《高等微积分1》第八次习题课材料

1 设 f 在 (a,b) 上处处可导,且

$$f'(x) \neq 0, \quad \forall x \in (a, b).$$

证明: f 在 (a,b) 上严格单调.

- 2 计算极限.
 - $(1) \lim_{x \to 0} \frac{x \sin x}{x^3}.$
 - (2) $\lim_{x \to \infty} x^2 (\sqrt[7]{\frac{x^3 + x}{1 + x^3}} \cos \frac{1}{x}).$
 - (3) $\lim_{x \to \infty} \frac{(1 + \frac{1}{x})^{x^2}}{e^x}$.
 - (4) $\lim_{x \to \infty} x(\frac{1}{e} (\frac{x}{x+1})^x).$
 - (5) $\lim_{x \to 0} \frac{\arctan x \sin x}{\tan x \arcsin x}$
- 3 设 f 在 [-1,1] 上处处有任意阶导数,且对任何非负整数 n 都有 $f^{(n)}(0)=0$. 假设存在常数 C 使得:

$$|f^{(n)}(x)| \le n!C, \quad \forall x \in [-1, 1], \forall n \in \mathbf{Z}_+.$$

证明: f 在 [-1,1] 上恒等于 0.

- 4 (1) 求函数 $\arcsin x$ 在 x=0 处的局部泰勒公式, 要求余项形如 $o(x^n)$.
 - (2) 求函数 $\arctan x$ 在 x=0 处的局部泰勒公式, 要求余项形如 $o(x^n)$.
- 5 设 $x \in (0, \frac{\pi}{2})$. 证明:
 - (1) $\sin x > x \frac{x^3}{6}$.

- $(2)\cos x < 1 \frac{x^2}{2} + \frac{x^4}{24}.$
- $(3) \left(\frac{\sin x}{x}\right)^3 > \cos x.$
- 6 请给出 x 的多项式 p(x), 使得对任何 $x \in [0.5, 1.5]$, 如下不等式成立

$$|p(x) - \ln x| \le \frac{1}{100}.$$

- 7 给定实数 a < b < c. 设 f 在 \mathbf{R} 上处处有 2 阶导函数.
 - (1) 求二次函数 q, 使得

$$q(a) = q(a), \quad q(b) = f(b), \quad q(c) = f(c).$$

(2) 证明: 存在 $\xi \in (a, c)$, 使得

$$\frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-a)(c-b)} = \frac{f''(\xi)}{2}.$$

(3) 证明: 存在 $\eta \in (a, b)$, 使得

$$f(a) - 2f(\frac{a+b}{2}) + f(b) = \frac{(b-a)^2}{4}f''(\eta).$$

8 设 f 在 [a,b] 上处处有一阶导函数, 在 (a,b) 上处处有二阶导函数, 且 f'(a) = f'(b) = 0. 证明: 存在 $x_0 \in (a,b)$, 使得

$$|f''(x_0)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

- 9 设 f 在开区间 I 上处处有二阶导函数, 且 f''(x) 处处非负.
 - (1) 证明: f' 在 I 上不减.
 - (2) 设 $x_1 < x_2 < x_3$ 是 I 上三个不同的点. 证明:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

由此可知, 对任何 $x,y \in I$ 及 $\alpha \in [0,1]$, 有

$$f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y).$$

- (3) 设 $[a,b] \subset I$. 证明: f 在 [a,b] 上的最大值一定在区间端点取得.
- (4) 证明: 对 I 上任何两点 x_0, x 有

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0).$$

10 设 f 在 \mathbf{R} 上处处有二阶导函数, f(a) = f(b) = 0 且

$$|f''(x)| \le M, \quad \forall x \in [a, b].$$

- (1) 证明: 对任何 $x \in [a,b]$, 有 $|f(x)| \leq \frac{M}{2}(x-a)(b-x)$.
- (2) 证明: 对任何 $x \in [a, b]$, 有 $|f(x)| \le \frac{M}{8}(b a)^2$.
- (3) 证明: 对任何 $x \in [a, b]$, 有 $|f'(x)| \le \frac{M}{2}(b a)$.