Duale Hochschule Baden-Württemberg

Logik und Algebra

5. Übungsblatt

1. Aufgabe: Die Abbildungen $f_i: \mathbb{R} \setminus \{0,1\} \to \mathbb{R} \setminus \{0,1\}$ sind gegeben durch

$$f_1(x) = x, \ f_2(x) = 1 - x, \ f_3(x) = \frac{1}{x}, \ f_4(x) = \frac{1}{1 - x}, \ f_5(x) = \frac{x}{x - 1}, \ f_6(x) = \frac{x - 1}{x}.$$

Geben Sie jeweils die Umkehrabbildung an. Stellen Sie die Verknüpfungstafel für \circ für diese Funktionen auf. Bildet die Menge der Funktionen mit der Verknüpfung \circ eine Gruppe?

- 2. Aufgabe: Es sei (G,\cdot) eine Gruppe mit endlich vielen Elementen und neutralem Element 1. Sei $x\in G$ beliebig aber fest. Zeigen Sie:
 - (a) Es gibt ein kleinstes $k \in \mathbb{N}$ mit $x^k = 1$.
 - (b) Für das kleinste $k \in \mathbb{N}$ mit $x^k = 1$ gilt: $U = \{x, x^2, \dots, x^k\}$ ist eine kommutative Untergruppe von G mit k Elementen.
- 3. Aufgabe: Bestimmen Sie alle Elemente von $\langle (13)(24), (123) \rangle$ in S_4 . Ist die resultierende Gruppe kommutativ?
- 4. Aufgabe: Erstellen Sie bezüglich $6x^2 + 12x + 6$ das Hassediagramm zur Teilbarkeit in $\mathbb{Z}[x]$ durch Terme mit positivem Vorzeichen.
- 5. Aufgabe: Verwenden Sie den euklidischen Algorithmus:
 - (a) Berechnen Sie ggT(189, 51) und ggT(189, 133).
 - (b) Berechnen Sie multiplikativ inverse Elemente zu 79 und 81 in \mathbb{Z}_{196} . Prüfen Sie anschließend das Ergebnis.

Lösung 4. Übungsblatt

Lösung 1: Auf \mathbb{N}^2 ist R definiert als (a_1, a_2) R $(b_1, b_2) \Leftrightarrow a_1b_2 - a_2b_1 \geq 0 \Leftrightarrow a_1b_2 \geq a_2b_1$.

Symmetrie: Für a=(3,4) und b=(1,2) ist $a\,R\,b$, da $3\cdot 2-4\cdot 1=2\geq 0$, jedoch $b\not R\,a$, da $1\cdot 4-2\cdot 3=-2\not\geq 0$. Also ist R nicht symmetrisch.

Antisymmetrie: Für a=(1,1) und b=(2,2) ist $a\,R\,b$, denn $1\cdot 2-1\cdot 2=0\geq 0$ und auch $b\,R\,a$, da $2\cdot 1-2\cdot 1=0\geq 0$, jedoch $a\neq b$. Also ist R nicht antisymmetrisch.

Reflexivität: Für $a=(a_1,a_2)\in\mathbb{N}^2$ ist $a\,R\,a$, da $a_1\cdot a_2-a_2\cdot a_1=0\geq 0$. Also ist R reflexiv.

Transitivität: Seien $a=(a_1,a_2),b=(b_1,b_2),c=(c_1,c_2)\in\mathbb{N}^2$ mit $a\,R\,b$ und $b\,R\,c$, also $a_1b_2\geq a_2b_1$ und $b_1c_2\geq b_2c_1$. Für Transitivität ist $a\,R\,c$ zu zeigen, also $a_1c_2\geq a_2c_1$: Aus den Vorbedingungen folgt $a_1\geq \frac{a_2b_1}{b_2}$ und $b_1\geq \frac{b_2c_1}{c_2}$, da alle Variablen positiv sind. Damit ist

$$a_1c_2 \ge \frac{a_2b_1}{b_2} \cdot c_2 \ge \frac{a_2}{b_2} \cdot \frac{b_2c_1}{c_2} \cdot c_2 = a_2c_1$$
,

und damit ist R transitiv.

Linearität: Seien $a=(a_1,a_2),b=(b_1,b_2)\in\mathbb{N}^2$. Ist $a_1b_2\geq a_2b_1$, so gilt $a\,R\,b$. Gilt dies nicht, so ist $a_1b_2< a_2b_1$ und damit sicher $b_1a_2\geq b_2a_1$ und damit gilt $b\,R\,a$. Damit ist R linear.

Lösung 2:

- $R_1 = \{(a,a),(b,b),(c,c)\}$: Mit $\{(a,a),(b,b),(c,c)\} \subseteq R_1$ ist sie reflexiv, und da nur Elemente der Form (x,x) auftreten auch transitiv und antisymmetrisch. Sie ist aber nicht linear, da weder (a,b) noch (b,a) in R_1 sind. Es ist eine Halbordnung. Alle Elemente der Menge $\{a,b,c\}$ sind minimal und maximal, es gibt keine kleinsten oder größte Elemente.
- $R_2=\{(a,a),(a,b),(b,a),(b,b),(c,c)\}$: Mit $\{(a,a),(b,b),(c,c)\}\subseteq R_2$ ist sie reflexiv, und zu $(a,b),(b,a)\in R_2$ passenden $(a,a),(b,b)\in R_2$ auch transitiv. Sie ist aber wegen $(a,b),(b,a)\in R_2$ nicht antisymmetrisch. Sie ist also Quasiordnung. Nur das Element c ist minimal und maximal. Es gibt keine kleinsten und größten Elemente.
- $R_3=\{(a,a),(b,b),(b,c),(c,c)\}$: Mit $\{(a,a),(b,b),(c,c)\}\subseteq R_3$ ist sie reflexiv, damit zu $(b,c)\in R_3$ auch transitiv. Es gibt keine Elemente mit $(x,y),(y,x)\in R_3$ mit $x\neq y$, somit ist sie auch antisymmetrisch. Sie ist aber nicht linear, da weder (a,b) noch (b,a) in R_3 sind. Es ist eine Halbordnung. Die Elemente a,b sind minimal, die Elemente a,c sind maximal. Es gibt keine kleinsten und größten Elemente.
- $R_4 = \{(a,a), (a,b), (b,c), (b,c), (c,c)\}$: Wegen $(a,b), (b,c) \in R_4$ aber $(a,c) \not\in R_4$ ist sie nicht transitiv, also keine Ordnung. a ist minimales Element, c ist maximales Element. Es gibt keine kleinsten oder größte Elemente.
- $R_5=\{(a,a),(a,b),(a,c),(b,b),(b,c),(c,c)\}$: Wegen $\{(a,a),(b,b),(c,c)\}\subseteq R_5$ ist sie reflexiv, und wegen $(a,b),(b,c),(a,c)\in R_5$ auch transitiv. Es gibt keine Elemente mit $(x,y),(y,x)\in R_3$ mit $x\neq y$, somit ist sie auch antisymmetrisch. Und für jedes $x,y\in\{a,b,c\}$ ist entweder $(x,y)\in R_5$ oder $(y,x)\in R_5$, somit ist sie linear. Dies ist eine Vollordnung. a ist minimal und kleinstes Element, c ist maximal und größtes Element.
- $R_6=\{(a,a),(a,c),(b,a),(b,b),(b,c),(c,a),(c,c)\}$: Wegen $\{(a,a),(b,b),(c,c)\}\subseteq R_6$ ist sie reflexiv, und mit $(b,a),(a,c),(b,c)\in R_6$ und $(b,c),(c,a),(b,a)\in R_6$ auch transitiv. Sie ist nicht antisymmetrisch, da $(a,c),(c,a)\in R_6$. Es ist eine Quasiordnung. b ist minimal und kleinstes Element. Es gibt keine maximalen oder größten Elemente.

Lösung 3:

 $f: Z_4 \to Z_5, x \mapsto x+1$: Die Funktion ist injektiv, da für alle $x \neq y$ gilt $f(x) \neq f(y)$, aber nicht surjektiv, da es kein $x \in Z_4$ gibt mit $f(x) = 0 \in Z_5$.

 $g:Z_5\to Z_4, x\mapsto \left\{\begin{array}{ll} 0\,, & \text{wenn } x=0\\ x-1\,, & \text{wenn } x\neq 0 \end{array}\right. \text{ Die Funktion ist nicht injektiv, da } g(1)=g(0). \text{ Die Funktion ist nicht injektiv, da } g(1)=g(0).$

 $f\circ g:Z_5\to Z_5, x\mapsto \left\{\begin{array}{ll} 1\,, & \text{wenn }x=0\\ x\,, & \text{wenn }x\neq 0\end{array}\right. \text{ Die Funktion ist nicht injektiv, da }(f\circ g)(0)=(f\circ g)(1). \text{ Die Funktion ist nicht surjektiv, da es kein }x\in Z_5 \text{ gibt mit }(f\circ g)(x)=0\in Z_5.$

 $g\circ f:Z_4\to Z_4, x\mapsto x$: Die Funktion ist injektiv, da für $x\neq y$ gilt $(g\circ f)(x)=x\neq y=(g\circ f)(y)$. Die Funktion ist surjektiv, da für jedes $x\in Z_4$ gilt $(g\circ f)(x)=x$.

Lösung 4: Inverse Abbildungen:

$$((146)(23))^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 2 & 1 & 5 & 4 & 7 \end{pmatrix} = (164)(23)$$

$$((17)(23)(45))^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 2 & 5 & 4 & 6 & 1 \end{pmatrix} = (17)(23)(45)$$

$$((23456))^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 6 & 2 & 3 & 4 & 5 & 7 \end{pmatrix} = (26543)$$

Verkettungen:

$a \circ b$	b = (146)(23)	b = (17)(23)(4)	(45) b = (6)	23456)
a = (146)(23)	$(164) = \begin{pmatrix} 1234567 \\ 6231547 \end{pmatrix}$	1 + (17456) = 1	(145)(36) =	$\left(\begin{array}{c} 1234567\\ 4265137 \end{array}\right)$
a = (17)(23)(45)	$(15467) = \begin{pmatrix} 1234567 \\ 5236471 \end{pmatrix}$	1 1 20 - 1	$\begin{pmatrix} 34567 \\ 34567 \end{pmatrix} (17)(356) =$	$\left(\begin{array}{c} 1234567\\ 7254631 \end{array}\right)$
a = (23456)	$(156)(24) = \begin{pmatrix} 1234567 \\ 5432617 \end{pmatrix}$	1 + (17)(246) = 1	(24635) =	1234567 1456237

Lösung 5: Auf \mathbb{R}^2 ist die Verknüpfung * definiert durch:

$$(a,b) * (c,d) = (ac,ad+bc)$$

(a) Die Verknüpfung ist kommutativ

$$(a,b) * (c,d) = (ac,ad+bc) = (ca,cb+da) = (c,d) * (a,b)$$

und assoziativ, denn seien $(a_1, a_2), (b_1, b_2), (c_1, c_2) \in \mathbb{R}^2$, dann gilt

$$(a_1, a_2) * ((b_1, b_2) * (c_1, c_2)) = (a_1, a_2) * (b_1c_1, b_1c_2 + b_2c_1) = (a_1b_1c_1, a_1b_1c_2 + a_1b_2c_1 + a_2b_1c_1)$$

$$((a_1, a_2) * (b_1, b_2)) * (c_1, c_2) = (a_1b_1, a_1b_2 + a_2b_1) * (c_1, c_2) = (a_1b_1c_1, a_1b_1c_2 + a_1b_2c_1 + a_2b_1c_1).$$

(b) Ja, denn mit e = (1,0) gilt für $a = (a_1, a_2) \in \mathbb{R}^2$:

$$e * a = (1,0) * (a_1, a_2) = (a_1, 1 \cdot a_2) = (a_1, a_2) = a$$