Neural Ensemble Search via Bayesian Sampling

Kseniia Petrushina

MIPT, 2024

May 14, 2024

Motivation & Background

Neural Ensemble Search

3 Empirical results

Motivation

Neural Architecture Search

Automate the design of well-performing architectures for different tasks

Neural Network Ensembles

- NAS algorithms select only one single architecture
- NNE achieve an improved performance compared with a single neural network in practice
- NES algorithm based on RS or evolutionary algorithm requires excessive search costs

Background

DARTS

Figure: (a) Unknown operations. (b) Continious relaxation of the search space. (c) Joint optimization of mixing probabilities and network weights. (d) Final architecture.

Background

Stein Variational Gradient Descent

Approximate target distribution $p(\mathbf{x})$ with simple density $q^*(\mathbf{x}) \in \mathcal{Q}$:

$$q^* = \arg\min_{q \in \mathcal{Q}} \{ \mathsf{KL}(q \| p) = \mathbb{E}_q [\log(q(\mathbf{x})/p(\mathbf{x}))] \}$$

 $q^*(\mathbf{x})$ - set of particles $\{\mathbf{x}_i\}_{i=1}^n$ iteratively updated:

$$\mathbf{x}_i \leftarrow \mathbf{x}_i + \varepsilon \phi^*(\mathbf{x})$$

 $q_{[arepsilon\phi]}$ - distribution of updated particles, then

$$\phi^* = rg \max_{\phi \in \mathbb{F}} \Big\{ -rac{d}{darepsilon} \mathsf{KL}(q_{[arepsilon \phi]} \| p) \Big|_{arepsilon = 0} \Big\}$$

Background

Stein Variational Gradient Descent

Closed-form solution

$$\phi^*(\cdot) = \mathbb{E}_{\mathbf{x} \sim q}[k(\mathbf{x}, \cdot) \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \nabla_{\mathbf{x}} k(\mathbf{x}, \cdot)]$$

Empirical mean

$$\hat{\phi}^*(\mathbf{x}_i) = \frac{1}{n} \sum_{j=1}^n k(\mathbf{x}_j, \mathbf{x}_i) \nabla_{\mathbf{x}_j} \log p(\mathbf{x}_j) + \nabla_{\mathbf{x}_j} k(\mathbf{x}_j, \mathbf{x}_i)$$

First term favors particles with higher probabilty dentisy, second term pushes particles away from each other

NES via Bayesian Sampling

Ensemble scheme

$$\mathcal{F}_{\mathcal{S}}(\mathbf{x}, \mathbf{\Theta}_{\mathcal{S}}^*) = n^{-1} \sum_{A \in \mathcal{S}} \mathbf{f}_{A}(\mathbf{x}, \theta_{A})$$

NES

$$\min_{S} \mathcal{L}_{\text{val}}(\mathcal{F}_{S}(\mathbf{x}, \mathbf{\Theta}_{S}^{*})) \tag{1}$$

s.t.
$$\forall \theta_A^* \in \Theta_S^*$$
 $\theta_A^* = \arg\min_{\theta_A} \mathcal{L}_{\mathsf{train}}(\mathbf{f}_A(\mathbf{x}, \theta_A)).$ (2)

Challenges

- \bullet The enormous number of candidate architectures in the NAS search space (e.g., $\sim 10^{25}$ in the DARTS search space)
- ② There are $\sim m^n$ different ensembles given m diverse architectures

Model training of supernet

Figure: Model training of supernet. At each step only one architecture is uniformly sampled to update its parameters.

Distribution of architectures

Single-model performance

 $\mathcal D$ - validation dataset, $p(\mathcal A)$ and $p(\mathcal A|\mathcal D)$ - prior and posterior distributions of a candidate architecture, $p(\mathcal D|\mathcal A)$ - likelihood

$$p(A|D) = p(D|A)p(A)/p(D) \propto p(D|A)$$

Diversity

 $\mathcal{L}(\mathbf{f})$ - γ -Lipschitz continuous loss function.

$$\|\mathbf{f}_{\mathcal{A}_1} - \mathbf{f}_{\mathcal{A}_2}\|_2 \ge \gamma^{-1} |\mathcal{L}(\mathbf{f}_{\mathcal{A}_1}) - \mathcal{L}(\mathbf{f}_{\mathcal{A}_2})|$$

p(A|D) can estimate diversity using $|p(A_1|D) - p(A_2|D)|$

Posterior approximation

Variational distribution $p_{\alpha}(A)$ approximates p(A|D):

$$\max_{\alpha} \mathbb{E}_{\mathcal{A} \sim p_{\alpha}(\mathcal{A})}[\log p(\mathcal{D}|\mathcal{A})] - \mathsf{KL}[p_{\alpha}(\mathcal{A}) || p(\mathcal{A})]$$
(3)

NES via Bayesian sampling

Algorithm 1 NES via Bayesian Sampling (NESBS)

- 1: **Input:** Iterations T, ensemble size n, a supernet
- 2: Train the supernet to get its tuned parameters θ^*
- 3: Obtain the posterior distribution $p_{\alpha^*}(A)$ with (3)
- 4: **for** iteration $t = 1, \ldots, T$ **do**
- 5: Sample S_t of size n via Algorithm 2 or 3
- 6: Evaluate estimated $\mathcal{L}_{\text{val}}(\mathcal{F}_{S_t}(\boldsymbol{x}, \boldsymbol{\Theta}_{S_t}^*))$ given $\boldsymbol{\theta}^*$
- 7: end for
- 8: Select optimum $S^* = \arg\min_{S_t} \mathcal{L}_{\text{val}}(\mathcal{F}_{S_t}(\boldsymbol{x}, \boldsymbol{\Theta}_{S_t}^*))$

Bayesian sampling

Monte-Carlo Sampling (MC)

Sampling a set of architectures from posterior distribution

Algorithm 2 MC Sampling

- 1: **Input:** Ensemble size n, set $S = \emptyset$, posterior $p_{\alpha^*}(A)$
- 2: **for** iteration $i = 1, \ldots, n$ **do**
- 3: Sample $A_i \sim p_{\alpha^*}(A)$
- 4: $S \leftarrow S \cup \{A_i\}$
- 5: end for
- 6: **Output:** *S*

Bayesian sampling

SVGD with Regularized Diversity (RD)

Adding a term representing the diversity

$$q^* = \arg\min_{q \in \mathcal{Q}} \{ \mathsf{KL}(q \| p) \} + n \delta \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} [k(\mathbf{x}, \mathbf{x}')]$$

Algorithm 3 SVGD-RD

- 1: **Input:** Diversity coefficient δ , ensemble size n, iterations L, initial particles $\{\boldsymbol{x}_i^{(0)}\}_{i=1}^n$, posterior $p_{\boldsymbol{\alpha}^*}(\mathcal{A})$, kernel $k(\boldsymbol{x}, \boldsymbol{x}')$, step size $\{\epsilon_l\}_{l=1}^L$
- 2: **for** iteration $l = 0, \ldots, L-1$ **do**
- 3: Evaluate updates $\widehat{\boldsymbol{\phi}}_l^*(\boldsymbol{x}) = \frac{1}{n} \sum_{j=1}^n \nabla_{\boldsymbol{x}_j^{(l)}} k(\boldsymbol{x}_j^{(l)}, \boldsymbol{x}) \delta \nabla_{\boldsymbol{x}} k(\boldsymbol{x}_j^{(l)}, \boldsymbol{x}) + k(\boldsymbol{x}_j^{(l)}, \boldsymbol{x}) \nabla_{\boldsymbol{x}^{(l)}} \log p_{\boldsymbol{\alpha}^*}$
- 4: Update particles $\boldsymbol{x}_i^{(l+1)} \leftarrow \boldsymbol{x}_i^{(l)} + \epsilon_l \ \widehat{\boldsymbol{\phi}}_l^*(\boldsymbol{x}_i^{(l)})$
- 5: end for
- 6: Output: $S = \{A_i\}_{i=1}^n$ derived based on $\{x_i^{(L)}\}_{i=1}^n$

SVGD-RD

Figure: Impact of δ in SVGD-RD.

Search in NAS-BENCH-201

Architecture(s)		Search Cost				
Architecture(s)	CIFAR-10	IFAR-10 CIFAR-100 ImageNet-16-200		(GPU Hours)		
ResNet [†] [He et al., 2016]	6.03	29.14	56.37	-		
		NAS	Salgorithms			
ENAS [†] [Pham et al., 2018]	45.70 ± 0.00	84.39 ± 0.00	83.68 ± 0.00	3.7		
DARTS [†] (2nd) [Liu et al., 2019]	45.70 ± 0.00	84.39 ± 0.00	83.68 ± 0.00	8.3		
GDAS [†] [Dong and Yang, 2019a]	6.49 ± 0.13	29.39 ± 0.26	58.16 ± 0.90	8.0		
SETN [†] [Dong and Yang, 2019b]	13.81 ± 4.63	43.13 ± 7.77	68.10 ± 4.07	8.6		
RSPS [†] [Li and Talwalkar, 2019]	$12.34{\pm}1.69$	41.67 ± 4.34	$68.86{\pm}3.88$	2.1		
	Ensemble (search) algorithms					
DeepEns [Lakshminarayanan et al., 2017]	5.75	25.27	54.70	-		
NES-RS [Zaidi et al., 2021]	$5.83 {\pm} 0.33$	25.58 ± 0.84	54.34 ± 1.67	5.1		
	Our ensemble search algorithm					
NESBS (MC Sampling)	5.76 ± 0.25	25.39 ± 0.69	53.47 ±1.75	1.1		
NESBS (SVGD-RD)	5.92 ± 0.07	25.00 ±0.17	52.68 ± 0.35	1.2		

Figure: Comparison of architectures selected by different NAS and ensemble (search) algorithms, n = 3.

Search in the DARTS space

Architecture(s)	Test Error (%)		Params (M)		Search Cost	Search Method	
Arcinecture(3)	C10	C100	C10	C100	(GPU Days)	Scaren Memou	
			NAS algorithms				
NASNet-A [Zoph et al., 2018]	2.65	-	3.3	-	2000	RL	
AmoebaNet-A [Real et al., 2019]	3.34	18.93	3.2	3.1	3150	evolution	
PNAS [Liu et al., 2018]	3.41	19.53	3.2	3.2	225	SMBO	
ENAS [Pham et al., 2018]	2.89	19.43	4.6	4.6	0.5	RL	
DARTS [Liu et al., 2019]	2.76	17.54	3.3	3.4	1	gradient	
GDAS [Dong and Yang, 2019a]	2.93	18.38	3.4	3.4	0.3	gradient	
P-DARTS [Chen et al., 2019]	2.50	-	3.4	-	0.3	gradient	
DARTS- (avg) [Chu et al., 2020]	2.59	17.51	3.5	3.3	0.4	gradient	
SDARTS-ADV [Chen and Hsieh, 2020]	2.61	-	3.3	-	1.3	gradient	
	Ensemble (search) algorithms						
MC DropPath (ENAS)	2.88	16.83	3.8^{\ddagger}	3.9^{\ddagger}	-	-	
DeepEns (ENAS)	2.49	15.04	3.8^{\ddagger}	3.9^{\ddagger}	-	-	
DeepEns (DARTS)	2.42	14.56	3.3^{\ddagger}	3.4^{\ddagger}	-	-	
NES-RS [‡] [Zaidi et al., 2021]	2.50	15.24	3.0^{\ddagger}	3.1^{\ddagger}	0.7	greedy	
	Our ensemble search algorithm						
NESBS (MC Sampling)	2.41	14.70	3.8^{\ddagger}	3.9 [‡]	0.2	sampling	
NESBS (SVGD-RD)	2.36	14.55	3.7^{\ddagger}	3.8^{\ddagger}	0.2	sampling	

Figure: Comparison of different image classifiers on CIFAR-10/100.

Search in the DARTS space

Architecture(s)	Test Er	ror (%)	Params	+×					
Tiremiteeture(5)	Top-1	Top-1 Top-5		(M)					
NAS algorithms									
NASNet-A	26.0	8.4	5.3	564					
AmoebaNet-A	25.5	8.0	5.1	555					
PNAS	25.8	8.1	5.1	588					
DARTS	26.7	8.7	4.7	574					
GDAS	26.0	8.5	5.3	581					
P-DARTS	24.4	7.4	4.9	557					
SDARTS-ADV	25.2	7.8	5.4	594					
Ensemble (search) algorithm									
NES-RS	23.4	6.8	3.9	432					
Our ensemble search algorithm									
NESBS (MC Sampling)	22.3	6.2	4.6	522					
NESBS (SVGD-RD)	22.3	6.1	4.9	562					

Figure: Comparison of image classifiers on ImageNet, n = 3.

Search in the DARTS space

Method	FGSM		PGD-40		CW		AutoAttack	
	Attack (%)	Defense (%)	Attack (%)	Defense (%)	Attack (%)	Defense (%)	Attack (%)	Defense (%)
	On CIFAR-10 Dataset							
DeepEns	-	-	-	-	-	-	-	-
→ RobNet-free	66.62 ± 0.32	85.25±0.39	41.81 ± 0.80	77.48 ± 0.67	5.74 ± 1.41	86.53 ± 0.50	21.35 ± 0.33	45.51±0.15
\hookrightarrow ENAS	77.85 ± 0.58	87.94 ± 0.21	59.51±1.13	86.57±0.15	31.36 ± 1.20	85.20±0.77	31.71 ± 0.72	50.96±0.07
\hookrightarrow DARTS	76.79 ± 0.80	88.21 ± 0.14	57.71±1.65	82.02 ± 0.10	26.90 ± 1.37	82.46±0.35	29.97±1.17	49.67±0.14
NES-RS	79.19 ± 1.39	89.32 ± 0.27	65.59 ± 2.11	85.22 ± 0.41	37.20 ± 4.62	86.75 ± 0.88	35.00 ± 1.15	53.80 ± 0.14
NESBS (MC Sampling)	78.75±1.29	89.15±0.08	63.60±1.87	85.35±0.31	37.71±1.97	86.86±0.66	36.02±0.64	56.90 ±0.17
NESBS (SVGD-RD)	79.12 ± 0.61	89.86 ± 0.33	65.53 ± 1.56	85.37 ± 0.38	38.27 ±1.27	86.00 ± 1.10	37.55 ± 0.68	57.15 ±0.20
		On CIFAR-100 Dataset						
DeepEns	-	-	-	-	-	-	-	-
\hookrightarrow RobNet-free	36.47 ± 0.25	61.39 ± 0.30	18.18 ± 0.47	52.61 ± 0.13	2.36 ± 0.13	69.44 ± 0.04	7.31 ± 0.35	24.56 ± 0.33
\hookrightarrow ENAS	46.40 ± 0.37	64.94 ± 0.27	28.87 ± 0.27	56.79 ± 0.25	9.60 ± 0.30	69.43±0.44	11.53 ± 0.47	27.01±0.27
\hookrightarrow DARTS	46.98 ± 0.57	65.38 ± 0.23	28.78 ± 0.74	57.10 ± 0.04	9.73 ± 0.43	70.15 ± 0.29	11.20 ± 0.40	26.86±0.36
NES-RS	47.10 ± 1.46	$65.33{\pm}0.36$	$30.68{\pm}1.66$	58.80 ± 0.80	$9.96 {\pm} 1.45$	70.24 ± 0.33	12.01 ± 0.93	27.49 ± 0.34
NESBS (MC Sampling)	50.69 ±1.58	67.63±0.05	33.37±0.42	60.36 ±0.62	15.64±2.83	71.25±1.27	13.11±1.16	29.87 ±1.17
NESBS (SVGD-RD)	51.47±0.40	66.66 ± 0.13	35.02 ± 0.37	59.96±0.18	16.72 ± 0.61	69.88±0.16	14.62±0.55	31.07±0.33

Figure: Comparison of adversarial defense among different ensemble (search) algorithms on CIFAR-10/100 under white-box adversarial attacks.

Single-model performances and diverse model predictions

(a) Single-model performances (b) Diverse predictions

Figure: Qualitative comparison of (a) the single-model performances and (b) the diverse model predictions achieved by different ensemble (search) algorithms with an ensemble size of n=3 on CIFAR-10.

Single-model performances and diverse model predictions

Method	C	10	C100		
Tracking to	ATE	PPD	ATE	PPD	
MC DropPath (DARTS) DeepEns (DARTS) NES-RS	2.71	0.39	16.68	2.63	
	2.69	2.08	16.18	12.45	
	2.87	2.29	17.20	14.14	
NESBS (MC Sampling)	2.80	2.57 2.27	16.70	13.84	
NESBS (SVGD-RD)	2.78		16.50	13.16	

Figure: Quantitative comparison of the single-model performances and the diversity of model predictions achieved by different ensemble (search) algorithms with an ensemble size of 3 on CIFAR-10/100.

Conclusion

- Novel neural ensemble search algorithms
- Effectively and efficiently selects well-performing NNE with diverse architectures from a NAS search space
- Achieves improved performances while preserving a comparable search cost
- Boosted search effectiveness and efficiency compared to DeepEns and NES-RS

Literature

Main article Neural Ensemble Search via Bayesian Sampling.