Machine Learning

Aula 04

Evandro J.R. Silva

Uninassau Teresina

Sumário

- 1 Introdução
- Busca Informada e Local Busca Gulosa A*
- 3 Inteligência de Enxame PSO ACO
- 4 Computação Evolucionária Algoritmo Genético
- 5 FIM

- **Computação Natural**: é a terminologia criada para englobar três classes de métodos (artigo da Wikipedia com várias informações):
 - Os que se inspiram na natureza para desenvolver novas técnicas de resolução de problemas;

- **Computação Natural**: é a terminologia criada para englobar três classes de métodos (artigo da Wikipedia com várias informações):
 - Os que se inspiram na natureza para desenvolver novas técnicas de resolução de problemas;
 - 2 Os que sintetizam fenômenos naturais;

- **Computação Natural**: é a terminologia criada para englobar três classes de métodos (artigo da Wikipedia com várias informações):
 - Os que se inspiram na natureza para desenvolver novas técnicas de resolução de problemas;
 - Os que sintetizam fenômenos naturais;
 - 3 Os que utilizam materiais naturais.

- **Computação Natural**: é a terminologia criada para englobar três classes de métodos (artigo da Wikipedia com várias informações):
 - Os que se inspiram na natureza para desenvolver novas técnicas de resolução de problemas;
 - Os que sintetizam fenômenos naturais;
 - 3 Os que utilizam materiais naturais.
 - O foco da nossa aula!

- **Computação Natural**: é a terminologia criada para englobar três classes de métodos (artigo da Wikipedia com várias informações):
 - Os que se inspiram na natureza para desenvolver novas técnicas de resolução de problemas;
 - Os que sintetizam fenômenos naturais;
 - 3 Os que utilizam materiais naturais.
 - Exemplos e artigos de variadas formas de computação bioinspirada para vocês darem uma olhada — não dá para falar um pouco sobre cada um porque é muita coisa!

- Algoritmos que vamos ver hoje
 - Busca Informada (com heurística) e Busca Local
 - Busca Gulosa (greedy search)
 - A*
 - Inteligência de Enxame (Swarm Intelligence)
 - PSO
 - ACO
 - Computação Evolucionária
 - Algoritmo Genético

2 Busca Informada e Local " new, A>0 -> / Lim (A

Busca Gulosa 7/47.0052n/ /2-11-15 2:5

A*

Busca Informada e Local

- O espaço de busca pode ser visto como uma árvore ou um grafo.
- A partir de uma função f(n), expandimos nossa busca apenas para o nó mais promissor, a partir do valor retornado por f(n).

Busca Informada e Local

- Problema: encontrar o menor caminho entre Teresina e Luís Correia.
- Temos a seguinte informação: distância em linha reta de cada cidade para Luís Correia:

Cidade —	Distância	Cidade	Distância
Teresina	277	Esperantina	129
Altos - R min	255	Batalha	134
União	231	Piripiri	155
José de Freitas	231	Piracuruca	117
Barras - 100	167	Buriti dos Lopes	40
Cabeceiras do Piauí	191	Parnaíba	10
Campo Maior	223	Luís Correia	0

Busca Informada e Local

O mapa

- Este algoritmo é caracterizado por f(n) = h(n), onde h(n) é o **custo estimado** do melhor caminho de n até a meta.
- Seu comportamento é o de uma busca em profundidade, ou seja, da raiz até as folhas.
- É um algoritmo não ótimo e incompleto

- Este algoritmo é caracterizado por f(n) = h(n), onde h(n) é o **custo estimado** do melhor caminho de n até a meta.
- Seu comportamento é o de uma busca em profundidade, ou seja, da raiz até as folhas.
- É um algoritmo não ótimo e incompleto
 - Não garante encontrar a melhor solução entre todas.

- Este algoritmo é caracterizado por f(n) = h(n), onde h(n) é o **custo estimado** do melhor caminho de n até a meta.
- Seu comportamento é o de uma busca em profundidade, ou seja, da raiz até as folhas.
- É um algoritmo não ótimo e incompleto
 - Não garante encontrar uma solução (pode ficar preso em algum ciclo).

L_{Busca} Gulosa

L_{Busca} Gulosa

- Caminho:
 - Teresina → União → Barras → Batalha → Piracuruca → Buriti dos Lopes → Parnaíba → Luís Correia.
 - Comprimento: 58 + 121 + 36 + 47 + 92 + 35 + 11 = 400 km
 - O mais curto? Talvez...

5 C N

- Combina duas funções: g(n), o custo para chegar até o nó e h(n), o custo estimado do melhor caminho de n até a meta. Ou seja, f(n) = g(n) + h(n)
- É um algoritmo ótimo e completo

- Combina duas funções: g(n), o custo para chegar até o nó e h(n), o custo estimado do melhor caminho de n até a meta. Ou seja, f(n) = g(n) + h(n)
- É um algoritmo ótimo e completo
 - Garante encontrar a melhor solução possível, dependendo de como seja h(n).

- Combina duas funções: g(n), o custo para chegar até o nó e h(n), o custo estimado do melhor caminho de n até a meta. Ou seja, f(n) = g(n) + h(n)
- É um algoritmo ótimo e completo
 - Garante encontrar uma solução.

— д^

∟_{A*}

Α

L_{A*}

Α;

- Vamos parar por aqui. Temos de lembrar que, dependendo de alguns fatores, o A* garante que a melhor solução será encontrada.
- Vejamos dois vídeos: Vídeo 1 e Vídeo 2.

Inteligência de Enxame

- Esses algoritmos realizam a busca da melhor solução com a utilização de uma população de indivíduos (ou enxame). Os indivíduos interagem entre si, e influenciam uns aos outros.
- São inspirados em comportamentos encontrados na natureza.
- Veremos os PSO (Particle Swarm Optimization, ou Otimização por Enxame de Partículas) e o ACO (Ant Colony Optimization, ou Otimização por Colônia de Formigas).

PSO

- Surgiu como uma simulação de comportamento social e, em sua forma simplificada, simula uma revoada ou um cardume.
- Ideia geral
 - Cada partícula busca o ótimo global, ou seja, a melhor solução para um determinado problema.
 - Cada partícula está em movimento e possui uma velocidade.
 - Cada partícula armazena sua melhor posição encontrada (personal best).
 - As partículas informam seus personal best a todas as outras, possibilitando que todas encontrem o global best, ou seja, a melhor solução encontrada até então.

PSO

 A cada nova iteração, as partículas ajustam suas velocidade e direção de acordo com os personal best e global best.

L_{PSO}

PSO

L_{PSO}

PSO

- Valores mais usados nos parâmetros
 - w = 1
 - $c_1 = c_2 = 2$
 - $r_1 = r_2 = \text{número aleatório} [0,1]$
 - Quantidade de partículas: 10 a 50
- Esses valores foram definidos de forma empírica, e nada impede de você tentar outros valores.
- Vejamos dois vídeos: vídeo 1 e vídeo 2

∟_{ACO}

ACO

- Sua principal aplicação é no encontro de melhores caminhos.
- Ideia geral
 - Cada formiga se move pelo espaço aleatoriamente, construindo uma solução.
 - Enquanto se movem, cada formiga deixa depositado no seu estado anterior um feromônio.
 - A quantidade de feromônio depositado em um dado estado, influencia a decisão de outras formigas que passarem nesse estado.
 - A quantidade de feromônio em um estado é constantemente atualizado.

ACO

L_{ACO}

- Um pouco mais de formalidade
 - Cada formiga k se move do estado x para o y com probabilidade:

$$p_{xy}^{k} = \frac{(\tau_{xy}^{\alpha})(\eta_{xy}^{\beta})}{\sum_{z \in permitido_{y}} (\tau_{xy}^{\alpha})(\eta_{xy}^{\beta})}$$

- au_{xy} é a quantidade de feromônio depositado na transição de x para y, e α é um parâmetro para controlar a influência de au_{xy} .
- η_{xy} é a desejabilidade da transição xy (um conhecimento a prior, normalmente $1/d_{xy}$, em que d é a distância) e β é um parâmetro para controlar a influência de η_{xy} .
- Atualização do feromônio:

$$\Delta \tau_{xy} = (1 - \rho)\tau_{xy} + \sum_{k}^{m} \Delta \tau_{xy}^{k}$$

- au_{xy} é a quantidade de feromônio depositado para uma transição de estado xy.
- ρ é o coeficiente de evaporação do feromônio.
- m é a quantidade de formigas.
- $\Delta \tau_{xy}^k$ é a quantidade de feromônio depositado pela k ésima formiga.

ACO

• Vejamos três vídeos: <u>vídeo 1</u>, <u>vídeo 2</u> e <u>vídeo 3</u>.

Computação Evolucionária

Computação Evolucionária

- A computação evolucionária abrange todos os algoritmos inteligentes que simulam algum aspecto evolucionário biológico.
- O mais conhecido deles é o Algoritmo Genético, que simula os processos de seleção natural, mutação e recombinação genética.
 - É uma boa heurística para problemas combinatoriais.
 - Normalmente enfatiza a combinação entre boas soluções.
 - Possui muitas variações!

- Termos técnicos
 - Cromossomo: a forma como uma solução é mapeada.

- Termos técnicos
 - Fitness (ou aptidão): o quão boa é uma solução para o problema.

Termos técnicos

• Função objetivo: o objetivo que se quer alcançar, por exemplo, minimização do valor de uma função. (x) f(x)

Termos técnicos

• Seleção: escolha de duas ou mais soluções para serem combinadas.

Termos técnicos

Pais: soluções escolhidas para gerarem uma nova solução.

Algoritmo Genético

Termos técnicos

 Prole: solução ou soluções geradas a partir da combinação de soluções previamente existentes.

Termos técnicos

 Crossover (ou recombinação): operação de combinação de duas ou mais soluções para gerar prole(s). Existem vários operadores de recombinação.

Termos técnicos

Mutação: operação sobre a prole que modifica uma ou mais características da solução.

Termos técnicos

 Substituição: operação para substituir as soluções existentes pelas novas soluções.

- Em sua versão mais básica apresenta as seguintes características
 - · Representação binária.
 - Seleção parental proporcional ao fitness.
 - Baixa probabilidade de mutação.
 - O esquema de substituição é geracional.

- Ciclo básico
 - Crie N soluções aleatórias;
 - 2 Selecione, com reposição, dois pais, de acordo com o fitness.

 - Q Para cada prole execute mutação, com probabilidade p_m .
 - 5 Quando houver N proles, substitua todas as soluções atuais pela prole.

Exemplo

Maior valor para a função $f(x) = x^2 + 4x$ no limite [0, 15].

Como existem 16 valores na faixa dos valores possíveis, podemos mapear todos os valores com 4 bits. Ou seja, **cromossomos** com **4 genes**.

Começando com N = 4

$$(1) = 0011 : (1) = 03 : fitness = 21 : 8\%$$

$$(2) = 0101 : (2) = 05 : fitness = 45 : 17\%$$

$$(3) = 1100 : (3) = 12 : fitness = 192 : 73\%$$

$$(4) = 0001 : (4) = 01 : fitness = 5 : 2\%$$

Soma dos fitness = 263

Exemplo

Maior valor para a função $f(x) = x^2 + 4x$ no limite [0, 15].

Pais escolhidos: [(1) (3)] e [(3) (2)]

Probabilidade de recombinação: 100%

Probabilidade de mutação: 1%

Ponto de corte: 2

Recombinação:

(1) **00**11 00**11**

(3) **11**00 11**00**

(3) 11**00 11**00

(2) 01**01 01**01

Exemplo

Maior valor para a função $f(x) = x^2 + 4x$ no limite [0, 15].

Pais escolhidos: [(1) (3)] e [(3) (2)]

Probabilidade de recombinação: 100%

Probabilidade de mutação: 1%

Ponto de corte: 2

Prole:

1101

1111

0100

Exemplo

Maior valor para a função $f(x) = x^2 + 4x$ no limite [0, 15].

Pais escolhidos: [(1) (3)] e [(3) (2)]

Probabilidade de recombinação: 100%

Probabilidade de mutação: 1%

Ponto de corte: 2

Mutação:

00000 110

1111 0100

Exemplo

Maior valor para a função $f(x) = x^2 + 4x$ no limite [0, 15].

Pais escolhidos: [(1) (3)] e [(3) (2)]

Probabilidade de recombinação: 100%

Probabilidade de mutação: 1%

Ponto de corte: 2

Nova População:

000 110⁻

1101 0100

Exemplo

Maior valor para a função $f(x) = x^2 + 4x$ no limite [0, 15].

Como existem 16 valores na faixa dos valores possíveis, podemos mapear todos os valores com 4 bits.

Começando com N = 4

$$(1) = 1000 \therefore (1) = 08 \therefore \text{ fitness} = 96 \therefore 17\%$$

$$(3) = 1101 : (3) = 13 : fitness = 221 : 39\%$$

$$(4) = 0100 : (4) = 04 : fitness = 32 : 5\%$$

Soma dos fitness = 570

- Agora os vídeos!
 - vídeo 1
 - vídeo 2
 - vídeo 3
 - $video 4 \rightarrow Code Bullet Projects$

