Bayesian approach of the parameter inverse problem under uncertainties

Victor Trappler

Directeurs de Thèse : Arthur VIDARD (Inria)

Élise ARNAUD (UGA) Laurent DEBREU (Inria)

19 novembre 2019

Table des matières

1	(Joint) Posterior formulation		
	1.1	Priors	1
	1.2	Likelihood model	1

(Joint) Posterior formulation

Priors

$$K \sim \mathcal{U}(\mathbb{K}), \quad p(k)$$

 $U \sim \mathcal{U}(\mathbb{U}), \quad p(u)$

Likelihood model

$$p(y \mid k, u, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} SS(k, u)\right]$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} \|\mathcal{M}(k, u) - y\|_{\Sigma}^2\right]$$

Now to Bayes' theorem

$$p(k, u \mid y, \sigma^2) = \frac{p(y \mid k, u, \sigma^2) p(k, u)}{\iint_{\mathbb{K} \times \mathbb{I}^1} p(y \mid k, u, \sigma^2) p(k, u) \, \mathrm{d}(k, u)}$$

Let us assume an hyperprior for $\sigma^2:p(\sigma^2)$

$$p(k, u \mid y) = \int p(k, u, \sigma^2) d(\sigma^2)$$