PROJECT

Wine data set

Problem Definition:

the given wine dataset is related to red, white and many other types of wines. the wine dataset can be viewed as regression or classification tasks.

The given data has the following columns

- 1) fixed acidity
- 2) volatile acidity
- 3) citric acid
- 4) residual sugar
- 5) chlorides
- 6) free sulfur dioxide
- 7) total sulfur dioxide
- 8) density
- 9) pH
- 10) sulphates
- 11) alcohol
- 12) quality

The above columns when mixed in different ratio and proportion gives different type and taste of wine. In these problems, we are going to divide the wine basically into three classes

Let us start with importing the necessary libraries .

```
In [1]: import warnings
    warnings.simplefilter("ignore")|
    import seaborn as sn
    import numpy as np
    import matplotlib.pyplot as plt

In [2]: import pandas as pd
    df=pd.read_csv("winedataset.csv")
    print(df)
```

Data Analysis

	Class	Alcohol	Malic ad	cid	Ash	Alcal	inity of	ash	Magnesium	\		
0	1	14.23	1.	.71	2.43			15.6	127			
1	1	13.20	1.	.78	2.14			11.2	100			
2	1	13.16	2	. 36	2.67			18.6	101			
3	1	14.37	1.	.95	2.50			16.8	113			
4	1	13.24	2	.59	2.87			21.0	118			
173	3	13.71	5	.65	2.45			20.5	95			
174	3	13.40	3.	.91	2.48			23.0	102			
175	3	13.27	4	. 28	2.26			20.0	120			
176	3	13.17	2	.59	2.37			20.0	120			
177	3	14.13	4	.10	2.74			24.5	96			
	Total	phenols	Flavanoi	ds I	Nonfla	vanoid	phenols	Pro	anthocyani	ns	\	
0		2.80	3.6	36			0.28		2.	29		
1		2.65	2.7	76			0.26		1.	28		
2		2.80	3.2	24			0.30		2.	81		
3		3.85	3.4	49			0.24		2.	18		
4		2.80	2.6	59			0.39		1.	82		
			•									
173		1.68	0.6	51			0.52		1.	ð6		
174		1.80	0.7	75			0.43		1.	41		
175		1.59	0.6	59			0.43		1.	35		
176		1.65	0.6	58			0.53		1.	46		
177		2.05	0.7	76			0.56		1.	35		
	Color	intensity		dilut			roline					
0		5.64				.92	10					
1		4.38				.40	10					
2		5.68				.17	11					
3		7.80				.45	14	80				
4		4.32	1.04		2	.93	7	35				
• •						• • •		• •				
173		7.70				.74		40				
174		7.30				.56		50				
175		10.20				.56		35				
176		9.30	0.60		1	.62	8	40				

The given data has 178 rows and 14 columns

The columns are:

- 1) Class
- 2) Alcohol
- 3) Malic acid
- 4) Ash
- 5) Alcalinity of ash
- 6) Magnesium
- 7) Total phenols
- 8) Flavanoids
- 9) Nonflavanoid phenols
- 10) Proanthocyanins
- 11) Color intensity
- 12) Hue
- 13) diluted wines
- 14) Proline

Datatypes are:

Integer datatype:

- 1)Class
- 2)Magnesium
- 3) Proline

float datatype:

- 1)Alcohol
- 2)Malic acid
- 3)Ash Alcalinity of ash
- 4)Total phenols
- 5)Flavanoids
- 6)Nonflavanoid phenols
- 7)Proanthocyanins
- 8)Color intensity
- 9) Hue diluted

Null values: there are no null values in the given data

Missing values: there are no missing or Nan values in the given datatype

Target variable: our target variable in the given data will be class

EDA:

UNIVARIANT ANALYSIS:

CLASS: there are 3 types of class

Class1, class2 and class3

Class 2 have the highest count around 70,

class 3 have the least count around 50 and class 1 have medium count around 60

Alcohol:

```
[53]: sn.countplot(df["Alcohol"])
plt.title("Alcohol")
plt.show()

Alcohol

Alcohol
```

The highest count of alcohol is 6 and the least count of alcohol is 1. Average count is alcohol is 1.

Malic acid:

The highest count of Malic acid is 7 and the least count is 1. the average count is also 1

Ash:

The highest count of the Ash is 7 and the least count is 1. the average count is also 1

COLOR INTENSITY:

The highest count of the Ash is 4 and the least count is 1. the average count is also

diluted wines:

The highest count of the Ash is 5 and the least count is 1. the average count is also 1

BIVARIANT ANALYSIS:

Between alcohol and class

The range of alcohol in class 1 is from 12.5 - 15

The range of alcohol in class 2 is from 11-14

The range of alcohol in class 3 is from 12-14.5

Between color intensity and class:

Color intensity in class 1 is range between 5.5 - 9

Color intensity is most in the class 3 wines range between 4 -13

Color intensity is least in class 2 wines range from around 0.5 - 5

Between diluted wines and class:

We can see that most of the diluted wines belongs to class 2

And least of the diluted wines belongs to the class 3

MULTIVARIANT ANALYSIS:

Negative correlation: Class has negative correlation with alcohol, ash, magnesium, total phenols, flavonoids, proanthocyanins, hue, diluted wines and proline

Positive correlation: Class has positive correlation with malic acid, alkalinity of ash, nonflavanoid phenols and color intensity

Good correlation: class has good correlation with alcohol, magnesium, total phenols, flavon oids, hue, diluted wines and proline, malic acid, alkalinity of ash, nonflavanoid phenols and c olor intensity

No so good correlation: class has not so good correlation with ash and proanthocyanins

PRE-PROSSECING PIPELINE:

5]:												
ohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	diluted wines	Proline
0000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000
1618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.058090	0.957449	2.611685	746.893258
827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.318286	0.228572	0.709990	314.907474
1000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000	0.480000	1.270000	278.000000
500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220000	0.782500	1.937500	500.500000
1000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690000	0.965000	2.780000	673.500000
'500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.200000	1.120000	3.170000	985.000000
1000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000	1.710000	4.000000	1680.000000
4												>

Key Observations

- 1) the mean is almost equal to median (50 percentile) in all columns.
- 2) there is large difference between the max and 75 percentiles in Alcalinity of ash, Flavanoids, Color intensity and Proline
- 3) the above points 1 and 2 suggest that there are extreme outliers present in these four columns.

Removing outliers: as analysis above there are outliers present in the given data, we need to remove the outliers using zscore method.

Converting object values to int: There are no object values to convert to integers.

Removing skewness: it is very important to remove skewness to avoid any kind of over fitting or under fitting, to remove the skewness we will use StandardScaler and fit method.

Now we will split the data into two parts

- 1) train data
- 2) test data

the split of our train data and test data will be 25% and 75%

NOW FINDING THE BEST MODEL:

Linear Regression:

we found Accuracy=100.0, cross validation score=100.0 & difference =0.0

Random Forest Regressor:

Accuracy=99.99453551912568, cross validation score =99.97087372216639 & difference =0. 023661796959288495

Ada Boost Regressor:

Accuracy=100.0, cross validation score=97.87336443586445 & difference =2.126635564135 5545

SGD Regressor:

Accuracy=94.11001904585422, cross validation score =94.95559601455462 & difference =- 0.8455769687003993

RESULT:

Linear Regression and Ada Boost Regressor are performing the best with same accuracy and cross validation score. I will choose Linear Regression.

Agriculture dataset PROBLE DEFINITION:

Int the given agriculture dataset types of crops are given , we need to analyze the crop damage depending on different attributes

The columns are

- 1) ID
- 2) Estimated_Insects_Count
- 3) Crop_Type
- 4) Soil_Type
- 5) Pesticide_Use_Category
- 6) Number_Doses_Week
- 7) Number Weeks Used
- 8) Number_Weeks_Quit
- 9) Season
- 10)Crop_Damage

Let us start with importing the necessary libraries.

```
In [1]: import warnings
   warnings.simplefilter("ignore")|
   import seaborn as sn
   import numpy as np
   import matplotlib.pyplot as plt

In [2]: import pandas as pd
   df=pd.read_csv("winedataset.csv")
   print(df)
```

Data Analysis Problem Definition:

			d_Insect	ts_Count	Crop_Type	Soil_Type	\	
0	F000000	01		188	1	0		
1	F000000	03		209	1	0		
2	F000000	ð 4		257	1	0		
3	F000000	0 5		257	1	1		
4	F000000	26		342	1	0		
88	853 F0015593	35		3337	1	0		
88	854 F0015593	38		3516	1	0		
88	855 F001559	39		3516	1	0		
88	856 F0015594	42		3702	1	0		
88	857 F0015594	45		3895	1	0		
	Pesticio	de_Use_Categ	ory Nur	nber_Dose	s_Week Nu	mber_Weeks_l	Jsed	\
0			1		0		0.0	
1			1		0		0.0	
2			1		0		0.0	
3			1		0		0.0	
4			1		0		0.0	
88	853		2		10	1	12.0	
88	854		2		10		20.0	
88	855		2		15	4	10.0	
88	856		2		10		25.0	
88	857		2		20		37.0	
	Number_1	Weeks_Quit	Season	Crop_Dam	age			
0		0	1		0			
1		0	2		1			
2		0	2		1			
3		0	2		1			
4		0	2		1			
	853	44	3		0			
88	854	38	1		0			
88	855	8	2		0			
	856	18	3		0			
88	857	7	3		0			

The given data has 88858 rows and 10 columns

The columns are:

- 1) ID
- 2) Estimated_Insects_Count
- 3) Crop_Type
- 4) Soil_Type
- 5) Pesticide_Use_Category
- 6) Number_Doses_Week
- 7) Number_Weeks_Used
- 8) Number_Weeks_Quit
- 9) Season
- 10)Crop_Damage

Datatypes:

Integer datatype:

- 1)Estimated_Insects_Count
- 2)Crop_Type
- 3)Soil_Type
- 4)Pesticide_Use_Category
- 5)Number_Doses_Week
- 6)Number_Weeks_Quit
- 7)Season
- 8)Crop_Damage

float datatype: ID

object datatype: Number_Weeks_Used

Null values: there are no null values in the given data

Missing values: there are missing values in the given datatype

```
In [10]: df=df.replace(np.NaN,df['Number_Weeks_Used'].mean())
```

Using replace method we can fill the Nan values by mean

Target variable: our target variable in the given data will be Average Price

EDA:

UNIVARIANT ANALYSIS:

Crop damage:

Crop type 0 has highest count of crop damage

Crop type 2 has least count of crop damage

Crop type 1 has crop damage around 10000.

CROP TYPE:

Crop type 0 has the count of 60000

Crop type 1 has the count 25000

SEASON:

Season 1 has count of around 28000

Season 2 has count of around 45000

Season 3 has count of around 18000

BIVARIANT ANALYSIS:

Between crop damage and pesticide use category

Pesticide category 1 has caused all three type of crop damage Pesticide category 2 has caused all three type of crop damage Pesticide category 3 has caused all three type of crop damage

Between crop damage and season

Season 1 has caused all three type of crop damage Season 2 has caused all three type of crop damage Season 3 has caused all three type of crop damage

Between crop damage crop type

Crop type 1 has caused all three type of crop damage Crop type 2 has caused all three type of crop damage Crop type 3 has caused all three type of crop damage

Between crop damage and soil type

soil type 1 has caused all three type of crop damage soil type 2 has caused all three type of crop damage soil type 3 has caused all three type of crop damage

- 1) ID
- 2) Estimated_Insects_Count
- 3) Crop Type
- 4) Soil_Type
- 5) Pesticide Use Category
- 6) Number Doses Week
- 7) Number Weeks Used
- 8) Number_Weeks_Quit
- 9) Season
- 10)Crop_Damage

Crop damage has positive correlation with with: ID , Estimated_Insects_Count, Pesticide Use Category, Number Weeks Used and season

Crop damage has negative correlation with: Crop_Type, Soil_Type, Number_Doses_Week and Number Weeks Quit

Crop damage has good correlation with: ID, Estimated Insects Count,

Pesticide_Use_Category, Number_Weeks_Used and Number_Weeks_Quit

Crop damage has not so good correlation with: Crop_Type, Soil_Type, Number_Doses_Wee k and season

PRE-PROSSECING PIPELINE :

Removing outliers:

	Estimated_Insects_Count	Crop_Type	Soil_Type	Pesticide_Use_Category	Number_Doses_Week	Number_Weeks_Used	Number_Weeks_Quit
count	88858.000000	88858.000000	88858.000000	88858.000000	88858.000000	79858.000000	88858.000000 8
mean	1399.012210	0.284375	0.458417	2.264186	25.849952	28.623970	9.589986
std	849.048781	0.451119	0.498271	0.461772	15.554428	12.391881	9.900631
min	150.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000
25%	731.000000	0.000000	0.000000	2.000000	15.000000	20.000000	0.000000
50%	1212.000000	0.000000	0.000000	2.000000	20.000000	28.000000	7.000000
75%	1898.000000	1.000000	1.000000	3.000000	40.000000	37.000000	16.000000
max	4097.000000	1.000000	1.000000	3.000000	95.000000	67.000000	50.000000
4							

ects_Count	Crop_Type	Soil_Type	Pesticide_Use_Category	Number_Doses_Week	Number_Weeks_Used	Number_Weeks_Quit	Season	Crop_Damage
858.000000	88858.000000	88858.000000	88858.000000	88858.000000	79858.000000	88858.000000	88858.000000	88858.000000
399.012210	0.284375	0.458417	2.264186	25.849952	28.623970	9.589986	1.896959	0.190562
849.048781	0.451119	0.498271	0.461772	15.554428	12.391881	9.900631	0.701322	0.454215
150.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	1.000000	0.000000
731.000000	0.000000	0.000000	2.000000	15.000000	20.000000	0.000000	1.000000	0.000000
212.000000	0.000000	0.000000	2.000000	20.000000	28.000000	7.000000	2.000000	0.000000
898.000000	1.000000	1.000000	3.000000	40.000000	37.000000	16.000000	2.000000	0.000000
097.000000	1.000000	1.000000	3.000000	95.000000	67.000000	50.000000	3.000000	2.000000
4								+

Key Observations

- 1) the mean is greater than standard deviation in all columns.
- 2)there is large difference between the max and 75 percentiles in Estimated_Insects_Count, Number_Doses_Week, Number_Weeks_Used and Number_Weeks_Quit
- 3) the above points 1 and 2 suggest that there are extreme outliers present in these four columns.

Removing outliers: as analyzed above there are outliers present in the given data, we need to remove the outliers using Zscore method.

Converting object values to int: There are object values present which need to be converted into integers.

```
df=df.replace(np.NaN,df['Number_Weeks_Used'].mean())
```

Using replace method we have convert object values into integer values.

Removing skewness: it is very important to remove skewness to avoid any kind of over fitting or under fitting, to remove the skewness we will use StandardScaler and fit method.

Now we will split the data into two parts

- 3) train data
- 4) test data

the split of our train data and test data will be 55% and 45%

Target variable: our target variable will be crop damage

NOW FINDING THE BEST MODEL:

Linear Regression:

we found Accuracy=100.0, cross validation score=100.0 & difference =0.0

Random Forest Regressor:

Accuracy=100.0, cross validation score =100.0 & difference =0.0

Ada Boost Regressor:

Accuracy=100.0, cross validation score =100.0 & difference =0.0

SGD Regressor:

Accuracy=99.9999890544973, cross validation score =99.99999885227527 & difference =5. 317446039043716e-08

RESULT:

Linear Regression, Random Forest Regressor and Ada Boost Regressor are performing the be st with same accuracy and cross validation score. I will choose Linear Regression.