

UnifiedGesture: A Unified Gesture Synthesis Model for Multiple Skeletons

Sicheng Yang*,¹, Zilin Wang*,¹, Zhiyong Wu^{1,4}, Minglei Li², Zhensong Zhang³, Qiaochu Huang ¹, Lei Hao³, Songcen Xu³, Xiaofei Wu³, Changpeng Yang², Zonghong Dai²

¹Tsinghua Shenzhen International Graduate School, Tsinghua University, China ²Huawei Cloud Computing Technologies Co., Ltd, China ³Huawei Noah's Ark Lab, China ⁴The Chinese University of Hong Kong, Hong Kong SAR, China

1. Introduction

1.1 Motivation

➤ Goal:

✓ Develop a comprehensive gesture synthesis model that can cater to multiple skeletons, ensuring natural and appropriate gestures in sync with speech

> Problem:

- Existing gesture synthesis models are limited in their adaptability to various skeletons
- The need for a model that can generate gestures that are both semantically relevant and natural in appearance

1.2 Contribution

- ✓ Introduction of a unified model that bridges the gap between different skeletal structures
- ✓ Present a temporally aware attention-based diffusion model on the primal skeleton for co-speech gesture generation
- ✓ Incorporation of advanced techniques like reinforcement learning and VQVAE to enhance gesture quality
- Extensive experiments show that our model can generate human-like, speech-matched, stylized, diverse, controllable, and physically plausible gestures

2.1 Multiple Skeletons Retargeting Network

The adjacency lists are expressed as $\mathcal{N}^d = \{\mathcal{N}_1^d, \mathcal{N}_2^d, ..., \mathcal{N}_J^d\}$

Two reference poses \mathbf{P}_A and \mathbf{P}_B can be aligned through global and local translation and rotation: $\mathbf{P}_B = \mathbf{Q}^{AB} \mathbf{P}_A (\mathbf{Q}^{AB})^{\top}$

The motion of different skeletons consists of a static component $\mathbf{S} \in \mathbb{R}^{J \times 3}$ (joint offsets) and a dynamic one $\mathbf{D} \in \mathbb{R}^{T \times (J \times 4)}$ (joint rotations). To unify the motion of the different skeletons, we utilize a retargeting network architecture similar to [1]

2.2 Diffusion Model for Speech-driven Gesture Generation

Our goal is to synthesize a gesture $\mathbf{L}^{1:N}$ of length N given noising step t_d , noisy gesture \mathbf{L}_{t_d} and conditions c (including audio a, style s, and seed gesture d). That is $\mathbf{L}_0 = \mathrm{Denoise}(\mathbf{L}_{t_d}, t_d, c)$.

The Denoising module can be trained by optimizing the Huber loss between the generated poses \mathbf{L}_0 and the ground truth human gestures \mathbf{L}_0 on the training examples:

Tiples. $\mathcal{L}_{diff} = \lambda_{diff} E_{\mathbf{L}_0 \sim q(\mathbf{L}_0|c), t_d \sim [1, T_d]} \left[\text{HuberLoss}(\mathbf{L}_0 - \mathbf{L}_0) \right]$

2.3 Gesture Generation Refinement

2.3.1 Primal Gesture VQVAE

Each code represents a unique gesture. Besides, discrete spaces are more conducive to reinforcement learning for exploration. The VQVAE can be trained by optimizing \mathcal{L}_{vq} :

$$\mathcal{L}_{vq} = \left\| \mathbf{L}_{0}^{\text{upper}} - \mathbf{L}_{0}^{\text{upper}} \right\|_{1} + \alpha_{1} \left\| \mathbf{L}_{0}^{\text{upper'}} - \mathbf{L}_{0}^{\text{upper'}} \right\|_{1} + \alpha_{2} \left\| \mathbf{L}_{0}^{\text{upper''}} - \mathbf{L}_{0}^{\text{upper''}} \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\| + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \mathbf{u}_$$

2.3.2 Reinforcement Learning Finetuning

In this paper, we adopted Inverse Reinforcement Learning (IRL) to learn a neural network model from human demonstrations. Given the reward model, we use the REINFORCE algorithm to improve the model: $\mathcal{L}_{RL} = -\mathbb{E}_{\tau \sim \pi} \left[\log p_{\pi}(\tau) r(\tau) \right]$.

2.3.3 Physics Guidance

We consider that the foot should have contact with the ground when there is a left-right acceleration or an upward acceleration of the root. And we use standard Inverse Kinematics (IK) optimization for physics guidance.

3.1 Experiment Preparation

Retargeting network

- Relargeling network
- Evaluation on the Trinity and ZEGGS datasets. d_{re} =4, then the primal gesture is 7.5 fps.
- Adam optimizer with a batch size of 256 for 16000 epochs.

Diffusion model

- Gesture data are cropped to a length of N = 30 (4 seconds).
- AdamW optimizer (learning rate is 3 × 10⁻⁵) with a batch size of 256 for 1000000 steps.

> VQVAE

- The size C_b of codebook \mathcal{Z}_u is set to 512 with dimension n_z is 512. Down-sampling rate d_{vq} =2.
- ADAM optimizer (learning rate is e^{-4} , $\beta_1 = 0.5$, $\beta_2 = 0.98$) with a batch size of 128 for 200 epochs.

3.2 Comparison to Existing Methods

- > Human-likeness. Our model significantly surpasses the compared state-of-the-art methods. However, it is not significantly different from ExampleGestures.
- > Gesture and speech appropriateness. Our model significantly outperforms StyleGestures, Audio2Gesture, and ExampleGestures, giving competitive results with DiffuseStyleGesture.

Name -		Objective evaluatio	Subjective evaluation			
Name	Global CCA	CCA for each sequence	FGD↓	Diversity ↑	Human-likeness	Appropriateness
Ground Truth	1.000	1.00 ± 0.00	0.0	10.03	4.22 ± 0.11	4.22 ± 0.11
StyleGestures [4]	0.978	$\boldsymbol{0.98 \pm 0.01}$	15.89	13.86	3.56 ± 0.12	3.17 ± 0.13
Audio2Gesture [43]	0.969	0.97 ± 0.01	19.78	6.148	3.61 ± 0.11	3.15 ± 0.14
ExampleGestures [19]	0.914	$\textbf{0.98} \pm \textbf{0.01}$	10.49	5.418	3.77 ± 0.12	3.17 ± 0.14
DiffuseStyleGesture [85]	0.987	0.97 ± 0.01	11.98	11.22	3.66 ± 0.12	3.46 ± 0.14
Ours	0.988	0.95 ± 0.02	3.850	7.039	3.80 ± 0.11	3.42 ± 0.14

3.3 Ablation Studies

- > Human-likeness. the scale of the dataset has a significant effect on the results, which shows the importance of unifying the gesture dataset.
- > Speech and gesture appropriateness. The scale of the dataset has the largest impact on this metric. The appropriateness also decreased without RL, shows the importance of data exploration.

Name -		Objective evaluation	Subjective evaluation			
	Global CCA	CCA for each sequence	FGD ↓	Diversity↑	Human-likeness	Appropriateness
Ground Truth	1.000	1.00 ± 0.00	0.0	10.03	4.22 ± 0.11	4.22 ± 0.11
Ours	0.988	$\boldsymbol{0.95 \pm 0.02}$	3.850	7.039	3.80 ± 0.11	3.42 ± 0.14
- RL	0.987	0.94 ± 0.03	3.132	7.008	3.82 ± 0.11	3.24 ± 0.16
- RL - VQVAE	0.987	0.94 ± 0.03	3.568	6.971	3.79 ± 0.11	3.33 ± 0.12
- Skeleton A	0.972	0.94 ± 0.03	13.76	4.882	3.54 ± 0.12	3.00 ± 0.13
- Skeleton B	0.965	0.95 ± 0.03	12.45	5.566	3.59 ± 0.13	3.09 ± 0.13

3.4 Diverse, Controllable, and Stylized Gesture Generation

The **intensity of the stylization** can be controlled by the value of γ . Due to the diffusion model architecture, different noisy gesture and different seed gesture could **generate different gestures** even for the same speech and style. We can have a **high level of control** over speech-driven gestures at any time with the specified upper body code.

Reference

- [1] Skeleton-Aware Networks for Deep Motion Retargeting
- [2] DiffuseStyleGesture: Stylized Audio-Driven Co-Speech Gesture Generation with Diffusion Models
- [3] Bailando: 3D dance generation via Actor-Critic GPT with
- Choreographic Memory

 [4] Edge: editable dance generation from music

Project page