

SCIENCE PASSION TECHNOLOGY

AndroGUARD: Mitigation of Sensor Fingerprinting on Android

Gergö Kranz 20.02.2025

Outline

- 1 Introduction
- 2 Background
- 3 Sensor Fingerprinting
- 4 Methodology
- 5 Approach
- 6 Implementation
- 7 Evaluation
- 8 Discussion & Limitations

Introduction

- Misuse of the Android API
- Used for targeted advertisements
- Does not require user permission

Introduction

- Misuse of the Android API
- Used for targeted advertisements
- Does not require user permission

Introduction

- Misuse of the Android API
- Used for targeted advertisements
- Does not require user permission

- Similar to browser fingerprinting
- Not as known as browser fingerprinting
- Zero permission identifiers
- Personalized configurations

- Similar to browser fingerprinting
- Not as known as browser fingerprinting
- Zero permission identifiers
- Personalized configurations

- Similar to browser fingerprinting
- Not as known as browser fingerprinting
- Zero permission identifiers
- Personalized configurations

- Similar to browser fingerprinting
- Not as known as browser fingerprinting
- Zero permission identifiers
- Personalized configurations

Fingerprinting Sensors

- Measurement inaccuracy of sensors
- Simple to fingerprint via machine learning algorithmus
- Constant over the sensors lifetime

Fingerprinting Sensors

- Measurement inaccuracy of sensors
- Simple to fingerprint via machine learning algorithmus
- Constant over the sensors lifetime

Fingerprinting Sensors

- Measurement inaccuracy of sensors
- Simple to fingerprint via machine learning algorithmus
- Constant over the sensors lifetime

Main Question

How to protect against sensor fingerprinting

Proposed Solutions

Calibration

- Systematic adjustment of sensor readings
- Correcting the sensor data

Noise Generation

- Introduces variability into the sensor data
- Masks the original values

Challenges

Calibration

- Requires user awareness and interaction
- Requires precision

Noise Generation

- Degrade the functionality of applications
- Code has to be modified

Our Methodology

- Noise Generation
- Patch application vie A2P2 framework

Modifying the Sensor API

- Intercept calls to registerListener method
- Provide modified values to onSensorChanged method

Noise Generation

- Adds random gain and offset to every value
- Masks values
- Loss of precision

Implementation

- Intercept Method
- Noise Generating Function
- Random Value Generation Function

Intercept Method

Figure: The function calls from the system are intercepted by our patch and forwarded after modification to the original function.

Implementation

- Intercept Method
- Noise Generating Function
- Random Value Generation Function

Noise Generating Function

$$\textit{value}_{\textit{new}} = \frac{(\textit{value}_{\textit{old}} - \textit{offset}_{\textit{sensor}})}{\textit{gain}_{\textit{sensor}}}$$

Implementation

- Intercept Method
- Noise Generating Function
- Random Value Generation Function

Application of Patch

- Straightforward application
- Only requirements are
 - JAVA JRE
 - A2P2
 - APK to be modified

Testing

- Functionality
- Effectiveness
- Usabilty

Functionality

Figure: recorded values before the patch

Figure: recorded values after the patch

Testing

- Functionality
- Effectiveness
- Usabilty

Effectiveness

Figure: knn decision boundaries before the patch

Figure: knn decision boundaries after the patch

Testing

- Functionality
- Effectiveness
- Usabilty

Noise Level Adjustment

- Increasing noise decreases fingerprintability
- Increasing noise decreases functionality

Discussion & Limitations

- Comparing values before and after the patch
- Could not be done sufficiently due to limited access to supported hardware

Conclusion

- Masking the sensor values decreases fingerprintability
- Modifying the SensorEventListener makes it easy to incorporate the patch into the Android API

