Recuperació de la Informació (REIN)

Grau en Enginyeria Informàtica

Departament de Ciències de la Computació (CS)

Índex

- 2. Models de Recuperació de la Informació
- El model booleà de Recuperació de la Informació
- El model vectorial de Recuperació de la Informació

Models de Recuperació de la Informació, I

Què és un model de Recuperació de la Informació?

Determina:

- El conjunt de vistes lògiques (o representacions) dels documents (quina info s'emmagatzema/indexa de cada document?),
- un llenguatge d'interrogació

 (quin tipus de consultes podran fer-se?),
- un criteri de rellevància (donada una consulta, què es fa amb cada document?).

Models de Recuperació de la Informació, I

Dos models de RI, entre d'altres

En aquesta assignatura:

Model booleà

- El més senzill, poc usat.
- Les consultes són expressions booleanes, les respostes són exactes.
- Extensió: consultes per frase.

Model vectorial

- Pesos en els termes i en els documents.
- Grau de similitud entre consultes i documents, respostes aproximades, ordenació.

Índex

- 2. Models de Recuperació de la Informació
- El model booleà de Recuperació de la Informació
- El model vectorial de Recuperació de la Informació

Model booleà de RI

Assumeix rellevància binària

Documents:

En aquest model, cada document s'identifica pel conjunt de termes que conté.

- L'ordre en què apareixen és irrellevant.
- El nombre de vegades que es repeteixen és irrellevant (però hi ha un model molt similar, anomenat bag-of-words o BoW, que considera rellevants les freqüències).

Model booleà de RI

Assumeix rellevància binària

Documents:

En aquest model, cada document s'identifica pel conjunt de termes que conté.

- L'ordre en què apareixen és irrellevant.
- El nombre de vegades que es repeteixen és irrellevant (però hi ha un model molt similar, anomenat bag-of-words o BoW, que considera rellevants les freqüències).

Per tant, per un conjunt de termes $\mathcal{T} = \{t_1, \dots, t_T\}$, un document és un subconjunt de \mathcal{T} .

Cada document és representat com un vector de bits (0 o 1) de longitud T, $d=(d_1,\ldots,d_T)$, on

- $d_i = 1$ si i només si t_i apareix en d,
- $d_i = 0$ si i només si t_i no apareix en d.

Consultes en el model booleà, I

Consultes booleanes, respostes exactes

Consultes atòmiques:

D'una sola paraula. La resposta és el conjunt de documents que la contenen.

Consultes compostes:

S'usen els operadors de l'àlgebra de Boole, excepte la negació:

- OR, AND: funcionen com la unió o intersecció de respostes.
- El conjunt diferència, resta o "complement", s'usa en lloc de la negació unària:
 - t_1 BUTNOT t_2 , correspon a t_1 AND NOT t_2 ;
- Motivació: evitar generar conjunts de resposta amb una mida intractable.

Exemple, I

Considerem els 7 documents següents amb un vocabulari de 6 termes.

- d1 = un tres
- d2 = dos dos tres
- d3 = un tres quatre cinc cinc cinc
- d4 = un dos dos dos dos tres sis sis
- d5 = tres quatre quatre sis
- d6 = tres tres tres sis sis
- d7 = quatre cinc

Exemple, II

Els documents en el model booleà

	cinc	dos	quatre	sis	tres	un	
d1 = [0	0	0	0	1	1]
d2 = [0	1	0	0	1	0]
d3 = [1	0	1	0	1	1]
d4 = [0	1	0	1	1	1]
d5 = [0	0	1	1	1	0]
d6 = [0	0	0	1	1	0]
d7 = [1	0	1	0	0	0]

(Inventeu algunes consultes i calculeu les seves respostes.)

Consultes en el model booleà, II

Els resultats no estan ordenats

Els resultats no estan quantificats:

Un document o bé

- coincideix amb la consulta (és totalment rellevant),
- o bé no coincideix amb la consulta (és totalment irrellevant).

Consultes en el model booleà, II

Els resultats no estan ordenats

Els resultats no estan quantificats:

Un document o bé

- coincideix amb la consulta (és totalment rellevant),
- o bé no coincideix amb la consulta (és totalment irrellevant).

Depenent de les necessitats de l'usuari i de l'aplicació, això pot ser bo o dolent.

- Busco un document més o menys conegut?
- Busco informació relacionada?

Consultes per frase, I

Estenent el model booleà

Consultes per frase: conjunció més adjacència

Respondre amb el conjunt de documents que presenten els termes de la consulta de forma consecutiva (apareixen junts).

- Si l'usuari consulta "George Harrison" no vol un document que mencioni tant en George Orwell com en Richard Harrison.
- El model booleà no permet consultes per frase.

Consultes per frase, II

Possibles solucions

Opcions:

- Executar una consulta conjuntiva, després tornar a repassar el conjunt de resposta per eliminar els casos de no adjacència.
 Aquesta opció pot ser molt lenta en casos on hi hagi molts "falsos positius".
- Emmagatzemar dins l'índex informació addicional sobre l'adjacència de qualsevol parell de termes d'un document (p.e. posicions).
- Emmagatzemar dins l'índex informació addicional sobre la possibilitat de "parelles interessants" de paraules.

Índex

- 2. Models de Recuperació de la Informació
- El model booleà de Recuperació de la Informació
- El model vectorial de Recuperació de la Informació

El model vectorial de RI, I

Base de totes les aproximacions exitoses

- El nombre d'ocurrències d'un terme en un document és rellevant.
- Segueix sent irrellevant l'ordre en què apareixen els termes en el document.
- No tots els termes són igual d'importants.
- Per un conjunt de termes $\mathcal{T} = \{t_1, \dots, t_T\}$, un document és $d = (w_1, \dots, w_T)$ de reals en lloc de bits.
- w_i és el pes de t_i en el document d.

El model vectorial de RI, II

Els termes formen T dimensions, els documents $\in IR^T$

- Un document és un vector $\in IR^T$.
- La col·lecció de documents es converteix en una matriu: termes × documents
 però mai calculem explícitament aquesta matriu.
- Les consultes també són representades com a vectors $\in I\!R^T$.

Esquema de pesos tf-idf, I

Com assignar un vector de pesos a un document

Dos principis:

 Com més frequent és un terme t en un document d, més pes hauria de tenir.

Esquema de pesos tf-idf, I

Com assignar un vector de pesos a un document

Dos principis:

- Com més frequent és un terme t en un document d, més pes hauria de tenir.
- Però si un terme és molt freqüent en tots els documents de la col·lecció, serveix menys per discriminar-los i llavors voldríem decrementar el seu pes.

Esquema de pesos tf-idf, II

Un document és un vector de pesos:

$$d = [w_{d,1}, \dots, w_{d,i}, \dots, w_{d,T}]$$

Cada pes és el producte de dos valors:

$$w_{d,i} = t f_{d,i} \cdot i df_i$$

La freqüència dels termes tf és:

$$tf_{d,i} = rac{f_{d,i}}{\max_j f_{d,j}}$$
, on $f_{d,j}$ és la freqüència de t_j en d .

I la freqüència inversa dels documents *idf* és:

$$idf_i = \log_2 \frac{D}{df_i}$$

on D= nombre de documents i $df_i=$ nombre de documents que contenen el terme t_i .

Exemple, I

	cinc	dos	quatre	sis	tres	un		maxf
d1 = [0	0	0	0	1	1]	1
d2 = [0	2	0	0	1	0]	2
d3 = [3	0	1	0	1	1]	3
d4 = [0	4	0	2	1	1]	4
d5 = [0	0	3	1	1	0]	3
d6 = [0	0	0	2	3	0]	3
d7 = [1	0	1	0	0	0]	1
df =	2	2	3	3	6	3		

Exemple, II

$$d4 = \begin{bmatrix} 0 & 4 & 0 & 2 & 1 & 1 \end{bmatrix}$$

$$d4 = \begin{bmatrix} \frac{0}{4}\log_2\frac{7}{2} & \frac{4}{4}\log_2\frac{7}{2} & \frac{0}{4}\log_2\frac{7}{3} & \frac{2}{4}\log_2\frac{7}{3} & \frac{1}{4}\log_2\frac{7}{6} & \frac{1}{4}\log_2\frac{7}{3} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1.81 & 0 & 0.61 & 0.06 & 0.31 \end{bmatrix}$$

La mesura de similitud cosinus

• Pot passar que "vectors similars" tinguin longituds diferents.

La mesura de similitud cosinus

- Pot passar que "vectors similars" tinguin longituds diferents.
- Millor si comparem només les seves direccions.

La mesura de similitud cosinus

- Pot passar que "vectors similars" tinguin longituds diferents.
- Millor si comparem només les seves direccions.
- O, el que és el mateix, els normalitzem abans de comparar-los perquè tinguin la mateixa longitud euclidiana.

$$sim(d1, d2) = \frac{d1 \cdot d2}{|d1||d2|} = \frac{d1}{|d1|} \cdot \frac{d2}{|d2|}$$

on

$$v \cdot w = \sum_i v_i \cdot w_i, \text{ and } |v| = \sqrt{v \cdot v} = \sqrt{\sum_i v_i^2}$$

La mesura de similitud cosinus

- Pot passar que "vectors similars" tinguin longituds diferents.
- Millor si comparem només les seves direccions.
- O, el que és el mateix, els normalitzem abans de comparar-los perquè tinguin la mateixa longitud euclidiana.

$$sim(d1, d2) = \frac{d1 \cdot d2}{|d1||d2|} = \frac{d1}{|d1|} \cdot \frac{d2}{|d2|}$$

on

$$v \cdot w = \sum_i v_i \cdot w_i$$
, and $|v| = \sqrt{v \cdot v} = \sqrt{\sum_i v_i^2}$

- Els pesos són tots no negatius.
- Per tant, tots els cosinus / similituds estan entre 0 i 1.

Exemple: similitud del cosinus

Aleshores

$$|d3| = 1.898, \quad |d4| = 1.933, \quad d3 \cdot d4 = 0.129$$

i sim(d3,d4)=0.035, o sigui, que tenen una similitud baixa.

• Les consultes també poden transformar-se en vectors.

- Les consultes també poden transformar-se en vectors.
- De vegades, s'usen pesos *tf-idf*; molt sovint s'usen pesos binaris.

- Les consultes també poden transformar-se en vectors.
- De vegades, s'usen pesos tf-idf; molt sovint s'usen pesos binaris.
- $sim(doc, consulta) \in [0, 1]$.

- Les consultes també poden transformar-se en vectors.
- De vegades, s'usen pesos tf-idf; molt sovint s'usen pesos binaris.
- $sim(doc, consulta) \in [0, 1]$.
- Resposta: Ilista de documents en ordre decreixent de similitud.

- Les consultes també poden transformar-se en vectors.
- De vegades, s'usen pesos tf-idf; molt sovint s'usen pesos binaris.
- $sim(doc, consulta) \in [0, 1]$.
- Resposta: Ilista de documents en ordre decreixent de similitud.
- Veurem que també ens pot ser útil per comparar sim(d1, d2).