Cálculo I

Pedro H A Konzen

27 de março de 2019

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados temas introdutórios sobre cálculo de funções de uma variável.

Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Capa Licença Prefácio										
						Sυ	ımár	io		\mathbf{v}
						1	Fundamentos sobre funções			
	1.1	Defini	ção e gráfico	1						
	1.2	Tipos	de funções	4						
		1.2.1	Funções lineares	4						
		1.2.2	Funções potência	5						
		1.2.3	Funções polinomiais	8						
		1.2.4	Funções racionais	9						
		1.2.5	Funções algébricas	9						
		1.2.6	Funções transcendentes	10						
		1.2.7	Funções definidas por partes	10						
	1.3	Funçõ	es trigonométricas	11						
		1.3.1	Seno e cosseno	11						
		1.3.2	Tangente, cotangente, secante e cossecante	14						
		1.3.3	Identidades trigonométricas							
	1.4	Opera	ções com funções	17						
		1.4.1	Somas, diferenças, produtos e quocientes	17						
		1.4.2	Funções compostas	17						
		1.4.3	Translações, contrações, dilatações e reflexões de gráficos	18						
		1.4.4	Translações							
		1.4.5	Dilatações e contrações	18						

		1.4.6 Reflexões	18			
	1.5	Propriedades de funções	19			
		1.5.1 Funções crescentes ou decrescentes	19			
		1.5.2 Funções pares ou ímpares	19			
			20			
	1.6		21			
	1.7		22			
2	Lim	ites	24			
	2.1	Noção de limites	24			
		2.1.1 Limites da função constante e da função identidade :	25			
	2.2	Regras para o cálculo de limites	29			
		2.2.1 Indeterminação 0/0	32			
	2.3	Limites laterais	34			
	2.4	Limites e desigualdades	37			
			37			
		2.4.2 Limites envolvendo $(\operatorname{sen} x)/x \dots \dots \dots$	39			
	2.5					
		2.5.1 Assíntotas horizontais	43			
			45			
	2.6		46			
			47			
Respostas dos Exercícios						
R	Referências Bibliográficas					
Ín	ndice Remissivo					

Capítulo 1

Fundamentos sobre funções

Ao longo deste capítulo, contaremos com o suporte de alguns códigos Python com o seguinte preâmbulo:

```
from sympy import *
init_printing()
var('x')
```

1.1 Definição e gráfico

Uma **função** de um conjunto D em um conjunto Y é uma regra que associa um único elemento $y \in Y^1$ a cada elemento $x \in D$. Costumeiramente, identificamos uma função por uma letra, por exemplo, f e escrevemos f: $D \to Y$, y = f(x), para denotar que a função f toma valores de entrada em D e de saída em Y.

O conjunto D de todos os possíveis valores de entrada da função é chamado de **domínio**. O conjunto de todos os valores f(x) tal que $x \in D$ é chamado de **imagem** da função.

Ao longo do curso de cálculo, as funções serão definidas apenas por expressões matemáticas. Nestes casos, salvo explicitado o contrário, suporemos que a função tem números reais como valores de entrada e de saída. O domínio e a imagem deverão ser inferidos da regra algébrica da função ou da aplicação de interesse.

 $^{^{1}}y \in Y$ denota que y é um elemento do conjunto Y.

Exemplo 1.1.1. Determinemos o domínio e a imagem de cada uma das seguintes funções:

- $y = x^2$:
 - Para qualquer número real x, temos que x^2 também é um número real. Então, dizemos que seu domínio (natural)² é o conjunto $\mathbb{R} = (-\infty, \infty)$.
 - Para cada número real x, temos $y=x^2\geq 0$. Além disso, para cada número real não negativo y, temos que $x=\sqrt{y}$ é tal que $y=x^2$. Assim sendo, concluímos que a imagem da função é o conjunto de todos os números reais não negativos, i.e. $[0,\infty)$.
- y = 1/x:
 - Lembremos que divisão por zeros não está definida. Logo, o domínio desta função é o conjunto dos números reais não nulos, i.e. $(-\infty,0) \cup (0,\infty)$.
 - Primeiramente, observemos que se y=0, então não existe número real tal que 0=1/x. Ou seja, 0 não pertence a imagem desta função. Por outro lado, dado qualquer número $y\neq 0$, temos que x=1/y é tal que y=1/x. Logo, concluímos que a imagem desta função é o conjunto de todos os números reais não nulos, i.e. $(-\infty,0)\cup(0,\infty)$.
- $y = \sqrt{1 x^2}$:
 - Lembremos que a raiz quadrada de números negativos não está definida. Portanto, precisamos que:

$$1 - x^2 \ge 0 \Rightarrow x^2 \le 1 \tag{1.1}$$

$$\Rightarrow -1 \le x \le 1. \tag{1.2}$$

Donde concluímos que o domínio desta função é o conjunto de todos os números x tal que $-1 \le x \le 1$ (ou, equivalentemente, o intervalo [-1,1]).

Com o SymPy, podemos usar o comando

 $^{^2}$ O **domínio natural** é o conjunto de todos os números reais tais que a expressão matemática que define a função seja possível.

reduce inequalities(1-x**2>=0,[x])

para resolvermos a inequação $1 - x^2 \ge 0$.

– Uma vez que $-1 \le x \le 1$, temos que $0 \le 1 - x^2 \le 1$ e, portanto, $0 \le \sqrt{1 - x^2} \le 1$. Ou seja, a imagem desta função é o intervalo [0, 1].

O **gráfico** de uma função é o conjunto dos pares ordenados (x, f(x)) tal que x pertence ao domínio da função. Mais especificamente, para uma função $f: D \to \mathbb{R}$, o gráfico é o conjunto

$$\{(x, f(x))|x \in D\}.$$
 (1.3)

O **esboço do gráfico** de uma função é, costumeiramente, uma representação geométrica dos pontos de seu gráfico em um plano cartesiano.

Exemplo 1.1.2. A Figura 1.1 mostra os esboços dos gráficos das funções $f(x) = x^2$, g(x) = 1/x e $h(x) = \sqrt{1-x^2}$.

Figura 1.1: Esboço dos gráficos das funções $f(x) = x^2$, g(x) = 1/x e $h(x) = \sqrt{1-x^2}$ dadas no Exemplo 1.1.2.

Para plotarmos os gráficos destas funções usando SymPy podemos usar os seguintes comandos:

Exercícios

Em construção ...

1.2 Tipos de funções

Nesta seção, vamos ressaltar alguns tipos de funções que aparecerem com frequência nos estudos de cálculo.

1.2.1 Funções lineares

Uma **função linear** é uma função da forma f(x) = mx + b, sendo m e b parâmetros³ dados. Recebe este nome, pois seu gráfico é uma linha (uma reta)⁴.

Quando m=0, temos uma **função constante** f(x)=b. Esta tem domínio $(-\infty,\infty)$ e imagem $\{b\}$. Por outro lado, toda função linear com $m\neq 0$ tem $(-\infty,\infty)$ como domínio e imagem.

Exemplo 1.2.1. A Figura 1.2 mostra esboços dos gráficos das funções lineares f(x) = -5/2, f(x) = 2 e f(x) = 2x - 1.

Figura 1.2: Esboços dos gráficos das funções lineares y = -5/2, y = 2 e y = 2x - 1 discutidas no Exemplo 1.2.1.

 $^{^3 {\}rm n\'umeros}$ reais.

⁴Não confundir com o conceito de linearidade de operadores.

Observação 1.2.1. O lugar geométrico do gráfico de uma função linear é uma reta (ou linha). O parâmetro m controla a inclinação da reta em relação ao eixo x^5 . Quando m = 0, temos uma reta horizontal. Quando m > 0 temos uma reta com inclinação positiva (crescente) e, quando m < 0 temos uma reta com inclinação negativa. Verifique!

Quaisquer dois pontos (x_0, y_0) e (x_1, y_1) , com $x_0 \neq x_1$, determinam uma única função linear (reta) que passa por estes pontos. Para encontrar a expressão desta função, basta resolver o seguinte sistema linear

$$mx_0 + b = y_0 \tag{1.4}$$

$$mx_1 + b = y_1 \tag{1.5}$$

Subtraindo a primeira equação da segunda, obtemos

$$m(x_0 - x_1) = y_0 - y_1 \Rightarrow m = \frac{y_0 - y_1}{x_0 - x_1}.$$
 (1.6)

Daí, substituindo o valor de m na primeira equação do sistema, obtemos

$$\frac{y_0 - y_1}{x_0 - x_1} x_0 + b = y_0 \Rightarrow b = -\frac{y_0 - y_1}{x_0 - x_1} x_0 + y_0.$$
 (1.7)

Ou seja, a expressão da função linear (equação da reta) que passa pelos pontos (x_0, y_0) e (x_1, y_1) é

$$y = \underbrace{\frac{y_0 - y_1}{x_0 - x_1}}(x - x_0) + y_0. \tag{1.8}$$

1.2.2 Funções potência

Uma função da forma $f(x) = x^n$, onde $n \neq 0$ é uma constante, é chamada de **função potência**.

Funções potências têm comportamentos característicos, conforme o valor de n. Quando n é um inteiro positivo ímpar, seu domínio e sua imagem são $(-\infty,\infty)$. Veja a Figura 1.3.

⁵eixo das abscissas

Figura 1.3: Esboços dos gráficos das funções potências $y=x,\ y=x^3$ e $y=x^5.$

Funções potências com n positivo par estão definidas em toda parte e têm imagem $[0,\infty)$. Veja a Figura 1.4.

Figura 1.4: Esboços dos gráficos das funções potências $y=x^2,\ y=x^4$ e $y=x^6.$

Funções potências com n inteiro negativo ímpar não são definidas em x=0, tendo domínio e imagem igual a $(-\infty,0)\cup(0,\infty)$. Também, quando n inteiro negativo par, a função potência não está definida em x=0, tem domínio $(-\infty,0)\cup(0,\infty)$, mas imagem $(0,\infty)$. Veja a Figura 1.5.

Figura 1.5: Esboços dos gráficos das funções potências y=1/x (esquerda), $y=1/x^2$ (direita).

Há, ainda, comportamentos característicos quando $n=1/2,\,1/3,\,3/2$ e 2/3. Veja a Figura 1.6.

Figura 1.6: Esboços dos gráficos das funções potências. Esquerda $y=\sqrt{x}$ e $y=\sqrt{x^3}$. Direita: $y=\sqrt[3]{x}$ e $y=\sqrt[3]{x^2}$.

1.2.3 Funções polinomiais

Uma função polinomial (polinômio) tem a forma

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \tag{1.9}$$

onde a_i são coeficientes reais, $a_n \neq 0$ e n é inteiro não negativo, este chamado de **grau do polinômio**.

Polinômios são definidos em toda parte⁶. Polinômios de grau ímpar tem imagem $(-\infty, \infty)$. Entretanto, a imagem polinômios de grau par dependem de cada caso. Iremos estudar mais propriedades de polinômios ao longo do curso de cálculo. Veja a Figura 1.7.

Figura 1.7: Esboços dos gráficos das funções polinomiais. Esquerda $p(x) = x^3 - 2.5x^2 - 1.0x + 2.5$. Direita: $q(x) = x^4 - 3.5x^3 + 1.5x^2 + 3.5x - 2.5$.

Quando n=0, temos um polinômio de grau 0 (ou uma função constante). Quando n=1, temos um polinômio de grau 1 (ou, uma função linear). Ainda, quando n=2 temos uma função quadrática (ou polinômio quadrático) e, quando n=3, temos uma função cúbica (ou polinômio cúbico).

⁶Uma função é dita ser definida em toda parte quando seu domínio é (∞, ∞)

1.2.4 Funções racionais

Uma função racional tem a forma

$$f(x) = \frac{p(x)}{q(x)},\tag{1.10}$$

onde p(x) e $q(x) \not\equiv 0$ são polinômios.

Função racionais não estão definidas nos zeros de q(x). Além disso, suas imagens dependem de cada caso. Estudaremos o comportamento de funções racionais ao longo do curso de cálculo. Veja a Figura 1.8.

Figura 1.8: Esboço do gráfico da função racional $f(x) = \frac{x^2 - x - 2}{x^3 - x^2 + x - 1}$.

1.2.5 Funções algébricas

Funções algébricas são funções definidas a partir de somas, subtrações, multiplicações, divisões ou extração de raízes de funções polinomiais. Estudaremos estas funções ao longo do curso de cálculo.

1.2.6 Funções transcendentes

Funções transcendentes são funções que não são algébricas. Como exemplos, temos as funções trigonométricas, exponencial e logarítmica, as quais introduziremos nas próximas seções.

1.2.7 Funções definidas por partes

Funções definidas por partes são funções definidas por diferentes expressões matemáticas em diferentes partes de seu domínio.

Exemplo 1.2.2. Consideremos a seguinte função definida por partes:

$$f(x) = \begin{cases} -x & , x < 0, \\ x^2 & , x \ge 0 \end{cases}$$
 (1.11)

Observemos que tanto o domínio como a imagem desta função são $(-\infty, \infty)$. A Figura 1.9 mostra o esboço do gráfico desta função.

Figura 1.9: Esboço do gráfico da função definida por partes f(x) dada no Exemplo 1.2.2.

Um exemplo de função definida por partes fundamental é a **função valor absoluto**⁷

$$|x| = \begin{cases} x & , x \le 0 \\ -x & , x < 0 \end{cases} \tag{1.12}$$

Vejamos o esboço do seu gráfico dado na Figura 1.10.

Figura 1.10: Esboço do gráfico da função valor absoluto y = |x|.

Exercícios

Em construção ...

1.3 Funções trigonométricas

1.3.1 Seno e cosseno

As funções trigonométricas seno y = sen(x) e cosseno y = cos(x) podem ser definidas a a partir do círculo trigonométrico (veja a Figura 1.11). Seja x o ângulo⁸ de declividade da reta que passa pela origem do plano cartesiano

⁷Esta função também pode ser definida por $|x| = \sqrt{x^2}$.

⁸Em geral utilizaremos a medida em radianos para ângulos.

(reta r na Figura 1.11). Seja, então, (a,b) o ponto de interseção desta reta com a circunferência unitária⁹. Então, definimos:

$$\operatorname{sen}(x) = a, \qquad \cos(x) = b. \tag{1.13}$$

A partir da definição, notemos que ambas funções têm domínio $(-\infty,\infty)$ e imagem [-1,1].

Figura 1.11: Funções seno e cosseno no círculo trigonométrico.

Na Figura 1.12 podemos extrair os valores das funções seno e cosseno para

⁹Circunferência do círculo de raio 1.

os ângulos fundamentais. Por exemplo, temos

$$\operatorname{sen}\left(\frac{\pi}{6}\right) = \frac{1}{2}, \qquad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2},\tag{1.14}$$

$$\operatorname{sen}\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}, \qquad \cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}, \tag{1.15}$$

$$\operatorname{sen}\left(\frac{8\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \qquad \cos\left(\frac{8\pi}{6}\right) = -\frac{1}{2}, \tag{1.16}$$

$$\operatorname{sen}\left(\frac{11\pi}{6}\right) = -\frac{1}{2}, \qquad \cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2}, \tag{1.17}$$

(1.18)

As funções seno e cosseno estão definidas no SymPy como sin e cos, respectivamente. Por exemplo, para computar o seno de $\pi/6$, digitamos: $\sin(pi/6)$

Figura 1.12: Funções seno e cosseno no círculo trigonométrico.

Uma função f(x) é dita **periódica** quando existe um número p, chamado de período da função, tal que

$$f(x+p) = f(x) \tag{1.19}$$

para qualquer valor de x no domínio da função. Da definição das funções seno e cosseno, notemos que ambas são periódicas com período 2π , i.e.

$$sen(x + 2\pi) = sen(x), cos(x + 2\pi) = cos(x), (1.20)$$

para qualquer valor de x.

Na Figura 1.13, temos os esboços dos gráficos das funções seno e cosseno.

Figura 1.13: Esboços dos gráficos das funções seno (esquerda) e cosseno (direita).

1.3.2 Tangente, cotangente, secante e cossecante

Das funções seno e cosseno, definimos as funções tangente, cotangente, secante e cossecante como seguem:

$$tg(x) := \frac{\operatorname{sen}(x)}{\cos(x)}, \qquad \cot g(x) := \frac{\cos(x)}{\operatorname{sen}(x)}, \tag{1.21}$$

$$tg(x) := \frac{\operatorname{sen}(x)}{\cos(x)}, \qquad \cot g(x) := \frac{\cos(x)}{\sin(x)}, \qquad (1.21)$$
$$\sec(x) := \frac{1}{\cos(x)}, \qquad \csc(x) := \frac{1}{\sin(x)}. \qquad (1.22)$$

No SymPy, as funções tangente, cotangente, secante e cossecante podem ser computadas com as funções tan, cot, sec e csc, respectivamente. Por exemplo, podemos computar o valor de $\csc(\pi/4)$ com o comando

csc(pi/4)

Na Figura 1.14, temos os esboços dos gráficos das funções tangente e cotangente. Observemos que a função tangente não está definida nos pontos $(2k+1)\pi/2$, para todo k inteiro. Já, a função cotangente não está definida nos pontos $k\pi$, para todo k inteiro. Ambas estas funções têm imagem $(-\infty, \infty)$ e período π .

Figura 1.14: Esboços dos gráficos das funções tangente (esquerda) e cotangente (direita).

Na Figura 1.15, temos os esboços dos gráficos das funções secante e cossecante. Observemos que a função secante não está definida nos pontos $(2k+1)\pi/2$, para todo k inteiro. Já, a função cossecante não está definida nos pontos $k\pi$, para todo k inteiro. Ambas estas funções têm imagem $(-infty,1] \cup [1,\infty)$ e período π .

Figura 1.15: Esboços dos gráficos das funções tangente (esquerda) e cotangente(direita).

1.3.3 Identidades trigonométricas

Aqui, vamos apresentar algumas identidades trigonométricas que serão utilizadas ao longo do curso de cálculo. Comecemos pela identidade fundamental

$$sen^2 x + cos^2 x = 1. (1.23)$$

Desta decorrem as identidades

$$tg^2(x) + 1 = sec^2 x,$$
 (1.24)

$$1 + \cot^2(x) = \csc^2(x).$$
 (1.25)

Das seguintes fórmulas para adição/subtração de ângulos

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y), \tag{1.26}$$

$$sen(x \pm y) = sen(x)cos(y) \pm cos(x)sen(y), \tag{1.27}$$

seguem as fórmulas para ângulo duplo

$$\cos(2x) = \cos^2 x - \sin^2 x,\tag{1.28}$$

$$\operatorname{sen}(2x) = 2\operatorname{sen} x \cos x. \tag{1.29}$$

Também, temos as fórmulas para o ângulo metade

$$\cos^2 x = \frac{1 + \cos 2x}{2},\tag{1.30}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}.\tag{1.31}$$

Em construção ...

1.4 Operações com funções

1.4.1 Somas, diferenças, produtos e quocientes

Sejam dadas as funções f e g com domínio em comum D. Então, definimos as funções

- $(f \pm g)(x) := f(x) \pm g(x)$ para todo $x \in D$;
- (fg)(x) := f(x)g(x) para todo $x \in D$;
- $\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}$ para todo $x \in D$ tal que $g(x) \neq 0$.

Exemplo 1.4.1. Sejam $f(x) = x^2 e g(x) = x$. Temos:

- $(f+g)(x) = x^2 + x$ e está definida em toda parte.
- $(g-f)(x) = x x^2$ e está definida em toda parte.
- $(fg)(x) = x^3$ e está definida em toda parte.
- $\left(\frac{f}{a}\right)(x) = \frac{x^2}{x}$ e tem domínio $(-\infty, \infty) \setminus \{0\}^{10}$.

1.4.2 Funções compostas

Sejam dadas as funções f e g. Definimos a **função composta** de f com g por

$$(f \circ g)(x) := f(g(x)). \tag{1.32}$$

Seu domínio consiste dos valores de x que pertençam ao domínio da g e tal que g(x) pertença ao domínio da f.

Exemplo 1.4.2. Sejam $f(x) = x^2$ e g(x) = x + 1. A função composta $(f \circ g)(x) = f(g(x)) = f(x + 1) = (x + 1)^2$.

The structure of the s

1.4.3 Translações, contrações, dilatações e reflexões de gráficos

Algumas operações com funções produzem resultados bastante característico no gráfico de funções. Com isso, podemos usar estas operações para construir gráficos de funções mais complicadas a partir de funções básicas.

1.4.4 Translações

Dada uma função f e uma constante $k \neq 0$, temos que a o gráfico de y = f(x) + k é uma translação vertical do gráfico de f. Se k > 0, observamos uma translação vertical para cima. Se k < 0, observamos uma translação vertical para baixo.

Translações horizontais de gráficos podem ser produzidas pela soma de uma constante não nula ao argumento da função. Mais precisamente, dada uma função f e uma constante $k \neq 0$, temos que o gráfico de y = f(x+k) é uma translação horizontal do gráfico de f em k unidades. Se k>0, observamos uma translação horizontal para a esquerda. Se k<0, observamos uma translação horizontal para a direita.

1.4.5 Dilatações e contrações

Sejam dados uma função f e uma constante α . Então, o gráfico de:

- $y = \alpha f(x)$ é uma dilatação vertical do gráfico de f, quando $\alpha > 1$;
- $y = \alpha f(x)$ é uma contração vertical do gráfico de f, quando $0 < \alpha < 1$;
- $y = f(\alpha x)$ é uma contração horizontal do gráfico de f, quando $\alpha > 1$;
- $y = f(\alpha x)$ é uma dilatação horizontal do gráfico de f, quando $\alpha < 1$.

1.4.6 Reflexões

Seja dada uma função f. O gráfico da função y = -f(x) é uma reflexão em torno do eixo x do gráfico da função f. Já, o gráfico da função y = f(-x) é uma reflexão em torno do eixo y do gráfico da função f.

Em construção ...

1.5 Propriedades de funções

1.5.1 Funções crescentes ou decrescentes

Uma da função f é dita crescente quando $f(x_1) < f(x_2)$ para todos $x_1 < x_2$ no seu domínio. É dita não decrescente quando $f(x_1) \le f(x_2)$ para todos os $x_1 < x_2$ no seu domínio. Analogamente, é dita decrescente quando $f(x_1) > f(x_2)$ para todos $x_1 < x_2$. E, por fim, é dita não crescente quando $f(x_1) \ge f(x_2)$ para todos $x_1 < x_2$, sempre no seu domínio.

Exemplo 1.5.1. Vejamos os seguintes casos:

- A função identidade f(x) = x é crescente.
- A função exponencial $f(x) = e^{-x}$ é decrescente.
- A seguinte função definida por partes

$$f(x) = \begin{cases} x+1 & ,x \le 0, \\ 2 & ,0 < x \le 1, \\ (x-1)^2 + 2 & ,x > 1 \end{cases}$$
 (1.33)

é não decrescente.

1.5.2 Funções pares ou ímpares

Uma dada **função** f é dita **par** quando f(x) = f(-x) para todo x no seu domínio. Ainda, é dita **ímpar** quando f(x) = -f(-x) para todo x no seu domínio.

Exemplo 1.5.2. Vejamos os seguintes casos:

- $f(x) = x^2$ é uma função par.
- $f(x) = x^3$ é uma função par.

- $f(x) = \operatorname{sen} x$ é uma função ímpar.
- $f(x) = \cos x$ é uma função par.
- f(x) = x + 1 não é par nem ímpar.

1.5.3 Funções injetoras

Uma dada **função** f é dita **injetora** quando $f(x_1) \neq f(x_2)$ para todos $x_1 \neq x_2$ no seu domínio.

Exemplo 1.5.3. Vejamos os seguintes casos:

- $f(x) = x^2$ não é uma função injetora.
- $f(x) = x^3$ é uma função injetora.
- $f(x) = e^x$ é uma função injetora.

Função injetoras são funções invertíveis. Mais precisamente, dada uma função injetora y = f(x), existe uma única função g tal que

$$g(f(x)) = x, (1.34)$$

para todo x no domínio da f. Tal função g é chamada de **função inversa** de f é comumente denotada por f^{-1} . 11

Exemplo 1.5.4. Vamos calcular a função a função inversa de $f(x) = x^3 + 1$. Para tando, escrevemos

$$y = x^3 + 1. (1.35)$$

Então, isolando x, temos

$$x = \sqrt[3]{y - 1}. (1.36)$$

Desta forma, concluímos que $f^{-1}(x) = \sqrt[3]{x-1}$. Verifique que $f^{-1}(f(x)) = x$ para todo x no domínio de f!

Observação 1.5.1. Os gráficos de uma dada função injetora f e de sua inversa f^{-1} são simétricos em relação a **reta identidade** y=x.

¹¹Observe que, em geral, $f^{-1} \neq \frac{1}{f}$.

Em construção ...

1.6 Funções exponenciais

Uma função exponencial tem a forma

$$f(x) = a^x, (1.37)$$

onde $a \neq 1$ é uma constante positiva e é chamada de **base** da função exponencial.

Funções exponenciais estão definidas em toda parte e têm imagem $(0, \infty)$. O gráfico de uma função exponencial sempre contém os pontos (-1,1/a), (0,1) e (1,a). Veja a Figura 1.16.

Figura 1.16: Esboços dos gráficos de funções exponenciais: (esquerda) $f(x) = a^x$, a > 1; (direita) $g(x) = a^x$, 0 < a < 1.

Observação 1.6.1. Quando a base é o número de Euler $e \approx 2,718281828459045$, chamamos $f(x) = e^x$ de função exponencial natural. No SymPy, o número de Euler é obtido com a constante E:

>>> float(E)

2.718281828459045

Em construção ...

1.7 Funções logarítmicas

A função logarítmica $y = \log_a x$, a > 0 e $a \neq 1$, é a função inversa da função exponencial $y = a^x$. Veja a Figura 1.17. O domínio da função logarítmica é $(0,\infty)$ e a imagem $(-\infty,\infty)$.

Figura 1.17: Esboços dos gráficos de funções logarítmicas: (esquerda) $y = \log_a x, \, a > 1$; (direita) $y = \log_a x, \, 0 < a < 1$.

Observação 1.7.1. Quando a base é o número de Euler $e \approx 2,718281828459045$, chamamos $y = \log_e x$ de função exponencial natural e denotamo-la por $y = \ln x$.

No SymPy, podemos computar $\log_a x$ com a função $\log(x,a)$. O $\ln x$ é computado com $\log(x)$.

Observação 1.7.2. Vejamos algumas propriedades dos logaritmos:

- $\log_a x = y \Leftrightarrow a^y = x;$
- $\log_a 1 = 0$;
- $\log_a a = 1$;

- $\log_a a^x = x;$
- $a^{\log_a^x} = x;$
- $\log_a xy = \log_a x + \log_a y;$
- $\log_a \frac{x}{y} = \log_a x \log_a y;$
- $\log_a x^r = r \cdot \log_a x$.

Em construção ...

Capítulo 2

Limites

Ao longo deste capítulo, ao apresentarmos códigos Python estaremos assumindo os seguintes comandos prévios:

```
from sympy import *
init_printing()
var('x')
```

2.1 Noção de limites

Seja f uma função definida em um intervalo aberto em torno de um dado ponto x_0 , exceto talvez em x_0 . Quando o valor de f(x) é arbitrariamente próximo de um número L para x suficientemente próximo de x_0 , escrevemos

$$\lim_{x \to x_0} f(x) = L \tag{2.1}$$

e dizemos que o limite da função $f \in L$ quando x tende a x_0 .

Exemplo 2.1.1. Consideremos a função

$$f(x) = \frac{(x^2 - 1)(x - 2)}{(x - 1)(x - 2)}. (2.2)$$

Na Figura 2.1, temos um esboço do gráfico desta função.

Figura 2.1: Esboço do gráfico da função f(x) dada no Exemplo 2.1.1.

Vejamos os seguintes casos:

• $\lim_{x\to 0} f(x) = 1 = f(0)$.

No SymPy, podemos computar este limite com o comando

$$limit((x**2-1)*(x-2)/((x-1)*(x-2)),x,0)$$

• $\lim_{x\to 1} f(x) = 2$, embora f(1) não esteja definido.

• $\lim_{x\to 2} f(x) = 3$, embora f(2) também não esteja definido. Verifique!

2.1.1 Limites da função constante e da função identidade

Da noção de limite, temos

$$\lim_{x \to x_0} k = k,\tag{2.3}$$

25

seja qual for a constante k. Vejamos a Figura 2.2.

Figura 2.2: Esboço do gráfico de uma função constante f(x) = k.

Exemplo 2.1.2. Vejamos os seguintes casos:

a)
$$\lim_{x \to -1} 1 = 1$$

b)
$$\lim_{x \to 2} -3 = -3$$

c)
$$\lim_{x \to \pi} \sqrt{2} - e = \sqrt{2} - e$$

Também da noção de limites, podemos inferir que

$$\lim_{x \to x_0} x = x_0, \tag{2.4}$$

seja qual for o ponto x_0 . Vejamos a Figura 2.3.

Figura 2.3: Esboço do gráfico da função identidade f(x)=x.

Exemplo 2.1.3. Vejamos os seguintes casos:

$$a) \lim_{x \to -1} x = -1$$

$$b) \lim_{x \to 2} x = 2$$

c)
$$\lim_{x \to \pi} x = \pi$$

Exercícios

 ${f E}$ 2.1.1. Considere que uma dada função f tenha o seguinte esboço de

gráfico:

Forneça o valor dos seguintes limites:

- a) $\lim_{x \to -1} f(x)$
- b) $\lim_{x \to 1} f(x)$
- c) $\lim_{x \to 2} f(x)$
- $d) \lim_{x \to 2} f(x)$
- e) $\lim_{x \to 3} f(x)$

 ${\bf E}$ 2.1.2. Considerando a mesma função do exercício anterior (Exercícios 2.1.1), forneça

- $1. \lim_{x \to -\frac{3}{2}} f(x)$
- $2. \lim_{x \to 0} f(x)$
- $3. \lim_{x \to \frac{3}{4}} f(x)$

E 2.1.3. Forneça o valor dos seguintes limites:

- a) $\lim_{x \to 2} 2$
- b) $\lim_{x \to -2} 2$
- c) $\lim_{x\to 2} -3$
- d) $\lim_{x \to e} \pi$

E 2.1.4. Forneça o valor dos seguintes limites:

- a) $\lim_{x \to 2} x$
- b) $\lim_{x \to -2} x$
- c) $\lim_{x \to -3} x$
- $d) \lim_{x \to e} x$

2.2 Regras para o cálculo de limites

Sejam dados os seguintes limites

$$\lim_{x \to x_0} f(x) = L_1 \qquad e \qquad \lim_{x \to x_0} g(x) = L_2, \tag{2.5}$$

com x_0, L_1, L_2 números reais. Então, valem as seguintes regras:

• Regra da multiplicação por um escalar:

$$\lim_{x \to x_0} k f(x) = k \lim_{x \to x_0} f(x) = k L_1, \tag{2.6}$$

para qualquer número real k.

• Regra da soma:

$$\lim_{x \to x_0} f(x) + g(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = L_1 + L_2$$
 (2.7)

• Regra do produto:

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = L_1 \cdot L_2$$
 (2.8)

• Regra do quociente:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{L_1}{L_2},\tag{2.9}$$

desde que $L_2 \neq 0$.

• Regra da potenciação:

$$\lim_{x \to x_0} (f(x))^s = L_1^s, \tag{2.10}$$

se L_1^s é um número real.

Podemos usar essas regras para calcularmos limites.

Exemplo 2.2.1. Vejamos os seguintes casos:

a) $\lim_{x \to -1} 2x$

$$\lim_{x \to -1} 2x = 2 \lim_{x \to -1} x$$

$$= 2 \cdot (-1) = -2$$
(2.11)
(2.12)

$$= 2 \cdot (-1) = -2 \tag{2.12}$$

No SymPy, podemos computar este limite com

limit(2*x,x,-1)

b) $\lim_{x \to 2} x^2 - 1$

$$\lim_{x \to 2} x^2 - 1 = \lim_{x \to 2} x^2 - \lim_{x \to 2} 1$$

$$= \left(\lim_{x \to 2} x\right)^2 - \lim_{x \to 2} 1$$
(2.13)
(2.14)

$$= \left(\lim_{x \to 2} x\right)^2 - \lim_{x \to 2} 1 \tag{2.14}$$

$$=2^2 - 1 = 3. (2.15)$$

No SymPy, podemos computar este limite com

limit(x**2-1,x,-1)

c)
$$\lim_{x \to -1} \sqrt{1 - x^2}$$
.

$$\lim_{x \to -1} \sqrt{1 - x^2} = \sqrt{\lim_{x \to -1} 1 - x^2} \tag{2.16}$$

$$= \sqrt{\lim_{x \to -1} 1 - \left(\lim_{x \to -1} x\right)^2} \tag{2.17}$$

$$=\sqrt{1-(-1)^2}\tag{2.18}$$

$$=0. (2.19)$$

No SymPy, podemos computar este limite com

limit(sqrt(1-x**2),x,-1)

d)
$$\lim_{x\to 0} \frac{(x^2-1)(x-2)}{(x-1)(x-2)}$$

$$\lim_{x \to 0} \frac{(x^2 - 1)(x - 2)}{(x - 1)(x - 2)} = \frac{\lim_{x \to 0} (x^2 - 1)(x - 2)}{\lim_{x \to 0} (x - 1)(x - 2)}$$
(2.20)

$$= \frac{\lim_{x \to x_0} (x^2 - 1) \lim_{x \to 0} (x - 2)}{\lim_{x \to 0} (x - 1) \lim_{x \to 0} (x - 2)}$$
(2.21)

$$=\frac{-2}{-2}=1. (2.22)$$

Proposição 2.2.1. (Limites de polinômios) Se $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-1} x^{n-1}$ $\cdots + a_0$, então

$$\lim_{x \to b} p(x) = p(b) = a_n b^n + a_{n-1} b^{n-1} + \dots + a_0, \tag{2.23}$$

para qualquer número real b dado.

Demonstração. Segue das regras da soma, da multiplicação por escalar e da potenciação. Vejamos

$$\lim_{x \to b} p(x) = \lim_{x \to b} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
 (2.24)

$$= \lim_{x \to b} a_n x^n + \lim_{x \to b} a_{n-1} x^{n-1} + \dots + \lim_{x \to b} a_0$$
 (2.25)

$$= \lim_{x \to b} a_n x^n + \lim_{x \to b} a_{n-1} x^{n-1} + \dots + \lim_{x \to b} a_0$$
 (2.25)
$$= a_n \left(\lim_{x \to b} x \right)^n + a_{n-1} \left(\lim_{x \to b} x \right)^{n-1} + \dots + a_0$$
 (2.26)

$$= a_n b^n + a_{n-1} b^{n-1} + \dots + a_0 = p(b).$$
 (2.27)

Exemplo 2.2.2.

$$\lim_{x \to \sqrt{2}} 2x^4 - 2x^2 + x = 2(\sqrt{2})^4 - 2(\sqrt{2})^2 + \sqrt{2} = 4 + \sqrt{2}.$$
 (2.28)

No SymPy, podemos computar este limite com o comando

limit(2*x**4-2*x**2+x,x,sqrt(2))

Proposição 2.2.2. (Limite de funções racionais) Sejam r(x) = p(x)/q(x) é uma função racional e b um número real tal que $q(b) \neq 0$. Então,

$$\lim_{x \to b} \frac{p(x)}{q(x)} = \lim_{x \to b} \frac{p(b)}{q(b)}.$$
(2.29)

Demonstração. Segue da regra do limite do quociente e da Proposição 2.2.1:

$$\lim_{x \to b} \frac{p(x)}{q(x)} = \frac{\lim_{x \to b} p(x)}{\lim_{x \to b} q(x)}$$
(2.30)

$$=\frac{p(b)}{q(b)}. (2.31)$$

Exemplo 2.2.3.

$$\lim_{x \to 0} \frac{(x^2 - 1)(x - 2)}{(x - 1)(x - 2)} = \frac{(0^2 - 1)(0 - 2)}{(0 - 1)(0 - 2)} = 1. \tag{2.32}$$

No SymPy, podemos computar este limite com o comando

$$limit((x**2-1)*(x-2)/((x-1)*(x-2)),x,0)$$

2.2.1 Indeterminação 0/0

Quando f(a) = 0 e g(a) = 0, dizemos que

$$\lim_{x \to a} \frac{f(x)}{g(x)} \tag{2.33}$$

é uma indeterminação do tipo 0/0. Em vários destes casos, podemos calcular o limite eliminando o fator em comum (x - a).

Exemplo 2.2.4.

$$\lim_{x \to 2} \frac{(x^2 - 1)(x - 2)}{(x - 1)(x - 2)} = \lim_{x \to 2} \frac{x^2 - 1}{x - 1} = 3. \tag{2.34}$$

No SymPy, podemos computar o limite acima com

$$limit((x**2-1)*(x-2)/((x-1)*(x-2)),x,2)$$

Quando o fator em comum não aparece explicitamente, podemos tentar trabalhar algebricamente de forma a explicitá-lo.

Exemplo 2.2.5. No caso do limite

$$\lim_{x \to 1} \frac{x^3 - 3x^2 - x + 3}{x^2 + x - 2} \tag{2.35}$$

temos que o denominador $p(x) = x^3 - 3x^2 - x + 3$ se anula em x = 1, assim como o denominador $q(x) = x^2 + x - 2$. Assim sendo, (x - 1) é um fator em comum entre p(x) e q(x). Para explicitá-lo,

$$\frac{p(x)}{x-1} = x^2 - 2x - 3$$
 e $\frac{q(x)}{x-1} = x + 2.$ (2.36)

No SymPy, podemos computar estas divisões com os seguintes comandos

simplify((
$$x**3-3*x**2-x+3$$
)/($x-1$))
simplify(($x**2+x-2$)/($x-1$))

Realizadas as divisões, temos

$$p(x) = (x-1)(x^2 - 2x - 3)$$
 e $q(x) = (x-1)(x+2)$. (2.37)

Com isso, temos

$$\lim_{x \to 1} \frac{x^3 - 3x^2 - x + 3}{x^2 + x - 2} = \lim_{x \to 1} \frac{(x - 1)(x^2 - 2x - 3)}{(x - 1)(x + 2)} \tag{2.38}$$

$$-\lim_{x \to 1} \frac{x^2 - 2x - 3}{x + 2} = -\frac{4}{3}.$$
 (2.39)

Exemplo 2.2.6. No caso de

$$\lim_{x \to 0} \frac{\sqrt{1 - x} - 1}{x} \tag{2.40}$$

temos uma indeterminação do tipo 0/0 envolvendo uma raiz. Neste caso, podemos calcular o limite usando de racionalização

$$\lim_{x \to 0} \frac{\sqrt{1-x} - 1}{x} = \lim_{x \to 0} \frac{\sqrt{1-x} - 1}{x} \frac{\sqrt{1-x} + 1}{\sqrt{1-x} + 1}$$
 (2.41)

$$= \lim_{x \to 0} \frac{1 - x - 1}{x(\sqrt{1 - x} + 1)} \tag{2.42}$$

$$-\lim_{x\to 0} \frac{-x}{x(\sqrt{1-x}+1)}$$
 (2.43)

$$= \lim_{x \to 0} \frac{-1}{\sqrt{1 - x} + 1} = -\frac{1}{2}.$$
 (2.44)

Com o SymPy, podemos computar este limite com

limit((sqrt(1-x)-1)/x,x,0)

Exercícios

E 2.2.1. Assumindo que o $\lim_{x\to 2} f(x) = L$ e que

$$\lim_{x \to 2} \frac{f(x) - 2}{x + 2} = 1,\tag{2.45}$$

forneca o valor de L.

Em construção ...

2.3 Limites laterais

Seja dada uma função f definida para todo x em um intervalo aberto (L, a), sendo a um número real com L < a podendo ser $L = -\infty$. O **limite lateral** à **esquerda** de f no ponto a é denotado por

$$\lim_{x \to a^{-}} f(x) \tag{2.46}$$

e é computado tendo em vista a tendência da função apenas para pontos x < a. Em outras palavras, o

$$\lim_{x \to a^{-}} f(x) = L \tag{2.47}$$

quando f(x) pode ser tomado arbitrariamente próximo de L, desde que tomemos x < a suficientemente próximo de a.

Para uma função f definida para todo x em um intervalo aberto (a, L), sendo a um número real com L > a podendo ser $L = \infty$, o **limite lateral à direita** de f no ponto a é denotado por

$$\lim_{x \to a^+} f(x) \tag{2.48}$$

e é computado tendo em vista a tendência da função apenas para pontos x>a. Em outras palavras, temos

$$\lim_{x \to a^+} f(x) = L,\tag{2.49}$$

quando f(x) pode ser tomado arbitrariamente próximo de L, desde que tomemos x > a suficientemente próximo de a.

Observação 2.3.1. Por inferência direta, temos

$$\lim_{x \to a^{\pm}} k = k \quad e \quad \lim_{x \to a^{\pm}} x = a^{\pm}, \tag{2.50}$$

onde a e k são quaisquer números reais.

E 2.3.1. Vamos calcular

$$\lim_{x \to 0^-} |x|. \tag{2.51}$$

Por definição, temos

$$|x| := \begin{cases} x & , x \ge 0, \\ -x & , x < 0. \end{cases}$$
 (2.52)

Como estamos interessados no limite lateral à esquerda de x=0, trabalhamos com x<0 e, então

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{-}} -x = -\lim_{x \to 0^{-}} x = 0.$$
 (2.53)

Analogamente, calculamos

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0. \tag{2.54}$$

Verifique!

Usando o SymPy, podemos computar os limites acima com os seguintes comandos:

limit(abs(x),x,0,'-')limit(abs(x),x,0,'+')

Teorema 2.3.1. Existe o limite de uma dada função f no ponto x = a e $\lim_{x\to a} f(x) = L$ se, e somente se, existem e são iguais a L os limites laterais à esquerda e à direita de f no ponto x = a.

E 2.3.2. No exemplo anterior (Exemplo 2.3.1), vimos que

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{+}} |x| = 0. \tag{2.55}$$

Logo, pelo teorema acima (Teorema 2.3.1), podemos concluir que

$$\lim_{x \to 0} |x| = 0. \tag{2.56}$$

E 2.3.3. Vamos verificar a existência de

$$\lim_{x \to 0} \frac{|x|}{x}.\tag{2.57}$$

Começamos pelo limite lateral à esquerda, temos

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x}$$

$$= \lim_{x \to 0^{-}} -1 = -1.$$
(2.58)

$$= \lim_{r \to 0^{-}} -1 = -1. \tag{2.59}$$

Agora, calculando o limite lateral à direta, obtemos

$$\lim_{x \to 0^{+}} \frac{|x|}{x} = \lim_{x \to 0^{+}} \frac{x}{x}$$

$$= \lim_{x \to 0^{+}} 1 = 1.$$
(2.60)
(2.61)

$$= \lim_{r \to 0^+} 1 = 1. \tag{2.61}$$

Como os limites laterais à esquerda e à direita são diferentes, concluímos que não existe o limite de |x|/x no ponto x=0.

No Sympy, por padrão o limite computado é sempre o limite lateral à direita. È por isso que o comando

limit(abs(x)/x,x,0)

fornece o valor 1 como saída.

Exercícios

Em construção ...

2.4 Limites e desigualdades

Se f e g são funções tais que f(x) < g(x) para todo x em um certo intervalo aberto contendo a, exceto possivelmente em x = a, e existem os limites de f e g no ponto x = a, então

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x). \tag{2.62}$$

Observe que a tomada do limite não preserva a desigualdade estrita.

E 2.4.1. As funções $f(x) = x^2/3$ e $g(x) = x^2/2$ são tais que f(x) < g(x) para todo $x \neq 0$. Ainda, temos

$$\lim_{x \to 0} f(x) = 0 \quad \text{e} \quad \lim_{x \to 0} g(x) = 0. \tag{2.63}$$

Observação 2.4.1. A preservação da desigualdade também ocorre para limites laterais. Mais precisamente, se f e g são funções tais que f(x) < g(x) para todo x < a e existem os limites lateral à esquerda de f e g no ponto x = a, então

$$\lim_{x \to a^{-}} f(x) \le \lim_{x \to a^{-}} g(x). \tag{2.64}$$

Vale o resultado análogo para limite lateral à direito. Escreva-o!

2.4.1 Teorema do confronto

Teorema 2.4.1. (Teorema do confronto) Se $g(x) \le f(x) \le h(x)$ para todo x em um intervalo aberto contendo a, exceto possivelmente em x = a, e

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L, \tag{2.65}$$

então

$$\lim_{x \to a} f(x) = L.
\tag{2.66}$$

Demonstração. Da preservação da desigualdade, temos

$$\lim_{x \to a} g(x) \le \lim_{x \to a} f(x) \le \lim_{x \to a} h(x) \tag{2.67}$$

donde

$$L \le \lim_{x \to a} f(x) \le L. \tag{2.68}$$

E 2.4.2. Toda função f(x) tal que $-1 + x^2/2 \le f(x) \le -1 + x^2/3$, para todo $x \ne 0$, tem

$$\lim_{x \to 0} f(x) = -1. \tag{2.69}$$

Observação 2.4.2. O Teorema do confronto também se aplica a limites laterais.

Exemplo 2.4.1.

$$\lim_{x \to 0} \operatorname{sen} x = 0. \tag{2.70}$$

De fato, começamos assumindo $0 < x < \pi/2$. Tomando O = (0,0), A = (1,0) e $P = (\cos x, \sin x)$, observamos que

Área do triâng.
$$OAP <$$
 Área do setor OAP , (2.71)

i.e.

$$\frac{\operatorname{sen} x}{2} < \frac{x}{2} \Rightarrow \operatorname{sen} x < x,\tag{2.72}$$

para todo $0 < x < \pi/2$.

É certo que sen x < -x para $-\pi/2 < x < 0$. Com isso e o resultado acima, temos

$$sen x \le |x|, \quad -\pi/2 < x < \pi/2.$$
(2.73)

Lembrando que sen x é uma função ímpar, temos

$$-|x| \le -\sin x = \sin -x, \quad -\pi/2 < x < \pi/2.$$
 (2.74)

Logo, de (2.73) e (2.74), temos

$$-|x| \le \operatorname{sen} x \le |x|. \tag{2.75}$$

Por fim, como

$$\lim_{x \to 0} -|x| = \lim_{x \to 0} |x| = 0, \tag{2.76}$$

do Teorema do confronto, concluímos

$$\lim_{x \to 0} \sec x = 0. \tag{2.77}$$

Observação 2.4.3. Do exemplo anterior (Exemplo 2.4.1), podemos mostrar que

$$\lim_{x \to 0} \cos x = 1. \tag{2.78}$$

De fato, da identidade trigonométrica de ângulo metade (1.31)

$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2} \tag{2.79}$$

temos

$$\cos x = 1 + 2\sin^2\frac{x}{2}. (2.80)$$

Então, aplicando as regras de cálculo de limites, obtemos

$$\lim_{x \to 0} \cos x = \lim_{x \to 0} \left[1 + 2 \operatorname{sen}^2 \frac{x}{2} \right]$$
 (2.81)

$$= 1 + 2\left(\lim_{x \to 0} \sin \frac{x}{2}\right)^2. \tag{2.82}$$

Agora, fazemos a mudança de variável y=x/2. Neste caso, temos $y\to 0$ quando $x\to 0$ e, então

$$\lim_{x \to 0} \sin \frac{x}{2} = \lim_{y \to 0} \sin y = 0. \tag{2.83}$$

Então, retornando a equação (2.82), concluímos

$$\lim_{x \to 0} \cos x = 1. \tag{2.84}$$

2.4.2 Limites envolvendo $(\operatorname{sen} x)/x$

Verificamos o seguinte resultado

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1. \tag{2.85}$$

Para verificarmos este resultado, calcularemos os limites laterais à esquerda e à direita. Começamos com o limite lateral a direita e assumimos $0 < x < \pi/2$. Sendo os pontos O = (0,0), $P = (\cos x, \sin x)$, A = (1,0) e $T = (1, \operatorname{tg} x)$, observamos que

Área do triâng. OAP < Área do setorOAP < Área do triâng. OAT. (2.86)

Ou seja, temos

$$\frac{\operatorname{sen} x}{2} < \frac{x}{2} < \frac{\operatorname{tg} x}{2}.\tag{2.87}$$

Multiplicando por 2 e dividindo por sen x^1 , obtemos

$$1 < \frac{x}{\operatorname{sen} x} < \frac{1}{\operatorname{cos} x}.\tag{2.88}$$

Tomando os recíprocos, temos

$$1 > \frac{\operatorname{sen} x}{x} > \operatorname{cos} x. \tag{2.89}$$

Agora, passando ao limite

$$1 = \lim_{x \to 0^+} 1 \ge \lim_{x \to 0^+} \frac{\sin x}{x} \ge \lim_{x \to 0^+} \cos x = 1. \tag{2.90}$$

Logo, concluímos que

$$\lim_{x \to 0^+} \frac{\sin x}{x} = 1. \tag{2.91}$$

Agora, usando o fato de que sen x/x é uma função par, temos

$$\lim_{x \to 0^{-}} \frac{\sin x}{x} = \lim_{x \to 0^{-}} \frac{\sin(-x)}{-x}$$
 (2.92)

$$= \lim_{x \to 0^+} \frac{\sin x}{x} = 1. \tag{2.93}$$

Calculados os limites laterais, concluímos o que queríamos.

Exemplo 2.4.2. Com o resultado acima e as regras de cálculo de limites, temos

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0. \tag{2.94}$$

Veja o Exercício 2.4.5.

 $[\]frac{1}{1} \operatorname{sen} x > 0 \text{ para todo } 0 < x < \pi/2.$

Exercícios

E 2.4.3. Supondo que $1-x^2/3 \le u(x) \le 1-x^2/2$ para todo $x \ne 0$, determine o $\lim_{x\to 0} u(x)$.

E 2.4.4. Calcule

$$\lim_{x \to 0} \frac{\sin 3x}{6x}.\tag{2.95}$$

E 2.4.5. Calcule

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x}.\tag{2.96}$$

E 2.4.6. Calcule

$$\lim_{x \to 0} \frac{\cos(3x) - 1}{6x}.\tag{2.97}$$

Em construção ...

2.5 Limites no infinito

Limites no infinito descrevem a tendência de uma dada função f(x) quando $x \to -\infty$ ou $x \to \infty$.

Dizemos que o limite de f(x) é L quando x tende a $-\infty$, se os valores de f(x) são arbitrariamente próximos de L para valores de x suficientemente pequenos. Neste caso, escrevemos

$$\lim_{x \to -\infty} f(x) = L. \tag{2.98}$$

Analogamente, dizemos que o limite de f(x) é L quando x tende ∞ , se os valores de f(x) são arbitrariamente próximos de L para valores de x suficientemente grandes. Neste caso, escrevemos

$$\lim_{x \to \infty} f(x) = L. \tag{2.99}$$

Exemplo 2.5.1. Vejamos os seguintes casos:

a)
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

$$b) \lim_{x \to \infty} \frac{1}{x} = 0$$

Supondo que $L,\,M$ e k são números reais e

$$\lim_{x \to \pm \infty} f(x) = L \quad e \quad \lim_{x \to \pm \infty} g(x) = M. \tag{2.100}$$

Então, temos as seguintes regras para limites no infinito:

• Regra da soma/diferença

$$\lim_{x \to +\infty} (f(x) \pm g(x)) = L \pm M \tag{2.101}$$

• Regra do produto

$$\lim_{x \to \pm \infty} f(x)g(x) = LM \tag{2.102}$$

• Regra da multiplicação por escalar

$$\lim_{x \to \pm \infty} kf(x) = kL \tag{2.103}$$

• Regra do quociente

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0.$$
 (2.104)

• Regra da potenciação

$$\lim_{x \to \pm \infty} (f(x))^k = L^k, \text{ se } L^k \in \mathbb{R}.$$
 (2.105)

Exemplo 2.5.2.

$$\lim_{x \to \infty} \frac{1}{x^2} + 1 = \lim_{x \to \infty} \frac{1}{x^2} + \lim_{x \to \infty} 1$$
 (2.106)

$$= \left(\lim_{x \to \infty} \frac{1}{x}\right)^2 + 1\tag{2.107}$$

$$= 0^2 + 1 = 1. (2.108)$$

Exemplo 2.5.3. (Limites no infinito de funções racionais) Consideramos o seguinte caso

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2 - 3x^3}.$$
 (2.109)

Observe que não podemos usar a regra do quociente diretamente, pois, por exemplo, não existe o limite do numerador. Para contornar este problema, podemos multiplicar e dividir por $1/x^3$ (grau dominante), obtendo

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2 - 3x^3} \frac{\frac{1}{x^3}}{\frac{1}{x^3}} = \lim_{x \to \infty} \frac{1 - \frac{2}{x^2} + \frac{1}{x^3}}{\frac{2}{x^3} - 3}.$$
 (2.110)

Então, aplicando a regras do quociente, da soma/subtração e da multiplicação por escalar, temos

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2 - 3x^3} = \lim_{x \to \infty} \frac{1 - \frac{2}{x^2} + \frac{1}{x^3}}{\frac{2}{x^3} - 3} = -\frac{1}{3}.$$
 (2.111)

Observação 2.5.1. Dados dois polinômios $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ e $q(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0$, temos

$$\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}.$$
 (2.112)

Exemplo 2.5.4. Retornando ao exemplo anterior (Exemplo 2.5.3), temos

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2 - 3x^3} = \lim_{x \to \infty} \frac{x^3}{-3x^3} = -\frac{1}{3}.$$
 (2.113)

2.5.1 Assíntotas horizontais

A reta y = L é uma assíntota horizontal do gráfico da função y = f(x) se

$$\lim_{x \to -\infty} f(x) = L \quad \text{ou} \quad \lim_{x \to \infty} f(x) = L. \tag{2.114}$$

Exemplo 2.5.5. No Exemplo 2.5.3, vimos que

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2 - 3x^3} = \lim_{x \to \infty} \frac{x^3}{-3x^3} = -\frac{1}{3}.$$
 (2.115)

Logo, temos que y = -1/3 é uma assíntota horizontal do gráfico desta função.

43

Figura 2.4: Esboço do gráfico da função $f(x) = \frac{x^3 - 2x + 1}{2 - 3x^3}$.

Também, temos

$$\lim_{x \to -\infty} \frac{x^3 - 2x + 1}{2 - 3x^3} = \lim_{x \to \infty} \frac{x^3}{-3x^3} = -\frac{1}{3}.$$
 (2.116)

O que reforça que y=-1/3 é uma assíntota horizontal desta função. Veja a Figura 2.4.

Exemplo 2.5.6. (Função exponencial natural)

$$\lim_{x \to -\infty} e^x = 0, \tag{2.117}$$

donde temos que y=0 é uma assíntota horizontal da função exponencial natil.

Também, temos

$$\lim_{x \to \infty} e^{-x} = 0, \tag{2.118}$$

e, portanto, y=0 é assínto
ta horizontal do gráfico da recíproca da função exponencial natural.

2.5.2 Assíntotas oblíquas

Além de assíntotas horizontais e verticais, gráficos de funções podem ter assintota oblíquas. Isto ocorre, particularmente, para funções racionais cujo grau do numerador é maior que o do denominador.

Figura 2.5: Esboço do gráfico da função $f(x) = \frac{x^2 - 1}{5x - 4}$.

Exemplo 2.5.7. Consideremos a função racional

$$f(x) = \frac{x^2 - 1}{5x - 4}. (2.119)$$

Para buscarmos determinar a assíntota oblíqua desta função, dividimos o numerador pelo denominador, de forma a obtermos

$$f(x) = \underbrace{\left(\frac{x}{5} + \frac{4}{25}\right)}_{\text{guoriente}} + \underbrace{\frac{-\frac{9}{25}}{5x - 4}}_{\text{resto}}.$$
 (2.120)

Observamos, agora, que o resto tende a zero quando $x \to \pm \infty$, i.e. $f(x) \to \frac{x}{5} + \frac{4}{25}$ quando $x \to \pm \infty$. Com isso, concluímos que $y = \frac{x}{5} + \frac{4}{25}$ é uma assíntota oblíqua ao gráfico de f(x). Veja a Figura 2.5.

Observação 2.5.2. Analogamente à assintotas oblíquas, podemos ter outros tipos de assíntotas determinadas por funções de diversos tipos, por exemplo, assíntotas quadráticas.

Exercícios

Em construção ...

2.6 Limites infinitos

O limite de uma função nem sempre existe. Por exemplo,

$$\lim_{x \to 0} \frac{1}{x^2}.\tag{2.121}$$

Entretanto, como é o caso acima, em muitos casos podemos concluir mais sobre a tendência da função. Por exemplo, no caso acima, quando $x \to 0$ os valores de f(x) crescem arbitrariamente, i.e. $f(x) \to \infty$.

Mais precisamente, dizemos que o limite de uma dada função f(x) é infinito quando x tende a um número a, quando f(x) torna-se arbitrariamente grande para valores de x suficientemente próximos de a. Neste caso, escrevemos

$$\lim_{x \to a} f(x) = \infty.$$
(2.122)

Similarmente, definimos os limites laterais

$$\lim_{x \to a^{-}} f(x) = \infty \quad e \quad \lim_{x \to a^{+}} f(x) = \infty.$$
 (2.123)

Exemplo 2.6.1.

$$\lim_{x \to 0} \frac{1}{|x|} = \infty.
\tag{2.124}$$

Observe que 1/|x| torna-se arbitrariamente grande para valores de x suficientemente próximos a a.

Analogamente, dizemos que o limite de uma dada função f(x) é menos infinito quando x tende a a, quando f(x) torna-se arbitrariamente pequeno para valores de x suficientemente próximos de a. Neste caso, escrevemos

$$\lim_{x \to a} f(x) = -\infty. \tag{2.125}$$

46

De forma similar, definimos os limites laterais $f(x) \to -\infty$ quando $x \to a^{\pm}$.

Exemplo 2.6.2.

$$\lim_{x \to 0} \frac{-1}{|x|} = -\infty. \tag{2.126}$$

Exemplo 2.6.3. Observe que

$$\nexists \lim_{x \to 0} \frac{1}{x} \tag{2.127}$$

e que não podemos concluir que este limite é ∞ ou $-\infty$. Isto ocorre, pois

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty \quad \text{e} \quad \lim_{x \to 0^{+}} \frac{1}{x} = +\infty. \tag{2.128}$$

Por outro lado, também não existe

$$\lim_{x \to 0} \frac{1}{x^2},\tag{2.129}$$

mas temos

$$\lim_{x \to 0^{-}} \frac{1}{x^{2}} = \infty \quad \text{e} \quad \lim_{x \to 0^{+}} \frac{1}{x^{2}} = \infty. \tag{2.130}$$

Com isso, podemos concluir que

$$\lim_{x \to 0} \frac{1}{x^2} = \infty. \tag{2.131}$$

2.6.1 Assíntotas verticais

Uma reta x=a é uma **assíntota vertical** do gráfico de uma função y=f(x) se

$$\lim_{x \to a^{-}} f(x) = \pm \infty \quad \text{ou} \quad \lim_{x \to a^{+}} f(x) = \pm \infty. \tag{2.132}$$

Exemplo 2.6.4. Vejamos os seguintes casos:

- A função f(x) = 1/x tem y = 0 como assíntota vertical.
- A função $f(x) = \frac{x^3 2x + 1}{2 3x^3}$ não está definida para valores de x tais que seu denominador se anule, i.e.

$$2 - 3x^3 = 0 \Rightarrow x = \sqrt[3]{\frac{2}{3}}. (2.133)$$

Este ponto é um candidato para ter uma assíntota vertical. Isto é, de fato, o caso, pois

$$\lim_{x \to \sqrt[3]{\frac{2}{3}}} = -\infty, \tag{2.134}$$

e, ainda, temos

$$\lim_{x \to \sqrt[3]{\frac{2}{3}^+}} = \infty. \tag{2.135}$$

Com isso, dizemos que $x = \sqrt[3]{2/3}$ é uma assintota vertical do gráfico desta função. Veja a Figura 2.4.

Exemplo 2.6.5. (Função logarítmica) A função logarítmica natural $y = \ln x$ é tal que

$$\lim_{x \to 0^+} \ln x = -\infty \tag{2.136}$$

i.e., x=0 é uma assíntota vertical ao gráfico de $\ln x$. Isto decorre do fato de $y=\ln x$ ser a função inversa de $y=e^x$ e, esta, ter uma assíntota horizontal y=0.

Exemplo 2.6.6. As funções trigonométricas $y = \sec x$ e $y = \tan x$ têm assíntotas verticais $x = (2k+1)\frac{\pi}{2}$ para k inteiro. Veja as Figuras 1.14.

Exemplo 2.6.7. As funções trigonométricas $y = \csc x$ e $y = \cot x$ têm assíntotas verticais $x = k\pi$ para k inteiro. Veja as Figuras 1.15.

Exercícios

E 2.6.1. Determine as assíntotas verticais ao gráfico da função

$$f(x) = \frac{8}{x^2 - 4}. (2.137)$$

Em construção ...

Resposta dos Exercícios

- **E 2.1.1.** a) -1; b) -1; c) 2; d) \nexists
- **E 2.1.3.** a) 2; b) 2; c) -3; d) π
- **E 2.1.4.** a) 2; b) -2; c) -3; d) e
- **E 2.2.1.** 6
- **E 2.4.3.** 1
- **E 2.4.4.** 0
- **E 2.4.5.** 0
- E 2.4.6. $\frac{1}{2}$

Referências Bibliográficas

 $[1]\,$ George Thomas. $\it C\'alculo,$ volume 1. Addison- Wesley, 12. edition, 2012.

Índice Remissivo

base, 21	grau do polinômio, 8
domínio, 1	imagem, 1
domínio, 1 natural, 2 função, 1 ímpar, 19 algébrica, 9 cúbica, 8 composta, 17 constante, 4 cossecante, 14 definida por partes, 10 exponencial, 21 identidade, 19 inversa, 20 linear, 4 logarítmica, 22 par, 19 periódica, 13 potência, 5 quadrática, 8 racional, 9 secante, 14 tangente, 14 transcendente, 10 valor absoluto, 11 função polinomial, 8	imagem, 1 polinômio, 8 quadrático, 8 polinômio cúbico, 8 reta identidade, 20
gráfico, 3	