

Answer Keys and Solutions

Answer Keys and Solutions

Answer Keys and Solutions

9.	(2)athongo															
	The chord is passing through the point $P(2, 2)$. So, the equation of chord in parametric form will be: $\frac{x-2}{\cos \theta} = \frac{y-2}{\sin \theta} = r.$															
	$\frac{1}{\cos \theta} = \frac{1}{\sin \theta} = \frac{1}{\sin \theta}$ Now, on solvi	= r . ng the equation	on of the ch	ord with equati	on of	ellipse will giv	ve ro	of the points A	and <i>E</i>	mathongo						
		$\cos \theta = \sin \theta$ low, on solving the equation of the chord with equation of ellipse will give r of the points A and B . $\frac{(r\cos \theta + 2)^2}{25} + \frac{(r\sin \theta + 2)^2}{16} = 1$														
	$\Rightarrow 16(r\cos heta)$	$+2)^2 + 25(r$	$\sin heta + 2)^2$	$=400$ $\sin^2 heta + 100 +$	- 100r											
							uadra	tic equation in	r.							
	$\Rightarrow r_1r_2 = PA$	$A \cdot PB = \frac{16 \text{ co}}{16 \text{ co}}$	$\frac{-236}{\operatorname{os}^2 \theta + 25 \sin^2 \theta}$													
	$=\left \frac{236}{16+9\sin^2\theta}\right $.															
	Since, range of															
				tor is minimum	1.											
10				$PB = \frac{236}{16} =$	•	1) and (a see	hton	4) in								
10.	$\Rightarrow \frac{x}{a}\cos\left(\frac{\theta+\phi}{2}\right)$				otano	o) ana (a sec,	otan	$\phi)~is$ hongo								
	a (2 If it passes thi	ough $(ae, 0)$;	we have:⇒	$e \cos\left(\frac{\theta-\phi}{2}\right) =$	cos	$\frac{\theta + \phi}{2}$										
	$\cos\left(\frac{\theta+\phi}{2}\right)$	$1-\tan\frac{\theta}{a}$.tan	ongo ///.	mathondo	111.	mothongo										
	$\Rightarrow \frac{1}{\cos\left(\frac{\theta-\phi}{2}\right)}$	$=\frac{1}{1+\tan\frac{\theta}{2}\tan}$	$\frac{-}{\frac{\phi}{2}}$													
	$\cos\left(\frac{\theta+\phi}{2}\right)$	$-\tan\frac{\theta}{\theta}$ tar	$\phi = 1-e'$													
	$rac{\cos\left(\frac{\theta-\phi}{2}\right)}$	$-\tan\frac{\pi}{2}$. tan	$1 - \frac{1}{2} - \frac{1}{1+e}$													