SE274 Data Structure

Lecture 6: Maps, Hash Tables, Skip Lists – Part 2

Apr 08, 2020

Instructor: Sunjun Kim

Information&Communication Engineering, DGIST

Sets 2

Definitions

- A **set** is an unordered collection of elements, without duplicates that typically supports efficient membership tests.
 - Elements of a set are like keys of a map, but without any auxiliary values.
- A multiset (also known as a bag) is a set-like container that allows duplicates.
- A **multimap** is similar to a traditional map, in that it associates values with keys; however, in a multimap the same key can be mapped to multiple values.
 - For example, the index of a book maps a given term to one or more locations at which the term occurs.

Sets

Set ADT

- S.add(e): Add element e to the set. This has no effect if the set already contains e.
- S.discard(e): Remove element e from the set, if present. This has no effect if the set does not contain e.
 - e in S: Return True if the set contains element e. In Python, this is implemented with the special __contains__ method.
 - len(S): Return the number of elements in set S. In Python, this is implemented with the special method __len__.
 - iter(S): Generate an iteration of all elements of the set. In Python, this is implemented with the special method __iter__.
 - S.remove(e): Remove element e from the set. If the set does not contain e, raise a KeyError.
 - S.pop(): Remove and return an arbitrary element from the set. If the set is empty, raise a KeyError.
 - S.clear(): Remove all elements from the set.

Sets

4

Boolean Set Operations

```
S == T: Return True if sets S and T have identical contents.
```

S != T: Return True if sets S and T are not equivalent.

 $S \ll T$: Return True if set S is a subset of set T.

S < T: Return True if set S is a *proper* subset of set T.

S >= T: Return True if set S is a superset of set T.

S > T: Return True if set S is a *proper* superset of set T.

S.isdisjoint(T): Return True if sets S and T have no common elements.

Sets

Set Update Operations

- S | T: Return a new set representing the union of sets S and T.
- S = T: Update set S to be the union of S and set T.
- S & T: Return a new set representing the intersection of sets S and T.
- S &= T: Update set S to be the intersection of S and set T.
 - S ^ T: Return a new set representing the symmetric difference of sets S and T, that is, a set of elements that are in precisely one of S or T.
- S ^= T: Update set S to become the symmetric difference of itself and set T.
 - S T: Return a new set containing elements in S but not T.
- S = T: Update set S to remove all common elements with set T.

Sets

Storing a Set in a List

- We can implement a set with a list
- Elements are stored sorted according to some canonical ordering
- The space used is O(n)

Generic Merging

- Generalized merge of two sorted lists A and B
- Template method genericMerge
- Auxiliary methods
 - alsLess
 - blsLess
 - bothAreEqual
- Runs in $O(n_A + n_B)$ time provided the auxiliary methods run in O(1)time

```
Algorithm genericMerge(A, B)
   S \leftarrow empty sequence
   while \neg A.isEmpty() \land \neg B.isEmpty()
       a \leftarrow A.first().element(); b \leftarrow B.first().element()
       if a < b
           alsLess(a, S); A.remove(A.first())
       else if b < a
           bIsLess(b, S); B.remove(B.first())
       else \{b=a\}
            bothAreEqual(a, b, S)
           A.remove(A.first()); B.remove(B.first())
   while \neg A.isEmpty()
       alsLess(a, S); A.remove(A.first())
   while \neg B.isEmpty()
       bIsLess(b, S); B.remove(B.first())
   return S
```

Using Generic Merge for Set Operations

- Any of the set operations can be implemented using a generic merge
- For example:
 - For intersection: only copy elements that are duplicated in both list
 - For union: copy every element from both lists except for the duplicates
- All methods run in linear time

Skip Lists

What is a Skip List

- A skip list for a set S of distinct (key, element) items is a series of lists S_0 , S_1, \ldots, S_h such that
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S_0 contains the keys of S in nondecreasing order
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq ... \supseteq S_h$
 - List S_h contains only the two special keys
- We show how to use a skip list to implement the dictionary ADT

Actions in a skip list

- next(p): Return the position following p on the same level.
- prev(p) : Return the position preceding **p** on the same level.
- below(p): Return the position below p in the same tower.
- above(p): Return the position above **p** in the same tower.
 - * The actions return *None* if the position requested does not exist

Search

- We search for a key x in a a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare x with $y \leftarrow key(next(p))$

```
x = y: we return element(next(p))
```

x > y: we "scan forward"

x < y: we "drop down"

- If we try to drop down past the bottom list, we return *null*
- Example: search for 78

Search Pseudo-code

```
Algorithm SkipSearch(k):

Input: A search key k

Output: Position p in the bottom list S_0 with the largest key such that key(p) \le k

p = start {begin at start position}

while below(p) \ne None do

p = below(p) {drop down}

while k \ge key(next(p)) do

p = next(p) {scan forward}

return p.

Code Fragment 10.12: Algorithm to search a skip list S for key k.
```

Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution
- It contains statements of the type

```
    b ← random()
    if b = 0
    do A ...
    else { b = 1}
    do B ...
```

• Its running time depends on the outcomes of the coin tosses

- We analyze the expected running time of a randomized algorithm under the following assumptions
 - · the coins are unbiased, and
 - the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")
- We use a randomized algorithm to insert items into a skip list

Insertion

- To insert an entry (x, o) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with i the number of times the coin came up heads
 - If $i \ge h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1} , each containing only the two special keys
 - We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each list $S_0, S_1, ..., S_i$
 - For $j \leftarrow 0, ..., i$, we insert item (x, o) into list S_j after position p_j
- Example: insert key 15, with i = 2

Insertion Pseudo-code

n = n + 1return q

level as p) and above position q, **Algorithm** SkipInsert(k,v): *Input:* Key k and value v returning the new position *r*. *Output:* Topmost position of the item inserted in the skip list p = SkipSearch(k)q = None{q will represent top node in new item's tower} i = -1repeat i = i + 1if i > h then h = h + 1{add a new level to the skip list} t = next(s){grow leftmost tower} $s = insertAfterAbove(None, s, (-\infty, None))$ insertAfterAbove(s,t, $(+\infty, None)$) {grow rightmost tower} while above(p) is None do p = prev(p){scan backward} p = above(p){jump up to higher level} q = insertAfterAbove(p, q, (k, v)) {increase height of new item's tower} **until** coinFlip() == tails

n: # of entries h: the height

s: the start node

r = insertAfterAbove(p,q,(k,v))

- Inserts a position storing the item

(k,v) after position p (on the same

Deletion

- To remove an entry with key x from a skip list, we proceed as follows:
 - We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key x, where position p_j is in list S_j
 - We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1, ..., S_i$
 - We remove all but one list containing only the two special keys
- Example: remove key 34

Implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
 - entry
 - link to the node prev
 - link to the node next
 - link to the node below
 - link to the node above
- Also, we define special keys
 PLUS_INF and MINUS_INF, and
 we modify the key comparator
 to handle them

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
 - Fact 1: The probability of getting i consecutive heads when flipping a coin is $1/2^i$
 - Fact 2: If each of *n* entries is present in a set with probability *p*, the expected size of the set is *np*

- Consider a skip list with *n* entries
 - By Fact 1, we insert an entry in list S_i with probability $1/2^i$
 - By Fact 2, the expected size of list S_i is $n/2^i$
- The expected number of nodes used by the skip list is

$$\sum_{i=0}^{h} \frac{n}{2^{i}} = n \sum_{i=0}^{h} \frac{1}{2^{i}} < 2n$$

Thus, the expected space usage of a skip list with n items is O(n)

Height

- The running time of the search an insertion algorithms is affected by the height h of the skip list
- We show that with high probability, a skip list with n items has height $O(\log n)$
- We use the following additional probabilistic fact:

Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np

- Consider a skip list with *n* entires
 - By Fact 1, we insert an entry in list S_i with probability $1/2^i$
 - By Fact 3, the probability that list S_i has at least one item is at most $n/2^i$
- By picking $i = 3\log n$, we have that the probability that $S_{3\log n}$ has at least one entry is at most

$$n/2^{3\log n} = n/n^3 = 1/n^2$$

• Thus a skip list with n entries has height at most $3\log n$ with probability at least $1 - 1/n^2$

Search and Update Times

- The search time in a skip list is proportional to
 - the number of drop-down steps, plus
 - the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ with high probability
- To analyze the scan-forward steps, we use yet another probabilistic fact:

Fact 4: The expected number of coin tosses required in order to get tails is 2

- When we scan forward in a list, the destination key does not belong to a higher list
 - A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scan-forward steps is 2
- Thus, the expected number of scan-forward steps is $O(\log n)$
- We conclude that a search in a skip list takes $O(\log n)$ expected time
- The analysis of insertion and deletion gives similar results

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm
- In a skip list with *n* entries
 - The expected space used is O(n)
 - The expected search, insertion and deletion time is $O(\log n)$

- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability
- Skip lists are fast and simple to implement in practice