

EXERCICES

Transfert de Hohmann et manœuvre

On souhaite passer d'une orbite circulaire altitude 600 km en une orbite géostationnaire

- Calculer de demi grand axe d'une orbite géostationnaire
 - µterre= 3,9860064E+14 m^3s-2
 - R terre= 6378140 m
 - 1 année = 365.25 j
 - 1 jour =86400s
- On suppose l'orbite circulaire altitude 600 km équatorial
 - Proposer le transfert de Hohmann
 - Calculer l'amplitude des impulsions de vitesse
- On suppose l'orbite circulaire altitude 600 km incliné de 7 deg
 - Proposer le transfert de Hohmann avec manœuvre hors plan
 - Calculer l'amplitude des impulsions de vitesse et optimiser les manœuvre pour que la somme totale de l'amplitude des manœuvres soit minimale

Triangle des vitesses

On souhaite mettre à poste un satellite géostationnaire Le satellite est laché sur une orbite GTO 600km*36000km d'altitude et incliné de 7°

1/ calculer le DV total à faire

2/ on souhaite mettre à poste le satellite en 3 manœuvres successives en supposant que les manœuvres sont d'amplitude décroissante proposé l'amplitudes des 3 manœuvres tel que la longitude de passage à l'apogée de la 1ere manœuvre à lieu à 0 ° et que la dernière manœuvre soit effectué à la longitude de stationnement final de 50° est.

Evaluation de la pression de radiation solaire

Objectif est d'évaluer la prise d'exentricité sous l'effet de la pression de radiation solaire

On suppose que le satellite est sur son orbite geostationaire:

- Calculer de demi grand axe d'une orbite géostationnaire
 - μterre= 3,9860064E+14 m³s-2
 - R terre= 6378140 m
 - 1 année = 365.25 j
 - 1 jour =86400s

Le satellite est équipé de 40 m^2 de panneau solaire qui absorbe 100% du flux solaire: 1366 W/m^2

Calculer la force perturbatrice généré par le soleil

Dynamique du satellite

Dynamique satellite:

$$\frac{d^2\vec{r}}{dt^2} = -\mu \frac{\vec{r}}{r^3} + \frac{\vec{F}_{pertubatrice}}{m}$$

- \vec{r} rayon vecteur du satellite par rapport au centre de la Terre
- m masse du satellite
- μ Constante gravitationnelle 3,986005 E+14 m³/s² pour la Terre
- F_{pertubatrice} ensemble des forces perturbatrices affectant la trajectoire du satellite : luni-solaire, pression de radiation, potentiel,....

Quand les forces perturbatrices sont négligées le mouvement est alors purement Képlerien

Calculer l'évolution de \vec{r} rayon vecteur du satellite sur 3 orbites en présence de la pression de radiation et à chaque apogée évalué l'excentricité

En intégrant le système dynamique:

$$X = \begin{bmatrix} x & y & vx & vy \end{bmatrix}^T et \ r = \sqrt{x^2 + y^2}$$

$$\frac{dX}{dt} = \begin{bmatrix} vx \\ vy \\ -\mu \frac{x}{r^3} \\ -\mu \frac{y}{r^3} + \frac{F_{pertubatrice}}{m} \end{bmatrix}$$