Quiz: The Basics of ConvNets

Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100%

To pass 80% or higher

Go to next item

1/1 point

1.	What do	you think a	pplying this	filter to a g	rayscale im	age will do?

$$\begin{bmatrix} -1 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

- Detect 45-degree edges.
- Oetect vertical edges.
- Detect horizontal edges.
- Oetecting image contrast.

Correct. Notice that there is a high delta between the values in the top left part and the ones in the bottom right part. When convolving this filter on a grayscale image, the edges forming a 45-degree angle with the horizontal will be detected.

2.	Suppose your input is a 128 by 128 color (RGB) image, and you are not using a convolutional network. If the first hidden layer has 64 neurons, each one fully connected to the input, how many parameters does this hidden layer have (including the bias parameters)?	1 / 1 point
	3145792	
	3145728	
	O 1048576	
	1048640	
	∠ ⁷ Expand	
	\odot Correct Correct, the number of inputs for each unit is $128 \times 128 \times 3$ since the input image is RGB, so we need $128 \times 128 \times 3 \times 64$ parameters for the weights and 64 parameters for the bias parameters, thus $128 \times 128 \times 3 \times 64 + 64 = 3145792$.	
3.	Suppose your input is a 300 by 300 color (RGB) image, and you use a convolutional layer with 100 filters that are each 5x5. How many parameters does this hidden layer have (including the bias parameters)?	1/1 point
	O 2600	
	7500	
	O 2501	
	7600	
	∠ ⁷ Expand	
	\bigcirc Correct Correct, you have $25 \times 3 = 75$ weights and 1 bias per filter. Given that you have 100 filters, you get 7,600 parameters for this layer.	

Quiz: The Basics of ConvNets

4. You have an input volume that is $121 \times 121 \times 16$, and convolve it with 32 filters of 4×4 , using a stride of 3 and no padding. What is the output volume?

1 / 1 point

- \bigcirc 40 × 40 × 16
- 40 × 40 × 32
- ① 118 × 118 × 32
- 118 × 118 × 16

∠⁷ Expand

⊘ Correct

Correct, using the formula $n_H^{[l]}=\frac{n_H^{[l-1]}+2\times p-f}{s}+1$ with $n_H^{[l-1]}=121, p=0, f=4$, and s=3 we get 40

5. You have an input volume that is 31x31x32, and pad it using "pad=1". What is the dimension of the resulting volume (after padding)?

1 / 1 point

- 31x31x34
- 33x33x32
- 32x32x32
- 33x33x33

∠⁷ Expand

Correct

Yes, if the padding is 1 you add 2 to the height dimension and 2 to the width dimension.

6. You have a volume that is $64 \times 64 \times 32$, and convolve it with 40 filters of 9×9 , and stride 1. You want to use a "same" convolution. What is the padding?

1 / 1 point

- 0
- O 8
- O 6
- 4

∠⁷ Expand

⊘ Correct

Yes, when using a padding of 4 the output volume has $n_H = \frac{64 - 9 + 2 \times 4}{1} + 1$.

7. You have an input volume that is 128x128x12, and apply max pooling with a stride of 4 and a filter size of 4. What is the output volume?

1/1 point

- 128 × 128 × 3
- \bigcirc 64 × 64 × 12
- \bigcirc 32 \times 32 \times 3
- 32 × 32 × 12

✓ Correct

Yes, using the formula $n_H^{[l]}=\frac{n_H^{[l-1]}+2\times p-f}{s}+1$ with p=0, f=4, s=4 and $n_H^{[l-1]}=32$.

8.	Which of the following are hyperparameters of the pooling layers? (Choose all that apply)	1/1 point			
	Number of filters.✓ Whether it is max or average.				
	Correct Yes, these are the two types of pooling discussed in the lectures, and choosing which to use is considered a hyperparameter.				
	Average weights. Filter size.				
	\checkmark Correct Yes, although usually, we set $f=s$ this is one of the hyperparameters of a pooling layer.				
	∠ ^A Expand				
	○ Correct Great, you got all the right answers.				
9.	Which of the following are true about convolutional layers? (Check all that apply)	1/1 point			
	It allows a feature detector to be used in multiple locations throughout the whole input volume.				
	Correct Yes, since convolution involves sliding the filter throughout the whole input volume the feature detector is computed over all the volume.				
	Convolutional layers provide sparsity of connections.				
	Correct Yes, this happens since the next activation layer depends only on a small number of activations from the previous layer.				
	It speeds up the training since we don't need to compute the gradient for convolutional layers.				

Quiz: The Basics of ConvNets

⊘ Correct

Great, you got all the right answers.

10. The following image depicts the result of a convolution at the right when using a stride of 1 and the filter is shown right next.

1/1 point

On which pixels does the circled pixel of the activation at the right depend?

- It depends on the pixels enclosed by the green square.
- It depends on the pixels enclosed by the red square.
- It depends on the pixels enclosed by the blue square.
- It depends on all the pixels of the image on the left.

✓ Correct

Yes, this is the position of the filter when we move it two pixels down and one to the right.