Reinforcement Learning for Game Environment

REINFORCE policy

Team GAIL RL-2025

Environment Overview

The **Environment** simulates a simplified obstacle-navigation task inspired by the Chrome dinosaur game. The agent *must jump over obstacles to maximize total reward while progressing forward.*

Key Features:

- Agent: Moves at a fixed speed along the x-axis.
- Obstacles: Appear at varying distances.
- Actions: jump over.
- **Termination:** Collision or goal completion.

Markov Decision Process (MDP)

State Space

A 4-dimensional observation vector:

- 1. Normalized player height
- 2. Jump state (binary)
- 3. Normalized distance to next obstacle
- 4. Normalized distance to second obstacle

Action Space

Discrete choices:

- **0:** No jump
- 1: Jump

Reward Function

- +1 per step survived
- +50 for passing an obstacle
- -50 for collision
- +100 for reaching the goal
- -2 per jump (penalizing unnecessary jumps)

Terminal Conditions

- Collision with an obstacle
- Goal reached

Training Performance

Observations:

- Reward fluctuations due to random exploration.
- Reaching near optimal policy after ~10,000 episodes

Hyperparameters Used

- Discount Factor (Gamma, γ): 0.99
- Policy Net: MLP with single hidden layer of 128 dim
- **Optimizer:** Adam with default parameters (learning rate = 0.0003)
- **Episodes:** 28,000 training episodes

Agent in action

Acknowledgment

1 ChatGPT

Game play logic code