MACHINE LEARNING

1211635

BAYESIAN LEARNING

Naive Bayes

Olarik Surinta, PhD. Lecturer

Bayesian Learning

- การเรียนรู้แบบเบย์ (Bayesian Learning) เป็นการจำแนกประเภท (Classification) รูปแบบ หนึ่งที่อาศัยหลักการของความน่าจะเป็น (Probability) เข้ามาช่วยในการหาคำตอบของ ประเภทตัวอย่างใหม่
- การเรียนรู้แบบเบย์เป็นเทคนิคที่ใช้ทฤษฎีความน่าจะ เป็นตามกฎของเบย์ (Bayes' Theorem) เพื่อหา ว่าสมมติฐานใดน่าจะถูกต้องที่สุด

• ทฤษฎีของเบย์ (Bayes' theorem) ถูกนำเสนอ โดย Thomas Bayes

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D
- P(h|D) = probability of h given D
- P(D|h) = probability of D given h

โดย

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- \bullet P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D
- P(h|D) = probability of h given D
- P(D|h) = probability of D given h

D แทนข้อมูลที่นำมาใช้ในการคำนวณการแจกแจง

ความน่าจะเป็น posteriori probability

ของสมมติฐาน h คือ P(h|D) ตามทฤษฎี

P(h) คือความน่าจะเป็นก่อนหน้าของสมมติฐาน h

P(D) คือความน่าจะเป็นก่อนหน้าของชุดข้อมูลตัวอย่าง D

P(h|D) คือความน่าจะเป็นของ h เมื่อรู้ D

P(D|h) คือความน่าจะเป็นของ D เมื่อรู้ h

Posterior probability

Likelihood

Prior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Predictor prior probability

$$P(h|D) = P(D_1|h) \times P(D_2|h) \times ... \times P(D_n|h) \times P(h)$$

Basic formulas for probabilities

 Product Rule: probability P(A ^ B) of a conjunction of two events A and B:

$$P(A \wedge B) = P(A|B)P(B) = P(B|A)P(A)$$

 Sum Rule: probability of disjunction of two events A and B:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

• Theorem of total probability: if events A_1 , ..., A_n are mutually exclusive with $\sum_{i=1}^n P(A_i) = 1$, then

$$\frac{\mathsf{MAHASAI}}{\mathsf{U} \; \mathsf{N} \; \mathsf{I} \; \mathsf{V} \; \mathsf{E}} \; P(B) = \sum\limits_{i=1}^n P(B|A_i) P(A_i)$$

Brute force MAP hypothesis learner

1)For each hypothesis *h* in *H*, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2) Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{MAP} = rgmax_{h \in H} P(h|D)$$

- ตัวอย่างการคำนวณเพื่อเลือกสมมติฐานโดยกฎของเบย์
 - คนไข้ไปโรงพยาบาลเพื่อตรวจหา "โรคมะเร็ง (cancer)" โดยผลการตรวจจากห้องตรวจมีผลเป็นบวก (+) ซึ่งให้ ความถูกต้อง 98% ในกรณีที่มีโรคนั้นอยู่จริง และมีผล เป็นลบ (-) ซึ่งให้ความถูกต้อง 97% ในกรณีที่ไม่มีโรค นั้น โดยมีจำนวนผู้ที่เป็นโรคมะเร็ง 0.008 ของประชากร ทั้งหมด อยากทราบว่า คนไข้มีโอกาสเป็นโรคมะเร็งหรือไม่

P(cancer) = 0.008

 $P(\sim cancer) = 0.992$

P(+|cancer) = 0.98

P(-|cancer) = 0.02

 $P(+|\sim cancer) = 0.03$

 $P(-|\sim cancer) = 0.97$

ดังนั้น เราสามารถคำนวณค่าความน่าจะเป็นของ สมมติฐานว่าคนไข้เป็นโรคมะเร็ง หรือไม่ได้เป็นโรคมะเร็ง เมื่อทราบผลตรวจเป็นบวก (+) โดยใช้กฎของเบย์ ดังนี้

Basic formulas for probabilities

 Product Rule: probability P(A ^ B) of a conjunction of two events A and B:

$$P(A \wedge B) = P(A|B)P(B) = P(B|A)P(A)$$

 Sum Rule: probability of disjunction of two events A and B:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

• Theorem of total probability: if events A_1 , ..., A_n are mutually exclusive with $\sum_{i=1}^n P(A_i) = 1$, then

$$\frac{\mathsf{MAHASAI}}{\mathsf{U} \; \mathsf{N} \; \mathsf{I} \; \mathsf{V} \; \mathsf{E}} \; P(B) = \sum\limits_{i=1}^n P(B|A_i) P(A_i)$$

Brute force MAP hypothesis learner

1)For each hypothesis *h* in *H*, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2) Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{MAP} = rgmax P(h|D)$$

MAHASARA

IN IVER SITY

• สมมติฐานที่ 1 คนไข้เป็นโรคมะเร็งจริง เมื่อมีผลการ

ตรวจเป็นบวก

เขียนแทนด้วย P(cancer | +)

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

พหน่ ปณ

$$P(cancer | +) = \frac{P(+ | cancer) P(cancer)}{P(+)}$$

= 0.98 * 0.008

= 0.0078

• <u>สมมติฐานที่ 2</u> คนไข้**ไม่เป็น**โรคมะเร็งจริง เมื่อมีผล การตรวจเป็นบวก

เขียนแทนด้วย P(~cancer | +)

$$P(\text{-cancer} \mid +) = \frac{P(+ \mid \text{-cancer}) P(\text{-cancer})}{P(+)}$$

= 0.03 * 0.992

พนูน์ ปณ

= 0.0298

MAHASARAKHAM UNIVERSITY

- จากกรณีนี้มีเพียง 2 สมมติฐาน นั่นแสดงว่าผลรวมของ ความน่าจะเป็นระหว่าง P(cancer|+) และ P(~cancer|+) จะมีค่าเท่ากับ 1
- ดังนั้น สามารถ Normalize ค่าของ P(cancer|+)
 และ P(~cancer|+) ดังนี้
- P(cancer|+) = 0.0078/(0.0078+0.0298) = 0.21
- $P(\sim cancer|+) = 0.0298/(0.0078+0.0298) = 0.79$

- จากการคำนวณสรุปได้ดังนี้
 - สมมติฐานที่ 1 มีค่าความน่าจะเป็นเท่ากับ 0.21
 - สมมติฐานที่ 2 มีค่าความน่าจะเป็นเท่ากับ 0.79
- เลือกตอบสมมติฐานที่ 2 เนื่องจากมีค่ามากกว่า
- ดังนั้น สมมติฐานที่ว่าคนไข้ไม่เป็นโรคมะเร็งเมื่อทราบ ผลตรวจที่เป็นบวก ด้วยความน่าจะเป็น 0.79 จึงถูก เลือกนำมาเป็นคำตอบ

ความน่าจะเป็นที่ B เกิด
ก่อนและ A เกิดตามมา $P(A|B) = P(A \cap B)$ P(B)

P(A|B) คือ ค่า conditional probability หรือค่าความน่าจะเป็นที่เกิดเหตุการณ์ B ขึ้นก่อน และจะมีเหตุการณ์ A ตามมา

P(A ∩ B) คือ ค่า joint probability หรือค่าความน่าจะเป็นที่เหตุการณ์ A และเหตุการณ์ B เกิดขึ้นร่วมกัน

P(B) คือ ค่าความน่าจะเป็นที่เหตุการณ์ B เกิดขึ้น

MAHASARAKHAM

 ในลักษณะเดียวกันเราจะเขียน P(B|A) หรือค่าความ น่าจะเป็นที่เหตุการณ์ A เกิดขึ้นก่อนและเหตุการณ์ B เกิดขึ้นตามมาที่หลังได้เป็น

$$P(B|A) = P(A \cap B)$$
$$P(A)$$

 จากทั้ง 2 แบบจะเห็นว่ามีค่า P(A ∩ B) ที่เหมือนกัน อยู่ดังนั้นเราสามารถเขียนสมการของ P(A ∩ B) ได้ เป็นดังนี้

$$P(A \cap B) = P(A|B) \times P(B) = P(B|A) \times P(A)$$

$$P(B|A) = \underline{P(A|B) \times P(B)}$$

$$P(A)$$

Bayes Theorem

No	♦ outlook	♦ temperature	♦ humidity	♦ windy	≑ play	\$
1	sunny	hot	high	FALSE	no	
2	sunny	hot	high	TRUE	no	
3	overcast	hot	high	FALSE	yes	
4	rainy	mild	high	FALSE	yes	
5	rainy	cool	normal	FALSE	yes	
6	rainy	cool	normal	TRUE	no	
7	overcast	cool	normal	TRUE	yes	
8	sunny	mild	high	FALSE	no	
9	sunny	mild	normal	FALSE	yes	
10	rainy	mild	normal	FALSE	yes	
11	sunny	mild	normal	TRUE	yes	
12	overcast	mild	high	TRUE	yes	
13	overcast	hot	normal	FALSE	yes	
14	rainy	mild	high	TRUE	no	

$$P(play = yes) = 9/14 = 0.64$$

 $P(play = no) = 5/14 = 0.36$

attribute	play = yes	play = no	
outlook = sunny	2/9 = 0.22	3/5 = 0.60	
outlook = overcast	4/9 = 0.45	0/5 = 0.00	
outlook = rainy	3/9 = 0.33	2/5 = 0.40	
temperature = hot	2/9 = 0.22	2/5 = 0.40	
temperature = mild	4/9 = 0.45	2/5 = 0.40	
temperature = cool	3/9 = 0.33	1/5 = 0.20	
humidity = high	3/9 = 0.33	4/5 = 0.80	
humidity = normal	6/9 = 0.67	1/5 = 0.20	
windy = TRUE	3/9 = 0.33	3/5 = 0.60	
windy = FALSE	6/9 = 0.67	2/5 = 0.40	

ตารางนี้ก็คือ Model ของอัลกอริทึม Naive Bayes ที่สร้างจาก Training data

- ทดสอบโมเดลโดยใช้ข้อมูลชุดทดสอบ (Test data)
 ในกรณีนี้ ทำการทดสอบโดยใช้ ดังนี้
 - แอตทริบิวต์ outlook = s**unny**
 - แอตทริบิวต์ temperature = hot
 - แอตทริบิวต์ humidity = **high**
 - แอตทริบิวต์ windy = FALSE

 ดังนั้น เราจะต้องคำนวณค่าความน่าจะเป็นที่มี แอตทริบิวต์เหล่านี้แล้วตอบคลาส play=yes

```
P(play = yes|A) = P(outlook = sunny|play = yes) x P(temperature = hot|play = yes) x P(humidity = high|play = yes) x P(windy = FALSE|play = yes) x P(play = yes) = 0.22 x 0.22 x 0.33 x 0.67 x 0.64 = 0.0068
```

 และคำนวณค่าความน่าจะเป็นที่มีแอตทริบิวต์เหล่านี้ แล้วตอบคลาส play=no

```
P(\textbf{play} = \textbf{no}|A) = P(\textbf{outlook} = \text{sunny}|play = \textbf{no}) \times P(\textbf{temperature} = \text{hot}|play = \textbf{no}) \times P(\textbf{humidity} = \text{high}|play = \textbf{no}) \times P(\textbf{windy} = \text{FALSE}|play = \textbf{no}) \times P(play = \textbf{no}) \times P(play
```

- เมื่อเปรียบเทียบค่าความน่าจะเป็นที่ได้จาก 2 คลาส แล้วพบว่าค่า
 - p(play=no|A) = 0.0276
 - p(play=yes|A) = 0.0068
- ดังนั้นคำตอบที่ได้จากการใช้ Model นี้คือ play=no เนื่องจากมีค่าความน่าจะเป็นสูงกว่า

References

- http://mis.csit.sci.tsu.ac.th/noppam as/download/DataMining/DataMiningCh7 V1.pdf
- http://dataminingtrend.com/2014/nai ve-bayes/
- https://www.analyticsvidhya.com/blog/ /2017/09/naive-bayes-explained/
- http://www.cs.cmu.edu/afs/cs/projec t/theo-20/www/mlbook/ch6.pdf

UNIVERSII