GLIMMPSE Validation Report:

GLMM(F) Example 7. Power for a time by treatment interaction using orthogonal polynomial contrast for time

Authors: Sarah Kreidler

Run Date: 2012/12/05 13:19:10

1. Introduction

The following report contains validation results for the JavaStatistics library, a component of the GLIMMPSE software system. For more information about GLIMMPSE and related publications, please visit

http://samplesizeshop.org.

The automated validation tests shown below compare power values produced by the JavaStatistics library to published results and also to simulation. Sources for published values include POWERLIB (Johnson *et al.* 2007) and a SAS IML implementation of the methods described by Glueck and Muller (2003).

Validation results are listed in Section 3 of the report. Timing results show the calculation and simulation times for the overall experiment and the mean times per power calculation. Summary statistics show the maximum absolute deviation between the power value calculated by the JavaStatistics library and the results obtained from SAS or via simulation. The table in Section 3.3 shows the deviation values for each individual power comparison. Deviations larger than 10^{-6} from SAS power values and 0.05 for simulated power values are displayed in red.

2. Study Design

The study design for Example 7 is a balanced two sample design with five repeated measures over time. We calculate power for a test of the time trend by treatment interaction. The example demonstrates the use of an orthogonal polynomial contrast for the effect of time.

2.1. Inputs to the Power Calculation

2.1.1. List Inputs

Type I error rates

0.0500000

Beta scale values

1.0000000

Sigma scale values

1.0000000

Per group sample size values

10, 20, 40

Statistical tests

UNIREP, UNIREP-BOX, UNIREP-GG, UNIREP-HF, WL, PBT, HLT **Power methods**

cond

2.1.2. Matrix Inputs

$$\mathbf{Es} \left(\mathbf{X} \right) = \begin{bmatrix} 1.0000 & 0.0000 \\ 0.0000 & 1.0000 \end{bmatrix}$$

$$\mathbf{B}_{(2 \times 5)} = \begin{bmatrix} 0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000 \\ 1.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \end{bmatrix}$$

$$\mathbf{C}_{(1\times 2)} = \begin{bmatrix} 1.0000 & -1.0000 \end{bmatrix}$$

$$\Theta_0 = \begin{bmatrix} 0.0000 & 0.0000 & 0.0000 & 0.0000 \end{bmatrix}$$

$$\Sigma_E$$
 =
$$\begin{bmatrix} 1.5000 & 0.3750 & 0.3750 & 0.3750 & 0.3750 \\ 0.3750 & 1.5000 & 0.3750 & 0.3750 & 0.3750 \\ 0.3750 & 0.3750 & 1.5000 & 0.3750 & 0.3750 \\ 0.3750 & 0.3750 & 0.3750 & 1.5000 & 0.3750 \\ 0.3750 & 0.3750 & 0.3750 & 0.3750 & 1.5000 \end{bmatrix}$$

3. Validation Results

A total of 21 power values were computed for this experiment.

3.1. Timing

	Total Time (seconds)	Mean Time (seconds)		
Calculation	0.0000000	0.00E0		
Simulation	12.0590000	5.74E-1		

Max deviation from SAS	0.00000077
Max deviation from simulation	0.06886243

3.3. Full Validation Results

Power	SAS	Sim	Test	Sigma	Beta	Total N	Alpha
	Power	Power		Scale	Scale		
	(devia-	(devia-					
	tion)	tion)					
0.6245526	0.6245522	0.6222000	UNIREP	1.0000000	1.0000000	20	0.0500000
	(0.0000004)	(0.0023526)					
0.9325210	0.9325209	0.9414000	UNIREP	1.0000000	1.0000000	40	0.0500000
	(0.0000001)	(0.0088790)					
0.9992799	0.9992797	0.9995000	UNIREP	1.0000000	1.0000000	80	0.0500000
	(0.0000002)	(0.0002201)					
0.2329963	0.2329961	0.2311000	UNIREP-	1.0000000	1.0000000	20	0.0500000
	(0.0000002)	(0.0018963)	BOX				
0.7006865	0.7006860	0.7038000	UNIREP-	1.0000000	1.0000000	40	0.0500000
	(0.0000005)	(0.0031135)	BOX				
0.9881538	0.9881536	0.9905000	UNIREP-	1.0000000	1.0000000	80	0.0500000
	(0.0000001)	(0.0023462)	BOX				
0.5735035	0.5735027	0.5711000	UNIREP-	1.0000000	1.0000000	20	0.0500000
	(0.0000008)	(0.0024035)	GG				
0.9240191	0.9240189	0.9321000	UNIREP-	1.0000000	1.0000000	40	0.0500000
	(0.0000002)	(0.0080809)	GG				
0.9992016	0.9992015	0.9994000	UNIREP-	1.0000000	1.0000000	80	0.0500000
	(0.0000001)	(0.0001984)	GG				
0.6245526	0.6245522	0.5711000	UNIREP-	1.0000000	1.0000000	20	0.0500000
	(0.0000004)	(0.0534526)	HF				
0.9325210	0.9325209	0.9321000	UNIREP-	1.0000000	1.0000000	40	0.0500000
	(0.0000001)	(0.0004210)	HF				
0.9992799	0.9992797	0.9994000	UNIREP-	1.0000000	1.0000000	80	0.0500000
	(0.0000002)	(0.0001201)	HF				
0.5097624	0.5097621	0.5076000	WL	1.0000000	1.0000000	20	0.0500000
	(0.0000004)	(0.0021624)					
0.9024619	0.9024613	0.9118000	WL	1.0000000	1.0000000	40	0.0500000
	(0.0000006)	(0.0093381)					
0.9988508	0.9988507	0.9993000	WL	1.0000000	1.0000000	80	0.0500000
	(0.0000001)	(0.0004492)					
0.5097624	0.5097621	0.4409000	PBT	1.0000000	1.0000000	20	0.0500000
	(0.0000004)	(0.0688624)					
0.9024619	0.9024613	0.8959000	PBT	1.0000000	1.0000000	40	0.0500000
	(0.0000006)	(0.0065619)					

0.9988508	0.9988507	0.9993000	PBT	1.0000000	1.0000000	80	0.0500000
	(0.0000001)	(0.0004492)					
0.5097624	0.5097621	0.5076000	HLT	1.0000000	1.0000000	20	0.0500000
	(0.0000004)	(0.0021624)					
0.9024619	0.9024613	0.9118000	HLT	1.0000000	1.0000000	40	0.0500000
	(0.0000006)	(0.0093381)					
0.9988508	0.9988507	0.9993000	HLT	1.0000000	1.0000000	80	0.0500000
	(0.0000001)	(0.0004492)					

References

- Glueck, D. H., & Muller, K. E. (2003). Adjusting power for a baseline covariate in linear models. *Statistics in Medicine*, 22(16), 2535-2551.
- Johnson, J. L., Muller, K. E., Slaughter, J. C., Gurka, M. J., & Gribbin, M. J. (2009). POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models. *Journal of Statistical Software*, 30(5), 1-27.
- Muller, K. E., & Stewart, P. W. (2006). Linear model theory: univariate, multivariate, and mixed models. Hoboken, New Jersey: John Wiley and Sons.