GIS, Python, PYQGIS

Parte del material obtenido de https://github.com/sebastianhohmann/gis_course/ tree/master/QGIS/research_course

Herramientas Computacionales para Investigación

- Para que la investigación sea replicable (¡también para nosotros mismos!) queremos automatizar todo lo posible el flujo de trabajo del GIS.
- Buen puente hacia la automatización completa en Python.
- Ejemplo: construir un modelo para calcular la idoneidad agrícola media de todos los condados de EE.UU.
 - Descargar los condados de EE.UU. de https://gadm.org/data.html. Del ZIP que les descarga, usaremos gadm41_USA_2.shp
 - Descargar los datos rasterizados globales de idoneidad agrícola de https://sage.nelson.wisc.edu/data-and-models/atlas-of-the-biosphere/mapping-the-biosphere/land-use/suitability-for-agriculture/.

- $\blacksquare \ \, \mathsf{Layer} \to \mathsf{Add} \ \, \mathsf{Layer} \to \mathsf{Add} \ \, \mathsf{Raster} \ \, \mathsf{Layer} \colon /\mathsf{suit}/\mathsf{suit}/\mathsf{hdr}.\mathsf{adf}$
- lacksquare Processing o Graphical Modeler ($\begin{cases} \begin{cases} \begin{$
- $lue{}$ Algorithms o Raster Projections o WARP (reproject)

- Layer → Add Layer → Add Vector Layer: gadm41_USA_2.shp
- $lue{}$ Algorithms o Vector Table o Drop Fields
- Fields to drop: GID_0;NAME_0;GID_1;GID_2;HASC_2;CC_2;TYPE_2;ENG TYPE_2;NL_NAME_1;NL_NAME_2;VARNAME_2 (tiene que ser introducido como una lista separada por punto y coma sin espacios)

lacktriangle Algorithms o Add autoincremental field

 $lue{}$ Algorithms o Raster Analysis o Zonal statistics

- Guardar modelo
- Correr con el ícono de Play verde

- Exportar a Python: Model \rightarrow Export \rightarrow Export as Python Script ($\stackrel{\blacksquare}{}$)
- Copiar código
- Abrir Python console (en Plugins de la ventana ppal.)
- Abrir Editor ()
- Pegar
- Guardar (también se puede guardar desde la ventana que se abre al exportar)
- Editar y agregarle comentarios para hacerlo más legible (ver _1_agrisuit_us_clean.py)

Entendiendo y limpiando código

- QGIS nos da el script de geoprocesamiento organizado como una clase, con todo el todo el geoprocesamiento dentro del método processAlgorithm
- También importa un montón de módulos
- Sólo mantendremos los pasos centrales del geoprocesamiento y sólo las importaciones de módulos necesarias
- Eliminar todas las importaciones, clases y definiciones de métodos antes del primer diccionario alg_params
- Antes de llegar a la definición de las variables locales, introducir (usar ruta propia en PATH) maindir = PATH/gis_data

Replicar Michalopoulos AER (2012)

- Preparar el shapefile WLMS
- Preparar el agricultural suitability raster
- 3 Loopear sobre los archivos raster
- Generar variables cantidad de idiomas por país, distancias, áreas
- 5 Crear paises virtuales
- 6 Estadísticas
- Crear celdas, obtener idiomas en cada celda, variables de control, raster, intersecar con países, vecinos

Inputs

- Languages: WLMS (World Language Mapping System)
 http://www.worldgeodatasets.com/language/ → langa.shp en carpeta
- Agricultural suitability: https://sage.nelson.wisc.edu/ data-and-models/atlas-of-the-biosphere/ mapping-the-biosphere/land-use/suitability-for-agriculture/
- Elevation: (no la descarguen)
 http://topex.ucsd.edu/WWW_html/srtm30_plus.html
- Population density for different years https://www.pbl.nl/en/image/data
- Country boundaries http://www.naturalearthdata.com/downloads/ 10m-cultural-vectors/10m-admin-0-countries/
- Coastline http://www.naturalearthdata.com/downloads/ 10m-physical-vectors/10m-coastline/
- Lakes http://www.naturalearthdata.com/downloads/ 10m-physical-vectors/10m-lakes/

1) Preparar el shapefile WLMS

- Usar Modelador Gráfico
- Add layer o localizar en PC langa.shp (descargado de worldgeodatasets.com/language cuando era gratis)
- Arreglar las geometrías para procesar el shapefile (siempre habría que hacerlo)
- Añadir el campo ID autoincremental para los países
- Field Calculator para limpiar variable
- Borrar columnas (keep GID, ID, Inm): ID_ISO_A3;ID_ISO_A2;ID_FIPS;NAM_LABEL;NAME_PROP; NAME2;NAM_ANSI;CNT;C1;POP;LMP_POP1;G;LMP_CLASS; FAMILYPROP;FAMILY;langpc_km2;length
- Output: vector wldsout
- Guardar clean.shp
- Guardar modelo
- Exportar como Python Script y guardar

Arreglar las geometrías

Agregar layer langa.shp o buscarla en el algoritmo

Añadir el campo ID autoincremental

Generar variable Imn con NAME_PROP de los que tienen menos de 10 caracteres

- Field Calculator para calcular largo variable NAME_PROP
 - Input: Usar anterior desde algorithm output.
 - Field Calculator Field name: length, Result type: Integer, Expression: length(NAME_PROP)
- Feature filter para eliminar los que tienen más de 10
 - $lue{}$ Algorithms o Vector Table o Feature filter
 - Output name: menor_a_11 Filter Expression: length11 tick en Final Output
 - Input Layer la anterior usando algorithm output
- Generar variable Imn con NAME_PROP
 - Field Calculator Description: Field calculator clone Input layer la anterior usando algorithm output - Field name: Inm -Result type: String - Result length: 10 - Expression: "NAME_PROP"
 - Calculated: field_calc

Borrar columnas

Preparar el shapefile WLMS

- Usar Modelador Gráfico (guiarse con 1cleanWLDS.py)
- Arreglar las geometrías para procesar el shapefile
- Añadir el campo ID autoincremental para los países
- Field Calculator para limpiar variable
- Borrar columnas: ID_ISO_A3;ID_ISO_A2;ID_FIPS;NAM_LABEL;NAME_PROP; NAME2;NAM_ANSI;CNT;C1;POP;LMP_POP1;G; LMP_CLASS;FAMILYPROP;FAMILY;langpc_km2
- Output: vector wldsout
- Guardar clean.shp
- Guardar modelo
- Exportar como Python Script y guardar

2) Preparar el agricultural suitability raster

- Usar Modelador Gráfico
- Add raster o localizar suit/hdr.adf (descargado antes de este link)
- Usar GDAL Warp reproject para proyectar el raster en WGS 84.
 - Algorithms \rightarrow Raster Projections \rightarrow WARP (reproject)
- Usar GDAL Extract projection para crear una proyección permanente del raster.
 - Algorithms \rightarrow GDAL \rightarrow Raster Projections \rightarrow Extract Projections
 - Input file: Using algorithm output
 - Create also .prj file: Yes
- Output: raster suitout
- Correr modelo y poner que se guarde como landquality.gif (lo vamos a usar después)
- Guardar modelo
- Export to Python

3) Archivos raster

- Usar Modelador Gráfico
- Arreglar las geometrías del shapefile (siempre habría que hacerlo) ne_10m_admin_0_countries.shp (descargado de este link) → fixgeo_3
- Borrar columnas \rightarrow **drop_fields_3** \rightarrow keep: ADMIN, ISO_A3
- Add rasters: landqual, popd1800, popd1900, popd2000
- Zonal statistics para cada uno de los rasters (mean)
- Save vector features to file → Saved features → Click en la flecha verde → Values → Save to File → raster_stats.csv (o Click derecho en layer zonalstats → Export → Save Features As... → CSV)
- Guardar modelo y Exportar como Python Script, guardar

4) Otras variables

- **Número de idiomas en cada país:** Intersectar WLMS y países, y hacer estadísticas por categorías.
- Distancia a la costa: Encontar los centroides de los países con Centroids, usar GRASS v.distance para encontrar la distancia a la costa desde el centroide del país.
- Áreas de los países: Reproyectar para tener la proyección adecuada para el cálculo. Usar la calculadora de campo con area(\$geometry)/1000000 como FÓRMULA.

4a) Número de idiomas en cada país:

- Usar Modelador Gráfico
- Fix Geometries del shapefile **clean.shp** sacado de $1) \rightarrow$ **fixgeo_wlds**
- Fix Geometries del shapefile ne_10m_admin_0_countries.shp → fixgeo_countries
- lacktriangle Algorithm o Vector overlay o Intersection

4a cont.) Número de idiomas en cada país:

- $lue{}$ Algorithm o Vector analysis o Statistics by categories
- Output: layer outcsv
- Repetir y guardar como .csv

4b) Distancia a la costa - calcular centroides

- Usar Modelador Gráfico: modelo4b
- Fix Geometries de ne_10m_coastline.shp → fixgeo_coast (Agregar coast a Description)
- Fix Geometries de ne_10m_admin_0_countries.shp → fixgeo_countries (Agregar countries a Description)
- Algorithm \rightarrow Vector geometry \rightarrow Centroids \rightarrow **country_centroids**
 - Create centroid for each part: No
- Agregar coordenadas a los centroides: Algorithm → Vector geometry
 → Add geometry attributes → centroids_with_coordinates
- Elimino columna de fixgeo_coast (coast en Description): scalerank
 → Output: coastout
- Eliminar columnas de centroids_with_coordinates (centroids_w_c en Description) → centroidsout → keep: ADMIN, ISO_A3, xcoord, ycoord

4b cont.) Distancia a la costa

- Seguimos en el mismo modelo
- Algorithm \rightarrow GRASS \rightarrow v.distance

4b cont.) Distancia a la costa - corrijo variable

- Seguimos en el mismo modelo
- Algorithm → Vector Table → Field Calculator → nearest_cat_adjust

4b cont.) Distancia a la costa - drop

- Seguimos en el mismo modelo
- Algorithm → Vector Table → Drop Fields: xcoord;ycoord → nearest_cat_adjust_dropfields

4b cont.) Distancia a la costa - merge

- $lue{}$ Algorithm o Vector General o Join attributes by field value
- centroids_nearest_coast_joined

4b cont.) Distancia a la costa - drop y merge

- Drop Fields: ne_10m_adm_2;ADMIN_2;ISO_A3_2 → centroids_nearest_coast_joined_dropfields
- $lue{}$ Algorithm o Vector General o Join attributes by field value

4b cont.) Distancia a la costa - extraer vértices y filtrar

- Seguimos en el mismo modelo
- Algorithm → Vector Geometry → Extract vertices → extract_vertices
- Algorithm \rightarrow Vector Selection \rightarrow Extract by attribute

4b cont.) Distancia a la costa - variables de latitud y longitud del centroide

- Seguimos en el mismo modelo
- Field Calculator
 - Input: extract_by_attribute
 - Field name: cent_lat
 - Type: Float
 - Length: 10
 - Precision: 10
 - Formula: attribute(\$currentfeature,'ycoord')
 - Output added_field_cent_lat
- Field Calculator
 - Input: added_field_cent_lat
 - Field name: cent_lon
 - Mismo type, length, precision
 - Formula: attribute(\$currentfeature,'xcoord')
 - Output: added_field_cent_lon

4b cont) Distancia a la costa - drop, geometria

- Seguimos en el mismo modelo
- Drop Fields de added_field_cent_lon: xcoord;ycoord;fid_2;cat_2; vertex_index;vertex_part;vertex_part;_index;distance;angle (keep: ADMIN, ISO_A3, cent_lat, cent_lon) → centroids_lat_lon_drop_fields
- lacktriangle Algorithm o Vector Geometry o Add geometry attributes
 - Input: centroids_lat_lon_drop_fields
 - Layer CRS
 - Output: add_geo_coast

4b cont) Distancia a la costa - variables de latitud y longitud de la costa

- Seguimos en el mismo modelo
- Field Calculator
 - Input: add_geo_coast
 - Field name: coast_lat
 - Type: Float
 - Length: 10
 - Precision: 10
 - Formula: attribute(\$currentfeature,'ycoord')
 - Output added_field_coast_lat
- Field Calculator
 - Input: added_field_coast_lat
 - Field name: coast_lon
 - Mismo type, length, precision
 - Formula: attribute(\$currentfeature,'xcoord')
 - Output: added_field_coast_lon

Distancia a la costa - guardar como CSV

- Seguimos en el mismo modelo
- Drop Fields de added_field_coast_lon: xcoord;ycoord → csvout
- Guardar modelo
- Exportar como Python Script y guardar
- Save vector features to file → Saved features → Click en la flecha verde → Values → Save to File → dist_coast.csv

4c) Calcular área de los países

- Usar Modelalor Gráfico: modelo4c
- Drop fields de ne_10m_admin_0_countries.shp → countries_drop_fields
 - keep ADMIN,ISO_A3
- Reproject Layer (vector, no raster)
 - Input: countries_drop_fields
 - Ir al ícono del mundito y buscar ESRI:54034 (defining world cylindrical equal area) → countries_reprojected
- Fix geometries → countries_fix_geo

4c) Calcular área de los países

■ Field Calculator → area(\$geometry)/1000000

4c) Calcular área de los países - guardar como csv

- Save vector features to file
 - Vector features: areas_out
 - Save vector features to file → Saved features → Click en la flecha verde → Values → Save to File → areas_out.csv
 - Guardar Modelo
 - Exportar Python