Logique Robin L'Huillier

Correction CC 2021

1 Exercice 1 : ABC

Est-ce que la formule $\forall x \exists y. F(x,y) \rightarrow \exists y \forall x. F(x,y)$ est vraie dans tous les modèles ayant un symbole de prédicat binaire F? Si oui, expliquez pourquoi. Sinon, proposez un modèle qui fournit un contre-exemple.

Non, contre-exemple:

Soit F le prédicat de l'ordre total, noté <. Nous considérons le modèle $M = (\mathbb{R}, <)$.

Dans ce modèle, $\forall x \exists y.x < y$ est toujours vrai (il y a toujours un élément plus grand dans \mathbb{R}). Par contre $\exists y \forall x.x < y$ est toujours faux (il n'y a pas de maximum dans \mathbb{R}). Et $Vrai \to Faux$ est faux par la sémantique du implique.

Est-ce que la formule $\exists x \forall y. F(x,y) \rightarrow \forall y \exists x. F(x,y)$ est vraie dans tous les modèles ayant un symbole de prédicat binaire F? Si oui, expliquez pourquoi. Sinon, proposez un modèle qui fournit un contre-exemple

Oui.

 $A \to B$ - si A vrai, remplacer le x dans $\exists x \forall y. F(x,y)$ par une constante quelconque du modèle notée a. On obtient $\forall y. F(a,y)$. Alors dans $\forall y \exists x. F(x,y)$ on peut remplacer x par la même constante, et on obtient $Vrai \to Vrai$. Si A faux, peu importe B.

Par sémantique du implique, la formule est vraie.

2 Exercice 2: ABC

Qu'est-ce qu'une théorie cohérente?

Une théorie cohérente (ou consistante) est une théorie qui ne dérive pas l'absurde.

Donnez un exemple de théorie cohérente et de théorie incohérente.

Théorie cohérente : $T = \{ \forall x. x = x \}$. On n'a pas $T \vdash \bot$ Théorie incohérente : $T = \{ g \land \neg g \}$ telle que $T \vdash \bot$

3 Exercice 3: ABC

Soit T une théorie cohérente et A et B deux formules closes. On suppose que $T \vdash A$ et $T \vdash \neg B$. Existe-t-il un modèle de T noté M tel que $M \models (B \lor \neg A)$? Justifiez soigneusement en explicitant les théorèmes du cours utilisés.

T est une théorie cohérente : elle ne dérive pas l'absurde.

On suppose $T \vdash A$. Si on a aussi $T \vdash \neg A$ alors par définition T est inconsistante. De même pour $T \vdash \neg B$. Donc en particulier, si $T \vdash \neg A \lor B$, T est inconsistante.

Par le théorème de cohérence, si $T \vdash A$ et $M \models T$, alors $M \models A$. D'où $M \models A$ et $M \models \neg B$.

Si $M \models B \vee \neg A$, alors soit B, soit $\neg A$ est vrai dans M (ou les deux), par sémantique du ou.

Si $M \models B$, on a $M \models \neg B$, ce qui est absurde.

Si $M \models \neg A$, on a $M \models A$, ce qui est absurde.

Donc non ce modèle n'existe pas.

4 Exercice 4: ABC

Soient T1, T2 deux théories. Montrer que si $T1 \subseteq T2$ alors les modèles de T2 sont aussi des modèles de T1.

Si $T1 \subseteq T2$, alors $\forall f \in T1.f \in T2$, avec f n'importe quelle formule close.

Soit M2 un modèle quelconque de T2. $\forall f \in T2.T2 \vdash f$, et $M2 \models T2$, par le théorème de cohérence, $M2 \models f$.

Donc en particulier, $\forall f \in T1.M2 \models f$. Donc M2 est aussi modèle de T1.

Soit M un modèle. Montrer que M est un modèle de th(M).

$$th(M) = \{\Phi, M \models \Phi\}$$

On a $M \models th(M)$ si et seulement si $\forall f \in th(M).M \models f$. Par définition de la théorie du modèle, M est un modèle de th(M).

5 Exercice 5 : ABC

Soit T une théorie cohérente. On note M1 et M2 deux modèles de T . Définir l'équivalence élémentaire entre M1 et M2.

M1 et M2 sont élémentairement équivalents si th(M1) = th(M2). Donc, par la définition donnée dans l'exercice 4, si toute formule vraie dans M1 est vraie dans M2 et inversement.

6 Exercice 6 : C

Soit T une théorie cohérente. Donnez une formule qui exprime que tout modèle de T a au moins k éléments

$$\exists x1, x2...xk. \forall i \in \{1..k\}. \forall j \in \{1..k\}. i \neq j \rightarrow xi \neq xj$$

Donnez une formule qui exprime que tout modèle de T a exactement k éléments.

$$\exists x1, x2...xk. \forall i \in \{1..k\}. \forall j \in \{1..k\}. i \neq j \rightarrow xi \neq xj$$

Proposez une théorie qui étend T et qui exprime que tout modèle de T est infini.

$$Fn = \exists x1, x2...xn. \forall i \in \{1..n\}. \forall j \in \{1..n\}. i \neq j \rightarrow xi \neq xj$$

$$\{Fn, n \in \mathbb{N}\}$$

7 Exercice 7: BC

Soit F une théorie telle que chaque sous-ensemble fini de F admet un modèle. Soit g une formule close quelconque. On considère maintenant les ensembles de formules $F1 = F \cup \{g\}$ et $F2 = F \cup \{\neg g\}$.

Est-il possible qu'il existe un modèle M tel que $M \models F1$ et $M \models F2$?

Non. Par le théorème de cohérence.

On a $F1 \vdash g$ et $F2 \vdash \neg g$. Si $M \models F1$ et $M \models F2$ alors $M \models g$ et $M \models \neg g$. C'est absurde.

Montrez qu'au moins l'un des ensembles F1 et F2 admet un modèle.

Chaque sous-ensemble fini de F admet un modèle, en particulier F admet un modèle.

Preuve du cours (thm complétude) qui montre que si T consistant alors si g formule close, T et g ou T et non g est consistant, donc que F1 ou F2 admet un modèle.

Est-il possible que F1 admette un modèle et F2 aussi? Justifiez.

Oui pour deux modèles séparés. Exemple, si g est la formule qui exprime la densité, F1 peut admettre un modèle dans l'univers R, alors que F2 en admet un dans l'univers N.

8 Exercice 9: BC

Inventez un ensemble de deux formules closes dont chacune a un modèle mais qui n'ont pas de modèle quand on les considère ensemble.

```
Soit f = \forall x \exists y. x \neq y et g = \forall x \forall y. x = y.
f seule a pour modèle M = (\{0\}), g seule a pour modèle M = (\{0\}).
```

Inventez un ensemble de trois formules closes dont chaque paire a un modèle mais qui n'ont pas de modèle quand on les considère ensemble.

là je sèche