Ex 15 p 282

On a deux ensembles : A est une partie (on dit aussi sous-ensemble) de E. Cela se ressemble par un diagramme de Venn comme vous pouvez le voir dans le cours.

On sait que
$$p=rac{n_A}{n_E}$$
 et on cherche n_A .

Donc, on va multiplier à gauche et à droite de l'égalité par $n_{\!\scriptscriptstyle E}$.

On trouve : $pn_E=n_A$. Avec les valeurs numériques de l'énoncé, on obtient : $n_A=0.175\times 680=119$

Ex 17 p 282

Pour calculer des pourcentages d'une quantité, on fait le pourcentage fois la quantité.

a) 27% **de** 300€ est obtenu en faisant :27% × 300 =
$$\frac{27}{100}$$
 × 300 = $\frac{27}{100}$ × 300 = 27 × 3 = 81

b) 46% **de** 650 tables :
$$46\% \times 650 = \frac{46}{100} \times 650 = 0,46 \times 650 = 299$$

c) 70% **de** 750 g:
$$70\% \times 750 = \frac{70}{100} \times 750 = 0.7 \times 750 = 525$$

d) 32% **de** 2,5 L: 32% × 2,5 =
$$\frac{32}{100}$$
 × 2,5 = 0,32 × 2,5 = 0,8

Ex 25 p 283

Taux	47 %	-4,5 %	90 %	-32 %
Coefficient	1,47	0,955	1,9	0,68

Ex 26 p 283

Taux	9 %	-40 %	-63 %	114 %
Coefficient	1,09	0,6	0,37	2,14

Ex 23 p 283

On calcule ici un taux de variation entre une valeur initiale
$$Q_1$$
 et une valeur finale Q_2 . a) $Q_1=36,\ Q_2=63$. Augmentation de $\frac{Q_2-Q_1}{Q_1}=\frac{63-36}{36}=0,75=\frac{75}{100}=75\,\%$

b)
$$Q_1 = 1.2$$
, $Q_2 = 0.9$. Diminution de $\frac{Q_2 - Q_1}{Q_1} = \frac{0.9 - 1.2}{1.2} = -0.25 = -\frac{25}{100} = -25 \%$

c)
$$Q_1 = 40$$
, $Q_2 = 32$. Diminution de $\frac{Q_2 - Q_1}{Q_1} = \frac{32 - 40}{40} = -0.2 = -\frac{20}{100} = -20\%$

d)
$$Q_1 = 52.5$$
, $Q_2 = 126$. Augmentation de $\frac{Q_2 - Q_1}{Q_1} = \frac{126 - 52.5}{52.5} = 1.4 = \frac{140}{100} = 140 \%$

Ex 65 p 286

La valeur initiale vaut 111€. Il y a une baisse de 11€ ce qui nous amène à 100€, la valeur finale.

On applique notre formule :
$$t = \frac{111 - 100}{111} = \frac{11}{111} = 0,099099... = 9,9 \%$$

Activité 4 p 277 : multiplication d'utilisateurs

Année	2016	2017	2018
Utilisateurs	560	716	868

1)

a. Entre 2016 et 2017 :
$$t = \frac{716 - 560}{560} = 0,2785... = 27,9 \%$$
 au pourcent près Entre 2017 et 2018 : $t = \frac{868 - 716}{716} = 0,2122... = 21,2 \%$ au pourcent près

b. Entre 2016 et 2018 :
$$t = \frac{868 - 560}{560} = 0,55 = 55\%$$
 au pourcent près

2)

a. Calculons les coefficients multiplicateurs :

Entre 2016 et 2017 :
$$t=27.9\,\%$$
 donc $C_1=1+27.9\,\%=1+0.279=1.279$ Entre 2017 et 2018 : $t=21.2\,\%$ donc $C_2=1+21.2\,\%=1+0.212=1.212$

b. Calculons C_3 . Entre 2016 et 2018, on a trouvé : $t=55\,\%$.

Donc
$$C_3 = 1 + 55\% = 1 + 0.55 = 1.55$$
.

On calcule $C_1 \times C_2 = 1,279 \times 1,212 = 1,550$ au pourcent près

On constate que $C_3 = C_1 \times C_2$

La conclusion est que pour obtenir un taux de variation global, il suffit de multiplier les **coefficients multiplicateurs** entre eux. On extrait ensuite directement le taux de variation du coefficient multiplicateur global.