TS101 与 TR202 差分系统操作步骤

目录

1. I	HX-TS101 地面基站系统	2
	1.1 HX-TS101 简介	2
	1.2 TS101 技术参数与硬件连接	5
	1.3 TS101 内置板卡与电调配置	7
2. I	HX-TR202 移动站	8
	2.1 HX-TR202 简介	8
	2.2 HX-TR202 技术指标与接口定义	9
	2.3 HX-TR202 内置板卡与电台配置	13
3.	系统搭建与使用注意事项	17
4.	数据协议解析	18
5	内署由台配署指 今	21

1. HX-TS101 地面基站系统

1.1 HX-TS101 简介

Smart 天线是整合高精度板卡、GNSS 高精度天线的一款高度集成化产品。HX-TS101 还可选配内置电台、内置 3G 通信模块,方便用户设备接入 CORS 站和数据上传服务器等功能;同时选配内置蓝牙模块,支持手机 app 端进行配置。能很好解决驾考、工程机械等行业中接线复杂的问题,该产品核心部件自主研发,具有很好的兼容性,也具有很高的性价比。 HX-TS101 可根据客户需求进行定制化开发,是高精度行业应用解决方案的最佳选择。

Smart 天线基准站 HX-TS101

产品介绍

Smart 天线是整合高精度板卡、GNSS 高精度天线的一款高度集成化产品。HX-TS101 还可选配内置电台、内置 3G 通信模块,方便用户设备接入 CORS 站和数据上传服务器等功能;同时选配内置蓝牙模块,支持手机 app 端进行配置。能很好解决驾考、工程机械等行业中接线复杂的问题,该产品核心部件自主研发,具有很好的兼容性,也具有很高的性价比。

HX-TS101 可根据客户需求进行定制化开发,是高精度行业应用解决方案的最佳选择。

技术特点

- 全新外观设计
- 内置全頻段 GNSS 天线,支持全星座(美国 GPS、俄罗斯 GLONASS、欧盟 Galileo、中国北斗、SBAS)
- 可选配多款 GNSS 解算系统
- 内置 2W 功率电台
- 可选配 2G/3G/3.5G 无线链路系统,支持 GSM/GPRS/WCDMA/HSDPA 多种无线网络,直接接入 CORS 系统
- 支持蓝牙连接主机进行配置(选配)
- 支持行业主流的差分协议 RTCM、CMR 等
- IP67设计,安全可靠
- 灵活的安装方式,提供磁吸、螺纹杆、螺丝固定等三种安装方式
- 支持二次开发

■ 产品重量:

小于 800 克

接口引脚定义

1	TXD1	輸出	串口数据发送,RS232 电平
2	RXD1	输入	串口数据接收。RS232 电平
(3)	NC	备用	
(4)	vcc	电源	9-30VDC
(5)	GND	地	
(B)	NC	备用	
Û	NC	各用	
(8)	NC	备用	
9	NC	备用	
(10)	NC	各用	1

指示灯功能介绍

LED 和蜂鸣器意义

意义	LED 灯(电源 卫星 链路)	蜂鸣器
电源正常	● ● ● 电源红灯带亮	响一声
差分链路数据 接收工作指示	○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	无
非固定解定位 (低于厘米级)	卫星绿灯两组闪烁间隙熄灭	无
RTK 固定解定位 (厘米级定位)	卫星绿灯两组闪烁间隙亮起	响一声
卫星颗数指示	卫星绿灯闪烁次数	无

1.2 TS101 技术参数与硬件连接

技术参数

类别	指标	85
1000000	接收频点	BDS B1/B3 GPS L1/L2 GLO L1
GNSS	初始化时间	小于 10 秒(典型值)
	初始化可靠性	大于99.9%
	首次定位时间	冷启动: 50s
数上中日林中四16)	水平	1.5m
单点定位精度(RMS)	高程	2m
DTV CHESTONIC	水平	2.5cm+1ppm
RTK 定位精度(RMS)	高程	5cm+lppm
速度精度(RMS)	0.03m/s	-
时间精度(RMS)	20ns	
数据更新率	lHz	
差分数据	RTCM 2.x/3.x,CMR,CMR+	
电台天线接口	TNC母头	
数据接口	串口 RS232	
数据协议	NMEA0183	

注:内部采用的 GNSS 不同,接收频点及相关指标会略有不同

电气指标

■ 电压输入: 9-30VDC

■ 纹波要求: 100mVpp (MAX)

■ 功耗: < 6.5W (典型值)

■ 天线接口阻抗: 50ohm

可靠性

■ 防护等级: IP67

■ 湿度: 95% 非凝露

■ 振动: GJB150.16-2009

■ 冲击: GJB150.18-2009

物理特性

■ 温度范围:

工作温度: -40℃~+75℃ 存储温度: -55℃~+85℃

1.3 TS101 内置板卡与电调配置

打开串口调试助手软件,在设备刚上电的时候,会先输出内部电台、板卡等信息。默认波特率是115200.

输入\$CFG GNSS (指令全部大写) 进入板卡直通口,进行查看板卡的信息指令:

log version//查看版本信息Log comconfig//查看串口配置Log loglist//查看语句输出配置

里面内置的板卡不同,相应的指令会有差异,都支持 NEMA0183 的语句格式,

例如

Log gpgga ontime 1、Log gprmc ontime 1 等语句。此次交付的设备内置的是 NovAtel 的 615/617D 板卡,支持 NEMA0183、NovAtel 的语句输出。

通过定位语句 GPGGA /bestposa 可以查看基站是否已固定坐标及定位状态是否正常。

\$GPGGA, 031541. 80, 3957. 7655682, N, 11618. 3049004, E, 7, 10, 1. 0, 49. 577, M , , , 00, 0004*04

\$GPGGA, 031542.00,

3957. 7655682, N, 11618. 3049004, E, 7, 10, 1. 0, 49. 577, M, , , 01, 0004*06

2. HX-TR202 移动站

2.1 HX-TR202 简介

HX-TR202 采用 RTK 技术实现高精度定位定向功能,内部集成高精度定位、定向模块以及数传电台。使用过程中,需要将 TR202 固定好,并将 GNSS 天线架设在能够收到 GNSS 信号的载体上,连接好 GNSS 天线以及数传电台天线,设置好与参考站的通信协议,即可完成载体的位置、时间、姿态以及速度的测量。主要应用于测绘、无人机、机器人、智能自动巡逻小车、割草机以及无人船等。

技术特点:

内部集成数传电台 数传电台兼容国内外主流协议 支持业内主流差分数据格式

2.2 HX-TR202 技术指标与接口定义

差分定向系统

HX-TR202

技术指标:

类别	指标		
A February and the constant	水平	1.5m	
单点定位精度(RMS)	高程	2m	
PTIV C CAREE (PAGE)	水平	1.5cm+1ppm	
RTK 定位精度(RMS)	高程	3cm+1ppm	
定向精度(RMS)	0.2 度/1 米基线		
速度精度(RMS)	0.03m/s		

数据更新率	1 Hz / 2 Hz / 5 Hz		
差分数据	RTCM 2.x/3.x, CMR		
AA A DE TÂV	地对地	3KM	
差分距离	地对空	5KM	
电台频率	410MHz-470MHz		
电台空中波特率	4.8 kbps、9.6kbps、19.2kbps		
T 40 40 H	GNSS天线	SMA母头	
天线接口	电台天线	SMA母头	
数据接口	UART 串口		
数据协议	NMEA0183/二进制协议		

注:内部采用的 GNSS 板卡不同,接收频点及相关指标会略有不同

■ 结构尺寸 (未标注公差的尺寸公差: ±0.2mm):

■ 温度范围:

工作温度: -40℃-+75℃

存储温度: -55℃-+85℃

图 3 LED 指示灯

表 2 LED 和蜂鸣器意义

意义	LED 灯 (PWR RTK UHF)	蜂鸣器
电源正常	PWR 红灯常亮	响一声
差分链路数据 接收工作指示	UHF绿灯闪烁	无
非固定解定位 (低于厘米级)	● ● ■ RTK 绿灯闪烁	无
RTK 固定解定位 (厘米级定位)	■ ■ RTK 绿灯常亮	响一声

表 3 UART 接口定义

管脚	名称	定义	备注	
1 (左起)	GND	电源地	电源地	
2	VCC	电源	DC9-30V	
3	TX	串口数据发送	3.3V LVTTL	
4	RX	串口数据接收	3.3V LVTTL	

表 4 EXTEND 接口定义

管脚	名称	定义	备注	
1 (左起)	GND	电源地	电源地	
2	VCC	电源	DC9-30V	
3	TX	串口数据发送	3.3V LVTTL	
4	RX	串口数据接收	3.3V LVTTL	

■ SMA 射频接口

表 5 射频接口说明

端口	说明	
UHF	连接数传电台天线,注意匹配合适频段和增益的天线	
GNSS1	连接 GNSS 信号接收天线,实现定位功能	
GNSS2	连接 GNSS 信号接收天线,实现测向功能	

输出协议

序号	帧头	说明	备注
1	\$GPGGA	定位信息	默认 5Hz 输出
2	\$GPRMC	推荐信息	默认 5Hz 输出
3	\$GPVTG	航迹角与地速	默认 5Hz 输出
4	\$GPHDT	航向角信息	航向角变化时输出

TR202 控制命令

70	135		0/ 30
序号	命令(以\r\n 结束)	说明	备注
1	\$CFG GNSTA	查询主机配置	

2	\$CFG UDTU	直通电台模式	
3	\$CFG QUIT	退出配置模式,进入正常工作模式	

2.3 HX-TR202 内置板卡与电台配置

TR202 上电自动输出电台与板卡的配置信息如下

into boot

boot: V001.01.01

SOFTWARE, PROGRAMMING, Sep 15 2017/14:51:47*

SOFTWARE, VERSION, VO01. 03. 02*

HARDWARE, VERSION, TR200-V1R0*

HARDWARE, SN, S17120001138*

DUT, TYPE, DUT_HAR_INSIDE*

HRTK, MODE, ROVER*

EXTEND, BAUD, 9600*

DTU, BAUD, 9600*

GNSS, BAUD, COM1=115200, COM2=9600*

SPIFLASH, OK*

DTU MODULE: HX-DU1018D-NB400 Harxon Corporation.

Soft ver: C017. 00. 02 2017-07-06

S102=7 Serial Baud Rate S103=2 Wireless Link Rate

S108=H Output Power

S131=00-451.12500 Current Tx Frequency S132=00-451.12500 Current Rx Frequency

S186=01 Protocol Selection

GNSS MODULE: "CDSX0G050"

"0EM617D-1.00"
"2017/Aug/22"

输入\$CFG GNSS(指令大写)进入板卡直通口,进行查看板卡的信息指令:

log version //查看版本信息 Log comconfig //查看串口配置

Log loglist //查看语句输出配置

里面内置的板卡不同,相应的指令会有差异,都支持 NEMA0183 的语句格式,例如

Log gpgga ontime 1、Log gprmc ontime 1 等语句。 设备内置的是 NovAtel 的 617D 板卡,支持 NovAtel 的语句输出。

可以通过 GPGGA /BESTPOSA 可以实时查看数据是否已经达到差分固定解。

通过语句或者指示灯来查看 TR202 移动端是否已经进入到差分状态。具体含义解析见下属常用语句解析。

\$GPGGA, 031542. 40, 3957. 7655694, N, 11618. 3049091, E, 4, 18, 1. 0, 49. 564, M , , , 01, 0004*03

输入\$CFG DTU -----直通电台命令模式

数传电台配置命令

命令	说明	备注
AT&V(回车)	查询版本号	显示当前电台基本参数配置
ATP0?(回车)	查询所有通道频点	返回通道收发頻点
ATS131=00(回车)	发送通道设置为00	成功返回"OK"
ATS132=00(回车)	接收通道设置为00	成功返回"OK"
ATS108=H(回车) 或 ATS108=L(回车)	设置电台发送功率	成功返回"OK" ATS108=H,设置高功率 1.5W. ATS108=L,设置低功率 0.5W.
AT&W(回车)	保存参数	
	AT&V(回车) ATP0?(回车) ATS131=00(回车) ATS132=00(回车) ATS108=H(回车) 或 ATS108=L(回车)	AT&V(回车) 查询版本号 ATP0?(回车) 查询所有通道频点 ATS131=00(回车) 发送通道设置为 00 ATS132=00(回车) 接收通链设置为 00 ATS108=H(回车) 或 ATS108=L(回车) 设置电台发送功率

序号	命令(以rin结束)	说明	备注
1	\$CFG GNSTA	查询主机配置	
2	SCFG DTU	直通电台命令模式	
3	SCFG UDTU	直通电台数据模式	
4	\$CFG QUIT	退出配置模式,进入正常工作模式	
5	\$CFG HAXIDTU	切换数据链路为内置电台	
6	SCFG 3G D	切换数据链路为 4G	
7	\$CFG NTRIP ip port mountpoint NTRIP NtripLinuxClient user password	设置 NTRIP 参数	\$CFG NTRIP 114.242.203.149 3704 ub4b0_Harxon NTRIP NtripLinuxClient user 123456

3. 系统搭建与使用注意事项

a. TS101 的 DB9 接头直接是标准的 232 协议,直接可以通过串口线连接在电脑上进行数据采集与状态产看。TR202 引出的接口是 TTL 直接使用 USB 转 232 串口线连接时,需要有一个 TTL 转 232 的转接头。

b. 对板卡或者电台输入\$CFG GNSS 或者\$CFG DTU 对板卡与电台进行配置是,只要输入了\$CFG GNSS 或者\$CFG DTU 指令,设备自动进入配置模式,此时 DTU

不在传输数据,电台不再接收基站的数据,配置好板卡或者电台后,输入\$CFG QUIT 退出配置模式后,测试电台才能接收到基站的数据进入到差分状态。

c. 因为基站在时时刻刻发送数据,电台在发射瞬间需要的功率较大,在给基站供电是一定要满足功率大于 6.5W 以上的电压与电流。电压范围是(9V---30V)

4. 数据协议解析

17

CR][LF]

例子: \$GPGGA,135324.00,5106.9791988,N,11402.3002127,W,2,09,1.0,1047.606 ,M,,,04,AAAA*1C

字段	结构	字段描述	符号	例子
1	\$GPGGA	日志头		\$GPGGA
2	utc	UTC 时间状态(时/分/秒/秒的小数位)	hhmmss.ss	220417.50
3	lat	纬度(DDmm.mm)	IIII.II	5106.7194 489
4	lat dir	纬度方向(N=北,S=南)	а	N
5	lon	经度(DDDmm.mm)	ууууу.уу	11402.35890 20
6	lon dir	经度方向(E=东,W=西)	а	W
7	定位状态	GPS 质量指标 0 = 无效解 1 = 单点定位解 2 = 伪距差分解,omniSTAR HR, omniSTAR XP, omniSTAR VBS,或者 CDGPS 4 = RTK 固定解 5 = RTK 浮点解,omniSTAR HR, omniSTAR XP 6 = 航迹推算模式 7 = 用户设定位置(Fixed Position) 8 = 模拟器模式 9 = WAAS	x	1
8	#sats	使用中的卫星总数,可能和可见数量不同	XX	08
9	hdop	水平精度因子	x.x	0.9
10	alt	天线高度在平均海平面以上/下	x.x	1080.406
11	units	天线高度的单位	M	М
12	null	在OEMV系列接收机上无法使用的字段	*	
13	null	在 OEMV 系列接收机上无法使用的字段		当前没有
14	age	差分 GPS 数据的周龄(几秒钟内)	xx	差分数据 时为空
15	stn ID	不同基站的ID	XXXX	
16	*xx	校验和	*hh	*48

语句结束

[CR][LF]

C.1.2 GSA 卫星 PRN 数据

例子: \$GPGSA,M,3,17,02,30,04,05,10,09,06,31,12,,,1.2,0.8,0.9*35

_	20			DD11	Mark. A.
无	26	GSA	・ドル	PRN	3771日

宇段	结构	字段描述	符号	例子
1	\$GPGSA	日志头		\$GPGSA
2	MA 模式	A=自动 2D/3D	М	M
		M=人工,强制的于2D/3D操作		
3	123 模式	模式:1=无效;2=2D;3=3D	Х	3
4-15	prn	使用中卫星 PRN 总数(没有使用的字段为	XX.XX,	18,03,13,
		空),共有 12 个领域		25,16,
		GPS = 1到32		24,12,
		SBAS= 33 到 64(PRN 编号增加了 87		20,
		号)		
		GLO=65到96		
16	pdop	位置精度因子	X.X	1.5
17	hdop	水平精度因子	X.X	0.9
18	vdop	垂直精度因子	X.X	1.2
19	*xx	校验和	*hh	*3F
20	[CR][LF]	语句结束		[CR][LF]

\$GPGSV,3,2,11,19,25,314,42,26,24,044,42,24,16,118,43,29,15,039,42*7E

表 27 GSV 卫星状态数据

宇段	结构	宇段描述	符号	例子
1	\$GPGSV	日志头		\$GPGSV
2	#msgs	消息总数	Х	3
3	msg#	消息号	X	1
4	#sats	可见卫星总数,可能和使用中的卫星总数不同	XX	09
5	prn	卫星 PRN 数量 GPS=1 到 32	XX	03
		SBAS=33到64(PRN#s增加了87) GLO=65到96		
6	elev	海拔,角度,最大值 90	XX	51
7	azimuth	方位角,真角度,000到359	XXX	140
8	SNR	SNR(C/No)00-99dB,没有跟踪时为空	XX	42
变量	*XX	校验和	*hh	*72
变量	[CR][LF]	语句结束		[CR][LF]

C.1.4 RMC 推荐最小导航数据

例子: \$GPRMC,144326.00,A,5107.0017737,N,11402.3291611,W,0.080,323.3,21 0307,0.0,E,A*20

重	28	DMC	推荐最	人巴納	粉捉
432	20	KIVIC	1世4字版"	い台削	做双仿

宇段	结构	字段描述	符号	例子
1	\$GPRMC	日志头		\$GPRMC
2	utc	方位的 UTC	hhmmss.ss	144326.00
3	Pos status	方位状态 A=数据有效	А	А
		V= 数据无效		
4	lat	纬度(DDmm.mm)	IIII.II	5107.0017737
5	lat dir	纬度方向(N=北,S=南)	a	N
6	lon	经度(DDDmm.mm)	ууууу.уу	11402.329161 1
7	lon dir	经度方向(E=东,W=西)	a	W
8	speed Kn	对地速度,海里/小时	X.X	0.080
9	track true	航迹推算,真角度	X.X	323.3
10	date	日期:日/月/年	XXXXXX	210307
11	mag var	磁变量, 度	X.X	0.0
12	var dir	磁变量的方向 东/ 西	a	E
13	mode ind	定位系统模式指示器	a	Α
14	*xx	校验和	*hh	*20
15	[CR][LF]	语句结束	•	[CR][LF]

\$GPZDA,010708.00,05,04,2007,00,00*6C

表 29 ZDA 时间数据

字段	结构	宇段描述	符号	例子
1	\$GPZDA	日志头		\$GPZDA
2	utc	UTC 时间状态(时/分/秒/秒	HHmmss.ss	010708.00
		的小数位)		
3	utc 日期:日	UTC 时间:日	XX	05
4	utc 日期:月	UTC 时间:月	xx	04
5	utc 日期:年	UTC 时间:年	XXXX	2007
6	当地时域描述	当地时域描述,单位:小时,	xx	00
		xx=-13~13		
7	当地时域描述	当地时域描述,单位:分,yy=0~59	XX	00
8	*xx	校验和	*hh	*6c
9	CR][LF]	语句结束	•	[CR][LF]

5. 内置电台配置指令

通过指令\$CFG DTU 电台进入配置模式:发送字符串+++(注意:必须按如下方式进行发送,发送字符串"+++"前1秒,不能发送任何字符;当发送完字符串"+++"之后,后1秒也不能发送任何字符,否则系统无法进入电台参数配置模式;字符串后面没有回车换行(\r\n));电台退出配置模式:发送ATA命令;

(1)、AT&W

参数保存命令,注意: 若想参数断电不丢失,必须先发送该命令,进行参数保存,该命令发送成功之后,将会返回提示符 **OK**。

(2) ATP0=CH TX RX

400M定频 工作频率表配置

例如:

ATP0=00 450.125 450.125

表示:通道0的发送频点是450.125MHZ,接收频点是450.125MHZ;如果想配置多个通道,只要按如下操作即可:

ATP0=00	451.125 451.125
ATP0=01	452, 125, 452, 125
ATP0=02	453, 125 453, 125
ATP0=03	454, 125 454, 125
ATP0=04	455, 125, 455, 125
ATP0=05	456, 125 456, 125
ATP0=06	457, 125, 457, 125
ATP0=07	458, 125 451, 125

...

备注: 频点和通道号之间用空格符(只有一个空格符号)隔开;

(3)、ATPO?

400M定频 查询当前电台已经配置好的工作频率表例如:

01 452.12500 452.12500 Tx& 02 453.12500 453.12500 Tx& 03 454.12500 454.12500 Tx& 04 455.12500 455.12500 Tx& 05 456.12500 456.12500 Tx&	ATPO? Channel Number	Tx Frequency (MHZ)	Rx Frequency (MHZ)	DIR
	01 02 03 04 05 06 07	452, 12500 453, 12500 454, 12500 455, 12500 456, 12500 457, 12500	452, 12500 453, 12500 454, 12500 455, 12500 456, 12500 457, 12500	Tx&Rx Tx&Rx Tx&Rx Tx&Rx Tx&Rx Tx&Rx Tx&Rx Tx&Rx Tx&Rx

(4)、AT&V

查询当前电台工作参数

(5)、当前串口波特率修改

ATS102=value

value取值如下:

1-115200; 2-57600; 3-38400; 5-19200; 7-9600;

特别注意: 当发送该命令之后,串口波特率立马生效,若想保存当前配置参数,则需要切换 当前配置工具的串口波特率,然后再发送AT&W保存命令。

例如:将当前串口波特率更改为9600,操作如下:

- (1).ATS102=7
- (2).切换配置工具的串口波特率为9600;
- (3).发送AT&W保存命令;
- (6)、空中波特率修改

ATS103=value

value取值如下:

0-4800; 1-8000; 2-9600; 3-16000; 4-19200;

备注:TRANSEOT 和TRIMTALK 支持 4800 和 9600 两种波特率,TRIMMK3 只支持 19200 波特率;

(7)、发射功率修改

ATS108=value

value取值如下:

H:高功率; L: 低功率;

(8)、当前电台工作发送通道设置

ATS131=value

value取值范围:

0-63

(9)、当前电台工作接收通道设置

ATS132=value

value取值范围:

0-63

(10)、通信协议选择

ATS186=value

value取值如下:

1-TRIMTALK;

2-TRIMMK3;

4-TT450S;

5-TRANSEOT

(11)、工作模式选择

ATS300=value

value取值如下:

0-duplex;

1-txonly;

2-rxonly;

4-repeater;

Others value:reserved;

(12)、AT&F53

TRANSEOT协议默认配置,当前电台工作参数默认配置如下:

\$102=1;串口波特率为115200

\$103=2; 空中波特率9600;

S108=H;发送功率高功率

S131=00-xxx.xxxxx; 当前发送通道为0,频点请查看ATPO命令配置的频率表,对应的0通道发送频点

S132=00-xxx.xxxxx; 当前接收通道为0,频点请查看ATPO命令配置的频率表,对应的0通道接收频点

S186=05; TRANSEOT协议;

S127=0; 400M定频模式(频段在该命令中只能查询)

(13) **AT&F54**

TRIMTALK协议默认配置,当前电台工作参数默认配置如下:

\$102=1;串口波特率为115200

\$103=2; 空中波特率9600;

S108=H;发送功率高功率

S131=00-xxx.xxxxx; 当前发送通道为0,频点请查看ATPO命令配置的频率表,对应的0通道发送频点

S132=00-xxx.xxxxx; 当前接收通道为0,频点请查看ATPO命令配置的频率表,对应的0通道接收频点

S186=01; TRIMTALK协议;

S127=0: 400M定频模式(频段在该命令中只能查询)

(14)、AT&F55

TRIMMK3协议默认配置,当前电台工作参数默认配置如下:

\$102=1;串口波特率为115200

\$103=4; 空中波特率19200;

S108=H;发送功率高功率

S131=00-xxx.xxxxx; 当前发送通道为0,频点请查看ATPO命令配置的频率表,对应的0通道发送频点

S132=00-xxx.xxxxx; 当前接收通道为0,频点请查看ATPO命令配置的频率表,对应的0通道接收频点

\$186=02; TRIMMK3协议;

S127=0; 400M定频模式(频段在该命令中只能查询)

备注: 若无特别说明,每条 AT 命令后必须跟"回车换行(\r\n)";