

WHAT IS CLAIMED IS:

1 1. A method for operating a distributed arbiter for a plurality of resources,
2 comprising:
3 receiving at one of the resources, requests for the one resource from a plurality
4 of requesters; and
5 granting the one resource to one of the requesters according to respective
6 requester priorities, the respective requester priorities being inversely
7 related to a number of requests made respectively, by the requesters.

Sub A 1 > 2. The method as recited in claim 1 further comprising the requesters
2 supplying respective requester priority indications to at least the one resource.

1 3. The method as recited in claim 2 wherein requesters respectively
2 supply number of requests as requester priority indications.

1 4. The method as recited in claim 1 further comprising granting at least
2 one of the plurality of resources to a requester according to a round robin scheme,
3 thereby avoiding starvation.

1 5. The method as recited in claim 1 wherein the one resource provides a
2 grant indication to the one of the plurality of requesters.

1 6. The method as recited in claim 1 wherein the multiple resources
2 evaluate received requests sequentially.

1 7. The method as recited in claim 6 wherein resources are considered in
2 an order determined according to resource priority.

1 8. The method as recited in claim 1 wherein the multiple resources
2 evaluate received requests sequentially, and wherein a requester already granted a
3 resource removes requests for other resources for arbitration for a next sequential
4 resource, thereby preventing requesters from receiving multiple grants during an
5 arbitration cycle.

1 9. The method as recited in claim 1 wherein requester priorities are
2 recalculated after a resource is granted.

1 10. The method as recited in claim 1 further comprising the distributed
2 arbiter performing multiple iterations during one arbitration cycle to allocate
3 resources to requesters.

1 11. The method as recited in claim 9 further comprising requesters
2 recalculating their requests by eliminating requests for a granted resource.

1 12. The method as recited in claim 1 wherein requesters receive multiple
2 grants from multiple resources during an arbitration iteration.

1 13. The method as recited in claim 12 wherein a number of arbitration
2 iterations over multiple arbitration cycles varies dynamically.

1 14. The method as recited in claim 12 wherein the one resource determines
2 which requests to grant in parallel with other resources determining which requests to
3 grant.

1 15. The method as recited in claim 12 wherein the one resource sends a
2 grant indication to a requester being granted its request.

1 16. The method as recited in claim 15 wherein the one resource sends a
2 resource priority indication to the requester being granted its request, indicative of a
3 number of requests received by the resource.

1 17. The method as recited in claim 12 wherein a requester selects from
2 among a plurality of grants according to respective resource priorities associated with
3 each granting resource, the respective resource priorities being inversely related to a
4 number of requests made, respectively, for each granting resource.

1 18. The method as recited in claim 17 wherein resource priorities are
2 recalculated each iteration.

1 19. The method as recited in claim 17 wherein requester priorities are
2 recalculated each iteration.

1 20. The method as recited in claim 17 further comprising the requester
2 utilizing a round robin scheme to select from among the plurality of grants.

1 21. The method as recited in claim 20 wherein the round robin scheme is
2 utilized before the requester selects from among the plurality of grants according to
3 the respective resource priorities, the requester selecting from among the plurality of
4 grants according to the respective resource priorities if the round robin scheme does
5 not result in an acceptance of a grant.

1 22. The method as recited in claim 17 further comprising the requester
2 utilizing a random scheme in addition to using calculated priorities to select from
3 among the plurality of grants.

1 23. The method as recited in claim 12 wherein the requester being granted
2 its request sends an accept indication to the resource whose grant it is accepting.

1 24. The method as recited in claim 23 wherein a requester determines
2 which of one or more grants to accept, in parallel with other requesters determining
3 which received grants to accept.

1 25. The method as recited in claim 1 wherein the resources do not transmit
2 grant indications to requesters, each requester determining grant values according to
3 received information from other requesters.

1 26. The method as recited in claim 25 wherein requesters and resources are
2 synchronized in regards to round robin positions.

1 27. The method as recited in claim 2 wherein each of the requesters
2 provides an indication of priority on a bus logically combining the indications of
3 priority, the priority being related to a number of requests being made by each of the
4 requesters.

1 28. The method as recited in claim 27 wherein the indications of priority
2 are unary coded, one bit corresponding to one request.

1 29. The method as recited in claim 28 wherein the bus logically combines
2 the indications of priority.

1 30. The method as recited in claim 28 wherein the indications of priority
2 are a number of requests of respective requesters.

1 31. The method as recited in claim 28 further comprising a requester
2 responding to the priority indication on the bus by not sending a request if the priority
3 indication on the bus indicates a higher priority requester is requesting a resource.

1 32. The method as recited in claim 1 wherein the requesters are nodes of a
2 network coupled to input ports of a network switch and the resources are output ports
3 of the network switch, multiple ones of the output ports being accessible to more than
4 one of the input ports.

1 33. The method as recited in claim 1 wherein the requesters are processors
2 of a multi-processor system and the resources are memories coupled to the processors,
3 each of the memories being accessible to more than one of the processors.

1 34. The method as recited in claim 1 further comprising recalculating
2 requester priorities after each time a resource is granted to a requester.

1 35. An arbitration apparatus for arbitrating requests from a plurality of
2 requesters for a plurality of resources, comprising:
3 means for receiving requests for resources from the requesters; and

4 means for granting requests according to requester priorities, the requester
5 priorities being inversely related to the number of requests respectively
6 made by the requesters.

1 36. The arbitration apparatus as recited in claim 35 further comprising:
2 means for selecting from among a plurality of grants according to resource
3 priorities, the resource priorities being inversely related to the number
4 of requests made for the respective resource.

Sub A'
1 37. The arbitration apparatus as recited in claim 36 further comprising
2 means for preventing starvation for grants.

1 38. The arbitration apparatus as recited in claim 35 further comprising
2 means for preventing starvation for requests.

1 39. The arbitration apparatus as recited in claim 35 wherein the arbitration
2 apparatus is one of distributed arbiter and a centralized arbiter.

1 40. A distributed arbiter comprising:
2 a plurality of requesters;
3 a plurality of resources coupled to the requesters through a transport
4 mechanism;
5 wherein each requester is coupled to provide to each resource requested by the
6 respective requester, a request indication; and
7 wherein a requested resource is responsive to a plurality of requests to
8 selectively grant one of the requests according to requester priorities,
9 the requester priorities being inversely related to a number of requests
10 being made by respective requesters.

1 41. The distributed arbiter as recited in claim 40 wherein the requested
2 resource is further responsive to the plurality of requests to selectively grant one of
3 the requests according to a round robin mechanism.

1 42. The method as recited in claim 41 wherein the round robin mechanism
2 is utilized before the requested resource selects from among the plurality of requests
3 according to the requester priorities, the requested resource granting one of the
4 requests according to the requester priorities if the round robin mechanism does not
5 result in a grant.

1 43. The distributed arbiter as recited in claim 40 wherein each requester
2 requesting the requested resource respectively provides a requester priority indication
3 to the requested resource.

1 44. The distributed arbiter as recited in claim 43 further comprising a bus
2 coupled to the requesters and resources, and wherein each of the requesters provides
3 an indication of priority on a bus, the bus logically combining the indications of
4 priority, the priority being inversely related to a number of requests being made by
5 each of the requesters.

1 45. The distributed arbiter as recited in claim 44 wherein the indications of
2 priority are unary coded.

1 46. The distributed arbiter as recited in claim 44 wherein a bus implements
2 a wired-NOR of the indications of priority.

1 47. The distributed arbiter as recited in claim 44 wherein each requester
2 places a unary encoded number of requests on the bus as the indication of priority.

1 48. The method as recited in claim 44 wherein a requester with a lower
2 priority than indicated on the bus is responsive to the priority indicated on the bus to
3 not send its request to a resource.

1 49. The distributed arbiter as recited in claim 40 wherein the requested
2 resource provides a grant indication to a requester whose request is being granted by
3 the resource.

1 50. The distributed arbiter as recited in claim 40 wherein the requested
2 resource is further coupled to provide an indication of resource priority, the resource
3 priority being inversely related to a number of resource requests received by the
4 requested resource.

SUB A 1 51. The distributed arbiter as recited in claim 40 wherein a requester is
2 responsive to receiving a plurality of grants from a plurality of resources to accept one
3 of the grants according to priorities of the grants, the priorities being inversely related
4 to a number of requests received by resources.

1 52. The distributed arbiter as recited in claim 51 wherein the requester
2 accepts a grant indicating a particular resource is being allocated to the requester,
3 according to a starvation avoidance mechanism in addition to the priorities.

1 53. The distributed arbiter as recited in claim 40 wherein a requester is
2 responsive to receiving a plurality of grants from a plurality of resources to accept one
3 of the grants according to a random priority determined for the grants.

1 54. The distributed arbiter as recited in claim 40 wherein the requesters are
2 nodes of a network coupled to input ports of a network switch and the resources are
3 output ports of the network switch, multiple ones of the output ports being accessible
4 to more than one of the input ports.

1 55. The distributed arbiter as recited in claim 40 wherein the requesters are
2 processors of a multi-processor system and the resources are memories coupled to the
3 processors, each of the memories being accessible to more than one of the processors.

1 56. A computer program product encoded in at least one computer
2 readable medium to implement an arbitration mechanism to allocate a resource to
3 requesters, the computer program product comprising:
4 a first instruction sequence executable to receive requests for one of the
5 resources from multiple requesters; and

6 a second instruction sequence executable to allocate the one resource to one of
7 the requesters according to requester priorities, requester priorities
8 being inversely related to a number of requests made by each requester
9 for the resources; and
10 wherein the at least one computer readable medium is selected from the set of
11 a disk, tape or other magnetic, optical, or electronic storage medium
12 and a network, wireline, wireless or other communications medium.

1 57. The computer program product as recited in claim 56 wherein the
2 computer program product further includes a starvation avoidance instruction
3 sequence executable to implement a starvation avoidance mechanism.

1 58. A computer program product encoded in at least one computer
2 readable medium to implement an arbitration mechanism to determine which of a
3 plurality of grants received by a requester from a plurality of resources, to accept, the
4 computer program product comprising:

5 a first instruction sequence executable to receive an indication of the grants for
6 respective resources; and
7 a second instruction sequence executable to accept one of the grants according
8 to grant priorities, grant priorities being inversely related to a number
9 of requests received by a resource.

1 59. The computer program product as recited in claim 58 wherein the
2 computer program product further includes a starvation avoidance instruction
3 sequence executable to implement a starvation avoidance mechanism to accept one of
4 the grants.

Add A