PRÁCTICA 4 : EFECTO DE POLARIZADORES SOBRE LA LUZ. LEY DE MALUS

Cuando incide luz linealmente polarizada sobre un polarizador, la intensidad que sale depende del <u>ángulo</u> que forma E con la dirección de transmisión del polarizador.

Ley de Malus: $I = I_0 \cos^2 \theta$

Luz natural incide sobre polarizador :

luz natural: dos ondas arbitrarias, = amplitud, linealmente polarizadas y vibran en direcciones perpendiculares

girar eje de transmisión del polarizador de 0 a 90 situamos lente en la focal del diafragma

Imax	lexp (lux)	angulos
t	329,5	0
h	330,4	10
t	329,8	20
τ	325,2	30
P	318,7	40
	310,6	50
	302,2	60
	293,2	70
	287,5	80
	284	90

fuente tiene filamento vertical, no es homogenea, preferencia vertical de la fuente

por eso nos da un máximo en O

· Luz natural a través de dos polarizadores

P1: eje transmisión 0 (luz lineal pol vertical)

P2 : eje transmisión θ (Luz Lineal pol vibran en la dirección θ)

experimentalmente: $= \pm \exp - \pm fondo$

•			_=		
angulos	lexp'	RAD	lexp	coseno^2	XAMI = (
0	181,7	0	165,94	1	165,94
5	180,4	0,08726646	164,64	0,99240388	164,679499
10	175,5	0,17453293	159,74	0,96984631	160,936297
15	169,2	0,26179939	153,44	0,9330127	154,824128
20	160,9	0,34906585	145,14	0,88302222	146,528707
25	149,2	0,43633231	133,44	0,8213938	136,302088
30	140,5	0,52359878	124,74	0,75	124,455
35	123,4	0,61086524	107,64	0,67101007	111,347411
40	110,8	0,6981317	95,04	0,58682409	97,3775893
45	94,1	0,78539816	78,34	0,5	82,97
50	79,7	0,87266463	63,94	0,41317591	68,5624107
55	65,2	0,95993109	49,44	0,32898993	54,5925887
60	53	1,04719755	37,24	0,25	41,485
65	41,8	1,13446401	26,04	0,1786062	29,637912
70	32,19	1,22173048	16,43	0,11697778	19,4112926
75	23,63	1,30899694	7,87	0,0669873	11,1158722
80	19,36	1,3962634	3,6	0,03015369	5,00370325
85	16,51	1,48352986	0,75	0,00759612	1,26050073
90	15,76	1,57079633	0	3,7525E-33	6,2269E-31

9

pasar a radianes

· Luz natural a través de 3 polarizadores

Cuando dos polarizadores tienen los ejes de transmisión perpendiculares no dejan pasar luz

Metemos un polarizador en medio de dos cruzados

Ley de Malus 3 polarizadores : $I = I_{MAX} \cos^2 \theta \cos^2 (90 - \theta)$

IMAX =	I'MAX -	I fondo
--------	---------	---------

Imax'		Ifondo		Imax	
	248,1		21,45		226,65

Al ser un polarizador real debemos considerar la absorción, calculamos TP3

It90		li90		TP3
	159,3		206,6	0,77105518

Iexp' - Ifondo 2

angulos	lexp'	lexp	I teo
0	13,88	0	8,50498E-31
5	15,15	1,6469978	1,708583437
10	17,98	5,3170795	6,628253371
15	23,8	12,8647387	14,165625
20	29,96	20,8533264	23,41158007
25	36,65	29,5292439	33,25091993
30	43,5	38,4126572	42,496875
35	48,3	44,6375308	50,03424663
40	51,3	48,5280768	54,95391656
45	51,9	49,306186	56,6625
50	50,2	47,1015432	54,95391656
55	46,1	41,7844638	50,03424663
60	40,8	34,9111659	42,496875
65	33,92	25,9888471	33,25091993
70	27,16	17,2221502	23,41158007
75	22,21	10,8027493	14,165625
80	17,44	4,61678122	6,628253371
85	14,41	0,68732979	1,708583437
90	14,08	0,25936973	8,50498E-31

Ifondo = menor de los valores cuando P2 esté en 0 o 90

I fonda = 13'88

