

En Estados Unidos de América

El comportamiento del uso de tarjetas de crédito ha variado bastante. El promedio de la deuda de tarjeta de crédito creció en 52% entre el 2018 y el 2019, sin embargo, este porcentaje ha caído significativamente en el 2020

Problema Científico

Estados Unidos tiene una deuda de \$807 mil millones distribuidas en 506 millones de tarjetas de crédito mientras que la deuda promedio de una familia Estadounidense es de \$6,270

Estos números incrementan cada año hasta el 2020 donde se vio un decremento debido al COVID-19

A través de las compañías de liquidación de deudas.

El individuo con impago negocie directamente con los acreedores.

Cabe mencionar que maximizar su flujo de efectivo es crucial.

Objetivos

- Search
- Q

- 1. Identificar a los tipos de clientes que pueden caer en impago
 - a. Identificar a los tipos de clientes que pueden caer en impago
 - b. Desarrollar modelos vistos en clase y predicciones sobre los clientes con deuda de tarjeta de crédito
 - c. Identificar a qué se debe el comportamiento que demuestran los porcentajes de deuda en los últimos años

Generales

Especificos

Python

Q

Analisis Exploratorio

Hay 25 variables (22 cuantitativas, 3 categóricas)

Estandarizar nombres de columnas

```
df = clean(df, method = "standardize")
df.head()
```

	id	limit_bal	sex	education	marriage	age	pay_0	pay_2	pay_3	pay_4	 bill_amt4	bill_amt5	bill_amt6	pay_amt1	pay_amt2	pay_amt3	pay_amt4	pa:
0	1	20000.0	2	2	1	24	2	2	-1	-1	 0.0	0.0	0.0	0.0	689.0	0.0	0.0	
1	2	120000.0	2	2	2	26	-1	2	0	0	 3272.0	3455.0	3261.0	0.0	1000.0	1000.0	1000.0	
2	3	90000.0	2	2	2	34	0	0	0	0	 14331.0	14948.0	15549.0	1518.0	1500.0	1000.0	1000.0	
3	4	50000.0	2	2	1	37	0	0	0	0	 28314.0	28959.0	29547.0	2000.0	2019.0	1200.0	1100.0	
4	5	50000.0	1	2	1	57	-1	0	-1	0	 20940.0	19146.0	19131.0	2000.0	36681.0	10000.0	9000.0	

Cambiar a tipo categorica las variables adecuadas

Eliminando columna de Id

```
)]: df = clean(df, method = 'dropcols', columns = ['id'])
```

Cambiando a solo un valor desconocido los valores 0,5,6 de educacion

```
l]: df = clean(df, method = "replaceval", columns = ["education"], to_replace = [0,5,6], value = 5)
```

Cambiando el valor 0 a 3 (otros) en marrige

Obtener columna de bill_amt con valores promediados

Cambiando de orden columnas

```
dfSimp = dfSimp[cols]
```


Datos Atipicos	1												
dfSimp = clean(dfS	Simp, method='outliers', columns	s=["pay_i	amt1",	"pay_amt	.3","pay	_amt5"])							
dfSimp.index = lis	t(range(0,23241))												
explore(dfSimp, me	thod="summarize")												
		dtypes	count	null_sum	null_pct	nunique	min	25%	50%	75%	max	mean	
	age	int64	23241	0	0.0	54	21.0	28.0	34.0	41.0	75.0	35.303903	
	default.payment.next.month	category	23241	0	0.0	2	-	-	-	-	-	-	
	education	category	23241	0	0.0	5	-	-	-	-	-	-	,
	limit_bal	l float64	23241	0	0.0	73	10000.0	50000.0	110000.0	200000.0	800000.0	143288.670883	
	marriage	category	23241	0	0.0	3	-	-	-	-	-	-	
	pay_1	category	23241	0	0.0	11	-	_	-	-	-	-	
	pay_2	category	23241	0	0.0	11	-	-	-	-	-	-	1
	pay_3	category	23241	0	0.0	11	-	-	-	-	-	-	1
	pay_4	category	23241	0	0.0	10	-	_	-	-	_	_	
	pay_5	category	23241	0	0.0	10	-	-	-	-	-	-	
	pay_6	category	23241	0	0.0	10	-	_	-	-	_	_	
	pay_amt1	float64	23241	0	0.0	4975	0.0	403.0	1950.0	3500.0	11012.0	2457.650876	
	pay_amt2	float64	23241	0	0.0	5412	0.0	400.0	1865.0	3585.0	385228.0	3596.274171	
	pay_amt3	float64	23241	0	0.0	4517	0.0	150.0	1376.0	3000.0	9072.0	1902.397659	
	pay_amt4	float64	23241	0	0.0	4831	0.0			3000.0	256662.0	3057.287208	
	pay_amt5			0	0.0	4029	0.0	0.0	1001.0				
	pay_amt6	float64	23241	0	0.0	4781	0.0	0.0	1041.0	3000.0	528666.0	3269.936492	
	prom_bill_amt	float64	23241	0	0.0	20895	-56043.166667	2789.833333	18756.666667	48071.666667	456957.5	34871.408301	187
	sex	category	23241	0	0.0	2	-	_	_	-	-	-	

Representacion visual de datos cuantitativos 🥤

```
#Creacion de graficas para visualizar cada columna del dataset
dfSimp.hist(figsize=(30, 25))
```


pay_amt1

prom_bill_amt

dfSimp['marriage'].value_counts().plot(kind='bar', title =

<AxesSubplot:title={'center':'Estado civil'}>

Cruce de variables

```
pd.crosstab(dfSimp.age, dfSimp['default.payment.next.month']).plot(kind="bar",figsize=(15,6), title = "Analisis de pago por edad'
plt.xlabel('Edad')
plt.xticks(rotation=0)
plt.legend(["Pago", "Impago"])
plt.show()
```


Round 4

Descripción y Conclusión Final

 $\times \Box -$

El conjunto de datos tras las operaciones de limpieza cuenta con 23241 observaciones y 19 variables.

10 son categóricas y 9 son cuantitativas:

Características importantes

- El nivel de educación que predomina en los datos es universidad seguido de postgrado.
- El estado civil predominante es soltero
- El sexo mas presente es el femenino

000

+

Variables cuantitativas

- La media de edad de las personas es de 35 años.
- La media de cantidad de crédito es alrededor de 143000.
- Los datos de pay_amt están muy sesgados, cuentan con altos valores atípicos

Al cruzar variables podemos observar lo siguiente:

Los que más probablemente paguen su deuda son personas alrededor de 23 a 36 años.

Hay un buen porcentaje de impago en todas las edades.

El estado civil casado presenta una cantidad de impagos muy similar a la de soltero a pesar de tener menos observaciones

El sexo femenino presenta tener una cantidad de impagos muy similar al masculino a pesar de tener mas observaciones.

Los niveles de educación estudios de posgrado, universidad, bachillerato suelen pedir un valor más alto de crédito que otros y desconocidos.

000

Gracias!

:D