# Real Analysis Week 9

Karen Navasardyan

AUA

March 25, 2024

# Convex functions

#### Definition

Let  $I \subset \mathbb{R}$  be an interval. A function  $f: I \to \mathbb{R}$  is said to be **convex** on I if for any  $\alpha$  satisfying  $0 \le \alpha \le 1$  and any points  $x_1, x_2 \in I$ , we have

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2).$$

# Convex functions

#### Definition

Let  $I \subset \mathbb{R}$  be an interval. A function  $f: I \to \mathbb{R}$  is said to be **convex** on I if for any  $\alpha$  satisfying  $0 \le \alpha \le 1$  and any points  $x_1, x_2 \in I$ , we have

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2).$$

If f is convex on I and if  $x_1, x_2 \in I$ , then the chord joining any two points  $(x_1, f(x_1))$  and  $(x_2, f(x_2))$  on the graph of f lies above the graph of f.

# Convex functions

#### Definition

Let  $I \subset \mathbb{R}$  be an interval. A function  $f: I \to \mathbb{R}$  is said to be **convex** on I if for any  $\alpha$  satisfying  $0 \le \alpha \le 1$  and any points  $x_1, x_2 \in I$ , we have

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2).$$

If f is convex on I and if  $x_1, x_2 \in I$ , then the chord joining any two points  $(x_1, f(x_1))$  and  $(x_2, f(x_2))$  on the graph of f lies above the graph of f.

Let  $I \subset \mathbb{R}$  be an interval. A function  $f: I \to \mathbb{R}$  is said to be **concave** on I if for any  $\alpha$  satisfying  $0 \le \alpha \le 1$  and any points  $x_1, x_2 \in I$ , we have

$$f(\alpha x_1 + (1 - \alpha)x_2) \ge \alpha f(x_1) + (1 - \alpha)f(x_2).$$



#### Theorem

Let I be an open interval and let  $f: I \to \mathbb{R}$  has the second order derivative on I. Then f is a convex function on I if and only if  $f''(x) \geq 0$  for all  $x \in I$ .

**Proof.**  $\Rightarrow$  First prove that if f has second order derivative at a point x, then

$$\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x). \tag{1}$$

Now for any  $x \in I$  by convexity of f we have  $f(x) = f(\frac{1}{2}(x+h) + \frac{1}{2}(x-h)) \le \frac{1}{2}f(x+h) + \frac{1}{2}f(x-h)$ , Therefore using (1) we obtain, that  $f''(x) \ge 0$ .

 $\Leftarrow$ . Let  $f''(x) \ge 0$  for all  $x \in I$ . By Taylor theorem for any  $x_0, x \in I$  there is a point c s.t.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)^2,$$

therefore

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0) \quad \forall x \in I.$$
 (2)

Now for any  $\alpha \in [0,1]$  and  $x_1, x_2 \in I$  denote  $x_0 = \alpha x_1 + (1-\alpha)x_2$ . By (2) we have  $f(x_1) \geq f(x_0) + f'(x_0)(x_1 - x_0)$   $f(x_2) \geq f(x_0) + f'(x_0)(x_2 - x_0)$ . Multiplying this inequalities by  $\alpha$  and  $(1-\alpha)$  respectively and adding them, we obtain that

$$\alpha f(x_1) + (1 - \alpha)f(x_2) \ge f(x_0) = f(\alpha x_1 + (1 - \alpha)x_2).$$

# Jensen's inequality

Let  $f: I \to \mathbb{R}$  be a convex function. Then for any  $x_1, x_2, ..., x_n \in I$  and non-negative real numbers  $\alpha_1, \alpha_2, ..., \alpha_n$ , such that  $\alpha_1 + \alpha_2 + ... + \alpha_n = 1$ , we have

$$f(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n) \le \alpha_1 f(x_1) + \alpha_2 f(x_2) + \dots + \alpha_n f(x_n).$$

# Jensen's inequality

Let  $f: I \to \mathbb{R}$  be a convex function. Then for any  $x_1, x_2, ..., x_n \in I$  and non-negative real numbers  $\alpha_1, \alpha_2, ..., \alpha_n$ , such that  $\alpha_1 + \alpha_2 + ... + \alpha_n = 1$ , we have

$$f(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n) \le \alpha_1 f(x_1) + \alpha_2 f(x_2) + \dots + \alpha_n f(x_n).$$

Jensen's inequality (for concave functions)

Let  $f: I \to \mathbb{R}$  be a concave function. Then for any  $x_1, x_2, ..., x_n \in I$  and non-negative real numbers  $\alpha_1, \alpha_2, ..., \alpha_n$ , such that  $\alpha_1 + \alpha_2 + ... + \alpha_n = 1$ , we have

$$f(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n) \ge \alpha_1 f(x_1) + \alpha_2 f(x_2) + \dots + \alpha_n f(x_n).$$

① Check the convexity or concavity of the function

$$f(x) = \arctan x$$
 on  $\mathbb{R}$ .

① Check the convexity or concavity of the function

$$f(x) = \arctan x$$
 on  $\mathbb{R}$ .

② Prove that for any  $a, b \in (1, \infty)$ 

$$(a+2b)^2 \ln\left(\frac{a}{3} + \frac{2b}{3}\right) \le 3a^2 \ln a + 6b^2 \ln b,$$

① Check the convexity or concavity of the function

$$f(x) = \arctan x$$
 on  $\mathbb{R}$ .

② Prove that for any  $a, b \in (1, \infty)$ 

$$(a+2b)^2 \ln\left(\frac{a}{3} + \frac{2b}{3}\right) \le 3a^2 \ln a + 6b^2 \ln b,$$

**3** Prove that for any positive numbers  $x, y, z \in [0, \pi]$ 

$$\sin\left(\frac{2x+y+z}{4}\right) \ge \frac{1}{2}\sin x + \frac{1}{4}\sin y + \frac{1}{4}\sin z$$

① Check the convexity or concavity of the function

$$f(x) = \arctan x$$
 on  $\mathbb{R}$ .

② Prove that for any  $a, b \in (1, \infty)$ 

$$(a+2b)^2 \ln\left(\frac{a}{3} + \frac{2b}{3}\right) \le 3a^2 \ln a + 6b^2 \ln b,$$

**3** Prove that for any positive numbers  $x, y, z \in [0, \pi]$ 

$$\sin\left(\frac{2x+y+z}{4}\right) \ge \frac{1}{2}\sin x + \frac{1}{4}\sin y + \frac{1}{4}\sin z$$

4 Using the concavity of the function  $f(x) = \ln x$  prove that for any non-negative numbers  $x_1, x_2, \ldots, x_n$ 

$$\frac{x_1 + x_2 + \ldots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \ldots x_n}.$$

# Infinite series

$$\sum_{n=1}^{\infty} x_n \quad or \quad x_1 + x_2 + x_3 + \dots$$

is called a **series**.

$$\sum_{n=1}^{\infty} x_n \qquad or \quad x_1 + x_2 + x_3 + \dots$$

is called a **series**.

The numbers  $x_n$  are called the **terms** of the series. The numbers

$$S_n = x_1 + x_2 + \dots + x_n = \sum_{k=1}^n x_k$$

are called the **partial sums** of this series.

$$\sum_{n=1}^{\infty} x_n \qquad or \quad x_1 + x_2 + x_3 + \dots$$

is called a **series**.

The numbers  $x_n$  are called the **terms** of the series. The numbers

$$S_n = x_1 + x_2 + \dots + x_n = \sum_{k=1}^n x_k$$

are called the **partial sums** of this series.

If there is a number S such that  $\lim_{n\to\infty} S_n = S$ , we say that this series is **convergent** and call this limit (S) the **sum** of this series.

$$\sum_{n=1}^{\infty} x_n \quad or \quad x_1 + x_2 + x_3 + \dots$$

is called a **series**.

The numbers  $x_n$  are called the **terms** of the series. The numbers

$$S_n = x_1 + x_2 + \dots + x_n = \sum_{k=1}^n x_k$$

are called the **partial sums** of this series.

If there is a number S such that  $\lim_{n\to\infty} S_n = S$ , we say that this series is **convergent** and call this limit (S) the **sum** of this series.

If this limit does not exist or  $\lim_{n\to\infty} S_n = \infty$ , we say that the series is **divergent**.

Prove that

1) If |q| < 1, then  $\sum_{i=1}^{n} q^{n}$  is convergent and find its sum.

Prove that

- 1) If |q| < 1, then  $\sum_{n=1}^{\infty} q^n$  is convergent and find its sum.
- 2)  $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$  is divergent.

#### The nth Term Test

If the series  $\sum_{n=1}^{\infty} x_n$  converges, then  $\lim_{n\to\infty} x_n = 0$ .

#### The nth Term Test

If the series  $\sum_{n=1}^{\infty} x_n$  converges, then  $\lim_{n\to\infty} x_n = 0$ .

# Cauchy Criterion for Series

The series  $\sum_{n=1}^{\infty} x_n$  converges if and only if

$$\forall \varepsilon > 0 \quad \exists n_0 \quad s.t. \quad \forall m > n_0 \quad \forall p \in \mathbb{N} \quad \left| \sum_{n=m+1}^{m+p} x_n \right| < \varepsilon.$$

#### Theorem

Let  $x_n$  be a sequence of non-negative real numbers. Then the series  $\sum_{n=1}^{\infty} x_n$  converges if and only if the sequence  $S_k$  of partial sums is bounded. In this case,

$$\sum_{n=1}^{\infty} x_n = \lim_{k \to \infty} S_k = \sup \{ S_k : k \in \mathbb{N} \}.$$

# Cauchy Condensation Test

Let  $x_n$  be a decreasing sequence of positive numbers. Then the series  $\sum_{n=1}^{\infty} x_n$  is convergent if and only if  $\sum_{n=1}^{\infty} 2^n x_{2^n}$  is convergent.

# Cauchy Condensation Test

Let  $x_n$  be a decreasing sequence of positive numbers. Then the series  $\sum_{n=1}^{\infty} x_n$  is convergent if and only if  $\sum_{n=1}^{\infty} 2^n x_{2^n}$  is convergent.

The *p*–series  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  converges when p > 1 and diverges when  $p \le 1$ .

# Comparison Test

Let  $x_n$  and  $y_n$  be real sequences and suppose that for some  $n_0$  we have

$$0 \le x_n \le y_n$$
 for all  $n \ge n_0$ .

(a) Then the convergence of  $\sum_{n=1}^{\infty} y_n$  implies the convergence

of 
$$\sum_{n=1}^{\infty} x_n$$
.

# Comparison Test

Let  $x_n$  and  $y_n$  be real sequences and suppose that for some  $n_0$  we have

$$0 \le x_n \le y_n$$
 for all  $n \ge n_0$ .

(a) Then the convergence of  $\sum_{n=1}^{\infty} y_n$  implies the convergence

of 
$$\sum_{n=1}^{\infty} x_n$$
.

The divergence of  $\sum_{n=1}^{\infty} x_n$  implies the divergence of  $\sum_{n=1}^{\infty} y_n$ .

# Limit Comparison Test

Suppose that  $x_n$  and  $y_n$  are strictly positive sequences and suppose that the following limit exists  $\lim_{n\to\infty} \frac{x_n}{y_n} = r$ 

- (a) If r > 0 then  $\sum_{n=1}^{\infty} x_n$  is convergent if and only if  $\sum_{n=1}^{\infty} y_n$  is convergent.
- (b) If r = 0 and if  $\sum_{n=1} y_n$  is convergent, then  $\sum_{n=1} x_n$  is convergent.

#### Ratio test

Let  $\sum x_n$  be a series with positive terms  $x_n$ .

① If  $\limsup_{n\to\infty} \frac{x_{n+1}}{x_n} < 1$ , then the series is convergent.

#### Ratio test

Let  $\sum_{n} x_n$  be a series with positive terms  $x_n$ .

- ① If  $\limsup_{n\to\infty} \frac{x_{n+1}}{x_n} < 1$ , then the series is convergent.
- ② If  $\liminf_{n\to\infty} \frac{x_{n+1}}{x_n} > 1$ , then the series is divergent.

#### Root test

Let  $\sum_{n=1}^{\infty} x_n$  be a series with positive terms  $x_n$ .

① If  $\limsup_{n\to\infty} \sqrt[n]{x_n} < 1$ , then the series is convergent.

#### Root test

Let  $\sum_{n=1}^{\infty} x_n$  be a series with positive terms  $x_n$ .

- ① If  $\limsup_{n\to\infty} \sqrt[n]{x_n} < 1$ , then the series is convergent.
- ② If  $\limsup_{n\to\infty} \sqrt[n]{x_n} > 1$ , then the series is divergent.

**Examples**. Check the convergence of the following series

**Examples**. Check the convergence of the following series

① 
$$\sum_{n=1}^{\infty} \frac{(n!)^2 (2 + (-1)^n)}{(2n)! 5^n}.$$
② 
$$\sum_{n=1}^{\infty} \frac{n^3 (2 + (-1)^n)^n}{4^n}.$$

#### Definition

We say that the series  $\sum_{n=1}^{\infty} x_n$  is absolutely convergent if

the series  $\sum_{n=1}^{\infty} |x_n|$  is convergent.

#### Definition

We say that the series  $\sum_{n=1}^{\infty} x_n$  is absolutely convergent if

the series  $\sum_{n=1}^{\infty} |x_n|$  is convergent.

A series is said to be **conditionally** (or nonabsolutely) convergent if it is convergent, but it is not absolutely convergent.

#### Theorem

If a series  $\sum_{n=1}^{\infty} x_n$  is absolutely convergent, then it is convergent.

# Alternating Series Test

Let  $x_n$  be a decreasing sequence of strictly positive numbers with  $\lim x_n = 0$ . Then the alternating series

$$\sum_{n=1}^{\infty} (-1)^n x_n$$

is convergent.

# Alternating Series Test

Let  $x_n$  be a decreasing sequence of strictly positive numbers with  $\lim x_n = 0$ . Then the alternating series

$$\sum_{n=1}^{\infty} (-1)^n x_n$$

is convergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 is conditionally convergent.

#### Dirichlet's Test

If  $x_n$  is a decreasing sequence with  $\lim x_n = 0$ , and if the partial sums  $S_n$  of  $\sum_{n=1}^{\infty} y_n$  are bounded, then the series

 $\sum_{n=1}^{\infty} x_n y_n \text{ is convergent.}$ 

#### Abel's Test

If  $x_n$  is a monotonic and bounded sequence, and if the series  $\sum_{n=1}^{\infty} y_n$  is convergent, then the series  $\sum_{n=1}^{\infty} x_n y_n$  is also convergent.