$$R(A, B, C, D)$$

$$Y = \pi_{ABC}(R), Y_2 = \pi_{AD}(R)$$

$$ABC AD$$

$$S = Y_1MY_2$$

$$A \Rightarrow ABC$$

$$A \Rightarrow AD$$

$$S = Y_1MY_2$$

$$A \Rightarrow AD$$

$$ABCD$$

$$S = Y_1MY_2$$

$$A \Rightarrow AD$$

$$ABCD$$

$$YUS = S$$

$$YUS = S$$

$$YUS = S$$

$$YMS = Y$$

$$YMS = S$$

Dependency Preservation

Let R be a relation schema that is decomposed into two schemas with attribute sets X and Y, and let F be a set of FDs over R. The **projection of F on** X is the set of FDs in the closure F^+ (not just F!) that involve only attributes in X. We will denote the projection of F on attributes X as F_X . Note that a dependency $U \to V$ in F^+ is in F_X only if all the attributes in U and V are in X.

The decomposition of relation schema R with FDs F into schemas with attribute sets X and Y is **dependency-preserving** if $(F_X \cup F_Y)^+ = F^+$. That is, if we take the dependencies in F_X and F_Y and compute the closure of their union, we get back all dependencies in the closure of F. Therefore, we need to enforce only the dependencies in F_X and F_Y ; all FDs in F^+ are then sure to be satisfied. To enforce F_X , we need to examine only relation X (on inserts to that relation). To enforce F_Y , we need to examine only relation Y.

Definition. Given a set of dependencies F on R, the **projection** of F on R_i , denoted by $\pi_{R_i}(F)$ where R_i is a subset of R, is the set of dependencies $X \to Y$ in F^+ such that the attributes in $X \cup Y$ are all contained in R_i . Hence, the projection of F on each relation schema R_i in the decomposition D is the set of functional dependencies in F^+ , the closure of F, such that all the left- and right-hand-side attributes of those dependencies are in R_i . We say that a decomposition $D = \{R_1, R_2, \ldots, R_m\}$ of R is **dependency-preserving** with respect to F if the union of the projections of F on each R_i in D is equivalent to F; that is, $((\pi_{R_i}(F)) \cup K \cup (\pi_{R_i}(F)))^+ = F^+$.

If a decomposition is not dependency-preserving, some dependency is lost in the decomposition.

