

Mindre rutinearbeid med maskinlæring

Automatisk deteksjon av hvitvasking

Lars Erik Bolstad
Data Scientist, AML Analyse og Teknologi, DNB

Martin Jullum Seniorforsker, Norsk Regnesentral

AML: Hva og hvorfor

Hvitvasking: Å skjule opprinnelsen til utbytte fra straffbare handlinger

Anti-hvitvasking:

- Risikoklassifisering av kunder
- Transaksjonsovervåkning
- Sanksjonsscreening (land, personer)
- Terrorfinansiering
- Compliance: Hvitvaskingsloven, EU, USA
- Risk: Bøter, Søksmål, Omdømme, Tillit
- Ansvar: Rapportere mistenkelig adferd til Økokrim (men også PST, NAV)

AML i DNB

Definerte risikoindikatorer

Scenarier =
Regler som fanger
opp risikoindikatorer

Transaksjonsovervåkning => **Alarmer** Melde mistenkelige kunder til Økokrim

AML: Prosess

Utfordringer med dagens system

- Ikke treffsikkert nok: For mange false positives medfører mye manuelt arbeid
- Avdekker ikke mer komplekse adferdsmønstre

Vårt ML-arbeid

- Datasett: 2 år med transaksjoner, kundedata, alarmer og AML-saker
- Rå data => Prosessering => Feature engineering
- Mål: En modell som predikerer sannsynligheten for at en transaksjon resulterer i en anmeldelse til Økokrim

Er dette så vanskelig da?

Hvitvaskingstransaksjoner

Modellering

- Binær respons (Y): Transaksjon sendt til Økokrim (Ja = 1, nei = 0)
- Vil predikere P(Y = 1|data relatert til aktuell transaksjon)
- State of the art: Gradient boosting machines (GBM)
- XGBoost veldig effektiv og fleksibel implementering av GBM basert på trær
 - Krever input (features) på tabellform

Transformering av rådata

Typer input data

- Spesifikk info om aktuell transaksjon
- Bakgrunnsinfo om sender/mottaker
- Sender/mottakers transaksjonshistorikk
- Tidligere rapporterte transaksjoner fra sender/mottaker

Υ	X1	X2	Х3	X4	X5	Х6
1	0,453406	0,992838	0,734389	0,159918	0,397515	0,949952
0	0,274	0,654207	0,169886	0,493841	0,407112	0,939789
0	0,741897	0,855005	0,585788	0,366456	0,365123	0,57955
1	0,488119	0,465754	0,716517	0,493048	0,855049	0,632114
0	0,134458	0,762057	0,848194	0,098779	0,872603	0,063026
0	0,531914	0,998817	0,808215	0,060721	0,716595	0,35374
0	0,341509	0,8398	0,637808	0,48304	0,279987	0,730286
0	0,530306	0,463271	0,338713	0,986781	0,925251	0,272484
1	0,864123	0,652763	0,689599	0,080937	0,990294	0,364736
0	0,106812	0,900351	0,450224	0,143815	0,593244	0,020764

1716 kolonner (features)

Trening og testing

- "Ubegrenset" med normaltransaksjoner (A)
 - Har valgt #A = #B
- Håndtering av overtilpasning
 - 10-fold kryssvalidering
 - Stoppekriterum (# iterasjoner): AUC
- Tuning: Random + iterativt grid-søk
- Trening på GPU

2 treningsscenarier

Alle datatyper 1) Electronic Customer 2) Manual Investigation

Uten urapporterte transaksjoner

Evaluering av scenariene

Rangering:
AUC

Sannsynligheter:

Brier score

Sammenligning av scenarier

ML vs dagens AML system

Vanskelig å sammenligne

PPP = Proportion of Positive Predictions:
 Andel transaksjoner som må kontrolleres for å finne 95% av de rapporterte transaksjonene

	ML (alle datatyper)	Dagens system
PPP	31.5 %	48.9 %

Videre arbeid

- Utvidelse av datasett
- Evaluering av antagelser i feature engineering
- NR: Auto-encoding av features vha Deep Learning
- Anvendelser:
 - Automatisk prosessering/kategorisering av alarmer
 - Bruke output for bedre, mer treffsikre scenarier
 - Avdekke adferd som ikke fanges opp i dag