Curso rápido

ANA SCARDINO

ANA MARIA DOS SANTOS SCARDINO

CÁLCULO DIFERENCIAL E INTEGRAL

Curso Rápido

1ª edição

São Paulo

Edição do autor

2017

Dedico este livro aos grandes nomes da matemática, sejam homens ou mulheres. E a todos que consideram o conhecimento como uma evolução e melhoria da condição humana. Dedico, também, ao meu filho Ian G. Scardino, pela colaboração na elaboração do livro.

> "UM PROFESSOR AFETA A ETERNIDADE . É IMPOSSÍVEL DIZER ATÉ ONDE VAI SUA INFLUÊNCIA."

HENRY ADAMS

Capítulo 1	7
1. LIMITES	7
1.1. LIMITES FINITOS	7
1.2. LIMITES LATERAIS E FUNÇÕES CONTÍNUAS	14
1.3. LIMITES INFINITOS E PARA X TENDENDO AO INFINITO	19
1.4. FUNÇÃO INVERSA.	21
1.5. PROPRIEDADES DOS LIMITES.	25
1.6. LIMITE DA FUNÇÃO POLINOMIAL PARA X TENDENDO A NO MENOS INFINITO.	
1.7. LIMITE DE UMA FUNÇÃO EXPONENCIAL	29
1.8. LIMITE FUNDAMENTAL EXPONECIAL E O NÚMERO DE EU	
1.9. LIMITE TRIGONOMÉTRICO FUNDAMENTAL	
Capítulo 2	42
2. TAXA MÉDIA DE VARIAÇÃO	42
Capítulo 3	49
3. DERIVADAS	49
3.1. INTERPRETAÇÃO GEOMÉTRICA DE DERIVADA	49
3.2. REGRAS DE DERIVAÇÃO	54
3.3. OPERAÇÕES DE DERIVAÇÃO	58
3.3.1. DERIVADA DO PRODUTO DE DUAS FUNÇÕES	59
3.3.2. DERIVADA DO QUOCIENTE DE DUAS FUNÇÕES	60
3.4. DERIVADA DA FUNÇÃO COMPOSTA	62

3.4.1. REGRA DA CADEIA.	62
3.5. DERIVADAS SUCESSIVAS	64
3.6. TEOREMA DO VALOR MÉDIO. MÁXIMOS E MINÍMOS DA FUNÇÃO	
3.7. REGRA DE L'HÔSPITAL E FORMAS INDETERMINADAS DE LIMITE	68
Capítulo 4	71
4. INTEGRAIS	71
4.1. CONCEITO DE INTEGRAIS INDEFINIDAS	71
4.2. INTEGRAL DE FUNÇÃO POLINOMIAL	73
4.3. INTEGRAL DE OUTRAS FUNÇÕES	76
4.4. MÉTODOS DE INTEGRAÇÃO	80
4.4.1. MUDANÇA DE VARIÁVEL – INTEGRAÇÃO POR SUBSTITUIÇÃO	80
4.4.2. INTEGRAÇÃO POR PARTES	84
4.5. INTEGRAL DEFINIDA.	87
4.6. CÁLCULO DE ÁREAS – APLICAÇÕES DA INTEGRAL DE RIE	
5. DERIVADAS PARCIAIS	99
5.1. FUNÇÕES DE DUAS VARIÁVEIS	99
6. INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS	102
6.1. CONCEITO.	102
6.2. SOLUÇÃO DE UMA EQUAÇÃO DIFERENCIAL	103

6.3. RESOLUÇÃO PELO MÉTODO DA SEPARAÇÃO DE VARIÁVEIS.104
Bibliografia106

Capítulo 1

1. LIMITES

1.1. LIMITES FINITOS.

Dizer que o limite de uma função y = f(x) em um ponto p é um número L, é afirmar que, à medida que x se aproxima de p, os valores da função aproximam-se do n^{o} L. Determinar o limite é verificar o comportamento da função quando x está próximo de um ponto p.

Para determinar o comportamento das funções, podemos construir tabelas de valores que se aproximam à esquerda e à direita do ponto x, procurando concluir para que valor a expressão converge.

O estudo do comportamento da função nas vizinhanças do ponto p chamase limite da função quando x tende a p e indica-se por

$$\lim_{x \to p} f(x) = L$$

Exemplos:

a) Como se comportam os valores da função y = 3x + 1 quando x se aproxima do ponto x=2

À esquerda do ponto x=2

x < 2	У
1	6,7
1,9	6,97
1,99	6,997
1,999	6,9997
1	↓
2	7

À direita do ponto x=2

x > 2	У
3	10
2,1	7,3
2,01	7,03
2,001	7,003
2,0001	7,0003
1	↓
2	7

Portanto o $\lim_{x\to 2} 3x + 1 = 7$

b) Qual o limite da função y = $\frac{x^2-4}{x-2}$, quando x tende a 2?

À esquerda do ponto x=2

<i>x</i> < 2	у
1	3
1,9	3,9
1,99	3,99
1,999	3,999
1,9999	3,9999
1	↓
2	4

À direita do ponto x=2

x > 2	у
3	5
2,1	4,1
2,01	4,01
2,001	4,001
2,0001	4,0001
1	\downarrow
2	4

Outra forma de resolver:

Lembrando-se do produto notável: $a^2 - b^2 = (a + b) (a - b)$

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} x + 2 = 4$$

Vamos relembrar alguns produtos notáveis úteis:

PRODUTOS NOTÁVEIS

1. Quadrado da soma de dois termos

$$(a + b)^2 = a^2 + b^2 + 2ab$$

2. Quadrado da diferença de dois termos

$$(a - b)^2 = a^2 + b^2 - 2ab$$

3. Diferença de potências (ordem 2)

$$a^2 - b^2 = (a + b)(a - b)$$

4. Cubo da soma de dois termos

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

5. Cubo da diferença de dois termos

$$(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

6. Soma de dois cubos na forma fatorada

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

7. Diferença de dois cubos na forma fatorada

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2).$$

Exemplos:

Calcular os seguintes limites:

a)
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x + 3)(x - 3)}{x - 3} = \lim_{x \to 3} x + 3 = 6$$

b)
$$\lim_{x\to 8} \frac{x^2-10x+16}{x-8}$$

$$\lim_{x \to 8} \frac{x^2 - 10x + 16}{x - 8} = \lim_{x \to 8} \frac{(x - 2)(x - 8)}{x - 8} = \lim_{x \to 8} x - 2 = 6$$

Obs. O polinômio de 2º grau pode ser fatorado na forma:

$$ax^2 + bx + c = a(x - x')(x - x'')$$

c)
$$\lim_{x\to 3} \frac{x^3-27}{x-3}$$

Aplicando o produto notável 7.

$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x^2 + 3x + 9)}{x - 3} = \lim_{x \to 3} 3^2 + 3.3 + 9$$

$$= 27$$

d)
$$\lim_{x\to 14} \frac{\sqrt{x+2}-4}{x-14}$$

Aplicando o produtor notável 3., podemos eliminar o radical, multiplicando a expressão pelo conjugado:

$$\lim_{x \to 14} \frac{\sqrt{x+2} - 4}{x - 14} = \lim_{x \to 14} \frac{\left(\sqrt{x+2} - 4\right)\left(\sqrt{x+2} + 4\right)}{\left(x - 14\right)\left(\sqrt{x+2} + 4\right)}$$

$$= \lim_{x \to 14} \frac{\left(\sqrt{x+2}\right)^2 - 4^2}{\left(x - 14\right)\left(\sqrt{x+2} + 4\right)}$$

$$= \lim_{x \to 14} \frac{x - 14}{\left(x - 14\right)\sqrt{x+2} + 4} = \frac{1}{8}$$

e)
$$\lim_{x\to 0} \frac{2x^2+4x}{x}$$

Colocando x em evidência:

$$\lim_{x \to 0} \frac{2x^2 + 4x}{x} = \lim_{x \to 0} \frac{x(2x + 4)}{x} = \lim_{x \to 0} 2x + 4 = 4$$

EXERCÍCIOS

1.1. Calcular os limites:

a)
$$\lim_{x\to -1} \frac{x^3+1}{x^2-1}$$

b)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$

c)
$$\lim_{x\to\sqrt{2}} \frac{2x^2}{3x}$$

Respostas: a)
$$\frac{-3}{2}$$
; *b)* 1; $c)\frac{4}{3\sqrt{2}} = \frac{2\sqrt{2}}{3}$.

ATIVIDADE

1.1. Calcule os limites, algebricamente:

a)
$$\lim_{x\to -4} \frac{x^2-16}{x+4}$$

b)
$$\lim_{x\to 2} \frac{x^{2-7x+10}}{x-2}$$

c)
$$\lim_{x\to -2} \frac{x^{-2}}{x+2}$$

d)
$$\lim_{x\to -1} \frac{(\sqrt{x+2}-1)}{(x+1)}$$

e)
$$\lim_{x \to 0} \frac{x^2 - x}{x}$$

f)
$$\lim_{x\to 2} \frac{-5x^2+20}{x-2}$$

g)
$$\lim_{x\to -1} \frac{x^2-4x-5}{x^2-3x-4}$$

LISTA DE EXERCÍCIOS

1.1. Calcular os limites abaixo com o auxílio de uma tabela de valores:

a)
$$lim_{x\rightarrow 0}\,2x+4$$

b)
$$\lim_{x\to -2} \frac{x+2}{x+1}$$

c)
$$\lim_{x\to 2} \frac{x^2-6x+8}{x-2}$$

d)
$$\lim_{x\to 0} \frac{|x|}{x}$$

1.2. Calcular os limites abaixo utilizando o método da fatoração.

a)
$$\lim_{x\to 4} \frac{x^2-16}{x-4}$$

b)
$$\lim_{x\to 2} \frac{x^2-6x+8}{x-2}$$

c)
$$\lim_{x\to 5} \frac{x^2-7x+10}{x-5}$$

d)
$$\lim_{x\to 2} \frac{3x^2-12}{x-2}$$

e)
$$\lim_{x\to 0} \frac{12x+3x^2}{x}$$

f)
$$\lim_{x\to 1} \frac{x^2+x-2}{x-1}$$

g)
$$\lim_{x\to 6} \frac{x^2-2x-24}{x-6}$$

h)
$$\lim_{x\to -2} \frac{x^3+8}{x+2}$$

i)
$$\lim_{x\to 3} \frac{x^2+x-12}{x-3}$$

j)
$$\lim_{x\to 2} \frac{x^3-8}{x-2}$$

k)
$$\lim_{x\to 1} \frac{x^3 - x^2 + x - 1}{x - 1}$$

1)
$$\lim_{x\to 8} \frac{\sqrt{x+1}-3}{x-8}$$

m)
$$\lim_{x\to -1} \frac{x^2-4x-5}{x^2-3x-4}$$

1.2. LIMITES LATERAIS E FUNÇÕES CONTÍNUAS.

Pode ocorrer que os limites à esquerda e à direita do ponto x=p, forneçam valores distintos. Nesse caso, esses valores são os *limites laterais*.

Entretanto o limite no ponto não existe.

Exemplo: Seja a função $y=\sqrt{x}$,

Pelo lado esquerdo a função nem pode ser calculada, pois não existe raiz de número negativo. Nesse caso o limite lateral quando x tende a zero pela esquerda <u>não existe</u>. Pelo lado direito a raiz tende a zero. O que existe é somente o <u>limite lateral direito</u>. Portanto

$$\lim_{x\to 0} \sqrt{x} = \nexists$$

À esquerda do ponto x= 0

Х	У
-1	A
-0,1	
-0,01	
-0,001	
-0,0001	
1	
0	∄

À direita do ponto x=0

х	У
1	1
0,1	0,32
0,01	0,10
0,001	0,032
0,0001	0,010
0,00001	0,0032
1	1
0	0

FUNÇÕES CONTÍNUAS.

Consideremos o gráfico das funções abaixo:

Se uma função tem limite em um ponto p e, além disso, é possível calcular o valor dessa função no ponto e o valor coincide com o limite, dizemos que a função é contínua nesse ponto.

A função f₁ é contínua no ponto a

As funções f_2 e f_3 são descontínuas no ponto b e c, respectivamente.

Os pontos b e c são chamados ponto de descontinuidade da função.

Resumindo: Para que uma função seja contínua em x=p do seu domínio, devem ser satisfeitas as seguintes condições:

- a) Existe f(p)
- b) Existe $\lim_{x\to p} f(x)$
- c) $\lim_{x\to p} f(x) = f(p)$

Exemplos:

a) Verificar se a função f(x) = $\frac{x^2-4}{x-2}$ é contínua em x=3.

Resposta

$$f(x) = \frac{3^2 - 4}{3 - 2} = 5$$

$$\triangleright \lim_{x\to 3} f(x) = 5$$

>
$$\lim_{x\to 3} f(x) = 5$$

> $f(x) = \lim_{x\to 3} f(x) = 5$

Portanto, a função é contínua no ponto x = 3.

b) Verificar se a função $f(x) = \frac{x^2 - 4}{x - 2}$ é contínua em x=2.

Resposta

$$f(x) = \frac{2^2 - 4}{2 - 2} = \frac{0}{0} = indeterminação.$$

$$\triangleright f(x) \neq \lim_{x \to 2} f(x)$$

Portanto, f(x) não é contínua no ponto x = 2.

c) Supor que a cobrança em um estacionamento comece com um valor de R\$5,00 na primeira hora, e aumente R\$2,00 a cada hora. Um possível modelo que descreve o custo do estacionamento em função do tempo é:

$$y = \begin{cases} 5,00 \text{ se } 0 \le x < 1\\ 7,00 \text{ se } 1 \le x < 2\\ 9,00 \text{ se } 2 \le x < 3\\ etc \end{cases}$$

A função é descontínua nos pontos p=1, p=2, p=3, etc., pois não existe o limite da função f(x) nos pontos p=1, p=2, p=3, etc.

EXERCÍCIOS

1.2. Verificar a continuidade das funções:

a)
$$y = \frac{3x+9}{x+3}$$
 no ponto x=2

b)
$$f(x) = \begin{cases} 2x + 1, se \ x \neq 1 \\ 4, se \ x = 1 \end{cases}$$
 no ponto x=1

c)
$$f(x) = \begin{cases} 2x^2 - 4, se \ x < 2 \\ 4 - 2x, se \ x \ge 2 \end{cases}$$
 no ponto x=2

Respostas:

a) É contínua. b) Não é contínua. c) Não é contínua.

ATIVIDADE

1.2. Verificar se a função é contínua no ponto x=2

$$f(x) = \begin{cases} 3x - 4, se \ x < 2 \\ x^2 + 4, se \ x \ge 2 \end{cases}$$

1.3. Verificar a continuidade da função $f(x) = \begin{cases} x^2 - 1, se \ x < 2 \\ 7 - 2x \ se \ x \ge 2 \end{cases}$ no ponto x = 2

LISTA DE EXERCÍCIOS

- 1.3. Verificar a continuidade das funções:
- a) f(x) = 4x + 1 no ponto x = 1
- b) $f(x) = \begin{cases} 2x + 3, se \ x \neq 1 \\ 4, se \ x = 1 \end{cases}$ no ponto x = 1
- c) $f(x) = \begin{cases} x 3, & se \ x \le 1 \\ 1 x, & se \ x > 1 \end{cases}$ no ponto x = 1

1.3. LIMITES INFINITOS E PARA X TENDENDO AO INFINITO.

Pode ocorrer que à medida que x se aproxima de um ponto p, os valores de y = f(x) tornam-se muito grandes, acompanhados dos sinais positivo ou negativo.

Exemplos:

a)
$$\lim_{x\to 3} \frac{x^2+1}{x-3}$$

x < 3	У
2	-5
2,9	-94,1
2,99	-994,1
2,999	-9994,001
\	↓
3	-8

x > 3	У
4	17
3,1	106,1
3,01	1.006,01
3.001	10.006,001
\	\rightarrow
3	8

Verifica-se que nesse caso, o limite à esquerda é menos infinito e à direita é mais infinito, pois os valores tendem a decrescer sempre do lado esquerdo e, a crescer infinitamente do lado direito.

O limite no ponto x = 3 não existe, uma vez que os limites laterais não são iguais. Portanto a função não é contínua no ponto x = 3.

b)
$$\lim_{x\to 0} \frac{5+x}{x^2}$$

À esquerda

Х	У
-1	4
-0,1	490
-0,01	49.900
-0,001	4.999.000
\	\
0	∞

À direita

Х	У
1	6
0,1	510
0,01	50.100
0,001	5.001.000
\	\
0	∞

Logo, $\lim_{x\to 0} f(x) = \infty$, pois os limites laterais coincidem.

A função não é contínua no ponto $\mathbf{x} = \mathbf{0}$, pois nem é definida neste ponto.

ATIVIDADE

1.4. Determine, caso exista, o $\lim_{x\to 3} \frac{x^2+1}{x-3}$

1.4. FUNÇÃO INVERSA.

Vamos estudar agora uma função muito importante que representa bem um conjunto de várias outras funções, para o caso de o limite ser infinito ou x tender a infinito.

Seja a função
$$f(x) = \frac{1}{x}$$

Esta função tem como gráfico a hipérbole equilátera cujas assíntotas, neste caso, são os eixos coordenados Ox e OY.

Para estudá-la, vamos construir inicialmente seu gráfico:

Х	Υ
-3	$-\frac{1}{3}$
-2	$-\frac{1}{3}$ $-\frac{1}{2}$ -1
-1	-1
0	∄
2	1
2	
3	$\frac{\frac{1}{2}}{\frac{1}{3}}$

Pode-se observar que:

Quando x se aproxima de zero, pela esquerda, y decresce indefinidamente, tendendo a $-\infty$

$$\lim_{x\to 0_-}\frac{1}{x}=-\infty$$

Quando x se aproxima de zero pela direita, y cresce indefinidamente, tendendo a ∞

$$\lim_{x\to 0+}\frac{1}{x}=+\infty$$

Ainda, a partir do mesmo gráfico, pode-se verificar que quando x cresce indefinidamente, a curva tende a encostar no eixo x, tendendo a zero

$$\lim_{x\to\infty}\frac{1}{x}=0$$

Quando x decresce indefinidamente, a curva tende a encostar no eixo x, tendendo a zero também.

$$\lim_{x\to -\infty}\frac{1}{x}=0$$

Podemos generalizar que $\lim_{x\to\pm\infty}\frac{1}{x}=\lim_{x\to\pm\infty}\frac{1}{x^n}=0$, se n \in N* e se f:R* \rightarrow R*

Exemplos:

Calcule:

- a) $\lim_{x\to\infty}\frac{3}{x}$ Resposta. $\lim_{x\to\infty}\frac{3}{x}=\lim_{x\to\infty}3.\frac{1}{x}=3.0=0$
- b) $\lim_{x\to 0_+} \left(\frac{3}{x}\right)$ Resposta. $\lim_{x\to 0_+} \left(\frac{3}{x}\right) = \lim_{x\to 0_+} 3 \cdot \frac{1}{x} = 3 \cdot \infty = \infty$

EXERCÍCIOS

- 1.3. Determine os seguintes limites:
 - a) $\lim_{x\to 0_-} \left(\frac{9}{x}\right)$

b)
$$\lim_{x\to-\infty} \left(\frac{2}{x}\right)$$

c)
$$\lim_{x\to 0_-} \left(\frac{-5}{x}\right)$$

d)
$$\lim_{x\to 0_+} \left(\frac{1000}{x^2}\right)$$

e)
$$\lim_{x\to\infty} \left(\frac{4}{x^2}\right)$$

Respostas:

a)
$$-\infty$$
; b) 0; c) ∞ ; d) ∞ ; e) 0.

ATIVIDADE

1.5. Calcule os limites:

a)
$$\lim_{x\to\infty} \frac{7+x}{x^2}$$

b)
$$\lim_{x\to\infty}\frac{10}{x}$$

c)
$$\lim_{x\to 0_+} \left(\frac{3}{x}\right)$$

d)
$$\lim_{x\to 0_-} \left(\frac{9}{x}\right)$$

LISTA DE EXERCÍCIOS

1.4. Calcular os seguintes limites:

a)
$$\lim_{x\to\infty} \left(\frac{4}{x}\right)$$

b)
$$\lim_{x\to 0+} \left(\frac{5}{x^2}\right)$$

c)
$$\lim_{x\to\infty} \left(\frac{5}{x^2}\right)$$

d)
$$\lim_{x\to 0_-} \left(\frac{-5}{x}\right)$$

1.5. PROPRIEDADES DOS LIMITES.

LIMITE DE UMA CONSTANTE

 $\lim_{x\to x_0} k = k$

Exemplo: $\lim_{x\to 2} 3=3$

LIMITE DA SOMA E DA DIFERENCA

$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

Exemplos:

- a) $\lim_{x\to 2} x + 3 = \lim_{x\to 2} x + \lim_{x\to 2} 3 = 2 + 3 = 5$
- b) $\lim_{x\to 2} 4x 3 = \lim_{x\to 2} 4x \lim_{x\to 2} 3 = 8-3=5$
 - LIMITE DO PRODUTO

$$\lim_{x\to x_0} [f(x). g(x)] = \lim_{x\to x_0} f(x). \lim_{x\to x_0} g(x)$$

Exemplo:

$$\lim_{x \to 3} 4x^2 \text{=} \lim_{x \to 3} 4 \cdot \lim_{x \to 3} x^2 \text{=} 4.9 \text{=} 36$$

LIMITE DO QUOCIENTE

$$\lim\nolimits_{x\to x_0}[f(x)/g(x)] = \lim\nolimits_{x\to x_0}f(x)/\lim\nolimits_{x\to x_0}g(x)$$

Exemplo:

$$\lim_{x \to 2} \frac{(x+3)}{(x+4)} = \frac{\lim_{x \to 2} x+3}{\lim_{x \to 2} x+4} = \frac{5}{6}$$

LIMITE DE UMA POTÊNCIA

$$\lim_{x \to x_0} [f(x)]^n = \left[\lim_{x \to x_0} f(x)\right]^n$$

Exemplo:

$$\lim_{x\to 1} (3x)^2 = [\lim_{x\to 1} 3x]^2 = 3^2 = 9$$

LIMITE DE UMA RAIZ

$$\lim_{x \to x_0} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to x_0} f(x)}$$

Exemplo:

$$\lim_{x \to 2} \sqrt[3]{2x^2} = \sqrt[3]{\lim_{x \to 2} 2x^2} = \sqrt[3]{8}$$

LIMITE DA FUNÇÃO COMPOSTA

Sabendo que
$$\lim_{x\to k} g(f(x)) = g(\lim_{x\to k} f(x))$$

Exemplo:

$$\lim_{x\to 10} \log 100x = \log \left[\lim_{x\to 10} 100x\right] = 3$$

1.6. LIMITE DA FUNÇÃO POLINOMIAL PARA X TENDENDO A MAIS OU MENOS INFINITO.

Considere a função polinomial, de grau n, com a_n≠0

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$$

Colocando xⁿ em evidência, temos:

$$f(x) = x^{n} (a_{n} + a_{n-1}x^{-1} + \dots + a_{1}x^{-n+1} + a_{0}x^{-n})$$

Fazendo o limite

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} x^{n} (a^{n} + \frac{a_{n-1}}{x} + \dots + \frac{a_{n-1}}{x^{n}} + \frac{a_{n-1}}{x^{n}})$$

$$= \lim_{x \to \pm \infty} x^{n} (a^{n}) = \lim_{x \to \pm \infty} a^{n} x^{n} = \pm \infty$$

Conforme a paridade de n e o sinal de $a_{n,}$ teremos limites iguais a mais infinito ou menos infinito.

Exemplos:

1) Dada a função $f(x) = 4x^3 + 2x^2 - 3x - 2$, calcular:

a)
$$\lim_{x\to\infty} f(x)$$

Resp.

$$\lim_{x \to \infty} 4x^3 + 2x^2 - 3x - 2 = \lim_{x \to \infty} 4x^3 = \infty$$

b)
$$\lim_{x\to -\infty} f(x)$$

Resp.

$$\lim_{x \to -\infty} 4x^3 + 2x^2 - 3x - 2 = \lim_{x \to -\infty} 4x^3 = -\infty$$

Obs. Limites do tipo $\frac{\infty}{\infty}$ deve-se dividir o numerador e o denominador pela maior potência de x:

2) Dada a função f(x) =
$$\frac{3x^2-2x+1}{5x^2+3x-5}$$
, calcular $\lim_{x\to\infty} f(x)$

$$\lim_{\chi \to \infty} \frac{x^2 (3 - \frac{2}{\chi} + \frac{1}{\chi^2})}{x^2 (5 + \frac{3}{\chi} - \frac{5}{\sqrt{2}})} = \lim_{\chi \to \infty} \frac{3\chi^2}{5\chi^2} = \frac{3}{5}$$

3) Calcular
$$\lim_{x\to\infty} \sqrt{x^2 + 2x + 3} - x$$
.

$$\begin{split} &\lim_{x\to\infty} \sqrt{x^2 + 2x + 3} - x = \lim_{x\to\infty} \frac{(\sqrt{x^2 + 2x + 3}, -x).(\sqrt{x^2 + 2x + 3}) + x)}{\sqrt{x^2 + 2x + 3} + x} \\ &= \lim_{x\to\infty} \frac{x^2 + 2x + 3 - x^2}{\sqrt{x^2 + 2x + 3}) + x} = \lim_{x\to\infty} \frac{2x + 3}{\sqrt{x^2(1 + \frac{2}{x} + \frac{3}{x^2})} + x} = \lim_{x\to\infty} \frac{2x + 3}{\sqrt{x^2 + x}} \\ &= \lim_{x\to\infty} \frac{2x}{2x} + \lim_{x\to\infty} \frac{3}{2x} = 1. \end{split}$$

ATIVIDADE

1.6. Calcular:

a)
$$\lim_{x\to -\infty} 2x^3 - 4x^2 - 3x + 1$$

b)
$$\lim_{x\to\infty} 5x - 1$$

c)
$$\lim_{x\to\infty} 2x^6 + x^3 - x + 4$$

d)
$$\lim_{x\to\infty} \frac{2x^2 - 3x + 2}{4x^2 + x - 1}$$

e)
$$\lim_{x\to\infty} \sqrt{\frac{x^2-3x}{x^2-1}}$$

LISTA DE EXERCÍCIOS

1.5. Calcular os seguintes limites:

a)
$$\lim_{x\to\infty} -2x+1$$

b)
$$\lim_{x\to-\infty} -2x+1$$

c)
$$\lim_{x\to-\infty} \left(-x^3 + \sqrt{2}\right)$$

d)
$$\lim_{x\to -\infty} \frac{8x^3 - 3x^2 + x - 1}{x - 2}$$

e)
$$\lim_{x \to -\infty} \frac{-2 + 3x + x^2}{3 + 5x + 2x^3}$$

f)
$$\lim_{x \to \infty} \frac{3x - 1}{4x + 2}$$

g)
$$\lim_{x \to -\infty} \frac{4x + 2}{4x + 2}$$

h)
$$\lim_{x\to -\infty} \frac{-3x^2-1}{6x+1}$$

i)
$$\lim_{x \to \infty} \sqrt{2x^3 - x^2 + x - 1}$$

$$j) \quad \lim_{x \to \infty} \left(\frac{6x - 1}{2x + 3} \right)^2$$

1.7. LIMITE DE UMA FUNÇÃO EXPONENCIAL.

Antes de estudarmos o comportamento da função exponencial, citamos um exemplo corriqueiro de aplicação deste tipo de função:

Suponha um recipiente onde seja colocada uma bactéria, que se desenvolve dando origem a duas. As duas se desenvolvem e dão origem a outras quatro. O número de bactérias duplica de minuto em minuto. Sabemos que a primeira bactéria foi colocada no recipiente ao meio dia e que o recipiente se encheu pela metade em quatro horas. A que horas o recipiente estará cheio?

Muitas vezes tendemos a responder 8 horas, dentro de uma lógica linear. No caso, basta mais um minuto para que a quantidade de bactérias duplique e o recipiente fique cheio.

Ao estudar as funções exponenciais verificamos que elas são típicas para representar crescimentos populacionais.

A função exponencial é do tipo $f(x) = a^x$, com a > 0 e $a \ne 1$.

Como exemplo, temos a função exponencial y = 2^x ou a função y = $(\frac{1}{2})^x = 2^{-x}$.

Considerando o coeficiente a > 1, teremos a exponencial crescente, e se 0 < a < 1, teremos a exponencial decrescente:

Uma aplicação da exponencial crescente seria a função que fornece o número de bactérias presentes (salmonela) em uma maionese deteriorada x horas após ser servida, do tipo y = $200.2^{\frac{2x}{3}}$; e uma aplicação da exponencial decrescente seria a lei do decaimento radioativo, onde o número de núcleos radioativos restantes em uma amostra é dada por $N=N_0\,e^{-\lambda t}$. Abaixo, transcrevo um trecho de um artigo, que mostra a utilização de uma função exponencial decrescente.

"Datação por carbono-14"

Quando o nitrogênio, na parte superior da atmosfera da terra, é bombardeado pelos raios cósmicos, o elemento carbono-14 radioativo é produzido. Esse carbono-14 combina-se com o oxigênio para formar o dióxido de carbono, o qual é ingerido pelas plantas, que por sua vez, são comidas pelos animais. Desta maneira, todas as plantas e os animais vivos absorvem quantidades de carbono-14 radioativo. Em 1947, o cientista nuclear americano W.F.Libby propôs a teoria que a porcentagem de carbono-14 na atmosfera e em tecidos vivos de plantas é a mesma. Quando uma planta ou um animal morre, o carbono-14 no tecido começa a decair. Assim, a idade de um artefato que contenha material animal ou vegetal pode ser estimada determinando qual a porcentagem que resta do seu

conteúdo de carbono-14 original. Vários procedimentos chamados datação por carbono ou datação por carbono-14 foram desenvolvidos para medir esta porcentagem.

Em 1988, o Vaticano autorizou o Museu Britânico a datar a relíquia de pano conhecida como Sudário de Turim, possivelmente o sudário de Jesus de Nazaré. Este pano, que apareceu em 1356, contém o negativo da imagem de um corpo humano que se acreditava no mundo inteiro ser o de Jesus. O relatório do Museu Britânico mostrou que as fibras no pano continham entre 92 e 93 % do carbono-14 original."

Retirado do livro Anton, Howard; Cálculo – um novo horizonte, 6ª ed., Porto Alegre, vol.2-Bookman,2000.

Usando essa informação e tendo o valor da constante de desintegração, podemos calcular o número de anos da existência do Sudário:

$$N = N_0 e^{-\lambda t}$$
 ou

$$y = y_0 e^{-0,000121t}$$

Sendo
$$\frac{y}{y_0} = 0.92$$
 temos

$$0.92 = e^{-0.000121t}$$

Aplicando logaritmo em ambos os lados:

$$t = \frac{\ln 0.92}{-0.000121}$$

Portanto, segundo esta teoria a idade do Sudário estava perto de 689 anos, colocando sua origem próxima ao ano de 1299.

ATIVIDADE

1.7. Resolver:

- a) $\lim_{x\to\infty} 2^x$
- b) $\lim_{x\to-\infty} 2^x$
- c) $\lim_{x\to\infty} (\frac{1}{2})^x$
- d) $\lim_{x\to-\infty} \left(\frac{1}{2}\right)^x$

1.8. LIMITE FUNDAMENTAL EXPONECIAL E O NÚMERO DE EULER.

O número e = 2,718281828459045...é um número irracional, cuja utilização em cálculos com potência e logaritmos tem origem nos trabalhos de Napier e Briggs, no início do século XVII. Esse número é muito utilizado em processos de crescimento ou decrescimento. Particularmente a função e^x , exponencial de base e, descreve vários fenômenos da natureza, como o decaimento radioativo de alguns elementos, a propagação de moléstias, o crescimento das populações, e o cálculo de juros, que tomaremos como exemplo, para tentar entender o aparecimento do número e.

Seja um capital inicial C_0 , aplicado a uma taxa de juros simples de $100\% \ a.a.$, por $1\ ano.$

Depois de um ano teremos: $C_1 = C_0 + 100\% C_0 = 2 C_0$

Vamos agora trabalhar no regime de juros compostos, mas considerando a incorporação dos juros em períodos diferentes.

Comecemos com o período n = 2 e taxa semestral = $\frac{100}{2}$ = 50% a.s.

No final de 1 semestre $C_{1/2} = C_0 + 50\%C_0 = C_0(1 + 1/2)$

No final de 2 semestres: $C_1 = C_{1/2} + 50\%$ $C_{1/2} = C_{1/2}(1 + 1/2) = C_0(1 + 1/2)(1 + 1/2) = C_0(1 + 1/2)^2 = 2,25C_0$

Para o período n = 4 e taxa trimestral = $\frac{100}{4}$ = 25% a.t.

$$C_{1/4} = C_0 + 25\%C_0 = C_0(1 + \frac{1}{4})$$

 $C_{2/4} = C_{1/4} + 25\%C_{1/4} = C_{1/4}(1 + \frac{1}{4}) = C_0(1 + \frac{1}{4})_2$
.....
 $C_{4/4} = C_0(1 + \frac{1}{4})^4 = 2,44C_0$

Para um período n = 12 e taxa mensal = $\frac{100}{12}$ %

$$C_1 = C_0(1 + 1/12)^{12} = 2,613C_0$$

Para um período n= 365 dias e taxa diária = $\frac{100}{365}$ %

$$C_1 = C_0(1 + 1/365)^{365} = 2,714C_0$$

Generalizando $C_1 = C_0 (1 + 1/n)^n$

Vejamos como fica o valor da expressão (1 + 1/n)ⁿ, para n grande

n	(1 + 1/n) ⁿ
1.000	2,7169239
5.000	2,7180101
10.000	2,7181459
50.000	2,7182546
100.000	2,7182682
1.000.000	2,7182805

Como podemos observar o $n^{\circ} (1 + 1/n)^n$ se aproxima de um valor aproximadamente fixo igual a 2,718, que é representado pelo $n^{\circ} e$.

Se considerarmos o mesmo raciocínio para uma taxa i \neq 100%, obteríamos a seguinte fórmula : C_1 = C_0 . e^i

E para o cálculo ao fim de t anos: $C_t = C_0.e^{it}$.

Façamos, agora, um estudo do comportamento da função $y=(1+\frac{1}{x})^x$ D =] - ∞ ,-1 [\cup] 0, ∞ [, tais que $(1+\frac{1}{x})$ > 0

Ou seja, o limite fundamental exponencial pode ser escrito como:

 $\lim_{x \to \infty} (1+rac{1}{x})^x = \lim_{x \to -\infty} (1+rac{1}{x})^x = e$, onde x é um número natural.

A partir do limite fundamental, podemos resolver vários outros limites:

Exemplos

a)
$$\lim_{x\to\infty} (1+\frac{1}{x})^{2x} = \lim_{x\to\infty} [(1+\frac{1}{x})^x]^2 = e^2$$

b)
$$\lim_{x\to\infty} (1+\frac{1}{3x})^x = \lim_{x\to\infty} (1+\frac{1}{u})^{\frac{u}{3}} = \lim_{x\to\infty} (1+\frac{1}{u})^{\frac{u}{3}} = \lim_{x\to\infty} [(1+\frac{1}{u})^u]^{1/3} = e^{1/3}$$

$$\begin{cases}
 3x = u \\
 x = \frac{u}{3}
 \end{cases}$$

ATIVIDADE

1.8. Resolver:

a)
$$\lim_{x\to-\infty} \left(1+\frac{1}{x}\right)^x$$

b)
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^{4x}$$

c)
$$\lim_{x\to\infty} \left(\frac{x+6}{x}\right)^x$$

d)
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^{x+a}$$
, onde $a=$ constante, pertencente ao conjunto dos reais.

LISTA DE EXERCÍCIOS

1.8. Calcule:

a)
$$\lim_{x\to-\infty} \left(1-\frac{1}{x}\right)^x$$

b)
$$\lim_{n\to 0} (1+n)^{\frac{1}{n}}$$

c)
$$\lim_{n \to -\infty} \left(1 + \frac{1}{n}\right)^{\frac{1}{2}n}$$

d)
$$\lim_{n\to-\infty} \left(1+\frac{1}{n}\right)^{\frac{4}{3}n}$$

e)
$$\lim_{n\to-\infty} \left(1+\frac{1}{2n}\right)^n$$

1.9. LIMITE TRIGONOMÉTRICO FUNDAMENTAL.

Considere a função f(x) =
$$\frac{senx}{x}$$
, definida em R - $\{0\}$.

Para calcular o limite da função quando x tende a zero, vamos lembrar que:

senx < x < tgx

Dividindo-se por senx

$$1 < \frac{x}{senx} < \frac{senx/_{cosx}}{senx}$$

$$1 < \frac{x}{senx} < \frac{1}{cosx}$$

Invertendo:

$$1 > \frac{senx}{x} > cosx$$

b) Para
$$\frac{-\pi}{2} < x < 0$$

$$\frac{senx}{cosx} < x < senx$$

Invertendo:

$$\frac{\cos x}{\sin x} > \frac{1}{x} > \frac{1}{\sin x}$$

Multiplicando por senx:

(lembrando que senx < 0)

$$cosx < \frac{senx}{x} < 1$$

$$\lim_{x \to 0} \cos x = \lim_{x \to 0} 1 = 1$$

Pelo Teorema do confronto ou teorema do sanduiche:

Se
$$g(x) < f(x) < h(x)$$
 são funções contínuas e se $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = b$, então, $\lim_{x \to a} f(x) = b$.

Logo,

$$\lim_{x\to 0} \frac{senx}{x} = 1.$$

Novamente, a partir do limite fundamental trigonométrico, podemos resolver outros limites.

Exemplos:

a)
$$\lim_{x\to 0} \frac{\sin 3x}{x} = \lim_{x\to 0} \frac{3.sen3x}{3x} = 3.\lim_{x\to 0} \frac{sen3x}{3x} = 3.1 = 3$$

b)
$$\lim_{x\to 0} \frac{\sin 3x}{2x} = \lim_{x\to 0} \frac{3.sen3x}{2.3x} = \frac{3}{2} \lim_{x\to 0} \frac{sen3x}{3x} = \frac{3}{2}.1 = \frac{3}{2}$$

ATIVIDADE

1.9. Resolver:

a)
$$\lim_{x\to 0} \frac{\sin x}{5x}$$

b)
$$\lim_{x\to 0} \frac{\sin \pi x}{3\pi x}$$

1.10. Resolva os limites gerais:

a)
$$\lim_{x\to 2} 4x^2 - 7x + 2$$

b)
$$\lim_{x\to 2} \frac{3x+2}{x^2-6x+5}$$

c)
$$\lim_{x\to 2} \left(\frac{3x^2 - 2x - 5}{-x^2 + 3x + 4} \right)$$

d)
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$

e)
$$\lim_{x\to -2} \frac{4-x^2}{2+x}$$

f)
$$\lim_{x\to 3/2} \frac{4x^2-9}{2x-3}$$

g)
$$\lim_{x\to 3} \frac{x^2 - 4x + 3}{x^2 - x - 6}$$

h)
$$\lim_{x\to\infty} -3x^3 + 2x^2 - 5x + 3$$

i)
$$\lim_{x \to -\infty} 5x^3 - 4x^2 - 3x + 2$$

j)
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^{2x}$$

k)
$$\lim_{x\to -\infty} \left(1+\frac{3}{x}\right)^n$$

I)
$$\lim_{x\to 0} \frac{sen2x}{senx}$$

m)
$$\lim_{x\to\infty} 2x + 3$$

n)
$$\lim_{x\to-\infty} 4-5x$$

1.11. Para a função
$$f(x) = \begin{cases} 3 - 2x, se \ x \ge -1; \\ 4 - x, se \ x < -1 \end{cases}$$

calcule os limites abaixo, se existirem:

$$\lim_{x\to -1_+} f(x)$$
; $\lim_{x\to -1_-} f(x)$; $\lim_{x\to -1} f(x)$

1.9.4. Para a função
$$f(x) = \begin{cases} 3x - 2, se \ x > 1; \\ 2, se \ x = 1 \\ 4x + 1, se \ x < 1 \end{cases}$$

calcule os limites abaixo, se existirem:

a)
$$\lim_{x\to 1_+} f(x)$$
; b) $\lim_{x\to 1_-} f(x)$; c) $\lim_{x\to 1} f(x)$

LISTA DE EXERCÍCIOS

1.9. Calcular os seguintes limites (revisão):

a)
$$\lim_{x\to 0} \frac{\sin 3x}{2x}$$

b)
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$

c)
$$\lim_{x\to 0} \frac{\text{sen } x}{5x}$$

d)
$$\lim_{x\to 0} \frac{\sin \pi x}{3\pi x}$$

e)
$$\lim_{x\to\infty} (1-\frac{1}{x})$$

f)
$$\lim_{x\to\infty} \left(1-\frac{1}{x}\right)^x$$

g)
$$\lim_{x\to\infty} x^2 + 4x - 3$$

h)
$$\lim_{x\to\infty} \frac{2x+1}{x-1}$$

$$i) \lim_{x \to 1} \frac{2x+1}{x-1}$$

$$j) \lim_{X\to 0} \frac{|2X|}{X}$$

k)
$$\lim_{X\to -3} \frac{X+3}{X-1}$$

I)
$$\lim_{X\to 2} \frac{-1}{(X-2)^2}$$

m)
$$\lim_{H\to 0} \frac{(2+H)^2-4}{H}$$

n)
$$\lim_{X\to-\infty} \frac{2X^3-3X+5}{4X^5-2}$$

1.10. Esboce o gráfico e calcule os limites indicados, se existirem:

$$f(x) = \begin{cases} \frac{1}{x}, x < 0; \\ x^2, 0 \le x < 1; \\ 2, x = 1 \\ 2 - x, x > 1 \end{cases}$$

- a) $\lim_{x\to 1} f(x)$
- b) $\lim_{x\to 0} f(x)$
- c) $\lim_{x\to 2} f(x)$

Capítulo 2

2. TAXA MÉDIA DE VARIAÇÃO.

Iniciemos o estudo da **TAXA MÉDIA DE VARIAÇÃO** lembrando as funções de primeiro e segundo grau.

Para isso vamos analisar uma situação, por exemplo, de uma função demanda, que relaciona o preço unitário de certo produto em função da quantidade demandada.

Em geral, à medida que a quantidade aumenta o preço unitário cai. A tabela abaixo mostra esta relação, além de apresentar a coluna da receita total, onde se supõe que toda a produção seja vendida, sendo a receita o produto da quantidade pelo preço unitário.

Quantidade	reço unitário	Receita total
Х	y (R\$)	R(R\$)
0	12	0
100	10	1.000,00
200	8	1.600,00
300	6	1.800,00
400	4	1.600,00
500	2	1.000,00
600	0	0

Determinando-se a função para a relação quantidade x preço unitário, percebe-se que é uma função de primeiro grau, onde o coeficiente angular coincide com o cálculo da tangente do ângulo alfa

e o coeficiente linear é a ordenada do ponto onde a reta intercepta o eixo y, ou seja, quando x for igual à zero.

Já a relação entre a receita total e a quantidade segue uma função de 2º grau.

Para determinar essas funções, construa inicialmente o gráfico correspondente aos dados da tabela preço unitário x quantidade e, determine o coeficiente angular e linear da reta:

Resposta:
$$y(x) = -0.02x + 12$$

Verificamos que a tangente mostra a relação $\frac{\Delta y}{\Delta x}$, que representa nesse caso, a variação unitária do preço por unidade do produto. Esse valor mede a taxa de variação média da função preço.

Quando y e x têm variações diretamente proporcionais, ou seja, quando ao variar x de uma unidade, o valor correspondente de y varia sempre de um valor constante de unidades, temos uma função de 1º grau, cujo coeficiente angular mede a taxa de variação da função.

Lembrando que o coeficiente angular pode ser obtido calculando-se a tangente do ângulo alfa (tgα), então, ao calcular a inclinação da reta estamos calculando a taxa de variação da função. Essa taxa de variação pode ser dada pela fórmula abaixo:

$$tg\alpha = \frac{cateto\ oposto\ ao\ angulo\ x}{cateto\ ad\ jacente\ ao\ angulo\ x}$$

Ou ainda, podemos escrever:

$$\frac{\Delta y}{\Delta x} = \frac{f_{(x_0 + \Delta x)} - f_{(x_0)}}{\Delta x}$$

Observação: Sempre que a função de 1ºgrau é crescente, o ângulo alfa, que é o ângulo entre o eixo x e a reta, forma um ângulo menor que 90°, e tem coeficiente angular positivo. Para a função decrescente, o coeficiente angular será negativo e o ângulo será maior que 90°.

Se considerarmos, agora, uma função que não seja do 1º grau, as grandezas x e y <u>não</u> têm variações diretamente proporcionais. Portanto a rapidez com que y varia com x depende do intervalo de x considerado.

Exemplo:

Seja a função receita total do exemplo acima, que podemos obter multiplicando a função y(x) por x:

$$R(x) = (-0.02x+12) \cdot x = -0.02x^2 + 12x$$

Para obtermos a TMV (taxa de variação média) no intervalo de 100 a 300 unidades, por exemplo, temos o resultado:

$$\frac{\Delta y}{\Delta x} = \frac{1800 - 1000}{300 - 100} = 4$$

Ou seja, nesse intervalo a receita cresce R\$4,00 a cada unidade produzida a mais.

Mas, se considerarmos, o intervalo de 400 a 500 peças produzidas, a TMV é igual a $\frac{\Delta y}{\Delta x} = \frac{1000-1600}{500-400} = -6$.

Ou seja, a receita cai R\$6,00 a cada unidade produzida.

ATIVIDADE

- 2.1. Considere a função f(x) = 2000x, onde y(x) poderia representar a receita de um produto e x a quantidade. Qual a taxa de variação da função para um intervalo de produção entre 100 e 500 peças?
- 2.2. Foram registradas as temperaturas (°C) a cada hora, na cidade de São Paulo, começando à meia noite, em um dia. O tempo foi medido em horas, conforme tabela abaixo:

Tempo (h)	Temperatura(°C)
0	12,2
1	13,1
2	13,3
3	14,0
4	14,6
5	15,2
6	15,8

Encontre a TMV:

- a) Entre meia noite e 2h.
- b) Entre 2h e 6h.
- c) Entre 2h e 4h.
- d) Entre 0 e 4h.

2.3. Determine a TMV em cada caso:

- a) y = 2x + 1 entre os pontos 1 e 4.
- b) y = -3x entre os pontos 2 e 3.
- c) $y = -2x^2 + 3x + 4$ entre os pontos 0 e 2.
- d) $f(x) = x^3 1$ entre 0 e 2.
- e) y = -2x, entre -1 e 5.

2.4. Suponha que em uma indústria um tanque contém, inicialmente, 50 litros de tinta. Uma torneira ao ser aberta despejará água no tanque a uma razão constante de 2 litros a cada minuto. Escreva a função que representa o volume (litros) x tempo (minutos), e determine a TMV.

LISTA DE EXERCÍCIOS

- 2.1. A quantia y a ser paga pela compra de certa quantidade de um produto é y = 2x+5, onde y = valor em reais e x = quantidade. Qual a taxa média de variação da função no intervalo de x entre 2 e 3?
- 2.2. A massa M de um material contido em um recipiente varia com o tempo t de acordo com a expressão:

 $M = 10 - 2t^2$ (m em kg e t em horas).

- a) Qual a TMV de m em relação a t, no intervalo t = 0 e t = 2 h?
- b) Quantos quilogramas a massa diminuiu em 2 horas?
- 2.3. Um dispositivo de resfriamento de uma máquina funciona de maneira que, após ser desligada, a sua temperatura varia com o tempo de acordo com a expressão: θ = 200 t (θ em graus e t em minutos)
- a) Qual a TMV?
- b) Depois de quanto tempo é atingida a temperatura de 20°C?

- 2.4. Construa o gráfico e calcule a taxa média de variação das funções abaixo, através do gráfico:
- a) y = x + 3 entre os pontos 2 e 3($x_0 = 2$ e $\Delta x = 1$) e entre os pontos 2 e 4($x_0 = 2$ e $\Delta x = 2$).
- b) $y=2x^2+3x+4$ entre os pontos 2 e 4($x_0=2$ e $\Delta x=2$) e entre os pontos 4 e 6($x_0=4$ e $\Delta x=2$).
- c) $y = -x^2 + 5x 6$ entre os pontos 1 e 2($x_0 = 1$ e $\Delta x = 1$).

OBS. Lembre-se que o gráfico de uma função de primeiro grau é sempre uma reta: crescente, se o coeficiente \underline{a} for positivo e decrescente se for negativo. Já o gráfico de uma função de segundo grau é uma parábola, que terá concavidade para cima se o coeficiente \underline{a} for positivo e, para baixo se \underline{a} for negativo.

Capítulo 3

3. DERIVADAS.

3.1. INTERPRETAÇÃO GEOMÉTRICA DE DERIVADA.

Para caracterizar a rapidez com que uma função y = f(x) varia em um ponto x_0 , utilizamos a noção de taxa média de variação no ponto ou <u>DERIVADA</u>.

Nas proximidades de um ponto x_0 , a curva, que representa o gráfico de uma função, pode ser aproximada por uma reta, se consideramos dois pontos P e Q muito próximos com $\Delta x \to 0$.

Note que, quando $\Delta x \rightarrow 0$, o ponto Q tenderá ao ponto P e a reta secante tenderá à reta tangente r.

A derivada de f no ponto x₀ pode ser definida como:

$$\lim_{\Delta x \to 0} TMV = \lim_{\Delta x \to 0} \frac{\Delta Y}{\Delta x} \equiv tg\alpha = \frac{cateto\ oposto\ ao\ angulo\ \alpha}{cateto\ adjacente\ ao\ angulo\ \alpha}$$

Ou

$$\lim_{\Delta x \to 0} TMV = \lim_{\Delta x \to 0} \frac{\Delta Y}{\Delta x} = \lim_{\Delta x \to 0} \frac{y - y_0}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x) - f(x_0)}{x - x_0} =$$

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{x - x_0}$$

A derivada, assim definida pode ser indicada por y'(x), f'(x) ou $\frac{dy}{dx}$.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{x - x_0}$$

A derivada é o valor aproximado da taxa média de variação da função f para valores pequenos de Δx .

Podemos entender a ideia da rapidez com que uma função varia em um ponto, através da definição geométrica da derivada, que é a medida da inclinação da reta tangente à curva no ponto x_0 .

Veja exemplo da função $y=x^2$, onde se traçou a reta tangente à curva, no ponto x =1.

Para o cálculo da derivada no ponto, podemos utilizar várias técnicas:

a) Geometricamente, pelo cálculo da tangente:

$$\lim_{\Delta x \to 0} TMV = \lim_{\Delta x \to 0} \frac{\Delta Y}{\Delta x} \equiv tg\alpha = \frac{cateto\ oposto\ ao\ \hat{a}ngulo\ \alpha}{cateto\ adjacente\ ao\ \hat{a}ngulo\ \alpha} = \frac{1}{0.5} = 2.$$

b) Pela definição do limite:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x_0 + \Delta x)^2 - x_0^2}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{x_0^2 + 2x_0 \Delta x + (\Delta x)^2 - x_0^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x_0 \Delta x + (\Delta x)^2}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x \left(2x_0 + \Delta x\right)}{\Delta x} = 2x_0$$

No ponto $x_0 = 1$, a derivada é igual a $2 \times 1 = 2$.

Note que ao determinar a derivada pela definição, podemos calcular o valor da derivada para qualquer ponto, pois temos a <u>função</u> <u>derivada</u>, que assume valores diferentes para diferentes valores de x.

No ponto $x_0 = 1$, a derivada vale 2;

No ponto $x_0 = 2$, a derivada vale 4;

No ponto $x_0 = 3$, a dervivada vale 6 e assim por diante.

c) Através do limite, da seguinte maneira:

Se
$$x_0 = 1 \rightarrow f(x_0) = x_0^2 = 1$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \to f'_{(1)} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = 2$$

Todas as maneiras conduzem ao mesmo resultado.

EXERCÍCIOS

- 3.1. Calcule a derivada em cada ponto da função, geometricamente:
 - a) y = 3x; no ponto $x_0 = 2$.

 - b) $y = x^2 + 4$; no ponto $x_0 = \frac{1}{2}$. c) $y = 3x^2 + 10x 1$; no ponto $x_0 = 1$.
- 3.2. Calcule a derivada da função, através da definição:
 - a) y = 5.
 - b) y = 2x.
 - c) $y = x^2 3$

Respostas: 3.1.a) 3; b)1; c)16 3.2. a)0; b)2; c)2x

ATIVIDADE

- 3.1. Calcule as derivadas, através da definição:
 - a) $y = x^2 2x$ no ponto $x_0 = 6$
 - b) $y = 2 x^3$ no ponto $x_0 = -2$

LISTA DE EXERCÍCIOS

- 3.1. Calcule a derivada das funções, geometricamente:
 - a) y = 2x no ponto $x_0 = 3$.
 - b) $y = x^2 2x$ no ponto $x_0 = 6$.

3.2. Calcule a derivada das funções pela definição:

- a) $y = -5x^2$ no ponto $x_0 = 2$.
- b) $y = 2-x^3$ no ponto $x_0 = -2$.
- c) y = 4x + 1.

3.2. REGRAS DE DERIVAÇÃO.

O cálculo das derivadas através do gráfico ou pelo limite é um processo demorado. Para agilizar essa operação pode-se decorar as chamadas regras de derivação, que facilitam muito a obtenção das funções derivadas.

ALGUMAS REGRAS DE DERIVAÇÃO:

FUNÇÕES SIMPLES	DERIVADA
k(constante)	0
x^{lpha}	$\alpha x^{\alpha-1}$
Ax	а
$\log_a x$	$\frac{1}{xlna}$
lnx	$\frac{1}{x}$
a ^x	a ^x lna
e ^x	e ^x
senx	cosx
cosx	-senx
tgx	$1 + tg_x^2 = sec_x^2$

1- Derivada da função constante:

Se K é uma função constante e f(x) = c, para todo $x \in R$, então f'(x) = 0.

Exemplo:

$$y = 5 \rightarrow y' = 0$$

2- Derivada da função potência:

Se $f(x) = x^n$, com $n \in R$, então $f'(x) = n \cdot x^{n-1}$

Exemplos

a)
$$f(x) = x^7 \Rightarrow f'(x) = 7 \cdot x^{7-1} = 7x^6$$

b)
$$f(x) = x^{-2} \Rightarrow f'(x) = -2.x^{-2-1} = -2.x^{-3} = \frac{-2}{x^3}$$

c)
$$f(x) = x^{3/4} \Rightarrow f'(x) = \frac{3}{4} \cdot x^{3/4-1} = \frac{3}{4} x^{-1/4} = \frac{3}{4x^{1/4}} = \frac{3}{4\sqrt[4]{x}}$$

d)
$$y = \sqrt[3]{x} = x^{\frac{1}{3}} \Rightarrow y' = \frac{1}{3} \cdot x^{\frac{-2}{3}} = \frac{1}{3\sqrt[3]{x^2}}$$

e)
$$y = \frac{1}{x^3} = x^{-3} \Rightarrow y' = -3x^{-4} = \frac{-3}{x^4}$$

3- Derivada do produto de uma constante por uma função:

Se
$$f(x) = c.f(x) \Rightarrow f'(x) = c.f'(x)$$

Exemplos

a)
$$y = 2x^3 + 5\sqrt[10]{x} = 2x^3 + 5x^{\frac{1}{10}} \Rightarrow y' = 6x^2 + \frac{1}{2\sqrt[10]{x^9}}$$

b)
$$y = 3x^9 + 4x^2 \Rightarrow y' = 27x^9 + 8x$$

4- As demais regras se aplicam imediatamente.

Exemplos

a)
$$y = -2\cos x + 5 \ln x - 3 \Rightarrow y' = 2 sen x + \frac{5}{x}$$

b) y = 9 logx - 4 senx + 12
$$e^x \Rightarrow y' = \frac{9}{x \cdot ln10} - 4cosx + 12e^x$$

c)
$$y = 4.3^{x} + 2tgx - 5x \Rightarrow y' = 4.3^{x} \cdot ln3 + 2sec^{2}x - 5$$

ATIVIDADE

3.2. Calcule as derivadas pelas regras:

a)
$$v = 3x^3 - 6x + 2$$

b)
$$y = 4\sqrt{x} + 2e^x + senx$$

c)
$$y = -2 \log_3^x + 4.5^x - tgx$$

d)
$$y = \frac{5}{2} \cos x - 10 \ln x$$

LISTA DE EXERCÍCIOS

3.3. Calcule as derivadas pelas regras:

a)
$$y = x^3 - 6x + 5$$

b)
$$y = 30 - 4x^{0.5} + 3x^7 - 5$$

c)
$$v = 2e^x - 4x + 3 \ln x - 4x$$

d)
$$f(x) = \frac{4}{x^3}$$
 no ponto $x = -1$

e)
$$y = \frac{-1}{3}x^{-3}$$

$$f) y = 5\sqrt{x}$$

g)
$$y = -2senx + 5cosx - 2^x$$

3.3. OPERAÇÕES DE DERIVAÇÃO.

y = u + v	y ' = u' + v'
y = u - v	y ' = u' - v'
y = u.v	y' = u'.v + u.v'
y = u / v , v ≠ 0	y' = (u'.v - u.v') / v ²

Considere na tabela acima que $\mathbf{U} \, \in \mathbf{V} \,$ são funções que dependem de $\mathbf{x}.$

Nos exemplos anteriores já utilizamos as operações de soma e subtração, que são intuitivas, mas é preciso ter cuidado quando se trata do produto e quociente de duas funções.

3.3.1. DERIVADA DO PRODUTO DE DUAS FUNÇÕES.

Exemplos

a)
$$y = (2 + 5x)(7 - 3x)$$

 $u = (2 + 5x) \Rightarrow u' = 5; v = (7 - 3x) \Rightarrow v' = -3$
 $y' = u'v + uv' \Rightarrow y' = 5(7 - 3x) + (2 + 5x)(-3)$
 $y' = 35 - 15x - 6 - 15x = -30x + 29$
b) $y = x^3 \cdot \cos x$
 $u = x^3 \Rightarrow u' = 3x^2; v = \cos x \Rightarrow v' = -\sin x$
 $y' = 3x^2 \cdot \cos x + x^3 \cdot (-\sin x)$
 $y' = x^2(3\cos x - x \sin x)$
c) $y = 2^x \cdot \ln x$.
 $u = 2^x \Rightarrow u' = 2^x \cdot \ln 2; v = \ln x \Rightarrow v' = \frac{1}{x}$

 $y' = 2^{x} . \ln 2 . \ln x + 2^{x} . \frac{1}{x} = 2^{x} . \ln 2 . \ln x + \frac{2^{x}}{x}$

ATIVIDADE

3.3. Calcule as derivadas:

- a) y = (2 + 3x)(1 4x)
- b) $y = x \cdot e^x$
- c) $y = 2x \ln x$
- d) $y = e^{x}.4x$

LISTA DE EXERCÍCIOS

3.4. Calcule as seguintes derivadas:

- a) $y = x^3 \cdot (2x^2 3x)$
- b) $y = e^x . lnx$
- c) $y = 4^x$. senx

3.3.2. DERIVADA DO QUOCIENTE DE DUAS FUNÇÕES.

Exemplos

a)
$$y = \frac{x}{x+1}$$

$$u = x \implies u' = 1$$
; $v = x + 1 \implies v' = 1$

$$y' = \frac{1.(x+1) - x.1}{(x+1)^2} = \frac{1}{(x+1)^2}$$

b)
$$y = \frac{10}{x^2 + 2x + 1}$$

$$u = 10 \Rightarrow u' = 0$$
; $v = x^2 + 2x + 1 \Rightarrow v' = 2x + 2$

$$y' = \frac{0.\nu - 10.(2x+2)}{(x^2 + 2x + 1)^2}$$

c)
$$y = \frac{e^x}{4x}$$

$$u = e^x \Rightarrow u' = e^x$$
; $v = 4x \Rightarrow v' = 4$

$$y' = \frac{e^x \cdot 4x - e^x \cdot 4}{(4x)^2} = \frac{e^x (x-1)}{4x^2}$$

ATIVIDADE

3.4. Calcule as derivadas:

a)
$$y = \frac{x^2}{5x+1}$$

b)
$$y = \frac{5}{x^2 + 2x - 3}$$

c)
$$y = \frac{4^x}{\cos x}$$

LISTA DE EXERCÍCIOS

3.5. Calcule as derivadas:

a)
$$y = \frac{-8}{x+2}$$

b)
$$y = \frac{e^x}{x^2}$$

3.4. DERIVADA DA FUNÇÃO COMPOSTA.

Sejam f e g funções tais de modo que $Im(g) \subset D(f)$, a função f(g(x)) ou fog é a função composta de f com g, sendo $x \in D(g)$.

Exemplos de função composta:
$$\sqrt{x^2 + 3}$$
, onde $g(x) = x^2 + 3$; $\ln(2x + 1)$, onde $g(x) = 2x + 1$; $sen(4x - 2)$, onde $g(x) = 4x - 2$.

3.4.1. REGRA DA CADEIA.

A derivada da função composta segue a regra conhecida como regra da cadeia.

Se
$$h(x) = g(f(x)) = gof(x)$$
, então $h'(x) = g'(f(x))$. $f'(x)$
Ou $h' = \frac{df}{dx} = \frac{df}{da} \cdot \frac{dg}{dx}$

Como exemplo da derivada de uma função composta suponha uma função f(x) = 2x + 3 e g(x) = 4.f(x) - 2

A derivada da função f é igual a 2 e a derivada da função g em relação à f é igual a 4.

Escrevendo a função h em função de x temos: h = 4. (2x + 3) +3 = 8x + 12 + 3 = 8x + 15, que tem como derivada o valor 8. Este valor coincide com a formulação

$$h' = g'(f(x)).f'(x). = 2.4 = 8.$$

Exemplos

a)
$$h = \sqrt[3]{x^2 + 3} = (x^2 + 3)^{\frac{1}{3}}$$
.

$$h' = \frac{1}{3}(x^2 + 3)^{\frac{-2}{3}} \cdot 2x = \frac{2x}{3\sqrt[3]{(x^2 + 3)^2}}$$

b)
$$y = e^{4x+3}$$
.

$$v' = e^{4x+3} \cdot 4 = 4e^{4x+3}$$

.c)
$$y = sen(2x + 1)$$
.

$$y' = (\cos(2x + 1)).2 = 2\cos(2x + 1)$$

ATIVIDADE

- 3.5. Calcule a derivada das seguintes funções compostas:
 - a) $y = \sqrt{2x + 4}$

 - b) $y = (3x + 1)^4$ c) $y = \ln(x^2 + 1)$

LISTA DE EXERCÍCIOS

3.6. Calcule as derivadas:

a)
$$y = e^{1+x}$$

b)
$$y = e^{(1+x^2)}$$

$$c) y = \ln(5x - 20)$$

d)
$$y = (1 - 3x)^5$$

e)
$$y = \frac{\ln(1 - 2x)}{5}$$

f)
$$y = sen^2 x - cos^2 x$$

3.5. DERIVADAS SUCESSIVAS.

Seja y = f(x). Chamamos de derivada primeira a função y' = f'(x) obtida a partir da derivação de y = f(x). Se derivarmos y' = f'(x) oberemos y'' = f''(x) ou segunda derivada. Podemos continuar a derivar ate $y^n = f^n(x)$ quando for possível.

Exemplo

$$y = -8x^4 \Rightarrow y' = -32x^3 \Rightarrow y'' = -96x^2 \Rightarrow y''' = -192x$$

3.6. TEOREMA DO VALOR MÉDIO. MÁXIMOS E MINÍMOS DA FUNÇÃO.

O Teorema do Valor Médio tem o seguinte enunciado:

Seja f uma função definida num intervalo fechado [a,b]. Se

a) f é variável no intervalo]a,b [

b)
$$\lim_{x\to a^+} f(x) = f(a) e \lim_{x\to b^-} f(x) = f(b)$$
,

Então, existe um ponto $c \in [a, b]$ tal que

$$f(b) - f(a) = f'(c)(b - a)$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

De acordo com o Teorema do Valor Médio, podemos verificar que a derivada mede a tendência ao crescimento ou ao decrescimento que uma função y = f(x) apresenta em cada ponto x do seu domínio.

Quanto à derivada primeira:

Nos intervalos em que $f'(x) > 0 \implies f(x)$ é *crescente*.

Nos intervalos em que $f'(x) < 0 \Rightarrow f(x)$ é decrescente.

 Quanto a segunda derivada. Ela avalia o crescimento ou decrescimento da primeira derivada, determinando a concavidade da função.

Nos intervalos em que

$$f''(x) > 0 \implies f(x)$$
 tem concavidade para cima.

Nos intervalos em que

$$f''(x) < 0 \implies f(x)$$
 tem concavidade para baixo.

Exemplo

Seja
$$f(x) = x^2 - 6x$$

A derivada primeira informa sobre o crescimento dou decrescimento da função.

$$f'(x) = 2x - 6$$

Igualando a zero a função derivada determinamos suas raízes:

$$2x - 6 = 0 \Rightarrow x = 3$$

Quanto ao sinal da função, temos que para valores de x menores que 3, ela é negativa e,

para valores de x maiores que 3, ela é positiva.

Portanto, a função y é <u>decrescente</u> para valores de x menores que 3 e a função y é crescente para valores de x maiores que 3.

Como a função decresce para valores de x < 3, cresce para valores de x > 3, e tem derivada nula no ponto x = 3, então 3 é um ponto de MÍNIMO DA FUNÇÃO.

A derivada segunda informa sobre a concavidade.

$$f''(x) = 2 \Rightarrow Positiva para qualquer valor de x$$

 $\Rightarrow concavidade para cima.$

ATIVIDADE

3.6. Estudar a função $y=x^3-12\,x^2+6$, quanto ao crescimento e decrescimento e também quanto à concavidade.

Aplicação

Considere a função lucro de um empresa como sendo L(x) = R(x) - C(x), onde L(x) representa a função lucro, R(x) receita e C(x) custo. Um micro empresário vende 2000 salgados por R\$1,00 cada. Pretendendo aumentar seu lucro fez um estudo e, percebeu que a cada aumento de R\$0,10 no preço unitário do salgado, perdia 10% do total de vendas inicial. O custo de cada salgado é R\$0,40. Qual o valor de cada salgado que torna o lucro máximo? Qual o lucro máximo?

LISTA DE EXERCÍCIOS

3.7. Estudar as funções abaixo, quanto ao crescimento e decrescimento, máximos e mínimos e também quanto à concavidade.

a)
$$y = 2x + 1$$

b)
$$y = -x^2 + 12x + 8$$

c)
$$y = lnx, x > 0$$

d)
$$v = e^x$$

e)
$$y = x^3 - 6x^2 + 20$$

3.7. REGRA DE L'HÔSPITAL E FORMAS INDETERMINADAS DE LIMITE.

Se
$$f(x)$$
tem a forma ideterminada $\frac{0}{0}$ ou $\frac{\infty}{\infty}$ em $x = c$ e

$$\lim_{x \to c} \frac{f(x)}{g(x)} \ existe, então \ \lim_{x \to c} \frac{f(x)}{g(x)} = \ \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Obs. Vale também para $\lim_{x\to\infty} \frac{f(x)}{g(x)}$

Exemplos

Calcular os limites:

a)
$$\lim_{x\to 3} \frac{x^2-6x+9}{x^2-7x+12}$$
.

$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x^2 - 7x + 12} = \lim_{x \to 3} \frac{2x - 6}{2x - 7} = \frac{0}{-1} = 0$$

b)
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\ln(x+1)}$$

$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\ln(x+1)} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\frac{1}{x+1}} = 2$$

c)
$$\lim_{x \to 0} \frac{2x}{e^x - 1}$$

$$\lim_{x \to 0} \frac{2x}{e^x - 1} = \lim_{x \to 0} \frac{2}{e^x} = 2$$

ATIVIDADE

3.7. Calcule os limites utilizando a Regra de L'hôspital

a)
$$\lim_{x\to\infty} \frac{e^x}{x^2}$$

b)
$$\lim_{x\to 0} \frac{senx}{x}$$

b)
$$\lim_{x\to 0} \frac{\sin x}{x}$$

c) $\lim_{x\to 1} \frac{\ln x}{x^2 - x}$

LISTA DE EXERCÍCIOS

3.8. Calcule os limites utilizando a Regra de L'hôspital

a)
$$\lim_{x\to 0} \frac{e^{5x}-1}{3x}$$

b)
$$\lim_{x\to 1} \frac{sen(\pi x)}{x-1}$$

c)
$$\lim_{x\to 3} \frac{x-3}{\sqrt{x}-\sqrt{3}}$$

Capítulo 4

4. INTEGRAIS

4.1. CONCEITO DE INTEGRAIS INDEFINIDAS.

O processo de antiderivação é chamado de integração. O motivo deste nome será entendido melhor no capítulo sobre integrais definidas.

Conhecendo-se, por exemplo, como varia a velocidade em função do tempo de um móvel, é possível descrever como é a função posição por tempo? Ou ainda, se souber como varia uma função receita, é possível determinar a função receita? A resposta à estas perguntas chama-se "integral".

Pode-se dizer que a derivada de uma função trabalha com elementos infinitesimais. Ela fatia as funções, tentando aproximar as curvas por retas. Já as integrais reúnem, somam, integram, realizando o processo inverso.

Se conhecermos a derivada de uma função qualquer, é possível determinar a função *primitiva*, que é a função original.

Seja F uma função derivável em um intervalo aberto I. Se f(x) é a sua derivada, podemos escrever:

$$F' = f(x), x \in I$$

Exemplo: Seja f(x) = 5, quais as funções (primitivas), que ao derivar resultam em f(x)

Temos, como resposta:

$$F(x) = 5x$$

$$F(x) = 5x + 1$$

$$F(x) = 5x+10$$

Qualquer função do tipo F(x) = 5x + c, onde c é um número real, terá como derivada a função f(x) = 5.

Pode-se, então dizer que a integral da função f(x) = 5 é o conjunto das funções primitivas F(x) = 5x+c.

Pode-se indicar isto, através da notação:

$$\int f'_{(x)}dx = F(x) + K, K \in R$$

ATIVIDADE

4.1. Determine as funções primitivas:

a)
$$y(x) = 4x$$

b)
$$y = 3x^2 + 5$$

c)
$$v = e^x + 3$$

d)
$$y = \frac{1}{x} - 2$$
, $x \neq 0$

PROPRIEDADES:

A integral indefinida possui propriedades operatórias que são:

Integral da soma:
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

Integral da subtração:
$$\int [f(x)-g(x)]dx = \int f(x)dx - \int g(x)dx$$

Integral de uma constante (k) por uma função: $\int k.f(x)dx = k.\int f(x)dx$

4.2. INTEGRAL DE FUNÇÃO POLINOMIAL.

Regra da função nula:
$$\int 0 dx = k$$
.

Regra da constante:
$$\int k dx = k.x + c$$

Regra da potência:
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
, para $n \neq -1$

EXERCÍCIOS

4.1. Resolva as integrais indefinidas:

- a) $\int 4 dx$
- b) $\int (x^2 x) dx$
- c) $\int \frac{2x^5}{3} dx$
- d) $\int -\frac{1}{x^4} dx$
- e) $\int \sqrt[4]{x^3} dx$
- f) $\int \left(x^{-4} + \frac{5x}{2} \frac{4}{\sqrt{x}}\right) dx$

Respostas:

a)
$$4x+c$$
; b) $\frac{x^3}{3} - \frac{x^2}{2} + c$; c) $\frac{x^6}{9} + c$; d) $\frac{1}{3x^3} + c$; e) $\frac{4\sqrt[4]{x^7}}{7} + c$; f) $-\frac{1}{3x^3} + \frac{5x^2}{4} - 8\sqrt{x} + c$.

ATIVIDADE

4.2. Resolva:

- a) $\int 3 dx$
- b) $\int x dx$
- c) $\int x^2 dx$
- d) $\int \sqrt{x} dx$

e)
$$\int x^{-3} dx$$

f)
$$\int \frac{1}{x^2} dx$$

g)
$$\int (x^2 + x - 5) dx$$

h)
$$\int \left(\frac{x^3}{5} - \frac{4x}{5} + 9\right) dx$$

LISTA DE EXERCÍCIOS

4.1. Determine a integral das funções abaixo:

a)
$$\int (x^7 + x^2 + x) dx$$

b)
$$\int \frac{5}{2} x^3 dx$$

c)
$$\int (20x^{-4} + 2x) dx$$

d)
$$\int -4x^5 dx$$

e)
$$\int (6x^{-2} - 3\sqrt[4]{x} + 2) dx$$

f)
$$\int \sqrt[3]{x^2} dx$$

g)
$$\int \frac{32}{\sqrt{x}} dx$$

$$h) \int (2x^2+3)^2 dx$$

i)
$$\int \frac{x^3 + 2x^4}{\sqrt{x}} dx$$

4.3. INTEGRAL DE OUTRAS FUNÇÕES.

Vejamos algumas regras de integração, considerando as funções polinomiais já vistas e outras:

função y(x)	$\int ydx$
K(constante)	Kx
x^n	$\frac{x^{n+1}}{n+1}$
a^x	$\frac{a^x}{lna}$
e^x	e^x
$\frac{1}{x}$	ln x
senx	-cosx
cosx	senx

Exemplos:

a)
$$\int \frac{3}{x} dx = 3 \int \frac{1}{x} dx = 3 \ln|x| + c$$

b)
$$\int (e^x + senx) dx = e^x - cosx + c$$

c)
$$\int (3x^2 + 5^x) dx = x^3 + \frac{5^x}{\ln 5} + c$$

d)
$$\int (4x^{-3} + 2) dx = \frac{-2}{x^2} + 2x + c$$

e)
$$\int (\sqrt[4]{x^3} - \frac{1}{x \ln 3}) dx = \frac{4\sqrt[4]{x^7}}{7} - \log_3 x + c$$

f)
$$\int (\frac{5}{\sqrt{x}} - 4) dx = 10\sqrt{x} - 4x + c$$
.

ATIVIDADE

- 4.3. Resolva as integrais:
- a) $\int 2e^x dx$
- b) $\int (3senx + 2^x) dx$
- c) $\int (3x \frac{5}{x}) dx$
- d) $\int (\sqrt[3]{x^5} + 2\cos x) \, dx$
- e) $\int \frac{x^2+3e^x}{5} dx$
- f) $\int (\frac{2}{\sqrt[4]{x^5}} \frac{1}{x^2} + \frac{1}{x}) dx$.

LISTA DE EXERCÍCIOS

4.2. Determine a integral das funções abaixo:

a)
$$\int (\sqrt{2} + \frac{\sqrt{3}}{2}x - 6) dx$$

b)
$$\int 2\pi R dR$$

c)
$$\int (3x^2 + 4e^x) dx$$

d)
$$\int (\sqrt[3]{x} - \frac{2}{x^2} + 1) dx$$

e)
$$\int (\frac{1}{x^5} + 2^x) \, dx.$$

Aplicações

1- Na física, observa-se que, se temos a função posição, podemos derivá-la e obter a função velocidade.

Seja
$$S = S_0 + v_0 t + \frac{1}{2} a t^2 \rightarrow \frac{dS}{dt} = S' = v = v_0 + a t$$

Então, de maneira inversa, se for pedida a função posição S, sendo dada a velocidade, escrevemos:

$$S = \int v \, dt = \int (v_0 + at) dt = v_0 t + \frac{1}{2} at^2 + c$$

Exemplos.

 a) Se a velocidade de um móvel variar no decorrer do tempo segundo a função v = 50 + 2t, calcular a equação do espaço percorrido pelo móvel em função do tempo, sabendo que quando t=0, o espaço inicial era de 5000m.

$$S = \int (50 + 2t)dt = 50t + 2\frac{t^2}{2} + c$$

Quando $t = 0 \rightarrow S = 5000$, então $5000 = 50.0 + 0^2 + c \rightarrow c = 5000$

Logo,
$$S = 50t + t^2 + 5000$$

 b) Vimos no capítulo sobre TMV como obter uma função receita total. A função obtida foi

 $R(x) = -0.02x^2 + 12x$. As respectivas funções taxa de variação, ou seja, suas derivadas, são chamadas funções receitas marginais $-R_{mg}$.

Logo, a função receita marginal foi de -0,04x + 12. Ou seja, para x=100 peças produzidas, a receita aumenta em R\$8,00 por unidade produzida.

Para x= 200, a receita aumenta em R\$4,00 por unidade produzida.

Agora, se temos a função marginal, basta integrar, para obter a função receita total:

 $R(x) = \int (-0.04x + 12) dx = -0.02x^2 + 12x + c$. No caso c=0, para uma produção igual a zero.

ATIVIDADE

4.3.1. O custo marginal para produção de uma quantidade x de uma peça é dado por $C_{mg} = \sqrt{x} - 2$. Suponha que o custo fixo é R\$20,00, ou seja, para x=0, o custo total será R\$20,00. Determine a função custo total e o custo total de produção de 100 peças.

4.4. MÉTODOS DE INTEGRAÇÃO.

O Cálculo da primitiva de uma função nem sempre é possível utilizando as regras das funções já vistas.

Funções produto, quociente, compostas, necessitam de técnicas próprias para integração. Vejamos duas destas técnicas:

4.4.1. MUDANÇA DE VARIÁVEL - INTEGRAÇÃO POR SUBSTITUIÇÃO.

Para utilizar este método, precisamos, antes, estudar o **DIFERENCIAL DE UMA FUNÇÃO.**

Se y = f(x) é uma função derivável no ponto x, chamamos de **diferencial da função f**, neste ponto x a expressão **dy**:

Exemplos:

a)
$$Se y = 3x \rightarrow dy = 3dx$$

b) Se
$$y = x^2 + 1 \rightarrow dy = 2xdx$$

c)
$$Se \ y = senx \rightarrow dy = cosxdx$$

Podemos utilizar o conceito de diferencial para cálculos aproximados, por exemplo:

a) Calcular aproximadamente sen31º.

Sabemos que sen
$$30^\circ=0.5$$
 e $\cos 30^\circ=\frac{\sqrt{3}}{2}$, então f(x) = senx, x = 30° e dx = 1° dy = f'(x)dx \Rightarrow dy = $\cos 30^\circ$. $\frac{\pi}{180}$ \Rightarrow dy = $\frac{\sqrt{3}}{2}$. $\frac{\pi}{180}$ = 0.0151

Logo, $sen31^\circ = f(30^\circ) + dy = 0.5 + 0.0151 = 0.5151$.

b) Calcular aproximadamente o valor de $\sqrt{15,5}$. Sabemos que $\sqrt{16} = 4$, $f(x) = \sqrt{x}$, x = 16 e dx = 0,5. dy = f'(x) dx = $\frac{1}{2\sqrt{x}}dx = \frac{1}{2\sqrt{x}}$. (-0,5) = -0,0625. Então $\sqrt{15,5} = 4 + (-0,0625) = 3,9375$

Agora, que já definimos diferencial, podemos proceder à mudança de variável.

Consideremos o cálculo da integral $\int (2x+1)^5 dx$

A fórmula da potência $\int x^5 dx = \frac{x^6}{6} + c$ não pode ser aplicada diretamente. Daí a técnica da mudança de variável:

Podemos substituir a variável x por t, e assim, poder utilizar as regras elementares:

Seja
$$t = 2x + 1 \rightarrow dt = 2dx \rightarrow dx = \frac{1}{2}dt$$

Então
$$\int (2x+1)^5 dx = \int t^5 \frac{1}{2} dt = \frac{1}{2} \int t^5 dt = \frac{1}{2} \cdot \frac{t^6}{6} + c = \frac{1}{12} t^6 + c$$

Retornando à variável x, temos:

$$\int (2x+1)^5 dx = \frac{1}{12}(2x+1)^6 + c$$

EXERCÍCIOS

4.2. Resolva as integrais:

a)
$$\int 5x^2 \cdot \sqrt{x^3 - 4} \, dx$$

b)
$$\int \frac{3x}{x^2+4} dx$$

c)
$$\int \text{sen}(5x) dx$$

d)
$$\int e^{x^2} \cdot x dx$$

e)
$$\int \frac{10}{3x+4} dx$$
.

Respostas:

a)
$$\frac{10\sqrt{(x^3-4)^3}}{9} + c$$
; b) $\frac{3\ln|x^2+4|}{2} + c$; c) $\frac{-1}{5}\cos 5x + c$; d) $\frac{1}{2}e^{x^2} + c$; e) $\frac{10}{3}\ln|3x + 4| + c$

ATIVIDADE

4.4. Resolva:

- a) $\int (2x+5)^3 dx$
- b) $\int \frac{2}{4x+1} dx$
- c) $\int e^{4x} dx$
- d) $\int 2e^{senx} \cdot cosxdx$
- e) $\int (x+7)^5 dx$
- f) $\int e^{1-5x} dx$.

LISTA DE EXERCÍCIOS

4.4. Resolva as integrais:

- a) $\int (3x^2 + 1)^3 .6x \, dx$
- b) $\int 4 x \sqrt{x^2} dx$
- c) $\int x^2 \sqrt{(x^3+2)} \, dx$
- d) $\int \frac{4x}{(x^2+2)^7} dx$
- e) $\int (x^3 + 5)^3 3x^2 dx$
- f) $\int \frac{x^2}{\sqrt[4]{x^3+2}} dx$
- g) $\int \frac{1}{3+x} dx$.

4.4.2. INTEGRAÇÃO POR PARTES.

Sabe-se que para a derivada de um produto vale:

Se y = $u.v \rightarrow y$ ' = u ' v + u v '; lembrando que as funções y, u e v dependem da variável x,

Tem=se para a primitiva de y '

$$\int y'dx = \int u'v\,dx + \int u\,v'dx$$

Lembrando que y = u.v

$$u.v = \int u'vdx + \int uv'dx \rightarrow$$

$$\int u'vdx = u.v - \int uv'dx \quad ou \quad \int uv'dx$$

$$= u.v - \int u'vdx$$

Esta é a fórmula a ser utilizada para a integração por partes.

É uma expressão útil quando se tem a integral de um produto de funções e é possível considerar que uma das funções seja uma função derivada.

Exemplos:

a) Calcular a $\int x.e^x\,dx$ Pode-se considerar que $u=x\,e\,v'=e^x \to u'=1\,e\,v=\int e^x\,dx=e^x$ E aplicar a fórmula $\int uv'dx=u.v-\int u'vdx$

Assim a $\int x.e^x dx = x.e^x - \int 1.e^x dx = x.e^x - e^x + c = e^x(x+1) + c$

b)
$$\int (3x+7)\cos x \, dx$$

Se
$$u = 3x + 7 \rightarrow u' = 3$$

 $v' = cosx \rightarrow v = senx$

Então

$$\int (3x+7)\cos x \, dx = (3x+7). \operatorname{sen} x - \int 3. \operatorname{sen} x \, dx = (3x+7). \operatorname{sen} x + 3\cos x + c$$

EXERCÍCIOS

- 4.3. Resolva as integrais:
- a) $\int x. \cos x dx$
- b) $\int (2x 1) \cdot e^x \, dx$

Respostas:

a)
$$x sen x + cos x + c$$
; b) $e^{x}(2x - 3) + c$

ATIVIDADE

- 4.5. Resolva:
- a) $\int lnx dx = \int 1. lnx dx$ Obs: Considere u = lnx e v' = 1
- b) $\int t^2 \cdot e^t \, dt$ Obs: Aplique a regra duas vezes para finalizar a resolução.

LISTA DE EXERCÍCIOS

- 4.5. Resolva as integrais:
 - a) $\int x. senxdx$
 - b) $\int (3x + 7) \cdot \cos x dx$
 - c) $\int x. lnx dx$

4.5. INTEGRAL DEFINIDA.

Seja uma função definida em um intervalo [a,b], com a seguinte representação gráfica:

O cálculo da área da figura formada pela curva e pelo eixo x no intervalo [a,b] não é imediato, em razão da curvatura apresentada na parte superior da figura.

Um modo aproximado de calcular essa área é dividir o intervalo [a,b] em pequenos intervalos, calcular a área de cada retângulo formado com essa divisão e depois somar todas essas áreas.

Quanto menor for a base de cada um dos retângulos (Δx) , menor será a diferença entre a área do retângulo e a área sob a curva.

A soma da área de todos os retângulos se escreve de forma abreviada na forma de um somatório.

$$A \equiv \sum_{i=1}^{n} f(\overline{x_i}) \cdot \Delta_i x$$

No limite quando $\Delta_i x \to 0~e~n \to \infty$, o cálculo se aproxima da INTEGRAL DE RIEMANN:

$$A \equiv \lim_{\Delta X \to 0} \sum_{e \mid n \to \infty} \sum_{i=1}^{n} f(\overline{x_i}) \cdot \Delta_i x$$
$$= \int_a^b f(x) dx = F(b) - F(a)$$

Sendo

b > a e F uma primitiva de f no intervalo [a, b].

Exemplos:

Calcular:

a)
$$\int_{1}^{3} 3dx$$

$$F(b) = 3.3 + c = 9 + c$$

$$F(a) = 3.1 + c = 3 + c$$

$$F(b) - F(a) = 9 + c - 3 - c = 6$$

Área do retângulo = bxh = 2 x 3 =6

b)
$$\int_{2}^{10} x dx$$

$$F(b) = \frac{10^2}{2} + c = 50 + c$$
$$F(a) = \frac{2^2}{2} + c = 2 + c$$

c)
$$\int_2^{10} x dx = F(b) - F(a) = 50-2 = 48$$

Área do trapézio =

$$\frac{(B+b)}{2}.h = \frac{(10+2).8}{2} = 48$$

EXERCÍCIOS

- 4.4. Resolva as integrais:
 - a) $\int_0^5 (x^2 + 1) dx$

b)
$$\int_{-2}^{0} (x^3 - e^x) dx$$

Resp:
$$a)\frac{140}{3}$$
; $b) - 5 + e^{-2}$

ATIVIDADE

4.6. Resolva:

- a) $\int_{1}^{10} 4dx$
- b) $\int_{-1}^{1} e^{x} dx$

LISTA DE EXERCÍCIOS

- 4.6. Resolva as integrais:
- a) $\int_{1}^{5} \frac{10}{x} dx$
- b) $\int_{-\pi}^{\pi} cosxdx$
- c) $\int_0^4 \sqrt{x} \, dx$
- d) $\int_{1}^{2} \frac{4}{x+1} dx$

4.6. CÁLCULO DE ÁREAS – APLICAÇÕES DA INTEGRAL DE RIEMANN.

Como já vimos, podemos calcular a área de figuras planas utilizando a Integral de Riemann. No entanto, é preciso tomar cuidado com o sinal da integral.

1º caso: A função é positiva no intervalo [a,b]

A área coincide exatamente com a integral da função no intervalo.

2º caso: A função é negativa no intervalo [a,b]

A área corresponde à integral com o sinal trocado. Ou seja, a área será sempre positiva.

3º caso: A função troca de sinal no intervalo [a,b]

Neste caso, calculam-se separadamente as áreas das figuras acima e abaixo do eixo x, trocando o sinal da integral que corresponde à parte negativa da função.

Exemplos

Calcular a área das figuras:

a)

Área =
$$\int_0^5 (x+2)dx = \frac{x^2}{2} + 2x|_0^5 =$$

$$\frac{25}{2} + 10 = \frac{45}{2}$$

b)

Área =
$$\int_{1}^{2} (1 - x^2) dx = (x - \frac{x^3}{3}) \Big|_{1}^{2} = \frac{4}{3}$$

c)

Área =
$$\int_0^2 (4 - x^2) dx + (-) \int_2^3 (4 - x^2) dx = \frac{23}{3}$$

APLICAÇÕES

O cálculo da área através da integral definida, além de representar efetivamente uma área , pode também auxiliar na obtenção de resultados para grandezas expressas pelo produto de duas variáveis, como podemos facilmente encontrar na Física.

Um exemplo é o cálculo do trabalho, definido como sendo o produto da força pelo deslocamento, quando a força é aplicada no mesmo sentido do deslocamento. Se a força é constante fica fácil o cálculo da área do retângulo que se obtém no gráfico Fxd.

 $\tau = Fxd \equiv \text{área do retângulo}$

Mas se a força varia, o cálculo da área pode ser obtido pelo cálculo da integral definida. Veja o gráfico abaixo:

 $au=\int_0^2(x^2+1)dx=rac{x^3}{3}+x\Big|_0^2=rac{14}{3}\ joules$, considerando que a força é dada em newtons e o deslocamento em metros.

EXERCÍCIOS

4.5. Calcule a área das figuras:

a)

b)

Respostas: a) $\frac{38}{3}$; b) $\frac{128}{3}$

LISTA DE EXERCÍCIOS

4.7. Calcule a área das figuras:

c)

5. DERIVADAS PARCIAIS.

5.1. FUNÇÕES DE DUAS VARIÁVEIS.

É comum encontrar funções de mais de uma variável para representar situações reais.

Muitas vezes são analisadas como as alterações de uma das variáveis podem afetar os valores das funções. Determinar a taxa de variação de uma função f em relação a uma de suas variáveis independentes é calcular as derivadas parciais.

Exemplo

a) Seja uma função fictícia, que determina a temperatura, medida em graus Celsius, em função da altitude, em metros e, do tempo, em horas:

$$T(t,h) = 0.5t^2 + 4t - 0.01h + 8$$

A derivada parcial faz uma análise da taxa de variação de uma variável, enquanto todas as demais se mantêm constantes:

Podemos querer saber como a temperatura varia em relação à altitude, para um instante t fixo, ou como a temperatura varia em relação ao tempo, para um ponto de altitude fixo.

De uma forma geral as primeiras derivadas parciais de z=f(x,y) são denotadas por:

$$\frac{\partial z}{\partial x}; D_x; f_x(x,y)$$

Sendo que o símbolo ∂ , às vezes pronunciado "del" ou "parcial" é utilizado em vez de dê.

Na função temperatura acima, temos $\frac{\partial T}{\partial h} = -0.01~e~\frac{\partial T}{\partial t} = 1.~t + 4.$

Supondo para certo instante t = 10 h, temos uma taxa de variação da temperatura de -0,01 grau/m, enquanto para uma certa altitude h = 100m, a taxa de variação é de t + 4 grau /h.

b) seja a função $z = 2x - x^2y^2 + 4x^3y$.

Suas derivadas parciais são:

$$\frac{\partial z}{\partial x} = 2 - 2xy^2 + 12x^2y; \ e$$
$$\frac{\partial z}{\partial y} = 2yx^2 + 4x^3$$

EXERCÍCIO

5.1. Calcule as derivadas parciais
$$f(x,y) = x \cdot e^{x^2 y} \text{ no ponto } (1, \ln 2)$$

$$Resp: \frac{\partial f}{\partial x} = 2(1 + 2\ln 2); \ \frac{\partial f}{\partial y} = 2$$

LISTA DE EXERCÍCIOS

5.1. Calcule as derivadas parciais de f(x, y)

a)
$$f(x,y) = x^2 + 3y^2$$

b)
$$f(x,y) = 2x^3 + y^2 + 2xy$$

c)
$$f(x,y) = (x^2 + y^2)senx$$

6. INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS.

6.1. CONCEITO.

Neste livro, trataremos de uma maneira muito breve o que é uma equação diferencial e apenas uma técnica de solução, lembrando que em geral não há uma fórmula explícita para a solução de uma equação diferencial.

Para se interpretar e entender alguns fenômenos da natureza se faz necessário um modelo matemático para que se possa estudar o problema e muitas vezes predizer um comportamento futuro. Uma aplicação importante do cálculo para a modelagem matemática de um problema frequentemente tem a forma de uma equação diferencial.

Um dos exemplos mais citados para a utilização de uma equação diferencial é o crescimento ou decrescimento de populações.

A taxa de crescimento, por exemplo, de uma população de bactérias, no decorrer do tempo, pode ser proporcional ao tamanho da população:

$$\frac{dP}{dt} = KP$$
, onde $K = constante$ de proporcionalidade.

$$ou P' = KP$$

P pode ser uma função exponencial, pois a exponencial é uma função cuja derivada é um múltiplo dela mesma

Então, P pode ser uma função do tipo $P = C.e^{Kt}$

6.2. SOLUÇÃO DE UMA EQUAÇÃO DIFERENCIAL.

A solução de uma equação diferencial (E.D.) é qualquer função f que, substituída na equação diferencial, reduz a equação à uma identidade.

Exemplo: Seja a equação
$$y'+5y=0$$
 . A função $y=e^{-5x}$ é uma solução , pois

$$y' = -5.e^{-5x}$$
. Substituindo na E.D., temos $-5e^{-5x}$
 $+5.e^{-5x} = 0$.

Esta não é a única solução. Em geral, temos uma família de soluções. A solução desejada vai depender das condições de contorno do problema.

EXERCÍCIO

6.1. Mostre que a função $y=x^2$ é $solução\ para\ a\ E.D.\ x^2.y^{\prime\prime}-2y=0$

6.2 Mostre que a função $y = x^3 + 9$ é $solução\ da\ E.D.y' = 3x^2$

6.3. RESOLUÇÃO PELO MÉTODO DA SEPARAÇÃO DE VARIÁVEIS.

Separa-se de um lado da equação os termos envolvendo x, e em outro os termos envolvendo y.

Exemplo:

Seja a E.D. y' = 10 y.

Vamos escrever na forma $\frac{dy}{dx} = 10y$

Separando as variáveis: $\frac{dy}{y} = 10dx$

Agora vamos integrar os dois membros da equação:

$$\int \frac{dy}{y} = \int 10 dx$$

$$\ln|y| + c = 10x + c \to |y| = e^{10x+c} \to y = e^{10x+c}$$
 ou $y = -e^{10x+c}$

EXERCÍCIO

6.3. Resolva as Equações Diferenciais:

a)
$$y' = \frac{x}{y^2}$$

b)
$$y' = 2x$$

c)
$$y' + 5y = 0$$

Resp: a)
$$y = \sqrt[3]{\frac{3x^2}{2}} + c$$
; b) $y = x^2 + c$; c) $|y| = e^{-5x+c} + c$

Bibliografia

Boulos, P., *Cálculo Diferencial e Integral*, vol.1, São Paulo: Pearson Educations do Brasil Ltda, 1999.

Caldeira, A.M., Silva, L.M.O,Machado,M.A.S,Medeiros,V.Z.,*Pré-Cálculo*,2.ed.São Paulo:

Cengage Learning, 2010.

Flemming, D.M., Gonçalves, M.B., *Cálculo*, vol. A e B, São Paulo: Pearson Educations do Brasil Ltda, 2007.

Larson, R., Cálculo Aplicado, Trad. All Tasks, São Paulo: Cengage Learning, 2011.

Leite, A., *Aplicações da Matemática, Administração, Economia e Ciências Contábeis*. 2.ed.São Paulo:Cengage Learning,2016.

Silva, S. M., Silva., E.M., Silva, E.M., *Matemática : para os cursos de economia, administração, ciências contábeis*.6.ed., São Paulo: Atlas, 2010.

Stewart, J., *Cálculo*, Vol. 1, 6. ed. Trad. Antonio Carlos Moretti, São Paulo: Cengage Learning, 2010.