

U.S. Navy Electronics Laboratory
INFORMAL REPORT
Horizontal Electric Doublet in a
Semi-Infinite Dissipative Medium
by
R. H. Lien 4/19/51

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FOR
PEPORT NUMBER 2. GOVT ACCESS	ION NO. 3. RECIPIENT'S CATALOG NUMBER
I. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COV
HORIZONTAL ELECTRIC DOUBLET IN A SEMI-INFINIT	Informal report
DISSIPATIVE MEDIUMS	6. PERFORMING ORG. REPORT NUMB
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(e)
R. H. Lien	N6-DNR-27135
U.S. Navy Electronics Laboratory San Diego, CA	10. PROGRAM ELEMENT, PROJECT, T AREA & WORK UNIT NUMBERS
Office of Naval Research, Code 220	19 APR 951
800 North Quincy Street Arlington, VA 22217	18- NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling	Office) 15. SECURITY CLASS. (of this report) UNCLAS
12) 24 P.	15a. DECLASSIFICATION/DOWNGRAD
	SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unl	imited.
Approved for public release; distribution unl	imited.
Approved for public release; distribution unl	Inited. Orant from Report) DDC DCC SEP 20 1979
Approved for public release; distribution unl	imited.
Approved for public release; distribution unl	imited. Orant from Report) D D C OCCUPANT SEP 20 1979 USUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSU
Approved for public release; distribution unl	imited. Orant from Report) D D C OCCUPANT SEP 20 1979 USUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSU
Approved for public release; distribution unl	imited. Orant from Report) D D C OCCUPANT SEP 20 1979 USUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSU
Approved for public release; distribution unl	Inited. Jorent from Report) SEP 20 1979 LEUS LEUN LEUN LEUN LEUN LEUN LEUN LEUN LEUN
Approved for public release; distribution unline. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different entered in Bl	Inited. Jorent from Report) SEP 20 1979 LEUS LEUN LEUN LEUN LEUN LEUN LEUN LEUN LEUN

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THE PART (Minor Date Bri

U. S. Navy Electronics Laboratory San Diego, California

INFORMAL REPORT

TOLUMBIA UNIVERSITY

19 April 1951 HUDSON LABORATORIES

CONTRACT NG-ONR-27135

HORIZONTAL ELECTRIC DOUBLET IN A SEMI-INFINITE DISSIPATIVE MEDIUM

R. H. LIEN

The units in this report are expressed in the M.K.S. system. The permeability of both media

henry/meter

the dielectric constant of air

farad/meter

The dielectric constant of the dissipative medium

farad/meter

where K , a number, is the ratio of the dielectric constant in the medium to that in air.

The conductivity of the dissipative medium is

0

mhos/meter

The quantity,

meters/sec.

In air Maxwell's two curl equations are

(1)
$$\nabla_{x}\vec{E} = -j\omega_{\mu}\vec{H}$$

 $\nabla_{x}\vec{H} = j\omega_{x}\vec{E}$

 \overline{E} are the electric field vectors \overline{H} are the magnetic field vectors $\omega_{=2.77}$

f is the frequency in cycles per second.

In the dissipative medium, these equations are

(2)
$$\nabla \times \vec{E} = -j \omega \mu \vec{H}$$

 $\nabla \times \vec{H} = j \omega K \in \vec{E} + \sigma \vec{E}$

79 09 17 035

The second equation of (2) can be modified to read

where

In air the wave number is given by

in the dissipative medium the wave number

In the case of low frequencies $(\frac{1}{\omega \in K})^2 > 1$

In air, the wave length of a plane wave, is written in the form

where & is the wave length in air.

In the dissipative medium we have,

$$e^{-jkT_3} = e^{-j\frac{2\pi}{\lambda}(\alpha - j\alpha)} = e^{-\frac{2\pi\alpha}{\lambda}} e^{-\frac{j^2\pi\alpha}{\lambda}}$$

In the phase term of the product, let us examine

$$\frac{2\pi}{\lambda d} = \frac{2\pi d}{\lambda}$$

The phase velocity for a plane wave in air is

The phase velocity for a plane wave in a dissipative medium is

$$\frac{1}{cd} = \frac{k\alpha}{\omega} \qquad \text{whence } C_d = \sqrt{\frac{2\omega}{\mu\sigma}} = 2\sqrt{\frac{\pi f}{\mu\sigma}}$$

Accession For NTIS GRALI Unannounced Justification Distribution/ Availability Codes Avail and/or Dist special

Let a horizontal electric doublet be placed at o, o, h, parallel to the X axis. In this problem it is convenient to use the Hertzian potentials $\overline{\mathcal{H}}$ to determine the fields. Two Hertzian potentials $\overline{\mathcal{H}}_a$ and $\overline{\mathcal{H}}_d$ must be determined (1), (2)

(1)
$$\nabla^2 \vec{\Pi}_d + k^2 \vec{C}^2 \vec{\Pi}_d = 0$$
 except at $(0, 0, h)$

$$\vec{E}_d = k^2 \vec{T}^2 \vec{\Pi}_d + \nabla(\nabla \cdot \vec{\Pi}_d)$$

$$\vec{H}_d = j \omega \in \vec{T}^2 \nabla_x \vec{\Pi}_d$$
chuk This

chuk This in stratter and/or Someful.

11

and

(2)
$$\nabla^2 \pi_a + k^2 \pi_a = 0$$

 $\bar{E}_a = k^2 \pi_a + \nabla(\nabla \cdot \pi_a)$
 $\bar{H}_a = j\omega \in \nabla \times \pi_a$

The boundary condition, that the tangential components of \vec{E} and \vec{H} are continuous across the boundary, imposes the following conditions on $\vec{\mathcal{T}}_{A}$: where

on
$$TI_d$$
; where
$$TI_d = TI_{xd} \overline{a}_x + TI_{yd} \overline{a}_y, \quad TI_y = 0$$

when 3 = 0

(4)
$$T^2 \frac{\partial \pi_{xd}}{\partial z} = \frac{\partial \pi_{xa}}{\partial z}$$

(1) Stratton "Electromagnetic Theory", 1941 pp. (573-587)
(2) Sommerfeld "Partial Differential Equations", pp. (236-279)

(6)
$$\frac{\partial \pi_{xd}}{\partial x} + \frac{\partial \pi_{yd}}{\partial g} = \frac{\partial \pi_{xa}}{\partial x} + \frac{\partial \pi_{ya}}{\partial g}$$

A solution of the scalar wave equation, in cylindrical coordinates, in which $\frac{\partial}{\partial \varphi} = 0$ can be written $-\sqrt{5}(\frac{6}{5})e^{-\sqrt{5^2-k^2T_{ij}^2}}$

is a separation constant,

where the sign of the radical is chosen so the quantity vanishes as 3 -> ± 00.

(8)
$$T_{XA} = \frac{1}{j\omega \in 4\pi} \int_{0}^{\infty} f_{A}(\xi) \cdot J_{A}(\xi) e^{-\frac{\pi}{2}} \int_{0}^{\infty} \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi$$

Where $(Id\hat{\chi})$ is the doublet moment; $f(\xi)$ and $g(\xi)$ are functions to be determined from boundary conditions. The source function can be expressed as a Sommerfeld integral.

(11)
$$\frac{e^{-jkTr}}{r} = \begin{cases} \int_{0}^{\infty} J_{0}(\xi_{0}) e^{-\sqrt{3}\frac{k}{2}} J_{1}^{2}(z^{2} - h) & \text{fin } f_{1}(\xi_{0}) \\ \frac{\xi_{0}(\xi_{0})}{\sqrt{3}^{2} - k^{2} T^{2}}, & \text{fin } f_{2}(\xi_{0}) \\ \frac{\xi_{0}(\xi_{0})}{\sqrt{3}^{2} - k^{2} T^{2}}, & \text{fin } f_{2}(\xi_{0}) \\ \frac{\xi_{0}(\xi_{0})}{\sqrt{3}^{2} - k^{2} T^{2}}, & \text{fin } f_{2}(\xi_{0}) \end{cases}$$
If we write

If we write

(12)
$$l = \sqrt{5^2 - k^2}$$
 $m = \sqrt{5^2 - k^2 T^2}$

and apply (11) to (7), and substitute (7) and (8) into (3) and (4), and using the theorem that the Fourier-Bessel transforms are unique, the following linear simultaneous equations are the results:

The solution of these equations results in

(13)
$$f_a = \frac{2 e(\ell - m)h}{\ell + m}$$

(14)
$$f_d = \left(\frac{m-\ell}{\ell+m}\right) \frac{1}{m} = -\frac{1}{m} + \frac{2}{m+\ell}$$

Hence we have
$$(15) T_{Xd} = \frac{(Id2)}{j\omega \epsilon 2^{2}4\pi} \left\{ \frac{e^{-jkT_{i}}}{r_{i}} - \frac{e^{-jkT_{i}}}{r_{2}} + 2 \int_{0}^{\infty} \frac{J_{0}(\xi_{0})e^{-jkT_{i}}}{\ell_{+}m} \right\}$$

(16)
$$T_{A0} = \frac{2(IA\hat{\chi})}{j\omega\epsilon 4\pi} \int_{0}^{\infty} \frac{J_{0}(\frac{\epsilon}{2}\rho)e^{-l_{3}^{2}-mh}}{l+m} \int_{1}^{\infty} \frac{J_{0}(\frac{$$

The operator $\frac{2}{2x}$ applied to $J_o(\frac{x}{2})$ results in

The operator
$$\frac{\partial}{\partial x}$$
 applied to $\frac{\partial}{\partial s}(\frac{\partial}{\partial s})$ results in (17) $\frac{\partial}{\partial x}$ $\frac{\partial}{\partial s}(\frac{\partial}{\partial s}) = -\frac{1}{2}(\frac{\partial}{\partial s})\frac{\partial}{\partial s} = -\frac{1}{2}(\frac{\partial$

Using (5), (6), (9), (10), (15), (16), and (17)

results in the equations $g_a = g_a e^{-mh + lh}$

$$\frac{2}{t^{2}} \frac{e^{-mh}}{z_{+m}} + \frac{mgd}{t^{2}} = \frac{2e^{-mh}}{z_{+m}} - g_{a} e^{-z_{+m}}$$

The solutions of these equations are

(18)
$$g_d = \frac{(1-T^2)(-2)}{(\ell+m)(m+T^2\ell)}$$

(19)
$$g_a = \frac{-2(1-\tau^2)e^{-mh+\ell h}}{(\ell+m)(m+\tau^2\ell)}$$

HORIZONTAL ELECTRIC DOUBLET IN A SEMI-INFINITE DISSIPATIVE MEDIUM

Now to summarize our position, we have

$$\frac{-1}{11d} = \frac{(Id\hat{x})}{j\omega \in T^{2}H\pi} \left\{ (4, -4, +U) \ \bar{a}_{x} + W \ \bar{a}_{y} \right\}$$

$$4, = \frac{e^{-jkTr_{x}}}{r_{x}}, \quad 4_{2} = \frac{e^{-jkTr_{2}}}{r_{2}}$$

$$r_{x}^{2} = \rho^{2} + (g - h)^{2}, \quad r_{x}^{2} = \rho^{2} + (g + h)^{2}$$

$$W = 2(1 - r^{2}) \frac{\partial}{\partial x} \int_{-\sqrt{3}}^{\sqrt{3}} \frac{\partial}{\partial y} (\frac{\partial}{\partial y}) e^{-m(g + h)}$$

$$\ell = \sqrt{5^{2} - k^{2}} \qquad m = \sqrt{5^{2} - k^{2}} \frac{\partial}{\partial x}$$

$$U = 2\int_{-\sqrt{3}}^{\sqrt{3}} \frac{\partial}{\partial y} (\frac{\partial}{\partial y}) e^{-m(g + h)}$$

$$\ell = \sqrt{5^{2} - k^{2}}$$

$$\ell + m$$

How are Ep, Eq. Ex deliment by Drude IT polaried?

and in air
$$\frac{1}{T_{a}} = \frac{2(Id\hat{x})}{\int w (f)} \left\{ \int \frac{ds}{s} \left(\frac{s}{s} - mh \right) - \frac{1}{s} \left(\frac{s}{s} \right) \left(\frac{s}$$

ELECTRIC FIELDS IN THE DISSIPATIVE MEDIUM

It is convenient to express the fields in cylindrical coordinates. This will be accomplished following a method used by K. A. Norton (3).

(1)
$$W = 2(1-T^2) \frac{\partial}{\partial x} \int \frac{\partial}{\partial x} (5p) e^{-m(3+h)} \frac{\partial}{\partial x} \frac{\partial}{\partial x$$

The denominator can be written as $\frac{1}{(T^2 L + m)(L + m)} = \frac{1}{(1 - T^2)(T^2 L + m)m} + \frac{1}{(1 - T^2)(L + m)m}$

(2) W=2 $\frac{\partial}{\partial x} \int_{0}^{\infty} \left(\frac{1}{m(\ell+m)} - \frac{\tau^{2}}{m(\tau^{2}\ell+m)} \right) J_{0}(5\rho) e^{-m(3+h)}$ Thus equation (1) becomes

and
$$J_{W} = \frac{1}{2} \int_{0}^{\infty} \left(\frac{m(l+m)}{m(l+m)} \right) \frac{m(l+m)}{m(l+m)} J_{0}(\frac{5}{9}) e^{-\frac{m(l+m)}{5}} \frac{1}{5} \int_{0}^{\infty} \frac{1}{5} \frac$$

(3) $\frac{\partial W}{\partial z} = 2 \frac{\partial}{\partial x} \int_{0}^{\infty} \left\{ -\frac{1}{l+m} + \frac{T^{2}}{T^{2}l+m} \right\} \cdot J_{0}(5p) e^{-m(3+h)}$

If, V is defined as

(4)
$$V = 2 T^2 \int_0^\infty J_0(\frac{3p}{2p}) e^{-m(\frac{3+h}{2})} \frac{3}{5} ds$$

 $(5) \frac{\partial W}{\partial x} = -\frac{\partial U}{\partial x} + \frac{\partial V}{\partial x}$

(6) $\nabla \cdot \overline{\Pi}_{\mathbf{d}} = \frac{Id\hat{x}}{j\omega \in \overline{L}^{2}\mu \pi} \left\{ \frac{\partial}{\partial x} \left(Y_{i} - Y_{2} + \overline{U} \right) - \frac{\partial \overline{U}}{\partial x} + \frac{\partial \overline{V}}{\partial x} \right\}$

Hence the electric fields are, with the factor Just 411 understood. (7) Ex = 2 22 (4: -42+U) + 22 (4: -4: +V)

(8)
$$E_y = \frac{3^2}{3y3x} (4 - 42 + V)$$

⁽³⁾K. A. Norton, "Proc. Inst. Radio Engrs." 24, 1367, 1936; 25, 1203, 1937

From equation (2), and using the identity

equation (9) becomes

(10) $E_3 = \cos \varphi \left[\frac{3^2}{339}(4-\frac{1}{2})+2\frac{3}{39}\right] \left\{\frac{k^27^2}{m(\ell+m)} - \frac{k^27^4}{m(\ell^2\ell+m)} - \frac{m\tau^2}{\ell^2\ell+m}\right\} J_0(\frac{5}{2})e^{-\frac{m(3+h)}{5}}$ upon writing out the integrals.

The factor
$$\frac{k^{2}T^{2}}{k^{2}T^{2}} - \frac{k^{2}T^{4}}{m(t^{2}k+m)} - \frac{mT^{2}}{T^{2}k+m} = -\frac{k^{2}T^{2}}{T^{2}k+m} = -\frac{k^{2}T^{2}}{T^{2}k+m} = -\frac{m}{T^{2}k+m}$$
Thus integral can be written
$$-2\frac{\partial}{\partial \rho}\int_{0}^{\rho}(1-\frac{m}{T^{2}k+m}) \cdot J_{0}(5\rho)e^{-m(3+h)} = 2\frac{\partial^{2}V}{\partial z^{2}\rho} - \frac{\partial^{2}V}{\partial z^{2}\rho}$$
(12) $E_{3} = \cos\rho\frac{\partial^{2}}{\partial z^{2}\rho}(4+42-\frac{V}{T^{2}})$

Using the identities

Ep = Ex cos
$$g + Ey$$
 sin f
Ep = -Ex sin f + Ey cos f

and the operators,

1

$$\frac{\partial}{\partial x} = \cos \rho \frac{\partial}{\partial \rho}$$

$$\frac{\partial}{\partial q} = \sin \rho \frac{\partial}{\partial \rho}$$

$$\frac{\partial^{2}}{\partial x^{2}} = \cos^{2}\rho \frac{\partial^{2}}{\partial \rho^{2}} + \frac{\sin^{2}\rho}{\rho} \frac{\partial}{\partial \rho}$$

$$\frac{\partial^{2}}{\partial x^{2}} = \sin \rho \cos \rho \frac{\partial^{2}}{\partial \rho^{2}} - \frac{\sin \rho \cos \rho}{\rho} \frac{\partial}{\partial \rho}$$
it can be shown that

$$E_{p} = \cos p \left\{ R^{2} C^{2} (4, -\frac{14}{2} + U) + \frac{3^{2}}{3p^{2}} (4, -\frac{14}{2} + V) \right\}$$

THE EVALUATION OF V FOR LOW FREQUENCIES

The direct evaluation of this integral is difficult. For low frequencies $(\frac{14}{4})$, tractable approximations can be obtained. Before performing the integration replace $\frac{5}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ and dropping primes $V = 2k T^2 \int_0^\infty \frac{J_0(\frac{4}{4})e^{-\frac{1}{4}} \frac{1}{3^2-T^2}}{T^2\sqrt{5^2-1}+\sqrt{3^2-T^2}}$

The denominator of the integrand can be simplified as follows:

 $\frac{\mathcal{T}^{2}\sqrt{5^{2}-1}^{2}+\sqrt{5^{2}-7^{2}}}{\mathcal{T}^{2}\sqrt{5^{2}-1}^{2}+\sqrt{5^{2}-7^{2}}} = \frac{1}{\sqrt{5^{2}-1}^{2}+\sqrt{5^{2}-7^{2}}}$ Let $|\mathcal{T}^{2}/\mathcal{S}^{2}-1|^{2}+\sqrt{5^{2}-7^{2}}=\frac{1}{\sqrt{5^{2}-1}+\frac{5}{7^{2}}} = \frac{1}{\sqrt{5^{2}-1}}$ Hence V reduces to

 $V = 2k \int_{0}^{\infty} \frac{J_{0}(5p)e^{-\frac{5}{5}\sqrt{5^{2}-7^{2}}}}{\sqrt{5^{2}-1}}$

V = -2 k 3 5 - Jo(40)e - 5/52-72

make a change of variable

and $\sqrt{5^2-1} = \sqrt{\gamma^2+7^2-1} = \sqrt{\gamma^2+7^2}$ since $/2^2/>>1$; $V = -2k \frac{3}{5} \int_{2}^{\infty} \frac{-5(p\sqrt{\gamma^2+7^2})e^{-\gamma\xi}}{\sqrt{\gamma^2+2^2}}$ Extending the Laplace - transformation(5), to the complex plane, we

Extending the Laplace - transformation (2), to the complex plane, we have $V = -2k \frac{3}{3k} \left\{ I_o \left[\frac{jk^2}{2} (E - 3 - h) \right] K_o \left[\frac{jk^2}{2} (E + 3 + h) \right] \right\}$

where I_{\bullet} and K_{\bullet} are Modified Bessel Function of zero order.

Using physical units when $\left|\frac{jkT}{2}\right| << 1$, and using the approximations for small values of the argument in the Bessel Functions.

 ⁽⁴⁾R. Foster, "Bell System Tech. Journal" 10 July 1931
 (5)Magnus and Oberhettinger "Special Functions of Mathematical Physics" p. (133)

When $\frac{jkTn}{>>1}$ and using the asymptotic expansions for the Bessel Functions $V = \frac{2ke - jkT(3+h)}{e}$

THE EVALUATION OF Z FOR LOW FREQUENCIES

The integral representation of U does not lend itself to direct attack, but easily handled approximations can be used for

the low frequency case.

$$U = 2 \text{ k} \int_{0}^{\infty} \frac{J_{0}(\$p)e^{-\frac{1}{8}\sqrt{\$^{2}-T^{2}}}}{\sqrt{\$^{2}-T}}$$

 $U = 2k \int_{0}^{\infty} \frac{J_{0}(\xi p)e^{-\frac{1}{8}\sqrt{5^{2}-T^{2}}}}{\sqrt{5^{2}-1} + \sqrt{5^{2}-T^{2}}}$ Rationalizing the denominator we have $\sqrt{5^{2}-1} + \sqrt{5^{2}-7^{2}} = \frac{\sqrt{5^{2}-1} - \sqrt{5^{2}-7^{2}}}{T^{2}} = \frac{\sqrt{5^{2}-1} - \sqrt{5^{2}-7^{2}}}{T^{2}}$

In the second integral make the transformation $\eta = \sqrt{5^2-7^2}$ T = - 2 3 () T /y = 1 T = - 75 (p / y = + T 2) e - 75

Using the differential equation for $\sqrt{\sigma}(x)$, $X = \rho \sqrt{\eta^2 + T^2}$ we have $\sqrt{\eta^2 + T^2}$ $\frac{\partial^2 \sigma}{\partial \rho^2} + \rho \sqrt{\eta^2 + T^2}$ $\frac{\partial \sigma}{\partial \rho} + \sqrt{\eta^2 + T^2}$ $\sigma = 0$

This relates ${\cal P}$ and ${m V}$ as follows

0

$$T = -\frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho}$$

$$\therefore U = \frac{\partial^2 V}{\partial \rho^2} + \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} + \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} + \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} + \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} + \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} + \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} + \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} - \frac{\partial^2 V}{\partial \rho^2} + \frac{\partial^2 V}{\partial \rho^2} - \frac$$

In calculating the electric fields we have to use

$$T + \frac{3^{2}V}{3\rho^{2}} = -\frac{1}{\rho} \frac{3V}{3\rho}$$
and
$$T + \frac{1}{\rho} \frac{3V}{3\rho} = -\frac{3^{2}V}{3\rho^{2}}$$

DETERMINATION OF THE FIELDS

Substituting the values for ${m U}$ and ${m V}$ and performing the indicated differentiation, and using the physical units involved,

We have
$$E_{\rho} = \frac{(1 d\hat{x}) \cos \theta}{4 \pi \sigma} \left\{ \psi_{i} \left[k^{2} z^{2} \cos^{2} \theta_{i} + \frac{j k T (2 - 3 \cos^{2} \theta_{i})}{\eta} + \frac{2 - 3 \cos^{2} \theta_{i}}{r_{i}^{2}} \right] + \psi_{i} \cos^{2} \theta_{i} \left[k^{2} T^{2} - \frac{3j k T}{2} - \frac{3}{\sqrt{2}} \right] + T + \frac{3^{2}V}{3\rho^{2}} \right\}$$

$$E_{g} = \frac{-(Id\hat{x})_{sin}g}{4\pi\tau} \left\{ + \frac{1}{7} \left[\frac{1}{7} \frac{2}{7} - \frac{jkT}{r_{z}} - \frac{jkT}{r_{z}} - \frac{jkT}{r_{z}} + \frac{3-6\cos^{2}\theta_{z}}{r_{z}} + \frac{3-6\cos^{2}\theta_{z}}{r_{z}} \right] + \frac{3-6\cos^{2}\theta_{z}}{r_{z}} \right\}$$

$$E_{2} = \frac{(Id\hat{x})\cos^{2}\theta}{4\pi\sigma} \begin{cases} 4, \left[-k^{2}T^{2} + \frac{3jkT}{T_{1}} + \frac{3}{T^{2}}\right]\sin\theta, \cos\theta, \\ +4\sqrt{2}\left[-k^{2}T + \frac{3jkT}{T_{2}} + \frac{3}{T^{2}}\right]\sin\theta, \cos\theta, \\ -\frac{1}{T^{2}}\frac{\partial^{2}V}{\partial J\partial\rho} \end{cases}$$

SUMMARY OF FORMULAE FOR ELECTRIC FIELDS

IN A SEMI-INFINITE DISSIPATIVE MEDIUM,
FOR FREQUENCIES LESS THAN 500 KC.

For a horizontal electric dipole placed parallel to the X axis, the X,Y, plane coinciding with the interface and the positive Z axis downward, the expressions for the electric fields in cylindrical coordinates are: (using the MKS system of units)

$$E\rho = \frac{\text{II}\cos\phi}{4\pi\sigma} \begin{cases} \psi_{1} \left[\frac{2^{2}}{k\tau\cos^{2}\theta_{1}} + \frac{jk\tau(2-3\cos^{2}\theta_{1})}{r_{1}} + \frac{2-3\cos^{2}\theta_{1}}{r_{2}^{2}} + \psi_{2}\cos^{2}\theta_{2} \left[k^{2}\tau^{2} - \frac{3jk\tau}{r_{2}} - \frac{3}{r_{2}^{2}} \right] - \frac{1}{\rho} \frac{\partial V}{\partial \rho} \end{cases}$$

$$= \frac{1}{\rho} \frac{\partial V}{\partial \rho} \begin{cases} \psi_{1} \left[k^{2}\tau^{2} - \frac{jk\tau}{r_{1}} - \frac{1}{r_{1}^{2}} \right] - \frac{1}{r_{2}^{2}} \right] + \frac{1}{r_{2}^{2}} (3 - 6\cos^{2}\theta_{2}) + \frac{1}{r_{2}^{2}} (3 - 6\cos^{2}\theta_{2}) - \frac{\partial^{2}V}{\partial \rho^{2}} \end{cases}$$

$$E_{z} = \frac{I1\cos\phi}{4\pi\sigma} + \frac{3jk\tau}{r_{1}} + \frac{3}{r_{1}^{2}} \sin\theta_{1}\cos\theta_{1}$$

$$+\psi_{2} \left[-k\tau + \frac{3jk\tau}{r_{2}} + \frac{3}{r_{2}^{2}}\right] \sin\theta_{2}\cos\theta_{2}$$

$$-\frac{1}{\tau^{2}} \frac{\partial^{2}V}{\partial z\partial\rho}$$

Where,

$$\psi_{1} = \frac{e^{-jk\tau r_{1}}}{r_{1}} \qquad \qquad \psi_{2} = \frac{e^{-jk\tau r_{2}}}{r_{2}}
r_{1}^{2} = \rho^{2} + (z-h)^{2} \qquad \qquad r_{2}^{2} = \rho^{2} + (z+h)^{2}
\cos \theta_{1} = \frac{z-h}{r_{1}} \qquad \qquad \cos \theta_{2} = \frac{z+h}{r_{2}}$$

z is the depth of the receiver in meters.

h is the depth of the transmitter in meters.

p is the horizontal range in meters.

and where,

$$k = \frac{\omega}{c} = \omega \sqrt{\mu \epsilon} = \frac{2\pi}{\lambda}$$

c = 3 x 10 meters/sec

 $\omega = 2\pi f$ f is cycles/second.

$$\tau^2 = \kappa - \frac{j\sigma}{\omega \epsilon}$$

 σ = conductivity in mhos/meter

$$\epsilon = \frac{1}{36\pi} \times 10^{-9}$$
 farads/meter

 $\mu = 4 \pi \times 10^{-7}$ henries/meter

x = relative dielectric constant

and

$$\tau = \beta - j a ; \quad a = \frac{\sqrt{\kappa}}{\sqrt{2}} \left[\sqrt{1 + (\frac{\sigma}{\omega \epsilon \kappa})^2} - 1 \right]^{\frac{1}{2}}$$

$$\beta = \frac{\sqrt{\kappa}}{\sqrt{2}} \left[\sqrt{1 + (\frac{\sigma}{\omega \epsilon \kappa})^2} + 1 \right]^{\frac{1}{2}}$$

For low frequencies $\alpha \cong \beta \cong \frac{1}{\sqrt{2}} \sqrt{\frac{\sigma}{\omega \epsilon}}$

(II) is the dipole moment

and

$$V = -\frac{\partial}{\partial z} \left\{ I_o \left[\frac{jkr}{2} \left(r_2 - z - h \right) \right] K_o \left[\frac{jkr}{2} \left(r_2 + z + h \right) \right] \right\};$$

Where in I_o and K_o are the modified Bessel functions of zero order.

It is of interest now to examine these expressions in the two special cases, viz, $\left|\frac{jk\tau r_e}{2}\right| << 1$ and $\left|\frac{jk\tau r_e}{2}\right| >> 1$.

Case I: $\left| \frac{jk\tau r_s}{2} \right| < \langle 1 \rangle$. Upon using the approximations valid for small values of the variable in the Bessel Function

$$V = \frac{2}{r_o}$$

$$E\rho = \frac{\text{Il} \cos \phi}{4\pi\sigma} \begin{cases} \Psi_{1} \left[k^{2} r \cos^{2} \theta_{1} + \frac{j k r (2 - 3 \cos^{2} \theta_{1})}{r_{1}} + \frac{2 - 3 \cos^{2} \theta_{1}}{r_{2}^{2}} \right] \\ + \Psi_{2} \cos^{2} \theta_{2} \left[k^{2} r^{2} - \frac{3j k r}{r_{2}} - \frac{3}{r_{2}^{2}} \right] \\ + \frac{2}{r_{2}^{3}} \end{cases}$$

$$E \phi = -\frac{\text{Ilsin} \phi}{4\pi\sigma} \left\{ \begin{aligned} & \psi_1 \left[k^2 r^2 - \frac{j k \tau}{r_1} - \frac{1}{r_1^2} \right] \\ & + \psi_2 \left[-k^2 r^2 + \frac{j k \tau}{r_2} \left(3 - 6 \cos^2 \theta_2 \right) + \frac{1}{r_2^2} (3 - 6 \cos^2 \theta_2) \right] \\ & + \frac{6 \cos^2 \theta_2 - 4}{r_2^3} \end{aligned} \right\}$$

$$E_{z} = \frac{I1\cos\phi}{4\pi\sigma} \left\{ \begin{aligned} & \Psi_{1} \left[-k^{2}r^{2} + \frac{3jk_{T}}{r_{1}} + \frac{3}{r_{1}^{2}} \right] \sin\theta_{1}\cos\theta_{1} \\ & + \Psi_{2} \left[-k^{2}r^{2} + \frac{3jk_{T}}{r_{2}} + \frac{3}{r_{2}^{2}} \right] \sin\theta_{2}\cos\theta_{2} \\ & - \frac{6}{r^{2}} \frac{\sin\theta_{2}\cos\theta_{2}}{r_{2}^{3}} \end{aligned} \right\}$$

Now when $\omega = 0$, $k\tau = 0$ and $\psi_1 = \frac{1}{r_1}$; $\psi_2 = \frac{1}{r_2}$.

This results in

$$E_{\rho} = \frac{I |\cos \phi|}{4 \pi \sigma} \left[\frac{2 - 3 \cos^2 \theta_1}{r_1^3} + \frac{2 - 3 \cos^2 \theta_2}{r_2^3} \right]$$

$$\mathsf{E}\,\phi = \frac{\mathsf{Il}\,\mathsf{sin}\,\phi}{4\,\pi\sigma}\,\left[\,\frac{\mathsf{l}}{\mathsf{r}_1^3} + \frac{\mathsf{l}}{\mathsf{r}_2^3}\,\right]$$

$$E_{z} = \frac{I |\cos \phi|}{4\pi\sigma} \left[\frac{3 \sin \theta_{1} \cos \theta_{1}}{r_{1}^{3}} + \frac{3 \sin \theta_{2} \cos \theta_{2}}{r_{2}^{3}} \right]$$

Now let $\cos\theta_1 \cong \cos\theta_2 \cong 0$ and $r_1 \cong r_2 \cong \rho$ and we have the familiar d.c. case.

$$E_{\rho} \stackrel{\triangle}{=} \frac{\text{Il } \cos \phi}{\pi \sigma} \frac{1}{\rho^3}$$

$$E\phi \stackrel{\checkmark}{=} \frac{I1\sin\phi}{2\pi\sigma} \frac{1}{\rho^3}$$

Case II:
$$\left|\frac{jk\tau r_2}{2}\right|$$
 > 1, and ρ >> $(z+h)$.

Upon using the asymptotic expansion of the Bessel Functions, we have

$$V = \frac{2 e^{-j k r (z + h)}}{\rho}$$

The equations for the fields read

$$E_{\rho} = \frac{11\cos\phi}{4\pi\sigma} + \frac{j\,k\tau}{r_{1}} (2-3\cos^{2}\theta_{1}) + \frac{1}{r_{1}^{2}}(2-3\cos^{2}\theta_{1})$$

$$+ \psi_{2}\cos^{2}\theta_{2} \left[k\,\tau - \frac{3j\,k\tau}{r_{2}} - \frac{3}{r_{2}^{2}}\right]$$

$$+ \frac{2}{\rho^{3}} \psi_{1} \left[k^{2}\tau^{2} - \frac{j\,k\tau}{r_{1}} - \frac{1}{r_{1}^{2}}\right]$$

$$+ \psi_{2} \left[-k^{2}\tau + \frac{j\,k\tau}{r_{2}} (3-6\cos^{2}\theta_{2}) + \frac{1}{r_{2}^{2}}(3-6\cos^{2}\theta_{2})\right]$$

$$- \frac{4}{\rho^{3}} \psi_{1} \left[k^{2}\tau^{2} + \frac{3j\,k\tau}{r_{1}} + \frac{3}{r_{1}^{2}}\right] \sin\theta_{1}\cos\theta_{1}$$

$$+ \psi_{2} \left[-k^{2}\tau + \frac{3j\,k\tau}{r_{1}} + \frac{3}{r_{2}^{2}}\right] \sin\theta_{2}\cos\theta_{2}$$

$$+ \psi_{2} \left[-k^{2}\tau + \frac{3j\,k\tau}{r_{2}} + \frac{3}{r_{2}^{2}}\right] \sin\theta_{2}\cos\theta_{2}$$

$$+ \frac{2jk}{\tau} \frac{-j\,k\tau(z+h)}{\rho^{2}}$$

When $|k_{\tau r_1}| >> 1$ and when $|k_{\tau r_2}| >> 1$, then $\psi_1 \cong \psi_2 \cong 0$ due to the exponential attenuation.

The dominating terms of the fields are

$$E \rho \cong \frac{\text{Il } \cos \phi}{2 \pi \sigma} \qquad \frac{e^{-j k \tau (z+h)}}{\rho^3}$$

$$E \phi \cong \frac{\text{Il } \sin \phi}{\pi \sigma} \qquad \frac{e^{-j k \tau (z+h)}}{\rho^3}$$

$$E z \cong \frac{jk}{\tau} \frac{\text{Il } \cos \phi}{2 \pi \sigma} \qquad \frac{e^{jk \tau (z+h)}}{\rho^2}$$

Under these conditions' there is a change in the $E\rho$ and $E\phi$ as compared with those found for d.c. in Case I.

In & plane

C

