• Given training data $\{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$

- Given training data $\{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$
- N input/output pairs; x_i input, y_i output/label

- Given training data $\{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$
- N input/output pairs; x_i input, y_i output/label
- \bullet \mathbf{x}_i is a vector consisting of D features
 - Also called attributes or dimensions
 - Features can be discrete or continuous
 - x_{im} denotes the *m*-th feature of x_i

- Given training data $\{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$
- N input/output pairs; x_i input, y_i output/label
- \bullet \mathbf{x}_i is a vector consisting of D features
 - Also called attributes or dimensions
 - Features can be discrete or continuous
 - x_{im} denotes the *m*-th feature of x_i
- Forms of the output:
 - $\mathbf{y}_i \in \{1, \dots, C\}$ for classification; a discrete variable
 - $\mathbf{y}_i \in \mathbb{R}$ for regression; a continuous (real-valued) variable

- Given training data $\{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$
- N input/output pairs; x_i input, y_i output/label
- \bullet \mathbf{x}_i is a vector consisting of D features
 - Also called attributes or dimensions
 - Features can be discrete or continuous
 - x_{im} denotes the *m*-th feature of x_i
- Forms of the output:
 - $\mathbf{y}_i \in \{1, \dots, C\}$ for classification; a discrete variable
 - $\mathbf{y}_i \in \mathbb{R}$ for regression; a continuous (real-valued) variable
- Goal: predict the output y for an unseen test example x

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$ and a test point
- Prediction Rule: Look at the K most similar training examples

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$ and a test point
- \bullet Prediction Rule: Look at the K most similar training examples

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$ and a test point
- Prediction Rule: Look at the K most similar training examples

- For classification: assign the majority class label (majority voting)
- For regression: assign the average response

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$ and a test point
- Prediction Rule: Look at the K most similar training examples

- For classification: assign the majority class label (majority voting)
- For regression: assign the average response
- The algorithm requires:
 - Parameter K: number of nearest neighbors to look for
 - Distance function: To compute the similarities between examples

K-Nearest Neighbor Algorithm

- Compute the test point's distance from each training point
- Sort the distances in ascending (or descending) order
- Use the sorted distances to select the K nearest neighbors
- Use majority rule (for classification) or averaging (for regression)

K-Nearest Neighbor Algorithm

- Compute the test point's distance from each training point
- Sort the distances in ascending (or descending) order
- Use the sorted distances to select the K nearest neighbors
- Use majority rule (for classification) or averaging (for regression)

Note: K-Nearest Neighbors is called a *non-parametric* method

 Unlike other supervised learning algorithms, K-Nearest Neighbors doesn't learn an explicit mapping f from the training data

K-Nearest Neighbor Algorithm

- Compute the test point's distance from each training point
- Sort the distances in ascending (or descending) order
- Use the sorted distances to select the K nearest neighbors
- Use majority rule (for classification) or averaging (for regression)

Note: K-Nearest Neighbors is called a *non-parametric* method

- Unlike other supervised learning algorithms, K-Nearest Neighbors doesn't learn an explicit mapping f from the training data
- It simply uses the training data at the test time to make predictions

 The K-NN algorithm requires computing distances of the test example from each of the training examples

- The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data

- The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data
- Real-valued features $(\mathbf{x}_i \in \mathbb{R}^D)$: Euclidean distance is commonly used

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{m=1}^{D} (x_{im} - x_{jm})^2} = \sqrt{||\mathbf{x}_i||^2 + ||\mathbf{x}_j||^2 - 2\mathbf{x}_i^T \mathbf{x}_j}$$

- The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data
- Real-valued features $(\mathbf{x}_i \in \mathbb{R}^D)$: Euclidean distance is commonly used

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{m=1}^{D} (x_{im} - x_{jm})^2} = \sqrt{||\mathbf{x}_i||^2 + ||\mathbf{x}_j||^2 - 2\mathbf{x}_i^T \mathbf{x}_j}$$

Generalization of the distance between points in 2 dimensions

- The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data
- Real-valued features $(\mathbf{x}_i \in \mathbb{R}^D)$: Euclidean distance is commonly used

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{m=1}^{D} (x_{im} - x_{jm})^2} = \sqrt{||\mathbf{x}_i||^2 + ||\mathbf{x}_j||^2 - 2\mathbf{x}_i^T \mathbf{x}_j}$$

- Generalization of the distance between points in 2 dimensions
- $||\mathbf{x}_i|| = \sqrt{\sum_{m=1}^D x_{im}^2}$ is called the **norm** of \mathbf{x}_i
 - Norm of a vector x is also its length

- The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data
- Real-valued features $(\mathbf{x}_i \in \mathbb{R}^D)$: Euclidean distance is commonly used

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{m=1}^{D} (x_{im} - x_{jm})^2} = \sqrt{||\mathbf{x}_i||^2 + ||\mathbf{x}_j||^2 - 2\mathbf{x}_i^T \mathbf{x}_j}$$

- Generalization of the distance between points in 2 dimensions
- $||\mathbf{x}_i|| = \sqrt{\sum_{m=1}^D x_{im}^2}$ is called the **norm** of \mathbf{x}_i
 - Norm of a vector x is also its length

- Note: Features should be on the same scale
- Example: if one feature has its values in millimeters and another has in centimeters, we would need to normalize

- Note: Features should be on the same scale
- Example: if one feature has its values in millimeters and another has in centimeters, we would need to normalize
- One way is:
 - Replace x_{im} by $z_{im} = \frac{(x_{im} \bar{x_m})}{\sigma_m}$ (make them zero mean, unit variance)

- Note: Features should be on the same scale
- Example: if one feature has its values in millimeters and another has in centimeters, we would need to normalize
- One way is:
 - Replace x_{im} by $z_{im} = \frac{(x_{im} \bar{x_m})}{\sigma_m}$ (make them zero mean, unit variance)
 - $\bar{x_m} = \frac{1}{N} \sum_{i=1}^{N} x_{im}$: empirical mean of m^{th} feature

- Note: Features should be on the same scale
- Example: if one feature has its values in millimeters and another has in centimeters, we would need to normalize
- One way is:
 - Replace x_{im} by $z_{im} = \frac{(x_{im} \bar{x_m})}{\sigma_m}$ (make them zero mean, unit variance)
 - $\bar{x_m} = \frac{1}{N} \sum_{i=1}^{N} x_{im}$: empirical mean of m^{th} feature
 - $\sigma_m^2 = \frac{1}{N} \sum_{i=1}^N (x_{im} \bar{x_m})^2$: empirical variance of m^{th} feature

K-NN: Other Distance Measure

- Binary-valued features
 - Use Hamming distance: $d(x_i, x_j) = \sum_{m=1}^{D} \mathbb{I}(x_{im} \neq x_{jm})$
 - Hamming distance counts the number of features where the two examples disagree

K-NN: Other Distance Measure

- Binary-valued features
 - Use Hamming distance: $d(x_i, x_j) = \sum_{m=1}^{D} \mathbb{I}(x_{im} \neq x_{jm})$
 - Hamming distance counts the number of features where the two examples disagree
- Mixed feature types (some real-valued and some binary-valued)?
 - Can use mixed distance measures
 - E.g., Euclidean for the real part, Hamming for the binary part

K-NN: Other Distance Measure

- Binary-valued features
 - Use Hamming distance: $d(x_i, x_j) = \sum_{m=1}^{D} \mathbb{I}(x_{im} \neq x_{jm})$
 - Hamming distance counts the number of features where the two examples disagree
- Mixed feature types (some real-valued and some binary-valued)?
 - Can use mixed distance measures
 - E.g., Euclidean for the real part, Hamming for the binary part
- Can also assign weights to features: $d(x_i, x_j) = \sum_{m=1}^{D} w_m d(x_{im}, x_{jm})$

- Small K
 - Creates many small regions for each class
 - May lead to non-smooth) decision boundaries and overfit

- Small K
 - Creates many small regions for each class
 - May lead to non-smooth) decision boundaries and overfit
- Large K
 - Creates fewer larger regions
 - Usually leads to smoother decision boundaries (caution: too smooth decision boundary can underfit)

- Small K
 - Creates many small regions for each class
 - May lead to non-smooth) decision boundaries and overfit
- Large K
 - Creates fewer larger regions
 - Usually leads to smoother decision boundaries (caution: too smooth decision boundary can underfit)
- Choosing K
 - Often data dependent and heuristic based
 - Or using cross-validation (using some held-out data)

- Small K
 - Creates many small regions for each class
 - May lead to non-smooth) decision boundaries and overfit
- Large K
 - Creates fewer larger regions
 - Usually leads to smoother decision boundaries (caution: too smooth decision boundary can underfit)
- Choosing K
 - Often data dependent and heuristic based
 - Or using cross-validation (using some held-out data)
 - In general, a K too small or too big is bad!

K-NN: Properties

- What's nice
 - Simple and intuitive; easily implementable
 - Asymptotically consistent (a theoretical property)
 - With infinite training data and large enough K, K-NN approaches the best possible classifier (Bayes optimal)
- What's not so nice..
 - Store all the training data in memory even at test time
 - Can be memory intensive for large training datasets
 - An example of non-parametric, or memory/instance-based methods
 - Different from parametric, model-based learning models
 - ullet Expensive at test time: O(ND) computations for each test point
 - Have to search through all training data to find nearest neighbors
 - Distance computations with N training points (D features each)
 - Sensitive to noisy features
 - May perform badly in high dimensions (curse of dimensionality)
 - In high dimensions, distance notions can be counter-intuitive!

K-NN: Example

K-NN: Pseudocode

- 1. Calculate " $d(x, x_i)$ " i = 1, 2,, n; where **d** denotes the Euclidean distance between the points.
- 2. Arrange the calculated **n** Euclidean distances in non-decreasing order.
- 3. Let **k** be a +ve integer, take the first **k** distances from this sorted list.
- 4. Find those **k**-points corresponding to these **k**-distances.
- 5. Let \mathbf{k}_i denotes the number of points belonging to the ith class among \mathbf{k} points i.e. $k \ge 0$
- 6. If $k_i > k_j \forall i \neq j$ then put x in class i.

Let (X_i, C_i) where $i = 1, 2, \ldots, n$ be data points. X_i denotes feature values & C_i denotes labels for X_i for each i.

Assuming the number of classes as 'c' $C_i \in \{1, 2, 3, \dots, c\}$ for all values of i

Let x be a point for which label is not known, and we would like to find the label class using k-nearest neighbor algorithms.