Chapter 14

Unicast Routing Protocols: RIP, OSPF, and BGP

Objectives

Upon completion you will be able to:

- Distinguish between intra and interdomain routing
- Understand distance vector routing and RIP
- Understand link state routing and OSPF
- Understand path vector routing and BGP

Introduction

- □ An internet is a combination of networks connected by routers
- □ How to pass a packet from source to destination?
 - Which of the available pathways is the optimum pathway?
- Depends on the metric
 - Metric: a cost assigned for passing through a network
 - A router should choose the route with the smallest metric

Introduction (Cont.)

- ☐ The metric assigned to each network depends on the type of protocol
 - RIP (Routing Information Protocol)
 - ☐ Treat each network as equal
 - □ The cost of passing through each network is the same: one hop count
 - Open Shortest Path First (OSPF)
 - Allow administrator to assign a cost for passing through a network based on the *type of serviced* required
 - For example, maximum throughput or minimum delay
 - Border Gateway Protocol (BGP)
 - □ The criterion is the policy, which can be set by the administrator

Introduction (Cont.)

- □ Routing table can be *static* or *dynamic*
 - An internet needs dynamic routing tables

 Dynamic routing table is achieved by the routing protocols

14.1 INTRA- AND INTERDOMAIN ROUTING

Routing inside an autonomous system is referred to as intradomain routing. Routing between autonomous systems is referred to as interdomain routing.

Interior and Exterior Routing

- □ An internet can be so large
 - One routing protocol cannot handle the task of updating routing table of all routers

- □ Thus, an internet is divided into *autonomous* systems (AS)
 - AS is a group of networks and routers under the authority of a single administration

Intra- And Interdomain Routing

- □ intradomain routing
 - Routing inside an autonomous system
 - Each AS can chose its own intradomain routing protocol
 - Examples: *distance vector* and *link state*
- □ interdomain routing
 - Routing between autonomous systems
 - Only one interdomain routing protocol is usually used between ASs
 - Examples: path vector

Popular Routing Protocols

Intradomain Routing Algorithms

- □ Distance-vector routing algorithm
 - Classical Distributed Bellman-Ford algorithm
 - RIP (Routing Information Protocol)
- □ Link-state routing algorithm
 - Centralized version of the shortest path computation
 - □ Every router has the *whole "picture"* of the internet
 - OSPF (Open Shortest Path First)

Example

- □ R1, R2, R3 and R4 use an intradomain and an interdomain routing protocol
- □ Solid thin lines
 - intradomain routing protocol
- □ Broken thick lines
 - interdomain routing protocol

Autonomous Systems

The McGraw-Hill Companies, Inc., 2000

14.2 DISTANCE VECTOR ROUTING

In distance vector routing, the least cost route between any two nodes is the route with minimum distance. In this protocol each node maintains a vector (table) of minimum distances to every node

The topics discussed in this section include:

Initialization
Sharing
Updating
When to Share
Two-Node Loop Instability
Three-Node Instability

Distance Vector Routing

□ The least cost route between any two nodes is the route with minimum distance.

□ Each node maintains a vector (table) of minimum distances to every node

Distance Vector Routing Tables

Initialization

- □ At the beginning
 - Each node can know only the distance between itself and its immediate neighbors
 - We assume each node can send a message to the immediate neighbors and find the distance

Initialization of Tables in Distance Vector Routing

Sharing

- □ Idea of distance vector routing
 - Sharing of information between neighbors
 - In distance vector routing, each node shares its routing table with its immediate neighbors periodically and when there is a change
- How much of the table must be shared?
 - Send the entire table but contains only the first two columns
 - □ The third column must be changed

Updating

- Receipt: a two-column table from a neighbor
- □ Add the cost between itself and the sending node to each value in the second column
- □ Repeat the following steps for each advertised destination
 - If (destination not in the routing table)
 - □ Add the advertised information to the table
 - Else
 - \Box If (next-hop field is the same)
 - Replace retry in the table with the new advertised one
 - \Box Else
 - If (advertised hop count smaller than one in the table)
 - Replace entry in the routing table

Updating in Distance Vector Routing

When to Share

- □ The table is sent both *periodically* and when there is a *change* in the table
- □ Periodic update
 - A node sends its routing table in a periodic update
 - Normally every 30 seconds
- □ Triggered update
 - A node receives a table from a neighbor resulting in changes in its own table
 - A node detects some failure in the neighboring links which results in a distance change to infinity

Two-Node Loop Instability

- □ A problem with distance vector routing is *instability*
 - A network using this protocol can become *unstable*
- □ See the following table
 - 1. both node A and B know how to reach node X
 - 2. the link between A and X fails
 - □ Node A change its table
 - 3a. If node A can send its routing table to B immediately
 - Everything is fine
 - 3b. However, if node B sends its routing table to A first
 - □ Node A assumes that B has found a way to reach X
 - 4. A sends its new update to B and B also update its routing table
 - 5. B sends its new update to A and so on...*until the cost reach infinity*
 - 6. Then both A and B knows that the link is broken

Two-Node Instability

Two-Node Loop Instability (Cont.)

- □ As a result, during the time before cost reaches infinity
 - A packet destined for X bounces between A and B
 - Create a two-node loop problem
- □ Solutions
 - Defining infinity
 - Split horizon
 - Split horizon and poison reverse

Defining Infinity

- □ Redefine infinity to a smaller number
 - Shorten the time of instability
- □ Most implementation define the distance between each node to be 1
 - Define 16 as infinity
- □ As a result
 - The distance vector scheme cannot be used in large system
 - The size of network, in each direction, can not exceed 15 hops

Split Horizon

- □ Do not flood the table through each interface and a router must distinguish between different interface
- ☐ If a router received route updating message from an interface
 - This same updated information must not be sent back through this interface
 - Since the information has come from the sending one

Split Horizon

- B receives information about Net1 and Net2 through its left interface
- □ This information is updated and passed on through the right interface but not to the left

Split Horizon (Cont.)

- □ Thus, in the figure of two-node instability
 - Node B eliminates the last line of its routing table before it sends to A
 - \square Node A then keeps the value of infinity as the distance to X
 - Later when A sends its routing table to B
 - □ B then correct its routing table
- □ The system becomes stable *after the first update*
 - Both node A and B know that X is not reachable

Split Horizon and Poison Reverse

- □ Drawback of split horizon
 - Distance vector uses a timer
 - ☐ If there is no news about a route within the time duration
 - Delete the route
 - Since Node B eliminates the route to X
 - □ Node A cannot decide it is due to split horizon or because B has not received any news about X recently
- □ Solution: Split Horizon and Poison Reverse

Split Horizon and Poison Reverse

- □ A variation of split horizons
- □ Information received is used to update routing table and then passed out to *all* interface
- □ However, a table entry is set to a metric of *infinity* as it's come through and goes out interface are the same
- □ For example
 - Router B has received information about Net1 and Net2 through its left interface
 - Thus, it sends information out about Net1 and Net2 with a metric of 16 to its left interface (assume 16 is infinity)

Split Horizon and Poison Reverse

Three-Node Instability

- □ Split Horizon and Poison Reverse cannot solve threenode instability
- □ 1. A detects X is not reachable
 - □ Sends a packet to B and C
- □ 2. B updates its table but the packet to C is lost
- □ 3. After a while, C sends to B its routing table
 - □ B is fooled and updates its routing table
- □ 5. B sends its routing table to A
 - □ A is fooled and updates its routing table
- □ 6. A then sends its routing table to B and C
- □ 7. The loop continues until the cost reach infinity

Three-Node Instability

