

Экзамен, 19.06.2017

Имя, фамилия и номер группы:

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit При тестировании гипотезы о равенстве дисперсий по двум независимым нормальным выборкам размером m и n тестовая статистика может иметь распределение

 $A F_{m,n}$

C χ^2_{m+n-2}

 $\boxed{\mathbb{E}} F_{m+1,n+1}$

 $\boxed{\mathrm{B}} t_{m+n-2}$

 $\boxed{\mathrm{D}} F_{m,n-2}$

Нет верного ответа.

Вопрос 2 \clubsuit Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера m и n в случае неизвестных равных дисперсий используется распределение

- $\boxed{\mathbf{A}} \ \mathcal{N}(0; m+n-2)$
- C χ^2_{m+n-2}

 $\boxed{\mathsf{E}} t_{m+n}$

 t_{m+n-2}

 $\boxed{ D} \ t_{m-1,n-1}$

F Нет верного ответа.

Вопрос 3 \clubsuit Для проверки гипотезы о равенстве дисперсий используются две независимые нормальные выборки размером 25 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 36, по второй — 49. Тестовая статистика может быть равна

1.36

C 1.85

E 1.17

B 2.13

D 1.56

F Нет верного ответа.

Вопрос 4 🖡 При проверке гипотезы о равенстве долей можно использовать распределение

 $\boxed{\mathsf{A}} \ t_{m-1,n-1}$

C χ^2_{m+n-2}

 $\boxed{\mathrm{E}} t_{m+n-2}$

 $\mathcal{N}(0;1)$

 $\boxed{\mathrm{D}} t_{m+n}$

F Нет верного ответа.

Вопрос 5 \clubsuit Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером n_1 и n_2 соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

 $\boxed{\mathbf{A}} \ t_{m+n-2}$

 $\boxed{\mathbb{C}} \chi^2_{m+n-2}$

 $E F_{m,r}$

 $\overline{\mathbf{B}}$ $F_{m+1,n+1}$

 \square $F_{m,n-2}$

Нет верного ответа.

Вопрос 6 ♣ Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

A 1/49

C 1/7

E 1/14

B 1/4

1/2

выборки, равна

Вопрос 16 🕹 Пусть $\hat{\theta}$ — несмещенная оценка для неизвестного параметра θ , а также выполнены условия регулярности. Неравенство Крамера-Рао представимо в виде

Вопрос 17 \clubsuit Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из равномерного распределения на отрезке $[0; \theta]$, где $\theta > 0$ — неизвестный параметр. Несмещённой является оценка

Вопрос 18 \clubsuit Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из равномерного распределения на отрезке $[0; \theta]$, где $\theta > 0$ — неизвестный параметр. Состоятельной является оценка

Оценка $\hat{\theta}_n$ называется состоятельной оценкой параметра θ , если Вопрос 19 🌲

Вопрос 20 \clubsuit Оценка $\hat{\theta}_n$ параметра θ называется эффективной в некотором классе оценок \mathcal{K} , если

Вопрос 21 По выборке X_1,\dots,X_4 , имеющей нормальное распределение с известной дисперсией 1, проверяется гипотеза $H_0:\mu=10$ против $H_a:\mu>10$. Выборочное среднее оказалось равно 9. Тогда нулевая гипотеза

- $\boxed{\mathbf{A}}$ отвергается при $\alpha=0.1$, не отвергается при $\alpha=0.05$
- Не отвергается на любом разумном уровне значимости
- С Отвергается на любом разумном уровне значимости
- $\boxed{\mathrm{D}}$ отвергается при $\alpha=0.01$, не отвергается при $\alpha=0.05$
- \fbox{E} отвергается при $\alpha=0.05,$ не отвергается при $\alpha=0.01$
- **F** Нет верного ответа.

Вопрос 22 🌲

По выборке из 5 наблюдений X_1,\dots,X_5 , имеющей экспоненциальное распределение, для проверки гипотезы о математическом ожидании $H_0:\mu=\mu_0$ против $H_a:\mu\neq\mu_0$, можно считать, что величина $\frac{\bar{X}-\mu_0}{\sqrt{\hat{\sigma}^2/n}}$ имеет распределение

 $A t_4$

 $\boxed{\mathsf{C}}$ t_5

 $E \mathcal{N}(0,1)$

 $B \chi_4^2$

D χ_5^2

Нет верного ответа.

Вопрос 23 🌲

Вася 25 раз подбросил монетку, 10 раз она выпала «орлом», 15 раз — «решкой». При проверке гипотезы о том, что монетка — «честная», Вася может получить следующее значение тестовой статистики

A 1.02

C 0.4

E -1.02

-1

D 2

F Нет верного ответа.

Вопрос 24 🌲

По выборке X_1,\dots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq30$. Известно, что $\sum_{i=1}^n(X_i-\bar{X})^2=270$. Тестовая статистика может быть равна

- А Не хватает данных
- 9

E 6

B 27

D 3

F Нет верного ответа.

Вопрос 25 🦺

По выборке X_1,\dots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Тестовая статистика будет иметь распределение

 $\boxed{\mathbf{A}} \ \mathcal{N}(0,1)$

 χ^2_{n-1}

 $oxed{E} t_n$

 \mathbb{B} χ_n^2

 $\boxed{\mathtt{D}} t_{n-1}$

F Нет верного ответа.

Вопрос 26 🐥

Дана реализация выборки: 7, -1, 3, 0. Первая порядковая статистика принимает значение

A 7

C 3

-1

B 0

D 2.25

Дана реализация выборки: 7, -1, 3, 0. Выборочная функция распределения в точке 0 принимает значение

A 0.75

B 1

0.5

D 0.25

 $\begin{bmatrix} \mathbf{E} \end{bmatrix} \mathbf{0}$

F Нет верного ответа.

Вопрос 28 🕹

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 10 бальной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	6	7	8
Статистика	5	6	10

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

|A| 1/3

B 0.05

1/2

D 3/8

E 0.1

F Нет верного ответа.

Вопрос 29 🌲

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу сопряженности

	Контрольная будет	Контрольной не будет
Пришло больше половины курса	35	80
Пришло меньше половины курса	5	200

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

A T < 52, k = 1

C T > 52, k = 2 D T > 52, k = 3

T > 52, k = 1

 $\boxed{\text{B}} \ T < 52, k = 4$

F Нет верного ответа.

Вопрос 30 🌲

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

7 8 Е.В. Добрая 6 4 Б.Б. Злой 3 10 8 3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

A 20

22.5

E 19

B 20.5

D 7.5

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C D E Вопрос 3: В В С D Е F **Вопрос 5** : A B C D E Вопрос 6: А В С Вопрос 7 : А С С Б Е Г Вопрос 8 : А В С D Вопрос 9: А В С **Вопрос 10** : A B D E F Вопрос 11 : А С С Вопрос 12 : А В С D Вопрос 13 : Вопрос 14 : **Вопрос 15** : A B C D Вопрос 16 : А В С D **Вопрос 17** : A B C D Вопрос 18 : А В С Вопрос 19: А В С D **Вопрос 20** : A B D E F Вопрос 22 : А В С D Вопрос 23 : А CD Вопрос 24 : |А| |В| |D|Вопрос 25 : А В В О Вопрос 26 : А В С D D Вопрос 27 : А В Вопрос 28 : А В В Б Е

Вопрос 30 : A B D E F

Вопрос 29 : А В С D

Экзамен, 19.06.2017

Имя, фамилия и номер группы:

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 . При тестировании гипотезы о равенстве дисперсий по двум независимым нормальным выборкам размером m и n тестовая статистика может иметь распределение

 $A t_{m+n-2}$

C $F_{m,n-2}$

 \square $F_{m,n}$

 $\bigcap F_{m+1,n+1}$

Нет верного ответа.

Вопрос 2 🗍 Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера т и n в случае неизвестных равных дисперсий используется распределение

 t_{m+n-2}

 \mathbb{E} χ^2_{m+n-2}

 $B t_{m+n}$

 $\boxed{\mathbf{D}} t_{m-1,n-1}$

F Нет верного ответа.

Вопрос 3 🕹 Для проверки гипотезы о равенстве дисперсий используются две независимые нормальные выборки размером 25 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 36, по второй -49. Тестовая статистика может быть равна

A 1.85

C 1.17

E 1.56

B 2.13

1.36

F Нет верного ответа.

Вопрос 4 👫 При проверке гипотезы о равенстве долей можно использовать распределение

 $C t_{m+n}$

 \mathbb{E} χ^2_{m+n-2}

 $\mathcal{N}(0;1)$

 $\boxed{\mathsf{D}} \ t_{m-1,n-1}$

F Нет верного ответа.

Вопрос 5 \clubsuit Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером n_1 и n_2 соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

 $A t_{m+n-2}$

 $\begin{bmatrix} \mathsf{C} \end{bmatrix} F_{m,n-2}$

 $E F_{m+1,n+1}$

 $B F_{m,n}$

 $\boxed{\mathbf{D}} \ \chi^2_{m+n-2}$

Нет верного ответа.

Вопрос 6 👫 Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

1/2

C 1/4

E 1/49

B 1/7

D 1/14

Вопрос 15 Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из распределения Пуассона с параметром $\lambda>0$. Информация Фишера о параметре λ , заключенная в одном наблюдении случайной выборки, равна

Вопрос 16 \clubsuit Пусть $\hat{\theta}$ — несмещенная оценка для неизвестного параметра θ , а также выполнены условия регулярности. Неравенство Крамера-Рао представимо в виде

Вопрос 17 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного распределения на отрезке $[0;\theta]$, где $\theta>0$ — неизвестный параметр. Несмещённой является оценка

Вопрос 18 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного распределения на отрезке $[0;\theta]$, где $\theta>0$ — неизвестный параметр. Состоятельной является оценка

$$oxed{A} \ ar{X}$$
 $oxed{C} \ X_{(1)}$ $oxed{E} \ X_1$ $oxed{D} \ ar{X}/2$ $oxed{F}$ Hem верного ответа.

Вопрос 19 \clubsuit Оценка $\hat{\theta}_n$ называется состоятельной оценкой параметра θ , если

Вопрос 20 \clubsuit Оценка $\hat{\theta}_n$ параметра θ называется эффективной в некотором классе оценок \mathcal{K} , если

heta выполнено $\mathrm{E}((\hat{ heta}_n- heta)^2)\leq \mathrm{E}((T- heta)^2)$ heta Нет верного ответа.

Вопрос 26 🐥

Дана реализация выборки: 7, -1, 3, 0. Первая порядковая статистика принимает значение

A 2.25
 B 7
 D 0

Дана реализация выборки: 7, -1, 3, 0. Выборочная функция распределения в точке 0 принимает значение

A 1

C 0.25

E 0.75

B 0 0.5

F Нет верного ответа.

Вопрос 28 🌲

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 10 бальной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	6	7	8
Статистика	5	6	10

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

A 1/3

C 3/8

E 0.1

B 0.05

1/2

F Нет верного ответа.

Вопрос 29 🐥

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу сопряженности

	Контрольная будет	Контрольной не будет
Пришло больше половины курса	35	80
Пришло меньше половины курса	5	200

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

A T < 52, k = 1

C T > 52, k = 3

|E| T > 52, k = 2

T > 52, k = 1

 $\boxed{\text{D}} \ T < 52, k = 4$

F Нет верного ответа.

Вопрос 30 🌲

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

Е.В. Добрая 6 4 7 8 Б.Б. Злой 2 3 10 8 3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

A 7.5

22.5

E 20

B 19

D 20.5

+2/6/49+

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C D E I **Вопрос** 2 : **В** В С D E F Вопрос 3: А В С **Вопрос 5** : A B C D E **Вопрос 6** : **В** В С D E F Вопрос 7: АВВ ВБ Б Вопрос 8: АВС D Вопрос 9: А В С D **Вопрос 10** : A B D E F Вопрос 11 : **В** В С D Е F Вопрос 12 : А В С Вопрос 13 : А В Вопрос 14 : [А] [В] D Вопрос 15 : В В С D **Вопрос 16** : **В** В С D E F **Вопрос 17** : **В** В С D E F Вопрос 18 : А С О Вопрос 19 : А В Вопрос 20 : А В В Вопрос 21 : А В С D Вопрос 22 : А В С D Вопрос 23 : А В С Вопрос 24 : А |C|D|Вопрос 25 : А В С D Вопрос 26 : А В Т В Е Г Вопрос 27 : [А] [В] [С] Вопрос 28 : А В С

Вопрос 29 : А

CD

Вопрос 30 : A B D E F

•

Экзамен, 19.06.2017

Имя, фамилия и номер группы:

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit При тестировании гипотезы о равенстве дисперсий по двум независимым нормальным выборкам размером m и n тестовая статистика может иметь распределение

lacksquare A $F_{m,n-2}$

C t_{m+n-2}

lacksquare E $F_{m+1,n+1}$

 $\boxed{\mathbf{B}} \ \chi^2_{m+n-2}$

 $D F_{m,n}$

Нет верного ответа.

Вопрос 2 \clubsuit Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера m и n в случае неизвестных равных дисперсий используется распределение

 t_{m+n-2}

 $\mathbb{E} \mathcal{N}(0; m+n-2)$

 $B t_{m+n}$

 $\boxed{\mathbb{D}} \ \chi^2_{m+n-2}$

F Нет верного ответа.

Вопрос 3 ♣ Для проверки гипотезы о равенстве дисперсий используются две независимые нормальные выборки размером 25 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 36, по второй — 49. Тестовая статистика может быть равна

A 1.85

C 2.13

1.36

B 1.17

D 1.56

F Нет верного ответа.

Вопрос 4 🗍 При проверке гипотезы о равенстве долей можно использовать распределение

 $\boxed{\mathbf{A}} \ t_{m+n}$

 $C t_{m-1,n-1}$

E χ^2_{m+n-2}

 $\boxed{\mathbf{B}} \ t_{m+n-2}$

 $\mathcal{N}(0;1)$

F Нет верного ответа.

Вопрос 5 \clubsuit Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером n_1 и n_2 соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

 $\boxed{\mathsf{A}} \ F_{m+1,n+1}$

 $\boxed{\mathbb{C}} \ \chi^2_{m+n-2}$

 $E F_{m,n-2}$

 $\boxed{\mathrm{B}} \ t_{m+n-2}$

 $\boxed{\mathbf{D}} \ F_{m,n}$

Нет верного ответа.

Вопрос 6 ♣ Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

A 1/49

1/2

E 1/7

B 1/14

D 1/4

Вопрос 7 🌲 💮 В методе главных компонент				
выборочная корреляция первой и второй гла	авных компонент равна нулю			
В выборочная дисперсия первой главной компоненты равна единице				
С выборочная корреляция первой и второй главных компонент равна единице				
первая главная компонента сильнее всего ко	ррелирована с первой переменной			
Е выборочная дисперсия первой главной комп	поненты минимальна			
F Нет верного ответа.				
	араметра a пропорциональна $\exp(-a)$ при $a>0$. a^2+a). При $a>0$ апостериорная плотность про-			
$\boxed{\mathbf{A}} \ \exp(-a) - \exp(-a^2 + a) \qquad \boxed{\mathbf{m}} \ \exp(-a^2)$	$\boxed{\mathbb{E}} \exp(-a^2 + a) - \exp(-a)$			
B $\exp(-a) + \exp(-a^2 + a)$ D $\exp(a^2 + 2)$				
	ляют собой случайную выборку с $\mathrm{E}(X_i)=2\theta-1.$			
© 1	Е Недостаточно данных			
B 15.5 D 3	F Нет верного ответа.			
Вопрос 10 \clubsuit Величины $X_1, X_2,, X_{10}$ предста: Оказалось, что $\bar{X}_{10}=3$. Оценка $\hat{ heta}_{ML}$ метода макси	вляют собой случайную выборку с $\mathrm{E}(X_i)=2 heta-1.$ имального правдоподобия равна			
A 2 C 3	E 1			
	чно данных F Нет верного ответа.			
Вопрос 11 👶 Нелогарифмированная функция п	равдоподобия			
\overline{A} асимпотитически распределена $\mathcal{N}(0;1)$	D может принимать отрицательные значения			
В возрастает по оцениваемому параметру θ				
может принимать значения больше едини-	$oxed{\mathbb{E}}$ убывает по оцениваемому параметру $ heta$			
цы	F Нет верного ответа.			
Вопрос 12 🧍 Оценка метода моментов				
не требует знания точного закона распределения	D не применима для дискретных случайных величин			
В всегда несмещённая	Е не может быть получена в малой выборке			
В всегда несмещённая С эффективнее оценки максимального прав-	Е не может быть получена в малой выборке			
В всегда несмещённая С эффективнее оценки максимального прав- доподобия	F Нет верного ответа.			
В всегда несмещённая С эффективнее оценки максимального прав- доподобия	$oxed{F}$ Hem верного ответа. на оценка максимального правдоподобия \hat{a} . Оказа-			
 В всегда несмещённая С эффективнее оценки максимального правдоподобия Вопрос 13 ♣ По большой выборке была построе 	$oxed{F}$ Hem верного ответа. на оценка максимального правдоподобия \hat{a} . Оказа-			
В всегда несмещённая \mathbb{C} эффективнее оценки максимального правдоподобия Вопрос 13 \clubsuit По большой выборке была построе лось, что $\ell''(\hat{a}) = -2$. Ширина 95%-го доверительн	$\stackrel{\cdot}{\mathbf{F}}$ Нет верного ответа. на оценка максимального правдоподобия \hat{a} . Оказаого интервала для параметра a примерно равна			

Вопрос 15 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из распределения Пуассона с параметром $\lambda > 0$. Информация Фишера о параметре λ , заключенная в одном наблюдении случайной выборки, равна

Вопрос 16 🕹 Пусть $\hat{\theta}$ — несмещенная оценка для неизвестного параметра θ , а также выполнены условия регулярности. Неравенство Крамера-Рао представимо в виде

Вопрос 17 \clubsuit Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из равномерного распределения на отрезке $[0; \theta]$, где $\theta > 0$ — неизвестный параметр. Несмещённой является оценка

Вопрос 18 \clubsuit Пусть $X = (X_1, \, \dots, \, X_n)$ — случайная выборка из равномерного распределения на отрезке $[0;\, \theta]$, где $\theta>0$ — неизвестный параметр. Состоятельной является оценка

Оценка $\hat{\theta}_n$ называется состоятельной оценкой параметра θ , если Вопрос 19 🌲

Вопрос 20 \clubsuit Оценка $\hat{\theta}_n$ параметра θ называется эффективной в некотором классе оценок \mathcal{K} , если

 $\boxed{\mathsf{C}} \ \mathsf{Var}(\hat{\theta}_n) = \frac{\sigma^2}{n}$ F Нет верного ответа.

Вопрос 21 По выборке X_1,\dots,X_4 , имеющей нормальное распределение с известной дисперсией 1, проверяется гипотеза $H_0:\mu=10$ против $H_a:\mu>10$. Выборочное среднее оказалось равно 9. Тогда нулевая гипотеза

- $oxed{A}$ отвергается при lpha=0.01, не отвергается при lpha=0.05
- Не отвергается на любом разумном уровне значимости
- \fbox{B} отвергается при $\alpha=0.05,$ не отвергается при $\alpha=0.01$
- $oxed{\mathbb{E}}$ отвергается при lpha=0.1, не отвергается при lpha=0.05
- С Отвергается на любом разумном уровне значимости
- **F** Нет верного ответа.

Вопрос 22 🦂

По выборке из 5 наблюдений X_1,\dots,X_5 , имеющей экспоненциальное распределение, для проверки гипотезы о математическом ожидании $H_0:\mu=\mu_0$ против $H_a:\mu\neq\mu_0$, можно считать, что величина $\frac{\bar{X}-\mu_0}{\sqrt{\hat{\sigma}^2/n}}$ имеет распределение

A t_5

C χ_4^2

 $E t_4$

 $\boxed{\mathrm{B}} \chi_5^2$

 $\boxed{\mathbf{D}} \ \mathcal{N}(0,1)$

Нет верного ответа.

Вопрос 23 🌲

Вася 25 раз подбросил монетку, 10 раз она выпала «орлом», 15 раз — «решкой». При проверке гипотезы о том, что монетка — «честная», Вася может получить следующее значение тестовой статистики

A 1.02

C 0.4

E 2

-1

D -1.02

F Нет верного ответа.

Вопрос 24 🐥

По выборке X_1,\dots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Известно, что $\sum_{i=1}^n (X_i-\bar{X})^2=270$. Тестовая статистика может быть равна

- А Не хватает данных
- C 27

E 3

B 6

9

F Нет верного ответа.

Вопрос 25 🌲

По выборке X_1,\dots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Тестовая статистика будет иметь распределение

 $\boxed{\mathbf{A}} \ \mathcal{N}(0,1)$

C χ_n^2

 $E t_{m-1}$

 $B t_n$

 χ^2_{n-1}

F Нет верного ответа.

Вопрос 26 🚓

Дана реализация выборки: 7, -1, 3, 0. Первая порядковая статистика принимает значение

-1

C 2.25

F 3

B 0

D 7

Дана реализация выборки: 7, -1, 3, 0. Выборочная функция распределения в точке 0 принимает значение

A 0

C 0.75

E 1

0.5

D 0.25

F Нет верного ответа.

Вопрос 28 🐥

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 10 бальной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	6	7	8
Статистика	5	6	10

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

1/2

C 3/8

E 1/3

B 0.05

D 0.1

F Нет верного ответа.

Вопрос 29 🐥

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу сопряженности

	Контрольная будет	Контрольной не будет
Пришло больше половины курса	35	80
Пришло меньше половины курса	5	200

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

A T > 52, k = 3

C T < 52, k = 4 D T < 52, k = 1

T > 52, k = 1

|B| T > 52, k = 2

F Нет верного ответа.

Вопрос 30 🐥

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

7 8 Е.В. Добрая 6 4 Б.Б. Злой 3 10 8 3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

A 20

C 7.5

22.5

B 20.5

D 19

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C D E **Вопрос** 2 : **В** В С D E F **Вопрос 3** : A B C D Вопрос 4: А В С **Вопрос** 5 : A B C D E Вопрос 6: А В D E F Вопрос 7 : В В С D Е F Вопрос 8 : А В D E F **Вопрос** 9 : **В** В С D E F Вопрос 10 : А В С Вопрос 11 : А В D Вопрос 12 : Вопрос 13: АВС В Вопрос 14 : А С С Вопрос 15 : В В С D Вопрос 16 : А В С **Вопрос 17** : A B C D Вопрос 18 : А В С Вопрос 19: А В С D Вопрос 20 : А С С Вопрос 21 : А В С Вопрос 22 : А В С D Вопрос 23 : А CD Вопрос 24 : |А| |В| |С| Вопрос 25 : А В С **Вопрос 26** : **В** В С D **E F** Вопрос 27 : А CD **Вопрос 28** : **В** В С D E F

Вопрос 29 : A B C D | Вопрос 30 : A B C D |

Экзамен, 19.06.2017

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 🜲 При тестировании гипотезы о равенстве дисперсий по двум независимым нормальным выборкам размером m и n тестовая статистика может иметь распределение

 $A F_{m,n-2}$

C $F_{m+1,n+1}$

 $\boxed{\mathrm{B}} \ t_{m+n-2}$

 $D F_{m,n}$

Нет верного ответа.

Вопрос 2 🌲 🛮 Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера m и n в случае неизвестных равных дисперсий используется распределение

 $A t_{m+n}$

 $[E] t_{m-1,n-1}$

 $\boxed{\mathbf{B}} \chi^2_{m+n-2}$

- $\begin{array}{|c|c|c|}
 \hline
 & t_{m+n-2} \\
 \hline
 & \mathcal{N}(0; m+n-2)
 \end{array}$
- F Нет верного ответа.

Для проверки гипотезы о равенстве дисперсий используются две независимые нормальные выборки размером 25 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 36, по второй -49. Тестовая статистика может быть равна

A 2.13

C 1.17

E 1.56

B 1.85

1.36

F Нет верного ответа.

Вопрос 4 👫 При проверке гипотезы о равенстве долей можно использовать распределение

 $A t_{m+n-2}$

C χ^2_{m+n-2}

 $E t_{m+n}$

 $\boxed{\mathrm{B}} t_{m-1,n-1}$

 $\mathcal{N}(0;1)$

F *Нет верного ответа.*

Вопрос 5 \clubsuit Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером n_1 и n_2 соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

A χ^2_{m+n-2}

 $C F_{m,n-2}$

 $\boxed{\mathbf{B}} F_{m+1,n+1}$

 $\boxed{\mathrm{D}} t_{m+n-2}$

Нет верного ответа.

Вопрос 6 👫 Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

A 1/14

C 1/7

E 1/49

1/2

D 1/4

Вопрос 15 \clubsuit Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из распределения Пуассона с параметром $\lambda > 0$. Информация Фишера о параметре λ , заключенная в одном наблюдении случайной выборки, равна

Вопрос 16 🕹 Пусть $\hat{\theta}$ — несмещенная оценка для неизвестного параметра θ , а также выполнены условия регулярности. Неравенство Крамера-Рао представимо в виде

Вопрос 17 \clubsuit Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из равномерного распределения на отрезке $[0; \theta]$, где $\theta > 0$ — неизвестный параметр. Несмещённой является оценка

Вопрос 18 \clubsuit Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из равномерного распределения на отрезке $[0; \theta]$, где $\theta > 0$ — неизвестный параметр. Состоятельной является оценка

$$lackbox{$lackbox{$\mathbb{Z}$}$} 2ar{X}$$
 $lackbox{$\mathbb{C}$} X$ $lackbox{$\mathbb{E}$} X_{(1)}$ $lackbox{$\mathbb{B}$} ar{X}/2$ $lackbox{$\mathbb{D}$} X_1$ $lackbox{$\mathbb{F}$}$ Hem верного ответа.

Вопрос 19 \clubsuit Оценка $\hat{\theta}_n$ называется состоятельной оценкой параметра θ , если

Вопрос 20 \clubsuit Оценка $\hat{\theta}_n$ параметра θ называется эффективной в некотором классе оценок \mathcal{K} , если

| F | *Нет верного ответа.*

B 2.25

Дана реализация выборки: 7, -1, 3, 0. Выборочная функция распределения в точке 0 принимает значение

A 0.75 0.5

E 0.25

F Нет верного ответа.

Вопрос 28 🕹

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 10 бальной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	6	7	8
Статистика	5	6	10

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

A 1/3

C 3/8

E 0.05

1/2

D 0.1

F Нет верного ответа.

Вопрос 29 🐥

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу сопряженности

	Контрольная будет	Контрольной не будет
Пришло больше половины курса	35	80
Пришло меньше половины курса	5	200

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

A T < 52, k = 1

C T < 52, k = 4T > 52, k = 3

T > 52, k = 1

|B| T > 52, k = 2

F Нет верного ответа.

Вопрос 30 🐥

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

7 8 Е.В. Добрая 6 4 Б.Б. Злой 3 10 8 3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

A 7.5

22.5

E 20.5

B 19

D 20

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C D E I Вопрос 2 : А В D E F Вопрос 3: А В С Вопрос 4: А В С **Вопрос** 5 : A B C D E Вопрос 7: АВС D **Вопрос 8** : A B C D **Вопрос** 9 : A B D E F **Вопрос 10** : В В С D E F **Вопрос 11** : **В** В С D E F **Вопрос 12** : **В** В С D E F Вопрос 13 : | А | CD Вопрос 14 : А В С Вопрос 15 : А В В О Вопрос 17 : Вопрос 18 : В В С Б Вопрос 19: А В С Вопрос 22 : А В С D Вопрос 23 : Вопрос 24 : | В | В | С | D | Е | Г Вопрос 25 : А В D **Вопрос 26** : A B **В** D E F Вопрос 27 : А CD Вопрос 28 : А С Б Е Г

Вопрос 29 : А В С D

Вопрос 30 : A B D E F

Экзамен, 19.06.2017

Имя, фамилия и номер группы:	
	_

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit При тестировании гипотезы о равенстве дисперсий по двум независимым нормальным выборкам размером m и n тестовая статистика может иметь распределение

lacksquare A $F_{m,n}$

 $C t_{m+n-2}$

 \mathbb{E} χ^2_{m+n-2}

 $oxed{B} F_{m,n-2}$

 $\boxed{\mathrm{D}} F_{m+1,n+1}$

Нет верного ответа.

Вопрос 2 \clubsuit Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера m и n в случае неизвестных равных дисперсий используется распределение

 $A t_{m-1,n-1}$

 t_{m+n-2}

 $oxed{E} t_{m+n}$

- $\boxed{\mathbf{D}} \ \chi^2_{m+n-2}$

Вопрос 3 ♣ Для проверки гипотезы о равенстве дисперсий используются две независимые нормальные выборки размером 25 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 36, по второй — 49. Тестовая статистика может быть равна

A 1.17

C 1.56

1.36

B 1.85

D 2.13

F Нет верного ответа.

Вопрос 4 🗍 При проверке гипотезы о равенстве долей можно использовать распределение

A t_{m+n}

C χ^2_{m+n-2}

 $\mathcal{N}(0;1)$

 $\boxed{\mathbf{B}} \ t_{m-1,n-1}$

 $\boxed{\mathrm{D}} t_{m+n-2}$

F Нет верного ответа.

Вопрос 5 \clubsuit Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером n_1 и n_2 соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

lacksquare A $F_{m,n-2}$

E χ^2_{m+n-2}

 $\boxed{\mathrm{B}} t_{m+n-2}$

 $D F_{m,n}$

Нет верного ответа.

Вопрос 6 ♣ Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

A 1/4

C 1/49

1/2

B 1/14

D 1/7

метром $\lambda > 0$. Информация Фишера о параметре λ , заключенная в одном наблюдении случайной выборки, равна

Вопрос 16 🕹 Пусть $\hat{\theta}$ — несмещенная оценка для неизвестного параметра θ , а также выполнены условия регулярности. Неравенство Крамера-Рао представимо в виде

Вопрос 17 \clubsuit Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из равномерного распределения на отрезке $[0; \theta]$, где $\theta > 0$ — неизвестный параметр. Несмещённой является оценка

Вопрос 18 \clubsuit Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из равномерного распределения на отрезке $[0; \theta]$, где $\theta > 0$ — неизвестный параметр. Состоятельной является оценка

Вопрос 19 \clubsuit Оценка $\hat{\theta}_n$ называется состоятельной оценкой параметра θ , если

Вопрос 20 Оценка $\hat{\theta}_n$ параметра θ называется эффективной в некотором классе оценок \mathcal{K} , если

$$oxed{\mathbb{C}} \operatorname{Var}(\hat{ heta}_n) o 0$$
 $oxed{\mathbb{F}}$ Нет верного ответа.

Вопрос 21 По выборке X_1,\dots,X_4 , имеющей нормальное распределение с известной дисперсией 1, проверяется гипотеза $H_0:\mu=10$ против $H_a:\mu>10$. Выборочное среднее оказалось равно 9. Тогда нулевая гипотеза

- Не отвергается на любом разумном уровне значимости
- \fbox{B} отвергается при $\alpha=0.01,$ не отвергается при $\alpha=0.05$
- $\boxed{\mathbb{C}}$ отвергается при $\alpha=0.05$, не отвергается при $\alpha=0.01$
- D Отвергается на любом разумном уровне значимости
- \fbox{E} отвергается при $\alpha=0.1,$ не отвергается при $\alpha=0.05$
- **F** Нет верного ответа.

Вопрос 22 🦂

По выборке из 5 наблюдений X_1,\dots,X_5 , имеющей экспоненциальное распределение, для проверки гипотезы о математическом ожидании $H_0:\mu=\mu_0$ против $H_a:\mu\neq\mu_0$, можно считать, что величина $\frac{\bar{X}-\mu_0}{\sqrt{\hat{\sigma}^2/n}}$ имеет распределение

A χ_4^2

 $\boxed{\mathsf{C}}$ t_5

 $E \mathcal{N}(0,1)$

 $B t_{4}$

 $D \chi_5^2$

Нет верного ответа.

Вопрос 23 🌲

Вася 25 раз подбросил монетку, 10 раз она выпала «орлом», 15 раз — «решкой». При проверке гипотезы о том, что монетка — «честная», Вася может получить следующее значение тестовой статистики

A -1.02

C 2

E 1.02

-1

D 0.4

F Нет верного ответа.

Вопрос 24 🌲

По выборке X_1,\dots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq30$. Известно, что $\sum_{i=1}^n(X_i-\bar{X})^2=270$. Тестовая статистика может быть равна

A 3

9

E 6

B 27

- D Не хватает данных
- F Нет верного ответа.

Вопрос 25 ૈ

По выборке X_1,\dots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Тестовая статистика будет иметь распределение

 $\boxed{\mathbf{A}} \ \mathcal{N}(0,1)$

 χ_{n-1}^2

E t_{n-}

 $B t_n$

 $D \chi_n^2$

F Нет верного ответа.

Вопрос 26 🐥

Дана реализация выборки: 7, -1, 3, 0. Первая порядковая статистика принимает значение

A 2.25

I -1

 \overline{E} 0

B 7

D 3

Дана реализация выборки: 7, -1, 3, 0. Выборочная функция распределения в точке 0 принимает значение

A 0

B 0.25

C 1

D 0.75

0.5

F Нет верного ответа.

Вопрос 28 🌲

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 10 бальной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	6	7	8
Статистика	5	6	10

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

A 3/8

C 0.1

E 0.05

1/2

D 1/3

F Нет верного ответа.

Вопрос 29 🐥

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу сопряженности

	Контрольная будет	Контрольной не будет
Пришло больше половины курса	35	80
Пришло меньше половины курса	5	200

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

 $\boxed{\mathbf{A}} \ T < 52, k = 1$

C T > 52, k = 3

|E| T > 52, k = 2

T > 52, k = 1

 $\boxed{\mathrm{D}} \ T < 52, k = 4$

F Нет верного ответа.

Вопрос 30 🌲

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

Е.В. Добрая 6 4 7 8 Б.Б. Злой 2 3 10 8 3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

A 20

C 20.5

22.5

B 7.5

D 19

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C D E | Вопрос 2 : А В D E F Вопрос 3: АВС D **Вопрос 4** : A B C D **Вопрос** 5 : A B C D E **Вопрос** 6 : A B C D **Вопрос** 7 : **В** В С D Е **Вопрос 8** : A B C D Вопрос 9: А В В Б Е Вопрос 10: А С С Б Е Г Вопрос 11 : А В С D Вопрос 12 : А В В О Вопрос 13 : А В С Вопрос 14 : А В С Вопрос 15 : А В В D Вопрос 16 : А В С D Вопрос 17 : А С С Вопрос 18 : В В С Б Вопрос 19 : А В С D Вопрос 21 : В В С D Е F Вопрос 22 : А В С D Вопрос 23 : А |C|D|Вопрос 24 : |А| |В| |D|Вопрос 25 : А В В Вопрос 26 : А В Т В Е Г Вопрос 27 : А В С D

Вопрос 28 : А

C D E F

Вопрос 29 : А С С Б Е Г

Вопрос 30 : А В С D

Экзамен, 19.06.2017

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit При тестировании гипотезы о равенстве дисперсий по двум независимым нормальным выборкам размером m и n тестовая статистика может иметь распределение

 $\boxed{\mathbf{A}} \ \chi^2_{m+n-2}$

 $E F_{m,n}$

 $\boxed{\mathbf{B}} \ t_{m+n-2}$

 $\boxed{\mathrm{D}} F_{m,n-2}$

Нет верного ответа.

Вопрос 2 \clubsuit Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера m и n в случае неизвестных равных дисперсий используется распределение

 $A t_{m+n}$

 $C t_{m-1,n-1}$

 t_{m+n-2}

- $\boxed{\mathsf{B}} \ \mathcal{N}(0; m+n-2)$
- $\boxed{\mathbf{D}} \ \chi^2_{m+n-2}$

F Нет верного ответа.

Вопрос 3 ♣ Для проверки гипотезы о равенстве дисперсий используются две независимые нормальные выборки размером 25 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 36, по второй — 49. Тестовая статистика может быть равна

A 1.17

C 1.56

E 1.85

B 2.13

1.36

F Нет верного ответа.

Вопрос 4 🌲 При проверке гипотезы о равенстве долей можно использовать распределение

 $\boxed{\mathbf{A}} t_{m+n-2}$

 $\boxed{\mathsf{C}} t_{m+n}$

 $\mathcal{N}(0;1)$

 $\boxed{\mathbf{B}} \ \chi^2_{m+n-2}$

 $\boxed{\mathsf{D}}\ t_{m-1,n-1}$

F Нет верного ответа.

Вопрос 5 \clubsuit Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером n_1 и n_2 соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

lacksquare A $F_{m,n}$

 $oxed{E} F_{m,n-2}$

 $\boxed{\mathbf{B}} \ t_{m+n-2}$

 $\boxed{\mathbf{D}} \ \chi^2_{m+n-2}$

Нет верного ответа.

Вопрос 6 ♣ Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

A 1/14

C 1/49

E 1/7

1/2

D 1/4

Вопрос 15 \clubsuit Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из распределения Пуассона с параметром $\lambda > 0$. Информация Фишера о параметре λ , заключенная в одном наблюдении случайной выборки, равна

Вопрос 16 🕹 Пусть $\hat{\theta}$ — несмещенная оценка для неизвестного параметра θ , а также выполнены условия регулярности. Неравенство Крамера-Рао представимо в виде

Вопрос 17 \clubsuit Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из равномерного распределения на отрезке $[0; \theta]$, где $\theta > 0$ — неизвестный параметр. Несмещённой является оценка

Вопрос 18 \clubsuit Пусть $X=(X_1,\,\dots,\,X_n)$ — случайная выборка из равномерного распределения на отрезке $[0; \theta]$, где $\theta > 0$ — неизвестный параметр. Состоятельной является оценка

Оценка $\hat{\theta}_n$ называется состоятельной оценкой параметра θ , если Вопрос 19 🌲

Вопрос 20 \clubsuit Оценка $\hat{\theta}_n$ параметра θ называется эффективной в некотором классе оценок \mathcal{K} , если

Для любой оценки
$$T$$
 из класса $\mathcal K$ и любого θ выполнено $\mathrm E((\hat \theta_n-\theta)^2)\leq \mathrm E((T-\theta)^2)$

$$\boxed{\mathbf{B}} \ \mathbf{E}(\hat{\theta}_n) = \theta$$

$$\boxed{\mathsf{C}} \ \mathrm{Var}(\hat{\theta}_n) = \frac{\sigma^2}{n}$$

$$\boxed{\mathbf{E}} \ \hat{\theta}_n \xrightarrow{P} \theta$$

По выборке X_1, \ldots, X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0: \sigma^2 = 30$ против $H_a: \sigma^2 \neq 30$. Тестовая статистика будет иметь распределение

Вопрос 26 🐥

Дана реализация выборки: 7, -1, 3, 0. Первая порядковая статистика принимает значение

Дана реализация выборки: 7, -1, 3, 0. Выборочная функция распределения в точке 0 принимает значение

A 0

B 0.75

C 1

E 0.25

F Нет верного ответа.

Вопрос 28 🐥

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 10 бальной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	6	7	8
Статистика	5	6	10

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

1/2

C 0.1

E 1/3

B 3/8

D 0.05

F Нет верного ответа.

Вопрос 29 🐥

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу сопряженности

	Контрольная будет	Контрольной не будет
Пришло больше половины курса	35	80
Пришло меньше половины курса	5	200

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

T > 52, k = 1

 $\boxed{\mathbb{C}} \ T < 52, k = 1$

 $\boxed{\mathbf{E}} \ T < 52, k = 4$

B T > 52, k = 3

D T > 52, k = 2

F Нет верного ответа.

Вопрос 30 🌲

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

 Е.В. Добрая
 6
 4
 7
 8

 Б.Б. Злой
 2
 3
 10
 8
 3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

A 7.5

22.5

E 20

B 19

D 20.5

+6/6/25+

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C D E Вопрос 2 : А В С D Вопрос 3: А В С Вопрос 4: А В С D **Вопрос** 5 : A B C D E Вопрос 7: АВВ ВБ Б Вопрос 10 : А В С CD Вопрос 11 : А Вопрос 12 : А С О Вопрос 13 : [А] [В] [С] Вопрос 14 : [А] [В] [С] Вопрос 15 : А С С Вопрос 16: А В С D Вопрос 17 : А В Вопрос 18 : А С О Вопрос 19: А В С **Вопрос 20** : В В С D E F **Вопрос 21** : A B **В** D E F Вопрос 22 : А В С D Вопрос 23 : А В С Вопрос 24 : |A| |C|D|E F Вопрос 25 : А С С Вопрос 26 : А В D E F Вопрос 27 : А В С **Вопрос 28** : **В** В С D E F

Вопрос 30: АВВ В Б Б Б

Вопрос 29 : В В С D Е F