Error-Control Methods

Computer Networks Lecture 3

Feedback Implementation Options

- Positive (ACK) and negative (NAK) acknowledgments
- Sending back the CRC of the received packet
- Sending back the whole data frame

Note that both data packets and acknowledgments may be **damaged** or **lost** in during the transfer

Packet Numbering

- Used to ensure the proper packet sequencing
- Allows to detect missing packets
- Protects against duplicated packets coming to the receiver
 - e.g. in case of the packet retransmissions caused by lost ACKs

Communication Protocol

- A set of syntactic and semantic rules for communication of two or more devices
 - Includes definition of timing, e.g. timeout handling
- May include procedures to detect/correct errors

Error Control Methods

Common Protocols to Ensure Error-Free Communication between Transmitter and Receiver

Acknowledgment Types

- positive (ACK) acknowledges a correct reception
 - transmitter is blocked if ACK is lost
- negative (NAK) informs about reception of erroneous packet
 - it is not sufficient by itself as a error-control method, but makes the error detection faster
- combined approach uses both ACKs and NAKs

Retransmission Timeouts

- The problem of transmitter blocking in case of lost ACK may be solved by introduction of a waiting timeout
 - Automatic Repeat reQuest (ARQ) methods
- Complicates the formal protocol description
 - It is necessary to introduce time context
- Selection of an optimal timeout duration is a tradeoff between 2 conflicting requirements:
 - a need to detect error and retransmit lost/damaged packet as soon as possible
 - avoiding of unnecessary network load caused by early retransmissions

"Two Generals' Problem"

- State synchronization over an unreliable channel
 - may not be reached with a finite number of message exchanges
- A receiver is never sure whether its acknowledgment successfully arrived to the transmitter

Error-Control Protocol Classification (1)

- Stop-and-wait
 - Transmitter sends just one frame at a time and waits for its acknowledgment
 - If no acknowledgement comes during a specified time period, the frame is automatically repeated
 - Automatic Repeat reQuest (ARQ)
 - Very inefficient on channels with a long propagation delay

Error-Control Protocol Classification (2)

- Pipelining
 - Necessary for links with a long propagation delay
 - also in case of communication over intermediate systems, as in the Internet
 - A transmitter may send a group of frames without waiting for individual frames' ACKs
 - 100% efficiency may be reached
 - on full-duplex links
 - ACKs are commonly treated as inclusive
 - i.e. acknowledge all packets up to the specified sequence number (note the integer overflow issues)
 - Protects against the situation when some ACKs are lost
 - Saves the bandwidth by limiting the number of ACKs
 - There is a possibility to delay ACK for some time and combine ACKs of multiple data frames that arrived during the delay interval

Sliding Window Protocols

Sliding Window – Basic Principle (1)

- Transmitter may send multiple frames without waiting for an ACK
 - The maximum number is given by the sending window size
- A separate timeout timer is started after transmission of every frame
 - a frame is maintained in a sending window until it is acknowledged
 - if a timeout expires, the frame is retransmitted

Sliding Window – Basic Principle (2)

- Receiver sends ACK after each successfully received frame
 - In case of reception of an erroneous frame, receiver sends NAK or silently discards it, causing the transmitter's timeout to expire
- A transmitter can discard the "oldest" frame from the sending window after it is acknowledged
 - and shift the window, i.e accept the another frame for transmission from the upper layer

Buffers in Sliding Window

- Sending Window maintains the frames that were transmitted but were not acknowledged yet
 - they might have been potentially lost and thus have to be retransmitted again in case of timeout expiration
- Receiving Window maintains the received frames that could not be passed to the upper layer because previous packet(s) of the sequence are still missing

Both windows "slide" over a set of sequence numbers

Sliding Window Example

Alternative Approaches of Processing Out-of-order in Sliding Window

- Go-Back-N
- Selective Repeat

The methods differ in the way they react to the erroneous or lost frame

 The receiver may detect a lost frame when the following frame with a greater sequence number arrives

Go-Back-N

- Receiver discards all frames following the missing one
 - Receiver does not ACK such frames (it still repeats ACK for the last correctly received frame)
- The receiving window size is 1 frame
- If a frame in a sending window times out, the transmitter also retransmits all the following frames in sending window
 - even in case they arrived to the receiver, the receiver discarded them
- The receiver implementation is simple, but wastes the network capacity

Go-back-N: An Example

Go-back-N: Example of Usage of Sending and Receiving Window

Sender

Selective Repeat

- Receiver buffers (correct) out-of-order frames
 - If there is a frame missing in a sequence, passing of data to the upper layer is delayed until the successful reception of (the retransmitted) frame
- If a timeout expires, the sender selectively repeats just the single frame
- Receiver always acknowledges the last frame of the correctly received frame sequence
- The operation may be optimized by sending NAKs for out-of-order or erroneous frames
 - transmitter does not have to wait for timeout expiration before retransmission

Selective Repeat: An Example with NAK

Relationship between Sending Window Size and a Number of Utilized Sequence Numbers

If w is the sending window size and n is a number of sequence numbers:

- w<n for Go-back-N</p>
 - otherwise we would not be able to detect loss of all frames in the sending window
- w <= n/2 for Selective repeat:</p>
 - Because there is an overlap of the receiving and sending window

Flow Control

- It may be necessary to temporarily stop the transmitter if the receiver application does not consume data fast enough and receiving window becomes full.
 - Receiver advertises the remaining receiving window size to the transmitter
 - Transmitter dynamically adapts the sending window size accordingly
- •Utilized e.g. in TCP protocol

Efficiency of Error Control Protocols

Stop and Wait

$$e_f = \frac{l_m}{l_m + cT + l_a + cT} = \frac{l_m}{l_m + l_a + 2cT}$$

Stop and Wait Efficiency Examples

- Modem link optimized by
 - Im=80B, Ia=1B, c=14400 bps, T=1ms, ef=94.56%
- Satellite link
 - Im=80B, Ia=1B, c=14400 bps, T=270 ms, ef=7.6%

After extension of frame length to $8 \times \text{original size}$:

- Modem link
 - Im=640B, Ia=1B, c=14400 bps, T=1ms, ef=99.28%
- Satellite link
 - Im=640B, Ia=1B, c=14400 bps, T=270 ms, ef=40.38%

The extension of frame length improves the efficiency, but the whole (long) frame has to be discarded in case of error.

Sliding Window

$$e_f = \frac{M.l_m}{l_m + cT + l_a + cT} = \frac{M.l_m}{l_m + l_a + 2cT}$$

Reaching of 100% Efficiency using Sliding Window

Let's think about following task ...

Calculate a minimal size of a sending window for a given data and ACK frame lengths and transmission channel bit rate and delay.

Problems of Communication in the Real Network

- Packets may be damaged or lost
 - it is necessary to introduce a feedback to correct errors

- Packets may arrive out of order if there are alternate paths over the network
 - It is needed to insert sequence numbers into packets

Packets may be duplicated in some cases