Stat 240 Notes By Marty Mukherjee

1. Foundations

Probability space: A set of objects (Ω, F, P) :

 Ω : Sample space

F: σ -algebra

P: Probability

1.1 σ -algebra and measure theory

Definition 1.3: σ -algebra

 $p(\Omega)$ is the power set

 $F \subseteq p(\Omega)$ is a σ -algebra on Ω if:

- i) $\Omega \in F$
- ii) $A \in F \implies A^c \in F$
- iii) $A, B \in F \implies A \cup B \in F$ If (iii) holds for finitely many sets, then F is an algebra on Ω .

Remark 1.4

 σ -algebras are closed with respect to countable intersections since by De Morgan's Law:

$$\bigcup_{i=1}^{\infty} A_i = (\bigcap_{i=1}^{\infty} A_i^c)^c$$

Definition 1.7: Borel σ -algebra

 $B(\Omega)$ is a Borel σ -algebra on Ω and it's elements are Borel sets

$$B(\Omega) = \sigma(\{A : A \subseteq \Omega, A \text{ is open}\})$$

$$B(\mathbb{R}^d) = \sigma(\{(\underline{a}, \underline{b}] : \underline{a} \leq \underline{b}\})$$

<u>Definition 1.9: Measures</u>

Let $F = \sigma(\Omega)$. (Ω, F) is a measurable space. And sets in F are measurable sets.

A measure $\mu(F)$ is a μ if:

- i) $\mu: F \to [0, \infty]$
- ii) $\mu(\phi) = 0$
- iii) σ -additivity

 (Ω, F, μ) is called a measure space.

1.2 Probability Measures

Definition 1.9: Probability measure

Let (Ω, F) be a measurable space. A probability measure P on F is such that:

- i) $P:F \rightarrow [0,1]$
- ii) $P(\Omega) = 1$
- iii) σ -additivity

 (Ω, F, P) is called a probability space.

1.3 Null sets

Let (Ω, F, μ) be a measure space.

Every $N \in F$ where $\mu(N) = 0$ is a null set

1.4 Construction of measures

Idea: Functions with properties as measures (premeasures defined on a ring) can be extended to complete measures on the σ -algebra generated by the ring.

Definition 1.18: Ring

 $R \in p(\Omega)$ is a ring on Ω if:

- i) $\phi \in R$
- ii) $A, B \in R \implies A \backslash B \in R$
- iii) $A, B \in R \implies A \cup B \in R$

A premeasure μ_0 on R is a function such that:

- i) $\mu_0: R \to [0, \infty]$
- ii) $\mu(\phi) = 0$
- iii) σ -additivity

Theorem 1.19: Caratheorody's exclusion theorem

Let μ_0 be a premeasure to R on Ω . There exists a complete measure μ on $F : \sigma(R)$ which coincides with μ_0 on R.

If μ_0 is σ -finite, then μ is unique.

Theorem 1.21

 $F: R \to R$ right-continuous and increasing. There exists a unique Borel measure μ_F such that $\mu_F([a,b]) = F(b) - F(a)$.

Remark 1.22

- 1) By Theorem 1.19, μ_F is complete and is called the <u>Lebesgue-Stielties measure</u> associated to F. It's domain $\overline{B(R)}$ known as <u>Lebesgue σ -algebra</u> can be shown to strictly contain B(R). Sets in $\overline{B(R)}$ are Lebesgue measurable (or <u>Lebesgue sets</u>)
- 2) If F(x) = x, $\Lambda := \mu_F$ is called <u>Lebesgue measure on R</u> and sets $N \in \overline{B(R)} : \Lambda(N) = 0$ <u>Lebesgue null sets</u>. Remark 1.24
- 1) Theorem 1.21 extends to $F: \mathbb{R}^d \to \mathbb{R}$ which is:
- i) Right-continuous: $F(\underline{x}) = \lim_{h\to 0} F(\underline{x} + \underline{h})$
- ii) d-increasing: The F-volume $\Delta_{(a,b]}F$ of $(\underline{a},\underline{b}]$ is ≥ 0 for all $\underline{a} \leq \underline{b}$, where:

$$\Delta_{[\underline{a},\underline{b}]}F = \Pi_{i=1}^{d}(b_{j} - a_{j})$$
e.g. $d = 2$, $\underline{a} = (a_{1}, a_{2})$, $\underline{b} = (b_{1}, b_{2})$

$$\Delta_{[\underline{a},\underline{b}]}F = F(b_{1}, b_{2}) - F(a_{1}, b_{2}) - F(b_{1}, a_{2}) + F(a_{1}, a_{2})$$

2) If $\lim_{x_j \to -\infty} F(\underline{x}) = 0$ for some $j \in \{1, \dots, d\}$ and $F(\infty) = \lim_{\underline{x} \to -\infty} F(\underline{x}) = 1$, then μ_F is a probability measure on $B(\mathbb{R}^d)$.

2. Geometric and Laplace Probability

Prop 2.1

Let (Ω, F, μ) be a measure space, where $0 < \mu(\Omega) < \infty$

Then (Ω, F, P) with $P(A) = \frac{\mu(A)}{\mu(\Omega)}$ is a probability space.

F is a σ -algebra on Ω and $\Omega' \subseteq \Omega$, then one can show: The restriction $F|_{\Omega} := \{A \cup \Omega' : A \in F\}$ is a σ -algebra on Ω' .

<u>Ref 2.2</u>

 $\Omega \subseteq R^d: 0 < \Lambda(\Omega) < \infty, F = \overline{B}(\Omega), p(A) = \frac{\mu(A)}{\mu(\Omega)}$, for all $A \in F$, then the probability space (Ω, F, P) is called geometric probability space.

Prop 2.4

$$1 \leq |\Omega| < \infty, \ F = P(\Omega), \ P(A) = \frac{|A|}{|\Omega|}$$

Then (Ω, F, P) is a finite probability space called Laplace probability space.

P is called discrete uniform distribution on Ω .

Remark 2.5

For Laplace probability space, the probability mass function on Ω is:

$$f(w) = P(\{\omega\}) = \frac{|\{\omega\}|}{|\Omega|} = \frac{1}{|\Omega|}, \forall \omega \in \Omega$$

So the discrete uniform distribution assigns equal probability $\frac{1}{|\Omega|}$ to each $\omega \in \Omega$

3. Probability counting techniques

3.1 Basic rules

Prop 3.1

1) Addition rule: If A_1, \ldots, A_n are pairwise disjoint finite sets, then:

$$|\cup_{i=1}^{n} A_i| = \sum_{i=1}^{n} |A_i|$$

2) Multiplication rule: If A_1, \ldots, A_n are pairwise disjoint finite sets, then:

$$|\Pi_{i=1}^n A_i| = |\{(\omega_1, \dots, \omega_n) : \omega_i \in A_i \forall i\} = \Pi_{i=1}^n |A_i|$$

3.2 Urn models

Draw k balls from n balls. Let the balls be numbered $\{1,\ldots,n\}$ The 4 classical models are:

I) With order, with replacement:

$$\Omega_I = \{(\omega_1, \dots, \omega_k) : \omega_i \in \{1, \dots, n\}\} = \{1, \dots, n\}^k$$
$$|\Omega_I| = n^k$$

II) With order, without replacement:

$$\Omega_{II} = \{ (\omega_1, \dots, \omega_k) : \omega_i \in \{1, \dots, n\}, \omega_i \neq \omega_j, \forall i \neq j \}$$
$$|\Omega_{II}| = n(n-1) \dots (n-k+1) = nPk$$

III) Without order, without replacement:

$$\Omega_{III} = \{(\omega_1, \dots, \omega_k) : \omega_i \in \{1, \dots, n\}, \omega_1 < \dots < \omega_k\}$$
$$|\Omega_{III}| = \frac{|\Omega_{II}|}{k!} = \binom{n}{k}$$

IV) Without order, with replacement:

$$\Omega_{IV} = \{(\omega_1, \dots, \omega_k) : \omega_i \in \{1, \dots, n\}, \omega_1 \le \dots \le \omega_k\}$$
$$|\Omega_{IV}| = \binom{n+k-1}{k}$$

4. Conditional Probability and Independence

Prop 4.1

Let (Ω, F, P) be a probability space. Let $B \in F$ such that P(B) > 0.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, A \in F$$

This is a probability measure on (Ω, F) , the ordinary conditional probability of A given B.

Prove: P(A|B) is a probability measure:

- i) $P: F \to [0,1]$ Since $A \subseteq B$, this means $0 \le P(A \cap B) \le P(B)$. So $P(A|B) \in [0,1]$
- ii) $P(\Omega|B) = 1$ This is true since $\Omega \cap B = B$
- iii) σ -additivity

Let $A_i \in F$ be disjoint.

$$P(\cup_{i=1}^{\infty} A_i | B) = \frac{P((\cup_{i=1}^{\infty} A_i) \cap B)}{P(B)} = \frac{P(\cup_{i=1}^{\infty} (A_i \cap B))}{P(B)}$$

Since A_i are disjoint, this means $A_i \cap B$ are disjoint.

$$\frac{P(\cup_{i=1}^{\infty}(A_i \cap B))}{P(B)} = \frac{\sum_{i=1}^{\infty} P(A_i \cap B)}{P(B)} = \sum_{i=1}^{\infty} \frac{P(A_i \cap B)}{P(B)}$$

Thus, P(A|B) is a probability measure.

Theorem 4.2: Law of total probability

 (Ω, F, P) is a probability space. $B_1, B_2, \dots \in F$ is a <u>partition</u> of Ω , that is, $\Omega = \bigcup_{i=1}^{\infty} B_i$. B_i are disjoint. Then:

$$P(A) = \sum_{i=1}^{\infty} P(A \cap B_i) = \sum_{i=1}^{\infty} P(A|B_i)P(B_i)$$

Thm 4.5: Bayes' Theorem

 (Ω, F, P) is a probability space. $A, B \in F$ such that P(A) > 0, P(B) > 0

$$P(A\cap B)=P(A|B)P(B)=P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$\underline{\text{Definition } 4.7}$

Let (Ω, F, P) be a probability space. Then:

- (i) $A_1, A_2 \in F$ are independent if $P(A_1 \cap A_2) = P(A_1)P(A_2)$
- (ii) $A_1, \ldots, A_n \in F$ are independent if $P(\cap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$ for $\forall I \subseteq \{1, \ldots, n\}$
- (iii) $a_1,\ldots,a_n\in F$ are independent if $A_1,\ldots,A_n\in F$ are independent, $\forall A_i\in a_i$
- (iv) $\{A_i\} \in F$ are independent if $a_1, \ldots, a_n \in F$ are independent

5. Random Variables and Distributions

Let (Ω, F, P) be a probability space. When predicting outcomes of experiments, it's useful to consider mappings $X : \Omega \to \Omega'$ for some measurable set (Ω', F') , often (R, B(R)) or $(R^d, B(R^d))$

Definition 5.1

The preimage of $X: \Omega \to \Omega'$ is defined by $X^{-1}(A') = \{w \in \Omega: X(w) \in A'\}, A' \subseteq \Omega'$

Lemma 5.2

- (i) $X^{-1}(\phi) = \phi, X^{-1}(\Omega') = \Omega$
- (ii) $(X^{-1}(A'))^c = X^{-1}((A')^c), \forall A' \subseteq \Omega'$
- (iii) $\cup_{i \in I} X^{-1}(Ai') = X^{-1}(\cup_{i \in I} A'), \cap_{i \in I} X^{-1}(Ai') = X^{-1}(\cap_{i \in I} A')$

If F' is a σ -algebra on Ω' , then $\sigma(X) = \{X^{-1}(A') : A' \in F'\}$ is a σ -algebra on Ω , the $\underline{\sigma$ -algebra generated by X. Definition 5.3

Let (Ω, F) , (Ω', F') be measurable sets. $X: \Omega \to \Omega'$ is called (F, F')-measurable if $\sigma(X) \subseteq F$ i.e. $X^{-1}(A') \in F, \forall A' \in F'$.

If (Ω', F') is (R, B(R)) or $(R^d, B(R^d))$, then X is called a random variable or random vector.

Remark 5.5

- (1) We typically write X (e.g. $X = 1_A$) instead of X(w) (e.g. $X(w) = 1_A(w), w \in \Omega$)
- (2) We can study sequences of random variables X_1, X_2, \ldots Such sequences play a role in major limiting results
- (3) One can show that the measurability is preserved by many operations e.g. compositions of measurable functions are measurable.
- (4) Random vectors are vectors of random variables.

Prop 5.6

Let (Ω, F, P) be a probability space. Let (Ω', F') be a measurable set. If $X : \Omega \to \Omega'$ is measurable, then $P_X = P(X^{-1})$ is a probability measure on (Ω', F') , the <u>distribution of X</u>.

$$P_X(w) = P(X^{-1}(w)), w \in \Omega'$$

Remark 5.7

- (1) P_x assigns probabilities to events involving measurable X since $X^{-1}(A') \in F, \forall A' \in F$ and P knows how to assign probabilities to such events.
- (2) We often write $P(x \in A) = P(\{w \in \Omega : X(w) \in A'\}) = P(X^{-1}(A')) = P_X(A')$
- (3) If X is a random variable, then the distribution of X is a Borel probability measure on R.

$$\mathcal{F}(x) := P_x((-\infty, x]) = P(X \in (-\infty, x]) = P(\{w \in \Omega : X(w) \le x\}), \forall X \in R$$

We call $\mathcal{F}(x)$ the distribution function (DF) of X and write $X \sim \mathcal{F}$

The following characterizes all DF on R.

Theorem 5.8

 $\mathcal{F}: R \to [0,1]$ is the DF of a unique Borel probability measure P_F on $R \iff$:

- (1) $\mathcal{F}(-\infty) = 0, \mathcal{F}(\infty) = 1$
- (2) $a \ge b \implies F(a) \ge F(b)$
- (3) \mathcal{F} is right-continuous

Remark 5.9

" \Longrightarrow " implies properties of any DF \mathcal{F} .

" \Leftarrow " implies $\forall \mathcal{F}$:DF induces a unique distribution

e.g. $\mathcal{F}(x) = min(max(0,x),1), \forall x \in R$ is the DF of the standard uniform distribution U(0,1).

e.g. $\mathcal{F}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{z-\mu}{\sigma})^2} dz$ is the DF of the normal distribution $N(\mu, \sigma^2)$.

$$P(x \in A') = P(\{w \in \Omega : X(w) \in A'\}) = P(A \in F)$$

$$\mathcal{F}(x) = P(X \le x) = P(X \in (-\infty, x]) = P(X \in A')$$

$$X \sim \mathcal{F} \iff \mathcal{F}(X) = P(X \le x), \forall x \in R$$

Ref 5.10

(1) $\mathcal{F}: R \to R$ is monotone increasing. The generalized inverse \mathcal{F}^- of \mathcal{F} is defined by:

$$\mathcal{F}^{-}(y) = \inf\{x \in R : F(x) \ge y\}, y \in (0,1)$$

(2) If \mathcal{F} is a DF, then \mathcal{F}^- is the quantile function of \mathcal{F} .

$\underline{Remark~5.11}$

- (2) Some facts:
 - If \mathcal{F} is increasing and continuous, then $\mathcal{F}^- = \mathcal{F}^{-1}$
 - Graph of of \mathcal{F}^- is obtained by mirroring \mathcal{F} through y=x
 - \mathcal{F}^- is increasing and left-continuous
 - One can work with \mathcal{F}^- as with \mathcal{F}^{-1} but be careful: If \mathcal{F} is discontinous at x=a, i.e. $\lim_{x\to a^-} \mathcal{F}(x)=b$ and $\lim_{x\to a^+} \mathcal{F}(x)=c$, then $\mathcal{F}(F^-(x))=c, \forall x\in [b,c]$

Prop 5.12

If $F: R \to [0,1]$: satisfies i)-iii) of Theorem 5.8, then there exists a probability space (Ω, F, P) and a random variable $X: \Omega \to R$ such that $X \sim \mathcal{F}$

Prop 5.12 can be exploited for generating (pseudo-)random numbers, that is, numbers which reasonable realizations of $X \sim \mathcal{F}$ on a computer based on the following result known as inversion method for sampling. Note that there are various ways to sample from U(0,1) (with DF $\mathcal{F}_U(x) = x, \forall x \in [0,1]$) on the computer.

Prop 5.13

Let $\mathcal F$ be a DF. $U \sim U(0,1)$. $X := \mathcal F^-(U) \sim \mathcal F$. Remark 5.14

- (1) $X \sim \mathcal{F}$. $P_x((a,b]) = P_{\mathcal{F}}((a,b]) = \mathcal{F}(b) \mathcal{F}(a)$
- (2) $X \sim \mathcal{F}$. Then $P(X = x) = P(X \in \bigcap_{n=1}^{\infty} (x \frac{1}{n}, x])$ $= \lim_{n \to \infty} P(X \in (x - \frac{1}{n}, x])$ $= \mathcal{F}(x) - \lim_{n \to \infty} \mathcal{F}(x - \frac{1}{n})$ $= \mathcal{F}(x) - \mathcal{F}(x^{-}), \forall x \in R$
 - If \mathcal{F} is continuous in x, then $\mathcal{F}(x-) = \mathcal{F}(x)$ i.e. P(X=x) = 0
 - If \mathcal{F} is constant in (a,b], then $P(x \in (a,b]) = \mathcal{F}(b) \mathcal{F}(a) = 0$ so $X \sim \mathcal{F}$ does not take values in (a,b]
 - If \mathcal{F} jumps in x, then $P(X=x) = \mathcal{F}(x+) \mathcal{F}(x-) = \text{Jump height of } \mathcal{F}$ in x
 - Note: In each jump "gap" $(\mathcal{F}(x+), \mathcal{F}(x-)]$, there exists a rational number. And since \mathcal{F} is increasing, they are all distinct. So: Number of jumps $\leq |Q|$ so DFs can at most countable many jumps.

Definition 5.15

Let X be a random variable with distribution Px and DF \mathcal{F} .

- (1) X is a discrete random variable if $\exists S = \{x_1, \dots\} \subseteq R : P(X \in S) = 1$. \mathcal{F} is a step function. $ran(\mathcal{F}) = \{\mathcal{F}(x) : x \in S\}$ is at most countable. f(x) = P(X = x) is called probability mass function (PMF) of $X(P_x, \mathcal{F})$.
- (2) $X(P_x, \mathcal{F})$ is a continuous random variable if \mathcal{F} is continuous.
- (3) $X(P_x, \mathcal{F})$ is an absolutely continuous random variable if $\mathcal{F}(x) = \int_{-\infty}^x f(z)dz, \forall x \in R$ for some integrable $f: R \to [0, \infty)$ such that $\int_{-\infty}^{\infty} f(z)dz = 1$. f is called density of $X(P_x, \mathcal{F})$.

Remark 5.16

- (1) DFs \mathcal{F} could be discrete and continuous/absolutely continuous. This is called mixed-type DF
- (2) \mathcal{F} is differentiable on R and \mathcal{F}' is integrable $\Longrightarrow \mathcal{F}$ is absolutely continuous with density $f = \mathcal{F}'$. Absolutely continuous \Longrightarrow continuous, since:

$$|\mathcal{F}(x+h) - \mathcal{F}(x)| = |\int_{x}^{x+h} f(z)dz| \le \int_{x}^{x+h} |f(z)|dz \le \sup\{|f(z)|\} \int_{x}^{x+h} dx = \sup\{|f(z)|\} h$$

$$\lim_{h\to 0}\sup\{|f(z)|\}h=0$$

Thus, $X \sim \mathcal{F} \implies P(X = x) = 0, \forall x \in R$. So $P(X = x) \neq f(x)$ in general. However:

$$P(X \in (x - \epsilon]) = \int_{x = \epsilon}^{x} f(z)dz \approx \epsilon f(x)$$

for small $\epsilon > 0$.

- (3) Not all continuous \mathcal{F} are absolutely continuous. Example: Cantor set.
- (4) For PMFs on densities, always provide a domain. e.g. $f(x) = \frac{1}{c}$ is a density on [0, c] but not $[0, \infty)$.

Definition 5.18

Let (Ω, F, P) be a probability space. $\underline{X} = (X_1, \dots, X_j)$ is a random vector. Then $P_{\underline{X}} = P \circ \underline{X}^{-1}$. $P_{\underline{X}}(B) = P(\underline{X}^{-1}(B)) = P(\{w \in \Omega : \underline{X}(w) \in B\}), \forall B \in B(R^d)$ is the distribution of \underline{X} and:

$$\mathcal{F}(\underline{X}) := P_X((-\infty, \underline{x}]) = P(\{w \in \Omega : X_j(w) \le x_j, \forall j = 1, \dots, d\})$$

 $X \sim \mathcal{F}$: DF of X

$$\underline{X} \sim \mathcal{F} \iff \mathcal{F}(\underline{x}) = P(\underline{X} \leq \underline{x}), \forall \underline{x} \in \mathbb{R}^d$$

We call $F_j(x_j) = \mathcal{F}(\infty, \dots, \infty, x_j, \infty, \dots, \infty)$ the jth margin of \mathcal{F} or the jth marginal DF of \underline{X} .

Theorem 5.19

 $\mathcal{F}: \mathbb{R}^d \to [0,1]$ is the DF of a unique Borel probability measure $P_{\mathcal{F}}(=P_x)$ on \mathbb{R}^d iff:

- (1) $\lim_{x_j \to -\infty} F(\underline{X}) = 0$ for any $j \in 1, \ldots, d$, and $\lim_{x \to \infty} F(\underline{X}) = 1$
- (2) \mathcal{F} is d-increasing: $\mathcal{F}(\underline{b}) \geq \mathcal{F}(\underline{a}), \forall \underline{b} \geq \underline{a}$
- (3) \mathcal{F} is right-continuous: $\lim_{\underline{h}\to\underline{0}} \mathcal{F}(\underline{x}+\underline{h}) = \mathcal{F}(\underline{x})$ If \mathcal{F} is a DF and $X \sim \mathcal{F}$, then:

$$\Delta_{(a,b)}\mathcal{F} = \mu_{\mathcal{F}}(\underline{a},\underline{b}] = P_X((\underline{a},\underline{b}]) = P(X \in (\underline{a},\underline{b}])$$

Definition 5.20

 $\underline{X} \sim \mathcal{F}$ with distribution P_X , then:

(1) $\underline{X}(P_{\underline{X}}, \mathcal{F})$ is discrete if $\exists \lambda = \{\underline{X_1}, \dots\} : P(\underline{X} \in \lambda) = 1$.

i.e. \mathcal{F} is a step function: $Ran(\mathcal{F})$ is countable.

Then
$$f(x_i) = P(\underline{X} = x_i)$$
 is PMF of $\underline{X}(P_X, \mathcal{F})$

- (2) $\underline{X}(P_{\underline{X}}, \mathcal{F})$ is <u>continuous</u> if \mathcal{F} is continuous
- (3) $\underline{X}(P_{\underline{X}}, \mathcal{F})$ is <u>absolutely continuous</u> if $\mathcal{F}(\underline{x}) = \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} f dx_1 \dots dx_n$ for some integrable f.

Remark 5.21

(1) If f is absolutely continuous, then $f_j(x_j) = \frac{d}{dx_j} \mathcal{F}_j(x_j)$ is the jth marginal density of \mathcal{F} .

$$f_j(x_j) = \int_{-\infty}^{x_d} \cdots \int_{-\infty}^{x_{j+1}} \int_{-\infty}^{x_{j-1}} \cdots \int_{-\infty}^{x_1} f dx_d \dots x_{j+1} x_{j-1} \dots x_1$$

(2) f is absolutely continuous \implies margins of f are absolutely continuous.

6. Independence and Dependence

Definition 6.1

Let (Ω, F, P) be a probability space. Let (Ω', F') be a measurable space. Let $X_i : \Omega \to \Omega'$ be (F, F')-measurable, $\forall i \in I \subseteq R$. Then $X_{i,i \in I}$ are independent if $\sigma(x_i), i \in I$ are independent, that is, $X_{i_1}^{-1}(A'_{i_1}), \ldots, X_{i_n}^{-1}(A'_{i_n})$ are independent for $A_{i_1}, \ldots, A_{i_n} \in F, i_1, \ldots, i_n \subseteq I, n \in N$.

Remark 6.2

(1) $X_1, \ldots, X_d \sim \mathcal{F}$ are independent

$$\iff X_1^{-1}(B_1), \dots, X_d^{-1}(B_d) \text{ are independent}, \forall B_1, \dots, B_d \in B(R)$$

$$\iff P(\cap_{j \in \delta} X_j^{-1}(B_j)) = \prod_{j \in \delta} P(X_j^{-1}(B_j)), \forall \delta \in \{1, \dots, d\}$$

It suffices to consider: $B_j = \{(-\infty, x] : x \in R\}, j = \{1, \dots, d\}$

(2) If \mathcal{F} is absolutely continuous, then X_1, \ldots, X_d are independent

$$\iff f(\underline{x}) = \frac{\partial^d}{\partial x_d \dots \partial x_1} \mathcal{F}(\underline{x}) = \prod_{j=1}^d \frac{\partial}{\partial x_i} \mathcal{F}_j(x_j) = \prod_{j=1}^d f_j(x_j), \forall \underline{x} \in R^d$$

If \mathcal{F} is discrete, then X_1, \ldots, X_d are independent with support $S = \{\underline{X}_1, \ldots\}$

$$\iff f(\underline{x}) = \frac{\partial^d}{\partial x_d \dots \partial x_1} \mathcal{F}(\underline{x}) = \prod_{j=1}^d \frac{\partial}{\partial x_i} \mathcal{F}_j(x_j) = \prod_{j=1}^d f_j(x_j), \forall \underline{x} \in S$$

(3) If $X_{j_1}, \ldots, X - j_d$ are independent random variables and $h_j : R^{d_j} \to R$ are $(B(R^{d_j}), B(R))$ -measurable, then $Y_j = h_j(X_{j_{d_0}}, \ldots, X_{j_{d_j}}), j \in N$ are also independent random variables.

i.e. measurable functions of independent random variables are independent random variables

Prop 6.4

For DFs $\mathcal{F}_1, \ldots, \mathcal{F}_d$, there exists a probability space (Ω, F, P) and independent random variables X_1, \ldots, X_d such that $X_j \sim F_j, \forall j \in 1, \ldots, d$

Definition 6.5

A copula C is a DF with U(0,1) margins

Prop 6.6

 $C:[0,1]^d\to [0,1]$ is a d-dimensional copula iff:

- (1) $C((\underline{u})) = 0 \iff u_j = 0 \text{ for at least one } j \in \{1, \dots, d\} \text{ (Groundedness)}$
- (2) $C(1,\ldots,1,u_i,1\ldots,1)=u_i$
- (3) $\Delta_{(a,b]}C \geq 0, \forall \underline{a}, \underline{b} \in [0,1]^d : \underline{a} \geq \underline{b} \text{ (d-increasing)}$

Theorem 6.8

(1) For all DFs \mathcal{F} with continuous margins $\mathcal{F}_1, \ldots, \mathcal{F}_d$, there exists a unique copula C:

$$\mathcal{F}(\underline{x}) = C(\mathcal{F}_1(x_1), \dots, \mathcal{F}_d(x_d)), \forall \underline{x} \in R^d$$

Given by:

$$C(\underline{u}) = \mathcal{F}(\mathcal{F}_1^-(x_1), \dots, \mathcal{F}_d^-(x_d)), \forall \underline{u} \in [0, 1]^d$$

(2) Given a copula C and univariate DFs $\mathcal{F}_1, \ldots, \mathcal{F}_d$, \mathcal{F} defined by $\mathcal{F}(\underline{x}) = C(\mathcal{F}_1(x_1), \ldots, \mathcal{F}_d(x_d)), \forall \underline{x} \in \mathbb{R}^d$ is a DF with margins $\mathcal{F}_1, \ldots, \mathcal{F}_d$.

$\underline{\mathrm{Remark}\ 6.9}$

- (1) Any continuous function \mathcal{F} can be decomposed into its copula. The copula is thus, the function that contains information about the dependence between its random variables.
- (2) 2 important results about copulas:
 - Frechet-Hoeffding bounds: For copula C:

$$W(\underline{u}) \le C(\underline{u}) \le M(\underline{u}), \forall \underline{u} \in [0, 1]^d$$

- Invariance principle: If T_1, \ldots, T_d are strictly increasing, then $(T_1(X_1), \ldots, T_d(X_d))$ also has copula C.

7. Summary Statistics

7.1 Expectation and Moments

Definition 7.1

Let (Ω, F, P) be a probability space with random variable X.

If $E(X^+) < \infty$ or $E(X^-) < \infty$, then X is called quasi-integrable and $E(X) = \int_{\Omega} X dP$.

If $E(|X|) < \infty$ (notation, $X \in L^1(\Omega, F, P)$), X is integrable and E(X): Expectation of X.

Remark 7.2 (Change of variables)

Let (Ω, F, P) be a probability space with random variable $X \sim \mathcal{F}$. $h: R \to R$ is measurable, and $E(|h(X)|) < \infty$, then:

$$E(h(X)) = \int_{\Omega} h(X)dP = \int_{R} h(x)d\mathcal{F}(x)$$

(If discrete) $E(h(X)) = \sum_{x \in S} h(x) f(x)$

(If absolutely continuous) $E(h(X)) = \int_R h(x)f(x)dx$

Remark 7.3

- (1) $E(|h(X)|) < \infty \iff \int_{R} |h(x)| d\mathcal{F}(x) < \infty$
- (2) E(h(X)) can be computed by:

-
$$\int_{R} h(X) d\mathcal{F}_X(x) < \infty$$
. \mathcal{F}_X : DF of X

-
$$Y = h(X) \rightarrow \int_R Y d\mathcal{F}_Y(y)$$
. F_Y : DF of Y

(3) $h(X) = X^p, p > 0$, the pth amount of $X \sim \mathcal{F}$. $E(X^p) = \int_R X^p d\mathcal{F}_X(x) < \infty$.

With Koldon's inequality, q < p and $E(|X|^p) < \infty \implies E(|X|^q) < \infty$.

i.e. Existing higher moments \implies Existing lower moments

(4) Theorem 7.2 extends to random vectors $\underline{X} \sim \mathcal{F}$ and measurable $h: \mathbb{R}^d \to \mathbb{R}$ such that $E(|h(\underline{X})|) < \infty$.

Then
$$E(h(\underline{X})) = \int_{\mathbb{R}^d} h(\underline{X}) d\mathcal{F}(\underline{X})$$

Prop 7.4

 $X,Y\in L'(\Omega,F,P)$. Then:

- (1) $aX + bY \in L^1(\Omega, F, P)$ with E(aX + bY) = aE(X) + bE(Y) (Linearity)
- $(2) \ A \in F \implies E(1_A) = P(A)$
- (3) $X \ge 0$ a.s. $\Longrightarrow E(X) \ge 0$
- (4) $X \le Y$ a.s. $\Longrightarrow E(X) \le E(Y)$ (monotinicity)
- (5) $X \ge 0$ a.s. $E(X) = 0 \implies X = 0$ a.s.
- (6) $|E(X)| \le E(|X|)$
- (7) $X \in \mathcal{F}$, then:

-
$$E(X) = \int_0^\infty 1 - \mathcal{F}(X) dx - \int_{-\infty}^0 \mathcal{F}(X) dx$$

-
$$E(X) = \int_0^1 \mathcal{F}^-(u) du$$

Prop 7.5

If X is quasi-integrable, with P(A) = 0, then

$$\int_{A} XdP := \int_{\Omega} X1_{A}dP = E(X1_{A}) = 0$$

7.2 Variance and Covariance

Definition 7.6

Let (Ω, \mathcal{F}, P) be a probability space with random variables X, Y such that $E(X^2) < \infty, E(Y^2) < \infty$ (notation: $X, Y \in L^2(\Omega, \mathcal{F}, P)$). Then,

$$Var(X) = E((X - EX)^2)$$

is called the <u>variance</u> of X (or its distribution or df), and $\sqrt{Var(X)}$ is the <u>standard deviation</u>.

The covariance of X, Y is defined by

$$Cov(X,Y) := E((X - EX)(Y - EY))$$

and the <u>correlation</u> of X, Y by

$$Cor(X,Y) := \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Remark 7.7

Here are some properties of variance and covariance.

1.

$$Var(X) = E(X^{2} - 2XE(X) + E(X)^{2})$$

$$= E(X^{2}) - 2E(X)E(X) + E(X)^{2}$$

$$= E(X^{2}) - E(X)^{2}$$

Similarly,

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

Also note that

$$Cov(X, X) = Var(X)$$

 $Cov(X, c) = 0 \ \forall c \in R$
 $Cov(X, Y) = Cov(Y, X)$

2.

$$Var(X) = 0 \iff E((X - EX)^2) = 0$$

 $\iff (X - EX)^2 = 0 \text{ almost surely}$
 $\iff X - EX = 0 \text{ almost surely}$
 $\iff X = EX \text{ almost surely}$

3.

$$Var(aX + bY) = E(((aX + bY) - E(aX + bY))^{2})$$

$$= E((a(X - EX))^{2}) + 2E(a(X - EX)b(Y - EY)) + E((b(Y - EY))^{2})$$

$$= a^{2}Var(X) + 2abCov(X, Y) + B^{2}Var(Y)$$

for $a, b \in R$. In particular if Y = 1 almost surely, $Var(aX + b) = a^2 Var(X)$.

4. If X, Y are independent,

$$E(XY) = E(X)E(Y)$$

which implies

$$Cov(X, Y) = 0 = Cor(X, Y)$$

So, independence implies uncorrelatedness. The converse is not true in general:

Let $X \sim U(-1, 1), Y = X^2$. Then,

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$
$$= E(X^3) - 0E(X^2)$$
$$= 0$$

by symmetry, since X^3 is an odd function. So X,Y are uncorrelated but dependent.

Prop 7.8

Let $X, Y \in L^2(\Omega, \mathcal{F}, P)$. Then,

$$\begin{split} \rho := Cor(X,Y) \in [-1,1] \text{ and } |\rho| &= 1 \\ \iff Y \text{ is a linear function of } X \text{ with slope } &\lessgtr 0 \\ \iff \rho &= \pm 1 \end{split}$$

8. Examples of Distributions

8.1 Discrete Distributions

8.1.1 Discrete Uniform Distribution

Notation: $U(\{x_1,\ldots,x_n\})$

 $X \sim U(\{x_1, \dots, x_n\})$ models n distinct outcomes, each with equal probability

PMF:

$$f(x) = \begin{cases} \frac{1}{n} & x \in \{x_1, \dots, x_n\} \\ 0 & \text{otherwise} \end{cases}$$

Check: $f(x) \ge 0$ for $x \in R$, and $\sum_{i=1}^{n} f(x_n) = \frac{1}{n}n = 1$

Distribution function:

$$F(x) = P(X \le x)$$

$$= \sum_{k \in \{1, ..., n\}: x_k \le x} P(X = x_k)$$

$$= \frac{1}{n} |\{x_k : x_k \le x\}|$$

If $x_k = k$, we have

$$F(x) = \begin{cases} 0 & x < 1\\ \frac{\lfloor x \rfloor}{n} & x \in [1, n)\\ 1 & x \ge n \end{cases}$$

Mean:

$$E(X) = \sum_{k=1}^{n} x_k P(X = x_k) = \frac{1}{n} \sum_{k=1}^{n} x_k$$

If $x_k = k$, then

$$E(X) = \frac{n+1}{2}$$

Variance:

$$Var(X) = E(X^2) - E(X)^2 = \frac{1}{n} \sum_{k=1}^{n} x_k^2 - (\frac{1}{n} \sum_{k=1}^{n} x_k)^2$$

If $x_k = k$, then

$$Var(X) = \frac{1}{n} \frac{n(n+1)(2n+1)}{6} - (\frac{n+1}{2})^2 = \frac{n^2 - 1}{12}$$

If $U \sim U(0,1)$, then $\lceil nU \rceil \sim U(\{1,\ldots,n\})$ since

$$P(nU = k) = P(k - 1 < nU \le k) = P(U \in (\frac{k - 1}{n}, \frac{k}{n}]) = \frac{k}{n} - \frac{k - 1}{n} = \frac{1}{n}$$

for k = 1, ..., n. In particular, $X = x_{\lceil nU \rceil} \sim U(\{1, ..., n\})$

8.1.2 Binomial Distribution

Notation: B(n,p) where $n \geq 1, p \in (0,1)$

 $X \sim B(n,p)$ models the number of successes when independently repeating same experiment with outcomes success or failure n times, where P(success) = p. These experiments are <u>Bernoulli trials</u>. Then, $X = \sum_{k=1}^{n} X_k$ for $X_1, \ldots, X_n \sim B(1,p)$.

PMF:

$$f(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x \in \{0,\dots,n\} \\ 0 & \text{otherwise} \end{cases}$$

Check: $f(x) \ge 0$ for $x \in R$, and

$$\sum_{k=0}^{n} \binom{n}{x} p^k (1-p)^{n-k} = (p+(1-p))^n = 1$$

Distribution function:

$$F(X) = P(X \le x) = P(X \le \lfloor x \rfloor) = \sum_{k=0}^{\lfloor x \rfloor} \binom{n}{x} p^k (1-p)^{n-k} = \int_p^1 f_{x,n}(z) dz$$

where $f_{x,n}$ is the density of the Beta(x+1,n-x) distribution. By letting p=0, this gives 1 for $x\in[0,n]$.

Mean:

$$E(X) = \sum_{k=1}^{n} k \binom{n}{k} p^k (1-p)^{n-k} = np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k} = np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{n-k} = n$$

Variance:

$$\begin{split} E(X^2) - E(X) &= E(X(X-1)) \\ &= \sum_{k=2}^n k(k-1) \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} \\ &= p^2 n(n-1) \sum_{k=2}^n \binom{n-2}{k-2} p^{k-2} (1-p)^{n-k} \\ &= p^2 n(n-1) \\ &\Rightarrow E(X^2) = p^2 n(n-1) + np \\ Var(X) &= p^2 n(n-1) + np - (np)^2 \\ &= np(1-p) \end{split}$$

8.1.3 Geometric Distribution

Notation: $Geo(p), p \in (0,1)$

 $X \sim Geo(p)$ models the number of independent Bernoulli trials with success probability p until first success.

PMF:

$$f(x) = \begin{cases} p(1-p)^{x-1} & x \in N \\ 0 & \text{otherwise} \end{cases}$$

Check: $f(x) \ge 0$ for $x \in R$. $\sum_{k=1}^{\infty} p(1-p)^{k-1} = p \sum_{k=0}^{\infty} (1-p)^{k-1} = p \frac{1}{1-(1-p)} = 1$

Distribution function:

$$F(x) = P(X \le \lfloor x \rfloor)$$

$$= \sum_{k=1}^{\lfloor x \rfloor} p(1-p)^{k-1}$$

$$= p \sum_{k=0}^{\lfloor x-1 \rfloor} p(1-p)^{k-1+1}$$

$$= p \frac{1 - (1-p)^{\lfloor x \rfloor}}{1 - (1-p)}$$

$$= 1 - (1-p)^{\lfloor x \rfloor}$$

for $x \in [1, \infty)$.

Mean: Note that

$$\sum_{k=1}^{\infty} kq^{k-1} = \frac{d}{dq} \sum_{k=1}^{\infty} q^k = \frac{d}{dq} (\frac{1}{1-q} - 1) = \frac{1}{(1-q)^2}$$

for |q| < 1. Therefore,

$$E(X) = \sum_{k=1}^{\infty} kp(1-p)^{k-1} = p\frac{1}{1 - (1-p)^2} = \frac{1}{p}$$

Variance: Note that

$$\sum_{k=2}^{\infty} k(k-1)q^{k-2} = \sum_{k=0}^{\infty} \frac{d^2}{dq^2} q^k = \frac{d^2}{dq^2} (\frac{1}{1-q} - q - 1) = \frac{2}{(1-q)^3}$$

for |q| < 1. Therefore,

$$E(X(X-1)) = \sum_{k=2}^{\infty} k(k-1)p(1-p)^{k-1} = p(1-p)\sum_{k=2}^{\infty} k(k-1)(1-p)^{k-2} = p(1-p)(\frac{2}{(1-(1-p))^3}) = \frac{2(1-p)}{p^2}$$

$$\therefore E(X^2) = \frac{2(1-p)}{p^2} + E(X) = \frac{2-p}{p^2}$$

$$\therefore Var(X) = \frac{1-p}{p^2}$$

8.1.4 Poisson Distribution

Notation: $Poi(\lambda), \lambda > 0$

 $X \sim Poi(\lambda)$ models the number of events occurring in fixed time interval, if these events occur at fixed rate λ and independently of time of last event.

PMF:

$$f(x) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda} & x \in N_0\\ 0 & \text{otherwise} \end{cases}$$

Check: $f(x) \ge 0$ for $x \in R$. $\sum_{x=0}^{\infty} f(x) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{\lambda} e^{-\lambda} = 1$

Distribution function:

$$F(x) = \sum_{k=0}^{\lfloor x \rfloor} \frac{\lambda^k}{k!} e^{-\lambda}$$

for $x \in R$. R uses $F(x) = \frac{\Gamma(\lfloor x \rfloor + 1, \lambda)}{\lfloor x \rfloor!}$, where $\Gamma(s, z) = \int_z^\infty t^{s-1} e^{-t} dt$ is the upper incomplete gamma function. Mean:

$$E(X) = \sum_{k=1}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda$$

Variance:

$$\begin{split} E(X(X-1)) &= \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} = \lambda^2 \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} e^{-\lambda} = \lambda^2 \\ &\Rightarrow E(X^2) = \lambda^2 + \lambda \\ &\Rightarrow Var(X) = \lambda^2 + \lambda - \lambda^2 = \lambda \end{split}$$

8.2 Absolutely Continuous Distributions

8.2.1 Continuous Uniform Distribution

Notation: U(a, b) for $a, b \in R, a < b$.

 $X \sim U(a,b)$ models outcomes uniformly distributed over (a,b), that is, $P(X \in (x,x+h])$ is constant and equals $\frac{h}{b-a}$ for all $x \in [a,b-h]$.

Density:

$$f(x) = \frac{1}{b-a} 1_{(a,b]}(x)$$

for $x \in R$.

Check: $f(x) \ge 0$ for $x \in R$. Also, $\int_a^b \frac{1}{b-a} dz = \frac{1}{b-a} \int_a^b (1) dz = \frac{b-a}{b-a} = 1$.

Distribution function:

$$F(x) = P(X \le x)$$

$$= \int_{-\infty}^{x} f(z)dz$$

$$= \int_{a}^{x} \frac{1}{b-a}dz$$

$$= \frac{x-a}{b-a}$$

for $x \in [a, b]$.

Moments:

$$\begin{split} E(X^k) &= \int_a^b x^k f(x) dx = \frac{1}{b-a} \int_a^b x^k dx = \frac{b^{k+1} - a^{k+1}}{(b-a)(k+1)} = \frac{\sum_{l=0}^k a^l b^{k-l}}{k+1} \\ E(X) &= \frac{b-a}{2} \\ Var(X) &= \frac{(b-a)^2}{12} \end{split}$$

8.2.2 Gamma Distribution

Notation: $\Gamma(\alpha, \beta)$ where $\alpha > 0$ is the shape, $\beta > 0$ is the rate.

Special cases:

- Exponential distribution
- Erlang distribution
- Chi-squared distribution

Density:

$$f(x) = \frac{\beta^x}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$

for x > 0 where

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-\infty} dt$$

is the gamma function.

Check: $f(x) \ge 0$ for $x \in R$. Also,

$$\int_0^\infty \frac{\beta^\alpha}{\Gamma(\alpha)} z^{\alpha-1} e^{-\beta z} dz = \frac{1}{\Gamma(\alpha)} \int_0^\infty \beta^\alpha (\frac{t}{\beta})^{\alpha-1} e^{-t} \frac{1}{\beta} dt = \frac{1}{\Gamma(\alpha)} \Gamma(\alpha) = 1$$
(Let $t = \beta z$)

Distribution function:

$$\begin{split} F(x) &= \int_0^x \frac{\beta^\alpha}{\Gamma(\alpha)} e^{-\beta z} z^{\alpha - 1} dz \\ &= \frac{1}{\Gamma(\alpha)} \int_0^{\beta x} t^{\alpha - 1} e^{-t} dt \text{ Let } t = \beta z \\ &= \frac{\gamma(\alpha, \beta x)}{\Gamma(\alpha)} \end{split}$$

where γ is the lower incomplete gamma function (available numerically).

Moments:

$$\begin{split} E(X^k) &= \frac{\beta^\alpha}{\Gamma(x)} \int_0^\infty x^{k-\alpha-1} e^{-\beta x} dx = \frac{\beta^\alpha}{\Gamma(\alpha)} \frac{k(k+\alpha)}{\beta^{k+\alpha}} \int_0^\infty \frac{\beta^{k+\alpha}}{\Gamma(k+\alpha)} x^{k+\alpha-1} e^{-\beta x} dx \\ &= \frac{\beta^{-k} \Gamma(k+\alpha)}{\Gamma(\alpha)} = \beta^{-k} \frac{(k_\alpha - 1) \cdot \dots \cdot (\alpha \Gamma(\alpha))}{\Gamma(\alpha)} = \beta^{-k} \prod_{i=0}^{k-1} (i+\alpha) \\ E(X) &= \frac{\alpha}{\beta} \\ Var(X) &= \frac{\alpha(1+\alpha)}{\beta^2} - (\frac{\alpha}{\beta})^2 = \frac{\alpha}{\beta^2} \end{split}$$

8.2.3 Exponential Distribution

Notation: $Exp(\lambda)$, $\lambda > 0$ (rate)

 $X \sim Exp(\lambda)$ describes interarrival times between events in a (homogeneous) Poisson (point) process with intensity $\lambda > 0$, that is, a sequence of random variables $(N_t)_{t \geq 0}$ such that:

- $N_0 = 0$
- $\forall n \in \mathbb{N}$ and $0 \le t_0 < \dots < t_n < \infty$, the increments $N_{t_1} N_{t_0}, \dots, N_{t_n} N_{t_{n-1}}$ are independent
- $N_t N_s \sim Poi(\lambda(t-s))$ for $0 \le s < t$ for some $\lambda > 0$.

Such continuous-time stochastic processes model the numebr of events in a process in which events occur continuously, independently at a constant rate $\lambda > 0$ per unit (here, time) interval. Note that $N_t - N_s = N_{ts} - N_0 = N_{ts}$ for $0 \le s < t$.

Density:

$$f(x) = \lambda e^{-\lambda x}$$

for $x \geq 0$.

Check: $f(x) \ge 0$ for $x \in R$. Also, $\int_0^\infty \lambda e^{-\lambda x} dx = 1$. Note that f(x) is $\Gamma(1,x)$ density, so $Exp(\lambda) = \Gamma(1,\lambda)$.

Distribution function:

$$F(x) = \int_0^x \lambda e^{-\lambda z} dz = 1 - e^{\lambda x}$$

for $x \geq 0$.

Moments:

$$E(X^k) = \lambda^{-k} \prod_{i=0}^{k-1} (i+1)$$
$$= \frac{k!}{\lambda^k}$$
$$E(X) = \frac{1}{\lambda}$$
$$Var(X) = \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2 = \frac{1}{\lambda^2}$$

8.2.4 Normal Distribution

Notation: $N(\mu, \sigma^2)$ where $\mu \in R$ is the mean/location, and $\sigma > 0$ is the standard deviation/scale.

 $X \sim N(\mu, \sigma^2)$ models outcomes which fluctuate symmetrically around μ with variance σ^2 .

Density:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

for $x \in R$.

Mean:

$$E(X) = \mu$$

Variance:

$$Var(X) = \sigma^2$$

8.3 Multivariate Distributions

8.3.1 Mean vector, Covariance and Correlation Matrices

Definition 8.1

Let $\underline{X} = (X_1, \dots, X_d)$. If $E(|X_j|) \leq \infty$ for all j, the <u>mean vector</u> or expectation of \underline{X} (or its distribution function or distribution) is defined

$$\mu = E(\underline{X}) = (E(X_1), \dots, E(X_d))$$

If $E(X_j) < \infty$ for all j, the <u>covariance and correlation matrices</u> is defined by

$$\Sigma = Cov(\underline{X}) = (Cov(X_i, X_j))_{i,j=1,\dots,d}$$

$$P = Cor(\underline{X}) = (Cor(X_i, X_j))_{i,j=1,\dots,d}$$

Lemma 8.2

1.
$$E(A\underline{X} + \underline{b}) = AE(\underline{X}) + \underline{b}$$

 $E(\underline{a}^T\underline{X}) = \underline{a}^TE(\underline{X}).$

$$\begin{array}{l} 2. \;\; Cov(A\underline{X}+\underline{b}) = ACov(\underline{X})A^T \\ Var(\underline{a^T}\,\underline{X}) = Cor(\underline{a^T}\,\underline{X}) = \underline{a^T}Cov(X)\underline{a}. \end{array}$$

Prop 8.3

A real, symmetric matrix Σ is a covariance matrix iff Σ is positive semidefinite.

8.3.2 Normal distribution

Notation: $N(\mu, \Sigma)$ for $\mu \in \mathbb{R}^d, \Sigma \in \mathbb{R}^{d \times d}$, a covariance matrix.

 $X \sim N(\underline{\mu}, \Sigma) \Leftrightarrow X = \underline{\mu} + A\underline{Z}$ where A is the Cholesky factor of Σ and $\underline{Z} = (Z_1, \dots, Z_d)$ for $Z_j \stackrel{ind.}{\sim}$ for $j = 1, \dots, d$. In other words, \underline{X} is a linear transform of independent standard normal random variables. \underline{X} models outcomes which fluctuate around μ with covariance matrix Σ .

Density:

$$f_{\underline{Z}}(\underline{z}) = \prod_{j=1}^{d} f_{Z_j}(z_j) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{\frac{-1}{2}z_j^2} = \frac{e^{\frac{-1}{2}z^T z}}{(2\pi)^{\frac{d}{2}}}$$

The density $f_{\underline{X}}(\underline{x} \text{ of } \underline{X} = T(\underline{Z}) \text{ for } T(\underline{Z}) = Az + \mu \text{ can be determined by the density transformation theorem: If T is injective and differentiable (and therefore continuous), <math>|\det T'(z)| > 0$ for all z, then $\underline{X} = T(z)$. Thus,

$$f_{\underline{x}}(\underline{X})f_{\underline{Z}}(T^{-1}(\underline{X}))\frac{1}{|\det T'(T^{-1}(\underline{x}))|}$$

for all $\underline{x} \in \mathbb{R}^d$. With $T^{-1}(\underline{X}) = A^{-1}(\underline{x} - \mu), T'(\underline{z}) = A$ and

$$|\det T'(T^{-1}(\underline{x}))| = |\det A| = \sqrt{(\det A)^2} = \sqrt{(\det A)(\det A^T)} = \sqrt{\det AA^T} = \sqrt{\det \Sigma}$$

So we obtain

$$\begin{split} f_{\underline{X}}(\underline{x}) &= \frac{1}{(2\pi)^{\frac{d}{2}}} e^{\frac{-1}{2}(A^{-1}(\underline{x} - \underline{\mu}))^T (A^T(\underline{x} - \underline{\mu}))} \\ &= \frac{1}{(2\pi)^{\frac{d}{2}}} e^{\frac{-1}{2}(\underline{x} - \underline{\mu})^T (A^{-1})^T (A^{-1})(\underline{x} - \underline{\mu})} \end{split}$$

for all $x \in \mathbb{R}^d$

Distribution function: only available numerically for $d \geq 3$ with so-called randomized quasi-Monte Carlo estimation via

$$F(\underline{x}) = P(\underline{X} \le \underline{x}) = E(1_{\{\underline{X} \le \underline{x}\}})$$

Mean vector:

$$E(\underline{X}) = \mu + AE(\underline{Z}) = \mu$$

Covariance matrix:

$$Cov(\underline{X}) = ACov(\underline{Z})A^T = AIA^T = AA^T = \Sigma$$

9. Limit Theorems

9.1 Modes of convergence

<u>Definition 9.1</u>

Let (Ω, \mathcal{F}, P) be a probability space, $X, X_1, \dots, X_n : \Omega \to R$ be random variables. Then $\{X_n\}_{n \in N}$ converges to X almost surely (notation: $X_n \overset{a.s.}{\underset{(n \to \infty)}{\longrightarrow}} X$) if

$$P(\lim_{n\to\infty} X_n = X) = 1$$

 $\{X_n\}_{n\in N}$ converges to X in probability $(X_n \overset{p}{\underset{(n\to\infty)}{\to}} X)$ if

$$\forall \varepsilon > 0, \lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0$$

.

If F, F_1, F_2, \ldots are distribution functions with $X_n \sim F_n$ for all $n \in \mathbb{N}$, then X_n converges in distribution $(X_n \overset{d}{\underset{(n \to \infty)}{\to}} X)$ to $X \sim F$ if $\lim_{n \to \infty} F_n(x) = F(x)$ for all x such that F is continuous at x.

Remark 9.2

- 1. One can show $X_n \xrightarrow[(n \to \infty)]{a.s.} X \Rightarrow X_n \xrightarrow[(n \to \infty)]{p} X \Rightarrow X_n \xrightarrow[(n \to \infty)]{d} X$. Converses do not hold in general without further conditions.
- 2. To each of these modes of convergence is associated a limit theorem.

9.2 Weak and Strong Laws of Large Numbers

Lemma 9.3

Let $h:[0,\infty)\to [0,\infty)$ be strictly increasing and X be a random variable such that $E(H(|X|))<\infty$. Then

$$P(|X| \ge x) \le \frac{E(h(|x|))}{h(x)}$$

for all x > 0.

For h(x) = x, $P(|X| \ge x) \le \frac{E(X)}{x}$ for all x > 0 is called Markov's inequality. For $h(x) = x^2$, $P(|X| \ge x) \le \frac{E(X^2)}{x^2}$ for all x > 0 is called Chebyshev's inequality.

Prop 9.4: Weak Law of Large Numbers

If $\{X_n\}_{n\in\mathbb{N}}$ is a sequence of iid random variables with $\mu=EX$, and $\sigma^2=Var(X)<\infty$, then

$$\overline{X_n} := \frac{1}{n} \sum_{i=1}^n X_i \underset{(n \to \infty)}{\xrightarrow{p}} \mu$$

Theorem 9.5: Strong Law of Large Numbers

If $\{X_n\}_{n\in\mathbb{N}}$ is a sequence of iid random variables with $\mu=E(X)$, then

$$\overline{X_n} \overset{a.s.}{\underset{(n\to\infty)}{\to}} \mu$$

9.3 Central Limit Theorem

9.3.1 Characteristic Functions

Definition 9.6

The characteristic function (cf) $\phi_{\underline{X}}:R^d\to C$ of $\underline{X}\sim F$ is defined by

$$\phi_{\underline{X}}(\underline{t}) = E(e^{i\underline{t}^T\underline{X}}), t \in R^d$$
 For $d = 1, \phi_X(t) = E(e^{itx}), t \in R$

Remark 9.7

1. By Euler's formula $e^{ix} = \cos(x) + i\sin(x)$,

$$\phi_{\underline{X}}(\underline{t}) = E(\cos(\underline{t}^T \underline{X})) + iE(\sin(\underline{t}^T \underline{X}))$$

Therefore, $E(|e^{i\underline{t}^T\underline{X}}|) = E(\sqrt{\cos^2(\underline{t}^T\underline{X}) + \sin^2(\underline{t}^T\underline{X})}) = 1$. In particular $\phi_{\underline{X}}$ always exists, $|\phi_{\underline{X}}| \le 1$, $\phi_{\underline{X}}(0) = 1$. Furthermore $\phi_{\underline{X}}$ is real iff

$$\begin{split} \phi_{\underline{X}}(\underline{t}) &= \overline{\phi_{\underline{X}}(\underline{t})} \\ &= E(\cos(\underline{t}^T \underline{X})) - iE(\sin(\underline{t}^T \underline{X})) \\ &= \phi_{\underline{X}}(-\underline{t}) \\ &= \phi_{-\underline{X}}(\underline{t}) \end{split}$$

for all $\underline{t} \in R^d$. That is, if $\phi_{\underline{X}}$ is point-symmetric about $\underline{0}$, or by uniqueness, if $\underline{X} \stackrel{d}{=} \underline{-X}$. (Note: $\stackrel{d}{=}$ means distributed equally.)

- 2. One can show ϕ_X is continuous.
- 3. If A is an $d \times d$ matrix and $\underline{b} \in \mathbb{R}^d$, then for random vector $\underline{X} = (X_1, \dots, X_d)$ we have

$$\begin{split} \phi_{A\underline{X}+\underline{b}}(\underline{t}) &= E(e^{i\underline{t}^T(A\underline{X}+\underline{b})}) \\ &= e^{i\underline{t}^T\underline{b}}E(e^{i\underline{t}^TA\underline{X}}) \\ &= e^{i\underline{t}^T\underline{b}}\phi_{\underline{X}}(\underline{t}^TA) \end{split}$$

4. If X_1, \ldots, X_d are independent, then

$$\phi_{X_1 + \dots + X_d}(t) = E(e^{it^T \sum_{i=1}^d X_i}) = E(\prod_{j=1}^d e^{it^T X_j}) = \prod_{j=1}^d E(e^{it^T X_j}) = \prod_{j=1}^d \phi_{X_j}(t)$$

Theorem 9.9

- 1. Uniqueness: $\phi_{\underline{X}}(\underline{t}) = \phi_{\underline{Y}}(\underline{t})$ for all $\underline{t} \in \mathbb{R}^d$ iff $\underline{X} \stackrel{d}{=} \underline{Y}$.
- 2. Continuity:
 - $X_n \xrightarrow[n \to \infty]{d} X \Rightarrow \phi_{X_n}(t) \to \phi_X(t)$ for all $t \in R$.
 - If pointwise for all $t \in R$ $\phi(t) := \lim_{n \to \infty} \phi_{X_n}(t)$ exists and is continuous at 0 then $X_n \xrightarrow[(n \to \infty)]{d} X$ for a random variable X, with cf ϕ .

9.3.2 Main result

We can show the following:

Lemma 9.11

- 1. If $a_n \to a$ as $n \to \infty$ then $(1 + \frac{a_n}{n})^n = e^a$ as $n \to \infty$.
- 2. If $E(|X|^m) < \infty$ for some $m \in N$, then as $t \to 0$,

$$\phi_X(t) = \sum_{k=0}^{m} \frac{(it)^k}{k!} E(X^k) + o(|t|^m)$$

Note: $h(t) \in o(g(t))$ as $t \to 0$ means $\frac{|h(t)|}{|g(t)|} \to 0$ as $t \to 0$.

Theorem 9.12: Central Limit Theorem

If $\{X_n\}_{n\in\mathbb{N}}$ is a sequence of iid random variables with $\mu_1=E(X_1)$ and $\sigma^2=Var(X_1)<\infty$ then

$$\sqrt{n}\frac{\overline{X_n} - \mu}{\sigma} = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma} \xrightarrow[(n \to \infty)]{d} N(0, 1)$$

Remark 9.13

- 1. For iid random variables with finite second moments, CLT implies $\overline{X_n} \sim N(\mu, \frac{\sigma^2}{n})$ for large n. Or, $\sum_{j=1}^n X_j \sim N(n\mu, n\sigma^2)$ for large n. If the distribution of X_1 is very different from $N(\mu, \sigma^2)$, a large n should be chosen.
- 2. If, additionally, $E(|X_1|^3) < \infty$, the Berry-Esseen theorem states the existence of $c \in (\frac{1}{\sqrt{2\pi}}, \frac{1}{2})$ such that $\sup_{x \in R} |F_{\sqrt{n}\frac{\overline{X_n} \mu}{\sigma}}(x) \Phi(x)| \le c \frac{E(|\frac{X_1 \mu}{\sigma}|^3)}{\sqrt{n}}$ for all $n \in N$.
- 3. Let $\alpha \in (0,1), q_{\alpha} = \Phi^{-1}(1-\frac{\alpha}{2})$. Suppose μ, σ are known. Then:

$$\begin{split} &P(\overline{X_n} \in [\mu - q_\alpha \frac{\sigma}{\sqrt{n}}, \mu + q_\alpha \frac{\sigma}{\sqrt{n}}]) \\ &= P(-q_\alpha \le \sqrt{n} \frac{\overline{X_n} - \mu}{\sigma} \le q_\alpha) \\ &= \Phi(q_\alpha) - \Phi(-q_\alpha) = 2\Phi(q_\alpha) - 1 = 2\Phi(\Phi^{-1}(1 - \frac{\alpha}{2})) - 1 = 1 - \alpha \end{split}$$

Suppose σ is known and μ is not known. Switch the roles of $\overline{X_n}, \mu$. We obtain that: $\left[\mu - q_\alpha \frac{\sigma}{\sqrt{n}}, \mu + q_\alpha \frac{\sigma}{\sqrt{n}}\right]$ is (asymptotially for large n) a random interval which contains μ with probability $1 - \alpha$. A so-called asymptotic $(1 - \alpha)$ -confidence interval for μ .

Remark 9.15

If X_1 is discrete (with support $S \subseteq Z$), and n is small, one often applies a continuity correction, by computing $P(a-c \le \sum_{i=1}^n X_i \le b+c)$ instead of $P(a \le \sum_{i=1}^n X_i \le b)$ e.g. for $c = \frac{1}{2}$. If a = b, then this is necessary for all n.