Big Data Computing

Master's Degree in Computer Science 2024–2025

Gabriele Tolomei

Department of Computer Science Sapienza Università di Roma tolomei@di.uniroma1.it

Recap from Last Lecture

- Focus on hard partitioning clustering
- Formulate hard partitioning clustering as a (non-convex) optimization problem
 - Minimizing "some" aggregated internal cluster distance
- Computing exact solution is NP-hard due to exponential search space
- Use an iterative (approximate) solution

 Each cluster representative is its center of mass (i.e., centroid)

- Each cluster representative is its center of mass (i.e., centroid)
- The centroid of a cluster is the **mean** of the instances assigned to that cluster

- Each cluster representative is its center of mass (i.e., centroid)
- The centroid of a cluster is the mean of the instances assigned to that cluster
- (Re)Assignment of instances to clusters is based on distance/similarity to the current cluster centroids

- Each cluster representative is its center of mass (i.e., centroid)
- The centroid of a cluster is the mean of the instances assigned to that cluster
- (Re)Assignment of instances to clusters is based on distance/similarity to the current cluster centroids
- The basic idea is constructing clusters so that the total within-cluster Sum of Square Distances (SSD) is minimized

K-means: Setup

 $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ the set of N input data points $\{C_1, \dots, C_K\}$ the set of K output clusters C_k the generic k-th cluster

$$\boldsymbol{\theta}_{k} = \frac{\sum_{n=1}^{N} \alpha_{n,k} \mathbf{x}_{n}}{\sum_{n=1}^{N} \alpha_{n,k}} = \boldsymbol{\mu}_{k} = \frac{1}{|C_{k}|} \sum_{n \in C_{k}} \mathbf{x}_{n}$$
where $|C_{k}| = \sum_{n=1}^{N} \alpha_{n,k}$

K-means: Objective Function

$$L(A, \mathbf{\Theta}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \alpha_{n,k} \underbrace{(||\mathbf{x}_n - \boldsymbol{\theta}_k||_2)^2}_{\delta(\mathbf{x}_n, \boldsymbol{\theta}_k)} \text{ Euclidean space}$$

K-means: Objective Function

$$L(A, \mathbf{\Theta}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \alpha_{n,k} \underbrace{(||\mathbf{x}_n - \boldsymbol{\theta}_k||_2)^2}_{\delta(\mathbf{x}_n, \boldsymbol{\theta}_k)}$$

$$\delta(\mathbf{x}_n, \boldsymbol{\theta}_k) = (||\mathbf{x}_n - \boldsymbol{\theta}_k||_2)^2 =$$

$$= \left[\sqrt{(\mathbf{x}_n - \boldsymbol{\theta}_k)^2}\right]^2 = (\mathbf{x}_n - \boldsymbol{\theta}_k)^2$$
Sum of Square Distances (SSD)

K-means: Objective Function

$$L(A, \mathbf{\Theta}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \alpha_{n,k} \underbrace{(||\mathbf{x}_n - \boldsymbol{\theta}_k||_2)^2}_{\delta(\mathbf{x}_n, \boldsymbol{\theta}_k)}$$

$$\delta(\mathbf{x}_n, \boldsymbol{\theta}_k) = (||\mathbf{x}_n - \boldsymbol{\theta}_k||_2)^2 =$$

$$= \left[\sqrt{(\mathbf{x}_n - \boldsymbol{\theta}_k)^2}\right]^2 = (\mathbf{x}_n - \boldsymbol{\theta}_k)^2$$
Sum of Square Distances (SSD)

$$L(A, \mathbf{\Theta}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \alpha_{n,k} (\mathbf{x}_n - \boldsymbol{\theta}_k)^2$$

K-means: Assignment Step

Minimize L w.r.t. A by fixing O

Intuitively, given a set of fixed centroids, L is minimized if each data point is assigned to the centroid with the smallest SSD

(L is just the SSD from each data point to its assigned centroid)

$$\alpha_{n,k} = \begin{cases} 1 & \text{if } (\mathbf{x}_n - \boldsymbol{\theta}_k)^2 = \min_{1 \le j \le K} \{ (\mathbf{x}_n - \boldsymbol{\theta}_j)^2 \} \\ 0 & \text{otherwise} \end{cases}$$

Minimize L w.r.t. Θ by fixing A

$$\mathbf{\Theta}^* = \operatorname{argmin}_{\mathbf{\Theta}} \left\{ \underbrace{\sum_{n=1}^{N} \sum_{k=1}^{K} \alpha_{n,k} (\mathbf{x}_n - \boldsymbol{\theta}_k)^2}_{L(\mathbf{\Theta};A)} \right\}$$

Compute the gradient w.r.t. Θ , set it to 0 and solve it for Θ

$$\frac{\partial L}{\partial \boldsymbol{\theta}_k} = \frac{\partial}{\partial \boldsymbol{\theta}_k} \left[\sum_{n=1}^N \alpha_{n,k} (\mathbf{x}_n - \boldsymbol{\theta}_k)^2 \right] = 0 \quad \forall k \in \{1, \dots, K\}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_k} = \frac{\partial}{\partial \boldsymbol{\theta}_k} \left[\sum_{n=1}^N \alpha_{n,k} (\mathbf{x}_n - \boldsymbol{\theta}_k)^2 \right] = 0 \quad \forall k \in \{1, \dots, K\}$$
$$\frac{\partial L}{\partial \boldsymbol{\theta}_k} = \sum_{n=1}^N -2\alpha_{n,k} (\mathbf{x}_n - \boldsymbol{\theta}_k)$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_k} = \frac{\partial}{\partial \boldsymbol{\theta}_k} \left[\sum_{n=1}^N \alpha_{n,k} (\mathbf{x}_n - \boldsymbol{\theta}_k)^2 \right] = 0 \quad \forall k \in \{1, \dots, K\}$$
$$\frac{\partial L}{\partial \boldsymbol{\theta}_k} = \sum_{n=1}^N -2\alpha_{n,k} (\mathbf{x}_n - \boldsymbol{\theta}_k)$$

Find
$$\boldsymbol{\theta}_k^*$$
 s.t. $\sum_{n=1}^N -2\alpha_{n,k}(\mathbf{x}_n - \boldsymbol{\theta}_k^*) = 0$

$$\sum_{n=1}^{N} -2\alpha_{n,k} (\mathbf{x}_n - \boldsymbol{\theta}_k^*) = 0 \Leftrightarrow$$

$$2 \sum_{n=1}^{N} \alpha_{n,k} \boldsymbol{\theta}_k^* = 2 \sum_{n=1}^{N} \alpha_{n,k} \mathbf{x}_n$$

$$\boldsymbol{\theta}_k^* \sum_{n=1}^{N} \alpha_{n,k} = \sum_{n=1}^{N} \alpha_{n,k} \mathbf{x}_n$$

 $\mathbf{\theta}^*_k$ does not depend on N, therefore it can be factored out

$$\sum_{n=1}^{N} -2\alpha_{n,k} (\mathbf{x}_n - \boldsymbol{\theta}_k^*) = 0 \Leftrightarrow$$

$$2 \sum_{n=1}^{N} \alpha_{n,k} \boldsymbol{\theta}_k^* = 2 \sum_{n=1}^{N} \alpha_{n,k} \mathbf{x}_n$$

$$\boldsymbol{\theta}_k^* \sum_{n=1}^{N} \alpha_{n,k} = \sum_{n=1}^{N} \alpha_{n,k} \mathbf{x}_n$$

$$\boldsymbol{\theta}_{k}^{*} \sum_{n=1}^{N} \alpha_{n,k} = \sum_{n=1}^{N} \alpha_{n,k} \mathbf{x}_{n}$$

$$\boldsymbol{\theta}_{k}^{*} = \frac{\sum_{n=1}^{N} \alpha_{n,k} \mathbf{x}_{n}}{\sum_{n=1}^{N} \alpha_{n,k}} = \boldsymbol{\mu}_{k} = \frac{1}{|C_{k}|} \sum_{n \in C_{k}}^{\mathbf{x}_{n}}$$

$$\boldsymbol{\theta}_k^* \sum_{n=1}^N \alpha_{n,k} = \sum_{n=1}^N \alpha_{n,k} \mathbf{x}_n$$

$$\boldsymbol{\theta}_k^* = \frac{\sum_{n=1}^N \alpha_{n,k} \mathbf{x}_n}{\sum_{n=1}^N \alpha_{n,k}} = \boldsymbol{\mu}_k = \frac{1}{|C_k|} \sum_{n \in C_k} \mathbf{x}_n$$

$$\boldsymbol{\theta}_k^* \sum_{n=1}^N \alpha_{n,k} = \sum_{n=1}^N \alpha_{n,k} \mathbf{x}_n$$

$$\boldsymbol{\theta}_k^* = \frac{\sum_{n=1}^N \alpha_{n,k} \mathbf{x}_n}{\sum_{n=1}^N \alpha_{n,k}} = \boldsymbol{\mu}_k = \frac{1}{|C_k|} \sum_{n \in C_k} \mathbf{x}_n$$

The cluster centroid (i.e., mean) minimizes the objective (for a fixed assignment A)

1. Specify the number of output clusters K

- 1. Specify the number of output clusters K
- 2. Select K observations at random from the N data points as the initial cluster centroids

- 1. Specify the number of output clusters K
- 2. Select K observations at random from the N data points as the initial cluster centroids
- 3. Assignment step: Assign each observation to the closest centroid based on the distance measure chosen

- 1. Specify the number of output clusters K
- 2. Select K observations at random from the N data points as the initial cluster centroids
- 3. Assignment step: Assign each observation to the closest centroid based on the distance measure chosen
- 4. Update step: For each of the K clusters update the centroid by computing the new mean values of all the data points now in the cluster

- 1. Specify the number of output clusters K
- 2. Select K observations at random from the N data points as the initial cluster centroids
- 3. Assignment step: Assign each observation to the closest centroid based on the distance measure chosen
- 4. Update step: For each of the K clusters update the centroid by computing the new mean values of all the data points now in the cluster
- 5. Iteratively repeat steps 3-4 until a **stopping criterion** is met

Stopping Criterion

- Several options to choose from:
 - Fixed number of iterations
 - Cluster assignments stop changing (beyond some threshold)
 - Centroid doesn't change (beyond some threshold)

Lloyd-Forgy's Convergence

- How/Why are we guaranteed the K-means algorithm ever reaches a fixed point?
 - A state in which clusters do not change

Lloyd-Forgy's Convergence

- How/Why are we guaranteed the K-means algorithm ever reaches a fixed point?
 - A state in which clusters do not change
- Intuitively, in both steps we either improve the objective or not

Lloyd-Forgy's Convergence

- How/Why are we guaranteed the K-means algorithm ever reaches a fixed point?
 - A state in which clusters do not change
- Intuitively, in both steps we either improve the objective or not
- It is an instance of more general Expectation
 Maximization (EM)
 - EM is known to converge (although not necessarily to a global optimum)

Lloyd-Forgy's Relationship with EM

- E-step = Assignment step
 - Each object is assigned to the closest centroid, i.e., to the most likely cluster
 - Monotonically decreases SSD

Lloyd-Forgy's Relationship with EM

• E-step = Assignment step

- Each object is assigned to the closest centroid, i.e., to the most likely cluster
- Monotonically decreases SSD

M-step = Update step

- The model (i.e., centroids) are updated (i.e., SSD optimization)
- Monotonically decreases each SSD_k

 Computing the distance between two d-dimensional data points takes O(d)

- Computing the distance between two d-dimensional data points takes O(d)
- (Re-)Assigning clusters [E-step]: O(KN) distance computations or O(KNd)

- Computing the distance between two d-dimensional data points takes O(d)
- (Re-)Assigning clusters [E-step]: O(KN) distance computations or O(KNd)
- Computing centroids [M-step]: O(Nd) as there are O(N)
 average computations since each data point is added to a
 cluster exactly once at each iteration, each one taking O(d)

- Computing the distance between two d-dimensional data points takes O(d)
- (Re-)Assigning clusters [E-step]: O(KN) distance computations or O(KNd)
- Computing centroids [M-step]: O(Nd) as there are O(N)
 average computations since each data point is added to a
 cluster exactly once at each iteration, each one taking O(d)
- Overall: O(RKNd) if the 2 steps above are repeated R times

K-means: Seed Choice

 Convergence (rate) and clustering quality depends on the selection of initial centroids

- Convergence (rate) and clustering quality depends on the selection of initial centroids
 - Forgy method randomly chooses K data points as the initial means

- Convergence (rate) and clustering quality depends on the selection of initial centroids
 - Forgy method randomly chooses K data points as the initial means
 - Random Partition method randomly assigns a cluster to each observation

- Convergence (rate) and clustering quality depends on the selection of initial centroids
 - Forgy method randomly chooses K data points as the initial means
 - Random Partition method **randomly** assigns a cluster to each observation
- Randomness may converge to sub-optimal clusterings

- Convergence (rate) and clustering quality depends on the selection of initial centroids
 - Forgy method randomly chooses K data points as the initial means
 - Random Partition method randomly assigns a cluster to each observation
- Randomness may converge to **sub-optimal** clusterings

Problem Mitigation:

Execute several runs of the Lloyd-Forgy algorithm with multiple random initialization seeds

 $\left(\mathsf{C}\right)$

 $\left(\mathsf{D} \right) \left(\mathsf{E} \right)$

F

K-means: Bad (Unlucky) Seed Choice

If B and E are randomly chosen as initial centroids...

K-means: Bad (Unlucky) Seed Choice

The algorithm converges to the sub-optimal clustering above

K-means: Good (Lucky) Seed Choice

If D and F are randomly chosen as initial centroids instead...

K-means: Good (Lucky) Seed Choice

The algorithm converges to a better clustering

• A method to carefully select initial centroids

- A method to carefully select initial centroids
- Proposed in 2007 by Arthur and Vassilvitskii [paper]

- A method to carefully select initial centroids
- Proposed in 2007 by Arthur and Vassilvitskii [paper]
- <u>Intuition</u>: Spreading out the K initial cluster centers is a good thing

- A method to carefully select initial centroids
- Proposed in 2007 by Arthur and Vassilvitskii [paper]
- Intuition: Spreading out the K initial cluster centers is a good thing
- Select the i-th centroid as the farthest data point to any other already selected centroids

1. Choose **one** centroid uniformly at random from among initial data points

- 1. Choose **one** centroid uniformly at random from among initial data points
- 2. For each data point x, compute D(x) as the distance between x and the **nearest centroid** already chosen

- 1. Choose **one** centroid uniformly at random from among initial data points
- 2. For each data point x, compute D(x) as the distance between x and the **nearest centroid** already chosen
- 3. Choose one new data point at random as a new centroid with probability proportional to $D(\mathbf{x})^2$

- 1. Choose **one** centroid uniformly at random from among initial data points
- 2. For each data point x, compute D(x) as the distance between x and the **nearest centroid** already chosen
- 3. Choose one new data point at random as a new centroid with probability proportional to $D(\mathbf{x})^2$
- 4. Repeat steps 2. and 3. until K centroids are chosen, then run Lloyd-Forgy

"Vanilla" K-means vs. K-means++

• Random initialization of "vanilla" K-means may give clusters that are **arbitrarily worse** than optimum

"Vanilla" K-means vs. K-means++

- Random initialization of "vanilla" K-means may give clusters that are **arbitrarily worse** than optimum
- K-means++ provides an upper-bound to the approximation obtained w.r.t. the optimal solution

"Vanilla" K-means vs. K-means++

- Random initialization of "vanilla" K-means may give clusters that are **arbitrarily worse** than optimum
- K-means++ provides an upper-bound to the approximation obtained w.r.t. the optimal solution
- At most, clusters obtained with K-means++ initialization are O(log K) worse than the optimal partitioning

K-means: How Many Clusters?

- Number of clusters K is given
 - Great! Partition N data points into a predetermined number K of clusters
 - Unfortunately, it is very uncommon to know K in advance

K-means: How Many Clusters?

- Number of clusters K is given
 - Great! Partition N data points into a predetermined number K of clusters
 - Unfortunately, it is very uncommon to know K in advance
- Finding the "right" number K of clusters is part of the problem!
 - Trade-off between having too few and too many clusters
 - Total benefit vs. Total cost

K-means: Total Benefit

• Given a clustering, define the benefit b_i for a data point \mathbf{x}_i to be the similarity to its assigned centroid

K-means: Total Benefit

- Given a clustering, define the benefit b_i for a data point \mathbf{x}_i to be the similarity to its assigned centroid
- Define the total benefit B to be the sum of the individual benefits

K-means: Total Benefit

- Given a clustering, define the benefit b_i for a data point \mathbf{x}_i to be the similarity to its assigned centroid
- Define the total benefit B to be the sum of the individual benefits

NOTE

There is always a clustering whose total benefit B=N (where N is the number of data points)

 Assign a cost p to each cluster, thereby a clustering with K clusters has a total cost P=Kp

- Assign a cost p to each cluster, thereby a clustering with K clusters has a total cost P=Kp
- Define the value V of a clustering to be total benefit-total cost V = B-P

- Assign a cost p to each cluster, thereby a clustering with K clusters has a total cost P=Kp
- Define the value V of a clustering to be total benefit-total cost V = B-P

Goal:

Find the clustering which maximizes V, over all choices of K

- Assign a cost p to each cluster, thereby a clustering with K clusters has a total cost P=Kp
- Define the value V of a clustering to be total benefit-total cost V = B-P

Goal:

Find the clustering which maximizes V, over all choices of K

B increases with larger values of K, but P allows to stop that

• Empirical method to figure out the right number K of clusters

- Empirical method to figure out the right number K of clusters
- Trade-off between total benefit and total cost

- Empirical method to figure out the right number K of clusters
- Trade-off between total benefit and total cost
- Try multiple values of K and look at the change of the SSD

- Empirical method to figure out the right number K of clusters
- Trade-off between total benefit and total cost
- Try multiple values of K and look at the change of the SSD

As K increases, SSD sharply decreases

- Empirical method to figure out the right number K of clusters
- Trade-off between total benefit and total cost

11/21/2024

• Try multiple values of K and look at the change of the SSD

Non-Euclidean Distances

• So far, we have focused on **Euclidean distance** (i.e., δ = L²-Norm)

Non-Euclidean Distances

- So far, we have focused on **Euclidean distance** (i.e., $\delta = L^2$ -Norm)
- ullet The same hard clustering framework can be used with other δ

Non-Euclidean Distances

- So far, we have focused on **Euclidean distance** (i.e., $\delta = L^2$ -Norm)
- ullet The same hard clustering framework can be used with other δ
- Some of them just resemble Euclidean distance, and centroids (i.e., means) still minimize those

Non-Euclidean Distances

- So far, we have focused on **Euclidean distance** (i.e., δ = L²-Norm)
- ullet The same hard clustering framework can be used with other δ
- Some of them just resemble Euclidean distance, and centroids (i.e., means) still minimize those
 - δ = Cosine distance = Euclidean distance on normalized input points
 - δ = Correlation = Euclidean distance on standardized input points

Non-Euclidean Distances

- So far, we have focused on **Euclidean distance** (i.e., δ = L²-Norm)
- ullet The same hard clustering framework can be used with other δ
- Some of them just resemble Euclidean distance, and centroids (i.e., means) still minimize those
 - δ = Cosine distance = Euclidean distance on normalized input points
 - δ = Correlation = Euclidean distance on standardized input points
- Others, require specific minimizers
 - δ = Manhattan distance (L¹-Norm) \rightarrow median is the minimizer (K-medians)

 Similar to K-means yet chooses input data points as centers (medoids)

11/21/2024 76

- Similar to K-means yet chooses input data points as centers (medoids)
- A medoid is the closest object to any other point in the cluster

- Similar to K-means yet chooses input data points as centers (medoids)
- A medoid is the closest object to any other point in the cluster
- Works with any arbitrary distance δ

- Similar to K-means yet chooses input data points as centers (medoids)
- A medoid is the closest object to any other point in the cluster
- Works with any arbitrary distance δ
- PAM (Partitioning Around Medoids) greedy Algorithm, introduced by Kaufman and Rousseeuw in 1987 [paper] vs. Lloyd-Forgy

- Similar to K-means yet chooses input data points as centers (medoids)
- A medoid is the closest object to any other point in the cluster
- Works with any arbitrary distance δ
- PAM (Partitioning Around Medoids) greedy Algorithm, introduced by Kaufman and Rousseeuw in 1987 [paper] vs. Lloyd-Forgy
- Robust to outliers yet computationally expensive $O(K(N-K)^2)$

 A variant of K-means explicitly thought for large datasets

- A variant of K-means explicitly thought for large datasets
- Works better in high-dimensional Euclidean space

- A variant of K-means explicitly thought for large datasets
- Works better in high-dimensional Euclidean space
- (Strong) Assumption on the shape of clusters:
 - Normally distributed around the centroid
 - Independence between data dimensions

- A variant of K-means explicitly thought for large datasets
- Works better in high-dimensional Euclidean space
- (Strong) Assumption on the shape of clusters:
 - Normally distributed around the centroid
 - Independence between data dimensions
- Reference to the original <u>paper</u>

Measures of Clustering Quality

Clustering Quality

Measures of Clustering Quality

Clustering Quality

Internal Evaluation

Measures of Clustering Quality

Clustering Quality

Internal Evaluation

External Evaluation

Internal Evaluation

 Clustering is evaluated based on the data that was clustered itself

Internal Evaluation

- Clustering is evaluated based on the data that was clustered itself
- A good clustering will produce high quality clusters with:
 - high intra-cluster similarity
 - low inter-cluster similarity

Internal Evaluation

- Clustering is evaluated based on the data that was clustered itself
- A good clustering will produce high quality clusters with:
 - high intra-cluster similarity
 - low inter-cluster similarity
- The measured quality of a clustering depends on
 - data representation
 - similarity measure

Internal Evaluation: Davies-Bouldin Index

$$DB = \frac{1}{K} \sum_{i=1}^{K} \max_{j \neq i} \left(\frac{\sigma_i + \sigma_j}{\delta(\boldsymbol{\mu}_i, \boldsymbol{\mu}_j)} \right)$$

K = number of clusters

 μ_k = centroid of cluster C_k

 σ_k = avg. distance of all elements of cluster C_k from its centroid $\boldsymbol{\mu}_k$ $\delta(\boldsymbol{\mu}_i, \boldsymbol{\mu}_j)$ = distance between centroids of C_i and C_j

Internal Evaluation: Davies-Bouldin Index

$$DB = \frac{1}{K} \sum_{i=1}^{K} \max_{j \neq i} \left(\frac{\sigma_i + \sigma_j}{\delta(\boldsymbol{\mu}_i, \boldsymbol{\mu}_j)} \right)$$

K = number of clusters

 μ_k = centroid of cluster C_k

 $\sigma_k = \text{avg.}$ distance of all elements of cluster C_k from its centroid $\boldsymbol{\mu}_k$ $\delta(\boldsymbol{\mu}_i, \boldsymbol{\mu}_j) = \text{distance}$ between centroids of C_i and C_j

The smaller the better

Internal Evaluation: Dunn Index

$$D = \frac{\min_{1 \le i < j \le K} \delta(C_i, C_j)}{\max_{1 \le k \le K} \delta'(C_k)}$$

K = number of clusters

 $\delta(C_i, C_j)$ = distance between cluster C_i and C_j $\delta'(C_k)$ = intra-cluster distance of cluster C_k Distance between centroids

Max distance between any pair of objects

Internal Evaluation: Dunn Index

$$D = \frac{\min_{1 \le i < j \le K} \delta(C_i, C_j)}{\max_{1 \le k \le K} \delta'(C_k)}$$

K = number of clusters

 $\delta(C_i, C_j) = \text{distance between cluster } C_i \text{ and } C_j$

 $\delta'(C_k)$ = intra-cluster distance of cluster C_k

Distance between centroids

Max distance between any pair of objects

The higher the better

mean distance between i and all other data points in the same cluster C_i

mean distance between i and all other data points in the same cluster C_i

$$a(i) = \frac{1}{|C_i| - 1} \sum_{j \in C_i, j \neq i} \delta(i, j)$$

smallest mean distance of i to all points in any other cluster $C_k \stackrel{!}{=} C_i$

smallest mean distance of i to all points in any other cluster C_k != C_i

$$b(i) = \min_{k \neq i} \frac{1}{|C_k|} \sum_{j \in C_k} \delta(i, j)$$

mean distance between i and all other data points in the same cluster C_i

$$a(i) = \frac{1}{|C_i| - 1} \sum_{j \in C_i, j \neq i} \delta(i, j)$$

smallest mean distance of i to all points in any other cluster $C_k \stackrel{!}{=} C_i$

$$b(i) = \min_{k \neq i} \frac{1}{|C_k|} \sum_{j \in C_k} \delta(i, j)$$

$$s(i) = \begin{cases} 1 - a(i)/b(i) & \text{if } a(i) < b(i) \\ 0 & \text{if } a(i) = b(i) \\ b(i)/a(i) - 1 & \text{if } a(i) > b(i) \end{cases}$$

mean distance between i and all other data points in the same cluster C_i

$$a(i) = \frac{1}{|C_i| - 1} \sum_{j \in C_i, j \neq i} \delta(i, j)$$

smallest mean distance of i to all points in any other cluster $C_k \stackrel{!}{=} C_i$

$$b(i) = \min_{k \neq i} \frac{1}{|C_k|} \sum_{j \in C_k} \delta(i, j)$$

$$s(i) = \begin{cases} 1 - a(i)/b(i) & \text{if } a(i) < b(i) \\ 0 & \text{if } a(i) = b(i) \\ b(i)/a(i) - 1 & \text{if } a(i) > b(i) \end{cases}$$

The higher the better

External Evaluation

 Clustering is evaluated based on data that was not used for clustering, yet pre-classified (gold standard data)

External Evaluation

- Clustering is evaluated based on data that was not used for clustering, yet pre-classified (gold standard data)
- Quality measured by the ability to discover some or all of the hidden patterns in gold standard data

External Evaluation

- Clustering is evaluated based on data that was not used for clustering, yet pre-classified (gold standard data)
- Quality measured by the ability to discover some or all of the hidden patterns in gold standard data
- Hard as it requires labeled data typically provided by human experts

External Evaluation: Purity

$$C_1 \dots, C_K = \text{set of } K \text{ clusters}$$
 $L_1 \dots, L_J = \text{set of } J \text{ labels}$
 $n_{i,j} = \text{number of items with label } L_j \text{ clustered in } C_i$
 $n_i = \sum_{j=1}^J n_{i,j} \text{ number of items clustered in } C_i$

$$\text{purity}(C_i) = \frac{1}{n_i} \max_{j \in \{1,\dots,J\}} n_{i,j}$$

$$\text{purity} = \frac{1}{K} \sum_{i=1}^K \text{purity}(C_i)$$

External Evaluation: Purity

$$C_1 \dots, C_K = \text{set of } K \text{ clusters}$$

 $L_1 \dots, L_J = \text{set of } J \text{ labels}$
 $n_{i,j} = \text{number of items with label } L_j \text{ clustered in } C_i$
 $n_i = \sum_{j=1}^J n_{i,j} \text{ number of items clustered in } C_i$

$$\operatorname{purity}(C_i) = \frac{1}{n_i} \max_{j \in \{1, \dots, J\}} n_{i,j}$$
 Biased because having as many clusters as items maximizes purity

maximizes purity

External Evaluation: Purity Example

External Evaluation: Purity Example

purity(
$$C_1$$
) = 1/6 * max{5, 1, 0} = 5/6

External Evaluation: Purity Example

purity(
$$C_1$$
) = 1/6 * max{5, 1, 0} = 5/6
purity(C_2) = 1/6 * max{1, 4, 1} = 4/6 = 2/3

External Evaluation: Purity Example

109

```
purity(C_1) = 1/6 * max{5, 1, 0} = 5/6

purity(C_2) = 1/6 * max{1, 4, 1} = 4/6 = 2/3

purity(C_3) = 1/5 * max{2, 0, 3} = 3/5
```

External Evaluation: Purity Example

purity(
$$C_1$$
) = 1/6 * max{5, 1, 0} = 5/6

purity(
$$C_2$$
) = 1/6 * max{1, 4, 1} = 4/6 = 2/3

purity(
$$C_3$$
) = 1/5 * max{2, 0, 3} = 3/5

purity =
$$1/3$$
 * purity(C_1)+purity(C_2)+purity(C_3)
= $7/10$

$$Rand = \frac{TP + TN}{TP + TN + FP + FN}$$

 $TP = \text{number of } true \ positives$

 $TN = \text{number of } true \ negatives$

 $FP = \text{number of } false \ positives$

 $FN = \text{number of } false \ negatives$

$$Rand = \frac{TP + TN}{TP + TN + FP + FN}$$

 $TP = \text{number of } true \ positives$

 $TN = \text{number of } true \ negatives$

 $FP = \text{number of } false \ positives$

 $FN = \text{number of } false \ negatives_{\perp}$

All computed from pairs of elements

$$Rand = \frac{TP + TN}{TP + TN + FP + FN}$$

 $TP = \text{number of } true \ positives$

 $TN = \text{number of } true \ negatives$

 $FP = \text{number of } false \ positives$

 $FN = \text{number of } false \ negatives$

All computed from pairs of elements

Measures the level of agreement between clustering and ground truth

n. of pairs	Same Cluster in Clustering	Different Clusters in Clustering
Same Cluster in Ground-Truth		
Different Clusters in Ground-Truth		

n. of pairs	Same Cluster in Clustering	Different Clusters in Clustering
Same Cluster in Ground-Truth	TRUE POSITIVES (TP)	
Different Clusters in Ground-Truth		

n. of pairs	Same Cluster in Clustering	Different Clusters in Clustering
Same Cluster in Ground-Truth		
Different Clusters in Ground-Truth		TRUE NEGATIVES (TN)

n. of pairs	Same Cluster in Clustering	Different Clusters in Clustering
Same Cluster in Ground-Truth		
Different Clusters in Ground-Truth	FALSE POSITIVES (FP)	

n. of pairs	Same Cluster in Clustering	Different Clusters in Clustering
Same Cluster in Ground-Truth		FALSE NEGATIVES (FN)
Different Clusters in Ground-Truth		

n. of pairs	Same Cluster in Clustering	Different Clusters in Clustering
Same Cluster in Ground-Truth	TRUE POSITIVES (TP)	FALSE NEGATIVES (FN)
Different Clusters in Ground-Truth	FALSE POSITIVES (FP)	TRUE NEGATIVES (TN)

Confusion Matrix

External Evaluation: Precision, Recall, F-measure

$$P = \frac{TP}{TP + FP} \quad R = \frac{TP}{TP + FN}$$

$$F_{\beta} = \frac{(\beta^2 + 1) \cdot P \cdot R}{\beta^2 \cdot P + R}$$

$$F_1 = \frac{2 \cdot P \cdot R}{P + R}$$

Balances the contribution of false negatives by weighting recall through a parameter β

External Evaluation: Many Other Measures

- Jaccard index
- Dice index
- Fowlkes-Mallows index
- Mutual information
- etc.

• K-means is an iterative (approximated) clustering method that converges to a local minimum

- K-means is an iterative (approximated) clustering method that converges to a local minimum
- Tries to minimize the internal sum of squared Euclidean distances (Lloyd-Forgy Algorithm)

- K-means is an iterative (approximated) clustering method that converges to a local minimum
- Tries to minimize the internal sum of squared Euclidean distances (Lloyd-Forgy Algorithm)
- Many variants:
 - K-means++, K-medoids (PAM Algorithm), BFR K-means, etc.

- K-means is an iterative (approximated) clustering method that converges to a local minimum
- Tries to minimize the internal sum of squared Euclidean distances (Lloyd-Forgy Algorithm)
- Many variants:
 - K-means++, K-medoids (PAM Algorithm), BFR K-means, etc.
- Internal vs. External measures of clustering quality