Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
%matplotlib inline
pd.set_option('display.max_columns', None)
from scipy import stats
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import (accuracy_score, confusion_matrix,
                             roc_curve, auc, ConfusionMatrixDisplay,
                             f1_score, recall_score,
                             precision score, precision recall curve,
                             average_precision_score, classification_report)
from statsmodels.stats.outliers_influence import variance_inflation_factor
from imblearn.over_sampling import SMOTE
import warnings
warnings.filterwarnings("ignore")
df = pd.read_csv('https://drive.usercontent.google.com/download?id=1ZPYj7CZCfxntE8p2Lze_4
df.head()
```

•		_
_	•	_
-		$\overline{}$
10.	_	-

	loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length
0	10000.0	36 months	11.44	329.48	В	В4	Marketing	10+ years
1	8000.0	36 months	11.99	265.68	В	B5	Credit analyst	4 years
2	15600.0	36 months	10.49	506.97	В	В3	Statistician	< 1 year
3	7200.0	36 months	6.49	220.65	А	A2	Client Advocate	6 years
4	24375.0	60 months	17.27	609.33	С	C5	Destiny Management Inc.	9 years
4								•

df.shape

→ (396030, 27)

df.describe()

	loan_amnt	int_rate	installment	annual_inc	dti	0
count	396030.000000	396030.000000	396030.000000	3.960300e+05	396030.000000	396030
mean	14113.888089	13.639400	431.849698	7.420318e+04	17.379514	1.
std	8357.441341	4.472157	250.727790	6.163762e+04	18.019092	5
min	500.000000	5.320000	16.080000	0.000000e+00	0.000000	С
25%	8000.000000	10.490000	250.330000	4.500000e+04	11.280000	3
50%	12000.000000	13.330000	375.430000	6.400000e+04	16.910000	10
75%	20000.000000	16.490000	567.300000	9.000000e+04	22.980000	14
max	40000.000000	30.990000	1533.810000	8.706582e+06	9999.000000	90
4						>

- 1. Nearly 80% of the loans have a term of 36 months.
- 2. The majority of loans (30%) are graded as B, followed by C, A, and D respectively.
- 3. For 50% of cases, the type of home ownership is mortgage.
- 4. The loan status target variable is biased towards fully-paid loans, with defaulters accounting for approximately 25% of fully-paid instances.

- 5. Approximately 85% of applicants do not have a public record or have not filed for bankruptcy.
- 6. Nearly all applicants (99%) have applied under the 'individual' application type. -The most common purpose for taking out loans is debt consolidation, accounting for 55%, followed by 20% for credit card purposes.

Data Cleaning

df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 396030 entries, 0 to 396029
 Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype		
0	loan amnt	396030 non-null	float64		
1	loan_amnt term	396030 non-null			
2	int rate	396030 non-null	object float64		
3	installment	396030 non-null	float64		
4	grade	396030 non-null	object		
5	sub_grade	396030 non-null	object		
6	emp title	373103 non-null	object		
7	emp_length	377729 non-null	object		
8	home_ownership	396030 non-null	object		
9	annual inc	396030 non-null	float64		
10	verification_status	396030 non-null	object		
11	issue_d	396030 non-null	object		
12	loan_status	396030 non-null	object		
13	purpose	396030 non-null	object		
14	title	394274 non-null	object		
15	dti	396030 non-null	float64		
16	earliest cr line	396030 non-null	object		
17	open_acc	396030 non-null	float64		
18	pub_rec	396030 non-null	float64		
19	revol_bal	396030 non-null	float64		
20	revol_bai	395754 non-null	float64		
21	total_acc	396030 non-null	float64		
22	initial_list_status	396030 non-null	object		
23	application_type	396030 non-null	object		
24	mort acc	358235 non-null	float64		
25	pub_rec_bankruptcies		float64		
26	address	396030 non-null	object		
dtypes: float64(12), object(15)					
memory usage: 81.6+ MB					
memory asage. Of the					

Checking Column Datatypes

```
'purpose', 'title', 'earliest_cr_line', 'initial_list_status',
             'application_type', 'address'],
           dtype='object')
for col in cat_cols:
    print(f"No of unique values in {col}: {df[col].nunique()}")
No of unique values in term: 2
     No of unique values in grade: 7
     No of unique values in sub_grade: 35
     No of unique values in emp_title: 173105
     No of unique values in emp length: 11
     No of unique values in home_ownership: 6
     No of unique values in verification_status: 3
     No of unique values in issue_d: 115
     No of unique values in loan_status: 2
     No of unique values in purpose: 14
     No of unique values in title: 48816
     No of unique values in earliest cr line: 684
     No of unique values in initial_list_status: 2
     No of unique values in application_type: 3
     No of unique values in address: 393700
df['earliest_cr_line'] = pd.to_datetime(df['earliest_cr_line'])
df['issue_d'] = pd.to_datetime(df['issue_d'])
d = \{'10+ \text{ years}': 10, '4 \text{ years}': 4, '< 1 \text{ year}': 0, '6 \text{ years}': 6, '9 \text{ years}': 9, '7 \text{ years}': 7, '8}
df['emp length'] = df['emp length'].replace(d)
cat cols = ['term', 'grade', 'sub grade', 'home ownership',
             'verification_status','loan_status','purpose',
             'initial_list_status', 'application_type']
df[cat cols] = df[cat cols].astype('category')
df.info()
<<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 396030 entries, 0 to 396029
     Data columns (total 27 columns):
      # Column
                                Non-Null Count Dtype
     --- -----
                                 -----
                           396030 non-null float64
        loan amnt
      0
                                396030 non-null category
      1
        term
      2 int_rate
                                396030 non-null float64
      3 installment
                                396030 non-null float64
                                396030 non-null category
         grade
      4
      5 sub_grade 396030 non-null category
6 emp_title 373103 non-null object
7 emp_length 377729 non-null float64
8 home_ownership 396030 non-null category
      9
          annual inc
                                396030 non-null float64
      10 verification status 396030 non-null category
```

```
11 issue_d
                        396030 non-null datetime64[ns]
12 loan_status
                       396030 non-null category
                       396030 non-null category
13 purpose
                       394274 non-null object
14 title
15 dti
                       396030 non-null float64
                       396030 non-null datetime64[ns]
16 earliest_cr_line
17 open_acc
                       396030 non-null float64
                       396030 non-null float64
18 pub_rec
19 revol bal
                       396030 non-null float64
                       395754 non-null float64
20 revol util
21 total acc
                       396030 non-null float64
22 initial_list_status 396030 non-null category
                       396030 non-null category
23 application_type
24 mort acc
                        358235 non-null float64
25 pub_rec_bankruptcies 395495 non-null float64
                        396030 non-null object
26 address
dtypes: category(9), datetime64[ns](2), float64(13), object(3)
memory usage: 57.8+ MB
```

Check for Duplicate Values

df.duplicated().sum()

→ 0

Handling Missing Values

df.isna().sum()

$\overline{\Rightarrow}$	loan_amnt	0
	term	0
	int_rate	0
	installment	0
	grade	0
	sub_grade	0
	emp_title	22927
	emp_length	18301
	home_ownership	0
	annual_inc	0
	verification_status	0
	issue_d	0
	loan_status	0
	purpose	0
	title	1756
	dti	0
	earliest_cr_line	0
	open_acc	0
	pub_rec	0
	revol_bal	0
	revol_util	276
	total_acc	0
	initial_list_status	0
	application_type	0
	mort_acc	37795
	<pre>pub_rec_bankruptcies</pre>	535

address 0

```
dtype: int64
```

```
fill_values = {'title': 'Unknown', 'emp_title': 'Unknown'}
df.fillna(value=fill_values, inplace=True)

df['mort_acc'].fillna(df.groupby('total_acc')['mort_acc'].transform('mean'), inplace=True
```

df.isna().sum()

```
<del>,</del> → loan_amnt
                                   0
    term
                                   0
    int_rate
                                   0
    installment
                                   0
    grade
                                   0
                                   0
    sub grade
    emp_title
                                   0
    emp_length
                              18301
    home_ownership
    annual_inc
                                   0
    verification_status
                                   0
    issue d
                                   0
    loan_status
                                   0
                                   0
    purpose
    title
                                   0
    dti
                                   0
    earliest_cr_line
                                   0
                                   0
    open_acc
    pub_rec
                                   0
                                   0
    revol_bal
    revol_util
                                 276
    total acc
                                   0
    initial list status
                                   0
                                   0
    application_type
    mort_acc
                                   0
    pub_rec_bankruptcies
                                 535
    address
                                   0
    dtype: int64
```

```
from sklearn.impute import KNNImputer
knn_imputer = KNNImputer(n_neighbors=5)
df['emp_length'] = knn_imputer.fit_transform(df['emp_length'].values.reshape(-1, 1)).rave
df['revol_util'] = knn_imputer.fit_transform(df['revol_util'].values.reshape(-1, 1)).rave
df['pub_rec_bankruptcies'] = knn_imputer.fit_transform(df['pub_rec_bankruptcies'].values.
```

df.isna().sum()

```
loan_amnt 0
term 0
int_rate 0
installment 0
grade 0
sub_grade 0
emp_title 0
emp_length 0
```

```
home_ownership
                         0
annual_inc
verification status
                         0
issue_d
                         0
loan_status
                         0
purpose
title
                         0
dti
earliest_cr_line
                         0
                         0
open_acc
pub_rec
revol_bal
                         0
revol_util
total acc
initial_list_status
                         0
application_type
                         0
mort_acc
pub_rec_bankruptcies
                         0
address
dtype: int64
```

df.shape

```
→ (396030, 27)
```

Outlier Treatment

df['pub_rec_bankruptcies'] = np.where(df['pub_rec_bankruptcies']>0,'yes','no')

```
df['pub_rec'] = np.where(df['pub_rec']>0,'yes','no')
df[['pub_rec_bankruptcies','pub_rec']] = df[['pub_rec_bankruptcies','pub_rec']].astype('c
num_cols = df.select_dtypes(include='number').columns
num_cols
→ Index(['loan amnt', 'int rate', 'installment', 'emp length', 'annual inc',
            'dti', 'open_acc', 'revol_bal', 'revol_util', 'total_acc', 'mort_acc'],
           dtype='object')
for col in num_cols:
  mean = df[col].mean()
  std = df[col].std()
  upper = mean + (3*std)
  df = df[\sim(df[col] > upper)]
df.shape
→ (368778, 27)
Feature Engineering
df['address'].sample(10)
    352370
                    00077 Jason Lock\r\nVelasquezville, NM 70466
     1076
               146 Jacob Junction Suite 603\r\nCynthiafort, K...
     289831
                  7018 Newman Vista\r\nWest Brianhaven, WI 22690
     22417
                    753 Caitlin Vista\r\nMackenzietown, NM 29597
     226175
               9489 Cynthia Groves Suite 704\r\nThomasshire, ...
     298743
                              PSC 2135, Box 2351\r\nAPO AA 05113
     262229
                                    USS Williams\r\nFPO AP 29597
     253339
                                      USNV Lewis\r\nFPO AP 29597
     291914
               724 Thomas Hill Apt. 320\r\nAustinhaven, GA 05113
     112117
               246 Emily Crossroad Apt. 926\r\nSouth Austinha...
     Name: address, dtype: object
df[['state', 'zip code']] = df['address'].apply(lambda x: pd.Series([x[-8:-6], x[-5:]]))
df.drop(["address"], axis = 1, inplace=True)
df.zip_code.nunique()
→▼ 10
df['zip code'] = df['zip code'].astype('category')
```

Exploratory Data Analysis


```
plt.figure(figsize=(10,3))
sns.countplot(x=df['zip_code'], palette='Blues')
plt.title('Distribution of Zip Code')

plt.figure(figsize=(10,3))
sns.countplot(x=df['purpose'], palette='Blues')
plt.xticks(rotation=90)
plt.title('Distribution of Purpose')

plt.show()
```



```
plot = ['term', 'grade', 'sub_grade', 'home_ownership', 'verification_status',
       'zip_code', 'pub_rec', 'initial_list_status',
       'application_type', 'pub_rec_bankruptcies']
plt.figure(figsize=(12,12))
i=1
for col in plot:
 ax=plt.subplot(5,2,i)
 data = pd.crosstab(df[col], df['loan_status'], normalize='index').round(2)*100
 data.reset_index(inplace=True)
 plt.bar(data[col],data['Charged Off'], color='#00008b')
  plt.bar(data[col],data['Fully Paid'], color='#add8e6', bottom=data['Charged Off'])
 plt.xlabel(f'{col}')
 plt.ylabel('% Applicants')
 plt.title(f'% Defaulters by {col}')
  plt.legend(['Charged Off', 'Fully Paid'])
 i += 1
plt.tight_layout()
plt.show()
```



```
purpose = pd.crosstab(df['purpose'], df['loan_status'], normalize='index').round(2)*100
purpose.reset_index(inplace=True)
plt.figure(figsize=(14,4))
plt.bar(purpose['purpose'],purpose['Charged Off'], color='#00008b')
plt.bar(purpose['purpose'],purpose['Fully Paid'], color='#add8e6', bottom=purpose['Charge
plt.xlabel('Purpose')
plt.ylabel('% Applicants')
plt.title('% Defaulters by purpose')
plt.legend(['Charged Off', 'Fully Paid'])
plt.xticks(rotation=90)
plt.show()
state = pd.crosstab(df['state'], df['loan_status'], normalize='index').round(2)*100
state.reset_index(inplace=True)
plt.figure(figsize=(14,4))
plt.bar(state['state'], state['Charged Off'], color='#00008b')
plt.bar(state['state'],state['Fully Paid'], color='#add8e6', bottom=state['Charged Off'])
plt.xlabel('state')
plt.ylabel('% Applicants')
plt.title('% Defaulters by state')
plt.legend(['Charged Off', 'Fully Paid'])
plt.show()
```



```
num_cols = df.select_dtypes(include='number').columns
fig, ax = plt.subplots(10,2,figsize=(10,30))
i=0
color_dict = {'Fully Paid': matplotlib.colors.to_rgba('#add8e6', 0.5),
              'Charged Off': matplotlib.colors.to_rgba('#00008b', 1)}
for col in num_cols:
    sns.histplot(data=df, x=col, hue='loan_status', ax=ax[i, 0], legend=True,
                palette=color_dict, kde=True, fill=True)
    sns.boxplot(data=df, y=col, x='loan_status', ax=ax[i,1],
               palette=('#00008b', '#add8e6'))
    ax[i,0].set_ylabel(col, fontsize=12)
    ax[i,0].set_xlabel(' ')
    ax[i,1].set_xlabel(' ')
    ax[i,1].set_ylabel(' ')
    ax[i,1].xaxis.set_tick_params(labelsize=14)
    i += 1
plt.tight_layout()
plt.show()
```

