Power Supplies 101 AC-DC Converters

3-Feb-2018

Rules of thumb, assumptions and mixed-quality analogies to come!

Tonight's Agenda <u>AC-DC Supplies</u>

Tonight's theory will help you understand:

- Classical AC-DC linear supplies
 - How they work
 - Component selection, supply design
- Switch mode AC-DC linear supplies
 - How they work at a very high level
- Switching vs linear trade-offs

Tonight's lab:

- Power up a switch mode AC-DC supply
- Build a linear AC-DC power supply
- Use an oscilloscope to measure AC and DC waveforms
- Measure load regulation

Next week:

- How regulation loops work
- More detail on how switch mode supplies work
- How 3-terminal linear regulators work and wire some up
- Use some DC-DC switching supplies

Voltage, Current and Power Supplies

A power supply provides a constant voltage to its load at all times

- Voltage rating of supply must be equal to what the load requires
- If the load needs 5V then the supply must be rated at 5V

The load draws however much current it needs, this varies with time

- An audio amp draws more current when a loud signal is being played than when a quiet signal is being played
- A blinking LED circuit draws more current when the LED is illuminated
- Supply current rating must be larger than or equal to what the load needs. A 1 million amp power supply will work with a load that only needs 1 amp

Classic AC to DC Linear Supply

- An unregulated linear AC-DC supply is fairly efficient, 75%
- An unregulated linear AC-DC supply might be a fast off-the-shelf option
- A regulated linear AC-DC supply is typically 40-60% efficient

How does an unregulated linear work?

Unregulated vs regulated behavior

Bypass/Decoupling Capacitors

See simulations

Component Selection

Transformer:

- Primary voltage = Wall voltage
- Secondary voltage = $V_{DC} \times 1.1 + 5.2$
- Secondary current = $I_{DC} \times 1.8$
- Volt Amp rating = $V_{DC} \times I_{DC}$

Rectifier diodes:

- Peak Inverse Voltage > 2.5x transformer's rated secondary
- Maximum average current rating > 2x the DC current required

Filter capacitors

- $C \sim I_{DC}/(60xV_{RIPPLE})$
- or C \sim I_{DC} / 100 for 1.6V ripple

120VAC to 5V 1A DC supply:

Transformer:

- →• 120V
- 5V x 1.1 + 5.2 = 10.9V -> 12V
- → 1A x 1.8 = 1.8A
- 10.9V x 1.8A = 19.6VA

Rectifier diodes:

- → 12V x 2.5 = 30V
- → 1A x 2 = 2A

Filter capacitors:

• $1A / 100 = 0.01F \text{ or } 10,000 \mu F$

Workhorse Components

Transformers:

- Scavenge from old electronics, wall warts, ebay
- Tend to be expensive to buy new.

Diodes:

1N400x family

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)										
PARAMETER		SYMBOL	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	UNIT
Maximum repetitive peak reverse voltage		V _{RRM}	50	100	200	400	600	800	1000	٧
Maximum RMS voltage		V _{RMS}	35	70	140	280	420	560	700	V
Maximum DC blocking voltage		V _{DC}	50	100	200	400	600	800	1000	V
Maximum average forward rectified current 0.375" (9.5 mm) lead length at T _A = 75 °C		I _{F(AV)}	1.0						Α	
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load		I _{FSM}	30						Α	
Non-repetitive peak forward surge current square waveform T _A = 25 °C (fig. 3)	t _p = 1 ms	I _{FSM}	45							A
	t _p = 2 ms		35							
	t _p = 5 ms		30							

Capacitors

- Will be electrolytic type to achieve required large value of capacitance
- Can scavenge but be wary of older parts, electrolytics degrade over time
- A small cap, 0.1uF or so is sometimes used to filter high frequency noise

AC-DC Switch Mode Supply

A little more detailed view

The real deal

AC-DC type, 2.5A class linear vs switching supplies

	Why Build	Why Use Off the Shelf
Switching (Regulated)	 "I want to learn about AC-DC switching supplies" A big project in its own right >\$20 	"I just want power"SmallEasyEfficient\$10
Linear Regulated	 "I want to learn about AC-DC linear supplies" "I have the parts laying around" Free to \$20 	"I already have one""Switchers are noisy"Hard to findFree - \$50?
Linear Unregulated	 "I want to learn about AC-DC supplies" "I have the parts laying around" Don't care that output voltage varies a lot (e.g. 11-17V) Free to \$20 	 "I already have one" "Switchers are noisy" Some wall warts Free - \$10