

Pierre Karpman

pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2021-02-10

$\mathbb{F}_2 \text{ primer}$

Symmetric cryptography

BC: First definitions

Symmetric encryption schemes

Bits as field elements

- ▶ Digital processing of information → dealing with bits
- ► Error-correcting codes, crypto → need analysis → maths
- → bits (no structure) → field elements (math object)
- "Natural" match: $\{0,1\}\cong \mathbb{F}_2\equiv \mathbb{Z}/2\mathbb{Z}\equiv$ "(natural) integers modulo 2"
- $ightharpoonup \mathbb{F}_2$: two elements (0, 1), two operations (+, ×)

What's \mathbb{F}_2 like?

- Addition ≡ exclusive or (XOR (⊕))
- Multiplication ≡ logical and (∧)
- → "Boolean" arithmetic
- ► Fact 1: any Boolean function $f: \{0,1\}^n \to \{0,1\}$ can be computed using only \oplus and \land
- ► Fact 2: ditto, $g: \{0,1\}^n \to \{0,1\}^m$
- Fact 3: ditto, using NAND (¬◦∧)

One bit is nice, but...

- We rather need bit strings $\{0,1\}^n$ than single bits
- Now two "natural" matches:
- \mathbb{F}_2^n (vectors over \mathbb{F}_2)
 - Can add two vectors
 - Cannot multiply "internally" (but there's a dot/scalar product)
- ▶ $\mathbb{Z}/2^n\mathbb{Z}$ (natural integers modulo 2^n)
 - Can add, multiply
 - Not all elements are invertible (e.g. 2) ⇒ only a ring

Exercise: How do you implement operations in \mathbb{F}_2^{64} , $\mathbb{Z}/2^{64}\mathbb{Z}$ in C?

A third way

- Also possible: \mathbb{F}_{2^n} : an extension field
 - Addition "like in \mathbb{F}_2^n "
 - Plus an internal multiplication
 - ► All elements (except zero) are invertible
- Not for today!

Why are these useful?

- Allows to perform operations on inputs
 - E.g. adding two messages together
- Vector spaces ⇒ linear algebra (matrices)
 - Powerful tools to solve "easy" problems
 - (Intuition: crypto shouldn't be linear)
- Fields ⇒ polynomials
 - With one or more variable
 - ▶ ⇒ Can compute differentials

 \mathbb{F}_2 primer

Symmetric cryptography

BC: First definitions

Symmetric encryption schemes

Recall that...

- Cryptography: we want to hide stuff (e.g., messages to be sent over an insecure channel)
- Symmetric: we only do that assuming a preexisting shared secret
- A major question: when is the hiding "good enough"?
 - "HELLO" → "HULLO": not great
 - "HELLO" → "ZNPQE": maybe better
 - "HELLO" → "ZNPQE"; "HELLO" → "ZNPQE"; "HELLO" → "ZNPQE"...: (Okay, those same 5 letters at the start of your messages probably always mean "hello")

The problem with deterministic encryption

Figure: XKCD #257

So...

- Encryption MUST be non-deterministic
- Also (a bit harder to see): messages MUST *always* be authenticated to prevent tampering if the adversary is active (even if only "confidentiality" is a concern)

Now our main concerns:

- How do we formalise what we want to achieve?
- How do we actually build schemes that work?

 \mathbb{F}_2 primer

Symmetric cryptography

BC: First definitions

Symmetric encryption schemes

Block ciphers: for what?

Ultimate goal: symmetric encryption (and more!)

- Plaintext + key → ciphertextS
- ciphertext + key → plaintext
- ▶ ciphertexts → ???

With arbitrary plaintexts $\in \{0,1\}^*$

Block ciphers: do that *one-to-one* (for a fixed key) for plaintexts $\in \{0,1\}^n$

- (Very) small example: 32 randomly shuffled cards = 5-bit block cipher
- Typical block sizes = "what's easy to implement"
- Mostly useless in isolation (e.g. they're deterministic) but very useful when plugged into suitable higher-level schemes

Block ciphers as a figure

→ on the board

A main alternative: stream ciphers, still as a figure

→ still on the board

Block ciphers: "simple" binary mappings

Block cipher

A block cipher is a mapping $\mathcal{E}: \mathcal{K} \times \mathcal{M} \to \mathcal{M}'$ s.t. $\forall k \in \mathcal{K}, \ \mathcal{E}(k, \cdot)$ is invertible

In practice, most of the time:

- Keys $\mathcal{K} = \{0,1\}^{\kappa}$, with $\kappa \in \{6/4, 8/0, 9/6, \frac{112}{12}, 128, 192, 256\}$
- Plaintexts/ciphertexts $\mathcal{M} = \mathcal{M}' = \{0,1\}^n$, with $n \in \{64, 128, 256\}$
- ⇒ BCs are families of permutations over binary domains
 - Exception: Format Preserving Encryption (FPE)

What's a good block cipher?

One that's:

- "Efficient"
 - ► Fast (e.g. a few *cycles per byte* on modern high-end CPUs)
 - ► ∧/∨ Compact (small code, circuit size)
 - ^/v Easy to implement "securely" (e.g. to prevent side-channel attacks)
 - Etc.
- "Secure"
 - Large security parameters (key, block size)
 - ▶ ∧ No (known) dedicated attacks.

What's a secure block cipher?

What do you think?

What's a secure block cipher?

Expected behaviour:

- Given oracle access to $\mathcal{E}(k,\cdot)$, with a secret $k \twoheadleftarrow \mathcal{K}$, it is "hard" to find k
- (Same with oracle access to $\mathcal{E}^{\pm}(k,\cdot) \coloneqq \{\mathcal{E}(k,\cdot),\mathcal{E}^{-1}(k,\cdot)\}$)
- Given $c = \mathcal{E}(k, m)$, it is "hard" to find m (when k's unknown)
- Figure 6. Given m, it is "hard" to find $c = \mathcal{E}(k, m)$ (idem)

But that's not enough!

We need more

Define $\mathcal{E}_k : x_L || x_R \mapsto x_L || \mathcal{E}'_k(x_R)$ for some \mathcal{E}'

- ightharpoonup If \mathcal{E}' verifies all props. from the previous slide, then so does \mathcal{E}
- But E is obviously not so nice
- ⇒ need a better way to formulate expectations

Ideal block ciphers

Ideal block cipher

Let $\mathsf{Perm}(\mathcal{M})$ be the set of the $(\#\mathcal{M})!$ permutations of \mathcal{M} ; an ideal block cipher $\mathcal{E}: \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ is s.t. $\forall k \in \mathcal{K}$, $\mathcal{E}(k,\cdot) \twoheadleftarrow \mathsf{Perm}(\mathcal{M})$

- "Maximally random"
- All keys yield truly independent permutations
- Quite costly to implement
 - ► Say $\mathcal{M} = \{0,1\}^{32} \Rightarrow 2^{32}! < (2^{32})^{2^{32}}$ permutations
 - ► So about $32 \times 2^{32} = 2^{37}$ bits to describe one (\leftarrow key size)
 - ⇒ Not very practical

(S)PRP security

Most of the time, good enough if \mathcal{E} is a "good" *pseudo-random permutation* (PRP):

- lacktriangle An adversary has access to an oracle $\mathbb O$
- ▶ In one world, \mathbb{O} ← Perm (\mathcal{M})
- ▶ In another, $k \leftarrow \mathcal{K}$, $\mathbb{O} = \mathcal{E}(k, \cdot)$
- It is "hard" for the adversary to tell in which world s/he lives
- ("Strong/Super" variant: give oracle access to \mathbb{O}^{\pm})
- ⇒ *Stronger* requirement than key recovery (is implied by it, converse is not true)

(S)PRP security: why it makes sense

It's easy to distinguish the two worlds if:

- It's easy to recover the key of $\mathcal{E}(k,\cdot)$ (try and see)
- It's easy to predict what $\mathcal{E}(k,m)$ will be (ditto)
- $\mathcal{E}_k : x_L || x_R \mapsto x_L || \mathcal{E}'_k(x_R)$ (random permutations usually don't do that)
- \mathcal{E} is \mathbb{F}_2 -linear (say), or even "close to"
- Etc.
- ⇒ Don't have to explicitly define all the "bad cases"

Plus:

- Can't do better than a random permutation anyways
- If it looks like one, either it's fine, or BCs are useless (←
 "true" most of the time but not always)

(S)PRP: it's not everything

- Sometimes a PRP is not enough and one needs a stronger/different model such as the ideal block cipher model
- For instance when the adversary has access to the key (→ considering a uniform choice doesn't make sense anymore)
- Example: when using block ciphers to build compression functions (cf. the hash function lecture)

Complexity issues

We still need to define what means "hard" \Rightarrow relevant metrics:

- Time (T) ("how much computation")
- Memory (M) ("how much storage")
 - Memory type (sequential access (cheap tape), RAM (costly))
- Data (D) ("how many oracle queries")
 - Query type (to \mathcal{E} , to \mathcal{E}^{-1} , adaptive or not, etc.)
- Success probability (p)

Generic attack examples

Take $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}$

- Can find an unknown key with $T = 2^{\kappa}$, $M = O(\kappa)$, $D = O(\kappa)$, p = 1
- ► Can find an unknown key with T = 1, M = 0, D = 0, $p = 2^{-\kappa}$
- In general, can find an unknown key with T = t, $M = O(\kappa)$, $D = O(\kappa)$, $p = t/2^{\kappa}$

We have "small" secrets ⇒ attacks always possible = computational security

A "single" measure

Define *advantage* functions associated w/ the security properties. For instance:

$$\begin{split} \mathbf{Adv}^{\mathsf{PRP}} \\ \mathbf{Adv}^{\mathsf{PRP}}_{\mathcal{E}}(q,t) = \\ & \max_{A_{q,t}} |\Pr[A^{\mathbb{O}}_{q,t}() = 1 : \mathbb{O} \twoheadleftarrow \mathsf{Perm}(\mathcal{M})] \\ & - \Pr[A^{\mathbb{O}}_{q,t}() = 1 : \mathbb{O} = \mathcal{E}(k,\cdot), k \twoheadleftarrow \mathcal{K}]| \end{split}$$

 $A_{q,t}^{\mathbb{O}}$: An algorithm running in time $\leq t$, making $\leq q$ queries to \mathbb{O}

"Good PRPs"

There is no formal definition of what a "good" PRP ${\cal E}$ is, but one can expect in that case that:

$$\mathbf{Adv}_{\mathcal{E}}^{\mathsf{PRP}}(q,t) \approx t/2^{\kappa}$$

(As long as $q \ge D \approx \lceil \kappa/n \rceil$)

- Matched by a generic attack (i.e. key guessing)
- "Equality" if ${\mathcal E}$ is ideal
- Anything that's (sensibly) better is a dedicated attack

Parameters choice

Even a good PRP is useless if its keyspace is too small

- E.g. if $\kappa = 32$, $t = 2^{\kappa} = 2^{32}$ is small
- ▶ But when do you know κ 's large enough?
- Look at the time/energy/infrastructure to count up to 2^{κ}

Some examples

- → ≈ 40 → breakable w/ a small Raspberry Pi cluster
- \triangleright ≈ 60 \rightarrow breakable w/ a large CPU/GPU cluster
 - Already done (equivalently) several times in the academia:
 - Ex. RSA-768 (Kleinjung et al., 2010), 2000 core-years ($\equiv 2^{67}$ bit operations)
 - Ex. DL-768 (Kleinjung et al., 2016), 5300 core-years
 - Ex. SHA-1 collision (Stevens et al., and me!, 2017), 6500 core-years + 100 GPU-year ($\equiv 2^{63}$ hash computations)
- → ≈ 80 → breakable w/ an ASIC cluster (cf. Bitcoin mining)

Parameters choice (cont.)

Two caveats:

- Careful about multiuser security
 - If a single user changes keys a lot and breaking one is enough
 - If targeting one random user among many
 - A mix of the two (best!)
 - ▶ ~ have to account for that
- 2 Should we care about quantum computers??
 - ▶ Would gain a √ factor
 - "128-bit classical" ⇒ "64-bit quantum"
 - (But a direct comparison is not so meaningful, actually)

In case of doubt, 256 bits?

Parameters choice (cont.)

What about block size?

- Security not (directly) related to computational power
- Dictated by the volume encrypted with a single key (cf. next)

In the end, it's always a cost/security tradeoff

(If you need a conventional BC with ridiculously large params, SHACAL-2, w/ n = 256, κ = 512 is a good choice!)

 \mathbb{F}_2 primer

Symmetric cryptography

BC: First definitions

Symmetric encryption schemes

Block ciphers are not enough

What block ciphers do:

One-to-one encryption of fixed-size messages

What do we want:

- One-to-many encryption of variable-size messages
- Why?
 - Variable-size → kind of obvious?
 - One-to-many → necessary for semantic security → cannot tell if two ciphertexts are of the same message or not

Enter modes of operation

- A mode of operation transforms a block cipher into a symmetric encryption scheme
- $\triangleright \approx \mathcal{E} \Rightarrow \mathsf{Enc} : \{0,1\}^{\kappa} \times \{0,1\}^{r} \times \{0,1\}^{*} \rightarrow \{0,1\}^{*}$
- For all $k \in \{0,1\}^{\kappa}$, $r \in \{0,1\}^{r}$, $\text{Enc}(k,r,\cdot)$ is invertible
- $\{0,1\}^r$, $r \ge 0$ is used to make encryption non-deterministic
- A mode is "good" if it gives "good encryption schemes" when used with "good BCs"
- So what's a good encryption scheme?

IND-CPA for Symmetric encryption

IND-CPA for Enc: An adversary cannot distinguish $\operatorname{Enc}(k, m_0)$ from $\operatorname{Enc}(k, m_1)$ for an unknown key k and equal-length messages m_0 , m_1 when given oracle access to an $\operatorname{Enc}(k, \cdot)$ oracle:

- **I** The Challenger chooses a key $k \leftarrow \{0,1\}^{\kappa}$
- **2** The Adversary may repeatedly submit queries x_i to the Challenger
- **III** The Challenger answers a query with $Enc(k, r_i, x_i)$
- 4 The Adversary now submits m_0 , m_1 of equal length
- **5** The Challenger draws $b \leftarrow \{0,1\}$, answers with $\operatorname{Enc}(k,r',m_b)$
- 6 The Adversary tries to guess b
 - The choice of r_i , r' is defined by the mode (made explicit here, may be omitted)

IND-CPA comments

- A random adversary succeeds w/ prob. 1/2 → the correct success measure is (again) the advantage over this
 - (Same as for PRP security)
- An adversary may always succeed w/ advantage 1 given enough ressources
 - Find the key spending time $t \le 2^{\kappa}$ and a few oracle queries
- What matters (again) is the "best possible" advantage in function of the attack complexity

First (non-) mode example: ECB

 $ilde{\mathsf{ECB}}$: just concatenate independent calls to $\mathcal E$

Electronic Code Book mode

$$m_0||m_1||\ldots \mapsto \mathcal{E}(k,m_0)||\mathcal{E}(k,m_1)||\ldots$$

- No security
 - Exercise: give a simple attack on ECB for the IND-CPA security notion w/ advantage 1, low complexity

Second (actual) mode example: CBC

Cipher Block Chaining: Chain blocks together (duh)

Cipher Block Chaining mode

$$r \times m_0 || m_1 || \ldots \mapsto c_0 \coloneqq \mathcal{E}(k, m_0 \oplus r) || c_1 \coloneqq \mathcal{E}(k, m_1 \oplus c_0) || \ldots$$

- Output block i (ciphtertext) added (XORed) to input block i+1 (plaintext)
- For first (m_0) block: use random IV r
- Okay security in theory → okay security in practice if used properly

CBC IVs

CBC has bad IND-CPA security if the IVs are not random

- Consider an IND-CPA adversary who asks an oracle query CBC-ENC(m), gets $r, c = \mathcal{E}(k, m \oplus r)$ (where \mathcal{E} is the cipher used in CBC-ENC)
- Assume the adversary knows that for the next IV r', Pr[r' = x] is large
- ▶ Sends two challenges $m_0 = m \oplus r \oplus x$, $m_1 = m_0 \oplus 1$
- Gets $c_b = CBC-ENC(m_b)$, $b \leftarrow \{0,1\}$
- If $c_b = c$, guess b = 0, else b = 1

Generic CBC collision attack

Even with random IVs, CBC has some drawbacks An observation:

- In CBC, inputs to \mathcal{E} are of the form $x \oplus y$ where x is a message block and y an IV or a ciphertext block
- If $x \oplus y = x' \oplus y'$, then $\mathcal{E}(k, x \oplus y) = \mathcal{E}(k, x' \oplus y')$

A consequence:

- If $c_i = \mathcal{E}(k, m_i \oplus c_{i-1}) = c'_j = \mathcal{E}(k, m'_j \oplus c'_{j-1})$, then $c_{i-1} \oplus c'_{i-1} = m_i \oplus m'_i$
- knowing identical ciphertext blocks reveals information about the message blocks
- → breaks IND-CPA security
- Regardless of the security of \mathcal{E} (i.e. even if it is ideal)!

CBC collisions: how likely?

How soon does a collision happen?

- Assumption: the distribution of the $(x \oplus y)$ is \approx uniform
 - ▶ If y is an IV it has to be (close to) uniformly random, otherwise we have an attack (two slides ago)
 - If $y = \mathcal{E}(k, z)$ is a ciphertext block, ditto for y knowing z, otherwise we have an attack on \mathcal{E}
- ⇒ A collision occurs w.h.p. after $\sqrt{\#\{0,1\}^n} = 2^{n/2}$ blocks are observed (with identical key k) ← The birthday bound
- ► (Slightly more precisely, w/ prob. $\approx q^2/2^n, q \le 2^{n/2}$ after q blocks)

Some CBC recap

A decent mode, but

- Must use uniformly random IVs
- Must change key *much* before encrypting $2^{n/2}$ blocks when using an *n*-bit block cipher
- And this regardless of the key size κ
- Only "birthday bound" security: this is a common restriction for modes of operation (cf. next slide)

Another classical mode: CTR

Counter mode

$$m_0||m_1||\ldots\mapsto \mathcal{E}(k,s++)\oplus m_0||\mathcal{E}(k,s++)\oplus m_1||\ldots$$

- This uses a global state s for the *counter*, with C-like semantics for s++
- Encrypts a public counter → pseudo-random keystream → (perfect) one-time-pad approximation (i.e. a stream cipher)
- Like CBC, must change key *much* before encrypting $2^{n/2}$ blocks when using an *n*-bit block cipher

Security reduction

- For good modes such as CBC, CTR, one can prove statements of the form: "if [the mode] is instantiated with a 'good PRP', then this gives a 'good IND-CPA encryption scheme'"
- This is an example of *security reduction* (here of the encryption scheme to the block cipher)
- ▶ Quite common & useful in crypto → modular designs are nice