

Proposal

數據規劃 資料流程圖

資料處理

使用資料:TT

取用欄位:

成功投遞相關內容

數據分析

使用方法:

- Apriori 分析

問題 1

想要了解所有信件 起迄點的關聯性

將TT數據中,有成功狀態"I"取出,並將掛號號碼的第七到 第九碼(投寄局號的前三碼,LHS),與處理局號前三碼 (RHS),以天為單位(將資料切成90筆),做關聯性分析。

投寄局號	100	707	100	400	400	100	400	100
	台北	台南	台北	台中	台中	台北	台中	台北
	\downarrow							
處理局號	106	704	107	402	400	105	405	102
	台北	台南	台北	台中	台中	台北	台中	台北

LHS		RHS	Support	Confidence	Lift	Count
{X7=903}	\rightarrow	{X8=900}	0.004235	0.944646	38.88139	4270
{X7=224}	\rightarrow	{X8=220}	0.007243	0.828722	8.99864	7192
{X7=972}	\rightarrow	{X8=970}	0.002272	0.767263	75.49142	2100

問題

想要找出較稀少 但是卻又有穩定關係的 信件起訖組合 此關聯規則的結果,可以推測LHS與RHS組合數佔總信件組合較少(支持度均低於0.01),但從LHS出發的信件有很高的機率會送往RHS(信賴度均高於0.7),其中信賴度最高的為903->900,由結果可以推測,903寄出郵件雖然較少,但只要一有郵件被寄出時,有很高的機率會送往以900為前三碼的處理局號。

信賴度第二高為224(瑞芳區)->220(板橋土城區),此組合 雖然信賴度沒有第一組高,但其組合數卻明顯較高,故不 容忽視。

信賴度第三高,增益值最高的組合為972->970,會在問題三進行更深入的講解。

由圖可以推測,增益值前五大分別為,952->950、951->950、972->970、543->540以及261->260,其中處理局號前三碼為950佔兩筆,可推測送往950的信件數並不多,但若是送往950,有很大的機率其信件來自投寄局號前三碼為951或是952的郵局。

問題 3

呈問題二,近一步看其增益值與 信件數量,判斷是否能有 信件轉乘運送的可能性, 以降低不必要的物流移動。 其概念取自飛機航班的轉乘。

關聯規則關係圖						
Α	C(LHS)	B(RHS)				
其 他	952/951	950				
	972	970				
郵局	543	540				
	261	260				

建議分別針對送往950、970、540、260 (示意圖中的B)四個處理局號前三碼的信件, 可以先分別送至其相對應的投寄局號前三碼 的郵局(示意圖中的C, LHS),再與其他信件 合送至950、970、540、260(示意圖中的B)。

roposal 1

提案未來方向

短期目標 |

- 1. 確認分析資料的正確性
- 2. 確認目前郵局運送信件的物流模式
- 3. 確認轉乘信件的想法與可行性

中期目標 |

- 1. 將分析結果與智慧郵局政策做連結,例如:改善i郵箱的運送模式。
- 2. 延伸關聯性分析模型的應用,例如:郵局與全家合作後,改變運送模式的探討。
- 3. 提出其他能與智慧郵局政策做連結的方案。

長期目標 |

- 1. 為不同方案做成本效益評估。
- 2. 將符合成本效益的方案落實。

數據規劃 資料流程圖

資料處理

使用資料:TT, ACC

取用欄位:

i郵箱相關之內容

數據分析

使用方法:

- TF-IDF矩陣
- PCA降維
- Kmeans分析
- 共線性分析
- Apriori 分析

分析方法選用與分析結果

TF-IDF

一種用於資訊檢索與文字探勘的常用加權技術,為一種統計方法,用來評估單詞對於文件的集合或詞庫中一份文件的重要程度。因此我們在此採用此方法,評估斷詞出的各詞彙在文件中的重要性,降低過於頻繁出現的詞彙的重要性,例如包裹。

PCA降維

主成分分析被歸類成為降維時特徵擷取的一種方法, 降維就是希望資料的維度數減少,但整體的效能不 會差異太多甚至會更好。在這份文件中,我們有21 個字彙作為特徵值,因此我們使用PCA降低資料維 度,方便我們檢視資料之間的不同之處,進行分析。

使用PCA降低維度,並且依據此圖可判斷出當選用兩個維度時,資料支持度已達到約0.7,足夠代表此資料,因此最後選擇二維進行後續分析。

分析方法選用與分析結果

K-means分析

因為K-Means適合處理分布集中的大型樣本資料,在此資料中 繪出的二維圖形中可判斷他具有一定的密集度,因此我們採用 K-Means進行分析,原理較簡單,收斂速度也快。

使用K-Means分析,可將資料分成 三群,但我們發現此分群與掛號 種類相關性不高,可能還需要依 據其他資訊才能更好的解釋這三 個群體。

Apriori分析

Apriori是經典的挖掘資料關聯性演算法。並且此演算法簡單、 易理解且對資料要求較低,符合此字彙資料的型態,因此選用 Apriori進行資料分析。

共線性分析

進行共線性分析,剔除相關性低於0.2的特徵,包含:明信片,回執、公件、印刷物、國內、報值、保價。再用整理過的資料進行Apriori分析,篩選出confidence大於0.9且lift大於2的規則。

從左圖可以發現以下幾個關聯性:

- 1. 限時→掛號 2. 掛號→普通
- 3. 普通→掛號 4. 小包→普通
- 5. 信函→法定 6. 小包→掛號

因此我們可以推論投遞到i郵箱的信件其內容特性,像 是如果有一個客人投遞小包到i郵箱,可能會使用普通 或是掛號的方式寄件。

提案動機與目標

根據中華郵政官網介紹,i郵箱為中華郵政公司提供一種新型態的收/寄郵件體驗,其特色在於可以配合收、寄件人用郵時間,因此不需要在營業時間到郵局領取郵件或是在家等待郵差。然而,在ACC資料檔(收寄明細資料)其總共2700萬筆資料中,僅有大約1萬筆有關於i郵箱的資料,顯示中華郵政公司在推動使用i郵箱的政策上還有努力改善的空間。此份作業期望能透過acc資料檔不同欄位的資料獲取關鍵的訊息,了解i郵箱使用者與非i郵箱使用者的背景與其各自考慮的因素。

數據規劃 資料流程圖

資料處理

使用資料:TT, ACC

取用欄位:

i郵箱相關之內容 與其他抽樣內容

數據分析

使用方法:

- 相關係數矩陣
- 二元羅吉斯 回歸分析
- 機器學習

分析方法 選用與程序

本研究採取[i_mailbox]欄位 作為判斷資料是否屬於i郵箱, 並透過傳統統計模型與機器學 習之方法並行實作。之所以會 使用兩種方式實作是因為兩種 方式的目的並不同。對於統計 模型而言,我們可以從中推論 變數之間的關係,但預測結果 不一定準;至於機器學習,我 們可以很精準的預測結果,但 不知道中間的計算過程,因此 無法了解變數之間的關係。

詳細分析流程請參考流程圖。 這裡僅解釋針對機器學習重要 的分析邏輯與理論架構。 抽樣

27,000,000筆資料抽樣24000筆資料在99%信心指數下誤差為1%

數據分類 為三類

訓練數據(70%):用來訓練模型的數據驗證數據(15%):用來檢驗模型準確率

測試數據(15%):再一次確認驗證模型的好壞

模型選擇

參考scikit-learn官網簡略介紹選擇模型準則 sample>50筆→預測類別→有labeled data→sample<100K筆 最後選出Logistic Regression、Single-Layer Perception、Random-Forest、K Nearest Neighbor、SVM五種model。 需注意的是我並不知道資料是不是線性。

檢驗 模型好壞

利用混淆矩陣 (confusion matrix) 計算準確率作為評斷標準

Proposal 3

分析方法選用與分析結果

統計模型 | 二項羅吉特回歸模型

Optimization terminated successfully.

Current function value: 0.536263

Iterations 9

Logit Regression Results

Dep. Variable: i mailbox No. Observations: 24000 Model: Df Residuals: 23986 13 Method: Df Model: Pseudo R-squ.: 0.1894 Date: Sun, 12 May 2019 Log-Likelihood: -12870. Time: 22:29:02 LL-Null: -15878. converged:

contai geat			LLR p-value:				
	coef	std err	z	P> z	[0.025	0.975]	
acc29_5 acc29_4 acc29_3 acc29_1 acc24_2 acc16_0 acc12_2	0.8147 2.6832 2.4041 0.3901 -2.5950 1.6279 1.6536	0.109 1.049 0.116 0.107 1.008 0.219 0.101	7.497 2.559 20.709 3.662 -2.574 7.429 16.306	0.000 0.011 0.000 0.000 0.010 0.000 0.000	0.602 0.628 2.177 0.181 -4.571 1.198 1.455	1.028 4.738 2.632 0.599 -0.619 2.057 1.852	
acc12_1 office_time acc21 acc32 acc2 unit_weight const	-0.5564 0.2854 -2.5811 -0.0059 0.6626 -9.957e-05 -3.0185	0.099 0.054 1.061 0.001 0.061 7.63e-06 0.261	-5.639 5.323 -2.433 -4.223 10.897 -13.054 -11.547	0.000 0.000 0.015 0.000 0.000 0.000	-0.750 0.180 -4.661 -0.009 0.543 -0.000 -3.531	-0.363 0.390 -0.502 -0.003 0.782 -8.46e-05 -2.506	

結果顯示如上圖,最終得到的model其Pseudo R-squared 值為0.1894, 且每一個變數之p-value皆小於0.05,顯示各變數具有顯著性。

$$f(x) = \ln(\frac{P_{e} \pi_{i}$$
 事箱
 $P_{e} \pi_{e}$ $P_{e} \pi_{i}$ $P_{e} \pi_{e}$ P_{e} $P_{e} \pi_{e}$ $P_{e} \pi_{e}$ $P_{e} \pi_{e}$ $P_{e} \pi_{e}$ P_{e

我們可以從各變數的係數大小與正負號推論已知的事實或是假設

- (1) 常數項為-3.0185顯示在不考慮其他變數影響下,民眾通常會選擇不使用 i郵箱
- (2) 計費方式皆為正數,表示當計費方式為1重量計費3單一4上收5首次使用 便利箱袋都會提高使用i郵箱的機率,而其中上收的正面效應最強
- (3) 法定紙幣報值會降低使用i郵箱的機率
- (4) 包裹對於使用i郵箱的機率會提高
- (5) 當超過郵局營業時間時,使用i郵箱機會會提高,符合i郵箱之設立目的
- (6) 報價會降低使用i郵箱的機率
- 7) 是否特約的係數(acc2)對於使用i郵箱為正面效應,可能原因是因為成為 特約戶能得到的折扣優惠比較高,因此選擇使用i郵箱的意願會提高
- (8) 寄件數越多、寄件單位重越重,會降低使用i郵箱的機率,可能和i郵箱的容量限制與價格有關 16

預

設

分析方法選用與分析結果

機器學習

K Nearest Neighbor

Logistic Regression

		Logistic	Single-	Random-	K Nearest	SVM
		Regression	Layer Perception	Forest	Neighbor	
ł	準確率	0.7568	0.71	0.74	0.75	0.77

結果顯示SVM model 準確率最高,因此使 用training後的SVM 模型帶入testing data 再次驗證模型的好壞,結果如右圖,其準 確率=0.76,可以看出差異不大,因此svm 模型具有參考價值。

K值設定過小會降低分類精度; 若設定過大,且測試樣本屬於訓 練集中包含資料較少的類,則會 增加噪聲,降低分類效果。

交叉驗證找出最適合的K值,結 果顯示K=15準確率最高,因此使 用 K=15

交叉驗證得到參數為 (C=1000,gamma=0.0001) 準確 率最高

提案未來方向

我們透過統計模型與機器學習方法找出使用i郵箱與不使用i郵箱的分類模型與可能影響民眾選擇的變數,有助於未來找出提高使用i郵箱使用率的策略。然而,ACC資料檔的資料包含的資訊仍不足夠,像是寄件費用、運送距離等重要資訊在未來必須考慮。此外,由於我們對於抽樣資料的不了解,可能會導致違背機器學習相關模型的背後假設,因此在未來仍必須針對理論架構修正。

