REGULAR EXPRESSIONS

— The Second Model for Defining Languages

Example:

Consider the language of all the words that consist of a's and b's and have abb as a subword.

We can formally define this language by the following:

- (1) $L = \{x \mid x \in \{a, b\}^* \text{ and } x \text{ has } abb \text{ as a subword}\};$
- (2) L = L(M) where M is an NFA given by the following diagram:

Both of the above definitions are lengthy. It can also be expressed by

$$L([a \cup b]^*abb[a \cup b]^*)$$

<u>Definition</u> Let Σ be an alphabet.

A <u>regular expression</u> over Σ is defined recursively:

Basis: $(1) \emptyset$,

- (2) λ ,
- (3) a, where $a \in \Sigma$

are R.E.'s over Σ

Induction Step:

If E_1 and E_2 are R.E.'s over Σ , then

- (4) $[E_1 \cup E_2]$,
- (5) $[E_1 \cdot E_2]$,
- (6) E_1^*

are R.E.'s over Σ

We usually omit ..

The set of all regular expressions over Σ is denoted by

 \mathcal{R}_{Σ}

 $[[a+b]a]^*$ is the same as $[[a \cup b]a]^*$

Example:

$$\underbrace{\underbrace{\begin{bmatrix}\underbrace{E_1}\\E_1\\\underbrace{E_3}\end{bmatrix}\underbrace{E_2}_{E_4}}^{E_2}\underbrace{a}_{E_4}]^* \text{ is a R.E. over } \{a,\ b\}$$

We display the "parsing" by an expression tree:

 $a \quad b \quad a$

What language does an R.E. define?

<u>Definition</u> Given a regular expression E, the language L(E) denoted by E is defined as follows:

Basis: (1) if
$$E = \emptyset$$
, then \emptyset ;
(2) if $E = \lambda$, then $\{\lambda\}$;
(3) if $E = a$, then $\{a\}$;

Induction Step:

- (4) if $E = [E_1 \cup E_2]$, then $L(E_1) \cup L(E_2)$;
- (5) if $E = [E_1E_2]$, then $L(E_1)L(E_2)$;
- (6) if $E = E_1^*$, then $(L(E_1))^*$.

Properties of R.E.'s

$$\begin{array}{cccc}
 & E_1 \cup E_2 & \equiv & E_2 \cup E_1; \\
 & [E_1 \cup E_2] \cup E_3 & \equiv & E_1 \cup [E_2 \cup E_3]; \\
 & \mathbf{So}, [E_1 \cup E_2] \cup E_3 & \Rightarrow & E_1 \cup E_2 \cup E_3. \\
 & \vdots & [E_1 E_2] E_3 & \equiv & E_1 [E_2 E_3]; \\
 & \mathbf{So}, [E_1 E_2] E_3 & \Rightarrow & E_1 E_2 E_3.
\end{array}$$

<u>Definition</u> A language L is <u>regular</u> iff there is a regular expression E such that L = L(E).

The family of (all) regular languages is denoted by \mathcal{L}_{REG} .

Example $E = [b^*ab^*a]^*b^*$.

 $L_{even} = \{x \mid x \text{ in } \{a,b\}^* \text{ and } x \text{ contains an even number of } a's\}.$

Claim: $L(E) = L_{even}$

Proof:

- (i) $L(E) \subseteq L_{even}$, since every word in L(E) contains an even number of a's.
- (ii) Let $x \in L_{even}$. Then x can be written as $b^{i_0}ab^{i_1}a...ab^{i_{2n}}, i_0, i_1, ..., i_{2n} \geq 0$.

So,
$$x = (b^{i_0}ab^{i_1}a)(b^{i_2}ab^{i_3}a)....(b^{i_{2n-2}}ab^{i_{2n-1}}a)b^{i_{2n}}.$$

 $x \in L([b^*ab^*a]^*)L(b^*) = L(E).$ q.e.d.

Examples
$$\Sigma = \{a, b\}$$
.
 $L_1 = \{x \mid x = au, u \in \Sigma^*\}$.

$$L_2 = \{x \mid |x|_a \equiv 0 \text{ mod } 3\}.$$

$$[a[aa]]^*$$

 $L_3 = \{x \mid x \text{ has 2 or 3 } a's \text{ with the last two appearances nonconsecutive } \}$

$$L_4 = \{x \mid x = a^n b^n, \ n \ge 1\}$$

Examples

What are the languages denoted by the following R.E.'s ?

$$E_1 = a^*ba^*$$

$$E_2 = [a \cup ab]^*$$

$$E_3 = a[a \cup b]^*a$$

$$E_4 = [aa \cup bb \cup ba \cup ab]^*$$

How many languages over Σ do R.E.'s define? $\Sigma = \{a,\ b\}$

(1) Infinitely many?

(2) Countable?

Regular Expression into Finite Automata

Let E be a regular expression over Σ . Then we can construct a λ -NFA M such that L(M) = L(E), using the following rules: (i) $E = \emptyset$.

Construct M such that $L(M) = \emptyset$

(ii) $E = \lambda$. Construct M such that $L(M) = \{\lambda\}$

(iii) $E = a, a \in \Sigma$. Construct M such that $L(M) = \{a\}$

(iv) $E = [E_1 \cup E_2]$.

Construct M such that $L(M) = L(M_1) \cup L(M_2)$.

(v) $E = [E_1 E_2]$.

Construct M such that $L(M) = L(M_1)L(M_2)$.

 $(vi)E = E_1^*.$

Construct M such that $L(M) = L(M_1)^*$.

Example

$$E = [c^*[a \cup [bc^*]]^*]$$

Construct a FA M such that L(M) = L(E).

$$\triangle \underline{a}, b, c \text{ by (iii)}$$

$$\triangle c^*$$
 by (vi)

$$\triangle [bc^*]$$
 by (v)

$$\triangle [a \cup bc^*]$$
 by (iv)

$$\triangle [a \cup bc^*]^*$$
 by (vi)

$$\triangle [c^*[a \cup bc^*]^*]$$
 by (v)

Theorem For E, an arbitrary regular expression over Σ , the λ -NFA, M, constructed as above satisfies L(M) = L(E).

Proof: Let Op(E) be the total number of \cup , \cdot , and * operations in E. We prove this theorem by induction on Op(E).

Basis: Op(E) = 0. Then $E = \emptyset$, λ , or $a \in \Sigma$. Then clearly we have L(M) = L(E).

Induction Hypothesis:

Assume the claim holds for all E with $Op(E) \le k$, for some $k \ge 0$.

Induction Step:

Consider an arbitrary regular expression E with Op(E) = k+1. Since $k+1 \ge 1$, E contains at least one operator \cup , \cdot , or *.

Case I: $E = E_1 \cup E_2$. Then $Op(E_1) \le k$ and $Op(E_2) \le k$. So, $L(M_1) = L(E_1)$ and $L(M_2) = L(E_2)$ by I.H.. We know the construction of $M = M_1 \cup M_2$ satisfies $L(M) = L(M_1) \cup L(M_2)$, and $L(E) = L(E_1) \cup L(E_2)$

In each of the three cases, we have shown that L(M) = L(E). Therefore this holds for all regular expressions by the principle of induction. q.e.d.

Finite Automata into Regular Expressions

To prove that every DFA language is regular we introduce an extension of finite automata.

Definition An extended finite automaton (EFA), M, is a quintuple $(Q, \Sigma, \delta, s, f)$ where Q, Σ, s are as in λ -NFA,

f is the only final state, $f \neq s$,

 $\delta: Q \times Q \to R_{\Sigma}$ is a total extended transition function.

Example of an EFA:

$$\begin{array}{l} \delta(p,s) = \emptyset \\ \delta(s,f) = \emptyset \end{array}$$

.

One final state $f \neq s$

 \triangle A configuration is in $Q\Sigma^*$

\triangle Move

$$px \vdash qy \text{ if }$$

- (i) $x = wy, \ w \in \Sigma^*,$
- (ii) $\delta(p,q) = E$, and
- (iii) $w \in L(E)$.

 $\triangle \vdash^*$, \vdash^+ are defined similarly as before.

<u>Lemma</u> If M is a DFA, Then there is an EFA M' with L(M') = L(M).

Example DFA into EFA.

Example:

An extended finite Automaton (EFA). M:

Check if the following words are in $\mathcal{L}(M)$

- **(1)** *bbabab*
- **(2)** *aabbc*
- **(3)** *acccc*
- **(4)** *aaaaac*

State Elimination Technique Goal of the technique:

i.e.:

(1) EFA has 2 states

Example

(2) EFA M has k+1 states, $k \ge 2$. Then eliminate a state from M to form M': M:

Note: $q \in Q - \{s, f\}$ Consider all transitions (p_i, E_{iq}, q) and (q, E_{qi}, p_i)

M':

$$\delta'(p_i, p_j) = \delta(p_i, p_j) \cup \delta(p_i, q)(\delta(q, q))^* \delta(q, p_j)$$

Example

 $b^*a[b\cup ab^*a]^*$

Example

Summary of the State Elimination Technique

- (0) Change FA into EFA
- (1) Add a <u>new start state</u> if the original one has incoming transitions.
- (2) Add <u>a new final state</u> if there are more than one final states originally. Old final states become non-final states.
- (3) Eliminate the states in $Q \{s, f\}$ one by one.
- (4) Eliminate the transition $\delta(f, f)$.