

LFA - Aula 03

Linguagens regulares -Gramáticas regulares

Celso Olivete Júnior

celso.olivete@unesp.br

Classificação das Linguagens segundo Hierarquia de Chomsky

Máquina de Turing

Máquina de Turing com fita limitada

Autômato à pilha Gramáticas livre de contexto

> Autômatos finitos Expressões regulares Gramáticas regulares

Na aula passada...

• Expressões regulares

Na aula de hoje...

- · Linguagens regulares: Gramáticas regulares
- Referência bibliográfica

RAMOS, M.V.M.; NETO, J.J.; VEGA, I.S. Linguagens

Formais: Teoria, Modelagem e Implementação. Editora

Bookman 2009. → Capítulo 3

Relembrando...

- Uma linguagem regular é o conjunto de linguagens reconhecida/gerada pelos seguintes formalismos:
 - Expressões regulares
 - Gramáticas regulares
 - Autômatos finitos

Os operadores de expressões regulares

- ·Os tipos de operadores sobre as ER's são:
 - •União (|)
 - Concatenação (.)
 - Fechamento (*)

Exemplos de expressões regulares

Exer	nplos
ER para strings que são formadas por zero seguido por qualquer ocorrência de 1 (inclusive nenhuma)	ER = 01*
ER formada por todas as palavras sobre (a,b) contendo aa como subpalavra	ER = (a b)*aa(a b)*

Relembrando...

- Uma linguagem regular é o conjunto de linguagens reconhecido/gerado pelos seguintes formalismos:
 - Expressões regulares
 - · Gramáticas regulares
 - Autômatos finitos

Gramática

• Uma gramática consiste em uma ou mais variáveis que representam linguagens.

- •Exemplo: linguagem dos palíndromos (permite a mesma leitura da esquerda para direita quanto da direita para esquerda). Ex: Anita latina
 - Se w é um palíndromo, então 0w0 e 1w1 são palíndromos.
 - Neste caso a linguagem é formada apenas por uma variável
 (w).

Gramáticas

• Uma gramática consiste em uma ou mais variáveis que representam linguagens.

Gramáticas

• Formalmente as gramáticas são caracterizadas como quádruplas ordenadas

$$G = (\{V\}, \{T\}, P, S)$$

•onde:

- V representa o vocabulário não terminal da gramática variáveis.
- •T é o vocabulário terminal, contendo os símbolos que constituem as sentenças da linguagem.
- •P representa o conjunto de todas as leis de formação (regras de produção) utilizadas pela gramática para definir a linguagem.
- 5 representa o símbolo de início

Gramáticas (não é gramática Regular!)

• $G = (\{S,A,B\}, \{a,b\}, P, S)$

•P={
$$S \rightarrow AB$$

 $A \rightarrow a \mid AB$
 $B \rightarrow b$ }

- Passos para gerar a palavra: abb
- $\bullet S \rightarrow AB \rightarrow ABB \rightarrow aBB \rightarrow abB \rightarrow abb$.

Gramática no JFlap

LHS		RHS	
S	\rightarrow	AB	
A	\rightarrow	a	
A	\rightarrow	AB	
В	\rightarrow	Ъ	

Gramáticas

- Notação / Convenções
 - Variáveis: letras do alfabeto maiúsculas {A,B,...,Z}
 - Terminais: letras do início do alfabeto minúsculas {a,b,c...}, dígitos {0..9} e outros caracteres como +, -, *, /
 - Não-Terminais: letras do fim do alfabeto maiúsculas, como X ou Y, são não-terminais ou variáveis

Gramáticas

- podem ser classificadas em gramáticas lineares (regulares) à direita (GLD) ou à esquerda (GLE), cujas regras $\alpha \rightarrow \beta$ são da forma:
 - $\alpha \in V$ α é um não terminal (Lado esquerdo deve ter apenas não terminais apenas 1)
 - GLD: $\beta \in (T \cup \{\epsilon\}) (V \cup \{\epsilon\}) A \rightarrow wB \text{ ou } A \rightarrow w$
 - GLE: $\beta \in (V \cup \{\epsilon\})$ (T $\cup \{\epsilon\}$) $A \rightarrow Bw$ ou $A \rightarrow w$.

Linguagens Formais e Teoria da Computação - 02/25

Gramáticas regulares (lineares) obedecem a regra $\alpha \rightarrow \beta$

- $\alpha \in V$
 - o lado esquerdo da regra é formado por um símbolo não terminal

•GLD:
$$\beta \in (T \cup \{\mathcal{E}\})$$
 (V $\cup \{\mathcal{E}\}$) - A \rightarrow wB ou A \rightarrow w com |w| >= 0

• o lado direito da regra é formado por N símbolos terminais seguido de UM símbolo não terminal OU formado apenas por N símbolos terminais

•GLE:
$$\beta \in (V \cup \{\epsilon\})$$
 (T $\cup \{\epsilon\}$) - A \rightarrow Bw ou A \rightarrow w com |w| >= 0

• o lado direito da regra é formado por UM símbolo não terminal seguido de N símbolos terminais OU formado apenas por N símbolos terminais

Gramáticas regulares (lineares)

- GLD e GLE geram exatamente a mesma classe de linguagens. Portanto, é indiferente o emprego de uma ou outra dessas duas variantes de gramática, já que ambas possuem a mesma capacidade de representação de linguagens.
- As linguagens geradas por GLD e GLE são as linguagens regulares
 - Logo, GLD e GLE são equivalentes

Ex: dada a linguagem representada pela ER
 (a|b)*(aa|bb)

qual a gramática que a reconhece?

 Ex: dada a linguagem representada pela ER (a|b)*(aa|bb)

qual a gramática que a reconhece?

G = ({S,A}, {a,b}, P, S)
P = { S
$$\rightarrow$$
 aS | bS | A,
A \rightarrow aa | bb }

Ex: dada a linguagem representada pela ER (a|b)*(aa|bb)

qual a gramática que a reconhece?

G = ({S,A}, {a,b}, P, S)
P = { S
$$\rightarrow$$
 aS | bS | A,
A \rightarrow aa | bb }

mostre os passos para reconhecer a palavra babb

Ex: dada a linguagem representada pela ER (a|b)*(aa|bb)

qual a gramática que a reconhece?

G = ({S,A}, {a,b}, P, S)
P = { S
$$\rightarrow$$
 aS | bS | A,
A \rightarrow aa | bb }

mostre os passos para reconhecer a palavra babb

$$5 \rightarrow bS \rightarrow baS \rightarrow baA \rightarrow babb$$

Extensões para GLD e GLE

- · Gramática Linear Unitária à Direita (GLUD)
 - como na gramática linear à direita. Adicionalmente $|w| \leftarrow 1$ no máximo um terminal do lado direito da regra
- Gramática Linear Unitária à Esquerda (GLUE)
 como na gramática linear à esquerda.
 Adicionalmente |w| <= 1 no máximo um terminal do lado direito da regra

• Ex: dada a linguagem representada pela ER a(ba)* dê as GLD, GLE, GLUD e GLUE que as reconhece.

·mostre os passos para reconhecer a palavra ababa

• Ex: dada a linguagem representada pela ER a(ba)* dê as GLD, GLE, GLUD e GLUE que as reconhece

G = ({S,A}, {a,b}, P, S)
P = { S
$$\rightarrow$$
 aA
A \rightarrow baA | ϵ }

mostre os passos para reconhecer a palavra ababa

$$5 \rightarrow aA \rightarrow abaA \rightarrow ababaA \rightarrow ababaE$$

• Ex: dada a linguagem representada pela ER a(ba)* dê as GLD, GLE, GLUD e GLUE que as reconhece

G = (
$$\{S,A\}, \{a,b\}, P, S\}$$
)
P = $\{S \rightarrow Sba \mid a\}$

·mostre os passos para reconhecer a palavra ababa

$$S \rightarrow Sba \rightarrow Sbaba \rightarrow ababa$$

• Ex: dada a linguagem representada pela ER a(ba)* dê as GLD, GLE, GLUD e GLUE que as reconhece

G = ({S,A}, {a,b}, P, S)
P = {S
$$\rightarrow$$
 aA
A \rightarrow bB | ϵ
B \rightarrow aA

mostre os passos para reconhecer a palavra ababa

$$5 \rightarrow aA \rightarrow abB \rightarrow abaA \rightarrow ababB \rightarrow ababaA \rightarrow ababaE$$

• Ex: dada a linguagem representada pela ER a(ba)*

dê as GLD, GLE, GLUD e GLUE que as reconhece

G = (
$$\{S,A\}, \{a,b\}, P, S$$
)
P = $\{S \rightarrow Aa \mid a A \rightarrow Sb \}$

·mostre os passos para reconhecer a palavra ababa

$$S \rightarrow Aa \rightarrow Sba \rightarrow Aaba \rightarrow Sbaba \rightarrow ababa$$

Exercícios

 Para cada uma das linguagens (arquivo pdf disponível no ClassRoom), construir a Gramática (indicar se é GLE, GLD, GLUE ou GLUD) e a Expressão Regular. As gramáticas podem ser resolvidas com o JFlap.