Week 3

???

3.1 Linear Algebra Review

10/10:

- Today: Review of linear algebra.
- Start with a **vector space** over \mathbb{R} or \mathbb{C} or, more generally, any field K.
- **Vector space** (over *K*): A set equipped with addition and scalar multiplication such that the following axioms are satisfied.
 - 1. Commutativity and associativity of addition.
 - 2. Additive identity and inverse.
 - 3. Compatibility of scalar multiplication and addition (distributive laws).
 - 4. The additive identity times any vector is zero.
- In \mathbb{R}^n , \mathbb{C}^n , addition is component-wise and scalar multiplication is scaling of the element.
- For a homogeneous equation

$$y' = A(t)y = \begin{pmatrix} a_{11}(t)y^1 + a_{12}(t)y^2 + \cdots \\ \vdots \end{pmatrix} \begin{pmatrix} y^1 \\ y^2 \\ \vdots \\ y^n \end{pmatrix}$$

- If y_1, y_2 are solutions, any linear combination of them is a solution. This is called the **solution** space of the equation.
- Linearly independent (set of vectors): A set of vectors $x_1, \ldots, x_m \in V$ such that the only coefficients $\lambda_1, \ldots, \lambda_m$ such that

$$\lambda_1 x_1 + \dots + \lambda_m x_m = 0$$

is
$$\lambda_1 = \cdots = \lambda_m = 0$$
.

 $-\lambda_m \neq 0$ implies

$$x_m = -\frac{1}{\lambda_m}(\lambda_1 x_1 + \dots + \lambda_{m-1} x_{m-1})$$

- Maximal linear independence group: A subset $X \subset V$ such that for any $y \in V$, $\{y\} \cup X$ is not linearly independent. Also known as basis.
- Theorem: Any basis in V has the same cardinality.
- Dimension (of V): The cardinality given by the above theorem. Denoted by $\dim V$.

Week 3 (???)
MATH 27300

- We usually denoted a basis as an ordered *n*-tuple since the order often matters (for orientation?).
- Notational onventions.
 - For \mathbb{R}^n , \mathbb{C}^n , we will always use column vectors.
 - $-x_1, x_2, \ldots$ denotes vectors.
 - $-x^1, x^2, \dots$ denotes the components of a column vector.
 - A vector component squared may be denoted $(x^1)^2$.
- Standard basis (for \mathbb{R}^n): The set of n vectors of length n which have a 1 as one entry and a zero in all the others and are all distinct.
- Linear transformation (of V to V): A mapping $\phi: V \to V$ satisfying

$$\phi(\lambda x + \mu y) = \lambda \phi(x) + \mu \phi(y)$$

• A mapping is completely determined by its action on the basis vectors:

$$\phi\left(\sum_{k=1}^{n} x^{k} e_{k}\right) = \sum_{k=1}^{n} x^{k} \phi(e_{k})$$

• Matrix (of a linear transformation wrt. the standard basis): The $n \times n$ array

$$(\phi(e_1) \cdots \phi(e_n))$$

- If $\phi, \psi : V \to V$ are linear, $\phi \circ \psi$ is also linear.
 - Composition of linear transformations corresponds to matrix multiplication.
- Matrix multiplication: If

$$B = \begin{pmatrix} b_1 & \cdots & b_n \end{pmatrix}$$

then

$$AB = \begin{pmatrix} Ab_1 & \cdots & Ab_n \end{pmatrix}$$

where

$$Ax = \begin{pmatrix} a_{11}x^1 + \dots + a_{1n}x^n \\ \vdots \\ a_{n1}x^1 + \dots + a_{nn}x^n \end{pmatrix}$$

• We can talk about matrix inverses: If it exists, it is unique, and

$$AA^{-1} = A^{-1}A = I_n$$

- Matrix multiplication is not commutative in general. Shao gives a counterexample.
- A is invertible iff the columns of A are a basis for \mathbb{R}^n (resp. \mathbb{C}^n).
- **Determinant** (of A): Not defined.
- Properties of the determinant.
 - Multilinear.

$$\det (a_1 \cdots \lambda a_k + \mu \tilde{a}_k \cdots a_n) = \lambda \det (a_1 \cdots a_k \cdots a_n) + \mu \det (a_1 \cdots \tilde{a}_k \cdots a_n)$$

- Skew-symmetric.

$$\det (a_1 \quad \cdots \quad a_i \quad \cdots \quad a_j \quad \cdots \quad a_n) = -\det (a_1 \quad \cdots \quad a_j \quad \cdots \quad a_i \quad \cdots \quad a_n)$$

Week 3 (???) MATH 27300

- Theorem: The determinant is uniquely characterized by these three (??) axioms.
- $\det I_n = 1$.
- Shao goes over computing the determinant via minors.
- Special cases:
 - If the matrix is upper- or lower-triangular, the determinant is equal to the product of the diagonal entries.
 - If the matrix is blocked upper- or lower-triangular, e.g.,

$$A = \begin{pmatrix} A_1 & * \\ 0 & A_2 \end{pmatrix}$$

then $\det A = \det A_1 \cdot \det A_2$.

- $\det(AB) = \det(A)\det(B)$.
- $\det A \neq 0$ iff A is invertible.
- Direct formula to compute the inverse.

$$A^{-1} = \frac{1}{\det A} \left(a_{\ell k} (-1)^{k+\ell} \det A_{k\ell} \right)$$

- Tedious for higher-dimensional cases, but quite sufficient for n = 2, 3.
- Let A be $n \times n$, and let Ax = b.
 - If A is invertible, then $x = A^{-1}b$.
 - If A is not invertible and $b \in \text{span}(a_1, \dots, a_n)$, then $x = x_h + x_p$ where $Ax_h = 0$ and $Ax_p = b$.
- **Kernel** (of A): The set of all vectors $y \in \mathbb{R}^n$ (resp. \mathbb{C}^n) such that Ay = 0.
- Range (of A): The set of all linear combinations of a_1, \ldots, a_n .
- Suppose $\phi: \mathbb{R}^n \to \mathbb{R}^n$ has matrix A under (e_1, \dots, e_n) . Let (q_1, \dots, q_n) be another basis.
 - There exists a matrix Q such that $q_k = Qe_k$. Q is called the **connecting matrix** between (e_1, \ldots, e_n) and (q_1, \ldots, q_n) .
 - Claim: Let $x \in \mathbb{R}^n$ have representation $x = (x^1, \dots, x^n)$ under the standard basis. Then under the Q basis, x has representation $x' = Q^{-1}(x^1, \dots, x^n)$. Similarly, x = Qx'.
 - Claim: ϕ has matrix $B = Q^{-1}AQ$ with respect to the Q basis.
- Matrix similarity: $A \sim B$ iff there exists Q invertible such that $B = Q^{-1}AQ$.
 - Implies that A and B describe the same matrix under different bases.
 - Matrix product under the old and new bases are related.

$$Q^{-1}ABQ = (Q^{-1}AQ)(Q^{-1}BQ)$$

- Similarity preserves the determinant:

$$\det \left(Q^{-1}AQ\right) = \det \left(Q^{-1}\right)\det (A)\det (Q) = \det (A)\det \left(Q^{-1}\right)\det (Q) = \det (A)$$