HOMEWORK 2

- 1. Do the vectors (1, 2), (2, 1), (2, 4), (4, 2) span \mathbb{Q}^2 ? What about (1, 2), (2, 3), (3, 6), (4, 8)?
- 2. Consider the vectors $(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6), (4, 5, 6, 7) \in_{\mathbb{R}} \mathbb{R}^4$.
- a) Are they linearly independent?
- b) Does (-3, -2, -1, 0) belong to the subspace of \mathbb{R}^4 spanned by these vec-
- c) Find the subspace of \mathbb{R}^4 spanned by these vectors and determine its dimension
- d) Find a basis for the subspace from c).
 - 3. Let $V = \{(a, b, c, d) \in \mathbb{Q}^4 | 2a + b = c, a + 2b 3c + d = 0\}.$
- a) Show that $V \leq_{\mathbb{Q}} \mathbb{Q}^4$.
- b) Find $\dim_{\mathbb{Q}} V$.
- c) Find a basis for V.
 - 4. Let $\mathcal{B} = ((1,1,1), (1,1,2), (1,2,3)).$
- a) Is \mathcal{B} a basis in $\mathbb{Q}\mathbb{Q}^3$?
- b) Is \mathcal{B} a basis in $\mathbb{C}^{\mathbb{C}^3}$?
- c) Is \mathcal{B} a basis in $\mathbb{R}^{\mathbb{C}^3}$?
- 5. Let $\mathcal{B} = ((1,0,1),(0,1,1),(1,1,0))$ and $\mathcal{B}' = ((2,0,1),(1,2,0),(0,1,2))$. Show that \mathcal{B} and \mathcal{B}' are bases in \mathbb{R}^3 and find the change of base matrices from \mathcal{B} to \mathcal{B}' and from \mathcal{B}' to \mathcal{B} .
 - 6. Which of the following functions are linear?
- a) $f: \mathbb{Q} \to \mathbb{Q}, f(t) = t + 3$
- b) $g: \mathbb{R}^3 \to \mathbb{R}$, g(a, b, c) = bc) $h: \mathbb{C} \to \mathbb{C}^3$, h(u) = (u, 2u, 0)
- d) $det: \mathcal{M}_n(\mathbb{Q}) \to \mathbb{Q}$
- e) $Tr: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$
- f) $d: \{f: \mathbb{R} \to \mathbb{R} | f \text{ is derivable } \} \to \{f: \mathbb{R} \to \mathbb{R}\}, d(f) = f'$
- g) $m: \mathbb{C} \to \mathbb{R}, m(z) = |z|$
- i) $c: \mathbb{C} \to \mathbb{C}, c(z) = \overline{z}$
- j) $ev_3: k[X] \to k, ev_3(P) = P(3)$
 - 7. Find the kernel and the image of each linear function from exercise 6.

- 8. Consider the bases $\mathcal{B}_a^n = (1, X a, (X a)^2, \dots, (X a)^n)$ in $_k k[X]_n = \{f \in k[X] | \deg f \leq n\}$. Find the change of base matrix from \mathcal{B}_7^3 to \mathcal{B}_5^3 , and, more generally, from \mathcal{B}_{α}^{n} to \mathcal{B}_{β}^{n} .
- 9. Write the change of base matrix from $\mathcal{B}=(e_3,e_4,e_5,e_6,e_7,e_1,e_2)$ to the canonical basis $(e_1,e_2,e_3,e_4,e_5,e_6,e_7)$ of $\mathbb{Q}\mathbb{Q}^7$.
- 10. Write $M_{\mathcal{B}}^{\mathcal{C}}(f)$, where: a) $f: \mathbb{R}^3 \to \mathbb{R}^2$, f(a,b,c) = (a-b+3c,2a+b), $\mathcal{B} = ((1,0,1),(1,1,0),(0,1,1))$, C = ((1, 2), (3, 4)).
- b) $f: k[X]_5 \to k[X]_5$, f(P) = P', $\mathcal{B} = \mathcal{C} = \mathcal{B}_{-3}^5$ (see exercise 8).