Bayes Estimators & Ridge Regression Readings Chapter 14 Christensen

STA721 Linear Models Duke University

Merlise Clyde

September 29, 2015

How Good are Estimators?

Quadratic loss for estimating $oldsymbol{eta}$ using estimator $oldsymbol{a}$

$$L(\boldsymbol{\beta}, \mathbf{a}) = (\boldsymbol{\beta} - \mathbf{a})^{\mathsf{T}} (\boldsymbol{\beta} - \mathbf{a})$$

- Consider our expected loss (before we see the data) of taking an action a
- Under OLS or the Reference prior the Expected Mean Square Error

$$\begin{aligned} \mathsf{E}_{\mathbf{Y}}[(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) &= \sigma^2 \mathsf{tr}[(\mathbf{X}^T \mathbf{X})^{-1}] \\ &= \sigma^2 \sum_{j=1}^p \lambda_j^{-1} \end{aligned}$$

• If smallest $\lambda_i \to 0$ then MSE $\to \infty$

Is g-prior any better?

Under the g-prior $\mathsf{E}_{\mathbf{Y}}[(eta-rac{g}{1+g}\hat{eta})^T(eta-rac{g}{1+g}\hat{eta})]$

$$E[L(\beta, \frac{g}{1+g}\hat{\beta})] = \sigma^2 \left(\frac{g}{1+g}\right)^2 tr[(\mathbf{X}^T \mathbf{X})^{-1}] + \frac{\beta^T \beta}{(1+g)^2}$$
$$= \frac{1}{(1+g)^2} (\sigma^2 g^2 \sum_j \lambda_j^{-1} + ||\beta||^2)$$

Aside: g prior is better than Reference Prior if

$$g > rac{\|oldsymbol{eta}\|^2}{\sigma^2 \sum \lambda_j^{-1}} - 1$$

But still have risk going to infinity as $\lambda o 0$

Canonical Representation & Ridge Regression

Assume that \mathbf{X} has been centered and standardized so that $\mathbf{X}^T\mathbf{X} = \operatorname{corr}(\mathbf{X})$ (use scale function in R)

• Write $\mathbf{X} = \mathbf{U}_p L \mathbf{V}^T$ Singular Value Decomposition where $\mathbf{U}_p^T \mathbf{U}_p = \mathbf{I}_p$ and \mathbf{V} is $p \times p$ orthogonal matrix, L is diagonal

$$\mathbf{Y} = \mathbf{1}\alpha + \mathbf{U}_{p}L\mathbf{V}^{T}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

- Let $\mathbf{U} = [\mathbf{1} \mathbf{U}_p \mathbf{U}_{n-p-1}] n \times n$ orthogonal matrix
- Rotate by \mathbf{U}^T

$$\mathbf{U}^{T}\mathbf{Y} = \mathbf{U}^{T}\mathbf{1}\alpha + \mathbf{U}^{T}\mathbf{U}_{p}L\mathbf{V}^{T}\boldsymbol{\beta} + \mathbf{U}^{T}\boldsymbol{\epsilon}$$

$$\mathbf{Y}^{*} = \begin{bmatrix} n & \mathbf{0}_{p} \\ 0 & L \\ \mathbf{0}_{n-p-1} & \mathbf{0}_{n-p-1 \times p} \end{bmatrix} \begin{pmatrix} \alpha \\ \gamma \end{pmatrix} + \boldsymbol{\epsilon}^{*}$$

Orthogonal Regression

$$\mathbf{U}^{T}\mathbf{Y} = \mathbf{U}^{T}\mathbf{1}\alpha + \mathbf{U}^{T}\mathbf{U}_{p}L\mathbf{V}^{T}\beta + \mathbf{U}^{T}\epsilon$$

$$\mathbf{Y}^{*} = \begin{bmatrix} n & \mathbf{0}_{p} \\ 0 & L \\ \mathbf{0}_{n-p-1} & \mathbf{0}_{n-p-1\times p} \end{bmatrix} \begin{pmatrix} \alpha \\ \gamma \end{pmatrix} + \epsilon^{*}$$

- $\hat{\alpha} = \bar{y}$
- $\hat{\gamma} = (L^T L)^{-1} L^T \mathbf{U}_p^T \mathbf{Y}$ or $\hat{\gamma}_i = y_i^* / I_i$ for $i = 1, \dots, p$
- $Var(\hat{\gamma}_i) = \sigma^2/I_i^2$

Directions in **X** space \mathbf{U}_j with small eigenvectors I_i have the largest variances. Unstable directions.

Ridge Regression & Independent Prior

(Another) Normal Conjugate Prior Distribution on γ :

$$\gamma \mid \phi \sim \mathsf{N}(\mathbf{0}_p, \frac{1}{\phi k} \mathbf{I}_p)$$

Posterior mean

$$\tilde{\gamma} = (L^T L + k \mathbf{I})^{-1} L^T \mathbf{U}_p^T \mathbf{Y} = (L^T L + k \mathbf{I})^{-1} L^T L \hat{\gamma}$$

$$\tilde{\gamma}_i = \frac{l_i^2}{l_i^2 + k} \hat{\gamma}_i = \frac{\lambda_i}{\lambda_i + k} \hat{\gamma}_i$$

- ullet When $\lambda_i
 ightarrow 0$ then $ilde{\gamma}_i
 ightarrow 0$
- When $k \to 0$ we get OLS back but if k gets too big posterior mean goes to zero.

Transform

ullet Transform back $ilde{oldsymbol{eta}} = {f V} ilde{oldsymbol{\gamma}}$

$$\tilde{\boldsymbol{eta}} = (\mathbf{X}^T \mathbf{X} + k \mathbf{I})^{-1} \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{eta}}$$

- importance of standardizing
- Is there a value of k for which ridge is better in terms of Expected MSE than OLS?
- Choice of k?

MSE

Can show that

$$\mathsf{E}[(\boldsymbol{\beta} - \tilde{\boldsymbol{\beta}})^T (\boldsymbol{\beta} - \tilde{\boldsymbol{\beta}})] = \mathsf{E}[(\boldsymbol{\gamma} - \tilde{\boldsymbol{\gamma}})^T (\boldsymbol{\gamma} - \tilde{\boldsymbol{\gamma}}]$$

- $Var(\gamma_i \tilde{\gamma}_i) = \sigma^2 I_i^2 / (I_i^2 + k)^2$
- Bias of $\tilde{\gamma}$ is $-k/(l_i^2+k)$
- MSE

$$\sigma^2 \sum_{i} \frac{I_i^2}{(I_i^2 + k)^2} + k^2 \sum_{i} \frac{\gamma_i^2}{(I_i^2 + k)^2}$$

The derivative with respect to k is negative at k=0, hence the function is decreasing.

Since k = 0 is OLS, this means that is a value of k that will always be better than OLS

Alternative Motivation

- If $\hat{m{\beta}}$ is unconstrained expect high variance with nearly singular ${f X}$
- Let $\mathbf{Y}^c = (\mathbf{I} P_1)\mathbf{Y}$ and \mathbf{X}^c the centered and standardized \mathbf{X} matrix
- Control how large coefficients may grow

$$\min_{\boldsymbol{\beta}} (\mathbf{Y}^c - \mathbf{X}^c \boldsymbol{\beta})^T (\mathbf{Y}^c - \mathbf{X}^c \boldsymbol{\beta})$$

subject to

$$\sum \beta_j^2 \le t$$

• Equivalent Quadratic Programming Problem

$$\min_{\boldsymbol{\beta}} \|\mathbf{Y}^c - \mathbf{X}^c \boldsymbol{\beta}\|^2 + k \|\boldsymbol{\beta}\|^2$$

"penalized" likelihood

Picture

Longley Data

OLS

```
> longley.lm = lm(Employed ~ ., data=longley)
> summary(longley.lm)
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.482e+03 8.904e+02 -3.911 0.003560 **
GNP.deflator 1.506e-02 8.492e-02 0.177 0.863141
   -3.582e-02 3.349e-02 -1.070 0.312681
GNP
Unemployed -2.020e-02 4.884e-03 -4.136 0.002535 **
Armed.Forces -1.033e-02 2.143e-03 -4.822 0.000944 ***
Population -5.110e-02 2.261e-01 -0.226 0.826212
Year 1.829e+00 4.555e-01 4.016 0.003037 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Residual standard error: 0.3049 on 9 degrees of freedom Multiple R-squared: 0.9955, Adjusted R-squared: 0.9925 F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10

Ridge Trace

Generalized Cross-validation

```
> select(lm.ridge(Employed ~ ., data=longley,
        lambda=seq(0, 0.1, 0.0001))
modified HKB estimator is 0.004275357
modified L-W estimator is 0.03229531
smallest value of GCV at 0.0028
> longley.RReg = lm.ridge(Employed ~ ., data=longley,
                         lambda=0.0028
> coef(longley.RReg)
          GNP.deflator GNP Unemployed Armed.Forces
-2.950e+03 -5.381e-04 -1.822e-02 -1.76e-02 -9.607e-03
Population Year
-1.185e-01 1.557e+00
```

Testimators

Goldstein & Smith (1974) have shown that if

$$0 \le h_i \le 1 \text{ and } \tilde{\gamma}_i = h_i \hat{\gamma}_i$$

then $\tilde{\gamma}_i$ has smaller MSE than $\hat{\gamma}_i$

Case: If $\gamma_j < \text{Var}(\hat{\gamma}_i) = \sigma^2/l_i^2$ then $h_i = 0$ and $\tilde{\gamma}_i$ is better.

Apply: Estimate σ^2 with SSE/(n - p - 1) and γ_i with $\hat{\gamma}_i$. Set $h_i = 0$ if t-statistic is less than 1.

"testimator" - see also Sclove (JASA 1968) and Copas (JRSSB 1983) $\,$

Generalized Ridge

Instead of $\gamma_j \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(0, \sigma^2/k)$ take

$$\gamma_j \stackrel{\mathrm{ind}}{\sim} \mathsf{N}(0, \sigma^2/k_i)$$

Then Condition of Goldstein & Smith becomes

$$\gamma_i^2 < \sigma^2 \left[\frac{2}{k_j} + \frac{1}{l_i^2} \right]$$

- If l_i is small almost any k_i will improve over OLS
- if I_i^2 is large then only very small values of k_i will give an improvement
- Prior on k_i ?
- Induced prior on \(\beta\)?

$$\gamma_j \stackrel{\text{ind}}{\sim} \mathsf{N}(0, \sigma^2/k_i) \Leftrightarrow \beta \sim \mathsf{N}(\mathbf{0}, \sigma^2 \mathbf{V} K^{-1} \mathbf{V}^T)$$

which is not diagonal. Loss of invariance.

Summary

- OLS can clearly be dominated by other estimators
- Lead to Bayes like estimators
- choice of penalities or prior hyperparameters
- ullet hierarchical model with prior on k_i