第二次作业答案

题 2.15(2)(3)

解答:

(2)
$$Y_2 = A'BD + BC + AC$$

(3)
$$Y_3 = A'C + BC + A'B$$

图 1: 卡诺图

题 2.18

解答:

$$(1) Y = ((AB'C)'(BC')')' = AB'C + BC'$$

$$(2) Y = ((A'+C)' + (A+B')' + (B+C')')'$$

$$= (A'+C)(A+B')(B+C') = ABC + A'B'C'$$

$$(3) Y_1 = ((AB')'(ACD')')' = AB' + ACD'$$

$$Y_2 = ((AB')'(AC'D')'(A'C'D)'(ACD)')'$$

$$= AB' + AC'D' + A'C'D + ACD$$

(4)
$$Y_1 = (((AB) + C(A \oplus B))')' = AB + C(A'B + AB') = AB + AC + BC$$

 $Y_2 = (A \oplus B) \oplus C = (A \oplus B)C' + (A \oplus B)'C$
 $= AB'C' + A'BC' + A'B'C + ABC$

题 2.20(2)(3)

解答:

(3)
$$Y_3(A,B,C,D) = \sum m(1,4,5,6,10) + d(3,7,11,12,13,14,15)$$

由卡诺图化简得: $Y_3 = A'D + AC + B$

图 2: 卡诺图

题 2.21(2)(3)

解答:

(2) 由卡诺图化简得: $Y_2(A, B, C) = A'C + AC' + B$

(3) 由卡诺图化简得: $Y_3(A,B,C,D) = A' + B'D'$

图 3: 卡诺图

题 2.23(3)

解答:

(3)
$$\diamondsuit Y_1 = A'D' + C'D + CD', Y_2 = AC'D' + ABC + A'D + CD$$

将 Y_1 和 Y_2 的卡诺图画出,并将它们卡诺图对应的最小项做**异或**运算,得到 Y 的卡诺图,化简得: Y=AB'+A'C+AD+C'D'

注: 这里答案不唯一, 只要满足卡诺图化简原则即可

图 4: 卡诺图

题 2.24

解答:

(1) 若将 Y_1 、 Y_2 分别来化简,则可以得到如图 5 (a)所示,化简得: $Y_1(A,B,C,D) = AC' + B'C' + AD', Y_2(A,B,C,D) = A'B' + CD' + A'C$ 逻辑电路图如图5 (b)所示,实现该逻辑函数需要 8 个门和 18 个输入端

图 5: 卡诺图和逻辑电路图

(2) 若利用共用项将 Y_1 、 Y_2 整体化简,则可以得到如图6 (a)所示,化简得: $Y_1(A,B,C,D) = AC' + A'B'C' + ACD', Y_2(A,B,C,D) = A'C + A'B'C' + ACD'$ 逻辑电路图如图6 (b)所示,实现该逻辑函数只需要 6 个门和 16 个输入端

图 6: 卡诺图和逻辑电路图

题 2.26(1)(2)

解答:

(1)
$$Y = ((AB + BC + AC)')' = ((AB)' \cdot (BC)' \cdot (AC)')'$$

(2) $Y = (A' + B)(A + B')C + (BC)'$
 $= (AB + A'B')C + B' + C'$

= A + B' + C' = (A'BC)'

图 7: 逻辑电路图

题 2.27(1)(2)

解答:

(1)
$$Y = AB'C + BC'$$

 $= ((AB'C)' \cdot (BC')')'$
 $= ((A' + B + C') (B' + C))'$
 $= (A'B' + A'C + BC + B'C')'$
 $= (A'B' + BC + B'C')'$
 $= ((A + B)' + (B' + C')' + (B + C)')'$
(2) $Y = (A + C) (A' + B + C') (A' + B' + C)$
 $= A'C + BC + AB'C'$
画出上式的卡诺图,合并其中的 $\mathbf{0}$,然后求反,得到
 $Y = (A'C' + AB'C + BC')'$
 $= ((A + C)' + (B' + C)' + (A' + B + C')')'$

= ((A+C)' + (B'+C)' + (A'+B+C')')' **注:** 这里对应了两种解法,目的都是先化成**与或非**的形式,然后再将括号里面的**与**变成**或非**

图 8: 逻辑电路图

补充题

解答:

$$F = ((A + B' + D) \cdot (B + C)')'$$

$$= (A + B' + D)' + B + C$$

$$= A'BD' + B + C$$

$$= B + C$$

$$= (B'C')'$$

图 9: 最简 NAND 等效电路图