Algebraic geometry

Weronika Jakimowicz

Contents

1	Schemes	1
	1.1 Spectrum	1

1. Schemes

1.1 Spectrum

Definition 1.1: Zariski topology

Let A be a commutative ring with unity and let Spec A be the set of all prime ideals of A For any $I \subseteq A$ let us define sets

$$V(I):=\{\mathfrak{p}\in\mathsf{Spec}\,A\ :\ I\subseteq\mathfrak{p}\}$$

$$D(f) := Spec A - V(fA)$$

A topology on Spec A such that all sets V(I) are closed and D(f) are open is called the **Zariski topology** on Spec A.

A prime ideal is an ideal P such that

- if $ab \in P$ then $a \in P$ or $b \in P$
- P ⊆ A.

For $\mathfrak{p} \in \operatorname{Spec} A$ we have $\{\mathfrak{p}\}$ is a closed set $\iff \mathfrak{p}$ is a maximal ideal in A.

Proposition 1.2

For a ring A the following hold true:

- a) for any I, J \unlhd A we have $V(I) \cup V(J) = V(I \cap J)$
- b) for a family of ideals $(I_\alpha)_\alpha$ we have $\bigcap_\alpha V(I_\alpha) = V(\sum_\alpha I_\alpha)$
- c) $V(A) = \emptyset$ and V(0) = Spec A.