Da ich dieses Buch nicht mit bloßer Theorie abschließen möchte, würde ich Ihnen gerne die Programmierung eines größeren Programms in Assembler demonstrieren. Ich habe mich, passend zum vorherigen Kapitel, für einen Sprite-Editor entschieden.

Damit Sie sich ein Bild vom Endergebnis unserer Bemühungen machen können, sehen Sie hier ein Bild des Sprite-Editors.

Am besten ist es jedoch, wenn Sie das Programm mit LOAD "SPRITEEDITOR",8,1 von der Diskette laden und mit SYS 12288 starten. Auf diese Art und Weise lernen Sie das Programm kennen und können es natürlich auch zur Erstellung von Sprites nutzen. In der jetzigen Form ist der Editor auf einfarbige Sprites ausgelegt, aber mit den Kenntnissen, welche Sie nach Abschluss des Projekts erlangt haben, ist es für Sie sicher ein Leichtes, eine entsprechende Erweiterung umzusetzen:)

Hier eine kurze Bedienungsanleitung:

- **Cursortasten:** Sie ermöglichen die Bewegung des Cursors innerhalb des Editorbereichs.
- **RETURN-Taste:** Setzt ein Bit an der aktuellen Cursorposition und bewegt den Cursor um eine Position nach rechts.
- **Leertaste:** Löscht das Bit an der aktuellen Cursorposition und bewegt den Cursor um eine Position nach rechts.

• **SHIFT** + **S:** Das Sprite wird in eine Datei namens SPRITE auf der Diskette gespeichert.

Aktuell ist es noch nicht möglich, beim Speichern einen Dateinamen zu vergeben, sondern es wird der vorgegebene Name SPRITE für die Datei verwendet. Dies war jedoch Absicht von mir, damit noch Raum für Verbesserungen bleibt. Um das Sprite also nicht durch das nächste Sprite zu überschreiben, müssen Sie die Datei SPRITE vor der Erstellung eines neuen Sprites in einen Namen Ihrer Wahl umbenennen.

ACHTUNG: Falls die Datei SPRITE bereits auf der Diskette existiert, wird sie ohne Sicherheits-Rückfrage überschrieben. Auch dieser Punkt fällt in den absichtlich von mir gelassenen Raum für Verbesserungen.

Dasselbe gilt für die folgenden beiden Funktionen, auch hier erfolgt keine Sicherheits-Rückfrage, sodass das aktuell angezeigte Bitmuster überschrieben bzw. gelöscht wird.

- **SHIFT** + **L**: Das Sprite wird aus der Datei SPRITE wieder von der Diskette geladen und im Editor angezeigt.
- **SHIFT** + **CLR/HOME**: Der Editorbereich wird gelöscht.
- **SHIFT** + **H:** Im oberen Teil des Bildschirms wird ein Fenster mit Hilfefunktionen eingeblendet. Dieses Fenster verschwindet, sobald Sie eine beliebige Taste drücken.
- **SHIFT** + **Q**: Beendet den Sprite-Editor und kehrt zu BASIC zurück. Natürlich können Sie ihn jederzeit wieder mit SYS 12288 aufrufen.

Auf der Diskette gibt es noch ein BASIC-Programm namens SHOWSPRITE. Dieses demonstriert, wie die Spritedaten, welche in der Datei gespeichert sind, dann konkret als Sprite auf den Bildschirm gebracht werden können.

Es steckt keine Hexerei dahinter, die Datei wird einfach Byte für Byte eingelesen und die Bytes in einem Array gespeichert. Nachdem alle Bytes eingelesen wurden, werden über die bereits bekannten POKE-Befehle die Einstellungen für das Sprite getroffen und dieses auf dem Bildschirm angezeigt.

Nachdem Sie nun mit dem Sprite-Editor vertraut sind, können wir uns nun der Programmierung widmen. In diesem Kapitel werde ich Ihnen Schritt für Schritt die einzelnen Codefunktionen näherbringen, aus denen der Sprite-Editor besteht. Zusammengesetzt ergeben diese dann ein ganz ansehnliches Assembler-Programm, welches meiner Meinung nach auch einen sehr guten Abschluss für dieses Buch darstellt.

Zunächst müssen wir uns jedoch einige elementare Grundfunktionen in Form von Unterprogrammen zusammenstellen, die wir im Laufe der Entwicklung des Sprite-Editors immer wieder benötigen werden.

Für die ersten Schritte erstellen wir folgende Unterprogramme:

• **asl16:** Stellt eine 16bit Version des Befehls ASL dar, es bietet also die Möglichkeit eine 16bit Zahl bitweise um eine bestimmte Anzahl an Stellen nach links verschieben zu können.

- **adc16:** Stellt eine 16bit Version des Befehls ADC dar, dadurch ist es also möglich, zwei 16bit Zahlen zu addieren.
- **calcposaddr:** Berechnet aus einer Position am Bildschirm (gegeben durch einen Zeilen- und einen Spaltenwert) die entsprechende Adresse im Bildschirmspeicher. Hier kommen die vorherigen beiden Unterprogramme oft zur Anwendung.

Anmerkung: Die Unterprogramme, die Sie hier sehen werden, stammen 1:1 aus dem Assemblercode des Sprite-Editors. Wir werden hier also nach und nach die Bausteine kennenlernen, aus denen sich dann am Ende der vollständige Code des Sprite-Editors zusammensetzt.

Leiten wir zunächst her, warum wir diese Unterprogramme überhaupt brauchen und warum wir es mit 16bit Werten zu tun bekommen.

Wenn wir aus gegebener Zeile und Spalte am Bildschirm die entsprechende Adresse im Bildschirmspeicher berechnen wollen, dann errechnet sich diese Adresse aus der folgenden Formel:

Hier verlassen wir bereits bei der Multiplikation der Zeile mit 40 schon sehr bald den Wertebereich, der sich mit 8 Bits darstellen lässt. Der Wertebereich für den Zeilenwert reicht von 0 bis 24 und schon ab dem Zeilenwert 7 ergibt sich das Produkt 280 und dieser Wert lässt sich mit 8 Bits nicht mehr darstellen.

Der Wertebereich für den Spaltenwert reicht von 0 bis 39, dieser liegt also noch innerhalb des Wertebereichs, der sich mit 8 Bits darstellen lässt, aber der Wert 1024 liegt bereits wieder außerhalb.

So oder so, das Ergebnis wird selbst bei den kleinstmöglichen Werten für die Zeile und Spalte ein 16bit Wert sein, denn durch den Wert 1024 beträgt die kleinstmögliche Adresse

$$0*40+0+1024=1024$$

Beim Ausdruck "Zeile * 40" stoßen wir bereits auf das erste Problem: Wie multipliziert man in Assembler eine Zahl mit 40?

Wie man Multiplikationen in Assembler umsetzt, haben wir bisher noch nicht gelernt. In diesem Buch werden wir das auch nicht lernen, weil ich allgemeine Routinen zur Multiplikation und Division erst im Buch für Fortgeschrittene vorstellen werde.

Wir haben jedoch bereits gelernt, wie man eine Zahl durch Anwendung des Befehls ASL mit einer Zweierpotenz multiplizieren kann.

Glücklicherweise kann man eine Multiplikation mit 40 leicht auf eine Kombination aus Multiplikationen mit Zweierpotenzen zurückführen. Um also eine Zahl mit 40 zu multiplizieren, gehen wir folgendermaßen vor:

- Wir multiplizieren die Zahl zuerst mit 32 (also mit 2 hoch 5) und merken uns das Ergebnis.
- Wir multiplizieren die Zahl mit 8 (also mit 2 hoch 3) und addieren das Ergebnis zum Ergebnis der Multiplikation mit 32. Die Summe dieser beiden Produkte entspricht dann dem

Produkt aus der Zahl und 40.

Doch hier stoßen wir auf das nächste Problem: Wie addiert man zwei 16bit Zahlen?
 Wie man das macht, werden wir erfahren, nachdem wir unser Unterprogramm für die 16bit Version des Befehls ASL fertiggestellt haben.

Spielen wir das doch mal anhand eines Beispiels durch. Angenommen, wir haben in unserer Positionsangabe den Zeilenwert 18.

Nun müssen wir 18 mit 40 multiplizieren. Wenn wir nach den soeben genannten Schritten vorgehen, dann multiplizieren wir zuerst 18 mit 32 und dann 18 mit 8. Die Summe dieser beiden Produkte entspricht dann der Multiplikation von 18 mit 40.

Rechnen wir nach, 18 * 40 = 720, passt also!

Soweit so gut, dann machen wir uns mal an die Umsetzung der 16bit Version des ASL Befehls.

Wiederholen wir jedoch zunächst die Arbeitsweise des Befehls ASL. Angenommen im Akkumulator befindet sich der Wert 200 (binär %1100 1000 bzw. hexadezimal \$C8) und wir wollen auf diesen Wert den Befehl ASL anwenden.

Inhalt des Akkumulators vor Ausführung des Befehls ASL:

7	6	5	4	3	2	1	0
1	1	0	0	1	0	0	0

Inhalt des Akkumulators nach Ausführung des Befehls ASL:

7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	0

Inhalt des Carryflags: 1

Was passiert nun beim Ausführen des Befehls ASL?

Auf der rechten Seite wandert ein Bit mit dem Inhalt 0 herein (dies ist das orange markierte Bit).

Dadurch werden alle anderen Bits um eine Position nach links verschoben und das grün markierte Bit fällt heraus und wandert in das Carryflag im Statusregister.

In diesem Fall hier hat das Carryflag nach der Ausführung des Befehls ASL den Inhalt 1, weil das grün markierte Bit den Inhalt 1 hat.

An dieser Stelle möchte ich Ihnen nun den Befehl ROL (rotate left) vorstellen, da wir ihn dann gleich bei der Umsetzung der 16bit Version des Befehls ASL benötigen werden. Dieser Befehl arbeitet ähnlich wie der Befehl ASL, der Unterschied ist jedoch der, dass auf der rechten Seite

immer ein Bit dem Inhalt des Carryflags hereinwandert und nicht immer ein Bit mit dem Inhalt 0 so wie beim Befehl ASL.

Wie beim Befehl ASL fällt bei der Verschiebung der Bits auf der linken Seite ein Bit heraus, welches ins Carryflag wandert.

Hier zur Veranschaulichung ein Beispiel:

Nachfolgend der Inhalt des Akkumulators vor Ausführung des Befehls ROL und angenommen, das Carryflag hat den Inhalt 0:

7	6	5	4	3	2	1	0
1	1	0	0	1	0	0	0

Inhalt des Akkumulators nach der Ausführung des Befehls ROL:

7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	0

Auf der rechten Seite ist ein Bit mit dem Inhalt 0 hereingewandert (ersichtlich durch das orange markierte Bit), da das Carryflag vor der Ausführung des Befehls ja den Inhalt 0 hatte. Nach der Ausführung des Befehls hat das Carryflag nun den Inhalt 1, denn das grün markierte Bit ist ins Carry Flag gewandert.

Führen wir den Befehl ROL nochmals aus, dann haben wir im Akkumulator nach der Ausführung folgenden Inhalt:

7	6	5	4	3	2	1	0
0	0	1	0	0	0	0	1

Wie wir hier am orange markierten Bit sehen, ist nun auf der rechten Seite ein Bit mit dem Inhalt 1 hereingewandert, da das Carryflag durch den vorherigen Schritt den Inhalt 1 bekommen hatte. Daran ändert sich bei diesem Schritt auch nichts, weil das blau markierte Bit ebenfalls mit dem Inhalt 1 ins Carryflag gewandert ist.

Führt man den Befehl ROL nacheinander immer wieder aus, wandern die Bits über das Carryflag als Zwischenstation im Kreis (Bitrotation).

Möglicherweise fragen Sie sich jetzt, wozu so etwas gut sein soll. Ich muss zugeben, dass mir lange Zeit der Sinn und Zweck dieser Rotationsbefehle nicht klar war, doch das hat sich im Zuge der Umsetzung der 16bit Version des Befehls ASL geändert.

Bevor wir nun zur konkreten Umsetzung des Unterprogramms asl16 kommen, noch ein paar Worte zum Thema Dokumentation des geschriebenen Assemblercodes.

Werfen Sie einen Blick auf den Kommentarblock zu Beginn des Unterprogramms, dessen Zeilen mit einem Semikolon eingeleitet werden.

```
shiftet eine 16bit zahl um
bestimmte anzahl an stellen
nach links
                                      um eine
  parameter:
zahl: lo/hi
                  i in $fd/$fe
register
  rueckgabewerte:
geshiftete zahl: lo/hi in $fd/$fe
  aendert:
  x, status
as116
as116_1oop
                lo byte shiften
                hi byte shiften
             rol $fe
             dex
                   as116_100p
             ьпе
             rts
```

Hier ist alles enthalten, was man wissen muss, um dieses Unterprogramm nutzen zu können. Da wäre natürlich als Erstes der Name des Unterprogramms (asl16) gefolgt von Angaben zu den eventuell nötigen Parametern bzw. Rückgabewerten, welche das Unterprogramm als Ergebnisse liefert.

Anmerkung: Mit **lo** meine ich hier das niederwertige und mit **hi** das höherwertige Byte einer 16bit Zahl.

Am Ende habe ich noch eine Angabe darüber gemacht, welche Inhalte in dem Unterprogramm verändert werden. In diesem Fall wird durch das Unterprogramm der Akkumulator, das X Register und das Statusregister verändert.

Dieses Schema werde ich ab jetzt bei jedem Unterprogramm anwenden, damit man auf den ersten Blick erfährt, was das Unterprogramm macht, welche Parameter es entgegennimmt, welche Rückgabewerte es als Ergebnisse liefert und welche Inhalte innerhalb des Unterprogramms verändert werden.

Doch nun zur technischen Umsetzung. Angenommen, wir wollen die Bits der 16bit Zahl 2500 um eine Position nach links verschieben. Mathematisch gesehen entspricht dies einer Multiplikation mit 2, das Ergebnis sollte also 5000 lauten.

Die binäre Darstellung der dezimalen Zahl 2500 lautet %0000 1001 1100 0100 oder \$09C4 in hexadezimaler Schreibweise.

Das höherwertige Byte lautet %0000 1001 bzw. \$09 und das niederwertige Byte %1100 0100 oder \$C4.

Doch wie führen wir diese Verschiebung durch? Ein erster Gedanke wäre, das höherwertige Byte und das niederwertige Byte jeweils um eine Bitposition nach links zu schieben und die beiden Werte dann wieder zusammenzusetzen.

Hört sich gut an, dann machen wir das mal.

Wenn wir das niederwertige Byte %1100 0100 um eine Bitposition nach links schieben, dann ergibt sich folgender Wert:

7	6	5	4	3	2	1	0
1	0	0	0	1	0	0	0

Auf der rechten Seite ist ein Bit mit dem Inhalt 0 hereingewandert und auf der linken Seite ein Bit herausgefallen und ins Carryflag gewandert. In diesem Fall hat dieses nun den Inhalt 1, weil das Bit ganz links im niederwertigen Byte den Inhalt 1 hat.

Wenn wir das höherwertige Byte %0000 1001 um eine Bitposition nach links schieben, dann ergibt sich folgender Wert:

7	6	5	4	3	2	1	0
0	0	0	1	0	0	1	0

Auf der rechten Seite ist ein Bit mit dem Inhalt 0 hereingewandert und auf der linken Seite ein Bit herausgefallen und ins Carryflag gewandert. In diesem Fall hat dieses nun den Inhalt 0, weil das Bit ganz links im höherwertigen Byte den Inhalt 0 hat.

Nun setzen wir diese beiden Ergebnisse zusammen und prüfen, ob wir auf dem richtigen Weg waren.

Niederwertiges Byte nach der Ausführung von ASL: %1000 1000 Höherwertiges Byte nach der Ausführung von ASL: %0001 0010

Zusammengesetzt ergibt das den 16bit Wert %0001 0010 1000 1000, hexadezimal \$1288 oder dezimal 4744. Passt also nicht, aber wo liegt der Fehler?

Das Problem ist, dass beim Verschieben des niederwertigen Bytes %1000 1000 das ganz links stehende Bit mit dem Inhalt 1 herausfällt. Dadurch fehlt es jedoch dann im zusammengesetzten Ergebnis und der resultierende Wert ist natürlich falsch.

Richtigerweise hätte das Bit, das im niederwertigen Byte durch das Verschieben herausfällt, in das ganz rechts liegende Bit des höherwertigen Bytes verschoben werden müssen.

Wenn das Bit, welches herausfällt, den Inhalt 0 hat, dann ist das kein Problem in Bezug auf das Endergebnis, aber im Falle des Inhalts 1 eben schon.

Doch wie lösen wir das Problem nun? Man kann sich natürlich eine umständliche Logik bauen, welche für den Fall, dass das herausgefallene Bit den Inhalt 1 hatte, das höherwertige Byte entsprechend korrigiert. Es gibt jedoch einen einfacheren Weg und hier kommt der Befehl ROL ins Spiel.

Falls bei der Bitverschiebung des niederwertigen Bytes auf der linken Seite ein Bit mit dem Inhalt 1 herausfällt, dann würde das Carryflag den Inhalt 1 bekommen.

Wenn wir nun für die Bitverschiebung des höherwertigen Bytes nicht den Befehl ASL, sondern den Befehl ROL verwenden, dann bringt uns das genau jene Lösung, die wir brauchen.

Warum? Das Bit, welches uns vorhin verlorengegangen ist, haben wir ja noch im Carryflag zur Verfügung. Wenn wir nun auf das höherwertige Byte den Befehl ROL anwenden, dann wandert auf der rechten Seite genau dieses Bit herein und steht damit genau dort wo es sein soll, nämlich an der ersten Bitposition im höherwertigen Byte.

Die restlichen Bits werden wie bereits bekannt nach links verschoben und das Ergebnis ist nun korrekt.

Spielen wir das also mal durch:

Das Carryflag hat nach der Anwendung des Befehls ASL auf das niederwertige Byte den Inhalt 1 und der Inhalt des höherwertigen Bytes vor Anwendung des Befehl ROL lautet %0000 1001. Wenn wir nun den Befehl ROL auf das höherwertige Byte anwenden, dann ergibt sich folgender Wert:

7	6	5	4	3	2	1	0
0	0	0	1	0	0	1	1

Das orange markierte Bit mit dem Inahlt 1 ist der hereingewanderte Inhalt des Carryflags. Versuchen wir nun erneut, die Ergebnisse der beiden Verschiebungen zusammenzusetzen.

Niederwertiges Byte nach der Ausführung von ASL: %1000 1000 Höherwertiges Byte nach der Ausführung von ROL: %0001 0011

Zusammengesetzt ergibt das nun den korrekten 16bit Wert %0001 0011 1000 1000, hexadezimal \$1388 oder dezimal 5000.

Da uns die mathematische Vorgehensweise nun klar ist, können wir uns die konkrete Umsetzung in Assemblercode ansehen.

```
as116_loop

; lo byte shiften

as1 $fd

; hi byte shiften

ro1 $fe

dex
bne as116_loop
```

Hier sehen wir, dass durch den Befehl ASL \$FD das niederwertige Byte um eine Bitposition nach links verschoben wird. Im Anschluss geschieht dasselbe mit dem höherwertigen Byte durch den Befehl ROL \$FE, nur eben mit dem Unterschied dass bei letzterem Befehl auf der rechten Seite

nicht permanent ein Bit mit dem Inhalt 0 hereinwandert, sondern eines, welches dem aktuellen Inhalt des Carry Flags entspricht.

Das Unterprogramm bietet die Möglichkeit, eine 16bit Zahl nicht nur um eine, sondern um mehrere Stellen zu verschieben. Die Anzahl der Stellen übergeben wir als Parameter im X Register. Wir bilden also eine Schleife, die bei jedem Durchlauf die Bits der 16bit Zahl um eine weitere Position nach links verschiebt.

Jeder Durchlauf vermindert den Inhalt des X Registers um 1 und wenn wir schießlich bei 0 angelangt sind, wird die Schleife verlassen und wir haben die verschobene 16bit Zahl in den Speicherstellen \$FD (niederwertiges Byte) und \$FE (höherwertiges Byte) als Ergebnis zur Verfügung.

Mit diesem Unterprogramm können wir nun eine 16bit Zahl mit 2, 4, 8, 16, 32, 64, 128 usw. multiplizieren. Als nächstes werden wir uns mit der Addition zweier 16bit Zahlen beschäftigen, denn diese werden wir noch öfter benötigen.

Addition zweier 16bit Zahlen

Wir haben die Addition zweier 16bit Zahlen zwar bereits im Kapitel über Zahlensysteme angesprochen, aber ich möchte die Vorgehensweise trotzdem nochmals wiederholen, um sich alles wieder in Erinnerung zu rufen.

Zunächst jedoch ein paar wiederholende Worte zur 8bit Addition. Angenommen der Akkumulator enthält den dezimalen Wert 100 und wir addieren mit dem Befehl ADC den Wert 200 hinzu. Das Ergebnis 300 ist zu groß für den 8bit breiten Akkumulator. Es kommt also zu einem Überlauf und dies wird durch ein gesetztes Carryflag signalisiert. Liegt das Ergebnis einer Addition jedoch zwischen 0 und 255, so wird das Carryflag nach der Durchführung der Addition nicht gesetzt.

Vor der Durchführung einer Addition ist es daher wichtig, das Carryflag zurückzusetzen, da dieses sonst in die Addition miteinfließt.

Angenommen, wir wollen die Zahlen \$10 (dezimal 16) und \$20 (dezimal 32) addieren. Das Ergebnis würde \$30 (dezimal 48) lauten. Ist das Carryflag vor der Ausführung des Befehls ADC nicht gesetzt, dann erhalten wir auch genau dieses Ergebnis. Ist hingegen das Carryflag gesetzt, dann lautet das Ergebnis \$31 (dezimal 49), weil das Carryflag bei der Addition miteinbezogen wird.

Hier nochmals zur Veranschaulichung der Addition \$10 + \$20 und nicht gesetztem Carryflag:

	7	6	5	4	3	2	1	0
\$10	0	0	0	1	0	0	0	0
\$20	0	0	1	0	0	0	0	0
Carryflag								0
\$30	0	0	1	1	0	0	0	0

Und hier der Fall, dass das Carryflag gesetzt wäre:

	7	6	5	4	3	2	1	0
\$10	0	0	0	1	0	0	0	0
\$20	0	0	1	0	0	0	0	0
Carryflag								1
\$31	0	0	1	1	0	0	0	1

Im Kontext einer 8bit Addition vor der Ausführung also immer das Carryflag mit dem Befehl CLC zurücksetzen!

Kommen wir nun zur 16bit Addition. Die Vorgehensweise ist eigentlich recht simpel, hier eine Schritt für Schritt Anleitung:

- Zurücksetzen des Carryflags mit dem Befehl CLC, da vor Beginn der Addition ja noch kein Überlauf stattgefunden haben kann.
- Addieren der niederwertigen Bytes der beiden 16bit Zahlen und speichern des Ergebnisses im niederwertigen Byte der Summe. Falls es bei der Addition zu einem Überlauf kommt, wird dies durch ein gesetztes Carryflag angezeigt.
- Addieren der höherwertigen Bytes der beiden 16bit Zahlen und speichern des Ergebnisses im höherwertigen Byte der Summe. Falls es bei der Addition der niederwertigen Bytes zu einem Überlauf kam, fließt dieser in die Summe der höherwertigen Bytes mit einer Wertigkeit von 256 ein.

Hier sehen Sie den Assembler-Code zu dem Unterprogramm:

```
addiert zwei 16bit zahlen

parameter:
zah11: lo/hi in $fb/$fc
zah12: lo/hi im x/y register

rueckgabewerte:
summe: lo/hi in $fb/$fc

aendert:
a,status

adc16

; lo bytes addieren

clc
txa
adc $fb
sta $fb
; hi bytes addieren

tya
adc $fc
sta $fc
rts
```

Wie aus der Dokumentation hervorgeht, befindet sich die erste Zahl aufgeteilt auf die Speicherstellen \$FB / \$FC und die zweite Zahl aufgeteilt auf die Register X und Y.

Die beiden niederwertigen Bytes befinden sich also in der Speicherstelle \$FB und im X Register, wohingegen sich die höherwertigen Bytes in der Speicherstelle \$FC und im Y Register befinden.

Nach der Durchführung der Addition soll die Summe aufgeteilt auf die Speicherstellen \$FB (niederwertiges Byte) und \$FC (höherwertiges Byte) verfügbar sein.

Durch den Befehl CLC wird hier zunächst das Carryflag gelöscht. Dann wird durch den Befehl TXA das niederwertige Byte der zweiten Zahl in den Akkumulator kopiert und durch den Befehl ADC \$FB das niederwertige Byte der ersten Zahl hinzuaddiert. Hier kann es wie gesagt zu einem Überlauf kommen, welcher durch ein gesetztes Carryflag signalisiert wird.

Im Akkumulator befindet sich nun die Summe der niederwertigen Bytes und diese wird durch den Befehl STA \$FB in das niederwertige Byte des Ergebnisses geschrieben.

Als nächstes wird durch den Befehl TYA das höherwertige Byte der zweiten Zahl in den Akkumulator kopiert und durch den Befehl ADC \$FC das höherwertige Byte der ersten Zahl hinzuaddiert. Falls es bei der Addition der niederwertigen Bytes zu einem Überlauf kam, das Carryflag also gesetzt wurde, fließt dieses in die Addition mit ein.

Im Akkumulator befindet sich nun die Summe der höherwertigen Bytes und diese wird durch den Befehl STA \$FC in das höherwertige Byte des Ergebnisses geschrieben.

Nun befindet sich die Summe mit dem niederwertigen Byte in der Speicherstelle \$FB und mit dem höherwertigen Byte in der Speicherstelle \$FC.

Durch die beiden Unterprogramme asl16 und adc16 haben wir nun alle Mittel in der Hand, um das eingangs erwähnte Problem zu lösen, nämlich die Umrechnung einer Position am Bildschirm in Form eines Zeilen- und eines Spaltenwertes in die entsprechende Adresse im Bildschirmspeicher.

Bevor wir uns nun den Assemblercode im Detail ansehen, möchte ich Ihnen kurz skizzieren, wie das Unterprogramm funktioniert.

Das Unterprogramm soll eine Position am Bildschirm, welche durch Zeile und Spalte gegeben ist, in die entsprechende Adresse im Bildschirmspeicher umrechnen.

Die Zeile wird im Y Register und die Spalte im X Register als Parameter an das Unterprogramm übergeben.

Der erste Schritt besteht darin, den Inhalt der Speicherstellen \$FB und \$FC sowie den Inhalt des X Registers und des Y Registers zu sichern.

Warum? Wie Sie später noch sehen werden, spielen die Speicherstellen \$FB und \$FC eine wichtige Rolle für den Sprite-Editor und deswegen müssen wir diese Inhalte sichern und vor der Rückkehr aus dem Unterprogramm wiederherstellen.

Das gilt auch für den Inhalt des X Registers und des Y Registers. Diese beiden Inhalte müssen wir deswegen sichern, weil sie durch nachfolgende Berechnungen verändert werden, aber nach Abschluss der Berechnung wieder mit ihrem ursprünglichen Inhalt gebraucht werden.

Im nächsten Schritt wollen wir die Zeile mit 40 multiplizieren. Wie bereits erwähnt, multiplizieren wir zuerst die Zeile mit 32, merken uns das Ergebnis, multiplizieren dann die Zeile mit 8 und

addieren die beiden Produkte. Diese Summe entspricht dann dem Ergebnis der Multiplikation des Zeilenwertes mit 40.

Als nächstes addieren wir zu diesem Wert jenen Wert, den wir als Parameter für die Spalte übergeben haben und zuletzt müssen wir noch die Startadresse des Bildschirmspeichers, welche im Normalfall der Adresse 1024 entspricht, hinzuaddieren. Dann haben wir endlich die gewünschte Adresse im Bildschirmspeicher.

Nachdem das Unterprogramm seine Aufgabe erfüllt hat, legt es das niederwertige Byte dieser Adresse im X Register und das höherwertige Byte im Y Register ab.

Die Adresse ließe sich dann mit der Formel

Inhalt des X Registers + 256 * Inhalt des Y Registers

berechnen.

Kommen wir nun zum Assemblercode des Unterprogramms. Ich habe ihn mit vielen Kommentaren versehen, aber es folgt im Anschluss an den Assemblercode trotzdem noch eine detaillierte Erklärung.

```
calcposaddr
berechnet die adresse einer
position zeile/spalte im
bildschirmspeicher
    parameter:
spalte: x register
zeile: y register
    rueckgabewerte:
adresse: lo/hi im x/y register
    aendert:
a,x,y,status,$fb,$fc
calcposaddr
                         speicherstellen $fb und $fc
auf dem stack sichern, da
sie in diesem unterprogramm
ueberschrieben werden
                     lda $fb
                     pha
                     lda $fc
                     pha
                         auch das x register und das y register (welche die parameter fuer zeile und spalte beinhalten) auf dem stack sichern, weil sie durch die nachfolgenden berechn
                         werden
                     txa
pha
                     pha
                     ; zeile * 32 berechnen
                         lo (zeile) nach $fd
                     sty $fd
```

```
hi (zeile) nach $fe
ist immer $00 weil der
wert fuer die zeile nur von
0 bis 24 reicht
ldy #$00
sty $fe
  wir wollen mit 32, also
mit 2 hoch 5 multiplizieren,
daher 5 stellen als
parameter im x register
uebergeben
; parameter
; uebergeben
ldx #$05
jsr as116
; ergebnis in $fb/$fc
; zwischenspeichern
lda $fd
sta $fb
lda $fe
sta $fc
; zeile wieder vom stack
; holen
pla
; zeile * 8 berechnen
; lo (zeile) wieder nach $fd
tay
sty $fd
; hi (zeile) wieder nach $fe
ldy #$00
sty $fe
; wir wollen mit 8, also mit
; 2 hoch 3 multiplizieren,
; daher 3 stellen als
; parameter im x register
; uebergeben
ldx #$03
jsr as116
; nun addieren wir
; zeile * 32 und zeile * 8
; zeile * 32 befindet sich
; bereits in $fb/$fc
; zeile * 8 (hier in $fd/$fe)
; fuer die addition nach
; x und y kopieren
ldx $fd
ldy $fe
jsr adc16
; spalte wieder vom stack
; holen
Pla
; spalte ins x register holen
; dort steht dann lo (spalte)
tax
; hi (spalte) ist immer $00,
; da der wert fuer die spalte
```

```
nur von 0 bis 39 reicht
1dy #$00
    nun addieren wir die spalte
    hinzu
   zeile * 40 ist in $fb/$fc
spalte ist im
x register und y register
jsr adc16
    nun addieren wir noch
die startadresse des
bildschirmspeichers hinzu
diese adresse lautet im
normalfall 1024 ($0400)
    lo ($0400) = $00 fuer die
addition ins x register
1dx #$00
    hi ($0400) = $04 fuer die
addition ins y register
ldy #$04
jsr adc16
    das ergebnis ist nun
die gewuenschte adresse
im bildschirmspeicher
    diese stellen wir i
x register (lo) und
y register (hi) zur
verfuegung
ldx $fb
ldy $fc
   inhalte der speicherstellen
$fb und $fc wiederherstellen
pla
sta $fc
pla
sta
       $fb
rts
```

Wir starten mit dem Abschnitt, welcher durch das Kommentar

```
; zeile * 32 berechnen
```

eingeleitet wird.

Das Unterprogramm asl16 erwartet die Zahl, welche bitweise verschoben werden soll, in den Speicherstellen \$FD (niederwertiges Byte) und \$FE (höherwertiges Byte).

Der Zeilenwert wurde als Parameter im Y Register abgelegt, daher wird mit dem Befehl STY \$FD das niederwertige Byte des Zeilenwertes in die Speicherstelle \$FD geschrieben.

Das höherwertige Byte des Zeilenwertes ist immer \$00, weil der Zeilenwert ja nur zwischen 0 und 24 liegen kann. Daher wird hier zuerst das Y Register mit dem Wert \$00 geladen und dieser dann mit dem Befehl STY \$FE in die Speicherstelle \$FE geschrieben.

Nun müssen wir noch im X Register die Anzahl der Stellen angeben, um die wir die Zahl verschieben wollen. In diesem Fall sind es 5 Stellen, denn wir wollen den Zeilenwert ja mit 32 multiplizieren, was einer Verschiebung von 5 Bitpositionen nach links entspricht.

Nach dem Aufruf von asl16 finden wir das Ergebnis, also das Produkt aus Zeilenwert und 32, mit dem niederwertigen Byte in der Speicherstelle \$FD und dem höherwertigen Byte in der Speicherstelle \$FE vor.

Dieses Produkt müssen wir uns irgendwo merken, weil wir die Speicherstellen \$FD und \$FE für die nächste Multiplikation brauchen. In diesem Fall merken wir uns das Produkt in den Speicherstellen \$FB und \$FC. Die Erklärung, warum ich mich ausgerechnet für diese beiden Speicherstellen entschieden habe, folgt in Kürze.

Als Nächstes steht die Multiplikation des Zeilenwertes mit 8 am Programm. Dieser Abschnitt wird durch das Kommentar

; zeile * 8 berechnen

eingeleitet.

Zu Beginn des Unterprogramms haben wir neben den Inhalten der Speicherstellen \$FB und \$FC auch die übergebenen Parameter für den Zeilen- und Spaltenwert auf dem Stack gesichert. Der Zeilenwert wurde als letzter Wert gesichert, d.h. er liegt an der obersten Stelle des Stacks und wir können ihn daher mit dem Befehl PLA direkt in den Akkumulator holen, um ihn dann wie vorhin bei der Multiplikation mit 32 in die Speicherstelle \$FD zu schreiben.

Da fällt mir gerade auf, dass ich mir im direkt auf das Kommentar folgenden Abschnitt

```
; lo (zeile) wieder nach $fd
tay
sty $fd
```

den Befehl TAY hätte sparen können und dass der Befehl STA \$FD gereicht hätte. Aber egal, lassen wir es so, denn falsch ist es ja nicht.

Auch hier müssen wir wieder den Wert \$00 in die Speicherstelle \$FE schreiben, da wie bereits erwähnt, das höherwertige Byte ja immer den Wert \$00 hat.

Da wir diesesmal eine Multiplikation mit 8 durchführen wollen und dies einer Verschiebung um 3 Bitpositionen nach links entspricht, müssen wir das X Register mit dem Wert 3 laden.

Nach dem Aufruf von asl16 finden wir das Ergebnis wieder in den Speicherstellen \$FD und \$FE vor.

Nun müssen wir die beiden Produkte zeile * 32 und zeile * 8 addieren. Das Unterprogramm adc16 erwartet die erste Zahl verteilt auf die Speicherstellen \$FB und \$FC sowie die zweite Zahl verteilt auf das X Register und das Y Register.

Und jetzt kommt die Antwort auf die Frage, warum ich mich vorhin für die Zwischenspeicherung des Produkts des Zeilenwertes mit 32 für die Speicherstellen \$FB und \$FC entschieden habe.

Durch den Umstand, dass das Produkt zeile * 32 bereits wie von adc16 erwartet, in den Speicherstellen \$FB und \$FC vorliegt, brauchen wir es nicht extra dorthin transportieren, sondern wir müssen nur das niederwertige Byte des zweiten Produkts zeile * 8 im X Register und das höherwertige Byte im Y Register bereitstellen.

Dies erfolgt über die Befehle LDX \$FD und LDY \$FE.

Nach dem Aufruf von adc16 steht die Summe aus zeile * 32 und zeile * 8, also zeile * 40 aufgeteilt auf die Speicherstellen \$FB und \$FC zur Verfügung.

Nun müssen wir zu diesem Wert den Spaltenwert addieren. Diesen haben wir zu Beginn des Unterprogramms auf dem Stack gesichert und nachdem wir bereits den Zeilenwert vom Stack geholt haben, liegt nun der Spaltenwert auf der obersten Stelle des Stacks.

Wir holen ihn mit dem Befehl PLA von dort direkt in den Akkumulator und transportieren ihn von dort ins X Register, da das Unterprogramm adc16 das niederwertige Byte der zweiten Zahl dort erwartet. Das höherwertige Byte der zweiten Zahl wird im Y Register erwartet und da dieses immer den Wert \$00 hat, brauchen wir nur das Y Register mit dem Wert \$00 zu laden.

Wiederum machen wir uns den Umstand zunutze, dass die Summe der beiden Produkte noch immer in den Speicherstellen \$FB und \$FC gespeichert ist und können ohne weitere Vorbereitungen umgehend den Aufruf von adc16 starten.

Die Summe aus Zeile * 40 + Spalte steht uns dann wiederum aufgeteilt auf die Speicherstellen \$FB und \$FC zur Verfügung.

Nun müssen wir noch als letzten Schritt den Wert 1024 (\$0400) hinzuaddieren. Dies ist ja im Normalfall die Startadresse des Bildschirmspeichers. Auch dies ist wieder ganz einfach, denn das letzte Zwischenergebnis (Zeile * 40 + Spalte) ist ja noch in den Speicherstellen \$FB und \$FC gespeichert.

Wir müssen also nur mehr das niederwertige Byte \$00 in das X Register und das höherwertige Byte \$04 in das Y Register laden. Nun noch ein letztesmal adc16 aufgerufen und schon haben wir wieder in den Speicherstellen \$FB und \$FC das Ergebnis der Addition, welches diesesmal unserem Endergebnis entspricht, also der gewünschten Adresse im Bildschirmspeicher.

Sie sehen also, dass ich mir die Speicherstellen \$FB und \$FC zur Zwischenspeicherung des ersten Produkts nicht zufällig ausgesucht habe, sondern weil dadurch die Aufrufe des Unterprogramms adc16 effektiver gestaltet werden können, weil sich ein Operand bereits dort befindet, wo er vom Unterprogramm erwartet wird und man sich nur mehr um die Übergabe des zweiten Operanden im X Register und Y Register kümmern muss.

Das Unterprogramm adc16 legt das Ergebnis ebenfalls in den Speicherstellen \$FB und \$FC ab und so kann ein Berechnungsschritt direkt auf dem vorherigen aufbauen.

Abschließend müssen wir noch die Inhalte der Speicherstellen \$FB und \$FC in das X Register bzw. das Y Register kopieren und anschließend die ursprünglichen Inhalte der Speicherstellen \$FB und \$FC wiederherstellen, da wie bereits erwähnt, diese für den Sprite-Editor eine besondere Bedeutung haben.

Um die Unterprogramme asl16, adc16 und calcposaddr im Zusammenspiel zu sehen, habe ich das Programm CALCADDR auf Diskette gespeichert.

Es enthält außer den genannten drei Unterprogrammen einen Hauptteil, welcher die Parameter setzt und das Unterprogramm calcposaddr aufruft.

```
; hauptprogramm
; hier wird das programm gestartet
; start von basic aus mit sys 12288

*= $3000

; spalte = 39 ($27)

ldx #$27

; zeile = 24 ($18)

ldy #$18

; adresse im
; bildschirmspeicher berechnen
; diese befindet sich nach
; der beendigung des programms
; im x register (lo byte) und
; im y register (hi byte)

jsr calcposaddr
```

Hier wird anhand der Position, welche durch die Zeile 24 und Spalte 39 gegeben ist, demonstriert, wie diese in die entsprechende Adresse im Bildschirmspeicher umgerechnet wird.

Der Spaltenwert 39 (\$27) wird in das X Register und der Zeilenwert 24 (\$18) in das Y Register geladen. Dann wird das Unterprogramm calcposaddr aufgerufen und wenn man nach der Beendigung des Programms wieder ins Basic zurückgekehrt ist, kann man die berechnete Adresse mit dem Befehl PRINT PEEK(781)+256*PEEK(782) ausgeben lassen:

```
READY.
SYS 12288
READY.
PRINT PEEK(781)+256*PEEK(782)
2023
READY.
```

Rechnen wir abschließend nochmal anhand der einzelnen Schritte nach:

- zeile * 32 = 24 * 32 = 768
- zeile * 8 = 24 * 8 = 192
- 768 + 192 = 960
- 960 + spalte = 960 + 39 = 999
- 1024 + 999 = 2023

Passt also!