Aufgabe 4

Da $A \leq B$ gilt und B rekursiv abhängig ist, ist auch A rekursiv abhängig. Damit also A entscheidbar ist, muss noch \bar{A} rekursiv abhängig sein. Jedoch kann $B \leq \bar{A}$ auch gelten, wenn \bar{A} nicht rekursiv abhängig ist (beispielsweise wenn B nicht rekursiv ist):

$$B$$
 nicht rekursiv $\Rightarrow \bar{A}$ nicht rekursiv $\Rightarrow \bar{A}$ nicht rekursiv abhängig

Damit ist auch A nicht immer rekursiv.

Aufgabe 5

Aufgabe 6

a) Satz von Rice:

$$L_{\mathbb{P}} = \{ \langle M \rangle | L(M) = \mathbb{P} \}$$

$$S = \{ f_M | \forall_{p \in \mathbb{P}} : f_M(p) = 1 \land \forall_{q \notin \mathbb{P}} : f_M(q) = 0 \}$$

 $S \neq R$, da in S nicht die Funktion enthalten ist, die für alle Eingaben 0 ausgibt. $S \neq \emptyset$, da es Algorithmen gibt um zu bestimmen, ob eine bestimmte Zahl x eine Primzahl ist.

Nach dem Satz von Rice ist also $L_{\mathbb{P}} = L(S)$ nicht rekursiv.

b)

Aufgabe 7

rekursiv abhängig = ra, rekursiv = r

- a") \Rightarrow " L ra \Rightarrow Es gibt eine TM M, die für alle $x \in L$ hält und akzeptiert. Angenommen M hält auch für $w \notin L$ (sonst überspringe diesen Teil), und verwirft diese w.
 - \Rightarrow Konstruiere TM M', die M simuliert:
 - -M akzeptiert $\Rightarrow M'$ akzeptiert
 - -M hält nicht $\Rightarrow M'$ hält nicht
 - -M verwirft \Rightarrow Setze M' in eine Endlosschleife $\Rightarrow M'$ hält nicht
 - $\Rightarrow L(M) = L(M')$
 - \Rightarrow Es gibt also eine partielle berechenbare Funktion f, die von M' (bzw. gleich M) berechnet wird
 - $\Rightarrow \operatorname{Def}(f) = \{x | f(x) \neq \bot\} = L(M') = L(M) = L$
 - " \Leftarrow " f eine partielle berechenbare Funktion mit $L := \text{Def}(f) = \{x | f(x) \neq \bot\}$ \Rightarrow Es gibt eine TM M, die f berechnet $\Rightarrow L(M) = L$, da:
 - -M hält auf $x \Leftrightarrow f(x) \neq \perp \Leftrightarrow x \in L$
 - -M hält nicht auf $x \Leftrightarrow f(x) = \perp \Leftrightarrow x \notin L$

Also ist L ra.

Damit ist die Aussage folglich bewiesen.

- b)" \Rightarrow " L rekursiv aufzählbar:
 - 1) Falls $L = \emptyset \Rightarrow L r \Rightarrow L ra$
 - 2) Falls $L \neq \emptyset$:

Es gibt ja $h: \Sigma^* \to \mathbb{N}$.

Zudem hat die ra Sprache L einen Aufzähler A, der Wörter $w \in L$ aufzählt.

 \Rightarrow Es gibt $g:\mathbb{N}\to L$, die eine Zuordnung von Zahlen zu den Wörter auf dem Ausgabeband von A ist $\Rightarrow f:g(h)$ ist somit eine totale Funktion von Σ^* nach L

- " \Rightarrow " 1) $L = \emptyset \Rightarrow L r \Rightarrow L ra$
 - 2) $f: \Sigma^* \to L$ solche totale Funktion \Rightarrow Sei T eine TM, die f berechnet für $w \in \Sigma^* \Rightarrow$ Sei Z ein Aufzähler von $\Sigma^* \Rightarrow$ Sei T' eine TM, die T und Z benutzt, keine Eingaben nimmt, jedes von Z geschriebene Wort in T füttert. $\Rightarrow T'$ ist ein Aufzähler von $L \Rightarrow L$ ist ra