Homework 2.3 7 points. End term: 8-th week (19-25 november 2020)

1. For one of the following LP problems: solve the problem using the Dual Simplex method.

(a)
$$\begin{cases} \min & z = 3x_1 + 4x_2 + 2x_3 \\ \text{s. t.} & x_1 + 2x_2 + 3x_3 \leq 4 \\ 2x_1 + 2x_2 + x_3 \geq 5 \\ x_1, x_2, x_3 \geq 0 \end{cases}$$
 (b)
$$\begin{cases} \min & z = 24x_1 + 6x_2 + x_3 + x_4 \\ \text{s. t.} & 4x_1 + 2x_2 + x_3 + x_4 \geq 4 \\ 5x_1 + x_2 - x_3 \geq 5 \\ x_1, x_2, x_3, x_4 \geq 0 \end{cases}$$

2. The following tableau corresponds to an iteration of the Dual Simplex method (using Bland's rule) when solving a minimization LP problem:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
	0	-3	1	2	-2 e	0	1	3
	1	1	0	d	e	0	f	g
	0	h	0	-1	-3	i	-2	3
z	k	a	0	0	1	b	\mathbf{c}	j

Categorize the variables as basic and nonbasic and provide the current values of all the variables. Find conditions on the parameters a, b, \ldots, i so that the following statements are true.

- (i) The above tableau is a valid tableau for the dual simplex algorithm.
- (ii) The current basis is infeasible.
- (iii) The current basis is not feasible and x_4 enters the basis.
- (iv) The problem is infeasible.
- (v) x_7 enters the basis which is infeasible, and the resulting solution is still infeasible.
- **3.** Devise an implementation (C, C++, C#, Java) for the Dual Simplex algorithm (with Bland rule: breaking ties by choosing the smallest index variable) using the following pseudo-code (the simplex tableau has $(m + 1) \times (n + 1)$ dimensions):

```
while (\exists t_{i,n+1} \geqslant 0, \forall 1 \leqslant i \leqslant m, the dual simplex table is optimal: the basic current solution is optimal. while (\exists t_{i,n+1} < 0, 1 \leqslant i \leqslant m) {

let 1 \leqslant k \leqslant m such that t_{k,n+1} < 0;

// k is the pivot row, i.e., on row k will be the leaving basic variable.

if (t_{k,j} \geqslant 0, \forall 1 \leqslant j \leqslant n) // the problem is infeasible - and its dual is unbounded. return;

let 1 \leqslant l \leqslant n such that \left| \frac{t_{m+1,l}}{t_{k,l}} \right| = \min \left\{ \left| \frac{t_{m+1,j}}{t_{k,j}} \right| : 1 \leqslant j \leqslant n, t_{k,j} < 0 \right\}

// l is the pivot column, on column l will be the entering basic variable

for i = \overline{1, m+1}, i \neq k

for j = \overline{1, n+1}, j \neq l

t_{i,j} \leftarrow \frac{t_{i,j}t_{k,l} - t_{i,l}t_{k,j}}{t_{k,l}};// pivoting rule.

for i = \overline{1, m+1}, i \neq k
```

```
\begin{array}{l} \mathbf{for} \,\, j = \overline{1,n+1}, \,\, j \neq l \\ t_{k,j} \leftarrow \frac{t_{k,j}}{t_{k,l}}; \\ t_{k,l} \leftarrow 1; \\ \} \end{array}
```