MATH102

5.2: Area

Sigma Notation

Area

The Area of a Plane Region
Finding Area by the Limit Definition

Midpoint Rule

5.3: Riemann Sums and Definite Integrals

Riemann Sums

Definite Integrals

Properties of Definite Integrals

5.4: The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus

The Mean Value Theorem for Integrals

Average Value of a Function

The Second Fundamental Theorem of Calculus

Net Change Theorem

5.5: The Substitution Rule

Pattern Recognition

Change of Variables for Indefinite Integrals

The General Power Rule for Integration

Change of Variables for Definite Integrals

Substitution: Definite Integrals

Integration of Even and Odd Functions

5.7: The Natural Logarithmic Function: Integration

Log Rule for Integration

Integrals of Trigonometric Functions

5.8:Inverse Trigonometric Functions: Integration

Integrals Involving Inverse Trigonometric Functions Completing the Square

5.9: Hyperbolic Functions

7.1: Area of a Region Between Two Curves

Area of a Region Between Two Curves

Area of a Region Between Intersecting Curves

7.2: Volume: The Disk Method

The Disk Method

The Washer Method

Solids with Known Cross Sections

7.3: Volume: The Shell Method

The Shell Method

7.4: Arc Length and Surfaces of Revolution

Arc Length Area of a Surface of Revolution

Tea or a sarrace or neveral

8.1: Basic Integration Rules

8.2: Integration by Parts

8.3: Trigonometric Integrals

Integrals of Powers of Sine and Cosine Integrals of Powers of Secant and Tangent Integrals Involving Sine-Cosine Products

Syllabus

5.2: Area

Objectives

"

- 1 Use sigma notation to write and evaluate a sum.
- 2 Understand the concept of area.
- 3 Approximate the area of a plane region.
- 4 Find the area of a plane region using limits.

Sigma Notation

Sigma Notation

The sum of n terms a_1, a_2, \dots, a_n is written as

$$\sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

where i is the **index of summation**, a_i is the th ith term of the sum, and the upper and lower bounds of summation are n and 1.

Summation Properties

$$\sum_{i=1}^n ka_i \qquad = k \sum_{i=1}^n a_i$$

$$\sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} a_i \pm \sum_{i=1}^{n} b_i$$

Theorem Summation Formulas

(1)
$$\sum_{i=1}^{n} c = cn$$
, c is a constant

$$(2)\quad \sum_{i=1}^n i=\frac{n(n+1)}{2}$$

$$(3) \quad \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$(4)\quad \sum_{i=1}^n i^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Example 1: Eva

Evaluating a Sum

Evaluate
$$\displaystyle\sum_{i=1}^{n} rac{i+1}{n}$$
 for $n=10,100,1000$ and $10,000$.

Area

In **Euclidean geometry**, the simplest type of plane region is a rectangle. Although people often say that the *formula* for the area of a rectangle is

$$A = bh$$

it is actually more proper to say that this is the definition of the area of a rectangle.

For a triangle $A=rac{1}{2}bh$

The Area of a Plane Region

Example

Use five rectangles to find two approximations of the area of the region lying between the graph of

$$f(x)=5-x^2$$

and the x-axis between x = 0 and x = 2.

f (generic function with 1 method)

$$1 f(x) = 5 - x^2$$

$$n = 5$$
 $a = 0$ $b = 2$ method = Left \checkmark

Finding Area by the Limit Definition

Find the area of a plane region bounded above by the graph of a nonnegative, **continuous** function

$$y = f(x)$$

The region is bounded below by the x-axis and the left and right boundaries of the region are the vertical lines $\pmb{x}=\pmb{a}$ and $\pmb{x}=\pmb{b}$

• To approximate the area of the region, begin by subdividing the interval into subintervals, each of width

$$\Delta x = rac{b-a}{n}$$

• The endpoints of the intervals are

$$\overbrace{a+0(\Delta x)}^{a=x_0}<\overbrace{a+1(\Delta x)}^{a=x_1}<\overbrace{a+2(\Delta x)}^{a=x_2}<\cdots<\overbrace{a+n(\Delta x)}^{a=x_n}.$$

Let

 $f(m_i)$ = Minimum value of f(x) on the i^{th} subinterval

 $f(M_i)$ = Maximum value of f(x) on the i^{th} subinterval

- Define an inscribed rectangle lying inside the *i*th subregion
 Define an circumscribed rectangle lying outside the *i*th subregion

 $(Area of inscribed rectangle) = f(m_i)\Delta x \leq f(M_i)\Delta x = (Area of circumscribed rectangle)$

• The sum of the areas of the inscribed rectangles is called a lower sum, and the sum of the areas of the circumscribed rectangles is called an upper sum.

Lower sum
$$= s(n) = \sum_{i=1}^n f(m_i) \Delta x$$
 Area of inscribed rectangle

Upper sum
$$= S(n) = \sum_{i=1}^{n} f(M_i) \Delta x$$
 Area of circumscribed rectangle

• The actual area of the region lies between these two sums.

$$s(n) \leq (\text{Area of region}) \leq S(n).$$

Finding Upper and Lower Sums for a Region Example 4:

Find the upper and lower sums for the region bounded by the graph of $f(x)=x^2$ and the x-axis between x = 0 and x = 2.

$$n = 5$$
 $a = 0$ $b = 2$ method = Left \checkmark

f4 (generic function with 1 method)

$$1 f4(x) = x^2$$

Theorem

Limits of the Lower and Upper Sums

Let f be continuous and nonnegative on the interval [a,b]. The limits as $n\to\infty$ of both the lower and upper sums exist and are equal to each other. That is,

$$\lim_{n o\infty} s(n) = \lim_{n o\infty} \sum_{i=1}^n f(m_i) \Delta x = \lim_{n o\infty} \sum_{i=1}^n f(M_i) \Delta x = \lim_{n o\infty} S(n)$$

where

$$\Delta x = rac{b-a}{n}$$

and $f(m_i)$ and $f(M_i)$ are the minimum and maximum values of f on the ith subinterval.

Definition

Area of a Region in the Plane

Let f be continuous and nonnegative on the interval [a, b]. The area of the region bounded by the graph of f, the x-axis, and the vertical lines x = a and y = b is

$$ext{Area} = \lim_{n o \infty} \sum_{i=1}^n f(c_i) \Delta x$$

where

$$x_{i-1} \le c_i \le x_i \quad ext{and} \quad \Delta x = rac{b-a}{n}.$$

See the grpah

Example 5:

Finding Area by the Limit Definition

Find the area of the region bounded by the graph of $f(x)=x^3$, the x-axis, and the vertical lines x=0 and x=1.

Example 7:

A Region Bounded by the y-axis

Find the area of the region bounded by the graph of $f(y)=y^2$ and the y-axis for $0\leq y\leq 1$.))

Midpoint Rule

$$ext{Area} pprox \sum_{i=1}^n figg(rac{x_{i-1}+x_i}{2}igg) \Delta x.$$

Example 8:

Approximating Area with the Midpoint Rule

Use the Midpoint Rule with n=4 to approximate the area of the region bounded by the graph of $f(x)=\sin x$ and the x-axis for $0\leq x\leq \pi$.

```
2.0523443059540623

1 begin
2 f8(x)=sin(x)
3 \Delta x 28 = \pi/4
4 A = \Delta x 28*(f8(\pi/8)+f8(3\pi/8)+f8(5\pi/8)+f8(7\pi/8))
5 end
```

5.3: Riemann Sums and Definite Integrals

Riemann Sums

```
g (generic function with 1 method)
1 g(x) = \sqrt{x}
```


Definition of Riemann Sum

Let f be defined on the closed interval [a,b], and let Δ be a partition of [a,b] given by

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$$

where Δx_i is the width of the th subinterval

$$[x_{i-1}, x_i]$$
 ith subinterval

If c_i is any point in the th subinterval, then the sum

$$\sum_{i=1}^n f(c_i) \Delta x_i, \quad x_{i-1} \leq c_i \leq x_i$$

is called a **Riemann sum** of f for the partition Δ .

Remark

The width of the largest subinterval of a partition Δ is the **norm** of the partition and is denoted by $\|\Delta\|$.

• If every subinterval is of equal width, then the partition is regular and the norm is denoted by

$$\|\Delta\| = \Delta x = \frac{b-a}{n}$$
 Regular partition

• For a general partition, the norm is related to the number of subintervals of [a, b] in the following way.

$$\frac{b-a}{\|\Delta\|} \le n$$
 General partition

Note that

$$\|\Delta\| \to 0 \quad \text{implies that} \quad n \to \infty.$$

Definite Integrals

Definition of Definite Integral

If f is defined on the closed interval [a,b] and the limit of Riemann sums over partitions Δ

$$\lim_{\|\Delta\| o 0} \sum_{i=1}^n f(c_i) \Delta x_i$$

exists, then f is said to be **integrable** on [a,b] and the limit is denoted by

$$\lim_{\|\Delta\| o 0} \sum_{i=1}^n f(c_i) \Delta x_i = \int_a^b f(x) dx.$$

The limit is called the **definite integral** of f from a to b. The number a is the **lower limit** of integration, and the number b is the **upper limit** of integration.

Theorem

Continuity Implies Integrability

If a function f is continuous on the closed interval [a,b], then f is integrable on [a,b]. That is,

$$\int_a^b f(x)dx \quad \text{exists.}$$

Theorem

The Definite Integral as the Area of a Region

If f is continuous and nonnegative on the closed interval [a,b], then the area of the region bounded by the graph of f, the x-axis, and the vertical lines x=a and x=b is

$$ext{Area} = \int_a^b f(x) dx$$

Evaluate each integral using a geometric formula.

$$\bullet \int_{1}^{3} 4dx$$

$$\bullet \int_{0}^{3} (x+2)dx$$

$$\bullet \int_{-2}^{2} \sqrt{4-x^{2}}dx$$

Remark

The definite integral is a **number**

• It does not depend on x. In fact, we could use any letter in place of x without changing the value of the integral:

$$\int_a^b f(x) dx = \int_a^b f(y) dy = \int_a^b f(w) dw = \int_a^b f(\underbrace{@}) d \underbrace{@}$$

• If $f(x) \geq 0$, the integral $\int_a^b f(x) dx$ is the area under the curve y = f(x) from a to b.

• $\int_a^b f(x) dx$ is the net area

Properties of Definite Integrals

Definitions

Two Special Definite Integrals

• If
$$f$$
 is defined at $x = a$, then $\int_a^a f(x) dx = 0$.

• If
$$f$$
 is integrable on $[a,b]$, then $\int_b^a f(x) dx = -\int_a^b f(x) dx$.

Theorem

Additive Interval Property

If f is integrable on the three closed intervals determined by a,b and c, then

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Theorem

Properties of Definite Integrals

• If f and g are integrable on [a,b] and k is a constant, then the functions kf and $f\pm g$ are integrable on [a,b], and

1.
$$\int_a^b kf(x)dx = k \int_a^b f(x)dx.$$

2.
$$\int_a^b [f(x)\pm g(x)]dx=\int_a^b f(x)dx\pm\int_a^b g(x)dx$$

Theorem

Preservation of Inequality

• If f is integrable and nonnegative on the closed interval [a,b], then

$$0 \leq \int_a^b f(x) dx.$$

- If f and g are integrable on the closed interval [a,b] and $f(x) \leq g(x)$ for every x in [a,b] , then

$$\int_a^b f(x) dx \leq \int_a^b g(x) dx.$$

5.4: The Fundamental Theorem of Calculus

- Objectives
 - 1 Evaluate a definite integral using the Fundamental Theorem of Calculus.
 - 2 Understand and use the Mean Value Theorem for Integrals.
 - 3 Find the average value of a function over a closed interval.
 - 4 Understand and use the Second Fundamental Theorem of Calculus.
 - 5 Understand and use the Net Change Theorem.

The Fundamental Theorem of Calculus

Antidifferentiation and Definite Integration

(a) Differentiation

(b) Definite integration

• •
$$\int_a^b f(x)dx$$

- o definite integral
- number

• •
$$\int f(x)dx$$

- o indefinite integral
- function

Theorem

The Fundamental Theorem of Calculus

If a function f is continuous on the closed interval [a,b] and F is an antiderivative of f on the interval [a,b], then

$$\int_a^b f(x)dx = F(b) - F(a).$$

Remark

We use the notation

$$\int_a^b f(x) dx = F(x)igg|_a^b = F(b) - F(a) \quad ext{or} \quad \int_a^b f(x) dx = \left[F(x)
ight]_a^b = F(b) - F(a)$$

Evaluate each definite integral.

$$\int_1^2 (x^2-3)dx$$

•
$$\int_{1}^{4} 3\sqrt{x} dx$$

$$\bullet \int_0^{\pi/4} \sec^2 x dx$$

•
$$\int_0^2 \left|2x-1\right| dx$$

Example 3:

Find the area of the region bounded by the graph of

$$y=rac{1}{x}$$

the x-axis, and the vertical lines x = 1 and x = e.

The Mean Value Theorem for Integrals

Theorem

The Mean Value Theorem for Integrals

If $m{f}$ is continuous on the closed interval $[m{a},m{b}]$, then there exists a number $m{c}$ in the closed interval [a, b] such that

$$\int_a^b f(x) dx = f(c)(b-a).$$

Average Value of a Function

Definition

the Average Value of a Function on an Interval

If f is integrable on the closed interval [a, b], then the average value of f on the interval is

$$\mathbf{Avergae\ value} = \frac{1}{b-a} \int_a^b f(x) dx$$

Example 4:

Finding the Average Value of a Function

Find the average value of $f(x)=3x^2-2x$ on the interval [1,4].

The Second Fundamental Theorem of Calculus

The Definite Integral as a Number The

The Definite Integral as a Function of x

Consider the following function

$$F(x) = \int_a^x f(t)dt$$

where f is a continuous function on the interval [a,b] and $x\in [a,b]$.

X = ____

Example If $g(x)=\int_0^x f(t)dt$

Find g(2)

Theorem

The Second Fundamental Theorem of Calculus

If $m{f}$ is continuous on an open interval $m{I}$ containing $m{a}$, then, for every $m{x}$ in the interval,

$$rac{d}{dx}igg[\int_a^x f(t)igg] = f(x).$$

Remarks

• $\frac{d}{dx} \left(\int_a^x f(u) du \right) = f(x)$ • g(x) is an antiderivative of f

Examples

Find the derivative of

(1)
$$g_1(x)=\int_0^x\sqrt{1+t}dt$$

(2)
$$g_2(x) = \int_x^0 \sqrt{1+t} dt$$
.

(3)
$$g_3(x) = \int_0^{x^2} \sqrt{1+t} dt$$
.

(4)
$$g_4(x) = \int_{\sin(x)}^{\cos(x)} \sqrt{1+t} dt$$
.

BE CAREFUL:

Evaluate $\int_{-3}^{6} rac{1}{x} dx$

Net Change Theorem

Question: If y = F(x), then what does F'(x) represents?

Theorem

The Net Change Theorem

If F'(x) is the rate of change of a quantity F(x) , then the definite integral of F'(x) from a to bgives the total change, or **net change**, of F(x) on the interval [a,b].

$$\int_a^b F'(x)dx = F(b) - F(a) \qquad \text{Net change of } F(x)$$

• There are many applications, we will focus on one

If an object moves along a straight line with position function s(t), then its velocity is v(t) = s'(t), so

$$\int_{t_1}^{t_2} v(t) dt = s(t_2) - s(t_1)$$

Remarks

displacement =
$$\int_{t_1}^{t_2} v(t)dt$$

total distance traveled
$$=\int_{t_1}^{t_2} |v(t)| dt$$

• The acceleration of the object is $a(t)=v^{\prime}(t)$, so

$$\int_{t_1}^{t_2} a(t) dt = v(t_2) - v(t_1)$$
 is the change in velocity from time to time .

Example 10:

Solving a Particle Motion Problem

A particle is moving along aline. Its velocity function (in m/s^2) is given by

$$v(t) = t^3 - 10t^2 + 29t - 20,$$

- a. What is the **displacement** of the particle on the time interval $1 \le t \le 5$?
- b. What is the **total distance** traveled by the particle on the time interval $1 \le t \le 5$?
- v (generic function with 1 method)
- $1 v(t) = t^3 10 * t^2 + 29 * t 20$

ne=1.0

 $\ensuremath{\ensuremath}\amb}\amb}\amb}}}}}}}}}}}}}}$

5.5: The Substitution Rule

((Objectives

- 1 Use pattern recognition to find an indefinite integral.
- 2 Use a change of variables to find an indefinite integral.
- 3 Use the General Power Rule for Integration to find an indefinite integral.
- 4 Use a change of variables to evaluate a definite integral.
- 5 Evaluate a definite integral involving an even or odd function.

$$\int 2x\sqrt{1+x^2} \; dx$$
 solve $\int \sqrt{u} \; du$

Pattern Recognition

Theorem

Antidifferentiation of a Composite Function

Let g be a function whose range is an interval I, and let f be a function that is continuous on I. If g is differentiable on its domain and F is an antiderivative of f on I, then

$$\int f(g(x))g'(x)dx = F(g(x)) + C.$$

Letting u=g(x) gives du=g'(x)dx and

$$\int f(u)du = F(u) + C.$$

Substitution Rule says: It is permissible to operate with dx and du after integral signs as if they were differentials.

Example Find

$$(i) \qquad \int ig(x^2+1ig)^2(2x)dx$$

$$(ii)$$
 $\int 5e^{5x}dx$

$$(iii)$$
 $\int rac{x}{\sqrt{1-4x^2}} dx$

$$(iv)$$
 $\int \sqrt{1+x^2} \ x^5 dx$

$$(v)$$
 $\int \tan x dx$

Change of Variables for Indefinite Integrals

Example: Find

$$(i) \int \sqrt{2x-1}dx$$

(ii)
$$\int x\sqrt{2x-1}dx$$

(iii)
$$\int \sin^2 3x \cos 3x dx$$

The General Power Rule for Integration

Theorem

The General Power Rule for Integration

If \boldsymbol{g} is a differentiable function of \boldsymbol{x} , then

$$\int igl[g(x)igr]^n g'(x) dx = rac{igl[g(x)igr]^{n+1}}{n+1} + C, \quad n
eq -1.$$

Equivalently, if u=g(x), then

$$\int u^n du = rac{u^{n+1}}{n+1} + C, \quad n
eq -1.$$

Example: Find

$$(i) \qquad \int 3(3x-1)^4 dx$$

(ii)
$$\int (e^x+1)(e^x+x)dx$$

(iii)
$$\int 3x^2 \sqrt{x^3 - 2} \ dx$$

$$(iv)\quad \int \frac{-4x}{(1-2x^2)^2} \; dx$$

(v)
$$\int \cos^2 x \sin x \ dx$$

Change of Variables for Definite Integrals

Substitution: Definite Integrals

Example: Evaluate

Example: Evaluate

$$(i) \qquad \int_1^2 \frac{dx}{(3-5x)^2}$$

(iii)
$$\int_0^1 x(x^2+1)^3 dx$$

$$(iv)$$
 $\int_1^5 rac{x}{\sqrt{2x-1}} \ dx$

Integration of Even and Odd Functions

Theorem

Integration of Even and Odd Functions

Let f be integrable on [-a, a].

• If f is even [f(-x) = f(x)], then

$$\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$$

• If f is $\operatorname{odd}\left[f(-x)=-f(x)
ight]$, then

$$\int_{-a}^{a} f(x)dx = 0$$

Example Find

$$\int_{-1}^{1} \frac{\tan x}{1 + x^2 + x^4} dx$$

5.7: The Natural Logarithmic Function: Integration

- Objectives
 - 1 Use the Log Rule for Integration to integrate a rational function.
 - 2 Integrate trigonometric functions.

Log Rule for Integration

Theorem

Log Rule for Integration

Let $oldsymbol{u}$ be a differentiable function of $oldsymbol{x}$.

$$\text{(i)} \qquad \int \frac{1}{x} dx \quad = \quad \ln |x| + C$$

$$\text{(ii)} \quad \int \frac{1}{u} du \quad = \quad \ln |u| + C$$

Remark

$$\int \frac{u'}{u} dx = \ln |u| + C$$

$$\int \frac{2}{x} dx$$

Example 3:

Finding Area with the Log Rule

Find the area of the region bounded by the graph of

$$y=rac{x}{x^2+1}$$

the x-axis, and the line x=3.

Example 5:

Using Long Division Before Integrating

$$\int \frac{x^2+x+1}{x^2+1} dx$$

Examples Find

(i)
$$\int \frac{1}{4x-1} dx$$

(ii)
$$\int \frac{3x^2+1}{x^3+x} dx$$

(iii)
$$\int \frac{\sec^2 x}{\tan x} dx$$

(iv)
$$\int \frac{x^2 + x + 1}{x^2 + 1} dx$$

(v)
$$\int \frac{2x}{(x+1)^2} dx$$

Example 7:

Solve the differential equation

Solve

$$rac{dy}{dx} = rac{1}{x \ln x}$$

Integrals of Trigonometric Functions

Example 8:

Using a Trigonometric Identity

$$\int \tan x dx$$

Example 9:

Derivation of the Secant Formula

$$\int \sec x dx$$

5.8:Inverse Trigonometric Functions: Integration

- **((** Objectives
 - 1 Integrate functions whose antiderivatives involve inverse trigonometric functions
 - 2 Use the method of completing the square to integrate a function.
 - 3 Review the basic integration rules involving elementary functions.

Integrals Involving Inverse Trigonometric Functions

Theorem

Integrals Involving Inverse Trigonometric Functions

Let u be a differential function of x, and let a > 0.

1.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$

$$2. \int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$$

3.
$$\int \frac{du}{u\sqrt{u^2-a^2}} = \frac{1}{a}\operatorname{arcsec} \frac{|u|}{a} + C$$

Examples Find

$$\rightarrow \int \frac{dx}{\sqrt{4-x^2}},$$

$$\rightarrow \int \frac{dx}{2+9x^2},$$

$$\rightarrow \int \frac{dx}{x\sqrt{4x^2-9}},$$

$$\rightarrow \int \frac{dx}{\sqrt{e^{2x}-1}},$$

$$\rightarrow \int \frac{x+2}{\sqrt{4-x^2}}dx.$$

Completing the Square

Example 5:

Completing the Square

Find

$$\int \frac{dx}{x^2 - 4x + 7}.$$

Example 6:

Completing the Square

Find the area of the region bounded by the graph of

$$f(x)=rac{1}{\sqrt{3x-x^2}}$$

the x-axis, and the lines $x=rac{3}{2}$ and $x=rac{9}{4}$.

5.9: Hyperbolic Functions

Objectives

- 1 Develop properties of hyperbolic functions (MATH101).
- 2 Differentiate (MATH101) and integrate hyperbolic functions.
- 3 Develop properties of inverse hyperbolic functions (Reading only).
- 4 Differentiate and integrate functions involving inverse hyperbolic functions. (Reading only).

Circle: $x^2 + y^2 = 1$

Hyperbola: $-x^2+y^2=1$

Definitions of the Hyperbolic Functions

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\operatorname{csch} x = \frac{1}{\sinh x}, \ x \neq 0$$

$$cosh x = \frac{e^x + e^{-x}}{2}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$tanh x = \frac{\sinh x}{\cosh x}$$

$$\coth x = \frac{1}{\tanh x}, \ x \neq 0$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$

Domain: $(-\infty, \infty)$ Range: $[1, \infty)$

Domain: $(-\infty, \infty)$ Range: (-1, 1)

Domain: $(-\infty, 0) \cup (0, \infty)$ Range: $(-\infty, 0) \cup (0, \infty)$

Domain: $(-\infty, \infty)$ Range: (0, 1]

Domain: $(-\infty, 0) \cup (0, \infty)$ Range: $(-\infty, -1) \cup (1, \infty)$

Hyperbolic Identities

$$\cosh^2 x - \sinh^2 x = 1,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh x$$

$$\tanh^2 x + \operatorname{sech}^2 x = 1,$$

$$\sinh(x-y) = \sinh x \cosh y - \cosh x \sinh x$$

$$\coth^2 x - \operatorname{csch}^2 x = 1,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh x$$

$$\cosh(x-y) = \cosh x \cosh y - \sinh x \sinh x$$

$$\sinh^2 x = \frac{\cosh 2x - 1}{2},$$

$$\cosh^2 x = \frac{\cosh 2x + 1}{2}$$

$$\sin 2x = 2 \sinh x \cosh x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

Theorem

Differentiation and Integration of Hyperbolic Functions

Theorem Let u be a differentiable function of x.

$$\frac{d}{dx}(\sinh u) = (\cosh u)u', \qquad \int \cosh u du = \sinh u + C$$

$$\frac{d}{dx}(\cosh u) = (\sinh u)u', \qquad \int \sinh u du = \cosh u + C$$

$$\frac{d}{dx}(\tanh u) = (\operatorname{sech}^2 u)u', \qquad \int \operatorname{sech}^2 u du = \tanh u + C$$

$$\frac{d}{dx}(\coth u) = -(\operatorname{csch}^2 u)u', \qquad \int \operatorname{csch}^2 u du = -\coth u + C$$

$$\frac{d}{dx}(\operatorname{sech} u) = -(\operatorname{sech} u \tanh u)u', \qquad \int \operatorname{sech} u \tanh u du = -\operatorname{sech} u + C$$

$$\frac{d}{dx}(\operatorname{csch} u) = -(\operatorname{csch} u \coth u)u', \qquad \int \operatorname{csch} u \coth u du = -\operatorname{csch} u + C$$

Example 4:

Integrating a Hyperbolic Function

Find

$$\int \cosh 2x \sinh^2 2x dx$$

7.1: Area of a Region Between Two Curves

Objectives

"

- 1 Find the area of a region between two curves using integration.
- 2 Find the area of a region between intersecting curves using integration.
- 3 Describe integration as an accumulation process.

.....

Area of a Region Between Two Curves

How can we find the area between the two curves?

$$Area = \int_a^b \left[oldsymbol{f(x)} - oldsymbol{g(x)}
ight] dx$$

Remark

• Area = $y_{top} - y_{bottom}$.

Example 1:

Finding the Area of a Region Between Two Curves

Find the area of the region bounded above by $y=e^x$, bounded below by y=x, bounded on the sides by x=0 and x=1.

Solution

Area of a Region Between Intersecting Curves

In geberal,

$$Area = \int_a^b |f(x) - g(x)| dx$$

Example 2:

A Region Lying Between Two Intersecting Graphs

Find the area of the region enclosed by the graphs of $f(x)=2-x^2$ and g(x)=x.

Solution in class

Example 3:

A Region Lying Between Two Intersecting Graphs

Find the area of the region bounded by the curves

$$y = \cos(x), \;\; y = \sin(x), \;\; x = 0, \;\; x = \frac{\pi}{2}$$

Example 4:

Curves That Intersect at More than Two Points

Find the area of the region between the graphs of

$$f(x) = 3x^3 - x^2 - 10x, \qquad g(x) = -x^2 + 2x.$$

Integrating with Respect to y

Example 5:

Horizontal Representative Rectangles

Find the area of the region bounded by the graphs of $x=3-y^2$ and x=y+1.

7.2: Volume: The Disk Method

((Objectives

- Find the volume of a solid of revolution using the disk method.
- Find the volume of a solid of revolution using the washer method.
- Find the volume of a solid with known cross sections.

The Disk Method

Volume of a disk

$$V = \pi R^2 w$$

Disk Method

Volume of solid
$$pprox \sum_{i=1}^n \pi igl[R(x_i) igr]^2 \Delta x$$
 $= \pi \sum_{i=1}^n igl[R(x_i) igr]^2 \Delta x$

Taking the limit $\|\Delta\| o 0 (n o \infty)$, we get

$$ext{Volume of solid} \;\; = \;\; \lim_{\|\Delta\| o 0} \pi \sum_{i=1}^n igl[R(x_i) igr]^2 \Delta x = \pi \int_a^b igl[R(x) igr]^2 dx.$$

Disk Method

To find the volume of a solid of revolution with the disk method, use one of the formulas below

Horizontal axis of revolution

Vertical axis of revolution

Example 1:

Using the Disk Method

Find the volume of the solid formed by revolving the region bounded by the graph of

$$f(x) = \sqrt{\sin x}$$

and the ${\it x}$ -axis ($0 \le {\it x} \le \pi$) about the ${\it x}$ -axis

Example 2:

Using a Line That Is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by the graphs of

$$f(x) = 2 - x^2$$

and g(x) = 1 about the line y = 1.

The Washer Method

Solid of revolution

Volume of washer
$$=\pi(R^2-r^2)w$$

Washer Method

$$V=\pi\int_a^bigl[(R[x])^2-(r[x])^2)dx$$

Example 3:

Using the Washer Method

Find the volume of the solid formed by revolving the region bounded by the graphs of

$$y=\sqrt{x}$$
 and $y=x^2$

about the x-axis.

Find the volume of the solid formed by revolving the region bounded by the graphs of

$$y = x^2 + 1$$
, $y = 0$, $x = 0$, and $x = 1$

about the y-axis

Solids with Known Cross Sections

Example 1 | Example 2

Volumes of Solids with Known Cross Sections

1. For cross sections of area A(x) taken perpendicular to the x-axis,

$$V=\int_a^b A(x)dx$$

2. For cross sections of area A(y) taken perpendicular to the y-axis,

$$V = \int_c^d A(y) dy$$

Example 6:

Triangular Cross Sections

The base of a solid is the region bounded by the lines

$$f(x)=1-rac{x}{2},\quad g(x)=-1+rac{x}{2}\quad ext{and}\quad x=0.$$

The cross sections perpendicular to the x-axis are equilateral triangles.

Exercise Find the volume of the solid obtained by rotating the region bounded by $y=x^3$, y=8, and x=0 about the y-axis.

Exercise The region $\mathcal R$ enclosed by the curves y=x and $y=x^2$ is rotated about the x-axis. Find the volume of the resulting solid.

Exercise Find the volume of the solid obtained by rotating the region in the previous Example about the line y = 2.

Exercise Find the volume of the solid obtained by rotating the region in the previous Example about the line x=-1.

Exercise Figure below shows a solid with a circular base of radius **1**. Parallel cross-sections perpendicular to the base are equilateral triangles. Find the volume of the solid.

7.3: Volume: The Shell Method

Objectives

- 1 Find the volume of a solid of revolution using the shell method.
- 2 Compare the uses of the disk method and the shell method.

Problem Find the volume of the solid generated by rotating the region bounded by $y=2x^2-x^3$ and y=0 about the y-axis.

Step 1: ☐ Step 2: ☐ Step 3: ☐

11.1

The Shell Method

A shell is a hallow circular cylinder

 $V = 2\pi r h \Delta r = [\text{circumference}][\text{height}][\text{thickness}]$

Cylindrical Shells Illustration

Horizontal Axis of Revolution

$$ext{Volume} = V = 2\pi \int_c^d p(y)h(y)dy$$

Vertical Axis of Revolution

$$ext{Volume} = V = 2\pi \int_a^b p(x)h(x)dx$$

Example: Find the volume of the solid generated by rotating the region bounded by $y=2x^2-x^3$ and y=0 about the y-axis.

Solution:

Example : Find the volume of the solid obtained by rotating about the y-axis the region between y = x and $y = x^2$.

Example: Find the volume of the solid obtained by rotating the region bounded by $y=x-x^2$ and y=0 about the line x=2.

Example 4:

Shell Method Preferable

Find the volume of the solid formed by revolving the region bounded by the graphs of

$$y = x^2 + 1$$
, $y = 0$, $x = 0$, and $x = 1$.

about the y-axis.

Example 5:

Shell Method Necessary

Find the volume of the solid formed by revolving the region bounded by the graphs of $y = x^3 + x + 1$, y = 1, and x = 1 about the line x = 2.

7.4: Arc Length and Surfaces of Revolution

- Find the arc length of a smooth curve.
 Find the area of a surface of revolution.

Arc Length

Definition

Arc Length

Let the function y = f(x) represents a smooth curve on the interval [a, b]. The **arc length** of fbetween \boldsymbol{a} and \boldsymbol{b} is

$$s=\int_a^b\sqrt{1+[f'(x)]^2}dx.$$

Similarly, for a smooth curve $oldsymbol{x} = oldsymbol{g}(oldsymbol{y})$, the arc length of $oldsymbol{g}$ between $oldsymbol{c}$ and $oldsymbol{d}$ is

$$s=\int_c^d \sqrt{1+[g'(y)]^2} dy.$$

Example 2:

Finding Arc Length

Find the arc length of the graph of $y=rac{x^3}{6}+rac{1}{2x}$ on the interval $[rac{1}{2},2]$.

Example 3:

Finding Arc Length

Find the arc length of the graph of $(y-1)^3=x^2$ on the interval [0,8] .

Example 4:

Finding Arc Length

Find the arc length of the graph of $y=\ln(\cos x)$ from x=0 to $x=\pi/4$.

Area of a Surface of Revolution

Definition

Surface of Revolution

When the graph of a continuous function is revolved about a line, the resulting surface is a **surface of revolution**.

Surface Area of frustum

$$S=2\pi r L, \quad ext{where} \quad r=rac{r_1+r_2}{2}$$

Consider a function f that has a continuous derivative on the interval [a, b]. The graph of f is revolved about the x-axis

Surface Area Formula

$$S=2\pi\int_a^b x\sqrt{1+[f'(x)]^2}dx.$$

Definition

Area of a Surface of Revolution

Let y=f(x) have a continuous derivative on the interval [a,b].

The area $m{S}$ of the surface of revolution formed by revolving the graph of $m{f}$ about a horizontal or vertical axis is

$$S=2\pi\int_a^b r(x)\sqrt{1+[f'(x)]^2}dx,\quad extbf{\emph{y}} ext{ is a function of } extbf{\emph{x}} \ .$$

where r(x) is the distance between the graph of f and the axis of revolution.

If $\pmb{x} = \pmb{g}(\pmb{y})$ on the interval $[\pmb{c},\pmb{d}]$, then the surface area is

$$S = 2\pi \int_a^b r(y) \sqrt{1 + [g'(y)]^2} dy, \quad extbf{ extit{x} is a function of y}} \ .$$

where r(y) is the distance between the graph of g and the axis of revolution.

Remark

The formulas can be written as

$$S=2\pi\int_{a}^{b}r(x)ds,\quad extbf{\emph{y}} ext{ is a function of } extbf{\emph{x}} \ .$$

and

$$S=2\pi\int_{a}^{d}r(y)ds,\quad oldsymbol{x} ext{ is a function of y}\ .$$

where

$$ds = \sqrt{1 + ig[f'(x)ig]^2} dx \quad ext{and} \quad ds = \sqrt{1 + ig[g'(y)ig]^2} dy \quad ext{respectively}.$$

Find the area of the surface formed by revolving the graph of $f(x) = x^3$ on the interval [0,1] about the x-axis.

Example 7:

The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of $f(x)=x^2$ on the interval $[0,\sqrt{2}]$ about the y-axis.

8.1: Basic Integration Rules

Objectives

1 Review procedures for fitting an integrand to one of the basic integration rules.

Review of Basic Integration Rules (a>0)

1.
$$\int kf(u) \ du = k \int f(u) \ du$$

$$2.\int\left[f\left(u\right) \pm g\left(u\right) \right] \,du=\int f\left(u\right) \,du\pm\int g\left(u\right) \,du$$

$$3. \int du = u + C$$

4.
$$\int u^n \ du = \frac{u^{n+1}}{n+1} + C, n \neq -1$$

$$5. \int \frac{du}{u} = \ln|u| + C$$

6.
$$\int e^u du = e^u + C$$

$$7. \int a^u \ du = \left(\frac{1}{\ln a}\right) a^u + C$$

$$8. \int \sin u \, du = -\cos u + C$$

$$9. \int \cos u \ du = \sin u + C$$

$$10. \int \tan u \ du = -\ln|\cos u| + C$$

11.
$$\int \cot u \ du = \ln|\sin u| + C$$

12.
$$\int \sec u \ du = \ln|\sec u + \tan u| + C$$

13.
$$\int \csc u \ du = -\ln|\csc u + \cot u| + C$$

14.
$$\int \sec^2 u \ du = \tan u + C$$

15.
$$\int \csc^2 u \ du = -\cot u + C$$

16.
$$\int \sec u \tan u \ du = \sec u + C$$

17.
$$\int \csc u \cot u \, du = -\csc u + C$$

$$18. \int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$

$$19. \int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$$

$$20. \int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec} \frac{|u|}{a} + C$$

Example 3:

Find
$$\int rac{x^2}{\sqrt{16-x^6}} dx$$
 .

Example 4:

A Disguised Form of the Log Rule

Find
$$\int \frac{dx}{1+e^x}$$
.

8.2: Integration by Parts

((Objective:

1 Find an antiderivative using integration by parts.

The integration rule that corresponds to the Product Rule for differentiation is called **integration by parts**

Indefinite Integrals

$$\int f(x)g'\left(x
ight)dx=f(x)g(x)-\int g(x)f'\left(x
ight)dx$$

Theorem

Integration by Parts

If \boldsymbol{u} and \boldsymbol{v} are functions of \boldsymbol{x} and have continuous derivatives, then

$$\int u dv = uv - \int v du.$$

Example 1:

Integration by Parts

Find $\int xe^x dx$.

Example 2:

Integration by Parts

Find $\int x^2 \ln x dx$.

Example 3:

An Integrand with a Single Term

Evaluate $\int_0^1 \arcsin x dx$.

Example 4:

Repeated Use of Integration by Parts

Find $\int x^2 \sin x dx$.

Example 5:

Integration by Parts

Find $\int \sec^3 x dx$.s

Example 7:

Using the Tabular Method

Find $\int x^2 \sin 4x dx$.

8.3: Trigonometric Integrals

Objectives

- 1 Solve trigonometric integrals involving powers of sine and cosine.
- Solve trigonometric integrals involving powers of secant and tangent.
- 3 Solve trigonometric integrals involving sine-cosine products.

RECALL

$$\sin^2 x + \cos^2 x = 1$$
, $\tan^2 x + 1 = \sec^2 x$, $1 + \cot^2 x = \csc^2 x$, $\cos^2 x = \frac{1 + \cos 2x}{2}$, $\sin^2 x = \frac{1 - \cos 2x}{2}$
 $\sin mx \sin nx = \frac{1}{2} [\cos(m - n)x - \cos(m + n)x]$, $\sin mx \cos nx = \frac{1}{2} [\sin(m - n)x + \sin(m + n)]$, $\cos mx \cos nx = \frac{1}{2} [\cos(m - n) + \cos(m + n)]$, $\int \tan x dx = \ln|\sec x| + C$, $\int \sec x dx = \ln|\sec x + \tan x| + C$
 $\int \cot x dx = -\ln|\csc x| + C$, $\int \csc x dx = \ln|\csc x - \cot x| + C$

Integrals of Powers of Sine and Cosine

$$\int \sin^m x \cos^n x dx$$

- m is odd , write as $\int \sin^{m-1}x \cos^nx \sin x dx$. Example: $\int \sin^5x \cos^2x dx$
- n is odd, write as $\int \sin^m x \cos^{n-1} \cos x dx$. Example $\int \sin^5 x \cos^3 x dx$
- m and n are even, use formulae (Example $\int \cos^2 x dx$ and $\int \sin^4 x dx$)

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}, \quad \cos^2(x) = \frac{1 + \cos(2x)}{2}.$$

Example 1:

Power of Sine Is Odd and Positive

Evaluate
$$\int_{\pi/6}^{\pi/3} rac{\cos^3 x}{\sqrt{\sin x}} dx$$
.

Example 3:

Power of Cosine Is Even and Nonnegative

Find
$$\int \cos^4 x dx$$
.

Integrals of Powers of Secant and Tangent

$$\int \tan^m x \sec^n x dx$$

- ullet n is even, write as $\int an^m x \sec^{n-2} \sec^2 x dx$. Example $\int an^6 x \sec^4 x dx$
- m is odd, write as $\int an^{m-1} x \sec^{n-1} an x \sec x dx$. Example $\int an^5 x \sec^7 x dx$.

Example 4:

Power of Tangent Is Odd and Positive

Find
$$\int \frac{\tan^3 x}{\sqrt{\sec x}} dx$$
.

Example 5:

Power of Secant Is Even and Positive

Find
$$\int \sec^4 3x \tan^3 3x dx$$
.

Example 6:

Power of Tangent Is Even

Evaluate
$$\int_0^{\pi/4} \tan^4 x dx$$
.

Example 7:

Converting to Sines and Cosines

Find
$$\int \frac{\sec x}{\sqrt{\tan^2 x}} dx$$
.

Integrals Involving Sine-Cosine Products

Example 8:

Using a Product-to-Sum Formula

Find $\int \sin 5x \cos 4x dx$.

```
begin
using FileIO, ImageIO, ImageShow, ImageTransformations
using SymPy
using PlutoUI
using CommonMark
using Plots, PlotThemes, LaTeXStrings
using HypertextLiteral: @htl, @htl_str
using Colors
using Random
end
```