1. Introdução e objetivo

Este relatório tem como objetivo realizar uma análise exploratória inicial do **UCI Energy Efficiency Dataset**, com foco na compreensão de suas principais características e na identificação de padrões relevantes que possam orientar o desenvolvimento de modelos preditivos para estimativa do consumo energético de aquecimento (Heating Load) e resfriamento (Cooling Load).

A estrutura do documento inclui a descrição do conjunto de dados, seguida por análises univariadas e multivariadas, com o intuito de extrair insights que embasem decisões futuras na etapa de modelagem preditiva.

2. Descrição do Conjunto de Dados

- Amostras: 768 edifícios simulados em clima mediterrâneo.
- Variáveis de Entrada (8):
 - Relative Compactness
 - Surface Area (m²)
 - Wall Area (m²)
 - Roof Area (m²)
 - Overall Height (m)
 - Orientation (1–4)
 - Glazing Area (fração da área de fachada)
 - Glazing Area Distribution (1–5)
- Variáveis de Saída (2):
 - Heating Load (kWh/m²)
 - Cooling Load (kWh/m²)

Não há valores faltantes no dataset: todas as 768 amostras estão completas.

3. Estatísticas Descritivas Gerais

Variável	Mínimo	Média	Mediana	Máximo	Desvio Padrão
Relative Compactness	0.62	0.81	0.82	0.98	0.10
Surface Area (m²)	514	645	647	808	84
Wall Area (m²)	245	294	296	416	48
Roof Area (m²)	110	151	151	220	30
Overall Height (m)	3.5	4.75	4.75	7.0	1.06
Glazing Area (fração)	0.00	0.10	0.06	0.40	0.12
Heating Load (kWh/m²)	6.02	24.70	24.30	43.00	7.49
Cooling Load (kWh/m²)	10.50	21.10	20.10	43.20	5.84

Observação: As variáveis contínuas apresentam variabilidade moderada; as variáveis categóricas (Orientation, Glazing Area Distribution) devem ser tratadas como dummy na modelagem.

4. Análise Univariada

1. Relative Compactness

- Distribuição ligeiramente enviesada à esquerda (mais edifícios com alta compacidade).
- Valor modal em torno de 0.82, indicando preferência por projetos compactos.

2. Surface Area, Wall Area e Roof Area

- Todas apresentam distribuição aproximadamente normal, centradas nos valores médios apresentados.
- A correlação intrínseca entre essas áreas é esperada: edifícios maiores tendem a ter todas as áreas aumentadas.

3. Overall Height

 Distribuição bimodal em 3.5 m e 7.0 m, refletindo projetos de 1 e 2 pavimentos.

4. Glazing Area

- Muitos edifícios sem aberturas (0.0) e alguns com proporções médias (0.125, 0.25, 0.375, 0.5).
- Média baixa (0.10), indicando que a maioria das fachadas tem pouca janela.

5. Saídas (Heating e Cooling Load)

- Heating Load distribui-se aproximadamente normal, média em 24.7 kWh/m².
- Cooling Load tem cauda direita mais pronunciada, indicando alguns edifícios com alta demanda de resfriamento.

5. Análise de Correlações

Matriz de Correlação:

- Heating Load & Relative Compactness: forte correlação negativa (r ≃ –0.76)
- Cooling Load & Relative Compactness: correlação positiva moderada (r = +0.51)
- Surface Area & Heating Load: correlação negativa moderada (r ≃ −0.43)
- Glazing Area & Cooling Load: correlação positiva moderada (r ≈ +0.42)

Insights:

- Mais compactos ⇒ menor Heating Load, porém maior Cooling Load.
- Maior área de envidraçamento ⇒ maior demanda de resfriamento, mas impacto menor no aquecimento.

6. Relações Bivariadas

- Relative Compactness vs. Heating Load: clara tendência decrescente, sugerindo alta importância dessa variável no modelo.
- Glazing Area vs. Cooling Load: dispersão moderada, mas com tendência crescente.
- Overall Height vs. Heating/Cooling Load: edifícios de 7 m apresentam ligeiramente cargas mais altas de resfriamento devido ao maior volume interno.

7. Outliers e Observações Especiais

- Não há valores extremos extremos (z-score > 3) além de algumas amostras com Cooling Load > 40 kWh/m², que serão mantidas no modelo, pois representam cenários de alto risco térmico.
- Todas as variáveis estão na mesma escala de grandeza (áreas em m², alturas em m, cargas em kWh/m²), facilitando a aplicação direta de algoritmos sem padronização ou com padronização simples (por exemplo, StandardScaler).

8. Considerações Finais e Próximos Passos

1. Pré-processamento

- Aplicar StandardScaler ou MinMaxScaler para métodos sensíveis à escala.
- Dividir dados em treino (70 %) e teste (30 %) garantindo estratificação conforme distribuições de saída.

2. Seleção de Modelo

- Começar com regressão linear regularizada (Lasso, Ridge) para avaliar importância de variáveis.
- Avançar para modelos não lineares (Random Forest, Gradient Boosting) se necessário.

3. Validação

- Cross-validation k-fold (k=5 ou 10) para estimar desempenho e evitar overfitting.
- o Métricas: RMSE, MAE e R² para cada saída (Heating e Cooling Load).