MA0505 - Análisis I

Lección XI: La Integral de Riemann-Stieltjes

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- La Nueva Integral
 - Sumas de Riemann y Stieltjes
 - Sumas Superiores e Inferiores
 - Propiedades
- Propiedades de la Integral

Las Sumas de Riemann y Stieltjes

Sea $\phi: [a,b] \to \mathbb{R}$. Dados $f: [a,b] \to \mathbb{R}$ acotada, una partición $\Gamma = \{x_0 = a < x_1 < \cdots < x_n = b\}$ de [a,b] y $x_{i-1} \leqslant \xi_i \leqslant x_i$ para $1 \leqslant i \leqslant n$, definimos la suma de Riemann-Stieltjes como

$$R(f,\Gamma,\phi) = \sum_{i=1}^{n} f(\xi_i) [\phi(x_i) - \phi(x_{i-1})].$$

La Definición de la Integral

Definición

Decimos que f es Riemann-Stieltjes integrable con respecto a ϕ en [a,b] si existe $I \in \mathbb{R}$ que satisface

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; (|\Gamma| < \delta \Rightarrow |R(f, \Gamma, \phi) - I| < \varepsilon)$$

para cualquier escogencia de puntos $\{\xi_1,\ldots,\xi_n\}$.

Denotamos
$$I = \int_{a}^{b} f d\phi$$
.

Sea $f : [a, b] \to \mathbb{R}$ acotada y $\Gamma = \{ x_0 = a < x_1 < \cdots < x_n = b \}$, definimos

$$m_i = \inf_{x_{i-1} \leqslant \xi_i \leqslant x_i} f(\xi), \quad M_i = \sup_{x_{i-1} \leqslant \xi_i \leqslant x_i} f(\xi)$$

para $1 \le i \le n$. De forma similar a la integral de Riemann, definimos

- $L(f, \Gamma, \phi) = \sum_{i=1}^{n} m_i [\phi(x_i) \phi(x_{i-1})].$
- $U(f, \Gamma, \phi) = \sum_{i=1}^{n} M_i [\phi(x_i) \phi(x_{i-1})].$

Claramente si f es creciente entonces

$$L(f,\Gamma,\phi)\leqslant R(f,\Gamma,\phi)\leqslant U(f,\Gamma,\phi)$$

y caso que $\phi(x) = x$ para $x \in [a, b]$ se obtiene la integral de Riemann ordinaria.

El Criterio de Cauchy

Ejercicio

La función f es Riemann-Stieltjes integrable respecto a ϕ si y sólo si dado $\varepsilon>0$, existe un $\delta>0$ tal que si $|\Gamma|<\delta$ y $|\Gamma'|<\delta$, vale entonces que

$$|R(f,\Gamma,\phi)-(f,\Gamma',\phi)|<\varepsilon.$$

Lema

Asuma que existe $z_0 \in [a, b]$ tal que f y ϕ son discontinuas en z_0 . Entonces f no es Riemann-Stieltjes integrable respecto a ϕ .

Supongamos que

$$\phi(z_0) \neq \lim_{x \to z_0^+} \phi(x) = \lim_{x \to z_0^-} \phi(x).$$

- Entonces existe un $\varepsilon > 0$ tal que para $\delta > 0$, existen $\overline{x}_{\delta}, \overline{y}_{\delta}$ que satisfacen
 - $\overline{x}_{\delta} < z_0 < \overline{y}_{\delta}$.
 - $|\phi(z_0) \phi(\overline{x}_\delta)| \geqslant \sqrt{\varepsilon}$.
 - $|\phi(z_0) \phi(\overline{y}_{\delta})| \geqslant \sqrt{\varepsilon}$.

Continuamos la Prueba

Además, existe un ξ_{δ} tal que

- $|\xi_{\delta}-z_0|<\frac{\delta_1}{2}.$
- $|f(\xi_{\delta}) f(z_0)| \geqslant \sqrt{\varepsilon}.$

Donde

$$\delta_1 = \min \left\{ \frac{1}{2} |z_0 - \overline{x}_\delta|, \frac{1}{2} |z_0 - \overline{y}_\delta| \right\}.$$

Supogamos que $\xi_{\delta}>z_0$ y tomemos Γ una partición tal que

$$z_0 = x_{i_0} < \xi_{\delta} < x_{i_0+1} = \overline{y}_{\delta}$$

con
$$|\Gamma| < \delta$$
. $(\Gamma = \{ x_0 = a < x_1 < \cdots < x_n = b \})$.

Continuamos la Prueba

Considere ahora dos suma de R-S con Γ de partición y los mismos $\{\xi_i\}$ para $i=i_0$.

En el intervalo $[x_{i_0}, x_{i_0+1}]$ vale que

- $R(f, \Gamma, \phi)$ es la suma de R-S con punto $\xi_{i_0} = \xi_{\delta}$.
- $R'(f, \Gamma, \phi)$ es la suma de R-S con punto $\xi_{i_0} = z_0$.

Así

$$|R(f,\Gamma,\phi)-(f,\Gamma',\phi)|=|f(\xi_{\delta})-f(z_0)||\phi(x_{i_0})-\phi(x_{i_0+1})|\geqslant \varepsilon.$$

En el caso que $z_0 > \xi_\delta$, la prueba es similar. Y el caso en el que $\lim_{x \to z_0^+} \phi(x) \neq \lim_{x \to z_0^-} \phi(x)$ será un ejercicio

Como las Sumas de Darboux

Analizamos *U* y *L*. El resultado a continuación tiene una análogo en las sumas de Darboux.

Lema

Sea $f : [a, b] \to \mathbb{R}$ acotada y $\phi : [a, b] \to \mathbb{R}$ creciente.

1. Si $\Gamma_1 \subseteq \Gamma_2$, entonces

$$L(f,\Gamma_1,\phi)\leqslant L(f,\Gamma_2,\phi), \quad U(f,\Gamma_1,\phi)\leqslant U(f,\Gamma_2,\phi).$$

2. Si Γ_1 , Γ_2 son dos particiones cualesquiera

$$L(f, \Gamma_1, \phi) \leqslant U(f, \Gamma_2, \phi).$$

Primer Inciso

Sean

$$\Gamma_1 = \{ x_0 = a < x_1 < \dots < x_n = b \},\$$

 $\Gamma_2 = \{ y_0 = a < y_1 < \dots < y_m = b \}$

con $n \le m$. Dado $1 \le i \le n$ asuma que existe y_i tal que $x_i < y_i < x_{i+1}$. Entonces

$$\sup_{[x_i,y_i]} f, \sup_{[y_i,x_{i+1}]} f \leqslant \sup_{[x_i,x_{i+1}]} f$$

y por lo tanto

$$\sup_{[x_{i},y_{i}]} f(\phi(y_{i}) - \phi(x_{i})) + \sup_{[y_{i},x_{i+1}]} f(\phi(x_{i+1}) - \phi(y_{i}))$$

$$\leq \sup_{[x_{i},x_{i+1}]} f(\phi(y_{i}) - \phi(x_{i}) + \phi(x_{i+1}) - \phi(y_{i})) = \sup_{[x_{i},x_{i+1}]} f(\phi(x_{i+1}) - \phi(x_{i})).$$

Terminamos el Inciso

Usando un argumento similar se prueba que si

$$y_{j-1} = x_{i-1} < y_j < y_{j+1} < \cdots < x_i = y_{j+m},$$

entonces

$$\sum_{j=1}^{m} \sup_{[y_{j-1},y_j]} f(\phi(y_j) - \phi(y_{j-1})) \leqslant \sup_{[x_{i-1},x_i]} f(\phi(x_i) - \phi(x_{i-1})).$$

Por lo tanto

$$U(f, \Gamma_1, \phi) \geqslant U(f, \Gamma_2, \phi).$$

De forma similar se prueba la desigualdad para L.

El Segundo Inciso

Si asumimos el primer inciso y tomamos Γ_1, Γ_2 particiones con $\Gamma = \Gamma_1 \cup \Gamma_2$, entonces

$$L(f,\Gamma_1,\phi)\leqslant L(f,\Gamma,\phi)\leqslant U(f,\Gamma,\phi)\leqslant U(f,\Gamma_2,\phi).$$

Utilizando la definición es fácil probar que si $\int_a^b f d\phi_1$ y $\int_a^b f d\phi_2$ existen, y vale $\phi = \phi_1 - \phi_2$, entonces $\int_a^b f d\phi$ existe y además

$$\int_{a}^{b} f d\phi = \int_{a}^{b} f d\phi_{1} - \int_{a}^{b} f d\phi_{2}.$$

En el caso que ϕ sea de variación acotada, podemos reducir el problema de que f sea R-S integrable respecto a ϕ al caso que ϕ sea creciente y positiva.

Teorema

Sea $f:[a,b] \to \mathbb{R}$ continua y $\phi:[a,b] \to \mathbb{R}$ de variación acotada en [a,b]. Entonces $\int\limits_a^b f \mathrm{d} \phi$ existe y Además

$$\left| \int_{a}^{b} f d\phi \right| \leqslant \sup_{[a,b]} |f| \operatorname{Var}(\phi, [a,b]).$$

Basta probar el resultado en el caso que ϕ es creciente. Entonces, dado $\varepsilon>0$ existe $\delta_1>0$ tal que

$$|x-y|<\delta_1\Rightarrow |f(x)-f(y)|<rac{arepsilon}{2(\phi(b)-\phi(a))}.$$

Primer Paso

Si $|\Gamma| < \delta_1$, vamos a probar que

$$U(f,\Gamma,\phi)-L(f,\Gamma,\phi)<\frac{\varepsilon}{2}.$$

Sea $\Gamma = \{ x_0 = a < x_1 < \cdots < x_n = b \}$, como f es continua, existen ξ_i , η_i que satisfacen

- $f(\xi_i) = \sup_{[X_i, X_{i+1}]} f = M_i$ para $0 \le i \le n-1$.
- $f(\eta_i) = \inf_{[x_i, x_{i+1}]} f = m_i \text{ para } 0 \leqslant i \leqslant n-1.$

Primer Paso

Tenemos que

$$U(f, \Gamma, \phi) - L(f, \Gamma, \phi)$$

$$= \sum_{i=0}^{n-1} (M_i - m_i)(\phi(x_{i+1}) - \phi(x_i))$$

$$= \sum_{i=0}^{n-1} (f(\xi_i) - f(\eta_i))(\phi(x_{i+1}) - \phi(x_i))$$

$$\leq \frac{\varepsilon}{2} \frac{1}{\phi(b) - \phi(a)} (\phi(b) - \phi(a))$$

puesto que

$$|\xi_i - \eta_i| \leqslant |x_{i+1} - x_i| \leqslant |\Gamma| \leqslant \delta_1$$

Segundo Paso

Vamos a mostrar que existe I tal que para $\eta > 0$, existe un $\delta > 0$ que satisface

$$|\Gamma| < \delta \Rightarrow |U(f,\Gamma,\phi) - I| < \frac{\varepsilon}{2}.$$

Para ese efecto, tomemos $\{\Gamma_k\}_{k=1}^{\infty}$ una sucesión de particiones tal que $|\lim_{k\to\infty} |\Gamma_k| = 0$.

Considere $\Gamma'_k = \bigcup_{i=1}^k \Gamma_i$, entonces vale

- $\Gamma'_k \subseteq \Gamma'_{k+1}$, y
- \blacksquare $\Gamma_k \subseteq \Gamma'_k$.

Segundo Paso

Tomemos $U = \inf_{1 \le k} U(f, \Gamma_k, \phi)$. Dado que $|\Gamma_k| < \delta_1$ para $k \ge k_1$,

$$U(f,\Gamma_k,\phi) \leqslant L(f,\Gamma_k,\phi) + \frac{\varepsilon}{2} \leqslant U(f,\Gamma'_k,\phi) + \frac{\varepsilon}{2}.$$

Sea $k_0 \geqslant k$, tal que

$$0 \leqslant U(f,\Gamma'_k,\phi) - U < \frac{\varepsilon}{2}$$

cuando $k \geqslant k_0$. Entonces cuando $k \geqslant k_0$ vale

$$|U(f,\Gamma_{k},\phi)-U| \leq |U(f,\Gamma'_{k},\phi)-U|+|U(f,\Gamma_{k},\phi)-U(f,\Gamma'_{k},\phi)| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}.$$

Segundo Paso

Si
$$\{\tilde{\Gamma}_k\}_{k=1}^{\infty}$$

Resumen

- La definición 1 de funciones Riemann-Stieltjes integrables.
- El criterio 1 que nos dice cuando una función NO es R-S integrable.
- El lema 2 que resume algunas propiedades de las sumas superiores e inferiores.

Ejercicios

- Lista 11
 - El ejercicio 1 sobre el criterio de Cauchy para integrales de Riemann y Stieltjes.
 - Terminar la prueba del lema 1 es un ejercicio.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.