

Python in Excel: Quick Wins Reference Guide

1. Sample random rows	<pre>df.sample() # Default df.sample(20) # Sample 20 rows</pre>
2. Number of missing values in each column	<pre>df.isna().sum() # Count missing per column (df.isna().sum() / len(df))\ .sort_values(ascending=False) # % missing per column</pre>
3. Descriptive statistics	<pre>df.describe() # Default df.describe(percentiles=[.10, .50, .90]) # Custom percentiles</pre>
4. Correlation matrix	<pre>numeric_corr = df.select_dtypes(include="number").corr() # Correlate all numeric variables sns.heatmap(numeric_corr, annot=True) # Visualize correlations</pre>
5. Frequency tables	<pre>df["col_1"].value_counts() # Frequency counts pd.crosstab(df["col_1"], df["col_2"],</pre>
6. Resampling	<pre>df_ts = df.set_index("date") # Set datetime index df_ts.resample("M").sum().head() # Monthly totals (df_ts.resample("H").ffill() / 24).head(72) # Hourly forward-fill then scale</pre>

2	
7. Index number by group	<pre>df["group_id"] = df.groupby("group_col").cumcount() + 1 # 1- based counter</pre>
8. Leading and lagging variables	<pre>df["lag_1"] = df["value"].shift(1) # Previous value</pre>
	<pre>df["lead_1"] = df["value"].shift(-1) # Next value</pre>
	<pre>df["pct_change_%"] = df["value"].pct_change() * 100 # % change</pre>
9. Rolling and cumulative aggregations	<pre>df["rolling_mean_7"] = df["value"].rolling(7).mean() # 7-period mean</pre>
	<pre>df["cum_sum"] = df["value"].cumsum() # Running total</pre>
	<pre>df["cum_mean"] = df["value"].expanding().mean() # Running average</pre>
	<pre>df["rolling_mean_7"] = df["value"].rolling(7, min_periods=1).mean() # Rolling w/ min</pre>
10. Conditionally format plots	<pre>sns.scatterplot(data=df, x="col_1", y="col_2",</pre>
	<pre>sns.barplot(data=df_mean, x="cat_col", y="metric",</pre>
	<pre>palette="Blues_r") # Bar chart with nonscaled palette</pre>
11. Pairplot	<pre>sns.pairplot(df) # Quick overview of all pair- wise relationships</pre>
	<pre>g = sns.pairplot(df, hue="group_col", diag_kind="kde", markers=["o", "s", "D"]) # Pairplot with hue, KDE diagonals, and custom markers</pre>

2			
≺	,	٠	

	<pre>g.fig.suptitle("Pairplot of Dataset by Group", y=1.02) # Add title</pre>
12.Jitterplot	<pre>sns.stripplot(data=df, x="cat_col_1", y="metric") # Default</pre>
	<pre>sns.stripplot(data=df, x="cat_col_1", y="metric",</pre>
13.Pairplot	<pre>g = sns.FacetGrid(data=df, col="facet_col") # Column facets g.map(sns.scatterplot, "col_1", "col_2") # Map scatter</pre>
	<pre>g = sns.FacetGrid(data=df, col="facet_col",</pre>
14.Jointplot	<pre>sns.jointplot(data=df, x="col_x", y="col_y") # Default scatter + hist</pre>
	<pre>sns.jointplot(data=df, x="col_x", y="col_y",</pre>

PYTHON IN EXCEL: QUICK WINS REFERENCE GUIDE

<pre>sns.scatterplot(data=df, x="col_1", y="metric", hue="group_col", size="size_col", alpha=.6) # Bubble scatter</pre>
<pre>sns.regplot(data=df, x="col_1", y="metric",</pre>

