Greek Characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ϵ	limit definition
theta	θ or θ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named Sets

empty set	Ø
real numbers	R
ordered pairs	\mathbf{R}^2
integers	Z
positive integers	$\mathbf{Z}_{>0}$
positive real numbers	R>0

Set Symbols

Meaning	Symbol
is a member	€
subset	_
intersection	Λ
union	U
set minus	\

Intervals

For numbers *a* and *b*, we define the intervals:

$$(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$$

$$[a, b) = \{x \in \mathbf{R} \mid a \le x < b\}$$

$$(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$$

$$[a,b] = \{x \in \mathbf{R} \mid a \le x \le b\}$$

Logic Symbols

Meaning	Symbol
negation	7
and	٨
or	V
implies	\Rightarrow
equivalent	≡
for all	A
there exists	3

Exponents

For a, b > 0 and m, n real:

$$a^n a^m = a^{n+m}$$

$$a^n/a^m = a^{n-m}$$

$$(a^n)^m = a^{n \cdot m}$$

$$a^{-m} = 1/a^m$$

$$(a/b)^m = a^m/b^m$$

Trigonometric Identities

$$\sin(x)^2 + \cos(x)^2 = 1$$

$$2\cos(x)^2 = 1 + \cos(2x)$$

$$2\sin(x)^2 = 1 - \cos(2x)$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\arccos(x) = \pi/2 - \arcsin(x)$$

$$\operatorname{arccot}(x) = \pi/2 - \arctan(x)$$

$$arccsc(x) = \pi/2 - arcsec(x)$$

Limits

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} =$$

$$\lim_{x \to \infty} e^x = \infty$$

$$\lim_{x \to -\infty} e^x = 0$$

$$\lim_{x\to\infty}\ln(x)=\infty$$

$$\lim_{x \to 0^+} \ln(x) = -\infty$$

Derivatives

Specific cases

F(x)	F'(x)
$\cos(x)$	$-\sin(x)$
sin(x)	$\cos(x)$
tan(x)	$sec(x)^2$
sec(x)	sec(x) tan(x)
$\csc(x)$	$-\cot(x)\csc(x)$
cot(x)	$-\csc(x)^2$
arccos(x)	$-1/\sqrt{1-x^2}$
arcsin(x)	$1/\sqrt{1-x^2}$
arctan(x)	$1/(x^2+1)$
$\exp(x)$	$\exp(x)$
ln(x)	1/ <i>x</i>

General Cases

F(x)	F'(x)
af(x) + bg(x)	af'(x) + bg'(x)
f(x)g(x)	f'(x)g(x) + f(x)g'(x)
1/g(x)	$-g'(x)/g(x)^2$
f(x)/g(x)	$(g(x)f'(x)-f(x)g'(x))/g(x)^2$
f(g(x))	g'(x)f'(g(x))
$f^{-1\prime}(x)$	$1/f'(f^{-1}(x))$

Antiderivatives

$$\int a \, dx = ax$$

$$\int x^a \, dx = \frac{1}{1+a} x^{a+1}, \quad \text{if } a \neq -1$$

$$\int \frac{1}{x} \, dx = \ln|x|$$

$$\int \cos(x) \, dx = \sin(x)$$

$$\int \sin(x) \, dx = -\cos(x)$$

$$\int \tan(x) \, dx = \ln|\sec(x)|$$

$$\int \sec(x) \, dx = \ln|\tan(x) + \sec(x)|$$

$$\int \csc(x) \, dx = -\ln|\csc(x) + \cot(x)|$$

$$\int \cot(x) \, dx = \ln|\sin(x)|$$

$$\int 2|x| \, dx = x|x|$$

$$\int 2|x| \, dx = (2x-1)|x| - |x|^2$$

$$\int 2|x| \, dx = (2x+1)|x| - |x|^2$$

Sums

For $k, m, n \in \mathbb{Z}_{>0}$

$$\sum_{k=0}^{n-1} 1 = n$$

$$\frac{n-1}{n-1} \qquad (n-1)$$

$$\sum_{k=0}^{n-1} k = \frac{(n-1) n}{2}$$

$$\sum_{k=0}^{n-1} k^2 = \frac{(n-1) n (2n-1)}{6}$$

$$\sum_{k=0}^{n-1} x^k = \frac{1 - x^n}{1 - x}, x \neq 1$$

Logarithms

$$\log_a(x) = \frac{1}{\ln(a)} \ln(x)$$

Famous Triangles

The 30-60-90 triangle

The 45-45-90 triangle

Laws of Cosine & Sine

Law of cosine

$$C^2 = A^2 + B^2 - 2AB\cos(\gamma)$$

Law of sines

$$\frac{\sin \alpha}{A} = \frac{\sin \beta}{B} = \frac{\sin \gamma}{C}$$

Areas and volumes

Area =
$$\frac{1}{2}hB = \frac{1}{2}AB\sin(\gamma)$$

Volumes

Right Circular Cylinder

Volume

$$V = \pi r^2 h$$

Area, not including areas of circular ends

$$A = 2\pi r h$$

Cone

Volume

$$V = \frac{1}{3}\pi r^2 h$$

Area, not including area of circular base:

$$A = \pi r \left(r + \sqrt{r^2 + h^2} \right)$$

Unit Circle

Applications

Arclength of curve y = F(x) with $a \le x \le b$

$$= \int_a^b \sqrt{1 + F'(x)^2} \, \mathrm{d}x$$

For the region *Q* of the xy plane given by

$$Q = \{(x, y) \mid f(x) \le y \le g(x) \land a \le x \le b\},\$$

we have

Area(Q) =
$$\int_{a}^{b} g(x) - f(x) dx$$

Assuming $0 \le f(x)$ and rotating about the x-axis

$$Vol(Q) = \pi \int_{a}^{b} g(x)^{2} - f(x)^{2} dx$$

Assuming $a \ge 0$ and rotating about the y-axis

$$Vol(Q) = 2\pi \int_{a}^{b} x(g(x) - f(x)) dx$$

Centroid

Area(Q)
$$\times \overline{x} = \int_{a}^{b} x (g(x) - f(x)) dx$$
,

Area(Q)
$$\times \overline{y} = \frac{1}{2} \int_{a}^{b} (g(x)^{2} - f(x)^{2}) dx.$$

Revised May 3, 2022. Barton Willis is the author of this work. It licensed under Attribution 4.0 International (CC BY 4.0) For the current version of this document, visit