Robot Morphology

Team: Antonio & Juan

Link: -----

Location of RTB robot manipulator models:

.../MatlabDrive/RVC2/rvctools/robot/models

Table of Contents

6R Robot. Puma 560	1
Call the robot object and plot it	1
Play with the teach	
Moving the Robot	
Play with the plot options	
Recovering End efector position	5
Working area	
IRB140 exercise	
Invoque IRB140	
Plot the IRB	

6R Robot, Puma 560

Before start the exercise see the videos:

https://youtu.be/ArzP7rh4_9Q

and

https://youtu.be/aHV5oY7viBM

Call the robot object and plot it

```
close all
clear
mdl_puma560 % Invoque the puma object
p560.plot3d(qr) % qz is the joint vector 1x6. Try qr, qn, any within the limits
```

Loading STL models from ARTE Robotics Toolbox for Education by Arturo Gil (http://arvc.umh.es/arte).....

Work with the wire model and change the point of view.

See: https://es.mathworks.com/help/matlab/creating_plots/setting-the-viewpoint-with-azimuth-and-elevation.html

```
close all
p560.plot(qz)
view([-35 90])
```


Play with the teach

It is a kind of Joystick

```
p560.teach('approach')
```


Moving the Robot

```
clear all
close all
mdl_puma560
```

Declare a joint motion by adding rows

```
Q=zeros(100,6); % at the moment no motion
```

See the Joint 1 limits

Build the joint's motion. Firts only Joint #1

```
q1=linspace(q1 limits(1),q1 limits(2),100)';
Q=[q1 \ Q(:,2:6)]
Q = 100 \times 6
  -2.7925
                         0
                                                   0
  -2.7361
                                          0
                         0
                                                   0
  -2.6797
               0
                                          0
  -2.6233
               0
                       0
                                0
                                          0
                                                   0
  -2.5669
               0
                       0
                                0
                                         0
                                                   0
                       0
  -2.5105
               0
                                0
                                          0
                                                   0
                       0
  -2.4540
               0
                                 0
                                          0
                                                   0
                       0
  -2.3976
               0
                                 0
                                          0
                                                   0
  -2.3412
               0
                        0
                                 0
                                          0
                                                   0
  -2.2848
```

Plotting

```
p560.plot(Q)
```


Play with the plot options

Moving two joints. See above

Options: Add a trail to see the trajectory, display the join axis, make biger or smaller the robot

Visit the RTB manual.pdf at:

https://atenea.upc.edu/pluginfile.php/3871049/mod_resource/content/3/robot.pdf

or

https://petercorke.com/toolboxes/robotics-toolbox/

```
p560.plot(Q12,'trail','--','jaxes','zoom',2) %% Play outside the mlx file to see it: o
```


Play with other options to get familiar with. You must! becouse all along the course it will be necesary

Recovering End efector position

Use function 'fkine' for recovering the finger tips of the robot

```
T=p560.fkine(Q12); % Forward Kinematic to be explained. Given Theta's (q's) obtain the
ft=[T.t] % to gert only the position
ft = 3 \times 100
  -0.6386
           -0.6335
                     -0.6251
                               -0.6135
                                        -0.5990
                                                  -0.5817
                                                           -0.5618
                                                                     -0.5397 •••
  -0.0728
           -0.1086
                     -0.1436
                               -0.1772
                                        -0.2092
                                                  -0.2393
                                                           -0.2672
                                                                     -0.2928
                               0.0747
  -0.0144
             0.0154
                      0.0451
                                         0.1042
                                                   0.1334
                                                            0.1623
                                                                     0.1909
figure
plot3(ft(1,:),ft(2,:), ft(3,:))
view(0,40)
```


Working area

```
clear all close all
```

```
mdl puma560
q2 limits=p560.links(1, 2).qlim
q2_limits = 1x2
  -0.7854 3.9270
q2=linspace(q2_limits(1),q2_limits(2),100)';
Q= [zeros(100,1) linspace(q2 limits(1),q2 limits(2),100)' zeros(100,4) ]
0 = 100 \times 6
          -0.7854
                        0
                                 0
                                         0
                                                  0
       0
       0
         -0.7378
                                 0
                                         0
                                                  0
                        0
       0
         -0.6902
                        Ω
                                0
                                         0
                                                  0
       0 -0.6426
                        0
                                0
                                         0
                                                  0
       0 -0.5950
                                         0
                        0
                               0
                                                  0
       0 -0.5474
                        0
                               0
                                         0
       0 -0.4998
                        0
                               0
                                         0
       0 -0.4522
                        0
                                         0
       0 -0.4046
                        0
                                0
                                         0
                                                  0
         -0.3570
       0
                        0
                                         0
                                                  0
p560.plot(Q, 'trail', '--', 'jaxes', 'zoom', 2)
T=p560.fkine(Q);
ft=[T.t]
ft = 3 \times 100
  0.6250
         0.6250 0.6235 0.6207 0.6164 0.6108
                                                    0.6037
                                                             0.5953 •••
  -0.1501 -0.1501 -0.1501 -0.1501 -0.1500 -0.1500 -0.1500
  -0.0144 0.0154 0.0451 0.0747 0.1042
                                             0.1334
                                                      0.1623 0.1909
hold on
v = [-1 -0.1501 -1 ; 1 -0.1501 -1 ; 1 -0.1501 1; -1 -0.1501 1];
f = [1 2 3 4];
```

patch('Faces',f,'Vertices',v,'FaceColor','blue','FaceAlpha',.3)

IRB140 exercise

Make the same exercise for the irb140 manipulator and plot the working area as shown in the figure

Type of motion	Range of movement
Axis 1: Rotation motion	+180° to - 80°
Axis 2: Arm motion	+110° to -90°
Axis 3: Arm motion	+50° to -230°
Axis 4: Wrist motion	+200° to +200° Default +165 revolutions to -165 revolutions Max**)
Axis 5: Bend motion	+120° to -120°
Axis 6: Turn motion	+400° to -400° Default +163 revolutions to -163 revolutions Max**)

Invoque IRB140

clear
close all
mdl_irb140

Plot the IRB

irb140.plot(qz)

