Name:

Student ID:

Deep RL Course Instructor: S. A. Emami TA: M. H. Narimani Fall 2024, SUT

Problem statement:

Consider a 2×2 grid-world problem as described below. We aim to solve the control problem using the SARSA algorithm with a greedy policy at each step. Consider $\gamma = 1$, $\alpha = 1$.

1 (Starting point)	2	
3	4	(Target point)

- **Generate Q-tables** for 10 iterations. If, after an iteration, you reach the target, return to the starting point to begin a new episode. Report the best trajectory at the end of the training.

Action	a	b	c	d
\ State	(up)	(down)	(left)	(right)
1	12	12	12	12
2	12	12	12	12
3	12	12	12	12

- Initialize the Q-table with Q(x,u) = 12 for all cells. This approach is known as "Optimistic Initial Values."
- **Rewards**: If your new state is inside the grid but not the target, the reward is -2. If the new state is outside the grid, the reward is -4. If you reach the target, the reward is 10.
- If an action takes you outside the grid, you will return to the previous cell (not the starting cell).
- If two actions have the same value, you may choose one randomly.
- The values for the target point and all cells outside the grid are assumed to be zero.