

Dinámica (FIS1514)

Movimiento armónico simple

Felipe Isaule

felipe.isaule@uc.cl

Miércoles 9 de Octubre de 2024

Resumen clase anterior

- Definimos la **potencia**.
- Presentamos el concepto de **eficiencia**.

Clase de hoy

- Movimiento armónico simple.
- Oscilación de un resorte.

- Bibliografía recomendada:
 - Hibbeler (22.1).

Clase de hoy

- Movimiento armónico simple.
- Oscilación de un resorte.

Oscilaciones

- Las oscilaciones (o vibraciones) corresponden a movimientos periódicos en el tiempo.
- Describen una serie de fénomenos fundamentales en las ciencias físicas y la ingenieria.
- Entre los tipos de oscilaciones más fundamentales:
 - → Oscilación libre: Movimiento armónico simple (M.A.S.).
 - → Oscilación amortiguada.
 - → Oscilación forzada.

 Un movimiento armónico simple es aquel descrito por una ecuación de movimiento del tipo

$$\ddot{x} + \omega^2 x = 0$$

donde ω es la **frecuencia de oscilación** (frecuencia natural).

El período se define como:

$$T = \frac{2\pi}{\omega}$$

• La solución es:

$$x(t) = A\cos(\omega t + \delta)$$

donde A es la **amplitud** y δ es la **fase**.

- La amplitud tiene unidades de distancia.
- La fase es medida en radianes (ángulos).

Alternativamente podemos escribir:

$$x(t) = A_1 \cos(\omega t) + A_2 \sin(\omega t)$$

donde

$$A = \sqrt{A_1^2 + A_2^2}, \quad \delta = \arctan(A_1/A_2).$$

 Las constantes son definidas a partir de las condiciones iniciales.

La **velocidad** es:

$$x(t) = A\cos(\omega t + \delta)$$
 \longrightarrow $v(t) = -A\omega\sin(\omega t + \delta)$

$$v(t) = -A\omega\sin(\omega t + \delta)$$

Mientras que la **aceleración**:

$$v(t) = -A\omega\sin(\omega t + \delta)$$
 \longrightarrow $a(t) = -A\omega^2\cos(\omega t + \delta)$

$$a(t) = -A\omega^2 \cos(\omega t + \delta)$$

 Es fácil comprobar que la ecuación de movimiento se satisface:

$$\ddot{x} + \omega^2 x = 0$$

• De todos modos vamos a derivar la solución x(t):

$$\ddot{x} + \omega^2 x = 0 \qquad \qquad \frac{dv}{dt} = -\omega^2 x$$

$$a = \frac{dv}{dt} \qquad \frac{dv}{dx} \frac{dx}{dt} = -\omega^2 x$$

$$\int v \, dv = -\int \omega^2 x \, dx$$

$$\frac{v^2}{2} = -\omega^2 \frac{x^2}{2} + C_1$$

$$\longrightarrow \qquad v = \sqrt{2C_1 - \omega^2 x^2}$$

• De todos modos vamos a derivar la solución x(t) :

$$v = \frac{dx}{dt}$$

$$\int \frac{dx}{\sqrt{2C_1 - \omega^2 x^2}} = \int dt$$

$$\frac{1}{\omega} \arcsin\left(\frac{\omega x}{\sqrt{2C_1}}\right) = t + C_2$$

$$x = \frac{\sqrt{2C_1}}{\omega} \sin(\omega(t + C_2))$$

$$x = \frac{\sqrt{2C_1}}{\omega} \cos(\omega(t + C_2) + \pi/2)$$

Obtenemos que:

$$x = \frac{\sqrt{2C_1}}{\omega}\cos(\omega(t+C_2) + \pi/2)$$

renombrando

$$A = \frac{\sqrt{2C_1}}{\omega} \,, \quad \delta = \omega \, C_2 + \frac{\pi}{2}$$

Se obtiene

$$x = A\cos(\omega t + \delta)$$

- La frecuencia angular ω se mide en $\mathrm{rad/s}$.
- La frecuencia rotacional

$$f = \frac{\omega}{2\pi}$$

- En el SI se mide en **Hertz** $s^{-1} = Hz$.
- El período en SI se mide en segundos.

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

Notar que si la ecuación de un MAS tiene una constante

$$\ddot{x} + \omega^2 x = C$$

La solución se puede escribir como

$$x = A\cos(\omega t + \delta) + C/\omega^2$$

Clase de hoy

- Movimiento armónico simple.
- · Oscilación de un resorte.

Oscilación de un resorte

• Si tenemos un bloque de masa m, atado a un resorte de constante elástica k y largo natural x_0 , por conservación de la energía:

$$E = T + U$$
 Derivamos con respecto al tiempo
$$E = \frac{m}{2}\dot{x}^2 + \frac{k}{2}x^2$$

$$\xrightarrow{v = \dot{x}}$$

La energía es constante: dE/dt=0 $0 = m\dot{x}\ddot{x} + kx\dot{x}$

$$\ddot{x} + \frac{k}{m}x = 0$$

Que corresponde a la ecuación de un oscilador armónico con frecuencia angular:

$$\omega = \sqrt{k/m}$$

Oscilación de un resorte

• Si tenemos un bloque de masa m, atado a un resorte de constante elástica k y largo natural x_0 , por conservación de la energía:

$$\ddot{x} + \omega^2 x = 0 \qquad \longrightarrow \qquad x(t) = A\cos(\omega t + \delta)$$

$$\omega = \sqrt{\frac{k}{m}}$$

<u>Ejemplo 1</u>: Si en *t*=0 el resorte es soltado desde el reposo a una distancia *D* del punto de equilibrio:

$$v(t=0) = -A\omega\sin(\delta) = 0$$

$$\Rightarrow \quad \delta = 0$$

$$x(t=0) = A\cos(0) = D$$

$$\Rightarrow \quad A = D$$

$$x(t) = D\cos(\omega t)$$

Oscilación de un resorte

• Si tenemos un bloque de masa m, atado a un resorte de constante elástica k y largo natural x_0 , por conservación de la energía:

$$\ddot{x} + \omega^2 x = 0$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$\longrightarrow$$
 $x(t) = A\cos(\omega t + \delta)$

Ejemplo 2: Si en t=0 el resorte pasa por el punto de equilibrio con una rapidez v_0 hacia +x:

$$F_{e}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$x(t=0) = A\cos(\delta) = 0$$

$$\to \delta = n\pi/2, \quad n = \pm 1$$

$$v(t=0) = -A\omega\sin(n\pi/2) = v_0$$

$$\to n = -1, \quad A = v_0/\omega$$

$$\to x(t) = \frac{v_0}{\omega}\cos(\omega t - \pi/2)$$

Ejemplo

• Se tiene un cuerpo de masa m atado a un resorte de constante elástica k y largo natural x_0 . Si el cuerpo está colgado como muestra la figura y es afectado por la gravedad, encuentre la ecuación de movimiento y la frecuencia de oscilación.

Ejemplo

• Se tiene un cuerpo de masa m atado a un resorte de constante elástica k y largo natural x_0 . Si el cuerpo está colgado como muestra la figura y es afectado por la gravedad, encuentre la ecuación de movimiento y la frecuencia de oscilación.

La energía es constante: dE/dt=0 $0=m\dot{x}\ddot{x}+kx\dot{x}+mg\dot{x}$

$$\ddot{x} + \frac{k}{m}x + g = 0$$

Obtenemos:

$$x(t) = A\cos(\omega t + \delta) - \frac{mg}{k}, \qquad \omega = \sqrt{k/m}$$

Resumen

- Presentamos el concepto de oscilaciones y examinamos el problema del oscilador armónico simple.
- Definimos la frecuencia y período de oscilación.
- Estudiamos el oscilador armónico en ejemplos simples con resortes.