$$u^{q}V = \begin{bmatrix} y_{1}(x_{1},...,x_{n}) & \cdots & y_{n}(x_{1},...,x_{n}) \\ y_{n}(x_{1},...,x_{n}) & \cdots & \cdots \\ y_{n}(x_{1},...,x_{n}) & \cdots & \cdots \end{bmatrix}$$

$$= u_1 \cdot v_1 + u_2 \cdot v_2 + \dots + u_n \cdot v_n = F(x)$$

$$\nabla(\mathbf{u}^{\dagger}\mathbf{v}) = \nabla(F(\mathbf{x})) = \begin{bmatrix} \frac{\partial F}{\partial x_{1}} \\ \vdots \\ \frac{\partial F}{\partial x_{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_{1}} \left(\mathbf{u}_{1} \cdot \mathbf{v}_{1} + \dots + \mathbf{u}_{n} \cdot \mathbf{v}_{n} \right) \\ \vdots \\ \frac{\partial}{\partial x_{n}} \left(\mathbf{u}_{1} \cdot \mathbf{v}_{1} + \dots + \mathbf{u}_{n} \cdot \mathbf{v}_{n} \right) \end{bmatrix}$$

We can know use the scalar valued function Product rule for each entry:

$$\frac{\partial \mathcal{L}_{X_{1},...,X_{n}}}{\partial x_{1}} \left[\mathcal{L}_{X_{1},...,X_{n}} \right] = \mathcal{L}_{X_{1},...,X_{n}} \left[\mathcal{L}_{X_{1},...,X_{n}} \right] + \frac{\partial \mathcal{L}_{X_{1}}}{\partial x_{1}} \left[\mathcal{L}_{X_{1},...,X_{n}} \right] + \frac{\partial \mathcal{L}_{X_{1},...,X_{n}}}{\partial x_{1}} \left[\mathcal{L}_{X_{1},...,X_{n}} \right] + \frac{\partial \mathcal{L}_{X_{1},...,X_{n}}}{$$

$$D(u^{\alpha}V) = \left[\left(v_{1} \frac{3\chi_{1}}{3\chi_{1}} u_{1} + u_{1} \frac{2\chi_{1}}{3\chi_{1}} v_{1} \right) + \dots + \left(v_{n} \frac{3\chi_{n}}{3\chi_{n}} u_{n} + u_{n} \frac{2\chi_{n}}{3\chi_{n}} v_{n} \right) \right]$$

$$= \left[\left(v_{1} \frac{3\chi_{1}}{3\chi_{1}} u_{1} + u_{1} \frac{2\chi_{1}}{3\chi_{1}} v_{1} \right) + \dots + \left(v_{n} \frac{3\chi_{n}}{3\chi_{n}} u_{n} + u_{n} \frac{2\chi_{n}}{3\chi_{n}} v_{n} \right) \right]$$

$$= \left[\left(v_{1} \frac{3\chi_{1}}{3\chi_{1}} u_{1} + u_{1} \frac{2\chi_{1}}{3\chi_{1}} v_{1} \right) + \dots + \left(v_{n} \frac{3\chi_{n}}{3\chi_{n}} u_{n} + u_{n} \frac{2\chi_{n}}{3\chi_{n}} v_{n} \right) \right]$$

$$= \left[\left(v_{1} \frac{3\chi_{1}}{3\chi_{1}} u_{1} + u_{1} \frac{2\chi_{1}}{3\chi_{1}} v_{1} \right) + \dots + \left(v_{n} \frac{3\chi_{n}}{3\chi_{n}} u_{n} + u_{n} \frac{2\chi_{n}}{3\chi_{n}} v_{n} \right) \right]$$

$$= \left[\begin{array}{c} \Lambda^{1} \frac{9\chi^{\nu}}{9\pi^{1}} + \cdots + \Lambda^{\nu} \frac{9\chi^{\nu}}{9\pi^{\nu}} \end{array} \right] + \left[\begin{array}{c} \Lambda^{1} \frac{9\chi^{\nu}}{9\pi^{1}} + \cdots + \Lambda^{\nu} \frac{3\chi^{\nu}}{9\Lambda^{\nu}} \end{array} \right]$$

$$= \left[\begin{array}{c} \Lambda^{1} \frac{9\chi^{\nu}}{9\pi^{1}} + \cdots + \Lambda^{\nu} \frac{3\chi^{\nu}}{9\pi^{\nu}} \end{array} \right] + \left[\begin{array}{c} \Lambda^{1} \frac{9\chi^{\nu}}{9\pi^{1}} + \cdots + \Lambda^{\nu} \frac{3\chi^{\nu}}{9\pi^{\nu}} \end{array} \right]$$

$$DVCX) = \begin{bmatrix} \frac{\partial V_1}{\partial X_1} & \frac{\partial V_2}{\partial X_1} & \frac{\partial V_1}{\partial X_1} \\ \frac{\partial V_1}{\partial X_1} & \frac{\partial V_2}{\partial X_1} & \frac{\partial V_1}{\partial X_1} \end{bmatrix} nXI$$

can see that our previous result is equivilent

$$= \begin{bmatrix} V_{1}, \dots, V_{n} \end{bmatrix}_{1X_{1}} \begin{bmatrix} \frac{3w_{1}}{3X_{1}} & \frac{3w_{1}}{3X_{n}} \\ \frac{3w_{1}}{3X_{1}} & \frac{3w_{1}}{3X_{n}} \end{bmatrix}_{1X_{1}} \begin{bmatrix} \frac{3w_{1}}{3X_{1}} & \frac{3w_{1}}{3X_{n}} \\ \frac{3w_{1}}{3X_{1}} & \frac{3w_{1}}{3X_{n}} \end{bmatrix}_{1X_{1}}$$

By cyr definition of Duck), this is equivilent to:

$$v^{+}Du + u^{+}DV$$

b)
$$AV = \begin{bmatrix} q_{11}(X_{1},...,X_{n}) & ... & q_{1n}(X_{1},...,X_{n}) \\ q_{11}(X_{1},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{1},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{1},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{1},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{1},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{1},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{1},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{1},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{1},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{1},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{nn}(X_{1},...,X_{n}) \end{bmatrix}_{NX_{n}} \begin{bmatrix} V_{1}(X_{1},...,X_{n}) \\ \vdots \\ V_{n}(X_{n},...,X_{n}) & ... & q_{n$$

$$= \begin{cases} 911 V_{1} + 912 V_{2} + ... + 910 V_{1} \\ ... \\$$

Using D as defined above:
$$\frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac{\partial}{\partial x_1} \left(q_{11} v_1 + \dots + q_{1n} v_2 \right) = \frac$$

$$ADV = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} \frac{3v_1}{3x_1} & \cdots & \frac{3v_1}{3x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{3v_n}{3x_1} & \cdots & \frac{3v_n}{3x_n} \end{bmatrix}$$

By careful in spection of What remains, we can rewrite it as {v: Dai:

$$V: Da! = \underbrace{V: \frac{9a!}{9x!}}_{V: \frac{3a!}{9x!}}$$

$$V: \frac{3a!}{9x!}$$

$$V: \frac{9av!}{9x!}$$

$$V: \frac{9av!}{9x!}$$

Note: The i-th term of the sym is the i-th term in each [i,5] entry (excluding terms)

Finally, we are left with:

$$D(AV) = A \cdot DV + \begin{cases} V; Dq; \\ i = 1 \end{cases}$$

$$n \times n$$

$$(Dr)!? = \frac{g(?)}{g(!)} = \frac{g(?)}{g(!)}$$

$$r = \begin{bmatrix} (3 + C_1 + 1)^{(2)} - y_1 \\ (3 + C_1 + 1)^{(2)} - y_2 \\ (3 + C_1 + 1)^{(2)} - y_3 \end{bmatrix}$$

$$Dr = \begin{bmatrix} \frac{\lambda r_{1}}{\alpha c_{1}} & \frac{\partial r_{1}}{\partial c_{2}} & \frac{\partial c_{1}}{\partial c_{3}} \\ \frac{\lambda r_{3}}{\alpha c_{1}} & \frac{\partial r_{2}}{\partial c_{3}} \end{bmatrix} = \begin{bmatrix} t_{1}^{c_{2}} & c_{1} c_{2} + t_{3}^{c_{2}} \\ t_{2}^{c_{3}} & c_{1} c_{2} + t_{3}^{c_{3}} \end{bmatrix}$$

$$r = \begin{cases} c_{1} \cdot 1 \cdot e^{C_{2}} - 6.2 \\ c_{1} \cdot 2 \cdot e^{2C_{2}} - 9.5 \end{cases}$$

$$\vdots$$

$$c_{1} \cdot 10 \cdot e^{10C_{2}} - 11.9$$

$$Dr = \begin{bmatrix} \frac{3c_1}{3c_1} & \frac{3c_2}{3c_2} \\ \vdots & \vdots & \vdots \\ \frac{3c_1}{3c_1} & \frac{3c_2}{3c_2} \end{bmatrix} = \begin{bmatrix} 1 \cdot e^{c_2} & 1 \cdot e^{c_2} \\ 1 \cdot e^{c_2} & 1 \cdot e^{c_2} \\ \vdots & \vdots & \vdots \\ 1 \cdot e^{c_2} & 1 \cdot e^{c_2} \end{bmatrix}$$

Gee cole 9++9ched

a) False, since the Gauss-Newton Method seeks

a Solution to DT(()=c, it is possible that

it Finds a local instead of 3106al minimum

as its solution, or even a Maximum.

4)

- b) Palse, the same ansver for a): it may
 converge to a local solution or even a
 maximum depending on the initial syess and/or
 specific problem
- () grue, while it shows better conditioning, this method should still converge to the same solution in this case, but likely in a more stable manner
- d) Probably true, while it is likely the parameters will be different, it is not impossible that the same parameters are returned. However, they definitely yield the same form of model

5) 9)

i) Linearized Least Squares

We nodify the Jata 69501 on the model to obtain a "linearized model". Resurar least squares is then used, and the resurts are translated back to the orisingl model

ii) 69495 - Newton

we "scive" the system of equations $r(X_i) = \vec{o}$ using Newton's method to find where the
losest solution is (using gradient = 0 condition)

iii) Levenbers - Mar gyardt

the syme ilea as 6N except that we all a user-tuned preconditioning/regular; 29ticn term to increase stability/accuracy for an ill conditioned Problem

b) We have
$$F(x) = DE(x) = r(x)^{+} Dr(x) = 0$$

Derivative condition

40 Setup Multi-Variate Newton's Method:

$$\chi^{k+1} = \chi^{k} - (0 \operatorname{Fcx}^{4})^{-1} \operatorname{Fcx}^{4}$$

$$= (\operatorname{rcx})^{4} \operatorname{Orcx}^{3} = (\operatorname{Orcx}^{3})^{4} = (\operatorname{Orcx}^{3})^{4} \operatorname{rcx}^{3}$$

$$= D((\operatorname{Orcx}^{3})^{4} \operatorname{rcx}^{3}) + \sum_{i=1}^{4} r_{i}(x_{i}) D((\operatorname{Orcx}^{3})^{4})^{4};$$

$$\approx (\operatorname{Orcx}^{3})^{4} \operatorname{Orcx}^{3}$$

$$\approx (\operatorname{Orcx}^{3})^{4} \operatorname{Orcx}^{3}$$

$$= 7 X^{K+1} = X^{K} - ((Drcx))^{\dagger} Drcx)^{-1} ((Drcx))^{\dagger} rcx)$$

$$-\left(\left(Drcx\right)\right)^{\dagger}Drcx\right)^{-1}\left(\left(Drcx\right)\right)^{\dagger}rcx\right)=V$$

$$V\left((0\,r\,c\,x)\right)^{\tau}\,0\,r\,c\,x)\Big) = -\left((0\,r\,c\,x)\right)^{\tau}\,c\,x\Big)\Big)$$

Algarithm:

$$A = D r c r)$$

$$A^{r} A v = - \Lambda^{r} r = 0 \quad V = \cdots$$

$$\chi^{ktl} = \chi^k + \nu^k$$

() we have the same problem setur as b) except we all a user-tuned resularization term:

Algor it hm:

$$A = D r C X)$$

$$\left(A^{r} A + \lambda J i 9 S (A^{r} A)\right) V = -A^{r} V = 0 \quad V = \cdots$$

$$X^{Ktl} = X^{K} + V^{K}$$

$$0 (1 + 4) = V 0 + 4 V$$

e)
$$A: \mathbb{R}^n \longrightarrow \mathbb{R}^{n \times n} \quad v: \mathbb{R}^n \to \mathbb{R}^n$$

$$D(Av) = A Dv + \sum_{i=1}^n v_i D_{i}$$

Problem 3

Gauss-Newton

```
In []: import numpy as np
import matplotlib.pyplot as plt
from numpy import log, exp

def gauss_newton(t, y, Dr, y_pred_fxn, c0, tol=1e-6, max_iter=100000):
    c = c0.copy()

    for j in range(max_iter):
        r = y_pred_fxn(t,c) - y

        if np.linalg.norm(r) < tol:
            break

        A = Dr(t,c)
        v = np.linalg.solve(A.T @ A, -A.T @ r)
        c += v

    return c, j</pre>
```

```
In []: # Estabish data vectors
    t = np.arange(1,11, dtype=np.float64).T
    y = np.array([6.2, 9.5, 12.3, 13.9, 14.6, 13.5, 13.3, 12.7, 12.4, 11.9]).T

Dr = lambda t, c: np.column_stack((t*exp(t*c[1]) , t*t*c[0]*exp(t*c[1])))
    y_pred_fxn = lambda t, c: c[0] * t * exp(c[1]*t)

c_gn, iter_gn = gauss_newton(t,y,Dr,y_pred_fxn, np.array([6.,.1]))

y_pred_gn = c_gn[0] * t * exp(c_gn[1] * t)

print(f"c0: {c_gn[0]}, c1: {c_gn[1]}")
    print(f"Iterations: {iter_gn}")
```

c0: 7.054228542648305, c1: -0.18289874347158333 Iterations: 99999

Levenberg-Marquardt

```
In []: import numpy as np
import matplotlib.pyplot as plt
from numpy import log, exp

def lev_mar(t, y, Dr, y_pred_fxn, c0, lmbd, tol=1e-6, max_iter=100000):
    c = c0.copy()

for j in range(max_iter):
    r = y_pred_fxn(t,c) - y

    if np.linalg.norm(r) < tol:
        break

A = Dr(t,c)</pre>
```

```
D = np.diag(np.diag(A.T @ A))
v = np.linalg.solve(A.T @ A + lmbd * D, -A.T @ r)

c += v

return c, j
```

```
In []: # Estabish data vectors
    t = np.arange(1,11, dtype=np.float64).T
    y = np.array([6.2, 9.5, 12.3, 13.9, 14.6, 13.5, 13.3, 12.7, 12.4, 11.9]).T

Dr = lambda t, c: np.column_stack((t*exp(t*c[1]) , t*t*c[0]*exp(t*c[1])))
    y_pred_fxn = lambda t, c: c[0] * t * exp(c[1]*t)

    c_lm, iter_lm = lev_mar(t,y,Dr,y_pred_fxn, np.array([6.,.1]), 1)

    y_pred_lm = c_lm[0] * t * exp(c_lm[1] * t)

    print(f"c0: {c_lm[0]}, c1: {c_lm[1]}")
    print(f"Iterations: {iter_lm}")

c0: 7.054228542648297, c1: -0.18289874347158316
```

Data Linearization

Iterations: 99999

```
In [ ]: import numpy as np
        import matplotlib.pyplot as plt
        from numpy import log, exp
        # Estabish data vectors
        t = np.arange(1,11, dtype=np.float64).T
        y = np.array([6.2, 9.5, 12.3, 13.9, 14.6, 13.5, 13.3, 12.7, 12.4, 11.9]).T
        # Define (linearized) least squares vectors
        A = np.column stack((np.ones(10, dtype=np.float64), t))
        b_{-} = log(y) - log(t)
        # Solve linearized least squares
        c_{-} = np.linalg.solve(A.T @ A, A.T @ b_.T)
        c = c \cdot copy()
        c[0] = exp(c[0]) \# Convert linearized solution to orginal form
        print(f"c1: {round(c[0],3)}, c2: {round(c[1],3)}")
        # Use fitted model to obtain predictions
        y_pred = c[0]*t*exp(c[1]*t)
        c1: 7.122, c2: -0.184
```

Results and Discussion

```
In []: with np.printoptions(precision=5, suppress=True):
    print(f"Sum of Residuals (Gauss Newton): {np.linalg.norm(y-y_pred_gn)}")
    print(f"Sum of Residuals (Levenberg-Marquardt): {np.linalg.norm(y-y_pred_lm)}")
    print(f"Sum of Residuals (Linearized): {np.linalg.norm(y-y_pred)}")

Sum of Residuals (Gauss Newton): 1.2543574926529986
    Sum of Residuals (Levenberg-Marquardt): 1.254357492653
    Sum of Residuals (Linearized): 1.2667076986711072
```

```
In []: plt.scatter(t,y, label='Data')
   plt.plot(t,y_pred, label='Linearized Model Fit')
   plt.plot(t,y_pred_gn, label='Linearized Model Fit')
   plt.plot(t,y_pred_lm, label='Linearized Model Fit')
   plt.legend()
   plt.title('Linearized Least Squares Solution')
   plt.show()
```

Linearized Least Squares Solution

There is minor improvement from Gauss-Newton vs the original data linearization method, but going from Gauss-Newton to Levenberg-Marquardt there is almost no change. This indicates that the problem is well conditioned and the additional robustness provided by Levenberg-Marquardt is no needed here.