1. a) For
$$V_C = +5V$$
 require $I_E = (10-5)/10K = 0.5 \text{ mA}$
 $I_B = I_C/(1+\beta)$, so $I_B = 2.488 \text{ pA}$

But $I_B = (V_C - 0.7)/R_B$ assuming $V_{BC} \simeq 0.7V$
 $\Rightarrow R_B = (5-0.7)/2.488 \text{ xis}^6 = 1.73 \text{ M}\Omega$ [6]

b) Circuit is Mosfet current Mirror

Both (enh. mode) devices have $V_D > V_G \Rightarrow \underline{both}$ active

Consider LHS, where $V_{DS} = V_{GS} = V_D$: $T_D = K(V_3 - V_t)^2 = \underline{5 - V_D} \quad \overline{\omega} \quad K = 0.2 \text{ mp} / V^2, V_t = IV$

$$3(V_{D}-1)^{2} = 5-V_{D}$$

$$3V_{D}^{2} - 5V_{D} - 2 = 0$$

$$V_{D} = \frac{5 \pm \sqrt{25+24}}{6} = \frac{5 \pm 7}{6} = -\frac{1}{3} \text{ or } + 2V$$

Mosfers matched, so $I = I_D = 0.2 \text{ m} \times (2-1)^2 = 0.2 \text{ mA}$ [8]

Circuit comprises two emitter followers with NPN acting us follower when $V_{IN} \ge 0.7V$ and PNP acting when $V_{IN} \le -0.7V$. Problem is that for $|V_{IN}| \le 0.7V$ both transistors are OFF and $|V_{IN}| \le 0.7V$

Description and sketch assume load to ground. [8]

d) $I_{BZ} = I_{E1} = (I+\beta_1)I_{IN}$ if O_I active. $I_{OVT} = I_{C1} + I_{C2} = \beta_1 I_{IN} + \beta_2 I_{B2} = [\beta_1 + \beta_2 (I+\beta_1)]I_{IN}$ if both active $I_{OVT}/I_{IN} = \frac{\beta_1\beta_2 + \beta_1 + \beta_2}{\beta_1\beta_2}$ page 1 of 5

Saturation Voltage for Darlington is ~ 0.9V (since VEI = VBEZ ~ 0.7)

=> Max. Jour in 1ks loud is (12-0.9)/1K = 11.1 mA [6]

e) Depl. mode Mosfet has $Vqs = \phi =$) active if $VDS \ge |Vt|$ Assume active initially. Then $ID = KVt^2 = 0.4 \text{ mA}$ But this would imply $V = 0.4 \text{ m} \times 10 \text{ K} = 4V$ and hence VDS = 1V < |Vt| = > mode must be TRIODEFor triode mode:

 $T_{D} = K \left[2(-V4) V_{DS} - V_{DS}^{2} \right] = (5 - V_{DS}) / 10 K$ With $K = 0.1 \text{ mA/V}^{2}$, Vt = -2V this becomes $4 V_{DS} - V_{DS}^{2} = 5 - V_{DS}$ $V_{DS}^{2} - 5 V_{DS} + 5 = 0$ $V_{DS} = 5 \pm \sqrt{25 - 20} = 3.62 \text{ or } 1.38 V$

 $V = S - V_{DS} = \frac{3.62 V}{}$ [6]

f) For steady oscillation we require a solution to the characteristic equation with $S=j\omega$, Substituting this form of $S=ji\omega$, Substituting this

 $-j(1+K)\omega^{3}R^{3}C^{3} - 6\omega^{2}R^{2}C^{2} + j5\omega RC + 1 = 0$

Re {LHS} = 0 => $\omega = \frac{1}{56RC}$ (oscillation frequency)

 $Im\{LHS\}=0 \Rightarrow (1+16)\omega^2R^2C^2 - 5 = 0$ and with $\omega^2R^2C^2 = \frac{1}{6}$ this becomes 1+16-30=0

<u>k = 29</u> [6]

2. a) Bias cct ·
$$V_{RAS} = \frac{39}{219} \times 10 = 1.78 \text{ V}$$

 $\frac{+10 \text{ V}}{1}$
 $R_B = \frac{39}{180} = 32.05 \text{ k}$

180K

$$= \frac{R_B}{39K} = \frac{1.78 - 0.7}{1 + 32.05/201}$$

180K

$$= \frac{R_B}{18} = \frac{1.78 - 0.7}{1 + 32.05/201}$$

$$= 0.931 \text{ mA}$$

$$T_c = \alpha T_c = \frac{200}{201} \times 0.931 = \frac{0.926 \text{ mA}}{5.65 \text{ V}}$$
 $V_{OVT} = 10 - 4.7 \times 0.926 = 5.65 \text{ V}$

With
$$\beta = 150$$
, $I_{\epsilon} = (1.78 - 0.7)/[1 + 32.05/151] = 0.891$ mA
with $\beta = 250$, $I_{\epsilon} = (1.78 - 0.7)/[1 + 32.05/251] = 0.958$ mA
Cowespuding I_{ϵ} values are 0.885 mA and 0.954 mM
 β affects I_{ϵ} only through $R_{\epsilon}/(1+\beta)$ term which is small cf R_{ϵ} \Rightarrow p immunity to p variations [10]

$$2/\mathfrak{D} \Rightarrow Vov1/v_{in} = \frac{-13Rc}{r_{\Pi} + (1+\beta)Re} = \frac{-\alpha Rc}{r_{\Pi}/(1+\beta) + Re} = \frac{-\alpha Rc}{r_{e} + Re}$$

c) Gain with Re bypassed is obtained by putting Re = 0 in given equation. Av
$$\Rightarrow$$
 - \propto Re/re = - $\frac{pRc}{r_{H}}$ = $\frac{-200 \times 4.7}{5.4}$ = -174

So ratio = $\frac{174}{4.55}$ = $\frac{38}{4.55}$ [6]

3. a) Both MOSFETS carry the same drain current ID, and
$$V_{GI} = V_{DI} = V_{OVT}$$
 for lower device

$$= \sum_{i=1}^{N} \sum_{k=1}^{N} \left(V_{i} - V_{i} - V_{i} \right)^{2} = \left[K_{i} \left(V_{OVT} - V_{i} \right)^{2} \right]^{2}$$

West to take -ve sign for both to be above threshold

$$= \sum_{i=1}^{N} V_{OVT} = V_{i} + \sqrt{\frac{K_{i}}{K_{i}}} \left(V_{i} - V_{i} - V_{i} \right)^{2}$$

Puthing $V_{i} = V_{i} + \sqrt{\frac{K_{i}}{K_{i}}} + \sqrt{\frac{V_{i}}{V_{i}}} + \sqrt{\frac{V_{i}}{V$

$$T_{D} = K_{1} \left(Vort - VL_{1} \right) = 1.25 \text{ mA}$$

$$V_{1} \left[V_{0} \right] = 1.25 \text{ mA}$$

$$V_{2} \left[V_{0} \right] = 1.25 \text{ mA}$$

$$V_{2} \left[V_{0} \right] = 1.25 \text{ mA}$$

$$V_{2} \left[V_{0} \right] = 1.25 \text{ mA}$$

$$V_{3} \left[V_{0} \right] = 1.25 \text{ mA}$$

$$V_{4} \left[V_{4} \right] = 1.25 \text{ mA}$$

$$V_{4} \left[V_{4} \right] = 1.25 \text{ mA}$$

$$V_{5} \left[V_{5} \right] = 1.$$

c) for the same bias conditions in lower Mosfet, would require a passive resister of (10-3.5)/1.2m = 5.4 k/L as load. Since this is << row, gain would be smaller.

4 a) When $V_{INI} = V_{INZ} = 0$, common emitter voltage is $V_E \approx -0.7V$ Tail when this case is I = (10-0.7)/20K = 0.465 mAQs are matched and no differential I/p so $I_{CI} = I_{CZ} = \alpha \frac{T}{Z} = \frac{200}{201} \times \frac{0.465}{2} = 0.231 \text{ mA} = I_C$ Volt = $10 - 0.231 \times 20 = 5.37 \text{ V}$ When $V_{INI} = V_{INZ} = -2V$, $V_E \approx -2.7V$ In this case I = (10 - 2.7)/20K = 0.365 mA $I_{CI} = I_{CZ} = 0.182 \text{ mA}$ and $I_{OVI} = 6.37 \text{ V}$

b) SSEC =

Vin 1

Fill Vbe, Blander of Vort

Ver fr

Re

Re

Re

In case of purely deflocked 1/p, whose Vini = - Vinz = Vd/z, we know Ve = 0 from symmetry

=> $V_{De2} = -V_{d/2}$ and $V_{OV}t = -R_{c}g_{m}V_{be2} = R_{c}g_{m}V_{d}$ Differently gain is then $Ad = \frac{V_{OL}}{V_{d}} = \frac{R_{c}g_{m}}{2} = \frac{R_{c}T_{c}}{2V_{T}}$

if common mode voltage Ven =0, Ic = 0.231 mA

 \Rightarrow Ad = 9.2.4

Yes, Ad will vary with Vom because it is programmed to Ic and, as shown in part a), Ic varies with Vom.

[12]

c) Acm can be derived by splitting SSEC into two C-E. half-ccts

This give $Acm = -\frac{\alpha Re}{fe + 2Re} = \frac{-\alpha Re}{2Re}$

In this case we have $R_c = R_c = \frac{20}{201}$ so $A_{cm} \approx -0.5$ (exact formula gives -0.496)

Acm and be reduced by replacing Re with a current mirror; this would all the same bias anditring to be achieved while having a much higher small-signed resistance in the tail.

[8]