Autorė : Zina Šiaulienė Skaitmenizavo : R. Rutkus	Grafikas	Apibrėžimo sritis	Reikšmių sritis		Grafikas	Apibrėžimo sritis	Reikšmių sritis
y = ax + b	a > 0 $a > 0$ $a = 0$	$(-\infty;\infty)$ $(-\infty;\infty)$	$(-\infty;\infty)$	$y = \sin x$	Mažiausias teigiamas periodas 2π	$(-\infty;\infty)$	[-1;1]
$y = ax^2 + bx + c$	$x_{v} = -\frac{b}{2a}$ $y_{v} = f(x_{v})$	$(-\infty;\infty)$	Kai $a>0$ $[y_v;\infty)$ Kai $a<0$ $(-\infty;y_v]$	$y = \cos x$	Mažiausias teigiamas periodas 2π -2π 1π 0 π 2π	$(-\infty;\infty)$	[-1;1]
$y = \sqrt[n]{x}$ $n - lyginis$	$\stackrel{\uparrow}{\longrightarrow}$	[0;∞)	[0;∞)	y = tgx	Mažiausias teigiamas periodas π	$x \neq \frac{\pi}{2} + \pi n$	$(-\infty;\infty)$
$y = \sqrt[n]{x}$ $n - nelyginis$		$(-\infty;\infty)$	$(-\infty;\infty)$	-:	1.5п 1п -0.5п 0.5п п 1.5п	<i>n</i> ∈ Z	
$y = x^n$ $n - lyginis$	→	(-∞; ∞)	[0;∞)	$y = \arcsin x$	-2 -1 0 1 2	[-1;1]	$\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$
$y = x^n$ $n - nelyginis$	\rightarrow	(-∞; ∞)	(-∞; ∞)	$y = \arccos x$	0.5п	[-1;1]	[0; π]
$y = \frac{1}{x^n}$ $n - lyginis n \in \mathbb{N}$	\longrightarrow	$(-\infty;0),(0;\infty)$	(0;∞)		-2 -1 0 1 2		(= =)
$y = \frac{1}{x^n}$ $n - nelyginis n \in \mathbb{N}$		$(-\infty;0),(0;\infty)$	$(-\infty;0),(0;\infty)$	$y = \operatorname{arctg} x$	-2 -1 0 1 2 0.5n	(−∞; ∞)	$\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$
$y = a^x$	Kai a > 1	(-∞; ∞)	(0;∞)	$y = x^p$ p – nesuprastinama trupmena	$\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline p > 1 & & & \\ \hline \end{array}$	(0;∞)	(0;∞)
$y = \log_a x$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0;∞)	(-∞; ∞)		$ \begin{array}{c c} p > 1 & 0$	(0;∞)	(0;∞)