IV Knapsack Problem is myassimum.

(i) 0/1 Kongrack problem -> Setten pick completely or don't pick. Solved with dynamic programming

m weights = ?3,4,6,5}

W-8kg m14.

5	1	J.	0	1	2	3	1	5	6		16	
171	MJ	ð	0	0	0	o'	0	0	0	0	0	
2	3	1	0	0	0	2	2	2	2	2	2	
3	4	2	0	0	o	2	(3+0,2) = 3	max (3+0, 2) = 3	max (3+0)	25	2 5	
4	5	3	0	0	0	2	3,	4+0,3	240,3	4+0,5	4+2,5	
1	6	4	0	0	0	2	3.	4	1+0/4	1 +0,5	1+0,6	nus most

for wi > w > copy values from above. else, max (pi+(wi-wi)p, pi-1)

General formula :m[i,w] = max(m[i-1, w], m[i-1, w-w[i]] +p[i])

Steps to luns which items are selected:

- o nom the ptr. to the max profit block.

 o shift ptr. upward.
 - if (profit changes)

select that item calculate the remaining wt and more to that not column and repear the same.

: the, [xi=31,0,0,13]