Конспекты по математическому анализу

Анатолий Коченюк, Георгий Каданцев, Константин Бац

2022 год, семестр 4

1 Повторение

Задачи и темы, которые мы будем обсуждать в новом семестре: многообразия, дифференциальные формы на них, криволинейные интегралы, интегралы от параметров, формула Стокса, формула Остроградского, γ -, β -функции.

Интеграл от функции произвольного знака это разность интегралов компонент. В случаях, когда оба слогаемых не бесконечные, такая разность имеет смысл.

Интеграл комплекснозначной функции это сумма интегралов вещественных компонент функции.

$$\int_E f d\mu = \int_E \operatorname{Re} f d\mu + \int_E \operatorname{Im} f d\mu$$

Монотонность интеграла.

$$\int_{E} (f_1 + f_2) \geqslant \int_{E} f_1 = \infty$$

Теорема 1.0.1 (Теорема Леви для последовательности). Если f_n неотрицательные измеримые на E функции и $f_n \uparrow f$ возрастая сходится поточечно к f, то

$$\lim_{E} \int_{E} f_{n} d\mu = \int \lim_{E} f_{n} d\mu = \int f d\mu$$

Теорема 1.0.2 (Теорема Леви для рядов). Если f_n неотрицательные измеримые на E функции, то интеграл от ряда совпадает с суммой ряда из интегралов.

$$\int_{E} \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} = \sum_{n=1}^{\infty} \int_{E} f_n d\mu$$

Доказательство. Пусть
$$S_n(x) = \sum_{n=1}^{\infty} f_n(x)$$
 — частичная сумма. $S(x) = \sum_{n=1}^{\infty} f_n(x) = \lim_{n \to \infty} S_n(x)$

Пример. Функция, которая не удовлетворяет условиям теоремы Леви:

$$f_k(x) = \xi_{\lceil k, k+1 \rceil}(x)$$

$$\int_{[0,+\infty]} f_k(x) d\mu = \int_{[k,k+1]} f_k(x) d\mu = 1$$
$$\int f(x) d\mu = \int_{[0,+\infty]} 0 d\mu = 0$$

Замечание. 1. Для $f \in S(E)$ $|f| \in L(E,\mu)$ тогда и только тогда, когда $f \in L(E,\mu)$.

2. Если интеграл $\int_E f d\mu$ определен, то $\int_E |f| d\mu \geqslant |\int_E f d\mu|.$

Отсутпление про суммируемую мажоранту.

Если функция имеет суммируемую мажоранту, то сама она является суммируемой.

... $L_1(E,\mu)$: две функиции эквивалентны по мере на E, если они совпадают почти везде на E. Другими словами, мера подмножества E, на котором функции принимают разные значения, равна

$$||f||_1 = \int_E |f| d\mu$$

Элементы $L_1(E,\mu)$ могут быть определены не на всём E целиком, но на множестве полной меры.

$$|f + g| \le |f| + |g|$$

Эта норма невырожденная. Если $f \in S_+(E)$ и f = 0, то f = 0 почти всюду на E.

Теорема 1.0.3 (Счётная аддитивность интеграла). Пусть $f \in S(E)$ $E = \bigcup_{k=1}^{\infty} E_k, E_k \in ?$, определн $\int_E f d\mu$. Тогда

$$\int_E f d\mu = \sum_{k=1}^\infty \int_{E_k} f d\mu$$

 \mathcal{L} оказательство. ...

Теорема 1.0.4 (О приближении интеграла интегралом по множеству конечной меры). Пусть мера E конечна и $f \in L(E,\mu)$ суммиурема. Тогда

$$\forall \epsilon > 0 \exists E_0 \subset E : \mu(E_0) < +\infty$$
и $\int_{E \setminus E_0} |f| d\mu < \epsilon$

Доказательство. Не умаляя общности $f\geqslant 0$ на E. Продложим f нулем вне E. $J(A)=\int_A f d\mu$ — мера. $E_K = E\{f > \frac{1}{k}\}, \, E_* = E\{f > 0\} = \bigcup_{k=1}^\infty E_k.$ Непрерывность меры снизу E_k — множества конечной меры.

Научились приближать с любой точностью интеграл интегралом по множествам конечной меры.

Теорема Фато и теорема Лебега.

Теорема 1.0.5. Пусть f_k $inS_+(E)$ для всех $k\in\mathbb{N}$. Тогда $\varliminf_{k\in\infty}\leqslant\varliminf\int_E f_k(x)$. И если $f_k(x)\to f(x)$ на E, то $\int_E f(x)\leqslant\varliminf\int_E f_k(x)$

Теорема 1.0.6 (Теорема Лебега о мажорированной сходимости). Пусть $f_n \to f$ сходится почти везде на E и $\Phi\in L(E,\mu)$: $\forall k\in\mathbb{N}|f_k|\leqslant\Phi$ почти везде на E. Тогда $f\in L(E,\mu)$ и $\lim_{k\to\infty}\int_E fd\mu$

Интеграл положительнозначной функции определяет меру. Интеграл функции это разность мер компонент. Такая разность называется заряд.

Теорема 1.0.7 (Фубини).

$$x = (x_1, \dots, x_k)$$
$$y = (y_1, \dots, y_m)$$
$$f(x, y) \in \mathcal{L}(E, \lambda_{k+m})$$
$$E \in \mathcal{A}_{k+m}$$

TO:

1. Для почти всех $x \in \mathbb{R}^k$ $g(\cdot) = f(x, \cdot) \in \mathcal{L}(E(x, \cdot))$

2.
$$I(x) = \int_{E(x,\cdot)} f(x,y) d\lambda_m(y) \in \mathcal{L}(\mathbb{R}^k)$$

3.

$$\int_{E} f\left(x,y\right) d\lambda_{k+m}\left(x,y\right) = \int_{\mathbb{R}^{k}} \left(\int_{E\left(x,\cdot\right)} f\left(x,y\right) d\lambda_{m}(y) \right) d\lambda_{k}(x)$$

Пример. $E = A \times \{0\} \subseteq \mathbb{R}^{k+m}$ $0 \in \mathbb{R}^n$

A — неизмеримое в \mathbb{R}^k

E – измеримо в \mathbb{R}^{k+m}

 $Pr_x(E) = A$ — неизмеримое

Если $Pr_x(E)$ измеримо, то вместо интеграла по \mathbb{R}^k можно написать интеграл по проекции

Рис. 1: Переход в интегралу по проекции

Замечание. Если E – компактное или открытое, то $Pr_x(E)$ измеримо.

 $Pr_x(E) = \Phi(E)$, где $\Phi(x,y) \equiv x$ – отображение проектирования

Если E – компактное, то $\Phi(E)$ – компактное. Если открытое, то открытое.

Пример. 1.

$$\int_0^1 dx \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dy = I_1$$
$$\int_0^1 dy \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx = I_2$$

Если интегралы существуют, то они антиравны.

$$I_1 = \int_0^1 \frac{y}{(x^2 + y^2)} \Big|_{y=0}^{y=1} dx = \int_0^1 \frac{1}{x^2 + 1} - 0 dx = \operatorname{arctg} x \Big|_0^1 = \frac{\pi}{4}.$$

Вывод: функция $f(x,y) \notin \mathcal{L}\left([0,1]^2, \lambda_2\right)$

2.

$$\int_{-1}^{1} dx \int_{-1}^{1} \frac{xy}{(x^2 + y^2)^2} dy$$
$$\int_{-1}^{1} dy \int_{-1}^{1} \frac{xy}{(x^2 + y^2)^2} dx$$

$$f \in \mathcal{L}^2\left([-1,1]^2\right) \iff |f| \in \mathcal{L}\left([-1,1]^2\right) \implies |f| \in \mathcal{L}\left([-1,1]^2\right)$$

$$\iint_{[0,1]^2} f\left(x,y\right) dy = \int_0^1 dx \int_0^1 \frac{xy}{\left(x^2 + y^2\right)^2} dx$$

<....>

Утверждение 1.0.1. Семейство называется суммируемым, если функция суммируема

Утверждение 1.0.2. Если семейство $(a_x)_{x\in X}$ суммируемо, то $\{x:a_x\neq 0\}$ – не более чем счётное.

Доказатель ство. Не умаляя общности $a_x\geqslant 0$ $+\infty>\int_X a_x dv=\int_{X_0} a_x dv>\int a_x dv\geqslant \frac{1}{j}\nu\left(x_j\right)\implies \nu(x_j)<+\infty$ $X_0=\bigcup_{j=1}^\infty X_j$ — не более, чем счётное

Утверждение 1.0.3. $\supset X$ – н.б.ч.с, Y – числовое множество, $(a_x)_{x \in X} \subseteq Y$ $\varphi: \mathbb{N} \to X$ Тогда (a_x) суммируемы $\iff \sum_{k=1}^{\infty} a_{\varphi(k)}$ сходится абсолютно.

2 Замена переменной в интеграле по мере

2.1 "Пересадка" меры

$$\begin{split} \Phi: X &\to Y \;. \; \exists \; (X,\mathcal{A},\mu) - \text{пространство с мерой.} \\ \mathcal{D} &= \left\{B \subseteq Y \middle| \Phi^{-1}(B) \in \mathcal{A} \right\} \\ \Phi^{-1} \left(\bigcap_{k=1}^{\infty} B_k \right) &= \bigcap_{k=1}^{\infty} \Phi^{-1}\left(B_k\right) \in \mathcal{A} \\ \nu\left(B\right) &= \mu\left(\Phi^{-1}\left(B\right)\right) \end{split}$$

Пример. $X = [0, 2\pi)$ $\mathcal{A} = \mathcal{A}_1 \cap [0, 2\pi)$ $\Phi(t \in X) = (\cos t, \sin t)$

Теорема 2.1.1 (Общая схема замены переменных). $\exists (X, A, \mu) (Y, D, \nu)$

 $\Phi: X \to Y$ – не портит измеримость.

$$\exists h \in S_+(X) : \forall B \in \mathfrak{D}$$

$$\nu(B) = \int_{\Phi^{-1}(B)} h d\mu$$

Тогда $\forall f \in f \in S(Y, \nu)$

$$\int_{Y} f d\nu = \int_{X} f(\Phi(x)) h(x) d\mu(x)$$

Доказательство. $f \circ \Phi$ – измерима?

 $X\{f\circ\Phi < a\} = \Phi^{-1}(Y\{f < a\})$. $Y\{f < a\} \in \mathcal{L}$, т.к. f измеримо. А тогда $\Phi^{-1}(\ldots) \in \mathcal{A}$ Совпадение интегралов:

1. f – ступенчатая, $f = \sum\limits_{k=1}^K C_k \chi_{D_k} \quad \{D_k\}$ – разбиение X

$$\int_{Y} f d\nu = \sum_{k=1}^{K} C_{k} \nu (D_{k}) = \sum_{k=1}^{K} C_{k} \int_{\Phi^{-1}(D_{k})} h d\mu =$$

$$= \int_{X} \left(\sum_{k=1}^{K} C_{k} \chi_{\Phi^{-1}(D_{k})} \right)$$

$$= \int_{X} f \circ \Phi(x) h(x) d\mu(x)$$

$$f \circ \Phi(x) = C_{k} \quad x \in \Phi^{-1}(D_{k})$$

$$\sum_{k=1}^{K} C_k \chi_{\Phi^{-1}(D_k)}(x) = C_k.$$

2. $f \in S_+(Y)$ $\exists \{g_j\}$ – ступенчатая небобратимая $g_i \uparrow f$

$$\int_{Y} f d\nu = \lim_{j \to \infty} \int_{Y} g_{j} d\nu = \lim_{j \to \infty} \int_{X} g_{j} \left(\Phi(x) \right) h(x) d\mu$$
$$= \int_{X} f \left(\Phi(x) \right) h(x) dm u(x).$$

3. Общий случай:

$$f = f_+ + f_-$$

$$\int_{Y} f d\nu = \int_{Y} f_{+} - \int_{Y} f_{-} d\mu = \int_{X} f_{+} (\Phi(x)) h(x) d\mu(x) - \int_{Y} f_{-} (\Phi(x)) h(x) d\mu(x)$$
$$= \int_{Y} f(\Phi(x)) h(x) d\mu(x) \quad (f(\Phi) h)_{+} = f_{+} (\Phi) h.$$

Следствие 2.1.1.1. $\sqsupset (X, \mathcal{A}, \mu) \quad (Y, \mathcal{D}, \nu)$

 $h \in S_+(X); \quad \Phi: X \to Y \quad \Phi^{-1}(\mathcal{D}) \subseteq \mathcal{A}$

и выполняется условие теоремы общей замены переменной. Тогда $\forall E \subseteq \mathcal{D} \quad f \in S\left(E, \nu\right)$:

$$\int_E f(y)d\nu(y) = \int_{\Phi^{-1}(E)f(\Phi(x))h(x)d\mu(x)}$$

Рассмотрим продолжение нулём f с E на Y

$$\int_E f d\nu = \int_Y (y) \chi_E(y) d\nu(y) = \int_X f\left(\Phi(x)\right) \underbrace{\chi_E\left(\Phi(x)\right)}) \chi_{\Phi^{-1}(E)} h(x) d\mu(x) = \int_{\Phi^{-1}(E)} f\left(\Phi(x)h(x)d\mu(x)\right).$$

Следствие 2.1.1.2 (частный случай 1). Если $h \equiv 1$ в условии теоремы.

 $(\forall E|in\mathcal{D} \quad \nu(E) = \int_{\Phi^{-1}(E)} d\mu = \mu\left(\Phi^{-1}(E)\right))$

мера ν при этом называется образом меры μ

$$\forall f \in S(E)$$
 $\int_{E} f d\nu = \int_{\Phi^{-1}(E)} f \circ \Phi(x) d\mu(x)$

Следствие 2.1.1.3 (Частный случай 2). X=Y $\Phi=id$ $\nu(E)=\int_E h(x)d\mu(x)$

< ... >

Теорема 2.1.2. $\supset (X, \mathcal{A}, \mu)$ — пространство с мерой, $\Phi: X \to Y$ $h \in S_+(X)$ Следующие утверждения равносильны:

- 1. h плотность ν относительно μ
- 2. $\forall E \in \mathcal{A}$

$$\inf_{E} h\mu E \leqslant \nu(E) \leqslant \sup_{D} h\mu(E)$$

Доказатель ство. $I\iff \forall E\in\mathcal{A}\quad \nu(E)=\int_E hd\mu$ T.o. $I\implies II$

Теорема 2.1.3 (Критерий плотности). $\supset (X, A)$ – измеримое пространство, μ, ν – опр. (?) A $h \in S_+(X)$. Тогда следующие утверждения равносильны:

- 1. h плотность меры ν относительно μ ($\forall E \in \mathcal{A} \quad \nu(E) = \int_E h d\mu$)
- 2. $\forall E \in \mathcal{A}$

$$\inf_E h \cdot \mu(E) \leqslant d(E) \leqslant \sup_E h \cdot \mu(E)$$

Если $(X, \mathcal{A}, \mu) = (\mathbb{R}^n, \mathcal{A}, \lambda_n)$, тогда $1 \iff 3$:

3

$$\forall P \in \mathcal{P}_n \quad \inf_{P} h \cdot \mu(P) \leqslant \nu(P) \leqslant \sup_{P} h \cdot \mu(P)$$

 $2 \implies 1? \not\prec E \in \mathcal{A} \quad \nu(E) \stackrel{?}{=} \int_E h d\mu$

$$E = E\left\{h = 0\right\} \coprod E\left\{h = +\infty\right\} \coprod E\left\{0 < h < +\infty\right\}$$

$$\nu(E) = \nu(E\{h = 0\}) + \nu(E\{h = +\infty\}) + \nu(E\{0 < h < +\infty\})$$

$$\nu(E\{h = 0\}) \leqslant \sup_{E\{h = 0\}} = 0 = \int_{E\{h = 0\}} h d\mu$$

$$\nu(E\{h = +\infty\}) \leqslant h \cdot \mu(E) + \infty \cdot \mu(E) = \int_{E\{h = +\infty\}h d\mu}.$$

$$\begin{split} & \underbrace{\frac{1}{q}} \in (0,1), \ q > 1 \quad (0,+\infty) = \bigvee k \in \mathbb{Z}[q^k,q^{k+1}) \\ & E\{h \in (0,+\infty)\} = \bigvee E\{q^k \leqslant h < q^{k+1}\} \\ & q^k \mu(E_k) \leqslant \nu(E_k) \leqslant q^{k+1} \cdot \mu(E_k) \\ & q^k \mu(E_k) \leqslant \int h d\mu \leqslant q^{k+1} \cdot \mu(E_k) \\ & \frac{\nu(E_k)}{q} \leqslant q^k \cdot \mu(E_k) \leqslant \int_{E_k} h d\mu = q \cdot q^k \mu(E_k) \leqslant q \cdot \nu(E_k) \\ & \Pi \text{росуммируем это по всем } k. \\ & \frac{1}{q} \nu(E) = \int_E h d\mu \leqslant q \cdot \nu(E), \ q \to 1 \implies \nu(E) \leqslant \int_E h d\mu \leqslant \nu(E) \implies \nu(E) = \int_E h d\mu \\ & \not\sim \mathcal{V} - \text{стандартное продолжение} < \dots > \text{ (нужно дополнить)} \end{split}$$

Теорема 2.1.4. $\supset \Phi$ — диффеоморфизм множеств $G,O\subseteq \mathbb{R}^n$ $G\xrightarrow{\Phi} O$ Тогда $\forall E\in \mathcal{A}_n$ $E\subseteq O$

$$\lambda_n(E) = \int_{\Phi^{-1}(E)} \left| \det \Phi' \right| d\lambda_n$$
$$\lambda_n(O) = \int_C \left| \det \Phi' \right| d\lambda_n$$

Если $O \sim \widetilde{O}$ $G \sim \widetilde{G}$ $\left(\lambda_n(O \backslash \widetilde{O}) = \varnothing \ldots\right)$, то

$$\lambda_n(\widetilde{O}) = \int_{\widetilde{G}} \left| \det \Phi' \right| d\lambda_n$$

Замечание.

$$\nu(P)\leqslant \sup_{P}hd\mu(P) - \text{ от противного}$$
 \Longrightarrow \exists ячейки $P_0:$
$$\nu(P)>M\cdot\mu(P)=\sup_{P_0}h\cdot\mu(P)$$

$$\Phi(x)=\Phi(x_0)+d_{x_0}\Phi(x-x_0)+o(x-x_0)$$

$$x\approx x_0 \qquad \Phi(x)\approx \Phi(x_0)+d_{x_0}\Phi(x-x_0)$$

Если Q — малая ячейка, то

$$\lambda_n(\Phi(Q)) \approx \lambda_n d_{x_0} \Phi(Q) = \left| \det \Phi'_{x_0} \right| \lambda_n(Q)$$

Следствие 2.1.4.1. Если $\Phi:G\to O$ — диффеоморфизм, $G,O\subseteq\mathbb{R}^n$ $\widetilde{G}\sim G,\widetilde{O}\sim O$ $f\in S(O),$ то

$$\int_{\tilde{O}} f(x)d\lambda_n(x) = \int_{\tilde{G}} f(\Phi(u)) \left| \det \Phi'(u) d\lambda_n(u) \right|$$

Пример. Полярные координаты.

$$x = r \cos \varphi, \ y = r \sin \varphi.$$

$$\Phi : (r, \varphi) \to (x, y),$$

$$([0, +\infty) \times [-\pi, \pi])) \to \mathbb{R}^n,$$

$$(0, +\infty] \times (-\pi, \pi))) \to \mathbb{R}^n \setminus (-\infty, 0]).$$

$$\det \Phi' = r; \quad E = \mathbb{R}^2 :$$

$$\iint\limits_E f(x,y)dxdy = \iint\limits_{\Phi^{-1}} f(r\cos\varphi,r\sin\varphi)rdrd\varphi$$

Пример (интеграл Эйлера-Пуассона).

$$I = \int_{0}^{+\infty} e^{-x^{2}} dx$$

$$I \cdot I = \int_{0}^{+\infty} e^{-x^{2}} dx \cdot \int_{0}^{+\infty} e^{-ys} = \iint_{\{x \ge 0, y \ge 0\}} e^{-x^{2} + y^{2}} dx dy$$

$$= \iint_{\{0 \le \varphi \le \frac{\pi}{2} \quad r > = 0\}} e^{-r^{2}} r dr d\varphi$$

$$= \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{+\infty} r e^{-r^{2}} dr$$

$$= \frac{\pi}{2} \cdot \frac{e^{-r^{2}}}{-2} \Big|_{0}^{+\infty} = \frac{\pi}{4}$$

$$I = \int_{0}^{+\infty} r^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$$

Пример. Цилиницрические координаты

$$r\cos\varphi = x$$
$$r\sin\varphi = y$$
$$h = z$$

 $\begin{array}{ll} \Phi: (r,\varphi,h) \to (x,y,z) & \Phi: (0,+\infty) \times (-pi,pi) \times \mathbb{R} \to \mathbb{R}^3 \backslash \{(x,0,z) | \mid x \leqslant 0\}\} \\ |\det \Phi'| = r \\ \iiint_E f(x,y,z) dx dy dz = \iiint_{\Phi^1(E)} f(r\cos\varphi,r\sin\varphi,h) \cdot r dr d\varphi dh \end{array}$

Пример. Сферические координаты $r = \sqrt{x^2 + y^2 + z^2}$

$$r\cos\varphi\cos\psi = x$$
$$r\sin\varphi\cos\psi = y$$
$$r\sin\psi\varphi\sin\psi = y$$

 $\det \Phi' = r^2 \cos \varphi$ Можно обобщить на \mathbb{R}^n

$$r = ||x||$$

$$x_1 = r \cos \varphi_{n-1} \cos \varphi_{n-2} \dots \cos \varphi_1$$

$$\dots$$

$$x_{n-2} = r \cos \varphi_{n-1} \cos \varphi_{n-2} \sin \varphi_{n-3}$$

$$x_{n-1} = r \cos \varphi_{n-1} \sin \varphi_{n-2}$$

$$x_n = r \sin \varphi_{n-1}$$

Пример.

$$\iiint\limits_{\substack{x^2+y^2+z^2\leqslant \mathbb{R}^2\\x^2+y\leqslant z^2\\z\geqslant 0}}f(x,y,z)\,dx\,dy\,dz$$

Преобразовать используя:

• Цилиндрические координаты

Перепишем множество интегрирования в новых координатах: $\begin{cases} r^2 + h^2 \leqslant R^2 \\ r^2 \leqslant h^2 \implies r \leqslant h \\ h \geqslant 0, r \geqslant 0 \end{cases}$

$$\begin{split} I &= \iiint\limits_{\substack{r^2 + h^2 \leqslant R^2 \\ r \leqslant h \\ h \geqslant 0, r \geqslant 0}} f\left(r\cos\varphi, r\sin\varphi, h\right) r dr d\varphi dh \\ &= \iint\limits_{\substack{\pi \leqslant \varphi \leqslant \pi \\ 0 \leqslant r \leqslant \frac{R}{\sqrt{2}}}} r \int_r^{\sqrt{R^2 - r^2}} f\left(r\cos\varphi, r\sin\varphi, h\right) dr \\ &= \int_{-\pi}^{\pi} d\varphi \int_0^{\frac{R}{\sqrt{2}}} r dr \int_r^{\sqrt{R^2 - r^2}} f\left(r\cos\varphi, r\sin\varphi, h\right) dh \end{split}$$

• Цилиндрические координаты (второй вариант)

$$\int_0^{\frac{R}{\sqrt{2}}} dh \int_{-\pi}^{\pi} d\varphi \int_0^h rf dr + \int_{\frac{R}{\sqrt{2}}} dh \int_{-\pi}^{\pi} d\varphi \int_0^{\sqrt{R^2-h^2}} rf dr$$

• Сферические координаты

$$\begin{cases} x = r \cos \varphi \sin \psi \\ y = r \sin \varphi \cos \psi \\ z = r \sin \psi \\ \text{tg}^2 \psi \geqslant 0 \\ \sin \psi \geqslant 0 \end{cases}$$

$$0\leqslant r\leqslant R$$

$$r^2\cos^2\psi\leqslant r^2\sin^2\psi$$

$$r\sin\psi\geqslant 0$$

$$\begin{split} I &= \iiint\limits_{E} f\left(r\cos\varphi\cos\psi, r\sin\varphi\cos\psi, r\sin\varphi\right) r^{2}\cos\psi dr d\varphi d\psi \\ &= \int_{-\pi}^{\pi} d\varphi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\psi \int_{0}^{R} f(\ldots) r^{2}\cos\psi dr \end{split}$$

Пример.

$$\iiint_E z dx dy dz$$

E:

$$t^{2}(x^{2} + y^{2}) \leqslant z^{2}$$
$$0 \leqslant z \leqslant t \leqslant 3$$

$$\iiint_{E} z dx dy dz = \iint_{\{0 \le z \le t \le 3\}} dz dt \iint_{\{x^{2} + y^{2} \le \frac{4z^{2}}{t^{2}}\}} z dx dy$$

$$= \iint_{\{0 \le z \le t \le 3\}} dz dt z \pi \cdot \frac{4z^{2}}{z^{2}}$$

$$= 4\pi \iint_{\{0 \le z \le t \le 3\}} \frac{z^{3}}{t^{2}} dz dt$$

$$= 4\pi \int_{0}^{3} \frac{1}{t^{2}} dt \int_{0}^{t} z^{3} dz = \frac{4\pi}{4} \left(\int_{0}^{3} t^{2} dt\right) = \pi \cdot 9$$

3 Мера Лебега-Стилтьеса

$$\exists g(x) \uparrow$$
 на \mathbb{R} и непрерывна слева $\left(\lim_{x \to x_0 - 0} g(x) \equiv g(x_0)\right)$

Задача 1. Если h(x) – произвольная возрастающая функция, то её можно превратить в непрерывную слева исправлением нбчс количества точек.

$$\exists \uparrow$$
 и непрерывная слева $g(x)=h(x)$ всюду кроме точек разрыва $h(x)$ $g(x_0)=\lim_{x\to x_0-0}h(x)$

Определим $\mu_g([a,b]) = g(b) - g(a) \geqslant 0$. Так же верно, что μ_g обладает счетной аддитивностью на \mathcal{P}_1 (доказывается так же, как в случае с мерой Лебега) $\implies \mu_g$ – мера на \mathcal{P}_1

Стандартное продолжение μ_g , которое также обозначается μ_g называется мерой Лебега-Стилтьеса, порождённой функцией g

$$\mu_g\left(\{c\}\right) = \mu_g\left(\bigcap_{j=1}^{\infty} \left[c, c + \frac{1}{j}\right]\right)$$

$$= \lim_{j \to \infty} \mu_g\left(\left[c, c + \frac{1}{j}\right]\right)$$

$$= \lim_{j \to \infty} g(c + \frac{1}{j}) - g(c) = g(c + 0) - g(c)$$

$$= g(c + 0)$$

 \Longrightarrow Если c – точка непрерывности, то $\mu_g(\{c\})=0$ $\mu_g([a,b])=\mu_g([a,b])+\mu_g(\{b\})=g(b)-g(a)+g(b+0)-g(b)=(g(b+0)-g(a-0))$ $\mu_g((a,b))=\mu_g([a,b])-\mu(\{a\})=g(b)-g(a)-(g(a+0)-g(a))=g(b)-g(a+0)$ $\mu_g((a,b])=g(b+0)-g(a+0)$

Определение 3.0.1. Пусть $\mu = \sum_{k=1}^{\infty} h_k \delta_{a_k}, \quad h_k \geqslant 0, \quad \delta_a(E) = \begin{cases} 1, & a \in E \\ 0, & a \notin E \end{cases}$, тогда μ — дискретная мера.

$$E, E_j \in 2^{\mathbb{R}}$$
 $E = \bigvee_{i=1}^{\infty} E_j \implies \delta_{a_k}(E) = \sum_{j=1}^{\infty} \delta_{a_k}(E_j)$

$$\mu(E) = \mu(\bigvee_{j=1}^{\infty} E_j) = \sum_{k} \sum_{j} h_k \delta_{a_k}(E_j)$$
$$= \sum_{j} \mu(E_j)$$

Последний переход в равенстве по теореме Тонелли.

Замечание.
$$\exists \ \{a_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$$
 $\forall [a,b] \quad \sum_{k:a_k \in [a,b]} h_k < +\infty$

Пример. Если $\{a_k\}$ – дискретно (без точек сгущения на \mathbb{R}), то условие автоматически выполняется, т.к. перечесечения a_k -ых с промежутком будет конечно, а значит и сама сумма будет конечна

$$A = \mathbb{Q} \quad h_k = \frac{1}{2^k}$$

Определение 3.0.2 (функция Хэвисайда).

$$\Theta(x) = \begin{cases} 0 & , x \le 0 \\ 1 & , x > 0 \end{cases}$$

 $\exists x_0 \in \mathbb{R} \quad \forall C \in \mathbb{R}$

$$g(x) = \sum_{k=1}^{\infty} h_k \cdot (\Theta(x - a_k) - \Theta(x_0 - a_k)) + C$$

- 1. g(x) возрастает
- 2. $x \in [a, b]$ $\sum_{k} h_k(\Theta(x a_k) \Theta(x_0 a_k)) \le \sum_{a_k: I_{x, x_0}} h_k$

Разность Тет ненулевая, если a_k находится между x и $x_0 - I_{x,x_0}$

Утверждение 3.0.1. $A = \{a_k\}_k$

- 1. $q \in C(\mathbb{R}\backslash A)$
- 2. Непрерывность слева на A

Доказатель ство. 1. $\exists x \in \mathbb{R} \backslash A \quad \exists (a,b) \ni x$

$$\forall \forall \varepsilon > 0 \quad \sum_{k: a_k \in [a,b]} h_k < +\infty \implies \exists K: \sum_{\substack{a_k \in [a,b] \\ k > K}} \leqslant \frac{\varepsilon}{2}.$$

 $g_k(x)=h_k\left(\Theta(x-a_k)-\Theta(x_0-a_k)\right)$ — локально постоянны в точке x $(\exists V_\delta(x):g_k\mid_{V_\delta(x)}\equiv const$ для $k=1,\ldots,k$)

Не умаляя общности $[a,b] \supseteq V_{\delta}(x)$

$$g(\widetilde{x}) - g(x) = \sum_{k=1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(x - a_k) \right) - \sum_{k=1}^{\infty} h_k \left(\Theta(\widetilde{x} - a_k) - \Theta(x_0 - a_k) \right)$$

$$= \sum_{k=1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right)$$

$$= \sum_{k=1}^{K} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right) + \sum_{k=K+1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right)$$

$$= 0$$

⇒ Непрерываность

Если
$$x=a_k$$
 $g(x)=g_{k_0}(x)+\sum_{\substack{k\neq k_0\\\text{непрерывна как в пред. случае}}}g_k$

$$\mu_g([a,b)]) = g(b) - g(a)$$

$$= \sum_{k=1}^{\infty} h_k \left(\Theta(b - a_k) - \Theta(a - a_k)\right) \qquad a \leqslant a_k \leqslant b$$

$$= \sum_{k:a \leqslant a_k < b} h_k = \mu([a,b)]$$

 μ и μ_g совпадают на совокупности всевозможных промежутков.

Определение 3.0.3. Пусть $f: \mathbb{R} \to \mathbb{R}$.

Функция f называется локально суммируемой на $\mathbb{R} \iff \forall [a,b] \qquad f \Big|_{[a,b]} \in \mathcal{L}(\lambda_1).$

Определение 3.0.4. $f: \mathbb{R} \to \mathbb{R}$.

Функция f называется абсолютно непрерывной, если существует локально суммируемая функция h(x) и точка $x_0 \in \mathbb{R}$:

$$g(x) = \int_{x_0}^x h(x)d\lambda$$

(интеграл Лебега. Если $x < x_0$, то $\int_{x_0}^x h \, d\lambda = - \int_{[x,x_0]} h \, d\lambda$)

Если h непрерывна в точке x, то g(x) дифференцируема в точке x и g'(x) = h(x). Доказательство – смотри теорему Барроу. . .

Если $h(x) \geqslant 0$, то $g(x) \nearrow$

 Φ ункция g(x) непрерывна на \mathbb{R} . Следует из абсолютной непрерывности интеграла.

Теорема 3.0.1 (воспоминание).

$$\mu(E) = \int_{\Phi^{-1}} h d\mu \iff \forall E \in \mathcal{A} \quad \inf_{E} h \mu(E) \leqslant \nu(E) \leqslant \sup_{E} h \mu(E)$$

Замечание.

$$g(x) = \sum_{k=1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(x_0 - a_k) \right)$$

Для этой меру нужно было фиксировать открытый интервал Δ , что

$$\forall [a, b] \subseteq \Delta \qquad \sum_{k: a_k \in [a, b]} h_k < +\infty$$

$$g(a_k + 0) - g(a_k - 0) = h_k \left(\Theta(a_k - a_k + 0) - \Theta(x_0 - a_k + 0) - \Theta(a_k - a_k - 0) + \Theta(x_0 - a_k - 0) \right)$$

= h_k

Утверждение 3.0.2. Если $\nu = \sum\limits_k h_k \delta_{a_k}$, то ν совпадает с μ_g на \mathcal{A}_{μ_g} при условии (*).

Доказатель ство. Если хочется скорее сослаться на теорему об единственности, то можно сделать так: Рассмотрим [a,b). $\nu([a,b)) = \sum_{k \,:\, a_k \in [a,b)} h_k$.

$$\mu_g([a,b)) = g(b) - g(a) = \sum_{k \in \mathbb{N}} h_k \left(\Theta(b - a_k) - \Theta(a - a_k) \right) = \sum_{k : a_k \in [a,b)} h_k.$$

Если $\{a_k\}_k$ — конечное множество, то вопросов с суммируемостью не веознкает.

$$g(x) = \sum_{k} h_k \cdot \Theta(x - a_k) + C$$

Замечание. Локально суммируемая функция— это такая, что она будет на любом шаре суммируемой по Лебегу

Теорема 3.0.2. g(x) – абслолютно непрерывная $\iff \exists h \in \mathcal{L}_{loc}(\mathbb{R}, \lambda) \, \exists x_0 \in \mathbb{R}, c \in \mathbb{R}$

$$(x) = \int_{x_0}^{x} h(x)d\lambda + C$$

По теореме Барроу g(x):

- $q(x) \in C(\mathbb{R})$,
- g(x) дифференцируема в точках ... функции h(x).

 \mathcal{A} оказательство. • Если $x_1 \in \mathbb{R}$

$$g(x) - g(x_1) = \int_{x_1}^x h(x)dx$$

$$\begin{split} &\exists \delta_0 > 0, x \in V_{\delta_0}(x_1), \quad h \in \mathcal{L}\left(V_{\delta_0}\right) \\ &\forall \varepsilon > 0 \\ &\exists \delta(\leqslant \delta_0) > 0: \int_E h(x) d\lambda < \varepsilon \\ &\iff \text{Если } |x_1 - x| < \delta \quad \left| \int_{x_1}^x h(x) dx \right| \leqslant \varepsilon \end{split}$$

• Пусть x_1 — точка непрерывности для h(x). $h(x) = h(x_1) + \underbrace{\alpha(x-x_1)}_{o(1) \text{ при } x \to x_1}$

$$\frac{g(x) - g(x_1)}{x - x_1} = \frac{1}{x - x_1} \int_{x_1}^x h(x_1) + \alpha(x - x_1) dx = h(x_1) + \frac{1}{x - x_1} \int_{x_1}^x \alpha(x - x_1) dx \leqslant \varepsilon(x - x_1)$$

Если "x остаточно близок к x_1 "

Замечание. В частности, если $h(x) \in C(\mathbb{R}) \implies g \in C^1(\mathbb{R})$ и $g'(x) \equiv h(x)$

Замечание.

$$\int_E f d\nu = \sum_{k:\, a_k \in E} h_k f(a_k) = \sum_{k:\, a_k \in E} f(a_k) \cdot \text{ скачок } g(a_k)$$

Утверждение 3.0.3. $\exists g(x) = \int_{x_0}^x h(x) d\lambda_1(x) + C \quad h(x) \geqslant 0 \quad h \in \mathcal{L}_{loc}(\mathbb{R}, \lambda)$ абсолютно непрерывная возрастающая функция.

Тогда $\int_E f d\mu_g = \int_E f(x)h(x)d\lambda(x)$.

В частности, \forall возрастающей $g(x) \in C^1(\mathbb{R})$.

$$\int_{E} f d\mu_{g} = \int_{E} f \cdot g'(x) d\lambda(x) \left(= \int_{E} f \cdot dg \right).$$

Доказатель ство. $\not \lt \nu(E) = \int_E h d\lambda_1$.

$$\mu_g(\langle a,b\rangle) = \mu_g([a,b)) = g(b) - g(a) = \int_a^b h(x)d\lambda_1 = \nu([a,b)) = \nu(\langle a,b\rangle).$$

 μ_q и ν совпадают на открытых. Если K – компакт, $K = B \setminus (B \setminus K)$

$$\nu(K) + +\nu(B\backslash K) = \nu(B)$$
 $\mu_{\sigma}(K) = \nu(K) = \nu(B) - \nu(B\backslash K)$

 $\Box E - \lambda_1$ -мера O

 $\implies \exists \delta > 0 \exists$ открытое $G : E \subseteq G$ и : $\lambda_1(G) < \delta$

 $\Longrightarrow \int |_{G_0}$ – абсолютно непрерывное $\Longrightarrow \forall \varepsilon > 0 \exists \delta > 0 : \lambda_1(\widetilde{E}) < \delta$ $\widetilde{E} \subseteq G$

$$\int_{\widetilde{E}} h < \varepsilon \quad \widetilde{E} = G \implies \nu(G) < \varepsilon \implies \mu_q(G) < \varepsilon \varepsilon - \forall \implies \nu(E) = \mu_q(E) = 0$$

 $\int_{\tilde{E}} h < \varepsilon \quad \tilde{E} = G \implies \nu(G) < \varepsilon \implies \mu_g(G) < \varepsilon \varepsilon - \forall \implies \nu(E) = \mu_g(E) = 0$ Если E — неограничено λ_1 —меры $0 \implies \exists$ ограниченое $E_j : E = \bigcup E_j$. $\forall i \in \mathbb{N} \ \lambda_1(E_j) = 0 \implies \exists$ $\nu(E_i) = \mu_a(E_i) = 0 \implies \nu(E) = \mu_a(E).$

Дальше можно применить теорему о плотности меры. Применяю общую мхему замены переменной все доказывается.

Задача 2. 1. $g(x) = \operatorname{arctg} x$. Найти:

(a)
$$\sup \left\{ \mu_g(I) : I = \langle a, b \rangle, \ \lambda_1(I) \leqslant \delta \right\}, \ \delta > 0.$$

(b)
$$\sup \left\{ \lambda_1(I) : I = \langle a, b \rangle, \ \mu_g(I) \leqslant \delta \right\}, \ \delta > 0.$$

2.
$$g(x) = \operatorname{arctg} x + \Theta(x - 1)$$

(a) Для
$$\delta = 1$$

Решение. $\mu_g(I) = g(b) - g(a) = \int_I g'(t) dt = \int_{[a,b]} \frac{dt}{1+t^2}$

1. (a)

$$\sup\{\mu_g(I)\} = 2\int_0^{\frac{\pi}{2}} \frac{dt}{1+t^2}$$

Пример. Пример меры Лебега-Стилтьеса не евклидовой, не дискретной, не абсолютно непрерывной:

$$C_0 = [0,1]$$
 $C_1 = \left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right]$
 $C_2 = \left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{1}{3}\right] \cup \left[\frac{2}{3},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right]$
 $C_{k+1} \subseteq C_k \quad C_k$ — компакт
 $C = \bigcap_{k=1}^{\infty} C_k$ — компакт
 $\lambda_1(C) = \lambda_1([0,1]) - \frac{1}{3} - \frac{2}{9} - \dots - \frac{2^{k-1}}{3^k} = 0$

$$\psi(x) = \frac{1}{3}x \quad \Theta(x) = 1 - x$$

$$\Phi = \{[0,1] \cap C, \psi(C), \Theta\psi(C), \psi\psi(C), \psi\Theta(C), \Theta\psi\psi(C), \Theta\psi\Theta\psi(C), \ldots\}$$

- полукольцо

 $\mu(C)=1$ $\mu(P)=\frac{1}{2^k}$ — если P есть результат применения k штук ψ и Θ $\not\sim \mu$ — стандартное продолжение

4 Интегралы, зависящие от параметра

Пример.

$$\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx, \quad p > 0, p \in \mathbb{R}; \quad \int_a^b f(x, y) dx, \quad \int_{\Omega} (y)^{\beta}(y) f(x, y) dx.$$

Пока что мы будем рассматривать интегралы, зависящие от параметра y по фиксированному промежутку: $I(y) = \int_X f(x,y) d\mu(x)$.

Пусть у нас есть пространство с мерой $(X, \mathcal{A}, \mu), f(\dot{\mu}) \in \mathcal{L}(X, \mu). Y \subseteq \overline{Y}.$

Для чего это нужно? Бывает, что просто сформулированные задачи имеют ответ в виде интеграла с параметром. Бывает, что введение параметра упрощает вычисление интеграла.

Утверждение 4.0.1. f уовлетворяет условию Лебега локально относительно y_0, y_0 — параметр, если \exists открытое $V(y_0)$ в \overline{Y} и $\Phi_{(x)} \in \mathcal{L}(X,\mu) \ \forall y \in V(y_0)$ для почти всех $x \in X$.

Утверждение 4.0.2. Пусть у нас есть пространство с мерой (X, \mathcal{A}, μ) , \overline{Y} — метрическое пространство, $Y \subseteq \overline{Y}, y_0$ — предельная точка для Y. Почти везде $f(x,y) \to g(x)$ при $y \to y_0$, и f(x,y) удовлетворяет локаольно условию Лебега относительно y_0 .

Тогда $g(x) \in \mathcal{L}(X,\mu)$ и

$$\lim_{y \to y_0} \int_X f(x, y) d\mu(x) = \int_X g(x) d\mu(x)$$

Доказатель ство. Так как y_0 — предельная, $\exists \{y_k\} \subseteq Y \to y_0$. $f_k(x) = f(x,y_k), y_k \in V(y_0) \Longrightarrow |f_k(x)| \leqslant \Phi(x) \Longrightarrow$ по теореме Лебега о мажорируемой сходимости, $g(x) = \lim_{k \to \infty} f(x,y_k) \in \mathcal{L}(X,\mu)$ и

$$\int_X g(x)d\mu = \int_X \lim_{k \to \infty} f(x, y_k)d\mu = \lim_{k \to \infty} \int_X f(x, y_k)d\mu.$$

 $I(y) = \int_{Y} f(x,y) d\mu(x); \quad \lim_{k \to \infty} I(y_k) \ \forall \ \text{последовательности} \ y_k \to y_o \implies \exists \lim_{y \to y_0} Y(y).$

Пример.
$$\exists p_0 > 0 \quad \exists \forall p \in V_\delta(p)$$
 $x \in (0,1] \quad x^{p-1}e^{-x} \leq x^{p_0-\delta}e^{-x}$
 $x > 1 \quad x^{p-1}e^{-x} \leq x^{p_0+\delta}e^{-x}$

$$\Phi(x) = \begin{cases} x^{p_0-\delta}e^{-x} & , x \in (0,1] \\ x^{p_0+\delta}e^{-x} & , x > 1 \end{cases} \quad \int_0^{+\infty} x^q e^{-x} dx - \text{сходится для любого}$$

Замечание. Если в условиях предыдущего утверждения f(x,y) — непрерывна по y в точке y_0 , то наш интеграл I(y) тоже будет непрерывен в точке y_0 .

Определение 4.0.1. Пусть имеется пространство с мерой (X, \mathcal{A}, μ) , y_0 — предельная точка для $Y \subseteq \overline{Y}$ $f(x,y) \rightrightarrows g(x)$ на X при $y \to y_0$ если $\forall \varepsilon > 0$ \exists окрестность $V(y_0)$:

$$\forall x \in X \quad \forall y \in V(y_0) \quad |f(x,y) - g(x)| < \varepsilon \iff \sup_{x \in X} |f(x,y) - g(x)| \underset{y \to y_0}{\longrightarrow} 0.$$

Пример. 1. (хороший) $f(x,y) = \frac{\sin(x^2 + y^2)}{1 + x^2 + y^2}$ $y \to +\infty$

$$|f(x,y)| \leqslant \frac{1}{1+y^n} \implies y \to \infty \sup |f(x,y)| = \frac{1}{1+y^n} \underset{y \to \infty}{\longrightarrow} 0.$$

Сходимость есть и равномерная сходимость тоже есть.

2. (плохой) $xye^{-xy} \underset{y\to 0}{\longrightarrow} 0$. Сходимость к нулю есть, а

$$\sup x > 0xye^{-xy} \geqslant f(\frac{1}{y}, y) = \frac{1}{e} \to 0 \implies$$
 равномерно не сходится.

Утверждение 4.0.3. Пусть $(X, A, \mu), \mu(X) < +\infty$.

$$f(x,y) \underset{y \to y_0}{\Longrightarrow} g(x), \quad f(x,y) \in \mathcal{L}(X,\mu).$$

Тогда $g(x) \in \mathcal{L}(X,\mu)$ И

$$\lim_{y \to y_0} \int_X f(x, y) d\mu(x) = \int_X g(x) d\mu(x)$$

Доказатель ство. Для $\varepsilon=1$ \exists окрестность $V(y_0): \forall x \in X, y \in V(y_0) |f(x,y)-g(x)| \leqslant 1:$ $|g(x)| \leqslant |f(x,y)| + |g(x)-f(x,y)| \leqslant |f(x,y)| + 1 \implies g \in \mathcal{L}(X,\mu)$

Утверждение 4.0.4. (X, \mathcal{A}, μ) — пространство с метрой $y \subseteq \mathbb{R}(\mathbb{C})$, y_0 — предельная точка для Y. Пусть f(x,y), f'_y — удовлетворяет условию Липшица локально, $f: X \times Y \to \mathbb{R}(\mathbb{C})$. Тогда $I(y) = \int_X f(x,y) d\mu(x)$ дифференцируема в точке y_0 и

$$I'(y_0) = \int_Y f_y'(x, y) d\mu(x).$$

Доказательство.

$$I'(y_0) = \lim_{y \to y_0} \frac{I(y) - I(y_0)}{y - u_0}$$

$$= \lim_{y \to y_0} \frac{1}{y - y_0} \int_X \underbrace{(f(x, y) - f(x, y_0))}_{f'_y(x, y_0 + \Theta(y - y_0)), \ \Theta \in (0, 1)} d\mu(x)$$

$$= \lim_{X \to y_0} \int_X f'_y(x, y_0 + \Theta(y - y_0)) d\mu(x)$$

$$= \int_X \lim_{X \to y_0} \lim_{X \to y_0} (\dots) d\mu(x) = \int_X f'_y(x, y_0) d\mu(x).$$

 $y \in V_{\delta}(y_0)$ – из условия Липшица для $f_y' \implies C(y) \in V_{\delta}(y_0)$

$$\implies \underbrace{\left| \underbrace{f_y'(x, C(y))}_{f_y'(x, y_0)} \right|} \leqslant \Phi(x)$$

Пример. $\Gamma(p) \int_0^\infty x^{p-1} e^{-x} d\mu$

$$f_p'(x,p) = (p-1)x^{p-2}e^{-x}, \ p-2 > -1 \implies p > 1.$$

При p > 1

$$\begin{split} \Gamma'(p) &= (p-1) \int_0^{+\infty} x^{p-2} e^{-x} = (p-1) \cdot \Gamma(p-1) \implies \Gamma'(p) = (p-1) \cdot \Gamma(p-1). \\ \Gamma(p) &= \int_0^{+\infty} \frac{('x^p)}{p} = \frac{1}{p} \left(x^p e^{-x} \Big|_o^{\infty} - \int_o^{+\infty} x^p ('e^{-x}) dx \right) = \frac{1}{p} \cdot (p+1). \\ \Gamma(1) &= \int_0^{+\infty} e^{-x} = 1 \\ \Gamma(2) &= 1 \\ \Gamma(3) &= 2 \\ \Gamma(n) &= (n-1)! \quad n \in \mathbb{N}. \end{split}$$

5 Г-функция Эйлера

Определение 5.0.1.
$$\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx$$

 $p > 0$

Свойство 5.0.1.

$$\Gamma(p+1) = p\Gamma(p) \quad \forall p > 0$$

- формула приведения

$$\Gamma(p) = \frac{\Gamma(p+1)}{p}$$

– определение для Γ в $\mathbb{R}\setminus(\mathbb{Z}_{-})$

$$\Gamma(1) = 1 \quad \Gamma(p+1) = p!$$

$$\Gamma(\frac{1}{2}) = \frac{e^{-x}}{\sqrt{x}} dx = 2 \int_0^{+\infty} e^{-t^2} dt = 2 \cdot \frac{\sqrt{\pi}}{2} = \sqrt{\pi}$$

$$\Gamma(\frac{3}{2}) = \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$$

$$\Gamma(\frac{5}{2}) = \frac{3\sqrt{\pi}}{4}$$

$$\Gamma(\frac{2n+1}{2}) = \frac{(2n-1)!!}{2^n} \sqrt{\pi} (\text{по индукции})$$

Замечание (Дифиренцирование Г-функции).

$$\Gamma^{(k)}(p) = \int_0^{+\infty} \underbrace{x^{p-1}e^{-x} \left(\ln x\right)^k}_{f_k(x,p)} dx.$$

$$\frac{\partial f_k(x,p)}{\partial p} = f_{k+1}(x,p)$$

Замечание. Локальное условие Лебега $\forall p_0$?

$$\exists V_{p_0} : \exists \Phi(x) \in \mathcal{L} \left((0, +\infty) : |f_k(x, p)| \leq \Phi(x) \right).$$

$$x^{p-1} \leqslant x^{2p_0 - 1} + x^{\frac{p_0}{2} - 1}$$

$$\Phi(x) = \left(x^{2p_0 - 1} + x^{\frac{p_0}{2} - 1}\right) e^{-x} \left|\ln x\right|^k.$$

 Φ – мажоранта для $f_l(x,p) \forall p \in V_{p_0}$

$$\int_{0}^{+\infty} x^{p-1} e^{-x} |\ln x|^{k} dx < +\infty$$

$$x^{p-1} |\ln x|^{k} = o(e^{\frac{x}{2}}) \quad x \to +\infty$$

$$x^{p-1} e^{-x} |\ln x|^{k} \sim x^{p-1} |\ln x|^{k} = o(x^{p-1-\alpha})$$

$$|\ln x|^{k} = o(x^{-\alpha}), \quad \alpha > 0$$

$$x \to 0^{+} \quad p - \alpha > 0.$$

Получается, что Γ – класса C^{∞} там, где она определена. $\Gamma \in C^{\infty}$ ($\mathbb{R} \setminus \mathbb{Z}_{-}$)

Геометрические характеристики γ -функции и элементарные факты

Свойство 5.0.2 (Геометрические свойства). 1. $\gamma(p)$ строго выпукла на любом отрезке, лежащем в её области определения

- 2. На $(0, +\infty)$ $\Gamma(p)$ имеет единственный экстремум в точке $c \in (1, 2)$
- 3. $p \to 0$ $\Gamma(p) \sim \frac{1}{p}$

Доказатель ство.
$$\Gamma_{p^2}^{(2)}(p) = \int_0^{+\infty} x^{p-1} e^{-x} ln^2 x dx > 0 \implies 1$$
 $\Gamma(1) = 0! = 1 = 1! = \Gamma(2) \implies$ по теореме Роля $\exists c \in (1,2): \quad \Gamma'(c) = 0.$ c — точка минимума $\Gamma'(p) \neq 0$ при $p \neq c, p > 0$

Замечание. Аналог формулы стрилинга. При $p \to \infty$ верно, что $\Gamma(p) = \sqrt{2\pi p} \left(\frac{p}{e}\right)^p e^{\frac{\Theta}{12}}$, где $\Theta \in (0,1)$.

6 Бета-функция

Определение 6.0.1.
$$B(p,q)=\int_0^1 x^{p-1}(1-x)^{q-1}dx$$
 $B(p,q)=B(q,p) \forall p,q>0$ $B(p,q)=\frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$

Теорема 6.0.1 (формула Эйлера-Гаусса).

$$\Gamma(p) = \lim_{k \to \infty} \frac{l^p \cdot k!}{p(p-1) \dots (p+k)} \quad \forall p \in \mathbb{R} \backslash \mathbb{Z}_-.$$

Рис. 2: gamma-function

Доказательство.

$$\begin{split} &\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx = \left| t = e^{-x}, x = -\ln t, dx = -\frac{dt}{t} \right| \int_0^1 (-\ln t)^{p-1} t \left(-\frac{dt}{t} \right) = \int_0^1 (-\ln t)^{p-1} dt \\ &= \int_0^1 \left(\lim_{k \to \infty} \underbrace{k(1 - t^{1/k})}_{g(k)} \right)^{p-1} dt = = \\ &g'(k) = (1 - t^{1/k}) + k(-t^{1/k}) \cdot (\ln t) \cdot \left(+\frac{1}{k^2} \right) \\ &= t^{\frac{1}{k}} \left(t^{-\frac{1}{k}} - 1 + \frac{\ln t}{k} \right) \\ &= \left\{ f \uparrow \quad \text{, если } p \geqslant 1 \implies \text{Применим теорему Леви} \\ &= \lim_{k \to \infty} \int_0^1 \left(k(1 - t^{\frac{1}{k}}) \right)^{p-1} dt = \lim_{k \to \infty} k^{p-1} \int_0^1 s^{p-1} (-k)(1 - s)^{k-1} ds = \lim_{k \to \infty} k^p B(p, k) \\ &= \lim_{k \to \infty} k^p \frac{\Gamma(p)\Gamma(k)}{\Gamma(p+k)} = \lim_{k \to \infty} k^p \cdot (k-1)! \frac{\Gamma(p)}{(p+k-1)(p+k-2) \dots p\Gamma(p)} \\ &= \frac{k^p k!}{p(p+1) \dots (p+k)} \cdot \underbrace{\frac{p+k}{k}}_{k} \, . \end{split}$$

Для p < 0 по индукции по m $p \in (-(m+1), -m)$ Если формула верна для p+1, то

$$\Gamma(p) = \frac{\Gamma(p+1)}{p} = \frac{1}{p} \lim_{k \to \infty} \frac{k^{p+1} \cdot k!}{(p+1)(p+2)\dots(p+k+1)}$$
$$= \lim_{k \to \infty} \frac{k^p \cdot k!}{p(p+1)\dots(p+k)} \cdot \underbrace{\frac{k}{p+k+1}}_{l}.$$

Лемма 6.0.1.1. Пусть $a \in \mathbb{R}, f(x) \in C([a, +\infty))$ и f ограничена на $([a, +\infty))$: $\int_a^{+\infty} f(x) dx$ сходится. Тогда

$$I(y) = \int_{a}^{+\infty} e^{-xy} f(x) dx \in C([0, +\infty)).$$

Доказатель ство. $A \in [a, +\infty)$

$$\int_{A}^{+\infty} e^{-xy} f(x) dx = \left| F(x) = \int_{A}^{x} f(t) dt \right| = (F(x) - F(A)) \cdot e^{-xy} \Big|_{A}^{+\infty} + \int_{A}^{+\infty} y e^{-xy} (F(x) - F(A)) dx$$
$$= \left| \exists \lim_{x \to \infty} F(x) \left(= \int_{A}^{+\infty} f(t) dt \right).$$

Для $\varepsilon>0$ $\exists A:\left|\int_X^{+\infty}f(t)dt\right|<\frac{\varepsilon}{3}\quad\forall x\geqslant A$ Для $x\geqslant A\quad |F(x)-FA(A)|=\left|\int_X^{+\infty}f(t)dt\right|<\frac{\varepsilon}{3}$

$$|I_A(y)| \leqslant \int_A^{+\infty} y e^{-xy} |F(x) - F(A)| dx$$

$$< \frac{\varepsilon}{3} \int_0^{+\infty} y e^{-xy} dx = \frac{\varepsilon}{3}$$

$$I(y) = \int_a^A e^{-xy} f(x) dx + I_A(y)$$

$$I(y) - I(y_0) = J(y) - J(y_0) + \overbrace{I_A(y) - I_A(y_0)}^{<\frac{\varepsilon}{3}}.$$

 $J(y) - J(y_0) \to 0$ при $y \to y_0$ (условие непрерывности собственных интегралов).

$$\exists V(y_0): \quad \forall y \in V(y_0) |J(y) - J(y_0)| < \frac{\varepsilon}{3}.$$

Следствие 6.0.1.1.

$$\int_{a}^{+\infty} f(x)dx = \int_{a}^{+\infty} \lim_{y \to 0} e^{-xy} f(x)dx.$$

Рис. 3: Инетграл с переменными пределами

Пример (Одно из значений интегрального синуса).

$$\int_{0}^{+\infty} \frac{\sin x}{x}$$

$$I(y) = \int_{0}^{\infty} \underbrace{e^{-xy} \frac{\sin x}{x}} dx$$

$$\frac{\partial f}{\partial x} = -e^{-xy} \sin x$$

$$y_{0} > 0 \quad V_{y_{0}} = \left(\frac{y_{0}}{2}, 2y_{0}\right) \implies \left|\frac{\partial f}{\partial y}\right| \leqslant e^{-\frac{xy_{0}}{2}}$$

$$\implies \forall y_{0} I'(y) = -\int_{0}^{+\infty} e^{-xy} \sin x dx \dots$$

$$I(y) = \int_{0}^{+\infty} e^{-xy} d\cos x = \cos x \cdot e^{-xy} \Big|_{0}^{+\infty} + y \int_{0}^{+\infty} ('\sin x) e^{-xy} dx$$

$$= -1 + y \left(\sin x e^{-xy} \Big|_{0}^{+\infty} + y \int_{0}^{+\infty} \sin x e^{-xy} dx\right) = -1 + y^{2} \left(-I(y)\right)$$

$$\implies I(y) \cdot (1 + y^{2}) = -1.$$

$$I'(y) = I(y) = \left(-\frac{1}{1 + y^{2}}\right) \implies I(y) = C - \int \frac{dy}{1 + y^{2}} = C - \arctan y$$

$$y \to +\infty, y \geqslant 1 \Big| e^{-xy} \frac{\sin x}{x} \Big| \leqslant e^{-x} - \text{суммируемая мажоранта.}$$

$$C - \frac{\pi}{2} = \lim_{y \to \infty} e^{-xy} \frac{\sin x}{x} dx = 0 \implies C = \frac{\pi}{2}$$

$$I(y) = \frac{\pi}{2} - \operatorname{arctg} y \forall y > 0.$$

Но по лемме I(y) неотрицательная в точке y = 0.

$$I(0) = \lim_{y \to 0} I(y) = \lim_{y \to 0} \left(\frac{\pi}{2} - \operatorname{arctg} y \right) = \frac{\pi}{2} \implies \int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

Дифференцирование интеграла по параметру в случае переменных пределов интегрирования.

$$I(y) = \int_{lpha(y)}^{eta(y)} f(x,y) dx; \quad f \in C\left([a,b](x\ni) imes [c,d](\ni y)
ight), \quad lpha(y), eta(y) : [c,d]
ightarrow [a,b]$$
 дифф.

Теорема 6.0.2 (Правило Лейбница). Тогда I(y) дифференцируемо на [c,d] и

$$I(y) = \int_{\alpha(y)}^{\beta(y)} f_y'(x, y) dx + f(\beta(y), y) \cdot \beta'(y) - f(\alpha(y), y) \cdot \alpha'(y).$$

Доказательство.

$$\begin{split} \Phi(x,y) &= \int_a^x f(t,y) dt \\ \frac{\partial \Phi}{\partial x} &= f(x,y) \text{ непрерывна в } Q \\ \frac{\partial \Phi}{\partial y} &= \lim_{\Delta \to y} \frac{1}{\Delta y} \left(\int_a^x f(t,y+\Delta y) dt - \int_a^x f_y'(t,y) dt \right) \end{split}$$

$$\frac{\partial \Phi}{\partial y}(x_1, y_1) - \frac{\partial \Phi}{\partial y}(x, y) = \int_a^x f_y'(t, y_1) dx + \left(\int_a^x f_y'(t, y) dx - \int_a^x f_y'(t, y) dx\right) - \int_a^x f_y'(t, y) dx.$$

Таким образом $\Phi(x,y)$ дифферецируема на Q

$$I(y) = \Phi(\beta(y), y) - \Phi(\alpha(y), y)$$

$$I'(y) = P'hi_x(\beta(y), y) \cdot \beta'(y) + \Phi'_y(\beta(y), y) - \Phi'_x(\alpha(y), y) \cdot \alpha'(y) - \Phi'_y(\alpha(y), y).$$

Пример.

$$I(p) = \int_{p^2}^{p^3} \frac{x^2 + 2p}{\ln^2 |x| + 1} dx$$

 $\forall p \neq 0, \quad [a, b] = [p - \delta, p + \delta] \quad [c, d]$

$$I'(p) = \int_{n^2}^{p^3} \frac{2}{\ln^2 |x| + 1} dx + \frac{p^6 + 2p}{\ln^2 |p^3| + 1} \cdot 3p^2 - \frac{p^4 + 2p}{\ln^2 |p^2| + 1} \cdot 2p.$$

7 Интегрирование на многообразиях

Определение 7.0.1. $\gamma:[a,b]\to\mathbb{R}$ кусочно-гладкое, простой путь (биекция) или заскнутый простой (едиснтвенная точка самопересечния – концы).

Пусть $\Gamma = \gamma([a,b])$ — носитель нашего пути...

$$\mathcal{B} = \{ B \mid \gamma^{-1}(B) \in \mathcal{A}.$$

$$ds = \nu(B) = \int_{\gamma^{-1}(B)} ||\gamma'||(t)dt.$$

$$f: \Gamma \to \mathbb{R}(\mathbb{C}). \int_B f ds = \int_{\gamma^{-1}(B)} f(\gamma(t)) \cdot \|\gamma'(t)\|.$$

Интеграл не зависит от выбора параметризации. Также не зависит от ориентации кривой.

Пример.
$$\int_C x^2 s d$$
 $C: \begin{cases} x^2 + y^2 + z^2 = R^2 \\ x + y + z = 0 \end{cases}$

$$I = \int_C x^2 ds = \int_C y^2 ds = \int_C z^2 ds \implies I = \frac{1}{3} \int_C \underbrace{x^2 + y^2 + z^2}_{=R^2} ds = \frac{R^2}{3} \int_C ds = \frac{R^2}{3} \cdot 2\pi R...$$

8 Я чуть чуть опаздал

8.1 Многообразие с краем

Напоминание k-мерную r-гладкую поверхность в \mathbb{R}^n (многообразие без края).

Пусть $\mathcal{M} \subseteq \mathbb{R}^n, x^0 \in \mathcal{M}$.

Окрестность $U_M(x^0)=m\cap U(x^0),$ где $U(x^0)$ — открытое в $\mathbb{R}^n.$

 \exists открытое $D \subseteq \mathbb{R}^k$, $\Phi: D \to U_M(x^0)$, где $\Phi \in C^k(D)$, регулярно.

Определение 8.1.1. Стандартный куб в \mathbb{R}^k — это $(-1,1)^k$.

Определение 8.1.2. Стандартный полукуб в \mathbb{R}^k — это $[-1,0] \times (-1,1)^{k-1}$ при k>1 и (-1,0] или [0,1) при k=1.

Определение 8.1.3. Пусть $\mathcal{M} \subseteq \mathbb{R}^n$. \mathcal{M} называется k-мерным многообразием с краем, если $\forall x^0 \in \mathcal{M} \exists$ окрестнось $U_M(x^0)$ и $\Phi: \Pi_k \to U_M(x^0)$, регулярно и $\in C^k$.

3десь Π_k — стандартный k-мерный куб или стандартный k-мерный полукуб.

 $U_M(x^0)$ — стандартныя окрестнось точки x^0 в \mathcal{M} .

 Φ — локальная параметризация (стандартная).

 $\langle U_M(x^0), \Phi \rangle$ — карта; набор карт — атлас.

Пример. Очевидные:

- 1. $(-1,1)^k k$ -мерное многообразие (без края).
- 2. $(-1,0] \times (-1,1)^{k-1} k$ -мерное многообразие с краем.
- 3. $\mathbb{M}_{k,n}^{(r)}$ набор k—мерных многообразий с краем в \mathbb{R}^n гладкости r.

Пример. Чуть менее очевидныей пример.

 $\mathbb{R}^n \in \mathbb{M}_{n,n}^{(\infty)}$ — многообразие с краем (край пустой).

$$\Phi(x_1,\ldots,x_n) = \left(\operatorname{tg}\left(x_1 \cdot \frac{\pi}{2}\right), \operatorname{tg}\left(x_2 \cdot \frac{\pi}{2}\right)\right), \ldots, \operatorname{tg}\left(x_n \cdot \frac{\pi}{2}\right), \quad |x_i| < 1.$$

Определение 8.1.4. Пусть $\mathcal{M} \in \mathbb{M}_{k,n}^{(r)}$. $x^0 \in \mathcal{M}$ называется внутренней (относительно многообразия), если \exists стандартная локальная параметризация $\Phi: \Pi \to U_M(x^0)$, такая, что Π — куб.

Если точка x^0 не является внутренней, то она называется крайней (точкой края). $\partial \mathcal{M} =$ множество крайних точек \mathcal{M} (край \mathcal{M}).

Замечание. Если \exists стандартная параметризация $\Phi:\Pi\to U_M(x^0)$, такая что Π — полукуб, то \forall стандатной параметризации $\psi:\widetilde{\Pi}\to \widetilde{U}_M(x^0),\,\widetilde{\Pi}$ — полукуб.

Замечание. $Fz\mathcal{M} \neq \partial \mathcal{M}$. То есть множество крайних точек не равно множеству граничных точек.

Определение 8.1.5. Дискретное множество в \mathbb{R}^n – множество без предельных точек в \mathbb{R}^n Само множество не более, чем счётно. В любом шаре \mathbb{R}^n лишь конечное множество точек. Дискретное множество в \mathbb{R}^n – многообразие размерности 0 в \mathbb{R}^n – $\mathbb{M}_{0,n}$

Пример (Конус).

$$ax^2 + by^2 = z^2.$$

В нуле ранг нарушается. Весь конус целиком не многообразие.

Утверждение 8.1.1. В условия определения отображения перехода оно есть диффеоморфизм из W в \widetilde{W} .

Пример. Параметризация поверхности сферы через полярные координаты.

$$\Phi: (\phi, \psi) \to \begin{bmatrix} \cos \varphi \cos \psi \\ \sin \varphi \cos \psi \\ \sin \psi \end{bmatrix}, \Psi: (x, y) \to \begin{bmatrix} x \\ y \\ \sqrt{1 - x^2 - y^2} \end{bmatrix}.$$

$$\theta: (\varphi, \psi) \to (x, y), \quad \theta(\varphi, \psi) = \begin{bmatrix} \cos \varphi \cos \psi \\ \sin \varphi \cos \psi \end{bmatrix}, \quad \theta' = \begin{bmatrix} -\sin \varphi \cos \psi & -\cos \varphi \sin \psi \\ \cos \varphi \cos \psi & -\sin \varphi \sin \psi \end{bmatrix}.$$

 $\det \theta' = \cos \pi \sin \psi$

 $\pi_{x_1,\dots,x_k}\Psi:\Pi\in\mathbb{R}^n o\mathbb{R}^k$ – локально диффеоморфизм

 $(g = \pi \circ \psi)^{-1} : (x_1, \dots, x_k) \to (v_1, \dots, v_k)$ x_{k+1}, \dots, x_n — функции от первых координат $\Theta = g \circ \pi_{x_1, \dots, x_k} \Phi$. Аналогично устроено обратное отображение, значит определители обоих не могут обращаться в ноль.

Следствие 8.1.0.1. Инвариантность типа множества (куб или полукуб) от выбора станратной параметриазации вытекает из последнего утверждения,

Следствие 8.1.0.2. $\forall \mathcal{M} \in \mathbb{M}_{k,n}^{(r)} \quad \forall x^0 \in \mathcal{M}$ лькально некоторые n-k координат точки выражаются как функции от остальных координат.

Замечание. Касательное пространство – пространство касательных векторов (векторов принадлежащих какой-то кривой на поверхности).

$$\operatorname{Tp} \mathcal{M} = d_{\Phi^1(p)} \Phi(\mathbb{R}^k)$$

Определение 8.1.6.
$$\supset \mathcal{M} \in \mathbb{M}_{k,n}^{(1)} \quad x^0 \in \mathcal{M} \quad (U(x_0), \Phi) - \text{карта}$$
 $T_{x_0} \mathcal{M} = d_0 \Phi(\mathbb{R}^k)$

Замечание. Определение $T_{x^0}\mathcal{M}$ не зависит от параметризации.

$$d_0 \Phi(\mathbb{R}^k) = d_0(\Psi_0 \theta)(\mathbb{R}^k) = f_{\theta(0)} \Psi(d_0 \theta(\mathbb{R}^k)) = d_{\theta(0)} = 0 \Psi(\mathbb{R}^k).$$

 $d_0\theta$ — изоморфизм, т.к. θ — диффеоморфизм.

Замечание. $N \in \mathbb{R}, N$ – нормальный вектор к \mathcal{M} в точке x^0 , если $N \perp T_{x^0}\mathcal{M}$. (Иногда требуют длину 1, но часто нет)

Замечание. Если $M\in\mathbb{M}_{k,n}^r$ в окрестности x^0 задаётся системой $\begin{cases} F_1(x)=0\\ \dots\\ F_{n-k}(x)=0 \end{cases}$

$$\nabla F_1,\ldots, \nabla F_{n-k}$$
 — базис $(T_{x^0}\mathcal{M})^\perp$

Замечание. Если
$$\mathcal{M} \in M_{n-1,n}^{(1)}$$
 $N \perp T_{x^0} \mathcal{M}$ $N = \begin{vmatrix} e_1 & e_2 & \dots & e_n \\ & \frac{\partial \Phi}{\partial u_1}(0) & \\ & \vdots & \\ & \frac{\partial \Phi}{\partial u_n}(0) & \end{vmatrix}$

$$(U(x_0), \Phi)$$
 — карта $\iff N \perp \frac{\partial \Phi}{\partial u_j}(0) \quad \forall j = 1, \dots, n-1$
$$\begin{vmatrix} \frac{\partial \Phi}{\partial u_j}(0) \\ \frac{\partial \Phi}{\partial u_j}(0) \end{vmatrix}$$

$$(U(x_0), \Phi)$$
 — карта $\iff N \perp \frac{\partial \Phi}{\partial u_j}(0) \quad \forall j = 1, \dots, n-1$
$$\left\langle N, \frac{\partial \Phi}{\partial u_j}(0) \right\rangle = \begin{vmatrix} \frac{\partial \Phi}{\partial u_j}(0) & & \\ & \frac{\partial \Phi}{\partial u_j}(0) & & \\ & \vdots & & \\ & \frac{\partial \Phi}{\partial u_j}(0) & & \\ & \vdots & & \\ & \frac{\partial \Phi}{\partial u_j}(0) & & \\ & \vdots & & \\ \end{pmatrix} = 0, \text{ т.к. совпадают две строки.}$$

Частный случай. Пусть n=3, k=2. \mathcal{M} — график z=g(x,y), заданный на открытом множестве $D \subseteq \mathbb{R}^2, g \in C^1$.

$$\Phi:(x,y)\to(x,y,z)=(x,y,g(x,y)),\quad \Phi'=\begin{pmatrix}1&0\\0&1\\g'_x&g'_y\end{pmatrix}$$

Таким образом, \mathcal{M} — двумерное многообразе хотя бы класса $C^{(1)}$, то есть $\mathcal{M} \in \mathbb{M}_{2,3}^{(1)}$

$$N$$
 — нормаль к $\mathcal{M}, \;\; N = egin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & g_x' \\ 0 & 1 & g_y' \end{bmatrix} = (-g_x', -pg_y, 1)$ — направлена вверх.

Определение 8.1.7.
$$\supset (U(x^0), \Phi), (\widetilde{U}(x^0), \Psi)$$
 – две карты $x_0 \in \mathcal{M}$ $\mathcal{M} \in \mathbb{M}_{k,n}^{(r)}$ Скажем, что Φ и Ψ согласованы, если $\det \Theta > 0$, где $\theta = \Psi^{-1} \circ \Phi$ – отображение перехода.

Замечание. Отношение согласованности является отношение эквивалентности.

Определение 8.1.8. $I(x^0)$ называется ориентированной, если зафиксирован один из классов экивалентности по отношению согласованности.

Замечание. $\Box U(x^0) \cap U(x^1) \neq 0$. $U(x^0)$ И $U(x^1)$ согласованы, если $\Phi \in U_+(x^0)$, $\Psi \in U_+(x^1)$, где U_+ – зафиксирванный класс. $\implies \det(\Psi^{-1} \circ \Phi) > 0$

Если $U(x^0) \cap U(x^1) = \emptyset$, то их ориентации согласованы.

Атлас $A = \{(U, \Phi)\}$ многообразия \mathcal{M} называется ориентированным, если ориентации любых двух $U, V \in A$ согласованы.

Многообразие с краем называется ориентиркемым, если ∃ ориентированный атлас.

Определение 8.1.9. Пусть $\Gamma = \mathcal{M} \in \mathbb{M}_{1,n}^{(1)}, \quad \tau : \mathcal{M} \to \mathbb{R}^n$ и $\forall x^0 \in \mathcal{M} : \tau(x^0) \in T_{x^0} \circ \mathcal{M}, \quad \tau -$ непрерывное, $\|\tau\| \equiv 1$.

Тогда au называется направлением на \mathcal{M} .

Утверждение 8.1.2. \forall связное 1-менрное, 1-глакое многообразе с краем имеет ровно два направления. $\tau(x) = \pm \frac{\gamma'}{\|\gamma'\|} \ (\gamma^{-1}(x)),$ где γ — параметризация из выбранного класса эквивалентности (из ориентации окрестности \mathcal{M}).

Определение 8.1.10. k = n - 1 $n \in \mathbb{N}, n \geqslant 2$ $\mathcal{M} \in \mathbb{M}_{n-1,n}^{(\perp)}$ $n(x) : \mathcal{M} \to \mathbb{R}^n$ называется стороной, если:

- 1. $n(x) \in C(M)$
- 2. $\forall x \in \mathcal{M} \quad n(x) \perp T_x \mathcal{M}$
- 3. ||n(x)|| = 1

Замечание. Сторон чётное число.

Замечание. Не у всех поверхностей есть сторона. Лента Мёбиуса, бутылка Клейна, . . .

Утверждение 8.1.3. Для k = n-1 ориентируемость многообразия с краем $\mathcal{M} \in (\mathbb{M}^1_{n-1,n})$ равносильно существоавнию стороны.

Теорема 8.1.1. Пусть $\mathcal{M} \in \mathbb{M}_{k,n}^{(1)}$ $K \leq n, k, n \in \mathbb{N}$ Тогла:

- 1. $\partial \mathcal{M} \in \mathbb{M}_{k-1}^{(1)}$; $\partial (\partial \mathcal{M}) = \emptyset$
- 2. Если \mathcal{M} ориентированно то $\partial \mathcal{M}$ ориентируем.

9 Я чуть чуть опаздал

9.1 Многообразие с краем

Напоминание k-мерную r-гладкую поверхность в \mathbb{R}^n (многообразие без края).

Пусть $\mathcal{M} \subseteq \mathbb{R}^n, x^0 \in \mathcal{M}$.

Окрестность $U_M(x^0) = m \cap U(x^0)$, где $U(x^0)$ — открытое в \mathbb{R}^n .

 \exists открытое $D \subseteq \mathbb{R}^k$, $\Phi: D \to U_M(x^0)$, где $\Phi \in C^k(D)$, регулярно.

Определение 9.1.1. Стандартный куб в \mathbb{R}^k — это $(-1,1)^k$.

Определение 9.1.2. Стандартный полукуб в \mathbb{R}^k — это $[-1,0] \times (-1,1)^{k-1}$ при k>1 и (-1,0] или [0,1) при k=1.

Определение 9.1.3. Пусть $\mathcal{M} \subseteq \mathbb{R}^n$. \mathcal{M} называется k-мерным многообразием с краем, если $\forall x^0 \in \mathcal{M} \exists$ окрестнось $U_M(x^0)$ и $\Phi : \Pi_k \to U_M(x^0)$, регулярно и $\in C^k$.

3десь Π_k — стандартный k-мерный куб или стандартный k-мерный полукуб.

 $U_M(x^0)$ — стандартныя окрестнось точки x^0 в \mathcal{M} .

 Φ — локальная параметризация (стандартная).

 $\langle U_M(x^0), \Phi \rangle$ — карта; набор карт — атлас.

Пример. Очевидные:

- 1. $(-1,1)^k k$ -мерное многообразие (без края).
- 2. $(-1,0] \times (-1,1)^{k-1} k$ -мерное многообразие с краем.
- 3. $\mathbb{M}_{k,n}^{(r)}$ набор k—мерных многообразий с краем в \mathbb{R}^n гладкости r.

Пример. Чуть менее очевидныей пример.

 $\mathbb{R}^n \in \mathbb{M}_{n,n}^{(\infty)}$ — многообразие с краем (край пустой).

$$\Phi(x_1,\ldots,x_n) = \left(\operatorname{tg}\left(x_1 \cdot \frac{\pi}{2}\right), \operatorname{tg}\left(x_2 \cdot \frac{\pi}{2}\right)\right), \ldots, \operatorname{tg}\left(x_n \cdot \frac{\pi}{2}\right), \quad |x_i| < 1.$$

Определение 9.1.4. Пусть $\mathcal{M} \in \mathbb{M}_{k,n}^{(r)}$. $x^0 \in \mathcal{M}$ называется внутренней (относительно многообразия), если \exists стандартная локальная параметризация $\Phi: \Pi \to U_M(x^0)$, такая, что Π — куб.

Если точка x^0 не является внутренней, то она называется крайней (точкой края). $\partial \mathcal{M} =$ множество крайних точек \mathcal{M} (край \mathcal{M}).

Замечание. Если \exists стандартная параметризация $\Phi:\Pi\to U_M(x^0)$, такая что Π — полукуб, то \forall стандатной параметризации $\psi:\widetilde{\Pi}\to \widetilde{U}_M(x^0),\,\widetilde{\Pi}$ — полукуб.

Замечание. $FzM \neq \partial M$. То есть множество крайних точек не равно множеству граничных точек.

Определение 9.1.5. Дискретное множество в \mathbb{R}^n – множество без предельных точек в \mathbb{R}^n Само множество не более, чем счётно. В любом шаре \mathbb{R}^n лишь конечное множество точек. Дискретное множество в \mathbb{R}^n – многообразие размерности 0 в \mathbb{R}^n – $\mathbb{M}_{0,n}$

Пример (Конус).

$$ax^2 + by^2 = z^2.$$

В нуле ранг нарушается. Весь конус целиком не многообразие.

Утверждение 9.1.1. В условия определения отображения перехода оно есть диффеоморфизм из W в \widetilde{W} .

Пример. Параметризация поверхности сферы через полярные координаты.

$$\Phi: (\phi, \psi) \to \begin{bmatrix} \cos \varphi \cos \psi \\ \sin \varphi \cos \psi \\ \sin \psi \end{bmatrix}, \Psi: (x, y) \to \begin{bmatrix} x \\ y \\ \sqrt{1 - x^2 - y^2} \end{bmatrix}.$$

$$\theta: (\varphi, \psi) \to (x, y), \quad \theta(\varphi, \psi) = \begin{bmatrix} \cos\varphi\cos\psi \\ \sin\varphi\cos\psi \end{bmatrix}, \quad \theta' = \begin{bmatrix} -\sin\varphi\cos\psi & -\cos\varphi\sin\psi \\ \cos\varphi\cos\psi & -\sin\varphi\sin\psi \end{bmatrix}.$$

 $\det \theta' = \cos \pi \sin \psi$

 $\pi_{x_1,\dots,x_k}\Psi:\Pi\in\mathbb{R}^n o\mathbb{R}^k$ – локально диффеоморфизм

 $(g = \pi \circ \psi)^{-1} : (x_1, \dots, x_k) \to (v_1, \dots, v_k)$ x_{k+1}, \dots, x_n — функции от первых координат $\Theta = g \circ \pi_{x_1, \dots, x_k} \Phi$. Аналогично устроено обратное отображение, значит определители обоих не могут обращаться в ноль.

Следствие 9.1.0.1. Инвариантность типа множества (куб или полукуб) от выбора станратной параметриазации вытекает из последнего утверждения,

Следствие 9.1.0.2. $\forall \mathcal{M} \in \mathbb{M}_{k,n}^{(r)} \quad \forall x^0 \in \mathcal{M}$ лькально некоторые n-k координат точки выражаются как функции от остальных координат.

Замечание. Касательное пространство – пространство касательных векторов (векторов принадлежащих какой-то кривой на поверхности).

$$\operatorname{Tp} \mathcal{M} = d_{\Phi^1(p)} \Phi(\mathbb{R}^k)$$

Определение 9.1.6.
$$\square \mathcal{M} \in \mathbb{M}_{k,n}^{(1)} \quad x^0 \in \mathcal{M} \quad (U(x_0), \Phi)$$
 — карта $T_{x_0} \mathcal{M} = d_0 \Phi(\mathbb{R}^k)$

Замечание. Определение $T_{x^0}\mathcal{M}$ не зависит от параметризации.

$$d_0\Phi(\mathbb{R}^k) = d_0(\Psi_0\theta)(\mathbb{R}^k) = f_{\theta(0)}\Psi(d_0\theta(\mathbb{R}^k)) = d_{\theta(0)=0}\Psi(\mathbb{R}^k).$$

 $d_0\theta$ — изоморфизм, т.к. θ — диффеоморфизм.

Замечание. $N \in \mathbb{R}, N$ – нормальный вектор к \mathcal{M} в точке x^0 , если $N \perp T_{x^0} \mathcal{M}$. (Иногда требуют длину 1, но часто нет)

Замечание. Если $M\in \mathbb{M}_{k,n}^r$ в окрестности x^0 задаётся системой $\begin{cases} F_1(x)=0\\ \dots\\ F_{n-k}(x)=0 \end{cases}$

 $\nabla F_1, \dots, \nabla F_{n-k}$ – базис $(T_{x^0}\mathcal{M})^{\perp}$

Замечание. Если
$$\mathcal{M} \in M_{n-1,n}^{(1)}$$
 $N \perp T_{x^0} \mathcal{M}$ $N = \begin{vmatrix} e_1 & e_2 & \dots & e_n \\ & \frac{\partial \Phi}{\partial u_1}(0) \\ & \vdots \\ & \frac{\partial \Phi}{\partial u_n}(0) \end{vmatrix}$

$$\begin{array}{l} (U(x_0),\Phi)-\text{ карта}\\ \Longleftrightarrow N\perp\frac{\partial\Phi}{\partial u_j}(0) \quad \forall j=1,\ldots,n-1\\ \left\langle N,\frac{\partial\Phi}{\partial u_j}(0)\right\rangle = \left|\begin{array}{c} \frac{\partial\Phi}{\partial u_j}(0)\\ \frac{\partial\Phi}{\partial u_j}(0)\\ \vdots\\ \frac{\partial\Phi}{\partial u_n}(0) \end{array}\right| = 0,\text{ т.к. совпадают две строки.}\\ \text{Частный случай. Пусть } n=3,\ k=2.\ \mathcal{M}-\text{график } z=g(x,0) \subseteq \mathbb{R}^2,\ g\in C^1. \end{array}$$

Частный случай. Пусть n=3, k=2. \mathcal{M} — график z=g(x,y), заданный на открытом множестве $D \subseteq \mathbb{R}^2, \ g \in C^1.$

$$\Phi: (x,y) \to (x,y,z) = (x,y,g(x,y)), \quad \Phi' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ g'_x & g'_y \end{pmatrix}$$

Таким образом, \mathcal{M} — двумерное многообразе хотя бы класса $C^{(1)}$, то есть $\mathcal{M} \in \mathbb{M}_{2,3}^{(1)}$

$$N$$
 — нормаль к $\mathcal{M}, \;\; N = egin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & g_x' \\ 0 & 1 & g_y' \end{bmatrix} = (-g_x', -pg_y, 1)$ — направлена вверх.

Определение 9.1.7.
$$\supset (U(x^0), \Phi), (\widetilde{U}(x^0), \Psi)$$
 – две карты $x_0 \in \mathcal{M}$ $\mathcal{M} \in \mathbb{M}_{k,n}^{(r)}$

Скажем, что Φ и Ψ согласованы, если $\det \Theta > 0$, где $\theta = \Psi^{-1} \circ \Phi$ – отображение перехода.

Замечание. Отношение согласованности является отношение эквивалентности.

Определение 9.1.8. $I(x^0)$ называется ориентированной, если зафиксирован один из классов экивалентности по отношению согласованности.

Замечание. $\exists \ U(x^0) \cap U(x^1) \neq 0. \ U(x^0) \ \text{И} \ U(x^1)$ согласованы, если $\Phi \in U_+(x^0), \Psi \in U_+(x^1)$, где $U_+ = U_+(x^0)$ зафиксирванный класс. $\implies \det(\Psi^{-1} \circ \Phi) > 0$

Если $U(x^0) \cap U(x^1) = \emptyset$, то их ориентации согласованы.

Атлас $A = \{(U, \Phi)\}$ многообразия $\mathcal M$ называется ориентированным, если ориентации любых двух $U, V \in A$ согласованы.

Многообразие с краем называется ориентиркемым, если \exists ориентированный атлас.

Определение 9.1.9. Пусть $\Gamma = \mathcal{M} \in \mathbb{M}_{1,n}^{(1)}, \quad \tau : \mathcal{M} \to \mathbb{R}^n \text{ и } \forall x^0 \in \mathcal{M} : \tau(x^0) \in T_{x^0} \circ \mathcal{M}, \quad \tau = 0$ непрерывное, $\|\tau\| \equiv 1$.

Тогда τ называется направлением на \mathcal{M} .

Утверждение 9.1.2. ∀ связное 1-менрное, 1-глакое многообразе с краем имеет ровно два направления. $au(x) = \pm \frac{\gamma'}{\|\gamma'\|} \ (\gamma^{-1}(x)),$ где γ — параметризация из выбранного класса эквивалентности (из ориентации окрестности \mathcal{M}).

Определение 9.1.10. k = n - 1 $n \in \mathbb{N}, n \ge 2$ $\mathcal{M} \in \mathbb{M}_{n-1,n}^{(\perp)}$ $n(x): \mathcal{M} \to \mathbb{R}^n$ называется стороной, если:

- 1. $n(x) \in C(M)$
- 2. $\forall x \in \mathcal{M} \quad n(x) \perp T_x \mathcal{M}$
- 3. ||n(x)|| = 1

Замечание. Сторон чётное число.

Замечание. Не у всех поверхностей есть сторона. Лента Мёбиуса, бутылка Клейна, . . .

Утверждение 9.1.3. Для k = n-1 ориентируемость многообразия с краем $\mathcal{M} \in (\mathbb{M}^1_{n-1,n})$ равносильно существоавнию стороны.

Теорема 9.1.1. Пусть $\mathcal{M} \in \mathbb{M}_{k,n}^{(1)}$ $K \leq n, k, n \in \mathbb{N}$

- 1. $\partial \mathcal{M} \in \mathbb{M}_{k-1,n}^{(1)}; \ \partial (\partial \mathcal{M}) = \varnothing$
- 2. Если \mathcal{M} ориентированно то $\partial \mathcal{M}$ ориентируем.

Доказательство. $\partial \mathcal{M}$ – многообразие без края.

Замечание (Воспоминания). Многообразие – локально гомеоморфно кубу.

С краем – есть точки геомеоморфные половине куба.

Пусть у нас есть две параметризации окрестности: $\Phi, \Psi.\Phi = \Psi \circ \Theta$ $\Phi \sim \Psi \iff \det \Theta' > 0$

Класс эквивалентности $[\Phi]$ – ориентация окрестности

U, V – окрестности в M. Они согласованы если:

- они не перескекаются
- они пересекаются и $\det \theta' > 0$, где θ отображение перехода от Φ к Ψ , где Φ из ориентации U, Ψ – из ориентации V и $\Phi(\Pi) \cap \Psi(\Pi) \neq \emptyset$

Пример.
$$S_1 = S \cap \{z>0\}$$
 $S_2 = S \cap \{x>0\}$ $\theta: (x,y) \to (y,\sqrt{1-x^2-y^2})$ $\theta' = \begin{bmatrix} 0 & 1 \\ -\frac{x}{\sqrt{1-x^2-y^2}} & -\frac{y}{\sqrt{1-x^2-y^2}} \end{bmatrix}$ $\det' = \frac{x}{\sqrt{1-x^2-y^2}} > 0$ на области определения $(\Phi^{-1}(S_1 \cap S_2))$

$$S_3 = S \cap \{z < 0\}$$

 $\widetilde{\theta}(x, y) = (y, -\sqrt{1 - x^2 - y})$

$$\widetilde{\theta}(x,y) = (y, -\sqrt{1 - x^2 - y^2})$$

И здесь уже всё плохо с определиителем.

Утверждение 9.1.4. $\exists \ \gamma: \langle a,b \rangle \subseteq \mathbb{R} \to \mathbb{R}^n$, регулярно ($\iff \gamma'(t) \neq 0 \quad \forall t \in \langle a,b \rangle$). γ – простой путь (без самопересечений, инъективность)

 $\Gamma = \gamma (\langle a, b \rangle)$ – Одномерное многообразие.

Край не пуст, если $\{a,b\} \cap \langle a,b \rangle \neq \emptyset$

Направление – непрерывное отображение $\tau: \Gamma \to \mathbb{R}^n$:

1. непрерывно $\tau \in C(\Gamma)$

2.
$$\tau(x) \in T_x \Gamma \forall x \in \Gamma$$

3.
$$\|\tau(x)\| = 1 \forall x \in \Gamma$$

Для любой гладкой кривой Γ (из определения выше) существует ровно два направления на этой кривой, и любая такая Γ ориентируема

Доказатель cm во. Ориентация порождается сужениями одного и того же отображения λ на различные кубы и полукубы.

$$\tau_{\gamma} = \frac{\gamma'}{\|\gamma'\|} \left(\gamma^{-1}(x) \right).$$

 $\tau(x)$ – ещё одно направление

$$t \in (a,b) \quad h(t) = \langle \tau_{\gamma}(\gamma(t)), \tau(\gamma(t)) \rangle = \pm \|\tau_{\gamma}(\gamma(t))\| \|\tau(\gamma(t))\| = \pm 1$$

 $h:\langle a,b\rangle \to \{-1,+1\}$ – непрерывно, но $h(\langle a,b\rangle)$ должно быть промежутком:

1.
$$h(\langle a,b\rangle) = \{1\} \implies \tau = \tau_{\gamma}$$

2.
$$h(\langle a,b\rangle) = \{-1\} \implies \tau = -\tau_{\gamma}$$

Утверждение **9.1.5.** $k = n - 1 \ge 2, n \in \mathbb{N}$

Сторона на многообразии $M \in \mathbb{M}^1_{n-1,n}$ – отображение $N: M \to \mathbb{R}^n$:

1.
$$n \in C(M)$$

2.
$$N(x) \perp T_x M$$

3.
$$||N|| = 1$$

Если $M \in \mathbb{M}^1_{n-1,n}$. Тогда M двусторонняя $\iff M$ ориентируема. Если M двустороняя, то любая сторона представима в виде:

$$N = \pm \frac{N_{\Phi}}{\|N_{\Phi}\|} \left(\varphi^{-1}(x) \right).$$

 Φ – параметризация окрестности точки x Из выбранной ориентации

$$N_{\Phi} = \begin{vmatrix} \vec{e}_1 & \dots & \vec{e}_n \\ \dots & \Phi'_{u_1} & \dots \\ \dots & \vdots & \dots \\ \dots & \Phi'_{u_{n-1}} & \dots \end{vmatrix}$$
$$\|N_{\Phi}\| \neq 0$$
$$\Phi \sim \widetilde{\Phi}$$

Замечание (Напоминание). $\mathcal{E}_p(X)$ – набор кососимметрических p форм из X в \mathbb{R}^n

$$\omega: O \to \mathcal{E}_p(\mathbb{R}^n)$$

$$\omega(x, h^1, \dots, h^p) \quad h_i \in \mathbb{R}^n$$

$$\omega = \sum_{1 \le i_1 < i_2 < \dots < i_p \le n} \omega_{i_1 \dots i_p} dx_{i_1}(x) \wedge \dots \wedge dx_{i_p} = \sum_{I} \omega_{I}(x) dx^{I}$$

 $\Omega_p^{(r)} = \Omega_{p,n}^{(r)}$ – набор всех дифференцируемых p-форм гладкости r в O

Пример. 1. $f \in C^k(O), \quad \omega = f \in \Omega_0^{(k)}(O)$

2.
$$f \in C^k(O)$$
, $d_x f = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) dx_i \in \Omega_1^{(k-1)}(O)$

3.
$$\Box F$$
 – поле в \mathbb{R}^3 $F = (P, Q, R) : O \to \mathbb{R}^3$ $\omega_F = Pdx + Qdy + Rfz$ $\omega_F(h \in \mathbb{R}^3) = P(x, y, z)h_1 + Q(x, y, z)h^2 + R(x, y, z)h^3$

Если $h \approx 0 \implies \omega_F(h) \approx$ элементарная работа поля F на перемещение h

$$\omega_F^* = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$$

$$dy \wedge dz \dots$$
 – задают базис $\Omega_{2,3}$

 Ω_1^n изоморфно Ω_{n-1}^n

4. $V = (P, Q, R) \in C^r(O)$

$$\omega(x,h^1,h^2) = \begin{vmatrix} v \\ h^1 \\ h^2 \end{vmatrix} \in \Omega_{2,3}^{(r)}(O), \quad h61,h^2 \in \mathbb{R}^3 - \text{смешанное произведение } (h^1,h^2,v)$$

Смысл: Если V — поле скоростей, а $h^1,h^2\approx 0$, то $\left(h^1,h^2,v\right)$ — поток поля V через площадку, натянутую на h^1 и h^2

$$\omega = p \begin{vmatrix} h_2^1 & h_3^1 \\ h_2^2 & h_3^2 \end{vmatrix} + Q \begin{vmatrix} h_3^1 & h_1^1 \\ h_3^2 & h_1^2 \end{vmatrix} + R \begin{vmatrix} h_1^1 & h_2^1 \\ h_1^2 & h_2^2 \end{vmatrix}$$
$$\omega = P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy = \omega_1^*$$

10 Внешнее дифференцирование дифференциальных форм

"d" — внещний дифференциал

Определение 10.0.1 (Внешний дифференцал для форм).
$$\omega \in \Omega_{0,n}^{(1)}(O), \quad d_x \omega = \sum\limits_{i=1}^n \frac{\partial \omega}{\partial x_i}(x) dx_i$$
 $\omega \in \Omega_{p+1}^{(1)}(O) \quad \omega = \sum\limits_{I} \omega_I dx^I, \omega_I \in \Omega_0^{(1)}(O) \implies dw = \sum\limits_{I} (d\omega_I) \wedge dx^I$ $d\omega \in \Omega_{p+1}^{(0)}(O) \quad dw = \sum\limits_{k=1}^n \sum\limits_{I} \frac{\omega_I}{\partial x_i} dx_i \wedge dx^I$

Пример. 1. $\omega \in \Omega_{n-1,n}^{(r)}(O)$.

Для n = 3: $\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$

 $d\omega = dP \wedge dy \wedge dz + Q \wedge dz \wedge dx + R \wedge dx \wedge dy = P'_x dx \wedge dy \wedge dz + Q'_y dy \wedge dz \wedge dx + R'_z dz \wedge dx \wedge dy = \left(P'_x + Q'_y + R'_z\right) dx dy dz \\ \Longrightarrow d\omega = \operatorname{div}(P, Q, R) dx \wedge dy \wedge dz.$

$$d\omega = \div(P, Q, R) \cdot dx \wedge dy \wedge dz = d\omega^*_{(P, Q, R)}.$$

$$\omega = Pdx + Qdy + Rdz$$

$$d\omega = \left(R_y' - Q_z'\right)dy \wedge dz + \left(P_z' - R_x'\right)dz \wedge dx + \left(Q_x' - P_y'\right)dx \wedge dy$$

$$rot(P, Q, R) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

$$\omega_{\text{rot}(P,Q,R)}^* = d\omega_{P,Q,R}$$

Свойства внешнего дифференциала:

- 1. Линейность. $d(C_1\omega + C_2\theta) = C_1d\omega + C_2d\theta \ \forall C_1, C_2 \in \mathbb{R}, \ \forall \omega, \theta \in \Omega_{p,n}^{(1)}())$
- 2. Внешнее дифферециирование произведения. $\omega = \sum\limits_{I(1...p)} \omega_I dx^I \quad \theta = \sum\limits_{J(1...q)} \theta_J dx^J \ \omega \wedge \theta = \sum\limits_{I} \sum\limits_{J} \omega_I \theta_J \cdot dx^J$

Если $\omega \in \Omega_p^{(1)}(O) \quad \theta \in \Omega_q^q(O)$

$$d(\omega \wedge \theta) = (d\omega) \wedge \theta + (-1)^p \omega \wedge (d\theta).$$

Если ω, θ — одночленные функции, $\omega = f dx^I \quad \theta = g \cdot dx^J \quad f,g \in C^1(O)$

$$d(fdx^{I} \wedge gdx^{J}) = d(f \cdot gdx^{I} \wedge dx^{J})$$

$$= d(f \cdot g) \wedge dx^{I} \wedge dx^{J} = gdf \wedge dx^{I} \wedge dx^{J} + fdg \wedge dx^{I} \wedge dx^{J}$$

$$= (d\omega) \wedge \theta + (-1)^{p}\omega \wedge (d\theta)$$

33

Последнее равенство, потому что нужно перетащить dg через dx^I с помощью p транспозиций.

$$\widetilde{2}$$
. $\omega \in \Omega_P^{(1)}(O)$ $f \in C^1(O)$

$$d(f \cdot \omega)' = (df) \wedge \omega + f \wedge d\omega.$$

3.
$$d(d\omega) \equiv 0 \quad \omega \in C_p^{(2)}$$

(a)
$$\omega = f$$
 $p = 0$

$$d^{2}f = d\left(\sum_{i=1}^{n} f'_{x_{i}} dx_{i}\right)$$

$$= \sum_{i=1}^{n} d\left(f'_{x_{i}}\right) \wedge dx_{i}$$

$$= \sum_{i,j=1}^{n} f''_{x_{i}x_{j}} dx_{J} \wedge dx_{i} = 0$$

11 Перенос (пересадка) дифферецнивальной формы

$$O$$
 — открытое в \mathbb{R}^n — U — открытое в \mathbb{R}^k $\Phi \in C^1 (U \to O)$ $\omega \in \Omega_n$

$$\Phi_*(\omega)(u, v_1, \dots, v_p) = \omega\left(\Phi(u), d_u\Phi(v^1), \dots, d_u\Phi(v^p)\right)$$

.

Пример. 1.
$$\omega \in \Omega_0$$

 $\Phi_*(\omega)(\omega) = \omega \circ \Phi$

2.
$$k = 1, n \in \mathbb{N}, p = 1$$

$$\omega = \sum_{i=1}^{n} \omega_i d(x) x_i$$

$$\Phi = \gamma$$

$$\gamma_*(\omega)(u,v) = \sum \omega_i (\gamma(u)) dx_i (\gamma'(u) \cdot v)$$

$$= \left(\sum_{i=1}^n \omega_i (\gamma(u)) \cdot \gamma_i'(u)\right)$$

Утверждение 11.0.1 (Свойства пересадки дифференциальных финминость

$$\Phi_* (C_1 \omega + C_2 \theta) = C_1 \Phi_* (\omega) + C_2 \Phi_* (\theta), \quad \forall C_1, C_2 \in \mathbb{R}, \quad \omega, \theta \in \Omega_p (O).$$

1.
$$\omega \in \Omega_p(O)$$
 $f \in C^1(O)$
$$(\Phi_*(f \cdot \omega))(u, v^1, \dots, v^p) = (f \circ \Phi) \cdot \Phi(\omega).$$

$$\Phi_*(f\omega) = f\omega(\Phi(u), d_n\Phi(v^1), \dots, d_n\Phi(v^1)) = f(\Phi(u)) \cdot \underbrace{\omega\left(\Phi(u), d_n\Phi(v^1), \dots, d_n\Phi(v^p)\right)}_{\Phi_*(\omega)}$$

2.
$$\Phi_*(w \wedge \theta) = \Phi_*(\omega) \wedge \Phi_*(\theta), \quad \omega \in \Omega_p(O), \theta \in \Omega_q.$$
По линейности докажем это для одночленных.
$$\Phi_*(dx^I \wedge dx^J) = \Phi_*(dx^I) \wedge \Phi_*(dx^J).$$

$$\begin{split} \Phi_*(dx^I \wedge dx^J)(v^1,\dots,v^{p+q}) &= \left(dx^I \wedge dx^J\right) \left(d\Phi(v^1),\dots,d\Phi(v^{p+q})\right) \\ &= \begin{vmatrix} h^1_{i_1} & \dots & h^1_{i_p} & \dots & h^1_{j_q} \\ \dots & \dots & \dots & \dots \\ h^{p+q}_{i_1} & \dots & \dots & h^{p+q}_{j_q} \end{vmatrix} \\ &= \Phi_*(dx_{i_1}) \wedge \dots \wedge \Phi_*(dx_{i_p}) \wedge \dots \wedge \Phi_*(dx_{j_q})(h^1,\dots,h^{p+q}) \\ \Phi_*(dx_I)(h) &= dx_i \left(\Phi' \cdot h\right) \omega &= f dx^I \\ \theta &= g dx^J \\ \Phi_*\left(f dx^I \wedge g dx^J\right) &= (f \cdot g) \circ \Phi \dots \Phi_*\left(dx^I \wedge dx^J\right) \\ &= (f \circ \Phi) \circ (g \circ \Phi) \Phi_* dx^I \wedge \Phi_* dx^J = P_*(\omega) \wedge \Phi_*()\theta) \end{split}$$

3.

$$\forall \omega \in \Omega_p^{(1)}(O) \quad d(\Phi_*(\omega)) = \Phi_*(d\omega).$$

4.
$$\psi: V \to U, \in C^1$$
 $(\Phi \psi)_* (\omega) = \psi_* (\Phi_*(\omega))$

5.
$$\omega \in \Omega_p^{(1)} \ \omega = \sum_I \omega_I dx^I$$

$$\Phi^*(\omega) = \sum_{I(1...p)} \sum_{\substack{J(1...p)\\1 \le j_1 < ... < j_p \le k}}$$

$$= \omega_I(\Phi(u)) \cdot \det \frac{\partial (x_{i_1}, ..., i_p)}{\partial (u_{j_1}, ..., u_{j_p})} du_{j_1} \wedge ... \wedge du_{j_p}$$

$$\omega = \sum P_i dx_i \quad \gamma^*(\omega) = \sum_{i=1}^n P_i(\gamma(t)) \cdot g'amma_i(t)dt = \langle P(\gamma(t), g'amma(t)) \rangle dt$$

$$\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy \quad \Phi : (u, v) \to (x, y, z)$$

$$\begin{split} \Phi^*(\omega) &= P\left(\Phi(u,v)\right) \cdot \begin{vmatrix} y_u & y_v \\ z_u & z_v \end{vmatrix} + Q(\Phi(u,v)) \cdot \begin{vmatrix} z_u & z_v \\ x_u + x_v \end{vmatrix} + R(\Phi(u,v)) \cdot \begin{vmatrix} x_i & x_v \\ y_u & y_v \end{vmatrix} \\ &= \begin{vmatrix} P \circ \Phi & Q \circ \Phi & R \circ \Phi \\ x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{vmatrix} \\ &= \begin{vmatrix} P \circ \Phi & Q \circ \Phi & R \circ \Phi \\ P'hi_u \\ \Phi'_v \end{vmatrix} = \left(V \circ \Phi, \Phi'_u, \Phi'_v\right) \end{split}$$

Определение 11.0.1 (Интеграл от дифференциальной формы). 1. Если $\omega \in \Omega_{n,n}(O), E \in \mathcal{A}_n,$ $E \subseteq O. \ \omega = f \cdot dx_1 \wedge \ldots \wedge dx_n$

Тогда
$$\int_E \omega = \int_E f d\lambda_n = int_E \dots \int f(x_1, \dots, x_n) = dx_1, \dots, dx_n.$$

2. Φ – регулярное отображение, $U \subseteq \mathbb{R}^k \to O \subseteq \mathbb{R}^n$ $E \subseteq \Phi(U)$ $\Phi^{-1}(E) \subseteq \mathcal{A}_k$

 $\omega \in_{k,n}$

Если M-k-мерное ориентируемое многообразие

E – "малое" множество (т.е сущетвует стандартная параметризация Φ , которая положительно ориентирует)

 $\Phi:U\to M$ И $E\subseteq\Phi(U)$. Тогда применима формула:

$$\int_{\substack{E \\ \text{вдоль}\Phi}} = \int_{\Phi^{-1}(E)} \Phi_*(\omega).$$

Замечание (Факт). $\int_E \omega$ не зависит от выбора положительной ориентирующей параметризации.

Замечание. E называется измеримым в $M\iff E=\bigcup_{j=1}^\infty E_j$ E_j — малые измеримые

$$E=\coprod_{j=1}^\infty E_j\implies \int_E\omega=\sum_{j=1}^\infty\int_{E_j}\omega$$
 — поверхностный интеграл второго рода

Частные случаи:

1. p=k=1 Ф = γ — простой кусочно-гладкий путь (замкнутый) с заданным напралением обхода (с ориентацией)

$$\omega = \sum_{i=1}^{n} P_i dx_i$$

$$\begin{split} \int_E \omega &= \int_{\langle c,d\rangle} \left\langle P(\gamma(t)),\gamma'(t)) \right\rangle dt - \text{криволинейный интеграл} \\ &= \int_{\langle c,d\rangle} \left\langle P\left(\gamma(t)\right),\tau \right\rangle \|\gamma'\| dt \\ &= \int_{\langle c,d\rangle} \left\langle P(\gamma(t)),\tau \right\rangle ds - \text{криполинейный интеграл 1-го рода} \end{split}$$

2. $p = k = 2 \omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$ V = (P, Q, E)

$$\begin{split} \int_E \omega &= \int_E P dy \wedge dz + Q dz \wedge dx + R s x \wedge dy \\ &= \int_{\Phi^{-1}} \Phi_*(\omega) \\ &= \iint_{\Phi^{-1}(E)} \underbrace{ \begin{pmatrix} P \circ \Phi & Q \circ \Phi & R \circ \Phi \\ \Phi'_u & \\ & \Phi'_v \end{pmatrix}}_{\langle V \circ \Phi, n | \Phi'_u \times \Phi'_v | | \rangle} du dv \\ &= \iint_{\Phi^{-1}(E)} \langle V \circ \Phi, n \rangle \, \| \Phi'_u \times \Phi'_v \| du dv - \text{двойной интеграл} \\ &= \iint_E \langle V, n \rangle \, d\mu_M - \text{поверхностный интеграл первого рода} \end{split}$$

.

$$E = \Phi(U) \quad n = \pm \frac{\Phi'_u \times \Phi'_v}{\|\Phi'_u \times \Phi'_v\|}$$

Пример. $\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$.

Пример.
$$\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$$
.'
$$\int_{S \text{ вн}} = \int_{S} <(x,y,z), \frac{(x,y,z)}{R} d\mu_{S} = R \cdot \int_{S} d\mu_{S} = \begin{vmatrix} z = \sqrt{R^{2} - x^{2} - y^{2}} \\ d\mu_{S} = \sqrt{1 + z'_{x} + z'_{y}} dxdy \end{vmatrix} = 2R \int_{\{x^{2} + y^{2} \leqslant R^{2}\}} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dxdy = 2R^{2} \int_{\pi}^{\pi} d\phi \int_{0}^{R} \frac{r}{\sqrt{R^{2} - r^{2}}} dr = 2R^{2} \cdot 2\pi \left(\sqrt{R^{2} - r^{2}}\right) \Big|_{r=R}^{r=0}.$$

Замечание. Площадь сферы $S^2(R) = 4R^2\pi$.

12 Общая формуа Стокса

Теорема 12.0.1. ориентируемое компактное $M \subseteq \mathbb{M}_{n,k}$. Ориентация ∂M согласована с ориентацией $M,\,\omega\in\Omega^{(1)}_{k-1}(O),M\subseteq O$

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Замечание (Наводящие соображения). k=1 $\omega = f$ $\gamma: [a,b] \to M$ – биекция

$$\int_{M} df = \int_{\gamma^{-1}(M)} \gamma_{*}(df)$$

$$= \int_{[a,b]d\gamma_{*}(f)} = \gamma_{*}(f) \mid_{a}^{b}$$

$$= f(\gamma(b)) - f(\gamma(a)).$$

 $\partial M = a, b$, интеграл будет разностью произвдений знаков и заначений функции (— для входа, + для выхода)

Теорема 12.0.2.

$$\int_{\partial M} \omega = \int_M d\omega.$$

M — компактное (гладкое C^2), $M \in \mathbb{M}_{q,n}^{(2)}$ — многообразие с краем ∂M , ориентируемое, ориентации на M и ∂M согласованы, $\omega \in \Omega^{(1)}_{q-1.m}$

Замечание.
$$n = 2, q = 2$$
 $\omega = Pdx + Qdy$ $P = P(x, y), Q = Q(x, y)$

Рис. 4: stocks22

$$\begin{split} d\omega &= P_y' dy \wedge dx + Q_x' dx \wedge dy = \left(Q_x' - P_y'\right) dx \wedge dy \\ \int_M d\omega &= \iint\limits_{[a,b] \times [c,d]} Q_x' - P_y' dx dy \\ &= \int_c^d \int_a^b Q_x'(x,y) dx dy - \int_a^b dx \left(\int_c^d P_y' dy\right) \\ &= \int_c^d Q(b,y) - Q(a,y) dy - \int_a^b P(x,d) - P(x,c) dx \\ \int_{\partial M} &= \int_{\substack{I_1,I_2,I_3,I_4 \\ \text{ориентация}}} P dx + Q dy \\ &= \left(\int_{I_1} + \int_{I_3}\right) P dx + \left(\int_{I_2} + \int_{I_4}\right) Q dy \end{split}$$

$$\int_{\partial M} \omega = \sum \int_{\partial M_j} \omega$$
$$= \sum \int_{M_j} d\omega$$
$$= \int_M d\omega$$

Замечание. При n=2 k=2 q=1 формула Стокса называется формулой Грина. O – кусочно-гладкая область в \mathbb{R}^2 , ∂O – граница, ориентируемая положительно.

$$\int_{\partial P} P dx + Q dy = \iint\limits_{O} Q'_x - P'_y dx dy.$$

Замечание.
$$n = 3 k = 2 q = k - 1 = 1$$
 $\omega = P dx + Q dy + R s z$

$$\int_{\partial M} \omega = \int_{\Phi^{-1}(\partial M)} \Phi_*(M)$$

$$= \int_{\partial \Pi} \Phi_*(\omega)$$

$$= \int_{\Pi} \underbrace{d\left(\Phi_*(\omega)\right)}_{\Phi_*(d\omega)} = \int_{\Phi(\Pi)=M} d\omega$$

$$\Phi : \Pi \to (M(\cup \partial M))$$

$$\int_{\partial M} Pdx + Qdy + Rdz = \int_{M_n} \begin{vmatrix} dy \wedge dz & dz \wedge dz & dx \wedge dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

$$= \int_{M} \begin{vmatrix} n_1 & n_2 & n_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}.$$

n – выбранная сторорона, относительно которой обход ∂M против часовой стрелки.

$$\int_{\partial M} P dx + Q dy + R dz = \int_{M} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} ds.$$

— класическая формула Стокса. M — 2-мерная поверхность с краем в \mathbb{R}^3 , ориентируемая, n = $(\cos \alpha, \cos \beta, \cos \gamma)$,обход края – стандартный (против часовой стрелки принаблюдении из n)

Пример.

$$\int_{C} (y^{2} + z^{2}) dx + (x^{2} + z^{2}) dy + (x^{2} + y^{2}) dz.$$

C — кривая $\begin{cases} x^2 + y^2 + z^2 = 2Rx \\ x^2 + y^2 = 2rx, r < R \end{cases}$, обход кривой положительный относительно внешней стороны, $z \geqslant 0$

"меньшей" части сферы, высекаемой цилиндром. $n(x,y,z) = \frac{(x-R,y,z)}{R}$

$$n(x, y, z) = \frac{(x - R, y, z)}{R}$$

$$\int_{C} (y^{2} + z^{2}) dx + (x^{2} + z^{2}) dy + (x^{2} + y^{2}) dz = \frac{1}{R} \iint \begin{vmatrix} x - R & y & z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^{2} + z^{2} & x^{2} + z^{2} & x^{2} + y^{2} \end{vmatrix} ds$$

$$= \frac{2}{R} \iint_{x^{2} + y^{2} \leq 2rx} \frac{R}{\sqrt{2Rx - x^{2} - y^{2}}} \left((x - R) (y - z) + y (z - x) + z(x - y) \right) dx dy$$

$$= -2R \iint_{x^{2} + y^{2} \leq 2rx} \frac{y}{\sqrt{\cdots}} - 1 dx dy$$

$$= 2R\pi r^{2}$$

слагаемое с корнем обросилось, потому что это нечётная функция по y, а круг обладает симметрией относительноси оси Ox

Замечание.
$$n=3\,k=3\,q=k-1=2$$
 $\omega=Pdy\wedge dz+Qdz\wedge dx+Rdx\wedge dy$ $d\omega=dic\,(P,Q,R)\,dx\wedge dy\wedge dz$ $dic=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial Y}+\frac{\partial R}{\partial z}$

Формула Гаусса-Отроградского:

$$\int_{\partial M} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy = \iiint_{M} div(P, Q, R) dx dy dz.$$

M — трёхмерное гладкое многообразие.

$$\int_{\partial M} \langle (P, Q, R), n \rangle ds$$

Пример. $\iint x^2 \cos \alpha + y \cos \beta + z \cos \gamma ds$

$$S: \begin{cases} x^2 + y^2 = z \\ 0 \leqslant z \leqslant h \end{cases}$$

 $n = (\cos \alpha, \cos \beta, \cos \gamma)$

Формула ГО не применяется напрямую, т.к. поверхность незамкнута.

$$\begin{split} \int_{S} f + \int_{S_{+}} f &= \iiint \operatorname{div}\left(P,Q,R\right) \operatorname{d}x \operatorname{d}y \operatorname{d}z \\ &= 2 \iiint_{-\pi} z \\ &= 2 \int_{-\pi}^{\pi} \operatorname{d}\varphi \int_{0}^{h} r \operatorname{d}r \int_{r}^{h} z \operatorname{d}z \\ &= 2 \cdot 2\pi \int_{0}^{h} z \operatorname{d}z \int_{0}^{z} r \operatorname{d}r \\ &= 2 \cdot \frac{\pi h^{4}}{4} = \frac{\pi h^{4}}{2} \\ \int_{S_{+}} f &= \iint_{S_{1}} \left\langle \left(P,Q,R\right), \left(0,0,1\right) \right\rangle \operatorname{d}S - 1 \\ &= \iint h^{2} dS_{1} = h^{2} \pi h^{2} = \pi h^{4} \end{split}$$

$$I = J - I_1 = \frac{\pi h^4}{2} - ouh^4 = -\frac{\pi h^4}{2}$$

Замечание (Случай комплексной переменнной). $f: O \to \mathbb{C}$ называется \mathbb{C} -дифференцируемой в точке $a \in O$, если $d_a f - \mathbb{C}$ -линеен. f(a+h) - f(a) = l(h) + o(h) l -линейное отображение, o(h) $\alpha(h) \cdot h$ $\alpha(h) \to 0$. $h \to 0$

линейное отобрание – можно выносить комплексные множители L(cz) = cL(z)

Теорема 12.0.3 (теорема об условиях равносильных \mathbb{C} -диффренцируемости). $f: O \to \mathbb{C}$. $\exists f$ – дифференцируемо в вещественном смысле в точке $a \in O$ Тогда следующее равносильно:

- 1. $f \mathbb{C}$ -дифференцируема
- 2. $\exists f'(a) = \lim_{z \to 0, z \in \mathbb{C}} \frac{f(z) f(a)}{z a}$
- $3. \ \frac{\partial f}{\partial \overline{z}}(a) = 0$
- 4. f = u + iv $u = \operatorname{Re} f, v = \operatorname{Im} f$ $\begin{cases} u'_x = v'_y \\ u'_y = -v'_x \end{cases}$ в точке $a f = \begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}' = \begin{pmatrix} u'_x & u'_y \\ v'_x & v'_y \end{pmatrix} = \begin{pmatrix} u'_x & u'_y \\ -u'_y & u'_x \end{pmatrix}$

Замечание.

$$\begin{split} \frac{\partial}{\partial z} &= \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \\ \frac{\partial}{\partial \overline{z}} &= \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \end{split}$$

Замечание. $g-\mathbb{R}$ -дифференцируемо в точке $a \Longrightarrow \exists !A, B \in \mathbb{C}$ $d_a g = A dz + B d\overline{z} \qquad A = \frac{\partial f}{\partial z}(a) \qquad B = \frac{\partial f}{\partial \overline{z}}(a)$

Замечание.

$$\int_{\gamma} f(z)dz = \int f(\gamma(t)) \cdot \gamma'(t)dt.$$

 γ — простой кусочно-гладкий путь $\gamma:[a,b]\to C,\, f$ измерима на $\Gamma=\gamma\left([a,b]\right)$

$$\int_{\gamma} f(z)dz = \int (u(\gamma(t)) + iv(\gamma(t)))) (\gamma'_1(t) + i\gamma'_2(t)) dt$$

$$= \int_{[a,b]} (u(\ldots)\gamma'_1 - v\gamma'_2) + i(v\gamma'_1 + u\gamma'_2) dt$$

$$= \int_{\gamma} udx - vdy + i \int_{\gamma} vdx + udy$$

$$= \iint_{O} (-v'_x - u'_y) + i(u'_x - v'_y)$$

Теорема 12.0.4 (Коши). $\supset f - \mathbb{C}$ -дифференцируема в кусочно-гладкой области O вплоть до границы. Тогда

 $\int_{\partial O} f(z)dz = 0.$

Пример. $f(z) = \frac{1}{z}$

$$f'(z)(a) = \lim_{z \to 0} \frac{f(a+z) - f(a)}{z} = \lim_{z \to 0} \frac{\frac{1}{a+z} - \frac{1}{a}}{z}$$
$$= \lim_{z \to 0} -\frac{1}{a(a+z)} = -\frac{1}{a^2}$$

$$f'(z) = -\frac{1}{z^2} \quad \forall z \neq 0$$

$$\int_{|z|=R} \frac{dz}{z} = \int_{-\pi}^{\pi} \frac{Rie^{it}dt}{Re^{ei}}$$
$$= i2\pi \neq 0$$

•

При этом если взять другой контур, который не будет содержать нуля внутри, то интеграл по контуру будет равен нулю.

Ln — многозначный логарифм $E\subseteq C o 2^{\mathbb{C}} \quad z o \ln|z| + i\operatorname{Arg} z$

Замечание. Если в области, по контуру которой берётся интеграл, есть конечное число особых точек, можно окружить эти точки достаточно маленькеми окрестности и посмотреть на интеграл по итоговому контору

Теорема 12.0.5 (теорема Коши о вычетах).

$$\int_C f(z)dz = \sum_{a \in A} \oint_{C(a)} f(z)dz.$$

C(a) – набор окружностей $\{B(a)\}$, которые не пересекаются вычет функции в точке a называется $\mathrm{res}_a f = \oint_{C(a)} f(z) dz$

Замечание (частные случаи формула Стокса).

$$\int_{M} d\omega = \int_{\partial M} \omega.$$

- 1. Если ω замкнута в $O\supset M\implies \int_{\partial M}\omega=0$
- 2. Если $\partial M=\varnothing$, то $\int_M d\omega=0$

Определение 12.0.1. ω называется замкнутой в области O, если $d\omega = 0$ в любой $p \in O$

Определение 12.0.2. ω называется точной в области O, если существует первообразная для ω в области O

 $\omega \in \Omega_{q,n}(O)$, перообразная $\widetilde{\omega} \in Q_{q-1,n}(O)$

Замечание. ω — Точная, то ω — замкнута $\omega = d\widetilde{\omega} \quad d\omega = dd\widetilde{\omega} = 0$

Утверждение 12.0.1. Если $\omega = \sum\limits_{i=1}^n P_i dx_i$ точна в области $O \subseteq \mathbb{R}^n$

$$\omega = dF \implies \forall \gamma : [a,b] \to O$$

$$\int_{\mathcal{C}} \omega = F \mid_{A}^{B}.$$

, где $A = \gamma(a), = \gamma(b)$

$$\int_{\gamma} \sum_{i=1}^{n} P_{i} dx_{i} = \int_{[a,b]} \sum_{i=1}^{n} P_{i} \circ \gamma(t) \cdot \gamma'_{i}(t) dt$$

$$= \int_{[a,b]} \left\langle P \circ \gamma, \gamma' \right\rangle$$

$$= \int_{a}^{b} d\Phi = \Phi(b) - \Phi(a)$$

$$= F(\gamma(b)) - F(\gamma(a))$$

$$= F(B) - F(A)$$

$$dF(\gamma'(t)) = d \left(\overbrace{F \circ \gamma(t)}^{\Phi} \right)$$

Выводы:

1. Если $\omega = \sum\limits_{i=1}^n P_i dx_i$ точна в O, то $\int_{\gamma} \omega$ не зависит от пути γ с носителем в O

2. –||-? γ –замкнута, то $\int_{\gamma} \omega = 0$

Пример.
$$\int_{\gamma} \underbrace{\frac{xdy - ydx}{x^2 + y^2}}_{}$$
 $P = \frac{-y}{x^2 + y^2}$ $Q = \frac{x}{x^2 + y^2}$

 ω – локально точна, значит замкнута всюду в $C \setminus \{0\}$

$$\begin{split} \omega &= \frac{xdy - ydx}{y^2} \cdot \frac{y^2}{x^2 + y^2} \\ &= -d\left(\frac{x}{y}\right) \frac{1}{\left(\frac{x}{y} + 1\right)} \\ &= -d\left(\arctan\left(\frac{x}{y}\right)\right) \\ \omega &= d\left(\arctan\left(\frac{y}{x}\right)\right). \end{split}$$

Так мы предъявили первообразные на полуплоскостях.

$$\int_{\|(x,y)\|=R} \frac{xdy-ydx}{x^2+y^2} = R^2 \int_{-\pi}^{\pi} \frac{\cos^2\varphi + \sin^2\varphi}{R^2} d\varphi = 2\pi \neq 0.$$

Значит форма не точна (потому что в противном случае это был бы интеграл по замкнутому контуру, локально точная в $\mathbb{C}\setminus\{0\}$, но не точная.

$$Hol(O) = \{ f : \forall z \in O \ \exists f'(z) \}$$

Теорема 12.0.6 (Коши). $f \in \text{Hol}(\overline{O}), O -$ кусочно-гладкая область (граница O -кочкчный набор кусночно гладких непересекающихся простых замкнутых контуров).

 ∂O — стандартно ориентированная граница

Теорема 12.0.7 ("Теорема Коши о вычетах", Теорема 2). $f \in \text{Hol}(\overline{O} \setminus A)$ А – конечное множество. O – кусочно-гладкая область (как в предыдущей теореме). $A \subseteq O$

$$\int_{\partial O} f(z)dz = \sum_{a \in A} \oint_{|z-a|=r} f(z)dz.$$

r: замкнутые круги $\{\overline{B}(a)\}$ попарно не пересекающиеся и содержащиеся в O

Утверждение 12.0.2 (Интегральная формула Коши). Пусть $f(z) \in \operatorname{Hol}(\overline{O}), O$ — кусочно-гладкая форму в \mathbb{C} , $a \in O$.

$$f(a) = \frac{1}{2\pi i} \int_{\partial O} \frac{f(z)}{z - a} dz.$$

$$A = \{a\} \implies \int_{\partial O} \frac{f(z)}{z-a} = \int_{|z-a|=\rho} \frac{f(z)}{z-a},$$
 где $\rho \in (0, \rho_0)$

Доказательство. $\frac{f(z)}{z-a} \in \operatorname{Hol}\left(\overline{O}\backslash\{a\}\right)$ $A = \{a\} \implies \int_{\partial O} \frac{f(z)}{z-a} = \int_{|z-a|=\rho} \frac{f(z)}{z-a},$ где $\rho \in (0,\rho_0)$ f дифференцируема в точке $a,\ f(z) = f(a) + f'(a)(z-a) + \alpha(z)(z-a),$ где $\alpha(z) \to 0,\ z \to a.$

$$= \int_{|z-a|=\rho} \frac{f(a)}{z-a} dz + \int_{|z-a|=\rho} f'(a) + \alpha(z) dz.$$

Т.к.
$$\alpha(z) \to 0$$
 $\exists M: |f'(\alpha) + \alpha(z)|| \leqslant M, \forall z \in B_{\rho_0}(a).$
$$r(t) = a + \rho e^{it}$$

$$r'(t) = i\rho = i\rho e^{it}$$

$$|\rho'(t)| = \rho$$

$$f(a) \cdot \int_{|z-a|=0} \frac{dz}{z-a} = 1\pi i.$$

Теорема 12.0.8 (О разложении в ряд Тейлора). $\Box a \in \mathbb{C}, R > 0, f \in \text{Hol}\,(B_R(a))$ Тогда существует единственный набор $(C_k)_{k=0}^{+\infty}$:

$$\forall z \in B_R(a) \quad f(z) = \sum_{k=0}^{\infty} C_k (z - a)^k$$
$$\exists z \in B_R(a) \quad r = |z - a| \quad \exists \rho \in (r, R)$$

$$f(z) = \frac{1}{2\pi i} \oint_{|z-a|=\rho} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - a) - (z - a)}$$
$$= \frac{1}{\zeta - a} \cdot \frac{1}{1 - \frac{z - a}{\zeta - a}}$$

$$\frac{f(\zeta)}{\zeta - z} = \underbrace{\frac{f(\zeta)}{???}}_{\text{orp}} \qquad \underbrace{\zeta - a \sum_{k=0}^{\infty} W^k}_{\text{cx. равь, на} \in |\zeta - a| = \rho} - \text{сходится равномерно}$$

$$\oint\limits_{\zeta-z} d\zeta = \sum_{k=0}^{\infty} \int s.$$

Следствие 12.0.8.1. Голоморфность = комплексная аналитичность.

Следствие 12.0.8.2. Неравенства Коши для тейлоровских коэффициентов.

Пусть $f \in \text{Hol}(B_R(a)), a \in \mathbb{C}, R > 0.$

Для
$$r \in (0,R)$$
 $M_r = \sup_{\{z \ : \ |z-a|=r\}} |f(z)| \forall k \in \mathbb{Z}_+, \ |c_k| \leqslant \frac{M_r}{r^k} \cdot 2\pi.$ Выло показано, что $c_k = \int_{|\zeta-a|=\rho=r} \frac{f(S)}{(\zeta-a)^{k+1}} d\zeta \Longrightarrow$

$$|c_k| = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} \frac{f(a + \rho e^{it})}{\rho^{k+1} e^{i(k+1)t}} i \rho e^{it} dt \right| \leqslant \frac{1}{1\pi} \int_{-\pi}^{\pi} \frac{M_{\rho}}{\rho^{k+1}} dt = \frac{M_{\rho}}{\rho^k}.$$

Определение 12.0.3. Функция, аналитическая во всей коплексной плоскости, называется целой.

Пример. e^z , P(z), $\sin z$, $\cos z$, $\operatorname{ch} z$, $\operatorname{sh} z$

Теорема 12.0.9 (Лиувили). Любая целая ограниченная функция является константной

 \mathcal{A} оказатель ство. $f(z)=\sum_{k=0}^{\infty}C_kz^k$ – сходится всюду, где функция голоморфна, т.е. в $\mathbb C$

По неравенству Коши $|C_k| \leqslant \frac{M_r}{r^k}$, где $M_r = \max_{|t|=r} |f(t)| \leqslant C$, если C ограничивает |f|

Получается, что $\forall k \in \mathbb{Z}_+, \forall r > 0 \quad C_k \leqslant \frac{C}{r^k}$

Устемляя r к бесконечности для $k \in \mathbb{N}$, получаем, что $|C_k| = 0$

A тогда $f(z) = C_0$

Следствие 12.0.9.1. Синус целая функции, не константа. Следовательно неограничен.

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\sinh it = \frac{e^{-t} - e^t}{2i}$$

$$|\sin z| = |\sinh it|$$

Определение 12.0.4 (Ряд Лорана).

$$\sum_{k \in \mathbb{Z}} C_k (z - a)^k := \sum_{k=0}^{\infty} C_k (z - a)^k + \sum_{k=1}^{\infty} C_{-k} (z - a)^{-k}.$$

Теорема 12.0.10 (О сумме ряда Лорана).
$$\Box R = \frac{1}{\overline{\lceil lim_{k \to \infty}} \sqrt[k]{|C_k|}} \quad r = \overline{\lim}_{k \to \infty} \sqrt[k]{|C_{-k}|}$$
 Тогда ряд Лорана $\sum_{k \in \mathbb{Z}} C_k (z-a)^k$ сходится в кольце $R_{r,R}(a) = \{z: r < |z-a| < R\}$

 \mathcal{A} оказательcтво. Ряд с неторицательными коэффициенами сходится в круге $B_R(a)$

$$\sum_{k=1}^{\infty} C_{-k}(z-a)^k = \sum_{k=1}^{\infty} C_{-k} w^k \text{ сходится относительно } w \text{ в } B_{\frac{1}{r}}(0) \quad w = \frac{1}{z-a}$$

$$|w| < \frac{1}{r} \iff \frac{1}{|z-a|} < r \iff |z-a| > r$$

Утверждение 12.0.3. Пусть $a \in \mathbb{C}, 0 \le r < R \le +\infty$. $f \in \text{Hol}(\mathcal{R}_{r,R}(a))$. Тогда \exists единственный $(C_k)_{k \in \mathbb{Z}}$, $\forall z \in \mathcal{R}_{r,R(a)}$ верно $f(z) = \sum_{k \in \mathbb{Z}} C_k (z-a)^k$.

Пусть $z \in \mathcal{R}_{r,R}(a)$, пусть $r_1, R_1 : r < r_1 < |z - a| < R_1 < R$.

$$f(z) = \frac{1}{2\pi i} \int_{\partial R(u)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \left(\oint_{|z-a|=R_1} -||-+ \oint_{|z-a|=r_1} -||- \right)$$

$$\frac{f(\zeta)}{\zeta - z} = \frac{f(\zeta)}{(\zeta - a) - (z - a)} = \frac{f(\zeta)}{-(z - a)} \frac{1}{1 - \frac{\zeta - a}{z - a}}.$$

Для любого $k\in\mathbb{Z}$ $C_k=rac{1}{2\pi i}\int_{|z-a|=
ho}rac{f(z)}{(z-a)^{k+1}}dz$

Пример. $f(z) = \frac{1}{2}(z + \frac{1}{z})$ $\mathbb{C}\setminus\{0\} = R_{0,+\infty}\}(0)$ — функция Жуковского $\operatorname{ctg} z = \frac{\cos z}{\sin z} = \frac{1}{z}\left(\cos z \cdot \frac{z}{\sin z}\right)$ $\frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \ldots$ — аналитическая. Значит обратная к ней аналитическая, значит $\cos z \cdot \frac{z}{\sin z}$ —

 $\mathcal{R}_{r,R}(a) = \{ z \in \mathbb{C} \mid q < |z - a| < R \}.$

 $a \in \mathbb{C}; f \in mathrmHal\ (mathcal R_{r,R}(a)),$ где $-\infty \leqslant r < R \leqslant +\infty \implies \exists$ едиственный $(C_k)_{k \in \mathbb{Z}} \subset \mathbb{C}$:

$$\forall z \in \mathcal{R}_{r,R}(a), \quad f(z) = \sum_{k \in \mathbb{Z}} c_k(z0a)^k.$$

$$c_k = \frac{1}{2\pi} \cdot \oint_{|z-a|\rho} \frac{f(z)}{(z-a)^{k+1}}, \quad \rho \in (r, R).$$

Определение 12.0.5. $a \in \overline{\mathbb{C}}$ называют изолированной особой точке f(z), если \exists окрестность U(a):

$$f(z) \in \operatorname{Hol}(\dot{U}(a)).$$

Пример. 1. f(z) = z, $A = {\infty}$.

- 2. $f(z) = \overline{z}$, $A = \emptyset$ (все точки дифференцируемы).
- 3. $f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right), \quad A = \{0, \infty\}.$

Определение 12.0.6. Пусть $a \in \overline{\mathbb{C}}$ — и.о.т. f(z). Тогда a называется

- Полюсом $\iff \exists \lim_{z \to a} f(z) = \infty.$
- Существенно особой $\iff \sharp \lim_{z \to a} f(z)$.

Пример. 1. f(z) = z, $A = \{\infty\}$, ∞ — полюс.

- 2. $f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right)$, $A = \{0, \infty\}$, 0 и ∞ полюсы.
- 3. $f(z)=e^z, \quad A=\{\infty\}, \quad \infty$ существенно особая точка.

Утверждение 12.0.4. Пусть $a \in \mathbb{C}, \quad a-$ и.о.т. f(z). $\exists R : f \in \operatorname{Hol}\left(\overset{\cdot}{B}_{R}(a)\right)$.

Пусть
$$f(z) = \sum_{k=0}^{+\infty} c_k (z-a)^k + \sum_{k \in -\mathbb{N}} c_k (z-a)^k$$
 $\forall z \in B_R(a).$

Пример. $f(z) = \frac{1}{1-z}$.

В точке z=0. Так как $f(z)\in {\rm Hol}\,(B_1(0))\implies f(z)=\sum\limits_{k=0}^{\infty}z^k, \quad \forall z\in z\in B_1(0)$. Регулярная часть есть, а главная отсутствует.

B точке z = 1. $f(z) = (-1)(z-1)^{-1}$ — главная часть.

z в окрестности ∞ $\frac{1}{1-z} = \left(\frac{-1}{z}\right) \cdot \frac{1}{1-\frac{1}{z}} = \left(-1\frac{1}{z}\right) \cdot \sum_{k=0}^{\infty} \left(\frac{1}{z}\right)^k$. Все регулярная часть, главная отсутствует.

Утверждение 12.0.5 (Характеристика изолированных особых точек в терминах Лорановского разложения). Пусть $a \in \overline{\mathbb{C}}$, a — и.о.т. f(z). Тогда

- 1. a устранимая \iff \exists окрестность U(a) : $f|_{\dot{U}(a)}$ ограниченная \iff главная часть лорановского разложения отстутствует.
- $2. \ a-$ полюс \iff главная часть лорановского разложения f(z) в окрестности a содержит конечное число членов.
- 3. a существенно устранимая \iff главная часть лорановского разложения f(z) содержит бесконечное число слогаемых.

Неравенство Коши :
$$f(z) = \sum_{k \in \mathbb{Z}} c_k (z-a)^k$$
, $a \in \mathbb{C}$. $M_r = \sup_{z : |z-a|=r} |f|$, $|c_k| \leqslant \frac{M_r}{r^k}$, $\forall k \in \mathbb{Z}$.

Доказательство. ...

Замечание. Если $a\in\mathbb{C}$ — и.о.т., то $\exists A: \ \widetilde{f}(z)=\begin{cases} f(z), & z\neq a\\ A. \end{cases}$ $\in \operatorname{Hol}(U(A)).$

$$f(z) = \sum_{k=0}^{\infty} c_k (z-a)^k$$
 в проколотой окрестности a .

Проще говоря, можно исправить функцию в плохих точках и она станет хорошей.

 $f(z)=rac{1}{z}\cdot\left(z-rac{z^3}{3!}+rac{z^5}{5!}-\ldots
ight)=1-rac{z^2}{3!}+rac{z^4}{5!}-\ldots-$ сходится всюду в $\mathbb C$. Значит это продолжение функции $rac{\sin z}{z}$

Замечание (Отступление).

Лемма 12.0.10.1 (О кратности нуля). $f(z) \in \text{Hol}(B_k(a)), a \in \mathbb{C}, R > 0$ f(a)=0 Тогда $\exists N\in\mathbb{N}: f(z)=(z-a)^N\cdot g(z),$ где $g(z)\in\mathrm{Hol}(B_k(a)), g(a)\neq 0\implies f(z)\sim A\cdot (z-a)^N.$

$$f(z) = \sum_{k=0}^{\infty} c_k (z-a)^k$$
 в окрестности точки $a, c_0 = 0$

Замечание. Если точка $a \in \mathbb{C}$ — полюс, то $\not < g(z) = \frac{1}{f(z)} \to 0, z \to a, \ a$ — устранимая для $g(z) \implies$ $g(z) = (z-a)^N \cdot \widetilde{g}(z) \quad \widetilde{g}(a) \neq 0, \widetilde{g} \in \text{Hol}(\text{окрестности т.}a)$

$$f = \frac{1}{g} = \frac{1}{(z-a)^N} \frac{1}{\tilde{g}(z)}$$

$$= \frac{1}{(z-a)^N} \cdot \left(\sum_{k=0}^{\infty} b_k (z-a)^k \right)$$

$$= \frac{b_0}{(z-a)^N} + \frac{b_1}{(z-a)^{N-1}} + \dots$$

Определение 12.0.7. $\exists a \in \mathbb{C}$ – полюс для $f(z), N \in \mathbb{N}$ a – полюс порядка N для $f(z)\iff f(a)\sim \frac{C}{(z-a)^N}\left(\iff f(z)=\frac{g(z)}{(z-a)^n}$ где g(z)голоморфна в некоторой окрестно Для бесконечных точекрассматриваем $g(w) = \frac{1}{f(w)}$

Замечание. Любой полюс обладает порядком.

1. $f(z) = \frac{1}{2} \cdot \left(z + \frac{1}{z}\right)$. Полюс 0 имеет порядок 1, полюс ∞ имеет порядок 1. Полюсы с Пример. порядком 1 называют простыми.

 $2. \ f(z) = \frac{\cos z - 1}{z^2} = \frac{-\frac{z^2}{2} + \frac{z^4}{4!} - \dots}{z^3} = -\frac{1}{2z} + \dots \ 0$ — простой полюс (порядок 1), ∞ — существенно особая.

3.
$$f(z)=\operatorname{tg} z.$$
 $\left\{\frac{\pi}{2}+\pi k\right\}_{k\in\mathbb{Z}}$ $\operatorname{tg} z=\frac{\sin z}{\cos z}\sim \frac{\pi}{\frac{\pi}{2}-z}$ $z=\frac{\pi}{2}.$ \Longrightarrow эти точки простые особые. ∞ – не изолированная особая.

Замечание. Почему может быть полезно знать какие особенности у функции в конкретной точке?

Определение 12.0.8. $\supset a \in \widetilde{\mathbb{C}}, a$ — изолированная особая точка f(z)

 $\operatorname{res}_a f = \begin{cases} c_{-1} & \text{, коэффициент в Лорановском разложении} f(z) \text{в окрестности точки} a \in \mathbb{C} \\ -C_{-1} & \text{, коэффициент в Лорановском разложении} f(z) \text{в окрестности} \infty, a = \infty \end{cases}$

Пример. 1. $f(z) = \frac{1}{2}(z + \frac{1}{z})$ res₀ $f = \frac{1}{2}$, res_∞ $f = -\frac{1}{2}$

2.
$$f(z)=rac{1}{z^2-1}=rac{1}{(z-1)(z+1)}=rac{rac{1}{2}}{z-1}-rac{rac{1}{2}}{z+1}$$
 $\operatorname{res}_1f=\operatorname{res}_1rac{rac{1}{2}}{z-1}=rac{1}{2}$ $\operatorname{res}_{-1}f=-1$ $\operatorname{res}_{\infty}f=0$, т.к. f – чётная

Замечание. Чем хороши вычеты?

 c_k – коэффициенты лорановского разложения в окрестности точки $a, f \in \operatorname{Hol}(B_R^{\circ}(a))$

$$c_k = \frac{1}{2\pi i} \oint\limits_{|z+a|=\rho} \frac{f(z)}{(z-a)^{k+1}} dz \quad \rho \in (0,R).$$

 $\operatorname{res}_a f = c_{-1} = \frac{1}{2\pi i} \oint_{|z-a|=\rho} f(z) dz$

Теорема 12.0.11 (Коши о вычетах). Пусть O – кусочно-гладкая область в $\widetilde{\mathbb{C}}$ A – конечное множество, $A\subseteq O, f\in \operatorname{Hol}\left(\widetilde{O}\backslash A\right)$ Тогда:

$$\int_{\partial O} f(z)dz = 2\pi i \sum_{a \in A} \operatorname{res}_a f = 2\pi i \sum_{z \in O} \operatorname{res}_z f.$$

Теорема 12.0.12 (о полной сумме вычетов). $\Box A \ni \infty, A \subseteq \widetilde{\mathbb{C}}, A$ – конечно $\Box f \in \operatorname{Hol}(\mathbb{C} \backslash A)$ Тогда:

$$\sum_{a \in A} \operatorname{res}_a f = \sum_{z \in \tilde{\mathbb{C}}} \operatorname{res}_z f = 0.$$

Доказатель ство. $\Box A_0 = A \setminus \{\infty\}$

Т.к. A_0 – конечно, то $\exists B_R(0) \supset A_0$

$$\oint_{|z|=R} f(z)dz = \left(\sum_{a \in A_0} \operatorname{res}_a f\right) \cdot 2\pi i$$
$$= \left(-\operatorname{res}_{\infty} \cdot 2\pi i\right)$$

Приёмы вычеления вычетов (a – изолированная особая точка f(z)):

1. a — устарнимая особая точка.

(a)
$$a \in \mathbb{C} \implies \operatorname{res}_a f = 0$$

(b) $a = \infty$ $f(z) = C_0 + \frac{C_1}{z} + \frac{C_2}{z^2} + \dots$
 $\lim_{z \to \infty} f(z) = C_0$
 $\lim_{z \to \infty} z (f(\infty) - f(z)) = \operatorname{res}_{\infty} f$

2.
$$a \in \mathbb{C}$$
 – полюс. Тогда: $f(z) = \frac{C_{-N}}{(z-a)^N} + \ldots + \frac{C_{-1}}{(z-a)} + C_0 + C_1(z-a) + \ldots$
$$\operatorname{res}_a f = \frac{1}{(N+1)!} \left(z_0 a^N f(z) \right)_{z=a}^{(N-1)}$$

Если полюс простой, то $\operatorname{res}_a f = \lim_{z \to a} f(z)(z-a)$

Частный случай: $f(z)=\frac{\varphi(z)}{\psi(z)}, \varphi, \psi \in \mathrm{Hol}, \varphi(a) \neq 0, \psi(a)=0, \psi'(a) \neq 0$

$$\operatorname{res}_{a} f = \lim_{z \to a} \frac{\varphi(z)}{\psi(z)} (z - a) = \lim_{z \to a} \frac{\varphi(z)}{\frac{\psi(z) - \psi(a)}{2}} = \frac{\varphi(a)}{\psi'(a)}$$

$$\operatorname{res}_a f = \frac{\varphi(a)}{\psi'(a)}.$$

- 3. Теорема о полной сумме вычетов.
- 4. Если f(z) чётная функция, то $\operatorname{res}_a f = -\operatorname{res}_{-a} f$, в частности $\operatorname{res}_0 = 0 = \operatorname{res}_\infty$
- 5. Если f(z) нечётная, то $\operatorname{res}_a f = \operatorname{res}_{-a} f$

Пример. 1.
$$\int_{|z-1|=1} \frac{dz}{z^4+1}$$

$$z^4 = -1$$

$$z_1,z_4$$
 – простые полюсы. $\operatorname{res}_{z_1}f=rac{1}{4z_1^3}=rac{z_1}{4z_1^4}=-rac{z_1}{4}$

$$\operatorname{res}_{z_2} f = -\frac{z_2}{4}$$

$$\int_{|z-1|=1} \frac{dz}{z^4 + 1} = 2\pi i \left(\operatorname{res}_{z_1} f + \operatorname{res}_{z_4} f \right)$$
$$= -\frac{\pi i}{2} (z_1 + z_4)$$
$$= -\frac{\pi i}{2} \sqrt{2}$$

Приложение теоремы о вычетах к вычислению определённых и несобственных интегралов.

1.
$$\int_{-\pi}^{\pi} R(\cos\varphi, \sin\varphi) d\varphi = \oint_{|z|=1} R\left(\frac{z+\frac{1}{z}}{2}, \frac{z-\frac{1}{z}}{2}\right) \frac{dz}{iz}$$

$$z=e^{i\varphi}$$

$$\frac{z+\frac{1}{2}}{2}=\frac{e^{iz}+e^{-iz}}{2}=\cos z$$

$$dz=de^{i\varphi}=ie^{i\varphi}d\varphi=izd\varphi.$$

Пример.
$$z^2 + 6z + 1 = 0$$

$$z_{12} = -2 \pm \sqrt{9 - 1} = -3 \pm 2\sqrt{2}$$

 $z_1 z_2 = 1$ (по теореме Виета, о которой полезно помнить)

$$|z_1| = \frac{1}{|z_2|}$$

 z_1 — полюс второго порядка

$$\int_{-\pi}^{\pi} \frac{\cos \varphi + 2}{(\cos \varphi + 3)^2} d\varphi = \oint_{|z|=1} \frac{\frac{z + \frac{1}{z}}{2} + 2}{\left(\frac{z + \frac{1}{z}}{2} + 3\right)^3}$$

$$= \frac{2}{i} \int_{|z|=1} \frac{z^4 + 4z + 1}{(z^2 + 6z + 1)^2} dz$$

$$= \frac{2}{i} 2\pi i \cdot \operatorname{res}_{z_1} f(z)$$

$$\operatorname{res}_{z_1} f = \frac{1}{(N-1)!} (f(z)(z-a)^N)_{z=a}^{(N-1)}$$

$$= (f(z)(z-1)^2)'|_{z=z_1}$$

$$= \frac{z^2 + 4z + 1}{(z-z_2)^2}|_{z=z_1}$$

$$= \left(\frac{2z + 4}{(z-z_2)^2} - 2\frac{z^2 + 4z + 1}{(z-z_2)^3}\right)|_{z=z_1} = \dots$$

2. Несобтсвенный интеграл $\int_{-\infty}^{\infty} f(x) dx \ f(x)$ допускает аналитическое продолжение в $\mathbb{C}\backslash A, A$ – конечное множество особыз точек, $A \cap \mathbb{R} = \emptyset$

$$\sup_{|z|=R} |f(z)| = o(\frac{1}{R}) \quad R \to +\infty$$

Тогда:

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{z: \text{Im } z > 0} \text{res}_z f.$$

Мы можем рассмотреть семейство полукругов и брать интегралы по их контурам.

$$\int_{C_R} f(z)dz = 2\pi i \sum_{\substack{z: \operatorname{Im} z > 0 \\ |z| < R}} \operatorname{res}_z f 2\pi i \sum_{z: \operatorname{Im} z > 0} \operatorname{res}_z f$$

=
$$\int_{-R}^{R} f(z)dz + \int_{\substack{|z|=R \ \text{Im } z \geqslant 0}} f(z)dz \rightarrow \int_{-\infty}^{\infty} d(x)dx + 0$$

Пример. особые точки: $z^1+1=0; z^4+4=4$ $z=\pm i \ z=\pm 2i \ |z|=R$ $|f(z)|=\frac{1}{|z^1+1||z^2+4|}$

$$\int_0^\infty \frac{dx}{(x^2+1)(x^2+4)} = \frac{1}{2} \int_{-\infty}^\infty \frac{dx}{(x^2+1)(x^4+4)}.$$

 $M(R)=\sup_{|z|=R}\sup|f(z)|=o\left(rac{1}{R}
ight), R o +\infty$ — условие на применение формулы для несобственного интеграла

Лемма 12.0.12.1 (Жордана). Пусть f непрерывна в $|z| > R_0$, $\operatorname{Im} z > 0$ }. $M(R) = \sup \{|f(z)| : z : |z| = R, \operatorname{Im} z \geqslant \}|$, $\Gamma_R = \{|z| = R, \operatorname{Im} z \geqslant 0\}$

 $\begin{array}{l} \Gamma_R=\{|z|=R,\operatorname{Im} z\geqslant 0\}\\ \text{Если }M(R)\to 0, \text{ то } \forall m>0 \quad \int_{\Gamma_R}f(z)e^{\operatorname{Im} zdz}\underset{R\to +\infty}{\longrightarrow} 0. \end{array}$

Лемма 12.0.12.2 (О полувычите). Пусть $\Gamma = \{a + re_{\phi \in [\phi_0, \phi_0 + \pi]}^{i\phi}. \ a \in \mathbb{C}$ — простой полюс f(x). Тогда $\int_{\Gamma(r)} f(z) dz \underset{r \to 0_+}{\rightarrow} \pi i res_a f$.

Доказательство. При достаточно малых r, т.к. a – простой множитель

$$\int_{\Gamma(r)} f(z)dz = \int_{\Gamma(r)} \frac{C_{-1}}{z - a} + \sum_{k=0}^{\infty} C_k (z - a)^k dz$$

$$= \underbrace{C_{-1}}_{\Gamma(r)} \underbrace{\int_{\Gamma(r)} \frac{dz}{z - a}}_{I_1} + \underbrace{\int_{\Gamma(r)}^{\varphi(z)} \varphi(z)dz}_{I_1}$$

$$I_1 = \int_{\varphi_0}^{\varphi_0 + \pi} \frac{ire^{i\varphi}d\varphi}{re^{i\varphi}} = \pi i$$

$$|J| \leqslant C \cdot \pi r \to 0 \quad r \to 0.$$

13 Интегралы в смысле главного значния

Пусть $f \in C([a,b]\backslash c)), c \in (a,b).$

$$v.p. \int_a^b f(x) dx = \lim_{\varepsilon \to 0^+} \left(\int_a^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^b f(x) dx \right).$$

Особенных точек может быть много, поэтому там может возникнуть нескольк таких пределов.

Пример. $\int_0^{+\infty} \frac{\sin x}{x} dx = I$.

$$I = \frac{1}{2} \int_{-\infty}^{infty} \frac{\sin x}{x}$$

$$= \frac{1}{2} v.p. \int_{-\infty}^{\infty} \frac{\frac{\operatorname{Im} e^{ix}}{x}}{x} dx$$

$$= \frac{1}{2} v.p. \frac{1}{i} \int_{-\infty}^{\infty} \frac{\cos x + i \sin x}{x} dx$$

$$= \frac{1}{2i} \pi i = \frac{\pi}{2}$$

 $\frac{\cos x}{x}$ — нечётная функция, значит интеграл в смысле главного значения по области без особых точек сходится и равен 0.

 \star контур из двух верхних полуокружностей с радиусами R, ε и прямыми вдоль оси Ox, соединяющими их, обходимый против часовой стрелки.

$$0 = \int_{C} \frac{e^{iz}}{z} dz = \underbrace{\int_{\Gamma_{R}} f dz}_{\to 0; \text{Жордан}} + \underbrace{\int_{\Gamma_{\varepsilon}}^{-\pi i \operatorname{res}_{0} f}}_{\Gamma_{\varepsilon}} f dz + \int_{L_{+}} f dz + \int_{L_{-}} f dz$$
$$v.p. \int_{-\infty}^{\infty} f(x) dx = \pi i \operatorname{res}_{0} f = \pi i.$$

14 Возвращение к дифферецииальным формам

Определение 14.0.1. ω – замкнутая формула если $d\omega = 0$

Определение 14.0.2. ω — точная в области O, если существует форма Ω — дифферецииальная форма в области O, т.ч. $d\Omega = \omega$

Лемма 14.0.0.1. Точноасть влечёт засмкнутость. Потому что $d(d(\Omega)) \equiv 0$

Лемма 14.0.0.2. Если ω замкнута в шаре $B(a) \subseteq \mathbb{R}^n$, то она там точна

Замечание. Если
$$\omega$$
 – точная 1 форма, $\omega = dF \implies \int_{\gamma} \omega = F \mid_{\gamma(a)}^{\gamma(b)}$, если $\gamma : [a,b] \to \mathbb{R}^n$
$$\int_{\gamma} \omega = \int_a^b \underbrace{dF \circ \gamma(t) \cdot \gamma'(t)}_{F(\gamma(t))'} dt = F(\gamma(t))_a^b$$

Инетграл не зависит от пути, соединаяющего точки a и b

проверка леммы для 1-форм, n=2. $F(p)=\int_{\vec{a,p}}\omega$

$$\omega = Pdx + Qdy \quad p' = Q'_x - P'_y dx dy$$

Рассмотрим контур по прямоугольному треугольнику с гипотенузой ap. Интеграл по этой этому контуру равен 0. По формуле Грина:

$$0 = \int_{\partial O_1} = -\int_{ap} \omega + \int_{aq} \omega + \int_{int} \int_{in$$

Следовательно F – первообразная для f в круге $B_R(a)$

Теорема 14.0.1 (Пуанкаре). Всякая замкнутая в (односвязной) выпуклой области точна в этой области.

показательство .
$$\Phi(p) = \int_{ap} \omega$$

$$\Phi(p) = \int_{ap_1} \omega + \int_{p_1p} \omega \quad \Phi'(p) = \Phi_1(p) = \omega \ \forall p \in B_R(p_1)$$

Задача 3. $\int_0^{+\infty} \frac{\sin^2 x}{x^2} dx \quad \not< \frac{e^{2it}-1}{z^2}$

Замечание. Существуют замкнутые, но не точные дифференциальные формы.

$$w = \frac{xdy - ydx}{x^2}, \quad w = d\left(\frac{y}{x} + C\right), x > 0.$$

$$w = \frac{xdy - ydx}{x^2 + y^2} = \frac{xdy - ydx}{y^2} \cdot \frac{1}{1 + \left(\frac{x}{y}\right)^2}, \quad ((x, y) \neq 0,)$$

$$\oint \frac{xdy - ydx}{x^2 + y^2} = \int_{-\pi}^{\pi} \frac{R^2 \left(\cos^2 \phi + \sin^2 \phi\right)}{R^2} = 2\pi \neq 0 \implies$$

w не точна в $\mathbb{R}^2 \setminus (0,0)$.

15 Пространства $L^p(X,\mu), e^p$

Замечание. Неравенство Минковского:

• для сумм $x_1, \ldots, x_k \quad y_1, \ldots, y_k \in \mathbb{R} \quad p \geqslant 1$

$$() \sum_{k=1}^{K} |x_k + y_k|^p)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{K} |x_k|^p \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{K} |y_k|^p \right)^{\frac{1}{p}}$$

• $\left(\int_a^b |f+g|^p\right)^{\frac{1}{p}} \leqslant \dots$ $f,g \in C([a,b])$

Теорема 15.0.1. $\exists (X, \mu)$ – пространство с мерой, $f, g \in \mathcal{L}(X, \mu)$

$$\left(\int_{X} |f + g|^{p} d\mu \right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{K} |f|^{p} \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{K} |g|^{p} \right)^{\frac{1}{p}}$$

Доказательство. 1. f,g — ступенчатые и неотрицательные. Тогда существует общее допустимое разбиение $\{E_k\}_{k=1}^K$ $X = \coprod_{k=1}^K E_k$ $f\mid_{E_k} \equiv f_k$ $g\mid_{E_k} \equiv g_k$ — числа, постоянные

$$f(x) = \sum_{k=1}^{K} f_k \chi_{E_k}(x) \qquad g(x) = \sum_{k=1}^{K} g_k \chi_{E_k}(x)$$

$$\int_X |f + g|^p d\mu = \sum_{k=1}^{K} \int_{E_k} |f + g|^p d\mu = (f_k + g_k)^p \cdot \underbrace{\mu(E_k)}_{m_k}$$

$$x_k = f_k m_k^{\frac{1}{p}} \quad y_k = g_k m_k^{\frac{1}{p}}$$

$$\left(\int_Y |f + g|^p d\mu\right)^{\frac{1}{p}} ((A)!(B)!(C))$$

Доказатель ство. 1. f,g — ступенчатые и неотрицательные. Тогда существует общее допустимое разбиение $\{E_k\}_{k=1}^K$ $X = \coprod_{k=1}^K E_k$ $f\mid_{E_k} \equiv f_k$ $g\mid_{E_k} \equiv g_k$ — числа, постоянные

$$f(x) = \sum_{k=1}^{K} f_k \chi_{E_k}(x)$$
 $g(x) = \sum_{k=1}^{K} g_k \chi_{E_k}(x)$

$$\int_{X} |f + g|^{p} d\mu = \sum_{k=1}^{K} \int_{E_{k}} |f + g|^{p} d\mu = (f_{k} + g_{k})^{p} \cdot \underbrace{\mu(E_{k})}_{m_{k}}$$

 $x_k = f_k m_k^{\frac{1}{p}} \quad y_k = g_k m_k^{\frac{1}{p}}$

$$\left(\int_{X} |f + g|^{p} d\mu\right)^{\frac{1}{p}} = \left(\sum_{k=1}^{K} \int_{E_{k}} (f + g) d\mu\right)$$

$$\leq \left(\sum_{k=1}^{K} f_{k}^{p} m_{k}\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{K} g_{k}^{p} m_{k}\right)^{\frac{1}{p}}$$

$$= \int_{X} f^{p} d\mu + \int_{X} g^{p} d\mu$$

- 2. f, g неотрицательные, измеримые. Они приближаются последовательностями ступенчатых.
- 3. f, g комплеснозначные

$$\left(\int_X |f+g|^p d\mu\right)^{\frac{1}{p}} \leqslant \left(\int_X \left(|f|+|g|\right)^p d\mu\right)^{\frac{1}{p}} \leqslant \text{неравенство для модуля}$$

Замечание. Аналогично неравенство Гёльдера p, q > 1 $\frac{1}{p} + \frac{1}{q} = 1$

$$\int_X |fg| d\mu \leqslant \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}} \left(\int_X |g|^q d\mu\right)^{\frac{1}{q}}$$

Определение 15.0.1.

 $\operatorname{esssup}_x f = \inf\{M \in \mathbb{R} : \text{ для п.в. } x \in X | quadf(x) \leq M\}$

существенный супремум.

$$f\sim g\iff f=g$$
 почти везде на X $g\sim f\implies \|f\|_p=\|g\|_p$

Определение 15.0.2.

$$L^p(X,\mu) = \{ [f] : ||f||_p < +\infty \}$$

Утверждение 15.0.1. Если $\mu(X) < +\infty$, то $L^p(X,\mu)$ "убывает" по p

$$\widetilde{p} > p \geqslant 1 \Longrightarrow L^{\widetilde{p}}(x,\mu) \subseteq L^{p}(X,\mu)$$

$$L^{\infty}(X,\mu) \subseteq \dots L^{2}(X,\mu) \subseteq L^{1}(X,\mu)$$

$$C^0([a,b]) \subseteq L^\infty([a,b]) \subseteq \ldots \subseteq L^2([a,b]) \subseteq \ldots \subseteq L^1([a,b])$$

Если $\mu(X) = +\infty$, то $L^2(\langle a, b \rangle) \oplus \mathbb{D}$

1.
$$f(x) = \chi_{(1,+\infty)}(x)\frac{1}{x} \in L^2(\mathbb{R})\backslash L^1(\mathbb{R})$$

2.
$$f(x) = \chi_{(0,1)}(x) \frac{1}{\sqrt{x}} \in L^1(\mathbb{R}) \backslash L^2(\mathbb{R})$$

Утверждение 15.0.2. $f \in L^{\widetilde{p}} \implies f \in L^{p}$ $\widetilde{p} > p \geqslant 1$

Замечание. Факт:

- 1. $\forall p \in [1, +\infty]$ $L^p(X, \mu)$ полно, C([a, b]) плотно в $L^p([a, b])$
- 2. C([a,b]) плотно в $L^p(a,b) \ \forall p \in [1,+\infty]$

Определение 15.0.3.

$$l^p = L^p(\mathbb{N}, \nu)$$

$$l^p = \begin{cases} \{(x_k)_{k=1}^{\infty} : \sum_{k=1}^{\infty} |x_k|^p < +\infty \} \\ \{x = (x_k)_{k=1}^{\infty} - \text{огр} \end{cases}$$
 l^p "возрастает" по p

Определение 15.0.4 (Скалярное произведение в $L^2(X,\mu)$). $\langle f,g\rangle=\int_X f\cdot \overline{g}d\mu$ По неравенству Гёльдера этот интеграл конечен. $||f||_2 = \sqrt{\langle f, f \rangle}$

Определение 15.0.5. $f_j \in L^2(X,\mu)$ – счётное множество, $f_i \neq 0$ в L^2 – $f_j \perp f_k$ при $j \neq k$ Тогда $\{f_i\}$ называется ортогональной системой OHC $||f_j|| = 1$

Пример. $L^{2}[-\pi,\pi]$ $f_{j}(t)=e^{ijt}$

$$\begin{split} \langle f_j, f_k \rangle &= \int_{-\pi}^{\pi} e^{ijt} e^{-ikt} dt \\ &= \int_{-pi}^{\pi} e^{i(j-k)t} d\mu \\ &= \begin{cases} 2\pi & k = j \\ \frac{e^{i(j-k)t}}{i(j-k)t} \mid_{-\pi}^{\pi} = 0 \end{cases} \end{split}$$

 $\int_{-\pi}^{\pi} \cos kt \cos jt dt = \begin{cases} 0, & k \neq j \\ \pi, & k = j \neq 0; \\ 2\pi, & k = j = 0 \end{cases} \sin kt a \sin jt dt = \begin{cases} 0, & k \neq j \\ \pi, & k = j \end{cases}, \text{ где } k, j \in \mathbb{N}.$

Ортагональная Нормальная система: $\left\{\frac{1}{\sqrt{2}\pi}, \frac{1}{\sqrt{\pi}}\cos t, \frac{1}{\sqrt{\pi}}\sin t, \frac{1}{\sqrt{\pi}}\cos 2t, \ldots\right\}$.

Определение 15.0.6. Многочлены Чебышёва 1-го рода

$$T_n(t) = \cos(n \arccos t)$$
 $t \in [-\pi, \pi]$ $n \in \mathbb{Z}_+$

$$L^2([-1,1], \frac{1}{\sqrt{11-t^2}})$$

Замечание. L^p , (X, μ) – полно, $\forall p \in [1, +\infty]$

 $C[-\pi,\pi]$ – плотно в $L^p[-\pi,\pi]$ $\forall \varepsilon > 0 \forall f \in L^p[-\pi, \pi] \exists g \in [-\pi, \pi] : ||f - g||_p < \varepsilon$

Замечание. $\exists \ \{f_k\}_{k=1}^\infty \subseteq L^p[a,b] \quad f_k \to f \text{ в } L^p$ Иначе: $\|f_k - f\|_p \to 0, k \to \infty. \implies f_k \to f, k \to \infty$ почти везде на [a,b]

Замечание. $L^{2}([a,b],\mu)$

 $\langle f,g \rangle = \int_{[a,b]} f \cdot \overline{g} d\mu$ – скалярное пространство в $L^2([a,b],\mu)$

Определение 15.0.7. Полное линейное пространство со скалярным произведением называется Гильбертовым

Пример. $L^{2}(X,\mu)$ l^{2}

$$x = (x_k)_{k=1}^{\infty}$$
 $y = (y_k)_{k=1}^{\infty}$ $\langle x, y \rangle = \sum_{k=1}^{\infty} x_k \overline{y}_k$

Замечание. $\forall y \in H$

$$\varphi(x) = \langle x, \overline{y} \rangle$$
 — непрерывно из H в \mathbb{R} (в \mathbb{C}) $|\varphi(x_1) - \varphi(x_2)| = |\langle x_1 - x_2, y \rangle \leqslant ||x_1 - x_2|| ||y||$ — липшицево с константой $||y||$.

Замечание. $\sqsupset \sum_{k=1}^{\infty} x_k$ – сходящийся ряд в Гитбертоом пространстве \mathcal{H} . Тогда $\forall y \in H$

$$\left\langle \sum_{k=1}^{\infty} x_k, y \right\rangle = \sum_{k=1}^{\infty} \left\langle x_k, y \right\rangle$$

Замечание. $\varphi(x) = \langle x, y \rangle$

$$\varphi\left(\sum_{\substack{k=1\\ \lim S_n}}^{\infty} x_k\right) = \lim_{n \to \infty} \varphi(S_n) = \lim_{n \to \infty} \sum_{k=1}^{n} \langle x_k, y \rangle = \sum_{k=1}^{\infty} \langle x_k, y \rangle$$
$$S_n = \sum_{k=1}^{n} x_k$$

Теорема 15.0.2 («Пифагора»). Пусть $\{x_k\}_{k=1}^{\infty}$ — о.с. в Гильбертовым пространстве \mathcal{H} . Тогда

1. $\forall n \in \mathbb{N}$

$$\left\| \sum_{k=1}^{n} x_k \right\|^2 = \sum_{k=1}^{n} \|x_k\|^2.$$

2. $\sum_{k=1}^{\infty} x_k$ сходится в $\mathcal{H} \iff \sum_{k=1}^{\infty} \|x_k\|^2$ сходится случае сходимости $\left\|\sum_{k=1}^{\infty} x_k\right\|^2 = \sum_{k=1}^{\infty} \|x_k\|^2$.

1. $\left\| \sum_{k=1}^{n} x_k \right\| = \left\langle \sum_{k=1}^{n} x_k, \sum_{k=1}^{n} x_k \right\rangle = \sum_{k=1}^{n} \left\langle x_k, \sum_{j=1}^{n} x_j \right\rangle = \sum_{k=1}^{n} \|x_k\|^2$.

2. $S_n = \sum_{k=1}^n x_k, \ \widetilde{S}_n = \sum_{k=1}^n \|x_k\|^2.$

$$||S_n - S_m||_{n>m}^2 = \left\| \sum_{k=m+1}^n x_k \right\|^2 = \sum_{k=m+1}^n ||x_k||^2 = \widetilde{S}_n - \widetilde{S}_m = |\widetilde{S}_m - \widetilde{S}_n| \implies$$

 (S_n) — сходится $\iff S_n$ — фундамнтальная $\iff \widetilde{S}_n$ — фундамнтальная $\iff \widetilde{S}_n$ — сходится Если $\sum x_k$ сходится

$$\left\| \sum_{k=1}^{\infty} x_k \right\|^2 = \lim_{n \to \infty} \left\| \sum_{k=1}^{n} x_k \right\| = \lim_{n \to \infty} \sum_{k=1}^{n} \|x_k\|^2 = \sum_{k=1}^{\infty} \|x_k\|^2$$

Пусть $x \in \mathcal{H}$, $\{e_k\}_{k=1}^{\infty}$ — ортагональная система в \mathcal{H} .

Пусть $x=\sum\limits_{k=1}^{\infty}c_{k}e_{k},\,c_{k}$ — скаляр. Тогда

$$c_k = \frac{\langle x, e_k \rangle}{\|e_k\|^2} \quad \forall k \in \mathbb{N}$$

Пусть
$$k \in \mathbb{N}$$
 $\langle x, e_k \rangle = \left\langle \sum_{y=1}^{\infty} e_k e_j, e_n \right\rangle =$

Пример. 1. $l^2 = \left\{ (x_1, x_2, \dots, x_k, \dots)) : \sum_{k=1}^{\infty} |x_k|^2 \right\}$

$$e_1 = (1, 0, \ldots)$$
 $e_2 = (0, 1, \ldots), \ldots$

$$\langle e_j, e_k \rangle = \delta_{jk}$$

$$c_k = \langle x, e_k \rangle = x_k$$

$$x = \sum_{k=1}^{\infty} x_k e_K \quad \sum_{k=1}^{\infty} x_k^2 < \infty$$

 $\{e_k\}_{k\geqslant k_0}$ — ортонормированная система

Теорема 15.0.3 (О свойствах конечных сумм рядов Фурье). $\square \mathcal{H}$ – Гильбертово пространство. $x \in H \quad \{e_k\}$ – ортонормированны в \mathcal{H} . $S_n = \sum_{k=1}^{\infty} c_k e_k$

 $\forall n \in \mathbb{N}$

1. $x=s_n+z_n$] $z_n\perp\mathcal{L}_{in}\{e_1,e_2,\dots e_n\}=\mathcal{L}_n$ Т.е. S_n – ортогональная проекция x на L_n

2. $AAy \in \mathcal{L}_n$

$$||x - y|| \geqslant ||x - \delta_n||$$

Пишем равенство только в условии, что $y = S_n$

Т.е. S_n — единственный элемент наилучшего приближения к x

3. $||S_n|| \le ||x|| \iff \sum_{k=1}^n |C_k|^2 ||e_k||^2 \le ||x_k||^2$ — неравенство Бесселя

Доказательство. $z_n = x - S_n$

$$\exists j \in \{1, \ldots, n\}$$

$$\langle z_n, e_j \rangle = \langle x, e_j \rangle - \langle S_n, e_j \rangle$$

$$= \langle x, e_j \rangle - e_j \langle e_j, e_j \rangle = 0$$

$$\Longrightarrow z_n \perp e_j \implies z_n \perp \mathcal{L}_n$$

$$||x - y||^2 = ||S_n + z_n - y||^2$$

$$= ||\underbrace{(S_n - y)}_{\in \mathcal{L}_n} + \underbrace{z_n}_{\perp z \mathcal{L}_n}||^2$$

$$= ||S_n - y||^2 + ||z_n||^2$$

$$\geq ||z_n||^2 = ||x - S_n||^2$$

.

$$||x||^2 = ||S_n + z_n||^2 = ||S_n||^2 + ||z_n||^2$$

 $\ge ||S_n||^2$

Неравенство Бесселя – результат применения теоремы Пифагора.

Теорема 15.0.4 (Рисса-Фишера). $\square \mathcal{H}$ – г.п., $\{e_k\}$ – ОС в $\mathcal{H}, x \in \mathcal{H}$

1. Ряд Фурье

$$\sum_{k=1}^{\infty} C_k e_k$$
: c_k коэффициент Фурье

сходится

2.
$$x = \sum_{k=1}^{\infty} C_K e_k + z \quad z \perp e_j \forall j$$

3.
$$x = \sum_{k=1}^{\infty} C_k e_k \iff \sum_{k=1}^{\infty} |C_k|^2 \|e_k\|^2 = \|x\|^2$$
 — Тождество Бесселя (Равенство Парсеваля, уравнение замкнутост)

Доказательство. По теореме Пифагора сходимость ряда Фурье равеносильно

$$\sum_{k=1}^{\infty} \|C_k e_k\|^2 = \sum_{k=1}^{\infty} |C_k|^2 \|e_k\|^2 \leqslant \|x\|^2.$$

Здесь в конце предельный переход по неравенству Бесселя. Раз частичные суммы ограничены, то ряд сходится.

$$z = x - \sum_{k=1}^{\infty} c_k e_k$$

$$\begin{split} \langle z, e_j \rangle &= \langle x, e_j \rangle - \left\langle \sum_{k=1}^{\infty} C_k e_k, e_j \right\rangle \\ & \qquad \langle x, e_j \rangle - \sum_{k=1}^{\infty} C_k \left\langle e_k, e_j \right\rangle = 0 \end{split}$$

$$x = \sum_{k=1}^{\infty} C_k e_k \iff z = 0$$

$$x = S + z \quad S \perp z$$

$$\|x\|^2 = \|S\|^2 + \|z\|^2 \implies (\|x\|^2 = \|S\|^2 \iff x = S)$$

Определение 15.0.8. ЛНЗ система $\{x_k\}_k$ – базис в нормированном пространстве X, если

$$\forall x \in X \exists \{x_k\}_{k=1}^{\infty} \subseteq \mathbb{R}(\mathbb{C}); x = \sum_{k=1}^{\infty} c_k x_k$$

Определение 15.0.9. ОС $\{e_k\}_{k=1}^{\infty}$ в Гильбертовом пространстве H называется замкнутой, если $\forall x \in H$ верно уравнение замкнутости:

$$||x||^2 = \sum_{k=1}^{\infty} |c_k|^2 ||e_k||^2,$$

где c_k — коэффициент Фурье по системе из $\{e_k\}$.

Определение 15.0.10. \exists $\{e_k\}$ – ОС в H. Она называется полной, если $\nexists z \in H \setminus \{0\}$: $z \perp e_i \forall \in \mathbb{N}$.

Теорема 15.0.5. $\exists \{e_k\}$ – ОС в г.п. H. Следующие утверждения равносильны:

- 1. $\{e_k\}$ базис
- $2. \ \forall x, y \in H$

$$\langle x, y \rangle = \sum_{k=1}^{\infty} c_k(x) \cdot \overline{c_k(y)} \cdot \|e_k\|^2$$

 $c_k(t)$ – коэффициент Фурье по системе e_k

- 3. $\{e_k\}$ замкнута
- 4. $\{e_k\}$ полная
- 5. $\left\{\sum_{j=1}^n c_j e_j : c_j \in \mathbb{R}(\mathbb{C})\right\}_{n \in \mathbb{N}}$ плотно в H

Доказательство. 1. $1 \implies 2$.

$$x = \sum_{k=1}^{\infty} C_k(x)e_k$$
 $y = \sum_{k=1}^{\infty} c_k(y)e_k$

$$\langle x, y \rangle = \left(\sum, \sum \right)$$

= $\sum \left\langle c_k(x)e_k, \sum \right\rangle$
= ...

- 2. 2 ⇒ 3. Очевидно
- 3. $3 \implies 4$. $\exists \forall j \in \mathbb{N} \ z \perp e_j \implies c_k(z) = 0$ $\|z\|^2 = \sum_{k=1}^{\infty} |c_k(z)|^2 \|e_k\|^2 = \sum_{k=1}^{\infty} 0 = 0 \implies \|z = 0\| \implies z = 0$
- 4. 4 \implies 1 $₹x = \sum_{k=1}^{\infty} c_k(x) \cdot e_k + z$ по теореме Риса Фишера. $z \perp e_j$. В предположении e_k полные, значит $z = 0 \implies e_k$ базис
- 5. $1 \implies 5$ $\forall \varepsilon > 0 \forall x \in H \exists N \in \mathbb{N} \exists c_1, \dots, c_N : \|x \sum_{k=1}^N c_k e_j\| < \varepsilon$

По 1 $\sum_{k=1}^{\infty} c_k e_j \to x$ — сходится, а значит разность с x стремится к 0 и можно для $\forall \varepsilon$ подобрать нужное Л

6.
$$5 \implies 1 \exists \varepsilon > 0 \|x - \sum_{k=1}^{n} \tilde{c}_{k} e_{k} < \varepsilon$$

$$\|x - \sum_{k=1}^{\text{сумма Фурье}} \| \le \|x - \sum_{k=1}^{N} \tilde{c}_{k} e_{k} \| < \varepsilon$$

$$x - s_{n} = z_{n} \quad z_{n} \perp S_{N}$$

$$x = s_{N} + z_{n} = s_{N} + \underbrace{(s_{n} - s_{N})}_{\in \mathcal{L}\{e_{N+1}, \dots, e_{n}\}} + z_{n}$$

$$\|x - S - N\|^{2} = \|S_{n} - S_{N}\|^{2} + \|z_{n}\|^{2}$$

$$\|x - S_{n}\|^{2} = \|z_{n}\|^{2}$$

$$\|x - S - N\|^{2} \le \|x - S_{n}\|^{2}$$

$$\implies S_{n} \to x \implies \{e_{k}\} - \text{базис}$$

Тригонометрические ряды Фурье 16

$$\begin{split} f &\in L^1(-\pi,\pi] \\ & |\langle f,g\rangle| \leqslant \|f\|_1 \cdot \|g\|_\infty = \|f\|_1 \\ & f \in L^1 \quad g = \cos kt, \sin kt, e^{ikt} \\ & |\langle f,g\rangle| = \int_{-\pi}^\pi f(t) \overline{g}(t) dt \end{split}$$

Определение 16.0.1.

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kt + b_k \sin kt \right)$$

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt dt \quad k \in \mathbb{Z}_{+}$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt dt \quad k \in \mathbb{N}$$

$$C_{k}(x) = \cos kx \quad S_{k}(t) = \sin kt$$

$$k \geqslant 1 \quad \|C_{k}\| = \|S_{k}\| = \pi$$

$$a_{k} = \frac{\langle f, C_{k}(t) \rangle}{\|C_{k}(t)\|}$$

$$C_{0}(t) = 1, \quad c_{0} \frac{\langle f, C_{0}(t) \rangle}{\|C_{0}\|^{2}} = \frac{\langle \dots, \dots \rangle}{2\pi} = \frac{a_{0}}{2}.$$

Ряд Фурье
$$=c_0(f)+\sum\limits_{k=1}^{\infty}c_k(f)\cos(kt)+b_k(f)\sin kt$$

Замечание (Факт). $\{\cos kt, \sin kt\}_{k\in\mathbb{N}} \cup \{1\}$ – базис $L^2([-\pi, \pi])$

 $\forall f \in L62 \quad f(x) = rac{a_0(f)}{2} + \sum\limits_{k=1}^{\infty} \left(a_k \cos kt + b_k \sin kt \right)$ — почти везде равенство. . .

$$||f||^2 = \frac{|a_0|}{2} + \left(\sum_{k=1}^{\infty} |a_k|^2 + |b_k|^2\right)^2 \pi \iff \frac{||f||}{\pi} = a_0^2 + \sum_{k=1}^{\infty} \left(|a_k|^2 + |b_k|^2\right)$$

Замечание (Факт 2). Следствие признака Дини

$$\exists f \in L^1([-\pi,\pi])$$
 $f-2\pi$ -периодическая

 $\exists x \in \mathbb{R}$

$$\exists f(x+\pm 0) \in \mathbb{R} \ \text{II} \ \lim_{t \to 0+} \frac{f(x+t) - f(x+0)}{t} \in \mathbb{R} \ \text{II} \ \lim_{t \to 0-} \frac{f(x+t) - f(x-0)}{t} \in \mathbb{R}$$

Тогда в тех x, что тригонометрический ряд Фурье сходится. $S(x) = \frac{f(x+0) + f(x-0)}{2}$

$$S(x) = \frac{f(x+0) + f(x-0)}{2}$$

Пример. $\angle 2\pi$ -периодическое продолжение $\mathrm{sign}x$ $f(\pi k)=0 \implies f(x)\equiv S(x)$

Замечание. Если $f\in L^1$ и f нечётная, то $a_k=0$ $b_k=\frac{2}{\pi}\int_0^\pi f(t)\sin kt$ $j\in\mathbb{N}$ и ряд Фурье будет содержать только синусы

Если наоборот, то $b_k = 0$ $a_k = \frac{2}{\pi} \int_0^{\pi} f(t) \cos kt dt$

Пример. $a_k = 0$

$$b_k = \frac{2}{\pi} \int_0^{\pi} \operatorname{sign}(t) \sin kt$$
$$= \frac{2}{\pi} \frac{\cos kt}{k} \Big|_{\pi}^{0}$$
$$= \frac{2}{\pi k}$$

Теорема 16.0.1 (Римана-Лебега).

1. $E \in mathfrakA, f \in \mathcal{L}(E) \implies \text{при } \lambda \to \infty$

$$\int_{E} f(x)e^{-i\lambda x}dx \to 0$$

$$\int_{E} f(x)\cos x(\lambda x)dx$$

$$\int_{E} f(x)\sin(\lambda x)dx \to 0$$

2. $f \in L^1_{2\pi}$ $a_k(f), b_k(f), c_k(f) \to 0;$ $f - 2\pi$ -периодические продолжения функций из $L^1_{2\pi}$ $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx, \quad k = 0, 1, \dots$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx, \quad k = 1, 2, \dots$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx = \frac{1}{2} (a_k - ib_k), k \in \mathbb{Z}_+$$

$$c_{-k} = \frac{1}{2} \left(a_k + i b_k \right)$$

$$k \in \mathbb{N} \implies a_k = c_k + c_{-k} \qquad b_k = \frac{c_{-k} - c_k}{i} = i(c_k - c_{-k})$$

Замечание.
$$f-2\pi$$
-периодическая $f\in L^1\left([-\pi,\pi]\right])\implies \forall a\in\mathbb{R}\quad \int_{a-\pi}^{a+\pi}f(x)dx=\int_{-pi}^{\pi}f(x)dx$

Теорема 16.0.2 (О непрерывности сдвига). $f \in \mathcal{L}(E)$ $h \in \mathbb{R}, E \in \mathcal{A} \implies ||f - f_h|| \to 0, h \to 0$ $f_h(x) = f(x+h)$

Доказательство. Идея доказательства:

$$C_0^\infty=\left\{g\in C^\infty(\mathbb{R}):\exists$$
 компакт $K\subseteq\mathbb{R}:g|_{\mathbb{R}\setminus K}=0
ight\}$ – плотно в L^p $\not\prec\varepsilon>0$ для $f\in L_1$ $\exists g\in_0^\infty: \|f-g\|<\frac{\varepsilon}{3}$ $\|g_h-g_h\|=\|f-g\|<\frac{\varepsilon}{3}$

$$\begin{split} \|f-f_h\| &= \|(f-g) + (g-g_h) + (g_h-f_h)\| \\ &= \|f-g\| + \|g-g_h\| + \|g_h-f_h\| \\ &\leqslant \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon \text{При достаточно малых } h \\ \|g-g_h\| &\leqslant \int_{\mathbb{R}} |g(x) - g(x+h)| dx \leqslant \omega(h) \cdot (\lambda_1(k) + 2\varepsilon) \end{split}$$

61

Римана-Лебега.

$$\begin{split} C(\lambda) &= \int_E f(x) e^{-i\lambda x} dx = \int_{\mathbb{R}} f(x) e^{-i\lambda x} dx \\ &= \int_{\mathbb{R}} f(t + \frac{\pi}{\lambda}) e^{-i\lambda t} \underbrace{e^{-i\pi}}_{-1} dt \\ &= \frac{1}{2} \int_{\mathbb{R}} (f(x) - f(x + \frac{\pi}{\lambda})) e^{-i\lambda x} dx \\ &|C(\lambda)| \leqslant \frac{1}{2} \int \left| f(x) - f\left(x + \frac{\pi}{\lambda}\right) f\left(x + \frac{\pi}{\lambda}\right) \right| \cdot \underbrace{\left| e^{-i\lambda x} \right|}_{-1} dx \to 0, |\lambda| \to 0. \end{split}$$

$$e(\lambda x) = \begin{cases} e^{i\lambda x} \\ \cos \lambda x \\ \sin \lambda x \end{cases}$$
$$int_{-\pi}^{\pi} f(x)e(\lambda x)dx = -\int_{\pi-\frac{\pi}{\lambda}}^{\pi+\frac{\pi}{\lambda}} (t + \frac{\pi}{\lambda}e(\lambda t)dt) = -\int_{-\pi}^{\pi} -||-\frac{\pi}{\lambda}e(\lambda t)dt| = -$$

Замечание. Наблюдение:

$$c_k = \frac{1}{2} \int_{-\pi}^{\pi} \left(f(x) - f(x + \frac{\pi}{\lambda}) \right) e^{-ikx} dx$$

$$a_k = \frac{1}{2} \int_{-\pi}^{\pi} \left(f(x) - f(x + \frac{\pi}{\lambda}) \right) \cos kx dx$$

$$b_k = \frac{1}{2} \int_{-\pi}^{\pi} \left(f(x) - f(x + \frac{\pi}{\lambda}) \right) \sin kx dx$$

Замечание. Если
$$f \in \operatorname{Lip}_M^{\alpha} \quad |f(x_1) - f(x_2)| \leqslant M \cdot |x_1 - x_2|^{\alpha}$$
 $a_k, b_k, c_k = O\left(\frac{1}{k^{\alpha}}\right)$
$$\left|f(x) - f(x + \frac{\pi}{k})\right| \leqslant \left(\frac{\pi}{k}\right)^{\alpha} \cdot M \implies |C_k| \leqslant \frac{1}{2} \int_{-\pi}^{\pi} \left(\frac{\pi}{k}\right)^{\alpha} |e^{-ikx}| dx \leqslant \frac{\pi^{\alpha+1}}{k^{\alpha}} = O\left(\frac{1}{k^{\alpha}}\right)^{\alpha}$$

Утверждение 16.0.1.
$$f \subseteq C^m_{2\pi}\left([-\pi,\pi]\right)$$
 $c_k(f^{(j)}) = (ik)^j c_k(f)$

Доказательство.

$$c_k(f') = \frac{1}{2\pi} \int_{-\pi}^{\pi} f'(x)e^{-ikx}dx$$
$$= ikc_k(f)$$

Следствие 16.0.2.1. $f \in C^m_{2\pi}\left([-\pi,\pi]\right), \ f^{(k)} \in \operatorname{Lip}_M^{\alpha} \implies c_k, a_k, b_k = O\left(\frac{1}{k^{\alpha+m}}\right).$

Доказательство. Если $f \in C_{2\pi}^{\infty} \implies c_k, a_k, b_k = O\left(\frac{1}{kp}\right) \forall p \in \mathbb{N}i$

Замечание. Если $f \in C^2_{2\pi}$, то ряд Фурье абсолютно сходится на $[-\pi,\pi]$ поточечно.

Определение 16.0.2.
$$D_n(t) = \frac{1}{2} \sum_{k=-n}^n e^{-ikt} = \frac{1}{2} \left(1 + \sum_{k=1}^n e^{ikt} + e^{-ikt} \right) = \frac{1}{2} + \sum_{k=1}^n \cos kt$$

$$\frac{1}{2\pi} e^{-int} \sum_{i=0}^{2n} e^{ijt} = \frac{1}{2\pi} e^{-int} \frac{e^{i(2n+1)t} - 1}{e^{it} - 1}$$

$$= \frac{1}{2\pi} e^{-int} \frac{e^{\frac{i(2n+1)t}{2}}}{e^{\frac{it}{2}}} \cdot \frac{e^{\frac{i(2n+1)t}{2}} - e^{-\frac{i(2n+1)t}{2}}}{e^{\frac{it}{2}} - e^{-\frac{it}{2}}}$$

$$= \frac{1}{2\pi} \frac{\sin \frac{(2n+1)t}{2}}{\sin \frac{t}{2}}$$

- Ядро Дирихле

Свойство 16.0.1. 2π – периодическая, чётная, $\in C^{\infty}(\mathbb{R})$ $\int_{-\pi}^{\pi} D_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} 1 dt = 1$

Определение 16.0.3. $S_n(x)$ — частичная сумма ряда Фурье по экспонентам

$$S_{n}(x) = \sum_{k=-n}^{n} C_{k}e^{ikx} = \sum_{k=-n}^{n} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt}dte^{ikx}$$

$$= int_{\pi}^{\pi} f(x) \frac{1}{2\pi} \sum_{-n}^{n} e^{-ikt}dte^{ikx}$$

$$= \int_{-\pi}^{\pi} f9t \frac{1}{2\pi} \sum_{k=-n}^{n} e^{i(x-t)k} dt$$

$$= \int_{-\pi}^{\pi} f9t D_{n}(x-t)dt$$

 $S_n = f * D_n$

Замечание. $f(x)=\int E\times Eg(y)\mathcal{K}(x,y)dy$ $L:g\to f$ – интегральный оператор с ядром $\mathcal{K}(x,y)$

Определение 16.0.4 (Свёртка фукций $f,g\in L^1_{2\pi}$). $f*g(x)=\int_{-\pi}^\pi f(t)g(x-t)dt$ $f,g\in K^2(\mathbb{R})$ $f*g(x)=\int_{\mathbb{R}^n}^\pi f(t)g(x-t)d\lambda_n(t)$

Свойство 16.0.2. 1. $f,g\in L^1_{2\pi}\implies f*g\in L^1_{2\pi}$ F(x,t)=f(t)g(x-t) — измеримая, т.к. f — измеримая g(x-t) — композиция измеримых $\int_{[-\pi,\pi]^2}|FR(x,t)|\,dxdt=\underbrace{\int_{-\pi}^\pi|f(t)|}_{\leqslant \|f\|_1}\underbrace{\int_{-\pi}^\pi|g(x-t)|}_{\leqslant \|g\|_{L_1}}<+\infty$

F(x,t) – суммируема на $[-\pi,\pi]^2 \implies$ По теореме Фубини F(x,t) конечная для п.в. x

$$||f * g||_{L^1([-\pi,\pi])} = \int_{-\pi}^{\pi} |F(x,t)| dx dt \le ||f||_1 \cdot ||g||_1$$

2.
$$f * g = g * f$$

3.
$$C_k(f * g) = 2\pi C_k(f)C_k(g)$$
.

Доказательство.

$$C_k(f*g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(s)g(t-s)dse^{-ikt}dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s)e^{-iks} \left(\int_{-\pi}^{\pi} g(t-s)e^{-ik(t-s)}dt \right) ds = C_k(f) \cdot 2\pi \cdot C_k(g)$$

Теорема 16.0.3 (признак локализации Римана). $\exists f, g \in L^1_{2\pi} \quad x \in \mathbb{R} \ \text{И} \ \exists \ \text{окретсность} \ V(x)$:

$$f|_{V(x)} = g|_{V(x)} \Longrightarrow$$

Ряд Фурье f и g "ведут себя" в таких x одинаково (Если сходится один, схоится другой и в случае сходимости суммы ряда – совпадают)

Эквивалентно $h \in L^1_{2\pi}$ $h\mid_{V(x)} \equiv 0 \implies S(x_0) = 0$ S – сумма ряда Фурье

Доказательство. $S_n(x_0) = h * D_n = \ldots = \int_{[-\pi,\pi]\setminus[-\delta,\delta]} \frac{h(t)}{2\pi\sin\frac{t}{2}}\sin\frac{(2n+1)t}{2}$

Тогда по теореме Римана-леюега $S_n(x_0) \to 0, n \to \infty$ (теорема применима, потому что $\frac{h(t)}{2\pi\sin\frac{t}{n}}$ ограничена $C_{\delta} \cdot h(t)$, а потому суммируема)

Утверждение 16.0.2 (Признак Дини). Пусть $f \in L^1_{2\pi}$, $x \in \mathbb{R}$, $s \in \mathbb{C}$. Если $\int_{-\pi}^{\pi} \frac{|f(x+t)+f(x-t)-2S|}{z} < +\infty$, то в т.к. ряде Фурье (по эксп. системе или по тригонаметрической) сходится к S, то есть S(x) = S.

Доказательство.

$$S_{n}(x) - S = \int_{-\pi}^{\pi} f(x-t)(D)_{n}(t)dt - s \cdot \int_{-\pi}^{\pi} \mathcal{D}_{n}(t)dt = \int_{-\pi}^{\pi} (f(x-t) - S) \mathcal{D}_{n}(t)dt =$$

$$= S_{n}(x) - S = \int_{-\pi}^{\pi} \left(\frac{f(x+t) + f(x-t) - 2S}{2} \right) \mathcal{D}_{n}(t)dt = \int_{-\pi}^{\pi} \phi(t) \sin \frac{2n+1}{2} dt.$$

$$|\phi| = \left| \frac{f(x+t)f(x-t) - 2S}{2} \right| \cdot \left| \frac{1}{2\pi \sin \frac{t}{2}} \right| \leqslant \pi \cdot \frac{|\phi(t)|}{t} \in L^{1}([-\pi, \pi]) \implies$$

по теореме Римана-Лебега

Следствие 16.0.3.1. $f \in L^1_{2\pi}$ $x \in \mathbb{R}$ и существуют 4 конечных предела $f(x \pm 0)$ и $\lim_{t \to 0^+} \frac{f(x+t) - f(x \pm 0)}{t}$ Тогда ряд фурье в таких x сходится к $S(x) = \frac{f(x+0) + f(x-0)}{2}$

Следствие 16.0.3.2. Если f дифферецнируема в x, то в таких x ряд Фурье сходится к f(x)

Следствие 16.0.3.3. $f \in C^1_{2\pi} \implies S(x) \equiv f(x)$

Пример. $f(x) = \frac{\pi - x}{2}$ $x \in (0, 2\pi)$

Требуется разлжить в ряд Фурье (по тригонметрической системе), найти сумму ряда $S(x) \quad \forall x \in \mathbb{R}$ $s_{2\pi} - 2\pi$ -периодическое продолжение с отрезка $[0, 2\pi]$. Оно нечётная

$$b_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cdot d(x) \sin kx dx$$

$$= \frac{2}{\pi} \int_0^{\pi} \frac{\pi - x}{2} \sin kx dx$$

$$= \frac{2}{\pi} \left(\frac{-1}{k}\right) \cdot \left(\frac{\pi - x}{2} \cos kx \Big|_0^{\pi} + \frac{1}{2} \int_0^{\pi} \cos kx dx\right)$$

$$= -\frac{2}{\pi k} \left(-\frac{\pi}{2}\right) = \frac{1}{k}$$

$$S(x) = \sum_{k=1}^{\infty} b_k \sin kx = \sum_{k=1}^{\infty} \frac{\sin kx}{k}$$

$$f(x) = S(x) \quad x \in (2\pi k, 2\pi k + \pi)$$

$$S(0) = S(2\pi k) = \frac{f(0+0) + f(0-0)}{2} = 0$$

 $\sum C_k e^{ikx} = \sum C_k z^k$

Теорема 16.0.4 (Суммирование с помощью средних (по Фейеру)).

$$\sigma(n) = \frac{1}{n+1} \sum_{k=0}^{n} S_k(x)$$

где $S_k(x) - k$ -ая частичная сумма ряда Фурье по экпонентам.

Замечание (теорема Коши). Если $S_n((x) \to S, \text{ то } \sigma(n) \to S$ (Теорема Штольца: $\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} \iff y_n \uparrow, y_n > 0$) $y_n = n+1$ $a_n z^n x_n = \sum_{k=0}^n S_k$

Теорема 16.0.5. 1.
$$f \in C_{2\pi} \implies \sigma(n)(x) \rightrightarrows f(x)$$
 на $[-\pi, \pi]$ 2. $f \in L^1_{2\pi} \implies \sigma(n)(x) \to f$ по норме $\|\cdot\|_1$

Следствие 16.0.5.1 (Тригонометрические многочлены). Плотны в $L^1([-\pi,\pi])$ $\mathcal{L}in\left\{e^{-ikx}\right\}_{k\in\mathbb{Z}}$ плотно в $L^1([-\pi,\pi])$ (и в L^2)

Следствие 16.0.5.2. $\left\{e^{ikx}\right\}_{k\in\mathbb{Z}}, \left\{\cos kx\right\}_{k\in\mathbb{Z}_+} \cup \left\{\sin kx\right\}_{k\in\mathbb{N}}$ — базисы в L^2

Утверждение 16.0.3. 1. Тригонометрические и экспоненциальные ряды Фурье (даже расходящиеся) допускают почленное интегрирование.

2. Если $\int_{-\pi}^{\pi} f(x) dx = 0$ $f \in L^1$ $F(x) = \int_{0}^{x} d(t) dt$ Тогда ряд Фурье для f(x) равен формальной произодной ряда Фурье функции F(x)