

CHAPTER EIGHT

Scheduling Resources and Costs

Copyright © 2014 McGraw-Hill Education.
All Rights Reserved.

PowerPoint Presentation by Charlie Cook

Where We Are Now

Overview of the Resource Scheduling Problem

- Resources and Priorities
 - Project network times are not a schedule until resources have been assigned.
 - The implicit assumption is that resources will be available in the required amounts when needed.
 - Adding new projects requires making realistic judgments of resource availability and project durations.
 - Cost estimates are not a budget until they have been time-phased.

Project Planning Process

The Resource Problem (cont'd)

Resource Smoothing (or Leveling)

 Involves attempting to even out varying demands on resources by using slack (delaying noncritical activities) to manage resource utilization when resources are adequate over the life of the project.

Resource-Constrained Scheduling

 The duration of a project may be increased by delaying the late start of some of its activities if resources are not adequate to meet peak demands.

Types of Project Constraints

Technical or Logic Constraints

 Constraints related to the networked sequence in which project activities must occur.

Physical Constraints

 Activities that cannot occur in parallel or are affected by contractual or environmental conditions.

Resource Constraints

 The absence, shortage, or unique interrelationship and interaction characteristics of resources that require a particular sequencing of project activities

Kinds of Resource Constraints

People, materials, equipment

Constraint Examples

Technical constraints

Resource constraints

FIGURE 8.2

Classification of a Scheduling Problem

- Classification of Problem
 - Using a priority matrix will help determine if the project is time or resource constrained.
- Time-Constrained Project
 - Must be completed by an imposed date.
 - Time is fixed, resources are flexible: additional resources are required to ensure project meets schedule.
- Resource-Constrained Project
 - Is one in which the level of resources available cannot be exceeded.
 - Resources are fixed, time is flexible: inadequate resources will delay the project.

Resource Allocation Methods

Limiting Assumptions

- Splitting activities is not allowed—once an activity is start, it is carried to completion.
- Level of resources used for an activity cannot be changed.

Risk Assumptions

- Activities with the most slack pose the least risk.
- Reduction of flexibility does not increase risk.
- The nature of an activity (easy, complex) doesn't increase risk.

Resource Allocation Methods (cont'd)

- Time-Constrained Projects
 - Must be completed by an imposed date.
 - Require use of leveling techniques that focus on balancing or smoothing resource demands.
 - Use positive slack (delaying noncritical activities) to manage resource utilization over the duration of the project.
 - Peak resource demands are reduced.
 - Resources over the life of the project are reduced.
 - Fluctuation in resource demand is minimized.

Botanical Garden

FIGURE 8.3

Resource Allocation Methods (cont'd)

- Resource Demand Leveling Techniques for Time-Constrained Projects
 - Advantages
 - Peak resource demands are reduced.
 - Resources over the life of the project are reduced.
 - Fluctuation in resource demand is minimized.
 - Disadvantages
 - Loss of flexibility that occurs from reducing slack.
 - Increases in the criticality of all activities.

Resource Allocation Methods (cont'd)

- Resource-Constrained Projects
 - Resources are limited in quantity or availability.
 - Activities are scheduled using heuristics (rules-of-thumb) that focus on:
 - 1. Minimum slack
 - 2. Smallest (least) duration
 - 3. Lowest activity identification number
 - The parallel method is used to apply heuristics
 - An iterative process starting at the first time period of the project and scheduling period-by-period the start of any activities using the three priority rules.

Resource-Constrained Schedule through Period 2–3

Resource-Constrained Schedule through Period 2–3

ES resource load chart

ID	RES	DUR	ES	LF	SL () .	1 2	2 ;	3 4	4 !	5 (6 7	7 8	8 9	9 1	0 1	1 1	2 1	3 14
1	2P	2	0	2	0	2	2												
2	2P	6	2	10	2			2	2	2	2	2	2						
3	2P	4	2	6	0			2	2	2	2								
4	1P	2	2	10	6			1	1										
5	1P	2	6	10	2							1	1						
6	1P	4	6	10	0							1	1	1	1				
7	1P	2	10	12	0											1	1		
	Т	otal re	esour	ce loa	d	2P	2P	5P	5P	4P	4P	4P	4P	1P	1P	1P	1P		

Resource-Constrained Schedule through Period 2–3

Resource-constrained schedule through period 2-3

ID	RES	DUR	ES	LF	SL () .	1 2	2 ;	3 4	4	5 (6	7 8	8 9	9 1	0 1	1 1	2 13	3 14
1	2P	2	0	2	0	2	2	 	 										
2	2P	6	χ ³	10	_{'گ} 1			Χ											
3	2P	4	2	6	0			2	2	2	2								
4	1P	2	2	10	6			1	1										
5	1P	2	6	10	2				 										
6	1P	4	6	10	0			 	 										
7	1P	2	10	12	0			 											
	Т	otal re	esour	ce loa	d	2P	2P	3P	ЗР	2P	2P								
	F	Resou	rce av	/ailabl	е	3P	3P	3P	3P	3P	3P	3P	3P	3P	3P	3P	3P		

Resource-Constrained Schedule through Period 5–6

Resource-constrained schedule through period 5–6

ID	RES	DUR	ES	LF	SL () .	1 2	2 ;	3 4	4 !	5 (6	7 8	3 9	9 1	0 1	1 12	2 13	3 14
1	2P	2	0	2	0	2	2				 	 							
2	2P	6	234 5 6	10 10 12	-1 -5 810			Х	Х	Х	Х								
3	2P	4	2	6	0			2	2	2	2	 							
4	1P	2	2	10	6			1	1		 								
5	1P	2	6	10	2						i !								
6	1P	4	6	10	0						 								
7	1P	2	10 11 12	12 13 14	℃ -√ -2						 					Х	Х		
		Tota	l reso	urce l	oad	2P	2P	3P	ЗР	2P	2P								
		Res	ource	availa	able	3P	ЗР	ЗР	ЗР	ЗР	3P	3P	ЗР	ЗР	ЗР	3P	ЗР		

Resource-Constrained Schedule through Period 5–6

Final resource-constrained schedule

ID	RES	DUR	ES	LF	SL () 1	1 2	2 ;	3 4	4 <u>{</u>	5 6	3	7 8	3 9	9 1	0 1	1 1	2 1	3 14
1	2P	2	0	2	0	2	2											_	
2	2P	6	234 5 6	10 ነህ 12	878 2-7-			Х	Х	Х	Х	2	2	2	2	2	2		
3	2P	4	2	6	0			2	2	2	2								
4	1P	2	2	6	°6 2			1	1	SL	SL								
5	1P	2	878 9 10		-X-5 84.0							Х	Х	Х	Х	1	1	l I	
6	1P	4	6	10	0							1	1	1	1				
7	1P	2	10 10 12	12 13 14	-2 Ø -4											Х	Х	1	1
		Tota	l reso	urce l	oad	2P	2P	ЗР	3P	2P	2P	ЗР	3P	3Р	3P	ЗР	3P	1P	1P
		Res	ource	availa	able	3P	3P	3P	3P	3P	3P	3P	3P	3P	3P	3P	3P	3P	3P

Resource-Constrained Schedule through Period 5–6

Computer Demonstration of Resource-Constrained Scheduling

EMR Project

 The development of a handheld electronic medical reference guide to be used by emergency medical technicians and paramedics.

Problem

 There are only eight design engineers who can be assigned to the project due to a shortage of design engineers and commitments to other projects.

EMR Project before Resources Added

								January	February
ID	Task Name	Start	Finish	Late Start	Late Finish	Free Slack	Total Slack	27 29 31 2 4 6 8 10 12 14 16	18 20 22 24 26 28 30 1 3 5 7 9 11 13 15
1	EMR project	Tue 1/1	Thu 2/14	Tue 1/1	Thu 2/14	0 days	0 days	-	
2	Architectural decisions	Tue 1/1	Sat 1/5	Tue 1/1	Sat 1/5	0 days	0 days		į l
3	Internal specs	Sun 1/6	Thu 1/17	Sat 1/19	Wed 1/30	0 days	13 days		<u> </u>
4	External specs	Sun 1/6	Sat 1/12	Thu 1/24	Wed 1/30	5 days	18 days		
5	Feature specs	Sun 1/6	Tue 1/15	Sun 1/6	Tue 1/15	0 days	0 days		k ∤
6	Voice recognition SW	Fri 1/18	Sun 1/27	Thu 1/31	Sat 2/9	13 days	13 days	<u> </u>	* *
7	Case	Fri 1/18	Mon 1/21	Wed 2/6	Sat 2/9	19 days	19 days		* *
8	Screen	Fri 1/18	Sat 1/19	Fri 2/8	Sat 2/9	21 days	21 days		
9	Database	Wed 1/16	Sat 2/9	Wed 1/16	Sat 2/9	0 days	0 days	į į	
10	Microphone-soundcard	Wed 1/16	Sun 1/20	Tue 2/5	Sat 2/9	20 days	20 days	i i	
10 11	Digital devices	Wed 1/16	Tue 1/22	Sun 2/3	Sat 2/9	18 days	18 days	l i	
12	Computer I/O	Wed 1/16	Sun 1/20	Tue 2/5	Sat 2/9	20 days	20 days		, ,
13	Review design	Sun 2/10	Thu 2/14	Sun 2/10	Thu 2/14	0 days	0 days		

EMR Project—Time Constrained Resource Usage View, January 15–23

Resource Name	Work	Jan 15						Jan 21		
		Т	W	Т	F	S	S	M	Т	W
Design engineers	3,024 hrs	72h	136h	136h	168h	168h	144h	104h	88h	64h
Architectural decisions	200 hrs									
Internal specs	480 hrs	40h	40h	40h						
External specs	224 hrs									
Feature specs	320 hrs	32h								
Voice recognition SW	320 hrs				32h	32h	32h	32h	32h	32h
Case	64 hrs				16h	16h	16h	16h		
Screen	48 hrs				24h	24h				
Database	800 hrs		32h	32h	32h	32h	32h	32h	32h	32h
Microphone-soundcard	80 hrs		16h	16h	16h	16h	16h			
Digital devices	168 hrs		24h	24h	24h	24h	24h	24h	24h	
Computer I/O	120 hrs		24h	24h	24h	24h	24h			
Review design	200 hrs									

Resource Loading Chart for EMR Project, January 15–23

EMR Project Resources Leveled

The Impacts of Resource-Constrained Scheduling

- Reduces delay but reduces flexibility.
- Increases criticality of events.
- Increases scheduling complexity.
- May make the traditional critical path no longer meaningful.
- Can break sequence of events.
- May cause parallel activities to become sequential and critical activities with slack to become noncritical.

Splitting

Splitting

- A scheduling technique for creating a better project schedule and/or increase resource utilization.
 - Involves interrupting work on an activity to employ the resource on another activity, then returning the resource to finish the interrupted work.
 - Is feasible when startup and shutdown costs are low.
 - Is considered the major reason why projects fail to meet schedule.

Splitting Activities

Activity duration without splitting

Activity A Activity B Activity C

Activity duration split into three segments—A, B, C

Shutdown Start-up

Activity duration split with shutdown and start-up

Benefits of Scheduling Resources

- Leaves time for consideration of reasonable alternatives:
 - Cost-time tradeoffs
 - Changes in priorities
- Provides information for time-phased work package budgets to assess:
 - Impact of unforeseen events
 - Amount of flexibility in available resources

Multiproject Resource Schedules

Multiproject Scheduling Problems

1. Overall project slippage

Delay on one project create delays for other projects.

2. Inefficient resource application

 The peaks and valleys of resource demands create scheduling problems and delays for projects.

3. Resource bottlenecks

 Shortages of critical resources required for multiple projects cause delays and schedule extensions.

Multiproject Resource Schedules (cont'd)

- Managing Multiproject Scheduling:
 - Create project offices or departments to oversee the scheduling of resources across projects.
 - Use a project priority queuing system: first come, first served for resources.
 - Centralize project management: treat all projects as a part of a "megaproject."
 - Outsource projects to reduce the number of projects handled internally.

Using the Resource Schedule to Develop a Project Cost Baseline

Why a Time-Phased Budget Baseline Is Needed

- To determine if the project is on, ahead, or behind schedule and over or under its budgeted costs?
- To know how much work has been accomplished for the allocated money spent—the project cost baseline (planned value, PV)

Creating a Time-Phased Budget

- Assign each work package to one responsible person or department and deliverable.
- Compare planned schedule and costs using an integrative system called earned value.

Time-Phased Work Package Budget (Labor Cost Only)

Time-Phased Work Package Budget Labor cost only

Work Package Description	Page1 of1
Work Package ID	Project PC Prototype
Deliverable Circuit board	Date 3/24/xx
Responsible organization unit	EstimatorCEG
Work Package Duration3weeks	Total labor cost\$120,000

Time-Phased Labor Budget (\$000)

Work	Resource	Labor			Work Perio	dsWeeks	3	
Package	nesource	rate	1	2	3	4	5	Total
Code 1.1.3.2.3	Quality testers	\$xxxx/ week	\$40	\$30	\$50			\$120

Two Time-Phased Work Packages (Labor Cost Only)

Time-Phased Work Package Budget Labor cost only

Work Package Description <u>Software</u>	Page1	of1
Work Package ID 1.1.3.2.4.1 and 1.1.3.2.4.2	Project	PC Prototype
Deliverable Circuit board	Date	3/24/xx
Responsible organization unit _Software	Estimator	LGG
Work Package Duration4 weeks	Total labor cos	t \$180,000

Time-Phased Labor Budget (\$000)

Work	Resource Labor Work PeriodsWeeks							
Package	riesource	rate	1	2	3	4	5	Total
Code 1.1.3.2.4.1	Program'rs	\$2,000/ week	\$20	\$15	\$15			\$50
Integration 1.1.3.2.4.2	System/ program'rs	\$2,500/ week			\$60	\$70		\$130
	Total		\$20	\$15	\$75	\$70		\$180

Patient Entry Project Network

Patient Entry Time-Phased Work Packages Assigned

CEBOO Project Monthly Cash Flow Statement

	January	February	March	April	May	June	July
CEBOO Project							
Hardware							
Hardware specifications	\$11,480.00	\$24,840.00	\$3,360.00				
Hardware design			\$23,120.00	\$29,920.00	\$14,960.00		
Hardware documentation					\$14,080.00	\$24,320.00	
Prototypes							
Order GXs							
Assemble preproduction models							
Operating system							
Kernel specifications	\$5,320.00	\$9,880.00					
Drivers							
OC drivers				\$3,360.00	\$12,320.00	\$11,760.00	\$12,880.00
Serial VO drivers							
Memory management							
Operating system documentation		\$10,240.00	\$21,760.00				
Network interface							
Utilities							
Utilities specifications				\$8,400.00			
Routine utilities				\$5,760.00	\$21,120.00	\$20,160.00	\$10,560.00
Complex utilities							
Utilities documentation				\$7,680.00	\$17,920.00		
Shell							
System integration							
Architectural decisions	\$20,400.00						
Integration first phase							
System H/S test							
Project documentation							
Integration acceptance test							
Total	\$37,200.00	\$44,960.00	\$48,240.00	\$55,120.00	\$80,400.00	\$56,240.00	\$23,440.00

CEBOO Project Weekly Resource Usage Schedule

	12/30	1/6	1/13	1/20	1/27	2/03
Suzuki Hardware specifications Hardware design Hardware documentation Operating system documentation Utilities documentation	24 hrs	40 hrs	40 hrs	40 hrs 24 hrs	40 hrs 40 hrs	40 hrs 40 hrs
Architectural decisions	24 hrs	40 hrs	40 hrs	16 hrs		
J. Lopez Hardware specifications Hardware design Prototypes	24 hrs	40 hrs	40 hrs	40 hrs 12 hrs	40 hrs 20 hrs	40 hrs 20 hrs
Kernel specifications Utilities specifications Architectural decisions	24 hrs	40 hrs	40 hrs	12 hrs 16 hrs	20 hrs	20 hrs
Integration first phase	24 1115	40 1115	401115	101115		
J.J. Putz Hardware documentation Kernel specifications Operating system documentation Utilities documentetion Project documentation				24 hrs 24 hrs	40 hrs 40 hrs	40 hrs 40 hrs
R. Sexon Hardware specifications Prototypes Assemble preproduction models OC drivers Complex utilities Integration first phase System H/S test Integration acceptance test				24 hrs 24 hrs	40 hrs 40 hrs	40 hrs 40 hrs

Key Terms

Heuristic

Leveling

Planned value (PV)

Resource-constrained projects

Resource smoothing

Splitting

Time-constrained projects

Time-phased budget baseline