Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Eletrônica Básica – EEL 7061 Avaliação II – 2015/2 (27/10/2015)

Questão 1: [4,0 pontos] Dado o amplificador a seguir, operando na RAD, com parâmetros $V_{cc}=10V$, $R_1=R_2=R_3=R_5=10k\Omega$, $R_4=30k\Omega$, $R_L=1k\Omega$, $\beta=100$, $|V_{BEQ}|=0.7$, $C_1=C_2=C_3=10\mu F$, $|V_{CESAT}|=100mV$, determine: (a) o tipo de transistor Q_1 ; (b) I_{BQ1} , I_{BQ2} , V_{CEQ1} , V_{CEQ2} na forma literal (se for necessário, deixe a resposta de um em função das respostas dos outros – não é necessário substituir), em função dos parâmetros do circuito; (c) Qual deve ser a relação de $|V_{CEQ}|$ com $|V_{CESAT}|$ (>,<,=)?

Questão 2: [4,0 pontos] Dado o amplificador a seguir, determine: (a) o modelo de pequenos sinais; (b) a impedância de saída (vista entre o terra e o terminal V_o). Assuma que: $Q_1=Q_2$; $V_A\to\infty$; g_{m1} , g_{m2} , $r_{\pi 1}$, $r_{\pi 2}$, R_1 e R_2 são conhecidos; $V_i=\text{sen}(1000t)\text{mV}$; $V_{cc}=10\text{V}$.

Questão 3: [2,0 pontos] Determine a tensão de saída (V_o) em função da tensão de entrada (V_i) e dos parâmetros do circuito. A tensão de entrada possui excursão positiva $0 \le V_i \le V_{cc}$ -1, onde $\pm V_{cc}$ são as tensões de alimentação do operacional. Assuma que o amplificador operacional é ideal. Apresente a resposta na forma mais sucinta possível.

FORMULÁRIO

• Modelo de pequenos sinais para os transistores NPN e PNP:

$$g_m\!\!=\!\!I_{CQ}\!/v_T\!;\,r_\pi\!\!=\!\!\beta/g_m;\,r_o\!\!=\!\!(|V_A|\!\!+\!\!|V_{CEQ}|)\!/I_{CQ};\,v_T\!\!=\!\!25mV$$

• Modelo de Transporte para o transistor NPN: v_T=25mV

