Introduction to Statistics for the Social Sciences

Kyle Thomas

10/13/2010

kathomas@fas.harvard.edu

Populations and Samples

- <u>Population</u>—The entire collection of relevant people or events
 - E.g., Everyone in the United States, everyone in a class, everyone with a disorder, etc.
- Parameters Measures of populations (Greek)
- <u>Sample</u>—Some subset of an entire collection of relevant people or events
 - E.g., Some Americans, one class out of a high school, some people with a disorder, etc.
- <u>Statistics</u>—Measures calculated from samples (Roman—our alphabet)

Types of Variables

- Independent variable—The variable that is manipulated experimentally, or pseudoexperimentally
 - E.g., drug vs. placebo, gender, etc.
- Dependent variable—The "outcome variable," the variable that is measured to observe the hypothesized effect
 - E.g., test score, pain tolerance, rating of something, etc.

Types of Measurement

- How you measure something impacts what kinds of analysis you can do
- Nominal (categorical)—variables measured as categories
 - E.g., ethnicity, gender, location, etc.
- Ordinal (ranked)—variables can be ranked in some meaningful way, but gaps between values are uneven
 - E.g., ranking in race, class rank
- Must use non-parametric tests for these if they are the dependent variable

Types of Measurement

- Interval—Variables measured numerically where the distance between points is equal
 - E.g., 7-point scales, Fahrenheit temperature, etc.
- <u>Ratio-scale</u>—Same as interval, but with a meaningful 0-point
 - Allow statements like "subject A did twice as well as subject B"
 - E.g., GPA, Kelvin temperature, etc.
- Dependent variable needs to be measured at one of these levels for *parametric* statistics to be used!

Distributions and Parametric Statistics

- <u>Distribution</u>—A collection of scores
 - Parametric statistics assume a normal distribution
 - Normal distribution is a mathematical abstraction, never exactly exists, but stats are robust to violations of this assumption

Descriptive Statistics

- Measures that describe distributions
- Measures of central tendency
 - Mean Average of a sample (X) or a population (μ)
 - The mean of a population is typically the best guess for any given score in that population
 - Similarly, the mean of a sample is the best guess for the mean of the population it comes from
 - Median—The value that divides the distribution into 2 equal size pieces
 - Mode—The most common number in a distribution

Descriptive Statistics

- Measures of dispersion, or how "spread out" the data are
- Variance—A measure of dispersion, how much scores are spread out in a distribution

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

- $\sigma^2 = \frac{\sum (X \mu)^2}{N}$ Standard Deviation—The "average amount" that scores vary from the mean
 - Square root of variance $\sigma = \sqrt{\sigma^2}$

Inferential Statistics

- These are used when one wants to do more than just describe something
- They are used to make inferences about populations from samples
 - Populations can be real (e.g., all Harvard students)
 - Or hypothetical (e.g., all depressed people that take Prozac)
- Usually in research we want to know about populations, but we can only measure samples
 - Inferential statistics tell us if what we observe about samples generalizes to populations

Null Hypothesis Statistical Testing

- Usually in research we are testing hypotheses about how groups relate to each other
- To do this we must use NHST
- The question NHST allows us to ask is, "what is the probability that a sample was drawn from a specific population?"
- Or, more commonly, "what is the probability that multiple samples were drawn from the same population?"
 - If this probability is low we assume there is some meaningful difference between groups

NHST

- Usually in research we want to know if two groups are the same, if some manipulation has an effect, etc.
 - This is our research hypothesis μ_1 ≠ μ_2
- These questions must be mapped onto the statistical logic of populations and samples
 - E.g., If the drug does have an effect these two groups would be two different populations (because they are different on our measure)
 - Conversely, if some drug has no effect, then people that take the drug and those that do not form one population (because they are not different on our measure)

NHST

- In order to test if our research hypothesis is true, we must compare it to a null hypothesis which is different
- Null hypothesis (statistically defined)—All samples come from one population ($\mu_1 = \mu_2$)
- <u>Null hypothesis (conceptually defined)</u>—The groups are not different; there is no effect; etc.
 - ***This is not the same as saying the research hypothesis is false***

NHST

- First we set up our null hypothesis:
 - Mean of population 1 = Mean of population 2
- And our research hypothesis:
 - Mean of population 1 ≠ Mean of population 2
- We can never say whether our research hypothesis is true
 - Karl Popper: It is impossible to "prove" any hypothesis, we can only argue it is our best explanation for any given data
 - Statistics: One cannot 100% say that two samples come from different populations if we do not know the population distributions
- We can only evaluate how likely the null hypothesis is to be true with inferential statistics.
 - If it is unlikely that both samples came from one population, then we assume our research hypothesis is a better explanation of the data

Z-Score

- Used to standardize a raw score
- Tells you how many standard deviations a score is off from the mean (z-score = number of standard deviations a score is off the mean)

$$Z = \frac{X - \mu}{\sigma}$$

Z-Test

- Used when you have a sample from a population with a known mean and standard deviation (μ , σ)
- Uses <u>Standard Error of the Mean</u>—the standard deviation of a sampling distribution

$$Z = \frac{\overline{X} - \mu}{\sigma_{\overline{X}}} \qquad \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{N}}$$

Single Sample t-test

- Used when [null hypothesis'] population mean is known, but not population standard deviation
- Population standard deviation estimated from sample's standard deviation

$$t = \frac{\overline{X} - \mu}{S_{\overline{X}}}$$

$$S_{\overline{X}} = \frac{S_X}{\sqrt{N}} = \frac{\sqrt{\frac{\sum (X - \overline{X})^2}{N - 1}}}{\sqrt{N}}$$

Independent Samples t-test

- Used when neither [null hypothesis'] population mean or standard deviation is known
- Mean estimated from control group usually, standard deviation estimated from the standard deviation of both samples

$$t = \frac{\overline{X_1} - \overline{X_2}}{S_{pooled}} \qquad S_{pooled} = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

Paired Samples t-test (a.k.a. dependent samples, within-subjects)

- Single sample t-test with a difference score
- A difference score is calculated by subtracting each subject's score on one item (e.g., posttest) from that subject's score on another item (e.g., pre-test)

$$t=rac{\overline{D}-\mu_D}{S_{\overline{D}}}$$
 μ = 0 by assumption

- Compares more than 2 groups on 1 dependent variable
 - 1 categorical Independent Variable with more than 2 levels
 - 1 Interval-level Dependent Variable
- Tests omnibus null hypothesis: $\mu_1 = \mu_2 = \mu_3 \dots$
- Contrasts and post-hoc tests done to check for specific hypotheses: e.g., $\mu_1 > \mu_2$

- Within-group variance is an estimate of random variance
- Between-group variance is an estimate of systematic and random variance
- Compares variance between the different groups to the variance within the different groups

$$F = \frac{S_{between}^2}{S_{within}^2}$$

Compares signal to noise ratio

$$F = \frac{Signal + Noise}{Noise}$$

Compares "expected" to observed

$$F = \frac{Observed}{"Expected"}$$

 Compares the ratio of the populations these two measures would have likely come from

$$F = \frac{S_{between}^2}{S_{within}^2}$$

Factorial ANOVA

- Used when you have more than 1 categorical independent variable (e.g., gender and drug/ placebo)
- Also tests omnibus null: $\mu_1 = \mu_2 = \mu_3 \dots$
- But can test it for groups that vary on two or more independent variables: $\mu_{1A} = \mu_{1B} = \mu_{2A} = \mu_{2B} \dots$
- Can also do post hoc tests and contrasts

Factorial ANOVA

- Variables must have multiple levels
- Can look at <u>Interactions</u>—when the effect of one variable depends upon the level of the other variable

Factorial ANOVA

- Between-Subjects—where different subjects are in different conditions
- Within-Subjects—when all subjects are in all conditions, and are compared to themselves
- <u>Mixed-Model</u>—Some variables are withinsubjects, some are between-subjects

Non-parametric Statistics

- These must be used if your distribution is sufficiently non-normal, or if your dependent variable is not at least on an interval scale
- There are non-parametric analogs of all the previous tests, except mixed-model ANOVAs
- You can lose substantial power
- Chi-square; Mann-Whitney; Kruskal-Wallis;
 Sign Test; Wilcoxon; Friedman

Correlation

- Measures how two variables "track" each other, or co-vary
- Cannot infer causation
- Can be done for frequencies of nominal variables

$$r_{XY} = \frac{Cov_X Cov_Y}{\sigma_X \sigma_Y} = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{S_X S_Y (n - 1)}$$

Regression

- Glorified slope intercept!
- Can take interval DVs and IVs

$$y = mx + b$$

$$X_{predicted} = \beta_1 X_1 + \beta_0$$
Regression coefficient Intercept

Prediction for score on Variable X

Score on variable 1

Regression

 <u>Slope</u>—How one variable changes with another (sometimes just correlation)

Regression

• Intercept—The value of our predicted variable $(X_{predicted})$ when the value of our predictor variable (X_1) is 0

$$X_{predicted} = \beta_1 X_1 + \beta_0$$

$$X_{predicted} = \beta_1 (0) + \beta_0$$

$$X_{predicted} = \beta_0$$

Regression Logic

 Mean as best guess for random score, if you do not have better information

All People from Population

Regression Logic

 However, if two variables are related, you can use one to predict the value of the other one and get a better prediction than the mean

Multiple Regression

 Uses multiple independent variables to predict a dependent variable

$$X_{predicted} = \beta_1 X_1 + \beta_2 X_2 + \beta_0$$

- Mathematically, tries to capture only the unique contribution of each variable
 - *Caution* This cannot be done perfectly since regression works off of correlation, so more sophisticated techniques are needed to infer causality

Thanks!

