MARKOV DECISION PROCESSES

THE BEGING OF THE LONG JOURNEY

THE BEGING OF THE LONG JOURNEY

THE BEGING OF THE LONG JOURNEY

THE BEGING OF THE LONG JOURNEY

DEFINITION

An MDP is a model of the agent's world and objective

An MDP is a tuple, e.g., $M = (\mathcal{S}, \mathcal{A}, \mathcal{R}, p, d_0, \gamma)$

 \mathcal{S} set of all states — Information the agent uses to make a decision

 \mathscr{A} set of all actions — possible decisions

 ${\mathscr R}$ set of all rewards — we use discrete notation, but it can be continuous

 $p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \to [0,1]$ — a function that returns the probability of observing the next state and reward after taking an action in a particular state

 $d_0: \mathcal{S} \to [0,1]$ — function that returns the probability of starting in a given state

 $\gamma \in [0,1]$ — discount factor to downweight rewards in the future

DEFINITION — INTERACTION

 S_t the state at some time $t \in [0,\infty]$

 A_t the action the agent takes at time t

 S_{t+1} the next state after S_t

 R_{t+1} the reward received for taking action A_t in state S_t after transitioning to state S_{t+1}

DEFINITION — INTERACTION

DEFINITION — INTERACTION

DEFINITION — INTERACTION

DEFINITION — INTERACTION

DEFINITION — INTERACTION

DEFINITION — INTERACTION

DEFINITION — INTERACTION

$$Pr(S_0 = s) = d_0(s)$$

DEFINITION — INTERACTION

 $\Pr(S_0 = s) = d_0(s)$

$$\Pr\left(S_1 = s, R_1 = r \mid S_0 = s, A_0 = a\right) = p\left(s', r \mid s, a\right)$$

DEFINITION — INTERACTION

$$Pr(A_0 = a | S_0 = s) = ?$$
 Covered in a future lecture

$$Pr(S_0 = s) = d_0(s)$$

$$\Pr\left(S_{1} = s, R_{1} = r \mid S_{0} = s, A_{0} = a\right) = p\left(s', r \mid s, a\right)$$

DEFINITION — INTERACTION

$$d_0(s) \doteq \Pr(S_0 = s)$$

$$p(s', r | s, a) \doteq \Pr(S_t = s', R_t = r | S_{t-1} = s, A_{t-1})$$

USEFUL FUNCTIONS

Reason about the next state transition probability independent of the reward

$$p(s'|s,a) \doteq \Pr(S_t = s'|S_{t-1} = s, A_t = a)$$

USEFUL FUNCTIONS

Reason about the next state transition probability independent of the reward

$$p(s'|s,a) \doteq \Pr(S_t = s'|S_{t-1} = s, A_t = a) = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

USEFUL FUNCTIONS

$$r(s, a, s') \doteq \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s']$$

USEFUL FUNCTIONS

$$r(s, a, s') \doteq \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s', r | s, a)}{p(s' | s, a)}$$

USEFUL FUNCTIONS

$$r(s, a, s') \doteq \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s', r | s, a)}{p(s' | s, a)}$$

$$r(s, a) \doteq \mathbb{E}[R_t | S_t = s, A_t = a]$$

USEFUL FUNCTIONS

$$r(s, a, s') \doteq \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s', r | s, a)}{p(s' | s, a)}$$

$$r(s, a) \doteq \mathbb{E}[R_t | S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r | s, a)$$

DEFINITION

A state space \mathcal{S} is Markov if $\forall t, s, a, s', r$

$$\Pr\left(S_{t} = s', R_{t} = r \mid S_{t-1} = s, A_{t-1} = a, S_{t-2} = s_{t-2}, A_{t-2} = a_{t-2}, \dots S_{0} = s_{0}, A_{0} = a_{0}\right) = \Pr\left(S_{t} = s', R_{t} = r \mid S_{t-1} = s, A_{t-1} = a\right)$$

 S_t and R_t are conditionally independent of $S_{t'}, A_{t'}, R_{t'}$ for all t' < t-1 given S_{t-1}

Memoryless: after knowing S_t , we can predict the future without considering what happened before observing S_t

EXAMPLE

 $\mathcal{S}=$ set of all positions and momentums of particles and energy in the universe p gives the transition probabilities as described by quantum theory

Scott Jordan 2024-01-19 29

EXAMPLE

 $\mathcal{S}=$ set of all positions and momentums of particles and energy in the universe p gives the transition probabilities as described by quantum theory

- Valid for any MDP definition but not useful
- An MDP is a **model** for a problem

EXAMPLE

 $\mathcal{S}=$ set of all positions and momentums of particles and energy in the universe p gives the transition probabilities as described by quantum theory

- Valid for any MDP definition but not useful
- An MDP is a model for a problem
 - The probability that the projector correctly displays the slide on the screen
 - A meteor *could* destroy this building, but it doesn't make sense to model this event

EXAMPLE

 $\mathcal{S}=$ position and velocities of every joint on a robot in a lab p defined by Newton equations, describe how those joints move ls this Markov?

Scott Jordan 2024-01-19

EXAMPLE

 $\mathcal{S}=$ position and velocities of every joint on a robot in a lab p defined by Newton equations, describe how those joints move Is this Markov?

No

Other objects, battery level, etc

EXAMPLE

 $\mathcal{S}=$ position and velocities of every joint on a robot in a **free space simulation** p defined by Newton equations, describe how those joints move ls this Markov?

Yes

Scott Jordan 2024-01-19 30

EXAMPLE

 $\mathcal{S}=$ position and velocities of every joint, battery level, camera reading for a robot in a lab p defined by:

- Newton equations describe how those joints move
- How battery level changes as the robot moves around
- Need to model how pixels change in the camera Can't see the whole world or even motion
 - transition dynamics would be specific to a point in time

Is this Markov?

No

EXAMPLE

Real-world problems often need a state space of the universe or many unobservable quantities

Other modeling paradigms: nonstationary MDPs, partially observable Markov decision processes

MDPs are useful for understanding the basics of decision-making and modeling some problems

EXAMPLE — CHESS

 \mathcal{S} — all possible board configurations

 d_0 (Standard setup) = 1.0 if the agent is the white player

 $\mathscr{A}(s)$ — all possible moves available to the agent in the current state

p – ?

EXAMPLE — CHESS

 \mathcal{S} — all possible board configurations

 d_0 (Standard setup) = 1.0 if the agent is the white player

 $\mathscr{A}(s)$ — all possible moves available to the agent in the current state

p — probability distribution over board states after both the agent and other player make a move

Is this Markov?

EXAMPLE — CHESS

 \mathcal{S} — all possible board configurations

 d_0 (Standard setup) = 1.0 if the agent is the white player

 $\mathscr{A}(s)$ — all possible moves available to the agent in the current state

p — probability distribution over board states after both the agent and other player make a move

Is this Markov?

Maybe

EXAMPLE — CHESS

 \mathcal{S} — all possible board configurations

 d_0 (Standard setup) = 1.0 if the agent is the white player

 $\mathscr{A}(s)$ — all possible moves available to the agent in the current state

p — probability distribution over board states after both the agent and other player make a move

If the opponent is **human**, is this Markov?

EXAMPLE — CHESS

 \mathcal{S} — all possible board configurations

 d_0 (Standard setup) = 1.0 if the agent is the white player

 $\mathscr{A}(s)$ — all possible moves available to the agent in the current state

p — probability distribution over board states after both the agent and other player make a move

If the opponent is **human**, is this Markov?

Probably not; humans get tired, reason about their past to inform their decisions

Scott Jordan

EXAMPLE — CHESS

 \mathcal{S} — all possible board configurations

 d_0 (Standard setup) = 1.0 if the agent is the white player

 $\mathscr{A}(s)$ — all possible moves available to the agent in the current state

p — probability distribution over board states after both the agent and other player make a move

If the opponent is random, is this Markov?

EXAMPLE — CHESS

 \mathcal{S} — all possible board configurations

 d_0 (Standard setup) = 1.0 if the agent is the white player

 $\mathscr{A}(s)$ — all possible moves available to the agent in the current state

p — probability distribution over board states after both the agent and other player make a move

If the opponent is random, is this Markov?

Yes

EXAMPLE — CHESS

 \mathcal{S} — all possible board configurations

 d_0 (Standard setup) = 1.0 if the agent is the white player

 $\mathscr{A}(s)$ — all possible moves available to the agent in the current state

p — probability distribution over board states after both the agent and other player make a move

If the opponent is a planning agent, is this Markov?

EXAMPLE — CHESS

 \mathcal{S} — all possible board configurations

 d_0 (Standard setup) = 1.0 if the agent is the white player

 $\mathscr{A}(s)$ — all possible moves available to the agent in the current state

p — probability distribution over board states after both the agent and other player make a move

If the opponent is a planning agent, is this Markov?

Yes

SUMMARY

 \mathcal{S} — A state needs to contain all information (except for the action) to predict the next state distribution

p — cannot change with time

p — We do not need to know a mathematical form for it, only that it exists

Scott Jordan

TERMINATION

DEFINITION

 $S_0, A_0, R_1, S_1, \dots$ can go on forever or

 $S_0, A_0, R_1, S_1, \dots S_{T-1}$ ends after $T < \infty$ time steps — Called an episode

- After an episode time starts over
- \bullet T if constant all episodes have the same number of time step
 - Planning your schedule for 1 day (assuming you don't die)
- T can be variable
 - Planning your route home. Some paths will require making more decisions and take different amounts of time

The episode must be guaranteed to end in a finite time.

• One way: an episode that terminates on or before some maximum time limit L, i.e., $\Pr(T \le L) = 1$

TERMINATION

DEFINITION— INFINITE LENGTH BUT EPISODIC

Add a special state s_{∞} to \mathcal{S}

$$\Pr(S_t = S_{\infty}, R_t = 0 | S_{t-1} = S_{\infty}) = 1.0$$

Agent always stays in s_{∞} after entering s_{∞} and always receives a reward of 0 when in s_{∞}

 s_{∞} is called a *terminal absorbing state*

A state $s \in \mathcal{S}$ is called *terminal* if $\Pr(S_{t+1} = s_{\infty} | S_t = s) = 1$

 S_{T-1} is a terminal state in episodic problems

 $\forall t \geq T, S_t = S_{\infty}$ in episodic problems

MDP

EXAMPLE GRAPH

MDP FORMULATIONS

EXAMPLE BANDIT

Consider a bandit problem with actions $\mathcal{A} = \{a_1, a_2, a_3\}$ and rewards $\mathcal{R} = \{1, 2, 3\}$. Assume we know $p(r | a) = \Pr(R_{t+1} = r | A_t = a)$. How can we model this as an MDP?

$$S = ?$$

$$\mathcal{A}=?$$

$$p(s', r | s, a) = ?$$

$$d_0(s) = ?$$

MDP FORMULATIONS

EXAMPLE BANDIT

Consider a bandit problem with actions $\mathcal{A} = \{a_1, a_2, a_3\}$ and rewards $\mathcal{R} = \{1, 2, 3\}$. Assume we know $p(r | a) = \Pr(R_{t+1} = r | A_t = a)$. How can we model this as an MDP?

$$\mathcal{S} = \{s_0, s_\infty\}$$

$$\mathcal{A} = \{1,2,3\}$$

1-step MDP

$$p(s_{\infty}, r | s_0, a) = \underbrace{p(s_0, a, s_{\infty})}_{1} p(r | a) = p(r | a) \text{ and } \forall a, r, p(s_0, r | s_0, a) = 0.0$$

$$d_0(s_0) = 1$$

MDP FORMULATIONS

EXAMPLE BANDIT

Consider a bandit problem with actions $\mathcal{A} = \{a_1, a_2, a_3\}$ and rewards $\mathcal{R} = \{1, 2, 3\}$. Assume we know $p(r|a) = \Pr(R_{t+1} = r|A_t = a)$. How can we model this as an MDP?

$$S = \{s_0\}$$

$$\mathcal{A} = \{1,2,3\}$$

1-state infinite horizon MDP

$$p(s_0, r | s_0, a) = p(s_0, a, s_0) p(r | a) = p(r | a)$$

$$d_0(s_0) = 1$$

 $\gamma < 1$ It cannot have an infinite sum of rewards. Discuss this next class

PROBABILITIES

$$Pr(S_0 = s) = d_0(s)$$

$$Pr(S_1 = s_1, R_1 = r_1 | S_0 = s_0, A_0 = a_0) = p(s_1, r_1 | s_0, a_0)$$

$$Pr(S_0 = s_0, A_0 = a_0, R_1 = r_1, S_1 = s_1) = ?$$

PROBABILITIES

Need to be able to reason about sequences of states, actions, and rewards

$$\Pr(S_0 = s) = d_0(s)$$

$$Pr(S_1 = s_1, R_1 = r_1 | S_0 = s_0, A_0 = a_0) = p(s_1, r_1 | s_0, a_0)$$

$$\Pr(S_0 = s_0, A_0 = a_0, R_1 = r_1, S_1 = s_1) = \Pr(R_1 = r_1, S_1 = s_1 | S_0 = s_0, A_0 = a_0) \Pr(S_0 = s_0, A_0 = a_0)$$

$$= \Pr(R_1 = r_1, S_1 = s_1 | S_0 = s_0, A_0 = a_0) \Pr(A_0 = a_0 | S_0 = s_0) \Pr(S_0 = s_0)$$

$$= p(s_1, r_1 | s_0, a_0) \Pr(A_0 = a_0 | S_0 = s_0) d_0(s_0)$$

 $\Pr(A_t = a \mid S_t = s) = ?$ — Defined by the agent's *policy*. We will discuss this in the future.

PROBABILITIES

$$Pr(S_0 = s_0, A_0 = a_0, R_1 = r_1, S_1 = s_1, ..., R_t = r_t, S_t = s_t) = ?$$

PROBABILITIES

$$\begin{aligned} &\Pr(S_0 = s_0, A_0 = a_0, R_1 = r_1, S_1 = s_1, \dots, R_t = r_t, S_t = s_t) \\ &= \Pr(R_t = r_t, S_t = s_t | S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, \dots, S_0 = s_0) \Pr(S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, \dots, S_0 = s_0) \\ &= \Pr(R_t = r_t, S_t = s_t | S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}) \Pr(S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, \dots, S_0 = s_0) \\ &= p(s_t, r_t | s_{t-1}, a_{t-1}) \Pr(S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, \dots, S_0 = s_0) \end{aligned}$$

Applied Markov property

$$= p(s_{t}, r_{t} | s_{t-1}, a_{t-1}) \Pr(A_{t-1} = a_{t-1} | S_{t-1} = s_{t-1}) \Pr(S_{t-1} = s_{t-1}, R_{t-1} = r_{t-1}, s_{t-2}, a_{t-2}, \dots, S_{0} = s_{0})$$

$$= p(s_{t}, r_{t} | s_{t-1}, a_{t-1}) \Pr(A_{t-1} = a_{t-1} | S_{t-1} = s_{t-1}) p(s_{t-1}, r_{t-1} | s_{t-2}, a_{t-2}) \Pr(S_{t-2} = s_{t-2}, A_{t-2} = a_{t-2}, \dots, S_{0} = s_{0})$$

$$= d_{0}(s_{0}) \prod_{l=1}^{t} p(s_{l}, r_{l} | s_{l-1}, a_{l-1}) \Pr(A_{l-1} = a_{l-1} | S_{l-1} = s_{l-1})$$

NEXT CLASS

WHAT YOU SHOULD DO

- 1. Quiz and programming assignment are due tonight
- 2. Read the book and watch the videos if you have not already

Monday: reward functions and objectives for MDPs