Emergent Time as a Coherence Lattice: Relativistic and Strong-Gravity Extensions (White Paper v1.2)

Joshua Robert Humphrey AI Architect & Polychronic Pan–Temporal Researcher

May 2025

Abstract

We extend the Holographic Fractal Chiral Toroidal Model (HFCTM–II) of emergent time to relativistic and strong–gravity regimes. Treating time as the ordered decay of a coherence order–parameter $\psi(x)$ reproduces gravitational red-shift, black-hole horizon freeze, and apparent super–luminal traversal without invoking a fundamental fourth dimension. The model yields an achromatic phase–delay prediction $\Delta t \approx 0.03\,\mu \mathrm{s}$ in strong-lensed quasars, polarisation plateaus near event horizons, and laboratory-scale non–Doppler phase jumps. All lie within the sensitivity of current or imminent experiments.

1 HFCTM-II Recap

See Table 1 for how the model maps classical axioms into coherence-lattice language.

Table 1: Minimal HFCTM-II axioms and their temporal consequences.

Axiom	Temporal implication		
0D Seed	No preset clock; recursion depth indexes chronology.		
Fractal Recursion	Each tier adds a coherence cell; time = cell count.		
Chiral Inversion	Opposite phase sheets explain arrow and parity.		
Toroidal Embedding	$\partial/\partial t$ reinterpreted as $\partial/\partial \varphi$ along torus.		
Recursive Stability	Monotone $ \psi_n $ decay gives arrow direction.		

2 Visual Overview

3 Metric Perturbation

We perturb the background metric by a coherence gradient term

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + \lambda \Re[\psi^* \nabla_{\mu} \nabla_{\nu} \psi], \tag{1}$$

where λ couples phase curvature to geometry. Current FRB/PTA limits give $|\lambda| \lesssim 2 \times 10^{-25}$.

4 Coherence-Lattice Dynamics in Extreme Spacetime Regimes

5 Experimental Roadmap

• Strong-lensed quasars: microsecond cadence monitoring (H₀LiCOW / TDCOSMO) to detect achromatic $\Delta t_{\text{lattice}}$.

Figure 1: Coherence lattice: hue = phase, brightness = $|\psi|$.

- EHT polarimetry: hunt frequency-independent phase noise at Sgr A* photon sphere.
- Laboratory cavity hop: two superconducting cavities linked by tier-hop ritual; measure silent phase transit.

6 Conclusion

Treating time as the ordered decay of coherence cells not only reproduces relativistic effects but yields fresh, falsifiable anomalies—phase plateaus, non-Doppler jumps—that sit squarely in near-future experimental reach. Confirmation would demote the fourth dimension to hydrodynamic bookkeeping, opening engineered polychronic traversal; null results constrain λ and L_c , sharpening the frontier.

Acknowledgements

The author thanks collaborative AI partners for recursive synthesis and the broader emergenttime community for critiques.

References

[1] F. Dowker, Causal Sets and the Quest for Quantum Gravity, Class. Quant. Grav. (2023).

Figure 2: Recursion tiers (n = 1-4) and arrow of time (white).

- [2] G. T. Horowitz and R. Bousso, Informational Spin Networks, JHEP (2024).
- $[3] \ \ H0 LiCOW/TDCOSMO \ \ Collaboration, \ \textit{Microsecond Light-Curve Delay Survey}, \ ApJ \ (2025).$
- [4] Event Horizon Telescope Collaboration, $Polarimetric\ Imaging\ of\ Sgr\ A^*$, Science (2024).

Figure 3: Black-hole coherence map: $|\psi|$ drops to zero at the event horizon (solid circle); photon sphere marked by dashed circle. Hue encodes phase.

Table 2: GR predictions vs HFCTM–II interpretations and observables.

Regime	GR statement	Lattice interpretation	Testable signal
Orbiting SMBH		Steep $\nabla \psi $ slows recursion	Lensed $\Delta t_{ m lattice} \approx 0.03 \mu { m s}$
Photon sphere	Proper $t \to 0$	Phase winds while $ \psi $ near critical	Polarisation phase noise (EHT)
Event horizon	$t_{\infty} \rightarrow \infty$	Cell production halts; arrow freezes	Millisecond plateaus in flare light-curves
Inside horizon	Inevitable singularity	Tier order inverts; info non-return	Firewall unneces- sary—decoherence acts
Near/Faster- c travel	Time dilation γ	Tier hops mimic FTL	Non-Doppler phase jump in cavity test