# MATRIX THEORY: RANK OF MATRIX

# FY BTECH SEM-I MODULE-2







# **ELEMENTARY TRANFORMATIONS**



- (i) Interchanging any two rows or any two columns:
- $R_{ij}$  denotes the interchange of i<sup>th</sup> and j<sup>th</sup> rows and
- $C_{ij}$  denotes the interchange of i<sup>th</sup> and j<sup>th</sup> columns.
- (ii) Multiplication of each element of i<sup>th</sup> row by non zero k, i. e.  $kR_i$  Multiplication of each element of i<sup>th</sup> column by non zero k,  $kC_i$
- (iii) Adding a non zero multiple of any row (column) to some other row (column)

$$(R_i + kR_j)$$
 or  $(C_i + kC_j)$ .

These are only valid transformations.

Two matrices A and B are said to be **Equivalent Matrices** if the matrix B is obtained by performing elementary transformations on the matrix A.

Denoted by,  $A \sim B$  (A is equivalent to B).



# RANK OF A MATRIX



- **Sub-matrix of order r** If we select any r rows and r columns in Given m X n matrix then a matrix formed by these r rows and r columns is called a square sub-matrix of order r.
- Determinant of this square sub-matrix of order r is called Minor of order r
- Definition of rank of 'A': A number 'r' is said to be the rank of matrix A, if
- (i) There exists at least one sub matrix of A of order r whose determinant is non zero
- (ii) Every sub matrix of A with order greater than r whose determinant, if it exists, should be zero.
- In short, the rank of matrix is the order of any highest non vanishing (Non-zero) minor.
- The rank 'r' of a matrix A is denoted by  $\rho(A)$ .



# RANK OF A MATRIX



# **Properties**

- (i) If A is a matrix of order  $m \times n$ , then  $0 \le \rho(A) \le \min(m, n)$
- (ii) If A is a nonzero square matrix of order n, then  $1 \le \rho(A) \le n$ .
- (iii) The rank of a null matrix is always zero.
- (iv) Rank of a non singular matrix is always equal to its order.

i.e. If 
$$|A| \neq 0$$
 then  $\rho(A) = n$ 

(v) Rank of a matrix is always unique.



### RANK OF A MATRIX



## **Properties**

(vi) 
$$\rho(A) = \rho(A')$$

(vii) 
$$\rho(AB) \leq \rho(A)$$
 and  $\rho(AB) \leq \rho(B)$ 

(viii) Rank is invariant under elementary transformations.

i.e. If 
$$A \sim B$$
 then  $\rho(A) = \rho(B)$ 

- (ix) Rank of A = Rank of (kA), where k is any non zero scalar
- (x) If  $A_{n\times n}$  is non singular i.e.,  $|A|\neq 0$  then rank of A=n and rank of  $A^2$   $(Or\ A^k)=n$

Since 
$$|A^2| = |A.A| = |A|.|A| \neq 0$$





• 1) Let 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}$$

- Since it is a square matrix, first we will find |A|
- We have |A| = 1(6-8) 2(4-0) + 3(4-0)
- $\bullet = -2 8 + 12 = 2 \neq 0$
- Thus A is non singular matrix,
- i.e., |A| is the highest order non vanishing minor of order 3.
- Hence rank of A is 3.





• 2) Let 
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & -1 \\ -1 & 2 & 7 \end{bmatrix}$$

- Since it is a square matrix, first we will find |A|
- We have |A| = 1(28+2) (-2)(-14-1) + 3(-4+4) = 0
- Here the only minor of order 3 is zero.
- So now we will find minors of order 2.

• Consider 
$$\begin{vmatrix} 1 & -2 \\ -2 & 4 \end{vmatrix} = 0$$
,

• but 
$$\begin{vmatrix} -2 & 3 \\ 4 & -1 \end{vmatrix} = -10 \neq 0$$

- i.e., at least one minor of order 2 is non zero.
- Hence rank of A is 2.





• 3) Let 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ -3 & -6 & -9 \end{bmatrix}$$

- Since we have |A| = 0 i.e., the minor of order 3 is zero.
- All minors of order 2 are also zero.
- Minor of order one is not zero.
- Hence rank of A is 1.
- **Observation:** Here, observe that all rows are identical, so when all the rows of a given matrix are identical then rank of that matrix is always 1. (This problem can also solved by row reduction method as 2<sup>nd</sup> and 3<sup>rd</sup> rows will become zero)





• 4) Let 
$$A = \begin{bmatrix} 2 & 4 & 3 & 2 \\ 1 & -1 & 0 & 3 \\ 3 & 5 & 1 & 6 \end{bmatrix}_{3 \times 4}$$

- Here, A is the matrix of order  $3 \times 4$ .
- Therefore  $1 \le \rho(A) \le \min(3,4)$
- So rank A can be maximum 3.

• Now, consider the 
$$3 \times 3$$
 minor  $\begin{vmatrix} 2 & 4 & 3 \\ 1 & -1 & 0 \\ 3 & 5 & 1 \end{vmatrix}$ 

$$\bullet = 2(-1-0) - 4(1-0) + 3(5+3)$$

$$\bullet = -2 - 4 + 24 = 18 \neq 0$$

Hence rank of A is 3.



# Finding rank by row Echelon method



- We know If  $A \sim B$ , then A and B have Again, applying  $R_3 2R_2$ ,
- same rank.

   consider  $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & -1 \\ -1 & 2 & 7 \end{bmatrix}$  whose

   we get  $A \sim \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix}$  we have |B| = 0
  - Now, we will obtain an equivalent matrix B of A by performing elementary transformations.
  - Applying  $R_2 + 2R_1$  and  $R_3 + R_1$ ,
- we get  $A \sim \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 10 \end{bmatrix}$

• we get 
$$A \sim \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

• Let 
$$B = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$
 we have  $|B| = 0$ 

- Consider the minor  $\begin{vmatrix} -2 & 3 \\ 0 & 5 \end{vmatrix} = -10 \neq 0$
- Therefore, the rank of B is 2.
- Hence,  $A \sim B$ , and the rank of A = the rank of B.



# ECHELON FORM OF A MATRIX



- Definition: If a matrix A is reduced to a matrix B by using elementary row transformations alone, then B is said to be row equivalent to A.
- Defn: The Echelon form or Canonical form of a matrix A is a row equivalent matrix of rank 'r' in which
- (a) One or more elements of each of the first r rows are non – zero while all other rows have only zero elements, (i.e all zero rows, if any, are placed at the bottom of the matrix so that the first r rows form an upper triangular matrix).

- **(b)** The number of zero before the first non zero element in a row is less than the number of such zeros in the next row.
- In short, by performing only row transformations, a given matrix that is reduced to an upper triangular form is called its Echelon form.
- Note: Rank of a given matrix is equal to the number of non – zero rows in the Echelon form.



# ECHELON FORM OF A MATRIX



- (a) First 2 rows contain at least one non zero elements while other (i.e 3<sup>rd</sup> and 4<sup>th</sup>) rows have only zero elements.
- (b) The number of zeros before the first non zero element in the first row is one while the number of zeros before the first non – zero element in the second row is two.
- Further, there are two non zero rows in this Echelon form. Hence rank of the matrix is 2.



# Example



 Reduce the following matrix to Echelon form and hence find it's rank.

• By *R*<sub>12</sub>

• By 
$$R_3 - 3R_1$$
,  $R_4 - R_1$ 

$$\bullet \ A \sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 2 & -6 & -2 \\ 0 & 1 & -3 & -1 \\ 0 & 1 & -3 & -1 \end{bmatrix}$$

• By 
$$R_3 - \frac{1}{2}R_2$$
,  $R_4 - \frac{1}{2}R_2$ 

$$\bullet \ A \sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 2 & -6 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- This is the required echelon form.
- Number of non zero rows is 2.

• 
$$\rho(A) = 2$$



# EXAMPLES Find the ranks of the following matrices



• (i) 
$$\begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{bmatrix}$$

• 
$$R_4 - (R_1 + R_3)$$
,  $\sim \begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 

• 
$$R_3 - (R_1 + R_2)$$
,  $\sim \begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 

- : Minor of order 4 is zero. All minors of order 3 are zero
- Consider the minor of order two  $\begin{vmatrix} 6 & 1 \\ 4 & 2 \end{vmatrix} = 12 4 = 8 \neq 0$  Hence, the rank of matrix is 2.



# EXAMPLES Find the ranks of the following matrices



• (iii) 
$$\begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$

$$R_4 - R_1 \\ R_3 - R_1 \\ R_2 - R_1 \end{bmatrix} \sim \begin{bmatrix} 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 7 & 7 & 7 & 7 \end{bmatrix}$$

$$\begin{array}{c}
R_4 - 7R_2 \\
R_3 - 2R_2
\end{array}
\sim
\begin{bmatrix}
2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

- .: Minor of order 4 is zero. All minors of order 3 are zero
- Consider the minor of order two  $\begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = 2 3 = -1 \neq 0$  Hence, the rank of matrix is 2.



# NORMAL FORM OF A MATRIX



- Definition: By performing elementary row and column transformations, every non

   zero matrix can be reduced to one of the four forms, called the normal form of A:
- (i)  $\begin{bmatrix} I_r \end{bmatrix}$  (ii)  $\begin{bmatrix} I_r & O \end{bmatrix}$  (iii)  $\begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$
- Note: Rank of A = Rank of the normal form of A = r.



### NORMAL FORM OF A MATRIX



- Method to Reduce a Given Matrix to its Normal Form by Applying Elementary Transformations:
- Step 1: Reduce the first diagonal element  $a_{11}$ , which is called a leading element (or a pivot), to 1 by applying any (row or column) transformation
- **Step 2:** Apply row transformation to reduce all other elements in first column to zero.
- **Step: 3:** Apply column transformation to reduce all other elements in first row to zero.
- Step 4: Reduce the second diagonal element  $a_{22}$ , which is then called the leading element, to 1 by applying any (row or column) transformation without disturbing the elements of the first row and first column.



## NORMAL FORM OF A MATRIX



- **Step 5:** Applying row transformation clear off all other non zero elements of the second column and reduce them to zero without disturbing the first row.
- **Step 6:** Applying column transformation clear off all other non zero elements of the second row and reduce them to zero without disturbing the first column.
- Continuing the above procedure with the successive rows and columns, we can reduce a given matrix to its normal form.
- **Note:** Application of elementary transformation on any matrix A may differ but rank of A is unique.





 Reduce the following matrices to their normal form and hence obtain their ranks.

• (i) 
$$\begin{bmatrix} 4 & 3 & 0 & -2 \\ 3 & 4 & -1 & -3 \\ 7 & 7 & -1 & -5 \end{bmatrix}$$

 $R_1 - R_2 \sim \begin{bmatrix} 1 & -1 & 1 & 1 \\ 3 & 4 & -1 & -3 \\ 7 & 7 & -1 & -5 \end{bmatrix}$ 

 $\begin{array}{lll}
R_2 - 3R_1 \\
R_3 - 7R_1
\end{array}
\sim
\begin{bmatrix}
1 & -1 & 1 & 1 \\
0 & 7 & -4 & -6 \\
0 & 14 & -8 & -12
\end{bmatrix}$ 

$$\begin{array}{c} C_2 + C_1 \\ C_3 - C_1 \\ C_4 - C_1 \end{array} \right\} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 7 & -4 & -6 \\ 0 & 14 & -8 & -12 \end{bmatrix}$$

# $\frac{c_2}{7} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -4 & -6 \\ 0 & 2 & -8 & -12 \end{bmatrix}$

$$\begin{array}{ccc} \cdot & C_3 + 4C_2 \\ C_4 + 6C_2 \end{array} \quad \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\bullet = \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix}$$

Hence, the rank of matrix is 2.





• (ii) 
$$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$

$$\begin{array}{l}
R_2 - 2R_1 \\
R_3 - 3R_1 \\
R_4 - 6R_1
\end{array}
\sim
\begin{bmatrix}
1 & -1 & -2 & -4 \\
0 & 5 & 03 & 07 \\
0 & 4 & 9 & 10 \\
0 & 9 & 12 & 17
\end{bmatrix}$$

$$\begin{array}{c} C_2 + C_1 \\ C_3 + 2C_1 \\ C_4 + 4C_1 \end{array} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 3 & 7 \\ 0 & 4 & 9 & 10 \\ 0 & 9 & 12 & 17 \end{bmatrix}$$

$$\begin{array}{c} {R_3 - 4R_2} \\ {R_4 - 9R_2} \end{array} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -6 & -3 \\ 0 & 0 & 33 & 22 \\ 0 & 0 & 66 & 44 \end{bmatrix}$$

$$\begin{array}{ccccc}
 & C_3 + 6C_2 \\
 & C_4 + 3C_2
\end{array}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 33 & 22 \\
0 & 0 & 66 & 44
\end{bmatrix}$$





$$\cdot C_4 - 22C_3 \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\bullet = \begin{bmatrix} I_3 & 0 \\ 0 & 0 \end{bmatrix}$$

• Hence, the rank of matrix is 3.





 If A and B are as given below, find the rank of A by reducing it to the normal form. Find 3A – B,hence • or otherwise , show that  $3A^2 - AB = 2A$  also find the rank of  $3A^2 - AB$ .

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & 1 & 1 \\ 2 & 6 & 3 & 5 \\ 2 & 4 & 2 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 6 & 3 & 6 \\ 0 & 4 & 3 & 3 \\ 6 & 18 & 7 & 15 \\ 6 & 12 & 6 & 10 \end{bmatrix} \qquad \bullet \qquad R_3 - R_2 \qquad \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• Solution: 
$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & 1 & 1 \\ 2 & 6 & 3 & 5 \\ 2 & 4 & 2 & 4 \end{bmatrix}$$

$$\begin{array}{ccc}
R_3 - 2R_1 \\
R_4 - 2R_1
\end{array}
\sim
\begin{bmatrix}
1 & 2 & 1 & 2 \\
0 & 2 & 1 & 1 \\
0 & 2 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{array}{c}
C_2 - 2C_1 \\
C_3 - C_1 \\
C_4 - 2C_1
\end{array}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 1 & 1 \\
0 & 2 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$R_3 - R_2 \qquad \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$



• 
$$\therefore \rho(A) = 2.$$

$$3A - B = 3 \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & 1 & 1 \\ 2 & 6 & 3 & 5 \\ 2 & 4 & 2 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 6 & 3 & 6 \\ 0 & 4 & 3 & 3 \\ 6 & 18 & 7 & 15 \\ 6 & 12 & 6 & 10 \end{bmatrix}.$$

$$\bullet = \begin{bmatrix} 3 & 6 & 3 & 6 \\ 0 & 6 & 3 & 3 \\ 6 & 18 & 9 & 15 \\ 6 & 12 & 6 & 12 \end{bmatrix} - \begin{bmatrix} 1 & 6 & 3 & 6 \\ 0 & 4 & 3 & 3 \\ 6 & 18 & 7 & 15 \\ 6 & 12 & 6 & 10 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} = 2I$$

• 
$$AB = A(3A - B) = A(2I) = 2A$$

Since 
$$\rho(A) = \rho(2A) = \rho(3A^2 - AB)$$

Hence 
$$\rho(3A^2 - AB) = 2$$





- Find the values of P for which the following matrix A will have (i) rank 1 (ii) rank 2 (iii) rank 3,
- where  $A = \begin{bmatrix} 3 & P & P \\ P & 3 & P \\ P & P & 3 \end{bmatrix}$
- **Solution:** Let us first find the determinant of A.

$$\bullet \quad |A| = \begin{vmatrix} 3 & P & P \\ P & 3 & P \\ P & P & 3 \end{vmatrix}$$

• = 
$$3(9 - P^2) - P(3P - P^2) + P(P^2 - 3P)$$

• = 
$$3(3-P)(3+P) - P^2(3-P) + P^2(P-3)$$

• = 
$$(3 - P)[3(3 + P) - P^2 - P^2]$$

• = 
$$(3 - P)[9 + 3P - 2P^2]$$

• = 
$$(3 - P)^2(3 + 2P)$$

- If |A| = 0, i.e if P = 3 or -3/2,
- then the rank of A is either 1 or 2

- Consider, if P = 3, then  $A = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$  all minors of order 2 are zero.
- Hence rank of A is 1, when  $P = 3, \dots$  (i)
- If P = -3/2, then  $A = \begin{bmatrix} 3 & -3/2 & -3/2 \\ -3/2 & 3 & -3/2 \\ -3/2 & -3/2 & 3 \end{bmatrix}$
- Consider the minor of order of 2,

- Hence rank of A is 2, when P = -3/2 .....(ii)
- For rank 3,  $|A| \neq 0$ . When P can take any value other than 3 or 3/2 .....(iii)





• If 
$$A = \begin{bmatrix} 2 & 3k & 3k+4 \\ 1 & k+4 & 4k+2 \\ 1 & 2k+2 & 3k+4 \end{bmatrix}$$
 is the given square •  $\sim \begin{bmatrix} 1 & k+4 & 4k+2 \\ 0 & k-8 & -5k \\ 0 & k-2 & -k+2 \end{bmatrix}$  .....(i)

matrix of order 3, find the values of k for which rank of A is less than 3. Also find the ranks for those values of k.

• Solution: 
$$A = \begin{bmatrix} 2 & 3k & 3k+4 \\ 1 & k+4 & 4k+2 \\ 1 & 2k+2 & 3k+4 \end{bmatrix}$$

- *R*<sub>12</sub>
- $\sim \begin{bmatrix} 1 & k+4 & 4k+2 \\ 2 & 3k & 3k+4 \\ 1 & 2k+2 & 3k+4 \end{bmatrix}$

- For the matrix A to be of rank less than 3, we must have |A| = 0
- i.e., (k-8)(-k+2)-(-5k)(k-2)=0
- i.e.,  $-k^2 + 10k 16 + 5k^2 10k = 0$
- i.e.,  $4k^2 16 = 0$
- i.e  $k^2 = 4$
- i.e.,  $k = \pm 2$
- Now three cases arise.

# • Case (i) If $k \neq \pm 2$ then A has rank = 3.

• Case (ii) If 
$$k = 2$$
, then (i)  $\Longrightarrow$ 

$$A \sim \begin{bmatrix} 1 & 6 & 10 \\ 0 & -6 & -10 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\frac{c_2}{6}, \frac{c_3}{10} \right\} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{ccc} \cdot & C_2 - C_1 \\ C_3 - C_1 \end{array} \right\} \qquad \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

• 
$$(-1)R_2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

• 
$$C_3 - C_2$$
  $\sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix}$ 

# • $\therefore \rho(A) = 2$

#### **EXAMPLES**



• Case (iii) If 
$$k = -2$$
, then (i)  $\Rightarrow$ 

$$A \sim \begin{bmatrix} 1 & 2 & -6 \\ 0 & -10 & 10 \\ 0 & -4 & 4 \end{bmatrix}$$

$$\begin{array}{cccc}
 & \frac{R_2}{-10}, \frac{R_3}{-4} & \sim \begin{bmatrix} 1 & 2 & -6 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

• 
$$R_3 - R_2$$
  $\sim \begin{bmatrix} 1 & 2 & -6 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ 

$$\begin{array}{ccc} & C_2 - 2C_1 \\ C_3 + 6C_1 \end{array} \quad \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

• 
$$C_3 + C_2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix}$$
  
Hence  $\rho(A) = 2$ 



# REDUCTION OF A MATRIX A TO NORMAL FORM PAQ



• **Theorem:** If A is a matrix of rank r, then • **3**. there exist non – singular matrices P and on I.h.s. and the same column Q such that PAQ is in the normal form

i.e 
$$\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} = PAQ$$

- To obtain the matrices P and Q use the following procedure.
- Working Rule:
- If A an  $m \times n$  matrix, write

$$A = I_m A I_n$$

Apply row transformations of A on I.h.s. and the same row transformations on the pre-factor  $I_m$ .

- Apply column transformations on A transformations on the post-factor  $I_n$ .
- So that, A on the I.h.s is reduced to normal form.
- Remark:
- No transformations are applied on A on the r.h.s.
- (ii) The matrices P and Q thus obtained are not unique. They depend upon the transformations used.





• Find non – singular matrices P and Q such that PAQ is in normal form, Hence obtain rank of A where

A is 
$$\begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$$

• Since A is the matrix of order  $3 \times 4$ , we write  $A = I_3 \cdot A_{3 \times 4} \cdot I_4$ 

• Thus 
$$\begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• To find non – singular matrices P and Q, we reduce the matrix A on the left hand side to normal form by applying suitable elementary transformations. Every row operation will also be applied to the pre – factor of the product on the right hand side and every column operation to the post factor.

• Applying 
$$R_2 - 2R_1$$
,  $R_3 - 3R_1$ 

$$\begin{bmatrix} 1 & 2 & 3 & -2 \\ 0 & -6 & -5 & 7 \\ 0 & -6 & -5 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$





• Applying 
$$C_2 - 2C_1$$
,  $C_3 - 3C_1$ ,  $C_4 + 2C_1$ 

• Applying 
$$C_2 - 2C_1$$
,  $C_3 - 3C_1$ ,  $C_4 + 2C_1$ 

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -6 & -5 & 7 \\ 0 & -6 & -5 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & -2 & -3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Applying 
$$R_3 - R_2$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -6 & -5 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} A \begin{bmatrix} 1 & -2 & -3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Applying 
$$\frac{C_2}{-6}$$
,  $\frac{C_3}{-5}$ ,  $\frac{C_4}{7}$ 

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 1/3 & 3/5 & 2/7 \\ 0 & -1/6 & 0 & 0 \\ 0 & 0 & -1/5 & 0 \\ 0 & 0 & 0 & 1/7 \end{bmatrix}$$

• Applying 
$$C_3 - C_2$$
,  $C_4 - C_2$ 

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 1/3 & 4/15 & -1/21 \\ 0 & -1/6 & 1/6 & 1/6 \\ 0 & 0 & -1/5 & 0 \\ 0 & 0 & 0 & 1/7 \end{bmatrix}$$





• Thus, 
$$\begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix} = PAQ$$
 Where  $P = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$  and  $Q = \begin{bmatrix} 1 & 1/3 & 4/15 & -1/21 \\ 0 & -1/6 & 1/6 & 1/6 \\ 0 & 0 & -1/5 & 0 \\ 0 & 0 & 0 & 1/7 \end{bmatrix}$ 

Hence rank of A is 2.





Find non – singular matrices P and Q such that PAQ is in normal form. Hence find

• (i) rank of A, (ii) 
$$A^{-1}$$
, where A is

• (i) rank of A, (ii) 
$$A^{-1}$$
, where A is 
$$\begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{bmatrix}$$

Solution:

Since A is a square matrix of order 4, we write  $A = I_4 . A . I_4$ 

i.e., 
$$\begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Applying 
$$R_2 - 2R_1$$
,  $R_3 + R_1$ ,  $R_4 - 2R_1$ 

• Applying 
$$R_2 - 2R_1$$
,  $R_3 + R_1$ ,  $R_4 - 2R_1$ 

$$\begin{bmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$





Applying 
$$C_2 - 2C_1$$
,  $C_3 + 2C_1$ ,  $C_4 - 3C_1$ ,

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & -2 & 2 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Applying  $R_3 + R_2$ , we get

• Applying 
$$\frac{R_4}{3}$$
, we get

• Applying  $C_{34}$ , we get

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -2 & 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & -2 & 2 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -2/3 & 0 & 0 & 1/3 \end{bmatrix} A \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2/3 & 0 & 0 & 1/3 \end{bmatrix} A \begin{bmatrix} 1 & -2 & -3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -2/3 & 0 & 0 & 1/3 \end{bmatrix} A \begin{bmatrix} 1 & -2 & -3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$





• Thus, we have  $[I_4] = PAQ$  is the required normal form.

Where 
$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -2/3 & 0 & 0 & 1/3 \end{bmatrix}$$
 and  $Q = \begin{bmatrix} 1 & -2 & -3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ 

• Hence rank of A is 4. Since  $|A| \neq 0$ , therefore  $A^{-1}$  exists



#### • To find $A^{-1}$ , we have PAQ = I

• : 
$$(PAQ)^{-1} = I^{-1}$$

• 
$$\therefore Q^{-1}A^{-1}P^{-1} = I \quad {\because I^{-1} = I}$$

• 
$$\therefore QQ^{-1}A^{-1}P^{-1} = QI$$

$$: I A^{-1}P^{-1} = Q$$

• 
$$\therefore A^{-1}P^{-1}P = QP$$

• 
$$\therefore A^{-1}I = QP$$

#### **EXAMPLES**



$$\bullet = \begin{bmatrix} \frac{20}{3} & -5 & -3 & \frac{2}{3} \\ -2 & 1 & 0 & 0 \\ -\frac{2}{3} & 0 & 0 & \frac{1}{3} \\ -1 & 1 & 1 & 0 \end{bmatrix}$$