Listing of Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

1. (Original) A compound having the formula (I),

and their N-oxides, salts, stereoisomeric forms, racemic mixtures, prodrugs, esters and metabolites thereof, wherein

X is

A, also mentioned as "A-ring", together with the two carbons of the phenyl ring to which it is attached forms a monocyclic aryl or a monocyclic Het²;

- R^1 is hydrogen, halogen, nitro, cyano, sultam, sultim, $C_{3\text{-7}}$ cycloalkyl, $C(=O)\text{-R}^5$, $S(=O)_y\text{-R}^6$, OR^7 , NR^8R^9 , $C(=NR^8)\text{-R}^5$, optionally polysubstituted $C_{1\text{-6}}$ alkyl, optionally polysubstituted $C_{2\text{-6}}$ alkenyl or optionally polysubstituted $C_{2\text{-6}}$ alkynyl; whereby the optional substituents on $C_{1\text{-6}}$ alkyl, $C_{2\text{-6}}$ alkenyl and $C_{2\text{-6}}$ alkynyl are each independently selected from halogen, nitro, cyano, $C_{3\text{-7}}$ cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)\text{-R}^5$, $S(=O)_y\text{-R}^6$, OR^7 , and NR^8R^9 ;
- R^2 is hydrogen, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^5$, $S(=O)_y-R^6$, OR^7 , NR^8R^9 , $C(=NR^8)-R^5$, or optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl or optionally polysubstituted C_{2-6} alkynyl; whereby the optional

- substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $\text{C}(=\text{O})\text{-R}^5$, $\text{S}(=\text{O})_y\text{-R}^6$, OR^7 , and NR^8R^9 ;
- R^3 is hydrogen, halogen, nitro, cyano, $C_{3\text{-}7}$ cycloalkyl, aryl, $C(=O)\text{-}R^5$, $S(=O)_y\text{-}R^6$, OR^7 , NR^8R^9 , optionally polysubstituted $C_{1\text{-}6}$ alkyl, optionally polysubstituted $C_{2\text{-}6}$ alkenyl or optionally polysubstituted $C_{2\text{-}6}$ alkynyl; whereby the optional substituents on $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl and $C_{2\text{-}6}$ alkynyl are each independently selected from halogen, nitro, cyano, $C_{3\text{-}7}$ cycloalkyl, aryl, $C(=O)\text{-}R^5$, OR^7 , and NR^8R^9 ;
- R⁴ is hydrogen, halogen, nitro, cyano, C₃₋₇cycloalkyl or C₁₋₆alkyl; y represents an integer being zero, one or two;
- R⁵ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_v-R¹¹, OR¹², and NR⁸R¹³;
- R⁶ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R⁷ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano,C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R^8 is hydrogen, aryl, Het^1 , Het^2 , C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl or polyhalo C_{1-6} alkyl;
- R⁹ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, C(=NR⁸)-R⁵, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from

- halogen, nitro, cyano, C_{3-7} cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹² and NR⁸R¹³;
- R¹⁰ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, NR⁸-S(=O)_y-R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;
- R¹¹ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸-R⁸, NR⁸-C(=O)-R⁸, NR⁸-S(=O)_y-R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;
- R¹² is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;
- R¹³ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸,

 $S(=O)_y$ -OR⁸, $S(=O)_y$ -NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;

R¹⁴ is hydrogen, phenyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl; aryl as a group or part of a group represents a monocyclic or polycyclic aromatic or a partially saturated monocyclic or polycyclic carbocycles wherein any such carbocycle within the meaning of aryl may have up to 14 carbon atoms and may be optionally substituted with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R⁸, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴R¹⁴, NR¹⁴-O-C(=O)-R¹⁴, NR¹⁴-C₁₋₆alkanediyl-NR¹⁴-Het¹, NR¹⁴-C₁₋₆alkanediyl-NR¹⁴-Het², optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl and optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, Het¹, Het², C(=O)-Het¹, C(=O)-Het², and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, O-C₁₋₆alkyl, and C₁₋₆alkanediyl-NR¹⁴R¹⁴:

Het¹ as a group or part of a group represents a saturated or partially unsaturated monocyclic, bicyclic or tricyclic heterocycle having 3 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, C(=O)-R¹⁴, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴R¹⁴, NR¹⁴-O-C(=O)-R¹⁴, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted C₂₋₆alkynyl and optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, O-C₁₋₆alkyl, and C₁₋₆alkanediyl-NR¹⁴R¹⁴;

Het² as a group or part of a group represents an aromatic monocyclic, bicyclic or tricyclic heterocycle having 5 to 14 ring members, which contains one or more

heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C_{3-7} cycloalkyl, $C(=O)-R^{14}$, $S(=O)_y-R^{14}$, OR^{14} , $NR^{14}R^{14}$, $NR^{14}-O-C(=O)-R^{14}$, optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl and optionally polysubstituted phenyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, phenyl, $C(=O)-R^{14}$, OR^{14} , and $NR^{14}R^{14}$; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C_{1-6} alkyl, polyhalo C_{1-6} alkyl, $O-C_{1-6}$ alkyl, and C_{1-6} alkanediyl- $NR^{14}R^{14}$;

for use as a medicine.

- 2. (Currently Cancelled)
- 3. (Original) A compound having the formula (I)

its N-oxide, salt, stereoisomeric form, racemic mixture, prodrug, ester or metabolite thereof, wherein

X is

- A, also mentioned as "A-ring", together with the two carbons of the phenyl ring to which it is attached forms a monocyclic aryl or a monocyclic Het²;
- R^1 is hydrogen, halogen, nitro, cyano, sultam, sultim, C_{3-7} cycloalkyl, $C(=O)-R^5$, $S(=O)_y-R^6$, OR^7 , NR^8R^9 , $C(=NR^8)-R^5$, optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl or optionally polysubstituted C_{2-6} alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^5$, $S(=O)_y-R^6$, OR^7 , and NR^8R^9 ;
- R² is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, C(=NR⁸)-R⁵, or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, and NR⁸R⁹;
- R^3 is hydrogen, halogen, nitro, cyano, $C_{3\text{--}7}$ cycloalkyl, aryl, $C(=O)\text{--}R^5$, $S(=O)_y\text{--}R^6$, OR^7 , NR^8R^9 , optionally polysubstituted $C_{1\text{--}6}$ alkyl, optionally polysubstituted $C_{2\text{--}6}$ alkenyl or optionally polysubstituted $C_{2\text{--}6}$ alkynyl; whereby the optional substituents on $C_{1\text{--}6}$ alkyl, $C_{2\text{--}6}$ alkenyl and $C_{2\text{--}6}$ alkynyl are each independently selected from halogen, nitro, cyano, $C_{3\text{--}7}$ cycloalkyl, aryl, $C(=O)\text{--}R^5$, OR^7 , and NR^8R^9 ;
- R^4 is hydrogen, halogen, nitro, cyano, C_{3-7} cycloalkyl or C_{1-6} alkyl; y represents an integer being zero, one or two;
- R⁵ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R⁶ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;

- R⁷ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano,C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R⁸ is hydrogen, aryl, Het¹, Het², C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl or polyhaloC₁₋₆alkyl;
- R⁹ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, C(=NR⁸)-R⁵, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano,C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹² and NR⁸R¹³;
- R¹⁰ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, NR⁸-S(=O)_y-R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;
- R¹¹ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, NR⁸-S(=O)_y-R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;
- R^{12} is hydrogen, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^8$, $C(=O)-OR^8$, $C(=O)-NR^8R^8$, $S(=O)_y-R^8$, $S(=O)_y-OR^8$, $S(=O)_y-NR^8R^8$, optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl or optionally polysubstituted

 C_{2-6} alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^8$, $C(=O)-OR^8$, $C(=O)-NR^8R^8$, $S(=O)_y-R^8$, $S(=O)_y-NR^8R^8$, OR^8 , OR

R¹³ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;

R¹⁴ is hydrogen, phenyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl; aryl as a group or part of a group represents a monocyclic or polycyclic aromatic or a partially saturated monocyclic or polycyclic carbocycles wherein any such carbocycle within the meaning of aryl may have up to 14 carbon atoms and may be optionally substituted with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R⁸, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴R¹⁴, NR¹⁴-O-C(=O)-R¹⁴, NR¹⁴-C₁₋₆alkanediyl-NR¹⁴-Het¹, NR¹⁴-C₁₋₆alkanediyl-NR¹⁴-Het², optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl and optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, Het¹, Het², C(=O)-Het¹, C(=O)-Het², and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, O-C₁₋₆alkyl, and C₁₋₆alkanediyl-NR¹⁴R¹⁴;

Het¹ as a group or part of a group represents a saturated or partially unsaturated monocyclic, bicyclic or tricyclic heterocycle having 3 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where

possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C_{3-7} cycloalkyl, $C(=O)-R^{14}$, $S(=O)_y-R^{14}$, OR^{14} , $NR^{14}R^{14}$, $NR^{14}-O-C(=O)-R^{14}$, optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl, optionally polysubstituted C_{2-6} alkynyl and optionally polysubstituted phenyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, phenyl, $C(=O)-R^{14}$, OR^{14} , and $NR^{14}R^{14}$; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C_{1-6} alkyl, polyhalo C_{1-6} alkyl, $O-C_{1-6}$ alkyl, and C_{1-6} alkanediyl- $NR^{14}R^{14}$;

Het² as a group or part of a group represents an aromatic monocyclic, bicyclic or tricyclic heterocycle having 5 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, C(=O)-R¹⁴, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴R¹⁴, NR¹⁴-O-C(=O)-R¹⁴, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted C₂₋₆alkynyl and optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, O-C₁. 6alkyl, and C₁₋₆alkanediyl-NR¹⁴R¹⁴;

with the proviso that compounds:

- 9-(2,4-Dimethoxy-phenylimino)-9H-benzo[f]isoindole-1,3,4-trione,
- 9-(2,4-Dimethoxy-phenylimino)-2-phenyl-9H-benzo[f]isoindole-1,3,4-trione,
- 6,7-Dichloro-9-(2,4-dimethoxy-phenylimino)-2-phenyl-9H-benzo[f]isoindole-1,3,4-trione,
- 4-[6,7-Dichloro-4-(2,4-dimethoxy-phenylimino)-1,3,9-trioxo-1,3,4,9-tetrahydro-benzo[f]isoindol-2-yl]-benzonitrile,
- 6,7-Dichloro-9-(4-methoxy-2-methyl-phenylimino)-2-phenyl-9H-benzo[f]isoindole-1,3,4-trione,
- 9-(4-Dimethylamino-phenylimino)-2-phenyl-9H-benzo[f]isoindole-1,3,4-trione,

- 4-Diethylamino-9-hydroxy-2-phenyl-benzo[f]isoindole-1,3-dione,
- 4-(But-3-enyl-ethyl-amino)-9-hydroxy-2-phenyl-benzo[f]isoindole-1,3-dione,
- 4-(Ethyl-pent-4-enyl-amino)-9-hydroxy-2-phenyl-benzo[f]isoindole-1,3-dione,
- 4,9-dihydroxy-2-methyl-benzo[f]isoindole-1,3-dione,
- 4,8-dihydroxy-6-methyl-2-oxa-6-aza-s-indacene-5,7-dione,
- 5,9-dihydroxy-7-methyl-pyrrolo[3,4-g]quinoline-6,8-dione,
- 4,9-dihydroxy-2-methyl-pyrrolo[3,4-g]isoquinoline-1,3-dione,
- 4,9-dihydroxy-2,6-dimethyl-benzo[f]isoindole-1,3-dione,
- 4,9-dihydroxy-6-methoxy-2-methyl-benzo[f]isoindole-1,3-dione,
- 5-fluoro-4,9-dihydroxy-2-methyl-benzo[f]isoindole-1,3-dione,
- 6,7-dichloro-4,9-dihydroxy-2-methyl-benzo[f]isoindole-1,3-dione,
- 6-cyclohexyl-4,8-dihydroxy-1-thia-6-aza-s-indacene-5,7-dione,
- 4,9-dihydroxy-6-methyl-2-phenyl-benzo[f]isoindole-1,3-dione,
- 7-cyclohexyl-5,9-dihydroxy-pyrrolo[3,4-g]quinoline-6,8-dione,
- 2-cyclohexyl-4,9-dihydroxy-6-methoxy-benzo[f]isoindole-1,3-dione,
- 7-(3,5-dichloro-phenyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoline-6,8-dione,
- 6,7-dichloro-2-(3,5-dichloro-phenyl)-4,9-dihydroxy-benzo[f]isoindole-1,3-dione,
- 4-hydroxy-benzo[f]isoindole-1,3-dione,
- 4-hydroxy-2-phenyl-benzo[f]isoindole-1,3-dione,
- 4-hydroxy-2-phenyl-9-phenylamino-benzo[f]isoindole-1,3-dione,
- 4,9-dihydroxy-2-phenyl-benzo[f]isoindole-1,3-dione,
- 4-hydroxy-1-methyl-2-phenyl-1,2-dihydro-benzo[f]indazol-3-one,
- 6,7-dichloro-4,9-dimethoxy-2-methyl-benzo[f]isoindole-1,3-dione, and
- 6,7-dichloro-2-(3,5-dichloro-phenyl)-4,9-dimethoxy-benzo[f]isoindole-1,3-dione, are excluded.
- 4. (Original) A compound according to claim 3 having the formula (I),

and their N-oxides, salts, stereoisomeric forms, racemic mixtures, prodrugs, esters and metabolites thereof, wherein

X, A, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, y, aryl, Het¹, and Het² are as defined in claim 1, provided that when the A-ring is phenyl, then R² is not hydrogen, methyl, cyclohexyl, nor phenyl; and compounds

- 4,8-dihydroxy-6-methyl-2-oxa-6-aza-s-indacene-5,7-dione,
- 5,9-dihydroxy-7-methyl-pyrrolo[3,4-g]quinoline-6,8-dione,
- 4,9-dihydroxy-2-methyl-pyrrolo[3,4-g]isoquinoline-1,3-dione,
- 6-cyclohexyl-4,8-dihydroxy-1-thia-6-aza-s-indacene-5,7-dione,
- 7-cyclohexyl-5,9-dihydroxy-pyrrolo[3,4-g]quinoline-6,8-dione,
- 7-(3,5-dichloro-phenyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoline-6,8-dione, are excluded.
- 5. (Original) A compound according to claim 3 having the formula (I),

and their N-oxides, salts, stereoisomeric forms, racemic mixtures, prodrugs, esters and metabolites thereof, wherein

X is

- A, also mentioned as "A-ring", together with the two carbons of the phenyl ring to which it is attached forms a monocyclic Het²;
- R¹ is hydrogen, halogen, nitro, cyano, sultam, sultim, C₃₋₇cycloalkyl, C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, C(=NR⁸)-R⁵, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, and NR⁸R⁹;
- R^2 is hydrogen, C_{3-5} cycloalkyl, C_7 cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^5$, $S(=O)_y-R^6$, OR^7 , NR^8R^9 , $C(=NR^8)-R^5$, C_{2-6} alkyl or polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl or optionally polysubstituted C_{2-6} alkynyl; whereby the substituents on C_{1-6} alkyl, and the optional substituents on C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^5$, $S(=O)_y-R^6$, OR^7 , and NR^8R^9 ;
- R³ is hydrogen, halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, C(=O)-R⁵, OR⁷, and NR⁸R⁹;

R⁴ is hydrogen, halogen, nitro, cyano, C₃₋₇cycloalkyl or C₁₋₆alkyl; y represents an integer being zero, one or two;

 R^5 is hydrogen, $C_{3.7}$ cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^{10}$, OR^{12} , NR^8R^{13} , optionally polysubstituted $C_{1.6}$ alkyl, optionally polysubstituted $C_{2.6}$ alkenyl or optionally polysubstituted $C_{2.6}$ alkynyl; whereby the optional substituents on $C_{1.6}$ alkyl,

C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;

- R⁶ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R⁷ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano,C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R^8 is hydrogen, aryl, Het^1 , Het^2 , C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl or polyhalo C_{1-6} alkyl;
- R⁹ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, C(=NR⁸)-R⁵, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano,C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹² and NR⁸R¹³;
- R¹⁰ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, NR⁸-S(=O)_y-R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;
- R^{11} is hydrogen, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , OR^8 , $O-C(=O)-R^8$, $O-S(=O)_y-R^8$, NR^8R^8 , $NR^8-C(=O)-R^8$, $NR^8-S(=O)_y-R^8$, optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl or optionally polysubstituted C_{2-6} alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are

each independently selected from halogen, nitro, cyano, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^8$, $C(=O)-OR^8$, $C(=O)-NR^8R^8$, $S(=O)_y-R^8$, $S(=O)_y-OR^8$

- R¹² is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;
- R¹³ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;

R¹⁴ is hydrogen, phenyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl; aryl as a group or part of a group represents a monocyclic or polycyclic aromatic or a partially saturated monocyclic or polycyclic carbocycles wherein any such carbocycle within the meaning of aryl may have up to 14 carbon atoms and may be optionally substituted with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R⁸, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴-O-C(=O)-R¹⁴, NR¹⁴-C₁₋₆alkanediyl-NR¹⁴-Het¹, NR¹⁴-C₁₋₆alkanediyl-NR¹⁴-Het², optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl and optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, Het¹, Het², C(=O)-Het¹, C(=O)-Het², and NR¹⁴R¹⁴; and

whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C_{1-6} alkyl, polyhalo C_{1-6} alkyl, $O-C_{1-6}$ alkyl, and C_{1-6} alkanediyl- $NR^{14}R^{14}$;

Het¹ as a group or part of a group represents a saturated or partially unsaturated monocyclic, bicyclic or tricyclic heterocycle having 3 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, C(=O)-R¹⁴, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴-O-C(=O)-R¹⁴, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted C₂₋₆alkynyl and optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, O-C₁₋₆alkyl, and C₁₋₆alkanediyl-NR¹⁴R¹⁴;

Het² as a group or part of a group represents an aromatic monocyclic, bicyclic or tricyclic heterocycle having 5 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, C(=O)-R¹⁴, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴R¹⁴, NR¹⁴-O-C(=O)-R¹⁴, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted C₂₋₆alkynyl and optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, O-C₁₋₆alkyl, and C₁₋₆alkanediyl-NR¹⁴R¹⁴;

with the proviso that compound 7-(3,5-dichloro-phenyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoline-6,8-dione is excluded.

6. (Currently Amended) A compound according to <u>claim 1</u>, any one of claims 1 to 5 wherein the compound has the formula (IIa)

whereby

the pyridinyl ring may optionally be substituted with halogen or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, Het¹, Het², C(=O)-Het¹, C(=O)-Het², and NR¹⁴R¹⁴;

and whereby

R² is not 3,5-dichlorophenyl, nor cyclohexyl, nor methyl.

7. (Currently Amended) A compound according to <u>claim 1</u>, any one of claims 1 to 5 wherein the compound has the formula (IIb)

$$\begin{array}{c|c}
 & OH & O \\
 & N & \\$$

whereby the pyrazinyl ring may optionally be substituted with halogen or optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl, optionally polysubstituted C_{2-6} alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, phenyl, $C(=O)-R^{14}$, OR^{14} , Het^1 , Het^2 , $C(=O)-Het^1$, $C(=O)-Het^2$, and $NR^{14}R^{14}$.

8. (Currently Amended) A compound according to <u>claim 1</u>, any one of claims 1 to 5 wherein the compound has the formula (IIc)

$$\bigcap_{\mathsf{R}_1}^{\mathsf{OH}}\bigcap_{\mathsf{N}}^{\mathsf{R}_2}$$

whereby the phenyl ring may optionally be substituted with halogen or optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl, optionally polysubstituted C_{2-6} alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, phenyl, $C(=O)-R^{14}$, OR^{14} , Het^1 , Het^2 , $C(=O)-Het^1$, $C(=O)-Het^2$, and $NR^{14}R^{14}$; and whereby R^2 is not hydrogen, methyl, cyclohexyl, nor phenyl.

9. (Currently Amended) A compound according to <u>claim 1</u>, any one of claims 1 to 5 wherein the compound has the formula (IId)

$$R_1$$

whereby the imidazolyl ring may optionally be substituted with halogen or optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl, optionally polysubstituted C_{2-6} alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, phenyl, $C(=O)-R^{14}$, OR^{14} , Het^1 , Het^2 , $C(=O)-Het^1$, $C(=O)-Het^2$, and $NR^{14}R^{14}$.

10. (Currently Amended) A compound according to <u>claim 1, any one of claims 1 to 5</u> wherein the compound has the formula (III)

11. (Currently Amended) A compound according to claim 1, any one of claims 1 to 10-wherein

X is -C(=O)-;

 R^1 is $-OR^7$:

 R^2 is hydrogen, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , or optionally substituted C_{1-6} alkyl; whereby the optional substituent on C_{1-6} alkyl is selected from C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , and preferably is C_{3-7} cycloalkyl, aryl, Het^1 .

- 12. (Currently Amended) A compound according to any one of claims 1 to 5 selected from any of the following compounds:
- 7-(4-Chloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(5-Bromo-2-fluoro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-Benzo[1,3]dioxol-5-ylmethyl-5-(benzyl-methyl-amino)-9-hydroxy-pyrrolo[3,4-g]quinoline-6,8-dione
- Dodecanoic acid 7-benzo[1,3]dioxol-5-ylmethyl-9-hydroxy-6,8-dioxo-7,8-dihydro-6H-pyrrolo[3,4-g]quinoxalin-5-yl ester
- Acetic acid 9-acetoxy-7-(3,4-dichloro-benzyl)-6,8-dioxo-7,8-dihydro-6H-pyrrolo[3,4-g]quinoxalin-5-yl ester
- 7-(3,5-Dichloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3,4-Dichloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3-Chloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- Dicyclopropanecarboxylic acid 7-(3,4-dichloro-benzyl)-6,8-dioxo-7,8-dihydro-6H-pyrrolo[3,4-g]quinoxalin-5,9-diyl ester
- 7-(3-Bromo-4-fluoro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3-Bromo-benzyl)-5,9-dihydroxy-2-methyl-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-Benzo[1,3]dioxol-5-ylmethyl-5,9-dihydroxy-2-methyl-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3,4-Dichloro-benzyl)-5,9-dihydroxy-2-methyl-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3-Bromo-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione

13. (Currently Amended) A pharmaceutical composition, comprising an effective amount of at least one compound selected from any of the following compounds:

- 7-(4-Chloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(5-Bromo-2-fluoro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-Benzo[1,3]dioxol-5-ylmethyl-5-(benzyl-methyl-amino)-9-hydroxy-pyrrolo[3,4-g]quinoline-6,8-dione
- <u>Dodecanoic acid 7-benzo[1,3]dioxol-5-ylmethyl-9-hydroxy-6,8-dioxo-7,8-dihydro-6H-pyrrolo[3,4-g]quinoxalin-5-yl ester</u>
- Acetic acid 9-acetoxy-7-(3,4-dichloro-benzyl)-6,8-dioxo-7,8-dihydro-6H-pyrrolo[3,4-g]quinoxalin-5-yl ester
- 7-(3,5-Dichloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3,4-Dichloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3-Chloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- <u>Dicyclopropanecarboxylic acid 7-(3,4-dichloro-benzyl)-6,8-dioxo-7,8-dihydro-6H-pyrrolo[3,4-g]quinoxalin-5,9-diyl ester</u>
- 7-(3-Bromo-4-fluoro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3-Bromo-benzyl)-5,9-dihydroxy-2-methyl-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-Benzo[1,3]dioxol-5-ylmethyl-5,9-dihydroxy-2-methyl-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3,4-Dichloro-benzyl)-5,9-dihydroxy-2-methyl-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3-Bromo-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione as claimed in any one of claims 1-to 12, and a pharmaceutically acceptable excipient.