Indian Institute of Technology Jammu

CSD001P5M Linear Algebra Tutorial: 07

- 1. Do $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ form basis for \mathbb{Z}_2^3 ?
- 2. Do $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ form basis for \mathbb{Z}_3^3 ?
- 3. Given two linearly independent vectors (1,0,1,0) and (0,-1,1,0) of \mathbb{R}^4 , find a basis for \mathbb{R}^4 that includes these two vectors.
- 4. Let $\{(1,1,1,1),(1,2,1,2)\}$ be linearly independent subset of the vector space \mathbb{R}^4 . Extend it to a basis for \mathbb{R}^4 .
- 5. Extend the set $\{(3,-1,2)\}$ to two different bases for \mathbb{R}^4 .
- 6. Given $S_1 = \{(1,2,3), (0,1,2), (3,2,1)\}$ and $S_2 = \{(1,-2,3), (-1,1,-2), (1,-3,4)\}$, determine the dimension and a basis for
 - (a) Span $S_1 \cap$ Span S_2 .
 - (b) Span $(S_1 + S_2)$.
- 7. (a) Let $U = \{f(t) \in \mathbb{R}_4[t] \mid f(6) = 0\}$. Find a basis of U.
 - (b) Extend the basis in part (a) to a basis of $\mathbb{R}_4[t]$.
 - (c) Find a subspace W of $\mathbb{R}_4[t]$ such that $\mathbb{R}_4[t] = U \oplus W$.
- 8. (a) Let $U = \{f(t) \in \mathbb{R}_4[t] \mid \int_{-1}^1 f(t)dt = 0\}$. Find a basis of U.
 - (b) Extend the basis in part (a) to a basis of $\mathbb{R}_4[t]$.
 - (c) Find a subspace W of $\mathbb{R}_4[t]$ such that $\mathbb{R}_4[t] = U \oplus W$.
- 9. (a) Show that if we think of \mathbb{C} as a vector space over \mathbb{R} , then the set $\{1+i, 1-i\}$ is linearly independent.
 - (b) Show that if we think of $\mathbb C$ as a vector space over $\mathbb C$, then the set $\{1+i,1-i\}$ is linearly dependent.

10. Let $V = \mathbb{F}^{2 \times 2}$ be the vector space of all 2×2 matrices over the field \mathbb{F} . Let W_1 be the set of matrices of the form

$$\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$$

and let W_2 be the set of matrices of the form

$$\begin{bmatrix} a & b \\ -a & c \end{bmatrix}.$$

- (a) Prove that V has dimension 4 by exhibiting a basis for V which has four elements.
- (b) Prove that W_1 and W_2 are subspaces of V.
- (c) Find dimensions of $W_1, W_2, W_1 + W_2$ and $W_1 \cap W_2$.
- 11. Suppose v_1, v_2, v_3, v_4 spans V. Prove that the list $v_1 v_2, v_2 v_3, v_3 v_4, v_4$ also spans V.
- 12. Suppose v_1, v_2, v_3, v_4 is linearly independent in V. Prove that the list $v_1 v_2, v_2 v_3, v_3 v_4, v_4$ is also linearly independent.
- 13. Given the matrix A below:

$$A = \begin{bmatrix} 2 & 6 & 3 \\ 4 & 12 & 5 \\ 13 & 39 & 17 \end{bmatrix}$$

- (a) Find a basis for each of the spaces Nul A, Col A and Row A.
- (b) Find a basis for Row A consisting of rows of the given matrix A. This should be different from the one given in part (a).
- (c) Is A invertible? Justify your answer with reference to TIMT.
- 14. Let $S = \{v_1, v_2, v_3, v_4, v_5\}$ where the v_i 's are vectors in \mathbb{R}^3 given below (they should be taken as column vectors):

$$v_1 = (1,2,3), \quad v_2 = (2,5,7), \quad v_3 = (10,24,34), \quad v_4 = (.1,.5,.6), \quad v_5 = (3,7,11).$$

Let $W = \operatorname{span} S$.

- (a) Reduce S to a basis for W. You must explain your method briefly and show your calculations.
- (b) Is W all of \mathbb{R}^3 ? Justify your answer (YES or NO) in at most one sentence.
- 15. Given the matrix *A* and *B* below:

$$A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & -4 & 11 \\ 2 & 4 & -5 & 14 \end{bmatrix}$$

- (a) Find a basis for the row space of A and a basis for the row space of B. You must show your calculations.
- (b) Let $U = \text{Span} \{(1,2,-1,3), (2,4,-1,2), (3,6,3,-7)\}$ and let $W = \text{Span} \{1,2,-4,11), (2,4,-5,14)\}$. Is U = W? Justify your answer.
- 16. Given any $m \times n$ matrix A, show that $\operatorname{rank}(A) \leq \min\{m,n\}$. Give a non-trivial example in which equality is achieved, and a non-trivial example in which strict inequality holds.
- 17. Given any two $m \times n$ matrices A and B, prove that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$. Give a non-trivial example in which equality is achieved, and a non-trivial example in which strict inequality holds.
- 18. Solve the following system of equations over the field \mathbb{Z}_5 :

$$2x + 4y + z = 0$$
$$3x + 4y + 2z = 0$$
$$x + 3y + 4z = 0$$

19. Solve the following system of equations over the field \mathbb{Z}_{11} :

$$2x + y + z = 0$$
$$7x + 2y = 0$$
$$x - 2y + 2z = 0$$

20. Find all the solutions of the following system of equations over the field \mathbb{Z}_{13} , if any:

$$2x + 3y + z = 6$$
$$x + y + 2z = 12$$
$$5y + 3z = 3$$

21. Let W be the set of all $(x_1, x_2, x_3, x_4, x_5)$ in $\mathbb{R}^5_{\mathbb{R}}$ which satisfy:

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0$$
$$x_1 + \frac{2}{3}x_3 - x_5 = 0$$
$$9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0$$

Find the finite set of vectors which spans W.

- 22. If *A* is any 7×7 invertible matrix in $\mathbb{R}^{7 \times 7}$, then what is its column space?
- 23. Construct a matrix A with the required property, or explain why you can't:

3

- (a) Column space of A contains $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, row space of A contains $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$
- (b) Column space of A has basis $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, null space of A has basis $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$.
- (c) Row space of A = column space of A, null space of $A \neq \text{null space of } A^T$.
- (d) Column space of *A* contains $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, but not $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
- (e) Dimension of null space of A = 1 + dimension of null space of A^{T} .
- (f) Null space of A^T contains $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, row space of A contains $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$.
- (g) Null space of $A = \text{null space of } A^T$.
- 24. Let A be any $m \times n$ matrix. Show that rank $(A) = \text{rank } (A^T)$. Also find an equation relating nullity (A) and nullity (A^T) .
- 25. Compute the rank and nullity of the given matrices over the indicated \mathbb{Z}_p .
 - (a) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ over \mathbb{Z}_2 .
 - (b) $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 0 & 0 \end{bmatrix}$ over \mathbb{Z}_3 .
 - (c) $\begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & 3 & 0 & 1 \\ 1 & 0 & 4 & 0 \end{bmatrix}$ over \mathbb{Z}_5 .
 - (d) $\begin{bmatrix} 2 & 4 & 0 & 0 & 1 \\ 6 & 3 & 5 & 1 & 0 \\ 1 & 0 & 2 & 2 & 5 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$ over \mathbb{Z}_7 .