H1 Dynamic Tables

table T, |T| denotes max number of items that can be stored

Operations

- insert(T, x)
- delete(T, x)

let n=# of items currently stored in T, let $\alpha(T)=rac{n}{|T|}$

$_{ m H2}$ insert using table doubling

if T = [a, b, c, d] and
$$|T|=4$$
, then insert(T, e) results in T = [a, b, c, d, e, _, _, _] and $|T|=8$

• cost is $\mathcal{O}(|T|)$ because every element must be copied

H₃ Aggregate analysis

Suppose n items need to be inserted into empty table, then following table doubles happen:

Each double takes $\mathcal{O}(|T|)$ time and table needs to be doubled for every power of 2 that is $\leq n$, so inserting n items takes

$$\mathcal{O}\left(n+\sum_{i=1}^{\lfloor\log_2(n)\rfloor}2^i
ight)$$
 time $\mathcal{O}\left(n+\sum_{i=1}^{\lfloor\log_2(n)\rfloor}2^i
ight)=\mathcal{O}\left(n+2^{\lfloor\log_2(n)\rfloor+1}
ight)=\mathcal{O}(n)$

H3 Accounting analysis

- charge \$3 for each insert:
 - \$ 1 for inserting the item
 - \$ 1 credit for later
 - \$ 1 credit to add to an item in the first half of the list
- when table is full, inserts into second half have filled up credit in first half, so each item has \$1 credit
- now we have enough credit to double the table, since copying takes \$1 per item

H2 delete with table shrinking

• if $\alpha(T)$ gets too small, we can reduce memory waste by shrinking table

H₃ Naive approach: halve table when $lpha(T)=rac{1}{2}$

- when # of elements falls below |T|/2 (when $lpha(T) \leq 1/2$), copy to new table with size |T|/2
- bad sequence of insert and delete can be expensive!
 - suppose table is full, then we insert , then we delete , then insert , then delete , ...
 - each insert doubles table and each delete halves it
 - results in total cost being $\Omega(n^2)$

Better approach: halve table when $lpha(T)=rac{1}{4}$ - amortized analysis

- note that after size change, table is always half full
 - we only double table when it is full, so resulting table is half full
 - we only halve table when it is quarter full, so resulting table is half full

Charging scheme:

- charge \$2 for each delete
 - \$ 1 for deleting item
 - \$ 1 credit for future contraction
- ullet table must be halved when there are |T|/4 items, which requires at least |T|/4 deletes since last size change, so there is always enough credit to halve the table when necessary