D One Class SVM D LOF

One-Class SVM one-Class SVM 3 Outlier Detection

2) There is only one Cadegory

Developing that is not an inlier is considered Outlier

slack. Eq.

One-Class SVM

Find radius of of hypersphere such that it captures all the indien points

togotmorbasia C D Very Slow DAS h CNO of Data-points increases & time - complexity increases as well I many Hyperparamets to three Lokerne () Cambda

Local Out Dier Factor

inspired by KNN + Density

LOFA Aug Density of Neighbors

Density of Point A

 $\subset x$:

 \mathcal{D}^{B}

di / A

Neighbourn = 3

Dn,

y 22

DN3

ang (D)

 $A^{2}(D_{\lambda}) << D_{A}$

2

Da

Noighbourn = 3

y 33

D 92

Jans (D)

arg (D'x) < DB

 $\leq \mathcal{D}(x)$ rot (B) 7 SCE NEW $(K) \times D$ $\leq \mathcal{D}(x)$ Neigbookery $x \in N^{k}(B)$ Density $(\mathsf{K}) \times \mathcal{D}_{\mathbf{S}}$ Donay 8 Density Lof == 1 : A has some density as it's Neighbour トロチン1: A Ras Lower Density as it's Neigh bour 13 FOL >21:4 A is an oullier, since it's denkity is very Low Compared to neighbors ,4 rot< 1: A Ras Higher Density as it's Neigh bour

Do what is the ideal throughold
beyond which we say the point
LOF->10, 100, 1000
Contamination Factor
For less it got
Step 2: Sout them
Step 3: Nr.
Select Top N.V. LOF ports
Different ways of Calculations Density
\
E EN B (A B) BENDA (A B) BENDA
E EN EN (A) BEN'E
D K- Distance : Distance of kth point

3 rd 2 d3

Reachabillity Distance

(B,A) NDO

max & dist (A,B), K dist (B) }

for 4==2

~ (B, A) =>

Capbiga Dxom

e d as

gar K==3: rd3(H'B)

max (d_{AB}, d3) => 23

Local Reachability Density

E(A) Dod

BENIED SOLLED

PAR

¥

KDQ (A) pro Toda (A, B) > max(DAB, DB od 2 (A, C) 5 max (DACI da) LAD (A) rda (A,B)+ rd2 (A,C) (x 2 Fod K(H) and-veighporkson A le anadolgism le los l

Disadrantages & LOF

Data E Biciently

Extreene Imbalance Classification

Frand Detect > 99.9 Vali

Detect > 0.10 attent

Training -> Unlabeller

5 Hyperparameter > 0.05%

2,50.0 C Por +621

OD RD (A,B)

5 5 (2) sh (A/B), dist_(B)

QoRD(BoA)

D max (2° 3)

D max (2° 4), 2027

D