Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2. Mark:

Determine if $\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$.

|--|

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d '	V2.	Mark:							
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$	is a lin	ear com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5\\1\\-6 \end{bmatrix}$	

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 3 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:						
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$ is a line	near com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix},$	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$	

|--|

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 4 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2.		Mark:					
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} $ is a lin	near com	bination of the vectors	$\begin{bmatrix} 2\\3\\-1 \end{bmatrix},$	$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} -3 \\ -2 \\ 5 \end{bmatrix}$

Additional Notes/Marks

Name:	
J#:	Dr. Clontz
Date:	

$\begin{array}{c} \textbf{MASTERY QUIZ DAY 9} \\ \textbf{Version 5} \end{array}$

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2 .	Mark:					
Determine if	$\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be	written	as a linear combination of the vectors	$\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$	and	$\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}$	

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra $\operatorname{Fall}\ 2017$

 ${\bf Version} \,\, {\bf 6}$ Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:							
Determine if	$\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix} $ can	be writte	en as a linear combination of the vectors	$\begin{bmatrix} 5\\2\\-3\\2\end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}$	