南京大学 拓扑学期中考试

DiMersified

Eschee

2022年12月14日

评语: 这份试卷是 2022 年秋季学期, 师维学老师班与窦斗老师班的拓扑学期中考试题. 试卷整体难度不太高, 但题量较大, 尤其是前两道题目, 只需验证最基本的定义和概念, 但要进行大量的文字叙述, 因此相当耗时. 同时, 这份试卷中也有相当一部分题目与书后习题密切相关, 可见认真完成平时作业对准备这门考试的重要性.

关于证明细节的详略问题, 老师的回答是, 只要正确写出必要的细节, 那么证明就算作正确. 但究竟何为"必要", 这实在难以界定. 以笔者之见, 第二题的叙述可较本文适当简略 (此处较详是为使结论更具一般性). 第六、七题 C_2 公理的相关证明, 也完全可以更多采用自然语言 (此处较繁是为了严谨性), 例如第七题的" \leftarrow "方向, 若叙述为"每个形如 $U \times V$ 的开集均可表为 \mathcal{C} 中一系列元素之并, 而乘积空间中每个开集均可表为一系列形如 $U \times V$ 的开集之并, 故 \mathcal{C} 是拓扑基", 同样可拿到满分.

最后在此感谢以下同学在试卷审核与纠错方面所做出的贡献: Cohomura, Ignis, Krystal, Phosgene, pericyclic.

备注: 本文档中 $A \subset B$ 表示 " $A \not\in B$ 的子集", 这与教材及老师讲课时所采用的记号一致.

- -、(20 分) 设 R 是实数集合, Q 是有理数的集合. 试判断下列 R 的子集族是否是 R 上的拓扑, 说明你判断的理由, 并给出必要的证明.
 - (1) $\mathscr{A}_1 = \{(-\infty, a) \mid a \in R\}.$
 - $(2) \mathscr{A}_2 = \{(-\infty, a] \mid a \in R\} \cup \{R, \varnothing\}.$
 - (3) $\mathscr{A}_3 = \{A \cup S \mid A \in E^1 \text{ 中的开集 }, S \subset Q\}.$
 - $(4) \, \mathscr{A}_4 = \{(-\infty, a) \, | \, a \in R\} \cup \{(b, +\infty) \, | \, b \in R\} \cup \{R, \varnothing\}.$

分析: 本题几乎没有难度, 只需逐条验证拓扑的定义即可. 需要注意第 (1) 问, 师维学老师在讲课时已经用这一小问举过例子, 称往年期中考过这一问, 而当时仍有同学忘记了拓扑定义中的第一条, 并认为 Ø 是拓扑. 由此可见, 即使题目简单到了仅仅考察定义的程度, 也仍然有可能会犯错误.

解:

- (1) \mathscr{A}_1 不是拓扑. 这是因为 $R \notin \mathscr{A}_1$.
- (2) \mathscr{A}_2 不是拓扑. 这是因为 $\forall n \in \{1, 2, \dots\}, \left(-\infty, -\frac{1}{n}\right] \in \mathscr{A}_2$, 然而 $\bigcup_{n=1}^{\infty} \left(-\infty, -\frac{1}{n}\right] = (-\infty, 0) \notin \mathscr{A}_2$, 所以 \mathscr{A}_2 不对集合的任意并封闭.
- (3) \mathscr{A}_3 是拓扑. 我们令 τ_e 为 R 上的欧氏拓扑, 并对 \mathscr{A}_3 逐条验证拓扑的定义. 首先, $R = R \cup Q \in \mathscr{A}_3$, 并且 $\varnothing = \varnothing \cup \varnothing \in \mathscr{A}_3$. 其次, 对 \mathscr{A}_3 的任意子族 \mathscr{B} 和任意 $\alpha \in \mathscr{B} \subset \mathscr{A}_3$, 记 $B_\alpha = \alpha$, 并取集合 $A_\alpha \in \tau_e$, $S_\alpha \subset Q$ 使 $B_\alpha = A_\alpha \cup S_\alpha$. 则

$$\bigcup_{\alpha \in \mathscr{B}} B_{\alpha} = \bigcup_{\alpha \in \mathscr{B}} (A_{\alpha} \cup S_{\alpha}) = \left(\bigcup_{\alpha \in \mathscr{B}} A_{\alpha}\right) \cup \left(\bigcup_{\alpha \in \mathscr{B}} S_{\alpha}\right).$$

由于 τ_e 是拓扑, 所以 $A := \left(\bigcup_{\alpha \in \mathscr{B}} A_\alpha\right) \in \tau_e$, $S := \left(\bigcup_{\alpha \in \mathscr{B}} S_\alpha\right) \subset Q$, 因此 $\bigcup_{\alpha \in \mathscr{B}} B_\alpha = A \cup S \in \mathscr{A}_3$, 所以 \mathscr{A}_3 对集合的任意并封闭. 最后, 对于 $K_1, K_2 \in \mathscr{A}_3$, 记 $K_i = A_i \cup S_i$ (i = 1, 2), 则

$$K_1 \cap K_2 = (A_1 \cup S_1) \cap (A_2 \cup S_2) = (A_1 \cap A_2) \cup ((A_1 \cap S_2) \cup (A_2 \cap S_1) \cup (S_1 \cap S_2)).$$

由于 τ_e 是拓扑, 所以 $A_0 := A_1 \cap A_2 \in \tau_e$, 又因为 $S_0 := (A_1 \cap S_2) \cup (A_2 \cap S_1) \cup (S_1 \cap S_2) \subset Q$, 所以 $K_1 \cap K_2 = A_0 \cup S_0 \in \mathscr{A}_3$, 因此归纳知 \mathscr{A}_3 对集合的有限交封闭. 综上所述, \mathscr{A}_3 是拓扑.

- (4) \mathscr{A}_4 不是拓扑. 这是因为如果取 $A = (-\infty, 1), B = (-1, \infty) \in \mathscr{A}_4$ 可得 $A \cap B = (-1, 1) \notin \mathscr{A}_4$, 即 \mathscr{A}_4 不对集合的有限交封闭.
- 二、 $(10 \ \mathcal{O})$ 设 $\tau_t, \tau_s, \tau_f, \tau_c, \tau_e$ 分别为实数集 R 上的平凡拓扑, 离散拓扑, 余有限拓扑, 余可数拓扑, 欧氏拓扑. 求自然数集 N 在下列拓扑空间中的闭包和内部, 以及 N 作为序列是否收敛, 为什么?
 - (1) (R, τ_t) . (2) (R, τ_s) . (3) (R, τ_f) . (4) (R, τ_c) . (5) (R, τ_e) .

分析: 本题同样几乎没有难度, 只需按闭包, 内部, 序列收敛的定义逐一验证即可. 本题文字叙述较多, 因此建议考试时加快动笔速度, 以免因文字叙述耽误了思考后面题目的时间.

解:

- (1) 由于平凡拓扑空间中的开集和闭集都只有全集和空集, 所以对于其任意非空真子集U, 包含 U 的最小闭集都是全集, 包含于 U 的最小开集都是 \varnothing . 因此 $\overline{N}=R$, $N^\circ=\varnothing$. 由于平凡拓扑空间中任一点的邻域有且仅有全集, 故任何序列都收敛到空间中的每一点.
- (2) 由于离散拓扑空间中每个集合既开又闭,所以任意集合的闭包和内部都等于自身,即 $\overline{N} = N^\circ = N$. 由于对离散拓扑空间中的任一点 x, 单点集 $\{x\}$ 都是其邻域,所以序列 $\{x_n\}$ 收敛到 x 当且仅当它只有有限项不同于 x. 然而 N 作为序列,其元素是两两不同的,并不满足在有限项之后恒为常值这一条件,所以 N 不收敛到空间中任一点.
- (3) 易知在余有限拓扑空间中, U 是闭集当且仅当它是有限集或全集. 而对 R 的任意真子集 U, 若 $N \subset U$, 则 U 是无限集, 因此包含 N 的最小闭集是 R. 而由 R 不可数知其非空开集不可数, 而 N 的任意子集都可数, 故包含于 N 的最大开集是 \varnothing . 即 $\overline{N} = R$, $N^\circ = \varnothing$.

由于余有限拓扑空间中, 对任一点 x 的任一邻域 U, 全空间中最多仅有有限个点不属于 U, 因此只要序列 $\{x_n\}$ 的值域 T 中, 每个点都只会被有限多个 n 取到 (亦即, $\forall t \in T$, $\exists n \in N$, $\forall k > n, x_k \neq t$), 那么该序列就收敛到空间中每一点. 因此, N 收敛到空间中每一点.

(4) 易知在余可数拓扑空间中, U 是闭集当且仅当它是可数集或全集, 所以 N 是闭集. 由于 R 中的非空开集一定不可数, 而 N 的任意子集都可数, 因此有 $\overline{N} = N$, $N^{\circ} = \emptyset$.

对于余可数拓扑空间中的任一点 x 和任何序列 $\{x_n\}$,定义集合 $T=\{y\in R\,|\,y\neq x\wedge\exists n(y=x_n)\}$,则 $x\notin T$ 且 T 可数,因此 $X\setminus T$ 是 x 的邻域,而 $\forall n,\,x_n\in X\setminus T$ 当且仅当 $x_n=x$. 所以若 $\forall n,\,\exists k\geq n$ 使 $x_k\neq x,\,$ 则 $\{x_n\}$ 不收敛到 x. 而 N 作为序列,其元素是两两不同的,所以 N 不收敛到空间中任一点.

- (5) 由于 $R\setminus N$ 可写为可数个开区间之并, 故 N 为闭集, 即 $\overline{N}=N$. 而 $\forall n\in N, \forall \varepsilon>0$, $B(n,\varepsilon)\not\subset N$, 所以 $N^\circ=\varnothing$. 由于 N 作为序列不满足 Cauchy 准则, 由数学分析中熟知的事实可得 N 不收敛到空间任一点.
- $\Xi_{\infty}(10 \,\mathcal{O})$ 设 X 是拓扑空间. Y 和 Z 是 X 的两个子空间并且 $X=Y\cup Z$. 再设 $M\subset Y\cap Z$. 证明如果 M 既是子空间 Y 中的开集又是子空间 Z 中的开集, 则 M 是 X 中的开集.

分析: 本题难度中等, 其难点主要在于发现并证明 $A_2 \subset Y$, $A_1 \subset Z$. 而这一事实很容易通过画示意图的方式发现, 并且在集合演算的过程中也不难得到证明.

证明: 由于 M 是子空间 Y 和子空间 Z 中的开集, 因此可取 X 中的两个开集 A_1, A_2 使 $M = A_1 \cap Y = A_2 \cap Z$. 因为 $M \subset Y \cap Z$, 所以

$$Y = M \cup Y = (A_2 \cap Z) \cup Y = (A_2 \cup Y) \cap (Z \cup Y) = (A_2 \cup Y) \cap X = A_2 \cup Y,$$

即 $A_2 \subset Y$. 同理可知 $A_1 \subset Z$. 所以

$$M = M \cap M = (A_1 \cap Y) \cap (A_2 \cap Z) = (A_1 \cap Z) \cap (A_2 \cap Y) = A_1 \cap A_2,$$

即 M 可写为 X 中两开集之交, 因此是 X 中的开集.

四、(20 分) 设 X,Y 为拓扑空间. 其中 Y 为 Hausdorff 空间, 并设 $f: X \to Y$ 为连续映射. 证明 $G_f = \{(x, f(x) | x \in X\}$ 是乘积空间 $X \times Y$ 中的闭集. 如果定义映射 $G: X \to X \times Y$ 为 G(x) = (x, f(x)), 则 G 是 X 到 $X \times Y$ 的嵌入映射.

分析: 本题的两小问都是教材上的原题 (尤承业《基础拓扑学讲义》p.43 第 5 题和 p.34 第 4 题). 前一问难度中等, 但做过本题的同学应当对它有印象; 后一问难度较低, 如果记得嵌入映射的定义, 并发现 *G* 与投射互逆, 即可直接证明结论.

证明: 对于任意 $(x_0, y_0) \notin G_f$, 由于 Y 是 Hausdorff 空间, 所以可在 Y 中取 $f(x_0)$ 和 y_0 的不交开邻域, 分别记为 V_1 和 V. 取 $U = f^{-1}(V_1)$, 由于 f 是连续映射, 知 U 是 x_0 的开邻域. 考虑 (x_0, y_0) 在 $X \times Y$ 中的开邻域 $U \times V$. 对于任意 $x \in U \times V$, 都有 $f(x) \in V_1$ 而 $y \in V$,

故 $y \neq f(x)$, 即 $(x,y) \notin G_f$. 因此, G_f^c 中任一点都有包含在 G_f^c 内的开邻域, 因此 G_f^c 为开集, 即 G_f 为闭集.

易知 G 的值域是 G_f . 由于 G 作为拓扑空间到乘积空间的映射, 其每个分量都连续, 所以 G 连续. 取 $j: X \times Y \to X$, $(x,y) \mapsto x$ 为投射, 由乘积空间的基本性质知 j 连续. 又容易验证 $G: X \to G_f$ 和 $j|_{G_f}$ 都是双射, 且二者互逆, 因此 G 是嵌入映射.

五、(10 分) 设 X 满足 T_4 公理. 证明若 A 和 B 是 X 的不相交的闭子集,则存在 X 的开集 U 和 V 使得 $A \subset U, B \subset V$ 并且 $\overline{U} \cap \overline{V} = \emptyset$.

分析: 本题是课本题目的改编 (尤承业《基础拓扑学讲义》p.43 第 9 题), 但难度远远低于课本原题, 只需使用两次 T_4 公理的等价条件即可.

证明: 由于 $X \in T_4$ 的, $X \setminus B \in A$ 的开邻域, 所以存在 A 的开邻域 U 使得 $\overline{U} \subset (X \setminus B)$. 这样, $X \setminus \overline{U}$ 也是 B 的开邻域, 由 T_4 公理知存在 B 的开邻域 V 使得 $\overline{V} \subset X \setminus \overline{U}$, 因此 $\overline{U} \cap \overline{V} = \emptyset$. U 和 V 即为所求开集.

六、 $(10 \, \text{分})$ 设 X 是满足 C_2 公理的拓扑空间. 证明:

- (1) X 的任意子空间都是可分的.
- (2) X 中两两不交的开集族是可数的.

分析: 本题主要考察 C_2 公理, 第 (1) 问只需证明 C_2 公理有遗传性, 即把全空间上的拓扑基限制到子空间上, 再用到 C_2 拓扑空间一定可分这一事实即可. 需要特别注意的是, 验证"该集族是某个拓扑的拓扑基"与验证"该集族是给定拓扑的拓扑基"的方法大相径庭, 而本问需要做的是后者, 以验证该集族是**子空间拓扑**的拓扑基.

- 而第 (2) 问解答的思路是: 对于任何开集 U, 总能找到拓扑基中的一个元素 B 使 $B \subset U$, 而由于条件中的开集族两两不交, 所以选出的 B 也应当两两不同, 由此证明命题.
- (1) **证明:** 先证明 C_2 公理具有遗传性, 即 C_2 拓扑空间的子空间也满足 C_2 公理. 取 X 的可数拓扑基 $\mathcal{B} = \{B_1, B_2, \cdots\}$, 对于 X 的任意子空间 A, 令 $\mathcal{B}_A = \{B \cap A \mid B \in \mathcal{B}\}$, 则 \mathcal{B}_A 可数. 显然 \mathcal{B}_A 中任一元素都是 A 中的开集. 而对于 A 中的任一开集 V, 取 X 中的开集 U 使得 $V = A \cap U$, 由于 \mathcal{B} 是 X 的拓扑基, 所以存在正整数集的子集 M 使 $U = \bigcup_{i \in M} B_i$. 这样, $V = A \cap U = A \cap (\bigcup_{i \in M} B_i) = \bigcup_{i \in M} (B_i \cap A)$ 可写为 \mathcal{B}_A 中一系列元素之并. 因此, \mathcal{B}_A 是子空间 A 的可数拓扑基, 即 A 满足 C_2 公理.

而 C_2 拓扑空间是可分的. 这是由于从可数拓扑基中的每个非空集里任取一个元素, 所构成的集合就是该空间中的可数稠密子集. 故 C_2 拓扑空间的任意子空间都是可分的. \square

(2) **证明:** 只需证明 X 中两两不交的非空开集族是可数的 (否则可去掉其中空集, 而可数集与单点集 $\{\emptyset\}$ 之并可数). 令 N 为自然数集, 并将 X 上的拓扑记为 τ . 取 X 的可数拓扑基为 $\mathcal{B} = \{B_0, B_1, B_2, \cdots\}$. 不妨假定 \mathcal{B} 中的每个集合都非空 (否则可去掉其中空集, 构成新的可数拓扑基).

对于任一非空开集族 $\mathscr{A} \subset \tau$, 取 $f : \mathscr{A} \to N$, $A \mapsto \min\{n \in N \mid B_n \subset A\}$, 由 \mathscr{B} 是拓扑基易知 f 是有良好定义的. 若存在 $A_1, A_2 \in \mathscr{A}$ 和 $n \in N$ 使 $f(A_1) = f(A_2) = n$, 则由定义

知 $B_n \subset A_i$, i = 1, 2. 所以 $\emptyset \neq B_n \subset A_1 \cap A_2$, 这与 \mathscr{A} 中元素两两不交矛盾. 所以 f 是单射, 因而 $|\mathscr{A}| < |N|$, 即 \mathscr{A} 可数. 原命题证毕.

七、 $(10 \ \mathcal{O})$ 设 X 和 Y 是拓扑空间. 证明乘积空间 $X \times Y$ 满足 C_2 公理 当且仅当 X 和 Y 都满足 C_2 公理.

分析: 本题难度适中, 解题思路也十分明晰. 在证明必要性时, 将乘积空间中的拓扑基投射到一个分量上去, 即可构成拓扑基; 在证明充分性时, 将两个拓扑基中的对应元素作笛卡尔积, 即可构成拓扑基.

需要再次特别注意的是,验证"该集族是某个拓扑的拓扑基"与验证"该集族是给定拓扑的拓扑基"的方法大相径庭,而本题在证明两个方向时,要做的都是后者,以分别验证该集族是 X 和 Y 上的拓扑,以及乘积拓扑的拓扑基.

证明: "⇒": 取 $X \times Y$ 的可数拓扑基 $\mathscr{B} = \{B_1, B_2, \cdots\}$. 考虑投射 $j_1 : X \times Y \to X$, 易知其为连续的开映射. 取 $\mathscr{B}_X = \{j_1(B) \mid B \in \mathscr{B}\}$, 则 \mathscr{B}_X 可数, 且其中每个元素都是开集. 而对于 X 中的任一开集 $U, U \times Y$ 都是 $X \times Y$ 中的开集, 因此可写为 \mathscr{B}_X 中一系列元素之并, 即存在正整数集的子集 M 使得 $U \times Y = \bigcup_{i \in M} B_i$, 则 $U = \bigcup_{i \in M} j_1(B_i)$ 可写为 \mathscr{B}_X 中一系列元素之并, 所以 X 有可数拓扑基, 满足 C_2 公理. 同理可得 Y 满足 C_2 公理.

" \leftarrow ": 分别将 X 和 Y 上的拓扑记作 τ_X, τ_Y . 取 X 的可数拓扑基 $\mathscr{A} = \{A_1, A_2, \cdots\}$ 和 Y 的可数拓扑基 $\mathscr{B} = \{B_1, B_2, \cdots\}$. 取 $X \times Y$ 中的集族 $\mathscr{C} = \{A \times B \mid A \in \mathscr{A}, B \in \mathscr{B}\}$, 则 \mathscr{C} 是可数的开集族. 由于 \mathscr{A}, \mathscr{B} 是拓扑基, 所以对于 X 中的任一开集 U, 以及 Y 中的任一开集 V, 都存在正整数集的子集 I_U , J_V 使 $U = \bigcup_{i \in I_U} A_i$, $V = \bigcup_{i \in J_V} B_i$, 因此

$$U \times V = \bigcup_{i \in I_U, j \in J_V} (A_i \times B_j).$$

换言之, 每个形如 $U \times V$ 的开集都可写为 $\mathscr C$ 中一系列元素之并. 对于乘积空间 $X \times Y$ 中的任一开集 W, 总存在 $\mathscr W \subset \tau_X \times \tau_Y$, 使得

$$W = \bigcup_{(U,V)\in\mathscr{W}} (U\times V) = \bigcup_{(U,V)\in\mathscr{W}} \bigcup_{i\in I_U, j\in J_V} (A_i\times B_j),$$

这样, W 可写成 $\mathscr C$ 中一系列元素之并. 因此 $X \times Y$ 有可数拓扑基 $\mathscr C$, 满足 C_2 公理. \square

八、(10 分) 设拓扑空间 X 满足 T_4 公理. A 是 X 的闭子集, 又设有可数个开集 $U_1, U_2, U_3, \cdots, U_n, \cdots$ 使得 $A = \bigcap_{n=1}^{\infty} U_n$. 证明存在连续映射 $f: X \to [0,1]$ 使 $A = f^{-1}(0)$. 即 f 在 A 上取值为 0 而当 $x \notin A$ 时有 f(x) > 0.

分析: 本题主要考察 Urysohn 引理, 难度较大, 是整份试卷中难度最大的一题. 但其思路仍然很直观. 对任一正整数 k, 可由 Urysohn 引理构造非负连续函数 f_k , 使它在 A 上取值为 0, 在 U_k 的补集上取值为 1. 再将这些映射按一定的系数线性组合得到 f. 剩下的事情就是证明 f 满足题目要求了.

证明: 对任一正整数 k, 由于 X 满足 T_4 公理, 且 $U_k{}^c$ 是与 A 不交的闭集, 所以由 Urysohn 引理可构造连续函数 $f_k: X \to [0,1]$ 使 $f_k|_A = 0$, $f_k|_{U_k{}^c} = 1$. 取 $f: X \to [0,+\infty)$, $x \mapsto \sum_{k=1}^{\infty} (2^{-k} f_k(x))$. 由于 $\forall k, 0 \le f_k \le 1$, 所以 $\forall x, 0 \le f(x) \le \sum_{k=1}^{\infty} 2^{-k} = 1$. 所以 f 是良好定义的, 且为从 X 到 [0,1] 的映射. 由 f 的构造知 $f|_A = 0$, 而对于任意 $x \notin A$, 存在正整数 k 使 $x \in U_k{}^c$, 所以 $f(x) \ge 2^{-k} f_k(x) = 2^{-k} > 0$, 因此 $A = f^{-1}(0)$.

下面只需证明 f 是连续函数. 对任意 $\varepsilon > 0$, 总存在 $N = \lceil \varepsilon^{-1} \rceil$, 使得对任意 n > m > N, 对任意 $x \in X$, 都有

$$0 \le \sum_{k=m}^{n} (2^{-k} f_k(x)) \le \sum_{k=m}^{n} 2^{-k} \le 2^{-m+1} \le 2^{-N} < N^{-1} \le \varepsilon,$$

由 Cauchy 准则及实数集的完备性, 知级数 $\sum_{k=1}^{\infty} (2^{-k} f_k(x))$ 是一致收敛的. 由数学分析中熟知的事实知 f 是连续函数. 综上所述, f 即为所求映射.

注记: "一致收敛的连续函数列, 其极限也是连续函数" 的确是数学分析中熟知的事实, 在考试时也完全可以直接拿来使用. 然而, 在数学分析课上, 我们只证明了 n 维欧氏空间 E^n 到一维欧氏空间 E^1 的结论. 所以我们将更一般的命题叙述在此处, 并加以证明.

命题: 设 X 是拓扑空间, (Y,d) 是度量空间, 对于一列连续映射 $f_n: X \to Y$, 如果存在映射 $f: X \to Y$, 使得 $\forall \varepsilon > 0$, $\exists n > 0$, 使得对任意 $x \in X$ 和任意整数 k > n, 都有 $d(f_k(x), f(x)) < \varepsilon$ (亦即 $\{f_n\}$ 一致收敛到 f), 则 f 也是连续映射.

证明: 首先, 对于 Y 中的任一开集 U 和任意 $\varepsilon > 0$, 定义集合 $E_{\varepsilon}(U) = \{y \in Y \mid d(y, U^c) > \varepsilon\}$, 由于 $d(\cdot, U^c)$ 是 Y 上的连续函数, 知 $E_{\varepsilon}(U)$ 是开集. 由一致收敛性, 对任意正整数 n, 取 $\varepsilon = \frac{1}{n}$, 取整数 m_n 使得对任意 $x \in X$ 和任意整数 $k \geq m_n$, 都有 $d(f_k(x), f(x)) < \frac{\varepsilon}{2}$.

下面证明, 对于任意 $x \in X$, $f(x) \in U$ 当且仅当存在正整数 n 和正整数 $k \geq m_n$, 使得 $f_k(x) \in E_{\frac{1}{n}}(U)$. 若 $f(x) \in U$, 由于 U^c 是闭集, 所以 $f(x) \in U$ 当且仅当 $d(f(x), U^c) > 0$. 因此可取正整数 n 使得 $d(f(x), U^c) > \frac{2}{n}$, 而当 $k \geq m_n$ 时, $d(f_k(x), f(x)) < \frac{1}{2n}$. 因此

$$d(f_k(x), U^c) \ge |d(f(x), U^c) - d(f_k(x), f(x))| \ge \frac{3}{2n} > \frac{1}{n},$$

即 $f_k(x) \in E_{\frac{1}{n}}(U)$. 另一方面, 若存在正整数 n 和正整数 $k \ge m_n$ 使 $d(f_k(x), U^c) > \frac{1}{n}$, 则由 $d(f_k(x), f(x)) < \frac{1}{2n}$ 知

$$d(f(x), U^c) \ge |d(f_k(x), U^c) - d(f_k(x), f(x))| \ge \frac{1}{2n} > 0,$$

所以 $f(x) \notin U^c$. 由此可以得到

$$f^{-1}(U) = \bigcup_{n=1}^{\infty} \bigcup_{k=m_n}^{\infty} f_k^{-1}(E_{\frac{1}{n}}(U)).$$

由于 f_k 是连续映射, 而 $E_{\frac{1}{n}}(U)$ 是 Y 中的开集, 所以 $f^{-1}(U)$ 可写为 X 中一系列开集之并, 从而也是开集. 因此 f 是连续映射.