

SAMSUNG Al Center

Implicit λ -Jeffreys Autoencoders: Taking the Best of Both Worlds

Aibek Alanov^{1,2,*}, Max Kochurov^{1,3,*}, Artem Sobolev¹, Daniil Yashkov⁵, Dmitry Vetrov^{2,3,4}

¹Samsung AI Center in Moscow

²National Research University Higher School of Economics

³Skolkovo Institute of Science and Technology

⁴Joint Samsung-HSE lab

⁵FRC "Informatics and Management" of the Russian Academy of Sciences

November 1, 2019

Contents

Probability Distribution Divergences

Standard Generative Models

Generative Adversarial Networks (GANs)

Variational Autoencoders (VAE)

GAN and VAE objectives

Divergence Properties

Divergence Properties: Toy Experiment

Implicit λ -Jeffreys Autoencoder

Implicit Conditional Likelihood

Implicit Encoder

Final Objectives

Experiment Results

Results on CIFAR-10 and TinyImageNet Ablation Study CIFAR10 Samples and Reconstructions

Conclusion

Probability Distribution Divergences

Function $D(\cdot||\cdot)$ is a divergence if

- 1. $D(p||q) \geqslant 0 \quad \forall p, q \text{ distributions};$
- 2. $D(p|q) = 0 \Leftrightarrow p = q$.

 $p^*(x)$ - data distribution, $p_{\theta}(x)$ - model distribution. Examples of divergences:

• Forward Kullback-Leibler (KL) divergence:

$$D_{\mathrm{KL}}(p^*(x)||p_{\theta}(x)) = \mathbb{E}_{p^*(x)} \log \frac{p^*(x)}{p_{\theta}(x)}$$

• Reverse KL divergence:

$$D_{\mathrm{KL}}(p_{\theta}(x)||p^*(x)) = \mathbb{E}_{p^*(x)} \log \frac{p^*(x)}{p_{\theta}(x)}$$

November 1, 2019 3

Probability Distribution Divergences

Jensen-Shanon divergence:

$$\begin{split} \operatorname{JSD}(p^*(x) \| p_{\theta}(x)) &= \frac{1}{2} D_{\mathrm{KL}} \left(p^*(x) \left\| \frac{1}{2} (p^*(x) + p_{\theta}(x)) \right. \right) + \\ &+ \frac{1}{2} D_{\mathrm{KL}} \left(p_{\theta}(x) \left\| \frac{1}{2} (p^*(x) + p_{\theta}(x)) \right. \right) \end{split}$$

λ-Jeffreys divergence:

$$J_{\lambda}(p_{\theta}(x)||p^{*}(x)) = \lambda D_{\mathrm{KL}}(p^{*}(x)||p_{\theta}(x)) +$$

$$+ (1 - \lambda)D_{\mathrm{KL}}(p_{\theta}(x)||p^{*}(x))$$

Generative Adversarial Networks (GANs)

GAN:

- generator $G_{\theta}(z), \ z \sim p(z), \ p_{\theta}(x) = \int \delta_{G_{\theta}(z)}(x) p(z) dz;$
- discriminator $D_{\psi}(x)$ classifies $p^*(x)$ vs $p_{\theta}(x)$.

Discriminator's objective:

$$\mathbb{E}_{\rho^*(x)} \log D_{\psi}(x) + \mathbb{E}_{p_{\theta}(x)} \log(1 - D_{\psi}(x)) \quad \to \quad \max_{\psi}$$

Generator's objective:

- 1. $-\mathbb{E}_{p_{\theta}(x)}\log(1-D_{\psi}(x)) \rightarrow \max_{\theta}$
- 2. $\mathbb{E}_{p_{\theta}(x)} \log D_{\psi}(x) \rightarrow \max_{\theta}$
- 3. $\mathbb{E}_{p_{\theta}(x)} \log \frac{D_{\psi}(x)}{1 D_{\psi}(x)} \rightarrow \max_{\theta}$

Generative Adversarial Networks (GANs)

Let
$$D_{\psi^*}(x) = \arg\max_{D} \left[\mathbb{E}_{p^*(x)} \log D_{\psi}(x) + \mathbb{E}_{p_{\theta}(x)} \log (1 - D_{\psi}(x)) \right]$$
, then

- 1. $-\nabla_{\theta} \mathbb{E}_{p_{\theta}(x)} \log \frac{D_{\psi^*}(x)}{1 D_{\psi^*}(x)} = \nabla_{\theta} D_{\mathrm{KL}}(p_{\theta}(x) || p^*(x));$
- 2. $\nabla_{\theta} \mathbb{E}_{p_{\theta}(x)} \log(1 D_{\psi^*}(x)) = \nabla_{\theta} \text{JSD}(p_{\theta}(x) || p^*(x))$

It follows

$$\begin{split} \mathbb{E}_{p_{\theta}(x)} \log \frac{D_{\psi^*}(x)}{1 - D_{\psi^*}(x)} \; \to \; \max_{\theta} \quad \Leftrightarrow \quad D_{\mathrm{KL}}(p_{\theta}(x) \| p^*(x)) \; \to \; \min_{\theta} \\ -\mathbb{E}_{p_{\theta}(x)} \log (1 - D_{\psi^*}(x)) \; \to \; \max_{\theta} \quad \Leftrightarrow \quad \mathrm{JSD}(p_{\theta}(x) \| p^*(x)) \; \to \; \min_{\theta} \end{split}$$

Variational Autoencoders (VAE)

VAE:

- generator $p_{\theta}(x|G_{\theta}(z)) = \mathcal{N}(x|G_{\theta}(z), \sigma I), \ z \sim p(z),$ $p_{\theta}(x) = \int p_{\theta}(x|G_{\theta}(z))p(z)dz;$
- encoder $q_{\varphi}(z|E_{\varphi}(x)) = \mathcal{N}(z|E_{\varphi}^{\mu}(x), E_{\varphi}^{\sigma}(x)).$

VAE's objective:

$$\begin{split} \theta^* &= \arg\max_{\theta} \left[\max_{\varphi} \mathbb{E}_{p^*(x)} \mathbb{E}_{q_{\varphi}(z|x)} \log \frac{p_{\theta}(x|z)p(z)}{q_{\varphi}(z|x)} \right] = \\ &= \arg\max_{\theta} \mathbb{E}_{p^*(x)} \log p_{\theta}(x) = \arg\max_{\theta} \left[-\mathbb{E}_{p^*(x)} \log \frac{p^*(x)}{p_{\theta}(x)} \right] = \\ &= \arg\min_{\theta} D_{\mathrm{KL}}(p^*(x) \| p_{\theta}(x)) \end{split}$$

GAN and VAE objectives

GAN minimizes Reverse KL or JS divergence:

$$D_{\mathrm{KL}}(p_{ heta}(x)\|p^*(x))
ightarrow \min_{ heta} \quad \text{or} \quad \mathrm{JSD}(p_{ heta}(x)\|p^*(x))
ightarrow \min_{ heta}$$

VAE minimizes Forward KL:

$$D_{\mathrm{KL}}(p^*(x)\|p_{\theta}(x)) \rightarrow \min_{\theta}$$

Divergence Properties: Toy Experiment

Toy example:

$$p^*(x) = 0.15\mathcal{N}(x|-8, 0.2^2) + 0.35\mathcal{N}(x|-3, 0.8^2) + 0.3\mathcal{N}(x|3,1) + 0.2\mathcal{N}(x|8, 0.2^2),$$
$$p_{\theta}(x) = 0.5\mathcal{N}(x|\theta_1, \exp(\theta_2)) + 0.5\mathcal{N}(x|\theta_3, \exp(\theta_4))$$

Divergence Properties: Toy Experiment

Divergence Properties

Reverse KL and JS divergences lead to **mode-seeking** behaviour of $p_{\theta}(x)$:

- $p_{\theta}(x)$ captures some modes of $p^*(x)$, i.e. it can generate very realistic samples;
- $p_{\theta}(x)$ can ignore high value regions of $p^*(x)$.

Forward KL leads to **mass-covering** behaviour of $p_{\theta}(x)$:

- $p_{\theta}(x)$ captures all modes of $p^*(x)$;
- $p_{\theta}(x)$ covers low-probability regions of $p^*(x)$ as well.

Implicit λ -Jeffreys Autoencoder

We propose to minimize λ -Jeffreys divergence:

$$J_{\lambda}(p_{\theta}(x)\|p^{*}(x)) = \lambda D_{\mathrm{KL}}(p^{*}(x)\|p_{\theta}(x)) + (1-\lambda)D_{\mathrm{KL}}(p_{\theta}(x)\|p^{*}(x))$$

We can balance between mode-seeking and mass-covering behaviours by adjusting the weight λ .

GAN part:

$$D_{\mathrm{KL}}(p_{ heta}(x)\|p^*(x))
ightarrow \min_{ heta} \Leftrightarrow \mathbb{E}_{p_{ heta}(x)} \log \frac{D_{\psi^*}(x)}{1 - D_{\psi^*}(x)}
ightarrow \max_{ heta}$$

VAE part:

$$\begin{array}{ccc} D_{\mathrm{KL}}(p^*(x)\|p_{\theta}(x)) \; \to \; \min_{\theta} & \Leftrightarrow \\ \Leftrightarrow & \mathbb{E}_{p^*(x)}\left[\mathbb{E}_{q_{\varphi}(z|x)}\log p_{\theta}(x|G_{\theta}(z)) - D_{\mathrm{KL}}(q_{\varphi}(z|x)\|p(z))\right] \end{array}$$

Implicit Conditional Likelihood

Standard choices for $p_{\theta}(x|G_{\theta}(z))$ are $\mathcal{N}(x|G_{\theta}(x), \sigma I)$ or $Laplace(x|G_{\theta}, \sigma I)$.

We propose a more general class of likelihoods - **symmetric** likelihood r(x|y):

Definition

A density $r(\cdot|\cdot): \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ is a symmetric likelihood if

(i)
$$r(x = a|y = b) = r(x = b|y = a) \quad \forall a, b \in \mathcal{X};$$

(ii)
$$r(x = a|y = b)$$
 has a mode at $a = b$.

Examples: $\mathcal{N}(x|G_{\theta}(x), \sigma I)$ and $Laplace(x|G_{\theta}, \sigma I)$ are symmetric likelihoods.

Our model allows to train implicit symmetric likelihoods.

Implicit Conditional Likelihood

- Assume we are given implicit symmetric likelihood r(y|x).
- We want to use it as $p_{\theta}(x|G_{\theta}(z))$, i.e. $p_{\theta}(x|G_{\theta}(z)) = r(x|G_{\theta}(z))$.
- Our aim is to compute $\nabla_{\theta} \mathbb{E}_{p^*(x)} \mathbb{E}_{q_{\omega}(z|x)} \log r(x|G_{\theta}(z))$.

We introduce a discriminator $D_{\tau}(x, z, y)$ which classifies two types of triplets:

- real class: $(x, z, y) \sim p^*(x)q_{\varphi}(z|x)r(y|x)$;
- fake class: $(x, z, y) \sim p^*(x)q_{\varphi}(z|x)r'(y|G_{\theta}(z))$.

$$\mathbb{E}_{p^*(x)q_{\varphi}(z|x)} \left[\mathbb{E}_{r(y|x)} \log D_{\tau}(x,z,y) + \right.$$

$$\left. + \mathbb{E}_{r'(y|G_{\theta}(z))} \log(1 - D_{\tau}(x,z,y)) \right] \rightarrow \max_{\tau}$$
(1)

Implicit Conditional Likelihood

Theorem

Let $D_{\tau^*}(x, z, y)$ be the optimal solution for the objective (1) and r(y|x) and r'(y|x) are symmetric likelihoods. Then

$$\nabla_{\theta} \mathbb{E}_{p^*(x)} \mathbb{E}_{q_{\varphi}(z|x)} \log \frac{D_{\tau^*}(x, z, G_{\theta}(z))}{1 - D_{\tau^*}(x, z, G_{\theta}(z))} = \nabla_{\theta} \mathbb{E}_{p^*(x)} \mathbb{E}_{q_{\varphi}(z|x)} \log r(x|G_{\theta}(z)).$$

We do not require an access to an analytic form of $r(y|G_{\theta}(z))$.

Choice of Symmetric Likelihood r(y|x)

It is an open question what is the best choice for the $r(y|G_{\theta}(z))$. Our expectations from $r(y|G_{\theta}(z))$:

- it should encourage realistic reconstructions;
- it should highly penalize for visually distorted images.

We chose as r(y|x) a distribution over cyclic shifts in all directions of an image x. This distribution is symmetric with respect to all directions and has a mode in x, therefore it is the symmetric likelihood.

Although r(y|x) is an explicit discrete distribution due to non-optimality of $D_{\tau}(x,z,y)$ the ratio $\log \frac{D_{\tau}(x,z,G_{\theta}(z))}{1-D_{\tau}(x,z,G_{\theta}(z))}$ sets implicit likelihood of reconstructions.

Implicit Encoder

The KL term $D_{\mathrm{KL}}(q_{\varphi}(z|x)||p(z))$ from ELBO can be optimized adversarially using implicit $q_{\varphi}(z|x)$ defined by sampler $E_{\varphi}(x,\xi)$ where $\xi \sim \mathcal{N}(\cdot|0,I)$ [1].

We consider a disriminator $D_{\zeta}(x,z)$:

$$\mathbb{E}_{p^*(x)p(z)}\log D_{\zeta}(x,z) + \mathbb{E}_{p^*(x)q_{\varphi}(z|x)}\log(1-D_{\zeta}(x,z)) \ \to \ \max_{\zeta}$$

Then

$$-
abla_{arphi} \mathbb{E}_{q_{arphi}(z|x)} \log rac{D_{\zeta}(x,z)}{1-D_{\zeta}(x,z)} =
abla_{arphi} D_{\mathrm{KL}}(q_{arphi}(z|x) \| p(z))$$

Final Objectives

$$\begin{split} \mathcal{L}_{\lambda\text{-IJAE}}(\theta,\varphi) = & (1-\lambda)D_{\mathrm{KL}}(p_{\theta}(x)\|p^*(x)) - \lambda\mathcal{L}_{\mathsf{ELBO}}(\theta,\varphi) = \\ = & - (1-\lambda)\mathbb{E}_{p_{\theta}(x)}\log\frac{D_{\psi^*}(x)}{1-D_{\psi^*}(x)} - \\ & - \lambda\mathbb{E}_{p^*(x)}\mathbb{E}_{q_{\varphi}(z|x)}\left[\log\frac{D_{\tau^*}(x,z,G_{\theta}(z))}{1-D_{\tau^*}(x,z,G_{\theta}(z))} + \right. \\ & + \left. \log\frac{D_{\zeta^*}(x,z)}{1-D_{\zeta^*}(x,z)} \right] \quad \to \quad \min_{\theta,\varphi} \end{split}$$

Final Objectives

$$\begin{split} \mathcal{L}_{G}(\theta) &= -(1-\lambda)\mathbb{E}_{p_{\theta}(x)}\log\frac{D_{\psi}(x)}{1-D_{\psi}(x)} - \\ &-\lambda\mathbb{E}_{p^{*}(x)}\mathbb{E}_{q_{\varphi}(z|x)}\log\frac{D_{\tau}(x,z,G_{\theta}(z))}{1-D_{\tau}(x,z,G_{\theta}(z))} \rightarrow \min_{\theta} \\ \mathcal{L}_{E}(\varphi) &= -\lambda\mathbb{E}_{p^{*}(x)}\mathbb{E}_{q_{\varphi}(z|x)}\left[\log\frac{D_{\tau}(x,z,G_{\theta}(z))}{1-D_{\tau}(x,z,G_{\theta}(z))} + \\ &+\log\frac{D_{\zeta}(x,z)}{1-D_{\zeta}(x,z)}\right] \rightarrow \min_{\varphi} \end{split}$$

Experiment Results: Evaluation

- We evaluate our model on both generation and reconstruction tasks.
- The quality of the former is assessed using Inception Score (IS) and Fréchet Inception Distance (FID).
- The reconstruction quality is evaluated using LPIPS. It was show that LPIPS is a good metric which captures perceptual similarity between images.

Results on CIFAR-10

Results on TinyImageNet

Results on CIFAR-10 and TinyImageNet

Method	Genera FID↓	ation Quality IS ↑	Reconstruction Quality LPIPS ↓
CIFAR 10			
WAE (Tolstikhin et al., 2017)	87.7	4.18 ± 0.04	
ALI (Dumoulin et al., 2017))		5.34 ± 0.04	
ALICE (Li et al., 2017)		6.02 ± 0.03	
AS-VAE (Pu et al., 2017b)		6.3	
VAE (resnet)	150.3	3.45 ± 0.02	0.09 ± 0.03
2S-VAE (Dai & Wipf, 2019)	94.53	3.85 ± 0.03	0.06 ± 0.03
α -GAN (Rosca et al., 2017)	54.98	5.20 ± 0.08	0.04 ± 0.02
AGE (Ulyanov et al., 2018)	39.13	5.90 ± 0.04	0.06 ± 0.02
SVAE (Chen et al., 2018)	44.73	6.56 ± 0.07	0.19 ± 0.08
λ -IJAE ($\lambda = 0.3$)	29.46	$\textbf{6.98} \pm \textbf{0.09}$	0.07 ± 0.03
TinyImagenet			
AGE (Ulyanov et al., 2018)	39.51	6.75 ± 0.09	0.27 ± 0.09
SVAE (Chen et al., 2018)	79.50	5.09 ± 0.05	0.28 ± 0.08
2Se-VAE (Dai & Wipf, 2019)	72.90	4.22 ± 0.05	$\textbf{0.09} \pm \textbf{0.05}$
λ -IJAE ($\lambda = 0.3$)	35.49	$\textbf{6.85} \pm \textbf{0.06}$	$\textbf{0.11} \pm \textbf{0.04}$

Ablation Study

Ablation Study

CIFAR10 Samples

November 1, 2019

CIFAR10 Reconstructions

Conclusion

- We propose a novel auto-encoding generative model
- We provide a theoretical analysis of our objective and show that it is equivalent to the λ -Jeffreys divergence.
- In experiments, we demonstrate that our model achieves the state-of-the-art balance between generation and reconstruction quality
- It confirms our assumption that the λ -Jeffreys divergence is the right choice for learning complex high-dimensional distributions in the case of the limited capacity of the model