ARAV DESAI

MECHANICAL ENGINEERING AT ARIZONA STATE UNIVERSITY

SHOCK ABSORBER ASSEMBLY

What?

- Designed various parts needed for a shock absorber
- Created a shock absorber assembly in SolidWorks

How?

- Created digital drawings for each part
- Connected parts using mates in SolidWorks
- Created bill of materials for all parts used in assembly

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1	U-support	AISI 1020	1
2	Shaft	AISI 1020 CRS	1
3	Pivot	AISI 1020	1
4	Bracket	AISI 1020	1
5	Bushing	Manganese Bronze	2
6	Washer	1.50 x 7.50 x 1.25	1
7	Spacer	AISI 1020	1
8	Locknut	AISI 1020	1
9	Castle Nut	AISI 1020	1
10	Spring	Plain Carbon Steel	1
11	Hex Head Screw	-	1
12	Cotter Pin	Plain Carbon Steel	1

Results

- Final shock absorber assembly composed of all necessary parts
- Assembly had realistic movement for a shock absorber

WIND TURBINE

What?

- Created wind turbine with limited materials
- Observed how much power was generated in volts

How?

- Built four turbine blades from corrugated plastic due to its reduced weight
- Attached blades to wooden rods, which were then attached to a hub
- Tested various pitch angles to find which was most efficient

Average Energy (Volts) vs. Degree of Blades

Results

- Observed range of power generated for each trial and took an average
- Pitch angle of 15 degrees was the most efficient
- Efficiency can be improved by removing one blade from the turbine

SUSPENSION TESTING RIG - ALEF AERONAUTICS

What?

- Designed a testing rig in order to test suspension system for a car
- Tested both structural stability as well 3D printed parts needed for as software for the motor

How?

- Measured and cut wood in order to make frame
- suspension system
- Assembled suspension system and attached it to frame

Results

- Able to move properly and turn at up to 10 MPH
- Proved chosen shock absorbers and suspension system was viable
- Allowed software for the motor to be improved

*unable to provide pictures due to NDA