

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :	A1	(11) International Publication Number:	WO 96/23407
A01L 1/02, 13/00, A61L 9/04		(43) International Publication Date:	8 August 1996 (08.08.96)

(21) International Application Number:	PCT/US96/01219	(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	31 January 1996 (31.01.96)	
(30) Priority Data:		
381,546	31 January 1995 (31.01.95)	US
(71) Applicant: AMERICAN BIOPHYSICS CORP. [US/US]; 18 Southwest Avenue, Jamestown, RI 02835 (US).		
(72) Inventor: WIGTON, Bruce, E.; 46 Pennsylvania Avenue, Jamestown, RI 02835 (US).		
(74) Agents: HOLMES, Stephen, J. et al.; Salter & Michaelson, 321 South Main Street, Providence, RI 02903 (US).		

(54) Title: APPARATUS FOR THE CONTROLLED RELEASE OF AN INSECT ATTRACTANT

(57) Abstract

Apparatus (18) for releasing a volatile material into the atmosphere of a constant rate includes a breakable inner container (60) containing a predetermined amount of the volatile material. The inner container (60) is enclosed in a mesh bag (62) which is in turn enclosed in a filter paper (64) and a diffusion membrane (66). To protect a handler from contacting the volatile material on the outer surface of the diffusion membrane (66) the assembly is further enclosed in a second filter paper (67) and a perforated outer membrane (68). The volatile material is absorbed onto inner paper (64), diffuses through the inner diffusion membrane (66) and exits the assembly through apertures in the outer membrane (68).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

1 **APPARATUS FOR THE CONTROLLED RELEASE OF**
2 **AN INSECT ATTRACTANT**

3 **Background and Summary of the Invention:**

4 The instant invention relates to insect trapping
5 techniques, and chemical attractants for mosquitos and
6 related hematophagous insects of the order Diptera, and
7 more specifically to methods of attracting mosquitos
8 using 1-octen-3-ol, and apparatus for releasing 1-octen-
9 3-ol at predetermined release rates.

10 The use of carbon dioxide and 1-octen-3-ol (octenol)
11 as attractants for hematophagous insects have heretofore
12 been known in the art. Various field studies focusing on
13 the effectiveness of varying release rates of carbon
14 dioxide and octenol have heretofore been conducted, and
15 in this regard, studies conducted by Vale et al, 1985,
16 Bull. ent. Res., 75, 209-217, The Role of 1-octen-3-ol,
17 Acetone, and Carbon Dioxide in the Attraction of Tsetse
18 Flies to Ox Odor; Mushobozy et al, 1993, J. Econ.
19 Entomol. 86(6):1835-1845, Evaluation of 1-octen-3-ol and
20 Nonanol as Adjuvants for Aggregation Pheromones for Three
21 Species of Cucujid Beetles; Atwood et al, 1993, Vol. 9,
22 No. 2 pps. 143-146, Evaluation of 1-octen-3-ol and Carbon
23 Dioxide as Black Fly Attractants in Arkansas; and Kline
24 et al, 1991, J. Med. Entomol. 28(2):254-258, Interactive

1 effects of 1-octen-3-ol and Carbon Dioxide on Mosquito
2 Surveillance and Control represent the closest prior art
3 to the subject matter of the instant invention of which
4 the applicant is aware.

5 The study by Vale et al established that lower
6 release rates of octenol were more effective than higher
7 release rates for attracting tsetse flies. More
8 specifically, it was found that a release rate of
9 approximately 5.0 mg/hr of octenol appeared to be most
10 effective. Vale further observed that release rates of
11 octenol of 50-500 mg/hr appeared to act as a repellent
12 although the reasons for this phenomenon were not
13 indicated. The study by Mushobozy indicated that the
14 Cucujid beetles showed a preference for a release rate of
15 about 20 micrograms/hr of octenol. The study by Atwood
16 tested octenol and carbon dioxide as attractants, both
17 alone and in combination, for black flies. While the
18 Atwood study did not measure specific release rates of
19 octenol, it did establish that traps releasing both
20 carbon dioxide and octenol in combination were more
21 effective than traps with octenol alone. The study by
22 Kline is particularly relevant to the instant invention
23 in that it tested varying release rates of octenol and
24 carbon dioxide as attractants for mosquitos. Responses
25 of mosquitos at three levels (0, 3.0 and 41.1 mg/hr) of
26 octenol, four levels (0, 20, 200 and 2,000 ml/min) of

1 carbon dioxide and their combinations were tested. The
2 3.0 mg/hr level of octenol resulted in increased trap
3 catches relative to 0 mg/hr, whereas the 41.1 mg/hr level
4 reduced trap catches relative to the 0 mg/hr and the 3.0
5 mg/hr levels. For the release of octenol, Kline utilized
6 a glass bottle with a rubber septum cover that was in
7 contact with a pipe cleaner wick. When the pipe cleaner
8 was held subsurface to the septum "wick in", it produced
9 a release rate of about 3-5 mg/hr, and when the wick was
10 allowed to extend above the septum "wick out" it produced
11 a release rate of about 40 mg/hr.

12 Despite the findings of the above field studies,
13 very few, if any, people have studied the biological
14 response mechanisms in mosquitoes that are responsible
15 for response to carbon dioxide and octenol. Thus, while
16 the scientific community is aware that carbon dioxide and
17 octenol are operative as attractants, the biological
18 responses that underlie the phenomenon are generally not
19 understood.

20 The instant invention provides specific release
21 rates for octenol for use as a mosquito attractant, and
22 further provides apparatus for releasing octenol into the
23 air at the desired release rate. The release rate for
24 octenol as disclosed herein was determined by
25 electrophysiology studies conducted on the basiconic pegs
26 located on the distal end of the maxillary palps of

1 female mosquitos. It was determined that a single neurons
2 in a single basiconic palpal peg is responsible for the
3 mosquitoes response to octenol. The firing rates of this
4 specific neuron was studied in order to determine their
5 normal firing rate and how the neuron reacted to
6 different levels of octenol. Through these
7 electrophysiology studies, it was determined that the
8 optimal release rate octenol was much lower (on the order
9 of 5 to 10 times lower) than any release rates previously
10 tested by others. More specifically, it was determined
11 that a dose rate of about 0.1 - 1.0 mg/hr of octenol
12 produced the most consistent firing rates in the neuron
13 in the operable range. Higher dose rates of octenol
14 caused the neuron to overload and shut down completely,
15 thereby disabling the mosquitos differential sensing
16 capabilities. It was further found that a dose rate of
17 approximately 0.5 mg/hr of octenol provided the most
18 flight activity during field testing.

19 The apparatus for releasing octenol at a rate of
20 approximately 0.5 mg/hr comprises a slow-release plastic
21 diffusion packet including a crushable vial containing
22 about 1 milliliter of octenol. The vial is contained
23 within a plastic web mesh to capture the vial fragments
24 when crushed. The web mesh is in turn surrounded by a
25 filter paper to absorb the octenol. The vial, plastic web
26 and filter paper are sealed within a LDPE plastic bag.

1 The surface area and thickness of the plastic bag were
2 selected to provide the desired release rate of octenol
3 which slowly diffuses through the plastic bag. The slow
4 release packet is attached to a trap to draw mosquitos
5 into the vicinity.

6 Accordingly, it is an object of the instant
7 invention to provide a method of attracting mosquitoes by
8 releasing octenol into ambient air at a rate of about 0.1
9 to 1.0 mg/hr.

10 It is another object to provide apparatus for
11 releasing octenol at a predetermined release rate.

12 Other objects, features and advantages of the
13 invention shall become apparent as the description
14 thereof proceeds when considered in connection with the
15 accompanying illustrative drawings.

16

17 **Description of the Drawings:**

18 In the drawings which illustrate the best mode
19 presently contemplated for carrying out the present
20 invention:

21 Fig. 1 is an elevational view, partially in section,
22 of a light/fan trap incorporating the features of the
23 instant invention;

24 Fig. 2 is a perspective view of a slow-release
25 octenol packet constructed in accordance with the
26 teachings of the instant invention;

1 Fig. 3 is a cross-sectional view thereof taken along
2 line 3-3 of Fig. 2; and

3 Fig. 4 is an assembly view thereof.

4

5 **Description of the Preferred Embodiment:**

6 Referring now to the drawings, a mosquito trap
7 incorporating the features of the instant invention is
8 illustrated and generally indicated at 10 in Fig. 1. As
9 will hereinafter be more fully described, the instant
10 mosquito trap 10 utilizes both carbon dioxide and octenol
11 as attractants for attracting mosquitoes to the trap.

12 The mosquito trap comprises a fan/light assembly
13 generally indicated at 12, a carbon dioxide canister
14 generally indicated at 14, and a trap net generally
15 indicated at 16. A slow release octenol packet for
16 attachment to the trap 10 is generally indicated at 18 in
17 Figs. 1-4.

18 The fan/light assembly 12 comprises a cylindrical
19 body portion 20 having an open bottom 22, and a hollow
20 cylindrical neck portion 24 which extends upwardly and
21 terminates in a head portion 26. The head portion 26
22 includes outward threads 28 at the top thereof for
23 threaded engagement with a cap of the carbon dioxide
24 canister 14. The fan/light assembly 12 further includes
25 an internal fan 30 which is capable of developing a
26 downwardly directed air flow of about 500 l/min, and a

1 light source 32 positioned in the neck portion 24
2 thereof. The head portion 26 encloses an electronics
3 package (not shown) which is operable for controlling the
4 fan 30 and light 32 of the assembly 12. A stainless
5 steel screen 34 is provided at the top of the body
6 portion 20 to prevent the entry of larger insects into
7 the trap body 20. The body portion 20 further includes an
8 external hook 36 for supporting the slow release octenol
9 packet 18.

10 The carbon dioxide canister 14 comprises a molded
11 plastic cap generally indicated at 38, an insulated
12 container generally indicated at 40 and a removable top
13 42. The plastic cap 38 includes an inwardly threaded hub
14 (not shown) for threaded engagement with the outwardly
15 threaded head portion 26 of the light/fan assembly 12.
16 The cap 38 further includes a wide flange 44 for
17 protecting the fan/light assembly 12 from inclement
18 weather. The container 40 includes a rugged polypropylene
19 liner 46 which is preferably large enough to hold at
20 least 3 1/2 pounds of dry ice and is preferably insulated
21 with rigid foam insulation 48 such that the dry ice is
22 allowed to sublime at a rate of approximately 500
23 ml/min. A port 50 extends downwardly from the container
24 40 through the cap 38 to allow the sublimated carbon
25 dioxide to be drawn downwardly by the fan 30 into the
26 interior of the trap body 20. A perforated manifold 52 in

1 the bottom of the container 40 prevents the dry ice from
2 blocking the exit port 50. In use, sublimated carbon
3 dioxide is drawn downwardly into the 500 l/min air flow
4 within the body portion 20 to provide a constant
5 concentration of about 1000 ppm at the open bottom 22 of
6 the body portion 20.

7 In the alternative, carbon dioxide from a tank (not
8 shown) can be supplied to the interior of the neck
9 portion 24 by means of a hose 59. The flow rate of carbon
10 dioxide from the tank is regulated by a conventional flow
11 regulator to achieve the desired 500 ml/min flow rate.

12 Based on prior research it has been determined that
13 mosquitos apparently navigate via a differential sensing
14 of carbon dioxide concentrations that are on the order of
15 parts per million. By detecting concentration differences
16 on their stereo sensillum, the mosquito determines which
17 direction to fly. Since mosquitos apparently utilize a
18 differential concentration of carbon dioxide in their
19 host approach, they navigate towards higher and higher
20 concentrations of carbon dioxide, i.e. towards the source
21 of carbon dioxide which is usually a potential host.
22 However, the neurons which sense carbon dioxide have a
23 threshold limit above which they become disoriented. This
24 limit has been determined to be around 1000 ppm. The
25 instant fan trap 10 presents the carbon dioxide only to
26 the interior of the trap body 20 to provide a dose rate

1 in the vicinity of 1000 ppm at the plume exit (open
2 bottom 22) of the trap body 20. The carbon dioxide
3 sublimated in the instant trap 10 is drawn downwardly
4 through the center of the trap 10 by virtue of a lower
5 pressure created by the fan 30, and is mixed with ambient
6 air within the trap body 20. The air flow exits the trap
7 bottom 22 and is dispersed through the trap net 16. The
8 concept of the idea is that the mosquitos will navigate
9 the plume to the trap entrance (screen 24) without being
10 repelled or caused to turn away from the trap 10 due to
11 too high a concentration. It is theorized that the
12 mosquitos will navigate the perimeter of the air flow
13 plume into the vicinity of the trap entrance. Near the
14 trap entrance they will be drawn into the trap via the
15 fan suction and captured in the trap net 16.

16 The trap net 16 is constructed from a fine mesh
17 material to allow air flow, yet prevent the escape of
18 even the smallest mosquitos. The trap net 16 is generally
19 cylindrical in shape and it has drawstrings 54 and 56
20 respectively at the top and bottom thereof. The top draw
21 string 54 allows the trap net 16 to be tightly drawn
22 around the open bottom 22 of the trap body 20. The
23 bottom draw string 56 allows the mosquitos to be emptied
24 from the net 16. The trap net 16 may further include
25 props 58 for suspending the net in an open position. The
26 trap net 16 may also be disposable so that the operator

1 may simply close the net 16 at the ends and throw the
2 full net away.

3 The slow release octenol packet 18 is operable for
4 releasing octenol to ambient air at a rate of about 0.5
5 mg/hr and it comprises a crushable glass vial 60 (Fig. 7)
6 containing about 1 ml of octenol. The glass vial 60 is
7 contained within a plastic mesh sleeve 62 to capture the
8 glass vial fragments when crushed. The plastic mesh
9 sleeve 62 is in turn surrounded by an absorbent material
10 64, such as a layer of filter paper, to absorb and
11 disperse the octenol over a larger surface area. The
12 glass vial 60, plastic mesh sleeve 62 and absorbent
13 filter paper 64 are in turn sealed within a polymeric
14 diffusion membrane 66. In the instant embodiment, the
15 diffusion membrane 66 comprises a 6 mil LDPE plastic bag
16 having an outer surface area of about 13.5 square inches.
17 In this connection, the plastic bag 66 was formed from 6
18 mil plastic tubing having a flat width of 3 inches. The
19 cylindrical tubing was laid flat and sealed at the top
20 and bottom edges to provide a linear length of 2.25
21 inches. The octenol release packet 18 further comprises
22 a second layer of filter paper 67 wrapped around membrane
23 66 and an external perforated jacket 68. The filter
24 paper 67 and membrane 68 permit the octenol to evaporate
25 into the air but prevent skin contact with the octenol on
26 the surface of the diffusion membrane 66. The external

1 jacket 68 is also constructed from LDPE plastic and it
2 further includes flap 70 at the top thereof with an
3 aperture 72 therein for mounting onto the external hook
4 36 of the trap body 20.

5 The optimal release rate of 0.5 mg/hr was determined
6 partly by electrophysiology studies conducted on female
7 mosquitos at the Worcester Foundation For Experimental
8 Biology and partly by behavioral testing at the insectary
9 of American Biophysics Corp, In Jamestown, RI.

10

11 EXPERIMENTAL PROCEDURE AND RESULTS

12 There are three neurons present in the basiconic
13 sensillum located at the distal end of the maxillary
14 palps of female mosquitos. Of the three neurons, one is
15 highly responsive to the presentation of octenol.
16 Standard electrophysiology recording techniques were used
17 to record extracellular responses from the receptor
18 neuron. (See Grant et al, 1989 Pheromone-Mediated Sexual
19 Selection in the Moth Utetheisa Ornatrix: Olfactory
20 Neurons Responsive to a Male-Produced Pheromone, J.
21 Insect Behav. 2:371-385). Mosquitos were mounted on a
22 microscope stage with adhesive and double-sided tape. A
23 tungsten recording electrode was inserted at the
24 sensillum base and an indifferent electrode was place in
25 the eye. Two gas streams were directed toward the
26 exposed palp, one carrying the background and the other

1 the stimulus. Computer activated valves controlled the
2 delivery of gas to the mosquito preparation. 1-octen-3-
3 ol was dosed at approximately 1 milligram (1 microliter
4 reagent) onto a filter paper approximately 3 mm by 20 mm
5 and inserted into a 2 inch glass cartridge with Luer
6 taper fittings on both ends. The cartridge was directed
7 on a mosquito preparation with synthetic mixed air,
8 including carbon dioxide of known concentration, running
9 through it. The exact dose rate of octenol was not
10 quantifiable due to the fluctuating background flow. A
11 similar setup with filter paper but no chemical was
12 presented from the other side of the insect, and suitable
13 valves were provided to redirect air flow under computer
14 control. This setup is more completely described in
15 Grant et al, as indicated above.

16 As noted, a 1 milligram sample was used in all
17 preliminary work up to August 12, 1993. With the
18 presentation of 1-heptanol or 1-octen-3-ol, one of the
19 two secondary neurons began firing almost immediately
20 when the cartridge was placed near the insect, and before
21 a stimulus stream was even provided. On closer
22 examination, the firing rate of the neuron quickly rose
23 to its maximum capability of some 150-200 impulses per
24 second and then completely shut down. The normal firing
25 range for the neuron was found to be approximately 10-150
26 impulses per second. In some cases the neuron would

1 recover after several seconds to several minutes of clean
2 air, but in other cases, the neuron seemed to never
3 recover. It was thus determined that the dose rate of
4 octenol provided in these preliminary tests was much too
5 high. In tests conducted after August 12, 1993, a new
6 cartridge was utilized wherein the dosage of octenol was
7 reduced by a factor of 1000 by dilution with distilled
8 water. The 1 microgram cartridge was then presented to
9 the insects without causing the secondary neuron to cease
10 firing during the stimulation period. Again it was
11 pointed out that the exact dose rate of octenol was not
12 quantifiable due to the background flow rate. Meaningful
13 rates of firing increases in one of the secondary neurons
14 were then noted with the presentation of octenol at the
15 reduced dosage level. The neuron subsided to a normal
16 tonic level immediately after stimulus presentation. It
17 was thus determined that the dose rates of octenol
18 previously tested (i.e. in the range of 3.0 - 40.0 mg/hr)
19 were much too high to be effective.

20 Based on the information gathered in the
21 electrophysiology test, behavioral tests were then run in
22 the insectary of American Biophysics during the middle
23 two weeks of September 1993 to examine behavioral
24 responses of *Aedes aegypti* to presentations of various
25 dosage levels of 1-octen-3-ol. In order to significantly
26 reduce the dose levels previously tested it was

1 determined that a diffusion membrane would provide a
2 significantly reduced dose rate. Low density polyethylene
3 tubing of two sizes were obtained for the construction of
4 slow release packets. The first tubing was 4 mils thick
5 and 2 inches in flat width. The second tubing was 6 mils
6 thick and 3 inches in flat width. One milliliter of
7 octenol was loaded into each tubing size and sealed at
8 both ends. Sample packages were made in the following
9 dimensions:

10 4 mil - 2 inches wide by 10 inches long
11 4 mil - 2 inches wide by 2 inches long
12 6 mil - 3 inches wide by 6 inches long
13 6 mil - 3 inches wide by 2 inches long.

14 The sealed bags were allowed to sit for two hours to
15 allow the internal vapor pressure to permeate the LDPE
16 membrane. The bags were then pulled through a small
17 opening into the insectary with a pulley arrangement to
18 observe the results (on closed circuit television) of the
19 stimulus presentation, without prejudicing the outcome by
20 having a human enter the room.

21 It was noted that the octenol did not stimulate the
22 mosquitos to flight in any of the concentrations
23 presented. An artificial stimulation by carbon dioxide
24 gas was required to cause the mosquitos to fly from their
25 resting positions. This behavior indicated that the

1 mosquitos utilize both carbon dioxide and octenol in
2 their host seeking navigation.

3 Once stimulated to flight with the carbon dioxide,
4 the octenol presented in the higher concentrations, i.e.
5 the 4 mil bags, seemed to thwart the general flight
6 behavior of the mosquitoes in the vicinity of the
7 attractant bags, i.e. appeared to act as a repellent.
8 However, the 6 mil package having the 2 inch length
9 provided the most flight activity in the area of the
10 stimulant package after the mosquitos were activated to
11 flight by a 5 second burst of 100% carbon dioxide flowing
12 at a rate of 100 milliliter per minute into the insectary
13 near the mosquito cage.

14 A 6 mil sample bag was then weighed on a balance
15 over time to determine the release rate provided by the
16 6 mil barrier. The release rate was determined to be
17 approximately .037 milligrams/per square inch/per hour.
18 The 6 mil 2 inch long by 3 inch wide package has a total
19 surface area of approximately 12 square inches.
20 Accordingly, the release rate of octenol from the 6 mil
21 2 inch bag was about 0.44 mg/hr.

22 It can therefore be seen the instant invention
23 provides an optimal release rates of octenol, as well as
24 apparatus for releasing octenol at the optimum release
25 rate. It can be seen that the slow release octenol
26 packet of the instant invention provides a release rate

1 of octenol (0.5 mg.hr) which is significantly lower (by
2 a factor of 5-10 times lower) than those previously
3 studied. The lower release rate of octenol gives a more
4 consistent and better effect than the prior release rates
5 heretofore known. Furthermore, the lower octenol release
6 rate also prevents damage to the sensory neuron structure
7 thereby affording a better opportunity to capture the
8 mosquitos. For these reasons, the instant invention is
9 believed to represent a significant advancement in the
10 art which has substantial commercial merit.

11 While there is shown and described herein certain
12 specific structure embodying the invention, it will be
13 manifest to those skilled in the art that various
14 modifications and rearrangements of the parts may be made
15 without departing from the spirit and scope of the
16 underlying inventive concept and that the same is not
17 limited to the particular forms herein shown and
18 described except insofar as indicated by the scope of the
19 appended claims.

Claims:

1. Apparatus for releasing a liquid insect attractant at a constant rate comprising:
 3. a breakable inner container containing a predetermined amount of said liquid insect attractant;
 5. and
 6. a polymeric diffusion membrane enclosing said inner container, said insect attractant diffusing through said polymeric diffusion membrane, and evaporating from an outer surface thereof.
1. The apparatus of claim 1 further comprising an absorbent material disposed between said inner container and said polymeric diffusion membrane for absorbing said insect attractant and dispersing said insect attractant over a large surface area after said inner container is broken.
1. In the apparatus of claim 1, said breakable inner container comprising a crushable glass vial.
1. The apparatus of claim 1 further comprising a porous web enclosing said glass vial for retaining glass fragments when said vial is crushed.

1 5. In the apparatus of claim 4, said porous web
2 comprising a plastic mesh sleeve.

1 6. The apparatus of claim 1 further comprising a gas
2 permeable membrane surrounding said diffusion membrane.

1 7. In the apparatus of claim 6, said gas permeable
2 membrane comprising a polymeric membrane having a
3 plurality of apertures therein.

1 8. In the apparatus of claim 1, said polymeric
2 diffusion membrane comprising LDPE plastic.

1 9. In the apparatus of claim 1, said insect attractant
2 comprising 1-octen-3-ol.

1 10. In the apparatus of claim 9, said polymeric
2 diffusion membrane comprising 6 mil LDPE plastic having
3 a total surface area of about 13.5 square inches.

1 11. Apparatus for releasing a volatile material into the
2 atmosphere at a constant rate comprising:
3 a breakable inner container containing a
4 predetermined amount of said volatile material; and
5 a diffusion membrane enclosing said inner container,
6 said volatile material diffusing through said diffusion

7 membrane and evaporating from an outer surface of said
8 membrane when said inner container is broken to release
9 said volatile material into contact with an interior
10 surface of said membrane.

1 12. The apparatus of claim 11 wherein said volatile
2 material comprises a volatile liquid, said apparatus
3 further comprising an absorbent material layer disposed
4 between said inner container and said diffusion membrane,
5 said absorbent material absorbing said volatile liquid
6 and dispersing said volatile liquid over a large surface
7 area after said inner container is broken to release said
8 volatile liquid.

1 13. The apparatus of claim 11 wherein said breakable
2 inner container comprises a glass vial.

1 14. The apparatus of claim 13 further comprising a
2 porous web enclosing said glass vial.

1 15. The apparatus of claim 11 further comprising a gas
2 permeable membrane surrounding said diffusion membrane.

1 16. The apparatus of claim 15 wherein said gas permeable
2 membrane comprises a polymeric membrane having a
3 plurality of apertures therein.

1 17. The apparatus of claim 12 further comprising a gas
2 permeable membrane surrounding said diffusion membrane.

1 18. The apparatus of claim 17 wherein said gas permeable
2 membrane comprises a polymeric membrane having a
3 plurality of apertures therein.

1 19. The apparatus of claim 15 further comprising a
2 second absorbent material layer disposed between said
3 diffusion membrane and said gas permeable membrane.

1 20. The apparatus of claim 19 wherein said gas permeable
2 membrane comprises a polymeric membrane having a
3 plurality of apertures therein.

1 21. Apparatus for releasing a volatile liquid into the
2 atmosphere at a constant rate comprising:

3 a breakable inner container containing a
4 perdetermined amount of said volatile liquid;

5 a gas permeable membrane enclosing said inner
6 container; and

7 an absorbent material layer disposed between said
8 inner container and said gas permeable membrane, said
9 absorbent material absorbing said volatile liquid and
10 dispersing said volatile liquid over a large surface area

21

11 after said inner container is broken to release said
12 volatile liquid.

FIG. 2

FIG. 3

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/01219

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :A01L 1/02, 13/00; A61 L 9/04

US CL :239/45, 51.5, 44, 34; 43/129

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 239/45, 51.5, 44, 34, 47, 53, 55, 57; 43/129, 113; 206/205

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X ----	US, A, 3,702,677 (HEFFINGTON) 14 NOVEMBER 1972, see figure 4.	11-13, 15, 17, 19,21
Y		----- 16, 18, 20
X ---	US, A, 1,991,938 (HOUGHTON) 19 FEBRUARY 1935, see figure 1.	11-15, 17, 21
Y		----- 1-4, 6-10, 16, 18, 20
X ---	US, A, 5,161,680 (BADGLEY) 10 NOVEMBER 1992, see figure 3.	11-13,21
Y		----- 14

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other events		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

02 MAY 1996

Date of mailing of the international search report

24 MAY 1996

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

LESLEY D. MORRIS

Telephone No. (703) 308-1113

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/01219

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US, A, 2,209,914 (GERBER ET AL.) 30 JULY 1940, see figure 3.	11, 12, 15, 17, 21
Y	US, A, 2,342,046 (LATTA ET AL.) 22 FEBRUARY 1944, see figure 6.	14
Y	US, A, 4,161,283 (HYMAN) 17 JULY 1979, see col. 3, line 55 through col. 4, line 5.	16, 18, 20
Y	US, A, 4,285,268 (HYMAN) 25 AUGUST 1981, see col. 4, lines 23-43.	16, 18, 20
Y	US, A, 4,634,614 (HOLZNER) 06 JANUARY 1987, see col. 2, lines 13-23.	16, 18, 20
Y	Journal of the American Mosquito Control Association, Volume 9, No. 2, issued June 1993, Atwood et al., "Evaluation of 1-octen-3-ol and Carbon Dioxide as Black Fly Attractants in Arkansas", pages 143-146, especially pages 143 and 144.	1-4, 6-10
Y	Journal of Medical Entomology, Volume 28, No. 2, issued March 1991, Kline et al., "Interactive effects of 1-octen-3-ol and Carbon Dioxide on Mosquito Surveillance and Control", pages 254-258, especially pages 254 and 255.	1-4, 6-10
Y	Journal of Economic Entomology, Volume 86, No. 6, issued December 1993, Mushobozy et al., "Evaluation of 1-octen-3-ol and Nonanol as adjuvants for Aggregation Pheromones for Three Species of Cucujid Beetles", pages 1835-1845, especially page 1834.	1-4, 6-10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/01219

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US, A, 2,209,914 (GERBER ET AL.) 30 JULY 1940, see figure 3.	11, 12, 15, 17, 21
Y	US, A, 2,342,046 (LATTA ET AL.) 22 FEBRUARY 1944, see figure 6.	14
Y	US, A, 4,161,283 (HYMAN) 17 JULY 1979, see col. 3, line 55 through col. 4, line 5.	16, 18, 20
Y	US, A, 4,285,268 (HYMAN) 25 AUGUST 1981, see col. 4, lines 23-43.	16, 18, 20
Y	US, A, 4,634,614 (HOLZNER) 06 JANUARY 1987, see col. 2, lines 13-23.	16, 18, 20
Y	Journal of the American Mosquito Control Association, Volume 9, No. 2, issued June 1993, Atwood et al., "Evaluation of 1-octen-3-ol and Carbon Dioxide as Black Fly Attractants in Arkansas", pages 143-146, especially pages 143 and 144.	1-4, 6-10
Y	Journal of Medical Entomology, Volume 28, No. 2, issued March 1991, Kline et al., "Interactive effects of 1-octen-3-ol and Carbon Dioxide on Mosquito Surveillance and Control", pages 254-258, especially pages 254 and 255.	1-4, 6-10
Y	Journal of Economic Entomology, Volume 86, No. 6, issued December 1993, Mushobozy et al., "Evaluation of 1-octen-3-ol and Nonanol as adjuvants for Aggregation Pheromones for Three Species of Cucujid Beetles", pages 1835-1845, especially page 1834.	1-4, 6-10

THIS PAGE BLANK (USPTO)