# Decision Tree (決策樹)

#### 主要參考資料:

決策樹 (Decision Tree) Dr. Tun-Wen Pai

Business intelligence and data mining Anil K. Maheshwari, Ph.D.

## 決策樹

決策樹用來對於一個樹狀事件給出一條路線引導出一個決策,例如是否借款,或者更複雜的決策系統。

舉一個生活化的例子,若要決定是否要出遊,則我們可以畫出以下的樹狀事件。



可以發現從「是否出遊」到任意一種出遊決策都是唯一路徑,換言之,在這棵樹上共有 4 條路徑。

對於一個決策系統來說也可能會很複雜,例如判斷手寫數字時, 龐大而精確的決策系統能夠有效的幫助 我們判斷出手寫的數字。

# 使用決策樹的優點與缺點

Reference website:

- 1. https://scikit-learn.org/stable/modules/tree.html
- 2. https://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91%E5%AD%A6%E 4%B9%A0

### ■ 優點

- 1. 樹可以被視覺化,方便理解
- 2. 資料需要被整理,資料的空值不被接受
- 3. 任何作出決策的操作都取決於樹的節點數量,且為對數時間複雜度
- 4. 支援輸出一種以上的結果 (multi-output)
- 5. 使用白箱模型,因為決策樹可以簡單解釋決策的來源與邏輯
- 6. 可用統計測試來驗證模型
- 7. 對於噪聲有很強的控制性

#### 缺點

- 1. 可能會 overfitting
- 2. 因為可能會 overfitting,所以不好實行外推
- 3. 優化決策樹是 NP-Complete 問題,優化決策樹無法在多項式時間內解決
- 4. 有些概念沒有辦法清楚解釋(例如 XOR)
- 5. 資料集的平衡很重要,否則樹可能會被一些資料所支配,產生出帶有偏見的決策樹

## 建立決策樹的方式

我們以一個出遊的資料集為例,如下圖。

| 天氣 - | 温度 | 夭   | 出遊與否。 |
|------|----|-----|-------|
| 晴天   | 熱  | 工作日 | 否     |
| 晴天   | 熱  | 假日  | 否     |
| 晴天   | 冷  | 工作日 | 否     |
| 晴天   | 冷  | 假日  | 是     |
| 晴天   | 溫和 | 工作日 | 否     |
| 晴天   | 溫和 | 假日  | 是     |
| 陰天   | 熱  | 工作日 | 否     |
| 陰天   | 熱  | 假日  | 否     |
| 陰天   | 冷  | 工作日 | 否     |
| 陰天   | 冷  | 假日  | 是     |
| 陰天   | 溫和 | 工作日 | 否     |
| 陰天   | 溫和 | 假日  | 是     |
| 雨天   | 熱  | 工作日 | 否     |
| 雨天   | 熱  | 假日  | 否     |
| 雨天   | 冷  | 工作日 | 否     |
| 雨天   | 冷  | 假日  | 是     |
| 雨天   | 溫和 | 工作日 | 否     |
| 雨天   | 溫和 | 假日  | 是     |

決策樹是一種層級式的分支結構,我們可以分割表格,來計算錯誤合計。

我們將現有資訊加上規則,可以得到以下的表格,可以看出錯誤統計均是 4/18,因此我們可以任意選擇 一個來建樹。

| 屬性 | 規則     | 錯誤  | 錯誤總和 |  |
|----|--------|-----|------|--|
| 天氣 | 晴天->是  | 2/6 |      |  |
|    | 陰天->是  | 2/6 | 4/18 |  |
|    | 雨天->否  | 0/6 |      |  |
| 溫度 | 熱->否   | 0/6 |      |  |
|    | 溫和->是  | 2/6 | 4/18 |  |
|    | 冷->是   | 2/6 |      |  |
| 天  | 假日->是  | 4/9 | 4/10 |  |
|    | 工作日->否 | 0/9 | 4/18 |  |

例如我們選擇天氣,可以得到以下的事件樹狀圖。



按照同樣方式進行推廣,可以得到以下的樹狀結構。



這樣有點智障,因為晴天跟陰天應該可以合併,且冷跟溫和也該可以合併。

一個決策樹主要基於分支準則、停止條件與修剪而有所不同,也因此衍伸出了決策樹演算法。

# 決策樹演算法

主要分成: ID3、CART、CHAID, 這份筆記主要會講解 ID3、CART 演算法。

## ID3 演算法

### Entropy

Entropy(資訊熵),一種量化資料同源的數值,介於0~1之間。

若一個資料是絕對同源,則 Entropy = 0, 若一個資料絕對異源,則 Entropy = 1。

定義一個樣本的 Entropy 為:

$$Entropy(S) = -\sum_i P(x_i) \log_2(P(x_i)) - \sum_i Q(x_i) \log_2(Q(x_i))$$

其中  $\lim_{p\to 0} p \log p = 0$ 。

### Information Gain

Information Gain (訊息增益)為資訊熵經過分割 Attribute 後所減少的數值,介於 0~1 之間。

當我們在分割樹的時候,我們會選擇 Infomation Gain 大的來當作我們的父節點或根節點,若 Entropy = 0 時則為子節點。

我們可以定義一個樣本在分割成一個 Attribute 之後的 Infomation Gain 為

$$IG(S,A) = Entropy(S) - \sum_{v \in D_A} rac{|S_v|}{|S|} Entropy(S_v)$$

### 優缺點

#### ■ 優點:

- 1. 好理解決策的邏輯,因為可以畫成一棵樹
- 2. 建立迅速
- 3. 建立較小的樹
- 4. 只需要足夠數量的測試資料
- 5. 只需要測試足夠多的屬性來讓所有資料都被分類
- 6. 在分類測試資料時可以被修剪,利於減少測試數量
- 7. 使用整個資料集,搜索空間完整

### 缺點

- 1. 會因為測試資料過小導致 over-fitted 跟 over-classified,不利於推廣預測。
- 2. 每次預測只測試一個 Attribute。
- 3. 測試連續資料可能會導致大量運算,產生大量的樹。

## 範例

以這張圖為範例,利用 ID3 來建立決策樹。

| outlook  | temperature | humidity | wind  | play |
|----------|-------------|----------|-------|------|
| sunny    | hot         | high     | false | no   |
| sunny    | hot         | high     | true  | no   |
| overcast | hot         | high     | false | yes  |
| rainy    | mild        | high     | false | yes  |
| rainy    | cold        | normal   | false | yes  |
| rainy    | cold        | normal   | true  | no   |
| overcast | cold        | normal   | true  | yes  |
| sunny    | mild        | high     | false | no   |
| sunny    | cold        | normal   | false | yes  |
| rainy    | mild        | normal   | false | yes  |
| sunny    | mild        | normal   | true  | yes  |
| overcast | mild        | high     | true  | yes  |
| overcast | hot         | normal   | false | yes  |
| rainy    | mild        | high     | true  | no   |

首先先計算 Entropy(Play), 也就是

$$Entropy(Play) = -\frac{9}{14}\log_2\frac{9}{14} - (\frac{5}{14}\log_2\frac{5}{14}) \approx 0.94$$

### 接著可以考慮

1. 三種不同類型的 Outlook 所產生出來的 Entropy(Play, Outlook)

$$Entropy(Sunny) = -\frac{2}{5}\log_2(\frac{2}{5}) - \frac{3}{5}\log_2(\frac{3}{5}) \approx 0.97$$

$$Entropy(Overcast) = -\frac{4}{4}\log_2(\frac{4}{4}) - \frac{0}{4}\log_2(\frac{0}{4}) = 0$$

$$Entropy(Rainy) = -\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) \approx 0.97$$

$$Entropy(Play, Outlook) = \frac{5}{14}Entropy(Sunny) + \frac{4}{14}Entropy(Overcast) + \frac{5}{14}Entropy(Rainy) = 0.6936$$

2. 三種不同類型的 Temperature 所產生出來的 Entropy(Play, Temperature)

$$Entropy(Hot) = -\frac{2}{4}\log_2(\frac{2}{4}) - \frac{2}{4}\log_2(\frac{2}{4}) = 1$$

$$Entropy(Mild) = -\frac{2}{6}\log_2(\frac{2}{6}) - \frac{4}{6}\log_2(\frac{4}{6}) \approx 0.92$$

$$Entropy(Cold) = -\frac{3}{4}\log_2(\frac{3}{4}) - \frac{1}{4}\log_2(\frac{1}{4}) \approx 0.81$$

 $Entropy(Play, Temperature) \approx 0.911$ 

3. 兩種不同類型的 Humidity 所產生出來的 Entropy(Play, Humidity)

$$Entropy(High) = -\frac{3}{7}\log_2(\frac{3}{7}) - \frac{4}{7}\log_2(\frac{4}{7}) \approx 0.985$$

$$Entropy(Normal) = -rac{6}{7} log_2(rac{6}{7}) - rac{6}{7} log_2(rac{6}{7}) pprox 0.592$$

 $Entropy(Play, Humidity) \approx 0.7885$ 

4. 兩種不同類型的 Wind 所產生出來的 Entropy(Play, Wind)

$$Entropy(True) = -\frac{3}{6}\log_2(\frac{3}{6}) - \frac{3}{6}\log_2(\frac{3}{6}) = 1$$
 $Entropy(False) = -\frac{6}{8}\log_2(\frac{6}{8}) - \frac{2}{8}\log_2(\frac{2}{8}) \approx 0.811$ 
 $Entropy(Play, Wind) \approx \frac{6}{14} \times 1 + \frac{8}{14} \times 0.811 \approx 0.892$ 

我們可以分別算出,分支這四種類型所產生的 InformationGain,得到 IG(Outlook) = Entropy(Play) - Entropy(Play, Outlook) = 0.2464  $IG(Temperature) = Entropy(Play) - Entropy(Play, Temperature) \approx 0.029$   $IG(Humidity) = Entropy(Play) - Entropy(Play, Humidity) \approx 0.1515$   $IG(Wind) = Entropy(Play) - Entropy(Play, Wind) \approx 0.048$ 

我們挑 IG 最高的當作分支條件,所以 Outlook 先分支,如圖。



#### 接著我們考慮 Sunny,得到

1. 三種不同類型的 temperature。

$$Entropy(Hot) = -\frac{0}{2}\log_2\frac{0}{2} - \frac{2}{2}\log_2\frac{2}{2} = 0 \circ$$
 
$$Entropy(Mild) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$$
 
$$Entropy(Cold) = -\frac{1}{1}\log_2\frac{1}{1} - \frac{0}{1}\log_2\frac{0}{1} = 0$$
 可以得到  $Entropy(Sunny, Temperature) = \sum_i P(x_i)Entropy(x_i) = \frac{2}{5}$ 

2. 兩種不同類型的 humidity。

$$Entropy(High) = -\frac{0}{3}\log_2\frac{0}{3} - \frac{3}{3}\log_2\frac{3}{3} = 0$$
 
$$Entropy(Normal) = -\frac{0}{2}\log_2\frac{0}{2} - \frac{2}{2}\log_2\frac{2}{2} = 0$$
 可以得到  $Entropy(Sunny, Humidity) = \sum_i P(x_i)Entropy(x_i) = 0$ 

3. 兩種不同類型的 wind。

$$Entropy(True) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$$
  
 $Entropy(False) = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} = 0.918$ 

可以得到 
$$Entropy(Sunny, Wind) = \sum_{i} P(x_i)Entropy(x_i) = 0.9508$$

可以分别算出這三種分支的 Infomation Gain,也就是

IG(Temperature) = Entropy(Sunny) - Entropy(Sunny, Temperature) = 0.57

IG(Humidity) = Entropy(Sunny) - Entropy(Sunny, Humidity) = 0.97

IG(Wind) = Entropy(Sunny) - Entropy(Sunny, Wind) = 0.0192

選擇 Infomation Gain 最高的來分支,得到下圖。



### 接著我們考慮 Rainy,得到

1. 兩種不同類型的 temperature of

$$\begin{split} Entropy(Mild) &= -\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3} = 0.918\\ Entropy(Cold) &= -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1\\ Entropy(Rainy, Temperature) &= \frac{3}{5}Entropy(Mild) + \frac{2}{5}Entropy(Cold) = 0.951 \end{split}$$

2. 兩種不同類型的 humidity。

$$\begin{split} Entropy(High) &= -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1\\ Entropy(Normal) &= -\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3} = 0.918\\ Entropy(Rainy, Humidity) &= \frac{2}{5}Entropy(High) + \frac{3}{5}Entropy(Normal) = 0.951 \end{split}$$

3. 兩種不同類型的 wind。

$$Entropy(True) = -\frac{0}{2}\log_2\frac{0}{2} - \frac{2}{2}\log_2\frac{2}{2} = 0$$

$$\begin{split} Entropy(False) &= -\frac{3}{3}\log_2\frac{3}{3} - \frac{0}{3}\log_2\frac{0}{3} = 0 \\ Entropy(Rainy, Wind) &= \frac{2}{5}Entropy(True) + \frac{3}{5}Entropy(False) = 0 \end{split}$$

可以分別算出這三種分支的 Information Gain,如下:

IG(Temperature) = Entropy(Rainy) - Entropy(Rainy, Temperature) = 0.97 - 0.951 = 0.019

IG(Humidity) = Entropy(Rainy) - Entropy(Rainy, Humidity) = 0.97 - 0.951 = 0.019

IG(Wind) = Entropy(Rainy), Entropy(Rainy, Wind) = 0.97 - 0 = 0.97

選擇 Information Gain 大的當作分支,得到下圖。



此時決策樹已建立完成。

## CART 演算法

#### Reference:

- 1. https://ppt.cc/feiiIx
- 2. https://www.youtube.com/watch?v=qrDzZMRm\_Kw

## CART 演算法

一個基於吉尼不純度係數 (Gini Impurity) 作為分割標準的分類演算法,先前提到的 ID3 是基於 Information Gain。

### 演算法主要運行如下:

1. 尋找最佳特徵分割方式,例如有 K 種特徵,必有 K-1 種分割方式,對於每一種分割方式算出吉尼不純度係數,

並選擇最大的吉尼不純度係數分割方式。

- 2. 尋找最佳的節點分割方式
- 3. 繼續分割,直到達到結束條件。

### CART - Entropy

對於一個 CART 演算法,其 Entropy 算法與 ID3 相同,定義如下。

$$Entropy(A) = -\sum_{k=1}^m p_k \log_2(p_k)$$

其中  $0 \le Entropy(A) \le 1$ ,當 Entropy(A) = 0 時則代表完全分類,Entropy(A) = 1 時則代表完全不分類。

### CART - Gini Impurity

對於一個 CART 演算法的分割標準,主要以吉尼不純度係數(Gini Impurity)來做參考標準,定義如下。

$$GI(A)=1-\sum_{k=1}^m p_k^2$$

其中  $0 \le GI(A) \le 1 - \frac{1}{m}$ ,當 GI(A) = 0 時,所有資料都被歸類在同一類, $GI(A) = 1 - \frac{1}{m}$  時所有類別均不分類。

CART - 範例

待補

CART - 迴歸樹

待補

# 決策樹的 Overfitting 問題

決策樹其中一個問題就是很容易 overfitting。

## Overfitting 簡介

Overfitting 就是過度擬合,也就是對於一個訓練資料集,只對資料集的資料有作用,不利於推廣更多資料。

如果看不懂上面的文字,可以看下面找到的一張圖。



由於只對資料集的資料有作用,因此若在預判不是資料集的資料時,很容易出現預判失敗的問題。

# 迴避 Overfitting 的方法

迴避 Overfitting 可以使用剪枝來迴避,分成先剪枝(prepruning)與後剪枝(postpruning)。

1. 先剪枝:可以設定一個條件,使得後面的子樹停止構建,當前的節點變成葉節點。

2. 後剪枝: 先建照一個完整的決策樹, 再將這個樹進行修剪。

當然,資料集也很重要,所以如同 data mining 一樣,需要對資料集的品質有所把持。