Containerized or Serverless Learning

Comparing the Prediction Latency of Machine Learning Model Deployments on Containerized and Serverless Environments

Diya Ramasamy | Iris Ma | Krithika Balasubramanyam Raj Shreyas Penukonda | Yuyu Lai

System Purpose and Functionality

Deployed three different machine learning models on containerized and serverless environments as APIs

Logistic Regression (Scikit-Learn)

→ Input: Tabular Data → Output: Iris Species

Computer Vision Model (TensorFlow)

→ Input: Grayscale Image

→ Output: Clothing Type

NLP Model (TensorFlow)

→ Input: Wine Review

→ Output: Type of Wine

Fashion MNIST

Wine Review

Aromas include tropical fruit, broom, brimstone and dried herb...

Design

Bucket

Pipeline Google Cloud Functions -Serverless API-POSTMAN Google Vertex Al Cloud

-Containerized API-

Metrics

Batch	Transfer	Transfer	Transfer
Sizes	Time (#1)	Time (#2)	Time (#3)
1 2 5 10 50 100		-	

Results and Challenges

GCF outperforms Vertex AI; dynamic resource allocation allows for consistently low latency

Challenge	Resolution	
Out of memory issues for large models	Trained another model from scratch with Tensorflow	
Framework version conflicts	Trained models with the exact version available on GCP	
Authentication issues when calling endpoints	Regenerated tokens every hour	