S.-T. Yau College Student Mathematics Contests 2011

Geometry and Topology

Individual 9:30–12:00 am, July 10, 2011 (Please select 5 problems to solve)

- **1.** Suppose M is a closed smooth n-manifold.
- a) Does there always exist a smooth map $f: M \to S^n$ from M into the n-sphere, such that f is essential (i.e. f is not homotopic to a constant map)? Justify your answer.
- b) Same question, replacing S^n by the n-torus T^n .
- **2.** Suppose (X, d) is a compact metric space and $f: X \to X$ is a map so that d(f(x), f(y)) = d(x, y) for all x, y in X. Show that f is an onto map.
- **3.** Let C_1, C_2 be two linked circles in \mathbb{R}^3 . Show that C_1 cannot be homotopic to a point in $\mathbb{R}^3 \setminus C_2$.
- **4.** Let $M = \mathbb{R}^2/\mathbb{Z}^2$ be the two dimensional torus, L the line 3x = 7y in \mathbb{R}^2 , and $S = \pi(L) \subset M$ where $\pi : \mathbb{R}^2 \to M$ is the projection map. Find a differential form on M which represents the Poincaré dual of S.
- **5.** A regular curve C in \mathbb{R}^3 is called a *Bertrand Curve*, if there exists a diffeomorphism $f: C \to D$ from C onto a different regular curve D in \mathbb{R}^3 such that $N_x C = N_{f(x)} D$ for any $x \in C$. Here $N_x C$ denotes the principal normal line of the curve C passing through x, and $T_x C$ will denote the tangent line of C at x. Prove that:
- a) The distance |x f(x)| is constant for $x \in C$; and the angle made between the directions of the two tangent lines T_xC and $T_{f(x)}D$ is also constant.
- b) If the curvature k and torsion τ of C are nowhere zero, then there must be constants λ and μ such that $\lambda k + \mu \tau = 1$
- **6.** Let M be the closed surface generated by carrying a small circle with radius r around a closed curve C embedded in \mathbb{R}^3 such that the center moves along C and the circle is in the normal plane to C at each point. Prove that

$$\int_{M} H^{2} d\sigma \ge 2\pi^{2},$$

and the equality holds if and only if C is a circle with radius $\sqrt{2}r$. Here H is the mean curvature of M and $d\sigma$ is the area element of M.