Exercice 1. /15

Les courbes \mathscr{C}_f et \mathscr{C}_g données ci-dessous représentent respectivement, dans un repère orthonormal, les fonctions f et g définies sur l'intervalle]0; $+\infty[$ par

$$f(x) = \ln x$$
 et $g(x) = (\ln x)^2$.

1. Pour tout entier naturel n, on pose :

$$I_n = \int_1^e (\ln x)^n dx.$$

- (a) Calculer I_0 .
- (b) À l'aide d'une intégration par parties, démontrer que pour tout entier naturel n,

$$I_{n+1} = e - (n+1)I_n$$
.

- (c) En déduire la valeur de I_1 et I_2 .
- 2. On cherche à déterminer l'aire \mathcal{A} (en unités d'aire) de la partie du plan hachurée.

On note
$$I = \int_{1}^{e} \ln x \, dx$$
 et $J = \int_{1}^{e} (\ln x)^{2} \, dx$.

- (a) Démontrer que sur l'intervalle [1; e], \mathscr{C}_g est située au dessus de \mathscr{C}_f
- (b) Donner la valeur de \mathcal{A} .
- 3. Dans cette question le candidat est invité à porter sur sa copie les étapes de sa démarche même si elle n'aboutit pas.

Pour x appartenant à l'intervalle [1; e], on note M le point de la courbe \mathscr{C}_f d'abscisse x et N le point de la courbe \mathscr{C}_g de même abscisse. Pour quelle valeur de x la distance MN est maximale? Calculer la valeur maximale de MN.

Exercice 2. /5

Étant donnés deux entiers $p,q \in \mathbb{N}$, on note : $I(p,q) = \int_0^1 x^p (1-x)^q dx$.

- 1. Pour $q \in \mathbb{N}$, calculer I(0,q).
- 2. Si $p \in \mathbb{N}^*$ et $q \in \mathbb{N}$, montrer à l'aide d'une intégration par parties que :

$$I(p,q) = \frac{p}{1+q}I(p-1,q+1)$$

3. Démontrer à l'aide d'une récurrence sur p, démontrer que pour tout entier naturel p et tout entier naturel q,

$$I(p,q) = \frac{p!q!}{(p+q)!}I(0,p+q).$$

4. En déduire que $I(p,q) = \frac{p!q!}{(p+q+1)!}$

$$\int_0^2 B \, dx \text{ or not } \int_0^2 B \, dx \text{ telle est la question...}$$

25/05/2023 **2**