METHODS IN ELECTROMAGNETIC WAVE PROPAGATION

SECOND EDITION

IEEE Series on Electromagnetic Wave Theory leory

The IEEE Series on Electromagnetic Wave Theory consists of new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications.

Series Editor Donald G. Dudley University of Arizona

Ehud Heyman Tel-Aviv University Advisory Board

Robert E. Collin

Case Western Reserve University

Akira Ishimaru University of Washington

D. S. Jones University of Dundee Associate Editors

Electromagnetic Theory, Scattering, and

Diffraction

Differential Equation Methods Andreas C. Cangellaris University of Arizona

Integral Equation Methods Donald R. Wilton University of Houston

Antennas, Propagation, and Microwaves David R. Jackson University of Houston

Books in the Series

Chew, W. C., Waves and Fields in Inhomogeneous Media

Christopoulos, C., The Transmission-Line Modeling Methods: TLM

Collin, R. E., Field Theory of Guided Waves, Second Edition

Dudley, D. G., Mathematical Foundations for Electromagnetic Theory

Elliott, R. S., Electromagnetics: History, Theory, and Applications

Felsen, L. B. and Marcuvitz, N., Radiation and Scattering of Waves

Harrington, R. F., Field Computation by Moment Methods

Jones, D. S., Methods in Electromagnetic Wave Propagation, Second Edition

Lindell, I. V., Methods for Electromagnetic Field Analysis

Tai, C. T., Generalized Vector and Dyadic Analysis: Applied Mathematics in Field Theory

Tai, C. T., Dyadic Green Functions in Electromagnetic Theory, Second Edition

Van Bladel, J., Singular Electromagnetic Fields and Sources

Wait, J., Electromagnetic Waves in Stratified Media

METHODS IN ELECTROMAGNETIC WAVE PROPAGATION

SECOND EDITION

D. S. Jones

University of Dundee

The Institute of Electrical and Electronics Engineers, Inc., New York

A NOTE TO THE READER

This book has been electronically reproduced from digital information stored at John Wiley & Sons, Inc. We are pleased that the use of this new technology will enable us to keep works of enduring scholarly value in print as long as there is a reasonable demand for them. The content of this book is identical to previous printings.

IEEE PRESS 445 Hoes Lane, PO Box 1331 Piscatawaty NJ 08855-1331

IEEE Antennas and Propagation Society, Sponsor

© D. S. Jones, 1979, 1994 First edition 1979 Oxford University Press Second edition 1994 Reissued 1995 jointly with IEEE Press

©1994 THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC., 3 Park Avenue, 17th Floor, New York, NY 10016-5997

© 2003 Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: permcoordinator@wiley.com

ISBN 0-7803-1155-8

PREFACE TO THE SECOND EDITION

There has been much activity in the areas covered by this book since the first edition. Numerous papers have appeared on all the topics and the constraints of space have meant that not all of them can be quoted. To the many authors whose research I have had to omit I offer my apologies. It is hoped that a sufficient selection has been included for the interested reader to become acquainted with the progress that has been made and to follow up developments.

Once again I am most grateful to my wife and Mrs Ross for their forbearance, unfailing assistance, and encouragement.

D.S.J.

PREFACE TO THE FIRST EDITION

Modern methods of tackling problems associated with electromagnetic waves involve a judicious mixture of analysis and computation. The analysis occurs in the mathematical formulation and in establishing that it has the requisite properties. Conversion to a form suitable for the computer entails numerical analysis, whose justification may also rest on a considerable body of analysis. Therefore, the aim of these two volumes is to develop a suitable framework of theory and numerical analysis with applications to various aspects of the propagation of electromagnetic waves. An attempt has been made to couch the explanation in as comprehensible a language as possible and to assume a starting point as early as commensurate with the size of the text. To assist with the understanding numerous exercises have been inserted at convenient points and some of these are open-ended so that any instructor has plenty of freedom in determining the mode of treatment. Complementary material will be found in D. S. Jones, Acoustic and electromagnetic waves, Oxford University Press (1986). The first five chapters are devoted to the provision of a theoretical background and the topic of guided waves. The first chapter sets out the fundamentals of numerical analysis which are essential in handling a problem numerically. Propagation in waveguides can be approached from three different points of view. One possibility is a direct numerical attack based on difference equations: this is the subject matter of Chapter 2. Another angle is to consider the problem as one of finding the eigenvalues of an operator. This avenue is explored in Chapter 3, which also treats the cavity resonator from a theoretical standpoint. The third route employs variational methods and these are considered in Chapter 4. Chapter 5 returns to numerical techniques with particular emphasis on variational methods, integral equations and finite elements.

Chapters 6 to 9 deal with radiating waves whether produced directly from a transmitter or indirectly by scattering from an irradiated obstacle. Antennas are discussed in Chapter 6 with separate sections for wires, solids, and dielectrics. The analysis in Chapter 6 is concerned with the frequency domain. The changes necessary in the time domain are examined in Chapter 7, including singularity expansion method. The well-known geometric theory of diffraction receives an extensive review in Chapter 8. Finally, Chapter 9 investigates inverse scattering, embracing holography and adaptive arrays as well as other applications.

Again my thanks are due to my wife and Mrs Ross for their constant help and encouragement.

Dundee December 1986 This book is dedicated with deep affection to the Streather family and, in particular Bessie, Kittie, Nell, Flo, Alice, Peg, and Frank

CONTENTS

1	ASPECTS OF NUMERICAL ANALYSIS	
	Interpolation and approximation	
	1.1 Interpolation	
	1.2 Inverse interpolation	9
	1.3 Interpolation in two dimensions	9
	1.4 Approximation	13
	1.5 L_2 -norm approximation	1.
	1.6 Rational approximation1.7 Trigonometric interpolation	23
		28
	Solution of equations	31
	1.8 Solution of an equation	31
	1.9 Systems of non-linear equations	40
	Matrices	40
	1.10 Matrices	40
	1.11 Matrix norms	46
	Linear equations	51
	1.12 Linear equations—direct methods	51
	1.13 Iterative methods	57
	1.14 Matrix eigenvalues	60
	Generalized inverse	66
	1.15 The generalized inverse	66
2	WAVEGUIDES AND DIFFERENCE EQUATIONS	72
	2.1 Introduction	72
	2.2 Waveguides	74
	2.3 Numerical derivatives	78
	2.4 Properties of difference equations	83
	2.5 TEM modes	93
	2.6 The dominant mode2.7 Higher modes	96
	2.8 Direct methods	98
	2.9 Other equations	100 108
	2.10 Conformal mapping	109
	2.11 Waveguides containing dielectric	109
	2.12 Microstrip transmission lines	112
	2.13 Other methods for guides	117
	2.14 The fast Fourier transform	117

x CONTENTS

3	OPERATORS AND EIGENVALUES	120
	Preliminaries	120
	3.1 Hilbert space	120
	3.2 Linear operators	123
	3.3 Bounded linear operators	127
	Partial differential equations	133
	3.4 Integral and partial differential equations	133
	3.5 The cavity resonator	143
	Unbounded operators and eigenvalues	146
	3.6 Unbounded operators	146
	3.7 Approximation theorems	149
	3.8 Point matching	152
4	VARIATIONAL METHODS AND OPTIMIZATION	156
	The derivative of an operator	156
	4.1 The derivative	156
	4.2 Mean-value theorem	162
	4.3 Higher derivatives	167
	4.4 Convex functionals	170
	Newton's method for operators	172
	4.5 Newton's method	172
	Optimization	181
	4.6 Unconstrained optimization	181
	4.7 The effect of constraints	191
	Variational principles	194
	4.8 Variational approach	194
	4.9 Examples	200
	4.9.1 Network analysis	200
	4.9.2 Integral equations 4.9.3 Ordinary differential equations	202 203
	4.9.4 Poisson's equation	205
	Waveguides	208
		208
	4.10 The capacitive iris 4.11 Another form of variational principle	212
	4.11 Another form of variational principle 4.12 The inductive iris	215
	4.13 Vector optimization	218
	4.14 Sobolev spaces	219
5	NUMERICAL ASPECTS OF VARIATIONAL	
5	METHODS	222
	Minimal systems	222
	william systems	

CONTENTS	xi

	 5.1 Galerkin's method 5.2 Minimal systems 5.3 Positive-definite operators 5.4 Stability 	222 225 230 234
	Integral equations	241
	5.5 Compact operators5.6 Integral equations5.7 Equations of the first kind	241 245 258
	Numerical trial functions	262
	 5.8 Finite elements 5.9 Finite differences 5.10 Comparison between finite difference and finite element 5.11 Eigenvalues 	262 273 275 276
	Numerical integration	276
	5.12 Quadrature	276
6	ANTENNAS AND INTEGRAL EQUATIONS	286
	Wire antennas	286
	 6.1 Introduction 6.2 The perfectly conducting wire 6.3 General excitation of the infinite wire 6.4 The semi-infinite wire 6.5 The finite wire 6.6 The receiving antenna 6.7 Numerical methods 6.8 Curved antennas 6.9 Log-periodic antennas 6.10 Loads and arrays 	286 286 290 297 299 302 307 316 321 323
	Solid antennas 6.11 Wire grid models	324
	 6.12 The electric-field integral equation 6.13 Uniqueness 6.14 The magnetic-field integral equation 6.15 The Fredholm alternative 6.16 Compactness and other properties of the MFIE 6.17 Other integral equations 6.18 Numerical considerations for surfaces 6.19 Singular integrals 	324 328 335 337 340 346 348 357 359
	6.20 The algebraic system	360
	6.21 The null-field method	362
	6.22 The impedance boundary condition6.23 Absorbing boundary conditions	362 366
	6.24 The surface radiation condition	300 372

xii CONTENTS

	Dielectric antennas	373
	6.25 The infinite dielectric circular rod	373
	6.26 Modal excitation	377
	6.27 The finite rod	381
	6.28 General shapes	381
	6.29 Homogeneous isotropic dielectric	385
	6.30 Uniqueness for the homogeneous isotropic dielectric	388
	Appendix: Geometry of surfaces	389
	Appendix. Geometry of surfaces	307
7	TRANSIENT PHENOMENA	395
	7.1 Finite methods	395
	7.2 Integral equations in the time domain	396
	7.3 Numerical methods for thin wires in the time domain	400
	7.4 Perfectly conducting bodies	404
	7.5 Numerical matters	405
	7.6 The harmonic approach versus the impulse response	409
	7.7 The Laplace transform	410
	7.8 The location of the poles	417
	7.9 The impulse response	423
	7.10 Practical determination of the positions of the poles	427
	7.11 Prony's method and modifications	428
8	GEOMETRIC THEORY OF DIFFRACTION	434
	8.1 The high-frequency approximation	434
	8.2 Geometrical optics	438
	8.3 The ray and transport equations	441
	8.4 The stratified medium	446
	8.5 Fermat's principle	451
	Numerical solution of ordinary differential equations	456
	8.6 Multistep methods	457
	8.7 Runge-Kutta methods	465
	8.8 Extrapolation	468
	8.9 Systems of differential equations	469
	Canonical problems	469
	8.10 Geometrical optics revisited	469
	8.11 Focusing	470
	8.12 Reflection by stratification	475
	8.13 Edges	482
	8.14 Edge rays	489
	8.15 Uniformly valid approximations	492
	8.16 Double edge diffraction	499
	8.17 Emission from a waveguide	509
	8.18 The wedge	517
	8.19 The effect of curvature	522
	8.20 Generalization	535
	U.EU CHICIAILEATION	

	CONTENTS	xiii
	8.21 Optimal curvature8.22 The diffraction matrix for a curved boundary8.23 Diffraction by a discontinuity in curvature8.24 Reflector antennas	539 539 541 549
	Leaky rays	553
	8.25 Gaussian beams and complex sources8.26 Complex rays8.27 Optical fibres	553 557 559
9	SOURCE DETECTION	568
	9.1 General considerations	568
	Inverse scattering	570
	 9.2 Low frequencies 9.3 High frequencies 9.4 Scattering in the time domain 9.5 Moving targets 	570 573 577 579
	The inverse source problem	581
	 9.6 Harmonic sources 9.7 Inhomogeneities 9.8 Statistical considerations 9.9 Correlation techniques 9.10 Far-field cross-correlation technique 	581 584 585 590
	Holographic techniques	596
	9.11 Basic principles of holography 9.12 Location of an inhomogeneity 9.13 Field in the aperture of an antenna 9.14 Zeros of entire functions	596 601 602 605
	Synthesis of radiation patterns	607
	9.15 General considerations 9.16 Synthesis by series expansion 9.17 Construction errors 9.18 Constrained aperture norm 9.19 Directivity 9.20 Penalty functions	607 609 611 612 616 617
	Array signal processing	618
	9.21 Adaptive beam forming 9.22 Simultaneous multiple beams 9.23 Time-varying arrays	618 622 625
	References	627
	Index	641