- 1. Mostre que, sendo $f, g: X \to \mathbf{R}$ contínuas em $a \in X$,
 - (a) a função f + g é contínua em a,
 - (b) a função fg é contínua em a,
 - (c) a função $h: X \to \mathbf{R}$ definida por h(x) = |f(x)| é contínua em a,
 - (d) a função $h: X \to \mathbf{R}$ definida por $h(x) = \frac{f(x)}{g(x)}$ é contínua em a, se $g(a) \neq 0$.
- 2. (a) Mostre que a função identidade $f: \mathbf{R} \to \mathbf{R}$, definida por f(x) = x, é contínua em qualquer ponto $x_0 \in \mathbf{R}$.
 - (b) Mostre que se $f: X \to \mathbf{R}$, é constante em X, então f é contínua.
 - (c) Aplique as duas alíneas anteriores e também 1.a e 1.b para mostrar que qualquer polinómio é uma função contínua.
- 3. Sejam $X, Y, Z \subset \mathbf{R}, g: X \to Y$, e $f: Y \to Z$, com g contínua em g e f contínua em g(g). Mostre que $f \circ q$ é contínua em a.
- 4. Estude quanto à continuidade as seguintes funções:
 - (a) $|x|e^{-|x|}$
 - (b) $|x^3|$
 - (c) $f(x) = x \log \sin^2 x$
 - (d) $\frac{1}{1-e^{1/x}}$
 - (e) $f(x) = x^2 \sin \frac{1}{x} 2x$ para $x \neq 0$, com f(0) = 0.
- 5. Estude quanto à continuidade uniforme as seguintes funções nos conjuntos indicados:
 - (a) $x, x^2, \frac{1}{x^2}, \sqrt{x}$, em $]0, +\infty[$,]0, 1[e [0, 1].
 - (b)

$$H(x) = \begin{cases} 1, & \text{se } x \ge 0, \\ 0, & \text{se } x < 0, \end{cases}$$
 em $]a, b[\text{com } -\infty \le a < b \le +\infty]$

- 6. Analise a existência de um prolongamento contíuo à origem,
 - (a) da função do exercício 4.d
 - (b) da função $f(x) = \frac{x^4 + x^2}{x^4 + 3x}$
- 7. Calcule as rectas assimptotas aos gráficos das funções:

$$(a) \quad \frac{x^3+1}{x^2}$$

(b)
$$\frac{x}{1+x^2}$$

(a)
$$\frac{x^3+1}{x^2}$$
 (b) $\frac{x}{1+x^2}$ (c) $\frac{x^2-4}{x^2-9}$

- 8. Determine todas as funções contínuas $f: \mathbf{R} \to \mathbf{R}$, contínuas em x=0, tais que f(0)=1 e f(3x) = f(x).
- 9. Mostre que se $f:[a,b]\to \mathbf{R}$ é contínua e todos os valores de f estão em [a,b], então existe $x\in[a,b]$ tall que f(x) = x.
- 10. Mostre que não existem funções $f: \mathbf{R} \to \mathbf{R}$, contínuas no ponto x=1 tais que $f(x^2) + f(x) = 0$ para qualquer $x \in \mathbb{R}$ (excepto a função idênticamente nula).