Generalized Linear Models 1

October 28, 2018

▶ We have so far studied linear models. We have n observations on a response variable y_1, \ldots, y_n and on each of p explanatory variables x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.

- We have so far studied linear models. We have n observations on a response variable y_1, \ldots, y_n and on each of p explanatory variables x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- The linear model that we have seen models

$$\mu_i := \mathbb{E} y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}.$$

- We have so far studied linear models. We have n observations on a response variable y_1, \ldots, y_n and on each of p explanatory variables x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- The linear model that we have seen models

$$\mu_i := \mathbb{E} y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}.$$

Nhat this model implies is that when there is a unit increase in the explanatory variable x_j , the mean of the response variable changes by the amount β_j .

- We have so far studied linear models. We have n observations on a response variable y_1, \ldots, y_n and on each of p explanatory variables x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- The linear model that we have seen models

$$\mu_i := \mathbb{E} y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}.$$

- ▶ What this model implies is that when there is a unit increase in the explanatory variable x_j , the mean of the response variable changes by the amount β_j .
- This may not always be a reasonable assumption.

For example, if the response y_i is a binary variable, then its mean μ_i is a probability which is always constrained to stay between 0 and 1.

- For example, if the response y_i is a binary variable, then its mean μ_i is a probability which is always constrained to stay between 0 and 1.
- ▶ Therefore, the amount by which μ_i changes per unit change in x_j would now depend on the value of μ_i (for example, the change when $\mu_i = 0.9$ may not be the same as when $\mu_i = 0.5$).

- For example, if the response y_i is a binary variable, then its mean μ_i is a probability which is always constrained to stay between 0 and 1.
- Therefore, the amount by which μ_i changes per unit change in x_j would now depend on the value of μ_i (for example, the change when $\mu_i = 0.9$ may not be the same as when $\mu_i = 0.5$).
- ▶ Therefore, modeling μ_i as a linear combination of x_1, \ldots, x_p may not be the best idea always.

- For example, if the response y_i is a binary variable, then its mean μ_i is a probability which is always constrained to stay between 0 and 1.
- Therefore, the amount by which μ_i changes per unit change in x_j would now depend on the value of μ_i (for example, the change when $\mu_i = 0.9$ may not be the same as when $\mu_i = 0.5$).
- ► Therefore, modeling μ_i as a linear combination of x_1, \ldots, x_p may not be the best idea always.
- A more general model might be

$$g(\mu_i) := \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$
 (1)

for a function g that is not necessarily the identity function.

► Another feature of the linear model that people do not always like is that some aspects of the theory are tied to the normal distribution.

- Another feature of the linear model that people do not always like is that some aspects of the theory are tied to the normal distribution.
- Indeed, most of the results on hypothesis testing rely on the assumption of normality.

- Another feature of the linear model that people do not always like is that some aspects of the theory are tied to the normal distribution.
- Indeed, most of the results on hypothesis testing rely on the assumption of normality.
- ightharpoonup The assumption that y_1, \ldots, y_n are normal may not always be appropriate. Examples arise when y_1, \ldots, y_n are binary

or when they represent counts.

- Another feature of the linear model that people do not always like is that some aspects of the theory are tied to the normal distribution.
- Indeed, most of the results on hypothesis testing rely on the assumption of normality.
- ightharpoonup The assumption that y_1, \ldots, y_n are normal may not always be appropriate. Examples arise when y_1, \ldots, y_n are binary
- or when they represent counts. It might therefore be nice to generalize the theory of linear models to include these other distributional assumptions for the response values.

- Another feature of the linear model that people do not always like is that some aspects of the theory are tied to the normal distribution.
- ► Indeed, most of the results on hypothesis testing rely on the assumption of normality.
- the assumption of normality.
 The assumption that y₁,..., y_n are normal may not always be appropriate. Examples arise when y₁,..., y_n are binary or when they represent counts.
- ► It might therefore be nice to generalize the theory of linear models to include these other distributional assumptions for the response values.
- Generalized Linear Models (GLM) generalize linear models by including both of the above features.

- ▶ They allow more general distributional assumptions for
- y_1, \ldots, y_n and they also allow (1).

▶ In GLMs, the response variables $y_1, ..., y_n$ can be either discrete (have pmfs) or continuous (have pdfs).

- ▶ In GLMs, the response variables $y_1, ..., y_n$ can be either discrete (have pmfs) or continuous (have pdfs).
- ▶ It is assumed that $y_1, ..., y_n$ are independent.

- ► In GLMs, the response variables y₁,..., y_n can be either discrete (have pmfs) or continuous (have pdfs).
- ▶ It is assumed that $y_1, ..., y_n$ are independent.
- We also assume that the pmf or pdf of y_i can be modelled by two parameters θ_i and ϕ_i and can be written as

$$f(x; \theta_i, \phi_i) := h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right).$$
 (2)

- ► In GLMs, the response variables y₁,..., y_n can be either discrete (have pmfs) or continuous (have pdfs).
- ▶ It is assumed that $y_1, ..., y_n$ are independent.
- We also assume that the pmf or pdf of y_i can be modelled by two parameters θ_i and ϕ_i and can be written as

$$f(x; \theta_i, \phi_i) := h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right).$$
 (2)

 θ_i is the main parameter (also called the canonical parameter).

- ► In GLMs, the response variables y₁,..., y_n can be either discrete (have pmfs) or continuous (have pdfs).
- ▶ It is assumed that $y_1, ..., y_n$ are independent.
- We also assume that the pmf or pdf of y_i can be modelled by two parameters θ_i and ϕ_i and can be written as

$$f(x; \theta_i, \phi_i) := h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right).$$
 (2)

- θ_i is the main parameter (also called the canonical parameter).
- ϕ_i is called the dispersion parameter and one often assumes that ϕ_i is the same for all i.

▶ The function $b(\theta_i)$ is called the cumulant function.

- ▶ The function $b(\theta_i)$ is called the cumulant function.
- This distributional form includes the normal density assumption used in the classical linear models. In classical linear models, we assume that $y_i \sim N(\mu_i, \sigma^2)$.

- ▶ The function $b(\theta_i)$ is called the cumulant function.
- This distributional form includes the normal density assumption used in the classical linear models. In classical linear models, we assume that $y_i \sim N(\mu_i, \sigma^2)$.
- The density of y_i can then be written as

$$f(x) := \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-\mu_i)^2}{2\sigma^2}\right)$$

- ▶ The function $b(\theta_i)$ is called the cumulant function.
- This distributional form includes the normal density assumption used in the classical linear models. In classical linear models, we assume that $y_i \sim N(\mu_i, \sigma^2)$.
- ightharpoonup The density of y_i can then be written as

$$f(x) := \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-\mu_i)^2}{2\sigma^2}\right)$$

This can be rewritten as

$$f(x) := \frac{\exp(-y^2/(2\sigma^2))}{\sqrt{2\pi}\sigma} \exp\left(\frac{y\mu_i - \mu_i^2/2}{\sigma^2}\right).$$

- ▶ The function $b(\theta_i)$ is called the cumulant function.
- This distributional form includes the normal density assumption used in the classical linear models. In classical linear models, we assume that $y_i \sim N(\mu_i, \sigma^2)$.
- ightharpoonup The density of y_i can then be written as

$$f(x) := \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-\mu_i)^2}{2\sigma^2}\right)$$

This can be rewritten as

$$f(x) := rac{\exp(-y^2/(2\sigma^2))}{\sqrt{2\pi}\sigma} \exp\left(rac{y\mu_i - \mu_i^2/2}{\sigma^2}
ight).$$

This is clearly in the form (2) with $\theta_i = \mu_i, \phi_i = \sigma^2, a(\phi_i) = \phi_i$ and $b(\theta_i) = \theta_i^2/2$.

Note that ϕ_i here does not depend on *i*.

- Note that ϕ_i here does not depend on *i*.
- ► Other distributions that are of the form (2) are:

- Note that ϕ_i here does not depend on *i*.
- ▶ Other distributions that are of the form (2) are:
 - 1. **Bernoulli**: Here y_i takes the value 0 with probability $1 p_i$ and 1 with probability p_i .

- Note that ϕ_i here does not depend on i.
- ▶ Other distributions that are of the form (2) are:
 - Other distributions that are of the form (2) are:

 1. **Bernoulli**: Here y_i takes the value 0 with probablity $1 p_i$
 - and 1 with probability p_i .

2. The pmf of
$$y_i$$
 is
$$f(x) = p_i^x (1 - p_i)^{1-x} = \exp\left(x \log \frac{p_i}{1 - p_i} + \log(1 - p_i)\right).$$

- Note that ϕ_i here does not depend on i.
- Other distributions that are of the form (2) are:
 - Other distributions that are of the form (2) are:

 1. **Bernoulli**: Here y_i takes the value 0 with probablity $1 p_i$
 - and 1 with probability p_i .

2. The pmf of
$$y_i$$
 is
$$f(x) = p_i^x (1 - p_i)^{1-x} = \exp\left(x \log \frac{p_i}{1 - p_i} + \log(1 - p_i)\right).$$

3. If we take $\theta_i := \log(p_i/(1-p_i))$ and $b(\theta_i) = \log(1+e^{\theta_i})$ and $\phi_i = 1$, then this is in the form (2).

Binomial

▶ **Binomial**: Suppose $n_i y_i \sim Bin(n_i, p_i)$ i.e., y_i denotes the proportion of successes in n_i tosses of a coin with probability of success p_i .

Binomial

- ▶ **Binomial**: Suppose $n_i y_i \sim Bin(n_i, p_i)$ i.e., y_i denotes the proportion of successes in n_i tosses of a coin with probability of success p_i .
- \triangleright Check then that the pmf of y_i is

$$f(x) = \binom{n_i}{n_i x} \exp\left(\frac{x \log(p_i/(1-p_i)) + \log(1-p_i)}{1/n_i}\right).$$

Binomial

- ▶ **Binomial**: Suppose $n_i y_i \sim Bin(n_i, p_i)$ i.e., y_i denotes the proportion of successes in n_i tosses of a coin with probability of success p_i .
- \triangleright Check then that the pmf of y_i is

$$f(x) = \binom{n_i}{n_i x} \exp\left(\frac{x \log(p_i/(1-p_i)) + \log(1-p_i)}{1/n_i}\right).$$

This is of the form (2) with $\theta_i = \log(p_i/(1-p_i))$ and $\phi_i = 1/n_i$ and $b(\theta_i) = \log(1+e^{\theta_i})$.

Poisson

Poisson: Suppose $y_i \sim Poi(\lambda_i)$.

Poisson

- **Poisson**: Suppose $y_i \sim Poi(\lambda_i)$.
- ▶ Then its pmf is

$$f(x) := e^{-\lambda_i} \frac{\lambda_i^x}{x!} = \frac{1}{x!} \exp(x \log \lambda_i - \lambda_i)$$

which is again of the form (2) with $\theta_i = \log \lambda_i$ and $b(\theta_i) = e^{\theta_i}$ and $\phi_i = 1$.

Poisson

- **Poisson**: Suppose $y_i \sim Poi(\lambda_i)$.
- ▶ Then its pmf is

$$f(x) := e^{-\lambda_i} \frac{\lambda_i^x}{x!} = \frac{1}{x!} \exp(x \log \lambda_i - \lambda_i)$$

which is again of the form (2) with $\theta_i = \log \lambda_i$ and $b(\theta_i) = e^{\theta_i}$ and $\phi_i = 1$.

► There are other examples too such as the Gamma distribution but we will mainly deal with the ones above.

The mean and variance of y_i when y_i has the pmf or pdf (2) can be easily computed by a simple trick.

- The mean and variance of y_i when y_i has the pmf or pdf (2) can be easily computed by a simple trick.
- ▶ We will illustrate this below in the case when y_i has a pmf; the case of pdf is exactly identical (just replace sums by integrals). Because $f(x; \theta_i, \phi_i)$ is a density, we have

$$\sum_{\mathbf{x}} h(\mathbf{x}, \phi_i) \exp\left(\frac{\mathbf{x}\theta_i - b(\theta_i)}{a(\phi_i)}\right) = 1$$

- The mean and variance of y_i when y_i has the pmf or pdf (2) can be easily computed by a simple trick.
- ▶ We will illustrate this below in the case when y_i has a pmf; the case of pdf is exactly identical (just replace sums by integrals). Because $f(x; \theta_i, \phi_i)$ is a density, we have

$$\sum_{x} h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right) = 1$$

▶ Differentiating both sides with respect to θ_i , we get

$$\sum_{x} h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right) \frac{x - b'(\theta_i)}{a(\phi_i)} = 0$$
 (3)

$$f(x; \theta_i, \phi_i) := h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right).$$
 (2)

▶ This means that

$$\sum_{x} xh(x, \phi_{i}) \exp\left(\frac{x\theta_{i} - b(\theta_{i})}{a(\phi_{i})}\right) = b'(\theta_{i}) \sum_{x} h(x, \phi_{i}) \exp\left(\frac{x\theta_{i} - b(\theta_{i})}{a(\phi_{i})}\right)$$

This means that

$$\sum_{x} xh(x, \phi_{i}) \exp\left(\frac{x\theta_{i} - b(\theta_{i})}{a(\phi_{i})}\right) = b'(\theta_{i}) \sum_{x} h(x, \phi_{i}) \exp\left(\frac{x\theta_{i} - b(\theta_{i})}{a(\phi_{i})}\right)$$

► The left hand side above is simply $\mathbb{E}(y_i)$ and the right hand side is just $b'(\theta_i)$.

Because $f(x; \theta_i, \phi_i)$ is a density, we have

$$\sum_{x} h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right) = 1$$

This means that

$$\sum_{x} xh(x, \phi_{i}) \exp\left(\frac{x\theta_{i} - b(\theta_{i})}{a(\phi_{i})}\right) = b'(\theta_{i}) \sum_{x} h(x, \phi_{i}) \exp\left(\frac{x\theta_{i} - b(\theta_{i})}{a(\phi_{i})}\right)$$

- ► The left hand side above is simply $\mathbb{E}(y_i)$ and the right hand side is just $b'(\theta_i)$.
- We therefore have

$$\mu_i := \mathbb{E} y_i = b'(\theta_i).$$

► This means that

$$\sum_{x} xh(x, \phi_{i}) \exp\left(\frac{x\theta_{i} - b(\theta_{i})}{a(\phi_{i})}\right) = b'(\theta_{i}) \sum_{x} h(x, \phi_{i}) \exp\left(\frac{x\theta_{i} - b(\theta_{i})}{a(\phi_{i})}\right)$$

- ► The left hand side above is simply $\mathbb{E}(y_i)$ and the right hand side is just $b'(\theta_i)$.
- We therefore have

$$\mu_i := \mathbb{E} y_i = b'(\theta_i).$$

► This can be rewritten as $\theta_i = (b')^{-1}(\mu_i)$ where by $(b')^{-1}$ we mean the inverse function of b'.

► This means that

$$\sum_{x} xh(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right) =$$
because the right hand side is summed to 1 because the right hand side is summed to 1

- $b'(\theta_i) \sum_{x} h(x, \phi_i) \exp\left(\frac{x\theta_i D(\theta_i)}{a(\phi_i)}\right)$ The left hand side above is simply $\mathbb{E}(y_i)$ and the right hand
- side is just $b'(\theta_i)$.

 We therefore have $f(x; \theta_i, \phi_i) := h(x, \phi_i) \exp\left(\frac{x\theta_i b(\theta_i)}{a(\phi_i)}\right). \tag{2}$

$$\mu_i := \mathbb{E} y_i = b'(\theta_i).$$

- ► This can be rewritten as $\theta_i = (b')^{-1}(\mu_i)$ where by $(b')^{-1}$ we mean the inverse function of b'.
- ▶ Differentiating (3) again with respect to θ_i , it is easy to show that

$$var(y_i) = b''(\theta_i)a(\phi_i).$$

▶ In GLM, we assume that $y_1, ..., y_n$ are independent with pmf or pdf of the form (2). $(b')^{-1}$ we mean the inverse function of b'.

- ▶ In GLM, we assume that $y_1, ..., y_n$ are independent with pmf or pdf of the form (2). $(b')^{-1}$ we mean the inverse function of b'.
- We then write

$$g(\mu_i) := \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$$

for an increasing function g.

- ▶ In GLM, we assume that $y_1, ..., y_n$ are independent with pmf or pdf of the form (2). $(b')^{-1}$ we mean the inverse function of b'.
- We then write

$$g(\mu_i) := \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$$

for an increasing function g.

This g is called the *link function*. In classical linear models, $g(\mu_i) = \mu_i$ which means that we have the identity link.

- ▶ In GLM, we assume that $y_1, ..., y_n$ are independent with pmf or pdf of the form (2). $(b')^{-1}$ we mean the inverse function of b'.
- We then write

$$g(\mu_i) := \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$$

for an increasing function g.

- This g is called the *link function*. In classical linear models, $g(\mu_i) = \mu_i$ which means that we have the identity link.
- ► The link function $g = (b')^{-1}$ is called the *canonical link* function.

- ▶ In GLM, we assume that $y_1, ..., y_n$ are independent with pmf or pdf of the form (2). $(b')^{-1}$ we mean the inverse function of b'.
- We then write

$$g(\mu_i) := \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$$

for an increasing function g.

- This g is called the *link function*. In classical linear models, $g(\mu_i) = \mu_i$ which means that we have the identity link.
- The link function $g = (b')^{-1}$ is called the *canonical link* function.
- ▶ Recall that $(b')^{-1}(\mu_i) = \theta_i$. Thus GLM with the canonical link function models the canonical parameter θ_i as a linear function of the explanatory variables.