Доказать в исчислении высказываний (буквы обозначают произвольные формулы):

$$A{\vee}(B\&C)\equiv(A{\vee}B)\&(A{\vee}C)$$

Решение.

1) Доказательство формулы слева направо: $A \lor (B \& C) \vdash (A \lor B) \& (A \lor C)$.

1.	$A \vee (B \& C)$	гипотеза
2.	$\neg A \to (B \& C)$	определение дизъюнкции для гипотезы
3.	$(B\&C)\rightarrow B$	свойство конъюнкции К2
4.	$(B\&C)\rightarrow C$	свойство конъюнкции К2
5.	$\neg A \rightarrow B$	секвенция 1 для 2 и 3.
6.	$A \lor B$	определение дизъюнкции для 5
7.	$\neg A \rightarrow C$	секвенция 1 для 2 и 4.
8.	$A \lor C$	определение дизъюнкции для 7
9.	$(A \vee B) \& (A \vee C)$	свойство конъюнкции К1 для 6 и 8

Таким образом, доказано что $A \lor (B \& C) \vdash (A \lor B) \& (A \lor C)$.

2) Доказательство формулы справа налево: $(A \lor B) \& (A \lor C) \vdash A \lor (B \& C)$.

1.	$(A \lor B) \& (A \lor C)$	гипотеза
2.	$A \lor B$	свойство конъюнкции К2 из 1
3.	$\neg A \rightarrow B$	определение дизъюнкции для 2
4.	$A \lor C$	свойство конъюнкции К2 из 1
5.	$\neg A \rightarrow C$	определение дизъюнкции для 4
6.	$B \to (C \to (B \& C))$	свойство конъюнкции K1 для $X = B, Y = C$
7.	$\neg A \rightarrow (C \rightarrow (B \& C))$	секвенция 1 для 3 и 6 при $X = -A$; $Y = B$; $Z = C \rightarrow (B \& C)$
8.	$(\neg A \to (C \to (B \& C))) \to ((\neg A \to C) \to (\neg A \to (B \& C)))$	аксиома 2 при $X = \neg A$, $Y = C$, $Z = (B \& C)$
9.	$(\neg A \to C) \to (\neg A \to (B \& C))$	Modus ponens для 8 и 7
10.	$\neg A \rightarrow (B \& C)$	Modus ponens для 9 и 5
11.	$A \vee (B \& C)$	определение дизъюнкции для 10

Таким образом, доказано что $(A \lor B) \& (A \lor C) \vdash A \lor (B \& C)$.

Т.к. формула доказана в обе стороны, то $A \lor (B \& C) \equiv (A \lor B) \& (A \lor C)$.

При доказательстве использованы:

Определение дизъюнкции: $\phi \lor \psi \equiv \neg \phi \rightarrow \psi$

Свойства конъюнкции:

К1.
$$X, Y \vdash X \& Y$$
 или $\vdash X \to (Y \to (X \& Y))$

$$K2. X & Y \vdash X$$
 и $X & Y \vdash Y$ или $\vdash (X & Y) \to X$ и $\vdash (X & Y) \to Y$.

Аксиома 2:
$$(X \to (Y \to Z)) \to ((X \to Y) \to (X \to Z))$$

Секвенция 1:
$$X \rightarrow Y, Y \rightarrow Z \vdash X \rightarrow Z$$

Правило вывода Modus ponens: $X \to Y, X \vdash Y$