Задание на четвертую неделю.

- 1. (i) Докажите, что в Σ_2 лежит язык булевых формул от двух наборов переменных $\phi(x_1,\ldots,x_n,y_1\ldots y_n)=\phi(\vec{x},\vec{y})$ таких, что при некоторых значениях \vec{x} они справедливы вне зависимости от значений y_1,\ldots,y_n .
- (ii) Придумайте какую-нибудь свою задачу из класса Σ_3 (или Π_3 , на ваш вкус).
- (iii) Докажите, что $\Sigma_k \subset \Sigma_{k+1} \cap \Pi_{k+1}$.
- (iv) Докажите, что $\mathcal{NP} \subset \mathcal{PSPACE} \subset \mathcal{EXPTIME}$.
- 2. Покажите, как свести следующую задачу к вычислению некоторого перманента: найти количество перестановок п элементов, в которых части элементов (с номерами $i_1, i_2, \ldots i_k$) запрещено занимать позиции $j_1, \ldots j_k$ соответственно.
- 3. Докажите, что если всякий \mathcal{NP} -трудный язык является \mathcal{PSPACE} -трудным, то $\mathcal{PSPACE} = \mathcal{NP}$.
- 4. Докажите, что следующие языки лежат в \mathcal{L} :
- (i) $\{a\#b\#c|c=a+b\}$ (a, b, c числа в двоичной записи).
- (ii) $\{a\#b\#c|c=a\cdot b\}$ (a, b, c числа в двоичной записи).
- (iii) $UCYCLE = \{G \mid B \text{ неориентированном графе } G \text{ есть цикл} \}$
- 5. Сертификатное определение \mathcal{NL} : $A \in \mathcal{NL}$ тогда и только тогда, когда для некоторой детерминированной машины M выполнена эквивалентность: $x \in A \Leftrightarrow \exists s : M(x,s) = 1$. При этом длина s должна быть полиномиальна от длины x, машина получает s на отдельной ленте, по которой может двигаться только слева направо, а количество ячеек, занятых на рабочей ленте, должно быть логарифмическим.

Вопрос задачи: а какой класс получится, если в предыдущем определении разрешить машине двигаться по сертификатной ленте в обе стороны?

6. Докажите, что логарифмическая сводимость транзитивна, причем если $B \in \mathcal{L}$ и $A \leq_L B$, то $A \in \mathcal{L}$, а если $B \in \mathcal{NL}$ и $A \leq_L B$, то $A \in \mathcal{NL}$.

7 (Бонусная). Верно ли, что класс со- \mathcal{NP} замкнут относительно операции чётной итерации $L^{even-*}=\{\varepsilon\}\cup L^2\cup L^4\cup\dots$?

8 (Бонусная). Докажите, что $C_n^0 - C_{n-1}^1 + C_{n-2}^2 - \ldots = \frac{\sin\left(\frac{\pi(n+1)}{3}\right)}{\sin\frac{\pi}{3}}.$