

Team 8: Bill, Brian, Donald, Jessie

GitHub: https://github.com/wenchengking/End-To-End-CXR-Hybrid-Deep-Learning-Solution

Table of contents

04

01 02 03

Business Problems Data Description Object Detection

8 EDA

05

Classification

Model Operation

_ 10cm

Market Value

\$733.5 Billion in 2020

\$1683.52 Billion by 2030

According to Precedence Research, the global biotechnology market size was valued at USD 733.5 billion in 2020 and is anticipated to surpass around USD 1,683.52 billion by 2030.

Shortage In Healthcare Provision

Physical Resource

Human Resource

Lack of Awareness

Step 1: Object Detection for foreign objects

Step 2: Multi Classification for pneumonia

02 Data Description

Our Data

Object Detection

397 Images

1 foreign object present in each

60/15/25 Train Validation Test Split

Classification

5842 Images

3 classes: Normal, Virus, Bacteria

- ☐ Normal: 1583 images, 27.1%
- ☐ Virus: 1490 images, 25.5%
- □ Bacteria: 2769 images, 47.4%

60/20/20 Train Validation Test Split

Foreign Object Example

_ 10cn

Foreign Object Example

Pneumonia Class Distribution

Pneumonia Classes Example

Challenger Model: YOLO

Champion Model: Custom BBR

Performance / Metrics

YOLO Transfer Learning 0.6%

Bounding Box Regression 11.4%

Model Comparison

Why Fire Our Models Bad?

YOLO:

- Inadequate labelling
- "Fit" of model

BBR:

- Extreme variation
- Position vs. presence

Test Results Illustration

YOLO: BBR:

Challenger Model: CNN

3 Convolutional layers

- 32, 64, 128 filters respectively
- Max pooling, batch normalization, dropout regularization (0.4)

2 Dense layers

- 64, 3 units respectively

ReLU activation throughout, softmax for last layer

Exponential decaying Learning Rate

- Start: 0.001
- Decay Rate: 0.85
- Decay step: 100

Metrics: Accuracy, Precision, Recall

16 epochs, Adam optimizer, cross-entropy loss

Model Performance

Test Set

Accuracy: 0.60

☐ Precision: 0.65

☐ Recall: 0.55

Class Level Recall

■ Normal: 0.99

☐ Bacteria: 0.68

☐ Virus: 0.03

10cm

Champion Model: UGG16

All layers freezed except last 2

4 Dense Layers

- 512, 128, 64, 3 units respectively
- Global average pooling, batch normalization, dropout regularization (0.2)

ReLU activation throughout, softmax for last layer Exponential decaying Learning Rate

- Start: 0.001

- Decay Rate: 0.85

- Decay step: 100

Metrics: Accuracy, Precision, Recall

16 epochs, Adam optimizer, cross-entropy loss

Model Performance

Test Set

☐ Accuracy: 0.78

☐ Precision: 0.79

☐ Recall: 0.77

Class Level Recall

■ Normal: 0.96

☐ Bacteria: 0.83

☐ Virus: 0.49

10cm

Model Comparison

	Overall Performance	Class-level Performance
CNN	Lower precision, recall, and accuracy	Better at predicting normal class, due to tendency of classifying all classes as normal
UGG16	Better in all metrics, yet still prone to overfitting	Better at telling bacteria class apart from other classes, yet still fail to tell virus class apart from bacteria class

05 Model Operation

Thank You

