Analysis of the performance of sum product decode algorithm in Gaussian channel for random matrices

Anurag Gupta
Microelectronics (2015-17)
Instructor: Prof Madhay P. Desai

IIT-Bombay
Department of Electrical Engineering

Introduction

- The presentation shows the performance of sum product algorithm in Gaussian channel using random matrices.
- The table presented shoes the first block error occurred in 10 million transferred blocks.

Notations

- n Block size.
- Eb/No Input SNR in db to maintain input BER between 10^{-2} to 10^{-3} .
- BER(IN) Input bit error rate.
- BER(OUT) Output bit error rate.
- CDB Number of correctly decoded blocks.
- Itr Average number of iterations per block.

First error till 10 million blocks

$\cap \simeq$	BER(In)≃	R=0.75	R=0.8
II'	· ,		
4K	1.0×10^{-2}	19,504	30,015
	0.5×10^{-3}	5,71,913	4,83,435
	1.0×10^{-3}	No error	8,15,278
8K	1.0×10^{-2}	13,143	2,51,695
	0.5×10^{-3}	3,87,032	81,315
	1.0×10^{-3}	No error	No error
12K	1.0×10^{-2}	2,90,653	46,640
	0.5×10^{-3}	2,71,712	1,75,367
	1.0×10^{-3}	No error	No error

First error till 10 million blocks

n≃	BER(In)≃	R=0.85	R=0.9	R=0.95
4K	$1.0x10^{-2}$	801	22	-
	0.5×10^{-3}	1,10,751	14,949	-
	1.0×10^{-3}	7,75,381	57,248	-
8K	1.0×10^{-2}	12,825	2,046	-
	0.5×10^{-3}	2,901	21,865	-
	1.0×10^{-3}	No error	No error	-
12K	1.0×10^{-2}	18,298	8,701	
	0.5×10^{-3}	2,277	6,010	
	1.0×10^{-3}	No error	No error	