Swathi Changalarayappa

https://swathic5.github.io/|https://www.linkedin.com/in/swathi-c/|https://github.com/swathic5 swathi_c@tamu.edu|979.571.2681

EDUCATION

TEXAS A&M UNIVERSITY

MS IN COMPUTER ENGINEERING May 2019 | College Station, TX Cum. GPA: 4.0 / 4.0

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA. SURATHKAL

BTECH IN ELECTRONICS AND COMMUNICATION ENGINEERING May 2014 | Surathkal, India Cum. GPA: 8.33 / 10.0

COURSEWORK

GRADUATE

Computer Architecture Microprocessor Systems Design Digital Integrated Circuits Design Artificial Intelligence Analysis of Algorithms

UNDERGRADUATE

Digital system design Linear integrated circuits VLSI design Logic synthesis and techniques VLSI design and automation

SKILLS

PROGRAMMING

Verilog • VHDL • C • C++ • TDL • Python • Perl • TCL

TOOLS

Cadence NCSIM • Magillem • Spyglass Atrenta • Autogen • MATLAB

EXPERIENCE

TEXAS INSTRUMENTS | Design Engineer

July 2014 - July 2017 | Bangalore, India

ARCHITECTURE

- Analyzed architecture of instruction cache based on misses, cycle dependencies and area
- Active interaction with architects in computing early RTL based power using Cadence Joules
- Analyzed performance of system using industrial benchmarks such as Coremark and Dhrystone

DESIGN AND VERIFICATION

- Performed CPF based low power functional verification at RTL and gate level verification of SOC, released to production
- Designed glue-logic using verilog enabling expected functionality between IPs at SOC in verilog
- Gained expertise in IPXACT 1685 standards while integrating IPs using Magillem tool
- Achieved high quality SOC RTL handoff to synthesis team using spyglass
 I int tool
- Performed logic equivalence check between RTL and synthesis/post-layout netlists

METHODOLOGY DEVELOPMENT AND IMPROVEMENT

- Verified isolation correctness using checkers for low power designs
- Identified automated checks to enable quality IP RTL handoff to SOC

TEXAS INSTRUMENTS | INTERN

May 2013 - July 2013 | Bangalore, India

• Improved simulation time by 40% by performing Checkpoint simulation at SOC, method of creating snapshot using Cadence NCSIM simulator

PROJECTS

PERCEPTRON BASED CACHE REUSE PREDICTION FOR LL CACHE IN C++

November 2017 | Texas A&M University

Implementation of dead block prediction in last level caches. Speedup acheived: 6.4%

ITTAGE - INDIRECT BRANCH PREDICTOR IN C++

October 2017 | Texas A&M University

Implementation of ITTAGE to predict indirect branch target lowering MPKI by 93%

DWT BASED IMAGE COMPRESSION

November 2013 | NITK Surathkal

MATLAB and verilog implementation of DWT for image compression as a trade off between compression and quality

ELEVATOR DESIGN ON SPARTAN FPGA

November 2012 | NITK Surathkal

Verilog implementation of elevator control system for 4 floors with power conservation and safety features