

数字逻辑设计实验报告

院(系):智能工程学院

学号: 20354027

姓名: 方桂安

自期: 2022.5.17

实验名称: 计数器、译码器、全加器仿真与实验

一、实验目的

1. 完成计数器 74LS197 的仿真

- 2. 完成译码器 74LS138+74LS197 的动态仿真与实验
- 3. 完成基于 74LS138 的组合逻辑电路一全加器仿真与实验
- 4. 完成基于 74LS48 驱动的数码管显示仿真和实验

二、实验原理

1.74LS197-计数器

197 为可预置的二一八一十六进制计数器, 共有 54/74197、54/74S197、54/74LS197 三种线路结构方式。

异步清除端(CR)为低电平时,不管时钟端(CP0、CP1)状态如何,即可完成清除功能。

计数/置入控制(CT/LD)为低电平时,不管时钟端(CP0、CP1)状态如何,即可完成预置功能。

当(CT/LD)为高电平时,在(CPO、CP1)脉冲下降沿作用下进行计数操作:

- a) 将 CP1 与 Q0 连接, 计数脉冲由 CP0 输入, 在 Q0、Q1、、Q2、Q3 分别得到二、四、八、十六分频。
- b) 计数脉冲由 CP1 输入,在在 Q1、Q2、Q3 分别得到二、四、八分频。Q0 可独立使用。

197 还可作 4 位锁存器,此时 CT/LD 作为选通端。当 CT/LD 为低电平时,Q0~Q3 随 D0~D3 而变化;当 CT/LD 为高电平时,只要时钟不作用,Q0~Q3 将保持不变。

54 (74) 197 与 54 (74) 177 的引出端排列和功能均相同,差别在速度一功耗值不同。

2.74LS138-译码器

译码器是一个多输入、多输出的组合逻辑电路。它的作用是把给定的代码进行"翻译",变成相应的状态,使输出通道中相应的一路有信号输出。译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配,存贮器寻址和组合控制信号等。不同的功能可选用不同种类的译码器。译码器可分为通用译码器和显示译码器两大类。前者又分为变量译码器和代码变换译码器。

74LS138 有 3 个附加的控制端 S0、S1、和 S2。当 S0=1、时, GS 输出为高电平(1),译码器处于正常工作状态;否则,译码器被禁止,所有的输出被锁定在

高电平。这3个控制端又称"片选"输入端,利用片选的作用可以将多片连接起来以扩展译码器的功能。

	箱	介入			输出								
S ₀	$\overline{\mathbb{S}}_1 + \overline{\mathbb{S}}_2$	A ₂	A 1	A ₀	¥7	\overline{Y}_6	<u>¥</u> 5	\overline{Y}_{4}	<u>¥</u> 3	\overline{Y}_2	$\overline{\mathtt{Y}}_{\mathtt{1}}$	\overline{Y}_0	
0	×	×	×	×	1	1	1	1	1	1	1	1	
×	1	×	×	×	1	1	1	1	1	1	1	1	
1	0	0	0	0	1	1	1	1	1	1	1	0	
1	0	0	0	1	1	1	1	1	1	1	0	1	
1	0	0	1	0	1	1	1	1	1	0	1	1	
1	0	0	1	1	1	1	1	1	0	1	1	1	
1	0	1	0	0	1	1	1	0	1	1	1	1	
1	0	1	0	1	1	1	0	1	1	1	1	1	
1	0	1	1	0	1	0	1	1	1	1	1	1	
1	0	1	1	1	0	1	1	1	1	1	1	1	

74LS138 译码器的逻辑功能表

3. 74LS138-全加器

两个二进制数之间的算术运算无论是加、减、乘、除,目前在数学计算机中都是化作若干步加法运算进行的。因此,加法器是构成算术运算器的基本单元。在将两个多位二进制数相加时,除了最低位以外,每一位都应该考虑来自低位的进位,即将两个对应位的加数和来自低位的进位 3 个数相加。这种运算称为全加,所用的电路称为全加器。用两片 74LS138 设计一个全加器。在考虑到 74LS138 译码器为 3 线-8 线译码器,共有 54/74S138 和 54/74LS138 两种线路结构型式,其 74LS138 工作原理为: 当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。根据以上特性,设计制作出一个全加器。

74LS138 有三个附加的控制端。当输出为高电平(S=1),译码器处于工作状态。否则,译码器被禁止,所有的输出端被封锁在高电平。带控制输入端的译码器又是一个完整的数据分配器。如果把作为"数据"输入端(在同一个时间),而将作为"地址"输入端,那么从送来的数据只能通过所指定的一根输出线送出去。这就不难理解为什么把叫做地址输入了。例如当=101 时,门的输入端除了接至输出端的一个以外全是高电平,因此的数据以反码的形式从输出,而不会被送到其他任何一个输出端上。

4. 741s48-七段译码器/驱动器

7 段显示译码器 74LS48 是输出高电平有效的译码器,74LS48 除了有实现7 段显示译码器基本功能的输入(DCBA)和输出(Ya~Yg)端外,7448 还引入了灯测试输入端(LT)和动态灭零输入端(RBI),以及既有输入功能又有输出功能的消隐输入/动态灭零输出(BI/RBO)端。

	-	3 4	1 2	T		-		c d e f		9	11 10 9 15 14				
1	_	5 (_	BI				ε		ITO	PUTS				
	/		INFO	13	_	_	1/	_	_	011	UI	, ,	_	1	
DECIMAL OR FUNCTION	LT	RBI	D	С	В	Α	BI/RBO	a	ь	с	d	е	f	g	NOTE
0	н	н	L	L	L	L	н	Н	н	н	н	Н	н	L	1
1	Н	х	L	L	L	Н	Н	L	Η	Н	L	L	L	L	1
2	Н	Х	L	L	Н	L	Н	Н	Ι	L	Η	Н	L	Н	
3	Н	х	L	L	Н	Ξ	Н	Н	I	H	I	L	L	I	
4	Н	Х	L	Н	L	L	Н	L	Η	Н	L	L	Н	Н	1)
5	Н	Х	L	Н	L	Η	Н	Н	L	H	Ι	L	Н	Ι	
6	Н	Х	L	Н	Н	ı.	Н	L	_	Н	I	Н	Ξ	$\tt I$	į.
7	Η	Х	L	Н	H	Н	Н	Н	I	Н	L	L	L	L	0
8	Н	Х	Н	L	L	L	Н	Н	Ι	H	I	Н	Н	I	
9	Н	Х	Η	L	L	$_{\mathtt{I}}$	I	H	$\tt {\tt T}$	Ŧ	L	L	$_{\mathtt{I}}$	$_{\mathtt{I}}$	
10	Н	Х	Н	L	Н	L	Н	L	L	L	Τ	Н	L	Н	
11	Н	Х	Н	L	Н	Ξ	Н	L	L	Н	I	L	L	Ι	1
12	Н	Х	Н	Н	L	٦	Н	L	I	L	L	L	н	Ι	
13	Н	Х	Н	Н	L	Ξ	Н	Н	_	L	I	L	Ξ	I	Ĵ
14	Η	Х	Η	Н	Н	_	Н	L	_	L	I	Н	Τ	I	
15	Н	Х	Η	Н	Н	н	Н	L	_	L	L	L	Ь	L	Ţ
BI	Х	Х	Х	Х	Х	Х	L	L	_	L	L	L	_	L	2
RBI	Н	L	L	L	L	ш	L	L	_	L	L	L	_	L	3
LT	L	Х	х	х	х	X	Н	Н	I	н	I	Н	Ι	Ι	4

由 7448 真值表可获知 7448 所具有的逻辑功能:

(1)7 段译码功能(LT=1, RBI=1)

在灯测试输入端(LT)和动态灭零输入端(RBI)都接无效电平时,输入 DCBA 经 7448 译码,输出高电平有效的 7 段字符显示器的驱动信号,显示相应字符。除 DCBA = 0000 外, RBI 也可以接低电平,见表 1 中 1~16 行。

(2)消隐功能(BI=0)

此时 BI/RBO 端作为输入端,该端输入低电平信号时,表 1 倒数第 3 行,无论 LT 和 RBI 输入什么电平信号,不管输入 DCBA 为什么状态,输出全为"0",7 段显示器熄灭。该功能主要用于多显示器的动态显示。

(3)灯测试功能(LT = 0)

此时 BI/RBO 端作为输出端, 端输入低电平信号时,表 1 最后一行,与 及 DCBA 输入无关,输出全为"1",显示器 7 个字段都点亮。该功能用于 7 段显示器测试,判别是否有损坏的字段。

(4) 动态灭零功能(LT=1, RBI=1)

此时 BI/RBO 端也作为输出端,LT 端输入高电平信号,RBI 端输入低电平信号,若此时 DCBA = 0000,表 1 倒数第 2 行,输出全为"0",显示器熄灭,不显示这个零。DCBA≠0,则对显示无影响。该功能主要用于多个 7 段显示器同时显示时熄灭高位的零。

三、实验仪器

- 1. 软件 Proteus 8 Professional
- 2. FPGA 数字电路实验箱 一台
- 3. SDS5054 数字示波器 一台

四、实验内容与步骤

4.1 74LS197 计数器:

使用 Proteus 完成用 74LS197 构成十六进制计数器的设计, 即 Proteus 环境下,

74LS197的 CLK1与10kHz的CLOCK相连,Q0与CLK2连接,将ML/PL接高电平,则Q3、Q2、Q1和Q0就是十六进制计数器的输出。观察并记录CLK1、Q0、Q1、Q2和Q3的波形,分析波形是否符合十六进制计数器逻辑关系。

对于实验箱,按如上电路图连接

4.2 74LS138 动态测试:

1.对 74LS138 进行静态测试。将 74LS138 的使能端 $\overline{G2A}$ 、 $\overline{G2B}$ 接低电平,使用实验箱上的模拟开关作为 74LS138 的输入 C、B、A 和 G1,并把 74LS138 的输出 Y_0 - Y_7 接 LED"0-1"显示器,按照真值表对电路进行静态测试,检查 74LS138 是否正常工作。

2.对 74LS138 进行动态测试。

(1)将实验箱上74LS197构成的十六进制计数器作为74LS138的输入信号源,接线参考实验 1.3 实验原理。将74LS197的输出 Q3、Q2、Q1 和 Q0 接"0-1"显示器,CP0 接手动负脉冲(74LS197 是下降沿触发的异步计数器),测试十六进制计数器是否工作正常。

(2)将 74LS138 的使能端G2A、G2B接低电平。

(3)将 74LS197 的 CP0 接 10KHz 连续脉冲,74LS197 的输出端 Q3、Q2、Q1、Q0 依次与 74LS138 的输入端 G1、C、B、A 相连。使用示波器数字通道观测并记录 CP0、 G1、C、B、A 和 Y₀ 、 Y₁ 、Y₂ 、Y₃ 、Y₄ 、 Y₅ 、 Y₆ 、 Y₇ 波形,分析波形之间的相位关系。

(4)将 74LS197 的 CP0 接 10KHz 连续脉冲,将 74LS138 的 G1 接高电平, $\overline{G2A}$ 、 $\overline{G2B}$ 均与 74LS197 的输出端 Q3 相连, 74LS197 输出端 Q2、Q1、Q0 依次与 74LS138 输入端 C、B、A 相连。使用示波器数字通道观测并记录 CP0、 $\overline{G2A}$ 、 $\overline{G2B}$ 、C、B、A 和 Y₀ 、 Y₁ 、Y₂ 、Y₃ 、Y₄ 、 Y₅ 、 Y₆ 、 Y₇波形,分析 波形之间的相位关系。

4.3 74LS138 全加器仿真:

W	输入	输出			
Α	В	Cn	S	C_{n+1}	
0	0	0	0	0	
0	0	i	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

(2)由上述真值表可分别得到全加器输出 S 和 C_{n+1} 关于输入 A、B、 C_n 的最小项之和表达式,并进一步将其化简为与非形式的输出表达式。

$$S = \overline{A} \ \overline{B}C_n + \overline{A} \ \overline{B}\overline{C_n} + A \ \overline{B} \ \overline{C_n} + ABC_n = \overline{m1} \ \overline{m2} \ \overline{m4} \ \overline{m7}$$

$$C_{n+1} = \overline{A} \ BC_n + A\overline{B}C_n + AB\overline{C_n} + ABC_n = \overline{m3} \ \overline{m5} \ \overline{m6} \ \overline{m7}$$

(3)令74LS138的输入C、B、A作为全加器的输入A、B、Cn,通过对比74LS138与全加器的输出表达式,可见只需在74LS138的输出端附加两个与非门,并按

上述全加器 S 和 Cn+1 的输出表达式连接,即可实现全加器功能,如下图 3-9 所示。

4.4 74LS48 驱动的数码管显示:

使用 74LS48 作为编码, 输入 0-9 对应的二进制编码的高低电平, 输出接到一个数码管出, 改变输入, 观察数码管的显示情况。

对于实验箱,由于实验箱上已经集成了 74LS48,因此直接将四个输入接到数码显像管的四个输入接口即可,输入的高低电平,用模拟开关代替。

五、实验结果描述与分析

- 5.1 74LS197 计数器:
- 5.1.1 仿真部分

将 A1 A2 A3 看作一个三位的二进制数,在 A4 没有发生跳变的时候,A1 A2 A3 对 A0 进行计数,记录 A0 经过了多少个周期,当 A0 从高电平转换为低电平的时候 A1 A2 A3 计数加 1。而当 A4 发生高电平到低电平或者低电平到高电平跳跃的时候,A1 A2 A3 清零,重新计数。

5.1.2 实验箱部分

电路图:

使用 led 灯显示结果如下:

5.2 74LS138+74LS197 动态测试:

5.2.1 仿真部分

5.2.2 实验箱部分

- (1) 电路中 74LS197 作为信号输入端口,以便得到不同频率的输入波形。
- (2) 在 74LS138 中,将 C、B、A 端当作三位二进制数的不同位,Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 分别代表了十进制数的 0-7。当 G1 为低电平,G2 为高电平时,不管输入端为怎么样的形式,输出 Y0-Y7 都为高电平,而当 G1 为高电平,G2 为低电平的时候,依据 CBA 端对应二进制数的十进制数,相对应的 Y0-Y7 就会由高电平转为低电平。该电路可作为二进制译码器使用。

	输入		输出									
C	В	A	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7		
0	0	0	D	1	1	1	1	1	1	1		
0	0	1	1	D	1	1	1	1	1	1		
0	1	0	1	1	D	1	1	1	1	1		
0	1	1	1	1	1	D	1	1	1	1		
1	0	0	1	1	1	1	D	1	1	1		
1	0	1	1	1	1	1	1	D	1	1		
1	1	0	1	1	1	1	1	1	D			
1	1	1	1	1	1	1	1	1	1	D		

5.3 74LS138 全加器仿真:

5.3.1 仿真部分

5.3.2 **实验箱部分** 电路图:

- (1) 将 A、B 看作加数与被加数, Cn 是低位向本位的进位, S 为本位和, Cn+1 位是本位向高位的进位。
- (2) 对应于仿真电路图即为 A B C 对应 A B Cn,在示波器上为 A0 A1 A2,示波器 A3 显示的是本位和 S, A4 显示的是进位。
- (3) 从示波器波形中可以看出,可以将 Cn+1 和 S 看作是二进制数的两位数, Cn+1 为高位, S 为低位, 该结果可以看作是 A B C 各个数的求和, 在加法器中, Cn+1 可以当作是高位的进位。
- (4) 若要对多个加法器进行连接,可以将前一个加法器的 Cn+1 端接入后一个加法器的 Cn 端, S 端作为该位的结果,即可形成一个多位数的加法器。

	输入	输出					
A	В	Cn	S	C _{n+1}			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	1	0			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			

5.4 74LS48 驱动的数码管显示:

六、问题与思考

在进行 74LS197 实验中, 示波器示数出现如下情况:

A0 出的波形出现冲激脉冲(图中红框标出出),而不是稳定的周期矩形脉冲信号,经过检查发现是示波器分辨率不合适,调节示波器面板右下角的旋钮,直到出现合适的波形。

1924