

Learn Git and GitHub without any code!

Using the Hello World guide, you'll start a branch, write comments, and open a pull request.

Read the guide

- Listing of VHDL stimulus process from testbench file tb_mux_2bit_4to1.vhd with syntax highlighting,
- o Screenshot with simulated time waveforms; always display all inputs and outputs.

3. A Vivado tutorial. Submit:

 Your tutorial for Vivado design flow: project creation, adding source file, adding testbench file, running simulation, (adding XDC constraints file).

1. Preparation tasks (done before the lab at home).

1.1. Figure or table with connection of 16 slide switches and 16 LEDs on Nexys A7 board.

Table created from the "Nexys A7™ FPGA Board Reference Manual" and schematic

SW	SW pins	SW Connection type	***	LEDs	LED pins	SW Connection Type
1	J15	IOSTANDARD LVCMOS33		1	H17	IOSTANDARD LVCMOS33
2	L16	IOSTANDARD LVCMOS33		2	K15	IOSTANDARD LVCMOS33
3	M13	IOSTANDARD LVCMOS33		3	J13	IOSTANDARD LVCMOS33
4	R15	IOSTANDARD LVCMOS33		4	N14	IOSTANDARD LVCMOS33
5	R17	IOSTANDARD LVCMOS33		5	R18	IOSTANDARD LVCMOS33
6	T18	IOSTANDARD LVCMOS33		6	V17	IOSTANDARD LVCMOS33
7	U18	IOSTANDARD LVCMOS33		7	U17	IOSTANDARD LVCMOS33
8	R13	IOSTANDARD LVCMOS33		8	U16	IOSTANDARD LVCMOS33
9	Т8	IOSTANDARD LVCMOS18		9	V16	IOSTANDARD LVCMOS33
10	U8	IOSTANDARD LVCMOS18		10	T15	IOSTANDARD LVCMOS33
11	R16	IOSTANDARD LVCMOS33		11	U14	IOSTANDARD LVCMOS33
12	T13	IOSTANDARD LVCMOS33		12	T16	IOSTANDARD LVCMOS33
13	Н6	IOSTANDARD LVCMOS33		13	V15	IOSTANDARD LVCMOS33
14	U12	IOSTANDARD LVCMOS33		14	V14	IOSTANDARD LVCMOS33
15	U11	IOSTANDARD LVCMOS33		15	V12	IOSTANDARD LVCMOS33
16	V10	IOSTANDARD LVCMOS33		16	V11	IOSTANDARD LVCMOS33

- 2. Two-bit wide 4-to-1 multiplexer.
- 2.1. Listing of VHDL architecture from source file mux_2bit_4to1.vhd with syntax highlighting

```
Excerpt from mux_2bit_4to1.vhd:

architecture Behavioral of mux_2bit_4to1 is
begin
    f_o <= a_i when (sel_i = "00") else
        b_i when (sel_i = "01") else
        c_i when (sel_i = "10") else
        d_i;

end architecture Behavioral;</pre>
```

2.2. Listing of VHDL stimulus process from testbench file tb_mux_2bit_4to1.vhd with syntax highlighting,

Excerpt from tb_mux_2bit_4to1.vhd:

```
p_stimulus : process
begin
    report "Stimulus process started" severity note;

s_d <= "00"; s_c <= "00"; s_b <= "00"; s_a <= "00";
s_sel <= "00"; wait for 100 ns;

s_d <= "00"; s_c <= "00"; s_b <= "10"; s_a <= "00";
s_sel <= "00"; wait for 100 ns;

s_d <= "00"; s_c <= "10"; s_b <= "01"; s_a <= "11";
s_sel <= "00"; wait for 100 ns;

s_d <= "10"; s_c <= "11"; s_b <= "01"; s_a <= "00";
s_sel <= "10"; wait for 100 ns;

report "Stimulus process finished" severity note;
wait;
end process p_stimulus;</pre>
```

2.3. Screenshot with simulated time waveforms; always display all inputs and outputs.

3. A Vivado tutorial.

3.1. Your tutorial for Vivado design flow: project creation, adding source file, adding testbench file, running simulation, (adding XDC constraints file).

If you want to create a project in Vivado, you can try the following tutorial

Now you can open an existing project (Open Project) or start a new one (Create Project) We will continue to create a new project (Create Project)...

Click the button NEXT. Now we see a window where we can name the project and set the location...

Now click again the button NEXT ...

Now we see a window called **Add Sources**. Click on Create File and after that to the **File name** field write **Design**. Now click OK after that Next ...

Now we see a window called **Add Constraints**. Here press Next . Here we use parts of old codes, so we skip...

In the window called **Default Part** The next step is important because we choose the board for which we will create a code. We are using board Nexys A7-50T. So we select the appropriate board and continue to Next ...

Now we see a summary of our created project. Click Finish and the project will be created...

The project is now created. In sources you can open your <code>name_of_your_sources".vhd</code> file and write your code...

For creating a file named "testbench" choose File/Add Sources . After that choose Add or create simulation sources as you can see in the picture (the process is similar to creating the Design.vhd earlier)...

We can start the simulation here...

or you can follow this steps Flow/Run Simulation/Run Behavioral Simulation