COMP2610/6261 - Information Theory Assignment for the standard medical many Help

24 September, 2018

Assignment Project Exam Help

- Interval Coding
 - Shanpt Fire Elas Science Com Lossiess property

 - The Prefix Property and Intervals

 - Decoding Properties of the Experience of the E

Prefix Codes as Trees (Recap)

 $\textit{C}_2 = \{0, 10, 110, 111\}$

The Source Coding Theorem for Symbol Codes

Assignment Project Exam Help

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

https://powcoder.com

In particular, **Shannon codes** C — those with lengths $\ell_i = \left\lceil \log_2 \frac{1}{\rho_i} \right\rceil$ — have expected pole length with the hin part the move <math>C C C

Huffman Coding: Recap

$$A_X = \{a, b, c, d, e\}$$
 and $P_X = \{0.25, 0.25, 0.2, 0.15, 0.15\}$

From Example 5.15 of MacKay

$$C = \{00, 10, 11, 010, 011\}$$

Huffman Coding: Advantages and Disadvantages

Advantages:

Assignment Project Exam Help

https://powcoder.com

Huffman Coding: Advantages and Disadvantages

Advantages:

• Huffman Codes are provably optimal amongst prefix codes \$\$12nment Project Exam Help

- Assumes a fixed distribution of Spin Doubler. Com
 - The extra bit in the SCT
 - $\begin{array}{c} \text{ If } H(X) \text{ is large-not a problem} \\ \text{ Add } We Cnat \\ \text{ powcoder} \\ \text{ If } H(X) \text{ is small (e.g., \sim 1 bit for English) codes are $2\times$ optimal } \end{array}$

Huffman codes are the best possible symbol code but symbol coding is not always the best type of code

This time

A different way of coding (interval coding)

Assignment Project Exam Help

Worse guarantee than Huffman codes, but will lead us to the powerful arithmetic coding procedure

https://powcoder.com

Assignment Project Exam Help

- Interval Coding
 - Shanpt Fire Elas Source Com Lossiess property

 - The Prefix Property and Intervals

 - Decoding Properties of the Experience of the E

Suppose X is an ensemble with probabilities $(p_1,\ldots,p_{|X|})$ Assignment Project Exam Help Define the cumulative distribution function by

https://powcoder.com

Assignment Project Exam Help Define the cumulative distribution function by

https://powcoder.com

and the modified cumulative distribution function by

Assignment Project Exam Help Define the cumulative distribution function by

https://powcoder.com

and the modified cumulative distribution function by

We can losslessly code outcomes based on \overline{F} !

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

F(x) will uniquely determine each outcome x (lossless code)

Example

Suppose X has outcomes (a Pa2, a3, a4) and probabilities ASSISTINGTON HELP

Define the midpoint $\overline{F}(a_i) = F(a_i) - \frac{1}{2}p_i$

Example

Suppose X has outcomes (a Pa2, a3, a4) and probabilities RESIGNATION HELP

Define the midpoint
$$\overline{F}(a_i) = F(a_i) - \frac{1}{2}p_i$$

How do we code $\overline{F}(x)$ in binary though?

Real Numbers in Binary

Real numbers are commonly expressed in decimal:

https://powcoder.com

Real Numbers in Binary

Real numbers are commonly expressed in decimal:

Real Numbers in Binary

Real numbers are commonly expressed in decimal:

Some real numbers have infinite, repeating decimal expansions:

$$\frac{1}{3} = 0.333333 \cdot 1.0 = 0.3 \cdot 1.0 = 0$$

Real numbers can also be similarly expressed in binary:

$$1.5_{10} = 1.1_2 \rightarrow 1 \times 2^{\circ} + 1 \times 2^{\circ}$$
 $0.75_{10} = 0.11_2 \rightarrow +1 \times 2^{-1} + 1 \times 2^{-2}$

$$\frac{1}{3} = 0.010101..._2 = 0.\overline{01}_2$$
 and $\frac{22}{7} = 11.001001..._2 = 11.\overline{001}_2$

Converting Decimal Fractions to Binary

To convert a fraction (e.g. 3/4) to binary:

Multiply the fraction by 2. Take the whole number part of the result;

ssignimente Project Exam Help 2 Throw away the whole number part of the result, and just retain the part after the decimal point.

- Replatistep 1 Stop when either oder.com
 what remains after the decimal point is zero, or

 - you detect an infinite loop

Converting Decimal Fractions to Binary

To convert a fraction (e.g. 3/4) to binary:

Multiply the fraction by 2. Take the whole number part of the result;

ssignimente Project Exam Hel 2 Throw away the whole number part of the result, and just retain the

- part after the decimal point.
- Replatister Stop who either oder.com what remains after the decimal point is zero
 - you detect an infinite loop

• 2 · 0.625 = 1.25, so first bit is 1

- $2 \cdot 0.25 = 0.5$, so second bit is 0
- $2 \cdot 0.5 = 1.0$, so third bit is 1
- decimal part is zero, so stop

Shannon-Fano-Elias Coding: To Infinity and Beyond

Assignment Project Exam Help

https://powcoder.com

Shannon-Fano-Elias Coding: To Infinity and Beyond

A (s) will on improvement the large transfer to the large to the large

• e.g. if $\overline{F}(x) = \frac{1}{3}$

https://powcoder.com

Shannon-Fano-Elias Coding: To Infinity and Beyond

A (s) will enterprise an other to the property of the property

• e.g. if $\overline{F}(x) = \frac{1}{3}$

Fortunately, we can get away with only storing a commately

(Almost) Constructive procedure for a Shannon code

Cumulative Distribution

Example

Cumulative distribution for $\mathbf{p} = (\frac{2}{9}, \frac{1}{9}, \frac{1}{3}, \frac{1}{3})$

Shannon-Fano-Elias Coding Example

Assignment Project Exam Help

https://powcoder.com

Shannon-Fano-Elias Coding

Example

Assignment Project Exam Help

Define the midpoint $\overline{F}(4)$ \overline{P} \overline{P}

Shannon-Fano-Elias Coding: code $x \in A$ using first $\ell(x)$ bits of $\overline{F}(x)$.

A	G (8)		e Cx	nat pov	WEX	der
a ₁	2/9	2/9	1/9	$0.\overline{000111}_{2}$	4	0001
a_2	1/9	1/3	5/18	$0.01\overline{000111}_2$	5	01000
a_3	1/3	2/3	1/2	0.12	3	100
a_4	1/3	1	5/6	$0.1\overline{10}_2$	3	110

Shannon-Fano-Elias Coding

Example

Assignment Project Exam Help

Define the midpoint $\overline{F}(a_i) = F(a_i) + 1$.

Shannon-Fano-Elias Coding: code $x \in A$ using first $\ell(x)$ bits of $\overline{F}(x)$.

A	G(8)	(())	e(x)	1at pov	V(Q)	oder
	2/9		1/9	$0.\overline{000111}_{2}$	4	0001
a_2	1/9	1/3	5/18	$0.01\overline{000111}_2$	5	01000
a_3	1/3	2/3	1/2	0.12	3	100
a_4	1/3	1	5/6	$0.1\overline{10}_2$	3	110

Example: Sequence $\mathbf{x} = a_3 a_3 a_1$ coded as 100 100 0001.

Remaining questions

Assignment Project Exam Help Encoding with a Shannon-Fano-Elias code is simple

But we have the check: //powcoder.com

• is the code lossless?

- is the code prefix-free?
- how do we decode a given godeword?

 Add WeChat powcoder

Assignment Project Exam Help

- Interval Coding
 - https://powcoder.com
 - The Prefix Property and Intervals

 - ExpAdd WeChat powcoder

Shannon-Fano-Elias Coding: Is it lossless?

Denote the Shannon-Fano-Elias code for an outcome x by

 $\underbrace{Assignment}_{\text{where } \lfloor \cdot \rfloor_{\ell}} \underbrace{Project}_{\text{means truncate to first } \ell} \underbrace{Exam}_{\text{bits}} \underbrace{Help}_{\text{total struncate}} \underbrace{Project}_{\text{total struncate}} \underbrace{Exam}_{\text{total struncate}} \underbrace{Help}_{\text{total struncate}} \underbrace{Project}_{\text{total struncate}} \underbrace{P$

https://powcoder.com

Shannon-Fano-Elias Coding: Is it lossless?

Denote the Shannon-Fano-Elias code for an outcome x by

$\underbrace{Assignment}_{\text{where } \lfloor \cdot \rfloor_{\ell}} \underbrace{Project}_{\text{means truncate to first } \ell} \underbrace{Exam}_{\text{bits}} \underbrace{Help}_{\text{total struncate}} \underbrace{Project}_{\text{total struncate}} \underbrace{Exam}_{\text{total struncate}} \underbrace{Help}_{\text{total struncate}} \underbrace{Project}_{\text{total struncate}} \underbrace{P$

Could it be true that $x \neq y$ but $\overline{F}(x) = \overline{G}(x') = 0$ and $\overline{F}(x') = 0$ but $\overline{F}(x) = 0$ but $\overline{F}(x') = 0$ but $\overline{F}(x$

Shannon-Fano-Elias Coding: Is it lossless?

Denote the Shannon-Fano-Elias code for an outcome x by

$\underbrace{Assignment}_{\text{where } \lfloor \cdot \rfloor_{\ell}} \underbrace{Project}_{\text{means truncate to first } \ell} \underbrace{Exam}_{\text{bits}} \underbrace{Help}_{\text{total substitution}}$

Could it be true that $x \neq y'$ but $\overline{F}(x) = \overline{G}(x') = \overline{G}(x')$ No, because (homework exercise!)

Add WeChat powcoder

i.e. the codeword lies entirely in the interval between x - 1 and x

- These intervals don't overlap for different outcomes
- The code is lossless!

Assignment Project Exam Help

- Interval Coding
 - https://powcoder.com
 - The Prefix Property and Intervals

 - ExpAdd WeChat powcoder

Prefixes and Binary Strings

What is the set of binary strings that begin with $\mathbf{b} = b_1 \dots b_n$?

Assignment Project Exam Help

https://powcoder.com

Prefixes and Binary Strings

What is the set of binary strings that begin with $\mathbf{b} = b_1 \dots b_n$?

Assignment Project Exam Help

https://powcoder.com

Prefixes and Binary Strings

What is the set of binary strings that begin with $\mathbf{b} = b_1 \dots b_n$?

Assignment Project Exam Help Basically, anything ranging from

https://poweoder.com

We could equally associate $b_1 \dots b_n$ with the fraction $0.b_1 \dots b_n$

Assignment Project Exam Help

https://powcoder.com

We could equally associate $b_1 \dots b_n$ with the fraction $0.b_1 \dots b_n$

```
Assignment Project Exam Help 0.b_1 \dots b_n 0, 0.b_1 \dots b_n 1, 0.b_1 \dots b_n 01, 0.b_1 \dots b_n 11, \dots
```

https://powcoder.com

We could equally associate $b_1 \dots b_n$ with the fraction $0.b_1 \dots b_n$

Assignment Project Exam Help 0.b₁...b_n0,0.b₁...b_n1,0.b₁...b_n01,0.b₁...b_n11,...

Basically, arttip sanging proweder.com

0.b1...bn000... to 0.b1...bn111...

i.e.

We could equally associate $b_1 \dots b_n$ with the fraction $0.b_1 \dots b_n$

Assignment Project Exam Help 0.b₁...b_n0,0.b₁...b_n1,0.b₁...b_n01,0.b₁...b_n11,...

i.e.

Add WeChat powcoder

Note that

$$0.b_1 \dots b_n \overline{1} = 0.b_1 \dots b_n + \frac{1}{2^n} = 0.b_1 \dots b_n + 0.0 \dots 1,$$

just like
$$0.1\overline{9}_{10} = 0.2$$

Intervals: Definition

Assignment Project Exam Help It will be useful to analyse the prefix ploperty in terms of intervals

An interval [a,b) is the set of all the numbers at least as big as a but smaller than tt psis psis powcoder.com

$$[\mathbf{a}, \mathbf{b}) = \{x : \mathbf{a} \le x < \mathbf{b}\}.$$

Example Addo. We Cahat powcoder

Intervals in Binary

The set of numbers in [0,1) that start with a given sequence of bits

Assignment Project Exam Help

$$\begin{bmatrix} 0.b_{1} \dots b_{n}, 0.b_{1} \dots b_{n} + \frac{1}{2^{n}} \end{pmatrix} = \begin{bmatrix} 0.b_{1} \dots b_{n}, 0.b_{1} \dots b_{n} + 0.0 \dots 1 \end{bmatrix}$$
https://powcoder.com

• $1 \rightarrow [0.1, \overline{1.0})$

- $[0.5, 1]_{10}$
- 01 Add10WeChat powcode 25, 0.5)10
- $1101 \rightarrow [0.1101, 0.1110)$

 $[0.8125, 0.875)_{10}$

Prefix Property and Intervals

Prefix property (tree form): Once you pick a node in the binary tree, you cannot pick any of its descendants

Arsisiremmerator in the Executive of the Popular Property of the Popular Prope

https://poweoder?com

Why? This contains all binary strings for which $b_1b_2 \dots b_n$ is a prefix e.g. If we pick of the pick anything from coder

$$[0.0110, 0.0111) = [0.0110\overline{0}, 0.0110\overline{1})$$

$$= \{0.0110, 0.01101, 0.011001, 0.011011, \dots, \}$$

Prefix Property and Intervals

A significant property of the interval proper

https://powcoder.com

Why? Because interval for \mathbf{b}' contains all strings for which \mathbf{b}' is a prefix

• And if $\bf b$ has $\bf b'$ as a prefix, so does anything having $\bf b$ as a prefix Add WeChat powcoder

Prefix Property and Intervals

Assign the interprofice the External Help e.g. $\mathbf{b}' = 01$ is prefix of $\mathbf{b} = 0101$ so $[0.0101, 0.0110) \subset [0.01, 0.10)$

https://powcoder.com $[0.25, 0.5)_{10}$

Why? Because interval for \mathbf{b}' contains all strings for which \mathbf{b}' is a prefix

And if b has b' as a prefix, so does anything having b as a prefix

Add WeChat powcoder Implication: If intervals for **b**, **b**' are disjoint, one cannot be a prefix of

another

Shannon-Fano-Elias Coding is Prefix-Free

We already know $[\overline{F}(x)]_{\ell(x)} > F(x-1)$. We also have

Assignment \Pr \neq $\text{Fe}(x) + \Pr$ \neq $\text{Fe}(x) + \frac{p(x)}{2}$

https://powcoder.com

and so

The intervals for each codeword are thus trivially disjoint, since we know each of the [F(x-1), F(x)) intervals is disjoint

The SFE code is prefix-free!

Two Types of Interval

The **symbol interval** for some outcome x_i is (assuming $F(x_0) = 0$)

Assignment Project Exam Help These intervals are disjoint for each outcome

The **codeword interval** for some outcome
$$x_i$$
 is x_i . Compared by x_i is x_i . The codeword interval for some outcome x_i is x_i . The codeword interval for some outcome x_i is x_i . The codeword interval for some outcome x_i is x_i . The codeword interval for some outcome x_i is x_i . The codeword interval for some outcome x_i is x_i . The codeword interval for some outcome x_i is x_i . The codeword interval for some outcome x_i is x_i .

This is a street to the month that vapowcoder

All strings in the codeword interval start with the same prefix

This is not true in general for the symbol interval

Assignment Project Exam Help

- Interval Coding
 - https://powcoder.com

 - Decoding de WeChat powcoder

Shannon-Fano-Elias Decoding

To decode a given bitstring:

As start with the first bit, an Pompure the corresponding binary interval as SIGNMENT PROJECT Exam Help

- 2 if the interval is strictly contained within that of a codeword:
 - output the codeword https://powcoder.com
- repeat (1) for the rest of the bitstring
 else included ext bit and complete the corresponding timery interval

We might be able to stop early owing to redundancies in SFE

Shannon-Fano-Elias Decoding

Let $\mathbf{p} = \{\frac{2}{9}, \frac{1}{9}, \frac{1}{3}, \frac{1}{3}\}$. Suppose we want to *decode* 01000:

Find symbol interval containing codeword interval for $01000 = [0.25, 0.28125)_{10}$

Assignment Project Exam Help https://powcoder.com dd WeChat powcoder. [0.0.5)[0.25,0.5) [0.25,0.375) [0.25,0.3125) [0.25,0.2815)

We could actually stop once we see 0100, since $[0.25, 0.3125) \subset [0.22, 0.33]$

Assignment Project Exam Help

- Interval Coding
 - https://powcoder.com

 - Experior Decoding WeChat powcoder

Expected Code Length of SFE Code

The extra bit for the code lengths is because we code $\frac{\rho_i}{2}$ and

Assignment Project Exam Help

What is the expected length of a SFE code C for ensemble X with

probabilities p? powcoder.com
$$L(C,X) = \sum_{i=1}^{K} p_i \ell(a_i) = \sum_{i=1}^{K} p_i \left(\left\lceil \log_2 \frac{1}{p_i} \right\rceil + 1 \right)$$

$$Add \ WeChart powcoder$$

$$\leq \sum_{i=1}^{K} p_i \left(\log_2 \frac{1}{p_i} \right\rceil + 2 \right)$$

$$= H(X) + 2$$

Similarly, $H(X) + 1 \le L(C, X)$ for the SFE codes.

Why bother?

Aes Sprengente Projectan Exsagror Help be a Hutter an code for X

$$\frac{H(X) \leq L(C_H, X) \leq H(X) + 1}{\text{HttsDres Ootling}} \stackrel{\vdash}{\text{Heorem}} \text{WCOder.Com}$$

so why not just use Huffman codes?

SFE is a stapping store to the fore powerful to the Wides del

Roughly, try to apply SFE to a block of outcomes

Summary and Reading

Main points:

Problems with Huffman coding symbol distribution

Assignment Project Exam Help

- Shannon-Fano-Elias Coding:
 - Code C via cumulative distribution function for p
 - -https://powcoder.com
- Extra bit guarantees interval containment

Summary and Reading

Main points:

Problems with Huffman coding symbol distribution

Assignment Project Exam Help

- Shannon-Fano-Elias Coding:
 - ► Code *C* via cumulative distribution function for *p*
 - https://poweoder.com
- Extra bit guarantees interval containment

Reading:

- InterAcion: Wke 6. land 5. powcoder
- Shannon-Fano-Elias Coding: Cover & Thomas §5.9

Summary and Reading

Main points:

Problems with Huffman coding symbol distribution

Assignment Project Exam Help

- Shannon-Fano-Elias Coding:
 - Code C via cumulative distribution function for p
 - https://powcoder.com
- Extra bit guarantees interval containment

Reading:

- Interpade: Wke 6 lant powcoder
- Shannon-Fano-Elias Coding: Cover & Thomas §5.9

Next time:

Extending SFE Coding to sequences of symbols