

Activity

For your designated table:

 look up the machine assigned to you, identify what you take to be its historical significance and list 3 facts that you find curious or interesting

Atansoff-Berry	Altair 8800	MANIAC
DEC PDP-8	Manchester Mark I	Apple][

Activity

Add me some numbers

Add me some numbers

Set of architecture-based on processor architecture (short definition).

What's the program to add 2+2 and 4+4, given this ISA?

What's the program to add 2+2 and 4+4, given this ISA?

A complication: registers

New rules, same problems:

- Memory can't be written to except by input
- You cannot output from the accumulator
- Operations have to use "registers" to perform actions
 - numbers have to have an open, unoccupied space to go (accumulator can be stored; spaces cannot be reused)
 - Instructions call the "register" where the number lives to use it
- Can only use the amount of registers given to you on paper

Now, imagine that you can't use the full words; we can only use numerical data. How would you represent this ISA?

The SFT instruction

"Shifts" the Accumulator

The SFT instruction

The SFT instruction

Magic 9 Decoder

Subroutines

High dimensional adder

What happens if we add in the CARDIAC?

BUT WHAT IF WE DID IT ANYWAY

(Sorry, 234. You don't matter as much, apparently.)