Appunti di Elettrotecnica

Nicola Ferru

 $4\ {\rm ottobre}\ 2022$

0.1 Argomenti

l'elettrotecnica è la tecnica dell'energia elettrica, cio
è le possibili applicazioni degli effetti prodotti dalle cariche, ferme o in movimento.

Capitolo 1

Circuiti magnetici

1.1 Introduzione

Definizione 1. In elettromagnetismo si definisce la densità di corrente J che misura la quantità di corrente che fluisce attraverso l'unità di superficie normale alla direzione del flusso di corrente.

$$i = \frac{dq}{dt} \left[\frac{C}{s} \right] = \frac{dq}{dt} [A] \tag{1.1}$$

1.1.1 Principi di conservazione delle cariche

Definizione 2. Una carica non può essere creata né distrutta, è una legge neturale e la formula è

$$\nabla * j + \frac{\partial \rho}{\partial t} = 0 \tag{1.2}$$

Densita di carica (dipendono dalla coordinate spaziali)

- Volumica: $\partial = \lim_{\Delta v \to 0} \frac{\Delta q}{\Delta v} \left(\frac{C}{m^3} \right)$
- Superficiale: $\partial = \lim_{\Delta x \to 0} \frac{\Delta q}{\Delta s} \left(\frac{C}{m^2} \right)$
- Lineare: $\partial = \lim_{\Delta l \to 0} \frac{\Delta q}{\Delta s} \left(\frac{C}{m} \right)$

1.1.2 COSTRUZIONE DI UNA TEORIA

- Definire le quantitò base
- Postulare òe relazioni fondamentali
- Specificare le regole di operazione (cioè la Matematica)

1.1.3 Teorema dei campi

- Quantità basilari: Sorgenti, Campi (La sorgente di un campo elettromagnetico è invariabilmente una carica elettrica, a riposo o in moto);
- Postulati Fondamentali: EQUAZIONI DI MAXWELL;

• Regole Operative: Calcolo vettoriale.

1.1.4 Equazioni di Maxwell

Forma Differenziale	Forma Integrale	
$\nabla * E = rotE = -\frac{\partial B}{\partial t}$	$\oint E * dl = -\int_{S} \frac{\partial D}{\partial t} * dS$	L. Faraday
$\nabla * H = \bar{J} + \frac{\partial D}{\partial t}$	$\oint H * dl = I + \int_S \frac{\partial D}{\partial t} * dS$	L. Ampére
$*d = \rho$	$\oint D * dS = Q$	L. Gauss
*B = 0	$\oint B * dS = 0$	L.Gauss