BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área:	Computación	Matemática

Programa de Asignatura: Análisis Numérico

Código: MCOM 20600

Tipo: Obligatoria

Créditos:

Fecha: Noviembre 2012

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación	
Modalidad Académica:	Escolarizada	
Nombre de la Asignatura:	Análisis Numérico	
Ubicación:	Segundo semestre (Obligatoria)	

2. REVISIONES Y ACTUALIZACIONES

Autores:	Dra. Lourdes Sandoval Solís Dr. Pedro García Juárez Dra. Blanca Bermúdez Juárez			
Fecha de diseño:	Noviembre 2012			
Fecha de la última actualización:	Marzo 2017			
Revisores:	Dra. Blanca Bermúdez Juárez			
Sinopsis de la revisión y/o actualización:	Actualización de contenido			

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

3. OBJETIVOS GENERALES:

El estudiante deberá reconocer la necesidad de resolver un problema numéricamente y será capaz de conocer, analizar y aplicar algoritmos numéricos eficientes para resolver problemas que surgen en problemas como interpolación, aproximación, diferenciación, integración y solución de sistemas de ecuaciones lineales.

OBJETIVOS ESPECIFICOS

El estudiante manejará adecuadamente los splines, curvas de Bezier, Nurbs para interpolar a una función así como la aproximación mediante Mínimos Cuadrados Lineales.

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

4. CONTENIDO

Unidad	Contenido Temático/Actividades de aprendizaje
1. Introducción	1.1. Aritmética de punto flotante.1.2. Algoritmos, convergencia y estabilidad
2.Interpolación y Aproximación	 2.1. Polinomios de Taylor 2.2. Curvas de Bézier 2.3. Nurbs 2.4 Mínimos Cuadrados Lineales 2.5. Transformada de Fourier
Diferenciaciones Integración Numérica	3.I. Diferenciación Numérica3.2. Fórmulas de Cuadratura3.3. Newton-Cotes3.4. Integración Compuesta
4. Solución de Sistemas de Ecuaciones Lineales (Métodos Directos)	 4.1. Descomposición LU y Cholesky 4.2. Estrategias de Pivoteo 4.3. Transformaciones de Householder y Givens 4.4. Factorización QR
5. Solución de Sistemas de Ecuaciones Lineales (Métodos Iterativos	 5.1. Métodos de Jacobi y Gauss-Seidel 5.2. Método de Sobre relajación (SOR) 5.3. Gradiente Conjugado 5.4. Pre condicionamiento para Gradiente Conjugado

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA **FACULTAD DE CIENCIAS DE LA COMPUTACION**

Bibliografía		
Básica	Complementaria	
1 Burden R.L., y Faires D.,"Análisis Numérico "Thomson Editores, 10th. Edition (2014) 2. Chapra, C., Canale, R, Métodos Numéricos para Ingenieros, sexta edición, Mc Graw Hill (2012) 3. Sauer, T., Análisis Numérico, segunda edición, Pearson (2013) 4 Wheatley, G., Análisis Numérico con aplicaciones, Addison Wesley (2001) 5. González S., W. F., Bermúdez B., Escamilla J. F., Introducción al Análisis Numérico con Mathematica, Ed. BUAP (2016).		

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	50% (3 exámenes)
Participación en clase	10%
Tareas	
Exposiciones	10%
Simulaciones	
 Trabajo de investigación y/o de 	
intervención	
 Prácticas de laboratorio 	
Visitas guiadas	
 Reporte de actividades académicas y 	
culturales	
Mapas conceptuales	
Portafolio	
Proyectos (3)	30%
Total	100%