# Data Science com Python

### ▼ Módulo 5 - Modelagem Regressão

#### **Professor: Lucas Roberto Correa**

LEMBRETE: Fazer o import dos datasets usados no ambiente do colab antes de executar os comandos.

### Import dos pacotes

```
# Manipulação dados
import pandas as pd
# Visualização de dados
import seaborn as sns
import matplotlib.pyplot as plt
# Quebrar os dados
from sklearn.model_selection import train_test_split
# Feature selection
from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import RFE
# Modelos de regressão
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
# Validação cruzada
from sklearn.model selection import cross val score
# Metricas
from sklearn.metrics import mean_absolute_error, r2_score, mean_squared_error
from sklearn.metrics import make scorer
# Tuning de hiperparametros
from sklearn.model selection import GridSearchCV
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', None)
```

### ▼ Import dos metadados

link da base: <a href="https://www.kaggle.com/rashmiranu/banking-dataset-classification?">https://www.kaggle.com/rashmiranu/banking-dataset-classification?</a><a href="mailto:select=new\_train.csv">select=new\_train.csv</a></a>

```
meta = pd.read_excel('metadata.xlsx')
```

meta

|    | Feature   | Feature_Type        |                                                                                      |
|----|-----------|---------------------|--------------------------------------------------------------------------------------|
| 0  | age       | numeric             |                                                                                      |
| 1  | job       | Categorical,nominal | type of job ('admin.','blue-collar','entrepreneur','l<br>employed','services','stude |
| 2  | marital   | categorical,nominal | marital status ('divorced','married','single','unknown'; note:                       |
| 3  | education | categorical,nominal | ('basic.4y','basic.6y','basic.9y','high.school','illiterate','professiona            |
| 4  | default   | categorical,nominal | ha                                                                                   |
| 5  | housing   | categorical,nominal | I                                                                                    |
| 6  | loan      | categorical,nominal | h                                                                                    |
| 7  | contact   | categorical,nominal | contact co                                                                           |
| 8  | month     | categorical,ordinal | last contact month                                                                   |
| 9  | dayofweek | categorical,ordinal | last contact da                                                                      |
| 10 | duration  | numeric             | last contact duration, in seconds . Important note: this attribute                   |
| 11 | campaign  | numeric             | number of contacts performed during this campaign a                                  |
| 12 | pdays     | numeric             | number of days that passed by after the client was last co<br>mea                    |
| 13 | previous  | numeric             | number of contacts performed                                                         |
| 14 | poutcome  | categorical,nominal | outcome of the previous marketing ca                                                 |

### ▼ Import da base

```
df = pd.read_csv('new_train.csv', sep=',')
df.head()
```

| age |    | age job mar  |         | marital education d |         | default housing |    | contact   | month |
|-----|----|--------------|---------|---------------------|---------|-----------------|----|-----------|-------|
| 0   | 49 | blue-collar  | married | basic.9y            | unknown | no              | no | cellular  | nov   |
| 1   | 37 | entrepreneur | married | university.degree   | no      | no              | no | telephone | nov   |
| 2   | 78 | retired      | married | basic.4y            | no      | no              | no | cellular  | jul   |

### ▼ Feature engineering - Criando novas variáveis

- - , <u>,</u> , ,

df.corr()

|          | age       | duration  | campaign  | pdays     | previous  |
|----------|-----------|-----------|-----------|-----------|-----------|
| age      | 1.000000  | -0.001841 | 0.003302  | -0.032011 | 0.020670  |
| duration | -0.001841 | 1.000000  | -0.075663 | -0.047127 | 0.022538  |
| campaign | 0.003302  | -0.075663 | 1.000000  | 0.053795  | -0.079051 |
| pdays    | -0.032011 | -0.047127 | 0.053795  | 1.000000  | -0.589601 |
| previous | 0.020670  | 0.022538  | -0.079051 | -0.589601 | 1.000000  |

```
df['poutcome'].value_counts()
```

nonexistent 28416 failure 3429 success 1105

Name: poutcome, dtype: int64

df['previous'].value\_counts()

Name: previous, dtype: int64

Criando uma nova variável que traz a escala de dificuldade de contato, baseando-se em poutcome e previous

```
df['difficulty'] = -1 # para desconhecido
df.loc[(df['poutcome'] == 'success') & (df['previous'].between(0,1)), 'difficulty'] = 0 #
df.loc[(df['poutcome'] == 'success') & (df['previous'].between(2,4)), 'difficulty'] = 1 #
df.loc[(df['poutcome'] == 'success') & (df['previous'].between(5,7)), 'difficulty'] = 2 #
df.loc[(df['poutcome'] == 'nonexistent') & (df['previous'] > 7), 'difficulty'] = 2 # para
df.loc[(df['poutcome'] == 'failure'), 'difficulty'] = 2 # para impossivel
```

-1

df['difficulty'].value counts()

28416

```
2
               3446
        0
                697
        1
                391
       Name: difficulty, dtype: int64
▼ ABT
  df.columns
       Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
               'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays',
               'previous', 'poutcome', 'y', 'difficulty'],
              dtype='object')
  df.isnull().sum()
                       0
       age
       job
                       0
       marital
       education
       default
                       0
       housing
                       0
       loan
       contact
                       0
       month
                       0
       day_of_week
                       0
       duration
                       0
       campaign
                       0
                       0
       pdays
       previous
                       0
       poutcome
                       0
       difficulty
       dtype: int64
  df.columns
       Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
               'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays',
               'previous', 'poutcome', 'y', 'difficulty'],
              dtype='object')
  df.dtypes
       age
                        int64
                       object
       job
       marital
                       object
       education
                       object
       default
                       object
       housing
                       object
       loan
                       object
```

| object |
|--------|
| object |
| object |
| int64  |
| int64  |
| int64  |
| int64  |
| object |
| object |
| int64  |
|        |
|        |

Separando as variáveis explicativas da variável resposta

var\_resp.value\_counts().hist()

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f1f0ab2ca90>



explicativas.head()

|                                                                                                   |    | job          | marital    | education         | default | housing | loan | contact   | month | day |
|---------------------------------------------------------------------------------------------------|----|--------------|------------|-------------------|---------|---------|------|-----------|-------|-----|
|                                                                                                   | 0  | blue-collar  | married    | basic.9y          | unknown | no      | no   | cellular  | nov   |     |
|                                                                                                   | 1  | entrepreneur | married    | university.degree | no      | no      | no   | telephone | nov   |     |
| Trata                                                                                             | me | nto de encon | ding das v | ariáveis categóri | cas     |         |      |           |       |     |
|                                                                                                   | 2  | admin        | marriad    | university degree | 20      | 1/00    | 20   | talanhana | may   |     |
| <pre>expl_cat = explicativas[['job', 'marital', 'education', 'default', 'housing', 'loan',</pre>  |    |              |            |                   |         |         |      |           |       |     |
| <pre>expl_num = explicativas[['duration', 'campaign', 'pdays', 'previous']]</pre>                 |    |              |            |                   |         |         |      |           |       |     |
| <pre>expl_cat_encoding = pd.get_dummies(expl_cat, prefix_sep='_', columns=expl_cat.columns,</pre> |    |              |            |                   |         |         |      | ,         |       |     |

expl\_cat\_encoding.head()

|   | job_blue-<br>collar | job_entrepreneur | job_housemaid | job_management | job_retired | <pre>job_self employe</pre> |
|---|---------------------|------------------|---------------|----------------|-------------|-----------------------------|
| 0 | 1                   | 0                | 0             | 0              | 0           |                             |
| 1 | 0                   | 1                | 0             | 0              | 0           |                             |
| 2 | 0                   | 0                | 0             | 0              | 1           |                             |
| 3 | 0                   | 0                | 0             | 0              | 0           |                             |
| 4 | 0                   | 0                | 0             | 0              | 1           |                             |

Resultado a ser considerado na modelagem

explicativas\_tratada.head()

|   | duration | campaign | pdays | previous | job_blue-<br>collar | job_entrepreneur | job_housemaid | : |
|---|----------|----------|-------|----------|---------------------|------------------|---------------|---|
| 0 | 227      | 4        | 999   | 0        | 1                   | 0                | 0             |   |
| 1 | 202      | 2        | 999   | 1        | 0                   | 1                | 0             |   |
| 2 | 1148     | 1        | 999   | 0        | 0                   | 0                | 0             |   |
| ^ | 400      | ^        | 000   | ^        | ^                   | ^                | ^             |   |

#### Feature selection

Seleção de variáveis usando DecisionTreeRegressor para variáveis categóricas

```
dt = DecisionTreeRegressor(random_state=42)

tree_selector = SelectFromModel(dt, max_features=5)

tree_selector.fit(expl_cat_encoding, var_resp)

tree_support = tree_selector.get_support()

tree_feature = expl_cat_encoding.loc[:, tree_support].columns.tolist()

tree_feature

['job_retired', 'marital_single', 'default_unknown', 'housing_yes', 'loan_yes']
```

Seleção de variáveis usando RandomForestRegressor para vars numéricas

Base a ser considerada pós feature selection

```
expl_num_feature = expl_num[['duration', 'campaign', 'pdays', 'previous']]

expl_cat_feature = expl_cat_encoding[['job_retired', 'marital_single', 'default_unknown',

explicativas_modelagem = expl_num_feature.merge(expl_cat_feature, left_index=True, right_i

explicativas_modelagem.head()
```

|   | duration | campaign | pdays | previous | job_retired | marital_single | default_unknown |
|---|----------|----------|-------|----------|-------------|----------------|-----------------|
| 0 | 227      | 4        | 999   | 0        | 0           | 0              | 1               |
| 1 | 202      | 2        | 999   | 1        | 0           | 0              | 0               |
| 2 | 1148     | 1        | 999   | 0        | 1           | 0              | 0               |
| 3 | 120      | 2        | 999   | 0        | 0           | 0              | 0               |
| 4 | 200      | ^        | 000   | ^        | A           | ^              | ^               |

#### Quebra do dataset entre treino e teste

### → O algoritmo

#### cross validation

```
y=y_treino,
cv=3,
scoring=make_scorer(mean_absolute_error))
```

```
resultado
    array([7.55056409, 7.55194655, 7.59332758])

tree.fit(x_treino, y_treino)
    DecisionTreeRegressor(random_state=42)

mean_absolute_error(y_treino, tree.predict(x_treino))
    2.530197445929074

rf.fit(x_treino, y_treino)
    RandomForestRegressor(n_estimators=400, random_state=42)

mean_absolute_error(y_treino, rf.predict(x_treino))
    3.989521284731999
```

### Analisando overfitting

```
mean_absolute_error(y_teste, rf.predict(x_teste))
     7.524939169740626
y_teste.head()
              28
     20628
     4344
              38
     20933
             41
     4641
              38
     4638
              35
     Name: age, dtype: int64
rf.predict(x teste)
     array([42.396 , 43.47320696, 36.41666667, ..., 27.97383929,
            35.92128472, 43.92775 ])
```

## ▼ Tuning de hiperparametros

# dicionario da random Forest

```
rf grid dc = {
    'n estimators':[50,100,200],
    'bootstrap':[True,False],
    'random_state':[42]
}
rf_grid_dc
     {'bootstrap': [True, False],
      'n_estimators': [50, 100, 200],
      'random_state': [42]}
rf_grid = GridSearchCV(rf,
                      rf_grid_dc,
                      cv=2.
                      scoring=make_scorer(mean_absolute_error))
rf_grid
     GridSearchCV(cv=2,
                  estimator=RandomForestRegressor(n_estimators=400, random_state=42),
                  param_grid={'bootstrap': [True, False],
                               'n_estimators': [50, 100, 200], 'random_state': [42]},
                  scoring=make_scorer(mean_absolute_error))
rf_grid.fit(x_treino, y_treino)
     GridSearchCV(cv=2,
                  estimator=RandomForestRegressor(n_estimators=400, random_state=42),
                  param_grid={'bootstrap': [True, False],
                               'n_estimators': [50, 100, 200], 'random_state': [42]},
                  scoring=make_scorer(mean_absolute_error))
rf grid.best params
     {'bootstrap': False, 'n_estimators': 200, 'random_state': 42}
rf grid.best score
     9.142200399167528
Validando a performance em teste
mean absolute error(y teste, rf grid.predict(x teste))
     8.819379929397304
```

Fazendo o treinamento com tuning de hiperparametros para outro modelo

```
gb = GradientBoostingRegressor(n_estimators=200,
```

```
random state=42)
```

```
#dicionario do GB
gb_grid_dc = {
    'max_depth':[1,3,8],
    'n_estimators':[10,20],
    'random state':[42]
}
gb grid = GridSearchCV(gb,
                      gb_grid_dc,
                      scoring=make_scorer(mean_absolute_error),
gb_grid
     GridSearchCV(estimator=GradientBoostingRegressor(n_estimators=200,
                                                       random_state=42),
                  n jobs=4,
                  param_grid={'max_depth': [1, 3, 8], 'n_estimators': [10, 20],
                               'random_state': [42]},
                  scoring=make_scorer(mean_absolute_error))
gb_grid.fit(x_treino, y_treino)
     GridSearchCV(estimator=GradientBoostingRegressor(n estimators=200,
                                                       random_state=42),
                  n jobs=4,
                  param_grid={'max_depth': [1, 3, 8], 'n_estimators': [10, 20],
                               'random_state': [42]},
                  scoring=make_scorer(mean_absolute_error))
gb_grid.best_params_
     {'max_depth': 1, 'n_estimators': 10, 'random_state': 42}
Podemos especificar no Tuning qual a métrica que se quer otimizar
gb_grid_r2 = GridSearchCV(gb,
                      gb grid dc,
                      cv=2,
                           scoring=make scorer(r2 score))
gb_grid_r2.fit(x_treino, y_treino)
     GridSearchCV(cv=2,
                  estimator=GradientBoostingRegressor(n_estimators=200,
                                                       random state=42),
                  param_grid={'max_depth': [1, 3, 8], 'n_estimators': [10, 20],
                               'random state': [42]},
                  scoring=make_scorer(r2_score))
```

#### ▼ Métricas

#### **RSME**

```
mean_squared_error(y_teste, gb_grid_r2.predict(x_teste), squared=True)
70.96775109108682
```

