, \theta_n)$

TRANSFORMÉE DE FOURIER TRANSFORMÉE DE FOURIER 1D (1)

Un signal non périodique \blacktriangleright lim signal \blacktriangleright spectre continu $_{T \to \infty}$

$$\mathcal{F}[f(x)] = F(\nu) = \int_{-\infty}^{+\infty} f(x) \exp(-2\pi j \nu x) dx \quad \nu \in IR$$

$$\mathcal{F}^{-1}[F(\nu)] = f(x) = \int_{-\infty}^{+\infty} F(\nu) \exp(2\pi j\nu x) d\nu$$

où x coordonnée spatiale et ν coordonnée spectrale

► Continuum de fréquences harmoniques

$$F(\nu) = \mathcal{R}[F(\nu)] + j\mathcal{I}[F(\nu)] = R(\nu) + jI(\nu)$$
$$F(\nu) = |F(\nu)| \exp[j\Phi(\nu)]$$

Spectre d'amplitude :
$$|F(\nu)| = \sqrt{R(\nu)^2 + I(\nu)^2}$$

Phase :
$$\Phi(\nu) = \arctan\Bigl(\frac{I(\nu)}{R(\nu)}\Bigr)$$

Principe du filtrage :

► Modification de la phase et du spectre d'amplitude d'un signal

TRANSFORMÉE DE FOURIER TRANSFORMÉE DE FOURIER - CAS PARTICULIER - (2)

a) f est paire $\blacktriangleright F(\nu)$ est réel

$$F(\nu) = \int_{-\infty}^{+\infty} f(x)(\cos 2\pi \nu x - j \sin 2\pi \nu x) dx$$

Or les fonctions $x \to f(x) \cos 2\pi \nu x$ et $x \to f(x) \sin 2\pi \nu x$ sont respectivement paire et impaire. Donc,

$$\int_{-\infty}^{+\infty} f(x) \cos 2\pi \nu x \, dx = 2 \int_{0}^{+\infty} f(x) \cos 2\pi \nu x \, dx$$
et,
$$\int_{-\infty}^{+\infty} f(x) \sin 2\pi \nu x \, dx = 0$$

b) | f est impaire \triangleright $F(\nu)$ est imaginaire pure

Cette fois, on a,
$$\int_{-\infty}^{+\infty} f(x) \cos 2\pi \nu x \, dx = 0$$

- c) f est réelle \blacktriangleright symétrie hermitienne $\mathcal{R}[F(\nu)]$ est paire et $\mathcal{I}[F(\nu)]$ est impaire
- d) f est paire $ightharpoonup \mathcal{F} = \mathcal{F}^{-1}$ $f(x) \mathcal{F} = \mathcal{F}^{-1} > F(\nu)$ $F(\nu) \mathcal{F} = \mathcal{F}^{-1} > f(x)$

TRANSFORMÉE DE FOURIER TRANSFORMÉE DE FOURIER - EXEMPLE- (3)

Fonction "Porte"

$$\begin{cases} \Pi(x) = 1 & \text{si} \quad |x| \le \frac{1}{2} \\ \Pi(x) = 0 & \text{si} \quad |x| > \frac{1}{2} \end{cases}$$

$$F(\nu) = \int_{-\infty}^{+\infty} f(x) \exp(-2\pi j\nu x) dx = \int_{-1/2}^{1/2} \exp(-2\pi j\nu x) dx$$

$$= -\frac{1}{2\pi j\nu} \left[\exp(-2\pi j\nu x) \right]_{-1/2}^{1/2}$$

$$= -\frac{1}{2\pi j\nu} \left[\exp(-\pi j\nu) - \exp(\pi j\nu) \right]$$

$$= -\frac{1}{2\pi j\nu} \left[\cos(\pi \nu) - j\sin(\pi \nu) - \cos(\pi \nu) - j\sin(\pi \nu) \right]$$

$$F(\nu) = \frac{\sin(\pi \nu)}{\pi \nu} = \operatorname{sinc}(\nu)$$

TRANSFORMÉE DE FOURIER TRANSFORMÉE DE FOURIER - EXEMPLE- (4)

Fonction impulsion

Soit la fonction $\Pi_T(x)$, définie par,

$$\Pi_T(x) = \frac{1}{T}\Pi\left(\frac{x}{T}\right) = \begin{cases} \frac{1}{T} & \text{si} \quad |x| \le \frac{T}{2} \\ 0 & \text{si} \quad |x| > \frac{T}{2} \end{cases}$$

$$\mathcal{F}\Big(\frac{1}{T}\,\,\Pi\Big(\frac{x}{T}\Big)\Big) = \frac{\sin\pi\nu T}{\pi\nu T}$$

Lorsque $T \to 0$, la limite obtenue, qui n'est pas une fonction, est appelée $distribution\ de\ Dirac$ et noté δ

$$\mathcal{F}(\delta) = 1$$

TRANSFORMÉE DE FOURIER TRANSFORMÉE DE FOURIER - EXEMPLE- (5)

Fonction Gaussienne

Soit
$$f(x) = \exp(-\pi x^2)$$

$$F(\nu) = \int_{-\infty}^{+\infty} \exp(-\pi x^2) \exp(-2\pi j\nu x) dx$$

$$= \exp(-\pi \nu^2) \exp(\pi \nu^2) \int_{-\infty}^{+\infty} \exp(-\pi x^2) \exp(-2\pi j\nu x) dx$$

$$= \exp(-\pi \nu^2) \int_{-\infty}^{+\infty} \exp(-\pi (x+j\nu)^2) dx$$

$$= \exp(-\pi \nu^2) \underbrace{\int_{-\infty}^{+\infty} \exp(-\pi w^2) dw}_{1} \qquad (w = x + j\nu)$$

$$F(\nu) = \exp(-\pi \nu^2)$$

$$\mathcal{F}\left[\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{x^2}{2\sigma^2})\right] = \exp(-2\pi^2\sigma^2\nu^2)$$

TRANSFORMÉE DE FOURIER TRANSFORMÉE DE FOURIER - PROPRIÉTÉS - (6)

$$F(\nu) = \int_{-\infty}^{+\infty} f(x) \exp(-2\pi j \nu x) \, dx \quad \Leftrightarrow \quad f(x) = \int_{-\infty}^{+\infty} F(\nu) \exp(2\pi j \nu x) \, d\nu$$

$$\mathcal{F} \longrightarrow \mathcal{F}^{-1} \text{ en échangeant,}$$

$$x \quad \text{en } \nu$$

$$j \quad \text{en } -j$$

ightharpoonup Toute propriété de $\mathcal F$ est donc vraie pour $\mathcal F^{-1}$ en tenant compte de cette transposition

1. Linéarité

Si
$$\mathcal{F}(f)=F$$
 et $\mathcal{F}(g)=G$,
$$\frac{\mathcal{F}(\lambda f+\mu g)=\lambda F+\mu G}{\mathcal{F}^{-1}(\lambda F+\mu G)=\lambda f+\mu g}$$

2. Transformée de f(ax)

$$\mathcal{F}[f(ax)] = \frac{1}{|a|} F\left(\frac{\nu}{a}\right)$$

3. Transformée de f(x-xo)

$$\mathcal{F}[f(x-x_0)] = \exp(-2j\pi\nu x_0) F(\nu)$$

$$\mathcal{F}^{-1}[F(\nu-\nu_0)] = \exp(2\pi j\nu_0 x) f(x)$$

TRANSFORMÉE DE FOURIER TRANSFORMÉE DE FOURIER -PROPRIÉTÉS- (7)

La transformée d'une porte décalée est,

$$\mathcal{F}[\Pi(x-x_0)] = \exp(-2j\pi\nu x_0) \times \frac{\sin \pi\nu}{\pi\nu}$$

Plus généralement, on a,

$$\mathcal{F}\left[\frac{1}{T}\Pi\left(\frac{x-x_0}{T}\right)\right] = \exp\left(-2\pi j\nu x_0\right) \times \frac{\sin \pi \nu T}{\pi \nu T}$$

Si $T \rightarrow 0$, on en déduit, en posant,

$$\delta_{x_0} = \delta(x - x_0) = \lim_{T \to 0} \frac{1}{T} \Pi\left(\frac{x - x_0}{T}\right)$$

i.e., la distribution de Dirac translatée en x_0 . On obtient,

$$\mathcal{F}(\delta_{x_0}) = \exp\left(-2\pi j \nu x_0\right)$$

TRANSFORMÉE DE FOURIER TRANSFORMÉE DE FOURIER - PROPRIÉTÉS - (8)

4. Transformée de f'(x)

$$\mathcal{F}[f'(x)] = 2j\pi\nu \ F(\nu)$$

De même, pour \mathcal{F}^{-1} , $\mathcal{F}^{-1}[F'(\nu)] = -2j\pi x f(x)$

Plus généralement, si $f^{(n)}(x)$ existe et possède une TF,

$$\mathcal{F}[f^{(n)}(x)] = (2j\pi\nu)^n F(\nu)$$
 et $\mathcal{F}^{-1}[F^{(n)}(\nu)] = (-2j\pi x)^n f(x)$

-TF de la fonction triangle $\Lambda(x)$ -

$$\Lambda'(x) = \Pi\left(x + \frac{1}{2}\right) - \Pi\left(x - \frac{1}{2}\right)$$

$$2j\pi\nu F(\nu) = \frac{\sin \pi\nu}{\pi\nu} \left[\exp\left(-2\pi j\nu(-\frac{1}{2})\right) - \exp\left(-2\pi j\nu(\frac{1}{2})\right) \right]$$

$$2j\pi\nu F(\nu) = \frac{\sin \pi\nu}{\pi\nu} \times 2j \sin \pi\nu$$

$$F(\nu) = \left(\frac{\sin \pi\nu}{\pi\nu}\right)^2$$

TRANSFORMÉE DE FOURIER TRANSFORMÉE DE FOURIER -PROPRIÉTÉS- (9)

5. Transformée du produit de convolution

Produit de convolution :

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(t)g(x - t) dt$$

On démontre que si $\mathcal{F}(f) = F$ et $\mathcal{F}(g) = G$ alors,

$$\left| \mathcal{F}(f * g) = F \times G \right|$$

De la même façon pour \mathcal{F}^{-1} , on a,

$$\mathcal{F}^{-1}(F * G) = f \times g$$

$$egin{array}{ccc} * & \xrightarrow{\mathcal{F}} & \times \\ \times & \xrightarrow{\mathcal{F}^{-1}} & * \end{array}$$

-Exemple-

$$\mathcal{F}[\Lambda(x)] = \left(\frac{\sin \pi \nu}{\pi \nu}\right)^2$$

$$\mathcal{F}[\Lambda(x)] = \frac{\sin \pi \nu}{\pi \nu} \times \frac{\sin \pi \nu}{\pi \nu}$$
 or,
$$\mathcal{F}[\Pi(x)] = \frac{\sin \pi \nu}{\pi \nu}$$
 donc,
$$\Lambda = \Pi * \Pi$$

TRANSFORMÉE DE FOURIER PÉRIODICITÉ ET ÉCHANTILLONNAGE (2)

Peigne de Dirac

On appelle "peigne de Dirac", la distribution noté $\mathrm{III}(x)$, définie par,

$$\mathrm{III}(x) = \sum_{n=-\infty}^{n=+\infty} \delta(x-n)$$

Le peigne de Dirac est invariant dans la TF,

$$\mathcal{F}\left(\sum_{n=-\infty}^{n=+\infty}\delta(x-n)\right) = \sum_{n=-\infty}^{n=+\infty}\delta(\nu-n)$$

Dans le cas d'un peigne de période T,

$$\mathcal{F}\left(\sum_{n=-\infty}^{n=+\infty} \delta(x-nT)\right) = \frac{1}{T} \sum_{n=-\infty}^{n=+\infty} \delta(\nu - \frac{n}{T})$$

TRANSFORMÉE DE FOURIER

TRANSFORMÉE DE FOURIER 2D (1)

$$\mathcal{F}[f(x,y)] = F(u,\nu) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \exp(-2\pi j(ux + \nu y)) dxdy$$

$$\mathcal{F}^{-1}[F(u,\nu)] = f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u,\nu) \exp\left(2\pi j(ux + \nu y)\right) du d\nu$$

où x,y coordonnée spatiale et u,ν coordonnée spectrale

$$F(u,\nu) = \mathcal{R}[F(u,\nu)] + j\mathcal{I}[F(u,\nu)] = R(u,\nu) + jI(u,\nu)$$
$$F(u,\nu) = |F(u,\nu)| \exp[j\Phi(u,\nu)]$$

Phase:
$$\Phi(u, \nu) = \arctan\left(\frac{I(u, \nu)}{R(u, \nu)}\right)$$

Spectre d'amplitude :
$$|F(u,\nu)| = \sqrt{R(u,\nu)^2 + I(u,\nu)^2}$$

Spectre de puissance :
$$|F(u,\nu)|^2 = R(u,\nu)^2 + I(u,\nu)^2$$

TRANSFORMÉE DE FOURIER TRANSFORMÉE DE FOURIER 2D -EXEMPLE- (2)

Fonction "Rectangle"

$$\left\{ \begin{array}{l} f(x,y)=\Pi(x,y)=1 \quad \text{si} \quad |x|\leq \frac{1}{2}, \quad |y|\leq \frac{1}{2} \\ f(x,y)=\Pi(x,y)=0 \quad \text{sinon} \end{array} \right.$$

$$F(u,\nu) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \exp\left(-2\pi j(ux + \nu y)\right) dx dy$$

$$= \int_{-1/2}^{1/2} \exp\left(-2\pi j u x\right) dx \int_{-1/2}^{1/2} \exp\left(-2\pi j \nu y\right) dy$$

$$= \frac{\sin(\pi u)}{\pi u} \frac{\sin(\pi \nu)}{\pi \nu}$$

$$= \operatorname{sinc}(u,\nu)$$

