实验报告

实验名称 _无约束优化 第 _5 次实验

- 三、实验过程与结果(包括建立的模型、程序、运行结果、结果分析等)
- 1. (教材 p.169: 7.5.1) 取不同的初值计算下列平方和形式的非线性规划,尽可能求出所有局部极小点,进而找出全局极小点,并对不同算法(搜索方向、搜索步长、数值梯度与分析梯度等)的结果进行比较。

min
$$(x_1^2 + 12x_2 - 1)^2 + (49x_1^2 + 49x_2^2 + 84x_1 + 2324x_2 - 681)^2$$

解: 仿 p.164-167 例 7.5

【MATLAB 程序】:

[x, y] = meshgrid(-25:0.1:25, -55:0.1:8); %作图 $z = (x.*x+12*y-1).^2 + (49*x.*x+49*y.*y+84*x+2324*y-681).^2$; mesh(x, y, z) figure(2) contour(x, y, z, 60)

[x, y] = meshgrid(-1:0.01:0.6, 0.27:0.001:0.32); $z = (x.*x+12*y-1).^2 + (49*x.*x+49*y.*y+84*x+2.62*)$ contour(x, y, z, 60)

clear

format short e

fun = @(x)((x(1)*x(1)+12*x(2)-1)^2 + (49*x(1)*x(1)+49*x(2)*x(2)+84*x(1)+2324*x(2)-681)^2); opt = optimset('fminunc'); %获取 fminunc 函数的缺省的控制参数值 opt = optimset(opt, 'tolx', 1e-10,'tolf',1e-10); %设置 控制精度 x0 = [20, -25]; opt1=optimset(opt,'LargeScale', 'off', 'MaxFunEvals', 5000, 'MaxIter', 2000); HessSet={'bfgs';'dfp';'steepdesc'};

```
LineSet={'quadcubic';'cubicpoly'};
    for j=0:1, for j=1:3
       fopt=optimset(opt1,'HessUpdate',cell2mat(HessSet(i)),'LineSearchType', cell2mat(LineSet(j+1)));
       [xx, fv, exit, out] = fminunc(fun, x0, fopt); %'ex746_5f'
       xset(i+j*3,:)=xx;fvset(i+j*3,1)=fv;exitset(i+j*3,1)=exit;
       outset(i+j*3,1:2)=[out.funcCount, out.iterations];
    end,end
    opt2=optimset(opt1,'Gradobj', 'on');
                                                %设为分析梯度
    HessSet={'bfgs';'dfp';'steepdesc'};
    LineSet={'quadcubic';'cubicpoly'};
    for j=2:3, for i=1:3
       fopt=optimset(opt2,'HessUpdate',cell2mat(HessSet(i)),'LineSearchType', cell2mat(LineSet(i-1)));
       [xx, fv, exit, out] = fminunc('XT0701_2f', x0, fopt);
       xset(i+j*3,:)=xx;fvset(i+j*3,1)=fv;exitset(i+j*3,1)=exit;
       outset(i+j*3,1:2)=[out.funcCount, out.iterations];
    end,end
function [f, g] = XT07012f(x) % 建立计算含梯度的函数文件
f = (x(1)*x(1)+12*x(2)-1)^2 + (49*x(1)*x(1)+49*x(2)*x(2)+84*x(1)+2324*x(2)-681)^2; % 计算函数值
                   % 当函数有两个输出调用时
 g(1) = 2^*(x(1)^*x(1) + 12^*x(2) - 1)^*2^*x(1) + 2^*(49^*x(1)^*x(1) + 49^*x(2)^*x(2) + 84^*x(1) + 2324^*x(2) - 681)^*(98^*x(1) + 84);
 g(2) = 2^*(x(1)^*x(1) + 12^*x(2) - 1)^*12 + 2^*(49^*x(1)^*x(1) + 49^*x(2)^*x(2) + 84^*x(1) + 2324^*x(2) - 681)^*(98^*x(2) + 2324);
end
```

【MATLAB 结果】: 初值为[0,0]

搜索方向	步长搜索	数值梯度/ 分析梯度	最优解 x ₁	最优解 x ₂	最优值	退出标记	目标函数调用 次数	迭代 次数
bfgs	MI A		0.28609	0.27931	5.92256	-2	147	30
dfp	混合二、三次插值	数值梯度	0.03637	0.28982	6.19801	-2	4107	1297
steepdesc			0.01124	0.29083	6.20077	0	5001	215
bfgs		数阻仰反	0.28609	0.27931	5.92256	-2	147	30
dfp	三次插值		0.03637	0.28982	6.19801	-2	4107	1297
steepdesc			0.01124	0.29083	6.20077	0	5001	215
bfgs)H A	分析梯度	0.28582	0.27933	5.92256	1	36	30
dfp	混合二、 三次插值		0.19321	0.28355	5.95427	0	2031	2001
steepdesc	一八祖田		0.03836	0.28983	6.14805	0	5000	627
bfgs		刀机炉泛	0.28582	0.27933	5.92256	1	36	30
dfp	三次插值		0.19321	0.28355	5.95427	0	2031	2001
steepdesc			0.03836	0.28983	6.14805	0	5000	627

【MATLAB 结果】: 初值为[-25,-25]

搜索方向	步长搜索	数值梯 度/分析 梯度	最优解 x ₁	最优解 x ₂	最优值	退出标记	目标函数调用 次数	迭代 次数
bfgs	混合	数值	-21.0267	-36.7600	5.6620E-08	-2	204	34
dfp	二、三	梯度	-21.0267	-36.7600	1.8490E-06	-2	2715	843

steepdesc	次插值		-24.3384	-28.7667	6.0620E+04	0	5001	146
bfgs	ーソル は		-21.0267	-36.7600	5.6620E-08	-2	204	34
dfp	三次插 值		-21.0267	-36.7600	1.8490E-06	-2	2715	843
steepdesc			-24.3384	-28.7667	6.0620E+04	0	5001	146
bfgs	混合 二、三 次插值	分析	-21.0267	-36.7600	1.1938E-16	1	48	35
dfp			-21.0267	-36.7600	1.1031E-12	1	1168	1112
steepdesc			-23.2829	-32.3218	2.3480E+04	0	5000	452
bfgs	三次插 值	梯度	-21.0267	-36.7600	1.1938E-16	1	48	35
dfp			-21.0267	-36.7600	1.1031E-12	1	1168	1112
steepdesc			-23.2829	-32.3218	2.3480E+04	0	5000	452

【MATLAB 结果】: 初值为[0,-45],[20,-25]结果类似

搜索方向	步长搜索	数值梯 度/分析 梯度	最优解 x ₁	最优解 x ₂	最优值	退出标记	目标函数调用 次数	迭代次数
bfgs	混合二、	数值梯度	20.4571	-34.7913	1.5501E-06	1	231	57
dfp	三次插		10.9202	-44.6771	1.7777E+05	0	5001	1593
steepdesc	值		14.5391	-42.1615	8.7639E+04	0	5001	147
bfgs	三次插值		20.4571	-34.7913	1.5501E-06	1	231	57
dfp			10.9202	-44.6771	1.7777E+05	0	5001	1593
steepdesc			14.5391	-42.1615	8.7639E+04	0	5001	147
bfgs	混合二、		20.4572	-34.7913	3.1559E-17	1	74	57
dfp	三次插 值		20.4572	-34.7913	1.8932E-14	1	349	301
steepdesc		分析梯	-4.8843	-0.0335	5.0423E+02	0	5000	467
bfgs	三次插 值	度	20.4572	-34.7913	3.1559E-17	1	74	57
dfp			20.4572	-34.7913	1.8932E-14	1	349	301
steepdesc			-4.8843	-0.0335	5.0423E+02	0	5000	467

【LINGO 程序】:

 $min = (x1*x1+12*x2-1)^2 + (49*x1*x1+49*x2*x2+84*x1+2324*x2-681)^2;$ @free(x1); @free(x2);

【LINGO 结果】:

Global optimal solution found. Objective value:

Extended solver steps: Total solver iterations: 0.8055146E-09

14 1985

 Variable
 Value
 Reduced Cost

 X1
 -21.02665
 0.000000

 X2
 -36.76001
 0.000000

Row Slack or Surplus Dual Price 1 0.000000 -1.000000

【LINGO 程序】:

min = (x1*x1+12*x2-1)^2 + (49*x1*x1+49*x2*x2+84*x1+2324*x2-681)^2; 【LINGO 结果】: Global optimal solution found.
Objective value: 5.922563
Extended solver steps: 2
Total solver iterations: 696

Variable Value Redu

2. (教材 p.169: 7.5.8) 经济学中著名的 Cobb-Douglas 生产函数的一般形式为:

$$Q(K, L) = aK^{\alpha}L^{\beta}$$
 $0 < \alpha, \beta < 1$

其中 Q, K, L 分别表示产值、资金、劳动力,式中 α , β , α 要同步统计数据确定。现有《中国统计年鉴(2003)》给出的统计数据如下表,请分别用线性和非线性最小二乘拟合求出式中的 α , β , α , 并解释 α , β 的含义。

解: (1) 建立模型:

① 线性最小二乘拟合: 对 $Q = aK^{\alpha}L^{\beta}$ 两边取对数,

并令 $y = \ln Q$, $x1 = \ln K$, $x2 = \ln L$, $a0 = \ln a$, 得线性函数

$$y = a0 + \alpha x1 + \beta x2$$

现有观测值 $y_i, x1_i, x2_i, i = 1, 2,..., 19$

最小二乘准则就是: 求 α , β , a0,使得y的计算值 $a0 + \alpha x1_i + \beta x2_i$ 与观测值 y_i 的误差平方和最小,即

$$\min J(\alpha, \beta, a0) = \sum_{i=1}^{19} (y_i - (a0 + \alpha \cdot x1_i + \beta \cdot x2_i))^2$$

② 非线性最小二乘拟合: 对 $O = aK^{\alpha}L^{\beta}$

现有观测值 $Q_i, K_i, L_i, i = 1, 2, ..., 19$

最小二乘准则就是: $求\alpha$, β , a, 使得 Q 的计算值 $aK_i^{\alpha}L_i^{\beta}$ 与观测值 Q_i 的误差平方和最小,即

$$\min J(\alpha, \beta, a) = \sum_{i=1}^{19} (Q_i - aQ_i^{\alpha}L_i^{\beta})^2$$

(2) 模型求解:编写程序如下:

$$% x(1) -- a, x(2) -- alpha, x(3) -- beta clear$$

format short

[A,B] = xlsread('dxsxsy2.xls', '7 X07'); %从 excel 文件中读取数据

$$Q = A(:, 2); K = A(:, 3); L = A(:, 4);$$

% 线性最小二乘法:

X = [ones(19,1), log(K), log(L)];

beta = $X \log(Q)$;

a alpha beta = [exp(beta(1)),beta(2:3)']

% 运行结果: 0.3148 0.6600 1.2677

% 非线性最小二乘法:

KL = A(:, 3:4);

x0 = [1 0.5 0.5]; % 也可取线性最小二乘的结果 a_alpha_beta; fun1 = inline('x(1)*(KL(:,1).^x(2)).*(KL(:,2).^x(3))-Q','x','KL','Q')

[x1, norm1, res1, exit1, out1] = lsqnonlin(fun1, x0, [], [], [], KL,Q)

实验结果:

- ① 将模型线性化以后对参数作最小二乘估计,得 a = 0.3148, $\alpha = 0.6600$, $\beta = 1.2677$, 即 $Q = 0.3148K^{0.6600}L^{1.2677}$
- ② 对模型直接对参数作最小二乘估计,得 a = 0.8337, $\alpha = 0.7735$, $\beta = 0.7317$, 即 $O = 0.8337K^{0.7735}L^{0.7317}$

参数 α 是产出对资本投入的弹性系数,度量在劳动投入保持不变时,资本投入增加 1%时产出增加的百分比。

参数 β 是产出对劳动投入的弹性系数,度量在资本投入保持不变时,劳动投入增加 1%时产出增加的百分比。

两个弹性系数之和 $\alpha + \beta$ 均表示规模报酬 (Return to scale).

 $\alpha + \beta = 1$ 表示规模报酬不变, 即 1 倍的投入带来 1 倍的产出;

 $\alpha + \beta < 1$ 表示规模报酬递减,即 1 倍的投入带来少于 1 倍的产出;

 $\alpha + \beta > 1$ 表示规模报酬递增,即 1 倍的投入带来大于 1 倍的产出。

四、问题讨论(实验心得与体会)

