(19) 日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許番号

特許第3014520号 (P3014520)

(45)発行日 平成12年2月28日(2000.2.28)

(24)登録日 平成11年12月17日(1999.12.17)

	FΙ	識別記号	(51) Int.Cl.'
101E	B41J 3/10		B 4 1 J 2/51
Α	19/18		19/18
101G	3/10		

請求項の数7(全 13 頁)

(21)出願番号	特願平3-336110	(73)特許権者 000001007
		キヤノン株式会社
(22)出魔日	平成3年11月26日(1991.11.26)	東京都大田区下丸子 3 丁目30番 2 号
(=-,)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明者 打方 佳郎
(65)公開番号	特開平6-340121	東京都大田区下丸子3丁目30番2号 キ

(43)公開日	平成 6 年12月13日 (1994. 12. 13)	ヤノン株式会社内
審查請求日	平成9年12月22日(1997.12.22)	(74)代理人 100087583
		弁理士 田中 増顕 (外1名)
		審査官 名取 乾治
		(56)参考文献 特開 平2-233275 (JP. A)
		特開 平3-43264 (JP, A)
		特期 昭61-157151 (JP, A)
	•	(58)調査した分野(Int.Cl. ⁷ , DB名)
		B41J 2/51
		B41J 19/18

(54) 【発明の名称】 記録装置

1

(57)【特許請求の範囲】

【請求項1】 複数の記録素子を有する記録ヘッドを走査して各行を片方向または双方向で記録が可能な記録装置において

各行の記録データに基づいて、前記記録へッドの複数の 記録素子の内各行の記録に使用される記録素子範囲を検 出する手段と、

この検出手段によって検出される前行の記録に使用される記録素子範囲の現行側の端部位置及び現行の記録に使用される記録素子範囲の前行側の端部位置と、前行から 10 現行への行送り量とに基づいて、前行と現行の記録間における空白ドットラインの量を演算する演算手段と、

演算手段により演算された空白ドットラインが所定量以 上存在した場合に双方向で記録を行い、そうでない場合 に片方向で記録を行うように切り替える切替手段と、 2

を有することを特徴とする記録装置。

【請求項2】 複数の記録素子を有する記録ヘッドを走査して各行を片方向または双方向で記録が可能な記録装置において、

記録データ内のイメージデータのドットの高さを示すコマンドに基づいて、各行の記録に使用される前記記録へットの基準端部から記録素子範囲を検出する検出手段と

この検出手段によって検出される前行の記録に使用される前記基準端部からの記録素子範囲と、前行から現行への行送り量とに基づいて、前行と現行の記録間における空白ドットラインの量を演算する演算手段と、

演算手段により演算された空白ドットラインが所定量以 上存在した場合に双方向で記録を行い、そうでない場合 に片方向で記録を行うように切り替える切替手段と、 20

3

を有することを特徴とする記録装置。

【請求項3】 複数の記録素子を有する記録へッドを走査して各行を片方向または双方向で記録が可能な記録装置において、

記録データ内のテキストデータのドットの高さを示すコマンドに基づいて、各行の記録に使用される前記記録へッドの基準端部から記録素子範囲を検出する検出手段と、

この検出手段によって検出される前行の記録に使用される前記基準端部からの記録素子範囲と、前行から現行へ 10 の行送り量とに基づいて、前行と現行の記録間における空白ドットラインの量を演算する演算手段と、

演算手段により演算された空白ドットラインが所定量以 上存在した場合に双方向で記録を行い、そうでない場合 に片方向で記録を行うように切り替える切替手段と、

を有することを特徴とする記録装置

【請求項4】 前記行送り量を前記記録ヘッドの記録素子間ピッチに換算して記憶する換算記憶手段をさらに有することを特徴とする請求項1乃至3のいずれかに記載の記録装置。

【請求項5】 前記記録装置は、前記記録ヘッドを常に 基準端部の記録素子から使用するものであって、

前記検出手段は、記録に使用される前記記録ヘッドの基準端部からの記録素子範囲を検出し、

前記演算手段は、前記検出手段によって検出された前記 基準端部からの記録素子範囲と前記行送り量とに基づい て、前記空白ドットラインを演算することを特徴とする 請求項1記載の記録装置。

【請求項6】 前記記録素子は、インクを吐出する吐出 口を含むことを特徴とする請求項1乃至5のいずれかに 30 記載の記録装置。

【請求項7】 前記切替手段により前記へッドの走査が 双方向記録に切り替えられるとき、前記記録へッドを支 持するキャリッジの現在停止位置が次記録領域の左端位 置又は右端位置のいずれに近いかを判断し、近いほうの 端位置から遠い方の端位置の方向に記録走査を行うこと を特徴とする請求項1乃至6のいずれかに記載の記録装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は記録へッドを記録シートの走査方向と直角方向に走査して記録するシリアルタイプの記録装置に関し、特に、そのような記録装置における片方向記録と双方向記録との切り換えに関する。

[0002]

【従来の技術】今日、プリンタやワードプロセッサ等の 情報記録機器が多く開発されている。これらの機器に搭 載される記録装置のうちシリアルタイプのプリンタはそ の構成の簡単さによる低価格化、小型化等の長所から多 く採用されている。さらには低価格、小型の記録装置に 50

おいても高解像度化、高速化の要望が大きく、特に高速 化のための双方向記録は重要なポイントとなってきてい ス

[0003]

【発明が解決しようとする課題】しかし、双方向記録の場合は記録状態が走査方向によって異なること、即ち桁方向の位置ズレが生じ、スケーラブルフォント(拡大文字)やイメージの様な記録データが多行にわたる場合には記録ヘッドの走査ムラが発生するため、通常片方向記録を行うようにしている。

【0004】従来においては、ホストからプリンタにあるいは記録データを生成する処理部からプリンタの制御部へ双方向および片方向を指示する信号あるいはコマンド等を送ってこれによってプリンタあるいはプリンタの制御部が双方向および片方向の切り替えを行っていた。【0005】しかしながら、ホストあるいは記録データ生成部が双方向および片方向の切り替えの判断を行う方法ではホストあるいは記録データ生成部の処理が増大し他の処理の速度低下や停止という状態が発生してしまいコンピュータやワープロ等としての本体の機能低下となってしまう。

【0006】本発明は、上述の問題点に鑑みなされたものであって、その目的は、ホストあるいは記録データ生成部の負荷を増やすことなく双方向と片方向の記録の切り替えを行い、高速の記録を達成することにある。 【0007】

【課題を解決するための手段】上記問題点を解決するため、本発明の記録装置は、ブリンタあるいはブリンタ制御部において各1ページに対応する記録データを解析し、前行と現行のあるいは現行と次行の記録間における空白ドットラインの有無を判断し、空白ドットラインが所定量以上存在した場合には双方向記録を行い、他の場

合には片方向記録を行うことを特徴とする。

[0008]

【作用】本発明によれば、ホストあるいは記録データ生成部に余分な負荷を負わせることなく記録装置の双方向および片方向記録の切り替えが行え、高速記録が達成できる。

[0009]

10 【実施例】以下、図面を参照して本発明の実施例を具体的に説明する。図1は記録装置の構成を示すプロック図である。図において、符号501は、主制御をなすコントローラを示し、このコントローラ501は、以下、符号502~506で示す素子を含むものである。502は図5~図7に示すような手順を実行する例えばマイクロコンピュータ形態のCPUを示し、503はテキストデータや画像データを展開したりする領域や作業用の領域などを設けたRAMを示し、504は前記手順に対応したプログラムやその他フォントデータなどの固定データを格納したROMを示し、505はCPU502の実

行サイクルを作り出したりプリンタ部2による記録動作の際必要なタイミングを作り出したりするタイマを示し、506はCPU502からの信号と周辺装置を結ぶインターフェース部を示す。

【0010】また、符号507は、プリンタ部2のコン トローラを示し、このコントローラ507は、以下、符 号508(508a~508c)~511、その他の符 号で示す素子を含むものである。508aは記録ヘッド 10への記録データを蓄積するラインバッファを示 し、、508bは1行(ライン) どとの記録データ中の 10 記録ヘッド10のドットに対して記録に有効なドット (以下黒ドットと呼ぶ)を検出する黒ドット検出部を示 し、この黒ドット検出部508bは記録ヘッドの各ドッ トに対して一度でも記録が行われるドットを黒ドットと して検出し、1行(ライン)の記録ごとにリセットされ るよう構成されている。508cは記録ヘッド10に記 録制御信号や電力などの送出するヘッドドライバを示 し、509a、509b、509cはそれぞれキャリッ シモータ31、搬送モータ35、回復系モータ61を駆 動するのに必要な信号や電力などを送出するモータドラ 20 イバを示し、510はキャリッジ11(図3参照)の位 置を検出し、例えばホームボジションにキャリッジ11 があるかどうかまたは現在のキャリッジの位置を判断す るためのキャリッジセンサを示し、511は紙等の記録 媒体(以下記録用紙とも呼ぶ)が未挿入であったりペー ジ終端まで記録が終了してしまったときに記録用紙以外 のところに記録を行わせないために記録用紙の有無を検 出するペーパーセンサを示す。

【0011】さらに、符号1はキーボード部を示し、2はLCDやCRT等の表示部を示し、7は例えばFDD、HDD、RAMカードなどの外部記憶装置を示し、512は例えば他の情報処理装置と通信を行ったり、内部のバスに直接接続して周辺機器を制御したりするための外部インターフェースを示す。

【0012】なお、図1のブロック図に含まれていないが、他に上記の電気回路に電力を供給するための電源部があり、これには例えば充電式のバッテリーや、使い捨ての乾電池、あるいは装置本体を固定して使用する場合のAC電源用変換器などがある。

【0013】図2は、本発明を適用できる文書作成装置 40(以下ワードプロセッサという)の外観構成例を示す。 ここで、符号1は入力装置であるところのキーボード部を示す。2は入力した文書等を表示する表示器部分を示し、この表示器部分2は回動可能に保持され、非使用時はキーボード部1に重なるように折り畳めるようになっている。3は該記録ヘッドの動作状態を確認するための視覚認識用開口に設けた開閉可能な保護カバーを示し、この保護カバー3は透明または半透明である。4は拍車を保持するための拍車カバーを示す。5は記録用紙の給紙排紙時に紙の支えとするペーパーサポーターを示し、50 6は手動にて記録用紙の給紙排紙を行うためのノブを示す

【0014】図3は、本発明に係るインクジェット記録装置の構成例を示す。とこで、符号10は記録へッドを示し、11は前記記録へッド10を搭載して図中S方向に走査するためのキャリッジを示す。とこで後述の説明のため図示のS1方向を右方向とし、S2方向を左方向とする。21は記録ヘッド10と本体制御部を接続するためのフレキシブルケーブルを示す。23はキャリッジ11をS方向に案内するためのガイド軸を示し、このガイド軸23はキャリッジ11の軸受25に挿通されている

【0015】符号27はキャリッジ11が固定されS方向に移動させるための動力を伝達するタイミングベルトを示し、このタイミングベルト27は装置両側部に配置されたプーリ29A、29Bに張架されている。一方のプーリ29Bにはギア等の伝導機構を介してキャリッジモータ31より駆動力が伝達される。33は記録用紙の被記録面を規制するとともに記録等に際して搬送するためのプラテンローラを示し、このプラテンローラ33は搬送モータ35によって駆動される。

【0016】符号37は記録媒体をペーパーサポータ5(図2参照)側より記録位置に導くためのペーパーパンを示し、39は記録媒体の給送経路途中に配置されて記録媒体をプラテンローラ33に向けて押圧し搬送するためのフィードローラを示す。

【0017】符号41は記録媒体搬送方向から見て記録位置より下流方向に配置され記録媒体を不図示の排紙口へ向けて排紙するための排紙ローラを示す。42は排紙ローラ41に対応して設けられた拍車を示し、この拍車42は記録媒体を介して排紙ローラ41を押圧し、排紙ローラ41による記録媒体の搬送力を生じさせる。43は記録媒体のセット等に際してフィードローラ39、押さえ板45、拍車42のそれぞれの付勢を解除するための解除レバーを示す。45は記録位置近傍において記録媒体の浮き上がり等を抑制しプラテンローラ33に対する密着状態を確保するための押さえ板を示す。

【0018】符号51は記録を行わない場合に記録へッド10を保護格納するためのキャップを示し、53はキャップ51に通じ記録へッド10の吐出口(図示せず)からインクを吸引するためのポンプを示す。55はポンプ53によって吸引されたインクを蓄えるドレインタンクを示し、57はポンプ53とドレインタンク55をつなぐドレインパイプを示す。59は記録へッド4の表面を清掃するためのワイパーを示すす61はキャップ51の記録へッド4に対する圧接および解除、ポンプ53の吸引、およびワイパー59の記録へッド4方向への移動および退避を制御するカムを示し、63は前記カム61に駆動力を伝達する回復系モータを示す。

0 【0019】図4は、記録ヘッド10のドットと、黒ド

ット検出部508bにおいて検出された黒ドットと、行 送りドット数との関係を前行および現行について示した 図である。黒ドット検出部508bによって各行におけ る記録データ中の記録ヘッドの最上端黒ドット位置と最 下端黒ドット位置が検出される。これにより各行の記録 ヘッドに対する上部白ドット数(非記録ドット数)およ び黒ドット数が算出できる。L1で示す値は { (行送り ドット数)ー(前行上部白ドット数)ー(前行黒ドット 数) + (現行上部白ドット数)) で算出される値であり 前行と現行との間の白ドットライン数を表している。 【0020】図5は本発明の記録装置の記録を制御する ためのフローチャート図である。本処理はまずステップ S501においてページ単位における種々の初期設定を 行う。例えば記録開始時の前行記録データの初期化や紙 送りデータの初期化をおこなう。次にS502へ進み、 記録のための処理の判別を行う。即ち、記録データにし たがって、記録用紙の挿入、キャリッジを走査しながら 記録ヘッドを駆動して記録を行うための記録用紙の搬 送、記録用紙の排出等の処理の判別を処理を実行する。 【0021】 S502 において次処理が1ラインの記録 20 と判別した場合にはS510に進み記録データをライン バッファ508aにセットし、次にS511で黒ドット 検出部508bのデータを読み込み、次にS512にお いてヘッドの走査方向すなわち双方向記録か片方向記録 かを判定し、次にS513においてキャリッジ11を走 査し記録を行い、次に黒ドット検出部から読み込んだデ ータを次行のデータとしてセーブし、次にS515で紙 送りドット数を0(ゼロ)にセットする。これで1ライ ンの記録を終了し、S502にもどって次の処理を行

【0022】S502において次の処理が紙送りと判断した場合にはS520に進み、記録データにしたがって搬送モータ35を駆動して所定量紙送りを行い、次にS521で紙送り量を記録ヘッドのドットピッチに換算した紙送りドット数の値をセーブし、S502にもどる。【0023】S502において次の処理が記録用紙の挿入と判断した場合にはS530に進み搬送モータ35を駆動し、記録用紙の挿入および所定位置へのセットを行い、S502にもどる。S502において次の処理が記録用紙の排出と判断した場合にはS540に進み、搬送モータ35を駆動し記録用紙の排出を行いS502にもどろ。

【0024】各処理においてエラーが発生した場合には S502にもどり、S502においてエラーの発生を検 出し、S550へ進み、各種エラー処理を行う。エラー には例えば記録用紙の検出エラー、キャリッジセンサの 検出エラー等がある。S502において記録が終了と判 断した場合にはS590へ進み本処理を終了する。本発 明においてはワープロ等のように内部で生成した記録デ ータを記録制御処理する方法を示したが、ホストコンピ 50

ュータからの記録コマンドおよびデータを受信して記録 するブリンタの場合にも同様であり、S502における 処理がホストからの記録コマンドの解析と記録処理の実 行となるだけである。またワープロにおいてもプリンタ

と同様に記録部を別に制御し、記録コマンドとデータの 受信を行ってもよい。

【0025】図6は図5のS512の処理の詳細、即ち現行に対するヘッドの走査方向を判定する動作のフローチャート図である。本処理はまずS601において図4で説明したL1すなわち { (行送りドット数)ー (前行上部白ドット数)ー (前行黒ドット数)+ (現行上部白ドット数) } で算出される値が所定量 n以下かどうか判定しYESならばS602に進み、NOならばS603に進む。S602ではヘッド走査方向を片方向記録に選択しS604に進み、終了する。

【0026】S603ではヘッド走査方向を双方向記録に選択しS604に進み、終了する。すなわちL1で示す前行と現行との間の白ドットライン数が所定量 n以下ならば片方向記録を行い、nより大きければ双方向記録を行う。L1が0(ゼロ)の場合は前行と現行で黒ドットが丁度接する場合であり、拡大文字やイメージと判断されるためドットの桁方向ズレをさけるために片方向記録を行ったほうが画質の劣化を防げる。またL1が小さな正数たとえば1や2の場合においても前行と現行でのドットの桁方向ズレが目立ちやすいため片方向記録を行ったほうが画質の劣化を防げる。

【0027】従ってヘッドの走査方向の判定のための値 n は双方向記録時の桁ズレによる画質の劣化がない、あるいは目立たないために必要な行間の白ドットライン数 と等しくあるいは若干大きくとることが望ましく、長さ に換算して0(ゼロ)以上5ミリメートル以下が望ましい。例えば記録ヘッドのドットピッチが300dpiの ばあいにはnは0以上59以下が望ましい。

【0028】図7は図5のS513の処理の詳細、即ちキャリッジモータ31によってキャリッジ11を走査して記録へッド10を駆動し双方向および片方向の記録を行う動作のフローチャート図である。本処理はまずS701において図6の処理において判断したヘッド走査方向が双方向か片方向かをチェックし、双方向ならばS702ではキャリッジの現在停止位置に対して記録データの左端と右端のどちらが近いか判断するための演算を行う。即ち、D={(キャリッジ停止位置)-(記録データ左端位置)}-{(記録データ右端位置)-(キャリッジ停止位置)}を求める。

【0029】次にS703へ進み、Dが0(ゼロ)以上か判定する。NOならばS704へ進み、YESならばS711へ進む。S710では前行のヘッド走査方向を判定し右ならばS704へ進み、左ならばS711へ進む。ここにおける左右の方向は例えば図3においてキャ

リッジ走査側を手前にした場合の左右であり絶対的な方向ではない。またDを算出するための記録データの記録位置も同様に左から右へ増大するようにとった場合であり絶対的な値ではない。

【0030】S704ではキャリッジ停止位置から左開始位置へキャリッジを移動し、S705へ進む。S705ではキャリッジを右方向に走査しながら記録データを順次記録へッドに送り、記録へッドを駆動し記録を行い、次にS720に進み、本処理を終了する。

【0031】S711ではキャリッジ停止位置から右開 10 始位置へキャリッジを移動し、S712へ進む。S712ではキャリッジを左方向に走査しながら記録データを順次記録へッドに送り、記録へッドを駆動し記録を行い、次にS720に進み、本処理を終了する。

【0032】本処理によって片方向記録時には前行と同一方向の記録が行われ、双方向記録の場合には記録データに応じて各行のキャリッジ停止位置から最短時間で記録開始される方向に記録を行うことができ、記録時間の短縮が可能となる。

【0033】S702およびS703のような現在のキ 20 キリッジ停止位置からの最短記録方向の検出を行わない場合には、S702およびS703の処理をS710の処理と逆の処理、即ち現行の記録を前行走査方向と逆方向で行う処理となる。この場合の双方向記録は右方向記録と左方向記録を交互に行う記録となる。

【0034】以上説明したように各ラインごとの記録データの黒ドットを検出し、行間の白ドット数によって双方向および片方向記録の切り替えを行うことによって、双方向記録時の桁ズレによって画質が劣化することなく高速記録を達成することができる。

【0035】図8は記録へッドを上基準すなわち上端ドットから必ず使用する場合の本発明の他の実施例を示す図であり、記録ヘッド10のドットと黒ドット検出部508bにおいて検出された黒ドットおよび行送りドット数の関係を前行および現行について示した図である。

【0036】黒ドット検出部508bによって各行における記録データ中の記録ヘッドの最下端黒ドット位置が検出される。これにより各行の記録ヘッドにたいする黒ドット数が算出できる。L2で示す値は{(行送りドット数)-(前行黒ドット数)}で算出される値であり、前行と現行との間の白ドットライン数を表している。

【0037】との場合には図4のような上端白ドット数の検出がなく、処理は簡素化される。図6のS601におけるL1のかわりにL2を置き換えれば同様の処理で双方向および片方向の切り替えができる。

【0038】図9、図10記録データ中にイメージデータの記録へッド最大使用ドット数を示すコマンドを設けた場合の本発明のさらに他の実施例を示す図であり、図9は記録データ中のコマンドおよびイメージデータを表す図であり、図10は記録ヘッド10のドットとイメー 50

ジデータ使用のドット数および行送りドット数の関係を 前行および現行について示した図である。

【0039】各行における記録データ中のイメージコマンドにおける最大使用ドット数を検出することにより各行の記録へッドにたいする黒ドット数が算出できる。 L3で示す値は {(行送りドット数) - (前行イメージコマンド最大使用ドット数)}で算出される値であり前行と現行との間の白ドットライン数を表している。

【0040】この場合には図2のような記録ヘッドへの記録データから直接黒ドットを検出する黒ドット検出部508bを設ける必要はなく、記録データ中のコマンドを検出し判断することによって双方向および片方向の切り替えができ、処理は簡素化される。

【0041】同様に図6のS601におけるL1のかわりにL3を置き換えれば同様の処理で双方向及び片方向の切替えができる。また図10では記録ヘッドの上端から必ず使用する場合を示したが、所定の空白ドットを設けてもよく、その場合には空白ドットを考慮してL3の値を算出すればよい。

【0042】図11、図12は記録データ中にテキストデータの記録へッド最大使用ドット数を示すコマンドを設けた場合の本発明のさらに他の実施例を示す図であり、図11は記録データ中のコマンドおよびテキストデータを表す図であり、図12は記録へッド10のドットとテキストデータ使用のドット数および行送りドット数の関係を前行および現行について示した図である。内部にフォントを持つ場合にはテキストコードによって記録を行うことができる。

【0043】各行における記録データ中のテキストコマンドにおける最大使用ドット数を検出することにより各行の記録へッドに対する黒ドット数が算出できる。 L4で示す値は ((行送りドット数) - (前行テキストコマンド最大使用ドット数) > で算出される値であり、前行と現行との間の白ドットライン数を表している。

【0044】 この場合には図2のような記録ヘッドへの記録データから直接黒ドットを検出する黒ドット検出部508bを設ける必要はなく、記録データ中のコマンドを検出し判断することによって双方向および片方向の切り替えができ、処理は簡素化される。同様に図6のS601におけるL1のかわりにL4を置き換えれば同様の処理で双方向および片方向の切り替えができる。

【0045】図12では記録ヘッドの上端から必ず使用する場合を示したが、所定の空白ドットを設けてもよく、その場合には空白ドットを考慮してL4の値を算出すればよい。

【0046】なお本発明はインクジェット記録方式を示したが、サーマルヘッド記録方式、熱転写記録方式、ドットインパクト記録方式等シリアルタイプの記録方式すべてに実施可能である。

0 【0047】また搭載される記録ヘッドの種類ないし個

11

数についても、例えば単色のインクおよび記録ヘッドが 設けられたもののほか、記録色や濃度を異にする複数の インクに対応して複数の記録ヘッドが設けられるもので あっても良い。

【0048】更に加えて、本発明にかかるインクジェット記録装置の形態としては、上述のようなワードプロセッサやコンピュータ等の情報処理機器の出力端末として一体または別体に設けられるもののほか、スキャナー等と組み合わせた複写装置、さらには送信受信機能を有するファクシミリ装置の形態を取るものであっても良い。【0049】

【発明の効果】本発明は前述した如く、前行と現行の記録へッドのドットに対する記録黒ドット数および行送りドット数を比較することにより行間の白ドット数を算出し、行間白ドット数が所定量以下のときに片方向記録を行い、その他の時双方向記録を行うことにより、双方向記録時の桁ズレによる画質の劣化が目立つことなく、高速記録を達成できる。

【図面の簡単な説明】

【図1】図1は、記録装置の構成を示すブロック図である。

【図2】図2は、本発明を適用可能な装置として、文書 作成装置(以下ワードプロセッサという)の外観構成例 を示す。

【図3】図3は、本発明係るインクジェット記録装置の 構成例を示す。 *【図4】図4は、記録ヘッドのドットと黒ドット検出部 において検出された黒ドット及び行送りドット数の関係 を前行及び現行について示した図である。

12

【図5】図5は、本発明の記録装置の記録を制御する動作のフローチャート図である。

【図6】図6は、図5のS512の処理の詳細、現行に対してヘッドの走査方向を判定する動作のフローチャート図である。

【図7】図7は、図5のS513の処理の詳細、即ちキ10 ャリッジモータ31によってキャリッジ11を走査して記録ヘッド10を駆動し双方向および片方向の記録を行う動作のフローチャート図である。

【図8】図8は、本発明の他の実施例を示す図である。 【図9】図9は、本発明のさらに他の実施例を示す図である。

【図10】図10は、本発明のさらに他の実施例を示す図である。

【符号の説明】

	1 0	記録ペット
20	1 1	キャリッジ
	3 1	キャリッジモータ
	3 5	搬送モータ
	508a	ラインバッファ
	508b	黒ドット検出部

508c ヘッドドライバ

[図9a]

コマンド 識別子	mドット イメージ	データ長	イメージデータ

【図10a】

コマンド mドット 識別子 テキスト	テキストコード
-----------------------	---------

【図2】

【図6】

【図1】

[図3]

【図7】

【図4】

【図5】

【図8】

【図9b】

【図10b】

