高等微积分

邹文明

常微分方程

二阶线性常系数齐次方程的求解

问题: 求解 y'' + py' + qy = 0, 其中 p, q 为常数.

$\Delta > 0$ 的情形

如果 $\Delta > 0$, 则特征方程有两个互异实根 λ_1, λ_2 , 从而 $y_1 = e^{\lambda_1 x}$, $y_2 = e^{\lambda_2 x}$ 为方程的解. 原齐次方程的通解为

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x},$$

其中 C_1, C_2 为任意常数.

$\Delta = 0$ 的情形

如果 $\Delta = 0$, 则特征方程只有一个实根 $\lambda = -\frac{p}{2}$, 原齐次方程的通解为

$$y = (C_1 + C_2 x)e^{-\frac{\nu}{2}x}$$
,

其中 C_1, C_2 为任意常数.

$\Delta < 0$ 的情形

如果 $\Delta < 0$, 则特征方程有两个共轭的复特征根 $\lambda = \alpha \pm i\beta$, 其中 $\alpha, \beta \in \mathbb{R}$ 且 $\beta \neq 0$. 则 $e^{(\alpha + i\beta)x}$ 为原齐次方程的复解. 原齐次方程的通解为

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x),$$

其中 C_1, C_2 为任意常数.

特殊的二阶线性常系数方程的求解

考虑特殊的二阶线性常系数非齐次方程

$$y'' + py' + qy = f(x),$$

其中 p,q 为实常数, 而 $f(x) = P_n(x)e^{\mu x}$, 这里 P_n 为 n 次多项式, $\mu \in \mathbb{C}$ 为常数. 我们将首先寻求 复值解, 然后再借助前面的命题来得到相应的常微分方程的实值解.

利用待定系数法求非齐次方程的特解

- 如果 μ 不是齐次方程的特征根, 则会有特解 $z_0(x) = Q_n(x)e^{\mu x}$, Q_n 为待定 n 次多项式.
- 如果 μ 为齐次方程的一重特征根, 则有特解 $z_0(x) = Q_n(x)xe^{\mu x}$, Q_n 为待定 n 次多项式.
- 如果 μ 为齐次方程的二重特征根, 则有特解 $z_0(x) = Q_n(x)x^2e^{\mu x}$, Q_n 为待定 n 次多项式.
- 注: 通过将 z_0 带入非齐次方程来确定 Q_n .

命题 2. 假设 z_1, z_2 分别满足下列非齐次方程 $z_1'' + pz_1' + qz_1 = f_1(x),$ $z_2'' + pz_2' + qz_2 = f_2(x),$ 则 $z_0 = z_1 + z_2$ 为非齐次方程

 $y'' + py' + qy = f_1(x) + f_2(x)$

的特解. 证明: 利用常微分方程的线性性.

推广

由待定系数法及命题 1, 2, 可处理如下形式的非齐次项 f(x) 及它们之间的常系数线性组合(其中 P_n 为 n 次多项式, a,b 为实常数):

$$P_n(x), P_n(x)e^{ax},$$

$$P_n(x)\sin bx = \operatorname{Im}(P_n(x)e^{ibx}),$$

$$P_n(x)\cos bx = \operatorname{Re}(P_n(x)e^{ibx}),$$

$$P_n(x)e^{ax}\sin bx = \operatorname{Im}(P_n(x)e^{(a+ib)x}),$$

$$P_n(x)e^{ax}\cos bx = \operatorname{Re}(P_n(x)e^{(a+ib)x}).$$

Euler 方程

一般的 Euler 方程为:

 $x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \dots + a_1 x y' + a_0 y = 0$, 其中 a_0, a_1, \dots, a_{n-1} 为常数.

方程的特点: 变系数的线性方程, 但其系数均为幂函数, 且幂次与相应项的求导阶数一致. 一般解法: 作变量替换 $t = \ln |x|$ 来将方程化成以 t 为自变量, 以 y 为待定函数的常系数方程.

解: 令
$$t = \ln |x|$$
, 则 $dt = \frac{1}{x} dx$, 从而我们有
$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{1}{x} \frac{dy}{dt},$$

$$d^2y = 1 dy + 1 d / dy$$

 $\overline{x^2}\,\mathrm{d}t$

1 dy

例 7. 求解非齐次方程 $x^2y'' + xy' + y = 2x$.

当 x > 0 时,原方程变为 $\frac{d^2y}{dt^2} + y = 2e^t$.

12 / 1

由此知特征方程为 $\lambda^2 + 1 = 0$, 特征根为 $\lambda = \pm i$, 从而该方程有形如 $z = Ae^t$ 的特解, 带入方程可得 A = 1, 于是原方程的通解为

$$y = e^{t} + C_{1} \cos t + C_{2} \sin t$$

= $x + C_{1} \cos \ln |x| + C_{2} \sin \ln |x|$.

当 x < 0 时, 原方程变为 $\frac{d^2y}{dt^2} + y = -2e^t$, 于是 通解为 $y = x + C_1 \cos \ln |x| + C_2 \sin \ln |x|$.

§6. 一阶线性常微分方程组 一阶线性常微分方程组可以写成

$$\begin{cases} \frac{dy_1}{dx} = a_{11}(x)y_1 + a_{12}(x)y_2 + \dots + a_{1n}(x)y_n + f_1(x), \\ \vdots \\ \frac{dy_n}{dx} = a_{n1}(x)y_1 + a_{n2}(x)y_2 + \dots + a_{nn}(x)y_n + f_n(x), \\ \not = a_{jl}(x), f_j(x) \in \mathscr{C}(I) \ (1 \leqslant j, l \leqslant n). \end{cases}$$

共中 $a_{jl}(x), J_j(x) \in \mathscr{C}(I) \ (1 \leqslant j, l \leqslant n).$ 可以证明该方程组满足初值条件 $y_i(x_0) = \xi_i \ (1 \leqslant j \leqslant n)$

14/1

如果我们定义 $\mathbf{A}(x) = (a_{il}(x))_{1 \leq i,l \leq n}$, 并且记

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \ \vec{\xi} = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}, \ \mathbf{F}(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix},$$

则初值问题可以重新表述成:

$$\begin{cases} \frac{d\mathbf{Y}}{dx} = \mathbf{A}(x)\mathbf{Y} + \mathbf{F}(x), \\ \mathbf{Y}(x_0) = \vec{\xi}, \end{cases}$$

一阶线性常微分方程组解的结构

方程组:

$$\frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}x} = \mathbf{A}(x)\mathbf{Y} + \mathbf{F}(x)$$

当 $\mathbf{F}(x) \equiv 0$ 时称为齐次方程.

n 个方程, n 个未知函数所组成的一阶线性 齐次常微分方程组的解集为 n 维线性空间. • 设 $\mathbf{Y}_1, \mathbf{Y}_2, \ldots, \mathbf{Y}_n$ 为该齐次方程组的 n 个 线性无关的解. 定义 $\Phi = (\mathbf{Y}_1, \mathbf{Y}_2, \cdots, \mathbf{Y}_n)$, 称为齐次方程组的基解矩阵,则其通解为 $\mathbf{Y} = C_1 \mathbf{Y}_1 + C_2 \mathbf{Y}_2 + \dots + C_n \mathbf{Y}_n = \mathbf{\Phi} \mathbf{C},$ 其中 $\mathbf{C} = (C_1, C_2, \cdots, C_n)^T$ 为常数列向量.

一阶线性常系数常微分方程组的求解

一阶线性常系数常微分方程组形如:

$$\frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}x}=\mathbf{A}\mathbf{Y}$$
 ,

其中 A 是与 x 无关的常系数矩阵.

一阶线性常系数齐次方程组的求解

尝试性思考: 我们考虑形如 $\mathbf{Y} = e^{\lambda x} \mathbf{r}$ 这样的解, 其中 λ 为常数. 带入方程组可得

$$\mathbf{A}e^{\lambda x}\mathbf{r} = \mathbf{A}\mathbf{Y} = \frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}x} = \lambda e^{\lambda x}\mathbf{r}.$$

记 **E** 为单位矩阵, 那么 $(\mathbf{A} - \lambda \mathbf{E})\mathbf{r} = \mathbf{0}$. 于是 λ 为 **A** 的特征值, **r** 为相应的特征向量. 方程组的特征方程被定义为 $\det(\lambda \mathbf{E} - \mathbf{A}) = 0$.

n=2: 两个不相等的实特征根

• 若 A 有两个不相等的实特征值 λ_1, λ_2 , 那么相应特征向量 \mathbf{r}_1 , \mathbf{r}_2 为实向量且线性无关, 因此 $e^{\lambda_1 x} \mathbf{r}_1$, $e^{\lambda_2 x} \mathbf{r}_2$ 为方程组的线性无关解, 从而所求的通解为 $\mathbf{Y} = C_1 e^{\lambda_1 x} \mathbf{r}_1 + C_2 e^{\lambda_2 x} \mathbf{r}_2$, 其中 C_1, C_2 为任意的常数.

 $\frac{\mathrm{d}}{\mathrm{d}x} \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) = \left(\begin{array}{c} 1 & 2 \\ 4 & 3 \end{array} \right) \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right).$ 解: 方程组的的特征方程为 $\begin{vmatrix} \lambda - 1 & -2 \\ -4 & \lambda - 3 \end{vmatrix} = \lambda^2 - 4\lambda - 5$

例 1. 求下列方程组的通解:

故特征根为 $\lambda_1 = 5$, $\lambda_2 = -1$.

 $= (\lambda - 5)(\lambda + 1) = 0,$

22 / 1

对于特征值 $\lambda_1 = 5$, 特征向量满足 $\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} = 5 \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}.$

由此可求得一个特征向量 $\binom{1}{2}$, 进而可得到原常微分方程组的一个特解: $e^{5x} \binom{1}{2}.$

对于特征值 $\lambda_1 = -1$, 特征向量满足 $\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} = - \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}.$ 由此可得相应的特征向量 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$,则方程组的 另一个特解为 $e^{-x}\begin{pmatrix} 1\\ -1 \end{pmatrix}$. 故方程组的通解为

n=2: 两个相等的实特征根

•若 A 有两个相等 (实) 特征值 λ , 相应特征 向量 \mathbf{r} 为实向量, 于是 $e^{\lambda x}\mathbf{r}$ 为方程组的解. 与之线性无关的解可以取为 $e^{\lambda x}\mathbf{P}(x)$, 其中 P(x) 是一个待定列向量, 它的每个元素为 次数 ≤ 1 的多项式, 也即 $\mathbf{P}(x) = \mathbf{C}_0 + \mathbf{C}_1 x$, 其中 C_0, C_1 为二阶列向量. 通过将之带入 方程组来确定系数 C_0 , C_1 , 进而得到 P(x).

注: $e^{\lambda x}$ r 也是特殊的 $e^{\lambda x}$ P(x): $\mathbf{C}_0 = \mathbf{r}$, $\mathbf{C}_1 = \mathbf{0}$.

例 3. 求下列方程组的通解:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) = \left(\begin{array}{cc} 1 & -1 \\ 1 & 3 \end{array} \right) \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right).$$

解: 方程组的的特征方程为

$$\begin{vmatrix} \lambda - 1 & 1 \\ -1 & \lambda - 3 \end{vmatrix} = \lambda^2 - 4\lambda + 4 = 0,$$

故特征根为 $\lambda_1 = \lambda_2 = 2$.

考虑方程组如下形式的解:

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = e^{2x} \begin{pmatrix} a_1 x + b_1 \\ a_2 x + b_2 \end{pmatrix}.$$

带入方程组可得

$$e^{2x} \begin{pmatrix} 2a_1x + a_1 + 2b_1 \\ 2a_2x + a_2 + 2b_2 \end{pmatrix}$$
$$= e^{2x} \begin{pmatrix} (a_1 - a_2)x + (b_1 - b_2) \\ (a_1 + 3a_2)x + (b_1 + 3b_2) \end{pmatrix}.$$

比较系数可得 $a_2 = -a_1 = b_1 + b_2$.

 $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = e^{2x} \begin{pmatrix} -(b_1 + b_2)x + b_1 \\ (b_1 + b_2)x + b_2 \end{pmatrix}$ $= e^{2x} \begin{pmatrix} b_1(1-x) - b_2x \\ b_1x + b_2(1+x) \end{pmatrix}$

干是方程组的通解为

 $=b_1e^{2x}\begin{pmatrix}1-x\\x\end{pmatrix}+b_2e^{2x}\begin{pmatrix}-x\\1+x\end{pmatrix},$ 其中 b_1,b_2 为任意的常数.

28 / 1

n=2: 两个共轭的复特征根

• 若 A 有两个不相等的共轭复特征值 λ_1, λ_2 ,相应的特征向量 \mathbf{r}_1 , \mathbf{r}_2 也为共轭的复向量且线性无关. 于是 $e^{\lambda_1 x} \mathbf{r}_1$, $e^{\lambda_2 x} \mathbf{r}_2$ 为原方程组的两个线性无关解. 此时通解为

$$\mathbf{Y} = Ce^{\lambda_1 x} \mathbf{r}_1 + \overline{C}e^{\lambda_2 x} \mathbf{r}_2$$
,

其中 C 为任意的复常数.

常微分方程总复习

- 。常微分方程的基本概念.
- •一阶方程 $\frac{dy}{dx} + P(x)y = Q(x)$ 的解法.
- 分离变量法: 方程 $\frac{dy}{dx} = f(x)g(y)$ 的求解.
- 可转化成一阶线性方程的一阶方程:
 - (1) $\frac{\mathrm{d}y}{\mathrm{d}x} = f(ax + by + c)$, (2) $\frac{\mathrm{d}y}{\mathrm{d}x} = F(\frac{y}{x})$,
 - (3) $\frac{dy}{dx} = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$, (4) Bernoulli 方程.

- •可降阶的高阶常微分方程:
 - (1) $y^{(n)} = f(x)$,
 - (2) $y^{(n)} = F(x, y^{(k)}, \dots, y^{(n-1)}) \ (k \geqslant 1)$,
 - (3) F(y, y', y'') = 0.
- n 阶线性常微分方程: 初值问题的解存在且唯一, 齐次方程解集为 n 维线性空间, 基本解组, Wronsky 行列式的定义、性质及由此导出的线性无关解的刻画, 线性无关的函数所满足的齐次方程, 非齐次方程通解的结构.

二阶线性常系数齐次方程求解

二阶线性常系数齐次方程: y'' + py' + qy = 0, p,q 为实常数. 称 $\lambda^2 + p\lambda + q = 0$ 为特征方程, 称其解为特征根. 令 $\Delta = p^2 - 4q$.

- 若 $\Delta > 0$,则有两个不同的实特征根 λ_1, λ_2 , 方程通解为 $y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$.
- 若 $\Delta = 0$, 方程通解为 $y = (C_1 + C_2 x)e^{-\frac{p}{2}x}$.
- 若 $\Delta < 0$, 则有两共轭复特征根 $\lambda = \alpha \pm i\beta$, 方程通解为 $y = e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x)$.

求解 $y'' + py' + qy = P_n(x)e^{\mu x}$, p, q 为实常数, P_n 为 n 次多项式, $\mu \in \mathbb{C}$ 为常数

- 如果 μ 不是齐次方程的特征根, 则会有特解 $z_0(x) = Q_n(x)e^{\mu x}$, Q_n 为待定 n 次多项式.
- 如果 μ 为齐次方程的一重特征根, 则有特解 $z_0(x) = Q_n(x)xe^{\mu x}$, Q_n 为待定 n 次多项式.
- •如果 μ 为齐次方程的二重特征根,则有特解 $z_0(x) = Q_n(x)x^2e^{\mu x}$, Q_n 为待定n 次多项式.
- 注: 通过将 z_0 带入非齐次方程来确定 Q_n .

回顾: 推广

利用特解的线性叠加性, 我们也可以处理如下形式的非齐次项 f(x) 以及它们之间的常系数线性组合 (P_n 为 n 次多项式, a,b 为实常数):

$$P_n(x), P_n(x)e^{ax},$$

$$P_n(x)\sin bx = \operatorname{Im} P_n(x)e^{ibx},$$

$$P_n(x)\cos bx = \operatorname{Re} P_n(x)e^{ibx},$$

$$P_n(x)e^{ax}\sin bx = \operatorname{Im} P_n(x)e^{(a+ib)x},$$

$$P_n(x)e^{ax}\cos bx = \operatorname{Re} P_n(x)e^{(a+ib)x},$$

Euler 方程

一般的 Euler 方程为:

 $x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \dots + a_1 x y' + a_0 y = 0$, 其中 a_0, a_1, \dots, a_{n-1} 为常数.

方程的特点: 变系数的线性方程, 但其系数均为 幂函数, 且幂次与相应项的求导阶数一致.

一般解法: 作变量替换 $t = \ln |x|$ 来将方程化成以 t 为自变量, 以 y 为待定函数的常系数方程.

综合练习

例 1. 假设 y_1, y_2 为一阶线性非齐次方程的两个不同解. 求方程的表达式以及方程的通解.

解: 由一阶线性非齐次方程解的结构立刻可知 $y_0 = y_2 - y_1$ 为相应的齐次方程的一个不恒为 零的解. 于是所求方程的通解为

 $y = Cy_0 + y_1 = C(y_2 - y_1) + y_1$, 其中 C 为任意的常数. 设所求方程为 y' + P(x)y = Q(x). 由题设可知 $y'_0 + P(x)y_0 = 0$, 故 $P(x) = -\frac{y'_0}{y_0} = \frac{y'_1 - y'_2}{y_2 - y_1}$. 进而

$$Q(x) = y'_1 + P(x)y_1 = y'_1 + \frac{(y'_1 - y'_2)y_1}{y_2 - y_1}$$

$$= \frac{y'_1(y_2 - y_1) + (y'_1 - y'_2)y_1}{y_2 - y_1}$$

$$= \frac{y'_1y_2 - y'_2y_1}{y_2 - y_1}.$$

$$= \frac{y'_1y_2 - y'_2y_1}{y_2 - y_1}.$$

故所求方程为 $y' + \frac{y_1' - y_2'}{y_2 - y_1} y = \frac{y_1' y_2 - y_2' y_1}{y_2 - y_1}$.

例 2. 设 a(x) 和 b(x) 为 $(-\infty, +\infty)$ 上以 2π 为 周期的连续函数, 考虑方程 $\frac{dy}{dx} = a(x)y + b(x)$. (I) 举出 a(x), b(x) 的一个例子使得该方程的解 为下列三种情况之一:

(a) 没有以 2π 为周期的解; (b) 只有一个以 2π 为周期的解;

(c) 任意解都以 2π 为周期. (II) 证明该方程以 2π 为周期的解的个数只能 为上述三种情况之一.

解: (I) 选取 $a(x) = b(x) \equiv 0$, 那么 a, b 为 \mathbb{R} 上 以 2π 为周期的连续函数, 而常微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = a(x)y + b(x) = 0$

的通解为
$$y \equiv C$$
, 其中 $C \in \mathbb{R}$ 为任意常数. 于是

该方程的任意解均以 2π 为周期.

非平凡的例子: 选取 $a(x) = b(x) = \cos x$, 那么 a(x), b(x) 均为 \mathbb{R} 上以 2π 为周期的连续函数,

 $= e^{\sin x} \left(C + \int e^{-\sin x} \cos x \, dx \right)$ $= e^{\sin x} \left(C + \int e^{-\sin x} d(\sin x) \right)$ $= e^{\sin x} \left(C - e^{-\sin x} \right) = Ce^{\sin x} - 1,$

其中 $C \in \mathbb{R}$ 为任意的常数. 故该方程的任意解

均以 2π 为周期.

而 $\frac{dy}{dx} = a(x)y + b(x) = y\cos x + \cos x$ 的通解为

 $y = e^{\int a(x)dx} \left(C + \int b(x)e^{-\int a(x)dx} dx \right)$

(II) 假设 (a), (b) 不成立, 那么原方程会有两个以 2π 为周期的不同解, 记作 y_1, y_2 , 则 $y_2 - y_1$ 为齐次方程不恒为零的解, 故原方程的通解为

$$y = C(y_2 - y_1) + y_1,$$

其中 $C \in \mathbb{R}$ 为常数. 于是上述方程的任意解均以 2π 为周期, 也即 (c) 成立, 故所证结论成立.

例 3.(不讲) 设 $p,q \in \mathscr{C}[0,+\infty)$ 使得齐次常微分方程 y'' + p(x)y' + q(x)y = 0 的一个解 φ 在 $[0, +\infty)$ 上 大于 0, 且 $\int_0^x (\varphi(t))^{-2} e^{-\int_0^t p(u) du} dt$ 在 $[0, +\infty)$ 上 为无界函数.

- (1) 求上述齐次常微分方程的通解.
- (II) 求证: 上述常微分方程满足 $\lim_{x \to +\infty} \frac{y(x)}{\varphi(x)} = C$ $(C \in \mathbb{R})$ 为常数) 的解只有 $y(x) = C\varphi(x)$.

解: (I) 设 y 为常微分方程的任意的解. $\forall x \geq 0$, 令 $C(x) = \frac{y(x)}{\varphi(x)}$, 则 $y(x) = C(x)\varphi(x)$. 带入方程 可得 $C''(x)\varphi(x) + (2\varphi'(x) + p(x)\varphi(x))C'(x) = 0$, 由此我们立刻可知 $C'(0)e^{-\int_0^x(2\frac{\varphi'(u)}{\varphi(u)}+p(u))\,\mathrm{d}u}$ $= C'(0)e^{2\ln\varphi(0) - 2\ln\varphi(x) - \int_0^x p(u) \, du}$ $= C_1(\varphi(x))^{-2}e^{-\int_0^x p(u)\,\mathrm{d}u},$ 其中 C_1 为任意的常数.

43 / 1

进而得 $C(x) = C_2 + C_1 \int_0^x (\varphi(t))^{-2} e^{-\int_0^t p(u) du} dt$, 故所求常微分方程的通解为

$$y(x) = \left(C_2 + C_1 \int_0^x (\varphi(t))^{-2} e^{-\int_0^t p(u) \, du} \, dt\right) \varphi(x).$$

(II) 若 $\lim_{x \to +\infty} \frac{y(x)}{\varphi(x)} = C$,则我们有 $C = C_2 + \lim_{x \to +\infty} C_1 \int_0^x (\varphi(t))^{-2} e^{-\int_0^t p(u) \, \mathrm{d}u} \, \mathrm{d}t.$

 $\forall x \ge 0$, $\diamondsuit F(x) = \int_0^x (\varphi(t))^{-2} e^{-\int_0^t p(u) \, du} \, dt$, 则由 题设可知 $F \in \mathscr{C}[0, +\infty)$ 为单调递增并且无界, 于是由单调有界定理可得知 $\lim_{x\to +\infty} F(x) = +\infty$. 又 $C = C_2 + \lim_{x \to +\infty} C_1 F(x)$, 因此必定有 $C_1 = 0$, 从而 $C_2 = C$, 故 $y(x) = C\varphi(x)$. 而 $C\varphi(x)$ 的确 也满足题设条件,由此可知所证结论成立.

例 4. 假设 $\varphi, \psi \in \mathscr{C}[0,T]$, 而 f 在 [0,T] 上可导.

若 φ , ψ 均为非负函数且 $\forall t \in [0, T]$, 均有

$$f'(t) \leqslant \varphi(t)f(t) + \psi(t),$$

求证: $\forall t \in [0,T]$, 我们均有

$$f(t) \leqslant e^{\int_0^t \varphi(s) \, \mathrm{d}s} \Big(f(0) + \int_0^t \psi(u) \, \mathrm{d}u \Big).$$

证明: $\forall t \in [0,T]$, $\diamondsuit C(t) = f(t)e^{-\int_0^t \varphi(s) \, ds}$, 那么 C 可导且 $\forall t \in [0,T]$, $f(t) = C(t)e^{\int_0^t \varphi(s) \, \mathrm{d}s}$, 于是 $\varphi(t)f(t) + \psi(t) \geqslant f'(t) = C'(t)e^{\int_0^t \varphi(s) ds}$ $+\varphi(t)C(t)e^{\int_0^t \varphi(s)\,\mathrm{d}s}$ $= C'(t)e^{\int_0^t \varphi(s) \, \mathrm{d}s} + \varphi(t)f(t),$

故 $C'(t) \leq \psi(t) e^{-\int_0^t \varphi(s) \, ds}$. 又 φ, ψ 均为非负函数, 由此我们可立刻导出 $C'(t) \leq \psi(t)$.

由定义可知 C(0) = f(0), 于是 $\forall t \in [0, T]$, 均有

$$C(t) = f(0) + \int_0^t C'(u) du \le f(0) + \int_0^t \psi(u) du,$$

从而 $\forall t \in [0,T]$, 我们均有

$$f(t) = C(t)e^{\int_0^t \varphi(s) \, \mathrm{d}s} \leqslant e^{\int_0^t \varphi(s) \, \mathrm{d}s} \Big(f(0) + \int_0^t \psi(u) \, \mathrm{d}u \Big).$$

因此所证结论成立.

例 5. 假设 $p, q \in \mathcal{C}[a, b]$, 并且 $y = \varphi(x)$ 为方程 y'' + p(x)y' + q(x)y = 0 在 [a, b] 上的非零的解, 求证: $\forall x_0 \in [a, b]$, $\varphi(x_0)$, $\varphi'(x_0)$ 不全为零.

证明: 用反证法, 假设存在某个 $x_0 \in [a,b]$ 使得 $\varphi(x_0) = \varphi'(x_0) = 0$. 由于 $y_1 \equiv 0$ 为原方程的解并且 $y_1(x_0) = y_1'(x_0) = 0$, 则由线性常微分方程初值问题的解的唯一性可知 $\varphi = y_1 \equiv 0$, 矛盾! 于是所证结论成立.

例 6. 已知曲线 y = y(x) 满足 $yy'' + (y')^2 = 1$, 并且上述曲线与曲线 $y = e^{-x}$ 相切于点 (0,1), 求曲线 y = y(x) 的表达式.

解: 因曲线 $y = e^{-x}$ 在点 (0,1) 处的切线的斜率为 y'(0) = -1, 于是由题设条件可知所求曲线y = y(x) 为下述初值问题的解:

$$\begin{cases} yy'' + (y')^2 = 1, \\ y(0) = 1, \ y'(0) = -1. \end{cases}$$

令 p = y' 并以 y 作为自变量, 则 $y'' = \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x} \cdot \frac{\mathrm{d}p}{\mathrm{d}y} = p\frac{\mathrm{d}p}{\mathrm{d}y},$

$$dx$$
 dx dy dy dy 于是 $yp\frac{dp}{dy} + p^2 = 1$, 从而得 $\frac{d(p^2-1)}{dy} + \frac{2(p^2-1)}{y} = 0$, 由此可得 $p^2 - 1 = Ce^{-\int \frac{2}{y} dy} = \frac{C}{y^2}$. 但 $y(0) = 1$, $y'(0) = -1$, 因此 $C = 0$, 从而 $y' = p \equiv -1$, 进而 $y = -x + C_1$. 又 $y(0) = 1$, 于是 $C_1 = 1$, 故所求 曲线方程为 $y = 1 - x$.

同学们辛苦了!