La projection dans le plan.

1 Projection sur une droite parallèlement à une autre droite.

1.1 Définition

Soient (D) et (Δ) deux droites sécantes et A un point du plan.

- Le projeté du point A sur une droite (D) parallèlement à la droite (Δ) est le point A' intersection de la droite (D) avec la droite parallèle à (Δ) passant par A.
- La relation qui à chaque point A du plan, on lui associe son projeté A' sur (D) parallèlement à (Δ) s'appelle la projection sur (D) parallèlement à (Δ) .

Remarques

On considère la projection sur (D) parallèlement à (Δ) .

- 1. La projection est une transformation du plan.
- 2. A' est le projeté de A sur (D) signifie que : $A' \in (D)$ et $(AA')//(\Delta)$.
- 3. Le projeté A' de A ne change pas si on remplace la droite (Δ) par n'importe quelle droite qui lui est parallèle.
- 4. Le projeté de tout point A de (D) sur (D) parallèlement à (Δ) est lui même (on dit que A est un point invariant).
 - 5. Tout point A' de (D) est le projeté de tous les points de la droite passante par A' et parallèle à (Δ) .

1.2 Projection orthogonale

Définition

Soit (D) une droite et A un point du plan.

- Le projeté orthogonal du point A sur la droite (D) est le point A' intersection de (D) avec la droite passant par A et perpendiculaire à (D).
- La relation qui à chaque point A du plan, on lui associe son projeté orthogonal sur (D) s'appelle la projection orthogonale sur (D).

2 Théorème de Thalès et sa réciproque.

2.1 Théorème de Thalès (Rappel)

Théorème directe

Soient (D) et (D') deux droites du plan et A,B et C trois points de (D) tels que $A \neq B$; Soient A',B' et C' trois points de la droite (D').

Si
$$(AA')/(BB')/(CC')$$
 alors $\frac{AC}{AB} = \frac{A'C'}{A'B'}$.

Théorème réciproque

Soient (D) et (D') deux droites du plan et A,B et C trois points de (D) tels que $A \neq B$; Soient A',B' et C' trois

Si (AA')//(BB') et AC' = A'C' = A'C' = A'B' et les points AB' = A'B' = A'B' = A'B' et les points AB' = A'B' = A'B' = A'B' = A'B' et les points AB' = A'B' = A'B'

2.2 Théorème de Thalès version vectorielle

Théorème directe

Soient (D) et (Δ) deux droites sécantes du plan et A,B et C trois points de (D) tels que $A \neq B$ et $k \in \mathbb{R}$. Si A',B' et C' sont les projetés de A,B et C respectivement sur la droite (D) parallèlement à (Δ) et $\overrightarrow{AC} = k\overrightarrow{AB}$ alors $\overrightarrow{A'C'} = k\overrightarrow{A'B'}.$

Théorème réciproque

Soient (D) et (Δ) deux droites sécantes du plan et A,B et C trois points de (D) tels que $A \neq B$ et $\overrightarrow{AC} = k\overrightarrow{AB}$. Si A',B' sont les projetés de A et B respectivement sur la droite (D) parallèlement à (Δ) et $\overrightarrow{A'C'}=k\overrightarrow{A'B'}$ alors C'est le projeté de C sur la droite (D) parallèlement à (Δ) .

3 Conservation du coefficient de colinéarité de deux vecteurs.

Propriété

Soient A, B,C et D quatre points du plan et $k \in \mathbb{R}$.On considère A',B',C' et D' les projetés de A,B ,C et D respectives sur la droite (D) parallèlement à (Δ) .

- Si
$$\overrightarrow{AB} = k\overrightarrow{AC}$$
 alors $\overrightarrow{A'B'} = k\overrightarrow{A'C'}$
- Si $\overrightarrow{AB} = k\overrightarrow{CD}$ alors $\overrightarrow{A'B'} = k\overrightarrow{C'D'}$

— Si
$$AB = kCD$$
 alors $A'B' = kC'D'$

