

Рис. 1.1.1. Ординация (РСоА по матрице кодоминантных генетических дистанций; GenAlEx 6.503 Peakall, Smouse 2012) 10-локусных микросателлитных генотипов сельди из разных географических популяций. СН — Чешская губа, Баренцево море (референс европейской *Clupea pallasii*); WS — Кандалакшский залив, Белое море; BF — Балсфиорд, Норвежское море; RF- Росфиорд, Норвежское море; TF- Тронхеймс-фьорд, Норвежское море; BER — Берген, Северное море (референс норвежской атланто-скандинавской сельди *C. harengus*). Первая координата объясняет 10% изменчивости, вторая — 5% изменчивости.

Рис. 1.1.2. Кластеризация генотипов сельди методом Structure в одноименной программе (Pritchard et al., 2000) в рамках моделей с числом кластеров k=2 (вверху) и k=3 (внизу). Те же данные, что на предыдущем рисунке. Особи (названия по ОХ) внутри выборок классифицированы по доле генов *C. harengus* (синий сектор) и *C. pallasii* (красный сектор). Метод отчетливо различает виды (k=2) и находит некоторые отличия между «норвежскими» и «русскими» генофондами *C. pallasii* (k=3).

Табл. 1.1.1. Вклад генов *С. pallasii* в генофонды выборок из Белого моря и норвежских фиордов относительно референсов европейской *С. pallasii* (Чешская губа, СН) и атланто-скандинавской *С. harengus* (Берген, BER), по собственным и литературным (аллозимы, MtDNA всех выборок кроме RF, Laakkonen et al. 2015) данным. Для WS и BF даны оценки до и после (в скобках) исключения из выборок единичных предположительно «заносных» генотипов *С. harengus* (самые левые генотипы в WS и BF).

	СН	WS	BF	RF	TF	BER
10 микросателлитов	1.00	0.87 (0.92)	0.73 (0.83)	0.72	0.06	0.00
MtDNA	1.00	0.89-0.96	0.79	0.50	0.00	0.00
4 аллозима	1.00	0.93-0.98	0.80	0.53	0.05-0.08	0.00

Рис. 1.2.1. Пространственная и временная динамика М. edulis и М. trossulus в симпатрических поселениях (гибридных зонах) Кольского полуострова, изученных в 2020-21 гг. А. «Клинальная» гибридная зона вдоль западного берега кутовой (самой южной) части Кольского залива, обнаруженная в 2020 г и обследованная в 2020-21 гг. Доля М. trossulus (Ptros) как функция от расстояния от кута залива (устье р. Тулома), км. Голубые значки – сборы 2020 г., темно-синие – 2021 г. Распределение аппроксимировано S-образной кривой. Цветом выделены участки клины с доминированием М. edulis (светлый) и М. trossulus (темный), красным ромбом – геометрический центр клины. Знак вопроса указывает на выборку из р. Тулома. Оранжевым отмечена выборка LAG, для мидий из которой определены мультилокусные генотипы и пол (см. раздел 1.3). Обращает внимание высокая доля М. trossulus в Туломе и изменчивость между выборками из района центра клины. Б. Переописание таксономического состава поселений мидий из точек генетических исследований 2010 гг. в Кандалакшском заливе (желтые точки) и Кольском заливе (красные, ромбы – из кута залива). Ось абсцисс – Ptros в 2020-21 гг., ось ординат – Ptros в 2010 гг. Если бы во времени структура не изменилась, точки лежали бы на диагонали. Повсеместно, кроме кута Кольского залива, повысилась доля М. trossulus .

Рис. 1.2.2. Комплексный анализ изменений в демографической структуре поселений мидий в губе Тюва по данным 2004-2018 гг. Приведена ординация поселений в корреспондентных осях (СА). Значки на графике – поселения мидий, цвет отражает годы сбора, форма – местообитание (см. легенду). Черным цветом отмечены сборы 2009-2010 годов из поселений, изученных в 2004-2005 гг. Различия в ординации совокупностей красных (изучены в 2004-2005) и серых (изучены в 2009-2010) точек отражают генеральный тренд динамики между периодами. Аббревиатуры на графике – изученные характеристики: N – численность, W – биомасса, N2-3, N4-6, N7-9, N9+ - численности мидий соответствующих возрастных групп, GI – индекс роста мидий, Lmax – максимальная наблюдаемая длина раковины. Данные о таксономической структуре (Ptros) не включены, поскольку они имеются только по части сборов. Они представлены на рис. 1.2.4.

Рис. 1.2.3. Изменения в таксономической и демографической структуре поселений мидий в губе Тюва по данным 2004-2018 гг. На всех графиках, ось ОХ — данные 209-2010 гг. («П период»), ось ОУ — данные по тем же поселениям других лет. Красными точками показаны данные 2004-2005 гг., синими треугольниками — данные 2012 г., салатовыми ромбами — 2018 г.. Ptros — доля М. trossulus, оцененная по генетическим (девять выборок) либо морфологическим данным. Остальные характеристики — как на рис. 1.2.2. Значения показателей обилия (N, W) и численности мидий разных возрастов (N2-3, N4-6, N7-9, N9+) логарифмированы.

Рис. 1.2.4. Распределение мидий двух видов по субстратам. На XY диаграмме показана частота М. trossulus в одних и тех же поселениях на макрофитах (ось ОХ) и на грунте (ОУ). Красные точки – выборки из Тювы, зеленые – из южных районов Кольского залива, серые – из Кандалакшского залива Белого моря. Треугольники – сублиторальные выборки (макрофиты – ламинариевые водоросли), круги – литоральные (макрофиты – фукоиды). На фотографиях приведены местообитания мидий в Тюве, в частности видны основные субстраты, на которых поселяются моллюски - макрофиты и грунт. Беломорские данные из работы Katolikova et al., 2016, баренцевоморские – данные настоящего проекта.

Рис. 1.2.5. Многолетняя динамика доли мидий Т-морфотипа в поселениях мидий на литорали четырех островов в вершине Кандалакшского залива. Точки — частота мидий Т-морфотипа (пропорциональна доле M. trossulus). Синяя сплошная линия — регрессионная модель (GAM), описывающая многолетний тренд в изменении частоты морфотипов. Пунктирные линии ограничивают 95%-ный доверительный интервал линий регрессии.

Рис. 1.3.1. Генотипическая структура выборок Кольских мидий, реконструированная на основе мультилокусных данных. Выборка LAG с южного побережья мыса Лагерный в куту Кольского залива и выборка GR-F с фукоидов из пос. Гранитный в предустьевой части залива. Красно-синие столбчатые диаграммы отражают вклад генов М. edulis (синий сектор) и М. trossulus (красный сектор) в генотипы особей по Structure. Особи ранжированы по уменьшению вклада генов М. edulis. Оранжевые линии делят генотипы на три условные категории: «чистопородные» М. edulis (МЕ, вклад генов М. trossulus ≤ 0.1), «чистопородные» М. trossulus (МТ, вклад генов М. trossulus ≥ 0.9) и гибриды (Н, 0.1< вклад генов М. trossulus < 0.9) (классификация обоснована в Katolikova et al. 2016). Чёрно-белые диаграммы вверху - морфотипы особей (белый столбик − Е-морфотип, чёрный − Т-морофотип). Трёхцветная диаграмма для выборки LAG внизу отражает пол особей: розовые столбики − самки (F), голубые − самцы (M), светлые − гонады без половых продуктов (?). Обращают внимание различия в частоте морфотипов у видов и дефицит самцов в LAG, особенно в левой (М. edulisной) части распределения.

Salinity index = √rank(Distance) × rank(Drainage⁻¹) 69.4 69.2 Индекс солености 80 60 40 20

Рис. 1.3.2. Индекс солености Salinity index и его изменчивость в местах сбора мидий в Кольском заливе. Кружки – места сбора, цвет отражает значения индекса. Звездочки маркируют устья крупных рек.

33.0

33.5

34.0

32.5

Рис. 1.3.3. Связь доли гибридов Phybr с таксономической структурой выборок, согласно модели GAM1. Каждая из четырех фасеток рисунка включает данные из отдельного района Мурмана. Сглаживающая функция, построенная по всем данным, на всех фасетках одна и та же. Цветом показано значение индекса солености в местах сбора выборок.

Рис. 1.3.4. Связь индекса генетического смешения (md) с таксономической структурой выборок, согласно модели GAM2. Обозначения как на рис. 1.3.3.

Табл. 1.3.1. Результаты регрессионного анализа зависимости доли гибридов Phybr от Ptros и индекса солености (модель GAM1).

term	edf	ref.df	statistic	p.value
s(Ptros)	4.103205	5.058939	43.371784	0.0000000
s(Sal index)	1.000196	1.000389	6.289896	0.0121485

Таблица 1.3.2. Результаты регрессионного анализа зависимости индекса смешения md от Ptros и индекса солености (модель GAM2).

term	edf	ref.df	statistic	p.value
s(Ptros)	6.777581	7.862883	210.622385	0.0000000
s(Sal index)	1.706005	2.125504	8.398921	0.0191045

Рис. 1.3.5. Связь доли гибридов Phybr (A) и показателя генетического смешения md (B) с индексом солености, согласно моделям GAM1 и GAM2, соответственно. Линии регрессии отражают частные эффекты предиктора (влияние индекса солености при учете влияния сглаживающей функции). Зарубки на ОХ – точки наблюдений.

Рис. 1.4.1. Условия обитания беломорских мидий (М. edulis, М. trossulus) и соотношение частот «видоспецифичных» морфотипов в их смешанных поселениях. Точки на картах – изученные поселения. (А) Условия обитания. Размер точек прямо пропорционален степени прибойности, заливка характеризует соленость. Обозначены устья крупных рек (стрелки) и порты (якоря). (В) Частоты Т-морфотипов, характерных для М.trossulus, в тех же поселениях. Размер точек и степень заливки пропорциональны доле Т-морфотипа.

Табл. 1.4.1. Влияние факторов среды на долю Т-морфотипов в выборках. Результаты построения смешанной обобщенной регрессионной модели, основанной на бета-распределении (beta-binomial GLMM). В скобках указаны градации, использованные в качестве альтернативы базовому уровню дискретного фактора. В качестве случайного (группирующего) фактора использована точка взятия проб. При построении модели значения предикторов были стандартизованы, что позволяет сравнивать коэффициенты модели: более высокие значения свидетельствуют о большей силе влияния фактора.

коэффициенты модели. Облес высокие эна инии сындетельствуют о облышен силе ынинии фактора.						
Член модели	Оценка параметра	SE	Z-statistic	p.value		
Intercept	-1.20	0.385	-3.121	0.0018		
Субстрат (Фукоиды)	1.07	0.070	15.224	< 0.0001		
Соленость	-0.02	0.018	-1.044	0.2965		
Расстояние до ближайшей реки	-0.03	0.023	-1.473	0.1409		
Размер ближайшей реки (крупная река)	0.45	0.205	2.199	0.0279		
Прибойность	-0.05	0.016	-3.035	0.0024		
Расстояние до ближайшего порта	-0.02	0.007	-2.630	0.0085		
Статус ближайшего порта (Активный)	1.18	0.232	5.100	< 0.0001		
Случайный фактор, регулирующий	0.83					
дисперсию свободного члена						

Таблица 1.4.2. Результаты построения регрессионной модели, описывающей связь веса сухих тканей мидий с их размером, морфотипом, соотношением M. edulis и M. trossulus и плотностью поселения мидий в поселениях. В скобках указаны градации, использованные в качестве альтернативы базовому уровню дискретного фактора. Модель является результатом пошагового упрощения исходной модели, включавшей, помимо главных эффектов, взаимодействия между ними. Взаимодействия были удалены из модели, как несущественные.

Член модели	Оценка параметра	SE	t-statistic	p.value
Intercept	-0.0269979	0.0144801	-1.864488	0.0641689
Размер	0.0053533	0.0002933	18.249517	0.0000000
Доля Т-морфотипа	-0.0238688	0.0081667	-2.922682	0.0039971
$Mop \phi$ оти $I_{(T)}$	-0.0070111	0.0016967	-4.132251	0.0000590
Плотность поселения	-0.0006160	0.0001372	-4.489911	0.0000139

Рис. 1.4.2. Сила прикрепления и количество выделенных биссусных нитей у мидий разных морфотипов в искусственных поселениях с разным соотношением M. edulis и M. trossulus (на 30й день эксперимента).

Рис. 1.4.3. Зависимость силы прикрепления мидий двух морфотипов от солености. Линии регрессии отражают регрессионную модель, параметры которой приведены в таблице 1.4.3.

Таблица 1.4.3. Результаты построения регрессионной модели, описывающей связь силы прикрепления мидий с соленостью. В скобках указаны градации, выступающие в качестве альтернативы базовому

уровню дискретного фактора.

Term	Параметр	SE	t-статистика	p.value
Intercept	-0.2903936	0.0918225	-3.162555	0.0018508
Соленость	0.0143526	0.0040163	3.573554	0.0004578
Морфотип _(Т)	0.5089657	0.1590125	3.200791	0.0016341
Вес мидии, ковариата	0.1364961	0.0354490	3.850490	0.0001664
Соленость:Морфотип(Т)	-0.0139957	0.0084400	-1.658267	0.0990968

Рис. 2.1.1. Карта сборов L. balthica в Европе. Пинами отмечены места сбора.

Рис. 2.1.2. Ординация генотипов L. balthica из разных географических популяций методом PCoA. Матрица кодоминантных генетических дистанций по 1392 SNP визуализирована в GenAlEx (Peakall, Smouse 2012). Порядковые номера координат указаны на осях. Точки – генотипы, цвет и форма отражают географическое положение. Weur -Западная Европа (Луара, Шельда), Nor - Северная Норвегия, Katteg – Каттегат, WBalt - Западная Батика и Орезунд, Gda - Гданьский залив,

Nbalt - Северная Балтика, Varan -Варангер (включая Печенгу), Wmur - Западный Мурман от п-ва Рыбачий до Кольского залива включительно, Mog - оз. Могильное, Emur - Восточный Мурман, WS-M - Мезень, WS-O - Онега, WS-K - Кереть (Белое море), MaVl - Охотское и Японское моря, Va- Восточная Пацифика (Ванкувер), МВ - другие не-европейские популяции (карта европейских сборов приведена на рис. 2.1.1). PC1 различает L.balthica balthica и L. b. rubra, PC2 - L. b. balthica из разных географических популяций: европейские генотипы имеет высокие положительные значения PC2, PC3 отличает мурманских маком от всех остальных, PC4 – различает западно- и северо-европейских М. b. rubra, PC5 – отличает беломорских от всех остальных.

Рис. 2.1.3. Генотипическая структура выборок L. balthica по 25 локусам, наиболее дифференцированным между основными популяциями L. b. rubra (западная Европа, Норвегия) и L. b. balthica (северная Балтика, Варангер, Восточный Мурман, Кереть в Белом море). Строки - особи (даны названия регионов сбора). Европейские сборы ранжированы внутри и между регионов географически, вдоль океанического побережья с юго-запада (Луара в западной Европе) на северо-восток (Кереть в Белом море). Все столбцы кроме последнего — однолокусные генотипы (даны названия локусов, МТ-МтДНК, цифровые номера - SNP). Аллели условно классифицированы на

«тихоокеанские» (т.е. более характерные для L. b. balthica) и «атлантические» (L. b. rubra). Красные генотипы – гомозиготы по тихоокеанским аллелям, синие – по атлантическим, розовые – гетерозиготы. Последний столбец (Str) – индивидуальные нагрузки по Structure (k=2), рассчитанные по всем 1392 SNP в европейских выборках (синий сектор – доля «атлантических» аллелей, красный – «тихоокеанских»). Для каждого локуса вверху приведены коэффициенты корреляции Пирсона между частотами аллелей в выборках из перечисленных выше шести популяций и популяционными индексами Structure. Пространственная изменчивость частот аллелей самого первого (1459) локуса почти идеально соответствует таковой индексов Structure, отражая генеральный паттерн.

Изменчивость между особями и выборками можно связать с несколькими факторами. Вопервых, с таксономической структурой материала («синие» генотипы - L. b. rubra, с повышенной частотой «красных» аллелей - L. b. balthica). Во-вторых, с разной степенью смешения/гибридизации между этими линиями, «барометром» которой служит локус 1459. В-третьих, с дифференциальной интрогрессией. Такой интрогрессией можно пытаться объяснить: избыток красных аллелей (L. b. balthica) у L. b. rubra северной Европы по 159, 88 и 1336; избыток красных аллелей по 1262 и 1405 и дефицит таких аллелей по 1462, 1485, 1522, 1359 и 1425 на Мурмане; дефицит красных аллелей по 369 в Балтике и по 1496 и 1341 в Керети. Наконец, с отличиями между географическими популяциями, которые сложно объяснить интрогрессией: различиями между западноевропейскими L. b. rubra и всеми остальными по 1330, 1331 и 1404, между северобалтийской L. b. balthica и всеми остальными по 1426.

Рис. 2.1.4. Ядерное - митохондриальное неравновесие в европейских популяциях Limecola balthica. А) Результаты кластеризации в программе ADMIXTURE на основе ядерных локусов. (Различия в величине вклада тихоокеанских и атлантических генов между ADMIXTURE и Structure (рис. 2.1.3) в геномы L. b. balthica связаны с тем, что в анализ Structure не включали тихоокеанские референсы этой эволюционной линии). В) Фракции "тихоокеанских" генов в ядерных геномах L. balthica с разными митохондриальными геномами. Боксплоты показывают межиндивидуальную изменчивость в субвыборках маком с тихоокеанскими и атлантическими мтДНК в сборах из разных регионов.

Рис. 2.1.5. Fst между субвыборках маком с тихоокеанскими и атлантическими мтДНК ДНК в популяциях Мурмана (ОХ) и Балтики (ОҮ). Каждая точка – Fst для индивидуального локуса.

Рис. 3.1.1. Лов беломорской сельди 2021. Стенка закола с отложенной на нее икрой сельди и объячеяной сельдью.

Рис. 3.1.2. Распределение исследованных беломорских сельдей 2021 г. сбора по длине (n=342), числу позвонков (n=360) и стадии зрелости гонад (n=330).

Рис. 3.2. Ординация мидий двух видов - Mytilus edulis (синие точки) и M. trossulus (красные) из смешанного поселения Гранитного в осях главных компонент, характеризующих форму раковины мидий. Единственный гибрид, найденный в выборке – беккросс к M. edulis в анализе рассматривается как M. edulis.

Рис. 4.2.1. Карта сборов мидий р. Mytilus для поиска трансмиссивного рака за 2019-2021 год. Показаны места сбора выборок, изученных либо запланированных к изучению методами проточной цитометрии и молекулярно-генетической диагностики. Зеленым цветом обозначены сборы 2019 года, розовым — 2020 года, желтым - 2021 года. (а) Сборы в Баренцевом море. В Чалмпушке и Росляково сборы проведены и в 2020, и в 2021 годах. (б) Сборы в Белом море. (в) Сборы в Японском море. В Бухте Гайдамак сборы проведены и в 2019, и в 2020 годах. (г) Сборы в Тихом океане и в заливе Шелехова Охотского моря. (д) Сборы в окрестностях Магадана в Охотском море. В точке Марчеканский ручей сборы проводились и в 2020, и в 2021 годах. (е) Сборы в Черном море. (ж) Сборы в Магеллановом проливе, Чили.

Рис. 4.4.1. Диагностика диссеминированной неоплазии у макомы Limecola balthica из Баренцева моря. Приведены данные по единственной ракушке с раком. (а) Данные проточной цитометрии: гистограмма уровня флюоресценции ДАПИ (по ОХ) и количества клеток (по ОУ). Детектируется две популяции клеток — с нормальной плоидностью (2n) и с повышенным содержанием ДНК (An). (б) Препарат тканей (пищеварительная железа), окрашенный гематоксилин-эозином. Инфильтрация неопластическими гемоцитами отмечена звездочкой.

Рис. 4.4.2. Сеть гаплотипов COI маком Limecola balthica. Включены референсы основных линий L. balthica и L. (M) petalum из Nikula et al, 2007 (красные), L. balthica из канадских популяций Манитобы и Ньюфаундленда (синие и зеленые, соответственно) из Layton et al, 2014. Две макомы из Печенги (Баренцево море) с нестандартными, согласно транскриптомным данным, генотипами, отмечены желтым (157, нет гетероплазмии) и розовым (155, есть гетероплазмия). Приведены наименования генетических линий и их географическое распространение по Nikula et al, 2007.

Рис. 4.5.1 Дифференциальная экспрессия генов между тканями и особями мидий М. trossulus с разными формами диссеминированной неоплазии. Анализ в пространстве главных компонент на основе уровня экспрессии. А) РС1 и РС2, различия на уровне тканей. В) РС1 и РС3, различия на уровне тканей. С) РС1 и РС2, различия на уровне линии рака (BTN1 и BTN2) и тканей. D) РС1 и РС3, различия на уровне линии рака (BTN1 и BTN2) и тканей.

Рис. 4.5.2. Генетические различия на уровне раковых и здоровых образцов Mytilus trossulus на основе 17480 локусов. А) Анализ в пространстве главных компонент В) Кластеризация генотипов особей в программе ADMIXTURE. На В как «Healthy samples» - образцы ноги всех мидий и гемолимфы мидий без трансмиссивного рака.