Variables Aléatoires

Terminale STMG2

1 Espérance d'une variable aléatoire

Définition 1. Soit une expérience aléatoire d'univers Ω . Une variable aléatoire est une fonction définie sur Ω et à valeur dans \mathbb{R} .

Exemple. On donne des exemples de variables aléatoires :

Expérience	Variable aléatoire X	
On lance un dé à six faces	Le gain X correspondant au double du résultat	
On sélectionne un élève du lycée au hasard	L'âge de l'élève sélectionné	
On choisit un mot au hasard dans le dictionnaire	Le nombre de lettres du mot choisi	

Définition 2. Soit X une variable aléatoire d'une expérience aléatoire d'univers Ω fini. Déterminer la loi de X correspond à établir la probabilité de chaque valeur possible de X.

Exemple. Dans une urne on dispose une boule rouge, deux boules vertes, et trois boules bleues. On mise $1 \in$, et on tire au hasard une boule dans cette urne.

- Si la boule est rouge, on remporte le double de la mise.
- Si la boule est verte, on récupère sa mise.
- Si la boule est bleue, la mise est perdue.

On note X la mise obtenue. Déterminer la loi de X:

Valeur de X	X = -1	X = 0	X = 1
Probabilité			

Variables Aléatoires Terminale STMG2

Définition 3. Soit X une variable aléatoire d'une expérience aléatoire d'univers Ω fini. On suppose que X peut prendre les valeurs $x_1; x_2; \ldots; x_n$. On appelle alors **espérance de** X, notée E(X), la quantité

$$E(X) = x_1 \times P(X = x_1) + x_2 \times P(X = x_2) + \dots + x_n \times P(X = x_n)$$

Remarque. L'espérance de X correspond à la valeur moyenne que l'on peut espérer si l'on répète l'expérience un grand nombre de fois.

Exemple. Sur un jeu à gratter coûtant 1€, il est indiqué que sur 1 000 000 tickets :

- 1 permet de gagner 10 000€;
- 5 permettent de gagner 1000€;
- 100 permetten de gagner 500€;
- 1000 permettent de gagner 200€;
- 1500 permettent de gagner 100€;
- 3000 permettent de gagner 10€;
- 4000 permettent de gagner 1€;

a) Déterminer la loi de X.

• Le reste ne fait rien gagner du tout.

On appelle X le gain en \in gagné après achat et grattage d'un ticket à gratter.

b) Calculer son espérance.

Variables Aléatoires Terminale STMG2

2 Schéma de Bernoulli et loi binomiale

2.1 Épreuve de Bernoulli

Exemple. On lance une pièce équilibrée. On gagne $1 \in S$ il on fait face et rien S on fait pile. Quelle est la probabilité de gagner un euro? S on note S le gain possible suite à cette expérience, calculer S.

Définition 4. Soit une expérience aléatoire d'univers Ω , et X une variable aléatoire d' Ω . On dit que X **suit une loi de Bernoulli de paramètre** $p \in [0;1]$, ce que l'on note $X \hookrightarrow \mathcal{B}(p)$, quand la loi de X est donnée par le tableau suivant :

$$\begin{array}{c|ccc} x_i & 1 & 0 \\ \hline P(X=x_i) & p & 1-p \end{array}$$

Proposition 1. Soit une expérience aléatoire d'univers Ω , et X une variable aléatoire d' Ω suivant une loi de Bernoulli de paramètre p. Alors,

$$E(X) = p$$

Remarque. Une expérience de Bernoulli est donc une expérience durant laquelle on est confronté à un succès (le 1) ou à un échec (le 0).

2.2 Schéma de Bernoulli

Exemple. On lance dix pièces équilibrées. On note X le nombre de pile obtenus après tirage.

Remarque. Dans l'expérience précédente, X compte le nombre de succès de n=10 expériences de Bernoulli indépendantes, ayant toute la même probabilité de succès $p=\frac{1}{2}$. On dit que c'est un schéma de Bernoulli de paramètres n et p.

Définition 5. Soit une expérience aléatoire d'univers Ω , ainsi que $n \in \mathbb{N}$ et $p \in [0; 1]$. On dit que X suit une loi binomiale de paramètres n et p, ce qui l'on note $X \hookrightarrow \mathcal{B}(n; p)$, quand X comptabilise le nombre de succès de n dans un schéma de Bernoulli de paramètres n et p.

Proposition 2. Soit une expérience aléatoire d'univers Ω , et $X \hookrightarrow \mathcal{B}(n;p)$. Alors, on a

$$E(X) = n \times p$$

Exemple. Pour chacun des exemples suivants, donner l'espérance de X :

- a) On tire trois fois une boule dans une urne contenant deux boules vertes et quatres boules rouges, avec remise après chaque tirage. X est le nombre de boules vertes tirées.
- b) X est le nombre de match gagnés par une équipe de foot sur une saison de 10 matchs. Les matchs sont tous très équitables, et il n'y a pas de match nul.
- c) On lance quatre fois un dé à 10 faces. X est le nombre de fois où l'on obtient un multiple de 3.