ALGO QCM

- 1. Un graphe peut être?
 - (a) Orienté
 - (b) Non orienté
 - (c) A moitié orienté
 - (d) Désorienté
- 2. Dans un graphe orienté, le sommet x est adjacent au sommet y si?
 - (a) Il existe un arc (x,y)
 - (b) Il existe un arc (y,x)
 - (c) Il existe un chemin (x,..,y)
 - (d) Il existe un chemin (y,..,x)
- 3. Dans un graphe orienté, un sommet de degré zéro est appelé?
 - (a) sommet unique
 - (b) sommet isolé
 - (c) sommet nul
 - (d) sommet perdu
- 4. Un graphe orienté G défini par le triplet G=<S,A,C> est?
 - (a) etiqueté
 - (b) valué
 - (c) valorisé
 - (d) numéroté
- 5. Dans un graphe orienté, on dit que l'arc $U = y \rightarrow x$ est?
 - (a) incident à x vers l'extérieur
 - (b) accident à x vers l'extérieur
 - (c) incident à x vers l'intérieur
 - (d) accident à x vers l'intérieur
- 6. Dans un graphe orienté, le nombre d'arcs ayant le sommet x pour extrémité terminale est appelé?
 - (a) le demi-degré extérieur de x
 - (b) le degré de x
 - (c) le demi-degré intérieur de x

- 7. Dans un graphe orienté, s'il existe un arc $U = y \to x$ pour tout couple de sommet $\{x,y\}$ le graphe est?
 - (a) complet
 - (b) partiel
 - (c) parfait
- 8. Deux arcs d'un graphe orienté sont dits adjacents si?
 - (a) il existe deux arcs les joignant
 - (b) le graphe est complet
 - (c) ils ont au moins une extrémité commune
- 9. L'ordre d'un graphe orienté est?
 - (a) Le nombre d'arcs du graphe
 - (b) Le nombre de sommets du graphe
 - (c) Le coût du graphe
 - (d) La liste triée des arcs du graphe
- 10. Dans un graphe orienté valué G=<S,A,C>, les coûts sont portés par?
 - (a) les arcs
 - (b) les sommets

QCM N°3

Lundi 16 octobre 2023

Question 11

Considérons une suite (u_n) telle que, au voisinage de $+\infty$, $u_n \sim \frac{(-1)^n}{n}$.

- a. $\sum u_n$ converge absolument
- b. $\sum u_n$ converge, mais pas absolument
- c. $\sum u_n$ diverge
 - d. On ne peut rien dire de la nature de $\sum u_n$

Question 12

La série $\sum \frac{(-1)^n}{n^2}$:

- a. converge absolument
 - b. converge, mais pas absolument
 - c. diverge

Question 13

Soit une variable aléatoire X telle que :

$$X(\Omega) = \{1, 2, 4\}, \qquad P(X=1) = 0.5, \qquad P(X=2) = 0.3$$

$$P(X=1) = 0.5.$$

$$P(X=2) = 0.3$$

$$et P(X=4) = 0.2$$

La fonction génératrice de X est définie pour tout $t \in \mathbb{R}$ par :

a.
$$G_X(t) = 0.5 + 0.3t + 0.2t^2$$

b.
$$G_X(t) = 0.5t + 0.3t^2 + 0.2t^3$$

c.
$$G_X(t) = 0.5t + 0.3t^3 + 0.2t^4$$

d. Aucun des autres choix

Question 14

Soit une variable aléatoire finie entière X admettant une fonction génératrice G_X . On a alors :

a.
$$E(X) = G'_X(t)$$

b.
$$Var(X) = G_X''(t) + G_X'(t) - (G_X'(t))^2$$

c.
$$Var(X) = G_X''(1) + G_X'(1) - (G_X'(1))^2$$

d.
$$Var(X) = G_X''(1) - G_X'(1) + (G_X'(1))^2$$

e. Aucun des autres choix

Question 15

Soient X et Y deux variables aléatoires finies entières indépendantes, admettant la même fonction génératrice définie pour tout $t \in \mathbb{R}$ par

$$G_X(t) = G_Y(t) = \frac{2+t}{3}$$

Considérons la variable aléatoire Z = X + Y. Alors :

a.
$$X = Y$$

b.
$$G_Z(t) = G_X(t) + G_Y(t)$$

c.
$$G_Z(t) = G_X(t) \times G_Y(t)$$

d.
$$P(Z=1) = \frac{4}{9}$$

e. Aucun des autres choix

Question 16

Cocher la(les) bonne(s) réponse(s)

a.
$$\sum \frac{1}{n}$$
 est une série entière

b.
$$\sum \frac{x}{n}$$
 est une série entière

c.
$$\sum \frac{x^n}{n}$$
 est une série entière

d.
$$\sum \frac{\sin(nx)}{n}$$
 est une série entière

e. Aucun des autres choix

Question 17

Soit (a_n) une suite réelle et considérons la série entière $\sum a_n x^n$. Son rayon de convergence est l'unique réel $R \in \mathbb{R}^+ \cup \{+\infty\}$ qui vérifie :

a.
$$\forall x \in \mathbb{R}, \ \left(x \leqslant R \Longrightarrow \sum a_n x^n \text{ converge absolument}\right)$$

b.
$$\forall x \in \mathbb{R}, \ \left(|x| \leqslant R \Longrightarrow \sum a_n x^n \text{ converge absolument}\right) \text{ et } \left(|x| > R \Longrightarrow \sum a_n x^n \text{ diverge}\right)$$

c.
$$\forall x \in \mathbb{R}, (|x| < R \Longrightarrow \sum a_n x^n \text{ converge absolument}) \text{ et } (|x| \geqslant R \Longrightarrow \sum a_n x^n \text{ diverge})$$

d.
$$\forall x \in \mathbb{R}, (|x| < R \Longrightarrow \sum a_n x^n \text{ converge absolument}) \text{ et } (|x| > R \Longrightarrow \sum a_n x^n \text{ diverge})$$

e. Aucun des autres choix

Question 18

Soit une suite (a_n) de termes tous non nuls telle que $\frac{a_{n+1}}{a_n} \xrightarrow[n \to +\infty]{} -2$.

Alors le rayon de convergence de la série entière $\sum a_n x^n$ est :

a.
$$R = \frac{1}{2}$$

b.
$$R = -\frac{1}{2}$$

c.
$$R = 2$$

d.
$$R = -2$$

Question 19

Soit une série entière $\sum a_n x^n$ admettant un rayon de convergence R > 0. On note f sa fonction somme, définie sur son domaine de convergence par

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

- a. La fonction f est continue sur]-R,R[
- b. La fonction f est dérivable sur]-R,R[et pour tout $x\in]-R,R[$, $f'(x)=\sum_{n=1}^{+\infty}n\,a_nx^{n-1}$
- c. La rayon de convergence de la série entière $\sum n a_n x^{n-1}$ est R
- d. Aucun des autres choix

Question 20

Considérons la série entière $\sum \frac{x^n}{n!}$. Notons R son rayon de convergence et f sa fonction somme, définie sur son domaine de convergence par

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

a.
$$R = 1$$

b.
$$R = +\infty$$

c. Pour tout
$$x \in]-R, R[, f(x) = e^x$$

d. Pour tout
$$x \in]-R, R[, f(x) = \frac{1}{1-x}$$

e. Aucun des autres choix

QCM 4 bis - Adjec Claus, punctu pp. 289, 290 fall 23

The sentences provided (21-24) are not punctuated. Choose the one sentence that is punctuated correctly.

- 21. The engineer I told you about will call you tomorrow.
- A. No change needed. Correctly punctuated as is.
- B. The engineer, I told you about will call you tomorrow.
- C. The engineer I told you about will, call you tomorrow.
- D. The engineer, I told you about, will call you tomorrow.
- 22. The music which I listened to was very loud.
- A. The music, which I listened to was very loud.
- B. The music which, I listened to was very loud.
- C. The music which I listened to, was very loud.
- D. No change needed. Correctly punctuated as is.
- 23. The Eastpak backpack which Lolita had bought on sale was already falling apart.
- A. The Eastpak backpack which, Lolita had bought on sale was already falling apart.
- B. The Eastpak backpack, which Lolita had bought on sale, was already falling apart.
- C. The Eastpak backpack which Lolita had bought on sale, was already falling apart.
- D. None of the above is correct.
- 24. The director Bennet Miller who has never made an action movie never works with a big budget.
- A. The director Bennet Miller, who has never made an action movie never works with a big budget.
- B. The director Bennet Miller, who has never made an action movie, never works with a big budget.
- C. The director Bennet Miller who has never made an action movie never works with a big budget.
- D. No change needed. Correctly punctuated as is.

New question: Which of the following sentence(s) is/are RIGHT? More than one response is possible. (25 to 30)

25.

- A. The man which Stacy was arguing with was angry.
- B. The man with whom Stacy was arguing with was angry.
- C. The man with whom Stacy was arguing was angry.
- D. The man with who Stacy was arguing was angry.

26.

- A. The grant he is applying requires an essay.
- B. The grant for which he is applying requires an essay.
- C. The grant he is applying for requires an essay.
- D. The grant of which he is applying to requires an essay.

- A. I donated to the fundraiser that he is supporting.
- B. I donated the fundraiser that he is supporting.
- C. I donated to the fundraiser who he is supporting.
- D. I donated to the fundraiser he is supporting.

28.

- A. I don't like to hang out with people whom drink too much.
- B. I don't like to hang out with people who drink too much.
- C. I don't like to hang out with people which drink too much.
- D. I don't like to hang out with people drink too much.

29.

- A. I must thank the president from whom I received the award.
- B. I must thank the president to whom I received the award.
- C. I must thank the president who I received the award from.
- D. I must thank the president I received the award from.

30.

- A. A man who I was talking to fell down the stairs.
- B. A man to who I was talking fell down the stairs.
- C. A man to whom I was talking fell down the stairs.
- D. A man which I was talking to fell down the stairs.

QCM 4 - OC S3 2023/24 (Week 16 October)

31	. [Class article] In the 'Riding the Waves of Culture' article, which of these is NOT one of the four levels of cross cultural competences Trompenaars distinguishes?
b) c)	Recognition Resignation Respect Reconciliation
32	In the article which two dimensions does Trompenaars use to explain the differences between the Swedes and Americans? <i>Choose all that apply</i>
b) c)	Individualism vs Communitarianism Neutral vs Affective Universalism vs Particularism Specific vs Diffuse
33.	In the article Trompenaars states that subjects like politics and religion are easily and freely discussed publicly in American culture. True or False?
•	True False
34.	In the article, what position did the Swedes have in a study about establishing social relationships?
b) c)	Lowest ranking Middle ranking Highest ranking None of the above – did not rank
35.	Which of these in <u>NOT</u> one of Trompenaars 7 dimensions of culture?
b) c)	Achievement vs Ascription Sequential vs Synchronous time Short vs Long term orientation Internal direction vs External direction
36.	Which of these dimensions measures a culture's tendance to separate work and professional life?
a)	Individualism vs Communitarianism

b) Specific vs Diffuse

c) Neutral vs Affective

d) Universalism vs Particularism

	37.	Which of these dimensions measures a culture's tendance to follow rules?
	a)	Individualism vs Communitarianism
	b)	Specific vs Diffuse
	c)	Neutral vs Affective
-	d)	Universalism vs Particularism
	38.	In the video interview, Trompenaars describes the French as?
	a)	Individualistic
	b)	Communitarian
	39.	In the video interview, Trompenaars states that we can look at culture like an onion with layers. The external layer being Artifacts and Behaviours and the second layer is?
100	a)	Norms and Values
	b)	Material culture
	c)	Language
	d)	Symbols
	40.	In the video interview, Trompenaars states that the French are particularistic. True or False?
	a)	True
	b)	False
	·	

QCM Physique - InfoS3 - 16.10

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Q41. Un élément de longueur dl d'un cercle de rayon R a pour expression :

a.
$$dl = R.\theta$$

b.
$$dl = \theta . dR$$

c.
$$dl = dR. d\theta$$

$$d. dl = R. d\theta$$

Q42. Dans la situation suivante, où l'on étudie $\overline{E(O)}$ le champ électrique créé en O par un arc de cercle de charge linéique constante positive λ , on peut dire que :

- a. (O, $\overrightarrow{u_x}, \overrightarrow{u_y}$) est un plan de symétrie de la distribution de charges
- b. (O, $\overrightarrow{u_y}$, $\overrightarrow{u_z}$) est un plan de symétrie de la distribution de charges
- c. $(0, \overrightarrow{u_x}, \overrightarrow{u_z})$ est un plan de symétrie de la distribution de charges
- d. $\overline{E(O)}$ est sur l'axe (Ox) dans le sens des x croissants

Q43. Le champ magnétique \vec{B} peut être créé par :

- a. Une charge fixe
- b. Un ensemble de charges fixes
- c. Une ou plusieurs charges en mouvement
- d. Un courant électrique

Q44. L'unité d'un champ magnétique est le :

- a. Volt par mètre V.m-1
- b. Volt V
- c. Coulomb par mètre C.m⁻¹
- d. Tesla T

Q45. La loi de Biot et Savart pour le champ magnétique élémentaire créé en M par un élément P de longueur dl traversé par un courant d'intensité I peut s'écrire :

a.
$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I.\overrightarrow{dl} \wedge \overrightarrow{PM}}{PM^3}$$

b.
$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \overrightarrow{dl} \wedge \overrightarrow{PM}}{PM^2}$$

c.
$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \overrightarrow{PM} \wedge \overrightarrow{d}}{PM^3}$$

d.
$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \overrightarrow{PM} \wedge \overrightarrow{di}}{PM^2}$$

Q46. La loi de Biot et Savart permet de connaître :

- a. Les symétries d'une distribution de courants
- b. La direction du champ magnétique infinitésimal créé par un élément de la distribution
- c. Le sens du champ magnétique infinitésimal créé par un élément de la distribution
- d. La norme du champ magnétique infinitésimal créé par un élément de la distribution

Q47. Soit une distribution de courants et un plan π passant par un point M.

- a. Si π est un plan de symétrie, alors $\overrightarrow{B(M)} \in \pi$
- b. Si π est un plan de symétrie, alors $\overline{B(M)} \perp \pi$
- c. Si π est un plan d'antisymétrie, alors $\overline{B(M)} \in \pi$
- d. Si π est un plan d'antisymétrie, alors $\overline{B(M)} \perp \pi$

Q48&49. On considère la distribution de courants suivante : un fil infini parcouru par un courant d'intensité i.

Q48. Soit z > 0. On peut dire que le champ magnétique total en M(z) vérifie :

- a. $\overrightarrow{B(M)}$ est selon l'axe (Oz), dans le sens des z croissants
- b. $\overrightarrow{B(M)}$ est selon l'axe (Oz), dans le sens des z décroissants
- c. $\overline{B(M)}$ est selon l'axe (Ox), dans le sens des x croissants
- d. $\overline{B(M)}$ est selon l'axe (Ox), dans le sens des x décroissants

Q49. On désigne par $\overline{B(z)}$ le champ magnétostatique total créé au point M situé à la distance z du fil. Concernant ce champ, on peut dire:

a.
$$\overrightarrow{B(-z)} = -\overrightarrow{B(z)}$$

b.
$$\overrightarrow{B(-z)} = \overrightarrow{B(z)}$$

a.
$$\overline{B(-z)} = -\overline{B(z)}$$

b. $\overline{B(-z)} = \overline{B(z)}$
c. $\|\overline{B(-z)}\| = \|\overline{B(z)}\|$

d.
$$\|\overline{B(-z)}\| \neq \|\overline{B(z)}\|$$

Q50. On considère un fil infini parcouru par un courant d'intensité constante I. Soit un point M situé à la distance r du fil. On désigne par $(M, \overline{u_r}, \overline{u_\theta})$ le plan passant par M et formé par les vecteurs $\overline{u_r}$ et $\overline{u_\theta}$. On peut dire que :

 $(M, \overrightarrow{u_r}, \overrightarrow{u_\theta})$ est un plan de symétrie de la distribution de charge

 $(M, \overrightarrow{u_r}, \overrightarrow{u_\theta})$ est un plan d'antisymétrie de la distribution de charge

 $(M, \overrightarrow{u_r}, \overrightarrow{u_z})$ est un plan de symétrie de la distribution de charge

. $(M, \overrightarrow{u_{\theta}}, \overrightarrow{u_{z}})$ est un plan de symétrie de la distribution de charge

QCM 4 Architecture des ordinateurs

Lundi 16 octobre 2023

Pour toutes les questions, une ou plusieurs réponses sont possibles.

- 51. Soit l'instruction suivante: MOVE.W -(A0), D0
 - A. A0 ne change pas.
 - B. A0 est décrémenté de 2.
 - C. A0 est décrémenté de 4.
 - D. A0 est décrémenté de 1.
- 52. Soit l'instruction suivante: MOVE.L -1(A0), D0
 - A. A0 est décrémenté de 1.
 - B. A0 est décrémenté de 2.
 - C. A0 est décrémenté de 4.
 - D. A0 ne change pas.
- 53. Quelles sont les deux instructions de branchements inconditionels?
 - A. JMP et JSR
 - B. BSR et JSR
 - C. BRA et BSR
 - D. BRA et JMP
- 54. L'instruction BMI effectue un branchement si :
 - A. V = 1
 - B. N = 1
 - C. None of these answers.
 - D. Z = 1
- 55. Soient les deux instructions suivantes :

CMP.L D0,D1

BHI NEXT

L'instruction BHI effectue le branchement si :

- A. D1.L > D0.L (comparaison signée)
- B. D1.L < D0.L (comparaison signée)
- C. D1.L < D0.L (comparaison non signée)
- D. D1.L > D0.L (comparaison non signée)

- 56. Choisir les réponses correctes.
 - A. Un nouvel élément est toujours ajouté au sommet de la pile.
 - B. Un nouvel élément est toujours ajouté au bas de la pile.
 - C. Un élément est toujours retiré du sommet de la pile.
 - D. Un élément est toujours retiré du bas de la pile.
- 57. Le registre A7:
 - A. Pointe le sommet de la pile.
 - B. Pointe le bas de la pile.
 - C. Pointe le milieu de la pile.
 - D. Aucune de ces réponses.
- 58. Choisir les réponses correctes.
 - A. Un octet peut être empilé.
 - B. Un mot de 16 bits peut être empilé.
 - C. Un mot de 32 bits peut être empilé.
 - D. Aucune de ces réponses.
- 59. Pour empiler une donnée:
 - A. On décrémente A7 d'abord.
 - B. On incrémente A7 d'abord.
 - C. On ne change pas A7.
 - D. Aucune de ces réponses.
- 60. Soit l'instruction suivante : MOVEM.L D1-D3/A4/A5, -(A7)

Quelle instruction est équivalente?

- A. MOVEM.L D1/D3/A4-A5,-(A7)
- B. MOVEM.L D1/D3/A4/A5,-(A7)
- C. MOVEM.L A4/A5/D1/D2/D3,-(A7)
- D. Aucune de ces réponses.

Opendu				Θ	er	ICE	v1.	8	htt	p://ww	N.WO	W CTVI	ep.co	m/EAS	V68	Khim Coovich	t © 2004-2007 By: Chuck Kelly
	Sba		120											placemen		Operation	Description
	BWL	8.0	XNZVC				(An)+	-(An)						(LPC.lin)		ober armit	issatt ibiniti
$\overline{}$		Dy.Dx -(Ay)(Ax)	*U*U*	8	:	-	-	- B	•	-	-	-	-	-	-	$\begin{array}{l} \mathbb{D}_{Y_{\Theta}} + \mathbb{D}_{X_{\Theta}} + \mathbb{X} \to \mathbb{D}_{X_{\Theta}} \\ -(Ay)_{\Pi} + -(Ax)_{\Pi} + \mathbb{X} \to -(Ax)_{\Theta} \end{array}$	Add 6CD source and extend bit to
ADD *	BWL		****	8	10 Tu	a d	g .	i d	s d	g 8	S d		8	2	8 4	s + On → On On + d → d	Add timery (ADD) or ADDI is used when source is \$10, Prevent ADDI with \$10.1)
ADDA *		s.An		1		2	8		-	8	8	8		2		e+An → An	Add address (W sign-extended to .1)
	뭾		****	Ī	-	d	ď	d	d	d	ď	ď	-	-		#n+d→d	Add immediate to destination
	BWL		****	q	ą	d	ď	d	d	ď	4	d	-	-	ž	#n+d → d	Add quick immediate (#n range: 1 to 8)
		Dy.Ox -(Ay),-(Ax)	****	8	- -	-	-	- 8	-	-		, ,	1 1	-	1 1	$Dy + Dx + X \rightarrow Dx$ $-(Ay) + -(Ax) + X \rightarrow -(Ax)$	Add source and eXtend bit to destination
AND 4	BWL	nO.a Daxi	~**00	8	:	z d	g 2	g 2	i d	g d	a d	ď	-	2	g ⁴ -	s ANO Do → Oo Do ANO d → d	Logical AND source to destination (AND) is used when source is #n)
	BWL	#n.d	-**00	d	-	ď	ą.	þ	d	q	d	d	-	-	8	M 4400 A - 4	Logical AND immediate to destination
		#n.CCR	-	•	-	•	-	-	-	-	-	-	-	-	E	#n AND CCR → CCR	Logical AKO increedists to CCR
		#nSR		-	Ŀ		-	-	-	-	-	-	-	-	E	#n ANO SR → SR	Logical AND immediate to SR (Privileged)
ASL ASR		Ox.Dy #n,Dy	****	q	-	-			-	-				-	- E		Arithmetic shift Dy by Dx bits left/right Arithmetic shift Dy #n bits L/R (#n: 1 to 8)
Bcc	8M ₃	d address ²		•	-	- d	d	d -	-	d -	ď	<u>-</u>	-	-	-	If cc true then	Arithmetic shift ds i bit left/right (.W only) Brench conditionally (cc table on back)
BCHG	BL	R. d	+	_	Н		<u> </u>				-		\square			address → PC	(8 or 16-bit ± offset to address)
		On.d #n.d		0.0	[q	d	d	d	d	d	d	-	- -	\$	MET(bit number of d) \rightarrow 2 MET(bit n of d) \rightarrow bit n of d	Set Zwith state of specified bit in d then invert the bit in d
BCLR	BL	Dn.d #n.d	+	B a		D D	p p	D D	0.0	9	9.0	p p	-	-	- 10	MDT(bit number of d) \rightarrow Z 0 \rightarrow bit number of d	Set Zwith state of specified bit in d then clear the bit in d
	SM ₃	eddress		-	-	•	-	-	-	-	-	-	-	-	-	eddress → PC	Branch always (B or 16-bit ± offset to addr
8SET	8 L	Ond #ad		G. R.	-	0.0	a a	a a	d	d	۵۵	ρ.		-		NOT(bit norfel) → Z I→ bit norfel	Set 2 with state of specified bit in d then set the bit in d
	BM ₂	address		•	-	•	-	-	-	-	-	-	-	-		TT VICE	Brench to subroutine (8 or 6-bit ± offset)
81ZT	ΒĹ	Dayd #a,d	*	P. R.	-	9	q	9	9	ď	9	9	d	q	- 2	NOT(left On of d) → Z NOT(bit #a of d) → Z	Set Z with state of specified bit in d Leave the bit in d unchanged
CHK		s.Dn	-*500	₿	-	8	2	*	8	\$	1	£	8	*		if Da<0 or Da>s then TRAP	Compare On with D and upper bound (s)
		d	-0100	q	Ŀ	4	d	d	ď	d	ď	d	-	-		D → d	Clear destination to zero
CMP 4		s.On s.An	_***	B	*1	2	3	8	8	8	Σ	:		- 2		set CCR with On - s	Compare On to source
		#n.d		4	В	d	g Z	<u>z</u>	ď	g d	8	z d	Ξ-	-		set CCR with An - s set CCR with d - #n	Compare An to source Compare destination to #n
		(Ay)+,(Ax)+	_***	-	-	-	R	-	-	-	-	-			1	set CCR with (Ax) - (Ay)	Compare (Ax) to (Ay); Increment Ax and Ay
08cc		Dn.addres ²		-	7	-	·	-	-	-	-	-	-	•		if an false then ($Dn-1 \rightarrow Dn$ if $Dn \Leftrightarrow -1$ then addr $\Rightarrow PC$)	Test condition, decrement and branch
DIVS	W	s.Dn	-***0	П	-	2	2	8	8	1	1	\$	*	\$	2		Dn= [16-bit remainder, 16-bit quotient]
DIVU		s.On	-***0	B	-	*	8	8	g	8	B	8	2	8		32bit Da / 16bit s → Ca	Da= [8-bit remainder, 15-bit quotient]
		Ond	-**00	B	٠	d	d	d	d	ď	d	d	-	•		On XOR d → d	Logical exclusive CR On to destination
		#n.d	-**00	ď	-	d	d	d	q	d	ď	d	-	-		#n XXX d → d	Logical exclusive UR #n to destination
EORI 4		#nCCR		-	۲	-	-		-	-	•	-	-		*	#n XDR CCR -> CCR	Logical exclusive DR #n to CCR
EXE		#nSR RxRy		- E	- B	-	•	-	-	-	-	-	-	-	3	#n XDR SR → SR register ←→ register	Logical exclusive DR #n to SR (Privileged)
EXT	WL		-**00	ď	Ë	-	-		-	-	-				-		Exchange registers (32-bit only) Sign extend (change .B to .W or .W to .1)
LLEGAL				Ť	H	_	-	-	-	-	-	-	-		Ť	PC → -(22b); 28 → -(22b)	Concrete Regal Instruction exception
JMP		d		-		4	-	-	ď	d	đ	d	ď	d	_	Td → PC	Jump to effective address of destination
JSR		d		-	·	d	-		d	q	d	d	d	ď		PC → -(3P): ↑d → PC	push PC. jump to subroutine at address d
LEA	I	s.An		-	8	8	-	-	8	2	2	2	*	3	-	Ta → An	Load effective address of a to An
LINK		An,#n		-	-	-	-	-	-	-	ŧ	•	•	-	-	An → -(SP); SP -> An; SP + #n -> SP	Creets local workspace on stack (negative n to allocate space)
LSL LSR		Ox.Dy #n.Dy	***0*	8	-	-		-	-	-	-	-	-	•	. 8	X - 1	Logical shift Dy. Ax bits left/right Logical shift Dy. #n bits L/R (#n: 1 to 8)
		d		_	ا۔	d	d ·	d	d	ı d	ď	d	-		•	0->C	Logical shift d i bit left/right (W only)
	BWL		-**00		81	8	ė	8	e	8	В	8	8	8		ε → d	Move data from source to destination
NOVE		* CC8		•	ᄓ	8	8	8	8	8		E	8	2		a → CCR	Move source to Condition Code Register
MOVE	W	s.SR SR,d	232-152	8	늬	8	\$	8	8	8	E	8	8	2		R2 ← s	Move source to Status Register (Privileged)
MOVE		USP.An		<u>d</u>	ď	d	4	d	d -	d -	ď	ď	•	-	-	SR → d USP → An An → USP	Move Status Register to destination Move User Stack Pointer to An (Privileged)
MDVE		AnJUSP															Move An to User Stack Pointer (Privileged)

Architecture des ordinateurs — EPITA — S3 — 2023/2024

Doenda	Size	Operand	CCR		Her	tive	Addres	2=2 2	DUMER.	d=destina	tion. e-	ethe	r. i=dis	placemen		Operation	Description
	BWL.	a.d	XNZVC			(An)		-(An)		(i.la.Rn)				(i.PC,Rn)			
MOVEA		s.An		8	8	8	8	5	*	8	2	E		8	2	z → An	Move source to An (NOVE s.An use NOVEA)
MOVEN	WL	Rn-Rn.d		-	-	ď	-	ď	d	d	d	ď	-	-	-	Registers → d	Nove specified registers to/from memory
		s,Rn-Rn		*3	-	2	z i	-	2	8	8	8		8		s -> Registers	(.W source is sign-extended to .1. for Rn)
MOVEP	WL	Dr.(i.An)		8	-	-	-	•	d	-	٠	-	-	-	-	On → (j.An)(i+2.An)(i+4.A.	Move On to/from elternate memory bytes
.5%		(iAn).Dn		ď	<u> </u> -	<u>-</u>		-	8		-	-	-	•	-	$(i.An) \rightarrow Dn_{-}(i+2.An)_{-}(i+4.A)$	(Access only even or odd addresses)
MEVED!	L	#n,Dn	-**00	ď	-	•	-	-	-	•		-		-		\$n → Dn	Move sign extended 8-bit #n to On
MULS	Ħ	z.Dn	-**00	8	-		2	8	8	8	8	2	*	2	8	±66bit s°±16bit On →±0n	Multiply signed (6-bit; result signed 32-bit
MULU	W	s.On	-**00	8	-	\$	8	2	8	8	2	8	\$	2	8	lisbat a * lisbat On → On	Multiply unsig'd 16-bit: result: unsig'd 32-bit
NBCO	B	d	*U*U*	d	-	d	d	ď	ď	d	d	9	,	-	-	D-dg-X→d	Negate BCO with eXtend, BCD result
NEG	BWL.	d	****	d	-	d	d	d	d	ď	d	d	-	-		C-q→q	Negate destination (2's complement)
******	BWL	d	****	q	•	ď	d	q	d	d	d	ð	-	-	~	Ū-q-χ→q	Negate destination with eXtend
NDP				-	-	•	-	•	-	-	•	-	-	•	-	None	No operation occurs
	BWL	d	-**00	d	-	d	d	d	d	d	d	q	-	•	-	MDL(q) → q	Logical NDT destination (i's complement)
DIR 4	BWL	s.On	-**00	ŧ	-	2	2	8	2	2	8	8	2	*	- 1	z DR Dn → Dn	Logical DR
		Ond		В	-	ď	d	d	d	d	d	d	-	-	-	Dn DR d → d	(ORI is used when source is #n)
	BWL	#n,d	-**00	ď	-	d	9	9	d	d	d	d	-	-	\$	#n UR d → d	Logical DR #n to destination
	В	#n,CCR	*****	-	-	-	-	-	-		-	-	-	4	_	#n OR CCR → CCR	Logical DR #n to CCR
DRI ⁴	₩	#n.SR		-	-	_		-	•	•	-	-	-	-	\$	#n DR SR → SR	Logical OR #n to SR (Privileged)
PEA	L	8		-	-		-	-		Z Z	#	2	8	2	-	↑s → -(SP)	Push effective address of a onto stack
RESET				-	-	1	-	-	-	-	-	-		-	-	Assert RESET Line	bssue a hardware RESET (Privileged)
ROL	BWL	Dx.Dy	-**0*	8	-	-	-	•	-	•	•	-	•	- 1	-		Rotate Dy. Dx bits left/right (without X)
RDR		#n,Dy		đ	-	-	-	-	-	-	-	-	•	-	\$		Rotate Dy, #n bitz left/right (#n: I to 8)
	W	q		-	-	d	d	d	q	d	d	d	-	-	-		Retate d I-bit left/right (W only)
	BALL	Ox.Oy	***0*		-	-	~	-	-	-	-	-	-	- 1	-	C-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Rotete Dy. Dx bits L/R, X used then updated
RDXR		#n.Dy		đ	-	•	-	-	-	-	-	-	-	-	2	Y	Rotate Dy, #n bits left/right (#n: 1 to B)
	W	ď		-	-	d	đ	d	d	ď	d	d	•	-	-		Rotate destination I-bit left/right (W only)
RTE			*****	•	-	-	-	-	-	-	-	-	-	-	-	(SF)+ → SR; (SP)+ → PC	Return from exception (Privileged)
RTR			-	-	-	-	•	٠	-	-	-	-	-	-	-	$(SP)+ \rightarrow CCR. (SP)+ \rightarrow PC$	Return from subroutine and restore CCR
RIZ				-	-	-	-	-	•	(*)	-	-	-	-	-	(SP)+ → PC	Return from subroutine
28CD	В	Dy.Ox	*U*U*	B	-	-	-	-	-	-	-	-	-	-	-	$0x_0 - 0y_0 - X \rightarrow 0x_0$	Subtract BCO source and extend bit from
		-{Ay),-(Ax)		•	-	-	-	9	-	-	-	•	-	-	-	$-(Ax)_{B}$ $-(Ay)_{D}$ $-(Ax)_{D}$	destination, BCO result
See	8	d		ď	-	q	d	d	d	d	d	9	-	-	•	If cc is true then is $\rightarrow d$	If cc true then d.B = 11111111
				_	Ш											b ← z'O azla	else d.B = 00000000
STOP		#n		-	Ŀ	-	-	-		<u> </u>	-	-		-		#n → SR; STOP	Move #n to SR, stop processor (Privileged)
SUB 4	BWL	s.lin	****	B	2	*	8	8	8	8	4	8	2	2		Ðn - ε → Ün	Subtract binary (SUBI or SUBD used when
		Ond		8	ď	d	d.	ď	<u>d</u>	d	d	Ь		-		d-Dn → d	source is #n. Prevent SUBD with #n.L)
SUBA 4	WL	z,An		8	В	3	8	\$	<u> </u>	8	*	8	Z	I.		An - s → An	Subtract address (Wixign-extended to .L)
2081,		#R.d	****	d	-	d	d	d	d	d	d	d		-		₫-₩→q	Subtract immediate from destination
ZDBO.		#n.d	****	d	d	đ	d	d	9	d	d	q	-	•	2	d-#n->d	Subtrect quick immediate (#n range: 1 to 8)
ZUBX	8MJ	Cy,Ox	*****	8	-	7		-	-	· 7		-	-	-	-	0x - 0y - X → 0x	Subtrect source end extend bit from
		-(Ay)(Ax)			-	_	-	B		19	*	*	٠	-	-	$-(Ax)(Ay) - X \rightarrow -(Ax)$	destination
ZWAP	W	Dn	-**00	q	-		-	-	-	18	-	-	-	-	-	htts:[3H6] ← → htts:[15:0]	Exchange the 65-bit halves of On
TAS	В	d	-**00	ъ	٠	d	d	d	d	d	d	d		-	_	test d→CCR: 1 → bit 7 of d	N and Z set to reflect d, bit7 of d set to 1
TRAP		#n		-	-	-	-	-	-	-	- '	-	-	•	2	PC →-(SSP)-C3SP):	Push PC and SR, PC set by vector table #n
				L	Ш	<u> </u>			<u> </u>	ļ	<u> </u>	<u> </u>			\vdash	(vector table entry) → PC	(#a range: 0 to (5)
TRAPY		<u> </u>		Ŀ	-	÷	-	<u> </u>	1	-	-	-		-	_	If Y then TRAP #7	# overflow, execute an Overflow TRAP
121	BWL		-**00	q	Ŀ	d	ď	ď	<u>d</u>	d	d	d	-	•	-	test $d \rightarrow CCR$	N and Z set to reflect destination
UNLK		An		٥	9	-	(An)+	-(An)	-	- (i.An,Ka)	-	<u> </u>	GPC)	(i.PE.Ra)	-	$An \rightarrow SP: (SP)+ \rightarrow An$	Remove local workspace from stack
	BWL	2.0	XNZVC	n													

Condition Tests (+ DR, 1 NOT, @ XDR; " Unsigned, "Alternate cc.)											
ET:	Condition	Text	CC	Condition	Text						
T	trus	1	VC	overflow clear	17						
F	false	0	٧S	overflow set	Y						
HP	higher than	!(C + Z)	PL	plus	IM						
12.	lower or same	C+Z	М	minus	N						
HS", CE°	higher or same	1C	GE	greater or equal	(N ⊕ V)						
LDP, CS*	lower than	C	LT	less than	(N ⊕ V)						
NE	not equal	12	6T	greater than	$I[(N \oplus V) + Z]$						
ED	equal	Z	LE	less or equal	(N ⊕ V) + Z						

Revised by Peter Csaszar, Lawrence Tech University - 2004-2006

- An Address register (15/32-bit, n=0-7)
- On Data register (8/16/32-bit, n=0-7)
- any data or address register
- s Source, d Destination
- Either source or destination
- #In Immediate deta, I Displacement
- BCD Binary Coded Decimal
- Effective address
 - Long only: all others are byte only
 - Assembler calculates offset
- SSP Supervisor Stack Pointer (32-bit)
- USP liser Stack Pointer (32-bit)
- SP Active Stack Pointer (same as A7)
- PC Program Counter (24-bit)
- SR Status Register (16-bit)
- CCR Condition Code Register (lower 8-bits of SR)
- M negative, Zzero, V overflow, C carry, X extend * set according to operation's result, = set directly
- not effected. O cleared, I set, U undefined
- Branch sizes: .8 or .5 -128 to +127 bytes. .W or .1 -32768 to +32767 bytes

Assembler automatically uses A, L D or M form if possible. Use #n.L to prevent Duick optimization

Distributed under the GNU general public use license.