UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS

Departamento de Matemática

Projeto de Tese de Doutorado

DERIVATIONS OF LIE ALGEBRA EXTENSIONS AND NON-SINGULAR DERIVATIONS OF LIE ALGEBRAS IN PRIME CHARACTERISTIC

Marcos Goulart Lima

Orientador: Csaba Schneider

Belo Horizonte Junho de 2016

DERIVATIONS OF LIE ALGEBRA EXTENSIONS AND NON-SINGULAR DERIVATIONS OF LIE ALGEBRAS IN PRIME CHARACTERISTIC

MARCOS GOULART LIMA

1. Introduction

Let L be a Lie algebra and d be a derivation of L. The derivation d is non-singular if it is injective as linear transformation. We are interested in studying what information we can obtain about a Lie algebra if it has a nonsingular derivation. Jacobson's famous theorem [7] states that a finite-dimensional Lie algebra over a field of characteristic zero that admits a non-singular derivation must be nilpotent. It is well-known that this theorem is not valid when the characteristic is non-zero. Non-nilpotent and solvable examples were constructed by Shalev [12] and Mattarei [10], whereas the simple Lie algebras with non-singular derivations were classified by Benkart and her collaborators in [4]. A significant application of Lie algebras with non-singular derivation in characteristic p was presented by Shalev [11]. In his proof of the coclass conjectures of Leddham-Green and Newman for pro-p groups, Shalev uses the fact that finite-dimensional Lie algebras over a field of characteristic p > 0 with non-singular derivation d such that $d^{p-1} = 1$, must be nilpotent.

Despite the existing examples, little is known about non-nilpotent Lie algebras with non-singular derivations. In these project we propose to explore the structure of solvable, non-nilpotent Lie algebras with non-singular derivations. In order to study these algebras we develop a theory of derivations of Lie algebra extensions. We adopt the concept of a compatible pair of automorphisms introduced in [3] for derivations of Lie algebras.

Let K and I be Lie algebras such that K acts on I, then we can define the subalgebra $\mathsf{Comp}(K,I)$ of $\mathsf{Der}(K) \oplus \mathsf{Der}(I)$ as the set of derivations of $\mathsf{Der}(K) \oplus \mathsf{Der}(I)$ that are derivations of semi-direct sum $K \oplus I$. Formally,

$$\mathsf{Comp}(K,I) = \{ \alpha + \beta \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I) \mid \alpha + \beta \in \mathsf{Der}(K \oplus I) \}.$$

The algebra $\mathsf{Der}(K)$ carries information about the multiplicative structure of K. Analogously, the algebra $\mathsf{Comp}(K,I)$ carries information about the action of K on I. In section 3.4 we present an example of this by exploring the proof of Jacobson's Theorem and we prove a version for Lie algebras representations over a field of characteristic p > 0.

Theorem 3.14 Let K and I be finite dimensional Lie algebras over a field of characteristic p where $p \ge 0$ such that K is nilpotent. Suppose that K act on I by representation $\psi: K \to \mathsf{Der}(I)$. Let $(\alpha, \beta) \in \mathsf{Comp}(K, I)$ such that α has no eigenvalue 0. If either p = 0

or p > 0 and dim I < p then $Tr(\psi^n(k)) = 0$, for all $k \in K$ and n > 0. In these two cases, $\psi(k), k \in K$ is nilpotent.

We also adapt an algorithm presented by Bettina Eick [3] for calculating the automorphism group of solvable Lie algebras. A key step in the algorithm is the following. Let L be a Lie algebra and I an abelian ideal of L such that I is invariant by $\operatorname{Aut}(L)$. Then there exists a homomorphism $\phi:\operatorname{Aut}(L)\to\operatorname{Aut}(L)/I\times\operatorname{Aut}(I)$ induced by the actions of $\operatorname{Aut}(L)$ on L/I and I. The image of ϕ can be calculated using $\operatorname{Aut}(L/I)$, while $\operatorname{Ker}(\phi)$ is equal to $\operatorname{Z}^1(K,I)$. Then the group $\operatorname{Aut}(L)$ can be obtained applying the first isomorphism theorem to ϕ . It is possible to use this process to derivations.

We can define a Lie algebra homomorphism similar to ψ in the previous paragraph. Let L be a Lie algebra and $I \subseteq L$ an ideal such that I is invariant under $\mathsf{Der}(L)$. Then if $d \in \mathsf{Der}(L)$, d induces derivations α and β of L/I and I, respectively. Hence we obtain a Lie algebra homomorphism

$$\psi: \mathsf{Der}(L) \to \mathsf{Der}(L/I) \oplus \mathsf{Der}(I).$$

Let K be a Lie algebra and I be a K-module. Let $\mathsf{Z}^2(K,I)$ be the vector space of cocycles and $\mathsf{Comp}(K,I)$ the Lie algebra of compatible pairs. Let $(\alpha,\beta) \in \mathsf{Comp}(K,I)$ and $\vartheta \in \mathsf{Z}^2(K,I)$. Define an action of $\mathsf{Comp}(K,I)$ over $\mathsf{Z}^2(K,I)$ by

$$(\alpha, \beta) \cdot \vartheta(h, k) = \beta(\vartheta(h, k)) - \vartheta(\alpha(k), h) - \vartheta(k, \alpha(h)),$$
 for all $h, k \in K$.

The elements of the annihilator of this action will be called induced pairs and we denote the set of induced pairs by $\operatorname{Indu}(K, I, \vartheta)$. Let $\vartheta \in \mathsf{Z}^2(K, I)$ a cocycle and K_θ be the Lie algebra extension obtained from K by ϑ . Then we can lift the derivation of $\operatorname{Indu}(K, I, \vartheta)$ to $\operatorname{Der}(K_\theta)$. Thus we obtained the following theorem.

Theorem 3.8 Let K be a Lie algebra and I a K-module. Let $\vartheta \in H^2(K, I)$ and suppose that I, as ideal of K_ϑ , invariant under derivations of K_ϑ . Let $\varphi : \mathsf{Der}(K_\vartheta) \to \mathsf{Der}(K) \oplus \mathsf{Der}(I)$ given by $\varphi(d) = (\alpha, \beta)$. Then:

- (1) $\operatorname{Im}(\phi) = \operatorname{Indu}(K, I, \vartheta)$
- (2) $\operatorname{Ker}(\phi) \cong \operatorname{Z}^1(K, I)$

The details of this construction can be seen in Section 3. There is a significant difference between the application of this approach to automorphisms and to derivations: calculating the automorphism groups of Lie algebras is usually a difficult task that may involve a large orbit-stabilizer calculation, while calculating the algebra $\mathsf{Der}(K_{\vartheta})$ can be done by solving a system of linear equations. Thus, to understand the importance of Theorem 3.8 we must discover what additional information of $\mathsf{Der}(K_{\vartheta})$ we are able to obtain through information concerning the algebras $\mathsf{Der}(K)$ and $\mathsf{Der}(I)$.

In order facilitate the reading of the text and the references, we added a section with results on the primary decomposition of vector spaces in relation to subalgebras of linear operators and a brief description of the main articles used. This text is organized as follows: Section 2 is dedicated to literature review. In Section 3, we present compatible pairs and the lifting process of derivations of a Lie algebra K to the Lie algebras K_{ϑ} such that ϑ is a cocycle. We end this section by applying the compatible pairs to Jacobson's Theorem. Section 4 is composed of some examples and conjectures about modular solvable non-nilpotent Lie algebras with non-singular derivations.

2. Non-singular derivations: known results

This section is composed by description of a decomposition of a Lie algebra L relative to a subalgebra K of $\mathfrak{gl}(L)$ and its application in Jacobson's Theorem. Next, we have the calculations presented in Shalev's article [12] about conditions on the order of derivation which guarantee nilpotency of a Lie algebra. The section ends with Mattarei's Theorem that relates the order of non-singular derivations of solvable modular Lie algebras to roots of certain types of polynomials.

2.1. **Basic concepts.** The symbol ' \oplus ' will be used to denote the direct sum of algebras, while the direct sum of vector spaces will be denoted by ' \dotplus '.

Let V be a finite-dimensional vector space over a field \mathbb{F} and $a \in \text{End}(V)$. Let $p \in \mathbb{F}[X]$ be a univariate polynomial and define

$$V_0(p(a)) = \{v \in V \mid \text{ there is an } m > 0 \text{ such that } p(a)^m v = 0\}.$$

 $V_0(p(a))$ is a vector subspace of V invariant under a. Now let A be the associative sualgebra of End(V) with 1 generated by a. Let p_a be the minimum polynomial of a and suppose that

$$p_a = p_1^{k_1} \cdots p_r^{k_r}$$

is the factorization of p_a into irreducible factors, such that p_i has leading coefficient 1 and $p_i \neq p_j$ for $1 \leq i, j \leq r$. Then V decomposes as a direct sum of subspaces

$$V = V_0(p_1(a)) \dotplus \cdots \dotplus V_0(p_r(a)),$$

each space $V_0(p_i(a))$ being invariant under A. Furthermore, the minimum polynomial of the restriction of a to $V_0(p_i(a))$ is $p_i^{k_i}$. A proof of this result can be found in [2] Lemma A.2.2.

We can generalize this decomposition to subalgebras of $\mathfrak{gl}(V)$ generated by more than one element. Let K be a subalgebra of $\mathfrak{gl}(V)$. A decomposition $V = V_1 \oplus \cdots \oplus V_s$ of V into K-modules V_i is said to be primary if the minimum polynomial of the restriction of a to V_i is a power of an irreducible polynomial for all $a \in K$ and $1 \le i \le s$. The subspaces V_i are called primary components. If for any two components V_i and V_j ($i \ne j$), there is an $x \in K$ such that the minimum polynomials of the restrictions of x to V_i and V_j are powers of different irreducible polynomial, then the decomposition is called collected. In general V will not have a primary (or primary collected) decomposition into K-modules but such a decomposition is guaranteed to exist if the base field of V is algebraically closed and $K \le \mathfrak{gl}(V)$ is nilpotent.

Proposition 2.1 ([2], Theorem 3.1.10). Let V be finite-dimensional vector space. Let $K \leq \mathfrak{gl}(V)$ be a nilpotent subalgebra. Then V has a unique collected primary decomposition relative to K

If the vector space V has a collected primary decomposition $V = V_1 \dotplus \cdots \dotplus V_s$ then we can characterize the components V_i . For $x \in K$ and $1 \le i \le s$ define $p_{x,i}$ to be the irreducible polynomial such that the minimum polynomial of x restricted to V_i is a power of $p_{x,i}$. Then we obtain the equality

$$V_i = \{v \in V \mid \text{ for all } x \in K \text{ there is an } m > 0 \text{ such that } p_{x,i}(x)^m v = 0\}.$$

It is worth noting that if the base field of V is algebraically closed, then all irreducible polynomials are of the form $p(X) = (X - \lambda)$, for some $\lambda \in \mathbb{F}$, and hence $p_{x,i} = (X - \lambda_i(x)), \lambda_i \in \mathbb{F}^*$. Further, in this case, primary components are of the form

$$V_i = \{v \in V \mid \text{ for all } x \in K \text{ there is an } m > 0 \text{ such that } (x - \lambda_i(x)I)^m v = 0\},$$

with $\lambda_i \in K^*$. Its natural to give a name for this case. Let V be a finite-dimensional vector space over a field \mathbb{F} and $K \leq \mathfrak{gl}(V)$ a subalgebra. Let $\lambda \in K^*$. Then

$$V_{\lambda} = \{v \in V \mid \text{ for all } x \in K \text{ there is an } m > 0 \text{ such that } (x - \lambda(x).I)^m v = 0\}.$$

If $V_{\lambda} \neq 0$ then V_{λ} is called a generalized eigenspace of V associated to the generalized eigenvalue $\lambda \in K^*$.

Now we consider a Lie algebra L and a nilpotent subalgebra $K \leq \mathsf{Der}(L)$. Then the decomposition to generalized eigenspaces of D can provide us some information of the multiplicative structure of L.

Proposition 2.2 ([8], Proposition 5 of Chapter III). Let L be a Lie algebra over an algebraically closed field. Let K be a subalgebra of Der(L). If $\lambda, \mu : K \to \mathbb{F}^*$ are generalized eigenvalues of K then $[L_{\lambda}, L_{\mu}] \subseteq L_{\lambda+\mu}$ if $\lambda + \mu$ is a generalized eigenvalue of K. Otherwise $[L_{\mu}, L_{\lambda}] = 0$.

Following we present some general results about Lie algebras that will be used in the this text

Proposition 2.3. Let L be a Lie algebra, let I be an ideal of L such that L/I is nilpotent and such that $\operatorname{ad}_x^I: I \to I$ is nilpotent for all $x \in L$. Then L is nilpotent.

Proof. As L/I is nilpotent then for each $x \in L$, $(\mathsf{ad}_{x+I})^n$ is a nilpotent endomorphism in $\mathsf{End}(L/I)$, i.e., there is n > 0 such that $(\mathsf{ad}_x)^n(a) \in I$, for all $x \in L, a \in I$. On the other hand, ad_x^I is nilpotent, so we have a m such that $(\mathsf{ad}_x^I)^m(\mathsf{ad}_x)^n = 0$, i.e., $(\mathsf{ad}_x)^{m+n} = 0$. So ad_x is a nilpotent endomorphism in $\mathfrak{gl}(L)$. By Engel's theorem, L is nilpotent.

Theorem 2.4 ([5], Theorem 4.1). Let L be a solvable subalgebra of $\mathfrak{gl}(V)$, V finite dimensional. If $V \neq 0$, then V contains a common eigenvector for all the endomorphism in L.

Theorem 2.5 ([5], Corollary A of Theorem 4.1). (Lie) Let L be a finite-dimensional solvable Lie algebra over an algebraically closed field \mathbb{F} of characteristic 0. Let $\psi: L \to \mathfrak{gl}(V)$ be a finite-dimensional representation of L. Then there is a basis of V relative to which then matrix of all $\psi(x)$ for all $x \in L$ are all upper triangular.

The Theorems 2.4 and 2.5 still valid in characteristic p > 0 if $\dim V < p$. The proof of Theorem 2.4 in prime characteristic goes through as in the Humphreys' book except for the last sentence. In the book's version, we have $n\lambda([x,y]) = 0$ and conclude $\lambda([x,y]) = 0$ because the characteristic of \mathbb{F} is 0. In this case, since $p > \dim V = n$, we can still make the same conclusion since n will not be a zero divisor. The proof of Theorem 2.5 goes through exactly as in the book. For future reference in the text we will report a version of the Lie's Theorem in positive characteristic.

Theorem 2.6. Let L be a finite-dimensional solvable Lie algebra over an algebraically closed field \mathbb{F} of characteristic p > 0. Let V be a finite-dimensional vector space of dimension n < p. Let $\psi : L \to \mathfrak{gl}(V)$ be a finite-dimensional representation of L. Then there is a basis of V relative to which then matrix of all $\psi(x)$ for all $x \in L$ are all upper triangular.

2.2. **Jacobson's Theorem.** In the article A note on automorphism and derivations of Lie algebras [7], Jacobson used a variation of Engel's Theorem for weakly closed sets to get sufficient conditions for a Lie algebra to be nilpotent. We recommend the reading of Sections 1 and 2 of Chapter 2 of Jacobson's book [8] as reference for examples and proofs.

Suppose that K and I are Lie algebras and $\psi: K \to \mathsf{Der}(I)$ is a given Lie algebra homomorphism. Then we say that K acts on I or that I is a K-module. In this case, the image $\psi(k)(a)$ of $a \in I$ under $k \in K$ will be written simply as [k,a]. If I is an ideal of a Lie algebra K, then K acts on I. If $k \in K$, then the image of k under this action will be denoted by ad_k^I or simply by ad_k when the domain of the representation is clear from the context. Thus, for $a \in I$ and for $k \in K$, $\mathsf{ad}_k^I(a) = \mathsf{ad}_k(a) = [k,a]$. The homomorphism $K \to \mathsf{Der}(I)$ that takes $k \mapsto \mathsf{ad}_k^I$, will be denoted by ad^I .

Example 2.7. Let L be a Lie algebra with an abelian ideal I and set K = L/I. Define the Lie algebra representation $\mathsf{ad}^I : K \to \mathsf{Der}(I)$ by $\mathsf{ad}^I_{x+I}(a) = [x,a]$ for all $x \in L$ and $a \in I$. This is well defined, since I is abelian. Then I is a K-module. In this case, we say that the action is *induced by the adjoint representation*.

Let A be an associative algebra with 1 over a field \mathbb{F} . A subset S of A is called weakly closed if for every ordered pair $(a,b) \in S \times S$, there is an element $\gamma(a,b) \in \mathbb{F}$ such that $ab + \gamma(a,b)ba \in S$. If S is a subset of an Lie or associative algebra X, then $\langle S \rangle$ denotes the Lie or associative, respectively, subalgebra of X generated by S. In the case of associative algebras we assume that $1 \in \langle S \rangle$. This notation may cause confusion when X is an associative and Lie algebra in the same time, in such cases we will indicate clearly if $\langle S \rangle$ denotes associative or Lie subalgebra.

Proposition 2.8 ([8], Theorem 1 of Chapter II). Let V be a finite-dimensional vector space over a field \mathbb{F} . Let $S \subseteq \operatorname{End}(V)$ be a weakly closed subset such that every $s \in S$ is

associative nilpotent, that is, $s^k = 0$, for some positive integer k. Then the associative subalgebra $\langle S \rangle \leq \operatorname{End}(V)$ is nilpotent.

With this result we can prove Jacobson's Theorem.

Theorem 2.9 ([7], Theorem 3). Let L be a finite-dimensional Lie algebra over a field of characteristic 0 and suppose that there exists a subalgebra D of the algebra of derivations of L such that

- (1) D is nilpotent;
- (2) if there is $c \in L$ such that d(c) = 0 for all $d \in D$ then c = 0.

Then L is nilpotent.

Proof. Let $\overline{\mathbb{F}}$ be the algebraic closure of the base field. We can extend all derivations of L to $\overline{L} = L \otimes \overline{\mathbb{F}}$. If we prove that \overline{L} is nilpotent then L is nilpotent. So we will assume that \mathbb{F} is algebraically closed. In this case the extension of D is nilpotent and without 0 as common eigenvalue, i.e. if there is $c \in L$ such that d(c) = 0 for all $d \in D$ then c = 0. Let $L = L_{\gamma_1} \dotplus \cdots \dotplus L_{\gamma_t}$ be the decomposition of L into generalized eigenspaces of D. By Proposition 2.2 we have $[L_{\gamma_i}, L_{\gamma_j}] \subseteq L_{\gamma_i + \gamma_j}$ if $\gamma_i + \gamma_j$ is a eigenvalue of D and $[L_{\gamma_i}, L_{\gamma_j}] = 0$ otherwise. For a subset $Y \subseteq L$, we let ad_Y denote the set of adjoint mappings induced by elements of Y. Then the inclusion just noted shows that the set $S = \bigcup \operatorname{ad}_{L_{\gamma_j}}$ is a weakly closed set of linear transformations. Let $a \in L_{\gamma_j}$ and $b \in L_{\gamma_i}$. Then $(\operatorname{ad}_a)^s(b) \in L_{\gamma_i + s\gamma_j}$, for all $s \geqslant 0$.(*)

The generalized eigenvalue $\gamma_j \neq 0$ and \mathbb{F} has characteristic 0 then $\gamma_i + s\gamma_j$, for s > 0, are pairwise distinct. Then for some r large enough $(\gamma_i + r\gamma_j)$ is not an eigenvalue and $\mathsf{ad}_a(b) = 0$. Follow that ad_a is nilpotent linear transformation. Thus every element of S is nilpotent. By Proposition 2.8 the associative subalgebra $\langle S \rangle \leqslant \mathsf{End}(V)$ is nilpotent. Observe that the Lie subalgebra $\langle S \rangle$ is subset of the associative subalgebra $\langle S \rangle$, then $\langle S \rangle$ is nilpotent as Lie subalgebra. But $\langle S \rangle = \mathsf{ad}_L$ implies that L is a nilpotent Lie algebra. \square

A review of the proof of Theorem 2.9 shows that the hypothesis of zero characteristic is essential to prove that every element in a homogeneous component is nilpotent. As the following examples shows, Theorem 2.9 fails to hold in characteristic p > 0.

Example 2.10. Let \mathbb{F} be the field of 2^m elements and L be the vector space over \mathbb{F} such that

$$L = \langle x_{\alpha} \mid \alpha \in \mathbb{F}, \alpha \neq 0 \rangle$$

with a basis labeled by nonzero elements of the field \mathbb{F} and with multiplication $[x_{\alpha}, x_{\beta}] = (\beta - \alpha)x_{\alpha+\beta}$. Then L is a simple Lie algebra and the map $d \in \operatorname{End}(L)$ given by $d(e_{\alpha}) = \alpha e_{\alpha}$ is a non-singular derivation. The calculations of this example and a systematic investigation of simple Lie algebras with nonsingular derivations can be found in [4].

Example 2.11. Let V be a vector space over a field \mathbb{F} of characteristic p > 0. Let $B = \{a_1, a_2, \dots, a_p\}$ be a basis of V. Define the linear map $x \in \mathfrak{gl}(V)$ by

$$x(a_i) = a_{i+1 \mod p}, 1 \le i \le 0.$$

Let K be the abelian Lie algebra generated by $\{x, x^2, \dots, x^{p-1}\}$. Then V can be considered as K-module with the standard action of $\mathfrak{gl}(V)$ on V. Let L be the semi-direct sum $L = K \oplus V$ then L is an Solvable non-nilpotent Lie algebra of derived length 2. Let $\lambda, \delta \in \mathbb{F}$ both non-zero and $\lambda \neq s\delta$, for all $s \in \mathbb{F}_p$. The linear map $d: L \to L$ defined by

$$d: \left\{ \begin{array}{ll} x^j \mapsto j\lambda x^j, & 1 \leqslant j \leqslant p-1; \\ a_i \mapsto (\delta + (i-1)\lambda)a_i, & 1 \leqslant i \leqslant p, \end{array} \right.$$

is a non-singular derivation of L.

For Lie algebras over fields of characteristic p > 3 we could not find an example of derived length greater than 3 but in characteristic 2 we have the following example.

Example 2.12. Let L be a vector space of dimension 6 over \mathbb{F}_4 . Let $\lambda \in \mathbb{F}_4$ such that $\lambda^2 = \lambda + 1$ and $\{a_1, a_2, a_3, a_4, a_5, a_6\}$ a basis of L over \mathbb{F}_4 . Define the products

$$[a_1, a_3] = \lambda a_5 + a_6, \quad [a_1, a_4] = \lambda a_6, \quad [a_1, a_5] = \lambda^2 a_3 + a_4, \quad [a_3, a_5] = \lambda a_2,$$

 $[a_1, a_6] = \lambda^2 a_4, \quad [a_2, a_3] = \lambda a_6, \quad \text{and} \quad [a_2, a_5] = \lambda^2 a_4.$

L is a solvable non-nilpotent Lie algebra of derived length 3. The linear map $d:L\to L$ defined by

$$d: \begin{cases} a_1 \mapsto a_1 & a_3 \mapsto \lambda a_3 & a_5 \mapsto \lambda^2 a_5 \\ a_2 \mapsto a_2 & a_4 \mapsto \lambda a_4 & a_6 \mapsto \lambda^2 a_6 \end{cases}$$

is a non-singular derivation of L.

Another question is whether the converse of Jacobson's Theorem is true, that is, is it true that all finite-dimensional nilpotent Lie algebras admit non-singular derivation. By Dixmier and Lister [6], there are nilpotent Lie algebras admitting only nilpotent derivations. Bellow we present Dixmier and Lister example of such an algebra.

Example 2.13. Let \mathbb{F} be a field of characteristic 0 and $L = \langle x_1, x_2, \cdots, x_8 \rangle$ be a Lie algebra over \mathbb{F} with dimension 8 and multiplication table

$$[e_1, e_2] = e_5$$
 $[e_1, e_3] = e_6$ $[e_1, e_4] = e_7$ $[e_1, e_5] = -e_8$ $[e_2, e_3] = e_8$ $[e_2, e_4] = e_6$ $[e_2, e_6] = -e_7$ $[e_3, e_4] = -e_5$ $[e_3, e_5] = -e_7$ $[e_4, e_6] = -e_8$ $[e_i, e_j] = -[e_j, e_i]$.

Moreover, $[e_i, e_j] = 0$ if it is not in table above. Then L is nilpotent with $L^3 \neq 0$, $L^4 = 0$ and every derivation of L is nilpotent.

2.3. Jacobson's Theorem in characteristic p > 0. As the examples above shows, Jacobson's Theorem is in general not true in characteristic p > 0. However, we have the follow weaker result.

Theorem 2.14. Let L be a Lie algebra over a field of characteristic p > 0 and suppose that there exists a subalgebra $D \leq \mathsf{Der}(L)$ such that

- (1) D is nilpotent;
- (2) if there is $c \in L$ such that d(c) = 0 for all $d \in D$ then c = 0.

If D has at most p-1 generalized eigenvalues then L is nilpotent.

Proof. The proof of this theorem is identical to proof of Theorem 2.9 up to point marked by (*). The generalized eigenvalue $\gamma_j \neq 0$ then the set $\{\gamma_i, \gamma_i + \gamma_j, \cdots, \gamma_i + (p-1)\gamma_j\}$ has p distinct elements. As D has at most p-1 generalized eigenvalues then for some $r, \ 0 < r \leqslant p-1, \ (\gamma_i + r\gamma_j)$ is not an eigenvalue. Follow that ad_a is nilpotent linear transformation, for every $a \in L_{\gamma_i}$. Thus every element of S is nilpotent. By Proposition 2.8 the associative subalgebra $\langle S \rangle \leqslant \mathsf{End}(V)$ is nilpotent and hence ad_L is nilpotent. Therefore L is a nilpotent Lie algebra.

2.4. The orders of non-singular derivations. An interesting approach by Shalev in article [12] is to study the order of nonsingular derivations, establishing conditions for a Lie algebra over a field of characteristic p with non-singular derivations to be nilpotent. More precisely, Shalev studied the set of orders of nonsingular derivations of non-nilpotent Lie algebras of characteristic p. Later, Mattarei in [10] showed that this set of numbers corresponds to the set of solutions of some polynomial equation over a field of characteristic p. Below we present some results of these articles.

Let L be a Lie algebra over an algebraically closed field of characteristic p. We can characterize the matrix of a non-singular derivation of L. We need a result for derivations in Lie algebras over a field of characteristic p.

Lemma 2.15. Let L be a Lie algebra over a field \mathbb{F} of characteristic p > 0. If $d \in \mathsf{Der}(L)$ then $d^{p^m} \in \mathsf{Der}(L)$, for all $m \ge 1$.

Proof. If we prove this result for m=1 then the general case when $m \ge 1$ will follow by induction. Let us hence prove the statement only for m=1. Let $d \in \mathsf{Der}(L)$ and $x,y \in L$. First we prove the Leibniz's formula by induction:

$$d^{n}([x,y]) = \sum_{k=0}^{n} {n \choose k} [d^{k}(x), d^{n-k}(y)], \text{ for all } n > 0.$$

The case n=1 follow from derivation's definition. Suppose that Leibniz's formula is valid for n. Then

(1)
$$d^{n}([x,y]) = \sum_{k=0}^{n} {n \choose k} [d^{k}(x), d^{n-k}(y)].$$

Calculating d in both sides of equation (1) we have

(2)
$$d^{n+1}([x,y]) = \sum_{k=0}^{n} \binom{n}{k} [d^{k+1}(x), d^{n-k}(y)] + \sum_{k=0}^{n} \binom{n}{k} [d^{k}(x), d^{n-k+1}(y)].$$

Rearranging the index, the right side of equation (2) can be write as

$$[d^{n+1}(x), y] + \sum_{k=1}^{n} \left(\binom{n}{k-1} + \binom{n}{k} \right) [d^k(x), d^{n+1-k}(y)] + [x, d^{n+1}(y)].$$

As $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$ then

$$d^{n+1}([x,y]) = \sum_{k=0}^{n+1} {n+1 \choose k} [d^k(x), d^{n+1-k}(y)].$$

Then by induction Leibniz's formula is proved. As the field \mathbb{F} has characteristic p then setting $n = p^m$ the Leibniz's formula is reduced to

$$d^{p^m}([x,y]) = [d^{p^m}(x), y] + [x, d^{p^m}(y)].$$

Proposition 2.16. Let V be a finite-dimensional vector space over an algebraically closed field of characteristic p > 0 and $f \in End(V)$ non-singular with order r coprime to p. Then f is diagonalizable.

Proof. Let A be the matrix of the endomorphism f in Jordan normal form and write A = S + N such that S is diagonal, N is nilpotent upper triangular and S, N commute. Denote by M_{ij} the element of a matrix M of the i^{th} line and the j^{th} column. It follows that

- If $S_{ii} = \lambda_i$ then $(S^k)_{ii} = \lambda_i^k$, for all k > 0; $N_{i(i+j)}^k = 0$, for all $0 \le j < k$.

As the order of A is r we have $A^r = Id$. Then

$$I = A^{r} = (S+N)^{r} = S^{r} + \binom{r}{1}S^{r-1}N + \binom{r}{2}S^{r-2}N^{2} + \dots + \binom{r}{r-1}SN^{r-1} + N^{r}.$$

The identity matrix on the left-hand side of the last equation is diagonal, while the summands, with the exception of the first summand, on the right-hand side are nilpotent. Further, if $N \neq 0$, then the second summand $rS^{r-1}N$ in non-zero, and it is the only summand that contains a non-zero entry in a positions (i, i + 1) with i > 0. However, this implies that if $N \neq 0$, then A^r must contain a non-zero entry in a position (i, i+1), which is a contradiction, as $A^r = I$. Hence N = 0 as claimed. Then f is diagonalizable.

Let L be a Lie algebra over the field \mathbb{F} of characteristic p>0 such that L has a nonsingular derivation d. Let r be the order of d such that $r = sp^t$, with gcd(s, p) = 1. Then by Lemma 2.15 d^{p^t} is a derivation whose order is prime to p and, by Proposition 2.16, d^{p^t} is diagonalizable. So if L is a Lie algebra over an algebraically closed field \mathbb{F} of characteristic p > 0 with non-singular derivation then L has a diagonalizable derivation d without eigenvalue 0.

Proposition 2.17 ([12], Lemma 2.2). Let L be a finite-dimensional Lie algebra in characteristic p > 0 which admits a non-singular derivation d whose order n is coprime to p. Suppose that L is not nilpotent. Then there exist $\lambda \in \overline{\mathbb{F}}_p$ such that $(\lambda + \delta)^n = 1$ for all $\delta \in \mathbb{F}_p$.

Proof. Let $\overline{\mathbb{F}}$ be a algebraic closure of \mathbb{F} and $R = \{\alpha \in \overline{\mathbb{F}}_p \mid \alpha^n = 1\}$. If R is not contained in base field of L then we consider d for the extension $L \otimes \overline{\mathbb{F}}$. By Proposition 2.16, d is diagonalizable. Let $L = L_{\lambda 1} \dotplus \cdots \dotplus L_{\lambda r}$ the decomposition of L to eigenspaces of d. The set $S = \bigcup \operatorname{ad}_{L_{\lambda_j}}$ is weakly closed with $\gamma(\operatorname{ad}_a, \operatorname{ad}_b) = -1$ for all $a \in L_{\lambda_i}, b \in L_{\lambda_j}$. If each ad_a is nilpotent then the associative subalgebra $\langle S \rangle \leqslant \mathfrak{gl}(L)$ is nilpotent by Proposition 2.8. Hence ad_L is a nilpotent Lie algebra and L is nilpotent. As L is non-nilpotent by hypothesis then there is $a \in L_{\lambda_j}$ and $b \in L_{\lambda_i}$ such that $(\operatorname{ad}_a)^n(b) \neq 0, 1 \leqslant n \leqslant p$. However this implies $(\lambda_i + \delta \lambda_j)$ are eigenvalues of d for $1 \leqslant \delta \leqslant p$. Since |d| = n each eigenvalue of d has order n. Thus $(\lambda_i + \delta \lambda_j)^n = 1$, for all $\delta \in \mathbb{F}_p$. As λ_j is an eigenvalue of d, $\lambda_j^n = \lambda_j^{-n} = 1$. Thus $1 = (\lambda_i + \delta \lambda_j)^n \lambda^{-n} = (\lambda_i \lambda_j^{-1} + \delta)^n$. Therefore setting $\lambda = \lambda_i \lambda_j^{-1}$, $(\lambda + \delta)^n = 1$ for all $\delta \in \mathbb{F}_p$.

Usying the same notation as in the proof of Proposition 2.17 and observing that the set R contains precisely the n-th roots of unity in $\overline{\mathbb{F}}$, we write $x^n - 1 = \prod_{\alpha \in R} (x - \alpha)$. As for all $\delta \in \mathbb{F}_p$, $\lambda + \delta \in R$, $\prod_{\delta \in \mathbb{F}_p} (x - \lambda - \delta)$ divides $x^n - 1$. But

$$\prod_{\delta \in \mathbb{F}_p} (x - \lambda - \delta) = (x - \lambda)^p - (x - \lambda) = x^p - x - c,$$

where $c = \lambda^p - \lambda$. The first equation of last display can be seen by observing that the elements $\lambda + \delta$ with $\delta \in \mathbb{F}_p$ are exacty the p roots of the polynomial $(x - \lambda)^p - (x - \lambda)$. Let $g(x) = x^p - x - c$. Then g(x) divides $x^n - 1$, which implies that x^n is congruent to 1 modulo g(x). In this case, Lemma 2.4 of [12] shows that $n \ge p^2 - 1$. Now we can prove the theorem.

Theorem 2.18 ([12], Theorem 1.1). Let L be a finite dimensional Lie algebra in characteristic p > 0 which admits non-singular derivation of order n. Write $n = p^s m$ where m is coprime to p. Suppose $m < p^2 - 1$. Then L is nilpotent.

Proof. The derivation d^{p^s} has order m. Suppose that L is not nilpotent. Then by the comment above we have $m \ge p^2 - 1$.

Mattarei in [10] presented an example of non-nilpotent solvable modular Lie algebra.

Example 2.19. Let $\alpha, \beta \in \overline{\mathbb{F}}_p$ with $\alpha\beta^{-1} \notin \mathbb{F}_p$. Let M be a p-dimensional vector space over $\overline{\mathbb{F}}_p$ with basis e_1, \dots, e_p , and let E, F be the linear transformations of M defined by $E(e_i) = e_{i+1}$ (indices modulo p), and $F(e_i) = (\alpha + i\beta)e_i$. The transformations E and F span a two-dimensional solvable Lie algebra, which admits M as a left module. Let E be the semidirect sum of E and E and E with respect to this action. Then E acts on E as a non-singular derivation, with eigenvalues E on E, and E and E and E on E on E.

The next result links the orders non-singular derivations of Lie algebras of characteristic p to some polynomial equations.

Proposition 2.20. Let p be a prime number and let n be a positive integer, prime to p. The following statements are equivalent:

- (1) there exists a non-nilpotent Lie algebra of characteristic p with a non-singular derivations of order n:
- (2) there exists an element $\alpha \in \overline{\mathbb{F}}_p$ such that $(\alpha + \lambda)^n = 1$ for all $\lambda \in \mathbb{F}_p$ (3) there exist an element $c \in \overline{\mathbb{F}}_p^*$ such that $x^p x c$ divides $x^n 1$ as elements of the polynomial ring $\overline{\mathbb{F}}_n[x]$.

Mattarei in [10] defines the set N_p of the possible orders of non-singular derivations of non-nilpotent Lie algebras of characteristic p and determine all elements of N_p which are smaller than p^3 , for p > 3.

2.5. Objectives of the project. In this section we will present some questions about solvable non-nilpotent modular Lie algebras L with a non-singular derivation d. This questions are based in the examples and results showed in the previous sections. These issues will serve as a reference for further work.

Problem 1. Is there a solvable, non-nilpotent Lie algebra over a field of characteristic $p \ge 3$ with non-singular derivation and derived length greater than 2?

Suppose that the answer to Problem 1 is yes and let L be such Lie algebra. Let $I = L^{(2)}$ and K = L/I. As $L^{(3)} = 0$ then I is abelian and so K acts on I by adjoint representation. In this case, K is a solvable Lie algebra of derived length 2 with non-singular derivation. By Proposition 3.1, there is a cocycle $\vartheta \in \mathsf{Z}^2(K,I)$ such that $L \cong K_\vartheta$. This calculation show us that every Lie algebra that answer Problem 1 can be obtained by an extension of a solvable Lie algebra of derived length 2 with non-singular derivation. So we need to understand this Lie algebras of derived length 2 to search for an answer of Problem 1. We will study a variation of this question.

Problem 2. Let K be one of the known solvable, non-nilpotent Lie algebra over a field of characteristic $p \ge 3$ with non-singular derivation and derived length 2. Is there a non-trivial K-module I and a cocycle $\vartheta \in \mathsf{Z}^2(K,I)$ such that K_ϑ has a non-singular derivation?

As first step to study Problem 2 we will try to describe some cases of abelian Lie algebras K acting over vector spaces. This study defines our next objectives in this project.

Objectives

• To characterize solvable non-nilpotent modular Lie algebras of the form $L = \langle x \rangle \oplus I$ where I is a finite dimensional abelian Lie algebra such that L admits a non-singular derivation; study the extensions of such algebras and obtain ones that admits nonsingular derivations; By Corollary 3.15, there is a quotient $Q = L^{(i)}/L^{i+1}$ with $\dim Q \geqslant p$. Study the number of such quotients.

- How the existence of non-singular derivations affect the structure of Der(L)? Can we define some algebra structure over non-singular derivations of L?
- Stydy the general structure of solvable non-nilpotent Lie algebras with non-singular derivations

3. Derivations and Lie Algebra extensions

3.1. Lie algebra extensions. An extension of a Lie algebra K by a Lie algebra I is an exact sequence

$$0 \to I \xrightarrow{i} L \xrightarrow{s} K \to 0$$

of Lie algebras. The Lie algebra L in the middle of the exact sequence contains an ideal $\mathsf{Ker}(s) = \mathrm{Im}\,i \cong I$ such that $L/I \cong K$. We will write informally that 'L is an extension of K by I'. The extension (3) splits if L has a subalgebra S such that $L = S \dotplus \mathsf{Ker}(s)$. The extension (3) is trivial if there exists an ideal S of L such that $L = S \oplus \mathsf{Ker}(s)$. The extension (3) is central if $\mathsf{Ker}(s)$ lies in the center Z(L) of L.

Let K be a Lie algebra over a field \mathbb{F} and let I be a vector space over \mathbb{F} . Denote by $\mathsf{C}^2(K,I)$ the vector space of alternating bilinear maps $\vartheta:K\times K\to I$. If I is a K-module and $\vartheta\in\mathsf{C}^2(K,I)$ has the property that

$$(4) \quad \vartheta(x, [y, z]) + \vartheta(y, [z, x]) + \vartheta(z, [x, y]) + [x, \vartheta(y, z)] + [y, \vartheta(z, x)] + [z, \vartheta(x, y)] = 0,$$

for all $x, y, z \in K$, then ϑ is said to be a *cocycle* and the vector space of coclycles is denoted by $\mathsf{Z}^2(K,I)$. Let $T:K\to I$ be a linear transformation and define, $\vartheta_T:K\times K\to I$ by

(5)
$$\vartheta_T(h,k) = T([h,k]) + [k,T(h)] - [h,T(k)] \text{ for all } h, k \in K.$$

Then $\vartheta_T \in \mathsf{Z}^2(K,I)$ and such a cocycle ϑ_T is said to be a *coboundary*. The set of coboundaries is denoted by $\mathsf{B}^2(K,I)$. The set $\mathsf{B}^2(K,I)$ is a subspace of $\mathsf{Z}^2(K,I)$, and we set $\mathsf{H}^2(K,I) = \mathsf{Z}^2(K,I)/\mathsf{B}^2(K,I)$ to be the quotient space. The first cohomology group of K and I is defined as

$$\mathsf{Z}^1(K,I) = \{ \nu \in \mathsf{Hom}(K,I) \mid \nu(\lceil h,k \rceil) = \lceil h,\nu(k) \rceil - \lceil k,\nu(h) \rceil \text{ for all } h,\ k \in K \}.$$

The next result, whose proof can be found, for instance, in [9, Section 4.2], links Lie algebra extensions to cohomology. Let K be a Lie algebra and let I be a K-module. Let $\vartheta \in \mathsf{Z}^2(K,I)$ and define the Lie algebra $K_\vartheta = K \dotplus I$ with the product

(6)
$$[x+a,y+b] = [x,y] + \vartheta(x,y) + [a,y] - [b,x]$$
 for all $x, y \in K$ and $a, b \in I$.

Proposition 3.1. The following hold for the Lie algebra K_{ϑ} :

- (1) K_{ϑ} is a Lie algebra extension of K by I;
- (2) if $\nu \in \mathsf{B}^2(K,I)$, then K_{ϑ} is isomorphic to $K_{\vartheta+\nu}$;
- (3) if $\vartheta \in \mathsf{B}^2(K,I)$, then K_ϑ is a split extension of K by I.

Conversely, let L be a Lie algebra and J be an abelian ideal of L. Then there exists $\vartheta \in \mathsf{Z}^2(L/J,J)$ such that $L \cong (L/J)_\vartheta$.

The cocycle ϑ in last the statement of Proposition 3.1 can be constructed as follows. Let $\pi: L \to L/I$ denote the natural projection, and let $\sigma: L/I \to L$ be a right inverse of π ; that is, $\pi \sigma = \mathrm{id}_{L/I}$. Then, for k+I, $h+I \in L/I$, set

$$\vartheta(k+I,h+I) = \sigma(\lceil k+I,h+I \rceil) - \lceil \sigma(k+I), \sigma(h+I) \rceil.$$

Routine calculation shows that $\vartheta \in \mathsf{Z}^2(L/I,I)$ and that $L \cong L_\vartheta$.

3.2. Compatible pairs and derivations of semidirect sums. Compatible pairs were introduced in [3] to compute automorphisms of solvable groups and solvable Lie algebras. We adopt the concept for derivations of Lie algebras. Let K and I be Lie algebras such that K acts on I via the homomorphism $\psi: K \to \mathsf{Der}(I)$. We define the semidirect sum $K \oplus_{\psi} I$ as the vector space $K \dotplus I$ with the product operation given as

$$[(k_1, a_1), (k_2, a_2)] = ([k_1, k_2], [k_1, a_2] - [k_2, a_1] + [a_1, a_2]).$$

When the K-action on I is clear from the context, then we usually suppress the homomorphism ' ψ ' from the notation and write simply $K \oplus I$. If L is a Lie algebra such that L has an ideal I and a subalgebra K in such a way that $L = K \dotplus I$, then $L \cong K \oplus_{\psi} I$ where ψ is the restriction of ad_I to K. In a semidirect sum $K \oplus I$, an element $(k, a) \in K \dotplus I$ will usually be written as k + a.

Suppose that K and I are as in the previous paragraph. The direct sum $\mathsf{Der}(K) \oplus \mathsf{Der}(I)$ of the derivation Lie algebras is a Lie algebra. An element $(\alpha, \beta) \in \mathsf{Der}(K) \oplus \mathsf{Der}(I)$ is said to be a *compatible pair* if

(7)
$$\beta([k, a]) = [\alpha(k), a] + [k, \beta(a)] \text{ for all } k \in K, a \in I.$$

We let $\mathsf{Comp}(K,I)$ denote the set of compatible pairs in $\mathsf{Der}(K) \oplus \mathsf{Der}(I)$. Using the homomorphism $\psi: K \to \mathsf{Der}(I)$ associated to the K-action on I, we can write equation (7) in another form as follows. Writing [k,a] as $\psi(k)(a)$, we have that $(\alpha,\beta) \in \mathsf{Comp}(K,I)$ if and only if the equation

$$\beta \psi(k) = \psi(\alpha(k)) + \psi(k)\beta$$

holds in Der(I) for all $k \in K$. Using commutator, this is equivalent to

(8)
$$[\beta, \psi(k)] = \psi(\alpha(k)) for all k \in K.$$

Letting $\operatorname{\sf ad}:\operatorname{\sf Der}(I)\to\operatorname{\sf Der}(I)$ denote the adjoint representation, equation (8) can be rewritten as

(9)
$$\operatorname{ad}_{\beta}\psi(k) = \psi(\alpha(k)) \quad \text{for all} \quad k \in K.$$

Therefore, $(\alpha, \beta) \in \mathsf{Comp}(K, I)$ if and only if the following diagram commutes:

$$\begin{array}{ccc} K & \stackrel{\psi}{\longrightarrow} \mathsf{Der}(I) \\ \downarrow^{\alpha} & \circlearrowleft & \bigvee^{\mathsf{ad}_{\beta}} \\ K & \stackrel{\psi}{\longrightarrow} \mathsf{Der}(I). \end{array}$$

A compatible pair $(\alpha, \beta) \in \mathsf{Der}(K) \oplus \mathsf{Der}(I)$ will usually be written as $\alpha + \beta$. If $\alpha + \beta \in \mathsf{Der}(K) \oplus \mathsf{Der}(I)$ as above, then $\alpha + \beta$ can be considered a element of $\mathfrak{gl}(I \oplus K)$ by letting $(\alpha + \beta)(a + k) = \alpha(a) + \beta(k)$ for all $a \in I$ and $k \in K$.

Proposition 3.2. Using the notation above, we have that

$$\mathsf{Comp}(K,I) = \{ \alpha + \beta \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I) \mid \alpha + \beta \in \mathsf{Der}(K \oplus I) \}.$$

In particular Comp(K, I) is a Lie subalgebra of $Der(K \oplus I)$.

Proof. Suppose that $\alpha + \beta \in \mathsf{Comp}(K, I)$ is a compatible pair and let $k + a, \ k' + a' \in K \oplus I$. Then

$$(\alpha + \beta)[k + a, k' + a'] = (\alpha + \beta)([k, k'] + ([k, a'] - [k', a] + [a, a']))$$

$$= \alpha([k, k']) + \beta([k, a'] - [k', a] + [a, a'])$$

$$= [\alpha(k), k'] + [k, \alpha(k')] + [\alpha(k), a'] - [\alpha(k'), a]$$

$$+ [\beta(a), a'] + [k, \beta(a')] - [k', \beta(a)] + [a, \beta(a')].$$

On the other hand

$$[(\alpha + \beta)(k + a), k' + a'] + [k + a, (\alpha + \beta)(k' + a')] =$$

$$[\alpha(k), k'] + [\alpha(k), a'] + [\beta(a), k'] + [\beta(a), a'] + [k, \alpha(k')] + [k, \beta(a')] + [a, \alpha(k')] + [a, \beta(a')].$$

Thus $\alpha + \beta \in \text{Der}(K \oplus I)$.

Conversely, let $\alpha + \beta \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ such that $\alpha + \beta$ is a derivation of $K \oplus I$. Then $(\alpha + \beta)|_K = \alpha$ and $(\alpha + \beta)|_I = \beta$, and so $\alpha \in \mathsf{Der}(K)$ and $\beta \in \mathsf{Der}(I)$. Further, if $k \in K$ and $a \in I$, then $[k, a] \in I$, and so

$$\beta([k,a]) = (\alpha + \beta)[k,a] = [(\alpha + \beta)(k),a] + [k,(\alpha + \beta)(a)] = [\alpha(k),a] + [k,\beta(a)].$$

Thus $\alpha + \beta \in \mathsf{Comp}(K, I)$, as required.

The fact that $\mathsf{Comp}(K,I)$ is a Lie subalgebra of $\mathsf{Der}(K \oplus I)$ follows from the fact that $\mathsf{Comp}(K,I)$ is the intersection of two Lie algebras; namely, $\mathsf{Comp}(K,I) = (\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)) \cap \mathsf{Der}(K \oplus I)$.

Lemma 3.3. Let K and I be Lie algebras over a field \mathbb{F} of characteristic p > 0. If $(\alpha, \beta) \in \mathsf{Comp}(K, I)$ then $(\alpha, \beta)^{p^t} \in \mathsf{Comp}(K, I)$ for all $t \ge 0$.

Proof. Let $L = K \oplus I$ be the semi-direct sum of K and I. By Proposition 3.2, $(\alpha, \beta) \in \mathsf{Der}(L)$. Then by Lemma 2.15, $(\alpha, \beta)^{p^t} \in \mathsf{Der}(L)$, for all $t \ge 0$. Hence, by Proposition 3.2, $(\alpha, \beta)^{p^t} \in \mathsf{Comp}(K, I)$.

Let K and I be vector spaces. Consider the Lie algebra $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ and define an action of $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ on the vector space $\mathsf{Hom}(K,\mathfrak{gl}(I))$ as follows. Let ad denote the

adjoint representation of $\mathfrak{gl}(I)$. Thus, for β , $\beta' \in \mathfrak{gl}(I)$ and $\mathsf{ad}_{\beta}(\beta') = [\beta, \beta']$. For $(\alpha, \beta) \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ and for $T \in \mathsf{Hom}(K, \mathfrak{gl}(I))$, set

(10)
$$(\alpha, \beta) \cdot T = \mathsf{ad}_{\beta} T - T\alpha.$$

Let us show that this in fact defines a Lie algebra action. First notice that $(\alpha, \beta) \cdot T \in \text{Hom}(K, \mathfrak{gl}(I))$ because it is linear combination of compositions of linear maps. Let us check that the action is compatible with Lie brackets. Let (α, β) , $(\alpha', \beta') \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$. By definition

$$(\alpha', \beta') \cdot T = \operatorname{ad}_{\beta'} T - T\alpha'.$$

Thus

$$(\alpha,\beta)\cdot((\alpha',\beta')\cdot T)=\mathsf{ad}_{\beta}\mathsf{ad}_{\beta'}T-\mathsf{ad}_{\beta'}T\alpha-\mathsf{ad}_{\beta}T\alpha'+T\alpha'\alpha.$$

In the same way,

$$(\alpha',\beta')\cdot((\alpha,\beta)\cdot T)=\mathsf{ad}_{\beta'}\mathsf{ad}_{\beta}T-\mathsf{ad}_{\beta}T\alpha'-\mathsf{ad}_{\beta'}T\alpha+T\alpha\alpha'.$$

Hence,

$$\begin{array}{lcl} (\alpha,\beta)\cdot((\alpha',\beta')\cdot T)-(\alpha',\beta')\cdot((\alpha,\beta)\cdot T) &=& \mathrm{ad}_{\beta}\mathrm{ad}_{\beta'}T-\mathrm{ad}_{\beta'}\mathrm{ad}_{\beta}T-T\alpha\alpha'+T\alpha'\alpha\\ &=& [\mathrm{ad}_{\beta},\mathrm{ad}_{\beta'}]T-T[\alpha,\alpha']. \end{array}$$

Therefore,

$$[(\alpha, \beta), (\alpha', \beta')] \cdot T = ([\alpha, \alpha'], [\beta, \beta']) \cdot T.$$

Now, if K and I are Lie algebras and I is a K-module, then there is a corresponding homomorphism $\psi \in \mathsf{Hom}(K,\mathsf{Der}(I))$. Now suppose that $\alpha + \beta \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ such that $\alpha + \beta \in \mathsf{Der}(K) \oplus \mathsf{Der}(I)$. Then, for $k \in K$, we have $\mathsf{ad}_{\beta}T(k) + T\alpha(k)$ is a derivation of I since $\mathsf{ad}_{\beta}T(k)$, $T\alpha(k) \in \mathsf{Der}(I)$.

If X is a subalgebra of $\mathsf{Der}(K) \oplus \mathsf{Der}(I)$, then the annihilator $\mathsf{Ann}_X(\psi)$ of ψ in X is defined as

$$\mathsf{Ann}_X(\psi) = \{ (\alpha, \beta) \in X \mid (\alpha, \beta) \cdot \psi = 0 \}.$$

Computing the annihilator of ψ in $Der(K) \oplus Der(I)$ explicitly, we obtain

$$\mathsf{Ann}_{\mathsf{Der}(K) \oplus \mathsf{Der}(I)}(\psi) = \{(\alpha, \beta) \in \mathsf{Der}(K) \oplus \mathsf{Der}(I) \mid (\alpha, \beta) \cdot \psi = 0\}$$
$$= \{(\alpha, \beta) \in \mathsf{Der}(K) \oplus \mathsf{Der}(I) \mid \mathsf{ad}_{\beta}\psi - \psi\alpha = 0\} = \mathsf{Comp}(K, I).$$

The last equality follows from (9). Hence we have proved the following proposition.

Proposition 3.4. Let K and I be Lie algebras such that I is also a K-module via the representation $\psi \in \mathsf{Hom}(K,\mathsf{Der}(I))$. Then $\mathsf{Comp}(K,I) = \mathsf{Ann}_{\mathsf{Der}(K)\oplus\mathsf{Der}(I)}(\psi)$, where the action of $\mathsf{Der}(K)\oplus\mathsf{Der}(I)$ on $\mathsf{Hom}(K,\mathsf{Der}(I))$ is given by (10).

3.3. **Derivations of** K_{ϑ} . In this section we present a method to describe the derivations of an extension K_{ϑ} presented in Proposition 3.1 from the derivations of the Lie algebra K. By an adaptation of the process used by Eick in [3], we set conditions which guarantee that a derivation of K can be lifted to a derivation of K_{ϑ} . It is first necessary to define an action of $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ on the vector space of alternating bilinear maps.

Let K and I be vector spaces. Let (α, β) be an element of the Lie algebra $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ and $\vartheta \in \mathsf{C}^2(K, I)$. Define an action of $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ on $\mathsf{C}^2(K, I)$ by setting for $\vartheta \in \mathsf{C}^2(K, I)$

(11)
$$(\alpha, \beta) \cdot \vartheta(h, k) = \beta(\vartheta(h, k)) - \vartheta(\alpha(h), k) - \vartheta(h, \alpha(k)),$$
 for all $h, k \in K$.
Let $(\alpha', \beta') \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$, then

$$(12) \quad (\alpha,\beta) \cdot ((\alpha',\beta') \cdot \vartheta(h,k)) = (\alpha,\beta) \cdot (\beta'(\vartheta(h,k)) - \vartheta(\alpha'(h),k) - \vartheta(h,\alpha'(k))).$$

Applying the action in each summand of the right-hand of equation (12) we have

$$(\alpha, \beta) \cdot \beta'(\vartheta(h, k) = \beta \beta' \vartheta(h, k)) - \beta' \vartheta(\alpha(h), k) - \beta' \vartheta(h, \alpha(k)),$$

$$(\alpha, \beta) \cdot \vartheta(\alpha'(h), k) = \beta \vartheta(\alpha'(h), k)) - \vartheta(\alpha'\alpha(h), k) - \vartheta(\alpha'(h), \alpha(k)),$$

$$(\alpha, \beta) \cdot \vartheta(h, \alpha'(k)) = \beta \vartheta(h, \alpha'(k)) - \vartheta(\alpha(h), \alpha'(k)) - \vartheta(h, \alpha'\alpha(k)).$$

Then

$$(\alpha, \beta) \cdot ((\alpha', \beta') \cdot \vartheta(h, k)) = \beta \beta' \vartheta(h, k)) - \beta' \vartheta(\alpha(h), k) - \beta' \vartheta(h, \alpha(k)) - \beta \vartheta(\alpha'(h), k)) + \vartheta(\alpha'\alpha(h), k) + \vartheta(\alpha'(h), \alpha(k)) - \beta \vartheta(h, \alpha'(k)) + \vartheta(\alpha(h), \alpha'(k)) + \vartheta(h, \alpha'\alpha(k)).$$

It follows

$$[(\alpha, \beta), (\alpha', \beta')] \cdot \vartheta(h, k) = [\beta, \beta'] \vartheta(h, k) - \vartheta([\alpha, \alpha'](h), k) - \vartheta(h, [\alpha, \alpha'](k))$$
$$= ([\alpha, \alpha'], [\beta, \beta']) \cdot \vartheta(h, k).$$

Therefore, the action presented in (11) is well defined.

Our goal now is to study the action of compatible pairs $\mathsf{Comp}(K,I)$ on subspaces $\mathsf{Z}^2(K,I)$ and $\mathsf{B}^2(K,I)$ of $\mathsf{C}^2(K,I)$. For this, assume that K is a Lie algebra and I is a K-module. Then for all $h, k, l \in K$, $(\alpha, \beta) \in \mathsf{Comp}(K,I)$ and $\vartheta \in Z^2(K,I)$ we have

$$\begin{array}{lll} (\alpha,\beta) \cdot \vartheta(k,[h,l]) & = & \beta(\vartheta(k,[h,l])) - \vartheta(\alpha(k),[h,l]) - \vartheta(k,\alpha([h,l])) \\ & = & \beta(\vartheta(k,[h,l])) - \vartheta(\alpha(k),[h,l]) - \vartheta(k,[\alpha(h),l]) - \vartheta(k,[h,\alpha(l)]). \end{array}$$

If

$$X = (\alpha, \beta) \cdot \vartheta(k, [h, l]) + (\alpha, \beta) \cdot \vartheta(h, [l, k]) + (\alpha, \beta) \cdot \vartheta(l, [k, h]),$$

then

$$X = \beta(\vartheta(k, [h, l])) + \beta(\vartheta(h, [l, k])) + \beta(\vartheta(l, [k, h]))$$
$$-\vartheta(\alpha(k), [h, l]) - \vartheta(\alpha(h), [l, k]) - \vartheta(\alpha(l), [k, h])$$
$$-\vartheta(k, [\alpha(h), l]) - \vartheta(h, [\alpha(l), k]) - \vartheta(l, [\alpha(k), h])$$
$$-\vartheta(k, [h, \alpha(l)]) - \vartheta(h, [l, \alpha(k)]) - \vartheta(l, [k, \alpha(h)]).$$

Using that β is linear and the definition of cocycles (4)

$$X = -\beta([k, \vartheta(h, l)]) - \beta([h, \vartheta(l, k)]) - \beta([l, \vartheta(k, h)])$$

$$+ [\alpha(k), \vartheta(h, l)] + [\alpha(h), \vartheta(l, k)] + [\alpha(l), \vartheta(k, h)]$$

$$+ [k, \vartheta(\alpha(h), l)] + [h, \vartheta(\alpha(l), k)] + [l, \vartheta(\alpha(k), h)]$$

$$+ [k, \vartheta(h, \alpha(l))] + [h, \vartheta(l, \alpha(k))] + [l, \vartheta(k, \alpha(h))].$$

Since (α, β) is a compatible pair we have by (7)

$$\beta([k, \vartheta(h, l)]) = [\alpha(k), \vartheta(h, l)] + [k, \beta(\vartheta(h, l))];$$

$$\beta([h, \vartheta(l, k)]) = [\alpha(h), \vartheta(l, k)] + [h, \beta(\vartheta(l, k))];$$

$$\beta([l, \vartheta(k, h)]) = [\alpha(l), \vartheta(k, h)] + [l, \beta(\vartheta(k, h))].$$

Hence we obtain combining the last two displayed systems of equations

$$X = -[k, \beta(\vartheta(h, l))] - [h, \beta(\vartheta(l, k))] - [l, \beta(\vartheta(k, h))]$$

$$+ [k, \vartheta(\alpha(h), l)] + [h, \vartheta(\alpha(l), k)] + [l, \vartheta(\alpha(k), h)]$$

$$+ [k, \vartheta(h, \alpha(l))] + [h, \vartheta(l, \alpha(k))] + [l, \vartheta(k, \alpha(h))].$$

Again, by the definition of the action in (11)

$$X = -[k, (\alpha, \beta) \cdot \vartheta(h, l)] - [h, (\alpha, \beta) \cdot \vartheta(l, k)] - [l, (\alpha, \beta) \cdot \vartheta(k, h)].$$

So
$$(\alpha, \beta) \cdot \vartheta \in \mathsf{Z}^2(K, I)$$
.

Now suppose that $\vartheta \in \mathsf{B}^2(K,I)$. By definition (5) there is a linear map $T:K\to I$ such that $\vartheta=\vartheta_T$. Hence

(13)
$$\vartheta_T(h,k) = T([h,k]) + [k,T(h)] - [h,T(k)].$$

Let $Y = (\alpha, \beta) \cdot \vartheta_T(h, k)$. By (13) we have

(14)
$$Y = \beta(\vartheta_T(h,k)) - \vartheta_T(\alpha(h),k) - \vartheta_T(h,\alpha(k)).$$

Using the definition of ϑ_T we have

(15)
$$\beta(\vartheta_{T}(h,k)) = \beta T([h,k]) + \beta[k,T(h)] - \beta[h,T(k)],$$

$$\vartheta_{T}(\alpha(h),k) = T([\alpha(h),k]) + [k,T\alpha(h)] - [\alpha(h),T(k)],$$

$$\vartheta_{T}(h,\alpha(k)) = T([h,\alpha(k)]) + [\alpha(k),T(h)] - [h,T\alpha(k)].$$

We can use that (α, β) is a compatible pair in equation (15) to write

$$\beta(\vartheta_T(h,k)) = \beta T([h,k]) + [\alpha(k), T(h)] + [k, \beta T(h)] - [\alpha(h), T(k)] - [h, \beta T(k)].$$

Then

$$Y = \beta T([h, k]) + [\alpha(k), T(h)] + [k, \beta T(h)] - [\alpha(h), T(k)] - [h, \beta T(k)] - T([\alpha(h), k]) - [k, T\alpha(h)] + [\alpha(h), T(k)] - T([h, \alpha(k)]) - [\alpha(k), T(h)] + [h, T\alpha(k)].$$

Making the cancellations, Y can be written as

$$Y = \beta T([h, k]) - T([\alpha(h), k]) - T([h, \alpha(k)]) + [k, \beta T(h)] - [k, T\alpha(h)] + [h, T\alpha(k)] - [h, \beta T(k)].$$

Now we use that T and the action are linear to obtain

$$Y = \beta T([h, k]) - T([\alpha(h), k] + [h, \alpha(k)]) + [k, \beta T(h) - T\alpha(h)] - [h, \beta T(k) - T\alpha(k)].$$

Hence,

$$Y = (\beta T - T\alpha)([h, k]) + [k, (\beta T - T\alpha)(h)] - [h, (\beta T - T\alpha)(k)].$$

If $U = \beta T - T\alpha : K \to I$ then

$$(\alpha, \beta) \cdot \vartheta(h, k) = U([h, k]) - [k, U(h)] - [h, U(k)].$$

Therefore, $(\alpha, \beta) \cdot \vartheta \in \mathsf{B}^2(K, I)$. We just proof

Proposition 3.5. Let K be a Lie algebra and let I be a K-module. Consider the action of Comp(K, I) on $C^2(K, I)$ defined in (11). Then the vector spaces $Z^2(K, I)$ and $B^2(K, I)$ are invariants by this action.

This result allows us to define an action of $\mathsf{Comp}(K,I)$ on $\mathsf{H}^2(K,I)$: let $\vartheta \in \mathsf{Z}^2(K,I)$ and $(\alpha,\beta) \in \mathsf{Comp}(K,I)$. Define the action

(16)
$$(\alpha, \beta) \cdot (\vartheta + \mathsf{B}^2(K, I)) = ((\alpha, \beta) \cdot \vartheta) + \mathsf{B}^2(K, I).$$

This is well defined by Proposition 3.5.

Definition 3.6. Let K be a Lie algebra and I a K-module. Let $\vartheta \in \mathsf{Z}^2(K,I)$ and consider the action of $\mathsf{Comp}(K,I)$ on $\mathsf{H}^2(K,I)$ defined in (16). Define the set of induced pairs of $\mathsf{Comp}(K,I)$ by

$$Indu(K, I, \vartheta) = Ann_{Comp(K, I)}(\vartheta + B^{2}(K, I)).$$

Now we have the tools needed to describe the Lie algebra $\operatorname{Der}(K_{\vartheta})$ from the Lie algebra $\operatorname{Der}(K)$. We will define a homomorphism $\phi: \operatorname{Der}(K_{\vartheta}) \to \operatorname{Der}(K)$, whose kernel is known and the image coincides with the induced pairs defined above. So, using the First Isomorphism Theorem for Lie algebras we have $\operatorname{Der}(K_{\vartheta})$ is isomorphic to $\operatorname{Ker}(\phi) \oplus \operatorname{Im}(\phi)$ but these subspaces correspond to structures: $\operatorname{Ker}(\phi) \cong \operatorname{Z}^1(\mathsf{K},\mathsf{I})$ and $\operatorname{Im}(\phi) \cong \operatorname{Indu}(\mathsf{K},\mathsf{I},\vartheta)$. One application of this type of construction is using known information about the algebra $\operatorname{Der}(K)$ to obtain information about the algebra $\operatorname{Der}(K_{\vartheta})$ as the existence of non-singular derivations. Therefore, this method will allow us to study some properties of Lie algebra extensions by cocycles. First we define ϕ .

Let K be a Lie algebra and I a K-module. Let $\emptyset \in H^2(K, I)$ and $d \in Der(K_{\emptyset})$. Suppose that I, as ideal of K_{\emptyset} , it is invariant under d. Recall that $K_{\emptyset} = K \oplus I$ and let $\pi_K : K_{\emptyset} \to K$ and $\pi_I : K_{\emptyset} \to I$ to be the natural vector space projections of K_{\emptyset} onto K and K_{\emptyset} onto K. Then define the maps

- $\alpha: K \to K$ by $\alpha(h) = \pi_K d(h)$, for all $h \in K$;
- $\beta: I \to I$ by $\beta(a) = d(a)$, for all $a \in I$;
- $\eta: K \to I$ by $\eta(h) = \pi_I d(h)$, for all $h \in K$.

For each $h + a \in K_{\vartheta}$ we have

(17)
$$d(h+a) = \alpha(h) + \eta(h) + \beta(a) \text{ for all } h \in K \text{ and } a \in I.$$

We can see that β is a derivation of I because it is restriction of d to I. To see that $\alpha \in \mathsf{Der}(K)$ let $x, y \in K$. To make our calculation more clear, we will denote $[\cdot, \cdot]_K$ the product in K, and by $[\cdot, \cdot]_{\vartheta}$ the product in K_{ϑ} . Then by product definition on K_{ϑ}

$$d([h,k]_{\vartheta}) = d([h,k]_K + \vartheta(h,k)).$$

By the decomposition showed in (17)

(18)
$$d([h,k]_{\vartheta}) = \alpha([h,k]_K) + \eta([h,k]_K) + \beta(\vartheta(h,k)).$$

We can calculate

$$[d(h), k]_{\vartheta} + [h, d(k)]_{\vartheta} = [\alpha(h) + \eta(h), k]_{\vartheta} + [h, \alpha(k) + \eta(k)]_{\vartheta},$$

and use the definition of the product in equation (19) to get

(20)
$$[d(h), k]_{\vartheta} + [h, d(k)]_{\vartheta} = [\alpha(h), k]_K + \vartheta(\alpha(h), k) - [k, \eta(h)]_{\vartheta}$$
$$+ [h, \alpha(k)]_K + \vartheta(h, \alpha(k)) + [h, \eta(k)]_{\vartheta}.$$

Comparing the components of K in (18) and (20) we have

$$\alpha([h, k]_K) = [\alpha(h), k]_K + [h, \alpha(k)]_K,$$

and $\alpha \in \text{Der}(K)$.

Now it is possible define our homomorphism ϕ . Let K be a Lie algebra and I a K-module. Let $\vartheta \in H^2(K, I)$ and suppose that I, as an ideal of K_ϑ , is invariant under derivations. For

all $x + a \in K_{\vartheta}$ and $d \in \mathsf{Der}(K)_{\vartheta}$ write $d(h + a) = \alpha(h) + \eta(h) + \beta(a)$ with $\alpha \in \mathsf{Der}(K)$ and $\beta \in \mathsf{Der}(I)$. Then define $\phi : \mathsf{Der}(K_{\vartheta}) \to \mathsf{Der}(K) \oplus \mathsf{Der}(I)$ by

(21)
$$\phi(d) = (\alpha, \beta).$$

The following calculation will check that ϕ is a Lie algebra morphism. Let $d, d' \in \mathsf{Der}(K_{\vartheta})$ such that

$$d(h+a) = \alpha(h) + \eta(h) + \beta(a)$$

$$d'(h+a) = \alpha'(h) + \eta'(h) + \beta'(a),$$

Then

$$dd'(h) = d(\alpha'(h) + \eta'(h) + \beta'(a))$$

= $\alpha\alpha'(h) + \eta(\alpha'(h)) + \beta(\eta'(h) + \beta'(a)).$

Hence, $\pi_K dd'(h) = \alpha \alpha'(h)$. Analogously, $\pi_K d' d(h) = \alpha' \alpha(h)$. So $\pi_K[d, d'] = [\alpha, \alpha']$. As β and β' are defined by restriction of d and d' to I, respectively, then $\pi_I[d, d'] = [\beta, \beta']$. Therefore,

$$\phi([d, d']) = ([\alpha, \alpha'], [\beta, \beta']) = [(\alpha, \beta), (\alpha', \beta')] = [\phi(d), \phi(d')],$$

and ϕ is indeed a Lie algebra homomorphism

The next result presents the first connection between compatible pairs and the homomorphism ϕ .

Lemma 3.7. Let K be a Lie algebra and I a K-module. Let $\vartheta \in H^2(K, I)$ and suppose that I, as an ideal of K_ϑ , is invariant under derivations. Let $\varphi : \mathsf{Der}(K_\vartheta) \to \mathsf{Der}(K) \oplus \mathsf{Der}(I)$ given by $\varphi(d) = (\alpha, \beta)$, defined in (21). Then $\mathsf{Im}(\varphi) \leqslant \mathsf{Comp}(K, I)$.

Proof. Let $(\alpha, \beta) \in \mathsf{Im}(\phi)$. Then there is $d \in \mathsf{Der}(K_{\vartheta})$ such that $\phi(d) = (\alpha, \beta)$. If $h \in K$ and $a \in I$ then

$$\beta([h, a]_{\vartheta}) = d([h, a]_{\vartheta}) \qquad (\text{since } [h, a] \in I)$$

$$= [d(h), a]_{\vartheta} + [h, d(a)]_{\vartheta} \qquad (d \in \text{Der}(K_{\vartheta}))$$

$$= [\alpha(h) + \eta(h), a]_{\vartheta} + [h, \beta(a)]_{\vartheta}$$

$$= [\alpha(h), a]_{\vartheta} + [h, \beta(a)]_{\vartheta} \qquad (\text{since } I \text{ is abelian}).$$

Now we present the main theorem of this section. Recall that for a Lie algebra K, for a K-module I, and for $\vartheta \in \mathsf{Z}^2(K,I)$, $\mathsf{Indu}(K,I,\vartheta)$ was defined in Definition 3.6.

Theorem 3.8. Let K be a Lie algebra and let I be a K-module. Let $\vartheta \in H^2(K, I)$ and suppose that I, as ideal of K_ϑ , is invariant by derivations. Let $\phi : \mathsf{Der}(K_\vartheta) \to \mathsf{Der}(K) \oplus \mathsf{Der}(I)$ be defined as above. Then:

- $(1) \ \operatorname{Im}(\phi) = \operatorname{Indu}(K, I, \vartheta)$
- (2) $\operatorname{Ker}(\phi) \cong \operatorname{Z}^1(\mathsf{K},\mathsf{I})$

Proof. In this proof we will denote the product in K_{ϑ} of $h \in K$ and $a \in I$ just by the action [h, a] of K on I, since $[h, a]_{\vartheta} = [h, a]$.

1) Let $(\alpha, \beta) \in Indu(K, I, \vartheta)$. By definition

$$(\alpha, \beta) \cdot \vartheta = 0 \mod \mathsf{B}^2(K, I).$$

Then there is a linear map $T: K \to I$ such that, for all $h, k \in K$,

(22)
$$\beta(\vartheta(h,k)) - \vartheta(\alpha(h),k) - \vartheta(h,\alpha(k)) = T([h,k]) + [k,T(h)] - [h,T(k)].$$

Let $h \in K$, $a \in I$ and define the linear map $(\alpha, \beta)^* : K_{\vartheta} \to K_{\vartheta}$ by

$$(23) \qquad (\alpha, \beta)^*(h+a) = \alpha(h) - T(h) + \beta(a).$$

Let's check that $(\alpha, \beta)^*$ is a derivation of K_{β} . Let $k + b \in K_{\beta}$. If

$$X = (\alpha, \beta)^*([h+a, k+b]_{\vartheta})$$

then

$$X = (\alpha, \beta)^*([h, k]_K + \vartheta(h, k) + [h, b] - [k, a])$$

= $\alpha([h, k]_K) - T([h, k]_K) + \beta(\vartheta(h, k)) + \beta([h, b]) - \beta([k, a]).$

Now, let

$$Y = [(\alpha + \beta)^*(h + a), k + b]_{\vartheta} + [h + a, (\alpha + \beta)^*(k + b)]_{\vartheta}.$$

By definition (23)

$$[(\alpha + \beta)^*(h+a), k+b]_{\vartheta} = [\alpha(h) - T(h) + \beta(a), k+b]_{\vartheta}.$$

Hence, by product definition in (6)

$$[\alpha(h) - T(h) + \beta(a), k + b]_{\vartheta} = [\alpha(h), k]_K + \vartheta(\alpha(h), k) + [\alpha(h), b] - [k, -T(h) + \beta(a)]$$
 and

$$[(\alpha + \beta)^*(h+a), k+b]_{\vartheta} = [\alpha(h), k]_K + \vartheta(\alpha(h), k) + [\alpha(h), b] - [k, -T(h) + \beta(a)].$$
 Analogously,

 $[h+a,(\alpha+\beta)^*(k+b)]_{\vartheta} = [h,\alpha(k)]_K + \vartheta(h,\alpha(h)) + [h,-T(k)+\beta(b)] - [\alpha(k),a].$ It follows

$$Y = [\alpha(h), k]_K + [h, \alpha(k)]_K + \vartheta(\alpha(h), k) + \vartheta(h, \alpha(h)) + [\alpha(h), b] + [h, \beta(b)] - [k, \beta(a)] - [\alpha(k), a] - [h, T(k)] + [k, T(h)].$$

We can use that $(\alpha, \beta) \in \mathsf{Comp}(K, I)$ to write Y as

$$Y = \alpha([h, k]_K) + \vartheta(\alpha(h), k) + \vartheta(h, \alpha(h)) + \beta([h, b]) - \beta([k, a]) - [h, T(k)] + [k, T(h)].$$

By equation (22)

$$\vartheta(\alpha(h), k) + \vartheta(h, \alpha(k)) = \beta(\vartheta(h, k)) - T([h, k]) - [k, T(h)] + [h, T(k)].$$

Then

$$Y = [\alpha(h), k]_K + [h, \alpha(k)]_K + \beta(\vartheta(h, k)) - T([h, k]) - [k, T(h)] + [h, T(k)] + \beta([h, b]) - \beta([k, a]) - [h, T(k)] + [k, T(h)].$$

As X = Y then $(\alpha, \beta)^*$ is a derivation.

Besides, observe that $\pi_K(\alpha, \beta)^* = \alpha$ and $\pi_I(\alpha, \beta)^* = \beta$. Hence $\phi((\alpha + \beta)^*) = (\alpha, \beta)$, that is, $\mathsf{Indu}(K, I, \vartheta) \subseteq \mathsf{Im}(\phi)$.

Now, suppose that $(\alpha, \beta) \in \text{Im}(\phi)$. Then there is $d \in \text{Der}(K_{\vartheta})$ such that

$$\phi(d) = (\alpha, \beta).$$

By Theorem 3.7 we have $\mathsf{Im}(\phi) \subseteq \mathsf{Comp}(K, I)$. Then it is enough to show that there is a linear map $T: K \to I$ such that the equation (22) is satisfied.

For each $h + a \in K_{\vartheta}$ we can use the decomposition defined in (17) to write

$$d(h + a) = \alpha(h) + \eta(h) + \beta(a).$$

Then

$$[d(h+a), k+b]_{\vartheta} = [\alpha(h) + \eta(h) + \beta(a), k+b]_{\vartheta}.$$

By product definition in (6) we get

$$[\alpha(h) + \eta(h) + \beta(a), k + b]_{\vartheta} = [\alpha(h), k]_K + \vartheta(\alpha(h), k) + [\alpha(h), b] - [k, \eta(h) + \beta(a)].$$

Hence

$$[d(h+a), k+b]_{\vartheta} = [\alpha(h), k]_K + \vartheta(\alpha(h), k) + [\alpha(h), b] - [k, \eta(h) + \beta(a)].$$

Analogously,

$$[h+a,d(k+b)]_{\vartheta} = [h,\alpha(k)]_K + \vartheta(h,\alpha(k)) + [h,\eta(k)+\beta(b)] - [\alpha(k),a].$$

Therefore

(24)

$$[d(h+a), k+b]_{\vartheta} + [h+a, d(k+b)]_{\vartheta} = [\alpha(h), k]_{K} + [h, \alpha(k)]_{K} + \vartheta(\alpha(h), k) + \vartheta(h, \alpha(k)) + [\alpha(h), b] + [h, \beta(b)] - [\alpha(k), a] - [k, \beta(a)] - [k, \eta(h)] + [h, \eta(k)].$$

We can use that $(\alpha, \beta) \in \mathsf{Comp}(K, I)$ in the last displayed equation to write

$$[d(h+a), k+b]_{\vartheta} + [h+a, d(k+b)]_{\vartheta} = \alpha([h,k]_K) + \vartheta(\alpha(h), k) + \vartheta(h, \alpha(k)) + \beta([h,b]) - \beta([k,a]) - [k, \eta(h)] + [h, \eta(k)].$$

Now we will calculate $d([k+a, h+b]_{\vartheta})$. By product definition

$$d(\lceil h+a,k+b \rceil_{\vartheta}) = d(\lceil h,k \rceil_K + \vartheta(h,k) + \lceil h,b \rceil - \lceil k,a \rceil).$$

Hence

$$d([h,k]_K + \vartheta(h,k) + [h,b] - [k,a]) = \alpha([h,k]_K) + \eta([h,k]_K) + \beta(\vartheta(h,k)) + \beta([h,b]) - \beta([k,a]).$$

As d is a derivation then we have equality

$$d([h + a, k + b]_{\vartheta}) = [d(h + a), k + b]_{\vartheta} + [h + a, d(k + b)]_{\vartheta}.$$

It follows

$$\vartheta(\alpha(h), k) + \vartheta(h, \alpha(k)) - [k, \eta(h)] + [h, \eta(k)] = \eta([h, k]_K) + \beta(\vartheta(h, k)).$$

We can rearrange the last displayed equation to get

$$-(\eta(\lceil h, k \rceil_K) + \lceil k, \eta(h) \rceil - \lceil h, \eta(k) \rceil) = \beta(\vartheta(h, k)) - \vartheta(\alpha(h), k) - \vartheta(h, \alpha(k)).$$

Therefore $T = -\eta$ satisfies the equation (22) e $\text{Im}(\phi) \subseteq \text{Indu}(K, I, \vartheta)$.

2) Let $d \in \text{Ker}(\phi)$. The decomposition showed in (17) provide us

$$d(h) = \eta(h), h \in K.$$

Let $h, k \in K$. By definition of derivation

(25)
$$d(\lceil h, k \rceil_{\vartheta}) = \lceil d(h), k \rceil_{\vartheta} + \lceil h, d(k) \rceil_{\vartheta}.$$

We can use product definition in K_{ϑ} to write

$$d([h,k]_{\vartheta}) = d([h,k]_K + \vartheta(h,k)).$$

Since $d \in Ker(\phi)$ then

$$d([h,k]_{\vartheta}) = \eta([h,k]_K).$$

By other hand,

$$[d(h), k]_{\vartheta} + [h, d(k)]_{\vartheta} = [\eta(h), k]_{\vartheta} + [h, \eta(k)]_{\vartheta}.$$

Then (25) it is equal to

$$\eta([k, h]_K) = [k, \eta(k)] - [h, \eta(k)],$$

and $\eta \in \mathsf{Z}^1(\mathsf{K},\mathsf{I})$. Observe that η is the restriction of d to K. Denote the restriction of d to K by $d|_K$. Therefore, if $d \in \mathsf{Ker}(\phi)$ then $d|_K \in \mathsf{Z}^1(K,I)$.

Let $d \in \mathsf{Ker}(\phi)$ and define $\sigma : \mathsf{Ker}(\phi) \to (\mathsf{Z}^1(K,I),+)$ by $\sigma(d) = d|_K$. Then $\sigma(\mathsf{Ker}(\phi)) \subseteq \mathsf{Z}^1(\mathsf{K},\mathsf{I})$. Let $d' \in \mathsf{Ker}(\phi)$. Then

$$\sigma(d+d') = (d+d')|_K = d|_K + d'|_K = \sigma(d) + \sigma(d').$$

So σ it is group homomorphism.

First we will show that σ is injective. Let $d, d' \in \mathsf{Ker}(\phi)$ such that $\sigma(d) = \sigma(d')$. Let $h + a \in K_{\vartheta}$. Then

$$d(h + a) = d(h) = d|_{K}(h) = d'|_{K}(h) = d'(h) = d(h + a).$$

Hence d=d'. Now, to prove that σ is onto, let $\eta \in \mathsf{Z}^1(K,I)$ and define a linear map $d:K_\vartheta \to K_\vartheta$ by

$$d(h+a) = T(x), h \in K, a \in I.$$

We will show that d is a derivation. Observe that, for all $h + a, k + b \in K_{\vartheta}$ we have

$$d([h + a, k + b]_{\vartheta}) = d([h, k]_K + \vartheta(h, k) + [h, b] - [k, a]) = \eta([h, k]_K).$$

By other hand,

$$[d(h+a), k+b]_{\vartheta} + [h+a, d(k+b)]_{\vartheta} = [\eta(h), k+b]_{\vartheta} + [h+a, \eta(k)]_{\vartheta}$$

= -[k, \eta(h)] + [h, \eta(k)].

Since $\eta \in \mathsf{Z}^1(K,I)$ then $d([h+a,k+b]_{\vartheta}) = [d(h+a),k+b]_{\vartheta} + [h+a,d(k+b)]_{\vartheta}$, hence $d \in \mathsf{Der}(K_{\vartheta})$. It is immediate that $\phi(d) = 0$. So $d \in \mathsf{Ker}(\phi)$. As by definition, $\sigma(d) = \eta$ then σ is onto and, therefore, is an isomorphism.

Example 3.9. Let L be a Lie algebra with an abelian ideal I invariant by derivations. Set K = L/I. By Proposition 3.1, there is a $\vartheta \in \mathsf{Z}^2(K,I)$ such that $L \cong K_\vartheta$. Then we can apply the map $\phi : \mathsf{Der}(L) \to \mathsf{Der}(L/I) \oplus \mathsf{Der}(I)$ defined in Theorem 3.8. Further, if $d \in \mathsf{Der}(L)$ then $\phi(d) = (\alpha, \beta) \in \mathsf{Comp}(L/I, I)$. Hence, each derivation of L gives rise to a pair of derivations $\alpha \in \mathsf{Der}(L/I)$ and $\beta \in I$. In particular, if d is non-singular then α and β are non-singulars.

3.4. Compatible pairs and Jacobson Theorem. In this section we show some examples of the use of compatible pairs in the study of non-singular derivations.

Example 3.10. Let K and I be finite-dimensional Lie algebras over an algebraically closed field \mathbb{F} . Suppose that K acts on I by representation $\psi: K \to \mathsf{Der}(I)$. Let $D \leqslant \mathsf{Comp}(K,I)$ be a subalgebra. Define $L = K \oplus I$. By Proposition 3.2, $D \leqslant \mathsf{Der}(L)$. If D is nilpotent then L has a decomposition into generalized eigenspaces of D. This decomposition induces decompositions in K and I, since as K and I are invariants under D. Hence,

$$L = K_{\lambda_1} \oplus \cdots \oplus K_{\lambda_r} \oplus I_{\mu_1} \cdots \oplus I_{\mu_s}$$
.

In particular, we have $[K_{\lambda_i}, I_{\mu_j}] \subseteq I_{\lambda_i + \mu_j}$ if $\lambda_i + \mu_j$ is eigenvalue of D in I. Otherwise $[K_{\lambda_i}, I_{\mu_j}] = 0$.

From this example we can state a result:

Proposition 3.11. Let K and I be finite-dimensional Lie algebras over an algebraically closed field \mathbb{F} . Suppose that K acts on I by representation $\psi: K \to \mathsf{Der}(I)$. Let $D \leqslant \mathsf{Comp}(K,I)$ be a subalgebra. Suppose that 0 is not generalized eigenvalue of D. Then if either the characteristic of \mathbb{F} is zero or the characteristic of \mathbb{F} is p and D has at most p-1 generalized eigenvalues, then the Lie subalgebra $\psi(K) \leqslant \mathfrak{gl}(I)$ is nilpotent.

Proof. Let $L=K_{\lambda_1}\dotplus\cdots\dotplus K_{\lambda_r}\dotplus I_{\mu_1}\cdots\dotplus I_{\mu_s}$ the generalized eigenspace decomposition presented in Example 3.10. Suppose that 0 is not generalized eigenvalues of D. Let $E_K=\{\lambda_1,\cdots,\lambda_r\}$ and $E_I=\{\mu_1,\cdots,\mu_s\}$ be the generalized eigenvalues of D in K and I, respectively. Let $k\in K_{\alpha_j}$, $a\in I_{\mu_i}$ then

$$\begin{cases} \psi^{n}(k)(a) \in I_{\mu_{i}+n\lambda_{j}} & if \quad \mu_{i}+n\lambda_{j} \in E_{I} \\ \psi^{n}(k)(a) = 0 & if \quad \mu_{i}+n\lambda_{j} \notin E_{I}. \end{cases}$$

- If the characteristic of \mathbb{F} is 0 then the linear functions $\mu_i + \lambda_j, \mu_i + 2\lambda_j, \cdots, \mu_i + n\lambda_j \cdots$ are all distinct since $\lambda_j \neq 0$. Since dim I is finite, so $\mu_i + n\lambda_j \notin E_I$ for some n > 0. Hence $\psi(k)^n = 0$.
- If the characteristic of \mathbb{F} is p > 0 and s < p then the linear forms $\{\mu_i + \lambda_j, \mu_i + 2\lambda_j, \dots, \mu_i + (p-1)\lambda_j, \mu_i\}$ cannot be all non-trivial, and so $\mu_i + n\lambda_j = 0$ for some $1 \le n \le p$, and so $\psi^n(k) = 0$ for some $n, 1 \le n \le p$.

In both cases $\psi(k)$ is nilpotent for all $k \in K_{\lambda_j}$, $1 \le j \le r$. Let $S = \bigcup \psi(K_{\lambda_j})$. Since S is a weakly closed set such that each element is nilpotent. Then the associative subalgebra $\langle S \rangle \le \operatorname{End}(I)$ is nilpotent. We conclude that the Lie algebra $\langle S \rangle = \psi(K) \le \mathfrak{gl}(I)$ is nilpotent.

For our next example we need some result about traces of matrices.

Proposition 3.12. Let \mathbb{F} be a field of characteristic $p \ge 0$. Suppose that $A \in \mathsf{M}(n,\mathbb{F})$ with n < p or p = 0. Then A is nilpotent if, and only if, the trace of matrices A^r is zero, for $1 \le r \le n$.

Proof. Let $\overline{\mathbb{F}}$ be the algebraic closure of \mathbb{F} and assume without loss of generality that A is in Jordan normal form. We will use that a matrix is nilpotent if, and only if, zero is the only eigenvalue of A.

Hence A is as a diagonal block matrix where each block is formed by grouping the Jordan blocks associated to same eigenvalue. Let $\lambda_1, \dots, \lambda_k$ be the non-zero eigenvalues of A. Denote by A_t the diagonal block in A associated with eigenvalue λ_t and let assume that A_t is an $n_j \times n_j$ -matrix. Then

$$(26) tr(A^r) = n_1 \lambda_1^n + \dots + n_k \lambda_k^n.$$

Suppose that A is nilpotent. Then zero is the only eigenvalue of A, and also of A^r for all $r \ge 1$, and by equation (26) we have $tr(A^r) = 0$ for $1 \le r \le n$.

Conversely, suppose that $tr(A^r) = 0$ for $1 \le r \le n$. From equation (26) we can extract the system

$$(27) n_1 \lambda_1^r + \dots + n_k \lambda_k^r = 0, 1 \leqslant r \leqslant k,$$

of linear equations in the variables n_1, \dots, n_k over \mathbb{F} considering each n_j as the element $n_j \cdot 1$ in \mathbb{F} , whose matrix of coefficients is

$$C = \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_k^2 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_k^k \end{bmatrix}.$$

Denote by $m_i(\lambda)$ the operation that multiplies line i of a matrix by λ and A^t the transposed matrix of A. So we can write

$$C = m_1(\lambda_1).m_2(\lambda_2)\cdots m_k(\lambda_k).V^t$$
,

where

$$V = \begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 \cdots & \lambda_1^{k-1} \\ 1 & \lambda_2 & \lambda_2^2 \cdots & \lambda_2^{k-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_k & \lambda_k^2 \cdots & \lambda_k^{k-1} \end{bmatrix}$$

is the Vandermonde matrix in the variables $\lambda_1, \lambda_2, \dots, \lambda_k$ whose determinant is $\det V = \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i)$. As the λ_i are pairwise distinct we have that $\det V$ is non-zero. Then the determinant of C is $\lambda_1, \lambda_2, \dots, \lambda_k$ det V. As we assume that $\lambda_i \neq 0$ for $1, \cdot, k$, C is non-singular. It follows that the system (27) has only trivial solution. Therefore, considered as an element of \mathbb{F} , each n_j is zero. If p = 0 then zero is the only eigenvector of A. If p > 0, then, since we assume that n < p, we also have that $n_j < p$ for all j. Hence the fact that $n_j = 0$ in \mathbb{F} , implies that $n_j = 0$ as a natural number. Conclude that zero is the only eigenvalue of A.

Proposition 3.13 ([1], Fact 3.17.13). Let \mathbb{F} be a field of characteristic p > 0. Let $A, B, C \in M(n, \mathbb{F})$ with p = 0 or n < p. If $[A, B] = C + \lambda B$, for some $\lambda \in \mathbb{F}$ and [B, C] = 0 then $[A, B^r] = rB^{r-1}C + \lambda rB^r$ for all $r \ge 1$. In particular, if $\lambda \ne 0$ and C is nilpotent then B is nilpotent.

Proof. We prove this result by induction on r. The case r = 1 follows from the conditions. Suppose that result is valid for (r - 1). Then,

$$[A, B^{r-1}] = (r-1)B^{r-2}C + \lambda(r-1)B^{r-1}.$$

We can rewrite this equation as

$$\lambda(r-1)B^{r-1} = AB^{r-1} - B^{r-1}A - (r-1)B^{r-2}C.$$

Multiplying the the last equation on the right by B we have

$$\lambda(r-1)B^r = AB^r - B^{r-1}(AB) - (r-1)B^{r-2}(CB).$$

By the conditions we can write $AB = BA + C + \lambda B$ and CB = BC. Replacing these terms above we obtain

$$\lambda(r-1)B^{r} = AB^{r} - B^{r}A - B^{r-1}C - \lambda B^{r} - (r-1)B^{r-1}C.$$

Therefore,

$$AB^r - B^r A = \lambda r B^r + r B^{r-1} C.$$

For the second statement suppose $\lambda \neq 0$ and C is nilpotent with nilpotency index m. Using the first assertion we have

$$B^r = (1/\lambda r)[A, B^r] - (1/\lambda)B^{r-1}C, \text{ for all } r \geqslant 1.$$

Since, B and C commute, $(B^{r-1}C)^m = (B^{r-1})^m(C)^m = 0$, Hence, for all $r \ge 1$ $B^{r-1}C$ is nilpotent and has trace zero by Proposition 3.12. As the trace of commutators is always

zero then $tr([A, B^r]) = 0$ for all $r \ge 1$. It follows that $tr(B^r) = 0$ for all $r \ge 1$ and again by Proposition 3.12 we conclude that B is nilpotent.

Now we can present a result similar to the Proposition 3.11 but with a new proof using compatible pairs.

Theorem 3.14. Let K and I be finite dimensional Lie algebras over a field of characteristic $p \ge 0$ such that K is solvable. Suppose that K acts on I by representation $\psi : K \to \mathsf{Der}(I)$. Let $(\alpha, \beta) \in \mathsf{Comp}(K, I)$ such that α has no eigenvalue 0. If either p = 0 or p > 0 and dimension of I is less than p then $Tr(\psi^n(k)) = 0$, for all $k \in K$. In these two cases, $\psi(k)$ is nilpotent for all $k \in K$.

Proof. As α has no eigenvalue 0, it is non-singular. Suppose that the order of α , considered as an endomorphism of I, is p^tm . Then by Lemma 3.3, $(\alpha, \beta)^{p^t} = (\alpha^{p^t}, \beta^{p^t})$ is a compatible pair and by Proposition 2.16, α^{p^t} is diagonalizable. Hence by possibly replacing (α, β) by $(\alpha, \beta)^{p^t}$, we may assume without loss of generality that α is diagonalizable. Let $x_1, ..., x_s$ be a basis of K such that $\alpha(x_i) = \lambda_i x_i$. For all $a \in \mathfrak{gl}(I)$ denote by [a] the matrix of a in this basis. Then, by equation (8),

$$[[\beta], [\psi(x_i)]] = \lambda_i [\psi(x_i)].$$

We can apply Proposition 3.13 to this last equation for $A = [\beta]$, $B = [\psi(x_i)]$, C = 0 and $\lambda = \lambda_i \neq 0$ to conclude that $\psi(x_i)$ is nilpotent for $1 \leq i \leq s$. Now we observe that if K is a nilpotent Lie algebra in either characteristic is 0 or characteristic p with dimension of L less than p then Lie's Theorem (Theorem 2.6) is valid. Lie's Theorem grants that there is a basis of I such that the image of ψ lies in the subalgebra of $\mathfrak{gl}(I)$ formed by upper triangular matrices. Since $[\psi(x_i)]$ is nilpotent and upper triangular, it must be strictly upper triangular (that is, it contains zeros in the diagonal). Then all $\psi(k)$, for all $k \in K$, are also strictly upper triangular matrices, since they are linear combinations of the $\psi(x_i)$. Hence every $\psi(k)$ is nilpotent.

Corollary 3.15. Let L be a solvable Lie algebra over a field \mathbb{F} of characteristic $p \geq 0$. Suppose that L has a nonsingular derivation. If either p = 0 or p > 0 and dimension of $L^{(i)}/L^{(i+1)} < p$, for all i, then L is nilpotent.

Proof. Suppose that $L > L^{(1)} > \cdots > L^{(k)} > L^{(k+1)} = 0$ is the derived series of L. We prove this result by induction on k. When k = 0, then L is clearly nilpotent, as it is actually abelian. Suppose that the result holds for Lie algebras of derived length k-1 and assume that L has derived length k. Then $I = L^{(k)}$ is an abelian ideal of L. Setting K = L/I, we have that K acts on I (see Example 2.7) and let us call the corresponding representation ψ . Further, since the terms of the derived series are invariant under derivations, a non-singular derivation $\delta \in \text{Der}(L)$ gives rise to a compatible pair $(\alpha, \beta) \in \text{Comp}(K, I)$ as explained in Example 3.9. Since δ is non-singular, so are $\alpha \in \text{Der}(K)$ and $\beta \in \text{Der}(I)$. Note that K is solvable of solvable length k-1 and $K^{(i)}/K^{(i+1)} \cong L^{(i)}/L^{(i+1)}$ for all $i \leq k-1$. Hence the induction hypothesis is valid for K and we obtain that K is nilpotent. Further, since

 $\dim I < p$, we have that $\psi(k)$ is nilpotent for all k. Now Proposition 2.3 implies that L is nilpotent. \Box

REFERENCES

- [1] D. S. Bernstein. Matrix Mathematics: Theory, Facts and Formulas, 2nd ed. Princeton University Press, 2009.
- [2] W. A. de Graaf. *Lie Algebras Theory and Algorithms*. North-Holland Mathematical Library. Elsevier Science, 2000.
- [3] B. Eick. Computing the automorphism group of a solvable lie algebra. *Linear Algebra and its Applications*, 382:195–209, 2003.
- [4] A.I. Kostrikin G. Benkart and M. I. Kusnetsov. Finite-dimensional simple lie algebras with a nonsingular derivation. *Journal of Algebra*, 171:894–916, 1995.
- [5] J. E. Humphreys. Introduction to Lie Algebras and Representation Theory. Springer-Velag New York Inc., 1972.
- [6] W.G. Lister J. Dixmier. Derivations of nilpotent lie algebras. *Proceedings of American Mathematical Society*, 8:155–158, 1957.
- [7] N. Jacobson. A note on automorphism and derivations of lie algebras. *Proceedings of American Mathematical Society*, 6:281–283, 1955.
- [8] N. Jacobson. Lie Algebras. Dover Publications, Inc., 1962.
- [9] A. W. Knapp. Lie groups, Lie algebras, and cohomology. Mathematical Notes 34. Princeton University Press, 1988.
- [10] S. Mattarei. The orders of nonsingular derivations of modular lie algebras. *Israel Journal of Mathematical*, 160:23–40, 2007.
- [11] A. Shalev. The structure of finite p-groups: effective proof of the coclass conjectures. *Inventiones Mathematicae*, (115):315–345, 1994.
- [12] A. Shalev. The orders of nonsingular derivations. *Journal of the Australian Mathematical Society*, Series A(67):254–260, 1999.

DEPARTAMENTO DE CIÊNCIAS EXATAS E APLICADAS, INSTITUTO DE CIÊNCIAS EXATAS E APLICADAS, UNIVERSIDADE FEDERAL DE OURO PRETO, RUA 37, 115, JOÃO MONLEVADE, MG, BRAZIL, MARCOSGOULART@DECEA.UFOP.BR