Projeto Final de Banco de Dados

Rodrigo Naves Rios 16/0144094

rodrigonr98@gmail.com

João Viktor de Carvalho Mota 16/0127823

joaoviktor22@hotmail.com

1. Introdução

O projeto tem como objetivo aplicar os conceitos e técnicas aprendidos para representar a Secretária Municipal de Saúde da cidade fictícia de Macondo. O projeto da estrutura levou em conta aspectos como: monitoramento da situação epidemiológica nas diversas regiões do município, o controle de insumos hospitalares e registro dos aportes financeiros para o combate da doença. Todos esses fatores se relacionam com características singulares da pandemia provocada pelo vírus que causa a Covid.

Com os aspectos levantados, foi criado o diagrama de entidade e relacionamento (ER) que representa o sistema criado e, em seguida, o modelo relacional com as tabelas geradas a partir da análise do diagrama. Após a criação do banco de dados em MYSQL e das inserções nele feitas, criou-se um CRUD em python para que se pudesse fazer operações com os dados. Por meio dele, é possível criar novos registros, alterar ou deletar registros antigos, além de mostrá-los na interface. Além disso, fez-se uma análise das formas normais de algumas tabelas e foram criados uma tabela virtual (view) e dois procedimentos (procedure). No primeiro caso, constrói-se, por meio das operações de produto cartesiano e interseção em três tabelas pré-existentes, de modo a mostrar todas as tuplas possíveis de pacientes e de funcionários que trabalham no hospital em que estão estes pacientes. Por sua vez, o primeiro procedimento recebe como parâmetro (entrada) o nome de um dado paciente e retorna todos os funcionários ligados ao hospital daquele paciente específico a partir de uma consulta à tabela virtual acima definida. O segundo procedimento não recebe parâmetros e tem como retorno a listagem de todos os pacientes que tomam medicamentos cujo valor total excede os R\$ 50,00. Isto se faz por meio de um produto cartesiano, seguido de uma interseção, um agrupamento por nome (groupby) e um desvio condicional (if). Em termos da aplicação, este procedimento pode ser utilizado para definir se um determinado paciente é elegível ou não para receber um subsídio municipal para o custeio de seu tratamento. Neste sentido, adotase como linha de corte para o pagamento o custo total dos medicamentos.

Além das hipóteses e restrições da aplicação, prezou-se

pela observância de alguns aspectos construtivos, como a redução de redundância ao menor nível possível, restrições de integridade e a identificação de inconsistências. O primeiro aspecto é tratado por meio da normalização do banco de dados; isto é feito em fase anterior à implementação física, ainda no diagrama ER. Com isso, as tabelas são projetadas de modo a ter o menor número possível de registros repetidos, o que facilita a visualização e otimiza o armazenamento. Em grandes bancos de dados, este é um fator crucial. As restrições de integridade, por sua vez, são definidas logo que a estrutura do banco é criada, e têm o propósito de evitar que existam registros incompatíveis com o tipo de dado ou com o tipo de atributo. Por último, ressalta-se a importância de manter a consistência dos dados. Um exemplo disso é que sempre que se apaga um registro de uma entidade, os relacionamentos a ela ligados também devem ser apagados.

2. Diagrama de Entidade e Relacionamento

A Figura 1 mostra o Diagrama de Entidade e Relacionamento do sistema. Foram dez as entidades criadas. Nesta seção, elas são apresentadas e alguns comentários a elas correlatos são feitos.

Figura 1: Diagrama de Entidade Relacionamento

A Tabela 1 mostra a entidade hospital. O atributo "natureza"indica se ele é público ou privado. Esta entidade se relaciona com a entidade região com cardinalidade 1:n. Além disso, ressalta-se como importante dado a se guardar o orçamento que lhe é destinado.

Hospital		
Código	Chave Primária	
Nome		
Natureza		
Endereço		
Orçamento		
Região_Código	Chave Estrangeira	

Tabela 1: Atributos Hospital

A Tabela 2 mostra a entidade recurso, que se refere ao registro de um aporte financeiro no intuito do combate ao vírus. O atributo "finalidade"indica o motivo pelo qual se faz o aporte: compra de testes, equipamentos, entre outros. O atributo "origem"indica de qual esfera ele partiu: federal, estadual, municipal ou se foi doação. Mostra-se na tabela o atributo referente ao relacionamento de cardinalidade 1:n com a entidade hospital.

Recurso		
Código	Chave Primária	
Finalidade		
Origem		
Hospital_Codigo	Chave Estrangeira	

Tabela 2: Atributos Recurso

A Tabela 3 mostra a entidade funcionários. Ressalta-se que há restrições no tipo de dado a ser inserido: salário, por exemplo, deve ser numérico. Essa entidade, conforme se pode verificar na tabela, participa de um relacionamento 1:n com a entidade hospital.

Funcionários		
CPF	Chave Primária	
Nome		
Profissão		
Data de Nascimento		
Salário		
Endereço		
Email		
Hospital_Codigo	Chave Estrangeira	

Tabela 3: Atributos Funcionários

A Tabela 4 mostra a entidade região. Ela possui um código que a identifica unicamente e, além disso, contém a população circunscrita ao seu espaço físico.

Região		
Código	Chave Primária	
Nome		
Número de Habitantes		

Tabela 4: Atributos Região

A Tabela 5 mostra a entidade equipamentos. A ala indica a qual seção hospitalar aquele lote pertence. Nesse sentido, pensou-se que esses lotes podem ser diferentes a depender da ala que pertencem - como leitos mais apropriados para uma UTI, por exemplo - motivo pelo qual se justifica a criação desse atributo. Também é indicada a quantidade de equipamentos que há no lote.

Equipamentos		
Código	Chave Primária	
Nome		
Ala		
Quantidade		

Tabela 5: Atributos Equipamentos

A Tabela 6 mostra a entidade boletim de covid. Nota-se que existe uma chave estrangeira, que indica a qual região ele se refere. Em suma, constitui-se de uma lista de indicadores do desenvolvimento da doença em um dado conjunto de data e local. Além disso, verifica-se que ela se relaciona com cardinalidade 1:n com a entidade região.

Boletim de COVID		
Código	Chave Primária	
Número de Infectados		
Número de Óbitos		
Número de Recuperados		
Número de Testes		
Data de Publicação		
Status de Gravidade		
Taxa de Transmissão COVID		
Região_Código	Chave Estrangeira	

Tabela 6: Atributos Boletim de COVID

A Tabela 7 mostra a entidade pacientes. Em suma, dados pessoais são armazenados. Conforme mostra a tabela, não há chaves estrangeiras. Há, no entanto, relacionamentos com diversas outras entidades: hospital, medicamentos, enfermidades e testes.

Pacientes		
CPF	Chave Primária	
Nome		
Endereço		
Email		
Data de Nascimento		

Tabela 7: Atributos Pacientes

A Tabela 8 mostra a entidade testes. O atributo origem indica qual laboratório produziu o *kit*. Essa entidade se relaciona com cardinalidade 1:n com a entidade pacientes.

Testes		
Código	Chave Primária	
Tipo de Teste		
Resultado		
Origem		
Pacientes_CPF	Chave Estrangeira	

Tabela 8: Atributos Testes

A Tabela 9 mostra a entidade medicamento, constituída apenas de dois atributos. Conforme mostra, a Figura 1, participa de um relacionamento n:n com a entidade pacientes.

Medicamentos		
Código Chave Primária		
Preço		

Tabela 9: Atributos Medicamentos

A Tabela 10 mostra a entidade enfermidades. O atributo natureza indica se aquela enfermidade é ou não infecciosa. Conforme mostra a Figura 1, ela está em um relacionamento de cardinalidade n:n com a entidade pacientes.

Enfermidades			
Nome Chave Primária			
Gravidade			
Natureza			

Tabela 10: Atributos Enfermidades

3. Modelo Relacional

O modelo relacional é mostrado na Figura 2. São mostradas as entidades discutidas na seção 2, além de seis tabelas adicionais, quais sejam:

- Hospital_Equipamentos: indica o relacionamento n:n entre as duas entidades:
- Hospital_Pacientes: indica o relacionamento n:n entre as duas entidades
- Telefones_Funcionarios: criada para evitar que houvesse o atributo multivalorado "telefone"na entidades funcionários;
- Pacientes_Enfermidades: indica o relacionamento n:n entre as duas entidades:
- Pacientes_Medicamentos: indica o relacionamento n:n entre as duas entidades;
- Telefones_Pacientes: criada para evitar que houvesse o atributo multivalorado "telefone"na entidades pacientes;

Figura 2: Modelo Relacional

4. Consultas em Álgebra Relacional

1. Primeira Consulta

Esta consulta mostra, para todos os pacientes que tomam medicamento, os nomes daqueles e os preços deste. A essa consulta, estão ligadas três entidades: Medicamentos, Pacientes_Medicamentos e Medicamentos.

A = Pacientes

B = Medicamentos

C = Pacientes_Medicamentos

D = Código

$$\pi_{A.Nome,Preco} \; \sigma_{(CPF=A.CPFandB.D=B.D)} \big(\, BXCXA \big)$$

Abaixo, consta o código equivalente à consulta em SQL.

SELECT Pacientes.Nome,Preço FROM Medicamentos,Pacientes_Medicamentos,Pacientes WHERE CPF = Pacientes_CPF AND Medicamentos_Codigo = Medicamentos.Codigo;

A Figura 3 mostra o resultado da consulta a partir dos registros criados.

	Nome	Preço
•	Antonia Magalhães	50
	Kátia Maria de Sá	50
	João Campos	50
	Antonia Magalhães	20
	Antonia Magalhães	10

Figura 3: Resultado da Primeira Consulta

2. Segunda Consulta

Esta consulta mostra os nomes dos pacientes, o das enfermidades e a gravidade delas para todos os pacientes que possuem alguma enfermidade. A essa consulta, estão ligadas três entidades: Enfermidades, Pacientes Enfermidades e Medicamentos.

A = Pacientes

B = Enfermidades

C = Pacientes_Enfermidades

D = Nome

 $\pi_{A.D,B.D,Gravidade} \ \sigma_{(CPF=A_CPFandB_D=B.D)} (BXCXA)$

Abaixo, consta o código equivalente à consulta em SQL.

SELECT Pacientes.Nome,Enfermidades.Nome,Gravidade FROM Enfermidades,Pacientes_Enfermidades,Pacientes WHERE CPF = Pacientes_CPF AND Enfermidade_Nome = Enfermidades.Nome;

A Figura 4 mostra o resultado da consulta a partir dos registros criados.

	Nome	NomeDaEnfermidade	Gravidade
•	João Campos	Bronquite	Moderada
	Antonia Magalhães	Diabetes	Moderada
	Kátia Maria de Sá	Diabetes	Moderada
	Marília Neves	Diabetes	Moderada
	João Campos	Sarampo	Moderada

Figura 4: Resultado da Segunda Consulta

3. Terceira Consulta

Esta consulta mostra, para todos os pacientes internados em algum hospital, o nome daqueles e o endereço destes. A essa consulta, estão ligadas três entidades: Hospital, Hospital_Pacientes e Pacientes.

A = Pacientes

B = Hospital

C = Hospital_Pacientes

D = Código

 $\pi_{A.Nome,B.Endereco} \sigma_{(CPF=A_CPFandB_D=B.D)} (BXCXA)$

Abaixo, é mostrado o código SQL equivalente.

SELECT Pacientes.Nome,Hospital.Endereço FROM Hospital,Hospital_Pacientes,Pacientes WHERE CPF = Pacientes_CPF AND Hospital_Codigo = Codigo;

A Figura 5 mostra o resultado da consulta a partir dos registros criados.

	Nome	Endereço
•	Antonia Magalhães	Avenida Centro-Sul Lote 14
	João Campos	Avenida Centro-Sul Lote 14
	Marília Neves	Avenida Centro-Sul Lote 14
	Kátia Maria de Sá	Avenida Centro-Sul Lote 14
	Virgulino Ferreira	Setor Central Rua 18 Lote 1

Figura 5: Resultado da Terceira Consulta

4. Quarta Consulta

Esta consulta mostra o nome dos pacientes e o código do hospital em que estão para aqueles que realizaram testes para o covid. A essa consulta, estão ligadas três entidades: Pacientes, Hospital Pacientes e Testes.

A = Pacientes

B = Testes

C = Hospital_Pacientes

D = Nome

 $\pi_{A.D,Hospital_Codigo} \; \sigma_{(CPF=B.A_CPFandCPF=C.A_CPF)} \big(\; BXCXA \big)$

Abaixo, é mostrado o código SQL equivalente.

SELECT Pacientes.Nome,Hospital_Codigo FROM Hospital_Pacientes,Pacientes,Testes WHERE CPF = Testes.Pacientes_CPF AND CPF = Hospital_Pacientes.Pacientes_CPF;

A Figura 6 mostra o resultado da consulta a partir dos registros criados.

	Nome	Hospital_Codigo
•	Kátia Maria de Sá	1
	João Campos	1
	João Campos	1
	Marília Neves	1
	Antonia Magalhães	1

Figura 6: Resultado da Quarta Consulta

5. Quinta Consulta

Esta consulta mostra o nome dos pacientes e o número de seus telefones para todos aqueles internados em hospitais. A essa consulta, estão ligadas três entidades: Pacientes, Telefone_Pacientes e Hospital_Pacientes.

A = Pacientes

B = Telefone_Pacientes

C = Hospital_Pacientes

 $\pi_{A.Nome,Telefone} \sigma_{(CPF=B.A.CPFandCPF=C.A.CPF)}(BXCXA)$

Abaixo, consta o código SQL equivalente.

SELECT Pacientes.Nome, Telefone FROM Hospital_Pacientes, Pacientes, Telefone_Pacientes WHERE CPF = Telefone_Pacientes.Pacientes_CPF AND CPF = Hospital_Pacientes.Pacientes_CPF;

A Figura 7 mostra o resultado da consulta a partir dos registros criados.

	Nome	Telefone
•	Virgulino Ferreira	99992599
	Kátia Maria de Sá	34891657
	João Campos	98715467
	Marília Neves	35228900
	Antonia Magalhães	34890000

Figura 7: Resultado da Quinta Consulta

5. Avaliação das Formas Normais

Nesta seção, são avaliadas as formas normais de algumas tabelas selecionadas. Conforme abordado na introdução, este tipo de análise é importante para se avaliar a redundância de dados. A Tabela 11 mostra registros concernentes às regiões do município de Macondo. Devido ao fato de que não há atributos multivalorados, pode-se afirmar que ela está na Primeira Forma Normal (1FN). Além disso, observa-se que há dependência funcional total dos atributos não-chave com respeito ao atributo chave, "Código".

Por isso, diz-que ela está na Segunda Forma Normal (2FN). Além disso, a tabela também está na Terceira Forma Normal (3FN), visto que não há transitividade entre os atributos não-chave.

ĺ	Código	Nome	Habitantes
	01	A Norte	5000
	02	A Sul	15000
ı	03	A Oeste	7500
	04	A Leste	10000
ı	05	B Norte	100000

Tabela 11: Tabela Regiões

A Tabela 12 mostra registros de equipamentos. Devido ao fato de que não há atributos multivalorados, pode-se afirmar que ela está na 1FN. Além disso, observa-se que há dependência funcional total dos atributos não-chave com respeito ao atributo chave, "Código". Por isso, diz-que ela está na 2FN. Além disso, a tabela também está na 3FN, visto que não há transitividade entre os atributos não-chave.

1	Código	Nome	Ala	Otd
	01	Maca	A	5
	02	Maca	В	7
	03	Ventilador Mecânico	A	5
	03	Ventilador Mecânico		10
			A	10
	05	Antitérmico	В	50

Tabela 12: Tabela Equipamentos

A Tabela 13 mostra registros de testes para o coronavírus. Devido ao fato de que não há atributos multivalorados, pode-se afirmar que ela está na 1FN. Além disso, observa-se que há dependência funcional total dos atributos não-chave com respeito ao atributo chave, "Código". Por isso, diz-que ela está na 2FN. Além disso, a tabela também está na 3FN, visto que não há transitividade entre os atributos não-chave: todo atributo não-chave é dependente não-transitivo.

-	Código	Tipo	Resultado	Origem	Pacientes-CPF
	01	Sorologico	Positivo	Laboratorio Gomes	098765123
	02	Sorologico	Negativo	Laboratorio Chebab	055678875
	03	Sorologico	Positivo	Laboratorio Gomes	023555666
	04	Sorologico	Positivo	Laboratorio Chebab	098745623
	05	RT-PCR	Positivo	Laboratorio Chebab	055678875

Tabela 13: Testes

A Tabela 14 mostra registros de enfermidades. Devido ao fato de que não há atributos multivalorados, pode-se afirmar que ela está na 1FN. Além disso, observa-se que há dependência funcional total dos atributos não-chave com respeito ao atributo chave, "Nome". Ou seja, "Gravidade"e "Tipo"são unicamente determinados por "Nome". Por isso,

diz-que ela está na 2FN. Além disso, a tabela também está na 3FN, visto que todo atributo não-chave é dependente não-transitivo.

Nome	Gravidade	Tipo
Diabetes	Moderada	Não Infecciosa
Sarampo	Moderada	Infecciosa
Bronquite	Moderada	Não-infecciosa
Pressão Alta	Moderada	Não-infecciosa
Catapora	Baixa	Infecciosa

Tabela 14: Enfermidades

A Tabela 15 mostra registros de telefones dos pacientes. Devido ao fato de que não há atributos multivalorados, pode-se afirmar que ela está na 1FN. Além disso, observase que há dependência funcional total do único atributo não chave, "Pacientes-CPF" com respeito ao atributo chave, "Telefone". Por isso, diz-que ela está na 2FN. Ora, há apenas um atributo não-chave, o que impossibilita que haja transitividade. Por isso, a tabela também está na 3FN.

Telefone	Pacientes-CPF
34890000	098765123
99992599	001002003
34891657	023555666
35228900	098745623
98715467	055678875

Tabela 15: Tabela Pacientes-CPF

6. GitHub

https://github.com/joaoviktor22/BD