PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ Maestría en Control y Automatización

Sistemas Lineales ICA600

Título: Controladores PID

Nombre: Dimel Arturo Contreras Martínez

Código: 20156458

Profesor: Dr. Morán Cárdenas, Antonio Manuel

Fecha: 24 de Octubre del 2015

2015

1. Control PID analógico con OPAMPs

La estructura convencional del controlador PID y su implementación es la siguiente:

El controlador PID mas resumido encontrado en el estado del arte es:

Ley de control:

$$u = e(Kp + \frac{Ki}{s} + Kd * s)$$

Siendo los parámetros del controlador:

$$Kp = \frac{R2}{R1} + \frac{C1}{C2}$$

$$Ki = \frac{1}{R1 * C2}$$

$$Kd = R2 * C1$$

2. Diseñar controlador para los siguientes requerimientos:

$$r = 1$$
 $umax < 20$

$$Mfase \ge 25^{\circ}$$

Sobreimpulso = 0%

$$\boldsymbol{e_{ss}} = \boldsymbol{0}.\,\boldsymbol{05}\%$$

$$G(s) = \frac{200}{s^3 + 20s^2 + 100s + 200}$$

Solución

a. Controlador Proporcional

$$K(s) = Kp$$

Salida (Y):

$$\frac{Y}{R} = \frac{G(s)K(s)}{1 + G(s)K(s)}$$

$$\frac{Y}{R} = \frac{200 * Kp}{s^3 + 20s^2 + 100s + 200(1 + Kp)}$$

Análisis de estabilidad - Routh Hurwitz

S 3	1	100	0
S2	20	200(1+Kp)	
S1	90-10Kp	0	
S0	200(1+Kp)	0	

Condiciones a cumplir:

$$90 - 10Kp > 0$$

$$200(1 + Kp) > 0$$

$$9 > Kp > -1$$

Por ser la ganancia del controlador no negativo:

$$9 > Kp \ge 0$$

Señal de control (U):

$$\frac{U}{R} = \frac{K(s)}{1 + G(s)K(s)}$$

$$\frac{U}{R} = \frac{Kp(s^3 + 20s^2 + 100s + 200)}{s^3 + 20s^2 + 100s + 200(1 + Kp)}$$

No se logra error estacionario = 0.

b. Controlador Proporcional Integral

$$K(s) = Kp + Ki/s$$

Salida (Y):

$$\frac{Y}{R} = \frac{200 * (Kps + Ki)}{s^4 + 20s^3 + 100s^2 + 200(1 + Kp)s + 200Ki}$$

Análisis de estabilidad - Routh Hurwitz

S4	1	100	200Ki
S 3	20	200(1+Kp)	0
S2	90-10Kp	200Ki	0
S1	Α	0	0
S0	200Ki	0	0

$$90 - 10Kp > 0$$
 $9 > Kp > 0$
 $Ki > 0$
 $A = 200(1 + Kp) - \frac{2}{9 - Kp} * 200Ki$
 $A > 0$
 $Ki < 0.5 * (1 + Kp)(9 - Kp)$

Valores seleccionados:

Kp=1, Ki=1.5 (cumplen las condiciones)

Señal de control (U):

$$\frac{U}{R} = \frac{Kps^4 + (20Kp + Ki)s^3 + (100Kp + 20Ki)s^2 + (200Kp + 100Ki)s + 200Ki}{s^4 + 20s^3 + 100s^2 + 200(1 + Kp)s + 200Ki}$$

Se logra error estacionario = 0.

→ Resultado del control para Kp = 1, Ki=1.5

Tiempo de establecimiento:ta < 6s

Sobreimpulso = 0%

Umax = 1.2

Margen de fase: 79.9 > 25°

Diagrama de Bode:

Comparación con el pidtool

- 3. Comparar las respuestas controladas de las plantas.
 - 3.1. Planta con fase mínima

$$G_1(s) = \frac{s+2}{s^2+2s+5}$$

En lazo cerrado:

a. Controlador proporcional (K(s)=Kp)

Salida (Y):

$$\frac{Y_1}{R} = \frac{G_1(s)K(s)}{1 + G_1(s)K(s)}$$

$$\frac{Y_1}{R} = \frac{(s+2)Kp}{s^2 + (2+Kp)s + (5+2Kp)}$$

• Análisis de estabilidad – Routh Hurwitz:

S2	1	5+2Kp	0
S1	2+Kp	0	0
S0	5+2Kp	0	0

$$Kp > -2$$

Señal de control (U):

$$\frac{U_1}{R} = \frac{K(s)}{1 + G_1(s)K(s)}$$

$$\frac{U_1}{R} = \frac{Kp(s^2 + 2s + 5)}{s^2 + (2 + Kp)s + (5 + 2Kp)}$$

b. Controlador proporcional integral(K(s)=Kp+Ki/s)

$$\frac{Y_1}{R} = \frac{G_1(s)K(s)}{1 + G_1(s)K(s)}$$

$$\frac{Y_1}{R} = \frac{Kps^2 + (Ki + 2Kp)s + 2Ki}{s^3 + (2 + Kp)s^2 + (Ki + 2Kp + 5) + 2Ki}$$

• Análisis de estabilidad – Routh Hurwitz:

S3	1	Ki+2Kp+5	0
S2	2+Kp	2Ki	0
S1	Ki+2Kp+5-(2Ki/(2+Kp))	0	0
S0	2Ki	0	0

$$2 + Kp > 0$$

$$Ki > 0$$

$$(Ki + 2Kp + 5) - \frac{2Ki}{2 + Kp} > 0$$

Se cumple para todo Ki > 0 y Kp > 0 la estabilidad

Señal de control (U):

$$\frac{U_1}{R} = \frac{K(s)}{1 + G_1(s)K(s)}$$

$$\frac{U_1}{R} = \frac{Kps^3 + (Ki + 2Kp)s^2 + (2Ki + 5Kp)s + 5Ki}{s^3 + (2 + Kp)s^2 + (Ki + 2Kp + 5) + 2Ki}$$

→ Resultado del control para Kp = 2, Ki=3

Margen de ganancia y fase:

Diagrama de Bode del sistema controlado

Comparación con el pidtool

3.2. Planta con fase no mínima

$$G_2(s) = \frac{s-2}{s^2 + 2s + 5}$$

En lazo cerrado:

a. Controlador proporcional (K(s)=Kp)

Salida (Y):

$$\frac{Y_2}{R} = \frac{G_2(s)K(s)}{1 + G_2(s)K(s)}$$

$$\frac{Y_2}{R} = \frac{(s-2)Kp}{s^2 + (2+Kp)s + (5-2Kp)}$$

Análisis de estabilidad – Routh Hurwitz:

S2	1	5-2Kp	0
S1	2+Kp	0	0
S0	5-2Kp	0	0

$$-2 < Kp < 2.5$$

Señal de control (U):

$$\frac{U_2}{R} = \frac{K(s)}{1 + G_2(s)K(s)}$$

$$\frac{U_2}{R} = \frac{Kp(s^2 + 2s + 5)}{s^2 + (2 + Kp)s + (5 - 2Kp)}$$

b. Controlador proporcional integral(K(s)=Kp+Ki/s)Salida (Y):

$$\frac{Y_2}{R} = \frac{G_2(s)K(s)}{1 + G_2(s)K(s)}$$

$$\frac{Y_2}{R} = \frac{Kps^2 + (Ki - 2Kp)s - 2Ki}{s^3 + (2 + Kp)s^2 + (Ki - 2Kp + 5) - 2Ki}$$

• Análisis de estabilidad – Routh Hurwitz:

S3	1	Ki-2Kp+5	0
S2	2+Kp	-2Ki	0
S1	Ki-2Kp+5-(-2Ki/(2+Kp))	0	0
S0	-2Ki	0	0

$$2 + Kp > 0$$

$$Ki < 0$$

$$(Ki - 2Kp + 5) + \frac{2Ki}{2 + Kp} > 0$$

No existe Ki > 0 para que sea estable.

Por lo tanto se sigue manteniendo la condición del controlador proporcional:

$$-2 < Kp < 2.5$$

Señal de control (U):

$$\frac{U_2}{R} = \frac{K(s)}{1 + G_2(s)K(s)}$$

$$\frac{U_2}{R} = \frac{Kps^3 + (Ki + 2Kp)s^2 + (2Ki + 5Kp)s + 5Ki}{s^3 + (2 + Kp)s^2 + (Ki - 2Kp + 5) - 2Ki}$$

Probando para Kp = 2. Se establece pero no llega al setpoint(se va a negativos).

Si no consideramos probamos para Ki<0 se logra controlar:

→ Resultado del control para Kp = 0, Ki=-1

Comparación con el pidtool

Comentario de comparación:

Según los resultados obtenidos, se observa que:

- El sistema de fase mínima G1(s) se controla sin ningún problema (**r=0.5 asumido**), para las constantes seleccionadas Kp = 2, Ki=3. Con Sobreimpulso = 0%, tiempo de establecimiento Tss de 8s y un umax = 1.3.
- Sin embargo para el sistema de fase no mínima G2(s), en principio solo estable para un conjunto reducido de -2 < Kp < 2.5 y Ki <0. Además para controlar es necesario un valor negativo de Ki(no es válido comúnmente) Ki=-1 y Kp=0.

El tiempo de establecimiento es mayor que en el de fase mínima Tss = 10s.

4. Control de posicionamiento motor - tornillo sin fin:

Parámetros:

Resistencia R = 1.1 ohm

Inductancia L = 0.0001 H

Coeficiente Kt = 0.0573 N-m/Amp

Coeficiente Kb = 0.05665 V-seg/rad

Inercia I = 4.326e-5 Kg-m2

Coeficiente de fricción viscosa equivalente = 25 N-seg/m;

Masa que se desplaza m = 0.8 Kg

Radio del tornillo r = 0.01 m

Paso del tornillo sinfín = 0.0025 m Ángulo del tornillo alfa = 45 grados (45*pi/180 radianes)

4.1. Modelo matemático:

De los apuntes de clase, se obtiene la siguiente ecuación:

a. Corriente consumo del motor

$$i = \left(\frac{2\pi}{pK_t} + \frac{mr}{K_t \tan \alpha}\right) \ddot{x} + \left(\frac{cr}{K_t \tan \alpha}\right) \dot{x}$$

Sea:

$$z_1 = \frac{2\pi}{pK_t} + \frac{mr}{K_t \tan \alpha}$$

$$z_2 = \frac{cr}{K_t \tan \alpha}$$

$$i = z_1 \ddot{x} + z_2 \dot{x}$$

b. Voltaje de entrada al motor

$$v = Ri + L\frac{di}{dt} + eb$$
$$eb = Kb\dot{\theta}$$
$$eb = Kb\frac{2\pi}{p}\dot{x}$$

Se obtiene:

$$v = Lz_1\ddot{x} + (Rz_1 + Lz_2)\ddot{x} + (Rz_2 + Kb\frac{2\pi}{p})\dot{x}$$

Tomando transformada de Laplace:

$$V(s) = Lz_1 s^3 X(s) + (Rz_1 + Lz_2) s^2 X(s) + (Rz_2 + Kb \frac{2\pi}{p}) sX(s)$$

$$\frac{X(s)}{V(s)} = \frac{1}{Lz_1s^3 + (Rz_1 + Lz_2)s^2 + (Rz_2 + Kb\frac{2\pi}{p})s}$$

Comparando con la forma:

$$\frac{X(s)}{V(s)} = \frac{b_0}{a_3 s^3 + a_2 s^2 + a_1 s}$$

Siendo:

$$a_3 = Lz_1$$

$$a_2 = Rz_1 + Lz_2$$

$$a_1 = Rz_2 + Kb\frac{2\pi}{p}$$

$$a_0 = 0$$

• La corriente en función del voltaje es:

$$\frac{I(s)}{V(s)} = \frac{z_1 s^2 + z_2 s}{L z_1 s^3 + (R z_1 + L z_2) s^2 + \left(R z_2 + K b \frac{2\pi}{p}\right) s}$$
$$\frac{I(s)}{V(s)} = \frac{z_1 s^2 + z_2 s}{a_3 s^3 + a_2 s^2 + a_1 s}$$

Resultados: (Kp = 100, Ki=0) El integrador no ayuda a disminuir el tiempo de establecimiento. Y como el error es cero sin integrador no se añadió.

Margen de fase y ganancia:

Margen de ganancia obtenido = 86.7 dB > 35dB. Cumple la condición.

Se posee de un buen margen de fase y ganancia.

Diagrama de Bode, lazo cerrado:

El diagrama de bode otorga un valor de ancho de banda $BW = f = 0.1 \, Hz$. Éste valor limita a las señales de entrada que posean una frecuencia **mayor a BW**.

Señal escalón r =0.3m

Se logra un tiempo de establecimiento de 10s. Con los siguientes valores de las variables:

P = 250W. V = 22 V

Señal entrada cuadrada 1Hz, de 0 a 0.3m

```
frec = 1;
ent = r*square(2*pi*frec*t)/2+0.15;
yp = lsim(numy,deny,ent,t);
u=lsim(numu,denu,ent,t);

%salida I(corriente requerido)
numi = [A B 0];
deni = [a3 a2 a1 a0];
ip = lsim(numi,deni,up,t);
```


Debido a que la frecuencia de la señal de entrada supera el BW, entonces la señal de salida se atenúa. La potencia se sigue manteniendo dentro de los valores permisibles.

Señales sinusoidales

Debido a que la frecuencia de la señal de entrada supera el BW, entonces la señal de salida se atenúa. La potencia se sigue manteniendo dentro de los valores permisibles.