华南理工大学硕士学位论文

LaTeX 模板使用说明

redfu

指导教师: 周嘉嘉 教授

华南理工大学 2025 年 4 月 4 日

摘要

流变学是研究物质变形和流动的科学,流变学本构方程作为流变学的核心内容之一,是描述材料在外力作用下变形和流动行为的数学模型,用于研究材料的应力、应变、应变率之间的关系。这些方程广泛应用于描述复杂材料的力学行为,如聚合物、胶体、血液、泥浆等,帮助理解和预测材料的力学行为,从而优化工艺、提高产品质量和推动科学研究。传统本构方程的获取和研究方法主要包括实验测定、理论推导和数值模拟,但这些方法存在成本高、耗时长、适用范围有限、计算资源需求大等问题。

近年来,基于数据驱动的机器学习方法开始被应用于流变学本构方程的构建研究中。然而,纯数据驱动的方法缺乏物理约束,难以捕捉复杂的物理关系,如流变学中的非线性黏弹性等。鉴于此,本文采用神经网络(深度学习)方法对流变学本构方程进行建模和预测,并通过引入物理约束,提升模型的训练效果和可解释性。具体而言,本文使用门控循环单元循环神经网络(GRU)和物理信息神经网络(PINN)分别对经典本构方程的模拟数据和动态力学分析(DMA)的实验数据进行深度学习建模和预测。

首先,本文通过数值模拟方法获取 Maxwell、Doi-Edwards、Giesekus 模型的时间域应力应变模拟数据,并使用 GRU 对其进行建模预测。创新性地利用 GRU 的门控机制 捕捉时间序列应力应变数据的记忆效应和应变历史依赖性。与传统深度前馈神经网络(DNN)相比,GRU 在 R²、MAE、MAPE 各项预测指标上表现更优。结果表明,GRU 能够泛化到不同的应变加载协议和变化历史,捕捉流变学中复杂的非线性关系。

随后,本文对真实 DMA 实验数据进行建模。本文采用物理信息神经网络(PINN),在损失函数中引入物理方程残差,为模型提供物理约束,并与数据损失共同训练模型。同时,针对实验中多个制备参数作为特征的稀疏性和分散性,本文使用注意力特征融合方法进行特征降维,进一步优化了模型效果。结果表明,PINN 的预测效果各项指标均优于纯数据驱动的深度学习模型,而哈达玛特征融合和注意力特征融合方法有效解决了特征稀疏分散问题。

最后,本文使用条件变分自编码器(CVAE)对实验数据进行反向建模,通过特定的流变学性质数据生成实验制备参数,为高分子材料的设计提供辅助支持。

关键词:流变学;本构方程;门控循环单元;物理信息神经网络;条件变分自编码器

Abstract

Rheology is the science that studies the deformation and flow of matter. Constitutive equations in rheology, as one of the core components of rheology, are mathematical models that describe the deformation and flow behavior of materials under external forces. They are used to study the relationships between stress, strain, and strain rate in materials. These equations are widely applied to describe the mechanical behavior of complex materials such as polymers, colloids, blood, and slurries, helping to understand and predict the mechanical behavior of materials, thereby optimizing processes, improving product quality, and advancing scientific research. Traditional methods for obtaining and studying constitutive equations mainly include experimental measurement, theoretical derivation, and numerical simulation. However, these methods have issues such as high cost, long time consumption, limited applicability, and high computational resource requirements.

In recent years, data-driven machine learning methods have begun to be applied to the construction of constitutive equations in rheology. However, purely data-driven methods lack physical constraints and struggle to capture complex physical relationships, such as nonlinear viscoelasticity in rheology. In light of this, this paper employs neural network (deep learning) methods to model and predict constitutive equations in rheology, and enhances the training effectiveness and interpretability of the models by introducing physical constraints. Specifically, this paper uses Gated Recurrent Unit (GRU) and Physics-Informed Neural Networks (PINN) to perform deep learning modeling and prediction on simulation data of classical constitutive equations and experimental data from Dynamic Mechanical Analysis (DMA).

First, this paper obtains time-domain stress-strain simulation data for the Maxwell, Doi-Edwards, and Giesekus models through numerical simulation methods and uses GRU to model and predict them. Innovatively, the gating mechanism of GRU is utilized to capture the memory effects and strain history dependence of time-series stress-strain data. Compared to traditional Deep Feedforward Neural Networks (DNN), GRU performs better in terms of R², MAE, and MAPE prediction metrics. The results show that GRU can generalize to different strain loading protocols and change histories, capturing complex nonlinear relationships in rheology.

Subsequently, this paper models real DMA experimental data. The Physics-Informed Neu-

ral Network (PINN) is employed, introducing physical equation residuals into the loss function to provide physical constraints for the model, and training the model jointly with data loss. Additionally, to address the sparsity and dispersion of multiple preparation parameters as features in the experiments, this paper uses attention feature fusion methods for feature dimensionality reduction, further optimizing the model's performance. The results indicate that PINN's prediction performance metrics are superior to those of purely data-driven deep learning models, and the Hadamard feature fusion and attention feature fusion methods effectively solve the issue of sparse and dispersed features.

Finally, this paper uses Conditional Variational Autoencoder (CVAE) for inverse modeling of experimental data, generating experimental preparation parameters through specific rheological property data, providing auxiliary support for the design of polymer materials.

Keywords: Rheology; Constitutive Equations; Gated Recurrent Unit; Physics-Informed Neural Networks; Conditional Variational Autoencoder

目 录

摘要…		I
Abstract ·		II
插图目录		VII
表格目录		VIII
主要符号邓	対照表	IX
英文缩略证	司	X
第一章 约	者论	1
1.1 流	变学介绍	1
1.1.1	流变学的核心研究内容	1
1.1.2	流变学研究及应用方向	2
1.2 本	构方程	2
1.2.1	线性本构方程	2
1.2.2	非线性本构方程	5
1.2.3	传统的本构方程的构建方法	7
1.3 数	据驱动方法流变学本构建模	9
1.3.1	机器学习方法介绍	9
1.3.2	机器学习流变学应用研究现状	10
1.4 引。	入物理约束的神经网络研究	13
1.4.1	引言	13
1.4.2	物理信息神经网络研究现状	14
1.4.3	其他物理信息深度学习模型	17
1.5 本	课题研究介绍	18
1.5.1	研究内容	18
1.5.2	研究创新点	19
1.5.3	研究意义	19
第二章 第	章法介绍	21
21 引	늘 :	21

2.2 时间	间序列深度学习算法	21
2.2.1	时间序列数据介绍	21
2.2.2	循环神经网络	22
2.2.3	其他时间序列算法	26
2.3 物理	理信息神经网络	27
2.3.1	理论基础	27
2.3.2	损失函数构建	27
2.3.3	未来技术优化	28
2.4 特征	证融合方法	29
2.4.1	简单特征融合	29
2.4.2	注意力特征融合	30
2.5 生月	成式模型	31
2.5.1	变分自编码器	31
2.5.2	条件变分自编码器	31
2.5.3	其他生成式模型	33
2.6 本重	章小结	34
第三章 G	GRU 应用于模拟数据本构建模研究 ······	35
3.1 引言	불 	35
3.2 实现	脸设计	35
3.2.1	数值模拟	35
3.2.2	模型训练	38
3.2.3	模型测试	38
3.3 结身	果与讨论	39
3.3.1	Herschel-Bulkley 模型建模 · · · · · · · · · · · · · · · · · · ·	39
3.3.2	Maxwell 模型建模 · · · · · · · · · · · · · · · · · · ·	41
3.3.3	Doi-Edwards 模型建模 · · · · · · · · · · · · · · · · · · ·	45
3.3.4	Giesekus 模型建模 · · · · · · · · · · · · · · · · · · ·	47
3.4 本市	章小结	47

第四	章	列举环境	48
4.	.1 调	整间距	48
	4.1.1	垂直间距	48
	4.1.2	水平间距	49
4.	.2 ent	ımerate 标签样式 ······	51
	4.2.1	小括号阿拉伯数字	51
	4.2.2	斜体字母	51
	4.2.3	大写罗马字母	51
结	论 ·		52
参考	文献		53
附	录 1		65
1.	1 测	试一级标题 section ······	65
	1.1.1	测试二级标题 subsection · · · · · · · · · · · · · · · · · · ·	65
1.	.2 测	试测试测试	66
	1.2.1	测试测试测试	66
附	录 2		67
2.	1 测	试测试测试	67
	2.1.1	测试测试测试	67
攻讨	攻读博士/硕士学位期间取得的研究成果 ·····		
致	谢 .		69

插图目录

图 1-1	(A) 施加的应变曲线以及对应的剪切应力(B) 理想弹性固体(C)	
理	想粘性液体 (D) 粘弹性样品 ^[21]	3
图 1-2	Maxwell 模型示意图	4
图 1-3	多尺度模拟示意图[56]	9
图 1-4	数据驱动方法应用于流变学研究示意图[79]	11
图 1-5	多保真神经网络(MFNN)结构示意图 ^[106]	15
图 1-6	Rheo-SINDy 的示意图 ^[108]	16
图 1-7	(A) RUDE 训练循环示意图(B-D)基于 Giesekus 模型合成 LAOS	
数	据训练的 RUDE 评估结果,黑色圆圈:测试数据;红色线条:训练后	
的	RUDE;蓝色线条:未训练的 RUDE(B)中间频率下的剪切应力响应	
(C)训练频率下的法向应力(D)稳态剪切流启动时的剪切应力响应 ^[109] .	16
图 1-8	研究路线图	18
图 2-1	(a) RNN 示意图; (b) LSTM 示意图	24
图 2-2	GRU 示意图	25
图 2-3	PINN 示意图	27
图 2-4	CVAE 示意图	32
图 3-1		40
图 3-2		41
图 3-3		42
图 3-4		43
图 3-5		44
图 3-6		45
图 3-7		46
图 3-8		46

表格目录

主要符号对照表

【本节论文规范为可选,如果你的论文没有相关内容那么去除这一节;如果有,则删除这一行注释。】

 $X_nY_nZ_n$ -地理坐标系

 ψ -偏航角

 φ -滚转角

G-NED 系的重力

w-系统的外部扰动

F-机体系的气动力

ρ-空气密度

 A_x 、 A_y 、 A_z -沿机体轴的截面面积

la-机身气动阻力作用点与重心的距离

 T_d -涵道体升力

 T_a -总升力

prr-桨盘上表面压强

 $V_c + V_i$ -桨盘上下表面气体速度

 V_i -桨盘处气流诱导速度

Q-风扇扭矩

μ-环绕涵道角度变量

 \hat{j} -沿机体系 y 轴方向的单位矢量

 $C_{d,d}(\alpha_d)$ 涵道翼型阻力曲线

 C_{lo} -风管翼型升力曲线斜率

 $C_{d,o}$ 、 $C_{d,o}$ -拟合阻力曲线经验常数

 C_{duct} - 常值比例系数

ks-操纵面气动升力系数

I_b-风扇转动惯量

 L_r -风扇角动量

 $X_bY_bZ_b$ -机体坐标系

 θ -俯仰角

 R_h^n 、R-机体系到 NED 系的旋转矩阵

 φ_0 -气动面安装角

T-系统采样周期

M-机体系的气动力矩

 $C_{D,x}$ 、 $C_{D,y}$ 、 $C_{D,z}$ -沿机体轴阻力系数

v-机身相对于空气的速度分量

 V_c -气体在无穷远处的速度

 T_p -风扇升力

 q_a -涵道升力分配系数

 p_L -桨盘下表面压强

S-桨盘面积

V_{cr}-理想自转下降速率

₩-风扇转速

 \hat{i} -沿机体系 x 轴方向的单位矢量

 $C_{l,d}(\alpha_d)$ -涵道翼型升力曲线

 c_d -涵道翼型弦长

 $C_{l,\min}$ 、 $C_{l,\max}$ -升力系数极限

R-风扇半径

l_d-重心与涵道气动力作用点的距离

 α_d -攻角

 d_{af} 、 d_{ds} -风扇扭矩常系数

英文缩略词

【本节论文规范为可选,如果你的论文没有相关内容那么去除这一节;如果有,则 删除这一行注释。】

SCUT South China University of Technology 华南理工大学

第一章 绪论

1.1 流变学介绍

1.1.1 流变学的核心研究内容

流变学是研究物质在外力作用下变形和流动的科学,其研究对象涵盖了流体、软固体以及在特定条件下可以流动的固体[1]。流变学的核心在于揭示材料的应力、应变和时间之间的内在关系,并通过本构方程(流变状态方程)对这些关系进行定量描述。流变学的研究不仅深化了对材料力学行为的理解,还为工程应用和科学研究提供了重要的理论基础。流变学的核心研究内容主要包括以下几个方面[2-3]:

- (1) 材料的流动与变形行为: 材料的流动与变形行为是流变学研究的核心内容之一。通过实验和理论模型,流变学揭示了材料在外力作用下的复杂力学行为。例如,蠕变现象(即在恒定应力下,材料的变形随时间逐渐增加)和应力松弛现象(即在恒定应变下,材料的应力随时间逐渐减小)是流变学中重要的研究对象^[4-5]。这些现象不仅反映了材料的时间依赖性行为,还为材料的长期性能评估提供了理论依据。此外,流变学还研究了材料的非线性力学行为,如屈服、塑性变形和断裂等,这些研究对于理解材料的宏观力学性能具有重要意义^[6-7]。
- (2) 本构方程的构建:本构方程是流变学中用于描述材料力学行为的数学工具,其核心在于建立应力、应变和时间之间的定量关系。对于牛顿流体,其本构方程基于牛顿黏性定律,即应力与应变率成正比^[2]。然而,对于非牛顿流体和软固体,其本构方程则更为复杂,通常需要考虑材料的非线性、黏弹性以及时间依赖性等特性^[8]。通过构建合理的本构方程,流变学能够对各种物理现象进行精确的数学描述,从而为工程设计和材料开发提供理论支持。
- (3) 实验与模拟方法:流变学实验是研究材料流变性能的重要手段,常见的实验方法包括蠕变实验、应力松弛实验和动力试验等^[3]。这些实验能够直接测量材料在不同条件下的力学响应,为理论模型的验证和优化提供实验数据。近年来,随着计算模拟技术的发展,流变学研究逐渐从唯象模型向定量科学转变。微观实验技术(如 X 射线散射、中子散射)与计算模拟的结合,使得研究者能够在微观尺度上揭示材料的流变机制,从而推动流变学向更高精度和更深层次发展^[9-10]。

1.1.2 流变学研究及应用方向

流变学的研究方向广泛,涵盖了多个学科和领域,例如高分子流变学研究高分子材料的分子结构与其流变行为的关系,例如聚合物熔体和溶液的拉伸流变行为[11]。生物流变学研究生物材料(如血液、肌肉)的流变特性,揭示生理和病理过程中的力学机制^[12-13]。地质流变学研究岩石、土壤等地质材料的流变行为,应用于地震预测、矿产资源开发等领域^[14]。工业流变学在材料加工^[5]、食品工业^[15]、化妆品和医药制造等领域^[16-17],流变学用于优化工艺和产品性能^[18]。非牛顿流体力学研究不符合牛顿黏性定律的流体(如油漆、泥浆、血液)的流动特性^[8,19-20]。

1.2 本构方程

1.2.1 线性本构方程

凝聚相物质分为固体或液体,固体和液体之间的一个区别特征是它们对施加的力的响应。固体在变形时储存能量,如果变形很小,则在消除力后会恢复到原来的形状。相比之下,液体则会通过耗散能量和调整其形状来抵抗力 $[^{21-22]}$ 。这种区别可以通过两种经典的力学模型来描述:胡克固体(Hookean Solid)和牛顿流体(Newtonian Fluid)。胡克定律(Hooke's Law)可以来描述小变形下的弹性固体行为。胡克定律表明,固体的应力 σ 与应变 γ 成正比,如公式(1-1)所示。其中,G 为弹性模量,用于描述材料在弹性变形范围内抵抗外力的能力。它反映了材料的刚度,即材料在受力时发生变形的难易程度。弹性模量越大,材料越难变形;弹性模量越小,材料越容易变形。胡克固体是理想化的弹性固体模型,适用于描述金属、陶瓷等材料在小变形条件下的力学行为[8]。

$$\sigma = G\gamma \tag{1-1}$$

而对于液体,其对外力的响应则完全不同。液体无法储存能量以恢复形状,而是通过内部的粘性阻力来耗散能量,并持续流动以适应外力。这种行为可以用牛顿流体的本构方程来描述,即剪切应力与剪切速率成正比,如公式(1-2)所示。其中,η为粘性系数,用于描述液体在运动过程中耗散能量的能力。粘性系数越大,液体越容易耗散能量,反之亦然。牛顿流体是理想化的粘性流体模型,适用于描述水、空气等液体在运动过程中耗散能量的行为^[21]。

$$\sigma = \eta \dot{\gamma} \tag{1-2}$$

然而,这些特征都是理想化的,代表了特定条件的行为。许多凝聚相材料不容易归入这些经典类别,因为它们的机械性能取决于变形的大小、速率、变形历史,加载过程等等。例如,考虑牙膏,它像液体一样流动,可以将其从管中挤出,但一旦放在牙刷上,它就会像固体一样保持其形状。这类物质同时具有黏性和弹性,被认为是黏弹性材料,被称为软物质或者复杂流体^[23]。

线性黏弹性理论认为在小变形范围(线性范围内)应力-应变关系是线性的,即应力与应变成正比。同时线性黏弹性区间内材料具有时间依赖性,材料的力学响应不仅取决于当前的应力或应变,还依赖于时间或加载历史。图1-1概述了两种不同类型的粘弹

图 1-1 (A)施加的应变曲线以及对应的剪切应力(B)理想弹性固体(C)理想粘性液体(D)粘弹性样 $\mathbb{A}^{[21]}$

Figure 1-1 (A) Applied strain profile and resulting shear stress (B) Ideal elastic solid (C)Ideal viscous liquid (D) Viscoelastic samples^[21]

性材料的简单剪切行为。对于粘弹性固体和液体,阶跃应变会引起瞬时弹性响应,从而产生 σ 峰值。然而,应力不是保持不变或立即降至零,而是逐渐降低。它在很长一段时

间内接近粘弹性固体的有限平台值,而粘弹性液体则完全衰减到零[21]。

线性本构理论中最经典的是 Maxwell 模型^[24],如图1-2所示,Maxwell 模型将材料的弹性行为和粘性行为结合起来,它用一个弹簧(弹性元件)和一个粘壶(粘性元件)串联表示黏弹性关系。Maxwell 模型的微分形式如公式(1-3)所示,其中 τ 表示松弛时间,等于 eta/G。将两边积分得到 Maxwell 模型的积分形式如公式(1-4)所示。

$$\frac{d\sigma}{dt} + \frac{\sigma}{\tau} = G\frac{d\gamma}{dt} \tag{1-3}$$

$$\sigma(t) = \int_{-\infty}^{t} Ge^{-\frac{t-t'}{\tau}} \frac{d\gamma(t')}{dt'} dt'$$
 (1-4)

积分形式的方程显示了任何时刻的应力是松弛模量乘以应变速率的积分,该时刻之前材料的整个历史。由于被积函数中的衰减指数,模型具有衰落的记忆,因此最近的应变历史比过去的应变历史更重要。如果将多个 Maxwell 模型并联,便可以得到广义 Maxwell

图 1-2 Maxwell 模型示意图

Figure 1-2 Schematic illustration of Maxwell model

模型方程,如公式(1-5)所示。

$$\sigma(t) = \int_{-\infty}^{t} G(t - t') \frac{d\gamma(t')}{dt'} dt'$$
 (1-5)

其中松弛模量 G(t) 定义为公式(1-6)。

$$G(t) = \sum_{i=1}^{n} G_i e^{-\frac{t}{\tau_i}}$$
 (1-6)

Maxwell 模型通过将黏弹性抽象为黏性元件和弹性元件串联来得到本构方程。如果将弹簧和粘壶进行并联,则得到 Kelvin-Voigt 模型的本构方程,即公式(1-7)^[25]。

$$\sigma(t) = G\gamma(t) + \eta \frac{d\gamma(t)}{dt}$$
(1-7)

将多个 Kelvin-Voigt 模型的元件进行串联,便可以得到广义 Kelvin-Voigt 模型,如公式(1-8)。

$$\sigma(t) = \sum_{i=1}^{n} \left(G_i \gamma_i(t) + \eta_i \frac{d\gamma_i(t)}{dt} \right)$$
 (1-8)

原则上,任何广义 Voigt 模型都可以在数值上映射到等效的广义 Maxwell 模型, 这是线性本构方程构建的基本研究方法的不同角度^[21]。

如果将传统的整数阶导数模型改为分数阶导数,能够更加准确描述材料的记忆效应。例如 Bagley 和 Torvik 等在 20 世纪 80 年代提出的分数阶 Maxwell 模型,是对传统 Maxwell 模型的推广^[26]。无论是什么形式的线性本构方程,均满足一个基本假设材料的响应是线性的,即多个应变历史的叠加效应等于各自效应的线性相加,当公式(1-5)中的松弛模量 G 表示为公式(1-6)时是 Maxwell 模型的形式,事实上当 G 为一个抽象的松弛函数时,公式(1-5)抽象为更一般的线性本构方程,被称为玻尔兹曼叠加原理(BSP),玻尔兹曼叠加原理广泛应用于描述线性黏弹性材料的行为,例如应力松弛、蠕变、动态力学响应等^[27]。

1.2.2 非线性本构方程

线性本构方程只能用于描述只能描述简单的材料行为,例如弹性变形、小应变下的 黏弹性行为[11,21,28]。适用于材料在小变形范围内的线性响应。能够描述复杂的材料行为,而非线性本构方程可以用来描述更为复杂的行为例如塑性变形、硬化或软化、各向异性、大变形、剪切稀化、剪切增稠等行为。绝大部分高分子材料具有较复杂的非线性关系。Binham 提出模型认为屈服性流体当剪应力低于屈服应力时,流体表现为刚性固体;当剪应力超过屈服应力时,流体开始流动,且流动行为类似于牛顿流体[29]。Herschel-Bulkley 模型在此基础之上引入了剪切稀化和剪切增稠的表示,如公式(1-9),是描述非线性本构方程的一套公式[30]。

$$\sigma = \sigma_0 + K\dot{\gamma}^n \tag{1-9}$$

松弛模量函数不仅是时间的函数,也是应变的函数,能够表征大变形下的非线性响应。 改进的 Herschel-Bulkley 类模型在 Herschel-Bulkley 模型的基础上,通过引入额外的参数 或修正项,显著提升了对流体行为的描述精度。例如,在 Herschel-Bulkley 模型中引入 高阶项(如剪切速率的二阶项),可以更准确地刻画非线性流变行为^[31]。此外,通过引 入 Papanastasiou 正则化方法,有效解决了原始模型在低剪切速率下的数值不稳定性问 题,这一改进模型被称为 Herschel-Bulkley-Papanastasiou (HBP) 模型。HBP 模型在磁流 变液等复杂流体的流变特性描述中得到了广泛应用^[32]。Herschel-Bulkley 类模型不涉及 弹性流体,主要用于解决屈服应力流体的本构问题,对于黏弹性流体的非线性本构方程 而言,可以写出一般的通式,如公式(1-10),非线性黏弹性流体的本构方程主要通过积 分和微分形式分别进行描述[3]。

$$\sigma(t) = \int_{-\infty}^{t} G(t - t', \gamma) \frac{d\gamma(t')}{dt'} dt'$$
(1-10)

微分形式的 Oldroyd-B 模型,如公式(1-11)是在 Maxwell 模型的基础上作了修正,增加了延迟时间项 λ_2 ,从而能够描述更复杂的流变行为,同时这个模型引入了上随体导数来代替普通导数,在物理上更加符合真实世界的材料行为 $^{[33]}$ 。Oldroyd-B 模型本意可以在 Weissenberg 数($W_i = \lambda_1 \dot{\gamma}_i$)较小的情况下描述线性黏弹性,但是其中的上随体导数在一定程度上包含了部分非线性效应。Oldroyd-B 模型是非线性本构方程的经典基础模型,研究者在此基础上为了更准确地描述非线性黏弹性行为,研究者提出了多种修正的Oldroyd-B 模型。

$$\boldsymbol{\sigma} + \lambda_1 \frac{\mathcal{D}\boldsymbol{\sigma}}{\mathcal{D}t} = \eta \left(\dot{\boldsymbol{\gamma}} + \lambda_2 \frac{\mathcal{D}\dot{\boldsymbol{\gamma}}}{\mathcal{D}t} \right) \tag{1-11}$$

Giesekus 模型 (公式(1-12)) 在 Oldryd-B 模型基础上,增加了一个非线性项,通过非线性系数 α 来表示非线性行为 $^{[34]}$ 。Giesekus 模型常用于描述高聚物溶液、熔体以及其他粘弹性流体的流变行为。这些流体通常表现出剪切稀化和弹性效应。尤其是在中等至高剪切速率范围内。其模型参数(如迁移因子 α)可以调节剪切稀化的强度和拐点形状,具有较高的灵活性 $^{[35-36]}$ 。Giesekus 模型在高 Weissenberg 数(Wi)条件下仍能保持数值稳定性,适用于强弹性效应的流动场景。通过引入对数构象重构等方法,可以进一步提高其在高 Wi 条件下的计算稳定性 $^{[37]}$ 。

$$\boldsymbol{\sigma} + \lambda_1 \frac{\mathcal{D}\boldsymbol{\sigma}}{\mathcal{D}t} + \alpha \frac{\lambda_1}{\eta} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma} = \eta \left(\dot{\boldsymbol{\gamma}} + \lambda_2 \frac{\mathcal{D}\dot{\boldsymbol{\gamma}}}{\mathcal{D}t} \right)$$
(1-12)

PTT 模型 (公式(1-13)) 通过引入一个非线性应力函数 f 扩展了 Oldroyd-B 模型,该函数 通常取指数形式^[38]。

$$f(\operatorname{tr}(\boldsymbol{\sigma}))\boldsymbol{\sigma} + \lambda_1 \frac{\mathcal{D}\boldsymbol{\sigma}}{\mathcal{D}t} = \eta \left(\dot{\boldsymbol{\gamma}} + \lambda_2 \frac{\mathcal{D}\dot{\boldsymbol{\gamma}}}{\mathcal{D}t} \right)$$
(1-13)

FENE-P 模型 (公式(1-14)) 在 Oldroyd-B 模型的基础上引入了有限拉伸效应,通过项 $\frac{\sigma}{1-\text{tr}(\sigma)/b}$ 描述聚合物链的有限拉伸行为[39]。参数 b 表示聚合物链的最大拉伸比。该模型适用于描述聚合物溶液在强流动条件下的非线性行为。

$$\boldsymbol{\sigma} + \lambda_1 \frac{\mathcal{D}\boldsymbol{\sigma}}{\mathcal{D}t} = \eta \left(\dot{\boldsymbol{\gamma}} + \lambda_2 \frac{\mathcal{D}\dot{\boldsymbol{\gamma}}}{\mathcal{D}t} \right) - \frac{\lambda_1}{\eta} \frac{\boldsymbol{\sigma}}{1 - \operatorname{tr}(\boldsymbol{\sigma})/b}$$
(1-14)

通过将 Oldroyd-B 模型与分数阶导数结合,可以得到分数阶 Oldroyd-B 模型,如公

式(1-15)。分数阶 Oldroyd-B 模型通过引入分数阶导数描述非局部记忆效应^[40]。参数 α 和 β 是分数阶导数的阶数,该模型能够捕捉更复杂的流变行为,适用于具有非局部记忆效应的复杂流体。

$$\boldsymbol{\sigma} + \lambda_1^{\alpha} \frac{\mathcal{D}^{\alpha} \boldsymbol{\sigma}}{\mathcal{D} t^{\alpha}} = \eta \left(\dot{\boldsymbol{\gamma}} + \lambda_2^{\beta} \frac{\mathcal{D}^{\beta} \dot{\boldsymbol{\gamma}}}{\mathcal{D} t^{\beta}} \right)$$
(1-15)

另一类本构模型如 K-BKZ 模型源于积分型 Maxwell 模型公式(1-4)^[41-42]。K-BKZ 模型如公式(1-16)所示。在 K-BKZ 模型中,h 称为阻尼函数,它是形变张量的第一不变量 I_1 和第二不变量 I_2 的函数。 $\mathbf{C}^{-1}(t,t')$ 是 Finger 形变张量的逆,用于描述从时间 t' 到 t 的形变历史。m(t-t') 是瞬态函数或记忆函数,用于表征材料对历史形变的记忆效应。 K-BKZ 模型广泛应用于聚合物加工(如挤出、注塑、热成型等)、生物流体力学(如血液、蛋白质悬浮液等复杂流体的流变行为研究)以及涂料和润滑剂的流动行为和流变特性分析^[43]。

$$\sigma(t) = \int_{-\infty}^{t} m(t - t') h(I_1, I_2) \mathbf{C}^{-1}(t, t') dt'$$
(1-16)

Doi 和 Edwards 尝试从分子角度构建本构方程,在管子模型的基础上提出了 Doi-Edwards 模型(公式(1-17))。Doi-Edwards 模型的核心思想是将高分子链的缠结效应简化为一条 光滑管道对链的限制作用,链在管道中的运动通过松弛和扩散来描述[44-47]。其中 G_0 表示松弛时间,而 Q 表示为公式(1-18),反映了高分子链在形变历史下的方向分布变化,即链的取向如何随形变而变化。

$$\boldsymbol{\sigma}(t) = G_0 \int_{-\infty}^{t} \frac{\partial Q(\mathbf{F}(t, t'))}{\partial t'} dt'$$
(1-17)

$$Q(\mathbf{F}(t,t')) = \frac{5}{2} \left\langle \frac{\mathbf{F}(t,t') \cdot \mathbf{u}\mathbf{u}}{|\mathbf{F}(t,t') \cdot \mathbf{u}|^2} \right\rangle_{..}$$
(1-18)

传统的 Doi-Edwards 模型基于单链平均场近似,将缠结效应简化为一条光滑的"管子"对高分子链的限制作用。然而,这种简化忽略了链-链间的直接相互作用,难以解释快速大形变条件下的非线性流变现象(如应力过冲、缠结点破损和重组等)。近年来,研究者通过引入多链相互作用,提出了修正的管子模型,在此基础之上能够更好地描述缠结高分子流体的非线性行为[48-50]。

1.2.3 传统的本构方程的构建方法

传统本构方程尤其是 Oldroyd-B、Doi-Edwards 等复杂的非线性模型具有较多的待定参数,通过数学形式描述材料的应力-应变关系及其对时间、温度和形变历史的依赖性。

其构建方法主要基于实验观测、理论推导和数值模拟的结合,通常分为以下几个步骤。

首先,实验观测是构建本构方程的基础。通过流变学实验(如剪切流变、拉伸流变等),研究者可以获取材料在不同形变条件下的应力响应数据。这些实验数据为理论模型的构建提供了关键依据。例如,通过动态力学分析(DMA)测量材料的存储模量和损耗模量,可以确定其粘弹性特性;通过应力松弛和蠕变实验,可以推断材料的记忆效应和时间依赖性。实验数据的精确性和全面性直接决定了本构方程的适用性和预测能力^[51-52]。

其次,对于非线性材料,则需要引入更复杂的本构关系,这里主要还是基于线性黏弹性方程,通过各类引入非线性关系的方法来进行非线性关系推导,理论推导的关键在于如何将微观结构信息(如高分子链的缠结、颗粒的相互作用等)与宏观力学行为联系起来。而对于理论推导的结果,每一个非线性项或参数应当从数学角度进行证明^[53]。近年来,数学研究者对 Doi-Edwards 模型的适定性进行了深入研究。Chupin 等人通过Schauder 不动点定理和 Galerkin 近似方法,证明 Doi-Edwards 模型在二维情况下的全局解存在性和唯一性^[49]。这一结果为模型的数学基础提供了严格的理论支持。

数值模拟在本构方程的构建和验证中发挥着关键作用。有限元分析(FEA)有限差分法(FDM)和有限体积法(FVM)等数值方法能够将本构方程应用于复杂几何和边界条件下的力学问题,从而模拟材料的应力分布、形变行为和流动特性[51]。分子动力学模拟(MD)是另一种重要的数值工具,能够从分子尺度模拟材料的力学行为,为宏观本构方程的构建提供微观依据。例如,通过粗粒度分子动力学模拟(CGMD),研究者可以研究高分子链的缠结动力学,验证管子模型的假设[54-55]。由于聚合物液体具有单体、中观和宏观流尺度的多尺度特征,因此关联不同层次的多尺度模拟方法显著推进了复杂流体本构关系的构建。Webb等人提出基于图论的系统粗粒化方法,通过拓扑约简实现分子结构特征的有效保留,为建立跨尺度本构方程提供了数学基础[57]。在此框架下,Behbahani 开发了原子模拟-粗粒化-滑移弹簧的分层耦合算法,成功预测了聚乙烯熔体的非线性粘弹性响应[58]。Morii 提出的拉格朗日多尺度框架实现了从分子涨落到连续介质流动的全域耦合,在高弹性数工况下展现出优于传统欧拉方法的数值稳定性[59]。

传统本构方程的研究方法主要依赖于物理实验和理论推导,通过建立数学方程来描述材料的力学行为。这种方法虽然具有明确的物理意义,但在处理复杂材料或非线性行为时,往往面临模型精度不足、参数识别困难等问题^[60]。随着数据驱动技术的快速发

图 1-3 多尺度模拟示意图[56]

Figure 1-3 Schematic illustration of Multiscale Simulation^[56]

展,机器学习为材料本构关系的研究提供了新的思路。通过利用大量实验或仿真数据,机器学习能够自动挖掘材料行为中的潜在规律,构建高精度的预测模型,从而弥补传统方法的不足,并为材料科学的研究开辟了更加智能化的路径。

1.3 数据驱动方法流变学本构建模

1.3.1 机器学习方法介绍

机器学习是人工智能的一个重要分支,其核心是通过算法从数据中自动学习规律,并利用这些规律进行预测或决策。与传统编程不同,机器学习不依赖于明确的规则,而是通过训练数据优化模型参数,从而实现对复杂问题的建模和解决。它在图像识别、自然语言处理、推荐系统等领域取得了显著成果^[61]。

监督学习是最常见的机器学习类型,适用于有标签的数据集。常见的算法包括线性回归和逻辑回归,分别用于连续值的预测和二分类问题^[62-63]。决策树(DT)通过树状结构进行决策,适用于分类和回归任务^[64]。随机森林(RF)是多个决策树的集成,通过投票或平均提高预测准确性^[65]。支持向量机(SVM)通过寻找最优超平面进行分类,适用于高维数据^[66]。K 近邻算法(KNN)基于距离度量进行分类或回归,简单但计算量大^[67]。

随着数据规模和计算能力的提升,深度学习作为机器学习的一个子领域迅速崛起。深度学习通过构建多层的神经网络结构,能够自动提取数据中的多层次特征,从而在处理高维、非线性问题(如图像、语音和文本)时表现出更强的能力,成为推动人工智能发展的核心技术之一^[61]。

近年来,深度学习领域在理论创新与应用拓展方面取得了显著进展,极大地推动了机器学习技术的前沿发展。在生成模型领域,扩散模型通过模拟数据从噪声分布到目标分布的逆扩散过程,逐步生成高保真度的图像样本,在图像生成、风格迁移和图像修复等任务中展现出卓越的性能^[68]。在多模态学习方面,研究者通过联合建模文本、图像、音频和视频等多种模态数据,实现了更全面的语义理解与跨模态生成。以模型为代表的多模态预训练框架,通过对比学习策略学习图像-文本对的联合表示空间,在零样本分类和跨模态检索任务中取得了突破性进展^[69]。在自监督学习领域,研究者通过设计预训练任务从数据本身生成监督信号,显著降低了对人工标注数据的依赖^[70]。对比学习作为自监督学习的核心范式之一,通过最大化正样本对的表示一致性并最小化负样本对的相似性,有效提升了模型的特征提取能力^[71]。这些前沿进展不仅深化了深度学习理论体系,也为解决实际问题提供了新的方法论支持。未来,随着计算能力的提升和数据规模的扩大,深度学习技术有望在医疗影像分析、自动驾驶、智能内容创作等领域展现出更广泛的应用潜力。同时,模型的可解释性、鲁棒性和能效优化等方向仍面临重要挑战,需要跨学科合作以推动该领域的持续发展^[61]。

1.3.2 机器学习流变学应用研究现状

1.3.2.1 引言

传统机器学习或是目前最前沿的深度学习研究,最初都集中于计算机科学、人工智能领域,但是近年来在物理学领域,机器学习与物理学问题的研究结合也日益密切^[72]。在量子物理中,机器学习被用于量子态重构、量子电路优化和量子相变识别,显著提高了量子系统的分析和计算效率^[73]。在凝聚态物理领域,机器学习通过预测材料性质和分类相图,加速了新材料的发现和设计^[72]。在天体物理中,机器学习被用于引力波探测和宇宙微波背景辐射分析,揭示了宇宙的起源和结构^[74]。在流体动力学中,机器学习通过数据驱动的方法直接从流体数据中学习湍流动力学,显著提高了湍流模型的精度和计算效率^[75]。此外,机器学习中的符号回归技术能够从实验数据中自动发现物理定律,为探索未知物理规律提供了新工具^[76],在多尺度物理系统中,机器学习被用于气候模拟和生物信息学建模,预测复杂动态和处理多重空间和时间尺度的混沌系统。

在流变学领域,机器学习也被广泛应用。传统的流变学研究方法如上一章所述,通 过获取数据,通过数学物理方程解释数据。传统的流变学家总是期待于对每个流变学体 系建立一个可表示的数学方程,尽管这个方程可能完全无法求出解析解也极难获取稳定 精确的数值解。这本质上是一个由因推果的过程,而数据驱动的机器学习方法则从真实的结果出发,构建一个完全匹配的数学方程,这个方程的形式与参数都不确定,但是可以泛化本构现象,即通过含有大量参数的非方程化的计算机模型代替具体形式的本构方程来解决流变学本构问题^[77-79]。

图 1-4 数据驱动方法应用于流变学研究示意图[79]

Figure 1-4 Schematic illustration of data-driven methods applied to rheology research^[79]

1.3.2.2 流变特性预测

机器学习应用于流变学本构的其中一个应用是流变特性的预测。人工神经网络(ANN)已被用于自动监测合成油基泥浆的各种流变特性,使用泥浆密度和沼泽漏斗作为输入,预测值与实际测量值非常接近,平均绝对误差小于9.66%^[80]。混合机器学习模型结合了ANN和SVM准确预测了纳米基水基钻井液的流变性和过滤特性。四种不同的模型——多元线性回归(MLR)、SVM、回归决策树(CART)和ANN被一起使用,以根据溶液特性预测聚合物溶液的粘度,有助于提高石油采收率^[81]。此外,机器学习模型可以与微流体或其他设备集成,用于复杂流体的原位粘度测量。例如,Mustafa等设计了一种微流体传感设备,利用流固耦合和ML算法来测量复杂流体的粘度^[82]。他们采用SVM和KNN算法,分别实现了89.7%和98.9%的平均准确率。Ponick等利用卷积神经网络(CNN)通过立体相机图像预测Bingham流体的流变特性^[83]。Chen等人通过将群贡献(GC)方法与著名的机器学习算法,即人工神经网络(ANN)相结合,以预测离子液体(IL)-水混合物的粘度^[84]。Zhang等人开发了一种深度半监督的基于即时学习的高斯过程回归(DSSJITGPR)用于门尼粘度估计^[85]。它将即时学习、半监督学习和深度学习集成到一个统一的建模框架中。DSSJITGPR 的有效性和优越性已通过工业橡胶混炼过程的 Mooney 粘度预测结果得到验证。

1.3.2.3 材料表征和工艺设计优化

机器学习在流变学本构中的应用不仅限于材料表征和工艺设计/优化,还通过直接 引入材料制备和表征中的各种参数作为特征,显著简化了传统本构方程中针对特定材料 体系拟合不同参数的复杂性。与传统统计方法相比,机器学习算法能够更高效地对这些 复杂关系进行建模,其中主成分分析和深度神经网络等技术在管理和减少材料表征中常 见的高维数据方面发挥了重要作用,从而实现了更高效的分析和解释。这些方法已广泛 应用于 3D 打印混凝土、纤维增强混凝土、聚合物纳米复合材料、生物墨水、食品材料 和高分子科学等领域。Zhang 和 Shao 的研究进一步探讨了基于图像的机器学习技术在 材料科学中的应用,以应对各种挑战和任务,由于这些方法的通用性和可转移性,它们 同样适用于流变学表征[86]。机器学习模型还彻底改变了高通量表征,为数据分析、预测 和优化提供了强大的工具。例如, Zhang 等人开发了一种自主高通量系统, 采用支持向 量机(SVM)、随机森林(RF)和极端梯度提升(XGB)分类器等监督式机器学习算法, 快速表征水凝胶的流变特性,所有模型在水凝胶相分类中均表现出色^[87]。Verheyen等 人则利用基于树的集成算法(如随机森林和梯度提升)将数据驱动建模与颗粒水凝胶基 质系统的实验优化相结合,这些技术因其在处理分类或回归任务、非线性关系、高维数 据和混合数据类型方面的灵活性而被选用^[88]。Martineau 等人开发了一种基于高斯过程 (GP) 建模的管道,用于识别细菌嵌入的丝水凝胶的凝胶化状态,通过比较人类专家和 机器学习引导算法的性能,发现两者结合最能加速发现过程[89]。此外,随机森林和多元 线性回归(MLR)等技术已被用作回归工具,将从大振幅振荡剪切(LAOS)实验中获 得的流变特性与人类感官感知(如涂抹性)相关联,从而改进化妆品行业的配方设计。 Lee 等人的研究表明,由于流变测量和铺展性之间的非线性关系,随机森林模型的性能 优于多元线性回归模型[90]。

1.3.2.4 流变学计算模拟

机器学习为流变学的计算模拟提供助力,计算平台已经成为流变学研究的重要支柱,广泛应用于从聚合物动力学到颗粒系统的详细模拟,为复杂流体在不同条件下的行为提供了深刻的物理见解。然而,这些技术的主要瓶颈在于模拟与实验条件相关的时间和长度尺度的能力。由于大规模模拟中的大部分计算资源消耗在重复的数学运算上,而这些运算可以通过数据驱动技术高效学习,因此将机器学习与模拟相结合能够显著提升效率和精度。例如,Lu等人基于卷积神经网络的仿真模型在颗粒流模拟中实现了显著

的加速,同时保持了较高的精度^[91]。高斯过程回归则被 Seryo 等人用于从微观聚合物模拟中推断本构关系,并将这些关系应用于宏观流动仿真,从而调整流体中的应力分布以反映微观动力学^[92]。类似的方法还被应用于缠结良好的聚合物熔体,通过机器学习的本构关系优化模拟效果。此外,Bai 等人介绍了一种数据驱动的平滑粒子流体动力学方法,该方法利用实验数据提高了牛顿流体和非牛顿流体的建模精度,即使在数据集较小的情况下也能准确预测幂律流体的速度曲线,同时显著优化计算时间^[93]。多尺度建模通过在不同尺度之间交换信息来捕捉材料的复杂行为,例如 Li 等人基于生成对抗网络的方法实现了从粗粒度到原子级别的结构回溯映射^[94]。主动学习作为一种高效的机器学习范式,通过选择性地标记信息量最大的数据点,以最少的数据优化学习过程,例如在多尺度建模中,Zhao 等人基于高斯过程回归的主动学习策略将所需的模拟次数大幅减少,显著提高了研究复杂材料行为的效率^[95]。这些技术的结合不仅提升了模拟的精度和效率,还为流变学研究提供了更强大的工具。

1.3.2.5 小结

以数据为中心的机器学习模型严重依赖丰富的训练数据来确保预测的可靠性和准确性,无论其架构或算法如何设计。此外,材料特性通常对成分和加工条件的细微变化表现出高度敏感性,这可能导致材料行为的显著变化。因此,数据收集过程必须足够全面和细致,以捕捉这种复杂性,从而确保以数据为中心的模型能够做出准确的预测。例如,对于具有整体 Herschel-Bulkley 类型行为的屈服应力流体,如果算法仅暴露在大变形率或小变形率下的数据中,它将无法对观察域之外的一般行为做出可靠预测[79,96-97]。更重要的是,这些模型完全依赖于数据相关性和统计规律,而忽略了基础科学理论的支持,例如黏弹性材料的时间依赖性和应变依赖性等关键物理特性。纯数据驱动方法往往忽视了这些物理细节,导致模型在实际应用中可能失效。因此,在开发算法时,我们应当引入物理约束,将黏弹性的时间依赖性等基本物理规律纳入模型框架,以弥补数据驱动方法的不足,从而提升模型的预测能力和泛化性能。

1.4 引入物理约束的神经网络研究

1.4.1 引言

近年来,多种方法被提出并广泛应用于将基本物理规则和领域知识整合到机器学习框架中,这些方法在众多领域展现了深远的影响。这类模型的总体框架通常被称为物理

信息机器学习(PIML)。PIML的一个开创性范例是"物理信息神经网络"(PINN),它代表了科学计算和应用数学领域的重大突破^[98-99]。PINN将机器学习算法与从系统观察、经验以及物理或数学理解中获得的先验知识无缝结合,通过将这些先验知识直接嵌入模型架构中,显著减少了对大规模训练数据集的依赖,从而能够利用更少的观测数据解决复杂的物理问题。

1.4.2 物理信息神经网络研究现状

近年来,物理信息神经网络(PINN)在流变学建模领域取得了重要进展,有效克服 了传统方法依赖简化假设和难以处理复杂材料特性的局限。Mahmoudabadbozchelou 等 人提出的流变学信息神经网络(RhINN)框架,能够处理触变性弹性粘塑性(TEVP)模 型等多种本构模型[100]。该框架以时间 t 和剪切速率为输入,剪应力 σ 和结构参数 λ 为 输出,通过最小化包含方程残差和初始条件差异的损失函数来训练网络参数。在逆问题 求解中,RhINN可同时学习网络参数和流变参数,其预测结果与真实数据高度吻合,展 现了良好的鲁棒性。Dabiri 等人进一步将 RhINN 扩展至分数阶微分方程,提升了其在复 杂本构模型参数识别中的应用价值[101]。在相关研究中,Zhang 等人开发的 RheologyNet 成功应用于胶凝材料触变特性评估,其预测结果与有限元分析高度一致[102]。Nagrani等 人则利用 PINN 研究了导热硅脂的流变行为,通过实验数据确定了流变参数[103]。基于 物理的机器学习方法还可从间接观测中学习未知流变模型,例如通过三维流场数据推断 广义牛顿流体的稳态剪切粘度,这一方法在聚合物熔体和颗粒悬浮液研究中取得了显著 成果。此外,PINN 在稀薄气体流动预测中也展现出应用潜力[104]。Howard 等人将悬浮 平衡模型与神经网络结合,成功预测了单分散悬浮液的颗粒应力,但在双分散系统中的 应用仍存在局限。这些研究充分展示了物理信息神经网络在流变学领域的广泛应用前 景[105]。

多保真度建模是一种强大的技术,通过整合来自不同保真度和计算成本的数据来增强模型预测能力。这种方法在物理定律不精确或高保真数据生成成本较高的情况下尤为有用。通过高效结合高保真和低保真数据,多保真度建模为复杂系统的精确建模提供了一种更高效且更具成本效益的解决方案。例如,Mahmoudabadbozchelou等人利用多保真度方法构建了一个流变学元模型,用于预测复杂多组分系统的流变响应,同时考虑了老化、混合物的盐度和温度依赖性等输入参数[106]。在该框架中,低保真数据通过多种本构方程生成,而高保真数据则来自实验测量。与传统的高保真神经网络相比,这种组合方法显著提高了预测精度,充分展示了多保真度建模的优势。

图 1-5 多保真神经网络(MFNN)结构示意图[106]

Figure 1-5 Schematic illustration of Multifidelity Neural Network (MFNN) structure^[106]

类似的方法也被应用于预测纤维悬浮液的流变特性,其中基于法向载荷相关摩擦系 数模型的数值模拟用于生成高保真数据,而低保真数据则通过不同的本构模型生成。纤 维的物理特性,包括纵横比、纤维刚度、表面粗糙度以及体积分数,均被用作输入参数。 这种将基础物理特性融入机器学习算法的模式并不局限于特定方法,因此多保真度建模 也可以与直接或反向流变学信息神经网络(RhINN)相结合,以利用不同级别的数据准 确性来优化模型预测。这种混合方法能够从有限的实验观察中做出高度准确的流变学 预测,例如 Mahmoudabadbozchelou 等人对气相硅胶流变学的成功预测[107]。虽然多保真 度算法通常依赖于不同准确性数据的可用性, 但在上述应用中, 这些数据是通过描述目 标系统的物理或现象学模型直接生成的,因此这些方法被归类为物理信息建模。然而, 如果不同保真度级别的数据源与基础物理学无关,则该方法更倾向于以数据为中心。例 如,分层机器学习模型通过结合墨水和打印机参数之间的已知物理关系,能够在小数据 集上实现精确建模。这种灵活性使得多保真度建模在流变学和其他复杂系统的研究中具 有广泛的应用潜力。 机器学习技术的另一个重要应用在于发现闭式本构关系, 这些关 系从数学上描述了应力和变形之间的关联。这一过程通常通过分析实验数据并结合非 线性动力学稀疏识别(SINDy)和符号回归等技术来实现[108]。在这些方法中,通常采 用多步骤流程:首先从广泛的潜在函数列表中筛选出最重要的候选函数,然后精确恢复

图 1-6 Rheo-SINDy 的示意图[108]

Figure 1-6 Schematic illustration of Rheo-SINDy^[108]

图 1-7 (A)RUDE 训练循环示意图(B-D)基于 Giesekus 模型合成 LAOS 数据训练的 RUDE 评估结果,黑色圆圈:测试数据;红色线条:训练后的 RUDE;蓝色线条:未训练的 RUDE(B)中间频率下的剪切应力响应(C)训练频率下的法向应力(D)稳态剪切流启动时的剪切应力响应^[109]

Figure 1-7 (A) Schematic depiction of a RUDE within the training loop (B-D) Evaluation of a RUDE trained on synthetic LAOS data for the Giesekus model, Black circles: test data; red lines: trained RUDE; blue lines: untrained RUDE (B) Shear stress response at an intermediate frequency (C) Normal stress at a training frequency (D) Shear stress during startup of steady shear flow^[109]

这些函数的参数,以最简洁的形式描述动力学系统。例如,SINDy 方法被直接扩展到流变学应用中,开发了一种称为 Rheo-SINDy 的稀疏识别方法,用于从已知方程库生成的流变学数据中恢复本构方程。然而,现有方法在处理不完整、稀缺或噪声数据时面临挑战,特别是需要数值微分来计算导数以构建控制方程^[110]。这一问题可以通过结合自动微分功能的物理信息神经网络(PINN)来解决,从而避免数值微分的需求。这种组合

方法被称为 PINN-SR (具有稀疏回归的 PINN),已成功应用于从模型弹性粘塑性流体的实验数据中提取精确的本构关系。

尽管目前大多数机器学习技术(无论是数据驱动还是物理信息)都集中在单个标量分量(如剪切应力、微观结构参数或粘度)作为流变学特征,并与粘度流动和体材料函数预测相关,但真正可推广的流变学机器学习技术必须具备张量性质,并避免客观性问题。Lennon等人提出的RUDE框架优雅地解决了这些基本约束,构建了包含物理信息的可学习模型,同时对特定实验协议或流动运动学的细节保持不可知[109]。在该框架中,广义粘弹性模型中的未知非线性项被表示为张量基函数的线性组合,这些函数强制执行对称性和框架不变性等物理约束,而张量基函数的系数则通过神经网络输出建模。RUDE框架的一个显著优势在于,其预测不仅能够推广到观测域之外,还可以扩展到应力张量的其他分量,从而实现完全解析的流动预测。这种能力使得RUDE在流变学应用中展现出强大的泛化能力和实用性。

1.4.3 其他物理信息深度学习模型

近年来,深度神经算子作为一种新的机器学习模型被提出,用于隐式学习物理现象的解算子[111]。与使用有限维向量空间的标准神经网络不同,神经算子学习函数空间之间的映射。典型的架构包括 DeepONet 和傅里叶神经算子(FNO)及其变体。DeepONet 由两个子网络组成:分支网络和中继网络,分别提取输入函数和输入坐标的潜在表示,并通过点积合并输出。FNO 通过在傅里叶空间中参数化积分核来实现高效的架构。神经算子可以作为隐藏控制方程的隐式解算子,使其成为理解复杂物理系统的强大工具。它们可以与物理场和其他域约束结合,以获得高保真解和良好的泛化能力。

神经算子在简洁且准确地学习复杂动力学方面表现出色,已在流体力学应用中得到验证,如天气预报和碳捕获的储层工程。然而,在复杂流体领域的应用仍有限。Rashid等人采用 FNO 架构预测了数字复合材料中的应力和应变场^[112]。FNO 的扩展,如隐式傅里叶神经算子(IFNO),已被证明可以预测不可见载荷条件下的材料响应,并且同样适用于流变学应用^[113]。在 IFNO 中,层之间的增量由积分算子建模,因此所得架构可以解释为未知控制定律的定点方法。与传统的本构模型相比,这种方法将预测误差减少了十倍。Howard等人还应用了模型算子回归(MOR-physics)框架,从单分散和双分散悬浮液中的体积分数和速度测量中学习粒子应力^[105]。

1.5 本课题研究介绍

1.5.1 研究内容

本文旨在通过多方法融合的系统性研究,探索深度学习在模拟数据和实验数据下本构方程的建模与评估,文章主要结构如下,研究路线如图1-8所示。

第一章首先综述了流变学研究的基本问题和应用方向。其次讨论了本构方程理论的 发展,经典本构方程的发展历史,数学形式,适用范围等。然后综述了本构方程的研究 方法,包括传统的数值方法和近年来被广泛研究的数据驱动机器学习方法。最后综述了 将物理约束引入机器学习方法的研究现状,并简述了本文后续的课题设计方案。

第二章主要介绍了本文课题中主要使用的各类算法,从算法理论到选型依据做了综述讨论。第三章介绍了本文的第一部分工作,使用门控循环单元(GRU)对经典本构方

图 1-8 研究路线图

Figure 1-8 Research roadmap

程的模拟数据进行深度学习建模,并使用各种指标对模型性能进行评估。具体来说,首先基于经典本构方程(Binham 模型、Maxwell 模型、Doi-Edwards 模型、Giesekus 模型),采用后向欧拉法和辛普森积分法等数值模拟方法生成模拟数据,并划分训练集、验证集、测试集。随后使用 GRU 分别对不同的模型模拟数据进行建模,训练后使用测试集进行模型的评估,采用决定系数(R²)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)等指标,对模型性能进行定量评估。同时在相同的数据集上使用普通深度神经网络(DNN)进行训练,将两套模型进行比较,以验证 GRU 模型在处理复杂非线性时间依赖性流变学本构方程时的优势。

第四章介绍了本文的第二部分工作,针对黏弹性凝胶材料的真实实验流变数据进行物理信息神经网络(PINN)的建模,在 Mahmoudabadbozchelou 等人的模型基础之上,进一步优化 PINN 的模型,采用可学习的损失权重进行损失函数的优化,探究 PINN 对特定参数下凝胶材料模量及损耗因子的预测能力。随后,采用条件变分自编码器(CVAE)反向建立生成式模型,通过这个模型生成特定流变学数据下的制备参数,并进行生成效果评估。

1.5.2 研究创新点

- (1) 本文采用门控循环单元(GRU),通过其门控机制捕捉时间序列数据中的时间 依赖性,使模型更贴近复杂流体的物理特性。
- (2) 优化 Mahmoudabadbozchelou 提出的物理信息神经网络(PINN),引入可学习的 权重损失以缓解多损失函数的梯度消失问题,并结合注意力特征融合解决实验 数据稀疏问题。
- (3) 使用 CVAE 反向建模,以流变学特性反预测制备参数,辅助实验设计。

1.5.3 研究意义

传统机器学习方法在流变学建模中往往局限于单点预测,难以捕捉复杂流体的时间依赖性,而本文采用门控循环单元(GRU)进行建模,充分利用其时间序列处理能力,使模型更贴近黏弹性材料的流变学特性。这一研究不仅拓展了深度学习在流变学领域的应用范围,还为复杂流体建模提供了新的理论支持。随着计算机科学的发展,自注意力机制(如 Transformer)在自然语言处理等领域展现了强大的长程依赖捕捉能力。尽管受限于流变学数据的稀缺性,本文未直接采用 Transformer 架构,但通过探索能够解决长期序列依赖的模型,为未来本构方程建模的研究指明了方向。这一思路有望进一步推

动流变学本构建模的发展,为解决复杂流体建模问题提供更强大的工具。

本文通过优化物理信息神经网络(PINN),引入可学习权重和注意力特征融合,为小样本学习提供了新的解决方案,提升了模型在数据稀缺情况下的性能。同时,利用条件变分自编码器(CVAE)进行反向建模,以流变学特性反推制备参数,为实验设计提供了理论支持。这些研究不仅推动了流变学建模方法的进步,还为材料科学和工程领域的实验优化提供了新的思路,具有一定的理论意义和实践价值。

第二章 算法介绍

2.1 引言

本文基本的研究思路是使用数值模拟算法和深度学习算法来研究流变学本构方程建模的问题。本文第一部分基于动态时序建模理论,构建门控循环单元网络(GRU)的预测模型,通过深度学习算法处理数值模拟生成的时变本构关系数据,重点解析循环神经网络在时间序列建模中的特征提取机制,主要涉及的算法有GRU算法,本章同时综述了时间序列数据的其他深度学习算法。第二部分引入物理约束的智能建模策略,针对实际流变实验数据构建融合物理信息的混合神经网络模型,重点整合了物理信息神经网络(PINN)的微分方程嵌入技术、基于注意力机制驱动的多源特征融合方法,以及结合条件变分自编码框架(CVAE)的生成式建模策略,实现物理规律约束下的数据-模型双驱动建模。

本章将在此基础上,对研究中所涉及的关键算法进行理论概述,并阐述算法选型的 依据,以系统性地综述相关领域的研究进展,为后续研究奠定理论基础。

2.2 时间序列深度学习算法

2.2.1 时间序列数据介绍

时间序列数据是指在一系列时间点上按时间顺序排列的数据点集合。这些数据点通常是连续或定期记录的,反映了某个变量随时间的变化情况。时间序列数据在许多领域中都有广泛的应用,例如金融、气象学、经济学、工程学等。

在流变学研究中,时间域的应力应变数据作为一种典型的时间序列数据,时间依赖性突出,每个数据点均与特定时间时刻紧密关联,其顺序关系对于揭示材料的流变特性至关重要。应力应变数据常表现出趋势特征,如在长期加载过程中,应力可能随时间逐渐增加或减少,反映材料的黏弹性行为。在周期性加载或卸载条件下,数据可能呈现出与加载周期相一致的季节性波动。此外,数据中还可能存在与材料微观结构变化或外部环境因素相关的更长期周期性特征^[3]。同时时间序列数据的一大特征是不同时间点的数据点之间存在依赖关系,这导致时间序列数据具有高度的时序相关性,并且需要考虑时序相关的特征提取和建模。时间域的应力应变数据在小应变时满足玻尔兹曼叠加原理,即当前应力状态为之前所有应变历史的线性和^[27]。大应变时不满足玻尔兹曼的线性叠加,但是依旧可以表示为过去应变历史的某种非线性关系叠加。综上所述,所以时间域

的应力应变数据可以归为时间序列数据。

2.2.2 循环神经网络

2.2.2.1 简单 RNN

循环神经网络(RNN)是一种专门处理序列数据的神经网络结构,其核心在于利用循环结构捕捉时间或顺序上的依赖关系^[114]。RNN 的基本结构由输入层、隐藏层和输出层组成。隐藏层中的神经元不仅接收来自输入层的信号,还接收来自前一时刻隐藏层的信号。这种循环连接使得 RNN 能够捕获序列中的时间依赖关系。RNN 的数学模型可以通过以下公式(2-1)描述:

$$\mathbf{h}_t = \sigma(\mathbf{W}_{xh}\mathbf{x}_t + \mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{b}_h) \tag{2-1}$$

$$\mathbf{o}_t = \mathbf{W}_{ho}\mathbf{h}_t + \mathbf{b}_o \tag{2-2}$$

其中 \mathbf{h}_t 是时刻 t 的隐藏状态, \mathbf{x}_t 是时刻 t 的输入, \mathbf{o}_t 是时刻 t 的输出, \mathbf{W}_{xh} 是输入到隐藏层的权重矩阵, \mathbf{W}_{hh} 是隐藏层到隐藏层的权重矩阵, \mathbf{W}_{ho} 是隐藏层到输出层的权重矩阵, \mathbf{b}_h 和 \mathbf{b}_o 是偏置。 σ 是激活函数,通常使用 t tanh 或 t ReLU。 RNN 的训练过程通常使用反向传播算法。通过计算梯度来更新权重矩阵,从而最小化损失函数。

在简单的 RNN 中,存在梯度消失问题,这主要源于反向传播过程中梯度的连乘效应 [115]。损失函数 L 对 \mathbf{W}_{hh} 的梯度可以表示为公式(2-3):

$$\frac{\partial L}{\partial \mathbf{W}_{hh}} = \sum_{t=1}^{T} \frac{\partial L}{\partial \mathbf{h}_{t}} \cdot \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{W}_{hh}}$$
(2-3)

展开后,隐藏状态关于 \mathbf{W}_{hh} 的导数为公式(2-4):

$$\frac{\partial \mathbf{h}_{t}}{\partial \mathbf{W}_{hh}} = \sigma'(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_{t} + \mathbf{b}_{h}) \cdot \mathbf{h}_{t-1}^{T}$$
(2-4)

注意到, $\frac{\partial L}{\partial \mathbf{h}_t}$ 依赖于前一个时间步的梯度,如公式(2-5):

$$\frac{\partial L}{\partial \mathbf{h}_{t}} = \frac{\partial L}{\partial \mathbf{h}_{t+1}} \cdot \frac{\partial \mathbf{h}_{t+1}}{\partial \mathbf{h}_{t}} = \frac{\partial L}{\partial \mathbf{h}_{t+1}} \cdot \mathbf{W}_{hh} \cdot \sigma'(\mathbf{h}_{t})$$
(2-5)

这表明梯度在通过时间反向传播时会乘以 \mathbf{W}_{hh} 。从时间 t 到时间 T 的梯度可以表示为公式(2-6):

$$\frac{\partial L}{\partial \mathbf{h}_t} = \left(\prod_{k=t+1}^T \mathbf{W}_{hh} \cdot \sigma'(\mathbf{h}_{k-1})\right) \cdot \frac{\partial L}{\partial \mathbf{h}_T}$$
 (2-6)

其中乘积 $\prod_{k=t+1}^{T} \mathbf{W}_{hh} \cdot \sigma'(\mathbf{h}_{k-1})$ 在某些情况下可能会非常小,例如如果 \mathbf{W}_{hh} 的特征值小于 1,那么随着 (T-t) 的增加, \mathbf{W}_{hh}^{T-t} 将呈指数级减小并趋近于零。如果反向传播过程中每一项都小于 1,那么整个乘积将随着 (T-t) 的增加呈指数级减小。这意味着对于远离输出端的时间步 t,梯度 $\frac{\partial L}{\partial \mathbf{h}_t}$ 将非常小,导致权重更新几乎停止,这就是 RNN 的梯度消失问题。由于 RNN 为了捕捉时间依赖性,我们不可避免地设置长时间步,这导致 RNN 梯度消失问题几乎难以避免。

2.2.2.2 LSTM

为了解决简单 RNN 的梯度消失问题,Schmidhuber 等提出了长短期记忆网络 (LSTM)^[115]。LSTM 通过引入门控机制来控制信息的流动,从而有效地缓解梯度消失问题。LSTM 的核心结构包括输入门、遗忘门和输出门,这些门控机制能够有效地控制信息的流动,从而捕获长期依赖关系。LSTM 的状态更新公式如下:

$$\mathbf{i}_t = \sigma(\mathbf{W}_{xi}\mathbf{x}_t + \mathbf{W}_{hi}\mathbf{h}_{t-1} + \mathbf{b}_i) \tag{2-7}$$

$$\mathbf{f}_t = \sigma(\mathbf{W}_{xf}\mathbf{x}_t + \mathbf{W}_{hf}\mathbf{h}_{t-1} + \mathbf{b}_f)$$
 (2-8)

$$\mathbf{o}_t = \sigma(\mathbf{W}_{xo}\mathbf{x}_t + \mathbf{W}_{ho}\mathbf{h}_{t-1} + \mathbf{b}_o) \tag{2-9}$$

$$\tilde{\mathbf{c}}_t = \tanh(\mathbf{W}_c \mathbf{x}_t + \mathbf{W}_c \mathbf{h}_{t-1} + \mathbf{b}_c)$$
(2-10)

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tilde{\mathbf{c}}_t \tag{2-11}$$

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t) \tag{2-12}$$

在 LSTM 中, \mathbf{i}_t 、 \mathbf{f}_t 和 \mathbf{o}_t 分别是输入门、遗忘门和输出门, $\tilde{\mathbf{c}}_t$ 是候选单元状态, \mathbf{c}_t 是单元状态, \odot 表示哈达乘法,即逐元素乘法。遗忘门的输出控制着单元状态中旧信息的保留程度。当 \mathbf{f}_t 接近 1 时,表示大部分旧信息将被保留,梯度能够稳定地传播下去;而当 \mathbf{f}_t 接近 0 时,表示大部分旧信息将被丢弃。然而,只要隐藏状态单元不为 0,梯度依然可以传播。输入门的输出决定了新信息存储到单元状态的程度。当输入门的输出接近 1 时,大量新信息将被存储到单元状态中,梯度可以通过新信息的路径传递,从而避免梯度消失。相反,当输入门的输出接近 0 时,新信息的存储受到限制,梯度主要依赖于旧信息的路径,但遗忘门仍然可以调节旧信息的保留程度。

输出门的输出决定了单元状态信息的输出量。当输出门的输出接近1时,单元状态的信息会大量输出,梯度能够通过隐藏状态路径传递,确保信息的流动;而当输出门的输出接近0时,单元状态的信息输出受到限制,梯度主要依赖于单元状态路径,但遗忘

图 2-1 (a) RNN 示意图; (b) LSTM 示意图

Figure 2-1 Schematic illustration of (a) RNN and (b) LSTM

门和输入门可以调节单元状态的更新。

这些梯度计算确保了信息流动受到控制,从而避免了梯度的急剧变化。LSTM 的单元状态 \mathbf{c}_t 的公式中不包含激活函数,因此其梯度不会受到非线性激活函数的抑制,从而避免了梯度的急剧变化。通过这些门控机制,LSTM 能够有效地控制信息的流动,捕获长期依赖关系,解决简单 RNN 中的梯度消失问题。

2.2.2.3 GRU

LSTM 虽然通过引入门控机制有效地解决了简单 RNN 中的梯度消失问题,但在实际应用中仍然存在一些问题。LSTM 包含三个门(输入门、遗忘门、输出门),导致其参数数量较多,增加了模型的复杂度和计算成本。由于 LSTM 的复杂结构,其训练和推理速度相对较慢,尤其是在处理大规模数据时。为了解决 LSTM 的上述问题,Cho 等提出了 GRU(门控循环单元)作为 LSTM 的简化版本[116]。GRU 的设计初衷是为了简化 LSTM 的结构,同时保持其捕获长期依赖关系的能力。GRU 只有重置门(Reset Gate)和更新门(Update Gate)两种门控单元,与 LSTM 相比,GRU 的参数数量较少,训练和推理速度更快。重置门的计算公式为公式(2-13),

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1} + \mathbf{b}_r) \tag{2-13}$$

更新门的计算公式为公式(2-14),重置门决定了前一时间步的隐藏状态在多大程度上被忽略。当重置门的输出接近 0 时,网络倾向于"忘记"前一时间步的信息,仅依赖于当前输入;而当输出接近 1 时,前一时间步的信息将被更多地保留。更新门决定了多少过去的信息将被保留,而新信息将占据多少比例。当更新门的输出接近 1 时,新的隐藏状态几乎等同于旧的隐藏状态,从而实现了长期依赖的捕捉;当更新门的输出接近 0 时,新的隐藏状态将主要由当前输入决定。

图 2-2 GRU 示意图

Figure 2-2 Schematic illustration of GRU

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1} + \mathbf{b}_z) \tag{2-14}$$

候选隐藏状态决定了当前时间步的新信息,如公式(2-15)所示。

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W}_h \mathbf{x}_t + \mathbf{U}_h(\mathbf{r}_t \odot \mathbf{h}_{t-1}) + \mathbf{b}_h)$$
 (2-15)

当前隐藏状态如公式(2-16)所示,这里的当前隐藏状态与上文 LSTM 的隐藏状态含义是一样的。

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t \tag{2-16}$$

GRU 移除了单元状态的概念,直接从门控单元来计算隐藏状态,GRU 通过重置门和更新门的协同工作,实现了对信息流动的有效控制,使得网络能够在需要时记住长期依赖关系,同时减少梯度消失/爆炸的问题。GRU 的结构比 LSTM 更简单,计算效率更高,因此在实践应用中广受欢迎。

2.2.3 其他时间序列算法

在深度学习领域,针对时间序列数据的处理方法已呈现出多样化的趋势。除了传统的循环神经网络(RNN)及其变体,近年来研究人员提出多种新型网络架构,包括卷积神经网络(CNN)、Transformer 以及 Mamba 网络等,这些方法在时间序列分析中展现出显著的优势。

卷积神经网络(CNN)最初是为图像处理任务设计的,但其在时间序列分析中的应用也取得了显著成效^[117]。通过引入一维卷积操作,CNN 能够有效地从时间序列数据中提取局部特征。由于卷积操作具有权值共享的特性,CNN 在处理长序列数据时表现出较高的计算效率,并且能够有效规避传统 RNN 中常见的梯度消失或梯度爆炸问题。通过多层卷积结构的堆叠,CNN 能够捕获更为复杂的时间依赖性,进而在语音识别、金融预测等实际应用中表现出优异的性能^[118]。

Transformer 模型是近年来在自然语言处理(NLP)领域取得突破性进展的架构,其核心在于自注意力机制(Self-Attention)[119]。与传统的 RNN 类模型不同,Transformer 摒弃了序列顺序处理的限制,转而通过全局上下文信息建模序列中各元素之间的依赖关系。这种机制使得 Transformer 能够并行处理长序列数据,并捕获全局时序特征。在时间序列分析任务中,Transformer 通过自注意力机制能够聚焦于序列中的关键时间点,从而有效建模时序依赖性和非线性关系。这一特性使其在机器翻译、语音识别等任务中超越了传统模型的表现。

Mamba 网络是近年来提出的一种新型时间序列处理架构,专门针对复杂时间序列数据的高效建模而设计^[120]。与传统的 RNN 或 CNN 模型相比,Mamba 网络通过引入多尺度时序建模策略,能够同时捕获时间序列中不同时间尺度的特征。这种多尺度建模方法不仅增强了模型的表达能力,还提升了其在处理多变且复杂时序数据时的鲁棒性。Mamba 网络的独特之处在于其能够整合多层次时序信息进行联合建模,从而为不同时间粒度的变化提供更为精确的预测。这一特性使其在金融市场分析、气象预测等领域展现出广阔的应用前景。

这些方法不仅拓展了时间序列建模的理论边界,也为实际应用提供了更为强大的工具。本文的研究工作是选择一种可以处理时间序列的算法来对数值模拟的流变学数据进行建模预测,样本量在万级,属于中小规模数据集,综合考虑算法时空间复杂度和训练成本,选择 RNN 中的 GRU 作为算法模型。未来针对更多流变学数据和复杂场景,可以进一步研究其他前沿模型的应用。

2.3 物理信息神经网络

2.3.1 理论基础

物理信息神经网络(Physics-Informed Neural Networks, PINN)是一种结合深度学习和物理知识的神经网络模型,旨在通过数据驱动的方式求解偏微分方程(PDE)[121]。与传统数据驱动的神经网络模型相比,PINN 在训练过程中引入了物理约束,使得模型不仅能够学习数据中的模式,还能够满足物理定律,从而提高模型的泛化能力和预测精度。PINN的基本思想是将物理定律(如偏微分方程)作为先验知识嵌入到神经网络中,通过最小化数据损失和物理损失来训练模型。这样,PINN 不仅能够学习数据中的模式,还能够满足物理定律,从而提高模型的泛化能力和预测精度。在实际应用中,PINN可以通过损失函数强制模型满足物理约束,从而提高模型的物理合理性和可解释性。PINN

图 2-3 PINN 示意图

Figure 2-3 Schematic illustration of PINN

的优势在于其能够通过物理方程进行训练,极大减少了对大量标注数据的需求。此外, PINN 能够确保模型的预测符合实际的物理规律,从而避免了数据驱动模型可能出现的 不合理结果。尽管 PINN 在处理复杂问题时可能会面临训练难度和求解精度的挑战。

2.3.2 损失函数构建

PINN 的核心原理在于其损失函数的构建,普通深度神经网络(DNN)的损失函数为 $\mathcal{L} = \mathcal{L}_{data}$,即预测数据与真实数据之间的误差损失。而 PINN 的损失函数如公式(2-17)所示,由两部分组成。其中, \mathcal{L}_{data} 为数据损失, $\mathcal{L}_{physics}$ 为物理损失。

$$\mathcal{L} = \mathcal{L}_{data} + \lambda \mathcal{L}_{physics} \tag{2-17}$$

数据损失用于衡量神经网络预测值与实际观测数据之间的差异。常用的度量方法是均方误差(Mean Squared Error,MSE),如公式(2-18)所示。其中, N_d 是观测数据点的数量, $u(x_i,t_i)$ 是神经网络在点 (x_i,t_i) 处的预测值, u_i 是对应的真实观测值。

$$\mathcal{L}_{data} = \frac{1}{N_d} \sum_{i=1}^{N_d} (u(x_i, t_i) - u_i)^2$$
 (2-18)

物理损失用于确保神经网络的预测结果满足物理定律,通常通过计算物理方程的残差来实现。以纳维-斯托克斯方程为例,其物理损失可以表示为公式(2-19)。可以看到物理损失本质是神经网络的预测值在物理方程中的残差。

$$\mathcal{L}_{physics} = \frac{1}{N_p} \sum_{j=1}^{N_p} \left(\frac{\partial u}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu \nabla^2 \mathbf{u} - \nabla p + \mathbf{f} \right)^2 \bigg|_{(x_j, t_j)}$$
(2-19)

2.3.3 未来技术优化

公式(2-17)中的 λ 参数用于控制物理损失对数据损失之间的权重关系。当 λ 较大时, 物理损失对数据损失有较大的影响,反之亦然,最开始的 PINN 研究不考虑权重关系, 这使得最终的损失函数受数据量的影响较大。如果采用同一份实验数据,分别计算物理 损失和数据损失,那么影响还不会太大,但是如果按照多保重神经网络的思路,使用高 保真数据来计算数据损失,低保真数据作为物理残差损失,那么在低保真数据远远大于 高保真的情况下,权重参数需要谨慎设置,以防止梯度消失问题[122]。对于 λ 的取值, 我们可以针对实际应用进行调参,以获得更好的结果,但是这样的调参缺乏科学解释, 且耗费时间,所以近年来,一些学者开始研究如何自动化确定 λ 的取值,以获得更好 的结果。Farmer 等人提出了一种经验性的损失权重优化方法,用于 PINN 模型在求解激 光生物效应中的 1D 热方程[123]。该方法通过自动归一化损失函数的各个部分,确保不 同损失项之间的平衡。Xiang 等人提出了一种自适应损失平衡方法(IbPINN),通过高 斯概率模型定义自适应损失函数[124]。该方法在每个训练周期中自动更新损失项的权重, 基于最大似然估计来平衡不同损失项的影响。实验结果表明, lbPINN 在求解多个方程 时,均表现出比传统 PINN 更好的性能。Song 等人提出了一种基于损失注意力的 PINN 架构(LA-PINN),为每个损失项配备独立的损失注意力网络(LAN)[125]。该方法通过 将每个训练点的平方误差(SE)输入到 LAN 中,动态地为不同点的 SE 分配不同的权 重。实验结果表明,LA-PINN 在求解多个基准 PDE 时,表现出比传统 PINN 更高的预 测精度和更快的收敛速度。本文的研究工作也借鉴了 Song 的方案,做了简化处理,实

现了可学习权重的 PINN 框架进行训练。

在面对更高维度和更为复杂的偏微分方程(PDE)时,PINN 计算成本依然是一个 待解决的挑战。为了有效应对大规模问题,未来的研究需要着重提升计算效率[126]。此外,PINN 在处理小数据集时的表现仍有待提高,这要求我们进一步开展研究以降低其对大量训练数据的依赖。自适应采样和数据增强方法有望在这一领域发挥关键作用。将 复杂的物理约束有效地整合到 PINN 中也是当前面临的一大挑战。未来的研究需要开发更加灵活且强大的方法,以应对复杂的物理方程和边界条件。在多物理场耦合问题中,PINN 的应用范围仍然较为有限[127-128]。因此,未来的研究需要探索如何将 PINN 扩展至多物理场耦合问题,从而解决更为复杂的实际问题。

2.4 特征融合方法

2.4.1 简单特征融合

特征融合(Feature Fusion)是深度学习中一种重要的技术,旨在将来自不同来源或不同层次的特征进行组合,以创建一个捕获集体信息的统一表示。这种技术通过利用来自不同特征集的互补信息,能够显著增强模型的性能。

简单的特征融合方法包括 Concat、Add 和 Hadamard Product 等。其中,Concat 是将两个特征向量拼接在一起,如公式(2-20),适用于需要保留两个特征向量的所有信息的场景。例如,在流体力学中,当需要同时考虑不同物理场(如速度场和压力场)或不同尺度的特征时,Concat 是一种合适的方法。Add 是将两个特征向量逐元素相加,如公式(2-21),适用于两个特征向量维度相同,且需要强调某些共同特征时。例如,需要将速度场的不同分量相加,可以突出重要的流动特征的时候,可以使用 Add 方法。Hadamard Product 是将两个特征向量逐元素相乘,如公式(2-22)。当需要突出共同出现的特征并减弱不重要的特征时,Hadamard Product 是一种合适的方法。例如,在流体力学中,如果需要将速度场和压力场的特征相乘,希望突出共同的流动特征时,在材料科学中,如果需要将材料编码和组分含量相乘,突出加权的含量特征时,都可以使用 Hadamard Product。

$$\mathbf{v} = [\mathbf{v}_1; \mathbf{v}_2] \tag{2-20}$$

$$\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 \tag{2-21}$$

$$\mathbf{v} = \mathbf{v}_1 \odot \mathbf{v}_2 \tag{2-22}$$

2.4.2 注意力特征融合

深度学习中,注意力特征融合(AFF)是一种重要的技术,它通过引入注意力机制来动态调整特征的权重,从而更好地融合特征[129]。注意力特征融合的核心思想是利用注意力机制来捕获特征之间的关系,从而增强重要特征并减弱不重要的特征。注意力特征融合的数学公式如公式(2-23)所示,其中 \mathbf{v}_i 为特征向量, α_i 为注意力权重, \mathbf{q} 为查询向量,用于计算注意力权重。

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i$$

$$\alpha_i = \frac{\exp(\mathbf{q}^T \mathbf{v}_i)}{\sum_{i=1}^{n} \exp(\mathbf{q}^T \mathbf{v}_i)}$$
(2-23)

在多尺度特征融合中,注意力机制的应用极大地提升了模型对不同尺度特征的动态权重调整能力,从而更有效地捕获全局和局部信息。这种方法在目标检测和图像分割等任务中表现出色,因为它能够更好地处理不同尺度的目标。例如,CM-UNet 模型通过多尺度注意力聚合模块(MSAA),在遥感图像语义分割任务中高效捕捉局部和全局信息,提升了特征表达能力^[130]。

在实现注意力特征融合时,通常会使用注意力模块,如自注意力(Self-Attention)或交叉注意力(Cross-Attention)。自注意力机制允许模型在同一个序列内部捕获特征之间的关系,而交叉注意力机制则允许模型在两个不同的序列之间捕获特征之间的关系。例如,交叉注意力可以用于将图像特征与文本特征进行融合,从而实现更准确的图像描述生成。在多模态学习中,交叉注意力机制通过在不同模块之间引入注意力机制,让信息交流更高效,也让模型在处理复杂任务时表现得更出色[131]。

此外,注意力特征融合还可以与其他特征融合方法(如 Concat 和 Add)结合使用。例如,在某些模型中,可以先使用 Concat 将不同来源的特征拼接在一起,然后使用注意力机制对拼接后的特征进行加权,从而进一步增强特征的表示能力。这种方法在多模态学习中特别有用,因为它可以有效地融合来自不同模态的特征。例如,多模态融合网络使用多头自注意力机制来最小化不同模态之间的噪声干扰,并利用局部区域特征表示之间的相关性来提取互补信息[132]。

总结注意力机制在多尺度特征融合和多模态学习中具有广泛的应用前景,能够显著 提升模型的性能和泛化能力。通过合理设计和应用注意力模块,可以更好地捕获和融合 不同尺度和模态的特征,从而在各种任务中取得更好的效果。而针对本文流变学的本构 建模任务,由于制备参数(分子量、组分比例等)特征存在隐藏联系,但是特征本身非常稀疏,所以采取注意力特征融合的方法,期待显著提高模型的性能和泛化能力。

2.5 生成式模型

2.5.1 变分自编码器

生成式模型是一类能够学习数据生成过程的统计模型。它们通过建模数据的联合概率分布,能够生成与数据相似的新样本。与别判别式模型(关注于建模条件概率分布)不同,生成式模型关注数据的整体结构和分配。

变分自编码器是一种生成模型,结合了自编码器架构和变分推断方法。其核心思想是通过编码器将输入数据映射到潜在变量的分布参数(通常是均值和方差),然后通过解码器从这个分布中采样并重构输入数据变分自编码器(Variational Autoencoder, VAE)的概念最早由 Diederik 提出。VAE 的数学表达式如公式(2-24)所示。其中编码器将输入数据映射到潜在变量空间,解码器将潜在变量映射回原始输入空间。VAE 的目标是最小化重构损失和变分下界的差异^[133]。

$$\mathcal{L}(\theta_E, \theta_D) = \mathbb{E}_{q_{\theta_E}(z|x)} \left[\log p_{\theta_D}(x|z) \right] - D_{KL}(q_{\theta_E}(z|x) || p(z))$$
(2-24)

重构损失 $L_{rec} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \|x_i - \hat{x}_i\|^2$ 用于衡量模型输出的重构精度,通常采用均方误差(MSE)或交叉熵等损失函数,变分下界 $L_{vae} = \mathbb{E}_{q_{\theta_E}(z|x)} [\log p_{\theta_D}(x|z)] - D_{KL}(q_{\theta_E}(z|x)\|p(z))$ 用于最大化潜在变量分布的重构似然。为了使 VAE 的训练过程可微分,引入了重参数化技巧。具体来说,假设潜在变量 z 服从均值为 μ 、方差为 σ 的高斯分布,可以通过公式 $z = \mu + \sigma \cdot \epsilon$ 从分布中采样, ϵ 是标准正态分布的随机变量。

变分自编码器(VAE)能够生成与训练数据类似的样本,例如人脸、文字等。在标签数据稀缺的情况下,VAE可以利用无标签数据学习数据的潜在结构,从而增强模型的泛化能力。凭借这一特性,VAE在图像生成、数据增强、无监督学习等多个领域展现出广泛的应用潜力,已成为生成模型领域的重要研究方向。

2.5.2 条件变分自编码器

条件变分自编码器(Conditional Variational Autoencoder, CVAE)的概念最早由 Sohn 等人提出^[134]。CVAE 是 VAE 的扩展,它在 VAE 的基础之上引入了条件变量,使得生成的样本可以根据特定条件进行控制。CVAE 的核心思想是将条件变量 y 作为输入的一部分,与输入数据 x 一起编码到潜在变量 z 中,然后通过解码器生成样本。CVAE 的目标

是最大化条件似然 $p(x|y) = \int p(x|z,y)p(z|y)dz$ 。

图 2-4 CVAE 示意图

Figure 2-4 Schematic illustration of CVAE

$$\mathcal{L}(\theta_E, \theta_D) = \mathbb{E}_{q_{\theta_E}(z|x,y)} \left[\log p_{\theta_D}(x|z,y) \right] - D_{KL}(q_{\theta_E}(z|x,y) || p(z|y))$$
 (2-25)

其中,第一项是重构损失,用于衡量模型输出与真实数据的差异;第二项是 KL 散度,用于衡量后验分布与先验分布之间的差异。通过最小化这一损失函数,CVAE 能够学习到数据的生成分布,并生成与训练数据类似的样本。CVAE 引入条件变量 y 使得模型能够根据特定条件生成样本,这对于许多实际应用非常重要。例如,在图像生成任务中,条件变量可以控制生成图像的类别或属性。通过指定不同的条件变量,CVAE 可以生成不同类别的图像,如不同类型的动物、不同的场景等。这使得 CVAE 在图像生成领域具有广泛的应用前景。

在自然语言处理任务中,条件变量可以控制生成文本的主题或风格。通过指定不同的条件变量,CVAE可以生成不同主题的文本,如新闻报道、故事、诗歌等。此外,条件变量还可以控制文本的风格,如正式、幽默、悲伤等。这使得 CVAE 在自然语言生成领域具有重要的应用价值。

此外,CVAE 还可以在标签数据稀缺的情况下,利用无标签数据学习数据的潜在结构,从而增强模型的泛化能力。在实际应用中,标签数据往往非常稀缺,而无标签数据相对丰富。CVAE 可以利用无标签数据学习数据的潜在结构,从而提高模型的性能。这使得 CVAE 在半监督学习和无监督学习中具有重要的应用价值。

在本文的工作中,我们希望通过已有的流变学性质参数,如特定频率下的储存模量 (G')、损耗模量 (G'') 和损耗角正切 $(tan\delta)$ 等,来预测特定的制备参数。CVAE 能够

将输入数据映射到高维潜在空间,并通过将流变学参数作为条件(y)输入,生成特定的制备参数。

与传统的深度神经网络(DNN),尤其是回归或分类网络不同,DNN 通常直接进行输入到输出的映射,缺乏对潜在空间的建模,因此可能无法捕捉到数据背后复杂的分布。相比之下,CVAE 作为生成模型,能够学习输入数据的潜在分布。它不仅依赖于输入数据的特征,还引入了条件信息,使得它能够在潜在空间中生成符合条件的参数,而不仅仅是进行简单的映射。

此外,CVAE 通过变分推断捕获数据中的不确定性,能生成多个样本。对于制备参数,可能存在多个合理的组合或生成路径,CVAE 通过潜在变量的不同采样来生成这些多样化的样本,从而增强了生成结果的多样性。而传统的 DNN 模型通常是确定性的,即给定相同的输入总是生成相同的输出,无法有效地表示这种不确定性。

最后,CVAE 通过引入变分推断,平衡了重建误差和潜在变量的 KL 散度,从而在优化过程中不仅考虑了生成结果的质量,还保证了潜在空间的结构化。这使得 CVAE 能够生成接近原始数据的样本,并通过潜在空间的结构化生成有意义的样本。相比之下,DNN 训练时通常只关注误差最小化,缺少对潜在空间结构的显式建模。

2.5.3 其他生成式模型

生成式模型(Generative Models)是机器学习领域的重要研究方向,旨在学习数据的分布特征,从而生成与原始数据相似的新样本。除了变分自编码器(VAE)和条件变分自编码器(CVAE)之外,还有多种生成式模型在不同领域取得了显著成果。

自回归模型基于条件概率链式分解对数据进行建模,通过逐步生成数据单元完成整体构建^[135]。这类模型在密度估计方面展现出卓越性能,典型代表如 PixelCNN 和 PixelSNAIL 已成功应用于图像生成、语音合成等领域。然而其固有特性也带来若干限制: 采样过程必须严格遵循序列生成路径,导致高维数据生成效率显著降低; 同时模型强制要求将输入数据线性化为固定顺序,这在文本和音频等具有自然时序结构的模态中尚可适用,但对于图像等空间数据而言,最优排列方式的确定缺乏明确依据,且不同的顺序选择可能通过神经网络架构的归纳偏置对最终效果产生潜在影响^[136]。

生成对抗网络(Generative Adversarial Networks,GAN)是一种基于博弈论框架的生成模型,其核心由生成器(Generator)与判别器(Discriminator)构成动态博弈系统^[137]。 生成器通过参数化映射函数将潜在空间向量转化为合成数据,旨在捕捉真实数据分布的统计特性;判别器则作为二元分类器,通过迭代优化提升对真实数据与生成数据的鉴别 能力。二者在对抗性训练过程中形成"最小-最大"博弈关系:生成器试图生成以假乱真的样本来欺骗判别器,而判别器则持续升级其辨别能力以识别生成样本的统计缺陷,最终推动系统向纳什均衡收敛。相较于传统生成模型,GAN的突出优势在于其能通过对抗机制隐式学习复杂数据分布,生成具有高度视觉保真度的样本(如图像、视频》[138]。

扩散模型是新一代生成式人工智能的核心范式,其创新性地将数据生成过程建模为物理学启发的渐进式去噪机制^[139]。该模型通过构建马尔可夫链,系统性地模拟两个互逆过程:前向扩散阶段将原始数据通过逐步添加高斯噪声退化为随机噪声,反向生成阶段则通过参数化的神经网络学习逆向扩散轨迹,从纯噪声出发通过连续的去噪操作重建出目标数据分布。这种基于随机微分方程(SDE)或概率流常微分方程(ODE)的数学框架,使得模型能够通过变分推断精确优化对数似然下界^[140]。相较于 GAN,其生成过程具有可解释的物理意义,通过调节去噪步长可实现生成质量与速度的灵活平衡;无需对抗训练避免了模式崩溃风险,确保生成样本的多样性,且理论框架的严密性支持精确的概率密度估计^[141]。

2.6 本章小结

本章围绕深度学习与物理建模的融合框架展开系统性论述,为流变学本构方程的数据驱动建模奠定了坚实的理论基础与技术体系。

在时序建模层面,系统解析了循环神经网络及其衍生架构的时序建模机理,重点探讨了门控循环单元(GRU)在流变学本构时序响应建模中的适用性与局限性,阐明其在处理材料非线性记忆效应(如应力松弛、触变恢复)中的优势及梯度稳定性问题。针对物理约束嵌入方法,深入剖析了物理信息神经网络(PINN)的数学基础与实现范式,为后续构建具有物理一致性的流变学代理模型提供理论支撑。在特征融合维度,通过对比分析多尺度数据整合策略,揭示了注意力机制在动态协调流变实验多源异构数据中的核心价值,为解决复杂流变行为的特征解耦问题开辟新途径。针对生成式建模技术,综述了变分自编码器的概率框架与条件扩展形式。

本研究通过算法体系的多维度解析,为突破传统唯象模型的表征瓶颈、后续构建发展"数据-物理"双驱动的智能本构建模范式提供了理论架构与方法论指导。

第三章 GRU 应用于模拟数据本构建模研究

3.1 引言

近年来在深度学习对于流变学的本构建模中研究中,例如 Lennon、Mahmoudabadbozchelou 等人的研究工作,虽然细节方法各有不同,但是基本在模型选择上都选择普通多层感知机模型(MLP》[106,109]。MLP是一种经典的前馈人工神经网络,由全连接层堆叠而成,包含输入层、多个隐藏层(≥1)及输出层,通过非线性激活函数实现复杂函数逼近。当 MLP 的隐藏层数到达一定值,MLP 被视为深度神经网络(DNN)。传统的前馈性质的 DNN 模型(后简称 DNN)具备一定的非线性行为捕捉能力,但是在处理时间序列数据或具有时间依赖性的数据时,其性能可能受到限制。Lennon 和Mahmoudabadbozchelou 的工作使用 DNN 模型,很难捕捉到黏弹性材料中的长程应变历史依赖性。本章的研究工作在前人的基础之上尝试使用 GRU 模型来构建本构建模,期待解决在处理时间序列数据时,DNN 模型性能受限的问题。GRU 的门控机制允许处理流变学数据,如应力应变数据时,控制历史信息的网络间流动。

本章的研究工作首先采用数值模拟方法构建了经典本构方程的应力应变模拟数据,所涉及的经典本构方程包括 Herschel-Bulkley 模型、Maxwell 模型、Doi-Edwards 模型和Giesekus 模型。这些模型在流变学领域具有重要的理论和应用价值,能够描述不同类型的流变行为。首先本章研究通过数值模拟方法,生成这些模型的应力应变数据,然后对GRU 模型进行了详细的构建,包括模型的结构设计、参数初始化以及训练过程中的优化策略,之后,使用数值模拟生成的应力应变数据 GRU 模型进行训练,通过调整模型参数和优化算法,使模型能够准确地拟合训练数据。最终本章的研究通过与 DNN 的训练模型对比,验证了 GRU 模型在处理时间序列数据时的优势。

3.2 实验设计

3.2.1 数值模拟

本章的数值模拟工作采用 Python 语言实现,主要依托 Numpy、Scipy 等高效的数值 计算库来完成离散采样和数据处理。

3.2.1.1 Herschel-Bulkley 模型模拟

Herschel-Bulkley 模型的本构方程如公式(1-9)所示,其中剪切应力 σ 与剪切率 $\dot{\gamma}$ 之间存在函数关系。该模型包含流变参数 K、流动指数 n 及屈服应力 σ_0 。在模拟过程中,本章设置 σ_0 为 1.0 Pa,K 为 1,而 n 则取值为 0.2、0.6、1.0、1.4 及 1.8。剪切率 $\dot{\gamma}$ 范围设定为 [0,100],并以 0.01 的时间步长进行离散采样。

数据生成后,本章首先采用 Matplotlib 库绘制出剪切应力 σ 与剪切率 $\dot{\gamma}$ 的关系曲线,观察模拟效果,并进行生成效果评估。随后本章采用 Numpy 库进行数据处理,使用 Pandas 库将数据存储为 Excel 文件,便于后续的模型训练。

3.2.1.2 Maxwell 模型模拟

Maxwell 模型的微分本构方程如公式(1-3)所示。该模型包含松弛时间 $\tau = \eta/G$, 其中 η 表示黏性系数,G 为剪切模量。本章设置 η 为 0.1 Pa • s,G 为 1.0 Pa。采用后向欧拉法来离散化微分方程,具体推导如下:

首先将微分离散化,设 $d\sigma = \sigma_i - \sigma_{i-1}$, $dt = \Delta t$, $d\gamma = \gamma_i - \gamma_{i-1}$,则原方程可以化简为公式(3-1),

$$\frac{\sigma_i - \sigma_{i-1}}{\Delta t} + \frac{\sigma_i}{\tau} = G \frac{\gamma_i - \gamma_{i-1}}{\Delta t}$$
 (3-1)

移项并化简可得公式(3-2)。

$$\sigma_i = \frac{\sigma_{i-1} + G(\gamma_i - \gamma_{i-1})}{1 + \frac{\Delta t}{2}} \tag{3-2}$$

根据公式(3-2),本章首先使用 NumPy 库生成 6 个不同应变变化协议的应变数据,时间步为 0.01,每个协议模拟 2000 个数据点,并存为 NumPy 数组,随后通过迭代法计算单个应变数据对应的应力数据,并存为 NumPy 数组。之后,本章使用 Matplotlib 库绘制出剪切应力与剪切应变的关系曲线,观察模拟效果,并进行生成效果评估。最后本章使用 Pandas 库将数据存储为 Excel 文件,便于后续的模型训练。

3.2.1.3 Doi-Edwards 模型模拟

Doi-Edwards 模型的本构方程如公式(1-17)所示。该方程为积分形式的本构方程,本章首先对该方程进行处理,将取向张量函数 Q(t',t) 写为球坐标形式,即公式(3-3)。

$$Q(t',t) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} 5\left(\frac{\underline{\underline{u}'} \cdot \underline{\underline{F}}^{-1} \underline{\underline{u}'} \cdot \underline{\underline{F}}^{-1}}{|\underline{\underline{u}'} \cdot \underline{\underline{F}}^{-1}|^2}\right) \sin\theta \, d\theta \, d\phi \tag{3-3}$$

$$G(t, t') = \frac{G_0}{\lambda_i} \exp\left(\frac{t' - t}{\lambda_i}\right)$$
(3-4)

$$\sigma(t) = \int_{t_0}^t G(t, t') \cdot Q(\gamma(t')) dt'$$
(3-5)

本章模拟的为简单剪切流动,只在 xy 方向存在应变,因此可以将逆变形梯度张量 \underline{F}^{-1} 写为公式(3-6)的矩阵形式, \underline{u}' 为球坐标系下的单位向量。

$$\underline{\underline{F}}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (3-6)

公式(3-4)为松弛模量函数,本章使用 Numpy 库生成 7 个不同的应变协议的 NumPy 数组,单个协议时间区间为 $[0,4\pi]$,总数据点为 2000 个,生成形式为 3*3 的张量矩阵,代入公式(3-3)计算 Q 值数组。设置 G_0 为 1.0 Pa, λ 为 1.0 s,i=1,根据公式(3-5)计算应变张量,使用的积分工具为 Python 的 scipy.integrate 库,生成形式为 3*3 的张量矩阵,如公式(3-7)所示。本章提取 σ_{12} 、 σ_{11} 、 σ_{22} 分量作为模拟实验数据,与对应的应变分量数据一起通过 Pandas 库存入 Excel 文件,便于后续的模型训练。

$$\sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
(3-7)

3.2.1.4 Giesekus 模型模拟

Giesekus 模型的本构方程如公式(1-12)所示,迁移因子 α 用于引入剪切稀化的强度。Giesekus 模型模拟的为简单剪切流动,只在 xy 方向存在应变,应变张量 γ 仅在 γ_{12} 分量上存在值。本章首先使用 NumPy 库生成 8 个不同应变变化协议的简单剪切流动应变数据,时间区间为 [0,24],单个协议的模拟数据点为 2000,生成形式为 3*3 应变张量矩阵,随后设置迁移因子 α 为 0.8, 其余松弛时间参数(λ_1 、 λ_2)为 1.0,使用 Python 的scipy.integrate.solve_ivp 函数(内置方法为 Runge-Kutta 法)对微分方程组进行求解计算,生成 3*3 应力张量矩阵,如公式(3-7)所示。本章提取 σ_{12} 、 σ_{11} 、 σ_{22} 分量作为模拟实验数据,与对应的应变分量数据一起通过 Pandas 库存入 Excel 文件,便于后续的模型训练。

3.2.2 模型训练

3.2.2.1 数据集划分

首先本章对模拟生成的数据进行数据集划分,将数据集分为训练集(Train)、验证集(Valid)和测试集(Test),不同模型的具体划分如下:

Herschel-Bulkley 模型数据单独划分 n=1.0 的数据为测试集,其余数据按照 9:1 比例划分为训练集和验证集。

Maxwell 模型单独划分 4 个交变应变协议为训练集和验证集,其中按照 9:1 比例划分为训练集和验证集。划分 1 个交变应变协议,1 个线性应变协议为测试集。

Doi-Edwards 模型单独划分 5 个交变应变协议为训练集和验证集,其中按照 9:1 比例划分为训练集和验证集。划分 1 个交变应变协议, 1 个线性应变协议为测试集。

Giesekus 模型单独划分 5 个交变应变协议为训练集和验证集,其中按照 9:1 比例划分为训练集和验证集。划分 1 个交变应变协议,1 个线性应变协议为测试集。

3.2.2.2 训练细节

本章所有模型的训练过程基本一致,首先将数据集划分后,将训练集数据和验证集数据进行归一化,之后转为 Torch 张量,通过 Pytorch 框架编写 GRU 模型代码进行深度学习训练。在训练过程中使用 Adam 优化算法,使用 MSE 损失函数,使用网格搜索算法和随机搜索算法进行超参数优化和选取,训练完成将模型参数保存为.pth 文件,以便后续的模型测试。

本章使用 GRU 和普通 DNN(简单 MLP)两套模型分别进行训练,训练数据集保持一致。

3.2.3 模型测试

3.2.3.1 测试指标细节

本章的模型训练均为回归问题,所以采用的测试指标为决定系数(R²),如公式(3-8),平均绝对误差(MAE),如公式(3-9)和平均百分比误差(MAPE),如公式(3-10)。

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(3-8)

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
 (3-9)

MAPE =
$$\frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$
 (3-10)

此外,加上训练时间(Training Time)作为训练成本指标。

3.2.3.2 不同模型的测试实验划分

Herschel-Bulkley 模型使用训练后保存的模型参数,使用测试集时间进行预测,训练数据与测试数据为不同的流动指数 n,采用已知流动指数数据预测未知流动指数数据,预测物理量为剪切应力(Stress)。按照上述实验步骤分别使用 DNN 和 GRU 两种模型进行测试,绘制两个模型的测试比对曲线。

Maxwell模型训练数据为交变应变数据,其应变关系符合公式(3-11),测试数据分为交变应变数据和线性应变数据(公式(3-12))。采用已知交变协议数据预测未知交变协议数据,已知交变协议数据预测未知线性协议数据,预测物理量为剪切应力(Stress)。按照上述实验步骤分别使用 DNN 和 GRU 两种模型进行测试,绘制两个模型的测试比对曲线。对于 GRU 模型,设置不同的序列时间步进行训练,探究模型的最佳时间步。

$$\gamma = \gamma_0 \cos(\omega t + \phi) \tag{3-11}$$

$$\gamma = \dot{\gamma}t\tag{3-12}$$

Doi-Edwards 模型和 Giesekus 模型与 Maxwell 模型的实验流程一致,采用已知交变协议数据预测未知交变协议数据,已知交变协议数据预测未知线性协议数据,预测物理量为 xy 方向剪切应力(σ_{12})和第一法向应力差(N_1)。第一法向应力差的公式为 $N_1 = \sigma_{11} - \sigma_{12}$,表示模拟流体的弹性行为。按照上述实验步骤分别使用 DNN 和 GRU 两种模型进行测试,绘制两个模型的测试比对曲线。对于 GRU 模型,设置不同的序列时间步进行训练,探究模型的最佳时间步。

3.3 结果与讨论

3.3.1 Herschel-Bulkley 模型建模

3.3.1.1 数值模拟数据

本节使用 Herschel-Bulkley 模型模拟数据,模拟结果如图3-1所示。由图3-1可以看到,模拟数据中剪切应力(Stress)与剪切速率(Shear Rate)呈现幂函数关系,随着流变指数

n 的增加,曲线的斜率增大,表明流体的非牛顿特性增强。这一现象与 Herschel-Bulkley 模型的数学形式相符,说明模拟数据符合预期。

Figure 3-1

3.3.1.2 GRU/DNN 模型预测效果对比

本节分别使用 GRU 和 DNN 两种算法对 Herschel-Bulkley 模型模拟数据进行深度学习建模,之后使用预测模型在测试集上进行验证,测试结果如图3-2所示。图3-2(a)为两种算法测试的真实值-预测值曲线,从曲线可以定性看出两种算法的预测值曲线与真实值曲线都非常接近。图3-2(b)为两种算法测试结果的残差图,可以看出两种算法的残差点离散程度接近,均没有明显趋向性,均呈现无序分布,说明两种算法均可以比较好地捕捉到所有的输入特征。图3-2(c-f)分别比较了两种算法预测结果的 R²,MAE,MAPE 指标,从结果中可以看出,两种算法的预测效果都十分良好,R² 都接近 1,GRU预测结果的 R² 值略高于 DNN,GRU 预测结果的 MAE 和 MAPE 值都小于 DNN,但数值差距不大。GRU 算法的平均训练时间为 378 s,高于 DNN 的 155 s 一倍以上,这是由于 GRU 网络的参数量更大,且由于其循环神经网络的特点,只能顺序运算,限制了GPU 的并行计算能力,导致训练时间较长。

综合看来 GRU 和 DNN 两种算法在 Herschel-Bulkley 模型模拟数据上的预测表现比较接近,从预测指标的绝对数值看,GRU 略优于 DNN。这个结果符合预期,因为Herschel-Bulkley 模型本质上是模拟了剪切稀化增稠过程,不涉及黏弹性材料的时间依赖性,并且我们模拟的过程中,对于某个特定时间的应力状态也仅仅是当前应变状态的函数。从训练时间的分析看,GRU 的训练成本远高于 DNN。综合而言对于本构方程类似于 Herschel-Bulkley 模型的流体,GRU 算法虽然在泛化效果上略有优势,但是综合性能上不具备显著优势。

Figure 3-2

3.3.2 Maxwell 模型建模

3.3.2.1 数值模拟数据

本节通过后向欧拉法对简单 Maxwell 模型进行了数值模拟,生成了模拟数据,并绘制了应力-应变曲线(Lissajous 曲线),结果如图 3-3 所示。图 3-3 展示了不同应变协议下的模拟结果。对于正弦交变应变,Lissajous 曲线呈现出标准的闭合椭圆形状,这与Maxwell 模型的理论预期一致,表明模型在周期性应变下的响应具有良好的稳定性和可

预测性。对于线性应变,Lissajous 曲线在应变较小时表现出应力的快速增加,随后随着应变的继续增加,应力逐渐趋于一个稳定值,这一现象同样符合 Maxwell 模型的理论预期,反映了材料在持续应变下的应力松弛特性。综合看来,后向欧拉法模拟的数据符合预期,可以用于后续训练。

图 3-3

Figure 3-3

3.3.2.2 交变协议预测交变协议效果验证

为了验证 GRU 算法在时间序列本构方程数据中的预测效果,本节使用交变应变协议生成的数据作为训练集,交变应变协议生成的数据作为测试集。分别使用了 GRU 和 DNN 进行训练,并在测试集上进行验证,测试结果如图3-4、图3-5所示。

图3-4(a-b)为两种不同算法预测模型在测试集上的真实值-预测值曲线,图 a 为 Lissajous 曲线,可以看到 GRU 算法的预测值的 Lissajous 曲线与真实值曲线十分接近,而 DNN 算法的预测值的 Lissajous 曲线与真实的曲线则有明显的周期性偏差,尤其在大应变时,预测值与真实值有较大的偏差。图 b 为时间-应力曲线,从中可以看到 GRU 算法的预测值曲线随时间变化较为稳定,贴近真实值曲线,而 DNN 算法的预测值的曲线明显偏离真实值曲线。

图3-4(c)为两种算法预测模型的测试集残差图,从图中可以看到 DNN 算法的预测值与真实值残差呈现非常明显的周期性分布,说明 DNN 未能捕捉到训练数据中的周期性特征,或者说无法泛化到测试集。而 GRU 的残差图则为无序的近似正态分布,虽然局部存在一定周期性,但是总体正态分布效果明显由于 DNN 的对应残差,这说明GRU 捕捉到了训练数据的较完整的特征,尤其是 DNN 未能捕捉的周期性特征。综合真实值-预测值曲线和残差图,可以定性分析出 GRU 的预测效果更为优秀。接下来,本节

Figure 3-4

计算两种算法的测试集预测指标,绘制指标对比图3-5。从图??(a)显示,GRU 的 R² 值为 0.986,接近 1,说明 GRU 的预测效果十分优秀,而 DNN 的 R² 值为 0.904,略低于 GRU,但是也高于 0.9,属于非常出色的指标。仅从 R² 指标来看,GRU 预测效果优于 DNN,但是优势不明显。从图3-5(b-c)看,GRU 预测结果的 MAE 值为 0.019,仅为 DNN 预测结果的 MAE 值的一半,GRU 预测结果的 MAPE 值为 3.09,仅为 DNN 预测结果的 MAPE 值 14.95 的五分之一左右。这定量说明 GRU 的预测结果误差远小于 DNN 的预测结果误差,GRU 在此项任务上预测泛化效果更好。当然,由于 GRU 的模型特

性,其训练时间如图3-5(d)所示,要高于DNN。综合各项分析数据来看,当训练数据

Figure 3-5

和测试数据为同类型应变变化过程(都为交变应变)时,GRU 算法可以更好的学习到 Maxwell 模型数据的内在特征,包括周期性响应,黏弹性,时间依赖性响应。从定性与 定量分析结果看,GRU 算法的预测泛化效果在此项任务上明显优于 DNN,在计算资源 足够时,GRU 算法相比 DNN 性能更佳。

3.3.2.3 交变协议预测线性协议效果验证

为了验证 GRU 算法在不同形式的应变历史下的泛化预测效果,本节使用交变应变协议生成的数据作为训练集,线性应变协议生成的数据作为测试集。分别使用了 GRU和 DNN 进行训练,并在测试集上进行验证,测试结果如图3-6、图3-7所示。

图3-4(a-b)为两种不同算法预测模型在测试集上的真实值-预测值曲线,图 a 为 Lissajous 曲线,可以看到 GRU 算法的预测值的 Lissajous 曲线与真实值曲线十分接近,而 DNN 算法的预测值的 Lissajous 曲线与真实的曲线则有明显的周期性偏差,尤其在大应变时,预测值与真实值有较大的偏差。图 b 为时间-应力曲线,从中可以看到 GRU 算法的预测值曲线随时间变化较为稳定,贴近真实值曲线,而 DNN 算法的预测值的曲线明显偏离真实值曲线。

图3-4(c)为两种算法预测模型的测试集残差图,从图中可以看到 DNN 算法的预测值与真实值残差呈现非常明显的周期性分布,说明 DNN 未能捕捉到训练数据中的周期性特征,或者说无法泛化到测试集。而 GRU 的残差图则为无序的近似正态分布,虽然局部存在一定周期性,但是总体正态分布效果明显由于 DNN 的对应残差,这说明

GRU 捕捉到了训练数据的较完整的特征,尤其是 DNN 未能捕捉的周期性特征。综合真实值-预测值曲线和残差图,可以定性分析出 GRU 的预测效果更为优秀。接下来,本节

Figure 3-6

计算两种算法的测试集预测指标,绘制指标对比图3-5。从图??(a)显示,GRU的 R²值为 0.986,接近 1,说明 GRU 的预测效果十分优秀,而 DNN 的 R²值为 0.904,略低于 GRU,但是也高于 0.9,属于非常出色的指标。仅从 R²指标来看,GRU 预测效果优于 DNN,但是优势不明显。从图3-5(b-c)看,GRU 预测结果的 MAE 值为 0.019,仅为 DNN 预测结果的 MAE 值的一半,GRU 预测结果的 MAPE 值为 3.09,仅为 DNN 预测结果的 MAPE 值 14.95 的五分之一左右。这定量说明 GRU 的预测结果误差远小于 DNN的预测结果误差,GRU 在此项任务上预测泛化效果更好。当然,由于 GRU 的模型特性,其训练时间如图3-5(d)所示,要高于 DNN。综合各项分析数据来看,当训练数据和测试数据为同类型应变变化过程(都为交变应变)时,GRU 算法可以更好的学习到Maxwell 模型数据的内在特征,包括周期性响应,黏弹性,时间依赖性响应。从定性与定量分析结果看,GRU 算法的预测泛化效果在此项任务上明显优于 DNN,在计算资源足够时,GRU 算法相比 DNN 性能更佳。

3.3.2.4 不同时间步的预测效果对比

3.3.3 Doi-Edwards 模型建模

3.3.3.1 数值模拟数据

sff

图 3-7

Figure 3-7

图 3-8

Figure 3-8

- 3.3.3.2 交变协议预测交变协议效果验证
- 3.3.3.3 交变协议预测线性协议效果验证
- 3.3.3.4 不同时间步的预测效果对比
- 3.3.4 Giesekus 模型建模
- 3.3.4.1 数值模拟数据

sff

- 3.3.4.2 交变协议预测交变协议效果验证
- 3.3.4.3 交变协议预测线性协议效果验证
- 3.3.4.4 不同时间步的预测效果对比
- 3.4 本章小结

第四章 列举环境

以下资料来自宏包说明和网络,翻译不一定正确:

在 LaTeX 中有三种基本的列举 (列表) 环境,即 enumerate(编号)、itemize(分条目) 和 description(描述) 环境。调整 latex 的列表环境时,使用 enumitem 宏包可以方便的调整间距(注意区分包名和环境名)和自定义编号样式。

4.1 调整间距

三种基本环境无论哪一种,间距的调整都是一样的。调整间距的参数命令包括两类:垂直间距和水平间距。各种距离的定义如图??所示。下图的来源一直找不到,可能是旧版本的宏包说明,新版已经删掉了下面的注释了。

现先总结出所推荐的间距设置,无编号的:

有编号的:

\end{enumerate}

效果:

下面两节分别讨论参数设置规则。

4.1.1 垂直间距

摘抄宏包说明:

- topsep 控制列表环境与上文之间的距离。第一项和前一段之间的空间。
- itemsep 条目之间的距离
- parsep 条目里面段落之间的距离
- partopsep 条目与下面段落的距离。当环境开始一个新段落时,额外的空间被添加到 \topsep。

论文中希望上述距离都为 0pt, 如:

```
\begin{itemize}[topsep = 0 pt, itemsep= 0 pt, parsep=0pt, partopsep=0pt]
    \item 第一项。
    \item 第二项
    \item 第三项。
\end{itemize}
```

效果为:

- 第一项。
- 第二项
- 第三项。

4.1.2 水平间距

水平间距调整比较复杂,对照宏包说明给出的图,下面内容参考了宏包原文和网络资料:

- 为页面的左边距)和该列表的左边距之间的空间。必须是非负数。它的值取决于表,则为页面的左边距)和该列表的左边距之间的空间。必须是非负数。它的值取决于列表级别。
- rightmargin 列表环境右边的空白长度。类似于 \leftmargin 但用于右边距。它的值 通常是 0pt。
- labelsep 标号与列表第一项文本左侧的距离。标签框的末尾和第一项的文本之间的空间。它的默认值为 0.5 em。
- itemindent 条目的缩进距离。添加到项目第一行文本部分的水平缩进的额外缩进。通过减去 labelsep 和 labelwidth 的值,相对于该参考点计算标签的起始位置。它的值通常是 0pt。注:理解这个变量时,查看图??的顺序应该按照箭头从左到右,先 leftmargin 再 itemindent,然后再 labelsep,最后 labelwidth。即箭头的起始点是基准点。若 itemindent=0pt,则 leftmargin-labelsep-编号长度的结果就是编号起始位置。

- labelwidth 包含标签的框的标称宽度。如果标签的自然宽度为 < labelwidth,则默 认情况下,标签在宽度为 (labelwidth) 的框内右对齐排版。否则,使用自然宽度 的框,这会导致该行上的文本缩进。可以通过为 \makelabel 命令提供定义来修改 标签的排版方式。
- listparindent 条目下面段落的缩进距离。除了以 litem 开头的段落之外,列表的每个段落的开头都有额外的缩进。可以为负数,但通常为 0pt。

无编号的水平间距,给出两张方案

第一种:

第二种:

推荐第一种。

有编号的水平间距,下面给出三种方案:注:labelsep 是某一项文字和编号框的距离,一般就设为一个空格 6pt,要使编号左侧缩进两格,itemindent-labelsep 要等于编号长度。注意编号是右对齐,向左扩展的。

第二种方案是和论文撰写规范的格式一样,注意不是论文撰写规范规定的格式,规 范里没有规定这些格式。如:

内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容

第三种方案是整体右移两格,文字距离编号一个空格,第二行文字不再右移:

4.2 enumerate 标签样式

除上述小括号数字的编号方法外,还有斜体字母等。在使用 enumerate 的时候, label 的问题就是使用计数的字符, 是阿拉伯数字、罗马、中文、还是希腊字符的问题。

4.2.1 小括号阿拉伯数字

- 1) 第一项。
- 2) 第二项
- 3) 第三项。

4.2.2 斜体字母

- a. 第一项。
- b. 第二项
- c. 第三项。

4.2.3 大写罗马字母

- (I) 第一项。
- (II) 第二项
- (III) 第三项。

结论

本文主要是展示如何使用修改"祖传模板"得到的新模板,在使用时直接替换成自己的论文内容即可。

本模板难免有不足之处,主要是我本人的论文涉及的格式有限,有些地方没探索到自然就没去设置。比如附录,附录的图文并茂等等,我本人是没有研究的,这里仅仅做了一些初步的工作,不过对很多同学来说本模板是够用的。希望有能帮助到华工的同学们,有不足之处请多多理解,可以通过邮件联系我,我会尽量回复。

参考文献

- [1] Dealy J M, Wissbrun K F. Introduction to Rheology[M]//Melt Rheology and Its Role in Plastics Processing: Theory and Applications. Boston, MA: Springer US, 1990: 1-41.
- [2] Ellero M, Housiadas K D, Phan-Thien N. Tanner: 90 Years of Rheology[J]. Physics Of Fluids, 2024, 36(11): 110401.
- [3] Ewoldt R H, Saengow C. Designing Complex Fluids[J]. Annual Review of Fluid Mechanics, 2022, 54(1): 413-441.
- [4] Barnes H A. Thixotropy—a Review[J]. Journal of Non-Newtonian Fluid Mechanics, 1997, 70(1): 1-33.
- [5] Banerjee R, Ray S S. Role of Rheology in Morphology Development and Advanced Processing of Thermoplastic Polymer Materials: A Review[J]. ACS Omega, 2023, 8(31): 27969-28001.
- [6] Zener C M, Siegel S. Elasticity and Anelasticity of Metals.[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1468-1468.
- [7] Hajikarimi P, Sadat Hosseini A. Viscoelasticity Theoretical Background[M]//Constructional Viscoelastic Composite Materials: Theory and Application. Singapore: Springer Nature Singapore, 2023: 9-41.
- [8] Sun H, Jiang Y, Zhang Y, et al. A Review of Constitutive Models for Non-Newtonian Fluids[J]. Fractional Calculus and Applied Analysis, 2024, 27(4): 1483-1526.
- [9] Kuschel S, Ho P J, Al Haddad A, et al. Non-Linear Enhancement of Ultrafast X-ray Diffraction through Transient Resonances[J]. Nature Communications, 2025, 16(1): 847.
- [10] Sun R, Yang J, Patil S, et al. Relaxation dynamics of deformed polymer nanocomposites as revealed by small-angle scattering and rheology[J]. Soft Matter, 2022, 18(46): 8867-8884.
- [11] Ling S, Wu Z, Mei J. Comparison and Review of Classical and Machine Learning-Based Constitutive Models for Polymers Used in Aeronautical Thermoplastic Composites[J]. Reviews On Advanced Materials Science 2023, 62(1): 20230107.
- [12] Martín-Roca J, Bianco V, Alarcón F, et al. Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling[J]. The Journal of

- Chemical Physics, 2023, 158(7): 074902.
- [13] Jeon E, Kim H, Kim G, et al. A review of bacterial biofilm formation and growth: rheological characterization, techniques, and applications[J]. Korea-Australia Rheology Journal, 2023, 35(4): 267-278.
- [14] Campbell G A, Zak M E, Wetzel M D. Newtonian, Power Law, and Infinite Shear Flow Characteristics of Concentrated Slurries Using Percolation Theory Concepts[J]. Rheologica Acta, 2018, 57(3): 197-216.
- [15] Schreuders F K, Sagis L M, Bodnár I, et al. Non-linear rheology reveals the importance of elasticity in meat and meat analogues[J]. Scientific reports, 2022, 12(1): 1334.
- [16] Kim J, Jeong E H, Baik J H, et al. The Role of Rheology in Cosmetics Research: A Review [J]. Korea-Australia Rheology Journal, 2024, 36(4): 271-282.
- [17] Murch W L, Spiridigliozzi J, Heller A, et al. Non-invasive, continuous oral delivery of solid levodopa-carbidopa for management of Parkinson's disease[J]. Scientific Reports, 2024, 14(1): 26826.
- [18] Zhang H, Li A, Su Y, et al. Modification Technologies and Constitutive Models of Viscoelastic Damping Materials: Progress and Future Trends[J]. Construction and Building Materials, 2024, 441: 137406.
- [19] Wang L, Martínez J A I, Ulliac G, et al. Non-reciprocal and non-Newtonian mechanical metamaterials[J]. Nature Communications, 2023, 14(1): 4778.
- [20] Lowe G D, Forbes C. Rheology of cardiovascular disease[J]. Clinical blood rheology, 2019: 113-140.
- [21] Ricarte R G, Shanbhag S. A Tutorial Review of Linear Rheology for Polymer Chemists: Basics and Best Practices for Covalent Adaptable Networks[J]. Polymer Chemistry, 2024, 15(9): 815-846.
- [22] Yao D, Zatloukal M. Inelastic Fluid Models with an Objective Stretch Rate Parameter[J]. Journal of Non-Newtonian Fluid Mechanics, 2024, 334: 105320.
- [23] Song J K, Holten-Andersen N, Mckinley G H. Non-Maxwellian Viscoelastic Stress Relaxations in Soft Matter[J]. Soft Matter, 2023, 19(41): 7885-7906.
- [24] Maxwell J C. IV. On the dynamical theory of gases[J]. Philosophical transactions of the Royal Society of London, 1867(157): 49-88.

- [25] Voigt W. Ueber Innere Reibung Fester Körper, Insbesondere Der Metalle[J]. Annalen der Physik, 1892, 283(12): 671-693.
- [26] Bagley R L, Torvik P J. On the fractional calculus model of viscoelastic behavior[J]. Journal of Rheology, 1986, 30(1): 133-155.
- [27] Boltzmann L. Zur Theorie Der Elastischen Nachwirkung[J]. Annalen der Physik, 1878, 241(11): 430-432.
- [28] Fedorowicz K, Prosser R. The Elastic Perfectly Plastic Constitutive Equation for Yield Stress Fluids[J]. Journal Of Non-Newtonian Fluid Mechanics, 2024, 325: 105201.
- [29] Bingham E C. An investigation of the laws of plastic flow[J]. Bulletin of the Bureau of Standards, 1916, 13: 309-353.
- [30] Herschel W H, Bulkley R. Konsistenzmessungen von gummi-benzollösungen[J]. Kolloid-Zeitschrift, 1926, 39: 291-300.
- [31] Magnon E, Cayeux E. Precise method to estimate the herschel-bulkley parameters from pipe rheometer measurements[J]. Fluids, 2021, 6(4): 157.
- [32] Papanastasiou T C. Flows of materials with yield[J]. Journal of rheology, 1987, 31(5): 385-404.
- [33] Oldroyd J. Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1958, 245(1241): 278-297.
- [34] Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility[J]. Journal of Non-Newtonian Fluid Mechanics, 1982, 11(1-2): 69-109.
- [35] Peng S, Li J y, Xiong Y l, et al. Numerical simulation of two-dimensional unsteady Giesekus flow over a circular cylinder[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 294: 104571.
- [36] Kim S K. Viscosity model based on Giesekus equation[J]. Applied Rheology, 2024, 34(1): 20240004.
- [37] Fattal R, Kupferman R. Constitutive laws for the matrix-logarithm of the conformation tensor[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 123(2-3): 281-285.
- [38] Thien N P, Tanner R I. A new constitutive equation derived from network theory[J].

- Journal of Non-Newtonian Fluid Mechanics, 1977, 2(4): 353-365.
- [39] Bird R B, Dotson P J, Johnson N. Polymer solution rheology based on a finitely extensible bead—spring chain model[J]. Journal of Non-Newtonian Fluid Mechanics, 1980, 7(2-3): 213-235.
- [40] Qi H, Xu M. Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model[J]. Acta Mechanica Sinica, 2007, 23(5): 463-469.
- [41] Kaye A. Non-Newtonian flow in incompressible fluids[J]. College of Aeronautics Note 134 & 149, 1962.
- [42] Bernstein B, Kearsley E, Zapas L. A study of stress relaxation with finite strain[J]. Transactions of the Society of Rheology, 1963, 7(1): 391-410.
- [43] Mitsoulis E, Hatzikiriakos S G. 60 Years of the Kaye-Bernstein, Kearsley, Zapas Rheological Constitutive Law for Polymers[J]. Physics Of Flow, 2023, 35(10): 103111.
- [44] Doi M, Edwards S. Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978, 74: 1789-1801.
- [45] Doi M, Edwards S. Dynamics of concentrated polymer systems. Part 2.—Molecular motion under flow[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978, 74: 1802-1817.
- [46] Doi M, Edwards S. Dynamics of concentrated polymer systems. Part 3.—The constitutive equation[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978, 74: 1818-1832.
- [47] Doi M, Edwards S. Dynamics of concentrated polymer systems. Part 4.—Rheological properties[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1979, 75: 38-54.
- [48] O'Connor N P T, Ball R C. Confirmation of the Doi-Edwards model[J]. Macromolecules, 1992, 25: 5677-5682.
- [49] Hassager O, Hansen R. Constitutive equations for the Doi–Edwards model without independent alignment[J]. Rheologica acta, 2010, 49: 555-562.
- [50] Chupin L. Mathematical Existence Results for the Doi–Edwards Polymer Model[J]. Archive for Rational Mechanics and Analysis, 2017, 223: 1-55.

- [51] Alves M, Oliveira P, Pinho F. Numerical Methods for Viscoelastic Fluid Flows[J]. Annual Review of Fluid Mechanics, 2021, 53(1): 509-541.
- [52] Stadler F J. What Are Typical Sources of Error in Rotational Rheometry of Polymer Melts?[J]. Korea-Australia Rheology Journal, 2014, 26(3): 277-291.
- [53] Zhai X, Chen Z M. Global Well-Posedness to the n-Dimensional Compressible Oldroyd-B Model Without Damping Mechanism[J]. Journal of Dynamics and Differential Equations, 2024, 36(2): 1405-1433.
- [54] Li J, Si Z, Shang K, et al. Coupling effect of LDPE molecular chain structure and additives on the rheological behaviors of cable insulating materials[J]. Polymers, 2023, 15(8): 1883.
- [55] Sgouros A, Megariotis G, Theodorou D. Slip-spring model for the linear and nonlinear viscoelastic properties of molten polyethylene derived from atomistic simulations[J]. Macromolecules, 2017, 50(11): 4524-4541.
- [56] Sato T, Yoshimoto K. Recent Developments on Multiscale Simulations for Rheology and Complex Flow of Polymers[J]. Korea-Australia Rheology Journal, 2024, 36(4): 253-269.
- [57] Webb M A, Delannoy J Y, De Pablo J J. Graph-based approach to systematic molecular coarse-graining[J]. Journal of chemical theory and computation, 2018, 15(2): 1199-1208.
- [58] Behbahani A F, Schneider L, Rissanou A, et al. Dynamics and rheology of polymer melts via hierarchical atomistic, coarse-grained, and slip-spring simulations[J]. Macromolecules, 2021, 54(6): 2740-2762.
- [59] Morii Y, Kawakatsu T. Lagrangian multiscale simulation of complex flows[J]. Physics of Fluids, 2021, 33(9).
- [60] Amamoto Y. Data-Driven Approaches for Structure-Property Relationships in Polymer Science for Prediction and Understanding[J]. Polymer Journal, 2022, 54(8): 957-967.
- [61] Wang H, Fu T, Du Y, et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 2023, 620(7972): 47-60.
- [62] Uesaka Y, Aizawa T, Ebara T, et al. A theory of learnability[J]. Kybernetik, 1973, 13: 123-131.
- [63] Liu X, Zhang F, Hou Z, et al. Self-supervised learning: Generative or contrastive[J]. IEEE transactions on knowledge and data engineering, 2021, 35(1): 857-876.
- [64] Quinlan J R. Induction of decision trees[J]. Machine learning, 1986, 1:81-106.

- [65] Breiman L. Random forests[J]. Machine learning, 2001, 45: 5-32.
- [66] Cortes C. Support-Vector Networks[J]. Machine Learning, 1995, 20: 273-297.
- [67] Cover T, Hart P. Nearest neighbor pattern classification[J]. IEEE transactions on information theory, 1967, 13(1): 21-27.
- [68] Yang L, Zhang Z, Song Y, et al. Diffusion models: A comprehensive survey of methods and applications[J]. ACM Computing Surveys, 2023, 56(4): 1-39.
- [69] Xu P, Zhu X, Clifton D A. Multimodal learning with transformers: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 12113-12132.
- [70] Xie Y, Xu Z, Zhang J, et al. Self-Supervised Learning of Graph Neural Networks: A Unified Review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2412-2429.
- [71] Zhu Y, Wu Y, Sebe N, et al. Vision + X: A Survey on Multimodal Learning in the Light of Data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 9102-9122.
- [72] Choudhary K, DeCost B, Chen C, et al. Recent advances and applications of deep learning methods in materials science[J]. npj Computational Materials, 2022, 8(1): 59.
- [73] Biamonte J, Wittek P, Pancotti N, et al. Quantum machine learning[J]. Nature, 2017, 549(7671): 195-202.
- [74] Bufano F, Riggi S, Sciacca E, et al. Machine Learning for Astrophysics: Proceedings of the ML4Astro International Conference 30 May-1 Jun 2022[M]. Springer Nature, 2023.
- [75] Brunton S L, Noack B R, Koumoutsakos P. Machine Learning for Fluid Mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52(1): 477-508.
- [76] Udrescu S M, Tegmark M. AI Feynman: A Physics-Inspired Method for Symbolic Regression[J]. Science Advances, 2020, 6(16): eaay2631.
- [77] Colen J, Han M, Zhang R, et al. Machine Learning Active-Nematic Hydrodynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10): e2016708118.
- [78] Bahiuddin I, Mazlan S A, Imaduddin F, et al. Review of Modeling Schemes and Machine Learning Algorithms for Fluid Rheological Behavior Analysis[J]. Journal of the Mechanical Behavior of Materials, 2024, 33(1): 20220309.

- [79] Mangal D, Jha A, Dabiri D, et al. Data-Driven Techniques in Rheology: Developments, Challenges and Perspective[J]. Current Opinion in Colloid & Interface Science, 2025, 75: 101873.
- [80] Alsabaa A, Gamal H, Elkatatny S, et al. Machine Learning Model for Monitoring Rheological Properties of Synthetic Oil-Based Mud[J]. ACS Omega, 2022, 7(18): 15603-15614.
- [81] Shakeel M, Pourafshary P, Hashmet M R, et al. Application of machine learning techniques to predict viscosity of polymer solutions for enhanced oil recovery[J]. Energy Systems, 2023: 1-24.
- [82] Mustafa A, Haider D, Barua A, et al. Machine Learning Based Microfluidic Sensing Device for Viscosity Measurements[J]. Sensors & Diagnostics, 2023, 2(6): 1509-1520.
- [83] Ponick A, Langer A, Beyer D, et al. Image-Based Deep Learning for Rheology Determination of Bingham Fluids[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, 43:711-720.
- [84] Chen Y, Peng B, Kontogeorgis G M, et al. Machine learning for the prediction of viscosity of ionic liquid-water mixtures[J]. Journal of Molecular Liquids, 2022, 350: 118546.
- [85] Zhang Y, Jin H, Liu H, et al. Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process[J]. Polymers, 2022, 14(5): 1018.
- [86] Zhang L, Shao S. Image-based machine learning for materials science[J]. Journal of Applied Physics, 2022, 132(10): 100701.
- [87] Zhang J, Liu Y, Chandra Sekhar.P D, et al. Rapid, Autonomous High-Throughput Characterization of Hydrogel Rheological Properties via Automated Sensing and Physics-Guided Machine Learning[J]. Applied Materials Today, 2023, 30: 101720.
- [88] Verheyen C A, Uzel S G, Kurum A, et al. Integrated Data-Driven Modeling and Experimental Optimization of Granular Hydrogel Matrices[J]. Matter, 2023, 6(3): 1015-1036.
- [89] Martineau R L, Bayles A V, Hung C S, et al. Engineering Gelation Kinetics in Living Silk Hydrogels by Differential Dynamic Microscopy Microrheology and Machine Learning [J]. Advanced Biology, 2022, 6(1): 2101070.
- [90] Lee S, Kim S R, Lee H J, et al. Predictive model for the spreadability of cosmetic for-

- mulations based on large amplitude oscillatory shear (LAOS) and machine learning[J]. Physics of Fluids, 2022, 34(10): 103109.
- [91] Lu L, Gao X, Dietiker J F, et al. Machine learning accelerated discrete element modeling of granular flows[J]. Chemical Engineering Science, 2021, 245: 116832.
- [92] Seryo N, Sato T, Molina J J, et al. Learning the Constitutive Relation of Polymeric Flows with Memory[J]. Physical Review Research, 2020, 2(3): 033107.
- [93] Bai J, Zhou Y, Rathnayaka C M, et al. A Data-Driven Smoothed Particle Hydrodynamics Method for Fluids[J]. Engineering Analysis with Boundary Elements, 2021, 132: 12-32.
- [94] Li W, Burkhart C, Polinska P, et al. Backmapping Coarse-Grained Macromolecules: An Efficient and Versatile Machine Learning Approach[J]. The Journal Of Chemical Physics, 2020, 153(4): 041101.
- [95] Zhao L, Li Z, Caswell B, et al. Active Learning of Constitutive Relation from Mesoscopic Dynamics for Macroscopic Modeling of Non-Newtonian Flows[J]. Journal of Computational Physics, 2018, 363: 116-127.
- [96] Saadat M, Mangal D, Jamali S. A Rheologist's Guideline to Data-Driven Recovery of Complex Fluids' Parameters from Constitutive Models[J]. Digital Discovery, 2023, 2(4): 915-928.
- [97] Reyes B, Howard A, Perdikaris P, et al. Learning Unknown Physics of Non-Newtonian Fluids[J]. Physical Review Fluids, 2021, 6(7): 073301.
- [98] Karniadakis G E, Kevrekidis I G, Lu L, et al. Physics-Informed Machine Learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440.
- [99] Raissi M, Perdikaris P, Karniadakis G. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
- [100] Mahmoudabadbozchelou M, Jamali S. Rheology-Informed Neural Networks (RhINNs) for Forward and Inverse Metamodelling of Complex Fluids[J]. Scientific Reports, 2021, 11(1): 12015.
- [101] Dabiri D, Saadat M, Mangal D, et al. Fractional Rheology-Informed Neural Networks for Data-Driven Identification of Viscoelastic Constitutive Models[J]. Rheologica Acta, 2023, 62(10): 557-568.

- [102] Zhang T, Wang D, Lu Y. RheologyNet: A Physics-Informed Neural Network Solution to Evaluate the Thixotropic Properties of Cementitious Materials[J]. Cement and Concrete Research, 2023, 168: 107157.
- [103] Nagrani P P, Kulkarni R V, Kelkar P U, et al. Data-Driven Rheological Characterization of Stress Buildup and Relaxation in Thermal Greases[J]. Journal of Rheology, 2023, 67(6): 1129-1140.
- [104] Tucny J M, Durve M, Montessori A, et al. Learning of Viscosity Functions in Rarefied Gas Flows with Physics-Informed Neural Networks[J]. Computers and Fluids, 2024, 269: 106114.
- [105] Howard A, Dong J, Patel R, et al. Machine Learning Methods for Particle Stress Development in Suspension Poiseuille Flows[J]. Rheologica Acta, 2023, 62(10): 507-534.
- [106] Mahmoudabadbozchelou M, Caggioni M, Shahsavari S, et al. Data-Driven Physics-Informed Constitutive Metamodeling of Complex Fluids: A Multifidelity Neural Network (MFNN) Framework[J]. Journal of Rheology, 2021, 65(2): 179-198.
- [107] Mahmoudabadbozchelou M, Kamani K M, Rogers S A, et al. Digital Rheometer Twins: Learning the Hidden Rheology of Complex Fluids through Rheology-Informed Graph Neural Networks[J]. Proceedings of the National Academy of Sciences, 2022, 119(20): e2202234119.
- [108] Sato T, Miyamoto S, Kato S. Rheo-SINDy: Finding a Constitutive Model from Rheological Data for Complex Fluids Using Sparse Identification for Nonlinear Dynamics [J]. Journal of Rheology, 2025, 69(1): 15-34.
- [109] Lennon K R, McKinley G H, Swan J W. Scientific Machine Learning for Modeling and Simulating Complex Fluids[J]. Proceedings of the National Academy of Sciences, 2023, 120(27): e2304669120.
- [110] Mahmoudabadbozchelou M, Kamani K M, Rogers S A, et al. Unbiased Construction of Constitutive Relations for Soft Materials from Experiments via Rheology-Informed Neural Networks[J]. Proceedings of the National Academy of Sciences, 2024, 121(2): e2313658121.
- [111] Lu L, Jin P, Pang G, et al. Learning Nonlinear Operators via DeepONet Based on the Universal Approximation Theorem of Operators[J]. Nature Machine Intelligence, 2021,

- 3(3): 218-229.
- [112] Rashid M M, Pittie T, Chakraborty S, et al. Learning the stress-strain fields in digital composites using Fourier neural operator[J]. Iscience, 2022, 25(11): 105452.
- [113] You H, Zhang Q, Ross C J, et al. Learning deep implicit Fourier neural operators (IFNOs) with applications to heterogeneous material modeling[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 398: 115296.
- [114] Elman J L. Finding Structure in Time[J]. Cognitive Science, 1990, 14(2): 179-211.
- [115] Schmidhuber J, Hochreiter S, et al. Long short-term memory[J]. Neural Comput, 1997, 9(8): 1735-1780.
- [116] Cho K, Van Merrienboer B, Gulcehre C, et al. Learning Phrase Representations Using RNN Encoder Decoder for Statistical Machine Translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014: 1724-1734.
- [117] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
- [118] Li Z, Liu F, Yang W, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE transactions on neural networks and learning systems, 2021, 33(12): 6999-7019.
- [119] Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017: 6000-6010.
- [120] Gu A, Dao T. Mamba: Linear-Time Sequence Modeling with Selective State Spaces[C] //First Conference on Language Modeling. Philadelphia, Pennsylvania, United States: OpenReview, 2024: 1-32.
- [121] Raissi M, Perdikaris P, Karniadakis G. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
- [122] Lu L, Meng X, Mao Z, et al. DeepXDE: A Deep Learning Library for Solving Differential Equations[J]. SIAM Review, 2021, 63(1): 208-228.
- [123] Farmer J, Oian C A, Bowman B A, et al. Empirical Loss Weight Optimization for PINN

- Modeling Laser Bio-Effects on Human Skin for the 1D Heat Equation[J]. Machine Learning with Applications, 2024, 16: 100563.
- [124] Xiang Z, Peng W, Liu X, et al. Self-Adaptive Loss Balanced Physics-informed Neural Networks[J]. Neurocomputing, 2022, 496: 11-34.
- [125] Song Y, Wang H, Yang H, et al. Loss-Attentional Physics-Informed Neural Networks [J]. Journal of Computational Physics, 2024, 501: 112781.
- [126] Shah J, Lineswala R, Chopra A. Benchmarking Quantum-Assisted PINN (QA-PINN) for Computational Fluid Dynamics[C]//2024 IEEE International Conference on Quantum Computing and Engineering (QCE). Montreal, QC, Canada: IEEE, 2024: 1707-1712.
- [127] Hillebrecht B, Unger B. Certified machine learning: A posteriori error estimation for physics-informed neural networks[C]//2022 International Joint Conference on Neural Networks (IJCNN). Padua, Italy: IEEE, 2022: 1-8.
- [128] Haitsiukevich K, Ilin A. Improved Training of Physics-Informed Neural Networks with Model Ensembles[C]//2023 International Joint Conference on Neural Networks (IJCNN). Gold Coast, Australia: IEEE, 2023: 1-8.
- [129] Dai Y, Gieseke F, Oehmcke S, et al. Attentional feature fusion[C]//Proceedings of the IEEE/CVF winter conference on applications of computer vision. Waikoloa, HI, USA: IEEE, 2021: 3560-3569.
- [130] Cui M, Li K, Chen J, et al. CM-Unet: A Novel Remote Sensing Image Segmentation Method Based on Improved U-Net[J]. IEEE Access, 2023, 11: 56994-57005.
- [131] Rong Y, Wei X, Lin T, et al. DynStatF: an efficient feature fusion strategy for LiDAR 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, BC, Canada: IEEE, 2023: 3237-3246.
- [132] Nagrani A, Yang S, Arnab A, et al. Attention bottlenecks for multimodal fusion[J]. Advances in neural information processing systems, 2021, 34: 14200-14213.
- [133] Kingma D P, Welling M. Auto-Encoding Variational Bayes[C]//International Conference on Learning Representations. Banff, Canada: OpenReview, 2014: 1-14.
- [134] Sohn K, Yan X, Lee H. Learning Structured Output Representation Using Deep Conditional Generative Models[C]//Proceedings of the 29th International Conference on

- Neural Information Processing Systems Volume 2. Cambridge, MA, USA: MIT Press, 2015: 3483-3491.
- [135] Bengio Y, Senécal J S. Adaptive importance sampling to accelerate training of a neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3: 1137-1155.
- [136] Bond-Taylor S, Leach A, Long Y, et al. Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7327-7347.
- [137] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]// Advances in Neural Information Processing Systems. Montreal, Canada: Curran Associates, Inc., 2014: 2672-2680.
- [138] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
- [139] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[J]. Advances in neural information processing systems, 2020, 33: 6840-6851.
- [140] Song Y, Sohl-Dickstein J, Kingma D P, et al. Score-Based Generative Modeling through Stochastic Differential Equations[C]//International Conference on Learning Representations. Vienna, Austria: OpenReview, 2021: 1-36.
- [141] Cao H, Tan C, Gao Z, et al. A Survey on Generative Diffusion Models[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 2814-2830.

附 录 1

在论文撰写规范中,下面两段话让人费解:

- 1. 对需要收录于学位论文中但又不适合书写于正文中的附加数据、方案、资料、详细公式推导、计算机程序、统计表、注释等有特色的内容,可做为附录排写,序号采用"附录 1"、"附录 2"等。
- 2. 公式序号按章编排,如第一章第一个公式序号为"(1-1)",附录 2 中的第一个公式 为"(2-1)"等。

论文撰写规范要求的附录和通常书籍上使用附录 A、附录 B 等编号的不一样,容易和正文混淆。特殊的要求和代码的耦合,使我不得不使用比较笨的方法来设计附录部分的模板。这部分还需要有附录需求的同学来完善,为了目录中美观且不命名冲突,还是不在附录使用图表。

1.1 测试一级标题 section

1.1.1 测试二级标题 subsection

1.1.1.1 测试三级标题 subsubsection

$$\begin{cases} \dot{v}_1(t) = v_2(t) \\ \dot{v}_2(t) = R^2 \left(-\zeta_1 \left[v_1(t) - v_c(t) \right]^{\alpha} - \zeta_2 \left[\frac{v_2(t)}{R} \right]^{\beta} \right) \end{cases}$$
 (1-1)

$$\begin{cases}
\dot{v}_1(t) = v_2(t) \\
\dot{v}_2(t) = R^2 \left(-\zeta_1 \left[v_1(t) - v_c(t) \right]^{\alpha} - \zeta_2 \left[\frac{v_2(t)}{R} \right]^{\beta} \right)
\end{cases}$$
(1-2)

1.2 测试测试测试

1.2.1 测试测试测试

附 录 2

在论文撰写规范中,下面两段话让人费解:

- 1. 对需要收录于学位论文中但又不适合书写于正文中的附加数据、方案、资料、详细公式推导、计算机程序、统计表、注释等有特色的内容,可做为附录排写,序号采用"附录1"、"附录2"等。
- 2. 公式序号按章编排,如第一章第一个公式序号为"(1-1)",附录 2 中的第一个公式 为"(2-1)"等。

论文撰写规范要求的附录和通常书籍上使用附录 A、附录 B等编号的不一样,上述要求最终的效果是这些编号容易和正文的混淆。特殊的要求和代码的耦合,使我不得不使用比较笨的方法来设计附录部分的模板。这部分还需要有附录需求的同学来完善,为了目录中美观且不命名冲突,还是不在附录使用图表。

2.1 测试测试测试

2.1.1 测试测试测试

测试测试测试测试测试测试测试测试测试测试测试测试测试

$$\begin{cases} \dot{v}_{1}(t) = v_{2}(t) \\ \dot{v}_{2}(t) = R^{2} \left(-\zeta_{1} \left[v_{1}(t) - v_{c}(t) \right]^{\alpha} - \zeta_{2} \left[\frac{v_{2}(t)}{R} \right]^{\beta} \right) \end{cases}$$
 (2-1)

$$\begin{cases} \dot{v}_{1}(t) = v_{2}(t) \\ \dot{v}_{2}(t) = R^{2} \left(-\zeta_{1} \left[v_{1}(t) - v_{c}(t) \right]^{\alpha} - \zeta_{2} \left[\frac{v_{2}(t)}{R} \right]^{\beta} \right) \end{cases}$$
 (2-2)

攻读博士/硕士学位期间取得的研究成果

一、已发表(包括已接受待发表)的论文,以及已投稿、或已成文打算投稿、或拟成文投稿的 论文情况**(只填写与学位论文内容相关的部分)**:

号	作者(全体作者,按顺序排列)	题目	发表或投稿刊 物名称、级别	发表的卷期、 年月、页码	哪一部分 (章、节)相 关	引收 录情 况
1 2	redfu	在 LaTeX 中有三种基本的列举	acm	2000.04,100(10)	第三章	已见 刊

注:在"发表的卷期、年月、页码"栏:

- 1. 如果论文已发表,请填写发表的卷期、年月、页码;
- 2. 如果论文已被接受,填写将要发表的卷期、年月;
- 3. 以上都不是,请据实填写"已投稿","拟投稿"。

不够请另加页。

二、与学位内容相关的其它成果(包括专利、著作、获奖项目等)

致 谢

这次你离开了没有像以前那样说再见,再见也他妈的只是再见我们之间从来没有想象的那么接近,只是两棵树的距离你是否还记得山阴路我八楼的房间,房间里唱歌的日日夜夜那么热的夏天你看着外面,看着你在消逝的容颜我多么想念你走在我身边的样子,想起来我的爱就不能停止南京的雨不停地下不停地下,就像你沉默的委屈一转眼,我们的城市又到了夏天,对面走来的人都眯着眼人们不敢说话不敢停下脚步,因为心动常常带来危险我多么想念你走在我身边的样子,想起来我的爱就不能停止南京的雨不停地下不停地下,有些人却注定要相遇你是一片光荣的叶子,落在我卑贱的心像往常一样我为自己生气并且歌唱那么乏力,爱也吹不动的叶子

作者姓名 2020 年 7 月 10 日 于华南理工大学