CS 581

Advanced Artificial Intelligence

February 28, 2024

Announcements / Reminders

Please follow the Week 08 To Do List instructions (if you haven't already)

Programming Assignment #01: due on Sunday 03/03 at 11:59 PM CST

Plan for Today

- Reinforcement Learning [Delayed]
- Bayes Networks
- Decision Networks
- Inference in Probabilistic Networks

Bayes Networks

Independence

Two events A and B are independent if:

$$P(A \cap B) = P(A) * P(B)$$

So (from conditional probability formula):

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) * P(B)}{P(B)} = P(A)$$

Disjointment vs. Independence

Concept	Meaning	Formulas
Disjoint	Events A and B cannot occur at the same time	$A \cap B = \emptyset$ $P(A \cup B) = P(A) + P(B)$
Independent	Event A does not give any information about event B	$P(A \mid B) = P(A)$ $P(B \mid A) = P(B)$ $P(A \cap B) = P(A) * P(B)$

Random variable X is conditionally independent of random variable Y given Z if for all $x \in Dx$, for all $y \in Dy$, and for all $z \in Dz$, such that

$$P(Y = y \land Z = z) > 0 \text{ and } P(Y = y' \land Z = z) > 0$$

 $P(X = x \mid Y = y \land Z = z) = P(X = x \mid Y = y' \land Z = z)$

In other words, given a value of Z, knowing Y's value DOES NOT affect your belief in value of X.

The following four statements are equivalent as long as conditional probabilities:

- 1. X is conditionally independent of Y given Z
- 2. Y is conditionally independent of X given Z
- 3. P(X | Y, Z) = P(X | Z)
- 4. P(X, Y | Z) = P(X | Z) * P(Y | Z)

Consider three random variables: P(owerful), H(appy), R(ich) with domains:

```
D_P = \{\text{powerful, powerless}\}, D_H = \{\text{happy, unhappy}\}, D_R = \{\text{rich, poor}\}
```

Now, when:

$$P(H = happy, R = rich) > 0$$
 and $P(H = unhappy, R = rich) > 0$

and:

$$P(P = powerful \mid H = happy, R = rich) = P(P = powerful \mid H = unhappy, R = rich)$$

In other words, given a value of \mathbb{R} , knowing \mathbb{Y} 's value DOES NOT affect your belief in the value of \mathbb{X} .

"Being un/happy does not make you less powerful, if you are rich."

More On Conditional Independence

Common Cause:

JohnCalls and MaryCalls are NOT independent

JohnCalls and MaryCalls are CONDITIONALLY independent given Alarm

Common Effect:

Burglary and Earthquake are independent

Burglary and Earthquake are NOT CONDITIONALLY independent given Alarm

Marginal Probability

Marginal probability: the probability of an event occurring P(A) .

It may be thought of as an unconditional probability.

It is not conditioned on another event.

Full Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$	Conditional probabilities
true	true	$P(H \mid e)*P(e)\approx 0.074$	$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)} = \frac{6 / 18 * 18 / 81}{13 / 81} \approx 0.462$
true	false	$P(H \mid \neg e) * P(\neg e) \approx 0.148$	$P(H \mid \neg e) = \frac{P(\neg e \mid H) * P(H)}{P(\neg e)} = \frac{12 / 18 * 18 / 81}{68 / 81} \approx 0.176$
false	true	$P(\neg H \mid e)*P(e)\approx 0.086$	$P(\neg H \mid e) = \frac{P(e \mid \neg H) * P(\neg H)}{P(e)} = \frac{7 / 63 * 63 / 81}{13 / 81} \approx 0.538$
false	false	$P(\neg H \mid \neg e) * P(\neg e) \approx 0.691$	$P(\neg H \mid \neg e) = \frac{P(\neg e \mid \neg H) * P(\neg H)}{P(\neg e)} = \frac{56 / 63 * 63 / 81}{68 / 81} \approx 0.824$
		SUM = 1	

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(grad = true \land female = true) = P(H, e) = P(H \land e) = P(H \mid e) * P(e) \approx 0.074$
true	false	$P(grad = true \land female = false) = P(H, \neg e) = P(H \mid \neg e) * P(\neg e) \approx 0.148$
false	true	$P(grad = false \land female = true) = P(\neg H, e) = P(\neg H \mid e) * P(e) \approx 0.086$
false	false	$P(grad = false \land female = false) = P(\neg H, \neg e) = P(\neg H \mid \neg e) * P(\neg e) \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

If we know the joint probability distribution, we can infer:

- marginal probabilities P(H), $P(\neg H)$, P(e), and $P(\neg e)$
- conditional probabilities $P(H \mid e)$, $P(H \mid \neg e)$, $P(\neg H \mid e)$, and $P(\neg H \mid \neg e)$

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(H):

$$P(H) = P(grad = true) = 0.074 + 0.148 \approx 18 / 81$$

Probability P(H): "sum of all probabilities where H true"

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(e):

$$P(e) = P(female = true) = 0.074 + 0.086 \approx 13 / 81$$

Probability P(e): "sum of all probabilities where e true"

Joint Probability: Conditionals

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)}$$

Joint Probability: Conditionals

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)} = \frac{0.074}{0.074 + 0.086} \approx 0.462$$

Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Complex Joint Distributions

Consider a complex joint probability distribution involving N random variables P_1 , P_2 , P_3 , ..., P_{N-1} , Pp_N .

			N Rai	ndom Variables			Joint	
	\mathbf{P}_1	P_2	P_3	•••	P_{N-1}	P_{N}	Probability	
S	true	true	true	•••	true	true	0.001	
del	true	true	true	•••	true	false	0.201	
Mo	true	true	false	•••	false	true	0.022	
ssible Worlds (Mod				•••	•••			2^{N} values
	false	false	true		true	false	0.004	
¹ Po:	false	false	true	•••	false	true	0.301	
2	false	false	false	•••	false	false	0.025	

Non-binary / Non-Boolean RVs

Some Random Variables are going to have more than two possible, discrete, values:

- height -> short, average, tall
- size -> S, M, L, XL
- streetLight -> green, orange, red
- vision -> 20/20, 15/15, etc.
- continent -> Africa, Antarctica, Asia, Australia,
 Europe, North America, South America

Non-binary RVs increase the complexity.

This May Be Impossible to Manage!

			N Ra	ndom Variables			Joint	
	\mathbf{P}_1	P_2	P_3		P_{N-1}	$P_{ m N}$	Probability	
S)	true	true	true	•••	true	true	false	
del	true	true	true	•••	true	false	true	
Mo	true	true	false	•••	false	true	false	
Possible Worlds (Models)				••••	•••	•••	•••	2 ^N values
SSI	false	false	true		true	false	true	
	false	false	true	•••	false	true	true	
2 <mark>N</mark>	false	false	false	•••	false	false	false	

Independent Variable

		Toot	hache	$\neg Too$	thache
Cloudy		Catch	¬Catch	Catch	¬Catch
	Cavity	0.108	0.012	0.072	0.008
	¬Cavity	0.016	0.064	0.144	0.576
		Toot	hache	$\neg Too$	thache
Cloudy		Catch	¬Catch	Catch	¬Catch
Clo	Cavity	0.108	0.012	0.072	0.008
	¬Cavity	0.016	0.064	0.144	0.576

Let's introduce another random variable Cloudy representing some weather conditions. It is difficult to imagine the other random variables here (Toothache, Cavity, Catch) being dependent on Cloudy and vice versa.

Independent Variable

		Toot	hache	¬Too1	thache
Cloudy		Catch	¬Catch	Catch	¬Catch
	Cavity	0.108	0.012	0.072	0.008
'	¬Cavity	0.016	0.064	0.144	0.576
		Toot	hache	¬Too1	thache
udy		Toot Catch	hache −Catch	¬Toot Catch	thache ¬Catch
Cloudy	Cavity				

Let's try to calculate the following probability:

P(Toothache, Catch, Cavity, Cloudy)

using the Product Rule:

P(Toothache, Catch, Cavity, Cloudy) == $P(Cloudy \mid Toothache, Catch, Cavity) * P(Toothache, Catch, Cavity)$

Independent Variable

		Toot	hache	$\neg Too$	thache
Cloudy		Catch	¬Catch	Catch	¬Catch
	Cavity	0.108	0.012	0.072	0.008
	¬Cavity	0.016	0.064	0.144	0.576
		Toot	hache	¬Too	thache
ndy		Toot Catch	hache −Catch	¬Too	thache ¬Catch
Cloudy	Cavity				

It's hard to imagine Cloudy influencing other variables, so:

 $P(Cloudy \mid Toothache, Catch, Cavity) = P(Cloudy)$

and then:

$$P(Toothache, Catch, Cavity, Cloudy) =$$

= $P(Cloudy) * P(Toothache, Catch, Cavity)$

Independent Variable / Factoring

		Toot	hache	$\neg Too$	thache
Cloudy		Catch	¬Catch	Catch	¬Catch
	Cavity	0.108	0.012	0.072	0.008
	¬Cavity	0.016	0.064	0.144	0.576
		Toot	hache	$\neg Too$	thache
Cloudy		Catch	¬Catch	Catch	¬Catch
Clo	Cavity	0.108	0.012	0.072	0.008
	¬Cavity	0.016	0.064	0.144	0.576

It's hard to imagine Cloudy influencing other variables, so:

P(Toothache, Catch, Cavity, Cloudy) == P(Cloudy) * P(Toothache, Catch, Cavity)

This shows that Cloudy is INDEPENDENT of other variables and factoring can be applied.

Factoring / Decomposition

Bayes' Rule

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Prior vs. Posterior Probabilities

Prior Probability

Posterior Probability

P(A)

P(A | parents(A))

Use Chain Rule To Decompose

	N Random Variables			Joint		
\mathbf{P}_{1}	\mathbf{P}_2	\mathbf{P}_3	***	P_{N-1}	$\mathbf{P}_{\mathbb{N}}$	Probability
true	true	true		true	true	false
true	true	true		true	false	true
true	true	false		false	true	false
					A.c.	
	•••			•••		•••
false	false	true	***	true	false	true
false	false	true		false	true	true
false	false	false		false	false	false
			▼			

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any random variables f_1, f_2, \ldots, f_n :

$$P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) = \prod_{i=1}^n P(f_i \mid f_1 \wedge \ldots \wedge f_{i-1})$$

$$P(f_1 \land f_2 \land \dots \land f_n) =$$

$$P(f_1) *$$

$$P(f_2 \mid f_1) *$$

$$P(f_3 \mid f_1 \land f_2)$$

$$* \dots *$$

$$P(f_n \mid f_1 \land \dots \land f_{n-1})$$

Chain Rule

Conditional probabilities can be used to decompose joint probabilities using the chain rule. For any random variables f_1, f_2, \ldots, f_n and values x_1, x_2, \ldots, x_n :

$$P(f_{1} = x_{1}, f_{2} = x_{2}, ..., f_{n} = x_{n}) =$$

$$P(f_{1} = x_{1}) *$$

$$P(f_{2} | f_{1} = x_{1}) *$$

$$P(f_{3} | f_{1} = x_{1}, f_{2} = x_{2}) *$$
...
$$P(f_{n} = x_{n} | f_{1} = x_{1}, ..., f_{n-1} = x_{n-1}) =$$

$$= \prod_{i=1}^{n} P(f_{i} = x_{i} | f_{1} = x_{1}, ..., f_{i-1} = x_{i-1})$$

Causal Chain:

$$P(M \mid A, B) = \frac{P(B, A, M)}{P(B, A)} = \frac{P(B) * P(A \mid B) * P(M \mid A)}{P(B) * P(A \mid B)} = P(M \mid A)$$

Burglary and MaryCalls are CONDITIONALLY independent given Alarm.

If Alarm is given, what "happened before" Alarm does not directly influence MaryCalls.

Causal Chain:

Burglary and MaryCalls are CONDITIONALLY independent given Alarm.

If Alarm is given, what "happened before" Alarm does not directly influence MaryCalls.

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any propositions (random variables) f_1, f_2, \ldots, f_n :

$$P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) = \prod_{i=1}^n P(f_i \mid f_1 \wedge f_2 \wedge \ldots \wedge f_{i-1})$$

However, it can be rewritten as:

$$P(f_1 \wedge f_2 \wedge ... \wedge f_n) = \prod_{i=1}^n P(f_i \mid parents(f_i))$$

because with conditional independence(s) considered:

$$\prod_{i=1}^{n} P(f_i \mid f_1 \land f_2 \land \dots \land f_{i-1}) = \prod_{i=1}^{n} P(f_i \mid parents(f_i))$$

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any propositions (random variables) f_1, f_2, \ldots, f_n :

$$P(f_1) *$$

$$P(f_2 | f_1) *$$

$$P(f_3 | f_1 \wedge f_2) *$$
...
$$P(f_n | f_1 \wedge f_2 \wedge ... \wedge f_{n-1}) =$$

$$= \prod_{i=1}^n P(f_i | Parents(f_i)) \leftarrow \text{Enabled by conditional independence}$$

 $P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) =$

Parents of Random Variable f_i

Parents of random variable f_i (parents(f_i)) is a minimal set of predecessors of f_i in the total ordering such that the other predecessors of f_i are conditionally independent of f_i given $parents(f_i)$.

A set of all predecessors of $f_i: A = \{f_1, f_2, \dots, f_{i-1}\}$

A set of all parents of f_i : B

A set of all non-parents (predecessors NOT in B) of f_i : C

$$A = \{f_1, f_2, \dots, f_{i-1}\} = B \cup C \text{ where } B \cap C = \emptyset$$

when $parents(f_i)$ are given (all their values are known).

Parents of Random Variable f_i

Parents of random variable f_i (parents(f_i)) is a minimal set of predecessors of f_i in the total ordering such that the other predecessors of f_i are conditionally independent of f_i given $parents(f_i)$.

So: when $parents(f_i)$ are given, f_i probabilistically depends on each of its parents ($parents(f_i)$), but is independent of its other predecessors. That is

$$parents(f_i) \subseteq \{f_1, f_2, \dots, f_{i-1}\}$$

such that:

$$P(f_i \mid f_1 \land f_2 \land \dots \land f_{i-1}) = P(f_i \mid parents(f_i))$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(grad = true \land female = true) = P(H, e) = P(H \land e) = P(H) * P(e \mid H) \approx 0.074$
true	false	$P(grad = true \land female = false) = P(H, \neg e) = P(H) * P(\neg e \mid H) \approx 0.148$
false	true	$P(grad = false \land female = true) = P(\neg H, e) = P(\neg H) * P(e \mid \neg H) \approx 0.086$
false	false	$P(grad = false \land female = false) = P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_1 \wedge f_2) = \prod_{i=1}^2 P(f_i \mid f_1 \wedge ... \wedge f_{i-1})$$

 $P(f_1 \wedge f_2) = P(f_1) * P(f_2 \mid f_1)$
so: $P(grad \wedge female) = P(H \wedge e) = P(H) * P(e \mid H)$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(H, e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$
true	false	$P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$
false	true	$P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$
false	false	$P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_1 \wedge f_2) = \prod_{i=1}^2 P(f_i \mid f_1 \wedge ... \wedge f_{i-1})$$

 $P(f_1 \wedge f_2) = P(f_1) * P(f_2 \mid f_1)$
so: $P(grad \wedge female) = P(H \wedge e) = P(H) * P(e \mid H)$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(H, e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$
true	false	$P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$
false	true	$P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$
false	false	$P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_1 \wedge f_2) = \prod_{i=1}^2 P(f_i \mid parents(f_i))$$

 $P(f_1 \wedge f_2) = P(f_1) * P(f_2 \mid parents(f_i))$
so: $P(H \wedge e) = P(H) * P(e \mid parents(e)) = P(H) * P(e \mid H)$

H: e:
$$P(H, e) = P(H \land e)$$
: $P(H, e) = P(H \land e)$: $P(H, e) = P(H \land e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$

true false $P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$

false true $P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$

false false $P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$

SUM = 1

$$P(H \wedge e) = P(H) * P(e \mid parents(e)) = P(H) * P(e \mid H)$$

H: grad	⊣H: ⊣grad		H: grad
18 / 81 ≈ 0.22	63 / 81 ≈ 0.78		true
			true
			false
Conditional P	robability Table	e (CPT)	false

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

Bayes Network: Factorization

Chain rule AND definition of $parents(f_i)$ gives us:

$$P(f_1 \wedge f_2 \wedge ... \wedge f_n) = \prod_{i=1}^n P(f_i \mid parents(f_i))$$

Joint probability distribution

Product of conditional probabilities after factorization of joint probability distribution

N Random Variables					Joint	
\mathbf{P}_{1}	\mathbf{P}_2	\mathbf{P}_3		$P_{\overline{N}\text{-}1}$	$\mathbf{P}_{\mathbf{N}}$	Probability
true	true	true		true	true	0.0011
true	true	true		true	false	0.0451
true	true	false		false	true	0.1011
false	false	true		true	false	0.0909
false	false	true		false	true	0.0651
false	false	false		false	false	0.2021

Joint probability distribution

Bayes Network: graph representation of joint probability distribution factorization

Bayesian (Belief) Network

A Bayesian belief network describes the joint probability distribution for a set of variables.

A Bayesian network is an acyclic, directed graph (DAG), where the nodes are random variables (propositions). There is an edge (arc) from each elements of $parents(X_i)$ into X_i . Associated with the Bayesian network is a set of conditional probability distributions - the conditional probability of each variable given its parents (which includes the prior probabilities of those variables with no parents).

Consists of:

- a graph (DAG) with nodes corresponding to random variables
- a domain for each random variable
- a set of conditional probability distributions $P(X_i | parents(X_i))$

Bayesian (Belief) Network: Example

Random Variables (Propositions):

- Tampering: true if the alarm is tampered with
- Fire: true if there is a fire
- Alarm: true if the alarm sounds
- Smoke: true if there is smoke
- Leaving: true if people leaving the building at once
- Report: true if someone who left the building reports fire

Domain for all variables: {true, false}

NOTE: RVs don't have to be Boolean

Building Bayesian (Belief) Network

- 1. Order Random Variables (ordering matters!)
- 2. Create network nodes for each Random Variable
- 3. Add edges between parent nodes and children nodes
 - For every node node X_i:
 - choose a minimal set S of parents for X_i
 - for each parent node Y in S add an edge from Y to X_i
- 4. Add Conditional Probability Tables

Make it compact / sparse: choose your Random Variable ordering wisely.

Ordering Matters!

Create Vertices / Node / Random Vars

Add Edges

H: e:
$$P(H, e) = P(H \land e)$$
: $P(H, e) = P(H \land e)$: $P(H, e) = P(H \land e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$

true false $P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$

false true $P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$

false false $P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$

SUM = 1

$$P(H \wedge e) = P(H) * P(e \mid parents(e)) = P(H) * P(e \mid H)$$

H: grad	¬Н: ¬grad	
$18 / 81 \approx 0.22$	63 / 81 ≈ 0.78	
Conditional P	robability Table	e (CPT)

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

Create Vertices / Node / Random Vars

Create Vertices / Node / Random Vars

Add Edges

H:	¬H:
grad	¬grad
$18 / 81 \approx 0.22$	63 / 81 ≈ 0.78

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

Bayesian Network: Car Insurance

Inference in Bayes Networks

Inference In Bayes Networks

Inference by Enumeration: Example

Query (what is the probability distribution for the following conditional P()?):

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(H):

$$P(H) = P(grad = true) = 0.074 + 0.148 \approx 18 / 81$$

Probability P(H): "sum of all probabilities where H true"

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(e):

$$P(e) = P(female = true) = 0.074 + 0.086 \approx 13 / 81$$

Probability P(e): "sum of all probabilities where e true"

Joint Probability: Conditionals

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)} = \frac{0.074}{0.074 + 0.086} \approx 0.462$$

General Inference Procedure

Given:

- lacktriangle a query involving a single variable X (in our example: ${f Cavity}$),
- \blacksquare a <u>list</u> of evidence variables E (in our example: just Toothache),
- a <u>list</u> of observed values e for E,
- a list of remaining unobserved variables Y (in our example: just Catch),

where X, E, and Y together are a COMPLETE set of variables for the domain, the probability $P(X \mid E)$ can be evaluated as:

$$P(X \mid e) = \alpha * P(X, e) = \alpha * \sum_{y} P(X, e, y)$$

where ys are all possible values for Ys, α - normalization constant.

P(X, e, y) is a subset of probabilities from the joint distribution

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X
- a <u>list</u> of evidence variables K,
- a <u>list</u> of observed values k for K,
- a list of remaining unobserved variables Y

the probability $P(X \mid \boldsymbol{K})$ can be evaluated as:

$$P(X \mid k) = \alpha * P(X, k)$$

$$= \alpha * \sum_{\mathbf{v}} P(X, \mathbf{k}, \mathbf{y})$$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X: Burglary
- a <u>list</u> of evidence variables K: JohnCalls, MaryCalls
- a <u>list</u> of <u>observed</u> values k for K: johnCalls, maryCalls
- a list of remaining unobserved
 variables Y: Earthquake, Alarm

the probability $P(X \mid \boldsymbol{K})$ can be evaluated as:

$$P(X \mid k) = \alpha * \sum_{y} P(X, k, y)$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X:
 B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the probability $P(X \mid \mathbf{K})$ can be evaluated as:

$$P(X \mid k) = \alpha * \sum_{v} P(X, k, y)$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the probability P(B | J, M) can be evaluated as:

$$P(B \mid j,m) = \alpha * \sum_{e} \sum_{a} P(B,j,m,e,a)$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
\mathbf{f}	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

$$P(b \mid j,m) = \alpha * \sum_{e} \sum_{a} P(b,j,m,e,a)$$

By Chain rule:

$$P(b, j, m, e \ a)$$

= $P(b) * P(e) * P(a|b, e) * P(j|a) * P(m|a)$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

 $P(b \mid j, m)$

$$= \alpha * \sum_{a} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

P(M|A)

0.70

0.01

A	P(J A)	A
t	0.90	t
f	0.05	f

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

 $P(b \mid j, m)$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Query rewritten:

 $P(b \mid j, m)$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

F	3	E	P(A B,E)
1	t	t	0.95
1	t	f	0.94
1	f	t	0.29
j	f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	
t	0.90	
f	0.05	

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Query rewritten:

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

P(M|A)

0.70

0.01

A	P(J A)	A
t	0.90	t
f	0.05	f

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	
t	0.90	
f	0.05	

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b \mid j, m)$$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Query rewritten:

 $P(b \mid j, m)$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

We can now calculate:

$$P(b \mid j, m) = \alpha * 0.00059224$$

And through similar process (not shown):

$$P(\neg b \mid j, m) = \alpha * 0.0014919$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A
t	0.90	t	0.70
f	0.05	f	0.01

Query (now we can get joint distribution):

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

We can now calculate:

$$P(B \mid j, m) = \alpha * < 0.00059224, 0.0014919 >$$

And after normalization:

$$P(B \mid j, m) \approx < 0.284, 0.716 >$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A
t	0.90	t	0.70
f	0.05	f	0.01

More On Conditional Independence

Node \boldsymbol{X} is conditionally independent of ALL other nodes in the network its given its

Markov blanket.

Why do we care?

An unconstrained joint probability distribution with N binary variables involves 2^N probabilities. Bayesian network with at most k parents per each node (N) involves $N * 2^k$ probabilities (k < N).

Decision Networks

Decision Theory

- Decisions: every plan (actions) leads to an outcome (state)
- Agents have preferences (preferred outcomes)
- Preferences → outcome utilities
- Agents have degrees of belief (probabilities) for actions

Decision theory = probability theory + utility theory

Decision Theory

- Decisions: every plan (actions) leads to an outcome (state)
- Agents have preferences (preferred outcomes)
- Preferences → outcome utilities
- Agents have degrees of belief (probabilities) for actions

Decision theory = probability theory + utility theory

BELIEFS

DESIRES

Maximum Expected (Average) Utility

MEU(M) = P(S10) * U(S10) + P(S15) * U(S15) + P(S55) * U(S55)

$$MEU(N) = P(S20) * U(S20) + P(S15) * U(S15) + P(S12) * U(S12)$$

Agents Decisions

Recall that agent **ACTIONS** change the state:

- if we are in state s
- action a is expected to
- lead to another state s' (outcome)

Given uncertainty about the current state s and action outcome s' we need to define the following:

- probability (belief) of being in state s: P(s)
- probability (belief) of action a leading to outcome s': P(s' | s, a)

Now:

$$P(s' \mid s, a) = P(RESULT(a) = s') = \sum_{s} P(s) * P(s' \mid s, a)$$

Expected Action Utility

The expected utility of an action a given the evidence is the average utility value of all possible outcomes s' of action a, weighted by their probability (belief) of occurence:

$$EU(a) = \sum_{s'} \sum_{s} P(s) * P(s' \mid s, a) * U(s') = \sum_{s'} P(Result(a) = s') * U(s')$$

Rational agent should choose an action that maximizes the expected utility:

chosen action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a)

State Utility Function

Agent's preferences (desires) are captured by the Utility function $U(\mathbf{s})$.

Utility function assigns a value to each state s to express how desirable this state is to the agent.

Decision Network (Influence Diagram)

Decision networks (also called influence diagrams) are structures / mechanisms for making rational decisions.

Decision networks are based on Bayesian networks, but include <u>additional nodes</u> that represent actions and utilities.

Decision Networks

The most basic decision network needs to include:

- information about current state s
- possible actions
- resulting state s' (after applying chosen action a)
- utility of the resulting state U(s')

Decision Network Nodes

Decision networks are built using the following nodes:

chance nodes:

decision nodes:

utility (or value) nodes

Decision Network: Evaluation

The algorithm for decision network evaluation is as follows:

- 1. Set the evidence variables for the current state
- 2. For each possible value a of decision node:
 - a. Set the decision node to that value
 - Calculate the posterior probabilities for the parent nodes of the utility node
 - c. Calculate the utility for the action / value a
- 3. Return the action with highest utility

Decision Network: Simplified Form

(Single-Stage) Decision Networks

General Structure

Decision Network

Simplified Structure

Decision Network

(Single-Stage) Decision Networks

General Structure

Utility Table

S	low	low	low	low	high	high	high	high
Q	low	low	high	high	low	low	high	high
F	low	high	low	high	low	high	low	high
U	10	20	5	50	70	150	100	200

Simplified Structure

Action-Utility Table (not all columns shown)

AT	low	low	low	 	high	high	high
L	low	low	high	 	low	high	high
С	low	high	low	 	high	low	high
AS	A	A	A	 	В	В	В
U	10	20	5	 	150	100	200

Decision Network: Evaluation

The algorithm for decision network evaluation is as follows:

- 1. Set the evidence variables for the current state
- 2. For each possible value a of decision node:
 - a. Set the decision node to that value
 - Calculate the posterior probabilities for the parent nodes of the utility node
 - c. Calculate the utility for the action / value a
- 3. Return the action with highest utility

Agent's Decisions

Recall that agent **ACTIONS** change the state:

- if we are in state s
- action a is expected to
- lead to another state s' (outcome)

Given uncertainty about the current state s and action outcome s' we need to define the following:

- probability (belief) of being in state s: P(s)
- probability (belief) of action a leading to outcome $s': P(s' \mid s, a)$

Now:

$$P(s' \mid s, a) = P(RESULT(a) = s') = \sum_{s} P(s) * P(s' \mid s, a)$$

Expected Action Utility

The expected utility of an action a given the evidence is the average utility value of all possible outcomes s' of action a, weighted by their probability (belief) of occurence:

$$EU(a) = \sum_{s'} \sum_{s} P(s) * P(s' \mid s, a) * U(s') = \sum_{s'} P(Result(a) = s') * U(s')$$

Rational agent should choose an action that maximizes the expected utility:

chosen action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a)

Decision: take umbrella

Decision: leave umbrella

take

take

20

70

sun

rain

Decision: take umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	
take	rain	70

$$EU(take) = ???$$

Decision: leave umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	
leave	rain	0
take	sun	20
take	rain	70

$$EU(leave) = ???$$

Decision: take umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	
take	rain	70

$$EU(take) = 35$$

Decision: leave umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$EU(leave) = 70$$

Which action to choose: take or leave Umbrella?

P(W=rain)

P(W=sun)

take

take

rain

action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a) | max(EU(take), EU(leave)) = max(35, **70**) \rightarrow leave

 $P(Result(take) = S_2')*U(S_2') =$

0.70 * 20 + 0.30 * 70 = 35

20

70

Decision: take umbrella

Decision: leave umbrella

Decision:take umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decision: leave umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s') \mid EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

take

rain

70

Decision:take umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Conditional probabilities Assume that we are given:

F	W	P(F W)
sun	sun	0.80
rain	sun	0.20
sun	rain	0.10
rain	rain	0.90

By Bayes' Theorem:

$$P(W = sun \mid F = sun) = \frac{P(F = sun \mid W = sun) * P(W = sun)}{P(F = sun)} = \frac{0.80 * 0.70}{0.59} = 0.95$$

$$P(W = \text{sun} \mid F = \text{rain}) = \frac{P(F = \text{rain} \mid W = \text{sun}) * P(W = \text{sun})}{P(F = \text{rain})} = \frac{0.20 * 0.70}{0.41} = 0.34$$

$$P(W = rain \mid F = sun) = \frac{P(F = sun \mid W = rain) * P(W = rain)}{P(F = sun)} = \frac{0.10 * 0.30}{0.59} = 0.05$$

$$P(W = rain \mid F = rain) = \frac{P(F = rain \mid W = rain) * P(W = rain)}{P(F = rain)} = \frac{0.90 * 0.30}{0.41} = 0.66$$

70

Decision:take umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(take given sun forecast) = ???

take

rain

Decision: leave umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

take

take

rain

20

70

Decision:take umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

S_1 ': D = take, W = sun
S_2 ': D = take, W = rain
EU(take) =
$P(Result(take)=S_1' e)*U(S_1') +$
$P(Result(take) = \frac{S_2'}{e}) * U(\frac{S_2'}{e}) =$
0.95 * 20 + 0.05 * 70 = 22.5

D	W	U
leave	sun	100
leave	rain	0
take	sun	
take	rain	70

EU(take given sun forecast) = 22.5

Decision: leave umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

W	U
sun	100
rain	0
sun	20
rain	70
	rain sun

EU(leave given sun forecast) = 95

70

Decision:take umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(take given rain forecast) = ???

take

rain

Decision: leave umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(leave given rain forecast) = ???

take

rain

70

Decision:take umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

W

sun

rain

sun

rain

100

70

EU	take	given	rain	forecast)) =	53
LU	tanc	givon	Iam	101ccast	, —	JJ

Decision: leave umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	
leave	rain	0
take	sun	20
take	rain	70

EU(leave given rain forecast) = 34

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given rain

EU(leave given rain forecast) = 34

Decision:take umbrella given sun

EU(take given sun forecast) = 22.5

Decision:leave umbrella given sun

EU(leave given sun forecast) = 95

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given rain

EU(leave given rain forecast) = 34

Decision:take umbrella given sun

EU(take given sun forecast) = 22.5

Decision: leave umbrella given sun

EU(leave given sun forecast) = 95

Value of Perfect Information

The value/utility of best action α without additional evidence (information) is :

$$MEU(\alpha) = \frac{max}{a} \sum_{s'} P(Result(a) = s') * U(s')$$

If we include new evidence/information ($E_j = e_j$) given by some variable E_j , value/utility of best action α becomes:

$$MEU(a_{e_j} \mid e_j) = \max_{a} \sum_{s'} P(Result(a) = s' \mid e_j) * U(s')$$

The value of additional evidence/information from Ej is:

$$VPI(E_j) = \left(\sum_{e_j} P(E_j = e_j) * MEU(a_{e_j} \mid E_j = e_j)\right) - MEU(a)$$

using our current beliefs about the world.

Decision network

The value of best action α without additional evidence

$$MEU(\alpha) = MEU(leave) = 70$$

With evidence information ($E_i = e_i$) given by Forecast:

$$MEU(a_{e_1} | e_1) = MEU(take | F = rain) = 53$$

$$MEU(a_{e_2} \mid e_2) = MEU(leave \mid F = sun) = 95$$

The value of additional evidence / information from F is:

$$\begin{aligned} \text{VPI}(E_j) = & \left(\sum_{e_j} \text{P}(E_j = e_j) * \text{MEU}(a_{e_j} \mid E_j = e_j) \right) - \text{MEU}(a) \\ \text{VPI}(F) = & \left(\text{P}(F = rain) * \text{MEU}(take \mid F = rain) + \text{P}(F = sun) * \right. \\ \text{MEU}(\text{leave} \mid F = sun)) - \text{MEU}(\text{leave}) = \\ & \left(0.41 * 53 + 0.59 * 95 \right) - 70 = 7.78 \end{aligned}$$

Outcome tree

Decision:leave umbrella

$$EU(leave) = 70$$

The value of best action α without additional evidence

$$MEU(\alpha) = MEU(leave) = 70$$

With evidence information ($E_i = e_i$) given by Forecast:

$$MEU(a_{e_1} | e_1) = MEU(take | F = rain) = 53$$

 $MEU(a_{e_2} | e_2) = MEU(leave | F = sun) = 95$

The value of additional evidence / information from F is:

$$\begin{aligned} \text{VPI}(E_j) = & \left(\sum_{e_j} \text{P}(E_j = e_j) * \text{MEU}(a_{e_j} \mid E_j = e_j) \right) - \text{MEU}(a) \\ \text{VPI}(F) = & \left(\text{P}(F = rain) * \text{MEU}(take \mid F = rain) + \text{P}(F = sun) * \right. \\ \text{MEU}(\text{leave} \mid F = sun)) - \text{MEU}(\text{leave}) = \\ & \left(0.41 * 53 + 0.59 * 95 \right) - 70 = 7.78 \end{aligned}$$

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given sun

EU(leave given sun forecast) = 95

Utility & Value of Perfect Information

New information will not help here.

New information may help a lot here.

New information may help a bit here.

VPI Properties

Given a decision network with possible observations \mathbf{E}_{j} (sources of new information / evidence):

The expected value of information is nonnegative:

$$\forall_{j} \text{VPI}(E_{j}) \geq 0$$

VPI is not additive:

$$VPI(E_j, E_k) \neq VPI(E_j) + VPI(E_k)$$

VPI is order-independent:

$$VPI(E_i, E_k) = VPI(E_i) + VPI(E_k \mid E_i) = VPI(E_k) + VPI(E_i \mid E_k) = VPI(E_k, E_i)$$

Information Gathering Agent

function Information-Gathering-Agent(percept) returns an action persistent: D, a decision network

```
integrate percept into D
j \leftarrow the value that maximizes VPI(E_j) / C(E_j)
if VPI(E_j) > C(E_j)
then return Request(E_j)
else return the best action from D
```