Strange particle in jets and underlying events with different models

3 1 Simulate with PYTHIA 8 sQCD with CR1 and rope

```
Parameters
Beams:idA = 2212
Beams:idB = 2212
```

7 Main:numberOfEvents = 1001

8 Beams:eCM = 13000.

9 SoftQCD:all = on

11 **CR**

10

1

MultiPartonInteractions:pT0Ref = 2.15

13 BeamRemnants:remnantMode = 1

14 BeamRemnants:saturation = 5

15 ColourReconnection:reconnect = on

16 ColourReconnection:mode = 1

17 ColourReconnection:allowDoubleJunRem = off

ColourReconnection:m0 = 0.3

ColourReconnection:allowJunctions = on

ColourReconnection:junctionCorrection = 1.2

21 ColourReconnection:timeDilationMode = 2

22 ColourReconnection:timeDilationPar = 0.18

24 Rope

23

25 Ropewalk:RopeHadronization = on

26 Ropewalk:doShoving = on

Ropewalk:tInit = 1.5

Ropewalk: deltat = 0.05

Ropewalk:tShove = 0.1

Ropewalk: gAmplitude = 0.

31

32 Ropewalk:doFlavour = on

33 Ropewalk:r0 = 0.5

34 Ropewalk:m0 = 0.2

Ropewalk: beta = 0.1

36

37 !// Enabling setting of vertex information.

38 PartonVertex:setVertex = on

39 PartonVertex:protonRadius = 0.7

40 PartonVertex:emissionWidth = 0.1

Figure 1: Track η distribution.

Figure 2: Forward track $dN_{\text{fwd}}/d\eta$ distribution.

2 Simulate with PYTHIA 8 sQCD with CR1 and rope

References

Figure 3: Inclusive integrated yields of particles with $\langle dN_{ch}/d\eta \rangle$.(Data taken from arXiv:1606.07424v2 and arXiv:1910.14397v1)

Figure 4: Integrated yields of particles in jet with $\langle dN_{ch}/d\eta \rangle$.(Data taken from arXiv:1606.07424v2 and arXiv:1910.14397v1)

Figure 5: Inclusive integrated yields ratios of strange particle to π with $\langle dN_{ch}/d\eta \rangle$. (Data taken from arXiv:1606.07424v2 and arXiv:1807.11321v2)

Figure 6: Integrated yields ratios in jet of strange particle to π with $\langle dN_{ch}/d\eta \rangle$. (Data taken from arXiv:1606.07424v2 and arXiv:1807.11321v2)

Figure 7: Inclusive integrated yields ratios with $\langle dN_{ch}/d\eta \rangle$.(Data taken from arXiv:1910.14397v1)

Figure 8: JC integrated yields ratios with $\langle dN_{ch}/d\eta \rangle$.(Data taken from arXiv:1910.14397v1)

Figure 9: Inclusive particle p_T spectra. The different acceptance with data(for PYTHIA $|\eta| < 0.75$, data |y| < 0.5)(Data taken from arXiv:2005.11120, arXiv:1204.0292v3 and arXiv:1910.14410)

Figure 10: Particle in jet p_T spectra.

Figure 11: Inclusive particle ratios with p_T distribution. (Data taken from arXiv:2005.11120)

Figure 12: Particle ratios in jet with p_T distribution. (Data taken from arXiv:2005.11120)

Figure 13: Inclusive particle ratios with p_T distribution in center and peripheral centrality bins. (Data taken from arXiv:1807.11321v2 and arXiv:1910.14397v1)

Figure 14: Particle ratios with p_T distribution in different centrality bins (CR + Rope).

Figure 15: Particle ratios with p_T distribution in different centrality bins (CR).

Figure 16: Particle ratios with p_T distribution in different centrality bins (Rope).

Figure 17: Particle ratios in jet with p_T distribution in different centrality bins (CR+Rope).

Figure 18: Particle ratios in jet with p_T distribution in different centrality bins (CR).

Figure 19: Particle ratios in jet with p_T distribution in different centrality bins (Rope).

Figure 20: Particle ratios to jet axis range (R(P, jet)) distribution. (The multi-strange hadrons (Ξ , Ω) have strong enhance at small R(P, jet))