The group G is isomorphic to the group labelled by [24, 15] in the Small Groups library. Ordinary character table of $G\cong C6$ x C2 x C2:

	1a	3a	3b	2a	6a	6b	2b	6c	6d	2c	6e	6f	2d	6g	6h	2e	6i	6j	2f	6k	6l	2g	6m	6n
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1
<i>χ</i> ₃	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_4	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1
χ_5	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_6	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1
χ_7	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1
χ_8	1	1	1	-1	-1	-1 -(-)-2	-1	-1	-1	1	1	1	-1	-1	-1 -(-) 2	1	1	1	1	1	1	-1	-1	-1
χ_9	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$
χ_{10}	1	E(3)	$E(3)^2$	-1	-E(3)	$-E(3)^{2}$	1	E(3)	$E(3)^2$	-1	-E(3)	$-E(3)^{2}$	1	E(3)	$E(3)^2$	-1	-E(3)	$-E(3)^{2}$	1	E(3)	$E(3)^2$	-1	-E(3)	$-E(3)^{2}$
χ_{11}	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^{2}$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	-1	-E(3)	$-E(3)^{2}$	-1	-E(3)	$-E(3)^{2}$
χ_{12}	1	E(3)	$E(3)^2$	-1	-E(3)	$-E(3)^2$	-l	-E(3)	$-E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	-l	-E(3)	$-E(3)^{2}$	-l	-E(3)	$-E(3)^{2}$	1	E(3)	$E(3)^2$
χ_{13}	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	-l	-E(3)	$-E(3)^{2}$	-l	-E(3)	$-E(3)^{2}$	-l	-E(3)	$-E(3)^{2}$	-1	-E(3)	$-E(3)^{2}$
χ_{14}	1	E(3)	$E(3)^2$	-1	-E(3)	$-E(3)^2$	1	E(3)	$E(3)^2$	-1	-E(3)	$-E(3)^{2}$	-l	-E(3)	$-E(3)^{2}$	1	E(3)	$E(3)^2$	-1	-E(3)	$-E(3)^{2}$	1	E(3)	$E(3)^2$
χ_{15}	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	-l	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	-l	-E(3)	$-E(3)^2$	-l	-E(3)	$-E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$
χ_{16}	1	E(3)	$E(3)^2$	-l	-E(3)	$-E(3)^2$	-l	-E(3)	$-E(3)^2$	1	E(3)	$E(3)^2$	-l	-E(3)	$-E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	-l	-E(3)	$-E(3)^{2}$
χ_{17}	1	$E(3)^2$	E(3)	1	$E(3)^2 - E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)
χ_{18}	1	$E(3)^2$	E(3)	-l 1	\ /	-E(3)	1	$E(3)^2$	E(3)	-l	$-E(3)^2$	-E(3)	1	$E(3)^2$	E(3)	-1	$-E(3)^2$	-E(3)	1	$E(3)^2$	E(3)	-1 1	$-E(3)^2$ - $E(3)^2$	-E(3)
χ_{19}	1	$E(3)^2$	E(3)	1	$E(3)^2 - E(3)^2$	E(3)	-1 1	$-E(3)^2$	-E(3)	-1	$-E(3)^2$	-E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	-1 1	$-E(3)^2$	-E(3)	-l		-E(3)
χ_{20}	1	$E(3)^2$	E(3)	-l 1	\ /	-E(3)	-1	$-E(3)^2$	-E(3)	1	$E(3)^2$ $E(3)^2$	E(3)	1 1	$E(3)^2 - E(3)^2$	E(3)	-1 -1	$-E(3)^2$ - $E(3)^2$	-E(3)	-1 1	$-E(3)^2$ - $E(3)^2$	-E(3) - E(3)	1	$E(3)^2$	E(3)
χ_{21}	1	$E(3)^2$ $E(3)^2$	E(3) E(3)	1	$E(3)^2 - E(3)^2$	E(3) - E(3)	1	$E(3)^2$ $E(3)^2$	E(3) E(3)	1 1	$-E(3)^{2}$	E(3) $-E(3)$	-1 1	$-E(3)^{2}$ $-E(3)^{2}$	-E(3) - E(3)	-1 1	$E(3)^{2}$	-E(3) E(3)	-1 1	$-E(3)^{2}$ $-E(3)^{2}$	-E(3) - E(3)	-1 1	$-E(3)^2$ $E(3)^2$	-E(3)
χ_{22}	1	. ,	E(3)	-1 1	$E(3)^{2}$		1 1	$-E(3)^{2}$	-E(3)	-1 1	$-E(3)^{2}$ $-E(3)^{2}$	-E(3) -E(3)	-1 1	$-E(3)^{2}$ $-E(3)^{2}$	-E(3) - E(3)	1 1	$-E(3)^{2}$	-E(3)	-1 1	` '	E(3)	1	$E(3)^{2}$	E(3)
χ_{23}	1	$E(3)^2$ $E(3)^2$	E(3)	1	$-E(3)^{2}$	E(3)	-1 1	$-E(3)^{2}$ $-E(3)^{2}$	-E(3) - E(3)	-1 1	$E(3)^{2}$		-1 1	$-E(3)^{2}$ $-E(3)^{2}$	-E(3) - E(3)	-1 1	$E(3)^{2}$	E(3)	1	$E(3)^2$ $E(3)^2$	E(3) $E(3)$	1 1	$-E(3)^{2}$	E(3) $-E(3)$
χ_{24}	1	L(3)2	E(3)	-1	$-E(3)^2$	-E(3)	-1	$-E(3)^2$	-E(3)	1	$E(3)^2$	E(3)	-1	$-E(3)^2$	-E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	-1	$-E(3)^{2}$	-E(3)

Trivial source character table of $G \cong C6 \times C2 \times C2$ at p = 3:

Trivial source character table of $G = \cos x \cos x \cos x \cos x \cos x$.												
Normalisers N_i	N_1	N_2										
p-subgroups of G up to conjugacy in G	P_1	P_2										
Representatives $n_j \in N_i$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\boxed{1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 1 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{19}$	3 3 3 3 3 3 3	0 0 0 0 0 0 0 0										
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $												
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $												
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $												
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $												
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$												
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	3 3 -3 -3 -3 3 3											
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot $												
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$		1 -1 1 1 -1 -1 1 -1										
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$		1 1 -1 1 -1 1 -1 -1										
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$		1 -1 -1 1 1 -1 -1 1										
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$		1 1 1 -1 1 -1 -1 -1										
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$		1 -1 1 -1 -1 1 -1 1										
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	1 1 -1 -1 -1 1 1	1 1 -1 -1 -1 1 1										
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	1 -1 -1 1 -1 1 -1	1 -1 -1 -1 1 1 -1										

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(7, 8, 9)]) \cong C3$

 $N_1 = Group([(1,2),(3,4),(5,6),(7,8,9)]) \cong C6 \times C2 \times C2 \times C2$ $N_2 = Group([(1,2),(3,4),(5,6),(7,8,9)]) \cong C6 \times C2 \times C2$