

AVR - HW2

임베디드스쿨1기 Lv1과정 2020. 09. 25 김인겸

1. 아두이노 우노 인터럽트 핀맵

이 부분이 interrupt와 관련된 핀이다. 아두이노 우노는 2개의 인터럽트를 제어할 수 있다.

2. 인터럽트 발생과정

- 1. 인터럽트 발생 시 현재 진행 중인 명령어까지 처리를 완료한다.
- 2. PC(Program Counter)를 메모리의 스택에 저장한다
- 3. 인터럽트 벡터가 있는 프로그램메모리 상단으로 점프한다
- 4. 인터럽트 벡터를 통해 ISR(Interrupt Service Routine)으로 점프해서 인터럽트를 처리한다
- 5. 인터럽트 처리 후 메모리의 스택에 저장했던 PC를 꺼내와서 인터럽트 처리 전의 작업을 다시 수행한다.

2. 인터럽트 발생과정

1. 인터럽트 벡터 테이블은 플래쉬 프로그램메모리 상단에 고정적으로 존재한다.

Vector No. Program Address Source Interrupt Definition External pin, power-on reset, brown-out reset and watchdog 0x0000 RESET **Program Memory** 0x002 INT0 External interrupt request 0 0x00000x0004 INT1 External interrupt request 1 UXUUUb PCINTU Pin change interrupt request 0 5 0x0008 PCINT1 Pin change interrupt request 1 PCINT2 0x000A Pin change interrupt request 2 7 0x000C WDT Application Flash Section Watchdog time-out interrupt 8 0x000E TIMER2 COMPA Timer/Counter2 compare match A 9 0x0010 TIMER2 COMPB Timer/Counter2 compare match B 10 0x0012 TIMER2 OVF Timer/Counter2 overflow 11 0x0014 TIMER1 CAPT Timer/Counter1 capture event 12 0x0016 TIMER1 COMPA Timer/Counter1 compare match A 13 0x0018 TIMER1 COMPB Timer/Counter1 compare match B 14 0x001A TIMER1 OVF Timer/Counter1 overflow 15 0x001C TIMERO COMPA Timer/Counter0 compare match A 16 0x001E TIMERO COMPB Timer/Counter0 compare match B 17 0x0020 TIMER0 OVF Timer/Counter0 overflow 0x0022 18 SPI, STC SPI serial transfer complete 0x0002EXT_INTO : IROO Handler jmp EXT_INT1 0×00004 ; IRQ1 Handler qmŗ 점프 명령어로 구성되어 있음을 확인할 수 있다. **Boot Flash Section** 0x3FFF 2Byte씩 차이가 나는 이유: jmp명령어(16비트), 인터럽트 서비스루틴을 실행할 주소(EXT_INTO, 16비트) 라고 추측해복

Table 11-1. Reset and Interrupt Vectors in ATmega328P

2. 인터럽트 발생과정

표훈님 자료 참고 굳굳

1. SREG – AVR Status Register

The AVR status register – SREG – is defined as:

I비트를 활성화 시켜줘야 모든 인터럽트 기능을 허용한다. 반대로 I비트가 0이면 모든 인터럽트 기능을 차단한다.

2. EIMSK – External Interrupt Mask Register

Bit	7	6	5	4	3	2	1	0	_
0x1D (0x3D)	_	_	_	_	_	_	INT1	INT0	EIMSK
Read/Write	R	R	R	R	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

어느 핀의 인터럽트를 활성화 시킬지 결정 1일 경우 인터럽트 허용. 0일 경우 인터럽트 차단.

3. EICRA – External Interrupt Control Register A

The external interrupt control register A contains control bits for interrupt sense control.

Bit	7	6	5	4	3	2	1	0	_
(0x69)	_	-	_	-	ISC11	ISC10	ISC01	ISC00	EICRA
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

ISC(Interrupt Sence Control)

: 인터럽트를 어떤 시점에서 잡을지를 결정한다.

ISC01	ISC00	INT0핀
0	0	Low level
0	1	모든 논리적인 변화
1	0	Falling edge
1	1	Rising edge

ISC11	ISC10	INT1핀
0	0	Low level
0	1	모든 논리적인 변화
1	0	Falling edge
1	1	Rising edge

^{*} pull-up저항이 연결될 경우 스위치 on → low level 스위치 off → high level

^{*} 모든 논리적인 변화 : hgih → low low → high

4.(덜 중요)

EIFR – External Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0	_
0x1C (0x3C)	_	_	_	_	_	_	INTF1	INTF0	EIFR
Read/Write	R	R	R	R	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

프로그램 수행 도중 인터럽트 요청이 발생할 경우 해당 장치의 인터럽트 플래그가 세트 된다. 인터럽트 서비스 루틴으로 점프하게 되면 클리어 된다. 인터럽트의 발생상황을 확인할 수 있다.

추가로 인터럽트를 사용하고 싶을 경우

PCICR – Pin Change Interrupt Control Register

Bit	7	6	5	4	3	2	1	0	
(0x68)	_	_	_	_	_	PCIE2	PCIE1	PCIE0	PCICR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

PCIE2	PCINT23~16 활성화
PCIE1	PCINT 14~8 활성화
PCIE0	PCINT 7~0 활성화

PCIFR – Pin Change Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0	_
0x1B (0x3B)	_	_	_	_	_	PCIF2	PCIF1	PCIF0	PCIFR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

PCINT0~23 위치를 나타내는 아두이노 우노 핀맵

PCMSK2 – Pin Change Mask Register 2

Bit	7	6	5	4	3	2	1	0	_
(0x6D)	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	PCMSK2
Read/Write	R/W	1							
Initial Value	0	0	0	0	0	0	0	0	

PCMSK1 – Pin Change Mask Register 1

Bit	7	6	5	4	3	2	1	0	_
(0x6C)	_	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	PCMSK1
Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

PCMSK0 – Pin Change Mask Register 0

Bit	7	6	5	4	3	2	1	0	_
(0x6B)	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	PCMSK0
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

Table 11-1. Reset and Interrupt Vectors in ATmega328P

Vector No.	Program Address	Source	Interrupt Definition
1	0x0000	RESET	External pin, power-on reset, brown-out reset and watchdog system reset
2	0x002	INT0	External interrupt request 0
3	0x0004	INT1	External interrupt request 1
4	0x0006	PCINT0	Pin change interrupt request 0
5	0x0008	PCINT1	Pin change interrupt request 1
6	0x000A	PCINT2	Pin change interrupt request 2
	0x000C	WDT	vvatchdog time-out interrupt
8	0x000E	TIMER2 COMPA	Timer/Counter2 compare match A
9	0x0010	TIMER2 COMPB	Timer/Counter2 compare match B
10	0x0012	TIMER2 OVF	Timer/Counter2 overflow
11	0x0014	TIMER1 CAPT	Timer/Counter1 capture event
12	0x0016	TIMER1 COMPA	Timer/Counter1 compare match A
13	0x0018	TIMER1 COMPB	Timer/Counter1 compare match B
14	0x001A	TIMER1 OVF	Timer/Counter1 overflow
15	0x001C	TIMER0 COMPA	Timer/Counter0 compare match A
16	0x001E	TIMER0 COMPB	Timer/Counter0 compare match B
17	0x0020	TIMER0 OVF	Timer/Counter0 overflow
18	0x0022	SPI, STC	SPI serial transfer complete

공용으로 사용?? rising / falling에서 모두 인터럽트 발생??

예제 코드

```
#define F_CPU 1600000UL
 #include <avr/io.h>
 #include <util/delay.h>
 #include <avr/interrupt.h>
 #define sbi(PORTX, BitX) ( PORTX |= (1 <<BitX) )</pre>
 #define cbi(PORTX, BitX) ( PORTX &= ~(1 << BitX) )</pre>
∃SIGNAL (INT1_vect){
     PORTB = 0X20;
     _delay_ms(200);
∃int main(void)
 {
     sbi(SREG, 7);
     sbi(EIMSK, INT1);
     EICRA = 0X00;
     DDRB = 0X20;
     DDRD = 0X00;
     PORTD = 0Xff;
     while (1)
         PORTB = 0X00;
```


ADC

ADC(Analog / Digital Converter)

Features

• 10-bit resolution 10비트 분해능

0.5 LSB integral non-linearity

• ±2 LSB absolute accuracy 65~260us 변환 시간

65 to 260µs conversion time

Up to 15kSPS
 6채널의 멀티플렉스된 단일 입력

6 multiplexed single ended input channels

2 additional multiplexed single ended input channels 운도센서 입력 채널

Temperature sensor input channel

Optional left adjustment for ADC result readout

0 to V_{CC} ADC input voltage range

Selectable 1.1V ADC reference voltage

Free running or single conversion mode

Interrupt on ADC conversion complete

Sleep mode noise canceler

0~VccADC입력 전압 범위

ADC 관련 아두이노 우노 핀맵

1. ADMUX – ADC Multiplexer Selection Register

ADC에서 사용하는 기준 전압 선택

A/D 컨버터	네의 인력	채널읔	선택
	1 – 1 – –		—

REFS1	REFS2	
0	0	AREF의 입력전압 사용
0	1	AVCC의 입력전압 사용
1	0	예약됨
1	1	내부 1.1V 사용

MUX30	Single Ended Input
0000	ADC0
0001	ADC1
0010	ADC2
0011	ADC3
0100	ADC4
0101	ADC5
0110	ADC6
0111	ADC7
1000	ADC8 ⁽¹⁾
1001	(reserved)
1010	(reserved)
1011	(reserved)
1100	(reserved)
1101	(reserved)
1110	1.1V (V _{BG})
1111	0V (GND)

1. ADMUX – ADC Multiplexer Selection Register

	_										
Bit	7	6	5	4		3	2		1	0	
(0x7C)	REFS1	REFS0	ADLAR	-		MUX3	MUX	2 M	IUX1	MUX0	ADMUX
Read/Write	R/W	R/W	D/M	R	·	R/W	R/W	F	₹/W	R/W	
Initial Value	0	0	0	0		0	0		0	0	
ADCH, ADCL	레지스터	I ADLAR =	0								
우측 정렬		Bit	15	14	13	12	11	10	9	8	
1702		(0x79)	_	-	_	-	_	_	ADC9	ADC8	ADCH
		(0x78)	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
			7	6	5	4	3	2	1	0	
		Read/Write	R	R	R	R	R	R	R	R	
			R	R	R	R	R	R	R	R	
		Initial Value	0	0	0	0	0	0	0	0	
			0	0	0	0	0	0	0	0	
ADCH, ADCL ³ 좌측 정렬	레지스터	? ADLAR =	1								
시구 62		Bit	15	14	13	12	11	10	9	8	
		(0x79)	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
		(0x78)	ADC1	ADC0	-	-	_	_	_	-	ADCL
			7	6	5	4	3	2	1	0	
		Read/Write	R	R	R	R	R	R	R	R	
			R	R	R	R	R	R	R	R	
		Initial Value	0	0	0	0	0	0	0	0	
			0	0	0	0	0	0	0	0	

2. ADCSRA – ADC Control and Status Register A

ADC Start Coversion

단일 변환 모드에서 1로 설정하면 변환을 시작. 변환 완료되면 0으로 설정됨(?) 프리러닝 모드에서 1로 설정하면 첫 번째 변환을 시작하고 그 다음부터는 자동으로 변환이 반복됨. ADC Interrupt Enable : SREF의 I비트가 활성화 되고 이 비트가 활성화 되면 ADC완료 인터럽트가 활성화됨(뒷페이지 참고)

*Atmega128은 5번째 비트가 ADFR(ADC Free Running) 인데 328p는 좀 다른가 보다

ADC 변환이 완료될 때 실행되는 인터럽트를 인터럽트 벡터 테이블에서 확인할 수 있다.

Vector No.	Program Address	Source	Interrupt Definition
1	0x0000	RESET	External pin, power-on reset, brown-out reset and watchdog system reset
2	0x002	INT0	External interrupt request 0
3	0x0004	INT1	External interrupt request 1
4	0x0006	PCINT0	Pin change interrupt request 0
5	0x0008	PCINT1	Pin change interrupt request 1
6	0x000A	PCINT2	Pin change interrupt request 2
7	0x000C	WDT	Watchdog time-out interrupt
8	0x000E	TIMER2 COMPA	Timer/Counter2 compare match A
9	0x0010	TIMER2 COMPB	Timer/Counter2 compare match B
10	0x0012	TIMER2 OVF	Timer/Counter2 overflow
11	0x0014	TIMER1 CAPT	Timer/Counter1 capture event
12	0x0016	TIMER1 COMPA	Timer/Counter1 compare match A
13	0x0018	TIMER1 COMPB	Timer/Counter1 compare match B
14	0x001A	TIMER1 OVF	Timer/Counter1 overflow
15	0x001C	TIMER0 COMPA	Timer/Counter0 compare match A
16	0x001E	TIMER0 COMPB	Timer/Counter0 compare match B
17	0x0020	TIMER0 OVF	Timer/Counter0 overflow
18	0x0022	SPI, STC	SPI serial transfer complete
19	0x0024	USART, RX	USART Rx complete
20	0x0026	USART, UDRE	USART, data register empty
21	0x0028	USART TX	USART Tx complete
22	0x002A	ADC	ADC conversion complete
23	0x002C	EE READY	EEPROM ready
24	0x002E	ANALOG COMP	Analog comparator
25	0x0030	TWI	2-wire serial interface
26	0x0032	SPM READY	Store program memory ready

2. ADCSRA – ADC Control and Status Register A

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Table 23-5. ADC Prescaler Selections

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

- : 시스템 클록 주파수와 ADC에 대한 입력 클록 간의 비율을 결정함
- ADC는50kHz~ 200kHz 사이에서 동작함
- Atmega328p의 cpu클록은 16MHz이므로 Division Factor를 64로 설정하면(110) ADC에 대한 입력 클록이 16MHz/64 = 250kHz가 된다.

3. ADCH(ADC data Register High): A/D 컨버터의 변환 결과를 저장하는 레지스터. ADCL(ADC data Register Low) - 10비트의 분해능 성능을 가지므로 10비트가 필요하다.

-

I ADLAR = 0

Bit	15	14	13	12	11	10	9	8	
(0x79)	-	_	-	-	-	-	ADC9	ADC8	ADCH
(0x78)	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

2 ADLAR = 1

Bit	15	14	13	12	11	10	9	8	
(0x79)	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
(0x78)	ADC1	ADC0	_	-	-	-	-	-	ADCL
	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

USART

universal synchronous/asynchronous receiver transmitter

범용

동기

비동기

수신기

송신기

Features

Full duplex operation (independent serial receive and transmit registers)

전이중 작동 비동기 또는 동기 작동

- Asynchronous or synchronous operation
- Master or slave clocked synchronous operation
- High resolution baud rate generator
- Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits

패리티 생성 및 검출 가능

- Odd or even parity generation and parity check supported by hardware
- Data overrun detection
- Framing error detection
- Noise filtering includes false start bit detection and digital low pass filter
- Three separate interrupts on TX complete, TX data register empty and RX complete
- Multi-processor communication mode
- Double speed asynchronous communication mode

USART 데이터 프레임

- Start (시작 비트): 항상 LOW이며 데이터의 시작을 알림
- 0~8 (데이터 비트): 전송되는 데이터 비트이며 5,6,7,8,9bit로 설정할 수 있다.
- Parity (패리티 비트) : 오류 검출 기능, 사용할 수도 안 할 수도, 홀수 패리티 또는 짝수 패리티.
- Stop (정지 비트) : 항상 HIGH이며 데이터의 끝을 알림

통신 관련 아두이노 우노 핀맵

USART

USART Block Diagram⁽¹⁾

클록 발생부 - 일반 비동기 모드

- 2배속 비동기 모드

- 마스터 동기 모드

- 슬레이브 동기 모드

송신부

수신부

USART 관련 인터럽트 세 가지

		-	
Vector No.	Program Address	Source	Interrupt Definition
1	0x0000	RESET	External pin, power-on reset, brown-out reset and watchdog system reset
2	0x002	INT0	External interrupt request 0
3	0x0004	INT1	External interrupt request 1
4	0x0006	PCINT0	Pin change interrupt request 0
5	0x0008	PCINT1	Pin change interrupt request 1
6	0x000A	PCINT2	Pin change interrupt request 2
7	0x000C	WDT	Watchdog time-out interrupt
8	0x000E	TIMER2 COMPA	Timer/Counter2 compare match A
9	0x0010	TIMER2 COMPB	Timer/Counter2 compare match B
10	0x0012	TIMER2 OVF	Timer/Counter2 overflow
11	0x0014	TIMER1 CAPT	Timer/Counter1 capture event
12	0x0016	TIMER1 COMPA	Timer/Counter1 compare match A
13	0x0018	TIMER1 COMPB	Timer/Counter1 compare match B
14	0x001A	TIMER1 OVF	Timer/Counter1 overflow
15	0x001C	TIMER0 COMPA	Timer/Counter0 compare match A
16	0x001E	TIMER0 COMPB	Timer/Counter0 compare match B
17	0x0020	TIMER0 OVF	Timer/Counter0 overflow
10	0×0022	SDI STC	SDI sorial transfer complete
19	0x0024	USART, RX	USART Rx complete
20	0x0026	USART, UDRE	USART, data register empty
21	0x0028	USART, TX	USART, Tx complete
22	0x002A	ADC	ADC conversion complete
23	0x002C	EE READY	EEPROM ready
24	0x002E	ANALOG COMP	Analog comparator
25	0x0030	TWI	2-wire serial interface
26	0x0032	SPM READY	Store program memory ready

1 UDRn – USART I/O Data Register n

USART모듈의 송수신 데이터 버퍼의 기능을 수행하는 레지스터

송신 시 TXB에 데이터를 저장.

수신 시 RXB에 데이터를 저장.

2-1.: UCSRnA – USART Control and Status Register n A

UDRn의 수신 버퍼를 읽지 않으면 1.

읽으면 0.

1로 세트되면 → 전송속도 2배 증가 (UBRRn레지스터 참고)

2-2. UCSRnB – USART Control and Status Register n B

Bit	7	6	5	4	3	2	1	0	
	RXCIEn	TXCIEn	UDRIEn	RXENn	TXENn	UCSZn2	RXB8n	TXB8n	UCSRnB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	
Initial Value	0	0	0	0	0	0	0	0	

2-3. UCSRnC – USART Control and Status Register n C

UMSELn1	UMSELn0	Mode
0	0	Asynchronous USART
0	1	Synchronous USART
1	0	(Reserved)
1	1	Master SPI (MSPIM) ⁽¹⁾

USART 통신모드 설정

Table 19-5. UPMn Bits Settings

UPMn1	UPMn0	Parity Mode
0	0	Disabled
0	1	Reserved
1	0	Enabled, even parity
1	1	Enabled, odd parity

패리티 설정

USBSn	Stop Bit(s)
0	1-bit
1	2-bit

Stop비트 설정

2-3. UCSRnC – USART Control and Status Register n C

Bit	7	6	5	4	3	2	1	0	l
	UMSELn1	UMSELn0	UPMn1	UPMn0	USBSn	UCSZn1	UCSZn0	UCPOLn	UCSRnC
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	1	1	0	

UCSZn2	UCSZn1	UCSZn0	Character Size
0	0	0	5-bit
0	0	1	6-bit
0	1	0	7-bit
0	1	1	8-bit
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	9-bit

전송 문자의 비트 수를 결정

UCPOLn	Transmitted Data Changed (Output of TxDn Pin)	Received Data Sampled (Input on RxDn Pin)
0	Rising XCKn edge	Falling XCKn edge
1	Falling XCKn edge	Rising XCKn edge

UBRRnL and UBRRnH – USART Baud Rate Registers

Bit	15	14	13	12	11	10	9	8	
	-	_	_	_		UBRR	n[11:8]		UBRRnH
				UBRE	?n[7:0]				UBRRnL
·	7	6	5	4	3	2	1	0	-
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	
Read/Wille	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
Initial Value	0	0	0	0	0	0	0	0	

USART의 통신 속도(baud rate)를 설정하는 레지스터

bps = baud rate * 한번에 변조되는 비트 수

Table 19-12. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

	f _{osc} = 16.0000MHz						
	U2Xn =	: 0	U2Xn = 1				
Baud Rate (bps)	UBRRn	Error	UBRRn	Error			
2400	416	-0.1%	832	0.0%			
4800	207	0.2%	416	-0.1%			
9600	103	0.2%	207	0.2%			
14.4k	68	0.6%	138	-0.1%			
19.2k	51	0.2%	103	0.2%			
28.8k	34	-0.8%	68	0.6%			
38.4k	25	0.2%	51	0.2%			
57.6k	16	2.1%	34	-0.8%			
76.8k	12	0.2%	25	0.2%			
115.2k	8	-3.5%	16	2.1%			
230.4k	3	8.5%	8	-3.5%			
250k	3	0.0%	7	0.0%			
0.5M	1	0.0%	3	0.0%			
1M	0	0.0%	1	0.0%			
Max. ⁽¹⁾	1Mbp	S	2Mbp	S			

뭔말인지 잘 모르겠다

아무튼 이 레지스터를 통해서 전송 속도를 조절하나보다

Note: 1. UBRRn = 0, error = 0.0%

SCHOOL ___

- 1. Context Switching이란?
- 두 개 이상의 프로세스가 진행될 때 os는 스케줄링을 통해 각각의 프로세스에 얼마 만큼의 클럭을 할당 할 지 결정한다.
- 프로세스가 중요할 수록 우선순위가 높아 더 긴 시간 간격으로 실행될 수 있다
- 이렇게 여러 개의 프로세스들이 일정한 시간 간격으로 매우 빠르게 번갈아가며 실행되므로 사용자는 멀티태스킹을 하는 것처럼 느낄 수 있다.
- Context Switching이란 현재 진행하고 있는 프로세스의 레지스터 상태를 PCB(Process Control Block)에 저장하고 다음 진행 할 프로세스의 상태 값을 읽어서 실행하는 과정을 말한다.
- 현재 상태를 PCB에 저장하는 이유는 다른 프로세서가 실행될 때 레지스터 값이 바뀜으로써 현재 상태로 돌아왔을 때 데이터 손실이 발생하기 때문이다.
- 프로세스 사이의 전환 뿐만 아니라 인터럽트와 프로세스 전환에도 context switching이이루어진다.

PCB구조

Process number : 프로세스는 각각 고유의 번호를 가지고 있다

Program counter : 프로세스가 다음 실행할 주소

Registers : 레지스터들의 정보가 저장됨을 확인할 수 있다.

- 실행중인 프로세스는 모두 각각의 PCB를 가지고 있다.
- PCB는 프로세스가 실행될 때 같이 생기고 프로세스가 완료되면 사라진다.
- PCB는 메모리의 커널 영역에 위치한다.(커널 스택???)

- 2. AVR에는 운영체제가 없는데? → MicroC/OS(uc/os)
- MicroC/OS-II(uC/OS-II) : uC/OS-II는 RTOS의 성격을 그대로 가지되, 다른 OS들에 비하여 매우 경량화된 구조와 크기를 가지고 있다. -위키백과
- RTOS(실시간 운영 체졔) 프로세스간의 스케줄링을 도와줌.
- 30kBtye 미만

