Расчет системы оповещения

И.Г. Неплохов.

к.т.н., эксперт

Общий порядок проектирования систем оповещения (СО) о пожаре в зданиях и сооружениях, выбор типа системы оповещения в зависимости от вида и назначения зданий и сооружений определен в НПБ 104-03 "Системы оповещения и управления эвакуацией людей при пожарах в зданиях и сооружениях".

Нормами предусмотрено 5 типов систем оповещения и управления эвакуацией (СОУЭ), в зависимости от способа оповещения, деления здания на зоны оповещения и других характеристик. Звуковой или звуковой-световой способы оповещения в виде сирен и стробоскопов используется в наиболее простых системах оповешения - в системах 1-го и 2-го типа.

В этой статье даны рекомендации по расчету необходимого количества звуковых оповещателей и мест их установки.

Требования к оповещателям и системам оповещения

По НПБ 104-03, звуковые сигналы СОУЭ должны обеспечивать уровень звука не

Структура неадресной системы пожарной сигнализации

менее 75 дБ(А) на расстоянии 3 м от оповещателя, но не более 120 дБ(А) в любой точке защищаемого помещения. Для обеспечения четкой слышимости звуковые сигналы СОУЭ должны обеспечивать уровень звука не менее чем на 15 дБ выше допустимого уровня звука постоянного шума в защищаемом помещении (измерение проводится на расстоянии 1,5 м от уровня пола). В спальных помещениях звуковые сигналы СОУЭ должны иметь уровень звука не менее чем на 15 дБ выше уровня звука постоянного шума в защищаемом помещении, но не менее 70 дБ (измерения проводятся на уровне головы спящего человека). Настенные звуковые оповещатели, как правило, должны крепиться на высоте не менее 2,3 м от уровня пола, но расстояние от потолка до оповещателя должно быть не менее 150 мм. В защищаемых помещениях, где люди находятся в шумозащитном снаряжении, или в помещениях с уровнем звука шума более 95 дБ, звуковые оповещатели должны комбинироваться со световыми; допускается использование световых мигающих оповещателей. Также в зданиях, где находятся (работают, проживают, проводят досуг) глухие и слабослышащие люди, требуется использование световых или световых мигающих оповещателей. Количество звуковых пожарных оповещателей, их расстановка и мощность должны обеспечивать уровень звука во всех местах постоянного или временного пребывания людей в соответствии с требованиями.

Характеристики оповещателей должны удовлетворять требованиям НПБ 77-98 "Технические средства оповещения и управления эвакуацией пожарные. Общие технические требования. Методы испытаний". Оповещатели, в зависимости от характера выдаваемых сигналов, подразделяют на световые, звуковые, речевые и комбинированные. Уровень звукового давления, развиваемый звуковыми оповещателя-ми на расстоянии 1.00 ± 0.05 м, должен быть установлен в пределах от 85 до 110 дБ. Степень защиты технических средств оповещения, обеспечиваемая оболочкой по ГОСТ 14254 должна быть не ниже 1Р41.

Основные положения

При проектировании системы оповещения необходимо выбрать тип оповещателей и определить места их установки исходя из требований НПБ 104-03. Исходными данными для расчета в простейшем случае являются размеры помещения и минимальный требуемый уровень звуковых сигналов, который определяется типом помещения (спальное или рабочее), допустимым уровнем шума в нем и т.д. Для справки в таблице 1 приведены типовые уровни шума от наиболее распространенных источников.

Таким образом, например, для спального помещения с вытяжным вентилятором получим уровень требуемого сигнала оповещения не ниже

55+15 = 70дБ(A).

Для обеспечения заданного уровня сигнала оповещения во всем помещении сигнал оповещателя должен превышать это значение на величину затухания при его распространении в наиболее удаленную часть помещения. В технических характеристиках на оповещатели приводится уровень звукового сигнала на расстоянии 1 м, коТИНКО

"Библиотека

проекта

понсор

источников										
Источник шума	Уровень шума, дБ(А)									
Спокойное дыхание	10									
Шелест страниц	20									
Шепот	30									
Холодильник	40-43									
Компьютер	37-45									
Кондиционер	40-45									
Вытяжной вентилятор	50-55									
Телевизор, электробритва	60									
Спокойный разговор	66									
Речь по радио, громкий разговор	70									
Пылесос	75									
Детский плач	78									
Игра на пианино	80									
Музыка по радио, электрополотер	83									
Перфоратор, громкий крик	90-95									
Домашний кинотеатр на полную мощность	100-110									

торый должен быть в пределах от 85 до 110 дБ(А). Определение уровня сигнала на произвольном расстоянии производится сложением паспортного значения сигнала оповещателя (на 1 метре) с величиной ослабления сигнала (со знаком минус) для данного расстояния.

Зависимость снижения уровня сигнала от расстояния до оповещателя приведена на рисунке 1. Численные значения приведены в таблице 2. Например, если оповещатель на расстоянии 1 метр обеспечивает уровень сигнала 100 дБ(A), то на 10 метрах ослабление рис. 1 Зависимость снижения уровня сигнала от расстояния равно -20 дБ и уровень сигнала составит 80 дБ(A). Зависимость уровня сигнала от расстояния обратно квадратичная, т.е. при увеличении расстояния в 10 раз сигнал падает в 100 раз, что и составляет при переводе в децибеллы -20 дБ.

По значениям, приведенным в **таблице 2**, легко оценить ослабление сигнала и на больших расстояниях, используя свойства логарифмической зависимости. При удвоении расстояния ослабление сигнала составит дополнительно -6 дБ(A), при утроении -9,5 дБ(A). Например, если на 10 метрах ослабление -20,0 дБ(A), то на 20 метрах -26,0 дБ(A), на 40 метрах -32 дБ(A), на 80 метрах -38 дБ(A) или на 30 метрах -29,5 дБ(A), на 90 метрах -39,0 дБ(A) и т.д. В общем случае

ное сло-

жение

снижение уровня сигнала в дБ(А) на расстоянии L. в метрах, относительно его вели-

Рис. 1 Зависимость снижения уровня сигнала от расстояния до оповещателя

чины на расстоянии 1 м от оповещателя, можно вычислить по известной формуле:

 $r = 10 Lg (1/L^2)$

При использовании нескольких оповещателей в одном помещении необходимо учиты-вать, что синфаз-

двух равных сигналов увеличивает их величину в два раза, т.е. всего лишь на 3 дБ. Таким образом, применяя оповещатели, сертифицированные по НПБ 77-98, с сигналом до 110 дБ получить превышение уровня 120 дБ практически невозможно. Даже установив в помещении шириной 2 метра, напротив друг друга, два оповещателя с уровнем сигнала по 110 дБ, получим уровень сигнала, не превышающий 113 дБ.

Рис. 2 Снижение уровня сигнала при наличиии дверей

При использовании одного оповещателя на несколько помещений необходимо учитывать ослабление сигнала при прохождении через двери. По европейской методике расчета системы оповещения, в общем случае принимается для противопожарных дверей ослабление сигнала -30 дБ(A), для стандартных дверей -20 дБ(A) (рисунок 2).

Пример расчета уровней сигнала в помещении

В качестве примера, на **рисунке 3** приведены результаты расчета уровней сигнала для помещения 25 м х 12,5 м при использовании двух оповещателеи. В левой части рисунка приведены значения ослабления сигнала при достижении различных частей помещения: до центра (расстояние 12,5 м) -22 дБ(A), до центра боковой сте-

ны (расстояние 14 м) -23 дБ(A), до ближайших углов (расстояние 6,25 м) на -16 дБ. В правой части рисунка приведены соответствующие уровни сигналов при условии уровня сигнала оповещателя 100 дБ на расстоянии 1 метр в горизонтальной плоскости.

После выбора конкретного типа огювещателя необходимо уточнить проведенные расчеты, учитывая его диаграмму направленности, которая должна быть приведена в документации.

Рис. З Уровни сигнала оповещения в различных частях помещения

ТАБЛИЦА 2 ЗАВИСИМОСТЬ СНИЖЕНИЯ УРОВНЯ СИГНАЛА ОТ РАССТОЧНИЯ ОПОВЕЩАТЕЛЬ

L [m]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
г [дБ]	0	-6,0	-9,5	-12,0	-14,0	-15,6	-16,9	-18,1	-19,1	-20,0	-20,8	-21,6	-22,3	-22,9	-23,5	-24,1	-24,6	-25,1	-25,6	-26,0

Причем, для снижения энергопотребления необходимо обеспечить одновре-

Рис. 4 Диаграмма направленности оповещателя серии ЕМА

Рис. 5 Настенный звуковой оповещатель серии ЕМА

Рис. 6 Акустическа система оповещения серии **EMA**

менно широкую диаграмму направленности и высокий уровень сигнала при минимальных мошностях потребеления.

Для примера, на рисунке 4 приведена диаграмма направленности оповещателя серии ЕМА (рисунок 5) производства КАС (Великобритания), сестринской компании Систем Сенсор. Опове-

щатель серии ЕМА обеспечивает уровень сигнала на расстоянии 1 м в прямом направлении 100 дБ, под углом 45° (в направлении середины боковой стены) 96 дБ, под углом 90° (вдоль стены) 92 дБ, при токе потребления порядка 18 мА при 24 В. В звуковом канале оповещателеи используется широкополосная динамическая головка, сопряженная со сложной акустической системой, которая обеспечивает отличное согласование с окружающей средой (рисунок 6).

Акустическая система, по сути, представляет собой рупор, сложенный несколько раз, что позволило снизить профиль оповещателя и получить прекрасный дизайн. Регулятор уровня сигнала позволяет при необходимости снизить

уровень сигнала на 15 дБ(А) и дополнительно уменьшить ток потребления. При установке в оповещателеи серии ЕМА в низкопрофильные базы EbPBB - обеспечивается класс защиты 1Р44, в высокопрофильные базовые основания Е5ВР и Е5В5Р - 1Р55 и 1Р66 соответственно. Наряду с высокой степенью защиты оболочки обеспечен широкий диапазон рабочих температур оповещателеи: от -30°C до +70°C, что позволяет использовать их даже в не отапливаемых помещениях и для наружной установки.

С учетом ослабления сигнала на соот-

ветствующих расстояниях получаем уровень сигнала в центре помещения 100 - 22 + 3 = 81 дБ(A), в центре боковой стены 96 - 23 + 3 = 76 дБ(А), в углах помещения на 92 -16 = 76 дБ(А). Таким образом, при использовании двух оповещателеи серии ЕМА обеспечивается оповещение на уровне более 75 дБ(А) помещение площадью 312,5 M².

В некоторых типах помещений удобно использовать цокольные оповещатели сериий ВЗ (рисунок 7), предназначенные для установки на

Спонсор проекта

'Биб.

специалиста по

компания

Рис. 7 ПОТОЛОЧНЫЙ оповещатель серии DBS с крышкой DBSLIDR

потолке совместно с пожарным извещателем с базой диаметром 102 мм, или отдельно с крышкой ОВ51-ЮП(\Л/) красного (белого) цвета. Акустическая система этого оповещателя имеет направленность в виде конуса, т.е. больший уровень сигнала излучается при больших углах относительно нормали, т.е. в более удаленных

направлениях. Использование оповещателя с такой диаграммой позволяет получить одинаково высокий уровень сигнала оповещения на большой площади.

В серии ЕМА так же присутствуют световые (рисунок 8) и световые-звуковые (рисунок 9) оповещатели. Световой канал выполнен в виде стробоскопа с периодом вспышек 1,5 сек, что обеспечивает высокую яркость сигнала при токе потребления порядка 40 мА. Возможно использование световых сигналов красного, желтого или белого цвета.

РИС. 8 Световой оповещатель серии

Таким образом, при обратной полярности питания в дежурном режиме оповещение не включается, а состояние шлейфа контролируется по величине тока, протекающего через оконечный резистор шлейфа.

Для обеспечения функции контроля шлейфа все оповещатели серии ЕМА и ОВЗ имеют раздельные входные и выходные терминалы и диоды в цепи питания.

Методика расчета системы оповещения

Исходя из изложенного выше материала, рас-

Рис. 9 Комбинированный световойзвуковой оповещатель серии ЕМА

- 1. Выделить помещения, подлежащие оборудованию оповещателями.
- 2. Определить минимально допустимый уровень сигнала оповещения в каждом помещении.
- 3. Вычислить ослабление сигналов до наиболее удаленных частей помещения от предполагаемых мест установки оповещателей.
- 4. Выбрать конкретный тип оповещателей и уточнить уровни сигналов в помещениях с учетом диаграмм направленности.
- 5. Определить потребление системы пожарной сигнализации в режиме ПОЖАР и время работы от автономного источника питания.

Очевидно, этапы 3 - 4 должны быть выполнены несколько раз при получении неудовлетворительного результата на 4-м этапе. Если уровень сигналов в некоторых частях помещения оказывается в результате ниже требуемого, необходимо изменить расстановку оповещателей с увеличением их числа, либо изменить их тип.

Европейские требования по системам оповещения

По многим компонентам систем пожарной сигнализации требования отечественной нормативной базы практически совпадают с европейскими, однако в требованиях по оповещению сохраняются значительные расхождения. В европейских системах допускается минимальный уровень сигнала оповещения 65 дБ(A) со снижени-

Рис. 10 Минимальные уровни сигналов оповещания по европейским нормам

ем до 60 дБ(А) в помещениях площадью менее 60 м², на лестничных площадках и в отдельных точках ограниченного пространства (рисунок 10). В помещениях с работающим оборудованием достаточно превышения уровня шума на 5 дБ (рисунок **11**), а не на 15 дБ.

Действительно,

уровень сигнала оповещения должен быть достаточен для четкого восприятия, чрезмерный уровень оповещения может спровоцировать панику в и без того стрессовой ситуации. А в помещениях, где требуется разбудить людей (рисунок 12) уровень сигнала оповещения в головах кровати должен быть 75 дБ(A), в отличие от российских 70 дБ(A).

Минимум 85 дБ(A)

Шум оборудования 80 дБ(A)

понсор проекта

"Библиотека

специалиста по

систе

Рис. 11 Оповещение в шумном помещении по европейским нормам

В заключение хочется еще раз отметить, что оповещение является связующим звеном между системой автоматической пожарной сигнализации и людьми, находящимися в здании, и от его работы напрямую зависит их здоровье и жизнь. Поэтому необходимо обратить внимание на обязательность контроля шлейфа оповещателей. Это так же важно, как контроль шлейфа извещателей (см. ри-

Рис. 12 Оповещение в спальном помещении по европейским нормам

сунок в начале статьи). Если короткое замыкание одного из шлейфов сигнализации приводит к отключению извещателей одной зоны, то замыкание шлейфа оповещателей вызывает полное нарушение работоспособности системы.

Шлейф оповещателей должен быть линейным, без ответвлений с оконечным элементом для контроля его состояния в дежурном режиме. Приемноконтрольный пожарный прибор по току в дежурном режиме при обратной полярности напряжения должен идентифицировать короткое замыкание или обрыв шлейфа оповещателей. Только такое построение системы пожарной сигнализации отвечает сегодняшним требованиям.