课	程	老	试	计	类	筌	室	(学生考试用)
	11生	~~	FT/'	PT/"	43.		\rightarrow	(子工写 以用)

课程名称:	学分	· 3	教学大纲编号:	
グルエロリか・	ナル	1: 3	我子 へ わ 畑 つ・	

试卷编号: <u>A 卷</u>考试方式: <u>笔试、闭卷</u> 满分分值: <u>80</u> 考试时间: <u>120</u> 分 钟

组卷日期: ___ 组卷教师(签字): ________ 审定人(签字):

- 1. (10分)某人忘记了银行卡密码的最后一位数字,因而他随机按号,
- (1) 求他按号不超过三次而选正确的概率.
- (2) 若已知最后一个数是偶数,则此概率是多少?

解法一: 设A, i=1,2,3分别表示第i次按号按对,A表示按号不超过三次而选正确,则A=A, $\cup \overline{A}$, \overline{A} , $\cup \overline{A}$, \overline{A} , \overline{A} , \overline{A} , 且三者两两互不相容,故有

(1)
$$P(A) = P(A_1) + P(\overline{A_1}A_2) + P(\overline{A_1}\overline{A_2}A_3)$$

 $= P(A_1) + P(\overline{A_1})P(A_2 | \overline{A_1}) + P(\overline{A_1})P(\overline{A_2} | \overline{A_1})P(A_3 | \overline{A_1}\overline{A_2}), \dots 2$ \Rightarrow

$$= \frac{1}{10} + \frac{9}{10} \times \frac{1}{9} + \frac{9}{10} \times \frac{8}{9} \times \frac{1}{8} = \frac{3}{10}.$$
 \Rightarrow 3 \Rightarrow 4 \Rightarrow 3 \Rightarrow 3 \Rightarrow 4 \Rightarrow 3 \Rightarrow 4 \Rightarrow 3 \Rightarrow 4 \Rightarrow 3 \Rightarrow 4 \Rightarrow 4

(2) 设 B 表示已知最后一个数是偶数,按号不超过三次而选正确,则

$$=1-\frac{9}{10}\times\frac{8}{9}\times\frac{7}{8}=\frac{3}{10}.$$

注:基本题,考察古典概型和乘法公式。

- 2. (10 分) 设某城市成年男子的身高 $X \sim N(170, 6^2)$ (单位厘米).
- (1) 问应如何设计公共汽车车门的高度,使成年男子与车门顶碰头的机会小于 0.01?
- (2) 若车门设计高度为 182 厘米, 求 10 个成年男子中与车门顶碰头的人数不多于 1 人的概率.
- 解: (1) 设车门高度为h厘米,按设计要求应有 $P\{X>h\}<0.01$. 由题设知 $X\sim N(170.6^2)$,则

车门高度应高于 183.98 厘米, 才能使成年男子与车门顶碰头的机会小于 0.01.

(2)设Y表示 10 个成年男子中身高超过 182 厘米的人数,则 $Y \sim B(10, p)$,其中p为任一成年男子身高超过 182 厘米的概率,

$$p = P\{X > 182\} = 1 - P\{X \le 182\} = 1 - P\{\frac{X - 170}{6} \le \frac{182 - 170}{6}\} = 1 - \Phi(2) = 0.0228.$$

则 $P{Y=k}=C_{10}^{k}(0.0228)^{k}(1-0.0228)^{10-k}, k=0,1,K$ 10.

而 10 个成年男子中与车门顶碰头的人数不多于 1 人的概率为

注:基本题,考察正态分布和二项分布的计算。

3. (15 分)设二维随机变量(X,Y)的概率密度为

$$f(x, y) = \begin{cases} kx(x-y), & 0 < x < 2, & -x \le y \le x \\ 0, &$$
其他

| 求: (1) 常数 k; (2) X,Y的边缘概率密度; (3) $P\{0 < X < 1, 0 < Y < 1\}$.

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{-x}^{x} \frac{1}{8} x(x - y) dy & 0 < x < 2 \\ 0 & \text{ 其他} \end{cases}$$

$$f_{y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{y}^{2} \frac{1}{8} x(x - y) dx & 0 < y < 2 \\ \int_{-y}^{2} \frac{1}{8} x(x - y) dx & -2 < y < 0 \\ 0 & \text{ 其他} \end{cases}$$

$$= \begin{cases} \frac{1}{3} - \frac{y}{4} + \frac{1}{48}y^3 & 0 < y < 2 \\ \frac{1}{3} - \frac{y}{4} + \frac{5}{48}y^3 & -2 < y < 0 \\ 0 & \text{#th} \end{cases}$$

注:综合题,考察二维随机变量的归一性、边缘概率密度、概率计算。

- 4. (15 分)假设二维随机变量(X,Y)在矩形 $G=\{(x,y)|0\le x\le 2,0\le y\le 1\}$ 上服从均匀分布,记 $U=\begin{cases} 0, & \ddot{z}X\le Y\\ 1. & \ddot{z}X>Y \end{cases}$, $V=\begin{cases} 0, & \ddot{z}X\le 2Y\\ 1. & \ddot{z}X>2Y \end{cases}$.
 - (1) 求U和V的联合分布,(2) U和V是否独立,(3) 求U和V的相关系数.
- 解: 因 (X,Y) 服从均匀分布,可得 $P\{X \le Y\} = \frac{1}{4}$, $P\{X \ge 2Y\} = \frac{1}{2}$, $P\{Y \le X \le 2Y\} = \frac{1}{4}$, U和V有四个可能取值 (0,0), (0,1), (1,0), (1,1), (1,0), (1,1),

V	0	1
0	$\frac{1}{4}$	0
1	$\frac{1}{4}$	$\frac{1}{2}$

(2) U和V的分布率为

U	0	1
p	1/4	$\frac{3}{4}$

V	0	1
p	1/2	1/2

.....2 分

.....2 分

因 $p_{ii} \neq p_{ii} gp_{ij}$,所以U和V不相互独立。

.....1 5

(3)
$$E(U) = 0 \times \frac{1}{4} + 1 \times \frac{3}{4} = \frac{3}{4}, D(U) = 0^2 \times \frac{1}{4} + 1^2 \times \frac{3}{4} - \left(\frac{3}{4}\right)^2 = \frac{3}{16},$$

 $E(V) = 0 \times \frac{1}{2} + 1 \times \frac{1}{2} = \frac{1}{2}, D(U) = 0^2 \times \frac{1}{2} + 1^2 \times \frac{1}{2} - \left(\frac{1}{2}\right)^2 = \frac{1}{4},$

因此
$$\rho_{UV} = \frac{Cov(U,V)}{\sqrt{D(U)}\sqrt{D(V)}} = \frac{\frac{1}{8}}{\sqrt{\frac{3}{16}} \times \sqrt{\frac{1}{4}}} = \frac{\sqrt{3}}{3}.$$
 2分

注:综合题,考察随机变量的数字特征和独立性。

- 5. (10 分) 某车间有 200 台独立工作的车床, 开工率为 0.6, 开工时耗电各为 1KW. (I)求某时刻正在工作的车床在 110 台到 130 台之间的概率:
- (2) 问供电所至少要供给这个车间多少电力才能以 99.9%的概率保证这个车间正常生

解:记某时刻正在工作的车床数为X,则X:B(200,0.6)

(1) 所求概率

$$P\{110 \le X \le 130\} \approx \Phi\left(\frac{130 - 200 \times 0.6}{\sqrt{200 \times 0.6 \times 0.4}}\right) - \Phi\left(\frac{110 - 200 \times 0.6}{\sqrt{200 \times 0.6 \times 0.4}}\right) \dots 3 \text{ } \%$$

$$=\Phi(1.44) - \Phi(-1.44) = 2\Phi(1.44) - 1$$

$$= 2 \times 0.9251 - 1 = 0.8502.$$

(2) 设至少要供给这个车间 rKW 电才能以 99.9%的概率保证这个车间正常生 产,由题意有 $P{X \le r} \ge 0.999$,

即至少要供给这个车间142KW 电才能以99.9%的概率保证这个车间正常生

注:基本题,考察中心极限定理。

6. (10 分) 已知总体 X 的分布函数为 $F(x;\alpha,\beta) = \begin{cases} 1 - \left(\frac{\alpha}{x}\right)^{\beta}, & x > \alpha, \\ 0, & x < \alpha, \end{cases}$

其中 $\alpha > 0$, $\beta > 1$ 为参数, x_1 , x_2 , L, x_2 是来自X的样本.

(1) $\alpha = 1$ 时, 求 β 的矩估计量. (2) $\beta = 2$ 时, 求 α 的极大似然估计量.

解:由已知X的分布函数可得其概率密度为 $f(x;\alpha,\beta) = \begin{cases} \frac{\beta\alpha^p}{x^{\beta+1}}, & x > \alpha, \\ 0, & x \leq \alpha \end{cases}$

(1) 当
$$\alpha$$
=1时, X 的概率密度为 $f(x;\beta) = \begin{cases} \frac{\beta}{x^{\beta+1}}, & x>1\\ 0, & x \leq 1 \end{cases}$

$$\Rightarrow \frac{\beta}{\beta-1} = \overline{X}$$
,解得 $\beta = \frac{\overline{X}}{\overline{X}-1}$,

(2) 当 β =2 时, X 的概率密度为 $f(x;\alpha) = \begin{cases} \frac{2\alpha^2}{x^3}, & x > \alpha, \\ 0, & x \leq \alpha \end{cases}$

对于总体X的样本值 x_1 , x_2 , L, x_n , 其似然函数为

取对数得, $\ln L(\alpha) = n \ln 2 + 2n \ln \alpha - 3 \sum_{i=1}^{n} \ln x_{i}$,

列似然方程, 令 $\frac{d \ln L(\alpha)}{d\alpha} = \frac{2n}{\alpha} = 0$, 方程无解!

但因 $L(\alpha)$ 单调递增,当 $x_i > \alpha(i=1,2,K,n)$ 时, α 越大, $L(\alpha)$ 就越大, 又因为只有当 $\alpha < x$, 时, $L(\alpha) \neq 0$,因此当 $\alpha = \min\{x_i\}$ 时, $L(\alpha)$ 达到最大,故 α 的极大似然估计为 $\hat{\alpha}_{ME} = \min\{X_i\}.$3 分

注:基本题,考察矩估计与极大似然估计.

- 7. (10分) 机器自动包装食盐,设每袋盐的净重 $X \sim N(\mu, 2^2)$ (单位:克).机器正常 工作时平均重量应为 500 克, 某天开工后, 为了检查机器工作是否正常, 从已包 装好的食盐中随机抽取 6 袋, 测得其重量(克)为 497, 507, 510, 488, 491, 496. 己 知方差不变,问这天自动包装机工作是否正常? (取显著性水平 α =0.05)
- 当 H_0 真时,检验统计量为 $U = \frac{\overline{X} - \mu_0}{\sigma \sqrt{n}}$: N(0,1)

检验的拒绝域为|U|≥ $U_{\underline{\alpha}}$,

由题意, $\bar{x} = 498.1667$

注:基本题,考察假设检验的基本内容。