Compuertas reversibles y cuánticas

Luis Daniel Benavides N.,26-10-2020

Compuertas reversibles

Compuertas reversibles

- En el mundo cuántico todas las compuertas que no son medidas son reversibles.
- La mayoría de compuertas clásicas no son reversibles
- Not y la identidad son reversibles (Puedo restablecer la entrada a partir de la salida)
- Not y la identidad son sus propias inversas.

Controlled Not

	00	01	10	11
00				
01				
10				
11				

Controlled Not

	00	01	10	11
00	1	0	0	0
01	0	1	0	0
10	0	0	0	1
11	0	0	1	0

Controlled Not

	00	01	10	11
00	1	0	0	0
01	0	1	0	0
10	0	0	0	1
11	0	0	1	0

Controlled Not es su propia inversa

$$|0 \oplus (0 \oplus y)\rangle = |0 \oplus y\rangle = |y\rangle$$

$$|1 \oplus (1 \oplus y)\rangle = |1 \oplus \neg y\rangle = |\neg(\neg y)\rangle = |y\rangle$$

X, y	$x \oplus y$
00	0
01	1
10	1
11	0

Toffoli Gate

	000	001	010	011	100	101	110	111
000								
001								
010								
011								
100								
101								
110								
111								

Toffoli Gate

	000	001	010	011	100	101	110	111
000	1	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	1	0	0
110	0	0	0	0	0	0	0	1
111	0	0	0	0	0	0	1	0

Toffoli Gate

000 001 010 011 100 101 110 111	
000 1 0 0 0 0 0 0	
001 0 1 0 0 0 0 0 0	
010 0 0 1 0 0 0 0	
011 0 0 0 1 0 0 0	
100 0 0 0 0 1 0 0	
101 0 0 0 0 1 0 0	
110 0 0 0 0 0 0 1	
111 0 0 0 0 0 0 1 0	

Toffoli su propia inversa

$$|(z \oplus (x \land y)) \oplus (x \land y)\rangle$$

$$|(z \oplus 0) \oplus 0\rangle = |(z \oplus 0)\rangle = |z\rangle$$
$$|(z \oplus 1) \oplus 1\rangle = |\neg(z \oplus 1)\rangle = |\neg(\neg z)\rangle = |z\rangle$$

	x and y
00	0
01	0
10	0
11	1

Toffoli es una compuerta universal

And con Toffoli

Not con Toffoli

 $|z \oplus (1 \land 1)\rangle = |z \oplus 1\rangle = |\neg z\rangle$

Fredkin Gate

Si x=0, entonces y'=y, z'=z

Si x=1, entonces y'=z, z'=y

La compuerta es universal y es su propia inversa

Fredkin Gate

Si x=0, entonces y'=y, z'=z

Si x=1, entonces y'=z, z'=y

La compuerta es universal y es su propia inversa

	000	001	010	011	100	101	110	111
000								
001								
010								
011								
100								
101								
110								
111								

Fredkin Gate

Si x=0, entonces y'=y, z'=z

Si x=1, entonces y'=y, z'=z

La compuerta es universal y es su propia inversa

	000	001	010	011	100	101	110	111
000	1							
001		1						
010			1					
011				1				
100					1			
101							1	
110						1		
111								1

Actividad: Ejercicios de Estudiantes

Compuertas cuánticas

Compuerta cuántica

Definición

 Una compuerta cuántica es un mecanismo físico que actúa sobre qubits alterando su estado multiversal de manera determinística. Las compuertas cuánticas se representan por medio de matrices unitarias.

• Definición Matriz Unitaria. Una matriz $n \times n$ se denomina unitaria si

$$U \star U^{\dagger} = U^{\dagger} \star U = I_n$$

Lista de compuertas cuánticas

- Identidad
- Not
- Toffoli
- Fredkin
- Hadamard
- Not controlado

Compuertas de Pauli y otras compuertas

Compuertas de Pauli

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Otras compuertas

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \qquad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

Identidades entre compuertas

i)
$$X^{2} = Y^{2} = Z^{2} = I,$$
ii)
$$H = \frac{1}{\sqrt{2}}(X + Z),$$
iii)
$$X = HZH,$$
iv)
$$Z = HXH,$$
v)
$$-1Y = HYH,$$
vi)
$$S = T^{2},$$
vii)
$$-1Y = XYX.$$

Compuerta \sqrt{NOT}

$$\sqrt{NOT} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

No es su propia inversa, es decir

$$\sqrt{NOT} \neq \sqrt{NOT}^{\dagger}$$

Al aplicarla dos veces obtenemos un matriz parecida al NOT

$$\sqrt{NOT}^2 = \sqrt{NOT} * \sqrt{NOT} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$\sqrt{NOT}^2|0\rangle = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

$$\sqrt{NOT}^{2}|1\rangle = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -|0\rangle$$

Recuerde que $-|0\rangle$ y $|0\rangle$ representan el mismos estado.

La esfera de bloch

• En principio no se puede representar un Qubit con un dibujo tridimensional.

• Sin embargo en una análisis más detallado se puede usar un artefacto denominado la esfera de Bloch.

¿Cómo podemos representarlo?

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle$$
 dónde, $|c_0|^2 + |c_1|^2 = 1$

Si lo transformamos a su representación polar

$$c_0 = r_0 e^{i\phi_0} \qquad c_1 = r_1 e^{i\phi_1}$$

$$|\psi\rangle = r_0 e^{i\phi_0} |0\rangle + r_1 e^{i\phi_1} |1\rangle$$

El estado no cambia si lo multiplicamos por un escalar complejo de norma 1

$$e^{-i\phi_o} \times |\psi\rangle = e^{-i\phi_o} \times (r_0 e^{i\phi_0} |0\rangle + r_1 e^{i\phi_1} |1\rangle)$$
$$= r_0 |0\rangle + r_1 e^{i(\phi_1 - \phi_0)} |1\rangle$$

Quedan solo tres parámetros $r_0, r_1, \phi = (\phi_1 - \phi_2)$

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle$$
 dónde, $|c_0|^2 + |c_1|^2 = 1$ $1 = |c_0|^2 + |c_1|^2 = |r_0e^{i\phi_0}|^2 + |r_1e^{i\phi_1}|^2$ $= |r_0|^2 |e^{i\phi_0}|^2 + |r_1|^2 |e^{i\phi_1}|^2$

Entonces,

$$|r_0|^2 + |r_1|^2 = 1$$

Podemos renombrarlos,

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

Ahora podemos usar un solo parámetro θ para representar r_0 y r_1 . Y Podemos escribe $|\psi\rangle$ así:

$$|\psi\rangle = cos(\theta)|0\rangle + e^{i\phi}sin(\theta)|1\rangle$$

Esta ecuación solo tiene 2 parámetros θ y ϕ

¿Qué nos dice la ecuación?

$$|\psi\rangle = cos(\theta)|0\rangle + e^{i\phi}sin(\theta)|1\rangle$$

$$e^{i\phi} = cos(\phi) + i sin(\phi)$$

con $0 \le \phi \le 2\pi$ para cubrir todos los números complejos posibles

con $-1 \le cos(\theta) \le 1$ y $-1 \le sin(\theta) \le 1$ solo necesito $0 \le \theta \le \pi/2$ para cubrir todos los estados de bit posibles.

¿Puede ver porqué? Revise el ejercicio 5.4.4 del libro

La esfera de Bloch

$$|\psi\rangle = cos(\theta)|0\rangle + e^{i\phi}sin(\theta)|1\rangle$$

La parametrización estándar sería

$$x = sin(\theta)cos(\phi)$$

$$y = sin(\theta)sin(\phi)$$

$$con 0 \le \theta \le \pi$$

$$z = cos(\theta)$$

La esfera de Bloch

$$|\psi\rangle = cos(\theta)|0\rangle + e^{i\phi}sin(\theta)|1\rangle$$

La parametrización estándar sería

$$x = sin(\theta)cos(\phi)$$

$$y = sin(\theta)sin(\phi)$$

$$con 0 \le \theta \le \pi$$

$$z = cos(\theta)$$

Pero esto implica que en la esfera dos puntos representarían el mismo qubit

Ya que con $0 \le \phi \le 2\pi$ y $0 \le \theta \le \pi/2$ se pueden cubrir todos los qubits posibles

Entonces vamos a solucionar esto recorriendo la esfera a la mitad de la velocidad

$$x = sin(2\theta)cos(\phi)$$
$$y = sin(2\theta)sin(\phi)$$
$$z = cos(2\theta)$$

 ϕ es el ángulo desde x sobre le ecuador. θ es la mitad del ángulo desde z hasta el estado del qubit

Interpretando la esfera de Bloch

$$|\psi\rangle = cos(\theta)|0\rangle + e^{i\phi}sin(\theta)|1\rangle$$

Si $2\theta = \pi/2$, $\theta = \pi/4$ y entonces

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + e^{i\phi}\frac{1}{\sqrt{2}}|1\rangle$$

La probabilidad de colapsar a $|0\rangle$ o a $|1\rangle$ es de 0.5 (50%)

Observe que la probabilidad no se ve alterada por le valor de ϕ ya que la norma al cuadrado de $e^{i\phi}$ es siempre 1

Acciones de las matrices sobre los estados

Las matrices de Pauli rotan 180^{o} los estados con respecto a los ejes

X (la negación) lo gira sobre el eje x, Y sobre el y, y Z sobre el Z

Esta matriz rota el vector alrededor de z un ángulo arbitrario (es decir deja la latitud y cambia la longitud).

$$R(\alpha) = \begin{bmatrix} 1 & 0 \\ 0 & e^{\alpha} \end{bmatrix}$$

Teorema de no clonación

Límites de las compuertas

- El teorema nos dice que no se puede clonar un estado cuántico.
- Se puede cut and paste pero no copy-paste.

• Esto tiene implicaciones en la criptografía y teletransportación cuántica.

Actividad: Ejercicios de Estudiantes

Ejercicio 5.4.3 identidad vi

Exercise 5.4.3 These operations are intimately related to each other. Prove the following relationships between the operations:

$$(vi) S = T^2,$$

$$T^{2} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} e^{i\pi/4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4 + i\pi/4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{bmatrix}$$

$$e^{i\phi} = \cos(\phi) + i \sin(\phi)$$

$$e^{i\pi/2} = \cos(\pi/2) + i \sin(\pi/2) = i$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

Fin