Transformation de la matière – chapitre 3 –

Correction du TD d'entraînement

I

Utilisation de la méthode intégrale

À température élevée et en phase gazeuse, le buta-1,3-diène se dimérise en 4-vinylcyclohexène suivant la réaction totale d'équation

$$2 C_4 H_{6(g)} = C_8 H_{12(g)}$$

Afin d'étudier cette réaction, une certaine quantité de buta-1,3-diène est introduite dans un récipient de volume V constant, maintenu à température constante $T=326\,\mathrm{K}$. On mesure alors la pression partielle en butadiène p_B dans le récipient en fonction du temps :

$t(\min)$	0	3,25	8,02	12,18	17,3	24,55	33,0	43,0	55,08	68,05	90,1	119
$p_B(\text{bar})$	0,843	0,807	0,756	0,715	0,670	0,615	0,565	0,520	0,465	0,423	0,366	0,311

1) Montrer, en utilisant la loi des gaz parfaits, que la connaissance de la pression initiale p_B et de la température T suffit pour calculer la concentration initiale c_B en buta-1,3-diène.

– Réponse –

On utilise la loi du gaz parfait :

$$\frac{n_B}{V} = \frac{p_B}{RT} \Leftrightarrow \boxed{c_B = \frac{p_{B,0}}{RT}} \quad \text{avec} \quad \begin{cases} p_{B,0} = 0.843 \, \text{bar} = 8.43 \times 10^{-4} \, \text{Pa} \\ R = 8.314 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \\ T = 326 \, \text{K} \end{cases}$$

$$\text{A.N.} \quad : \quad \boxed{c_B = 31.5 \, \text{mol} \cdot \text{m}^{-3}} \Leftrightarrow \boxed{c_B = 31.5 \times 10^{-3} \, \text{mol} \cdot \text{L}^{-1}}$$

Faites bien attention aux unités utilisées dans l'application numérique, qui viennent ici de celles de l'équation d'état des gaz parfait.

Montror que les résultats sont compatibles avec une cinétique d'ore

2) Montrer que les résultats sont compatibles avec une cinétique d'ordre 2. Déterminer alors la constante de vitesse à cette température.

Faisons l'hypothèse d'une cinétique d'ordre 2. Pour simplifier les écritures, notons $X=C_4H_6$. Une loi de vitesse d'ordre 2 en X signifie qu'elle s'écrit

– Réponse ——

$$v = k[X]^2$$
 mais on a aussi $v = -\frac{1}{2} \frac{d[X]}{dt}$

grâce au lien entre vitesse de disparition d'un réactif et vitesse d'une réaction. Avec une séparation des variables, cela se traduit par

$$-\frac{1}{2}\frac{\mathrm{d}[\mathbf{X}]}{\mathrm{d}t} = k[\mathbf{X}]^2 \Leftrightarrow \frac{\mathrm{d}[\mathbf{X}]}{[\mathbf{X}]^2} = -2k\mathrm{d}t \Leftrightarrow -\frac{1}{[\mathbf{X}]} = -2kt + K$$

en primitivant de part et d'autre. On trouve K par la condition initiale : $[X](t=0) = c_{B,0}$. On a donc $K = -1/c_{B,0}$ et finalement

$$\boxed{\frac{1}{[\mathbf{X}]} = \frac{1}{c_{B,0}} + 2kt}$$

Pour vérifier cet ordre 2, il suffit donc de tracer

On observe que la régression passe bien par tous les points, et on trouve également $r^2 = 0.9997$, validant l'ordre 2. Le coefficient directeur valant 2k, on trouve finalement

$$k = 2.32 \times 10^{-4} \,\mathrm{mol}^{-1} \cdot \mathrm{m}^{3} \cdot \mathrm{min}^{-1} = 2.32 \times 10^{-1} \,\mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1}$$

- Réponse -

Pour un système d'ordre 2, on a $t_{1/2} = \frac{1}{ka[A]_0}$ avec a le coefficient stœchiométrique arithmétique de l'élément A. Ici, le coefficient stœchiométrique du butadiène est 2, et on a donc

$$t_{1/2} = \frac{1}{2kc_{B,0}} \Leftrightarrow \boxed{t_{1/2} = 70,0 \,\text{min}}$$

4) On admet souvent qu'une réaction est pratiquement terminée lorsque au moins 99% du réactif limitant a été consommé. Déterminer la durée d'évolution du système précédent ; exprimer cette durée en fonction du temps de demi-réaction.

– Réponse –

On cherche donc t_{99} tel qu'il ne reste que 1% de $c_{B,0}$, c'est-à-dire :

$$[X](t = t_{99}) = \frac{1}{100}c_{B,0} \Leftrightarrow \frac{100}{c_{B,0}} = \frac{1}{c_{B,0}} + 2kt_{99} \Leftrightarrow t_{99} = \frac{1}{2k} \times \frac{99}{c_{B,0}}$$
$$\Leftrightarrow \boxed{t_{99} = 99t_{1/2}} \quad \text{donc} \quad \boxed{t_{99} = 6930 \,\text{min} = 115,5 \,\text{h} = 4,8125 \,\text{jours}}$$

Utilisation de la méthode différentielle

La réaction étudiée est l'oxydation des ions iodure par les ions ferriques Fe(III). Les couples d'oxydoréduction mis en jeu sont les couples I_2/I^- et Fe³⁺/Fe²⁺, toutes les espèces étant dissoutes dans l'eau.

1) Écrire l'équation-bilan de l'oxydation des ions iodure par les ions fer (III), en affectant les espèces du fer du nombre stœchiométrique 1. Si la concentration d'ions iodure passe de c_0 à $c_0 - x$ entre 0 et t, comment définit-on par rapport à x la vitesse volumique de la réaction?

——— Réponse –

Même sans connaître le principe de l'oxydo-réduction, la réaction étudiée met en contact les ions iodure, donc I^- , et les ions fer III, donc Fe^{3+} . Par déduction les produits sont les autres composés cités, c'est-à-dire I_2 et Fe^{2+} . La manière la plus simple de l'équilibrer serait avec des nombres entiers et notamment 2 devant chaque élément sauf I_2 , mais on nous demande de l'écrire avec un nombre stœchiométrique de 1 devant les espèces du fer.

En tant qu'équation-bilan et donc qu'équation, il suffit de diviser chaque côté par 2 pour obtenir :

$$Fe_{(aq)}^{3+} + I_{(aq)}^{-} = Fe_{(aq)}^{2+} + \frac{1}{2}I_{2(aq)}$$

Il n'est en effet pas choquant d'avoir des coefficients stœchiométriques qui ne sont pas entiers dans une équation-bilan.

Or, par le lien vitesse-concentration, on a

$$v = \frac{1}{\nu_i} \frac{\mathrm{d}[\mathbf{X}_i]}{\mathrm{d}t}$$

pour X_i un élément de l'équation-bilan

$$0 = \sum_{i} \nu_i X_i$$

Si on veut exprimer v en fonction de la concentration en ions iodure, on a donc

$$v = \frac{1}{-1} \frac{\mathrm{d}[\mathrm{I}^-]}{\mathrm{d}t} = -\frac{\mathrm{d}c_0 - x}{\mathrm{d}} \Leftrightarrow v = \frac{\mathrm{d}x}{\mathrm{d}t}$$

étant donné que c_0 est une constante.

— Réponse -

Par définition,

Une réaction aA + bB = cC + dD a une loi de vitesse admettant un ordre si elle s'écrit

$$v = k[A]^p[B]^q$$

avec p l'ordre partiel par rapport au réactif A et q l'ordre partiel par rapport au réactif B.

Ici, les réactifs sont les ions fer III et les ions iodure, donc la vitesse s'écrirait donc

$$v = k[\mathrm{Fe}^{3+}]^p[\mathrm{I}^{-}]^q$$

On trouve l'unité de k en étudiant celles des termes en jeu dans l'équation :

$$\operatorname{mol} \cdot \operatorname{L}^{-1} \cdot \operatorname{s}^{-1} = [k] \times (\operatorname{mol} \cdot \operatorname{L}^{-1})^{a+b}$$

donc la dimension de k est $[(\text{mol}\cdot \mathbf{L}^{-1})^{1-a-b}\mathbf{s}^{-1}]$.

———— Réponse -

Dans la dernière partie du cours, nous avons introduit le concept du dosage par titrage, et exposé la nécessité de **ralentir la réaction** pour qu'un volume de solution prélevé à un instant t mais dosé par méthode chimique à un instant ultérieur ait une évolution négligeable entre ces deux instants : cette pratique s'appelle la **trempe chimique**, et une des manières de réaliser une trempe chimique est de fortement diluer la solution prélevée. En effet, la vitesse étant reliée à la concentration en les réactifs (pour une réaction admettant un ordre), on peut « geler » l'état de la réaction en augmentant le volume du solvant et donc en réduisant la concentration des éléments.

4) Les résultats d'une série de mesures sont présentés ci-dessous, x se rapportant à la quantité d'ions iodure qui ont été oxydés dans le milieu réactionnel à la date du prélèvement.

t(s)	60	120	180	240	300
$x(\mu \text{mol} \cdot \text{L}^{-1})$	13	25	36	46	55

Que représente la grandeur x(t)/t? Pour quoi diminue-t-elle en cours de réaction? Représenter graphiquement cette grandeur en fonction de t à partir du tableau ci-dessus, avec en abscisse $t \in [0; 300]$ s; en déduire une estimation de la valeur initiale $\frac{dx}{dt}|_{0}$.

On peut commencer par remarquer que x(t)/t a la dimension d'une vitesse de réaction, en $\text{mol}\cdot\mathbf{L}^{-1}\cdot\mathbf{s}^{-1}$. Il faut ensuite remarquer que x(t)/t = (x(t)-x(0))/(t-0) avec un avancement nul à t=0; si t est suffisamment petit, on a donc

$$\frac{x(t)}{t} \approx \frac{\mathrm{d}x}{\mathrm{d}t}\Big|_{0}$$

et ainsi x(t)/t est une approximation de la vitesse de la réaction; c'est ce qu'on appelle l'approximation de la tangente par la sécante. En faisant la régression linéaire jusqu'en 0, on trouvera bien la vitesse en 0.

Lycée Pothier 4/9 MPSI3 – 2024/2025

On réalise cette régression avec y = x(t)/t, x = t et $b = v_0$, pour obtenir le résultat suivant :

On trouve alors, grâce à l'ordonnée à l'origine,

$$v_0 = 2.25 \times 10^{-7} \,\mathrm{mol \cdot L^{-1} \cdot s^{-1}}$$

5) Grâce à la méthode précédente, on détermine les valeurs initiales de $\frac{dx}{dt}$ pour différentes concentrations initiales des deux réactifs. Quelques résultats sont présentés ci-dessous :

$c_0 = [\mathbf{I}^-]_0$	$(\mu \mathrm{mol} \cdot \mathrm{L}^{-1})$	2	2	2	6	6	8
$[\text{Fe}^{3+}]_0$	$(\mu mol{\cdot}L^{-1})$	2	4	8	2	4	8
$\frac{\mathrm{d}x}{\mathrm{d}t}\Big _{0}$	$(\mu mol \cdot L^{-1} \cdot s^{-1})$	5,7	11,1	22,5	52	99	354

En déduire les valeurs de p et q, supposées entières.

– Réponse

Pour déterminer les valeurs de p et q, il faut utiliser des expériences dans lesquelles l'une des deux concentrations est fixe alors que l'autre non : ça revient au même principe que la dégénérescence de l'ordre.

Ici, dans les expériences 1, 2 et 3 par exemple, on a $[I^-]_0$ = cte. Dans ce cas, à chaque fois on a

$$v_{0,1} = k[\text{Fe}^{3+}]_{0,1}{}^{p}[\text{I}^{-}]_{0}{}^{q}$$

 $v_{0,2} = k[\text{Fe}^{3+}]_{0,2}{}^{p}[\text{I}^{-}]_{0}{}^{q}$
 $v_{0,3} = k[\text{Fe}^{3+}]_{0,3}{}^{p}[\text{I}^{-}]_{0}{}^{q}$

et v_0 ne dépend que de la concentration en ions fer III. Comme on cherche des ordres partiels entier, on en déduit qu'il suffit d'étudier comment varie v_0 à une modification simple de la concentration initiale en ions fer III pour déduire l'ordre : ici par exemple, en multipliant par 2 cette concentration initiale, la vitesse est multipliée par environ 2 à chaque fois. Le seul ordre partiel p permettant cette relation est bien évidemment un ordre partiel égal à 1 : on en déduit p = 1.

De même, avec des expériences où la concentration initiale en ions fer III est fixe, par exemple pour les 1 et 4, on a une variation de v_0 dépendante uniquement de la concentration initiale en ions iodure. Or, on remarque cette fois que multiplier par 3 cette concentration multiplie par 9 la vitesse initiale : le seul ordre partiel entier qui permet que $3^q = 9$ est bien évidemment 2, et on en déduit q = 2.

6) Déterminer la constante de vitesse k définie à la question 2); on précisera la méthode suivie pour utiliser au mieux les données.

— Réponse –

On pourrait mesurer k en prenant $v_0/([\mathrm{Fe}^{3+}]_0 \times [\mathrm{I}^-]_0^2)$ à chaque fois et en faisant la moyenne, mais pour avoir la meilleure estimation avec ces données la régression linéaire est plus efficace : les éventuelles variabilités de mesure se combinent toutes ensemble pour avoir une estimation combinée dépendante, plutôt qu'une estimation moyennée où les valeurs sont supposées indépendantes. Ainsi, on trace

$$v_0 = f([\text{Fe}^{3+}]_0 \times [\text{I}^-]_0^2)$$

dont le coefficient directeur sera k.

On trouve alors

$$k = 6.90 \times 10^{-1} \,\mathrm{\mu mol}^{-2} \cdot \mathrm{L}^{2} \cdot \mathrm{s}^{-1}$$

 $\Leftrightarrow k = 6.90 \times 10^{11} \,\mathrm{mol}^{-2} \cdot \mathrm{L}^{2} \cdot \mathrm{s}^{-1}$

7) Dans l'hypothèse d'un état initial ne contenant que les deux réactifs à la même concentration c_0 , établier la relation littérale donnant x(t) sous la forme :

« expression en
$$(x,c_0)$$
 = expression en (k,t) »

En déduire la dépendance entre le temps de demi-réaction τ et la concentration c_0 .

- Réponse -

Les conditions de cette question sont celles des proportions stœchiométriques : en effet, comme les deux réactifs ont le même coefficient stœchiométrique **et que celui-ci est égal à 1**, leurs deux concentrations à un instant t valent $c_0 - x$. Ainsi, la vitesse de réaction s'écrit

$$v = k(c_0 - x)(c_0 - x)^2 = k(c_0 - x)^3 = \frac{\mathrm{d}x}{\mathrm{d}t}$$

en la reliant à la question 1). Comme pour l'ordre 2, on résout cette équation en séparant les variables :

$$\frac{\mathrm{d}x}{(c_0 - x)^3} = k\mathrm{d}t\tag{3.1}$$

On doit, de cette équation, en trouver une primitive. Pour effectuer ce raisonnement, il est plus simple de partir d'une forme simple à dériver qui donnerait celle à gauche du signe égal. Or, on sait que pour u une fonction,

$$(u^{\alpha})' = \alpha u' u^{\alpha - 1}$$

Donc si $\alpha = -2$, on aura u^{-3} en dérivant, ce qui correspond à notre équation à nous. Cependant, il faut faire attention aux constantes et signes \pm dans de telles situations : calculons la dérivée en entier.

$$(u^{-2})' = -2u'u^{-3}$$

Soit

$$u: \mathbb{R}^+ \to \mathbb{R}^+ \atop x \mapsto c_0 - x \Rightarrow du: \mathbb{R}^+ \to \mathbb{R}^+ \atop x \mapsto -dx$$

On a donc

$$d((c_0 - x)^{-2}) = -2(-dx)(c_0 - x)^{-3}$$

Et en prenant la primitive de chaque côté,

$$\int d((c_0 - x)^{-2}) = \int -2(-dx)(c_0 - x)^{-3}$$

On peut donc résoudre l'équation différentielle 3.1 par intégration, pour obtenir

$$\frac{1}{(c_0 - x)^2} = 2kt + K$$
 et $\frac{1}{c_0^2} = K$ donc $\frac{1}{(c_0 - x)^2} - \frac{1}{c_0^2} = 2kt$

Or, par définition, le temps de demi-réaction est le temps au bout duquel l'avancement est à la moitié de sa valeur finale, c'est-à-dire $x(\tau) = x_f/2$.

Ici, on trouve donc

$$x(\tau) = \frac{c_0}{2} \Leftrightarrow \frac{1}{(c_0 - \frac{c_0}{2})^2} - \frac{1}{c_0^2} = 2k\tau \Leftrightarrow \frac{4}{c_0^2} - \frac{1}{c_0^2} = 2k\tau$$

Soit finalement

$$\tau = \frac{3}{2kc_0^2}$$

III Méthode des vitesses initiales

Le chlorure d'hydrogène (B) réagit sur le cyclohexène (A) avec formation de chlorocyclohexane (C), selon la réaction :

$$C_6H_{10} + HCl \longrightarrow C_6H_{11}Cl$$
 schématisée par $A + B \longrightarrow C$

On réalise une série d'expériences à 25 °C, où l'on mesure la vitesse initiale v_0 de la réaction en fonction des concentrations molaires initiales [A]₀ en cyclohexène et [B]₀ en chlorure d'hydrogène dans

le milieu réactionnel. Le volume du mélange est constant et égal à 1 L. Les résultats sont rassemblés dans le tableau ci-dessous :

Expérience	1	2	3	4	
$[A]_0 \text{ (mol} \cdot L^{-1})$			0,470		
[B] ₀ (mol·L ⁻¹) v_0 (10 ⁻⁹ mol·s ⁻¹)	0,235 $15,7$,	0,448 $57,1$	0,448 $38,0$	

1) On désigne par p et q les ordres partiels initiaux de la réaction par rapport au cyclohexène (A) et au chlorure d'hydrogène (B). Exprimer la loi de vitesse initiale de cette réaction en fonction de p et q.

——— Réponse —

Par définition,

$$v_0 = k[\mathbf{A}]_0^p [\mathbf{B}]_0^q$$

2) Déterminer p.

— Réponse ———

Comme dans l'exercice II, il suffit de trouver deux expériences où $[B]_0$ est constante pour voir comment v_0 varie par multiplication de $[A]_0$. Ici, dans les expériences 3 et 4, $[B]_0 = 0.448 \,\mathrm{mol \cdot L^{-1}}$. On a donc

$$\begin{cases} v_{0,3} = k[B]_0^q \times [A]_{0,3}^p \\ v_{0,4} = k[B]_0^q \times [A]_{0,4}^p \end{cases} \Leftrightarrow \frac{v_{0,3}}{v_{0,4}} = \left(\frac{[A]_{0,3}}{[A]_{0,4}}\right)^p \\ \Leftrightarrow \boxed{p = \frac{\ln(v_{0,3}/v_{0,4})}{\ln([A]_{0,3}/[A]_{0,4})}} \\ A.N. : \boxed{p \approx 1} \end{cases}$$

On en conclut que p=1, en supposant l'ordre entier.

3) Déterminer q; en déduire l'ordre global de la réaction.

Réponse -

On fait de même avec les expériences 1 et 2 par exemple, où cette fois c'est $[A]_0$ qui est constante. On trouve alors

$$q = \frac{\ln(v_{0,1}/v_{0,2})}{\ln([B]_{0,1}/[B]_{0,2})}$$
A.N. : $q \approx 2$

On en conclut que q=2, en supposant l'ordre entier. L'ordre global, défini par p+q, est donc p+q=3.

- ♦ ----

4) Calculer la constante cinétique de la réaction.

_____ Réponse _____

Pour plus de précision, on peut tracer une régression linéaire de $v_0 = f([A]_0[B]_0^2)$ avec

$$y = ax$$
 avec
$$\begin{cases} y = v_0 \\ a = k \\ x = [A]_0 [B]_0^2 \end{cases}$$

On trouve bien ici une droite avec un coefficient de corrélation $r^2 = 0.999\,97$, confirmant que l'**ordre global** est compatible avec 3. Le coefficient directeur donne directement k, et on a

$$k = 6.05 \times 10^{-7} \,\mathrm{mol}^{-2} \cdot \mathrm{L}^2 \cdot \mathrm{s}^{-1}$$

– Réponse –

Si le mélange est stœchiométrique, cela veut dire que les concentrations des réactifs sont égaux à chaque instant, soit [A] = [B]. Ainsi, la loi de vitesse serait

$$v = k[A]^3 = -\frac{d[A]}{dt}$$

$$\Leftrightarrow \frac{d[A]}{dt} = -k[A](t)^3$$

$$\Leftrightarrow \int_{[A]_0}^{[A](t)} \frac{d[A]}{[A](t)^3} = -k \int_{t=0}^t dt$$

$$\Leftrightarrow \int_{[A]_0}^{[A](t)} d\left(-\frac{1}{2}[A]^2\right) = -k \int_{t=0}^t dt$$

$$\Leftrightarrow -\frac{1}{2} \left(\frac{1}{[A](t)^2} - \frac{1}{[A]_0^2}\right) = -k(t-0)$$

$$\Leftrightarrow \frac{1}{[A](t)^2} = 2kt + \frac{1}{[A]_0^2}$$
([A]^{-2})' = $-2\frac{d[A]}{[A](t)^3}$
On intègre