Arithmetic geometry notes

Soham Chowdhury
July 17, 2017

Contents

1	Algebraic integers				
	1.1	Integrality	1		
	1.2	The trace and the norm	2		
	1.3	Galois-theoretic interpretations	3		

Chapter 1

Algebraic integers

1.1 Integrality

Fix a domain A integrally closed in K := K(A). Let L|K be a finite extension, and B the integral closure of A in L. This is the AKLB *diagram*:

$$\begin{array}{ccc} K & \longleftarrow & L \\ \uparrow & & \uparrow \\ A & \longrightarrow & B \end{array}$$

Integrality is stable under the ring operations: one would like the following to hold, and they do:

This is a corollary of the following:

Theorem 1.1.1 (Module-theoretic characterization of integrality). *A finite number of* b_i *are integral over* $A \iff the \ ring \ A[b_1, \ldots, b_n]$ *is finitely generated as an* A-module.

Corollary 1.1.2. *If* α *and* b *are integral over* A, *so are* $\alpha + b$ *and* αb .

Theorem 1.1.3 (Integrality is transitive). *Consider ring extensions* $A \subseteq B \subseteq C$. $A \subseteq B$ *integral and* $B \subseteq C$ *integral* $\iff A \subseteq C$ *integral.*

Proof.
$$A \subseteq C$$
 integral implies $A \subseteq B$ integral. (Why?)

Theorem 1.1.4. Any element $l \in L$ is equal to b/a for $b \in B$ and $a \in A$.

Proof. Consider an element $l \in L$. The minimal polynomial m_l of l over K gives rise to a polynomial over A

$$a_n l^n + a_{n-1} l^{n-1} + \dots + a_0 = 0$$

by clearing denominators. Now observe that $\ell := a_n l$ is integral over A: multiplying by a_n^{n-1} gives an equation of the form

$$\ell^n + a'_{n-1}\ell^{n-1} + \cdots + a'_0 = 0.$$

This shows that taking $b/a = \ell/a_n$ works.

Remark 1.1.5. Notice that K(B) = L. Indeed, $B \subset L$ so $K(B) \subset L$, and the result above shows that $L \subset K(B)$ (set-theoretically, $L \subset B \times A \subset B \times B$).

Theorem 1.1.6. $l \in L$ is integral over A iff its minimal polynomial μ_l over K has coefficients in A.

Proof. If $\mu := \mu_l \in A[x]$ then we have integrality of l over A by definition. Consider now the case of an integral l with minimal polynomial $\mu \in K[x]$. From integrality over A we know that l is a root of some $g \in A[x]$. Then $\mu|g$ in K[x], so all zeros of μ are zeros of g and hence integral over A.

By Vietà, the coefficients a_i are given by elementary symmetric polynomials in the roots and are hence, by Corollary 1.1.2, integral over A themselves. The a_i are elements of K, so, in this case, integrality over A means that $a_i \in K$, and hence $\mu \in A[x]$.

1.2 The trace and the norm

Given $x \in L$, multiplication by x determines an endomorphism

$$T_x:\alpha\mapsto x\alpha$$

of the K-vector space L. We define the trace and norm maps

$$\operatorname{Tr}_{\mathsf{L}|\mathsf{K}}(z) = \operatorname{tr}\mathsf{T}_z$$

 $\operatorname{Nm}_{\mathsf{L}|\mathsf{K}}(z) = \det\mathsf{T}_z$

Let n = [L : K]. The characteristic polynomial

$$\begin{split} \chi_z(t) &= det(tI - T_z) \\ &= t^n - \alpha_1 t^{n-1} + \dots + (-1)^n \alpha_n \in K[i] \end{split}$$

contains coefficients $a_1 = Tr_{L|K}(z)$ and $a_n = Nm_{L|K}(z)$.

Remark 1.2.7. If this isn't immediately clear, think Vietà. (This will be one of the recurring themes throughout this chapter.)

3

1.3 Galois-theoretic interpretations

Fix an algebraic closure $\bar{K} = K^{\alpha lg}$ of K.

Proposition 1.3.8. If L|K is separable, letting $\sigma:L\to \bar K$ vary over the K-embeddings of L into $\bar K,$ we have

1.
$$\chi_z(t) = \prod_{\sigma} (t - \sigma z)$$

2.
$$\operatorname{Tr}_{\mathsf{L}|\mathsf{K}}(z) = \sum_{\sigma} \sigma z$$

3.
$$\operatorname{Nm}_{L|K}(z) = \prod_{\sigma} \sigma z$$

Proof. Part 1

Theorem 1.3.9. Consider finite field extensions $K \subseteq L \subseteq M$. We have

$$\begin{split} & \text{Tr}_{L|K} \circ \text{Tr}_{M|L} & = \text{Tr}_{M|K} \\ & \text{Nm}_{L|K} \circ \text{Nm}_{M|L} = \text{Nm}_{M|K} \end{split}$$