FORMULARIO PRIMER PARCIAL

a) **VOLUMENES**

Cubo

Volumen cubo = 13

El volumen de un cubo se obtiene elevando al cubo la longitud de su arista

Prisma

Volumen prisma = sup. base x h

El volumen de un prisma se obtiene multiplicando la superficie de su base por la altura del prisma.

Pirámide

El volumen de una pirámide es equivalente a un tercio del volumen de un prisma de igual base y altura.

Cilindro

Volumen cilindro = $(\pi \times r^2) \times h$

El volumen de un cilindro se obtiene multiplicando la superficie de su base por la altura del cilindro.

Cono

Volumen cono = $\frac{(\pi x r^2) x h}{3}$

El volumen de un cono es equivalente a un tercio del volumen de un cilindro de igual base y altura.

Esfera

Volumen esfera = $\frac{4}{3}$ x π x r³ El volumen de una esfera es igual a $\frac{4}{3}$ de π por el radio al cubo.

De manera general:

Volumen = (área constante) * (altura o largo)

b) <u>FACTORES DE CONVERSION</u>:

PREFIJO	SIMBOLO	NOTACION CIENTIFICA
Tera	T	10^{12}
Giga	G	10 ⁹
Mega	M	10 ⁶
Kilo	K	10^{3}
Deci	d	10^{-1}
Centi	c	10^{-2}
Mili	m	10^{-3}
Micro	μ	10^{-6}
Nano	n	10^{-9}
Pico	p	10^{-12}

LONGITUD					
Sistema Métrico	Sistema ingles	Sistema Métrico e Ingles	Varios		
1 km = 1000 m	1 pie= 12 pulg	1 pie = 0,3048 m	1 milla nautica = 1852 m		
1m=100cm	1 yarda =3 pies	1 milla (terrestre)= 1609 m	1 legua = 3 millas		
1 cm= 10 mm	1 milla=5280 pies	1 pulg= 2,54 cm	1 micrón o micra (μ) = 10^{-6} cm		
1 cm= 10 A°		1 km=06214 millas	1 Angstrom (Å) = 10^{-10} m		
1 dm= 10 cm		1 legua= 5 km	$\sqrt{1}$ año-luz = 9.46 x 10 15 m		
1 pie = 30.48 cm					
VOLUMEN	VOLUMEN				
Sistema Métrico	Sistema ingles	Sistema Métrico e Ingles	Varios		
1 L = 1000 ml	1 gal= 4 qt	1 gal(US) = 3,785 L	$1 \text{ pulg}^3 = 16.39 \text{ cm}^3$		
1 m ³ = 1000 L	1 qt = 57,75 pulg ³	1 gal(ingles)= 4,546 L	1 barril = 159 l		
$1 L = 1000 \text{ cm}^3$	1 pie ³ =28.32 L	1 m³= 35,71 ft³			
1 dm ³ =1000 ml		1barril = 159 L			
1 ml= 1 cm ³					
MASA					
Sistema Métrico	Sistema ingles	Sistema Métrico e Ingles	Varios		
1 Kg= 1000 g	1 lb = 16 onzas	1 lb≠ 454 g	1UTM= 9.8 kg		
1 g= 1000 mg	1 qq (quintal)= 100 lb	1 onza = 28,35 g	1 tonelada corta = 2000 lb		
1 ton métrica = 1000 Kg	1 arroba= 25 lb	/1 onza troy = 31,1035 g	1 tonelada larga = 2240 lb		
1 q.q. = 4 @	1 Ton larga = 2240 lb	1 UTM= 9,8 Kg	1 slug = 14.59 kg		

FUERZA	ENERGIA	AREA
$1 \text{ Kg}_{\text{f}} = 9.81 \text{ N}$	1 cal = 4.184 J	$1 \text{ ha} = 10000 \text{ m}^2$
$1 \text{ N} = 10^5 \text{ dina}$	$1 J = 10^7 \text{ erg}$	1ha = 2.47 acre
	1 BTU = 252 cal	$1 \text{plg}^2 = 6.452 \text{ cm}^2$
	1eV=1.019*10 ⁻¹⁹ J	

1 Ton corta= 2000 lb | 1 slug= 14,59 Kg

c) **DENSIDADES:** Es la cantidad de materia que está presente en un determinado volumen.

 δ : Densidad(g / mL; Kg / m^3 ; foot / pie^3)

m: Masa(g; Kg; lb; onza, etc)

 $v:Volumen(mL; L; m^3; pie^3, etc)$

DENSIDAD ABSOLUTA	DENSIDAD RELATIVA	PESO ESPECIFICO	PESO ESPECIFICO RELATIVO
Es su masa por unidad de volumen y se expresa de la siguiente manera:	Es la relación de la densidad de una sustancia con una sustancia patrón para líquidos dicha sustancia es agua (1 g/cc)	Es el producto de la densidad por la gravedad sus unidades en el sistema internacional son el newton por metro cúbico (N/m³)	Es la relación de la peso específico de una sustancia con una sustancia patrón para líquidos dicha sustancia es agua
$\rho = \frac{m}{V}$	$\rho_r = \frac{\rho \text{ absoluta}}{\rho \text{ agua}}$	$\gamma = \rho * g$ $g = gravedad$	$\gamma_r = p. e. = \rho r$

	UNIDADES			
SISTEMA INTERNACIONAL	$\left[\frac{Kg}{m^3}\right], \left[\frac{g}{cc}\right],$ $\left[\frac{Ton}{m^3}\right]$ Adimensional	$\left[\frac{N}{m^3}\right]$	Adimensional	
SISTEMA INGLES	$\left[\frac{Lb}{pie^3}\right]$	$\left[\frac{Lbf}{pie^3}\right]$		

Para una mezcla:

Densidad de la mezcla:	$\rho_{M} = \frac{m1 + m2 + m3 \dots}{V1 + V2 + V3 \dots} = \frac{masa_{mezcla}}{volumen}$		
Masa de la mezcla	$masa_{mezcla} = m1 + m2 + m3 \dots$		
Volumen de la mezcla:	$volumen_{mezcla} = V1 + V2 + V3 \dots$		
Para datos de composición:	$\%m/m = \frac{masa_{PARCIAL}}{masa_{TOTAL}} * 100\%$		
	$\%V/V = \frac{Volumen_{PARCIAL}}{Volumen_{TOTAL}} * 100\%$		
Cálculo de quilates:	$X = \left[\frac{\%m_{oro}}{100}\right] * 24 (quilates)$		
D (1			

Dónde:

 $oldsymbol{m_{oro}} = es$ la masa de oro presente en la aleación o mezcla expresada en porcentaje

d) **ESCALAS DE TEMPERATURA:**

	ESCALAS RELATIVAS			ESCALAS ABSOLUTAS	
CARACTERISTICA DEL AGUA	CELSIUS °C	FARENHEIT °F	REAMUR °Re	KELVIN - K	RANKINE- R
PUNTO DE EBULLICION	100	212	80	373	672
PUNTO DE FUSION	0	32	0	273	492
CERO ABSOLUTO	-273	-460	-218,4	0	0

Regla general:

$$\frac{{}^{\circ}C}{5} = \frac{{}^{\circ}F - 32}{9} = \frac{K - 273}{5} = \frac{R - 492}{9} = \frac{{}^{\circ}\text{Re}}{4}...(\psi)$$

Creación de nueva escala:

$$\frac{T \ (ebullicion \ en \ x) - X}{T \ (ebullicion \ en \ x) - T \ fusion \ x} = \underbrace{\frac{T \ (ebullicion \ en \ y) - Y}{T \ (ebullicion \ en \ y) - T \ (fusion \ en \ Y)}}_{T \ (ebullicion \ en \ y) - T \ (fusion \ en \ Y)}$$

La temperatura, es una propiedad que mide la intensidad o nivel de calor de una sustancia. La temperatura no debe confundirse con el **calor**, ya que la temperatura no mide la cantidad de calor en una sustancia sino solo nos indica que tan caliente o que tan fría esta esa sustancia.

Se tienen 5 escalas de temperatura de las cuales, 2 son escalas absolutas (no registran valores negativos), 2 escalas relativas (registran valores negativos) y una escala en desuso, La **temperatura** de ebullición significa la temperatura a la cual el agua cambia de estado de **líquido a gas.** La **temperatura de fusión** significa la temperatura a la cual el agua cambia de estado de **líquido a sólido.**

OJO: LAS ESCALAS KELVIN "K" Y RANKINE "R" SON ABSOLUTAS POR QUE EN EL PUNTO CERO ABSOLUTO MARCAN CERO. -CONVERSION DIRECTA DE LA ESCALA KELVIN CON RANKIN:

$$\frac{K}{5} = \frac{R}{9}$$
 Nota: Problemas de incrementos y descensos de temperatura tenemos que tomar en cuenta:

$$\frac{1^{\circ}C}{1^{\circ}K}$$
; $\frac{1^{\circ}C}{1.8^{\circ}F}$; $\frac{1^{\circ}F}{1^{\circ}R}$; $\frac{1^{\circ}K}{1.8R}$

