AMPLIACIÓN DE VARIABLE COMPLEJA Ejercicios Konrad Knopp

<u>6.</u> Probar que, dados dos conjuntos de valores $w_1, ..., w_n, ...$ y $z_1, ..., z_n, ...$, tal que estos últimos tienden hacia el infinito, es posible encontrar una función entera f tal que $f(z_i) = w_i$ para todo i = 1, 2, ...

Solución:

Sea W(z) una función construída mediante el Teorema de Factorización de Weierstrass con un cero simple en cada uno de los puntos z_i . Por ejemplo, podemos tomar

$$W(z) = \prod_{i=1}^{\infty} E_{p_i} \left(\frac{z}{z_i}\right)$$

con los valores p_i adecuados. Por ser simples los ceros que presenta la función W(z) en los z_i , se tiene entonces que

$$W'(z_i) \neq 0$$
 para todo $i = 1, 2, ...$

Ahora, usando el Teorema de Mittag-Leffler, podemos construír una función meromorfa M(z) con polos simples en los z_i y el residuo en cada uno de estos polos sea $\frac{w_i}{W'(i)}$. Se tiene entonces que la función

$$g(z) = W(z) \cdot M(z)$$

es una función entera que cumple las condiciones pedidas.

En efecto, para cada z_i , se tiene que en un círculo de centro z_i podemos expresar

$$g(z) = W(z) \cdot M(z) = (W'(z_i)(z - z_i) + a_1(z - z_i)^2 + \dots) \left(\frac{w_i}{W'(z_i)(z - z_i)} + b_0 + b_1(z - z_i) + \dots \right) =$$

$$= w_i + b_0 W'(z_i)(z - z_i) + [b_1 W'(z_i) + a_1](z - z_i)^2 + \dots$$

Por tanto, la función g no tiene polos en los z_i y además se ve que $g(z_i) = w_i$.