Cover Sheet for Submission of Maths Examinations Summer 2020

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

Module Name: Linear Algebra and Groups

Module Code: MATH40003

Date: 07/05/2020

Questions Answered (in the file):

Please tick next to the question or questions you have answered in this file.

Q1	
Q2	√
Q3	
Q4	
Q5	
Q6	

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

(Optional) Page Numbers for each question;

Page Number	Question Answered

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

(6)
$$(A \mid C) \xrightarrow{R_{7}-2|R_{1}} \begin{pmatrix} 1 & 2 & -1 & 3 & 0 \\ 0 & -4 & -1 & -2 & 1 \\ 0 & 2 & 2 & 6 & -2 & 6 \\ 0 & -2 & 0 & -1 & 0 \end{pmatrix} \xrightarrow{R_{1}-\frac{1}{4}} \begin{pmatrix} 1 & 2 & -1 & 3 & 0 \\ 0 & +1 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ 0 & 2 & 2 & 6 & -3 & 6 \\ 0 & -2 & 0 & -1 & 0 \end{pmatrix}$$

$$T = \frac{1}{a+4}$$

$$W = \frac{6+2}{a-4}$$

$$Z = -\frac{1}{2}$$

$$Y = -\frac{1}{2} - \frac{1}{2} \left(\frac{6+2}{a-4} \right)$$

$$X = -1 - 2 \left(\frac{6+2}{a-4} \right)$$

If
$$a=u, b=-2$$
, sol- is
$$(-1-2w, -\frac{1}{2}-2w, -\frac{1}{2}, w) = \underset{\text{innary}}{\text{intivity}} \text{sol.}$$

$$w \in \mathbb{N}$$
If $\alpha=u, b\neq -2$ we get no solutions.

CID: 01738166 MATH40003 Question 2 Page 2

(C)

(i) The row space of 13 is the span of the rows of A

· The row rank is dim (RSp[13]).*

(ii) azy, 6=2

$$A = \begin{pmatrix} 1 & 2 & -1 & 3 \\ 2 & 0 & -3 & 4 \\ 1 & 4 & 1 & 4 \end{pmatrix} \begin{pmatrix} k_2 = k_2 - 2k_3 \\ k_3 = k_3 - k_1 \end{pmatrix} \begin{pmatrix} 1 & 2 - 1 & 3 \\ 0 - 4 & -1 - 2 \\ 0 & 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} k_3 = k_3 - \frac{1}{2}k_1 \\ 0 - 2 & 0 - 1 \end{pmatrix} \begin{pmatrix} 2 - 1 & 3 \\ 0 - 4 & -1 - 2 \\ 0 & 0 & \frac{1}{2} & 0 \end{pmatrix}$$

$$\frac{Ru = \frac{1}{3}Ru - \frac{1}{3}l^{2}3}{0 - 4 - 1 - 7}$$

$$0 0 \frac{5}{2} 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$0 0 0$$

$$(A11) = \begin{cases} 1 & 2 - 1 & 3 & 0 \\ 2 & 0 - 3 & 4 & 1 \\ 1 & 4 & 1 & 4 & 2 \\ 0 & -7 & 0 & -1 & 0 \end{cases} \xrightarrow{Row} \begin{cases} 1 & 2 - 1 & 3 & 0 \\ 0 & -4 - 1 - 2 & 1 \\ 0 & 0 & \frac{3}{7} & 0 & \frac{5}{7} \\ 0 & 0 & \frac{3}{7} & 0 & -\frac{4}{7} \end{cases} =$$

Row rank of A is $\boxed{9}$; Row space $\left\{ \begin{pmatrix} 1\\2\\-1\\3\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\3/1\\-1/3 \end{pmatrix} \right\}$

(d) Suppose vow rank (A) = vow vank (Alc) =>

(olumn vank (A) = vow vank (A) = vow vank (Alc) = col. vank (Alc) =>

(cl. rank(A) = cul. vank (Alc) => The last column (c) can be represented as a linear combination of the first columns.

Using row operations (column operations) we can reduce the lost column to a () 150 we ged the homogenous equation

A' = 00.

The solution space is S is the Kernel of the reduced matrix A', so it is a coset of K, where K is the kernel of A.

By rank nullity thm, we get that

dim (Kar(A)) = dim (Dm 18) - dim (Im (A)) = n-rank (H)