Approximate Value Iteration and Variants

Chen-Yu Wei

Value Iteration

For
$$k=1,\ 2,...$$

$$\forall s,a,\qquad Q_k(s,a)\leftarrow \boxed{R(s,a)}+\gamma\sum_{s'}\boxed{P(s'|s,a)}\max_{a'}Q_{k-1}(s',a')$$
 unknown unknown

Idea: In each iteration, use multiple samples to estimate the right-hand side.

Value Iteration with Samples

Perform **regression** on $\{(s_i, a_i, r_i, s_i')\}_{i=1}^N$ to find Q_k such that

$$\forall s, a, \qquad Q_k(s, a) \approx R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_{k-1}(s', a')$$

Perform one iteration of Value Iteration

Find
$$O_{K}$$
 that miniminize

$$O_{K} = ang \text{ am} \sum_{i=1}^{N} \left(Q_{O}(S_{i}, Q_{i}) - \left(Y_{i} + Y \text{ max} Q_{OK} + \left(S_{i}, Q_{i} \right) \right) \right)$$

$$F(S_{i}, Q_{i}) = R(S_{i}, Q_{i}) + Y \times P(S_{i}', S_{i}) \times P(S_{i}', S_{i})$$

Recall: Contextual Bandits with Regression

Train \hat{R} such that $\hat{R}(x_i, a_i) \approx r_i$

Value Iteration with Regression

Train Q_k such that $Q_k(s_i, a_i) \approx r_i + \gamma \max_{a'} Q_{k-1}(s_i', a')$

This is just one iteration of Value Iteration

Value Iteration with Samples

```
For k = 1, 2, ...
    For i = 1, 2, ..., N:
            Choose action a_i \sim \mathsf{EG}(Q_{\theta_k}(s_i,\cdot))
            Receive reward r_i \sim R(s_i, a_i) and s_i' \sim P(\cdot | s_i, a_i)
            s_{i+1} = s_i' if episode continues, s_{i+1} \sim \rho if episode ends
    \theta \leftarrow \theta_{k}
    For m = 1, 2, ..., M:
            Randomly pick an i (or a mini-batch) from \{1, 2, ..., N\}
            \theta \leftarrow \theta - \alpha \nabla_{\theta} \left( Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta_k}(s'_i, a') \right)^2
    \theta_{k+1} \leftarrow \theta
                                                                 Target network
```

Data collection

Perform one iteration of Value Iteration

2nd for-loop: trying to find $\theta_{k+1} = \underset{\alpha}{\operatorname{argmin}} \sum_{i=1}^{N} \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \underset{\alpha'}{\operatorname{max}} Q_{\theta_k}(s_i', a') \right)^2$

It is Valid to Reuse Samples

The algorithm in the previous slide only use \mathcal{D}_k to train θ_{k+1} .

However, as the reward function R and transition P remains unchanged, it is valid (actually, even better) to reuse samples:

Value Iteration with Reused Samples (= Deep Q-Learning or DQN)

Initialize $\mathcal{B} = \{\} \leftarrow \text{Replay buffer}$ For k = 1, 2, ...For i = 1, 2, ..., N: Choose action $a_i \sim \mathsf{EG}(Q_{\theta_k}(s_i,\cdot))$ Receive reward $r_i \sim R(s_i, a_i)$ and $s'_i \sim P(\cdot | s_i, a_i)$ $s_{i+1} = s_i'$ if episode continues, $s_{i+1} \sim \rho$ if episode ends Insert (s_i, a_i, r_i, s_i') to \mathcal{B} $\theta \leftarrow \theta_k$ For m = 1, 2, ..., M: Randomly pick an i (or a mini-batch) from \mathcal{B} $\theta \leftarrow \theta - \alpha \nabla_{\theta} \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta_k}(s'_i, a') \right)^2$ $\theta_{k+1} \leftarrow \theta$ Target network

HW4 task

Data collection

Perform one iteration of Value Iteration

Another Popular Implementation

```
Initialize \mathcal{B} = \{\} \leftarrow \text{Replay buffer}
For k = 1, 2, ...
    For i = 1, 2, ..., N:
            Choose action a_i \sim \mathsf{EG}(Q_\theta(s_i,\cdot))
            Receive reward r_i \sim R(s_i, a_i) and s'_i \sim P(\cdot | s_i, a_i)
            s_{i+1} = s_i' if episode continues, s_{i+1} \sim \rho if episode ends
            Insert (s_i, a_i, r_i, s_i') to \mathcal{B}
    For m = 1, 2, ..., M:
             Randomly pick an i (or a mini-batch) from \mathcal{B}
             \theta \leftarrow \theta - \nabla_{\theta} \left( Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\overline{\theta}}(s'_i, a') \right)^2
            \overline{\theta} \leftarrow (1-\tau)\overline{\theta} + \tau\theta
                                                                    Target network
```

HW4 task

When Does DQN Succeed?

DQN tries to approximate Value Iteration by solving

$$\theta_{k+1} = \underset{\theta}{\operatorname{argmin}} \sum_{i \in \mathcal{B}} \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta_k}(s_i', a') \right)^2 \tag{1}$$

The true Value Iteration:

$$\forall s, a, \qquad Q_{k+1}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_k(s', a')$$
 (2)

Under what conditions can (1) well approximate (2)?

- B should contain a wide range of state-action pairs (a challenge of exploration)
- $Q_{\theta_{k+1}}(s, a)$ should recover $R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_{\theta_k}(s', a')$ well for all state-actions (a challenge of function approximation, or generalization)

1. Exploration in MDPs (Not Easy)

Environment:

- Fixed-horizon MDP with episode length *H*
- Initial state at 0
- A single rewarding state at state *H*
- Actions: Go LEFT or RIGHT

Suppose we perform DQN with ϵ -greedy with random initialization \Rightarrow On average, we need 2^H episodes to see the reward (before that, we won't make any meaningful update and will just do random walk around state 0)

Key issue:

- The ε-greedy strategy (or BE, IGW) performs action-space exploration but not state-space exploration.
- This problem becomes more severe when the reward signal is sparse.
- To solve this, we usually require the exploration bonus (a form of reward shaping) technique – will be covered much later.

At this point (for the discussion of DQN), we pretend that EG, BE, or IGW will lead to sufficient exploration over the state space.

1. Exploration in MDPs (Not Easy)

Classic sparse-reward environments:

Montezuma's Revenge

2. Function Approximation

To make DQN well approximate VI, we need

$$\forall s, a \qquad Q_{\theta_{k+1}}(s, a) \approx R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_{\theta_k}(s', a')$$

(ϵ -approximate) Bellman Completeness

an assumption both on the MDP and the function expressiveness

$$\forall \theta', \exists \theta \quad \forall s, a, \qquad \left| Q_{\theta}(s, a) - \left(R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_{\theta'}(s', a') \right) \right| \le \epsilon$$

This allows us to quantify the regression error in each iteration.

2. Function Approximation

In HW1 you have shown

 ϵ -Greedy ensures

Regret
$$\lesssim \epsilon T + \sqrt{\frac{AT \cdot Err}{\epsilon}}$$

Regression error

$$\operatorname{Err} = \sum_{t=1}^{T} \left(\widehat{R}_t(x_t, a_t) - R(x_t, a_t) \right)^2$$

In value-based contextual bandits, the requirement / assumption for function approximation is

$$\exists \theta \ \forall x, a \ R_{\theta}(x, a) \approx R(x, a)$$

In value-based MDPs, the requirement / assumption for function approximation is

$$(\forall \theta', \exists \theta \ \forall s, a$$

$$\forall \theta', \exists \theta \ \forall s, a \ Q_{\theta}(s, a) \approx R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_{\theta'}(s', a')$$

Analysis of DQN assuming sufficient exploration and Bellman Completeness

Recall the analysis for the exact Value Iteration:

1. Value Iteration will terminate.

$$|Q_k(s,a) - Q_{k-1}(s,a)| \le \epsilon \quad \forall s, a$$

2. When it terminates, it holds that

$$|Q_k(s,a) - Q^*(s,a)| \le \frac{\epsilon}{1-\gamma} \quad \forall s, a$$

3. When it terminates, it holds that

$$V^{\star}(s) - V^{\widehat{\pi}}(s) \le \frac{2\epsilon}{(1-\gamma)^2} \quad \forall s$$

where $\hat{\pi}(s) = \underset{a}{\operatorname{argmax}} Q_k(s, a)$

$$\max_{s,a} |Q_k(s,a) - Q_{k-1}(s,a)| \\ \le \gamma \max_{s,a} |Q_{k-1}(s,a) - Q_{k-2}(s,a)|$$

ValueError $\leq \frac{1}{1-\gamma}$ BellmanError

Suboptimality $\leq \frac{1}{1-\gamma}$ ValueError

Completing the Analysis of VI (1st Step)

Analysis of DQN