Gauss Jordanove transformacije

Neka je $S=\{e_1,e_2,...,e_n\}$ baza za v.p. V te vektori $a=\sum\limits_{i=1}^n\alpha_ie_i,\ x=\sum\limits_{i=1}^nx_ie_i.$ Ako je $\alpha_l\neq 0$ tada je $(S\setminus\{e_l\})\cup\{a\}$ baza za V. Originalni zapis:

Novi zapis:

	e_1	 a	 e_n
e_l	$-\frac{\alpha_1}{\alpha_l}$	 $\frac{1}{\alpha_l}$	 $-\frac{\alpha_n}{\alpha_l}$
x	$\frac{x_1\alpha_l - x_l\alpha_1}{\alpha_l}$	 $\frac{x_l}{\alpha_l}$	 $\frac{x_n\alpha_l - x_l\alpha_n}{\alpha_l}$

Kreiranje početne tablice

Neka je dana linearna zadaća:

$$\begin{cases} z^{\tau}x \to \max \\ Ax \le b \\ x > 0 \end{cases}$$

Početna tablica:

	x_1		x_n	
x_{n+1}				
:		-A		b
x_{n+m}				
		z^{τ}		0

Uvedimo skupove

$$J = \{1, 2, ..., n\}, I = \{n + 1, n + 2, ..., n + m\}$$

Trenutna tablica:

	$x_j, j \in J$	
$x_i, i \in I$	γ_{ij}	β_i
	ζ_j	f

Slobodne varijable i uvjeti jednakosti

• Ako je $x_j \in \mathbb{R}$ slobodna varijabla, napravimo GJT na mjestu gdje je $\gamma_{ij} \neq 0$. Redak s oznakom x_j zanemarujemo u daljnjem simpleks algoritmu (vršimo GJT nad retkom, ali pivotni element ne smije biti odabran u tom retku). Postavljamo

$$I := I \setminus \{j\}.$$

• Ako je *i*-ti uvjet jednakost, napravimo GJT na mjestu gdje je $\gamma_{ij} \neq 0$. Postavljamo

$$J := J \setminus \{n+i\}.$$

Prvi plan:

- 1) Ako je $\forall i \in I \ (\beta_i \ge 0)$ onda kreni s **optimalnim planom**
- 2) Inače, neka je $k := \min\{i \in I, \beta_i < 0\}$
- 3) Ako je $\forall j \in J \ (\gamma_{kj} \leq 0)$ onda **STOP**
- 4) Inače, neka je $l := \min\{j \in J, \gamma_{kj} > 0\}$
- 5) Napravi GJT na ključnom mjestu γ_{kl} i vrati se na 1)

Optimalni plan:

- 1) Ako je $\forall j \in J \ (\zeta_i \leq 0)$ onda **STOP**
- 2) Inače, neka je $l := \min\{j \in J, \zeta_i > 0\}$
- 3) Ako je $\forall i \in I \ (\gamma_{il} \geq 0)$ onda **STOP**
- 4) Inače, neka je $k \in I$ najmanji indeks u kojem se postiže

$$\min\left\{-\beta_i/\gamma_{il} : \gamma_{il} < 0, i \in I\right\}$$

5) Napravi GJT na ključnom mjestu γ_{kl} i vrati se na 1)

Algoritam za razdvajajuću hiperravninu

Neka su $a_1, \ldots, a_m, b \in \mathbb{R}^n$, $m \geq n$. Zamijeni bazu $\{e_1, \ldots, e_n\}$ s n vektora $\{a_j, j \in J\}$, čime dobivamo skup $I := \{1, 2, \ldots, m\} \setminus J$. Vektor b i preostale $\{a_i, i \in I\}$ prikazati u bazi $\{a_j, j \in J\}$.

	$a_j, j \in J$
$e_k, k = 1,, n$	γ_{kj}
$a_i, i \in I$	$lpha_{ij}$
$\overline{}$	β_j

Oznaka $C := \text{cone}\{a_1, a_2, ..., a_m\}.$

- 1) Ako je $\forall j \in J \ (\beta_j \geq 0)$ onda **STOP** $b \in C$
- 2) Inače, neka je $l := \min\{j \in J, \beta_j < 0\}$
- 3) Ako je $\forall i \in I \ (\alpha_{il} \geq 0)$ onda **STOP** $b \notin C$ i $q = (-\gamma_{1l}, \dots, -\gamma_{nl})$.
- 4) Inače, neka je $k := \min\{i \in I, \alpha_{il} < 0\}$
- 5) Napravi GJT na ključnom mjestu α_{kl} i vrati se na 1)