STAT 6390: Analysis of Survival Data

Textbook coverage: Chapter 3

Steven Chiou

Department of Mathematical Sciences, University of Texas at Dallas

Parametric regression models

Previously, we learned to fit parametric regression model with the form

$$Y = \log(T) = \alpha + X'\beta + \epsilon, \tag{1}$$

with survreg.

The following table gives some of the common distributions in survreg.

dist <mark>in</mark> survreg	Distribution of T	Distribution of ϵ
exponential weibull loglogistic lognormal	exponential Weibull log-logistic log-normal	extreme values extreme values logistic normal

- Here, models are named for the distribution of T, not ϵ .
- Different distributions assume different shapes for the hazard function.
- See Chapter 2.2 of Kalbfleisch and Prentice (2011) for more comprehensive discussion.

The proportional hazards model

 In the previous note, we note that the hazard at time t for an individual can be written as

$$\lambda(t; \mathbf{x}) = \lambda \cdot r(\mathbf{X}'\beta)$$

under the exponential assumption.

To generalize this, we could consider modeling the hazard function

$$h(t;x) = h_0(t)r(X'\beta), \tag{2}$$

where $h_0(t)$ is an unspecified function.

- We assume X is time independent.
- In (2) is the product of two functions:
 - $h_0(t)$ characterizes how the hazard function changes as a function of time
 - r(X'β) characterizes how the hazard function changes as a function of subject covariates.
- $h_0(t)$ is referred to as the *baseline hazard function* when $r(X'\beta)$ is parameterized such that r(0) = 1.

Hazard ratio

• Under the model (2), the ratio of the hazard function for two subject with covariate x_1 and x_0 is

$$HR(t; x_1, x_0) = \frac{h(t; x_1)}{h(t; x_0)} = \frac{r(x_1'\beta)}{r(x_0'\beta)}.$$
 (3)

- This implies that the hazard ratio (HR) depends only on the function $r(X'\beta)$ and does not require the actual form of $h_0(t)$.
- This gives the *proportional hazard* assumption.

- Cox (1992) is the first to propose model (2) with $r(X'\beta) = e^{X'\beta}$.
- With $r(X'\beta) = e^{X'\beta}$, (2) reduces to

$$h(t; \mathbf{x}) = h_0(t)e^{\mathbf{X}'\beta},\tag{4}$$

and the hazard ratio $HR(t; x_1, x_0)$ becomes $e^{(x_1-x_0)'\beta}$.

• Equivalently, the log hazard ratio is $(x_1 - x_0)'\beta$.

- Suppose we have a "continuous" covariate x_k , which corresponds to β_k .
- Holding other covariate values at constant, then the log hazard ratio

$$\log \{ HR(t, x_k + 1, x_k) \} = \log \{ h(t, x_k + 1) \} - \log \{ h(t, x_k) \} = \beta_k.$$

- β_k is the increase in log-hazard with one unit increase in x_k at any time.
- e^{β_k} is the hazard ratio associated with one unit increase in x_k .
- If x_k is a "categorical" covariate and can only takes on two possible values, 0 and 1, then β_k is the difference in log-hazard between the two groups.

6/22

From the definition of hazard function, we have

$$P(t \le T < t + dt | T \ge t, x) \approx h(t|x)dt.$$

This implies

$$\frac{P(t \le T < t + dt | T \ge t, x_k + 1)}{P(t \le T < t + dt | T \ge t, x_k)} \approx e^{\beta_k}.$$

• Thus, e^{β_k} can be loosely interpreted in terms of conditional probabilities of dying.

- Since β characterizes the covariate effect, the main focus of the inference procedure is to estimate β and test $H_0: \beta = 0$.
- As in many other regression model, we will also diagnostics procedure.
- The baseline hazard function, $h_0(t)$, can be treated as a nuisance parameter.

Complete likelihood

Recall the likelihood we derived in note 3:

$$L = \prod_{i=1}^{n} \left\{ f_{T}(t_{i}) \right\}^{\Delta_{i}} \cdot \left\{ S_{T}(t_{i}) \right\}^{1-\Delta_{i}} = \prod_{i=1}^{n} \left\{ h_{T}(t_{i}) \right\}^{\Delta_{i}} \cdot S_{T}(t_{i}). \tag{5}$$

If T has hazard function (4), then

$$h_T(t) = h_0(t)e^{X'\beta}$$
 and $S_T(t) = \exp\left\{-H_0(t)e^{X'\beta}\right\}$,

where $H_0(t) = \int_0^t h_0(u) du$.

- The complete likelihood can be obtained by plugging the above into (5).
- The maximization of the likelihood would requires solving for the unknown parameter β and unspecified baseline hazard at t_i 's.

Consider the *conditional probability* the *i*th individual fails at t_i , given the risk set at t_i :

P(the *i*th individual dies|one death at
$$t_i$$
)
$$= \frac{P(\text{the } i\text{th individual dies |survival to } t_i)}{P(\text{one death at } t_i|\text{survival to } t_i)}$$

$$= \frac{h_i(t; x)}{\sum_{j:t_j \ge t_i}^n h_j(t; x)} = \frac{e^{X_i'\beta}}{\sum_{j:t_j \ge t_i}^n e^{X_j'\beta}},$$

where the last equality follows from the Cox model assumption.

The partial likelihood is formed by multiplying these conditional probabilities:

$$L_p(\beta) = \prod_{i=1}^n \left(\frac{e^{X_i'\beta}}{\sum_{i:t_i > t_i}^n e^{X_j'\beta}} \right)^{\Delta_i}$$
 (6)

10 / 22

STAT 6390

- The expression in (6) assumes no ties and excludes terms with $\Delta_i = 0$.
- A different approach to derive (6) is to consider the complete likelihood (5), and decompose it to

$$L = \prod_{i=1}^{n} \left\{ h_{T}(t_{i}) \right\}^{\Delta_{i}} \cdot S_{T}(t_{i})$$

$$= \prod_{i=1}^{n} \left(\frac{h_{i}(t_{i})}{\sum_{j:t_{j} \geq t_{i}}^{n} h_{j}(t_{i})} \right)^{\Delta_{i}} \cdot \left(\sum_{j:t_{j} \geq t_{i}}^{n} h_{j}(t_{i}) \right)^{\Delta_{i}} \cdot S_{T}(t_{i})$$

$$:= \prod_{i=1}^{n} L_{1} \cdot L_{2} \cdot L_{3},$$

where L_1 reduces to the partial likelihood in (6).

- Cox (1975) argues that L_1 carries "most" of the information about β .
- Cox (1975) also argues that L_2 and L_3 carry information about $\lambda_0(t)$.
- Cox (1975) suggested treating $L_p(\beta)$ as a regular likelihood function and making inference on β accordingly.
- The maximum partial likelihood estimator (MPLE) of β gives an unbiased estimator for β .
- The information matrix based on $L_p(\beta)$ can be used to derive standard error for the MPLE.

- Suppose (for now) that we only have one type of covariate, e.g, p = 1.
- For the ease of notation, we will right $j \in R(t_i)$ instead of $j : t_j \ge t_i$ to denote the index j is from the risk set.
- The log of the partial likelihood, $log\{L_p(\beta)\}$ has the form

$$\ell_{\rho}(\beta) = \sum_{i=1}^{n} \Delta_{i} \left[X_{i}\beta - \log \left\{ \sum_{j \in R(t_{i})} e^{X_{i}\beta} \right\} \right].$$

The first derivative gives the score function:

$$\frac{\mathrm{d}\ell_{p}}{\mathrm{d}\beta} = \sum_{i=1}^{n} \Delta_{i} \left[X_{i} - \left\{ \frac{\sum_{j \in R(t_{i})} X_{j} e^{X_{j}\beta}}{\sum_{j \in R(t_{i})} e^{X_{j}\beta}} \right\} \right]. \tag{7}$$

Notice that the fraction in the summation can be expressed as

$$\frac{\sum_{j \in R(t_i)} X_j e^{X_j \beta}}{\sum_{j \in R(t_i)} e^{X_j \beta}} = \sum_{j \in R(t_i)} \frac{X_j e^{X_j \beta}}{\sum_{k \in R(t_i)} e^{X_k \beta}} = \sum_{j \in R(t_i)} X_j \cdot \omega_{ij}(\beta),$$

where
$$\omega_{ij}(\beta) = \frac{e^{X_j \beta}}{\sum_{k \in R(t_i)} e^{X_k \beta}}$$
.

- $\omega_{ij}(\beta)$ can be seem as the conditional probability of death at t_i .
- This implies $\bar{X}_i = \sum_{j \in R(t_i)} X_j \cdot \omega_{ij}(\beta)$ is like a weighted average of X over all the individuals in the risk set at t_i .
- This further reduced (7) to

$$\sum_{i=1}^{n} \Delta_i (X_i - \bar{X}_i), \tag{8}$$

a familiar $\sum (O_i - E_i)$ form!

The second derivative is

$$\frac{\mathrm{d}^2 \ell_p}{\mathrm{d}\beta^2} = -\sum_{i=1}^n \Delta_i \sum_{j \in R(t_i)} w_{ij}(\beta) \cdot (X_j - \bar{X})^2.$$

• Then $\hat{\text{Var}}(\hat{\beta}) = I(\hat{\beta})^{-1}$, where $I(\beta) = -\frac{d^2 \ell_p}{d\beta^2}$.

Link to counting process

- To emphasize \bar{X}_i in (8) depends on β and time (e.g., t_i), we use the notation $\bar{X}_i(\beta, t)$.
- Equation (8) can be expressed in the form of a stochastic integral with respect to $dN_i(t)$:

$$U(\beta, t) = \sum_{i=1}^{n} \Delta_{i} \{ X_{i} - \bar{X}_{i}(\beta, t) \} = \sum_{i=1}^{n} \int_{0}^{t} \{ X_{i} - \bar{X}_{i}(\beta, u) \} dN_{i}(u)$$
 (9)

Link to counting process

 Recall that when we study counting process for survival data, we have defined the zero-mean martingale

$$M_i(t) = N_i(t) - \Lambda_i(t) = N_i(t) - \int_0^t \lambda_i(u) du,$$

where the intensity function has the form $\lambda_i(u) = h_i(u)Y_i(u)$ and $Y_i(u) = I(\tilde{T}_i \ge u)$.

We also stated that

$$dM_i(t) = dN_i(t) - d\Lambda_i(t)$$

has conditional expectation zero.

• Under the Cox model assumption, we have $h_i(u) = h_0(u)e^{X_i\beta}$ and $M_i(t)$ is

$$\mathit{M}_{i}(t) = \mathit{N}_{i}(t) - \int_{0}^{t} Y_{i}(u) h_{0}(u) e^{X_{i}\beta} \, \mathrm{d}u.$$

Link to counting process

Under the Cox assumption, we have

$$\sum_{i=1}^n \int_0^t \left\{ X_i - \bar{X}_i(\beta, u) \right\} d\Lambda(u) = 0.$$

Thus, we can rewrite (9) as

$$U(\beta,t)=\sum_{i=1}^n\int_0^t\left\{X_i-\bar{X}_i(\beta,u)\right\}\,\mathrm{d}M_i(u),$$

which is a sum of stochastic integral of predictable vector process.

- This also implies $U(\beta, t)$ is a zero-mean martingale.
- Asymptotic properties for $\hat{\beta}$ can then be derived using martingale theories.

Estimating $H_0(t)$

• The Nelson-Aalen estimator for $\Lambda_0(t)$ is then

$$\hat{H}_{0}(\beta, t) = \sum_{i:t_{i} < t} \frac{\mathrm{d}N(t_{i})}{\sum_{j=1}^{n} Y_{j}(t)e^{X_{j}\beta}}$$
(10)

- The Nelson-Aalen estimator can also be derived by fixing β in the complete likelihood (5).
- Under the Cox assumption, we have

$$L(h; \beta) = \prod_{i=1}^{n} \{h_{T}(t_{i})\}^{\Delta_{i}} \cdot S_{T}(t_{i})$$

$$= \prod_{i=1}^{n} \{h_{0}(t_{i})e^{X_{i}\beta}\}^{\Delta_{i}} \cdot \exp\{-H_{0}(t_{i})e^{X_{i}\beta}\}. \tag{11}$$

Estimating $H_0(t)$

- The likelihood (11) is maximized at $h_0(t)$ at event times, e.g., $h_0(t_{(1)}), \ldots, h_0(t_{(n)})$.
- Suppose there is a total of D events, and let $h_{0i} = h_0(t_{(i)})$, for i = 1, ..., D.
- Then $H_0(t) = \sum_{i:t_{(i)} \le t} h_0(t_{(i)}) = \sum_{i:t_{(i)} \le t} h_{0i}$, and

$$L(h;\beta) = \left[\prod_{i=1}^{D} h_{0i} e^{X_i \beta}\right] \cdot \exp\left\{\sum_{i=1}^{n} e^{X_i \beta} \sum_{j: t_{(j)} \le t_i} h_{0j}\right\}.$$

The likelihood (11) is proportional to

$$L(h; \beta) \propto \prod_{i=1}^{D} h_{0i} \cdot \exp \left\{ -h_{0i} \sum_{j \in R(t_{(i)})} e^{X_{j}\beta} \right\}$$

20 / 22

Estimating $H_0(t)$

Maximizing the log of L(h; β) yields

$$\hat{h}_{0i} = rac{1}{\sum_{j \in R(t_{(i)})} e^{X_j eta}}, ext{ and }$$
 $\hat{H}(t) = \sum_{i; t_{(i)} \leq t} rac{1}{\sum_{j \in R(t_{(i)})} e^{X_j eta}},$

which is equivalent to (10) when there is no tie.

• Of more interesting is that when plugging $\hat{H}(t)$ into (11) gives the partial likelihood of (6).

Reference

Cox, D. R. (1975). Partial likelihood. Biometrika 62, 269-276.

Cox, D. R. (1992). Regression models and life-tables. In *Breakthroughs in statistics*, pages 527–541. Springer. Kalbfleisch, J. D. and Prentice, R. L. (2011). *The statistical analysis of failure time data*, volume 360. John Wiley & Sons.

