Analisi II

 $Samuele\ Musiani$

February 20, 2023 - February 23, 2023

Contents

L	Inte	egrali
	1.1	Calcolo dell'area sottesa ad una curva
	1.2	Somme di Riemann
		1.2.1 Scomposizione di un intervallo
	1.3	Integrale dalle somme di Riemann
		1.3.1 Proprietà dell'integrale
	1.4	Media integrale
	1.5	Primitiva
	1.6	Funzioni integrali
		1.6.1 Teoremi fondamentali del calcolo integrale

1 Integrali

1.1 Calcolo dell'area sottesa ad una curva

Data una funzione $f:[a,b]\to\mathbb{R}$ con $f(x)\geqslant 0 \ \forall x\in[a,b]$. IL suo sottografico è:

$$= \{(x, y) \in \mathbb{R}^2 \mid x \in [a, b], \ 0 \le y \le f(x)\}\$$

Il sottografico è quindi un insieme e corrisponde e tutti i punti che soddisfano per le ordinate le disuguaglianza $a \le x \le b$ e per le ascisse $0 \le y \le f(x)$.

Come si calcola il sottografico?

1.2 Somme di Riemann

1.2.1 Scomposizione di un intervallo

Sia dato un interallo $[a, b] \subseteq \mathbb{R}$ lo divido in $n \in \mathbb{N}$ intervalli uguali:

$$x_0 = a$$

$$x_1 = x_0 + \frac{b-a}{2} = a + \frac{b-a}{n}$$

$$x_2 = x_1 + \frac{b-a}{2} = a + 2 \cdot \frac{b-a}{n}$$

$$\vdots$$

$$x_k = a + k \cdot \frac{b-a}{n}$$

Il primo punto corrisponde all'inizio dell'intervallo $x_0 = a$, l'ultimo punto alla fine dell'intervallo $x_n = b$ in quanto:

$$x_n = a + n \cdot \frac{b - a}{n} = a + b - a = b$$

Posso inoltre scegliere dei punti all'interno di questi intervalli:

$$\forall k \in \mathbb{N} : 0 < k \leq n \quad \text{scelgo} \quad \xi_k \in [x_{k-1}, x_k]$$

È importante notare alcune cose:

- 1. ξ_k è un semplicissimo punto, lo si indica con la lettera greca ξ (xi) per evitare di far confuzione successivamente.
- 2. La scelta della posizione del punto ξ_k è **totalmente arbitraria**. Può quindi essere il punto medio, coincidere con un estremo o essere completamente casuale purché rispetti la condizione imposta, cioè: $\xi_k \in [x_{k-1}, x_k]$
- 3. Abbiamo una serie di punti, non solo 1, in quanto questo vale $per\ ogni\ k$.

$$\xi_1 \in [x_0, x_1] = \left[a, a + \frac{b - a}{n} \right]$$

$$\xi_2 \in [x_1, x_2] = \left[a + \frac{b - a}{n}, a + 2 \cdot \frac{b - a}{n} \right]$$

$$\vdots$$

$$\xi_n \in \left[x_{n-1}, x_n\right] = \left[a + (n-1) \cdot \frac{b-a}{n}, b\right]$$

Definizione

Sia $f:[a,b]\to\mathbb{R}$, continua su [a,b]. Sia inoltre $n\in\mathbb{N}$ e siano $x_0,x_1,\cdots x_n$ e $\xi_1,\xi_2,\cdots \xi_n$ i punti introdotti precedentemente. Si definisce **La somma di Riemann** n-esima è il numero:

$$S_n = \sum_{k=1}^{n} f(\xi_k) \cdot (x_k - x_{k-1})$$

Notando che il termine $(x_k - x_{k-1})$ è sempre uguale si può riscrivere la somma come segue:

$$S_n = \frac{b-a}{n} \cdot \sum_{k=1}^n f(\xi_k)$$

La somma dipende dalla scelta dei punti ξ_k , non è quindi sempre la stessa. Rappresenta inoltre la somma delle aree dei rettangoli che approssimano il sottografico della funzione f nell'intervallo [a, b].

1.3 Integrale dalle somme di Riemann

Teorema

Sia $f:[a,b]\to\mathbb{R}$ continua su [a,b] e $(S_n)_{n\in\mathbb{N}}$ una famiglia di somme di Riemann^a.

$$\exists \lim_{n \to +\infty} S_n \in \mathbb{R}$$

Inoltre il valore NON dipende dalla scelta dei punti ξ_k . Tale limite si chiama integrale di f:

$$\int_{a}^{b} f(x) \, \mathrm{d}x := \lim_{n \to +\infty} S_n \in \mathbb{R}$$

 $^a\mathrm{Si}$ noti che questa famiglia in realtà è una successione

Note importanti:

- Il valore del limite, essendo in \mathbb{R} è finito.
- a e b si chiamo estremi di integrazione.
- La varibile dentro la funzione è una *variabile muta*. Non indica effettivamente nulla. Le seguenti notazioni sono equvalenti:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f$$

Si adotta generalmente la variabile muta è il termine dx che NON ha alcune definzione o qualsivoglia introduzione matematica per comodità.

Vediamo come è definita questa somma in alcuni esempi particolari:

• Se $f(x) \leq 0 \ \forall x \in [a, b]$

$$\int_{a}^{b} f(x) \, \mathrm{d}x = -(\text{area del sottografico})$$

• Se (DA fare il disegno: in pratica si ha un area positiva (A_1) e una negativa (A_2)):

$$\int_{a}^{b} f(x) dx = \operatorname{area}(A_{1}) - \operatorname{area}A_{2}$$

• Se (Il sottografico è fatto da due aree positive divise da un punto che tocca lo 0):

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \mathrm{area}(A_1) + \mathrm{area}A_2$$

• Se $f(x) = k \ \forall x \in [a, b]$, cioè in pratica la funzione è costante. Consideriamo prima la somma di Riemann:

$$S_n = \sum_{i=0}^n f(\xi_i) \cdot \left(\frac{b-a}{n}\right) = \sum_{i=0}^n k \cdot \left(\frac{b-a}{n}\right) = n \cdot k \cdot \frac{b-a}{n} = k \cdot (b-a)$$

Ne consegue che:

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} S_n = k \cdot (b - a)$$

Coindice con infatti l'area di un rettangolo di base b-a e di altezza k.

• Se a = b allora:

$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0$$

In quanto:

$$S_n = \sum_{i=0}^n f(\xi_i) \cdot \left(\frac{b-a}{n}\right) = \sum_{i=0}^n f(\xi_i) \cdot \left(\frac{a-a}{n}\right) = \sum_{i=0}^n f(\xi_i) \cdot 0 = 0$$

1.3.1 Proprietà dell'integrale

1. Linearità: Date due funzioni $f, g : [a, b] \to \mathbb{R}$ continue su [a, b]. Deti inoltre due punti $c_1, c_2 \in \mathbb{R}$

$$\int_{a}^{b} (c_1 \cdot f(x) + c_2 \cdot g(x)) \, \mathrm{d}x = \int_{a}^{b} c_1 \cdot f(x) \, \mathrm{d}x \int_{a}^{b} c_2 \cdot g(x) \, \mathrm{d}x =$$

2. Additività Data una funzione $f:[a,b] \to \mathbb{R}$ e dato $c \in [a,b]$:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

In generale si tende ad adottare la **convenzione** che se b < a:

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Ne consegue quindi che si può **generalizzare la seconda proprietà** a: $f : \mathbb{R} \to \mathbb{R}, \ \forall a, b, c \in \mathbb{R}$ implica:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

3. Con $f:[a,b] \to \mathbb{R}$ e $f(x) \ge 0 \ \forall x \in [a,b]$ allora:

$$\int_{a}^{b} f(x) \, \mathrm{d}x \ge 0$$

Si può **generalizzare**¹: data un'ulteriore funzione $g:[a,b]\to\mathbb{R}$, se $f(x)\leqslant g(x)\quad \forall x\in[a,b]$ allora:

$$\int_{a}^{b} f(x) \, \mathrm{d}x \geqslant \int_{a}^{b} g(x) \, \mathrm{d}x$$

¹Questo si dimostra con il caso non generalizzato e una funzione ausiliaria h(x) = f(x) - g(x)

1.4 Media integrale

Teorema

Se $f:[a,b] \to \mathbb{R}$ continua su [a,b], allora:

$$\exists c \in [a, b] : \frac{1}{b - a} \int_a^b f(x) \, \mathrm{d}x = f(c)$$

Il valore di f(c) si definisce **media integrale di** f **in** [a,b].

Il nome media deriva dal datto che:

$$\frac{1}{b-a}S_n = \sum_{k=1}^n \frac{f(\xi_k)}{n}$$

Che non è altro che una media aritmetica.

Dimostrazione

Dimostraimo il teorema della media integrale: per il teorema di Weierstrass $\exists x_1, x_2$ punti di minimo e massimo assoluti:

$$f(x_1) \leqslant f(x) \leqslant f(x_2) \quad \forall x \in [a, b]$$

Usando la proprietà della monotonia degli integrali:

$$\int_{a}^{b} f(x_1) dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} f(x_2) dx$$

Ed essendo $f(x_1)$ e $f(x_2)$ valori costanti:

$$(b-a)f(x_1) \leqslant \int_a^b f(x) \, \mathrm{d}x \leqslant (b-a)f(x_2)$$

Che quindi dividendo per (b-a)

$$f(x_1) \leqslant \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \leqslant f(x_2)$$

Dal teorema dei valori intermedi^a:

$$\exists x \in [a, b] : f(x) = y$$

Cioè:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x$$

Qed.

^aNon mi ricordo di averlo fatto ne di averlo copiato. È sugli appunti del 2023-02-20. CONTROLLARE! :)

1.5 Primitiva

Definizione

Sia $f:]a, b[\to \mathbb{R}$. Una funzione $F:]a, b[\to \mathbb{R}$ si dice **primitiva di** f **su**]a, b[se vale:

$$F'(x) = f(x) \quad \forall x \in]a, b[$$

Osservazione: Se F è primitiva di f su]a,b[, allora:

 $\forall k \in \mathbb{R} \quad F(x) + k \text{ è una primitiva di } f \text{ su } [a, b]$

Ci sono infinite primitive di una funzione

Teorema

Teorema di caratterizzazione delle primitive su un intervallo: Se $F:]a,b[\to \mathbb{R}$ e $G:]a,b[\to \mathbb{R}$ sono primitive di $f:]a,b[\to \mathbb{R}$, allora:

$$\exists k \in \mathbb{R} : F(x) - G(x) = k \qquad \forall x \in]a, b[$$

Dimostrazione

Vogliamo dimostrare il teorema appena enunciato. Consideriamo la funzione ausiliaria:

$$H(x) = F(x) - G(x)$$
 $\forall x \in]a, b[$

Se faccio la derivata:

$$H'(x) = F'(x) - G'(x) \quad \forall x \in]a, b[$$

Che per ipotesi:

$$H'(x) = f(x) - f(x) = 0 \quad \forall x \in]a, b[$$

Da teorema di Lagrange (in particolare dal suo corollario), se una funzione continua su un intervallo ha derivata sempre nulla allora la funzione è costante. Ne consegue:

$$\exists k \in \mathbb{R} : H(x) = k \quad \forall x \in]a, b[$$

E quindi:

$$F(x) - G(x) = k \quad \forall x \in]a, b[$$

Qed.

È importante che la funzione sia definita su un intervallo perché è facile prendere un esempio di funzione non definita su un intervallo e fare vedere che il teorema non funziona. Per sempio presa la funzione $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}, f(x) = \frac{1}{x^2}$ ha come primitive:

$$F(x) = -\frac{1}{x} \qquad \forall x \neq 0$$

$$G(x) = \begin{cases} -\frac{1}{x} & x < 0 \\ -\frac{1}{x} + 1 & x > 0 \end{cases}$$

Nonostante ciò:

$$F(x) - G(x)$$
 non è costante

Proprio perché non stiamo considerando un intervallo.

1.6 Funzioni integrali

Definizione

Sia $f:]a, b[\to \mathbb{R}$ continua e sia $c \in]a, b[$. Definziamo la **funzione integrale di** f **con punto base** c come:

$$I_c:]a, b[\to \mathbb{R}, \qquad I_c(x) = \int_c^x f(t) dt$$

Osservazione 1:

$$I_c(c) = \int_c^c f(t) \, \mathrm{d}t = 0$$

Osservazione 2: Consideriamo la funzione $f:]a,b[\to \mathbb{R}$ continua e un punto $c_1,c_2 \in]a,b[$. Le funzioni:

$$I_{c_1}(x) = \int_{c_1}^x f$$
 e $I_{c_2}(x) = \int_{c_2}^x f$

Hanno differenza costante:

$$I_{c_1}(x) - I_{c_2}(x) = \int_{c_1}^x f - \int_{c_2}^x f = \int_{c_1}^x f + \int_x^{c_2} f = \int_{c_1}^{c_2} f$$

1.6.1 Teoremi fondamentali del calcolo integrale

Il seguente teorema è spesso indicato come secondo, ma il prof ha deciso di farlo per primo.

Teorema

Sia $f:]a, b[\to \mathbb{R}$ continua e sia $c \in]a, b[$. Allora vale:

$$I_c'(x) = f(x) \quad \forall x \in]a, b[$$

Cioè:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{c}^{x} f(t) \, \mathrm{d}t = f(x) \qquad \forall x \in]a, b[$$

Esempio: Data $f: \mathbb{R} \to \mathbb{R}, f(x) = e^{x^2}$ se

$$I(x) = \int_0^x e^{t^2} \, \mathrm{d}t$$

Allora:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^x e^{t^2} \, \mathrm{d}t = e^{x^2} \qquad \forall x \in \mathbb{R}$$

Oppure un altro esempio:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{2}^{x} \sqrt{1+t^2} \cdot e^{-t} \sin(t) \, \mathrm{d}t = \sqrt{1+x^2} \cdot e^{-x} \sin(x)$$

Non importa quindi sapere il risultato dell'integrale per sapere la sua derivata.

Perché l'estremo inferiore dell'integrale è ininfluente²? Se sostiutiamo l'estremo inferiore a con un qualsiasi $k \in \mathbb{R}$:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = \frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a}^{k} f(t) \, \mathrm{d}t + \int_{k}^{x} f(t) \, \mathrm{d}t \right) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{k} f(t) \, \mathrm{d}t + \frac{\mathrm{d}}{\mathrm{d}x} \int_{k}^{x} f(t) \, \mathrm{d}t$$

L'integrale $\int_a^k f$ è una semplice costante, ne consegue che dopo la derivata si annulla, quindi rimane solo l'integrale:

 $\frac{\mathrm{d}}{\mathrm{d}x} \int_{t_{1}}^{x} f(t) \, \mathrm{d}t = f(x)$

Ricordiamoci che abbiamo scelto a caso la costante k, ne consegue che è ininfluente sotto l'effetto della derivata.

Dimostrazione

Vogliamo dimostrare il teorema appena enunciato. Supponiamo di avere una funzione $f:]a, b[\rightarrow \mathbb{R}$ e un punto $c \in]a, b[$. Vogliamo dimostrare che:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{c}^{x} f(t) \, \mathrm{d}t = f(x) \qquad \forall x \in]a, b[$$

Per la definzione di derivata dovremmo dimostrare che esiste sia il limite destro che il sinistro e che il loro valore coincide. Ci limitiamo a dimostrare il teorema per il limite destro in quanto è analogo nell'altro caso. Calcoliamo il limite:

$$\lim_{h \to 0^+} \frac{\int_c^{x+h} f - \int_c^x f}{h} = \lim_{h \to 0^+} \frac{1}{h} \left(\int_c^{x+h} f + \int_x^c f \right)$$

Possiamo quindi usare la proprietà di additività degli integrali e ridurci a dimostrare:

$$\lim_{x \to 0^+} \frac{1}{h} \int_{a}^{x+h} f(t) \, \mathrm{d}t = f(x)$$

Usiamo ora il teorema della media integrale, dove in particolare gli estremi a = x e b = x + h e quindi b - a = x + h - x = h:

$$\exists c(h) \in]x, x + h[: \frac{1}{h} \int_{x}^{x+h} f(t) dt = f(c(h))$$

In questo caso abbiamo scritto c(h) e non semplicemente c per sottolianere che il punto dipende da h. Essendo però $c(h) \in]x, x + h[$ diventa che:

$$x < c(h) < x + h$$

Facendo il limite per $h \to 0^+$ e dal teorema del confronto:

$$c(h) \xrightarrow[h \to 0^+]{} x$$

E quindi:

$$f(c(h)) \xrightarrow[h \to 0^+]{} f(x)$$

Qed.

 $^{^2\}mathrm{Questa}$ è una mia considerazione, il prof
 non l'ha detta

Il seguente viene spesso indicato come il primo teorema fondamentale del calcolo integrale.

Teorema

Sia $f:]a_0, b_0[\to \mathbb{R}$ continua. Sia inoltre $F:]a_0, b_0[\to \mathbb{R}$ la primitiva di f su $]a_0, b_0[$, allora:

$$\forall [a,b] \subseteq]a_0, b_0[\quad \int_a^b f(x)dx = F(b) - F(a) = [F(x)]_a^b = F(x)|_{x=a}^{x=b}$$

Esempio:
$$f(x) = x^2 e F(x) = \frac{x^3}{3}$$
 è primitiva di f .

$$\int_{2}^{3} x^{2} dx = \left[\frac{x^{3}}{3} \right]_{x=2}^{x=3} = \frac{3^{3}}{3} - \frac{2^{3}}{3} = \frac{19}{3}$$