Amendments to the claims

Claim 1.

(Currently amended)

A sensor node comprising:

at least one processor;

at least one energy source;

a multiple-mode radio frequency modem operable to transmit on multiple channels; and

at least one substrate coupled among the at least one processor, the [[and]]at least one

energy source, and the multiple-mode frequency modem, and further comprising at least one

antenna incorporated in or carried on the at least one substrate,

wherein the at least one substrate comprises [[is]] at least one sensor,

wherein transmission on the multiple channels allows the sensor node to

simultaneously join multiple clusters of a network, and

wherein each of the clusters comprises a respective base node that can

communicate with one or more sensor nodes within a range of the base node.

wherein functions of the sensor node are remotely controllable and the sensor node is

programmable via wireless internetworking among a plurality of network elements, wherein

the at least one substrate is flexible, and wherein the at least one substrate physically

supports the at least one processor and the at least one energy source.

Claim 2. (Original) The sensor node of claim 1, wherein the at least one

substrate comprises active and passive substrates.

Claim 3.

(Currently amended) The sensor node of claim 2,

McDonnell Boehnen Hulbert & Berghoff LLP 300 South Wacker Drive

Chicago, Illinois 60606 Telephone: (312) 913-0001

Facsimile: (312) 913-0002

wherein the at least one substrate comprises at least one thin film substrate,

wherein the at least one thin film substrate comprises a piezoelectric polymer film, and

wherein the piezoelectric polymer film is polyvinylidenedifloride (PVF₂).

The sensor node of claim 1, wherein the at least one Claim 4. (Original)

substrate is conformal.

Claims 5-8. (Canceled)

(Original) The sensor node of claim 1, further comprising at Claim 9.

least one communication physical layer including radio frequency (RF) power management.

The sensor node of claim 1, wherein the at least one Claim 10. (Original)

processor is coupled to at least one component selected from a group consisting of

actuators, sensors, signal processors, interfaces, power supplies, data storage devices, and

communication devices.

The sensor node of claim 1, wherein the at Claim 11. (Currently amended)

least one sensor comprises at least one sensor selected from a group consisting of passive

sensors, [[and]]active sensors, wherein the passive and active sensors include seismic sensors,

acoustic sensors, optical sensors, infrared sensors, magnetic sensors, thermal sensors,

accelerometers, and bi-static sensors.

McDonnell Boehnen Hulbert & Berghoff LLP 300 South Wacker Drive

Chicago, Illinois 60606 Telephone: (312) 913-0001

Facsimile: (312) 913-0002

Claim 12. (Currently amended) The sensor node of claim 1,

wherein the at least one energy source includes a thin film photovoltaic device, and

wherein the thin film photovoltaic device is an energy source and an optical presence

detection sensor.

Claim 13. (Original) The sensor node of claim 1, wherein the sensor node is

coupled to at least one item selected from a group consisting of machinery components,

electronic equipment, mechanical equipment, electro-mechanical equipment, a facility, a

structure, a material, a biological system, people, animals, vegetation, clothing, crates,

packages, product containers, shipping containers, a transportation system, vehicle components,

an outdoor area, and an indoor area.

Claim 14. (Original) The sensor node of claim 1, wherein the at least one

sensor receives at least one signal type selected from a group consisting of temperature, shock,

vibration, motion, acceleration, tip, light, sound, and package opening and closing.

Claim 15. (Canceled)

Claim 16. (Currently amended) The sensor node of claim 56, [[1,]]

wherein the plurality of network elements comprises a sensor network including at

least one node, [[and]]

wherein the at least one node is coupled among a monitored environment and at

least one client computer,

McDonnell Boehnen Hulbert & Berghoff LLP 300 South Wacker Drive

Chicago, Illinois 60606 Telephone: (312) 913-0001

Facsimile: (312) 913-0002

wherein functions of the at least one node are remotely controllable using the at least one

client computer,

wherein the at least one node provides node information including node resource cost and

message priority to the plurality of network elements, and

wherein data processing is distributed through the sensor network in response to the node

information.

Claim 17. (Canceled)

Claim 18. (Currently amended) The sensor node of claim 56, [[1,]]

wherein the plurality of network elements comprises a sensor network including

at least one node and at least one client computer, [[and]]

wherein the sensor node is coupled to the at least one client computer through the

plurality of network elements,

wherein the at least one node supports at least one communication mode selected from a

group consisting of wireless communications, wired communications, and hybrid wired and

wireless communications, and

wherein at least one redundant communication pathway is established among the plurality

of network elements.

Claim 19. (Canceled)

Claim 20.

(Currently amended)

The sensor node of claim 56, [[1,]]

McDonnell Boehnen Hulbert & Berghoff LLP 300 South Wacker Drive Chicago, Illinois 60606

Telephone: (312) 913-0001

Facsimile: (312) 913-0002

wherein the plurality of network elements comprises at least one network, [[and]]
wherein the at least one network includes a network selected from the group consisting of
a wired network[[s]], a wireless network[[s]], and a hybrid wired and wireless
network[[s]], and

wherein the at least one network comprises at least one network selected from a group consisting of comprising—the Internet, a local area network[[s]], a wide area network[[s]], a metropolitan area network[[s]], and an information service station[[s]].

Claim 21. (Currently amended) The sensor node of claim 56,[[1,]] wherein the internetworking comprises providing remote accessibility using World Wide Web-based tools to data, code, management, and security functions,

wherein the data includes signals and images,

wherein the code includes signal processing, decision support, and database elements, and

wherein the management includes operation of the plurality of network elements.

Claim 22. (Currently amended) The sensor node of claim 56, [[1,]] wherein the plurality of network elements comprises a plurality of network element sets that are layered.

Claim 23. (Currently amended) The sensor node of claim 56, [[1,]] wherein the plurality of network elements comprises a sensor network including at least one node, [[and]]

wherein the at least one node comprises a plurality of node types,

wherein the plurality of node types includes at least one node of a first type and at least

one node of a second type,

wherein a first network having a first node density is assembled using the at least one

node of a first type,

wherein a second network having a second node density is assembled using the at

least one node of a second type, and

wherein the second network is overlayed onto the first network.

(Currently amended) Claim 24.

The sensor node of claim 56, [[1,]]

wherein the plurality of network elements comprises a sensor network, [[and]]

wherein code and data anticipated for future use are predistributed through the sensor

network using low priority messages, and

wherein the code and the data are downloadable from at least one location selected

from a group consisting of storage devices of the plurality of network elements, and

storage devices outside the sensor network.

Claims 25-26. (Canceled)

Claim 27. (Currently amended) The sensor node of claim 56, [[1,]]

wherein data processing is controlled using at least one processing hierarchy, and

wherein the at least one processing hierarchy controls controlling at least one

event selected from a group consisting of data classifications, data transfers, data queuing,

McDonnell Boehnen Hulbert & Berghoff LLP

300 South Wacker Drive Chicago, Illinois 60606 Telephone: (312) 913-0001

Facsimile: (312) 913-0002

[[,]]data combining, processing locations, <u>and</u> communications among the plurality of network elements.

Claim 28. (Currently amended) The sensor node of claim 56, [[1]],

wherein data is transferred using message packets,

wherein the message packets are aggregated into compact forms in the plurality of network elements using message aggregation protocols, <u>and</u>

wherein the message aggregation protocols are adaptive to data type, node density, message priority, and available energy.

Claim 29. (Currently amended) The sensor node of claim 56, [[1,]]

wherein the plurality of network elements comprises a sensor network including at least one node, and

wherein the functions of the at least one node include data acquisition, data processing, communication, data routing, data security, programming, and node operation.

Claim 30. (Currently amended) The sensor node of claim 56, [[1,]]

wherein the plurality of network elements comprises a sensor network including at least one node, [[and]]

wherein the at least one node includes at least one processor coupled to a plurality of application programming interfaces (APIs),

wherein the plurality of APIs are coupled to control the sensor node and at least one device selected from a group consisting of sensors, actuators, communications devices,

McDonnell Boehnen Hulbert & Berghoff LLP 300 South Wacker Drive Chicago, Illinois 60606 Telephone: (312) 913-0001

Facsimile: (312) 913-0001

signal processors, information storage devices, node controllers, and power supply devices,

wherein the plurality of APIs support remote reprogramming and control of the at least one device, and

wherein the plurality of APIs are layered.

Claim 31. (Currently amended) The sensor node of claim 56, [[30,]]

wherein the plurality of APIs enable distributed resource management by providing network resource information and message priority information to the plurality of network elements, and

wherein information transfer among the plurality of network elements is controlled using a synchronism hierarchy established in response to the resource information and message priority information.

Claim 32. (Currently amended) The sensor node of claim 56, [[1,]]

wherein the plurality of network elements comprises a sensor network including at least one node, and

wherein the at least one node controls data processing and data transmission in response to a probability of a detected event.

Claim 33. (Currently amended) The sensor node of claim 56, [[1,]]

wherein the plurality of network elements comprises a sensor network including at least one node, [[and]]

wherein the plurality of network elements are self-assembling,

McDonnell Boehnen Hulbert & Berghoff LLP 300 South Wacker Drive Chicago, Illinois 60606 Telephone: (312) 913-0001

Facsimile: (312) 913-0002

wherein search and acquisition modes of the at least one node search for participating

ones of the plurality of network elements,

wherein a determination is made whether each of the participating ones of the

plurality of network elements are permitted to join the sensor network using a message

hierarchy, and

wherein the sensor network is surveyed at random intervals for new nodes and missing

nodes.

(Currently amended) Claim 34.

The sensor node of claim 56, [[1,]]

wherein the plurality of network elements comprises a sensor network including

at least one node, [[and]]

wherein the plurality of network elements further includes at least one database,

wherein the at least one database includes at least one storage device selected from a

group consisting of storage devices coupled to at least one of the plurality of network elements

and storage devices of the at least one node, and

wherein the at least one database comprises data-driven alerting methods that recognize

conditions on user-defined data relationships including coincidence in signal arrival, node power

status, and network communication status.

(Currently amended) Claim 35.

The sensor node of claim 56, [[1,]]

wherein the plurality of network elements comprises a sensor network including at

least one node, [[and]]

wherein data is collected from the sensor node by the at least one node,

McDonnell Boehnen Hulbert & Berghoff LLP

300 South Wacker Drive

Facsimile: (312) 913-0002

wherein at least one operation is performed on the data in response to parameters

established by a user,

wherein the at least one operation is selected from a group consisting of energy detection,

routing, processing, storing, and fusing, and

wherein the routing, processing, storing, and fusing are performed in response to at

least one result of the energy detection.

Claim 36. (Currently amended)

The sensor node of claim_35, [[34,]]

wherein the routing comprises selecting at least one data type for routing, selecting

at least one of the plurality of network elements to which to route the selected data, selecting

at least one route to the selected at least one of the plurality of network elements, and routing

the selected at least one data type to the selected at least one of the plurality of network

elements.

Claim 37. (Currently amended)

The sensor node of claim 35, [[34,]]

wherein the processing comprises selecting at least one data type for processing,

selecting at least one processing type, selecting at least one of the plurality of network elements

to perform the selected at least one processing type, and transferring the selected at least one

data type to the selected at least one of the plurality of network elements using at least one

route through the sensor network, and

wherein the selection of at least one processing type comprises determining at

least one probability associated with a detected event and selecting at least one processing

type in response to the at least one probability.

McDonnell Boehnen Hulbert & Berghoff LLP 300 South Wacker Drive

300 South Wacker Drive Chicago, Illinois 60606

Facsimile: (312) 913-0002

Claim 38. (Currently amended) The sensor node of claim 35, [[34,]]

wherein the storing comprises selecting at least one data type for storage, selecting at least one storage type, selecting at least one of the plurality of network elements to perform the selected at least one storage type, and transferring the selected at least one data type to the selected at least one of the plurality of network elements using at least one route through the sensor network.

Claim 39. (Canceled)

Claim 40. (Currently amended) The sensor node of claim 56, [[1,]] wherein at least one of the plurality of network elements determines a position of the sensor node.

Claim 41. (Currently amended) The sensor node of claim 56, [[1,]] wherein the sensor node determines at least one position using location information received from at least one of the plurality of network elements.

Claim 42. (Canceled)

Claim 43. (Currently amended) The sensor node of claim 1, wherein the at least one substrate comprises a thin film tape, <u>and</u> wherein the thin film tape includes an adhesive.

Claim 44. (Canceled)

Claim 45. (Previously presented) The sensor node of claim 1, wherein the at

least one substrate operates as an acoustic sensor and source.

Claim 46. (Previously presented) The sensor node of claim 1, wherein the

at least one substrate comprises a material suitable for unrolling as a sensor tape to different

lengths.

Claim 47. (Previously presented) The sensor node of claim 1, wherein the at

least one energy source is a photovoltaic device incorporated in or mounted on the at least

one substrate.

Claim 48. (Previously presented) The sensor node of claim 1, wherein the

at least one substrate operates as a vibration and acoustic sensor.

Claim 49. (Currently amended) The sensor node of claim 1, wherein:

wherein the at least one substrate operates as an accelerometer; and

wherein the at least one energy source comprises one or more battery cells operable

to serve as proof masses for the accelerometer.

Claim 50.

(Currently amended)

A sensor node comprising:

McDonnell Boehnen Hulbert & Berghoff LLP 300 South Wacker Drive Chicago, Illinois 60606 a flexible substrate that operates as an acoustic sensor and an acoustic source;

a processor incorporated in or mounted on the flexible substrate, wherein the

processor is configured to automatically join another node to form a network; and

an antenna incorporated in or carried on the flexible substrate and electrically

coupled to the processor for wireless communication with the other another-node,

wherein the acoustic sensor is used in determining a position of the sensor node, and

wherein the sensor node communicates information identifying the determined position

of the sensor node to the other node.

Claim 51. (Currently amended) The sensor node of claim 50, wherein

the flexible substrate is configured to operate as a sensor in an accelerometer.

Claim 52. (Currently amended) The sensor

The sensor node of claim 50,

further comprising a photovoltaic device incorporated in or mounted on the flexible

substrate,

wherein the photovoltaic device is electrically coupled to provide an energy source for

operation of the processor.

Claim 53. (Currently amended) The sensor node of claim 50, wherein

the flexible substrate has an aerodynamic shape suitable for deployment by air.

Claim 54. (Currently amended)

A sensor node comprising:

an annular ring antenna comprising at least one ring positioned on a dielectric substrate

above a ground plane;

a processor configured for wireless communication to automatically assemble into a

McDonnell Boehnen Hulbert & Berghoff LLP

network with other nodes using the antenna;

at least one sensor coupled to provide data to the processor; and

a battery to provide power for operation of the processor; [[and]]

wherein the processor, the at least one sensor, and the battery are enclosed in a center the interior region of the antenna.

Claim 55. (Currently amended) The sensor node of claim 54, wherein the processor, the at least one sensor, and the battery are enclosed in the center interior region of the antenna so as to provide a resonant antenna structure.

Claim 56. (New) The sensor node of claim 1, wherein functions of the sensor node are remotely controllable and the sensor node is programmable via wireless internetworking among a plurality of network elements.

Claim 57. (New) The sensor node of claim 50, wherein the formed network includes a gateway node that links to another network, and wherein the other network comprises the Internet.

Claim 58. (New) The sensor node of claim 50, wherein the formed network includes a gateway node that links to another network, wherein the other network comprises a client device, and wherein the sensor node is programmable by the client device.

Claim 59. (New) The sensor node of claim 50, wherein the formed network is operable to detect a sensor node that is attached to a person or to a vehicle.

Claim 60. (New) The sensor node of claim 50,

wherein the flexible substrate comprises a flexible support material and a layer of polyvinylidenedifloride that is applied to the flexible support material, and

wherein the layer of polyvinylidenedifloride operates as the acoustic sensor and an acoustic source.

Claim 61. (New) The sensor node of claim 60,

wherein the sensor node synchronizes with the other node via radio frequency communications, and

wherein synchronization of the sensor node and the other node allows the sensor node to compensate for wind when determining the position of the sensor node.

Claim 62. (New) The sensor node of claim 54,

wherein the annular ring antenna includes a top surface and a bottom surface, and wherein the center region extends from the top surface to the bottom surface and is defined, in part, by an inner radius.