Week 3 – Data Link Layer

COMP90007 Internet Technologies

Lecturer: Ling Luo

Semester 2, 2020

Hamming Code

n=2^k-k-1 (n: number of data, k: check bits)
 Example: Data: 0101 - > requires 3 check bits

- Put <u>check bits in positions p that are power of 2</u>, starting with position 1
- Check bit in <u>position p is parity of positions with a p</u>
 <u>term in their value</u>

Example

Put check bits in positions p that are power of 2, starting with position 1

Data: 0101 -> requires 3 check bits

Position	P1	P2	P3	P4	P5	P6	P7
Data	?	.?	0);	?	1	0	

1. Calculate the parity bits for P1, P2, P4 (rule: even parity)

Data sent: 0100101

error error **Example 1**: At the receiver: 0100100 **Example 2**: At the receiver: 0000101 $'P1' + P3 + P5 + P7 = 0 + 0 + 1 + 0 = 1 \times$ P1 + P3 + P5 + P7 = 0 + 0 + 1 + 1 = 0P2 + P3 + P6 + P7 = 0+0+0+1= 1 × $P2 + P3 + P6 + P7 = 1+0+0+0= 1 \times 1$ $\P4/+ P5 + P6 + P7 = 0+1+0+0= 1 \times$ P4 + P5 + P6 + P7 = 0+1+0+1= 0 Error bit = P1+P2+P4 = P7Error bit = P2

111

| Error Correcting Codes Key Points

- More efficient in noisy transmission media e.g., wireless
- Challenge is that the error can be in the check bits
- Require assumption on a specific number of errors occurring in transmission

Error Detecting Codes

- More efficient in some transmission media –
 e.g. quality copper, where low error rates occur
- Parity (1 bit): (Hamming distance=2)
- Checksum (16 bits): (Hamming distance=2)
- Cyclical Redundancy Check (CRC) (Standard 32-bit CRC: Hamming distance=4)

How it works?

Sender: calculates R check bits using a function of data bits:

Receiver: receives the codeword and calculates the same function on the data and match the results with received check bits:

Parity Bit

Given data 10001110, count the number of 1s

Sender: Add parity bit → 10001110**0** (for even parity)

10001110**1** (for odd parity)

Receiver: Check the transferred data for errors on arrival.

Hamming distance is 2 for Parity Bit...

2-1 = 1 error bit can be detected and

 $(2-1)/2 = \frac{1}{2}$ not even 1 bit error can be corrected

Internet Checksum

- There are different variations of checksum
- Internet Checksum (16-bit word):

Sum modulo 2¹⁶ and add any overflow of high order bits back into low-order bits

Example of Checksum

Calculate checksum (5-bit word) for data

00110 10001 11001 01011

The checksum is one's complement of 11100 which is

00011

Data sent: 00110 10001 11001 01011 00011

Cyclic Redundancy Check

Based on a generator polynomial G(x)

- \Box e.g. $G(x) = x^4 + x + 1$ (10011)
- Let r be the degree of G(x) (r=4). Append r zero bits to the low-order end of the frame so it now contains m + r bits and corresponds to the polynomial $x^rM(x)$.
- Divide the bit string corresponding to G(x) into the bit string corresponding to $x^rM(x)$, using modulo 2 division.
- □ Subtract the remainder (which is always r or fewer bits) from the bit string corresponding to $x^rM(x)$ using modulo 2 subtraction.
- The result is the checksummed frame to be transmitted. Call its polynomial T(x).

Example

Data: **1101001** and $G(x) = x^4 + x + 1$ (**10011**)

5 bits polynomial add 4 bits as the checksum – so add 0000

