Ejercicios1

Mariann Adaliz Avila Rios................1811303 Arturo del Ángel de la Cruz...........1809895 Valeria Nohemí Navarro Cabello....1820160 Magaly Rivera Valdez....................1823340 Sofía Pamela Rosales Garza........1799219

Regresión lineal

1. Tomando los datos de la tabla sobre los pesos y alturas de una población de 30 personas, crea una gráfica donde el valor x represente la altura y el valor y represente el peso. Después traza una línea que se apegue lo más posible a los datos que graficaste.

import matplotlib.pyplot as plt

```
plt.scatter(x=datos_x , y=datos_y, marker='o', c='black', s=5)
plt.title("Gráfico de puntos y estimación de la recta de regresión simple")
plt.xlabel("Altura")
plt.ylabel("Peso")
plt.show()
```



```
import numpy as np

array_x = np.array(datos_x)
array_y = np.array(datos_y)

n = len(array_x)
sum_x = sum(array_x)
sum_y = sum(array_y)
sum_xy = sum(array_x*array_y)
sum_xx = sum(array_x*array_x)
```

```
s xy = sum xy - (1/n) * sum x * sum y
s_x = sum_x - (1/n) sum_x
beta_1 = s_xy / s_xx
beta_0 = (1/n)*sum_y - beta_1*(1/n)*sum_x
print("La estimación de los parámetros para el modelo de regresión son: ")
print("beta1: ",(beta_1))
print("beta0: ",(beta_0))
□ La estimación de los parámetros para el modelo de regresión son:
     beta1: 0.1086107819535774
     beta0: 49.07163369547534
plt.scatter(x=datos_x , y=datos_y, marker='o', c='black', s=5)
plt.plot(array_x, beta_0 + beta_1 * array_x, '-', c='red')
plt.title("Gráfico de puntos y estimación de la recta de regresión simple")
plt.xlabel("Altura")
plt.ylabel("Peso")
plt.show()
```


Reglas de asociación

2. Observa la tabla que se describe a continuación. Utilizando el agoritmo a priori, y la técnica de asociación, realiza la tabla de relaciones y resuelve cuál es el nivel K de soporte más alto al que podemos llegar teniendo un umbral de 0.5.

```
pip install apyori
```

Collecting apyori
 Downloading https://files.pythonhosted.org/packages/5e/62/5ffde5c473ea4b033490617ec5caa80d59804875ad3c3c57c097
Building wheels for collected packages: apyori
 Building wheel for apyori (setup.py) ... done
 Created wheel for apyori: filename=apyori-1.1.2-cp36-none-any.whl size=5975 sha256=f5e1a7bc27de12e60e4c8ebac41
 Stored in directory: /root/.cache/pip/wheels/5d/92/bb/474bbadbc8c0062b9eb168f69982a0443263f8ab1711a8cad0
 Successfully built apyori
 Installing collected packages: apyori
 Successfully installed apyori-1.1.2

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from apyori import apriori
```

```
datos = np.array((["A","B","C","E"], ["B","E"], ["C","D","E"],["A","C","D"],["A","C","E"]))
reglas = apriori(datos, min support = 0.5, min confidence = 0, min lift = 0, min length = 1)
resultados = list(reglas)
resultados
[RelationRecord(items=frozenset({'A'}), support=0.6, ordered_statistics=[OrderedStatistic(items_base=frozenset()
     RelationRecord(items=frozenset({'C'}), support=0.8, ordered statistics=[OrderedStatistic(items base=frozenset()
     RelationRecord(items=frozenset({'E'}), support=0.8, ordered_statistics=[OrderedStatistic(items_base=frozenset()
     def inspect(resultados):
              = [tuple(resultado[2][0][0]) for resultado in resultados]
              = [tuple(resultado[2][0][1]) for resultado in resultados]
             = [resultado[1] for resultado in resultados]
   soporte
   confianza = [resultado[2][0][2] for resultado in resultados]
             = [resultado[2][0][3] for resultado in resultados]
   return list(zip(rh, lh, soporte, confianza, lift))
resultadoDataFrame = pd.DataFrame(inspect(resultados),
              columns=['rhs','lhs','soporte','confianza','lift'])
```

resultadoDataFrame

₽		rhs	lhs	soporte	confianza	lift
	0	()	(A,)	0.6	0.6	1.0
	1	()	(C,)	0.8	0.8	1.0
	2	()	(E,)	0.8	0.8	1.0
	3	()	(C, A)	0.6	0.6	1.0
	4	()	(C, E)	0.6	0.6	1.0

Conclusión

Los niveles de K de soporte más alto al que podemos llegar con estos datos teniendo un soporte mínimo de 0.5 es:

Cuando K=1

(A)

Soporte: 0.6 Confianza: 0.6

Lift: 1.0 (C)

Soporte: 0.8 Confianza: 0.8 Lift: 1.0

(E)

Soporte: 0.8

Confianza: 0.8 Lift: 1.0

Cuando K=2

(C,A)

Soporte: 0.6 Confianza: 0.6

Lift: 1.0

(A->C)

Soporte: 0.6 Confianza: 1.0 Lift: 1.25 (C->A)

Soporte: 0.6

Confianza: 0.0.749999999999999

Lift: 1.249999999999998

(E,C)

Soporte: 0.6 Confianza: 0.6

Lift: 1.0

(E->C) Support: 0.6

Confidence: 0.749999999999999

Lift: 0.9374999999999998

(C->E) Support: 0.6

Confidence: 0.749999999999999

Lift: 0.9374999999999998