Flip-flops & Race-around Problems

Farhan Tanvir 1805073 Shehabul Islam Sawraz 1805088

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology

August 29, 2022

Table of Contents

- Introduction
- 2 Types
- Truth Table
- 4 Circuit Diagram
- Misconception
- 6 Solution

Checkpoint

- Introduction
- 2 Types
- Truth Table
- 4 Circuit Diagram
- Misconception
- 6 Solution

Before We Start!!!

- Before we dive into the discussions of Flip-flops, let's go for a quick introduction of it!
- And for that, we will need to know about one important concept first!

Before We Start!!!

- Before we dive into the discussions of Flip-flops, let's go for a quick introduction of it!
- And for that, we will need to know about one important concept first!

Sequential Circuits

• We know, pretty much in everywhere, output depends on input.

Sequential Circuits

- We know, pretty much in everywhere, output depends on input.
- Putting it more formally in case of circuits... present output depends on present input.

Sequential Circuits

- We know, pretty much in everywhere, output depends on input.
- Putting it more formally in case of circuits... present output depends on present input.
- But output of sequential circuits depend on past output too!!!

• That brings an important point: we need to store the past output somewhere.

- That brings an important point: we need to store the past output somewhere.
- For that, we need storage devices.

- That brings an important point: we need to store the past output somewhere.
- For that, we need storage devices.
- And here is where Flip-flop comes in play.

- That brings an important point: we need to store the past output somewhere.
- For that, we need storage devices.
- And here is where Flip-flop comes in play.
- This whole thing is also known as storing the state of our circuit.

Two Important Questions

- What does Flip-flop do?
 - It stores and updates the state of our circuit

Two Important Questions

- What does Flip-flop do?
 - It stores and updates the state of our circuit
- 4 How does it know when to update the state?
 - It updates upon receiving a signal, whom we refer to as clock

Checkpoint

- Introduction
- 2 Types
- Truth Table
- 4 Circuit Diagram
- Misconception
- Solution

Types of Flip-flops

- SR (Set-Reset FF)
- D (Delay FF)
- T (Toggle FF)

Types of Flip-flops

- SR (Set-Reset FF)
- D (Delay FF)
- T (Toggle FF)
- JK (Jack Kilby FF)

Checkpoint

- Introduction
- 2 Types
- Truth Table
- 4 Circuit Diagram
- Misconception
- 6 Solution

J	K	Q_{n-1}	Q_n	Mode
0				Hold/Store
0		1	1	Tiola/Store
	1			Docat
	1	1		Reset
1			1	Set
1		1	1	Set
1	1		1	Tamala
1	1	1		Toggle

J	K	Q_{n-1}	Q_n	Mode
0	0	0	0	Hold/Store
0	0	1	1	Tiola/Store
0	1	0	0	Reset
0	1	1		Reset
1			1	Set
1		1	1	Set
1	1		1	Togglo
1	1	1		Toggle

J	K	Q_{n-1}	Q_n	Mode
0	0	0	0	Hold/Ctoro
0	0	1	1	Hold/Store
0	1	0	0	Reset
0	1	1	0	Reset
1	0	0	1	Set
1		1	1	Set
1	1		1	Togglo
1	1	1		Toggle

J	K	Q_{n-1}	Q_n	Mode
0	0	0	0	Hold/Store
0	0	1	1	Hold/Store
0	1	0	0	Reset
0	1	1	0	Reset
1	0	0	1	Set
1	0	1	1	Jei
1	1	0	1	Togglo
1	1	1		Toggle

1	I/	0		Mada
J	K	Q_{n-1}	Q_n	Mode
0	0	0	0	Hold/Store
0	0	1	1	Tiola/Store
0	1	0	0	Reset
0	1	1	0	Reset
1	0	0	1	Set
1	0	1	1	Jei
1	1	0	1	Toggle
1	1	1	0	loggie

Some Trouble Waiting?

When J = K = 1, an interesting event may occur depending on the clock mechanism. This event is known as Race Around Condition

Some Trouble Waiting?

When J = K = 1, an interesting event may occur depending on the clock mechanism. This event is known as Race Around Condition

Checkpoint

- Introduction
- 2 Types
- Truth Table
- 4 Circuit Diagram
- Misconception
- 6 Solution

Checkpoint

- Introduction
- 2 Types
- Truth Table
- 4 Circuit Diagram
- Misconception
- Solution

Some Misconception!!

Fallacy

Toggling & Race Condition is same

Checkpoint

- Introduction
- 2 Types
- Truth Table
- 4 Circuit Diagram
- Misconception
- 6 Solution

Solution

Use edge triggering instead of level triggering

Use Master-Slave JK Flip-Flop

Solution

Use edge triggering instead of level triggering

Use Master-Slave JK Flip-Flop