Machine Learning II: Fractal 3

Rajendra Nagar

Assistant Professor Department of Electircal Engineering Indian Institute of Technology Jodhpur http://home.iitj.ac.in/~rn/

October 31, 2021

1/16

Variational Auto-encoders

Realization of Variational Auto-encoders using NNs

So far we have considered only abstract representations of $p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})$, $q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})$, and $q(\mathbf{z})$. Let us assume that $p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{x}|\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{z}})$, $q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}})$ and $q(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

Rajendra Nagar ML-2 Fractal 3: Class 3 October 31, 2021 3/16

Realization of Variational Auto-encoders using NNs

Now, consider the ELBO function $\mathbb{E}_{\mathbf{z} \sim q_z} \left[\log \left(p(\mathbf{x} | \mathbf{z}) \right) \right]$ and use $p_{\boldsymbol{\theta}}(\mathbf{x} | \mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{x} | \mathbf{z}}, \sigma_1^2 \mathbf{I})$.

Then, the ELBO function becomes:

$$\begin{split} \mathbb{E}_{\mathbf{z} \sim q_z} \left[\log \left(p(\mathbf{x} | \mathbf{z}) \right) \right] &= & \mathbb{E}_{\mathbf{z} \sim q_z} \left[\log \left(\mathcal{N}(\boldsymbol{\mu}_{\mathbf{x} | \mathbf{z}}, \sigma_1^2 \mathbf{I}) \right) \right] \\ \log \left(\mathcal{N}(\boldsymbol{\mu}_{\mathbf{x} | \mathbf{z}}, \sigma_1^2 \mathbf{I}) \right) &= & -\frac{1}{2\sigma_1^2} \|\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x} | \mathbf{z}} \|_2^2 + \text{const.} \\ \mathbb{E}_{\mathbf{z} \sim q_z} \left[\log \left(p(\mathbf{x} | \mathbf{z}) \right) \right] &= & -\frac{1}{2\sigma_1^2} \mathbb{E}_{\mathbf{z} \sim q_z} \left[\|\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x} | \mathbf{z}} \|_2^2 \right] \\ &\Rightarrow & \text{Reconstruction loss.} \end{split}$$

Realization of Variational Auto-encoders using NNs

Our goal is to maximize the ELBO function $\mathbb{E}_{\mathbf{z} \sim q_z} [\log{(p(\mathbf{x}|\mathbf{z}))}]$ such that $q_{\phi}(\mathbf{z}|\mathbf{x})$ is as close as possible to $q(\mathbf{z})$. That is, we have to minimize $D_{\mathsf{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||q(\mathbf{z}))$. Now, use $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}})$ and $q(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$.

$$\begin{aligned} D_{\mathsf{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| q(\mathbf{z})) &= D_{\mathsf{KL}}(\mathcal{N}(\boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}}) \| \mathcal{N}(\mathbf{0}, \mathbf{I})) \\ &= \frac{1}{2} \sum_{i=1}^{k} \left(\boldsymbol{\mu}_{i}^{2} + \sigma_{i}^{2} - 1 - \log_{e}(\sigma_{i}^{2}) \right) \end{aligned}$$

Rajendra Nagar

Sampling makes our life difficult

In order to find the optimal weights of the network, we have to find the gradient of the loss function with respect to the parameters ϕ and $\theta.$ Let us consider finding the gradient of ELBO function $\mathbb{E}_{\mathbf{z}\sim q_z} \ [\log \left(p(\mathbf{x}|\mathbf{z})\right)].$ We can easily find the gradient of ELBO w.r.t. θ as

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{z} \sim q_z} \left[\log \left(p(\mathbf{x} | \mathbf{z}) \right) \right] = \mathbb{E}_{\mathbf{z} \sim q_z} \left[\nabla_{\boldsymbol{\theta}} \log \left(p(\mathbf{x} | \mathbf{z}) \right) \right].$$

However, here we observe that \mathbf{z} and $\log\left(p(\mathbf{x}|\mathbf{z})\right)$ are functions of $\boldsymbol{\phi}$. Therefore, finding $\nabla_{\boldsymbol{\phi}}\mathbb{E}_{\mathbf{z}\sim q_z}\left[\log\left(p(\mathbf{x}|\mathbf{z})\right)\right]$ is not easy as we can not take gradient inside the expectation and this is stochastic gradient.

Rajendra Nagar

Re-parametrization Trick to rescue us

Let ϵ be a random variable such that $\epsilon \sim \mathcal{N}(0,1)$ and let μ and σ be two constants. Now, let us define a random variable z as $z=\mu+\epsilon\sigma$. Then, find the distribution of the random variable z.

$$\begin{split} \mathbb{E}[z] &= \mathbb{E}[\mu + \epsilon \sigma] \\ &= \mathbb{E}[\mu] + \mathbb{E}[\epsilon \sigma] \\ &= \mu + \sigma \mathbb{E}[\epsilon] \\ &= \mu \\ \mathrm{var}(z) &= \mathrm{var}(\mu + \epsilon \sigma) \\ &= \mathrm{var}(\mu) + \mathrm{var}(\epsilon \sigma) \\ &= 0 + \sigma^2 \mathrm{var}(\epsilon) \\ &= \sigma^2 \\ z &\sim \mathcal{N}(\mu, \sigma^2). \end{split}$$

Kingma and Welling 2014

Murphy 2021

Previously on Generative Models

Problem Statement

- Given a dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ containing samples drawn from an unknown data distribution $p_{\mathsf{data}}(\mathbf{x})$, learn a distribution $p_{\mathsf{model}}(\mathbf{x})$ that is close as possible to the true distribution $p_{\mathsf{data}}(\mathbf{x})$.
- lacktriangle Draw new samples from the distribution p_{data} by using its approximation p_{model} .

Variational Autoencoders

 $\max \, \mathbb{E}_{\mathbf{z} \sim q_z} \left[\log \left(p_{\boldsymbol{\theta}}(\mathbf{x} | \mathbf{z}) \right) \right] \, \text{such that} \, \, q_{\boldsymbol{\phi}}(\mathbf{z} | \mathbf{x}) = q(\mathbf{z}).$

Today on Generative Models

Problem Statement

- Given a dataset $\{x_1, x_2, \dots, x_n\}$ containing samples drawn from an unknown data distribution $p_{data}(\mathbf{x})$, learn a distribution $p_{model}(\mathbf{x})$ that is close as possible to the true distribution $p_{data}(\mathbf{x})$.
- Draw new points from p_{data} by using its approximation p_{model} .

Generative Adversarial Networks

- Our ultimate goal is to draw new samples from the distribution p_{data} .
- Is it necessary to learn p_{model} that approximate p_{data} ?
- Can we draw points from p_{model} without explicitly learning p_{model} ?
- Generative Adversarial Networks [Goodfellow et al. 2014] enables us to draw new samples from p_{data} without explicitly learning p_{model} .
- Hence, circumvent maximization of the log-likelihood.

Generative Adversarial Networks

Modified Problem Statement: Given a dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ containing samples drawn from an unknown data distribution $p_{\mathsf{data}}(\mathbf{x})$, draw new samples from p_{data} with explicitly modeling p_{model} .

Solution:

- Let z be a latent variable with prior distribution p(z).
- Draw a sample z from p(z) and feed it to a Generator network G.
- Let us assume that the generator G models a distribution p_G .
- Then, the output $G(\mathbf{z})$ is a sample from the generator distribution p_G .
- We want $P_G = p_{\text{data}}$ after learning the weights of the network G.

Generative Adversarial Networks: A Minimax Game

- Discriminator wants $D(\mathbf{x}) = 1$ for real samples.
- Discriminator wants $D(G(\mathbf{z})) = 0$ for fake samples.
- Generator wants $D(G(\mathbf{z})) = 1$ for fake samples.

$$\min_{G} \max_{D} \left(\mathbb{E}_{\mathbf{x} \sim p_{ ext{data}}} \left[\log D(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim p(z)} \left[\log (1 - D(G(\mathbf{z}))) \right] \right)$$
D wants $D(\mathbf{x}) = 1$ for real point D wants $D(G(\mathbf{z})) = 0$ for fake point

Generative Adversarial Networks: A Minimax Game

Jointly train generator ${\cal G}$ and discriminator ${\cal D}$ with a minimax game.

$$\min_{G} \max_{D} \left(\mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p(z)}[\log(1 - D(G(\mathbf{z})))] \right)$$

Since at the start of the training generator is very poor the discriminator can easily outperform the generator. Hence, $D(G(\mathbf{z})) \approx 0 \Rightarrow \log(1 - D(G(\mathbf{z}))) \approx 0$. Therefore, the gradient will be almost zero initially.

To overcome this vanishing gradient issue, we can minimize the function $-\log(D(G(\mathbf{z})))$ instead of $-\log(1-D(G(\mathbf{z})))$.

Generative Adversarial Networks: Optimality Analysis

Jointly train generator G and discriminator D with a minimax game.

$$\min_{G} \max_{D} \left(\mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p(z)}[\log(1 - D(G(\mathbf{z})))] \right)$$

We want to verify that global minimum of this game occurs at $p_G = p_{\mathsf{data}}$.

$$\begin{aligned} & \min_{G} \max_{D} \left(\mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p(z)}[\log(1 - D(\boldsymbol{G}(\mathbf{z})))] \right) \\ &= & \min_{G} \max_{D} \left(\mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{x} \sim p_{G}}[\log(1 - D(\mathbf{x}))] \right) \end{aligned}$$

$$= \min_{G} \max_{D} \int_{\mathbf{x}} \left(p_{\mathsf{data}}(\mathbf{x}) [\log D(\mathbf{x})] + p_{G}(\mathbf{x}) [\log (1 - D(\mathbf{x}))] \right) d\mathbf{x}$$

$$= \min_{G} \int_{\mathbf{x}} \max_{D} \left(p_{\mathsf{data}}(\mathbf{x}) [\log D(\mathbf{x})] + p_{G}(\mathbf{x}) [\log (1 - D(\mathbf{x}))] \right) d\mathbf{x}$$

Generative Adversarial Networks: Optimality Analysis

Consider the problem of finding the point of maximum of the function $f(t) = \frac{a}{a} \log(t) + \frac{b}{b} \log(1-t)$. Here $t, a, b \in [0, 1]$.

$$f(t) = a \log(t) + b \log(1 - t)$$

$$\frac{df}{dt} = \frac{a}{t} - \frac{b}{1 - t} = 0$$

$$t = \frac{a}{a + b}.$$

Now, consider the main problem :

$$\max_{D} \left(p_{\mathsf{data}}(\mathbf{x}) [\log D(\mathbf{x})] + p_{G}(\mathbf{x}) [\log(1 - D(\mathbf{x}))] \right)$$

The optimal discriminator $D^{\star}(\mathbf{x}) = \frac{p_{\mathsf{data}}(\mathbf{x})}{p_{\mathsf{data}}(\mathbf{x}) + p_G(\mathbf{x})}$

◆ロト→団ト→豆ト→豆ト 豆 めの()