

**Neue Dipeptidylpeptidase IV-Inhibitoren zur funktionellen Beeinflussung
unterschiedlicher Zellen und zur Behandlung immunologischer,
entzündlicher, neuronaler und anderer Erkrankungen**

Die Dipeptidylpeptidase IV (DPIV, CD26, EC 3.4.14.5) ist eine ubiquitär auftretende Serin-Protease, die die Hydrolyse von Peptiden spezifisch hinter Prolin oder Alanin in der zweiten Position des N-Terminus katalysiert. Zur Gen-Familie der DPIV mit enzymatischer Aktivität gehören u. a. DP 8, DP 9 und FAP/Seprase (T. Chn et al.: Adv. Exp. Med. Biol. 524, 79, 2003). Eine ähnliche Substratspezifität wie DPIV weist Attractin (mahagony protein) auf (J. S. Duke-Cohan et al.: J. Immunol. 156, 1714, 1996). Das Enzym wird ebenfalls durch DPIV-Inhibitoren gehemmt.

Für die Dipeptidylpeptidase IV, Attractin und FAP wurden wichtige biologische Funktionen in unterschiedlichen Zellsystemen nachgewiesen. Dies gilt u. a. für das Immunsystem (T. Kähne et al.: Intern. J. Mol. Med. 4, 3, 1999; I. De Meester et al: Advanc. Exp. Med. Biol. 524, 3, 2002; Internationale Patentanmeldung WO 01/89569 D1; Internationale Patentanmeldung WO 02/053170 A3; Internationale Patentanmeldung PCT/EP 03/07199), das neuronale System (Internationale Patentanmeldung WO 02/053169 A2 und Deutsche Patentanmeldung 103 37 074.9), die Fibroblasten (Deutsche Patentanmeldung 103 30 842.3), die Keratinozyten (Internationale Patentanmeldung WO 02/053170 A3), die Talgdrüsenzellen/Sebozyten (Internationale Patentanmeldung PCT/EP 03/02356) und verschiedene Tumore.

Die Fähigkeit der DPIV, die inkretorischen Hormone GIP und GLP spezifisch zu inaktivieren, hat zur Entwicklung eines neuen therapeutischen Konzepts zur Behandlung von Glukose-Stoffwechselstörungen geführt (D. M. Evans: Drugs 5, 577, 2002).

Für die Dipeptidylpeptidase IV und die anderen Peptidasen sind unterschiedliche Inhibitoren bekannt (Review in D. M. Evans: Drugs 5, 577, 2002).

Die isolierte Hemmung der Dipeptidylpeptidase IV und analoger Peptidasen, insbesondere aber die kombinierte Hemmung der Dipeptidylpeptidase IV und der Alanyl-Aminopeptidasen (EC 3.4.11.2 und EC 3.4.11.14) führt an Immunzellen zur starken Hemmung der DNA-Synthese und damit der Zellvermehrung sowie zur Veränderung der Zytokinproduktion, insbesondere zur Induktion des immunregulatorisch wirkenden TGF- β 1 (Internationale Patentanmeldung WO 01/89569 D1, Internationale Patentanmeldung WO 02/053170 A3). An regulatorischen T-Zellen bewirken Alanyl-Aminopeptidase-Inhibitoren eine starke Induktion von TGF- β 1 (Internationale Patentanmeldung PCT/EP 03/07199). Im neuronalen System wurde durch Hemmung der Dipeptidylpeptidase IV oder analoger Enzyme, insbesondere aber durch kombinierte Hemmung der DPPIV oder analoger Enzyme und der Alanyl-Aminopeptidasen oder analoger Enzyme eine Verminderung bzw. Verzögerung akuter und chronischer zerebraler Schädigungsprozesse nachgewiesen (Internationale Patentanmeldung WO 02/053169 A3 und Deutsche Patentanmeldung 103 37 074.9). Auch an Fibroblasten (Deutsche Patentanmeldung 103 30 842.3), Keratinozyten (Internationale Patentanmeldung WO 02/053170 A3) und Sebozyten (Internationale Patentanmeldung PCT/EP 03/02356) wurde gezeigt, dass die Inhibition der Dipeptidylpeptidase IV, insbesondere aber die kombinierte Hemmung der beiden Enzyme Dipeptidylpeptidase IV und Alanyl-Aminopeptidase, eine starke Hemmung des Wachstums und eine Veränderung der Zytokinproduktion bewirkt.

Damit ergibt sich der überraschende Sachverhalt, dass die Dipeptidylpeptidase IV sowie analog wirkende Enzyme fundamentale zentrale biologische Funktionen in unterschiedlichen Organen und Zellsystemen erfüllen und eine Hemmung dieser Peptidase, insbesondere aber eine kombinierte Hemmung dieses Enzyms zusammen mit den Alanyl-Aminopeptidasen ein neuartiges wirkungsvolles therapeutisches Prinzip für die Behandlung unterschiedlichster, überwiegend chronischer Erkrankungen darstellt.

An akzeptierten Tiermodellen konnten die Anmelder inzwischen zeigen, dass insbesondere die kombinierte Gabe von Inhibitoren der beiden Peptidasen in der Tat auch *in vivo* eine Hemmung des Wachstums verschiedener Zellsysteme und eine Unterdrückung einer überschießenden Immunantwort, chronisch-entzündlicher Vorgänge sowie zerebraler Schädigungen bewirkt (Internationale Patentanmeldung WO 01/89569 D1).

Die bisherigen Ergebnisse wurden überwiegend mit Hilfe bekannter, in der Literatur beschriebener und z.T. kommerziell zugänglicher Inhibitoren der Dipeptidylpeptidase IV allein und in Kombination mit bekannten und z. T. kommerziell zugänglichen Inhibitoren der Alanyl.Aminopeptidase erhalten.

Aufgabe der vorliegenden Erfindung war, weitere wirksame Inhibitoren der Dipeptidylpeptidase IV und analoger Enzyme aufzufinden. Insbesondere sollten niedermolekulare, einfach zugängliche Verbindungen gefunden werden, die eine effektive, d. h. wirksame Inhibition der Dipeptidylpeptidase IV und analoger Enzyme zulassen.

Im Rahmen eines high throughput screenings von Substanzbanken wurden nun überraschend neuartige, überwiegend nicht-peptidische, niedermolekulare Inhibitoren für die Gruppe der Dipeptidylpeptidase IV und analoger Enzyme gefunden.

Die Erfindung betrifft neue Substanzen, die Gly-Pro-p-Nitroanilid spaltende Peptidasen spezifisch inhibieren.

Die Erfindung betrifft darüber hinaus neue Stoffe, die als solche oder als Ausgangsstoffe für weitere Substanzen und in Kombination mit Inhibitoren der Alanyl-Aminopeptidase oder analoger Enzyme zur Prophylaxe und Therapie von Erkrankungen mit überschießender Immunantwort (Autoimmunerkrankungen, Allergien und Transplantatrejektionen, Sepsis), anderen chronisch-entzündlichen Erkrankungen, neuronalen Erkrankungen und zerebralen Schädigungen, Hauterkrankungen (u.a Akne und Schuppenflechte) und Tumorerkrankungen genutzt werden können.

Insbesondere betrifft die vorliegende Erfindung Verbindungen der allgemeinen Formeln D1 bis D14 nach den Patentansprüchen 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 und 27 sowie Tautomere und Stereoisomere der genannten Verbindungen der allgemeinen Formeln D1 bis D14 und pharmazeutisch annehmbare Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

In besonderen Ausführungsformen betrifft die Erfindung spezielle, unter die obigen allgemeinen Formeln D1 bis D14 fallende, bevorzugte Verbindungen der besonderen Formeln D1.001 bis D14.007, die beispielhaft, jedoch nicht beschränkend in den Patentansprüchen 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 und 28 in Form von Tabellen aufgelistet sind, sowie Tautomere und Stereoisomere der genannten Verbindungen der allgemeinen Formeln D1.001 bis D14.007 und pharmazeutisch annehmbare Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

Die Erfindung betrifft weiter pharmazeutische Zusammensetzungen, die mindestens eine Verbindung einer der allgemeinen Formeln D1 bis D14 umfassen, gegebenenfalls in Kombination mit an sich üblichen Trägern oder Adjuvantien.

Die Erfindung betrifft weiter kosmetische Zusammensetzungen, die mindestens eine Verbindung einer der allgemeinen Formeln D1 bis D14 umfassen, gegebenenfalls in Kombination mit an sich üblichen Trägern oder Adjuvantien.

Die Erfindung betrifft weiter die Verwendung mindestens einer Verbindung einer der allgemeinen Formeln D1 bis D14 oder mindestens einer der vorgenannten pharmazeutischen oder kosmetischen Zusammensetzungen zur Hemmung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme, und zwar allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidasen oder analoger Enzyme.

Die Erfindung betrifft weiter die Verwendung mindestens einer Verbindung einer der allgemeinen Formeln D1 bis D14 oder mindestens einer der vorgenannten pharmazeutischen oder kosmetischen Zusammensetzungen zur topischen Beeinflussung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme, und zwar allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidasen oder analoger Enzyme.

Die Erfindung betrifft weiter die Verwendung mindestens einer Verbindung einer der allgemeinen Formeln D1 bis D14 oder mindestens einer der vorgenannten pharmazeutischen oder gegebenenfalls auch kosmetischen Zusammensetzungen zur Prophylaxe und Therapie einer ganzen Anzahl von Erkrankungen, die in den Ansprüchen 33 bis 45 beispielhaft beansprucht sind. In besonderen Ausführungsformen, jedoch nicht beschränkend, können erfindungsgemäß die Verbindungen der allgemeinen Formeln D1 bis D14, insbesondere die in Table 1 bis 14 aufgeführten, besonders bevorzugten Einzelverbindungen D1.001 bis D14.007, als solche oder als Ausgangsstoffe für weitere Substanzen und in Kombination mit Inhibitoren der Alanyl-Aminopeptidasen und analoger Enzyme zur Therapie von Erkrankungen mit überschießender Immunantwort (Autoimmunerkrankungen, Allergien und Transplantatrejektionen), von anderen chronisch-entzündlichen Erkrankungen, neuronalen Erkrankungen und zerebralen Schädigungen, Hauterkrankungen (u. a. Akne und Schuppenflechte), Tumorerkrankungen und speziellen Virusinfektionen (u. a. SARS) genutzt werden.

Die Erfindung betrifft weiter die Verwendung mindestens einer Verbindung einer der allgemeinen Formeln D1 bis D14 oder mindestens einer der vorgenannten pharmazeutischen oder kosmetischen Zusammensetzungen zur Herstellung eines Arzneimittels zur Hemmung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme, und zwar allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidasen oder analoger Enzyme.

Die Erfindung betrifft weiter die Verwendung mindestens einer Verbindung einer der allgemeinen Formeln D1 bis D14 oder mindestens einer der vorgenannten pharmazeutischen oder kosmetischen Zusammensetzungen zur Herstellung eines Arzneimittels zur topischen Beeinflussung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme, und zwar allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidasen oder analoger Enzyme.

Die Erfindung betrifft weiter die Verwendung mindestens einer Verbindung einer der allgemeinen Formeln D1 bis D14 oder mindestens einer der vorgenannten pharmazeutischen oder gegebenenfalls auch kosmetischen Zusammensetzungen zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie einer ganzen Anzahl von Erkrankungen, die in den Ansprüchen 48 bis 60 beispielhaft beansprucht sind. In besonderen Ausführungsformen, jedoch nicht be-

schränkend, können erfundungsgemäß die Verbindungen der allgemeinen Formeln D1 bis D14, insbesondere die in Table 1 bis 14 aufgeführten, besonders bevorzugten Einzelverbindungen D1.001 bis D14.007, als solche oder als Ausgangsstoffe für weitere Substanzen und in Kombination mit Inhibitoren der Alanyl-Aminopeptidasen und analoger Enzyme zur Herstellung eines Arzneimittels zur Therapie von Erkrankungen mit überschießender Immunantwort (Autoimmunerkrankungen, Allergien und Transplantatrejektionen), von anderen chronisch-entzündlichen Erkrankungen, neuronalen Erkrankungen und zerebralen Schädigungen, Hauterkrankungen (u. a. Akne und Schuppenflechte), Tumorerkrankungen und speziellen Virusinfektionen (u. a. SARS) genutzt werden.

Die Erfindung betrifft weiter ein Verfahren zur Hemmung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidase und analoger Enzyme durch Verabreichung mindestens einer Verbindung der allgemeinen Formeln D1 bis D14 oder mindestens einer der obigen pharmazeutischen oder kosmetischen Zusammensetzungen in einer für die Hemmung der Enzymaktivität erforderlichen Menge.

Die Erfindung betrifft weiter ein Verfahren zur topischen Beeinflussung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidasen und analoger Enzyme durch Verabreichung mindestens einer Verbindung der allgemeinen Formeln D1 bis D14 oder mindestens einer der obigen pharmazeutischen oder kosmetischen Zusammensetzungen in einer für die Hemmung der Enzymaktivität erforderlichen Menge.

Die Erfindung betrifft weiter ein Verfahren zur Prophylaxe und/oder Therapie einer der in den Ansprüchen 63 bis 76 beanspruchten Erkrankungen bzw. Zuständen unter Hemmung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidase und analoger Enzyme durch Verabreichung mindestens einer Verbindung der allgemeinen Formeln D1 bis D14 oder mindestens einer der obigen pharmazeutischen oder kosmetischen Zusammensetzungen in einer für die Prophylaxe oder Therapie erforderlichen Menge.

Der Begriff „analoge Enzyme“, wie er in der vorliegenden Beschreibung und in den Patentansprüchen verwendet wird, bezieht sich auf Enzyme, die eine der Dipeptidylpeptidase IV analoge Enzymaktivität aufweisen, wie dies beispielsweise für die DP8, DP9, für FAP/Seprase oder das Attractin gilt. Der Begriff ist in diesem Sinne auch in der oben zitierten Druckschrift „A. J. Barrett et al.: Handbook of Proteolytic Enzymes, Academic Press 1998“ erläutert.

In den allgemeinen Formeln D1 bis D14, wie sie sich aus den Ansprüchen 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 und 27 in allgemeiner Form ergeben, stehen die Reste R_n, also die Reste R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉ und R₁₀, jeweils unabhängig voneinander für einen Rest, der gewählt ist aus der aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino.

Im einzelnen bedeuten die Reste R_n in erfundungsgemäßigen Ausführungsformen dann, wenn sie für unsubstituierte geradkettige oder verzweigte Alkyl-Gruppen mit 1 bis 12 C-Atomen stehen, in bevorzugten Ausführungsformen Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, sec-Butyl, tert-Butyl, n-Pentyl, i-Pentyl, sec-Pentyl, tert-Pentyl, n-Hexyl, i-Hexyl, 3-Methylpentyl, 2-Ethylbutyl, 2,2-Dimethylbutyl sowie für die Reste Heptyl, Octyl, Nonyl, Decyl, Undecyl und Dodecyl alle geradkettigen und verzweigten Isomere. Erfundungsgemäß besonders bevorzugt aus der vorgenannten Gruppe sind Alkyl-Gruppen mit 1 bis 6 C-Atomen; von diesen sind die Reste Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, sec-Butyl und tert-Butyl noch mehr bevorzugt.

In anderen erfundungsgemäßigen Ausführungsformen bedeuten die Reste R_n dann, wenn sie für unsubstituierte geradkettige oder verzweigte Alkenylgruppen mit 2 bis 12 C-Atomen stehen, in bevorzugten Ausführungsformen Vinyl, Allyl, 1-Butenyl, 2-Butenyl, sowie für die Reste

Pentenyl, Hexenyl, Heptenyl, Octenyl, Nonenyl, Decenyl, Undecenyl und Dodecenyl alle geradkettigen und verzweigten und hinsichtlich der Stellung der C=C-Doppelbindung denkbaren Reste. In weiteren erfindungsgemäßen Ausführungsformen können die Reste R_n auch für geradkettige und verzweigte Alkenylgruppen mit mehreren Doppelbindungen stehen. Bevorzugte Reste aus dieser Gruppe stellen die Butadienyl-Gruppe und die Isoprenyl-Gruppe dar. Erfindungsgemäß besonders bevorzugt aus der vorgenannten Gruppe sind Alkenyl-Gruppen mit 2 bis 6 C-Atomen; von diesen sind die Reste Vinyl, Allyl, 1-Butenyl und 2-Butenyl noch mehr bevorzugt.

In anderen erfindungsgemäßen Ausführungsformen bedeuten die Reste R_n dann, wenn sie für unsubstituierte geradkettige oder verzweigte Alkinylgruppen mit 2 bis 12 C-Atomen stehen, in bevorzugten Ausführungsformen Ethinyl, Propinyl, 1-Butinyl, 2-Butinyl, sowie für die Reste Pentinyl, Hexinyl, Heptinyl, Octinyl, Noninyl, Decinyl, Undecinyl und Dodecinyl alle geradkettigen und verzweigten und hinsichtlich der Stellung der C≡C-Dreifachbindung denkbaren Reste. Erfindungsgemäß besonders bevorzugt aus der vorgenannten Gruppe sind Alkinyl-Gruppen mit 2 bis 6 C-Atomen; von diesen sind die Reste Ethinyl, Propinyl, 1-Butinyl und 2-Butinyl noch mehr bevorzugt.

Sowohl geradkettige als auch verzweigte Alkyl-, Alkenyl- oder Alkinyl-Reste können erfindungsgemäß in einer weiteren Ausführungsform substituiert sein. Die Substituenten können an beliebigen Positionen des aus Kohlenstoffatomen gebildeten Grundgerüsts stehen und können gewählt sein aus der Gruppe, die besteht aus Halogenatomen wie Fluor, Chlor, Brom und Iod, Alkylgruppen mit 1 bis 6 C-Atomen, Alkoxygruppen mit 1 bis 6 C-Atomen im Alkylrest und unsubstituierten oder mit einem oder zwei Alkylresten mit jeweils unabhängig voneinander 1 bis 6 C-Atomen substituierten Aminogruppen.

In weiteren Ausführungsformen der Erfindung bedeuten die Reste R_n in den allgemeinen Formeln D1 bis D14 C₁- bis C₁₂-Alkoxy-Reste oder C₁- bis C₁₂-Alkylthio-Reste. Für die C₁- bis C₁₂-Alkylgruppen dieser Alkoxy- bzw. Alkylthio-Reste gelten die vorstehend genannten Definitionen der geradkettigen und verzweigten Alkyl-Reste ebenfalls. Besonders bevorzugt sind geradkettige C₁- bis C₆-Alkoxy-Reste und geradkettige C₁- bis C₆-Alkylthio-Reste, und

besonders bevorzugt sind die Reste Methoxy, Ethoxy, n-Propoxy, Methylthio, Ethylthio und n-Propylthio.

In weiteren Ausführungsformen der Erfindung können die Reste R_n der allgemeinen Formeln D1 bis D14 auch stehen für unsubstituierte oder substituierte Cycloalkyl-Reste. Diese können erfindungsgemäß bevorzugt drei bis acht Atome im Ring enthalten und können entweder ausschließlich aus Kohlenstoff-Atomen bestehen oder ein oder mehrere Heteroatome enthalten. Besonders bevorzugt unter den rein carbocyclischen Ringen sind die Reste Cyclopentyl, Cyclopentenyl, Cyclopentadienyl, Cyclohexyl, Cyclohexenyl, Cyclohexadienyl, Cycloheptyl, Cycloheptenyl, Cycloheptadienyl und Cycloheptatrienyl; Beispiele für Heteroatome enthaltende Cycloalkyl-Reste sind in weiteren Ausführungsformen der Erfindung die Reste Tetrahydrofuranyl, Pyrrolidinyl, Pyrazolidinyl, Imidazolidinyl, Piperidinyl, Piperazinyl und Morpholinyl. Mögliche Substituenten an diesen carbocyclischen oder heterocyclischen Cycloalkylresten können gewählt sein aus der obigen Gruppe von Substituenten für lineare Alkyl-Gruppen.

In weiteren Ausführungsformen der Erfindung können die Reste R_n an den Verbindungen der allgemeinen Formeln D1 bis D14 stehen für unkondensierte oder kondensierte gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltende Aryl-Reste. Die Aryl-Reste können aus einem oder mehreren Ringen, bei mehreren Ringen bevorzugt aus zwei Ringen, bestehen; ein Ring kann weiter bevorzugt fünf, sechs oder sieben Ringglieder aufweisen. Bei aus mehreren aneinander kondensierten Ringen bestehenden Systemen sind Benzokondensierte Ringe besonders bevorzugt, d. h. Ringsysteme, in denen zumindest einer der Ringe ein aromatischer Sechsring ist. Besonders bevorzugt sind die rein aus Kohlenstoff-Atomen bestehenden Aryl-Reste gewählt aus Phenyl, Cyclopentadienyl, Cycloheptatrienyl und Naphthyl; besonders bevorzugte Heteroatome enthaltende Aryl-Reste sind beispielsweise gewählt aus Indolyl, Cumaronyl, Thionaphthenyl, Chinoliny (Benzopyridyl), Chinazoliny (Benzopyrimidinyl) und Chinoxyliny (Benzopyrazinyl).

Sowohl aus einem Ring bestehende als auch aus mehreren Ringen bestehende, sowohl nur Kohlenstoffatome enthaltende wie auch Heteroatome enthaltende Aryl-Reste können erfin-

dungsgemäß in einer weiteren Ausführungsform substituiert sein. Die Substituenten können an beliebigen Positionen des Ringsystems, sowohl an den Kohlenstoffatomen als auch an den Heteroatomen stehen und können beispielsweise gewählt sein aus der Gruppe, die besteht aus Halogenatomen wie Fluor, Chlor, Brom und Iod, Alkylgruppen mit 1 bis 6 C-Atomen, Alkoxygruppen mit 1 bis 6 C-Atomen im Alkylrest und unsubstituierten oder mit einem oder zwei Alkylresten mit jeweils unabhängig voneinander 1 bis 6 C-Atomen substituierten Aminogruppen.

Die Reste Rn (= R1 bis R10) können erfindungsgemäß weiter auch für unsubstituierte Amino-Reste ($-NH_2$) oder unsubstituierte Imino-Reste ($-NH-$) oder für substituierte Amino-Reste ($-NHRm$ oder $-NRIRm$) oder substituierte Imino-Reste ($-NRRm$) stehen. Darin haben die Substituenten R1 und Rm die oben im einzelnen für die Reste Rn definierten Bedeutungen und können gleich und verschieden sein.

Die Reste Rn (= R1 bis R10) können erfindungsgemäß weiter auch für unsubstituierte Carbonyl-Reste ($H-(C=O)-$) oder unsubstituierte Thiocarbonyl-Reste ($H-(C=S)-$) oder für substituierte Carbonyl-Reste ($Rm-(C=O)-$) oder substituierte Thiocarbonyl-Reste ($Rm-(C=S)-$) stehen. Darin haben die Substituenten Rm substituierter Carbonyl-Reste oder substituierter Thiocarbonyl-Reste die oben im einzelnen für die möglichen Substituenten der Reste Rn definierten Bedeutungen.

Erfindungsgemäß können die vorgenannten Reste Rn (= R1, R2, R3, R4, R5, R6, R7, R8, R9 und/oder R10) mit den jeweiligen Grundstrukturen der allgemeinen Formeln D1 bis D14 über eines ihrer Kohlenstoffatome verbunden sein. Es ist jedoch in einer alternativen Ausführungsform genauso gut möglich, daß die Reste Rn mit den jeweiligen Grundstrukturen der allgemeinen Formeln D1 bis D14 über das Heteroatom oder eines ihrer Heteroatome verbunden sind.

In mehreren der allgemeinen Formeln D1 bis D14 (beispielsweise in den allgemeinen Formeln D1(b), D2, D7(a) bis (c), D8, D9(a) bis (c), D12, D13 und D14) stehen Y, Y1 und Y2 für Reste, die über eine C=Y-Doppelbindung (bzw. C=Y1-Doppelbindung und/oder C=Y2-

Doppelbindung) mit der Grundstruktur der jeweiligen Formel verbunden sind. Die Reste Y stehen in den allgemeinen Formeln, in denen sie vorkommen, jeweils unabhängig voneinander für einen der über eine Doppelbindung an ein Kohlenstoffatom gebundenen Reste O, S oder NR_n, beispielsweise NR₃ oder NR₄ oder NR₅, wobei in letzteren die Reste R_n (beispielsweise R₃ oder R₄ oder R₅) die oben für R_n genannten Bedeutungen haben können, einschließlich der Bedeutung Wasserstoff. Besonders bevorzugt steht Y für über eine Doppelbindung an ein C-Atom gebundenes O.

In mehreren der allgemeinen Formeln D₁ bis D₁₄ (beispielsweise in den allgemeinen Formeln D₃, D₅, D₆) stehen X, X₁, X₂ und Z für Reste, die über je eine C-X-Einfachbindung (bzw. C-X₁-Einfachbindung oder C-X₂-Einfachbindung) oder eine C-Z-Einfachbindung an zwei verschiedene Kohlenstoffatome gebunden sind. Die Reste X und Z stehen in den allgemeinen Formeln, in denen sie vorkommen, jeweils unabhängig voneinander für einen der über je eine Einfachbindung an zwei verschiedene Kohlenstoffatome gebundenen Reste >NH, >NR_n (z. B. >NR₅ oder >NR₁₀), -O-, -S-, -CH₂-, -CHR_n- oder -CR_n-, worin die Reste R_n die oben angegebene Bedeutung haben, oder stehen für einen der über je eine Einfachbindung an drei verschiedene Kohlenstoffatome gebundenen Reste >N-, >CH- oder >CR_n- (z. B. >CR₈- oder >CR₉-), worin R_n (z. B. R₈, R₉) die oben angegebenen Bedeutungen haben.

In den Verbindungen der allgemeinen Formel D₄ stellen R₁₁ und R₁₂ heterocyclische Systeme mit drei bis acht Ringgliedern dar, die direkt über die Heteroatome, Kohlenstoffatome oder ein Hetero- oder Kohlenstoffatom miteinander verbunden sein können, und die durch R₁ und R₂ bezeichneten Teilringe können substituiert oder nichtsubstituiert, kondensiert oder nichtkondensiert sein und können null bis drei Doppelbindungen und weitere Heteroatome und Heteroatome enthaltende Gruppen enthalten.

In den Verbindungen der allgemeinen Formel D₉ steht Z für P oder S.

In den Verbindungen der allgemeinen Formeln D₈, D₁₂ und D₁₃ stehen X und Z unabhängig voneinander für Reste aus der Gruppe, die besteht aus Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder konden-

siertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl und Amino (NH_2 , NHR_1 , NR_1R_2), worin alle vorgenannten Bedeutungen von X und Z denjenigen für Alkoxy, Alkylthio, Aryl, Cycloalkyl und Amino entsprechen, die oben für die Reste R_n der allgemeinen Formeln D1 bis D14 im einzelnen definiert wurden.

Die Verbindungen der in den Ansprüchen 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 und 27 definierten allgemeinen Formeln D1 bis D14 im allgemeinen und die Verbindungen D1.001 bis D14.007 in Table 1 bis 14 in den Ansprüchen 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 und 28 im besonderen können nach an sich aus der Literatur bekannten Verfahren hergestellt werden bzw. sind kommerziell erhältlich.

Beansprucht werden die den allgemeinen Formeln D1 bis D14 entsprechenden Verbindungen im allgemeinen und die in Table 1 bis 14 genannten speziellen Verbindungen D1.001 bis D14.007 in bevorzugten Ausführungsformen der Erfindung zur Verwendung in der Medizin. Der Begriff „zur Verwendung in der Medizin“ wird hier wie in den Patentansprüchen in seiner breitesten Bedeutung verstanden und bezieht sich auf alle denkbaren Anwendungsgebiete, in denen die durch die vorliegende Erfindung definierten Verbindungen der allgemeinen Formeln D1 bis D14, und in bevorzugten Ausführungsformen die Verbindungen D1.001 bis D14.007, wie sie speziell in Table 1 bis 14 aufgeführt sind, Wirksamkeit im Zusammenhang mit medizinisch relevanten Zuständen des Säugerkörpers, insbesondere des menschlichen Körpers, entfalten können.

Im Zusammenhang mit solchen medizinisch relevanten Zuständen findet eine Verwendung der Verbindungen der allgemeinen Formeln D1 bis D14 in allgemeinen und eine Verwendung der bevorzugten Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14 entweder in Form der Verwendung einer Einzelverbindung oder in Form der Verwendung mehrerer Verbindungen der allgemeinen Formeln D1 bis D14 (insbesondere der bevorzugten Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14) statt. Ebenfalls im Rahmen der Erfindung liegt eine Verwendung einer oder mehrerer der Verbindungen der allgemeinen Formeln D1 bis D14, bevorzugt einer oder mehrerer Verbindungen aus der Gruppe, die gewählt ist aus den

Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14, in Kombination mit anderen Wirkstoffen, beispielsweise mit einer oder mehreren Verbindungen, die Wirksamkeit in der Inhibition von Dipeptidylpeptidase IV oder von analogen Enzymen (also Enzymen mit gleicher Substratspezifität) und/oder Wirksamkeit in der Inhibition anderer Enzyme, beispielsweise der Alanyl-Aminopeptidase (APN) oder von analogen Enzymen (also Enzymen mit gleicher Substratspezifität), aufwiesen. Beispiele solcher als Enzyminhibitor wirksamen Verbindungen werden in am gleichen Anmeldetag wie die vorliegende Anmeldung eingereichten parallelen Anmeldungen derselben Anmelder und in den eingangs zitierten Anmeldungen der Anmelder genannt, die durch die Inbezugnahme hinsichtlich ihres Offenbarungsgehalts in die vorliegende Beschreibung übernommen werden.

Spezielle Beispiele von als Inhibitor der Dipeptidylpeptidase IV wirksamen Inhibitoren, wie sie aus dem Stand der Technik bekannt sind und gegebenenfalls zusammen mit den Verbindungen gemäß der vorliegenden Erfindung, insbesondere mit einer oder mehreren der Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14, verwendet werden können, schließen beispielsweise ein: Xaa-Pro-Dipeptide, entsprechende Derivate, vorzugsweise Dipeptidphosphonsäurediarylester, Dipeptidboronsäuren (z. B. Pro-boro-Pro) und deren Salze, Xaa-Xaa-(Trp)-Pro-(Xaa)n-Peptide ($n = 0$ bis 10), entsprechende Derivate und deren Salze bzw. Aminosäure (Xaa)-amide, entsprechende Derivate und deren Salze, wobei Xaa eine α -Aminosäure/Iminosäure bzw. ein α -Aminosäurederivat/Iminosäurederivat, vorzugsweise N^E-4-Nitrobenzyl-oxycarbonyl-L-Lysin, L-Prolin, L-Tryptophan, L-Isoleucin, L-Valin ist und als Amidstruktur cyclische Amine, z.B. Pyrrolidin, Piperidin, Thiazolidin und deren Derivate fungieren. Derartige Verbindungen und deren Herstellung wurden in einem früheren Patent beschrieben (K. Neubert et al. DD296075A5). Weiter können als Effektoren für die DP IV zusammen mit den Verbindungen der allgemeinen Formeln D1 bis D14 gemäß der vorliegenden Erfindung mit Vorteil Tryptophan-1,2,3,4-tetrahydroisoquinolin-3-carbonsäure-derivate (TSL) und (2S,2S',2S'')-2-[2'-(2''-amino-3''-(indol-3'''-yl)-1''-oxoprolyl]-1',2',3',4'-tetrahydro-6'8'-dihydroxy-7-methoxyisoquinol-3-yl-carbonyl-amino]-4-hydromethyl-5-hydropentansäure (TMC-2A) verwendet werden. Ein Beispielhafter, mit Vorteil zusammen mit den Verbindungen der allgemeinen Formeln D1 bis D14 verwendbarer

Inhibitor von DP IV ist Lys[Z(NO₂]-thiazolidid, worin Lys für einen L-Lysin-Rest steht und Z(NO₂) für 4-Nitrobenzyloxycarbonyl steht (vgl. DD-A 296075).

Eine weitere Ausführungsform der Erfindung betrifft pharmazeutische Zubereitungen, die mindestens eine, gegebenenfalls auch zwei oder sogar noch mehr, Verbindung(en) der allgemeinen Formeln D1 bis D14, besonders bevorzugt ausgewählt aus den Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14, umfassen. Solche pharmazeutischen Zubereitungen umfassen eine oder mehrere der genannten Verbindungen jeweils in einer solchen Menge, wie sie zur Entfaltung einer pharmazeutischen Wirkung erforderlich ist. Solche Mengen kann der Fachmann im einzelnen anhand von wenigen Routinetests leicht und ohne erfinderisches Zutun ermitteln; sie liegen im allgemeinen in Bereichen von 0,01 bis 1000 mg jeder der Verbindungen der allgemeinen Formeln D1 bis D14, besonders bevorzugt der Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14, pro Darreichungseinheit, noch weiter bevorzugt in Bereichen von 0,1 bis 100 mg jeder der genannten Verbindungen pro Darreichungseinheit. Auf den jeweiligen einzelnen Säugerorganismus bzw. menschlichen Organismus abgestimmte Mengen kann darüber hinaus der Fachmann leicht ermitteln und gegebenenfalls auch vorsehen, daß eine ausreichende Konzentration der zu verwenden Verbindung(en) durch Darreichung geteilter oder mehrerer Darreichungsformen erreicht wird.

Eine weitere Ausführungsform der Erfindung betrifft kosmetische Zubereitungen, die mindestens eine, gegebenenfalls auch zwei oder sogar noch mehr, Verbindung(en) der allgemeinen Formeln D1 bis D14, besonders bevorzugt ausgewählt aus den Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14, umfassen. Solche kosmetischen Zubereitungen umfassen eine oder mehrere der genannten Verbindungen jeweils in einer solchen Menge, wie sie zur Entfaltung einer gewünschten, beispielsweise kosmetischen Wirkung erforderlich ist. Solche Mengen kann der Fachmann im einzelnen anhand von wenigen Routinetests leicht und ohne erfinderisches Zutun ermitteln; sie liegen im allgemeinen in Bereichen von 0,01 bis 1000 mg jeder der Verbindungen der allgemeinen Formeln D1 bis D14, besonders bevorzugt der Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14, pro Darreichungseinheit, noch weiter bevorzugt in Bereichen von 0,1 bis 100 mg jeder der genannten Verbindungen pro Darreichungseinheit. Auf den jeweiligen einzelnen Säugerorganismus bzw. menschlichen Organis-

mus abgestimmte Mengen kann darüber hinaus der Fachmann leicht ermitteln und gegebenenfalls auch vorsehen, daß eine ausreichende Konzentration der zu verwendenden Verbindung(en) durch Darreichung geteilter oder mehrerer Darreichungsformen erreicht wird.

Die eine oder mehreren Verbindungen gemäß der vorliegenden Erfindung oder diese enthaltende pharmazeutische oder kosmetische Zubereitungen werden simultan mit bekannten Trägerstoffen und/oder Hilfsstoffen (Adjuvantien) verabreicht. Solche Träger- und Hilfsstoffe sind dem Fachmann als solche und auch hinsichtlich ihrer Funktion und Anwendungsweise bekannt und bedürfen daher an dieser Stelle keiner detaillierten Erläuterung.

Von der Erfindung umfaßt sind auch pharmazeutische Zubereitungen, die umfassen: einen oder mehrere der Inhibitoren der DP IV bzw. der Inhibitoren von Enzymen mit DP IV-analoger Enzymaktivität oder/und der Inhibitoren der APN bzw. der Inhibitoren von Enzymen mit APN-analoger Enzymaktivität gemäß dem Stand der Technik, zusammen mit einer oder mehreren Verbindung(en) der allgemeinen Formeln D1 bis D14, insbesondere bevorzugt zusammen mit einer oder mehreren der Verbindungen, die aus den Verbindungen D1.001 bis D14.007 der Tabellen 1 bis 14 ausgewählt sind, in räumlich getrennter Formulierung in Kombination mit an sich bekannten Träger-, Hilfs- und/oder Zusatzstoffen zur gleichzeitigen oder zeitlich unmittelbar aufeinanderfolgenden Verabreichung mit dem Ziel einer gemeinsamen Wirkung.

Die Verabreichung der Verbindungen der allgemeinen Formeln D1 bis D14 im allgemeinen und bevorzugt der Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14 bzw. pharmazeutischer oder kosmetischer Zubereitungen, die eine oder mehrere der vorgenannten Verbindungen zusammen mit an sich üblichen Träger-, Hilfs- und/oder Zusatzstoffen umfassen, erfolgt einerseits als topische Applikation in Form von z.B. Cremes, Salben, Pasten, Gelen, Lösungen, Sprays, Liposomen und Nanosomen, Schüttelmixturen, "pegyierten" Formulierungen, degradierbaren (d. h. unter physiologischen Bedingungen abbaubaren) Depot-Matrizes, Hydrokolloidverbänden, Pflastern, Mikroschwämmen, Prepolymeren und ähnlichen neuen Trägersubstraten, Jet-Injektion bzw. anderen dermatologischen Grundlagen/Vehikeln einschließlich instillativer Applikation, und andererseits als systemische Applikation zur ora-

len, transdermalen, intravenösen, subcutanen, intracutanen, intramuskulären, intrethekalen Anwendung in geeigneten Rezepturen bzw. in geeigneter Galenik.

Erfindungsgemäß werden die Verbindungen der allgemeinen Formeln D1 bis D14 im allgemeinen und bevorzugt die Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14 einzeln oder in Kombination, oder auch pharmazeutische oder kosmetische Zusammensetzungen, die eine oder mehrere der genannten Verbindungen umfassen, zur Hemmung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidasen und Inhibitoren analoger Enzyme verwendet.

In einer weiteren Ausführungsform der Erfindung werden die Verbindungen der allgemeinen Formeln D1 bis D14 im allgemeinen und bevorzugt die Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14 einzeln oder in Kombination, oder auch pharmazeutische oder kosmetische Zusammensetzungen, die eine oder mehrere der genannten Verbindungen umfassen, zur topischen Beeinflussung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidasen und Inhibitoren analoger Enzyme verwendet.

In bevorzugten Ausführungsformen der Erfindung erfolgt eine Verwendung der Verbindungen der allgemeinen Formeln D1 bis D14 im allgemeinen und bevorzugt der Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14 einzeln oder in Kombination, oder auch eine Verwendung von pharmazeutischen oder kosmetischen Zusammensetzungen, die eine oder mehrere der genannten Verbindungen umfassen, zur Prophylaxe und Therapie von Erkrankungen wie beispielsweise Multiple Sklerose, Morbus Crohn, Colitis ulcerosa, und anderen Autoimmunerkrankungen sowie entzündlichen Erkrankungen, Asthma bronchiale und anderen allergischen Erkrankungen, Haut- und Schleimhauterkrankungen, beispielsweise Psoriasis, Akne sowie dermatologischen Erkrankungen mit Hyperproliferation und veränderten Differenzierungszuständen von Fibroblasten, benigner fibrosierender und sklerosierender Hauterkrankungen und maligner fibroblastärer Hyperproliferationszustände, akuten neuronalen Erkrankungen, wie beispielsweise Ischämie-bedingter zerebraler Schädigungen nach einem ischämischen oder hämorrhagischen Schlaganfall, Schädel/Hirn-Trauma, Herzstillstand, Herzinfarkt

oder als Folge von herzchirurgischen Eingriffen, von chronischen neuronalen Erkrankungen, beispielsweise von Morbus Alzheimer, der Pick'schen Erkrankung, der Progressiven Supranukleären Palsy, der kortikobasalen Degeneration, der frontotemporalen Demenz, von Morbus Parkinson, insbesondere Parkinsonismus gekoppelt an Chromosom 17, von Morbus Huntington, von durch Prionen bedingten Krankheitszuständen und von Amyotropher Lateralsklerose, von Artherosklerose, arterieller Entzündung, Stent-Restenose, von Chronisch Obstruktiven Lungenerkrankungen (COPD), von Tumoren, Metastasierungen, von Prostatakarzinom, von Schwerem Akutem Respiratorischen Syndrom (SARS) und von Sepsis und Sepsisähnlichen Zuständen.

In einer weiteren bevorzugten Ausführungsform der Erfindung erfolgt eine Verwendung der Verbindungen der allgemeinen Formeln D1 bis D14 im allgemeinen und bevorzugt die Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14 einzeln oder in Kombination, oder auch der pharmazeutischen oder kosmetischen Zusammensetzungen, die eine oder mehrere der genannten Verbindungen umfassen, zur Prophylaxe und Therapie der Abstoßung von transplantierten Geweben und Zellen. Als ein Beispiel einer solchen Anwendung kann die Verwendung einer oder mehrerer der vorgenannten Verbindungen oder einer pharmazeutischen Zusammensetzung, die eine oder mehrere der genannten Verbindungen enthält, bei allogenen Nieren- oder Stammzell-Transplantationen genannt werden.

In einer weiteren bevorzugten Ausführungsform der Erfindung erfolgt eine Verwendung der Verbindungen der allgemeinen Formeln D1 bis D14 im allgemeinen und bevorzugt der Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14 einzeln oder in Kombination, oder auch der pharmazeutischen oder kosmetischen Zusammensetzungen, die eine oder mehrere der genannten Verbindungen umfassen, zur Prophylaxe und Therapie der Abstoßungs- oder Entzündungsreaktionen an oder durch in einen Organismus implantierte medizinische Gegenstände („medical devices“). Dies können beispielsweise Stents, Gelenkimplantate (Kniegelenk-Implantate, Hüftgelenk-Implantate), Knochen-Implantate, Herz-Schrittmacher oder andere Implantate sein. In einer weiteren bevorzugten Ausführungsform der Erfindung erfolgt eine Verwendung der Verbindungen der allgemeinen Formeln D1 bis D14 im allgemeinen und bevorzugt die Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14 einzeln oder in

Kombination, oder auch der pharmazeutischen oder kosmetischen Zusammensetzungen, die eine oder mehrere der genannten Verbindungen umfassen, in der Weise, daß die Verbindung(en) oder Zusammensetzung(en) in Form einer Beschichtung oder Benetzung auf den Gegenstand bzw. die Gegenstände aufgebracht werden oder mindestens eine der Verbindungen oder Zusammensetzungen stofflich dem Material des Gegenstandes / der Gegenstände beigemischt wird. Auch in diesem Fall ist natürlich möglich, mindestens eine der Verbindungen oder Zusammensetzungen – gegebenenfalls zeitlich abgestuft oder parallel – lokal oder systemisch zu verabreichen.

In gleicher Weise wie vorstehend beschrieben – und für die vergleichbaren Zwecke bzw. zur Prophylaxe und Therapie der vorstehend beispielhaft, jedoch nicht abschließend genannten Erkrankungen und Zustände – können die Verbindungen der allgemeinen Formeln D1 bis D14 im allgemeinen und die Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14 in bevorzugten Ausführungsformen, sowie die vorstehend beschriebenen, die genannten Verbindungen enthaltenden pharmazeutischen und kosmetischen Zusammensetzungen allein oder in Kombination mehrerer von ihnen zur Herstellung von Medikamenten zur Behandlung der o. g. Krankheiten oder Zustände verwendet werden. Diese können die genannten Verbindungen in den vorstehend genannten Mengen umfassen, gegebenenfalls zusammen mit an sich bekannten Träger-, Hilfs- und/oder Zusatzstoffen.

Die Erfindung betrifft abschließend auch ein Verfahren zur Hemmung der Aktivität der Di-peptidylpeptidase IV oder analoger Enzyme allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidasen und analoger Enzyme durch Verabreichung mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung gemäß der obigen detaillierten Beschreibung in einer für die Hemmung der Enzymaktivität erforderlichen Menge. Die Mengen einer der Verbindungen der allgemeinen Formeln D1 bis D14 im allgemeinen bzw. der Verbindungen D1.001 bis D14.007 gemäß Table 1 bis 14 liegen – wie oben angegeben – im Bereich von 0,01 bis 1000 mg einer Verbindung pro Verabreichungseinheit, vorzugsweise im Bereich von 0,1 bis 100 mg pro Verabreichungseinheit.

Weiter betrifft die Erfindung auch ein Verfahren zur topischen Beeinflussung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidase oder analoger Enzyme durch Verabreichung mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung gemäß der vorstehenden detaillierten Beschreibung in einer für die Beeinflussung der Enzymaktivität erforderlichen Menge. Auch in diesen Fällen bewegen sich die Mengen der Verbindung(en) im oben angegebenen Bereich.

Weiter betrifft die Erfindung auch ein Verfahren zur Prophylaxe und Therapie einer Vielzahl von Erkrankungen, beispielsweise Erkrankungen mit überschießender Immunantwort (Autoimmunerkrankungen, Allergien und Transplantatrejektionen), von anderen chronisch-entzündlichen Erkrankungen, neuronalen Erkrankungen und zerebralen Schädigungen, Hauterkrankungen (u. a. Akne und Schuppenflechte), Tumorerkrankungen und speziellen Virusinfektionen (u. a. SARS) und insbesondere der oben im einzelnen genannten Erkrankungen, durch Verabreichung mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung gemäß der vorstehenden detaillierten Beschreibung in einer für die Prophylaxe oder Therapie der jeweiligen Erkrankung erforderlichen Menge. Auch in diesen Fällen bewegen sich die Mengen der Verbindung(en) im oben angegebenen Bereich von 0,01 bis 1000 mg einer Verbindung pro Verabreichungseinheit, vorzugsweise im Bereich von 0,1 bis 100 mg pro Verabreichungseinheit.

Die Erfindung wird nachfolgend durch spezielle bevorzugte Ausführungsbeispiele näher erläutert. Die nachfolgenden Ausführungsbeispiele dienen jedoch nicht der Beschränkung der Erfindung, sondern ausschließlich deren beispielhafter Erläuterung.

Ausführungsbeispiele**Beispiel 1:****Inhibitonscharakteristika neuartiger Hemmstoffe der Dipeptidylpeptidase IV**

In den nachfolgenden Tabellen (Table 1 bis 14) sind neue Hemmstoffe zusammengefasst für die durch die Anmelder gezeigt werden konnte, dass diese Substanzen in der Lage sind, Dipeptidylpeptidase IV und analog wirkende Enzyme in ihrer enzymatischen Aktivität zu inhibieren. Die gemessenen Inhibitonscharakteristika sind als IC-50- oder ID-50-Werte (ID-50 Werte markiert mit „*“) für beide Enzyme angegeben. Die enzymatische Aktivität wurde mit Hilfe der fluorogenen Substrates (Ala-Pro)₂-Rhodamin 110 ermittelt.

Table 1:

Compound ID.	Structure	IC50 _{DPIV} [μM]
D1.001		1.2*
D1.002		1.4*

D1.003		34.14
D1.004		36.51

Table 2:

Compound ID.	Structure	IC ₅₀ _{DPIV} [μM]
D2.001		14.0
D2.003		32.8

D2.004		33.4
D2.005		54.5
D2.006		132.7*
D2.007		148.4*
D2.008		275.4*

Table 3:

Compound ID.	Structure	IC₅₀_{DPIV} [μM]
D3.001		0.4*
D3.002		0.8*
D3.003		15.6
D3.004		7.5

D3.005		6.0
D3.006		7.2*
D3.007		7.4
D3.008		34.1
D3.009		14.1
D3.010		8.1

D3.011		10.1
D3.012		10.1
D3.013		10.8
D3.014		12.1
D3.015		12.2

D3.016		12.4
D3.017		14.0
D3.018		14.4
D3.019		14.5
D3.020		15.2
D3.021		15.2

D3.022		16.2
D3.023		18.2
D3.024		18.9
D3.025		23.8
D3.026		20.2

D3.027		15.2
D3.029		22.9
D3.030		30.0
D3.031		25.4

D3.032		27.2
D3.033		27.5
D3.034		14.1
D3.035		52.3
D3.037		30.8
D3.038		30.9

D3.039		31.4
D3.040		18.9
D3.042		33.0
D3.043		33.4
D3.044		33.5

D3.045		4.2*
D3.046		34.2
D3.047		37.4
D3.048		38.2
D3.049		39.5
D3.050		39.8

D3.051		40.2
D3.052		40.5
D3.054		41.2
D3.055		42.4
D3.056		42.7
D3.057		43.1

D3.058		44.0
D3.059		45.6
D3.060		45.9
D3.061		46.0
D3.062		46.4
D3.063		46.7
D3.064		48.3

D3.066		52.3
D3.067		52.4
D3.069		54.1
D3.070		27.5
D3.072		54.5
D3.073		55.4

D3.074		55.4
D3.077		59.1
D3.078		59.2
D3.079		59.4
D3.080		59.8
D3.081		60.0
D3.082		62.1
D3.083		62.4

D3.084		63.5*
D3.086		69.8*
D3.087		74.7*
D3.088		80.6
D3.089		83.3*

D3.091		27.8
D3.092		100.6
D3.093		111.8*
D3.094		115.7
D3.095		42.4
D3.096		138.3

D3.097		165.3*
D3.098		165.9*
D3.099		168.9*
D3.100		56.3
D3.101		208.3*
D3.102		208.9*

D3.103		224.1*
D3.104		28.8
D3.105		251.7*
D3.106		255.3*
D3.107		267.9*
D3.108		269.0*

D3.109		271.8*
D3.110		279.4*
D3.111		283.9*
D3.112		343.7*

D3.113		316.8*
D3.114		332.3*
D3.116		362.6*
D3.117		401.9*

D3.118		416.9*
D3.119		527.4*
D3.120		655.7*

Table 4:

Compound ID.	Structure	IC50_{DPIV} [μM]
D4.001		0.4*
D4.002		0.8*
D4.003		1.2*
D4.004		3.1*
D4.005		3.8*

D4.006		4.2*
D4.007		6.9
D4.008		7.2*
D4.009		7.4
D4.010		7.5
D4.011		8.5

D4.012		9.9
D4.013		10.1
D4.014		10.1
D4.015		12.2
D4.016		12.3

D4.017		13.5
D4.018		14.4
D4.019		15.2
D4.020		15.2
D4.021		15.4

D4.022		16.4
D4.023		18.2
D4.024		19.2
D4.025		20.0
D4.026		20.3

D4.027		20.4
D4.028		20.6
D4.030		21.0
D4.031		22.9
D4.032		23.6

D4.034		24.3
D4.035		24.5
D4.036		25.4
D4.037		27.7
D4.038		27.8

D4.039		28.8
D4.040		29.8
D4.041		30.7
D4.042		30.8
D4.044		34.1

D4.045		34.2
D4.046		34.8
D4.047		35.3
D4.048		36.8
D4.049		37.4

D4.050		39.8
D4.051		41.2
D4.052		42.4
D4.053		43.1
D4.054		44.6

D4.055		45.6
D4.056		46.4
D4.057		48.2
D4.058		48.3
D4.059		49.0

D4.060		49.4
D4.061		52.5
D4.062		52.6
D4.063		54.1
D4.064		54.9

D4.065		55.0
D4.066		55.3
D4.067		55.4
D4.068		56.2
D4.069		56.7

D4.070		57.0
D4.071		60.7
D4.072		65.0
D4.073		65.6
D4.074		65.9
D4.075		66.6

D4.076		69.8*
D4.077		70.1
D4.078		70.4
D4.079		71.3*
D4.080		73.8

D4.081		76.3
D4.082		80.6
D4.083		82.2
D4.084		84.9
D4.085		92.5
D4.086		94.5

D4.087		95.8
D4.088		96.2*
D4.089		98.4*
D4.090		110.0
D4.091		111.8*
D4.092		115.7
D4.093		138.3

D4.095		162.8*
D4.096		171.7*
D4.098		198.3*
D4.099		208.9*
D4.100		216.4*
D4.101		231.4*

D4.102		232.7*
D4.103		243.2*
D4.104		255.3*
D4.105		255.3*
D4.106		267.9*

D4.107		271.4*
D4.110		332.3*
D4.111		343.7*
D4.112		361.0*
D4.113		362.6*

D4.114		394.3*
D4.115		401.9*
D4.116		417.9*
D4.117		527.4*

D4.118		456.1*
--------	---	--------

Table 5:

Compound ID.	Structure	IC ₅₀ _{DPIV} [μM]
D5.001		0.4*
D5.002		0.8*
D5.003		3.1*
D5.004		3.8*

D5.005		6.0
D5.006		8.5
D5.007		12.1
D5.008		10.1
D5.009		10.7*

D5.010		12.2
D5.011		13.5
D5.013		15.4
D5.014		20.0
D5.015		21.0

D5.016		22.9
D5.017		23.6
D5.018		24.5
D5.019		28.8

D5.020		19.2
D5.021		29.2
D5.022		30.7
D5.023		30.8
D5.024		31.4

D5.025		33.4
D5.026		34.1
D5.027		35.3
D5.028		36.8
D5.029		37.4

D5.030		41.2
D5.031		45.6
D5.032		46.4
D5.033		46.5
D5.034		48.3

D5.035		52.6
D5.036		54.0
D5.037		54.8
D5.038		55.0
D5.039		59.4

D5.045		71.3*
D5.046		94.5
D5.047		96.6*
D5.048		115.7
D5.050		216.4*
D5.051		232.7*

D5.052		279.4*
D5.053		361.1*

Table 6:

Compound ID.	Structure	IC50DPIV [μM]
D6.001		0.4*
D6.002		0.8*

D6.003		2.5*
D6.004		6.5
D6.006		7.5
D6.007		7.5
D6.008		7.5

D6.009		8.1
D6.010		9.2
D6.011		9.9
D6.012		10.1
D6.013		10.1

D6.014		12.3
D6.015		13.6
D6.016		14.0
D6.017		14.4
D6.018		15.2
D6.019		15.2

D6.020		15.6
D6.021		16.1
D6.022		16.2
D6.023		16.4
D6.024		16.7
D6.025		17.5

D6.026		17.9
D6.027		18.5
D6.028		19.2
D6.029		19.7
D6.030		20.0

D6.031		20.2
D6.032		20.3
D6.033		20.4
D6.034		20.6
D6.035		20.8
D6.036		20.9

D6.037		18.9
D6.038		23.6
D6.039		24.1
D6.040		24.3
D6.041		25.4

D6.042		27.5
D6.043		27.8
D6.044		28.8
D6.045		29.8
D6.046		30.8
D6.047		30.9

D6.048		31.3
D6.049		32.4
D6.050		32.8
D6.051		33.0
D6.052		332.3*
D6.053		34.1

D6.054		34.2
D6.055		34.8
D6.056		37.4
D6.057		38.1
D6.058		39.5
D6.059		39.8

D6.060		41.2
D6.061		42.4
D6.062		43.8
D6.063		44.0

D6.064		44.3
D6.065		44.6
D6.066		46.0
D6.067		46.5
D6.068		48.2

D6.069		48.3
D6.070		49.0
D6.071		51.7
D6.072		52.4
D6.073		52.5
D6.074		52.9

D6.075		54.1
D6.076		54.5
D6.077		55.0
D6.078		55.2
D6.079		55.3

D6.080		55.7
D6.081		56.3
D6.082		56.7
D6.083		59.8
D6.084		57.4
D6.085		61.4

D6.086		62.4
D6.087		65.9
D6.088		69.8*
D6.089		73.8
D6.090		74.7*

D6.091		47.7
D6.092		76.3
D6.094		80.6
D6.095		82.2
D6.096		83.3*
D6.097		84.9

D6.098		87.9
D6.099		92.2*
D6.100		92.5
D6.101		95.8
D6.102		98.4*
D6.103		100.6

D6.105		110.0
D6.106		111.8*
D6.107		113.8*
D6.108		115.0
D6.110		115.7

D6.111		138.3
D6.112		148.4*
D6.113		162.8*
D6.114		168.9*
D6.115		198.3*
D6.116		208.9*

D6.117		215.2*
D6.118		224.1*
D6.119		237.0*
D6.120		243.2*
D6.121		251.7*
D6.122		251.7*
D6.123		255.3*

D6.124		269.0*
D6.125		271.4*
D6.126		283.7*
D6.127		314.0*
D6.129		339.7*

D6.130		362.6*
D6.131		394.3*
D6.132		416.9*
D6.133		417.9*

D6.134		456.1*
D6.135		498.0*

Table 7:

Compound ID.	Structure	IC ₅₀ _{DPIV} [μM]
D7.001		165.3*
D7.003		267.9*

Table 8:

Compound ID.	Structure	IC50_{DPIV} [nM]
D8.001		0.4*
D8.002		0.8*
D8.003		7.5
D8.004		7.5

D8.005		12.2
D8.006		15.2
D8.007		16.2
D8.008		17.9
D8.009		18.2

D8.010		19.2
D8.011		18.9
D8.012		23.8
D8.013		27.8

D8.014		30.8
D8.015		32.4
D8.016		33.4
D8.017		33.3
D8.018		38.2

D8.019		40.2
D8.020		41.2
D8.021		43.1
D8.022		44.0
D8.023		44.3

D8.024		46.0
D8.025		46.3
D8.026		48.3
D8.027		55.2

D8.028		69.8*
D8.029		70.4
D8.030		83.3*
D8.031		118.9*
D8.032		132.7*

D8.033		168.9*
D8.034		269.0*
D8.035		283.6*
D8.037		332.3*
D8.038		609.2*

Table 9:

Compound ID.	Structure	IC50DPIV [μM]
D9.001		2.9*
D9.002		14.5
D9.003		21.0
D9.004		31.3
D9.005		33.4

D9.006		34.2
D9.007		40.5
D9.008		46.3
D9.010		88.8
D9.011		251.7*

D9.012		416.9*
D9.013		431.9*
D9.014		456.1*
D9.015		465.4*

Table 10:

Compound ID.	Structure	IC50_{DPPIV} [μM]
D10.001		1.0*
D10.002		2.0*
D10.003		2.9*
D10.004		6.5

D10.005		6.6
D10.007		7.2*
D10.008		7.6
D10.009		8.1
D10.010		9.1
D10.011		9.9

D10.012		10.0
D10.013		10.2
D10.014		11.4
D10.015		12.2
D10.016		12.3
D10.017		12.3

D10.018		12.4
D10.019		12.7
D10.020		12.8
D10.021		13.2
D10.022		13.2
D10.023		13.6

D10.025		16.2
D10.026		16.4
D10.027		16.7
D10.028		16.7
D10.029		17.5

D10.030		17.8
D10.031		17.8
D10.032		18.2
D10.033		18.9
D10.034		19.1
D10.035		20.0

D10.036		20.3
D10.037		20.4
D10.038		20.5
D10.039		20.8
D10.040		20.9
D10.041		21.8

D10.042		24.1
D10.043		24.2
D10.044		24.4
D10.045		28.8
D10.046		29.2
D10.047		29.8
D10.049		31.9

D10.050		32.1
D10.051		33.9
D10.052		32.9
D10.053		32.9
D10.054		33.3
D10.055		33.4

D10.056		33.5
D10.057		32.4
D10.058		34.2
D10.060		36.3
D10.061		39.2
D10.062		39.7

D10.063		40.4
D10.065		41.0
D10.066		42.0
D10.067		45.0
D10.068		45.6
D10.069		45.7

D10.070		46.2
D10.071		46.5
D10.072		46.7
D10.073		52.3
D10.074		52.9
D10.075		54.0

D10.076		55.0
D10.077		55.2
D10.078		55.3
D10.079		55.4
D10.081		55.7

D10.082		55.9
D10.083		56.3
D10.084		57.0
D10.085		57.7
D10.086		57.8
D10.087		58.7

D10.088		58.8
D10.089		60.0
D10.090		62.1
D10.091		62.2
D10.092		63.5*
D10.093		63.5
D10.094		65.5*

D10.095		69.6
D10.097		74.7*
D10.098		81.4
D10.099		84.9
D10.100		91.0*
D10.101		91.3

D10.102		91.9*
D10.103		93.3
D10.105		99.4
D10.106		101.4*
D10.107		102.6*
D10.108		110.0
D10.109		113.1

D10.110		113.8*
D10.111		115.9*
D10.113		126.8*
D10.116		165.3*
D10.117		165.9*

D10.118		165.9*
D10.119		177.0*
D10.120		197.2*
D10.121		203.8*
D10.122		208.3*
D10.123		217.7*
D10.124		224.8*

D10.125		232.7*
D10.126		233.6*
D10.128		241.4*
D10.129		243.2*
D10.130		255.3*

D10.131		257.4*
D10.132		271.4*
D10.133		271.8*
D10.134		275.1*
D10.135		314.0*
D10.136		339.7*

D10.137		401.9*
D10.138		417.9*
D10.139		431.9*
D10.140		457.7*
D10.141		498.0*
D10.142		609.2*

D10.143		655.7*
D10.144		775.2*

Table 11:

Compound ID.	Structure	IC50 _{DPIV} [μM]
D11.001		2.5*
D11.002		9.2

D11.003		14.0
D11.004		14.1
D11.006		15.2
D11.007		18.9
D11.008		30.0

D11.009		32.8
D11.010		43.8
D11.011		44.3

Table 12:

Compound ID.	Structure	IC ₅₀ _{DPIV} [μM]
D12.001		6.5
D12.002		16.2

D12.003		16.4
D12.004		18.5
D12.006		20.4
D12.009		24.1
D12.010		24.2

D12.012		30.8
D12.013		33.4
D12.014		33.9
D12.016		38.2
D12.017		34.2

D12.019		39.2
D12.024		46.2
D12.025		46.5
D12.027		49.0
D12.029		59.4
D12.031		54.5

D12.032		60.0
D12.033		60.7
D12.034		65.3
D12.038		47.7
D12.040		83.3*
D12.042		91.3

D12.043		92.2*
D12.045		113.8*
D12.047		198.3*
D12.050		655.7*

Table 13:

Compound ID.	Structure	IC50 _{DPIV} [μM]
D13.001		10.1

D13.002		23.3
D13.003		38.0
D13.004		69.8*
D13.005		72.2
D13.006		83.3*
D13.007		343.7*

Table 14:

Compound ID.	Structure	IC50_{DPIV} [μM]
D14.001		1.2*
D14.002		2.5*
D14.003		5.7
D14.004		26.2
D14.005		26.7

D14.006		33.9
D14.007		456.1*

Beispiel 2:

Therapeutische Wirkung der kombinierten Hemmung der Dipeptidylpeptidase IV und analog wirkender Enzyme sowie der Alanyl-Aminopeptidasen und analog wirkender Enzyme auf die Experimentelle Autoimmune Enzephalomyelitis (EAE) der Maus als Tiermodell der Multiplen Sklerose

Die Erkrankung EAE wurde durch tägliche Injektion von SJL/J-Mäusen ($n = 10$) mit PLP139-151 (myelin antigen proteolipid protein peptide 139-151) induziert. Nach Ausbruch der Erkrankung erfolgte am 11. Tag nach Immunisierung eine therapeutische Intervention durch intraperitoneale Injektion von jeweils 1 mg der Peptidase-Inhibitoren am ersten Tag und weiteren Injektionen von 0,5 mg der Inhibitoren jeden zweiten Tag. Die Krankheitsscores sind durch unterschiedlich stark ausgeprägte Lähmungsgrade definiert. Gesunde Tiere haben den Krankheitsscore 0. Als Alanyl-Aminopeptidase-Inhibitor wurde Actinonin, als Dipeptidylpeptidase-IV-Inhibitor Lys[Z(NO₂)]-Pyrrololidid verwendet. Die Behandlung erfolgte über 46 Tage nach Immunisierung. Die Ergebnisse sind in Figur 1 gezeigt. Die Kurvenverläufe belegen eindeutig einen besonders starken und anhaltenden therapeutischen Effekt nach kombinierter Hemmung beider Peptidasen.

Beispiel 3:

Therapeutische Wirkung der kombinierten Hemmung der Dipeptidylpeptidase IV und analog wirkender Enzyme sowie der Alanyl-Aminopeptidasen und analog wirkender Enzyme auf die Dextranulfat-induzierte Colitis der Maus als Tiermodell für chronisch entzündliche Darmerkrankungen.

Eine vorwiegend das Colon betreffende Entzündung (äquivalent zum Krankheitsbild der Colitis ulcerosa am Menschen) wurde durch Verabreichung von 3% Natriumdextransulfat im Trinkwasser bei 8 Wochen alten, weiblichen Balb/c-Mäusen induziert. Nach 3 Tagen zeigen alle Tiere eine deutliche, erkrankungstypische Symptomatik. Die Peptidase-Inhibitoren bzw. die Phosphat-gepufferte Kochsalzlösung als Placebo wurden intraperitoneal ab Tag 5 an drei aufeinander folgenden Tage verabreicht. Der Schweregrad wird anhand eines anerkannten Bewertungssystems (Score) ermittelt. Dabei fließen folgende Parameter in die Bewertung ein: Stuhlkonsistenz (fest = 0 Punkte (Pkt.), pastös = 2 Pkt., flüssig/durchfallartig = 4 Pkt); Blutnachweis im Kot (negativ = 0 Pkt., okkult = 2 Pkt., deutlich sichtbar = 4 Pkt.); Gewichtsverlust (0-5% = 0 Pkt., 5-10% = 1 Pkt., 10-15% = 2 Pkt., 15-20% = 3 Pkt., <20% = 4 Pkt.). Gesunde Tiere haben einen Score-Wert von 0 Punkten. Maximal erreichbar sind 12 Punkte. Ab einem Scorewert von 10 Punkten ist die Erkrankung potentiell tödlich. Im Erkrankungsverlauf erhöht sich der Scorewert zunächst durch Veränderung der Stuhlparameter, im späteren Verlauf (ab Tag 5) führt der Gewichtsverlust zur Steigerung des Punktewertes. Figur 2 zeigt die Erkrankungsstärke bei unbehandelten und behandelten Tieren am Versuchstag 7 nach dreitägiger Therapie.

Bei Applikation von 10 μ g der einzelnen Inhibitoren (N=14 pro Gruppe, siehe Legende) wurde eine leichte, jedoch nicht signifikante Verringerung des Erkrankungsschweregrades erzielt (-16,5% durch Actinonin; -12,3% durch Lys[Z(NO₂)]-Pyrrololidid). Bei i.p. Applikation einer Kombination beider Peptidase-Inhibitoren erfolgte eine statistisch signifikante ($p=0,00189$) Verbesserung des Erkrankungsschweregrades um 40%.

Beispiel 4:

Therapeutische Wirkung der kombinierten Hemmung der Dipeptidylpeptidase IV und analog wirkender Enzyme sowie der Alanyl-Aminopeptidasen und analog wirkender Enzyme auf das Ovalbumin-induzierten Asthma bronchiale der Maus als Tiermodell für das humanen Asthma bronchiale. Dargestellt ist der Einfluß der kombinierten Peptidase-Hemmung auf den Abfalls des mittelexpiratorischen Flusses EF 50 als Maß der Lungenfunktion (Figur 3 A) sowie auf die Eosinophilie als Charakteristikum der Entzündung der Lunge bei Asthma bronchiale (Figur 3B).

Die Sensibilisierung für das Asthma bronchiale induzierende Antigen Ovalbumin erfolgte an weiblichen Balb/c-Mäusen durch intraperitoneale Gabe von je 10 µg Ovalbumin an den Tagen 0, 14 und 21. Am Tag 27/28 wurden die Tiere mit Ovalbumin inhalativ geboostert. Nach intraperitonealer Applikation der Peptidase-Inhibitoren an den Tagen 28-35 erfolgte am Tag 35 eine intranasale Ovalbumin-Challenge und eine Überprüfung der allergischen Frühreaktion über die Lungenfunktion. Gemessen wurden der mittelexpiratorische Fluß EF50, das Atemzugvolumen, die Atemfrequenz und das Minutenvolumen sowie die Zahl der eosinophilen Granulozyten in der bronchoalveolären Lavage. Für jede Versuchsgruppe wurden 8-10 Tiere eingesetzt. In Figur 3 A sind beispielhaft die Wirkungen der Peptidase-Inhibitoren auf die Reduktion des Abfalls von EF50 zusammengestellt. Sowohl der Alanyl-Aminopeptidase-Inhibitor Actinonin (Gruppe B; 0.1 mg) als auch der Dipeptidylpeptidase-Inhibitor Lys[Z(NO₂)]-pyrrololidid (Gruppe C; 0.1 mg) zeigten therapeutische Wirkungen. Signifikante therapeutische Effekte wurden allerdings nur mit Kombinationen beider Inhibitoren (Gruppe D; je 0,1 mg) erzielt. Gruppe E repräsentiert Tiere, die nicht OVA-sensibilisiert wurden, jedoch ansonsten allen Prozeduren unterzogen wurden, die die Tiere der Gruppen A bis D durchlaufen haben. Es handelt sich bei dieser Gruppe somit um gesunde, nicht-allergische Tiere, die es aber ermöglichen, durch Stress induzierte Effekte auf die Lungenfunktion kalkulieren zu können.

Patentansprüche

1. Verbindungen der allgemeinen Formel D1

worin

- alle substituierten und nichtsubstituierten, kondensierten und nichtkondensierten homo- und heterocyclischen Grundstrukturen mit mehr als sechs Ringgliedern (a) sowie mit weniger als fünf Ringgliedern (b) vertreten sind;
- die Grundstrukturen Doppelbindungen enthalten können;
- Y für O, S oder NR₄ steht;
- R₂ die Substitution der cyclischen Grundstruktur in (a) symbolisiert und für einen oder mehrere Substituenten stehen kann;
- R₁ bis R₆ gleich oder verschieden sein können und gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocabonyl und unsubstituiertem oder substituiertem Imino; und
- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D1 verbunden sind

- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D1 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

2. Verbindungen der allgemeinen Formel D1 nach Anspruch 1 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D1 nach Table1, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 1:

Compound ID.	Structure
D1.001	
D1.002	
D1.003	

3. Verbindungen der allgemeinen Formel D2

worin

- Y1 und Y2 gleich oder verschieden sein können und für O, S oder NR3 stehen;
- R1 bis R4 gleich oder verschieden sein können und gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino; und
- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D2 verbunden sind,

- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D2 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

4. Verbindungen der allgemeinen Formel D2 nach Anspruch 3 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D2 nach Table2, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 2:

Compound ID.	Structure
D2.001	
D2.003	
D2.004	

D2.005	
D2.006	
D2.007	
D2.008	

5. Verbindungen der allgemeinen Formel D3

D3

worin

- X und Z unabhängig voneinander für CH, CR₃ oder N stehen;

- die Teilringe substituiert oder nichtsubstituiert, kondensiert oder nichtkondensiert sein können und null bis drei Doppelbindungen und null bis vier Heteroatome und Heteroatome enthaltende Gruppen entsprechend der Definitionen für X und Z enthalten können;
- R1 bis R4 gleich oder verschieden sein können und gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino; und
- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D3 verbunden sind;
- die Ringsysteme der Grundstrukturen null bis drei Doppelbindungen enthalten kann;
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D3 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

6. Verbindungen der allgemeinen Formel D3 nach Anspruch 5 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D3 nach Table3, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 3:

Compound ID.	Structure
D3.001	
D3.002	
D3.003	
D3.004	

D3.005	
D3.006	
D3.007	
D3.008	
D3.009	
D3.010	

D3.011	
D3.012	
D3.013	
D3.014	
D3.015	

D3.016	
D3.017	
D3.018	
D3.019	
D3.020	
D3.021	

D3.022	
D3.023	
D3.024	
D3.025	
D3.026	

D3.027	
D3.029	
D3.030	
D3.031	

D3.032	
D3.033	
D3.034	
D3.035	
D3.037	
D3.038	

D3.039	
D3.040	
D3.042	
D3.043	
D3.044	

D3.045	
D3.046	
D3.047	
D3.048	
D3.049	
D3.050	

D3.051	
D3.052	
D3.054	
D3.055	
D3.056	
D3.057	

D3.058	
D3.059	
D3.060	
D3.061	
D3.062	
D3.063	
D3.064	

D3.066	
D3.067	
D3.069	
D3.070	
D3.072	
D3.073	

D3.074	
D3.077	
D3.078	
D3.079	
D3.080	
D3.081	
D3.082	
D3.083	

D3.084	
D3.086	
D3.087	
D3.088	
D3.089	

D3.091	
D3.092	
D3.093	
D3.094	
D3.095	
D3.096	

D3.097	
D3.098	
D3.099	
D3.100	
D3.101	
D3.102	

D3.103	
D3.104	
D3.105	
D3.106	
D3.107	
D3.108	

D3.109	
D3.110	
D3.111	
D3.112	

D3.113	
D3.114	
D3.116	
D3.117	

7. Verbindungen der allgemeinen Formel D4

R11-R12 D4

worin

- R11 und R12 heterocyclische Systeme mit drei bis acht Ringgliedern darstellen, die direkt über die Heteroatome, Kohlenstoffatome oder ein Hetero- oder Kohlenstoffatom miteinander verbunden sein können;

- die durch R1 und R2 bezeichneten Teilringe substituiert oder nichtsubstituiert, kondensiert oder nichtkondensiert sein können und null bis drei Doppelbindungen und weitere Heteroatome und Heteroatome enthaltenden Gruppen enthalten können;
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D4 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

8. Verbindungen der allgemeinen Formel D4 nach Anspruch 7 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D4 nach Table4, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 4:

Compound ID.	Structure
D4.001	
D4.002	

D4.003	
D4.004	
D4.005	
D4.006	
D4.007	
D4.008	

D4.009	
D4.010	
D4.011	
D4.012	
D4.013	

D4.014	
D4.015	
D4.016	
D4.017	
D4.018	

D4.019	
D4.020	
D4.021	
D4.022	
D4.023	

D4.024	
D4.025	
D4.026	
D4.027	
D4.028	
D4.030	

D4.031

D4.032

D4.034

D4.035

D4.036	
D4.037	
D4.038	
D4.039	
D4.040	
D4.041	

D4.042	
D4.044	
D4.045	
D4.046	
D4.047	

D4.048	
D4.049	
D4.050	
D4.051	

D4.052	
D4.053	
D4.054	
D4.055	
D4.056	
D4.057	

D4.058	
D4.059	
D4.060	
D4.061	
D4.062	

D4.063	
D4.064	
D4.065	
D4.066	
D4.067	

D4.068	
D4.069	
D4.070	
D4.071	
D4.072	

D4.073	
D4.074	
D4.075	
D4.076	
D4.077	

D4.078	
D4.079	
D4.080	
D4.081	
D4.082	

D4.083	
D4.084	
D4.085	
D4.086	
D4.087	
D4.088	
D4.089	

D4.090	
D4.091	
D4.092	
D4.093	
D4.095	
D4.096	

D4.098	
D4.099	
D4.100	
D4.101	
D4.102	

D4.103	
D4.104	
D4.105	
D4.106	
D4.107	
D4.110	

D4.111	
D4.112	
D4.113	
D4.114	
D4.115	

9. Verbindungen der allgemeinen Formel D5

worin

- X für O, S, NH, NR₂ stehen kann;
- die Reste R₁ die Substitution der Sechsring-Grundstruktur symbolisieren;
- die heterocyclische Grundstruktur null bis drei Doppelbindungen sowie bis zu drei weitere Heteroatome aus der Gruppe X besitzen kann,
- R₁ und R₂ sind gewählt aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-

Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino;

- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D5 verbunden sind,;
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D5 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

10. Verbindungen der allgemeinen Formel D5 nach Anspruch 9 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D5 nach Table5, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 5:

Compound ID.	Structure
D5.001	

D5.002	
D5.003	
D5.004	
D5.005	
D5.006	

D5.007	
D5.008	
D5.009	
D5.010	
D5.011	

D5.013	
D5.014	
D5.015	
D5.016	

D5.017	
D5.018	
D5.019	
D5.020	
D5.021	

D5.022	
D5.023	
D5.024	
D5.025	
D5.026	

D5.027	
D5.028	
D5.029	
D5.030	
D5.031	

D5.032	
D5.033	
D5.034	
D5.035	

D5.036	
D5.037	
D5.038	
D5.039	
D5.040	
D5.041	

D5.042	
D5.043	
D5.044	
D5.045	
D5.046	
D5.047	

D5.048	
D5.050	
D5.051	
D5.052	
D5.053	

11. Verbindungen der allgemeinen Formel D6

worin

- X für O, S, NH oder NR₉ stehen kann;
- die Fünfring-Grundstruktur zusätzlich zu bis zu drei weitere Heteroatome entsprechend der Definition von X, die gleich oder verschieden sein können, enthalten kann;
- die Fünfring-Grundstruktur null bis zwei Doppelbindungen enthalten kann;
- R1 bis R9 gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino; und
- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D6 verbunden sind;
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D6 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

12. Verbindungen der allgemeinen Formel D6 nach Anspruch 11 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D6 nach Table6, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 6:

Compound ID.	Structure
D6.001	
D6.002	
D6.003	
D6.004	

D6.006	
D6.007	
D6.008	
D6.009	
D6.010	

D6.011	
D6.012	
D6.013	
D6.014	
D6.015	

D6.016	
D6.017	
D6.018	
D6.019	
D6.020	
D6.021	

D6.022	
D6.023	
D6.024	
D6.025	
D6.026	

D6.027	
D6.028	
D6.029	
D6.030	
D6.031	

D6.032	
D6.033	
D6.034	
D6.035	
D6.036	
D6.037	

D6.038	
D6.039	
D6.040	
D6.041	
D6.042	

D6.043	
D6.044	
D6.045	
D6.046	
D6.047	

D6.048	
D6.049	
D6.050	
D6.051	
D6.052	
D6.053	

D6.054	
D6.055	
D6.056	
D6.057	
D6.058	
D6.059	

D6.060	
D6.061	
D6.062	
D6.063	

D6.064	
D6.065	
D6.066	
D6.067	
D6.068	

D6.069	
D6.070	
D6.071	
D6.072	
D6.073	
D6.074	

D6.075	
D6.076	
D6.077	
D6.078	
D6.079	

D6.080	
D6.081	
D6.082	
D6.083	
D6.084	
D6.085	

D6.086	
D6.087	
D6.088	
D6.089	
D6.090	

D6.091	
D6.092	
D6.094	
D6.095	
D6.096	
D6.097	

D6.098	
D6.099	
D6.100	
D6.101	
D6.102	
D6.103	

D6.105	
D6.106	
D6.107	
D6.108	
D6.110	

D6.111	
D6.112	
D6.113	
D6.114	
D6.115	
D6.116	

D6.117	
D6.118	
D6.119	
D6.120	
D6.121	
D6.122	
D6.123	

D6.124	
D6.125	
D6.126	
D6.127	
D6.129	

D6.130	
D6.131	
D6.132	
D6.133	

13. Verbindungen der allgemeinen Formel D7

worin

- Y_1 und Y_2 gleich oder verschieden sind und O, S, NH oder NR₄ sein können;
- die aromatischen Systeme der Grundstrukturen bis zu vier Substituenten, die gleich oder verschieden sein können, enthalten können;
- R1 bis R₄ gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthalten-

dem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino; und

- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D7 verbunden sind;
- R2 und R3 die Substitution der jeweiligen Ringsysteme symbolisieren und für ein bis vier Reste stehen;
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D6 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

14. Verbindungen der allgemeinen Formel D6 nach Anspruch 13 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D7 nach Table7, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 7:

Compound ID.	Structure
D7.001	
D7.003	

15. Verbindungen der allgemeinen Formel D8

worin

- X und Z gleich oder verschieden sein können und unabhängig voneinander gewählt sind aus der Gruppe, die besteht aus Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl und Amino (NH₂, NHR₁, NR₁R₂);
- Y für O, S oder NR₃ steht;
- R₁, R₂ und R₃ gleich oder verschieden sein können und gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino; und
- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D8 verbunden sind;
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D8 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

16. Verbindungen der allgemeinen Formel D8 nach Anspruch 15 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D8 nach Table8, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 8:

Compound ID.	Structure
D8.001	
D8.002	
D8.003	
D8.004	

D8.005	
D8.006	
D8.007	
D8.008	
D8.009	

D8.010

D8.011

D8.012

D8.013

D8.014	
D8.015	
D8.016	
D8.017	
D8.018	

D8.019	
D8.020	
D8.021	
D8.022	
D8.023	

D8.024	
D8.025	
D8.026	
D8.027	

D8.028	
D8.029	
D8.030	
D8.031	
D8.032	

D8.033	
D8.034	
D8.035	
D8.037	
D8.038	

17. Verbindungen der allgemeinen Formel D9

D9

(a)

(b)

(c)

worin

- Z für S oder P stehen kann;
- Y1 und Y2 für O, S, NH, NR4 oder NR5 stehen können;
- R1 bis R5 gewählt sind aus der Gruppe, die besteht aus Wasserstoff; unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino;
- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D8 verbunden sind
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D8 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

18. Verbindungen der allgemeinen Formel A6 nach Anspruch 17 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D9 nach Table9, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 9:

Compound ID.	Structure
D9.001	
D9.002	
D9.003	
D9.004	
D9.005	

D9.006	
D9.007	
D9.008	
D9.010	
D9.011	

D9.012	
D9.013	
D9.014	
D9.015	

19. Verbindungen der allgemeinen Formel D10

worin

- R1, R2, R3 und R4 gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino;
- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D10 verbunden sind;
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D10 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

20. Verbindungen der allgemeinen Formel D10 nach Anspruch 19 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D10 nach Table10, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 10:

Compound ID.	Structure
D10.001	
D10.002	
D10.003	
D10.004	

D10.005	
D10.007	
D10.008	
D10.009	
D10.010	
D10.011	

D10.012	
D10.013	
D10.014	
D10.015	
D10.016	
D10.017	

D10.018	
D10.019	
D10.020	
D10.021	
D10.022	
D10.023	

D10.025	
D10.026	
D10.027	
D10.028	
D10.029	

D10.030	
D10.031	
D10.032	
D10.033	
D10.034	
D10.035	

D10.036	
D10.037	
D10.038	
D10.039	
D10.040	
D10.041	

D10.042	
D10.043	
D10.044	
D10.045	
D10.046	
D10.047	
D10.049	

D10.050	
D10.051	
D10.052	
D10.053	
D10.054	
D10.055	

D10.056	
D10.057	
D10.058	
D10.060	
D10.061	
D10.062	

D10.063	
D10.065	
D10.066	
D10.067	
D10.068	
D10.069	

D10.070	
D10.071	
D10.072	
D10.073	
D10.074	
D10.075	

D10.076	
D10.077	
D10.078	
D10.079	
D10.081	

D10.082	
D10.083	
D10.084	
D10.085	
D10.086	
D10.087	

D10.088	
D10.089	
D10.090	
D10.091	
D10.092	
D10.093	
D10.094	

D10.095	
D10.097	
D10.098	
D10.099	
D10.100	
D10.101	

D10.102	
D10.103	
D10.105	
D10.106	
D10.107	
D10.108	
D10.109	

D10.110	
D10.111	
D10.113	
D10.116	
D10.117	

D10.118	
D10.119	
D10.120	
D10.121	
D10.122	
D10.123	
D10.124	

D10.125	
D10.126	
D10.128	
D10.129	
D10.130	

D10.131	
D10.132	
D10.133	
D10.134	
D10.135	
D10.136	

D10.137	
D10.138	
D10.139	
D10.140	
D10.141	
D10.142	

21. Verbindungen der allgemeinen Formel D11

worin

- R1, R2 und R3 gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino;
- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D11 verbunden sind
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D11 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

22. Verbindungen der allgemeinen Formel D11 nach Anspruch 21 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D11 nach Table11, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 11:

Compound ID.	Structure
D11.001	
D11.002	

D11.003	
D11.004	
D11.006	
D11.007	
D11.008	

D11.009	
D11.010	
D11.011	

23. Verbindungen der allgemeinen Formel D12

worin

- X und Z gleich oder verschieden sein können und unabhängig voneinander gewählt sind aus der Gruppe, die besteht aus Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl und Amino (NH₂, NHR₂, NR₂R₃);
- Y für O, S oder NR₄ steht;
- R₁, R₂, R₃ und R₄ gleich oder verschieden sein können und gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio unsubstituiertem oder substitu-

iertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino;

- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D12 verbunden sind
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D12 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

24. Verbindungen der allgemeinen Formel D12 nach Anspruch 23 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D12 nach Table12, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 12:

Compound ID.	Structure
D12.001	
D12.002	

D12.003	
D12.004	
D12.006	
D12.009	
D12.010	

D12.012	
D12.013	
D12.014	
D12.016	
D12.017	

D12.019	
D12.024	
D12.025	
D12.027	
D12.029	
D12.031	

D12.032	
D12.033	
D12.034	
D12.038	
D12.040	
D12.042	

D12.043	
D12.045	
D12.047	
D12.050	

25. Verbindungen der allgemeinen Formel D13

worin

- X und Z gleich oder verschieden sein können und unabhängig voneinander gewählt sind aus der Gruppe, die besteht aus Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-

Alkylthio, unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl und Amino (NH₂, NHR₂, NR₂R₃);

- Y für O, S oder NR₅ steht;
- das aromatische System ein sechsgliedriger Homo- oder Heteroaromat mit einem bis vier N-Atomen im Ring sein kann;
- R₁ die Substitution des aromatischen Rests der Grundstruktur bezeichnet und für bis zu fünf Substituenten stehen kann;
- R₁, R₂, R₃ und R₄ gleich oder verschieden sein können und gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino;
- die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D13 verbunden sind;
- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D13 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

26. Verbindungen der allgemeinen Formel D13 nach Anspruch 25 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D13 nach Table13, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 13:

Compound ID.	Structure
D13.001	
D13.002	
D13.003	
D13.004	
D13.005	

D13.006	
D13.007	

27. Verbindungen der allgemeinen Formel D14

worin

- Y für O, S oder NR₅ steht;
 - R₁, R₂, R₃ und R₄ gleich oder verschieden sein können und gewählt sind aus der Gruppe, die besteht aus Wasserstoff, unsubstituiertem oder substituiertem, geradkettigem oder verzweigtem C₁- bis C₁₂-Alkyl, C₂- bis C₁₂-Alkenyl und C₂- bis C₁₂-Alkinyl, Hydroxy, Thiol, C₁- bis C₁₂-Alkoxy, C₁- bis C₁₂-Alkylthio unsubstituiertem oder substituiertem, unkondensiertem oder kondensiertem, gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe N, O, P und S enthaltendem Aryl und Cycloalkyl, unsubstituiertem oder substituiertem Amino, unsubstituiertem oder substituiertem Carbonyl, unsubstituiertem oder substituiertem Thiocarbonyl und unsubstituiertem oder substituiertem Imino; und
 - die heteroaromatischen oder heterocyclischen Reste über ein C-Atom oder ein Heteroatom mit der Grundstruktur der allgemeinen Formel D14 verbunden sind;

- und Tautomere, Stereoisomere der Verbindungen der allgemeinen Formel D14 und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon, für die Verwendung in der Medizin.

28. Verbindungen der allgemeinen Formel D14 nach Anspruch 27 für die Verwendung in der Medizin, nämlich Verbindungen, die beispielsweise, aber nicht ausschliesslich gewählt sind aus der folgenden Gruppe D14 nach Table14, und Tautomere, Stereoisomere der Verbindungen und pharmazeutisch akzeptable Salze, Salzderivate, Tautomere und Stereoisomere davon:

Table 14:

Compound ID.	Structure
D14.001	
D14.002	
D14.003	

D14.004	
D14.005	
D14.006	
D14.007	

29. Pharmazeutische Zusammensetzung, umfassend mindestens eine Verbindung nach einem der Ansprüche 1 bis 28, gegebenenfalls in Kombination mit an sich üblichen Trägern oder Adjuvantien.
30. Kosmetische Zusammensetzung, umfassend mindestens eine Verbindung nach einem der Ansprüche 1 bis 28, gegebenenfalls in Kombination mit an sich üblichen Trägern oder Adjuvantien.

31. Verwendung von mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Hemmung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidase oder analoger Enzyme.
32. Verwendung von mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur topischen Beeinflussung der Aktivität der Dipeptidylpeptidase IV oder analoger Enzyme allein oder in Kombination mit Inhibitoren der Alanyl-Aminopeptidase und analoger Enzyme.
33. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von Multipler Sklerose, Morbus Crohn, Colitis ulcerosa und anderen Autoimmunerkrankungen sowie entzündlichen Erkrankungen.
34. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von Asthma bronchiale und anderen allergische Erkrankungen.
35. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie der Abstoßung von transplantierten Geweben und Zellen.
36. Verwendung von mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von Haut- und Schleimhauterkrankungen, wie Psoriasis, Akne sowie dermatologischen Erkrankungen mit Hyperproliferation und veränderten Differenzierungszuständen von Fibroblasten, bevorzugt benigne fibrosierender und sklerosierender Hauterkrankungen und maligne fibroblastärer Hyperproliferationszustände.

37. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von akuten neuronalen Erkrankungen, insbesondere Ischämie-bedingter zerebraler Schädigungen nach einem ischämischen oder hämorrhagischen Schlaganfall, Schädel/Hirn-Trauma, Herzstillstand, Herzinfarkt oder als Folge von herzchirurgischen Eingriffen.
38. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von chronischen neuronalen Erkrankungen, insbesondere Morbus Alzheimer, der Pick'schen Erkrankung, der Progressiven Supranukleären Palsy, der kortikobasalen Degeneration, der frontotemporalen Demenz, von Morbus Parkinson, insbesondere Parkinsonismus gekoppelt an das Chromosom 17, von Morbus Huntington, von durch Prionen bedingten Erkrankungen und Amyotropher Lateralsklerose.
39. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von Atherosklerose, arterieller Entzündung, Vaskulitiden sowie [ub5]Stent-Restenose, auch in Form Medikament-beschichteter Stents, z.B. nach perkutaner transluminaler Angioplastie und Reperfusions syndrom.
40. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von Entzündungsreaktionen an oder durch in den Organismus implantierte medizin-technische Gegenstände (medical devices).
41. Verwendung nach Anspruch 40 in Form einer Beschichtung und Benetzung der Gegenstände oder einer stofflichen Beigabe mindestens einer der Verbindungen oder Zusammensetzungen zum Material der Gegenstände oder in Form einer zeitlich abgestuften oder parallelen lokalen oder systemischen Gabe.

42. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von Chronisch Obstruktiven Lungenerkrankungen (COPD).
43. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von Prostatakarzinom und anderen Tumoren sowie Metastasierungen.
44. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von Schwerem Akutem Respiratorischen Syndrom (SARS).
45. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 30 zur Prophylaxe und Therapie von Sepsis und Sepsis-ähnlichen Zuständen.
46. Verwendung von mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Hemmung der Aktivität der Alanyl-Aminopeptidasen oder analoger Enzyme allein oder in Kombination mit Inhibitoren der DPIV und analoger Enzyme.
47. Verwendung von mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur topischen Beeinflussung der Aktivität der Alanyl-Aminopeptidasen oder analoger Enzyme allein oder in Kombination mit Inhibitoren der DPIV oder analoger Enzyme.
48. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arznei-

mittels zur Prophylaxe und Therapie von Multipler Sklerose, Morbus Crohn, Colitis ulcerosa und anderen Autoimmunerkrankungen sowie entzündlichen Erkrankungen.

49. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von Asthma bronchiale und anderen allergische Erkrankungen.
50. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie der Abstoßung von transplantierten Geweben und Zellen.
51. Verwendung von mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von Haut- und Schleimhauterkrankungen, wie Psoriasis, Akne sowie dermatologischen Erkrankungen mit Hyperproliferation und veränderten Differenzierungszuständen von Fibroblasten, benigner fibrosierender und sklerosierender Hauterkrankungen und maligner fibroblastärer Hyperproliferationszustände.
52. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von akuten neuronalen Erkrankungen, insbsondere Ischämie-bedingter zerebraler Schädigungen nach einem ischämischen oder hämorrhagischen Schlaganfall, Schädel/Hirn-Trauma, Herzstillstand, Herzinfarkt oder als Folge von herzchirurgischen Eingriffen.
53. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von chronischen neuronalen Erkrankungen, insbe-

sondere Morbus Alzheimer, der Pick'schen Erkrankung, der Progressiven Supranukleären Palsy, der kortikobasalen Degeneration, der frontotemporalen Demenz, von Morbus Parkinson, insbesondere Parkinsonismus gekoppelt an Chromosom 17, von Morbus Huntington, von durch Prionen bedingten Krankheitszuständen und Amyotropher Lateralsklerose.

54. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von Atherosklerose, arterieller Entzündung, Stent-Rostenose, auch in Form Medikament-beschichteter Stents, z.B. nach perkutaner trans-luminaler Angioplastie und Reperfusionssyndrom.
55. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von Entzündungsreaktionen an oder durch in den Organismus implantierte medizin-technische Gegenstände (medical devices).
56. Verwendung nach Anspruch 55 in Form einer Beschichtung oder Benetzung der Gegenstände oder einer stofflichen Beimengung mindestens einer der Verbindungen oder Zusammensetzungen zum Material der Gegenstände oder zur Herstellung eines Arzneimittels in Form einer zeitlich abgestuften oder parallelen lokalen oder systemischen Gaben.
57. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von Chronisch Obstruktiven Lungenerkrankungen (COPD).
58. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arznei-

mittels zur Prophylaxe und Therapie von Prostatakarzinom und anderen Tumoren sowie Metastasierungen.

59. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von Schwerem Akutem Respiratorischem Syndrom (SARS).
60. Verwendung von mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von Sepsis und Sepsis-ähnlichen Zuständen.
61. Verfahren zur Hemmung der Aktivität der Alanyl-Aminopeptidasen oder analoger Enzyme allein oder in Kombination mit Inhibitoren der DPIV und analoger Enzyme durch Verabreichung mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Hemmung der Enzymaktivität erforderlichen Menge.
62. Verfahren zur topischen Beeinflussung der Aktivität der Alanyl-Aminopeptidasen oder analoger Enzyme allein oder in Kombination mit Inhibitoren der DPIV oder analoger Enzyme durch Verabreichung mindestens einer Verbindung oder pharmazeutischen oder kosmetischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Beeinflussung der Enzymaktivität erforderlichen Menge.
63. Verfahren zur Prophylaxe und Therapie von Multipler Sklerose, Morbus Crohn, Colitis ulcerosa und anderen Autoimmunerkrankungen sowie entzündlichen Erkrankungen durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.

64. Verfahren zur Prophylaxe und Therapie von Asthma bronchiale und anderen allergischen Erkrankungen durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.
65. Verfahren zur Prophylaxe und Therapie der Abstoßung von transplantierten Geweben und Zellen (wie allogener Nieren- oder Stammzelltransplantation) durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.
66. Verfahren zur Prophylaxe und Therapie von Haut- und Schleimhauterkrankungen, wie Psoriasis, Akne sowie dermatologischen Erkrankungen mit Hyperproliferation und veränderten Differenzierungszuständen von Fibroblasten, benigner fibrosierender und sklerosierender Hauterkrankungen und maligner fibroblastärer Hyperproliferationszustände durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.
67. Verfahren zur Prophylaxe und Therapie von akuten neuronalen Erkrankungen, insbesondere Ischämie-bedingter zerebraler Schädigungen nach einem ischämischen oder hämorrhagischen Schlaganfall, Schädel/Hirn-Trauma, Herzstillstand, Herzinfarkt oder als Folge von herzchirurgischen Eingriffen durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.
68. Verfahren zur Prophylaxe und Therapie von chronischen neuronalen Erkrankungen, insbesondere Morbus Alzheimer, der Pick'schen Erkrankung, der Progressiven Supranukleären Palsy, der kortikobasalen Degeneration, der frontotemporalen Demenz, von Morbus Parkinson, insbesondere Parkinsonismus gekoppelt an Chromosom 17, von Morbus Huntington, von durch Prionen bedingten Krankheitszuständen und Amyotro-

pher Lateralsklerose durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.

69. Verfahren zur Prophylaxe und Therapie von Atherosklerose, arterieller Entzündung, Stent-Rostenose, auch in Form Medikament-beschichteter Stents, z.B. nach perkutaner transluminaler Angioplastie und Reperfusions-syndrom durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.
70. Verfahren zur Prophylaxe und Therapie von Entzündungsreaktionen an oder durch in den Organismus implantierte medizin-technische Gegenstände (medical devices) durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.
71. Verfahren nach Anspruch 70, worin die Verabreichung in Form einer zeitlich abgestuften oder parallelen lokalen oder systemischen Gabe mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 erfolgt.
72. Verfahren nach Anspruch 70, worin die Verabreichung durch Beschichtung oder Benetzung der Gegenstände mit mindestens einer Verbindung oder einer pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 oder durch stoffliche Beimengung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 zu dem Material der Gegenstände erfolgt.
73. Verfahren zur Prophylaxe und Therapie von Chronisch Obstruktiven Lungenerkrankungen (COPD) durch Verabreichung mindestens einer Verbindung oder pharmazeutischen

Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.

74. Verfahren zur Prophylaxe und Therapie von Prostatakarzinom und anderen Tumoren sowie Metastasierungen durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.
75. Verfahren zur Prophylaxe und Therapie von Schwerem Akutem Respiratorischem Syndrom (SARS) durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.
76. Verfahren zur Prophylaxe und Therapie von Sepsis und Sepsis-ähnlichen Zuständen durch Verabreichung mindestens einer Verbindung oder pharmazeutischen Zusammensetzung nach einem der vorangehenden Ansprüche 1 bis 30 in einer für die Prophylaxe oder Therapie erforderlichen Menge.

Figur 1

Figur 2

Figur 3A

Figur 3B

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- /FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.