

A GENERALIZED CLOSED FORM FOR TRIANGULAR MATRIX POWERS

Walter Shur

20 Speyside Circle, Pittsboro, North Carolina, 27312, USA

ABSTRACT.

[1] shows, for a $k \times k$ triangular matrix $M = [m_{i,j}]$ with unique diagonal elements, how to obtain numbers $p_{i,j,s}$ such that the $(i, j)^{th}$ element of M^n is given by $_n m_{i,j} = \sum_{s=i}^j p_{i,j,s} m_{s,s}^{n-1}$. This paper generalizes that formula: it removes the restriction of unique diagonal elements and shows how to obtain numbers $c_{i,j,r,s}$ such that $_n m_{i,j} = \sum_{r=1}^{\text{num}(i,j)} \sum_{s=1}^{\text{mpy}(r)} c_{i,j,r,s} \binom{n-1}{s-1} m_{i,j,r}^{n-s}$, where $\text{num}(i, j)$ is the number of unique diagonal elements between and including the i^{th} and j^{th} rows, $\{m_{i,j,r}\}_1^{\text{num}(i,j)}$ is the set of those unique elements, and $\text{mpy}(r)$ is the multiplicity of $m_{i,j,r}$ on that same range. Like the $p_{i,j,s}$ in [1], the $c_{i,j,r,s}$ are independent of the power to which the matrix is raised. The generalized formula works for any power of M , negative, zero or positive (positive only if the matrix is singular).

Key words: *Matrix, Triangular, Powers, Closed Form*

1. INTRODUCTION

[1] presents a method of obtaining a simple closed form for the powers of a triangular matrix with unique diagonal elements, as follows:

Definition 1. *Let $M = [m_{i,j}]$ be a $k \times k$ upper triangular matrix with unique diagonal elements. We define the power factors of M , $p_{i,j,s}$, recursively on the index j , as follows:*

$$p_{i,j,s} = \frac{\sum_{t=s}^{j-1} p_{i,t,s} m_{t,j}}{m_{s,s} - m_{j,j}} \quad i \leq s < j \leq k, \quad (1.1)$$

$$p_{i,j,s} = 0 \quad s < i, \quad s > j,$$

$$p_{i,j,j} = m_{i,j} - \sum_{t=i}^{j-1} p_{i,j,t} \quad i < j \leq k, \quad (1.2)$$

$$p_{j,j,j} = m_{j,j}.$$

Theorem 1. If $M = [m_{i,j}]$ is a non-singular upper triangular matrix with unique diagonal elements, and $_n m_{i,j}$ is the $(i,j)^{th}$ element of M^n , then

$$_n m_{i,j} = \sum_{s=i}^j p_{i,j,s} m_{s,s}^{n-1},$$

for all integral values of n , negative, positive or zero. If M is singular, the equation holds if $n \geq 1$ and 0^0 is taken as 1).

2. ALTERNATE DEFINITION FOR $p_{i,j,s}$.

Let $M = [m_{i,j}]$ be an upper triangular matrix with unique diagonal elements. The product

$$m_{i,a} m_{a,b} m_{b,c} \cdots m_{l,j},$$

where $i \leq a < b < c \cdots < l < j$, and s is i, j , or one of a, b, c, \dots, l , is called a chain from i to j passing through s . The length of the chain is the number of elements in the product. The expression

$$\frac{m_{i,a} m_{a,b} m_{b,c} \cdots m_{l,j}}{(m_{s,s} - m_{a,a})(m_{s,s} - m_{b,b})(m_{s,s} - m_{c,c}) \cdots (m_{s,s} - m_{l,l})(m_{s,s} - m_{j,j})}$$

where $(m_{s,s} - m_{s,s})$ is taken as 1, is called an adjusted chain from i to j passing through s .

Definition 2. If $i \leq s \leq j$, $p_{i,j,s}$ is the sum of all adjusted chains from i to j passing through s . If $s < i$ or $s > j$, $p_{i,j,s} = 0$.

Following are a few illustrative examples which help clarify the definition:

$$p_{1,1,1} = m_{1,1},$$

$$p_{1,3,1} = \frac{m_{1,1}m_{1,3}}{(m_{1,1}-m_{3,3})} + \frac{m_{1,1}m_{1,2}m_{2,3}}{(m_{1,1}-m_{2,2})(m_{1,1}-m_{3,3})},$$

$$p_{1,3,2} = \frac{m_{1,2}m_{2,3}}{(m_{2,2}-m_{3,3})} + \frac{m_{1,1}m_{1,2}m_{2,3}}{(m_{2,2}-m_{1,1})(m_{2,2}-m_{3,3})},$$

$$p_{1,3,3} = m_{1,3} + \frac{m_{1,1}m_{1,3}}{m_{3,3}-m_{1,1}} + \frac{m_{1,2}m_{2,3}}{m_{3,3}-m_{2,2}} + \frac{m_{1,1}m_{1,2}m_{2,3}}{(m_{3,3}-m_{1,1})(m_{3,3}-m_{2,2})}.$$

Theorem 2. Definition 2 is equivalent to Definition 1.

Proof. From Definition 2, each term of the summand in (1.1) is of the form

$$\frac{m_{i,a}m_{a,b}m_{b,c}\cdots m_{l,t}m_{t,j}}{(m_{s,s}-m_{a,a})(m_{s,s}-m_{b,b})(m_{s,s}-m_{c,c})\cdots(m_{s,s}-m_{l,l})(m_{s,s}-m_{t,t})},$$

where $(m_{s,s} - m_{s,s})$ is taken as 1. The sum of all such terms, from $t = s$ to $t = j - 1$, clearly includes all of the chains from i to j passing through s . That sum would be the sum of all the adjusted chains from i to j passing through s , except that the difference $(m_{s,s} - m_{j,j})$ is missing from each denominator. Hence the division by that difference in (1.1), and thus (1.1) is satisfied.

Next, we need to show that (1.2) is satisfied. The sum $\sum_{t=i}^j p_{i,j,t}$ consists of all adjusted chains from i to j of the form

$$\frac{m_{i,a_1}m_{a_1,a_2}m_{a_2,a_3}\cdots m_{a_r,j}}{(m_{s,s}-m_{a_1,a_1})(m_{s,s}-m_{a_2,a_2})(m_{s,s}-m_{a_3,a_3})\cdots(m_{s,s}-m_{a_r,a_r})(m_{s,s}-m_{j,j})},$$

with values $r = 1, 2, 3, \dots, j - i$ and $s = a_1, a_2, a_3, \dots, j$. The only term with $r = 1$ comes from $p_{i,j,j}$ and is equal to $m_{i,j}$ (see the illustrative

example for $p_{1,3,3}$ in Definition 2). The sum of all the adjusted chains of length 2 with the same numerator is

$$m_{i,a_1} m_{a_1,a_2} \left(\frac{1}{m_{a_1,a_1} - m_{a_2,a_2}} + \frac{1}{m_{a_2,a_2} - m_{a_1,a_1}} \right) = 0.$$

The sum of all adjusted chains of length 3 with the same numerator is

$$m_{i,a_1} m_{a_1,a_2} m_{a_2,a_3} \left(\frac{1}{(m_{a_1,a_1} - m_{a_2,a_2})(m_{a_1,a_1} - m_{a_3,a_3})} + \frac{1}{(m_{a_2,a_2} - m_{a_1,a_1})(m_{a_2,a_2} - m_{a_3,a_3})} + \frac{1}{(m_{a_3,a_3} - m_{a_1,a_1})(m_{a_3,a_3} - m_{a_2,a_2})} \right) = 0.$$

In general, the multiplier of $m_{i,a_1} m_{a_1,a_2} m_{a_2,a_3} \cdots m_{a_r,j}$ is seen [2] to be the $(r-1)^{st}$ divided difference of the polynomial $f(x) = 1$, and hence is 0 if $r \geq 2$.

Therefore, $\sum_{t=i}^j p_{i,j,t} = m_{i,j}$, and (1.2) is satisfied. And since $p_{j,j,j} = m_{i,j}$, Definition 2 is equivalent to Definition 1.

□

3. NON-UNIQUE DIAGONAL ELEMENTS

Theorem 3. Let $M = [m_{i,j}]$ be an upper $k \times k$ triangular matrix with non-unique diagonal elements. Let $\text{num}(i,j)$ be the number of unique diagonal elements between and including the i^{th} and j^{th} rows, $\{m_{i,j,r}\}_1^{\text{num}(i,j)}$ be the set of those unique elements, and $\text{mpy}(r)$ be the multiplicity of $m_{i,j,r}$ on that same range ($\sum_{t=1}^{\text{num}(x,y)} \text{mpy}(r) = k$).

Then

$${}^n m_{i,j} = \sum_{r=1}^{\text{num}(i,j)} \sum_{s=1}^{\text{mpy}(r)} c_{i,j,r,s} \binom{n-1}{s-1} m_{i,j,r}^{n-s},$$

where the $c_{i,j,r,s}$ are independent of the power to which the matrix is raised. This generalized formula works for any power of M , negative, zero or positive (positive only if the matrix is singular).

Proof. The proof is much easier to present, and much easier to follow, for a specific case. The generalization in Theorem 3 will be evident, including the method of determining the numerical values of $c_{i,j,r,s}$.

Let

$$M = \begin{pmatrix} 3 & 2 & 3 & 5 & 4 & 2 \\ 0 & 5 & 2 & 4 & 3 & 1 \\ 0 & 0 & 3 & 2 & 6 & 4 \\ 0 & 0 & 0 & 5 & 5 & 1 \\ 0 & 0 & 0 & 0 & 7 & 2 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

In terms of Theorem 3,

$$\begin{aligned} m_{1,6,1} &= 3 \quad \text{mpy}(1) = 3, \\ m_{1,6,2} &= 5 \quad \text{mpy}(2) = 2, \\ m_{1,6,3} &= 7 \quad \text{mpy}(3) = 1. \end{aligned}$$

and $\text{num}(1, 6) = 3$. In order to make use of Theorem 1, we first alter the matrix M so that it will have unique diagonal elements, as follows:

$$M = \begin{pmatrix} 3 & 2 & 3 & 5 & 4 & 2 \\ 0 & 5 & 2 & 4 & 3 & 1 \\ 0 & 0 & 3 - e & 2 & 6 & 4 \\ 0 & 0 & 0 & 5 - f & 5 & 1 \\ 0 & 0 & 0 & 0 & 7 & 2 \\ 0 & 0 & 0 & 0 & 0 & 3 - g \end{pmatrix}$$

At an appropriate stage, we will let e , f , and g become zero to obtain results for the original matrix M .

We have from Theorem 1, for example, the element of M^n at row 1 and column 6 is given by

$${}_n m_{1,6} = p_{1,6,1} 3^{n-1} + p_{1,6,2} 5^{n-1} + p_{1,6,3} (3-e)^{n-1} + p_{1,6,4} (5-f)^{n-1} + p_{1,6,5} 7^{n-1} + p_{1,6,6} (3-q)^{n-1}. \quad (3.1)$$

Expanding the binomials, and collecting only those terms involving powers of 5, we obtain

$$(p_{1,6,2} + p_{1,6,4})5^{n-1} + p_{1,6,4} \sum_{i=1}^{n-1} \binom{n-1}{i} (-f)^i 5^{n-1-i}. \quad (3.2)$$

We know from Definition 2 that $p_{1,6,4}$ is the sum of all adjusted chains from 1 to 6 passing through 4. Combine all of those adjusted chains into a single fraction with the denominator equal to the product of the differences between $m_{4,4}$ and each of the other diagonal elements, namely $(2-f)(-f)(2+e-f)(-2-f)(2+g-f)$. We see from this denominator that $p_{1,6,4}(-f)^i = 0$ if $i > 1$ and $f = 0$. Therefore, the only terms of (3.2) involving powers of 5 are

$$(p_{1,6,2} + p_{1,6,4})5^{n-1} + p_{1,6,4}(-f)\binom{n-1}{1}5^{n-2}.$$

We determine the coefficients of the powers of 5, $c_{1,6,2,1}$ and $c_{1,6,2,2}$, using Mathematica as follows:

$c_{1,6,2,1}$ Input: $(p[1, 6, 2] + p[1, 6, 4]) // \text{Together}) / \{e- > 0, f- > 0, g- > 0\}$

Output: $-\frac{59}{2}$

$c_{1,6,2,2}$ Input: $((-f)p[1,6,4]//\text{Together})/. \{e- > 0, f- > 0, g- > 0\}$

Output: -60

Similarly, collecting only those terms involving powers of 3, we obtain

$$(p_{1,6,1} + p_{1,6,3} + p_{1,6,6})3^{n-1} + \sum_{i=1}^{n-1} (p_{1,6,3}(-e)^i + p_{1,6,6}(-g)^i) \binom{n-1}{i} 3^{n-1-i}. \quad (3.3)$$

Combine all of the adjusted chains in $(p_{1,6,3}(-e)^i + p_{1,6,6}(-g)^i)$ into a single fraction, with the denominator equal to $a \times b$, where a is the product of the differences between $m_{3,3}$ and each of the other diagonal elements, and b is the product of the differences between $m_{6,6}$ and each of the other diagonal elements. The only elements in that denominator which become zero when e , f , and g become zero are $(-e)(g-e)(e-g)(-g) = eg(g-e)^2$. If $(p_{1,6,3}(-e)^i + p_{1,6,6}(-g)^i)$ were equal to a constant $A \neq 0$, the numerator of that single fraction would have to contain a term $eg(g-e)^2A$. If $i > 2$, that is not possible since each term of the numerator must contain a power of e greater than 2 or a power of g greater than 2, but $eg(g-e)^2A$ contains the term $(-2)e^2g^2A$. Hence $(p_{1,6,3}(-e)^i + p_{1,6,6}(-g)^i) = 0$ if $i > 2$ and e , f , and g are zero. Therefore the only terms of (3.3) involving powers of 3 are

$$(p_{1,6,1} + p_{1,6,3} + p_{1,6,6})3^{n-1} + ((-e)p_{1,6,3} + (-g)p_{1,6,6}) \binom{n-1}{1} 3^{n-2} + ((-e)^2 p_{1,6,3} + (-g)^2 p_{1,6,6}) \binom{n-1}{2} 3^{n-3}.$$

Again, we determine the coefficients of powers of 3, $c_{1,6,1,1}$, $c_{1,6,1,2}$, $c_{1,6,1,3}$, using Mathematica as follows:

$c_{1,6,1,1}$ Input: $(p[1, 6, 1] + p[1, 6, 3] + p[1, 6, 6] // \text{Together}) /. \{e - > 0, f - > 0, g - > 0\}$
Output: $-\frac{203}{32}$

$c_{1,6,1,2}$ Input: $((-e)p[1, 6, 3] + (-g)p[1, 6, 6] // \text{Together}) /. \{e - > 0, f - > 0, g - > 0\}$
Output: $\frac{5}{8}$

$c_{1,6,1,3}$ Input: $((-e)^2 p[1, 6, 3] + (-g)^2 p[1, 6, 6]) // \text{Together})/. \{e - > 0, f - > 0, g - > 0\}$
 Output: $\frac{15}{2}$

The only term in (3.1) involving powers of 7 is $p_{1,6,5} 7^{n-1}$. We determine the coefficient of 7^{n-1} , $c_{1,6,3,1}$, using Mathematica, as follows:

$c_{1,6,3,1}$ Input: $(p[1, 6, 5]) // \text{Together})/. \{e - > 0, f - > 0, g - > 0\}$
 Output: $\frac{1211}{32}$

Combining the above results we obtain the closed form expression for $_n m_{1,6}$,

$$_n m_{1,6} = -\frac{203}{32} 3^{n-1} + \frac{5}{8} \binom{n-1}{1} 3^{n-2} + \frac{15}{2} \binom{n-1}{2} 3^{n-3} - \frac{59}{2} 5^{n-1} - 60 \binom{n-1}{1} 5^{n-2} + \frac{1211}{32} 7^{n-1}.$$

In the terms of Theorem 3, this is

$$_n m_{1,6} = c_{1,6,1,1} m_{1,6,1}^{n-1} + c_{1,6,1,2} \binom{n-1}{1} m_{1,6,1}^{n-2} + c_{1,6,1,3} \binom{n-1}{2} m_{1,6,1}^{n-3} + c_{1,6,2,1} m_{1,6,2}^{n-1} + c_{1,6,2,2} \binom{n-1}{1} m_{1,6,2}^{n-2} + c_{1,6,3,1} m_{1,6,3}^{n-1}.$$

It is easy to see from the pattern in (3.1) that the structure of Theorem 3 is correct in the general case. To prove Theorem 3 we need only establish the cutoff points for the expansion of the binomials in (3.1). We did that explicitly for elements of multiplicity 2 and 3. We do so now for elements of higher multiplicities.

The argument immediately following (3.3) proved that for a diagonal element of multiplicity 3, the expression $(p_{1,6,3}(-e)^i + p_{1,6,6}(-g)^i)$ was

zero if $i > 2$ and e and g were zero. It did that by showing that the numerator would have to contain a term $eg(g - e)^2A(A \neq 0)$, which was then shown to be not possible.

Suppose now that the element $m_{5,5}$ in the unaltered matrix M were 3 instead of 7, and was replaced by $3 - h$ in the altered matrix. That same argument, but now for a diagonal element of multiplicity 4, would change as follows:

(1) $(p_{1,6,3}(-e)^i + p_{1,6,6}(-g)^i)$ would be replaced by $(p_{1,6,3}(-e)^i + p_{1,6,5}(-h)^i + p_{1,6,6}(-g)^i)$,

(2) $eg(g - e)^2$ would be replaced by $egh(e - g)^2(e - h)^2(g - h)^2$,

(3) If $(p_{1,6,3}(-e)^i + p_{1,6,5}(-h)^i + p_{1,6,6}(-g)^i)$ were equal to a constant $A \neq 0$, the numerator would have to contain a term $egh(e - g)^2(e - h)^2(g - h)^2A$. But if $i > 3$, that would not be possible because each term of the numerator would have to contain a power greater than 3 for at least one of e , g , or h , but $egh(e - g)^2(e - h)^2(g - h)^2A$ contains the term $-8e^3g^3h^3A$.

The generalization to higher multiplicities is straightforward.

□

4. ILLUSTRATIONS

(1) We use Theorem 3 to obtain a closed form for ${}_nm_{2,4}$ for the matrix M in Section 3, noting that $m_{2,4,1} = 5$, $mpy(1) = 2$, $m_{2,4,2} = 3$, $mpy(2) = 1$, and $num(2, 4) = 2$. The coefficients $c_{2,4,r,s}$ are determined using Mathematica as follows:

$c_{2,4,1,1}$ Input: $(p[2, 4, 2] + p[2, 4, 4]) // \text{Together}) /. \{e - > 0, f - > 0\}$

Output: 1

$c_{2,4,1,2}$ Input: $((-f)p[2, 4, 4]//\text{Together})/. \{e- > 0, f- > 0\}$
 Output: 30

$c_{2,4,2,1}$ Input: $(p[2, 4, 3]//\text{Together})/. \{e- > 0, f- > 0\}$
 Output: 3

Theorem 3 gives us

$${}_n m_{2,4} = 1 \cdot 5^{n-1} + 30 \binom{n-1}{1} 5^{n-2} + 3 \cdot 3^{n-1}.$$

(2) Let M and the altered M be the matrices

$$\begin{pmatrix} 5 & 2 & 1 & 3 \\ 0 & 5 & 4 & 2 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 \end{pmatrix} \text{ and } \begin{pmatrix} 5 & 2 & 1 & 3 \\ 0 & 5-e & 4 & 2 \\ 0 & 0 & 5-f & 1 \\ 0 & 0 & 0 & 5-g \end{pmatrix}$$

We use Theorem 3 to obtain a closed form for ${}_n m_{1,4}$, noting that $m_{1,4,1} = 5$, $\text{mpy}(1) = 4$, and $\text{num}(1, 4) = 1$. The coefficients $c_{1,4,r,s}$ are determined using Mathematica as follows:

$c_{1,4,1,1}$ Input: $(p[1, 4, 1] + p[1, 4, 2] + p[1, 4, 3] + p[1, 4, 4]//\text{Together})/. \{e- > 0, f- > 0\}, g- > 0\}$
 Output: 3

$c_{1,4,1,2}$ Input: $((-e)p[1, 4, 2] + (-f)p[1, 4, 3] + p(-g)p[1, 4, 4]//\text{Together})/. \{e- > 0, f- > 0, g- > 0\}$
 Output: 20

$c_{1,4,1,3}$ Input: $((-e)^2 p[1, 4, 2] + (-f)^2 p[1, 4, 3] + p(-g)^2 p[1, 4, 4]//\text{Together})/. \{e- > 0, f- > 0, g- > 0\}$

Output: 33

$c_{1,4,1,4}$ Input: $((-e)^3 p[1, 4, 2] + (-f)^3 p[1, 4, 3] + p(-g)^3 p[1, 4, 4]) // \text{Together}) / . \{e -> 0, f -> 0, g -> 0\}$

Output: 40

Theorem 3 gives us

$$_n m_{1,4} = 3 \cdot 5^{n-1} + 20 \binom{n-1}{1} 5^{n-2} + 33 \binom{n-1}{2} 5^{n-3} + 40 \binom{n-1}{3} 5^{n-4}.$$

Note: In the above illustrations, three different variables (e, f and g) were chosen for clarity of presentation. In actual practice, replacing (e, f and g) with variables such as e, e^2 , and e^3 would be more efficient since Mathematica would need to record only one variable instead of three, and only one variable need be set to zero.

References

- [1] W. Shur. A Simple Closed Form For Triangular Matrix Powers. *Electronic Journal of Linear Algebra*, 22:1000-1003, 2011
- [2] V. Jankovic. Divided Differences. *The Teaching Of Mathematics*, III, 2:115-119, 2000.
- [3] C.P. Huang, An Efficient Algorithm For Computing Powers Of Triangular Matrices, *ACM '78 Proceedings of the 1978 Annual Conference*, 2:954-957, 1978

(Walter Shur, 919-542-7179, wrshur@gmail.com, 1/28/13)