must be gauge independent in lowest order, could have any sign at g=0. We have calculated Z_1 and Z_3 for the above Lagrangian, and we find that 12

$$\beta_V = -(g^3/16\pi^2)^{11}_{3}C_2(G) + O(g^5),$$
 (8)

where $C_2(G)$ is the quadratic Casimir operator of the adjoint representation of the group $G: \sum_{h \in C_{abc}} c_{abc}$ $\times c_{abc} = C_2(G) \delta_{ad}$ [e.g., $C_2(SU(N)) = N$]. The solution of (3) is then $\overline{g}^2(t) = g^2/(1 - 2\beta_{\nu}g^{-1}t)$, and \overline{g} -0 as $t \rightarrow \infty$ as long as the physical coupling constant g is in the domain of attraction of the origin.13