1.7 Linear Independence

McDonald Fall 2018, MATH 2210Q, 1.7Slides

1.7 Homework: Read section and do the reading quiz. Start with practice problems, then do

• *Hand in:* 1, 5, 7, 15, 16, 20, 21

• Extra Practice: 1-20

Definition 1.7.1. An indexed set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution. S is **linearly dependent** if for some c_1,\ldots,c_p not all zero

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}.$$

Example 1.7.2. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$.

Is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linearly independent? If not, find a linear dependence relation.

Example 1.7.3. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

Is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linearly independent? If not, find a linear dependence relation.

Remark 1.7.4. If $A = [\mathbf{v}_m \quad \cdots \quad \mathbf{v}_m]$, then the homogeneous equation $A\mathbf{x} = \mathbf{0}$ can be written $x_1\mathbf{v}_1+\cdots+x_n\mathbf{v}_m=\mathbf{0}.$

Thus, linear independence is the same as having no non-trivial solutions to this matrix equation.

Definition 1.7.5. The columns of a matrix A are linearly independent if and only if $A\mathbf{x} = \mathbf{0}$ has no non-trivial solutions.

Example 1.7.6. Determine if the columns of $A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$ are linearly independent.

Example 1.7.7. Determine if the following sets of vectors are linearly independent.

(a)
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$ (b) $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

(b)
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

Proposition 1.7.8 (Sets of two vectors). A set of two vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent if and only if neither of the vectors is a multiple of the other.

Theorem 1.7.9 (Characterization of Linearly Dependent Sets). An indexed set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. In fact, if S is linearly dependent and $\mathbf{v}_1 \neq \mathbf{0}$, then some \mathbf{v}_j (j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Example 1.7.10. If \mathbf{u} and \mathbf{v} are linearly independent non-zero vectors in \mathbb{R}^3 . Geometrically describe $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$. Prove \mathbf{w} is in $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$ if and only if $\{\mathbf{u},\mathbf{v},\mathbf{w}\}$ is a linearly dependent set.

Theorem 1.7.11 (Too many vectors). If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf v_1,\dots,\mathbf v_p\}$ in $\mathbb R^n$ is linearly dependent if p > n.

Proof:

Theorem 1.7.12. If a set S in \mathbb{R}^n contains the zero vector, then S is linearly dependent.

Proof:

Example 1.7.13. Determine by inspection (without matrices) if given sets are linearly dependent.

(a)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$

$$(b) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 7 \end{bmatrix}$$