

ZP Info

- Donnerstag 12.06 ab 8:30
- Teil 1
 - Hilfsmittelfrei
 - 25 Minuten
 - 2 mal 6 Punkte = 12 Punkte
- Teil 2
 - Taschenrechner + Formelsammlung
 - 75 Minuten
 - 2 mal 24 Punkte = 48 Punkte

Note	Erreichte Punktsummen
sehr gut	52 – 60
gut	43 – 51
befriedigend	34 – 42
ausreichend	25 – 33
mangelhaft	13 – 24
ungenügend	0 – 12

Die Abbildung zeigt eine senkrechte quadratische Pyramide ABCDS.

Abbildung

Es gilt: A(1|2|0), B(5|2|0), C(5|6|0), D(1|6|0) und S(3|4|2).

a) Geben Sie die Koordinaten des Vektors $\overrightarrow{\text{CS}}$ an und berechnen Sie seine Länge.

(2 Punkte)

Abbildung

b) M_1 ist der Mittelpunkt der Strecke \overline{CD} und M_2 ist der Mittelpunkt des Quadrates ABCD.

 α ist der Innenwinkel des Dreiecks M_1SM_2 bei M_1 .

- (1) Geben Sie die Koordinaten des Punktes M_1 an.
- (2) Zeichnen Sie das Dreieck M₁SM₂ in die Abbildung ein.
- (3) Begründen Sie, dass gilt: $\alpha = 45^{\circ}$.

Aufgabe 2:

Gegeben sind die Punkte P(3|1), Q(7|2) und R(5|7) (siehe *Abbildung*).

Abbildung

- a) (1) Geben Sie die Koordinaten des Vektors \overrightarrow{QR} an.
 - (2) (i) Berechnen Sie $\overrightarrow{OQ} + \frac{1}{2} \cdot \overrightarrow{QR}$.
 - (ii) Geben Sie die geometrische Bedeutung des berechneten Vektors an.

(1 + 2 Punkte)

Gegeben sind die Punkte P(3|1), Q(7|2) und R(5|7) (siehe *Abbildung*).

b) Zu den Punkten *P*, *Q* und *R* soll ein vierter Punkt *S* so hinzugefügt werden, dass das Viereck *PQRS* ein Parallelogramm ist.

- (1) Zeichnen Sie das Parallelogramm PQRS in die Abbildung ein.
- (2) Berechnen Sie die Koordinaten des Punktes S.

(1 + 2 Punkte)

Aufgabe 1:

Gegeben ist die Ableitungsfunktion f' mit

$$f'(x) = x^2 + 4 \cdot x - 12, x \in \mathbb{R}$$
.

f ' ist die Ableitung einer Funktion *f* .

- a) Berechnen Sie die Nullstellen von f'.
- b) (1) Geben Sie f''(x) an.

(2 Punkte)