IFoS COMPLEX ANALYSIS

2020

1e

Evaluate the integral $\int_C \operatorname{Re}(z^2) dz$ from 0 to 2+4i along the curve $C: y = x^2$.

8

2c

Using Cauchy theorem and Cauchy integral formula, evaluate the integral

$$\oint_C \frac{e^z}{z^2(z+1)^3} \, dz$$

where C is |z|=2.

15

4a

Show that the bilinear transformation

$$w = e^{i\theta_0} \left(\frac{z - z_0}{z - \overline{z}_0} \right)$$

 z_0 being in the upper half of the z-plane, maps the upper half of the z-plane into the interior of the unit circle in the w-plane. If under this transformation, the point z = i is mapped into w = 0 while the point at infinity is mapped into w = -1, then find this transformation.

10

1. 1d

Using Cauchy's Integral formula, evaluate the integral $\oint\limits_{c} \frac{dz}{(z^2+4)^2}$ where c:|z-i|=2.

2. 2c

If f(z) is analytic in a domain D and |f(z)| is a non-zero constant in D, then show that f(z) is constant in D.

3.4b

Classify the singular point z = 0 of the function $f(z) = \frac{e^z}{z + \sin z}$ and obtain the principal part of the Laurent series expansion of f(z).

2018

1c

(c) If $u = (x-1)^3 - 3xy^2 + 3y^2$, determine v so that u + iv is a regular function of x + iy.

2c

Prove that $\int_0^\infty \cos x^2 dx = \int_0^\infty \sin x^2 dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}$.

3c

Evaluate the integral $\int_0^{2\pi} \cos^{2n} \theta \ d\theta$, where n is a positive integer.

1c

If f(z) = u(x, y) + iv(x, y) is an analytic function of z = x + iy and $u + 2v = x^3 - 2y^3 + 3xy(2x - y)$ then find f(z) in terms of z.

4a, 4b

Prove by the method of contour integration that $\int_{0}^{\pi} \frac{1 + 2\cos\theta}{5 + 4\cos\theta} d\theta = 0.$ 12

Find the sum of residues of $f(z) = \frac{\sin z}{\cos z}$ at its poles inside the circle |z| = 2.

2016

1d

Find the analytic function of which the real part is $e^{-x}\{(x^2-y^2)\cos y + 2xy\sin y\}.$

8

4b, 4c

Find the Laurent series for the function $f(z) = \frac{1}{1-z^2}$ with centre z = 1.

Evaluate by Contour integration $\int_{0}^{\pi} \frac{d\theta}{\left(1 + \frac{1}{2}\cos\theta\right)^{2}}.$

1c

Let $u(x, y) = \cos x \sinh y$. Find the harmonic conjugate v(x, y) of u and express u(x, y) + i v(x, y) as a function of z = x + iy. 12

2c

Evaluate the integral $\int_{z}^{z^2} \frac{z^2}{(z^2+1)(z-1)^2} dz$, where r is the circle |z|=2.12

4b

Show that $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}$ by using contour integration and the residue theorem.

2014

15

8

8

1c

Using Cauchy integral formula, evaluate

$$\int_C \frac{z+2}{(z+1)^2(z-2)} \, dz$$

where C is the circle |z-i|=2.

2e

Find the constants a, b, c such that the function

$$f(z) = 2x^2 - 2xy - y^2 + i(ax^2 - bxy + cy^2)$$

 $f(z) = 2x^2 - 2xy - y^2 + i(ax^2 - bxy + cy^2)$ is analytic for all z = x + iy and express f(z) in terms of z.

Evaluate: 15

$$\int_{|z|=1} \frac{z}{z^4 - 6z^2 + 1} dz$$

Find the bilinear transformations which map the points -1, ∞ , i into the points—

- (i) i, 1, 1+i
- (ii) ∞, i, 1

4b

Find the Laurent series expansion at z = 0 for the function

$$f(z) = \frac{1}{z^2(z^2 + 2z - 3)}$$

in the regions (i) 1 < |z| < 3 and (ii) |z| > 3.

2013

15

10

1c

Construct an analytic function

$$f(z) = u(x, y) + iv(x, y)$$
, where
 $v(x, y) = 6xy - 5x + 3$.

Express the result as a function of z.

3c

Evaluate $\oint \frac{e^{2z}}{(z+1)^4} dz$ where c is the circle |z| = 3.

4b

Find Laurent series about the indicated singularity. Name the singularity and give the region of convergence.

$$\frac{z - \sin z}{z^3}; \ z = 0.$$

1c

Evaluate the integral

$$\int_{2-i}^{4+i} (x + y^2 - ixy) dz$$

along the line segment AB joining the points A(2, -1) and B(4, 1).

3_b

Show that the function

$$u(x, y) = e^{-x} (x \cos y + y \sin y)$$

is harmonic. Find its conjugate harmonic function v(x, y) and the corresponding analytic function f(z).

4a

Using the Residue Theorem, evaluate the integral

$$\int_{C} \frac{e^{z}-1}{z(z-1)(z+i)^{2}} dz,$$

where C is the circle |z| = 2. 13

1d

Expand the function

$$f(z) = \frac{2z^2 + 11z}{(z+1)(z+4)}$$

in a Laurent's series valid for 2 < |z| < 3. 10

2c

Sketch the image of the infinite strip 1 < y < 2 under the transformation $w = \frac{1}{z}$.

4b

State Cauchy's residue theorem. Using it, evaluate the integral

$$\int_C \frac{e^{z/2}}{(z+2)(z^2-4)} dz$$

counterclockwise around the circle C: |z+1|=4.

1d

Determine the analytic function f(z) = u + iv if $v = e^{x}(x \sin y + y \cos y)$.

2c

Using the method of contour integration, evaluate

$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)^2 (x^2+2x+2)}$$
 14

4b

Obtain Laurent's series expansion of the function

$$f(z) = \frac{1}{(z+1)(z+3)}$$

in the region 0 < |z+1| < 2.

13