Logic M384 Hw 3

Kaden Oberlander

09/17/2025

Problems from?

Problem: 1

Let Γ be any set of sentences in \mathscr{S} . Following the steps below, show that there is a model M with the following properties:

(a) $\mathcal{M} \models \Gamma_{all,no}$

Take $\mathcal{M} = (M, [\![]\!])$ s.t

 $M = \{A \subseteq P : (\forall v, w \in P, (v \in A) \land (\Gamma \vdash All \ v \text{ are } w) \implies w \in A) \land (\forall v, w \in A \implies \Gamma \nvdash No \ v \text{ are } w)\}$

$$[\![u]\!] = \{A \in M : u \in A\}$$

(first condition of A is that it is logically closed, like the State definition kind of).

- 1. Take $\Psi \in \Gamma_{all,no}$ s.t $\Psi = \text{All } x$ are y. W.t.s. $\mathcal{M} \models \Psi$. $\forall V \in \llbracket x \rrbracket$, by def. $x \in V$ and $\Gamma \vdash \text{All } x$ are y is given by $\Psi \in \Gamma$, thus $y \in V$ by condition 1. Thus by def. since $\forall V \in \llbracket x \rrbracket$, $y \in V$ we have $V \in \llbracket y \rrbracket$, $\therefore \llbracket x \rrbracket \subseteq \llbracket y \rrbracket$, so $\mathcal{M} \models \Psi$.
- 2. Take $\Omega \in \Gamma_{all,no}$ s.t $\Omega = \text{No } x$ are y. W.t.s. $\mathcal{M} \models \Omega$. By def. $\forall A \in M, \ x \in A \implies y \notin A, \ y \in A \implies x \notin A$, else condition 2 will be violated. From this, $\forall G \in \llbracket x \rrbracket, \ y \notin G$ which is enough to show $\llbracket x \rrbracket \cap \llbracket y \rrbracket = \varnothing$, so $\mathcal{M} \models \Omega$.
- (b) If φ is any sentence in $\mathscr{S}(\text{all,no})$, and $\mathcal{M} \models \varphi$, then $\Gamma \vdash \varphi$.
 - 1. Take φ₁ = All x are y. Assume M ⊨ φ₁. W.t.s Γ ⊢ φ₁.
 Assume Γ ⊬ φ₁. Take A = {z : Γ ⊢ All x are z}, this set axiomatically contains x, and under our assumption y ∉ A. To show A ∈ M, looking at the first condition: for v ∈ A we have Γ ⊢ All x are v. If ∃w ∈ P s.t Γ ⊢ All v are w then we can apply BARBARA to get Γ ⊢ All x are w and thus w ∈ A, satisfying condition 1. For condition 2: take v, w ∈ A, assume for contradiction that Γ ⊢ No v are w. Then applying CAMESTRES to this and Γ ⊢ All x are w, we get Γ ⊢ No w are x, but by def. of w ∈ A we also have Γ ⊢ All x are w, an inconsistency thus Γ ⊬ No v are w for v, w ∈ A, satisfying condition 2. Therefore, if Γ ⊬ φ₁ there is some A ∈ M s.t x ∈ A, y ∉ A which implies M ⊭ φ₁, a contradiction, thus ∀x, y ∈ P, M ⊨ All x are y ⇒ Γ ⊢ All x are y
 - 2. Take φ₂ = No x are y. Assume M ⊨ φ₂. W.t.s. Γ ⊢ φ₂.
 Assume Γ ⊬ φ₂. Take A = {z : Γ ⊢ All x are z ∨ Γ ⊢ All y are z}, first this set axiomatically contains both x and y. Looking at condition 1: take v ∈ A, giving Γ ⊢ All x are v or Γ ⊢ All y are v. If ∃w ∈ A s.t Γ ⊢ All v are w then by BARBARA we achieve Γ ⊢ All x are w or Γ ⊢ All y are w depending on which ever v satisfies by being in A, thus condition 1 holds. For condition 2, take v, w ∈ A and assume for contradiction Γ ⊢ No v are w. We can look at 2 cases w.l.o.g.: Γ ⊢ All x are v, Γ ⊢ All x are w, or Γ ⊢ All x are v, Γ ⊢ All y are v. For case 1 we achieve inconsistency with CAMESTRES getting Γ ⊢ No v are x which with Γ ⊢ All x are v is an inconsistency. Case 2 using CAMESTRES and NO/ZERO gets Γ ⊢ No v are y and Γ ⊢

No w are x. However, applying NO/ZERO and CAMESTRES with these new No statements on our case 2 assumptions gets $\Gamma \vdash \text{No } x$ are y and $\Gamma \vdash \text{No } y$ are x, which is an inconsistency with our assumption that $\Gamma \nvdash \varphi_2$, thus we must have $\forall v, w \in A$, $\Gamma \nvdash \text{No } v$ are w, and so condition 2 holds and $A \in M$. Therefore if $\Gamma \nvdash \varphi_2$ there is some $A \in M$ s.t $x, y \in A$ which implies $M \nvDash \varphi_2$, which is a contradiction so we must have $\Gamma \vdash \varphi_2$. And from these cases of φ we see that $\forall \varphi \in \mathscr{S}(\text{all,no}), \ M \vDash \varphi \implies \Gamma \vdash \varphi$.

Problem: 2

Finish the completeness proof of the logic for $\mathcal S$ given in the lecture (see Sep 9 notes). Here is an outline.

- (a) Suppose that $\Gamma \vDash \varphi$, with φ of the form Some p are q. In this case, we use partial completeness result we did in the lecture (see Sep 11 notes).
 - From lecture: taking $\mathcal{M}_s = (\Gamma_{all,some}, \llbracket \ \rrbracket)$, $\llbracket u \rrbracket = \{ \varphi \in \Gamma_{all,some} : \Gamma_{all,some} \vdash \text{All } v \text{ are } u \implies v \in \varphi \}$, our Lemma 1 showed $\mathcal{M}_s \vDash \Gamma_{all,some}$, our second lemma showed $\mathcal{M}_s \vDash \text{Some } p \text{ are } q \implies \Gamma_{all,some} \vdash \text{Some } p \text{ are } q \implies \Gamma \vdash \text{Some } p \text{ are } q \text{ via two cases:}$
 - 1. $\mathcal{M}_s \vDash \Gamma_{no}$. By lemma 2 and our assumption we have $\Gamma \vdash \text{Some } p$ are q.
 - 2. $\mathcal{M}_s \nvDash \Gamma_{no}$. Then $\mathcal{M}_s \vDash \operatorname{Some} m$ are n which by lemma 2 gives $\Gamma \vdash \operatorname{Some} m$ are n. Thus by applying X rule we have $\Gamma \vdash \operatorname{No} n$ are n thus $\Gamma \vdash \operatorname{Some} p$ are q.
- (b) Suppose that $\Gamma \vDash \varphi$, with φ of the form All p are q or No p are q. Let \mathcal{M} be the model from previous exercise. We have two cases, depending on whether $M \vDash \Gamma_{some}$ or not. Argue that either way, $\Gamma \vdash \varphi$. Case 1: $\mathcal{M} \vDash \Gamma_{some}$. This with $\mathcal{M} \vDash \Gamma_{all,no}$ from Problem 1 provides $\mathcal{M} \vDash \Gamma$. Since $\mathcal{M} \vDash \Gamma$ and $\Gamma \vDash \varphi$

Case 1: $\mathcal{M} \models \Gamma_{some}$. This with $\mathcal{M} \models \Gamma_{all,no}$ from Problem 1 provides $\mathcal{M} \models \Gamma$. Since $\mathcal{M} \models \Gamma$ and $\Gamma \models \varphi$ by assumption, we know $\forall \psi \in \Gamma$, $\mathcal{M} \models \psi$, and from Problem 1 (b) we know $\mathcal{M} \models \varphi \implies \Gamma \vdash \varphi$ in this case.

Case 2: $\mathcal{M} \nvDash \Gamma_{some}$. Like lemma 2, this case implies there is some $x, y \in P$ s.t $\Gamma \vdash \text{Some } x$ are y and $\mathcal{M} \nvDash \text{Some } x$ are y. The later means $\llbracket x \rrbracket \cap \llbracket y \rrbracket = \varnothing$, but then $\mathcal{M} \vDash \text{No } x$ are y and again by 1 (b) this implies $\Gamma \vdash \text{No } x$ are y. Thus with both $\Gamma \vdash \text{Some } x$ are y and $\Gamma \vdash \text{No } x$ are y we use X rule to achieve $\Gamma \vdash \varphi$.