1. Selberg trace formula for $GL(2, \mathbf{F}_q)$

• Fourier Analysis on finite groups and applications, Chapter 23.

Theorem 1.1 (Selberg trace formula for finite symmetric spaces G/K). Suppose that G/K is a finite symmetric space and Γ is a subgroup of G. If f is a K-bi-invariant function on G and $\rho = \operatorname{Ind}_{\Gamma}^G \mathbb{1}$, then

$$\sum_{\pi \in \widehat{G}^K} m(\pi, \rho) (\mathscr{F} f)(\pi) = \sum_{\{\gamma\} \in \Xi_{\Gamma}} \frac{|G_{\gamma}|}{|\Gamma_{\gamma}|} I_G(f, \gamma).$$

Definition 1.2 ($\{\gamma\}$, G_{γ} , Γ_{γ} , Ξ_{γ}).

Definition 1.3 (Spherical transform $\mathscr{F}f$ and \widehat{G}^K). The G-representations that appear in $\mathrm{Ind}_K^G\mathbbm{1}$ (or $L^2(G/K)$) is denoted by \widehat{G}^K .

Definition 1.4 (Orbital sum $I_G(f,\gamma)$). The orbital sum of f at γ is

$$I_G(f,\gamma) = \sum_{x \in G_{\gamma} \setminus G} f(x^{-1}\gamma x).$$

2. Selberg trace formula examples

- Fourier analysis on finite groups with applications, Chapter 23.
- Harmonic analysis database, $GL(2, \mathbf{F}_q)$ conjugacy classes.

2.1.
$$G = GL(2, \mathbf{F}_q), \Gamma = GL(2, \mathbf{F}_q), K = \begin{pmatrix} x & y\delta \\ y & x \end{pmatrix}$$
.