Energy Behaviour Predictionof Prosumers

PURPLE - TEAM 4

Kelly, Peifen, Rish, Shalaka, Tony

I. INTRODUCTION

Business Problem

The primary business problem is addressing energy imbalance in the power grid caused by the increasing number of prosumers — consumers who both consume and generate energy. The goal is to create an energy prediction model for prosumers to reduce energy imbalance costs.

STAKEHOLDERS

- Energy Companies
- Prosumers
- Renewable Energy Advocates

CHALLENGES

- Unpredictable Behaviour
- Increasing Operational Costs
- Grid Instability

OPPORTUNITIES

- Reduced Imbalance Costs
- Grid Stability
- Promoting Renewable Energy

ETHICAL CONSIDERATIONS

- Privacy
- Transparency
- Equity

I. WHY THIS DATASET

- Novelty of Prosumer Behavior
 - eic count
 - installed_capacity
 - is_business
 - is_consumption
- Sustainable Energy Practices
- Renewable Energy Integration

II. DATA SOURCES & PREPROCESSING

Overview of Data Sources

- Energy Production and Consumption Data
- Weather Data
- Energy Prices (Gas & Electricity)
- Installed Photovoltaic Capacity Records

Data Collection Period: September 1, 2021, to May 29, 2023 (636 days, approx. 1.74 years)

5 datasets, **51** variables, **138** columns, **2,018,352** rows

DATA PREPROCESSING STEPS

CLEAN DATA QUALITY CHECK COLUMNS DATA MERGE PERFORM EDA

II. DATA SOURCES & PREPROCESSING

train.csv

county
is_business
product_type
target
is_consumption
datetime
data_block_id
row_id
prediction_unit_id

gas prices.csv

origin_date forecast_date [lowest/highest] _price_per_mwh data_block_id

electricity_prices.csv

origin_date forecast_date euros_per_mwh data_block_id

client.csv

product_type
county
eic_count
installed_capacity
is_business
date
data_block_id

historical_weather.csv

datetime temperature dewpoint rain snowfall surface pressure cloudcover [low/mid/h igh/total] windspeed 10m winddirection 10m shortwave radiation direct solar radiation diffuse radiation [latitude/longitude] data block id

- *target The consumption or production amount for the relevant segment for the hour.
 The segments are defined by the county, is_business, and product_type
- is_consumption Boolean for whether or not this row's target is consumption or production.
- is_business Boolean for whether or not the prosumer is a business.
- installed_capacity: Installed photovoltaic solar panel capacity in kilowatts

Temporal Features

Variation in consumption/production patterns based on the month of the year.

Temporal Features

Variation in consumption/production patterns based on the time of the day over a week

III. EDA FINDINGS

 No linear relationship found between independent variables and the target variable.

Temperature-Related Insights:

- Identify temperature ranges with significant energy changes.
- Adjust energy production based on weather forecasts, optimizing renewables during extreme temperatures.

Time-Related Insights (Hour of the Day):

- Identify peak hours for energy consumption, aiding utility planning.
- Explore pricing structures to balance energy demand throughout the day.

IV. FEATURE SELECTION

'county, is_business, product_type, target, is_consumption, datetime, row_id, prediction_unit_id, date, installed_capacity, euros_per_mwh, lowest_price_per_mwh, highest_price_per_mwh, temperature, dewpoint, rain, snowfall, surface_pressure, cloudcover_total, cloudcover_low, cloudcover_mid, cloudcover_high, windspeed_10m, winddirection_10m, shortwave_radiation, direct_solar_radiation, diffuse_radiation, latitude, longitude'

TOTAL FEATURES (23)

- Numerical features (20)
- Categorial Features (3): is_business, product_type, is_consumption

FEATURE ENGINEERING

- Categorical features: one-hot encoding
- Numerical features: normalization, convert datetime

V. MODEL SELECTION

REGRESSION MODELS

Model	Linear	Lasso/Ridge	Polynomial	MLP
	y = ax + b		$y = a_1 x + a_2 x^2 + \dots + a_k x^k + b$	
Pros	SimpleInterpretable	Avoid overfitting	Able to capture non-linear relationship	 Able to capture complex nonlinear relationships Automatic feature learning
Cons	 Limited capability 	Limited capability	Higher computational complexity	• Overfit

V. MODEL TRAINING

CV & HYPERPARAMETER TUNING

Cross-validation

Training Set Validation Set Test Set 7 2 1

- Parameters to tune
 - Polynomial Regression: the degree of X
 - MLP: hidden units

VI. EVALUATION

Polynomial Regression vs MLP

Polynomial Regression

- Degree of X increases
 - MAE decreases
 - Training time increases
- Performance vs Cost

MLP

Loss decreases rapidly in first few iterations

VI. EVALUATION

Polynomial Regression vs MLP

Polynomial Regression

- Degree of X increases
 - MAE decreases
 - Training time increases
- Performance vs Cost

MLP

Loss decreases rapidly in first few iterations

VII. RESULT AND CONCLUSION

- Our analysis indicates that the Multilayer Perceptron (MLP) model provides the most accurate predictions for the target variable.
- While the MLP model excels in predictive accuracy, it inherently lacks interpretability. This poses a challenge in directly extracting insights from the model structure.
- Although the model's intricacies may not be directly interpretable, our intuition suggests that factors such as weather conditions, fuel prices, and electricity prices likely play pivotal roles in influencing energy demand. Further interpretative analysis could shed light on these aspects.

VIII. BUSINESS CONCLUSIONS & RECOMMENDATIONS

- Knowing how much energy prosumers use is crucial to avoid problems with power grid and to save money on logistics and operations.
- The Multilayer Perceptron model helps predict exactly how much energy prosumers will use.

IMPACT OF ACCURATE PREDICTION

- Reduction in Energy Imbalance Costs
- Enhanced Grid Stability
- Efficient Prosumer Integration
- Encouraging Prosumer Transition

STRATEGIC IMPLICATIONS:

- Cost savings and Efficiency
- Customer Friendly Systems

RECOMMENDATIONS –

- Continuous Model Improvement: Ongoing refinement of the predictive model as more data becomes available.
- Collaboration with Experts: to identify and prioritize the most influential factors affecting energy consumption.

IX. ACKNOWLEDGMENTS AND REFERENCES

- The data for this project was provided by Enefit an energy company in Baltic region.
- Citation: Kristjn Eljand, Martin Laid, Jean-Baptiste Scellier, Sohier Dane, Maggie Demkin, Addison Howard. (2023). Enefit - Predict Energy Behavior of Prosumers. Kaggle. https://kaggle.com/competitions/predict-energybehavior-of-prosumers

THANKYOU