

# Tidy Time Series & Forecasting in R



4. Seasonality and trends

robjhyndman.com/workshop2020

#### **Outline**

- 1 Time series decompositions
- 2 Lab Session 7
- 3 Seasonal adjustment

# Outline

- 1 Time series decompositions
- 2 Lab Session 7
- 3 Seasonal adjustment

# Time series decomposition

**Trend-Cycle** aperiodic changes in level over time.

Seasonal (almost) periodic changes in level due to seasonal factors (e.g., the quarter of the year, the month, or day of the week).

# **Additive decomposition**

$$y_t = S_t + T_t + R_t$$

where  $y_t$  = data at period t

 $T_t$  = trend-cycle component at period t

 $S_t$  = seasonal component at period t

 $R_t$  = remainder component at period t

# **STL** decomposition

- STL: "Seasonal and Trend decomposition using Loess"
- Very versatile and robust.
- Seasonal component allowed to change over time, and rate of change controlled by user.
- Smoothness of trend-cycle also controlled by user.
- Optionally robust to outliers
- Not trading day or calendar adjustments.
- Only additive.
- Take logs to get multiplicative decomposition.
- Use Box-Cox transformations to get other decompositions.

### **Decomposition dable**

```
dcmp <- elecequip %>% STL(value ~ season(window = 7))
dcmp
```

```
## # A dable:
                     195 x 6 [1M]
## # STL Decomposition: value = trend + season_year +
      remainder
## #
       index value trend season_year remainder season_adjust
##
##
       <mth> <dbl> <dbl>
                             <dbl>
                                      <dbl>
                                                  <dbl>
##
   1 1996 Jan 79.4 78.9 -3.37
                                     3.81
                                                   82.7
   2 1996 Feb 75.8 79.1
                           -3.87 0.547
                                                   79.7
##
   3 1996 Mar 86.3 79.3
                           6.73 0.301
                                                   79.6
##
   4 1996 Apr 72.6 79.5
                           -5.74
                                     -1.15
                                                   78.3
##
                                     -1.31
##
   5 1996 May 74.9
                  79.7
                            -3.53
                                                   78.4
   6 1996 Jun 83.8
                  79.9
                           5.03
                                     -1.14
                                                   78.8
##
##
   7 1996 Jul 79.8
                   80.1 -0.222
                                     -0.119
                                                   80.0
                           -16.8
##
   8 1996 Aug 62.4 80.4
                                     -1.21
                                                   79.2
   9 1996 Sep 85.4 80.6
                            6.94
                                                   78.5 6
##
                                     -2.15
## 10 1006 Oc+ 02 1
                                                   00 1
                   00 0
                             2 70
                                     _0 112
```



#### dcmp %>% gg\_subseries(season\_year)



```
autoplot(elecequip, series="Data") +
autolayer(dcmp, trend, series="Trend-cycle")
```



# **Australian holidays**

```
holidays %>% autoplot(Trips) +
  ylab("thousands of trips") + xlab("Year") +
  ggtitle("Australian domestic holiday nights")
```



Year

```
holidays %>%
   STL(Trips ~ season(window="periodic"), robust=TRUE) %>%
   autoplot()
     STL decomposition
     Trips = trend + season_year + remainder
4000 -
3000 -
2000 -
1000 -
                                                                                            State
  0 -
3000 -
                                                                                                ACT
2000 -
                                                                                                New South Wales
1000 -
                                                                                                Northern Territory
  0 -
                                                                                                Queensland
 500 -
                                                                                                South Australia
 250 -
                                                                                                Tasmania
  0 -
-250 -
                                                                                                Victoria
                                                                                                Western Australia
 500 -
                                                                                      remainder
 250 -
  0 -
-250 -
-500 -
                                                                      2015
               2000
                                 2005
                                                   2010
                                         Quarter
```

```
holidays %>%
   STL(Trips ~ season(window = 5), robust = TRUE) %>%
   autoplot()
     STL decomposition
     Trips = trend + season_year + remainder
4000 -
3000 -
2000 -
1000 -
                                                                                            State
  0 -
3000 -
                                                                                                 ACT
2000 -
                                                                                                 New South Wales
1000 -
                                                                                                 Northern Territory
  0 -
                                                                                                 Queensland
 500 -
                                                                                                 South Australia
 250 -
                                                                                                 Tasmania
  0 -
-250 -
                                                                                                 Victoria
-500 -
                                                                                                 Western Australia
 500 -
                                                                                       remainder
 250 -
  0 -
-250 -
-500 -
                                                                      2015
               2000
                                  2005
                                                    2010
                                         Quarter
```

# **STL** decomposition

```
holidays %>%
STL(Trips ~ trend(window=15) + season(window=13),
    robust = TRUE)
```

- trend(window = ?) controls wiggliness of trend component.
- season(window = ?) controls variation on seasonal component.
- STL() chooses season(window=13) by default
- A large seasonal window is equivalent to setting window="periodic".
- Odd numbers should be used for symmetry.

```
dcmp <- holidays %>% STL(Trips)
dcmp
```

```
## # A dable:
                    640 x 7 [10]
                     State [8]
## # Kev:
## # STL Decomposition: Trips = trend + season_year +
      remainder
## #
##
     State
             Quarter Trips trend season_year remainder
##
     <chr>
               <qtr> <dbl> <dbl>
                                     <fdb>>
                                              <dbl>
##
   1 ACT
             1998 01 196.
                           171.
                                    -6.60
                                              32.3
##
   2 ACT
             1998 02 127. 156.
                                    10.3
                                             -39.7
##
   3 ACT
             1998 03 111. 142. -13.9
                                             -17.2
             1998 04 170.
                                     9.76
                                              30.3
##
   4 ACT
                           130.
##
   5 ACT
             1999 01
                     108.
                           135.
                                     -6.35
                                             -20.7
##
   6 ACT
             1999 02
                     125.
                           148.
                                    10.5
                                             -33.9
   7 ACT
             1999 Q3
                     178.
                           166.
                                    -13.2
                                              25.5
##
##
   8 ACT
             1999 04
                     218.
                           177.
                                     8.56
                                              32.0
##
   9 ACT
             2000 01
                     158.
                           169.
                                     -6.09 -4.74
## 10 ACT
             2000 02
                     155.
                           151.
                                     10.7
                                              -7.00
```

dcmp %>% gg\_subseries(season\_year)



```
autoplot(dcmp, trend, scale_bars=FALSE) +
autolayer(holidays, alpha=0.4)
```



### **Outline**

- 1 Time series decompositions
- 2 Lab Session 7
- 3 Seasonal adjustment

#### Lab Session 7

#### Repeat the decomposition using

```
holidays %>%
STL(Trips ~ season(window=7) + trend(window=11)) %>%
autoplot()
```

```
What happens as you change season(window = ???) and trend(window = ???)?
```

# Multiple seasonality

#### vic\_elec %>% STL(Demand) %>% autoplot()



### **Outline**

- 1 Time series decompositions
- 2 Lab Session 7
- 3 Seasonal adjustment

# Seasonal adjustment

- Useful by-product of decomposition: an easy way to calculate seasonally adjusted data.
- Additive decomposition: seasonally adjusted data given by

$$y_t - S_t = T_t + R_t$$

 Multiplicative decomposition: seasonally adjusted data given by

$$y_t/S_t = T_t \times R_t$$

```
dcmp <- elecequip %>% STL(value ~ season(window=7))
elecequip %>% autoplot(value, col='gray') +
   autolayer(dcmp, season_adjust, col='blue') +
   xlab("Year") + ylab("New orders index") +
   ggtitle("Electrical equipment manufacturing (Euro area)")
```





# Seasonal adjustment

- We use estimates of S based on past values to seasonally adjust a current value.
- Seasonally adjusted series reflect remainders as well as trend. Therefore they are not "smooth"" and "downturns"" or "upturns" can be misleading.
- It is better to use the trend-cycle component to look for turning points.