Doble Grado Matemáticas-Informática

ÁLGEBRA LINEAL

Hoja 8: Dualidad

1.- En \mathbb{R}^3 se consideran las bases canónica, $\mathcal{C} = \{e_1, e_2, e_3\},$

$$\mathcal{B}_1 = \{u_1 = (1,0,1), u_2 = (-1,1,1), u_3 = (1,-1,0)\} \quad \text{y} \quad \mathcal{B}_2 = \{v_1 = (2,1,1), v_2 = (1,1,1), v_3 = (1,-1,1)\}.$$

(a) Calcula sus bases duales expresadas en la dual de la base canónica

Todo elemento del dual $\omega \in (\mathbb{R}^3)'$ se puede expresar en cualquiera de las 3 bases:

dual de la canónica:
$$C' = \{e'_1, e'_2, e'_3\};$$
 $B'_1 = \{u'_1, u'_2, u'_3\};$ $B'_2 = \{v'_1, v'_2, v'_3\}.$

(b) Calcula las matrices de cambio de base

$$P_1$$
: de \mathcal{C}' a \mathcal{B}'_2 ; P_2 : de \mathcal{B}'_1 a \mathcal{C}' ; P_3 : de \mathcal{B}'_2 a \mathcal{B}'_1 .

Comprueba, razonadamente, cada caso.

- (c) Expresa la matriz identidad como el producto, en el orden adecuado, de las tres matrices anteriores.
- (d) Calcula las coordenadas en la base \mathcal{B}'_1 de la forma lineal cuyas coordenadas en la base \mathcal{B}'_2 son (3, -2, 1).
- **2.-** Sea $f: \mathbb{M}_2(\mathbb{R}) \to \mathbb{M}_2(\mathbb{R})$ la aplicación lineal dada por

$$f\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(\begin{array}{cc}a+5b&b+3c+2d\\c-d&d\end{array}\right).$$

Sea $f': (\mathbb{M}_2(\mathbb{R}))' \to (\mathbb{M}_2(\mathbb{R}))'$ su aplicación dual.

- (a) Encuentra la matriz A' de f' respecto de la base canónica C' (tanto en el espacio de partida como en el de llegada).
- (b) Encuentra la matriz D' de f' respecto de la base C' y la dual de la base B formada por los vectores siguientes:

$$v_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, v_4 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

- (c) Encuentra las coordenadas de la forma lineal $f'(e'_1 + e'_2 + 2e'_3 + e'_4)$ respecto de \mathcal{B}' .
- 3.- Se considera en $(\mathbb{R}[x]_{\leq 1})'$ (el espacio dual de $\mathbb{R}[x]_{\leq 1}$), las formas $I_{r,s}$ dadas por la siguiente regla:

$$I_{r,s}: \mathbb{R}[x]_{\leq 1} \longrightarrow \mathbb{R}$$

 $a + bx \longmapsto \int_{-1}^{1} (r + sx)(a + bx) dx$

para ciertos r, s fijados. Se considera $\mathcal{C} = \{e_1 = 1, e_2 = x\}$ la base canónica de $\mathbb{R}[x]_{\leq 1}$.

- (a) Encontrar formas lineales f_1 y f_2 del tipo anterior, tales que $f_i(e_j) = 1$ si i = j y 0 en otro caso. En otras palabras, describir la base dual de la canónica de $\mathbb{R}[x]_{\leq 1}$ en términos de formas lineales del tipo $I_{r,s}$.
- (b) Calcular la matriz de la dual de la aplicación $D: \mathbb{R}[x]_{\leq 1} \longrightarrow \mathbb{R}[x]_{\leq 1}$ que a cada polinomio le asocia su derivado, en la base $\{f_1, f_2\}$.

4.- Repetir el ejercicio anterior para reglas $J_{r,s}$ dadas por

$$J_{r,s}: \mathbb{R}[x]_{\leq 1} \longrightarrow \mathbb{R}$$

 $a + bx \longmapsto \int_0^1 (r + sx)(a + bx) dx$

5.- Comprobar que las formas lineales

$$f_k : \mathbb{R}[x]_{\leq 2} \longrightarrow \mathbb{R} \qquad (k = 0, 1, 2)$$

$$p(x) \longmapsto \int_{-1}^1 x^k p(x) \, dx$$

forman una base del dual de $\mathbb{R}[x]_{\leq 2}$.

6.- Se considera la aplicación lineal $D: \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 2}$ que asocia a cada polinomio su derivada. Calcular $D'(f_k)$ para cada una de las formas lineales

$$f_k : \mathbb{R}[x]_{\leq 2} \longrightarrow \mathbb{R} \qquad (k = 0, 1, 2)$$
$$p(x) \longmapsto \int_{-1}^{1} x^k p(x) \, dx \, .$$

7.- Sean $f_1, f_2 : \mathbb{R}[x]_{\leq 3} \longrightarrow \mathbb{R}$ las formas dadas por:

$$f_1(a+bx+cx^2+dx^3) = b+2c+3d$$
, $f_2(p(x)) = 2p(1) - p(0)$

respectivamente. Considerando bases canónicas y sus duales, calcular:

- (a) $\operatorname{Ker}(f_1)$, $\operatorname{Ker}(f_2)$, $\operatorname{Im}(f_1')$ e $\operatorname{Im}(f_2')$.
- (b) $\text{Im}(f_1)$, $\text{Im}(f_2)$, $\text{Ker}(f'_1)$ y $\text{Ker}(f'_2)$.
- (c) Ann($\{f_1, f_2\}$).
- (d) Ann(Ker $f_1 \cap \text{Ker } f_2$).

Comprobar en cada caso que las dimensiones son las esperadas.

- **8.-** (a) Comprobar que $\{\varphi_1, \varphi_2\} \subset (\mathbb{R}^2)'$ definidas por $\varphi_1(x,y) = \frac{x+y}{2}$, $\varphi_2(x,y) = \frac{x-y}{2}$ es la base dual de la base de vectores $B = \{(1,1), (1,-1)\} \subset \mathbb{R}^2$.
 - (b) Utilizar la base $B' = \{\varphi_1, \varphi_2\}$ para calcular las coordenadas del vector v = (5, 2) en la base B.
 - (c) Hallar las coordenadas de la forma lineal $\varphi(x,y) = 5x + 3y$ en la base B'.
- 9.- Consideremos el espacio vectorial $\mathbb{R}[x]_{\leq 2}$, de polinomios de grado menor o igual que 2 en la variable x, y las tres formas lineales ω_1 , ω_2 y ω_3 de $(\mathbb{R}[x]_{\leq 2})'$ definidas por

$$\omega_0(p(x)) = p(0), \quad \omega_1(p(x)) = p(1), \quad \omega_2(p(x)) = p(2).$$

Se pide:

- (a) Comprobar que $\{\omega_0, \omega_1, \omega_2\}$ es una base de $(\mathbb{R}[x]<2)'$.
- (b) Encontrar la base $\{p_0(x), p_1(x), p_2(x)\}$ de $\mathbb{R}[x]_{\leq 2}$ de la que la anterior es su base dual. (Sugerencia: de cada uno de los tres polinomios buscados se conocen, a priori, dos raíces.)

10.- Comprobar que $B' = \{f_1(x, y, z) = x + y, f_2(x, y, z) = x + z, f_3(x, y, z) = y + z\}$ es una base de $(\mathbb{R}^3)'$ y calcular la base de \mathbb{R}^3 de la que es dual.

11.- Sean ω_1 , ω_2 y ω_3 las siguientes formas lineales de $(\mathbb{R}[x]_{\leq 2})'$:

$$\omega_1(p(x)) = \int_0^1 p(x) dx \quad \omega_2(p(x)) = \int_0^2 p(x) dx \quad \omega_3(p(x)) = \int_{-1}^0 p(x) dx.$$

Se pide:

- (a) Calcular las coordenadas de ω_1 , ω_2 y ω_3 en la base dual de la base $\{1, x, x^2\}$, la canónica de $\mathbb{R}[x]_{\leq 2}$.
- (b) ¿Es $B' = \{\omega_1, \omega_2, \omega_3\}$ una base de $(\mathbb{R}[x]_{\leq 2})'$? En caso afirmativo hallar una base $B = \{p_1(x), p_2(x), p_3(x)\}$ de la que B' sea dual.

12.- En cada uno de los siguientes casos, hallar una base de $Ann(S) \subseteq V'$:

(a)
$$V = \mathbb{R}^3$$
, $S = \langle (1, -1, 2), (2, 1, 3), (1, 5, 0) \rangle$.

(b)
$$V = \mathbb{R}^4$$
, $S = \langle (1, 1, -1, 1), (2, -1, 3, 1) \rangle$.

(c)
$$V = \mathbb{R}^3$$
, $S = \{(x_1, x_2, x_3) \mid x_1 + x_3 = 0 \land 2x_1 - x_2 + x_3 = 0\}$

(d)
$$V = \mathbb{R}^4$$
, $S = \text{Ker}(f) \text{ con } f(x, y, z, t) = (x - y + z + t, 2x + y - 2z + 3t, 4x - y + 5t).$

13.- Para cada uno de los subespacios S y T de V, determinar bases de Ann(S+T) y de $Ann(S\cap T)$:

(a)
$$V = \mathbb{R}^4$$
, $S = \langle (1, 1, -1, 1), (2, -1, 3, 1) \rangle$, $T = \langle (2, -4, 8, 0), (-1, 1, 2, 3) \rangle$.

(b)
$$V = \mathbb{R}^4$$
, $S = \{(x, y, z, t) \mid x - z = 0 \land x + y + t = 0\}$, $T = \langle (2, 1, 3, 1) \rangle$.

(c)
$$V = \mathbb{R}^3$$
, $S = \{(x, y, z) \mid x - 2y + \le 0 \land 3y - 2z = 0\}$, $T = \{(x, y, z) \mid 2x - y = 0\}$.

14.- Sea $\operatorname{tr}: \mathbb{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ la forma lineal traza , que a cada matriz cuadrada asocia la suma de los elementos de su diagonal principal.

Dada una matriz $A \in \mathbb{M}_n(\mathbb{K})$ se define la aplicación $f_A : \mathbb{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ como $f_A(X) = \operatorname{tr}(A \cdot X)$. Se pide:

- (a) Probar que $f_A \in (\mathbb{M}_n(\mathbb{K}))'$ para cualquier $A \in \mathbb{M}_n(\mathbb{K})$.
- (b) Probar que si $f_A(X) = 0$ para toda matriz $X \in \mathbb{M}_n(\mathbb{K})$, entonces A = 0 (la matriz de ceros).
- (c) Se define $\gamma: \mathbb{M}_n(\mathbb{K}) \longrightarrow (\mathbb{M}_n(\mathbb{K}))'$ como $\gamma(A) = f_A$. Probar que γ es un isomorfismo.
- (d) Para $\mathbb{M}_2(\mathbb{R})$ explicitar, tomando bases canónicas, el isomorfismo γ del apartado anterior.
- (e) Sea $f: \mathbb{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ definida por

$$f\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = 3a - 2b + 5d.$$

Encontrar la matriz $A \in M_2(\mathbb{R})$ tal que $\gamma(A) = f$.