Sistemas Operacionais

Gerência de Arquivos

Prof. José Paulo G. de Oliveira Eng. da Computação, UPE jpgo@ecomp.poli.br

Conteúdo

- Motivação
- Definição
- Objetivos
- Conceitos fundamentais
- Estrutura do sistema de arquivos
- Alocação de arquivos

Conteúdo

- Motivação
- Definição
- Objetivos
- Conceitos fundamentais
- Estrutura do sistema de arquivos
- Alocação de arquivos

Arquivos para quê?

- Necessidade de armazenar informações para uso posterior
 - Programas e dados

Arquivos para quê?

- Necessidade de armazenar informações para uso posterior
 - Programas e dados
- Função do computador: recuperar, processar e apresentar informações previamente armazenadas
 - documentos, fotografias, músicas e vídeos

Arquivos para quê?

- Necessidade de armazenar informações para uso posterior
 - Programas e dados
- Função do computador: recuperar, processar e apresentar informações previamente armazenadas
 - documentos, fotografias, músicas e vídeos
- Para simplificar/padronizar o armazenamento e busca de informações
 - Conceito de ARQUIVO

Conteúdo

- Motivação
- Definição
- Objetivos
- Conceitos fundamentais
- Estrutura do sistema de arquivos
- Alocação de arquivos

O conceito de arquivo

Um arquivo é basicamente um conjunto de informações armazenadas em um dispositivo físico não-volátil, com um nome ou outra referência que permita sua localização posterior.

Texto, imagem, áudio, código executável, etc.

Conteúdo

- Motivação
- Definição
- Objetivos
- Conceitos fundamentais
- Estrutura do sistema de arquivos
- Alocação de arquivos

Organização de arquivos

Organização de arquivos

- Um dispositivo de armazenamento pode conter milhões de arquivos
 - Arquivos são organizados em estruturas hierárquicas denominadas diretórios

Organização de arquivos

- Um dispositivo de armazenamento pode conter milhões de arquivos
 - Arquivos são organizados em estruturas hierárquicas denominadas diretórios
- A organização física e lógica dos arquivos e diretórios dentro de um dispositivo é definida pelo sistema de arquivos

Gerência de Arquivos para que mais?

- Definir estrutura dos arquivos
 - Formato
 - Tipo
- Modos de acesso
- Controle de acesso
 - Segurança
 - Integridade da informação
- Interface homogênea para processos
 - Acesso homogêneo ao dispositivo (HD, fita magnética, disco óptico, flash)

Sistemas de arquivos

Sistemas de arquivos

Conteúdo

- Motivação
- Definição
- Objetivos
- Conceitos fundamentais
- Estrutura do sistema de arquivos
- Alocação de arquivos

Gerência de arquivos

- Atributos
- Formatos
- Operações
- Método de Acesso
- Compartilhamento

Gerência de arquivos

Atributos

Atributos

Cada **arquivo** é caracterizado por um conjunto de **atributos**, que podem variar de acordo com o **sistema de arquivos** utilizado

Atributos

Cada **arquivo** é caracterizado por um conjunto de **atributos**, que podem variar de acordo com o **sistema de arquivos** utilizado

Também chamados de *meta dados*

Atributos mais usuais

Nome: Série de caracteres que identifica o arquivo para o usuário

Ex.: "foto1.jpg" "relatório.pdf", "helloc" etc.

Tipo: Indica formato dos dados contidos no arquivo

Muitos sistemas operacionais usam parte do nome do arquivo para identificar o tipo de seu conteúdo

Atributos mais usuais

Tamanho: indicação do **tamanho** do conteúdo do arquivo, em bytes ou registros

Datas: para fins de gerência; datas mais importantes relacionadas ao arquivo; datas de criação, de último acesso e de última modificação do conteúdo

Proprietário: em sistemas multi-usuários, cada arquivo tem um proprietário, que deve estar corretamente identificado

Atributos mais usuais

Permissões de acesso: indicam quais usuários têm acesso àquele arquivo e que formas de acesso são permitidas

leitura, escrita, remoção, execução, etc.

Localização: indicação do dispositivo físico onde o arquivo se encontra e da posição do arquivo dentro dele

Gerência de arquivos

- Atributos
- Formatos
- Operações
- Método de Acesso
- Compartilhamento

Formatos

 Em sua forma mais simples, um arquivo contém basicamente uma sequência de bytes

Formatos

- Em sua forma mais simples, um arquivo contém basicamente uma sequência de bytes
- que pode estar estruturada de diversas formas para representar diferentes tipos de informação
 - Registro
 - Texto
 - Executável

Formatos - Arquivos de registro

Alguns núcleos de SO: arquivos com estruturas internas que vão além da simples sequência de bytes

nome (chave)	telefone (valor)
daniel	9977-1173
marina	9876-5432
henrique	8781-9750
gabriel	8858-8286
renata	9663-9293
andressa	8779-5538
guilherme	9979-4166

Registros em sequência

Registros indexados

- Um formato de arquivo de uso muito frequente é o arquivo de texto puro (ou plain text)
- É muito usado para armazenar informações textuais simples
 - códigos-fonte de programas
 - arquivos de configuração
 - páginas HTML, etc.

Formado por linhas de caracteres ASCII (American Standard Code for Information Interchange) de tamanho variável, separadas por caracteres de controle

Exemplo:

```
int main()
{
      printf("Hello, world\n");
      exit(0);
}
```

O arquivo de texto **hello.c** seria armazenado da seguinte forma em um ambiente UNIX:

```
0000 69 6e 74 20 6d 61 69 6e 28 29 0a 7b 0a 20 20 70
i n t m a i n ( ) \n { \n p
0010 72 69 6e 74 66 28 22 48 65 6c 6c 6f 2c 20 77 6f
r i n t f ( " H e l l o , w o
0020 72 6c 64 5c 6e 22 29 3b 0a 20 20 65 78 69 74 28
r l d \ n " ) ; \n e x i t (
0030 30 29 3b 0a 7d 0a
0 ) ; \n } \n
```

New Line ("\n")

E em um ambiente DOS/WINDOWS:

Carriage Return ("\r")
New Line ("\n")

Formatos - Arquivos executáveis

São divididos internamente em várias seções

- Código
- Tabelas de símbolos (variáveis e funções)
- Listas de dependências (bibliotecas necessárias)
- Outras informações de configuração

Formatos - Arquivos executáveis

Formatos mais populares:

- ELF (Executable and Linking Format): formato para programas executáveis e bibliotecas nas plataformas UNIX modernas
- PE (Portable Executable): formato para executáveis e bibliotecas na plataforma Windows

Formatos - Arquivos executáveis

ELF

É composto por um cabeçalho e várias seções, contendo código executável, tabelas de símbolos e informações de relocação de código (definição de endereços de símbolos)

Formatos - Arquivos não convencionais

Além do armazenamento de código e dados, arquivos também podem ser "tratados" como:

- Diretórios
- Atalhos (*links*)

Abordados depois

Formatos - Arquivos não convencionais

Além do armazenamento de código e dados, arquivos também podem ser "tratados" como:

Diretórios

Abordados depois

- Atalhos (*links*)
- Dispositivos físicos
- Configurações do núcleo
- Estruturas de comunicação do núcleo:
 - Sockets
 - Pipes
 - Filas de mensagens

Arquivos especiais

Abstração de dispositivos de baixo nível: os sistemas UNIX costumam mapear as interfaces de acesso de vários dispositivos físicos (E/S) em arquivos dentro do diretório /dev

Ex.:

/dev/audio: placa de som

/dev/ttyS0: porta de comunicação serial COM1

Arquivos especiais

Abstração de interfaces do núcleo: em sistemas UNIX, os diretórios /proc e /sys permitem consultar e/ou modificar informações internas do núcleo do sistema operacional, dos processos em execução e dos drivers de dispositivos

Arquivos especiais

Abstração de interfaces do núcleo: em sistemas UNIX, os diretórios /proc e /sys permitem consultar e/ou modificar informações internas do núcleo do sistema operacional, dos processos em execução e dos drivers de dispositivos

Canais de comunicação: conexão TCP é apresentada aos dois processos envolvidos como um arquivo, sobre o qual eles podem escrever (enviar) e ler (receber) dados entre si

Já que um arquivo de dados pode ser visto como uma simples sequência de bytes, como é possível saber que tipo de informação essa sequência representa?

- DOS/WINDOWS: Indicar o tipo do conteúdo como parte do nome do arquivo → "praia.jpg"
- UNIX: Uso de alguns bytes no início de cada arquivo para a definição de seu tipo → "números mágicos"

Ex.: UNIX

Números mágicos de alguns tipos de arquivos

Tipo de arquivo	bytes iniciais	Tipo de arquivo	bytes iniciais
Documento PostScript	%!	Documento PDF	%PDF
Imagem GIF	GIF89a	Imagem JPEG	0xFFD8
Música MIDI	MThd	Classes Java (JAR)	0xCAFEBABE

Padrão **MIME** é usado para identificar arquivos transferidos como anexos de e-mail e conteúdos recuperados de páginas web

Multipurpose Internet Mail Extensions

Tipo MIME	Significado
application/java-archive	Arquivo de classes Java (JAR)
application/msword	Documento do Microsoft Word
application/vnd.oasis.opendocument.text	Documento do OpenOffice
audio/midi	Áudio em formato MIDI
audio/mpeg	Áudio em formato MP3
image/jpeg	Imagem em formato JPEG
image/png	Imagem em formato PNG
text/csv	Texto em formato CSV (Comma-separated Values)
text/html	Texto HTML
text/plain	Texto puro
text/rtf	Texto em formato RTF (Rich Text Format)
text/x-csrc	Código-fonte em C
video/quicktime	Vídeo no formato <i>Quicktime</i>

Gerência de arquivos

- Atributos
- Formatos
- Operações
- Método de Acesso
- Compartilhamento

O **uso** dos arquivos é feito por meio de um conjunto de operações

Geralmente implementadas sob a forma de chamadas de sistema e funções de bibliotecas

Relembrando!

 Arquivos são usados por processos para ler e escrever dados de forma não-volátil

- Arquivos são usados por processos para ler e escrever dados de forma não-volátil
- Processos têm à sua disposição uma interface de acesso

- Arquivos são usados por processos para ler e escrever dados de forma não-volátil
- Processos têm à sua disposição uma interface de acesso
- Essa interface normalmente é composta por uma referência ao arquivo e por um conjunto de funções para realizar operações sobre esses arquivos

- Arquivos são usados por processos para ler e escrever dados de forma não-volátil
- Processos têm à sua disposição uma interface de acesso
- Essa interface normalmente é composta por uma referência ao arquivo e por um conjunto de funções para realizar operações sobre esses arquivos
- Por meio dessa interface, os processos podem:
 - localizar arquivos no disco
 - criar arquivos, ler e modificar seu conteúdo

Criar: alocar espaço no dispositivo de armazenamento e definir seus atributos

Criar: alocar espaço no dispositivo de armazenamento e definir seus atributos

Abrir: para aplicação ler ou escrever em um arquivo deve solicitar ao sistema operacional sua "abertura"

Criar: alocar espaço no dispositivo de armazenamento e definir seus atributos

Abrir: para aplicação ler ou escrever em um arquivo deve solicitar ao sistema operacional sua "abertura"

Ler: permite transferir dados presentes no arquivo para uma área de memória da aplicação

Escrever: transferir dados na memória da aplicação para o dispositivo físico

- Novos dados podem ser adicionados no final do arquivo ou sobrescrever dados já existentes
- Dados existentes podem ser removidos

Escrever: transferir dados na memória da aplicação para o dispositivo físico

- Novos dados podem ser adicionados no final do arquivo ou sobrescrever dados já existentes
- Dados existentes podem ser removidos

Mudar atributos: modificar características do arquivo

nome, localização, proprietário, permissões, etc.

Fechar: ao concluir o uso do arquivo, a aplicação deve informar ao sistema operacional que ele não é mais necessário

 Libera as estruturas de gerência do arquivo na memória do núcleo

Fechar: ao concluir o uso do arquivo, a aplicação deve informar ao sistema operacional que ele não é mais necessário

 Libera as estruturas de gerência do arquivo na memória do núcleo

Remover: para eliminar o arquivo do dispositivo, descartando seus dados e liberando o espaço ocupado por ele

Abertura de arquivo

Uso de arquivos - Abertura

O núcleo do SO realiza as seguintes operações:

- 1. <u>Localizar</u> o arquivo no dispositivo físico, usando seu nome e caminho de acesso
- 2. Verificar se a aplicação tem **permissão** para usar aquele arquivo da forma desejada (leitura, escrita, remoção)
- 3. Criar uma **estrutura na memória** do núcleo para representar o arquivo aberto
- 4. <u>Inserir</u> uma **referência** a essa estrutura na lista de arquivos abertos mantida pelo sistema, para fins de gerência
- 5. <u>Devolver</u> à aplicação a **referência** a essa estrutura, para ser usada nos acessos subsequentes ao arquivo recém-aberto

Uso de arquivos - Abertura

Gerência de arquivos

- Atributos
- Formatos
- Operações
- Método de Acesso
- Compartilhamento

Uso de arquivos - Formas de acesso

Uma vez aberto um arquivo, a aplicação pode acessar os dados contidos nele, modificá-los ou escrever novos dados

Duas formas de acesso são usuais: o acesso sequencial e o acesso direto

Formas de acesso - Sequencial

Os dados são sempre lidos e/ou escritos em sequência, do início ao final do arquivo

Ponteiro

Formas de acesso - Sequencial

Quando o ponteiro atinge o final do arquivo (*EoF - End-of-File*):

- Leituras não são mais permitidas
- Escritas ainda o são
 - Dados podem ser <u>acrescentados</u> ao final
 - Desde que haja espaço no dispositivo!

Formas de acesso - Direto

Pode-se indicar a **posição** no arquivo onde cada leitura ou escrita deve ocorrer

Formas de acesso - Direto

Pode-se indicar a **posição** no arquivo onde cada leitura ou escrita deve ocorrer

Na prática, a maioria dos sistemas operacionais usa o **acesso sequencial** como modo **básico** de operação

Mas, oferece operações para mudar a posição do ponteiro do arquivo caso necessário, o que permite então o acesso direto a qualquer registro do arquivo

Formas de acesso - Direto

Ponteiro

Formas de acesso - Direto

É importante definir claramente o **proprietário** de cada arquivo e quais **operações** ele e outros usuários do sistema podem efetuar

Proprietário: identifica o usuário dono do arquivo, geralmente aquele que o criou

Permissões de acesso: define que operações cada usuário do sistema pode efetuar sobre o arquivo

Existem muitas formas de se definir permissões de acesso a recursos em um sistema computacional

- No caso de arquivos:
 - Listas de controle de acesso (ACL Access Control Lists)

Existem muitas formas de se definir permissões de acesso a recursos em um sistema computacional

- No caso de arquivos:
 - Listas de controle de acesso (ACL Access Control Lists)

```
arq1.txt : (João: ler), (José: ler, escrever), (Maria: ler, remover)
video.avi : (José: ler), (Maria: ler)
musica.mp3: (Daniel: ler, escrever, apagar)
```

Ex.: Considerando a seguinte listagem de diretório em um sistema UNIX

```
9 bits

host:~> ls -1
d rwx --- --- 2 maziero prof
rwx r-x --- 1 maziero prof
rw- r-- r-- 1 maziero prof
rw- rw- r-- r-- 1 maziero prof
```

Ex.: Considerando a seguinte listagem de diretório em um sistema UNIX

```
host:~> ls -1
           --- 2 maziero prof
                                4096 2008-09-27 08:43 figuras
- rwx rfx --- 1 maziero prof
                                7248 2008-08-23 09:54 hello-unix
  rw- r-- r-- 1 maziero prof
                                   54 2008-08-23 09:54 hello-unix.c
          --- 1 maziero prof
                                   59 2008-08-23 09:49 hello-windows.c
-/\text{rw}-\text{ r}-\text{ r}-\text{ }1 maziero prof
                               195780 2008-09-26 22:08 main.pdf
      --- 1 maziero prof
                               40494 2008-09-27 08:44 main.tex
Permissões do proprietário
  Permissões do grupo
        Permissões dos demais usuários
```

Gerência de arquivos

- Atributos
- Formatos
- Operações
- Método de Acesso
- Compartilhamento

Compartilhamento de Arquivos

Compartilhamento de Arquivos

Em um sistema multi-tarefas, é frequente ter arquivos acessados por mais de um processo, ou mesmo mais de um usuário, caso as permissões de acesso ao mesmo o permitam

O acesso concorrente em leitura a um arquivo não acarreta problemas, mas a possibilidade de escritas e leituras simultâneas tem de ser prevista e tratada de forma adequada

A solução mais simples e mais frequentemente utilizada para gerenciar o acesso compartilhado a arquivos é o uso de **travas de exclusão mútua** (*mutex locks*)

As travas oferecidas pelo sistema operacional podem ser **obrigatórias** (*mandatory locks*) ou **recomendadas** (*advisory locks*)

- Travas obrigatórias são impostas pelo núcleo de forma incontornável
- Travas recomendadas não são impostas pelo núcleo do sistema operacional

As travas sobre arquivos também podem ser exclusivas ou compartilhadas

 Trava exclusiva (escrita): garante acesso exclusivo ao arquivo: enquanto uma trava exclusiva estiver ativa, nenhum outro processo poderá obter uma trava sobre aquele arquivo

As travas sobre arquivos também podem ser exclusivas ou compartilhadas

- Trava exclusiva (escrita): garante acesso exclusivo ao arquivo: enquanto uma trava exclusiva estiver ativa, nenhum outro processo poderá obter uma trava sobre aquele arquivo
- Trava compartilhada (leitura): impede outros processos de criar travas exclusivas sobre aquele arquivo, mas permite a existência de outras travas compartilhadas

A forma como os dados escritos por um processo são percebidos pelos demais processos que abriram aquele arquivo é chamada de semântica de compartilhamento.

- UNIX
- Sessão
- Imutável

Semântica UNIX: toda modificação em um arquivo é imediatamente visível a todos os processos que mantêm aquele arquivo aberto

 Mais comum em sistemas de arquivos locais

Semântica UNIX: toda modificação em um arquivo é imediatamente visível a todos os processos que mantêm aquele arquivo aberto

 Mais comum em sistemas de arquivos locais

Semântica de sessão: Modificações em um arquivo feitas em uma sessão somente são visíveis na mesma sessão e pelas sessões que iniciarem depois do seu encerramento

 Normalmente aplicada a sistemas de arquivos de rede

Semântica de sessão

Semântica de sessão

Semântica imutável: Se um arquivo pode ser compartilhado por vários processos, ele é marcado como imutável, ou seja, seu conteúdo não pode ser modificado

Usada em alguns sistemas de arquivos distribuídos*

Conteúdo

- Motivação
- Definição
- Objetivos
- Conceitos fundamentais
- Estrutura do sistema de arquivos
- Alocação de arquivos

Conteúdo

- Estrutura do sistema de arquivos
 - Organização de volume
 - Diretórios
 - Arquivos
- Alocação de arquivos
 - Tabela de arquivos
 - Estrutura i-node