Alte aspecte ale programării funcționale

Cuprins

1.	Parametrii Lisp în context "Dynamic Scoping"	. 1
	Universul expresiilor şi universul instrucţiunilor	
	Independența ordinii de evaluare	

1. Parametrii Lisp în context "Dynamic Scoping"

Așa cum am văzut până acum, toate aparițiile parametrilor formali sunt înlocuite cu valorile argumentelor corespunzătoare. Deci, avem o variantă de apel prin nume, apelul prin text, deoarece în Lisp avem de-a face cu determinarea dinamică a domeniului de vizibilitate (dynamic scoping) simultan cu înlocuirea textuală a valorilor evaluate.

Deși parametrul se leagă de argument (în sensul apelului prin referință din limbajele imperative, adică numele argumentului și cel al parametrului devin sinonime), nu este apel prin referință, deoarece modificările valorilor parametrilor formali nu afectează valoarea argumentelor (ceea ce amintește de apelul prin valoare).

De exemplu:

- (DEFUN FCT(X) (SETQ X 1) Y) se evaluează la FCT
- (SETQ Y 0) se evaluează la 0
- (FCT Y) se evaluează la 0

In secvența de mai sus Y se evaluează la 0, iar X se leaga la 0. Apelul FCT este astfel echivalent cu (FCT 0). X e parametru formal, Y e parametru actual, și ca atare modificarea lui X nu afectează pe Y, deci NU avem de-a face cu apel prin referință.

Aceasta demonstrează că transmiterea de parametri în LISP nu se face prin referință. Cum justificăm însă că nu este nici apel prin valoare? Există totuși situații în care valoarea parametrului actual poate fi modificată, de exemplu prin actiunea funcțiilor cu efect distructiv RPLACA și RPLACD.

Să mai remarcăm faptul că în ciuda caracteristicii "Dynamic scoping", variabila Y nu se leagă la execuție de parametrul formal tocmai înlocuit cu Y, adica Y-ul "intern" funcției, ci își păstrează caracteristica de variabilă globală pentru FCT.

Corpul unei funcții LISP este domeniul de vizibilitate a parametrilor săi formali, care se numesc variabile legate în raport cu funcția respectivă. Celelalte variabile ce apar în definitia funcției se numesc variabile libere.

Contextul curent al execuției este alcătuit din toate variabilele din program împreună cu valorile la care sunt legate acestea în acel moment. Acest concept este necesar pentru stabilirea valorii variabilelor libere care intervin în evaluarea unei funcții, evaluarea în LISP făcându-se într-

un context dinamic (dynamic scoping), prin ordinea de apel a funcțiilor, și nu static, adică relativ la locul de definire.

Să reamintim în acest scop diferența între determinarea statică și respectiv cea dinamica a domeniului de vizibilitate în cadrul limbajelor imperative. Fie programul Pascal:

```
var
       a:integer;
procedure P;
begin
       writeln(a);
end;
procedure Q;
var
       a: integer;
begin
       a := 7;
       P;
end;
begin
       a := 5;
       O;
end.
```

Determinarea statică a domeniului de vizibilitate (DSDV, static scoping) presupune că procedura P acționează în mediul de definire și ca urmare ea va "vedea" întotdeauna variabila a globală. Este și cazul limbajului Pascal, situatie în care P apelat în Q va tipari 5 și nu 7.

Pe de alta parte, dacă am avea de-a face cu **determinarea dinamică a domeniului de vizibilitate** (DDDV, dynamic scoping), procedura P va tipări întotdeauna ultima (în ordinea apelurilor) variabilă *a* definită (sau legată, în terminologie Lisp). În acest caz se va tipări 7, deoarece ultima legare a lui *a* este relativ la valoarea 7.

Limbajul Lisp dispune de DDDV, această abordare fiind mai naturală decât cea statică pentru cazul sistemelor bazate pe interpretoare. O variantă Lisp a programului de mai sus care pune în evidență DDDV este:

Se va tipări lista (5 7), valoarea întoarsă de P fiind de fiecare dată ultimul A legat.

Avantajul legării dinamice este adaptabilitatea, adică o flexibilitate sporită. În cazul argumentelor funcționale însă pot să apară interacțiuni nedorite. Pentru a ilustra genul de probleme care pot apărea să luăm exemplul formei funcționale twice, care aplica de două ori argumentul funcție unei valori:

(DEFUN twice (func val) (funcall func (funcall func val)))

Exemple de aplicare:

- (twice 'add1 5) returnează 7
- (twice '(lambda (x) (* 2 x)) 3) returnează 12

Dacă se întâmplă însă să folosim identificatorul val și în cadrul lui func, ținând cont de DDDV, apare o coliziune de nume, cu următorul efect:

- (setq val 2) returnează 2
- (twice '(lambda (x) (* val x)) 3) returnează 27, nu 12

(cum probabil am dori să obținem). Aceasta deoarece ultima legare (dinamică deci) a lui val s-a efectuat ca parametru formal al funcției twice, deci val a devenit 3.

Această problemă a fost denumită problema FUNARG (funcțional argument). Este o problemă de conflict între DSDV și DDDV. Rezolvarea ei nu a constat în renunțarea la DDDV pentru LISP ci în introducerea unei forme speciale numite **function**, care realizeaza legarea unei lambda expresii de mediul ei de definire (deci tratarea acelui caz în mod static). Astfel,

• (twice (function (lambda (x) (* val x))) 3) se evaluează la 12

Concluzia este deci că LISP are două reguli de DDV: DDDV implicit și DSDV prin intermediul construcției function.

2. Universul expresiilor şi universul instrucţiunilor

Orice limbaj de programare poate fi împărțit în două așa-numite universuri (domenii):

- 1. universul expresiilor;
- 2. universul instrucțiunilor.

Universul expresiilor include toate construcțiile limbajului de programare al căror scop este producerea unei valori prin intermediul procesului de evaluare.

Universul instrucțiunilor include instrucțiunile unui limbaj de programare. Acestea sunt de două feluri:

- (i) instrucțiuni ce influențează fluxul de control al programului:
 - instrucțiuni conditionale;
 - instrucțiuni de salt;
 - instructiuni de ciclare;
 - apeluri de proceduri și funcții.

- (ii) instrucțiuni ce alterează starea memoriei:
 - atribuirea (alterează memoria internă, primară);
 - instrucțiuni de intrare/ieșire (alterează memoria externa, secundară)

Ca asemănare a acestor două universuri, putem spune că ambele alterează ceva. Există însă deosebiri importante. În universul instrucțiunilor ordinea în care se execută instrucțiunile este de obicei esențială. Adică instrucțiunile

$$i := i + 1$$
; $a := a * i$;

au efect diferit fata de instructiunile

$$a := a * i; i := i + 1;$$

Fie

$$z := (2 * a * y + b) * (2 * a * y + c);$$

Multe compilatoare elimină evaluarea redundantă a subexpresiei comune 2 * a * y prin următoarea substituție:

$$t := 2 * a * y; z := (t + b) * (t + c);$$

Această înlocuire s-a putut efectua în universul expresiilor deoarece în cadrul unei expresii o subexpresie va avea întotdeauna aceeași valoare.

În cadrul universului instrucțiunilor situația se schimbă, datorită posibilelor efecte secundare. De exemplu, pentru secvența

$$y := 2 * a * y + b; z := 2 * a * y + c;$$

factorizarea subexpresiei comune furnizează secvența neechivalentă

$$t := 2 * a * y; y := t + b; z := t + c;$$

Deși un compilator poate analiza un program pentru a determina pentru fiecare subexpresie în parte dacă poate fi factorizată sau nu, acest lucru cere tehnici sofisticate de analiză globală a fluxului (global flow analysis). Astfel de analize sunt costisitoare și dificil de implementat. Concluzionăm deci că universul expresiilor prezintă un avantaj asupra universului instrcțiunilor, cel puțin referitor la acest aspect al eliminării subexpresiilor comune (există, oricum, și alte avantaje care vor fi evidențiate în continuare).

Scopul programării funcționale este extinderea la nivelul întregului limbaj de programare a avantajelor pe care le promoveaza universul expresiilor față de universul instrucțiunilor.

3. Independenţa ordinii de evaluare

A evalua o expresie înseamnă a-i extrage valoarea. Evaluarea expresiei 6 * 2 + 2 furnizează valoarea 14. Evaluarea expresiei E = (2ax + b)(2ax + c) nu se poate face până nu precizăm valorile numelor a, b, c și x. Deci, valoarea acestei expresii este dependentă de contextul evaluarii. Odată acest lucru precizat, mai este important să subliniem că valoarea expresiei E nu depinde de ordinea de evaluare (adică de înlocuire a numelor, mai întâi primul factor sau cel deal doilea, etc). Este posibilă chiar evaluarea paralelă. Aceasta deoarece în cadrul expresiilor pure (așa cum sunt cele matematice) evaluarea unei subexpresii nu poate afecta valoarea nici unei alte subexpresii.

Definiție. O expresie pură este o expresie liberă de efecte secundare, adică nu conține atribuiri nici explicit (gen C) și nici implicit (apeluri de funcții).

Această proprietate a expresiilor pure, și anume independența ordinii de evaluare, se numește proprietatea Church-Rosser. Ea permite construirea de compilatoare ce aleg ordini de evaluare care fac uz într-un mod cât mai eficient de resursele masinii. Să subliniem din nou potențialul de paralelism etalat de această proprietate.

Proprietatea de transparență referențială presupune că într-un context fix înlocuirea subexpresiei cu valoarea sa este complet independentă de expresia înconjuratoare. Deci, odata evaluată, o subexpresie nu va mai fi evaluată din nou pentru că valoarea sa nu se va mai schimba. Transparența referențială rezultă din faptul că operatorii aritmetici nu au memorie, astfel orice apel al unui operator cu aceleași intrări va produce același rezultat.

Una dintre caracteristicile noţatiei matematice este interfaţa manifestă, adică, conexiunile de intrare ieşire între o subexpresie şi expresia înconjuratoare sunt vizual evidente (de exemplu în expresia 3 + 8 nu există intrări "ascunse") şi ieşirile depind numai de intrări. Producătorii de efecte secundare, deci şi funcţiile în general, nu au interfaţă manifestă ci o interfaţă nemanifestă (hidden interface).

Să trecem în revistă proprietățile expresiilor pure:

- valoarea este independentă de ordinea de evaluare;
- expresiile pot fi evaluate în paralel;
- transparența referențiala;
- lipsa efectelor secundare;
- intrările și efectele unei operatii sunt evidente.

Scopul programării funcționale este extinderea tuturor acestor proprietăți la întreg procesul de programare.

Programarea aplicativă are o singură construcție sintactică fundamentală și anume aplicarea unei funcții argumentelor sale. Modurile de definire a funcțiilor sunt următoarele:

- 1. **Definire enumerativă**. Este posibilă doar când funcția are un domeniu finit de dimensiune redusă.
- 2. Definire prin compunere de funcții deja definite. Dacă e cazul unei definiri în termeni de un număr infinit sau neprecizat de compuneri, o astfel de metodă este utilă doar dacă se poate extrage un principiu de regularitate, principiu care să ne permită generarea cazurilor încă neenumerate pe baza celor specificate. Dacă un astfel de principiu există suntem în cazul unei definiții recursive. În programarea funcțională recursivitatea este metoda de bază pentru a descrie un proces iterativ.

O altă distincție ce trebuie făcută relativ la definirea de funcții se referă la definiții explicite și implicite. O definiție explicită ne spune ce este un lucru. O definiție implicită statuează anumite proprietăți pe care le are un anumit obiect.

Într-o definiție explicită variabila definită apare doar în membrul stâng al ecuației (de exemplu y = 2ax). Definițiile explicite au avantajul că pot fi interpretate drept reguli de rescriere (reguli care specifică faptul că o clasă de expresii poate fi înlocuită de alta).

O variabilă este definită implicit dacă ea este definită de o ecuație în care ea apare în ambii membri (de exemplu 2a = a + 3). Pentru a-i găsi valoarea trebuie rezolvată ecuația.

Aplicarea repetată a regulilor de rescriere se termină întotdeauna. Este posibil însă ca anumite definiții implicite să nu ducă la terminare (adică ele nu definesc nimic). De exemplu, ecuația fără soluție a = a + 1 duce la un proces infinit de substituție.

Un avantaj al programării funcționale este că, la fel ca și în cazul algebrei elementare, ea simplifică transformarea de definiții implicite în definiții explicite. Acest lucru este foarte important deoarece specificațiile formale ale sistemelor soft au de obicei forma unor definiții implicite, însă conversia specificațiilor în programe are loc mai ușor în cazul definițiilor explicite.

Să mai subliniem că definițiile recursive sunt prin natura lor implicite. Totuși, datorită formei lor regulate de specificare (adică membrul stâng e format numai din numele și argumentele funcției) ele pot fi folosite ca reguli de rescriere. Condiția de oprire asigură terminarea procesului de substituții.

Față de limbajele conventionale, limbajele funcționale diferă și în ceea ce privește modelele operaționale utilizate pentru descrierea execuției programelor. Nu este proprie de exemplu pentru limbajele funcționale urmărirea execuției pas cu pas, deoarece nu contează ordinea de evaluare a subexpresiilor. Deci nu avem nevoie de un depanator în adevăratul înțeles al cuvântului.

Totuși, limbajul Lisp permite urmărirea execuției unei forme Lisp. Pentru aceasta există macrodefiniția TRACE care primește ca argument numele funcției dorite, rezultatul întors de TRACE fiind T dacă funcția respectivă există și NIL în caz contrar.