Quiz week 4

Due 2 Oct at 23:59 **Points** 5 **Questions** 5

Available 26 Sep at 9:00 - 2 Oct at 23:59 Time limit None

Attempt history

	Attempt	Time	Score
LATEST	Attempt 1	7,358 minutes	0 out of 5

Submitted 2 Oct at 22:49

Question 1

0 / 1 pts

Regarding least squares estimation (LSE), which of the following statement is **False**.

By minimizing the cost function $J(\theta)=\sum_{n=0}^{N-1}(x[n]-s[n;\theta])^2$, the LSE estimate $\hat{\pmb{\theta}}_{LS}$ can always be determined.

ou Answered

Suppose the model is linear as form $s[n; \theta] = \mathbf{H}\theta$, the LSE can be formulated as $\hat{\boldsymbol{\theta}}_{LS} = (\mathbf{H}^T\mathbf{H})^{-1}\mathbf{H}^T\mathbf{x}$.

orrect answer

As long as one signal model can further reduce the squared error, it presents a more accurate estimation.

Inanswered

Question 2

0 / 1 pts

Consider a fitting example where the model is $s_n(\theta) = An^2 + Bn$ for n=0,1,2,3,4. We can use a weighted LSE to fit the model to a 5-samples data $\mathbf{x}=[-0.2,1.3,3,5.2,8.1]^T$ with specific weighting matrix $\mathbf{W}=\mathrm{diag}([2,2,2,1,1])$. Here, diag denotes a diagonal matrix.

Construct the observation matrix **H**.

H =		

Answer 1:

ou	/O. IT		/er	
94	7711	I O A	101	94

(You left this blank)

orrect answer

0

orrect answer

0

Answer 2:

ou Answered

(You left this blank)

orrect answer

0

Answer 3:

ou Answered

(You left this blank)

orrect answer

1

	Answer 4:		
ou Answered	(You left this blank)		
orrect answer	1		
	Answer 5:		
ou Answered	(You left this blank)		
orrect answer	4		
	Answer 6:		
ou Answered	(You left this blank)		
orrect answer	2		
	Answer 7:		
ou Answered	(You left this blank)		
orrect answer	9		
	Answer 8:		
ou Answered	(You left this blank)		
orrect answer	3		
	Answer 9:		
ou Answered	(You left this blank)		
orrect answer	16		
	Answer 10:		
ou Answered	(You left this blank)		
orrect answer	4		

Jnanswered

Question 3

0 / 1 pts

In the same situation as question 2, please use Matlab to calculate the weighted LSE $\hat{\boldsymbol{\theta}}_{\text{WLS}} = [A,B]^T$. Which of the following estimation is correct?

$$\hat{m{ heta}}_{ ext{WLS}} = [0.245, 0.994]^T$$

orrect answer

$$\hat{\boldsymbol{\theta}}_{\mathrm{WLS}} = [0.255, 0.994]^T.$$

$$\hat{\boldsymbol{\theta}}_{\mathrm{WLS}} = [0.245, 1.004]^T.$$

$$\hat{\boldsymbol{\theta}}_{\mathrm{WLS}} = [0.255, 1.004]^T.$$

Non of the above answers is correct.

Jnanswered

Question 4

0 / 1 pts

Consider an example of estimating DC level in AWGN noise. The conditional PDF is $p(x|A)=rac{1}{(2\pi\sigma^2)^{N/2}} ext{exp}\Big(-rac{1}{2\sigma^2}\sum_{n=0}^{N-1}(x_n-A)^2\Big).$

The prior PDFs of A is assumed to be a Gaussian distribution with mean value of μ_A : $p(A) = \frac{1}{\sqrt{2\pi\alpha}} \exp\left[-\frac{1}{2\alpha}(A-\mu_A)^2\right]$.

Which of the following expression correctly describes the maximum posterior estimator $\hat{A}_{ ext{MAP}} = rg \max_{A} p(A|\mathbf{x})$?

$$\bigcirc$$
 $\hat{A}_{ ext{MAP}} = rac{\sum_{n=0}^{N-1} x_n + rac{\mu_A}{lpha}}{N + rac{1}{lpha}}$

orrect answer

$$egin{aligned} \hat{A}_{ ext{MAP}} &= rac{\sum_{n=0}^{N-1} x_n}{rac{\sigma^2}{\sigma^2} + rac{\mu_A}{lpha}} \end{aligned}$$

$$\bigcirc$$
 $\hat{A}_{ ext{MAP}} = rac{\sum_{n=0}^{N-1} x_n}{N} + rac{\mu_A}{\sigma}$

$$\bigcirc$$
 $\hat{A}_{ ext{MAP}}=rac{\sum_{n=0}^{N-1}x_n}{rac{N}{\sigma}+rac{\mu_A}{lpha}}$

Jnanswered

Question 5

0 / 1 pts

Consider a posterior PDF of parameter θ given the evidence x:

$$p(heta|x) = \left\{egin{array}{ll} x^2 heta e^{- heta x} & ext{if } x > 0 ext{ and } heta \geq 0 \ 0 & ext{else} \end{array}
ight.$$
 , which of the following

expression is the correct Bayesian minimum mean squared error estimation?

Hint: There is an known indefinite integral

$$\int y^2 e^{cy} dy = e^{cy} (rac{y^2}{c} - rac{2y}{c^2} + rac{2}{c^3})$$
 .

$$\hat{\theta}_{\text{mmse}} = \frac{1}{x}$$

orrect answer

$$\hat{\theta}_{\mathrm{mmse}} = \frac{2}{x}$$

$$\hat{\theta}_{
m mmse} = 1$$

$$\hat{ heta}_{
m mmse}=2$$