TAX EVASION ON A SOCIAL NETWORK

Duccio Gamannossi degl'Innocenti ¹ Matthew D. Rablen ²

¹University of Exeter

www.dgdi.me

²University of Sheffield

www.sheffield.ac.uk/economics/people/rablen

CONTENT

0

- 1. Introduction
- 2. Model
- 3. Optimal evasion
- 4. Revenue effects of interventions
- 5. Conclusions

- → Tax evasion causes significant losses of public revenues (£4.4 bn. in UK)
- → Growing interest by tax agencies to exploit "big data" and network theory to improve efficiency of deterrence measures
- → Predictive tools find patterns in data arising due to the determinants of subjects' decisions
- → We investigate the impact of social network on tax evasion decisions and develop a framework to asses the value of social network data

TAX EVASION AND REFERENCE DEPENDENCE

- → We relate tax evasion behaviour to a substantial body of evidence that people seek to "keep up with the Jones"
- → Specifically, one way to keep up with the Jones' is to evade more tax than others do
- → An immediate consequence is that individual evasion behaviour is related to how others are behaving
- → A taxpayer takes into account the behaviour of others through his **reference income**, a "benchmark" of others' consumption

RELATED LITERATURE

- → Kahneman and Tversky 1979
 Reference-dependence of utility
- → Rablen 2008
 Self and social comparison effects in utility
- → Ballester, Calvo, Zenou 2006
 Network games with local payoff complementarities
- → Quah 2007 Monotone comparative statics on network games

MODELLING FEATURES

Provide a model where:

- → Taxpayers may engage in risky tax evasion
- → Taxpayers differ in income, probability of detection and **reference group** (individuals in a taxpayer's social network)
- → **Self** and **social** comparison shape the **reference income**
- Social comparison depends on taxpayer' reference group

RESEARCH QUESTIONS

- → Our analysis has focused on **three** questions:
 - 1. Is it possible to characterize **optimal evasion** when people evaluate their consumption relative to others?
 - → How do different conditions like tax-schedule, deterrence policies or individual traits, affect it? (comparative statics)
 - 2. Is it possible to characterise the **revenue effects** of interventions?
 - 3. How much does the **availability of more information** (related to social networks) improve the capacity of a tax authority to **infer audit revenue effects**?

MODELLING OF EVASION

- → We define evasion as the tax liability not paid by the taxpayer
- → Evasion is a **risky** activity:
 - → The **tax agency** is actively seeking to detect and **shut-down** evasion
 - → There is a compound probability that:
 - The taxpayer is discovered under declaring
 - → The tax agency is successful in shutting down evasion and imposes a fine on the evader

TAXPAYERS CHARACTERISTICS

- → Taxpayers are distinguished by:
 - → Probability of being audited
 - → Exogenous Income
 - → Who they compare to in the social network: their reference group
- → Taxpayers evaluate their reference income based on the individual characteristics and the tax-deterrence parameters.

REFERENCE INCOME

- → Taxpayers determine their reference income based on Socialand Self-comparisons
 - → Self:

Own past consumption (Habit income)

→ Social:

The (weighted) **average consumption** of individuals in a taxpayer's social network

AN EXAMPLE OF A SOCIAL NETWORK

Graph and **matrix** form of a **weighted directed** network

Directed Network

OPTIMAL EVASION

- → Key theoretical result is that evasion is closely related to the concept of (Bonacich) network centrality
 - → More "central" taxpayers evade more
 - A taxpayer is more "**central**" the more numerous the people comparing to him
- → Network centrality is a concept developed in sociology
 - → Measures the amount of influence/power players have within a network

MONOTONE COMPARATIVE STATICS RESULTS

Habit consumption	+	Other's Income	+/0
Own comparison	+	Social comparison	+/0
Own audit prob.	_	Others audit prob.	-/0
Risk Aversion	_	Fine	_
Tax rate	+		

Effect on **optimal evasion** of a change in parameters (taxpayer characteristics, tax-deterrence schedule)

REVENUE EFFECTS OF INTERVENTIONS

How does an audit to a taxpayer affects revenues collected?

1. Direct effect

Evaded liabilities recovered from the targeted taxpayer

2. Indirect effects

Expected additional revenue that arises from future changes in evasion behaviour (negative externality)

- → from the audited tapayer
- → from non-audited taxpayers
- → Indirect effects are of primary importance since estimates are 2-6 X direct ones

TAX AGENCY'S INFERENCE PROBLEM

- ightarrow Tax authorities engage in inferring both **direct effects** ${f E}^{SS}$ and **aggregate gross indirect effects** ${f \Sigma}$
 - → Taxpayers usually ranked by discriminant function and audited sequentially until budget is exhausted
- \rightarrow Crucial information for tax authorities is correct rank of \mathbf{E}^{SS} and Σ
 - → Optimal audit targeting if tax authorities were able to exactly infer rankings of direct and indirect effects.

Key finding:

A new measure of **Bonacich centrality** correctly ranks **own** and **cross indirect** effects

INFERENCE OF REVENUE EFFECTS

→ What might be the value of "big data" tools that seek to construct social networks?

We estimate by simulation the additional audit revenues $\Delta \Re (\mathbf{G})$ from exploiting **network information** in targeting

- → Two settings considered:
 - 1. **Full observability** (\mathcal{F}): The tax agency observes all comparison intensities
 - 2. **No observability** (\emptyset): The tax agency observed no comparison intensities
- \rightarrow Audit revenues increase by $\Delta\Re(\mathbf{G}) \approx 6\%$ when social network information is available

CONCLUDING REMARKS

→ Social interaction may affect evasion behaviour

→ Different Bonacich measures of centrality characterise optimal evasion and revenues effects of audits

→ Social network information improves significantly the prediction of revenue effects from audits

FURTHER RESEARCH

- → Extend the analysis to **crime** as a whole
- → Analyse how adding or removing taxpayers (detention) may affect compliance

Questions?

Conclusions 000