### **CS348: Computer Networks**



# Network Layer Introduction

Dr. Manas Khatua Assistant Professor Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

#### Introduction

Network Layer is responsible for host-to-host delivery of packets.



#### **Network Service Models**



- It defines the characteristics of end-to-end transport of packets
- Few services that can be provided by Network Layer
  - Guaranteed delivery
  - Guaranteed delivery with bounded delay
  - In-order packet delivery
  - Guaranteed minimum bandwidth
  - Guaranteed maximum jitter
  - Security Service
  - Congestion Indication

- eventual delivery of transmitted packets are not guaranteed
- timing between packets is not guaranteed to be preserved
- packets are not guaranteed to be received in order

| Network<br>Architecture | Service<br>Model | Bandwidth<br>Guarantee   | No-Loss<br>Guarantee | Ordering              | Timing            | Congestion<br>Indication       |
|-------------------------|------------------|--------------------------|----------------------|-----------------------|-------------------|--------------------------------|
| Internet                | Best Effort      | None                     | None                 | Any order<br>possible | Not<br>maintained | None                           |
| ATM                     | CBR              | Guaranteed constant rate | Yes                  | In order              | Maintained        | Congestion will not occur      |
| ATM                     | ABR              | Guaranteed<br>minimum    | None                 | In order              | Not<br>maintained | Congestion indication provided |

### **Forwarding and Routing**



- Forwarding involves the transfer of a packet from an incoming link to an outgoing link within a single router
- It is the router-local action of transferring a packet

- Routing involves all of a network's routers, whose collective interactions via routing protocols determine the paths that packets take on their trips from source to destination node.
- It is the network-wide process that determines the end-to-end paths
- Routing algorithms determine values in forwarding tables
- Routing algorithm may be centralized or distributed



### **Connection(less) Service**



- Transport layer can offer connectionless service or connection-oriented service between two processes.
- Network layer can provide connectionless service or connection service between two hosts.
- Network-layer services in many ways parallel transport-layer services. But, there
  exist crucial differences:

| In Network Layer                                                                                                                               | In Transport Layer                                           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Provide host-to-host service                                                                                                                   | Provide process-to-process services                          |  |
| <ul><li>Can't provide both together</li><li>Virtual-circuit network (e.g. ATM, Frame Relay)</li><li>Datagram network (e.g. Internet)</li></ul> | Can provide both connection together                         |  |
| Implemented in the routers as well as in the end systems                                                                                       | Implemented at the edge of the network or in the end systems |  |

#### **Virtual-Circuit Network**





| • | Network layer connections are  |
|---|--------------------------------|
|   | called virtual circuits (VCs). |

- A VC consists of
  - (1) a path (i.e., a series of links and routers) between the source and destination hosts
  - (2) VC numbers, one number for each link along the path,
  - (3) entries in the forwarding table in each router along the path.

 Incoming Interface
 Incoming VC #
 Outgoing Interface
 Outgoing VC #

 1
 12
 2
 22

 2
 63
 1
 18

 3
 7
 2
 17

Forwarding Table for R1

- A virtual circuit may have a different VC number on each link
- A packet belonging to a virtual circuit will carry a VC number in its header.

#### Cont...



- Three identifiable phases in a virtual circuit
  - VC setup
  - Data transfer
  - VC teardown

- VC setup at the network layer v/s connection setup at the transport layer
  - During transport-layer connection setup, the two end systems alone determine the parameters of their transport-layer connection.
  - With a VC network layer, routers along the path between the two end systems are involved in VC setup, and each router is fully aware of all the VCs passing through it.



### **Datagram Network**



- each time an end system wants to send a packet, it stamps the packet with the address of the destination end system
- the router matches a prefix of the packet's destination address with the entries in the table
- When there are multiple matches, the router uses the longest prefix matching rule

#### A forwarding table of router R1

| Prefix Match               | Link Interface |
|----------------------------|----------------|
| 11001000 00010111 00010    | 0              |
| 11001000 00010111 00011000 | 1              |
| 11001000 00010111 00011    | 2              |
| otherwise                  | 3              |



#### Cont...



- In a VC network,
  - a forwarding table in a router is modified whenever a new connection is set up through the router or whenever an existing connection through the router is torn down.
- In a Datagram network,
  - forwarding tables can be modified at any time.
  - So, packets may follow different paths through the network and may arrive out of order.

#### **Router Architecture**





High-level view of a generic router architecture

- Input Ports
- Switching fabric
- Output Ports
- Routing processor
- SDN: Software Defined Networking
  - Decouples the Data plane and Control plane

#### Cont...





Figure 4.7 ♦ Input port processing



Figure 4.9 • Output port processing

#### Buffer Management

- Drop-tail queuing (i.e. drop the arriving packets from tail)
- Selective drop (i.e. drop one already queued packet using some scheduling policy)
- Active Queue Management (i.e. drop/mark a packet before the buffer is full. e.g., Random Early Detection (RED) )

#### Cont...





- In Memory and Bus based switching, two
  packets cannot be forwarded at the same time.
  - since only one memory read/write over the shared system bus can be done at a time
- Crossbar switching can forward multiple packets

Figure 4.8 ♦ Three switching techniques

### Where Does Queueing Occur?





## HOL blocking at an **input port** queued switch



### **TCP/IP Protocol Suite**





- IP Addressing
- IP Packet format
- Routing Protocol
- Forwarding Rules

### Internet's Network Layer





Figure 4.12 ♦ A look inside the Internet's network layer

#### **IPv4** Header



 The most widely used protocol for internetworking is the Internet Protocol (IP).



### **IP Datagram Fields**



- VER: version of the IPv4 protocol
- HLEN: total length of the datagram header
- ToS: provides differentiated services (DiffServ)
- Total length: header + data in byte
- Identification, Flags, Fragmentation Offset: These three fields are related to the fragmentation of the IP datagram
- TTL: control the maximum number of hops (routers) visited by the datagram
- Protocol: it defines to which protocol the payload should be delivered
- Checksum: helps to check the error in datagram header only
- Source & Destination Address: 32 bit IP addresses
- Options & Padding: used for network testing and debugging
- Payload: the packet coming from other protocols that use the service of IP

### **IP Fragmentation & Reassembly**



- A datagram can travel through different networks.
- Each router
  - decapsulates the IP datagram from the frame it receives,
  - processes it, and then
  - encapsulates it in another frame.



#### Cont...



- Fragmentation is done by the source host or intermediate router.
- But, Reassembly is done by the destination host only.
- 3-bit flags *field*:
  - Not used,
  - D: do not fragment,
  - M: more fragment
- 13-bit fragmentation offset field: shows the relative position of a fragment w.r.t. the whole datagram



### An Example





### **IP Addressing**



- IP Address:
  - 32 bits used to represent IPv4
  - E.g., 192.19.241.18 in dotted decimal notation
- Total address space: 2<sup>n</sup> for n bit address
  - Last address: 255.255.255.255 if n=32

- An IP address is technically associated with an interface, rather than with the host or router containing that interface
- The boundary between the host/router and the physical link is called an interface.
- Each interface in the global Internet must have an IP address that is globally unique (except behind NAT)





### **Classful Addressing**





#### **Problem and Solution**



Problem in Classful Addressing: Address Depletion

#### Solution:

- Subnetting: a larger block of address is divided into several subnets
- Supernetting: several smaller blocks of addresses are combined to make a larger block

#### Better Solution:

 Classless addressing: variable length blocks that belong to no classes; uses slash notation to identify prefix length



Examples: 12.24.76.8/8 23.14.67.92/12 220.8.24.255/25

### **Example of Six Subnets**





#### **Extract block from an Address**





Let an address: 167.199.170.82/27 ...01010010

Number of Address:  $2^{(32-27)} = 32$ 

First Address: 167.199.170.64/27 ...01000000

Last Address: 167.199.170.95/27 ...01011111

#### **Address Mask**



It is a 32-bit number in which the n leftmost bits are set to 1s and the rest of the bits (32 - n) are set to 0s.

It can be used by a computer program to extract the information in a block, using the three bit-wise operations NOT, AND, and OR.

Given address: 167.199.170.82/27 ...01010010

Mask: 255.255.255.224 ...11100000

Number of address in the block: NOT (mask) + 1 = 31+1 = 32

First Address: (address) AND (mask) 167.199.170.64 (01000000)

Last Address: (address) OR (NOT (mask)) 167.199.170.95 (01011111)

#### **Network Address**





Network address is the first address of the block

#### **Block Allocation**



- Internet Corporation for Assigned Names and Numbers (ICANN) is the global authority.
- ICANN assigns a large block of address to ISP
- ISP assigns individual IP to stations/ small block to an organization
- Rules:
  - 1. The number of requested addresses, N, needs to be a power of 2. (as,  $N=2^{32-n} => n = 32 \log_2 N$ )
  - 2. The allocated first address needs to be divisible by the number of addresses in the block. (for contiguous address)
- More levels of hierarchy can be created using subnetting.
- Rules:
  - 1. The number of addresses (N) in each subnetwork should be a power of 2; i.e.,  $N = 2^k$
  - 2. The prefix length (in bits) for each subnetwork should be found using the following formula:  $n_{subnet} = 32 log_2 N$
  - 3. The starting address in each subnetwork should be divisible by the number of addresses in that subnetwork. (i.e., *least significant k bits should all be 0*)

### **Example**



- An organization is granted a block of addresses with the beginning address 14.24.74.0/24.
- The organization needs to have 3 sub-blocks of addresses to use in its three subnets: one sub-block of 10 addresses, one sub-block of 60 addresses, and one sub-block of 120 addresses. Design the sub-blocks.

Solution: Allocated no. of address: 2<sup>32-24</sup> = 256

First address: 14.24.74.0/24; Last address: 14.24.74.255/24

Mask: 255.255.255.0

We should start with largest sub-blocks.

 $N_1=120 \Rightarrow N_1=128 \Rightarrow N_1=32-\log_2 128 = 25$ 

First address: 14.24.74.0/25

Last address: 14.24.74.127/25 Mask: 255.255.255.128 (as last octet: 1000 0000)

 $N_2=60 \Rightarrow N_2=64 \Rightarrow n_2=32-\log_264 = 26$ 

First address: 14.24.74.128/26

Last address: 14.24.74.191/26 Mask: 255.255.255.192 (as last octet: 1100 0000)

 $N_3=10 \Rightarrow N_3=16 \Rightarrow n_3=32-\log_2 16 = 28$ 

First address: 14.24.74.192/28

Last address: 14.24.74.207/28 Mask: 255.255.255.240 (as last octet: 1111 0000)

#### Cont...





- Example: Let destination IP of a packet 14.24.74.195 So, Network Address= (14.24.74.195) AND (255.255.255.0) = 14.24.74.0
- Subnet 3: (14.24.74.195) AND (255.255.255.240) = . . . (1100 0011 AND 1111 0000) = 14.24.74.192 => Correct
- Subnet 2: (14.24.74.195) AND (255.255.255.192) = . . . (1100 0011 AND 1100 0000) = 14.24.74.192 => Not Correct
- Subnet 1: (14.24.74.195) AND (255.255.255.128) = . . . (1100 0011 AND 1000 0000) = 14.24.74.128 => Not correct

### **Address Aggregation**





### **Special Addresses**



- *This-host Address:* 0.0.0.0/32
  - It is used whenever a host needs to send an IP datagram but it does not know its own address to use as the source address.
- *Limited-broadcast Address:* 255.255.255.255/32
  - It is used whenever a router or a host needs to send a datagram to all devices in a network.
- Loopback Address: 127.0.0.0/8
  - Any address in the block is used to test a piece of software in the machine.
- Private Addresses: (these are used in NAT)
  - 10.0.0.0/8
  - 172.16.0.0/12
  - 192.168.0.0/16
  - 169.254.0.0/16
- Multicast Addresses: 224.0.0.0/4
  - Reserved for multicast

### **IP Packet Forwarding**



#### Two Approaches:

- Based on Destination IP
  - For connectionless protocol
- Based on Label
  - For connection oriented protocol



### Forwarding (by Dest. IP)





Table for Router R1

| Network address/mask     | Next hop      | Interface |  |
|--------------------------|---------------|-----------|--|
| 180.70.65.192/ <b>26</b> | _             | m2        |  |
| 180.70.65.128 <b>/25</b> | _             | m0        |  |
| 201.4.22.0/24            | _             | m3        |  |
| 201.4.16.0/22            | _             | m1        |  |
| Default                  | 180.70.65.200 | m2        |  |

### Forwarding (by Label)







# Thanks!