Hybrid 2 Maclaurin (Taylor) Series

Exercise 1

Using the basic definition of a Maclaurin series find the first three nonzero terms of the following functions.

onowing junctions.		
answer:		
$1+x+\frac{1}{2}x^2+\ldots$		
answer:		
$1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \dots$		
answari		
answer:		
$1-2x+2x^2-\ldots$		
answer:		
$1 - 8\pi^2 x^2 + \frac{32}{3}\pi^4 x^4 - \dots$		

Exercise 2

In the following, find the first four nonzero terms of the Maclaurin expansions of the given functions by using the following standard results:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \cdots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots$$

$f(x) = e^{3x}$	answer: $1 + 3x + \frac{9}{2}x^2 + \frac{9}{2}x^3 + \dots$
$f(x) = \sin\frac{1}{2}x$	answer: $\frac{x}{2} - \frac{x^{3}}{2^{3}3!} + \frac{x^{5}}{2^{5}5!} - \frac{x^{7}}{2^{7}7!} + \dots$
$f(x) = x \cos 4x$	answer: $x - 8x^{3} + \frac{32}{3}x^{5} - \frac{256}{45}x^{7} + \dots$

Exercise 3.

Calculate the value of each of the given functions. Use the indicated number of terms of the appropriate Maclaurin series. Compare with the value found directly on a calculator.

#1	answer:
$e^{0.2}$ (3)	1.22, 1.221 402 8
#2	answer:
sin 0.1 (2)	0.099 833 3, 0.099 833 4
#3	answer:
e (7)	2.718 055 6, 2.718 281 8
#4	answer:
$\cos \pi^{\circ}$ (2)	0.998 496 77, 0.998 497 15

Exercise 4.

Calculate the value of the following function using a Taylor series, taking a = 1.0, using all the terms up to and including x^3

#1	answer:
$e^{1.2}$	3.32

Exercise 5.

LACICISE J.		
#1a.	Answer.	
Derive the Maclaurin series expansion for the function	$e^x = 1 + x + x^2/2 + x^3/6 + x^4/24 + \dots$	
$f(x) = (e^x + e^{-x})/2$ for the first three non-zero terms	$e^{-x} = 1 - x + x^2/2 - x^3/6 + x^4/24 + \dots$	
	G (X : X) (2 1 : 2 (2 : 4 (2 4 :	
	So $(e^x + e^{-x})/2 = 1 + x^2/2 + x^4/24 +$	
#1b.	Answer.	
Write a numerical expression for the estimated %	At $x = 1$ with two terms $f(x) = 1 + 1/2! = 3/2$	
fractional (relative) error in your series from $1a$ at $x = $	error is \sim first truncated term = $1/4! = 1/24$	
1.0 when only two terms are used.	so the % fractional error = $100 \times 1/24 \times 2/3 = 2.8\%$	
#2a.	Answer.	
Derive the Maclaurin series expansion for the function	$e^{x} = 1 + x + x^{2}/2 + x^{3}/6 + x^{4}/24 + x^{5}/120 + \dots$	
$f(x) = (e^x - e^{-x})/2$ for the first three non-zero terms.	$e^{-x} = 1 - x + x^2/2 - x^3/6 + x^4/24 - x^5/120 + \dots$	
	So $(e^x - e^{-x})/2 = x + x^3/6 + x^5/120 + \dots$	
#2b.	Answer.	
Write a numerical expression for the estimated %	At $x = 1$, $f(x) = 1 + 1/6 = 7/6$	
fractional (relative) error in your series from 2a at x =	error is ~first truncated term = 1/120	
1.0 when only two terms are used.	so the % fractional error = $100 \times 1/120 \times 6/7 = 100/140$	
	= 0.71%	

Exercise 6

#1a. Derive the Maclaurin series expansion for the function $f(x) = x\cos(4x)$ for the first three nonzero terms	Answer. This is an example from exercise 2: $f(x) = x(1 - (4x)^2/2! + (4x)^4/4!) = x - 4^2x^3/2! + 4^4x^5/4! = x - 8x^3 + 32x^5/3$
#1b. Write down a numerical expression for an estimate of the % relative series error in your series from 1a at x = 0.1 when the series is truncated after the second term (the third term and higher are omitted from the series)	Answer. At $x = 0.1$ for two terms $f(x) = 0.1 - 8*(0.1)^3 = 0.1 - 0.008 = 0.092$ %relative error from 3^{rd} term $= 100*(32*10^{-5}/3)/0.092 = 0.116\%$

Exercise 7

Derive the Maclaurin series expansion for the function $f(x) = e^{x}\cos(x)$ up to and including the term in x^{4} . Answer.

$$e^{x}\cos x = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots\right)\left(1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots\right)$$

By multiplying the series on the right, we have the following result, considering through the x^4 terms in the product.

$$e^{x}\cos x = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} \qquad x\left(1 - \frac{x^{2}}{2!}\right) \frac{x^{2}}{2!}\left(1 - \frac{x^{2}}{2!}\right) \quad \left(\frac{x^{3}}{3!} + \frac{x^{4}}{4!}\right)(1)$$

$$= e^{x}\cos x = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} + x - \frac{x^{3}}{2} + \frac{x^{2}}{2} - \frac{x^{4}}{4} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \cdots$$

$$= 1 + x - \frac{1}{3}x^{3} - \frac{1}{6}x^{4} + \cdots$$

#1b.

Write down a numerical expression for the estimated % fractional error in your series from 1a at x = 1 when the series contains only up to and including the term in x^3

Answer.

At
$$x = 1$$
,

$$f(x) = 1 + 1 - 1/3 = 5/3$$

The error is approximated as the first neglected term = $-x^4/6 = -1/6$ so the % fractional error = -(1/6)/(5/3)*100 = (-1/10)*100 = -10%