

GPL16238B

Advanced Game / ELA SoC with μ 'nSP[®] 2.0

Nov. 23, 2016

Version 1.0

Table of Contents

PAGE	
------	--

1.	GENERAL DESCRIPTION	4
2.	BLOCK DIAGRAM	4
3.	FEATURES	4
4.	SIGNAL DESCRIPTIONS	5
	4.1. PAD ASSIGNMENT	
	4.2. PIN MAP	
5.	FUNCTIONAL DESCRIPTIONS	11
-	5.1. CPU	
	5.2. Memory	11
	5.2.1. Internal SRAM	11
	5.2.2. External memory	11
	5.3. PLL, CLOCK, POWER MODE	11
	5.3.1. PLL (Phase Lock Loop)	11
	5.3.2. System Clock	11
	5.4. POWER SAVINGS MODE	11
	5.5. PICTURE PROCESS UNIT	11
	5.6. VIDEO INPUT INTERFACE	12
	5.7. SOUND PROCESS UNIT	12
	5.8. VIDEO OUTPUT INTERFACE	12
	5.8.1. STN-LCD Interface	12
	5.8.2. TFT-LCD Interface	12
	5.8.3. TV encoder	12
	5.9. Interrupt	12
	5.10.GPIO	12
	5.11. TIMER / COUNTER	12
	5.12.WATCHDOG	12
	5.13. SERIAL INTERFACE	13
	5.13.1. Serial Peripheral Interface (SPI)	13
	5.13.2. USB Device Function	
	5.14.IDE Tools Function	13
	5.15.SD/MMC CONTROLLER	
	5.16.REAL TIME CLOCK (RTC)	14
	5.17.Analog Control	
	5.17.1. DAC Control	14
6.	ELECTRICAL SPECIFICATIONS	15
	6.1. ABSOLUTE MAXIMUM RATING	15
	6.2. DC CHARACTERISTICS	
	6.3. VIDEO DAC CHARACTERISTICS	
	6.4. Audio DAC Characteristics	
	6.5. REGULATOR CHARACTERISTICS	
7.	RECOMMENDED BOARD LAYOUT	
	7.1. POWER AND GROUND	17

	7.2. CRYSTAL AND PLL	17
	7.3. ANALOG SECTION	17
8.	APPLICATION CIRCUIT	18
	8.1. FOR TV PLUG-AND-PLAY SIMPLE ELA/GAME 2D APPLICATION	
	8.2. FOR TV PLUG-AND-PLAY ADVANCE ELA/GAME APPLICATION	19
9.	PACKAGE/PAD LOCATIONS	20
	9.1. Ordering Information	20
	9.2. Package Information	20
10	.DISCLAIMER	22
11	REVISION HISTORY	23

Advanced Game / ELA SoC with μ /nSP \otimes 2.0

1. GENERAL DESCRIPTION

The Generalplus GPL16238B is highly integrated system-on-a chip and targets a cost-effective, high performance micro-controller solution for game, education and learning applications. It embedded μ /nSP $^{\otimes}$ 2.0 (16-bit CPU developed by Sunplus Technology) with 4KB I-cache, picture process unit (PPU), TV encoder with QVGA output, 16 channels sound process unit (SPU), SDRAM controller, ROM/SRAM/NOR FLASH/NAND FLASH with ECC Memory controller, two channel DMA controller, six-channel 16-bit timers, SD/MMC memory interface, USB device, mono STN-LCD and TFT-LCD interface, interrupt controller, SPI master controller, programmable I/O ports, 16-bit DAC for audio playback, PLL, deflicker, divider and embedded 12K*16 bits SRAM and 4K*16 ROM.

By providing a complete set of common system peripherals, the Generalplus GPL16238B chip minimizes overall system costs and eliminates the need to configure additional components. The GPL16238B provides not only the high-speed performance and low cost for a system, but it also integrates several powerful tools into the development system, such as development system with C language, assembly compiler, linker, source debugger functions and project management tools.

2. BLOCK DIAGRAM

3. FEATURES

- \blacksquare μ 'nSP[®] 2.0 16-bit CPU with frequency up to 96MHz.
- 4K bytes I-cache.
- 12k*16 bits SRAM for programming or LCD frame buffers.
- 4K*16 bits ROM for boot code.
- Picture Process Unit (PPU)
 - 4 Text layers + 256 Sprites
 - QVGA output
 - Line base or Frame base operation
 - Deflicker for TV output
 - Up-to 4096x4096 Text Size
 - Alpha-channel sprite
- Sound Process Unit (SPU)
 - 16 hardware PCM/ADPCM channels
 - Built-in sound compressor
- Video-in/CMOS sensor interface supports CCIR601/CCIR656 standard.
- 96 MHz SDRAM with maximum size 64M bytes for single chip select.
- Static memory controller. (ROM/SRAM/NOR FLASH/Page Memory/NAND FLASH with ECC)
- Two-channel DMA controller.
- Mono and 16 gray STN-LCD controller.
- TFT-LCD controller which can be UPS051(serial RGB), UPS052(serial RGB dummy), parallel RGB, i80(8-bit/16-bit system bus) I/F type, and CCIR601/CCIR656.
- 29 sources Interrupt Controller.
- Universal Serial Bus (USB) 2.0 full speed compliant device with built-in transceiver.
- Watch-dog timer.
- 32-bit by 32-bit signed divider.
- Real-time clock.
- Six 16-bit timers.
- SD/MMC memory interface.
- SPI master interface.
- 51 Programmable general I/O ports with pull-high/low control.
- Power manager.
- Built-in 3.0V to 1.8V Regulator.
- Low voltage reset.
- 96MHz, 27MHz and 12MHz PLL.
- 16-bit stereo DAC(2ch) for audio playback.
- TV encoder which support NTSC/PAL output.

4. SIGNAL DESCRIPTIONS

Left Side

No	Package No	Name	Group	Туре	Normal Function Description	GPIO Group
1	2	DVSS	Digital GND	Р	Digital ground	
2	3	BKCSB0	Memory I/F	I/O	External memory chip select 0	IOD0
3	4	XA3	Memory I/F	I/O	External memory address pin 3	
4	5	XA2	Memory I/F	I/O	External memory address pin 2	
5	6	XA1	Memory I/F	I/O	External memory address pin 1	
6	7	BKCSB1	Memory I/F	I/O	External memory chip select 1	IOD1
7	8	XA0	Memory I/F	I/O	External memory address pin 0	
8	9	XA10	Memory I/F	I/O	External memory address pin 10	
9	10	XA11	Memory I/F	I/O	External memory address pin 11	
10	11	BKCSB2	Memory I/F	I/O	External memory chip select 2	
11	12	XA12	Memory I/F	I/O	External memory address pin 12	IOD2
12	13	XA13	Memory I/F	I/O	External memory address pin 13	
13	14	XA14	Memory I/F	I/O	External memory address pin 14	
14	15	DVCC33	Digital PWR	Р	3.3V digital power	
15	16	DVSS	Digital GND	Р	Digital ground	
16	17	DVCC18	Digital PWR	Р	P 1.8V digital power	
17	18	BKWEB	Memory I/F	I/O	I/O External memory write enable pin	
18	19	BKOEB	Memory I/F	I/O	O External memory output enable pin	
19	20	XA15	Memory I/F	I/O	External memory address pin 15 IOE	
20	21	XA16	Memory I/F	I/O	External memory address pin 16	IOD8
21	22	XA17	Memory I/F	I/O	External memory address pin 17	IOD9
22	23	XA18	Memory I/F	I/O	External memory address pin 18	IOD10
23	24	XA19	Memory I/F	I/O	External memory address pin 19	IOD11
24	25	XA20	Memory I/F	I/O	External memory address pin 20	IOD12
25	26	XA21	Memory I/F	I/O	I/O External memory address pin 21 IO	
26	27	XA22	Memory I/F	I/O	External memory address pin 22	IOD14
27	28	XA23	Memory I/F	I/O	External memory address pin 23	IOD15
28	29	DVSS	Digital GND	Р	P Digital ground	
29	30	TEST	MODE	1	Test mode control signal. Input floating; it must	
					be tied with ground under normal operation.	

Bottom Side

No	Package No	Name	Group	Туре	Normal Function Description	GPIO Group
30	31	RESETB	SYSTEM	I/O	Reset input pin. (Low active)	
31	32	IOB2	MODE	I/O	BM2: Boot mode selection pin 2.	IOB2
					(0: use 6MHz crystal, usually for TV application,	
					1: use internal PLL, usually for other application w/o TV)	
32	33	IOB1	MODE	I/O	BM1: Boot mode selection pin 1.	IOB1
					1 : Internal ROM Boot (SPI boot, NAND boot)	
					0 : Chip Select 0 Memory Boot	
33	34	IOB0	MODE	I/O	BM0: Boot mode selection pin 0.	IOB0
					(This pin must be pull low with a resistor)	
34	35	ICEDA	ICE	I/O	Embedded ICE data pin. Default is floating.	
				., -	In development phase, connect it with a capacitor to	
					GND.	
					In production phase, connect it with a resistor to GND.	
35	36	ICECK	ICE	0	Embedded ICE clock pin. Default is floating.	
00			In development phase, connect it with a capacitor to			
					GND.	
					In production phase, connect it with a resistor to GND.	
36	37	IOA7	Key/LCD	I/O		IOA7
			,		Key-scan's output 7; TFT-LCD's D7 Key-scan's output 6: TFT-LCD's D6	
37	38	IOA6	Key/LCD	1/0	,	IOA6
38	39	IOA5	Key/LCD	1/0	Key-scan's output 5; TFT-LCD's D5	IOA5
39	40	IOA4	Key/LCD	1/0	Key-scan's output 4; TFT-LCD's D4	IOA4
40	41	IOA3	Key/LCD	1/0	Key-scan's output 3; TFT-LCD's D3	IOA3
41	42	IOA2	Key/LCD	I/O	Key-scan's output 2; TFT-LCD's D2	IOA2
42	43	IOA1	Key/LCD	I/O	Key-scan's output 1; TFT-LCD's D1	IOA1
43	44	IOA0	Key/LCD	I/O	Key-scan's output 0; TFT-LCD's D0	IOA0
44	45	IOA8	Key/LCD	I/O	Key-scan's input 0; TFT-LCD's D8	IOA8
45	46	DVCC33	Digital PWR	PWR	3.3V digital power	
46	47	DVSS	Digital GND	PWR	Digital ground	
47	48	DVCC18	Digital PWR	PWR	1.8V digital power	10.40
48	49	IOA9	Key/LCD	1/0	Key-scan's input 1; TFT-LCD's D9	IOA9
49 50	50 51	IOA10 IOA11	Key/LCD Key/LCD	I/O I/O	Key-scan's input 2; TFT-LCD's D10 Key-scan's input 3; TFT-LCD's D11	IOA10
51	52	IOA11	Key/LCD	I/O	Key-scan's input 4; TFT-LCD's D12	IOA11
52	53	IOA12	Key/LCD	1/0	Key-scan's input 5; TFT-LCD's D13	IOA12
53	54	IOA14	Key/LCD	I/O	Key-scan's input 6; TFT-LCD's D14	IOA14
54	55	IOA15	Key/LCD	I/O	Key-scan's input 7: TFT-LCD's D15	IOA15
55	56	IOC8	SD2	I/O	SD2 data0	IOC8
56	57	IOC7	SD2	I/O	SD2 clock	IOC7
57	58	IOC6	SD2	I/O	SD2 command	IOC6
58	59	IOC10	SD2	I/O	SD2 data2	IOC10
59	60	IOC9	SD2	I/O	SD2 data1	IOC9
60	61	IOC5	SD2	I/O	SD2 data3	IOC5
61	62	IOC11	Key change A	I/O	Key change A input IO	
62	63	IOC12	Key change B	I/O	Key change B input IOC12	
63	64	PLLV33	PLL	PWR		
64	65	X32KO	PLL	0	32768 Hz crystal output pin	
65	66	X32KI	PLL	1	32768 Hz crystal input pin	

Right Side

No	Package No	Name	Group	Туре	Normal Function Description	GPIO Group
66	67	PLLVSS	PLL	PWR	PLL ground	
67	68	X6MI	PLL	A/I	6MHz crystal input pin or 12M PLL filter pin	
68	69	X6MO	PLL	0	6MHz crystal output pin	
69	70	PLLV18	PLL	Р	1.8V power for PLL	
70	71	DVSS	Digital GND	PWR	Digital ground	
71	72	DACOL	DAC	A/O	Left channel audio output	
72	73	DAVREF	DAC	A/O	DAC reference voltage pin	
73	74	AVSS	DAC	PWR	DAC ground	
74	75	DACOR	DAC	A/O	Right channel audio output	
75	76	AVDD	DAC	PWR	3.3V DAC power	
76	77	VAVSS	VDAC	PWR	VDAC ground	
77	78	VDVREF	VDAC	A/I	Video DAC reference voltage	IOE2
78	79	VRSET	VDAC	A/I	Video DAC current source adjustment	IOE1
79	80	VCBU	VDAC	A/I	Video DAC reference voltage	
80	81	VCBL	VDAC	A/I	Video DAC reference voltage	
81	82	VAOUT	VDAC	A/O	Video DAC output	IOE0
82	83	VAVDD	VDAC	PWR	3.3V VDAC power	
83	84	DVCC33	Regulator	PWR	3.3V Regulator power	
84	85	DVSS	Regulator	PWR	Regulator ground	
85	86	DVCC18	Regulator	A/O	Regulator 1.8V output	
86	87	DVCC18	Digital PWR	PWR	1.8V digital power	
87	88	DVSS	Digital GND	PWR	Digital ground	
88	89	IOB7	SPI	I/O	SPIRX: SPI data input	IOB7
89	90	IOB6	SPI	I/O	SPITXD: SPI data output	IOB6
90	91	IOB5	SPI	I/O	SPICLK: SPI clock	
91	92	IOB3	LCD	I/O	TFT DCLK	IOB3
92	93	DVCC33	Digital PWR	PWR	3.3V digital power	
93	94	AVCC33	USB	PWR	3.3V USB power	
94	95	DP	USB	I/O	DP pin of USB PHY	
95	96	DN	USB	I/O	DN pin of USB PHY	

Top Side

No	Package No	Name	Group	Туре	Normal Function Description	GPIO Group
96	97	AVSS	USB	PWR	USB ground	
97	98	DVSS	Digital GND	PWR	Digital ground	
98	99	IOB8	EINT	I/O	External INT0; Light gun input	IOB8
99	100	XD7	Memory I/F	I/O	External memory data pin 7	
100	101	XD6	Memory I/F	I/O	External memory data pin 6	
101	102	XD5	Memory I/F	I/O	External memory data pin 5	
102	103	XD4	Memory I/F	I/O	External memory data pin 4	
103	104	XD3	Memory I/F	I/O	External memory data pin 3	
104	105	XD2	Memory I/F	I/O	External memory data pin 2	
105	106	XD1	Memory I/F	I/O	External memory data pin 1	
106	107	XD0	Memory I/F	I/O	External memory data pin 0	
107	108	XD15	Memory I/F	I/O	External memory data pin 15	
108	109	DVCC33	Digital PWR	PWR	3.3V digital power	
109	110	XD14	Memory I/F	I/O	External memory data pin 14	
110	111	XD13	Memory I/F	I/O	External memory data pin 13	
111	112	XD12	Memory I/F	I/O	External memory data pin 12	
112	113	DVSS	Digital GND	PWR	Digital ground	
113	114	DVCC18	Digital PWR	PWR	1.8V digital power	
114	115	XD11	Memory I/F	I/O	External memory data pin 11	
115	116	XD10	Memory I/F	I/O	External memory data pin 10	
116	117	XD9	Memory I/F	I/O	External memory data pin 9	
117	118	DVCC33	Digital PWR	PWR	3.3V digital power	
118	119	XD8	Memory I/F	I/O	External memory data pin 8	
119	120	CLK	SDRAM	I/O	SDRAM clock	IOC0
120	121	CKE	SDRAM	I/O	SDRAM clock enable	IOC1
121	122	XA9	Memory I/F	I/O	External memory address pin 9	
122	123	XA8	Memory I/F	I/O	External memory address pin 8	
123	124	XA7	Memory I/F	I/O	External memory address pin 7	
124	125	BKCSB4	Memory I/F	I/O	External memory chip select 4	IOD4
125	126	XA6	Memory I/F	I/O	External memory address pin 6	
126	127	XA5	Memory I/F	I/O	External memory address pin 5	
127	128	XA4	Memory I/F	I/O	External memory address pin 4	
128	1	BKCSB3	Memory I/F	I/O	External memory chip select 3	IOD3

4.1. PAD Assignment

This IC substrate should be connected to VSS

Note1: To ensure that the IC functions properly, please bond all of VDD and VSS pins.

Note2: The $0.1\mu F$ capacitor between VDD and VSS should be placed to IC as closed as possible.

4.2. Pin Map

5. FUNCTIONAL DESCRIPTIONS

5.1. CPU

The GPL16238B is equipped with a 16-bit μ 'nSPTM 2.0, the newest 16-bit microprocessor by SUNPLUS and pronounced as micro-n-SP. Sixteen registers are involved in μ 'nSPTM 2.0: R1 - R4 (General-purpose registers), PC (Program Counter), SP (Stack Pointer), Base Pointer (BP), SR (Segment Register) and R8 - R15 (General-purpose register). The interrupt include three FIQs (Fast Interrupt Request) and eight IRQs (Interrupt Request), plus one software-interrupt, BREAK. GPL16238B is also built-in a 4K bytes I-cache which can increase the performance significantly.

5.2. Memory

5.2.1. Internal SRAM

The amount of SRAM is 12K-word (including Stack), ranged from 0x0000 through 0x2FFF with access speed of one CPU clock. Since this SRAM is located in CPU's locale bus, the system bus will not be occupied when this SRAM is access by CPU. This SRAM can be access freely by CPU/PPU/DMA/LCD.

5.2.2. External memory

The memory space is separate into 5 banks and each bank can be up to 256 pages, and each page is 64K words, the controller can support up to 80M words NOR type flash memories. Each bank can be programmed as SDRAM/ROM/SRAM/NOR Flash/NAND Flash. GPL16238B can support up-to 64M bytes (512Mb) SDRAM with single chip-select. 8-bit NAND flash are supported with an embedded 1/4/8 bits ECC calculation circuit which can realize the error correction mechanism on SLC/MLC NAND flash.

5.3. PLL, Clock, Power Mode

5.3.1. PLL (Phase Lock Loop)

There are three PLLs embedded in GPL16238B. 1st PLL can pump up to 96MHz, 2nd PLL can generate 27MHz, and 3rd PLL can pump 12MHz. The output frequency of fast PLL is programmable and has range from 15MHz ~ 96MHz (3MHz per step).

5.3.2. System Clock

The system clock can be selected from 32768 or 12M or 96M (determined by fast PLL's output frequency) by register setting. Furthermore, a clock divider which can divide clock up to 1/128 is provided to reduce the power consumption.

5.4. Power Savings Mode

The GPL16238B provide 4 power modes, Normal, Wait, Halt and Sleep.

Giccp.							
Mode	CPU	System	RTC	POWEREN	After wakeup		
Normal	ON	ON	ON	ON	-		
Wait	OFF	ON	ON	ON	Next Instruction		
Halt	OFF	OFF	ON	OFF	Reset CPU		
Halt2	OFF	OFF	ON	OFF	Next Instruction		
Sleep	OFF	OFF	OFF	OFF	Reset System		

Enter the Wait/Halt/Halt2/Sleep mode, is done by write designated value to designated port. The wake-up source can be interrupt or timer or key-change.

5.5. Picture Process Unit

GPL16238B equips a powerful process engine which has the following features.

following features.							
Item	Features						
Text	Maximum 4 text layers at the same time.						
Layer	2. Support text size up to 4096x4096.						
	Support Text rotate and scale effect.						
	Support horizontal/vertical compression effect.						
	5. Support horizontal movement effect.						
	6. Support 64-level alpha blending.						
	7. Support vertical compression under 2.5D mode.						
Sprite	Maximum 256 sprites at the same time.						
	Each sprite support 64-level rotate function.						
	3. Each sprite supports 64-level zoom in/out						
	function from 1/32 to 8.75 times.						
	Each sprite supports 64-level alpha blending						
	5. Each sprite supports 3 kinds of mosaic effect.						
	Support alpha channel function.						
	7. All above function can combine at the same						
	time.						
Color	1. Text layer and sprites support 4/16/64/256-color						
	palette and RGB1555/RGB565/YUYV/RGBG						
	bitmap mode.						
	1024 palette entry for text layers and sprites.						
	3. Support 16/24-bit level of palette index color.						
Operation	Support QVGA at line/frame base mode.						
Mode							
Other	Support light gun interface.						
Features	2. Support sprite DMA function.						
	Support de-flicker for TV output.						

11

5.6. Video Input Interface

GPL16238B supports video input from sensor or TV decoder. The maximum input resolution is 4095x4095. A built-in scaler can be used to scale input data from arbitrary resolution to QVGA mode. A motion detect engine is also built-in GPL16238B which can realize the interactive game with sensor input. The video-in interface support CCIR601/CCIR656 format with YUV or RGB format. The output format is frame-based and the input frame rate need not to synchronous with GPL16238B's system clock.

5.7. Sound Process Unit

GPL16238B equips a 16-channel SPU. Each channel of SPU can support PCM8/PCM16/ADPCM36. A dynamic volume compressor is also embedded to enlarge the overall volume. For software application, GPL16238B is also capable for wide-band(sample rate >= 16kHz) low bit rate algorithm.

5.8. Video output Interface

5.8.1. STN-LCD Interface

The STN-LCD driver interface built-in GPL16238B supports up-to 320X240 LCD panel and supports 1/4 bits data bus for monochrome/gray-scale STN. Memory interface type CSTN is also supported.

5.8.2. TFT-LCD Interface

The GPL16238B supports TFT-LCD controller. The LCM interface including parallel RGB(5-6-5), serial delta RGB, serial stripe RGB, CPU (MPU) type, and CCIR601/CCIR656. The horizontal resolution of TFT controller maximum reaches 320 pixels, and the vertical resolution of TFT controller maximum reaches 240 pixels. The TFT controller mainly provides four timing control pins and 8 or 16 data pins to control external TFT panel. Those are VSYNC, HSYNC, DE, DCLK, and DATA.

5.8.3. TV encoder

The GPL16238B supports TV composite output. Both NTSC and PAL output are supported. The output resolution can up-to 640x480. A 10-bit video DAC is also embedded in GPL16238B which can utilize minimum system cost and best performance.

5.9. Interrupt

The GPL16238B has 29 interrupt sources, grouped into two types, FIQ (Fast Interrupt Request) and IRQ (Interrupt request). The priority of FIQ is higher than IRQ. FIQ is the high-priority interrupt while IRQ is the low-priority one. An IRQ can be interrupted by a FIQ, but not by another IRQ. A FIQ cannot be interrupted by any other interrupt sources. Some of the interrupt source can be programmed as FIQ or IRQ by register setting.

5.10. GPIO

Five I/O ports are built in GPL16238B, IOA, IOB, IOC, IOD and IOE. Each I/O pin has its normal function and is described in the signal description section. When the normal function of the I/O is disabled, it will switch to GPIO function automatically. The

following diagram is a GPIO schematic.

5.11. Timer / Counter

The GPL16238B provides six 16-bit timers/counters, TimerA to TimerF. The clock source of each timer can be set individually. For Timer A to TimerD, an INT will be sent to CPU when timer overflow. Besides, Capture, Comparison and PWM functions are

also provided by TimerA/TimerB/TimerC.

Clock Source A	Clock Source B		
Fosc/2	2048Hz		
Fosc/256	1024Hz		
32768Hz	256Hz		
8192Hz	Time Base B		
4096Hz	Time Base A		
1	0		
Another Timer	1		
INT1	INT2		

The GPL16238B is embedded with a time base controller which is used to generate the slow and precisely interrupt form 32768Hz crystal. The following table shows the available time base.

TimeBase A	TimeBase B	TimeBase C	
	8Hz	128Hz	
1Hz	16Hz	256Hz	
2Hz	32Hz	512Hz	
4Hz	64Hz	1024Hz	

5.12. Watchdog

The purpose of watchdog is to monitor if the system operates normally. Within a certain period, watchdog must be cleared. If watchdog is not cleared, CPU assumes the program has been running in an abnormal condition. As a result, the CPU will reset

the system to the initial state and start running the program all over again. In GPL16238B, the clear period is software programmable. If watchdog is cleared before expired, the system will not be reset.

5.13. Serial Interface

5.13.1. Serial Peripheral Interface (SPI)

The SPI interface is a master interface that enables synchronous serial communication with slave/master peripherals. Two 8 bytes FIFO are used for transmit and receive. Four types of timing are supported and showing in the following diagram.

SPO = 0, SPH = 0

SPO = 0, SPH = 1

SPO = 1, SPH = 1

5.13.2. USB Device Function

GPL16238B provides USB device function which is compatible with USB 1.1 and USB 2.0 full speed standard. An USB transceiver is built-in for devices function. A FIFO with size of 128x8 is used for bulk-in and bulk-out transfer and an 8-bytes FIFO is used for control pipe transfer. Interrupt IN/OUT pipes are also supported. The DMA transfer is enabled for bulk-in/out to maximize the transfer performance.

5.14. IDE Tools Function

The functions of IDE include the follows:

- 1). C compiler, Assembly and Linker
- 2). Single step trace
- 3). Break point (break point for debugging)
- 4). Run (execute)

5.15. SD/MMC Controller

GPL16238B provides SD/MMC controllers which is compatible with MMC system specification version 2.3 and SD Memory Card specification 1.1. The controller supports automatically CRC generation and check, 1-bit and 4-bit transfer, interrupt generation when buffer empty/full, DMA transfer for page read/write.

5.16. Real Time Clock (RTC)

The RTC block provides the alarm function, schedule function, and hour/minute/second/half-second interrupt function.

5.17. Analog Control

5.17.1. DAC Control

A 16-bit stereo DAC(2ch) is embedded in GPL16238B. For both

left and right channel, a 16x16 FIFO is used to prevent the sound glitch when CPU is busy. The left and right channel does not need to have the same sample rate. A single DMA channel can utilize the stereo playback.

6. ELECTRICAL SPECIFICATIONS

6.1. Absolute Maximum Rating

Rating	Symbol	Value	Unit
Supply Voltage 1	DVCC33	-0.3 to 4.0	V
	PLL_V33		
Supply Voltage 2	AVDD	-0.3 to 4.0	V
Supply Voltage 3	DVCC18	-0.3 to 2.16	V
	PLL_V18		
Input Voltage	V_{IN}	-0.3 to 4.0	V
Operating Temperature	T _A	0 to 70	$^{\circ}\!$
Storage Temperature	T_{STG}	-40 to +150	${\mathbb C}$

6.2. DC Characteristics

		Limits				_	
Characteristic	Symbol	Min.	Тур.	Max.	Unit	Condition	
Operating Voltage 1	DVCC33 PLL_V33	2.7/3.0 ¹	3.0	3.6	V	-	
Operating Voltage 2	AVDD	2.7	3.0	3.3	V	-	
Operating Voltage 3	DVCC18 PLL_V18	1.62	1.8	1.98	V	-	
Operating Current	I _{OP}	-	100 ²	-	mA	@96MHz, 3.3V, all clocks on	
Power Down Current	I _{PD}	-	80 ³	100 ³	μА	Sleep Mode@1.5V	
High Input Voltage	V_{IH}	0.7DVDD33	-	DVDD33	V	-	
Low Input Voltage	V_{IL}	VSS	-	0.8	V	-	
Crystal Frequency 1	-	-	32768	-	Hz	-	
Crystal Frequency 2	F _{CRYSTAL}	-	6.0 ⁴	-	MHz	-	
System Clock	F _{SYS}	256Hz ⁵	48	96	MHz	-	

 $\textbf{Note1:} \ \textbf{When USB function is enabled, the minimum voltage of DVCC33/PLL_V33 is 3.0V.}$

Note2: Operating current depends on software code. In this test case, the following macro is turned on: Video DAC, Audio DAC, 96MHz PLL and 27MHz PLL.

Note3: Regulator is in sleep mode.

Note4: 6M Crystal is needed when USB function or TV function is enabled.

Note5: By setting clock divider and changing system clock to 32768 mode.

6.3. Video DAC Characteristics

	Limits					
Characteristic	Min.	Тур.	Max.	Unit	Condition	
Resolution	-	10	-	Bit	-	
INL	-	±1	-	LSB max	-	
DNL	-	±0.5	-	LSB max	-	
Input Capacitor	-	10	-	pF	-	
Voltage Reference Range	1.14	1.235	1.33	V	-	
VRSET	0.570	0.617	0.665	V	-	
Offset Error	-	0	-	V	-	
Gain Error	-	25	-	LSB	-	
Glitch Energy	-	50	-	рV	-	
Conversion Rate	-	30	-	ns	-	

6.4. Audio DAC Characteristics

	Limits					
Characteristic	Min.	Тур.	Max.	Unit	Condition	
Resolution	-	16	-	Bit	-	
Full Scale Output Voltage	-	0.6*VDDDA	-	Vp-p	-	
THD+N ($f = 1kHz$)	-	0.1	-	%	-	
Noise at No Signal	-85	90	-	dBv	-	
Frequency Response	20	-	19200	Hz	-	

6.5. Regulator Characteristics

		Unit				
Characteristics	Symbol	Min.	Тур.	Max.	Unit	
Input Voltage	VREGI	2.7	3.0	3.6	V	
Maximum Current Output	IREGO	=	70	100	mA	
Output Voltage	VREGO	1.5 ¹	1.8	1.89	V	
Standby Current	IREGS	=	10	ı	uA	

16

Note1: To save more power, it is recommended switching to 1.5V before entering the halt/sleep mode and switching to 1.8V in normal operation mode.

7. RECOMMENDED BOARD LAYOUT

7.1. Power and Ground

All digital power and ground should be connected. The decoupling capacitor of $0.1\mu F$ and $10\mu F$ should be connected to each power pin of the IC as the following diagram. The power of analog parts should be connect from the power source with high quality.

7.2. Crystal and PLL

When the 32768Hz crystal is disabled, usually for TV and USB application, please refer to the following diagram to connect the

Note*: Please refer to the crystal's application circuit.

When the 6MHz crystal is disabled, please refer to the following diagram to connect the crystal circuit.

7.3. Analog Section

A specific AGND ground plane should be provided, which connects by a single trace to the GND ground. No digital signals should cross the AGND plane. DAVREF should be connected to a $1\mu F$ capacitor. VDVREF should be connected to a $0.1\mu F$ capacitor.

8. Application Circuit

8.1. For TV Plug-and-Play Simple ELA/Game 2D Application

8.2. For TV Plug-and-Play Advance ELA/Game Application

9. PACKAGE/PAD LOCATIONS

9.1. Ordering Information

Product Number	Package Type		
GPL16238B - NnnV - C	Chip Form		
GPL16238B - NnnV - QL09x	Halogen Free Package		

Note1: Code number is assigned for customer.

Note2: Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).

Note3: Package form number (x = 1 - 9, serial number).

9.2. Package Information

LQFP 128

Symbol	Millimeter Min. Nom. Max.				
A			1.60		

Symbol	Millimeter				
	Min.	Nom.	Max.		
A1	0.05		0.15		
A2	1.35	1.40	1.45		
b	0.13	0.16	0.23		
С	0.09		0.20		
D		16.00 BSC			
D1		14.00 BSC			
E		16.00 BSC			
E1		14.00 BSC			
е		0.40 BSC			
L	0.45	0.60	0.75		
L1		1.00 REF			
θ	O°	3.5°	7 °		

10. DISCLAIMER

The information appearing in this publication is believed to be accurate.

Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, GENERALPLUS MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publication are current before placing orders. Products described herein are intended for use in normal commercial applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that application circuits illustrated in this document are for reference purposes only.

22

11. REVISION HISTORY

Date	Revision #	Description	Page
Nov. 23, 2016	1.0	Add ICEDA, ICECK pin description in 4.SIGNAL DESCRIPTION.	5
Jul. 01, 2008	0.3	Modify test pin descriptions.	4
		2. Modify package number.	4-7
Jun. 02, 2008	0.2	1. Modify 4Kx16 ROM descriptions.	3
		2. Modify operating current and power down current.	13
		3. Modify application circuit.	16,17
Apr. 08, 2008	0.1	Preliminary version.	20