WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Internati nal Patent Classification 5: C07H 15/12, 17/00, A61K 37/00 C07K 13/00, 15/00, C12N 5/00

(11) International Publication Number:

WO 93/10136

(43) International Publication Date:

27 May 1993 (27.05.93)

(21) International Application Number:

PCT/US92/09893

(22) International Filing Date:

16 November 1992 (16.11.92)

(81) Designated States: AU, CA, FI, HU, JP, KP, NO, RO, RU, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).

(30) Priority data:

07/793,065

15 November 1991 (15.11.91) US

Published

With international search report.

(71) Applicant: THE TRUSTEES OF PRINCETON UNI-VERSITY [US/US]; New South Building, 5th Floor, Princeton, NJ 08544 (US).

(72) Inventor: LEMISCHKA, Ihor, R., 5T Hibben Apartments, Faculty Road, Princeton, NJ 08540 (US).

(74) Agent: FEIT, Irving, N.; ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014 (US).

(54) Title: TOTIPOTENT HEMATOPOIETIC STEM CELL RECEPTORS AND THEIR LIGANDS

(57) Abstract

Isolated mammalian nucleic acid molecules encoding receptor protein tyrosine kinases expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells are provided. Also included are the receptors encoded by such nucleic acid molecules; the nucleic acid molecules encoding receptor protein tyrosine kinases having the sequences shown in Figure 1a (murine flk-2), Figure 1b (human flk-2) and Figure 2 (murine flk-1); the receptor protein tyrosine kinases having the amino acid sequences shown in Figure 1a, Figure 1b and Figure 2; ligands for the receptors; nucleic acid sequences that encode the ligands; and methods of stimulating the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells comprising contacting the stem with a ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BF BC BJ BR CA CF CC CH CS CZ DE DK ES FI	Austria Australia Barbados Belgium Burkina Faso Bulgarin Benin Benin Brazil Canada Central African Republic Congo Switzerland Cöte d'Ivoire Camertoon Czechoslovakia Czeth Republic Germany Denmark Spain Finland	FR GA GB GN GR HU IE IT JP KP KR LL LK LL MC MG MI MN	France Gabon United Kingdom Guinca Greece Hungary Ireland Italy Japan Democratic People's Republic of Korea Republic of Korea Kazakhstan Licehtenstein Sri Lanka Lusembourg Monaco Madagascar Mali Mongolia	MR MW NL NO NZ PL PT RO RU SE SK SN SU TG US VN	Mauritania Malawi Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Slovak Republic Senegal Soviet Union Chad Togo Ukraine United States of America Viet Nam
---	---	---	---	---	---

TOTIPOTENT HEMATOPOIETIC STEM CELL RECEPTORS AND THEIR LIGANDS

The invention described in this application was made with U.S. government support from Grant Numbers R01-CA45339 and R01-DK42989 awarded by the National Institutes of Health. The government has certain rights in this invention.

FIELD OF THE INVENTION

15

5

10

The present invention relates to hematopoietic stem cell receptors, ligands for such receptors, and nucleic acid molecules encoding such receptors and ligands.

BACKGROUND OF THE INVENTION

20

The mammalian hematopoietic system comprises red and white blood cells. These cells are the mature cells that result from more primitive lineage-restricted cells. The cells of the hematopoietic system have been reviewed by Dexter and Spooncer in the Annual Review of Cell Biology 3, 423-441 (1987).

30

The red blood cells, or erythrocytes, result from primitive cells referred to by Dexter and Spooncer as erythroid burst-forming units (BFU-E). The immediate progeny of the erythroid burst-forming units are called erythroid colony-forming units (CFU-E).

35

The white blood cells contain the mature cells of the lymphoid and myeloid systems. The lymphoid cells include B lymphocytes and T lymphocytes. The B and T lymphocytes result from earlier progenitor cells referred to by Dexter and Spooncer as preT and preB cells.

40

The myeloid system comprises a number of cells including granulocytes, platelets, monocytes, macrophages, and megakaryocytes. The granulocytes are further divided into

10

25

30

35

neutrophils, eosinophils, basophils and mast cells.

Each of the mature hematopoietic cells are sp cialized for specific functions. For example, erythrocytes are responsible for oxygen and carbon dioxide transport. T and B lymphocytes are responsible for cell-and antibody-mediated immune responses, respectively. Platelets are involved in blood clotting. Granulocytes and macrophages act generally as scavengers and accessory cells in the immune response against invading organisms and their by-products.

At the center of the hematopoietic system lie one or more totipotent hematopoietic stem cells, which undergo a series of differentiation steps leading to increasingly

15 cellsineage-restricted progenitor The more mature progenitor cells are restricted to producing one or two lineages. Some examples of lineage-restricted progenitor cells mentioned by Dexter and Spooncer include granulocyte/macrophage colony-forming cells (GM-CFC),

20 megakaryocyte colony-forming cells (Meg-CFC), eosinophil colony-forming cells (Eos-CFC), and basophil colony-forming cells (Bas-CFC). Other examples of progenitor cells are discussed above.

The hematopoietic system functions by means of a precisely controlled production of the various mature lineages. The totipotent stem cell possesses the ability both to self renew and to differentiate into committed progenitors for all hematopoietic lineages. These most primitive of hematopoietic cells are both necessary and sufficient for the complete and permanent hematopoietic reconstitution of a radiation-ablated hematopoietic system in mammals. The ability of stem cells to reconstitute the entire hematopoietic system is the basis of bone marrow transplant therapy.

It is known that growth factors play an important role in the development and operation of the mammalian hematopoietic system. The role of growth factors is complex,

10

15

however, and not well understood at the present time. One reason for the uncertainty is that much of what is known about hematopoietic growth factors results from <u>in vitro</u> experiments. Such experiments do not necessarily reflect <u>in vivo</u> realities.

In addition, <u>in vitro</u> hematopoiesis can be established in the absence of added growth factors, provided that marrow stromal cells are added to the medium. The relationship between stromal cells and hematopoietic growth factors <u>in vivo</u> is not understood. Nevertheless, hematopoietic growth factors have been shown to be highly active <u>in vivo</u>.

From what is known about them, hematopoietic growth factors appear to exhibit a spectrum of activities. At one end of the spectrum are growth factors such as erythropoietin, which is believed to promote proliferation only of mature erythroid progenitor cells. In the middle of the spectrum are growth factors such as IL-3, which is believed to facilitate the growth and development of early stem cells as well as of numerous progenitor cells. Some examples of progenitor cells induced by IL-3 include those restricted to the granulocyte/macrophage, eosinophil, megakaryocyte, erythroid and mast cell lineages.

25

30

35

2.0

At the other end of the spectrum is the hematopoietic growth factor that, along with the corresponding receptor, was discussed in a series of articles in the October 5, 1990 edition of <u>Cell</u>. The receptor is the product of the W locus, c-kit, which is a member of the class of receptor protein tyrosine kinases. The ligand for c-kit, which is referred to by various names such as stem cell factor (SCF) and mast cell growth factor (MGF), is believed to be essential for the development of early hematopoietic stem cells and cells restricted to the erythroid and mast cell lineages in mice; see, for example, Copeland et al., Cell <u>63</u>, 175-183 (1990).

It appears, therefore, that there are growth factors

that exclusively affect mature cells. There also appear to be growth factors that affect both mature cells and stem cells. The growth factors that affect both types of cells may affect a small number or a large number of mature cells.

5

There further appears to be an inverse relationship between the ability of a growth factor to affect mature cells and the ability of the growth factor to affect stem cells. For example, the c-kit ligand, which stimulates a small number of mature cells, is believed to be more important in the renewal and development of stem cells then is IL-3, which is reported to stimulate proliferation of many mature cells (see above).

15

20

25

30

10

Prior to the present specification, there have been no reports of growth factors that exclusively stimulate stem cells in the absence of an effect on mature cells. The discovery of such growth factors would be of particular significance.

As mentioned above, c-kit is a protein tyrosine kinase (pTK). It is becoming increasingly apparent that the protein tyrosine kinases play an important role as cellular receptors for hematopoietic growth factors. Other receptor pTKs include the receptors of colony stimulating factor 1 (CSF-1) and PDGF.

The pTK family can be recognized by the presence of several conserved amino acid regions in the catalytic domain. These conserved regions are summarized by Hanks et al. in Science 241, 42-52 (1988), see Figure 1 starting on page 46 and by Wilks in Proc. Natl. Acad. Sci. USA 86, 1603-1607 (1989), see Figure 2 on page 1605.

35

Additional protein tyrosine kinases that represent hematopoietic growth factor receptors are needed in order more effectively to stimulate the self-renewal of the totipotent hematopoietic stem cell and to stimulate the

development of all cells of the hematopoietic system both <u>in vitro</u> and <u>in vivo</u>. Novel hematopoietic growth factor receptors that are present only on primitive stem cells, but are not present on mature progenitor cells, are particularly desired. Ligands for the novel receptors are also desirable to act as hematopoietic growth factors. Nucleic acid sequences encoding the receptors and ligands are needed to produce recombinant receptors and ligands.

10

15

20.

25

SUMMARY OF THE INVENTION

These and other objectives as will be apparent to those with ordinary skill in the art have been met by providing isolated mammalian nucleic acid molecules encoding receptor protein tyrosine kinases expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells. Also included are the receptors encoded by such nucleic acid molecules; the nucleic acid molecules encoding receptor protein tyrosine kinases having the sequences shown in Figure la (murine flk-2), Figure 1b (human flk-2) and Figure 2 (murine flk-1); the receptor protein tyrosine kinases having the amino acid sequences shown in Figure 1a, Figure 1b and Figure 2; ligands for the receptors; nucleic acid sequences that encode the ligands; and methods of stimulating the proliferation of primitive mammalian hematopoietic stem cells comprising contacting the stem cells with a ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

30

35

DESCRIPTION OF THE FIGURES

Figure 1a.1 through 1a.5 shows the cDNA and amino acid sequences of murine flk-2. All subsequent references to Figure 1a are intended to refer to Figure 1a.1 through 1a.5. The amino acid residues occur directly below the nucleotides in the open reading frame. Amino acids -27 to -1 constitute the hydrophobic leader sequence. Amino acids 1 to 517 constitute the extracellular receptor domain. Amino acids

518 to 537 constitute the transmembrane region. Amino acids 538 to 966 constitute the intracellular catalytic domain. Counting amino acid residue -27 as residue number 1, the following amino acid residues in the intracellular domain are catalytic sub-domains identified by Hanks (see above): 618-623, 811-819, 832-834, 857-862, 872-878. The sequence at residues 709-785 is a signature sequence characteristic of flk-2. The protein tyrosine kinases generally have a signature sequence in this region. (See SEQ. ID. NOS. 1-2)

10

15

5

Figure 1b.1 through 1b.5 shows the complete cDNA and amino acid sequences of human flk-2 receptor. All subsequent references to Figure 1b are intended to refer to Figure 1b.1 through 1b.5. Amino acids -27 to -1 constitute the hydrophobic leader sequence. Amino acids 1 to 516 constitute the extracellular receptor domain. Amino acids 517 to 536 constitute the transmembrane region. Amino acids 537 to 966 constitute the intracellular catalytic domain. (See SEQ. ID. NOS. 3-4)

20

25

Figure 2.1 through 2.7 shows the cDNA and amino acid sequences of murine flk-1. All subsequent references to Figure 2 are intended to refer to Figure 2.1 through 2.7. Amino acids -19 to -1 constitute the hydrophobic leader sequence. Amino acids 1 to 743 constitute the extracellular receptor domain. Amino acids 744 to 765 constitute the transmembrane region. Amino acids 766 to 1348 constitute the intracellular catalytic domain. (See SEQ. ID. NOS. 5-6)

30

Figure 3 shows the time response of binding between a murine stromal cell line (2018) and APtag-flk-2 as well as APtag-flk-1. APtag without receptor (SEAP) is used as a control. See Example 8.

35

Figure 4 shows the dose response of binding between stromal cells (2018) and APtag-flk-2 as well as APtag-flk-1. APtag without receptor (SEAP) is used as a control. See Example 8.

DETAILED DESCRIPTION OF THE INVENTION

R ceptors

In one embodiment, the invention relates to an isolated mammalian nucleic acid molecule encoding a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

10

5

The nucleic acid molecule may be a DNA, cDNA, or RNA molecule. The mammal in which the nucleic acid molecule exists may be any mammal, such as a mouse, rat, rabbit, or human.

15

20

25

The nucleic acid molecule encodes a protein tyrosine kinase (pTK). Members of the pTK family can be recognized by the conserved amino acid regions in the catalytic domains. Examples of pTK consensus sequences have been provided by Hanks et al. in Science 241, 42-52 (1988); see especially Figure 1 starting on page 46 and by Wilks in Proc. Natl. Acad. Sci. USA 86, 1603-1607 (1989); see especially Figure 2 on page 1605. A methionine residue at position 205 in the conserved sequence WMAPES is characteristic of pTK's that are receptors.

The Hanks et al article identifies eleven catalytic subdomains containing pTK consensus residues and sequences. The pTKs of the present invention will have most or all of these consensus residues and sequences.

Some particularly strongly conserved residues and sequences are shown in Table 1.

30

35

40

45

TABLE 1
Conserved Residues and Sequences in pTKs¹

5	Position ²	Residue or Sequence	Catalytic <u>Domain</u>
i di	50	G	Ī
	50 52	G	I
		Λ	. I
	57	A	II
10	70	K	. II
	72	E	III
	91	D	VI
	166	·	VI
	171	N	VII
15	184-186	DFG	VIII
LJ .	208	E	
	220	D	IX
	· · · · · · · · · · · · · · · · · · ·	G	IX
	225	R	XI
	280		

- 20
 1. See Hanks et al., Science 241, 42-52 (1988)
 - 2. Adjusted in accordance with Hanks et al., Id.

A pTK of the invention may contain all thirteen of these highly conserved residues and sequences. As a result of natural or synthetic mutations, the pTKs of the invention may contain fewer than all thirteen strongly conserved residues and sequences, such as 11, 9, or 7 such sequences.

The receptors of the invention generally belong to the same class of pTK sequences that c-kit belongs to. It has surprisingly been discovered, however, that a new functional class of receptor pTKs exists. The new functional class of receptor pTKs is expressed in primitive hematopoietic cells, but not expressed in mature hematopoietic cells.

For the purpose of this specification, a primitive hematopoietic cell is totipotent, i.e. capable of reconstituting all hematopoietic blood cells <u>in vivo</u>. A mature hematopoietic cell is non-self-renewing, and has limited proliferative capacity - i.e., a limited ability to give rise to multiple lineages. Mature hematopoietic cells, for the purposes of this specification, are generally capable of giving rise to only one or two lineages <u>in vitro</u> or <u>in vivo</u>.

It should be understood that the hematopoietic system is complex, and contains many intermediate cells between the primitive totipotent hematopoietic stem cell and the totally committed mature hematopoietic cells defined above. As the stem cell develops into increasingly mature, lineagerestricted cells, it gradually loses its capacity for self-renewal.

The receptors of the present invention may and may not be expressed in these intermediate cells. The necessary and sufficient condition that defines members of the new class of receptors is that they are present in the primitive, totipotent stem cell or cells, and not in mature cells restricted only to one or, at most, two lineages.

15

20

25

30

35

10

An example of a member of the new class of receptor pTKs is called fetal liver kinase 2 (flk-2) after the organ in which it was found. There is approximately 1 totipotent stem cell per 10⁴ cells in mid-gestation (day 14) fetal liver in mice. In addition to fetal liver, flk-2 is also expressed in fetal spleen, fetal thymus, adult brain, and adult marrow.

For example, flk-2 is expressed in individual multipotential CFU-Blast colonies capable of generating numerous multilineage colonies upon replating. It is likely, therefore, that flk-2 is expressed in the entire primitive (i.e. self-renewing) portion of the hematopoietic hierarchy. This discovery is consistent with flk-2 being important in transducing putative self-renewal signals from the environment.

It is particularly relevant that the expression of flk-2 mRNA occurs in the most primitive thymocyte subset. Even in two closely linked immature subsets that differ in expression of the IL-2 receptor, flk-2 expression segregates to the more primitive subset lacking an IL-2 receptor. The earliest thymocyte subset is believed to be uncommitted. Therefore, the thymocytes expressing flk-2 may be multipotential. flk-2 is the first receptor tyrosine kinase known to be expressed

in the T-lymphoid lineage.

The fetal liver mRNA migrates relative to 28S and 18S ribosomal bands on formaldehyde agarose gels at approximately 3.5 kb, while the brain message is considerably larger. In adult tissues, flk-2 m-RNA from both brain and bone marrow migrated at approximately 3.5 kb.

A second pTK receptor is also included in the present invention. This second receptor, which is called fetal liver kinase 1 (flk-1), is not a member of the same class of receptors as flk-2, since flk-1 may be found in some more mature hematopoietic cells. The amino acid sequence of murine flk-1 is given in Figure 2.

15

20

25

30

10

The present invention includes the flk-1 receptor as well as DNA, cDNA and RNA encoding flk-1. The DNA sequence of murine flk-1 is also given in Figure 2. Flk-1 may be found in the same organs as flk-2, as well as in fetal brain, stomach, kidney, lung, heart and intestine; and in adult kidney, heart, spleen, lung, muscle, and lymph nodes.

The receptor protein tyrosine kinases of the invention are known to be divided into easily found domains. The DNA sequence corresponding to the pTKs encode, starting at their 5'-ends, a hydrophobic leader sequence followed by a hydrophilic extracellular domain, which binds to, and is activated by, a specific ligand. Immediately downstream from the extracellular receptor domain, is a hydrophobic transmembrane region. The transmembrane region is immediately followed by a basic catalytic domain, which may easily be identified by reference to the Hanks et al. and Wilks articles discussed above.

The following table shows the nucleic acid and amino acid numbers that correspond to the signal peptide, the extracellular domain, the transmembrane region and the intracellular domain for murine flk-1 (mflk-1), murine flk-2 (mflk-2) and human flk-2 (hflk-2).

mFLK-1

Signal Peptide	<u>Extracellular</u>	<u>Transmembrane</u>	Intracellular
aa # -19 to -1	1 to 743	744 to 765	766 to 1348
aa code M A	A E	v v	R A
na # 208-264	265-2493	2494-2559	2560-4308

mFLK-2

	<u>Signal Peptide</u>	<u>Extracellular</u>	Transmembrane	Intracellular
	aa # -27 to -1	1 to 517	518 to 537	538 to 966
10	aa code M T	n s	F C	H S
	na # 31-111	112-1662	1663-1722	1723-3006

hFLK-2

	Signal Peptide	<u>Extracellular</u>	Transmembrane	Intracellular
15	aa # -27 to -1	1 to 516	517 to 536	537 to 966
••	aa code M N	Q F	Y C	H S
	na # 58-138	139-1689	1690-1746	1747-3036

The present invention includes the extracellular receptor domain lacking the transmembrane region and catalytic domain. Preferably, the hydrophobic leader sequence is also removed from the extracellular domain. In the case of human and murine flk-2, the hydrophobic leader sequence includes amino acids 1-27.

25

30

20

These regions and domains may easily be visually identified by those having ordinary skill in the art by reviewing the amino acid sequence in a suspected pTK and comparing it to known pTKs. For example, referring to Figure 1a, the transmembrane region of flk-2, which separates the extracellular receptor domain from the catalytic domain, is encoded by nucleotides 1663 (T) to 1722 (C). These nucleotides correspond to amino acid residues 545 (Phe) to 564 (Cys). The amino acid sequence between the transmembrane region and the catalytic sub-domain (amino acids 618-623) identified by Hanks et al. as sub-domain I (i.e., GXGXXG) is characteristic of receptor protein tyrosine kinases.

The extracellular domain may also be identified through

10

15

20

25

30

35

commonly recognized criteria of extracellular amino acid sequences. The determination of appropriate criteria is known to those skilled in the art, and has been described, for example, by Hopp et al, Proc. Nat'l Acad. Sci. USA 78, 3824-3828 (1981); Kyte et al, J. Mol. Biol. 157, 105-132 (1982); Emini, J. Virol. 55, 836-839 (1985); Jameson et al, CA BIOS 4, 181-186 (1988); and Karplus et al, Naturwissenschaften 72, 212-213 (1985). Amino acid domains predicted by these criteria to be surface exposed characteristic of extracellular domains.

As will be discussed in more detail below, the nucleic acid molecules that encode the receptors of the invention may be inserted into known vectors for use in standard recombinant DNA techniques. Standard recombinant DNA techniques are those such as are described in Sambrook et al., "Molecular Cloning," Second Edition, Cold Spring Harbor Laboratory Press (1987) and by Ausubel et al., Eds, "Current Protocols in Molecular Biology," Green Publishing Associates and Wiley-Interscience, New York (1987). The vectors may be circular (i.e. plasmids) or non-circular. Standard vectors are available for cloning and expression in a host. The host may be prokaryotic or eucaryotic. Prokaryotic hosts are preferably E. coli. Preferred eucaryotic hosts include yeast, insect and mammalian cells. Preferred mammalian cells include, for example, CHO, COS and human cells.

Ligands

The invention also includes ligands that bind to the receptor pTKs of the invention. In addition to binding, the ligands stimulate the proliferation of additional primitive stem cells, differentiation into more mature progenitor cells, or both.

The ligand may be a growth factor that occurs naturally in a mammal, preferably the same mammal that produces the corresponding receptor. The growth factor may be isolated and purified, or be present on the surface of an isolated

10

15

20

25

30

35

population of cells, such as stromal cells.

The ligand may also be a molecule that does not occur naturally in a mammal. For example, antibodies, preferably monoclonal, raised against the receptors of the invention or against anti-ligand antibodies mimic the shape of, and act as, ligands if they constitute the negative image of the receptor or anti-ligand antibody binding site. The ligand may also be a non-protein molecule that acts as a ligand when it binds to, or otherwise comes into contact with, the receptor.

In another embodiment, nucleic acid molecules encoding the ligands of the invention are provided. The nucleic acid molecule may be RNA, DNA or cDNA.

Stimulating Proliferation of Stem Cells

The invention also includes a method of stimulating the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells as defined above. The method comprises contacting the stem cells with a ligand in accordance with the present invention. The stimulation of proliferation and/or differentiation may occur in vitro or in vivo.

The ability of a ligand according to the invention to stimulate proliferation of stem cells in vitro and in vivo has important therapeutic applications. Such applications include treating mammals, including humans, whose primitive stem cells do not sufficiently undergo self-renewal. Example of such medical problems include those that occur when defects in hematopoietic stem cells or their related growth factors depress the number of white blood cells. Examples of such medical problems include anemia, such as macrocytic and aplastic anemia. Bone marrow damage resulting from cancer chemotherapy and radiation is another example of a medical problem that would be helped by the stem cell factors of the invention.

15

20

25

30

35

Functional Equivalents

The invention includes functional equivalents of the pTK receptors, receptor domains, and ligands described above as well as of the nucleic acid sequences encoding them. A protein is considered a functional equivalent of another protein for a specific function if the equivalent protein is immunologically cross-reactive with, and has the same function as, the receptors and ligands of the invention. The equivalent may, for example, be a fragment of the protein, or a substitution, addition or deletion mutant of the protein.

For example, it is possible to substitute amino acids in a sequence with equivalent amino acids. Groups of amino acids known normally to be equivalent are:

- (a) Ala(A) Ser(S) Thr(T) Pro(P) Gly(G);
- (b) Asn(N) Asp(D) Glu(E) Gln(Q);
- (c) His(H) Arg(R) Lys(K);
- (d) Met(M) Leu(L) Ile(I) Val(V); and
- (e) Phe(F) Tyr(Y) Trp(W).

Substitutions, additions and/or deletions in the receptors and ligands may be made as long as the resulting equivalent receptors and ligands are immunologically cross reactive with, and have the same function as, the native receptors and ligands.

The equivalent receptors and ligands will normally have substantially the same amino acid sequence as the native receptors and ligands. An amino acid sequence that is substantially the same as another sequence, but that differs from the other sequence by means of one or more substitutions, additions and/or deletions is considered to be an equivalent sequence. Preferably, less than 25%, more preferably less than 10%, and most preferably less than 5% of the number of amino acid residues in the amino acid sequence of the native receptors and ligands are substituted for, added to, or deleted from.

15

20

25

30

35

Equivalent nucleic acid molecules include nucleic acid sequences that encode equivalent receptors and ligands as defined above. Equivalent nucleic acid molecules also include nucleic acid sequences that differ from native nucleic acid sequences in ways that do not affect the corresponding amino acid sequences.

ISOLATION OF NUCLEIC ACID MOLECULES AND PROTEINS

Isolation of Nucleic Acid Molecules Encoding Receptors

In order to produce nucleic acid molecules encoding mammalian stem cell receptors, a source of stem cells is provided. Suitable sources include fetal liver, spleen, or thymus cells or adult marrow or brain cells.

For example, suitable mouse fetal liver cells may be obtained at day 14 of gestation. Mouse fetal thymus cells may be obtained at day 14-18, preferably day 15, of gestation. Suitable fetal cells of other mammals are obtained at gestation times corresponding to those of mouse.

Total RNA is prepared by standard procedures from stem cell receptor-containing tissue. The total RNA is used to direct cDNA synthesis. Standard methods for isolating RNA and synthesizing cDNA are provided in standard manuals of molecular biology such as, for example, in Sambrook et al., "Molecular Cloning," Second Edition, Cold Spring Harbor Laboratory Press (1987) and in Ausubel et al., (Eds), "Current Protocols in Molecular Biology," Greene Associates/Wiley Interscience, New York (1990).

The cDNA of the receptors is amplified by known methods. For example, the cDNA may be used as a template for amplification by polymerase chain reaction (PCR); see Saiki et al., Science, 239, 487 (1988) or Mullis et al., U.S. patent 4,683,195. The sequences of the oligonucleotide primers for the PCR amplification are derived from the sequences of known receptors, such as from the sequences

given in Figures 1 and 2 for flk-2 and flk-1, resp ctively, preferably from flk-2. The oligonucleotides are synthesized by methods known in the art. Suitable methods include those described by Caruthers in Science 230, 281-285 (1985).

5

10

In order to isolate the entire protein-coding regions for the receptors of the invention, the upstream oligonucleotide is complementary to the sequence at the 5' end, preferably encompassing the ATG start codon and at least 5-10 nucleotides upstream of the start codon. The downstream oligonucleotide is complementary to the sequence at the 3' end, optionally encompassing the stop codon. A mixture of upstream and downstream oligonucleotides are used in the PCR amplification. The conditions are optimized for each particular primer pair according to standard procedures. The PCR product is analyzed by electrophoresis for the correct size cDNA corresponding to the sequence between the primers.

20

15

Alternatively, the coding region may be amplified in two or more overlapping fragments. The overlapping fragments are designed to include a restriction site permitting the assembly of the intact cDNA from the fragments.

25

30

The amplified DNA encoding the receptors of the invention may be replicated in a wide variety of cloning vectors in a wide variety of host cells. The host cell may be prokaryotic or eukaryotic. The DNA may be obtained from natural sources and, optionally, modified, or may be synthesized in whole or in part.

35

The vector into which the DNA is spliced may comprise segments of chromosomal, non-chromosomal and synthetic DNA sequences. Some suitable prokaryotic cloning vectors include plasmids from E. coli, such as colE1, pCR1, pBR322, pMB9, pUC, pKSM, and RP4. Prokaryotic vectors also include derivatives of phage DNA such as M13 and other filamentous single-stranded DNA phages.

Isolation of Receptors

DNA encoding the receptors of the invention are inserted into a suitable vector and expressed in a suitable prokaryotic or eucaryotic host. Vectors for expressing proteins in bacteria, especially $\underline{\text{E.coli}}$, are known. Such vectors include the PATH vectors described by Dieckmann and Tzagoloff in J. Biol. Chem. $\underline{260}$, 1513-1520 (1985). These vectors contain DNA sequences that encode anthranilate synthetase (TrpE) followed by a polylinker at the carboxy terminus. Other expression vector systems are based on betagalactosidase (pEX); lambda P_L ; maltose binding protein (pMAL); and glutathione S-transferase (pGST) - see Gene $\underline{67}$, 31 (1988) and Peptide Research $\underline{3}$, 167 (1990).

15

10

5

Vectors useful in yeast are available. A suitable example is the 2μ plasmid.

Suitable vectors for use in mammalian cells are also known. Such vectors include well-known derivatives of SV-40, adenovirus, retrovirus-derived DNA sequences and shuttle vectors derived from combination of functional mammalian vectors, such as those described above, and functional plasmids and phage DNA.

25

30

35

20

Further eukaryotic expression vectors are known in the art (e.g., P.J. Southern and P. Berg, J. Mol. Appl. Genet. 1, 327-341 (1982); S. Subramani et al, Mol. Cell. Biol. 1, 854-864 (1981); R.J. Kaufmann and P.A. Sharp, "Amplification And Expression Of Sequences Cotransfected with A Modular Dihydrofolate Reductase Complementary DNA Gene," J. Mol. Biol. 159, 601-621 (1982); R.J. Kaufmann and P.A. Sharp, Mol. Cell. Biol. 159, 601-664 (1982); S.I. Scahill et al, "Expression And Characterization Of The Product Of A Human Immune Interferon DNA Gene In Chinese Hamster Ovary Cells," Proc. Natl. Acad. Sci. USA 80, 4654-4659 (1983); G. Urlaub and L.A. Chasin, Proc. Natl. Acad. Sci. USA 77, 4216-4220, (1980).

10

15

The expression vectors useful in the present invention contain at least one expression control sequence that is operatively linked to the DNA sequence or fragment to be expressed. The control sequence is inserted in the vector in order to control and to regulate the expression of the cloned DNA sequence. Examples of useful expression control sequences are the <u>lac</u> system, the <u>trp</u> system, the <u>tac</u> system, the trc system, major operator and promoter regions of phage lambda, the control region of fd coat protein, the glycolytic promoters of yeast, e.g., the promoter for 3-phosphoglycerate kinase, the promoters of yeast acid phosphatase, e.g., Pho5, the promoters of the yeast alpha-mating factors, and promoters derived from polyoma, adenovirus, retrovirus, and simian virus, e.g., the early and late promoters or SV40, and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells and their viruses or combinations thereof.

vectors containing the receptor-encoding DNA and control signals are inserted into a host cell for expression of the receptor. Some useful expression host cells include well-known prokaryotic and eukaryotic cells. Some suitable prokaryotic hosts include, for example, E. coli, such as E. coli SG-936, E. coli HB 101, E. coli W3110, E. coli X1776, E. coli X2282, E. coli DHI, and E. coli MRC1, Pseudomonas, Bacillus, such as Bacillus subtilis, and Streptomyces. Suitable eukaryotic cells include yeast and other fungi, insect, animal cells, such as COS cells and CHO cells, human cells and plant cells in tissue culture.

30

35

The human homologs of the mouse receptors described above are isolated by a similar strategy. RNA encoding the receptors are obtained from a source of human cells enriched for primitive stem cells. Suitable human cells include fetal spleen, thymus and liver cells, and umbilical cord blood as well as adult brain and bone marrow cells. The human fetal cells are preferably obtained on the day of gestation corresponding to mid-gestation in mice. The amino acid sequences of the human flk receptors as well as of the

10

15

30

35

nucleic acid sequences encoding them are homologous to the amino acid and nucleotide sequences of the mouse receptors.

In the present specification, the sequence of a first protein, such as a receptor or a ligand, or of a nucleic acid molecule that encodes the protein, is considered homologous to a second protein or nucleic acid molecule if the amino acid or nucleotide sequence of the first protein or nucleic acid molecule is at least about 30% homologous, preferably at least about 50% homologous, and more preferably at least about 65% homologous to the respective sequences of the second protein or nucleic acid molecule. In the case of proteins having high homology, the amino acid or nucleotide sequence of the first protein or nucleic acid molecule is at least about 75% homologous, preferably at least about 85% homologous, and more preferably at least about 95% homologous to the amino acid or nucleotide sequence of the second protein or nucleic acid molecule.

20 Combinations of mouse oligonucleotide pairs are used as PCR primers to amplify the human homologs from the cells to account for sequence divergence. The remainder of the procedure for obtaining the human flk homologs are similar to those described above for obtaining mouse flk receptors. The less than perfect homology between the human flk homologs and the mouse oligonucleotides is taken into account in determining the stringency of the hybridization conditions.

Assay for expression of Receptors on Stem Cells

In order to demonstrate the expression of flk receptors on the surface of primitive hematopoietic stem cells, antibodies that recognize the receptor are raised. The receptor may be the entire protein as it exists in nature, or an antigenic fragment of the whole protein. Preferably, the fragment comprises the predicted extra-cellular portion of the molecule.

15

20

25

30

35

Antigenic fragments may be identified by methods known in the art. Fragments containing antigenic sequences may be selected on the basis of generally accepted criteria of potential antigenicity and/or exposure. Such criteria include the hydrophilicity and relative antigenic index, as determined by surface exposure analysis of proteins. The determination of appropriate criteria is known to those skilled in the art, and has been described, for example, by Hopp et al, Proc. Nat'l Acad. Sci. USA 78, 3824-3828 (1981); Kyte et al, J. Mol. Biol. 157, 105-132 (1982); Emini, J. Virol. 55, 836-839 (1985); Jameson et al, CA BIOS 4, 181-186 (1988); and Karplus et al, Naturwissenschaften 72, 212-213 (1985). Amino acid domains predicted by these criteria to be surface exposed are selected preferentially over domains predicted to be more hydrophobic or hidden.

The proteins and fragments of the receptors to be used as antigens may be prepared by methods known in the art. Such methods include isolating or synthesizing DNA encoding the proteins and fragments, and using the DNA to produce recombinant proteins, as described above.

Fragments of proteins and DNA encoding the fragments may be chemically synthesized by methods known in the art from individual amino acids and nucleotides. Suitable methods for synthesizing protein fragments are described by Stuart and Young in "Solid Phase Peptide Synthesis," Second Edition, Pierce Chemical Company (1984). Suitable methods for synthesizing DNA fragments are described by Caruthers in Science 230, 281-285 (1985).

If the receptor fragment defines the epitope, but is too short to be antigenic, it may be conjugated to a carrier molecule in order to produce antibodies. Some suitable carrier molecules include keyhole limpet hemocyanin, Ig sequences, TrpE, and human or bovine serum albumen. Conjugation may be carried out by methods known in the art. One such method is to combine a cysteine residue of the fragment with a cysteine residue on the carrier molecule.

10

15

20

25

30

35

40

The antibodies are preferably monoclonal. Monoclonal antibodies may be produced by methods known in the art. These methods include the immunological method described by Kohl r and Milstein in Nature 256, 495-497 (1975) and Campbell in "Monoclonal Antibody Technology, The Production and Characterization of Rodent and Human Hybridomas" in Burdon et al., Eds, Laboratory Techniques in Biochemistry and Molecular Biology, Volume 13, Elsevier Science Publishers, Amsterdam (1985); as well as by the recombinant DNA method described by Huse et al in Science 246, 1275-1281 (1989).

Polyclonal or monoclonal antisera shown to be reactive with receptor-encoded native proteins, such as with flk-1 and flk-2 encoded proteins, expressed on the surface of viable cells are used to isolate antibody-positive cells. One method for isolating such cells is flow cytometry; see, for example, Loken et al., European patent application 317,156. The cells obtained are assayed for stem cells by engraftment into radiation-ablated hosts by methods known in the art; see, for example, Jordan et al., Cell 61, 953-963 (1990).

<u>Criteria for Novel Stem Cell Receptor Tyrosine Kinases</u> <u>Expressed in Stem Cells</u>

Additional novel receptor tyrosine kinase cDNAs are obtained by amplifying cDNAs from stem cell populations using oligonucleotides as PCR primers; see above. Examples of suitable oligonucleotides are PTK1 and PTK2, which were described by Wilks et al. in Proc. Natl. Acad. Sci. USA 86, 1603-1607 (1989). Novel cDNA is selected on the basis of differential hybridization screening with probes representing known kinases. The cDNA clones hybridizing only at low stringency are selected and sequenced. The presence of the amino acid triplet DFG confirms that the sequence represents a kinase. The diagnostic methionine residue in the WMAPES motif is indicative of a receptor-like kinase, as described above. Potentially novel sequences obtained are compared to available sequences using databases such as Genbank in order to confirm uniqueness. Gene-specific oligonucleotides are prepared as described above based on the sequence obtained.

The oligonucleotides are used to analyze stem cell enriched and depleted populations for expression. Such cell populations in mice are described, for example, by Jordan et al. in Cell 61, 953-956 (1990); Ikuta et al. in Cell 62, 863-864 (1990); Spangrude et al. in Science 241, 58-62 (1988); and Szilvassy et al. in Blood 74, 930-939 (1989). Examples of such human cell populations are described as CD33CD34+ by Andrews et al. in the Journal of Experimental Medicine 169, 1721-1731 (1989). Other human stem cell populations are described, for example, in Civin et al., European Patent Application 395,355 and in Loken et al., European Patent Application 317,156.

15

20

25

30

35

40

10

Isolating Ligands and Nucleic Acid Molecules Encoding Ligands

cells that may be used for obtaining ligands include stromal cells, for example stromal cells from fetal liver, fetal spleen, fetal thymus and fetal or adult bone marrow. Cell lines expressing ligands are established and screened.

For example, cells such as stromal (non-hematopoietic) cells from fetal liver are immortalized by known methods. Examples of known methods of immortalizing cells include transduction with a temperature sensitive SV40 T-antigen expressed in a retroviral vector. Infection of fetal liver cells with this virus permits the rapid and efficient establishment of multiple independent cell lines. These lines are screened for ligand activity by methods known in the art, such as those outlined below.

Ligands for the receptors of the invention, such as flk1 and flk-2, may be obtained from the cells in several ways.
For example, a bioassay system for ligand activity employs
chimeric tagged receptors; see, for example, Flanagan et al.,
Cell 63, 185-194 (1990). One strategy measures ligand
binding directly via a histochemical assay. Fusion proteins
comprising the extracellular receptor domains and secretable
alkaline phosphatase (SEAP) are constructed and transfected

into suitable cells such as NIH/3T3 or COS cells. Flanagan et al. refer to such DNA or amino acid constructs as APtag followed by the name of the receptor - i.e. APtag-c-kit. The fusion proteins bind with high affinity to cells expressing surface-bound ligand. Binding is detectable by the enzymatic activity of the alkaline phosphatase secreted into the medium. The bound cells, which are often stromal cells, are isolated from the APtag-receptor complex.

For example, some stromal cells that bind APtag-flk1 and APtag-flk2 fusion proteins include mouse fetal liver cells (see example 1); human fetal spleen cells (see example 3); and human fetal liver (example 3). Some stromal fetal thymus cells contain flk-1 ligand (example 3).

15

20

5

To clone the cDNA that encodes the ligand, a cDNA library is constructed from the isolated stromal cells in a suitable expression vector, preferably a phage such as CDM8, pSV Sport (BRL Gibco) or piH3, (Seed et al., Proc. Natl. Acad. Sci. USA 84, 3365-3369 (1987)). The library is transfected into suitable host cells, such as COS cells. Cells containing ligands on their surface are detected by known methods, see above.

In one such method, transfected COS cells are 25 distributed into single cell suspensions and incubated with the secreted alkaline phosphatase-flk receptor fusion protein, which is present in the medium from NIH/3T3 or COS cells prepared by the method described by Flanagan et al., see above. Alkaline phosphatase-receptor fusion proteins 3.0 that are not bound to the cells are removed by centrifugation, and the cells are panned on plates coated with antibodies to alkaline phosphatase. Bound cells are isolated following several washes with a suitable wash reagent, such as 5% fetal bovine serum in PBS, and the DNA is 35 extracted from the cells. Additional details of the panning method described above may be found in an article by Seed et al., Proc. Natl. Acad. Sci. USA 84, 3365-3369 (1987).

In a second strategy, the putative extracellular ligand binding domains of the receptors are fused to the transmembrane and kinase domains of the human c-fms tyrosine kinase and introduced into 3T3 fibroblasts. The human c-fms kinase is necessary and sufficient to transduce proliferative signals in these cells after appropriate activation i.e. with the flk-1 or flk-2 ligand. The 3T3 cells expressing the chimeras are used to screen putative sources of ligand in a cell proliferation assay.

10

15

5

An alternate approach for isolating ligands using the fusion receptor-expressing 3T3 cells and insertional activation is also possible. A retrovirus is introduced into random chromosomal positions in a large population of these cells. In a small fraction, the retrovirus is inserted in the vicinity of the ligand-encoding gene, thereby activating it. These cells proliferate due to autocrine stimulation of the receptor. The ligand gene is "tagged" by the retrovirus, thus facilitating its isolation.

20

25

30

35

40

Examples

Example 1. Cells containing mouse flk-1 and flk-2 ligands. Murine stromal cell line 2018.

In order to establish stromal cell lines, fetal liver cells are disaggregated with collagen and grown in a mixture of Dulbecco's Modified Eagle's Medium (DMEM) and 10% heat-The cells are inactivated fetal calf serum at 37°C. immortalized by standard methods. A suitable method involves introducing DNA encoding a growth regulating- or oncogene-The DNA may be encoding sequence into the target host cell. introduced by means of transduction in a recombinant viral See, for example, particle or transfection in a plasmid. Hammerschmidt et al., Nature 340, 393-397 (1989) and Abcouwer et al, Biotechnology 7, 939-946 (1989). Retroviruses are the preferred viral vectors, although SV40 and Epstein-Barr virus can also serve as donors of the growth-enhancing sequences. A suitable retrovirus is the ecotropic retrovirus containing

10

15

20

25

30

35

40

a temperature sensitive SV40 T-antigen (tsA58) and a G418 resistance gene described by McKay in Cell 66, 713-729 (1991). After several days at 37°C, the temperature of the medium is lowered to 32°C. Cells are selected with G418 (0.5 mg/ml). The selected cells are expanded and maintained.

A mouse stromal cell line produced by this procedure is called 2018 and was deposited on October 30, 1991 in the American Type Culture Collection, Rockville, Maryland, USA (ATCC); accession number CRL 10907.

Example 2. Cells containing human flk-1 and flk-2 ligands.

Human fetal liver (18, 20, and 33 weeks after abortion), spleen (18 weeks after abortion), or thymus (20 weeks after abortion) is removed at the time of abortion and stored on ice in a balanced salt solution. After mincing into 1 mm fragments and forcing through a wire mesh, the tissue is washed one time in Hanks Balanced Salt Solution (HBSS).

The disrupted tissue is centrifuged at 200 xg for 15 minutes at room temperature. The resulting pellet is resuspended in 10-20 ml of a tissue culture grade trypsin-EDTA solution (Flow Laboratories). The resuspended tissue is transferred to a sterile flask and stirred with a stirring bar at room temperature for 10 minutes. One ml of heatinactivated fetal bovine calf serum (Hyclone) is added to a final concentration of 10% in order to inhibit trypsin activity. Collagenase type IV (Sigma) is added from a stock solution (10 mg/ml in HBSS) to a final concentration of 100 ug/ml in order to disrupt the stromal cells. The tissue is stirred at room temperature for an additional 2.5 hours; collected by centrifugation (400xg, 15 minutes); and resuspended in "stromal medium," which contains Iscove's modification of DMEM supplemented with 10% heat-inactivated fetal calf serum, 5% heat-inactivated human serum (Sigma), 4 mM L-glutamine, 1x sodium pyruvate, (stock of 100x Sigma), 1x non-essential amino acids (stock of 100x, Flow), and a mixture of antibiotics kanomycin, neomycin, penicillin,

streptomycin. Prior to resuspending the pellet in the stromal medium, the pellet is wash d one time with HBSS. It is convenient to suspend the cells in 60 ml of medium. The number of cultures depends on the amount of tissue.

Example 3. Isolating Stromal cells

Resuspended Cells (example 2) that are incubated at 37°C with 5% carbon dioxide begin to adhere to the plastic plate within 10-48 hours. Confluent monolayers may be observed within 7-10 days, depending upon the number of cells plated in the initial innoculum. Non-adherent and highly refractile cells adhering to the stromal cell layer as colonies are separately removed by pipetting and frozen. Non-adherent cells are likely sources of populations of self-renewing stem cells containing flk-2. The adherent stromal cell layers are frozen in aliquots for future studies or expanded for growth in culture.

20

15

5

10

An unexpectedly high level of APtag-flk-2 fusion protein binding to the fetal spleen cells is observed. Two fetal spleen lines are grown in "stromal medium," which is described in example 2.

25

30

Non-adherent fetal stem cells attach to the stromal cells and form colonies (colony forming unit - CFU). Stromal cells and CFU are isolated by means of sterile glass cylinders and expanded in culture. A clone, called Fsp 62891, contains the flk-2 ligand. Fsp 62891 was deposited in the American Type Culture Collection, Rockville, Maryland, U.S.A on November 21, 1991, accession number CRL 10935.

Fetal liver and fetal thymus cells are prepared in a similar way. Both of these cell types produce ligands of flk-1 and, in the case of liver, some flk-2. One such fetal thymus cell line, called F.thy 62891, and one such fetal liver cell line, called FL 62891, were deposited in the American Type Culture Collection, Rockville, Maryland, U.S.A on November 21, 1991 and April 2, 1992, respectively,

5 .

20

25

35

40

accession numbers CRL 10936 and CRL 11005, respectively.

Stable human cell lines are prepared from fetal cells with the same temperature sensitive immortalizing virus used to prepare the murine cell line described in example 1.

Example 4. Isolation of human stromal cell clone

Highly refractile cells overgrow patches of stromal cells, presumably because the stromal cells produce factors that allow the formation of the CFU. To isolate stromal cell clones, sterile glass cylinders coated with vacuum grease are positioned over the CFU. A trypsin-EDTA solution (100 ml) is added in order to detach the cells. The cells are added to 5 ml of stromal medium and each (clone) plated in a single well of 6-well plate.

Example 5. Plasmid (AP-taq) for expressing secretable alkaline phosphatase (SEAP)

Plasmids that express secretable alkaline phosphatase are described by Flanagan and Leder in Cell 63, 185-194 (1990). The plasmids contain a promoter, such as the LTR promoter; a polylinker, including HindIII and BglII; DNA encoding SEAP; a poly-A signal; and ampicillin resistance gene; and replication site.

30 Example 6. Plasmid for expressing APtag-flk-2 and APtag-flk1 fusion proteins

Plasmids that express fusion proteins of SEAP and the extracellular portion of either flk-1 or flk-2 are prepared in accordance with the protocols of Flanagan and Leder in Cell 63, 185-194 (1990) and Berger et al., Gene 66, 1-10 (1988). Briefly, a HindIII-Bam HI fragment containing the extracellular portion of flk-1 or flk-2 is prepared and inserted into the HindIII-BglII site of the plasmid described in example 5.

30

35

40

Example 7. Production Of APtaq-flk-1 Or -flk-2 Fusion Prot in

The plasmids from Example 6 are transfected into Cos-7 cells by DEAE-dextran (as described in Current Protocols in 5 Molecular Biology, Unit 16.13, "Transient Expression of Proteins Using Cos Cells," 1991); and cotransfected with a selectable marker, such as pSV7neo, into NIH/3T3 cells by calcium precipitation. The NIH/3T3 cells are selected with $600\mu g/ml$ G418 in 100 mm plates. Over 300 clones are screened 10 for secretion of placental alkaline phosphatase activity. The assay is performed by heating a portion of the supernatant at 65°C for 10 minutes to inactivate background phosphatase activity, and measuring the OD_{405} after incubating with 1M diethanolamine (pH 9.8), 0.5 mM MgCl₂, 10 mM L-15 homoarginine (a phosphatase inhibitor), 0.5 mg/ml BSA, and 12 mM p-nitrophenyl phosphate. Human placental alkaline phosphatase is used to perform a standard curve. The APtaqflk-1 clones (F-1AP21-4) produce up to 10 μ g alkaline phosphatase activity/ml and the APtaq-flk-2 clones (F-2AP26-20 0) produce up to 0.5 μ g alkaline phosphatase activity/ml.

Example 8. Assay For APtaq-flk-1 Or APtaq-flk-2 Binding To Cells

The binding of APtaq-flk-1 or APtag-flk-2 to cells containing the appropriate ligand is assayed by standard methods. See, for example, Flanagan and Leder, Cell 63:185-194, 1990). Cells (i.e., mouse stromal cells, human fetal liver, spleen or thymus, or various control cells) are grown to confluency in six-well plates and washed with HBHA (Hank's balanced salt solution with 0.5 mg/ml BSA, 0.02% NaN3, 20 mM HEPES, pH 7.0). Supernatants from transfected COS or NIH/3T3 cells containing either APtaq-flk-1 fusion protein, APtag-flk-2 fusion protein, or APtag without a receptor (as a control) are added to the cell monolayers and incubated for two hours at room temperature on a rotating platform. The concentration of the APtaq-flk-1 fusion protein, APtag-flk-2 fusion protein, or APtag without a receptor is 60 ng/ml of

alkaline phosphatase as determined by the standard alkaline phosphatase curve (see above). The cells are then rinsed seven times with HBHA and lysed in 350 μ l of 1% Triton X-100, 10 mM Tris-HCl (pH 8.0). The lysates are transferred to a microfuge tube, along with a further 150 μ l rinse with the same solution. After vortexing vigorously, the samples are centrifuged for five minutes in a microfuge, heated at 65°C for 12 minutes to inactivate cellular phosphatases, and assayed for phosphatase activity as described previously. Results of experiments designed to show the time and dose responses of binding between stromal cells containing the ligands to flk-2 and flk-1 (2018) and APtag-flk-2, APtag-flk-1 and APtag without receptor (as a control) are shown in Figures 3 and 4, respectively.

15

10

5

Example 8A. Plasmids for expressing flk1/fms and flk2/fms fusion proteins

Plasmids that express fusion proteins of the
extracellular portion of either flk-1 or flk-2 and the
intracellular portion of c-fms (also known as colonystimulating factor-1 receptor) are prepared in a manner
similar to that described under Example 6 (Plasmid for
expressing APtag-flk-2 and APtag-flk-1 fusion proteins).
Briefly, a Hind III - Bam HI fragment containing the
extracellular portion of flk1 or flk2 is prepared and
inserted into the Hind III - Bgl II site of a pLH expression
vector containing the intracellular portion of c-fms.

30

8B. Expression of flk1/fms or flk2/fms in 3T3 cells

35

The plasmids from Example 11 are transfected into NIH/3T3 cells by calcium. The intracellular portion of c-fms is detected by Western blotting.

Example 9. Cloning and Expr ssion of cDNA Coding For Mouse
Ligand T flk-1 and flk-2 Receptors

10

15

20

25

30

35

cDNA expressing mouse ligand for flk-1 and flk-2 is prepared by known methods. See, for example, Seed, B., and Aruffo, A. PNAS 84:3365-3369, 1987; Simmons, D. and Seed, B. J. Immunol. 141:2797-2800; and D'Andrea, A.D., Lodish, H.F. and Wong, G.G. Cell 57:277-285, 1989).

The protocols are listed below in sequence: (a) RNA isolation; (b) poly A RNA preparation; (c) cDNA synthesis; (d) cDNA size fractionation; (e) propagation of plasmids (vector); (f) isolation of plasmid DNA; (g) preparation of vector pSV Sport (BRL Gibco) for cloning; (h) compilation of buffers for the above steps; (i) Transfection of cDNA encoding Ligands in Cos 7 Cells; (j) panning procedure; (k) Expression cloning of flk-1 or flk-2 ligand by establishment of an autocrine loop.

9a. Guanidinium thiocyanate/LiCl Protocol for RNA Isolation

For each ml of mix desired, 0.5 g guanidine thiocyanate (GuSCN) is dissolved in 0.55 ml of 25% LiCl (stock filtered through 0.45 micron filter). 20 μ l of mercaptoethanol is added. (The resulting solution is not good for more than about a week at room temperature.)

The 2018 stromal cells are centrifuged, and 1 ml of the solution described above is added to up to 5×10^7 cells. The cells are sheared by means of a polytron until the mixture is non-viscous. For small scale preparations (<108 cells), the sheared mixture is layered on 1.5 ml of 5.7M CsCl (RNase free; 1.26 g CsCl added to every ml 10 mM EDTA pH8), The mixture is and overlaid with RNase-free water if needed. spun in an SW55 rotor at 50 krpm for 2 hours. scale preparations, 25 ml of the mixture is layered on 12 ml CsCl in an SW28 tube, overlaid as above, and spun at 24 krpm for 8 hours. The contents of the tube are aspirated carefully with a sterile pasteur pipet connected to a vacuum flask. Once past the CsCl interface, a band around the tube is scratched with the pipet tip to prevent creeping of the layer on the wall down the tube. The remaining CsCl

solution is aspirated. The resulting pellet is taken up in water, but not redissolved. 1/10 volume of sodium acetate and three volumes of ethanol are added to the mixture, and spun. The pellet is resuspended in water at 70°C, if necessary. The concentration of the RNA is adjusted to 1 mg/ml and frozen.

It should be noted that small RNA molecules (e.g., 5S) do not come down. For small amounts of cells, the volumes are scaled down, and the mixture is overlaid with GuSCN in RNase-free water on a gradient (precipitation is inefficient when RNA is dilute).

9b. Poly A RNA preparation

15

20

25

30

35

10

5

(All buffers mentioned are compiled separately below)

A disposable polypropylene column is prepared by washing with 5M NaOH and then rinsing with RNase-free water. For each milligram of total RNA, approximately 0.3 ml (final packed bed) of oligo dT cellulose is added. The oligo dT cellulose is prepared by resuspending approximately 0.5 ml of dry powder in 1 ml of 0.1M NaOH and transferring it into the column, or by percolating 0.1M NaOH through a previously used column. The column is washed with several column volumes of RNase-free water until the pH is neutral, and rinsed with 2-3 ml of loading buffer. The column bed is transferred to a sterile 15 ml tube using 4-6 ml of loading buffer.

Total RNA from the 2018 cell line is heated to 70°C for 2-3 minutes. LiCl from RNase-free stock is added to the mixture to a final concentration of 0.5M. The mixture is combined with oligo dT cellulose in the 15 ml tube, which is vortexed or agitated for 10 minutes. The mixture is poured into the column, and washed with 3 ml loading buffer, and then with 3 ml of middle wash buffer. The mRNA is eluted directly into an SW55 tube with 1.5 ml of 2 mM EDTA and 0.1% SDS, discarding the first two or three drops.

The eluted mRNA is precipitated by adding 1/10 volume of 3M sodium acetate and filling the tube with ethanol. The contents of the tube are mixed, chilled for 30 minutes at -20°C, and spun at 50 krpm at 5°C for 30 minutes. After the ethanol is decanted, and the tube air dried, the mRNA pellet is resuspended in 50-100 μ l of RNase-free water. 5 μ l of the resuspended mRNA is heated to 70°C in MOPS/EDTA/formaldehyde, and examined on an RNase-free 1% agarose gel.

9c. cDNA Synthesis 10

The protocol used is a variation of the method described by Gubler and Hoffman in Gene 25, 263-270 (1983).

First Strand. 4 μ g of mRNA is added to a microfuge tube, heated to approximately 100°C for 30 seconds, quenched 15 The volume is adjusted to $70\mu l$ with RNAse-free water. 20 μ l of RT1 buffer, 2 μ l of RNAse inhibitor (Boehringer 36 $u/\mu l$), 1 μl of 5 $\mu g/\mu l$ of oligo dT (Collaborative Research), 2.5 μ l of 20 mM dXTP's (ultrapure -US Biochemicals), 1 μ l of 1M DTT and 4 μ l of RT-XL (Life 20 Sciences, 24 $u/\mu l$) are added. The mixture is incubated at 42°C for 40 minutes, and inactivated by heating at 70°C for 10 minutes.

Second Strand. 320 μ l of RNAse-free water, 80 μ l 25 of RT2 buffer, 5 μ l of DNA Polymerase I (Boehringer, 5 U/ μ l), 2 μ l RNAse H (BRL 2 u/μ l) are added to the solution containing the first strand. The solution is incubated at 15°C for one hour and at 22°C for an additional hour. After 30 adding 20 μ l of 0.5M EDTA, pH 8.0, the solution is extracted with phenol and precipitated by adding NaCl to 0.5M linear polyacrylamide (carrier) to 20 μ g/ml, and filling the tube with EtOH. The tube is spun for 2-3 minutes in a microfuge, vortexed to dislodge precipitated material from the wall of

the tube, and respun for one minute.

Adaptors. Adaptors provide specific restriction sites to facilitate cloning, and are available from BRL

10

Gibco, New England Biolabs, etc. Crude adaptors are resuspended at a concentration of 1 μ g/ μ l. MgSO₄ is added to a final concentration of 10 mM, followed by five volumes of The resulting precipitate is rinsed with 70% EtOH and resuspended in TE at a concentration of 1 μ g/ μ l. To kinase, 25 μ l of resuspended adaptors is added to 3 μ l of 10X kinasing buffer and 20 units of kinase. The mixture is incubated at 37°C overnight. The precipitated cDNA is resuspended in 240 μ l of TE (10/1). After adding 30 μ l of 10X low salt buffer, 30 μl of 10X ligation buffer with 0.1mM ATP, 3 μ l (2.4 μ g) of kinased 12-mer adaptor sequence, 2 μ l (1.6 μ g) of kinased 8-mer adaptor sequence, and 1 μ l of T4 DNA ligase (BioLabs, 400 $u/\mu l$, or Boehringer, 1 Weiss unit ml), the mixture is incubated at 15°C overnight. The cDNA is extracted with phenol and precipitated as above, except that the extra carrier is omitted, and resuspended in 100 μl of TE.

9d. cDNA Size Fractionation.

20

25

30

35

15

A 20% KOAc, 2 mM EDTA, 1 μ g/ml ethidium bromide solution and a 5% KOAc, 2 mM EDTA, 1 μ g/ml ethidium bromide solution are prepared. 2.6 ml of the 20% KOAc solution is added to the back chamber of a small gradient maker. Air bubbles are removed from the tube connecting the two chambers by allowing the 20% solution to flow into the front chamber and forcing the solution to return to the back chamber by tilting the gradient maker. The passage between the chambers is closed, and 2.5 ml of 5% solution is added to the front chamber. liquid in the tubing from a previous run is removed by allowing the 5% solution to flow to the end of the tubing, and then to return to its chamber. The apparatus is placed on a stirplate, and, with rapid stirring, the topcock connecting the two chambers and the front stopcock are opened. A polyallomer 5W55 tube is filled from the bottom The gradient is overlaid with 100 μl with the KOAc solution. of cDNA solution, and spun for three hours at 50k rpm at To collect fractions from the gradient, the SW55 tube is pierced close to the bottom of the tube with a butterfly

10

15

20

25

30

35

infusion set (with the luer hub clipped off). Three 0.5 ml fractions and then six 0.25 ml fractions are collected in microfuge tubes (approximately 22 and 11 drops, respectively). The fractions are precipitated by adding linear polyacrylamide to 20 μ g/ml and filling the tube to the top with ethanol. The tubes are cooled, spun in a microfuge tube for three minutes, vortexed, and respun for one minute. The resulting pellets are rinsed with 70% ethanol and respun, taking care not to permit the pellets to dry to completion. Each 0.25 ml fraction is resuspended in 10 μ l of TE, and 1 μ l is run on a 1% agarose minigel. The first three fractions, and the last six which contain no material smaller than 1 kb are pooled.

9e. Propagation of Plasmids

SupF plasmids are selected in nonsuppressing bacterial hosts containing a second plasmid, p3, which contains amber mutated ampicillin and tetracycline drug resistance elements. See Seed, Nucleic Acids Res., 11, 2427-2445 (1983). plasmid is derived from RP1, is 57 kb in length, and is a stably maintained, single copy episome. The ampicillin resistance of this plasmid reverts at a high rate so that amp plasmids usually cannot be used in p3-containing Selection for tetracycline resistance alone is strains. almost as good as selection for ampicillin-tetracycline resistance. However, spontaneous appearance of chromosomal suppressor tRNA mutations presents an unavoidable background (frequency about 10-9) in this system. Colonies arising from spontaneous suppressor mutations are usually larger than colonies arising from plasmid transformation. Suppressor plasmids are selected in Luria broth (LB) medium containing ampicillin at 12.5 μ g/ml and tetracycline at 7.5 μ g/ml. For scaled-up plasmid preparations, M9 Casamino acids medium containing glycerol (0.8%) is employed as a carbon source. The bacteria are grown to saturation.

Alternatively, pSV Sport (BRL, Gaithersberg, Maryland) may be employed to provide SV40 derived sequences for

replication, transcription initiation and termination in COS 7 cells, as well as those sequences necessary for replication and ampicillin resistance in $\underline{E.\ coli}$.

9f. Isolation of Vector DNA/Plasmid

One liter of saturated bacterial cells are spun down in J6 bottles at 4.2k rpm for 25 minutes. The cells are resuspended in 40 ml 10 mM EDTA, pH 8. 80 ml 0.2M NaOH and 1% SDS are added, and the mixture is swirled until it is 10 clear and viscous. 40 ml 5M KOAc, pH 4.7 (2.5M KOAc, 2.5M HOAc) is added, and the mixture is shaken semi-vigorously until the lumps are approximately 2-3 mm in size. is spun at 4.2k rpm for 5 minutes. The supernatant is poured through cheesecloth into a 250 ml bottle, which is then 15 filled with isopropyl alcohol and centrifuged at 4.2k rpm for The bottle is gently drained and rinsed with 70% 5 minutes. ethanol, taking care not to fragment the pellet. After inverting the bottle and removing traces of ethanol, the mixture is resuspended in 3.5 ml Tris base/EDTA (20 mM/10 20 3.75 ml of resuspended pellet and 0.75 ml 10 mg/ml ethidium bromide are added to 4.5 g CsCl. VTi80 tubes are filled with solution, and centrifuged for at least 2.5 hours at 80k rpm. Bands are extracted by visible light with 1 ml syringe and 20 gauge or lower needle. The top of the tube is 25 cut off with scissors, and the needle is inserted upwards into the tube at an angle of about 30 degrees with respect to the tube at a position about 3 mm beneath the band, with the bevel of the needle up. After the band is removed, the contents of the tube are poured into bleach. The extracted 30 band is deposited in a 13 ml Sarstedt tube, which is then filled to the top with n-butanol saturated with 1M NaCl If the amount of DNA is large, the extraction procedure may be repeated. After aspirating the butanol into a trap containing 5M NaOH to destroy ethidium, an 35 approximately equal volume of 1M ammonium acetate and approximately two volumes of 95% ethanol are added to the DNA, which is then spun at 10k rpm for 5 minutes. The pellet is rinsed carefully with 70% ethanol, and dried with a swab

or lyophilizer.

9g. Preparation of Vector for Cloning

20 μ g of vector is cut in a 200 μ l reaction with 100 units of BstXI (New York Biolabs) at 50°C overnight in a well 5 thermostated, circulating water bath. Potassium acetate solutions (5 and 20%) are prepared in 5W55 tubes as described above. 100 μ l of the digested vector is added to each tube and spun for three hours, 50k rpm at 22°C. Under 300 nm UV light, the desired band is observed to migrate 2/3 of the 10 length of the tube. Forward trailing of the band indicates that the gradient is overloaded. The band is removed with a 1 ml syringe fitted with a 20 gauge needle. After adding linear polyacrylamide and precipitating the plasmid by adding three volumes of ethanol, the plasmid is resuspended in 50 μl 15 of TE. Trial ligations are carried out with a constant amount of vector and increasing amounts of cDNA. Large scale ligation are carried out on the basis of these trial ligations. Usually the entire cDNA prep requires 1-2 μg of 20 cut vector.

9h. Buffers

30

35

25 Loading Buffer: .5M LiCl, 10 mM Tris pH 7.5, 1 mM

EDTA .1% SDS.

Middle Wash Buffer: .15M LiCl, 10 mM Tris pH 7.5, 1 mM

EDTA .1% SDS.

RT1 Buffer: .25M Tris pH 8.8 (8.2 at 42), .25M

KCl, 30 mM MgCl₂.

RT2 Buffer: .1M Tris pH 7.5, 25 mM MgCl2, .5M

KCl, .25 mg/ml BSA, 50 mM

dithiothreitol (DTT).

10X Low Salt: 60 mM Tris pH 7.5, 60 mM MgCl₂, 50 mM

NaCl, 2.5 mg/ml BSA 70 mM DME

10X Ligation Additions: 1 mM ATP, 20 mM DTT, 1 mg/ml BSA 10 mM spermidine.

10X Kinasing Buffer: .5M Tris pH 7.5, 10 mM ATP, 20 mM

DTT, 10 mM spermidine, 1 mg/ml BSA

100 mM MgCl₂

9i. Transfection of cDNA encoding Ligands in Cos 7 Cells

Cos 7 cells are split 1:5 into 100 mm plates in 5 Dulbecco's modified Eagles medium (DME)/10% fetal calf serum (FCS), and allowed to grow overnight. 3 ml Tris/DME (0.039M Tris, pH 7.4 in DME) containing 400 μ g/ml DEAE-dextran (Sigma, D-9885) is prepared for each 100 mm plate of Cos 7 cells to be transfected. 10 μg of plasmid DNA preparation 10 per plate is added. The medium is removed from the Cos-7 cells and the DNA/DEAE-dextran mixture is added. are incubated for 4.5 hours. The medium is removed from the cells, and replaced with 3 ml of DME containing 2% fetal calf serum (FCS) and 0.1 mM chloroquine. The cells are incubated for one hour. After removing the chloroquine and replacing with 1.5 ml 20% glycerol in PBS, the cells are allowed to stand at room temperature for one minute. 3 ml Tris/DME is added, and the mixture is aspirated and washed two times with 10 ml DME/10% FCS is added and the mixture is 20 incubated overnight. The transfected Cos 7 cells are split 1:2 into fresh 100 mm plates with (DME)/10% FCS and allowed to grow.

25 9j. Panning Procedure for Cos 7 cells Expressing Ligand

1) Antibody-coated plates:

Bacteriological 100 mm plates are coated for 1.5 hours
with rabbit anti-human placental alkaline phosphatase (Dako,
California) diluted 1:500 in 10 ml of 50 mM Tris.HCl, pH 9.5.
The plates are washed three times with 0.15M NaCl, and
incubated with 3 mg BSA/ml PBS overnight. The blocking
solution is aspirated, and the plates are utilized
immediately or frozen for later use.

2) Panning cells:

The medium from transfected Cos 7 cells is aspirated,

30

35

and 3 ml PBS/0.5 mM EDTA/0.02% sodium azide is added. plates are incubated at 37°C for thirty minutes in order to detach the cells. The cells are triturated vigorously with a pasteur pipet and collected in a 15 ml centrifuge tube. plate is washed with a further 2 ml PBS/EDTA/azide solution, which is then added to the centrifuge tube. After centrifuging at 200 xg for five minutes, the cells are resuspended in 3 ml of APtaq-flk-1 (F-1AP21-4) or flk-2 (F-2AP26-0) supernatant from transfected NIH/3T3 cells (see Example 7.), and incubated for 1.5 hours on ice. The cells are centrifuged again at 200 xg for five minutes. 10 supernatant is aspirated, and the cells are resuspended in 3 ml PBS/EDTA/azide solution. The cell suspension is layered carefully on 3 ml PBS/EDTA/azide/2% Ficoll, and centrifuged at 200 xg for four minutes. The supernatant is aspirated, and the cells are resuspended in 0.5 ml PBS/EDTA/azide 15 The cells are added to the antibody-coated plates containing 4 ml PBS/EDTA/azide/5% FBS, and allowed to stand solution. at room temperature one to three hours. Non-adhering cells are removed by washing gently two or three times with 3 ml 20 PBS/5% FBS.

3) Hirt Supernatant:

plates, which are allowed to stand 20 minutes. The viscuous mixture is added by means of a pipet into a microfuge tube.

0.1 ml 5M NaCl is added to the tube, mixed, and chilled on ice for at least five hours. The tube is spun for four minutes, and the supernatant is removed carefully. The contents of the tube are extracted with phenol once, or, if the first interface is not clean, twice. Ten micrograms of linear polyacrylamide (or other carrier) is added, and the tube is filled to the top with ethanol. The resulting precipitate is resuspended in 0.1 ml water or TE. After adding 3 volumes of EtOH/NaOAc, the cells are reprecipitated and resuspended in 0.1 ml water or TE. The cDNA obtained is transfected into any suitable E. coli host by electroporation. Suitable hosts are described in various

10

catalogs, and include MC1061/p3 or Electromax DH10B Cells of BRL Gibco. The cDNA is extracted by conventional methods.

The above panning procedure is repeated until a pure \underline{E} . \underline{coli} clone bearing the cDNA as a unique plasmid recombinant capable of transfecting mammalian cells and yielding a positive panning assay is isolated. Normally, three repetitions are sufficient.

9k. Expression cloning of flk1 or flk2 ligand by establishment of an autocrine loop

Cells expressing flk1/fms or flk2/fms (Example 10) are transfected with 20-30 μg of a cDNA library from either flk1 15 ligand or flk2 ligand expressing stromal cells, respectively. The cDNA library is prepared as described above (a-h). The cells are co-transfected with 1 μ g pLTR neo cDNA. Following transfection the cells are passaged 1:2 and cultured in 800 μ g/ml of G418 in Dulbecco's medium (DME) supplemented with 20 10% CS. Approximately 12 days later the colonies of cells are passaged and plated onto dishes coated with poly -Dlysine (1 mg/ml) and human fibronectin (15 μ g/ml). culture medium is defined serum-free medium which is a mixture (3:1) of DME and Ham's F12 medium. The medium 25 supplements are 8 mM NaHCO3, 15 mM HEPES pH 7.4, 3 mM histidine, 4 μ M MnCl₂, 10 uM ethanolamine, 0.1 μ M selenous acid, 2 μ M hydrocortisone, 5 μ g/ml transferrin, 500 μ g/ml bovine serum albumin/linoleic acid complex, and 20 μ g/ml insulin (Ref. Zhan, X, et al. Oncogene 1: 369-376,1987). 3.0. cultures are refed the next day and every 3 days until the only cells capable of growing under the defined medium condition remain. The remaining colonies of cells are expanded and tested for the presence of the ligand by assaying for binding of APtag - flk1 or APtag - flk2 to the 35 cells (as described in Example 8). The DNA would be rescued from cells demonstrating the presence of the flk1 or flk2 ligand and the sequence.

15

20

25

30

35

Example 10. Expression of Ligand cDNA

The cDNA is sequenced, and expressed in a suitable host cell, such as a mammalian cell, preferably COS, CHO or NIH/3T3 cells. The presence of the ligand is confirmed by demonstrating binding of the ligand to APtag-flk2 fusion protein (see above).

Example 11. Chemical Cross Linking of Receptor and Ligand

Cross linking experiments are performed on intact cells using a modification of the procedure described by Blume-Jensen et al et al., EMBO J., 10, 4121-4128 (1991). Cells are cultured in 100mm tissue culture plates to subconfluence and washed once with PBS-0.1% BSA.

To examine chemical cross linking of soluble receptor to membrane-bound ligand, stromal cells from the 2018 stromal cell line are incubated with conditioned media (CM) from transfected 3T3 cells expressing the soluble receptor F1k2-APtag. Cross linking studies of soluble ligand to membrane bound receptor are performed by incubating conditioned media from 2018 cells with transfected 3T3 cells expressing a F1k2-fms fusion construct.

Binding is carried out for 2 hours either at room temperature with CM containing 0.02% sodium azide to prevent receptor internalization or at 4°C with CM (and buffers) supplemented with sodium vanadate to prevent receptor dephosphorylation. Cells are washed twice with PBS-0.1% BSA and four times with PBS.

Cross linking is performed in PBS containing 250 mM disuccinimidyl suberate (DSS; Pierce) for 30 minutes at room temperature. The reaction is quenched with Tris-HCL pH7.4 to a final concentration of 50 mM.

Cells are solubilized in solubilization buffer: 0.5% Triton - X100, 0.5% deoxycholic acid, 20 mM Tris pH 7.4, 150

mM NaCl, 10mM EDTA, 1mM PMFS, 50 mg/ml aprotinin, 2 mg/ml bestatin, 2 mg/ml pepstatin and 10mg/ml leupeptin. Lysed cells are immediately transferred to 1.5 ml Nalgene tubes and solubilized by rolling end to end for 45 minutes at 4°C. Lysates are then centrifuged in a microfuge at 14,000g for 10 minutes. Solubilized cross linked receptor complexes are then retrieved from lysates by incubating supernatants with 10% (v/v) wheat germ lectin-Sepharose 6MB beads (Pharmacia) at 4°C for 2 hours or overnight.

10

Beads are washed once with Tris-buffered saline (TBS) and resuspended in 2X SDS-polyacrylamide nonreducing sample buffer. Bound complexes are eluted from the beads by heating at 95°C for 5 minutes. Samples are analyzed on 4-12% gradient gels (NOVEX) under nonreducing and reducing conditions (0.35 M 2-mercaptoethanol) and then transferred to PVDF membranes for 2 hours using a Novex blotting apparatus. Blots are blocked in TBS-3% BSA for 1 hour at room temperature followed by incubation with appropriate antibody.

20

15

Cross linked Flk2-APtag and Flk2-fms receptors are detected using rabbit polyclonal antibodies raised against human alkaline phosphatase and fms protein, respectively. The remainder of the procedure is carried out according to the instructions provided in the ABC Kit (Pierce). The kit is based on the use of a biotinylated secondary antibody and avidin-biotinylated horseradish peroxidase complex for detection.

3.0

25

Example 12. Expression and purification of Flag-Flk-2.

Design of the Flag-Flk2 expression plasmids.

35

A synthetic DNA fragment (Fragment 1) is synthesized using complementary oligonucleotides BP1 and BP2 (see below and SEQ. ID. NOS. 7 and 8). The fragment encoded the following features in the 5' to 3' order: Sal I restriction

site, 22 base pair (bp) 5' untranslated region containing an eukaryotic ribosome binding site, an ATG initiation codon, preprotrypsinogen signal sequenc , coding region for the FLAG peptide (DYKDDDDKI) and Bgl II restriction site.

5

10

15

20

25

A cDNA fragment (Fragment 2) encoding Asn 27 to Ser 544 of murine Flk2 is obtained by polymerase chain reaction (PCR) using primers designed to introduce an in frame Bgl II site at the 5' end (oligonucleotide BP5, see below and SEQ. ID. NO. 9) and a termination codon followed by a Not I site at the 3' end (oligonucleotide BP10, see below and SEQ. ID. NO. 10). The template for the PCR reaction is full length Flk2 cDNA (Matthews et al., Cell 65:1143 (1991)). Fragment 2 is extensively digested with Bgl II and Not I restriction enzymes prior to ligation.

To assemble the complete Flag-Flk2 gene, Fragments 1 and 2 are ligated in a tripartate ligation into Sal I and Not I digested plasmid pSPORT (Gibco/BRL, Grand Island, NY) to give the plasmid pFlag-Flk2.

Preferably, the Flag-Flk2 protein is attached at either end to the Fc portion of an immunoglobulin (Ig). The Ig is preferably attached to the Flk2 portion of the Flag-Flk2 To assemble the construct pFlag-FLK2-Ig, the sequences coding for the CH1 domain of human immunoglobulin G (IgG1) are placed downstream of the Flk2 coding region in the plasmid pFlag-Flk2 as per the method described by Zettlemeissl et al., DNA and Cell Biology 9: 347-352 (1990).

30

The sequences of oligonucleotides used to construct the Flag-Flk2 gene are given below:

Oligonucleotide BP1:

5'-AATTCGTCGACTTTCTGTCACCATGAGTGCACTTCTGATCCTAGCCCTTGTG 35 GGAGCTGCTGTTGCTGACTACAAAGATGATGATGACAAGATCTA-3'

Oligonucleotide BP2:

5'-AGCTTAGATCTTGTCATCATCTTTGTAGTCAGCAACAGCAGCTCCCACA

15

20

25

30

35

AGGGCTAGGATCAGAAGTGCACTCATGGTGACAGAAAGTCGACG-3'

Oligonucleotide BP5: 5'-TGAGAAGATCTCAAACCAAGACCTGCCTGT-3'

Oligonucleotide BP10: 5'-CCAATGGCGGCCGCTCAGGAGATGTTGTCTTGGA-3'

Expression of the Flag-Flk2 construct.

For transient expression of the Flag-Flk2 construct, the Sal1 to Not I fragment from pFlag-Flk2 is subcloned into the plasmid pSVSPORT (Gibco/BRL) to give the plasmid pSVFlag-Flk2. For expression of the Flag-Flk2 protein pSVFlag-Flk2 is transfected into COS monkey cells using the DEAE-dextran method.

For stable expression in eukaryotic cells, the Sal I-Not I fragment of pFlag-Flk2 is cloned into the EcoRV and Not I sites of the plasmid pcDNA I/Neo (Invitrogen Co., San Diego, CA). The Sal I 3' recessed terminus of pFlag-Flk2 is filled with the Klenow fragment of DNA polymerase I and a mixture of deoxyribonucleotides to make the site compatible with the EcoRV site of the vector. The resulting construct is introduced into cultured mamalian cells using either the Lipofectin (Gibco/BRL) or the calcium phosphate methods.

For expression in insect cells, the SalI to Hind III (from pSPORT polylinker) fragment of pFlag-Flk2 is subcloned into the BamH1-Hind III sites of the baculovirus transfer vector pBlueBac III (Invitrogen). The vector Bam HI site and the insert Sal I site are blunted with Klenow (see above). Production of the recombinant virus and infection of the Sf9 insect cells is performed as per manufacturers directions (Invitrogen).

Expression of the Flag-Flk2 protein is detected by Western blotting of SDS-PAGE separated conditioned media (mamalian cells) or cell lysates (insect cells) with the

10

15

anti-Flag monoclonal antibody (mAb) M1 (International Biotechnology, Inc. [IBI], New Haven, CT).

- 3. Affinity purification of the Flag-Flk2 protein from conditioned media or insect cell lysates is performed using immobilized mAb M1 (IBI) as per manufacturers specifications.
- 3.1 Affinity purification of the Flag-Flk2-Ig1 protein from conditioned media is performed using immobilized Protein A (Pharmacia LKB, Piscataway, NJ) as per the manufacturers instructions.
 - II. Use of the Flag-Flk2 protein to search for the Flk2 ligand.
 - 1. Binding and cross-linking studies to detect membranebound ligand:

A. Binding studies.

- Murine stromal lines (eg. 2018 cells ATCC CRL 10907 20 (see below), see example 1, supra) considered to be candidates660Xfexpression of the Flk2 ligand were deposited at the American Type Culture Collection, ATCC CRL 10907 (see below) and cultured in Dulbecco's modified Eagles medium (DMEM; Gibco/BRL) supplemented with 10% fetal calf serum. The 25 cells are grown to confluency in 10 cm plates and washed once with PBS. Conditioned media containing Flag-Flk2 is incubated with the cells at 4°C for 2 hrs. The cell monolayers are rinsed extensively to remove the non-bound protein, solubilized and centrifuged to remove insoluble cellular 30 material. Glycoproteins in the lysates are partially purified with wheat germ agglutinin-Sepharose (Pharmacia LKB, Piscataway, NJ), boiled in an SDS sample buffer, separated on SDS-PAGE gels and transferred to nitrocellulose membranes. The membranes are probed with the M1 antibody to detect the 35 presence of cell-associated Flag-Flk2 protein.
 - B. In a cross-linking study, the above protocol is

10

15

followed except that prior to solubilization the monolayer are treated with the crosslinker disuccinimidyl suberate (DSS; Pierce, Rockford, IL). The presence of a putative ligand is detected by an upward shift in the apparent molecular weight of the Flag-Flk2 band on Western blots.

- C. Purified Flag-Flk2 protein labelled with Na125I via the Chloramine T method is used to asses the ability of the soluble extracellular domain of the Flk2 receptor to bind transmembrane form of the Flk2 ligand in cultured stromal lines. The labelled protein is added to monolayers of stromal cells on ice for 2 hr in the presence or absence of excess unlabelled protein. Specific binding is calculated by subtracting counts bound in the presence of excess unlabelled protein from the total counts bound.
- 2. Use of the Flag-Flk2 protein to search for secreted form of the ligand.
- The Flag-Flk2 protein is used in attempts to 20 identify the Flk2 ligand in conditioned media from stromal cell cultures via modification of the direct N-terminal sequencing method of Pan et al., Bioch. Biophys. Res. Comm. 166:201 (1990). Briefly, the Flag-Flk2 protein N-terminally sequenced by automatic Edman degradation chemistry an an ABI 25 477A sequncer with on line PTH amino acid analysis. Approximatelly 15 amino acids are determined. The protein is then immobilized on Nugel PAF silica beads via free NH4+ groups. The immobilized Flag-Flk2 is incubated with conditioned media from putative ligand-producing cells for 30 30 min at 4°C and washed free off non-bound proteins with phosphate buffered saline adjusted to 2M NaCl. The resulting protein complex is resequenced. For each sequencing cycle, any amino acid not expected at this position in the FLAG-Flk2 protein is considered as possibly originating from a protein 35 complexed to the Flk2 receptor.
 - B. For conventional affinity chromatography, the Flag-Flk2 protein is immobilized on a stable support such as

Sepharose. 355-methionine labelled-conditioned media from stromal cell lines are passed over the affinity matrix and bound material is analyzed by SDS-PAGE gel electrophoresis and autoradiography.

5

3. Use of the Flag-Flk2 protein in expression cloning experiments.

A method of expression cloning of integral membrane

proteins in COS cells has been described (Aruffo and Seed,
Proc. Natl. Acad. Sci. 84:8573 (1987)). A cDNA library is
prepared from an appropriate stromal cell line such as 2018
and is transfected into COS cells. Cells transiently
expressing the Flk2 ligand are affinity adsorbed onto plastic

plates coated with the Flag-Flk2 protein. The cells are
lysed, the plasmid DNA is recovered and amplified in a
bacterial host. The cycle of transfection into COS cells is
repeated until a single cDNA clone encoding the ligand
molecule is isolated.

20

In a modification of the above technique, pools of transfected COS cells are screened for binding of 125I-Flag-Flk2. Positive cells pools are selected and plasmid DNA is recovered and amplified in E. coli. The resulting DNA preparation is used in subsequent rounds of transfection and transient expression until all cells are positive for binding of 125I-Flag-Flk2. The cDNA in the final plasmid preparation is then sequenced to determine the sequence of the putative Flk-2 ligand.

30

35

25

SUPPLEMENTAL ENABLEMENT

The invention as claimed is enabled in accordance with the above specification and readily available references and starting materials. Nevertheless, Applicants have deposited with the American Type Culture Collection, Rockville, Md., USA (ATCC) the cell lines listed below:

2018, ATCC accession no. CRL 10907, deposited

October 30, 1991.

Fsp 62891, ATCC accession no. CRL 10935, deposit d November 21, 1991.

5

10

15

20

F.thy 62891, ATCC accession no. CRL 10936, deposited November 21, 1991.

FL 62891, ATCC accession no. CRL 11005, deposited April 2, 1992.

These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and the regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture for 30 years from date of deposit. The organisms will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Applicants and ATCC which assures unrestricted availability upon issuance of the pertinent U.S. patent. Availability of the deposited strains is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

25

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Lemischka, Ihor R.
- TITLE OF INVENTION: TOTIPOTENT HEMATOPOIETIC STEM CELL RECEPTORS AND THEIR LIGANDS (ii)
- (iii) NUMBER OF SEQUENCES: 10
- CORRESPONDENCE ADDRESS: (iv)
- ADDRESSEE: Imclone Systems Incorporated Street STREET: 180 Varick (A)
- CITY: New York

a ΰ

- STATE: New York
 - COUNTRY: U.S.A. ZIP: 10014 田田
- MEDIUM TYPE: Floppy disk COMPUTER READABLE FORM: 2
- COMPUTER: IBM PC Compatible

B)

- SYSTEM: PC-DOS/MS-DOS OPERATING
- SOFTWARE: PatentIn Release #1.0, Version #1.25 <u>(a</u> ΰ
- CURRENT APPLICATION DATA: APPLICATION NUMBER: (A) (vi)
 - FILING DATE:
 - CLASSIFICATION: (E)
- ATTORNEY/AGENT INFORMATION: NAME: Feit, Irving N. (viii)
- REGISTRATION NUMBER: 28,601 B
- REFERENCE/DOCKET NUMBER: LEM-3-7PT <u>(</u>0
- TELECOMMUNICATION INFORMATION: TELEPHONE: 212-645-1405 (1x)

(B) TELEFAX: 212-645-2054

INFORMATION FOR SEQ ID NO:1: (2)

LENGTH: 3453 base pairs SEQUENCE CHARACTERISTICS: (ï)

TYPE: nucleic acid (B)

STRANDEDNESS: double

TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

FEATURE: (ix)

NAME/KEY: mat_peptide LOCATION: 112..3006 (B)

FEATURE: (ix)

(A) NAME/KEY: sig_peptide (B) LOCATION: 31..111

FEATURE: (xt)

LOCATION: 31..3009 (A) NAME/KEY: CDS (B) LOCATION: 31... (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGC AGC Arg Ser -20 Met Arg Ala Leu Ala Gln Arg GCGGCCTGGC TACCGCGCGC TCCGGAGGCC ATG CGG GCG TTG GCG

						•	m	 •	. ₫
102	150	198	246	294	342	390	438	486	534
· · .									
GAG Glu	AGT Ser	ATG Met	AGT Ser 45	GGG Gly	TGC Cys	GAT	GAG Glu	AAC ASn 125	r GTG r Val
CTT C Leu C -5	ATC 1	CGA	CAG Gln	TCT Ser 60	TCC	TTT Phe	ACA	GCC	TAT
ATT C Ile I	TTA P	TAC (Tyr)	CGC	GAG Glu	CTT Leu 75	CAC His	GTG Val	CGC Arg	CTG
ATG A Met I	GTT T Val L 10	rcg 1 Ser 1	AGG (Arg 7	GCC	GAC	CCG Pro 90	AAC	GAA Glu	CAG Gln
GTA A' Val M	TGT G Cys V	TCA I Ser S	CCG Pro	GTG (Val	GGG Gly	CAG Gln	TTG Leu 105	AGC Ser	ACA Thr
	AAG TO	CCA T Pro S	ACC C Thr F	GAG G	CCA (Pro (TGC Cys	ATC Ile	CAG Gln 120	GAT
G TCA u Ser 0		AAG CO Lys P	TGT A Cys T	GTG G Val G 55	ACC C Thr 1	66C :	GCC	ATT	AGA
r Tre	G ATC 1 Ile		CAG TO	ACC G Thr V	GCC A Ala T	CTG (Leu (ATG Met	CAT	GTA
r GTT L Val	r Gre o Val 5	G GGA a Gly		GCC A(Ala T	CTC G Leu A	TCC C Ser I	TCC A	CTC (Iren 1	AAT
GTT	r CCT Pro	A GCG F Ala	c crc p Leu		CAG C' Gln L	AGC T Ser S	GTT T Val S 100	CTA C	GTG 1 Val 1
CTT	CTG	Ser 20	A GAC u Asp 5	A GCG u Ala	•		ATC G Ile V	TAC C TYr I	ACA G
CIG	GAC	TCA	GP G1	GAA Glu	A GTG n Val	*			TTC A Phe T
CTG Leu -15	CAA Gln	GGC	CCA	TAT TYr 50	CAA Gln	r AAG e Lys	A GGA g Gly	A GAA Y Glu	
CTG	AAC Asn 1	AAT Asn	TCC	GTA Val	CTG Leu 65	TTT. Phe	AGA Arg	A GGA A Gly	A CTG 1 Leu
CGG Arg	ACA Thr	AAC Asn	GGA	ACG Thr	ACC	GTC Val 80	AAC	GCA Ala	A GTA
CGG C	GTT 1	GAG Glu 15	CGA Arg	GGG	ATC Ile	TGG Trp	CAA Gln 95	CAG Gln	ACA Thr
GAC CASP A	ACC G	CAT (His (GTG Val	GAA	TCC	CTC	TTA	ACC Thr 110	TAC

				_					
	582	630	678	726	774	822	870	918	996
	•	· .							
					*				·
	CIC	TGC	AGA Arg	TGC Cys 205	ATA Ile	AAA Lys	CAT His	66C 61y	CGG Arg 285
140	CTG	CTC	GTC Val	AGA Arg	ACC Thr 220	CTG	AAC	GAG Glu	ATT Ile
	GCA Ala 155	GTG Val	GTT Val	ATC Ile	TTC Phe	TTC Phe 235	GTG	GAG Glu	ATG Met
	GAT Asp	TGG Trp 170	GCT	GAC	CTG	TTA Leu	CAT His 250	CTG	ACC Thr
	CAG Gln	GAG Glu	CCT Pro 185	ACA Thr	AAG Lys	CAG Gln	ATC Ile	GCC Ala 265	AGG
• .	AAC Asn	GTG Val	66C 61y	GGA G1y 200	ACC	CCC	GCC	AAA Lys	AAC Asn 280
135	GAA Glu	ACT Thr	GAA Glu	TTC	TGC Cys 215	CTG	AAG Lys	GAC Asp	ACA
	ATG Met 150	CCC	GAA Glu	TTG	GAA Glu	ACA Thr 230	TGT Cys	GAA Glu	TCC
	AAG Lys	GAG Glu 165	AAA Lys	GAG Glu	CGC Arg	AGC	AGG Arg 245	CTG	TAC
	AGG	CCG	TGT Cys 180	CAT His	66C G1y	CAG Gln	ATC Ile	GAG Glu 260	ACC
•	TTT Phe	GTT Val	AGC	CTT Leu 195	CTG	CCT	TGG Trp	TGG	AGT Ser 275
130	TAC	GGT	GAA Glu	GTA Val	GCA Ala 210	GCT	TTG Leu	ACC	ATG
	CCT Pro 145	GAG Glu	AGG Arg	AAG Lys	AAT Asn	CAG Gln 225	CCC	CTC	GAG
	AGA Arg	TCC Ser 160	CAC	GAA Glu	AGA	AAC Asn	GAA Glu 240	666 61y	TTT Phe
	AGG	ATC Ile	TCC Ser 175	GAG Glu	GCT	CTA	666 61y	TTC Phe 255	TAC
	CTA	TGC Cys	AGC	AAG Lys 190	TGT Cys	GAT Asp	GTG Val	GGA Gly	AGC Ser 270

1014	1062	1110	1158	1206	1254	1302	1350	1398	1446	
TTG GCC TTT GTG TCT TCC GTG GGA AGG AAC GAC ACC GGA TAT Leu Ala Phe Val Ser Ser Val Gly Arg Asn Asp Thr Gly Tyr 290	TGC TCT TCC TCA AAG CAC CCC AGC CAG TCA GCG TTG GTG ACC 1062 Cys Ser Ser Ser Lys His Pro Ser Gln Ser Ala Leu Val Thr 305	GAA AAA GGG TTT ATA AAC GCT ACC AGC TCG CAA GAA GAG TAT Glu Lys Gly Phe Ile Asn Ala Thr Ser Ser Gln Glu Glu Tyr 320	GAC CCG TAC GAA AAG TTC TGC TTC TCA GTC AGG TTT AAA GCG Asp Pro Tyr Glu Lys Phe Cys Phe Ser Val Arg Phe Lys Ala 340	CGA ATC CGA TGC ACG TGG ATC TTC TCT CAA GCC TCA TTT CCT Arg Ile Arg Cys Thr Trp Ile Phe Ser Gln Ala Ser Phe Pro 350	CAG AGA GGC CTG GAG GAT GGG TAC AGC ATA TCT AAA TTT TGC Gln Arg Gly Leu Glu Asp Gly Tyr Ser Ile Ser Lys Phe Cys 370	AAG AAC AAG CCA GGA GAG TAC ATA TTC TAT GCA GAA AAT GAT Lys Asn Lys Pro Gly Glu Tyr Ile Phe Tyr Ala Glu Asn Asp 395	CAG TTC ACC AAA ATG TTC ACG CTG AAT ATA AGA AAG AAA CCT Gln Phe Thr Lys Met Phe Thr Leu Asn Ile Arg Lys Lys Pro 400	CTA GCA AAT GCC TCA GCC AGC CAG GCG TCC TGT TCC TCT GAT Leu Ala Asn Ala Ser Ala Ser Gln Ala Ser Cys Ser Ser Asp 420	TAC CCG CTA CCC TCT TGG ACC TGG AAG AAG TGT TCG GAC AAA TCT 14 Tyr Pro Leu Pro Ser Trp Thr Trp Lys Lys Cys Ser Asp Lys Ser	
ATT CTC Ile Leu	TAC ACC Tyr Thr	Arc cra Ile Leu	GAA ATT Glu ile 335	TAC CCA TYr Pro	TGT GAA Cys Glu	GAT CAT Asp His	GAC GCC Asp Ala	CAA GTG Gln Val	GGC T	

	1494	1542	1590	1638	1686	1734	1782	1830	1878
445	GCT Ala	ATG Met	TCT Ser	TTC Phe	TGT Cys 525	AAA Lys	66c 61y	TAT	GTC Val
	AAG Lys 460	AAT	AAT	CCC	CTC	TAC Tyr 540	ACT	GAA Glu	AAG Lys
•	AAA Lys	CTA Leu 475	TAC	660 61y	GGG G1y	AAA Lys	GTG Val	TAT Tyr	666 G1y
	AAT	ACT	GCG Ala 490	CCA	ATT Ile	CAC His	CAG Gln	GAC ASP 570	TTT
	TGG Trp	AGT	TGT	TCA Ser 505	ACC Thr	TGC	ATC	AGG Arg	GAG G1u 585
440	GTT (AGC Ser	TGC Cys	AAC Asn	GCG Ala 520	ATC Ile	ATG	TTC	TTA
	GGA G1Y 455	TCG	AAA Lys	TTA	TAT Tyr	TTG Leu 535	CAG	GAC	AAC
٠	GAA	GTG Val 470	GTC Val	TTT Phe	TTC	GTG Val	CTG Leu 550	GTT Val	GAG Glu
	CCA	TGG Trp	CTG Leu 485	ATC Ile	TCC	ATT Ile	CAG Gln	TAC Tyr 565	AGA
	ATC Ile	cag Gln	CTT	ACC Thr 500	ATC Ile	CIC	AGT	TTC	CCG Pro 580
435	GAA Glu	GGC Gly	GGG Gly	GAA Glu	AAC Asn 515	GTT Val	GAG Glu	TAC	TTC
•	GAG Glu 450	TTT	AAA Lys	TGC Cys	GAC Asp	GTT Val 530	TAC	GAG Glu	GAG
	ACG	GTG Val 465	GGG Gly	TCT	CAA	ATT Ile	AGG Arg 545	AAC	TGG
	TGC	AAA Lys	GCC Ala 480	ACG Thr	ATC Ile	TTC	TTT Phe	GAT Asp 560	AAG
	AAT	AGA	GAG Glu	GGC G1Y 495	TTC Phe	CCC Pro	CAA Gln	CTG	CTT Leu 575
430	CCC Pro	AAC	AGT	ATG	CCT Pro 510	CTC	AAG Lys	CCC	GAC

1926	1974	2022	2070	2118	2166	2214	2262	2310	2358
ACG GCC TAT GGC Thr Ala Tyr Gly 605	AAG ATG CTA AAA Lys Met Leu Lys 620	TCG GAG CTC AAA Ser Glu Leu Lys 635	AAT CTG CTG GGG Asn Leu Leu Gly 650	GAA TAT TGT TGC Glu Tyr Cys Cys	A GAG AAG TTT CAC y Glu Lys Phe His 685	C AGT TCT TAC CCT B Ser Ser Tyr Pro 700	T TCA CGA GAA GTT Y Ser Arg Glu Val 715	C AAT GGG AAT TCA e Asn Gly Asn Ser 730	G AAG AGG CTG GCA n Lys Arg Leu Ala
GTG ATG AAC GCC Val Met Asn Ala 600	CAG GTG GCG GTG Gln Val Ala Val 615	GAA GCT CTC ATG Glu Ala Leu Met 630	GAC AAC ATC GTG Asp Asn Ile Val	TAC TTG ATT TTT Tyr Leu Ile Phe 665	AGA AGT AAA AGA Arg Ser Lys Arg 680	GAA CAT AAT TTC Glu His Asn Phe 695	AGC ATG CCT GGT Ser Met Pro Gly 710	CTC TCA GGG TTC Leu Ser Gly Phe	TAT GAA AAC CAG Tyr Glu Asn Gln
TTC GGG AGG Phe Gly Arg 595	GTC TCA ATT Val Ser Ile	TGT GAA AAA Cys Glu Lys	GGA CAC CAT Gly His His 645	TCA GGG CCA GTG 1 Ser Gly Pro Val 1 660	CTC AAC TAC CTA I Leu Asn Tyr Leu 675	GAG ATT TTT AAG Glu Ile Phe Lys 690	CAT TCA AAT TCC His Ser Asn Ser	CCC TTG GAT CAG Pro Leu Asp Gln 725	GAT GAG ATT GAA Asp Glu Ile Glu
CTG GGG TCT GGC GCT Leu Gly Ser Gly Ala 590	ATT AGT AAA ACG GGA Ile Ser Lys Thr Gly 610	GAG AAA GCT GAC AGC Glu Lys Ala Asp Ser 625	ATG ATG ACC CAC CTG Met Met Thr His Leu 640	GCA TGC ACA CTG TO Ala Cys Thr Leu So 655	TAT GGT GAC CTC C' Tyr Gly Asp Leu L 670	AGG ACA TGG ACA G Arg Thr Trp Thr G	ACT TTC CAG GCA C Thr Phe Gln Ala H	CAG TTA CAC CCG C Gln Leu His Pro I 720	ATT CAT TCT GAA (

	2406	2454	2502	2550	2598	2646	2694	2742	2790
	CTT Leu 765	AAG Lys	CAC	CTG	AAG Lys	AGT Ser 845	GGT Gly	CTG	666 61y
	CIC	TTC Phe 780	ACC	ATC Ile	GTG Val	AAG Lys	CTG Leu 860	AAA Lys	GAA Glu
	GAC (Asp 1	GAG G	GTC Val 795	GAC Asp	CCG	ATC Ile	TCA	TAT Tyr 875	ACA Thr
	GAA Glu	CTG	TTG	CGA Arg 810	CTG	ACA Thr	TTT Phe	TTC	GCC Ala 890
745	TTT (Phe (TTC (GTG Val	GCC Ala	CGG Arg 825	TAC Tyr	ATA Ile	AAC Asn	TAT Tyr
	ACG 1 Thr 1 760	GAA Glu	AAT Asn	CTG	GCA	ATC Ile 840	GAG Glu	GCT	TTC Phe
	CTG 7	ATG (Met (AGG	GGA G1y	AAC Asn	666 61y	TGG Trp 855	GAC Asp	CCA
	GTG (Val 1	GGC 7	GCC Ala 790	TTT	66C G1y	GAA	CTC	GTC Val 870	CAG
	AAC (Asn	AAA Lys	GCA	GAC ASP 805	AGG Arg	TTT Phe	CTT	CCT	GAG G1u 885
740	TTG	GCC	CTG	TGT Cys	GTC Val 820	TTA	ATC Ile	ATT Ile	ATG Met
	GAT ASP 755	GTG	GAC	ATC Ile	GTC Val	AGC Ser 835	66c 61y	GGC Gly	AAA Lys
	GAA Glu	CAA Gln 770	AGA Arg	AAG Lys	TAC Tyr	GAG Glu	TAC TYF 850	CCT	TTT Phe
	AG 1u	TAC	CAC His 785	GTG Val	AGC	CCC	TCC	TAC Tyr 865	GGA G1y
	GAG G Glu G	GCG A	GTC Val	GTG Val 800	TCC	GCA	TGG Trp	CCT	AGT Ser 880
735	GAA (Glu (TTT (TGT	AAG Lys	GAC ASP 815	ATG Met	GTC Val	AAC	CAG
	GAA C Glu C 750	TGC : Cys 1	Ser	GGG Gly	AGC	TGG Trp 830	GAC	GTG Val	ATT Ile

88	9	2934	2982	3036	3096	3156	3216	3276	3336	3396	3453
2838	2886	29	8	ň ·	er.	Ю	m ·	.	(7)	(1)	
TGG GCT TTT GAC TCA AGG AAG CGG Trp Ala Phe Asp Ser Arg Lys Arg 905	TIT TIA GGA TGT CAG CTG GCA GAG Phe Leu Gly Cys Gln Leu Ala Glu 920	TCC ATC CAT CTA CCA AAA CAG GCG Ser Ile His Leu Pro Lys Gln Ala 935	CTC AGA GCC CAG TCG CCA CAG CGC CAG Leu Arg Ala Gln Ser Pro Gln Arg Gln 950	AGT TAGCGAGGAG GCCTTGGACC CCGCCACCCT 30 Ser 965	GCCTCGCCTC TGAGGAAGCG CCCTACAGCG	TGTCTGCCAT TACTCCAAAG TGACTTCTAT	ACAGGCGGGA GAGCCAATAA TGAGACTTGT TGGTGAGCCC	AGGGGAAAGC CATGTATCTG AAATATAGTA	CCCGTTTTTT GCTAAGGGAA AGCTAAATAT	ATGTAACTTT TTCATCTATT TAGTGATATA	GGAAATAAAC TTTCTACTGT AAAAAAAA AAAAAAAAA AAAAAAA
ATA TAC TIT GTA ATG CAA TCC TGC Ile Tyr Phe Val Met Gln Ser Cys 895	CCA TCC TTC CCC AAC CTG ACT TCA Pro Ser Phe Pro Asn Leu Thr Ser 910	GCA GAA GCA TGT ATC AGA ACA Ala Glu Glu Ala Cys Ile Arg Thr 930	GCC CCT CAG CAG AGA GGC GGG CT Ala Pro Gln Gln Arg Gly Gly Le 945	GTG AAG ATT CAC AGA GAA AGA AG Val Lys Ile His Arg Glu Arg Se 960	AGCAGGCTGT AGACCGCAGA GCCAAGATTA	CGTTGCTTCG CTGGACTTTT CTCTAGATGC	AAAATCAAAC CTCTCCTCGC ACAGGCG	GCCTACCCTG GGGCCTTTC CACGAGCTTG	TATTCTTGTA AATACGTGAA ACAAACCAAA	GATTTTTAAA AATCTATGTT TTAAAATACT	TITTATGGAT GGAAATAAAC TTTCTAC

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

acids LENGTH: 992 amino

TYPE: amino acid

TOPOLOGY: linear (ii) MOLECULE TYPE: protein

SEQUENCE DESCRIPTION: SEQ ID NO:2: (xi) Leu Leu Leu Val Asp Arg Arg Ser -20 Arg Ala Leu Ala Gln Arg -25 Met -27

Leu Pro 5 Asn Gln Asp Glu Thr Val Thr Ser Val Met Ile Leu Leu

Ala Ser 20 Ser Glu Asn Asn Gly Cys Val Leu Ile Ser His

Ser Pro Glu Asp Leu Arg Gly Tyr Arg Met Val Ser

Ser

Pro

Gly Lys

Ile Lys

Val

Val

Ala Glu Ala Tyr 50 Val Thr Glu Gly Ser 45 Gln Arg Arg Pro

Ser His Lys Phe Leu 65 Trp Cys Leu Ser Ser 60 Len Gly Asp Pro Thr Val 55

Leu

Gln

Gln Val

Thr

Ile

Ser

Gly

Glu

Ala

Val

Glu

 Thr

 \mathbf{Thr}

Cys

Gln

Ser 85 Val 80 Ala 70

Ser

Ile

Gly

Gln Asn Arg

Phe Asp Leu

His

Gln Pro

cys

Leu

Leu Gln Gly Gln Ala 110 Glu Thr Thr Leu Asn Val 105 Ala Ile

Asn \mathtt{Thr} Tyr Thr Val Leu Phe Asn 125 Ser Glu Arg Ala Glu His Ile

									•				
) Asp Thr Gln Leu Tyr Val Leu Arg Arg Pro Tyr Phe Arg Lys 145	ı Asn Gln Asp Ala Leu Leu Cys Ile Ser Glu Gly Val Pro Glu 155	r Val Glu Trp Val Leu Cys Ser Ser His Arg Glu Ser Cys Lys 170	u Gly Pro Ala Val Val Arg Lys Glu Glu Lys Val Leu His Glu 185	e Gly Thr Asp Ile Arg Cys Cys Ala Arg Asn Ala Leu Gly Arg 200	s Thr Lys Leu Phe Thr Ile Asp Leu Asn Gln Ala Pro Gln Ser 5	eu Pro Gln Leu Phe Leu Lys Val Gly Glu Pro Leu Trp Ile Arg 240	s Ala Ile His Val Asn His Gly Phe Gly Leu Thr Trp Glu Leu 250	sp Lys Ala Leu Glu Glu Gly Ser Tyr Phe Glu Met Ser Thr Tyr 265	hr Asn Arg Thr Met Ile Arg Ile Leu Leu Ala Phe Val Ser Ser 280	ly Arg Asn Asp Thr Gly Tyr Tyr Thr Cys Ser Ser Ser Lys His 300	er Gln Ser Ala Leu Val Thr Ile Leu Glu Lys Gly Phe Ile Asn 325	thr Ser Ser Glu Glu Glu Tyr Glu Ile Asp Pro Tyr Glu Lys Phe 335	
Val Arg Asp Th 135												Ala Thr Ser	
•												•	

Phe Tyr Ala Thr Ile Gly Leu Cys Leu Pro Phe Ile Val Val Leu Ile 520 520

Val Leu Ile Cys His Lys Tyr Lys Lys Gln Phe Arg Tyr Glu Ser Gln 535 545

Trp	Asp	Glu	Phe 405	Ala	Thr	Pro	Trp	Leu 485	Ile	Ser
Thr '	Glu	Gly (Met	Ser 420	Trp	Ile	Gln	Leu	Thr 500	Ile
Cys 355	Leu	Pro	Lys	Ala	Ser 435	Glu	Gly	Gly	Glu	Asn 515
Arg	G1y 370	Lys	Thr	Asn	Pro	Glu 450	Phe	Lys	Cys	Asp
Ile	Arg	Asn 385	Phe	Ala	Leu	Thr	Val 465	Gly	Ser	Gln
Arg	Gln	Lys	Gln 400	Leu	Pro	Cys	Lys	Ala 480	Thr	Ile
Pro	Glu	His	Ala	Val 415	Tyr	Ser Pro Asn 445	Asn Arg	Glu	G1Y 495	Phe
Tyr 350	Cys	Asp	Asp	Gln	G1y 430	Pro	Asn	Ser	Met	Pro 510
Ala	Pro 365	Cys	Asp	Pro	Asp	Ser 445	Ala	Asn Met	Ser	Phe
Lys	Phe	Phe 380	Asn	Lys	Ser	Lys	Lys 460		Asn	Pro
Phe	Ser	Lys	G1u 395	Lys	Ser	Asp	Lys	Leu 475	Tyr	Gly
Arg Phe	Ala	Ser	Ala	Arg 410	Cys	Ser	Asn	Thr	Ala 490	Pro
Val 345	Gln	Ile	Tyr	Ile	Ser 425	Cys	Trp	Ser	Cys	Ser 505
Ser	Ser 360	Ser	Phe	Asn	Ala	Lys 440	Val	Ser	Cys	Asn
Phe	Phe	Tyr 375	Ile	Leu	Gln	Lys	G1y 455	Ser	Lys	Leu
Cys]	Ile	Gly	Tyr 390	Thr	Ser	Trp	Glu	Val 470	Val	Phe
_										

									÷			٠
TYr 565	Arg	Arg	IJe	Lys	His 645	Val	Leu	Lys	Ser	Gln 725	Glu	Asn
Phe T	Pro A 580	Gly ?	Ser]	Glu]	His	Pro 660	Tyr	Phe	Asn	Asp	11e 740	Leu
Tyr Pl	Phe P	Phe G 595	Val S	cys 6	Gly F	Gly 1	Asn '675	Ile	Ser	Leu	Glu	Asp 755
	Glu Pl	Ala P	G1y V 610	Ser C	Leu G	Ser (ren 7	Glu 690	His	Pro	Asp	Glu
n Glu			Thr G	Asp 8 625	His L	ren s	Leu I	Thr (Ala 705	Pro	Glu	Glu
p Asn 0	s Trp	Ser Gly	Lys Th	Ala As	Thr H 640	Thr L	Asp I	Trp 1	Gln 7	His 720	Ser	Glu
u Asp 560	u Lys 5		Ser Ly	Lys A.	Met T	Cys T 655	Gly A	Thr 1	Phe (Leu	His 735	Glu
Leu	p Leu 575	u Gly 0		Glu Ly	Met M	Ala C	Tyr G 670	Arg T	Thr F	Gln I	Ile	Glu (
Pro	r Asp	1 Leu 590	y Ile 5				Cys T	His A 685	Pro T	Val G		Ala (
Gly	Tyr	s Val	r Gly 605	u Lys 0	u Lys	u Gly		Phe H	Tyr P	Glu V	Asn. Ser	en A
Thr	Glu	Lys	1 Tyr	t Leu 620	u Leu 5	u Leu	r Cys			Arg G 715	Gly A	Arg Leu
Val 555	Tyr	Gly	Ala	Met	G1u 635	Leu	Tyr	ı Lys	r Ser			
Gln	Asp 570	Phe	Thr	Lys	Ser	Asn 650	Glu	Glu	Ser	Ser	A L	Lys 5
Ile (Arg	G1u 585	Ala	Val	Met	Val	Phe 665	Arg	Phe	Gly	Phe	1 Gln 745
Met]	Phe /	Leu	Asn 600	Ala	Leu	Ile	11e	Lys 680	Asn	Pro	Gly	Glu Asn
Gln 1	Asp 1	Asn]	Met	Val 615	Ala	Asn	Leu	Ser	His 695	Met	Ser	
Leu G 550	Val A	Glu 7	Val 1	Gln	G1u 630	Asp	Tyr	Arg	G1u	Ser 710	Leu	Tyr
μШ	-	J	•	*					٠			

			:									
Lys	Ala	Asp 805	Arg	Phe	Leu	Pro	G1u 885	Cys	Ser	Thr	Leu	Ser 965
Ala	Leu 1	Cys ,	Val 820	Leu	Ile	Ile	Met	Ser 900	Thr	Arg	Gly	Arg
Val	Asp	Ile	Val	Ser 835	Gly	Gly	Lys	Gln	Leu 915	Ile	Gly	Glu
Gln 770	Arg	Lys	Tyr	Glu	Tyr 850	Pro	Phe	Met	Asn	Cys 930	Arg	Arg
Tyr	His 785	Val	Ser	Pro	Ser	Tyr 865	Gly	Val	Pro	Ala	Gln 945	His
Ala	Val	Val 800	Ser	Ala	Trp	Pro	Ser 880	Phe	Phe	Glu	Gln	Ile 960
Phe	Cys	Lys	Asp 815	Met	Val	Asn	Gln	TYr 895	Ser	Glu	Pro	Lys
Cys	Ser	Gly	Ser	Trp 830	Asp	Val	Ile	Ile	Pro 910	Ala	Ala	Gln Val
Leu 765	Lys	His	Leu	Lys	Ser 845	Gly	Leu	Gly	Arg	Glu 925	Ala	
Leu	Phe 780	Thr	Ile	Val	Lys	Leu 860	Lys	Glu	Lys	Ala	Gln 940	Arg
Asp	Glu	Val 795	Asp	Pro	Ile	Ser	Tyr 875	Thr	Arg	Leu	Lys	G1n 955
Glu	Leu	Leu	Arg 810	Leu	Thr	Phe	Phe	Ala 890	Ser	Gln	Pro	Pro
Phe	Phe	Val	Ala	Arg 825	Tyr	Ile	Asn	Tyr	Asp 905	Cys	Leu	Ser
Thr 760	Glu	Asn	Leu	Ala	11e 840	Glu	Ala	Phe	Phe	G1y 920	His	Gln
Leu	Met 775	Arg	Gly	Asn	Gly	Trp 855	Asp	Pro	Ala	Leu	11e 935	Ala
Val	Gly	Ala 790	Phe	Gly	Glu	Leu	Val 870	Gln	Trp	Phe	Ser	Arg 950
												÷

(2) INFORMATION FOR SEQ ID NO:3:

LENGTH: 3501 base pairs SEQUENCE CHARACTERISTICS: A (Ţ)

B

TYPE: nucleic acid STRANDEDNESS: double

TOPOLOGY: linear <u>v</u>ê

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

FEATURE: (ix)

LOCATION: 58.3039 CDS (A) NAME/KEY: (B) LOCATION:

FEATURE: (ix)

NAME/KEY: mat_peptide LOCATION: 139..3036 (B)

LOCATION:

(ix) FEATURE:

(A) NAME/KEY: sig_peptide (B) LOCATION: 58..138

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CGAGGCGGCA TCCGAGGGCT GGGCCGGCGC CCTGGGGGAC CCCGGGCTCC GGAGGCC

57

105	153	201	249	297	345	393	441	489	537
		•			•				•
GTT Val	GTG Val 5	666 61y	666 G1y	GCT	GAT	CTG Leu 85	ATG	TTT Phe	ATA Ile
GTT Val	CCT	GTG Val 20	CTC	GCC Ala	GTC Val	TCC	TCC Ser 100	CTT	AGT Ser
CTC	CTG	TCA Ser	GAC Asp 35	GCT Ala	CTG Leu	AGC	GTT Val	CTA Leu 115	GTG Val
CTG Leu -15	GAT Asp	TCA	GAA Glu	GAA Glu 50	GTG Val	CAC His	GTT Val	TAC Tyr	ACA
CCG	CAA Gln 1	GAT	CCG	TAC	CAA Gln 65	AAG Lys	GGA Gly	GAA Glu	TTT Phe
GTG Val	AAT Asn	AAT Asn	TCC Ser	GTG Val	CTG	TTT Phe 80	AGA Arg	GGA Gly	TTC
ACC Thr	ACA Thr	AAC Asn 15	GAA Glu	ACA Thr	ACA Thr	GTC	AAC Asn 95	GCT	ATA Ile
66C 61y	ATT Ile	AAG Lys	TCA Ser 30	666 61y	ATC Ile	TGG Trp	CAAGIN	CAA Gln 110	ACA
GCG Ala -20	ACT Thr	CAT His	GTA	TCA Ser 45	TCC	CTC	TTA	ACC	TAC
GAC	666 61y -5	AAT	ATG Met	AGC	GCT Ala 60	TGT	GAT Asp	GAA	AAT Asn
CGC	TTT Phe	ATC Ile	CCC	CAG Gln	TCT	TCC Ser 75	TTT Phe	ACA	ACC
GCG	ATA Ile	TTA Leu 10	TAT Tyr	CCC	GTA Val	ATT	CAT His	ATG	GCT
TTG	ATG Met	GTT Val	TCA Ser 25	AGA Arg	GAT	AAC Asn	CCA	AAA Lys 105	GAA Glu
GCG Ala -25	GCA Ala	TGT Cys	TCA	TTG Leu 40	GTG Val	GGG G1y	CAG Gln	TTG	AGT
CCG	TCT Ser -10	AAG Lys	TCA Ser	GCG Ala	GAA Glu 55	CCA	TGC Cys	ATT Ile	CAG Gln
ATG Met -27	TTT Phe	ATC Ile	AAG Lys	TGT	GTG	GCC Ala 70	AAT	GTC	ATT Ile

,	288	633	189	729	777	828	873	921	696
	ATG Met	CCG Pro 165	GAA Glu	TTA	GAA Glu	ACA Thr	TGC Cys 245	GAA Glu	TCA Ser
٠,	AAA A Lys M	GAG C Glu F	AAA G Lys C 180	GAA Glu	AGG	ACC Thr	AGG Arg	TTA Leu 260	TAT Tyr
	AGA A Arg L	CCA G Pro G	TGT 7 Cys 1	CAT His	GGC Gly	CAG Gln	ATA Ile	GAA	ACC Thr 275
130	TTT A	GTT (Val 1	AGC Ser	CTT	CTG Leu 210	CCT	TGG Trp	TGG	AGT
-	TAC 1	AGC (Ser	GAA	GTG Val	GAA Glu	ACT Thr 225	TTA	ACC	ATG Met
	CCT J	GAG Glu 160	666 G1y	AAA Lys	AAT	CAA Gln	CCC Pro 240	CTC	GAG Glu
	AGA (Arg 1	rcr ser	cag Gln 175	GAA Glu	AGA	AAT Asn	GAA Glu	666 61y 255	TTT:
, .	AGA 1 Arg 1	ATA	TCA	GAG Glu 190	GCC	CTA	GGG G1y	TTC	TAC TYF 270
125	TTA I	TGC Cys	gat Asp	AAG Lys	TGT Cys 205	gat Asp	GTA	GGA G1y	AAC Asn
	ACA 1 Thr 1	GIC	TGC Cys	AAA Lys	TGC Cys	ATA Ile 220	AAA Lys	CAT	GGC GBY
	TAC I	CTG Leu 155	CTT	GTT Val	AGG Arg	ACA	CTT Leu 235	ASC	GAG Glu
	CTT 1	GCC	GTG Val	GTT Val	ATA Ile	TTC	TTT	GTG Val 250	GAG Glu
	CTG (Leu]	GAC	TGG Trp	GCT Ala 185	GAC	CTG	TTA	CAT	CTC Leu 265
120	ACC	CAG	GAA Glu	CCA	ACG Thr 200	AGG	CAA Gln	Grr	GCA B Ala
-	AAT Asn 135	AAC	GTG Val	AGT Ser	GGG	ACC Thr 215	CCA	GCT	AAA Lys
	AGA A	GAA Glu 150	ATC	GAA Glu	TTT Phe	TGC	TTG Leu 230	AAA Lys	AAC Asn
						•			

				•		4			
1017	1065	1113	1161	1209	1257	1305	1353	1401	1449
									-
GTG Val	CCC	GCT Ala 325	TGT Cys	ACC Thr	GGA Gly	TAT Tyr	ACG Thr 405	AGT	TGG
TCA	CAT His	AAT	TTT Phe 340	TGG Trp	AAC Asn	GAA Glu	TTC	GCA Ala 420	ACC
TCA	AAG Lys	ATA Ile	GAG Glu	ACG Thr 355	GAT Asp	GGA Gly	ATG	TCG	TGG Trp
GTA Val	TCA	TTT Phe	GAA Glu	TGT Cys	CTT Leu 370	CCA	AAA Lys	GCA	TCT
TTT (Phe	TCT Ser 305	GGA G1y	TAT Tyr	AGA Arg	GGT	CAG Gln 385	ACC	GAA Glu	CCA
GCT :	TCC	AAG Lys 320	CAA Gln	ATC Ile	AAG Lys	CAC	TTT Phe 400	GCA	TTA
TTT (Phe 1	TGT	GGA Gly	GAC ASP 335	CAA Gln	CAA	AAG Lys	CAA	CTC Leu 415	CCA
CTG :	ACT Thr	GTA Val	ATT Ile	CCA Pro 350	GAG Glu	CAT His	GCC Ala	GTG Val	TAC
ATT (Ile 1 285	TAC	ATC Ile	GAA Glu	TAC Tyr	TGT Cys 365	AAT Asn	GAT	CAA Gln	GGA G1y
CGG 7	TAC TYr 300	ACC Thr	TAT Tyr	GCC	CCT	TGC Cys 380	GAT Asp	CCT	GAT
ATA (Ile /	GGA '	GTT Val	GAT	AAA Lys	TTT Phe	TTT Phe	AAT Asn 395	AAA Lys	TCG
ATG /	ACC	TTG	GAA G1u 330	TTT Phe	TCA	AAG Lys	GAA Glu	AGG Arg 410	TTC
ACT 1 Thr 1	GAC ASP	GCT	AGT	AGG Arg 345	AAA Lys	TCC	GCA Ala	AGA Arg	TGT
AGA AArg 1	AAC (Asn Asn	TCA	TCA	GTC Val	CGA Arg 360	ATA Ile	CAT His	ATA Ile	TCC
AAC PASn A	AGA 1 Arg 1 295	caa g	AAT	TCT Ser	TCT	AGC Ser 375	TTC Phe	AAT Asn	GCG
ACA P Thr	GCA A	AGT (Ser (310	ACC	TTT	TTC	TAC Tyr	ATA Ile 390	CTG	CAG Gln

	•								
	1497	1545	1593	1641	1689	1737	1785	1833	1881
	GAA Glu	GTG Val	GTC Val 485	CFF	TTC Phe	CTG	CTA	GTT Val 565	GAA
٠.	ACA G Thr G	TGG G Trp V	CTG G Leu V	ATC (Ile 1500	rca	ACC Thr	CAG Gln	TAC	AGA Arg 580
435	ATC A Ile T	CAG I	TTC (Phe I	ACG	ATC Ile 515	TTA	AGC Ser	TTC	CCA Pro
4	GAG A Glu I 450	GGA C	GGG .	GAG Glu	AAC	GTT Val 530	GAA	TAC	TTT Phe
	GAA G Glu G	TTT (Phe (465	AAA Lys	TGT	GAC	GTC Val	TAT TYr 545	GAG	GAG
	ACA G Thr	GTG 7	ATA Ile 480	TCT	CAA Gln	ATT Ile	AGG	AAT Asn 560	TGG Trp
	TGC A	AAA Lys	GCC	ACA Thr 495	ATC Ile	TTC	TTT Phe	GAT:	c AAA u Lys 575
430	AAC 7	AGA	GAA Glu	GGC	TTC Phe 510	CTC	CAA Gln	TCA	r CTC p Leu
7	CCC 1 Pro 1	ASD	AGT	CTT	CCT	CTC Leu 525	AAG LYS	TCC Ser	r GAT r Asp
•	TCT	GCT Ala 460	ATG Met	TCC	TTC	TGT Cys	AAA Lys 540	GGC G1y	A TAT 1 TYE
	AAG T	AAG Lys	AAC Asn 475	AAT	CCC	GTT Val	TAC	ACC Thr 555	r GAA c Glu
	GAC 1 Asp]	AGA	CTA	TAC Tyr 490	GGC	GGT	AAG	GTG 1 Val	A TAT 1 TYF 570
425	TCA (Ser)	AAT	ACT Thr	GCA	CCA Pro 505	ATT Ile	CAC	CAG Glu	A GAA g Glu
7	TGT Cys 440	TGG	AGT	TGT	TCT	ACA Thr 520	TGT	GTA	AGA Arg
	AAG 1 Lys (GTC Val	AGC	TGC Cys	AAC Asn	GCA	ATT Ile 535	ATG Met	r TTC
	AAG 1 Lys 1	GGA	TCG Ser 470	AAG Lys	TTA	TAT Tyr	CTA	CAG Gln 550	GAT

							•		•
1929	1977	2025	2073	2121	2169	2217	2265	2313	2361
٠.									
GTG Val	CAG Gln	GAG Glu	GAG Glu 645	TAC Tyr	AGA Arg	GAA Glu	AGC	ATC Ile 725	TAT
AAA Lys	ATC Ile	AGA Arg	CAC	ATT Ile 660	CTA	AAG Lys	TCC	CAA Gln	GAA Glu
GGA G1Y 595	TCA Ser	GAA	AGC Ser	CCA	TAT Tyr 675	TTC Phe	AAT Asn	GAT Asp	ATT Ile
TTT Phe	GTC Val 610	TCT	GGA Gly	GGA Gly	AAC Asn	ATT Ile 690	CCA Pro	TCG	GAA Glu
GCT	GGA Gly	AGC Ser 625	CTG	TCA	CTC	GAG Glu	CAT His 705	GAC	GAT Asp
GGT	ACA	GAC	CAG Gln 640	CTG	CTT	ACA	TCA	CCG Pro 720	GAA Glu
TCA (AAA Lys	GCA	ACC Thr	ACA Thr 655	GAT Asp	TGG Trp	CAA Gln	CAC His	TCT
GGA G1Y 590	AGC	AAA Lys	ATG Met	TGC	GGT G1y 670	ACT Thr	TTC	ATA Ile	CAC
CTA	ATT Ile 605	GAA Glu	ATG Met	GCG Ala	TAT	AGG Arg 685	ACT Thr	CAG Gln	TTT
GTA Val	GGA G1y	AAA Lys 620	AAG Lys	666 G1y	TGC Cys	CAC His	CCC Pro 700	GTT Val	TCA
AAG Lys	TAT Tyr	CTG	CTC Leu 635	CTG	TGT Cys	TTT Phe	TAC	GAA Glu 715	AAT Asn
666 61y	GCT	ATG Met	GAA Glu	CTG Leu 650	TAC	AAA Lys	TTT Phe	AGA Arg	GGG G1y
TTT Phe 585	ACA Thr	AAA Lys	TCA	AAC	GAA Glu 665	GAA Glu	AGT	TCA Ser	CAT His
GAG Glu	GCA Ala 600	GTC Val	ATG	GTG Val	TTT Phe	AGA Arg 680	TTC Phe	GGT G1y	CTT Leu
TTA (Leu	AAC	GCC Ala 615	CTC Leu	ATT	ATT	ААА Lys	AAT Asn 695	CCT	666 G1y
AAT '	ATG	GTT Val	GCA Ala 630	AAT	TTG Leu	AGT Ser	CAC His	ATG Met 710	TCA

	2409	2457	2505	2553	2601	2649	2697	2745	2793
	ACA Thr	gaa glu	Asn	TTG Leu 805	GCC	ATC Ile	GAA	GCT	TTT Phe 885
0	CTT A Leu T	ATG G Met G	AGG A	GGA	AAT Asn 820	66C 61y	TGG	GAT Asp	CCA
-	GTG C' Val L 755	GGA A Gly M	GCC A	TTT (Phe (66c 61y	GAA Glu 835	CTG	GTT Val	CAG Gln
	AAT G Asn V	AAA G Lys G 770	GCC GALAA	GAC TASP I	AGG (Arg)	TTT	TTA Leu 850	CCG	GAT
	TTG AI Leu As	GCC A	CTG G Leu A 785	TGT G Cys A	GTC 7	CTG	ATA Ile	ATT Ile 865	ATG Met
	GAC TT	GTT GOVAL	GAC CASP L	ATA I Ile C 800	GTT G	AGC (Ser]	GGA	GGC	AAA Lys 880
n n		CAA GI Gln Va	AGA G Arg A	AAG A Lys I	TAT C Tyr V 815	GAA 1 Glu	TAT	CCT	TTT Phe
(F)	ig gag .u glu so	TAT C. TYF G.	CAC A His A	GTG A Val I	AAC TASN T	CCC (Pro (830	Ser	TAC Tyr	GGA Gly
	A GAG u Glu 750		GTT C Val H	GTG G Val V	TCC A	GCC (Ala 1	TGG Trp 845	CCT	AAT
	A GAA u Glu		TGT G7 Cys V8 780	AAA G' Lys V	GAT T ASP S	ATG G Met A	GTC 1 Val	AAT Asn 860	CAA Gln
	g GAA u Glu	c rrr s Phe		GGG A G1y L 795	AGT G Ser A	TGG A Trp M	GAT GASP	GTG 1 Val 1	ATT Ile 875
_	s CTG g Leu	T TGC u Cys	G TCG	CAC GO His G	ATG A Met S 810	AAA T Lys T	AGT G	GGT G	CTG
730	A AGG B Arg	r Crr u Leu	T AAG		ATC A	GTA A Val L 825	AAG A Lys s	CTT G	AAA (Lys]
	AAA Lys 745	r CTT o Leu o	A TTT u Phe	c Acc 1 Thr		CCT G	H 0 0	TCA C Ser I	TAC F Tyr I
	GAA	GAT ASP 760	g GAA n Glu 5	r Grc u Val	A GAT 9 Asp		ACC AT Thr Il	TTC T Phe S 855	TTC I Phe I
	AAC	GAA	CTG Leu 775	CTT Leu 0	T CGA a Arg	T CIG g Leu		ATC TI Ile Pl	AAC T Asn P 870
	GAA Glu	TTT Phe	TTT Phe	GTG Val 790	GCT	CGT	TAC	A CI	A A 8

2841	2889	2937	2985	3033	3086	3146	3206	3266	3326	3386	3446	3501
TAT GCT ACA GAA ATA TAC ATT ATA ATG CAA TCC TGC TGG GCT TTT Tyr Ala Thr Glu Glu Ile Tyr Ile Ile Met Gln Ser Cys Trp Ala Phe 895	GAC TCA AGG AAA CGG CCA TCC TTC CCT AAT TTG ACT TCG TTT TTA GGA Asp Ser Arg Lys Arg Pro Ser Phe Pro Asn Leu Thr Ser Phe Leu Gly 905	TGT CAG CTG GCA GAT GCA GAA GCG ATG TAT CAG AAT GTG GAT GGC Cys Gln Leu Ala Asp Ala Glu Glu Ala Met Tyr Gln Asn Val Asp Gly 920	CGT GTT TCG GAA TGT CCT CAC ACC TAC CAA AAC AGG CGA CCT TTC AGC Arg Val Ser Glu Cys Pro His Thr Tyr Gln Asn Arg Arg Pro Phe Ser 935	AGA GAG ATG GAT TTG GGG CTA CTC TCT CCG CAG GCT CAG GTC GAA GAT Arg Glu Met Asp Leu Gly Leu Leu Ser Pro Gln Ala Gln Val Glu Asp 950	TCG TAGAGGAACA ATTTAGTTTT AAGGACTTCA TCCCTCCACC TATCCCTAAC Ser	AGGCTGTAGA TTACCAAAAC AAGATTAATT TCATCACTAA AAGAAAATCT ATTATCAACT	GCTGCTTCAC CAGACTTTTC TCTAGAAGCC GTCTGCGTTT ACTCTTGTTT TCAAAGGGAC	TTTTGTAAAA TCAAATCATC CTGTCACAAG GCAGGAGGAG CTGATAATGA ACTTTATTGG	AGCATTGATC TGCATCCAAG GCCTTCTCAG GCCGGCTTGA GTGAATTGTG TACCTGAAGT	ACAGTATATT CTTGTAAATA CATAAAACAA AAGCATTTTG CTAAGGAGAA GCTAATATGA	TITITIAAGI CTAIGITITA AAATAATAIG TAAATITITIC AGCIAITIAG IGATAIAIT	TATGGGTGGG AATAAAATTT CTACTACAGA AAAAAAAAA AAAAAAAAA AAAAAA

INFORMATION FOR SEQ ID NO:4: (3) SEQUENCE CHARACTERISTICS (<u>;</u>

LENGIH: 993 amino acids **E**ED

TYPE: amino acid TOPOLOGY: linear (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Gly Thr Val Pro Leu Leu Val Val Ala -20 Pro Ala Leu Ala Arg Asp -25

Val Ile Thr Asn Gln Asp Leu Pro 1 Thr G1Y -5 Ala Met Ile Phe Ser -10

Gly Len Val 20 Asp 35 Pro Glu Asn Asn Asp Ser 15 Glu Ser Ser Cys Val Leu Ile Asn His Lys 30 Tyr Pro Met Val Ser Ser

Ile Lys

Phe

Lys Ser

Gly

Ser

Ala Ala Glu Ala Tyr Gly Thr Val Ser 45 Ser Gln Leu Arg Pro Cys Ala

Leu Gln Val Leu Val Asp Thr Ile Ser Ala Ser Glu Val Asp Val Val

Leu 85 Ser Ser Phe Lys His Cys Leu Trp Val Ser 75 Ile Ala Pro Gly Asn

Met Ser Asn Cys Gln Pro His Phe Asp Leu Gln Asn Arg Gly Val Val Leu Leu Phe 115 Val Ile Leu Lys Met Thr Glu Thr Gln Ala Gly Glu Tyr 105

11e	Met	Pro 165	Glu	Leu	Glu	Thr	Cys 245	Glu	Ser	Val	Pro	Ala 325
Ser]	Lys l	Glu]	Lys 180	Glu	Arg	Thr	Arg	Leu 260	Tyr	Ser	His	Asn
Val	Arg 1	Pro (Cys	His 195	Gly	Gln	Ile	Glu	Thr 275	Ser	Lys	Ile
Thr 130	Phe /	Val	Ser	Leu	Leu 210	Pro	Trp	Trp	Ser	Val 290	Ser	Gly Phe
Phe	Tyr 145	Ser	Glu	Val	Glu	Thr 225	Leu	Thr	Met	Phe	Ser 305	
Leu	Pro	Glu 160	Gly	Lys	Asn	Gln	Pro 240	ren	Glu	Ala	Ser	Lys 320
Ile	Arg	Ser	Gln 175	Glu	Arg	Asn	G1u	G1y 255	Phe	Phe	Cys	G1 y
Thr	Arg	Ile	Ser	Glu:	Ala	Leu	Gly	Phe	Tyr 270	Leu	Thr	Val
Tyr 125	Leu	Cys	Asp	Lys	Cys 205	Asp	Val	Gly	Asn	11e 285	Tyr	Ile
Asn	Thr 140	Val	Cys	Lys	Cys	11e 220	Lys	His	Gly	Arg	Tyr 300	Thr
Thr	Tyr	Leu 155	Leu	Val	Arg	Thr	Leu 235	Asn	Glu	Ile	Gly	Val 315
Ala	Leu	Ala	Val 170	Val	Ile	Phe	Phe	Val 250	Glu	Met	Thr	Leu
Glu	Leu	Asp	Trp	Ala 185	Asp	Leu	Leu	His	Leu 265	Thr	Asp	Ala
Ser 120	Thr	Gln	Glu	Pro	Thr 200	Arg	Gln	Val	Ala	Arg 280	Asn	Gln Ser
Gln	Asn 135	Asn	Val	Ser	Gly	Thr 215	Pro	Ala	Lγs	Asn	Arg 295	
Ile (Arg	Glu 150	Ile	Glu	Phe	Cys	Leu 230	Lys	Asn	Thr	Ala	Ser 310
					,							

Cys	Thr	Gly	Tyr	Thr 405	Ser	Trp	Glu	Val	1 Val 485	ren C	r Phe	r Leu	:
Phe C	Trp 1	Asn (Glu	Phe	Ala 420	Thr	Thr	Trp	Leu	Ile 500	Ser	Thr	
		Asp A	Gly G	Met I	Ser 1	Trp 435	Ile	Gln	Phe	Thr	11e 515	Leu	
Glu	355						Glu 1 450	G 1У (Gly	Glu	Asn	Val 530	
Glu	Cys	Leu 370	Pro	Lγs	Ala	Ser					Asp A		
Tyr	Arg	Gly	Gln 385	Thr	Glu	Pro	Glu	Phe 465	Lys	: Cys		Ile Val	
Gln 1	Ile 1	Lys	His	Phe 400	Ala	Leu	Thr	Val	Ile 480	Ser	Gln		
		gln I	Lys F	Gln J	Leu 415	Pro	Cys	Lys	Ala	Thr 495	Ile	Leu Phe	
335 335	Gln 0				Val L	Tyr E	Asn (Arg	Glu	б1у	Phe 510	Leu	
Ile	Pro 350	G]u	His	Ala					Ser G	ren (Pro 1	Leu 525	
Glu	Tyr	Cys 365	Asn	Asp	Gln	Gly	Pro 445	A Asn					
Tyr	Ala	Pro	Суs 380	Asp	Pro	Asp	Ser	Ala 460	Met	Ser	Phe (cys	
Asp T	Lys A	Phe I	Phe (Asn 395	Lys	Ser	Lys	Lγs	Asn 475	Asn	Pro	Val	
A As				Glu A	Arg I	Phe 9	Asp	Arg	Leu	TYr 490	б1у	Gly	
G1u 330	Phe	Ser	. Lys					Asn A	Thr 1	Ala	Pro (505	Ile	
Ser	Arg 345	Lys	Ser	Ala	Arg	Cys 425	Ser)						
Ser	Val	Arg 360	11e	His	Ile	Ser	Cys 440	Trp	Ser	Cys	Ser	a Thr 520	
	Ser V	Ser ?	Ser 375	Phe	Asn	Ala	Lys	Val 455	Ser	Cys	Asn	Ala	
. Asn					Leu P	Gln A	Lys	Gly	Ser 470	Lys	Leu	Tyr	
Thr	Phe	Phe	Tyr	11e 390	Ä	Ü	д.	G	01 4	_	•	-	
			:										

										•		
Leu	Val 565	Glu	Val	Gln	Glu	Glu 645	Tyr	Arg	Glu	Ser	11e 725	Tyr
Gln 1	Tyr	Arg 580	Lys	Ile	Arg	His	Ile 660	Leu	Lys	Ser	Gln	Ile Glu 740
Ser (Phe '	Pro	G1Y 595	Ser	Glu	Ser	Pro Ile 660	Tyr 675	Phe	Asn	Asp	Ile
Glu s	Tyr 1	Phe]	Phe	Val 610	Ser	Gly	Gly	Asn	Ile 690	Pro	Ser	Glu Asp Glu
Tyr (545	Glu i	Glu]	Ala	Gly	Ser 625	Leu	Ser	Leu	Glu	His 705	Asp	Asp
Arg	Asn (560	Trp	Gly	Thr	Asp	G1n 640	Leu	Asp Leu	Thr	Ser	Pro 720	Glu
	Asp 1	Lys 7	Ser	Lys	Ala	Thr	Thr 655		Trp	Gln	His	Ser 735
Gln Phe	Ser 7	Ten	G1y 590	Ser	Lys	Met	Cys	G1y 670	Thr	Phe	Ile	His
Lys (Ser	Asp	ren	Ile 605	Glu	Met	Ala	Tyr	Arg 685	Thr	Gln	Phe
Lys 1 540	Gly	Tyr	Val	Gly	Lys 620	Lys	Gly	Cys	His	Pro 700	Val	Ser
Tyr]	Thr 555	Glu	Lys	Tyr	Leu	Leu 635	Leu	Cys	Phe	Tyr	Glu 715	Asn
Lys	Val	Tyr 570	Gly	Ala	Met	Glu	Leu 650	Tyr	Lys	Phe	Arg	G1y
His	Gln	glu '	Phe 585	Thr	Lys	Ser	Asn	G1u 665	Glu	Ser	Ser	His
Cys I	Val (Arg	Glu	A1a 600	Val	Met	Val	Phe	Arg 680	Phe	Gly	Gly Leu
Ile (535	Met	Phe	ren	Asn	Ala 615	Leu	Ile	Ile	Lys	Asn 695	Pro	Gly
Leu]	Gln 1 550	Asp	Asn	Met	Val	Ala 630	Asn	Leu	Ser	His	Met 710	Ser
												. •

Thr
Val Leu 755
Val 755
Asn
Leu
Asp
Glu
Glu 750
Glu
Glu
Leu
Arg
Lys 745
Gln
Asn
Glu

Lys Gly Met 770 Tyr Gln Val Ala Ala 765 Phe Asp Leu Leu Cys 760 Glu

Asn Leu Ala Ala Arg 785 Asp Arg His Val Cys 780 Ser Glu Phe Lys Leu 775 Phe

Leu 805 Gly Cys Asp Phe 11e 800 Lys Val Lys Val G1y 795 His Thr Val Leu Val 790

Ala Asn 820 Gly Arg Val Val Tyr 815 Asn Ser Ser Asp Ile Asp Ala Arg

Met 810

Gla Ile Trp Gly Leu G]u 835 Leu 850 Phe Ile Len Gly Glu Ser Tyr Pro 830 Ser Trp 845 Ala Val Lys Trp Met Asp Ser Ile Lys Val 825 Pro 840

Thr

Arg Leu

Ala Pro Val Asp Ile 865 Gly Pro Tyr Pro Asn 860 Val Ser Leu Gly Phe 855 Ile

Phe 885 Lys 880 Gly Phe Gln Asn Asn Phe Tyr Lys Leu Ile 870

Gln Pro

Asp

Met

Phe Trp Ala 900 Сys Ser Gln Ile Met 895 Ile Ile Tyr G1u 890 Tyr Ala Thr Glu

Gly

Leu

Ser

Thr

Gly Asp Val Asn 930 Gln Pro Asn Leu 910 Glu Ala Met Tyr 925 Arg Pro Ser Phe Ala Glu Leu Ala Asp 920 Lys 905 Ser Arg Gln Cys Asp

Ser ser Glu Cys Pro His Thr Tyr Gln Asn Arg Arg Pro Phe 945 Val 935 Arg

Arg Glu Met Asp Leu Gly Leu Leu Ser Pro Gln Ala Gln Val Glu Asp 950

Ser

(2) INFORMATION FOR SEQ ID NO:5:

SEQUENCE CHARACTERISTICS: (A) LENGTH: 5406 base pairs (1)

B

TYPE: nucleic acid STRANDEDNESS: double (O) (E)

TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

FEATURE: (ix)

(A) NAME/KEY: (B) LOCATION:

NAME/KEY: CDS LOCATION: 208..4311

FEATURE: (ix)

NAME/KEY: mat_peptide LOCATION: 265..4308

(B)

FEATURE: (ix)

(A) NAME/KEY: sig_peptide (B) LOCATION: 208..264

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

09	120	180	231	279	327	375	423	471	519	567
g g					 01	n c	æ n	ୟ ଉ	AAG Lys 85	GTT Val
TGCAGCCGCG	GGCCGATAC	GAGAAACTGG	GCT Ala	GGT TTG Gly Leu 5	GAC ATA ASP Ile 20	gga cag gly gln	GAG GAA Glu Glu	TGC AAA Cys Lys	TAC AP Tyr Ly	TAT G' TYE VI
			cTA Leu	GTG GC Val G	AAA G Lys A	AGG G Arg G 35	TCT	TTC Phe	GCC	GTC
ACCC	TGCG	FECC	c CTG Y Leu 5	TCT	CAG Gln	TGC	GAT Asp 50	ATC Ile	GGA Gly	r TAT L TYF
CGGACACCCG	TGCGCTGCGG	GTCTGTGCCT	.G GGC 's Gly -15	GCC Ala 1	ACA	ACT	CGT Arg	AGT Ser 65	r ACT p Thr 0	r GTT r Val
			agc aag Ser Lys	GCC	AGC Ser	3 ATT	r cag a gln	T GAC Y ASP	T GAT in Asp 80	TCC ACT Ser Thr 95
CCCGATTCCG	тссссестст	GAGA	GAG A Glu S	c cga r Arg	G CTC s Leu 15	TT CAG eu Gln 30	AAT GCT Asn Ala	GGT GGT Gly Gly	GGA AAT Gly Asn	GCC TC Ala Se
3A CC		GA CG	ATG G Met G	ig Acc .u Thr	CCC AAG Pro Lys	ACC CTT Thr Leu 30	CCC AP Pro As	66c 60 61y 6	GTT G Val G	ATA G Ile A
CAGCCGGATA ACCTGGCTGA	GCCCGCGCTC	GGGCCAGGGA CGGAGAAGGA		GTG GAG Val Glu -5	CCC CC Pro Pi	ACA A Thr T	TGG C Trp P	TGC G Cys 60	GTG (Val	GAC
ACC			CAGGCGCGAG GTGCAGG	TGC G Cys V	CAT C	AAT A	CTT Leu	GAA Glu	AGG Arg 75	GTC
GATA	CGGT	PTTGC	GCGAC	TTC .	CIC Leu 10	GCA Ala	TGG	ACT	CCC Pro	GAC A ASP
AGCCC	GGGCGCCGGT	ACTTCTTTGC	AGGC	rgg Irp	TTT Phe	TTG Leu 25	GAC	GTG Val	c ATT	c cgg r Arg
		. `	c)	CTG	GAT	ATT Ile	CTG CTG 40	A TTG 1 Leu 5	c Acc	G TAC
стстстсссв	GCTGGAGCCA	CGCCTCTGTG	GCTCTGTGC	GCT Ala	GGC	s ACA 1 Thr	G GAC g Asp	G GTA 9 Val 55		TGC TCG Cys Ser
CTG	GCT	CGC	GCT	GTC	CCT	CTG	CGG	AGG	ACA Thr 70	ž ű
		•								

615	663	711	759	807	855	903	951	666	1047
•					•	· .			
GGC G1y	TGC Cys	CCA	GAG Glu 165	GTC Val	TAC Tyr	CCC	TGT	TCT Ser 245	AAA Lys
CAT His	CCC	TAT Tyr	AGC	ATG Met 180	ATG Met	AGC Ser	AAT Asn	CAC His	GTG Val
CAG Gln 115	ATC Ile	AGG Arg	GAC Asp	66C 61y	ATC Ile 195	CTG	TTA	TGG Trp	GAT
GAC Asp	GTG Val 130	GCT	TGG Trp	GCC	TCT	ATT Ile 210	GTC Val	ACC Thr	CGG
AGT	GTG Val	TGC Cys 145	TCC	TAT Tyr	CAG Gln	GTG Val	CTT Leu 225	TTC	AAC
GTC Val	ACT Thr	CTT	ATT Ile 160	AGC Ser	TAT Tyr	GAT	AAA Lys	GAT ASP 240	GTA
TCT	AAA Lys	TCT Ser	AGA	ATC Ile 175	ACC Thr	TAT Tyr	GAA Glu	CTT	ATT
GCC Ala 110	AAC Asn	GTG Val	AAC Asn	ATG	GAA Glu 190	ATT Ile	GGA Gly	666 61y	AAG Lys
ATC Ile	AAG Lys 125	AAT Asn	GGA Gly	TAC	GAT Asp	AGG Arg 205	GCC	GTG Val	AAG
TTC Phe	AAC Asn	CTC Leu 140	GAT	AGT Ser	AAT	TAT Tyr	TCT Ser 220	AAT Asn	CAT
CCA	GAG Glu	AAC Asn	CCG Pro 155	CCC	ATC Ile	GGA Gly	CTA	CTC Leu 235	CAT
TCA	ACC Thr	TCA	GTT Val	CTC Leu 170	AAG	GTA	GAG Glu	GAG Glu	TCT
AGA Arg 105	ATC Ile	ATT Ile	TTT Phe	ACT	GCA Ala 185	GTT Val	ATT Ile	ACA Thr	AAG
TAC	TAC TYF 120	TCG	AGA Arg	TTT Phe	GAG Glu	GTG Val	GAA	AGA Arg	TCA
GAT Asp	GTG Val	GGG G1Y 135	AAG Lys	66C 61y	TGT Cys	GTT Val	CAT His 215	GCG Ala	CCT
CGA Arg	ATC	CGA	GAA Glu 150	ATA Ile	TTC	ATA Ile	CCG	ACA Thr 230	CCA

	1095	1143	1191	1239	1287	1335	1383	1431	1479
		•							
	ATA Ile	rcc ser	ACA Thr	GCC Ala 325	CCA	ASD	GAA Glu	ATG	CAG Gln 405
260	ACA A Thr 1	GCG 7	CAC	GAA Glu	TAC TYr 340	TCC	ACT Thr	TCA	A CCC
N	TTG A Leu 7 275	GTA (Val	GTT Val	GTG Val	AGT	GAG G1u 355	GTG	ATT ILE	c ccA
	Thr	TGT Cys 290	CGA Arg	TTG	CTC	ATT Ile	GAA Glu 370	CCC Pro	GTC Val
	AGC A Ser T	ACC T Thr C	GTC C Val 7	TCT 3	TAT	CCC	ATG Met	AAC Asn 385	AAT
• .	TTG A Leu S	TAC P	TTT (AAA Lys 320	AAG Lys	AGG Arg	ATC Ile	ACC	GTG Val
255	TTT T Phe I	GAA 1 Glu 1	ACA T	ATG Met	GTG Val 335	GGA	ACC	CTC	GTT
8	ATG T Met P 270	666 6 61y 6	AGA A	666 61y	CCT	AAT Asn 350	CTC	ATC	CTG
	AAG A Lys N	CAA (Gln (285	AAT	AGT Ser	ATC	AGA	GAA Glu 365	GTC	Ser
	GCG A	GAC (Asp (AGA Arg 300	GGT Gly	CGA	TAC	GAT	ACG Thr 380	GTC
	GTG G Val A	AGT (Ser 1	AAG	TTC Phe 315	GTC	TGG Trp	66C 61y	TAC	ATG Met
250	ACT G Thr V	AAG 7 Lys 9	ATC	GCT	CAA Gln 330	AAA Lys	GTT Val	AAC	CAC
8	GG 1Y 65	ACC 7 Thr 1	ATG Met	ATT	AGT	ATC Ile	ATT Ile	GGA Gly	AGC
	CCT G Pro G	GTG A Val 1 280	CGG /	TTT Phe	GGC	GAT	ATG Met 360	GCA	CAG
	TTT C Phe P	AGT G	GGA (G1y 2295	CCT	GTG Val	CCT	ACA Thr	GAT Asp 375	AAA
	CCC T Pro P	GAA A	AGT C	AAG Lys 310	ACA	GCT	TAC	AGA Arg	GAG Glu 390

								. "	
1527	1575	1623	1671	1719	1767	1815	1863	1911	1959
٠.						· .		· ·.	
666 61y	CAC His	CCC	GAT	CTG Leu 485	GCC	CGA Arg	ACT	TTG	CTT
TAT TYr 420	CTG	AGA Arg	GAG Glu	GCC	GCT Ala 500	66A 61y	ATT Ile	CTG	AAG Lys
cAG G	CCC Pro 435	TAC	Gre Val	TAT Tyr	CAA Gln	GCG Ala 515	GAA Glu	TCC	TAC
TAC (TYr (CCT	TCC Ser 450	CAC His	CAA Gln	ATC Ile	AAA Lys	CCT Pro 530	GTG Val	TGG Trp
Ser	AAC	TGC	AGA Arg 465	AAC Asn	GTC Val	AAC	GGT	AGT Ser 545	ACG Thr
GAT ASP	GCC	GCC	TGG Trp	AAA Lys 480	CTG	ATC	AGG Arg	GAG Glu	CTC
ATG Met 415	TAC	GAA Glu	GAA Glu	ACC Thr	ACG Thr 495	GCC	ATC Ile	CAG	AAC
CCT 7	GTC Val 430	GAA Glu	AAA Lys	GTC Val	AGT	GAA Glu 510	GTG Val	GAG Glu	GAG
TCG (Ser]	ACA	CTA Leu 445	TGT Cys	GAA	GTA Val	TGT Cys	CAT His 525	ACT	TTT
ATC Ile	TGC	CAG Gln	GCT Ala 460	ATC Ile	ACT	AAA Lys	TTC	CCA Pro 540	ACG
TTG 7	ACA	TGG Trp	TAT Tyr	AAG Lys 475	AAA Lys	TAC Tyr	TCC	CAG Gln	AAT
GCC 7 Ala 1	TTG	TAC	CCG	AAC	AAC Asn 490	TTG	ATC Ile	GCC	AGA Arg
AAA (Lys 1	ACA Thr 425	TGG	AGC	GGA	AAA Lys	GCG Ala 505	GTC Val	GCT	GAC
GAG 7 Glu 1	CAG Z	CAG Gln 440	ACA	666 61y	GGA Gly	TCA Ser	AGG Arg 520	CCT	GCA
GGT G	ATG (Met (ATC (Ile (CAA Gln 455	CAG	GAA Glu	GTG Val	GAG Glu	CAA G1n 535	ACT Thr
ATC CILL	ACC 1 Thr 1	CAC	GGC Gly	TTC Phe 470	ATT Ile	AAC Asn	GGA G1y	GTG Val	TGC

				•					
	2007	2055	2103	2151	2199	2247	2295	2343	2391
					•		· ·		
265	GTT Val	TCT	CTG	AAG Lys	GCA Ala 645	GAG Glu	ATT	GTA	GAG Glu
ហ	CCA G Pro V 580	TTT 1 Phe 9	TCT	Acc Thr	ATG Met	660 660	CAC	ATT Ile	AAG Lys
	ACA C Thr	ATG 1 Met 1 595	GCC Ala	AAG Lys	CGC Arg	ATT	CCA Pro 675	66C 61y	agg Arg
	CTC A Leu T	ACC P Thr N	AAT (Asn 7	AAG	GAG Glu	ACC Thr	ACC	TCA Ser 690	GTG Val
	TCA C Ser I	GGC 7 G1y 1	CAG 1	GAT ASP 625	CTA	ACA Thr	CCT	GAT Asp	AGG Arg 705
560	GAA T Glu s	AAT G Asn G	TTT (CAA Gln	ATC Ile 640	ACA Thr	AAT Asn	GAA	CGC
ω ·	GGC G Gly G 575	CTG 7 Leu 7	GCA :	GCT	ATC Ile	CAG G1n 655	GGA Gly	GTA	ATC
,	ATG G Met G	AAA C Lys I 590	GTG (Val	TCT	CIC	AAT	TCT Ser 670	CTG	ACT
	CAC A	TGG A	ATT (Ile 1 605	TGC	CAG	GAG Glu	GCA Ala	ACC Thr 685	CTG
	GTC C	CTT T Leu 1	TTG 7	GTT Val 620	AAA Lys	CTG	CCA	GAG Glu	AAC Asn 700
555	TCG G Ser V	GCT C Ala I	ATC 1 Ile 1	TAT (TYE	GTC Val 635	AAT	TGC	AAC Asn	CGG
ເນ	ACA T Thr S	GAT G Asp A	GAC A	GAC ASP	CTG	GGA G1Y 650	ACT Thr	GAC	AAC Asn
	GCA A Ala T	TTG G Leu 7 585	AAT CASN A	GGC G	TGC Cys	ACC	GTG Val 665	AAA Lys	GGG G1Y
	cag g gln a	AAC T Asn I	ACA F Thr 7 600	caa c	CAT	ATC	GAA Glu	TTC Phe 680	gat Asp
	TCA C	AAG A Lys a	AGC A Ser T	GAC (Asp (615	AGA Arg	ATG	ATT Ile	TGG Trp	AGA Arg 695
550	GGC T G1y S	TGC A Cys L	AAC A Asn s	CAG G	AAA Lys Lys 630	CCC	ACC	ACA	CTG
Ŝ	<u>ั</u> ช ซ	E O	RI RI						

						<u> </u>			*	
	2439	2487	2535	2583	2631	2679	2727	2775	2823	2871
	٠.					77 70 IO	()	ניז נה	4. B	വര
	GCA Ala 725	AAC Asn	TTC	GAA Glu	GAA Glu	AAG Lys 805	CGC	AAG Lys	GCA Ala	ATC
	TGT	ACC Thr 740	TTC Phe	AAT Asn	GAT Asp	AGC Ser	GGC G1y 820	GAC	GGA Gly	CTC
	66C 61y	AAG Lys	ATG Met 755	GCC Ala	CCA	GCC Ala	CTT	ATT Ile 835	GAA Glu	ATC Ile
	CIT	GAA Glu	GCC Ala	CGG Arg 770	GAT	GAT Asp	CCT Pro	GGA Gly	AAA Lys 850	AAG
	GTC	CAG	ATT	AAG Lys	ATG Met 785	TAT Tyr	AAA Lys	TTT Phe	TTG	CTC
:	AAT Asn 720	GCC	GTG Val	GTT Val	GTC Val	CCT Pro 800	GGA Gly	GCT	ATG	GAA
	TGC Cys	GGT G1y 735	GCA	ACC Thr	ATT Ile	TTG Leu	CTA Leu 815	GAC	AAG	TCT
	GCC Ala	GAA Glu	ACT Thr 750	CGG	TCT	CGC	AAA Lys	GCA Ala 830	GTC Val	ATG
	CAG Gln	ATA Ile	66c 61y	GTA Val 765	TTG	GAA Glu	CTG	GAG Glu	GCC Ala 845	CTC
	TGC	ATA Ile	GTC Val	CTC	TAC Tyr 780	TGT	CGG Arg	ATT Ile	GTA Val	GCC
	ACC Thr 715	TTC Phe	CTC	ATT Ile	66C 61y	CGC Arg 795	GAC Asp	GTG Val	ACA Thr	CGA
	TAC	CTC Leu 730	ATC Ile	GTC Val	ACA Thr	GAG	AGG Arg 810	CAA Gln	AAA Lys	CAT His
	CIC Len	ACG Thr	ATT Ile 745	CTT	AAG Lys	GAT Asp	CCC Pro	GGC G1Y 825	TGC Cys	GAG
	66C G1y	GAG Glu	GTC Val	CTT Leu 760	CTG	TTG	TTC	TTC Phe	ACT Thr 840	AGC
	GGA Gly	GCG	GAA Glu	CTC	GAA Glu 775	CCC	GAA Glu	GCC	GCG Ala	CAC
	GAT Asp 710	AGA	TTG	TGG Trp	666 G1y	TTG Leu 790	TGG Trp	GGT	ACA	ACA
					•					

	2919	2967	3015	3063	3111	3159	3207	3255	3303
5 865	GGT CAC CAT CTC AAT GTG GTG AAC CTC CTA GGC GCC TGC ACC Gly His His Leu Asn Val Val Asn Leu Leu Gly Ala Cys Thr 875	GGA GGG CCT CTC ATG GTG ATT GTG GAA TTC TCG AAG TTT GGA Gly Gly Pro Leu Met Val Ile Val Glu Phe Ser Lys Phe Gly 890	CTA TCA ACT TAC TTA CGG GGC AAG AGA AAT GAA TTT GTT CCC TAT Leu Ser Thr Tyr Leu Arg Gly Lys Arg Asn Glu Phe Val Pro Tyr 905	AGC AAA GGG GCA CGC TTC CGC CAG GGC AAG GAC TAC GTT GGG GAG SC Ser Lys Gly Ala Arg Phe Arg Gln Gly Lys Asp Tyr Val Gly Glu 920	TCC GTG GAT CTG AAA AGA CGC TTG GAC AGC ATC ACC AGC AGC CAG Ser Val Asp Leu Lys Arg Arg Leu Asp Ser Ile Thr Ser Ser Gln 935	TCT GCC AGC TCA GGC TTT GTT GAG GAG AAA TCG CTC AGT GAT GTA 3 Ser Ala Ser Ser Gly Phe Val Glu Glu Lys Ser Leu Ser Asp Val 955	GAA GAA GAA GCT TCT GAA GAA CTG TAC AAG GAC TTC CTG ACC TTG Glu Glu Glu Ala Ser Glu Glu Leu Tyr Lys Asp Phe Leu Thr Leu 970	CAT CTC ATC TGT TAC AGC TTC CAA GTG GCT AAG GGC ATG GAG TTC His Leu Ile Cys Tyr Ser Phe Gln Val Ala Lys Gly Met Glu Phe 985	GCA TCA AGG AAG TGT ATC CAC AGG GAC CTG GCA GCA CGA AAC ATT Ala Ser Arg Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn Ile 1000
855	CAC ATT His Ile 870	AAG CCG Lys Pro	AAC CJ Asn Le	AAG A(Lys S	CTC T Leu S	AGC T Ser S	GAG G	GAG Glu	TTG

		1			*	•			
3351	3399	3447	3495	3543	3591	3639	3687	3735	3783
CTC CTA TCG GAG AAT GTG GTT AAG ATC TGT GAC TTC GGC TTG GCC Leu Leu Ser Glu Lys Asn Val Val Lys Ile Cys Asp Phe Gly Leu Ala 1015	CGG GAC ATT TAT AAA GAC CCG GAT TAT GTC AGA AAA GGA GAT GCC CGA 339 Arg Asp Ile Tyr Lys Asp Pro Asp Tyr Val Arg Lys Gly Asp Ala Arg 1030	CTC CCT TTG AAG TGG ATG GCC CCG GAA ACC ATT TTT GAC AGA GTA TAC 344 Leu Pro Leu Lys Trp Met Ala Pro Glu Thr Ile Phe Asp Arg Val Tyr 1050	ACA ATT CAG AGC GAT GTG TGG TCT TTC GGT GTG TTG CTC TGG GAA ATA 349 Thr Ile Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu Ile 1065	TTT TCC TTA GGT GCC TCC CCA TAC CCT GGG GTC AAG ATT GAT GAA 35. Phe Ser Leu Gly Ala Ser Pro Tyr Pro Gly Val Lys Ile Asp Glu Glu 1080	TTT TGT AGG AGA TTG AAA GAA GGA ACT AGA ATG CGG GCT CCT GAC TAC 359 Phe Cys Arg Arg Leu Lys Glu Gly Thr Arg Met Arg Ala Pro Asp Tyr 1095	ACT ACC CCA GAA ATG TAC CAG ACC ATG CTG GAC TGG CAT GAG GAC 36 Thr Thr Pro Glu Met Tyr Gln Thr Met Leu Asp Cys Trp His Glu Asp 1110	CCC AAC CAG AGA CCC TCG TTT TCA GAG TTG GTG GAG CAT TTG GGA AAC 36 Pro Asn Gln Arg Pro Ser Phe Ser Glu Leu Val Glu His Leu Gly Asn 1130	CTC CTG CAA GCA AAT GCG CAG CAG GAT GGC AAA GAC TAT ATT GTT CTT 37 Leu Leu Gln Ala Asn Ala Gln Gln Asp Gly Lys Asp Tyr Ile Val Leu 1145	CCA ATG TCA GAG ACA CTG AGC ATG GAA GAG GAT TCT GGA CTC TCC CTG Pro Met Ser Glu Thr Leu Ser Met Glu Glu Asp Ser Gly Leu Ser Leu
		-							

	3831	3879	3927	3975	4023	4071	4119	4167	4215
1160 1165 1170	CCT ACC TCA CCT GTT TCC TGT ATG GAG GAA GAG GAA GTG TGC GAC CCC Pro Thr Ser Pro Val Ser Cys Met Glu Glu Glu Glu Val Cys Asp Pro 1175	AAA TTC CAT TAT GAC AAC ACA GCA GGA ATC AGT CAT TAT CTC CAG AAC Lys Phe His Tyr Asp Asn Thr Ala Gly Ile Ser His Tyr Leu Gln Asn 1190	AGT AAG CGA AAG AGC CGG CCA GTG AGT GTA AAA ACA TTT GAA GAT ATC Ser Lys Arg Lys Ser Arg Pro Val Ser Val Lys Thr Phe Glu Asp Ile 1210	CCA TTG GAG GAA CCA GAA GTA AAA GTG ATC CCA GAT GAC AGC CAG ACA Pro Leu Glu Glu Pro Glu Val Lys Val Ile Pro Asp Asp Ser Gln Thr 1235	GAC AGT GGG ATG GTC CTT GCA TCA GAA GAG CTG AAA ACT CTG GAA GAC Asp Ser Gly Met Val Leu Ala Ser Glu Glu Leu Lys Thr Leu Glu Asp 1240	AGG AAC AAA TTA TCT CCA TCT TTT GGT GGA ATG ATG CCC AGT AAA AGC Arg Asn Lys Leu Ser Pro Ser Phe Gly Gly Met Met Pro Ser Lys Ser 1255	AGG GAG TCT GTG GCC TCG GAA GGC TCC AAC CAG ACC AGT GGC TAC CAG Arg Glu Ser Val Ala Ser Glu Gly Ser Asn Gln Thr Ser Gly Tyr Gln 1270	TCT GGG TAT CAC TCA GAT GAC ACA GAC ACC ACC GTG TAC TCC AGC GAC Ser Gly Tyr His Ser Asp Asp Thr Asp Thr Thr Val Tyr Ser Ser Asp 1295	GAG GCA GGA CTT TTA AAG ATG GTG GAT GCT GCA GTT CAC GCT GAC TCA Glu Ala Gly Leu Leu Lys Met Val Asp Ala Ala Val His Ala Asp Ser 1305

	1318							_		~	m	m	m		ω	æ
4263		4378	4438	4498	4558	4618	4678	4738	4798	4858	4918	4978	5038	2008	515	5218
GGA AGT GGT CCT GTC Gly Ser Gly Pro Val 1330	AGA GGT GCT GCT Arg Gly Ala Ala 1345	A TTTTCATTTT TGGAGGAGGG	S AGAAGATGCC CATGACCCAA	G TCCTATATAA TGTGCCCTGC	A CGTGGACTCT GTCCTCCAAG	C AATGCTTTGT GTGTTGAGGA	G GCTTTGTGGA GGATGCGGCT	A GGAAGGCGCA AGCCGTCCGG	G TGGAGGTGGG CTTGTGGCCT	G AAGGITIGCG TGCICTICAC	C CTAATGAGAG TTCCTTCCGG	IG ATGCAGCTTG CTCCTTCCTC	SA GGAACGTCGG CAGAGGCTCC	CA GGGTTTCTGC TGGGTGGAGA	GT CAAGTGGCGG TAAAGGCTCA	GECTEGTET CTTCCTCTAT CTCCACTCCT GTCAGGCCCC CAAGTCCTCA GTATTTTAGC
rra Leu	CAC His	CACATTTGA	CATTTCCAG	CATTTAAAAG	CTTTCAAACA	rcgaatggg	PACCTTGGA	CTGGGAGGA	CTGGCTCTG	TTGGTTTTG	TTTCCTACT	GAAGGAAAT	CCAAAAGAG	CAGAAACTC	GGTTCTCTG	GTCAGGCC
ACC	CCT GGA Pro Gly 1340	CCGGAAGTAG C	rerccrcage 6	CTTTTCCATT (AAGCAAAAGA (TGAAACTGGA	CGAGTCTGTC '	GGGATGTGGA	ATGCATTGTG		CCCTGTGGCG	CTGGCCCCAG	ATTCAGAACA	GAGAACAGAA	CAGGTCTGAG	CTCCACTCCT
CAG Gln	CCA	rttccaccac (SCAAGGAGCT	ACTCTACTCT			GTCCCAGGGC	TGTTAAGTGT	GAGCCTGCAG	GCAAAGGCGG	CAGGCGAGTT	GTCTCCTGGC	CTGTGCCTTA	GAAGAATTGT	SCCCTGGTGG	CTTCCTCTAT
sgg ACC ACA sly Thr Thr 1320	വ	AGTGTTGTTC 1	ACCTCAGACT (GAATGTGTTG	TGTGGTCTCA	AAGTGGCAAC	TGGGTGAGAT	ATGAGCCAAG	AGAGCGGTTG	GTCAGGAAAC	AGTCGGGTTA	ACTCTTACGT	ATCTCTCAGG	TGACGGGGCC	CCCACGTGGC	ԱՄԵԱԵԵԱԵ
	~ ~		-													
	CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC Gln Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT TAGATTTTC Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 1345	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC 4263 Gln Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT GCT TAGATTTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGG 4378	CAG CTC ACC TCT TTA AAT GGA AGT GGT CCT GTC G1n Leu Thr Ser Cys Leu Asn G1y Ser G1y Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT GCT TAGATTTTCA Pro Thr Pro G1y Asn His G1u Arg G1y Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGG 4378 GGAGCT TGTCCTCAGG GCATTTCCAG AGAAGATGCC CATGACCCAA 4438	CAG CTC ACC TCT TTA AAT GGA AGT GGT CCT GTC GIN Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGG GGT GCT TAGATTTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGG 4378 GGAGCT TGTCCTCAGG GCATTTCAG AGAAGATGCC CATGACCCAA 4438	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC Gln Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT GCT TAGATTTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGG 4378 GGAGCT TGTCCTCAGG GCATTTCCAG AGAAGATGCC CATGACCCAA 4438 TACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC 4498 CCAGTTA AAGCAAAAGA CTTTCAAACA CGTGGACTCT GTCCTCCAAG 4558	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC G1n Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT GCT TAGATTTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGGG 4378 GGAGCT TGTCCTCAGG GCATTTCCAG AGAAGATGCC CATGACCCAA TACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC 4498 CCACCTG TGAAACTGGA TCGAATGGC AATGCTTTGT GTGTTGAGGA 4518	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC GIN Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT TAGATTTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGGG GGAGCT TGTCCTCAGG GCATTTCAG AGAAGATGCC CATGACCCAA 4438 TACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC 4498 CCACTCT TGAAACTGGA TCGAATGGGC AATGCTTTGT GTGTTGAGGA 4518	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC GIN Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT GCT TAGATTTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGG 4378 GGAGCT TGTCCTCAGG GCATTTCAGA GGAAGATGCC CATGACCCAA 4438 TACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC 4498 CCACTTA AAGCAAAAGA CTTTCAAACA CGTGGACTCT GTCTTCAAGG 4558 CCCTCTG TGAAACTGGA TCGAATGGGC AATGCTTTGT GTGTTGAGGA 4618 CCAGGGC CGAGTCTGTC TACCTTGGAG GCTTTGTGGA GGATGCGGCT 4678	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC GIN Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT TAGATTTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGG 4378 GGAGCT TGTCCTCAGG GCATTTCCAG AGAAGATGCC CATGACCCAA 4438 TACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC 4498 CCACTCT TGACAAAAGA CTTTCAAACA CGTGGACTCT GTGTTGAGGA 4618 CCACTCT TGAAATGGA TCGAATGGC AATGCTTTGT GTGTTGAGGA 4618 CCTCTG TGAAACTGGA TCGAATGGGC AATGCTTTGT GTGTTGAGGA 4618 CCTCTG TGAAACTGGA TGGGAGGAA GGAAGGCGCA AGCCGTCCGG 4738	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC GIN Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT TAGATTTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGGG GGAGCT TGTCCTCAGG GCATTTCAA TGTTCATTTT TGGAGGAGGG GGAGCT TGTCCTCAGG GCATTTCAAAAG TCCTATATAA TGTGCCCTGC TACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC TACTCT GTAAACTGGA CTTTCAAACA CGTGGACTCT GTCTTCAAGG TCAGGGC CGAGTCTGTC TACCTTGGAG GCTTTGTGGA GGATGCGCCT TAAGGGGC CGAGTCTGTC TACCTTGGAG GCTTTGTGGA GGATGCGCCT TAAGGGGC CGAGTCTGTC TACCTTGGAG GCTTTGTGGA GGATGCGCCT TAAGGGGC CGAGTCTGTC TACCTTTGGAG GCTTTGTGGA GGATGCGCCT TAAGGCGC CGAGTCTTGTG TGGAGGTGGG CTTGTGGCCT TAAGGCGG CCGCCAAGGGTTTGG AAGGTTTGCG TGCTTTCAC TAAGGCGG CCGCCAAGGGTTTTGG AAGGTTTGCG TGCTTTCAC TAAGGCGG CCGCCAAGGGTTTTTGG AAGGTTTGCG TGCTTTCAC TAAGGCGG CCGCCAAGGGTTTTTTGG AAGGTTTGCG TGCTTTCAC TAAGGCGG CCGCCAAGGGTTTTTTGG AAGGTTTGCG TGCTTTCAC TAAGGCGG CCGCCAAGGGTTTTTTGG AAGGTTTGCG TGCTTTCAC TAAGGCGG CCGCCAAGGGT TTGCTTTTTTTTTTTTTTT	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC GIN Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT GCT TAGATTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGG 4378 GGAGCT TGTCCTCAGG GCATTTCAAA TTTTCATTTT TGGAGGAGG 4378 CACCAC CCGGAAGTAG CTTTCAAAAG TCCTATATAA TGTGCCCTGC TACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC 4498 CCACTTA AAGCAAAAGA CTTTCAAACG GCTTTGTGG GGATGCGGCT GTCTTCAAGG 4558 CCAGGTT GGATGTGGA TCGAATGGGC AATGCTTTGT GTGTTGAGGA 4618 CCAGGTT GGATGTGGA CTGGAGGAA GGAAGGCGC AGAGGCGCT GTGTTGAGGT 4738 CAGGGC CGAGTTTGGA CTGGAGGAA GGAAGGCGC AGAGGCGCT GGATGCGGCT 4738 CAGGGC CGAGTTTGGA GAGGTTGGG GTTTTGAC 4855 CAGGGC CCGCAGGGT TTGGTTTTG AAGGTTTGCG TGCTCTTCAC 4855	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC GIN Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT TAGATTTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CGGAAGTAG CCACATTGA TTTTCATTTT TGGAGGAGG 4378 GGAGCT TGTCCTCAGT CATTTAAAAG TCCTATATAA TGTGCCCTGC 4498 TACTCT CTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC 4498 CCTCTG TGAAAACTGGA TCGAATGGC AATGCTTTGT GTGTTGAGGA 4618 CCTCTG TGAAAACTGGA TCGAATGGC AATGCTTTGT GTGTTGAGGA 4618 CCTCTG TGAAAACTGGA TGGAATGGC AATGCTTTGT GTGTTGAGGA 4618 CCTGCAG TGCATTGT TACCTTGAAA GAAGGTGG GTTGTGGCCT 4678 CCTGCAG ATGCATTGT TACCTTGGA GAAGGCCCA AGCCGTCCGG 4738 CCTGCAG TTGTTTTGA TTGTTTTGG TGGTTTGCG TGTTTGCCT 4739 CCTGCAG TTGTTTTGG TGGTTTTGG TGAAGGTGGC TTGTGGCCT 4739 CCTGCAG TCCTTGTGT TACCTTTGGA GAAGGTTGCG TTGTGGCCT 4739 CTGGGGG CCGCCAGGGT TTGGTTTTGG AAGGTTTGCG TTGTGGCCT 4739 CTGGGGG CCGCCAGGGT TTGGTTTTGG AAGGTTTGCG TTGTGGCCT 4739 CTGCGG CCGCCAGGGT TTGGTTTTGG AAGGTTTGCG TTGTGGCCT 4739 CTGCGC CTGGCCCCAG GAAGGAAATG ATGCAGTTG TCCTTTCCTC 497 TCCTGGC CTGGCCCCAG GAAGGAAATG ATGCATTGGG TTCCTTTCCT	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC GIN Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT TAGATTTTCA Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CGGAAGTAG CCACATTGA TTTTCATTTT TGGAGGAGG GGAGCT TGTCCTCAGG GCATTTCAACA TTTTCATTTT TGGAGCAGGG GGAGCT TGTCCTCAGG GCATTTCAACA TGTGCCCTGC CCACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC CCACGCAAAAGGA CTTTCAAACA GCTGGACTCT GTGTTGAGGA CCTCTG TGAAACTGGA TCGAATGGC AATGCTTTGT GTGTTGAGGA CCTCTG TGAAACTGGA TCGAATGGGC AATGCTTTGT GTGTTGAGGA CCTCTG TGAAACTGGA TCGAATGGC AATGCTTTGT GTGTTGAGGA CCTCTG TGAAACTGGA TCGAATGGC AATGCTTTGT GTGTTGAGGA CACGCTG TGAAACTGGA GCAAGGTTGGA GAAGGTTGCG TGGTGTGGG TTGTGGGCT GTGTTGGGC TTGTGGCCTTTCAC AAGGCGG CCGCCAGGGT TTGGTTTTGG AAGGTTTGCG TGCTCTTCAC AAGGCGG CCGCCAGGGT TTGGTTTTGG AAGGTTTGCG TGCTCTTCAC CCTCTGCC TTGTTGGC TTGTTTTGG TTGTTGGGC TTGTTGGCCT AAGGCGG CCGCCAGGGT TTGCTTTTGG AAGGTTTGCG TTGTTGGCCT CTTGTGC TTGTTTTGG TTGTTTTTGG AAGGTTTGCG TTGTTGGCCT AAGGCGG CCGCCAGGGT TTGCTTTTGG TGGAGGTTGCG TTGTTGGCCTTCAC CTTGTGC TTGTTTTGG TTGTTTTTGG TTGTTTTCCTTCC	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC GIN Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT TAGATTTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1346 CACCAC CCGGAAGTAG CCACATTGA TTTTCATTTT TGGAGGAGGG GGAGCT TGTCCTCAGG GCATTTCAAACA TCTTCATTAA TGTGCCCTGC TACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC TACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC TAGCTTA AAGCAAAAGA CTTTCAAACA CGTGGACTCT GTCTTCAAGG CCTCTG TGAAACTGGA TCGAATGGGC AATGCTTTGT GTGTTGAGGA 4618 CCTCTG TGAAACTGGA TGGAATGGGC AATGCTTTGT GTGTTGAGGA 4678 CCTCTG TGAAACTGGA TGGAATGGGC AATGCTTTGT GTGTTGAGGA 4678 CCTCTG TGAAACTGGA TGGAATGGGC AATGCTTTGT GTGTTGAGGA 4678 CCTCTG TGAAACTGGA TGGAATGGGC TGGAGGTGGG GTTGTTGGC 4738 CCTCTGG TGAAACTGGA TTGGTTTTGG AAGGTTTGCG 4738 CCTCTGG TGGATGTGGA GGAAGGTGGG TTCCTTCCGG 4738 CCTCTGGC CCGCCAGGGT TTGGTTTTGG AAGGTTTGCG TGCTTTCAC 485 CCTCTGG CTGGCCCCAG GAAGGAAATG ATGCAGCTTG CTCCTTCCTC 497 CCCTGGC TGGCCCCAG GAAGGAAAATG ATGCAGCTTG CTCCTTCCTC 690 CCTCTGG TGAAACAGAA CAGAAAAAAGA GGAACGTTGC TGGGTGGAGA 560 CAAATTGT GAGAAACAGAA CAGAAAACTCA GGGTTTCTGC TGGGTGGAGA 5609	CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC GIN Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1325 CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT TAGATTTCA Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1340 CACCAC CCGGAAGTAG CCACATTTCA TTTTCATTTT TGGAGGAGG GGAGCT TGTCCTCAGG GCATTTCCAG AGAAGATGC CATGACCCAA TACTCT CTTTTCCATT CATTTAAAAC TCTTATATA TGTGCCTGC TAGCTTA AAGCAAAAGA CTTTCAAACA CGTGGACTCT GTCTTGAGGA CCTCTG TGAAACTGGA TCGAAATGGC AATGCTTTGT GTGTTGAGGA AGTGCTGAAACGAGAAAGA CTTTCAAAACA CGTGGACTCT GTCTTGAGGA CCTCTG TGAAACTGGA TCGAAATGGC AATGCTTTGT GTGTTGAGGA AGTGCTGAAACTGGA TCGAAATGGC AATGCTTTGT GTGTTGAGGA AGTGCTGAAATGGC CAGAAGGGAAAGA GCAAGGCGCA AGCCGTCCGG CAGGGC CGGCAGGGAA GCAAGGGGCG AGCGGTCGCG AAGGCGC CCGGCAGGGAA GCAAGGGCGC AGCGGTCCGG AAGGCGC CCGGCAGGGAAAGA GAAGGAAATGG TCCTTCCTC AAGGCGC CCGGCAGGGAAAGA AGGAAAGTTGC TGCTTTCCGC TCCTGGC CTGGCCCCAG GAAGGAAATG ATGCAGCTTG CTCTTCCTC TCCTGGC CTGGCCCCAG GAAGGAAATG ATGCAGCTTG CTCTTCCTC TGCCTTA ATTCAGAACA CCAAAAGAAA GGAACGTCG CAGAGGCTCC GAATTGT GAGAACCTCA GGTTCTTTTC TAATGAGGCTCG TAAAGGCTCC TGCTTGG CAGGTCTGAG GGTTCTTTTTC TAATGAGGCTCA TAATGAGCTCA AGGCGC CAGGAACTCA GGTTCTTTTTC TAATGAGGCTCA TAATCAGTGCAGA TAATCAGTGCAGAAACTCA GGTTTCTTTTTCCTC TAATGAGGCTCG TAAAGGCTCCA TAATCAGTGCAGAAACTCA GGGTTTTTTTTTT

5278	5338	5398	5406									
	TCGAAATTAC TTTTTAGCCG AGGTTATGAT AACATCTACT GTATCCTTTA	CTATAAAACT ATGTCTACTG GTTTCTGCCT GTGTGCTTAT GTTAAAAAAA		• J • ON GI Cas God	INFORMATION FOR SEQ 1D NO. 8:	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1367 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	(11) MOLECULE TYPE: protein	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	Glu Ser Lys Gly Leu Leu Ala Val Ala Leu Trp Phe Cys Val Glu -15	Arg Ala Ala Ser Val Gly Leu Pro Gly Asp Phe Leu His Pro Pro 10	Ser Thr	Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro 30
TTTGTG	TAGCCAGATT	GAATTTTAAC	****		(2)				Met (Thr	Lys Leu 15	Leu 30

Gly Gly Asp Ser Ile Phe Cys Lys Thr Leu Thr Ile Pro Arg Val Val 65 Asn Ala Gln Arg Asp Ser Glu Glu Arg Val Leu Val Thr Glu Cys Gly 50 55

Arg Asp Val	٠.
Asn Asp Thr Gly Ala Tyr Lys Cys Ser Tyr Arg Asp Val Asp 80	I Ie
Asn Asp Thr Gly Ala Tyr Lys Cys Ser Tyr Arg Asp 80	Asp
Asn Asp Thr Gly Ala Tyr Lys Cys Ser Tyr Arg 80	Val
Asn Asp Thr Gly Ala Tyr Lys Cys Ser Tyr 80	Asp 90
Asn Asp Thr Gly Ala Tyr Lys Cys Ser '	Arg
Asn Asp Thr Gly Ala Tyr Lys Cys 80	Tyr
Asn Asp Thr Gly Ala Tyr Lys 80	Ser
Asn Asp Thr Gly Ala Tyr 80	-
Asn Asp Thr Gly Ala 80	Lys 85
Asn Asp Thr Gly 80	Tyr
Asn Asp Thr 80	Ala
Asn Asp '	Gly
Asn	Thr
	Asp 80
Gly	Asn
	Gly

Ile Arg Ser Pro Phe 105 Tyr Val Arg Asp Tyr 100 Val Tyr Val Ser Thr 1 95 Ala

Ile Thr Glu Asn $\frac{TYr}{120}$ Ile Val His Gly Gln 115 Asp Ser Val Ser Ala 110

Asn Leu 140 Asn Ile Ser Ser Gly 135 Arg Pro Cys Ile Val Val Thr Asn Lys

Gly Asp Pro 155 Val Phe Lys Arg Glu 150 Tyr Pro Ala Arg Cys 145 Leu Ser

Tyr Ser

Asp Asn Ile Pro Leu 170 Ile Gly Phe Thr Glu 165 Ser Trp Asp Ser Ile160 Asn Arg

Arg 205 Glu Ala 185 Met 180 Tyr Ala Gly Ser 11e 175

Lys

Cys

Phe

Val

Met

Tyr Gly Val Val Val 200 Tyr Ile Val Met 11e 195 Ser Glu Thr Tyr Gln 190 Ser 220 Ile Leu Ser Pro Pro His 210 Ile Tyr Asp Val

Ala

Leu

Glu Ile Glu

Asn Val Len Thr Ala Arg Thr Glu 230 Gly Glu Lys Leu Val Leu Asn Cys 225 His **Ser** 250 Lys Gly Leu Asp Phe Thr Trp His Ser Pro Pro Ser 245

Gly Thr Val Ala Lys 265 Lys Pro Phe Pro Val 260 Asp Arg Asn Val Lys

Thr Lys Ser Asp Gln 285 Val 280 Thr Ile Glu Ser Leu 275 Met Phe Leu Ser Thr 270 Asn Ile Lys Arg Met G1Y 295 Ser Ser Cys Val Ala 290 Thr Gly Glu Tyr

Ser Phe 315 Ala Ile Lys Pro Phe 310 Thr His Arg Val Val 305 Phe Arg Thr

I1eVal Gln 330 Ser Gly Thr Val A1a 325 Glu Ser Leu Val Lys 320 Gly Met

Arg $\mathbf{T}\mathbf{y}\mathbf{x}$ Trp Lys 11e 345 Pro Asp Pro Ala Tyr 340 Pro Val Lys Tyr Leu Ser

Glu 365 Asp Gly Ile Val Met 360 \mathtt{Thr} Tyr Ser Asn G1u 355 Gly Arg Pro Ile

Val Thr 380 Tyr Ala Gly Asn Asp 375 Glu Val Thr Glu Arg Ile Met Thr

Leu

Asn 350

Ser Val Met 395 His Ser Glu Lys Gln 390 Pro Ile Ser Met Asn 385 \mathtt{Thr} Ile Leu

Ser Ile Len Val Asn Val Pro Pro Gln Ile Gly Glu Lys Ala 400 Leu Val

Thr Сys Leu Thr Thr 425 Gln Gly Thr Met Tyr 420 Gln Tyr Ser Asp Met 415 Pro

Gln

 Trp

Trp Tyr

Gln 440

Leu His His Ile

Pro

Tyr Ala Asn

Val

cys Ala 460 Thr Ser Pro Tyr Gln 455 Gly Arg Pro $\mathbf{T}\mathbf{y}\mathbf{r}$ Pro 435 Ser 450 cys Glu Glu Ala 430

Gly Asn Lys Ile Glu 475 Gln Gly Phe 470 Glu Asp His Val Arg 465 Glu Lys

Glu Gly Lys Asn Lys Thr Val Ile Leu 485 Lys Asn Gln Tyr Ala 480 Val Thr

•	
Cys	
Lys	
Tyr	
Leu	
. Ala 505	
Ser	
Val	
Asn	
Ala	
Ala 500	
Gln	
Ile	
Val	
Leu	
Thr 495	
Ser	

Phe Ser Arg Val 520 Glu Gly Gly Arg Ala 515 Ile Asn Lys

 Thr Pro 540 Gln Ala Pro Ala Gln 535 Val Glu ile Thr G1YArg

Phe Thr Arg Asp Thr Pro 530

His Asn 555 Ala Cys 550 Leu Leu Ser Val Ser 545 Glu Glu Gln

Val Ser Thr 570 Gln Ala Ser Gly Leu 565 Lys TyrTrp \mathbf{Thr} Leu 560

Asn

Glu

Met

Trp Len Ala Asp Leu 585 Cys Lys Asn Val Pro 580 Thr Len Ser Glu G1y 575

cys Ile 605 Len Ile Tyr Asn Asp Thr 900 Ser Asn Phe Ser Met 595 Lys Leu Asn Gly Thr 590

Gln Lys Val 620 Val 635 Ala Phe Gln Asn Ala Ser Leu Gln Asp Gln Gly Asp 615 Lys Arg His Cys Leu 630 Asp Lys Lys Thr Lys 625 Gln Ala

Gly Asn Leu Glu 650 Pro Met Ile Thr Glu Arg Met Ala Len Ile 640 IleLen

Ala Cys Pro Thr Val 665 Ile Glu Glu Thr G1y 660 Ile Thr Thr Thr Gln 655 Asn

Thr 685 G]n Asn Asp Lys Phe 680 Trp Thr IleHis Pro 675 Thr Pro Asn Gly Ser 670

Len Asn 700 Asn Arg Arg Asp Gly 695 Ile Val Leu Gly Ser 690 Glu Asp Leu Val

u T 9
cys cys
Thr 715
Tyr
Leu
Gly
Gly
Asp 710
Glu
Lys
Arg
Val
Arg 705
Arg
Ile
Thr

Ile Ile Phe Leu 730 Glu Thr Arg Ala A1a 725 Cys Asn Val Leu Gly 720 cys

Gly Ile Leu Val 11e 745 Asn Leu Glu Val Thr 740 Ala Gln Glu Lys Gla

Val 765 Leu Leu Val Leu 760 Met Phe Phe Trp Leu 755 Ile Ala Ala Val Thr 750

Leu TYF780 Gly Glu Leu Lys Thr 775 Ala Asn Glu Gly Arg 770 Lys Val Thr

Glu Cys Arg 795 Leu Pro Leu Asp Glu 790 Glu Pro Asp Asp Met 785 Val

Gla Asp Arg Arg 810 Trp Glu Phe Pro Lys 805 Ser Ala Asp TyrPro 800 Leu

Arg

Ser

Arg

Gln Val Ile Thr Val G1Y 825 Phe Ala Gly Arg G1y 820 Leu Lys Pro Gly Leu 815 Lys

Ala 845 Leu Ala 860 Arg Lys Glu His Cys Ser Thr 840 His 855 Ala ${
m Thr}$ Thr Lys Gly Ala Asp Gla I.le 835 Lys 850 G1yLen Phe Met Ala 830

Asn Leu 875 His His Gly Ile His 870 Ile Ile Leu Lys Leu 865 Glu Ser Met

Val Met Len Pro 890 Gly G1yPro Lys Thr 885 Cys Gly Ala Len Leu 880 Val Asn

Gly Tyr Leu Arg Thr 905 Gly Asn Leu Ser Phe 900 Glu Phe Ser Lys Ile

٠.												
Phe Arg 925	Arg Arg 940	Phe Val	: Glu Glu	c Ser Phe	s Ile His 1005	n Val Val 1020	Asp Pro Asp 1035	Trp Met Ala Pro 1050	1 Trp Ser	Ser Pro Tyr 1085	Arg Arg Leu Lys Glu Gly	The Ard Met Ard Ala Pro Asp Tyr Thr Thr Pro Glu Met Tyr Gln Thr
Arg	Lys	G1 <u>y</u> 955	Ser	Tyr	Cys	As	AS 10	Me 50	Asp Val		ų. Į	נר ד
Ala	Leu	Ser	Ala 970	Cys	Lys	Lγs	Lys		Asr 5	Gly Ala	Lei	Me.
11y 1	Asp 1	Ser	Glu	Ile 985	Arg	ser Glu Lys Asn	Tyr	Lys	Ser /	G1y 0	Arg	Glu
Lys Gly Ala 920	Val 1	Ala	Glu	Leu	Ser 1000	Ser	Ile	Leu	Gln	Leu (1080	Arg 5	Pro
	Ser 935	Ser	Glu	His	Ala	Leu : 1015	Asp 0	Pro	Ile	Ser	Cys 7	Thr
Lys Ser	Leu	Ser 950	Glu Glu	Leu Glu His	Leu	Leu	Ala Arg A	Arg Leu 1045	Arg Val Tyr Thr 1060	Phe :	Ile Asp Glu Glu Phe 1090	r Thr
ľyr		Gln	Val 965	Leu	Phe Leu	Asn Ile		Arg 104	Tyr 0	Ile	1 G10	ιγι
Pro Tyr	Gly Glu	Ser	Asp	Thr 980	Glu	Asn	Leu	Ala	Val 106	_G1u 5	Glu	Ask
	Val	Ser	Ser	Leu	Met 995	Arg	Gly	Asp	Arg	Trp 107	Asp 0	Pro
Phe	Tyr 930	ľhr	Leu	Phe	Gly	Ala / 1010	Phe 5	Gly	Phe Asp	Leu		Ala
31u]	Asp	Ile '	Ser	Asp	Lys	Ala	Asp I	Arg Lys Gly Asp Ala 1040		Leu	Val Lys	. Arc
Arg Asn Glu Phe Val 915	Lys	Ser	Glu Lys 960	Tyr Lys Asp Phe 975	Val Ala Lys Gly	Asp Leu	Ile Cys Asp Phe Gly Leu 1025		Glu Thr Ile 1055	Gly Val Leu Leu Trp Glu	/ Va]	ı Met
Arg .	Gly	Asp	Glu	TYr 975	Val	Asp	Ile	Val	Thr 105	, G1y	, G1y	Arc
Lys / 910	Gln Gly Lys Asp	Leu	G1u	Leu	Gln 990	Arg	Lys	Tyr	Glu	Phe (Pro	Ţ

Pro Ser Phe Ser Met Leu Asp Cys Trp His Glu Asp Pro Asn Gln Arg 1125

Gln Glu Leu Val Glu His Leu Gly Asn Leu Leu Gln Ala Asn Ala Gln Ser Glu Thr Leu Ser 1160 Ile Val Leu Pro Met 1155 Asp Gly Lys Asp Tyr 1150

Cys Met Ser Gly Leu Ser Leu Pro Thr Ser Pro Val 1170 Ser Glu Glu Asp

Glu Val Cys Asp Pro Lys Phe His Tyr Asp Asn Thr Ala 1185 Glu Glu Glu

Ser His Tyr Leu Gln Asn Ser Lys Arg Lys Ser Arg Pro Val 1210 Gly Ile

Ser Val Lys Thr Phe Glu Asp Ile Pro Leu Glu Glu Pro Glu Val 1215

Gln Thr Asp Ser G 1235 Val Ile Pro Asp Asp

Gly Met Val Leu Ala

Ser

Asn Lys Leu Ser Pro Ser Phe 1255 Arg Thr Leu Glu Asp 1250 Lys Glu Glu Leu

Ser Glu Gly 1275 Asp Asp Ser A 1290 Ala Val Gln Ser Gly Tyr His Ser Arg Glu Ser 1270 Lys Gly Met Met Pro Ser Gly

Tyr

Gly

Ser

Asn Gln Thr

Ser

Val Ser Asp Glu Ala Gly Leu Leu Lys Met 1285

1300 Ser Asp Thr Thr Val Tyr

Ser Asp Ala Ala Val His Ala Asp Ser Gly Thr Thr Leu Gln Leu Thr 1320

Thr Pro Gly	1340
Pro	
Pro	
Pro	
Ala	133
Pro	
Val	
Pro	
Gly	_
Ser	1330
Gly	
Asn	٠.
Leu	
Cys	1.

Asn His Glu Arg Gly Ala Ala

(2) INFORMATION FOR SEQ ID NO:7:

SEQUENCE CHARACTERISTICS: (i)

LENGTH: 96 base pairs TYPE: nucleic acid (A) (B)

STRANDEDNESS: single

TOPOLOGY: linear <u>(a)</u> (C)

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

AATTCGTCGA CTTTCTGTCA CCATGAGTGC ACTTCTGATC CTAGCCCTTG TGGGAGCTGC

TGTTGCTGAC TACAAGATG ATGATGACAA GATCTA

(2) INFORMATION FOR SEQ ID NO:8:

LENGTH: 96 base pairs SEQUENCE CHARACTERISTICS: (A)

(i)

STRANDEDNESS: single TYPE: nucleic acid

TOPOLOGY: linear (Ú) (E)

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

AGCTTAGATC TTGTCATCAT CATCTTTGTA GTCAGCAACA GCAGCTCCCA CAGAGGCTAG

96

9

GATCAGAAGT GCACTCATGG TGACAGAAAG TCGACG

(2) INFORMATION FOR SEQ ID NO:9:

SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (Ţ)

B

STRANDEDNESS: single TYPE: nucleic acid

TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TGAGAAGATC TCAAACCAAG ACCTGCCTGT

(2) INFORMATION FOR SEQ ID NO:10:

LENGTH: 34 base pairs SEQUENCE CHARACTERISTICS: (ï)

TYPE: nucleic acid STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCAATGGCGG CCGCTCAGGA GATGTTGTCT TGGA

CLAIMS

What I claim is:

- An isolated mammalian nucleic acid molecule encoding a receptor protein tyrosine kinase expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells.
- 10 2. A nucleic acid molecule according to claim 1 wherein the nucleic acid molecule is DNA.
 - 3. A nucleic acid molecule according to claim 2 wherein the nucleic acid molecule is cDNA.
- 4. A nucleic acid molecule according to claim 1 wherein the nucleic acid molecule is RNA.
- 5. A nucleic acid molecule according to claim 1 that is a mouse nucleic acid molecule.
 - 6. A nucleic acid molecule according to claim 5 that is flk-2 comprising the sequence shown in Figure 1a.
- 25 7. A nucleic acid molecule according to claim 1 that is a human nucleic acid molecule.
 - A nucleic acid molecule according to claim 7 that is DNA.
- A nucleic acid molecule according to claim 7 that is
 flk-2 comprising the sequence shown in Figure 1b.
- 10. An isolated acid nucleic molecule that is flk-2 comprising the sequence shown in Figure 1a.
 - 11. A nucleic acid molecule according to claim 10 wherein the nucleic acid molecule is DNA.
- 40 12. An isolated nucleic acid molecule that is flk-2

SUBSTITUTE SHEET

20

25

comprising the sequence shown in Figure 1b.

- 13. A nucleic acid molecule according to claim 12 wherein the nucleic acid molecule is DNA.
- 14. An isolated nucleic molecule that is flk-1 having the sequence shown in Figure 2.
- 15. A nucleic acid molecule according to claim 14 wherein the nucleic acid molecule is DNA.
 - 16. A nucleic acid molecule according to claim 14 wherein the nucleic acid molecule is cDNA.
- 15 17. A nucleic acid molecule according to claim 14 that has the corresponding sequence of RNA.
 - 18. A vector comprising a mammalian nucleic acid molecule encoding a receptor protein tyrosine kinase expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells.
 - 19. A vector comprising flk-1 having the nucleic acid sequence of Figure 2.
 - 20. A vector comprising flk-2 having the nucleic acid sequence of Figure 1a or 1b.
- 21. A vector according to claim 18 wherein the vector is capable of being cloned in a host.
 - 22. A vector according to claim 19 wherein the vector is capable of being cloned in a host.
- 35 23. A vector according to claim 20 wherein the vector is capable of being cloned in a host.
 - 24. A vector according to claim 21 wherein the host is a prokaryotic host.

- 25. A vector according to claim 22 wherein the host is a prokaryotic host.
- 26. A vector according to claim 23 wherein the host is a prokaryotic host.
 - 27. A vector according to claim 18 that is capable of expressing the nucleic acid molecule in a host.
- 28. A vector according to claim 19 that is capable of expressing flk-1 in a host.
 - 29. A vector according to claim 20 that is capable of expressing flk-2 in a host.
 - 30. A vector according to claim 27 wherein the host is a prokaryotic host.
- 31. A vector according to claim 28 wherein the host is a prokaryotic host.
 - 32. A vector according to claim 29 wherein the host is a prokaryotic host.
- 25 33. A vector according to claim 27 wherein the host is a eucaryotic host.
 - 34. A vector according to claim 28 wherein the host is a eucaryotic host.
- 30
 35. A vector according to claim 29 wherein the host is a eucaryotic host.
- 36. An isolated protein tyrosine kinase expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells.
 - 37. The protein tyrosine kinase according to claim 36 that is flk-2 having the sequence shown in Figure 1a or 1b.

- 38. The protein tyrosine kinase according to claim 36 that is human flk-2.
- 39. The protein tyrosine kinase according to claim 38 that is flk-2 having the sequence shown in Figure 1b.
 - 40. An isolated protein tyrosine kinase that is flk-1 having the sequence shown in Figure 2.
- 41. A ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells, wherein the ligand stimulates the proliferation and/or differentiation of the primitive hematopoietic cells.
- 42. A ligand that binds to the receptor protein tyrosine kinase having the amino acid sequence of flk-1 shown in Figure 2, wherein the ligand stimulates the proliferation and/or differentiation of cells that express flk-1.
 - 43. A ligand that binds to the receptor protein tyrosine kinase having the amino acid sequence of flk-2 shown in Figure 1a or 1b, wherein the ligand stimulates the proliferation and/or differentiation of cells that express flk-2.
- 44. A nucleic acid molecule encoding a ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells, wherein the ligand stimulates the proliferation and/or differentiation of the primitive hematopoietic cells.
- 45. A nucleic acid molecule encoding a ligand that binds to the receptor protein tyrosine kinase having the amino acid sequence of flk-1 shown in Figure 2, wherein the ligand stimulates the proliferation and/or differentiation of cells that express flk-1.

SUBSTITUTE SHEET

- 46. A nucleic acid molecule encoding a ligand that binds to the receptor protein tyrosine kinase having the amino acid sequence of flk-2 shown in Figure 1a or 1b, wherein the ligand stimulates the proliferation and/or differentiation of cells that express flk-2.
- 47. A nucleic acid molecule according to claim 44 wherein the nucleic acid molecule is DNA.
- 10 48. A nucleic acid molecule according to claim 44 wherein the nucleic acid molecule is cDNA.

5.

- 49. A nucleic acid molecule according to claim 44 wherein the nucleic acid molecule is RNA.
- 50. A nucleic acid molecule according to claim 45 wherein the nucleic acid molecule is DNA.
- 51. A nucleic acid molecule according to claim 45 wherein the nucleic acid molecule is cDNA.
 - 52. A nucleic acid molecule according to claim 45 wherein the nucleic acid molecule is RNA.
- 25 53. A nucleic acid molecule according to claim 46 wherein the nucleic acid molecule is DNA.
 - 54. A nucleic acid molecule according to claim 46 wherein the nucleic acid molecule is cDNA.
- 30
 55. A nucleic acid molecule according to claim 46 wherein the nucleic acid molecule is RNA.
- of the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells comprising contacting the stem cells with a ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

- 57. A method of stimulating the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells comprising contacting the stem cells with a ligand that binds to the receptor protein tyrosine kinase having the nucleic acid sequence of flk-1 shown in Figure 2.
- 58. A method of stimulating the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells comprising contacting the stem cells with a ligand that binds to the receptor protein tyrosine kinase having the nucleic acid sequence of flk-2 shown in Figure 1a or 1b.
- 15 59. A method according to claim 56 wherein the stimulation occurs in vitro.

20

- 60. A method according to claim 57 wherein the stimulation occurs in vitro.
- 61. A method according to claim 58 wherein the stimulation occurs in vitro.
- 62. A method according to claim 56 wherein the stimulation occurs in vivo.
 - 63. A method according to claim 57 wherein the stimulation occurs in vivo.
- 30 64. A method according to claim 58 wherein the stimulation occurs in vivo.
 - 65. Murine cell line 2018 having ATCC accession number ATCC CRL 10907.
 - 66. A recombinant nucleic acid molecule that is murine flk-2 having the sequence shown in Figure 1a.
 - 67. A recombinant nucleic acid molecule comprising the

sequence shown in Figure 1a from nucleotide 1 to nucleotide 1662.

68. A recombinant nucleic acid molecule comprising the sequence shown in Figure 1a from nucleotide 31 to nucleotide 3006.

10

15

25

- 69. A recombinant nucleic acid molecule comprising the sequence shown in Figure 1a from nucleotide 112 to nucleotide 3006.
- 70. An isolated mRNA that encodes the murine flk-2 protein, said protein having the amino acid sequence shown in Figure 1a.
- 71. A recombinant nucleic acid molecule that is human flk-2 having the sequence shown in Figure 1b.
- 72. A recombinant nucleic acid molecule comprising the sequence shown in Figure 1b from nucleotide 1 to nucleotide 1689.
 - 73. A recombinant nucleic acid molecule comprising the sequence shown in Figure 1b from nucleotide 58 to nucleotide 3036.
 - 74. A recombinant nucleic acid molecule comprising the sequence shown in Figure 1b from nucleotide 139 to nucleotide 3036.
- 75. An isolated mRNA that encodes the human flk-2 protein, said protein having the amino acid sequence shown in Figure 1b.
- 76. A recombinant nucleic acid molecule that is murine flk-1 having the sequence shown in Figure 2.
 - 77. A recombinant nucleic acid molecule comprising the sequence shown in Figure 2 from nucleotide 1 to

SUBSTITUTE SHEET

nucleotide 2493.

- 78. A recombinant nucleic acid molecule comprising the sequence shown in Figure 2 from nucleotide 208 to nucleotide 4308.
- 79. A recombinant nucleic acid molecule comprising the sequence shown in Figure 2 from nucleotide 265 to nucleotide 4308.
- 80. An isolated mRNA that encodes the murine flk-1 protein, said protein having the amino acid sequence shown in Figure 2.

1/19

Fig. 1a.1

GCGGCCTGGC TACCGCGCGC TCCGGAGGCC ATG CGG GCG TTG GCG CAG CGC AGC Met Arg Ala Leu Ala Gln Arg Ser -25 -27 GAC CGG CGG CTG CTG CTT GTT GTT TTG TCA GTA ATG ATT CTT GAG Asp Arg Arg Leu Leu Leu Val Val Leu Ser Val Met Ile Leu Glu -10 -15 ACC GTT ACA AAC CAA GAC CTG CCT GTG ATC AAG TGT GTT TTA ATC AGT Thr Val Thr Asn Gln Asp Leu Pro Val Ile Lys Cys Val Leu Ile Ser CAT GAG AAC AAT GGC TCA TCA GCG GGA AAG CCA TCA TCG TAC CGA ATG His Glu Asn Asn Gly Ser Ser Ala Gly Lys Pro Ser Ser Tyr Arg Met 15 GTG CGA GGA TCC CCA GAA GAC CTC CAG TGT ACC CCG AGG CGC CAG AGT Val Arg Gly Ser Pro Glu Asp Leu Gln Cys Thr Pro Arg Arg Gln Ser 35 GAA GGG ACG GTA TAT GAA GCG GCC ACC GTG GAG GTG GCC GAG TCT GGG Glu Gly Thr Val Tyr Glu Ala Ala Thr Val Glu Val Ala Glu Ser Gly TCC ATC ACC CTG CAA GTG CAG CTC GCC ACC CCA GGG GAC CTT TCC TGC Ser Ile Thr Leu Gln Val Gln Leu Ala Thr Pro Gly Asp Leu Ser Cys 65 CTC TGG GTC TTT AAG CAC AGC TCC CTG GGC TGC CAG CCG CAC TTT GAT Leu Trp Val Phe Lys His Ser Ser Leu Gly Cys Gln Pro His Phe Asp 80 TTA CAA AAC AGA GGA ATC GTT TCC ATG GCC ATC TTG AAC GTG ACA GAG Leu Gln Asn Arg Gly Ile Val Ser Met Ala Ile Leu Asn Val Thr Glu 100 ACC CAG GCA GGA GAA TAC CTA CTC CAT ATT CAG AGC GAA CGC GCC AAC Thr Gln Ala Gly Glu Tyr Leu Leu His Ile Gln Ser Glu Arg Ala Asn 120 115 110 TAC ACA GTA CTG TTC ACA GTG AAT GTA AGA GAT ACA CAG CTG TAT GTG Tyr Thr Val Leu Phe Thr Val Asn Val Arg Asp Thr Gln Leu Tyr Val 135 130 CTA AGG AGA CCT TAC TTT AGG AAG ATG GAA AAC CAG GAT GCA CTG CTC Leu Arg Arg Pro Tyr Phe Arg Lys Met Glu Asn Gln Asp Ala Leu Leu 145 TGC ATC TCC GAG GGT GTT CCG GAG CCC ACT GTG GAG TGG GTG CTC TGC Cys Ile Ser Glu Gly Val Pro Glu Pro Thr Val Glu Trp Val Leu Cys 160 AGC TCC CAC AGG GAA AGC TGT AAA GAA GAA GGC CCT GCT GTT GTC AGA Ser Ser His Arg Glu Ser Cys Lys Glu Glu Gly Pro Ala Val Val Arg 180

2/19

Fig. la.2

Lys 190	Glu	Glu	Lys	Val	Leu 195	His	GIU	Leu	Pne	200	TIIL	лэр	ATC Ile	*** 9	205
TGT Cys	GCT Ala	AGA Arg	AAT Asn	GCA Ala 210	CTG Leu	GGC Gly	CGC Arg	GAA Glu	TGC Cys 215	ACC Thr	AAG Lys	CTG Leu	TTC Phe	ACC Thr 220	ATA Ile
GAT Asp	CTA Leu	AAC Asn	CAG Gln 225	GCT Ala	CCT Pro	CAG Gln	AGC Ser	ACA Thr 230	CTG Leu	CCC Pro	CAG Gln	TTA Leu	TTC Phe 235	CTG Leu	AAA Lys
Val	Gly	Glu 240	Pro	Leu	Trp	Ile	Arg. 245	cys	гÃг	Ala	TIE	250	GTG Val	, ,	
GGA Gly	TTC Phe 255	GGG Gly	CTC Leu	ACC Thr	TGG Trp	GAG Glu 260	CTG Leu	GAA Glu	GAC Asp	AAA Lys	GCC Ala 265	CTG Leu	GAG Glu	GAG Glu	GGC Gly
AGC Ser 270	TAC Tyr	TTT Phe	GAG Glu	ATG Met	AGT Ser 275	ACC Thr	TAC Tyr	TCC Ser	ACA Thr	AAC Asn 280	AGG Arg	ACC Thr	ATG Met	ATT Ile	CGG Arg 285
Ile	Leu	Leu	Ala	Phe 290	Val	ser	Ser	vaı	295	Arg	ASII	ASP	ACC Thr	300	-1-
Tyr	Thr	Cys	Ser 305	Ser	Ser	гуs	HIS	310	Ser	GIII	Ser	,	315	•	
Ile	Leu	Glu 320	Lys	Gly	Phe	Ile	325	Ala	THE	Ser	261	330		Ç	TAT Tyr
GAA Glu	ATT Ile 335	GAC Asp	CCG Pro	TAC Tyr	GAA Glu	AAG Lys 340	Pne	TGC Cys	TTC	TCA Ser	GTC Val 345	AGG Arg	TTT Phe	AAA Lys	GCG Ala
TAC Tyr 350	Pro	CGA Arg	ATC Ile	CGA Arg	TGC Cys 355	ACG Thr	TGG Trp	ATC Ile	TTC Phe	TCT Ser 360	GIII	GCC Ala	TCA Ser	TTT Phe	CCT Pro 365
TGT Cys	GAA Glu	CAG Gln	AGA Arg	GGC Gly 370	Leu	GAG Glu	GAT Asp	GGG Gly	TAC Tyr 375	SEL	ATA Ile	TCT Ser	AAA Lys	TTT Phe 380	TGC Cys
GAT Asp	CAT His	AAG Lys	AAC Asn 385	Lys	CCA Pro	GGA Gly	GAG Glu	TAC Tyr 390	116	FILE	TAT	GCA Ala	GAA Glu 395		GAT Asp
GAC Asp	GCC Ala	CAG Gln 400	Phe	ACC Thr	AAA Lys	ATG Met	TTC Phe 405	Thr	CTG Lev	AAT Asn	ATA	AGA Arg 410	,	AAA Lys	CCT Pro

3/19

Fig. 1a.3

Gln	Val 415	Leu	Ala	Asn	Ala	Ser 420	Ala	ser	GIII	AIG	425	Cys		TCT Ser	
Gly 430	Tyr	Pro	Leu	Pro	Ser 435	Trp	Thr	Trp	гÀг	440	Cys	Sei	nsp	AAA Lys	445
Pro	Asn	Cys	Thr	Glu 450	Glu	Ile	Pro	GIU	455	vai	111	ASII	- Dy G	AAG Lys 460	
Asn	Arg	Lys	Val 465	Phe	Gly	Gln	Trp	470	ser	Ser	Set	TIIE.	475	AAT Asn	1100
AGT Ser	GAG Glu	GCC Ala 480	GGG Gly	AAA Lys	GGG Gly	CTT Leu	CTG Leu 485	GTC Val	AAA Lys	TGC Cys	TGT Cys	GCG Ala 490	TAC Tyr	AAT Asn	TCT Ser
Met	Gly 495	Thr	Ser	Cys	Glu	Thr 500	ITE	Pne	Leu	ASII	505		O.T.	CCC	
Pro 510	Phe	Ile	Gln	Asp	Asn 515	IIe	ser	Pne	TÄT	520	1111	:	, OIJ		525
CTC Leu	CCC	TTC Phe	ATT Ile	GTT Val 530	GTT Val	CTC Leu	ATT Ile	GTG Val	TTG Leu 535	ATC Ile	TGC Cys	CAC	AAA Lys	TAC Tyr 540	AAA Lys
AAG Lys	CAA Gln	TTT	AGG Arg 545	TAC Tyr	GAG Glu	AGT Ser	CAG Gln	CTG Leu 550	CAG Gln	ATG Met	ATC Ile	CAG Gln	GTG Val 555	ACT Thr	GGC Gly
CCC Pro	CTG Leu	GAT Asp 560	Asn	Glu	TAC Tyr	Phe	Tyr	vai	Asp	Pne	AL 9	GAC Asp 570	- Y -	GAA Glu	TAT
GAC Asp	CTT Leu 575	Lys	TGG Trp	GAG Glu	TTC Phe	CCG Pro 580	Arg	GAG Glu	AAC Asn	TTA Leu	GAG Glu 585	FILE	GGG Gly	AAG Lys	GTC Val
Leu	GGG Gly	TCT Ser	GGC Gly	GCT Ala	TTC Phe 595	GTA	AGG Arg	GTG Val	ATG Met	AAC Asn 600	MIG	ACG Thr	GCC	TAT	GGC Gly 605
ATT Ile	AGT Ser	AAA Lys	Thr	GGA Gly 610	Val	TCA Ser	ATT Ile	CAG Gln	GTG Val 615	MIG	GTG Val	AAC Lys	ATC Met	CTA Leu 620	AAA Lys
GAG Glu	AAA Lys	GCT Ala	GAC Asp 625	Ser	TGT Cys	GAA Glu	AAA Lys	GAA Glu 630	ATO	CTC Lev	: ATG	TCG Ser	GAG Glu 635		AAA Lys

Fig. 1a.4

			•												
ATG Met	ATG Met	ACC Thr 640	CAC His	CTG Leu	GGA Gly	CAC His	CAT His 645	GAC Asp	AAC Asn	ATC	GTG Val	AAT Asn 650	CTG Leu	CTG Leu	GGG Gly
GCA Ala	TGC Cys 655	ACA Thr	CTG Leu	TCA Ser	GGG Gly	CCA Pro 660	GTG Val	TAC Tyr	TTG Leu	ATT Ile	TTT Phe 665	GAA Glu	TAT Tyr	TGT Cys	TGC Cys
TAT Tyr 670	GGT Gly	GAC Asp	CTC Leu	CTC Leu	AAC Asn 675	TAC Tyr	CTA Leu	AGA Arg	AGT Ser	AAA Lys 680	AGA Arg	GAG Glu	AAG Lys	TTT Phe	CAC His 685
AGG Arg	ACA Thr	TGG Trp	Thr	GAG Glu 690	ATT Ile	TTT Phe	AAG Lys	GAA Glu	CAT His 695	AAT Asn	TTC Phe	AGT Ser	TCT	TAC Tyr 700	CCT Pro
ACT Thr	TTC Phe	CAG Gln	GCA Ala 705	CAT His	TCA Ser	AAT Asn	TCC Ser	AGC Ser 710	ATG Met	CCT Pro	GGT Gly	TCA Ser	CGA Arg 715	GAA Glu	GTT Val
CAG Gln	TTA Leu	CAC His 720	CCG Pro	CCC Pro	TTG Leu	GAT Asp	CAG Gln 725	CTC Leu	TCA Ser	GGG Gly	TTC Phe	AAT Asn 730	GGG Gly	AAT Asn	TCA Ser
Ile	His 735	Ser	Glu	Asp		740	GIU	TYE	GIU	ASI	745	гЛР	Arg	Dea	A1u
GAA Glu 750	GAA Glu	GAG Glu	GAG Glu	GAA Glu	GAT Asp 755	Leu	AAC Asn	GTG Val	CTG Leu	ACG Thr 760	TTT	GAA Glu	GAC Asp	CTC Leu	CTT Leu 765
TGC Cys	TTT Phe	GCG Ala	TAC	CAA Gln 770	GTG Val	GCC Ala	AAA Lys	GGC Gly	ATG Met 775	GIU	TTC Phe	CTG Leu	GAG Glu	TTC Phe 780	AAG Lys
TCG Ser	TGT Cys	GTC Val	CAC His 785	Arg	GAC Asp	CTG Leu	GCA Ala	GCC Ala 790	AGG Arg	AAT Asn	GTG Val	TTG Leu	GTC Val 795	ACC Thr	CAC His
GGG Gly	AAG Lys	GTG Val 800	Väl	AAG Lys	ATC Ile	TGT Cys	GAC Asp 805	Pne	GGA Gly	CTG Leu	GCC Ala	CGA Arg 810	ASP	ATC Ile	CTG Leu
AGC Ser	GAC Asp 815	Ser	AGC Ser	TAC Tyr	GTC Val	GTC Val 820	Arg	GGC Gly	AAC Asn	GCA Ala	CGG Arg 825	Leu	CCG Pro	GTG Val	AAG Lys
TGG Trp 830	Met	GCA Ala	CCC	GAG Glu	AGC Ser 835	Leu	TTT Phe	GAA Glu	GGG Gly	ATC Ile 840	Tyr	ACA Thr	ATC	AAG Lys	AGT Ser 845
GAC Asp	GTC Val	TGG Trp	TCC Ser	TAC Tyr 850	Gly	ATC	CTT Leu	CTC Leu	TGG Trp 855	GIU	ATA	TTT Phe	Ser	CTG Leu 860	GGT Gly
															-

Fig. 1a.5

GTG AAC CCT TAC CCT GGC ATT CCT GTC GAC GCT AAC TTC TAT AAA CTG Val Asn Pro Tyr Pro Gly Ile Pro Val Asp Ala Asn Phe Tyr Lys Leu 875 865 ATT CAG AGT GGA TTT AAA ATG GAG CAG CCA TTC TAT GCC ACA GAA GGG Ile Gln Ser Gly Phe Lys Met Glu Gln Pro Phe Tyr Ala Thr Glu Gly 880 ATA TAC TTT GTA ATG CAA TCC TGC TGG GCT TTT GAC TCA AGG AAG CGG Ile Tyr Phe Val Met Gln Ser Cys Trp Ala Phe Asp Ser Arg Lys Arg 905 895 CCA TCC TTC CCC AAC CTG ACT TCA TTT TTA GGA TGT CAG CTG GCA GAG Pro Ser Phe Pro Asn Leu Thr Ser Phe Leu Gly Cys Gln Leu Ala Glu 920 915 910 GCA GAA GAA GCA TGT ATC AGA ACA TCC ATC CAT CTA CCA AAA CAG GCG Ala Glu Glu Ala Cys Ile Arg Thr Ser Ile His Leu Pro Lys Gln Ala 935 930 GCC CCT CAG CAG AGA GGC GGG CTC AGA GCC CAG TCG CCA CAG CGC CAG Ala Pro Gln Gln Arg Gly Gly Leu Arg Ala Gln Ser Pro Gln Arg Gln 950 945 GTG AAG ATT CAC AGA GAA AGA AGT TAGCGAGGAG GCCTTGGACC CCGCCACCCT Val Lys Ile His Arg Glu Arg Ser 965 960 CGTTGCTTCG CTGGACTTTT CTCTAGATGC TGTCTGCCAT TACTCCAAAG TGACTTCTAT AAAATCAAAC CTCTCCTCGC ACAGGCGGGA GAGCCAATAA TGAGACTTGT TGGTGAGCCC GCCTACCCTG GGGGCCTTTC CACGAGCTTG AGGGGAAAGC CATGTATCTG AAATATAGTA

																.00
															GAGG	
	ATG Met -27	CCG Pro	GCG Ala -25	TTG Leu	GCG Ala	CGC Arg	GAC Asp	GCG Ala -20	GGC Gly	ACC Thr	GTG Val	CCG Pro	CTG Leu -15	CTC Leu	GTT Val	GTT Val
	TTT Phe	TCT Ser -10	GCA Ala	ATG Met	ATA Ile	TTT Phe	GGG Gly -5	ACT Thr	ATT Ile	ACA Thr	AAT Asn	CAA Gln 1	GAT Asp	CTG Leu	CCT Pro	GTG Val 5
	ATC Ile	AAG Lys	TGT Cys	GTT Val	TTA Leu 10	ATC Ile	AAT Asn	CAT His	AAG Lys	AAC Asn 15	AAT Asn	GAT Asp	TCA Ser	TCA Ser	GTG Val 20	GGG Gly
	AAG Lys	TCA Ser	TCA Ser	TCA Ser 25	TAT Tyr	CCC Pro	ATG Met	GTA Val	TCA Ser 30	GAA Glu	TCC	CCG Pro	GAA Glu	GAC Asp 35	CTC Leu	GGG Gly
	TGT Cys	GCG Ala	TTG Leu 40	AGA Arg	CCC Pro	CAG Gln	AGC Ser	TCA Ser 45	GGG Gly	ACA Thr	GTG Val	TAC Tyr	GAA Glu 50	GCT Ala	GCC Ala	GCT Ala
	GTG Val	GAA Glu 55	GTG Val	GAT Asp	GTA Val	TCT Ser	GCT Ala 60	TCC Ser	ATC Ile	ACA Thr	CTG Leu	CAA Gln 65	GTG Val	CTG Leu	GTC. Val	GAT Asp
*	GCC Ala 70	CCA Pro	GGG Gly	AAC Asn	ATT Ile	TCC Ser 75	TGT Cys	CTC Leu	TGG Trp	GTC Val	TTT Phe 80	AAG Lys	CAC His	AGC Ser	TCC Ser	CTG Leu 85
	AAT Asn	TGC Cys	CAG Gln	CCA Pro	CAT His 90	TTT Phe	GAT Asp	TTA Leu	CAA Gln	AAC Asn 95	AGA Arg	GGA Gly	GTT Val	GTT Val	TCC Ser 100	ATG Met
	GTC Val	ATT	TTG Leu	AAA Lys 105	Met	ACA Thr	GAA Glu	ACC Thr	CAA Gln 110	GCT Ala	GGA Gly	GAA Glu	TAC Tyr	CTA Leu 115	CTT Leu	TTT Phe
	ATT Ile	CAG Gln	AGT Ser 120	Glu	GCT Ala	ACC Thr	AAT Asn	TAC Tyr 125	ACA Thr	ATA Ile	TTG Leu	TTT	ACA Thr 130	val	AGT Ser	ATA
	AGA Arg	AAT Asn 135	Thr	CTG Leu	CTT Leu	TAC Tyr	ACA Thr 140	Leu	AGA Arg	AGA Arg	CCT Pro	TAC Tyr 145	Pne	AGA Arg	AAA Lys	ATG Met
	GAA Glu 150	AAC Asn	CAG Gln	GAC Asp	GCC Ala	CTG Leu 155	GTC Val	TGC Cys	ATA Ile	TCT Ser	GAG Glu 160	Ser	GTT Val	CCA Pro	GAG Glu	CCG Pro 165
	ATC Ile	GTG Val	GAA Glu	TGG Trp	GTG Val 170	Leu	TGC	GAT Asp	TCA Ser	CAG Gln 175	GIY	GAA Glu	AGC Ser	TGT Cys	AAA Lys 180	GAA Glu
	GAA Glu	AGT Ser	CCA Pro	GCT Ala 185	Val	GTT Val	AAA Lys	AAG Lys	GAG Glu 190	GIU	AAA Lys	GTG Val	CTT Leu	CAT His		TTA Leu

												oma		3.00	CAA
Phe	Gly	Thr 200	Asp	Ile	AGG Arg	cys	205	Ala	ALG	YOU	:	210		چ	
TGC Cys	ACC Thr 215	AGG Arg	CTG Leu	TTC Phe	ACA Thr	ATA Ile 220	GAT Asp	CTA Leu	AAT Asn	CAA Gln	ACT Thr 225	CCT Pro	CAG Gln	ACC	ACA Thr
TTG Leu 230	CCA Pro	CAA Gln	TTA Leu	TTT Phe	CTT Leu 235	AAA Lys	GTA Val	GGG Gly	GAA Glu	CCC Pro 240	TTA Leu	TGG Trp	ATA Ile	AGG Arg	TGC Cys 245
AAA Lys	GCT Ala	GTT Val	His	GTG Val 250	AAC Asn	CAT His	GGA Gly	TTC Phe	GGG Gly 255	CTC Leu	ACC Thr	TGG Trp	GAA Glu	TTA Leu 260	GAA Glu
AAC Asn	AAA Lys	GCA Ala	CTC Leu 265	GAG Glu	GAG Glu	GGC Gly	AAC Asn	TAC Tyr 270	TTT Phe	GAG Glu	ATG Met	AGT Ser	ACC Thr 275	TAT Tyr	TCA Ser
ACA Thr	AAC Asn	AGA Arg 280	ACT Thr	ATG Met	ATA Ile	CGG Arg	ATT Ile 285	CTG Leu	TTT Phe	GCT Ala	TTT Phe	GTA Val 290	TCA Ser	TCA Ser	GTG Val
Ala	Arg 295	Asn	Asp	Thr	Gly	19r 300	TYE	THE	Cys	Ser	305	· DCI	2,70		CCC Pro
Ser 310	Gln	Ser	Ala	Leu	Val 315	Thr	He	val	GIY	320	Gly		:		GCT Ala 325
Thr	Asņ	Ser	Ser	Glu 330	Asp	Tyr	GIU	116	335	. 6111	-1-			340	
TTT Phe	TCT Ser	GTC Val	AGG Arg 345	Phe	AAA Lys	Ala	TAC	PLO	GIII	110	*****	TGT Cys	ACG Thr 355		ACC Thr
TTC Phe	TCT Ser	CGA Arg	l Tàs	TCA Ser	TTT Phe	CCT	TGT Cys	GIU	CAA Gln	AAG Lys	GGT Gly	CTT Leu 370	<u>-</u>	AAC Asr	GGA Gly
TAC Tyr	AGC Ser	: Ile	TCC Ser	: AAG	TTT Phe	TGC Cys	ASI	CAT His	AAC Lys	CAC His	CAG Gln 385		GGA Gly	GAA Glu	TAT Tyr
Ile 390	Ph	His	: Ala	Glu	AST 395	r Asp) Asp) WIC	GII	400)	-1-			ACG Thr 405
CTC Lev	AAT ASI	ATA	A AGA e Arg	A AGG Arg 410	1 TA:	CCI Pro	CAA Glr	GTC Val	CTC Lev 415	, n	A GAA a Glu	GCA Ala	A TCC	G GCA C Ala 420	A AGT a Ser

Gln	Ala	Ser	Cys 425	Phe	Ser	Asp	GIY	430	PIO	neu	CCA Pro	JC2	435		
Lys	Lys	Cys 440	Ser	Asp	Lys	ser	445	ASII	Cys	1114		450			
Gly	Val 455	Trp	Asn	Arg	Lys	460	ASN	Arg	пуэ	Var	TTT Phe 465	0- 1	,	.	
Ser 470	Ser	Ser	Thr	Leu	475	Met	ser	GIU	ATO	480	AAA Lys	O11	• • • •		485
Lys	Cys	Cys	Ala	Tyr 490	Asn	ser	Leu	GIY	495	Ser	TGT Cys	014		500	·
Leu	Asn	Ser	Pro 505	Gly	Pro	Pne	Pro	510	116	GII.	1.05		515	•	*
Tyr	Ala	Thr 520	Ile	Gly	Val	Cys	525	Leu	Pile	116	GTC Val	530	. 20-		
. Leu	11e 535	Cys	His	Lys	Tyr	Lys 540	Lys	GIII	PILE	nr 9	545		:		CTA Leu
Gln 550	Met	Val	Gln	Val	Thr 555	GIĄ	Ser	Ser	nsp	560		-1-			565
Asp	Phe	Arg	Glu	Tyr 570	GIU	Tyr	ASP	пец	575	11.5				58Ó	
Asn	Leu	Glu	Phe 585	Gly	Lys	vaı	Leu	590	ner.	GIJ	•••		595	- .	GTG Val
Met	Asn	Ala 600	Thr	Ala	Tyr	GIY	605	. SEI	БХЗ			610			CAG Gln
Val	Ala 615	Val	Lys	Met	Leu	620	GIU	, Dys	ALU	. 110	625			+	GAG Glu
GCA Ala 630	Leu	ATG Met	TCA Ser	GAA Glu	CTC Leu 635	ггаг	ATC Met	ATC Met	ACC Thr	CAG Glr 640	•	GGF Gly	A AGO	CAC His	GAG Glu 645

Asn	Ile	Val	Asn	Leu 650	Leu	GIŸ	Ala	Cys	655			2		ATT Ile 660	
Leu	Ile	Phe	Glu 665	Tyr	cys	cys	TYL	670	nop				675	CTA Leu	
Ser	Lys	Arg 680	Glu	Lys	Pne	HIS	685	1111	111	1111	-	690		AAG Lys	
His	Asn 695	Phe	Ser	Phe	Tyr	700	THE	PHE	GIII		705			TCC Ser	
Met 710	Pro	Gly	Ser	Arg	G1u 715	vaı	GIII	116	1113	720			•	CAA Gln	725
Ser	Gly	Leu	His	Gly 730	Asn	ser	Pne	ura	735	014				GAA Glu 740	-
Glu	Asn	Gln	Lys 745	Arg	Leu	GIU	Giu	750	GIG				755	CTT Leu	
Phe	Glu	Asp 760	Leu	Leu	Cys	Pne	765	TÄT	GIII	, , ,		770			GAA Glu
Phe	Leu 775	Glu	Phe	Lys	ser	780	vai	urs	nr 9		785			_	AAC Asn
Val 790	Leu	(Val	Thr	His	795	гуs	vai	Val	י בעם	800)	*	-	-	TTG Leu 805
Ala	Aro	, Ast) Ile	810	, ser	ASP	361	AU	815	5	_	-		820	GCC Ala
Arg	, Leu	Pro	Val 825	. Lys	Trp) Met	. Ald	830)				83	5	ATC Ile
Туз	Thi	: Ile 840	e Lys O	s Sei	. Asp	,val	845	5		. 01	,	850)		GAA Glu
ATC Ile	TTC Phe 859	e Sei	A CTI	r GGT 1 Gly	r GT0 / Val	AAT ASI 860	1 PI	TAC TY	c cc'	r GG o Gl	C ATT y Ile 869	r cco e Pro	G GT o Va	T GAT	r GCT o Ala

Fig. 1b.5

AAC TTC TAC AAA CTG ATT CAA AAT GGA TTT AAA ATG GAT CAG CCA TTT Asn Phe Tyr Lys Leu Ile Gln Asn Gly Phe Lys Met Asp Gln Pro Phe 880 875 870 TAT GCT ACA GAA GAA ATA TAC ATT ATA ATG CAA TCC TGC TGG GCT TTT Tyr Ala Thr Glu Glu Ile Tyr Ile Ile Met Gln Ser Cys Trp Ala Phe 895 890 GAC TCA AGG AAA CGG CCA TCC TTC CCT AAT TTG ACT TCG TTT TTA GGA Asp Ser Arg Lys Arg Pro Ser Phe Pro Asn Leu Thr Ser Phe Leu Gly 910 905 TGT CAG CTG GCA GAT GCA GAA GCG ATG TAT CAG AAT GTG GAT GGC Cys Gln Leu Ala Asp Ala Glu Glu Ala Met Tyr Gln Asn Val Asp Gly 920 CGT GTT TCG GAA TGT CCT CAC ACC TAC CAA AAC AGG CGA CCT TTC AGC Arg Val Ser Glu Cys Pro His Thr Tyr Gln Asn Arg Arg Pro Phe Ser AGA GAG ATG GAT TTG GGG CTA CTC TCT CCG CAG GCT CAG GTC GAA GAT Arg Glu Met Asp Leu Gly Leu Leu Ser Pro Gln Ala Gln Val Glu Asp 960 955

TCG TAGAGGAACA ATTTAGTTTT AAGGACTTCA TCCCTCCACC TATCCCTAAC Ser

Fig. 2.1

CTGTGTCCCG CAGCCGGATA ACCTGGCTGA CCCGATTCCG CGGACACCCG TGCAGCCGCG GCTGGAGCCA GGGCGCGGT GCCCGCGCTC TCCCCGGTCT TGCGCTGCGG GGGCCGATAC CGCCTCTGTG ACTTCTTTGC GGGCCAGGGA CGGAGAAGGA GTCTGTGCCT GAGAAACTGG GCTCTGTGCC CAGGCGCGAG GTGCAGG ATG GAG AGC AAG GGC CTG CTA GCT Met Glu Ser Lys Gly Leu Leu Ala -19 GTC GCT CTG TGG TTC TGC GTG GAG ACC CGA GCC GCC TCT GTG GGT TTG Val Ala Leu Trp Phe Cys Val Glu Thr Arg Ala Ala Ser Val Gly Leu -10 CCT GGC GAT TTT CTC CAT CCC CCC AAG CTC AGC ACA CAG AAA GAC ATA Pro Gly Asp Phe Leu His Pro Pro Lys Leu Ser Thr Gln Lys Asp Ile CTG ACA ATT TTG GCA AAT ACA ACC CTT CAG ATT ACT TGC AGG GGA CAG Leu Thr Ile Leu Ala Asn Thr Thr Leu Gln Ile Thr Cys Arg Gly Gln 30 25 CGG GAC CTG GAC TGG CTT TGG CCC AAT GCT CAG CGT GAT TCT GAG GAA Arg Asp Leu Asp Trp Leu Trp Pro Asn Ala Gln Arg Asp Ser Glu Glu AGG GTA TTG GTG ACT GAA TGC GGC GGT GGT GAC AGT ATC TTC TGC AAA Arg Val Leu Val Thr Glu Cys Gly Gly Gly Asp Ser Ile Phe Cys Lys 55 ACA CTC ACC ATT CCC AGG GTG GTT GGA AAT GAT ACT GGA GCC TAC AAG Thr Leu Thr Ile Pro Arg Val Val Gly Asn Asp Thr Gly Ala Tyr Lys 75 TGC TCG TAC CGG GAC GTC GAC ATA GCC TCC ACT GTT TAT GTC TAT GTT Cys Ser Tyr Arg Asp Val Asp Ile Ala Ser Thr Val Tyr Val Tyr Val 100 95 CGA GAT TAC AGA TCA CCA TTC ATC GCC TCT GTC AGT GAC CAG CAT GGC Arg Asp Tyr Arg Ser Pro Phe Ile Ala Ser Val Ser Asp Gln His Gly 110 105 ATC GTG TAC ATC ACC GAG AAC AAG AAC AAA ACT GTG GTG ATC CCC TGC Ile Val Tyr Ile Thr Glu Asn Lys Asn Lys Thr Val Val Ile Pro Cys 125 120 CGA GGG TCG ATT TCA AAC CTC AAT GTG TCT CTT TGC GCT AGG TAT CCA Arg Gly Ser Ile Ser Asn Leu Asn Val Ser Leu Cys Ala Arg Tyr Pro 145 135 GAA AAG AGA TTT GTT CCG GAT GGA AAC AGA ATT TCC TGG GAC AGC GAG Glu Lys Arg Phe Val Pro Asp Gly Asn Arg Ile Ser Trp Asp Ser Glu 150 ATA GGC TTT ACT CTC CCC AGT TAC ATG ATC AGC TAT GCC GGC ATG GTC Ile Gly Phe Thr Leu Pro Ser Tyr Met Ile Ser Tyr Ala Gly Met Val

175

Fig. 2.2

1	Phe	Cys	Glu	Ala 185	Lys	IIe	ASN	ASP	190	1111	- y -	CAG Gln		195		•
:	Ile	Val	Val 200	Val	Val	Gly	Tyr	205	TIE	TYL	vsħ	GTG Val	210		-	
1	Pro	His 215	Glu	Ile	Glu	Leu	220	Ala	GIY	GIU	בעם	CTT Leu 225				•
	Thr 230	Ala	Arg	Thr	Glu	Leu 235	ASN	Val	GIY	Deu	240	TTC Phe				245
-	Pro	Pro	Ser	Lys	Ser 250	His	HIS	ьys	гур	255		AAC Asn			260	
	Pro	Phe	Pro	Gly 265	Thr	Val	Ala	гÀг	270	FIIC	рси			275		•
	Glu	Ser	Val 280	Thr	Lys	Ser	Asp	285	GIY	Giu	171	ACC Thr	290			
	Ser	Gly 295	Arg	Met	Ile	гÀг	300	ASII	мц	1111	11.0	305		:		ACA Thr
	Lys 310	Pro	Phe	Ile	Ala	9ne 315	GIY	Ser	GIY	Mec	320	501				GCC Ala 325
	Thr	Val	Gly	Ser	330	Val	Arg	TIE	PIO	335	цуз	-1-			340	CCA Pro
	Ala	Pro	Asp	345	Lys	Trp	туг	Arg	350	GLY	1119			355		AAC Asn
	Tyr	Thr	Met 360	: Ile	. Val	GIY	Asp	365	Deu	. 1111		, ,,,	370)		GAA Glu
	Arg	Asp 375	Ala ;	Gly	Asn	Tyr	380	vai	116	. Dec		385	,	•		ATG Met
	GAG Glu 390	Lys	CAC Glr	AGC Ser	CAC His	ATG Met	. val	TCI Ser	CTC Lev	GTT 1 Val	GTG Val 400		GTC Val	C CCA	CCC Pro	CAG Gln 405

Fig. 2.3

ATC Ile	GGT Gly	GAG Glu	AAA Lys	GCC Ala 410	TTG Leu	ATC Ile	TCG Ser	CCT Pro	ATG Met 415	GAT Asp	TCC Ser	TAC Tyr	CAG Gln	TAT Tyr 420	GGG Gly
ACC Thr	ATG Met	CAG Gln	ACA Thr 425	TTG Leu	ACA Thr	TGC Cys	ACA Thr	GTC Val 430	TAC Tyr	GCC Ala	AAC Asn	CCT Pro	CCC Pro 435	CTG Leu	CAC His
His	Ile	Gln 440	Trp	Tyr	TGG Trp	GIN	445	GIU.	GIU	·	Cyb	450	-1-	y	
Gly	Gln 455	Thr	Ser	Pro	TAT Tyr	460	Cys	гàг	GIU	ILP	465		V W 2		
Phe 470	Gln	Gly	Gly	Asn	AAG Lys 475	Ile	GIU	vai	THE	480	. nom	J111	-1-		485
Ile	Glu	Gly	Lys	Asn 490	AAA Lys	Thr	vai	Ser	495	Deu	Vai			500	
Asn	Val	Ser	Ala 505	Leu		Lys	Cys	510	WIG	.116	, Abii	בינם	515		3
Gly	Glu	Arg 520	Val	Ile		Pne	525	vai	116	N. A	GIJ	530	.		
Val	Gln 535	Pro	Ala	Ala	Gln	540	Thr	GIU.	GIII	GIU.	545				TTG Leu
Cys 550	Thr	Ala	Asp	Arg	Asn 555	Tnr	Pne	GIU	. ASII	560	1111		-1-	-1 -	CTT Leu 565
 Gly	Ser	Gln	Ala	Thr 570	ser	vaı	HIS	Mec	575	GIU				580	
Cys	Lys	Asn	Leu 585	Asp	Ala	Leu	Trp	590	. Dec	LASI	. 017		595		TCT Ser
Àsn	sr	Thr 600	Asn	Asp	Ile	Leu	605	vaı	. Alc	i File	. 01.	610)		CTG Leu
CAG Gln	GAC Asp 615	Gln	GGC Gly	GAC Asp	TAT	GTT Val 620	. Cys	TCT Ser	GCT Ala	CAA Glr	GAT ASP 625		AAG Lys	ACC Thr	AAG Lys
															• •

Fig. 2.4

Lys 630	Arg	His	Cys	Leu	GTC Val 635	Lys	GIN	rea	116	640	Dea.		•••		645
Pro	Met	Ile	Thr	Gly 650	AAT Asn	Leu	GIU	ASI	655	1111	1111			660	
Thr	Ile	Glu	Val 665	Thr	TGC Cys	Pro	Ala	670	GIY	VOII	110	1111	675		
Thr	Trp	Phe 680	Lys	Asp	AAC Asn	GIU	685	гéп	vai	GIU	.nop	690	<u> </u>		
Leu	Arg 695	Asp	Gly	Asn	CGG Arg	700	ren	THE	TIE	ALG	705	var	•••	-1-	
Asp 710	Gly	Gly	Leu	Tyr	Thr 715	Cys	GIN	Ala	Cys	720	V41		011	-,-	GCA Ala 725
Arg	Ala	Glu	Thr	Leu 730	Phe	lle	IIe	GIU	735	VIG	GIII			740	AAC Asn
Leu	Glu	Val	Ile 745	Ile	Leu	Val	GIĀ	750	Ala	. vai	116	niu	755		TTC Phe
Trp	Leu	Leu 760	Leu	Val	Ile	Leu	765	Arg	IIIL	Val	Ljo	770			GAA Glu
Gly	Glu 775	Leu	Lys	Thr	Gly	780	Leu	Ser	TIE	val	785	nop			GAA Glu
Leu 790	Pro	Leu	Asp	Glu	795	Cys	GIU	Arg	Гес	800	, <u>-</u> <u>- </u>				AAG Lys 805
Trp	Glu	Phe	Pro	Arg 810	Asp	Arg	Leu	гуs	815	Gly				820	
Gly	Ala	Phe	825	Gln	val	lle	GIU	830)	AIC		. 017	835	5	AAG Lys
ACA Thr	GCG	ACT Thr	Cys	AAA Lys	ACA Thr	GTA Val	GCC Ala 845	val	AAC L Lys	ATO Met	TTC Lev	AAA Lys 850	, ,	GGA Gly	GCA Ala

15/19 Fig. 2.5

Thr	His 855	Ser	Glu	His	Arg	860	Leu	ATG Met	Ser	ĢIu	865	בינם			
His 870	Ile	Gly	His	His	Leu 875	Asn	vaı	GTG Val	ASII	880	peu	O T J		-1-	885
AAG Lys	CCG Pro	GGA Gly	GGG Gly	CCT Pro 890	CTC Leu	ATG Met	GTG Val	ATT	GTG Val 895	GAA Glu	TTC Phe	TCG Ser	AAG Lys	TTT Phe 900	GGA Gly
AAC Asn	CTA Leu	TCA Ser	ACT Thr 905	TAC Tyr	TTA Leu	CGG Arg	GGC Gly	AAG Lys 910	AGA Arg	AAT Asn	GAA Glu	TTT Phe	GTT Val 915	CCC Pro	TAT Tyr
AAG Lys	AGC Ser	AAA Lys 920	GGG Gly	GCA Ala	CGC Arg	TTC Phe	CGC Arg 925	CAG Gln	GGC Gly	AAG Lys	GAC Asp	TAC Tyr 930	GTT Val	GGG Gly	GAG Glu
CTC Leu	TCC Ser 935	GTG Val	GAT Asp	CTG Leu	AAA Lys	AGA Arg 940	CGC Arg	TTG Leu	GAC Asp	AGC Ser	ATC Ile 945	ACC Thr	AGC	AGC Ser	CAG Gln
AGC Ser 950	Ser	GCC Ala	AGC Ser	TCA Ser	GGC Gly 955	TTT	GTT Val	GAG Glu	GAG Glu	AAA Lys 960	TCG Ser	CTC Leu	AGT Ser	GAT Asp	GTA Val 965
Glu	Glu	Glu	Glu	Ala 970	Ser	GIu	GIU	ren	975	пуз	rop	1110	200	980	
Glu	His	Leu	Ile 985	Cys	Tyr	ser	Pne	990	Val	AIG.	- Ly C		995		TTC Phe
Leu	Ala	Ser 100	Arg O	Lys	Cys	He	100	15 15	ASP	рец	, ALG	101	.0		ATT
CTC Leu	CTA Leu 101	Ser	GAG Glu	AAG Lys	AAT Asn	GTG Val 102	Val	AAG Lys	ATC Ile	TGT Cys	GAC Asp 102	1110	GGC Gly	TTC Lev	GCC Ala
Arg 103	Asp 0	Ile	Tyr	Lys	103	5	ASP) IÄr	val	104	0				CGA Arg 1045
Leu	Pro	Leu	Lys	105	Met 0	: Ala	Pro	GIC	105	55				106	TAC Tyr 50
ACA Thr	ATT Ile	CAG Gln	AGC Ser 106	Asp	GTG Val	TGG Trp	TCT Ser	TTC Phe 107	e Giy	r GTO v Val	TTC L Lev	CTO	TGG Tri		A ATA 1 Ile

Fig. 2.6

TTT TCC TTA GGT GCC TCC CCA TAC CCT GGG GTC AAG ATT GAT GAA GAA Phe Ser Leu Gly Ala Ser Pro Tyr Pro Gly Val Lys Ile Asp Glu Glu 1080 TTT TGT AGG AGA TTG AAA GAA GGA ACT AGA ATG CGG GCT CCT GAC TAC Phe Cys Arg Arg Leu Lys Glu Gly Thr Arg Met Arg Ala Pro Asp Tyr 1100 1095 ACT ACC CCA GAA ATG TAC CAG ACC ATG CTG GAC TGC TGG CAT GAG GAC Thr Thr Pro Glu Met Tyr Gln Thr Met Leu Asp Cys Trp His Glu Asp 1120 1115 1110 CCC AAC CAG AGA CCC TCG TTT TCA GAG TTG GTG GAG CAT TTG GGA AAC Pro Asn Gln Arg Pro Ser Phe Ser Glu Leu Val Glu His Leu Gly Asn 1135 1130 CTC CTG CAA GCA AAT GCG CAG CAG GAT GGC AAA GAC TAT ATT GTT CTT Leu Leu Gln Ala Asn Ala Gln Gln Asp Gly Lys Asp Tyr Ile Val Leu 1150 1145 CCA ATG TCA GAG ACA CTG AGC ATG GAA GAG GAT TCT GGA CTC TCC CTG Pro Met Ser Glu Thr Leu Ser Met Glu Glu Asp Ser Gly Leu Ser Leu 1170 1165 1160 CCT ACC TCA CCT GTT TCC TGT ATG GAG GAA GAG GAA GTG TGC GAC CCC Pro Thr Ser Pro Val Ser Cys Met Glu Glu Glu Val Cys Asp Pro 1180 AAA TTC CAT TAT GAC AAC ACA GCA GGA ATC AGT CAT TAT CTC CAG AAC Lys Phe His Tyr Asp Asn Thr Ala Gly Ile Ser His Tyr Leu Gln Asn 1200 1195 1190 AGT AAG CGA AAG AGC CGG CCA GTG AGT GTA AAA ACA TTT GAA GAT ATC Ser Lys Arg Lys Ser Arg Pro Val Ser Val Lys Thr Phe Glu Asp Ile 1215 1210 CCA TTG GAG GAA CCA GAA GTA AAA GTG ATC CCA GAT GAC AGC CAG ACA Pro Leu Glu Glu Pro Glu Val Lys Val Ile Pro Asp Asp Ser Gln Thr 1230 1225 GAC AGT GGG ATG GTC CTT GCA TCA GAA GAG CTG AAA ACT CTG GAA GAC Asp Ser Gly Met Val Leu Ala Ser Glu Glu Leu Lys Thr Leu Glu Asp 1250 :1245 1240 AGG AAC AAA TTA TCT CCA TCT TTT GGT GGA ATG ATG CCC AGT AAA AGC Arg Asn Lys Leu Ser Pro Ser Phe Gly Gly Met Met Pro Ser Lys Ser 1265 1260 1255 AGG GAG TCT GTG GCC TCG GAA GGC TCC AAC CAG ACC AGT GGC TAC CAG Arg Glu Ser Val Ala Ser Glu Gly S r Asn Gln Thr Ser Gly Tyr Gln 1280 1275 1270

TCT GGG TAT CAC TCA GAT GAC ACA GAC ACC GTG TAC TCC AGC GAC Ser Gly Tyr His Ser Asp Asp Thr Asp Thr Thr Val Tyr Ser Ser Asp

1290

ŧί

17/19

Fig. 2.7

GAG GCA GGA CTT TTA AAG ATG GTG GAT GCT GCA GTT CAC GCT GAC TCA
Glu Ala Gly Leu Leu Lys Met Val Asp Ala Ala Val His Ala Asp Ser
1305 1310 1315

GGG ACC ACA CTG CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC Gly Thr Thr Leu Gln Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val

CCG GCT CCG CCC CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT TAG
Pro Ala Pro Pro Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala
1335
1340
1345

ATTTTCAAGT GTTGTTCTTT CCACCACCCG GAAGTAGCCA CATTTGATTT TCATTTTTGG AGGAGGGACC TCAGACTGCA AGGAGCTTGT CCTCAGGGCA TTTCCAGAGA AGATGCCCAT GACCCAAGAA TGTGTTGACT CTACTCTCTT TTCCATTCAT TTAAAAGTCC TATATAATGT GCCCTGCTGT GGTCTCACTA CCAGTTAAAG CAAAAGACTT TCAAACACGT GGACTCTGTC CTCCAAGAAG TGGCAACGGC ACCTCTGTGA AACTGGATCG AATGGGCAAT GCTTTGTGTG TTGAGGATGG GTGAGATGTC CCAGGGCCGA GTCTGTCTAC CTTGGAGGCT TTGTGGAGGA TGCGGCTATG AGCCAAGTGT TAAGTGTGGG ATGTGGACTG GGAGGAAGGA AGGCGCAAGC CGTCCGGAGA GCGGTTGGAG CCTGCAGATG CATTGTGCTG GCTCTGGTGG AGGTGGGCTT GTGGCCTGTC AGGAAACGCA AAGGCGGCCG GCAGGGTTTG GTTTTGGAAG GTTTGCGTGC TCTTCACAGT CGGGTTACAG GCGAGTTCCC TGTGGCGTTT CCTACTCCTA ATGAGAGTTC CTTCCGGACT CTTACGTGTC TCCTGGCCTG GCCCCAGGAA GGAAATGATG CAGCTTGCTC CTTCCTCATC TCTCAGGCTG TGCCTTAATT CAGAACACCA AAAGAGAGGA ACGTCGGCAG GTGGAGACCC ACGTGGCGCC CTGGTGGCAG GTCTGAGGGT TCTCTGTCAA GTGGCGGTAA AGGCTCAGGC TGGTGTTCTT CCTCTATCTC CACTCCTGTC AGGCCCCCAA GTCCTCAGTA TTTTAGCTTT GTGGCTTCCT GATGGCAGAA AAATCTTAAT TGGTTGGTTT GCTCTCCAGA TAATCACTAG CCAGATTTCG AAATTACTTT TTAGCCGAGG TTATGATAAC ATCTACTGTA TCCTTTAGAA TTTTAACCTA TAAAACTATG TCTACTGGTT TCTGCCTGTG TGCTTATGTT ААААА АААААААА

Bedda brunog

Bound APtag (OD 405)

International application No. PCT/US92/09893

		•	i
IPC(5)	SSIFICATION OF SUBJECT MATTER CO7H 15/12, 17/00; A61K 37/00; C07K 13/00, 15/0 530/350, 387, 846; 536/27; 514/2; 435/240.2		
According to	530/350, 387, 846; 536/27; 514/2, 435/240.2 International Patent Classification (IPC) or to both n	ational classification and IPC	
D FIEL	DS SEARCHED		
Minimum de	ocumentation searched (classification system followed	by classification symbols)	
U.S. :	530/350, 387, 846; 536/27; 514/2; 435/240.2		
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched

Electronic d	ata base consulted during the international search (nar	ne of data base and, where practicable,	search terms used)
APS, DIA	LOG ms: protein tyrosine kinase, flt3, flk, hematopoiesis		1
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
Y	Proceedings of the National Academy of Sciences, "Two putative protein-tyrosine kinases identified by reaction", pages 1603-1607, entire document.	Vol. 86, issued March 1989, Wilks, application of the polymerase chain	1-64, 66-80
Y	Cell, Vol. 63, Issued 05 October, 1990, Flanagan molecule altered in steel mutant fibroblasts", pages	185-194, entire document.	41-64
<u>X,P</u> Y	Proceedings of the National Academy of Sciences, V et al., "A receptor tyrosine kinase cDNA isolated fi hematopoictic cells and exhibiting close genetic link document.	om a population of currence brances	14-17, 19,22,25,28, 31,34,76-80 1 - 1 3 , 1 8 , 2 0 , 21,23,24,26,27,29,30,3 2,33,35-64,66-75
A	Science, Volume 241, Issued 01 July 1988, S.K. Ha Conserved features and deduced phylogeny of the o document.	inks et al., "The protein kinase family: atalytic domains", pages 42-52, entire	1-64, 66-80
·			Ο.
·	·		
X Furt	l her documents are listed in the continuation of Box C	. See patent family annex.	
÷ Sr	pecial categories of cited documents:	To later document published after the induction date and not in conflict with the applie	CODOD DAT CITED TO MINICUSTRING RIC
	rement defining the general state of the art which is not considered	principle or theory underlying the in	vention
ω	be part of particular relevance relier document published on or after the international filing date	"X" document of particular relevance; to considered novel or cannot be considered	ne claimed invention cannot be ered to involve an inventive step
	the second doubte on priority claim(s) or which is	when the document is taken alone	
_ ci	neument which may throw outdoor on produce of another citation or other necial reason (as specified) necial reason (as specified) neument referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; to considered to involve an inventive combined with one or more other out being obvious to a person skilled in	ch documents, such combination
i m	cent	*&* document member of the same pater	
th th	ocument published prior to the international filing date but later than se priority date claimed	Date of mailing of the international se	
1	actual completion of the international search	02 FEB 1993	•
05 Janua	ry 1993		
Commissi	mailing address of the ISA/ oner of Patents and Trademarks	Authorized officer LORRAINE M. SPECTOR, PH.1	D. , , , ,
Box PCT Washingto	on, D.C. 20231	Telephone No. (703) 308-1793	/
Facsimile l		Telephone No. (705) 500 2.75	

International application No. PCT/US92/09893

(Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, of the relevant passages	1-6,10-13,
		18,20,21,23,24,26,27,2
<u>.P</u>	Cell, Volume 65, Issued 28 June 1991, W. Matthews et al., 171 Specific to hematopoietic stem and progenitor cell-enriched populations", pages 1143-	9,30,32,33,
•	1152, entire document.	<u>35,36-39,66-75</u>
	1132, GIME 600 BIRTH .	7-9,41,43, 44,46-49,
	l	53-55,56,
		58,59,61,62,64,76-80
		70,77,01,02,04,70-00
		1-6,10-
	Oncogene, Volume 6, Issued 1991, O. Rosnet et al., "Murine Flt3, a gene encoding a	13,18,20,21,23,24,26,2
C.P	Oncogene, Volume 6, Issued 1991, O. Rosner et al., Mullio 125, 2541-1650, entire novel tyrosine kinase receptor of the PDGFR/CSF1R family", pages 1641-1650, entire	7,29,30,32,33,
7 .	novel tyrosine kinase receptor of and	
	document.	35,36-39, 66-75 7-9,41,43, 44,46-49,
		=
		53-55,56,58,
		59,61,62,64,76-80
	Genomics. Volume 9, Issued 1991, O. Rosnet et al., "Isolation and chromosomal binace gene" pages 380-385, entire document.	1-6,10-13,
C.P	Genomics. Volume 9, Issued 1991, O. Rosnet et al., Issuadon and ordered document. localization of a novel FMS-like tyrosine kinase gene", pages 380-385, entire document.	18,20,21,23,24,26,27,2
<u>(,P</u> (localization of a novel FMS-like tyrosine kinaso gono, page	9,30 32 32 35. 36-
,		<u>39,66-75</u>
		7-9,41,43, 44,46-49,
		53-55,56,58,
		59,61,62,64, 76-80
	150 James May 1989, R.G. Andrews et al.,	1-80
۸.	Journal of Experimental Medicine, Volume 169, Issued May 1989, R.G. Andrews et al.,	
A .	Journal of Experimental Medicine, Volume 169, Issued May 1909, the Procursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties", pages cells by expression of the CD33 and CD34 antigens and light scatter properties.	
	The businession of the CD33 and CD34 antigens and light scatter properties	I .
	I COUS DY EXPRESSION OF the Court of the Cou	
	1721-1731, entire document.	
	1721-1731, entire document.	1-80
•	1721-1731, entire document.	1-80
A .	1721-1731, entire document.	1-80
A •	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document.	1-80
	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document.	
A.	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document.	
	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document.	
A	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document.	1-80
	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document.	1-80
A	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988, G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document.	1-80
A Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document.	1-80
A	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF	1-80
A Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF	1-80 65
A Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry.	1-80 65 65
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry.	1-80 65 65 41-55
A Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A Y Y	1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55

International application No. PCT/US92/09893

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inter	mational report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
ı. 🔲	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
•	
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.:
ا. ا	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	rnational Searching Authority found multiple inventions in this international application, as follows:
This Inte	ease See Extra Sheet.
٠.	
•	
•	
	the state of the second course and covers all wards the
1. X	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
	claims. (Telephone Practice)
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
	of any additional fee.
3. 🗔	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	only those claims for which lees were paid, specifically claims
4. 🗂	No required additional search fees were timely paid by the applicant. Consequently, this international search report is
لب	restricted to the invention frist mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest.
	X No protest accompanied the payment of additional search fees.

Inumational application No. PCT/US92/09893

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

I. Claims 1-13, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35-39, 41, 43, 44, 46-49, 53-56, 58, 59. 61, 62, 64-75, Drawn to fik-2, Class 530, subclasses 350, 387 and 846, Class 536, subclass 27, Class 514, subclass 2, and Class 435, subclass 240.2.

II. Claims 14-17, 19, 22, 25, 28, 31, 34, 40, 42, 45, 50-52, 57, 60, 63, 65, 76-80, drawn to fik-1, Class 530, subclasses 350, 387 and 846, Class 536, subclass 27, Class 514, subclass 2, and Class 435, subclass 240.2.

The claims of these two groups are drawn to distinct invention s which do not share a unifying technical feature. They are distinct proteins, with distinctly different amino acid sequences and patterns of expression. PCT Rules 13.1 and 13.2 do not provide for multiple products.