Approaches to Machine Translation: Rule-based, Statistical and Hybrid

Growing heuristics, Symmetrization and Phrase-Models

Lluís Formiga

July 22, 2014

A picture is worth a million equations

Summary

- Lexical Translation / Alignment and Reordering
- Phrase Model
- Training the model
 - word alignment
 - phrase pair extraction
 - phrase pair scoring
- Log linear model
 - sub-models as feature functions
 - lexical weighting
 - word and phrase count features
- EM training of the phrase model

Talk Outline

Symmetrization

Alignment Heuristics

Moving from words to phrases

Motivations

Model

Reordering Models

Symmetrizing Word Alignments

- Intersection of GIZA++ bidirectional alignments
- Grow additional alignment points [Och and Ney, CompLing2003]

Growing heuristic

```
grow-diag-final(e2f,f2e)
1: neighboring = \{(-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)\}
2: alignment A = intersect(e2f,f2e); grow-diag(); final(e2f); final(f2e);
grow-diag()
1: while new points added do
        for all Target Language word e \in [1...e_n], Source Language word f \in [1...f_n],
        (e, f) \in A do
3:
           for all neighboring alignment points (e<sub>new</sub>, f<sub>new</sub>) do
4:
               if (e_{new} \text{ unaligned OR } f_{new} \text{ unaligned}) \text{ AND } (e_{new}, f_{new}) \in \text{union}(e2f, f2e)
              then
5:
                  add (e<sub>new</sub>, f<sub>new</sub>) to A
6:
7:
               end if
           end for
        end for
9: end while
```

Symmetrization

Growing heuristic

```
\mathsf{final}()
```

```
1: for all Target Language word e_{\mathsf{new}} \in [1...e_{\mathsf{n}}], Source Language word f_{\mathsf{new}} \in [1...f_{\mathsf{n}}] do
```

2: if $(e_{new} \text{ unaligned OR } f_{new} \text{ unaligned}) \text{ AND } (e_{new}, f_{new}) \in \text{union}(e2f, f2e)$ then

Symmetrization

3: add (e_{new}, f_{new}) to A

4: end if

5: end for

with FINAL-AND

```
 \begin{split} & \textbf{grow-diag-final-AND}(e2f,f2e) \\ & 1: \ \mathsf{neighboring} = \{(-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)\} \\ & 2: \ \mathsf{alignment} \ \mathsf{A} = \mathsf{intersect}(e2f,f2e); \ \mathsf{grow-diag}(); \ \mathsf{final-AND}(e2f); \ \mathsf{final-AND}(f2e); \\ & \textbf{final-AND}() \\ & 1: \ \textbf{for all} \ \mathsf{Target} \ \mathsf{Language} \ \mathsf{word} \ \mathsf{e}_{\mathsf{new}} \in [1...e_{\mathsf{n}}], \ \mathsf{Source} \ \mathsf{Language} \ \mathsf{word} \ \mathsf{f}_{\mathsf{new}} \in [1...f_{\mathsf{n}}] \\ & do \\ & 2: \quad \ \mathsf{if} \ (\mathsf{e}_{\mathsf{new}} \ \mathsf{unaligned} \ \mathsf{AND} \ \mathsf{f}_{\mathsf{new}} \ \mathsf{unaligned}) \ \mathsf{AND} \ (\mathsf{e}_{\mathsf{new}},\mathsf{f}_{\mathsf{new}}) \in \mathsf{union}(e2f,f2e) \ \textbf{then} \\ & 3: \quad \ \mathsf{add} \ (\mathsf{e}_{\mathsf{new}},\mathsf{f}_{\mathsf{new}}) \ \mathsf{to} \ \mathsf{A} \\ & 4: \quad \ \mathsf{end} \ \mathsf{if} \\ & 5: \ \mathsf{end} \ \mathsf{for} \end{aligned}
```

Discriminative Training Methods

- Given some annotated training data, supervised learning methods are possible
- Structured prediction
 - not just a classification problem

Symmetrization

- solution structure has to be constructed in steps
- Many approaches: maximum entropy, neural networks, support vector machines, conditional random fields, MIRA, ...
- Small labeled corpus may be used for parameter tuning of unsupervised aligner [Fraser and Marcu, 2007]

Moving From Words to Phrases

- Word-Based Models translate words as atomic units.
- Phrase-Based Models translate phrases as atomic units
- Advantages:
 - many-to-many translation can handle non-compositional phrases
 - use of local context in translation
 - the more data, the longer phrases can be learned
- "Standard Model", used by Google Translate and others

Phrase-Based Model

- Foreign input is segmented in phrases
- Each phrase is translated into Target
- Phrases are reordered

Phrase Translation Table

- Main knowledge source: table with phrase translations and their probabilities
- Example: phrase translations for suddenly

Translation	Probability $\phi(\overline{e} \overline{f})$
de repente	0.27
repentinamente	0.12
de pronto	0.09
súbitamente	0.05

Real Example

Phrase translations for den Vorschlag learned from the **Europarl corpus:**

English	$\phi(\overline{e} \overline{f})$	English	$\phi(\overline{e} \overline{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed 0.	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

- lexical variation (proposal vs suggestions)
- morphological variation (proposal vs proposals)
- included function words (the, a, ...)
- noise (it)

Linguistic Phrases?

- Model is not limited to linguistic phrases (noun phrases, verb phrases, prepositional phrases, ...)
- Example non-linguistic phrase pair

brown - eyed \rightarrow de ojos marrones

- Prior noun often helps with translation of preposition
- Experiments show that limitation to linguistic phrases hurts quality

Probabilistic Model

Bayes rule

$$\begin{split} e_{\mbox{best}} &= \mbox{argmax}_e \ p(e|f) \\ &= \mbox{argmax}_e \ p(f|e) \ p_{\rm LM}(e) \end{split}$$

- translation model p(e|f)
- ► language model p_{LM}(e)
- Decomposition of the translation model

$$p(\overline{\mathsf{f}}_1^{\mathsf{I}}|\overline{\mathsf{e}}_1^{\mathsf{I}}) = \prod_{\mathsf{i}=1}^{\mathsf{I}} \phi(\overline{\mathsf{f}}_{\mathsf{i}}|\overline{\mathsf{e}}_{\mathsf{i}}) \; \mathsf{d}(\mathsf{start}_{\mathsf{i}} - \mathsf{end}_{\mathsf{i}-1} - 1)$$

- phrase translation probability ϕ
- reordering probability d

July 22, 2014

Distance-Based Reordering

- Distance-Based
- Lexical-Based (week 3)

phrase	translates	movement	distance
1	1–3	start at beginning	0
2	6	skip over 4–5	+2
3	4–5	move back over 4–6	-3
4	7	skip over 6	+1

Scoring function:

 $d(x) = \alpha^{|x|}$ — exponential with distance

Talk Outline

Symmetrization

Alignment Heuristics

Moving from words to phrases

Moving from words to phrases

Motivations

Model

Reordering Models