GSVD Algo

Ji Wang

1 Algorithm

Our algorithm consists of three routines. The first one is to reduce matrices A and B to triangular form while revealing the rank of B and [A;B], which is called pre-processing. The second one is to to further reduce the two triangular matrices obtained from the first routine to one triangular matrix via QR decomposition in a Givens rotation fashion. The third one is to compute the Cosine-Sine decomposition (CSD) of two orthogonal matrices we get from QR decomposition.

We present our algorithm based on the two decompositions above.

1.1 Pre-processing

Given that $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times n}$, rank(B) = l and rank([A; B]) = k + l = r, here's a detailed derivation of pre-processing procedure.

Step 1: QR decomposition with column pivoting of B, and determine the effective rank of B = l.

$$BP_{1} = Q_{1} \cdot \begin{bmatrix} l & n-l \\ B_{11}^{(1)} & B_{12}^{(1)} \\ 0 & 0 \end{bmatrix}$$

Step 2: RQ decomposition of $\begin{bmatrix} B_{11}^{(1)} & B_{12}^{(1)} \end{bmatrix}$ when $p \ge l$ and $n \ne l$.

$$BP_{1}Q_{2}^{T} = Q_{1} \cdot \begin{bmatrix} & & & & & \\ & & & \\ & & & & \\ &$$

$$Q_1^T B P_1 Q_2^T = \begin{bmatrix} l & 0 & B_{12}^{(2)} \\ p-l & 0 & 0 \end{bmatrix}$$

Step 3: View $AP_1Q_2^T$ as block matrix and apply QR with column pivoting of $A_{11}^{(1)}$ when $A_{11}^{(1)}$ is not empty, and determine the effective rank of $A_{11}^{(1)} = k$.

$$AP_1Q_2^T = {\tiny m} \left[\begin{array}{cc} {}^{n-l} & {}^{l} \\ {}^{d}_{11} & {}^{d}_{12} \end{array} \right]$$

$$A_{11}^{(1)}P_2 = Q_3 \cdot \begin{bmatrix} k & A_{11}^{(2)} & A_{12}^{(2)} \\ m-k & 0 & 0 \end{bmatrix}$$

Step 4: RQ decomposition of $\begin{bmatrix} A_{11}^{(2)} & A_{12}^{(2)} \end{bmatrix}$ when $n-l \ge k$.

View $A_{12}^{(1)}$ as block matrix, we have:

$$Q_1^T B P_1 Q_2^T P_2 Q_4^T = \begin{bmatrix} l & 0 & B_{12}^{(2)} \\ p-l & 0 & 0 \end{bmatrix}$$

Step 5: QR decomposition of $A_{23}^{(3)}$ when $m \ge k$.

$$A_{23}^{(3)} = Q_5 \cdot \tilde{A}_{23}^{(3)}$$

$$Q_5^T Q_3^T A P_1 Q_2^T P_2 Q_4^T = \begin{bmatrix} k & 0 & A_{12}^{(3)} & A_{13}^{(3)} \\ 0 & 0 & \tilde{A}_{23}^{(3)} \end{bmatrix}$$

Let $U = Q_3Q_5$, $Q = P_1Q_2^TP_2Q_4^T$, and $V = Q_1$, we have:

1.2 QR Decomposition by Givens rotation

1.3 CS Decomposition

1.4 The Complete Algorithm

1. Preprocess A and B: get $U,V,Q,R_{23}^{(a)},R_{13}^{(b)},k,l$.

- 2. Compute the QR decomposition of $[R_{23}^{(a)}; R_{13}^{(b)}]^T$, obtain $[Q_1^T; Q_2^T]^T$ and R'_{23} .
- 3. Compute the CSD of Q_1 and Q_2 , get $U_1, V_1, Z_1, C_1 and S_1$.
- 4. Set C and S with C_1 and S_1 .
- 5. $U[1:m,k+1:t]=U[1:m,k+1:t]U_1,\,t=\min\{m,k+l\}.$
- 6. $V[1:p,1:l] = V[1:p,1:l]V_1$.
- 7. $T = Z_1^T R_{23}'$.
- 8. Compute the RQ decomposition of T such that $T = R_{23}Q_3$.
- 9. $R_{13}^{(a)} = R_{13}^{(a)} Q_3^T$.
- 10. $Q[1:n,n-l+1:n] = Q[1:n,n-l+1:n]Q_3^T$.