Iran COVID-19 epidemic models situation report No 35 – 2022-01-10

Farshad Pourmalek MD PhD

Former lecturer, University of British Columbia, Vancouver | <u>UBC SPPH</u> | <u>ORCID</u> | <u>PubMed</u> pourmalek_farshad@yahoo.com

Combine and visualize international periodically updated estimates of COVID-19 pandemic at the country level, countries without subnational level estimates

Based on uptake 20220110 in https://github.com/pourmalek/covir2
Study update dates in uptake 20220110:

DELP 20220110, IHME 20220110, IMPE 20211213, SRIV 20220110

DELP: model by Massachusetts Institute of Technology, Cambridge
IHME: model by Institute for Health Metrics and Evaluation, Seattle

IMPE: model by Imperial College, London

SRIV: model by Srivastava, Ajitesh, University of Southern California, Los Angeles

خلاصه فارسی	2
The Omicron variant	3
Executive Summary	4
What is this report, and where does it come from?	5
Graphs of epidemic trajectory in Iran till May 2022	10

خلاصه فارسى

برآوردهای مورخ ۱۸ دی ۱۴۰۰ سناریوی اصلی موسسه اندازه گیری و ارزشیابی سلامت (آی اچ ام ای) دانشگاه واشنگتن در سیاتل: تعداد کل موارد جدید روزانه عفونت کووید ۱۹ (شامل موارد بدون علامت و موارد بیماری با علایم خفیف، متوسط و شدید) در ایران در ۱۸ دی ماه، ۷۹ هزار مورد است و در حدود ۲۷ بهمن به یک میلیون و صد و سی و هفت هزار (۱۳۷۷۷۵) در ۱۸ بهمن. حد هزار (۱۳۷۷۷۵) در ۱۸ بهمن. حد پایین عدم اطمینان: دو میلیون و هفت صد هزار (۱۲۰۰۰۰) در ۱۸ بهمن. حد پایین عدم اطمینان: دو میلیون و هفت صد هزار (۱۲۰۰۰۰) در ۱۸ بهمن. حد

https://covid19.healthdata.org/iran-(islamic-republic-of)?view=infections-testing&tab=trend&test=infections

تزریق وسیع دوز سوم واکسن، حداکثر تعداد کل موارد جدید روزانه عفونت را به یک میلیون نفر در ۲۴ بهمن کاهش می دهد. دهد. استفاده ۸۰ درصد جمعیت از ماسک این تعداد را به شش صد هزار نفر در سوم اسفند کاهش می دهد.

تعداد موارد بیماری علامت دار، برآورد نشده، و به مراتب کمتر است. در سناریوی اصلی، تعداد مرگ روزانه در ۲۱ اسفند به ۱۰۰ نفر می رسد. بستری تخت عادی ۱۷۰۰۰ نفر و تخت آی سی یو ۸۰۰۰ نفر در ۱۷ اسفند. این برآوردها برای موج پنجم، مرگ روزانه ۴۴۲ نفر در ۲۶ مهریور، و بستری تخت عادی ۳۳ هزار و آی سی یو ۱۵ هزار نفر در ۲۶ مرداد بودند.

تعداد موارد بیماری قابل تشخیص می تواند در اواخر بهمن ماه تا اواسط اسفند ۱۴۰۰ به بیش از هشتاد هزار مورد در روز برسد که البته همه آن ها شدید نبوده و یا منجر به بستری نمی گردند.

دقت زمانی برآورد ها معمولا از یک تا دو هفته زودتر تا یک تا دو هفته دیر تر است.

The Omicron variant

The IHME model has included the Omicron variant. IHME Detected Infections vs. All Infections: "Probably detected infections at the **global** level will be **three times** that previous peak that we saw for delta." https://www.healthdata.org/covid/video/insights-ihmes-latest-covid-19-model-run

Scenarios of IHME model as of update 20211221:

S01 = Current projection [Status Quo, Reference scenario]

S02 = 80% mask use [Best scenario]

S03 = High severity of Omicron [Worse scenario]

S04 = Third dose of vaccine [Second best scenario]

S05 = Reduced vaccine hesitancy [Third best scenario]

IMPE has included the Omicron variant in their model, as explained here: https://mrc-ide.github.io/global-lmic-reports/News.html

"For certain countries the impact of the Delta variant is now included in the model. Timings for the delta variant are derived from CoVariants. For more information see updates to the model parameters and methods page.

DELP does not readily mentioned inclusion of Omicron in their model. However, their estimated cases show unprecedented increase.

SRIV does not readily mentioned inclusion of Omicron in their model, except, "Caution: Expect unreliable forecasts due to under-reporting around holidays and uncertainty in the prevalence of the Omicron variant." However, their estimated cases show unprecedented increase.

The Omicron variant, Farshad Pourmalek's take, 2021-12-15:

Given all available evidence so far, Omicron will most probably leave more cases, hospitalizations, and even deaths compared to previous waves, due to exponential growth – even with counterfactual scenarios of full lockdowns and highest coverages 3 doses of mRNA vaccines. Percent fatality and hospitalization lower than delta, but absolute numbers, higher.

Most politicians and half-politician-half-scientists repeat the same negligent mistakes with every new variant of concern. Refractory to treatment.

Farshad Pourmalek, December 15, 2021

Executive Summary

This report shows the trajectory of daily deaths, infections, bed needs, and ICU bed needs for Iran, estimated by five international and periodically updating COVID-19 epidemic models.

This report summarizes the results of a project named *CovidVisualized covir2*, an online tool developed to function as an early warning tool for technical advisers and health decision-makers.

Pre-print Data Note manuscript on Research Square, titled "CovidVisualized: Visualized compilation of international updating models' estimates of COVID-19 pandemic at global and country levels", 02 August 2021, PRE-PRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-768714/v1] describes the methods and results of CovidVisualized tools: CovidVisualizedCountry (for Canada), CovidVisualizedGlobal (for global level), and covir2 (for Iran).

Farshad Pourmalek MD MPH PhD, who has created the <u>covir2</u> tool (and <u>CovidVisualizedCountry</u> and <u>CovidVisualizedGlobal</u> tools) and this report is a physician and epidemiologist who worked in <u>School of Population and Public Health of University of British Columbia</u> and Vancouver General Hospital, <u>University of Washington</u>, WHO, UNDEP, and UNICEF. ORCID ID https://orcid.org/0000-0002-2134-0771, <u>PubMed</u>.

What is this report, and where does it come from?

This report is the <u>35th</u> situation report of predictions of five international and periodically updating COVID-19 epidemic models about the future trajectory of the epidemic in Iran. The report is based on the "<u>covir2</u>" online tool, that is a GitHub repository for sharing data and codes, available at https://github.com/pourmalek/covir2

This report is meant to serve as an offline and stand-alone version of the online tool. Situation Reports are available online at

https://github.com/pourmalek/covir2/tree/main/situation%20reports

Objectives of the "covir2" tool are to identify international and periodically updated models of the COVID-19 epidemic, compile and visualize their estimation results, and periodically update the compilations.

The ultimate objective is to provide an *early warning system* for technical advisors to the decision-makers. When the predictions of one or more models show an increase in daily cases or infections, hospitalizations, or deaths in the near future, *technical advisors to the national and subnational decision-makers* may consider suggesting augmentation of non-pharmacologic preventive interventions and vaccination. In doing so, the strengths and weaknesses of individual models need to be considered and those of this work. Models' estimates demonstrate the trajectory of COVID-19 deaths, cases or infections, and hospital-related outcomes in one to three months into the future.

The "CovidVisualized" project includes https://github.com/pourmalek/CovidVisualizedCountry for Canada and its provinces, and https://github.com/pourmalek/CovidVisualizedGlobal for the global level.

Methods and technical details of this work are available in a pre-print Data Note manuscript on Research Square, titled "CovidVisualized: Visualized compilation of international updating models' estimates of COVID-19 pandemic at global and country levels", 02 August 2021, PRE-PRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-768714/v1] describes the methods and results of CovidVisualized tools: CovidVisualizedCountry (for Canada), CovidVisualizedGlobal (for global level), and covir2 (for Iran).

Strengths and weaknesses of international and periodically updating COVID-19 epidemic models are discussed in <u>Pourmalek F, Rezaei Hemami M, Janani L, Moradi-Lakeh M. Rapid review of COVID-19 epidemic estimation studies for Iran. BMC Public Health. 2021 Feb 1;21(1):257. doi: 10.1186/s12889-021-10183-3. PMID: 33522928.</u>

Stata codes written and used for this whole work can be examined online and/or downloaded and re-run to check, securitize, verify, or flag any mistakes. https://github.com/pourmalek/CovidVisualizedCountry#iii-inner-works-of-this-repository-1

Five international and periodically updating COVID-19 epidemic models:

DELP, IHME, IMPE, LANL, SRIV; and JOHN (these abbreviations are used in the graphs)

DELP: DELPHI. Differential Equations Lead to Predictions of Hospitalizations and Infections. COVID-19 pandemic model named DELPHI by Massachusetts Institute of Technology, Cambridge. *Reference:* COVID Analytics. DELPHI epidemiological case predictions. Cambridge: Operations Research Center, Massachusetts Institute of Technology.

https://www.covidanalytics.io/projections and https://github.com/COVIDAnalytics/website/tree/master/data/predicted

IHME: Institute for Health Metrics and Evaluation. COVID-19 pandemic model by Institute for Health Metrics and Evaluation, Seattle. *Reference:* Institute for Health Metrics and Evaluation (IHME). COVID-19 mortality, infection, testing, hospital resource use, and social distancing projections. Seattle: Institute for Health Metrics and Evaluation (IHME), University of Washington. http://www.healthdata.org/covid/ and http://www.healthdata.org/covid/ and http://www.healthdata.org/covid/ and http://www.healthdata.org/covid/ data-downloads

IMPE: Imperial. COVID-19 pandemic model by Imperial College, London. *Reference*: MRC Centre for Global Infectious Disease Analysis (MRC GIDA). Future scenarios of the healthcare burden of COVID-19 in low- or middle-income countries. London: MRC Centre for Global Infectious Disease Analysis, Imperial College London. https://mrc-ide.github.io/global-lmic-reports/ and https://github.com/mrc-ide/global-lmic-reports/tree/master/data

LANL: Los Alamos National Laboratories. COVID-19 pandemic model by Los Alamos National Laboratories, Los Alamos. *Reference:* Los Alamos National Laboratory (LANL). COVID-19 cases and deaths forecasts. Los Alamos: Los Alamos National Laboratory (LANL). https://covid-19.bsvgateway.org // Retired on 20210926.

SRIV: Srivastava, Ajitesh. COVID-19 pandemic model by University of Southern California, Los Angeles. *Reference*: Srivastava, Ajitesh. University of Southern California (USC). COVID-19 forecast. Los Angeles: University of Southern California. https://scc-usc.github.io/ReCOVER-COVID-19 and https://github.com/scc-usc/ReCOVER-COVID-19 tree/master/results/historical_forecasts

*

JOHN: Johns Hopkins. Coronavirus resource center, Johns Hopkins University, Baltimore. Curation of official reports of countries to World Health Organization. **Ground truth for comparison**. *Reference:* Johns Hopkins University. Coronavirus resource center. https://coronavirus.jhu.edu/map.html and https://github.com/CSSEGISandData/COVID-19

*

Models' updates and their acquisition in this work:

Every Friday, a new uptake will be performed. Any model updates older than two weeks on the uptake date will not be included in the new uptake. The most recent update of each model is used.

The LANL COVID-19 Team made its last real-time forecast on September 27th, 2021. [for 20210926]. The LANL model is retired.

Uptakes in https://github.com/pourmalek/covir2 for Iran are as follows.

(Uptake number) uptake date: study update date, study update date

bold italic fonts show the uptake was triggered by either IHME or IMPE (before 20211008), or the model updates that are new in this uptake (20211008 and afterwards).

- (58) uptake 20220110: *DELP 20220110*, *IHME 20220110*, IMPE 20211213, *SRIV 20220110*(57) uptake 20220104: *DELP 20220104*, IHME 20211221, *IMPE 20211213*, *SRIV 20220104*(56) uptake 20211221: *DELP 20211222*, *IHME 20211221*, IMPE 20211205, *SRIV 20211219*(55) uptake 20211217: *DELP 20211216*, IHME 20211119, *IMPE 20211205*, *SRIV 20211217*(54) uptake 20211210: *DELP 20211210*, IHME 20211119, *IMPE 20211129*, *SRIV 20211210*(53) uptake 20211203: *DELP 20211203*, IHME 20211119, *IMPE 20211129*, *SRIV 20211203*(52) uptake 20211126: *DELP 20211123*, IHME 20211119, IMPE 20211115, *SRIV 20211126*(51) uptake 20211119: *DELP 20211119*, *IHME 20211119*, *IMPE 20211115*, *SRIV 20211119*(50) uptake 20211112: *DELP 20211112*, IHME 20211104, *IMPE 20211103*, *SRIV 20211112*(49) uptake 20211105: *DELP 20211105*, *IHME 20211104*, *IMPE 20211027*, *SRIV 20211105*(48) uptake 20211029: *DELP 20211019*, IHME 20211021, IMPE 20211021, *SRIV 20211017*(46) uptake 20211015: *DELP 20211019*, *IHME 20211021*, IMPE 20211006, *SRIV 20211017*(46) uptake 20211008: *DELP 20211008*, IHME 20211001, IMPE 20210924, LANL 20210926, *SRIV 20211008*
- (44) uptake 20211001: DELP 20210930, *IHME 20211001*, IMPE 20210924, LANL 20210926, SRIV 20210930
- (43) uptake 20210928: DELP 20210927, IHME 20210923, *IMPE 20210924*, LANL 20210926, SRIV 20210928
- (42) uptake 20210923: DELP 20210923, *IHME 20210923*, IMPE 20210909, LANL 20210919, SRIV 20210923
- (41) uptake 20210920: DELP 20210920, IHME 20210916, *IMPE 20210909*, LANL 20210919, SRIV 20210920
- (40) uptake 20210916: DELP 20210916, *IHME 20210916*, IMPE 20210825, LANL 20210912, SRIV 20210916
- (39) uptake 20210910: DELP 20210910, *IHME 20210910*, IMPE 20210825, LANL 20210905, SRIV 20210910

- (38) uptake 20210902: DELP 20210902, *IHME 20210902*, IMPE 20210825, LANL 20210829, SRIV 20210902
- (37) uptake 20210901: DELP 20210901, IHME 20210826, *IMPE 20210825*, LANL 20210829, SRIV 20210901
- (36) uptake 20210826: DELP 20210826, *IHME 20210826*, IMPE 20210819, LANL 20210822, SRIV 20210826
- (35) uptake 20210824: DELP 20210824, IHME 20210819, *IMPE 20210819*, LANL 20210822, SRIV 20210824
- (34) uptake 20210819: DELP 20210819, *IHME 20210819*, IMPE 20210806, LANL 20210815, SRIV 20210819
- (33) uptake 20210813: DELP 20210813, IHME 20210806, *IMPE 20210806*, LANL 20210808, SRIV 20210813
- (32) uptake 20210806: DELP 20210806, *IHME 20210806*, IMPE 20210719, LANL 20210801, SRIV 20210801
- (31) uptake 20210730: DELP 20210730, *IHME 20210730*, IMPE 20210719, LANL 20210725, SRIV 20210730
- (30) uptake 20210727: DELP 20210726, IHME 20210723 version 2, *IMPE 20210719*, LANL 20210725, SRIV 20210727
- (29) uptake 20210726: DELP 20210726, *IHME 20210723 version 2*, IMPE 20210709, LANL 20210718, SRIV 20210726
- (28) uptake 20210723: DELP 20210723, *IHME 20210723*, IMPE 20210709, LANL 20210718, SRIV 20210723
- (27) uptake 20210715: DELP 20210715, *IHME 20210715*, IMPE 20210709, LANL 20210711, SRIV 20210715
- (26) uptake 20210714: DELP 20210714, IHME 20210702, *IMPE 20210709*, LANL 20210711, SRIV 20210714
- (25) uptake 20210709: DELP 20210708, IHME 20210702, *IMPE 20210702*, LANL 20210704, SRIV 20210709
- (24) uptake 20210704: DELP 20210704, IHME 20210702, *IMPE 20210626*, LANL 20210704, SRIV 20210704
- (23) uptake 20210703: DELP 20210703, *IHME 20210702*, IMPE 20210618, LANL 20210627, SRIV 20210703
- (22) uptake 20210625: DELP 20210625, *IHME 20210625*, IMPE 20210618, LANL 20210613, SRIV 20210624
- (21) uptake 20210624: DELP 20210624, IHME 20210618, *IMPE 20210618*, LANL 20210613, SRIV 20210624
- (20) uptake 20210618: DELP 20210618, *IHME 20210618*, IMPE 20210611, LANL 20210613, SRIV 20210618
- (19) uptake 20210611: DELP 20210611, IHME 20210610, *IMPE 20210611*, LANL 20210606, SRIV 20210611
- (18) uptake 20210610: DELP 20210610, *IHME 20210610*, IMPE 20210604, LANL 20210606, SRIV 20210610
- (17) uptake 20210605: DELP 20210604, IHME 20210604, *IMPE 20210604*, LANL 20210602, SRIV 20210604

- (16) uptake 20210604: DELP 20210604, *IHME 20210604*, IMPE 20210527, LANL 20210602, SRIV 20210604
- (15) uptake 20210603: DELP 20210603, IHME 20210528, *IMPE 20210527*, LANL 20210526, SRIV 20210603
- (14) uptake 20210528: DELP 20210528, *IHME 20210528*, IMPE 20210522, LANL 20210526, SRIV 20210528
- (13) uptake 20210522: DELP 20210522, IHME 20210521, *IMPE 20210522*, LANL 20210519, SRIV 20210522
- (12) uptake 20210521: DELP 20210521, *IHME 20210521*, IMPE 20210516, LANL 20210519, SRIV 20210521
- (11) uptake 20210516: DELP 20210516, IHME 20210514, *IMPE 20210516*, LANL 20210516, SRIV 20210516
- (10) uptake 20210515: DELP 20210515, IHME 20210514, *IMPE 20210510*, LANL 20210512, SRIV 20210515
- (09) uptake 20210514: DELP 20210514, *IHME 20210514*, IMPE 20210424, LANL 20210512, SRIV 20210514
- (00) uptake 20210507: DELP 20210507, *IHME 20210507*, IMPE 20210424, LANL 20210505, SRIV 20210507. IHME update 20210507 vanished after release.
- (08) uptake 20210506: DELP 20210506, *IHME 20210506*, IMPE 20210424, LANL 20210505, SRIV 20210506
- (00) uptake 20210430: DELP 20210430, *IHME 20210430*, IMPE 20210424, LANL 20210428, SRIV 20210430. IHME update 20210430 vanished after release.
- (07) uptake 20210424: DELP 20210424, IHME 20210423, *IMPE 20210424*, LANL 20210421, SRIV 20210424
- (06) uptake 20210423: DELP 20210423, *IHME 20210423*, IMPE 2010417, LANL 20210421, SRIV 20210423
- (05) uptake 20210417: DELP 20210417, IHME 20210416, *IMPE 20210417*, LANL 20210414, SRIV 20210417
- (04) uptake 20210416: DELP 20210416, *IHME 20210416*, IMPE 20210406, LANL 20210414, SRIV 20210416
- (03) uptake 20210409: DELP 20210409, *IHME 20210409*, IMPE 20210406, LANL 20210407, SRIV 20210409
- (02) uptake 20210406: DELP 20210406, IHME 20210401, *IMPE 20210406*, LANL 20210404, SRIV 20210406
- (01) uptake 20210401: DELP 20210401, *IHME 20210401*, IMPE 20210329, LANL 20210331, SRIV 20210401

Graphs of epidemic trajectory in Iran till May 2022

Graphs of the most recent models' updates are shown here. These graphs, as well as graphs of previous updates, are available online at https://github.com/pourmalek/covir2

Logical order of graphs:

(1) *Outcomes*: Daily deaths, Daily cases or infections, Hospital-related outcomes, Daily deaths estimated to reported ratio, Daily cases or infections estimated to reported cases ratio.

Followed by additional outcomes estimated by IHME and added starting from uptake 20210916, i.e., R effective, Daily Infection-outcome ratios, Daily mobility, Daily mask use, and (Percent) cumulative vaccinated.

- (2) Calendar time of estimates coverage: All-time, followed by 2021. To view the whole epidemic trajectory and further focus on the near future.
- (3) *Scenarios*: Reference scenarios, followed by alternative scenarios. To examine the main or reference (aka. status quo) scenario and alternative (better and worse) scenarios.
- (4) Five models: Different models within each graph (for which model estimates update release dates are maximally synchronized), plus official reports of the country to WHO (curated by Johns Hopkins University) as the under-reported benchmark for trends. To examine how heterogeneity in methods used by different models results in heterogeneous results for the same outcome (same time-place-person aggregated units)

List of graphs

```
graph (1) Iran - Daily deaths, reference scenarios, all time
graph (2) Iran - Daily deaths, reference scenarios, 2021 on
graph (3) Iran - Daily deaths, 2021 on, reference scenario with uncertainty, IHME
graph (4) Daily deaths, 2021 on, 5 scenarios, IHME
graph (5) Iran - Daily deaths, 2021 on, reference scenario with uncertainty, IMPE
graph (6) Iran - Iran - Daily deaths, 2021 on, 3 scenarios, IMPE
graph (7) Iran - Daily cases or infections, all time
graph (8) Iran - Daily cases or infections, 2021 on
graph (8b1) Iran - Daily Infections, 5 scenarios, all time, IHME
graph (8b2) Iran - Daily cases, 2021 on
graph (8c) Iran - Daily estimated infections IHME IMPE to reported cases JOHN, main scenarios,
2021 on
graph (8d) Iran - COVID-19 daily infections, IHME, worse scenario
graph (9) Iran - Hospital-related outcomes, all time
graph (10) Iran - Hospital-related outcomes, 2021 on
graph (11) Iran - Daily deaths estimated to reported, all time
graph (12) Iran - Daily cases or infections estimated to reported cases, 2021 on
graph (13) Iran - R effective, 3 scenarios, 2021 on, IHME
graph (14) Iran - Daily Infection-outcome ratios, reference scenario, 2021 on, IHME
graph (15) Iran - Daily mobility, 3 scenarios, all time, IHME
graph (16) Iran - Daily mask use, 3 scenarios, all time, IHME
graph (17) Iran - Cumulative vaccinated percent, 2021 on, IHME
graph (18) Iran - Daily detected infections, reference scenario, all time, IHME
graph (19) Iran - Daily hospitalized infections, reference scenario, all time, IHME
graph (20) Iran - Daily fatal infections, reference scenario, all time, IHME
```

Names of models/studies in Farsi:

```
(JOHN) دانشگاه جانز هاپکینز، انعکاس گزارش های رسمی کشور ها به سازمان جهانی بهداشت (منحنی آبی رنگ) (DELP) مطالعه دلفی، انستیتوی فناوری ماساچوست کمبریج (منحنی قرمز رنگ) (IHME) مطالعه موسسه آی اچ ام ای، دانشگاه واشنگتن سیاتل (منحنی سیاه رنگ) (IMPE) مطالعه ایمپریال کالج لندن (منحنی صورتی رنگ) (SRIV) مطالعه اسربواستاوا در دانشگاه کالیفرنیای جنوبی (منحنی سبز رنگ)
```

(1) Iran Daily deaths, reference scenarios, all time

(2) Iran Daily deaths, reference scenarios, 2021 on

(3) Iran Daily deaths, 2021 on, reference scenario with uncertainty, IHME

(4) Iran Daily deaths, 2021 on, 5 scenarios, IHME

(5) Iran Daily deaths, 2021 on, reference scenario with uncertainty, IMPE

(6) Iran Daily deaths, 2021 on, 3 scenarios, IMPE

(7) Iran Daily cases or infections, all time

Red line: 20210424 online meeting; The estimated probability, timing, dimensions, drivers, and preventive measures of the FIFTH wave and Delta were discussed with MOH.

(8) Iran Daily cases or infections, 2021 on

Red line: 20210124 online meeting; The estimated probability, timing, dimensions, drivers, and preventive measures of the FIFTH wave and Delta were discussed with MOH.

(8b1) Iran Daily Infections, 5 scenarios, all time, IHME

Worse = High severity of Omicron; Reference = Current projection 3rd best = Reduced vaccine hesitancy; 2nd Best = Vaccine 3rd dose; Best = 80% mask use

(8b2) Iran Daily cases, 2021 on

Red line: 20210424 online meeting; The estimated probability, timing, dimensions, drivers, and preventive measures of the FIFTH wave and Delta were discussed with MOH.

(8c) Iran <u>Daily estimated infections IHME IMPE to reported cases JOHN, main scenarios,</u> 2021 on

(8d) Iran Daily infections, IHME, worse scenario

(9) Iran Hospital-related outcomes, all time

Red line: 20210424 online meeting. The estimated probability, timing, dimensions, drivers, and preventive measures of the FIFTH wave and Delta were discussed with MOH.

(10) Iran Hospital-related outcomes, 2021 on

Uncertainty limits: dashed curves
 Red line: 20210424 online meeting; The estimated probability, timing, dimensions, drivers, and preventive measures of the FIETH wave and Delta were discussed with MOH.

(11) Iran Daily deaths estimated to reported, all time

(12) Iran Daily cases or infections estimated to reported cases, 2021 on

(13) Iran R effective, 3 scenarios, 2021 on, IHME

Reference = Current projection; Best = 80% mask use; Worse = High severity of Omicron

(14) Iran Daily Infection-outcome ratios, reference scenario, 2021 on, IHME

(15) Iran Daily mobility, 3 scenarios, all time, IHME

(16) Iran Daily mask use, 3 scenarios, all time, IHME

(17) Iran Percent cumulative vaccinated, 2021 on, IHME

Vaccinated: Initially vaccinated (one dose of two doses) Effectively vaccinated: one and two dose with efficacy Fully vaccinated: one of one and two of two doses

(18) Iran Daily detected infections, reference scenario, all time, IHME

Calculated daily detected infections = Daily infections * Infection detection ratio

The trend of the CALCULATED IHME Daily detected infections (= Daily infections * Infection detection ratio) (red curve) is comparable with that of IHME "Daily infections (raw data)" (black curve) and JOHN daily reported cases (blue curve). The latter two are fully aligned, with a time lag of about two weeks. The CALCULATED IHME Daily detected infections is about two weeks behind the JOHN daily reported cases, and their heights are comparable during the fifth wave.

This means there might be more than 80,000 daily detectable cases of disease in late February 2022 (1400-11-26 to 1400-12-14) - if enough testing performed. Not all of them will be severe or need hospitalization.

تعداد موارد بیماری قابل تشخیص می تواند در اواخر بهمن ماه تا اواسط اسفند ۱۴۰۰ به بیش از هشتاد هزار مورد در روز برسد که البته همه آن ها شدید نبوده و یا منجر به بستری نمی گردند.

(19) Iran Daily hospitalized infections, reference scenario, all time, IHME

Calculated daily hospitalized infections = Daily infections * Infection hospitalization ratio

The trend of the CALCULATED IHME daily hospitalized infections (= Daily infections * Infection hospitalization ratio) (red curve) is comparable with that of IHME Daily hospital admissions (black curve). The CALCULATED IHME daily hospitalized infections leads about two to four months the HME Daily hospital admissions, and the height of the CALCULATED IHME daily hospitalized infections is more than the other.

(20) Iran Daily fatal infections, reference scenario, all time, IHME

Calculated daily fatal infections = Daily infections * Infection fatality ratio

The trend of the CALCULATED IHME Daily fatal infections (= Daily infections * Infection fatality ratio) (red curve) is HARDLY comparable with the trend of IHME Daily deaths (black curve) or the IHME Daily excess deaths (yellow curve). Time trends and peak values are incongruent. Even more, there is a slight "down bowing" of "Daily deaths" concurrent with the sixth wave, when the CALCULATED IHME Daily fatal infections are predicted to rise.

