1. ชื่อโครงงาน

ภาษาไทย: ระบบแสดงแผนภาพข้อมูลปริมาณการปล่อยก๊าซเรือนกระจกและภาวะโลกร้อน ภาษาอังกฤษ: Data Visualization System for Greenhouse Gas Emissions and Global Warming

2. สมาชิก

นาย ธนวัฒน์ วิริยธรรมโสภณ 6530611033

3. อาจารย์ที่ปรึกษา

ผศ.ดร.ปาณิศา ตรีพงศ์

4. คำสำคัญ

Global Warming, Greenhouse Gases, Climate Change

5. หลักการและเหตุผล/ที่มาของโครงงาน

เนื่องด้วยปัญหาโลกร้อนในปัจจุบันนั้นมีผลกระทบอย่างรุนแรงต่อสิ่งแวดล้อมและชีวิตของมนุษย์ทั่ว โลก ไม่ว่าจะเป็นการเปลี่ยนแปลงสภาพภูมิอากาศในช่วงหลายปีที่ผ่านมานั้นสภาพอากาศที่ร้อนมากขึ้น และ ประสบกับภาวะเรือนกระจกอย่างรุนแรงขึ้นอย่างต่อเนื่องในทุก ๆปี การเกิดขึ้นของภัยพิบัติทางธรรมชาติ มากมายมีผลต่อเนื่องมาจากภาวะโลกร้อน และ ปริมาณก๊าซเรือนกระจกที่มากขึ้น ซึ่งกลุ่มก๊าซนั้นประกอบไป ด้วย คาร์บอนไดออกไซด์ (CO2), มีเทน (CH4), ในตรัสออกไซด์ (N2O), ไฮโดรฟลูโอโรคาร์บอน (HFCs), เพอ ฟลูโอโรคาร์บอน (PFCs) และซัลเฟอร์เฮกซาฟลูออไรด์ (SF6) สามารถ เรียกรวมๆว่าก๊าซเรือนกระจก (Greenhouse gas: GHG)[1]. จากรายงานคาดการณ์ดังกล่าวหากการปล่อยก๊าซเรือนกระจกยังคงไม่ เปลี่ยนแปลงในอีก 100 ปีข้างหน้า อุณหภูมิโลกอาจเพิ่มขึ้น 2-4 องศาเซลเซียส ส่งผลให้ระดับน้ำทะเลสูงขึ้น ประมาณ 1 ± 0.5 เมตร และทำให้สิ่งมีชีวิตร้อยละ 18-35 สูญพันธุ์[2]

เหตุผลหลักของการเพิ่มขึ้นของก๊าซเรือนกระจกในปัจจุบันเกิดจากกิจกรรมของมนุษย์ โดยเฉพาะ ในช่วง 20 ปีที่ผ่านมาที่มีการเผาผลาญเชื้อเพลิงฟอสซิลเพิ่มขึ้น รวมถึงการขยายตัวของอุตสาหกรรมต่างๆ และการใช้ปุ๋ยและสารเคมีในภาคการเกษตรที่มากขึ้น ซึ่งทั้งหมดนี้ส่งผลให้มีการปล่อยก๊าซเรือนกระจกจำนวน มากเข้าสู่บรรยากาศ ทำให้เกิดภาวะโลกร้อน[3]. จึงมีการการพัฒนาระบบ Data Visualization สำหรับแสดง แผนภาพข้อมูลที่เกี่ยวข้องกับการปล่อยก๊าซเรือนกระจกและภาวะโลกร้อนเพื่อทำความเข้าใจถึงผลกระทบ และแนวทางการแก้ไขปัญหาอย่างมีประสิทธิภาพ การแสดงผลข้อมูลด้วยเครื่องมือ Data Visualization จึงมี บทบาทสำคัญในการทำให้ข้อมูลที่ซับซ้อนสามารถเข้าใจได้ง่ายและสามารถนำไปใช้ในการตัดสินใจทาง นโยบายหรือการพัฒนากลยุทธ์ในการลดการปล่อยก๊าซเรือนกระจก[4].

ปัญหาภาวะโลกร้อนและการเปลี่ยนแปลงสภาพภูมิอากาศเป็นหนึ่งในปัญหาที่สำคัญที่สุดในปัจจุบัน ซึ่งส่งผลกระทบอย่างกว้างขวางทั้งในด้านสิ่งแวดล้อม เศรษฐกิจ และสุขภาพของมนุษย์ โดยเฉพาะการปล่อย ก๊าซเรือนกระจก (Greenhouse Gases) ที่มีทั้งก๊าซหลากหลายประเภท มีบทบาทสำคัญในการทำให้เกิดภาวะ โลกร้อนตามมาทำให้กลไกในการดึงเอาก๊าซคาร์บอนไดออกไซด์ออกไปจากระบบบรรยากาศถูกลดทอน ประสิทธิภาพลง และในที่สุดสิ่งต่างๆที่เราได้กระทำต่อโลกได้หวนกลับมาสู่เราในลักษณะของภาวะโลกร้อน [5].

การติดตามและวิเคราะห์ข้อมูลการปล่อยก๊าซเรือนกระจกจากหลายประเทศทั่วโลกช่วยให้เข้าใจถึง แหล่งที่มาและแนวโน้มการเปลี่ยนแปลงของก๊าซเรือนกระจกในอนาคต ซึ่งสนับสนุนเป้าหมายการพัฒนาที่ ยั่งยืน (SDGs) โดยเฉพาะเป้าหมายที่ 13 ในการรับมือกับการเปลี่ยนแปลงสภาพภูมิอากาศ การดำเนินการนี้ ส่งเสริมการพัฒนานโยบายที่มีประสิทธิภาพในระดับโลกและระดับประเทศ เพื่อการปรับตัวและลดผลกระทบ จากปัญหาสิ่งแวดล้อมอย่างยั่งยืน ในการติดตามผลการลดก๊าซเรือนกระจกของประเทศไทย พบว่าประเทศ ไทยสามารถลดการปล่อยก๊าซเรือนกระจกลงไปได้แล้วไม่น้อยกว่าร้อยละ 14 หรือลดได้ทั้งสิ้น 51.72 ล้านตัน คาร์บอนไดออกไซด์เทียบเท่า (MtCO $_2$ eq) ในปี 2563 ซึ่งสามารถบรรลุเป้าหมายของแผนแม่บทฯ ใน ระยะแรกแล้ว และมีแนวโน้มว่าจะสามารถบรรลุเป้าหมายขั้นต่ำที่กำหนดไว้ใน NDC ได้ภายในปี 2573 [6].

แนวคิดโครงการนี้เกิดขึ้นจากผู้ศึกษานั้นมีความตระหนักถึงปัญหาภาวะโลกร้อนและผลกระทบต่อ สภาพแวดล้อมโดยรอบและข่าวสารจากอินเตอร์เน็ตมากมาย อาทิเช่น ข่าวไฟไหม้ป่า California สร้างความ เสียหายจำนานมากในปี พ.ศ. 2568 หรือ ค.ศ. 2025 ถึงแม้ว่าไฟป่านั้นจะเกิดขึ้นเป็นประจำทุกปีแต่ในปีล่าสุด ที่มีการรายงานนั้นร้ายแรงที่สุด ตามมาด้วยปัจจัยมากมายที่ส่งผลกระทบต่อด้านสิ่งแวดล้อม การเกิดไฟป่า ร้ายแรง จะยิ่งปล่อยก๊าซคาร์บอนไดออกไซต์ซึ่งเป็นส่วนประกอบของภาวะเรือนกระจกที่จะเป็นสาเหตุหลักใน การทำให้เกิดภาวะโลกร้อนมากยิ่งขึ้น ซึ่งส่งผลกระทบโดยตรงต่อการเปลี่ยนแปลงของสภาพอากาศและ อุณหภูมิ[1,7].

โดยโครงงานนี้จะรวบรวมข้อมูลการปล่อยก๊าซเรือนกระจกหรือรายละเอียดที่จำเป็นที่มีการเผยแพร่ จากแหล่งข้อมูลต่างๆ เช่น หน่วยงานสิ่งแวดล้อมของประเทศต่างๆ หรือองค์กรระหว่างประเทศ เช่น UNFCCC, World Bank, NASA ,Climate Watch ฯลฯ[8]. เพื่อนำข้อมูลเหล่านั้นมาวิเคราะห์หาความ เชื่อมโยงต่างๆและสร้างเป็น Dashboard อีกทั้งผู้พัฒนาจะศึกษางานวิจัยหรือวารสารที่มีการเผยแพร่ตัวอย่าง เช่น

งานวิจัยของคุณ ณภัทณ์จันทร์ ด่านสวัสดิ์ งานวิจัยชื่อ การพยากรณ์ปริมาณการปล่อยก๊าซ คาร์บอนไดออกไซด์ (CO2)จากภาคอุตสาหกรรมในประเทศไทยข้อมูลจากสำนักงานนโยบายและแผนพลังงาน กระทรวงพลังงาน ตั้งแต่เดือนมกราคม2560ถึงเดือนตุลาคม 2563 จำนวนทั้งสิ้น46 คู่ สาเหตุหลักที่ทำให้ ประเทศไทยมีปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์เพิ่มมากขึ้นอย่างรวดเร็วนั้นล้วนเกิดจากกิจกรรมของ

ประชาชนภายในประเทศเช่นการขุดพลังงานฟอสซิลอย่างน้ำมันถ่านหินก๊าซธรรมชาติมาใช้ทำให้เกิดการ ปล่อยก๊าซคาร์บอนไดออกไซด์ขึ้นสู่ชั้นบรรยากาศเป็นจำนวนมากและรวดเร็วเกินกว่าที่ต้นไม้และพืชต่างๆ รวมถึงมหาสมุทรจะดูดซับไว้ได้นอกจากนี้การเปลี่ยนพื้นที่ป่าให้เป็นพื้นที่เกษตรกรรม และสร้างที่อยู่อาศัยก็ เป็นอีกส่วนหนึ่งที่ทาให้คาร์บอนที่สะสมอยู่ในเนื้อไม้ในรากในดินถูกปล่อยสู่ชั้นบรรยากาศเป็นต้น[9].

งานวิจัยของคุณ ธนาภา นิลวิเชียร, สุซีลา พลเรื่อง งานวิจัยชื่อ การวิเคราะห์การปล่อยก๊าซเรื่อน กระจกจากการประกอบกิจการสำรวจและผลิตปิโตรเลียม ในประเทศไทย เกี่ยวข้องกับการสำรวจและผลิต ปิโตรเลียมการศึกษาพบว่า มีการปล่อยก๊าซเรื่อนกระจก เท่ากับ 6.95 ล้านตัน คาร์บอนไดออกไซด์เทียบเท่า (MtCO2e)และกิจกรรมที่ก่อให้เกิดการปล่อยก๊าซเรื่อนกระจกมากที่สุด คือ การเผาไหม้ เชื้อเพลิงเพื่อให้ได้มา ซึ่งพลังงานไฟฟ้าและความร้อนสำหรับกระบวนการผลิต (Stationary Combustion) เท่ากับ 47.44% และผล การเปรียบเทียบกับการศึกษาของต่างประเทศ พบว่า มีความสอดคล้องกันโดยที่สัดส่วนของการปล่อยก๊าซ เรื่อน กระจกมาจากกิจกรรมการเผาไหม้เชื้อเพลิงฯ การระบายก๊าซทิ้ง (Vent) และการเผาก๊าซทิ้ง (Flare) เป็นหลัก และดัชนี การปล่อยก๊าซเรื่อนกระจกไม่ได้มีค่าแปรผันตามปริมาณการผลิต[10].

นอกจากนี้โครงงานนี้มุ่งเน้นให้ทุกคนเล็งเห็นถึงปัญหาและภาวะโลกร้อนที่เกิดขึ้นจากตัวมนุษย์และ ธรรมชาติ ตระหนักถึงภัยอันตรายที่กำลังจะเกิดตามมาในอนาคต และหันมา ร่วมมือกันในระดับบุคคลและ ระดับสังคม เพื่อหาทางแก้ไขปัญหานี้อย่างยั่งยืน

6. วัตถุประสงค์

- 6.1) เพื่อรวบรวมข้อมูลการปล่อยก๊าซเรือนกระจกจากหลายประเทศทั่วโลก
- 6.2) เพื่อพัฒนา Dashboard แสดงข้อมูลการปล่อยก๊าซเรือนกระจกและแนวโน้มภาวะโลกร้อน ให้เป็นรูปแบบที่เข้าใจง่าย
- 6.3) เพื่อศึกษาความต้องการของผู้ใช้งานทั่วไปเกี่ยวกับการแสดงผลข้อมูลการปล่อยก๊าซเรือน กระจกและภาวะโลกร้อนเพื่อนำข้อมูลมาแสดงผล และเพื่อพัฒนา Dashboard

7. ขอบเขตของโครงงาน

การรวบรวมข้อมูล แหล่งข้อมูลที่หลักๆที่จะรวบรวมมีทั้งหมด 5 แหล่ง ได้แก่

- 1. Climatewatchdata สถานะเรียลไทม์: **ไม่ใช่** (ข้อมูลเป็นแบบระยะยาวและอัปเดตเป็นระยะ)

 <u>Climate Watch</u> เป็นแพลตฟอร์มที่ให้ข้อมูลเกี่ยวกับการปล่อยก๊าซเรือนกระจก แนวโน้มการ
 เปลี่ยนแปลงสภาพภูมิอากาศ และเป้าหมายการลดก๊าซเรือนกระจกของแต่ละประเทศ[11].
- 2. ourworldindata.org สถานะเรียลไทม์: **ไม่ใช่** (ข้อมูลเน้นการวิเคราะห์และแนวโน้มระยะยาว)

 Our World in Data เป็นเว็บไซต์ที่รวบรวมข้อมูลและงานวิจัยเกี่ยวกับปัญหาระดับโลก เช่น การ
 เปลี่ยนแปลงสภาพภูมิอากาศ พลังงาน การใช้ทรัพยากร และผลกระทบต่อมนุษย์ เน้นการ
 วิเคราะห์เชิงสถิติในระยะยาวเพื่อแสดงแนวโน้มและความเปลี่ยนแปลงในระดับโลก[12].
- 3. climatetrace สถานะเรียลไทม์: **ใช่** (ข้อมูลที่อัปเดตแบบเรียลไทม์จากการติดตามผ่านเทคโนโลยี ดาวเทียม)
 - Climate Trace เป็นแพลตฟอร์มที่ติดตามและตรวจสอบการปล่อยก๊าซเรือนกระจกในแบบ เรียลไทม์ โดยใช้ข้อมูลจากดาวเทียมและ AI ช่วยประเมินแหล่งที่มาของการปล่อยก๊าซอย่าง ละเอียด เพื่อเพิ่มความโปร่งใสและช่วยกำหนดนโยบายการลดคาร์บอนในทุกภาคส่วน[13].
- 4. carbonmonitor สถานะเรียลไทม์: **ใช่** (ข้อมูลการปล่อยก๊าซเรือนกระจกในระดับประเทศที่อัป เดตบ่อย)
 - <u>Carbon Monitor</u> เป็นแพลตฟอร์มที่ให้ข้อมูลการปล่อยก๊าซเรือนกระจกในระดับประเทศและ ภาคส่วนต่าง ๆ เช่น พลังงาน การขนส่ง อุตสาหกรรม โดยอัปเดตข้อมูลบ่อยครั้ง เพื่อให้เข้าใจถึง ผลกระทบ ในปัจจุบันและสามารถวางแผนตอบสนองต่อการเปลี่ยนแปลงได้ทันที[14].
- 5. data.carbonmapper สถานะเรียลไทม์: **ใช่** (ข้อมูลการปล่อยก๊าซเรือนกระจกแบบเรียลไทม์ จากการสังเกตการณ์ด้วยดาวเทียม)
 - Carbon Mapper ใช้ข้อมูลจากดาวเทียมและเทคโนโลยีการสังเกตการณ์ทางอากาศเพื่อติดตาม การปล่อยก๊าซเรือนกระจกแบบเรียลไทม์ เน้นการระบุแหล่งที่มาของก๊าซที่เฉพาะเจาะจง เช่น การรั่วไหลของก๊าซมีเทนจากโรงงานอุตสาหกรรมหรือระบบพลังงาน[15].
- 7.1) ข้อมูลการปล่อยก๊าซเรือนกระจกจะถูกรวบรวมจากแหล่งข้อมูลสาธารณะ เช่น API ของ หน่วยงานด้านสิ่งแวดล้อม (เช่น Global Carbon Atlas, Climate Watch, UNFCC, EPA ฯลฯ
- 7.2) ข้อมูลปริมาณการปล่อยก๊าซเรือนกระจกหลัก ได้แก่ CO2, CH4, N2O, HFCs
- 7.3) การรวบรวมข้อมูลจะครอบคลุมข้อมูลรายปี รายประเทศ และตามประเภทแหล่งกำเนิด เช่น การผลิตพลังงาน อุตสาหกรรม การเกษตร และการขนส่ง

การแสดงผลข้อมูล

- 7.4) สร้างลิงค์ URL ที่สามารถกดค้นหาและแสดงผลภาพของโครงงานให้อยู่บน Google Chrome หรือ Search Engine อื่นๆได้
- 7.5) แสดงผลข้อมูลบน Dashboard ที่มีฟังก์ชันให้ผู้ใช้สามารถเลือกดูข้อมูลตามประเทศ ช่วงเวลา และประเภทของก๊าซที่สนใจ ได้ รวมถึงข้อมูลอื่นๆที่เกี่ยวข้อง
- 7.6) แสดงข้อมูลเกี่ยวกับปรากฏการณ์เรือนกระจกและข้อมูลเกี่ยวกับภาวะโลกร้อน

กลุ่มผู้ใช้งาน

7.7) บุคคลทั่วไปที่สนใจเข้าถึงข้อมูลภาวะโลกร้อนและข้อมูลก๊าซเรือนกระจก

8. ประโยชน์ที่เป็นเหตุผลให้ควรพัฒนาโครงงาน

- 1) สามารถเป็นแหล่งข้อมูลให้ผู้สนใจได้ติดตามข้อมูลที่เกี่ยวข้องกับภาวะโลกร้อนและ ผลกระทบจากการ ปล่อยก๊าซเรือนกระจกทั่วโลก
- 2) เสริมสร้างความตระหนักรู้เกี่ยวกับปัญหาภาวะโลกร้อนและความจำเป็นในการลดการปล่อยก๊าซเรือน กระจก
- 3) สนับสนุนการบรรลุเป้าหมายการพัฒนาที่ยั่งยืน (SDGs) โดยเฉพาะเป้าหมายที่ 13 ในการรับมือกับการ เปลี่ยนแปลงสภาพภูมิอากาศ
- 4) เสริมสร้างศักยภาพของผู้พัฒนาโครงงานด้าน Data Science และการพัฒนาทักษะการวิเคราะห์ข้อมูล และการนำเสนอข้อมูลอย่างสร้างสรรค์

9. รายละเอียดของการพัฒนา/วิธีการดำเนินการวิจัย

วิธีการดำเนินงานการพัฒนาระบบ

- 1. ผู้พัฒนารวบรวมข้อมูลเกี่ยวกับก๊าซเรือนกระจก (Greenhouse Gases) และภาวะโลกร้อน (Global Warming) โดยเน้นข้อมูลปริมาณการปล่อยก๊าซ เช่น ข้อมูลย้อนหลัง รายประเทศ ประเภทก๊าซ และ องค์กรที่เกี่ยวข้อง สามารถเริ่มต้นจากฐานข้อมูลเปิด เช่น ฐานข้อมูลของหน่วยงานระหว่างประเทศ พร้อมทั้งค้นคว้าข้อมูลเชิงคุณภาพจากแหล่งออนไลน์ เช่น Google Scholar, ResearchGate, PubMed สำหรับงานวิจัยและบทความวิชาการในรูป PDF ที่เจาะลึกถึงผลกระทบด้านสิ่งแวดล้อม เศรษฐกิจ และสังคม
- 2. โดยผู้พัฒนาจะทำการศึกษาข้อมูล ความรู้เกี่ยวกับภาวะโลกร้อนและก๊าซเรือนกระจกอาทิเช่น ก๊าซเรือนกระจก (Greenhouse Gases GHGs):
 - ชนิดของก๊าซเรือนกระจก เช่น คาร์บอนไดออกไซด์ (CO₂), มีเทน (CH₄), ในตรัสออกไซด์ (N₂O), และสาร HFC2 เป็นต้น การรวบรวมข้อมูลจะเริ่มจากฐานข้อมูลระดับโลก เช่น แหล่งที่มาของการปล่อยก๊าซ เช่น Climatewatchdata, ourworldindata, climatetrace, carbonmonitor, data.carbonmapper การใช้พลังงาน ปริมาณที่ก๊าซปล่อยออกมาตามแหล่ง จุดต่างๆรวมถึงความเข้มข้นของก๊าซ
 - ผลกระทบต่อภาวะโลกร้อน เช่น การเพิ่มขึ้นของอุณหภูมิโลก ระดับน้ำทะเลสูงขึ้น และสภาพ อากาศแปรปรวน หรือแม้แต่การอุบัติของโรคในธารน้ำแข็งที่เกิดจากการละลาย

ส่วนของก๊าซเรือนกระจก (Greenhouse Gases - GHGs) การศึกษาจะมุ่งเน้นไปที่ชนิดของก๊าซที่ สำคัญ เช่น คาร์บอนไดออกไซด์ (CO2) ซึ่งเป็นผลจากการเผาไหม้เชื้อเพลิงฟอสซิลและการทำลายป่า มีเทน (CH4) ที่เกิดจากกระบวนการย่อยสลายทางชีวภาพในภาคเกษตรและอุตสาหกรรมปศุสัตว์ ใน ตรัสออกไซด์ (N2O) ที่ปล่อยออกมาจากการใช้ปุ๋ยไนโตรเจนในเกษตรกรรม และสาร HFCs ที่เป็นผล จากกระบวนการผลิตและการใช้ในผลิตภัณฑ์อุตสาหกรรม การวิเคราะห์จะครอบคลุมถึงปริมาณการ ปล่อยก๊าซแต่ละชนิดในแต่ละปี ผลกระทบของก๊าซเรือนกระจกที่ศึกษา ได้แก่ การเพิ่มขึ้นของ อุณหภูมิโลก ซึ่งก่อให้เกิดการละลายของน้ำแข็งในขั้วโลก การเพิ่มระดับน้ำทะเลซึ่งเป็นภัยคุกคามต่อ ชุมชนชายฝั่ง และการเปลี่ยนแปลงของสภาพอากาศที่ส่งผลให้เกิดภัยธรรมชาติ เช่น พายุ น้ำท่วม และภัยแล้ง

กรอบแนวคิดทางสิ่งแวดล้อม:

- หลักการของวงจรคาร์บอน (Carbon Cycle)
- เป้าหมายการพัฒนาที่ยั่งยืน (Sustainable Development Goals SDGs) เป้าหมายที่ 13

กรอบแนวคิดที่เกี่ยวข้องกับสิ่งแวดล้อมจะรวมถึงหลักการของวงจรคาร์บอน (Carbon Cycle) ซึ่ง อธิบายกระบวนการที่คาร์บอนเคลื่อนที่ในระบบนิเวศ ทั้งในรูปของก๊าซในบรรยากาศ การสะสมใน สิ่งมีชีวิต และการปลดปล่อยกลับสู่ชั้นบรรยากาศ การทำความเข้าใจวงจรนี้มีความสำคัญต่อการ พัฒนากลยุทธ์ในการลดการปล่อยก๊าซ นอกจากนี้ยังจะศึกษาความสัมพันธ์ระหว่างปัญหาภาวะโลก ร้อนกับเป้าหมายการพัฒนาที่ยั่งยืน (Sustainable Development Goals - SDGs) โดยเฉพาะ เป้าหมายที่ 13 ที่มุ่งเน้นการดำเนินการเร่งด่วนเพื่อแก้ไขปัญหาการเปลี่ยนแปลงสภาพภูมิอากาศและ ผลกระทบที่เกี่ยวข้อง[6].

3. ผู้พัฒนาจะใช้เทคนิคการดึงข้อมูลจากเว็บไซต์ที่รองรับ API, Web Scraping และการโหลดข้อมูลผ่าน ไฟล์ CSV เพื่อรวบรวมข้อมูลที่จำเป็นสำหรับการวิเคราะห์และนำเสนอในงานวิจัย โดยรายละเอียด เทคนิคที่ใช้ในแต่ละวิธีมีดังนี้

ขั้นตอนการทำ ETL

Extraction

การดึงข้อมูลผ่าน API

การใช้ API (Application Programming Interface) เป็นวิธีที่มีประสิทธิภาพและปลอดภัยสำหรับการ เข้าถึงข้อมูลที่อัปเดตและมีโครงสร้างชัดเจน ผู้พัฒนาจะค้นหาเว็บไซต์หรือแพลตฟอร์มที่ให้บริการ API โดย ใช้ไลบรารีใน Python เช่น requests หรือ http.client เพื่อส่งคำขอ (request) และรับข้อมูลในรูปแบบ JSON หรือ XML ข้อมูลที่ดึงมาจะถูกแปลงและจัดเก็บในรูปแบบที่เหมาะสมสำหรับการวิเคราะห์ เช่น การ แปลงข้อมูล JSON เป็น DataFrame ใน pandas[16,17].

Web Scraping

สำหรับเว็บไซต์ที่ไม่มี API แต่มีข้อมูลที่เปิดเผยต่อสาธารณะ ผู้พัฒนาจะใช้เทคนิค Web Scraping โดยการ เขียนโค้ดเพื่อดึงข้อมูลจากหน้าเว็บ ตัวอย่างไลบรารีที่ใช้ใน Python ได้แก่ BeautifulSoup สำหรับการ วิเคราะห์ HTML และ Selenium สำหรับการจัดการเว็บไซต์ที่มีการโหลดข้อมูลแบบไดนามิก เทคนิคนี้ เหมาะสำหรับการดึงข้อมูลที่แสดงผลบนเว็บไซต์ เช่น ตารางข้อมูล, รายงาน หรือข้อมูลเชิงภาพ อย่างไรก็ ตาม ผู้พัฒนาจะต้องตรวจสอบนโยบายการใช้งาน (Terms of Service) ของเว็บไซต์เพื่อให้แน่ใจว่าการดึง ข้อมูลดังกล่าวไม่ละเมิดข้อกำหนดหรือกฎหมาย[18].

Transformation

การรวมข้อมูล (Data Integration)

แนวทางการรวมข้อมูล

ในขั้นตอนนี้ ผู้พัฒนาจะใช้ Python ในการรวมข้อมูลจากแหล่งที่มาหลายแห่ง โดยอาจใช้เทคนิคต่าง ๆ เช่น Merge หรือ Join ในการเชื่อมข้อมูลจากตารางหลายตาราง หรือถ้าข้อมูลมีความซับซ้อนมากขึ้น อาจใช้เครื่องมือเช่น Excel เพื่อรวมข้อมูลก่อนที่จะนำเข้ามาใน Python โดยใช้ pandas หรือเครื่องมืออื่น ๆ เพื่อให้สามารถจัดการข้อมูลได้ง่ายขึ้น การใช้ API เพื่อดึงข้อมูล จะเริ่มจากการทดสอบว่า API สามารถ ดึงข้อมูลได้หรือไม่ ซึ่งสามารถทดสอบได้โดยใช้คำสั่งใน Python เช่น requests.get() หรือ requests.post() แล้วตรวจสอบผลลัพธ์ที่ได้ หากข้อมูลถูกต้องและครบถ้วน จะสามารถบันทึกข้อมูลนั้นลง ในไฟล์ CSV ได้ การเตรียมข้อมูล (Data Preprocessing) เป็นขั้นตอนที่สำคัญในการเตรียมข้อมูลที่มีความ ไม่สมบูรณ์และจัดการกับข้อมูลที่เกี่ยวข้องกับโครงงานให้พร้อมสำหรับการวิเคราะห์และการสร้างโมเดล [19].

การทำความสะอาดข้อมูล (Data Cleaning)

ลบหรือแทนที่ค่าที่หายไป (Missing Values)

ข้อมูลที่หายไปเป็นปัญหาที่พบได้บ่อยในข้อมูลจริง ผู้พัฒนาจะใช้เทคนิคในการจัดการกับค่าที่หายไป เช่น การแทนที่ค่าที่หายไปด้วยค่าเฉลี่ย (Mean), ค่ามัธยฐาน (Median), หรือค่าที่พบมากที่สุด (Mode) หากข้อมูลสูญหายในปริมาณน้อย หรือใช้วิธีการเติมข้อมูล (Imputation) เพื่อประมาณค่าที่หายไปตาม ลักษณะของข้อมูล สำหรับข้อมูลที่สูญหายจำนวนมาก อาจพิจารณาลบทิ้งหรือกำหนดค่าที่เหมาะสมให้กับ การวิเคราะห์[19].

จัดการกับข้อมูลที่ผิดปกติหรือ Outliers

ข้อมูลที่ผิดปกติหรือ Outliers คือข้อมูลที่อยู่นอกขอบเขตปกติของข้อมูลทั้งหมด การตรวจหาค่า ผิดปกติสามารถทำได้ด้วยการใช้เทคนิคการตรวจสอบเชิงสถิติ เช่น ข้อมูลบางตัวอาจมีค่าผิดปกติ (Outliers) ซึ่งอาจเกิดจากข้อผิดพลาดในการเก็บข้อมูล หรือเหตุการณ์เฉพาะที่ไม่ปกติ เช่น ข้อมูลปริมาณ CO₂ ที่สูงผิดปกติ อาจมาจากเหตุการณ์พิเศษ (เช่น การปล่อยก๊าซจากแหล่งที่ผิดปกติ) ขึ้นอยู่กับการ ประเมินผลกระทบต่อการวิเคราะห์[19].

- การตรวจหาค่าผิดปกติ: การใช้วิธีเชิงสถิติเช่น IQR (Interquartile Range) หรือ Z-score เพื่อหา ค่าที่ผิดปกติ
- การลบค่าผิดปกติ: หากพบค่าผิดปกติในจำนวนไม่มาก ผู้พัฒนาสามารถเลือกที่จะลบค่าผิดปกติ เหล่านั้นออก
- การแทนที่ค่าผิดปกติ: แทนที่ค่าผิดปกติด้วย ค่าเฉลี่ย, ค่ามัธยฐาน, หรือค่าที่เหมาะสมอื่น ๆ
- การแปลงข้อมูล: หากค่าผิดปกติไม่ได้เกิดจากข้อผิดพลาดในการเก็บข้อมูล แต่เป็นการแสดงข้อมูล จริงจากเหตุการณ์พิเศษ อาจมีการปรับแปลงข้อมูลหรือใช้การแปลงข้อมูลอื่นๆ เช่น log transformation เพื่อจัดการกับการกระจายข้อมูลที่ผิดปกติ.

การแปลงข้อมูล (Data Transformation)

การ Normalization/Standardization:

หากข้อมูลจากหลายแหล่งมีความแตกต่างกันในรูปแบบหรือไม่ครบถ้วน การนำข้อมูลเหล่านี้มาทำ Normalization และ Standardization เป็นขั้นตอนสำคัญเพื่อให้ข้อมูลมีความสอดคล้องและพร้อม สำหรับการนำเสนอใน Dashboard โดยสามารถอธิบายแนวทางได้ดังนี้[19]ตัวอย่างเช่น ข้อมูลที่มีหน่วยไม่ เหมือนกัน เช่น การวัด CO₂ ในหน่วย "ตัน" หรือ "กิโลกรัม".

การจัดการ:

- Normalization: แปลงข้อมูลให้เป็นหน่วยเดียวกัน เช่น ถ้าข้อมูลมีหน่วยแตกต่างกัน (ตัน vs กิโลกรัม) อาจต้องแปลงให้เป็นหน่วยเดียว เช่น การแปลง "กิโลกรัม" ให้เป็น "ตัน" หรือย้อนกลับ เช่นเดียวกับการแปลงช่วงเวลาให้เป็นหน่วยที่เท่ากัน (เช่น ทำให้ข้อมูลทั้งหมดเป็นรายเดือน)
- Standardization: การปรับข้อมูลให้อยู่ในช่วงหรือสเกลเดียวกัน เช่น การแปลงข้อมูลให้มีค่า ผลลัพธ์อยู่ในช่วง 0 ถึง 1 หรือการแปลงข้อมูลทั้งหมดให้อยู่ในช่วงที่เทียบเท่ากัน (เช่น "รายวัน" ให้ เป็น "รายเดือน" หรือ "รายปี" โดยใช้วิธีการคำนวณจากค่าเฉลี่ยหรืออัตราเปลี่ยนแปลง)

Load

การแสดงผลข้อมูลผ่าน Data Visualization (การสร้างกราฟ):

- หลังจากการวิเคราะห์ข้อมูลและการจัดเตรียมข้อมูลให้อยู่ในรูปแบบที่เหมาะสมแล้ว ขั้นตอนต่อไปคือ การนำเสนอผลการวิเคราะห์ผ่านการแสดงผลภาพ โดยการใช้เครื่องมือและเทคนิคต่างๆ ที่สามารถ ช่วยให้ข้อมูลมีความชัดเจนและเข้าใจได้ง่าย การใช้ Power BI และ Data Visualization เป็น เครื่องมือสำคัญในการสร้างการแสดงผลข้อมูล โดยแต่ละเครื่องมือจะมีข้อดีและการใช้งานที่เหมาะสม ตามประเภทของข้อมูลและรูปแบบการแสดงผลนำเสนอผ่านลิงค์ URL ที่มีข้อมูลองค์ประกอบกราฟ ต่างเกี่ยวกับก๊าซเรือนกระจกและภาวะโลกร้อน
- สำหรับข้อมูลที่ต้องการการแสดงผลที่มีความสวยงามและมีการออกแบบเฉพาะตัว หรือข้อมูลที่ไม่ สามารถแสดงผลใน Power BI ได้อย่างมีประสิทธิภาพ ผู้พัฒนาใช้เครื่องมือ Data Visualization อื่นๆ เช่น Matplotlib, Seaborn, หรือ Plotly ใน Python เพื่อสร้างกราฟที่เหมาะสมกับข้อมูล [20].
- กราฟเชิงปริมาณ (Quantitative Data Visualization): ใช้สำหรับการแสดงข้อมูลที่มีลักษณะเป็นตัวเลข เช่น การเปรียบเทียบปริมาณการปล่อยก๊าซในแต่ละ

ประเทศหรือปี กราฟที่เหมาะสมเช่น Bar Plot, Line Plot, หรือ Histogram เพื่อดูแนวโน้มและ การกระจายของข้อมูลในช่วงเวลา[20].

• กราฟเชิงคุณภาพ (Qualitative Data Visualization):
สำหรับการแสดงข้อมูลที่เป็นประเภท เช่น ชื่อประเทศ, ชื่อองค์กร หรือประเภทของก๊าซเรือนกระจกการใช้ Pie Chart หรือ Donut Chart จะช่วยให้สามารถแสดงการแบ่งประเภทได้อย่างชัดเจน[20]

ภาพที่ 4 แผนภาพเครื่องมือของ Data Visualization[20]

• แผนที่ (Maps):

ถ้าผู้ผู้พัฒนาต้องการแสดงข้อมูลที่มีลักษณะทางภูมิศาสตร์ เช่น การแสดงปริมาณการปล่อยก๊าซตาม ประเทศหรือภูมิภาค สามารถใช้ Geographical Mapping โดยเครื่องมือ Plotly หรือ Folium ซึ่ง ช่วยให้ผู้พัฒนาสามารถแสดงข้อมูลที่สัมพันธ์กับตำแหน่งทางภูมิศาสตร์

ภาพที่ 5 ตัวอย่างการแสดงแผนภาพรูปแผนที่โลกปริมาณ co2

• กราฟเชิงสัมพันธ์ (Correlation/Relationship):

การแสดงผลการวิเคราะห์ความสัมพันธ์ระหว่างตัวแปรต่างๆ เช่น ความสัมพันธ์ระหว่างปริมาณการ

ปล่อยก๊าซและอุณหภูมิ การใช้ Scatter Plot หรือ Heatmap จะช่วยให้เห็นความสัมพันธ์ระหว่าง ตัวแปรได้อย่างชัดเจน[20]

เครื่องมือที่จะใช้ในการพัฒนา

- 1. **Visual Studio Code:** เป็นเครื่องมือสำหรับเขียนโค้ดที่พัฒนาโดย Microsoft สำหรับ นักพัฒนา เนื่องด้วยมีภาษาที่รองรับมากมายและยังมีฟีเจอร์ทันสมัยมีประสิทธิภาพ
- 2. Google Colab: เครื่องมือออนไลน์ที่สามารถใช้งานได้ฟรี มีความสามารถคล้ายกับ Jupyter Notebook แต่สามารถใช้งานได้ในคลาวด์
- 3. Power BI: Power BI เป็นเครื่องมือในการวิเคราะห์ข้อมูลธุรกิจ (Business Analytics Tool) และสร้างรายงาน สร้าง Dashboard ได้อย่างน่าสนใจ ให้ผู้ใช้งานเพื่อประกอบการตัดสินใจ แบบ รวมศูนย์ สามารถอัพเดต ได้อย่างทันที[21].
- 4. GitHub / GitLab: ใช้สำหรับการเก็บเวอร์ชันของโค้ด
- 5. Google Drive สำหรับจัดเก็บไฟล์เพื่อใช้ดึงข้อมูล

ไลบรารีหลักๆ ใน Python มีดังนี้:

- pandas: เป็นไลบรารีหลักที่ใช้ในการจัดการและวิเคราะห์ข้อมูลใน Python โดยเฉพาะข้อมูลที่มี โครงสร้างตาราง (เช่น CSV, Excel, SQL, JSON) ซึ่งสามารถโหลดข้อมูลเหล่านี้และทำการแปลง ข้อมูลได้ง่ายและมีประสิทธิภาพrequests: สำหรับการดึงข้อมูลจาก API
- BeautifulSoup / Selenium: เป็นเครื่องมือที่ใช้ในการดึงข้อมูลจากเว็บไซต์ที่ไม่สามารถดึง ข้อมูลผ่าน API ได้ (หรือไม่มี API) โดยใช้เทคนิค Web Scraping
- NumPy: เป็นไลบรารีที่ให้การสนับสนุนการคำนวณเชิงคณิตศาสตร์ใน Python โดยเฉพาะใน กรณีที่ต้องการการคำนวณที่มีประสิทธิภาพกับข้อมูลเชิงตัวเลข
- openpyxl / xlrd: เป็นไลบรารีที่ใช้ในการอ่านและเขียนไฟล์ Excel โดย openpyxl รองรับ การทำงานกับไฟล์ .xlsx (Excel เวอร์ชันใหม่) ส่วน xlrd ใช้สำหรับไฟล์ .xls (Excel เวอร์ชันเก่า)

ความต้องการของผู้ใช้งาน

- ผู้ใช้งานต้องการทราบว่า ก๊าซเรือนกระจกคืออะไร? มีประเภทใดบ้าง?
- แหล่งที่มาของก๊าซเรือนกระจก เกิดขึ้นจากอะไร
- กิจกรรมของมนุษย์ที่มีผลกระทบต่อการเพิ่มขึ้นของก๊าซเรือนกระจกมากที่สุดคืออะไร
- ความแตกต่างระหว่างก๊าซ CO_2 , CH_4 , N_2O , HFCs และผลกระทบของแต่ละชนิด เกิดจาก อะไรบ้าง
- ภาวะโลกร้อน อุณหภูมิปัจจุบัน
- Dashboard ที่เข้าใจง่ายเกี่ยวกับปริมาณก๊าซเรือนกระจกหรือข้อมูลต่างๆที่เกี่ยวข้อง

การตรวจสอบการแสดงผลของ Dashboard จากผู้ใช้งาน

- เก็บ feedback หรือ สอบถามจากผู้ใช้งานเพื่อนำมาปรับปรุงในระบบแสดงผล
- สัมภาษณ์การใช้งาน Dashboard ในเวอร์ชั่น (prototype) จากกลุ่มผู้ใช้งาน
- ให้ผู้ใช้งานทดลองและใช้งานระบบ เพื่อเก็บความต้องการเพิ่มเติมสำหรับนำมาใช้พัฒนา

10. ผลลัพธ์ที่ได้จากโครงงาน

- 1) ฐานข้อมูลปริมาณการปล่อยก๊าซเรือนกระจกจากประเทศต่าง ๆ ทั่วโลกและข้อมูลผลกระทบต่อภาวะโลก ร้อน
- 2) Dashboard ที่แสดงผลเกี่ยวกับสภาวะโลกร้อนและปริมาณการปล่อยก๊าซเรือนกระจกจากแต่ละประเทศ ทั่วโลก
- 3) การเผยแพร่ผลการศึกษาในรูปแบบ Dashboard โดยสามารถเข้าถึงได้ผ่านลิงก์

11. รายชื่อกรรมการประเมินระบบ

- 1. อาจารย์มนชนก ทองเทพ
- 2. อาจารย์มณีเนตร พวงมณี

12.ประเภทของโครงงาน

ระบุ	ประเภท	รายละเอียด <i>(ถ้ามี)</i>
Х	พัฒนาชิ้นงาน	

13. แผนการดำเนินงาน

กิจกรรม		เดือน (ปี 2568)											
	1	2	3	4	5	6	7	8	9	10	11	12	
1. ศึกษาข้อมูลเพื่อประเมินความเป็นไปได้ในการพัฒนาโครงงาน													
2. ค้นหาแหล่งข้อมูลและทำความเข้าใจในชุดข้อมูล													
3. ออกแบบฐานข้อมูล													
4. เก็บรวบรวมข้อมูลโดยใช้ API และ Web Scraping													
5. พัฒนา ETL Process													
6. ออกแบบและสร้าง Dashboard													
7. ทดสอบและปรับแต่ง Dashboard													
8. จัดทำรายงานและคู่มือการใช้งาน													

14. บรรณานุกรม

- [1] ชัยวัฒน์. มั่นคงดี, "การศึกษาการรับรู้ของประชาชนเกี่ยวกับภาวะโลกร้อนในเขตกรุงเทพมหานคร," วิทยานิพนธ์มหาบัณฑิต, มหาวิทยาลัยธุรกิจบัณฑิตย์, 2553. [Online]. Available: https://libdoc.dpu.ac.th/thesis/Chaiwat.Mank.pdf. [Accessed: Jan. 28, 2025].
- [2] โองการ วณิชาชีวะ, "ผลกระทบจากภาวะโลกร้อนที่มีต่อความหลากหลายทางชีวภาพ," วารสารวิทยาศาสตร์และเทคโนโลยี, ปีที่ 21, ฉบับที่ 5, หน้า 1-10, 2556. [Online]. Available: https://li01.tci-thaijo.org/index.php/tstj/article/view/12629. [Accessed: Jan. 28, 2025].
- [3] มนนภา เทพสุด, "ภาวะโลกร้อน: สาเหตุ ผลกระทบ และแนวทางการแก้ปัญหา," การประชุมวิชาการระดับชาติและ นานาชาติ มหาวิทยาลัยศรีปทุม ครั้งที่ 15, 2563. [Online]. Available: https://dspace.spu.ac.th/server/api/core/bitstreams/89ce09d8-638e-4eab-ae31-39f288d56ea1/content. [Accessed: Jan. 28, 2025].
- [4] J. Clyne, "Visualization of Climate Science Simulation Data," IEEE Computer Graphics and Applications, vol. 41, no. 1, pp. 6-7, Jan.-Feb. 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9325132. [Accessed: Jan. 28, 2025].
- [5] thaishopadmin, "สภาวะโลกร้อน (Global warming)," gracz, [Online]. Available: https://gracz.co.th/blog/post/planet-global-warming. [Accessed: 17-Jan-2025].
- [6] สำนักงานสภาพัฒนาการเศรษฐกิจและสังคมแห่งชาติ, "เป้าหมายที่ 13 ปฏิบัติการอย่างเร่งด่วนเพื่อต่อสู้กับการเปลี่ยนแปลง สภาพภูมิอากาศ และผลกระทบที่เกิดขึ้น," sdgs.nesdc, [Online]. Available: https://n9.cl/c8ioz. [Accessed: 18-Jan-2025].
- [7] เจมส์ ฟิตซ์เจอรัลด์ และ ทอม แมคอาร์เธอร์, "ไฟป่าแคลิฟอร์เนีย ยอดผู้เสียชีวิตเพิ่ม สถานการณ์ล่าสุดเป็นอย่างไร อุปสรรค การดับเพลิงมีอะไรบ้างล," BBC News ไทย,[Online]. Available:

 https://www.bbc.com/thai/articles/cy9le17z3v3o. [Accessed: 18-Jan-2025].
- [8] SDG Port Thailand, "International Organizations," [Online]. Available: https://www.sdgport-th.org/international-organization/. [Accessed: 19-Jan-2025].
- [9] ณภัทณ์จันทร์ ด่านสวัสดิ์, "การพยากรณ์ปริมาณการปล่อยกาชคาร์บอนไดออกไซด์ (CO2)จากภาคอุตสาหกรรมในประเทศ ไท," Recent Science and Technology, [Online]. Available: https://li01.tci-thaijo.org/index.php/rmutsvrj/article/view/248291/176731. [Accessed: 20-Jan-2025].
- [10] ธนาภา นิลวิเชียร*, สุชีลา พลเรื่อง, "การวิเคราะห์การปล่อยก๊าซเรื่อนกระจกจากการประกอบกิจการสำรวจและผลิต ปิโตรเลียม ในประเทศไทย", มหาวิทยาลัยเกษตรศาสตร, [Online]. Available:

 https://kukr.lib.ku.ac.th/kukr_es/kukr/search_detail/dowload_digital_file/426189/175021. [Accessed: 20-Jan-2025].
- [11] [Climate Watch, "Data for climate action," ClimateWatch,[Online]. Available: https://www.climatewatchdata.org. [Accessed: Jan. 28, 2025].
- [12] Our World in Data, "Greenhouse gas emissions," OurWorldinData,[Online]. Available: https://ourworldindata.org. [Accessed: Jan. 28, 2025].
- [13] Climate Trace, "Tracking real-time greenhouse gas emissions," Climate Trace, [Online]. Available: https://www.climatetrace.org. [Accessed: Jan. 28, 2025].
- [14] Carbon Monitor, "Daily CO2 emission estimates," Carbon Monitor, [Online]. Available: https://carbonmonitor.org. [Accessed: Jan. 28, 2025].

- [15] Carbon Mapper, "Mapping methane and CO2 emissions," Carbon Mapper, [Online]. Available: https://carbonmapper.org. [Accessed: Jan. 28, 2025].
- [16] Python Software Foundation, "http.client,", ,[Online]. Available: https://docs.python.org/3/library/http.client.html. [Accessed: 21-Jan-2025].
- [17] GeeksforGeeks, "Python Requests Tutorial," ,[Online]. Available: https://www.geeksforgeeks.org/python-requests-tutorial/. [Accessed: 21-Jan-2025].
- [18] DevHub Thailand, "Web Scraping with Python," ,[Online]. Available: https://devhub.in.th/blog/web-scraping-python. [Accessed: 22-Jan-2025].
- [19] S. Sirawit, "Machine Learning 01: Data Preprocessing," Medium, 2020. [Online]. Available: https://sirawit0676.medium.com/machine-learning-01-data-preprocessing-python-coding-basic-687aee03c478. [Accessed: 25-Jan-2025].
- [20] 1st Craft, "What is Data Visualization?," 1stcraft,[Online]. Available: https://1stcraft.com/what-is-data-visualization/. [Accessed: 25-Jan-2025].
- [21] 9experttraining, "Power Bi คืออะไร",9experttraining,[Online].Available:

 https://www.9experttraining.com/articles/powerbi-%E0%B8%84%E0%B8%B7%E0%B8%AD%E0%B8%AD%E0%B8%B0%E0%B9%84%E0%B8%A3