1. Introducción

Objetivo del proyecto

- Detectar la probabilidad de "churn" (abandono) de clientes utilizando modelos supervisados.
- Segmentar a los clientes dentro de los grupos de **churn** y **no churn** mediante clustering (K Means).

Contexto del problema

La **retención de clientes** es un punto crucial en cualquier estrategia de negocio orientada a la rentabilidad. Mantener a los clientes que ya forman parte de nuestra base tiene un **costo considerablemente menor** que captar nuevos clientes, lo cual impacta directamente en la eficiencia y sostenibilidad de la compañía.

En este caso específico, los clientes en riesgo de fuga representan 2,862,926.9 dólares, es decir, un 27% del total de nuestros usuarios. Este dato evidencia la prioridad estratégica de identificar de manera proactiva a aquellos clientes con peligro de abandonar la compañía (churn) antes de que lo hagan.

Sin embargo, detectar **quiénes son los clientes con riesgo de fuga** no es suficiente. Es igualmente importante:

- 1. Comprender su tipología: Identificar los diferentes perfiles de clientes con mayor tendencia a abandonar.
- Entender las posibles causas de churn: Factores como la calidad del servicio, el precio, la competencia u otros.

Con esta información, se podrán implementar acciones concretas para **reducir la tasa de abandono**, tales como:

- Mejorar nuestros servicios y la calidad de los productos.
- Desarrollar estrategias específicas de **fidelización** personalizadas según los segmentos identificados.

Metodología aplicada

- Uso de algoritmos de clasificación (Random Forest, Logistic Regression, XGBoost).
- Elección de un **Voting Classifier** para mejorar el equilibrio entre Recall y Precisión, además de crear un modelo más robusto para un target desbalanceado.
- Aplicación de KMeans para segmentar los clientes en grupos dentro de los resultados obtenidos.

2. Análisis Exploratorio de Datos

Descripción de los datos

- Variables de identificación: customerID.
- Variables demográficas: gender, SeniorCitizen, Partner, Dependents.

- Variables relacionadas con el servicio: PhoneService, MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies.
- Variables contractuales: Contract, PaperlessBilling, PaymentMethod.
- Variables de consumo: tenure (meses de suscripción), MonthlyCharges, TotalCharges.
- Variables objetivo: Churn (Sí/No).

Preprocesamiento de datos

Eliminación de variables irrelevantes:

• Se eliminó la columna customerID por no aportar valor predictivo.

Codificación de variables categóricas:

- Se aplicó One-Hot Encoding a columnas con múltiples categorías: gender, MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies y PaymentMethod.
- La columna Contract fue inicialmente codificada ordinalmente, pero posteriormente transformada con One-Hot Encoding para captar mejor la información de los contratos.

Conversión de variables binarias:

• Columnas con valores "Yes/No" (Partner, Dependents, PhoneService, PaperlessBilling, Churn) se convirtieron a True/False y luego a valores numéricos (1/0).

Transformación de columnas numéricas:

- TotalCharges: Convertida a float con manejo de errores.
- Valores nulos resultantes fueron rellenados con la mediana.

Escalado y limpieza:

• Las columnas booleanas se transformaron completamente a valores 1 y 0 para asegurar compatibilidad con los modelos.

Visualización inicial

	Feature	Importance
7	TotalCharges	0.182142
6	MonthlyCharges	0.171455
3	tenure	0.157688
21	contract_MtoM	0.064010
10	<pre>InternetService_Fiber optic</pre>	0.039744
19	PaymentMethod_Electronic check	0.037753
8	gender_Male	0.029074
5	PaperlessBilling	0.027799
12	OnlineSecurity_Yes	0.023841
1	Partner	0.023366
13	OnlineBackup_Yes	0.021972
15	TechSupport_Yes	0.021376
9	MultipleLines_Yes	0.020969
14	DeviceProtection_Yes	0.020382
23	contract_TwoYear	0.020308
0	SeniorCitizen	0.020195
2	Dependents	0.019890
17	StreamingMovies_Yes	0.018411
16	StreamingTV_Yes	0.017725
11	<pre>InternetService_No</pre>	0.016937
18	PaymentMethod_Credit card (automatic)	0.013818
20	PaymentMethod_Mailed check	0.012432
22	contract_OneYear	0.011480
4	PhoneService	0.007234

- TotalCharges, MonthlyCharges y tenure son las características más relevantes para predecir el churn.
- La variable contract_MtoM destaca como un factor clave.

El gráfico de densidad muestra la **distribución de clientes** con contratos "mes a mes" en relación al churn.

Observaciones clave:

- Existe una concentración notable de clientes con churn positivo en contratos de tipo mensual.
- Esta tendencia refuerza la necesidad de analizar este grupo específico para estrategias de retención.

Mapa de correlación

Observaciones clave:

- TotalCharges, MonthlyCharges y tenure muestran alta correlación positiva entre ellas, lo que sugiere redundancia.
- La variable Churn muestra correlaciones negativas con tenure y positivas con contract_MtoM e InternetService_Fiber optic, lo que indica una posible relación con la **rotación de clientes** en contratos más cortos.

TotalCharges tiene correlación fuerte con tenure y MonthlyCharges, pero negativa con contract_MtoM, indicando posibles clientes de corta duración con contratos mensuales.

Aparte de esto, desechamos la idea de una posible redundancia entre estas variables.

Debido a la **asimetría** y fuerte sesgo hacia la izquierda, se ha aplicado una **transformación logarítmica** en TotalCharges y MonthlyCharges para normalizar los datos y mejorar su comportamiento en los modelos.

La mayoría de los clientes ${\bf no}$ han hecho ${\bf churn}$ (clase negativa).

Este desequilibrio deberá considerarse al entrenar los modelos para evitar sesgos predictivos.

3. Construcción del Modelo de Clasificación (Detección de Churn)

Modelos evaluados

- Random Forest
- Logistic Regression
- XG Boost

Selección del modelo final

El motivo principal ha sido encontrar un **equilibrio entre recall y precisión**. Con **Logistic Regression** se obtenía un mejor recall, logrando un balance favorable basado en la métrica F1-Score, mientras que con **XGBoost** se alcanzaba una **mayor precisión**. La combinación de estos modelos mediante un **Voting Classifier** permite aprovechar las fortalezas de cada uno y mejorar el rendimiento global.

El Voting Classifier combina las predicciones de varios modelos y selecciona el resultado final utilizando en este caso las probabilidades de clase (soft voting).

Comparativa mejores resultados

Modelo (best)	Precisión	Recall	ROC-AUC
Random Forest (M5)	(N) 0.91 (P) 0.50	(N) 0.71 (P) 0.82	0.7623
Logistic Regression(M5)	(N) 0.87 (P) 0.51	(N) 0.77 (P) 0.68	0.7620
XGBoost (M2)	(N) 0.84 (P) 0.67	(N) 0.91 (P) 0.52	0.7147
Voting Classifier	(N) 0.88 (P) 0.59	(N) 0.82 (P) 0.70	0.8507

Resultados del modelo final con todos los datos

Matriz de Confusión: [[4349 825] [554 1315]]

Informe de Clasificación:

	precision	recall	f1-score	support
0	0.89	0.84	0.86	5174
1	0.61	0.70	0.66	1869
accuracy			0.80	7043
macro avg	0.75	0.77	0.76	7043
weighted avg	0.81	0.80	0.81	7043

ROC-AUC: 0.8655741149671476

4. Segmentación de Clientes con K Means

Objetivo

 Detectar subgrupos dentro de los clientes clasificados como Churn y No Churn.

Metodología

- Aplicación de **K Means** por separado en los grupos de churn y no churn.
- Selección del número óptimo de clusters utilizando el **método Elbow** y el **Silhouette Score**.

Resultados del clustering

Características de los clientes con churn POSITIVO (que abandonan)?

Principales características:

- Clientes con baja antigüedad y pocos servicios contratados.
- Alta proporción de contratos mensuales (fácil cancelación).
- Predominio de facturación electrónica y altos cargos mensuales.
- Baja adopción de servicios adicionales como TechSupport u OnlineSecurity.
- Mayor uso de métodos de pago **Electronic Check.**

Positive Churn Cluster Distribution

Se identificaron 3 clusters en los clientes con probabilidad de Churn (positivo):

Cluster 0 (27.5%): Clientes nuevos, con bajos cargos mensuales, pocos servicios contratados y contratos mensuales.

- Causa: Bajo valor percibido.
- Estrategia: Ofertas de servicios básicos con promociones limitadas.

Cluster 1 (60.9%): Clientes con cargos altos, contratos mensuales y algunos servicios adicionales.

- Causa: Precio elevado y falta de personalización.
- Estrategia: Planes modulares y descuentos personalizados.

Cluster 2 (11.6%): Clientes de larga antigüedad y altos gastos totales, con múltiples servicios contratados.

- Causa: Falta de engagement activo.
- Estrategia: Programas de fidelización y contacto proactivo.

Características de los clientes con churn NEGATIVO (leales)

Principales características:

- Mayor proporción de clientes con contratos a largo plazo (anuales o bianuales).
- Uso elevado de servicios adicionales como OnlineBackup, TechSupport y StreamingTV.
- Cargos mensuales más bajos y mayor satisfacción.
- Predominio del método de pago Credit Card Automatic.

• Alta proporción de clientes con familia o dependientes.

Se identificaron 2 clusters en los clientes con probabilidad de Churn (positivo):

- Cluster 0 (46.8%): Clientes leales y de larga antigüedad, con múltiples servicios contratados, incluidos Internet y fibra.
 - O Son clientes con contratos variados (mensuales, anuales, bianuales).
- Cluster 1 (53.2%): Clientes más nuevos y con menores cargos mensuales, que tienden a no contratar fibra ni servicios adicionales.
 - O Segmento más joven/adulto, menos comprometido con servicios adicionales.

5. Evaluación y Conclusiones

Evaluación del modelo

• En las pruebas realizadas, el **Voting Classifier** demuestra ser un **predictor robusto**, logrando un buen equilibrio para generalizar en datos nuevos. Con un **Train Score de 0.80** y un **Test Score de 0.78**, el modelo ofrece confianza incluso frente al desbalance de clases en el target, asegurando un rendimiento consistente al incorporar datos nuevos.

Evaluación de la segmentación

• Se seleccionaron **3 clusters** para el análisis de **churn POSITIVO**, ya que proporcionan una segmentación clara y generalizable; no obstante, la posibilidad de un cuarto cluster será revisada en el futuro para capturar características adicionales.

 Para el churn NEGATIVO, se seleccionaron 2 clusters, ya que la segmentación ha generalizado correctamente y ofrece interpretaciones claras y coherentes. La elección proporciona confianza en los resultados y permite una identificación precisa de los grupos leales.

Resultados finales

- Muestra la utilidad del proyecto:
 - O Capacidad de predecir churn de manera efectiva.

O Identificación de subgrupos que permiten personalizar estrategias de retención.

Conclusiones clave

Principales hallazgos:

- Clientes con **contratos mensuales**, altos cargos y pocos servicios adicionales tienen mayor riesgo de churn.
- Clientes leales suelen tener contratos largos y múltiples servicios.

Beneficios del Voting Classifier:

• Mejor equilibrio entre **recall y precisión**, logrando un rendimiento robusto.

Beneficios del KMeans:

• Segmentación clara que permite estrategias adaptadas a las necesidades específicas de cada grupo.