

Antiferromagnetic Ising Model in Hierarchical Networks

Xiang Cheng and Stefan Boettcher

Department of Physics, Emory University, Atlanta, GA

2015 APS March Meeting, San Antonio, TX

Introduction

Antiferromagnetic Ising model

$$E = -J \sum S_i S_j \ , \ J < 0$$

Introduction

Antiferromagnetic Ising model

$$E = -J \sum S_i S_j \ , \ J < 0$$

> glassy dynamics

Introduction

Antiferromagnetic Ising model

$$E = -J \sum S_i S_j , J < 0$$

- > glassy dynamics
- Geometric frustration

Research Questions

- Phase transitions?
 - Equilibrium/non-equilibrium transition?
 - Spin glass phase?
- Glassy relaxation?
- Influence of geometry?
- Difference to mean-field models?

- HN3:
 - degree 3

- HN5:
 - average degree 5

- HNNP:
 - average degree 4
 - nonplanar
- HN6
 - average degree 6
 - nonplanar

- HN3:
 - degree 3
- HN5:
 - average degree 5

- HNNP:
 - average degree 4
 - nonplanar
- HN6
 - average degree 6
 - nonplanar

- HN3:
 - degree 3
- HN5:
 - average degree 5

- HNNP:
 - average degree 4
 - nonplanar
- HN6
 - average degree 6
 - nonplanar

- HN3:
 - degree 3

average degree 5

- HNNP:
 - average degree 4
 - nonplanar
- HN6
 - average degree 6
 - nonplanar

- HN3:
 - degree 3
- HN5:
 - average degree 5

- HNNP:
 - average degree 4
 - nonplanar
- HN6
 - average degree 6
 - nonplanar

- HN3:
 - degree 3
- HN5:
 - average degree 5

- HNNP:
 - average degree 4
 - nonplanar
- HN6
 - average degree 6
 - nonplanar

Why Hierarchical Networks (HNs)?

Exactly solvable by Renormalization Group (RG)

Why Hierarchical Networks (HNs)?

- Exactly solvable by Renormalization Group (RG)
- Lattice-like structure
 - Mean-Field ⇒ HNs ⇒ Regular lattice

Why Hierarchical Networks (HNs)?

- Exactly solvable by Renormalization Group (RG)
- Lattice-like structure
 - Mean-Field ⇒ HNs ⇒ Regular lattice
- Different structures among HNs
 - Different degrees: 3, 4, 5, 6
 - Planar vs non-planar

Methods

- Wang-Landau Sampling (WL)
 - direct access to Density of States
 - partition function equilibrium quantities
- Simulated Annealing (SA)
 - probe dynamical behaviors
 - Glassy relaxation
- Renormalization Group (RG)
 - Exact solutions in the thermodynamic limit

Density of States (WL)

Planar: HN3, HN5
 Degenerate ground states

Non-planar: HNNP, HN6
 Unique ground states

Density of States (WL)

- Planar: HN3, HN5
 Degenerate ground states
- Non-planar: HNNP, HN6
 Unique ground states
- Reference of SA & RG
- Wang-Landau fails
 - -N > 1024
 - Geometric frustration?

Glassy relaxation (SA)

- *x* axis: *T*
- y axis: $e(T) e_{gs}$
- Annealing schedules:

$$\frac{dT}{dt} = \frac{10^{-3}}{1}, \frac{10^{-3}}{2}, \dots, \frac{10^{-3}}{512}$$

- Out of Equilibrium at low T
- Extremely slow relaxation at low T

Power-law relaxation (SA)

- Power-law relaxation
- HN3, HNNP, HN6:
 - Slope = ~ 0.27
- HN5 may equilibrate gradually

Renormalized interaction strength J

- Planar: HN3, HN5
 - stable fixed-point solution
 - no phase transition

- Non-Planar: HNNP, HN6
 - partially stable fixed-point solution
 - possible spin glass transition

- Non-Planar: HNNP, HN6
 - partially stable fixed-point solution
 - possible spin glass transition

- Non-Planar: HNNP, HN6
 - partially stable fixed-point solution
 - possible spin glass transition

- Non-Planar: HNNP, HN6
 - partially stable fixed-point solution
 - possible spin glass transition

McKay and Berker, Phys. Rev. Lett. 48, 11 (1982)

Summary & future work

- Out of equilibrium at low T
- Power-law relaxation
- Spin glass transition
- Future work
 - reconstruct partition function
 - $-C_v$, m, χ using RG
 - Spin glass \(\bigsim \) geometry?

- HN3:
 - degree 3

$$N = 2^{1} + 1$$
 0—0—0

Outline

- Introduction
 - ➤ Model, research questions
- Hierarchical Networks (HNs)
 - > structure & why HNs
- Methods:
 - ➤ Wang-Landau, simulated annealing
 - > Renormalization Group
- Results
- Future work