ELE 535 - Machine Learning and Pattern Recognition

Fall 2018

HOMEWORK 2: Theory

- Q1 Let $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$. Find the orthogonal projection of A onto span (uv^T) .
- Q2 Norm Invariance under Orthogonal Transformations. Show that for any $A \in \mathbb{R}^{m \times n}$, $Q \in \mathcal{O}_m$, $R \in \mathcal{O}_n$, $\|QAR\|_F = \|A\|_F$. Thus the Frobenius norm is invariant under orthogonal transformations. Similarly, show the induced 2-norm of $A \in \mathbb{R}^{m \times n}$ is invariant under orthogonal transformations.
- Q3 Let A, B be matrices of appropriate size and $x \in \mathbb{R}^n$. Prove that
 - (a) $||Ax||_2 \le ||A||_2 ||x||_2$;
 - (b) $||AB||_2 \le ||A||_2 ||B||_2$.
- Q4 For $A, B \in \mathbb{R}^{m \times n}$. Show that $\sigma_1(A + B) \leq \sigma_1(A) + \sigma_1(B)$.
- Q5 The Moore-Penrose pseudo-inverse. The Moore-Penrose pseudo-inverse of a matrix $A \in \mathbb{R}^{m \times n}$ is the unique matrix $A^+ \in \mathbb{R}^{n \times m}$ satisfying the following four properties:
 - (a) $A(A^{+}A) = A$
 - (b) $(A^+A)A^+ = A^+$
 - (c) $(A^+A)^T = A^+A$
 - (d) $(AA^{+})^{T} = AA^{+}$

Let A have compact SVD $A = U\Sigma V^T$. Show that $A^+ = V\Sigma^{-1}U^T$. Give an interpretation of A^+ in terms of $\mathcal{N}(A)$, $\mathcal{N}(A)^\perp$ and $\mathcal{R}(A)$.