Master's degree in Computer Engineering for Robotics and Smart Industry

Physical Human-Robot Interaction

Report on the assignments given during the 2022/2023 a.y.

Author: Lorenzo Busellato, VR472249 email: lorenzo.busellato 02@studenti.univr.it

Contents

1	Assignment 1	1
2	Assignment 2	2
3	Assignment 3	3
4	Assignment 4	4
5	Assignment 5	5
6	Assignment 6	6
7	Assignment 7	7

1.1 Implement the single-input single-output four-channel bilateral teleoperation architecture

Figure 1: SISO 4ch bilateral teleoperation architecture

The inner controllers for the robots are defined as follows:

$$C_m = B_m + \frac{K_m}{s} \qquad C_s = B_s + \frac{K_s}{s}$$

To achieve perfect transparency, the coordination controllers must satisfy the following conditions:

$$\begin{cases} C_1 &= Z_s + C_s \\ C_2 &= I \\ C_3 &= I \\ C_4 &= -(Z_m + C_m) \end{cases} \text{ with } Z_m = M_m s + D_m, \ Z_s = M_s s + D_s$$

with $M_m = 0.5, M_s = 2, D_m = D_s = 0.$

The human is modelled with inertia $J_h=1$, damping $B_h=1$ and stiffness $K_h=0$. The human intention is modelled with a PD controller with $P_h=10$ and $D_h=16$.

The environment is modelled as a spring with inertia $B_e = 100$ and stiffness $K_e = 200$.

- 2.1 Implement the three two-channel bilateral teleoperation architectures and the three-channel bilateral teleoperation architecture
- 2.2 What happens if transportation delays are added in series to the coordinating controllers?

- ${\bf 3.1} \quad {\bf Implement \ the \ Kalman \ filter/predictor \ and \ estimate \ the \ velocity \ and \ acceleration \ from \ noisy \ position \ measurements$
- 3.2 Implement the steady-state Kalman filter/predictor and estimate the velocity and acceleration from noisy position measurements

4.1 Implement the Kalman smoother and estimate the velocity and acceleration from noisy position measurements

5	Assignment	5
J	Assignment	•

5.1 Identify the parameters J and D using the LS and the RLS on the DC motors data

- 6.1 Implement the Scattering-based bilateral teleoperation architecture for the F-P and P-P cases
- 6.2 Compare positions, velocities, forces, commands in free motion and in contact
- 6.3 Create another simulink model and (a) add the measurement noise to the position/force signals, and (b) estimate velocities from positions

- 7.1 Implement the Tank-based bilateral teleoperation architecture for the F-P and P-P cases
- 7.2 Compare positions, velocities, forces, commands in free motion and in contact
- 7.3 Create another simulink model and (a) add the measurement noise to the position/force signals, and (b) estimate velocities from positions