Introduction to Bayesian record linkage

Brenda Betancourt and Andee Kaplan

Duke University
Department of Statistical Science

February 8, 2018

Slides available at http://bit.ly/cimat-bayes

Why Bayes?

Common approaches

Felligi-Sutner Clustering Beka's

Empirical Bayes graphical model for record linkage

blink package

R package that removes duplicate entries from multiple databses using the empirical Bayes graphical method:

```
install.packages("blink")
```

- Formatting data for use with blink
- Tuning parameters
- Running the Gibbs sampler (estimate model parameters)
- Output

RLdata500 data

We will continue with the RLdata500 dataset in the RecordLinkage package consisting of 500 records with 10% duplication.

```
library(blink) # load blink library
library(RecordLinkage) # load data library
data("RLdata500") # load data
head(RLdata500) # take a look
```

```
##
     fname_c1 fname_c2 lname_c1 lname_c2 by bm bd
## 1
     CARSTEN
                 <NA>
                         MEIER
                                   <NA> 1949 7 22
## 2
        GERD
                 <NA>
                         BAUER
                                   <NA> 1968 7 27
## 3
      ROBERT
                 <NA> HARTMANN
                                   <NA> 1930 4 30
## 4
      STEFAN
                 <NA>
                         WOLFF
                                   <NA> 1957 9 2
## 5
        RALF
                 <NA> KRUEGER
                                   <NA> 1966 1 13
     JUERGEN.
                 <NA>
                        FRANKE.
                                   < NA > 1929 7 4
## 6
```

Formatting the data

```
# categorical variables
X.c <- as.matrix(RLdata500[, c("by","bm","bd")])
p.c <- ncol(X.c)

# string variables
X.s <- as.matrix(RLdata500[, c("fname_c1", "lname_c1")])
p.s <- ncol(X.s)</pre>
```

X.c and X.s include all files stacked on top of each other, for categorical and string variables respectively

```
# keep track of which rows of are in which files
file.num <- rep(c(1, 2, 3), c(200, 150, 150))</pre>
```

Tuning parameters

Hyperparameters

```
# Subjective choices for distortion probability prior
a <- 1
b <- 999</pre>
```

Distortion

```
# string distance function example
d <- function(s1, s2) {
   adist(s1, s2) # approximate string distance
}

# steepness parameter
c <- 1</pre>
```