딥러닝 기반 얼굴인식 및 걸음걸이 분석을 통한 장병들의 감정 유추 및 사고 예방

스마트 병영

Team 우리 AI가 달라졌어요

대위 이지범, 상병 박성주, 상병 김영수, 일병 송민, 일병 남현원

아이디어 배경 및 문제 도출

해결 방안

아이디어 측면

기술적 측면

기대승규

병영 생활 스트레스를 겪고 있는 장병들은 제도적 차원에서 도움을 요청하지 않는 경우가 다수 발생하고, 이 결과로 군 사망사고 중 '자살'이 높은 비율이 나타나고 있음

배경

- ✓ 군 장병들은 개인적 원인과 부대적 원인에 따른 스트레스를 경험하고 있고,
 최근 5개년 자살사고 비용 중 81%가 개인적 원인으로 발생
 - * 관련근거 : 21년 자살사고 급증에 따른 원인분석 및 예방대책 ('21. 5.31.(월), 전투준비안전단)
- ✓ 개인적 원인은 신변비관, 경제문제, 가정문제, 처벌우려 등 본인이 직접 말하지 않으면 문제원인을 타인이 식별하기 어려운 특징이 있음

기존 문제점

- ✓ 이러한 사고를 예방하기 위해 병영생활전문 상담관, 지휘관과의 대화 등 기존의 예방대책이 존재함
- ✓ 하지만 현재 시행되고 있는 자살 예방 시스템의 대다수는 문제 장병이 스스로 도움을 요청해야 하고, 적극적으로 도움을 요청하기 어려운 조직문회가 존재함
- ✓ 자살 예방 시스템에 대한 효과와 개선여부를 측정하여 효과가 없는 예방 시스템을 중단하고, 인원맞춤의 자살예방시스템 구축이 필요함

- ✓ 스트레스를 가지고 있는, 혹은 가질 잠재성 있는 장병들이 스스로 도움을 요청하지 않더라도 식별할 수 있는 대책 요망
- ✓ 겉으로 들어나는 감정을 통하여 힘든 장병들을 식별

아이디어 배경 및 문제 도출

해결 방안

아이디어 측면

기술적 측면

기대승규

현재 AI 기반 <mark>감정유추 기술</mark>은 자율주행, 인공지능 수업 등 <mark>다양한 산업군</mark>에서 사용되고 있으며, 특히 얼굴인식과 걸음걸이 분석을 통한 감정유추는 높은 활용성으로 적용 범위가 점차 확대되고 있음

얼굴 인식을 통한 감정 유추

걸음걸이 분석을 통한 감정 유추

- 미국 메릴랜드대 연구팀이 개발한 알고리즘으로 걸음걸이를 통해 얻어진 사람의 감정을 바탕으로 로봇이 움직일 경로를 선택
- ✓ 82.4%의 높은 예측 정확도를 바탕으로 로봇이 도움이 필요한 사람을 가려내는 등 실생확에 다양하게 적용될 수 있음

얼굴인식과 걸음걸이 분석을 통한 감정유추로 힘든 장병 조기 식별

먼저, <mark>영상장치</mark>(출입문, 병영식당 앞 CCTV설치)를 활용하여 <mark>걸음걸이와 얼굴표정을 분석 및 감정을 유추</mark>하여 병영생활이 힘든 장병을 조기 식별 함

발견

일련의 조치 과정을 통해 힘들어하는 <mark>장병이 도움을 못 받는 경우가 없이</mark>, 모두가 체계적이고 실질적인 도움을 받을 수 있도록 함

장병관리 프로그램을 통해 조기 식별된 장병을 지휘관에게 연락 및 지속적이고 효과적인 장병관리를 시행

- ✓ 상담이 필요한 장병이 식별되면 장병관리 프로그램의 장병 리스트에 올라감
- ✓ 조치가 완료되면 리스트에서 사라짐
- ✓ 조치가 되지 않고 오래 유지되거나 조치 후에도 지속적으로 리스트에 올라올 경우 더 높은 지휘관, 전문적인 상단관의 프로그램에 올라감
- ✓ 장병 개개인의 감정 상태를 주기적으로 관리할 수 있음
- ✓ 상담 및 상담 기록을 통해 효과적인 도움을 줄 수 있음

아이디어 배경 및 문제 도출

해결 방안

아이디어 측면

기술적 측면

기대승규

감정 유추를 위해 여러 모델과 알고리즘을 고려하였고, 그 중 이미지 분류에 적합한 CNN 모델을 선정하고 CNN 알고리즘 중 에러율이 가장 낮은 ResNet을 사용하고자 함

학습 모델 선정

DBN(Deep Belief Network)

✓ 확률모델인 RBM을 여러층 쌓아 비지도 학습으로 pre-training 후, 완전연결 신경망을 통해 지도학습 수행 ✓ 패턴 생성 문제에 사용됨

GAN(Generative Adversarial Network)

- ✓ Generator가 만들어낸 이미지를 도록 오차를 줄이면서 학습 수행 이미지 생성 문제에 사용됨

CNN(Convolutional Neural Network)

- 입력 이미지를 평면화 하는 것이 아닌 이미지의 특징(공간정보)를 유지하며 학습
- ✓ 이미지 분류에 사용됨

RNN(Recurrent Neural Network)

- ✓ 내부의 순환구조를 포함하여 순서가 있 는 데이터를 학습시키는데 용이 ✓ 시계열문제나 문장 인식에 사용됨

CNN 기반 알고리즘 선정

- ImageNet Classification top-5 error (%)
- ✓ 2015년 ILSVRC에서 우승한 CNN 알고리즘
- ✓ Classification 분야에서 기존의 20계층 정도의 네트워크 수준을 152계층까지 늘이고 성능을 끌어올림
- ✓ 인간의 에러율(5%) 보다 낮은 에러율 수준을 가짐(3.57%)

실시간 영상에서 AAM 알고리즘 기반의 얼굴 영역과 특징점을 추출하고 ResNet모델을 이용하여 장병들의 감정을 유추함

얼굴 인식 및 특징점 검출

- ✓ 실시간으로 영상을 입력받아 얼굴부분을 검출
- ✓ 검출한 얼굴을 바탕으로 AAM기반의 얼굴 특징 점 추출(OpenCV 활용)

검출된 얼굴과 특징점을 기반으로 ResNet 모델을 통해 감정 유추

가단한 ResNet 모델을 학습 및 평가

학습된 Dataset에 대해서는 높은 정확도(98%)를 보이나 test data에 대해서는 비교적 낮은 정확도(78%)

✓ 실제 입력 데이터에 대해서는 예측 실패 우리 AI가 달라졌어요

✓ 학습시킨 ResNet모델을 이용하여

평상시)을 유추

얼굴 특징점 포함 이미지를 입력했을 때 6가지의 감정(기쁨, 화남, 두려움, 슬픔, 놀람, 기존의 ResNet에서 정확도를 높이기 위해 pre-activation, bottleneck resblock을 사용, 데이터 셋의 변경 등 향후 모델을 개선 및 발전시킬 예정임

개선 모델

pre-activation

weight

weight

기존 모델

CK + dataset

- 기존의 dataset은 외국인 얼굴로
- 이루어짐 입력으로 한국인 얼굴을 넣으면 정확도가 떨어질 수 있음

basic ResNet

resblock, 64

resblock, 64

3 x 3 conv 64. /2

48 x 48, 3 channel

- (b) proposed 최적화가 쉬움
- 오버피팅 방지 효과

한국인 감정인식을 위한 복합 영상 dataset

3x3, 64

연산시간 감소

bottleneck resblock

improved ResNet

Max pool /2 7 x 7 conv. 256

112 x 112.3 channel

실시간 영상에서 장병들의 <mark>걸음걸이를 추출 및 추적</mark>하고 CNN 모델을 이용해 특정 걸음걸이와 감정을 연결 후 <mark>간정을 유추</mark>함

걸음걸이로 감정 유추

걸음걸이를 추출하는 방식에는 목, 어깨 등을 포함한 16개의 관절로 이루어진 사람 Pose를 Pose Estimation OpenCV를 활용하여 추출

EWalk Dataset을 활용하여 Emotion Classification에 학습시킴

EWalk(Emotion walk) Dataset이용하여 학습

✓ 4가지 감정(angry, sad, happy, netural)이 label된 6177개의 RGB이미지로 구성됨

Emotion Classification model에 학습

Angry

Нарру

- 네트워크는 244× 244까지 확장시킨 걸음걸이 dataset의 이미지 임베딩에 대해 훈련시킨
- ✓ 아키텍처는 4개의 Group Convolution(GC) 레이어로 구성 후 각 GC레이어는 함께 쌓인 4개의 그룹으로 구성 ✓ 이는 4개의 감정(anger, happy, sad, neutral)레이블 각각에 대한 4개의 GC결과를 나타냄

아이디어 배경

문제 도출

해결 방안

아이디어 측면

기술적 측면

기대효과

기대효과

개인적 원인으로 스트레스를 받는 장병 조기 식별, 인원 맞춤의 대책 강구 > 자살사고 예방에 도움

문제장병의 조기식별 가능

- ✓ 전투준비안전단 분석 결과, 21년 5월 31일 기준 자살사고 총 21명 중 19명의 1차 자살 원인이 개인적 원인으로 분류, 그 중 9건이 사전 미식별됨.
- √ 현재 일어나고 있는 자살사고의 42%는 지휘관 또는 타간부들이 식별하지 못한 채. 적절한 예방조치를 취하기도 전에 일어나고 있음
- ✓ 본인이 의사로 어려움을 표출하지 않더라도 걸음걸이, 표정 등의 수단으로 지휘 관이 조기에 식별할 수 있는 시스템을 강구한다면 자살사고 예방 가능

군 자살예방 시스템의 효과평가 가능

- √ 현재 시행되고 있는 군 자살예방시스템에 대한 장병 개인별 효과를 객관적으로 측정하거나 평가할 수 있는 수단이 없음
 - * 객관적 데이터가 아닌, 면담을 통해 개선도를 주관적으로 평가하고 있음
- ✓ 실시간 감정 평가로 현재 시행하고 있는 조치의 효과를 평가하여 장병 개인별 시행되는 자살예방시스템을 보완하거나 맞춤 조치 가능

자살사고 예방률 향상

