Семинар 12

Общая информация:

- Напомню обозначения теоретико-множественных операций. Для множеств X и Y через $X \cup Y$ будем обозначать их объединение, т.е. $X \cup Y = \{x \mid x \in X \text{ или } x \in Y\}$. Через $X \setminus Y$ будем обозначать разность множеств, т.е. $X \setminus Y = \{x \mid x \in X \text{ и } x \notin Y\}$.
- Пустое множество будем обозначать через \varnothing . Заметим, что по определению, пустое множество является подмножеством в любо множестве X.
- Две матрицы $A, B \in \mathcal{M}_n(\mathbb{R})$ называются сопряженными, если существует такая невырожденная матрица $C \in \mathcal{M}_n(\mathbb{R})$, что $A = C^{-1}BC$.

Задачи:

- 1. Задачник. §6, задача 6.9 (а, г).
- 2. Задачник. §6, задача 6.12 (a).
- 3. Пусть X некоторое множество, обозначим через 2^X множество всех его подмножеств, т.е. $2^X = \{Y \mid Y \subseteq X\}$. Введем на 2^X следующую операцию сложения: $Y + Z = (Y \setminus Z) \cup (Z \setminus Y)$. Пусть $\mathbb{F}_2 = \{0,1\}$ множество из двух элементов. Зададим на нем операции сложения и умножения естественным способом, а именно

+	0	1			0	1
0	0	1	И	0	0	0
1	1	0		1	0	1

Определим умножение элементов \mathbb{F}_2 на элементы 2^X следующим образом $1Y=Y,\,0Y=\varnothing.$

- (a) Показать, что \mathbb{F}_2 является полем.
- (b) Показать, что 2^X является векторным пространством над \mathbb{F}_2 .
- (c) Пусть $Y_1, \ldots, Y_k \subseteq X$ подмножества такие, что ни одно из Y_i не содержится в объединении оставшихся Y_i . Показать, что Y_1, \ldots, Y_k линейно независимая система.
- 4. Задачник. §34, задача 34.14 (а, г).
- 5. Какие из следующих матриц сопряжены? Если они сопряжены, то укажите с помощью какой матрицы:

(a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$$
 и $\begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
 и $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$

6. Пусть $U \subseteq \mathbb{R}^4$ – векторное подпространство заданное следующим образом $U = \{x \in \mathbb{R}^4 \mid Ax = 0\}$, где

$$A = \begin{pmatrix} 1 & 1 & -2 & 2 \\ 1 & 5 & 6 & -4 \\ 4 & 5 & -2 & 3 \\ 3 & 8 & 24 & -19 \end{pmatrix}$$

Найти какой-нибудь базис подпространства U.

7. Пусть $U \subset \mathbb{R}^4$ – векторное подпространство заданное в виде следующей линейной оболочки:

$$U = \langle \begin{pmatrix} 3 \\ 5 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ -6 \\ 3 \end{pmatrix}, \begin{pmatrix} 11 \\ 17 \\ -8 \\ 4 \end{pmatrix} \rangle \subseteq \mathbb{R}^4$$

1

Найдите матрицу A (нужных размеров), чтобы $U = \{x \in \mathbb{R}^4 \mid Ax = 0\}.$