## DESAFIO 1 OTIMIZAÇÃO DA EFICIÊNCIA DE UM FOGUETE

## 1. OBJETIVO

Um foguete possuí como objetivo atingir a máxima altitude de acordo com as suas capacidades construtivas.

Os foguetes armazenam todo o combustível e oxidante necessários para a sua propulsão em seu interior, com uma quantidade maior desses sendo necessária para que o foguete consiga atingir uma altitude maior. Entretanto, caso o peso de combustível aumente, o motor terá que produzir uma força maior de forma que o foguete consiga voar, gastando mais combustível.

Portanto, devido a esse ciclo, deseja-se otimizar a eficiência no uso do combustível de um foguete visando que ele atinja a maior altitude.

Para a otimização, são definidos alguns pontos ao longo do tempo que indicam a quantidade de combustível a ser consumida naquele instante, com os valores em pontos intermediários sendo obtidos por interpolação.



## 2. MODELO MATEMÁTICO

Com o objetivo de realizar essa otimização, define-se a seguinte simulação baseada no princípio da conservação de quantidade de movimento linear (segunda lei de Newton):

$$a = \frac{T + D + W}{m}$$

onde:

a: aceleração do foguete  $(m/s^2)$ 

m: massa do foguete (kg)

T: força de empuxo do motor do foguete (N)

D: força de arrasto (resistência do ar) provocada no foguete (N)

W: força peso provocada no foguete (N)

Após obter a aceleração do foguete, é possível obter sua velocidade e sua altitude a partir da integração da aceleração utilizando, por exemplo o método de Euler em pequenos intervalos de tempo  $\Delta t$ :

$$v = a \cdot \Delta t$$

$$y = v \cdot \Delta t$$

A simulação deverá ser processada até que o foguete atinja o seu ponto de altitude máxima (objetivo).

A força de empuxo do motor do foguete é calculada por:

$$T = \dot{m_e} * v_e$$

onde

 $\dot{m_e}$ : vazão mássica de combustível (kg/s)

 $v_e$ : velocidade de exaustão dos gases de combustão (m/s)

A força de arrasto provocada no foguete é dada por:

$$D = -\frac{1}{2}C_d \cdot \rho \cdot A \cdot v^2 \cdot \hat{v}$$

onde

 $C_d$ : coeficiente de arrasto

 $\rho$ : massa específica (densidade) do ar  $(kg/m^3)$ 

A: área da seção transversal do foguete (vista de frente)  $(m^2)$ 

v: velocidade do foguete

 $\hat{v}$ : direção da velocidade do foguete

A força peso provocada no foguete é dada por:

$$W = -m \cdot g$$

onde

g: aceleração da gravidade  $(m/s^2)$ 

É importante notar que o coeficiente de arrasto, massa específica do ar e aceleração da gravidade dependem da altitude e velocidade do foguete, com modelos para essas grandezas sendo disponibilizados.

## 3. DADOS DO FOGUETE

Massa do foguete vazio:  $750 \ kg$ 

Massa total de combustível:  $3500 \ kg$ 

Diâmetro do foguete: 0.6 m

Coeficiente de arrasto padrão: 0.8

Velocidade de exaustão do motor:  $1916 \ m/s$