Introduction to the Theory of Computation Homework #5 Brian Gianforcaro

- 1 Proof: By contradiction
- Assume $L = \{a^i b^j | i \neq j\}$ is regular language.
- Let p be the pumping length.
- Now consider the string $s = a^p 1^p$ which is in L.
- Using the pumpig lemma, s = xyz so thate |xy| = p
- This means that y consists entirely of a's.
- Considering xz, we have equal the number a's and b's.
- This means the resulting string is still in the language L.
- Hence, L is regular can not be the case.

2 Let x and y be strings and let L be any language. We say that x and y are distin-guishable by L if some string z exists whereby exactly one of the strings xz and yz is a member of L; otherwise, for every string z, we have $xz \in L$ whenever $yz \in L$ and we say that x and y are indistinguishable by L. If x and y are indistinguishable by x we write $x \equiv_L y$. Show that $x \equiv_L z$ is an equivalence relation.

- \bullet Let L be a language.
- Let z be a set of strings.
- z is pairwise distinguishable by L if any two strings in z are distinguishable by L.
- The index of L is equal to the number of equivalence classes in L, which can be either finite or infinite.
- 3 We can define a recursive set which infinetly generates all possible strings.
- $\epsilon \in S$
- $S = \{ ()x \text{ or } x() \text{ or } (x) \mid x \in S \}$

4 Minimize the DFA.

	1	2	3	4	5	6	7	8	9
1	-	-	ī	-	-	-	-	-	ı
2	x_1	1	ı	-	-	-	-	-	1
3	x_1	x_1	ī	-	-	-	-	-	ı
4	x_1	x_1	x_1	i	i	i	1	1	ı
5	x_0	x_0	x_0	x_0	i	i	1	1	ı
6	x_0	x_0	x_0	x_0		i	1	1	ı
7	x_1	x_1	x_1	x_1	x_0	x_0	-	-	1
8	x_1	x_1	x_1	x_1	x_0	x_0		-	1
9	x_0	x_0	x_0	x_0			x_0	x_0	-

5

(a) a (left most)

- $E \Rightarrow T$
- $\bullet \Rightarrow F$
- $\bullet \Rightarrow a$

- (b) a + a (left most)
- $E \Rightarrow E + T$
- $\bullet \quad \Rightarrow T + T$
- $\bullet \qquad \Rightarrow F + T$
- ullet $\Rightarrow a + T$
- ullet $\Rightarrow a + F$
- $\bullet \quad \Rightarrow a + a$

(c) a + a + a (right most)

- $E \Rightarrow E + T$
- $\bullet \implies E + F$
- $\bullet \implies E + a$
- $\bullet \quad \Rightarrow E + T + a$
- $\bullet \quad \Rightarrow E + T + a$
- $\bullet \implies E + F + a$
- ullet $\Rightarrow E + a + a$
- $\bullet \qquad \Rightarrow T + a + a$
- $\bullet \implies F + a + a$
- $\bullet \Rightarrow a + a + a$

 $\fbox{6} \ \text{Sipser 2.4(b):} \ \{w|w \ \text{starts and ends with the same symbol}\}$

$$R \to 0R \mid 1R \mid \epsilon$$

$$\begin{array}{c|c} R \rightarrow 0R \mid 1R \mid \epsilon \\ S \rightarrow 0 \mid 1 \mid 0R0 \mid 1R1 \end{array}$$