ECE2101L Electrical Circuit Analysis II Laboratory

 ${\bf Lab~9}$ Real, Reactive, Complex Power and Power Factor

Report

Choi Tim Antony Yung April 12, 2020

1 Determination of load power using oscilloscope

Procedure

The above circuit was simulated with LTspice XVI with the RMS value of source voltage.

Result

Variant	V_2 RMS	I RMS	P	Q
	calculated	calculated	calculated	calculated
original	4.59698 <u>/1.66598°</u> V	$46.2263 / -20.6450^{\circ} \mathrm{mA}$	$0.196593{ m W}$	0.0806727 VAR

Variant	V_2 RMS	I RMS	P	Q	P	Q
	measured	measured	measured	measured	error	error
original	4.59698 <u>/1.66595°</u> V	46.2259/-20.6449° mA	$0.196591\mathrm{W}$	0.0806715 VAR	0.00%	0.00%
$C_2 = 1000 \mu \text{F}$	$4.61679 \underline{/1.31314^{\circ}} \mathrm{V}$	$42.7464 / -17.5681^{\circ} \mathrm{mA}$	$0.186732{ m W}$	$0.0638643\mathrm{VAR}$	N/A	
$L = 0.4 \mathrm{H}$	$4.83025 \underline{/2.21037^{\circ}} \mathrm{V}$	$27.2304 / -56.5461^{\circ} \mathrm{mA}$	$0.068221{ m W}$	$0.1124540\mathrm{VAR}$		

Variant	Load total Z calculated	S calculated	PF measured	
original $C_2 = 1000 \mu\text{F}$ $L = 0.4 \text{H}$	107.076 <u>/20.6450°</u> Ω No calcula		0.925138 0.946191 0.518677	lagging lagging lagging

Analysis

From the result we observed that the load power factor have no relation to the magnitude of the load current. The power factor increase with increase of capacitance and decrease with increase of inductance. The angle of load total impedance is roughly the same as the load power angle. Power factor increases with decrease of load power angle and vice versa.

Figure 1: Simulation of the original circuit

Figure 2: Simulation of the $C_2 = 1000 \,\mu\text{F}$ circuit

Figure 3: Simulation of the $L = 0.4 \,\mathrm{H}$ circuit

2 Determination of load real power using multimeter

Procedure

The original circuit was simulated with LTspice XVI with the RMS value of source voltage and current of R_2 and R_3 .

Figure 4: Simulation of the original circuit with measurement of I_2 and I_3

Result

Variant	P from B1	$I_2 \text{ RMS}$	I_3 RMS	Р	P
	measured	measured	measured	measured	error
original	$0.196591\mathrm{W}$	$46.2259 / -20.6449^{\circ} \mathrm{mA}$	$65.79/159.072^{\circ} \mu A$	$0.196589\mathrm{W}$	0.00%