VE270 Recitation Class

Outline

- Boolean Algebra
- Minterms & Maxterms
- Logic Optimization
 - 1. By using Boolean Algebra
 - 2. Using K-map
 - 3. **Quine-McCluskey Method

Terminology

- Variable: 0, 1, a, b, c, ...
- Literal: a, a', b, b', ...
- Product Term: abc, a, ...
- Sum Term: a+b+c, a, ...
- Sum-of-Product (SOP): f(a,b,c) = ab' + a'b + ab'c
- Product-of-Sum (POS): f(a,b,c) = (a + b')(a' + b)(a' + b + c)

Terminology

- Example:
 - 1. a
 - a(b+c)

Basic Theorems

	Version (a)	Version (b)
T1: Identities	x · 1 = x	x + 0 = x
T2: Null Elements	$x \cdot 0 = 0$	x + 1 = 1
T3: Idempotence	$x \cdot x = x$	x + x = x
T4: Complements	$\mathbf{x} \cdot \mathbf{x}' = 0$	x + x' = 1
T5:	xy + xy' = x	(x + y)(x + y') = x
T6: Commutativity	$x \cdot y = y \cdot x$	x + y = y + x
T7: Absorption	$x \cdot (x + y) = x$	$x + x \cdot y = x$
T8:	$x \cdot (x' + y) = xy$	x + x'y = x + y
T9: Associativity	$(x \cdot y) \cdot z = x \cdot (y \cdot z)$	(x + y) + z = x + (y + z)
T10: Distributivity	$x \cdot (y + z) = x \cdot y + x \cdot z$	$x + y \cdot z = (x + y) \cdot (x + z)$
T11: Consensus	xy+x'z+yz=xy+x'z	(x+y)(x'+z)(y+z)=(x+y)(x'+z)
T12: Involution	(x')'=x	
T13: De Morgen	$(x \cdot y)' = x' + y'$	$(x+y)'=x'\cdot y'$

Basic Theorems

- Application:
 - 1. Prove x + 1 = 1 (Using Basic Theorems)
 - 2. Prove $(x_1 + x_2 + ... + x_n)' = x_1' x_2' ... x_n'$ (Using Induction)
 - 3. Consider the following expression: $E = \{x \mid [(y \mid x) \mid x]\} \mid [y \mid (z \mid x)]$. The operator symbol | is usually interpreted as $a \mid b = (ab)'$. Show that E is equivalent to a single literal L, i.e., E = L

XOR Properties

	Version (a) Version (b)			
T1:	$x \oplus 0 = x \qquad \qquad x \oplus 1 = x'$			
T2:	$x \oplus x = 0$	$x \oplus x' = 1$		
Т3:	$x \oplus y' = x' \oplus y = (x \oplus y)'$			
T4: Commutative	$x \oplus y = y \oplus x$			
T5: Associative	$(x \oplus y) \oplus z = x \oplus (y \oplus z) = x \oplus y \oplus z$			

7

Minterms & Maxterms

Definition

- Minterm m_i can be expressed as an AND (product) term of n literals
- Maxterms M_i can be expressed as an OR (sum) term of n literals
- Theorem: $m_i = (M_i)'$
- Example: For 4 variables a, b, c, d

1.
$$m_5 = a'bc'd$$
 (0101)

2.
$$M_5 = a + b' + c + d'$$
 (0101)

Minterms & Maxterms

Find Expression

- Addition of all minterms that produce a logic 1 for the corresponding output
- Multiplication of all maxterms that produce a logic o for the corresponding output

x	у	z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Question: What is the minterm logic equation of F? What about the maxterm logic equation?

Minterms & Maxterms

Don't Cares

• Don't Cares: Output that is not completely specified, denoted as "x", can be o/1

х	у	z	F
0	0	0	1
0	0	1	0
0	1	0	Χ
0	1	1	1
1	0	0	Χ
1	0	1	0
1	1	0	1
1	1	1	1

$$F = \sum m(0,3,6,7)$$
 with $d(2,4)$

General Description

- We optimize the circuit to improve performance.
 - 1. Delay Response time from input to output
 - 2. Size Number of Transistors
- General Estimation:
 - 1. Every gate has delay of "1 gate-delay"
 - 2. Every gate input requires 2 transistors
 - 3. Ignore inverters
- Critical Path: Longest Delay Path from an input to output

General Description

Question:

How many transistors are used in this circuit?

What is the delay?

What is the critical path?

Using Boolean Algebra

- Using Boolean Algebra theorems to reduce size(delay)
- Example: F = (a' + c' + d')(b' + c' + d')(a' + b + c + d)(b' + c + d)

Using K-map

- A graphical technique to simplify the logic equation
- Procedure:
 - 1. Building
 - 2. Grouping and Canceling
 - 3. Writing equations

Building K-map

• 2-variable map

Fab	0	
0	0	1
ı	Z	3

• 3-variable map

Fabo	00	01	11	10
0	o	ı	3	2
ı	4	5	7	Ь

Building K-map

• 4-variable map

F cd	00	01	t i	10
00	0	ı	3	2
01	4	5	7	ь
ц	12	13	15	14
10	8	9	11	10

• 5-variable map

F col	le 000	001	011	010	110	111	101	100
00	0	ı	3	2	Ь	7	ţ	4
01	8	9	n	10	4	15	13	12
11	24	25	27	26	30	ઢા	29	28
10	16	17	19	18	22	23	21	20

Grouping & Cancelling

- Group in shape of rectangle or square
- Group the adjacent i's until all the i's are grouped
- The number of 1's in the group should be 2^N
- Collect as many i's as possible
- No zeros in the group
- Edges wrap around
- If both primed and unprimed forms of a letter appear in a same group, the letter cancels

Writing Equations

- Prime Implicant (PI): A group that cannot be entirely contained by another implicant
- Essential PIs: If a cell is covered ONLY by that PI
- Theorem 1: Every irredundant SOP expression that specifies F is a sum of PIs of F.
- Theorem 2: An irreudndant SOP expression must contain every essential PI.

Using K-maps

• Example:

$$Z(a,b,c,d,e) = \sum m(0,1,12,15,16,20,23,25,31) + d(2,5,8,9,17,18,22,27)$$

Using K-maps

• Building

Using K-maps

• Grouping and Canceling

Using K-maps

- PIs:
- Essential PIs:
- Final equation:

Using Quine-McCluskey Method

- List minterms by ascending group index
- Group adjacent minterms
- Group adjacent 3-literal product terms (Dashes must in the same position for grouped terms)
- The unchecked term is the corresponding PI
- Use Covering Table to find essential PI and the result

Using Quine-McCluskey Method

• Example:

$$Z(a,b,c,d,e) = \sum_{i=0}^{\infty} m(0,1,12,15,16,20,23,25,31) + d(2,5,8,9,17,18,22,27)$$

Using Quine-McCluskey Method

Using Quine-McCluskey Method

Any Questions?