

PRAKTIKUM 3 ANALISIS REGRESI

Analisis Regresi Linier Sederhana (Part 2)

Oleh:

Nabil Bintang Prayoga / G1401221017

Selasa, 18 Februari 2025

GIMANA POST TEST SAMA KUIS?

Nilai Post Test K1

Nilai Kuis Bagian 1 K1

Nilai Kuis Bagian 2 K1

MARI BELAJAR!!

PENGURAIAN KERAGAMAN TOTAL

 Y_i menyebar **acak dan bersifat stokastik ightarrow** titik amatan tidak pasti, pada x tertentu akibatnya terdapat **keragaman data** karena **error atau sisaan** = $y_i - \widehat{y_i}$

PENGURAIAN KERAGAMAN TOTAL

Dugaan garis regresi beragam $\rightarrow \overline{y} = \overline{\hat{y}}$, menyimpangnya suatu dugaan garis regresi terhadap rataannya menyebabkan beragamnya data = $\hat{y_i} - \overline{y}$

PENGURAIAN KERAGAMAN TOTAL (Ukuran Keragaman)

Jumlah Kuadrat Total (JKT) → Jumlah kuadrat penyimpangan nilai amatan sebenarnya terhadap y rataan

Jumlah Kuadrat Regresi (JKR) ->

Jumlah kuadrat karena penyimpangan regresi berupa penjumlahan kuadrat selisih nilai y duga dengan y rataan

Jumlah Kuadrat Galat (JKG) ->
Penjumlahan kuadrat dari eror/galat/
sisaan tiap amatan

$$JKT = \sum (y_i - \overline{y})^2$$

$$JKR = \sum (\widehat{y}_i - \overline{y})^2$$

$$JKG = \sum (y_i - \widehat{y})^2$$

PENGURAIAN KERAGAMAN TOTAL

PENGURAIAN KERAGAMAN TOTAL (Tabel Sidik Ragam)

Sumber Keragaman	Derajat Bebas	Jumlah Kuadrat	Kuadrat Tengah
(SK)	(db)	(JK)	(KT)
Regresi	1	$\sum (\hat{y}_i - \bar{y})^2$	$\frac{JKR}{1}$
Sisaan	n-2	$\sum (y_i - \bar{y})^2$	$\frac{JKG}{n-2}$
Total	n-1	$\sum (y_i - \widehat{y}_i)^2$	Penduga ragam galat
Illeuran Kabaikan Madal			$(\widehat{\sigma^2})$

Ukuran Kebaikan Model

$$R^2 = \frac{JKG}{JKT} = 1 - \frac{JKG}{JKT}$$

Keragaman data yang dapat dijelaskan oleh model

UJI HIPOTESIS PARAMETER REGRESI (Uji t untuk eta_1)

Hipotesis

 H_0 : $\beta_1 = 0$ (tidak ada hubungan linier antara X dan Y)

 $H_0: \beta_1 \neq 0$ (ada hubungan linier antara X dan Y)

Statistik uji

$$t_h = \frac{b_1 - \beta_1}{S_{b_1}}$$
, $db = n - 2$

dengan:

 b_1 = koefisien kemiringan regresi

 β_1 = kemiringan yang dihipotesiskan

 S_{b_1} = simpangan baku kemiringan regresi

$S_{b_1} = \sqrt{\frac{S_e^2}{\sum (x_i - \bar{x})^2}} \operatorname{dengan} S_e^2 = \frac{JKG}{n-2} = KTG$

Penolakan H₀

$$|t_h| \ge t_{\left(n-2; \frac{\alpha}{2}\right)}$$
 atau $P(t_h) = p \le \alpha$

Selang Kepercayaan β_1

$$b_1 \pm t_{\left(n-2;\frac{\alpha}{2}\right)} S_{b_1}$$

UJI HIPOTESIS PARAMETER REGRESI (Uji t untuk β_0)

Hipotesis

 H_0 : $\beta_0 = 0$ (semua nilai Y dapat dijelaskan oleh X)

 H_0 : $\beta_0 \neq 0$ (ada nilai Y yang tidak dapat dijelaskan oleh X)

Statistik uji

$$t_h = \frac{b_0 - \beta_0}{S_{b_0}}, db = n - 2$$

dengan:

 b_0 = koefisien intersep regresi

 β_0 = intersep yang dihipotesiskan

 S_{b_0} = simpangan baku intersep

$S_{b_0} = \sqrt{S_e^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2}\right)} \operatorname{dengan} S_e^2 = \frac{JKG}{n-2} = KTG$

Penolakan H₀

$$|t_h| \ge t_{\left(n-2; \frac{\alpha}{2}\right)}$$
 atau $P(t_h) = p \le \alpha$

Selang Kepercayaan β_1

$$b_0 \pm t_{\left(n-2;\frac{\alpha}{2}\right)} S_{b_0}$$

SELANG KEPERCAYAAN

Bagi prediksi rataan/nilai harapan Y

$$\hat{y}(x_0) \pm t_{(n-2;\frac{\alpha}{2})} S_e \sqrt{\left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right]}$$

Bagi individu y untuk suatu nilai x

$$\hat{y}(x_0) \pm t_{(n-2;\frac{\alpha}{2})} S_e \sqrt{\left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right]}$$

SELANG KEPERCAYAAN

Bagi prediksi rataan/nilai harapan Y

$$\hat{y}(x_0) \pm t_{(n-2;\frac{\alpha}{2})} S_e \sqrt{\left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right]}$$

Bagi individu y untuk suatu nilai x

Ukuran Kebaikan Model

$$R^2 = \frac{JKG}{JKT} = 1 - \frac{JKG}{JKT}$$

Keragaman data yang dapat dijelaskan oleh model

$$\hat{y}(x_0) \pm t_{(n-2;\frac{\alpha}{2})} S_e \sqrt{\left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right]}$$

DAN YAP MARI PRAKTIK:b

ADATUGAS HEHE SEMANGAT!

PETUNJUK TUGAS 1

- 1. Pilihlah 1 peubah X dan 1 peubah Y dari data yang sudah dimiliki
- 2. Peubah yang digunakan untuk tugas harus berbeda dari peubah yang digunakan saat praktik di pertemuan ke-2 atau 3, minimal berbeda X nya
- 3. Ambil 15 amatan dari keseluruhan data, bebas mana saja
- 4. Buatlah pemodelan secara manual dan komputasi R/Python (bandingkan hasilnya)
- 5. Pada perhitungan manual tulis secara lengkap semua data dan peubah tambahan yang dibutuhkan, misal $x_i^2, x_i y_i, \hat{y}, (y_i \hat{y})^2$ dan sebagainya, tulis lengkap juga rumusan dan angkanya
- 6. Komponen yang wajib ada adalah dugaan parameter regresi dan interpretasi, uji hipotesis bagi parameter regresi termasuk keputusan dan penduga selang kepercayaannya, tabel sidik ragam, koefisien determinasi, serta selang kepercayaan individu dan rataan dengan x berupa 3 angka terakhir NIM masing-masing

TERIMA KASIH

Department of Statistics
Jl. Meranti W22 L4
Kampus IPB Dramaga Bogor 16680
Telp.: 0251-8624535

E-mail: statistika@apps.ipb.ac.id