Lecture #9 Advanced Data Structure (1)

Algorithm
JBNU Spring 2021
Jinhong Jung

In Previous Lecture

Linear selection algorithm on average

- quick-select() using Lomuto partition to select i-th smallest element in an array
- Has $\Theta(n)$ on average, and $\Theta(n^2)$ for a worst case

Linear selection algorithm in a worst case

- A fixed skewness in partitioning with a linear overhead leads to $\Theta(n)$ time for a worst case
- For that, mom-select() uses the median of medians as a pivot, and partitions the input array by MoM
- Has $\Theta(n)$ for a worst case

In This Lecture

Advanced data structure

- Red-black tree: self-balancing binary search tree
- Why do we need to consider the balance of BST?
- How to preserve the balance of BST?

Outline

Search problem and binary search tree

Red-black tree

- Self-balancing binary search tree
- Insertion
- Remove
- Analysis

Search

To find information that you want in massive data

- Examples
 - Search for a query in Google
 - Search for the digit of your friend in your cellphone
- Important to efficiently find the information

Problem Definition

Search

- Input: a key x and a data structure
- Output: the value (record) having the key x

Data structure for search

- Should support efficient operations such as search, insert, and remove
- Data structures that we have learnt
 - List
 - Binary Search Tree << Today's topic
 - Hash

Binary Search Tree (1)

Binary tree for search satisfying BST properties

- Keys in a left sub-tree < the key of the root
- Keys in a right sub-tree > the key of the root
- Both left & right sub-tress are BST recursively

Binary Search Tree (2)

Main operations of BST

- search(key)
 - Search for a node having the querying key in the BST

- insert(key, value)
 - Insert a node having the key and value into the BST
 - After the operation, the tree should be BST

- remove(key)
 - Remove a node having the key from the BST
 - After this operation, the tree should be BST

Binary Search Tree (3)

Limitation of BST

- The main operations of BST having n nodes takes $O(\log n)$ time for the best and average case
 - \circ In these cases, the tree's height is $O(\log n)$
- However, they takes O(n) for a worst case
 - Consider sorted keys are inserted sequentially
 - Such trees are called degenerate tree

• Q. How can we make the BST balanced even for a worst case?

Outline

Search problem and binary search tree

Red-black tree

- Self-balancing binary search tree
- Insertion
- Remove
- Analysis

Self-Balancing BST

The goal of self-balancing BST

- To preserve the balance of BST after insert and remove operations
 - \circ So that the tree's height is $O(\log n)$ for a worst case
- The point is how to insert and remove a node while preserving the balance

Representative self-balancing BST

- AVL tree
- Red-black tree << in this lecture</p>
 - It supports faster insertion and removal than AVL
 - It is more memory-efficient than AVL

Red-Black Tree

Definition of red-black tree

- Each node is colored by either "RED" or "BLACK"
 - Represented as one bit (e.g., 0 or 1)
 - Used to ensure that the tree remains balanced during operations

Red-black tree properties

- P1) The root node should be BLACK
- P2) All leaf (NIL) nodes are considered as BLACK
- P3) If a node is **RED**, then both its children must be **BLACK**
- P4) Every path from a given node to any of its descendant NIL leaves goes through the same number of BLACK nodes

Red-Black Tree

Example of red-black tree

- NIL indicates an explicit leaf node
- When implementing this, use a single NIL node and point it

Red-Black Tree

Operations of red-black tree

- For search, red-black tree has the same operation of BST
 - Because this operation does not modify the tree

- For insert and remove operations,
 - RBT first performs the insert or remove operation of BST
 - Then, the modified tree's balance can be broken
 - Thus, RBT needs to properly re-arrange the modified tree so that it satisfies the red-black tree properties
 - Using **re-coloring** and **rotations**

Outline

Search problem and binary search tree

Red-black tree

- Self-balancing binary search tree
- Insertion
- Remove
- Analysis

Insert of RBT (1)

Insert operation

- Step 1) insert a node into the tree using BST's insert operation
 - This new node is colored by "RED" at first
- Step 2) re-arrange the modified tree case-by-case

Note that

The new node will be located at the bottom of the tree

after BST's insertion

 Let's do case study around the inserted location

Insert of RBT (2)

Observation

- When a node x is inserted, there is no violation below the inserted node
 - Because this node is red and had two NIL (BLACK) nodes
- This means we need to check some violations above the node
 - \circ Let p denote the parent of the insert node
- If p is BLACK, then there is no violation
 - \circ For P4, the previous NIL is properly replaced with x
- If p is RED, then there is a violation!
 - P3 is violated (the RED node has a RED child)
 - How to handle this case?

Insert of RBT (3)

Case study when p is RED

- lacktriangle Before the insertion, the parent of p should be **BLACK**
 - \circ Let g denote the grandparent x
- If p has a child, it's the sibling of x and should be **BLACK**
- The sibling of *p* (uncle) is either RED or BLACK
 - \circ Let u denote the uncle of x (sibling of p)
- Cases for re-arrangement
 - ∘ Case 1: *u* is RED
 - ∘ Case 2: *u* is **BLACK**
 - [LR] Case 2-1: p is the left of g & x is the right of p
 - [LL] Case 2-2: p is the left of g & x is the left of p
 - [RL] Case 2-3: p is the right of g & x is the left of p (mirror of case 2-1)
 - [RR] Case 2-4: p is the right of g & x is the right of p (mirror of case 2-2)

Insert of RBT (4)

EOP: end-of-procedure

Case 1: u is RED

- 1) Change the color of p and u to BLACK & g to RED
 ∘ If p² is the root, then change g to black; [EOP]
- \blacksquare 2) Recursively handle a potential violation on g
 - i.e., when the parent of g is RED

Insert of RBT (5)

[LR] Case 2-1: p is the left of g & x is the right of p

- 1) Rotate the tree of *p* left
 - \circ Note that x > p
 - p becomes the left child of x
 - The left sub-tree of x becomes the right child of p

■ 2) Go to [LL] Case 2-2

Case 2-1 on x

Case 2-2 on p

LR rotation on p

Insert of RBT (6)

[LL] Case 2-2: p is the left of g & x is the left of p

- 1) Rotate the tree of *g* right
 - \circ Note that g > s
 - s becomes the left child of g
- \blacksquare 2) Swap the color of p and g [EOP]

LL rotation on g

Insert of RBT (7)

[RL] Case 2-3: p is the right of g & x is the left of p

- 1) Rotate the tree of *p* right
 - \circ Note that x < p
 - p becomes the right child of x

The right sub-tree of x becomes the left child of p

RL rotation on p

2) Go to [RR] Case 2-4

Insert of RBT (8)

[RR] Case 2-4: p is the right of g & x is the right of p

- 1) Rotate the tree of *g* left
 - \circ Note that g < s
 - s becomes the right child of g
- \blacksquare 2) Swap the color of p and g [EOP]

RR rotation on g

Insert of RBT (9)

Pseudocode of insert (x is the newly inserted node)

- Step 1) Do BST's insert on x and make the color of x RED
- Step 2) If x is root, change the color of x as BLACK [EOP]
- Step 3) Else if x isn't root & x's parent p is RED
 - \circ If case 1 x's uncle u is RED
 - Change the color of p and u to black & g to RED
 - Recursively handle a potential violation on g ($x \leftarrow g$ & repeat steps 2 & 3)
 - Else if [LR] case 2-1
 - Do LR rotation on p & go to case 2-2 ($x \leftarrow p$ & repeat step 3)
 - Else if [LL] case 2-2
 - Do LL rotation on g & swap the color of p and g [EOP]
 - Else if [RL] case 2-3 (mirror of case 2-1)
 - Do RL rotation on p and go to case 2-4 ($x \leftarrow p$ & repeat step 3)
 - Else if [RR] case 2-4 (mirror of case 2-2)
 - Do RR rotation on g & swap the color of p and g [EOP]

Outline

Search problem and binary search tree

Red-black tree

- Self-balancing binary search tree
- Insertion
- Remove
- Analysis

Remove of RBT (1)

Remove operation

- Step 1) remove a node using BST's remove operation
- Step 2) re-arrange the tree case-by-case

Cases for remove in BST

- NC) the target node has Not a Child
- OC) the target node has One (left | right) Child (sub-tree)
- TC) the target node has Two Children (sub-trees)

Remove of RBT (2)

For TC case, BST's remove

- \blacksquare Replaces the target node d's key with successor's key
 - \circ The successor m is the minimum node of the right sub-tree
 - o Only keys are swapped; thus, there is no violation in this step
- Remove the successor
 - Note that the successor has at most one child
 - i.e., TC case is reduced to NC or OC case

Remove of RBT (3)

Remove operation

- After BST's remove, re-arrange the tree case-by-case
 - Handle cases where a node hasn't a child or had one child
 - \circ Let d be the node to be deleted and c be its child
- Simple cases
 - \circ If d is **RED**, then there is no violation
 - Meaning we only need to check when d is **BLACK**
 - \circ If d is **BLACK** and c is **RED**, then there is no violation
 - Change the color of \emph{c} to **BLACK** after removing \emph{d}

Remove of RBT (4)

Double-black case

- Called when d is BLACK and c is BLACK
- After removing d, P4 is violated (i.e., black height is not consistent)

Cases what we need to handle

Remove of RBT (5)

Case study

- Case 1: p is RED $\Rightarrow s$ must be BLACK
 - \circ Case 1-1: < l, r > = <B, B>
 - \circ Case 1-2: $< l, r > = < R, R > or < B, R > <math>\Rightarrow < *, R >$
 - Case 1-3: < l, r > = < R, B >

Remove of RBT (6)

Case study

- Case 2: *p* is **BLACK**
 - \circ Case 2-1: < s, l, r > = <B, B, B>
 - \circ Case 2-2: $\langle s, l, r \rangle = \langle B, R, R \rangle$ or $\langle B, B, R \rangle \Rightarrow \langle B, *, R \rangle$
 - \circ Case 2-3: < s, l, r > = < B, R, B >
 - Case 2-4: < s, l, r > = < R, B, B >
 - If s is red, both l and r are black

Remove of RBT (7)

Case 1-1

lacktriangle Change the color of p and s

Remove of RBT (8)

Case *-2 (Cases 1-2 and 2-2)

- \circ Case 1-2: < l, r> = <*, R>
- \circ Case 2-2: < s, l, r > = < B, *, R >
- Rotate the tree of p left
- Swap the color of p and s & change r to **BLACK**

Remove of RBT (9)

Case *-3 (Cases 1-3 and 2-3)

- Case 1-3: < l, r > = < R, B >
- \circ Case 2-3: < s, l, r > = < B, R, B >
- Rotate the tree of s right
- Swap the color of *l* and *s* & go to Case *-2

Remove of RBT (10)

Case 2-1 (
$$< s, l, r > = < B, B, B >$$
)

- Change s to RED
 - \circ The paths via node p lack one black node now
- \blacksquare Recursively handle the problem on p

Problem initiated by c

Problem initiated by p

Remove of RBT (11)

Case 2-4 (< s, l, r > = < R, B, B >)

- \blacksquare Rotating the tree of p left
- Swap the color of p and s & go to case 1

Remove of RBT (12)

Pseudocode of remove (d is the node to be delete)

- Step 1) Do BST's remove on *d*
- Step 2) If d is root, mark root NIL [EOP]
- Step 3) Else if d isn't root & d is BLACK & c is BLACK
 - \circ If Case 1-1, then change the color of p and s [EOP]
 - ∘ Else if Case *-2
 - Rotate the tree of p left & swap the color of p and s & change r to **BLACK [EOP]**
 - ∘ Else if Case *-3
 - Rotate the tree of s right & swap the color of l and s & go to Case *-2
 - Else if Case 2-1
 - Change s to RED & recursively handle the problem on p ($c \leftarrow p$ and go to Step 3)
 - Else if Case 2-4
 - Rotating the tree of p left & swap the color of p and s & go to case 1- \ast

Outline

Search problem and binary search tree

Red-black tree

- Self-balancing binary search tree
- Insertion
- Remove
- Analysis

Analysis of RBT (1)

Maximum height of RBT

- RBT with n internal nodes has height at most $O(\log n)$
 - \circ Using the fact: a sub-tree of black height $\mathrm{bh}(v)$ in an RBT contains at least $2^{\mathrm{bh}(v)}-1$ internal nodes
 - bh(v): # of black nodes on a path from v to a leaf node (not counting v)
 - Proved by induction (see Appendix)
 - \circ Let h be the height of the RBT, and let P denote a path from the root to the furthest leaf
 - At least half of nodes on P must be **BLACK** (no two consecutive red nodes)
 - \circ Hence, the black height of the root is at least h/2
 - \circ By the fact, the RBT has $2^{h/2}-1$ internal nodes at least

$$2^{h/2} - 1 \le n \Leftrightarrow h \le 2\log(n+1) = O(\log n)$$

Analysis of RBT (2)

Time complexity of RBT's operations

- Search: $O(\log n)$ since RBT has $O(\log n)$ height at most
 - RBT's search is equal to BST's search
- Insert and remove: $O(\log n)$
 - Re-coloring and rotation take constant time
 - \circ For some cases, we need to do something recursively toward the root $\Rightarrow O(\log n)$

Space complexity of RBT

- 0(n) space
 - \circ To store n nodes (key, value, pointers) + 1 bit for each node

What You Need To Know

Red-black tree (used in std::map)

- Why do we need red-black tree?
 - \circ \Rightarrow For a worst case, BST has O(n) height, but RBT guarantees $O(\log n)$ height
- Definition and properties
 - BST where each node is colored by either RED or BLACK
 - P1) BLACK root node
 - P2) All BLACK leaf (or NIL) nodes
 - P3) No two consecutive RED nodes
 - P4) Consistent black height
- Insert and remove
 - Do BST's corresponding operation and re-arrange violated area using re-colorring and rotation case by case

In Next Lecture

Advanced data structure

Disjoint set

Thank You

Appendix

A sub-tree of black height bh(v) in an RBT contains at least $2^{bh(v)} - 1$ internal nodes

- Base cases (height(v) = 0)
 - \circ If height(v) is 0, then v is a leaf
 - \circ The black height of v is 0
 - \circ The sub-tree T_v rooted at v contains $0 = 2^{\mathrm{bh}(v)} 1$ inner nodes

Inductive step

- \circ Suppose v is a node with height(v) > 0
- $\circ v$ has two children with strictly smaller height
- These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$
- \circ By hypothesis both sub-trees contains at least $2^{\mathrm{bh}(v)-1}-1$
- Then, T_v contains at least $2(2^{bh(v)-1}-1)+1 \ge 2^{bh(v)}-1$ [Q.E.D.]