Deferred prefill for throughput maximization in LLM inference

Moonmoon Mohanty

31-Mar-2025

IISc PI: Parimal Parag

Team members (IISc): Gautham Bolar, Preetam Patil

Team members (IBM): UmaMaheswari Devi, Felix George, Pratibha Moogi

Motivation

Cost, energy reduction

Better user experience

LLM inference

Prefill and Decode times(ShareGPT dataset)

Prefill time

Decode time

Prefill
Prefill
Prefill

Prefill	Decode	
Prefill	Decode	
Prefill	Decode	
Prefill	Decode	

Prefill	Decode	Delay
Prefill	Decode	Delay
Prefill	Decode	Delay
Prefill	Decode	Delay

Prefill	Decode	Delay	Pause
Prefill	Decode	Delay	Pause
Prefill	Decode	Delay	Pause
Prefill	Decode	Delay	Prefill

Prefill	Decode	Delay	Pause	Decode
Prefill	Decode	Delay	Pause	Decode
Prefill	Decode	Delay	Pause	Decode
Prefill	Decode	Delay	Prefill	Decode

Prefill	Decode	Delay	Pause	Decode
Prefill	Decode	Delay	Pause	Decode
Prefill	Decode	Delay	Pause	Decode
Prefill	Decode	Delay	Prefill	Decode

Challenge: Frequent prefills = larger switching delay.

Solution: Prefill after multiple departures

Key question

Goal: Optimal departure threshold for average throughput maximization?

System Model

Figure 2: System model

$$\rho(K)^{-1} \approx \frac{1}{K} \left(c_p + c_d \frac{\ln(1 - \frac{K}{C})}{\ln(1 - \alpha)} \right) + \frac{t_d}{\alpha} + \frac{t_p d_0}{N}$$

K: departure threshold c_p : scheduling overhead t_p : i/p processing time c_d : o/p token compute t_d : memory slowdown

Experimental validation

Figure 3: Performance metrics for the Granite model with the ShareGPT dataset.

Experimental validation

Figure 4: Performance metrics for the LLaMA3 model with the ShareGPT dataset.

Conclusion

- Departure threshold-based scheduling algorithm.
- Analytical model for inference system, deduced closed form expression for throughput.
- Proved existence of optimal departure threshold that maximizes the system throughput.
- Characterization of LLM inference system for system parameters.
- Experimental validation with vLLM inference server and NVIDIA A100 GPU.
- Key observation: Proposed policy leads to 13% improvement in average throughput accompanied by 14% reduction in average prompt completion time.