Convolutional Neural Networks

Overview

CNN Architectures and Parts

Why do they work?

What are the benefits?

Applications

CAFFE and Tensorflow

CNN Architecture and Parts

CNN Architecture

Typical architecture
Multiple convolutional & max pooling layers
Fully connected layers
Softmax prediction

Parts - Convolutional Layer

Parts - Max Pooling

1D CNN

3D CNN

Why do they work?

CNN vs Fully Connected

CNN vs. Fully Connected

CNN vs Fully Connected

Pooling

Hand Engineered Features

Automatic Feature Extraction

FACIAL RECOGNITION

Deep-learning neural networks use layers of increasingly complex rules to categorize complicated shapes such as faces.

Layer 1: The computer identifies pixels of light and dark.

Layer 2: The computer learns to identify edges and simple shapes.

Layer 3: The computer learns to identify more complex shapes and objects.

Layer 4: The computer learns which shapes and objects can be used to define a human face.

Applications

LeNet - Identify Numbers (MNIST Dataset!)

CNN called LeNet by Yann LeCun (1998)

AlexNet - ImageNet Classification AlexNet (Krizhevsky et al. 2012)

The class with the highest likelihood is the one the DNN selects

When AlexNet is processing an image, this is what is happening at each layer.

Automatic Figure Captioning

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

Somewhat related to the image

A skateboarder does a trick on a ramp.

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the side of the road.

Unrelated to the Image

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

Playing Atari

Control Robots

Human Activity Recognition

Caffe and TensorFlow

HAR Demo

FFNN 1 layer 6,807 params

FFNN 2 layer 15,907 params

CNN 1 layer 4,387 params

CNN 2 layer 2,547 params