高数基础班 (18)

18 多元函数的极值(无约束极值;条件极值);最大最小值

P134-P141

第三节 多元函数的极值与最值

本节内容要点

- 一. 考试内容概要
 - (一) 无约束极值
 - (二) 条件极值与拉格朗日乘数法
 - (三) 最大最小值

二. 常考题型方法与技巧

题型一 求极值 (无条件)

题型二 求最大最小值

题型三 最大最小值应用题

考试内容概要

罗格林维生 (景生生) 大松小儿大松

(一) 无约束极值

定义7 若在点 (x_0, y_0) 的某邻域内恒成立不等式

$$f(x,y) \le f(x_0,y_0) \quad (f(x,y) \ge f(x_0,y_0))$$

则称 f 在点 (x_0, y_0) 取得极大值(极小值),点 (x_0, y_0) 称为

f的极大值点(极小值点),极大值与极小值统称为

极值,极大值点与极小值点统称为极值点.

偏导数,且 (x_0,y_0) 为 f(x,y)的极值点则

$$f'_x(x_0,y_0)=0, \quad f'_y(x_0,y_0)=0.$$

△ 有道考袖

定理6(极值的充分条件)设 z = f(x,y) 在点 $P_0(x_0,y_0)$

的某邻域内有二阶连续偏导数,又 $f'_x(x_0,y_0) = f'_y(x_0,y_0) = 0$,

记
$$A = f''_{xx}(x_0, y_0), B = f''_{xy}(x_0, y_0), C = f''_{yy}(x_0, y_0),$$
则

(1) 当
$$AC - B^2 > 0$$
 时, 有极值 $\begin{cases} A > 0 & \text{ 极小值}; \\ A < 0 & \text{ 极大值}. \end{cases}$

- (2) 当 $AC B^2 < 0$ 时, 无极值.
- (3) 当 $AC B^2 = 0$ 时,不一定(一般用定义判定).

(二) 条件极值与拉格朗日乘数法

1) 函数 f(x,y) 在条件 $\varphi(x,y)=0$ 条件下的极值.

$$\begin{cases} F_x = f_x'(x, y) + \lambda \varphi_x'(x, y) = 0, \\ F_y = f_y'(x, y) + \lambda \varphi_y'(x, y) = 0, \\ F_{\lambda} = \varphi(x, y) = 0, \end{cases}$$

2) 函数 f(x, y, z) 在条件 $\varphi(x, y, z) = 0, \psi(x, y, z) = 0$

条件下的条件极值.

$$\Rightarrow F(x, y, z, \lambda, \mu) = f(x, y, z) + \lambda \varphi(x, y, z) + \mu \psi(x, y, z)$$

△ 有道考神

(三) 最大最小值

- 1. 求连续函数 f(x,y) 在有界闭域 D 上的最大最小值
 - 1) 求 f(x,y)在 D内部可能的极值点.
 - 2) 求 f(x,y) 在 D 的边界上的最大最小值. Θ
 - 3) 比较

2. 应用题

常考题型与典型例题

常考题型

- 1. 求极值(无条件)
- 2. 求连续函数 f(x,y) 在有界闭区域 D 上的最大最小值
- 3. 最大最小值应用题.

【例1】(2003年, 3) 设可微函数 f(x,y) 在点 (x_0,y_0) 取得极

小值则下列结论正确的是

(A)
$$f(x_0, y)$$
 在 $y = y_0$ 处的导数大于零.

(B)
$$f(x_0, y)$$
 在 $y = y_0$ 处的导数等于零.

(C)
$$f(x_0, y)$$
 在 $y = y_0$ 处的导数小于零.

(D)
$$f(x_0, y)$$
在 $y = y_0$ 处的导数存在.

$$[41]$$
 $f_{3}(x_{0},y_{0})=0$

【例2】(2009年, 2)设函数
$$z = f(x,y)$$
 的全微分为 $dz = xdx + ydy$, 则点 $(0,0)$

- (A) 不是 f(x,y) 的连续点.
 - (B) 不是 f(x,y) 的极值点.
 - (C) 是 f(x,y) 的极大值点.
- (D) 是 f(x,y) 的极小值点.

【例2】(2009年, 2)设函数 z = f(x,y) 的全微分为

$$dz = xdx + ydy$$
, 则点 (0,0)

(A) 不是 f(x,y) 的连续点.

- (B) 不是 f(x,y) 的极值点.
- (C) 是 f(x,y) 的极大值点.
- (D) 是 f(x,y) 的极小值点.

【解2】

$$\frac{\partial x_{1}}{\partial x} = x$$

$$\frac{\partial z}{\partial x} = x$$

$$\frac{\partial z}{\partial x} = y$$

$$\frac{\partial z}{\partial y} = y$$

【例2】(2009年, 2)设函数 z = f(x,y) 的全微分为

$$dz = xdx + ydy$$
, 则点 (0,0)

- (A) 不是 f(x,y) 的连续点.
- (B) 不是 f(x,y) 的极值点.
- (C) 是 f(x,y) 的极大值点. (D) 是 f(x,y) 的极小值点.

【例3】(2017年3) 二元函数 z = xy(3 - x - y) 的极值点是()

(A)
$$(0,0)$$

(A)
$$(0,0)$$
, (B) $(0,3)$, (C) $(3,0)$, (D) $(1,1)$.

$$(0)$$
 $(3,0)$,

$$(D)$$
 $(1,1)$.

【解】由 $\begin{cases} z_x = y(3-2x-y) = 0 \\ z_y = x(3-2y-x) = 0 \end{cases}$ 驻点 (0,0), (0,3), (3,0), (1,1).

$$z_{xx} = -2y, z_{yy} = -2x, z_{xy} = 3 - 2x - 2y.$$

在
$$(0,0)$$
 点 $AC-B^2=-9<0$, 无极值;

在
$$(0,3)$$
 点 $AC-B^2=-9<0$, 无极值;

在
$$(3,0)$$
 点 $AC-B^2=-9<0$, 无极值;

在 (1,1) 点
$$AC-B^2=3>0$$
, 有极值;

【例4】(2009年, 1, 3) 求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$

的极值.

[#]
$$f'_x(x,y) = 2x(2+y^2), \quad f'_y(x,y) = 2x^2y + \ln y + 1. = 0$$

令
$$\begin{cases} f'_x(x,y) = 0, \\ f'_y(x,y) = 0, \end{cases}$$
 解得唯一驻点 $\left(0, \frac{1}{e}\right)$. 由于

$$A = f_{xx}''\left(0, \frac{1}{e}\right) = 2(2 + y^2)\Big|_{\left(0, \frac{1}{e}\right)} = 2\left(2 + \frac{1}{e^2}\right), \quad \checkmark$$

$$B = f''_{xy} \left(0, \frac{1}{e} \right) = 4xy \Big|_{\left(0, \frac{1}{e}\right)} = 0,$$

$$C = f''_{yy} \left(0, \frac{1}{e}\right) = \left(2x^2 + \frac{1}{y}\right)_{\left(0, \frac{1}{e}\right)} = e,$$

所以
$$AC - B^2 = 2e\left(2 + \frac{1}{e^2}\right) > 0$$
 $A > 0$. 极小值为 $f\left(0, \frac{1}{e}\right) = -\frac{1}{e}$

△ 有道考礼

【例5】(2008年2) 求函数
$$u = x^2 + y^2 + z^2$$
 在约束条件 $z = x^2 + y^2$

和 x+y+z=4 下的最大值和最小值.

[
$$\mu$$
] $F(x, y, z, \lambda, \mu) = x^2 + y^2 + z^2 + \lambda(x^2 + y^2 - z) + \mu(x + y + z - 4).$

$$\begin{cases} F'_{x} = 2x + 2\lambda x + \mu = 0, \\ F'_{y} = 2y + 2\lambda y + \mu \neq 0, \\ F'_{z} = 2z - \lambda + \mu = 0, \\ F'_{z} = x^{2} + y^{2} - z = 0, \\ F'_{\mu} = x + y + z - 4 = 0, \end{cases}$$

$$X (\mu x) = \frac{1}{4} (\mu x)$$

$$(\mu x) (y-y) = 0 , \quad (1) \lambda = -1 , \Rightarrow \lambda = 0 , \Rightarrow \lambda = -1$$

$$2 (x = y)$$

$$2 = -\frac{1}{4} (\mu x)$$

解方程组,得
$$(x_1, y_1, z_1) = (1,1,2), (x_2, y_2, z_2) = (-2, -2, 8). -4 = 0$$

【例6】(2005年2) 已知
$$z = f(x, y)$$
 的全微分 $dz = 2x dx - 2y dy$

且
$$f(1,1) = 2$$
. 求 $f(x,y)$ 在 $D = \left\{ (x,y) | x^2 + \frac{y^2}{4} \le 1 \right\}$ 上的最大最小值. $= d(x-y^2)$

【解1】 (i) 由
$$dz = 2x dx - 2y dy$$

可知
$$z = f(x, y) = x^2 - y^2 + C$$
.

再由
$$f(1,1)=2$$
, 得 $C=2$, 故 $z=f(x,y)=x^2-y^2+2$.

令
$$\frac{\partial f}{\partial x} = 2x = 0, \frac{\partial f}{\partial v} = -2y = 0$$
, 解得驻点 (0,0)

之 在椭圆
$$x^2 + \frac{y^2}{4} = 1$$
 上, $z = x^2 - (4 - 4x^2) + 2$

即
$$z = 5x^2 - 2$$
 (-1 ≤ $x \le 1$),

其最大值为
$$z|_{x=\pm 1}=3$$
,最小值为 $z|_{x=0}=-2$. 再与 $f(0,0)=2$

 \mathfrak{O} 比较, 可知 f(x,y) 在椭圆域 D 上的最大值为3,最小值为 -2

中国大学MOOC

△ 有道考礼

【解2】 同解法一,得驻点 (0,0)

设
$$L = x^2 - y^2 + 2 + \lambda \left(x^2 + \frac{y^2}{4} - 1 \right)$$

$$\begin{cases} L'_{x} = 2x + 2\lambda x = 0, \\ L'_{y} = -2y + \frac{\lambda}{2}y = 0, \\ L'_{\lambda} = x^{2} + \frac{y^{2}}{4} - 1 = 0, \end{cases}$$

$$\begin{cases} X = 0 \\ Y = \pm 2 \end{cases}$$

解得4个可能的极值点 (0,2),(0,-2),(1,0) 和 (-1,0)

又
$$f(0,2) = -2$$
, $f(0,-2) = -2$, $f(1,0) = 3$, $f(-1,0) = 3$, 再与

f(0,0) = 2 比较, 得 f(x,y) 在 D 上的最大值为 最小值为

中国大学MOOC

【解3】 同解法一,得驻点 (0,0)

椭圆
$$x^2 + \frac{y^2}{4} = 1$$
 的参数方程为 $x = \cos t, y = 2\sin t$.

$$\mathbb{Z} = f(x,y) = x^{2} - y^{2} + 2 = \cos^{2} t - 4\sin^{2} t + 2$$

$$= 3 - 5\sin^{2} t$$

故
$$f_{\text{max}} = 3, f_{\text{min}} = -2$$
 $f(0.0) = 2$

