

به نام خدا

دانشگاه تهران پردیس دانشکده های فنی دانشکده مهندسی برق و کامپیوتر

تمرین شمارهی 2 بخش کتبی

مدرسین: دکتر فدائی دکتر یعقوبزاده

نگارش: فاطمه محمدی 810199489

3	بخش کتبی Bayes' Nets
3	سوال اول
3	سوال اول
3	الف)
	ب)
3	ج)
4	(১
7	سوال اول
7	الف)
7	ب)
8	ج)
0	

Bayes' Nets

سوال اول

الف)

Step 1: Joining factor

0	W	P(O,W)
+	+	0.45
+	-	0.05
-	+	0.1
-	-	0.4

Step 2: Marginalization:

W	P(W)
+	0.55
-	0.45

ب)

$$P(+o, -w, +f, -r, +a) = P(+o) P(-w|+o) P(+f|+o, -w) P(-r|+o, -w, +f) P(+a|+o, -w, +f, -r)$$

$$= P(+o) P(-w|+o) P(+f|+o, -w) P(-r) P(+a|+f, -r)$$

$$= 0.5 * 0.1 * 0.6 * 0.8 * 0.7 = 0.0168$$

ج)

1. درصورت دانستن F، احتمال E از E0 مستقل است. (فرض شده تصادف کردن در جاده، همان تصادف خوردو باشد.) درست؛ هر نود به شرط دانستن والدانش، از دیگر نود های غیر نوادگانش مستقل میشود. در اینجا نیز E1 والد E3 است و E3 نیز جز نوادگان E4 نمیباشد.

همچنین درصورت محاسبه مقادیر در میابیم:

$$P(A|F) = P(A|F, 0)$$

$$P(O|F) = P(O|F, A)$$

$$P(A, O|F) = P(A|F)P(O|F)$$

2. احتمال F و R به شرط A مستقل اند.

نادرست؛ دو والد به شرط دانستن فرزند به یک دیگر وابسته میشوند. همچنین درصورت محاسبه مقادیر در میابیم:

$$P(F|A)! = P(F|A,R)$$

$$P(R|A)! = P(R|A,F)$$

$$P(R,F|A)! = P(R|A)P(F|A)$$

3. احتمال F به شرط دانستن Wو O از A مستقل است.

نادرست؛ هر نود به شرط دانستن والدانش، از دیگر نود های غیر نوادگانش مستقل میشود. در اینجا O, W والدین F هستند ولی A جز نوادگان F میباشد.

P(F|W, 0) ! = P(F|A, W, 0) P(A|W, 0) ! = P(A|F, W, 0)P(A, F|W, 0) ! = P(A|W, 0)P(F|W, 0)

4. احتمال R از F مستقل است

درست؛ هیچ کدام جز نوادگان/والد های دیگری نیستند. همچنین درصورت محاسبه مقادیر در میابیم:

$$P(A) = P(A|F)$$

$$P(F) = P(F|A)$$

$$P(A,F) = P(A)P(F)$$

د)

$$P(+o|-a) = ?$$

1. Select P (-a | F, R)

F	R	Α	
+	+	-	0.1
+	-	-	0.3
-	+	-	0.6
-	-	-	0.7

2. Join P (-a | F, R) P(R) -> P (-a, R | F)

F	R	Α	
+	+	ı	0.02
+	-	-	0.24
-	+	-	0.12
-	-	-	0.56

3. Eliminate R -> P (-a | F)

F	Α	
+	-	0.26
-	-	0.68

4. Join $P(O)P(W|O) \rightarrow P(O, W)$

0	W	
+	+	0.45
+	-	0.05
-	+	0.1
-	-	0.4

5. Join P (O, W) P (F|O, W) -> P (O, F, W)

0	W	F	
+	+	+	0.405
+	+	-	0.045
+	ı	+	0.03
+	ı	ı	0.02
-	+	+	0.07
-	+	ı	0.03
-	=	+	0.08
-	-	-	0.32

6. Eliminate W-> P (O, F)

0	F	
+	+	0.435
+	-	0.065
-	+	0.15
-	-	0.35

7. Join P (-a | F) P (O, F) -> P (-a, O, F)

0	F	Α	
+	+	-	0.1131
+	-	-	0.034
-	+	-	0.0442
-	-	-	0.238

8. Eliminate F -> P (-a, O)

0	Α	
+	-	0.1471
-	-	0.2822

9. Normalize -> P (O, -a)

0	Α	

+	-	0.34265
-	-	0.65735

10. Select P(+o|-a)

0.34265

- با توجه به اینکه مقدار عددی خواسته نشده است، روی صحت اعداد تاکید نشده است.
 - بعضی از مراحل میتوانند جابجا شوند (مثلا مرحله 4 میتواند در ابتدا نیز انجام شود.)

خلاصه:

$$P(+o|-a) = normalize(\sum_{f} ((\sum_{w} P(0)P(W|0))P(F|0,W)) (\sum_{r} P(-a|F,R)P(R))))$$

HMM

سوال اول

ترتیب index برای استیت ها به صورت زیر است:

Hidden States: X = {s= 0, a=1, h=2, r=3} Observations: Y = {B=0, H=1, P=2, L=3}

الف)

$$A = \begin{pmatrix} from/to & s & a & h & r \\ s & 0.4 & 0.1 & 0 & 0.5 \\ a & 0.4 & 0.4 & 0.2 & 0 \\ h & 0 & 0.1 & 0.5 & 0.4 \\ r & 0.2 & 0 & 0.2 & 0.6 \end{pmatrix}$$

$$\pi = \frac{s}{0.25} \quad \begin{array}{ccc} a & h & r \\ 0.25 & 0.25 & 0.25 & 0.25 \end{array}$$

<u>(</u>ب

$$P = (Y = B, B, L, H) = ?$$

step 1: *B*

$$\alpha_1(j) = \pi_i b_i(o_1), \qquad 1 \le j \le 4$$

$$\rightarrow \alpha_1(s) = P(s)P(B|s) = 0.25 * 0.8 = 0.2$$

$$\rightarrow \alpha_1(a) = P(a)P(B|a) = 0.25 * 0 = 0$$

$$\rightarrow \alpha_1(h) = P(h)P(B|h) = 0.25 * 0 = 0$$

$$\rightarrow \alpha_1(r) = P(r)P(B|r) = 0.25 * 0.2 = 0.05$$

step 2: *B*

$$\alpha_2(j) = \sum_{i=1}^4 \alpha_1(i) \ a_{ij} \ b_j(o_3), \ 1 \le j \le 4$$

$$\Rightarrow \alpha_2(s) = \alpha_1(s)P(s|s)P(B|s) + \alpha_1(a)P(s|a)P(B|s) + \alpha_1(h)P(s|h)P(B|s) + \alpha_1(r)P(s|r)P(B|s) = 0.8 * (0.2 * 0.4 + 0 + 0 + 0.05 * 0.2) = 0.072$$

- $\Rightarrow \alpha_2(a) = \alpha_1(s)P(a|s)P(L|a) + \alpha_1(a)P(a|a)P(L|a) + \alpha_1(h)P(a|h)P(L|a) + \alpha_1(r)P(a|r)P(L|a) = 0$
- $\Rightarrow \alpha_2(h) = \alpha_1(s)P(h|s)P(L|h) + \alpha_1(a)P(h|a)P(L|h) + \alpha_1(h)P(h|h)P(L|h) + \alpha_1(r)P(h|r)P(L|h) = 0$
- $\Rightarrow \alpha_2(r) = \alpha_1(s)P(r|s)P(B|r) + \alpha_1(a)P(r|a)P(B|r) + \alpha_1(h)P(r|h)P(B|r) + \alpha_1(r)P(r|r)P(B|r) = 0.2 * (0.2 * 0.5 + 0 + 0 + 0.05 * 0.6) = 0.026$

step 3: *L*

$$\alpha_3(j) = \sum_{i=1}^4 \alpha_2(i) \ a_{ij} \ b_j(o_3), \ 1 \le j \le 4$$

- ⇒ $\alpha_3(s) = \alpha_2(s)P(s|s)P(L|s) + \alpha_2(a)P(s|a)P(L|s) + \alpha_2(h)P(s|h)P(L|s) + \alpha_2(r)P(s|r)P(L|s) = 0.2 * (0.072 * 0.4 + 0 + 0 + 0.026 * 0.2) = 0.0068$
- $\Rightarrow \alpha_3(a) = \alpha_2(s)P(a|s)P(L|a) + \alpha_2(a)P(a|a)P(L|a) + \alpha_2(h)P(a|h)P(L|a) + \alpha_2(r)P(a|r)P(L|a) = 0$
- $\Rightarrow \alpha_3(h) = \alpha_2(s)P(h|s)P(L|h) + \alpha_2(a)P(h|a)P(L|h) + \alpha_2(h)P(h|h)P(L|h) + \alpha_2(r)P(h|r)P(L|h) = 0$
- ⇒ $\alpha_3(r) = \alpha_2(s)P(r|s)P(L|r) + \alpha_2(a)P(r|a)P(L|r) + \alpha_2(h)P(r|h)P(L|r) + \alpha_2(r)P(r|r)P(L|r) = 0.7 * (0.072 * 0.5 + 0 + 0 + 0.026 * 0.6) = 0.03612$

step 4: *H*

$$\alpha_4(j) = \sum_{i=1}^4 \alpha_3(i) \ a_{ij} \ b_j(o_4), \ 1 \le j \le 4$$

- $\Rightarrow \alpha_4(s) = \alpha_3(s)P(s|s)P(H|s) + \alpha_3(a)P(s|a)P(H|s) + \alpha_3(h)P(s|h)P(H|s) + \alpha_3(r)P(s|r)P(H|s) = 0$
- ⇒ $\alpha_4(a) = \alpha_3(s)P(a|s)P(H|a) + \alpha_3(a)P(a|a)P(H|a) + \alpha_3(h)P(a|h)P(H|a) + \alpha_3(r)P(a|r)P(H|a) = 1 * (0.0068 * 0.1 + 0 + 0 + 0) = 0.00068$
- $\Rightarrow \alpha_4(h) = \alpha_3(s)P(h|s)P(H|h) + \alpha_3(a)P(h|a)P(H|h) + \alpha_3(h)P(h|h)P(H|h) + \alpha_3(r)P(h|r)P(H|h) = 0.1 * (0 + 0 + 0 + 0.03612 * 0.2) = 0.0007224$
- $\Rightarrow \alpha_4(r) = \alpha_3(s)P(r|s)P(H|r) + \alpha_3(a)P(r|a)P(H|r) + \alpha_3(h)P(r|h)P(H|r) + \alpha_3(r)P(r|r)P(H|r) = 0$

$$P(Y = B, B, L, H) = \sum_{i=1}^{4} \alpha_4(i)$$

→ P(Y = B, B, L, H) = 0 + 0.00068 + 0.0007224 + 0 = 0.0014024.

ج)

$$P(X_2 = s | Y_{1:4} = B, B, L, H) = ?$$

answer =
$$\max\left(\frac{\alpha_2(i)*\beta_2(i)}{p(0)}\right)$$
 for $i = s, a, h, r$

(با استفاده از قسمت "ب") Forward Algorithm:

$$\alpha_2(s) = 0.072$$

Backward Algorithm:

step 1:

 $\beta_{T=4}(i) = 1, \ 1 \le i \le 4$

- $\rightarrow \beta_4(s) = 1$
- $\rightarrow \beta_4(a) = 1$
- $\rightarrow \beta_4(h) = 1$
- $\rightarrow \beta_4(r) = 1$

step 2:

 $\beta_3(i) = \sum_{i=1}^4 a_{ii} b_i(o_4) \beta_4(j), \ 1 \le i \le 4$

- ⇒ $\beta_3(s) = P(s|s)P(H|s)\beta_4(s) + P(a|s)P(H|a)\beta_4(a) + P(h|s)P(H|h)\beta_4(h) + P(r|s)P(H|r)\beta_4(r) = 1 * (0.4 * 0 + 0.1 * 1 + 0 * 0.1 + 0.5 * 0) = 0.1$
- ⇒ $\beta_3(a) = P(s|a)P(H|s)\beta_4(s) + P(a|a)P(H|a)\beta_4(a) + P(h|a)P(H|h)\beta_4(h) + P(r|a)P(H|r)\beta_4(r) = 1 * () = 0.42$
- ⇒ $\beta_3(h) = P(s|h)P(H|s)\beta_4(s) + P(a|h)P(H|a)\beta_4(a) + P(h|h)P(H|h)\beta_4(h) + P(r|h)P(H|r)\beta_4(r) = () = 0.15$
- ⇒ $\beta_3(r) = P(s|r)P(H|s)\beta_4(s) + P(a|r)P(H|a)\beta_4(a) + P(h|r)P(H|h)\beta_4(h) + P(r|r)P(H|r)\beta_4(r) = () = 0.02$

step 3:

 $\beta_2(i) = \sum_{i=1}^4 a_{ij} b_i(o_3) \beta_3(j), \ 1 \le i \le 4$

- ⇒ $\beta_2(s) = P(s|s)P(L|s)\beta_3(s) + P(a|s)P(L|a)\beta_3(a) + P(h|s)P(L|h)\beta_3(h) + P(r|s)P(L|r)\beta_3(r) = ($) = 0.015
- ⇒ $\beta_2(a) = P(s|a)P(L|s)\beta_3(s) + P(a|a)P(L|a)\beta_3(a) + P(h|a)P(L|h)\beta_3(h) + P(r|a)P(L|r)\beta_3(r) = () = 0.008$
- ⇒ $\beta_2(h) = P(s|h)P(L|s)\beta_3(s) + P(a|h)P(L|a)\beta_3(a) + P(h|h)P(L|h)\beta_3(h) + P(r|h)P(L|r)\beta_3(r) = () = 0.0056$
- ⇒ $\beta_2(r) = P(s|r)P(L|s)\beta_3(s) + P(a|r)P(L|a)\beta_3(a) + P(h|r)P(L|h)\beta_3(h) + P(r|r)P(L|r)\beta_3(r) = ($) = 0.0124

step 4:

$$answer = \max\left(\frac{\alpha_2(i)*\beta_2(i)}{p(0)}\right) = \max\left(\frac{0.072*0.015}{0.001424}, 0, 0, \frac{0.026*0.0124}{0.001424}\right) = 0.77010839$$

د)

step 1: *B*

$$v(j) = \pi_j b_j(o_1),$$
 $1 \le j \le 4$
 $bt_1(j) = 0,$ $1 \le j \le 4$

- $\rightarrow v_1(s) = P(s)P(B|s) = 0.25 * 0.8 = 0.2$
- $\rightarrow v_1(a) = P(a)P(B|a) = 0.25 * 0 = 0$
- $\rightarrow v_1(h) = P(h)P(B|h) = 0.25 * 0 = 0$
- $\rightarrow v_1(r) = P(r)P(B|r) = 0.25 * 0.2 = 0.05$

$bt_1 = s$

step 2: *B*

 $v_2(j) = \max(v_1(i)a_{ij}b_j(o_2))$ for i in range (1,4), $1 \le j \le 4$

 $bt_{2(i)} = argmax(v_1a_{ij}b_i(o_2)) for i in range(1,4), 1 \le j \le 4$

- → $v_2(s) = max\{v_1(s)P(s|s)P(B|s), v_1(a)P(s|a)P(B|s), v_1(h)P(s|h)P(B|s), v_1(r)P(s|r)P(B|s)\} = 0.8 * max\{0.2 \times 0.4,0,0,0.05 \times 0.2\} = 0.064$
- → $v_2(a) = max\{v_1(s)P(a \mid s)P(L \mid a), v_1(a)P(a \mid a)P(L \mid a), v_1(h)P(a \mid h)P(L \mid a), v_1(r)P(a \mid r)P(L \mid a)\} = 0$
- → $v_2(h) = \max\{v_1(s)P(h \mid s)P(L \mid h), v_1(a)P(h \mid a)P(L \mid h), v_1(h)P(h \mid h)P(L \mid h), v_1(h)P(h \mid r)P(L \mid h)\} = 0$
- → $v_2(r) = max\{v_1(s)P(r|s)P(B|r), v_1(a)P(r|a)P(B|r), v_1(h)P(r|h)P(B|r), v_1(r)P(r|r)P(B|r)\} = 0.2 * max\{× 0.2 × 0.5,0,0,× 0.05 × 0.6\} = 0.02$

$$bt_2 = s$$

step 3: *L*

 $v_3(j) = \max(v_2(i)a_{ij}b_j(o_3))$ for i in range(1,4), $1 \le j \le 4$ $bt_{3(j)} = argmax(v_2a_{ij}b_i(o_3))$ for i in range(1,4), $1 \le j \le 4$

- → $v_3(s) = max\{v_2(s)P(s|s)P(L|s), v_2(a)P(s|a)P(L|s), v_2(h)P(s|h)P(L|s), v_2(r)P(s|r)P(L|s)\} = 0.2 \times max\{0.064 \times 0.4,0,0,0.02 \times 0.2\} = 0.00512$
- → $v_3(a) = \max\{v_2(s)P(a|s)P(L|a), v_2(a)P(a|a)P(L|a), v_2(h)P(a|h)P(L|a), v_2(h)P(a|r)P(L|a)\} = 0$
- → $v_3(h) = max\{v_2(s)P(h|s)P(L|h), v_3(a)P(h|a)P(L|h), v_3(h)P(h|h)P(L|h), v_3(r)P(h|r)P(L|h)\} = 0$
- → $v_3(r) = max\{v_2(s)P(r|s)P(L|r), v_3(a)P(r|a)P(L|r), v_3(h)P(r|h)P(L|r), v_3(r)P(r|r)P(L|r)\} = 0.7 \times max\{0.064 \times 0.5,0,0,0.02 \times 0.6\} = 0.0224$

$$bt_3 = r$$

step 4: *H*

 $v_3(j) = \max(v_3(i)a_{ij}b_j(o_4))$ for i in range (1,4), $1 \le j \le 4$ $bt_{3(j)} = \arg\max(v_3a_{ij}b_j(o_4))$ for i in range (1,4), $1 \le j \le 4$

- → $v_4(s) = \max \{v_3(s)P(s|s)P(H|s), v_3(a)P(s|a)P(H|s), v_3(h)P(s|h)P(H|s), v_3(r)P(s|r)P(H|s)\} = 0$
- → $v_4(a) = \max \{v_3(s)P(a|s)P(H|a), v_3(a)P(a|a)P(H|a), v_3(h)P(a|h)P(H|a), v_3(r)P(a|r)P(H|a)\} = 1 \times \max\{0.00512 * 0.1, 0,0,0\} = 0.000512$
- → $v_4(h) = \max \{v_3(s)P(h|s)P(H|h), v_3(a)P(h|a)P(H|h), v_3(h)P(h|h)P(H|h), v_3(r)P(h|r)P(H|h)\} = 0.1 \times \max\{0,0,0,0,0.0224 \times 0.2\}$
- → $v_4(r) = \max\{v_3(s)P(r \mid s)P(H \mid r), v_3(a)P(r \mid a)P(H \mid r), v_3(h)P(r \mid h)P(H \mid r), v_3(r)P(r \mid r)P(H \mid r)\} = 0$

$$bt_4 = a$$

Answer = {s, s, r, a}
P(X = {s, s, r, a | Y = {B, B, L, H}) = 0.000512