ORF 524: Statistical Theory and Methods Homework 1

Lecturer: Samory Kpotufe AI: Zhuoran Yang Due: Sep. 30th, 5 p.m.

Exercise 1 (10 points). Recall the definition of σ -Algebra. Let $(\Omega, \overline{\Sigma})$ be a measurable space, that is, $\overline{\Sigma}$ satisfies the following three properties:

- $\bar{\Sigma} \neq \emptyset$, $\bar{\Sigma} \subseteq 2^{\Omega}$.
- $A \in \overline{\Sigma}$ implies that $A^c \in \overline{\Sigma}$. Here we use A^c to denote the complement of A.
- For any $A_1, A_2, \dots \in \overline{\Sigma}$, we have $\cap_{i>1} A_i \in \overline{\Sigma}$.

Based on these properties, solve the following problems.

- (1). Show that $\overline{\Sigma}$ is closed under union.
- (2). Show that $\overline{\Sigma}$ must contain \emptyset and Ω .
- (3). Suppose $A \subseteq \Omega$, what is the smallest σ -algebra containing A?
- (4). Show that the set of all rational numbers, denoted by \mathbb{Q} , is Borel measurable. That is, $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$.

Exercise 2 (10 points). Let P be a probability measure on $(\Omega, \overline{\Sigma})$. Only utilizing the definition of probability measure given in the class, solve the following problems.

- (1). Show that for any $A, B \in \overline{\Sigma}$ satisfying $A \subseteq B$, we have $0 \le P(A) \le P(B)$.
- (2). Show that for any positive integer k, we have

$$P\left(\bigcup_{i=1}^{k} A_i\right) \le \sum_{i=1}^{k} P(A_i). \tag{1}$$

(3). Does inequality (1) still hold when $k = \infty$?

Exercise 3 (10 points). For any measurable function f, show that

$$\left| \int f \mathrm{d}P \right| < \infty \ \text{if and only if} \ \int |f| \mathrm{d}P < \infty.$$

Exercise 4 (10 points). This exercise, consists of two questions, concerns the σ -finiteness of a measure.

- (1). Show that the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is σ -finite.
- (2). Show that the counting measure on $(\Omega, 2^{\Omega})$ is σ -finite if and only if Ω is countable.

Exercise 5 (10 points). Let $X: \Omega \to \mathbb{R}$ be a discrete random variable on probability space $(\Omega, \overline{\Sigma}, P)$ and denote the corresponding induced measure by P_X . We define the support of P_X as

$$\Omega_X = \{ x \in \mathbb{R} \colon P(X = x) > 0 \}.$$

Please answer the following two questions.

- (1). First assume that $|\Omega_X| < \infty$, that is, Ω_X contains finite number of elements. Show that the probability mass function (pmf)of X, denoted by f, is indeed the density of P_X with respect to the counting measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- (2). Show the same thing when $|\Omega_X| = \infty$.