ECE535: Digital Signal Processing

Project 1: Sample Rate Conversion

Student Name: Hoang Minh Le – G01270908

Date: November 5, 2023

1 Preliminaries

Part (a)

a)
$$S[n] = \frac{\sin A\pi(n-D)}{A\pi(n-D)}$$
 \Rightarrow undefined at $n = D$
 $S[D] = \frac{A\pi \sin A\pi(n-D)}{A\pi \sin A\pi(n-D)} = \frac{A\pi \cos A\pi(n-D)}{A\pi} = 1$
 $S[D] = \frac{A\pi \cos$

Figure 1: Analyses to find maximum values and zero crossings

Part (b) and (c)

$$\frac{\sin(w_{c}n)}{\pi n} = \int_{0}^{\infty} \frac{1}{w_{c}} |w| < w_{c}$$

$$\frac{1}{A} \cdot \frac{\sin(A\pi n)}{A\pi n} = \frac{DTFT}{0}, \quad |DTFT| = 0$$

$$\frac{1}{A} \cdot \frac{\sin(A\pi n)}{A\pi n} = \frac{DTFT}{A} \cdot \frac{1}{A} \cdot \frac{1}{N} \cdot \frac{$$

5)
$$\chi[n] = \frac{\left[\sin\left(A\pi(n-D)\right)\right]^2}{A\pi(n-D)} \frac{1}{2\pi} M(e^{f\omega}) + M(e^{f\omega})$$

Convolution expend the support to:

-2ATT < 1001 < 2ATT

Maximum height:

$$\frac{1}{2\pi} \cdot \left(\frac{1}{A} \cdot \frac{1}{A}\right) \cdot 2A\pi = \frac{1}{A}$$

$$X(e^{j\omega}) = \begin{cases} \frac{-1}{2\pi A^2}\omega + \frac{1}{A}, & 0 < |\omega| < 2A\pi \\ \frac{1}{2\pi A^2}\omega + \frac{1}{A}, & -2A\pi < \omega < 0 \end{cases}$$
every
$$\frac{1}{2\pi A^2}\omega + \frac{1}{A}, & -2A\pi < \omega < 0$$

$$2\pi$$

2 Upsampling

Part (a)

Figure 3: Verify symmetry, peak values, and zero crossings

In Fig. 3, both of the sinc's are symmetric about D = 64, and have peak values of 1's.

Part (b)

Figure 4: 2048 samples of DFT of $x_1[n]$ and $x_2[n]$.

The triangle shapes in Fig. 4 agree with the analytical results. The maximum height of $X_1(e^{j\omega})$ is 1/0.4=2.5, and $X_1(e^{j\omega})$ is bandlimited to $2A\pi=2(0.4)\pi=0.8\pi$. Similarly, The maximum height of $X_2(e^{j\omega})$ is 1/0.2=5, and $X_2(e^{j\omega})$ is bandlimited to $2A\pi=2(0.2)\pi=0.4\pi$.

Part (c)

Figure 5: Sketches of the DTFT's of expanded signals

Fig. 5 presents the prediction of how upsampling affects the DTFT of $X_1(e^{j\omega})$ and $X_2(e^{j\omega})$.

Based on knowledge of the upsampling operation, the frequency axis is scaled, or compressed, by L=3. For $X_1(e^{j\omega})$, the highest frequency of 0.8π is scaled to $0.8\pi/3$. Similarly, for $X_2(e^{j\omega})$, the highest frequency of 0.4π is scaled to $0.4\pi/3$. In any period of $[0,2\pi]$, three triangles are observed, or three copies of $X_1(e^{j\omega})$ or $X_2(e^{j\omega})$ are observed. The height of $X_1(e^{j\omega})$ and $X_2(e^{j\omega})$ remains unchanged through upsampling.

Figure 6: DTFT of expanded signals $x_{e1}[n]$ and $x_{e2}[n]$.

The MATLAB results in Fig. 6 confirms the prediction in paper pencil analysis in Fig. 5.

Part (d)

From plot (b) of Fig. 7, the frequency response of the LPF satisfy the requirements: cut off frequency $\omega_c = \pi/L = \pi/3$, and a gain of L=3.

- (a) Impulse Response of LPF for Upsampling
- (b) Frequency Response of LPF for Upsampling

Figure 7: Low Pass Filter Design for Upsampling

Part (e)

Figure 8: Magnitude of DFT of interpolated signals

The effect of the LPF is observed by comparing Fig. 6 and Fig. 8. The LPF filters out all the copies from upsampling between $\omega_c < |\omega| < \pi$; that is $\frac{\pi}{3} < |\omega| < \pi$. After filtering, the magnitude of these transform are similar to as if the continuous time signals had been sampled 3 times faster, where the frequency axis is scaled by 3 and the magnitude spectra are periodic of 2π , and not periodic of $\frac{2\pi}{3}$. Since the LPF has a gain of L=3, the maximum height of $X_{i1}(e^{j\omega})=2.5\times 3=7.5$, and the maximum height of $X_{i2}(e^{j\omega})=5\times 3=15$.

3 Downsampling

Part (a)

Figure 9: Analysis of downsampling and aliasing

For $X_1(e^{j\omega})$, since the maximum frequency is 0.8π , downsampling with M=2 shall causes aliasing because $0.8\pi\times 2=1.6\pi>\pi$. Between the period of $[0,2\pi]$, unaffected frequencies are $(0,0.4\pi)$ and $(1.6\pi,2\pi)$. Aliasing occurs between frequencies $(0.4\pi,1.6\pi)$. However, $X_2(e^{j\omega})$ has the maximum frequency of 0.4π will not be aliased because $0.4\pi\times 2=0.8\pi<\pi$.

Part (b)

Figure 10: Magnitude of DTFT of downsampling with M=2

The MATLAB results in Fig. 10 agrees with the analytical results in Fig. 9. The aliasing frequencies for $X_{d1}(e^{j\omega})$ are verified to be $(0.4\pi,1.6\pi)$, while frequencies $(0,0.4\pi)$ and $(1.6\pi,2\pi)$ are unaffected. $X_{d2}(e^{j\omega})$ has no aliasing. Note that the heights are scaled by the M=2 factor. The maximum height of $X_{d1}(e^{j\omega})$ is 2.5/2=1.25. The maximum height of $X_{d2}(e^{j\omega})$ is 5/2=2.5.

Part (c)

The LPF has a cut off frequency $\omega_c=\pi/M=\pi/2,$ and a gain of 1.

- (a) Impulse Response of LPF for Downsampling
- (b) Frequency Response of LPF for Downsampling

Figure 11: Filter design for prior-downsampling

- (a) $x_{d1}[n]$ is anti-alias filtered prior to downsampling
- (b) Downsampling anti-alias filtered $x_{d1}[n]$

Figure 12: Implement anti-alias filter to signal $x_{d1}[n]$ prior to downsampling

4 Practical Implementation: Changing the sample rate of an audio signal

Part (a)

Since $\frac{11\,025\,\mathrm{Hz}}{8820\,\mathrm{Hz}}=1.25$, we need to upsample by L=4 and then downsample by M=5.

Part (b)

We need to upsample first before downsampling. Since the downsampling factor is M=5, on the period of $[-\pi,\pi]$ the audio signal must the bandlimited to $|\omega|<\pi/5=0.2\pi$ to avoid aliasing. Otherwise, the audio signal must be LPF with cutoff frequency $w_c=\pi/5$ prior to downsampling. This method is also not desirable because a good range of frequencies in the audio signal is sacrificed.

Figure 13: Magnitude of DFT of the original audio signal $X_{11k}(e^{j\omega})$

Fig. 13 shows that $X_{11k}(e^{j\omega})$ is not bandlimited to $\pi/5$. Therefore, directly downsampling with M=5 would guarantee aliasing. Prior-downsample filtering is also undesirable because frequencies content between $(0.3\pi,0.6\pi)$ and $(1.4\pi,1.7\pi)$ will be lost. A more suitable plan of

action is to upsampling first then downsampling. Upsamping with L=4, and LPF the expanded signal, would guarantee the audio signal is bandlimited to $|\omega|<\pi/4$. Then, downsampling with the factor M=5 can only cause aliasing if $X_{11k}(e^{j\omega})$ has frequencies contents near π . Note in Fig. 13 that frequencies contents on $(0.8\pi,\pi)$ are close to 0.

Part (c)

Only one LPF filter for interpolating the upsampled audio signal is needed.

Figure 14: Upsampling the audio signal by L=4 to obtain $X_{44k1}(e^{j\omega})$. Four "copies" of $X_{11k}(e^{j\omega})$ can now be observed on period $[0,2\pi]$, which confirm the upsampling is carried out correctly.

Figure 15: Upsampling LPF design with a cutoff frequency of $w_c=\pi/4=0.25\pi$ and a gain L=4.

Figure 16: Interpolating expanded signal $X_{44k1}(e^{j\omega})$, using the upsampling LPF designed in Fig. 15. If a prior-downsampling LPF were to be applied, the results would not be changed significantly

Fig. 16 is the audio signal being upsampled by M=4 and then filtered by a LPF with a cutoff frequency of $w_c=\pi/4=0.25\pi$ and a gain L=4. The spectrum in Fig. 16 is now similar to as if the signal in Fig. 13 is sampled 4 times faster.

The next step is to downsample the interpolated upsampled signal. In Fig. 16, the red curve is the anti-aliasing filtered designed for downsampling with a factor of 5. Notice the frequency content that the LPF will filter out is not significant. For this specific application of the given audio signal, the anti-alias LPF is not necessary.

Another way to reason why the anti-alias LPF is not needed can be done by observing Fig. 13. If ω if the frequency axis of the original signal, then after both the up-and-down sampling process, the final frequency axis is scaled by $\frac{5}{4}\omega$. Therefore, any frequency contents beyond 0.8π in Fig. 13 will be aliased, because $\frac{5}{4}\omega > \pi$ if $\omega > \frac{4}{5}\pi$. In Fig. 13, the frequency contents on $(0.8\pi, 1.2\pi)$ are very close to 0. Hence, the results of of aliasing is not significant.

Figure 17: Downsampling the upsampled and interpolted signal. No prior-downsampling low pass filtering is needed.