me215 The Test Fall 2020

name			
 cwid			

ME215: Thermodynamics I The Test

due by 11:59 PM CST November 2020

35 Tasks — 305 points

Write your final answers on this problem sheet **AND** make sure your final answers are **clearly identified** in your work. Make sure you turn in **ALL** of your work sheets. Scan and upload your completed test by 11:5. **PDF is the ONLY document format allowed**. Format your filename as follows:

lastname_firstname_CWID.pdf

The **ONLY** resources you may use are your textbook, class notes, and calculator. Accessing your textbook is the only permitted use of the Internet or any other communication networks. Do not discuss this test with anyone, except Dr. Ashford.

The Louisiana Superdome has an interior volume of 125 million ft³, covered by a 440,000 ft² roof. On a particular day, the interior air pressure gave a manometer reading of 19 inches mercury. Local atmospheric pressure is 102 kPa.

1.	kg (<u>'</u>	10) Calculate the I	mass of the air inside, assuming	an average temperature of 20 °C.	•
2.	kg (1	·	net force applied to the roof by e weight of the roof). Assume t	the interior/exterior air (do not ne roof is flat.	
3.	(15) Describe open the three system ty		ed systems, respectively. Be sui	e to highlight the differences betv	veen
_					
4.	(5)			pressure of P_2 = 1.2 MPa. Assuming the downstream temperates	_
		(a) T ₂ < T ₁	(b) $T_2 = T_1$	(c) $T_2 > T_1$	
5.	(5)			owered while the pressure is held change (as in superheated vapor,	

saturated mixture, etc)? Explain your reasoning.

A system process.	consists of a saturate	ed liquid/vapor mix	ture. Heat is removed fr	om the system in an isothermal				
6	(5) The quali	ty						
	(a) increases	(b) decreases	(c) stays the same	(d) not enough information				
7	(5) The temperature							
	(a) increases	(b) decreases	(c) stays the same	(d) not enough information				
8	(5) The pressure							
	(a) increases	(b) decreases	(c) stays the same	(d) not enough information				
9	(5) The specific volume							
	(a) increases	(b) decreases	(c) stays the same	(d) not enough information				
A system	consists of a saturate	ed liquid/vapor mix	ture . Heat is added to th	ne system in an isochoric process				
10	(5) The quali	ty						
	(a) increases	(b) decreases	(c) stays the same	(d) not enough information				
11	(5) The temp	(5) The temperature						
	(a) increases	(b) decreases	(c) stays the same	(d) not enough information				
12	(5) The pressure							
	(a) increases	(b) decreases	(c) stays the same	(d) not enough information				
13	(5) The specific volume							
	(a) increases	(b) decreases	(c) stays the same	(d) not enough information				
Given 10	kg of ammonia at 0 °	C, with a specific er	thalpy of 1261.97 kJ/kg					
14	kg (10) Find	kg (10) Find the mass of the ammonia.						
15	m³ (10) Find	d the volume of the	ammonia.					
16.	m ³ (10) Find	d the pressure of th	e ammonia.					

A vessel contains 3 kg of H_2O at 100 bar, 600 °C. Heat is lost from the vessel until the temperature reaches 200 °C.

- 17. °C (10) Find the H_2O final temperature.
- 18. _____ kPa (10) Find the H₂O **final pressure**.
- 19. _____ kJ_{in/out} (10) Determine the **heat transfer**, with direction.
- 20. _____ $kJ_{in/out}$ (10) Determine the **work**, with direction.

21. _____ $kJ_{in/out}$ (10) Determine the **net work** (and direction) of the cycle $\overline{123451}$ depicted above.

22. _____kJ_{in/out} (10) Determine the **net work** (and direction) of the cycle 1234561 depicted above.

LEAPS

	par, 900 °C enters a well-insulated turbine and exits at 10 kPa and 93.9% quality. The mass flow llion kg/hr, and the turbine entrance has a diameter of 63 cm.				
23	$^{\circ}$ C (10) At what temperature does the H ₂ O exit the turbine.				
24	GW (10) What is the turbine's power output?				
25	mph (10) At what velocity does the steam enter the turbine?				
A 10 kg mass of doubles.	of saturated vapor water, initially at 200 °C, is heated in a rigid container until its pressure				
26	$_$ °C (10) What is the final temperature of the H_2O ?				
27	kPa (10) What is the final pressure of the H_2O ?				
28	kW (10) What is the work for this process?				
29	kW (10) What is the heat transfer for this process?				
30	$_{}$ kg (10) What is the final mass of the H_2O ?				
A 10 kg mass of its volume dou	of saturated vapor water, initially at 3 bar, is heated in a frictionless piston/cylinder device until lbles.				
31	$_{}$ °C (10) What is the final temperature of the H_2O ?				
32	kPa (10) What is the final pressure of the H_2O ?				
33	kW (10) What is the work for this process?				
34	kW (10) What is the heat transfer for this process?				
35	5 kg (10) What is the final mass of the H_2O ?				