RAG and the Fine Tuners Getting the Band Together

UNPARSED LONDON, UK / ONLINE

This Presentation and Code

Presentation:

bit.ly/unparsed-finetuning

Code:

bit.ly/unparsed-finetuning-code

Whoaml

Roger Kibbe

- Head of Conversational AI Developer Relations, Samsung Research America
- Startup Advisor: Ollang, LiftLab, AgreeWe
- Entrepreneur

www.linkedin.com/in/rkibbe/

- Dad two teen daughters
- San Francisco Native
- UC Berkeley Graduate Go Bears!

Roger's Presentation and views not my employer's

Fine Tuning Live Demo

Fine-tune Mistral 7B

State of GenAl

Al Demo Excitement

Using ChatGPT

Trying to go Live

The Questions

luse prompt engineering and RAG. What about fine-tuning? When should I use it? What is it? How do Luse it?

Compare and Contrast

Prompt Engineering
Inference Time
Data & Behavior

*RAG*External Data

Fine-Tuning
Behavior

Cooking Analogy

- Base LLM Training: Basic culinary school. Broad foundational learning
- RAG: Using cookbooks. Integrating external resources
- Fine-tuning: Specialized cooking techniques.
 Mastering advanced techniques
- Prompt Engineering: Creating menus/adapting recipes to events or dietary needs

Level of Effort

relative

MEDIUM

RAG

Prompt Engineering

LOW

Fine-Tuning

RAG ≠ Easy

Agentive Corrective RAG Agent – LangChain & Al Jason

Fine Tuning

- When
- What
- How

Remember

Fine-Tuning
[fahyn too-ning] noun

a process in machine learning where a pre-trained model is further trained on a specific dataset to enhance its capabilities in a particular domain or task, often resulting in improved accuracy and relevance of outputs.

Data Knowledge*

* except a full fine-tuning, which is data and capabilities. A PEFT fine-tune is capabilities

Common Use Cases

Text Classification: topic classification, sentiment analysis

Sentiment Analysis:
Analyze sentiment in text

Document Parsing:
Extract info from complex document formats

Style Copying:
Mimic style/brand voice
from documents

Coding Style/Languages: code style guidelines, proprietary languages

Named Entity Recognition: Extract entities, e.g., names, locations, dates, etc.

Industries/Verticals

Law

- Contract analysis
- Compliance
- Classification

Finance/Investing

- Sentiment Analysis
- Document parsing
- Compliance

Medicine

- Classification
- Research summarization
- Patient communication

Retail

- Customer Service
- Personalization
- Marketing

Knowledge Distillation

- Teacher model creates output
- Fine-tune smaller student model to produce similar output

Cheaper and Faster

Fine-Tuned Pricing Comparison

Fine Tuned Model	Input – 1M Tokens	Output – 1M Tokens	Reference Model
GPT 3.5	\$3.00 40% Cheaper	\$6.00 60% Cheaper	GPT-40 Input: \$5.00 Output: \$15.00
Mistral 7B	\$0.75 80% Cheaper	\$0.75 95% Cheaper	Mistral Large Input: \$4.00 Output: \$12.00
Gemini Pro 1.0	\$0.50 85% Cheaper	\$1.50 85% Cheaper	Gemini 1.5 Pro Input: \$3.50 Output: \$10.50

But: Most fine-tuned models likely require a dedicated hosted instance. Pricing will vary.

Whatis

Fine Tuning

You have already (kinda) Fine-Tuned

Few shot/many shot prompting is "fine-tuning light"

- Shot examples are good fine-tuning data
- Fine-tuning is like enormous shot prompting
- Fine-tuning is done once, prompting needs to be repeated

Types of Fine Tuning

Full Fine-Tuning

- Updates all model parameters
- Substantial training data
- Expensive

PEFT: Parameter Efficient Fine-Tuning

- Updates small subset of parameters
- Small training data
- Cheaper and faster

PEFT: LoRA, QLoRA

LoRA: Low-Rank Adaptation

- Adds a small set of parameters that are fine-tuned
- During inference, the input parameters are multiplied by the new parameters and the result is added to the original parameter output
- Base model parameters are frozen
- Very efficient

QloRa

- Add quantization to make the process faster and more memory efficient
- Even more efficient

How to Fine

Data Formats

- SFT: Supervised Fine Tuning
- DPO: Direct Preference Optimization
- Others include: PPO, KTO, CPO, etc. SFT and
 - DPO are the most common

SFT: Supervised Fine Tuning Data

- Typically, in pairs
- Examples
 - Q&A pairs
 - Prompts and completions
 - Translations
 - Summary
 - Entity Recognition
 - Sentiment

source:

www.kaggle.com/datasets/sbhatti/financial-sentiment-analysis

A Sentence ☐ Index	▲ Sentiment =	
5322 unique values	neutral positive Other (860)	54% 32% 15%
The GeoSolutions technology will leverage Benefon 's GPS solutions by providing Location Based Searc	positive	
\$ESI on lows, down \$1.50 to \$2.50 BK a real possibility	negative	
For the last quarter of 2010 , Componenta 's net sales doubled to EUR131m from EUR76m for the same p	positive	

DPO: Direct Preference Optimization

- Tuple:
 - Question
 - Good response
 - Bad response
- Examples
 - CSR responses
 - Content moderation
 - Safe/unsafe code
 - Product recommendations

How Much Data?

- Depends upon the task and the model
- The simpler the task, the less data
 - Simple: Text classification, sentiment analysis, named entity recognition and style match
 - More complex: translation, long text generation and code generation
- The closer the task to the base model training, the less data required
- Start smaller (50-100 examples), test and add data as needed

QA: The Evals

Representative, large and easy to run

- Evaluation Metrics
 - Accuracy: How many right
 - Precision: Correct identification, avoid false positives
 - Recall: How many positive out of actual positive
- Specific task evaluation
- Robustness
 - Cross domain, adversarial, out of distribution
- Efficiency
 - Time and resource utilization
- Bias and compliance
- Qualitative human evaluation

Automatic vs Manual?

That's the Hard Part

Fine Tune Tools

- Axolotl
- OpenAl
- Mistral
- Google Gemini
- Others

Axolotl

- Popular open-source library for fine-tuning LLMs
- Broad support for LLM architectures and finetuning methods
- Uses YAML file for configuration
- Wrapper for low-level Hugging Face libraries
- Excellent integration with Modal (modal.com), a serverless LLM platform

github.com/OpenAccess-AI-Collective/axolotl

OpenAl Fine Tuning (\$6)

- Fine-Tune GPT-3.5 Turbo (GPT-4 in beta)
- Uses OpenAI JSONL format training files
- Simple API or UI for fine-tuning
- Trained model available as endpoint
- Cost:

	Train 1M Tokens (training only)	Input 1M Tokens	Output 1M Tokens
Base 3.5	N/A	\$0.50	\$1.50
Fine-Tuned 3.5	\$8.00	\$3.00	\$6.00
GPT-40	N/A	\$5.00	\$15.00

platform.openai.com/docs/guides/fine-tuning

Mistral Fine Tuning

- New announced June 5th
- Fine tune 7B and Small (8x7B, 8x22B not hosted)
- Simple Mistral API and YAML configuration file
- Trained model available as endpoint
- Cost:

	Train 1M Tokens (training only)	Input 1M Tokens	Output 1M Tokens
Mistral 7B	N/A	\$0.25	\$0.25
Fine-Tune	\$2.00 + \$2.00 month	\$0.75	\$0.75
GPT-40	N/A	\$5.00	\$15.00

docs.mistral.ai/guides/finetuning/

Mistral Fine Tuning HISTRAL Let's checkon

our fine-tuning

Gemini Fine-Tuning

- Fine tune Gemini 1.0 Pro (more coming)
- Uses Gemini JSONL format training files
- Simple tuning API with JSON configuration
- Trained model available as endpoint
- Cost: Same!!!

	Train 1M Tokens (training only)	Input 1M Tokens	Output 1M Tokens
Gemini 1.0 Pro	N/A	\$0.50	\$1.50
Fine-Tune	Free during preview	\$0.50 (Same!!)	\$1.50 (Same!!)
GPT-4o	N/A	\$5.00	\$15.00

cloud.google.com/vertex-ai/generative-ai/docs/models/tune-gemini-overview

Other Tools

HuggingFace AutoTrain huggingface.co/autotrain

UnSloth unsloth.ai

LLaMA Factory github.com/hiyouga/LLaMA-Factory

Weights and Biases (wandb) wandb.ai

LoRA Adapters

- Serve multiple fine-tuned models from a single base model
- Inference time selection and loading of fine-tuned model
- What Apple (and Google?) use for their LLMs embedded in phones
- Cost effective, works well in constrained environment e.g. edge SLMs as well as data center

LoRA Adapters

Tweaking fine-tuning hyperparameters

Improving fine-tuning data

RAFT: Best of Both

Retrieval Augmented Fine Tuning

- RAG provides context based on semantic similarity but doesn't improve a model's understanding.
- Fine-tuning equips the model with new capabilities but doesn't introduce your data.
- Fine-tuning complements RAG: FT adapts to the domain, enabling RAG to identify the most relevant information.

gorilla.cs.berkeley.edu/blogs/9_raft.html

RAFT: Best of Both

Textbook Analogy

- Fine-tuning is like studying textbook before class
- RAG is like an open book test
- RAFT combines the best of both

gorilla.cs.berkeley.edu/blogs/9_raft.html

Closing Thoughts

- Prompt engineering, RAG and fine-tuning are all complimentary tools
- Easiest to hardest: Prompt engineering -> RAG -
 - > Fine-Tuning
- RAG is about data, fine-tuning is about behavior
- Choose the right tool(s) for the job
- Don't be afraid of fine-tuning

Thank You & Stay in Touch www.linkedin.com/in/rkibbe/

Presentation:

bit.ly/unparsed-finetuning

Code:

bit.ly/unparsed-finetuning-code

Resources

Tools

- Axolotl: https://openaccess-ai-collective.github.io/axolotl/
- AutoTrain: https://huggingface.co/autotrain
- Gemini Fine Tune: https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-gemini-overview
- Mistral Fine Tune: https://docs.mistral.ai/guides/finetuning/
- OpenAl Fine Tune: https://platform.openai.com/docs/guides/fine-tuning
- RAFT: https://gorilla.cs.berkeley.edu/blogs/9_raft.html

Big Models are Expensive

Mistral 7B and LLaMA 3 8B are 25 X cheaper input and 75 X cheaper output than GPT-40

Source: artificialanalysis.ai

