

(mV)	A	Conc (gm%)
2	0.243	0.002
4	0.462	0.004
6	0.673	0.006
8	0.912	0.008
10	1.118	0.01
Sample 10 ml	0.686	

- Conc of sample after dilution = 0.0063 gm\%

$$C_1 V_1 = C_2 V_2$$

$$0.0063 \times 100 = C_2 \times 10$$

$$C_2 = \frac{0.0063 \times 100}{10} = 0.063 \text{ gm\%}$$

Volume (ml)	Conc gm/L	
2	0.01	0.21
4	0.02	0.42
6	0.03	0.62
8	0.04	0.84
10	0.05	1.06
Sample 10 ml		0.5

* Solution Contain 500PPm $\rightarrow = 500 \times 10^{-3}$
 $= 0.5 \text{ gm/L}$

$C_1 V_1 = C_2 V_2$
 $0.5 \times 2 = C_2 \times 100$
 $C_2 = \frac{0.5 \times 2}{100} = 0.01 \text{ gm/L}$ also for 4, 6, 8, 10.

* Conc of Sample after dilution = 0.025 gm/L

$$C_1 V_1 = C_2 V_2$$

$$0.025 \times 100 = C_2 \times 10$$

$$C_2 = 0.25 \text{ gm/L}$$

Calculation

Volume (ml)	CNC gm%.	A
2	0.012	0.332
4	0.024	0.553
6	0.036	
8	0.048	0.89
10	0.06	1.08
Sample 10 ml		0.471

of sample

* CNC after dilution = 0.023 gm%.

$$C_1 V_1 = C_2 V_2$$

$$0.023 \times 100 = C_2 \times 10$$

$$C_2 = 0.23 \text{ gm%}$$

