

- < 1 < 5 5 1 P 2)
  < 1 < 4 < 5 1 P 2)
  < 1 < 4 < 5 1 P 2)
  < 1 < 4 < 5 1 P 2)
  < 1 < 4 < 5 1 P 2)
  < 1 < 4 < 5 1 P 2)
  < 1 < 4 < 5 1 P 2)
- If  $\checkmark 5$ . Let  $f_n \in \mathcal{R}[a, b]$  for  $n \in \mathbb{N}$  and  $f_n \to f$  uniformly on [a, b]. Show that  $f \in \mathcal{R}[a, b]$  and  $f_n \to f$  uniformly on [a, b]. Show that  $f \in \mathcal{R}[a, b]$  and  $f_n \to f$  uniformly on  $f_n \to f$  uniformly on f

  - 7. Consider the metric space C[a,b] of real-valued continuous functions on [a,b] under the sup-metric. Prove that C[a,b] is complete. Let  $f \in C[0,1]$  and  $\int_0^1 f(x)x^n dx = 0$  for  $n = 0, 1, 2, \ldots$  Show that  $f(x) = 0 \ \forall x \in [0,1]$ . (3+2=5)
  - 8. If an equicontinuous family  $\mathcal{E} \subseteq C[a,b]$  is pointwise bounded, then show that it is uniformly bounded. Let  $f_n(x) = \frac{x^2}{x^2 + (nx 1)^2}$  and  $g_n(x) = \frac{x^n}{n}$  for  $x \in [0,1]$  and  $n \in \mathbb{N}$ . Show that  $\{f_n : n \in \mathbb{N}\}$  is not equicontinuous, while  $\{g_n : n \in \mathbb{N}\}$  is an equicontinuous family of C[0,1].
- 9. Let  $\{e_1, \ldots, e_n\} \subset \mathbb{R}^n$  and  $\{u_1, \ldots, u_m\} \subset \mathbb{R}^m$  be standard bases. Let  $E \subseteq \mathbb{R}^n$  be open,  $f: E \to \mathbb{R}^m$  be a mapping and  $f(x) = \sum_{i=1}^m f_i(x)u_i$  for  $x \in E$ . Let  $a \in E$ . Define the total derivative f'(a) and the partial derivatives  $D_j f_i(a)$  for  $1 \le i \le m$ ;  $1 \le j \le n$ . Show that the matrix mat(f'(a)) of f'(a) w.r.t. the standard bases is the Jacobian matrix  $J_f(a) = [D_j f_i(a)]_{m \times n}$  of f at a. (1+1+3=5)
- ✓10. State inverse function theorem. Let  $E = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 \neq -1\}$  be open and for  $x = (x_1, x_2) \in E$ , let  $f(x) = \left(\frac{x_1}{1 + x_1 + x_2}, \frac{x_2}{1 + x_1 + x_2}\right)$ . Show that the inverse function theorem can be applied to f at  $a = (1, 1) \in E$  and thus deduce that f is (locally) invertible in a neighbourhood of the point a. Does the inverse  $f^{-1}$  of  $f: E \to f(E)$  exist? Is  $f^{-1}$  a  $C^1$ -mapping? Explain. (1+2+1+1=5)
  - (OR) State implicit function theorem. Let  $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$  be the mapping given by  $f(x,y) = (x_1y_1^2 + x_2, x_1x_2^2 + y_1^2y_2^2)$  for  $x = (x_1, x_2)$  and  $y = (y_1, y_2)$ . Let a = (-1, 1) and b = (1, 1). Determine a neighbourhood V of a = (-1, 1) in  $\mathbb{R}^2$  and a  $C^1$ -mapping  $g: V \to \mathbb{R}^2$  such that g(a) = b and f(x, g(x)) = 0 for all  $x \in V$ . (2+1+2=5)

(End of the Question Paper)

