

Outline of Lesson 04

- * Linear Transformations
- * Affine Transformations
- * Perspective Projections
- * Parallel Projections

Linear Transformations

- * Function L: Rⁿ → R^m is linear iff
 - \rightarrow L(u + v) = L(u) + L(v) (addition)
 - L(cu) = cL(u) (scalar multiplication)
- * Linear function preserves linear combinations
 - $\rightarrow L(c_1u_1 + ... + c_nu_n) = c_1L(u_1) + ... + c_nL(u_n)$
- * Linear function L is a linear transformation iff
 - → Inverse function L⁻¹ exists (is invertible)

Linear Transformations

* Linear transformation L: $(x_1, ..., x_n) \rightarrow (x'_1, ..., x'_n)$

$$\rightarrow x'_1 = C_{11}x_1 + ... + C_{1n}x_n$$

- **→** ...
- $\rightarrow X'_{n} = C_{n1}X_{1} + ... + C_{nn}X_{n}$

$$\begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

- \rightarrow L(x): x' \rightarrow M x
- \rightarrow x = (x₁, ..., x_n) and x' = (x'₁, ..., x'_n)
- \rightarrow M is (n x n) transformation matrix M = (c_{ij})

Linear Transformations

* Suppose linear transformations L₁ and L₂

$$\rightarrow L_1(x) = M_1x$$

$$\rightarrow L_2(x) = M_2x$$

* Composite transformation $L(x) = L_2(L_1(x))$

$$\rightarrow$$
 L(x) = L₂(L₁(x)) = L₂(M₁x) = M₂(M₁x) = (M₂M₁)x = Mx

- Is linear again: L(x) = Mx where $M = M_2M_1$
- → Is closed under composition $M = M_k..M_1$

Scale

* Scale in 3D by s_x , s_y , s_z

$$\rightarrow$$
 Z' = S_z Z

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_n \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Shear

* Shear in 3D by sh_{xy}, sh_{xz}, sh_{yx}, sh_{yz}, sh_{zx} sh_{zy}

$$\rightarrow$$
 x' = x + sh_{xy}y + sh_{xz}z

$$\rightarrow$$
 y' = $s_{yx}x + y + sh_{yz}z$

$$\Rightarrow$$
 z' = $s_zz + sh_{yz}z + z$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & sh_{xy} & sh_{xz} \\ sh_{yx} & 1 & sh_{yz} \\ sh_{zx} & sh_{zy} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Rotation about Coordinate Axis

* Rotation about Z-axis

X-Axis Rotation

* Rotation about X-axis in 3D by angle ax

$$\rightarrow$$
 y' = cos(a_x)y - sin(a_x)z

$$\rightarrow$$
 z' = sin(a_x)y + cos(a_x)z

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +\cos\alpha & -\sin\alpha \\ 0 & +\sin\alpha & +\cos\alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Y-Axis Rotation

* Rotation about Y-axis in 3D by angle a

$$\rightarrow$$
 x' = cos(a_y)x + sin(a_y)z

$$\Rightarrow$$
 z' = -sin(a_v)x + cos(a_v)z

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} +\cos\alpha & 0 & +\sin\alpha \\ 0 & 1 & 0 \\ -\sin\alpha & 0 & +\cos\alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Z-Axis Rotation

* Rotation about X-axis in 3D by angle ax

$$\rightarrow$$
 x' = cos(a_z)x - sin(a_z)y

$$\rightarrow$$
 y' = sin(a_z)x + cos(a_z)y

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} +\cos\alpha & -\sin\alpha & 0 \\ +\sin\alpha & +\cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

XYZ Rotation

* XYZ Rotation (a_x, a_y, a_z) is composite rotation around X-axis then by Y-axis and finally Z-axis

$$\rightarrow R(\lor) = R_z(R_y(R_x(\lor))) = R_zR_yR_x\lor = R\lor$$

 \rightarrow R = R_zR_yR_x (matrix multiplication)

Linear Transformation Summary

- * Origin maps to origin
- * Lines map to lines
- * Parallel lines remain parallel
- * Rotations are preserved
- * Closed under composition...

* However simple translation can not be defined with linear transformation → we need affine transformations

What is Translation

- * What is actually translation?
- * Translation of point P by a vector v is new point P' (= P + v)
- * Translation of vector **u** by a vector **v** is the same vector **v'** (=**v**)

Affine Transformations

* Affine transformation A: $(x_1, ..., x_n) \rightarrow (x'_1, ..., x'_n)$

$$\rightarrow x'_1 = c_{11}x_1 + ... + c_{1n}x_n + t_1$$

- **→** ...
- \rightarrow $x'_n = c_{n1}x_1 + ... + c_{nn}x_n + t_n$

$$\begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{nI} & \cdots & c_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}$$

* In a "translation" form

- \rightarrow A(x): x' \rightarrow M x + t (= linear transform. + translation)
- $\mathbf{x}' = (x'_1, ..., x'_n) \mid \mathbf{x} = (x_1, ..., x_n) \mid \mathbf{t} = (t'_1, ..., t'_n)$
- \rightarrow M is (n x n) transformation matrix M = (c_{ij})

Affine Transformations

- * Can we find pure matrix form?
- * Yes, we need homogenous coordinates
 - → Use one more dimension (Rn+1)
 - Points: $\rho = (\rho_1, ..., \rho_n)$ become $(\rho_1, ..., \rho_n, 1)$
 - → Vectors: $\mathbf{v} = (v_1, ..., v_n)$ become $(v_1, ..., v_n, 0)$
- * Matrix form

$$\begin{vmatrix} p'_{1} \\ \vdots \\ p'_{n} \\ 1 \end{vmatrix} = \begin{vmatrix} c_{11} & \cdots & c_{1n} & t_{1} \\ \vdots & \ddots & \vdots & \vdots \\ c_{n1} & \cdots & c_{nn} & t_{n} \\ 0 & \cdots & 0 & 1 \end{vmatrix} \begin{vmatrix} p_{1} \\ \vdots \\ p_{n} \\ 1 \end{vmatrix} = \begin{vmatrix} c_{11} & \cdots & c_{1n} & t_{1} \\ \vdots & \ddots & \vdots & \vdots \\ c_{n1} & \cdots & c_{nn} & t_{n} \\ 0 & \cdots & 0 & 1 \end{vmatrix} \begin{vmatrix} v_{1} \\ \vdots \\ v_{n} \\ 0 \end{vmatrix}$$

Translation in Matrix form

* Translation of point (or vector) x' = x + t

$$\rightarrow$$
 x' = (x'₁, ..., x'_n, x'_{n+1}), x = (x₁, ..., x_n, x_{n+1}), t = (t₁, ..., t_n, 0)

$$\rightarrow x_1 = x_1 + t_1 \mid \dots \mid x_n = x_n + t_n$$

* Can be expressed in matrix form as

T – is translation matrix $(R^{n+1} \times R^{n+1})$

$$\begin{pmatrix} x'_1 \\ \vdots \\ x'_n \\ x'_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 0 & t_1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & t_n \\ 0 & \cdots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ x_{n+1} \end{pmatrix}$$

$$\mathbf{x'} = \mathbf{T} \qquad \mathbf{x}$$

Affine Transformations

- * Using homogenous coordinates we can
 - Express linear transformation M and translation T

$$\mathbf{M} = \begin{pmatrix} c_{11} & \cdots & c_{1n} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ c_{n1} & \cdots & c_{nn} & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}, \qquad \mathbf{T} = \begin{pmatrix} 1 & \cdots & 0 & t_1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & t_n \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

* Therefore A(x) = Mx + t = T(Mx) = TMx

$$\begin{pmatrix} x'_{1} \\ \vdots \\ x'_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 0 & t_{1} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & t_{n} \\ 0 & \cdots & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{11} & \cdots & c_{1n} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ c_{nl} & \cdots & c_{nn} & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1n} & t_{1} \\ \vdots & \ddots & \vdots & \vdots \\ c_{nl} & \cdots & c_{nn} & t_{n} \\ 0 & \cdots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \\ x_{n+1} \end{pmatrix}$$

Rotation around major axis

$$R_{x}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad R_{y}(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{z}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Assumes a right handed coordinate system

Scaling

$$S(s_x, s_y, s_z) = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Uniform Scaling
 - $S_x = S_y = S_z$

Reflection at Z

$$M_z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Warning: Change of orientation!

Shear (deutsch: Scherung)

$$H(h_{xy}, h_{xz}, h_{yz}, h_{yx}, h_{zx}, h_{zy}) = \begin{pmatrix} 1 & h_{xy} & h_{xz} & 0 \\ h_{yx} & 1 & h_{yz} & 0 \\ h_{zx} & h_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Concatenation of Transformations

Matrix multiplication

Read transformations from right to left!

(e) Rotation followed by translation

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.866 & 0.5 & 0 & 0 \\ -0.5 & 0.866 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.866 & 0.5 & 0 & 2 \\ -0.5 & 0.866 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(f) Translation followed by rotation

$$\begin{bmatrix} 0.866 & 0.5 & 0 & 0 \\ -0.5 & 0.866 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.866 & 0.5 & 0 & 2.732 \\ -0.5 & 0.866 & 0 & 0.732 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Affine Transformation Summary

- * Origin does not map to origin
- * Lines map to lines
- * Parallel lines remain parallel
- * Rotations are preserved
- * Closed under composition...
- * Translation can be expressed

Coordinate Systems

Object Coordinates

- Intrinsic coordinate system of an object
- Hierarchical modeling
- Modeling Transformations to world coordinates

World Coordinates

- Root for hierarchical modeling
- Reference system for the camera
- Viewing Transformation to camera coordinates

Camera coordinates (Viewing Coordinates)

- Reference system for lighting computations
- Perspective Transformation to normalized (projection) coordinates

Hierarchical Modeling


```
body
  torso
    head
    shoulder
      larm
        upperarm
        lowerarm
        hand
      rarm
        upperarm
        lowerarm
        hand
    hips
      lleg
        upperleg
        lowerleg
        foot
      rleg
        upperleg
        lowerleg
        foot
```

```
Translate 0 4 0
TransformBegin
  # Draw Torso
  Translate 0 3 0
  # Draw Shoulders
  TransformBegin
    Rotate a 0 0 1
    # Draw head
  TransformEnd
  TransformBegin
    Translate 1.5 0 0
    DRAW ARM(a,b,c)
TransformEnd
TransformBegin
    Translate -1.5 0 0
    DRAW ARM(d,e,f)
  TransformEnd
TransformEnd
# Draw hips
TransformBegin
  TransformBegin
    Translate 1 0 0
    DRAW LEG(q,h)
TransformEnd
  TransformBegin
    Translate -1 0 0
    DRAW_LEG(i, j)
  TransformEnd
TransformEnd
```

```
DRAW ARM(a,b,c) {
      Rotate b 0 0 1
      # Draw upperarm
      Translate 0 -2 0
      Rotate c 1 0 0
      # Draw lowerarm
      Translate 0 - 2 0
      # Draw hand
DRAW_LEG(g,h) {
    Rotate g 1 0 0
    # Draw upperleg
    Translate 0 -2 0
    Rotate h 1 0 0
    # Draw lowerleg
    Translate 0 -2 0
    # Draw foot
```

Projections

- * General definition
 - Transform points in n-space to m-space (m<n)</p>
- * In computer graphics
 - Map 3D camera coordinates to 2D screen coordinates

Taxonomy Projections

Projection Types

Front elevation

Isometric

Elevation oblique

One-point perspective

Plan oblique

Three-point perspective

Perspective Projection

Map points onto "view plane" along "projectors" emanating from "center of projection" (COP)

Perspective Projection

- * In perspective projection, a 3D point in
- * a truncated pyramid view frustum (in eye coordinates) is mapped to
- * a cube (Normalized device coordinates)
 - → The x-coordinate from [l, r] to [-1, 1]
 - → The y-coordinate from [b, t] to [-1, 1]
 - → The z-coordinate from [n, f] to [-1, 1].

Perspective View Frustum

- * Definition of perspective view frustum
 - I (left), r (right), b (bottom), t (top), n (near), f (far)

Perspective Projection

- * Eye to near plane projection $(x_e, y_e, z_e) \rightarrow (x_p, y_p, z_p)$
 - → Similar triangles ratio $x_p/x_e = -n/z_e \rightarrow x_p = -(n/z_e)x_e$
 - → Similar triangles ratio: $y_p/y_e = -n/z_e \rightarrow y_p = -(n/z_e)y_e$
 - → We project on near plane $\rightarrow z_p = -n$

Perspective Projection

* Since projected point $(x_{\rho}, y_{\rho}, z_{\rho})$ has division in its definition there is no matrix formulation

- * We split Perspective Projection into
 - 1) Homogenous perspective projection P
 - 2) Clip projection C

Perspective Projection Steps

- * Homogenous perspective projection
 - → From eye coordinates (x_e, y_e, z_e, w_e)
 - \rightarrow To clip coordinates (x_c, y_c, z_c, w_c)
 - 4x4 homogenous transformation matrix P

Perspective Projection Steps

- Clip projection
 - → From homogenous clip coordinates (x_e, y_e, z_e, w_e)
 - \rightarrow To normalized device coordinates (x_n, y_n, z_n)
 - Reduction from homogenous coordinates to normal 3d coordinates

- * Since x, and y, are inverse proportional to -z,
- * We set w_c = -z_e to postpone division by -z_e into Clip projection
- * Therefore last row of homogenous projection matrix P is (0,0,-1,0)

* Map x_p and y_p to x_n and y_n of NDC with linear interpolation $[l, r] \rightarrow [-1, 1]$ and $[b, t] \rightarrow [-1, 1]$

Mapping from xp to xn

$$x_{n} = \frac{1 - (-1)}{r - l} \cdot x_{p} + \beta$$

$$1 = \frac{2r}{r - l} + \beta \qquad \text{(substitute } (r, 1) \text{ for } (x_{p}, x_{n}))$$

$$\beta = 1 - \frac{2r}{r - l} = \frac{r - l}{r - l} - \frac{2r}{r - l}$$

$$= \frac{r - l - 2r}{r - l} = \frac{-r - l}{r - l} = -\frac{r + l}{r - l}$$

$$\therefore x_{n} = \frac{2x_{p}}{r - l} - \frac{r + l}{r - l}$$

$$\therefore y_{n} = \frac{2y_{p}}{t - l} - \frac{t + b}{t - l}$$

$$x_{n} = \frac{2x_{p}}{r - l} - \frac{r + l}{r - l} \qquad (x_{p} = \frac{nx_{e}}{-z_{e}})$$

$$y_{n} = \frac{2y_{p}}{t - b} - \frac{t + b}{t - b} \qquad (y_{p} = \frac{ny_{e}}{-z_{e}})$$

$$= \frac{2 \cdot \frac{n \cdot x_{e}}{-z_{e}}}{r - l} - \frac{r + l}{r - l}$$

$$= \frac{2n \cdot x_{e}}{(r - l)(-z_{e})} - \frac{r + l}{r - l}$$

$$= \frac{2n}{r - l} \cdot \frac{x_{e}}{-z_{e}} - \frac{r + l}{r - l}$$

$$= \frac{2n}{r - l} \cdot \frac{y_{e}}{-z_{e}} - \frac{t + b}{t - b}$$

$$= \frac{2n}{t - b} \cdot \frac{y_{e}}{-z_{e}} - \frac{t + b}{t - b}$$

$$= \frac{2n}{t - b} \cdot \frac{y_{e}}{-z_{e}} - \frac{t + b}{t - b}$$

$$= \frac{2n}{t - b} \cdot \frac{y_{e}}{-z_{e}} - \frac{t + b}{t - b}$$

$$= \frac{2n}{t - b} \cdot \frac{y_{e}}{-z_{e}} + \frac{t + b}{t - b} \cdot \frac{z_{e}}{-z_{e}}$$

$$= \left(\frac{2n}{t - l} \cdot x_{e} + \frac{r + l}{r - l} \cdot z_{e}\right) / - z_{e}$$

$$= \left(\frac{2n}{t - b} \cdot y_{e} + \frac{t + b}{t - b} \cdot z_{e}\right) / - z_{e}$$

* z_n and z_c do not depend on x_e and y_e thus

- * Solve A and B for boundary values of z_e and z_n
 - → When $z_e = -n \rightarrow z_n = -1$ | -An + B = -n
 - → When $z_e = -f \rightarrow z_n = +1$ | -Af + B = f
 - Solve A and B from the these 2 linear equations

* After solving A and B we get

$$\rightarrow$$
 A = -(f + n) / (f - n) | B = -2fn / (f - n)

* And we get final Projection Matrix

$$\begin{vmatrix} x_c \\ y_c \\ z_c \\ w_c \end{vmatrix} = \begin{vmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{vmatrix} \begin{vmatrix} x_e \\ y_e \\ z_e \\ w_e \end{vmatrix}$$

Parallel Projection

- * Center of projection is at infinity &
 - Direction of projection (DOP) same for all points

Parallel Projection Types

Elevation oblique

Isometric

- * Definition of orthographic view frustum
 - → l (left), r (right), b (bottom), t (top), n (near), f (far)

- * No homogenous projection needed
- * We transform x_e to x_n with linear interpolation
- * We map input interval $(l, r) \rightarrow (-1, +1)$

Mapping from xe to xn

$$x_n = \frac{1 - (-1)}{r - l} \cdot x_e + \beta$$

$$1 = \frac{2r}{r - l} + \beta \qquad \text{(substitute } (r, 1) \text{ for } (x_e, x_n))$$

$$\beta = 1 - \frac{2r}{r - l} = -\frac{r + l}{r - l}$$

$$\therefore x_n = \frac{2}{r - l} \cdot x_e - \frac{r + l}{r - l}$$

- * No homogenous projection needed
- * We transform y_e to y_n with linear interpolation
- * We map input interval (b, t) \rightarrow (-1, +1)

Mapping from y_e to y_n

$$y_n = \frac{1 - (-1)}{t - b} \cdot y_e + \beta$$

$$1 = \frac{2t}{t - b} + \beta \qquad \text{(substitute } (t, 1) \text{ for } (y_e, y_n))$$

$$\beta = 1 - \frac{2t}{t - b} = -\frac{t + b}{t - b}$$

$$\therefore y_n = \frac{2}{t - b} \cdot y_e - \frac{t + b}{t - b}$$

- * No homogenous projection needed
- * We transform z_e to z_n with linear interpolation
- * We map input interval $(-f, -n) \rightarrow (+1, -1)$

Mapping from z_e to z_n

$$z_{n} = \frac{1 - (-1)}{-f - (-n)} \cdot z_{e} + \beta$$

$$1 = \frac{2f}{f - n} + \beta \quad \text{(substitute } (-f, 1) \text{ for } (z_{e}, z_{n}))$$

$$\beta = 1 - \frac{2f}{f - n} = -\frac{f + n}{f - n}$$

$$z_{e} \text{ to } z_{n} \quad \therefore z_{n} = \frac{-2}{t - b} \cdot z_{e} - \frac{f + n}{f - n}$$

- * Final 4x4 orthographic projection is
- * It is affine transformation w_c = w_e

Perspective vs. Parallel Projection

- Perspective projection
 - + Size varies inversely with distance looks realistic
 - Distance and angles are not always preserved
 - Parallel lines do not always remain parallel

- * Parallel projection
 - + Good for exact measurements
 - + Parallel lines remain parallel
 - Angles are not (in general) preserved
 - Less realistic looking

