

Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia Elétrica ELE0531 - Controle Digital - 2020.5

Análise e controle de sistemas em tempo discreto

Levy Gabriel da Silva Galvão Lilianne Fernandes de Carvalho

Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia Elétrica ELE0531 - Controle Digital - 2020.5

Análise e controle de sistemas em tempo discreto

Relatório técnico referente à execução do projeto de controladores digitais na disciplina de Controle Digital, como requisito total de avaliação.

Orientador: Prof^o. Dr^o. Allan de Medeiros Martins

Sumário

1	Intr	ntrodução		
	1.1	Sistemas a serem trabalhados	3	
	1.2	Discretização por ROZ	3	
		1.2.1 Representação em espaço de estados em tempo contínuo	4	
		1.2.2 Representação em espaço de estados em tempo discreto	5	
		1.2.3 Período de amostragem	7	
	1.3	Análise das saídas	8	
2	Pro	jeto de controlador	12	
	2.1	Análise em regime permanente	12	
	2.2	Análise em regime transitório	14	
	2.3	Estabilidade	15	
		2.3.1 Estabilidade assintótica	16	
		2.3.2 Estabilidade BIBO	17	
		2.3.3 Critério de Routh-Hurwitz	17	
	2.4	Representação dos sistemas	19	
		2.4.1 Espaço de estados	19	
		2.4.2 Resposta em frequência	20	

	2.5	Lugar	das raízes	22
	2.6	Contro	oladores	23
		2.6.1	Sistema estável	26
		2.6.2	Sistema instável	28
	2.7	Compa	aração com o controlador dead beat	32
3 Projeto de observador				35
	3.1	Identif	ficação de sistemas	35
		3.1.1	Sistema estável	35
		3.1.2	Sistema instável	37
	3.2	Anális	se de controlabilidade e observabilidade em tempo discreto	40
		3.2.1	Controlabilidade e forma canônica controlável	41
		3.2.2	Observabilidade e forma canônica observável	42
	3.3	Observ	vadores de estado	43
4	Con	ıclusõe	\mathbf{s}	47

1 Introdução

O objetivo deste trabalho é detalhar várias etapas da análise de sistemas em tempo discreto, bem como realizar o projeto de controladores e observadores de estado. Para isso são utilizadas duas plantas, uma BIBO estável e outra BIBO instável, para haver uma comparação e abordagem de uma quantidade maior de paradigmas ao lidar com essas plantas.

1.1 Sistemas a serem trabalhados

As plantas a serem trabalhadas são baseadas em exemplos básicos de funções de transferência da literatura de controle e estão representadas no domínio da frequência pela transformada de Laplace. A primeira é uma planta (1) estável de segunda ordem e bastante oscilatória. Enquanto que a segunda é uma planta (2) de segunda ordem instável com dois polos diferentes, incluindo um na origem.

$$G_{est}(s) = \frac{10}{(s^2 + 2s + 25)} \tag{1}$$

$$G_{ins}(s) = \frac{2}{s(s+0.5)} \tag{2}$$

1.2 Discretização por ROZ

Para realizar a discretização por retentor de ordem zero (ROZ) das plantas é necessário transformar a representação em função de transferência no domínio da frequência em uma representação por equação diferencial e logo após para uma representação no tempo em espaço de estados. Após obter a representação por espaço de estados em tempo contínuo, realiza-se a discretização e obtém-se a representação por espaço de estados em tempo discreto.

1.2.1 Representação em espaço de estados em tempo contínuo

A forma padrão da representação em espaço de estados em tempo contínuo segue as equações 3:

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t) \\ y(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}u(t) \end{cases}$$
 (3)

Onde $\mathbf{x}(t)$, $\mathbf{y}(t)$ e $\mathbf{u}(t)$ são, respectivamente, os vetores de estados, saídas e entradas. As matrizes A, B, C e D são, respectivamente, a matriz de transição de estados, de entradas, de saídas e de transmissão direta. (LATHI, 2005)

Considerando a planta estável, ao expandir sua FT obtém-se:

$$(s^2 + 2s + 25)Y(s) = 10U(s)$$
(4)

Considerando condições iniciais nulas, ao aplicar a transformada inversa de Laplace na equação 4, obtém-se a seguinte

$$\ddot{y}(t) + 2\dot{y}(t) + 25y(t) = 10u(t) \tag{5}$$

Considera-se o sistema de equações 6 para os estados:

$$\begin{cases} x_1 = y \\ x_2 = \dot{y} \end{cases} \tag{6}$$

Obtém-se:

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = \ddot{y} = 10u - 25x_1 - 2x_2 \end{cases}$$
 (7)

Assim as matrizes da representação em espaço de estados serão:

$$A = \begin{bmatrix} 0 & 1 \\ -25 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 10 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}; D = 0$$
 (8)

O processo é análogo para a planta instável e com as mesas considerações. Sendo a equação 9 a FT expandida, a equação 10 a equação diferencial, o sistema de equações 11 as atribuições dos estados levando em consideração a equação 6 e, por fim, as matrizes da representação de estados na equação 12

$$(s^2 + 0.5s)Y(s) = 2U(s) (9)$$

$$\ddot{y}(t) + 0.5\dot{y}(t) = 2u(t) \tag{10}$$

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = \ddot{y} = 2u - 0.5x_2 \end{cases}$$
 (11)

$$A = \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}; D = 0$$
 (12)

1.2.2 Representação em espaço de estados em tempo discreto

Encontradas as devidas matrizes dos sistemas, resta discretizar os sistemas para que eles obedeçam a relação da equação 13.

$$\begin{cases} x[n+1] = \Phi x[n] + \Gamma u[n] \\ y[n] = Cx[n] + Du[n] \end{cases}$$
(13)

Onde a matriz de transição de estados é $\Phi = e^{Ah}$, a matriz de entradas é $\Gamma = \int_0^h e^{At} B dt$

e h é o período de amostragem. Durante a análise, a forma de resolver e^{Ah} irá obedecer a equação 14 (transformada inversa de Laplace da matriz inversa de sI - A) e os cálculos de Φ e Γ ficarão em função de h e serão agilizados por meio de softwares computacionais, como Scilab e Wolfram Alpha.

$$\Phi = \mathcal{L}^{-1}(sI - A)^{-1} \tag{14}$$

Dessa forma, para o sistema estável tem-se que as matrizes Φ e Γ são:

$$\Phi = \begin{bmatrix}
e^{-h} \left(\frac{sen(2\sqrt{6}h) + 2\sqrt{6}cos(2\sqrt{6}h)}{2\sqrt{6}} \right) & e^{-h} \frac{sen(2\sqrt{6}h)}{2\sqrt{6}} \\
-25e^{-h} \frac{sen(2\sqrt{6}h)}{2\sqrt{6}} & e^{-h} \left(\frac{2\sqrt{6}cos(2\sqrt{6}h) - sen(2\sqrt{6}h)}{2\sqrt{6}} \right)
\end{bmatrix} (15)$$

$$\Gamma = \begin{bmatrix} \frac{1}{30}e^{-h}(12e^{h} - \sqrt{6}sen(2\sqrt{6}h) - 12cos(2\sqrt{6}h)) \\ 5e^{-h}\frac{sen(2\sqrt{6}h)}{2\sqrt{6}} \end{bmatrix}$$
(16)

E para o sistema instável tem-se que as matrizes Φ e Γ são:

$$\Phi = \begin{bmatrix} 1 & 2(1 - e^{-0.5h}) \\ 0 & e^{-0.5h} \end{bmatrix}$$
 (17)

$$\Gamma = \begin{bmatrix} 4(h + 2e^{-0.5h} - 2) \\ 4(1 - e^{-0.5h}) \end{bmatrix}$$
 (18)

Finalmente os sistemas estão discretizados.

1.2.3 Período de amostragem

A escolha do período de amostragem é essencial para que o sistema discreto represente da melhor maneira possível o sistema contínuo real. Dessarte, este trabalho utilizou a análise a partir da largura de banda limitada pela frequência de corte das funções de transferência (frequência para a qual o módulo da função de transferência é -3dB), de modo que as componentes frequenciais acima desta frequência são deveras atenuadas, permitindo estabelecer esta frequência como a maior permitida no sistema. Para obedecer o teorema de Nyquist e regras de ordem prática, foi adotada uma frequência de amostragem no mínimo quinze vezes maior do que a frequência de corte.

Para encontrar a frequência de corte basta igualar o módulo da função de transferência a -3dB ou 0.5 com $s=j\omega$ e resolver as equações para 19 e 20 w. Para facilitar os cálculos, foram determinados os polos das funções de transferência.

$$|G_{est}(j\omega)| = \left| \frac{10}{(j\omega + 1 - j2\sqrt{6})(j\omega + 1 + j2\sqrt{6})} \right| = 0.5$$
 (19)

$$|G_{ins}(j\omega)| = \left| \frac{2}{j\omega(j\omega + 0.5)} \right| = 0.5$$
 (20)

Resolvendo as equações, encontra-se uma frequência de corte para a planta estável de $\omega_{B_{est}} = 6.3588 rad/s$ e de $\omega_{B_{ins}} = 1.969 rad/s$ para a planta instável.

O período de amostragem será dado pela equação 21 para a planta estável e pela equação 22 para a planta instável, considerando as relações de que $\omega_B = 2\pi f_B$, $f_S = 15 f_B$ (para garantir que não haverá aliasing) e $h = f_S^{-1}$

$$h_{est} = 0.06587s \approx 0.01s \tag{21}$$

$$h_{ins} = 0.2127s \approx 0.1s$$
 (22)

1.3 Análise das saídas

Serão avaliadas as saídas dos sistemas para entradas do tipo degrau e senoide em tempo contínuo e discreto à título de comparação.

Considerando a solução no domínio do tempo de equações de estado em tempo contínuo proposta por LATHI (2005) na equação 23, tem-se que a saída é dada como a componente x_1 das variáveis de estado de acordo com o que foi proposto em 6.

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}(t_0) + \int_{t_0}^t e^{A(t-\tau)}\mathbf{B}u(\tau)d\tau$$
 (23)

Considerando $t_0=0$ e condições iniciais nulas, tem-se que a componente da resposta só depende da resposta forçada:

$$\mathbf{x}(t) = \int_0^t e^{A(t-\tau)} \mathbf{B} u(\tau) d\tau \tag{24}$$

$$\mathbf{y}(t) = C\mathbf{x}(t) + D \tag{25}$$

Já a saída em tempo discreto pode ser encontrada pela equação 26. Pode ser simplificada para 27 considerando condições iniciais nulas e transferência de energia igual a 0 (D=0).

$$y[n] = C\Phi^n x[0] + C \sum_{i=0}^{n-1} \Phi^{n-i-1} \Gamma u[i] + Du[n]$$
 (26)

$$y[n] = C \sum_{i=0}^{n-1} \Phi^{n-i-1} \Gamma u[i]$$
 (27)

As saídas foram avaliadas no software Scilab, considerando os períodos de amostragem anteriormente determinados (equações 21 e 22) para o tempo discreto. Os períodos de amostragem para o tempo contínuo foram determinados como cem vezes menor que os períodos para tempo discreto, garantindo um maior detalhamento da simulação com uma baixa granularidade.

Em seguida, para avaliar o quão divergente são as saídas dos dois sistemas (o sistema BIBO estável e o instável) entre tempo discreto e contínuo, foram destacados os gráficos das saídas, a correlação, gráfico de dispersão e reta de regressão linear. A análise entre saída em tempo contínuo e discreto foi dividida em quatro situações:

- Sistema estável para uma entrada do tipo degrau;
- Sistema instável para uma entrada do tipo degrau;
- Sistema estável para uma entrada do tipo senoide com frequência de 0.5 Hz;
- Sistema instável para uma entrada do tipo senoide com frequência de 0.15 Hz;

As frequências da senoide foram determinadas de forma a não ultrapassarem a frequência de amostragem, garantindo que o teorema de Nyquist seja obedecido.

De acordo com as imagens 1, 2, 3 e 4, observa-se uma boa correlação entre as saídas em tempo contínuo e discreto para cada tipo de sistema e entrada e, apesar de não ser perfeita, ao manter-se sempre acima de 99.9% denota que essa representação é muito fiel à dinâmica real do sistema.

Em uma análise quantitativa extra, com o objetivo de observar como o sistema discretizado é afetado pelo período de amostragem, foi submetido um teste à planta instável com uma senoide de 0.15Hz na entrada. O período de amostragem foi variado em três valores: 0.1s (período de amostragem original), 1s, 10s. Obtendo-se uma correlação de: 99.99%, 90.13% e 7.05%, respectivamente. Isso demonstra que a escolha do período de amostragem é essencial para a representação fidedigna do sistema em tempo discreto.

Figura 1: (a) Saída do sistema estável para uma entrada do tipo degrau e (b) comparação através de dados estatísticos das saídas no tempo discreto e contínuo

Figura 2: (a) Saída do sistema estável para uma entrada do tipo senoide (0.5 Hz) e (b) comparação através de dados estatísticos das saídas no tempo discreto e contínuo

Figura 3: (a) Saída do sistema instável para uma entrada do tipo degrau e (b) comparação através de dados estatísticos das saídas no tempo discreto e contínuo

Figura 4: (a) Saída do sistema instável para uma entrada do tipo senoide (0.15 Hz) e (b) comparação através de dados estatísticos das saídas no tempo discreto e contínuo

2 Projeto de controlador

Para facilitar as análises de regime permanente, regime transitório e estabilidade, os sistemas discretos representados pelo modelo de espaço de estados foram transformados para a representação da função de transferência no domínio da frequência pela transformada Z, por meio da equação 28

$$H(z) = C[(zI - \Phi)^{-1}]\Gamma + D \tag{28}$$

Dessa forma, as funções de transferência para o sistema estável e instável estão representadas de acordo com as equações 29 e 30, respectivamente.

$$H_{est}(z) = \frac{0.0004966z + 0.0004933}{z^2 - 1.977724z + 0.9801987}$$
(29)

$$H_{ins}(z) = \frac{0.0098354z + 0.00967728}{z^2 - 1.9512294z + 0.9512294}$$
(30)

Para futuras demonstrações, ambos os sistemas podem ser referenciados pelo formato de equação em 31, que mapeia os coeficientes de cada uma das FTs por meio dos coeficientes genéricos \mathbf{a} , \mathbf{b} , \mathbf{c} e \mathbf{d} .

$$H(z) = \frac{\mathbf{c}z + \mathbf{d}}{z^2 - \mathbf{a}z + \mathbf{b}} \tag{31}$$

2.1 Análise em regime permanente

Para a análise em regime permanente foi utilizado o teorema do valor final (equação 32) para entradas (U(z)) do tipo degrau e senoide, cuja frequência foi determinada em tópicos anteriores.

$$y(\infty) = \lim_{z \to 1} (z - 1)H(z)U(z) \tag{32}$$

Consultando o capítulo de transformadas Z do LATHI (2005), obtém-se representações para para a transformada Z de um degrau (equação 33) e de um seno de frequência ω' (equação 34).

$$1(t>0) \rightleftharpoons \frac{z}{z-1} \tag{33}$$

$$sen(\omega'n)(t>0) \rightleftharpoons \frac{zsen(\omega')}{z^2 - 2cos(\omega')z + 1}$$
 (34)

Vale destacar a diferença entre ω e ω' . A velocidade angular ω refere-se àquela presente no seno em tempo contínuo $(sen(\omega t))$. Porém, como t=nh, tem-se que o novo seno será: $sen(\omega nh)$. Finalmente mostrando que $\omega'=\omega'h$, permitindo que o seno seja representado em tempo discreto e que obedeça a transformação da equação 34.

Ao aplicar a equação 32 para ambos os sistemas discretos e comparando com o teorema do valor final para tempo contínuo, obtém-se a tabela 1 com um compilado dos valores finais obtidos para cada tipo de entrada. O período de amostragem e frequências utilizados seguem os mesmos critérios que os itens anteriores.

Tabela 1: Comparativo entre os valores finais dos sistemas em tempo discreto e tempo contínuo.

-	Tempo contínuo	Tempo discreto
Sistema estável com degrau	0.4	0.400001
Sistema estável com senoide (0.5Hz)	0	0
Sistema instável com degrau	∞	∞
Sistema instável com senoide (0.15Hz)	4.24413	4.24192

Os valores finais para o tempo contínuo foram obtidos a partir da versão do teorema do valor final para a transformada de Laplace. Observa-se que todos os valores se corresponderam. Os valores finais para as senoides correspondem ao valor final médio. O valor final para o sistema instável com a senoide para o tempo discreto foi encontrado cortando um polo em (z-1) com o zero na mesma posição devido à fórmula do teorema.

2.2 Análise em regime transitório

As figuras de mérito para avaliar o comportamento de um sistema em regime transitório que serão abordadas neste trabalho e que são fundamentais para o projeto de controladores são:

- Tempo de estabilização (T_s) : é o tempo necessário para que a curva de resposta alcance e permaneça com uma variação menor que 2% em torno do valor final;
- Ultrapassagem máxima (OS): equivale à variação do pico máximo em relação ao valor final, geralmente expresso em porcentagem;
- Coeficiente de amortecimento (ξ) ;
- Frequência natural amortecida/não amortecida ($\omega_n \in \omega_d$);

Para achar essas medidas, parte-se de suas definições no domínio da transformada de Laplace, porém fazendo a consideração de que sua relação com a transformada Z é: $z=e^{sh}$. Assim, a partir da representação dos polos em Laplace (equação 35), pode-se achar uma relação no domínio Z.

$$s_{1,2} = -\xi \omega_n \pm j\omega_n \sqrt{1 - \xi^2} \tag{35}$$

$$z = e^{sh} = e^{s_{1,2}h} = e^{-\xi\omega_n}e^{\pm j\omega_d h} = e^{-\xi\omega_n} \angle \pm \omega_d h = |z| \angle \pm \theta$$
$$Q(z) = (z - z_1)(z - z_2) = (z - e^{-\xi\omega_n}e^{j\omega_d h})(z - e^{-\xi\omega_n}e^{-j\omega_d h}) = 0$$

$$z^2 - (2\cos(\omega_d h))e^{-\xi\omega_n h}z + e^{-2\xi\omega_n h}$$
(36)

Assim, ao considerar que as funções de transferência de ambos os sistemas trabalhados seguem o formato da equação 31, pode-se comparar seu denominador com a equação 36 para encontrar as figuras de mérito desejadas.

$$x = -\xi \omega_n = \frac{\ln(b)}{2h}$$

$$y = \omega_d = \frac{a\cos(\frac{a}{2\sqrt{b}})}{h}$$

Assim, tem-se:

$$\omega_n = \sqrt{x^2 + y^2} \tag{37}$$

$$\xi = \sqrt{1 - \frac{y^2}{x^2 + y^2}} \tag{38}$$

$$T_s = \frac{4}{\xi \omega_n} \tag{39}$$

$$OS(\%) = e^{-\frac{\pi\xi}{\sqrt{1-\xi^2}}} * 100\%$$
 (40)

Tabela 2: Figuras de mérito para avaliação do regime transitório.

-	Sistema estável	Sistema instável
$T_s(s)$	4	-
OS(%)	52.66	=
ξ	0.199	-
$\omega_n(\mathrm{rad/s})$	5	-

Primeiramente observa-se que o sistema instável não possui esses parâmetros definidos, uma vez que o pico ou a estabilização nunca são atingidas. No que diz respeito ao sistema estável, os parâmetros são facilmente observados a partir do vetor que gerou o gráfico da figura 2. Esses parâmetros serão fundamentais para o projeto de controladores.

2.3 Estabilidade

Considerando os polos das funções de transferência discretas em malha aberta para o sistema estável (29) e instável (30), tem-se que eles são:

$$z_{1,2}^{EST} = 0.988862 \pm j0.0484835 \tag{41}$$

$$z_1^{INS} = 1 (42)$$

$$z_2^{INS} = 0.951229 \tag{43}$$

Figura 5: Círculo unitário para o sistema estável.

Figura 6: Círculo unitário para o sistema instável.

Pela posição dos polos do sistema estável estar distante da origem, justifica-se o fato de sua resposta levar um tempo maior para se estabilizar $(T_S \approx 4s)$

2.3.1 Estabilidade assintótica

De acordo com o teorema da estabilidade assintótica, com a ausência de cancelamento de polos e zeros, um sistema digital LT é dito estável se os seus polos pertencem ao círculo unitário aberto e marginalmente estável se seus polos pertencem ao círculo unitário fechado e sem polos repetidos no círculo.

Dessa forma, considerando os polos dos sistemas em malha aberta apresentados nas equações 41, 42 e 43, o sistema proposto como estável, do ponto de vista da estabilidade assintótica, de fato é estável, pois todos os seus polos pertencem ao círculo unitário aberto. Enquanto que o sistema considerado estável, do ponto de vista da estabilidade assintótica ele é marginalmente estável, pois um dos polos habita a periferia do círculo unitário fechado.

2.3.2 Estabilidade BIBO

A estabilidade Bounded Input and Bounded Output (BIBO) prevê que se uma entrada limitada inserida no sistema e este responder com uma saída limitada, assim o teorema da estabilidade BIBO propõe para que um sistema seja BIBO estável, sua resposta ao impulso seja totalmente somável. Do ponto de vista dos polos da função de transferência, o sistema discreto no tempo e linear só será estável se seus polos habitarem o interior do círculo unitário.

Portanto, considerando os polos dos sistemas em malha aberta, o sistema estável também é BIBO estável, enquanto que o sistema instável é considerado BIBO instável, pois este possui um polo que habita a periferia do círculo unitário.

2.3.3 Critério de Routh-Hurwitz

Para aplicar o critério de estabilidade de Routh-Hurwitz há a necessidade de realizar a transformação bilinear dada pela equação abaixo, de forma a mapear a função de transferência do plano z para o plano s, de forma a avaliar o critério de acordo com o que se realizava para sistemas analógicos, ao verificar a mudança dos sinais dos elementos da tabela:

$$z = \frac{1+s}{1-s}$$

Assim, ao aplicar a transformação bilinear na função de transferência padrão da equação 31, obtém-se a forma:

$$H(s) = \frac{(d-c)s^2 - (2d)s + (d+c)}{(1+a+b)s^2(2-2b)s + (1-a+b)}$$

De forma que a tabela de Routh padrão, já considerando os elementos a serem calculados, será:

Aplicando os devidos coeficientes das funções de transferência do sistema considerado estável e o instável, tem-se as funções de transferência transformadas da equação 44 para o sistema considerado estável e a equação 45 para o sistema considerado instável.

$$H(s) = \frac{-3.3e - 6s^2 - 9.866e - 4s + 9.899e - 4}{3.9579227s^2 + 0.0396026s + 0.0024747}$$
(44)

$$H(s) = \frac{-1.581e - 4s^2 - 0.0193546s + 0.0195127}{3.9024588s^2 + 0.0975412s}$$
(45)

Assim, as tabelas de Routh para cada uma das situações será dada em seguida.

Para a tabela 3, observa-se que o sistema que antes foi considerado estável, de fato é estável com todos os polos no semiplanos esquerdo, pois a primeira coluna da tabela de Routh não possui troca de sinais.

Tabela 3: Tabela de Routh para o sistema considerado estável.

s^2	3.9579227	0.0024747	0
s^1	0.0396026	0	0
s^0	0.0024747	0	0

Para o sistema considerado instável, a linha correspondente a s^0 será composta por zeros, dessa forma recorre-se ao polinômio da linha anterior e os coeficientes da derivada desse polinômio irão compor os coeficientes da linha que antes era nula, de forma que:

$$P(s) = 0.0975412s^{1}$$
$$\frac{dP(s)}{ds} = 0.0975412s^{0}$$

Essa linha inteira de zeros aparece quando existe um polinômio estritamente par ou estritamente ímpar que for um fator do polinômio original. Porém, ao observar a tabela 45, não há mudança de sinal nas duas últimas linhas, indicando que não há polos no semiplano direito. Como o polinômio é considerado par e não possui polos no semiplano da direita, também não o possui no semiplano da esquerda, indicando que este último polo se encontra na origem. Dessa forma, como não há mudança de sinal da primeira para a segunda linha, há um polo no semiplano esquerdo e, devido a conclusão anterior, há um polinômio na origem, deixando o sistema de fato instável.

Tabela 4: Tabela de Routh para o sistema considerado instável.

s^2	3.9024588	0	0
s^1	0.0975412	0	0
s^0	0.0975412	0	0

A existência do polo na origem poderia ser interpretado pelo próprio polinômio do denominador, mas como estava sendo realizada a análise por Routh-Hurwitz, decidiu-se completá-la. O polo na origem também poderia ser identificado a partir do polinômio da linha s^1 , pois uma vez que este é de grau 1, ele não poderia ter raízes pares.

2.4 Representação dos sistemas

2.4.1 Espaço de estados

Para o sistema estável, considerando as matrizes encontradas nas equações 15, 16 e para C e D em 8 e atribuindo h = 0.01s para o período de amostragem, tem-se que a representação em espaço de estados discreto para esse sistema será:

$$\begin{cases} x[n+1] = \begin{bmatrix} 0.9987586 & 0.0098965 \\ -0.2474135 & 0.9789655 \end{bmatrix} x[n] + \begin{bmatrix} 0.0004966 \\ 0.0989654 \end{bmatrix} u[n] \\ y[n] = \begin{bmatrix} 1 & 0 \end{bmatrix} x[n] \end{cases}$$
(46)

Para o sistema instável, considerando as matrizes encontradas nas equações 17, 18 e para C e D em 12 e atribuindo h = 0.1s para o período de amostragem, tem-se que a representação em espaço de estados discreto para esse sistema será:

$$\begin{cases} x[n+1] = \begin{bmatrix} 1 & 0.0975412 \\ 0 & 0.9512294 \end{bmatrix} x[n] + \begin{bmatrix} 0.0098354 \\ 0.1950823 \end{bmatrix} u[n] \\ y[n] = \begin{bmatrix} 1 & 0 \end{bmatrix} x[n] \end{cases}$$
(47)

2.4.2 Resposta em frequência

Considerando as plantas estudadas neste trabalho no formato da função de transferência discreta da equação 31, sua equação diferença será na forma da equação 48.

$$y[n+2] - ay[n+1] + by[n] = cu[n+1] + du[n]$$
(48)

Dessa forma, considerando que $y[n] = Be^{j\omega n}$ e $u[n] = Ae^{j\omega n}$ e substituindo na equação diferença, tem-se que a resposta do sistema pode ser expressa como:

$$Be^{j\omega(n+2)} - aBe^{j\omega(n+1)} + bBe^{j\omega n} = cAe^{j\omega(n+1)} + dAe^{j\omega n}$$
$$Be^{j\omega n}(e^{j\omega 2} - ae^{j\omega} + b) = Ae^{j\omega n}(ce^{j\omega} + d)$$
$$B = A\frac{ce^{j\omega} + d}{e^{j2\omega} - ae^{j\omega} + b} = AH(e^{j\omega})$$

$$y[n] = H(e^{j\omega})Ae^{j\omega n} \tag{49}$$

Em que a função de transferência na representação em resposta de frequência é dada na forma da equação 50.

$$H(e^{j\omega}) = \frac{ce^{j\omega} + d}{e^{j2\omega} - ae^{j\omega} + b}$$

$$(50)$$

Dessa forma, a função de transferência discreta na forma da resposta em frequência para a planta estável e instável podem ser observadas na equações 51 e 52, respectivamente, ao substituir os devidos coeficientes.

$$H_{est}(e^{j\omega}) = \frac{0.0004966e^{j\omega} + 0.0004933}{e^{j2\omega} - 1.977724e^{j\omega} + 0.9801987}$$
(51)

As curvas de módulo e fase estão apresentadas na figura 7, para a planta estável e na figura 8, para a planta instável. Observa-se, além da periodicidade da resposta, que as curvas de fase são semelhantes. A curva de módulo para a planta estável possui ganhos baixos, na faixa abaixo de 0dB. A planta instável possui ganhos maiores, inclusive um ganho que tende ao infinito em nível DC (foi omitido para não distorcer o gráfico, pois é da ordem de 284 dB), justificando o fato de que a entrada do tipo degrau a instabilizou, enquanto que a senoide que possui componentes frequenciais mais elevadas, não o fez.

Figura 7: Curvas de módulo e frequência para a planta estável.

$$H_{ins}(e^{j\omega}) = \frac{0.0098354e^{j\omega} + 0.00967728}{e^{j2\omega} - 1.9512294e^{j\omega} + 0.9512294}$$
(52)

Figura 8: Curvas de módulo e frequência para a planta instável.

2.5 Lugar das raízes

Para entender o comportamento dos polos do sistema discreto em malha fechada é necessário avaliar o diagrama do lugar das raízes de ambos os sistemas. Dessa forma foi utilizado o software computacional MATLAB para auxiliar na construção do lugar das raízes.

Para o sistema instável, observa-se no diagrama que ambos os polos se encontram no eixo real no polo de 0.975 e deixam o eixo, iniciando a ter uma resposta oscilatória para poucos valores de ganho. Em seguida os polos deixam o círculo de raio unitário, garantindo que a resposta seja sempre instável. Eles voltam a se encontrar no eixo real por volta de -2.94, mas ainda instável. Para valores maiores de ganho, um polo retorna à periferia do círculo unitário e o outro tende ao infinito. Para a planta estável o comportamento é igual, com a exceção de que os polos não se encontram no eixo real, pois já partem para a instabilidade a partir de polos complexos.

Figura 9: Lugar das raízes para a planta instável em malha aberta.

Figura 10: Lugar das raízes para a planta instável em malha aberta.

2.6 Controladores

Esta seção será responsável pelo detalhamento do projeto dos controladores para a planta estável e instável. Uma vez que o projeto é livre, será escolhido o método de projeto pelo lugar das raízes para ambas as plantas analógicas, sendo necessário discretizar o controlador, a posteriori.

O sistema em malha fechada com controlador deve possuir erro de regime permanente nulo para uma entrada do tipo degrau, tempo de estabilização menor ou igual que meio segundo $(T_S \leq 0.5s)$ e percentual de ultrapassagem menor ou igual a 5% $(OS(\%) \leq 5\%)$. De acordo com os dados da tabela 2 - que apesar de se referirem aos sistemas discretos, também são iguais para a versão analógica - observa-se que ambos os sistemas não cumprem os requisitos, exceto o requisito de erro nulo ao degrau que a planta instável já cumpre, pois possui um integrador.

Dessa forma, espera-se que o modelo das plantas sigam: PID para o sistema estável, pois necessita de melhor desempenho e erro de regime nulo; PD para o sistema instável para melhorar apenas o desempenho.

De acordo com os requisitos de desempenhos que devem ser impostos, os elementos da equação 35 podem ser relacionados com os requisitos de desempenho de acordo com o proposto em OGATA (2009) e com a equação 53 para o coeficiente de amortecimento e percentual de ultrapassagem e a equação 54 para a frequência natural e o tempo de estabilização. Os requisitos de desempenho utilizados obedecerão o valor limítrofe.

$$\xi = \frac{-ln(OS)}{\sqrt{\pi^2 + ln^2(OS)}} = 0.6901 \approx 0.7 \tag{53}$$

$$\omega_n = \frac{4}{T_S \xi} = 11.428 rad/s \tag{54}$$

A partir do polinômio arbitrário observa-se que as raízes pretendidas e que estabelecem os critérios de desempenho são: $s_{1,2} = -8 \pm j 8.16122$. Assim, o projeto pelo lugar das raízes vai garantir que estes polos sejam alcançados.

O PID desejado será na forma:

$$C(s) = \frac{k_c \tau_d \left(s + \frac{1}{2\tau_d}\right)^2}{s} \tag{55}$$

Vale destacar que o PID está na forma simplificada, considerando o termo integrativo quatro vezes o derivativo, restando apenas o derivativo com dois polos iguais.

Enquanto que o PD será:

$$C(s) = k_c \tau_d \left(s + \frac{1}{\tau_d} \right) \tag{56}$$

Para encontrar os controlador PID discreto, será utilizada a transformação bilinear:

$$s = \frac{1}{h}ln(z) \approx \frac{2}{h} \left[\frac{z-1}{z+1} \right]$$

FADALI (2013) resume o controlador PID, discretizado de acordo com a transformação linear na equação 57. Vale destacar que a transformação do controlador PID resulta em um PD digital. Assim, sendo $c=\frac{2}{h}$, tem-se:

$$C(z) = K \frac{(s+a)(s+b)}{s} \Big|_{s=c\left[\frac{z-1}{z+1}\right]} = K \frac{(a+c)(b+c)}{c} \frac{\left[z + \left(\frac{a-c}{a+c}\right)\right] \left[z + \left(\frac{b-c}{b+c}\right)\right]}{(z+1)(z-1)}$$

$$C(z) = \frac{K}{2} \frac{(a+c)(b+c)}{c} \frac{\left[z + \left(\frac{a-c}{a+c}\right)\right] \left[z + \left(\frac{b-c}{b+c}\right)\right]}{z(z-1)}$$
(57)

O controlador possui um zero para melhorar o transitório e um polo em z=-1. O polo em z=-1 corresponde a uma resposta em frequência não limitada e deve ser eliminado. Mas se eliminá-lo, o controlador será irrealizável. Assim, uma aproximação é trocar o polo por outro na origem associado a uma resposta rápida e com distorções que podem ser resolvidas cortando o ganho DC pela metade e demais ajustes. O polo em z=1 introduzido pelo PID discreto contribui para anular o erro em regime permanente.

Para o controlador PD será utilizada a aproximação da derivada para frente (por não introduzir polo no controlador, como a aproximação para trás faz, podendo gerar distorções):

$$s \to \frac{z-1}{h} \tag{58}$$

2.6.1 Sistema estável

Para realizar a análise a partir do lugar das raízes, vale lembrar que existem um par de polos devido à planta (P1 e P2), dois zeros iguais (Z) e um polo na origem (P3) devidos ao PID. Assim, as condições para que um dos polos de $s_{1,2} = s_i$ pertençam ao lugar das raízes, deve seguir o critério de fase e módulo.

O critério de fase permite encontrar o ângulo relativo dos zeros com o polo de referência. Os demais ângulos são facilmente encontrados a partir de relações trigonométricas ($\theta_{P1}=155.0123^{\circ},\ \theta_{P2}=118.19^{\circ}$ e $\theta_{P3}=134.43^{\circ}$).

$$\angle A(s_i) = 2\theta_Z - \theta_{P1} - \theta_{P2} - \theta_{P3} = 180^\circ = \theta_Z = 112.816^\circ$$
 (59)

O termo derivativo pode ser facilmente encontrado por relações trigonométricas, como: $\tau_d=0.11369.$

A condição de módulo permite encontrar o ganho proporcional, uma vez que o termo derivativo fora encontrado. Ela deve ser computada a partir da distância relativa de todos os polos e zeros ao polo de referência. As relações são facilmente encontradas a partir de relações trigonométricas ($A_Z = 79.58$, $A_{P1} = 7.72$, $A_{P2} = 14.81$ e $A_{P3} = 11.42$).

$$|A(s_i)| = \frac{k_c \tau_d A_Z^2}{A_{P1} A_{P2} A_{P3}} = 1 \Longrightarrow k_c = 144.54$$
(60)

Assim, a forma final do controlador analógico será:

$$C(s) = 16.4327s + 144.5387 + \frac{317.83}{s} \tag{61}$$

Ao realizar a transformação bilinear por meio da equação 57, obtém-se o controlador discreto.

$$C(z) = 1716.3343 \frac{z^2 - 1.9139z + 0.9157}{z(z-1)}$$
(62)

Ao simular o sistema discreto em malha fechada e com o controlador para uma entrada do tipo degrau e compará-lo com a mesma situação para o sistema em tempo contínuo, obtém-se a figura 11.

Figura 11: Comparação entre a saída em tempo contínuo e tempo discreto para o sistema estável em malha fechada e com controlador.

A partir da análise da figura, observa-se que a resposta para o sistema contínuo possuiu uma ultrapassagem maior que a esperada pelo projeto do controlador, ou seja, ao invés de 5% obteve-se cerca de 12%, mas o tempo de estabilização se manteve em cerca de 0.5s. Porém, em termos da resposta discreta, a transformação bilinear causou distorções a ponto de contribuir para a redução do percentual de ultrapassagem (anulando-o), mas com o prejuízo de dobrar o tempo de estabilização (1s). Ambas alcançaram o regime permanente de acordo com a referência degrau. Essa compensação de desempenhos entre as representações foi devido ao fator de ganho do controlador ser ajustado para a metade, devido às distorções geradas pelo polo na origem do controlador discreto. Em conclusão, os valores são bastante aceitáveis, uma vez que o critério de tempo de estabilização de 0.5s foi decidido com base em eventuais distorções.

Por fim, ao inserir o controlador, o lugar das raízes para o sistema em malha fechada foi amplamente alterado, com os polos mantendo-se sempre dentro do círculo unitário e com

polos que para um ganho infinito tendem a -0.993 e 0.957. Enquanto que este último é um polo duplo devido a inserção do polo em z=1 do controlador (polo na origem do plano s).

Figura 12: Lugar das raízes para a planta estável com o controlador.

2.6.2 Sistema instável

Para realizar a análise a partir do lugar das raízes, vale lembrar que a planta possui um polo na origem (P2) e outro no eixo real (P1). A planta irá inserir apenas um zero (Z).

Analogamente ao projeto anterior, os ângulos podem ser encontrados por relações trigonométricas ($\theta_{P1}=132.582^{\circ}$ e $\theta_{P2}=134.53^{\circ}$) e o ângulo do zero será encontrado pelo critério de fase.

$$\angle A(s_i) = \theta_Z - \theta_{P1} - \theta_{P2} = 180^\circ = \theta_Z = 87.112^\circ$$
 (63)

O termo derivativo pode ser facilmente encontrado por relações trigonométricas, como: $\tau_d=0.11888.$

Os módulos relativos ao polo desejado são facilmente encontrados a partir de relações trigonométricas para garantir a condição de módulo ($A_Z = 8.1716$, $A_{P1} = 11.084$ e $A_{P2} = 11.4282$).

$$|A(s_i)| = \frac{k_c \tau_d A_Z}{A_{P1} A_{P2}} = 1 \Longrightarrow k_c = 130.395 \tag{64}$$

Assim, a forma final do controlador analógico será:

$$C(s) = 15.5014s + 130.395 (65)$$

Ao realizar a transformação por meio da aproximação da derivada para a frente por meio da relação 58, obtém-se o controlador discreto.

$$C(z) = 155.014(z - 0.15882) (66)$$

Ao simular o sistema discreto em malha fechada e com o controlador para uma entrada do tipo degrau e compará-lo com a mesma situação para o sistema em tempo contínuo, obtém-se a figura 13.

Figura 13: Comparação entre a saída em tempo contínuo e tempo discreto para o sistema instável em malha fechada e com controlador.

A partir da análise da figura, observa-se que a relação de troca que antes houve para o sistema estável, não aconteceu aqui. No sistema contínuo, apesar de ter sido projetado o percentual de ultrapassagem de 5%, na simulação ele anulou a ultrapassagem, possuindo uma resposta bem suave e que alcança a referência degrau.

Enquanto isso, o sistema discretizado cumpriu o requisito de tempo e estabilização (0.5s), alcançando em 5 amostras (tempo de amostragem de 0.1s), mas o percentual de ultrapassagem foi deveras alto, cerca de 28% (sinal máximo de 1.28). Essa distorção pode ser considerada devido a aproximação adotada (derivada para frente) e diretamente ligado ao tempo de amostragem baixo. Isso se justifica, pois em experimentos, ao reduzir o período de amostragem (/10) a resposta suavizou e se aproximou da resposta contínua.

Outra opção mais fácil de implementar foi dobrar o ganho derivativo ou reduzir o ganho proporcional do controlador. As saídas para ambas as opções apresentam sobrepostas na figura 14, não sendo necessário identificar uma ou outra, pois possuem comportamento bem semelhante: percentual de ultrapassagem nulo e tempo de estabilização de 0.6s (6 amostras).

Figura 14: Comparação entre a saída discreta com controlador ajustado.

Por fim, ao inserir o controlador, o lugar das raízes para o sistema em malha fechada foi amplamente alterado, com os polos mantendo-se sempre dentro do círculo unitário e com polos que para um ganho infinito tendem a -0.984 e 0.579.

Figura 15: Lugar das raízes para a planta instável com o controlador.

2.7 Comparação com o controlador dead beat

No projeto do $dead\ beat$ foi considerada a forma padrão (equação 31) das plantas discretas trabalhadas. Como o denominador e o numerador da planta tornam-se o numerador e denominador do controlador, respectivamente, e com uma quantidade n de polos em z=1 adicionados no controlador para garantir a resposta desejada. Como a diferença no grau do denominador para o numerador da planta difere de 1, implica que n=1. Assim, o formato dos $dead\ beats$ utilizados neste trabalho seguema forma:

$$C(z) = \frac{z^2 - az + b}{(cz+d)(z-1)}$$

Com o controlador pronto e aplicado ao sistema realimentado negativamente, assim como nos sistemas anteriores com seus respectivos controladores. Na intenção de comparar os controladores trabalhados em tópicos anteriores com o $dead\ beat$, não adianta recorrer à saída, pois ao considerar o sistema com o $dead\ beat$, esta será apenas a entrada global do sistema com uma quantidade n de atrasos. Assim, basta recorrer ao sinal de controle, pois

este indica o quão rígido o controle foi. Devido à natureza do *dead beat*, espera-se que os sinais de controle por ele gerados possua amplitudes maiores e banda de frequência mais ampla, enquanto que o controlador tradicional possui uma saída mais suave.

Sendo a linguagem dos fatos a mais eloquente, permite-se passar diretamente para os dados experimentais, frutos da simulação, que autorizam discutir a respeito da hipótese proferida.

Figura 16: Comparação entre os sinais de controle gerados pelos controladores (a) dead beat e o (b) PID para a planta estável e com a entrada do tipo degrau.

Figura 17: Comparação entre os sinais de controle gerados pelos controladores (a) dead beat e o (b) PD para a planta instável e com a entrada do tipo degrau.

De acordo com as imagens 16 e 17, observa-se que a excursão da amplitude dos sinais de controle pelos *dead beats* foi muito mais elevada que para os outros controladores: PID e PD. Ao longo do tempo o sinal tende a estabilizar. A frequência também se mostra elevada, enquanto que para os controladores tradicionais, as respostas são bem suaves e que tendem a seguir o formato da saída do sistema.

Um fato importante, e que foi omitido no gráfico para evitar distorções, é que os controladores PID e PD possuem, em suas primeiras amostras, uma grande amplitude do sinal de controle. Isto é devido às parcelas derivativas do controlador que deriva a entrada degrau, resultando em uma taxa de crescimento infinita. Porém, com o tempo, esses valores são corrigidos por meio do próprio controle para valores relativos à dinâmica do sistema.

3 Projeto de observador

3.1 Identificação de sistemas

Considerando a equação da função de transferência padrão 31, a sua equação diferença será na forma:

$$y[n+2] = cx[n+1] + dx[n] + ay[n+1] - by[n]$$

Assim, um modelo básico para identificação dos coeficientes do sistema podem ser considerados pela equação matricial 67 para um conjunto de N amostras:

$$\begin{bmatrix} y[2] \\ y[1] \\ \vdots \\ y[N] \end{bmatrix} = \begin{bmatrix} u[1] & u[0] & -y[1] & -y[0] \\ u[2] & u[1] & -y[2] & -y[1] \\ \vdots & \vdots & \vdots & \vdots \\ u[N-1] & u[N-2] & -y[N-1] & -y[N-2] \end{bmatrix} \begin{bmatrix} c \\ d \\ a \\ b \end{bmatrix}$$
(67)

Com y representando o vetor de amostras da resposta do sistema analógico e u a entrada do sistema. Para uma identificação mais precisa do sistema, a entrada deve possuir componentes frequenciais que busquem explorar todos os modos de excitação do sistema.

O sistema acima pode ser escrito como a equação matricial: y = Mc, de forma que o vetor de coeficientes pode ser encontrado por: $c = M^{-1}y$. Porém, como a matriz M não é quadrada, ela não possuirá inversa, sendo necessário recorrer à pseudo inversa:

$$c = (M^t M)^{-1} M^t v (68)$$

3.1.1 Sistema estável

Para a identificação do sistema estável, foi utilizada uma entrada de pulsos de amplitudes aleatórias (variam de 0 a 1) com no mínimo uma frequência de amostragem de 100

vezes maior que a do sistema simulado, gerando uma saída do sistema contínuo simulado no XCOS do Scilab. Essa saída foi utilizada para computar o vetor de coeficientes de acordo com a equação matricial 68.

O perfil da entrada utilizada comparada com a saída encontrada estão apresentados na figura 18

Figura 18: (a) Entrada aleatória e sua respectiva (b) saída para o sistema estável.

Utilizando o vetor saída encontrado no passo anterior para identificar o sistema, observou-se que o vetor de coeficientes encontrados foi:

- a = 1.9768486;
- b = 0.9792891;
- c = 0.0008145;
- d = 0.0001605;

Comparando com os coeficientes originais:

• a = 1.977724;

- b = 0.9801987
- c = 0.0004966
- d = 0.0004933

Pela comparação observa-se que os coeficientes do denominador possuem uma alta correspondência, enquanto que, à primeira vista, os coeficientes do numerador diferem. Essa falta de correspondência é solucionada ao simular o sistema para uma entrada degrau unitário, resultando na figura 19.

Figura 19: (a) Comparação entre as saídas para os sistemas original e identificado e a (b) correlação dos valores.

De acordo com a figura, observa-se que a comparação da resposta do sistema identificado com o sistema discreto simulado com os coeficientes originais possuem uma alta correlação, representando um bom modelo para identificação de sistemas contínuos. Porém, deve ser levado em conta que o sistema identificado é tão preciso quanto diversificado for o sinal de entrada.

3.1.2 Sistema instável

A identificação do sistema instável é um pouco mais difícil, pois entradas que possuem um offset levam o sistema a um crescimento indefinido. Neste caso o sistema instabilizando,

seus modos de excitação não são amplamente explorados, resultando em coeficientes que equivalem a um sistema que diverge significativamente, ou uma matriz singular.

A alternativa encontrada foi realizar a realimentação negativa de ganho unitário na planta para que ela se estabilize. Considerando que a planta em malha aberta é aquela da equação 30, tem-se que a planta em malha fechada a partir do mesmo processo de discretização submetido anteriormente (processo facilitado pela função c2d do MATLAB), será:

$$H_{ins}(z) = \frac{0.009819z + 0.009657}{z^2 - 1.932z + 0.9512} \tag{69}$$

Observa-se nessa planta que o numerador continua o mesmo que o da malha aberta e que os coeficientes do denominador mudaram de acordo com o numerador (número pequeno, o suficiente para que o sistema não instabilize. Desta forma ao realizar a identificação para esse sistema, basta subtrair os coeficientes encontrados para o numerador dos devidos coeficientes do numerador.

Outro detalhe importante é que a matriz do sistema 67 irá mudar. Uma vez que a entrada u não mais representará a entrada global do sistema, mas apenas o erro.

A partir deste ponto, a análise é análoga à anterior. O perfil da entrada utilizada comparada com a saída encontrada estão apresentados na figura 20. Neste caso, foi optado por uma entrada mais simples, mas ainda gerada randomicamente.

Figura 20: (a) Entrada aleatória e sua respectiva (b) saída para o sistema instável.

Utilizando o vetor saída encontrado no passo anterior para identificar o sistema, observou-se que o vetor de coeficientes encontrados foi:

- a = 1.9994965;
- b = 0.9994965;
- c = 0.0000024;
- d = -0.0000004;

Comparando com os coeficientes originais:

- a = 1.9512294;
- b = 0.9512294
- c = 0.0098354
- d = 0.00967728

Pela comparação observa-se que os coeficientes do denominador possuem uma relativa correspondência, enquanto que, à primeira vista, os coeficientes do numerador diferem.

Essa falta de correspondência é solucionada ao simular o sistema para uma entrada degrau unitário e com período de amostragem adequado à corresponder, resultando na figura 19 que permite concluir que a representação foi boa.

Figura 21: (a) Comparação entre as saídas para os sistemas original e identificado e a (b) correlação dos valores.

3.2 Análise de controlabilidade e observabilidade em tempo discreto

Será verificada a controlabilidade e observabilidade de cada uma das plantas a partir das representações em espaço de estados em tempo discreto. Em seguida, para cada análise, a planta será reescrita na forma canônica controlável ou observável.

Um sistema linear invariante no tempo será controlável se e somente se, a matriz de controlabilidade da equação 70 de dimensões $n \times m.s$ possuir posto n. Enquanto que para ser observável, a matriz de observabilidade da equação 71 de dimensões $l.n \times n$ deve possuir posto n.

$$W_C = \begin{bmatrix} \Gamma & \Phi \Gamma \end{bmatrix} \tag{70}$$

$$W_O = \begin{bmatrix} C \\ C\Phi \end{bmatrix} \tag{71}$$

A partir da representação em FADALI (2013), a representação na forma canônica controlável e observável do sistema padrão adotado neste trabalho por meio da equação 31 são representadas, respectivamente, pelos sistemas de equações 72 e 73.

$$\begin{cases} x[n+1] = \begin{bmatrix} 0 & 1 \\ -b & a \end{bmatrix} x[n] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u[n] \\ y[n] = \begin{bmatrix} d & c \end{bmatrix} x[n] \end{cases}$$
(72)

$$\begin{cases} x[n+1] = \begin{bmatrix} a & 1 \\ -b & 0 \end{bmatrix} x[n] + \begin{bmatrix} c \\ d \end{bmatrix} u[n] \\ y[n] = \begin{bmatrix} 1 & 0 \end{bmatrix} x[n] \end{cases}$$
(73)

3.2.1 Controlabilidade e forma canônica controlável

Considerando o sistema estável, sua matriz de controlabilidade será:

$$W_{C_{EST}} = \begin{bmatrix} 0.0004966 & 0.0014754 \\ 0.0989654 & 0.0967608 \end{bmatrix}$$
 (74)

Enquanto que para o sistema instável, sua matriz de controlabilidade será:

$$W_{C_{INS}} = \begin{bmatrix} 0.0098354 & 0.0288639 \\ 0.1950823 & 0.185568 \end{bmatrix}$$
 (75)

Dessa forma, observando que todas as linhas da matriz de controlabilidade da planta estável e instável são linearmente independentes, com posto 2 (ou o determinante não nulo), logo os sistemas nessa representação são controláveis.

Caso a representação em espaço de estados considerada até agora não fosse controlável, uma solução seria representar o sistema em sua forma canônica controlável a partir da função de transferência discreta que garante que ele seja sempre controlável. Assim, a partir da fórmula expressa na equação 72 a partir da literatura e para um sistema de ordem 2, a

representação na forma canônica controlável para o sistema estável e instável podem ser observadas nos sistemas 76 e 77, respectivamente.

$$\begin{cases} x[n+1] = \begin{bmatrix} 0 & 1\\ -0.9801987 & 1.977724 \end{bmatrix} x[n] + \begin{bmatrix} 0\\ 1 \end{bmatrix} u[n] \\ y[n] = \begin{bmatrix} 0.0004933 & 0.0004966 \end{bmatrix} x[n] \end{cases}$$
(76)

$$\begin{cases} x[n+1] = \begin{bmatrix} 0 & 1\\ -0.9512294 & 1.9512294 \end{bmatrix} x[n] + \begin{bmatrix} 0\\ 1 \end{bmatrix} u[n] \\ y[n] = \begin{bmatrix} 0.00967728 & 0.0098354 \end{bmatrix} x[n] \end{cases}$$
(77)

3.2.2 Observabilidade e forma canônica observável

Considerando o sistema estável, sua matriz de observabilidade será:

$$W_{O_{EST}} = \begin{bmatrix} 1 & 0\\ 0.9987586 & 0.0098965 \end{bmatrix}$$
 (78)

Enquanto que para o sistema instável, sua matriz de observabilidade será:

$$W_{O_{INS}} = \begin{bmatrix} 1 & 0 \\ 1 & 0.0975412 \end{bmatrix} \tag{79}$$

Dessa forma, observando que todas as linhas da matriz de observabilidade da planta estável e instável são linearmente independentes, com posto 2 (ou o determinante não nulo), logo os sistemas nessa representação são observáveis.

De acordo com o que foi discutido para a forma canônica controlável, também é aplicável a transformação do sistema para sua forma canônica observável, garantindo a observabilidade. Assim, a partir da fórmula expressa na equação 73 a partir da literatura e para um sistema de ordem 2, a representação na forma canônica observável para o sistema estável e instável podem ser observadas nos sistemas 80 e 81, respectivamente.

$$\begin{cases} x[n+1] = \begin{bmatrix} 1.977724 & 1 \\ -0.9801987 & 0 \end{bmatrix} x[n] + \begin{bmatrix} 0.0004966 \\ 0.0004933 \end{bmatrix} u[n] \\ y[n] = \begin{bmatrix} 1 & 0 \end{bmatrix} x[n] \end{cases}$$
(80)

$$\begin{cases} x[n+1] = \begin{bmatrix} 1.9512294 & 1 \\ -0.9512294 & 0 \end{bmatrix} x[n] + \begin{bmatrix} 0.0098354 \\ 0.00967728 \end{bmatrix} u[n] \\ y[n] = \begin{bmatrix} 1 & 0 \end{bmatrix} x[n] \end{cases}$$
(81)

3.3 Observadores de estado

Os observadores de estado projetados partiram da equação 36 para obter os polos do observador que são encontrados na forma: $a^*(z) = z^2 - (\lambda_1 + \lambda_2) + (\lambda_1 + \lambda_2)$. Assim, escolhe-se os polos para $\omega_n = 3.384 rad/s$ e $\xi = 0.591$, obtendo $\lambda_1 = 0.979916$ e $\lambda_2 = 0.980481$, para os polos do observador do sistema estável e $\lambda_{1,2} = 0.818726 \pm j0.00278153$, para os polos do observador do sistema instável.

A partir dos polos encontra-se a matriz L de ganhos do observador. Resolvendo o sistema de equações $det(\lambda I - \Phi - LC) = 0$ para os polos do observador, permite-se encontrar a matriz L. O sistema foi considerado aquele na forma canônica observável que garante que o sistema sempre será observável. Para ambos os sistemas, a matriz encontrada foi:

$$L_{est} = \begin{bmatrix} 0.017327 \\ -0.0194097 \end{bmatrix}; L_{ist} = \begin{bmatrix} 0.3137774 \\ -0.2809094 \end{bmatrix}$$

A partir das matrizes encontradas, foi realizada a simulação do sistema com o observador de estado em malha fechada (equação matricial 82) para observar como as variáveis de estado estimadas se comportam em relação às variáveis originais.

$$\begin{cases} \tilde{x}[n+1] = (\Phi - LC)\tilde{x}[n] + \Gamma u[n] + Ly[k] \\ \tilde{y}[n] = C\tilde{x}[n] + Du[n] \end{cases}$$
(82)

Antes de realizar a simulação, os valores de saída originais foram somados a um sinal

aleatório limitado em ± 0.05 para funcionar como ruído.

Dessa forma, foram avaliadas como as variáveis de estado estimadas se comportam e seus erros relativos às variáveis originais. O erro será avaliado com e sem adição de ruído.

Figura 22: Comparação entre as variáveis de estado estimadas e originais (a) 1 e (b) 2, do sistema estável.

Figura 23: Comparação entre os erros entre as variáveis de estados, considerado o caso em que (a) um sinal de erro é somado à saída original do sistema estável e (b) quando não é.

Figura 24: Comparação entre as variáveis de estado estimadas e originais (a) 1 e (b) 2, do sistema instável.

Figura 25: Comparação entre os erros entre as variáveis de estados, considerado o caso em que (a) um sinal de erro é somado à saída original do sistema instável e (b) quando não é.

A partir dos resultados, pode-se notar que o observador de estados possui uma alta fidelidade em estimar os estados reais do sistema. Porém, de acordo com os resultados para o sistemas estável, notou-se um ligeiro aumento no erro de acordo com que o sinal alcançava a região de regime, enquanto que na planta instável esse efeito é inexistente. Outro fato a ser analisado é o comportamento do erro de acordo com a presença do ruído, mudando significativamente o erro e o tornando imprevisível. Há de notar que, principalmente no

caso estável que possui uma maior frequência de amostragem, o ruído, que possui alta frequências, foi modulado pelo erro.

Ao atribuir polos mais rápidos para o observador, observou que, de fato, o erro se propagava com maior intensidade, exaltando a importância de que um bom projeto de observador, na prática, faz toda a diferença.

4 Conclusões

O controle digital por computador se mostrou uma boa alternativa ao controle analógico tradicional, pois ele permite a facilidade de reprojeto e um ambiente com condições externas controladas, evitando ter que se preocupar com fatores limitantes do ambiente ou de tolerância de componentes. Porém, como a representação digital é apenas uma aproximação da representação analógica, a velocidade no processamento dos dados será um barreira limitante, pois ela dita a precisão do modelo. Entretanto, ao obedecer o teorema da amostragem e conhecimento prévio do hardware no qual o controlador será implementado, as barreiras limitantes diminuem, permitindo a expansão das técnicas de controle tradicionais para novos horizontes de aplicações.

Referências

- [1] Åström, Karl J., and Björn Wittenmark. Computer-controlled systems: theory and design. Courier Corporation, 2013.
- [2] de Lauro Castrucci, Plínio Benedicto, e Anselmo Bittar. Controle automático. Grupo Gen-LTC, 2000.
- [3] Fadali, M. Sami, and Antonio Visioli. Digital control engineering: analysis and design. Academic Press, 2013.
- [4] Introduction to Control Systems in Scilab. Disponível em: http://www.openeering.com/.
- [5] Lathi, Bhagwandas Pannalal, and Roger A. Green. Linear systems and signals. Vol. 2. New York: Oxford University Press, 2005.
- [6] Ogata, Katsuhiko. Modern control engineering. Upper Saddle River, NJ: Prentice Hall, 2009.
- [7] Ogata, Katsuhiko. Discrete-time control systems. Vol. 2. Englewood Cliffs, NJ: Prentice Hall, 1995.