Bastien HUBERT

27 septembre 2023

European Processor Initiative

Pourquoi l'EPI?

- Lancée en 2019 par EuroHPC JU
- 1/3 des ressources en super-calculateurs sont consommées en Europe
- 1/20 des 500 super-calculateurs les plus puissants et 0% des processeurs qui les composent sont européens
- Besoin de souveraineté technologique de l'UE
- Enjeux modernes: sécurité, santé, énergies, climat, ingénierie
- Processeurs hautes performances et basses puissances

European Processor Initiative

Sipearl

• Chargé de concevoir le processeur européen : Rhea

European Processor Initiative

Objectif principal du stage

• s'assurer que Rhea se comporte comme prévu par son cahier des charges

Modèles de processeur

Machines à états finis (FSM)

$$M \stackrel{\text{def}}{=} \{ \Sigma, S, s_{init}, \delta \}$$
 (1)

Chemins d'états dans M

$$\hat{s}_{0} \underset{M,\hat{\sigma}}{\longleftrightarrow} \hat{s}_{1} \stackrel{def}{=} \exists (s_{0}, s_{1}, \dots, s_{n}) \in S^{n} :$$

$$\begin{cases}
s_{0} = \hat{s}_{0} \\
s_{n} = \hat{s}_{1} \\
\forall k \in [1, n], s_{k} = \delta(s_{k-1}, \hat{\sigma}_{k-1})
\end{cases} (2)$$

Fonction de macro-transition

$$\hat{\delta}: \left\{ \begin{array}{ccc} S \times \bigcup_{n \in \mathbb{N}} \Sigma^n & \to & S \\ (\hat{s}_0, \, \hat{\sigma}) & \mapsto & \hat{s}_1 \mid \hat{s}_0 \underset{M \, \hat{\sigma}}{\longleftrightarrow} \hat{s}_1 \end{array} \right. \tag{3}$$

Modèles de processeur

Modèles équivalents

$$M_1 \sim M_2 \stackrel{def}{=} \left\{ egin{array}{ll} S_1 &=& S_2 \ \Sigma_1 &=& \Sigma_2 \ \hat{\delta}_1 &=& \hat{\delta}_2 \end{array}
ight. \end{array}$$

Sous-modèle

$$M_{1} \leq M_{2} \stackrel{def}{=} \begin{cases} S_{1} & \subseteq S_{2} \\ \Sigma_{1} & \subseteq \Sigma_{2} \\ \hat{\delta}_{1} & = \hat{\delta}_{2} |_{S_{1} \times (\bigcup_{n \in \mathbb{N}} \Sigma^{n})} \end{cases}$$
 (5)

Hiérarchie des exigences

Structure des exigences pour Rhea Marketing Requirements System Requirement **HW Requirement** Feature RQ 1 Verification Requirements Feature RQ 2 Feature RQ 3 • HAS: System Requirements • MAS : Design Requirements Verification SW Requirement Requirements SWR1 SWR 2 Coverage Items SWR 4

Coverage items et SLM

Coverage items

$$(\hat{s}_0, \hat{\sigma}, \hat{s}_1) : \hat{s}_0 \underset{M^*, \hat{\sigma}}{\longleftrightarrow} \hat{s}_1$$
 (6)

System Level Model

$$SLM \stackrel{def}{=} \{ \Sigma_{SLM}, S_{SLM}, s_{init}, \delta_{SLM} \} : \tag{7}$$

$$\delta_{SLM}: \left\{ \begin{array}{ll} S_{SLM} \times \Sigma_{SLM} & \rightarrow & S_{SLM} \\ (\hat{s}_0, \ \hat{\sigma}) & \mapsto & \hat{s}_1 \ | \ (\hat{s}_0, \ \hat{\sigma}, \hat{s}_1) \ \text{est un coverage item} \end{array} \right.$$

Vérification d'un coverage item par un modèle

$$M \text{ v\'erifie } (\hat{s}_0, \, \hat{\sigma}, \hat{s}_1) \stackrel{\text{def}}{=} \hat{s}_0 \underset{M, \hat{\sigma}}{\leadsto} \hat{s}_1$$
 (8)

SEC par simulation

Méthodologie de vérification

SEC

- vérification statique et formelle
- combiner 2 FSM en une machine produit
- les sorties de chaque état de la machine produit doivent valoir 1

SEC par simulation

- vérification dynamique et hybride
- rendre le modèle à vérifier comparable au FSM
- les valeurs des CSRs du modèle sont comparés à celles du SLM

Inconvénients du SEC par simulation

- les modèles doivent avoir les mêmes entrées, sorties et CSRs
- le modèle modifié doit être assez petit pour être simulé

Plans de tests et réalisations de tests

Plan de tests

$$T \stackrel{\text{def}}{=} \left(\hat{\sigma}^{(k)}, \hat{s}_{k}\right)_{k \in \llbracket 1, N \rrbracket} : \begin{cases} \forall k \in \llbracket 1, N \rrbracket, \hat{s}_{k-1} \underset{SLM, \hat{\sigma}^{(k-1)}}{\leadsto} \hat{s}_{k} \\ \text{avec } \hat{s}_{0} = s_{init} \end{cases} \tag{9}$$

Réalisations de tests

$$T_{M} \stackrel{\text{def}}{=} \left(\hat{\sigma}^{(k)}, \tilde{s}_{k}\right)_{k \in \llbracket 1, N \rrbracket} : \begin{cases} \forall k \in \llbracket 1, N \rrbracket, \tilde{s}_{k-1} \underset{SLM, \hat{\sigma}^{(k-1)}}{\sim} \tilde{s}_{k} \\ \text{avec } \tilde{s}_{0} = s_{init} \end{cases}$$
(10)

Fonction de réalisation

$$R_{M}: \begin{cases} \{Plans\} & \rightarrow \{M-r\acute{e}alisations\} \\ (\hat{\sigma}^{(k)}, \hat{s}_{k})_{k \in \llbracket 1, N \rrbracket} & \mapsto (\hat{\sigma}^{(k)}, \tilde{s}_{k})_{k \in \llbracket 1, N \rrbracket} \end{cases}$$
(11)

Plans de tests et réalisations de tests

Preuve par tests

T contient
$$c \stackrel{\text{def}}{=} \exists k \in [1, N] \mid c = (\hat{s}_{k-1}, \hat{\sigma}^{(k)}, \hat{s}_k)$$
 (12)

$$T_M$$
 évalue $c \stackrel{\text{def}}{=} R_M^{-1}(T_M)$ contient c (13)

$$T_M \text{ v\'erifie } c \stackrel{\text{def}}{=} \exists \ k \in \llbracket 1, N \rrbracket \mid c = \left(\tilde{s}_{k-1}, \hat{\sigma}^{(k)}, \tilde{s}_k \right)$$
 (14)

$$T_M$$
 vérifie $c \implies M$ vérifie c (15)

Remarques

- M n'est pas équivalent au SLM car le SLM ne décrit pas tous les états de M, mais c'est un (plus grand) surmodèle du SLM
- 2 plus grands surmodèles du SLM ne sont pas équivalents, mais leurs réstrictions au SLM le sont

Métriques de vérification

Taux de couverture

$$\mu_c(T_M) \stackrel{\text{def}}{=} \frac{\mu(\{c \text{ \'evalu\'e par } T_M\})}{\mu(\{c \text{ dans le SLM}\})}$$
(16)

Taux de succès

$$\mu_{s}(T_{M}) \stackrel{\text{def}}{=} \frac{\mu(\{c \text{ v\'erifi\'e } T_{M}\})}{\mu(\{c \text{ \'evalu\'e par } T_{M}\})}$$
(17)

Taux de redondance

$$\mu_r(T_{M_1}, T_{M_2}) \stackrel{\text{def}}{=} \frac{\mu(\{c \text{ \'evalu\'e par } T_{M_1}\} \cap \{c \text{ \'evalu\'e par } T_{M_2}\})}{\mu(\{c \text{ dans le SLM}\})}$$

$$(18)$$

Métriques de vérification

Taille des plans de tests

Peu de tests complexes	Beaucoup de tests simples			
Peut vérifier plus de VRs	Peut vérifier des VRs séparément			
Globalement plus court	Meilleur parallélisme			
Plus long par simulation	Globalement plus gros			
Plus de branches à couvrir	Peut rater des branches			

Indice de Jaccard

$$J(T_{M_{1}}, T_{M_{2}}) = \frac{\mu(\{c \text{ evaluated by } T_{M_{1}}\} \cap \{c \text{ evaluated by } T_{M_{2}}\})}{\mu(\{c \text{ evaluated by } T_{M_{1}}\} \cup \{c \text{ evaluated by } T_{M_{2}}\})}$$

$$= \frac{\mu_{r}(T_{M_{1}}, T_{M_{2}})}{\mu_{c}(T_{M_{1}}, T_{M_{2}})}$$

$$= \frac{\mu_{r}(T_{M_{1}}, T_{M_{2}})}{\mu_{c}(T_{M_{1}}) + \mu_{c}(T_{M_{2}}) - \mu_{r}(T_{M_{1}}, T_{M_{2}})}$$
(19)

RTL et Prototype Virtuel

2 nouveaux modèles

Modèle RTL (SystemVerilog)	Modèle VP (SystemC)		
Pour des mesure de performance	Pour le débogage et		
et de vérification	l'exploration architecturale		
Point d'entrée pour la synthèse	Permet une synthèse HLS		
Plus précis	Plus rapide et petit		
Définit le comportement final	Doit être corrélé au RTL		
Monolithique et difficile à modifier	Simple à modifier		

Cosimulations

- Permet de combiner le meilleur des 2 modèles
- Permet de se concentrer sur un sous-système à vérifier
- Doit pouvoir établir la communication entre les modèles
- Ici, 4 cosimulations : CC/SYSCTRL, DDR, HBM, et PCIe

Communication entre les langages

Universal Verification Methodology Connect

```
SystemC
                                                         SystemVerilog
#include "uvmc.h"
                                         import uvmc_pkg::*:
#include "consumer.h"
                                         'include "producer.sv"
int sc_main(int argc, char *argv[])
                                         module sv_main;
  consumer cons("cons");
                                            producer prod = new("prod");
                                            initial begin
  uvmc.uvmc_connect(cons.in, "foo");
                                              uvmc_tlm #()::connect(prod.out, "foo");
  sc_core.sc_start();
                                              run_test();
                                            end
  return 0:
                                         endmodule
```

Communication entre les langages

Device Under Tests

Structure d'un DUT

- I e modèle à vérifier et son interface
- Des agents actifs avec leur séquenceur de tests
- Des agents passifs monitorer le modèle
- Un scoreboard pour enregistrer les résultats des tests

Gitlab CI

Protocole expérimental

Gitlab CI

Pipeline Needs Jobs 9 Tests 0				
Test		Downstream		
common_cell_repl	0	trigger:pcie:verif	<	Regress
questa_design_and_env	0	Child		pcle:x4:sanity
questa_elab_sanity_top_center	0			opcie:x4:top_rtl
questa_elab_sanity_top_others	3	trigger:hbm:verif	>	
		Child		
Trigger job		trigger:ddr:verif		
		Child	>	
(Trigger job)		trigger:sysctrl:verif		
trigger:pcie:verif Trigger job			>	
trigger:sysctrl:verif				
Trigger job				

Hierarchy Dependency Analyser

Chaîne de compilation HDA

compilation	commande HDA
clean	make clean
build tests	make tests
compile testbench	make compile CMN_DIR=gen_ori
	make elab CMN_DIR=gen_ori
elaborate testbench	ELAB_BEH_MEM=1 SC=1 CDL=0 TTNDPI=0 SVA=0 DEBUGDB=1
	TOP=tb_rhea_top_sysctrl_dnoc_q0_cfg BATCH=0
	make run_opt
run simulation	ELAB_BEH_MEM=1 SC=1 CDL=0 TTNDPI=0 SVA=0 DEBUGDB=1
	TESTNAME=gic_spi_col TESTNAME_AP=hello_world
	PREBUILT_ELF=0 TIMEOUT_CYCLES=8000000
	TOP=tb_rhea_top_sysctrl_dnoc_q0_cfg BATCH=0 &

- Lance QuestaSim avec la commande make run_opt
- Questa génère un rapport de couverture d'où on peut extraire la liste des coverage items évalués

QuestaSim

Protocole expérimental

QuestaSim

Scripts Tcl

If an Info: puts_severity_task: SCP: \$15CTRL TMB running on clk PLL

4 a Moto patt Sectify, 1889; 1997; 1

| b = 16fe ptd, percent | ptd; | SC | College | SC # ** Info: puts_severity_task: SCP: Process HMFs. ** Info: pats.severity. Lase: SP: Fraces Mes...
The: pats.severity. Lase: SP: Fraces to u. th.rhe. tex. u.rhe. tex. u.rhe. tex. tex. conter.el.inst. tex. ess. https://doi.org/10.1001/j.inst. tex. ess. htt. inst. ess. tex. inst. u.c. tex. u.rhe. tex. u.rhe. tex. u.rhe. tex. u.rhe. tex. u.rhe. tex. ess. htt. inst. es

The DESIGNATION TO Store that fine-free to the fine-free

12000 cycles at time 197918 re-

Time: 1893/1965652 75 Scope: th_odi_rhea_top.u_th_rhea_top.file: /scratch/sipear/hastien/hubert/sc_wsi_top/top-rhea/sub/soc/units/top/source/ver/log/th/ril/th_rhea_top.sv Line: 193

Now: 103.745.464.204 to Delta: 0 sim: tip odi rhea toplu to rhea toplu rhea top - Limited Visibility Region

Waveform

Résultats

Nombre de coverage items évalués par les réalisations de tests

	T_{CC_1}	T_{CC_2}	T_{CC_3}	T_{DDR_1}	T_{HBM_1}	T_{PCle_1}	T_{PCle_1}
T_{CC_1}	4579	2837	1619	841	925	454	557
T_{CC_2}	2837	7312	5452	1037	1129	236	325
T_{CC_3}	1619	5452	6821	769	631	378	417
T_{DDR_1}	841	1037	769	3427	947	158	206
T_{HBM_1}	925	1129	631	947	3546	141	189
T_{PCle_1}	454	236	378	158	141	1658	1246
T_{PCle_2}	557	325	417	206	189	1246	2246

- Taux de couverture total : 36.63% des 37920 coverage items du SLM
- Taux de réussite de 100% pour chaque réalisation de tests

Résultats

Taux de redondance entre les réalisations de tests

	T_{CC_1}	T_{CC_2}	T_{CC_3}	T_{DDR_1}	T_{HBM_1}	T_{PCle_1}	T_{PCle_1}
T_{CC_1}	12.08 %	7.48 %	4.27 %	2.22 %	2.44 %	1.20 %	1.47 %
T_{CC_2}	7.48 %	19.28 %	14.38 %	2.73 %	2.98 %	0.62 %	0.86 %
T_{CC_3}	4.27 %	14.38 %	17.99 %	2.03 %	1.66 %	1.00 %	1.10 %
T_{DDR_1}	2.22 %	2.73 %	2.03 %	9.04 %	2.50 %	0.42 %	0.54 %
T_{HBM_1}	2.44 %	2.98 %	1.66 %	2.50 %	9.35 %	0.37 %	0.50 %
T_{PCle_1}	1.20 %	0.62 %	1.00 %	0.42 %	0.37 %	4.37 %	3.29 %
T_{PCle_2}	1.47 %	0.86 %	1.10 %	0.54 %	0.50 %	3.29 %	5.92 %

Matrice de Jaccard des réalisations de tests

	T_{CC_1}	T_{CC_2}	T_{CC_3}	T_{DDR_1}	T_{HBM_1}	T_{PCle_1}	T_{PCle_1}
T_{CC_1}	100 %	31.32 %	16.55 %	11.75 %	12.85 %	7.87 %	8.89 %
T_{CC_2}	31.32 %	100 %	62.82 %	10.67 %	11.62 %	2.69 %	3.53 %
T_{CC_3}	16.55 %	62.82 %	100 %	8.12 %	6.46 %	4.68 %	4.82 %
T_{DDR_1}	11.75 %	10.67 %	8.12 %	100 %	15.73 %	3.23 %	3.74 %
T_{HBM_1}	12.85 %	11.62 %	6.46 %	15.73 %	100 %	2.77 %	3.39 %
T_{PCle_1}	7.87 %	2.69 %	4.68 %	3.23 %	2.77 %	100 %	47.00 %
T_{PCle_2}	8.89 %	3.53 %	4.82 %	3.74 %	3.39 %	47.00 %	100 %

Conclusion

Conclusion

- Pose d'un cadre théorique pour la vérification fonctionnelle
- Utilisation de 3 métriques simples pour une étude quantitative
- Réalisation d'un montage expérimental et analyse des résultats sur un exemple concret
- Étude de l'architecture de Rhea et réalisation de missions secondaires

Ouverture

- Généraliser le processus de cosimulation
- Ajouter des tests unitaires et des tests sur le VP
- Redresser l'indice de Jaccard en éliminant les coverage items non-pertinents

Architecture de Rhea

Architecture de Rhea

Vue architecturale du *die* de Rhea

Principales références

Principales références

- Eléments de théorie des automates, J. Sakarovitch, 2003
- "A Survey on Formal Verification Techniques for Safety-Critical Systems-on-Chip", T. Grimm, D. Lettnin, M. Hübner, 2018
- "Simulation-based equivalence checking between SystemC models at different levels of abstraction", D. Große, M. Groß, U. Kühne, R. Drechsler, 2011
- "Sequential equivalence checking between system level and RTL descriptions", S. Vasudevan, V. Viswanath, J. A. Abraham, J. J. Tu, 2006
- https://vlsiverify.com/uvm