

TR 65274

DECEMBER

ROYAL AIRCRAFT ESTABLISHMENT
TECHNICAL REPORT No. 65274

THE ORBIT OF
ARIEL 2 (1964-15A)THE FIRST TWELVE
MONTHS

by

R. H. Gooding

CONTAINED IN THIS DESCRIPTION MAY BE SUBJECT

MINISTRY OF AVIATION EARNEOROUGH HANTS

U.D.C. No. 521.6

ROYAL AIRCRAFT ESTABLISHMENT

Technical Report No. 65274

December 1965

THE ORBIT OF ARIEL 2 (1964-15A) THE FIRST TWELVE MONTHS

bу

R. H. Gooding

SUMMARY

The definitive orbit for Ariel 2 (1964-15A) is computed, from Minitrack observations, for a period of twelve months from the launch of the satellite. The orbit is described by a model with eight orbital parameters and these parameters are listed at every twenty-fifth nodal passage. The angular observations are accurate to about 1° and, as a result, the average computed standard deviations of the eight fitted orbital parameters are as follows:

1 m in semi-major axis, 10⁻⁵ in eccentricity, 2" in inclination, 4" in right ascension of the node, 30" in argument of perigee, 0°.03 in time at the node, and 0.001 deg/d² and 0.001 deg/d³ in the linear and quadratic coefficients occurring in the mean motion polynomial.

Ephcmerides computed from the listed orbital parameters will be accurate to about $\frac{1}{2}$ km, the accuracy required by the Ariel 2 experimenters. Limitations which prevent the accuracy from being better than this are discussed.

Departmental Reference: Space 122

		CONTENTS	Page
1	INTRO	DUCTION	3
2	MINIT	RACK OBSERVATIONS	3
3	ANALY	SIS OF THE OBSERVATIONS	4
	3.1	Dynamic model of the orbit	4
	3.2	Computer operation	5
	3.3	Miscellaneous points	7
4	RESUL	TS	7
5	ACCUR	ACY OF POSITION COMPUTATION	12
6	COMPA	RISON WITH OTHER ORBITS OF ARIEL 2	14
	6.1	Eccentricity, inclination, right ascension of the node and argument of perigee	15
	6.2	Semi-major axis, mean motion and anomalistic period	15
	6.3	Comparison of ephemerides	16
7	DISCUS	SSION	16
8	CONCL	USIONS	18
Acknov	vledger	nents	18
Append	lix	Perturbations of Ariel 2 due to the tesseral harmonics of the earth's gravitational field	19
Table	1	Minitrack stations observing Ariel 2	23
Table	2	Orbital parameters of Ariel 2	25
Refere	ences		31
Illus	tration	ns F	igures 1-20
Detech	nahla s	hatract cards	-

1 INTRODUCTION

Ariel 2 is the second of the series of satellites being launched in the scientific programme based on Anglo-American co-operation. As with Ariel 1, the first of the series, the satellite was constructed and launched by the U.S. (NASA). Whereas British responsibility for Ariel 1 was confined to the scientific experiments (including telemetry data analysis), for Ariel 2 it has been extended to the determination of definitive orbital parameters. Responsibility of the U.K. will continue to grow for the third satellite of the series, at present styled U.K.3 and due to be launched early in 1967, since this will be the first spacecraft actually to be built in Britain.

Three experiments constituted the scientific payload of Ariel 2, each sponsored by a scientific establishment in the U.K.: measurement of galactic noise by the Mullard Radio Astronomy Laboratory, Cambridge; measurement of micrometeorite flux and particle sizes by the Nuffield Radio Astronomy Laboratory, Jodrell Bank; and measurement of atmospheric ozone by the Meteorological Office, Bracknell. The satellite, known before launch as S.52 or U.K.2 and after launch as Ariel 2 or 1964-15A, was successfully placed in orbit at 17.25 UT on 27th March 1964 from the NASA Wallops Station, Virginia, by a four-stage solid-propellant rocket. The experiments continued to work until the end of September 1964, by which time the spin rate of the satellite was too low for useful data to be obtainable.

Tracking data have been provided by the Minitrack network of NASA (STADAN)¹. The first observations were from Lima, Peru, within 4 hours of the time of launch, and data are still (November, 1965) being obtained from the network, though it is expected that NASA will officially terminate the project in the near future. The data have been analysed in Space Department, R.A.E., and the main purpose of this Report is to tabulate the orbital parameters derived. These parameters have been calculated by use of the standard programmes 2,3 for the Pegasus computer and are given at intervals of 25 ascending nodes (about 13/4 days). Computation of orbital parameters was stopped after the orbit had been analysed for twelve months.

2 MINITRACK OBSERVATIONS

The STADAN network consists of a dozen Minitrack stations distributed as shown in Fig. 1. The inclination of the Ariel 2 orbit being too low for data from Alaska, observations were obtained from the eleven stations listed in Table 1. The Table gives latitude, longitude and height relative to the Fischer ellipsoid⁴, the currently best world-wide geodetic datum. Also given are the number of observations used from each station.

A total of about 3700 observations has been used over the twelve month period, corresponding to about ten per day. Of these, about 100 were rejected during analysis due to the size of residuals, but some of the rejections were due to incorrect punching of tapes before analysis so the data are in fact very reliable.

An accuracy of the order of a millisecond is claimed for the quoted times of observations, and time errors have been ignored in the analysis. Experience with Ariel 1 showed⁵ that the angular accuracy is effectively about 1 minute of arc and this value was used in the analysis. It covers errors in the basic interferometer measurements, ionospheric refraction correction, station co-ordinates and orbital model, and can also be regarded as incorporating the explicitly ignored time errors.

For the first 36 hours after launch, observations with elevations as low as 20° were made and have been used to obtain the first set of orbital parameters. To minimise unknown refraction errors, data made available after this initial short period have been confined to observations with high elevations; more than half the observations have had elevations greater than 80° and there have been only four with elevations less than 60° .

The coverage of each interferometer essentially consists of a pair of narrow fans in the vertical plane, one north-south and the other east-west, only one being used on a given pass. For this reason the azimuths of most observations have been close to 0°, 90°, 180° or 270°. A station supplies, for a given pass, one or two observations. If there are two, since they are both in the same narrow fan, they are only about 10 to 15 seconds apart in time.

3 ANALYSIS OF THE OBSERVATIONS

3.1 Dynamic model of the orbit

The analysis has been carried out using the standard R.A.E. orbit improvement technique^{2,3} based on Merson's smoothed elements. The orbital model chosen for Ariel 2 has twelve parameters associated with each of the epochs defined by every 25th ascending node. Eight of the twelve parameters are determined by differential correction of approximate values; these eight are: a (semi-major axis), e (ecdentricity), i (inclination), Ω (right ascension of the defining node), ω (argument of perigee), t (time at the defining node) and the parameters n_1 and n_2 such that the mean motion at time t is given by:-

$$n = (\mu/a_0^3)^{\frac{1}{2}} + n_1 (t - t_0) + n_2 (t - t_0)^2,$$

where $\mu=398\ 602\ {\rm km}^3/{\rm sec}^2$. The remaining four parameters - denoted by e_1 , i_1 , Ω_1 and ω_1 - give time-linear contributions to e_1 , i_1 , Ω_1 and ω_2 unlike i_1 , i_2 , they are not fitted to the observations but are given pre-calculated values. They represent drag, luni-solar and earth-gravity $(J_3, J_4 \text{ and } J_2^2 \text{ terms})$ perturbations of the orbit, and are valid for only two or three days each side of the epoch i_1 . It must be emphasised that i_2 and i_3 and i_4 do not include the large secular terms which arise from the i_2 perturbation; these are automatically allowed for by the model. Similarly, i_4 does not represent the main variation of i_4 due to drag, this being allowed for through the parameter i_4 . Some printed sets of parameters have been circulated in which coefficients i_2 and i_3 were included in addition to i_4 and i_4 . However their values were so small as to be quite without significance (see also Section 5).

Ref.3 gives the complete set of formulae by means of which geocentric position is computed from the twelve orbital parameters. They differ from the formulae of the original Γ egasus programme in two respects. First, the position of the satellite at time t is computed as if the time was actually $t + \delta t$ where

$$\delta t = 0.088 \sin 2 (\theta - \Omega - 18^{\circ}) \sec ,$$

 θ being the sidereal time. This formula gives a first-order approximation to the 12-hour along-track oscillation of the satellite caused by the tesseral harmonics - in particular by $J_{2,2}$ - of the earth's gravitational field. Further details are given in the Appendix. Naturally, the topocentric position of the satellite is found by taking the station co-ordinates (in space axes) at the true time t.

The other divergence from the formulae of the original Pegasus programme is that a term has been introduced into the expression for mean anomaly, M, associated with the parameters Ω_1 and ω_1 . The full formula for M is

$$M = M_0 + (n_0 - \omega_1 - \Omega_1 \cos i_0)(t - t_0) + \frac{1}{2}n_1(t - t_0)^2 + \frac{1}{3}n_2(t - t_0)^3,$$

where M_o is determined from e_o and ω_o ; t is taken, of course, to include the 12-hour δ t term already mentioned. n_o denotes $(\mu/a_o^3)^{\frac{1}{2}}$ and the formula for n given earlier is not affected.

3.2 Computer operation

From the receipt of observations from NASA to the generation of a given set of definitive orbital parameters, there are seven programmes which have to

be run on the Pegasus computer. Allowing for the fact that the differential correction programme is used twice, the seven programmes correspond to eight operating stages as listed below. The first two stages apply to the observations in general and the remaining six to the analysis at a particular node.

- (i) The direction cosines, of which the data consist, are punched on paper tape; they are converted to azimuth and elevation by the computer, which provides output in a form suitable for re-imput with the next programme.
- (ii) Observations, sometimes several hundred at a time, are stored on the Ariel 2 M_{\bullet} T.L. (magnetic tape library).
- (iii) The initial parameters at a given node are predicted by extrapolation from the definitive parameters 25 nodes before (except for the first definitive node when NASA estimates are used).
- (iv) About 30 observations, chosen by the operator for the analysis at the given node, are transferred from the M.T.L. to an Ariel 2 S.D.T. (selected data tape); some preliminary processing is incorporated in the selection programme.
- (v) A single iteration of the main differential correction programme is run; the parameters and in particular n₄ are then sufficiently accurate for the next stage.
- (vi) Contributions to e_1 , i_1 , Ω_1 and ω_1 due to gravity $(J_3, J_4 \text{ and } J_2^2 \text{ terms})$ and drag perturbations are found; these are functions of the orbital parameters and the drag terms depend on n_4 .
- (vii) The luni-solar contributions to e_1 , i_1 , Ω_1 and ω_1 are found and added in.
- (viii) As many further iterations as necessary (normally two) of the differential correction programme are run, e_1 etc being held fixed; after the last iteration the standard deviations of a_0 , e_0 , i_0 , n_0 , ω_0 , i_0 , n_1 and n_2 are obtained.
- Stage (ii) requires virtually the same computer time about 40 min irrespective of the number of observations involved (within the capacity of the M.T.L.). For the other stages the average times at the computer, based on a set of 30 observations, are as follows: for stage (i) 5 min; for (iii) 2 min; for (iv) 8 min; for (v) 15 min; for (vi) 1 min; for (vii) 1 min; for (viii) 30 min. Thus the total computing time for the analysis at each node worked out at about 70 min under ideal conditions. An actual average was

nearer 90 min allowing for delays due to the rejection of observations etc. The time away from the machine, including a little more than 1 hr for punching 30 observations, was about another 90 min. Since analysis was conducted at 210 different nodes the routine work required grand totals of about 320 Pegasus hours and 650 man hours.

3.3 Miscellaneous points

Times of observations were provided relative to the WWV time transmissions from America. Since the experimenters were using telemetry data relative to WWV it was decided not to correct to any of the standard time systems (universal, ephemeris or atomic time). If it is so desired, the orbital parameters in this paper may be corrected to datum UT2 as follows, only Ω_0 and to being affected: to to add the time (in seconds) by which WWV is slow on UT2; to Ω_0 add $0^{\circ}.004 \times (UT2-WWV)$ where the time difference is in seconds.

The analysis at each defining node has used about 30 observations, spanning a period of 3 to 4 days centred on the node. Since the defining nodes are only 13 days apart there is considerable overlap, about half the observations being used twice. This was done deliberately since in any application of the 'fitting by moving arcs' method a narrow overlap is a source of inaccuracy. Accuracies actually obtained during the periods of overlap are considered in Section 5.

A difficulty arose in the analysis of the same observations at two different nodes since WWV time was set back 0°.1 at 1965 January 1.0. Each observation close to this time of discontinuity had to be duplicated in the library of Ariel 2 observations, once with the original observation time and again with an adjusted time, the observation selected depending on whether the defining node used was, respectively, the same side of the discontinuity as the observation or the opposite side.

4 RESULTS

Orbital parameters for Ariel 2 are listed in Table 2. Successive columns of the Table are as listed below, zero suffixes being omitted for convenience.

```
Node number, m
Date
Time
Semi-major axis, a (km)
Eccentricity, e
10000 e<sub>1</sub>, with e<sub>1</sub> in units/100 days
a (1 - e)
```

Inclination, i (degrees)

100 i₁, with i₁ in degrees/100 days

Right ascension of the node, Ω (degrees)

100 Ω₁, with Ω₁ in degrees/100 days

Argument of perigee, ω (degrees)

ω₁ (degrees/100 days)

Mean anomaly, M (degrees)

Mean motion, n (degrees/100 days)

n₁ (degrees/(100 days)²)

10⁻² n₂, with n₂ in degrees/(100 days)³

Number of observations used, N

Extent of the observations, D (days)

Standard deviation of an observation of unit weight, ε

Modified Julian Day representation of date/time, MJD.

The nodes are numbered such that m would have been zero at a fictitious node half an hour before launch. The quantities a(i-e), M and n are useful derived parameters. Although a(1-e) gives an indication of the perigee distance, r_p , it is not exactly equal to r_p . To $O(J_2)$ the perigee distance is given by:-

$$r_p = a (1 - e) + \frac{1}{4} J_2 \frac{R^2}{p} \{ \sin^2 i \cos 2 \omega - (1 - e)(2 - 3 \sin^2 i) \}$$
.

The values of the eight differentially-corrected parameters are followed, in Table 2, by their computed standard deviations, the unit in each case being that of the final figure quoted for the parameter. The quantity ε is a measure of the goodness of fit. Its expected value is 1 (non-dimensional), corresponding to the adopted weighting of observations with standard deviation 1'; if ε is, say, 2.5 the fit is such that the observations must, a posteriori, be regarded as only accurate to $2\frac{1}{2}$ '. Every standard deviation includes ε as a factor. If this factor were removed, the remaining quantity would be independent of fit and would depend on, and therefore provide an indication of, the geometrical coverage of the orbit by the relevant station observations.

It is seen that average values for the standard deviations of the eight basic parameters are as follows:-

$$\sigma_{a}$$
 1 metre σ_{ω} 0°.007
 σ_{e} 0.00001 $\sigma_{t_{0}}$ 0°.03
 σ_{i} 0°.0005 $\sigma_{n_{1}}$ 12°/(100 days)²
 σ_{Ω} 0°.001 $\sigma_{n_{2}}$ 1500°/(100 days)³ .

The remarkable accuracy assessed for semi-major axis arises from the relation n^2 a³ = μ (Kepler's third law). It is really n that is being measured so accurately and the values of a may be systematically in error by as much as 20 m due to error in the adopted value for μ , viz. 398 602 km³/sec². The above σ corresponds, in fact, to σ = 0°.1/100 days or a maximum contribution to σ (when $1\frac{3}{4}$ days away from t) of about 0°.002. A better assessment of orbital distance accuracy is given by σ (a $\frac{1}{1}$ - e) = 70 metres. It can readily be checked that the values given for σ and σ also both correspond, for t - t₀ = $1\frac{3}{4}$ days, to contributions of about 0°.002 to σ Thus an approximate estimate of the maximum along-track error in position computed from the definitive orbital parameters may be obtained from $\sqrt{3} \times 0^{\circ}$.002 at 7000 km; this estimate is less than $\frac{1}{2}$ km. Further discussion of errors in computed position is to be found in Section 5.

To indicate the behaviour of the basic parameters relative to their tabulated standard deviations, Figs.2-10 have been plotted. The idea behind these plots has been, as far as possible, to use a scale large enough for the representation of each fitted value of a parameter by a vertical line of length 2σ centred on the fitted value. To this end secular terms have been removed from some of the parameters by preliminary fitting of some suitable polynomial, and for two of the parameters - e and ω - the long-periodic variation has also largely been removed.

For i, n_1 and n_2 a suitable scale is available without modification of the data from Table 2; Figs. 5, 9 and 10 represent these three parameters, the plotted lines being of length $2\sigma_1$, $2\sigma_n$ and $2\sigma_n$ respectively. Eccentricity, right ascension of the node and argument of perigee have been represented in Figs. 4, 6 and 7 by graphs of Δe , $\Delta \Omega$ and $\Delta \omega$ respectively, where

$$\Delta e = e + 1.08 \times 10^{-6} \text{ m} - 7 \times 10^{-4} \sin \omega$$

$$\Delta\Omega = \Omega + k \times 360^{\circ} + 0^{\circ}.287515 \text{ m} + 2^{\circ}.29 \times 10^{-7} \text{ m}^2 + 1^{\circ}.18 \times 10^{-11} \text{ m}^3$$

and

$$\Delta \omega = \omega + k \times 360^{\circ} - 0^{\circ}.21385 \text{ m} - 2^{\circ}.3 \times 10^{-7} \text{ m}^2 - 0^{\circ}.4 \cos \omega$$

here k is an integer which has been introduced to avoid the discontinuities of 360° in the tabulated values of Ω and ω_{\bullet}

Figs.2 and 3 both relate to semi-major axis. The values of σ_a are so small that the scale can not be made large enough over the whole range of a, even after removal of a very-high-order polynomial. Fig.2 corresponds to the removal of a quintic, and plots $\Delta_4 a$, where

$$\Delta_1^a = a + 1.61 \times 10^{-2} \text{ m} - 1.288 \times 10^{-5} \text{ m}^2 + 6.915 \times 10^{-9} \text{ m}^3 - 1.501 \times 10^{-12} \text{ m}^4 + 1.159 \times 10^{-16} \text{ m}^5$$

In order that a graph showing standard deviations might be drawn, the data were divided into seven sections and a separate polynomial (quartic) removed from each section, the constant terms being adjusted so that the polynomials joined up. The resulting graph is given in Fig. 3 by the plot of Δ_2 a, where, in km,

$$\Delta_2^a = a + 2.517 \times 10^{-2} \text{ m} - 3.854 \times 10^{-5} \text{ m}^2 + 3.301 \times 10^{-8} \text{ m}^3 - 1.082 \times 10^{-11} \text{ m}^4 \qquad \text{for } 0 < \text{m} < 750$$

$$\Delta_2$$
a = a + 8.4985 - 9.22 × 10⁻³ m + 1.539 × 10⁻⁵ m²
- 6.976 × 10⁻⁹ m³ + 1.277 × 10⁻¹² m⁴ for 750 < m < 1500

$$\Delta_{2}a = a - 180.9639 + 4.424 \times 10^{-1} \text{ m} - 3.84 \times 10^{-4} \text{ m}^{2} + 1.48277 \times 10^{-7} \text{ m}^{3} - 2.1107 \times 10^{-11} \text{ m}^{4}$$
 for 1500 < m < 2250 ,

$$\Delta_2$$
a = a - 1142.1030 + 1.83778 m - 1.092788 × 10⁻³ m²
+ 2.88134 × 10⁻⁷ m³ - 2.82585 × 10⁻¹¹ m⁴ for 2250 < m < 3000

$$\Delta_2^a = a + 43.1415 - 4.1146 \times 10^{-2} \text{ m} + 2.0548 \times 10^{-5} \text{ m}^2$$

$$- 3.4637 \times 10^{-9} \text{ m}^3 + 1.9394 \times 10^{-13} \text{ m}^4 \qquad \text{for } 3000 \leq m \leq 3750 \text{ ,}$$

$$\Delta_2^a = a + 375.2463 - 4.7361 \times 10^{-1} \text{ m} + 2.24885 \times 10^{-4} \text{ m}^2$$

$$- 4.53198 \times 10^{-8} \text{ m}^3 + 3.34635 \times 10^{-12} \text{ m}^4 \qquad \text{for } 3750 \leq \text{ m} \leq 4500 \text{ ,}$$

and

$$\Delta_2$$
a = a - 22497.1421 + 18.545985 m - 5.723216 × 10⁻³ m²
+ 7.845224 × 10⁻⁷ m³ - 4.027167 × 10⁻¹¹ m⁴ for 4500 < m < 5250 .

Fig. 8 relates to the remaining parameter, t_{o} . This is plotted in the Modified Julian Day number form, a quartic polynomial being removed from the values of Table 2. Again standard deviations cannot be represented and this time they are so small relative to the scale of the graph - the average σ_{t} being 3.5×10^{-7} day - that division of the data into sections would not help. The quantity plotted in Fig. 8 is Δt_{o} , where, in days,

$$\Delta t_0 = t_0 - 7.0318 \times 10^{-2} \text{ m} + 4.1 \times 10^{-8} \text{ m}^2 + 4.06 \times 10^{-12} \text{ m}^3 - 1.27 \times 10^{-16} \text{ m}^4$$

Although the polynomial (and sinusoidal) expressions removed from the orbital parameters have been listed above, it is not claimed that the polynomials represent the real behaviour of the parameters or that the shapes of the residual plots are significant. As already stated, the polynomials have only been removed in order that the magnitudes of the standard deviations should be visible, on the graphs, against the background of the fluctuation of the parameters. The graphs indicate certain facts about interpolation that are discussed in the next paragraph.

Suppose that the orbital parameters corresponding to a certain node had not been available and that they were estimated by a suitable form of interpolation in the adjacent sets of parameters. Then Figs. 4, 5, 6 and 7 show that the values interpolated for e, i, Ω and ω , respectively, would be very good; it would be almost certain, in fact, that any interpolated value would be within two average standard deviations of the true parameter. For a and n_1 , however, it is clear from Figs. 3 and 9 that such accurate interpolation would be impossible and for the situation would be worse still. (The simplest thing to do with the final

parameter, n_2 , would be to set it zero - Fig. 10 shows that the error would be no greater than in interpolating n_4 .)

Inadequacy of interpolation for the parameters a, t_0 and n_1 , due to irregular variation in air drag, explains why it was necessary to obtain orbital parameters as frequently as at 25 node intervals (see also Section 5) and suggests that an even finer analysis, say at 10 or 15 node intervals, might have given further information on drag fluctuations.

5 ACCURACY OF POSITION COMPUTATION

From a set of orbital parameters derived on the basis of a given orbital model, the position of a satellite at any time may be computed using the same orbital model; indeed, for satellites transmitting scientific measurements, the provision of an ephemeris - or world map - is one of the chief motives for determining orbital parameters. In the case of Ariel 2 the experimenters wanted positions to be normally accurate to $\frac{1}{2}$ km or better, and almost never worse than 1 km.

Successive orbit determinations were initially carried out at 50-node intervals, starting from node 25. Allowing for overlap this meant that a given set of parameters had to be valid for a period stretching from about 26 nodes before the relevant defining node to about 26 nodes after. A useful measure of the accuracy of position computation was available by comparing the positions at various times - in particular during the overlap period - as computed from two sets of parameters, those at the previous defining node and those at the following one.

Let d be the distance between two estimates of satellite position as above, d being a function of time. The behaviour of d might be expected to be compounded of a periodic term and a secular term. This is illustrated in Fig. 11, based on orbital parameters for defining nodes 75 and 125. The lower plot shows the fine behaviour of d over a single revolution - from node 100 to node 101. The upper plot shows the coarse behaviour between nodes 92 and 110; a curve has not been drawn because of the oscillation which occurs between the plotted points. It is clear at once that the desired accuracy is not being achieved.

It was largely as a result of contemplating Fig. 11 that the decision was made to produce orbital parameters for the intermediate nodes 50, 100 etc. Fig. 12 gives the coarse and fine behaviour of d for compared positions based on the parameters for nodes 75 and 100. Fig. 13 gives a similar picture based on nodes 100 and 125. Although the true position of the satellite is, of course, never known, it is now very probable that the desired accuracy is being attained.

A second way of estimating the accuracy of position computation is to employ the covariance matrix of the orbital parameters used for this computation. A Pegasus programme is available for doing this and has been described elsewhere. Let S be the root mean square of the distance between the true position of a satellite and its computed position from the parameters at a defining node (only one defining node is involved now). Fig. 14 gives the coarse behaviour of S between nodes 1950 and 1968 based on the covariance matrix of the orbital parameters at node 1950. Fig. 15 gives the fine behaviour of S between nodes 1962 and 1963; values based on covariance matrices from nodes 1950 and 1975 have been averaged here, but they scarcely differed. On the same graph is the corresponding plot of d, similar to that plotted in earlier figures.

The agreement between the S and d plots of Fig. 15 is excellent, bearing in mind that they arise from quite different methods of accuracy assessment. Similar plots are given in Fig. 16, starting from a different pair of nodes, 2275 and 2300. This time the agreement is much worse, an average value for d/S being about $3\frac{1}{2}$. If the errors in the position of the satellite, computed from two sets of parameters, were uncorrelated, the expected value of d/S would be $\sqrt{2}$, but with the parameters based on overlapping sets of data the expectation would be less than this. Thus a value $3\frac{1}{2}$ probably represents a systematic error in the orbital model. However, it is felt that even in this case the accuracy is unlikely to be worse than 1 km. It should be remarked that the choice of nodes upon which Fig. 11 to 16 were based was a purely random one.

The effect of two possible sources of systematic error was investigated in a similar way to the above, using the quantity d. It has been remarked in Section 3.1 that parameters Ω_2 and ω_2 were originally included in the model but later dropped. The effect of dropping Ω_2 and ω_2 from the parameters for node 75, all other parameters remaining unchanged, is shown in Fig.17. This effect is, of course, proportional to $(t-t_0)^2$ and its maximum value may be seen to be, in metres, about 33 $(t-t_0)^2$, measuring time in days. This is completely negligible.

The Fischer ellipsoid was adopted early in the analysis, but without recomputing all previous sets of parameters obtained when the stations were not all referred to the same datum. One set of parameters was recomputed, the set for node 525. Fig. 18 indicates the negligible change in position as computed from the parameters before and after the change.

6 COMPARISON WITH OTHER ORBITS OF ARIEL 2

Elements of Ariel 2 have been issued by two American computing centres, Spacetrack and NASA. In each case new sets of elements are produced, on average, about every nine days, some five times less frequently than the elements tabulated in this paper. For this reason, among others, the American orbits must be regarded as significantly less accurate than the definitive R.A.E. orbit. The Spacetrack bulletins, in any case, describe their data as for prediction purposes only and unsuitable for scientific analysis.

The NASA elements, like the R.A.E. elements, have been derived from Minitrack observations. However, in addition to being issued less frequently they differ from R.A.E. elements in that they are related to a different dynamic model of the orbit; also, each set corresponds to some arbitrary epoch and not to the time of a particular nodal passage. The precise definitions of NASA elements are rather difficult to discover and it is not certain that the same orbital model is used for the analysis of all satellites. It was therefore of interest to compare NASA elements - interpolated to the time of the nearest set of R.A.E. elements - with the R.A.E. elements, using the differences to establish the most likely interpretation of the NASA elements.

The comparison has been made and it seems that NASA must have used a set of elements which will be defined in the next paragraph. They are denoted by \bar{a} , \bar{e} etc. to distinguish them from R.A.E. elements. Formulae are given in Sections 6.1 and 6.2 which relate the two sets of elements. On the assumption that the NASA elements are the barred elements, a number of sets have been transformed into Merson's elements for comparison with R.A.E. elements. The average difference is then about three or four times the R.A.E. standard deviations and - since the R.A.E. elements are the more accurate - the agreement is very satisfactory. This is illustrated by Fig. 19 which gives the R.A.E. eccentricity graph; values of e from NASA are plotted before and after transformation and it is seen that after transformation they lie on or near the R.A.E. curve. Comparison of R.A.E. and NASA ephemorides is considered in Section 6.3 and illustrated by Fig. 20.

The elements \bar{a} , \bar{e} etc. are defined, to O(e), by a double averaging of osculating elements. The first averaging is with respect to mean anomaly and the second with respect to argument of perigee; these averagings remove, respectively, short-periodic perturbations associated with the J_2 term of the geopotential function and long-periodic perturbations associated with the J_3 term. Despite the general uncertainty over their orbital methods, there is reason to believe that NASA remove J_5 perturbations also, but these are much smaller than the J_3 perturbations and are not considered here.

The formulae given below have been derived by using the results of Merson⁸, who compared his smoothed elements with the mean elements of Kozai⁹. The elements \bar{e} , \bar{i} and $\bar{\Omega}$ are very close to those which Kozai reached after removing long-periodic terms but the \bar{a} and $\bar{\omega}$ defined here differ from those of Kozai since each of the latter was given a bias relative to the true average short-periodic perturbation.

The element a is dealt with after e, i, Ω and ω in the comparisons below and is then considered in conjunction with the mean motion n and the anomalistic period. Mean anomaly, for which comparison would not be so straightforward, is omitted from consideration.

6.1 Eccentricity, inclination, right ascension of the node and argument of perigee

To O(e) the relations between e, i, Ω , ω and \overline{e} , \overline{i} , $\overline{\Omega}$, $\overline{\omega}$ respectively are given by:-

$$e - \bar{e} = \frac{3}{8} J_2 \left(\frac{R}{a}\right)^2 e (2 - 3 \sin^2 i) - \frac{1}{2} \frac{J_3 R}{J_2 a} \sin i \sin \omega$$

$$i - \bar{i} = -\frac{1}{8}J_2\left(\frac{R}{a}\right)^2 \sin 2 i \left(3 + 4 e \cos \omega\right) + \frac{1}{2}\frac{J_3 R}{J_2 a} e \cos i \sin \omega$$

$$\Omega - \overline{\Omega} = \frac{1}{2} J_2 \left(\frac{R}{a}\right)^2 \cos i \left(3 \omega + 3 M_0 + 4 e \sin \omega\right) - \frac{1}{2} \frac{J_3 R}{J_2 a} e \cot i \cos \omega$$

and

$$\omega - \overline{\omega} = -\frac{1}{l_4} J_2 \left(\frac{R}{a} \right)^2 \left\{ (4 - 5 \sin^2 i)(3 \omega + 3 M_0^4 + 2 e \sin \omega) - \frac{9}{4} \sin^2 i \sin 2 \omega \right\}$$
$$-\frac{1}{2} \frac{J_3 R}{J_2 a} e^{-1} \sin i \cos \omega .$$

The first term in the expression for $e - \bar{e}$ is negligible here since $2 - 3 \sin^2 i = 0(e)$; the second term represents the transformation made to the plot of NASA eccentricity in Fig. 19.

6.2 Semi-major axis, mean motion and anomalistic period

The semi-major axis and the mean motion are directly related by Kepler's third law. Since - with observations of direction and not range - it is n rather than a which is measured, it is preferable to give the formula relating n and \overline{n} . There being no long-periodic term, the relation - to O(e) - is:-

$$n - \bar{n} = \frac{3}{4} J_2 \left(\frac{R}{a}\right)^2 n (2 - 3 \sin^2 i)$$
.

Although the true anomalistic period - the time from one passage through perigee to the next - is $2\pi/n$, it appears to be $2\pi/n$ which is listed as 'anomalistic period' by NASA. Thus the latter is consistently half a second greater than the true anomalistic period.

Values listed in the Spacetrack bulletins do appear to be of the true anomalistic period and agree satisfactorily with values of $2\pi/n$ using Table 2.

6.3 Comparison of ephemerides

It does not matter that the definitions of R.A.E. and NASA elements are different, so long as the appropriate formulae are used for generating satellite positions in each case. A comparison has been made of satellite position computed from R.A.E. orbital elements with the ephemeris provided by the NASA 'Refined World Maps'. The period from node 600 to node 601 was chosen for the comparison since during this period the difference between e (NASA) and e (R.A.E.) was near its maximum (0.0008), as may be seen from Fig.19.

Fig. 20 gives (lower curve) the difference between the R.A.E. and NASA computed satellite positions and (upper curve) the height component of this difference. It is seen that the height difference does not exceed 310 metres nor the total difference 800 metres. Since the R.A.E. elements are the more accurate, position agreement to this order is very satisfactory and confirms that both sets of orbital elements are being used correctly.

7 DISCUSSION

The accuracy required by the Ariel 2 experimenters has been achieved in the orbit provided. Had an order better accuracy been required, a careful analysis of the possible sources of error would have been necessary. At the expense of some complication, further improvements in the dynamic model of the orbit might have been made and the Pegasus computer programme improved. However, it is doubtful whether the Minitrack data themselves would have been accurate enough to warrant much refinement in the computing.

The average size of the residuals in angle is the 1 minute of arc that had been expected when the analysis was started. For a satellite at an average distance of about 1000 km this corresponds to an error in distance of about 300 m.

For observations with elevations as low as 60° the greatest source of error is probably the inadequate correction of ionospheric refraction. It has been estimated 10 that for an elevation angle of 50° the residual error after refraction correction is 2 minutes of arc so that for 60° it is still important.

Other errors in the data are not likely to be significant. Systematic errors which arise during the periods between successive calibrations of a Minitrack station - periods of some months in general - should not average more than $\frac{1}{4}$ minute of arc $\frac{1}{4}$. Errors in station survey should not exceed 100 m, leading to errors of the same order as calibration errors.

Turning to the orbital model, appreciable errors - say about 200 m - still arise from inadequate allowance for the earth's tesseral harmonics (see the Appendix), despite the empirical modification made. Errors from neglect of the zonal harmonics beyond J_4 are thought to be negligible. The effect of J_7 , for example, is not important for a satellite of inclination 51° .6. The values of e_1 in Table 2, which are from theory, are in general agreement with values from differencing e_1 bearing in mind that the orbital model automatically allows for the main drag term in e_1 is zero it is e_1 and not e_2 which is held constant.

Errors from inadequate representation of the effects of atmospheric drag are less easy to estimate. They may be divided into short-periodic and long-periodic errors. The short-periodic errors arise because drag is commentrated at perigee and not, as the mean anomaly polynomial would suggest, uniformly spread over the orbit. But the errors are negligible, being less than a second of arc - in the case of Ariel 2 - for mean anomaly and so equivalent to at most a few seconds of arc in an observation.

The long-periodic errors in the representation of drag effects are more serious and it is these which are difficult to estimate. They arise because of fluctuations in the density of the atmosphere which are, on the different time scale involved, of short period. These fluctuations have been investigated by King-Hele and Quinn the who have plotted values of n, as in Fig. 9, as far as 10th September, 1964. Geomagnetic index, when plotted for comparison with the parameter n, shows the same general behaviour but has very pronounced 'spikes'. It is clear, in fact, that the calculation of n, even at intervals as fine as 13/4 days, has smoothed the true orbital acceleration and thereby introduced error. If the required corrections to n, could be estimated and doubly integrated, then the correction to mean anomaly could be found as a function of time. From a rough inspection of the n, and geomagnetic index curves it seems likely that the error could reach, or exceed, a minute of arc in equivalent topocentric observation.

It is interesting, in the light of the last paragraph, to speculate that to obtain more accurate orbits for satellites like Aricl 2 it may be necessary to feed in values of geomagnetic index over the three-or-four-day period of an

orbit determination and to form terms contributing to the mean anomaly by a double numerical integration of these values of the index.

In addition to its application to the study of short-periodic fluctuations in atmospheric density the orbit of Ariel 2 has been used in the evaluation of the odd zonal harmonics of the earth's gravitational potential. King-Hele, Cook and Scott¹² have taken Ariel 2 as one of six satellites for this evaluation. They used the data for perigee radius, a (1 - e), rather than eccentricity, in order to remove drag effects as accurately as possible, and found that the corrected data were then as good as data for the other satellites in virtually drag-free orbits.

8 CONCLUSIONS

By use of an orbital model with eight parameters fitted 'rom Minitrack observations, the orbit of Ariel 2 (1964-15A) has been successfully computed for a period of a year from its launch. The orbital parameters have been listed (in Table 2) for the time of every twenty-fifth passage through the ascending node.

Ephemerides calculated from the listed parameters should, in general, be accurate to about $\frac{1}{2}$ km, i.e. to the accuracy required by the experimenters. This estimate of accuracy is based on the view that the effective average error in a Minitrack observation is 1 minute of arc, a figure supported by the residuals in the observations after orbits have been fitted. The estimate has been confirmed by the comparison, over a short period, of ephemerides calculated from two sets of orbital parameters, corresponding to the epochs before and after the period in question.

Consideration has been given to the factors limiting the accuracy of the orbital determinations. It is concluded that the three main factors are: inadequacies in the correction of observations, other than at very high elevation, for ionospheric refraction; inadequacies in the representation of tesseral terms in the earth's gravitational field; and inadequacies in the representation of drag effects over periods of several days.

ACKNOWLEDGEMENTS

The computer analysis was supervised, in turn, by E.R. Neville, Kay Fisher and Janice Hingston. The author particularly thanks Mrs. Hingston for her help with the large amount of ancillary work.

Appendix

PERTURBATIONS OF ARIEL 2 DUE TO THE TESSERAL HARMONICS OF THE EARTH'S GRAVITATIONAL FIELD

During the first few orbital determinations, based on the standard dynamic model that was being used at the beginning of 1964, it was noticed that residuals from the Winkfield Minitrack station were consistently larger than residuals from the other stations. It was discovered moreover - using the original form of the orbit determination programme in which residuals in observation times as well as angular data were computed - that the residuals were almost entirely alongtrack, equivalent to an error in the Winkfield clock. This error was oscillatory, with amplitude about 0°-1 and period just under (by about 10 minutes) half a day. It was realised that an error of this type could be caused by the neglect of the coefficient $(J_{2,2})$ of one of the tesseral harmonics of the earth's gravitational field, though it had earlier been thought that J2.2 perturbations would not be detectable. The proof that the effect was in fact caused by gravitational perturbations - and that the Winkfield clock was blameless - was obtained by plotting time residuals for all the 185 observations which were obtained from the Minitrack network during the first 90 hours from launch. The residuals were plotted against the argument θ - Ω , where θ is sidereal time and Ω the right ascension of the satellite node.

Let the negative of the residual in an observation time (assuming the original form of the orbit determination programme) be denoted by δt . Then δt is the amount by which an observation time has to be increased before computing satellite position from the standard dynamic model. It was found that a good fit to the plot of 185 δt 's was given by:-

$$\delta t = 0.088 \sin 2 (\theta - \Omega - 18^{\circ}) \sec$$

Now the formula for the along-track effect of $J_{2,2}$ is given 13 , for a circular orbit, by:-

$$\delta L = \frac{9}{2} J_{2,2} \left(\frac{R}{p} \right)^2 \frac{n \sin^2 i}{i} \sin 2 \left(\theta - \Omega + \lambda_{2,2} \right) ,$$

where p, n and i are semi-latus rectum, mean motion and inclination respectively, R is the (mean) equatorial radius of the earth, $\lambda_{2,2}$ is the (east) longitude of one extremity of the major axis of the earth's equator, assumed elliptical, and ℓ is $\theta = \Omega$. Taking $\delta L = n \, \delta t$ and substituting the values of p, n, i and Ω for the Ariel 2 orbit, the observed δt fit may be accounted for by a $J_{2,2}$

perturbation for which $J_{2,2} = 3.0 \times 10^{-6}$ and $\lambda_{2,2} = -18^{\circ}$. The orbit determination programme has consequently been modified by arranging that the time of an observation is increased by δt where

$$\delta t = \frac{9}{2} J_{2,2} \left(\frac{R}{p}\right)^2 \frac{\sin^2 i}{k} \sin 2(\theta - \Omega + \lambda_{2,2})$$
,

 $J_{2,2}$ and $\lambda_{2,2}$ having the values above.

Now the values of $J_{2,2}$ and $\lambda_{2,2}$ obtained by Guier and Newton¹⁴, with which other values are in fair agreement, are 1.72 x 10⁻⁶ and -13°.4 respectively, so that at first sight the correction is almost double what can be justified. The natural explanation is that the fitted $J_{2,2}$ accounts not only for the pure $J_{2,2}$ but also for (the along-track effects of) $J_{4,2}$, $J_{6,2}$, $J_{8,2}$ etc. However, this explanation has not been satisfactorily borne out on evaluating these effects as far as $J_{8,2}$, using values from Ref.14. The pure $J_{2,2}$ effect and the $J_{4,2}$, $J_{6,2}$ and $J_{8,2}$ effects are then given, respectively, by:-

$$\delta t = 0.051 \sin 2 (\theta - \Omega - 13^0) ,$$

$$\delta t = 0.017 \sin 2 (\theta - \Omega - 67^{\circ})$$
,

$$\delta t = 0.004 \sin 2 (\theta - \Omega + 22^{\circ})$$

and

$$\delta t = 0.002 \sin 2 (\theta - \Omega - 11^{\circ})$$
;

the formulae for the quantities $L_{2,2}$ and $L_{4,2}$ of Ref.13 have been used here, and similar formulae developed for $L_{6,2}$ and $L_{8,2}$. On combining, the total effect is given by:-

$$\delta t = 0.051 \sin 2 (\theta - \Omega - 21^{\circ})$$

so that the amplitude is the same as for the pure $J_{2,2}$ effect though the phase has changed. Values for $J_{10,2}$ etc. are not available but there seems to be little hope of increasing the amplitude to the observed 0.088 sec through their agency.

The efficacy of the empirical programme modification may be appreciated when it is stated that the mean value of the observation residuals is halved. Although the modification was based on the analysis at the early nodes it was

tested also at later nodes; at node 3250, for example, the mean (rms) residual was 2'.80 without the modification, but 1'.46 with it.

It is recalled that the programme modification accounts for only that component of the pertubation due to tesseral harmonics which manifests itself as an apparent along-track error in satellite position with period about half a day. There are also components in the two directions perpendicular to the along-track direction. The perturbation which is cross-track but within the orbital plane contains eccentricity as a factor and may be neglected, but the perturbation perpendicular to the orbital plane is significant. Its effect is less noticeable than that of the along-track component, partly because it has a short-periodic factor superimposed on the half-day period. Its removal, however, might be expected to contribute to a further improvement in orbital fits.

For a complete representation of the effect of any particular tesseral harmonic the natural procedure would be to introduce the perturbations of the six orbital elements. With the normal notation 13 (but with σ for the element sometimes denoted by χ^*) there would be no perturbation in a, while perturbations in ω and σ could, for a near-circular orbit, be combined; thus expressions for δe , δi , $\delta \Omega$ and $\delta \omega$ + $\delta \sigma$ would be required instead of merely the expression for δL (= $\delta \omega$ + $\delta \sigma$ + $\delta \Omega$ cos i).

Attempts have been made to represent the complete perturbations of Ariel 2 due to $J_{2,2}$ and $J_{4,2}$ by taking either the values of Ref. 14 or else the empirical values for the along-track perturbation only, viz. $J_{2,2} = 3.0 \times 10^{-6}$, $\lambda_{2,2} = -18^{0}$ and $J_{4,2} = 0$. Both attempts were unsuccessful - residuals became larger not smaller - and perhaps this is not surprising. Since it was necessary to take an empirical $J_{2,2}$, based on residual fitting, to represent the along-track perturbation alone successfully, it would presumably be necessary to take a new empirical value to represent the complete perturbation. But the method of residual fitting would not then be so obvious; since the revised orbital model - with the empirical along-track correction - gave the Arial 2 orbit to the required accuracy, the question of further improvement has not been closely studied.

The perturbations due to $J_{n,s}$ with $s \neq 2$ would, of course, have to be considered in a full analysis. The tables below give order-of-magnitude estimates of the amplitudes of the perturbations from $J_{n,s}$ as far as $J_{4,4}$ using values from Ref.14, the effects on the elements being represented in metres. Lines of the tables for which the perturbations include eccentricity (e = 0.07) as a factor are indicated by an asterisk.

<u>δe</u>

	n s	1	2	3	4
	2*		ن		
Ì	3	130	45	25	
	4*	4	2	1	1

 $\underline{\delta \mathtt{i}}$

n	1	2	3	4
2		160		
3*	20	10	5	
4	12	30	50	7

 $\delta\Omega$

n.	1	2	3	4
2		130		
3*	25	10	3	
4	170	40	20	5

 $\delta\omega + \delta\sigma$

s n	1	2	3	4
2		300	_	
3*	120	25	10	
4	45	150	110	10

Table 1

MINITRACK STATIONS OBSERVING ARIEL 2

Station location	Latitude	Longi tude	Height (metres)	No. of observations
Blossom Point, Maryland, USA	38.43053 N	77•08629 W	-1	252
East Grand Forks, Minnesota, USA	48.02256 N	97•01082 W	254	760
Fort Myers, Florida, USA	26.51:827 N	81 •86539 W	7	225
Goldstone Lake, California, USA	35•33016 N	116.89977 W	937	202
Hartebeeshoek, Johannesburg, SA	25.88361 s	27-70791 E	1571	216
Lima, Peru	11.77635 S	77-15024 W	2	210
Quito, Ecuador	00.62237 S	78•57900 W	3548	140
Santiago, Chile	33-14896 B	70.66865 W	636	174
St. Johns, Newfoundland	47•74137 N	52.72036 W	106	698
Winkfield, England	51•44595 N	0 .69623 W	91	649
Woomera, Australia	31•39167 S	136.86972 E	118	189

Latitude and longitude are referenced to the Fischer ellipsoid: a spheroid of semi-major axis 6378.166 km and flattening 1/298.3. Heights are measured upwards from this spheroid.

Table 2 ORBITAL PARANCIERS OF ARIEL 2

•																																			_
KCD	38483, 4630385	38485, 2214,311	38486.9/96450	38488, 7376598	384,90,4954,880	384,92, 25,31528	38494,0106666	38495, 7680403	38497.5252928	38499.2824367	38501.0394.893	38502, 7964,536	38504-5533271	38506, 3101175	38508,0668433	38509, 8235208	78511,5801547	38513,3367355	38515,0932482	38516,8497097	38518, 6061270	38520, 3625079	38522,1188603	38523,8751869	38525.6314913	38527.3877554	38529, 14,39815	38530,9001755	38532.6563290	38534-4124489	38536, 1685426	38557.9246079	39539,6806427	38541.4366336	3854.5. 1925744
•	1.5	-:	4.4	1.0	1.5	1.3	1.7	1.8	1.5	1.0	0.	0.	0.	60	9.0	60	1:1	6.0	1.2	6.0	8.0	80	1.3	1.2	1.9	1.4	4:	0.1	4:	0.7	6.9	630	88	8.0	8.8
А	3.5	3.2	3.8	3.2		3.1	3.9	3.5	-	3.5	7	3.4		5.9	4.2	3.0	1-7	3.1	7-5	7.	3.6	2.9		30	0.4		3.3	2.9	3.7	3.1		3.1	7.4	0,1	
×	*	35	45	37	9	×	9	R	14	×	3	×	35	7.	£3	33	97	£	92	56	2	35	\$	×	17	33	3	35	K	24	21	ನ	23	7	\$
10 ⁻² n ₂	210 13	20 12	248 14	-160 14	-63 8	-30 12	-95 10	·大·	-78 10	-43 15	6 67	-31 16	43 7	-67 28	9 64-	25 24	68 7	-50 36	\$ 05	-20 22	2 7-	41 28	-22 11	7 28	134 13	-201 26	71 86	只式-	-26 18	-18 22	82 OT-	2 2	53 21	-28 9	-23 15
ď	2316 12	2825 7	3207 9	2954 9	2624 6	24.39 7	2311 6	1998 13	1850 6	1570 9	1557 7	1614 8	1517 6	1216 14	970 5	885 13	1127 6	1395 14	1082 8	1037 14	787 7	2167/	663 8	595 15	892 11	78117	751 9	88015	77814	60813	61516	685 19	90 19	7 046	8 628
u	511465.06	511512,17	511562.91	511621.18	511669.22	511713.40	511755.76	511793.19	511827.64	511857.39	511883,78	511912.45	511940.29	511964.71	511983,56	511999.11	512016.64	512039.08	512060,51	512078,63	512094 88	512107.49	512120,10	512131.08	512142.83	512161.66	512172,86	512188,37	512202,80	512215.04	512225.96	512236.88	512249.95	512267.0H	512282.70
×	-137,769	-143.751	-149, 791	-155.862	-161-981	-168, 129	-174-303	-180,495	-186,688	-192,860	-199.025	-205,165	-211.263	-217.348	-223.378	-229, 391	-235-327	-241.187	-246.987	-252.737	-258.431	-264,030	-269.549	-275.002	-280, 389	-285,702	-290,941	-296-113	-301.216	-306.274	-311.270	-316,178	-321.043	-325.861	-330.626
3-	-2,83	-2.58	-2.36	-2,11	1.8	-1.42	δ.	465	40	42.0	8	0.36	0.75	50.	1.22	*	1.47	1.63	1.83	2.03	2,20	2,29	2,28	2,20	2,10	2.08	2.14	2.19	2,12	1.93	1.66	1.4.1	1.20	1.03	0.88
3	143.137 5	148.442 5	153.757 7	159.067 6	164.394 7	169.728 7	175.073 7	180,428 7	185.788 6	191.140 6	196.503 7	201.8701.	207,23011	212,619 6	218,001 5	223.416 5	228,817 4	234,209 5	239,605 5	245,022 7	250,459 6	255.871 6	261.279 8	266,697 6	272.122 7	277.542 6	282.959 s	288.378 4	293.792 7	299.22310	304-64914	310,03813	315.43211	320,822 6	326, 198 4
0 t 0 t	æ	ጸ	28	27	26	25	25	7	21	19	48	19	8	18	15	7	7₹	16	18	18	16	15	7	16	19	19	18	16	18	8	22	22	21	24	22
ช	2 7655.781-	-144.4483 10	-151.6363 13	-158,8259 10	-166,0100 \$	-173.2018 6	179,6053 7	172,4118 10	165,2181 9	158,0274 10	150.834.3 11	143.6415 14	136.44.96 16	129,2553 14	122,0602 12	114,8657 10	107,6682 8	100.4777 8	93,2805 9	86,0833 8	78 .8966 9	71.6988 9	64-5054 10	57.3088 9	50,1135 11	42,9211 9	35.7253 9	28,5299 8	21.3311 16	14-1364 17	6,9410 16	-0.2569 :4	-7.4546 13	-14-6466 8	-21.84.70 6
6 ₁	4	-	0	0	8	4	٣	0	ŗ	7	7-	3	2	7	-5	0	2	7	٣	-	0	0	-	3	8	٦	-3	4	0	7	۲	ጉ	†	7	7
1	51.6450 4	51.64.58 4	51.6461 5	51.64.56 4	51.6460 5	51.6460 5	51.6468 6	51.6473 8	51.6477 6	51.6465 5	51.6468 L	51.6476 5	51.6469 \$	51.6461 4	51.64.53 4	51.6445 s	51.64.59 5	51.6460 5	51.64BO 6	51-6493 5	51.6491 4	51.64.86 5	51.64B6 8	51.6503 8	51.6520 9	51.6503 8	51.6496 7	51.6492 5	51.64.75 7	51.64BB 5	51.6479 6	51.64B5 6	51.6477 5	51.64B5 4	51.6477 4
a(1-e)	6663.61	00**1999	64,49999	6664+95	44.6999	6665.91	¥ *9999	6666, 86	09.1999	6668,21	6668, 74	¥ *6999	6669.83	6670,53	6671.07	641199	6671.80	6672,28	_	6672.84	91.4.199	6673,31	6673.45	99.8299	6673.73	667.7.58	6673.47	6673.33	6673.15	6672.91	6672,62	# °2199	6672,02	6671.37	98,0299
10 ⁴ e ₁	×	界	-39	7	7	Ŧ	7	7	7	9	£-	-37	-35	*	-35	Ŗ	-56	Ŋ	-18	12	-12	8	6	ဗို	8	6	=	#	16	8	8	52	53	33	*
•	0.074629 6	0,074518 7	0,074,388 13	0.074254 9	0.074128 9	9 01/01/010	0.073899	0.073781 8	0.073637 7	0.073516 6	0.073410 6	0.073293 7	0.073191 7	0,073064 10	0.072966 9	0,072889 8	0.072825 7	0.072752 6	0,072672 7	0,072616 8	0.072541 7	0,072505 7	0.072471 6	0.072429 6	0.072405 8	0°02500	0,072405 s	0.072405 11	0.07241314	0.072431 9	0.072459 8	0,072484 5	0.072513 6	0.072583 8	10.072635 7
•	7200.002 7	7200,5681 7	7200,0919 9	7199.5452 8	7 3460.6617	7198,5802 8	7198,8829 8	1197.931912	01 0609 16	7197.3301 9	7197,0828 7	7196.8140 11	7196.5531	7196. 3243 12	7196.1476 6	7196,001913	7195.8376 7	7195.6274 13	7195.4266 9	7195.2569 12	7195.104.7 9	7194,9865 12	7194 8685 11	7194-7657 15	7194-655611	7194-4792 12	7194-3744 10	7194-2291 10	7194-094014	7193.9794 13	7193.8771 19	7193.774913	7193.6525 10	7193.4928 9	7193.3460 9
Time h m e	11 06 46.53 2	05 18 51.65 2	23 30 41.33 3	17 42 13.81 3	11 53 30,16 3	06 04 32,40 3	00 15 21.59 3	18 25 58.68 4	12 36 25.30 3	06 46 42.54 2	00 56 51.88 2	19 06 53.59 3	13 16 47.46 3	07 26 34,16 4	ON 36 15.26 3	19 45 52.20 3	13 55 25.37 2	08 04 53.95 2	02 14 16.65 2	20 23 34-92 3	14 32 49.37 3	08 42 00,69 2	02 51 09.53 3	21 00 16,14 2	15 09 20,85 2	09 18 22,06 2	03 27 20,00 2	21 36 15,16 1	15 45 06.83 3	09 53 55-59 3	04 02 42.08 5	22 11 26,13 3	8	10 28 45.15 2	4 57 18.43 1
- 196-	29	۳	-	~	APR 5	AFR 7	AFR 9	AFR 10	AFR 12	AFR 14	APR 16	AFR 17	AFR 19	AFR 21	AFR 23	AFR 24	APR 26	AFR 28	APR 30	MAY 1	MAY 3	MAX 5	XAX 7	MAY 8	MAY 10	MAY 12	AL XXX	MAY 15	17	MAY 19	MAY 21	MAY 22	র	56	MAY 28
Node	25	8	2	8	125	8	175	8	225	250	275	8	325	350	375	8	425	84	475	8	525	8	575	8	625	8	675	8	22	220	212	8	825	850	875

Previous page was blank, therefore not filmed.

Table 2 (Conta)
ORBITAL PARAMETERS OF ARIEL 2

<u></u>	14			_						•	j.	_	a.	~	_		٥.			_	_	10	,,	10	_	_	~		_	_	_		_	~	_
Ę	38544. 948.696	38546. 704,3238	38548,4601358	38550, 2159119	38551.9716497	38553, 7273507	38555-4830113	38557.238604.9	38558, 9941053	38560,7495330	38562, 504,8994	38564.2602093	38566, 0154654	38567-7706558	38569.5257773	38571,2808329	38573,0358182	38574-7907329	38576, 54,55753	38578, 3003517	38580,0550640	38581.8096955	38583.5642515	38585.3187215	38587.0730988	38588, 8273957	38590,5816208	38592.3357784	38594, 0898704	38595, 84,38773	38597.5978010	38599.3516517	38601.1054301	38602,8591362	38604-6127762
•	0.7	0.	4:	2	8	6.0	1.3	0.1	1.0	1.5	0.9	60	:	60	6.0	1.0	:	1.0	1.6	1.5	1.7	1.4	1.6	1.3	1.2	1:1	1:4	1.6	1.4	1.2	1.4	†:	1.3	1.4	1.6
а	3.4	3.0	3.5	7%	3.3	3.0	3.6	3.1	3.5	3.2	2.9	3.7	2	3.3	3.0	Š	3.2	3.4	3.1	3.5	3.2	3.2	3.3	3.3	‡	7.1	3.1	3.2	3.1	2.9	7.	23	K	3.4	3.1
×	\$	18	56	R	56	26	23	25	37	*		5,	28	77	27	56	56	53	a	17	17	8	36	8	1 26	5 24	8	32	36	2	7 36	32	* =	15 41	15 43
10 ⁻² n2	-7 9	-37 21	L# 9th-	+74 12	-24 14	+64-17	+266 17	-116 19	-110 10	-3 14	20 12	3	92 12	-71 8	-14	73 16	-33 13	80 20	38	20 16	55 28	-35 10	129 10	1	64-	ኖ	91 24-	2	11 15	-37 14	‡	-16 11	2	-15	×
ą	817 8	746 25	64.1 27	685 6	660 7	63011	109512	157310	1133 5	964 8	∘39 8	786 6	9 066	1013 5	963 6	10169	986 8	1007 5	910 8	84010	115814	1012 6	1207 5	1304 6	1096 9	7 656	881 8	850 9	123010	119010	1009 9	1000	6 766	1017	105811
g	512297.37	12311.07	512323.32	512334.79	512347.02	512357.66	512370,77	512397.71	512421.31	5124.38.70	512454.53	512469.00	512483.71	512502.67	512519.32	512535,88	512554, 33	512571.51	512589.11	512603,30	512620,74	512640.27	512658,25	512681.95	512703,16	512720.78	512737.26	512751.74	512769.67	512791.41	512810, 52	512828.14	512845.31	512863.48	512881.25
×	-335,362	-340.081	-344-753	-349.403	-354-040	-358.657	-3.271	-7.892	-12,532	-17.162	-21,803	-26,467	-31.131	-35.819	-40.582	-45.383	-50.216	-55.095	-60,033	-65.057	-70-124	-75.288	-80,508	-85.786	-91.134	-96.560	-102,068	-107,652	-113.294	-119 _• 048	-124,809	-130,657	-136.590	-142,578	-148,606
•-	200	0.12	0,12	-0.28	99.0	88.0	-1.21	-1.46	-1.80	-2.20	-2.57	2.89	-3.15	-3.40	-3.63	-3.86	-t-07	-4-28	940-4-	-4-59	99-1-	-4-72	-4-62	Q-7-	-4-71	1991	-4-50	4.31	-4-11	-3.90	-3.70	-3.50	-3.26	2.99	-2.64
,	331.581 4	336, 976 10	342.34911	347.746 6	353.086 6	358.441 7	3.797 8	9.157 7	14.530 5	19.876 7	25.212 5	30.544	35.845 6	41.127 7	9 094 94	51.779 \$	57.081 \$	62.3744	67,668 8	72,988 9	78.287 w	83.614 7	88,925 7	94-222 5	99.513 5	104,812 6	110,11911	115,42710	120.724 6	126.032 4	131.342 7	136.647 9	141.977 7	147.310 7	152.640 7
8 4	7,	27	28	27	56	88	2	35	35	A	33	35	37	哭	39	緊	37	37	22	39	8	異	36	37	異	×	36	33	33	33	*	33		R	52
α	-29.0490 5	-36.2444 12	43.4444 14	-50.6454 7	-57.84.34 11	-65.0395 9	-72.2431 12	-79.4453 14	-86,64,58 9	-93.8491 13	101.0504 9	-108-2541 g	115.4568 9	122,6598 8	129,8613 6	137.0669 7	-144-2716 B	-15104784 7	158.6855 11	165.8891 14	-173.0946 15	179.6976 10	172,4915 10	165,2832 9	158,0770 7	150,8666 7	143.6602 8	136.4517 9	129.2423 10	122.0320 B	114-8229 12	107.6157 13	100,4063 10	93.1967 7	85.9846 8
100 t	7	ا ۲	<u>'</u>	<u>+</u>	7	0	0	-3	ارا 1	7	₹ 7	-	0	7	ゴオ	7	7	<u>-</u>	7	<u>-</u>	<u>-</u> -	-2	2	5	5	×	0	-	٦	4	5	2	-	0	-
	7	9		۳	-3	7	9	7	E.	- 5	۳	£	٣	n	2	-1	4	n	4	5	5	~	~	^	4	~	-7	~	7	۳	4	-1	4	ij	7
4	21.6473	51.6479	51.6466	51.6459	51.6444	51.64.37	51.6433	51.6425	51.6418	51.6415	51.6420	51.6426	51.64.37	51.64.32	51.6423	51.6417	51.6403	51.6402	51.6411	51.6396	51.6394	51.6395	51.6397	51.6404	51.6422	51.6431	51.6439	51.6443	51.6441	51.6447	51.6446	51.64.50	51.6452	51.6458	51.6459
a(1-e)	96.00.96	14.6999	6669.17	6668.57	6668.05	6667.03	6666,55	6666,11	6665,35	6664 ₂ 82	6664.30	6663,91	6663.37	6662,89	6662, 60	6662,25	98°1999	971-1999	6661.24	6661.M	6660,79	6660,62	6660,62	09 09999	6660,75	6660,82	9660° 94	6661.20	6661.45	6661.72	6662.03	6662.44	6662,92	6663,31	6663.73
10,01	·\$	39	39	3	7	\$	45	45	£3	14	3	39	37	35	প্ল	88	ನ	21	18	14	£	8	δ	₫	8	F	12	-19	-23	-27	Ŗ	ネ		-37	8 2
•	0.072687 10	0,072802 18	0.072821 20	0.072890 9	0.072948 12	10 0.073076 7	12 0.073127 9	0.073156 17	0.073234 9	0.073286 12	0.073340 9	0.073376 7	0.0734.33 5	Q-073477 4	0.073498 5	0.073527 6	0.073558 7	7 0.073593 5	11 0.073603 7	10 0.073618 8	12 0.073627 9	6 0.073628 6	0.073605 6	0.073580 5	0.073534 5	4 0.073502 4	9 99782000 11	9 0.073412 5	8 0.073356 6	60.073292 6	5 0.073226 11	0.073148 9	4 090520	7 0.072984 4	10.072904 4
•	7193.2086 6	7193,0804 14	7192.9657 æ	7192.6584 8	7192,7439 10	7192. Ó443 10	7192,5216 12	7192,2695 11	7192.0487 6	7191.8860 9	2191.7379 6	7191.6025 4	7191-4648 7	7191.2875 6	7191.1317 5	7190,9768 7	7190,804.3 7	7190,6436 7	7190.4791 11	7190,3463 10	_	7190,0006 6	7189.8325 7	7189,6109 6			7189,0938 11	7188.9585 9	7188,7909 8	7188,5878	7188,4092 5	7188.2445 8			347187,7482 9
The b	22 45 47.77 ,	16 54 13,58 5	11 02 55.73 4	> 10 54-79 5	23 19 10,53 3	17 27 23,10 2	11 35 22.18 2	5 43 35.46 4	23 51 30,70 2	17 59 19.65 2	12 07 03.31 2	6 14 42.08 2	0 22 16,21 2	18 29 44-66 1	12 37 07.16 1	6 44 23.96 2	0 51 34.69 2	18 58 39.32 1	13 05 57.71 2	7 12 30,39 2	1 19 17.53 4	19 25 57.69 2		7 38 57.54 2		19 51 26,99 2	13 57 32.04 3	8 03 31.25 3	2 09 24-80 2	20 15 11,00 2	14 20 50,04 3	8 26 22.71 3	E		14 42 23.86 3
1964 1964	53	MAY 31	OI.	4 MUC	S NDC	2 MD5	6 MDC	JUN 11	JUN 12	JUN 14	JUN 16	JUN 18	JUN 20	JUN 21	JUN 23	JUN 25	JUN 27	JUN 28	OK NO	JUL 2	4 700	301. 5	7	9 115	1 Jil. 1	12	1 th	JUE 16	JUL 18	JUL 19	JUL 21	JUL 23	25	56	JUL 28
Node		925 M				1025 J.T	1050 H	L 2701	4180 F	1125 J	150 F	1175 1	1200	1225 JT	1250 J	1275 Ju	1300	1325 J				-		_			1550 H	1575 Ju	1600 H	1625 ਮ	1650 JE	1675 JT		1725 Ju	1750 1

Table 2 (Conta)
ORDITAL PARAMETERS OF ARIEL 2

17 17 18 18 18 18 18 18	Y		- 10		N	6	-	- 2	_	0	60	- 21	9	2		-2	-	0	- 00	<u> </u>	~	_	-2	_	8	60	6	٠,	<u>.</u>	6	6	_	9	_	-	
15 15 15 15 15 15 15 15	KED	38606. 36614.1	38608, 119819	38609-873213	38611.626524	38613, 379731	38615-132843	38616,885862	38618, 638796	38620.391634	38622.144.377	38623.897038	38625, 649618	38627-402119	38629.154547	38630,906911	38632, 659214	38634-4114619	38636, 1636518	J8637.915797	396 39. 667900	38641-419947	38643.171941.	38644-923881	38646. 675753	38648.427538	38650, 179245.	38651.930885.	38653. 682461	38655.4.33967.	38657.185387.	38658.936732	38660, 688000	38662,4,39168	38664, 190239	
1964	•	1.2	1.	1.5	1.5	1.	0.1	1.2	1.2	1.4	1.5	:	0.8	1.1	1.7	8,0	1:1	1.2	1.2	:	:	1.3	:	80	8,0	2	:	60	25	1.3	1.3	1.0	1.1	0.1	1.0	
1964 1 1 1 1 1 1 1 1 1	Α	7.	3.3	2,9	3.4	3.1	3.4	3.1	3.4	3.1	3.2	3.8	3.5	2.4	3.2	2.9	2.7	2.6	3.1	3.8	3.3	3.5	3.1	3.2	72	K	2.7	7	2.4	3.2	7.	2.9	3.5	3.4	3.2	_
1964	Z	35	31	31	33	28	ネ	ጸ			37	×	77	19	13																					
This	10 ⁻² 72				71 06							8 11										6 15							_							
10 10 10 10 10 10 10 10	ď.	1380 10	1322 7	1294 12	171213	1594 12	1545	14.72 11	1729 16	1698 11	1502 12	14.96 10	1483 10	1387 25	1273 22	1249 zi	1169 41	1228 16	973 14	1001	1152 12	1126 13	1151 18	1340 12	1663 11	1523 16	1322 23	1268 12	1262 47	1619 13	1394 12			1722 6	1589 8	
10, 10 1, 13, 12 1, 14, 12 1, 14, 12 1, 14, 14 1,	ď	: 2,92,45	512927.28	512949.73	512975.47	513006, 32	513033.65	513059.82	513087.06	513118,22	513145.64	513171.76	513198.38	513223.86	513247.33	513269.51	513289.38	513310,89	513329.84	513346.04	513365.11	513384.81	513404-42	513425.25	513452.43	513481.82	513506.62	513528.34	513550.60	513577.15	513603.45	513626.95	513655.29	513686.76	513715.72	
The color Time	×	-154,63	-160, 787	-166,929	-473.087	-179.277	-185.447	-191.640	-197.834	-203.981	-210,078	-216,181	-222,216	-228,206	-234-144	-240,071	-245.899	-251.655	-257.350	-262.984	-268,550	-274-031	-279.452	-284-795	-590,069	-295.255	-300,395	-305.466	-310,499	-315.466	-320,363	-325.221	-330.042	-334-802	-339.545	•
10	•			-1.52	-1.29	-1.08	-0.76	0.36	90.5	24.0	0.69	0.89	1.06	1.43	1.43	1.67	1.93	2,14	2,25	2,25	2,21	2,21	2,28	2,33	2,35	2,28	2,15	1.97	1.78	3.	1.43	1,28	1.10	# 8 °	940	•
100 1 100 1 100 1 100 1 1	•			168,657 7	174.004 6	179.372 7	184, 726 5				206,254 8			222,450 7	227,352 11	233,306 11			249.569 4	255,008 7		265,889 5					293,072 7	298,501 5		309.387 5	314.799 5	320,218 7	325.641 6	331.032 3	336,438 3	
1964 1 11 1 1 1 1 1 1 1	8 -	23	56			8	<u> </u>		-							<u> </u>		_		_					<u> </u>		<u> </u>	··	2							
Date		73.7742 8	71.5616 8	64-3562 9	57,1421 9		42.7189 9	35,504,3 11	28,2932 8	21,0770 8	13,8654 12	6,6521 9	-0.5631 7	-7.774.5 9	-14.9886 13	-22,2014 8	-29.4150 11	-36.6305 7	-43.8492 s	-51.0654 8	-58.2771 7	-65.194 7	-72,7085 10	-79.924.3 9	-87,1415 9	-94-3605 B	101,5785 8	408.7976 6	116,0160 #	123,2357 7	130,4538 8	137.6739 12	144,8924 9	152,1134 5	159,3363 4	Company of the Compan
Date Part Part Date	8.7	'n	4	n	0	0	8	4	r	÷	0	0	o	ō	Ŧ	7	r	7	ï	0	7	ኍ	ዮ	ņ	7	0	7	7		_	_	-	÷		- 1	
Dec	1	51. 61,56 4	51.6473 4	51.6477 5	51.64.78 6	51.6482 5	51.54.84 4	51.6483 5	51.64.84 5	51.6487 5	51.6493 6	51.6501 5	51.6509 S	51.6494 3	51.64.98 17	31.6503 9	51.6488 B	51.64,96 5	51.64.98 5	31.6502 6	31.6491 6	51.6488 7	51.647 8	51.6468 ?	51.64.59 7	31.6454 6	51.6463 8	51.64.52 6	3 0949.10	31.6460 6	51.6449 6	51.6443 6	51.64.52 5	51.64,52 1	51.6442 1	
104ct	1(1-6)		_		_											_										_				_	_				-	
1964 h m s s	- t		_				_		_									_															_			
JUL 30 8 47 31.92 3 7187.5502 7 JUL 30 8 47 31.92 3 7187.5302 7 JUG 1 2 52 32.40 3 7187.3182 3 JUG 2 2 25 72.5.65 3 7187.686 10 JUG 4 15 2 11.69 3 7186.6861 10 JUG 9 2 1 15 38.52 4 7186.0804 13 JUG 19 2 1 15 38.52 4 7186.0804 13 JUG 19 2 1 15 38.52 4 7186.0804 13 JUG 19 2 1 15 38.52 4 7186.0804 13 JUG 19 2 1 15 38.52 4 7186.0804 13 JUG 20 3 14 17.64 3 7186.5450 14 JUG 20 3 14 17.64 3 7186.5450 14 JUG 20 3 14 17.64 3 7186.5450 14 JUG 20 3 14 17.64 3 7185.8260 8 JUG 20 3 15 14.61 5 7 183.7300 29 JUG 20 3 12 56.17 4 7183.2377 11 JUG 20 3 15 14.67 7 7 7182.8647 11 JUG 20 3 15 14.67 7 7 7182.8647 11 JUG 20 3 15 14.93 2 7183.4090 9 JUG 20 10 15 39.35 2 7182.8477 9 JUG 20 10 15 39.35 2 7181.7099 13 JUG 20 20 28.49 2 7181.7099 13 JUG 20 20 28.57 7 2 7180.2559 8 JUG 20 20 28.49 2 7181.7099 13 JUG 20 20 28.57 7 2 7180.2559 8 JUG 20 10 15 30.32 7 2 7180.2559 9 JUG 20 10 15 30.32 7 2 7180.2559 9 JUG 20 10 15 30.32 7 7180.2559 9 JUG 20 10 15 30.32 7 7180.2559 9 JUG 20 10 15 30.32 7 7180.2559 7 JUG 20 10 15 30.43.26 7 7180.2559 7 JUG 20 10 15 30.43.26 7 7180.2559 7 JUG 20 10 15 30.43.26 7 7180.2559 7 JUG 20 10 10 10 10 10 10 10 10 10 10 10 10 10	+	2		8	9	6	9		-		80	89	S	9	_	_	_	~	9	9	0.071053 7			0.070985 7	0.07097612		0.070956 8	7 1/20/000	0.070982 6	0.071000 7	0.071037 9	0°C71064 9				
Juc. 1964. h m e. Jul. 30 8 47 31.92 3 Aug. 1 2 52 32.40 3 Aug. 2 20 57 25.65 3 Aug. 4 15 2 11.64 3 Aug. 6 9 0 448.84 2 Aug. 11 5 19 52.04 3 Aug. 11 15 19 52.04 3 Aug. 12 15 34.5 22 4 Aug. 13 2 14.5 57.18 2 Aug. 20 9 39 3.13 2 Aug. 20 9 30 3 Aug. 20 9 30 3	•	7	6	9								60	7								7183.2311 11	6	_	_	7182,4167 15	7182,1427 9	7181.9114 19	7181.7089 13	7181.5014, 12	•	7181,0087 11	7180,7897 12	0	7	9	
101 101 101 101 101 101 101 101 101 101		47 31.92	52 32.40	57 25.65	2 11,69	18°81 0	11 17.64 3	15 38.52	19 52.04	57,18	54.24	Wano	35 27.05	39 3.13	42 32.91	45 57.15	49 16.17	52 30,31	55 39.52	58 44.93	1 46.57	4 43.43	7 35.74	10 23.33	13 5.07	15 39.35	6.85	20 28.49	77.68	10 24 54-82 1	57.52	53.71	ጸ	32	33	
	1964 1964		- P	N	4			ע	F	UG 13	UG 15	_	18	UG 20	UG 22	23	25	UG 27	UG 29	ደ	-	~	5	9	80	9		13	15	17	19	ଷ	2	お		
	Mode				_		_			_		2025 N			2100 AI	-		2175 N	2200 A	2225 N	2250 8	2275 SE	2300 SI	2325 SI	_				24.50 S	24.75 S	2500 \$1	_				-

Table 2 (Contd)

ORBITAL PARAMETERS OF ARIEL 2

•	•	•	6	() ()	1	§ 4.	a	8 a-	3	3-	×	d	r _a	10 ⁻² n ₂	E	А	•	CC77
36.93 2	7179.3550 B	0.071265 7	2	22.1999	51.64.34	0	-173.7817 9	28	347.251 7	-0.23	-348,963	513780.92	2157 15	-28 12	2	3.9	1.3	38667, 6920941
37 41.48 1	7179,0104 5	0.071302 5	3	5667,13	51.6427	2	178,9925 6	3	352,631 5	0.43	-353.625	513817.91	2101 7	25	29	3.4		38669_W28W12
35.45 2	7178,6798 10	0.071339 9	23	6666.56	51.6414 1	-	174.7671 11	39	358,020 6	89.0	-358,288	513853.40	2079 10	1	24	2.	9	38671-1934658
18,59 3	7178.2934 9	0.071350 7	3	6666, 12	51.6416	7	164.5469 12	×	3.410 9	7.5	-2.94B	513894-89	2608 17	-35 20	25	2.9	3	38672, 94, 39651
48.52 1	7177.8920 6	0.071389 3	3	74, 6999	51.6419	<u>بر</u>	157,3204 5	×	8,760 5	-1.48	-7.577	513938.00	2196 13		37	3.1	0	38674-6943116
6.59 1	7177-5405 5	0.071426 4	3	6664, 83	51.6411	†	150,0922 4	સ	14,122 4	-1.91	-12,225	513975.75			. 64	3.4	100	38676,444,5208
13.27 1	7177.1817 7	0.071473 5	2	6664, 21	51.6408	7	142,8626 6	33		-2.26	-16,868	514014, 30		117		3,3	2	38678-1945980
8.90 2	7176.8724.17	0.071510 6	3	6663,65	51.6411	0	135,6353 9	35		たって	-21.523	514047.53		ಹೆ		3. 5	5.	38679-944-5474
54-24 3	7176-5419 18	0.071541 6	35	6663.12	51.6394	9	128,4073 11	×	30,17210	-2.77	-26.236	514083.04	1863 23	168 41	25	2.9	9.	38681-6943778
28,82 1	7176.2404 6	0.071564 4	37	6662,68	51.6388	7	121,1768 8	*		-3.02	-30.968	>14115.43			. 4	74.5	-	38683,4440835
53.85 2	7175.9666 6	0.071592 5	太	6662,22	51.6389	2	113,9451 8	35	40,879	-3.30	-35.722	514144-86			3	2.5	-	38685, 1936789
9.45 2	7175, 6832 13	0.071605 5	ጸ	6661.87	51.639	7	106, 714,1 8	*	46.205 7	-3.64	-40° 1,98	514175.32	1869 B	111 20	, ,2	3.2	4-1	38686. 94,3164.9
14.64 2	7175,3562 12	0.071620 8	27	97.1999	51.6392	-	99.4BO1 9	≉	51.53012	-3.99	-45.317	514210.47	1834 20		26	3.3	1.7	39698, 6925306
° 29.6	7175.0983 9	0.071630 7	25	6661.15	51.6399	5	92, 2467 12	×	56.841 8	-4-26	-50.170	514238.19	14.87 12	4	32	1,4	6	38690,4417780
26.26 ?	7174 8886 8	0.071646 6	23	6660,84	51.6402	4	85,014,6 12	33	62.171 7	+ 39	-55.094	514260,74	1210 13			, M	9	38692.1409289
35.63 3	7174-6747 11	0.071665 7	8	99999	51.6403	2	77.7815 14	39		4.43	-60,087	514283.73			56	3.3	1.7	38693, 9399957
6,11 2	7174-3993 6	0.071658 6	15	6660.30	51.6408	0	70,5503 11	37	72.840 7	14.4	-65, 122	514313.35	1650 8	-72 11	R	3.5	1.5	38695.6889596
27.04	7174-1455 9	0.071637 6	9	6660,21	51.6417	7	63,3151 8	35	78.151 6	19.7	-70,211	514340.64	1576 g	20 23	ħ	2.9	1.5	38697.4378130
38.80 ?	7173.8930 6	0.071613 4	*	6660.15	51.6425	. 1	56.0794 7	*	83.475 6	123	-75.379	514367.79	1422 5	99 20	36	3.2	4.1	38699.1865602
	7173,6686 15	Q071593 5	9	90,0999	51.6436	. <u>.</u>	48.8428 8	ቋ	88, 789 8	82. 1	-80,603	514391.93	1598 28	168	22	2.8	1.2	38700,9352090
36,13 3	••	0.071564	î	6660.05	51.6417	3	41.6099 13	39	24-07611	4.9	-85.872	514420.37	1445 11	80 33	16	3.7	1.6	38702, 6837515
21.47 3	7173.1836 8	0.071528 8	9	6660,10		5	34-3747 14	8	99.414 9	78.7	-91.264	514444-10	1349 13	6 17	25	0.4	1.8	38704-4321929
58.60 3	7172.9622 8	0.071484 7	ዮ	6660,21	51.64,30	0	27.1394 11	×	104-750 5	19#	-96.725	514467.92	1252 10	-82 15	29	7	1.8	38706, 1805393
28.01 ≥	7172,7615 6	0.071426 6	7	## °0999	51.6436	7	19,9025 7	*	110,065 7	84-4	-102.239	514489.51	1419 5	133 9	36	3.4	1.6	38707.9287964
48.93 7	7172.5095 6	Q.071370 L	18	6660,61	51.6445	2	12,6636 7	33	115,390 7	£.28	-107.833	514516,63	14.30 5	6 26-	7	3.3	1.5	38709, 6769552
1.31 2	7172,2967 5	0.071312 L	ç	6660,83	51.6452	2	5.4254 7	式	120,729 6	4 10	-113.512	514539.52	1308 6	9	×	3.6	1.2	33711.4250152
5.89 2	7172.0840 7	0,071252 7	-27	90°1999	51.6448	-	-1.8122 11	X,	126.063 6	-3.95	-119.253	514562.41	1257 12	-39 14	17	2.9	0.1	38713.1729848
2,80 5	7171.8763 14	0.071206 25	Ŗ	6661.20	51.6437	<u>۲</u>	-9.0515 20	33	131-417 15	-3.80	-125.078	514584.55	1499 10	172 22	7	3.3	1.2	38714-9208657
51.29 3	7171.6074 .	0.071055 7	ņ	6662.03	51.6443	7	-16,2859 9	30	136,719 7	-3.63	-130.915	514613.70	1592 5	-79 10	ጸ	3.4	1.3	38716,6686492
30.51 3	7 1078.1717	0.070976 7	<u>:</u> ?	6662.37	51.6443	0	-23.5290 8	27	142.061 6	-3.22	-136.844	514639.25	1326 7	-82 13	%	7.1	4:	38718,4163254
	7171.1776 11	0.070929 10	*	6662.53	51.6448	8	-30,7692 11	56	147.410 9	-2.89	-142.829	514659.97	1143 13	8 18	25	3.4	1.7	38720, 1639137
27.08	7170.9762 19	0.070834 11	-37	6663.03		٠	-38,0091 12	27	152,762 8	-2.45	-148.865	514681.66	1445 13	117 29	88	3.3	1.8	38721.9114245
43.99 3	7170.7084 9	0.070715 6	-35	6963,63		0	-45.24.72 11	28	158,123 8	-2.12	-154-949	514710.49	14,53 8	-229 13	27	3.4	1.2	38723.6588416
52.74 4	7170,5107 10	0.070617 5	7	6664 15	51.644.5	7	-52,4871 10	ঠ	153,48911	-2.00	-161.067	514731.77	1346 16	112 zı	35	3.0	1.7	38725-4061660
EL 27 1	act oct	- 202000		11 111	17.00	•	7000			,							_	

Table 2 (Contd)

ORBITAL PARAMETERS OF ARIRE 2

eg.	38728, 9005588					_	<u> </u>	•	_			38748.1144245	38749.8607669	38751,6070572	38753, 3533031	38755.0995055			38760,3378727	38762.0839082	38763.8298978	38765-5758364	38767.3217276	38769.0675648	38770,8133361	38772,5590478	38774-3046919	38776,050264,5	38777-7957660	38779-5411899	38781.2865352	38783.0317839	
٠	1.5	1.3												1.3		=			1.4	1.3	1.4	1.5	1:	••	1.2	1.6	1.3	1.2	1.2	1.3	0.1		
Α	3.2							_						3.3		3.5		3.5	7	3.3	3.2	7		3.2	2.8	7.4	3.2	3.5	3.2	2.9	2.9	2.9	_
×	33	35										_		23		22	4	17	2	27	28	59	25	28	27	2	×	33	x	33	59		
2° 5 2 2	014	-1615	-1020	1423	373	-73.5	2 2	-3915	E	-34 16	1921	14	-62 15	5 19	42.26	264	020	31 17	-1338	17 21	20 30	921	39 12	18 21	88 x	27 ≥1	-35 23	2 14	71 16	8 15	117 32	774	
ď.	1318 9	1357 10	1339 10	1289 15			1239		-	1173 11	1231 11	1145 12	1102	981 12	966 16	907 16	860 18	959 12	955 18	1059 14	1059 13	1002 16	1090 11	1299 13	1246 26	1307 12	1348 17	1317 9	1438 9	1399 10	1698 15	2117 31	
d	514781.22	514,804,92	514828, 54	514851.50	514873.87	514.898.02	514,920, 17	514939,96	514957.74	514979.04	514999.69	515020,69	515041.03	515058.63	515076.40	515052,66	515108.14	515123.60	515141.01	515158°C2	515176.58	515194.85	515212.57	15234.05	515256.40	515276.97	515300.62	515323.67	515347.08	515372.47	515398.25	515431.33	*
ĸ	-173.574	-179.538	-185.702	-191.910	-198,100	-204-228					-234-469	-240, 374	246.219	251.988	-257.682	-263.332 5	-268,916	-274-412	-279.853	-285,208	-290-521	-295.750	-300.894	-305,980	-311.027	-316,041	-320,964	-325.832	-330,666	-335.482	-340,262 5	-344-973	1
35	-1.35	- 26.0-	95.0	-0.19	0.12						4.6	1.83	1.98	2,08	2.18	2,28	26.34	242	2.43	2,38	<u> </u>	2,15		1.92		1.6	1.41	1.10	0.78	8	0.28	90.0	-
3	174-230 3	179.598 s	184.967 ₪	190.384 B	195.802 7	201.187 L	206,597 5		217.452 s	222.877 6	228.320 9	233.768 6	239.221 5	244.663 5	250.103 7	255.57313	261.045 6	266,499 B	271.971 7	277.427 6	282,912 7	288,375 6	293.816 6	299.255 5	304-714 6	310, 195 7	315.629 6	321.04B 6	326.471 4	331.912 5	337.346 5	342.72916	10.00
8"-	22	22	23	77	23	21 2	19		20	19 2	19 2	17 2	16 2	16 2	17 2	18	18	17 2	17	6		8	2	2		22	52	27 3	26 3	7	77	26	
	9	ø	2	27	0	9	φ	6	. 5	2/	=	٥	7	2	2	Ξ	7	2	=	10	89	80	80	7	80	٥	•	80	7	œ	60	8	
а	-66,9722	-74,2130	-81.4530	-88, 6947	-95.9381	-103,1771	-110,4230	-117,6669	-124-9045	-132,1493	-139,3909	-146,6343	-153,8805	-161,1235	-168, 3697	-175-6141	177,1436	169,8969	162,6548	155-1076	148,1640	140,9181	133,6728	126,4290	119,1795	111.934.3	104, 6863	97.4400	90,1916	82,9404	75,6889	68,4379	,,,,,
100 1-1	2	3	2	0	9	7	7	-	~	7	†	ኍ	7	8	8	۲	8	9	0	7	m	-	7	~	٦	-	7	0	7	†	7	0	
4	51.6457 6	51.64.57 5	51.6456 5	51.6455 6	51.6459 6	51.6456 5	51.6461 7	51.64.54 5	51.6447 4	51.64.52 1	51.6449 7	51.6450 7	51.6434 6	51.64.37 7	51.6450 7	51.6444 8	51.64536	51.6421 9	51.6435 8	51.6444 E	51.6463 B	51.6455 E	51.6427 6	51.64475	51.64427	51.6459	51.6450 €	51.6444 5	51.6440 5	51.6430	51.6422 4	51.6430 9	- 11
a(1-e)	6665,25	40°9999	6666.42	66,999	25.7999	60.83999	6668,67	6669.20	6669.71	6670,12	6670.53	20°1/99	6671.35	6671.42	6671.71	6572,10	6672,25	6672,25	6672,22	6672.13	6672,17	6671.88	6671.73	6671.31	6670,92	6670-57	6670,22	6669.83	6669.21	44.89999	6668.07	98°2999	00 1111
‡0‡	7	7	-39	-39	84	8 %	*	*	-34	-27	-25	-23	8	-17	-13	ዮ	Y	4	8	5	ov	13	16	22	ನ	56	8	ደ	3	37	3	14	•
	10		•		9	. 1	1	9	:	۰	-	'n	× .			F	•	0		7	7	7	7	•	10	8	œ	9		10	19	18	0000
•	0, 070404 10	0,070265	0.070184	0,070062	0,069976	0.069867	0,069760	0,069662	0.069570 11	0.0694.87	0.06900	0.069311	0,069240	_		0,069074 11	0,069034	0,069015		_		_	_	_	_		_		0.069170	0,069233	0,069268	0.069257	25,060,0
	7170.0515 s	7169.8315 8	7169,6122 13	7169, 3990 12	7169.1914.12	7168,9672 10	7168, 7615 12	7168,5779 10	7168,4129 18	7168,2152 10	7168.023614	7167,8288 13	7167,6401 10	7167.4768 11	7:67.3119 17	7167.1611 16	7167.0175 10	7166,8741 14	7166,7126 21	7166,5549 13	7166, 3827 19	7166, 2133 10	7166, 0490 10	7165, 84,98 13	7165,6426 13	7165.4519 15	7165,2327 12	7165,0190 11	7164-8020 10	7164-5667 9	7164-3278 11	7164,0212 22	7163 6956
Time h m s	21 36 48,28 4	15 32 35.39 2	9 28 15.48 3	3 23 48.74 4	21 19 15,66 3	15 14 36.46 2	9 9 50.81 3	3 4 59.54 2	21 0 3.89 4	55 3,16		2 44 46.27 2		2 th 8 th 3	28	2 23 17.28 3	20 17 45.73 2	14 12 10,78 3	9	0				1 37 17,60 2		13 25 1.73 2	7 18 45,38 1	1 12 22,85 2	19 5 54.19 1	12 59 18,81 2	6 52 36.64 1	0 45 46.13 4	49 19 16 71.
1964 1964	NOV 29	DEC 1	٠ ١	DEC 5	9 28	DEC 8	DBC 10	DBC 12	DEC 13		DBC 17					DEC 26	DEC 27	DIBC 29	DBC 34	JAN 2	JAN 3	JAN 5	2AN 7	JAN 9	JAN 10	JAN 12	JAN 14	JAN 16	JAN 17	JAN 19	JAN 21	JAN 23	TAN
Mode	3525	3550	3575	3600	3625	3650	3675	3700	3725	3750	3775	8	3825	88 88	3875	98 8	3925	3950	3975	000	1025	000	22.04	9	4125	4150	4175	7500	4225	1250	4275	82	100

CREETAL PARAMETERS OF ARTEL 2

3	10 to	1	-	•	10.	10°e, a(1-e)	•	5 ⁴ -	a	84	3	•	×	E .	d [™]	10°2	=	A	•	9
9		0 16 49.80 2	7162,8066 9	0.069491 7	7	90°5999	51.6410 4	81	39.4337 10	8	4.373 7	-1-40	-3.7%	515562.44	1965 12	-18 20	35		2.	38790,0116875
52+	-	18 9	7162.4832 7	0.069507 6	43	19 °1999	51.6409 3	7	32.1815	ጸ	9.774 s	-1.80	-8.4b6	515597.36	2067 6	52 =	7	3.5	0.1	38791.7563831
8	2	12	7162.1369 6	0°069539 1	\$	60,49999	51.6412 3	۰	24-9270 5	×	15,150 5	-2.13	-13.168	515634.76	2153 5	0 0	37	3.3	0.	38793.5009537
12	2	23	7161.7771 7	0.069573 6	\$	6663.51	51.6415 4	-	17.6694 7	*	20.523 7	-2.40	-17.859	515673.61	2421 7	110 11	37	3.4	1.1	8795-2453936
8	2	3	7161.5712 7	0.069613 5	2	6662.85	51.6420 4	0	10,4147	*	25.890 7	2.63	-22.565	515717.46	24.75 10	3 14	3	3.5	1.5	87%, 9896883
4525	7	-	/160,9286 9	0.069633 6	3	6662,29	51.6410 5	7	3.1574 12	*	31.261 8	-2.88	-27.299	515765.27	3006	144 16	3	3.4	1.9	18796, 7338272
86	6	11 28 443 1	7160.4427 6	0.069652 5	×	02.1999	51.6411 3	7	1 0860-7	K	36.638 6	-3.20	-32.068	515817.77	2710 5	-122 10	37	7.4		38800.4777827
1575	5	5 19 3.60 1	7160,0349 7	7 099690 °C	2	6661.27	51.6408 4	•	-11.3596	*	41.983 7	-3.61	-36.846	515861.84	2579 9	21 98	3	3.2	1.5	38802, 2215694
8	78 12	23 9	7159.6797 7	0°069674 s	ج	6660,84	51-6409 4	-	-18,6198	×	47.342 7	-3.99	41.675	515900.23	2074 9	-31 13	3	3.5	1.7	\$803,9652085
\$23	2	17 0 33.07 2	7159.3462 8	0.069680 5	&	84,0999	51.6405 4	•	-25.8783 10	39	52.697 6	4.27	45.94	515936.28	2171 9	57 13	37	3.3	1.6	38805.7087161
959	35 16	10 51 0.35 2	/158,9915 7	9 1696900	27	20,09999	51.6405 3	ጉ	-33.1372 9	3	58.04.3 7	4	-51-454	515974.64	2144 26	*	×	3.0	1.3	58807.4520874
\$754	81 8	4 41 15.93 1	/158.6732 7	0.069679	23	98.6599	51.6399 3	†	-10.3999	S,	63, 389 6	4-48	-56.418	516009,03	1882 6	8			1	3809,1953232
8	91 9	8	7158,3730 5	0.069682 4	18	6659.56	51.6397 3	7	47.6635 7	×	68.731 6	19-4	454.19	516041.49	1895 6	17 9	3	_	1	30810-9304373
1725	200	16 21 15.39 2	7158,0620 6	0.069662 5	T	6659.42	51.6395 4	0	-54-1267	*	74,072 6	27	-66.510	516075.13	1991 8	35 11	3	_	1.6	38812,6814281
82	78 23	10 10	7157.7450 6	0.069645 5	60	6659.24	51.6393 4	0	62.1882 s	37	79.419 6	#	-71.654	516109.41	2115 6	161 10	32	25	9.1	38814-4242914
£13		0 4	7 0976.724	0.069605 5	4	6659.19	51.6393 3	0	-69-1534 7	8	84-755 6	4.95	-76.857	516149.32	2260 5	-26 11	Ж	3.3	1.5	38816, 1670165
88		21 49	7157.0195 7	0°069570 6	0	6659.11	51.6390 4	4	-76, 7186 9	*	90,098 7	48	-82.131	516187.89	2183 8	-14 12		_		38817,9095953
1825	32 0 28	15 38	7156,666611	0°069529	7	6659.07	51.6377 5	۳	-83,9837 13	37	95.443 9	16.4	-87.478	516226.07	224,3 16	12 28	25	300	1.9	39819, 6520320
929	KAR 2	27	7156, 308310	0.069472 7	٠,	6659.15	51.6382 5	7	-91.2484 11	35	100,799 7	4-87	-92.908	516264.84	2378 27	140 ye	27	3.0		38821.394,3242
55	₹ Z	16	7155.872114	0.069397	-12	6659.28	51.6387 7	N	-98.5178 14	25	106,137 9	1	-98.392	516312.04	2963 12	55 20	32	44	2.5	3823.1364614
9064	KE S	4	7155.4010 7	Q.069319 s	-16	04°6599	51.6392 4	~	-105.7869	33	111.484 6	4.53	-103.954	516363.03	2711 7	45 13	32	7.	4.1	58824.8784128
5264	X 2	23	7154-9692 10	0.069229 7	-21	6659.64	51.6395 7	~	-113.0563 11	大	116,831 3	4.35	-109,588	516409.78	2711 12	13 17	8	3.5	4.8	38826. 6201884.
8	MAR 9	8 40 58.92 3	7154-543511	0.069136 7	-25	6659.91	51.6400 6	-	-120, 3241	×	122,180 3	413	-115,289	516455.87	2561 7	-19 15	×	3.4	1.9	38828, 3617931
4975		8	7154-148611	9 9706900	87	6660.18	51.64CE 6	7	-127.5961 9	*	127.534 3	4.05	-121-059	516498.63	2327 27	-53 37	٣	3.0	1.9	38830, 1032348
8	MAR 12	20 16 6.96 4	7153.760512	0.068944 9	Q F	6660,55	51.6392 5	0	-134-8669 11	٣	132,88610	-3.84	-126,890	516540.66	2554 17	o3 20	22	3.2	1.6	38831.8445250
8		44 3	7153.3305 8	0°068838 6	-33	6,0999	51.6399 5	*	-142.1363 12	R	138.254 B	-3.51	-12.74	516587.24	2734 xo	77 21	8	2.8	1.5	38633, 5856536
8		8	7152.8791 7	0.068721 6	*	6661.33	51.6409 4	9	-149.4105 10	R	143.629 7	-3.12	-138.759	516636.14	2658 11	-120 17	35	3.6	4:	38835, 3266096
203		37	7152.4784 7	0,068604 5	-39	6661.79	51.6413 4	4	1-156,6813 8	٣	148,997 5	2.73	-144-762	516679.56	2395 6	-48 10	7	3.4	1.3	38837.0674010
200		53	7152,1067 8	0.068473 6	7	6662.38	51.6419 4)	-163.9557 10	ጸ	154-375 5	4.4	-150.818	516719.84	7 67.22	6 13	2	3.3	1.2	38836, 8080434
5125		13 9	7151.7313 8	0.068348 5	7	6662,92	51.6424 4	7	-171.2297 10	8	159.770 7	-2.18	-156,925	516760,52	24.71 12	81 1 7	肃	3.1	4:	38840.5485446
8		92 9	7151.3164 8	0.068222 5	7	6663.44	51.6433 5	7	-178.5058 a	27	165.162 6	-1.89	-163.056	516805.49	2757 9	124 14	36	7	1.5	38842,2888963
5175	MAR 25	0 41 52.80	7150,8553 8	0.068095 8	7	6663.92	51.6426 5	-	174-2194 8	56	170.551 7	7.2	-169.203	516855.48	2781 8	-83 14	×	3.3	7-	38844.0290833
8		18 27	7150,4230 9	0.067954 6	7	5X *** 7999	51.6424 5	~	166,9447 9	5,	175.947 8	-1.13	-175.367	516902,35	2587 9	-103 15	7	3.4	1.5	3884,5. 769104,8
22,5	MAR 28	12 12 55.38 3	7150.0354 5		-43		51.64.57 5	0 0	159.6690	23	181,358 6	2	-181.552	516944.39		88	3	3.1	3.	38847, 5089743
2		5 600 000	210060-641	0°00/00°0	7	0000000	9 (200-12	<u>'</u>	21 6166.251	7	186./80	9	1-18/.74	516981.30	1968	96 16	7	2.8	1,3	3884.9, 24,87117 I

REFERENCES

No.	Author	Title, etc.
1	G. M. Truszynski	Radio tracking of earth satellites. Proc. Second Intl. Space Science Symposium, Florence, SPACE RESEARCH II p.178, North Holland Publishing Co., Amsterdam
2	R. H. Merson	A Pegasus computer programme for the improvement of the orbital parameters of an earth satellite. R.A.E. Technical Note Space 16 (A.R.C.24290), August 1962
3	R. H. Gooding	Modifications to the model for satellite crbits used in R.A.E. orbit determination. R.A.E. Technical Memo. Space 41 (A.R.C.26135), July 1964
4	Irene Fischer	An astrogeodetic world datum from geoidal heights based on the flattening $f = 1/298.3.$ J. of Geophys. Res., 64(7) 2067-76, July 1960
5	R. H. Merson R. J. Tayler	The orbital elements of Ariel 1 for April-August 1962 and a comparison of R.A.E. and NASA ephemerides. R.A.E. Technical Note Space 39 (A.R.C.25016), July 1963
6	R. H. Merson	The perturbations of a satellite orbit in an axi- symmetric gravitational field. R.A.E. Technical Note Space 26 (A.R.C.24869), February 1963
7	R. H. Gooding	A Pegasus computer programme for estimating errors in the ephemeris of a satellite and an application to Ariel 1. R.A.E. Technical Note Space 37 (A.R.C.25058), July 1963
8	R. H. Merson	A comparison of the satellite orbit theories of Kozai and Merson and their application to Vanguard 2. R.A.E. Technical Note Space 42 (A.R.C.25244), July 1963

REFERENCES (Contd)

No.	Author	Title, etc.
9	Y. Kozai	The motion of a close earth satellite. Astron. J. 64, 367-377, November 1959
10	J. G. Noyes	An outline of the observation input programme. OIP1, E.S.Te.C. Internal Note No.3, May 1965
11	D. G. King-Hele Eileen Quinn	Examples of short-period fluctuations in upper- atmosphere density. R.A.E. Technical Memo. Space 55 (A.R.C.26841), February 1965
12	D. G. King-Hele G. E. Cook Diana W. Scott	The odd zonal harmonics in the earth's gravitational potential. R.A.E. Technical Report 65123 (A.R.C.27114), June 1965
13	G. E. Cook	Perturbations of satellite orbits by tesseral harmonics in the earth's gravitational potential. R.A.E. Technical Note Space 19 (A.R.C.24438), October 1962
14	W. H. Guier R. R. Newton	The earth's gravity field deduced from the Doppler tracking of five satellites. Johns Hopkins University, Applied Physics Laboratory, TG-634, December 1964

FIG.I THE STADAN NETWORK OF MINITRACK STATIONS

FIG. 2 SEMI-MAJOR AXIS, a, WITH QUINTIC POLYNOMIAL REMOVED

FIG. 3 SEMI-MAJOR AXIS, 9, WITH QUARTIC POLYNOMIALS REMOVED IN SECTIONS

FIG. 5 ORBITAL INCLINATION L

FIG. 6 RIGHT ASCENSION OF THE NODE, A, WITH CUBIC POLYNOMIAL REMOVED

FIG.7 ARGUMENT OF PERIGEE, ω, WITH QUADRATIC AND COSINE TERMS REMOVED

FIG. 8 EPOCH, to, WITH QUARTIC POLYNOMIAL REMOVED

FIGIO MEAN MOTION QUADRATIC COEFFICIENT 112

FIG. II DIFFERENCE BETWEEN COMPUTED SATELLITE POSITIONS BASED ON ORBITAL PARAMETERS FOR NODES 75 AND 125

FIG.12 DIFFERENCE BETWEEN COMPUTED SATELLITE POSITIONS BASED ON ORBITAL PARAMETERS FOR NODES 75 AND 100

FIG.13 DIFFERENCE BETWEEN COMPUTED SATELLITE POSITIONS
BASED ON ORBITAL PARAMETERS FOR NODES 100 AND 125

FIG. 14 PLOT OF S BASED ON COVARIANCE MATRIX FOR NODE 1950

FIG. 15 ACCURACY OF COMPUTED SATELLITE POSITION

ASSOCIATED WITH PARAMETERS FOR NODES 1950 & 1975

FIG 16 ACCURACY OF COMPUTED SATELLITE POSITION ASSOCIATED WITH PARAMETERS FOR NODES 2275 AND 2300

BOTH PLOTS BASED ON ORBITAL PARAMETERS FOR NODE 75

FIG.17 VARIATION OF COMPUTED SATELLITE POSITION DUE TO DROPPING Ω_z AND ω_z

BOTH PLOTS BASED ON ORBITAL PARAMETERS FOR NODE 525

FIG.18 VARIATION OF COMPUTED SATELLITE POSITION DUE TO ADOPTION OF FISCHER ELLIPSOID

FIG.19 ECCENTRICITY OF NASA COMPARED WITH & (R.A.E.)

Fig.20

FIG. 20 COMPARISON OF NASA AND R.A.E. EPHEMERIDES

22 °6 2 2 2 3 December 1965 December 1965 eccentricity, 2" in inclination, 4" in right ascension of the node, 30" The definitive orbit for Ariel 2 (1964-154) is computed, from Minitrack in argument of perigee, 08,03 in time at the node, and 0,001 deg/of and The definitive orbit for Ariel 2 (1964-154) is computed, from Minitrack In argument of perigee, 05.03 in time at the node, and 0,001 dag/d and eccentricity, 2" in inclination, 4" in right ascension of the node, 30" satellite. The orbit is described by a model with eight orbital parasatellite. The orbit is described by a model with eight orbital para-0,001 deg/d3 in the linear and quadratic coefficients occurring in the 0,001 deg/d3 in the linear and quadratic coefficients occurring in the pasage. The angular observations are accurate to about it and, as a passage. The angular observations are accurate to about it and, as a result, the average computed standard deviations of the eight fitted result, the average computed standard deviations of the eight fitted orbital parameters are as follows: 1 m in semi-major axis, 10-5 in orbital parameters are as follows: 1 m in semi-major axis, 10"5 in observations, for a period of twelve months from the launch of the observations, for a period of twelve months from the launch of the meters and these parameters are listed at every twenty-fifth nodel meters and these parameters are listed at every twenty-fifth nodal (James) THE ORBIT OF ARIEL 2 (1964-154) - THE FIRST TWELVE MONTHS THE ORBIT OF ARIEL 2 (1964-154) - THE FIRST TWELVE HOWTHS Royal Aircraft Establishment Technical Report 65274 Royal Aircraft Establishment Technical Report 65274 mean motion polynomial. mean motion polynomial. Gooding, R. H. Gooding, R. H. 521.6 22.0 December 1965 December 1965 eccentricity, 2" in inclination, 4" in right ascension of the node, 30" in argument of perigee, 05.03 in time at the node, and 0.001 deg/d- and in argument of perigee, 05,03 in time at the node, and 0,001 deg/d2 and The definitive orbit for Ariel 2 (1964-15A) is computed, from Minitrack The definitive orbit for Ariel 2 (1964-15A) is computed, from Minitrack eccentricity, 2" in inclination, 4" in right ascension of the node, 30" satellite. The orbit is described by a model with eight orbital para-0,001 deg/d3 in the linear and quadratic coefficients occurring in the 0,001 deg/dJ in the linear and quadratic coefficients occurring in the satellite. The orbit is described by a model with eight orbital parapassage. The angular observations are accurate to about 1" and, as a passage. The angular observations are accurate to about 1' and, as a result, the average computed standard deviations of the eight fitted result, the average computed standard deviations of the eight fitted orbital parameters are as follows: 1 m in semi-mejor axis, 10-5 in orbital parameters are as follows: 1 m in semi-major axis, 10-5 in observations, fer a period of twelve months from the launch of the meters and these parameters are listed at every twenty-fifth nodal observations, for a period of twelve months from the launch of the meters and these parameters are listed at every twenty-fifth nodel (data (OVET) THE ORBIT OF ARIEL 2 (1964-15A) - THE FIRST TWELVE MONTHS THE ORBIT OF ARIEL 2 (1964-15A) - THE FIRST TWELVE MONTHS Royal Aircraft Establishment Technical Report 65274 Royal Aircraft Establishment Technical Report 65274 mean motion polynomial. mean motion polynomial. Gooding, R. H. Gooding, R. H.

Ephomericus computed from the listed orbital parameters will be accurate to about \$\frac{1}{2}\$ km, the accuracy required by the Ariel 2 experimenters, Limitations which prevent the accuracy from being better than this are discussed.

Ephemerides computed from the listed orbital parameters will be accurate to about ½ km, the accuraty required by the Ariel 2 experimenters. Limitations which prevent the accuracy from being better than this are discussed.

Ephemerides computed from the listed orbital parameters will be accurate to about \$\delta \text{km}_s\$ the accuracy required by the Ariel 2 experimenters. Limitations which prevent the accuracy from being better than this are discussed.

Ephemerides computed from the listed orbital parameters will be accurate to about \$\frac{1}{2} \text{Km}\$, the accuraty required by the Ariel 2 experimenters. Limitations which prevent the accuracy from being better than this are discussed.