<u>II REVISION EXAM – 2021</u>

MATHEMATICS

Standard- XII

Time: 3 hours Maximum marks: 90

PART – I

I. ALL QUESTIONS ARE COMPULSORY

 $20 \times 1 = 20$

	-
1	If $A = \begin{pmatrix} 2 & 0 \\ 1 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 4 \\ 2 & 0 \end{pmatrix}$ then $ adj(AB) =$
	1) -40 2) -80 3) -60 4) -20
2	1) -40 2) -80 3) -60 4) -20 If $A = \begin{pmatrix} 2 & 3 \\ 5 & -2 \end{pmatrix}$ be such that $\pi A^{-1} = A$ then π is
3	1) 17 2) 14 3) 19 4) 21 When X is real which of the following if true?
	$1) Z = -\overline{Z} 2) Z = \overline{Z} 3) \overline{\overline{Z}} = -Z 4) Z ^2$
4	1) $Z = -\overline{Z}$ 2) $Z = \overline{Z}$ 3) $\overline{Z} = -Z$ 4) $ Z ^2$ If $ Z - \frac{3}{2} = 2$ then the least value of $ Z $ is
	1) 1 2) 2 3) 3 4) 5 A Polynomial equation in n of degree n always has
5	
	1) n distinct roots 2) n real roots 3) n imaginary roots 4) at most one root
6	The domain of the function defined by $f(x) = \sin^{-1} \sqrt{n-1}$ is
7	1) $[1,2]$ 2) $[-1,1]$ 3) $[0,1]$ 4) $-1,0]$ The Centre of the circle $2^{x^2} + 2^{y^2} + 4x - 6y + 10 = 0$ is
7	The Centre of the circle $2 + 2^3 + 4x - 6y + 10 = 0$ is 1) (2, 3)
8	1) (2,3) 2) (-2, -3) 3) (2, -3) 4) (-2, 3) Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
	Area of the greatest rectangle inscribed in the empse $\frac{1}{a^2} + \frac{1}{b^2} = 1$
- 0	1) 2ab 2) ab 3) \sqrt{ab} 4) a/b
9	1) 2ab 2) ab 3) \sqrt{ab} 4) a/b If $\underset{a}{\rightarrow} x \xrightarrow{b} = \underset{b}{\rightarrow} x \xrightarrow{c} = \underset{c}{\rightarrow} x \xrightarrow{a} = 0$ then the value of $[\underset{a}{\rightarrow} \underset{b}{\rightarrow} \underset{c}{\rightarrow}]$ is
	1) $ \vec{a} \vec{b} \vec{c} $ 2) $\frac{1}{2}$ $ \vec{a} \vec{b} \vec{c} $ 3) 1 4) -1
	3 1212 121 7
10	If the planes $\vec{\lambda}$ ($(21 - \vec{\lambda}j + \vec{k}) = 3$ and $\vec{\lambda}$ ($(41 + \vec{j} - \mu \vec{k}) = 5$ are parallel, then the value
	of λ and μ are
11	1) $\frac{1}{2}$, -2 2) -1/2, 2 3) -1/2, -2 4) $\frac{1}{2}$, 2 Angle between $\frac{y^2}{x^2} = x$ and $\frac{x^2}{x^2} = y$ at the origin is
	1) $\tan^{-1}(\frac{3}{4})$ 2) $\tan^{-1}(\frac{4}{3})$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{4}$
	(3) (3) (4)
12	A stone is thrown up vertically. The height it reaches at time t seconds is given by $x = 80t-16t^2$
	The stone reaches the maximum height in time t seconds is given by
	1) 2 2) 2.5 3) 3 4) 3.5
13	The approximate change in the volume v of a cube of side x meters caused by increasing the side
	by 1 % is 1) 0.02-m ³ 2) 0.2 m/m ³ 3) 0.02-2-3 4) 0.02-3-3
14	1) 0.03xm ³ 2) 0.3 xdxm ³ 3) 0.03x ² m ³ 4) 0.03x ³ m ³
14	The value of $\int_{-1}^{2} 1x dx$ is
	. 1 . 3 7
	$1)\frac{1}{2}$ 2) $\frac{3}{2}$ 3) $\frac{5}{2}$ 4) $\frac{7}{2}$
1.7	
15	The value of $\bigcup_{a=0}^{\infty} \sqrt{a^2 + x^2}$) ³ dx is
) $\frac{\pi a3}{16}$ 2) $\frac{3\pi a4}{16}$ 3) $\frac{3\pi a2}{8}$ 4) $\frac{3\pi a4}{8}$

16	The order and degree of the differential equation \sqrt{sinx} (dx + dy) = \sqrt{cosx} (dx - dy) is 1) 1,2 2) 2,2 3) 1,1 4) 2,1
17	If sin x is the integrating factor of the linear differential equation $\frac{dy}{dx}$ + py – Q then P is
	1) $\log \sin x$ 2) $\cos x$ 3) $\tan x$ 4) $\cot x$
18	A pair of dice numbered 1,2,3,4,5,6 of a six-sided die and 1,2,3,4 of a four – sided die is rolled and the sum is determined Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is 1) 1 2) 2 3) 3 4) 4
19	The operation * defined by a*b = $\frac{ab}{7}$ is not a binary operation on 1) O+ 2) Z 3) R 4) C
20	1) Q+ 2) Z 3) R 4) C The dual of \sim (pvq) $^{ }$ (pv (p $^{ }\sim$ r)] is 1) \sim (p $^{ }$ q) $^{ }$ (pv(p $^{ }\sim$ r)] 2) (p $^{ }$ q) $^{ }$ (p $^{ }$ q) $^{ }$ (pv(p $^{ }\sim$ r)] 3) \sim (p $^{ }$ q) $^{ }$ (p $^{ }$ \text{(p)} \text{(pv} \tau r)]
	PART – II
	NOTE: i) ANSWER ANY SEVEN QUESTIONS 7 X 2 = 14 ii) QUESTION NUMBER 30 IS COMPULSORY
21	Find the rank of the matrix : $\begin{bmatrix} 1 - 2 - 1 & 0 \\ 3 - 6 & -3 & 1 \end{bmatrix}$
22	Find the square root of 6 – 8i
23	Find a polynomial equation of minimum degree with rational co-efficients having $2 - \sqrt{3}$ as a root
24	A concrete bridge is designed as a parabolic arch. The road over bridge is 40m long and the maximum height of the arch is 15m. Write the equation of the parabolic arch
25	If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} are coplanar vectors show that $(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = \overrightarrow{0}$
26	Evaluate the limit of $\lim_{x\to 0} \left(\frac{\sin x}{x^2}\right)$
27	Evaluate $\int_0^1 x^3 (1-x)^4 dx$
28	Evaluate $\int_0^1 x^3 (1-x)^4 dx$ Show that $y = mx + \frac{7}{m}m + 0$ is a solution of the differential equation $xy^1 + 7\frac{1}{y^1} - y = 0$
29	If x is the random variable with distribution function $F(x)$ given by
	$f(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2} x^2 + x \end{cases} \qquad x \ge 1 \text{then find the propability density function } f(x)$
30	Prove that (i) $PV \sim P$ is tautology (ii) $P \sim P$ is contradiction
	PART – III
	NOTE: (i) ANSWER ANY SEVEN QUESTIONS 7 X 3 = 21 (ii) QUESTION NUMBER 40 IS COMPULSORY
31	Show that $(2 + i\sqrt{3})^{10} - (2 - i\sqrt{3})^{10}$ is purely imaginary
32	Find the value of tan ($\cos -1 \left(\frac{1}{2}\right) - \sin^{-1}\left(-\frac{1}{2}\right)$]
33	Find the equation of the circle described on the chord $3x + y + 5 = 0$ of the circle $x^2 + y^2 = 16$ as diameter
34	Prove that $((\xrightarrow{a} x \xrightarrow{b}, \xrightarrow{b} x \xrightarrow{c}, \xrightarrow{c} x \xrightarrow{a}] = [\xrightarrow{a} \xrightarrow{b} \xrightarrow{c}] 2$
35	Find the intervals of monotonicity and lence find the local extrema for the function

36	Use the linear approximation to find approximate value of $\sqrt[3]{26}$
37	Evluate $\int_{a}^{\frac{\pi}{6}} \sin^5 3x dx$
38	Find the differential equation of the curve represented by $xy = ae^x + be^{-x} + x^2$
39	Solve the equation $x^4 - 14^{x^2} + 45 = 0$
40	If $B^T A^T = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$ then find the value of $(AB)^{-1}$
	PART – IV
41	NOTE: ANSWER ALL THE QUESTION 7 X 5 = 35
(a)	(_5 1 3 ¬ (1 1 2 ¬
	If $A = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$
	-1 1 1 = 1 J
	Find the products AB and BA and hence solve the system of equations
	x + y + 2Z = 1, $3x + 2y + Z = 7$ and $2x + y + 3z = 2$
(b)	If $Z = x + iy$ is a complex number such that Im $\left(\frac{2z+1}{iz+1}\right) = 0$ show that the locus of Z is
	$2x^2 + 2y^2 + x - 2y = 0$
42	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
(a)	Solve the equation $6x4 - 35x3 + 62x3 - 35x + 6 = 0$
	(or)
	Prove that by Vector method
(b)	$\operatorname{Sin} (\alpha + \beta) = \operatorname{sin} \alpha \cos \beta + \cos \alpha \sin \beta$
(2)	
(a)	Show that $\cot^{-1}(\frac{1}{\sqrt{x^2-1}}) = \sec^{-1}x, 1x1 > 1$
	()
(b)	(or) Identify the types of conic and find centre, foci vertices and directrics of
	$18x^2+12y^2-144x+48y+120=0$
44	
(a)	Find the non-parametric form of vector equation and carterian equations of the plane passing
	through the points $(2,2,1)$ $(9,3,6)$ and perpendicular to the plane $2x + 6y + 6z = 9$
(b)	On lighting a rocket crackers it gets projected in a parabolic path and reaches a maximum height
(0)	of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m away
	from the starting point Find the angle of projection.
45	
(a)	If the curves $ax^2 + by^2 = 1$ and $cx^2 + dy^2 = 1$ intersect each other orthogonally then show that
	$\left \frac{1}{a} - \frac{1}{b} = \frac{1}{c} - \frac{1}{d}\right $
(h)	(or) $\frac{\pi}{\pi} = 1 + \frac{\pi}{\pi}$
(b)	Find the area of the region bounded by $y = \cos x$, $y = \sin x$ the lines $x = \frac{\pi}{4}$ and $x = 5\frac{\pi}{4}$
(a)	A random variable x has the following probability mass function
(a)	A random variable x has the following probability mass function
	x 1 2 3 4 5
	$f(x)$ k^2 $2k^2$ $3k^2$ $2k$ $3k$
	Find (i) the value of k (ii) p $(2 \le x < 5)$ (iii) P $(3 < x)$
	(or)

(b)	Verify (i) Closure property (ii) Commutative property (iii) associative property (iv) existence of identify and (v) existence of inverse of the operation $+_5$ on z_5 using table corresponding to addition modulo 5
47	
(a)	Find the population of a city at anytime t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the instant and that in a period of 40 years the population increased from 3,00,000 to 4,00,000
	(or)
(b)	Prove that $\int_0^{\frac{\pi}{4}} log \ (1 + tanx) \ dx = \frac{\pi}{8} log_2$