

Avisos

- •while True: learn()
- Premio al mejor desempeño
 - Colab pro

Breve revisión histórica

Introducción a las Redes Neuronales

- Siglo XIX
- Descripción de diferentes tipos de neuronas
 - De manera aislada.
- El sistema nervioso se compone de neuronas individuales
 - Conectadas por sinapsis.
- Sistema nervioso como red continua de fibras nerviosas,
 - similar al sistema circulatorio.

- McCulloch y Pitts (1943)
 - Basan sus modelos en conocimientos de neurología.
 - Neuronas simples como dispositivos binarios con umbrales fijos
 - Generación de funciones lógicas elementales
- Donald Hebb (1949) introduce el principio del aprendizaje no supervisado.
 - Regla de Hebb: "si dos neuronas están activas aproximadamente al mismo tiempo sus conexiones se fortalecen".
 - Fundamento para el desarrollo y evolución de las redes neuronales

- Rosenblatt (1958) diseñó y desarrolló el Perceptrón:
 - Modelo de red neuronal de dos niveles
 - Asocia entradas a una salida
- ADALINE (ADAptive Linear Element) de Widrow y Hoff (1960):
 - Dispositivo electrónico analógico
 - basado en mínimos cuadrados.
- Neurociencia, física e ingeniería impulsan avances.

- Minsky y Papert (1969):
 - Destacaron limitaciones del Perceptrón en problemas complejos.
 - Problemas no linealmente separables
 - no tenían suficiente poder de procesamiento
 Generalización a redes neuronales multicapa
- Disminución del interés y desencanto en la simulación de redes neuronales.
- Falta de nuevas propuestas y avances en el campo.

- Investigadores siguieron trabajando en métodos computacionales basados en neuromorfologia.
 - Identificación y clasificación de patrones
- Teoría de Resonancia Adaptativa (ART) por Grossberg y Carpenter (1976).
- Técnicas de Aprendizaje Asociativo por Anderson y Kohonen (1982).
- Red Neuronal Energética por Hopfield (1984).
- Backpropagation por Paul Werbos (1982).
 - Método de aprendizaje más utilizado en arquitecturas multicapa.

- Finales de los 70 y Principios de los 80
- Aumento del interés en el campo de redes neuronales.
 - Difusión en libros y conferencias.
 - Cursos en universidades destacadas.
 - Financiamiento para proyectos de investigación.
- Europa, Estados Unidos y Japón.
- Aparición de aplicaciones comerciales e industriales.
- David E. Rumelhart y James McClelland (1986)
 - Utilizan procesamiento distribuido para simular procesos neuronales.

- Yann LeCun presenta en 1989 las redes neuronales convolucionales
- En 1992, se introduce el max-pooling (submuestreo)
 - reconocimiento de objetos tridimensionales
- Schmidhuber (1992)
 - redes prentrenadas,
 - refinado por propagación hacia atrás
 - Origina las redes neuronales profundas
- Entrenamiento con GPU

- 2009 2012 (Dan Ciresan)
 - Ganan concursos de reconocimiento de patrones y aprendizaje automático.
 - neuronales recurrentes
 - redes neuronales profundas
 - Primeras reconocedoras artificiales de patrones
 - rendimiento superior al humano
 - reconocimiento de señales de tráfico
 - clasificación de dígitos escritos a mano.

Conclusiones

- Lo que sabemos de neuronas no es tan antiguo
- Las redes neuronales no es algo nuevo
- Las RNA estuvieron a punto de morir
 - Optimizaciones
 - Poder de computo
 - GPUs
- · Ya no necesariamente imitan la arquitectura biológica
- Ahora tienen atención de las grandes industrias
- Para entenderlas vamos a seguir su historia

Conceptos clave

Introducción a las Redes Neuronales

Neurona biológica

- Cuerpo esférico
- 5 a 10 micras de diámetro.
- Rama principal (Axón)
- Dendritas (más cortas)
- Neurotransmisores
 - Eléctricos
 - Químicos

Neurona biológica

- Destacan por su comunicación.
- Recepción de señales en dendritas
- Axón transporta señales a terminales.
- Múltiples conexiones neuronales
- Aproximadamente 10^{15} conexiones en el cerebro humano.
 - 100000000000000
- Procesamiento paralelo

Aspectos funcionales neuronas

- 1. Reciben las señales de entrada
 - están altamente conectadas con otras neuronas
 - reciben un estímulo de algún evento
 - al llegar al cuerpo, afecta su comportamiento
- 2. Pueden ser modificadas por los pesos sinápticos
 - no es por contacto directo.
 - a través sinapsis.
 - Neurotransmisores
 - bloquear o dejar pasar las señales

Aspectos funcionales neuronas

- 2. Suman las entradas de las sinapsis
 - reciben las señales eléctricas
 - se acumulan en el cuerpo
- 3. En ciertas circunstancias se transmite una señal de salida
 - si la señal es grande permite que la neurona se active
 - o permanezca inactiva.

Aspectos funcionales neuronas

- 5. La salida puede ir a muchas neuronas
 - al activarse transmite un impulso a las neuronas con las cuales tiene contacto
 - actúa como entrada para otras neuronas o como estímulo

¿Cómo es neurona artificial?

¿Cómo es neurona artificial?

TO BE CONTINUED

Tarea

- Tarea
 - Imagina y diseña como crees que sería una neurona
 - Haz un dibujito
 - +0.1 en primer parcial al dibujo más bonito
- Lectura
 - De los temas del curso, busca los que más te llamen la atención
 - Investiga de que se trata
 - Publicalo en la discusión
 - Si repites tema, calificación al 80%