Справочник по математике

Борис Кожуховский

2017

Оглавление

T	Алгеора	5								
1	Рациональные выражения	6								
	1.1 Формулы сокращённого умножения	. 6								
ΙΙ	I Математический анализ	7								
2	Функции и их свойства.									
	2.1 График функции	. 8								
	2.2 Периодичность ф-ий	. 8								
3	Пределы	10								
	3.1 Предел на бесконечности									
4	Производная 4.1 Свойства производных	. 11								
	r									
	4.1.1 Экстремумы функции двух переменных									
	4.1.2 Экстремумы функции трех переменных									
	4.1. Геометрическая интерпретация производной									
	4.2.1 Касательная									
	4.2.2 Нормаль									
II:	II Геометрия	14								
IV	V Дискретная математика	15								
5	Булевы функции									
	5.1 Методы минимализации	. 16								
	5.1.1 Импликанты	. 16								
	5.1.2 Сокращенные ДНФ	. 16								
	5.1.3 Тупиковые ДНФ									
	5.1.4 Кратчайшие и минимальные ДНФ									
	5.2 Классы булевых функций и полнота									
	5.2.1 Классы БФ									
	5.2.2 Теорема о функциональной полноте	. 16								

6	Теория графов								
	6.1	1 Основные понятия							
	6.2	Связность графов	18						
		6.2.1 Эйлеровы графы	19						
		6.2.2 Гамильтоновы графы	20						
	6.3	Деревья	21						
		6.3.1 Остовные деревья и методы нахождения минимальных остовных де-							
		ревьев	23						
		6.3.2 Код Прюфера	24						
	6.4	Планарные графы	25						
T 7	T	1	വ						
V	T	еория множеств	28						
7	Основные понятия								
	7.1	Определение	29						
	7.2	Аксиоматика	29						
	7.3	Операции на множествами	29						
8	Фун	Функции над множествами							
	8.1	Определение	30						
	8.2	Биекции, Иньекции, Сюрьекции	30						
\mathbf{V}	I I	Комбинаторика	31						

Введение

Цели этого справочника:

- Систематизация и сохранение математических знаний, полученных мной за годы учёбы
- Сбор информации, которую трудно найти в понятном мне виде
- Конспектирование лекций в красивом виде
- Изучение LaTeX

Благодарность

Автор это справочника благодарит Максима Гунбина за предоставление некоторых материалов в уже написанном в TeX виде.

Часть I

Алгебра

Рациональные выражения

1.1 Формулы сокращённого умножения

• $(a \pm b)^n$ вычисляется через треугольник паскаля

```
0: 1 \quad (a+b)^{n} = \\
1: \\
2: \\
3: \\
4: \\
1 \quad 2 \quad 1 \\
2: \\
1 \quad 2 \quad 1 \\
3: \\
4: \\
1 \quad 4 \quad 6 \quad 4 \quad 1 \\
5: \\
1 \quad 5 \quad 10 \quad 10 \quad 5 \quad 1 \\
6: \\
1 \quad 7 \quad 21 \quad 35 \quad 35 \quad 21 \quad 7 \quad 1 \\
8: \\
1 \quad 8 \quad 28 \quad 56 \quad 70 \quad 56 \quad 28 \quad 8 \quad 1 \\
9: \\
1 \quad 10 \quad 45 \quad 120 \quad 210 \quad 252 \quad 210 \quad 120 \quad 45 \quad 10 \quad 1 \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
11: \\
```

Например:

6

Часть II Математический анализ

Функции и их свойства.

2.1 График функции

Преобразование графиков ф-ий:

- 1. Симметрия относительно осей координат
 - Функции y = f(x) и y = -f(x) имеют одну и ту же область определения, их графики симметричны относительно оси Ox.
 - Функции y = f(x) и y = f(-x) имеют области определения, симметричные относительно точки O. Их графики симметричны относительно оси Oy.
- 2. Сдвиг вдоль осей координат (параллельный перенос)
 - Функция y = f(x a), где $a \neq 0$, определена для всех x, таких, что $(x a) \in D(f(x))$. График ф-ии y = f(x a) получается сдвигом вдоль оси Ox на величину |a| графика функции y = f(x) вправо, если a > 0, и влево, если a < 0.
 - Функция y = f(x) + B, где $B \neq 0$, имеет ту же область определения, что и ф-ия y = f(x). График ф-ии y = f(x) + B получается сдвигом вдоль оси Oy на величину |B| графика функции y = f(x) вверх, если B > 0, и вниз, если B < 0.
- 3. Растяжение с сжатие графика вдоль всей оси координат
- 4. Построение графика функции y = Af(k(x-a)) + B) по графику функции y = f(x)
- 5. Симметрия относительно прямой y = x

2.2 Периодичность ф-ий

Определение:

Функцию y=f(x) с областью определения X называют периодической, если $\exists T\neq 0 \quad \forall x\in X$ такой, что $(x+T)\in X,$ и $(x-t)\in X,$ и f(x+T)=f(x)

Пример ур-ия, где используется периодичность ф-ий:

Пусть f(x) - периодическая функция с периодом 8, такая, что $f(x) = 8x - x^2$ при $x \in [0; 8)$.

Решите уравнение f(2x + 16) + 23 = 5f(x). Решение:

1.

$$\begin{cases} f(x) = f(x+T) = f(x-T) \\ T = 8 \end{cases} \implies f(2x+16) = f(2x)$$

 $2. \ x \in [0; 4) \implies 2x \in [0; 8)$

Решаем уравнение для этого случая:

$$f(2x) + 23 = 5f(x)$$

$$16x - 4x^2 + 23 = 40x - 5x^2$$

$$x^2 - 24x + 23 = 0$$

x1 = 1

x2 = 23 побочный корень для $x \in [0; 4)$

3. $x \in [4; 8) \implies (2x - 8) \in [0; 8)$

Решаем уравнение для этого случая:

$$f(2x-8)+23=5f(x)$$
 $16x-64-4x^2+16x-64+23=40x-5x^2$
 $x^2-8x-105=0$
 $x1=7$
 $x2=-15$ побочный корень для $x\in[4;8)$

4. Так как наша функция имеет период 8, то и корни будут повторятся с такой же периодичностью, так как f(x) = f(x+T) = f(x-T). То есть получаем корни x = 1 + 8n и x = 7 + 8n.

Ответ: x = 1 + 8n и x = 7 + 8n.

Пределы

3.1 Предел на бесконечности

Производная

Определение:

Производной функции в точке называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к 0.

$$\mathbf{f}'(\mathbf{x_0}) = \lim_{\triangle \mathbf{x} \to \mathbf{0}} \frac{\triangle \mathbf{f}}{\triangle \mathbf{x}} = \lim_{\triangle \mathbf{x} \to \mathbf{0}} \frac{\mathbf{f}(\mathbf{x_0} + \triangle \mathbf{x}) - \mathbf{f}(\mathbf{x_0})}{\triangle \mathbf{x}}$$

 $\triangle x$ - приращение аргумента, то есть изменение аргумента от x до x_0 (дельта x). $\triangle f = f(x + \triangle x) - f(x)$ - приращение функции (дельта f).

4.1 Свойства производных

1.
$$(C * x)' = C * (x)'$$
 $C = const$

2.
$$(f + g)' = f' + g'$$

3.
$$(f * g)' = f' * g + g' * f$$

4.
$$\left(\frac{f}{g}\right)' = \frac{f' * g - g' * f}{g^2}$$

5.
$$(f(g))' = f'(g) * g'(f)$$

6.
$$(\mathbf{f}^{\mathbf{g}}) = \mathbf{f}^{\mathbf{g}} * \ln \mathbf{f} * \mathbf{g}' + \mathbf{g} * \mathbf{f}^{(}\mathbf{g} - \mathbf{1}) * \mathbf{f}'$$

7.
$$f'(y)=rac{1}{g(x)}$$
 $f(y)$ и $g(x)$ - взаимообратные функции $(D(f(y))=E(g(x))$ и $D(g(x))=E(f(y))$).

4.1.1 Экстремумы функции двух переменных

Для того, чтобы найти экстремум функции z(x,y) двух переменных, нужно найти точки, в которых частные производные 1-ого порядка равны 0. Пусть мы нашли такую точку $M_0(x_0,y_0)$. Тогда найдём производные второго порядка в этой точке $A=z_{xx}''(x_0,y_0)$, $B=z_{xy}''(x_0,y_0)$ и $C=z_{yy}''(x_0,y_0)$. Если $AC-B^2>0$, то z(x,y) имеет экстремум в точке M_0 (если A>0, то минимум, если A<0, то максимум).

4.1.2 Экстремумы функции трёх переменных

Для того, чтобы найти экстремум функции f(x,y,z) двух переменных, нужно найти точки, в которых частные производные 1-ого порядка равны 0. Пусть мы нашли такую точку $M_0(x_0,y_0,z_0)$. Тогда найдём производные второго порядка в этой точке, вычислим их и составим матрицу Гессе:

$$\begin{pmatrix} f''_{xx}(M_0) & f''_{xy}(M_0) & f''_{xz}(M_0) \\ f''_{yx}(M_0) & f''_{yy}(M_0) & f''_{yz}(M_0) \\ f''_{zx}(M_0) & f''_{zy}(M_0) & f''_{zz}(M_0) \end{pmatrix}$$

Найдём угловые миноры: $\sigma_1 = f''_{xx}(M_0)$,

$$\sigma_{2} = \begin{bmatrix} f''_{xx}(M_{0}) & f''_{xy}(M_{0}) \\ f''_{yx}(M_{0}) & f''_{yy}(M_{0}) \end{bmatrix},$$

$$\sigma_{3} = \begin{bmatrix} f''_{xx}(M_{0}) & f''_{xy}(M_{0}) & f''_{xz}(M_{0}) \\ f''_{xx}(M_{0}) & f''_{xy}(M_{0}) & f''_{yz}(M_{0}) \\ f''_{zx}(M_{0}) & f''_{zy}(M_{0}) & f''_{zz}(M_{0}) \end{bmatrix}$$
The standard with plants of the property o

Теперь возможны 4 случая:

- 1. Если $\sigma_1>0,\,\sigma_2>0$ и $\sigma_3>0,\,$ то $M_0(x_0,y_0,z_0)$ точка минимума.
- 2. Если $\sigma_1 < 0, \, \sigma_2 > 0$ и $\sigma_3 < 0, \, \text{то} \, M_0(x_0,y_0,z_0)$ точка максимума.
- 3. Иначе если $\sigma_3 \neq 0$, то $M_0(x_0, y_0, z_0)$ седловая точка.
- 4. При $\sigma_3 = 0$, то нужно дополнительное исследование.

4.1.3 Экстремум с условием. Метод множителей Лагранжа

Пусть дана функция $f(x_1...x_n)$ и несколько условий $u_1(x_1...x_n) = 0...u_k(x_1...x_n) = 0$. Нужно найти экстремум функции при этих условиях. Метод множителей Лагранжа:

- 1. Составим функцию Лагранжа от n+k переменных $L(x_1 ... x_n, \lambda_1 ... \lambda_k) = f(x_1 ... x_n) + \sum_{i=1}^k \lambda_i u_i(x_1 ... x_n).$
- 2. Составим систему уравнений, приравняв частные производные $L \ \kappa \ 0$.
- 3. Если полученная система имеет решение относительно параметров x_j' и λ_i' , тогда точка x' может быть условным экстремумом, то есть решением исходной задачи. Заметим, что это условие носит необходимый, но не достаточный характер. Проверка точки для функции двух переменных: найдём дифференциал второго порядка $d^2L = L_{xx}''(dx)^2 + 2L_{xy}''dxdy + L_{yy}''$. Если $d^2L > 0 \quad \forall x,y$ то функция достигает минимума в точке x', если $d^2L < 0 \quad \forall x,y$, то функция достигает максимума в точке x'.

4.2 Геометрическая интерпретация производной

4.2.1 Касательная

В трёхмерном пространстве

Пусть дана функция, задающая поверхность F(x, y, z) = 0.

Касательная плоскость к поверхности в точке M_0 – это плоскость, содержащая касательные ко всем кривым, которые принадлежат данной поверхности и проходят через точку M_0 . Её уравнение имеет вид $F'_x(M_0)(x-x_0)+F'_y(M_0)(y-y_0)+F'_z(M_0)(z-z_0)=0$.

4.2.2 Нормаль

В трёхмерном пространстве

Пусть дана функция, задающая поверхность F(x,y,z)=0.

Нормаль к поверхности в точке M_0 – это прямая, проходящая через данную точку перпендикулярно касательной плоскости. Её каноническое уравнение имеет вид $\frac{x-x_0}{F_x'(M_0)}=\frac{y-y_0}{F_y'(M_0)}=\frac{z-z_0}{F_z'(M_0)}$.

Часть III

Геометрия

Часть IV Дискретная математика

Булевы функции

5.1 Методы минимализации

5.1.1 Импликанты

Литерал - это переменная или её отрицание. Н-р: $x_1, \overline{x_1}x_2$

Импликант K - это такая коньюкция литералов функции F, что $K_i \to F_i$

Простой ипликант - это такой импликант, что вычеркиванием из него литералов нельзя получить новый импликант.

Н-р:

x_1	x_2	x_3	$K_1 = x_1$	$K_2 = \overline{x_3}$	x_1x_2	F
0	0	0	0	1	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	1
0	1	1	0	0	0	0
1	0	0	1	1	0	1
1	0	1	1	0	0	1
1	1	0	1	1	1	1
1	1	1	1	0	1	1

 K_1 - простой импликант

 K_2 - не импликант

 K_3 - импликант

5.1.2 Сокращенные ДНФ

- 5.1.3 Тупиковые ДНФ
- 5.1.4 Кратчайшие и минимальные ДНФ
- 5.2 Классы булевых функций и полнота
- 5.2.1 Классы БФ
- 5.2.2 Теорема о функциональной полноте

Теория графов

6.1 Основные понятия

Граф — абстрактный математический объект, представляющий собой множество вершин графа и набор рёбер, то есть соединений между парами вершин. Например, за множество вершин можно взять множество аэропортов, обслуживаемых некоторой авиакомпанией, а за множество рёбер взять регулярные рейсы этой авиакомпании между городами. Пример графа:

Формальное определение:

Графом называется пара множеств G = (V, E), где V — множество вершин графа, $E \subseteq V^2$ — множество рёбер графа.

Если $e = \{u, v\}, e \in E$, то говорят, что:

- \bullet ребро e соединяет вершины u и v;
- u и v концы ребра e;
- ребро e инцидентно вершинам u и v;
- вершины u и v инцидентны ребру e.

На рисунках вершины графа изображают точками, а рёбра $e = \{u, v\}$ — кривыми, соединяющими точки, которые изображают вершины u и v.

Вершины называются соседними, если их соединяет ребро, иначе — несоседними.

Ребро вида $e = \{u, u\}$ называется **петлёй**.

Граф, в котором любые две вершины соединены ребром, называется **полным** и обозначается K_n , где n — число вершин в нём.

Графы $G_1 = (V_1, E_1)$ и $G_2 = (V_2, E_2)$ называются **изоморфными**, если существует биекция $\varphi \colon V_1 \to V_2$ такая, что $\forall u, v \in V_1 \ ((u, v) \in E_1 \Leftrightarrow (\varphi(u), \varphi(v)) \in E_2)$, иначе —

неизоморфными. Иными словами два графа называются **изоморфными**, если они одинаковые с точностью до переименования вершин.

 φ называется изоморфизмом.

Число рёбер в графе G, инцидентных вершине u, называется **степенью** вершины и обозначается $\deg_G u$.

Лемма 6.1.1 (о рукопожатиях).

$$\sum_{u \in V} \deg_G u = 2|E|$$

где $G = (V, E) - \operatorname{гра} \phi$.

Доказательство (методом математической индукции).

- База индукции. |E|=0: в таком графе $\sum_{u\in V} \deg u=0$.
- Шаг индукции. Пусть лемма верна для |E| = n. Докажем её для |E| = n+1. Для этого достаточно заметить, что каждое новое ребро увеличивает степени двух вершин на 1.

Маршрутом в графе G = (V, E) называется последовательность вершин и рёбер вида $v_1e_1v_2\dots e_kv_{k+1}$, где $e_i = \{v_i, v_{i+1}\}$.

Маршрут, в котором все рёбра различны, называется цепью.

Цепь, в которой все вершины, за исключением, может быть, первой и последней, различны, называется **простой**.

Маршрут, в котором первая и последняя вершины совпадают, называется **замкнутым**. Замкнутая цепь называется **циклом**.

Маршрут, соединяющий вершины u и v, называется (u, v)-маршрутом.

Лемма 6.1.2. (u, v)-маршрут содержит (u, v)-простую цепь.

Доказательство. Пусть $u = v_1 e_1 v_2 \dots e_k v_{k+1} = v$ — не простая цепь, тогда $\exists i < j \colon v_i = v_j$. Уберём из маршрута подпоследовательность $e_i v_{i+1} \dots e_{j-1} v_j$, получим маршрут, в котором совпадающих вершин на одну меньше. Повторяя, получим простую цепь, являющуюся частью данного маршрута. \blacksquare

Лемма 6.1.3. Любой цикл содержит простой цикл. Доказательство аналогично предыдущему.

Лемма 6.1.4. Если в графе есть две различные простые цепи, соединяющие одни и те же вершины, то в этом графе есть простой цикл.

Доказательство. Пусть $u=v_1e_1v_2\dots e_nv_{n+1}=v,\ u=v_1'e_1'v_2'\dots e_m'v_{m+1}'=v$ простые цепи. Найдём наименьшее $i\colon e_i\neq e_i'$, тогда $v_ie_iv_{i+1}\dots e_nv_{n+1}=v_{m+1}'e_m'\dots e_i'v_i'=v_i$ пикл, значит, можно получить простой цикл. \blacksquare

6.2 Связность графов

Вершины u и v называются **связанными**, если существует (u,v)-маршрут, иначе — **несвязанными**.

Граф называется **связным**, если в нём любые две вершины связаны, иначе — **несвязным**.

Граф G' = (V', E') называется **подграфом** графа G = (V, E), если $V' \subseteq V$ и $E' \subseteq E$.

Компонентой связности графа называется его максимальный (относительно включения) связный подграф.

6.2.1 Эйлеровы графы

Цикл, содержащий все рёбра графа, называется эйлеровым.

Граф, содержащий эйлеров цикл, называется эйлеровым.

Теорема 6.2.1. Связный граф эйлеров ⇔ степени всех вершин чётны.

Доказательство.

1. \Rightarrow . Пусть в графе есть эйлеров цикл. Выберем вершину v_0 в этом цикле и начнём обходить его. При каждом посещении вершины $v \neq v_0$ её степень увеличивается на 2. То есть, если посетить её k раз, то deg $v = 2k \div 2$.

Для v_0 степень увеличивается на 1 в начале обхода, на 1 в конце обхода и на 2 при промежуточных посещениях. Т. о., её степень чётна.

2. \Leftarrow . Пусть степени всех вершин чётны. Выберём цепь $C = (v_0; e_0; v_1; e_1; \dots; e_{k-1}; v_k)$ наибольшей длины. Все рёбра, инцидентные v_k , присутствуют в этой цепи, иначе её можно было бы удлинить.

Докажем методом от противного, что $v_0 = v_k$. Пусть $v_0 \neq v_k$. При прохождении вершины $v_i = v_k$, где 0 < i < k, степень v_k увеличивается на 2. Также проходим по ребру e_{k-1} , тогда степень v_k нечётна. Противоречие.

Докажем методом от противного, что C содержит все рёбра. Пусть найдётся ребро $e = \{u, v\}$, не входящее в C. Возьмём первое ребро $e' = \{v_i, v'\}$ из (v_0, u) -маршрута, не входящее в C. Тогда цепь $(v'; e'; v_i; e_i; \ldots; e_{k-1}; v_k = v_0; e_0; v_1; e_1; \ldots; v_{i-1})$ длиннее, чем C. Противоречие.

Алгоритмы нахождения эйлерова цикла

1. Алгоритм Флёри (очень медленный).

- (а) Выберем произвольную вершину.
- (b) Пусть находимся в вершине v. Выберем ребро, инцидентное ей, которое должно быть мостом, только если не осталось других рёбер.
- (с) Проходим по выбранному ребру и вычёркиваем его.
- (d) Повторяем, пока есть рёбра.

2. Алгоритм объединения циклов.

- (а) Выберем произвольную вершину.
- (b) Выбираем любое непосещённое ребро и идём по нему.
- (с) Повторяем, пока не вернёмся в начальную вершину.
- (d) Получим цикл C. Если он не эйлеров, то $\exists u \in C, \ e = \{u, u'\} : u' \notin C$. Повторяем шаги 2a–2c для начальной вершины u. Получим цикл C', рёбра которого не совпадают с рёбрами C. Объединим эти циклы и получим новый. Повторяем шаг 2d.

Цепь называется **эйлеровым путём**, если она не является циклом и содержит все рёбра.

Граф называется полуэйлеровым, если в нём есть эйлеров путь.

Теорема 6.2.2. Связный граф полуэйлеров \Leftrightarrow степени двух вершин нечётны, а остальных — чётны.

Доказательство.

- 1. ⇒. Пусть в графе есть эйлеров путь. Соединив его концы ребром, получим эйлеров цикл. Степени соединённых вершин увеличились каждая на 1, значит, они были нечётными, а степени остальных вершин чётными.
- 2. ⇐. Пусть степени двух вершин нечётны, а остальных чётны. Соединим нечётные вершины ребром, тогда можно получить эйлеров цикл. Убрав из него добавленное ребро, получим эйлеров путь.

6.2.2 Гамильтоновы графы

Простой цикл, содержащий все вершины графа, называется гамильтоновым.

Граф называется гамильтоновым, если в нём есть гамильтонов цикл.

Теорема 6.2.3 (Дирака). Если в графе G = (V, E) с $n \ge 3$ вершинами $\forall u \in V \deg u \ge \frac{n}{2}$, то граф гамильтонов.

Доказательство.

- 1. Докажем методом от противного, что граф связный. Пусть он несвязный. Выберем компоненту связности G'=(V',E') с наименьшим числом вершин, тогда $|V'|\leqslant \frac{n}{2}$. Возьмём $v\in V'$, тогда $\deg v\leqslant |V'|-1<\frac{n}{2}$. Противоречие с условием.
- 2. Выберем цепь $C=(v_0;e_0;v_1;\ldots;e_{k-1};v_k)$ максимальной длины. Тогда все вершины, соседние с v_0 , лежат в этой цепи, иначе можно увеличить длину цепи. Среди v_1,v_2,\ldots,v_k не менее $\frac{n}{2}$ вершин, соседних с v_0 , т. к. $\deg v_0\geqslant \frac{n}{2}$. Аналогично для v_k . Найдутся v_{i-1} и v_i такие, что v_{i-1} соседняя с v_k , а v_i с v_0 .

Докажем, что $(v_i; e_{i+1}; \dots; v_k; e; v_{i-1}; e_{i-1}; \dots; v_0; e'; v_i)$ — гамильтонов цикл, методом от противного. Предположим обратное, тогда есть вершина u, не входящая в цикл, и существует (v_0, u) -маршрут. Значит, существует ребро, инцидентное одной из вершин цикла, но не входящее в него, и можно получить более длинную цепь. Противоречие.

Теорема 6.2.4 (Оре). Если в графе с $n \geqslant 3$ вершинами для любых двух несмежных вершин u и v $degu + degv \geqslant n$, то граф гамильтонов.

Доказательство.

1. Докажем методом от противного, что граф связный. Пусть он несвязный, тогда в нём найдутся хотя бы две компоненты связности $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$. Пусть $u \in V_1$, $v \in V_2$. u и v несмежные, тогда

$$\deg u \leq |V_1| - 1, \ \deg v \leq |V_2| - 1 \Rightarrow \deg u + \deg vopbr \leq |V_1| + |V_2| - 2 \leq n - 2$$

Противоречие с условием.

2. Докажем, что граф гамильтонов. Выберем цепь $W = (v_0; e_0; v_1; \dots; e_{k-1}; v_k)$ наибольшей длины. В ней содержатся все вершины, соседние с v_0 или с v_k . Т. о., среди вершин v_1, \dots, v_k $deg v_0$ соседних с v_0 . Аналогично для v_k .

 $\deg v_0 + \deg v_k \geqslant n$, тогда найдутся v_i и v_{i+1} такие, что v_i соседняя с v_k , а $v_{i+1} - c v_0$. $(v_{i+1}; e_{i+1}; \ldots; v_k; e; v_i; e_{i-1}; v_{i-1}; \ldots; e_0; v_0; e'; v_{i+1})$ — гамильтонов цикл (доказательство аналогично доказательству в теореме 6.2.3 (Дирака)).

6.3 Деревья

Граф без циклов называется лесом.

Связный лес называется деревом.

Ребро называется **мостом**, если при его удалении увеличивается число компонент связности.

Дерево с n вершинами, которым сопоставлены числа $1, \ldots, n$, называется **помечен- ным**.

Утверждение 6.3.1. *Ребро* — мост ровно тогда, когда оно не содержится в цикле. *А* Доказательство.

- 1. Докажем методом от противного, что если ребро содержится в цикле, то оно не является мостом. Пусть ребро e содержится в цикле $W = v_0 e_0 \dots uev \dots v_k, u'$ и v' смежные вершины.
 - (a) Если в этом маршруте нет ребра e, то при его удалении из графа u' и v' останутся смежными
 - (b) Если $u' = v'_0 e'_0 \dots uev \dots e_m v'_m = v'$ маршрут, соединяющий u' и v', тогда при удалении e из графа u' и v' соединяет маршрут $u' = v'_0 e'_0 \dots u \dots e_0 v_0 = v_k e_{k-1} \dots v \dots e_m v'_m = v'$.
- 2. Пусть e=(u,v) не является мостом, тогда u,v лежат в одной компоненте связности. Удалим e из графа, тогда число компонент связности не изменилось, значит, u и v также лежат в одной компоненте связности, т./,е. существует цепь, соединяющая u и v: $u=v_0e_0\dots e_{k-1}v_k=v$. Тогда в исходном графе существует цикл $u=v_0e_0\dots e_{k-1}v_k=veu$.

Теорема 6.3.1. Следующие утверждения о графе G c n вершинами эквивалентны:

- 1. G дерево.
- 2. G связный и имеет n-1 ребро.
- 3. G связный и каждое его ребро мост.
- 4. G не содержит циклов и имеет n-1 ребро.
- 5. Любые две вершины графа G соединены ровно одной простой цепью.
- 6. G не содержит циклов и добавление ребра приводит к появлению цикла.

Доказательство.

- Докажем 1) \Rightarrow 3). Связность следует из определения дерева. В силу пред. утв. каждое ребро — мост.
- Докажем $3) \Rightarrow 2$). Связность по предположению. Докажем методом математической индукции, что в графе n-1 ребро.
 - База индукции. Для n = 1, 2 очевидно.
 - Шаг индукции. Пусть для графов с числом вершин, меньшим n, Возьмём мост e и удалим его. Получим две компоненты связности $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$. По предположению индукции $|E_1| = |V_1| 1$, $|E_2| = |V_2| 1$. В исходном графе рёбер $|E_1| + |E_2| + 1 = |V_1| + |V_2| 1 = n 1$.
- Докажем $2) \Rightarrow 4$). В G n-1 ребро по предположению. Докажем методом математической индукции, что G не содержит циклов.
 - База индукции. Для n = 1, 2 очевидно.
 - Шаг индукции. Докажем, что в графе есть вершина степени 1. $\forall u \ degu \geqslant 1$. $\forall u \ degu \geqslant 2 \Rightarrow 2|E| = \sum_{u \in V} degu \geqslant 2n \Rightarrow n-1 = |E| \geqslant n$. Значит, в графе найдётся вершина степени 1. Удалим её и инцидентное ей ребро. Полученный граф содержит n-1 вершину и удовлетворяет утверждению 2). По предположению индукции он не содержит циклов, тогда и исходный граф не содержит циклов.
- Докажем $4) \Rightarrow 5$). Докажем связность методом математической индукции.
 - База индукции. Для n = 1, 2 очевидно.
 - Шаг индукции. Пусть в графе k компонент связности: $G_1 = (V_1, E_1), G_2 = (V_2, E_2), \ldots, G_k = (V_k, E_k)$. Они являются деревьями.

$$|E_1|=|V_1|-1,$$
 $|E_2|=|V_2|-1,\ldots,$ $|E_k|=|V_k|-1.$ $n-1=|E_1|+\ldots+|E_k|=n-k\Rightarrow k=1,$ значит, граф связный.

Пусть существуют вершины u, v такие, что их соединяют две простые цепи, тогда в графе есть цикл, что противоречит предположению. Тогда эти вершины соединены ровно одной простой цепью.

• Докажем 5) \Rightarrow 6). Предположим, что в графе есть цикл $v_0e_0v_1e_1\dots v_k=v_0$, тогда есть две простые цепи $v_0e_0\dots v_{k-1}$ и $v_{k-1}e_kv_k=v_0$, соединяющие v_0 и v_{k-1} , что противоречит предположению.

Докажем, что добавление ребра приводит к появлению ровно одного цикла. Рассмотрим несоседних вершины u v. По предположению есть цепь $u=v_0e_0\ldots v_k=v$, соединяющая их. Тогда $u=v_0e_0\ldots v_k=veu$ — цикл, где e — (u,v)-маршрут. Пусть есть 2 цикла, соединяющих u u v. Удалим e, цикл останется. Получили исходный граф, в котором нет циклов. Противоречие.

• 6) \Rightarrow 1). Докажем связность. Рассмотрим вершины u v. Если они не соединены ребром, то соединим u по предположению получим цикл $v_0e_0\dots uev\dots e_{k-1}v_k=v_0$. Тогда $u\dots e_0v_0=v_ke_{k-1}\dots v-(u,v)$ -маршрут. Противоречие.

6.3.1 Остовные деревья и методы нахождения минимальных остовных деревьев

Остовом графа G=(V,E) называется его подграф G'=(V',E') такой, что V=V' и G' — дерево.

Утверждение 6.3.2. Любой связный граф содержит остов.

Утверждение 6.3.3. Если граф не является деревом, то в нём несколько остовов.

Пусть G = (V, E) — граф. Весом называется функция $\alpha \colon E \to \mathbb{R}^+$. Весом графа называется $\sum_{e \in E} \alpha(e)$.

Остовное дерево графа состоит из минимального подмножества рёбер графа, таких, что из любой вершины графа можно попасть в любую другую вершину, двигаясь по этим рёбрам.

Минимальное остовное дерево (или минимальное покрывающее дерево) в связанном взвешенном неориентированном графе — это остовное дерево этого графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.

Алгоритмы поиска минимального остовного дерева

• Алгоритм Крускала

Алгоритм Крускала изначально помещает каждую вершину в своё дерево, а затем постепенно объединяет эти деревья, объединяя на каждой итерации два некоторых дерева некоторым ребром. Перед началом выполнения алгоритма, все рёбра сортируются по весу (в порядке неубывания). Затем начинается процесс объединения: перебираются все рёбра от первого до последнего (в порядке сортировки), и если у текущего ребра его концы принадлежат разным поддеревьям, то эти поддеревья объединяются, а ребро добавляется к ответу. По окончании перебора всех рёбер все вершины окажутся принадлежащими одному поддереву, и ответ найден.

• Алгоритм Прима

Искомый минимальный остов строится постепенно, добавлением в него рёбер по одному. Изначально остов полагается состоящим из единственной вершины (её можно выбрать произвольно). Затем выбирается ребро минимального веса, исходящее из этой вершины, и добавляется в минимальный остов. После этого остов содержит уже две вершины, и теперь ищется и добавляется ребро минимального веса, имеющее один конец в одной из двух выбранных вершин, а другой — наоборот, во всех остальных, кроме этих двух. И так далее, т.е. всякий раз ищется минимальное по весу ребро, один конец которого — уже взятая в остов вершина, а другой конец —

ещё не взятая, и это ребро добавляется в остов (если таких рёбер несколько, можно взять любое). Этот процесс повторяется до тех пор, пока остов не станет содержать все вершины (или, что то же самое, n-1 ребро).

В итоге будет построен остов, являющийся минимальным. Если граф был изначально не связен, то остов найден не будет (количество выбранных рёбер останется меньше n-1).

6.3.2 Код Прюфера

Каждому помеченному дереву можно взаимнооднозначно сопоставить последовательность из (n-2) чисел от 1 до n, называемая **кодом Прюфера**. Алгоритм построения кода Прюфера для помеченного дерева G = (V, E):

- 1. Выбираем висячую вершину v с наименьшим номером.
- 2. Добавляем номер вершины, смежной с v, в код.
- 3. Удаляем v и ребро, инцидентное v, из дерева.
- 4. Повторить, начиная с шага 1, (n-2) раза.

Утверждение 6.3.4. *Различным помеченным деревьям соответствуют различные ко-* ды Прюфера.

Доказательство (методом математической индукции).

- *База индукции*. При n=3 легко проверить.
- Шаг индукции. Пусть утверждение верно при $n \ge 3$, G = (V, E) и G' = (V', E') различные помеченные деревья с (n+1) вершинами в каждом.
 - 1. Пусть в G и G' вершины с наименьшим номером смежны с вершинами с различными номерами.
 - 2. Пусть в G и G' вершины с наименьшим номером смежны с вершинами с одинаковыми номерами. Выполняем шаг построения кода, тогда оставшиеся деревья различны, значит, по предположению индукции у них различные коды.

Алгоритм построения дерева по коду $A_0 = (a_1, \dots, a_{n-2}).$

- 1. Пусть $B_0 = (1, \ldots, n)$.
- 2. Находим наименьшее $b \in B_i$: $b \notin A_i$. Тогда в дереве есть ребро $\{b, a_i\}$. $A_{i+1} = A_i \setminus \{a_i\}$, $B_{i+1} = B_i \setminus \{b\}$.
- 3. Повторяем шаг 2 (n-2) раз. Получим $B_{n-2}=\{b',b''\}$, значит, в дереве есть ребро $\{b',b''\}$.

Утверждение 6.3.5. Указанный алгоритм построения дерева по коду из n чисел строит дерево.

Доказательство (методом математической индукции).

• *База индукции*. При n=1 легко проверить.

• Шаг индукции. Рассмотрим графы T_1, \ldots, T_{n-1} , полученные в процессе построения дерева. T_1 не содежрит циклов. T_2 получается из T_1 либо добавлением новой вершины, либо добавлением моста, что не приводит к появлению цикла.

 T_{n-1} не содержит циклов и содержит n вершин и (n-1) ребёр, значит, T_{n-1} — дерево.

Теорема 6.3.2 (Кэли). Пусть G = (V, E) — дерево, n = |V|, вершинам G сопоставлены числа $1, \ldots, n$. Всего можно составить n^{n-2} таких неизоморфных деревьев.

6.4 Планарные графы

Плоским называется граф G = (V, E) такой, что:

- $V \subset \mathbb{R}^2$;
- рёбра (Жордановы) кривые, концами которых являются вершины;
- различные рёбра не имеют общих точек, за исключением концов.

Простыми словами **плоский граф** - граф, который "нарисован"на плоскости так, чтобы ребра не пересекались.

Планарный граф - граф, который изоморфный плоскому.

Разбиением графа G называется граф, получающийся добавлением новой вершины на какое-нибудь ребро графа G.

Если G — граф и G' — плоский граф, изоморфный G, то G' называется укладкой G в \mathbb{R}^2 .

Аналогично можно определить укладку графа в \mathbb{R}^3 , на сферу и т. д.

Теорема 6.4.1. Любой граф можно уложить в \mathbb{R}^3 .

Доказательство. Пусть G=(V,E) — граф, $V=\{(1;0;0),(2;0;0),\ldots,(n;0;0)\}$. Рассмотрим плоскости, проходящие через Ox и образующие с плоскостью Oxy углы $\frac{\pi}{2},\frac{\pi}{2\cdot 2},\ldots,\frac{\pi}{2m}$, где m=|E|. Получим плоский граф, т. к. плоскости пересекаются только по прямой Ox.

Теорема 6.4.2. Граф укладывается на плоскость ровно тогда, когда он укладывается на сферу.

Доказательство. Пусть плоскость z=0 касается сферы в точке O(0;0;0), N — точка на сфере, диаметрально противоположная точке O. Для каждой точки сферы, не совпадающей с N, проведём прямую через неё и точку N, которая пересечёт сферу и плоскость, причём любые две из этих прямых имеют единственную общую точку N. Получим биекцию между точками сферы и точками плоскости, тогда можно построить биекцию между укладками на сфере и укладками на плоскости. \blacksquare

Определение 6.4.1. Множество на плоскости называется **линейно связным**, если любые две точки этого множества можно соединить кривой, целиком лежащей в этом множестве.

Гранью плоского графа G = (V, E) называется часть множества $\mathbb{R}^2 \setminus G$, которая линейно связна и не является подмножеством другого линейно связного множества.

Грань плоского графа - часть плоскости, границей которого являются его рёбра, и не содержащая внутри себя простых циклов. На рисунке 6.2 у графа G есть 4 грани: между вершинами ACD, ABC, AFE и та часть плоскости, которая окружает весь граф.

Теорема 6.4.3 (формула Эйлера). В плоском связном графе n-m+f=2, где n,m,f— число вершин, рёбер и граней соответственно.

Рис. 6.1: Плоский граф G и изоморфный ему планарный граф

Доказательство. Рассмотрим остов данного графа. В нём n вершин, n-1 рёбер и 1 грань. Формула Эйлера верна для него: n-(n-1)+1=2.

Добавим 1 ребро данного графа, тогда оно разобьёт одну грань на две, т. е. число граней увеличится на 1. Формула Эйлера верна для полученного графа. Повторяя (m-(n-1)) раз, получим исходный граф, для которого формула Эйлера верна.

Теорема 6.4.4. Пусть G — планарный граф c $n \geqslant 3$ вершинами и m рёбрами. Тогда $m \leqslant 3n-6$.

Доказательство. При m=2 неравенство выполняется.

Пусть в графе f граней, m_i — число рёбер в границе i-й грани. Тогда $m_i\geqslant 3,\; \sum_{i=1}^f m_i\geqslant$

3f. С другой стороны, $\sum_{i=1}^f m_i = 2m$. По формуле Эйлера $n-m+f=2 \Leftrightarrow f=m+2-n$. Получим:

$$2m \geqslant 3f \Leftrightarrow 2m \geqslant 3m + 6 - 3n \Leftrightarrow m \leqslant 3n - 6$$

Следствие 6.4.1. Планарный граф содержит хотя бы одну вершину со степенью, не большей 5.

Доказательство (методом от противного). Пусть $\forall v \in V \ degv \geqslant 6$. Тогда **т**еорема 6.4.5. Графы K_5 и $K_{3,3}$ не планарные. Доказательство.

- Рассмотрим K_5 : n=5, m=10. Тогда $m \le 3n-6 \Leftrightarrow 10 \le 9$. Неверно, значит, K_5 не планарен.
- Рассмотрим $K_{3,3}$. Пусть он планарный. В нём самый короткий цикл имеет длину 4. Тогда $2m \geqslant 4f \Leftrightarrow 2m \geqslant 4m+8-4n \Leftrightarrow m \leqslant 2n-4$. n=6, m=9, тогда $9 \leqslant 8$. Неверно, значит, $K_{3,3}$ не планарен.

Граф G'=(V',E') получается **подразбиением** ребра $e=\{u,v\}$ графа G=(V,E), если:

- $\bullet \ V' = V \cup \{u'\};$
- $E' = (E \setminus \{e\}) \cup \{\{u, u'\}, \{v, u'\}\}.$

Графы G и G' **гомеоморфны**, если они изоморфны графам, получающимся подразбиениями рёбер одного и того же графа (Стягиваем вершины степени 2 в ребро (удаляем их)).

Рис. 6.2: Граф G и получающийся из него двумя подразбиениями $(AB\Rightarrow AEB,\quad AD\Rightarrow AFD)$ граф G'.

Теорема 6.4.6 (Понтрягина-Куратовского). Граф G планарен ровно тогда, когда он не содержит подграфов, гомеоморфных K_5 или $K_{3,3}$.

Доказательство. Очевидно, что подграф планарного графа планарен. Если G — планарный граф, содержащий подграф G', гомеоморфный K_5 или $K_{3,3}$, то G' тоже планарный, значит, K_5 или $K_{3,3}$ планарен. Противоречие. \blacksquare

Часть V Теория множеств

Основные понятия

7.1 Определение

Множество - ключевое понятие теории множест. Оно аксиоматично, то есть неопределяемо. Обозначаются множества обычно заглавными буквами латинского алфивита. \in - символ принадлежности множеству.

Пустое множество — множество, не содержащее ни одного элемента.

Универсальное множество (универсум) — множество, содержащее все мыслимые объекты. В связи с парадоксом Рассела данное понятие трактуется в настоящее время как «множество, включающее все множества, участвующие в рассматриваемой задаче».

7.2 Аксиоматика

7.3 Операции на множествами

- ullet Объеденение $A \cup B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A$ или $c \in B$
- Пересечение $A \cap B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A$ и $c \in B$
- Разница $A \backslash B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A$ и $c \notin B$
- Симметрическая разница $A \triangle B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A \cup \ \text{и} \ c \notin A \cap B$
- Дополнение к множеству A (в универсальном множестве M) $\overline{A} \Leftrightarrow \forall x \in \overline{A}, x \in M: x \notin A$

Функции над множествами

8.1 Определение

Функцией $\mathbf{f}: \mathbf{A} \to \mathbf{B}$ называется правило, ставящие в соответсвие каждому элементу множества A единственный элемент множества B ($f(a) \in B, a \in A$). Множество A - область определения f. Множество B - область заначения f.

8.2 Биекции, Иньекции, Сюрьекции

- $f:A\to B$ называют **иньективной**, если $\forall x,y\in A:x\neq y\Rightarrow f(x)\neq f(y)$
- ullet f:A o B называют **сюрьективной**, если $\forall b\in B\exists a\in A:f(a)=b$
- $f:A\to B$ называют **биньюктивной**, если она является и иньективной и сюрьективной одновременно.

Часть VI Комбинаторика