

OFFICE DU BACCALAUREAT

Téléfax (221) 824 65 81 - Tél. : 824 95 92 - 824 65 81

17 G 18 A 0 1 Durée : 4 heures

Séries : S1-S3 – Coef. 8

Epreuve du 1^{er} groupe

SCIENCES PHYSIQUES

Les tables et calculatrices réglementaires sont autorisées.

EXERCICE 1

(03 points)

Plus on est âgé, moins les protéines sont assimilées et bien utilisées par le corps.

En ajoutant de la leucine à l'alimentation et aux protéines, le corps retrouve sa capacité d'assimilation et d'utilisation des protéines. On peut trouver la leucine en quantité notable dans les arachides, le riz, le thon, le filet de bœuf...

Dans ce qui suit on se propose d'étudier la structure de la leucine et quelques-unes de ses propriétés.

- **1.1.** La leucine est un acide α-aminé de formule semi-développée $CH_3 CH CH_2 CH COOH \\ CH_3 \qquad NH_2$
 - 1.1.1. Donner le nom de la leucine dans la nomenclature officielle. La molécule de leucine est-elle chirale ? Justifier la réponse.(0,5 pt)
 - 1.1.2. La D-leucine présente des propriétés antalgiques utilisées en médecine dans le traitement de la douleur. La L-leucine a une saveur sucrée et elle est utilisée comme additif alimentaire.
 Ecrire les représentations de Fischer de la L-leucine et de la D-Leucine.
 (0,5 pt)
- 1.2. Dans une solution aqueuse de leucine il existe, entre autres espèces chimiques, un ion dipolaire appelé amphion ou zwittérion.
 - 1.2.1 Ecrire la formule semi-développée de cet amphion.

(0,25 pt)

- 1.2.2 L'amphion intervient dans deux couples acide/base. Ecrire ces couples acide/base. (0,5 pt)
- 1.2.3 On considère la solution particulière de leucine dans laquelle la concentration de l'acide conjugué de l'amphion est égale à celle de la base conjuguée de l'amphion. Le pH de cette solution est appelé pH isoélectrique, noté pHi.
 - **1.2.3.1** Etablir l'expression de pHi en fonction des pka des deux couples acide/base associés à l'amphion que l'on notera pka₁ et pka₂. La valeur de pHi dépend-elle de la concentration totale en acide aminé ? **(0,25 pt)**
 - **1.2.3.2** Sachant que pour la leucine pHi = 6,0 et que le pka de l'un des couples est 9,6, en déduire le pka de l'autre couple acide/base. **(0,25 point)**
- 1.3. On fait réagir la leucine avec un acide α-aminé A de formule R-CH(NH₂)-COOH où R est un radical alkyle. On obtient un dipeptide de masse molaire 202 g.mol⁻¹.
 - 1.3.1. Déterminer la formule semi-développée de l'acide α-aminé A.

(0,25 pt)

1.3.2. On considère le dipeptide pour lequel la leucine est l'acide α aminé N-terminal.

Ecrire la formule semi-développée de ce dipeptide. Préciser les différentes étapes de la synthèse de ce dipeptide (il n'est pas demandé d'écrire les équations de réaction de ces étapes).

(0,5 pt)

 $M(C)= 12 \text{ g.mol}^{-1}$; $M(O)= 16 \text{ g.mol}^{-1}$; $M(H)= 1 \text{ g.mol}^{-1}$; $M(N)= 14 \text{ g.mol}^{-1}$.

EXERCICE 2: (03 points)

L'eau oxygénée est un produit qui présente de nombreux avantages et s'utilise au quotidien, pour la maison mais aussi pour l'esthétique. Le plus souvent ce produit est utilisé comme agent de blanchiment. L'eau oxygénée a également des vertus stérilisantes et désinfectantes.

La décomposition de l'eau oxygénée est une réaction lente représentée par l'équation-bilan suivante :

$$2 H_2O_2 \rightarrow 2 H_2O + O_2$$

Pour étudier la cinétique de cette réaction, on introduit de l'eau oxygénée dans un ballon avec du chlorure de fer III (qui sert de catalyseur) de façon à obtenir une solution dont la concentration molaire initiale en eau oxygénée est de 6 mmol.L⁻¹. La température est maintenue constante. On effectue des prélèvements réguliers, qui sont ensuite dosés par une solution titrée de permanganate de potassium en milieu acide. Les mesures réalisées ont permis de tracer la courbe représentant les variations de la concentration de l'eau oxygénée restante en fonction du temps (document 1).

17 G 18 A 01 Séries : S1-S3

Epreuve du 1^{er} groupe

- **2.1.** Ecrire l'équation bilan de la réaction support du dosage sachant que les couples oxydants-réducteurs mis en jeux sont : MnO_4^{-1}/Mn^{2+} et O_2/H_2O_2 . **(0,5 pt)**
- <u>2.2.</u> Définir la vitesse volumique de disparition v(t) de l'eau oxygénée à la date t.
 Déterminer graphiquement sa valeur à l'instant t = 0.
 (0,5 pt)
- <u>2.3</u> Déterminer le temps de demi-réaction et la valeur de la vitesse instantanée de disparition de l'eau oxygénée à cette date

(0.5 pt).

- 2.4 Comment évolue la vitesse instantanée de disparition de l'eau oxygénée au cours du temps ? Justifier cette évolution. (0,5 pt)
- 2.5. On cherche à déterminer une relation simple entre la vitesse instantanée volumique de disparition de l'eau oxygénée et sa concentration molaire dans le milieu réactionnel.
 - **2.5.1.** Dans les conditions de l'expérience la concentration instantanée C_t en eau oxygénée évolue

Document 1

conformément à la relation $C_{t=}C_{o}\,e^{-K\,t}$ où C_{o} est la concentration d'eau oxygénée à la date t=0 et K une constante.

Etablir la loi de variation v(t) de la vitesse de disparition en fonction du temps t.

(0,5 pt)

2.5.2. Tenant compte de la valeur trouvée à la question 2.2, calculer K. En déduire une relation simple entre la vitesse de disparition v(t) et la concentration C_t de l'eau oxygénée à l'instant t. En utilisant ce résultat, calculer la valeur de v(t) à t = 14 min. (0,5 pt)

EXERCICE3 (04 points)

On considère un dispositif servant de lancement d'objets qui a la forme d'une portion de cercle de plan vertical, de longueur $\widehat{M_0M_1}$, de centre O et de rayon r (document 2). Son revêtement rend les frottements négligeables. On étudie, dans le référentiel terrestre galiléen, le mouvement d'un ballon de masse m supposé ponctuel posé sur le dispositif.

Dans toute la suite on rapporte le mouvement du ballon au repère cartésien orthonormé (OX,OY); l'axe OX étant horizontal.

- **3.1.** Le ballon est abandonné sur le dispositif à partir du point M_0 qu'il quitte avec une vitesse initiale nulle pour aller en M_1 . Il glisse sans rouler le long de l'arc $\widehat{M_0M_1}$.
- Document 2
- 3.1.1. Faire le bilan des forces agissant sur le ballon lorsqu'il arrive en un point M de l'arc (voir document 2); reproduire le document et représenter ces forces en M
- **3.1.2.** Par application du théorème du centre d'inertie, trouver l'expression de l'intensité R de la réaction au point M en fonction du module v de la vitesse, de l'angle θ , de la masse m, du rayon r et de l'intensité de la pesanteur g. (0,5 pt)
- 3.1.3. En appliquant le théorème de l'énergie cinétique, montrer que la vitesse du ballon en M est telle que $v^2 = 2$ g r(1-sin θ). (0,5 pt)
- **3.1.4** Le mobile quitte la piste au point M_1 d'élongation angulaire $\theta_1 = (\overrightarrow{OX}, \overrightarrow{OM_1})$

Déterminer la valeur de l'angle θ_1 . En déduire l'expression de la vitesse v_1 du ballon au point M_1 en fonction de g et r. (0,5 pt)

3.2. Dans la deuxième phase du mouvement, le mobile effectue une chute libre qui se termine par une réception au point H sur un plan d'eau horizontal (voir document 2). Dans cette phase, on choisit une nouvelle origine des dates t=0 au point M_1 .

17 G 18 A 01 Séries : S1-S3

Epreuve du 1^{er} groupe

- **3.2.1.** Exprimer les composantes du vecteur vitesse \vec{v}_1 en M_1 dans le repère (OX,OY) en fonction de θ_1 et v_1 . (0,5 pt)
- 3.2.2. Ecrire les équations horaires du mouvement durant cette phase et en déduire l'équation de la trajectoire du ballon. (0,75 pt)
- **3.2.3.** Exprimer la distance OH en fonction de r.

(0,75 pt)

EXERCICE 4

(05 points)

<u>4.1</u> On applique une tension sinusoïdale de valeur efficace constante U et de pulsation ω aux bornes d'un circuit comprenant en série un résistor de résistance variable r, une bobine d'inductance L, de résistance négligeable et un condensateur de capacité C. Pour cette partie on prendra: U = 0,2 V; L = 2.10^{-3} H; ω = $30,15.10^{3}$ rad/s.

- **Document 3**
- **4.1.1.** Exprimer le déphasage φ de la tension instantanée u par rapport à l'intensité instantanée i en fonction de C, L, ω et r. On posera : $u(t) = U_m \cos(\omega t + \varphi)$ et $i(t) = I_m \cos\omega t$. (0,5 pt)
- 4.1.2. En déduire les deux valeurs de C qui produisent un déphasage tel que $IφI = \frac{\pi}{4}$ rad entre la tension et l'intensité pour r = 6 Ω. (0,5 pt)
- 4.1.3. Pour chacune des valeurs de la capacité C , calculer l'intensité efficace correspondante. (0,5 pt)
- <u>4.2.</u> On s'intéresse maintenant aux variations de la puissance P consommée dans la portion du circuit (r L C) en fonction de la résistance r pour une capacité $C = 5.10^{-7} F$.
 - **4.2.1.** Montrer que la puissance consommée dans cette portion de circuit peut être donnée par la relation : $P=\frac{a\,r}{r^2+b}$ avec a et b des constantes à déterminer ; on prendra les valeurs de U, L et ω indiquées en 4.1 (01 pt)
 - 4.2.2. En déduire la valeur optimale de r pour une puissance maximale consommée. (0,5 pt)
 - **4.2.3.** En faisant varier la résistance r du résistor, les mesures ont permis d'obtenir le tableau cidessous :

r(Ω)	0	1	2	4	6	8	10	12	14	16
P(10 ⁻³ W)	0,00	1,07	1,98	3,06	3,32	3,18	2,93	2,66	2,4	2,19

4.2.3.1. Représenter graphiquement P en fonction de r.

Echelle: 1cm pour 2Ω et 1cm pour $0,50.10^{-3}$ W

(0,5 pt)

<u>4.2.3.2.</u> Par exploitation du graphe, trouver la valeur de r notée r₀ pour laquelle la puissance consommée est maximale.

Comparer ce résultat à celui de la question 4.2.2.

(0,5 pt)

4.2.4. Montrer que la puissance maximale consommée peut se mettre sous la forme

$$P_m = \frac{U^2 cos^2 \phi}{r_0} \quad \text{pour des valeurs quelconques mais constantes de U, L, C, } \omega \text{ (sauf pour celle qui annule la quantité } L\omega - \frac{1}{C\omega} \text{)}. \text{ En déduire la valeur du déphasage } \phi \text{ entre la tension u et l'intensité i . Conclure.}$$

4.2.5. A quel cas important correspond l'exception précédente ? Dire qualitativement comment varie la puissance P en fonction de r dans ce cas. **(0,5 pt)**

EXERCICE 5

(05 points)

Le mercure, métal mythique du Moyen Âge, est le seul métal liquide à température ambiante. Il est indissociable de l'or, qu'il permet de purifier. Ce métal de symbole chimique Hg, est utilisable pour la fabrication de thermomètres, de lampes, en plombages et dans d'autres activités.

Le document ci-après représente quelques niveaux d'énergie de l'atome de mercure. L'énergie d'un niveau n est noté E_{n} ; le niveau n = 1 correspond à l'état fondamental.

5.1. A partir du document 4, déterminer :

5.1.1. l'énergie des photons émis lors des transitions indiquées,

(0,75 pt)

5.1.2. les valeurs des longueurs d'onde λ_a , λ_b et λ_c .

On précisera le domaine spectral auquel appartient chaque longueur d'onde (se référer au document 5). (1,5 pt)

On donne: $h = 6,62.10^{-34} J.s^{-1}$; $1eV = 1,6.10^{-19} J$; vitesse de la lumière dans le vide: $C = 3.10^8 \text{ m.s}^{-1}$

<u>5.2.</u> Une source S émet une radiation lumineuse de longueur d'onde λ_1 et éclaire deux fentes fines de Young F_1 et F_2 distantes de a. La source S est à égale distance de ces deux fentes. On place un écran (E), parallèle au plan des fentes et situé à une distance D de celui-ci (document 6). On donne : a = 2 mm; D = 486 mm.

- <u>5.2.2.</u> Le point O de l'écran, origine de l'axe parallèle à F₁F₂, est sur la droite bissectrice de F₁F₂. M est un point de l'écran (E) d'abscisse x.
 - **5.2.2.1.** Etablir l'expression de la différence de marche δ entre deux rayons lumineux issus de F_1 et F_2 arrivant en un point M(x) en fonction de a, D et x. **(0,5 pt)**

Document 4

E

- <u>5.2.2.2.</u> En déduire l'expression donnant les abscisses des points de l'écran situés sur une frange obscure.(0,25 pt)
- <u>5.2.2.3.</u> La distance séparant la $5^{\text{ème}}$ frange brillante et la $3^{\text{ème}}$ frange sombre de part et d'autre de la frange centrale compté zéro est d = 1,024 mm. En déduire la valeur de λ_1 . **(0,5 pt)**
- $\underline{\textbf{5.3.}}$ La source S émet simultanément la radiation de longueur d'onde λ_1 calculée précédemment et une autre radiation de longueur d'onde λ_2 telle que $\frac{\lambda_2}{\lambda_1}=1,5$.
 - **5.3.1.** Au point O de l'écran, on a une superposition des franges brillantes correspondant aux deux radiations. A quelle distance ℓ_1 du centre O de l'écran a-t-on pour la première fois une superposition entre les franges brillantes ? (0,75 pt)
 - 5.3.2. Peut-on observer une extinction totale sur l'écran? Justifier la réponse. (0,5 pt)

Extrait du spectre de la lumière

Document 5

