Recall:

- General linear 1st order ODE: y' + p(t)y = h(t)
 - To solve, turn the LHS into an total derivative:

$$y' + p(t)y \rightarrow \frac{d}{dt}(\mu \cdot y) = \mu y' + \mu' y$$

We will now explore the idea of total derivatives in more depth:

Consider a function of two variables $\Phi(x, y)$

$$\frac{d}{dx}\Phi(x,y) = \frac{\partial}{\partial x}\Phi(x,y) + \frac{\partial}{\partial y}\Phi(x,y)\frac{dy}{dx}$$
$$= \underbrace{\Phi_x}_{\text{partial}} + \underbrace{\Phi_y}_{\text{partial}} \frac{dy}{dx}$$

Solve
$$(y + 2x) + (x - 3y^2) \frac{dy}{dx} = 0$$

Idea: write as a total derivative $\frac{d}{dx}\Phi(x,y)=0 \Rightarrow \Phi(x,y)=\text{const.}$

LHS=
$$\frac{d}{dx}\Phi(x,y) = \Phi_x + \Phi_y \frac{dy}{dx} = 0$$

$$\Phi_x = y + 2x$$

$$\Phi_y = x - 3y^2$$

$$\Phi(x,y) = \int \Phi_x dx + h(y) = \int y + 2x dx + h(y)$$

$$= xy + x^2 + h(y)$$

$$\Phi_y = x - 3y^2 = x + h'(y) \implies h'(y) = -3y^2$$

$$\Rightarrow h(y) = -y^3 + C$$

$$\Rightarrow \Phi(x,y) = xy + x^2 - y^3 + C$$

Implicit solution: $xy + x^2 - y^3 = C$

Exact Equations

A DE $M(x,y) + N(x,y) \frac{dy}{dx} = 0$ is called exact if there exist a $\Phi(x,y)$ such that

$$M = \Phi_x, \qquad N = \Phi_y.$$

The function $\Phi(x, y)$ is called a potential.

For exact eqs., the implicit function y(x) given by

$$\Phi(x,y)=C$$

is the solution.

Example: Spring Potential

Consider a mass m at position x(t) moving with speed v(t) while attached to a spring with zero rest length and stiffness k:

$$\Phi(x, v) = \frac{1}{2}kx^2 + \frac{1}{2}mv^2$$

Assuming no forcing or friction, energy is conserved

$$\Phi(x, v) = E_0,$$
 $E_0 = \text{initial energy}$

producing motion tracing out an ellipse in (x, v)-space:

All these ellipses satisfy a DE:

$$kx + mv \frac{dv}{dx} = 0$$

Since $\Phi_{xy} = \Phi_{yx}$, a necessary and sufficient that

$$M_y = N_x$$

Theorem: If $M_v = N_x$, near any (x_0, y_0) there is locally a function $\Phi(x, y)$ such that $\Phi_x = M \& \Phi_v = N$.

N.B.: $\Phi(x,y)$ exists locally, maybe not globally (e.g., if M or N are piecewise functions).

$$M(x,y) + N(x,y) \frac{dy}{dx} = 0$$
, with $M_y = N_x$

1. Since $\Phi_x = M$, initially fix y

$$\Phi(x,y) = \int M(x,y)dx = Q(x,y) + \underbrace{h(y)}_{\text{const.}}$$

- 2. Then note that $N = \Phi_y = \frac{\partial}{\partial v}Q + h'$
 - $\bullet h' = N Q_v$ (sanity check: must be independent of x)
 - Integrate to find h(y)
- 3. Implicit solution $\Phi(x, y) = C$

$$\underline{\operatorname{ex}} \colon (2x + \sin(y)) + (1+x)\cos(y)\frac{dy}{dx} = 0$$

Decide if the DE is exact. If yes, find the solution.

$$M = 2x + \sin(y)$$
 $N = (1 + x)\cos(y)$
 $M_y = \cos(y)$ $N_x = \cos(y)$ exact $\sqrt{2}$
 $\Phi(x, y) = \int 2x + \sin(y) dx$
 $= x^2 + x\sin(y) + h(y)$
 $\Phi_y = N$
 $\cos(y) + h'(y) = (1 + x)\cos(y)$ $h'(y) = \cos(y)$
 $h(y) = \sin(y) + C$

Implicit solution:
$$x^2 + (x+1)\sin(y) = C$$

 $\Phi(x, y) = x^2 + (x + 1)\sin(y) + C$