Ejercicio 7 UnionvsJunta

Aguilar valentin

May 4, 2024

Item A

Queremos demostrar que G es un grafo unión si y solo si G es disconexo.

De ida:

Si G es un grafo unión, es decir, $G = G_1 \cup G_2$, entonces es disconexo.

Proof. Dado que la unión de dos grafos no agrega aristas nuevas, el grafo resultante $G = G_1 \cup G_2$ simplemente combina todos los vértices y aristas de G_1 y G_2 . Como no hay aristas que conecten vértices entre G_1 y G_2 , el grafo G es disconexo.

Podemos expresar esto formalmente como:

$$\forall v \in G_1, \forall w \in G_2, \ (v, w) \notin G \tag{1}$$

Esto muestra que no hay aristas que conecten los vértices de G_1 y G_2 . Así, G es disconexo. \square

De vuelta:

Si G es disconexo, entonces G es un grafo unión.

Proof. Si G es disconexo, entonces tiene al menos dos componentes conexas, digamos G_1, G_2, \ldots, G_n . El grafo original puede ser visto como la unión de estas componentes: $G = \bigcup_{i=1}^n G_i$. Como la unión de dos grafos disconexos no agrega aristas adicionales que conecten las componentes entre sí, entonces estas permanecen disconexas. Por lo tanto, G es un grafo unión.

Item B

Queremos demostrar que G es junta $(G_1 + G_2)$ si y solo si el complemento de G es un grafo unión.

De ida:

Si G es junta $(G_1 + G_2)$, entonces el complemento de G es un grafo unión.

Proof. Si G es junta $(G_1 + G_2)$, entonces todos los vértices de G_1 están conectados a todos los vértices de G_2 . El complemento de G no tendrá aristas entre estos vértices, lo que significa que será disconexo, es decir, un grafo unión. \square

De vuelta:

Si el complemento de G es un grafo unión, entonces G es junta $(G_1 + G_2)$.

Proof. Si el complemento de G es un grafo unión, entonces es disconexo. Como el complemento de G es disconexo, sabemos que G es conexo. Si los componentes conexos del complemento de G están todos conectados en G, entonces es junta $(G_1 + G_2)$. Por lo tanto, todos los vértices de una componente conexa están conectados con los de otra, lo que es un grafo junta.

Item C

Podemos usar los resultados previos para abordar este item.

Si G es un grafo unión, sabemos que es disconexo. Si G es conexo, podemos probar que es un grafo junta, como se muestra en Item B.