

Dispositif interférentiel par division d'amplitude : exemple de l'interféromètre de Michelson

Plan du cours

Ι	Gén	éralités	3
	I.1	Présentation globale de l'appareil	3
	I.2	La séparation d'onde : lame séparatrice et lame compensatrice	3
	I.3	Première approche : Michelson éclairé par un point source S_0	5
		a - Marche des rayons dans l'appareil	5
		b - Lame d'air ou "pseudo-lame d'air" équivalente	7
II	Inte	rféromètre de Michelson en lame d'air éclairé par une source étendue	7
	II.1	Le problème de la localisation des franges	7
		a - Approche graphique	7
		b - Approche par le calcul (hors programme)	8
	II.2	Différence de marche -intensité - franges d'Haidinger ou d'"égale inclinaison" (à re-	
		tenir!!!)	10
	II.3	Ordre d'interférences - défilement des anneaux - rayons des anneaux brillants	12
	II.4	Applications	13
		a - Détermination de la largeur spectrale d'une raie	13
		b - Résolution du doublet du sodium	14
		c - La spectoscopie par transformée de Fourier (utile pour le TP consacré à	
		l'interféromètre de Michelson)	15
III	Inte	rféromètre de Michelson en coin d'air éclairé par une source étendue	17
	III.1	Retour sur le montage équivalent - Localisation des franges (admis) $\dots \dots$	17
	III.2	Différence de marche et ordre d'interférences - franges de Fizeau ou d'"égale épaisseur"	18

CHAPITRE VIII. DISPOSITIF INTERFÉRENTIEL PAR DIVISION D'AMPLITUDE : EXEMPLE DE L'INTERFÉROMÈTRE DE MICHELSON

III.3	Interfrange	20
III.4	Interférences en lumière blanche - teintes de Newton - blanc d'ordre supérieur	20
III.5	Applications	20
	a - Visualisation d'un écoulement gazeux (objet de phase)	20
	b - Mesure de distance : épaisseur d'une lame de verre	21
	c - Spectre cannelé (à faire en TP)	22

Spectroscopie par transformée de Fourier

Quelques spectres classiques de lampes et leurs interférogrammes correspondants :

(a): raie monochromatique

(b) : raie double (2 raies monochromatiques proches)

(c) : raie gaussienne(d) : raie rectangulaire(e) : raie double gaussienne

(f) et (g): 2 raies gaussiennes d'intensités différentes