LICENCIATURA EN ESTADÍSTICA

DEPARTAMENTO DE MÉTODOS CUANTITATIVOS

Primer parcial – 6 de Mayo

1. (15pt) Consideremos un conjunto $\Omega = (0,1] \times (0,1]$. Considere $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$, particiones de Ω dadas por

$$\mathcal{F}_1 = \{A_1, A_2, A_3\}, \quad \mathcal{F}_2 = \{B_1, B_2, B_3\}, \quad \mathcal{F}_3 = \{C_{i,j} : i, j = 1, 2, 3\},$$

donde

$$A_{i} = \left(\frac{i}{3}, \frac{i+1}{3}\right] \times (0, 1], \quad (i = 0, 1, 2)$$

$$B_{i} = (0, 1] \times \left(\frac{i}{3}, \frac{i+1}{3}\right], \quad (i = 0, 1, 2)$$

$$C_{i,j} = \left(\frac{i}{3}, \frac{i+1}{3}\right] \times \left(\frac{j}{3}, \frac{j+1}{3}\right], \quad (i, j = 0, 1, 2)$$

- a) Sean \mathcal{A}_i la σ -álgebras generada por \mathcal{F}_i . Describir \mathcal{A}_1 y \mathcal{A}_2 .
- b) Probar que la σ -álgebra generado por $\mathcal{F}_1 \cup \mathcal{F}_2$ coincide con \mathcal{A}_3 .
- c) Definir una función $X: \Omega \to \mathbb{R}$, que sea una variable aleatoria en el espacio (Ω, \mathcal{A}_3) , pero no lo sea en (Ω, \mathcal{A}_1) ni en (Ω, \mathcal{A}_1) .
- 2. (10pt) Sea $(\Omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad. Sea $X : \Omega \to \mathbb{R}$ la variable aleatoria uniforme sobre $\{1, 2, \dots, 10\}$, i.e. $\mathbb{P}(X = k) = 1/10$ para $k = 1, \dots, 10$.
 - a) Describir la medida de distribución X en \mathbb{R} , que denotamos μ_X .
 - b) Sean $A, B \subset [0, 10]$ borelianos, tales que $\mu_X(A) = \mu_X(B) = \frac{1}{2}$ y $\mu_X(A \setminus B) = \frac{1}{10}$, entonces ¿cuántos números naturales hay en $A \cap B$? Justificar por qué.
 - c) ¿Puede existir un intervalo $[a,b] \subset [0,10]$, tal que b-a>1 y $\mu_X([a,b])=0$? Justificar por qué.
 - d) Sea λ la medida de Lebesgue en \mathbb{R} . ¿Puede existir un conjunto $C \subset [0, 10]$, con $\lambda(C) > 1$ y $\mu_X(C) = 0$? Justificar por qué.
 - e) ¿Puede existir un conjunto $D \subset [0, n]$ tal que $\mu_X(D) = 1$ y $\lambda(D) = 0$? Justificar por qué.
- 3. (15pt) Consideremos un espacio de probabilidad $(\Omega, \mathcal{A}, \mathbb{P})$. Consideremos A_1, A_2, \ldots , una sucesión de eventos en \mathcal{A} . Se define el *límite superior* de la sucesión $\{A_n\}$ como

$$\limsup_{n} A_{n} := \bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_{k}.$$

- a) Probar que $\omega \in \limsup_n A_n$ si y sólo si $\omega \in A_n$ para infinitos $n \in \mathbb{N}$.
- b) Probar que $\limsup_{n} A_n \in \mathcal{A}$.
- c) Probar que si la serie $\sum_{n} \mathbb{P}(A_n) < +\infty$, entonces $\mathbb{P}(\limsup_{n} A_n) = 0$.