§9.6 TAYLOR AND MACLAURIN SERIES

Theorem 1. Let $\sum_{n=0}^{\infty} a_n(x-c)^n = a_0 + a_1(x-c) + a_2(x-c)^2 + ...$ converge to f(x) for |x-c| < R, R > 0. Then $a_k = \frac{f^{(k)}(c)}{k!}$ for all k = 1, 2, 3,

Definition. (Taylor and Maclaurin Series) Let f(x) be differentiable for all orders at x = c. Then the series $\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^n = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \frac{f^{(3)}(c)}{3!}(x-c)^3 + \dots$ is called the Taylor series of f about c (or the Taylor series of f in powers of (x-c)). If c=0, then the series is called the Maclaurin series, namely; $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = f(0) + f'(0)x + \frac{f''(x)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \dots$

Definition. (Analytic Function) A function f is called analytic at c if there exists a Taylor series of f about c such that it converges to f(x) in an open interval including c. If f is analytic at each point of an open interval, then it is called analytic on the interval.

Example 1. Find the Taylor series of e^x about c, the interval of its convergence. Where is e^x analytic? Find the Maclaurin series of e^x . Let $f(x) = e^x$. We know that $f^{(n)}(x) = e^x$ for all n = 0, 1, 2, 3, Then the Taylor series for e^x about c is:

$$\sum_{n=0}^{\infty} \frac{e^c}{n!} (x - c)^n = e^c + e^c (x - c) + \frac{e^c}{2!} (x - c)^2 + \frac{e^c}{3!} (x - c)^3 + \dots$$

The radius of the series is:

 $L = \lim_{n \to \infty} \left| \frac{\frac{e^c}{(n+1)!}}{\frac{e^c}{n!}} \right| = \lim_{n \to \infty} \frac{1}{n+1} = 0 \Rightarrow R = \infty$. Thus the series converges for all real numbers. Now, we find the function which to the series converges.

$$g(x) = e^{c} + e^{c}(x - c) + \frac{e^{c}}{2!}(x - c)^{2} + \frac{e^{c}}{3!}(x - c)^{3} + \dots$$

We calculate the derivative of g(x):

$$g'(x) = e^c + e^c(x - c) + \frac{e^c}{2!}(x - c)^2 + \frac{e^c}{3!}(x - c)^3 + \dots = g(x)$$
. Then $g(x) = Ce^x$ and for $x = c$, $g(c) = e^c$. Then $e^c = g(c) = Ce^c \Rightarrow C = 1$, and so $g(x) = e^x$, that is, the Taylor series of e^x about c converges to e^x for all $x \in \mathbb{R}$. Thus e^x is analytic for all real numbers.

The Maclaurin series of e^x is:

$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \text{ for all } x \in \mathbb{R}.$$

Example 2. Find the Maclaurin series of sinx and cosx and find the intervals of convergence series.

Let
$$f(x) = sinx$$
. Then $f'(x) = cosx \Rightarrow f'(0) = 1$, $f''(x) = -sinx \Rightarrow f''(0) = 0$, $f^{(3)}(x) = -cosx \Rightarrow f^{(3)}(0) = -1$, $f^{(4)}(x) = -sinx \Rightarrow f^{(4)}(0) = 0$, $f^{(5)}(x) = cosx \Rightarrow f^{(5)}(0) = 1$,...

The maclaurin series of sinx:

$$0+x+0-\frac{x^3}{3!}+0+\frac{x^5}{5!}+0-\ldots=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}x^{2n+1}.$$

$$\rho=\lim_{n\to\infty}\left|\frac{\frac{(-1)^{n+1}}{(2n+3)!}x^{2n+3}}{\frac{(-1)^n}{(2n+1)!}x^{2n+1}}\right|=\lim_{n\to\infty}\frac{x^2}{(2n+3)(2n+2)}=0, \text{ and so the series converges for all }x\text{ by ratio test.}$$

When the series $g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ is differentiated twice, we get that g(x) = -g''(x), that is; g(x) + g''(x) = 0. The general solution of such equation is:

 $g(x) = A\cos x + B\sin x$. We get g(0) = 0 and g'(0) = 1 and so we obtain A = 0 and B = 1, namely; $g(x) = \sin x$.

Homework Show that $cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$ for all x.

Some Maclaurin Series

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots \text{ for } -1 < x < 1$$

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} = 1 + 2x + 3x^2 + 4x^3 + \dots \text{ for } -1 < x < 1$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \text{ for } -1 < x \le 1$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \text{ for } -1 \le x \le 1$$

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n \text{ for all } x \in \mathbb{R}.$$

Example 3. Find the Maclaurin series for the following functions.

i.
$$e^{3x+1}$$
 ii. $cos(2x-\pi)$ iii. $ln(\frac{1-x}{1+x})$

i. We know that
$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$
. Then $e^{3x+1} = e \cdot e^{3x} = e \sum_{n=0}^{\infty} \frac{1}{n!} (3x)^n = \sum_{n=0}^{\infty} \frac{e}{n!} (3x)^n = e + 3ex + \frac{e(3x)^2}{2!} + \frac{e(3x)^3}{3!} + \dots$ for all x .

ii. Consider
$$cos(2x - \pi) = -cos2x$$
. Since $cosx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$ for all x , we get $-cos2x = -\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (2x)^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}2^{2n}}{(2n)!} (x)^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}4^n}{(2n)!} (x)^{2n}$ for all x .

iii. Note that
$$ln(\frac{1-x}{1+x}) = ln(1-x) - ln(1+x)$$
. We know that

$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \text{ for } -1 < x \le 1.$$
 Then we get $ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \text{ for } -1 < x \le 1, \text{ and so } ln(\frac{1-x}{1+x}) = ln(1-x) - ln(1+x) = -2x - 2\frac{x^3}{3} - 2\frac{x^5}{5} - \dots = -2\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$ for $-1 < x \le 1$.

Example 4. Find the Taylor series representation for the following functions.

i. e^{-2x} about x = -1 ii. lnx about x = 3.

i. Let
$$t = x + 1 \Rightarrow x = t - 1$$
.

$$e^{-2x} = e^{-2(t-1)} = e^{-2t}e^2 = e^2 \sum_{n=0}^{\infty} \frac{1}{n!} (-2t)^n = \sum_{n=0}^{\infty} \frac{(-1)^n e^2 2^n}{n!} t^n$$
 and so $e^{-2x} = \sum_{n=0}^{\infty} \frac{(-1)^n e^2 2^n}{n!} (x+1)^n$ for all real numbers.

ii. Let
$$t = x - 3 \Rightarrow x = t + 3$$
.

$$\ln x = \ln(t+3) = \ln(3(1+\frac{t}{3})) = \ln 3 + \ln(1+\frac{t}{3}). \text{ Since } \ln(1+t) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{t^n}{n} \text{ for all } -1 < t \le 1, \text{ then } \ln x = \ln 3 + \ln(1+\frac{t}{3}) = \ln 3 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{t^n}{n3^n} = \ln 3 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-3)^n}{n3^n} \text{ for } -1 < \frac{t}{3} \le 1 \Rightarrow -3 < t \le 3 \Rightarrow -3 < x - 3 \le 3 \Rightarrow 0 < x \le 6.$$

Sometimes, it is difficult (if not impossible) to find the general formula of a Maclaurin or a Taylor series. In such cases we usually find first few terms.

Example 5. Find the first three nonzero terms of the Maclaurin series of lncosx.

we now that $lncosx = ln(1 + -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots) = ln(1 + (-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots)) = (-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots) - \frac{1}{2}(-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots)^2 + \frac{1}{3}(-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots)^3 - \dots = -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$

The polynomial $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$ is called the Taylor polynomial of degree n for about f the point x=c.

Theorem 2. (**Taylor's Theorem**) Let the function f has the (n + 1)st derivative on an interval containing c and x and $P_n(x)$ is the Taylor polynomial of degree n for f about the point x = c. Then the formula $f(x) = P_n(x) + E_n(x)$ is called Taylor's formula where $E_n(x)$ is the error term given by:

(Lagrange Remainder) $E_n(x) = \frac{f^{(n+1)}(s)}{(n+1)!}(x-c)^{n+1}$ for some s between c and x.

Example 6. Find the Maclaurin series for e^x by applying Taylor's Theorem.

We know $P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$. Now, we calculate the Lagrange remainder for e^x . Note that e^x is positive and increasing. Then $e^s \leq e^{|x|}$ for $s \leq |x|$.

For some s between 0 and x, $|E_n(x)| = |\frac{f^{(n+1)}(s)}{(n+1)!}x^{n+1}| = \frac{e^s}{(n+1)!}|x|^{n+1} \le \frac{e^{|x|}}{(n+1)!}|x|^{n+1}$. Then $\lim_{n\to\infty}\frac{e^{|x|}}{(n+1)!}|x|^{n+1}=0$ and so $\lim_{n\to\infty}E_n(x)=0$ by Squeeze theorem. Thus, $e^x=\lim_{n\to\infty}(\sum_{k=0}^n\frac{x^k}{k!}+E_n(x))=0$

$$\sum_{k=0}^{\infty} \frac{x^k}{k!}.$$