

# CSE 6140/ CX 4140:

# Computational Science and Engineering ALGORITHMS

Instructor: Anne Benoit

Visiting Associate Professor, CSE

Based on slides by Bistra Dilkina

#### Dynamic Programming

- 1) Show problem has optimal substructure: the optimal solution can be constructed from optimal solutions to subproblems (recurrence relation).
- 2) Show subproblems are overlapping, i.e. subproblems may be encountered many times but the total number of distinct subproblems is polynomial
- 3) Construct an algorithm that computes the optimal solution to each subproblem only once, and reuses the stored result all other times
- 4) Show that time and space complexity is polynomial



[KT 6.1]

## WEIGHTED INTERVAL SCHEDULING





#### Weighted Interval Scheduling

#### Weighted interval scheduling problem.

- Job j starts at  $s_j$ , finishes at  $f_j$ , and has weight or value  $v_j$ .
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.



#### Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.



#### Weighted Interval Scheduling

Notation. Label jobs by finishing time:  $f_1 \le f_2 \le ... \le f_n$ . Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: 
$$p(8) = 5$$
,  $p(7) = 3$ ,  $p(2) = 0$ .



#### Dynamic Programming: Binary Choice

Consider an optimal solution O for the jobs {1,..,n}

No matter what O is, what can we say about the job n?

- Either O contains the last job n (Case 1)
- Or O does not contain the last job n (Case 2)

This covers all possible cases for O

## Case 1: O contains job n: what can we say about the remaining part of the solution $O-\{n\}$ ?

- O- $\{n\}$  cannot contain any job that is incompatible with n, i.e. cannot contain any job in p(n) + 1,..., n-1, i.e. it only contains jobs in  $\{1,...,p(n)\}$
- Since O is feasible, O- $\{n\}$  is a feasible solution for the problem of scheduling  $\{1,...,p(n)\}$
- More importantly 0-{n} must be an optimal solution for scheduling {1,...,p(n)}. If not, then we could take the optimal solution for {1,...,p(n)} and safely add job n to it, and obtain an overall solution O' better than the given optimal solution O

#### Dynamic Programming: Binary Choice

Consider an optimal solution O for the jobs {1,..,n}

No matter what O is, we can say that:

- Either O contains the last job n (Case 1)
- Or O does not contain the last job n (Case 2)

This covers all possible cases for O

#### Case 1: O contains job n

Contains an optimal solution for scheduling {1,...,p(n)}.

#### Case 2: O does not contain n

- Then O is a feasible solution for scheduling {1,...,n-1}
- If O is not the optimal solution for  $\{1,...,n-1\}$ , we can replace it with the optimal solution for  $\{1,...,n-1\}$  and obtain a better solution also for scheduling  $\{1,...,n\}$
- O must contain the optimal solution for scheduling  $\{1,...,n-1\}$ Finding the optimal solution for  $\{1,...,n\}$  involves looking at optimal solutions for smaller problems of the form  $\{1,...,j\}$

#### Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

Case 1: OPT selects job j.

Case 2: OPT does not select job j.

#### OPTIMAL SUBSTRUCTURE

- Case 1: OPT(j) selects job j.
  - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j) with value OPT(p(j))
  - collect profit v<sub>i</sub> from including j
  - OPT(j) = v(j) + OPT(p(j))

optimal substructure

- Case 2: OPT(j) does not select job j.
  - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1: OPT(j) = OPT(j-1)

#### RECURRENCE RELATION

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

#### Weighted Interval Scheduling: Brute Force

Brute force algorithm.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
  Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n.
  Compute p(1), p(2), ..., p(n)
  Call Compute-Opt(n)
Compute-Opt(j) {
   if (j = 0)
      return 0
   else
       return max(v_i + Compute-Opt(p(j)), Compute-Opt(j-1))
```

#### Proof this algorithm is correct

#### With the optimal substructure analysis we proved that:

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

Claim. The algorithm Compute-Opt(j) computes correctly the optimal value for each j=1,...,n.

#### Proof. By induction on j

- True for j=0, OPT(0)=0
- 2) Assume true for all i < j
- By induction we know OPT(j-1) and OPT(p(j)) are computed correctly Hence,  $Compute-Opt(j) = max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1)) = max(v_j + OPT(p(j)), OPT(j-1)) = OPT(j)$

#### Weighted Interval Scheduling: Brute Force

Ex. What if each job is incompatible with only one earlier job, i.e. p(j) = j-2. T(n) = T(n-1) + T(n-2) + O(1) grows like Fibonacci sequence -> T(n) in  $O(2^n)$ .

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems  $\Rightarrow$  exponential algorithms.



#### Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
 Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.
 Compute p(1), p(2), ..., p(n)
 for j = 1 to n
    M[j] = empty global array
 M[0] = 0
 M-Compute-Opt(n)
M-Compute-Opt(j) {
   if (M[j] is empty)
      M[j] = max(v_i + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
}
```

#### What have we done so far?

- 1. We showed optimal substructure property for the problem
- Derived a recurrence relation based on the optimal substructure (with overlapping subproblems)
- 3. Showed total number of distinct subproblems is polynomial and designed a DP Algorithm that implements the recurrence relation and caches explored subproblems to avoid repeated work
- 4. Analyze Space and Time of our algorithm

#### Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

- Sort by finish time: O(n log n).
- Computing  $p(\cdot)$ : O(n log n) via sorting by start time.
- M-Compute-Opt(j): each invocation takes O(1) time and either
  - (i) returns an existing value M[j]
  - (ii) fills in one new entry M[j] and makes two recursive calls
- $\blacksquare$  The running time is bound by (a constant  $\times$  the number of recursive calls)
- Progress measure  $\Phi$  = # nonempty entries of M[].
  - initially  $\Phi$  = 0, throughout  $\Phi \leq$  n.
  - (ii) increases  $\Phi$  by  $1 \Rightarrow$  at most 2n recursive calls.
- Overall running time of M-Compute-Opt(n) is O(n). •

Remark. The overall algorithm takes O(n) if jobs are pre-sorted by start and finish times when given as input.

#### Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.



```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(v_j + M[p(j)], M[j-1])
}
```

#### Dynamic Programming

#### Top-down DP = Memoization

- Design a recursive algorithm
- Store result for each subproblem when you first compute it
- Check for existing result for a subproblem, before doing any extra work

#### Bottom-up DP = Iterative DP

- Determine dependency between a problem and its subproblems
- Determine an order in which to compute subproblems so that you always have what you need already available
- Fill in the table of results in the determined order (using FOR loops)

#### Weighted Interval Scheduling: Finding a Solution

- Q. Dynamic programming algorithm computes optimal value. What if we want the solution itself?
- A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

■ # of recursive calls  $\leq$  n  $\Rightarrow$  O(n).



# LONGEST COMMON SUBSEQUENCE [CLRS 15.4]

## Longest Common Subsequence (LCS)



- Given two strings/sequences
- Ex: X= {A B C B D A B }, Y= {B D C A B A}
- find Longest Common Subsequence (a sequence of letters that appears in both X and Y but not necessarily contiguously):
- Subsequence: BCBA
- X = A B
   C
   B D A B
- Y = BDCAB A
- Applications:
  - compare files maximize number of matched common lines, the rest marked as changes
  - comparison of two DNA strings used as a similarity measure, also equivalent to minimizing insert/delete mutations that can transform one DNA string into the other

## Naive Approach to the LCS Problem



- A Brute-force solution:
  - Enumerate all subsequences of X
  - Test which ones are also subsequences of Y
  - Pick the longest one.
- Analysis:
  - if |X| = m, |Y| = n
  - there are 2<sup>m</sup> subsequences of X
  - we must compare each with Y (n comparisons)
  - So the running time of the brute-force algorithm is O(n 2<sup>m</sup>)
  - Exponential time!

#### **LCS Notation**



- Let X and Y be sequences.
- We denote by LCS(X, Y) the set of longest common subsequences of X and Y (set of optimal solutions).

#### **Prefix**

- Let  $X = \langle x_1, x_2, ..., x_m \rangle$  be a sequence.
- We denote by X<sub>i</sub> the subsequence
- $X_i = \langle x_1, x_2, ..., x_i \rangle$
- and call it the i<sup>th</sup> prefix of X.

## Optimal Substructure Theorem



#### Given two strings/sequences:

$$X = \langle x_1, x_2, ..., x_m \rangle$$

$$Y = \langle y_1, y_2, ..., y_n \rangle$$

Let  $Z = \langle z_1, z_2, ..., z_k \rangle$  be any optimal solution, a LCS of X and Y.

- a) If  $x_m = y_n$  then  $x_m = y_n = z_k$ 
  - $Z_{k-1}$  is in LCS( $X_{m-1}$ ,  $Y_{n-1}$ )
- b) Else  $x_m \neq y_n$ 
  - b) Either  $x_m \neq z_k$ 
    - Z is in LCS(X<sub>m-1</sub>, Y)
  - c) Or  $x_m = z_k$  and hence  $y_n \neq z_k$ 
    - Z is in LCS(X,  $Y_{n-1}$ )

## Overlapping Subproblems



- Algorithm idea
- If  $x_m = y_n$  then find solution to LCS( $X_{m-1}$ ,  $Y_{n-1}$ ) and append  $x_m$
- If  $x_m \neq y_n$  then find a solution for each of the two subproblems LCS( $X_{m-1}$ ,  $Y_n$ ) and LCS( $X_m$ ,  $Y_{n-1}$ ), and choose the longer one

- Overlap: notice that LCS(X<sub>m-1</sub>, Y<sub>n-1</sub>) can appear as a subproblem when solving LCS(X<sub>m-1</sub>, Y<sub>n</sub>) and LCS(X<sub>m</sub>, Y<sub>n-1</sub>)
- Small number of distinct subproblems: only  $m \times n$  possible scenarios for the prefixes

#### **Recursive Solution**



- Let X and Y be sequences with lengths m and n.
- Let c[i,j] be the length of the solution to LCS( $X_i$ ,  $Y_i$ ).
- What is the base case?



Looking for c[m,n]

## Solving LCS with Recursion



$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x_i = y_j \\ \max\{c[i-1,j],c[i,j-1]\} & \text{otherwise} \end{cases}$$

```
c(i, j):

if i=0 OR j=0: return 0  // empty input sequence

else if x_i=y_j: f = c(i-1, j-1)+1  // match

else f = max {c(i, j-1), c(i-1, j)}  // no match

return f
```

return c(m,n)

## Solving LCS with Recursion



$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x_i = y_j \\ \max\{c[i-1,j],c[i,j-1]\} & \text{otherwise} \end{cases}$$

$$c[ABCB,BDC]$$

$$c[ABCB,BDC]$$

$$c[ABCB,BD]$$

$$c[ABCB,$$

## Solving LCS with Recursion



$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x_i = y_j \\ \max\{c[i-1,j],c[i,j-1]\} & \text{otherwise} \end{cases}$$

$$c[ABCB,BDC]$$

$$c[ABCB,BDC]$$

$$c[ABCB,BD]$$

$$c[ABCB,$$



```
c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x_i = y_j \\ \max\{c[i-1,j],c[i,j-1]\} & \text{otherwise} \end{cases}
```

```
memo = \{ \}
c(i, j):
    if (i, j) in memo: return memo[i, j]
    else if i=0 OR j=0: return 0
    else if x_i = y_j: f = c(i-1, j-1)+1
    else f = max {c(i, j-1), c(i-1, j)}
    memo[i, j]=f
    return f
return c(m,n)
```

## n

Georgia

## Solving LCS with Recursion+Memoization

- Each subproblem c[i,j] is computed only once, at most two recursive calls per c[i,j] filled, and each call takes constant time
- There are at most m×n subproblems -> Time and space is O(m×n)
- This is an example of Top-down Dynamic Programming
  - Also known as Memoization
- How about bottom-up DP? No recursion!
  - Start with smallest problems first, and store results
  - Every time you solve a problem, you already have the solutions of the needed subproblems

## LCS subproblem order





Allocate array c[m+1,n+1]

## LCS Length Algorithm



```
LCS-Length(X, Y)
0. m = length(X) // get the # of symbols in X
1. n = length(Y) // get the # of symbols in Y
2. allocate matrix c of size (m+1)x(n+1)
• 3. for i = 1 to m c[i,0] = 0 // special case: Y_0
• 4. for j = 1 to n c[0,j] = 0 // special case: X_0
• 5. for i = 1 to m
                                      // for all X<sub>i</sub> (rows)
                                      // for all Y<sub>i</sub> (columns)
• 6. for j = 1 to n
• 7. if (Xi == Yj)
                       c[i,j] = c[i-1,j-1] + 1 // match
8.
9.
               else c[i,j] = max(c[i-1,j],c[i,j-1])

    10. return c
```

## Analysis of LCS Algorithm



- We have two nested loops
  - The outer one iterates n times
  - The inner one iterates m times
  - A constant amount of work is done inside each iteration of the inner loop
  - Thus, the total running time is O(nm)
- Answer is contained in c[m,n] (and the actual subsequence can be recovered from the c table) (Don't forget to specify this in your problem answers)

## LCS Example



- Inputs:
- X = ABCB
- Y = BDCAB

# What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$
  
 $X = A B C B$   
 $Y = B D C A B$ 

## LCS Example (0)



|   | j  | 0  | 1 | 2 | 3            | 4 | 5 |  |
|---|----|----|---|---|--------------|---|---|--|
| i |    | Yj | B | D | $\mathbf{C}$ | A | B |  |
| 0 | Xi |    |   |   |              |   |   |  |
| 1 | A  |    |   |   |              |   |   |  |
| 2 | В  |    |   |   |              |   |   |  |
| 3 | C  |    |   |   |              |   |   |  |
| 4 | В  |    |   |   |              |   |   |  |

$$X = ABCB$$
;  $m = |X| = 4$   
 $Y = BDCAB$ ;  $n = |Y| = 5$   
Allocate array c[5,6]

ABCB BDCAB

## LCS Example (1)



|   | j  | 0  | 1 | 2 | 3 | 4 | 5 |
|---|----|----|---|---|---|---|---|
| i |    | Yj | В | D | C | A | В |
| 0 | Xi | 0  | 0 | 0 | 0 | 0 | 0 |
| 1 | A  | 0  |   |   |   |   |   |
| 2 | В  | 0  |   |   |   |   |   |
| 3 | C  | 0  |   |   |   |   |   |
| 4 | В  | 0  |   |   |   |   |   |

for 
$$i = 1$$
 to m  
for  $j = 1$  to n

$$c[i,0] = 0$$
  
 $c[0,j] = 0$ 

ABCB BDCAB

### LCS Example (2)





$$\begin{array}{ll} if \ (X_i == Y_j) & ABCB \\ c[i,j] = c[i-1,j-1] + 1 & BDCAB \\ else \ c[i,j] = max(\ c[i-1,j],\ c[i,j-1]) & BDCAB \end{array}$$

# LCS Example (3)



|   | j  | 0  | 1 | 2 | 3 | 4 | 5 |  |
|---|----|----|---|---|---|---|---|--|
| i |    | Yj | В | D | C | A | В |  |
| 0 | Xi | 0  | 0 | 0 | 0 | 0 | 0 |  |
| 1 | A  | 0  | 0 | 0 | 0 |   |   |  |
| 2 | В  | 0  |   |   |   |   |   |  |
| 3 | C  | 0  |   |   |   |   |   |  |
| 4 | В  | 0  |   |   |   |   |   |  |

$$if (X_i == Y_j)$$
 ABCB  $c[i,j] = c[i-1,j-1] + 1$  else  $c[i,j] = max(c[i-1,j],c[i,j-1])$  BDCA

### LCS Example (4)



|   | j   | 0  | 1 | 2 | 3 | 4 | 5 |
|---|-----|----|---|---|---|---|---|
| i |     | Yj | В | D | C | A | В |
| 0 | Xi  | 0  | 0 | 0 | 0 | 0 | 0 |
| 1 | (A) | 0  | 0 | 0 | 0 | 1 |   |
| 2 | В   | 0  |   |   |   |   |   |
| 3 | C   | 0  |   |   |   |   |   |
| 4 | В   | 0  |   |   |   |   |   |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j], c[i,j-1])$ 

ABCB BDCAB

# LCS Example (5)



**ABCB** 

|   | j  | 0  | 1 | 2 | 3 | 4   | 5        |
|---|----|----|---|---|---|-----|----------|
| i |    | Yj | В | D | C | A   | (B)      |
| 0 | Xi | 0  | 0 | 0 | 0 | 0   | 0        |
| 1 | A  | 0  | 0 | 0 | 0 | 1 - | <b>1</b> |
| 2 | В  | 0  |   |   |   |     |          |
| 3 | C  | 0  |   |   |   |     |          |
| 4 | В  | 0  |   |   |   |     |          |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

### LCS Example (6)



|   | j  | 0  | 1   | 2 | 3 | 4 | 5 |
|---|----|----|-----|---|---|---|---|
| i |    | Yj | (B) | D | C | A | В |
| 0 | Xi | 0  | 0   | 0 | 0 | 0 | 0 |
| 1 | A  | 0  | 0   | 0 | 0 | 1 | 1 |
| 2 | B  | 0  | 1   |   |   |   |   |
| 3 | C  | 0  |     |   |   |   |   |
| 4 | В  | 0  |     |   |   |   |   |

$$if (X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$ 
 $else c[i,j] = max(c[i-1,j], c[i,j-1])$ 
 $BDCAB$ 

### LCS Example (7)





$$if (X_i == Y_j)$$
 ABCB  $c[i,j] = c[i-1,j-1] + 1$  else  $c[i,j] = max(c[i-1,j], c[i,j-1])$  BDCAE

### LCS Example (8)



**ABCB** 

|   | j  | 0  | 1 | 2 | 3 | 4   | 5   |
|---|----|----|---|---|---|-----|-----|
| i |    | Yj | В | D | C | A   | (B) |
| 0 | Xi | 0  | 0 | 0 | 0 | 0   | 0   |
| 1 | A  | 0  | 0 | 0 | 0 | 1 . | 1   |
| 2 | B  | 0  | 1 | 1 | 1 | 1   | 2   |
| 3 | C  | 0  |   |   |   |     |     |
| 4 | В  | 0  |   |   |   |     |     |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j], c[i,j-1])$ 

#### LCS Example (10)



|   | j          | 0  | 1                           |          | 3 | 4 | 5 |
|---|------------|----|-----------------------------|----------|---|---|---|
| i |            | Yj | B                           | D        | C | A | В |
| 0 | Xi         | 0  | 0                           | 0        | 0 | 0 | 0 |
| 1 | A          | 0  | 0                           | 0        | 0 | 1 | 1 |
| 2 | В          | 0  | 1                           | 1        | 1 | 1 | 2 |
| 3 | $\bigcirc$ | 0  | <sup>†</sup> <sub>1</sub> - | <b>1</b> |   |   |   |
| 4 | В          | 0  |                             |          |   |   |   |

$$if (X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$ 
 $else c[i,j] = max(c[i-1,j], c[i,j-1])$ 
 $BDCAB$ 

#### LCS Example (11)



|   | j          | 0  | 1 | 2  | 3   | 4 | 5 |
|---|------------|----|---|----|-----|---|---|
| i |            | Yj | В | D  | (C) | A | В |
| 0 | Xi         | 0  | 0 | 0  | 0   | 0 | 0 |
| 1 | A          | 0  | 0 | 0  | 0   | 1 | 1 |
| 2 | В          | 0  | 1 | 1, | 1   | 1 | 2 |
| 3 | $\bigcirc$ | 0  | 1 | 1  | 2   |   |   |
| 4 | В          | 0  |   |    |     |   |   |

$$if (X_i == Y_j)$$
 ABCB  
 $c[i,j] = c[i-1,j-1] + 1$   
 $else c[i,j] = max(c[i-1,j], c[i,j-1])$  BDCAB

#### LCS Example (12)



|   | j          | 0  | 1 | 2 | 3   | 4          | 5_       |   |
|---|------------|----|---|---|-----|------------|----------|---|
| i |            | Yj | В | D | C   | A          | В        | ) |
| 0 | Xi         | 0  | 0 | 0 | 0   | 0          | 0        |   |
| 1 | A          | 0  | 0 | 0 | 0   | 1          | 1        |   |
| 2 | В          | 0  | 1 | 1 | 1   | 1          | 2        |   |
| 3 | $\bigcirc$ | 0  | 1 | 1 | 2 - | <b>2</b> - | <b>2</b> |   |
| 4 | В          | 0  |   |   |     |            |          |   |

#### LCS Example (13)



|   | j  | 0   | 1 | 2 | 3 | 4 | 5 |
|---|----|-----|---|---|---|---|---|
| i |    | Yj  | B | D | C | A | В |
| 0 | Xi | 0   | 0 | 0 | 0 | 0 | 0 |
| 1 | A  | 0   | 0 | 0 | 0 | 1 | 1 |
| 2 | В  | 0   | 1 | 1 | 1 | 1 | 2 |
| 3 | C  | 0 🔪 | 1 | 1 | 2 | 2 | 2 |
| 4 | B  | 0   | 1 |   |   |   |   |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j], c[i,j-1])$ 

ABCB BDCAB

#### LCS Example (14)



|   | j  | 0  | 1   | 2        | 3          | 4 | 5           |
|---|----|----|-----|----------|------------|---|-------------|
| i |    | Yj | В   | D        | C          | A | $\supset B$ |
| 0 | Xi | 0  | 0   | 0        | 0          | 0 | 0           |
| 1 | A  | 0  | 0   | 0        | 0          | 1 | 1           |
| 2 | В  | 0  | 1   | 1        | 1          | 1 | 2           |
| 3 | C  | 0  | 1   | 1        | 2          | 2 | 2           |
| 4 | B  | 0  | 1 - | <b>1</b> | <b>2</b> - | 2 |             |

#### LCS Example (15)



|   | j            | 0  | 1 | 2 | 3 | 4   | 5 |
|---|--------------|----|---|---|---|-----|---|
| i |              | Yj | В | D | C | A   | B |
| 0 | Xi           | 0  | 0 | 0 | 0 | 0   | 0 |
| 1 | $\mathbf{A}$ | 0  | 0 | 0 | 0 | 1   | 1 |
| 2 | В            | 0  | 1 | 1 | 1 | 1   | 2 |
| 3 | C            | 0  | 1 | 1 | 2 | 2 \ | 2 |
| 4 | B            | 0  | 1 | 1 | 2 | 2   | 3 |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j], c[i,j-1])$ 

ABCB BDCAB