Applicant: Kaewell, Jr. et al. **Application No.:** 09/356,845

Applicants respectfully disagree. By this Reply, claims 11, 15 and 19 were revised. Attached is a version of the revised claims indicating annotations.

The present invention uses a totally different approach to achieve the synchronization between a primary station and a subscriber. First, during the synchronizing process, in our present invention, the subscriber utilizes a 25% duty cycle waveform and a distinct type of receive automatic gain control (AGC) to track the positive edge of the receiving amplitude signals from the primary station, and successively aligns its transmitting frame timing with the primary station's frame timing. On the contrary, in the '581 patent, the time reference of the primary station, the spacecraft, has to be used as the time reference of the subscriber, the primary station "detects the occurrence of the coarse synchronization signal transition and measures the time interval between the transition occurrence and the next downlink start-of-frame[.]" to calculate the incremental dely measurement for the particular subscriber (Column 6, line 37-41). Later, the incremental delay measured by the primary station will be downloaded to the particular subscriber whose uplink frame timing will depend on the primary station's timing measurement. Therefore, the subscriber of our invention has built-in mechanism to detect the right frame timing itself, while the subscriber of the '581 patent relays on its primary station providing frame timing information. Second, the '581 patent uses a two-stage synchronization process before voice or other data can be transmitted

Applicant: Kaewell, Jr. et al.

Application No.: 09/356,845

between the primary station and the subscriber. At the first stage, both wideband downlink

of the primary station and the narrowband uplink of the subscriber are required to achieve

a coarse synchronization between them; at the next stage, the wideband downlink of the

primary station and wideband uplink of the subscriber are needed to establish fine

synchronization. The primary station must continue to perform a fine synchronization

maintenance function to the subscriber for the communication of voice, other data and

subsequent fine synchronization (Column 7, lines 18-25).

Furthermore, the '581 patent uses a relatively high signal-to-noise ratio to assure the

detection of the coarse sync signal with enough precision to eliminate the need for a

statistical average process (Column 6, lines 44-60).

The fine synchronization stage will not start unless the digitized coarse sync error

measurement and an uplink time slot assignment to the subscriber is received by the

designated subscriber (Figures 8 and 30). Our invention only requires the establish of coarse

synchronization, a one-stage synchronization process, between the primary station and the

subscriber before the voice or other data is ready to be transmitted. Furthermore, our

present invention does not use a coarse sync error measurement to guarantee valid signal

transmissions as the '581 patent does.

-7-

Applicant: Kaewell, Jr. et al. **Application No.:** 09/356,845

The amended independent claims 11, 15 and 19 have important distinguishable elements which the '581 patent does not teach or disclose. For the above reasons, Applicants respectfully submit that all the claims are allowable. If the Examiner does not believe that claims are in condition for allowance, the Examiner is respectfully requested to contact the undersigned. Reconsideration and entry of this amendment is respectfully requested.

Bv

Respectfully submitted,

Kaewell, Jr. et al.

Kao H. Lu, Esquire

Registration No. 43,761

(215) 568-6400

Volpe and Koenig, P.C. Suite 400, One Penn Center 1617 John F. Kennedy Boulevard Philadelphia, PA 19103

KHL/amc Attachment Application No. 09/356,845

Examiner: T. Bocure

5

10

15

37 CFR §1.121(b)(1)(iii) and (c)(1)(ii) SPECIFICATION AND CLAIM AMENDMENTS- MARKED UP VERSION

(Thrice Amended) A telecommunication system using wireless transmissions,

the system comprising:

a primary station communicating with a plurality of stations, the primary station including a radio having a receiver and a transmitter wherein:

- (i) said transmitter transmits synchronization information including an assignment of n transmission fixed periodic time slots, where n is an integer greater than 1, and n reception fixed periodic time slots on a selected frequency;
- (ii) said radio transceives a duplex telephonic communication with the plurality of stations on the selected frequency wherein:
- (a) said transmitter transmits TX speech information to each of the plurality of stations in a respective one of the n transmission time slots on the selected frequency; and
- (b) said receiver receives RX speech information from each of the plurality of stations in one of the n reception time slots on the selected frequency; and

the plurality of stations including:

a base station receiving from the primary station the TX speech information originated from a secondary station in said respective transmission time slot and transmitting the RX speech information in said respective reception time slot; and

the secondary station having:

20

25

5

- (i) a radio receiver which receives the synchronization information from the primary station and identifies the assignment of time slots and which receives from the primary station the TX speech information originating from the base station in said respective transmission time slot; and
- (ii) a radio transmitter which transmits the RX speech information in said respective reception time slot; and

wherein using the primary station for transmissions between the base station and secondary station is transparent to the base station and secondary station, and the primary station or the secondary station itself detects a frame timing from received signals and aligns its transmitting frame timing accordingly.

- 15. (Thrice Amended) A telecommunication station for communicating with a base station and a secondary station using wireless transmissions, the station comprising: a transmitter which:
- (i) transmits synchronization information including the assignment of 2n fixed periodic time slots, where n is an integer greater than 1, on a selected frequency, n

fixed periodic transmit time slots for transmission from said telecommunication station and n fixed periodic reception time slots for reception by said telecommunication station; and

(ii) transmits TX information to the base station and the secondary station on the selected frequency in respective ones of said n assigned transmit slots; and

a receiver which receives RX information from the base station and the secondary station on the selected frequency in respective ones of said n assigned reception slots; and

wherein using the telecommunication station for communications between the base station and secondary station is transparent to the base station and secondary station, and the primary station or the secondary station itself detects a frame timing from received signals and aligns its transmitting frame timing accordingly.

19. (Thrice Amended) A telecommunication station for communicating with a base station and a secondary station using wireless transmissions, the telecommunication station comprising:

a transmitter which:

10

15

5

(i) transmits synchronization information including the assignment of fixed periodic time slots on a selected frequency, at least two fixed periodic transmit time slots for transmission from said telecommunication station and at least two fixed periodic reception time slots for reception by said telecommunication station; and

(ii) transmits a signal carrying information received from the base station on the selected frequency in a first assigned transmit slot and carrying information received from the secondary station on the selected frequency in a second assigned transmit slot; and a receiver which:

10

15

20

- (i) receives the information transmitted from the base station on the selected frequency in a first assigned reception slot; and
- (ii) receives the information transmitted from the secondary station on the selected frequency in a second assigned reception slot; and

wherein using the telecommunication station for communications between the base station and secondary station is transparent to the base station and secondary station, and the primary station or the secondary station itself detects a frame timing from received signals and aligns its transmitting frame timing accordingly.