

BASE = 16

The number systems of Binary are:

After 0, 1 \rightarrow 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1110, 1111..... Etc.

The number system of Octal are:

After 0 to 7 \rightarrow 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40..Etc.

The number systems of decimal are:

After 0 to 9 \rightarrow 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 33.....Etc.

The number systems of hexadecimal are:

After 0 to F → 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, AB, 1C, 1D, 1E, 1F, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 3A, 3B, 3C, 3D, 3E, 3F, 40, 41, 42, 42, 44, 45......Etc.

^{*}Other = Binary, Octal, Hexadecimal.

1. Decimal to Other

A). Decimal to Binary

i).
$$(25)_{10} = (?)_2$$

The Answer is: $(11001)_2$ ii). $(1295)_{10} = (?)_2$

The Answer is: (10100001111)₂

B). Decimal to Octal

i).
$$(525)_{10} = (?)_8$$

The Answer is: (1015)₈

ii).
$$(1295)_{10} = (?)_8$$

The Answer is: (2417)₈

C). Decimal to Hexadecimal

i).
$$(2450)_{10} = (?)_{16}$$

The Answer is: (992)₁₆

ii).
$$(4850)_{10} = (?)_{16}$$

The Answer is: (12F2)₁₆

2. Other to Decimal

A). Binary to Decimal i).
$$(11001)_2 = (?)_{10}$$

11001

$$= 1X2^{4} + 1X2^{3} + 0X2^{2} + 0X2^{1} + 1X2^{0}$$

$$= 1X16 + 1X8 + 0X4 + 0X2 + 1X1$$

$$= 16 + 8 + 0 + 0 + 1$$

= 25

The Answer is: $(25)_{10}$

ii).
$$(101000011111)_2 = (?)_{10}$$

10100001111

$$= 1X2^{10} + 0X2^{9} + 1X2^{8} + 0X2^{7} + 0X2^{6} + 0X2^{5} + 0X2^{4}$$

$$+ 1X2^{3} + 1X2^{2} + 1X2^{1} + 1X2^{0}$$

$$= 1024 + 0 + 256 + 0 + 0 + 0 + 0 + 8 + 4 + 2 + 1$$

$$= 1295$$

The Answer is = $(1295)_{10}$

IMPORTENT NOTE

POWER ALWAYS SITS ON REVERSE SIDE OF NUMBER AND IT WILL BE STARTS ON "0".

IF "0" POWER IS TOP OF ANY NUMBER. THE NUMBER VALUE WILL BE "1" EXAMPLE: 80 = 1

B). Octal to Decimal

i).
$$(1015)_8 = (?)_{10}$$

1015

$$= 1X8^3 + 0X8^2 + 1X8^1 + 5X8^0$$

$$= 1X512 + 0X64 + 1X8 + 5X1$$

$$= 512 + 0 + 8 + 5$$

= 525

The Answer is = $(525)_{10}$

ii).
$$(2417)_8 = (?)_{10}$$

2417

$$= 2X8^3 + 4X8^2 + 1X8^1 + 7X8^0$$

$$= 2X512 + 4X64 + 1X8 + 7X1$$

$$=1024 + 256 + 8 + 7$$

1295

The Answer is = $(1295)_{10}$

C). Hexadecimal to Decimal

i).
$$(992)_{16} = (?)_{10}$$

992

$$= 9X16^2 + 9X16^1 + 2X16^0$$

$$= 9X256 + 9X16 + 2X1$$

$$= 2304 + 144 + 2$$

= 2450

The Answer is $(2450)_{10}$

ii).
$$(12F2)_{16} = (?)_{10}$$

12F2

$$= 1X16^3 + 2X16^2 + FX16^1 + 2X16^0$$

$$= 1X4096 + 2X256 + 15X16 + 2X1$$

$$= 4096 + 512 + 240 + 2$$

= 4850

The Answer is $(4850)_{10}$

3. Other to Other

A). Binary to Octal

i).
$$(1000001101)_2 = (?)_8$$

1000001101

The number will be group with last 3(Three) digits; the group is given bellow:

001 000 001 101

ii).
$$(101010101)_2 = (?)_8$$

101010101

= <u>101</u> <u>010</u> <u>101</u>

The Answer is (525)₈

B). Binary to Hexadecimal

i).
$$(100110010010)_2 = (?)_{16}$$

100110010010

The number will be group with last 4(Four) digits; the group is given bellow:

<u>1001</u> <u>1001</u> <u>0010</u>

The Answer is (992)₁₆

ii).
$$(11101011110010)_2 = (?)_{16}$$

1110101110010

0001 1101 0111 0010

The Answer is (1D72)₁₆

i).
$$(1015)_8 = (?)_2$$

1015

- 0 0 1
- 0 0 0
- 0 0 1
- 1 0 1
- = 001000001101
- = 1000001101

The answer is (1000001101)₂

ii).
$$(525)_8 = (?)_2$$

The answer is (101010101)₂

D). Hexadecimal to Binary

i).
$$(992)_{16} = (?)_2$$

The answer is (100110010010)₂

12F2

=0001001011110010

=1001011110010

The answer is (1001011110010)₂