PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

1. KLEINIAN SINGULARITIES

Problem 1.1. Let G be a finite subgroup of $SO_3(\mathbb{R})$. Consider its action on the unit sphere. Show that any non-unit element of G fixes a unique pair of opposite points and that the stabilizer of each point P is cyclic of some order, say, n_P . Choose representatives P_1, \ldots, P_k of orbits with non-trivial stabilizers, one in each orbit. Show that $2\left(1-\frac{1}{n}\right)=\sum_{i=1}^k\left(1-\frac{1}{n_{P_i}}\right)$. Use this to show that the finite subgroups of $SO_3(\mathbb{R})$ are precisely the following:

- (1) The cyclic group of order n generated by a rotation by the angle of $2\pi/n$.
- (2) The dihedral group of order 2n with $n \ge 2$: the group of rotational symmetries of a regular n-gon on the plane inside of the 3D space (a regular 2-gon= a segment).
- (3) The group of rotational symmetries of the regular tetrahedron isomorphic to the alternating group A_4 .
- (4) The group of rotational symmetries of the regular cube/octahedron isomorphic to the symmetric group S_4 .
- (5) The group of rotational symmetries of the regular dodecahedron/icosahedron isomorphic to A_5 .

Problem 1.2. Use the previous problem to deduce that the complete list of finite subgroups $SL_2(\mathbb{C})$ up to conjugacy is as follows.

- (A_r) The cyclic group of order r+1, i.e., $\left\{\begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{pmatrix} \middle| \epsilon^{r+1} = 1 \right\}$.
- (D_r) The dihedral group of order $4(r-2), r \geqslant 4$: $\left\{ \begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{pmatrix}, \begin{pmatrix} 0 & \epsilon \\ -\epsilon^{-1} & 0 \end{pmatrix} \middle| \epsilon^{2(r-2)} = 1 \right\}$.
- (E_6) The double cover of $A_4 \subset SO_3(\mathbb{R})$.
- (E_7) The double cover of $S_4 \subset SO_3(\mathbb{R})$.
- (E_8) The double cover of $A_5 \subset SO_3(\mathbb{R})$.

Problem 1.3. Compute the McKay graph for $\Gamma \subset SL_2(\mathbb{C})$ of type D_r .

Problem 1.4. This problem discusses the Kleinian group of type E_6 .

- 1) We start with a construction. Take the group Q_8 of unit quaternions. It has elements $\{\pm 1, \pm i, \pm j, \pm k\}$. Show that the cyclic group \mathbb{Z}_3 acts on Q_8 by automorphisms in such a way that the generator ω acts as follows: $\omega(-1) = -1, \omega(i) = j, \omega(j) = k, \omega(k) = i$. Embed the semi-direct product $\Gamma := \mathbb{Z}_3 \rtimes Q_8$ into $\mathrm{SL}_2(\mathbb{C})$. Further, show that $\Gamma/\{\pm 1\} \cong A_4$.
- 2) Show that Γ has 3 one-dimensional, 3 two-dimensional and 1 three-dimensional irreducible representations.
 - 3) Compute the McKay graph for Γ .

Problem 1.5. Show that for $\Gamma \subset \operatorname{SL}_2(\mathbb{C})$ of type D_r we have $\mathbb{C}[x,y]^{\Gamma}/\cong \mathbb{C}[x_1,x_2,x_3]/(x_1^{r-1}+x_1x_2^2+x_3^2)$.