1 Basic notation

Definition 1.1 (independent increments) A stochastic process $(X_t)_{t\in T}$ has independent increments if for every $n\in \mathbb{N}_+$ and any $t_1\leq t_2\leq \cdots \leq t_n$, the increment $X_{t_2}-X_{t_1},X_{t_3}-X_{t_2},\cdots,X_{t_n}-X_{t_{n-1}}$ are independent.

Definition 1.2 (strictly stationary process) Let $(X_t)_{t \in T}$ be a stochastic process and let $F_X(x_{t_1+\tau}, \dots, x_{t_k+\tau})$ represent the distribution function of the joint distribution of $(X_t)_{t \in T}$ at times $t_1 + \tau, \dots, t_k + \tau$. Then, $(X_t)_{t \in T}$ is said to be strictly stationary if, for all k, for all t, and for all t, ..., t,

$$F_X(x_{t_1+\tau},\ldots,x_{t_k+\tau}) = F_X(x_{t_1},\ldots,x_{t_k}).$$

2 Poisson process

Definition 2.1 (Poisson process (I)) A stochastic process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

- (i) $N_0 = 0$;
- (ii) $(N_t)_{t\geq 0}$ has independent increments: for any $n\in\mathbb{N}_+$ and any $0\leq t_1\leq t_2\leq\cdots\leq t_n$, the increment $N_{t_2}-N_{t_1},N_{t_3}-N_{t_2},\cdots,N_{t_n}-N_{t_{n-1}}$ are independent;
- (iii) for any $0 \le s < t$, $N_t N_s \sim Pois(\lambda(t-s))$, that is

$$P(N_t - N_s = k) = e^{-\lambda(t-s)} \frac{\lambda(t-s)^k}{k!} \quad (k = 0, 1, 2, \dots).$$

Definition 2.2 (counting process) A counting process is a stochastic process $(N_t)_{t\geq 0}$ with values that are non-negative, integer, and non-decreasing:

- (i) $N_t \geq 0$;
- (ii) N_t is an integer;
- (iii) If $0 \le s \le t$, then $N_s \le N_t$.

For any $0 \le s < t$, the counting process $N_t - N_s$ represents the number of events that occurred on (s, t].

Definition 2.3 (Poisson process (II)) A counting process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

- (i) $N_0 = 0$;
- (ii) $(N_t)_{t>0}$ has independent increments;
- (iii) For all $t \geq 0$, $P(N_{t+h} N_t = 1) = \lambda h + o(h)$ when $h \rightarrow 0$;
- (iv) For all $t \ge 0$, $P(N_{t+h} N_t \ge 2) = o(h)$ when $h \to 0$;

Definition 2.4 (Poisson process (III)) A stochastic process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

$$N_t = \sum_{n=1}^{\infty} nI_{[T_n, T_{n+1})}(t),$$

where $T_n = X_1 + X_2 + \cdots + X_n$ and X_i i.i.d $\sim Exp(\lambda)$ (Here the pdf of $Exp(\lambda)$ is taken as $\lambda e^{-\lambda x} I_{(0,+\infty)}(x)$).

Proposition 2.1 Definition 2.1, 2.3, 2.4 are equivalent definitions of Poisson process.

Proof.

• Definition 2.1 \implies Definition 2.3

Here we are only to show the implication of Definition 2.3(iii) and Definition 2.3(iv). Since $N_{t+h} - N_t \sim Pois(\lambda h)$, when $h \to 0$ we have

$$P(N_{t+h} - N_t = 1) = e^{-\lambda h} \lambda h = (1 - \lambda h + o(h)) \lambda h = \lambda h + o(h),$$

$$P(N_{t+h} - N_t \ge 2) = 1 - P(N_{t+h} - N_t = 0) - P(N_{t+h} - N_t = 1)$$

$$= 1 - e^{-\lambda h} - e^{-\lambda h} \lambda h$$

$$= 1 - (1 - \lambda h + o(h)) - (\lambda h + o(h))$$

$$= o(h).$$

• Definition 2.3 \implies Definition 2.1

Only Definition 2.1(iii) needs to be derived. Given the Laplace transform of the nonnegative random variables N_t and N_{t+h}

$$L_{N_t}(u) = E[e^{-uN_t}], \quad L_{N_{t+h}}(u) = E[e^{-uN_{t+h}}], \quad u \ge 0,$$

according to Definition 2.3(ii) we can obtain

$$\begin{split} L_{N_{t+h}}(u) &= \mathbf{E}[e^{-uN_{t+h}}] \\ &= \mathbf{E}[e^{-uN_t}e^{-u(N_{t+h}-N_t)}] \\ &= \mathbf{E}[e^{-uN_t}]\mathbf{E}[e^{-u(N_{t+h}-N_t)}] \\ &= L_{N_t}(u)\mathbf{E}[e^{-u(N_{t+h}-N_t)}]. \end{split}$$

Note that

$$E[e^{-u(N_{t+h}-N_t)}]$$

$$= e^{0}P(N_{t+h} - N_t = 0) + e^{-u}P(N_{t+h} - N_t = 1) + \sum_{j=2}^{\infty} e^{-un}P(N_{t+h} - N_t = j)$$

$$= 1 - \lambda h + o(h) + e^{-u}(\lambda h + o(h)) + o(h)$$

$$= 1 - \lambda h + e^{-u}\lambda h + o(h) \quad (h \to 0).$$

Denote $g(t+h) = L_{N_{t+h}}(u)$ and $g(t) = L_{N_t}(u)$ for some fixed u and then we get

$$\frac{g(t+h) - g(t)}{h} = \frac{g(t)(1 - \lambda h + e^{-u}\lambda h + o(h)) - g(t)}{h} = g(t)\lambda(e^{-u} - 1) + \frac{o(h)}{h}.$$

Letting $h \to 0$ yields the differential equation

$$g'(t) = g(t)\lambda(e^{-u} - 1).$$

The initial condition $g(0) = E[e^{-uN_0}] = 1$ determines a special solution of the equation

$$q(t) = L_{N_{\bullet}}(u) = e^{\lambda t(e^{-u}-1)},$$

which coincides with the Laplace transform of Poisson distribution $Pois(\lambda t)$. Since Laplace transform uniquely determines the distribution, we can thus conclude $N_t \sim Pois(\lambda t)$. Given any $r \geq 0$, define a stochastic process $N'_t = N_{r+t} - N_r$ and we can check that $(N'_t)_{t\geq 0}$ is also a counting process satisfying all the contitions in Definition 2.3. Hence by repeating the proof above we can show $N'_t \sim Pois(\lambda t)$, which is equivalent to Definition 2.1(iii).

• Definition 2.1 \implies Definition 2.4

Let $T_n = \inf\{t \geq 0 : N_t = n\}$ for $n \in \mathbb{N}_+$. Note that given any $t \geq 0$, $\{N_t = n\} = \{T_n \leq t < T_{n+1}\}$. Thus we have

$$N_t = \sum_{n=1}^{\infty} nI_{N_t=n} = \sum_{n=1}^{\infty} nI_{[T_n, T_{n+1})}(t).$$

Let $X_1 = T_1, X_n = T_n - T_{n-1} (n \ge 2)$. Since $P(X_1 > t) = P(N_t = 0) = e^{-\lambda t}$, we see $X_1 \sim Exp(\lambda)$. Since

$$P(X_2 > t | X_1 = t_1) = P(X_2 > t | X_1 = t_1)$$

When $n \geq 2$, since

$$\begin{split} & P(X_n > t | X_{n-1} = t_{n-1}, \cdots, X_1 = t_1) \\ & = P(T_n - T_{n-1} > t | T_{n-1} - T_{n-2} = t_{n-1}, \cdots, T_1 = t_1) \qquad (\text{let } s_n = t_n + \cdots + t_1) \\ & = P(T_n > s_{n-1} + t | T_{n-1} = s_{n-1}, \cdots, T_1 = s_1) \\ & = P(N_{s_{n-1}+t} = n - 1 | N_{s_{n-1}} = n - 1) \qquad (\text{memoryless property of } (N_t)) \\ & = P(N_{s_{n-1}+t} - N_{s_{n-1}} = 0 | N_s = n - 1) \\ & = P(N_{s_{n-1}+t} - N_{s_{n-1}} = 0) \\ & = e^{-\lambda t}, \end{split}$$

it is plain to show that $\{X_i\}$ is sequence of independent random variable. Furthermore, we have

$$P(X_n > t) = E[P(X_n > t | X_{n-1}, \dots, X_1)] = e^{-\lambda t},$$

which implies X_i i.i.d $\sim Exp(\lambda)$,

• Definition 2.4 \implies Definition 2.1

Clearly $N_0 = 0$ holds. Since $T_n = X_1 + X_2 + \cdots + X_n$ and X_i i.i.d $\sim Exp(\lambda)$, we can deduce the jointly probability density function of (T_1, T_2, \cdots, T_m)

$$f_S(y_1, y_2, \dots, y_m) = f_X(y_1, y_2 - y_1, \dots, y_m - y_{m-1}) \left| \frac{\partial (x_1, \dots, x_m)}{\partial (y_1, \dots, y_m)} \right|$$
$$= \lambda^m e^{-\lambda y_m} I_{\{0 \le y_1 < \dots < y_m\}}.$$

Thus for any $1 \le j_1 < j_2 < \cdots < j_n$, the jointly probability density function of $(T_{j_1}, T_{j_2}, \cdots, T_{j_n})$ is

$$\frac{y_1^{j_1-1}}{(j_1-1)!} \frac{(y_2-y_1)^{j_2-j_1-1}}{(j_2-j_1-1)!} \cdots \frac{(y_n-y_{n-1})^{j_n-j_{n-1}-1}}{(j_n-j_{n-1}-1)!} \lambda^{j_n} e^{-\lambda y_n} I_{\{0 \le y_1 < \dots < y_n\}}$$

Note

$$N_t = \sum_{n=1}^{\infty} nI_{[T_n, T_{n+1})}(t)$$

implies
$$\{N_t = n\} = \{T_n \le t < T_{n+1}\}$$
. For any $n \in \mathbb{N}_+$ and any $0 \le t_1 < t_2 < \cdots < t_n$, we have

$$\begin{split} & P(N_{t_1} = j_1, N_{t_1} - N_{t_2} = j_2, \cdots, N_{t_n} - N_{t_{n-1}} = j_n) \\ & = P(N_{t_1} = j_1, N_{t_1} = j_1 + j_2, \cdots, N_{t_n} = j_1 + \cdots + j_n) \quad (\text{let } k_n = j_1 + \cdots j_n) \\ & = P(T_{k_1} \le t_1, T_{k_1 + 1} > t_1, T_{k_2} \le t_2, T_{k_2 + 1} > t_2, \cdots, T_{k_n} \le t_n, T_{k_n + 1} > t_n) \\ & = \int_{y_{k_1} \le t_1 < y_{k_1 + 1} < \cdots < y_{k_n} \le t_n < y_{k_n + 1}} \frac{y_{k_1}^{k_1 - 1}}{(k_1 - 1)!} \cdots \frac{(y_{k_n} - y_{k_{n-1} + 1})^{k_n - k_{n-1} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n + 1} e^{-\lambda y_{k_n + 1}} dy_1 \cdots dy_{k_n + 1} \\ & = \int_{y_{k_1} \le t_1 < y_{k_1 + 1} < \cdots < y_{k_n} \le t_n} \frac{y_{k_1}^{k_1 - 1}}{(k_1 - 1)!} \cdots \frac{(y_{k_n} - y_{k_{n-1} + 1})^{k_n - k_{n-1} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} dy_{k_1} \cdots dy_{k_n} \int_{t_n}^{\infty} -de^{-\lambda y_{k_n + 1}} \\ & = \int_{y_{k_1} \le t_1 < y_{k_1 + 1} < \cdots < t_{n-1} < y_{k_{n-1} + 1} < t_n} \frac{y_{k_1}^{k_1 - 1}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} e^{-\lambda t_n} dy_1 \cdots dy_{k_{n-1} + 1} \int_{y_{k_{n-1} + 1}}^{t_n} d\frac{(y_{k_n} - y_{k_{n-1} + 1})^{k_n - k_{n-1} - 1}}{(k_n - k_{n-1} - 1)!} \\ & = \int_{y_{k_1} \le t_1 < y_{k_1 + 1}} \cdots \frac{(y_{k_{n-1}} - y_{k_{n-2} + 1})^{k_{n-1} - k_{n-2} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} e^{-\lambda t_n} dy_1 \cdots dy_{k_{n-1}} \int_{t_{n-1}}^{t_n} -d\frac{(t_n - y_{k_{n-1} + 1})^{k_n - k_{n-1}}}{(k_n - k_{n-1})!} \\ & = \int_{y_{k_1} \le t_1 < y_{k_1 + 1}} \cdots \frac{(y_{k_{n-1}} - y_{k_{n-2} + 1})^{k_{n-1} - k_{n-2} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} e^{-\lambda t_n} dy_1 \cdots dy_{k_{n-1}} \int_{t_{n-1}}^{t_n} -d\frac{(t_n - y_{k_{n-1}})^{k_n - k_{n-1}}}{(k_n - k_{n-1})!} \\ & = \int_{y_{k_1} \le t_1 < y_{k_1 + 1}} \cdots \frac{(y_{k_{n-1}} - y_{k_{n-2} + 1})^{k_{n-1} - k_{n-2} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} e^{-\lambda t_n} dy_1 \cdots dy_{k_{n-1}} \frac{(t_n - t_{n-1})^{k_n - k_{n-1}}}{(k_n - k_{n-1})!} \\ & = \cdots$$

$$& = \lambda^{k_n} e^{-\lambda t_n} \frac{t_1^{k_1}}{k_1!} \frac{(t_2 - t_1)^{k_2 - k_1}}{(k_2 - k_1)!} \cdots \frac{(t_n - t_{n-1})^{k_n - k_{n-1}}}{(k_n - k_{n-1})!} \\ & = e^{-\lambda t_1} \frac{(\lambda t_1)^{j_1}}{j_1!} e^{-\lambda (t_2 - t_1)} \frac{(\lambda (t_2 - t_1)^{j_2}}{j_2!} \cdots e^{-\lambda (t_n - t_{n-1})^{j_n}} \frac{(\lambda (t_n - t_{n-1})^{j_n}}{j_n!} \\ & = e^{-\lambda t_1} \frac{(\lambda t_1)^{j_1}}{j_1!$$

Therefore, we conclude $N_{t_2} - N_{t_1}, N_{t_3} - N_{t_2}, \dots, N_{t_n} - N_{t_{n-1}}$ are independent and for any $0 \le s < t, N_t - N_s \sim Pois(\lambda(t-s))$.

Proposition 2.2 Let $(N_t)_{t\geq 0}$ be a Poisson process.

1. $N_t \sim Pois(\lambda t)$, $E[N_t] = Var(N_t) = \lambda t$.

Appendix

Distribution	pmf P(X = k)	Support	Mean	Variance
Bernoulli $B(1,p)$	$p^k(1-p)^{1-k}$	{0,1}	p	p(1-p)
Binomial $B(n, p)$	$\binom{n}{k} p^k (1-p)^{n-k}$	$\{0,\cdots,n\}$	np	np(1-p)
Negative Binomial $NB(r, p)$	$\binom{k+r-1}{k}(1-p)^r p^k$	N	$\frac{pr}{1-p}$	$\frac{pr}{(1-p)^2}$
Poisson $Pois(\lambda)$	$\frac{\lambda^k e^{-\lambda}}{k!}$	N	λ	λ
Geometric $Geo(p)$	$(1-p)^{k-1}p$	\mathbb{N}_+	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Hypergeometric $H(N, K, n)$	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$	$\{0,\cdots,\min\left(n,K\right)\}$	$n\frac{K}{N}$	$n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$
Uniform (discrete) $DU(a, b)$	$\frac{1}{n}$	$\{a,a+1,\ldots,b\}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2 - 1}{12}$

Distribution	pdf	Mean	Variance
Degenerate δ_a	$I_{\{a\}}(x)$	a	0
Uniform (continuous) $U(a,b)$	$\frac{1}{b-a}I_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential $Exp(\lambda) = \Gamma(1, \lambda)$	$\lambda e^{-\lambda x} I_{[0,+\infty)}(x)$	λ^{-1}	λ^{-2}
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Gamma $\Gamma(\alpha, \beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} I_{(0,+\infty)}(x)$	$\frac{\alpha}{\beta}$	$\frac{lpha}{eta^2}$
Chi-squared $\chi_k^2 = \Gamma(\frac{k}{2}, \frac{1}{2})$	$\frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2} I_{(0,+\infty)}(x)$	k	2k
Student's t_{ν}	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$	0	$\frac{\nu}{\nu - 2} \text{ for } \nu > 2$

Distribution	Moment-generating function	Characteristic function		
Degenerate δ_a	e^{ta}	e^{ita}		
Bernoulli $B(1,p)$	$1 - p + pe^t$	$1 - p + pe^{it}$		
Geometric $Geo(p)$	$\frac{pe^t}{1 - (1 - p)e^t},$ $t < -\ln(1 - p)$	$\frac{pe^{it}}{1 - (1 - p)e^{it}}$		
Binomial $B(n, p)$	$(1 - p + pe^t)^n$	$(1 - p + pe^{it})^n$		
Negative Binomial $NB(r, p)$	$\frac{(1-p)^r}{(1-pe^t)^r}$	$\frac{(1-p)^r}{(1-pe^{it})^r}$		
Poisson $Pois(\lambda)$	$e^{\lambda(e^t-1)}$	$e^{\lambda(e^{it}-1)}$		
Uniform (continuous) $U(a, b)$	$\begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & \text{for } t \neq 0\\ 1 & \text{for } t = 0 \end{cases}$	$\begin{cases} \frac{e^{itb} - e^{ita}}{it(b-a)} & \text{for } t \neq 0\\ 1 & \text{for } t = 0 \end{cases}$		
Uniform (discrete) $DU(a, b)$	$\frac{e^{at} - e^{(b+1)t}}{(b-a+1)(1-e^t)}$	$\frac{e^{it\mu}}{(b-a+1)\left(1-e^{it}\right)}$		
Laplace $L(\mu, b)$	$\frac{e^{t\mu}}{1 - b^2 t^2}, \ t < 1/b$	$\frac{e^{it\mu}}{1 + b^2 t^2}$		
Normal $N(\mu, \sigma^2)$	$e^{t\mu + \frac{1}{2}\sigma^2 t^2}$	$e^{it\mu - \frac{1}{2}\sigma^2 t^2}$		
Chi-squared χ_k^2	$(1-2t)^{-\frac{k}{2}}$	$(1-2it)^{-\frac{k}{2}}$		
Noncentral chi-squared $\chi_k^2(\lambda)$	$e^{\lambda t/(1-2t)}(1-2t)^{-\frac{k}{2}}$	$e^{i\lambda t/(1-2it)}(1-2it)^{-\frac{k}{2}}$		
Gamma $\Gamma(\alpha, \beta)$	$\left(1 - \frac{t}{\beta}\right)^{-\alpha}, \ t < \beta$	$\left(1 - \frac{it}{\beta}\right)^{-\alpha}$		
Exponential $Exp(\lambda)$	$\frac{\lambda}{\lambda - t}, t < \lambda$	$\frac{\lambda}{\lambda - it}$		
Multivariate normal $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	$e^{\mathbf{t}^T\left(oldsymbol{\mu}+rac{1}{2}oldsymbol{\Sigma}\mathbf{t} ight)}$	$e^{\mathbf{t}^T \left(i\boldsymbol{\mu} - \frac{1}{2}\mathbf{\Sigma}\mathbf{t}\right)}$		
Cauchy $Cauchy(\mu, \theta)$	Does not exist	$e^{it\mu-\theta t }$		
Multivariate Cauchy $MultiCauchy(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	Does not exist	$e^{i\mathbf{t}^{\mathrm{T}}\boldsymbol{\mu} - \sqrt{\mathbf{t}^{\mathrm{T}}\boldsymbol{\Sigma}\mathbf{t}}}$		