1. Что такое shortcut соединение и для чего оно нужно?

Shortcut соединение позволяет пропустить несколько слоев.

Было замечено, что при обучении глубоких сетей с использованием простое стечение слоев качество растет до определенного количества слоев. Нейросеть может аппроксимировать почти любую функцию, например некоторую сложную функцию H(x). Тогда справедливо, что такая сеть легко выучит residual-функцию (остаточную функциию): F(x) = H(x) - x. Очевидно, что наша первоначальная целевая функция будет равна H(x) = F(x) + x. Проблема деградации подразумевает, что сложная нелинейная функция F(x), полученная стеканием нескольких слоев, должна выучить тождественное преобразование, в случае если на предыдущих слоях был достигнут предел качества. Но этого не происходит по каким-то причинам, Тогда мы поможем ей добавить shortcut-соединение, и, возможно, оптимизатору будет легче сделать все веса близкими к нулю, нежели создавать тождественное преобразование.

Figure 2. Residual learning: a building block.

 $\mathcal{H}(\mathbf{x})$ is the true function we want to learn

Let's pretend we want to learn $\mathcal{F}(\mathbf{x}) := \mathcal{H}(\mathbf{x}) - \mathbf{x}$

instead.

The original function is then

$$\mathcal{F}(\mathbf{x}) + \mathbf{x}$$

2. Применяется ли слой Dropout, если вызывается метод predict? Ответ обоснуйте.

Данный слой не применяется. Dropout применяют, когда происходит переобучение сети. Исключение нейронов «создает» новую сеть. Для обучения.

3. Что такое блок GRU?

GRU — управляемый рекуррентный нейрон. Используется в вариации сети с долгой краткосрочной памятью. У него два фильтра. Фильтр обновления определяет, сколько информации останется от прошлого состояния и сколько будет взято из предыдущего слоя. Фильтр сброса работает примерно как забывающий фильтр.

4. Как обычная свертка раскладывается на поканальную свертку?

Сначала входной тензор сворачивается ядром размерности $1\times1\times[\kappa o_{1}-в_{0}$ каналов входного тензора]. Далее происходит свертка 3×3 по каждому каналу. После происходит свертка 1×1 .