## Marco Flores Cs231 A3 May 6 2019

1)

| х | у | z | а | b | С |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 |



a = xz+xy+yz

b = xy'z'+x'yz'+xyz+x'y'z

C = Z'



## \*2) flip bits then add one.



3) We can derive a truth table with the given equation Q'(t+1) = J'Q' + KQ and compare if it is the same as Q'(t+1) from a JK flip flop Since we know the jk truth table is

| J | К | Q(t+1) | Q'(t+1) |
|---|---|--------|---------|
| 0 | 0 | Q      | Q'      |
| 0 | 1 | 0      | 1       |
| 1 | 0 | 1      | 0       |
| 1 | 1 | Q'     | Q       |

| J | К | Q | Q'(t+1) | Same as JK? Yes                                        |
|---|---|---|---------|--------------------------------------------------------|
| 0 | 0 | 0 | 1       | J=0 K=0 Q=0 then Q' which is the same as Q'(t+1), True |
| 0 | 0 | 1 | 0       | J=0 K=0 Q=1 then Q' which is the same as Q'(t+1), True |
| 0 | 1 | 0 | 1       | J=0 K=1 Q=0 then 1 which is the same as Q'(t+1), True  |
| 0 | 1 | 1 | 1       | J=0 K=1 Q=1 then 1 which is the same as Q'(t+1), True  |
| 1 | 0 | 0 | 0       | J=1 K=0 Q=0 then 0 which is the same as Q'(t+1), True  |
| 1 | 0 | 1 | 0       | J=1 K=0 Q=1 then 0 which is the same as Q'(t+1), True  |
| 1 | 1 | 0 | 0       | J=1 K=1 Q=0 then Q which is the same as Q'(t+1), True  |
| 1 | 1 | 1 | 1       | J=1 K=1 Q=1 then Q which is the same as Q'(t+1), True  |

Since Q'(t+1) derived from the equation is the same as Q'(t+1) from a JK flip flop for all cases of J,K, and Q then Q'(t+1) = J'Q' + KQ is the characteristic equation for the complement output of a JK flip flop.

4a)



| х | у | A(t) | B(t) | A(t+1) | B(t+1) | z |
|---|---|------|------|--------|--------|---|
| 0 | 0 | 0    | 0    | 0      | 0      | 0 |
| 0 | 0 | 0    | 1    | 0      | 1      | 1 |
| 0 | 0 | 1    | 0    | 0      | 0      | 0 |
| 0 | 0 | 1    | 1    | 0      | 1      | 1 |
| 0 | 1 | 0    | 0    | 1      | 0      | 0 |
| 0 | 1 | 0    | 1    | 1      | 1      | 1 |
| 0 | 1 | 1    | 0    | 1      | 0      | 0 |
| 0 | 1 | 1    | 1    | 1      | 1      | 1 |
| 1 | 0 | 0    | 0    | 0      | 0      | 0 |
| 1 | 0 | 0    | 1    | 0      | 0      | 1 |
| 1 | 0 | 1    | 0    | 1      | 1      | 0 |
| 1 | 0 | 1    | 1    | 1      | 1      | 1 |
| 1 | 1 | 0    | 0    | 0      | 0      | 0 |
| 1 | 1 | 0    | 1    | 0      | 0      | 1 |
| 1 | 1 | 1    | 0    | 1      | 1      | 0 |
| 1 | 1 | 1    | 1    | 1      | 1      | 1 |



5)

## State table:

| A(t) | B(t) | A(t+1) | B(t+1) | Та | Tb |
|------|------|--------|--------|----|----|
| 0    | 0    | 0      | 1      | 0  | 1  |
| 0    | 1    | 1      | 0      | 1  | 1  |
| 1    | 0    | 0      | 0      | 1  | 0  |
| 1    | 1    | 0      | 0      | 1  | 1  |

## State Diagram:



6a)

| х | A(t) | B(t) | A(t+1) | B(t+1) | Ja | Ka | Jb | Kb |
|---|------|------|--------|--------|----|----|----|----|
| 0 | 0    | 0    | 0      | 0      | 0  | 1  | 0  | 0  |
| 0 | 0    | 1    | 0      | 1      | 0  | 0  | 0  | 0  |
| 0 | 1    | 0    | 0      | 0      | 0  | 1  | 0  | 1  |
| 0 | 1    | 1    | 1      | 0      | 0  | 0  | 0  | 1  |
| 1 | 0    | 0    | 1      | 1      | 1  | 1  | 1  | 0  |
| 1 | 0    | 1    | 1      | 1      | 1  | 0  | 1  | 0  |
| 1 | 1    | 0    | 0      | 1      | 1  | 1  | 1  | 1  |
| 1 | 1    | 1    | 1      | 0      | 1  | 0  | 1  | 1  |



$$A(t+1)=xA'+AB$$

$$B(t+1)=xB'+A'B$$

6b)

