Quantum Computing

Not just a dream, ... also in practice!

May 8th, 2019

Regional Conference Belgium-Luxembourg

Hans Van Mingroot & Eric Michiels

Our intuition about what we can compute is wrong...

The best supercomputer in the world can only simulate a ...

40-50 electron system

It is impossible to model Caffeine on today's most powerful super computers, but we could represent it using 160 Quantum Bits, or Qubits

$$CH_3$$
 N
 N
 N
 CH_3
 CH_3
 CH_3

The "Traveling Salesman" problem has a runtime that grows exponentially with its input size

- 5 locations: 5 * 4 * 3 * 2 * 1 = 120 = 5!
- 10 locations: 10! = 3 628 800
- 20 locations: 20! = 2 432 902 008 176 640 000

What if we have ...

- 100's of trucks and planes
- 1000's of parcels
- 10000's of products
- Changing "weights" between vertices on the edges
- Changes in locations

Can a Classical Computer simulate a Physical System?

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly, it's a wonderful problem, because it doesn't look so easy."

Richard P. Feynman

Bit vs. Qubit – Superposition

The **Bit:** two possible states: 0 and 1.

The Qubit: is 0 or 1 when you measure, or observe it.

But: while not observed: the state of a qubit can also be a *superposition*, or combination, of both 0 and 1

We can state this as

$$a | 0 > + b | 1 >$$

A single Qubit can exist in a superposition of 0 and 1, and N Qubits allow for a superposition of all possible 2^N combinations

Bit vs. Qubit – Entanglement

Multiple Bits: can be manipulated and measured independently.

Multiple **Qubits**: can be *entangled* – the Qubits cannot be treated as separate states but together form a system as a whole.

Example:

$$a | 00 > + b | 11 >$$

Quantum Computers allow you to encode a problem, explore an exponential possibility space of solutions, and by taking advantage of constructive and destructive interference, read the optimal solution out of the system

"Spooky action at a distance" or "EPR Paradox"

Example: Simple addition of (Qu)bits

If we have two (Qu)bits with each value 0 or 1, what are the possible outcomes of their addition?

What is the good and the bad news for Qubits?

Classical Computers

The potential power of a Classical Computer **doubles** every time you double the number of transistors

Quantum Computers

The potential power of a Quantum Computer **doubles** every time you add one additional Qubit

Physical Qubits Realizations

Quantum Bits:

Two-Level Systems

Example:

Atom orbitals with different energetic levels

Neutral Atoms

© Haroche

Quantum Dots

© Petta

Ion Traps

© Blatt & Wineland

Superconducting Circuits

© IBM

Inside an IBM Q **Quantum Computing System**

Microwave electronics 0.015K

40K

3K

0.9K

0.1K

Refrigerator to cool qubits to 10 - 15 mK with a mixture of ³He and ⁴He

PCB with the qubit chip at 15 mK protected from the environment by multiple shields

Chip with superconducting qubits and resonators

The power of Quantum Computing \rightarrow N Qubits, 2^N states

Classical Computers

There is a one-to-one relationship between the number of transistors a microprocessor has and its processing power. The potential power of a classical computer doubles every time you double the number of transistors.

Quantum Computers

In a Quantum system, the rough equivalent of a transistor is something called a Quantum Bit, or a Qubit. But there's a big difference. The potential power of a quantum computer doubles every time you add one additional Qubit.

The power of Quantum Computing is more than the number of Qubits

Improving the error rate will result in a more powerful Quantum Computer

Qubits Added: 0 Error Rate Decrease: 10x Quantum Volume Increase: 24x

Quantum Volume depends upon ...

Number of physical QBs

Connectivity among QBs

Available hardware gate set

Error and decoherence of gates

Number of parallel operations

does not improve a Quantum

Computer if error rate is high

Qubits Added: 100 Error Rate Decrease: 0 Quantum Volume Increase: 0

Quantum Computing versus Classical Computing

	Quantum Computing		Classical Computing	
Basic Description	Solve a specific set of complex exponential in nature with a lar answers		Address problems that are less of searching relatively lesser altern	•
Information Representation	Qubits represent data		Uses binary Bits represent data	
Computational Capabilities	An appropriate algorithm can a of problems that are hard in Cla Computer are limited by ability Qubits (Quantum Volume)	assical. Inputs to a Quantum	Data are processed sequentially lengthy and time consuming. Ma runtimes that scale exponentiall intractable and therefore require	ny classical algorithms have y with input size – these are
Commercial Feasibility	Existing systems are small and development of commercial ap clients should engage now, pro away	plicability. While commercial	Economical and less complex to	build and operate
Interpreting Results	Takes advantage of Quantum Nalong with Quantum Gates to poperations. Multiple possible a which the answer emanating himeasured	erform Linear Algebra nswers are evaluated of	Takes advantage of electrical co classical physics using semicond along with logical gates perform Only specific results are available design	ductor based transistors ing Boolean operations,

IBM Q Composer

Bloch Sphere

- The states |0> and |1> are on the northand south pole of the Bloch Sphere
- Potential states cover the whole Bloch Sphere
- A programming step in Quantum Computing is an operation (or "Gate") on the Qubit and on the Bloch Sphere it is a rotation
- Every step is reversible, because the Qubit can be rotated back to its starting value

Α	В	AND	OR	NOT A
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

state |0>

state |1>

Phase decribes rotations around Z-axis

Angle describes rotations around X-axis

Multi-Qubit Gate - CNOT Gate

- The least significant Qubit (LSB) is listed at the far right
- The most significant Qubit (MSB) is listed at the far left
- This is consistent with classical binary representation of numbers
- Example: 50% of tile it is both 0 and 50% of the time it is both 1:

$$rac{1}{\sqrt{2}}(\ket{00}-\ket{11})$$

Controlled-NOT or CNOT Gate:

q[0] 0> —	Н	•	$ \wedge^{z}$ $-$	LSB
q[1] 0> ——		-	A -	MSB

Starting state	Ending State	
00>	\rightarrow	00>
10>	\rightarrow	10>
01>	\rightarrow	11>
11>	\rightarrow	01>

Vector Representation – States

General state – 1 Qubit

$$|\psi\rangle = \alpha \cdot |0\rangle + \beta \cdot |1\rangle = {\alpha \choose \beta}$$

With $|\alpha|^2 + |\beta|^2 = 1$ (normalization)

$$P(|0>) = |\alpha|^2$$
 and $P(|1>) = |\beta|^2$

General state – 2 Qubits

$$|\psi\rangle = \alpha \cdot |00\rangle + \beta \cdot |01\rangle + \gamma \cdot |10\rangle + \delta \cdot |11\rangle = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$$
With $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

Matrix Representation – Gates

General quantum gate

where *A* is a Unitary operator, which can be represented as a matrix

Quantum Algorithms – General principle

- Start with all Qubits in |0> state
- Put all Qubits in an equal Superposition state (H)
- Based on the problem you want to solve, apply tricks to
 - ✓ Earmark the solution with a phase shifts and detect the solution based on the phase shift
 - Qubit combination with highest probability
 - ✓ Amplify the probability of measuring the solution
- Measure the result

How many Qubits are required to see Quantum Advantage?

Estimate of the number of "good" qubits required before Quantum Computing shows advantage over conventional

Problem	Type of Quantum Computer	# Qubits for advantage (est)	Years to advantage (est)
Quantum Chemistry	NISQ/Approximate QC	10 ² ~10 ³	< 5 ?
Optimization (specific)	NISQ/Approximate QC	10 ² ~10 ³	< 5 ?
Heuristic machine learning	NISQ/Approximate QC	10 ² ~10 ³	< 5 ?
Shor's algorithm	Universal fault- tolerant QC	> 108	> 10~15 if possible
Big Linear Algebra Programs (FEM)	Universal fault- tolerant QC	> 108	> 10~15 if possible

Quantum Computing shows the potential to disrupt various industries in the time ahead

- 1. <u>Materials</u>: Quantum Computing can untangle complexity of molecular and chemical interactions enabling **discovery of new materials** or making the **process of manufacturing an existing material more efficient**
- 2. <u>Financial Services</u>: **Financial Modelling** and **Portfolio Optimization** appear to be the key applications. Other potential uses include helping firms build more attractive asset portfolios, **isolate key global risk factors** in order to make better investments. Research is underway to identify potential applications in **asset pricing**, capital project budgeting, **fraud indication** and **data security**.
- 3. <u>Oil & Gas</u>: Improving **optimization algorithms** for oil and gas **reservoirs** and helping enterprise become more efficient and accurate, driving growth and efficiency in the resources industry thus **making investors more confident** of the returns and encouraging greater investments

Quantum Computing shows the potential to disrupt various industries in the time ahead (Continued)

- 4. <u>Transportation</u>: Enabling optimization of autonomous vehicular traffic and help solve complex issues around traffic congestion, routing and safe travel. Another use case is in understanding chemical reactions in car batteries that could lead to the storage of more electricity and a longer battery life
- 5. <u>Life Sciences</u>: Pharmaceutical companies will use Quantum Computing to identify and develop new medicines for wide range of diseases and conditions.
- 6. <u>Telecommunications</u>: Enabling optimization of network routing and infrastructure
- 7. <u>Manufacturing</u>: Supply chain optimization needs work around procurement, production and distribution aspects.

Artificial Intelligence

- Classification
- Machine Learning
- Linear Algebra

- Quantum
 Communication
- Quantum Simulation
- Quantum Computation
- Quantum Sensing & Metrology

UANTUM-RESISTANT ENCRYPTION

The Emerging Quantum Computing Value Chain

But, there are also key Challenges ...

Expense
of building and
operating Quantum
Computers

Science required to Scale hardware

Production grade systems a few years away

of skilled personnel

Limited

Quantum Algorithms

and high level

programming tools

Identifying

early use cases that show Quantum advantage

IBM Quantum Offerings Today

IBM Q System Access

Client can develop applications with API access to Qubits

 On-Premise Simulator with Power 9 GPUs

IBM Q Joint Development Collaboration

- Defined SoW
- Access to most advanced hardware

IBM Secuirty Quantum Safe Readiness Assessment

- Educate on what kinfs of encryption are at risk
- Evaluate options

- Assess apolicability of Quantum Computing in the company
- Develop a roadmap for Quantum Computing

Start Here: https://www.research.ibm.com/ibm-q/

Your next steps to getting "Quantum Ready"

Discover more about IBM's quantum computing initiative

Explore the IBM Q **Experience** and start using real machines today

Learn about and start using the **Qiskit** software development kit

Collaborate. research, and start applying Quantum Computing through the **IBM Q Network**

Quantum Algorithm Zoo https://math.nist.gov/quantum/zoo/

Computer Science > Emerging Technologies **Quantum Algorithm Implementations for Beginners**

https://arxiv.org/abs/1804.03719

ThanQ for your presence and attention!

Hello Quantum