

Week 4, March 7th: Series of functions

Instructor: Cécile Huneau (cecile.huneau@polytechnique.edu) Tutorial Assistants:

- Allen Fang (groups?, allen.fang@sorbonne-universite.fr)

- Yuan Xu (groups?, xu.yuan@polytechnique.edu)

1 Important exercises

Exercise 1. Let $f_n : \mathbb{R} \to \mathbb{R}$, defined by $f_n(x) = e^{-xn^2}$.

- 1. Let a > 0. Show that the series $\sum f_n$ is normally convergent on $[a, +\infty[$, and pointwise convergent on $]0, +\infty[$. We write $f = \sum_{n=0}^{\infty} f_n$.
- 2. Show that f is continuous and decreasing on $]0,\infty[$. Calculate $\lim_{x\to+\infty} f(x)$.
- 3. Show that the function f is not bounded, and calculate $\lim_{x\to 0} f(x)$.
- 4. Let x > 0. Show that $\int_0^\infty e^{-xt^2} dt < \infty$ and

$$\int_0^\infty e^{-xt^2} dt = \frac{1}{\sqrt{x}} \int_0^\infty e^{-t^2} dt.$$

5. Show that for all $n \ge 0$ and x > 0 we have

$$e^{-xn^2} + \int_0^n e^{-xt^2} dt \le \sum_{k=0}^n e^{-xk^2} \le 1 + \int_0^n e^{-xt^2} dt.$$

Deduce that $\lim_{x\to 0} \sqrt{x} f(x) = \int_0^\infty e^{-t^2} dt$.

Exercise 2. Let $H : \mathbb{R} \to \mathbb{R}$ be defined by H(x) = 0 for x < 0 and H(x) = 1 for $x \ge 1$. Let x_n be a sequence of distinct points of]a,b[and $\sum \alpha_n$ an absolutely convergent numerical series.

- 1. Show that the series $\sum \alpha_n H(x-x_n)$ converges uniformly on]a,b[. We note f the limit.
- 2. Show that f is continuous for all $x \neq x_n$.

Exercise 3. Show that if f is continuous on [0,1] and if $\int_0^1 f(x)x^n dx = 0$ for all $n \in \mathbb{N}$, then f(x) = 0 for all $x \in [0,1]$.

Tip: Use Weierstrass theorem to prove that $\int_0^1 f^2(x) dx = 0$.

Exercise 4. Approximation by Bernstein polynomials.

For all continuous function $f : [0,1] \to \mathbb{C}$ and $n \in \mathbb{N}$ we note

$$B_n(f): [0,1] \to \mathbb{C}, \quad x \mapsto \sum_{k=0}^n f(\frac{k}{n}) b_n^k(x),$$

where $b_n^k(x) = C_n^k x^k (1 - x)^{n-k}$.

- 1. Calculate $B_n(1)$, $B_n(x)$ and $B_n(x^2)$.
- 2. Give a simplified expression for $\sum_{k=0}^{n} \left(\frac{k}{n} x\right)^2 b_n^k$ and show that for all $\eta > 0$ and $x \in [0,1]$ we have

$$\sum_{k, \, |\frac{k}{n} - x| \ge \eta} b_n^k(x) \le \frac{1}{nk^2}.$$

3. Show that for all continuous function $f : [0,1] \to \mathbb{C}$, $B_n(f)$ converges uniformly to f on [0,1], and deduce Weierstrass theorem.

2 More involved exercises

Exercise 5. Second theorem of Dini.

Let $f_n : [a, b] \to \mathbb{R}$. Assume that for all n, f_n is continuous and increasing, and that the sequence (f_n) converges pointwise to a function f which is continuous. Show that the convergence is uniform.

Tip: We recall Heine's theorem: a function which is continuous on a compact interval [a, b] is uniformly continuous.

Exercise 6.

- 1. Let $f_n : [a,b] \to \mathbb{R}$. We assume that there exists K such that for all n, the function f_n is K-Lipschitz continuous. Show that pointwise convergence on [a,b] implies uniform convergence.
- 2. Let $f_n :]a, b[\to \mathbb{R}$ be a sequence of convex functions, which converges pointwise to a function f. Show that (f_n) is uniformly convergent on all segment $[a', b'] \subset]a, b[$. Do we have that (f_n) converges uniformly on]a, b[?

Tip: Consider the sequence f_n :]0,1[$\to \mathbb{R}$, $x \mapsto x^n$.