Contents

Integrity vs Security	2
Relational Model Constraints	2
Itegrity Constraints	2
Key Constraint	2
Entity Integrity Constraint	3
Referential Integrity	3
NULL Keys	3
Referential Integrity	3
Constraint Violation	4
Insert	4
Delete	4
Cascading Deletes	4
Update	5
Cascading Updates	5
Alternatives to Cascading	5
Constraints in SQL	5
Primary Key	6
Unique	6
Not Null	6
Check	6
Check Clause	7
Referential Integrity	7
Violation	7
Naming Constraints	7
Assertions	8
Evaluation	8
Triggers	8
Assertions vs Triggers	9

Integrity vs Security

- Integrity and Security are related but they are not the same thing
 - Integrity is concerned with accidental corruption
 - Security is concerned with *deliberate* corruption
- Integrity
 - Integrity Constraints
- Security
 - Security Policies
 - Access Control

Relational Model Constraints

- Constraints expressed in the Relational Schema
 - Explicit Constraints
- Constraints that cannot be expressed in the Relational Schema
 - Semantic Constraints
 - Can be expressed in SQL in some cases
 - Usually enforced by the application programs

Itegrity Constraints

- Three types of integrity constraints are considered part of the relational model:
 - Key
 - Entity Integrity
 - Referential Integrity
- The DBMS must be able to enforce these constraints

Key Constraint

- Specifies that there may not be any ducplicate entries in key attributes
 - Primary Key
 - Candidate Keys
- Keys are used to uniquely identify a tuple
 - Having a duplicate value in a Key implies that we cannot uniquely identify some tuples

Entity Integrity Constraint

- Specifies that there may not be any NULL values in the Primary Key attribute
 - The Primary Key is used to uniquely identify each tuple in a relation
 - Having a NULL in a Primary Key implies that be cannot identify some tuples

Referential Integrity

- Entity constraints are specified on individual relations
- Referential Integrity constraints are specified between two relations
 - Maintains consistency among tuples in the two relations
 - A tuple in one relation that refers to another relation, must refer to an existing typle in that relation
- A Foreign Key formally specifies a Referential Integrity Constraint between two relations

NULL Keys

- As per the Entity Integrity constraint
 - No part of a Primary Key can be NULL
- However, Foreign Keys in certain circumstances may be NULL
 - A decision must be made during schema design as to where it is valid for the foreign key to be NULL at any point

Referential Integrity

- When defining an attribute as a Foreign Key
 - You must also specify whether or not the foreign key is allowed to contain NULLs
- In the case of a composite Foreign Key
 - If the Foreign Key is allowed to contain NULLs
 - Then either all the component attributes should be NULL or none of them NULL
 - * In order to enforce referential integrity

Constraint Violation

- There are three basic operations that modify that state of relations in a DB
 - Insert
 - Update
 - Delete
- These operations should not violate the integrity constraints specified for the DB
 - Key, Entity, Referential

Insert

- Insert provides a list of attribute values for a new tuple t that is to be added to relation R
- Insert can violate all the integrity constraints that we have discussed
 - Key
 - Entity Integrity
 - Referential Integrity

Delete

- To specify a deletion, a condition on the attributes of a relation is created which selections one or more tuples to be deleted
- The Delete operation can only violate the Referential Integrity constraint

Cascading Deletes

- An option to address Delete operations which violate Referential Integirty is to *cascade*, or propagate, the deletion
- \bullet The DBMS could automatically delete the offending tuples from WORKS_ON
 - $-\,$ In addition to the original tuple in EMPLOYEE
 - This must be implemented carefully, as it can lead to unintential loss of data

Update

- An update operation is used to change the values of one or more attributes of a relation
- To specify an update, a condition on the attributes of a relation is created which selects one or more tuples to be modified
- Updates can violate all the integrity constraints that we have discused
 - Key
 - Entity Integrity
 - Referential Integrity

Cascading Updates

- As with Delete, an option to address Update operations which violate Referential Integirty is to *cascada*, or propagate, the update
- The DBMS could automatically update the relations which have a Foreign Key to Ssn
 - WORKS_ON, DEPARTMENT, DEPENDENT, EMPLOYEE

Alternatives to Cascading

- The alternatives to the cascading of updates or deletes are
 - Rejection of the update or delete as long as foreign key references exist
 - Update of the corresponding foreign key to NULL
 - Update of the corresponding foreign key to some default value

Constraints in SQL

- Constraints specified as part of relation, or table, definition are called "table constraints"
 - They are specified on each table individually
- $\bullet\,$ They are typically specified during able creation in the CREATE TABLE statement
 - Can be added later using ALTER TABLE
- Constraints that affect more than one table are called Assertions

Primary Key

- The PRIMARY KEY constraints specifies the attribute(s) that form the Primary Key
 - For a single attribute, the constraint can directly follow the attribute specification
 - * Dnumber INT PRIMARY KEY
 - Composite keys can be specified at the end of the CREATE TABLE statement
 - * PRIMARY KEY (Dnumber, Dlocation)

Unique

- As we have seen, there is often more than one candidiate key in a relation
- Secondary keys can be specified using the UNQIEU constraints
 - For a single attribute, the constraint can directly follow the attribute specification
 - * Engine_num INT UNIQUE
 - Composite secondary keys can be specified at the end of the CREATE TABLE statement
 - * UNIQUE (Licence Yr, Licence Mth, Licence Day)

Not Null

- By default SQL allows NULLs as attribute values
 - A NOT NULL constraint may be specified if NULLs are not permitted for a specific attribute
 - This is always the case for any attribute that forms part of the Primary Key

CREATE TABLE Person (PPS char(8) NOT NULL PRIMARY KEY, Fname varchar(255) NOT NULL, Lname varchar(255), Phone int);

Check

- More complex constraints can be specified using the CHECK clause
 - Used to restrict the values that can be entered for an attribute
- Each CHECK is specified on one or more attributes from a single table
- The CHECK is performed for every tuple that is inserted or modified

Check Clause

- CHECK clauses are specified within the CREATE TABLE statement
- They can be specified on an individual attribute
 - Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21)
- Or on multiple attributes from the same table
 - CHECK (Dept_create_date <= Mgr_start_date)

Referential Integrity

- Referential Integrity is specified using the FOREIGN KEY clause
 - Specified as the end of the CREATE TABLE statement
 - * FOREIGN KEY (Dno) REFERENCES REPARTMENT (Dnumber)
 - Can also have composite Foreign Keys
 - * FOREIGN KEY (artist, album) REFERENCES ALBUM (artist, name)

Violation

- As discussed earlier, Referential Integrity can be violated on update, insert or delete
 - Default action in SQL is to reject the operation
- It is possible to specify an alternate action by attaching a clause to each Foreign Key
 - SET NULL
 - CASCADE
 - SET DEFAULT

Naming Constraints

- Constraints can be named using CONSTRAINT
 - Names must be unique within the schema

Assertions

- An Assertion is a stand-alone constraint in a schema
 - Used to specify a restricition that affects more than one table
- Table constraints (using CHECK) can be used to specify multiple table constraints, however, it is better practice to use Assertions:
 - Table constraints are only evaluated if and only if the table to which is it attached has some data
- Assertions are
 - Associated with the relations in question
 - Evaluated before an operation can be performed on those relations
 - Violated if false and the operation is not allowed
 - Define valid states of a DB
 - Actually stored as rows in the ASSERTIONS table which is part of the system catalog

Evaluation

- Assertions are checked at the end of each SQL statement
 - A transaction can be more than one SQL statement
 - Assertion evaluation can be deferred until the end of a transaction, but is always evaluated prior to the completion of a transaction
- If an assertion fails, the DBMS returns an error message and the SQL statement is rejected

Triggers

- Triggers are Event-Condition-Action rules
 - Allow constraints to be checked on specified events and resulting actions to be invoked
- Triggers are only tested when certain events occur
 - e.g. Insert, update, etc.
- When triggered, a specified condition is tested
 - If the condition does not hold, then no further action is taken in response to the event
 - $-\,$ If the condition is satisfied, defined actions associated with the trigger are performed by the DBMS

Assertions vs Triggers

- Assertions
 - Do not modify the data, only check certain conditions
- Triggers
 - Are more powerful because they can check conditions and also modify the data
 - Are linked to specific tales and specific events
- All assertions can be implemented as triggers
- Not all triggers can be implemented as assertions
- Oracle does not have assertions