

INTERSECTION OF TWO LINES IN THREE-SPACE

Ronald Goldman University of Waterloo Waterloo, Ontario, Canada

Let each line be defined by a point P_k and a unit direction vector \mathbf{V}_k , k = 1,2. Then we can express each line parametrically by writing

$$L_1(t) = P_1 + V_1 t$$
 and $L_2(s) = P_2 + V_2 s$.

The intersection occurs when $L_1(t) = L_2(s)$ or equivalently when

$$P_1 + \mathbf{V}_1 \mathbf{t} = P_2 + \mathbf{V}_2 \mathbf{s}$$

Subtracting P_1 from both sides and crossing with V_2 yields

$$(\mathbf{V}_1 \times \mathbf{V}_2)t = (P_2 - P_1) \times \mathbf{V}_2.$$

Now dotting with $(\mathbf{V}_1 \times \mathbf{V}_2)$ and dividing by $|\mathbf{V}_1 \times \mathbf{V}_2|^2$ give us

$$t = \text{Det}\{(P_2 - P_1), \mathbf{V}_2, \mathbf{V}_1 \times \mathbf{V}_2\}/|\mathbf{V}_1 \times \mathbf{V}_2|^2$$

Symmetrically, solving for s, we obtain

$$s = \text{Det}\{(P_2 - P_1), \mathbf{V}_1, \mathbf{V}_1 \times \mathbf{V}_2\}/|\mathbf{V}_1 \times \mathbf{V}_2|^2.$$

Two important observations follow:

- If the lines are parallel, the denominator $|\mathbf{V}_1 \times \mathbf{V}_2|^2 = 0$.
- If the lines are skew, *s* and *t* represent the parameters of the points of closest approach.