Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di TE1

A.A. 2009-2010 - Docente: Prof. F. Pappalardi Tutori: Annamaria Iezzi e Dario Spirito

Tutorato 4 25 marzo 2010

1. Trovare i campi di spezzamento su $\mathbb Q$ in $\mathbb C$ dei seguenti polinomi e calcolarne il grado:

a) $X^6 + 1$ b) $X^4 - 40X^2 + 64$ c) $(X^2 - 2)(X^3 - 2)$ e) $X^5 + 3X^3 + 3X^2 + 9$ f) $X^{n!} - 1$

2. Sia k un intero positivo. Determinare su quali campi il polinomio

$$k! \binom{X+k}{X} = (X+1)(X+2)\cdots(X+k)$$

è separabile.

3. Determinare tutti gli automorfismi del campo di spezzamento dei seguenti polinomi e descriverne il gruppo come gruppo astratto e come sottogruppo di un opportuno S_n :

a) $X^4 - 6X^2 + 1$

c) $X^3 + 2X - 5$

b) $(X^2-2)(X^2-3)(X^2-5)$

- 4. Sia c > 0. dimostrare che il campo di spezzamento del polinomio $X^3 + cX + 1$ ha grado 6 su \mathbb{Q} .
- 5. Sia $f(X) \in \mathbb{Q}[X]$ irriducibile, e sia K un suo campo di spezzamento su \mathbb{Q} in \mathbb{C} .
 - a) Dimostrare che se deg $f = [K : \mathbb{Q}] = 3$ allora $K \subseteq \mathbb{R}$, ovvero tutte le sue radici sono reali.
 - b) Trovare gli n per cui deg $f = [K : \mathbb{Q}] = n$ implica che $K \subseteq \mathbb{R}$.
 - c) Dimostrare che lo stesso vale se si sostituisce Q con un qualsiasi campo reale.
 - d) Trovare degli esempi in cui deg $f = [K : \mathbb{Q}], f$ è irriducibile ma $K \nsubseteq \mathbb{R}$.
- 6. Sia $f(X) \in \mathbb{Q}[X]$ un polinomio irriducibile e siano α_i , $1 \leq i \leq 4$ le sue radici. Mostrare che

$$\psi_{-}: \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = K \longrightarrow K, \quad \alpha_i \mapsto -\alpha_i$$

è un automorfismo di K se e solo se f è biquadratico. Dedurre che il campo di spezzamento di un polinomio biquadratico ha grado al più 8 su Q.

- 7. Sia $E \subset \mathbb{C}$ un campo: dimostrare che la restrizione ad E del coniugio complesso χ è un \mathbb{Q} -isomorfismo di E in $\chi(E)$, e che se E è un campo di spezzamento di un polinomio a coefficienti razionali allora $\chi|_E$ è un automorfismo di E. Qual è il campo F più grande contenuto in E tale che $\chi|_E$ è un F-omomorfismo?
- 8. Siano E ed F estensioni di un medesimo campo L.
 - a) Trovare E ed F isomorfi come L-spazi vettoriali, ma non come campi.
 - b) Trovare E ed F isomorfi come campi, ma non come L-spazi vettoriali.

Mostrare che se L ha grado finito sul suo sottocampo fondamentale il secondo caso non può verificarsi.