

Return to "Al Programming with Python Nanodegree" in the classroom

Create Your Own Image Classifier

REVIEW		
CODE REVIEW		
HISTORY		
Meets Specifications		
lice job on your submission, and congratulations in passing the project. I've added a couple of links that I hope you find useful.		
ttps://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/		
ttps://chrisalbon.com/ ttps://machinelearningmastery.com/transfer-learning-for-deep-learning/		
sood luck!		
iles Submitted		
The submission includes all required files. (Model checkpoints not required.)		
Part 1 - Development Notebook		
All the necessary packages and modules are imported in the first cell of the notebook		
All the necessary packages and modules are imported in the first cell of the notebook torchvision transforms are used to augment the training data with random scaling, rotations, mirroring, and/or cropping		
torchvision transforms are used to augment the training data with random scaling, rotations, mirroring, and/or cropping		
torchvision transforms are used to augment the training data with random scaling, rotations, mirroring, and/or cropping The training, validation, and testing data is appropriately cropped and normalized		
torchvision transforms are used to augment the training data with random scaling, rotations, mirroring, and/or cropping The training, validation, and testing data is appropriately cropped and normalized The data for each set (train, validation, test) is loaded with torchvision's ImageFolder		

The parameters of the feedforward classifier are appropriately trained, while the parameters of the feature network are left static	
During training, the validation loss and accuracy are displayed	
The network's accuracy is measured on the test data	
There is a function that successfully loads a checkpoint and rebuilds the model	
The trained model is saved as a checkpoint along with associated hyperparameters and the class_to_idx dictionary	
The process_image function successfully converts a PIL image into an object that can be used as input to a trained model	
The predict function successfully takes the path to an image and a checkpoint, then returns the top K most probably classes for that image	
A matplotlib figure is created displaying an image and its associated top 5 most probable classes with actual flower names	
Part 2 - Command Line Application	
train.py successfully trains a new network on a dataset of images and saves the model to a checkpoint	
The model is correctly trained and saved to the checkpoint file.	
The training loss, validation loss, and validation accuracy are printed out as a network trains	
The losses and accuracy are printed during training. This is important because it allows you to monitor the model's progress, and lets you know if it starts overfitting.	
The training script allows users to choose from at least two different architectures available from torchvision.models	
Vgg13 and Densenet121 are properly supported. My suggestion here would be to provide the user with the names of the models supported, so that they do not enter unsupported models.	
The training script allows users to set hyperparameters for learning rate, number of hidden units, and training epochs	
The required hyperparameters can be set by the user. I would suggest making the training on GPU by default, for practical purposes, as faster is always better.	
The training script allows users to choose training the model on a GPU	

The predict.py script successfully reads in an image and a checkpoint then prints the most likely image class and it's associated probability

torch.cuda_is_available() for that.

The predic	by script allows users to print out the top K classes along with associated probabilities
The predic	by script allows users to load a JSON file that maps the class values to other category names
Nice job us	g the json file provided by the user for querying class names.
The predic	by script allows users to use the GPU to calculate the predictions
See comme	t in the training part, as it applies here as well.

RETURN TO PATH