—LU factorization

Many software libraries contain **no provision** for Gauss Elimination — WHY NOT?

if you solve $\mathbf{A}\mathbf{x} = \mathbf{b}_1 \ (\approx \frac{1}{3} n^3 \text{ operations})$ and, some time later, solve $\mathbf{A}\mathbf{x} = \mathbf{b}_2 \ (\approx \frac{1}{3} n^3 \text{ operations})$ most of these operations have been done before! (all participated project Exam Help \mathbf{b}) try to store information so you don't waste this effort. In practice, we store that participated project in a practice of the participated project in the

Add WeChat powcoder
$$L = \begin{pmatrix} l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{pmatrix}$$

$$L = \begin{cases} l_{ij} & i > j \\ 1 & i = j \\ 0 & i < j \end{cases}$$

 $^{f L}$ LU factorization

LU factorization

Then, if no pivoting was required

$A = \overline{LU}$

the LU factorization of A

 $\frac{https://powcoder.com}{\text{where } \textbf{U} \text{ is the upper triangular matrix resulting from Gauss Elimination}}$

Proof.

Add WeChat powcoder

Use elementary matrices representing each row op

Note: the LU factorization is not unique, since

$$LU = (LD)(D^{-1}U) = \bar{L}\bar{U}$$

where **D** is any nonsingular diagonal matrix.

LU factorization

Using the LU factors

Now our strateg Assignments Project Exam Help

- 1 factorize $\mathbf{A} = \mathbf{LU}_1 (\approx \frac{1}{2} n^3)$ operations)
 1 to solve $\mathbf{LUx} = \mathbf{b}_1$; solve $\mathbf{Ly} = \mathbf{b}_1$ by forward substitution $(\approx \frac{1}{2} n^2)$ operations) where We Chat powcoder
- 3 solve $\mathbf{U}\mathbf{x} = \mathbf{y}$ by back substitution $(\approx \frac{1}{2}n^2)$ operations)

Total: $\approx \frac{1}{3}n^3 + n^2$ operations as before!

LU factorization

Re-using the LU factors

then, to solve Axistig (samen A Priorie to the Rivalian Help

- 1 L, U known, so don't factorize again https://powcoder.com solve $\mathbf{L}\mathbf{y} = \mathbf{b}_2$ by forward substitution ($\approx \frac{1}{2}n^2$ operations)
- solve $\mathbf{U}\mathbf{x} = \mathbf{y}$ by $\mathbf{A}\mathbf{c}\mathbf{d}\mathbf{s}\mathbf{W}\mathbf{s}\mathbf{e}\mathbf{r}\mathbf{U}\mathbf{h}\mathbf{s}\mathbf{n}$ (representations)
- \implies next system with same **A** takes $\approx n^2$ operations This is why most libraries have an LU factorization procedure plus an LU solve procedure instead of Gauss elimination

LU factorization

If row interchanges are required

PA = LU

the LU factorization of row-permuted A

where **P** is a permutation matrix describing the row interchanges https://powcoder.com

Example

Add WeChat powcoder

$$\mathbf{P} = \left[egin{array}{cccc} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{array}
ight]$$

is a matrix that swaps the 1st and 3rd rows of another matrix.

i.e. **PA** is **A** but with row interchanges required during Gauss Elimination done in advance

LU factorization

Using permuted LU

then to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$:

1

Assignment Project Exam Help

so that

https://powcoder.com

- $\mathbf{2}$ solve $\mathbf{L}\mathbf{y} = \mathbf{P}\mathbf{b}$
- Add WeChat powcoder
- $\mathbf{3}$ solve $\mathbf{U}\mathbf{x} = \mathbf{y}$

Must permute RHS as well!

LU factorization + PP does the same as GEPP, just with steps re-organized

—LU factorization

Demo

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Matrices with special structure

Gauss Elimination and LU factorization apply to general dense matrices. If the matrix has any special structure, it's often possible to exploit this.

We touch on 2 examples ment Project Exam Help 1. Positive definite matrices

Definition

A is positive definite iff Add WeChat powcoder $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} > 0 \ \forall \mathbf{x} \neq \mathbf{0}$

usually consider only symmetric positive definite matrices

- arise naturally in some applications e.g. Least Squares fitting
- same as having all positive eigenvalues

Special matrices

Choleski factorization

Theorem

Assignment Project Exam Help
A is symmetric positive definite is equivalent to

A has a symmetric triangular factorization https://powcoder.com

Add WeChat powcoder

where R is a nonsingular upper (right) triangular matrix.

Called the Choleski factorization of A after Choleski: †1918

 \mathbf{R}^{\prime} plays the same role as \mathbf{L} ; \mathbf{R} plays the same role as \mathbf{U} .

The Choleski factorization is unique.

—Special matrices

Proof.

This factorization takes $\stackrel{1}{\text{Add}} \stackrel{n^3}{\text{WeChat}} \stackrel{n}{\text{powcoder}}$ operations

Moral: If you know **A** is symmetric positive definite, can save 50% of work by Choleski factorization.

Turns out that Choleski factorization is not vulnerable to subtractive cancellation, so don't need to pivot.

Special matrices

Banded matrices

A matrix is banded if it has nonzeroes only near the main diagonal:

Assignment Project Exam Help
$$A_{ij} = 0$$
 for $|i - j| > k$

bandwidth of matrix $= \frac{\text{https://powcoder.com}}{2k}$

i.e. a regular pattern of zeroes, a generalization of diagonal matrices. Add WeChat powcoder

Example

- k = 1 tridiagonal matrices
- k = 2 pentadiagonal matrices

Special matrices

Fast factorization

If no pivoting is required, the **LU** factors inherit this banded structure \rightarrow can be factored very fast

Assignment Project Exam Help

Example

the LU factors of a tribitational provision debtion of the LU factors of a tribitation of the LU factors of the LU fac

VERY FAST!

Use any special structure of the matrix to save time/storage.

If pivoting is required, it destroys the banded structure, so the factors are not banded!

Special matrices

What does MATLAB's backslash do?

To solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$, in MATLAB just type x=A b;

to remember this, think of it as premultiplying by the inverse: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

This backslash commatte (simple well like the li

- solves by substitution if A is triangular
 Add WeChat powcoder
 attempts Cholesky factorization if A is symmetric
- does GEPP by LU factorization if A is a general dense matrix

So, easiest way to solve with LU if you want to keep the LU factors is $[L,U,P]=lu(A); x=U\setminus(L\setminus(P*b))$

```
similarly for Cholesky:
R=chol(A); x=R\setminus(R'\setminus b)
```

—Special matrices

Assignment Project Exam Help

End of Week 6

https://powcoder.com

Add WeChat powcoder