CO 367

272284444

September 2023

Contents

1	Intr	roduction	2
	1.1	Lecture 1-Preliminaries	2
	1.2	Lecture 2	4
2	Unconstrained Optimization		5
	2.1	Lecture 2	5
	2.2	Lecture 3	6

1 Introduction

1.1 Lecture 1-Preliminaries

Definition 1 (Quadratic Form). Let A be a symmetric matrix and $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. The quadratic form Q of

the matrix A is defined as

$$Q = x^T A x$$

Example 1. Consider the matrix $A = \begin{pmatrix} 5 & -5 \\ -5 & 1 \end{pmatrix}$. The quadratic form of A is

$$Q(x) = 5x_1^2 - 10x_1x_2 + x_2^2$$

Definition 2 (Classification of Quadratic Forms). Let Q be a quadratic form of a matrix A. Then Q is

- 1. positive definite if Q(x) > 0 for all non-zero vectors x, and Q(x) = 0 if and only if x = 0. Or all eigenvalues of A are positive.
- 2. positive semidefinite if $Q(x) \ge 0$ for all vectors x, with Q(x) = 0 occurring for some non-zero vectors x. Or all eigenvalues of A are non-negative.
- 3. negative definite if Q(x) < 0 for all non-zero vectors x, and Q(x) = 0 if and only if x = 0. Or all eigenvalues of A are negative.
- 4. negative semidefinite if $Q(x) \leq 0$ for all vectors x, with Q(x) = 0 occurring for some non-zero vectors x. Or all eigenvalues of A are non-negative.
- 5. indefinite if Q(x) can be positive or negative. Or there are positive and negative eigenvalues for A.

Definition 3 (Big O and little o). Big O is basically the rate of growth of that function. A function f(n) is of order 1, or O(1) if there exists some non zero constant c such that

$$\frac{f(n)}{c} \to 1$$

as $n \to \infty$.

Little o is the upper bound of the rate of growth of that function. Therefore, a function f(n) is of order 1, or o(1) if for all constants c > 0,

$$\frac{f(n)}{c} \to 0$$

as $n \to \infty$.

Definition 4 (Differentiability Based on Big o and Little o). If f is differentiable at x = a, then

$$f(a+h) = f(a) + f'(a)h + o(h)$$

Conversely, if there exists constants A and B such that

$$f(a+h) = A + Bh + o(h)$$

then f is differentiable at x = a. Moreover, A = f(a) and B = f'(a).

Definition 5 (Product Rule). If f, g are differentiable at x = a, then

$$f(a+h) = f(a) + f'(a)h + o(h), \quad g(a+h) = g(a) + g'(a)h + o(h)$$

Then

$$p(a + h) = f(a + h)g(a + h)$$

= $f(a)g(a) + [f(a)g'(a) + g(a)f(a)]h + o(h)$

Then by above theorem, p = fg is differentiable at x = a, and p'(a) = f(a)g'(a) + g(a)f'(a).

Definition 6 (Chain Rule). WIP

Definition 7 (Inner Product Space). Let $x \in \mathbb{R}^n$, represented as:

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

The inner product space is defined as:

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$$
 (dot product)

The angle between vectors x and y is given by $\cos(\theta) = \frac{\langle x, y \rangle}{\|x\|}$.

With corresponding norm to be the Euclidean Norm

Definition 8 (Open ball). Given $\delta > 0$, $\bar{x} \in \mathbb{R}^n$, the open ball $B_{\delta}(\bar{x}) = \{x \in \mathbb{R}^n \mid ||x - \bar{x}|| < \delta\}$

Definition 9 (map). Suppose the map $f: \mathbb{R}^n - > \mathbb{R}$.

Definition 10 (open set). Let $D \subset \mathbb{R}^n$, D open set. $\forall x \in D, \exists \delta > 0$, s.t $B_{\delta}(x) \subset D$

Definition 11 (differ). We define f to be in C^1, C^2 on an open set $D \subseteq \mathbb{R}^n$, denoted $f \in C^1(D), C^2(D)$, respectively, if the partial first $\frac{\partial f(x)}{\partial x_i}$ and second $\frac{\partial^2 f(x)}{\partial x_i \partial x_j}$ derivatives exist and are continuous for all i, j, respectively. We then get the gradient vector in \mathbb{R}^n and the $n \times n$ symmetric Hessian matrix, respectively denoted as:

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_i}\right) \in \mathbb{R}^n, \quad \nabla^2 f(x) = \left[\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right] \in \mathbb{S}^n.$$

Here, \mathbb{S}^n is the vector space of $n \times n$ symmetric matrices.

Definition 12 (General Nonlinear opt. function NLO). The general problem of nonlinear optimization, denoted NLO, is defined as follows: Given C²-smooth functions $f, g_i, h_j : D \subseteq \mathbb{R}^n \to \mathbb{R}$ for $i = 1, \ldots, m$ and $j = 1, \ldots, p$, where D is an open subset of \mathbb{R}^n , the objective is to find the optimal value p^* and an optimum x^* of NLO, represented as:

$$p^* := \min f(x)$$
 s.t. $q_i(x) \le 0$, $\forall i = 1, ..., mh_i(x) = 0$, $\forall j = 1, ..., px \in D$

If f, g_i, h_i are all **affine** function and $D=R^2$, then we have an LP

Definition 13 (affine).

$$f(x) = Ax + b \tag{1}$$

where $b\neq 0$

Definition 14 (Types of Minimality). Consider $f: \mathbb{R}^n \to \mathbb{R}$ and $D \subset \mathbb{R}^n$. Then $\bar{x} \in D$ is:

- a global minimizer for f on D if $f(\bar{x}) \leq f(x)$ for all $x \in D$.
- a strict global minimizer for f on D if $f(\bar{x}) < f(x)$ for all $x \in D$ where $x \neq \bar{x}$.
- a local minimizer for f on D if there exists $\delta > 0$ such that $f(\bar{x}) \leq f(x)$ for all $x \in D \cap B_{\delta}(\bar{x})$.
- a strict local minimizer for f on D if there exists $\delta > 0$ such that $f(\bar{x}) < f(x)$ for all $x \in D \cap B_{\delta}(\bar{x})$ where $x \neq \bar{x}$.

Definition 15 (Linear Approximation). Suppose f is a function that is differentiable on an interval I containing the point a. The **linear approximation** to f at a is the linear function

$$L(x) = f(a) + f'(a)(x - a)$$

for $x \in I$.

Definition 16 (Quadratic Approximation). Similar as above, the **quadratic approximation** to f at a is the quadratic function

$$Q(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^{2}$$

for $x \in I$.

Definition 17 (Formal Definition of Derivative). The **derivative** of f at a is defined as

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if the limit exists.

An alternate definition is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

1.2 Lecture 2

Definition 18 (General NLO/NLP). A **Non-linear Optimization Problem** (NLP) is of the following form:

$$p^* = \min$$
 $f(x)$
Optimal Value Objective function

s.t.

$$g(x) = (g_i(x)) \le 0 \in \mathbb{R}^m$$
$$h(x) = (h_i(x)) = 0 \in \mathbb{R}^p$$

Example 2.

$$\min(x_1 - 2)^2 + (x_2 - 1)^2$$

s.t.

$$x_1^2 - x_2 \le 0$$
 $(g_1(x) \le 0)$
 $x_1 + x_2 - 2 \le 0$ $(g_2(x) \le 0)$

Definition 19 (Contour). For $\alpha \in \mathbb{R}$, the **contour** of a function f is

$$C_{\alpha} = \{ x \in \mathbb{R}^n : f(x) = \alpha \}$$

Definition 20 (Feasible Set). The feasible set is

$$F = \{ x \in \mathbb{R}^n : g(x) \le 0, h(x) = 0, x \in D \}$$

(Is D the domain??)

Definition 21 (Gradient). The **gradient** of f is

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

For the optimal solution x^* , we have

$$\alpha \nabla f(x^*) = \lambda_1 \nabla g_1(x^*) + \lambda_2 \nabla g_2(x^*)$$

for some $\alpha, \lambda_1, \lambda_2 \in \mathbb{R}$.

We will see later that we can choose $\alpha = 1$ and we need $\lambda_1 \ge 0, \lambda_2 \ge 0$.

Example 3 (Max-cut Problem). Given a weighted graph $G = (\underbrace{V}_{\text{vertices}}, \underbrace{E}_{\text{weight}}, \underbrace{w}_{\text{weight}})$, a **cut** is $U \subseteq V, U \neq \emptyset$.

The objective function

$$\max \quad \frac{1}{2} \sum_{\substack{i \in U, j \notin U \\ (i,j) \in E}} w_{i,j}$$

maximizes the sum of edges in a cut.

Formulating as an NLP, we introduce variables $x_i \in \{\pm 1\}, i = 1, ..., n$. Then the Max-cut problem (MC) is as follows:

$$\max \quad \frac{1}{2} \sum_{ij \in E} w_{ij} (1 - x_i x_j)$$

Why 1/2 s.t.

$$x_i \in \{\pm 1\}$$
 (equivalent to $x_i^2 = 1$) $\forall i = 1, \dots, n$

This works because

$$1 - x_i x_j = \begin{cases} 0 & \text{if } x_i = x_j \\ 2 & \text{otherwise} \end{cases}$$
 (i, j in the same set, U or U^c)

MC is a quadratically constrained quadratic program (QOP) since each constraint $x_i \in \{-1, 1\}$ is equivalent to the quadratic constraint $x_i^2 = 1$. Note that MC is an NP-hard problem.

2 Unconstrained Optimization

2.1 Lecture 2

Example 4 (Simplest Case - No Constraints). Let $\Omega \subseteq \mathbb{R}^n$ be an open set. Assume f is sufficiently smooth (differentiable) then the NLP with no constraints is

$$\min_{x \in \Omega} \quad f(x)$$

Theorem 1 (Taylor's Theorem on the real line). Let $f:(a,b)\to\mathbb{R}$, and $\bar{x},x\in(a,b)$, then there exists z strictly between x,\bar{x} such that

$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + \frac{f''(z)}{2}(x - \bar{x})^2$$

or equivalently

$$f(\bar{x} + \delta x) = \underbrace{f(x) + f'(x)\delta x}_{\text{t. }} + o(|\delta x|) \text{(little O)}$$

Lemma 1 (Directional Derivative). Let $f: \mathbb{R}^n \to \mathbb{R}, \bar{x}, d \in \mathbb{R}^n$ where d is the direction. We define

$$\phi(\epsilon) = f(\bar{x} + \epsilon d) : \mathbb{R} \to \mathbb{R}$$

Then the **directional derivative**, denoted f'(x;d) of f at x at the direction d is

$$f'(x;d) = \phi'(0) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon d) - f(x)}{\epsilon} = \nabla f(x)^T d$$

Example 5. Let $f(x, y, z) = x^2z + y^3z^2 - xyz$ with $d = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix}$ Then the **directional derivative** in the direction d is

$$\nabla f(x,y,z)^T d = \begin{pmatrix} 2xz - yz \\ 3y^2z^2 - xz \\ x^2 + 2y^3z - xy \end{pmatrix}^T \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} = -2xz + yz + 3x^2 + 6y^3z - 3xy$$

Corollary 1. Let $f:(a,b)\to \mathbb{R}$

- 1. If \bar{x} is a local minimizer of f on (a,b), then $f'(\bar{x}) = 0$ and $f''(\bar{x}) \ge 0$.
- 2. If $f(\bar{x}) = 0$, $f''(\bar{x}) > 0$ then \bar{x} is a strict local minimizer of f.

Definition 22 (Hessian). The **Hessian** of f at $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ is the matrix

$$\nabla^{2} f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_{1}^{2}} & \frac{\partial f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial f(x)}{\partial x_{1} \partial x_{n}} \\ \frac{\partial f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial f(x)}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial f(x)}{\partial x_{n}^{2}} \end{pmatrix}$$

2.2 Lecture 3

Definition 23 (Matrix Norm).

$$||Q|| = max_{||x||=1} ||Qx|| = \text{Largest singular value of A}$$

Definition 24. Define f,D,\bar{x},D is an open set, suppose \bar{x} is a local minimum for f on D, Then:

1. Nec: $\nabla f(\bar{x}) = 0, \nabla^2 f(\bar{x}) \ge 0$ positive semidefinite

2. Suff: $\nabla f(\bar{x}) = 0, \nabla^2 f(\bar{x}) > 0$ positive definite $\implies \bar{x}$ is a strict local minmum on Define

Proof. 1. updated later after I confirmed some details with the professor

Example 6 (Algorithm to find Min using Nec above). Given $f:\mathbb{R} \implies \mathbb{R}$ and $f'(\bar{x}) \neq 0$, then $x_{new} = \bar{x} - slop * f'(\bar{x})$.

Example 7. Given $f:\mathbb{R}^n \implies \mathbb{R}$, $\phi(\epsilon) = f(\bar{x} + \epsilon d)$ using tylar expansion $f(\bar{x} + \epsilon d) = f(\bar{x}) + \epsilon \nabla f(\bar{x})^T d + o(\|\epsilon\|)$ shouldnt be ϵd ? or d is the unit vector

let
$$d=-\nabla f(\bar x)$$
, $\mathbf{f}(\bar x)-\epsilon\|f(\bar x)\|^2+o(\epsilon)$. $< f(x)$ (if $\nabla f(\bar x)\neq 0$) i.e test nec condition

If $\nabla f(\bar{x}) \neq 0$, then $x_{new} = \bar{x} + \epsilon(-\nabla f(\bar{x}))$ Move to the deapest direction

Definition 25 (Cauchy's method of steepest descant). https://www.math.usm.edu/lambers/mat419/lecture10.pdf $x_0 \in \mathbb{R}^n$.

$$Is\nabla f(x_k) \approx 0$$
?IF yes Stop

.

$$O.W$$
, find a $Stop \alpha > 0$
 $x_{k+1} = x_k - \alpha \nabla f(x_k)$

repeat

Example 8.
$$f(x,y) = x^3 - 12xy + 8y^3$$

$$\nabla f(x,y) = \begin{pmatrix} 3x^2 - 12y \\ -12x + 24y^2 \end{pmatrix}. \ \nabla^2 f(x,y) = \begin{pmatrix} 6x & -12 \\ -12 & 48y \end{pmatrix}.$$

$$\nabla f = 0 \implies (x,y) = (0,0)or(2,1)$$

$$\nabla^2 f(2,1) = \begin{pmatrix} 12 & -2 \\ -12 & 48 \end{pmatrix}$$

All leading principal minors are positive \implies strict local minimum while (0,0) are indefinite and this is called **inflection point**