Using Hippocampal Replay to Consolidate Experiences in Memory-Augmented Reinforcement Learning

John Tan Chong Min Mehul Motani

Go-Explore

- Using reward alone may be insufficient for sparse reward settings
- **Go-Explore** (Ecofett, 2019) uses external memory to update states
- In order to explore more states:
 - **Go:** Jump probabilistically to a state
 - Explore: Explore randomly from the state

Montezuma's Revenge, a game with sparse rewards

Problem with Traditional Agents (1/2)

3. By chance, it may explore another equally profitable area

2. An IM algorithm might start by exploring (purple) a nearby area with intrinsic reward

4. Exploration fails to rediscover promising areas it has detached from

Detachment:

 Intrinsic Reward (IR) may not rediscover previously searched frontiers

Problem with Traditional Agents (2/2)

Epsilon-Greedy:

Upper-Confidence Bounds: (in MCTS)

$$rac{w_i}{s_i} + c \sqrt{rac{\ln s_p}{s_i}}$$

Entropy regularization: (in Policy-based methods)

$$L_t^{CLIP+VF+S}(\theta) = \hat{\mathbb{E}}_t \left[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t) \right]$$

Derailment:

 Agent wants to reach a previously good state, but is hindered by exploration

The torchlight analogy

Agents

- 1. Random. This agent chooses a valid move randomly, and serves as a worst-case baseline.
- 2. <u>Go-Explore</u>. Go-Explore was implemented similar to Ecoffet et al. (2019, 2021), except that we select states deterministically in the "Go" phase for faster training.
- 3. <u>Go-Explore-Count</u>. While Go-Explore uses a random policy for exploration, Go-Explore-Count performs the best action based on a count-based selection function.
- 4. <u>Explore-Count</u>. Explore-Count is Go-Explore-Count without the "Go" phase.

How to "Go" and "Explore"

- Random exploration can be inefficient
- Solution Use Deterministic Selection to balance explore and exploit

$$\alpha \cdot reward + \kappa \sqrt{moves} - \gamma \sqrt{numselected + numvisited}$$

• *reward*: environment reward

• *moves*: number of moves to reach state

numselected: number of times state is selected in "Go" phase
 numvisited: number of times state is visited in "Explore" phase

• Similar to Upper Confidence Bounds (UCB) equation and encourages greedy action selection in the long run

Environments

Memory Initialization and Updates

- <u>Initialization</u>. For each explored state, store in memory:
 - 1. Trajectory of actions to reach it
 - 2. No. of moves to reach it
 - 3. Reward
 - 4. No. of selections in the "Go" phase (initialized to 0)
 - 5. No. of visits in the "Explore" phase (initialized to 0)
- <u>Updating Current State</u>. Increment selection and visit counts upon selection in "Go" and visitation in "Explore" phase respectively
- <u>Updating Next State</u>. Update the memory of the next state if current trajectory:
 - · Has a higher reward
 - Has the same reward with a shorter trajectory

Hippocampal Replay

Figure extracted from Joo, H. R., & Frank, L. M. (2018). The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nature reviews. Neuroscience, 19(12), 744–757. https://doi.org/10.1038/s41583-018-0077-1

Algorithm 1 Hippocampal Replay

- 1: **procedure** HIPPOCAMPALREPLAY(env, trajectory):
- 2: Consolidate the list of states in the successful trajectory, in chronological order ▷ Pre-play
- : Visit states in reverse order from the goal, and update the memory of each state

 ▷ Replay
- Inspired from sharp wave-ripple in mice
- Pre-play to retrieve states along successful trajectory
- Replay to reset state selection and visit counts to 0 to create an "Exploration Highway"
- Replay can also be used to update intrinsic reward of state for better performance

Hippocampal Replay creates Exploration Highway

Results

Table 1: Performance results for Unwalled Maze 100x100 with and without hippocampal replay. '-HR' represents with hippocampal replay. Bolded text represents better performance.

Overall	F	First Solve	Steps to Solve			
Agent	Solve Rate	Run Memory size		Avg	Min	Max
Random	Random 1/100 15 -		9980.0	9980.0	9980.0	
Go-Explore	0/100	-	-	-	-	-
Go-Explore-HR	0/100	-	-	-	-	-
Go-Explore-Count	78/100	1	7597	5533.1	4312.0	9498.0
Go-Explore-Count-HR	100/100	1	7597	6003.3	5984.0	7854.0
Explore-Count	98/100	1	7597	3501.8	1436.0	8286.0
Explore-Count-HR	100/100	1	7597	5984.0	5984.0	5984.0

Table 2: Performance results for Walled Maze 100x100 with and without hippocampal replay. '-HR' represents with hippocampal replay. Bolded text represents better performance.

Overall	ŀ	First Solve	Steps to Solve			
Agent	Solve Rate	Run	Memory size	Avg	Min	Max
Random	0/100	-	-	-	-	-
Go-Explore	0/100	-	-	-	-	-
Go-Explore-HR	0/100	-	_	-	-	_
Go-Explore-Count	100/100	1	7552	4918.2	4718.0	6362.0
Go-Explore-Count-HR	100/100	1	7552	4912.0	4912.0	4912.0
Explore-Count	52/100	1	7552	7039.0	3094.0	9758.0
Explore-Count-HR	100/100	1	7552	4912.0	4912.0	4912.0

- Our count-based approaches (Go-Explore-Count, Explore-Count) perform better than vanilla Go-Explore
- Hippocampal Replay leads to more consistent performance (higher solve rate) and less exploration (higher minimum number of steps to solve)

Hyperparameter Effects

Selection equation: $\alpha \cdot reward + \kappa \sqrt{moves} - \gamma \sqrt{numselected + numvisited}$

Table 3: Performance results for Walled Maze 100x100 with and without hippocampal replay using various hyperparameters. '-HR' represents with hippocampal replay. 'X' refers to any value in {0, 1, 10}. Bolded text refers to best performance within the given hyperparameters.

Overall				First Solve		Steps to Solve			
α	κ	γ	Agent	Solve Rate	Run	Mem	Avg	Min	Max
X	1	1	Go-Explore-Count	100/100	1	7454	4831.3	4620.0	6704.0
			Go-Explore-Count-HR	100/100	1	7454	4804.0	4804.0	4804.0
			Explore-Count	41/100	1	7454	3940.8	2510.0	9098.0
			Explore-Count-HR	100/100	1	7454	4804.0	4804.0	4804.0
X	0	1	Go-Explore-Count	0/100	-	-	-	-	-
			Go-Explore-Count-HR	0/100	-	-	_	-	_
			Explore-Count	17/100	2	7476	8031.8	5730.0	9746.0
			Explore-Count-HR	99/100	2	7476	7286.0	7286.0	7286.0
X	10	1	Go-Explore-Count	0/100	-	-	-	-	-
			Go-Explore-Count-HR	0/100	-	-	_	_	_
			Explore-Count	14/100	19	8581	2782.6	2260.0	3596.0
			Explore-Count-HR	82/100	19	8581	3596.0	3596.0	3596.0
X	1	0	All	0/100	-	-	-	-	-
X	1	10	Go-Explore-Count	100/100	1	7552	4918.2	4718.0	6362.0
			Go-Explore-Count-HR	100/100	1	7552	4912.0	4912.0	4912.0
			Explore-Count	52/100	1	7552	7039.0	3094.0	9758.0
			Explore-Count-HR	100/100	1	7552	4912.0	4912.0	4912.0

- Reward term not significant due to sparse reward setting
- Moves term should just be at 1 for tiebreaker to discover frontier. Any lower or higher leads to less efficient solution
- Higher exploration term (numselected + numvisited) leads to consistency at the expense of a less efficient solution

Goal-Directed Intrinsic Reward (GDIR)

- Possible to improve goal-seeking by adding a potential-function term to let agent know how close it is to goal
- Only serves as guide, does not tell us how to get there
- For maze environments, it can be Manhattan distance
- Scaled term between –1 to 0:
 - -(Manhattan Distance of agent to door position)/(Height+Width 2)

Results for GDIR

Table 4: Performance results for Unwalled Maze 100x100 with and without GDIR. Results are with hippocampal replay. Bolded text represents better performance.

Overall			First Solve	Steps to Solve		
Agent	Solve Rate	Run	Memory size	Avg	Min	Max
Go-Explore-Count	100/100	1	7597	6003.3	5984.0	7854.0
Go-Explore-Count-GDIR 100/100		1	499	230.0	230.0	230.0
Explore-Count	100/100	1	7597	5984.0	5984.0	5984.0
Explore-Count-GDIR	100/100	1	499	224.1	224.0	230.0

Table 5: Performance results for Walled Maze 100x100 with and without GDIR. Results are with hippocampal replay. Bolded text represents better performance.

Overall			First Solve	Steps to Solve			
Agent	Solve Rate	Run	Memory size	Avg	Min	Max	
Go-Explore-Count	100/100	1	7552	4912.0	4912.0	4912.0	
Go-Explore-Count-GDIR	100/100	1	5105	8922.0	8922.0	8922.0	
Explore-Count	100/100	1	7552	4912.0	4912.0	4912.0	
Explore-Count-GDIR	100/100	1	5105	2298.8	2184.0	8922.0	

- GDIR leads to shorter solutions in most situations
- Walled Maze
 Go-ExploreCount-GDIR
 ends up with a
 longer solution
 GDIR
 guidance may
 lead to wrong
 path followed
 initially in
 presence of
 wall

Discussion

- Should count-based explore-exploit selection be used as the baseline policy, or just as the action selection branch?
- How to incorporate with neural networks to help with action selection?
- How does our brain generate goals for an agent to move towards?
 How are these goals then quantified with an intrinsic reward?