

# Unusual Materials for Hydrogen Storage: From Natural Diamond to Inorganic Nanotubes and Inorganic Fullerene-Like Nanoparticles

### Alex Laikhtman

Sciences Department, Holon Institute of Technology (HIT), Holon, Israel

> International Workshop on Energy Storage in the Grid: Low, Medium, and Large Scale Requirements Barcelona, January 2014

## Part 1: Study of Hydrogen in Diamond: Collaborators

Alon Hoffman (Technion, Israel)

Gérald Dujardin, Genevieve Comtet, (LPPM, Université Paris Sud, Orsay, France) – Synchrotron Radiation Measurements

Roger Azria, (LCAM, Université Paris Sud, Orsay, France) - Electron Stimulated Desorption Measurements

## **Presentation Outline**

- 1. Exposure of differently oriented <u>undoped</u> natural diamonds (**type IIa-no impurities**) to deuterium activated by microwave (MW) plasma <u>SIMS analysis</u>;
- 2. Interaction of activated by Microwave (MW) plasma and in UHV, by Hot Filament atomized deuterium with CVD polycrystalline diamond films synchrotron radiation photon stimulated ion desorption (PSID) and electron stimulated desorption (ESD) measurements.

## **Aim of the Research**

- 1. To elucidate, whether hydrogen/deuterium can diffuse into the inner lying atomic layers of natural <u>undoped</u> diamond following exposure to MW plasma.
- 2. To compare the effects of MW and *in situ* (in UHV) deuteration (using hot tungsten filament) on the structure and electronic properties of diamond.

# Interaction of MW Plasma Activated Deuterium with Natural Diamond

## **Sample Preparation**

Samples: undoped, type <u>IIa</u>, natural (100)-, (110)-, and (111)-oriented

diamonds

**Treatment**: exposure to MW Deuterium (99.999 %) plasma:

Gas pressure: 60 Torr;

Sample Temperature: ~ 700 °C

Plasma Power: 900 W

**Duration of the treatment**: 30-45 min

## Analysis

**Static SIMS**: surface concentration of deuterium

**Dynamic SIMS:** sputter depth profile

## **Verification of the Crystalline Perfection**

(before and after MW plasma treatment)

<u>LEED pattern:</u> well-defined planes: (111)-1×1:D, (100)-2×1:D, and (111)-facetted structure for the (110)-oriented diamond

**EELS:** the characteristic diamond bulk and surface plasmon peaks at 33 and 23 eV, respectively, were observed with no traces of spectral features at 6 eV commonly related to amorphous carbon and graphite

## **Static SIMS**

Experimental: 10 keV Cs<sup>+</sup> beam

Ion current:  $1 \times 10^{-12}$  A

Maximal ion dose:  $4 \times 10^{12}$  cm<sup>-2</sup>



The <u>highest</u> concentration of deuterium is on the (110)-oriented surface.

## **Depth Profile SIMS Analysis**

Experimental: 10 keV Cs<sup>+</sup> beam;

Ion current:  $1 \times 10^{-8}$  A



**Depth**<sub>21</sub>**Profile-High Sputter Rate** 



- Deuterium atoms activated by MW plasma **diffuse** into undoped <u>type IIa</u> diamond crystal to doses of 10<sup>19</sup>-10<sup>21</sup> cm<sup>-3</sup>
- ➤ No change in hydrogen concentration when hydrogenated samples have been stored for days or weeks
- Relative amounts of deuterium in the **bulk**, as well as in the **near-surface** region of differently oriented diamonds *retain these on the very surface*:
  - 10<sup>20</sup>-10<sup>21</sup> cm<sup>-3</sup> for the (110)-oriented surface
  - $\sim 10^{20}$  cm<sup>-3</sup> for the (111)-oriented surface
  - $\sim 10^{19}$  cm<sup>-3</sup> for the (100)-oriented diamond
- The diffusion depth of deuterium is  $\sim 8000 \text{ Å} (0.8 \text{ µm})$

# Interaction of Activated Deuterium with Polycrystalline Diamond Films: MW Plasma vs. Hot Filament Activation

## **Sample Preparation**

**Substrates:** p-doped Si wafers, treated with diamond/ethanol slurry

**Deposition:** using MW CVD

 $CH_4:H_2$  (1.5:98.5) gas mixture

Gas pressure: 70 Torr (400 sccm gas flow rate)

**Temperature**: ~ 850 °C (MW power: 1200 W)

**Deposition time**: 4.5 hours

Film Thickness: ~ 10 μm

**Crystallite Size**: 2-5 μm

#### **Post-Deposition Deuteration (***Ex situ***)**:

exposure to MW Deuterium (99.999 %) plasma:

- **Section 5. Gas pressure**: 60 Torr
- **Sample Temperature**: ~ 800 °C
- **Solution** Series Series Series Plasma Power: 900 W
- **Solution of the treatment**: 30-45 min

#### **Deuteration** (In situ):

- **⋄** Annealing of the film to 1000 °C in UHV
- **⋄ Verification** of the complete hydrogen desorption (by PSID)
- **Exposure to deuterium gas flowing through a hot (1800 °C) tungsten filament,** while keeping the sample at **the room temperature**:

  - Duration: 60 min

## Analysis

**SIMS measurements** - difficult to perform due to high surface roughness

#### We applied the following techniques:

#### 1. Photon stimulated ion desorption (PSID) of D<sup>+</sup>:

using synchrotron radiation: 280-310 eV measuring the total yield of escaping D<sup>+</sup> ions after *in situ* annealing to 25–1000 °C

#### 2. Electron stimulated desorption (ESD) of D<sup>-</sup> (H<sup>-</sup>):

using low energy electrons (5–35 eV) measuring:

🔖 ion yield

## **PSID** measurements





Assignement of the spectral feautures: [Reference: Hoffman et al., Phys. Rev. B 62, 8446 (2000)].

 $I_1$  (287.5eV)-excitation energy of C-H (ads) bonds: *direct* (via core-hole relaxation) and *indirect* (via secondary electron excitations) processes;

- $I_2$  (~ 292 eV) due to excitation of C-C bonds (mainly *indirect* processes);
- 285 eV valence band excitations due to sec. electrons in  $sp^2$ -bonded carbon;
- 302.4 eV (dip) second absolute band gap of diamond (indirect processes).

#### MW-deuterated films: effect of annealing:

- integral desorption yield decreases
- I<sub>2</sub>/I<sub>1</sub>peaks ratio decreases

#### HF (in situ)-deuterated films: effect of annealing:

- integral desorption yield is lower than for a MW-deuterated film
- integral desorption yield remains nearly constant
- □ I<sub>2</sub>/I<sub>1</sub>peaks ratio remains nearly constant



#### **MW-deuterated films:**

- deuterium concentration decreases upon moderate heating
- dynamics of the desorption changes in favor of direct processes (not driven by SEE)

#### HF (in situ)-deuterated films:

- deuterium is stable upon annealing
- dynamics of the desorption processes remains unchanged

## **ESD** measurements

**MW-deuterated** 

HF (in situ)-deuterated



Integrated Intensity (arb unit) 20 25 30

The peak <u>around 9 eV</u> is attributed to a <u>dissociative electron attachment (DEA)</u> process through a Feshbach resonance:

$$e^-+ CH(ads) \rightarrow (CH^-)^* \rightarrow C(diam) + H^-$$

The monotonic increase is associated with a dipolar dissociation (DD) process:  $e^{-}+CH(ads) \rightarrow [(CH)^* + e^{-}] \rightarrow C^+(diam) + H^- + e^{-}$ 

The structure around 22 eV is due to sub-surface deuterium giving DEA process after the incident electrons have lost energy (13 eV) in electronic inter-band excitation of the diamond

Reference: *Hoffman et al.*, Phys. Rev. B **63**, 045401 (2001).

## Kinetic Energy Distribution of Deuterium Anions



In the <u>«surface»</u> case (<u>HF-deuterated</u>), the D-KED displays a <u>peak at a high kinetic energy</u> and <u>a low-intensity tail</u>

In the <u>«film»</u> case (<u>MW-deuterated</u>), deuterium is located <u>in the sub-surface</u>, <u>as well as on the surface</u> itself. This results in energy losses due to collisions and phonon coupling before D-ions escape from the film

## Hydrogen in Diamond: Conclusions

#### **Natural Diamond:**

- Deuterium activated by MW plasma diffuses into undoped type IIa natural diamond to the concentrations of 10<sup>19</sup>–10<sup>21</sup> cm<sup>-3</sup>
- **∞**Both bulk and surface concentrations of deuterium are the highest for the (110)-oriented surface, and the lowest for the (100)-oriented one. D
- Solution Diffusion depth of deuterium is in the order of 0.8 μm
- ❤Hydrogen can be stored for long periods (days, weeks, may be moore)

### **Polycrystalline Diamond Films:**

- Deuteration performed *in situ* (by Hot Filament) does not result in bulk diffusion of deuterium atoms, in contrast to the MW plasma treatment
- Solution Property Bulk deuterium (hydrogen) is not thermally stable, and desorbs upon moderate heating to 350 °C
- Chemisorbed deuterium (hydrogen) atoms are stable up to high temperatures.

# **Study of Hydrogen in Tungsten Sulfide Nanoparticles: Collaborators**

Alla Zak – HIT and Weizmann Institute, Israel – synthesis

Shaul Michaelson, Alon Hoffman - Technion, Israel - hydrogenations

**Hoi Ri Moon** – UNIST, Korea – volumetric measurements

## **The Substrate Materials**











WS<sub>2</sub>-Inorganic Nanotubes (INT)

## **How to Prepare?**



- 1.The nanosize precursor mixture of non-volatile oxide WO<sub>2.83</sub>–WO<sub>3</sub> phases undergoes mild reduction by hydrogen gas producing a volatile oxide phase (with 2.72<O/W<2.83).
- 2. The oxide vapor undergoes additional partial reduction to the non-volatile phase, which serves as a nucleation center for the nanowhisker growth into stable suboxide phase of  $WO_{2.72}$  ( $W_{18}O_{49}$ ).
- 3. Sulfidization starts from the surface and middle of the oxide nanowhiskers, and oxygen to sulfur exchange progresses towards the end of the nanowhiskers (fast step) and inwards (slow-diffusion controlled reaction). This process leads to a gradual consumption of the oxide core creating a hollow multiwall WS<sub>2</sub> NT.



- Fast reaction of the H<sub>2</sub>S and H<sub>2</sub> with the surface of semi-spherical oxide NP (the precursor) leads to the quick formation of a few closed WS<sub>2</sub> layers encapsulating the oxide core.
- ▶The surface-passivation of the oxide NP by the inert layers of WS<sub>2</sub> prevents coarsening of the NP, making each one of them a nanoreactor of its own. Thus, the oxide core becomes partially reduced to WO<sub>3-x</sub> and, subsequently, a slow diffusion-controlled reaction leads to fully replacement of the oxygen with sulfur atoms.
- This outwards-inwards-reaction proceeds in epitaxial-like fashion (layer by layer, using the external sulfide layers as a template) until the synthesis of the hollow IF-WS<sub>2</sub> NP is completed.
- ➤ The size and shape of the fullerene-like NP (IF-WS<sub>2</sub>) is determined by the size and shape of the pre-prepared WO<sub>3</sub> NP. The majority of oxide/IF NP range from 150 to 350 nm in diameter being of oval shape.
- The presence of a hollow core in the IF NP is attributed to the differences in specific gravity of WS<sub>2</sub> and WO<sub>3</sub> (7.5g/cm<sup>3</sup> and 7.15g/cm<sup>3</sup>, correspondingly).

## Why to use them for hydrogen storage?

- •High thermal and mechanical stability
- Layered and packed structure
- •H<sub>2</sub> could be intercalated in between the layers
- •H<sub>2</sub> can diffuse into hollow core or in between the layers through surface defects of IF spherical particles, and in the case of INT through the open end of the tubes

## How to treat them to store hydrogen?

- To expose to molecular hydrogen at high pressure, high/low temperature
- •To expose to plasma-activated (MW, RF, DC) hydrogen

# Early Works on Hydrogen Storage in XS<sub>2</sub> Nanotubes



J. Chen, S.-L. Li, Z.-L. Tao, Y.-T. Shen, C.-X. Cui, J. Am. Chem. Soc. 2003, 125, 5284.



J. Chen, S. L. Li, Z. L. Tao, J. Alloys Compd. 2003, 356–357, 413.

Max. Wt.%: 2.8% Max. Wt.%: 1.2%

Molecular weight, TiS<sub>2</sub>: 112 g/mol Molecular weight, MoS<sub>2</sub>: 160 g/mol

#### **Recent Results:**

## Exposure of WS<sub>2</sub>-INT to High Pressure Molecular Hydrogen

Outgassing conditions: 120 °C annealing under vacuum for 8 h

After each isotherm: 350 °C annealing under vacuum for 8 h

Adsorption time: 10 min

20 sec (time interval between data collection)

Verification of the substrate material: XRD and SEM



| adsorption<br>temperatur<br>e | wt%  |
|-------------------------------|------|
| 35 °C                         | 0.13 |
| 200 °C                        | 0.10 |
| 350 °C                        | 0.11 |

### **Recent Results:**

# **Exposure of WS<sub>2</sub>-IF to High Pressure Molecular Hydrogen**



| adsorption<br>temperatur<br>e | wt%  |
|-------------------------------|------|
| 35 °C                         | 0.13 |
| 200 °C                        | 0.19 |
| 350 °C                        | 0.13 |

M.W. 
$$(WS_2) = 248 \text{ g/mol}$$

# Recent results: Exposure of WS<sub>2</sub>-INT to Low Pressure MW-Plasma Activated Hydrogen

Goal: to get a sufficient energy (per an activated gas molecule) and large atomic flux to the substrate!

#### **Conditions:**

400 W, 60 Torr, 200 sccm, 5 min

Sample: tablet of 5 mm in diameter

$$Flux = \frac{6 \times 10^{23} \,\text{mol}^{-1}}{22.4 \times 10^{-3} \,\text{m}^3/\text{mol}} \cdot v_T \cdot A \cdot t = 2.5 \times 10^{25} \times 1500 \cdot 2 \times 10^{-5} \cdot 300 \cdot \frac{60 \,\text{torr}}{760 \,\text{torr}} = 1.5 \times 10^{25} \,(\text{atoms}) \,(\text{eq. 1})$$

And the energy per an atom is (Eq. 2):

$$Power = \frac{400}{1.67 \times 10^{-19}} = 2.5 \times 10^{21} \left(\frac{\text{eV}}{\text{s}}\right); N/t = \frac{200 \text{ sccm}}{22400 \text{ cc/mol}} \cdot \frac{6 \times 10^{23} \text{ mol}^{-1}}{60 \text{ s/min}} \approx 1 \times 10^{20} \frac{\text{atoms}}{\text{s}}$$

$$Energy = \frac{2.5 \times 10^{21}}{1 \times 10^{20}} = 25 \left(\frac{\text{eV}}{\text{atom}}\right) \text{ (eq. 2)}$$

**TOF SIMS for hydrogen detection** 



SEM verified: no visible damage to the structure

- $\triangleright$  Hydrogen signal increase:  $\times$ 70 (as related to the unexposed sample)
- ➤ Hydrogen concentration in the unexposed sample: ~0.015 wt.%
- Estimated hydrogen concentration in the MW-exposed WS<sub>2</sub>-INT:  $\sim 1$  wt.%:

to be verified by XRD and PCT hydrogen desorption

# The Ongoing Research: RF/DC Plasma: Testing the Influence of Particles Energy and Momentum



- Different gas flow rate and pressure
- RF plasma: better control on the energy of particles in plasma
- DC plasma: better control over the momentum of particles

# In Situ Diagnostics of Hydrogen Adsorption/Desorption in the Plasma System

- After hydrogenation the vacuum chamber will be pumped down to ~10<sup>-5</sup>
   Torr.
- The sample will be heated to ~500 °C.
- The hydrogen desorption will be monitored by measuring the gas pressure versus the time, P(t).
- Using data of P(t) and the pumping speed data S(P), we will calculate the mass of the gas absorbed by the sample as  $m = M \int_{0}^{\infty} \frac{S_{p}}{kT} dt m_{0}$ , where  $m_{0}$  is the mass of the gas absorbed by experimental setup and M is the molecular mass of hydrogen.

## Hydrogen in WS<sub>2</sub>-INT and WS<sub>2</sub>-IF: Conclusions

- $\triangleright$  Molecular high pressure-room/high temperature hydrogen absorbs into WS<sub>2</sub>-INT and WS<sub>2</sub>-IF to modest 0.13-0.19 wt.%.
- ➤ Increasing temperature does not really favor hydrogen absorption.
- ➤ Very short (5 min) MW-plasma activated hydrogen exposure results in up to ~1 wt.% absorption of hydrogen in WS<sub>2</sub>-INT (rough estimation).
- ➤ Multiple cycles of exposure-release can be performed and no deterioration of the substrate material has been detected.

<u>Thanks</u>: Funding by Israel-Korea grant in Renewable Energy by Israeli Ministry of Sciences.