Device Simulation Laboratory (EE5195)

Problem Sheet 6

- 1) State the Fick's laws of diffusion and the continuity equation.
- 2) For each of the cases listed below, provide the analytical solutions, and compare them with numerical solutions. Assume steady state and D=30 cm²/s
- (a) Consider diffusive transport of particles between two points A & B separated by 100 μ m. The concentration of particles at A is 10^{12} cm⁻³ & at B is 0 cm⁻³. Assume τ = ∞ . Find the concentration profile for particles from A to B. What is the particle flux from A to B?
- (b) Solve (a) with $\tau = 10^{-7}$ s and other conditions remaining the same.
- (c) For the configuration in part (a), assume that the boundary condition at B is such that the particle flux F there is equal to kC, where $k=10^3$ cm/s and C is the concentration there. Assume $\tau=\infty$. Find the concentration profile for particles from A to B.
- (d) Solve (c) with $\tau = 10^{-7}$ s and other conditions remaining the same.
- (e) For the configuration in part (a), assume that a particle flux is introduced at x=30 μm at the rate of 10^{12} cm⁻²/s. Assume that the particle density at A & B are held constant at 0 and $\tau=\infty$. Find the concentration profile for particles from A to B.