CYC_WAKE

REVISION HISTORY

Revision Number	Date	Description of Change	Author
V0.0	9/22/2022	Draft version	Su Aixue

Table of Contents

CYC_WAKE	2
Introduction	2
Register Definition	
Register Map	
MON_CONF	
ADC CTRL	
Function Details	3
Block Diagram	3
CYC_WAKE IO Descriptions	4
CYC WAKE Key Signal Descriptions	5
CYC WAKE Function Descriptions	

CYC_WAKE

Introduction

The CYC_WAKE is a simple, periodic pulse generator. The period of the output wake can be programmed. In other words, the CYC WAKE can generate square wave with various frequency.

The CYC WAKE module has the following features:

- Latch MON_EN_REG, MON_WAKE_PERIOD_REG to MON_EN, MON_WAKE_PERIOD once MON_WAKE_GO is high; (HWR001_CYC_WAKE)
- Output clr_MON_WAKE_GO high (lasting 1 CLK_SLOW) after register latched done; (HWR002 CYC WAKE)
- Output MON ADC GO according to MON WAKE PERIOD; (HWR003 CYC WAKE)
- When D2A CELL ADC EN is high, MON ADC GO will be low; (HWR003 CYC WAKE)
- MON ADC GO can be cleared by clr ADC GO; (HWR003 CYC WAKE)
- Output MON_WAKE according to MON_WAKE_PERIOD; (200ms-3.2s, step 200ms; 3.2s-156.8s, step 3.2s) (HWR004_CYC_WAKE)
- MON WAKE can be cleared by RR END; (HWR004 CYC WAKE)
- MON WAKE shall be high earlier 10ms than MON ADC GO. (HWR004 CYC WAKE)

Register Definition

Register Map

Table 11 CYC_WAKE Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE
CYC_WAKE			
0x0000	MON_CONF	CYC_WAKE configuration register	0x45
0x1FF7	ADC_CTRL	ADC control register	0x00

MON_CONF

Register 1. MON_CONF (CYC_WAKE configuration register, offset 0x0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:2	MON_WAKE_PERIOD	R/W	6'h11	Period Configuration
				00 0000: 0.2s
				00 0001: 0.4s
				00 0010: 0.6s
				00 1111: 3.2s
				01 0000: 6.4s
				01 0001: 9.6s
				01 0010: 12.8s
				11 1111: 156.8s

1	REV	R	1'b0	Reserved
0	MON_WAKE_EN	R/W	1'b1	CYC_WAKE Enable Bit
				0: Disable
				1: Enable

ADC_CTRL

Register 11. ADC_CTRL (ADC control register, offset 0x1FF6)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	MON_WAKE_GO	R/W	1'b0	Mon-wake Starting Bit
				0: Ready
				1: Execute
6:3	REV	R	4'h0	Reserved
2:0				

Function Details

Block Diagram

The main elements of CYC_WAKE and their interactions are shown in Fig $1.\,$

Fig 1. CYC_WAKE Block Diagram

CYC_WAKE IO Descriptions

This section provides the CYC_WAKE IO descriptions.

Table 2 CYC_WAKE IO descriptions

Signal	Width	Duration	I/O	Default Value	Register
CLK_SLOW_SC	1		I		
resetb_SR_CLK_SLOW	1		I		
MON_WAKE_GO	1	1~2 CLK_SLOW_SC	I		MON_WAKE_GO
MON_EN_REG	1		I		MON_WAKE_EN
MON_WAKE_PERIOD_R EG	1		I		MON_WAKE_PERIOD
D2A_CELL_ADC_EN	1	43874 CLK_REG_SC	I		
clr_ADC_GO	1	16 CLK_ADC_SC	I		
RR_END	1	16 CLK_ADC_SC	I		
clr_MON_WAKE_GO	1	1 CLK_SLOW_SC	О	1'b0	

MON_WAKE	1	4017 CLK_SLOW_SC	0	1'b0	
MON_ADC_GO	1	4 CLK_SLOW_SC	О	1'b0	

CYC_WAKE Key Signal Descriptions

Table 3 CYC_WAKE key signal descriptions

Signal	Width	Duration	Default Value	Description
time_val	32		32'h2580	When MON_EN = 1, the value of this signal is the duration corresponding to the MON_WAKE_PERIOD_REG. This signal is used to store the period of the MON_WAKE output signal.
mon_wake_per	32		32'h264398	The value of this signal is the clock periods' number corresponding the time_val.
clr_MON_WAKE_GO	1	1 CLK_SLOW_SC	1'b0	The clr_MON_WAKE_GO is a pulse lasting for a clock period. When "MON_WAKE_GO = 1" is detected, the clr_MON_WAKE_GO pulse will generate at the rising edge of the next clock. This signal is an output signal, and is used to clear the MON_WAKE_GO.
MON_WAKE	1	4017 CLK_SLOW_SC	1760	When MON_EN = 1 and clr_MON_WAKE_GO = 1, the first rising edge of MON_WAKE will be generated, and MON_WAKE is cleared by the next RR_END_SYNC (RR_END after synchronization). The second and the subsequent rising edge of MON_WAKE is generated at the moment when the following signal count1 = mon_wake_per and MON_EN = 1. It is an output signal and it is a periodic signal.
mon_wake_pos	1	1 CLK_SLOW_SC	1'b0	When the rising edge of MON_WAKE appear and MON_EN = 1, the pulse of mon_wake_pos (width = 1 clock period) is generated.
mon_wake_start	1		1'b0	When mon_wake_pos = 1, mon_wake_start = 1.
count1	32		32'b0	When MON_EN = 1 and mon_wake_start = 1, the count1 starts to count, and count back to 0 when it is up to mon_wake_per or MON_EN = 0.
count2	12		12'b0	When MON_EN = 1 and mon_wake_pos = 1, the count2 starts to count, and count back to 0 when it is up to 12'h35 (corresponding to 10ms) or MON_EN = 0. This signal is used to count the time that MON_WAKE earlier than MON_ADC_GO.

CYC_WAKE Function Descriptions

The CYC WAKE module has the following functions:

- Latch MON_EN_REG, MON_WAKE_PERIOD_REG to MON_EN, MON_WAKE_PERIOD once MON_WAKE_GO is high; (Func 1) (HWR001_CYC_WAKE)
- Output clr_MON_WAKE_GO high (lasting 1 CLK_SLOW) after register latched done; (Func 2) (HWR002 CYC WAKE)
- Output MON_ADC_GO according to MON_WAKE_PERIOD; (Func 3) (HWR003_CYC_WAKE)

- When D2A CELL ADC EN is high, MON ADC GO will be low; (Func 4) (HWR003 CYC WAKE)
- MON ADC GO can be cleared by clr ADC GO; (Func 5) (HWR003 CYC WAKE)
- Output MON_WAKE according to MON_WAKE_PERIOD; (200ms-3.2s, step 200ms; 3.2s-156.8s, step 3.2s) (Func 6) (HWR004 CYC WAKE)
- MON WAKE can be cleared by RR END; (Func 7) (HWR004 CYC WAKE)
- MON WAKE shall be high earlier 10ms than MON ADC GO. (Func 8) (HWR004 CYC WAKE)

Above functions can be found in the following timing diagram. Fig 3 and Fig 4 are magnified version of Fig 2.

Func 1: Sample the value of MON_WAKE_GO using CLK_SLOW_SC. When the high level of MON_WAKE_GO is detected, the value of MON_EN and MON_WAKE_PERIOD will be set to the value of MON_EN REG and MON_WAKE_PEEROD_REG.

Func 2: Sample the value of MON WAKE GO, MON EN REG, MON EN,

MON_WAKE_PERIOD_REG, MON_WAKE_PERIOD using CLK_SLOW_SC. When the high level of MON_WAKE_GO is detected, and the value of MON_EN/MON_WAKE_PERIOD being equal to MON_EN_REG/MON_WAKE_PERION_REG is detected at the same time, the clr_MON_WAKE_GO will be set to 1. Besides, sample the value of clr_MON_WAKE_GO using CLK_SLOW_SC. When the high level of CLK_SLOW_SC is detected, the value of clr_MON_WAKE_GO will be cleared. Func 3: At the beginning, convert the value of MON_WAKE_PERIOD convert to timing value, and then covert the timing value convert the counts of clock cycles. Finally, generate a periodic wave

Func 6: Similar to Func 3.

Func 8: Implement it using counting method.

(MON ADC GO) using counting method.

Fig 2. CYC_WAKE Timing Diagram 1

Fig 3. CYC_WAKE Timing Diagram 2

Fig 4. CYC_WAKE Timing Diagram 3