30-Aug-2020: Welcome Video, and What is Machine Learning

• Machine learning: algorithms; supervised, unsupervised, reinforcement, recommender. In this course, also will learn best practices.

31-Aug-2020: Supervised Learning, and Unsupervised Learning

- Supervised learning: right answers are given
- Regression: predicts continuous variable output; Classification: predicts discrete values
- Classification can have $1, \ldots, N, \ldots, \infty$ attributes. E.g. benignness/malignancy based on age, or age and tumor size, etc.
- Unsupervised learning a.k.a. clustering: Right answers aren't given. For example, news that links to different sources for the same topic.
- Cocktail party algorithm: separates two voices in a conversation, with two microphone recordings. Singular value decomposition is key to this algorithm.
- When learning machine learning, use Octave

1-Sep-2020: Model Representation, and Cost Function

- Training set notation: m is number of training examples, x are input examples, and y are the output variables. Together, (x, y) form a training example. Also denoted $(x^{(i)}, y^{(i)})$.
- In a linear regression, $h_{\theta}(x) = \theta_0 + \theta_1 x \equiv h(x)$.
- Cost function is

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

• Want to minimize J w.r.t. θ_0 and θ_1 .

4-Sep-2020: Cost Function, Intuition Iⅈ Gradient Descent

- Intuition I; Let $\theta_0 = 0$, then $\min_{\theta_1} J(\theta_1)$ is what we want
- Ex: $h_{\theta}(x) = \theta_1 x$ and let $(x, y) = \{(1, 1), (2, 2), (3, 3)\}.$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\to \text{ If } \theta_1 = 0, h_{\theta}(x) \equiv 0$$

$$J(0) = \frac{1}{2 \times 3} (1 + 4 + 9)$$

$$= \frac{14}{6}$$

- $J(\theta_1)$ is parabolic
- We want $\min_{\theta} J(\theta)$; here, $\theta_1 = 1$ satisfies this criterion
- Intuition II; Let θ_0, θ_1 be free in $J(\theta_0, \theta_1)$ and $h_{\theta}(x)$.
- $J(\theta_0, \theta_1)$ is a parabloid
- Gradient Descent; Use gradient descent to find (θ_0, θ_1) that minimizes $J(\theta_0, \theta_1)$.
- Differing starting guesses can give different local minima.
- Gradient descent algorithm:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \text{ for } j = 1, 2$$

- Simultaneously update $\theta_0, \theta_1, \alpha$ is called the learning rate.
- Ex: $\theta_0 = 1, \theta_2 = 2$ and $\theta_j := \theta_j + \sqrt{\theta_0 \theta_1}$.

$$\begin{aligned} \theta_0 &:= \theta_0 + \sqrt{\theta_0 \theta_1} \\ &= 1 + \sqrt{1 \times 2} \\ &= 1 + \sqrt{2} \\ \theta_1 &= \theta_2 + \sqrt{\theta_0 \theta_1} \\ &= 2 + \sqrt{1 \times 2} \quad \text{note here that we used the old value of } \theta_0 \\ &= 2 + \sqrt{2} \end{aligned}$$

5-Sep-2020: Gradient Descent Intuition, Gradient Descent for Linear Regression

- Gradient Descent Intuition: For simplicity, assume $\theta_0 = 0$
- One variable: θ₁ := θ₁ α d/dθ₁ J(θ₁); Newton-Raphson
 If α is too small, convergence may be very slow. If too large, it may miss the minimum.
- If θ_1 is already at a local minimum, g.d. leaves θ_1 unchanged since the derivative is zero.
- Gradient Descent for Linear Regression: We need derivatives

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)$$
$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right) \times x^{(i)}$$

• So, gradient descent finds the new θ variables as

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right) \times x^{(i)}$$

- This is called "batch gradient descent"; batch implies looking at all the training examples. This is represented by the $\sum_{i=1}^{m}$
- Quiz Linear Regression with One Variable: 2) $m = \Delta y/\Delta x = (1-0.5)/(2-1) = 0.5 \implies y = 0.5x + b$; y-intercept is clearly zero since (0,0) is a data point.
- 3) $h_{\theta}(x)$; $\theta_0 = -1$, $\theta_1 = 2$; $h_{\theta}(6) = -1 + 2 \times 6 = 11$

9-Sep-2020: Linear Algebra Review

- Matrices and Vectors: Nothing new; in this course, index from 1.
- Addition and Scalar Multiplication: Nothing new
- Matrix Vector Multiplication: Nothing new;
- Ex: Let house sizes be $\{2104, 1416, 1534, 852.\}$. Let the hypothesis be $h_{\theta}(x) = -40 + 0.25x$.

$$\begin{bmatrix} 1 & 2104 \\ 1 & 1416 \\ 1 & 1534 \\ 2 & 852 \end{bmatrix} \begin{bmatrix} -40 \\ 0.25 \end{bmatrix} = \begin{bmatrix} -40 \times 1 + 0.25 \times 2104 \\ -40 \times 1 + 0.25 \times 1416 \\ -40 \times 1 + 0.25 \times 1534 \\ -40 \times 1 + 0.25 \times 852 \end{bmatrix} = \begin{bmatrix} h_{\theta}(2104) \\ h_{\theta}(1416) \\ h_{\theta}(1534) \\ h_{\theta}(852) \end{bmatrix}$$

This essentially says data matrix \times parameters = prediction

- Best to do this with built-in linear algebra function in Octave/Python. You can do it manually in a for-loop, but it'll be really slow.
- Matrix Multiplication: Take the same example. Now we have three hypotheses:

$$h_{\theta}(x) = -40 + 0.25x$$

$$h_{\theta}(x) = 200 + 0.1x$$

$$h_{\theta}(x) = -150 + 0.4x$$

In matrix form, this becomes

$$\begin{bmatrix} 1 & 2104 \\ 1 & 1416 \\ 1 & 1534 \\ 2 & 852 \end{bmatrix} \begin{bmatrix} -40 & 200 & -150 \\ 0.25 & 0.1 & 0.4 \end{bmatrix} = \begin{bmatrix} 486 & 410 & 692 \\ 314 & 342 & 416 \\ 344 & 353 & 464 \\ 173 & 285 & 191 \end{bmatrix}$$

- Matrix Multiplication Properties: Not commutative. $AB \neq BA$. But it's associative. ABC = (AB)C =
- Identity matrix is I such that AI = IA = A. $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ in 2D.

• Inverse of
$$A$$
 is A^{-1} such that $AA^{-1} = A^{-1}A = I$.
• Transpose of A is A^{T} . If $B = A^{T}$, then $B_{ij} = A_{ji}$.
• Quiz: 4) $u = \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}$, $v = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$, then $u^{T}v = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$ = $-3 + (-10) + 20 = 13$.

10-Sep-2020: Multiple Features

- Introduce other features: e.g. house price not just a function of square footage; Now, house price vs. sq. footage, age, number of bedrooms, etc.
- n is the number of features, $x_j^{(i)}$ represents the value of the j^{th} feature for the i^{th} training example; $x^{(i)}$ is a vector of all the features.
- Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$. Let $x_0^{(i)} = 1$. Then, we can write this in matrix form as

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \implies h_{\theta}(x) = \theta^T x$$