Comparative Analysis of YOLOv11 and YOLOv12 Segmentation Models

1. Dataset Distribution

The dataset used for training consisted of 627 images and 1151 annotated instances across four damage categories. The table below shows the distribution:

Class	Number of Instances
Corrosion Induced Spalling	171
Crack	605
Peeling	177
Spalling	198
Total	1151

2. Training Setup

Aspect	YOLOv11-seg	YOLOv12-seg	
Batch Size	32 32		
Training Epochs (total before stopping)	762	796	
Best Epoch (EarlyStopping)	662	696	
Optimizer	SGD	SGD	
Default Learning Rate	0.01	0.01	
Input Image Size	640×640	640×640	

3. Comparative Results - Overall Performance

Metric	YOLOv11	YOLOv12	Interpretation
Box Precision (P)	0.841	0.813	YOLOv11 more precise
Box Recall (R)	0.757	0.779	YOLOv12 slightly better recall

Box mAP@50	0.825	0.822	Nearly identical
Box mAP@50-95	0.646	0.637	YOLOv11 slightly stronger
Mask Precision (P)	0.844	0.816	YOLOv11 better
Mask Recall (R)	0.766	0.769	Very close
Mask mAP@50	0.828	0.811	YOLOv11 better
Mask mAP@50-95	0.566	0.544	YOLOv11 better

Overall mAP Comparison Chart

4. Per-Class Performance (with Instances)

Class	Instances	YOLOv11 Box mAP@50	YOLOv12 Box mAP@50	YOLOv11 Mask mAP@50	YOLOv12 Mask mAP@50
Corrosion Induced Spalling	171	0.934	0.945	0.922	0.918
Crack	605	0.976	0.938	0.978	0.938
Peeling	177	0.781	0.778	0.790	0.777
Spalling	198	0.611	0.628	0.631	0.611

Box mAP@50 per Class (YOLOv11 vs YOLOv12)

Mask mAP@50 per Class (YOLOv11 vs YOLOv12)

5. Comparative Analysis & Conclusion

YOLOv11 consistently outperforms YOLOv12 in precision and mAP metrics, while YOLOv12 achieves slightly higher recall. Class imbalance plays a significant role: YOLOv11 performs better on the majority class (Crack), while YOLOv12 shows a slight edge on Spalling. Despite YOLOv12 having a deeper architecture, it does not outperform YOLOv11 on this dataset, indicating YOLOv11's efficiency. For deployment, YOLOv11 is recommended as it balances accuracy and efficiency. Future work: augment minority classes, rebalance data, or tune optimizer and learning rate schedules.