Gradient descent with a general cost

Flavien Léger

joint works with Pierre-Cyril Aubin-Frankowski

Outline

1. A new class of algorithms

2. Convergence theory

3. Applications

1. Gradient descent as minimizing movement

$$x_{n+1} = x_n - rac{1}{L}
abla f(x_n),$$

objective function $f\colon \mathbb{R}^d o \mathbb{R}$

DEFINITION

f is L-smooth if $abla^2 f \leq L I_{d imes d}$

$$f(x) \leq f(x_n) + \langle
abla f(x_n), x - x_n
angle + rac{L}{2} \|x - x_n\|^2$$

Two steps:

- 1) majorize: find the tangent parabola ("surrogate")
- 2) minimize: minimize the surrogate

The majorize step

Family of majorizing functions $\phi(x,y)$

Majorize step \leftrightarrow *y*-update:

$$y_{n+1} = rg\min_y \phi(x_n,y)$$

Minimize step \leftrightarrow *x*-update:

$$x_{n+1} = rg \min_x \phi(x,y_{n+1})$$

General cost

Given: X and $f \colon X \to \mathbb{R}$

Choose: Y and c(x, y)

DEFINITION c-transform

$$f^c(y) = \sup_{x \in X} c(x,y) - f(x)$$

$$f(x) \leq \underbrace{c(x,y) + f^c(y)}_{\phi(x,y)}$$

DEFINITION

f is c-concave if

$$f(x) = \inf_{y \in Y} c(x,y) + f^c(y)$$

Gradient descent with a general cost

(FL-PCAF '23)

$$\phi(x,y) = c(x,y) + f^c(y)$$

ALGORITHM

"majorize"

"minimize"

$$egin{aligned} y_{n+1} &= rg\min_{y \in Y} c(x_n, y) + f^c(y) \ x_{n+1} &= rg\min_{x \in X} c(x, y_{n+1}) + f^c(y_{n+1}) \end{aligned}$$

$$egin{aligned} -
abla_x c(x_n,y_{n+1}) &= -
abla f(x_n) \
abla_x c(x_{n+1},y_{n+1}) &= 0 \end{aligned}$$

Examples

$$ullet c(x,y) = \overbrace{u(x) - u(y) - \langle
abla u(y), x - y
angle}^{-.u(x|y)}$$
: mirror descent

$$abla u(x_{n+1}) -
abla u(x_n) = -
abla f(x_n)$$

• c(x,y) = u(y|x): natural gradient descent

$$x_{n+1}-x_n=-
abla^2 u(x_n)^{-1}
abla f(x_n)$$

Newton

•
$$c(x,y)=rac{L}{2}d_{M}^{2}(x,y)$$
: Riemannian gradient descent

$$-
abla_x c(x,y) = \xi \Leftrightarrow y = \exp_x(rac{1}{L}\xi)$$

$$x_{n+1} = \exp_{x_n}(-rac{1}{L}
abla f(x_n))$$

1. A new class of algorithms

2. Convergence theory

3. Applications

Cross-convexity and convergence rates

$$egin{aligned} -
abla_x c(x_n,y_{n+1}) &= -
abla f(x_n) \
abla_x c(x_{n+1},y_{n+1}) &= 0 \end{aligned}$$

DEFINITION

f is λ -strongly c-cross-convex if

$$f(x) \geq f(x_n) + c(x,y_{n+1}) - c(x,y_n) + c(x_n,y_n) - c(x_n,y_{n+1}) + \lambda(c(x,y_n) - c(x_n,y_n)).$$

THEOREM (FL-PCAF '23)

If *f* is *c*-concave and *c*-cross-convex then

$$f(x_n) \leq f(x) + rac{c(x,y_0)-c(x_0,y_0)}{n}.$$

If f is λ -strongly c-cross-convex with $0 < \lambda < 1$, then

$$f(x_n) \leq f(x) + rac{\lambda \left(c(x,y_0) - c(x_0,y_0)
ight)}{\Lambda^n - 1},$$

where $\Lambda := (1 - \lambda)^{-1} > 1$.

The Kim-McCann geometry

Kim and McCann ('10) introduced a pseudo-Riemannian metric on $X \times Y$

$$g_{(x,y)} = egin{pmatrix} 0 & -
abla_{xy}^2 c(x,y) \ -
abla_{xy}^2 c(x,y) & 0 \end{pmatrix}$$

$$\left[c(x,y')+c(x',y)\right]-\left[c(x,y)+c(x',y')\right]$$

- → Kim-McCann geodesics
- → Kim-McCann curvature: *cross-curvature*, aka MTW tensor

A local criteria for cross-curvature

Suppose that c has nonnegative cross-curvature.

THEOREM (Trudinger-Wang '06)

Suppose that for all $\bar{x}\in X$, there exists $\hat{y}\in Y$ satisfying $-\nabla_x c(\bar{x},\hat{y})=-\nabla f(\bar{x})$ and such that $\nabla^2 f(\bar{x})<\nabla^2_{xx}c(\bar{x},\hat{y}).$

Then f is c-concave.

THEOREM (FL-PCAF'23)

Let $\lambda>0$. If $t\mapsto f(x(t))-\lambda c(x(t),\bar{y})$ is convex on every Kim–McCann geodesic $t\mapsto (x(t),\bar{y})$ satisfying $\nabla_x c(x(0),\bar{y})=0$, then f is λ -strongly c-cross-convex.

1. A new class of algorithms

2. Convergence theory

3. Applications

Application: Newton's method

$$c(x,y) = u(y|x) \longrightarrow \mathsf{NGD}$$

$$\int x_{n+1}-x_n=-
abla^2 u(x_n)^{-1}
abla f(x_n)^{-1}$$

THEOREM (FL-PCAF '23)

lf

$$abla^3 u(
abla^2 u^{-1}
abla f, -, -) \leq
abla^2 f \leq
abla^2 u +
abla^3 u(
abla^2 u^{-1}
abla f, -, -)$$

then

$$f(x_n) \leq f(x) + rac{u(x_0|x)}{n}$$

Newton's method: new global convergence rate.

New condition on f similar but different from self-concordance

Riemannian/metric space setting

$$egin{array}{ll} ext{minimize} \ f(x) & c(x,y) = rac{1}{2 au} d^2(x,y) \end{array}$$

1. Explicit: $x_{n+1} = \exp_{x_n} \left(- au abla f(x_n) ight)$

da Cruz Neto, de Lima, Oliveira '98 Bento, Ferreira, Melo '17

 $R \geq 0$: (smoothness and) $abla^2 f \geq 0$ gives O(1/n) convergence rates

 $R \leq 0$: ? (nonlocal condition)

2. Implicit: $x_{n+1} = \arg\min_x f(x) + \frac{1}{2\tau}d^2(x,x_n)$

 $R \leq 0$: $abla^2 f \geq 0$ gives O(1/n) convergence rates

 $R \ge 0$: if nonneg. cross-curv, then convexity of f on **Kim-McCann geodesics** gives O(1/n) convergence rates

Thank you!