Prediction

Linear regression with one attribute

```
In [1]:
```

```
# Load packages
import pandas as pd
from sklearn.linear_model import LinearRegression
% matplotlib inline
```

In [2]:

```
# Read data
df = pd.read_csv('rent.csv')
```

In [3]:

```
# Inspect data set
df.head()
```

Out[3]:

	area	rent
0	58	1380
1	72	1440
2	55	960
3	129	2160
1	78	113/

In [4]:

```
# Plot data
df.plot.scatter(x='area', y='rent');
```



```
In [5]:
# Prepare data
X = df[['area']]
y = df['rent']
In [6]:
print(X.shape)
print(y.shape)
(40, 1)
(40,)
In [7]:
# Fit model to data
model = LinearRegression()
model.fit(X.values, y.values)
Out[7]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [8]:
# Display intercept
model.intercept_
Out[8]:
419.14207846231034
In [9]:
# Display beta
model.coef_
Out[9]:
array([13.17119702])
In [10]:
# Make predictions
predictions = model.predict(X)
predictions[:5]
Out[10]:
array([1183.07150541, 1367.46826364, 1143.55791437, 2118.22649358,
       1446.49544574])
In [11]:
# Display R^2
model.score(X, y)
Out[11]:
0.600629022747489
```

In [12]:

```
# Plot regression line
ax = df.plot.scatter(x='area', y='rent')
ax.scatter(df.area, predictions, color='red');
```


Linear regression with multiple attributes

In [13]:

```
# Load another data set
df = pd.read_csv('rent_extended.csv')
df.head()
```

Out[13]:

	area	rent	neighborhood	age
0	58	1380	wabern	20
1	72	1440	laenggasse	43
2	55	960	ostring	42
3	129	2160	ostring	1
4	78	1134	ostring	47

In [14]:

```
# Prepare data
X = pd.get_dummies(df, columns=['neighborhood'], drop_first=True).drop('rent', axis=1)
y = df['rent']
```

```
In [15]:
X.head()
Out[15]:
   area
            neighborhood_ostring neighborhood_wabern
0
     58
         20
                             0
                                                 1
1
    72
         43
                             0
                                                 0
    55
2
         42
                                                 0
                             1
3
    129
          1
                             1
                                                 0
4
    78
         47
                             1
                                                 0
In [16]:
# Fit model to data
model = LinearRegression()
model.fit(X.values, y.values)
Out[16]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [17]:
# Display intercept
model.intercept_
Out[17]:
525.7064975636313
In [18]:
# Display betas
pd.Series(model.coef_, index=X.columns)
Out[18]:
                          13.567127
area
                          -0.542951
age
neighborhood_ostring
                      -150.189523
neighborhood_wabern
                        -189.035836
dtype: float64
In [19]:
# Make predictions
predictions = model.predict(X)
predictions[:5]
Out[19]:
array([1112.70503118, 1479.19278082, 1098.90504372, 2125.13345303,
```

Polynomial regression

1408.2342187])

```
In [20]:
```

```
from sklearn.preprocessing import PolynomialFeatures
import numpy as np
```

In [21]:

```
# Prepare data
X = df[['area']].copy()
X['area^2'] = df.area**2
X['area^3'] = df.area**3
y = df['rent']
```

In [22]:

```
X.head()
```

Out[22]:

	area	area^2	area^3
0	58	3364	195112
1	72	5184	373248
2	55	3025	166375
3	129	16641	2146689
4	78	6084	474552

In [23]:

```
# Prepare data: alternative
poly = PolynomialFeatures(3, include_bias=False)
values = poly.fit_transform(df[['area']])
names = poly.get_feature_names(['area'])
X = pd.DataFrame(values, columns=names)
y = df['rent']
```

In [24]:

```
X.head()
```

Out[24]:

	area	area^2	area^3
0	58.0	3364.0	195112.0
1	72.0	5184.0	373248.0
2	55.0	3025.0	166375.0
3	129.0	16641.0	2146689.0
4	78.0	6084.0	474552.0

```
In [25]:
```

```
# Fit model to data
model = LinearRegression()
model.fit(X.values, y.values)
```

Out[25]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

In [26]:

```
# Display betas
pd.Series(model.coef_, index=X.columns)
```

Out[26]:

area -14.494117 area^2 0.365917 area^3 -0.001519 dtype: float64

In [27]:

```
# Make predictions
predictions = model.predict(X)
```

In [28]:

```
# Plot predictions
ax = df.plot.scatter(x='area', y='rent')
ax.scatter(df.area, predictions, color='red');
```


Inference statistics for linear regression

In [29]:

```
# Optional: get OLS regression results
from statsmodels.api import OLS
from patsy import dmatrices
```

```
In [30]:
```

```
# Define multivariate regression model
y, X = dmatrices('rent ~ area + neighborhood + age', df, return_type='dataframe')
```

In [31]:

```
# Define polynomial regression model
y, X = dmatrices('rent ~ area + I(area**2) + I(area**3)', df, return_type='dataframe')
```

In [32]:

```
OLS(y, X).fit().summary()
```

Out[32]:

OLS Regression Results

0.60	R-squared:	rent	Dep. Variable:
0.57	Adj. R-squared:	OLS	Model:
18.3	F-statistic:	Least Squares	Method:
2.16e-0	Prob (F-statistic):	Fri, 12 Oct 2018	Date:
-275.6	Log-Likelihood:	09:51:26	Time:
559.	AIC:	40	No. Observations:
566.	BIC:	36	Df Residuals:
		2	Df Model:

Df Model: 3

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1071.8307	1613.838	0.664	0.511	-2201.184	4344.845
area	-14.4941	62.012	-0.234	0.817	-140.260	111.272
I(area ** 2)	0.3659	0.757	0.484	0.632	-1.168	1.900
I(area ** 3)	-0.0015	0.003	-0.515	0.609	-0.007	0.004

 Omnibus:
 0.469
 Durbin-Watson:
 2.370

 Prob(Omnibus):
 0.791
 Jarque-Bera (JB):
 0.353

 Skew:
 0.220
 Prob(JB):
 0.838

 Kurtosis:
 2.864
 Cond. No.
 3.29e+07

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.29e+07. This might indicate that there are strong multicollinearity or other numerical problems.

In []: