"下载文章"

Lesson 0 install root and software on your compute

"If you get the THU's computer cluster account, use following commands to get into.

```
$ ssh -XY -p 48571 -o ServerAliveInterval=5 yourname@hepthu.com
```

You can also run code on your pc if you have installed root, it's up to you. "

homebrew Click this link to go to the Homebrew page, follow the instructions to install Homebrew on your Mac. Homebrew is a software package manager that allows you to download many applications on your Mac! After finishing the installation, paste the following command in a macOS terminal to install CERN ROOT software: \$ brew install root . This way, you can also install applications like firefox which you can't find in the App Store.

Additionally, \$ indicates a shell command, so drop the \$ sign when you copy the command.

Lesson 1 base commands for Linux

Some simple commands you can have a try!

```
1
  cd /path/to/directory #change directory
  cd .. #back to parent directory
3
  ls
       #list directory contents
  mkdir test #make a directory
  touch test.txt #creat a new txt file
7
  cp test.txt copy.txt #copy and rename a file
  mv copy.txt copy1.txt #move and rename a file
  rm copy.txt #remove
  rm -r test #delete_a directory
10
  11
```

Vim editor

```
i #insert, edit mode
2 Esc #exit edit mode
3 :wq #save and exit
4 :q #exit, will mention you if you have modified the file
5 :q! #exit !without! save
```

you will use the next commands from time to time
vi somefile -> press i into edit mode -> do something ->esc exit edit mode -> :wq

Lesson 2 root 基础练习

进入root环境

```
$ root
```

root [0] .g 退出root

root能输入一句解释一句

```
[root [0] 1+1
(int) 2
```

也可以边解释边执行或者编译后执行一个程序文件,用 root yourprogram.C

例如:可以在root中输入下面的程序用来创建一个空白的直方图 TH1F* graph=new TH1F("name","title",200,2.97,3.03); graph->Draw();

但一个空白的直方图是很无趣的,你还需要用 Fill 来填入数据

此外我们还能直接创建一个程序文件,以放入更长的程序

Get start!

\$ vi test.C

//push i to enter the insert mode//

```
void test() //be sure it is similar with your file name

TH1F* graph=new TH1F("name","title",200,2.97,3.03);
//TH1F* graph name=new TH1F("name","title",bins, low, high)

graph->Draw(); //draw your graph

}
```

//push ESC to end the insert mode//

:wq //save and exit

\$ root test.C //run your code

///successful!///

.q //exit the program

Let's add something into your graph!

```
void test(){
1
    //TCanvas* c1=new TCanvas("c1","fitting with Gaussian function"); //if you don't set the
   canvas's name, it will created default canvas with name c1
    //c1->SetGrid(); // set grid
    TH1F* graph=new TH1F("name", "title", 200, 2.97, 3.03);
    graph->Fill(2.99); // you can add just one data in your graph using "Fill" command and try
   to draw your graph. It's boring, right? We need more!
10
    TRandom n; // define a random variable n
11
12
    for (int i=0;i<1000;++i){
13
14
    graph->Fill(n.Gaus(3,0.005)); //Determine variable n using Gaussian distribution and fill
15
    to graph
16
    }
17
18
    graph->Draw();
19
20
    graph->Fit("gaus"); //fit your graph with Gaussian function
21
22
23
    }
```


Wow! now you can use root to do some simple fit works. but we usually use RooFit to do more complex job! So, ready for more programs!

以上只是一些基础的拟合,很多参数我们并不能自己去定义,没有灵活性, RooFit 中则提供了更加专业的拟合函数。

Lesson 2 Gaussian fitting using RooFit

```
#include "RooAbsReal.h"
   #include "RooRealVar.h"
   #include "RooGaussian.h"
 3
   #include "RooChebychev.h"
   #include "RooAddPdf.h"
   //#include "RooProdPdf.h"
 6
   #include "RooDataSet.h"
   //#include "RooDataHist.h"
   //#include "RooFitResult.h"
   #include "RooPlot.h"
10
   //#include "RooArgList.h"
11
12
   //#include "RooArgSet.h"
   //#include "RooRandom.h"
13
   //#include "RooPrintable.h"
14
   using namespace RooFit;
```

```
void test() {
16
       RooRealVar x("x", "x", 2.97, 3.03);
17
18
       // Declares a real-valued variable 'x' with a range from 2.97 to 3.03.
19
       RooRealVar mean("mean", "mean", 3.0, 2.8, 3.2);
20
       // Declares a real-valued variable 'mean' with an initial value of 3.0 and a range from
21
   2.8 to 3.2.
22
       RooRealVar sigma("sigma", "sigma", 0.003, 0.002, 0.003);
23
24
       // Declares a real-valued variable 'sigma' with an initial value of 0.003 and a range
   from 0.002 to 0.003.
25
       RooAbsPdf* gaus = new RooGaussian("gaus", "gaus", x, mean, sigma);
26
27
       // Creates a Gaussian probability density function (PDF) named 'gaus' with 'x' as the
   observable, 'mean' as the mean, and 'sigma' as the standard deviation.
28
       RooRealVar n("n", "n", 0, 0, 50000);
29
       // Declares a real-valued variable 'n' with an initial value of 0 and a range from 0 to
30
   50000.
31
32
       RooExtendPdf* exp = new RooExtendPdf("exp", "exp", *gaus, n);
33
       // Creates an extended PDF named 'exp' that combines the Gaussian PDF 'gaus' with the
   variable 'n'.
34
       RooAddPdf total("total", "total", RooArgList(*exp), RooArgList(n));
35
36
       // Creates a composite PDF named 'total' that consists of the extended PDF 'exp' and
   the variable 'n'.
37
38
       RooDataSet* data;
39
       // Declares a pointer to a RooDataSet object named 'data'.
40
       data = gaus->generate(RooArgSet(x), 1000);
41
42
       // Generates a dataset 'data' with 1000 events based on the Gaussian PDF 'gaus' and the
   observable 'x'.
43
44
       RooFitResult* result = total.fitTo(*data, Save());
45
       // Fits the composite PDF 'total' to the dataset 'data' and saves the fit result in
    'result'.
46
47
       TCanvas* c1 = new TCanvas("c1", "fitting with Gaussian function");
48
       // Creates a new canvas named 'c1' with the title "fitting with Gaussian function" for
   plotting.
49
       RooPlot* xframe = x.frame(RooFit::Title("Fit GausX"));
50
51
       // Creates a frame for the observable 'x' with the title "Fit GausX".
52
       data->plotOn(xframe);
53
54
       // Plots the dataset 'data' on the frame 'xframe'.
55
```

```
total.plotOn(xframe);
// Plots the composite PDF 'total' on the frame 'xframe'.

xframe->Draw();
// Draws the frame 'xframe' on the canvas.
}
```



```
void test(){
   using namespace RooFit;
    //build gaussian and shev pdf
   RooRealVar x("x","x",2.97,3.03);
   RooRealVar mean("mean", "mean", 3.0, 2.8, 3.2);
5
   RooRealVar sigma("sigma","sigma",0.005,0.003,0.007);
   RooRealVar a0("a0","a0",0.005,0.004,0.006);
   RooAbsPdf* gaus=new RooGaussian("gaus","gaus",x,mean,sigma);
8
   RooAbsPdf* shev=new RooChebychev("shev", "shev", x, a0);
9
   RooRealVar n1("n1","n1",0,0,50000);
10
   RooRealVar n2("n2","n2",0,0,50000);
11
   RooExtendPdf*signal1=new RooExtendPdf("sig1","sig1",*gaus,n1);
12
   RooExtendPdf*signal2=new RooExtendPdf("sig2","sig2",*shev,n2);
13
```

```
RooAddPdf
14
   totalPdf("total", "total", RooArgList(*signal1, *signal2), RooArgList(n1, n2)); //totalPdf(x)=sig
   nal1(x)+signal2(x)
15
   //generate data point
16
17
   RooDataSet*data1;
18
   RooDataSet*data2;
19
   data1=gaus->generate(RooArgSet(x),1000);
20
   data2=shev->generate(RooArgSet(x),1000);
21
   data1->append(*data2);
22
   //fit
23
   RooFitResult*result= totalPdf.fitTo(*data1,Save());
24
25
   |RooPlot*xframe=x.frame();
26
   |data1->plotOn(xframe);
27
   totalPdf.plotOn(xframe);
   totalPdf.plotOn(xframe, Components(*signal1),LineStyle(kDashed),LineColor(6));
28
   totalPdf.plotOn(xframe, Components("sig2"),LineStyle(kDashed),LineColor(2));//two different
29
   ways set the Components name
30
   |xframe->Draw();
31 1}
```


"以上是一维拟合,但很多时候我们会研究两个不同组分,这样就需要进行二维拟合。二维拟合就不单单是把两个PDF 加和在一起了,而是需要乘积,可以理解为同时出现两个组分的概率。"

Lesson 3 2D fitting

下面展示了两个二维拟合

```
#include <TH2.h>
1
   #include <TStyle.h>
 2
   #include <TCanvas.h>
 3
   #include <iostream>
5 #include <fstream>
 6 | #include "TF1.h"
   #include "TText.h"
7
   #include "TLorentzVector.h"
8
   #include "TVector3.h"
   #include "TLorentzRotation.h"
10
   #include "RooNumIntConfig.h" //no matter what, copy directly!
11
12
   using namespace RooFit;
13
   void test(){
14
   //build gaussian pdf in two dimension
15
   RooRealVar x("x","x",2.7,4);
16
17
18
   RooRealVar meanx("meanx", "meanx", 3.0967, 2.9, 3.2);
19
   RooRealVar sigmax("sigmax", "sigmax", 0.03, 0.01, 0.06);
20
   RooAbsPdf* gausx=new RooGaussian("gausx", "gausx", x, meanx, sigmax);
21
   RooRealVar ax0("ax0", "ax0", 0.005, 0.004, 0.006);
22
   RooRealVar ax1("ax1", "ax1", 0.01, 0.01, 0.02);
23
   RooAbsPdf* shevx=new RooChebychev("shevx", "shevx", x, RooArgSet(ax0,ax1));
24
25
   RooRealVar y("y", "y", 2.7, 4);
26
27
   RooRealVar meany("meany","meany",3.0967,2.9,3.2);
28
   RooRealVar sigmay("sigmay", "sigmay", 0.03, 0.01, 0.06);
   RooAbsPdf* gausy=new RooGaussian("gausy", "gausy", y, meany, sigmay);
31
   RooRealVar ay0("ay0", "ay0", 0.005, 0.004, 0.006);
32
33
   RooRealVar ay1("ay1", "ay1", 0.01, 0.01, 0.02);
   RooAbsPdf* shevy=new RooChebychev("shevy", "shevy", y, RooArgSet(ay0, ay1));
34
35
36
   //constructor with 2 pdf
37
   RooProdPdf* sigxsigy=new RooProdPdf("sigxsigy", "sigxsigy", *gausx, *gausy);
   RooProdPdf* bkgxsigy=new RooProdPdf("bkgxsigy","bkgxsigy",*shevx,*gausy);
38
39
   RooProdPdf* sigxbkgy=new RooProdPdf("sigxbkgy", "sigxbkgy", *gausx, *shevy);
40
   RooProdPdf* bkgxbkgy=new RooProdPdf("bkgxbkgy", "bkgxbkgy", *shevx, *shevy);
```

```
41
42
   RooRealVar n_sigxsigy("n_sigxsigy","n_sigxsigy",0,0,50000);
43
   RooRealVar n_bkgxsigy("n_bkgxsigy","n_bkgxsigy",0,0,50000);
44
   RooRealVar n_sigxbkgy("n_sigxbkgy","n_sigxbkgy",0,0,50000);
   RooRealVar n_bkgxbkgy("n_bkgxbkgy", "n_bkgxbkgy", 0, 0, 50000);
45
46
47
   RooExtendPdf*signal1=new RooExtendPdf("signal1", "signal1", *sigxsigy, n_sigxsigy);
48
49
   RooExtendPdf*signal2=new RooExtendPdf("signal2", "signal2", *sigxbkgy, n_sigxbkgy);
   RooExtendPdf*signal3=new RooExtendPdf("signal3", "signal3", *bkgxsigy, n_bkgxsigy);
50
51
   RooExtendPdf*signal4=new RooExtendPdf("signal4", "signal4", *bkgxbkgy, n_bkgxbkgy);
52
   RooAddPdf
53
   totalPdf("total", "total", RooArgList(*signal1, *signal2, *signal3, *signal4), RooArgList(n_sigx
   sigy, n_sigxbkgy, n_bkgxsigy, n_bkgxbkgy));
54
55
   //generate data point
56
57
   RooDataSet*data1;
   RooDataSet*data2;
58
59
   RooDataSet*data3;
60
   RooDataSet*data4;
61
   data1=sigxsigy->generate(RooArgSet(x,y),1000);
62
   data2=sigxbkgy->generate(RooArgSet(x,y),2000);
   data3=bkgxsigy->generate(RooArgSet(x,y),2000);
63
64
   data4=bkgxbkgy->generate(RooArgSet(x,y),4000);
65
66
   data1->append(*data2);
67
   data1->append(*data3);
68
   data1->append(*data4);
69
   //fit
70
71
   RooFitResult*result= totalPdf.fitTo(*data1,Save());
   //x dimension
72
73
   //create two canvases, because you have to know two dimensions fitting.
74
   TCanvas*c1 = new TCanvas("c1", "Fitting X");
75
76
   c1->cd();
   RooPlot*xframe=x.frame(RooFit::Title("Fit GausX"));
   data1->plotOn(xframe);
78
79
   totalPdf.plotOn(xframe, Name("fullModel"));
   totalPdf.plotOn(xframe, Components(*signal1), LineColor(2), LineStyle(1), Name("JpsiJpsi"));
80
   totalPdf.plotOn(xframe,Components(*signal2),LineColor(6),LineStyle(1),Name("BkgJpsi"));
81
   totalPdf.plotOn(xframe, Components(*signal3), LineColor(7), LineStyle(1), Name("JpsiBkg"));
82
   totalPdf.plotOn(xframe,Components(*signal4),LineColor(8),LineStyle(1),Name("BkgBkg"));
83
84
   TLegend leg(0.7, 0.7, 0.9, 0.9);
85
   leg.AddEntry(xframe->findObject("fullModel"), "Full Model", "L");
86
   leg.AddEntry(xframe->findObject("JpsiJpsi"), "J/#psi_{#mu1#mu2}J/#psi_{#mu3#mu4}", "L");
87
```

```
leg.AddEntry(xframe->findObject("BkgJpsi"), "Bkg_{#mu1#mu2}J/#psi_{#mu3#mu4}", "L");
 88
    leg.AddEntry(xframe->findObject("JpsiBkg"), "J/#psi_{#mu1#mu2}Bkg_{#mu3#mu4}", "L");
 89
    leg.AddEntry(xframe->findObject("BkgBkg"), "Bkg_{#mu1#mu2}Bkg_{#mu3#mu4}", "L");
 90
 91
    xframe->Draw();
 92
    leg.DrawClone();
 93
 94
    //v dimension
 95
    96
 97
    c2->cd();
 98
    RooPlot*yframe=y.frame(RooFit::Title("Fit GausY"));
 99
    data1->plotOn(yframe);
    totalPdf.plotOn(yframe);
100
101
    totalPdf.plotOn(yframe, Name("fullModel"));
    totalPdf.plotOn(yframe,Components(*signal1),LineColor(2),LineStyle(1),Name("JpsiJpsi"));
102
    totalPdf.plotOn(yframe,Components(*signal2),LineColor(6),LineStyle(1),Name("BkgJpsi"));
103
    totalPdf.plotOn(yframe,Components(*signal3),LineColor(7),LineStyle(1),Name("JpsiBkg"));
104
    totalPdf.plotOn(yframe,Components(*signal4),LineColor(8),LineStyle(1),Name("BkgBkg"));
105
106
107
    TLegend leg2(0.7, 0.7, 0.9, 0.9);
108
    leg2.AddEntry(yframe->findObject("fullModel"), "Full Model", "L");
    leg2.AddEntry(yframe->findObject("JpsiJpsi"), "J/#psi_{#mu1#mu2}J/#psi_{#mu3#mu4}", "L");
109
    leg2.AddEntry(yframe->findObject("BkgJpsi"), "Bkg {#mu1#mu2}J/#psi {#mu3#mu4}", "L");
110
    leg2.AddEntry(yframe->findObject("JpsiBkg"), "J/#psi_{#mu1#mu2}Bkg_{#mu3#mu4}", "L");
111
    leg2.AddEntry(yframe->findObject("BkgBkg"), "Bkg_{#mu1#mu2}Bkg_{#mu3#mu4}", "L");
112
113
114
    yframe->Draw();
115
    leg2.DrawClone();
116
    TCanvas*c3 =new TCanvas("c3","2D plot");
117
118
    c3->cd();
    TH2F* mytwojpsimass = new TH2F("mytwojpsimass","mytwojpsimass",40,2.7,3.5,40,2.7,3.5);
119
    data1->fillHistogram(mytwojpsimass,RooArgList(x,y));
120
    mytwojpsimass->Draw("colz");
121
122
123 }
```



```
#include <TH2.h>
1
 2
   #include <TStyle.h>
   #include <TCanvas.h>
 3
   #include <iostream>
 5
   #include <fstream>
   #include "TF1.h"
 6
   #include "TText.h"
   #include "TLorentzVector.h"
8
   #include "TVector3.h"
   #include "TLorentzRotation.h"
10
   #include "RooNumIntConfig.h" //no matter what, copy directly!
11
   using namespace RooFit;
   void test(){
13
   //build gaussian pdf in two dimension
14
   RooRealVar x("x","x",2.7,4);
15
   RooRealVar meanx1("meanx1", "meanx1", 3.0967, 2.9, 3.2);
16
   RooRealVar sigmax1("sigmax1","sigmax1",0.03,0.01,0.06);
17
   RooAbsPdf* gausx1=new RooGaussian("gausx1", "gausx1", x, meanx1, sigmax1);
18
19
   RooRealVar meanx2("meanx2", "meanx2", 3.686, 3.5, 3.8);
20
   RooRealVar sigmax2("sigmax2", "sigmax2", 0.1, 0.01, 0.2);
21
   RooAbsPdf* gausx2=new RooGaussian("gausx2", "gausx2", x, meanx2, sigmax2);
22
23
24
   RooRealVar y("y", "y", 2.7, 4);
25
   RooRealVar meany1("meany1", "meany1", 3.0967, 2.9, 3.2);
26
   RooRealVar sigmay1("sigmay1", "sigmay1", 0.03, 0.01, 0.06);
27
   RooAbsPdf* gausy1=new RooGaussian("gausy1", "gausy1", y, meany1, sigmay1);
28
29
   RooRealVar meany2("meany2", "meany2", 3.686, 3.5, 3.8);
30
   RooRealVar sigmay2("sigmay2", "sigmay2", 0.1, 0.01, 0.2);
31
   RooAbsPdf* gausy2=new RooGaussian("gausy2", "gausy2", y, meany2, sigmay2);
32
33
34
   //constructor with 2 pdf
   RooProdPdf* gausx1y1=new RooProdPdf("gausx1y1", "gausx1y1", *gausx1, *gausy1);
35
   RooProdPdf* gausx1y2=new RooProdPdf("gausx1y2", "gausx1y2", *gausx1, *gausy2);
36
   RooProdPdf* gausx2y1=new RooProdPdf("gausx2y1", "gausx2y1", *gausx2, *gausy1);
37
38
   RooRealVar n_x1y1("n1","n1",0,0,50000);
39
40
   RooRealVar n_x1y2("n2","n2",0,0,50000);
```

```
41
   RooRealVar n_x2y1("n3", "n3", 0, 0, 50000);
42
43
   RooAddPdf
   totalPdf("total", "total", RooArgList(*gausx1y1, *gausx1y2, *gausx2y1), RooArgList(n_x1y1, n_x1y
   2, n_x2y1));
44
45
   //generate data point
46
47
   RooDataSet*data1;
   RooDataSet*data2;
48
   RooDataSet*data3;
49
   data1=gausx1y1->generate(RooArgSet(x,y),1000);
50
51
   data2=gausx1y2->generate(RooArgSet(x,y),1000);
   data3=gausx2y1->generate(RooArgSet(x,y),1000);
52
53
   data1->append(*data2);
54
   data1->append(*data3);
55
56
57
   //fit
   RooFitResult*result= totalPdf.fitTo(*data1,Save());
58
59
   //x dimension
60
   //create two canvases, because you have to know two dimensions fitting.
   TCanvas*c1 =new TCanvas("c1","Fitting X");
61
62
   c1->cd();
   RooPlot*xframe=x.frame(RooFit::Title("Fit GausX"));
63
   data1->plotOn(xframe,Name("data1"));
64
   totalPdf.plotOn(xframe, Name("fullModel"));
65
   totalPdf.plotOn(xframe, Components(*gausx1y1), LineColor(2), LineStyle(1), Name("JpsiJpsi"));
66
   totalPdf.plotOn(xframe,Components(*gausx1y2),LineColor(6),LineStyle(1),Name("JpsiPsi2S"));
67
   totalPdf.plotOn(xframe,Components(*gausx2y1),LineColor(7),LineStyle(1),Name("Psi2SJpsi"));
68
69
   TLegend* leg= new TLegend(0.7, 0.7, 0.9, 0.9);
70
   leg->AddEntry(xframe->findObject("data1"), "Data", "pe");
71
   |leg->AddEntry(xframe->findObject("fullModel"), "Total Fit", "L");
72
   leg->AddEntry(xframe->findObject("JpsiJpsi"), "J/#psi_{#mu1#mu2}J/#psi_{#mu3#mu4}", "L");
73
   |leg->AddEntry(xframe->findObject("JpsiPsi2S"), "J/#psi_{#mu1#mu2}#psi(2S)_{#mu3#mu4}",
74
   "L");
   |leg->AddEntry(xframe->findObject("Psi2SJpsi"), "#psi(2S)_{#mu1#mu2}J/#psi_{#mu3#mu4}",
    "L");
76
77
   xframe->Draw();
78
   leg->Draw();
79
80
81
   //y dimension
82
   TCanvas*c2 = new TCanvas("c2", "Fitting Y");
83
   c2->cd();
84
   RooPlot*yframe=y.frame(RooFit::Title("Fit GausY"));
85
```

```
data1->plotOn(yframe, Name("data1"));
 86
    totalPdf.plotOn(yframe, Name("fullModel"));
 87
    totalPdf.plotOn(yframe, Components(*gausx1y1), LineColor(2), LineStyle(1), Name("JpsiJpsi"));
    totalPdf.plotOn(yframe,Components(*gausx1y2),LineColor(6),LineStyle(1),Name("JpsiPsi2S"));
 89
    totalPdf.plotOn(yframe,Components(*gausx2y1),LineColor(7),LineStyle(1),Name("Psi2SJpsi"));
 90
 91
 92
    TLegend leg2(0.7, 0.7, 0.9, 0.9);
 93
    leg2.AddEntry(yframe->findObject("data1"), "Data", "pe");
 94
    leg2.AddEntry(yframe->findObject("fullModel"), "Total Fit", "L");
 95
    leg2.AddEntry(yframe->findObject("JpsiJpsi"), "J/#psi_{#mu1#mu2}J/#psi_{#mu3#mu4}", "L");
 96
    leg2.AddEntry(yframe->findObject("JpsiPsi2S"), "J/#psi_{#mu1#mu2}#psi(2S)_{#mu3#mu4}",
 97
    "L");
    |leg2.AddEntry(yframe->findObject("Psi2SJpsi"), "#psi(2S)_{#mu1#mu2}J/#psi_{#mu3#mu4}",
 98
    "L");
 99
    yframe->Draw();
100
101
    leg2.DrawClone();
102
103 TCanvas*c3 = new TCanvas("c3", "2D plot");
104 c3 -> cd();
105 TH2F* mytwojpsimass = new TH2F("mytwojpsimass", "mytwojpsimass", 40,2.7,4,40,2.7,4);
    data1->fillHistogram(mytwojpsimass,RooArgList(x,y));
107 mytwojpsimass->Draw("colz");
```

