

Erste Seite Nicht ausdrucken! Das wird zum Deckblatt

1. Deckblatt

Vb

2. Inhaltsverzeichnis

Inhalt

1. Deckblatt	1
2. Inhaltsverzeichnis	
3. Kurzbeschreibung	4
4. Stückliste	
5. Blockschaltbild	6
6. Schaltplan	7
7 Schmitt Trigger und Lichtschranke	8
7.1 Kurzbeschreibung	8
7.2 Blockschaltbild	8
7.3 Dimensionierung Lichtschranke/Spannungswandler	8
7.4 Dimensionierung Schmitt-Trigger	9
7.5 Simulation	10
8. Buck-Converter	11
9. Software-Doku	13
10. Platinen Entwurf	14
11 Testcases	15

3. Kurzbeschreibung

Der AndMor ist ein Gerät zum Mischen von Kartenspielen. Der Kartenstapel wird in zwei Hälften geteilt und anschließend in zwei gegenüberliegenden Fächer platziert. Wenn eine Lichtschranke durch die Karten unterbrochen wird beginnen die Motoren die Karten mithilfe von einer Zahnrad-Mechanik in das Kartenfach zu schieben. Die Versorgung erfolgt über eine 9V Block Batterie. Mit einem Mikrocontroller wird die Geschwindigkeit von den Motoren über PWM für ein optimales Mischen eingestellt.

4. Stückliste

1	2	3		4	5		6	7	
Lfd. Nr.	Stück- zahl	E in- heit	Bene	nnung	Lieferant / Bestelln	ummer	MCd	Bemerkung	
	1		Widerstand 55R R5		HTBLuVA				
	2		Widerstand 1k		HTBLuVA				
	2		R2, R4 Widerstand 3k3 R8, R10		HTBLuVA				
	3		Widerstand 10k		HTBLuVA				
	1		R8, R7, R9 Widerstand 22k R10		HTBLuVA				
	1		Widerstand 100k		HTBLuVA				
	2		R6 Diode V3, V4		HTBLuVA			Freilaufdiode	
	1		Photodiode BPW	/24R	HTBLuVA				
	1		LED TSTS-750		HTBLuVA			Infrarotdiode	
	2		MOSFET N-Kan	al 75W	www.conrad.at 151334-U3			Für den Motor	
	1		OPVLM358		HTBLuVA				
	2		9 V Druck knop fa	inschluss	www.conrad.at 624691 - 62			Batterie Clip	
	4		Lithium Akku 9V	•	www.conrad.at				
	2		X6 DC Brush Motor,	,	251292 - 62 vww.conrad.at				
	1		M1, M2 CRUMTL		244406-U3 HTBLuVA			uC Modul	
	1		DC-DC Spannun	asrealer	www.amazon.de			von3,2-40V nach1,25-	
								35	
Sachnumn	Sachnummer, Datemane:			Name.		Toleranz.		Werkstoff	
				Moritz W. Andrej T. ID-Nr: Gez.: Geprült: Batrauer: Dokumentant			Freigabe:		
HTBLuVA Salzburg				4AHEL Senenrung:	TicA	ı	Stückl		
			_	Andmor Kartenmischer 1.0			r 0.0	Entwicklung	
1			Informatik			ohne D		9.06.2020	1 1

5. Blockschaltbild

6. Schaltplan

Das Grundgerüst besteht aus den zwei Motorentreibern, welche vom Mikrocontroller (in unserem Fall dem Crumptl), mithilfe der Lichtschranke gesteuert wird. Die Lichtschranke besteht aus einer Photodiode und einer Laserdiode. Um jetzt den von der Fotodiode ausgegebenen Strom in Spannung umzuwandeln benötigen wir einen Strom-Spannungswandler. Damit der Mikrocontroller die Daten

7 Schmitt Trigger und Lichtschranke

7.1 Kurzbeschreibung

Eine Lichtschranke mit Fotodioden erzeugen einen Strom der durch einen I/U-Wandler in Spannung umgewandelt wird.

Um Schaltwellen zu erzeugen verwenden wir einen Komparator mit Hysterese (Schmitt Trigger). Wenn die Lichtschranke zwischen den Fotodioden unterbrochen ist → Motoren starten Wenn die Lichtschranke nicht unterbrochen wird → Motoren aus.

7.2 Blockschaltbild

7.3 Dimensionierung Lichtschranke/Spannungswandler

Strom-Spannungswandler:

Fig. 3. Powers Light Current vs. Irradiance

Die Fotodiode wandelt das einfallende Licht in ein Strom um wie in obigen Diagramm aus dem Datenblatt ersichtlich. Dieser Strom wird dann in eine Spannung umgewandelt:

Bei Raumlicht (Unterbrechung der Lichtschranke) gibt die Fotodiode ca. 10µA ab.

Im Datenblatt Der Infrarotdiode, erkennt man, dass bei 250mA Stromdurchfluss, ca. 4mW/sr Licht Intensität gibt. Dieses Verursacht bei der Fotodiode wieder ca. 100uA Stromfluss.

$$10\mu A * 100k\Omega = 1V$$

$$100\mu$$
A * $100kΩ$ = $10V$ → OPV fährt in die Sättigung (5V am Ausgang)

Der Vorwiderstand der Infrarotdiode wurde auf 250mA Stromfluss dimensioniert:

$$R_v = \frac{5V}{250mA} = 33\Omega$$

7.4 Dimensionierung Schmitt-Trigger

Dimensionierung

$$Ue, ein = Uref \times \frac{R1 + R2}{R2} - Ua, min \times \frac{R1}{R2}$$

$$Ue, aus = Uref \times \frac{R1 + R2}{R2} - Ua, max \times \frac{R1}{R2}$$

$$3 = Uref \times \frac{R1 + R2}{R2} - 0 \times \frac{R1}{R2}$$

$$1 = Uref \times \frac{R1 + R2}{R2} - 5 \times \frac{R1}{R2}$$

$$3 - 1 = - + 5 \times \frac{R1}{R2}$$
 Annahme: $R1 = 10k$

$$2 = 5 \times \frac{R1}{R2}$$

$$\frac{2}{5} = \frac{R1}{R2}$$

$$\frac{2}{5} = \frac{10k}{R2}$$

$$R2 = \frac{10k}{\frac{2}{5}}$$

$$R2 = 25k$$

7.5 Simulation

Schaltung:

Veranschaulichung der Schaltschwellen

8. Buck-Converter

Da unsere Versorgung 9V beträgt und die OPVs sowie der Mikrocontroller und die Motortreiber 5V benötigen, benutzen wir einen Buck-Converter von 36,5% Duty Cycle, um die Spannung zu verringern.

9. Software-Doku

In unserem Projekt verwenden wir den Crumptl (ATmega 644P), um unsere Motoren anzusteuern. Durch die Software ermöglichen wir eine PWM und einen flüssigen Übergang der Umdrehungszahlen.

Int main

- → Includes (avr/io.h, avr/interrupt.h, util/delay)
- → Prüfung ob Schalter betätigt wurde
- → Setzen des TCCROA Registers
 - o (1<< COMOA1) → Löschung vom Compare Register OCROA zur Änderung des dutyCycles
 - \circ (1 << WGM00) | (1 << WGM01) \rightarrow Um den Timermode auf FAST PWM zu setzen
- → Setzen des TIMSKO Register
 - \circ (1 << TOIE0) \rightarrow bei einem Overflow wird das Interrupt freigeschaltet.
- → OCROA = (dutyCycle/100) * 255 zur Prozentwert Bestimmung
- → Setzen des TCCROB, um den Prescaler einzustellen
 - o (1 << CS00) → Prescaler = CPU Takt = 1
- → Prüfung der Lichtschranke und Erhöhung des dutyCylces
 - If (PIND & PD5) PORTB = 0x00 → Motoren werden ausgeschaltet falls die Lichtschranke NICHT unterbrochen wurde.
 - o dutyCycle += 10 → 10%ige Erhöhung danach delay 1ms und Prüfung ob dutyCycle > 100 ist. Wenn ja wird er wieder auf 0 resettet.
- → Interrupt: OCROA = (dutyCycle/100.0) * 255 (nicht unbedingt nötig, man kann aber während des Programmablaufes den dutyCycle ändern.)

10. Platinen Entwurf

11. Testcases