

Inverse optimization of integer programming games for parameter estimation arising from competitive retail location selection

Reporter: Yu Chengcheng

Date: 2023.08.29

Paper Information

Title: Inverse optimization of integer programming games for parameter estimation arising from competitive retail location selection

- Published on *European Journal of Operational Research*
 - Received: 7 June 2022
 - Accepted: 28 June 2023
 - Area of Review: *Production, Manufacturing, Transportation and Logistics*
 - Keywords: Integer programming; Choice estimation; Retail location;
 Inverse optimization
 - Authors: Tobias Crönert, Layla Martin, Stefan Minner, Christopher S. Tang

Tobias Crönert (Research Associate, Technical University of Munich, QS 49)

■ Education

- Research associate, Technical University of Munich, since 2019
- Master degree, University of Waterloo, 2016-2017
- Bachelor degree, Technical University of Munich, 2012 -2016

■ Publication

- Operations Research
- European Journal of Operational Research
- Transportation Research Part C

Research Areas

- Future Mobility
- Hydrogen Supply Chain
- Competition

Layla Martin (Assistant Professor, Eindhoven University of Technology, QS 125)

- Education
 - PHD, Technical University of Munich, 2020
 - Master degree, Technical University of Munich, 2017
 - Bachelor degree, Cooperative State University,
 2015
- Publication (56 citations)
 - Transportation Science
 - European Journal of Operational Research (2)
 - Transportation Research Part E (3)
- Research Areas
 - Transportation and logistics
 - Shared mobility
 - Mixed integer programming and game theory

Stefan Minner (Full Professor, Technical University of Munich, QS 49)

- Education
 - PHD, University of Magdeburg, 1994-1999
 - Bachelor degree, University of Bielefeld, 1989-1994
- Publication (7433 citations)
 - Operations Research (4)
 - Manufacturing & Service Operations Management (4)
 - Production and Operations Management (3)
 - Management Science
 - Transportation Science
 - EJOR/TRx/IISE/IJPR/IJPE (Many)
- Research Areas
 - Logistics and Supply Chain Management
 - Inventory Management
 - Artificial Intelligence

Christopher S. Tang (Full Professor, University of California, Los Angeles, QS 44)

- Education
 - PHD, Yale University, 1983-1985
 - Master degree, Yale University, 1981-1983
 - Bachelor degree, University of Cambridge, 1997-1981
- Publication (28462 citations)

标题	引用次数	年份
The value of information sharing in a two-level supply chain HL Lee, KC So, CS Tang Management science 46 (5), 626-643	3128	2000
Perspectives in supply chain risk management CS Tang International journal of production economics 103 (2), 451-488	1949	2006

- Research Areas
 - Outsourcing
 - Pricing
 - Retailing
 - Supply Chain Management

1. Background

A realistic scenario

- ✓ Suppose you plan to open a coffee shop
 - There are two coffee brands, Luckin and Starbucks, in the area
- ✓ Know nothing about the consumer information (distance preference, price preference, brand preference, etc.)
- ✓ How to locate your coffee shop?
 - Estimate consumer information based on the existing layout!

1. Background

- Competitive retail location selection
 - ✓ Retailers choose their store locations: Need in-depth knowledge of these customer attraction parameters
 - Common approach: Customer surveys or Discrete choice models
 - A new entrant is unlikely to have access to such granular data
 - ✓ Incumbent retailers: Full knowledge of each other's payoffs and the customer choice behavior.
 - ✓ A new entrant: Observing (near-)optimal location selection of incumbents

Research Problem

- ✓ New entrant's location problem
 - Integer programming games: Competitive retail location selection
 - Inverse optimization: Parameter estimation

2. Related literature

□ Research Gap

Related area	Research content	Published research	Research Gap
Location choice in retail	Simultaneous competition: Assume full knowledge	Crönert & Minner, 2021b; Godinho & Dias, 2010	Need full knowledge
	Customer choice estimation: Maximum likelihood estimation or regression models	Seim, 2006; Shriver & Bollinger, 2022	Sales level data
Inverse optimization	Classic inverse optimization	Ahuja & Orlin, 2001; Wang 2009	Single decision-maker
	Inverse equilibrium problems	Bertsimas et al. 2015; Allen et al. 2022	Limited to continuous decisions

- Integer programming games (IPGs)
 - Finite action set:

$$S_i^o = \{ \mathbf{x}_i \in \mathbb{Z}^{z_i} | w_q(\mathbf{x}_i) \le 0, \forall q \in \{1, ..., Q^i\} \}$$

• A popular solution concept for IPGs is a Nash equilibrium:

$$\Pi_i(\mathbf{x}_i, \mathbf{x}_{-i}) \ge \Pi_i(\tilde{\mathbf{x}}_i, \mathbf{x}_{-i}), \forall \tilde{\mathbf{x}}_i \in S_i^o, \forall i \in I$$

- However, such pure Nash equilibria do not provably exist for general IPGs (*Carvalho et al., 2022*).
- Approximate nash equilibrium (Daskalakis et al., 2006):

$$\Pi_i(\mathbf{x}_i, \mathbf{x}_{-i}) + \epsilon \ge \Pi_i(\tilde{\mathbf{x}}_i, \mathbf{x}_{-i}), \forall \tilde{\mathbf{x}}_i \in S_i^o, \forall i \in I$$

Our context

- Incumbent retailers: Know payoff structures and customer choice behavior
- Customers: Select certain stores they frequent
- New entrant: Estimate the customers' choice parameters

Customer choice

- ✓ Utility function (homogeneous)
 - Retail chain brand attractiveness (β_i), such as pricing and product quality,
 - Accessibility $(\widetilde{d}_{jk}^o = \frac{\overline{d} d_{jk}^o}{\overline{d}})$: proximity of a store
 - Convenience $(\widetilde{g}_k^0 = \frac{g_k^0}{\bar{g}})$: Points of interest near the location
 - Utility function:

$$u_{ijk}^o = \beta_i + \alpha \widetilde{d}_{jk}^o + (1 - \alpha)\widetilde{g}_k^o$$

✓ Fractional patronage (Luce's choice axiom, Luce, 1959)

$$f_{ij}^{o}(\mathbf{x}_{i}^{o}, \mathbf{x}_{-i}^{o}) = \frac{\sum_{k \in K \mid d_{jk} \leq \bar{d}} x_{ik}^{o} u_{ijk}^{o}}{\sum_{k \in K \mid d_{jk} \leq \bar{d}} x_{\tilde{i}k}^{o} u_{\tilde{i}jk}^{o}}, \forall i \in I, \forall j \in J, \forall 0 \in 0$$

- Forward problem: Incumbents' location selection
 - ✓ Profit
 - annualized operating margin annualized fixed costs

$$\prod_{i}^{o} (x_{i}^{o}, \widehat{x}_{-i}^{o}) = \sum_{j \in J} m_{ij}^{o} p_{j}^{o} f_{ij}^{o} (x_{i}^{o}, \widehat{x}_{-i}^{o}) - \sum_{k \in K} c_{ik}^{o} x_{ik}^{o}$$

- Approximate candidate locations by a grid structure
- ✓ Optimize their respective (annualized) profit

$$\max_{\mathbf{X}_{i}^{o} \in S_{i}^{o}} \left[\sum_{i=1}^{o} (x_{i}^{o}, \widehat{x}_{-i}^{o}) \right]$$

Assume incumbents neglect potential entrants

Reasons: 1. No credible threats; 2. Unattainable over a longer period

■ Inverse problem: New entrant's parameter estimation

✓ Intuitive idea

- Observing the equilibrium store locations selected by incumbents \widehat{x}_i^0 , the new entrant aims to estimate $\alpha \in A, \beta \in B^n$
- ϵ Approximate Nash equilibrium

✓ Inverse problem:

• Unilateral improvement potential

$$\boldsymbol{\delta_i^o} = \boldsymbol{max_{\mathbf{x}_i^o \in \mathcal{S}_i^o}} \{ \Pi_i^o(\mathbf{x}_i^o, \hat{\mathbf{x}}_{-i}^o) \} - \Pi_i^o(\hat{\mathbf{x}}_i^o, \hat{\mathbf{x}}_{-i}^o), \forall i \in I, \forall o \in O$$

Inverse IPG

$$\min_{\alpha,\beta} ||w\delta|| = \min_{\alpha,\beta} ||(w^o \delta_i^o, \forall i \in I, \forall o \in O)||$$

- In an ϵ -Nash equilibrium: $\epsilon = \min_{\alpha,\beta} \max_{\delta} (Hamming \ distance)$
- We avoid focusing too much on a single observation

$$\epsilon \approx min_{\alpha,\beta}||\mathbf{w}\delta||$$

4. Numerical study

- Comparison to full information and sampling-based benchmarks
 - ✓ Four approaches
 - InvIPG
 - Distribution mean (DM): $\alpha = 0.5$, $\beta_1 = 0.5$, $\beta_2 = 0.5$
 - SAA: 64 scenarios chosen from {0.2,0.4,0.6,0.8}
 - Full information: $\widehat{\alpha}$, $\widehat{\beta}_1$, $\widehat{\beta}_2 \sim U(0,1)$
 - ✓ Assume estimate (β_3) equals the ground-truth value $\widehat{\beta}_3 \sim U(0,0.5)$ in all cases. (limitations)

$$|J| = |K| = 10$$

$$|J| = |K| = 20$$

4. Numerical study

- Hamming distances in objective function (invIPG-HD)
 - ✓ Two measures in objective function

• invIPG: $\epsilon \approx min_{\alpha,\beta}||\mathbf{w}\delta||$ (L1-norm)

• invIPG-HD: $\epsilon = min_{\alpha,\beta} max\delta$ (Hamming distance)

(b) Error $(L_2$ -norm) between inversely estimated parameter and ground-truth values

5. Comments

- Positive comments:
 - ✓ Natural and fun ideas

- Negative comments:
 - ✓ Unable to estimate new entrant's own brand parameters

Thank You!

Reporter: Yu Chengcheng