Digital Design IE1204

F3 CMOS-kretsen, Implementeringsteknologier

william@kth.se

IE1204 Digital Design

Föreläsningar och övningar bygger på varandra! Ta alltid igen det Du missat! Läs på i förväg – delta i undervisningen – arbeta igenom **igen** efteråt!

Detta har hänt i kursen ...

Talsystem: Decimala, hexadecimala, oktala, binära

$$(175,5)_{10} = (AE.8)_{16} = (256.4)_8 = (10101110.1)_2$$

AND OR NOT EXOR EXNOR Sanningstabell, mintermer Maxtermer PS-form SP-form deMorgans lag Bubbelgrindar Fullständig logik NAND NOR

Transistorn en omkopplare utan rörliga delar

Varför CMOS?

- CMOS-Transistorer är enkla att tillverka
- CMOS-Transistorer är gjorda av vanlig sand => billigt råmaterial
- En transistor är lätt att få att fungera som en switch (omkopplare)

P och N MOS-transistorer

Strukturen av en CMOS-krets

Inverteraren

En CMOS-krets består av både PMOS och NMOS-kretsar. CMOS står för (Complementary MOS).

X	T_1 T_2	f
0	on off	1
1	off on	0

(a) Circuit

(b) Truth table and transistor states

Area: $A_{inverter} = 2$ Transistors

Inverteraren

En CMOS-krets består av både PMOS och NMOS-kretsar. CMOS står för (Complementary MOS).

X	T_1 T_2	f
0	on off	1
1	off on	0

(a) Circuit

(b) Truth table and transistor states

Area: $A_{inverter} = 2$ Transistors

Inverteraren

En CMOS-krets består av både PMOS och NMOS-kretsar. CMOS står för (Complementary MOS).

х	T_1 T_2	f
0	on off	1
1	off on	0

(a) Circuit

(b) Truth table and transistor states

Area: $A_{inverter} = 2$ Transistors

William Sandqvist william@kth.se

CMOS-inverterarens spänningsnivåer

William Sandqvist william@kth.se

Typiska signalnivåver för CMOS

Utgångsspänningar V_{O} och ingångsspänningar V_{I} passar varandra som 'hand i handske'', och med marginal!

Matningsspänning	5.0V	3.3V	1.8V
V_{HMAX}	5.0	3.3	1.8
V_{IHMIN}	2.9	1.9	1.0
V_{LMAX}	2.1	1.4	0.8
V_{LMIN}	0.0	0.0	0.0

En instabil punkt!

- CMOS-kretsen har en mycket stabil överföringsfunktion
- Vid $V_{in}=V_{DD}/2$ finns en instabil punkt, då både T_1 och T_2 leder.
- Om en krets tillfälligt fastnar i detta läge så inträder ett tillstånd som kallas för metastabilitet.
- Om detta tillstånd varar för länge så kan transistorerna i kretsen skadas pga den höga strömmen.

Vi återkommer till metastabilitet ...

CMOS - Dynamisk förlusteffekt!

Klassisk CMOS har *bara* förlusteffekt precis vid *omslaget*. Förlusteffekten P_F blir proportionell mot klockfrekvensen!

V _A	V _B	Vo
V _{SS} (0)	V _{SS} (0)	
V _{SS} (0)	V _{DD} (1)	
V _{DD} (1)	V _{SS} (0)	
V _{DD} (1)	V _{DD} (1)	

V _A	V_{B}	Vo
V _{SS} (0)	V _{SS} (0)	V _{DD} (1)
V _{SS} (0)	V _{DD} (1)	
V _{DD} (1)	V _{SS} (0)	
V _{DD} (1)	V _{DD} (1)	

V _A	V _B	Vo
V _{SS} (0)	V _{SS} (0)	V _{DD} (1)
V _{SS} (0)	V _{DD} (1)	V _{DD} (1)
V _{DD} (1)	V _{SS} (0)	
V _{DD} (1)	V _{DD} (1)	

V _A	V _B	Vo
V _{SS} (0)	V _{SS} (0)	V _{DD} (1)
V _{SS} (0)	V _{DD} (1)	V _{DD} (1)
V _{DD} (1)	V _{SS} (0)	V _{DD} (1)
V _{DD} (1)	V _{DD} (1)	

V _A	V _B	Vo
V _{SS} (0)	V _{SS} (0)	V _{DD} (1)
V _{SS} (0)	V _{DD} (1)	V _{DD} (1)
V _{DD} (1)	V _{SS} (0)	V _{DD} (1)
V _{DD} (1)	V _{DD} (1)	V _{SS} (0)

NAND-grinden

V _A	V _B	Vo
V _{SS} (0)	V _{SS} (0)	V _{DD} (1)
V _{SS} (0)	V _{DD} (1)	V _{DD} (1)
V _{DD} (1)	V _{SS} (0)	V _{DD} (1)
V _{DD} (1)	V _{DD} (1)	V _{SS} (0)

Area: A_{NAND} = 4 Transistors

AND-grinden!

Area: A_{AND}= 6 Transistors!

NOR-grinden

V _A	V_{B}	V _{OH}
V _{SS} (0)	V _{SS} (0)	V _{DD} (1)
V _{SS} (0)	V _{DD} (1)	V _{SS} (0)
V _{DD} (1)	V _{SS} (0)	V _{SS} (0)
V _{DD} (1)	V _{DD} (1)	V _{SS} (0)

Area: A_{NOR} = 4 Transistors

Negativ logik?

- Man kan också vända på begreppen och låta L
 (låg spänning) representera en logisk 1:a och låta
 H (hög spänning) representera en logisk 0:a.
 - Detta kallas för negativ logik.
- En AND-funktion blir då en OR-funktion och vice versa.
 - Negativ logik eller positiv logik är egentligen egalt, men av tradition använder man sig av positiv logik.

Three-state?

A— V C— Y

En CMOS-grind kan förutom "1" eller "0" även förses med ett *tredje* utgångstillstånd – **Three-state** "Z" (= frånkopplad utgång).

Om många utgångar kopplas ihop till **samma tråd** ("buss") så kan ju bara *en* av utgångarna åt gången få vara aktiv. De övriga hålls i Threestatetillståndet.

Three-state?

A Three state

OF INTERIOR TO THE STATE TO T

En CMOS-grind kan förutom "1" eller "0" även förses med ett *tredje* utgångstillstånd – **Three-state** "Z" (= frånkopplad utgång).

Om många utgångar kopplas ihop till **samma tråd** ("buss") så kan ju bara *en* av utgångarna åt gången få vara aktiv. De övriga hålls i Threestatetillståndet.

Three-state?

En CMOS-grind kan förutom "1" eller "0" även förses med ett *tredje* utgångstillstånd – **Three-state** "Z" (= frånkopplad utgång).

Om många utgångar kopplas ihop till **samma tråd** ("buss") så kan ju bara *en* av utgångarna åt gången få vara aktiv. De övriga hålls i Threestatetillståndet.

Three state 'Z' EN-ΕN "1" "1" ΕN EΝ Connected Unconnected inverter inverter

Three state

William Sandqvist william@kth.se

"0" GND

"0" GND

Transmissionsgrinden (Pass gate)

Utan att gå in på kretsdetaljerna så består en transmissionsgrind av en PMOS-transistor i **parallell** med en NMOS-transistor. Grinden styrs med E (och E') och är då att jämföra med en "vanlig" kontakt. En signal kan gå från A till Q, men även baklänges från Q till A. Transmissionsgrindskopplingar utnyttjar färre transistorer än andra grindar, men har sämre drivförmåga.

Area: A_{TG} = 2 Transistors

(Transmissionsgrinden)

William Sandqvist william@kth.se

(Transmissionsgrinden)

(Inside story)

Transmission gate **ON**, both transistors are in parallell and contribute to the low On resistance of the switch.

The switch will work in both directions!

William Sandqvist william@kth.se

Vad är en multiplexor, MUX?

En multiplexor är en dataväljare.

Förenklat ritsätt

Exempel: MUX

Av inverteraren blir endast ringen kvar. Mellanliggande ledningar underförstås.

MUX med transmissionsgrind

Area: A_{mux}= 6 Transistors

MUX med transmissionsgrind

Area: A_{mux} = 6 Transistors

MUX med transmissionsgrind

Area: A_{mux} = 6 Transistors

XOR med transmissionsgrind

Area: A_{XOR} = 8 Transistors

Knappast självklart?

(XOR med transmissionsgrind)

Fördröjningar i kretsar

Alla ledningar i elektronikkretsar har kapacitans. Det tar ett tag för spänningar att nå slutvärdet. Dessa fördröjningar *i* kretsar och *mellan* kretsar begränsar snabbheten.

Typiska fördröjningar

NAND, NOR, NOT T NAND=standard T

NOT ½ T, 1T (om NAND-grind)

NAND-NAND 2T (2 NAND i rad)

AND-OR 4T, 3T (NAND-NOT+NOR-NOT)

XOR,XNOR,MUX 3...5T

XOR, MUX (med TG) 2T

Optimerade strukturer för MUX

Area: $A_{MUX} = 2+6+6+6=20$

Transistorer

Delay: $T_{MUX} = 5T_{NAND}$

Area: A_{MUX} = 6 Transistorer

Delay: T_{MUX}= ~2T_{NAND}

Area: $A_{MUX} = 2 + 4 + 4 =$

= 10 Transistorer

Delay: $T_{MUX} = 3T_{NAND}$

Optimerade strukturer för XOR

Area: $A_{XOR} = 2 + 2 + 6 + 6 + 6 = 22$

Transistorer

Delay: T_{XOR}=5T_{NAND}

Nand only

Area: $A_{XOR} = 4 + 4 + 4 + 4 = 16$

Transistorer

Delay: $T_{XOR} = 3T_{NAND}$

DeMorgan

Area: $A_{XOR} = 2 + 2 + 4 + 4 = 12$

Transistorer

Delay: $T_{XOR} = 3T_{NAND}$

Area: A_{XOR}=8 Transistorer

Delay: T_{XOR}=~2T_{NAND}

Fan-out och Fan-in

Fan-out - en utgång driver många ingångar.
 Utgången lastas ned med summan av ingångarnas kapacitanserna => fördröjningen
 T blir last-beroende.

 Fan-in - en grind har många ingångar. Detta medför att den har fler inre kapacitancer => den inre fördröjningen T_i (även kallad den intrinsiska fördröjningen) blir större.

Grindar med flera ingångar

Man använder sällan grindar med fler än **fyra** ingångar.

Lång rad av seriekopplade transistorer ger långsam funktion! Spänningsdelning. Låg spänning över varje transistor

3-input NAND

Bara en kontakt?

1

William Sandqvist william@kth.se

$$a \cdot b \cdot c = a \cdot (b \cdot c)$$

$$a \cdot b \cdot c \cdot d = (a \cdot b) \cdot (c \cdot d)$$
 $\overline{(a \cdot b)} + \overline{(c \cdot d)} = a \cdot b \cdot c \cdot d$

Till priset av ökat grind-djup (fördröjning)

Fler trädstrukturer

$$a+b+c+d = (a+b)+(c+d)$$

 $a \oplus b \oplus c \oplus d = (a \oplus b) \oplus (c \oplus d)$

 $\overline{a \oplus b \oplus c \oplus d} = \overline{(a \oplus b)} \oplus \overline{(c \oplus d)}$

Till priset av ökat grind-djup (fördröjning), men effekten av inre kapacitanser hade blivit värre.

Kan Du bevisa dessa likheter?

Fan-out

- Antalet grindar som en grind driver betecknas som fan-out
- Alla grindar som drivs ökar den kapacitativa lasten

(a) Inverter that drives *n* other inverters

(b) Equivalent circuit for timing purposes

Fan-out

• Fördröjningen för olika fan-outs

Buffer

- En buffer är en krets som implementerar funktionen f(x) = x (det vill säga ut = in)
- Idén med bufferten är att ökar drivförmågan av kapacitativa laster
 - För att öka drivförmågan så använder man större transistorer
 - Buffrar kan dimensioneras så att de kan driva större strömmar

Hög Fan-out – använd buffer

X	En	f
0	0	Z
0	1	0
1	0	Z
1	1	1

Non-inverting Buffer

High-Fan-Out Buffer

Tri-state Buffer

William Sandqvist william@kth.se

Critical path (den längsta vägen)

$$f = x_0 x_1 \overline{x}_2 + \overline{x}_0 \overline{x}_2 + \overline{x}_1 \overline{x}_2$$

Vilken väg till utgången tar längst tid? $x_0 x_1 x_2$?

"Critical path"

$$f = x_0 x_1 x_2 + x_0 x_2 + x_1 x_2$$

 $x_0 x_1 x_2$ passerar alla var sin NOT, AND, och OR, på vägen mot utgången f, men x_2 belastas av tre ingångar, x_0 och x_1 bara av två. "Critical path" blir x_2 !

Look-up-tables (LUT)

A LUT with *n* inputs can realize all combinational functions with *n* inputs The usual size in an FPGA is *n*=4

Two-input LUT

Ex. XOR-funktion B=1

William Sandqvist william@kth.se

7400-series standard chips

(a) Dual-inline package

(b) Structure of 7404 chip

William Sandqvist william@kth.se

Standardkretsarna används mest som reservdelar

Men många fler än skolorna behöver kretsarna. Det finns många kvar i lager ...

Implementering av en logisk funktion

Hur testar man logiska funktioner?

Man kan koppla upp funktionen och kontrollmäta!

På kopplingsdäck:

Hur testar man logiska funktioner?

Inför laborationerna simulerar vi funktionerna med LTSpice!

$$f = -\frac{1}{1}x_1 + x_2 + x_3 + x_4 + x_5 + x_5$$

Kommer Du ihåg? Trevägs ljuskontroll

Brown/Vranesic: 2.8.1

Antag att vi behöver kunna tända/släcka vardagsrummet från tre olika ställen. x_1 x_2 x_3

Trevägs ljuskontroll x_2

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} - f$$

$$f = \sum m(1,2,4,7) = \overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$$

(a) Sum-of-products realization

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Du måste skriva dit pinn-nummer i schemat – annars kommer

William Sandqvist william@kth.se

På kopplingsdäck

Simulera sanningstabellen

x_1	x_2	x_3	f
$\frac{n_1}{0}$	$\frac{v_2}{0}$	0	$\frac{1}{0}$
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Något som Du vill fråga om?

Sammanfattning

- Logiska grindar kan implementeras med CMOS-teknologin
- CMOS-kretsar har en f\u00f6rdr\u00f6jning
- CMOS-kretsar förbrukar relativ lite effekt

Facebooks serverhall i Luleå

Driften av de tusentals servrarna slukar enorma mängder energi. Fullt utbyggd kräver anläggningen **120 MW**, mer än SSAB:s stålverk!

Hur skulle världen vara utan CMOS?

