StudeerSnel.nl

Summary cognitive psychology

Cognitive Psychology and its Applications (Vrije Universiteit Amsterdam)

Summary cognitive psychology and its applications

Lecture 1: introduction to human factors engineering

Cognitive psychology

- To uncover the laws of information processing and behaviour through experiments
- Fundamental questions
- No requirement for application

Human factors

- To apply knowledge by designing systems that work
- To accommodate the limits of human performance
- Directly applied problems
- The study of interaction between humans and systems in order to improve performance, safety, health and usability

Related disciplines

- Ergonomics: more focus on physical aspects
- Cognitive engineering (AI): machine

Poulton, 1966: "The aim of engineering psychology is not simply to compare two possible designs for a piece of equipment [human factors], but to specify the capacities and limitations of the human [generate experimental database] from which the choice of a better design should be directly deducible".

Goals of human factors

- Development of generic knowledge
- Enhance efficiency (productivity)
- Ensure safety, reduce error
- Assure tasks are within human capability
- Increase user satisfaction, comfort
- Improve human performance
- Gain market acceptance
- Reduce costs (economic, legal, social)
- Development of tools and equipment

History of human factors

- WWII: designing a human to fit the machine
 - Aviation and weapons
- Technology advancements
 - Increased logical complexity
 - o Increased physical complexity
- Human information processing theory
 - Improves H-M dialog

The human factor cycle

Costs of human factor design

- Can be low
 - Consultancy
 - o Expert review
 - o Tests
- Can be high
 - User-centred design
 - Early focus on user and tasks
 - Empirical, quantitative approach
 - Studies, tests, surveys
 - Iterative design using prototypes
 - o Complete task analysis
 - Surveys
 - Experimental research

Benefits of human factors

- Prevention of accidents
- Prevent compensation payments
- Less support for customers
- Less sick leave, higher job satisfaction
- Higher productivity, more efficiency
- Lower costs for training and instruction

Front end analyses

- User analysis
 - o Who are the users
- Environment analysis
- Determine goals, functions, tasks
 - Goal: highest level (e.g. mobile phone: communication)
 - Important because it may be reached with a completely different system
 - o Functions: functionalities (e.g. making a call or sending a text)
 - o Tasks: actions of the user(s) (e.g. selecting number, starting call)

Task analysis

- Physical
 - Use of tools, instruments
- Cognitive
 - o Decision making, problem solving is complex
 - o Large amounts of knowledge are needed
 - o There are complex rule structures

Steps of task analysis

- Define purpose
- Collect data
 - o Think aloud
 - o Interviews
 - o Literature
 - o Incident / accident analysis (less/not controlled)
 - Surveys (less/not controlled)
 - Observations (less/not controlled)
 - Problems surveys and observations:
 - No causal relationship
 - "Suitable" answers
 - Interpretation of questions
 - Preferred solution is not always optimal
 - Population may not be representative
 - Experiments (controlled)
 - Types:
 - Lab study
 - Field study
 - Problems:
 - Subjects are not representative
 - Confounding variables
 - Power too low
- Summarize task data
- Iterative design & testing
 - Usability testing
 - Learnability
 - Efficiency
 - Memorability
 - Errors
 - Satisfaction

Lecture 2: human information processing

What is human information processing?

- Sensory systems (vision, audition, tactile etc.)
- Cognitive systems (perception, attention, memory, language, decision-making etc.)
- Understanding HIF helps build better systems

Sensation

- Colour
 - o Location on the retina (fovea, non-fovea)
 - Acuity
 - Cones high, rods low
 - Sensitivity

- Scotopic vision (only rods, at night)
- Photopic vision (rods and cones)
- Low light: adaption of rods, hypersensitivity of cones
- o Different wavelength sensitivity (S, L, M cones)
- o Colour mixing
 - Additive colour mixing
 - Red, green and blue
 - Subtractive colour mixing
 - Cyan, magenta and yellow

Perception

- The role of previous experience
- Gestalt laws

- Solving "inverse" problem: the process of calculating from a set of observations the causal factors that produced them
 - Accommodation
 - o Convergence
 - Binocular disparity
- Depth cues
 - o Linear perspective
 - Relative size
 - Interposition
 - o Light and shading
 - Textural gradients

Attention

- You are functionally blind without attention
- Attention determines which information is processed and which information is ignored
- Competition among current goals, physical salience and selection history
- Additive attention
 - Dichotic listening technique
 - Cherry (1953): shadowing- pay attention to the message in one ear
 - Shadowed ear: cat, large, day, apple, friend, every, select
 - Unattended ear: table, book, chair, sample, always, pretty
 - Conclusion: Detailed aspects such as language, individual words and semantic content are unnoticed
 - Early selection
 - Broadbent (1958)
 - Filter theory
 - Bottleneck at stimulus-identification
 - Filtering based on physical dimensions, e.g. location, loudness

o Is it really early?

- Treisman (1960): filter attenuation theory
 - Message: In a picnic basket, she had peanut butter sandwiches and chocolate brownies
 - Shadowed ear: Is the picnic basket she had peanut butter, books, leaf, roof, sample
 - Unattended ear: table, book, chair, sample, always, pretty, sandwiches, and cholate brownies
 - Cocktail party effect
 - Relevant information passes the filter

- Late selection
 - Deutsch & Deutsch (1963)
 - Bottleneck occurs after stimulus-identification

- Visual attention
 - Mechanism by which we select relevant and ignore irrelevant visual information
 - Spatial
 - Selectivity of location
 - Feature-based
 - Colour
 - Orientation
 - Size
 - Attentional control 0
 - Top-down
 - Voluntary, goal-driven
 - A butterfly in a field of red tulips and one yellow tulip
 - Bottom-up
 - Automatic, stimulus-driven
 - One yellow tulip in a field of red tulips
 - Eye movements
 - Covert attention = eyes are still
 - Overt attentions = eyes move

Memory

- Visual memory
 - Iconic memory: 0 250 ms
 - Sperling (1960)
 - If participants were shown 3x4 letters, they could on average only remember 4
 - If participants were shown 3x4 letters and were asked to recall the first row, they could remember all the letters
 - This suggests that sensory memory is rather large but has a short duration
 - Perceptual representations:
 - Are aesily overwritten by new stimuli
 - Decay quickly 0
 - Visual short-term: 250 ms seconds
 - VSTM is a memory system that stores visual information for a few seconds so that it can be used in the service of ongoing cognitive tasks
 - VSTM representation can survive eye movements, eye blink and other visual interruptions
 - A limited amount of information to be maintained in an "on-line" or readily accessible state
 - Long term: hours days years
- Working memory
 - Baddely and Hitch model of working memory

- Visuospatial sketchpad
 - Spatial working memory
 - Visual working memory
 - Mechanism by which we actively retain relevant visual information and prevent interference from irrelevant visual information
- Phonological loop
 - Verbal (speech-based) working memory
 - Memory span is larger for items that are easy to rehearse
 - Fifth avenue VS van der Boechorststraat

Signal detection theory

- · Separation discrimination and decision in detection, recognition and matters of life and death
 - o N = Noise
 - N + S = Noise + Signal
 - X = Decision dimension
 - o d' (criterion) = distance in z-space (normal distribution)
 - d' = z[p(hits)] z[p(false alarms)]
 - Sensitivity is independent of criterion setting (or bias)
 - o The criterion is neutral: in between the N and N + S distributions
 - o If the criterion is not neutral, it is lenient (or liberal) towards the left or conservative towards the right.

Lecture 3: eye-

Eye movements

Saccades: jerky you have

) We do

Criterion

N d N+S

Tenered repetition

N toler attem

X

tracking

movements that occur 3-4 times a second and 230.000 saccades a day

not use saccades to paint a complete internal

- representation of a visual scene
- Saccades constitute in a way to select relevant information
- Temor (90 Hz): physiological nystagmus, noise in muscle control
- Drift: slow movements taking the eye away from fixation
- · Vergence eye movement: binocular focus, dominant eye, both eyes typically move together
- Vestibular-ocular reflex: correct for head movements by producing eye movements in the direction opposite to head movement, preserving the image on the center of the visual field
- Optokinetic reflex: smooth pursuit + saccade
- Smooth pursuit eye movement: moving object
- Microsaccades: small eye movements at fixation

Saccadic suppression

Degrees of visual angle

Arctan(1 cm / 57 cm) = arctan(0.017541) = 1 degree 1 radian = 360 / 2pi = 180 / pi

The eye

- Inhomogeneity of the visual system
 - Cones: almost exclusively in the fovea
 - o Rods: more or less equally distributed in the periphery

Vision

- Vision is not passive
- Movement is essential for vision
 - Not fixated = missed (almost always)
 - Covert attention is active (microsaccades)
 - Stable image = vision fades
 - This shows that eye movements are intrinsically linked with information processing

Salience map

- Fast parallel input stage for many feature maps
- Slow and sequential focal attention stage

What drives information processing?

- Target features (top-down)
- Visual salience (bottom-up)
- Scene context (learned expectations)
 - o Information processing during reading
 - 'Content' words are fixated more often than 'function' words
 - Distribution of attention is asymmetrical
 - 3-4 letters to the left, 14-15 to the right of fixation
 - 10-15% of the time readers move their eyes (regress) back to previously read material in the text
 - Saccade size and fixation duration are both modulated by text difficulty
 - As the text becomes more difficult, saccade size decreases, fixation duration increases and regressions increase

Eye-tracking

 Eye-tracking is a complex physiological measure of information processing with a long history and many applications in research.

Eye movement recording history

- Mechanical (Huey, 1898)
- Photograph of reflection of light source (Dodge & Cline, 1901)
- Suction cup with a mirror (Yarbus, 1960s) high accuracy
- Electromagnetic coils (Collewijn, 1998) high accuracy
- Electrooculography (EOG) low accuracy
- Video-based: desktop or head mounted

Properties of an eye tracker

- Temporal resolution / sampling rate
 - o Wide range available (25 Hz 2000 Hz)
 - o Faster is not necessarily better
 - Depends on experimental purpose
 - Can constrain participant configuration
 - Affects what measures can be calculated
 - E.g. saccadic peak velocity can be estimated with 60 Hz data, but only for saccades > 10°
 - Saccades during reading typically < 10°
- Spatial resolution
 - o The smallest distance between eye positions that can be detected
- Spatial accuracy
 - o Average angular offset (distance in degrees of visual angle) between n fixations locations and corresponding location of fixation targets
- Spatial precision
 - o Root Mean Square (RMS) of angular distance (in degrees of visual angle) between successive samples

Calibration

- Gaze determined by changes between centre of pupil and corneal reflection
- Mapping of ocular changes to measured parameters required

Eye movement analysis

- Latency
- Direction
- Duration
 - o Fixation duration
 - The length of time the eyes remain (more or less) stationary in a given location
 - Exploration: Large amplitude saccades, shorter fixations
 - Exploitation: Smaller amplitude saccades, longer fixations
 - Typically around 200-250 ms, longer in viewing scenes than in reading
 - Typically associated with the depth of processing
- Amplitude
- Trajectory
- Velocity and acceleration, deceleration

Higher order measures (applications)

- Areas of interest
 - o A priory defined areas over which experimental hypotheses are tested (e.g. lung defined area in lung pictures)
 - o Cannot be modified post-hoc
 - Challenges
 - Overlapping areas of interest
 - Size of the area of interest
 - Data samples or fixations?
 - With high sampling rate this makes no difference
 - With low sampling rate use fixations
 - Inaccurate data
 - Perform an offset correct at your own risk
- Scan paths
 - o A viewing pattern
 - o Different across people
 - o Different across tasks
 - o Sequence of vectors, saccade amplitude and direction based strings
 - o Similarity between scan paths can be computed (e.g. Levenshtein distance)
 - 'Decode' the task from the scan paths

Lecture 4: transportation, distraction and multitasking: driving

Transportation

- Millions of people travel every day
- Tracking and manual control at high speeds
- Rapidly changing environments
- Safety concerns
- Costs of life, material costs

Driving

- Driving safety is of world importance
- >90% of the accidents in traffic are due to human error

How can we improve the safety?

What are the main tasks during driving?

- Task analysis
 - Strategic
 - Choice of route
 - Choice of travel time

- Tactical
 - Choice of speed
 - Lane choice, overtaking
 - Taking turns
- o Control
 - Longitudinal (speed, distance from other cars)
 - Lateral (position on road)
- o Assessment of driving performance based on:
 - Strategic
 - Tactical
 - Control
- Primary tasks
 - Lane keeping
 - o Hazard monitoring
- Secondary tasks
 - o Navigation
 - Scanning for signs
 - o Radio
 - o Cell phone

What are the critical issues that can be improved by human factors?

- Visibility of PVAL (primary visual attention lobe)
 - Anthropometry
 - Reachability (no one size fits all approach)
 - Visibility of instruments and roadway
 - Illumination
 - Driving at night is 10 times more dangerous than driving during day
 - Illumination reduces accidents in two
 - o Road signs
 - Readability
 - Consistency
 - Clutter
 - Redundancy
 - Resource competition
 - Dashboard, telephone, radio, advertisement
 - Effect can be (partly) quantified by glance time / duration
 - Glances should be shorter than 0.8 s
 - o There should be more than 3 s between glances
 - Head-up displays
 - Hands-free cell phones
 - Audio / speech warnings
 - Speech controls
- Hazards and collisions
 - Control loss
 - Lateral of longitudinal
 - Because of fatigue
 - Most important cause of accidents during night
 - Vigilance
 - o Almost 50% of the truck drivers has fallen asleep behind wheel
 - Because of speed
 - Underestimating dangers
 - Overestimating driving skills
 - Inadequate mental model for hazards
 - Not detecting hazard / obstruction
 - More distance travelled before manoeuvre is madeGreater damage at impact
 - Alcohol
 - Causes 50% of fatal accidents in US

- Poorer RTs, tracking, information processing
- Speed limits, fines, social pressure
- Age
- Much greater risk for young (male) drivers
 - o Inexperience, overconfidence, risk taking
 - Alcohol, fatigue, driving at night
 - o Distraction
- Overcorrection (dangerous at high speeds)
- Most casualties (40%) when driving off the road
- Countermeasure: rumble strips
- Hazard response time
 - Most important cause of dangerous situations
 - RT for braking on average 1.5 s
 - Even slower for unexpected events
 - Recommended 2 s
 - Collision from behind occurs most often (30%)
- Impaired drivers

Countermeasures

- Driving safety improvements
 - Use of seat belts
 - o Airbag
 - o Emergency call
 - o Better roadway designs
 - o Etc.
- Automation
 - Vehicle control
 - Lane departure warning
 - Collision avoidance (intelligent cruise control)
 - Navigation
 - Trip planning, route information
 - Up-to-date information (traffic jams, weather, services)
 - o Semi of full self-driving mode
 - Risks
 - Overconfidence system
 - Less attention for driving task
 - Trade safety against efficiency

Principles of attention

- 1. Legible / audible
 - $\circ \quad \text{Lighting, size, contrast, noise} \\$
- 2. Absolute judgment
 - o "If the light is amber, proceed with caution"
- 3. Top-down processing
 - o Checklist
- 4. Redundancy gain
 - o Position and hue are redundant
- 5. Similarity
 - Confusion
- 6. Pictorial realism
 - o E.g. display high / low
 - Consistency of movement
 - o Altimeter that moves up when plane goes up
- 8. Accessibility of information
 - o "Somewhere in the manual"
- 9. Proximity compatibility principle
 - o Integration of compatible information
 - E.g. spatial proximity, same color, ...

- However: prevent clutter
- 10. Multiple resources
 - Use of multiple modalities
- 11. Support with visual information
 - o E.g. a flowchart
- 12. Predictive aiding
 - o In particular when system behaviour is complex
- 13. Consistency
 - o E.g. of layout

Lecture 5: automation, control and stress/workload

Why are tasks automated?

- 3Ds: dull, dirty, dangerous
 - o Repetitive tasks, working with explosives or radioactive material
- For multi-tasking, difficult or unpleasant tasks
 - o Process control, welding, autopilot
- Extension of human capability
 - o Decision support
- Because the technology makes it possible
 - o Telephone services using speech recognition
 - Chatbots

Stages and levels of automation

- Information acquisition, selection and filtering
 - Spelling checkers
- Data integration
 - o Pattern recognition; complex (prioritized) warning systems
- Advisory systems
 - o Collision avoidance systems
- Control, execution of actions
 - Industrial robots

Levels in terms of control

- 1. The human is in control
- 2. The system suggests different alternatives
- 3. The system selects a single alternative
- 4. The system acts after approval by the human
- 5. The system provides limited time to stop the action
- 6. The system acts and informs afterwards
- 7. The system acts and informs when asked
- 8. The system is in control

(Un)reliability

- Causes of unreliability
 - o Errors, e.g. because of complexity
 - o Use outside the operating range
 - Wrong settings are entered
 - o Logic of system is not understood by user
 - Automation induced surprises
- In most cases the user-system combination is unreliable, or the system is imperfect (not unreliable)

Trust

- Perceived reliability
- Critical for acceptance of automated systems
- Trust is often not well calibrated
- Which is better, mistrust or over trust?
 - o Mistrust

- What is mistrust?
 - High false alarm rate
 - Failure to understand (limitations) of system
- Consequences
 - Inefficient, slow
 - Errors (e.g. because warnings are not taken seriously)
- o Over trust
 - Over trust or complacency
 - Actual reliability is difficult to judge when few errors occur
 - Consequences
 - Slow detection for failures (c.f. vigilance)
 - Poor situation awareness because user is not actively involved

Other aspects

- Automation should be tuned to keep workload within right bandwidth
 - o "Clumsy automation" makes easy tasks easier and hard tasks harder
- Training should be adapted to level of automation
- Human-system communication is less "rich" than human-human communication
 - o E.g. tone of voice
- Job satisfaction

Design of automation

- Task and function analysis
- Allocation of tasks and functions to humans and systems
 - Use strong points of humans and systems
 - Humans
 - Perceiving patterns
 - Detection of noise
 - Generalization
 - Improvisation
 - Inductive reasoning
 - System
 - Working with details
 - Computations
 - Deductive reasoning
 - Repetitive work
 - Monitoring
 - Using (large) databases
- "Human-centred automation"
 - o Keeping the human informed
 - Keeping the human trained
 - o Keeping the human in the loop
 - $\circ\quad$ Selecting appropriate stages and levels when automation is imperfect
 - o Using flexible/adaptive automation
 - o Managing the introduction and use of automation

Control

- Principles of response selection
 - o Decision complexity
 - Complexity as the number of possible alternatives
 - Simple decisions
 - Complex decisions
 - Hick Hyman law / Hick's law
 - RT = a + b log2 (n)
 - o RT: reaction time
 - o n: number of stimuli
 - o a and b: constants

- Information transfer is greater with a small number of complex decisions: decision complexity advantage
 - Keyboard is faster than Morse code, while Morse code is a simple decision and keyboard typing a complex decision

- o Response expectancy
- Compatibility
 - Stimulus-response (or display-control) compatibility
 - Of location, of movement (Simon effect)
- o The speed-accuracy trade-off
 - When we try to do things quicker, we become less accurate
 - In many cases speed and accuracy are positively correlated
 - Both correlate with task difficulty
 - Trade-off can occur as a result of user strategy
- o Feedback
- Positioning systems
 - o Controls require movement
 - Hand/foot movements to reach controls
 - Controlling the device (steering wheel)
 - Direct control of position (e.g. touch screen)
 - Mouse and direct control best for pointing and dragging
 - Tablet and direct control best for drawing
 - Indirect control of position (e.g. mouse, trackball)
 - Indirect control of speed (e.g. joystick)
 - Spring brings stick back to resting position
 - Sometimes no movement (pressure sensitive stick)
 - Voice control
 - Voice input
 - o Hands and eyes are free
 - Large number of response alternatives are possible
 - Recently improved:
 - Limited vocabulary
 - Errors because of small acoustic differences
 - Effect of noise
 - Effect of accent, stress
 - Improvements in deep RNNs

- Fitt's law
 - Used to model the act of pointing, either by physically touching an object with a hand or finger, or virtually, by pointing to an object on a computer monitor using a pointing device.
- Control of continuous processes
 - Closed loop control
 - Negative feedback: operator tries to minimize error (e(t))
 - Problems:
 - Too large input bandwidth
 - Time delay
 - Causes similar anticipation problems and 2nd order system
 - High gain
 - o Overcorrections and instability

- Open loop control
 - Operator does not correct based on the error
 - Advanced knowledge and experience with the system
 - Experienced pilot does not constantly check the instruments during landing
- Control order
 - Change in position of control device:
 - 0th order: position (mouse)
 - 1st order: speed (e.g. gas pedal, joystick)
 - 2nd order: acceleration (e.g. controlling spacecraft)
 - Very difficult, oscillations typically occur
- Remote control

Stress and workload

- Types of stressors
 - o Environmental factors
 - Noise
 - Lighting
 - Motion
 - High-frequency vibration disrupts tool use, readability
 - Low-frequency vibration causes motion sickness
 - Air quality (ships, mines)
 - Thermal stress
 - Psychological factors
 - Life stress: job, personal life
 - When someone fears
 - Loss of esteem
 - Loss of something valuable
 - Danger
 - Depends on cognitive appraisal
 - Difference novice / expert
 - Over(confidence)
 - Feeling of being in control
 - o Fatigue, sleep disruption
 - Causes
 - Long working period
 - o Due to prolonged action
 - o Under arousal
 - Working at night
 - o Sleep deprivation
 - o Circadian rhythm
 - Working at low point of rhythm (early morning)
 - Disruption (jet lag or night shifts)
 - Effects of sleep disruption
 - Higher order cognition on less demanding tasks such as monitoring
 - Various cognitive effects
 - o Decision making
 - Creativity
 - o Maintaining situation awareness
 - Learning

Effects

- Experience
 - Frustration, arousal
 - Performance changes
 - Tunnelling
 - Visual, e.g. when using display
 - Cognitive e.g. use of single hypothesis
 - Working memory deficits
 - In particular short-term
 - Tendency to take most common action (heuristic)
 - Escaping through a building through the entrance
 - Emergency procedures should be overtrained
 - o Desire to take immediate action
 - Remediation
 - Simpler procedures
 - o Limit u se of working memory (e.g. checklist)
 - Actions should be compatible with well-known courses of action
 - o Easy-to-use displays and controls
 - Warning signals should be disruptive
 - Training
 - Measuring arousal
 - Yerkes-Dodson law

Inverted "U" function

- o Physiological
 - Heart rate, hormones
- o Information processing often impaired
- o Long term health consequences

Workload & overload

- How to measure and predict workload
 - o Timeline model: time required for task / time available
 - Problems:
 - Determination of task time
 - Also for cognitive tasks (planning, diagnosis, monitoring)
 - Prioritization
 - o Tasks with low priority can be postponed
 - Task demands
 - Can be quantified (weights for each task)
 - Task switch costs
 - Task performance
 - Secondary task performance
 - E.g. memory tasks, mental arithmetic, RT task
 - Physiological
 - Heart rate (variability)
 - Eye movements, eye blinks
 - P300 (EEG)
 - Subjective
 - Mostly: one dimensional scale
 - "How mentally demanding was the task?" [very low very high]

- Consequences of overload
 - o Selective attention impairments
 - o More important information receives more weight
 - o Reduced accuracy
 - Use of simple / single strategy
- Remediation
 - o Task redesign, automation
 - o Redesign environment, displays
 - Training

Lecture 6: thinking and deciding

Models of thinking

- Normative: the ideal standard to reach goals
- Descriptive: how people normally think
- Prescriptive: how we should improve our thinking

Rational thinking

- The kind of thinking that helps people the best in achieving their goals
- Rational thinking is considered to be the best kind of thinking
- There is not one best way of rational thinking
- Rational thinking ≠ good outcomes
- Irrational thinking ≠ bad outcomes
- Rational = invariance

- We do not always think rationally, because of:
 - Recent experiences
 - o The way information is presented
 - o Intuition
 - Comparison with others

Dual-process thinking

- Several dual process theories
- Two different reasoning systems:
 - Heuristic system
 - Properties
 - Unconscious
 - Implicit
 - Automatic
 - Effortless
 - Rapid
 - Holistic
 - Old (evolution)
 - Does not use WM
 - Not distractible
 - Biases
 - A cognitive bias is a systematic error in judgement
 - Systematic deviation from a normative model
 - A very large number of cognitive biases have been identified
 - Representativeness bias
 - Considering how much the hypothesis resembles available data as opposed to estimating the probability
 - The subjective probability of an event is determined by the degree to which it:
 - Is similar in essential characteristics to its population
 - Reflects the salient features
 - A: Linda is a bank teller, B: Linda is a bank teller and is active in the feminist movement. A is more likely than B, but 65% chooses option B
 - Availability bias
 - The probability of an event is evaluated by the ease with which it come to mind
 - Frequent events
 - Recent experiences
 - Remarkable events
 - Is K more likely to appear in the first position of a word or in the third position of a word? 105 out of 152 judged the first position to be more likely. It is easier to think of words starting with a K than of words where K is in the third position.
 - o Confirmation bias
 - o Analytical system
 - Properties
 - Conscious
 - Explicit
 - Controlled
 - Effortful
 - Slow
 - Analytic
 - New (evolution)
 - Uses WM
 - Distractible

Decision making

- Decision making under certainty
 - The decision maker knows with certainty the consequences of every alternative
- Decision making under uncertainty
 - The decision maker knows the probabilities of the various outcomes (risk)
 - o The decision maker does not know the probabilities of the various outcomes
 - O How to make the best decision in order to get the preferred outcome (e.g. gambling)
 - Expected value (EV) = value of payoff * probability
 - The option with the higher EV is the preferred option, example:
 - The probability of getting 100,- is 1 in 80 (EV = 1,25)
 - Guaranteed payment of 1,- (EV = 1)
 - Based on the expected value you choose the first one
 - Works not always as expected
 - If you get 1 million euro's or you have 50% chance of 3 million euro's, you will choose 1 million euro's
 - o 3 million euro's is not three times as desirable as 1 million euro's
 - Utility theory

Expected utility theory

- Bernoulli (1738) explains why poor people bought insurance and rich people sold insurance
- People's value of money is not linear; the value increases at a decreasing rate

- Expected utility theory (Von Neumann and Morgenstern (1947))
- We do not make decisions based on monetary values, but based on utility values
- Utility = usefulness

Utility Value

- Criticism
 - Entire risk profile cannot be captured with a single number (expected utility)
 - Utility has no meaning to most people
 - o Famous alternative theory: the prospect theory

Prospect theory

- Kahneman and Tversky (1979)
- The preferences do not depend on overall wealth and attitudes only
- Preferences are reference dependent (gains and losses), just like perception
- Bernoulli's error: his model is reference independent
- · As in perception, the carriers of utility are likely to be gains and loses rather than state of wealth
- We have an irrational tendency to be less willing to gamble with profits than with losses
 - o Choices are always made by considering gains and losses
 - Framing
 - Loss aversion

- If the question is asked in 'gains', people choose 200 people saved over 1/3 chance that 600 people will be saved and 2/3 chance no one will be saved.
- o If the question is asked in 'loss', people choose 2/3 chance that 600 people will die and 1/3 chance that no one will die, over 400 people dying.
- Loss versus costs
 - Framing negative outcomes as costs rather than losses improves subjective feelings
 - Continuing a project that has already cost a lot without any results, rather than starting a new one, although the previous costs are sunk costs
- Risky prospects can be framed in different ways- as gains or as losses
- Changing the description of a prospect should not change decisions, but it does, in a way predicted by prospect theory

Two main theories of decisions under certainty:

- Expected utility theory: decisions not on monetary values but also incorporates our attitude towards risk
- Prospect theory: preferences are reference dependent
 - o Decisions influenced by e.g. framing

Bayes theorem

- Theory of probability by Thomas Bayes
- Provides the probability that a hypothesis is true given certain observations: conditional probability
- P(H|E) = p(E|H) / P(E) * P(H)
- Taking prior probabilities into account

Applications to medicine

Patient safety, medical error

- Very frequent (5%-10% of hospital admissions)
- Can have severe consequences (disability/death)
- Variety of causes:
 - o Cognitive errors
 - o System related errors

Eye-tracking study on diagnosing X-rays

- Diagnostic errors can be severe
- In radiology, diagnostic errors are not uncommon
 - $\circ\quad$ Despite improved technology, the error rate has remained stable
- Different types of errors:
 - Search
 - o Recognition
 - o Decision errors

Research among 25 radiologists:

- Large effect of condition (match-mismatch)
- Recognition errors were most prevalent
 - o More decision errors in the two abnormality cases
- A mismatching patient description
 - More recognition errors in the mismatching condition
 - o More decision errors in the mismatching condition
- Inattentional blindness?
 - o Yes, sometimes
 - Other times they don't believe their eyes

Stress measurement

Stress influences our performance

- In other industries you can train to handle stressful situations
- Physicians often deny that stress affects their performance
- Stress can be objective as well as subjectively experienced

Lecture 6: neuromarketing

Our world

- Everything around us is constantly competing four our attention
- Attention has become the world's most valuable commodity
- Information overload
 - o Classic marketing tactics are frequently experiences as 'unpleasant' by their target audiences
 - o And their effectiveness is decreasing
- Transition to an experience economy
 - Many companies no longer have the goal to sell as much as possible in a short time, but rather make customers 'loyal' to their brand

How to optimize experience?

- Measuring human behaviour and experiences
 - o 10% conscious
 - o 90% non-conscious
- Arousal
 - o Heart rate (HR)
 - o Blood pressure (BP)
 - Skin conductance (Galvanic Skin Response (GSR))
 - Sweat secretion and the associated changes in sin conductance are unconscious processes that reflect changes in arousal
- Facial expression analysis
 - o Eye tracking indicates:
 - Which elements attract immediate attention
 - Which elements attract above-average attention
 - If some elements are being ignored or overlooked
 - In which order the elements are noticed

Gaze maps

Heatmaps

- Lab VS outside world
 - Pros outside world:
 - Lab settings are/can be synthetically and look not real
 - Results obtained in a lab do not always translate well to the real world (e.g. can have low validity)
 - Lab setting is less immersive: experience is probably completely different, so it is hard to tell in the 'real' experience is being measured
 - Let people experience dangerous situations in a safe way
 - Cons outside world:
 - Less control of environmental variables than in a lab:
 - Weather
 - Traffic density
 - o Time of day
 - o Solution:
 - Eye tracking in VR or AR
 - Hard to keep the environment constant
 - Many sensors are not there yet for full ambulant research

Takes longer to set up and get a session going