本次课的主要内容

- 1.1 图的定义
- 1.2 图的表示
- 1.3 图的关系
- 1.4 图的运算

图的一些术语 (定义)

- 一些术语
 - 相邻:一条边的两个端点,如v₁和v₂,它们互为邻点
 - 相邻:有公共端点的两条边,如e₁和e₅
 - 重边(平行边):端点完全相同,如e₁和e₂
 - 阶:顶点数量,记作v(G)
 - 边数: 边的数量, 记作ε(G)
 - 零图: v=0
 - 空图:ε=0
 - 平凡图:空图,且v=1

自环:一条边的两个端点是同一个顶点

- 简单图:不含自环和重边的图
- 度:顶点v关联的边的数量,记作d(v)
 - 关联的每个自环按2次计数
- 孤立点:d=0
- 度序列:顶点的度组成的非增序列
 - 3, 3, 2, 2
- 最大度:序列中的最大值,记作△(G)
- 最小度:序列中的最小值,记作δ(G)
 - r-正则图:所有顶点的度都为r的图

图的表示

- 邻接矩阵: A^{v×v}
 - *a_{i,j}*表示顶点*v_i*和*v_j*共同关联的边的数量

- 关联矩阵: M^{ν×ε}
 - m_{i,i}表示顶点v_i和边e_i是否关联

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

图的关系

- $SH = \langle V_H, E_H \rangle = \langle V_G, E_G \rangle$ 的
 - 子图: V_H⊆ V_G, 且E_H⊆ E_G
 - 真子图:子图,且V_H ⊂ V_G,或E_H ⊂ E_G
 - 生成子图:子图,且V_H=V_G
- 点导出子图:给定 $V' \subseteq V$,以V'为顶点集、E中两个端点均在V'中的所有边为边集组成的图,记作G[V']
- 边导出子图:给定 $E' \subseteq E$,以E'中所有边的端点为顶点集、E'为边集组成的图,记作G[E']
 - 简单图 $G = \langle V_G, E_G \rangle$ 到 $H = \langle V_H, E_H \rangle$ 的同构是
 - 双射 $f: V_G \to V_H$, 满足 $(v_i, v_j) \in E_G$ 当且仅当 $(f(v_i), f(v_j)) \in E_H$
 - 记作 G ≃ H

同构关系必须是简单图

图的运算

删除边:不删除点

删除点: 删除相关的边

- 简单图G = <V, E>的
 - 补图:以V为顶点集, {(u,v): (u,v) ∉ E} 为边集的简单图
 - 记作G
- 自补图: *G*和 *G*是同构的

- $\mathbb{S}G = \langle V_G, E_G \rangle \pi H = \langle V_H, E_H \rangle \dot{n}$
 - 交:以 $V_G \cap V_H$ 为顶点集、 $E_G \cap E_H$ 为边集的图,记作 $G \cap H$
 - 并:以 $V_G \cup V_H$ 为顶点集、 $E_G \cup E_H$ 为边集的图,记作 $G \cup H$
 - 不交并(和):并,且V_G ∩ V_H = Ø, 记作G+H
 - 联:向G+H中增加边集 $\{(u,v): u \in V_G, v \in V_H\}$,记作 $G \vee H$