PMATH 764: Assignment 5

Due: Monday, 13 July, 2015.

1. Let C = V(f) be an affine plane curve that is smooth at the point $p \in C$, so that $\mathcal{O}_p(C)$ is a DVR.

(a) Prove that the maximal ideal $M_p(C)$ of C at p can be generated by the residue class in $\mathcal{O}_p(C)$ of any linear polynomial $h \in k[x,y]$ such that $V(h) \subset \mathbb{A}^2$ is a line passing through p that is not tangent to C at p.

Hint: First apply an affine coordinate change so that p=(0,0) and $T_p(C)=V(x)\subset \mathbb{A}^2$.

- (b) Prove that the order function $\operatorname{ord}_p^C:\mathcal{O}_p(C)\to\mathbb{Z}^{\geq 0}\cup\{\infty\}$ does not depend on the choice of local parameter of $\mathcal{O}_p(C)$.
- (c) Consider the extension of the order function $\operatorname{ord}_p^C: \mathcal{O}_p(C) \to \mathbb{Z}^{\geq 0} \cup \{\infty\}$ to the function field k(C), which is defined as

$$\begin{array}{ccc} \operatorname{ord}_p^C : k(C) & \to & \mathbb{Z} \cup \{\infty\} \\ f = \bar{a}/\bar{b} & \mapsto & \operatorname{ord}_p^C(\bar{a}) - \operatorname{ord}_p^C(\bar{b}). \end{array}$$

Prove the following:

- (i) ord_p^C is a well-defined, i.e., $\operatorname{ord}_p^C(f)$ does not depend on the presentation \bar{a}/\bar{b} of f.
- (ii) $\operatorname{ord}_{p}^{C}(f) = 0$ if and only if f is a unit in $\mathcal{O}_{p}(C)$.
- (iii) $\operatorname{ord}_{p}^{C}(f) = \infty$ if and only if f identically zero on C.
- (iv) $\operatorname{ord}_{p}^{C}(f_{1}f_{2}) = \operatorname{ord}_{p}^{C}(f_{1}) + \operatorname{ord}_{p}^{C}(f_{2}).$
- (v) $\operatorname{ord}_{p}^{C}(f_{1} + f_{2}) \ge \min\{\operatorname{ord}_{p}^{C}(f_{1}), \operatorname{ord}_{p}^{C}(f_{2})\}.$

Note: Notice that $\mathcal{O}_p(C) = \{ f \in k(C) | \operatorname{ord}_p^C(f) \ge 0 \}$ and $M_p(C) = \{ f \in k(C) | \operatorname{ord}_p^C(f) > 0 \}$. This means in particular that $\operatorname{ord}_p^C(f) < 0$ if and only if p is a pole of f at p.

- 2. Let C be an affine plane curve and $p \in C$.
 - (a) Show that if C is reducible, then C is singular at points that are contained in more than one irreducible component.
 - (b) Assume that C is a smooth at p and let L be a line through p in \mathbb{A}^2 . Prove that $I(p, C \cap L) = 1$ if and only if L is *not* the tangent line to C at p, otherwise, $I(p, C \cap L) \geq 2$.
 - (c) Suppose there exist two distinct lines L_1 and L_2 such that $I(p, L_i \cap C) \geq 2$ for i = 1, 2. Show that C is singular at p.
 - (d) (Optional) Find the intersection multiplicity $I(p, C \cap C')$ of the affine plane curves $C = V(x^2 1 y^3) \subset \mathbb{C}^2$ and $C' = V(x^2 1 + 2y^4) \subset \mathbb{C}^2$ at the point p = (1, 0).
- 3. Divisors. Let C be a smooth irreducible affine plane curve. A $divisor\ D$ on C is defined to be a formal sum of points

$$D = \sum_{p \in C} n_p p$$

for which $n_p \in \mathbb{Z}$ and only a finite number of the n_p 's are non-zero. Moreover, the *support* of a divisor D is the set of all points $p \in C$ for which $n_p \neq 0$. If the support of D is empty, then D is called the *zero divisor* and is denoted D = 0.

(a) Let $z \in k(C)$. We define the divisor $\operatorname{div}(z)$ of z to be

$$\operatorname{div}(z) := \sum_{p \in C} \operatorname{ord}_p^C(z) p.$$

Prove that $\operatorname{div}(z)$ is indeed a well-defined divisor on C whose support is the set of all zeroes and poles of z. Note that if $p \in C$ is in the support of $\operatorname{div}(z)$, then p is either a zero or a pole of z and its coefficient n_p is the order of that zero or pole. Show that $\operatorname{div}(z) = 0$ if z is a constant function and that the converse holds when k is algebraically closed.

- (b) Let $C = V(y^4 x^3 + x) \subset \mathbb{A}^2$. Compute the divisor $\operatorname{div}(z)$ of the rational function $z = \bar{y}/(\bar{x}-1)$.
- (c) Let $\bar{g} \in \Gamma(C)$ and suppose that \bar{g} is not a constant function on C. Let $C' = V(g) \subset \mathbb{A}^2$. Then,

$$\operatorname{div}(\bar{g}) = \sum_{p \in C} I(p, C \cap C')p,$$

implying that $\operatorname{div}(\bar{g})$ consists of the points of intersection of C and C', counting multiplicity, and is called the *intersection divisor of* C *and* C', which we denote $C \cdot C'$.

Find
$$C \cdot C'$$
 where $C = V(x + y^3) \subset \mathbb{C}^2$ and $C' = V(y(y^2 - x)) \subset \mathbb{C}^2$.

4. Resolving singularities. Consider the Cartesian product $\mathbb{A}^n \times \mathbb{A}^{n-1} = \mathbb{A}^{2n-1}$ and fix $i \in \{1, \ldots, n\}$. Let (x_1, \ldots, x_n) be coordinates in \mathbb{A}^n and $(u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n)$ be coordinates in \mathbb{A}^{n-1} . We can then define a blow-up $\widetilde{\mathbb{A}^n}$ of \mathbb{A}^n at 0 in terms of these coordinates as

$$\widetilde{\mathbb{A}^n} := V(x_1 - u_1 x_i, \dots, x_{i-1} - u_{i-1} x_i, x_{i+1} - u_{i+1} x_i, \dots, x_n - u_n x_i) \subset \mathbb{A}^n \times \mathbb{A}^{n-1} = \mathbb{A}^{2n-1}.$$

For example, if n=2 and we choose coordinates (x,y) on \mathbb{A}^2 and u on \mathbb{A}^1 , we can define two blow-ups of \mathbb{A}^2 , namely,

$$\widetilde{\mathbb{A}^2} := V(y - ux) \subset \mathbb{A}^3$$

or

$$\widetilde{\mathbb{A}^2} := V(x - uy) \subset \mathbb{A}^3.$$

Note that the affine coordinate change $(x,y)\mapsto (y,x)$ maps V(y-ux) isomorphically onto V(x-uy). Moreover, the natural projection map $\pi:\widetilde{\mathbb{A}^2}\subset\mathbb{A}^2\times\mathbb{A}^1\to\mathbb{A}^2, (x,y,u)\mapsto (x,y)$, is a birational equivalence in both cases. In all cases, the natural projection map

$$\pi: \widetilde{\mathbb{A}^n} \subset \mathbb{A}^n \times \mathbb{A}^{n-1} \longrightarrow \mathbb{A}^n$$
$$(x_1, \dots, x_n, u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_n) \longmapsto (x_1, \dots, x_n)$$

is a birational equivalence. Let $X\subset \mathbb{A}^n.$ We define

$$\widetilde{X}:=\overline{\pi^{-1}(X\setminus\{0\})}$$

to be the blow-up of X at 0. Then, $\widetilde{X} \sim X$, implying in particular that dim $\widetilde{X} = \dim X$.

- (a) Show that the blow up of the alpha curve $X = V(y^2 x^3 x^2) \subset \mathbb{A}^2$ at (0,0) is a smooth curve in \mathbb{A}^3 .
- (b) (Optional) Let Y be the plane curve $V(y^3-x^5)\subset \mathbb{A}^2$, which has a higher order cusp at (0,0). Show that (0,0) is a singular point, and that blowing up Y at (0,0) gives rise to a curve \widetilde{Y} in \mathbb{A}^3 that is singular at (0,0,0). Moreover, show that blowing up \widetilde{Y} at (0,0,0) resolves the singularity. Hence, by blowing up Y twice, one obtains a smooth curve in \mathbb{A}^5 .
- 5. (Optional) Let $X \subset \mathbb{A}^n$ be a variety. Moreover, let $f \in k[x_1, \dots, x_n]$ be an irreducible polynomial such that $Y = V(f) \cap X$ is a codimension 1 subvariety of X with $I(Y) = \langle \bar{f} \rangle$ in $\Gamma(X)$. We define

$$\mathcal{O}_Y(X) := \{z \in k(X) : z = \frac{\bar{a}}{\bar{b}} \text{ with } b \text{ not constantly zero on } Y\}$$

to be the subring of functions in k(X) whose restrictions to Y are well-defined rational functions on Y (that may have poles on Y). Show that $\mathcal{O}_Y(X)$ is a DVR and describe the valuation map.