CS218: Algorithm design and analysis

Randomized Algorithms and Average Analysis

Yan Gu

Does the universe have true randomness?

Newtonian physics suggests that the universe evolves deterministically

Quantum physics says otherwise

Does the universe have true randomness?

God does not play dice with the world.

- Albert Einstein

• Einstein, don't tell God what to do.

- Niels Bohr

Does the universe have true randomness?

• Even if it doesn't, we can still model our uncertainty about things using probability

 Randomness is an essential tool in modeling and analyzing nature

It also plays a key role in computer science

Randomness in computer science

Randomized algorithms

Does randomness speed up computation?

Statistics via sampling

• e.g. election polls

Nash equilibrium in Game Theory

Nash equilibrium always exists if players can have probabilistic strategies

Cryptography

A secret is only as good as the entropy/uncertainty in it

Randomness in computer science

- Randomized models for deterministic objects
 - e.g. the www graph
- Quantum computing
 - Randomness is inherent in quantum mechanics...
- Machine learning theory
 - Data follows some probability distribution
- Coding Theory
 - Encode data to be able to deal with random noise

•

Randomness and algorithms

- How can randomness be used in computation?
- Where can it come into the picture?

- Given some algorithm that solves a problem...
 - What if the input is chosen randomly?
 - What if the algorithm can make random choices?

What is a randomized algorithm?

- A randomized algorithm is an algorithm that is allowed to flip a coin
- (it can make decisions based on the output of the coin flip)

- In this course, we assume:
 - A randomized algorithm is an algorithm that is allowed to call: RandInt(n), which takes O(1) time/work

Randomness and algorithms

- For a randomized algorithm, what should we measure:
 - measure its correctness?
 - measure its running time?
- If we require it to be
 - always correct, and
 - always runs in time O(T(n))
- then we have a deterministic alg. with time complexity O(T(n))

Randomness and algorithms

- So for a randomized algorithm to be interesting:
 - It is not correct all the time, or
 - It doesn't always run in time O(T(n))

• (It either gambles with correctness or running time.)

Types of randomized algorithms

- Given an array with n elements (n is even): A[1 ... n]
- Half of the array contains 0s, the other half contains 1s
- Goal: Find an index that contains a 1

repeat:

k = RandInt(n) **if** A[k] = 1, **return** k repeat 300 times:

k = RandInt(n)

if A[k] = 1, return k

return "Failed"

Doesn't gamble with correctness Gambles with run-time

Gambles with correctness

Doesn't gamble with run-time

Monte Carlo algorithm

Gambles with correctness but not time

$$Pr[failure] = \frac{1}{2^{300}}$$

Worst-case time complexity: O(1)

Las Vegas algorithm

Gambles with time but not correctness

repeat: k = RandInt(n) if A[k] = 1, return k

$$Pr[failure] = 0$$

- Worst-case time: cannot bound (can be big when super unlucky)
- Expected time: O(1) (2 iterations)

Types of algorithms

- Given an array with n elements (n is even): A[1 ... n]
- Half of the array contains 0s, the other half contains 1s
- Goal: Find an index that contains a 1

Correctness

Time complexity

Determinist	İC
Monte Carl	0

Las Vegas

Always	$\Theta(n)$	
With "high" probability	0(1)	
Always	O(1) expected	

Analysis for Yan's simple hash table

A short recall of hash table

 Maintain a list of unordered elements, and support quick insert/delete and lookup

Simple uniform hashing strategy

- For each element with key x, find a random position $h_1(x)$;
 - if there's a collision, try another (i.e., $h_2(x)$)
- Say insert key to be 5
- Then insert key to be 88
- What's the expected number of retries?

Analyzing expected number of retries

- Assuming at least half of the elements in the hash table are empty
 - Recall this is the "load factor" of a hash table, and presumably should be less than ½
- What's the probability that the first slot is occupied?
- What's the probability that the first two slots are occupied?
- What's the probability that the first k slots are occupied?
- Total number of retries $\leq 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2 = O(1)$

Conclusion for hash table analysis

- Using this simple strategy, we can show that insert and lookup has constant (O(1)) cost
- We can show the same results for the more practical strategies
 - Closed addressing (chaining): CLRS Section 11.2
 - Open addressing: CLRS Section 11.4

Types of algorithms

Correctness

Time complexity

Deterministic

Monte Carlo

Las Vegas

Always	Good	
With good probability	Ideally even better	
Always	Better	

The Average Analysis for Quicksort

An overview of quicksort

- A randomized sorting algorithm based on divide-and-conquer
- Base case:
 - If the subarray contains 1 element, return it directly
- Divide:
 - Find a random pivot p
 - Put all elements < p on the left, call them L
 - Put all elements > p on the right, call them R
- Conquer
 - Sort L and R recursively
- Combine
 - Return L, p, R

An example of quicksort execution

- Find a random pivot x in the array
- Put all elements in A that are smaller than p on the left of x, and all elements in A that are greater than x on the right

The hardest part is in how to divide!

Partition the array takes linear work

 How to move elements around? (using 6 as a pivot)


```
Partition(A, n, x) {
    i = 1; j = n-1;
    while (i < j) {
        while (A[i] < x) i++;
        while (A[j] > x) j--;
        if (i < j) swap A[i] and A[j];
        i++; j--;
    }
}</pre>
```

- O(n) cost to partition n elements
- O(1) cost per element!

An example of quicksort execution

- Find a random pivot x in the array
- Put all elements in A that are smaller than p on the left of x, and all elements in A that are greater than x on the right

• O(1) cost per element per level

Quicksort - cost analysis

- We've already known that each element in one round requires O(1) cost
 - O(n) for all elements in a round in total
- How many rounds do we need?
 - Since we are not directly dividing the array into halves, we cannot guarantee the size of problem shrink by half
- But in the worst case, it is $O(n^2)$
- What is the average case?

Directly solving the recurrence

$$C(n) = n - 1 + rac{1}{n} \sum_{i=0}^{n-1} (C(i) + C(n-i-1)) = n - 1 + rac{2}{n} \sum_{i=0}^{n-1} C(i)$$

The equivalence of quicksort and randomized BST

When does *i* and *j* compare?

• Either *i* or *j* must have higher priority than all elements between *i* and *j*

$$\Pr[t_{i,j}] \leq \frac{2}{j-i+1}$$

Total number of comparisons is:

$$\sum_{i} \sum_{j>i} \Pr[t_{i,j}] = \sum_{i} \sum_{j>i} \frac{2}{j-i+1}$$

$$\leq \sum_{i} (2 \cdot \ln(n+1))$$

$$= O(n \log n)$$

Types of algorithms

Correctness

Time complexity

Deterministic

Monte Carlo

Las Vegas

Always	Good	
With good probability	Ideally even better	
Always	Better	

Hashing and Rabin-Karp Algorithm

Hash function

- Maps arbitrary data to fixed-size values
 - Usually integers
- The same data are always mapped to the same value
- · Different data are unlikely to be mapped to the same value
 - Collision: two keys are hashed to the same hash value

How to design a hash function

- E.g., Strings -> integers
- How can we map complicated structs
 - A pair: (i,j) for i,j in [1..100]
 - A triple (*i*, *j*, *k*) for *i*, *j*, *k* in [1..100]
 - A 2×2 matrix?
 - A string?

Application: Rabin-Karp algorithm

- Substring matching
- Given string X[1..n] (text) and Y[1..m] (pattern), we want to check if Y is a substring in X
 - X = abcabababc, Y = caba
- The naı̈ve solution cost O(nm) time
- Knuth-Morris-Pratt algorithm (KMP) can solve this in O(n) time
 - Hard to understand 🕾

Let's try randomization!

- To check if Y appears in X, we just need to check all X's substring and see if they are the same with Y
 - Checking if X[s..e] = Y takes O(m) time
- Let's use hashing!
 - Check if the hash value of X[s..e] equals to the hash value of Y

Let's try randomization!

- To check if Y appears in X, we just need to check all X's substring and see if they are the same with Y
 - Checking if X[s..e] = Y takes O(m) time
- Let's use hashing!
 - For a string using characters a, b, c
 - H_1 : using a=1, b=2, c=3. adding everything up

Y = bcab	H_{1}	(Y)	=	8
----------	---------	-----	---	---

a	b	C	а	b	а	b	С
---	---	---	---	---	---	---	---

abca	1+2+3+1=7	abab	1+2+1+2=6
bcab	2+3+1+2=8	babc	2+1+2+3=8
caba	3+1+2+1=7		

Let's try randomization!

 $Y = bcab, H_1(Y) = 8$

How to compute the hash value quickly?

O(n) time!

abca	1+2+3+1=7
bcab	2+3+1+2=8
caba	3+1+2+1=7
abab	1+2+1+2=6
babc	2+1+2+3=8

Hash value:

$$8-2+1=7$$

$$7-3+2=6$$

$$6-1+3=8$$

$Y = bcab, H_2(Y) = 2312$

Fewer collisions?

• H_2 : treat a=1,b=2,c=3, use a decimal number

O(n) time!

abca	1231
bcab	2312
caba	3121
abab	1212
babc	2123

Hash value:

1231 (1231-1000)*10+2=2312 (2312-2000)*10+1=3121 (3121-3000)*10+2=1212 (1212-2000)*10+3=2123

A simple version

```
num (c) {return c-98;} // a=1, b=2, c=3
check match (X, Y) {
 hy = 0;
  for (i = 1..m) hy = hy*10 + num(Y[i]); //compute hash value of Y
  hx = 0;
  for (i = 1..n) {
    if (i < m) hx = hx*10 + num(X[i]); // process the first (m-1) characters
    else {
       if (i==m) hx = hx*10 + num(X[i]);
       else hx = (hx - X[i-m+1] * pow(10, m-1))*10 + num(X[i]); // compute new hash value
       if (hx == hy)
          if (check(X[i-m+1 .. i], Y)) return true;
```

More characters?

- What happens if we have 26 letters? Or even more?
 - Use base-26 (or base-x with x > 26)
- If Y has 100 characters?
- Cannot use an integer to store?
- We can use $H_3(s) = H_2(s) \% p$ for some big prime p
 - Still, the same strings will be mapped to the same value
 - Different strings are likely to be mapped to different values
- (a + b) % p = (a % p) + (b % p)
- $(a \times b) \% p = (a \% p) \times (b \% p)$

The cost of the algorithm?

- O(n) time to compute and compare all hash values
- But if two hash values are the same, we need to verify the strings are equal or not
 - *O*(*m*) time
- In the worst case, all comparisons succeed, we need O(nm) time
- However, the probability of two different strings is mapped to the same value is 1/p, expected cost is $O\left(\frac{mn}{p}+n\right)$
- ullet We can use a large p to decrease the cost
- We can also use two independent hash functions to even lower the chance of collision

Summary for randomized algorithms

- Randomization are powerful tools when designing algorithms
 - Many algorithms we are using everyday are randomized (quicksort, hash table)
 - In fact, most of the algorithms that are widely used in practice are randomized
- We talked about how to analyze the average running time of hash table and quicksort, and Rabin-Karp algorithm for pattern matching
- More randomized algorithms and tools to analyze randomized algorithms will be taught in CS 219
 - Tail bounds (high probability analysis), union bounds
 - Graph min-cut, tree embeddings, low-diameter decomposition, graph partition, etc.
 - Many parallel algorithms are randomized (covered in CS 214)

The next lecture...

Amortized analysis

Average grade so far

- Entrance Exam: 5.6/5
- HW1: 5.8/6
- HW2 Part I: 3.4/3.5
- HW2 Part II: 4.7/4.5

• Total: 19.5/19

• HW / Exams are 50% / 50%

Score-to-grade mapping

•A+: >100%

•A: 90%

•A-: 85%

• B+/B/B-: 80%/75%/70%

• C/D: 65%/60%

•F: <60%

About the midterm

I graded some and it looks good

• The first three problems are mostly basic (multiple choice, basic DP, greedy proof), for 14 points

 The rest of the problems are challenging, but partial points can be given

How the candy system works

- You earn candies by solving bonus problems, actively participating in class discussions (up to 2 candies), online discussions (up to 2 candies), class participation, OH participation, and bonus presentations in the last week
- The number of candies will non-linearly map to up to 10 bonus points
 - The first 5 candies are likely mapped to 4-5 points,
 - Then 2-4 candies per point all the way up

About algorithms

Design

Analysis

Implementation

Exposition

Presenting