NUM5

Łukasz Kowalik

1 Polecenie zadania

Zadanie numeryczne NUM5

Rozwiazać układ równań:

$$\begin{pmatrix} d & 0.5 & 0.1 & & & \\ 0.5 & d & 0.5 & 0.1 & & \\ 0.1 & 0.5 & d & 0.5 & 0.1 & \\ & \ddots & \ddots & \ddots & \ddots & \\ & & 0.1 & 0.5 & d & 0.5 \\ & & & 0.1 & 0.5 & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{N-1} \\ x_N \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ \vdots \\ N-1 \\ N \end{pmatrix}.$$

Dla N=200, za pomoca metod Jacobiego i Gaussa-Seidela, gdzie d jest elementem diagonalnym. Dla różnych wartości d i punktów startowych przedstaw graficznie różnice pomiedzy dokładnym rozwiazaniem a jego przybliżeniami w kolejnych iteracjach. Odpowiednio dobierajac zakres parametrów, porównaj dwie metody. Czy procedura iteracyjna zawsze jest zbieżna?

2 Opis metod

Metody Jacobiego oraz Gaussa-Seidela to iteracyjne algorytmy numeryczne służace do rozwiazywania układów równań liniowych. Oznacza to, że rozwiazanie dokładne jest osiagane w granicach błedu zaokraglenia, przy odpowiednio dużej liczbie iteracji. W praktyce iteracyjne metody sa skuteczne, gdy układ równań zbiega sie w stosunkowo niewielkiej liczbie kroków.

Metody te sa szczególnie przydatne dla macierzy rzadkich, takich jak macierz opisana w treści zadania, gdzie wiekszość elementów jest zerowa, co pozwala na unikniecie zbednych obliczeń i znaczaco przyspiesza działanie algorytmu.

2.1 Wzór Jacobiego

W metodzie Jacobiego obliczenia dla $x_i^{(k+1)}$ w k-tej iteracji opieraja sie wyłacznie na wartościach $x_i^{(k)}$ z poprzedniej iteracji:

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{N} a_{ij} x_j^{(k)}}{a_{ii}},$$

gdzie:

- $a_{ii} = d$ to element diagonalny macierzy,
- b_i to element wektora prawej strony,
- k to indeks iteracji.

2.2 Wzór Gaussa-Seidela

W metodzie Gaussa-Seidela wartości $x_i^{(k+1)}$ sa obliczane sekwencyjnie, wykorzystujac już zaktualizowane wartości z bieżacej iteracji. Wzór ma postać:

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{N} a_{ij} x_j^{(k)}}{a_{ii}}.$$

2.3 Porównanie obu metod

Obie metody różnia sie sposobem wykorzystania wyników:

- W metodzie Jacobiego wszystkie wartości $x_i^{(k+1)}$ sa obliczane niezależnie od siebie i używaja wyników $x_i^{(k)}$ z poprzedniej iteracji.
- W metodzie Gaussa-Seidela każda wartość $x_i^{(k+1)}$ natychmiast wykorzystuje obliczone już wartości $x_j^{(k+1)}$ z bieżacej iteracji, co zazwyczaj przyspiesza zbieżność.

2.4 Specyfika macierzy w zadaniu

Macierz opisana w zadaniu jest rzadka macierza z piecioma diagonalami, co oznacza, że wiekszość jej elementów wynosi zero. Dzieki temu podczas implementacji można uniknać zbednych obliczeń zwiazanych z mnożeniem przez zera, co znaczaco zwieksza efektywność obu metod.

3 Wyniki dla d = 0.5 i różnych punktów startowych

Dla wartości d=0.5 przeprowadzono analize zbieżności metod Jacobiego oraz Gaussa-Seidela, stosujac różne punkty startowe. Wyniki przedstawiono w postaci wykresów ilustrujacych logarytmiczny bład w kolejnych iteracjach.

3.1 Punkt startowy: -1.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=0.5, punkt startowy -1.0.

3.2 Punkt startowy: 0.0

3.3 Punkt startowy: 10.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=0.5, punkt startowy 10.0.

3.4 Punkt startowy: 100.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=0.5, punkt startowy 100.0.

4 Wyniki dla d = 1.201 i różnych punktów startowych

Dla wartości d=1.201 prze
analizowano zbieżność metod Jacobiego oraz Gaussa-Seidela, stosujac różne punkty startowe. Wyniki przedstawiono w postaci wykresów logarytmicznego błedu w kolejnych iteracjach.

4.1 Punkt startowy: -1.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=1.201, punkt startowy -1.0.

Dla punktu startowego -1.0 metoda Gaussa-Seidela zbiega szybciej niż metoda Jacobiego. Wartość d=1.201 sprawia, że układ pozostaje przekatniowo dominujacy, co umożliwia zbieżność obu metod, jednak z różnicami w szybkości.

4.2 Punkt startowy: 0.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=1.201, punkt startowy 0.0.

W przypadku punktu startowego 0.0 metoda Gaussa-Seidela osiaga mniejszy bład w mniejszej liczbie iteracji w porównaniu do Jacobiego. Zbieżność obu metod jest gwarantowana dzieki dominacji przekatnej macierzy.

4.3 Punkt startowy: 10.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=1.201, punkt startowy 10.0.

Przy punkcie startowym 10.0 metoda Gaussa-Seidela szybko redukuje bład, natomiast metoda Jacobiego wymaga wiekszej liczby iteracji, aby osiagnać zadany poziom dokładności. Różnica w efektywności staje sie bardziej widoczna w przypadku wiekszych punktów startowych.

4.4 Punkt startowy: 100.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=1.201, punkt startowy 100.0.

Przy bardzo dużym punkcie startowym, 100.0, metoda Gaussa-Seidela ponownie potwierdza swoja wyższość w szybkości zbieżności. Metoda Jacobiego, choć wolniejsza, osiaga podobny poziom dokładności po znacznie wiekszej liczbie iteracji.

5 Wyniki dla d = 1.5 i różnych punktów startowych

Dla wartości d=1.5 przeprowadzono analize zbieżności metod Jacobiego oraz Gaussa-Seidela, stosując różne punkty startowe. Wyniki przedstawiono w postaci wykresów logarytmicznego błedu w kolejnych iteracjąch.

5.1 Punkt startowy: -1.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=1.5, punkt startowy -1.0.

Dla punktu startowego -1.0 metoda Gaussa-Seidela charakteryzuje sie szybsza zbieżnościa w porównaniu do metody Jacobiego. Wartość d=1.5 wzmacnia dominacje przekatniowa macierzy, co sprzyja stabilności iteracji.

5.2 Punkt startowy: 0.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=1.5, punkt startowy 0.0.

W przypadku punktu startowego 0.0 metoda Gaussa-Seidela szybko redukuje bład do poziomu poniżej tolerancji, podczas gdy metoda Jacobiego wymaga wiekszej liczby iteracji. Obie metody wykazuja jednak stabilna zbieżność.

5.3 Punkt startowy: 10.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla $d=1.5,\,\mathrm{punkt}$ startowy 10.0.

Dla wiekszego punktu startowego, 10.0, metoda Gaussa-Seidela wykazuje wyraźna przewage w szybkości zbieżności. Z kolei metoda Jacobiego potrzebuje znacznie wiekszej liczby iteracji, aby osiagnać podobny poziom dokładności.

5.4 Punkt startowy: 100.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=1.5, punkt startowy 100.0.

Przy bardzo dużym punkcie startowym, 100.0, metoda Gaussa-Seidela wykazuje znaczna przewage nad metoda Jacobiego, zarówno pod wzgledem szybkości, jak i stabilności iteracji. Metoda Jacobiego jest mniej efektywna przy takich warunkach poczatkowych.

6 Wyniki dla d=3.0 i różnych punktów startowych

Dla wartości d=3.0 przeprowadzono analize zbieżności metod Jacobiego oraz Gaussa-Seidela, stosując różne punkty startowe. Wyniki przedstawiono w postaci wykresów logarytmicznego błedu w kolejnych iteracjąch.

6.1 Punkt startowy: -1.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=3.0, punkt startowy -1.0.

Przy punkcie startowym -1.0 obie metody wykazuja stabilna zbieżność, jednak metoda Gaussa-Seidela osiaga znacznie mniejszy bład w krótszym czasie. Wyższa wartość d znaczaco poprawia dominacje przekatniowa, co pozytywnie wpływa na szybkość iteracji.

6.2 Punkt startowy: 0.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=3.0, punkt startowy 0.0.

Dla punktu startowego 0.0 metoda Gaussa-Seidela ponownie charakteryzuje sie znacznie szybsza zbieżnościa niż metoda Jacobiego. Jest to widoczne szczególnie w poczatkowych iteracjach, gdzie redukcja błedu jest bardziej dynamiczna.

6.3 Punkt startowy: 10.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla $d=3.0,\,\mathrm{punkt}$ startowy 10.0.

Dla punktu startowego 10.0 metoda Gaussa-Seidela potwierdza swoja przewage w redukcji błedu. W metodzie Jacobiego zbieżność jest zauważalnie wolniejsza, co wskazuje na jej ograniczenia w przypadku wiekszych wartości poczatkowych.

6.4 Punkt startowy: 100.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=3.0, punkt startowy 100.0.

Przy bardzo dużym punkcie startowym, 100.0, metoda Gaussa-Seidela skutecznie redukuje bład w stosunkowo krótkim czasie. Metoda Jacobiego, choć stabilna, wymaga znacznie wiekszej liczby iteracji, aby osiagnać porównywalny poziom dokładności.

7 Wyniki dla d=5.0 i różnych punktów startowych

Dla wartości d=5.0 przeprowadzono analize zbieżności metod Jacobiego oraz Gaussa-Seidela, stosujac różne punkty startowe. Wyniki przedstawiono w postaci wykresów logarytmicznego błedu w kolejnych iteracjach.

7.1 Punkt startowy: -1.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=5.0, punkt startowy -1.0.

Przy punkcie startowym -1.0 obie metody wykazuja bardzo dobra zbieżność, jednak metoda Gaussa-Seidela osiaga wymagany poziom błedu znacznie szybciej. Duża wartość d=5.0 dodatkowo poprawia stabilność obliczeń i wzmacnia dominacje przekatniowa macierzy.

7.2 Punkt startowy: 0.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d=5.0, punkt startowy 0.0.

Dla punktu startowego 0.0 metoda Gaussa-Seidela zachowuje swoja przewage w szybkości zbieżności. Metoda Jacobiego, mimo stabilności, wymaga wiekszej liczby iteracji, aby osiagnać porównywalny poziom błedu.

7.3 Punkt startowy: 10.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla $d=5.0,\,\mathrm{punkt}$ startowy 10.0.

Dla punktu startowego 10.0 widoczna jest znaczna przewaga metody Gaussa-Seidela w szybkości redukcji błedu. Metoda Jacobiego wymaga wiecej iteracji, co potwierdza jej ograniczenia przy wiekszych wartościach poczatkowych.

7.4 Punkt startowy: 100.0

Zbieżność metod Jacobiego i Gaussa-Seidela dla d = 5.0, punkt startowy 100.0.

Przy bardzo dużym punkcie startowym, 100.0, metoda Gaussa-Seidela wyraźnie przewyższa metode Jacobiego pod wzgledem szybkości i efektywności. Metoda Jacobiego, choć stabilna, wymaga znacznie wiekszej liczby iteracji, aby osiagnać podobny poziom dokładności.

8 Analiza wyników dla d = 0.5

Dla wartości d=0.5 przeprowadzono testy metod Jacobiego i Gaussa-Seidela, stosujac różne punkty startowe. Jednakże, dla tej wartości d zarówno metoda Jacobiego, jak i Gaussa-Seidela nie zbiegały do poprawnego rozwiazania. Wyniki zawieraja czas wykonania, bład końcowy oraz liczbe iteracji, jednak warto zauważyć, że rozwiazania były niepoprawne (-nan).

8.1 Rozwiazanie dokładne

8.2 Punkt startowy: -1.0

Metoda Jacobiego:

- Rozwiazanie: [-nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan]
- Czas wykonania: 0.0281047 s
- Bład końcowy: 0

• Liczba iteracji: 807

Metoda Gaussa-Seidela:

- Rozwiazanie: [-nan, -nan, -nan,
- Czas wykonania: 0.0222791 s
- Bład końcowy: 0
- Liczba iteracji: 741

8.3 Punkt startowy: 0.0

Metoda Jacobiego:

- Rozwiazanie: [-nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan]
- Czas wykonania: 0.0304998 s
- Bład końcowy: 0
- Liczba iteracji: 807

Metoda Gaussa-Seidela:

- Rozwiazanie: [-nan, -nan, -nan,
- \bullet Czas wykonania: 0.023265 s
- Bład końcowy: 0
- Liczba iteracji: 744

8.4 Punkt startowy: 10.0

Metoda Jacobiego:

- Rozwiazanie: [-nan, -nan, -nan,
- \bullet Czas wykonania: 0.0306459 s
- Bład końcowy: 0
- Liczba iteracji: 807

Metoda Gaussa-Seidela:

- Rozwiazanie: [-nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan]
- Czas wykonania: 0.0224078 s
- $\bullet\,$ Bład końcowy: 0
- Liczba iteracji: 739

8.5 Punkt startowy: 100.0

Metoda Jacobiego:

- Rozwiazanie: [-nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan]
- Czas wykonania: 0.0290605 s
- $\bullet\,$ Bład końcowy: 0
- Liczba iteracji: 808

Metoda Gaussa-Seidela:

- Rozwiazanie: [-nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan, -nan]
- Czas wykonania: 0.0233394 s
- $\bullet\,$ Bład końcowy: 0
- Liczba iteracji: 736

8.6 Podsumowanie wyników

Dla d=0.5 metody iteracyjne Jacobiego i Gaussa-Seidela nie były w stanie znaleźć poprawnego rozwiazania, a wszystkie wartości rozwiazania przyjeły wartość -nan. Wynika to z braku dominacji przekatniowej macierzy, co powoduje, że metody iteracyjne sa niestabilne. W takich przypadkach należy zastosować inne metody numeryczne lub zmodyfikować macierz, aby osiagnać dominacje przekatniowa.

9 Analiza wyników dla d = 1.201

9.1 Rozwiazanie dokładne

 $Eigen\ LU: [0.374034, 0.852627, 1.24472, 1.66617, 2.08286, \dots, 81.1547, 82.7847, 83.8168, 69.5365, 130.6]$

9.2 Punkt startowy: -1.0

Metoda Jacobiego:

- $\bullet \ \ \text{Rozwiazanie:} \ [0.374034, 0.852627, 1.24472, 1.66617, 2.08286, \ldots, 81.1547, 82.7847, 83.8168, 69.5365, 130.6]$
- Czas wykonania: 0.620068 s
- Bład końcowy: 4.99573×10^{-7}
- Liczba iteracji: 18222

Metoda Gaussa-Seidela:

- $\bullet \ \ \text{Rozwiazanie:} \ [0.374034, 0.852627, 1.24472, 1.66617, 2.08286, \ldots, 81.1547, 82.7847, 83.8168, 69.5365, 130.6]$
- \bullet Czas wykonania: 0.000766206 s
- Bład końcowy: 6.82956×10^{-7}
- Liczba iteracji: 25

9.3 Punkt startowy: 0.0

Metoda Jacobiego:

• Rozwiazanie: $[0.374034, 0.852627, 1.24472, 1.66617, 2.08286, \dots, 81.1547, 82.7847, 83.8168, 69.5365, 130.6]$

• Czas wykonania: 0.600652 s

• Bład końcowy: 4.9945×10^{-7}

• Liczba iteracji: 18199

Metoda Gaussa-Seidela:

• Rozwiazanie: $[0.374034, 0.852627, 1.24472, 1.66617, 2.08286, \dots, 81.1547, 82.7847, 83.8168, 69.5365, 130.6]$

 \bullet Czas wykonania: 0.000812242 s

• Bład końcowy: 6.79915×10^{-7}

• Liczba iteracji: 25

9.4 Punkt startowy: 10.0

Metoda Jacobiego:

• Rozwiazanie: $[0.374034, 0.852627, 1.24472, 1.66617, 2.08286, \dots, 81.1547, 82.7847, 83.8168, 69.5365, 130.6]$

• Czas wykonania: 0.580617 s

• Bład końcowy: 4.99584×10^{-7}

• Liczba iteracji: 17930

Metoda Gaussa-Seidela:

• Rozwiazanie: $[0.374034, 0.852627, 1.24472, 1.66617, 2.08286, \dots, 81.1547, 82.7847, 83.8168, 69.5365, 130.6]$

 \bullet Czas wykonania: 0.000851245 s

• Bład końcowy: 6.49501×10^{-7}

• Liczba iteracji: 25

9.5 Punkt startowy: 100.0

Metoda Jacobiego:

• Rozwiazanie: $[0.374034, 0.852627, 1.24472, 1.66617, 2.08286, \dots, 81.1547, 82.7847, 83.8168, 69.5365, 130.6]$

 \bullet Czas wykonania: 0.616096 s

• Bład końcowy: 4.9964×10^{-7}

• Liczba iteracji: 18522

Metoda Gaussa-Seidela:

 $\bullet \ \ \text{Rozwiazanie:} \ [0.374034, 0.852627, 1.24472, 1.66617, 2.08286, \ldots, 81.1547, 82.7847, 83.8168, 69.5365, 130.6]$

• Czas wykonania: 0.000782075 s

• Bład końcowy: 7.44474×10^{-7}

• Liczba iteracji: 24

10 Analiza wyników dla d = 1.5

10.1 Rozwiazanie dokładne

 $\text{Eigen LU}: [0.34252, 0.750479, 1.1098, 1.48121, 1.85205, \dots, 72.4267, 73.5377, 72.8664, 68.2314, 105.732] \\$

10.2 Punkt startowy: -1.0

Metoda Jacobiego:

• Rozwiazanie: $[0.34252, 0.750479, 1.1098, 1.48121, 1.85205, \dots, 72.4267, 73.5377, 72.8664, 68.2314, 105.732]$

• Czas wykonania: 0.00340229 s

• Bład końcowy: 3.72182×10^{-7}

• Liczba iteracji: 85

Metoda Gaussa-Seidela:

• Rozwiazanie: $[0.34252, 0.750479, 1.1098, 1.48121, 1.85205, \dots, 72.4267, 73.5377, 72.8664, 68.2314, 105.732]$

 \bullet Czas wykonania: 0.000685254 s

• Bład końcowy: 3.6464×10^{-7}

• Liczba iteracji: 18

10.3 Punkt startowy: 0.0

Metoda Jacobiego:

• Rozwiazanie: $[0.34252, 0.750479, 1.1098, 1.48121, 1.85205, \dots, 72.4267, 73.5377, 72.8664, 68.2314, 105.732]$

• Czas wykonania: 0.0057583 s

• Bład końcowy: 3.66512×10^{-7}

• Liczba iteracji: 85

Metoda Gaussa-Seidela:

• Rozwiazanie: $[0.34252, 0.750479, 1.1098, 1.48121, 1.85205, \dots, 72.4267, 73.5377, 72.8664, 68.2314, 105.732]$

 \bullet Czas wykonania: 0.000767619 s

• Bład końcowy: 3.6223×10^{-7}

• Liczba iteracji: 18

10.4 Punkt startowy: 10.0

Metoda Jacobiego:

• Rozwiazanie: $[0.34252, 0.750479, 1.1098, 1.48121, 1.85205, \dots, 72.4267, 73.5377, 72.8664, 68.2314, 105.732]$

 \bullet Czas wykonania: 0.00806504 s

• Bład końcowy: 3.87853×10^{-7}

• Liczba iteracji: 84

Metoda Gaussa-Seidela:

• Rozwiazanie: $[0.34252, 0.750479, 1.1098, 1.48121, 1.85205, \dots, 72.4267, 73.5377, 72.8664, 68.2314, 105.732]$

 \bullet Czas wykonania: 0.000902711 s

• Bład końcowy: 3.38125×10^{-7}

• Liczba iteracji: 18

10.5 Punkt startowy: 100.0

Metoda Jacobiego:

• Rozwiazanie: $[0.34252, 0.750479, 1.1098, 1.48121, 1.85205, \dots, 72.4267, 73.5377, 72.8664, 68.2314, 105.732]$

• Czas wykonania: 0.00342478 s

• Bład końcowy: 4.09053×10^{-7}

• Liczba iteracji: 86

Metoda Gaussa-Seidela:

• Rozwiazanie: $[0.34252, 0.750479, 1.1098, 1.48121, 1.85205, \dots, 72.4267, 73.5377, 72.8664, 68.2314, 105.732]$

 \bullet Czas wykonania: 0.000657943 s

• Bład końcowy: 3.39822×10^{-7}

• Liczba iteracji: 17

11 Analiza wyników dla d=5

11.1 Rozwiazanie dokładne

 $Eigen\ LU: [0.229931, 0.477544, 0.714341, 0.952325, 1.19048, \dots, 46.6693, 46.9589, 46.8056, 47.4336, 57.2009]$

11.2 Punkt startowy: -1.0

Metoda Jacobiego:

• Czas wykonania: 0.00109817 s

• Bład końcowy: 1.97896×10^{-7}

• Liczba iteracji: 21

Metoda Gaussa-Seidela:

• Rozwiazanie: $[0.229931, 0.477544, 0.714341, 0.952325, 1.19048, \dots, 46.6693, 46.9589, 46.8056, 47.4336, 57.2009]$

 \bullet Czas wykonania: 0.000498343 s

• Bład końcowy: 1.32573×10^{-7}

• Liczba iteracji: 11

11.3 Punkt startowy: 0.0

Metoda Jacobiego:

 \bullet Czas wykonania: 0.00178054 s

• Bład końcowy: 1.93548×10^{-7}

• Liczba iteracji: 21

Metoda Gaussa-Seidela:

• Rozwiazanie: $[0.229931, 0.477544, 0.714341, 0.952325, 1.19048, \dots, 46.6693, 46.9589, 46.8056, 47.4336, 57.2009]$

 $\bullet\,$ Czas wykonania: 0.00117186 s

• Bład końcowy: 1.29827×10^{-7}

• Liczba iteracji: 11

11.4 Punkt startowy: 10.0

Metoda Jacobiego:

• Rozwiazanie: $[0.229931, 0.477544, 0.714341, 0.952325, 1.19048, \dots, 46.6693, 46.9589, 46.8056, 47.4336, 57.2009]$

 \bullet Czas wykonania: 0.00112125 s

• Bład końcowy: 1.50068×10^{-7}

• Liczba iteracji: 21

Metoda Gaussa-Seidela:

 $\bullet \ \ \text{Rozwiazanie:} \ [0.229931, 0.477544, 0.714341, 0.952325, 1.19048, \ldots, 46.6693, 46.9589, 46.8056, 47.4336, 57.2009]$

Czas wykonania: 0.000531255 s
Bład końcowy: 1.02501 × 10⁻⁷

• Liczba iteracji: 11

11.5 Punkt startowy: 100.0

Metoda Jacobiego:

 $\bullet \ \ \text{Rozwiazanie:} \ [0.229931, 0.477544, 0.714341, 0.952325, 1.19048, \ldots, 46.6693, 46.9589, 46.8056, 47.4336, 57.2009]$

 \bullet Czas wykonania: 0.00113125 s

• Bład końcowy: 1.68414×10^{-7}

• Liczba iteracji: 22

Metoda Gaussa-Seidela:

 $\bullet \ \ \text{Rozwiazanie:} \ [0.229931, 0.477544, 0.714341, 0.952325, 1.19048, \ldots, 46.6693, 46.9589, 46.8056, 47.4336, 57.2009]$

Czas wykonania: 0.000594584 s
Bład końcowy: 5.26597 × 10⁻⁸

• Liczba iteracji: 12

12 Analiza wyników dla d = 5.0

Dla wartości d=5.0 przeprowadzono testy metod Jacobiego i Gaussa-Seidela, stosujac różne punkty startowe. Wyniki zawieraja czas wykonania, bład końcowy oraz liczbe iteracji potrzebnych do osiagniecia zbieżności. Rozwiazanie dokładne obliczono przy użyciu dekompozycji LU z wykorzystaniem biblioteki Eigen.

12.1 Rozwiazanie dokładne

 $Eigen\ LU: [0.158032, 0.322903, 0.483905, 0.645151, 0.806452, \dots, 31.6145, 31.7791, 31.8304, 32.3687, 36.1265]$

12.2 Punkt startowy: -1.0

Metoda Jacobiego:

• Rozwiazanie: $[0.158032, 0.322903, 0.483905, 0.645151, 0.806452, \dots, 31.6145, 31.7791, 31.8304, 32.3687, 36.1265]$

 \bullet Czas wykonania: 0.000590537 s

• Bład końcowy: 6.57393×10^{-8}

• Liczba iteracji: 14

Metoda Gaussa-Seidela:

 $\bullet \ \ \text{Rozwiazanie:} \ [0.158032, 0.322903, 0.483905, 0.645151, 0.806452, \ldots, 31.6145, 31.7791, 31.8304, 32.3687, 36.1265]$

 \bullet Czas wykonania: 0.000362429 s

• Bład końcowy: 6.11239×10^{-8}

• Liczba iteracji: 9

12.3 Punkt startowy: 0.0

Metoda Jacobiego:

 $\bullet \ \ \text{Rozwiazanie:} \ [0.158032, 0.322903, 0.483905, 0.645151, 0.806452, \ldots, 31.6145, 31.7791, 31.8304, 32.3687, 36.1265]$

• Czas wykonania: 0.000737732 s

• Bład końcowy: 6.36513×10^{-8}

• Liczba iteracji: 14

Metoda Gaussa-Seidela:

• Rozwiazanie: $[0.158032, 0.322903, 0.483905, 0.645151, 0.806452, \dots, 31.6145, 31.7791, 31.8304, 32.3687, 36.1265]$

 \bullet Czas wykonania: 0.000418604 s

• Bład końcowy: 5.92687×10^{-8}

• Liczba iteracji: 9

12.4 Punkt startowy: 10.0

Metoda Jacobiego:

 $\bullet \ \ \text{Rozwiazanie:} \ [0.158032, 0.322903, 0.483905, 0.645151, 0.806452, \ldots, 31.6145, 31.7791, 31.8304, 32.3687, 36.1265]$

• Czas wykonania: 0.000532728 s

• Bład końcowy: 1.78985×10^{-7}

• Liczba iteracji: 13

Metoda Gaussa-Seidela:

 $\bullet \ \ \text{Rozwiazanie:} \ [0.158032, 0.322903, 0.483905, 0.645151, 0.806452, \ldots, 31.6145, 31.7791, 31.8304, 32.3687, 36.1265]$

 $\bullet\,$ Czas wykonania: 0.000406352 s

- Bład końcowy: 4.07727×10^{-8}

• Liczba iteracji: 9

12.5 Punkt startowy: 100.0

Metoda Jacobiego:

• Rozwiazanie: $[0.158032, 0.322903, 0.483905, 0.645151, 0.806452, \dots, 31.6145, 31.7791, 31.8304, 32.3687, 36.1265]$

Czas wykonania: 0.000767037 s
Bład końcowy: 4.92253 × 10⁻⁸

• Liczba iteracji: 15

Metoda Gaussa-Seidela:

 $\bullet \ \ \text{Rozwiazanie:} \ [0.158032, 0.322903, 0.483905, 0.645151, 0.806452, \ldots, 31.6145, 31.7791, 31.8304, 32.3687, 36.1265]$

Czas wykonania: 0.000498434 s
Bład końcowy: 2.19126 × 10⁻⁸

• Liczba iteracji: 10

13 Dyskusja

Otrzymane wyniki pokazuja różnice w efektywności i zbieżności metod Jacobiego i Gaussa-Seidela. W przypadku wartości $d \geq 1.2$, obie metody wykazały poprawna zbieżność do rozwiazania dokładnego, co świadczy o ich poprawnym działaniu w takich warunkach. Jednak analiza wyników ujawnia kilka istotnych wniosków:

13.1 Porównanie metod Jacobiego i Gaussa-Seidela

1. Szybkość zbieżności:

- Metoda Gaussa-Seidela była konsekwentnie szybsza od metody Jacobiego w liczbie iteracji potrzebnych do osiagniecia zadanej dokładności. Wynika to z faktu, że Gauss-Seidel natychmiast aktualizuje wartości w trakcie iteracji, co prowadzi do szybszej redukcji błedów.
- Metoda Jacobiego, choć bardziej równoległa, wymagała wiekszej liczby iteracji, co przekłada sie na dłuższy czas wykonania.

2. Zbieżność w różnych warunkach poczatkowych:

- Metoda Gaussa-Seidela była bardziej stabilna i efektywna niezależnie od punktu startowego. Nawet dla dużych wartości poczatkowych (10 lub 100) wykazywała szybka zbieżność do dokładnego rozwiazania.
- W przypadku Jacobiego, dla dużych punktów startowych liczba iteracji wzrastała, co podkreśla jej ograniczenia w bardziej ekstremalnych warunkach poczatkowych.

3. Wpływ wartości d:

- Dla wartości $d \geq 1.2$ macierz zachowywała dominacje przekatniowa, co gwarantowało zbieżność obu metod.
- Dla d = 0.5 obie metody były niestabilne i nie zbiegały do poprawnego rozwiazania (-nan). Brak dominacji przekatniowej w macierzy spowodował niestabilność procedur iteracyjnych.

13.2 Czy procedura iteracyjna zawsze jest zbieżna?

Odpowiedź na to pytanie brzmi: **nie**. Procedura iteracyjna, taka jak metoda Jacobiego czy Gaussa-Seidela, nie zawsze jest zbieżna. Zbieżność zależy od właściwości macierzy układu równań liniowych. Kluczowe warunki zbieżności to: - **Dominacja przekatniowa macierzy** ($|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ dla każdego i): Gwarantuje stabilność i zbieżność iteracji. - **Macierz dodatnio określona**: W takich przypadkach metody iteracyjne maja lepsze właściwości zbieżności.

W przypadku d = 0.5, brak dominacji przekatniowej spowodował, że metody iteracyjne nie były w stanie znaleźć poprawnego rozwiazania. W praktyce oznacza to konieczność:

- Zastosowania innych metod numerycznych (np. dekompozycji LU, metody QR).
- Lub przekształcenia układu (np. przez dodanie dominacji przekatniowej).

14 Podsumowanie

Przeprowadzone analizy i wyniki testów pozwalaja wyciagnać nastepujace wnioski:

1. Efektywność metod:

- Metoda Gaussa-Seidela wykazała znacznie wieksza efektywność w porównaniu z metoda Jacobiego. Wymagała mniejszej liczby iteracji i krótszego czasu wykonania, co czyni ja bardziej praktycznym wyborem w zastosowaniach numerycznych.
- Metoda Jacobiego, choć mniej efektywna, pozostaje przydatna w sytuacjach, gdzie równoległość obliczeń ma kluczowe znaczenie.

2. Warunki zbieżności:

- Obie metody były zbieżne dla wartości $d \ge 1.2$, gdzie macierz układu była przekatniowo dominujaca, co zapewniało stabilność iteracji.
- Dla d = 0.5 brak dominacji przekatniowej uniemożliwił zbieżność obu metod, co podkreśla znaczenie warunków stabilności macierzy w metodach iteracyjnych.

3. Zachowanie w różnych punktach startowych:

- Metoda Gaussa-Seidela była bardziej odporna na różnice w punktach startowych i zachowywała szybkie tempo zbieżności niezależnie od wartości poczatkowej.
- W przypadku Jacobiego wieksze punkty startowe prowadziły do wolniejszej zbieżności, co może ograniczać jej użyteczność w bardziej ekstremalnych warunkach.

4. Zastosowania praktyczne:

- Metody iteracyjne takie jak Jacobi i Gauss-Seidel znajduja zastosowanie w przypadkach, gdy dekompozycje bezpośrednie (np. LU, QR) sa zbyt kosztowne obliczeniowo, szczególnie dla dużych i rzadkich macierzy.
- Warunkiem ich zastosowania jest odpowiednia struktura macierzy układu równań w przeciwnym razie konieczne jest użycie innych metod numerycznych lub modyfikacja macierzy.

14.1 Odpowiedź na pytanie

Procedury iteracyjne, takie jak metody Jacobiego i Gaussa-Seidela, nie zawsze sa zbieżne. Ich zbieżność zależy od własności macierzy układu równań, takich jak dominacja przekatniowa czy dodatnia określoność. W przypadku braku spełnienia tych warunków metody moga być niestabilne lub nieosiagać poprawnych wyników.

14.2 Podsumowanie końcowe

Wyniki pokazuja, że metody iteracyjne sa poteżnym narzedziem numerycznym, ale ich skuteczność zależy od właściwego doboru problemu. Metoda Gaussa-Seidela przewyższa metode Jacobiego w wiekszości analizowanych przypadków, a jej szybka zbieżność czyni ja preferowana w zastosowaniach praktycznych. Warto jednak pamietać o ograniczeniach tych metod i konieczności stosowania alternatywnych technik w przypadku nieodpowiednich warunków numerycznych.