CURSUL 12: FORMA JORDAN A UNEI MATRICE DIN $\mathcal{M}_n(\mathbb{C})$

G. MINCU

În acest curs, k va fi un corp comutativ, V un k-spațiu vectorial de dimensiune $n \in \mathbb{N}^*$, matricele cu care lucrăm vor fi din $\mathcal{M}_n(k)$, iar bazele considerate vor fi ordonate.

1. MATRICI, VECTORI ŞI POLINOAME

În această primă secțiune, A va fi o matrice arbitrară, dar fixată, din $\mathcal{M}_n(k)$.

Observația 1. Exemplele de la cursul precedent au arătat că, dacă λ este o valoare proprie a matricei A, atunci se poate întâmpla să existe vectori $v \in k^n$ pentru care $(A - \lambda I_n)v \neq 0$, dar $(A - \lambda I_n)^2v \neq 0$. Această observație conduce la următoarele chestiuni:

Definiția 1. Dacă $\lambda \in \sigma_k(A)$, vom numi vector propriu generalizat asociat lui λ orice vector nenul $v \in k^n$ pentru care există $r \in \mathbb{N}^*$ astfel încât $(A - \lambda I_n)^r v = 0$.

Tot observația 1 conduce și la constatarea că, notând $P = (X - \lambda)^2 \in k[X]$, avem P(A)v = 0 (pentru o corectă interpretare a expresiei P(A) ținem cont de identificarea canonică a elementului $\alpha \in k$ cu matricea $\alpha I_n \in \mathcal{M}_n(k)$). Aceste considerații ne sugerează să ne îndreptăm atenția către expresiile de tipul P(A)v, unde $P \in k[X]$, $A \in \mathcal{M}_n(k)$, iar $v \in k^n$.

Propoziția 1. Pentru orice $v \in k^n$ există polinoame nenule $P \in k[X]$ cu proprietatea P(A)v = 0.

Propoziția 2. Dacă $v \in k^n$, atunci $I_v^A = \{P \in k[X] : P(A)v = 0\}$ este un ideal al lui k[X].

Definiția 2. Dacă $v \in k^n$, idealul I_v^A se numește **anulatorul** lui v.

Dacă matricea A este fixată în context, vom folosi pentru anulatorul lui v notația I_v . Dealtfel, o **notație** mai frecvent folosită pentru anulatorul lui v este $\mathrm{Ann}(v)$

Întrucât inelul k[X] are toate idealele principale, anulatorul unui $v \in k[X]$ este ideal principal.

G. MINCU

Definiția 3. Dacă $v \in k^n$, vom numi **ordin** al lui v orice generator al lui I_v .

Observația 2. Dacă $v \in k^n$, ordinul său este unic până la o asociere în divizibilitate în k[X]. Din acest motiv, atunci când proprietățile la care ne referim nu sunt afectate de o asociere în divizibilitate, vom spune, pe scurt, "ordinul lui v" în loc de "un ordin al lui v"

Vom nota ordinul lui $v \in k^n$ cu μ_v^A . Dacă matricea A este subînțeleasă din context, atunci vom folosi notația mai succintă μ_v .

Observația 3. Dacă $v \in k^n$, μ_v este caracterizat de proprietățile:

- (i) Este polinomul nenul P de grad minim pentru care P(A)v = 0.
- (ii) Dacă $P \in k[X]$ şi P(A)v = 0, atunci $\mu_v|P$.

2. TEOREMA HAMILTON-CAYLEY

Până acum ne-am referit la expresii de tipul P(A)v cu $P \in k[X]$, $A \in \mathcal{M}_n(k)$, iar $v \in k^n$. Dacă ne concentrăm asupra expresiilor de tip P(A), cu P și A ca mai sus, constatăm că:

Propoziția 3. Dacă $A \in \mathcal{M}_n(k)$, atunci $I_A = \{P \in k[X] : P(A) = 0\}$ este un ideal al lui k[X].

Nu este foarte clar a priori că acest ideal nu este trivial. Un argument în acest sens este teorema Hamilton-Cayley, pe care o prezentăm mai jos. Începem cu câteva chestiuni tehnice:

Fie
$$f = B_m X^m + \dots + B_1 X + B_0 \in M_n(K)[X]$$
 şi $A \in M_n(K)$.

Definiția 4. Matricea $f_d(A) = B_m A^m + \cdots + B_1 A + B_0$ se numește valoarea la dreapta a lui f în A.

Matricea $f_s(A) = A^m B_m + \cdots + A B_1 + B_0$ se numește valoarea la stânga a lui f în A.

Observaţia 4. $(If)(A)_d = (If)(A)_s = f(A)$.

Teorema lui Bézout generalizată. Fie $f \in M_n(K)[X]$ şi $A \in M_n(K)$. Atunci există $q \in M_n(K)[X]$ astfel încât $f = q(IX - A) + f_d(A)$ şi aceasta este unica scriere a lui f sub forma f = q'(IX - A) + r cu $q' \in M_n(K)[X]$ şi $r \in M_n(K)$.

Analog, există $q \in M_n(K)[X]$ astfel încât $f = (IX - A)q + f_s(A)$ și aceasta este unica scriere a lui f sub forma f = (IX - A)q' + r cu $q' \in M_n(K)[X]$ și $r \in M_n(K)$.

Demonstrație: Fie $f = B_m X^m + \cdots + B_1 X + B_0$. Atunci $f_d(A) = B_m A^m + \cdots + B_1 A + B_0$. Deci

$$f - f_d(A) = B_m(IX^m - A^m) + \dots + B_1(IX - A)$$

și e suficient să observăm că

$$IX^{k} - A^{k} = (IX - A)(IX^{k-1} + \dots + A^{k-1}).$$

Unicitatea. Fie f = q(IX - A) + r = q'(IX - A) + r' cu $q, q' \in M_n(K)[X], r, r' \in M_n(K)$. Atunci (q - q')(IX - A) + r - r' = 0, deci q = q' și r = r', altfel polinomul (q - q')(IX - A) are gradul ≥ 1 . \square

Teorema Hamilton-Cayley. Fie $A \in M_n(K)$. Atunci $P_A(A) = 0$.

Demonstrație: Fie $(IX - A)^*$ matricea adjunctă a matricei caracteristice IX - A. Atunci, $IP_A = I|IX - A| = (IX - A)^*(IX - A)$. Din teorema lui Bézout generalizată deducem că $0 = (IP_A)_d(A) = P_A(A)$. \square

3. Polinomul minimal al unei matrici

Ca de obicei, A desemnează o matrice fixată din $\mathcal{M}_n(k)$. Întrucât inelul k[X] are toate idealele principale, I_A este ideal principal. Generatorii săi sunt asociați în divizibilitate, ceea ce înseamnă că I_A are exact un generator monic.

Definiția 5. Generatorul monic al lui I_A se numește **polinomul minimal** al matricei A.

Vom nota polinomul minimal al lui $A \in \mathcal{M}_n(k)$ cu μ_A .

Propoziția 4. Fie $A \in M_n(k)$ și $f \in K[X]$. Următoarele afirmații sunt echivalente:

- (i) $f = \mu_A$.
- (ii) f este monic, f(A) = 0 și f este de grad minim între polinoamele cu aceste proprietăți.
- (iii) f este monic, f(A) = 0 și f divide toate polinomele $g \in K[X]$ cu proprietatea g(A) = 0.
- 4. RELAȚII ÎNTRE TIPURILE DE POLINOAME APĂRUTE PÂNĂ ACUM

Observația 5. Ca o consecință imediată a propoziției 4, deducem că pentru orice matrice $A \in \mathcal{M}_n(k)$ avem $\mu_A|P_A$.

Observația 6. Dacă $v \in k^n$, iar $A \in \mathcal{M}_n(k)$, atunci se constată, utilizând observația 3, că $\mu_v^A | \mu_A$. Aplicând și observația 5, rezultă că are loc și relația $\mu_v^A | P_A$.

G. MINCU

4

Teorema 1. Dacă $A \in \mathcal{M}_n(\mathbb{C})$, atunci μ_A și P_A au aceleași rădăcini.

Această teoremă este de fapt cazul particular relevant pentru discuția noastră al teoremei lui Frobenius:

Teorema lui Frobenius. Dacă $A \in \mathcal{M}_n(k)$, atunci polinomul minimal şi polinomul caracteristic al lui A au aceiaşi factori ireductibili.

5. Subspații invariante

În acest paragraf vom lucra peste corpul $\mathbb C$ al numerelor complexe.

Notăm cu (e_1, e_2, \ldots, e_n) baza canonică a lui \mathbb{C}^n .

Fie matricea $A \in M_n(\mathbb{C})$ care are polinomul caracteristic $P_A = (X - \lambda_1)^{m_1} (X - \lambda_2)^{m_2} \cdots (X - \lambda_r)^{m_r}$. Notăm cu F_i , $i \in \{1, 2, ..., r\}$, polinomul obținut din P_A prin eliminarea factorului $(X - \lambda_i)^{m_i}$. Punem $w_{ij} = F_i(A)e_j$.

Observația 7. $\mu_{w_{ij}} = (X - \lambda_i)^{m_i}$

Propoziția 5. Mulțimea $\bigcup_{i,j} \{w_{ij}, (A-\lambda_i I_n)w_{ij}, \dots, (A-\lambda_i I_n)^{m_i-1}w_{ij}\}$ constituie un sistem de generatori pentru $\mathbb{C}^{\mathbb{C}^n}$.

Demonstrație: Întrucât F_1, F_2, \ldots, F_r definite mai sus sunt prime între ele, există $G_1, G_2, \ldots, G_r \in \mathbb{C}[X]$ cu proprietatea $G_1F_1 + G_2F_2 + \ldots + G_rF_r = 1$. Obţinem

(1)
$$G_1(A)F_1(A)e_i + G_2(A)F_2(A)e_i + \ldots + G_r(A)F_r(A)e_i = e_i$$
 pentru orice $i \in \{1,2,\ldots,n\}$. Deoarece $(A-\lambda_i)^{m_i}e_i = 0$ conform observației 7 putem înlocui în relația (1) fiecare $G_j, j \in \{1,2,\ldots,r\}$ cu restul împărțirii sale la $(X-\lambda_i)^{m_i}$. Constatăm în acest mod că fiecare vector $e_i, i \in \{1,2,\ldots,n\}$ este combinație liniară de elementele mulțimii $\bigcup_{i,j} \{w_{ij}, (A-\lambda_i I_n)w_{ij},\ldots, (A-\lambda_i I_n)^{m_i-1}w_{ij}\}$, ceea ce încheie demonstrația. \square

Corolarul 1. \mathbb{C}^n admite o bază alcătuită din vectori proprii generalizați pentru A.

Fie
$$\lambda \in \sigma(A)$$
. Notăm $W_{\lambda} = \{v \in \mathbb{C}^n : \exists j \in \mathbb{N}^* \ (A - \lambda I_n)^j \cdot v = 0\}.$

Propoziția 6. Fie $\lambda \in \sigma(A)$. Atunci, $W_{\lambda} \leq_{\mathbb{C}} \mathbb{C}^n$.

Definiția 6. Fie $\lambda \in \sigma(A)$. W_{λ} se numește subspațiul vectorilor proprii generalizați asociați lui λ .

Definiția 7. Fie $A \in \mathcal{M}_n(k)$. k-subspațiul vectorial V al lui k^n se numește A- invariant dacă pentru orice $v \in V$ avem $Av \in V$.

Propoziția 7. Fie $A \in \mathcal{M}_n(\mathbb{C})$ și $\lambda \in \sigma(A)$. Atunci, W_{λ} este subspațiu vectorial A-invariant al lui \mathbb{C}^n .

Propoziția 8. Dacă $v_1, v_2, \ldots, v_r \in \mathbb{C}^n$ sunt vectori proprii generalizați corespunzători la valori proprii distincte ale matricei $A \in \mathcal{M}_n(\mathbb{C})$, atunci ei sunt liniar independenți.

Din corolarul 1 și din propoziția 8 obținem

Teorema 2. Dacă $A \in \mathcal{M}_n(\mathbb{C})$, iar $\sigma_{\mathbb{C}}(A) = \{\lambda_1, \lambda_2, \dots, \lambda_r\}$, atunci $W_{\lambda_1} \dot{+} W_{\lambda_2} \dot{+} \dots \dot{+} W_{\lambda_r}$ este o descompunere a lui \mathbb{C}^n sub formă de sumă directă de subspații A-invariante.

Deşi descompunerea prezentată în teorema 2 generalizează rezultatul corespunzător din cazul matricilor diagonalizabile, vom căuta să o mai rafinăm, pentru a obține matrici asemenea cu $A \in \mathcal{M}_n(\mathbb{C})$ de o formă cât mai apropiată de cea diagonală.

Fie $A \in \mathcal{M}_n(\mathbb{C})$ și λ o valoare proprie a sa. Notăm $V_{\lambda}^{(s)} = \{v \in \mathbb{C}^n : (A - \lambda I_n)^s \cdot v = 0\}.$

Propoziția 9. Fie $A \in \mathcal{M}_n(\mathbb{C})$ și λ o valoare proprie a sa. Atunci, $V_{\lambda}^{(s)} \subset V_{\lambda}^{(s+1)}$ pentru orice $s \in \mathbb{N}$.

Propoziția 10. În condițiile propoziției 9, aplicația $V_{\lambda}^{(s+1)} \xrightarrow{(A-\lambda I_n)} V_{\lambda}^{(s)}$ este (corect definită și) liniară pentru orice $s \in \mathbb{N}$.

Propoziția 11. Pentru orice $s \in \mathbb{N}$, aplicația liniară din propoziția 10 induce o aplicație liniară și injectivă $\frac{V_{\lambda}^{(s+2)}}{V_{\lambda}^{(s+1)}} \stackrel{(A-\lambda I_n)}{\longrightarrow} \frac{V_{\lambda}^{(s+1)}}{V_{\lambda}^{(s)}}$.

Vom identifica spațiile $\frac{V_{\lambda}^{(s+2)}}{V_{\lambda}^{(s+1)}}$ cu imaginile lor prin morfismele de înmulțire cu $(A-\lambda I_n)$. Făcând acest lucru, putem vorbi de spațiile vectoriale factor $U_s \stackrel{\text{not}}{=} \frac{\frac{V_{\lambda}^{(s)}}{V_{\lambda}^{(s-1)}}}{\frac{V_{\lambda}^{(s+1)}}{V_{\lambda}^{(s)}}}$ pentru orice $s \in \mathbb{N}^*$.

Fie acum $A \in \mathcal{M}_n(\mathbb{C})$, iar λ o valoare proprie cu multiplicitatea aritmetică m a lui A. Folosind notațiile anterioare, alegem pentru

G. MINCU

fiecare $s \in \{1, 2, ..., m\}$ câte o mulţime $\{v_1, v_2, ..., v_{t_s}\} \subset \mathbb{C}^n$ astfel încât clasele vectorilor din aceste mulţimi să constituie baze în U_s . Punem $\mathcal{B}_s \stackrel{\text{not}}{=} \bigcup_{j=1}^{t_s} ((A - \lambda I_n)^{(s-1)} v_j, (A - \lambda I_n)^{(s-2)} v_j, ..., v_j)$ - notaţia neobişnuită semnificând faptul că, deşi termenii reuniunii pot fi scrişi în ce ordine dorim, elementele pe care le-am scris în acel s-uplu trebuie să apară în reuniune la rând şi în acea ordine.

Teorema 3. În condițiile anterioare, $\mathcal{B} \stackrel{\text{not}}{=} \bigcup_{s=1}^m \mathcal{B}_s$ este o bază a lui ${}_{\mathbb{C}}W_{\lambda}$.

Propoziția 12. În condițiile anterioare, $W_{\lambda}(s,j) \stackrel{\text{not}}{=}_{\mathbb{C}} < (A-\lambda I_n)^{(s-1)} v_j$, $(A-\lambda I_n)^{(s-2)} v_j, \ldots, v_j > \text{este subspațiu } A\text{-invariant al lui }_{\mathbb{C}} W_{\lambda} \text{ și al lui }_{\mathbb{C}} \mathbb{C}^n$.

Teorema 4. În condițiile propoziției 12, $W_{\lambda} = \dot{+}_{s,j} W_{\lambda}(s,j)$.

Teorema 5. În condițiile teoremei 4, $\mathbb{C}^n = \dot{+}_{\lambda,s,j} W_{\lambda}(s,j)$.

Observația 8. Descompunerea lui \mathbb{C}^n în sumă directă de subspații A-invariante pe care o dă teorema 5 este cea mai fină posibil. Baza \mathcal{B} din teorema 3 este cea în care matricea are una dintre cele mai simple forme. Această formă se numește forma Jordan, și va fi introdusă în paragraful următor.

6. Forma Jordan a unei matrice din $\mathcal{M}_n(\mathbb{C})$

Definiția 8. Fie $\lambda \in \mathbb{C}$ și $r \in \mathbb{N}^*$. Matricea

$$J_r(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & \lambda & 1 & \dots & 0 & 0 & 0 \\ \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & \lambda & 1 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & \lambda \end{pmatrix}$$

se numește celula Jordan de ordin r asociată lui λ .

Definiția 9. Numim matrice canonică Jordan orice matrice de forma

$$\begin{pmatrix} J_{r_1}(\lambda_1) & 0 & 0 & \dots & 0 & 0 \\ 0 & J_{r_2}(\lambda_2) & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & J_{r_t}(\lambda_t) \end{pmatrix}.$$

O consecință imediată a teoremei 3 este

Teorema 6. Dacă $A \in \mathcal{M}_n(\mathbb{C})$, atunci există o matrice canonică Jordan J_A astfel încât $A \approx J_A$. Matricea J_A este unic determinată de A, abstracție făcând de ordinea celulelor de pe diagonală.

Definiția 10. J_A ca în teorema anterioară se numește forma canonică Jordan a lui A.

Observația 9. Matricea $A \in \mathcal{M}_n(\mathbb{C})$ este diagonalizabilă dacă și numai dacă forma sa canonică Jordan este diagonală.

References

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebra, Ed. Universității din București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, Bucureşti, 1986.