STATISTICAL PHYSICS & MACHINE LEARNING

EXERCISE 03: The randomised perceptron learning rule

Consider a perceptron which takes as input two binary numbers of N/2 digits each and restitutes as an output either +1 or -1. The input vector \vec{S} has N elements $S_i = \{\pm 1\}$. The first N/2 elements represent the first number n_T and the second N/2 elements represent the second number n_B . The perceptron has N synaptic couplings J_i and must be able to tell which number is larger by giving as an output $\sigma(\{S_i\}, \{J_i\}) = \text{sign}(\sum_{i=1}^N S_i J_i)$ such that $\sigma = 1$ if $n_T > n_B$ and $\sigma = -1$ if $n_T \le n_B$.

- (1) Use the perfect perceptron (with synaptic weights $J_i^*=2^{N/2-i}$ $1 \leq i \leq N/2$ and $J_i^*=-J_{i-N/2}^*$ $N/2+1 \leq i \leq N$) as teacher perceptron: $T_i=J_i^*$ and $\sigma_T^\mu=\sigma(\{S_i^\mu\},\{T_i\})$.
- (2) Initialise a student perceptron with the synaptic weights obtained as random values extracted from a Gaussian distribution $\mathcal{N}(0,1)$.
- (3) For N=20 produce 7 sets of P=1,10,20,50,100,150,200 examples ξ^{μ} with correct classifications σ_T^{μ} obtained by the teacher perceptron.
- (4) For each training set train the perceptron using the following perceptron update rule: only if $\sigma(\{\xi_i^{\mu}\}, \{J_i\}) \neq \sigma_T^{\mu}$ update the synaptic couplings $J_i(t+1) = J_i(t) + \frac{1}{\sqrt{N}}\sigma_T^{\mu}\xi_i^{\mu} * (1+r_i)$ with r_i a Gaussian random number with null mean and variance $\sigma^2 = 50$. The rule should be applied across an entire cycle of the inputs in the training set, a training error ϵ_t is evaluated at the end of the cycle and the process repeated until $\epsilon_t = 0$.
- (5) Evaluate the corresponding test error $\epsilon = P_{test}^{-1} \sum_{\mu} \theta(\sigma(\{S_i^{\mu}\}, \{J_i\}), \sigma_T^{\mu})$ of the trained student perceptrons with $P_{test} = 1000$.
- (6) Repeat the procedure 1000 times and evaluate the average test error (and its error bar).
- (7) Plot ϵ vs P.
- (8) Repeat the entire study (points from (3) to (6)) for N = 40 and P = 1, 2, 20, 40, 100, 200, 300.
- (9) Plot ϵ vs P for N=40 together with the data obtained with N=20.
- (10) Find a way to represent the data so that they superimpose and comment on what done.