Et lokalsøgningssystem til at løse diskrete optimeringsproblemer

Bo Stentebjerg-Hansen

Vejleder: Marco Chiarandini

Syddansk Universitet

Institut for Matematik og Datalogi

3. marts 2016

Slide 1

Introduktion Elementer i lokalsøgning Opbygning af systemet Lokalsøgningsalgoritmer Experimentel evaluering

Introduktion

Diskrete optimeringsproblemer

En diskret optimeringsinstans 1:

- *n* variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

 $min\{ f(x) \mid x \in feas(I) \}$

Kan være NP-hårde problemer

Eksempel: Skemalægningsinstans

- Variable: Klasser der skal skemalægges
- Betingelser: Ingen overlap, krav til lokaler, tidspunkter, osv
- Evaluering: Totale antal af mellemtimer
- Bedste l

 øsning: Den l

 øsning som overholder alle betingelser og giver f

 ærrest mellemtimer

Introdukti

Overblik

Løsningsmetoder

- Algoritmer til specifikke problemer
 - Approximations algorithmer
 - Dynamisk programmering
- Satisfiability solver
- Lineær heltalsprogramming
- Constraint Programming
- Lokalsøgning
- Flere andre

Slide 3

Lineær helttalsprogrammering

■ Model baseret på uligheder

- Gurobi, CPLEX, SCIP, GLPK
- Kan ikke altid finde en (optimal) løsning inden for rimelig tid

Slide 5

Introduktion

Lokalsøgning

- "Trial and error" teknik
- Alle variable skal have en værdi først
- Delt op implicitte og bløde betingelser
- Ændre få variable ad gangen og beregner effekten.
- Kan ikke garantere optimalitet
- Ofte implementeret for fra til specifikke problemer.

			_			_						_			_			_		_
2	6	3	7	8	9	4	1	5				6	8	4	7	3	5	1	2	9
5	8	9	4	1	3	7	6	2				5	1	2	4	6	9	3	7	8
1	4	7	2	5	6	8	9	3				7	9	3	2	1	8	4	5	6
7	9	8	6	2	1	5	3	4	1			4	2	5	9	7	6	8	1	3
4	5	1	8	3	7	9	2	6				8	3	1	5	2	4	9	6	7
6	3	2	5	9	4	1	8	7				9	7	6	1	8	3	2	4	5
3	1	5	9	4	2	6	7	8	2	3	4	1	5	9	3	4	7	6	8	2
9	7	4	3	6	8	2	5	1	6	7	9	3	4	8	6	5	2	7	9	1
8	2	6	1	7	5	3	4	9	5	8	1	2	6	7	8	9	1	5	3	4
					7	6	2	4	9	3	5	8	1							
						1	8	3	7	6	5	9	2	4						
						5	9	4	1	2	8	6	7	3						
1	2	5	7	8	9	4	3	6	9	5	7	8	1	2	5	3	4	6	7	9
6	7	9	3	2	4	8	1	5	3	4	2	7	9	6	1	2	8	3	4	5
3	4	8	1	5	6	9	2	7	8	1	6	4	3	5	6	7	9	1	2	8
4	6	2	5	3	7	1	9	8				6	4	1	8	5	7	2	9	3
7	5	3	9	1	8	6	4	2				5	2	8	3	9	1	4	6	7
8	9	1	4	6	2	5	7	3				3	7	9	2	4	6	5	8	1
2	1	4	6	7	5	3	8	9	1			1	5	7	9	6	2	8	3	4
5	3	7	8	9	1	2	6	4				2	8	4	7	1	3	9	5	6
9	8	6	2	4	3	7	5	1	1			9	6	3	4	8	5	7	1	2

L Introduktion

Constraint Programming (CP)

- Bruger søgetræer + propagation til at finde en løsning
- Mere naturlig formulering af problemer
- Flere muligheder for at modeller et problem
- Men mindre egnet til optimeringsproblemer
- Fx Gecode, CHIP, Prolog

L Introduktio

Sammensætning af løsningsmetoder

- LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- 2 EasyLocal++ ²
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges

- 3 Comet ³
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt
- 4 OscaR ⁴
 - Inspireret af Comet
 - Forholdsvis nyt

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

³Constrainted-Based Local Search, P. Hentenryck & L. Michel

⁴http://oscarlib.bitbucket.org/cbls.html

Hvorfor et andet lokalsøgningssystem?

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke kun modelleringsmæssigt
 - Ikke som "large scale neighborhood search"
- Undersøger effekten af (offline) CP domæne reducering
- Bruger CP som konstruktions heuristik
- Tester effekten af envejsbetingelser
- Introducerer en ny evalueringsmetode
 - Leksikografisk vægtning

Slide 9

Opbygning af systemet

Binære optimeringsproblemer

$$\begin{aligned} \min \left\{ \sum_{j=1}^{n} c_{j} x_{j} \mid \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{j} \;,\;\; \forall i \in \{1..m\} \right\} \\ \text{Minimize} \quad & \mathsf{z} = 2x_{1} \; + \; x_{2} \; + \; x_{3} \\ \text{subject to} \quad & -x_{1} \; + \; 2x_{2} \; & \leq 1 \\ & x_{1} \; + \; x_{2} \; + \; x_{3} \; = 2 \\ & x_{1}, x_{2}, x_{3} \in \{0, 1\} \end{aligned}$$

 Mange problemer kan modelleres som binære optimeringsproblemer

 Fx: traveling salesman problem, knapsack, vertex cover, ...

Bliver oprettet i dette system med **linear**: **linear**(int[] coefficients, Variable[] variables, int relation, int bound, int priority)

Elementer i lokalsøgning

Begreber i lokalsøgning

Modellering:

- Variable: løsningsrepræsentation, search space *S(I)*
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser
 - Implicitte betingelser
- Evaluerings funktion: kvaliteten af en løsning

- Neighborhood
- Konstruktions heuristik
- Lokalsøgning
- Metaheuristikker
 - Tabu søgning
 - Iterativ lokalsøgning
 - ..

Slide 1

Opbygning af systemet

Før lokalsøgning kan startes

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi til Gecode
- Find en gyldig løsning
 - $-\,$ til 50 % af betingelserne
 - $-\,$ til 25 % af betingelserne
 - til 12,5 % af betingelserneTilfældig tildeling af værdi
 - Tilfældig tildeling af værdi til variable inden for deres domæne

Behandling af betingelser:

- Invarianter: Variable defineret af betingelser
- 2 Graf over afhængighed mellem variable og invarianter
- 3 Auxiliary invarianter: Betingelser behandlet som invarianter
- Topologisk sortering af invarianter.

Slide 11

Invarianter og afhængighedsgraf

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$
- $x_3 x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 1$

- Færre mulige løsninger der skal undersøges
- Bruger lidt mere tid på at evaluere en løsning
- x_3 er gjort afhængig af x_1 og x_2
- x_4 indirekte afhængig af x_1 og x_2
- Variable valgt efter antal udgående kanter og antallet af betingelser den optræder i

Slide 13

└─ Opbygning af systemet

Yderligere invarianter

- Betingelser som ikke er brugt til at definere variable
- Betingelses specifik oprettelse af invarianter
- Tilføj invarianter til grafen
- Invarianter til summering af overtrædelse betingelser

For en **linear** betingelsen:

■ Summering af venstresiden:

$$\underbrace{x_1 + 2x_2 - x_3}_{w_1} \le 2$$

■ Overtrædelse af betingelsen:

$$\underbrace{w_1 \leq 2}_{w_2}$$

$$w_2 = \begin{cases} w_1 - 2, & \text{if } w_1 > 2. \\ 0, & \text{otherwise.} \end{cases}$$

Copbygning af systemet

Kredse i grafen

 $y_1 = x_1 - y_3$

 $y_2 = y_1$

 $y_3 = x_2 + y_2 - 1$

 $x_1, x_2 \in \{0, 1\}$

 $y_1, y_2, y_3 \in \{0, 1\}$

 $y_1 = x_1 - y_3$

 $y_2 = y_1$

 $y_3 = x_2 + y_2 - 1$

 $x_1, x_2 \in \{0, 1\}$

 $y_1, y_2, y_3 \in \{0, 1\}$

 $y_1 = x_1 - y_3$

 $x_3 - y_1 = 0$

 $y_3 = x_2 + x_3 - 1$

 $x_1, x_2, x_3 \in \{0, 1\}$

 $y_1, y_3 \in \{0, 1\}$

 Identificering af kredse:

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant \rightarrow genskaber en variable fra hver SCC
 - Vælger invariant efter antal indgående kanter
- Gentages indtil ingen stærke sammenhængskomponenter er fundet
- Balance mellem tid og effekt

Slide 14

Opbygning af systemet

Endelige graf

Cordning af invarianter Lav ordning af invarianter til når de skal opdateres Forhindre flere opdateringer af samme invariant Ordningen kan laves med dybde først søgning i grafen Opret en liste for hver uafhængig variable

