(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 December 2002 (19.12.2002)

PCT

(10) International Publication Number WO 02/101112 A2

(51) International Patent Classification7: C23C 2/02, 2/40

(21) International Application Number: PCT/JP02/05627

(22) International Filing Date: 6 June 2002 (06.06.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

2001-170857 6 June 2001 (06.06.2001) JР 12 July 2001 (12.07.2001) JР 2001-211942 2001-304034 28 September 2001 (28.09.2001) ЛР 28 September 2001 (28.09.2001) JP 2001-304035 2001-304036 28 September 2001 (28.09.2001) JP 28 September 2001 (28.09.2001) 2001-304037 JР 7 May 2002 (07.05.2002) 2002-131643 JP

(71) Applicant (for all designated States except US): NIP-PON STEEL CORPORATION [JP/JP]; 6-3, Otemachi 2-chome, Chiyoda-ku, Tokyo 100-8071 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FUJITA, Nobuhiro [JP/JP]; C/O NIPPON STEEL CORPORATION, Technical Development Bureau, 20-1, Shintomi, Futtsu-shi, Chiba 293-8511 (JP). AZUMA, Masafumi [JP/JP]; C/O NIPPON STEEL CORPORATION, Technical Development Bureau, 20-1, Shintomi, Futtsu-shi, Chiba 293-8511

(JP). TAKAHASHI, Manabu [JP/JP]; C/O NIPPON STEEL CORPORATION, Technical Development Bureau, 20-1, Shintomi, Futtsu-shi, Chiba 293-8511 (JP). MORIMOTO, Yasuhide [JP/JP]; C/O NIPPON STEEL CORPORATION, Technical Development Bureau, 20-1, Shintomi, Futtsu-shi, Chiba 293-8511 (JP). KUROSAKI, Masao [JP/JP]; C/O NIPPON STEEL CORPORATION, YAWATA WORKS, 1-1, Tobihata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8501 (JP). MIYASAKA, Akihiro [JP/JP]; C/O NIPPON STEEL CORPORATION, Technical Development Bureau, 20-1, Shintomi, Futtsu-shi, Chiba 293-8511 (JP).

- (74) Agents: ISHIDA, Takashi et al., A. AOKI, ISHIDA & ASSOCIATES, Toranomon 37 Mori Bldg., 5-1, Toranomon 3-chome, Minato-ku, Tokyo 105-8423 (JP).
- (81) Designated States (national): AU, BR, CA, CN, IN, KR, IIS
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HIGH-STRENGTH HOT-DIP GALVANIZED STEEL SHEET AND HOT-DIP GALVANNEALED STEEL SHEET HAVING FATIGUE RESISTANCE, CORROSION RESISTANCE, DUCTILITY AND PLATING ADHESION, AFTER SEVERE DEFORMATION, AND A METHOD OF PRODUCING THE SAME

(57) Abstract: The present invention provides: a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvanized steel sheet and hot-dip galvanized steel sheet excellent in ductility, which improves non-plating defects and plating adhesion after severe deformation, and a method of producing the same; a high-strength and high-ductility hot-dip galvanized steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet and hot-dip galvanized steel sheet having superior appearance and workability, which suppresses the generation of non-plating defects, and a method of producing the same; and a high-strength hot-dip galvanized steel sheet and a high-strength hot-dip galvanized steel sheet, which suppress non-plating defects and surface defects and have both corrosion resistance, in particular corrosion resistance in an environment containing chlorine ion, and high ductility, and a method of producing the same.

WO 02/101112 A

- 1 -

DESCRIPTION

HIGH-STRENGTH HOT-DIP GALVANIZED STEEL SHEET AND
HOT-DIP GALVANNEALED STEEL SHEET HAVING FATIGUE
RESISTANCE, CORROSION RESISTANCE, DUCTILITY AND
PLATING ADHESION, AFTER SEVERE DEFORMATION, AND
A METHOD OF PRODUCING THE SAME

10 Technical Field

5

15

25

30

35

The present invention relates to a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet, excellent in fatigue resistance and corrosion resistance suitable for building materials, household electric appliances and automobiles, and excellent in corrosion resistance and workability in an environment containing chloride ion, and a method of producing the same.

20 Background Art

Hot-dip galvanizing is applied to steel sheets toprovide at corrosion prevention and the hot-dip galvanized steel sheets and hot-dip galvannealed steel sheet are widely used in building materials, household electric appliances, automobiles, etc. As one of the production methods, Sendzimir processing is a method comprising the processes of, in a continuous line in order: degreasing cleaning; heating a steel sheet in a non-oxidizing atmosphere; annealing it in a reducing atmosphere containing H, and N,; cooling it to a temperature close to the plating bath temperature; dipping it in a molten zinc bath; and cooling it or cooling it after forming an Fe-Zn alloy layer by The Sendzimir processing method is widely reheating. used for the treatment of steel sheets.

As for the annealing before the plating, a fully reducing furnace method is employed sometimes, wherein

5

10

15

20

25

30

35

annealing is applied in a reducing atmosphere containing $\mathrm{H_2}$ and $\mathrm{N_2}$ immediately after degreasing cleaning, without taking the process of heating a steel sheet in a non-oxidizing atmosphere. Further, employed also is the flux method comprising the processes of: degreasing and pickling a steel sheet; then applying a flux treatment using ammonium chloride or the like; dipping the sheet in a plating bath; and then cooling the sheet.

- 2 -

In a plating bath used in those processing methods, a small amount of Al is added to deoxidize the molten zinc. In the Sendzimir method, a zinc plating bath contains about 0.1% of Al in mass. It is known that, as the Al in the bath has an affinity for Fe stronger than Fe-Zn, when a steel is dipped in the plating bath, an Fe-Al alloy layer, namely an Al concentrated layer, is generated and the reaction of Fe-Zn is suppressed. Due to the existence of an Al concentrated layer, the Al content in a plated layer obtained becomes generally higher than the Al content in a plating bath.

Recently, demands for a high strength plated steel sheet excellent in workability are increasing in view of an improvement in durability and a weight reduction of a car body intended to improve the fuel efficiency of an automobile. Si is added to a steel as an economical strengthening method and, in particular, a high-ductility high-strength steel sheet sometimes contains not less than 1% of Si in mass. Further, a high-strength steel contains various kinds of alloys and has severe restrictions in its heat treatment method from the viewpoint of securing high-strength by microstructure control.

Again, from the viewpoint of a plating operation, if the Si content in a steel exceeds 0.3% in mass, in the case of a conventional Sendzimir method which uses a plating bath containing Al, plating wettability deteriorates markedly and non-plating defects are

5

10

15

20

25

30

35

generated resulting in the deterioration of appearance. It is said that the above drawback is caused by the concentration of Si oxides on a steel sheet surface during the reducing annealing and the poor wettability between the Si oxides and molten zinc.

~ 3 -

In case of a high-strength steel sheet, the added elements are abundant as explained above, and therefore the alloying heat treatment after plating is apt to be applied at a higher temperature and for a longer time than in the case of a mild steel. This is one of the obstacles to securing good material quality.

Further, from the viewpoint of an improvement in the durability of a structural member, fatigue resistance, in addition to corrosion resistance, is also important. That is, it is important to develop a high-strength steel sheet having good plating producibility, good fatigue resistance and good corrosion resistance simultaneously.

As a means of solving the problems, Japanese Unexamined Patent Publication Nos. H3-28359 and H3-64437 disclose a method of improving plating performances by applying a specific plating. However, this method has a problem that the method requires either the installation of a new plating apparatus in front of the annealing furnace in a hot-dip plating line or an additional preceding plating treatment in an electroplating line, and this increases the costs. Further, with regard to fatigue resistance and corrosion resistance, though it has recently been disclosed that the addition of Cu is effective, the compatibility with corrosion resistance is not described at all.

Further, Si scale defects generated at the hotrolling process cause the deterioration of plating
appearance at subsequent processes. The reduction of Si
content in a steel is essential to suppress the Si scale
defects, but, in the case of a retained austenite steel
sheet or of a dual phase steel sheet which is a typical
high ductility type high-strength steel sheet, Si is an

5

10

15

20

25

30

35

additive element extremely effective in improving the balance between strength and ductility. To cope with this problem, a method of controlling the morphology of generated oxides by controlling the atmosphere of annealing or the like is disclosed. However, the method requires special equipment and thus entails a new equipment cost.

Yet further, when high-strength steel sheets are adopted for the purpose of achieving weight reduction by the reduction of the sheet thickness and the thinning of the steel sheets proceeds, more enhanced corrosion resistance may sometimes be required of even hot-dip galvanized steel sheets or hot-dip galvannealed steel sheets. For instance, an environment where rock salt is sprayed as a snow melting agent is a severe environment because it contains a comparatively large amount of Clions. In the case where a plated layer exfoliates locally at the portions which are subjected to heavy working or the plated layer itself has insufficient corrosion resistance, a base material with excellent corrosion resistance and the formation of a plated layer with excellent corrosion resistance are required.

A steel sheet, which allows weight and thickness reduction and is prepared taking into consideration strengthening, the problems related to Si and improvement in corrosion resistance, has not been developed.

Yet further, while aiming at improving the producibility in plating a high-strength steel sheet, Japanese Unexamined Patent Publication No. H5-230608 discloses a hot-dip galvanized steel sheet having a Zn-Al-Mn-Fe system plated layer. However, though this invention particularly takes the producibility into consideration, it is not such an invention that takes the plating adhesiveness into consideration when a high-strength high-ductility material is subjected to a heavy working.

Furthermore, aiming at enhancing the collision

- 5 -

energy absorbing capability, Japanese Unexamined Patent Publication No. H11-189839 discloses a steel sheet: having the main phase comprising ferrite and the average grain size of the main phase being not more than $10\mu m$; having the second phase comprising austenite 3 to 50% in volume or martensite 3 to 30% in volume and the average grain size of the second phase being not more than 5 μm ; and containing bainite selectively. However, this invention does not take plating wettability into consideration and does not provide the corrosion resistance which allows thickness reduction accompanying increased strength.

Disclosure of the Invention

5

10

15

20

25

30

35

The present invention provides a high-strength galvanized and galvannealed steels sheet which solve the above-mentioned problems, is excellent in appearance and workability, improves non-plating defects and plating adhesion after severe deformation, and is excellent in ductility, and a method of producing the same and, further, it provides a high-strength high-ductility hot-dip galvanized steel sheet and a high-strength high-ductility galvannealed steel sheet which are excellent in corrosion resistance and fatigue resistance, and a method of producing the same.

Further, the object of the present invention is to provide a high-strength hot-dip galvanized steel sheet and a high-strength hot-dip galvannealed steel sheet which solve the above-mentioned problems, suppress non-plating defects and surface defects, and have corrosion resistance and high ductility, simultaneously, in an environment particularly containing chlorine ion, and a method of producing the same.

The present inventors, as a result of various studies, have found that it is possible to produce galvanized and galvannealed steel sheets having good

10

15

20

25

30

35

- 6 -

workability even when heat treatment conditions were mitigated and simultaneously improving corrosion resistance and fatigue resistance of a high-strength steel sheet, by regulating the microstructure of the interface (hereafter referred to as "plated layer/base layer interface") between a plated layer and a base layer (steel layer). Further, they also found that the wettability of molten zinc plating on a high-strength steel sheet is improved by making the plated layer contain specific elements in an appropriate amount. Yet further, they found that the above effects were heightened by reducing the concentration of Al in a plated layer, and that a very good plated layer could be obtained even in the case of a high-strength steel sheet containing alloying elements in relatively large amount, by controlling Si content: X (in mass %), Mn content: Y (in mass %) and Al content: Z (in mass %) in the steel sheet, and also Al content: A (in mass %) and Mn content: B (in mass %) in the plated layer so as to satisfy the following equation 1:

 $3-(X+Y/10+Z/3)-12.5\times(A-B) \ge 0 \dots 1$

Furthermore, they found that a steel sheet having high ductility could be produced even when the heat treatment conditions were relieved, by adding alloying elements selectively and in an appropriate amount and, in addition, by regulating the microstructure of the steel sheet.

The present inventors, as a result of various' studies, found that, in case of a high-strength steel sheet, the wettability in hot-dip galvanizing was improved, and the alloying reaction in alloying plating was accelerated, by making the plated layer contain specific elements in an appropriate amount and by combining them with the components of the steel sheet. The effect can be achieved mainly by controlling the

concentration of Al in the plated layer and that of Mn in the steel.

- 7 -

They found that a very good plated layer could be obtained by controlling Mn content: X (in mass %) and Si content: Y (in mass %) in a steel, and Al content: Z (in mass %) in a plated layer so as to satisfy the following equation 2.

 $0.6-(X/18+Y+Z) \ge 0 \dots 2$

5

10

15

20

25

30

35

The present inventors, as a result of various studies, found that, in case of a high-strength steel sheet, the wettability in hot-dip galvanizing and hot-dip galvannealing was improved, the alloying reaction in alloy plating was accelerated, and also ductility and corrosion resistance were improved, by making the plated layer contain specific elements in an appropriate amount and by combining them with the components of the steel sheet. The effect can be achieved mainly by controlling the concentrations of Al and Mo in the plated layer and that of Mo in the steel.

That is, they found that a high-strength high-ductility hot-dip galvannealed coated steel sheet could be obtained by containing 0.001 to 4% of Al in mass in the plated layer and, in addition, by controlling Al content: A (in mass %) and Mo content: B (in mass %) in the plated layer, and Mo content: C (in mass %) in the steel so as to satisfy the following equation 3:

 $100 \ge (A/3+B/6)/(C/6) \ge 0.01 \dots 3$

The present invention has been accomplished based on the above findings and the gist of the present invention is as follows:

(1) A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance, the hot-dip galvanized or galvannealed steel

5

10

15

20

25

30

35

sheet having a plated layer on the surface of the base layer consisting of a steel sheet, characterized in that the maximum depth of the grain boundary oxidized layer formed at the interface between the plated layer and the base layer is not more than 0.5 um.

- (2) A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance, the hot-dip galvanized or galvannealed steel sheet having a plated layer on the surface of the base layer consisting of a steel sheet, characterized in that the maximum depth of the grain boundary oxidized layer at the interface between the plated layer and the base layer is not more than 1 μm and the average grain size of the main phase in the microstructure of the base layer is not more than 20 μm .
- (3) A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance, the hot-dip galvanized or galvannealed steel sheet having a plated layer on the surface of the base layer consisting of a steel sheet, according to the item (1) or (2), characterized in that the value obtained by dividing the maximum depth of the grain boundary oxidized layer formed at the interface between the plated layer and the base layer by the average grain size of the main phase in the microstructure of the base layer is not more than 0.1.
 - (4) A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to any one of the items (1) to (3), characterized in that the steel sheet contains, in its

microstructure, ferrite or ferrite and bainite 50 to 97% in volume as the main phase, and either or both of martensite and austenite 3 to 50% in total volume as the second phase.

5

10

15

25

30

35

(5) A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to any one of the items (1) to (4), characterized in that: the plated layer contains, in mass,

Al: 0.001 to 0.5%, and

Mn: 0.001 to 2%,

with the balance consisting of Zn and unavoidable impurities; and Si content: X (in mass %), Mn content: Y (in mass %) and Al content: Z (in mass %) in the steel sheet, and Al content: A (in mass %) and Mn content: B (in mass %) in the plated layer satisfy the following equation 1:

 $3-(X+Y/10+Z/3)-12.5\times(A-B) \ge 0 \dots 1$

- (6) A high-strength high-ductility hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to the item (5), characterized in that the plated layer contains Fe at 5 to 20% in mass.
- (7) A high-strength hot-dip galvanized steel sheet having high plating adhesion after severe deformation and ductility, the hot-dip galvanized steel sheet having a plated layer containing, in mass,

Al: 0.001 to 0.5%, and

Mn: 0.001 to 2%,

with the balance consisting of Zn and unavoidable impurities, on the surface of a steel sheet consisting of, in mass,

10

15

C: 0.0001 to 0.3%,

Si: 0.01 to 2.5%,

Mn: 0.01 to 3%,

Al: 0.001 to 4%, and

- the balance consisting of Fe and unavoidable impurities, characterized in that: Si content: X (in mass %), Mn content: Y (in mass %) and Al content: Z (in mass %) in the steel, and Al content: A (in mass %) and Mn content: B (in mass %) in the plated layer satisfy the following equation 1; and the microstructure of the steel sheet has the main phase comprising ferrite at 70 to 97% in volume and the average grain size of a main phase is not more than 20 µm, and a second phase comprising austenite and/or martensite at 3 to 30% in volume and the average grain size of the second phase being not more than 10 µm:
- (8) A high-strength hot-dip galvannealed steel sheet having high plating adhesion after severe deformation and ductility according to the item (7), characterized in that the plated layer further contains Fe at 5 to 20% in mass.

 $3-(X+Y/10+Z/3)-12.5\times(A-B) \ge 0 \dots 1$

- (9) A high-strength hot-dip galvanized steel sheet
 and hot-dip galvannealed steel sheet having plating
 adhesion after severe deformation and ductility according
 to the item (7) or (8), characterized in that the average
 grain size of austenite and/or martensite which
 constitute(s) the second phase of the steel sheet is 0.01
 to 0.7 times the average grain size of ferrite.
- (10) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having plating adhesion after severe deformation and ductility according to any one of the items (7) to (9), characterized in that the microstructure of the steel sheet: has a main phase

WO 02/101112 PCT/JP02/05627
- 11 -

comprising ferrite at 50 to 95% in volume and the average grain size of the main phase being not more than 20 μm , and a second phase comprising austenite and/or martensite at 3 to 30% in volume and the average grain size of the second phase being not more than 10 μm ; and further contains bainite at 2 to 47% in volume.

- (11) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having plating adhesion after severe deformation and ductility according to any one of the items (7) to (10), characterized in that the steel further contains Mo at 0.001 to 5% in mass.
- 15 (12) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having plating adhesion after severe deformation and ductility according to any one of the items (7) to (11), characterized in that the steel further contains P at 0.0001 to 0.1% and S at 0.0001 to 0.01%, in mass.
 - (13) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to any one of the items (7) to (12), characterized in that the Si content in the steel is 0.001 to 2.5%.
- (14) A high-strength hot-dip galvannealed steel sheet having superior appearance and workability, the hot-dip galvannealed steel sheet having a plated layer containing, in mass,

Mn: 0.001 to 3%,

Al: 0.001 to 4%,

Mo: 0.0001 to 1%, and

35 Fe: 5 to 20%,

5

10

25

with the balance consisting of Zn and unavoidable

20

impurities, on the surface of a steel sheet consisting of, in mass,

C: 0.0001 to 0.3%,

Si: 0.001 to less than 0.1%,

Mn: 0.01 to 3%,

Al: 0.001 to 4%,

Mo: 0.001 to 1%,

P: 0.0001 to 0.3%,

S: 0.0001 to 0.1%, and

the balance consisting of Fe and unavoidable impurities, characterized in that: Mn content: X (in mass %) and Si content: Y (in mass %) in the steel, and Al content: Z (in mass %) in the plated layer satisfy the following equation 2:

15 $0.6-(X/18+Y+Z) \ge 0 \dots 2$

(15) A high-strength hot-dip galvanized steel sheet having superior appearance and workability, the hot-dip galvanized steel sheet having a plated layer containing, in mass.

Mn: 0.001 to 3%,

Al: 0.001 to 4%,

Mo: 0.0001 to 1%, and

Fe: less than 5%,

with the balance consisting of Zn and unavoidable impurities, on the surface of a steel sheet consisting of, in mass,

C: 0.0001 to 0.3%,

Si: 0.001 to less than 0.1%,

30 Mn: 0.01 to 3%,

Al: 0.001 to 4%,

Mo: 0.001 to 1%,

P: 0.0001 to 0.3%,

S: 0.0001 to 0.1%, and

the balance consisting of Fe and unavoidable impurities, characterized in that: Mn content: X (in mass %) and Si content: Y (in mass %) in the steel, and Al content: Z

25

35

(in mass %) in the plated layer satisfy the following equation 2:

2 ... 0 & (3+x+81/x)-3.0

(16) A high-strength high-ductility hot-dip galvannealed steel sheet having high corrosion resistance, the hot-dip galvannealed steel sheet having a plated layer containing, in mass,

Al: 0.001 to 4%, and

10 Fe: 5 to 20%,

with the balance consisting of Zn and unavoidable impurities, on the surface of a steel sheet consisting of, in mass,

C: 0.0001 to 0.3%,

Si: 0.001 to less than 0.1%,

Mn: 0.001 to 3%,

Al: 0.001 to 4%,

Mo: 0.001 to 1%,

P: 0.001 to 0.3%,

.20 S: 0.0001 to 0.1%, and

the balance consisting of Fe and unavoidable impurities, characterized in that: Al content: A (in mass %) and Mo content: B (in mass %) in the plated layer, and Mo content: C (in mass %) in the steel satisfy the following equation 3; and the microstructure of the steel consists of the main phase comprising ferrite or ferrite and bainite 50 to 97% in volume and the balance consisting of a complex structure containing either or both of martensite and retained austenite 3 to 50% in volume:

30 $100 \ge (A/3+B/6)/(C/6) \ge 0.01 \dots 3$

(17) A high-strength high-ductility hot-dip galvanized steel sheet having high corrosion resistance, the hot-dip galvanized steel sheet having a plated layer containing, in mass,

Al: 0.001 to 4%, and

- 14 -

Fe: less than 5%, with the balance consisting of Zn and unavoidable impurities, on the surface of a steel sheet consisting of, in mass,

5 C: 0.0001 to 0.3%,

Si: 0.001 to less than 0.1%,

Mn: 0.001 to 3%,

Al: 0.001 to 4%,

Mo: 0.001 to 1%,

10 P: 0.001 to 0.3%,

15

20

25

30

S: 0.0001 to 0.1%, and

the balance consisting of Fe and unavoidable impurities, characterized in that: Al content: A (in mass %) and Mo content: B (in mass %) in the plated layer, and Mo content: C (in mass %) in the steel satisfy the following equation 3; and the microstructure of the steel consists of the main phase comprising ferrite or ferrite and bainite 50 to 97% in volume and the balance consisting of a complex structure containing either or both of martensite and retained austenite at 3 to 50% in volume:

 $100 \ge (A/3+B/6)/(C/6) \ge 0.01 \dots 3$

- (18) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of the items (14) to (17), characterized in that the microstructure of the steel consists of the main phase comprising ferrite or ferrite and bainite at 50 to 97% in volume and the balance consisting of a complex structure containing either or both of martensite and retained austenite at 3 to 50% in total volume.
- (19) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior

 35 appearance and workability according to any one of the items (14) to (18), characterized in that the microstructure of the steel sheet has a main phase

- 15 -

comprising ferrite at 70 to 97% in volume and the average grain size of the main phase being not more than 20 μm , and a second phase comprising austenite and/or martensite at 3 to 30% in volume and the average grain size of the second phase being not more than 10 μm .

(20) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of the items (14) to (19), characterized in that: the second phase of the steel sheet is composed of austenite; and C content: C (in mass %) and Mn content: Mn (in mass %) in the steel, and the volume percentage of austenite: $V\gamma$ (in %) and the volume percentage of ferrite and bainite: $V\alpha$ (in %) satisfy the following equation 4:

 $(V\gamma+V\alpha)/V\gamma xC+Mn/8 \ge 2.0 \dots 4$

5

10

15

20

25

- (21) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of the items (14) to (20), characterized in that the microstructure of the steel sheet: has a main phase comprising ferrite at 50 to 95% in volume and the average grain size of the main phase being not more than 20 μm, and a second phase comprising austenite and/or martensite at 3 to 30% in volume and the average grain size of the second phase being not more than 10 μm; and further contains bainite at 2 to 47% in volume.
- 30 (22) A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high corrosion resistance according to any one of the items (14) to (21), characterized in that the average grain size of austenite and/or martensite which constitute(s) the second phase of the steel sheet is 0.01

to 0.6 times the average grain size of ferrite.

(23) A high-strength hot-dip galvanized steel sheet having high plating adhesion after severe deformation and ductility according to any one of the items (1) to (22), characterized in that the plated layer further contains, in mass, one or more of,

```
Ca: 0.001 to 0.1%,
            Mg: 0.001 to 3%,
10
            Si: 0.001 to 0.1%,
            Mo: 0.001 to 0.1%,
            W: 0.001 to 0.1%,
            Zr: 0.001 to 0.1%,
            Cs: 0.001 to 0.1%,
15
            Rb: 0.001 to 0.1%,
            K: 0.001 to 0.1%,
            Ag: 0.001 to 5%,
            Na: 0.001 to 0.05%,
            Cd: 0.001 to 3%,
20
           Cu: 0.001 to 3%,
           Ni: 0.001 to 0.5%,
           Co: 0.001 to 1%,
           La: 0.001 to 0.1%,
           Tl: 0.001 to 8%,
25
           Nd: 0.001 to 0.1%,
           Y: 0.001 to 0.1%,
           In: 0.001 to 5%,
           Be: 0.001 to 0.1%,
           Cr: 0.001 to 0.05%,
30
           Pb: 0.001 to 1%,
           Hf: 0.001 to 0.1%,
           Tc: 0.001 to 0.1%,
           Ti: 0.001 to 0.1%,
           Ge: 0.001 to 5%,
           Ta: 0.001 to 0.1%,
35
           V: 0.001 to 0.2%, and
```

B: 0.001 to 0.1%.

WO 02/101112

5

15

25

30

35

PCT/JP02/05627

- 17 -

(24) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of the items (1) to (23), characterized in that the steel further contains, in mass, one or more of,

Cr: 0.001 to 25%, Ni: 0.001 to 10%,

Cu: 0.001 to 5%,

10 Co: 0.001 to 5%, and

W: 0.001 to 5%.

- (25) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of the items (1) to (24), characterized in that the steel further contains, in mass, one or more of Nb, Ti, V, Zr, Hf and Ta at 0.001 to 1% in total.
- 20 (26) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of the items (1) to (25), characterized in that the steel yet further contains B at 0.0001 to 0.1% in mass.
 - (27) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of the items (1) to (26), characterized in that the steel yet further contains one or more of Y, Rem, Ca, Mg and Ce at 0.0001 to 1% in mass.
 - (28) A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to any one of the items (1) to (27), characterized in that: the steel contains one or more of

10

15

 SiO_2 , MnO and Al_2O_3 at 0.1 to 70% in total area percentage in the range from the interface between the plated layer and the steel sheet to the depth of 10 μ m; and the following equation 5 is satisfied:

{MnO (in area percentage)+ Al_2O_3 (in area percentage)}/ SiO_2 (in area percentage) $\geq 0.1 \dots 5$

- (29) A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to any one of the items (1) to (28), characterized in that the steel contains one or more of Y_2O_3 , ZrO_2 , HfO_2 , TiO_3 , La_2O_3 , Ce_2O_3 , CeO_2 , CaO and MgO at 0.0001 to 10.0% in total area percentage in the range from the interface between the plated layer and the steel sheet to the depth of 10 μm .
- (30) A method of producing a high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel 20 sheet having high plating adhesion after severe deformation and ductility, characterized by: casting a steel comprising the chemical components according to any one of the items (1) to (29) or once cooling the cast slab after the casting; then heating the cast slab again; 25 thereafter, hot-rolling the cast slab into a hot-rolled steel sheet and coiling it, and then pickling and coldrolling the hot-rolled steel sheet; thereafter, annealing the cold-rolled steel sheet for 10 seconds to 30 minutes in the temperature range from not less than 0.1x(Ac. -Ac₁)+Ac₁ (°C) to not more than Ac₃+50 (°C); then cooling 30 the steel sheet to the temperature range from 650 to 700°C at a cooling rate of 0.1 to 10°C/sec.; thereafter, cooling the steel sheet to the temperature range from the plating bath temperature to the plating bath temperature 35 + 100°C at a cooling rate of 1 to 100°C/sec.; keeping the steel sheet in the temperature range from the zinc

5

10

15

20

25

30

35

plating bath temperature to the zinc plating bath temperature + 100°C for 1 to 3,000 seconds including the subsequent dipping time; dipping the steel sheet in the zinc plating bath; and, after that, cooling the steel sheet to room temperature.

- 19 -

- (31) A method of producing a high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet according to any one of the items (1) to (29), which hot-dip galvanized steel sheet being excellent in appearance and workability, characterized by: casting a steel comprising the chemical components according to any one of the items (1) to (29) or once cooling the cast slab after the casting; then heating the cast slab again to a temperature of 1,180 to 1,250°C; finishing the hotrolling at a temperature of 880 to 1,100°C; then pickling and cold-rolling the coiled hot-rolled steel sheet; thereafter, annealing the cold-rolled steel sheet for 10 seconds to 30 minutes in the temperature range from not less than $0.1x(Ac_3 - Ac_1)+Ac_1$ (°C) to not more than Ac_3+50 (°C); then cooling the steel sheet to the temperature range from 650 to 700°C at a cooling rate of 0.1 to 10°C/sec.; thereafter, cooling the steel sheet to the temperature range from the plating bath temperature -50°C to the plating bath temperature + 50°C at a cooling rate of 0.1 to 100°C/sec.; then dipping the steel sheet in the plating bath; keeping the steel sheet in the temperature range from the plating bath temperature -50°C to the plating bath temperature + 50°C for 2 to 200 seconds including the dipping time; and, thereafter, cooling the steel sheet to room temperature.
- (32) A method of producing a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet according to any one of the items (1) to (29), the hot-dip galvanized steel sheet being excellent in corrosion resistance, characterized

- 20 -

by: casting a steel comprising the chemical components according to any one of the items (1) to (29) or once cooling the cast slab after the casting; then heating the cast slab again to a temperature of 1,200 to 1,300°C; then rough-rolling the heated slab at the total reduction rate of 60 to 99% and at a temperature of 1,000 to 1,150°C; then pickling and cold-rolling the finished and coiled hot-rolled steel sheet; thereafter, annealing the cold-rolled steel sheet for 10 seconds to 30 minutes in the temperature range from not less than 0.12x(Ac3 - $Ac_1)+Ac_1$ (°C) to not more than Ac_3+50 (°C); then, after the annealing, cooling the steel sheet, when the highest attained temperature during annealing is defined as Tmax (°C), to the temperature range from Tmax - 200°C to Tmax - 100°C at a cooling rate of Tmax/1,000 to Tmax/10 °C/sec.; thereafter, cooling the steel sheet to the temperature range from the plating bath temperature -30°C to the plating bath temperature + 50°C at a cooling rate of 0.1 to 100°C/sec.; then dipping the steel sheet in the plating bath; keeping the steel sheet in the temperature range from the plating bath temperature -30°C to the plating bath temperature + 50°C for 2 to 200 seconds including the dipping time; and, thereafter, cooling the steel sheet to room temperature.

25

30

35

5

10

15

20

(33) A method of producing a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance, characterized by: casting a steel comprising the chemical components according to any one of the items (1) to (29) or once cooling the cast slab after the casting; then heating the cast slab again; thereafter, hot-rolling the cast slab into a hot-rolled steel sheet and coiling it, and then pickling and cold-rolling the hot-rolled steel sheet; thereafter, annealing the cold-rolled steel sheet controlling the annealing temperature so that the highest temperature during

WO 02/101112 PCT/JP02/05627 - 21 -

annealing may fall within the range from not less than $0.1x(Ac_3 - Ac_1)+Ac_1$ (°C) to not more than Ac_3-30 (°C); then cooling the steel sheet to the temperature range from 650 to 710°C at a cooling rate of 0.1 to 10°C/sec.; thereafter, cooling the steel sheet to the temperature range from the zinc plating bath temperature to the zinc plating bath temperature + 100°C at a cooling rate of 1 to 100° C/sec.; keeping the steel sheet in the temperature range from the zinc plating bath temperature to the zinc plating bath temperature to the zinc plating bath temperature + 100° C for 1 to 3,000 seconds including the subsequent dipping time; dipping the steel sheet in the zinc plating bath; and, after that, cooling the steel sheet to room temperature.

- (34) A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance, corrosion resistance, and plating adhesion after severe deformation and ductility and a method of producing the same, according to any one of the items (30) to (33), characterized by: after dipping the steel sheet in the zinc plating bath, applying an alloying treatment to the steel sheet at a temperature of 300 to 550°C and cooling it to room temperature.
- 25 Best Mode for Carrying out the Invention

 The present invention will be explained in detail hereunder.

Embodiment 1

5

10

The present inventors subjected a steel sheet, which consisted of, in mass, 0.0001 to 0.3% of C, 0.001 to 2.5% of Si, 0.01 to 3% of Mn, 0.001 to 4% of Al and the balance consisting of Fe and unavoidable impurities, to the processes of: annealing the steel sheet for 10 seconds to 30 minutes in the temperature range from not less than 0.1x(Ac₃ - Ac₁)+Ac₁ (°C) to not more than Ac₃+50 (°C); then cooling the steel sheet to the temperature

5

10

15

20

25

30

35

- 22 -

range from 650 to 700°C at a cooling rate of 0.1 to 10°C/sec.; thereafter, cooling the steel sheet to the temperature range from the plating bath temperature (450 to 470°C) to the plating bath temperature + 100°C at a cooling rate of 1 to 100°C/sec.; dipping the steel sheet in the zinc plating bath at a temperature of 450 to 470°C for 3 seconds; and heating the steel sheet at a temperature of 500 to 550°C for 10 to 60 seconds.

Thereafter, a plating property was evaluated by measuring the area of non-plated portions on the surface of the plated steel sheet. Corrosion resistance was evaluated by applying a repeated salt spray test. Further, mechanical properties were evaluated by a tensile test, and the fatigue property of the plated steel sheet was evaluated by a plane bending fatigue test applying a stress corresponding to 50% of the tensile strength of the steel sheet.

Further, plating adhesion was evaluated by applying 60° bending and bending-back forming to the steel sheet after giving 20% tensile strain, sticking a vinyl tape to the portion where bending forming was applied and peeling it off, and then quantifying the area where the plated layer was peeled off by image analysis.

As a result, Si system oxides, in particular, were observed abundantly at the crystal grain boundaries of the interface between the plated layer and the base layer, and the present inventors found that a high-strength high-ductility hot-dip galvanized steel sheet excellent in fatigue resistance and corrosion resistance could be produced by controlling the maximum depth of the grain boundary oxidized layer and the average grain size of the main phase in the finally obtained microstructure with regard to the relation between the shape of the grain boundary oxidized layer and the fatigue property.

That is, the present inventors found that the fatigue life of a hot-dip galvanized steel sheet could be prolonged by controlling the maximum depth of the grain

5

10

15

20

25

30

35

- 23 -

boundary oxidized layer containing Si to 0.5 μm or less in the finally obtained microstructure at the interface between the plated layer and the base layer. Furthermore, the fatigue life of a hot-dip galvanized

steel sheet can be further prolonged by selecting the steel components and the production conditions which allow the maximum depth of the grain boundary oxidized layer to be 0.5 µm or less, preferably 0.2 µm or less.

Further, the present inventors found that corrosion resistance and fatigue resistance particularly after an alloying treatment could be further improved by restricting the kinds and area percentage of oxides in a steel, which contained grain boundary oxides, in the range from the interface between the plated layer and the steel sheet to the depth of 10 µm. That is, a highstrength high-ductility hot-dip galvanized or galvannealed steel sheet excellent in corrosion resistance and fatigue resistance can be obtained: by making the steel contain one or more of SiO2, MnO and Al,O3, as oxides, at 0.4 to 70% in total area percentage in the range from the interface between the plated layer and the steel sheet to the depth of 10 μm ; and by controlling those area percentages so as to satisfy the following expression:

{MnO (in area percentage)+ Al_2O_3 (in area percentage)}/ SiO_2 (in area percentage) ≥ 0.1 .

The present inventors also found that corrosion resistance and fatigue resistance after an alloying treatment could also be improved by making a steel contain, in addition to SiO₂, MnO and Al₂O₃, one or more of Y₂O₃, ZrO₂, HfO₂, TiO₂, La₂O₃, Ce₂O₃, CeO₂, CaO and MgO by 0.0001 to 10.0% in total area percentage in the range from the interface between the plated layer and the steel sheet to the depth of 10 µm.

5

10

15

20

25

30

35

- 24 -

Here, the identification, observation and area percentage measurement of oxides existing in a steel in the range from the interface between the plated layer and the steel sheet to the depth of 10 μm as stated above can be carried out by using EPMA, FE-SEM and the like. the present invention, the area percentage was obtained by measuring the area in more than 50 visual fields under the magnification of 2,000 to 20,000 and then analyzing the data using image analysis. The identification of oxides was carried out by preparing an extracted replica specimen and using TEM or EBSP. MnO, Al,O, and SiO, described above were distinguished by finding the most similar objects using element analysis and structure identification, though sometimes there were cases where objects were complex oxides containing other atoms or had a structure containing many defects. The area percentage can be obtained by the area scanning of each component using EPMA, FE-SEM and the like. In this case, though precise identification of each structure is difficult, the judgement can be done from the shape and the organization together with the above-mentioned structural Thereafter, each area percentage can be analysis. obtained by the image analysis of the data obtained from the area scanning.

The present inventors found that the fatigue life could be prolonged likewise by controlling the average grain size of the main phase in a steel sheet to not more than 20 µm and the maximum depth of the grain boundary oxidized layer at the interface between the plated layer and the base layer to not more than 1 µm into the microstructure. Further, they found that a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance could be obtained by controlling the value obtained by dividing the maximum depth of the grain boundary oxidized layer formed at the interface

WO 02/101112

- 25 -

PCT/JP02/05627

between the plated layer and the base layer by the average grain size of the main phase to not more than 0.1 in the microstructure of the steel sheet.

Further, with regard to plating property and corrosion resistance, it was found that non-plating defects were not formed and rust formation in a repeated salt spray test was extremely small even in the case of a steel sheet particularly containing abundant Si as long as Si content: X (in mass %), Mn content: Y (in mass %) and Al content: Z (in mass %) in the steel sheet, and Al content: A (in mass %) and Mn content: B (in mass %) in the plated layer satisfy the following equation 1:

 $3-(X+Y/10+Z/3)-12.5\times(A-B) \ge 0 \dots 1$

The equation 1 is newly found from multiple regression analysis of the data showing the influence of the components in a steel sheet and a plated layer on plating wettability.

Here, the components in a plated layer are defined to be a value measured by chemical analysis after the plated layer is dissolved with 5% hydrochloric acid solution containing an inhibitor.

Embodiment 2

5

10

The present inventors subjected a steel sheet consisting of, in mass,

C: 0.0001 to 0.3%,

Si: 0.001 to less than 0.1%,

Mn: 0.01 to 3%,

30 Al: 0.001 to 4%,

Mo: 0.001 to 1%,

P: 0.0001 to 0.3%,

S: 0.0001 to 0.1%, and

the balance consisting of Fe and unavoidable impurities,

to the processes of: annealing the steel sheet; dipping
the steel sheet in the zinc plating bath at a temperature

10

25

35

of 450 to 470°C for 3 seconds; and further heating some of the specimens for 10 to 60 seconds at a temperature of 500 to 530°C. Thereafter, the appearance was evaluated by classifying the incidence of defects on the surface of the plated steel sheet into five ranks. Mechanical properties were also evaluated using a tensile test. As a result, it was found that evaluation rank 5, which meant appearance defects were scarcely observed, could be obtained when Mn content in the steel was defined as X (in mass %), Si content in the steel as Y (in mass %), and Al content in the plated layer as Z (in mass %), and X, Y and Z satisfied the following equation 2:

 $0.6-(X/18+Y+Z) \ge 0 \dots 2$

15 The appearance of a plated steel sheet was evaluated by visually observing the state of the formation of non-plating defects and the state of the formation of flaws and patterns and classifying them into the evaluation ranks 1 to 5. The criteria of the evaluation are as

20 follows:

Evaluation rank 5: non-plating defects, flaws and patterns are scarcely observed (not more than 1% in area percentage),

Evaluation rank 4: non-plating defects, flaws and patterns are trivial (more than 1% to not more than 10% in area percentage),

Evaluation rank 3: non-plating defects, flaws and patterns are few (more than 10% to not more than 50% in area percentage),

Evaluation rank 2: non-plating defects, flaws and patterns are plentiful (more than 50% in area percentage),

Evaluation rank 1: plating does not wet a steel sheet surface.

Embodiment 3

The present inventors subjected a steel sheet

WO 02/101112

- 27 -

PCT/JP02/05627

consisting of, in mass,

C: 0.0001 to 0.3%,

Si: 0.001 to less than 0.1%,

Mn: 0.01 to 3%,

5

Al: 0.001 to 4%,

Mo: 0.001 to 1%,

P: 0.0001 to 0.3%,

S: 0.0001 to 0.1%, and

the balance consisting of Fe and unavoidable impurities, to the processes of: annealing the steel sheet; dipping 10 the steel sheet in the zinc plating bath at a temperature of 450 to 470°C for 3 seconds; and further heating some of the specimens for 10 to 60 seconds at a temperature of 500 to 550°C. Thereafter, the steel sheet was subjected 15 to full flat bending (R=1t), and the bent specimen was subjected to a cyclic corrosion test of up to 150 cycles based on the standard (JASO) of the Society of Automotive Engineers of Japan, Inc. (JSAE). The state of corrosion was evaluated by observing the surface appearance and 20 cross-sectional appearance in not less than 20 visual fields using an optical microscope under the magnification of 200 to 1,000, observing the degree of the progress of the corrosion into the inside, and classifying the observation results into five ranks. 25 criteria of the evaluation are as follows: Evaluation rank 5: degree of progress of corrosion: only the plated layer corrodes or the depth of corrosion in the base material is less than 50 μ m,

Evaluation rank 4: degree of progress of corrosion: the depth of corrosion in the base material is 50 μm to less than 100 μm ,

Evaluation rank 3: degree of progress of corrosion: the depth of corrosion in the base material is less than the half of the sheet thickness,

Evaluation rank 2: degree of progress of corrosion: the depth of corrosion in the base material is not less than

- 28 -

the half of the sheet thickness, Evaluation rank 1: perforation.

5

15

20

25

30

35

As a result, it was found that good corrosion resistance of evaluation rank 4 or 5 was secured when Al content in the plated layer was in the range from 0.001 to 4% and defined as A (in mass %), Mo content in the plated layer was defined as B (in mass %), and Mo content in the steel as C (in mass %), and A, B and C satisfied the following equation 3:

10 $100 \ge (A/3+B/6)/(C/6) \ge 0.01 \dots 3$

The detailed reason why the generation of non-plating defects is suppressed is not always clear, but it is estimated that non-plating defects are generated because the wettability between Al added in a plating bath and SiO₂ formed on the surface of a steel sheet is inferior. Therefore, it becomes possible to suppress the generation of non-plating defects by adding elements which remove the adverse effect of Al added in a zinc bath. As a result of the earnest studies by the present inventors, it was found that the above object could be attained by adding Mn in an appropriate concentration range. It is estimated that Mn forms an oxide film more preferentially than Al added in a zinc bath and enhances its reactivity with an Si system oxide film formed on the surface of a steel sheet.

Further, it is estimated that the fact that the generation of flaws caused by Si scales formed during hot-rolling has been suppressed by reducing Si amount in a steel is also effective in improving appearance. Further, with regard to the deterioration of material quality accompanying the reduction of Si content, it was found that ductility could be secured by the adjustment of production conditions and the addition of other components such as Al and Mo and the reduction of Si content and the addition of Al were effective in accelerating alloying.

- 29 -

The detailed reason is not clear, but it is estimated that it is caused by the generation of non-plating defects, the shapes of other defects, and the difference in corrosion resistance between the base material and the plated layer (difference in electric potential).

5

10

15

20

25

30

35

Here, though the deposited amount of plating is not particularly regulated, it is preferable that the deposited amount on one side is not less than 5 g/mm² from the viewpoint of corrosion resistance. Though an upper layer plating is applied to a hot-dip galvanized steel sheet of the present invention for the purpose of improving painting property and weldability, and various kinds of treatments such as a chromate treatment, a phosphate treatment, a lubricity improving treatment, a weldability improving treatment, etc. are applied to a hot-dip galvanized steel sheet of the present invention, those cases do not deviate from the present invention.

Preferable microstructure of base steel sheet

Next, the preferable microstructure of a base steel sheet will be explained hereunder. It is preferable to make the main structure a ferrite phase for sufficiently securing ductility. However, when higher strength is required, a bainite phase may be contained, but, from the viewpoint of securing ductility, it is desirable that the main phase contains a single phase of ferrite or a complex phase of ferrite and bainite (the expression "ferrite or ferrite and bainite" described in this DESCRIPTION means the same, unless otherwise specified) at not less than 50%, preferably 70%, in volume. case of a complex phase of ferrite and bainite too, it is desirable that ferrite is contained at not less than 50% in volume for securing ductility. On the other hand, for securing high-strength and high ductility in a well balanced manner, it is preferable to make ferrite or ferrite and bainite be contained at not more than 97% in

10

15

20

25

30

WO 02/101112 PCT/JP02/05627

volume. Further, for securing high-strength and high ductility simultaneously, it is also desirable to make the structure a complex structure containing retained austenite and/or martensite. For securing high-strength and high ductility simultaneously, it is preferable to make retained austenite and/or martensite be contained by not less than 3% in total volume. However, if the total value exceeds 50%, the steel sheet tends to be brittle, and therefore it is desirable to control the value to not more than 30% in total volume.

For securing the high ductility of a steel sheet itself, it is prescribed that the average grain size of ferrite is not more than 20 µm and the average grain size of austenite and/or martensite, which constitute(s) the second phase, is not more than 10 µm. Here, it is desirable to make the second phase composed of austenite and/or martensite and to make the average grain size of austenite and/or martensite not more than 0.7 times the average grain size of ferrite which constitutes the main phase. However, as it is difficult in actual production to make the average grain size of austenite and/or martensite, which constitute(s) the second phase, less than 0.01 time the average grain size of ferrite, it is preferable that the rate is not less than 0.01.

Furthermore, for securing good plating adhesion, and high-strength and high ductility in a well-balanced manner, it is prescribed that, in the case that the second phase of a steel sheet is composed of austenite, C content: C (in mass %) and Mn content: Mn (in mass %) in the steel, and the volume percentage of austenite: V γ (in %) and the volume percentage of ferrite and bainite: V α (in %) satisfy the following equation 4:

 $(Vy+V\alpha)/VyxC+Mn/8 \ge 2.0 \dots 4$

35 By satisfying the above expression, a steel sheet

5

10

15

20

25

30

35

- 31 -

particularly excellent in the balance between strength and ductility and having good plating adhesion can be obtained.

The volume percentage and the like in case of containing bainite will be explained hereunder. A bainite phase is useful for enhancing strength by being contained at not less than 2% in volume, and also, when it coexists with an austenite phase, it contributes to stabilizing austenite and, as a result, it is useful for securing a high n-value. Further, the phase is basically fine and contributes to the plating adhesiveness during heavy working too. In particular, in the case where the second phase is composed of austenite, by controlling the volume percentage of bainite to not less than 2%, the balance of plating adhesiveness and ductility improves further. On the other hand, as ductility deteriorates when bainite is excessively formed, the volume percentage of the bainite phase is limited to not more than 47%.

In addition to the above, a steel sheet containing one or more of carbides, nitrides, sulfides and oxides at not more than 1% in volume, as the remainder portion in the microstructure, may be included in a steel sheet used in the present invention. Here, the identification, the observation of the sites, the average grain sizes (average circle-equivalent grain sizes) and volume percentages of each phase, ferrite, bainite, austenite, martensite, interface oxide layers and remainder structures in a microstructure can be quantitatively measured by etching the cross-section of a steel sheet in the rolling direction or in the transverse direction with a niter reagent or the reagent disclosed in Japanese Unexamined Patent Publication No. S59-219473 and observing the cross-section with an optical microscope under the magnification of 500 to 1,000.

Here, there sometimes is a case that the grain size of martensite can hardly be measured by an optical microscope. In that case, the average circle-equivalent

5

10

15

20

25

30

35

- 32 -

grain size is obtained by observing the boundaries of martensite blocks, the boundaries of packets, or the aggregates thereof and measuring the grain sizes using a scanning electron microscope.

Further, the observation of the shape of a grain boundary oxide layer and the identification thereof at the interface between a plated layer and a base layer are carried out using an scanning electron microscope and a transmission electron microscope, and the maximum depth is measured by observing the depth in not less than 20 visual fields under a magnification of not less than 1,000 and identifying the maximum value.

An average grain size is defined as a value obtained by the procedure specified in JIS based on the results obtained by observing the objects in not less than 20 visual fields using above-mentioned method.

Next, a plated layer will be explained hereunder.

It is preferable that the Al content in a plated layer is controlled within the range from 0.001 to 0.5% in mass. This is because, when the Al content is less than 0.001% in mass, dross is formed remarkably and a good appearance cannot be obtained and, when Al is added in excess of 0.5% in mass, the alloying reaction is markedly suppressed and a hot-dip alloyed zinc-coated layer is hardly formed.

The reason why the Mn content in a plated layer is set within the range from 0.001 to 2% in mass is that, in this range, non-plating defects are not generated and a plated layer having good appearance can be obtained. When the Mn content exceeds 2% in mass, Mn-Zn compounds precipitate in a plating bath and are trapped in the plated layer, resulting in deteriorating appearance markedly.

Further, in the case where spot weldability and a painting property are desired in particular, these properties can be improved by applying an alloying treatment. Specifically, by applying an alloying

5

10

15

20

25

30

35

treatment at a temperature of 300 to 550°C after a steel sheet is dipped in a zinc bath, Fe is taken into a plated layer, and a high-strength hot-dip galvanized steel sheet excellent in a painting property and spot weldability can be obtained. When the Fe content after an alloying treatment is less than 5% in mass, spot weldability is insufficient. On the other hand, when Fe content exceeds 20% in mass, the adhesiveness of the plated layer itself deteriorates and the plated layer is destroyed, falls off, and sticks to dies during working, causing flaws during forming. Therefore, the range of the Fe content in a plated layer when an alloying treatment is applied is set at 5 to 20% by mass.

Further, it was found that non-plating defects could be suppressed by containing one or more of Ca, Mg, Si, Mo, W, Zr, Cs, Rb, K, Ag, Na, Cd, Cu, Ni, Co, La, Tl, Nd, Y, In, Be, Cr, Pb, Hf, Tc, Ti, Ge, Ta, V and B in a plated layer.

Here, though the deposited amount of plating is not particularly regulated, it is preferable that the deposited amount on one side is not less than 5 g/mm² from the viewpoint of corrosion resistance. Though an upper layer plating is applied to a hot-dip galvanized steel sheet of the present invention for the purpose of improving painting property and weldability, and various kinds of treatments such as a chromate treatment, a phosphate treatment, a lubricity improving treatment, a weldability improving treatment, etc. are applied to a hot-dip galvanized steel sheet of the present invention, those cases do not deviate from the present invention.

As one of the impurities in a plated layer, Mn is on example. When the Mn content in a plated layer increases to exceed the usual level of the impurities, non-plating defects are hardly generated. However, it is difficult to increase the Mn content in a plated layer because of the restrictions related to the current plating equipment. Therefore, the present invention allows Mn

WO 02/101112 PCT/JP02/05627 - 34 -

5

10

15

20

25

30

35

content to be less than 0.001% in mass, which is within the level of impurity elements, and is an invention wherein a steel sheet having a least amount of non-plating defects and surface defects can be obtained even though Mn is not intentionally added to a plating bath.

The reason for specifying the following elements to be in the ranges of Ca: 0.001 to 0.1%, Mg: 0.001 to 3%, Si: 0.001 to 0.1%, Mo: 0.001 to 0.1%, W: 0.001 to 0.1%, Zr: 0.001 to 0.1%, Cs: 0.001 to 0.1%, Rb: 0.001 to 0.1%, K: 0.001 to 0.1%, Ag: 0.001 to 5%, Na: 0.001 to 0.05%, Cd: 0.001 to 3%, Cu: 0.001 to 3%, Ni: 0.001 to 0.5%, Co: 0.001 to 1%, La: 0.001 to 0.1%, Tl: 0.001 to 8%, Nd: 0.001 to 0.1%, Y: 0.001 to 0.1%, In: 0.001 to 5%, Be: 0.001 to 0.1%, Cr: 0.001 to 0.05%, Pb: 0.001 to 1%, Hf: 0.001 to 0.1%, Tc: 0.001 to 0.1%, Ti: 0.001 to 0.1%, Ge: 0.001 to 5%, Ta: 0.001 to 0.1%, V: 0.001 to 0.2% and B: 0.001 to 0.1%, in mass, is that, in each of the ranges, non-plating defects are suppressed and a plated layer having good appearance can be obtained. When each element exceeds each upper limit, dross containing each element is formed and therefore the plating appearance deteriorates markedly.

Next, the reasons for restricting the ranges of the components in a steel sheet according to the present invention will be explained hereunder.

C is an element added in order to sufficiently secure the volume percentage of the second phase required for securing strength and ductility in a well balanced manner. In particular, when the second phase is composed of austenite, C contributes to not only the acquisition of the volume percentage but also the stability thereof and improves ductility greatly. The lower limit is set at 0.0001% by mass for securing the strength and the volume percentage of the second phase, and the upper limit is set at 0.3% by mass as the upper limit for preserving weldability.

Si is an element added in order to accelerate the

5

10

15

20

25

30

35

- 35 -

formation of ferrite, which constitutes the main phase, and to suppress the formation of carbides, which deteriorate the balance between strength and ductility, and the lower limit is set at 0.01% in mass. On the other hand, its excessive addition adversely affects weldability and plating wettability. Further, as C accelerates the formation of an internal grain boundary oxidized layer, the C content has to be suppressed to a low level. Therefore, the upper limit is set at 2.5% in mass. In particular, when appearance, such as scale defects and the like, rather than strength, is the problem, it is determined that C may be reduced up to 0.001% in mass, which is in a range not causing operational problems.

Mn is added for the purpose of not only the control of plating wettability and plating adhesion but also the enhancement of strength. Further, it is added for suppressing the precipitation of carbides and the formation of pearlite which cause the deterioration of strength and ductility. For that reason, Mn content is set at not less than 0.001% in mass. On the other hand, since Mn delays bainite transformation which contributes to the improvement of ductility when the second phase is composed of austenite, and deteriorates weldability, the upper limit of Mn is set at 3% in mass.

Al is effective in controlling plating wettability and plating adhesion and also accelerating bainite transformation which contributes to the improvement of ductility, in particular, when the second phase is composed of austenite, and also Al improves the balance between strength and ductility. Further, Al is an element effective in suppressing the formation of Si system internal grain boundary oxides too. Therefore, the Al addition amount is set at not less than 0.0001% in mass. On the other hand, since its excessive addition deteriorates weldability and plating wettability remarkably and suppresses the synthesizing reaction

- 36 -

markedly, the upper limit is set at 4% in mass.

5

10

15

20

25

30

35

Mo is added in order to suppress the generation of carbides and pearlite which deteriorate the balance between strength and ductility, and is an important element for securing good balance between strength and ductility under mitigated heat treatment conditions. Therefore, the lower limit of Mo is set at 0.001% in mass. Further, since its excessive addition generates retained austenite, lowers stability and hardens ferrite, resulting in the deterioration of ductility, the upper limit is set at 5%, preferably 1%.

Mg, Ca, Ti, Y, Ce and Rem are added for the purpose of suppressing the generation of an Si system internal grain boundary oxidized layer which deteriorates plating wettability, fatigue resistance and corrosion resistance. As the elements do not generate grain boundary oxides, as do Si system oxides, but can generate comparatively fine oxides in a dispersed manner, the oxides themselves of those elements do not adversely affect fatique resistance. Further, as the elements suppress the formation of an Si system internal grain boundary oxidized layer, the depth of the internal grain boundary oxidized layer can be reduced and the elements contribute to the extension of fatigue life. One or more of the elements may be added and the addition amount of the elements is set at not less than 0.0001% in total mass. On the other hand, since their excessive addition deteriorates producibility such as casting properties and hot workability, and the ductility of steel sheet products, the upper limit is set at 1% in mass.

Further, a steel according to the present invention may contain one or more of Cr, Ni, Cu, Co and W aiming at enhancing strength.

Cr is an element added for enhancing strength and suppressing the generation of carbides, and the addition amount is set at not less than 0.001% in mass. However, its addition amount exceeding 25% in mass badly affects

- 37 -

workability, and therefore the value is determined to be the upper limit.

Ni content is determined to be not less than 0.001% in mass for improving plating properties and enhancing strength. However, its addition amount exceeding 10% in mass badly affects workability, and therefore the value is determined to be the upper limit.

5

10

15

20

25

30

35

Cu is added in the amount of not less than 0.001% in mass for enhancing strength. However, its addition amount exceeding 5% in mass badly affects workability, and therefore the value is determined to be the upper limit.

Co is added in the amount of not less than 0.001% in mass for improving the balance between strength and ductility by the control of plating properties and bainite transformation. The upper limit is not specifically determined, but, as Co is an expensive element and an addition in a large amount is not economical, it is desirable to set the addition amount at not more than 5% in mass.

The reason why the W content is determined to be in the range from 0.001 to 5% in mass is that the effect of enhancing strength appears when the amount is not less than 0.001% in mass, and that the addition amount exceeding 5% in mass adversely affects workability.

Furthermore, a steel according to the present invention may contain one or more of Nb, Ti, V, Zr, Hf and Ta, which are strong carbide forming elements, aiming at enhancing the strength yet further.

Those elements form fine carbides, nitrides or carbonitrides and are very effective in strengthening a steel sheet. Therefore, it is determined that one or more of those elements is/are added by not less than 0.001% in mass at need. On the other hand, as those elements deteriorate ductility and hinder the concentration of C into retained austenite, the upper limit of the total addition amount is set at 1% by mass.

5

10

15

20

25

30

35

B can also be added as needed. B addition in the amount of not less than 0.0001% in mass is effective in strengthening grain boundaries and a steel material. However, when the addition amount exceeds 0.1% in mass, not only the effect is saturated but also the strength of a steel sheet is increased more than necessary, resulting in the deterioration of workability, and therefore the upper limit is set at 0.1% in mass.

The reason why P content is determined to be in the range from 0.0001 to 0.3% in mass is that the effect of enhancing strength appears when the amount is not less than 0.0001% in mass and ultra-low P is economically disadvantageous, and that the addition amount exceeding 0.3% in mass adversely affects weldability and producibility during casting and hot-rolling.

The reason why the S content is determined to be in the range from 0.0001 to 0.1% in mass is that ultra-low S of less than the lower limit of 0.0001% in mass is economically disadvantageous, and that an addition amount exceeding 0.1% in mass adversely affects weldability and producibility during casting and hot-rolling.

P, S, Sn, etc. are unavoidable impurities. It is desirable that P content is not more than 0.05%, S content not more than 0.01% and Sn content not more than 0.01%, in mass. It is well known that the small addition of P, in particular, is effective in improving the balance between strength and ductility.

Methods of producing a high-strength hot-dip galvanized steel sheet having such a structure as mentioned above will be explained hereunder.

When a steel sheet according to the present invention is produced by the processes of hot-rolling, cold-rolling and annealing, a slab adjusted to a prescribed components is cast or once cooled after the casting, and then heated again at a temperature of not less than 1,180°C and hot-rolled. At this time, it is desirable that the reheating temperature is set at not

5

10

15

20

25

30

35

- 39 -

less than 1,150°C or at not more than 1,100°C to suppress the formation of a grain boundary oxidized layer. When the reheating temperature becomes very high, oxidized scales tend to be formed on the whole surface comparatively uniformly and thus the oxidation of grain boundaries tends to be suppressed.

However, as heating to a temperature exceeding 1,250°C accelerates extraordinary oxidation locally, this temperature is determined to be the upper limit.

Low temperature heating delays the formation of an oxidized layer itself.

Further, for the purpose of suppressing the formation of excessive internal oxidation, it is determined that the hot-rolling is finished at a temperature of not less than 880°C, and it is preferable for the reduction of the grain boundary oxidation depth of a product to remove surface scales by using a highpressure descaling apparatus or applying heavy pickling after the hot-rolling. Thereafter, a steel sheet is cold-rolled and annealed, and thus a final product is obtained. In this case, it is common that the hot-roll finishing temperature is controlled to a temperature of not less than Ar₃ transformation temperature which is determined by the chemical composition of a steel, but the properties of a final steel sheet product are not deteriorated as long as the temperature is up to about 10°C lower than Ar.

However, the hot-roll finishing temperature is set at not more than 1,100°C to avoid the formation of oxidized scales in a large amount.

Further, by controlling the coiling temperature after cooling to not less than the bainite transformation commencement temperature, which is determined by the chemical composition of a steel, increasing the load more than necessary during cold-rolling can be avoided. However, that does not apply to the case where the total reduction rate at cold-rolling is low, and, even though a

5

10

15

20

25

30

35

steel sheet is coiled at a temperature of not more than the bainite transformation temperature of a steel, the properties of the final steel sheet product are not deteriorated. Further, the total reduction rate of cold-rolling is determined from the relation between the final thickness and the cold-rolling load, and as long as the total reduction rate is not less than 40%, preferably 50%, that is effective in the reduction of grain boundary oxidation depth and the properties of the final steel sheet product are not deteriorated.

In the annealing process after cold-rolling, when the annealing temperature is less than the value of $0.1x(Ac_3 - Ac_1)+Ac_1$ (°C) which is expressed by the Ac_1 temperature and Ac_3 temperature (for example, refer to "Tekko Zairyo Kagaku": W. C. Leslie, Supervisory Translator: Nariyasu Koda, Maruzen, P273) which are determined by the chemical composition of a steel, the amount of austenite formed during annealing is small, thus a retained austenite phase or a martensite phase cannot remain in the final steel sheet, and therefore the value is determined to be the lower limit of the annealing temperature. Here, the higher the annealing temperature is, the more the formation of a grain boundary oxidized layer is accelerated.

As a high temperature annealing causes the formation of a grain boundary oxidized layer to accelerate and the production costs to increase, the upper limit of the annealing temperature is determined to be $Ac_3 - 30$ (°C). In particular, the closer to Ac_3 (°C) the annealing temperature becomes, the more the formation of a grain boundary oxidized layer is accelerated. The annealing time is required to be not less than 10 seconds in this temperature range for equalizing the temperature of a steel sheet and securing austenite. However, when the annealing time exceeds 30 minutes, the formation of a grain boundary oxidized layer is accelerated and costs increase. Therefore, the upper limit is set at 30

- 41 -

minutes.

5

10

15

20

25

30

35

The primary cooling thereafter is important in accelerating the transformation from an austenite phase to a ferrite phase and stabilizing the austenite by concentrating C in the austenite phase before the transformation.

When the maximum temperature during annealing is defined as Tmax (°C), a cooling rate of less than Tmax/1,000°C/sec. brings about disadvantages in the production such as to cause a process line to be longer and to cause the production rate to fall remarkably. On the other hand, when the cooling rate exceeds Tmax/10°C/sec., the ferrite transformation occurs insufficiently, the retained austenite in the final steel sheet product is hardly secured, and hard phases such as a martensite phase become abundant.

When the maximum temperature during annealing is defined as Tmax (°C) and the primary cooling is carried out up to a temperature of less than Tmax - 200°C, pearlite is generated and ferrite is not generated sufficiently during the cooling, and therefore the temperature is determined to be the lower limit. However, when the primary cooling terminates at a temperature exceeding Tmax - 100°C, then the progress of the ferrite transformation is insufficient, and therefore the temperature is determined to be the upper limit.

A cooling rate of less than 0.1°C/sec. causes the formation of a grain boundary oxidized layer to be accelerated and brings about disadvantages in the production to cause a process line to be longer and to cause the production rate to fall remarkably. Therefore, the lower limit of the cooling rate is set at 0.1°C/sec. On the other hand, when the cooling rate exceeds 10°C/sec., the ferrite transformation occurs insufficiently, the retained austenite in the final steel sheet product is hardly secured, and hard phases such as a martensite phase become abundant, and therefore the

- 42 -

upper limit is set at 10°C/sec.

5

10

15

20

25

30

35

When the primary cooling is carried out up to a temperature of less than 650°C, pearlite is generated during the cooling, C, which is an element stabilizing austenite, is wasted, and a sufficient amount of retained austenite is not obtained finally and, therefore, the lower limit is set at 650°C. However, when the cooling terminates at a temperature exceeding 710°C, the progress of ferrite transformation is insufficient, the growth of a grain boundary oxidized layer is accelerated, and therefore, the upper limit is set at 710°C.

In the rapid cooling of the secondary cooling which is carried out successively, the cooling rate has to be at least not less than 0.1°C/sec., preferably not less than 1°C/sec., so as not to generate a pearlite transformation, the precipitation of iron carbides, and the like, during the cooling.

However, as a cooling rate exceeding 100°C/sec. is hardly implemented from the viewpoint of an equipment capacity, the range of the cooling rate is determined to be from 0.1 to 100°C/sec., preferably from 1.0 to 100°C/sec.

When the cooling termination temperature of the secondary cooling is lower than the plating bath temperature, operational problems arise and, when it exceeds the plating bath temperature + 50 to + 100°C, carbides precipitate for a short period of time, and therefore the sufficient amount of retained austenite and martensite cannot be secured. For those reasons, the cooling termination temperature of the secondary cooling is set in the range from the zinc plating bath temperature to the zinc plating bath temperature + 50 to 100°C. It is preferable to hold a steel sheet thereafter in the temperature range for not less than 1 second including the dipping time in the plating bath for the purpose of securing operational stability in the sheet travelling, accelerating the formation of bainite as much

5

10

15

20

25

30

35

- 43 -

as possible, and sufficiently securing plating wettability. When the holding time becomes long, it badly affects productivity and carbides are generated, and therefore it is preferable to restrict the holding time to not more than 3,000 seconds excluding the time required for an annealing treatment.

For stabilizing an austenite phase retained in a steel sheet at the room temperature, it is essential to increase the carbon concentration in austenite by transforming a part of the austenite phase into a bainite phase. For accelerating the bainite transformation including in an alloying treatment process, it is preferable to hold a steel sheet for 1 to 3,000 seconds, preferably 15 seconds to 20 minutes, in the temperature range from 300 to 550°C. When the temperature is less than 300°C, the bainite transformation is hardly generated. However, when the temperature exceeds 550°C, carbides are formed and it becomes difficult to reserve a retained austenite phase sufficiently, and therefore the upper limit is set at 550°C.

For forming a martensite phase, it is not necessary to make bainite transformation occur, which is different from the case of a retained austenite phase. On the other hand, as the formation of carbides and a pearlite phase must be suppressed as in the case of a retained austenite phase, it is necessary to apply an alloying treatment sufficiently after the secondary cooling, and it is determined that an alloying treatment is carried out at a temperature of 300 to 550°C, preferably 400 to 550°C.

For securing oxides at an interface in a prescribed amount, it is desirable to control the temperature and working history from the hot-rolling stage. Firstly, it is desirable to generate a surface oxidized layer as evenly as possible by controlling: the heating temperature of a slab to 1,150 to 1,230°C; the reduction rate up to 1,000°C to not less than 50%; the finishing

- 44 -

temperature to not less than 850°C, preferably not less than 880°C; and the coiling temperature to not more than 650°C, and, at the same time, to leave elements such as Ti, Al, etc. in a solid solution state as much as 5 possible for suppressing the formation of Si oxides during annealing. Further, it is desirable to remove a oxide layer formed during hot-rolling as much as possible by employing a high-pressure descaling or a heavy pickling after the finish rolling. Further, it is 10 desirable to control the cold-rolling reduction rate to not less than 30% using rolls not more than 1,000 mm in diameter for the purpose of breaking the generated In annealing thereafter, it is desirable to heat oxides. a steel sheet at the rate of 5°C/sec. up to the 15 temperature range of not less than 750°C for the purpose of accelerating the formation of other oxides by suppressing the formation of SiO2. On the other hand, when the annealing temperature is high or the annealing time is long, many oxides are generated and workability and fatigue resistance are deteriorated. 20 Therefore, as determined in the present invention according to the item (33), it is desirable to control the residence time to not more than 60 minutes at an annealing temperature whose highest temperature is in the range from not less 25 than $0.1x(Ac_3 - Ac_1)+Ac_1$ (°C) to not more than $Ac_3 - 30$ (°C).

Examples

30

35

The present invention will hereunder be explained in detail based on the examples.

Example 1 of Embodiment 1

The present invention will hereunder be explained in detail based on Example 1 of Embodiment 1.

Steels having chemical compositions shown in Table 1 were heated to the temperature of 1,200°C; the hot-rolling of the steels was finished at a temperature of not less than the Ar₃ transformation temperature; and the

5

10

15

- 45 -

hot-rolled steel sheets were cooled and then coiled at a temperature of not less than the bainite transformation commencement temperature which was determined by the chemical composition of each steel, pickled, and cold-rolled into cold-rolled steel sheets 1.0 mm in thickness.

The steels, M-1, N-1, O-1, P-1 and Q-1, which will be mentioned later, were hot-rolled on the conditions of the reduction rate of 70% up to 1,000°C, the finishing temperature of 900°C and the coiling temperature of 700°C, and were cold-rolled with the reduction rate of 50% using the rolls 800 mm in diameter. The other steels were hot-rolled on the conditions of the reduction rate of 70% up to 1,000°C, the finishing temperature of 900°C and the coiling temperature of 600°C, and were cold-rolled with the reduction rate of 50% using the rolls 1,200 mm in diameter.

Table 1-1 (Continued): Chemical composition

-						_						
	Ni							0.84				
	Cr							0.11 0.84				
	Rem					0.001						0.005
	Ce						0.003					
	¥					0.0005						
	Ca				0.0008							
	Mg			0.0015								
	Mo		0.16		0.22		0.13		0.11	0.05	0.07	0.12
	AL	1.41	0.97 1.09 0.16	1.22 0.62	1.63 1.52 0.22	0.05	1.52 0.13	0.03	1.74 1.63 0.11	1.23 0.05	1.25 0.96 0.07	0.5
	Mn	1.05	0.97	1.22	1.63	1.53 0.05	1.23	1.41	1.74	1.13	1.25	1.1 0.5
	Si	0.2	0.5	6.0	0.3	0.7	0.5	0.8	0.01	1.22	2:32	0.78
	ບ	91.0	0.13	0.11	0.21	80.0	0.18	0.09	0.25	0.14	0.13	0.19
[00+0	code	A	В	၁ ·	Q	臼	۲ų	ტ	H	Ι	ب	K

Table 1-2 (Continued): Chemical composition

							_			
									0.8	2.3 0.3
										2.3
			0.008						0.64	
0.007										
				0.001						
								0.023		
0.07	0.12	0.11	0.13	0.11	0.26		5.32		1.31	0.5
0.7	0.99	1.62 1.2	1.15	0.46	0.75	0.03	0.03	0.63	0.05	0.04
0.98	1.45	1.62	1.51	1.42	1.78	1.85	2.56	0.52 0.63	2.98	2.61
0.19	0.04 1.45 0.99 0.12	0.21 0.08	0.01 1.51 1.15 0.13	0.45	0.12 0.05 1.78 0.75 0.26	0.25 4.56	0.75 2.56 0.03 5.32	1.98	0.06 0.52 2.98 0.05 1.31	0.23 0.01 2.61 0.04 0.5
0.17 0.19 0.98 0.7 0.07	0.19	0.21	0.2	60.0	0.12	0.25	0.28	0.02	90.0	0.23
	1	Z		ы	Õ	CA	CB	သ	CD	CE

Invented steel Invented steel Invented steel Invented steel Invented steel Invented Invented Invented Invented Invented Invented Remarks steel stee1 steel steel steel steel 0.005 0.004 0.005 0.004 900.0 0.002 0.003 0.003 0.002 0.002 0.001 ß 0.015 0.025 0.02 0.02 0.02 0.01 0.01 0.01 0.04 0.01 0.01 0.05 3 0.005 Table 1-3 (Continued): Chemical composition 0.0007 М 0.03 > 0.022 SP Pp 0.015 Ţ ပ္ပ 0.4 ຕ Steel code Ø ပ B Ω 团 Ç H \vdash b ×

SUBSTITUTE SHEET (RULE 26)

Table 1-4 (Continued): Chemical composition

Γ		T	-	Γ	1	16	ار ارد	7	7	F.
0.01 0.25 0.02 0.002 Invented steel	0.003 Comparative steel	0.004 Comparative steel	0.004 Comparative steel	Comparative steel	0.002 Comparative steel					
0.002 I	0.005 0.002 I	0.012 0.001 I	0.007 0.002 I	0.003 I	0.00Z	0.003	0.004 C	0.004 C	0.005 C	0.002 C
0.02	0.005	0.012	0.007	0.01	0.015	0.01	0.02	0.01	0.02	0.02
0.25										
0.01					·					
0.01										
										0.15
									1.2	
								1.15		
ıı	M	z	0	Ъ	ď	&	CB	ည	ප	CE

(Note) The underlined numerals are the conditions which are outside the range according to the present invention. present invention.

WO 02/101112

5

10

15

20

25

30

35

- 47 -

After that, the Ac₁ transformation temperature and the Ac₃ transformation temperature were calculated from the components (in mass %) of each steel according to the following equations:

PCT/JP02/05627

 $Ac_1 = 723 - 10.7xMn\% + 29.1xSi\%,$ $Ac_3 = 910 - 203x(C\%)^{1/2} + 44.7xSi\% + 31.5xMo\% - 30xMn\% - 11xCr\% + 400xAl\%.$

The steel sheets were plated by: heating them at a rate of 5°C/sec. to the annealing temperature calculated from the Ac₁ transformation temperature and the Ac₃ transformation temperature and retaining them in the N₂ atmosphere containing 10% of H₂; thereafter, cooing them up to 600 to 700°C at a cooling rate of 0.1 to 10°C/sec.; successively cooling them to the plating bath temperature at a cooling rate of 1 to 20°C/sec.; and dipping them in the zinc plating bath of 460°C for 3 seconds, wherein the compositions of the plating bath were varied.

Further, as the Fe-Zn alloying treatment, some of the steel sheets were retained in the temperature range from 300 to 550°C for 15 seconds to 20 minutes after they were plated and Fe contents in the plated layers were adjusted so as to be 5 to 20% in mass. The plating properties were evaluated by visually observing the state of dross entanglement on the surface and measuring the area of non-plated portions. The compositions of the plated layers were determined by dissolving the plated layers in a 5% hydrochloric acid solution containing an inhibitor and chemically analyzing the solution.

JIS #5 specimens for tensile test were prepared from the plated steel sheets (rolled at skin-pass line at the reduction rate of 0.5 - 2.0%) and mechanical properties thereof were measured. Further, the fracture lives were evaluated relatively by imposing a stress corresponding to 50% of the tensile strength in the plane bending fatigue test. Further, the corrosion resistance was evaluated by a repeated salt spray test.

5

- 48 -

As shown in Table 2, in the steels according to the present invention, the depth of the grain boundary oxidized layers is shallow and the fatigue life under a stress corresponding to 50% of the tensile strength exceeds 106 cycles of bending. Further, the strength and the elongation are well balanced and rust formation is not observed, allowing a good appearance even after the test.

Table 2-1-1 (Continued): Plating wettability, corrosion resistance, microstructure and fatique resistance of each steel

	Depth of grain boundary oxidized layer/um		0.05	0.07	0.85	0.09	0.13	1.05	0.15	0.56	0.11	0.08	0.23	0.3	0.24
racigue resistante or eacii steel	Appearance after repeated salt splay test		Rust not formed	Rust formed	Rust not formed										
racidne resista	Application of alloying Appearance after heat treatment after repeated salt sp	plating treatment	No	Yes	Yes	ON	Yes	ON	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Steel Treatment code number		1	2	3	1	.2	3	1	2	1	- 7	1	1-1	1-2
	Steel code		Æ	A	Æ	В	В	В	၁	၁	D	D	田	되	田

Table 2-1-2 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue resistance of each steel

0.2	0.33	0.35	1.23	0.09	0.08	0.07	1.1	0.05	0.42	0.3	0.35	0.3	0.28	0.25
Rust not formed	Rust not formed	Rust not formed	Rust formed	Rust not formed	Rust not formed	Rust not formed	Rust formed	Rust not formed						
Yes	Yes	Yes	Yes	NO	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
1–3	1-4	1-5	2	1	2		2		1	1-1	1-2	1-3	1-4	1-5
E	臼	Ξ	B	Ħ	F	9	5	H	ĭ	I	Ι	I	I	1

Table 2-1-3 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue resistance of each steel

_																
Volume	percentage of	martensite/%		0	0	0	0	-	7	0	0		6	7	7	8
Depth of grain boundary	oxidized layer divided by	average grain size of main	phase	4.55E-03	7.78E-03	3.40E-02	1.13E-02	1.63E-02	4.57E-02	1.25E-02	2.07E-02	1.83E-02	1.60E-02	2.56E-02	3.00E-02	2.67E-02
Average	grain size	of main	phase/µm	11	6	25	ထ	ω	23	12	27	9	5	6	10	6
Volume percentage	of ferrite, or	ferrite and	bainite/8*	95	95.5	100	94	93.5	93	96	100	91	91	93	93	92
Steel Kind of	main	phase		Ferrite												
Steel	code			A	А	A	В	В	В	၁	ပ	Ω	Q	凶	H	E

Table 2-1-4 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue resistance of each steel

					T									
7	,	- α	9	0		-		0	c	c	c	C	C	0
2.22E-02	3.00E-02	3.89E-02	8.20E-02	9.00E-03	8.89E-03	1.00E-02	1.10E-01	8.33E-03	8.405-02	5.00E-02	7.00E-02	5.00E-02	4.67E-02	4.17E-02
6	11	6	15	10	6	7	10	9	5	9	5	9	9	9
93	93	92	94	93	93	95	96	89	94	94	93	94	94	94
Ferrite														
E	ম	ធ	មា	F	Ŀ	9	ტ	H	Ι	I	I	I	1	1

Table 2-1-5 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue resistance of each steel

_																
		Invented steel		Comparative steel	Invented steel		Comparative steel	Invented steel	Comparative steel	Invented steel						
Elongation/% Fatigue life under the stress	corresponding to 50% of tensile strength/cycles	1.23E+06	1.45E+06	3.20E+05	1.01E+06	1.17E+06	1.59E+05	1.10E+06	3.60E+05	1.20E+06	1.07E+06	1.90E+06	1.10E+06	1.50E+06	1.40E+06	1.10E+06
Elongation/8		41	07	31	40	39	30	42	32	33	28	33	33	32	32	33
Tensile	strength/MPa	565	560	520	595	590	009	555	435	795	825	615	610	620	615	615
Steel Volume	percentage of austenite/%	5	4.5	0	9	5.5	0	4	0	8	0	0	0	0	0	0
Steel	code	A	Æ	A	В	В	В	ပ	υ	ρ	Δ	ы	ы	臼	E	臼

Table 2-1-6 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue resistance of each steel

Invented steel	Comparative steel	Invented steel	Invented steel	Invented steel	Comparative steel	Invented steel						
1.20E+06	2.70E+05	2.01E+06	1.70E+06	1.60E+06	1.85E+05	2.00压+06	1.00E+06	1.20E+06	1.01E+06	1.20E+06	1.15E+06	1.03E+06
33	31	37	. 36	34	34	33	30	30	29	30	30	29
620	630	675	670	635	630	815	79.0	795	825	795	800	810
0	0	7	9	4	3	11	9	9	7	9	9	9
臣	ជា	Ēų	ഥ	ß	ტ	ш	н	н	н	н	н	н

The underlined numerals are the conditions which are outside the range according to invention. present the (Note)

(Example) "4.55E - 03" means 4.55×10^{-3} .

The sum of the volume percentage of each phase is 100%, and the phases which are hardly observed and identified by an optical microscope, such as carbides, oxides, sulfides, etc., are included in the volume percentage of the main phase.

Table 2-2-1 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue resistance of each steel

Depth of grain boundary	oxidized layer/µm	1.15	0.65	0.7	1.54	0.05	0.04	0.05	0.04	0.07	0.04	0.04	90.0	0.05
ion of alloying Appearance after	repeated salt splay test oxidized layer/µm	Rust formed	Rust not formed	Rust not formed	Rust formed	Rust not formed								
Applicat	heat treatment after plating treatment	Yes	No	Yes	Yes	ON	ON	ON	Yes	Yes	Yes	Yes	Yes	Yes
ent	number	2	1	2	3	1-1	1-2	1-3	2-1	2-2	2-3	1-1	1-2	1-3
Steel	code	Ι	J	J	ה	뇠	X	K	Ж	×	Ж	Ţ	'n	IJ

Table 2-2-2 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue resistance of each steel

_								_		
0 03	50.0	0.02	0.08	0.25	0.07	1.26	0.65	1.65		
Rust not formed	Rust formed	Rust not formed	Rust formed	Many cracks occurred at	Many cracks occurred at					
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No		
1-4	1		-	1	-1		1	1	н	
ı	Σ	Z	0	F.	٥	CA	CB	ည	8	CE

Table 2-2-3 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue resistance of each steel

			_												
Volume percentage of	martensite/%		1			0	0	0	0	0	0	0	0	0	0
Depth of grain boundary oxidized layer divided by	average grain size of main	phase	2.30E-01	7.22E-02	7.78E-02	1.03E-01	4.55E-03	4.00E-03	5.00E-03	4.00E-03	7.78E-03	4.44E-03	3.64E-03	6.00E-03	5.56E-03
Average grain size	of main	phase/µm	5	6	6	15	11	10	10	10	6	6	11	10	6
Volume percentage of ferrite, or	ferrite and	bainite/%*	94	95	95	100	90.2	91	90.5	91	91	90.5	91.5	92	92
Kind of main	phase		Ferrite												
Steel code		_	I	J	J	J	K	K	K	K	Ж	К	П	ı	H

Table 2-2-4 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue resistance of each steel

_	_									
0	0	0	0	0	4	0	Immeasurable	0		
3.00E-03	2.50E-03	2.22E-03	8.00E-03	6.25E-02	2.33E-02	1.15E-01	Immeasurable	3.30E-01		
10	12	6	10	4	er .	11	Immeasurable	5		
92.5	91.5	92	91	Ferrite: 65%, bainite: 23%	Ferrite: 55%, bainite: 37%	100		100	100	
Ferrite	Ferrite	Ferrite	Ferrite	Ferrite and bainite	Ferrite and bainite	Ferrite	Bainite	Ferrite		
J	М	Z	0	ď	ď	CA	CB	၁၁	CD	CE

Table 2-2-5 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue resistance of each steel

		Comparative steel	Invented steel	Invented steel	Comparative steel	Invented steel													
each steel	Fatigue life under the stress corresponding to 50% of tensile strength/cycles	3.90E+05	1.40E+06	1.33E+06	2.50E+05	1.38E+06	1.22E+06	1.10E+06	1.40E+06	1.13E+06	1.36E+06	1.07E+06	1.10E+06	1.07E+06	1.37E+06	2.23E+06	2.10E+06	2.20E+06	2.70E+06
racigue resistante or each steel	Elongation/%	28	33	33	25	34	33	34	33	34	34	39	38	38	38	36	35	35	30
racidae	Tensile strength/MPa	780	675	670	590	720	700	715	720	695	700	620	009	595	590		675	650	790
	Volume percentage of austenite/%	5	4	4	0	9.8	- [9.5	6	ŀ	•	8.5	ω .	∞	•	8.5	ω	6	12
	Steel	н	ט	ט	J	×	×	×	×	×	×	П	ין ר	٦,	ı,	E	z	0	Ъ

and Table 2-2-6 (Continued): Plating wettability, corrosion resistance, microstructure fatigue resistance of each steel

Invented steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel
2.10E+06	9.45E+04	7.50E+05	1.20E+05		
28	22	10	21	,	
845	620	840	. 645		
4	0	0	0		
ŏ	CA	CB	ຽ	8	CE

to The underlined numerals are the conditions which are outside the range according present invention. the (Note)

(Example) "4.55E - 03" means 4.55×10^{-3} .

The sum of the volume percentage of each phase is 100%, and the phases which are hardly observed and identified by an optical microscope, such as carbides, oxides, sulfides, etc., are included in the volume percentage of the main phase.

identified by an optical microscope, the volume percentage thereof is shown in the table. volume percentage is as low as less than 20%, the quantitative measurement thereof is With regard to other steels, since the distribution of bainite is very fine and the With regard to the main phases of the steels P and Q, since bainite can be clearly unreliable and thus it is not shown in the table. *

Table 3-1 (Continued): Plating property of each steel

Steel	Al Mn		Fe	Value	Other
code-	content	content	content	calculated	elements
Treat-	in plated		in plated	by	in plated
ment	layer %	layer %	layer %	expression	layer %
number				(1)	
C-1	1	1	15	1.77	
C-2	0.5	0.01	7	-4.35	
E-1	0.05	0.5	12	7.76	
E-1-1	0.17	0.04	9	0.51	Si: 0.02
E-1-2	0.18	0.03	9	0.26	Y: 0.02,
					Nd: 0.04
E-1-3	0.17	0.03	9	0.38	La: 0.02
E-1-4	0.15	0.02	9	0.51	B: 0.005
E-1-5	0.2	0.08	9	0.63	Rb: 0.02
E-2	0.25	0.01	8	-0.87	
G-1	0.3	0.3	11	2.05	
G-2	0.2	0.01	8	-0.33	
H-1	0.5	0.5	7	1.26	
I-1-1	0.1	0.05	7	0.63	Cs: 0.04

Table 3-2 (Continued): Plating property of each steel

Steel	Al	Mn	Fe	Value	Other			
	content	content	content	calculated	elements			
Treat-	in plated				in plated			
ment number	layer %	layer %	layer %	expression (1)	layer %			
I-1-2	0.15	0.1	8	0.63	K: 0.02, Ni: 0.05			
I-1-3	0.14	0.1	7	0.76	Ag: 0.01, Co: 0.01			
I-1-4	0.3	0.25	8	0.63	Ni: 0.02, Cu: 0.03			
I-1-5	0.35	0.27	9	0.26	Na: 0.02, Cr: 0.01			
I-2	0.5	0.1		-3.74				
J-1	1	1		0.24				
J-2	11	1	8	0.24				
J-3	0.5	0	4	-6.02	·			
K-1-1	1	0.9		0.69	Be: 0.005			
K-1-2	0.8	0.7		0.69	Ti: 0.01, In: 0.01			

Table 3-3 (Continued): Plating property of each steel

- 51/2 -

Steel	Al	Mn	Fe	Value	Other
code-	content	content	content	calculated	elements
Treat-	in plated		in plated	by	in plated
ment	layer %	layer %	layer %	expression	layer %
number				(1)	
K-1-3	0.9	0.8		0.69	Cd: 0.02
K-2-1	0.9	0.8	9	0.69	Pb: 0.03
K-2-2	1	0.95	8	1.32	To: 0.02
K-2-3	1	0.9	8	0.69	W: 0.02,
			0	0.69	Hf: 0.02
L-1-1	0.3	0.15	10	0.60	Mo: 0.01
L-1-2	0.25	0.14	10	1.10	Zr: 0.01,
			1		Ti: 0.01
L-1-3	0.3	0.2	9	1.23	Ge: 0.01
L-1-4	0.3	0.15	11	0.60	Ta: 0.01,
			** ·	0.80	V: 0.01
M-1	0.3	0.4	11	3.73	
N-1	0.4	0.3	11	1.23	
0-1	0.5	0.5	12	2.48	
P-1	0.1	0.3	11	4.98	
Q-1	0.15	0.2	10	3.10	

Table 3-4 (Continued): Plating property of each steel

Occurrence of non-plating defect	Appearance after repeated salt splay test	Remarks
No	Rust not formed	Invented steel
Yes	Rust formed	Comparative steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
Yes	Rust formed	Comparative steel
No	Rust not formed	Invented steel
Yes	Rust formed	Comparative steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel

Table 3-5 (Continued): Plating property of each steel

Occurrence of non-plating	Appearance after repeated salt	Remarks
defect	splay test	
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
Yes	Rust formed	Comparative steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
Yes	Rust formed	Comparative steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel

Table 3-6 (Continued): Plating property of each steel

Occurrence of	Appearance after	Remarks
non-plating	repeated salt	
defect	splay test	
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel
No	Rust not formed	Invented steel

(Note) The remainder element in plated layer is zinc.

The underlined numerals are the conditions which are outside the range according to the present invention.

5

10

15

20

25

- 52 -

From Table 3, it can be understood that, even in the case of the steel sheets containing relatively large amounts of Si, the steel sheets according to the present invention, wherein the compositions in the plated layers and the steel sheets are regulated, do not form non-plating defects and have good corrosion resistance.

Further, it can be understood that, when the fourth elements ("other elements in plated layer" in Table 3) are contained in a plated layer, the plating properties are good even in the case where the value determined by the left side of the equation 1 is small.

Table 4 shows the influence of the production conditions. In the case of steel sheets whose production conditions do not satisfy the prescribed requirements, even having the compositions within the prescribed range, the depth of the grain boundary oxidized layers is large and their fatigue life is short. Further, it is understood that, conversely, even though the production conditions satisfy the prescribed requirements, in the case where the compositions of the steel sheets deviate from the prescribed range, the fatigue life is also short.

Table 5 shows the influence of the shape of the oxides. In the steel sheets according to the present invention, rust is not formed and also the fatigue strength exceeds 2×10^6 cycles of bending, and therefore the steel sheets have good material quality.

Table 4-1-1 (Continued): Production method and each property

		_					~	_	
Primary cooling rate/°C/S	m	3	-	0.5	0.5	0.05		0.01	1
Maximum Resident time in the temperature temperature temperature range from during 0.1×(Ac ₃ -Ac ₁)+Ac ₁ (°C) to annealing/°C Ac ₁₋₃₀ (°C) min	1.4	1.4	4.3	2.9	2.9	75	2	498	2
Maximum temperature during annealing/°C	830	830	950	820	820	1000	820	1070	830
$0.1\times$ $(Ac_3-Ac_1)+Ac_1$ $(calculated)/^{\circ}C$ $during$	783	783	783	782	782	782	772	772	783
Ac ₃ (calculated) -30 (°C)/°C	1340	1340	1340	1241	1241	1241	1064	1064	1366
Steel Treatment Ac ₃ code number (ce	1	2	3	1	2	3	Ţ	2	1
Steel code	A	A	Ą	В	В	В	ပ	ນ	Ω

3 3 3 88888 1.5 184 Table 4-1-2 (Continued): Production method and each property 800 800 800 800 850 850 850 783 741 741 794 741 741 741 741 836 836 1391 836 836 836 836 836 1-3 1-4 1-5 $\frac{1-1}{1-2}$ 田 [편] [편] [편] [편] [편] [편] Ω

SUBSTITUTE SHEET (RULE 26)

0.05 0.01 1.9 1.9 179 4-1-3 (Continued): Production method and each property 850 850 850 850 850 850 800 743 775 807 807 807 807 807 823 823 1382 1318 1318 1318 1318 1318 1318 1318 1-2 1-3 1-5 1-1 Table S H G

Table 4-1-4 (Continued): Production method and each property

Alloying temperature/°C		510	550	510	,		510	510	515
cooling Retaining conditions including zinc plating treatment	7 For 30 seconds at a temperature of 475 to 460°C	10 For 30 seconds at a temperature of 475 to 460°C	1 For 30 seconds at a temperature of 475 to 460°C	For 30 seconds at a temperature of 465 to 460°C	For 30 seconds at a temperature of 465 to 460°C	For 30 seconds at a temperature of 465 to 460°C	10 For 15 seconds at a temperature of 475 to 460°C	For 15 seconds at a temperature of 475 to 460°C	For 40 seconds at a temperature of 475 to 460°C
Secondary rate/°C/S						-			
Steel Primary cooling halt code temperature/°C	700	089	750	089	089	730	680	810	700
Steel code	A	A	A	В	В	В	υ	၁	D

Table 4-1-5 (Continued): Production method and each property

	_
of 475 to 460°C	
15 For 10 of 470	
15 For 10 of 470	
15 For 10 seconds a	
15 For 10 seconds a of 470 to 460°C	
15 For 10 seconds and of 470 to 460°C	
15 For 10 seconds a of 470 to 460°C	
15 For 10 seconds and the second of 470 to 460°C	
7 For 30 of 470	
7 For 30 seconds a of 470 to 460°C	

500 520 520 520 520 500 520 520 temperature a temperature a temperature temperature temperature temperature a temperature temperature temperature to 460°C ಡ ಡ ಹ Q ಡ ಹ temperature of 465 For 100 seconds at For 30 seconds at seconds at For 30 seconds at For 30 seconds at of 475 to 460°C seconds at For 30 seconds at For 30 seconds at For 30 seconds at For 30 seconds at of 475 to 460°C to 460°C of 475 to 460°C of 475 to 460°C to 460°C of 475 to 460°C to 460°C of 475 to 460°C to 460°C Table 4-1-6 (Continued): Production method and each property For 30 of 475 of 475 For 9 9 10 10 10 10 10 10 10 10 .004 670 700 750 700 700 700 700 780 G Ġ \mathbf{H} H Н Н $\boldsymbol{\mathsf{H}}$ Н

SUBSTITUTE SHEET (RULE 26)

Table 4-1-7 (Continued): Production method and each property

			7-	_	_	т-	_		T	_
		Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Comparative steel	Invented steel	Comparative steel	Invented steel
Appearance after Fatigue life under the stress repeated salt spray corresponding to 50% of	tensile strength/cycles	1.23E+06	1.45E+06	3.20E+05	1.01E+06	1.17E+06	1.59E+05	1.10E+06	3.60E+05	1.20E+06
Appearance after repeated salt spray	test	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust formed	Rust not formed
Depth of grain boundary oxidized	layer/µm	0.05	0.07	0.85	60.0	0.13	1.05	0.15	0.56	0.11
Steel		A	A	Ą	В	В	В	ပ	ပ	Δ

Table 4-1-8 (Continued): Production method and each property

Invented steel	Comparative steel	Invented steel	Invented steel						
1.07E+06	1.90E+06	1.10E+06	1.50E+06	1.40E+06	1.10E+06	1.20E+06	2.70E+05	2.01E+06	1.70E+06
Rust not formed	Rust formed	Rust not formed	Rust not formed						
0.08	0.23	0.3	0.24	0.2	0.33	0.35	1.23	0.09	0.08
D	ម	田	田	E	臼	团	团	ĵ٤ų	Ŀ

Table 4-1-9 (Continued): Production method and each property

Invented steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Thyented ateal	Comparative steel
1.60E+06	1.65E+05	2.00E+06	1.00E+06	1.20E+06	1.01E+06	1.20E+06	1.15E+06	1.03E+06	4.90E+05
Rust not formed	Rust formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust formed
0.07	1.1	0.05	0.42	0.3	0.35	0.3	0.28	0.25	1.15
ပ	ტ	Н	ы	I	I	I	I	н	I

(Note) The underlined numerals are the conditions which are outside the range according to the present invention.

(Example) "4.55E - 03" means 4.55×10^{-3} .

Table 4-2-1 (Continued): Production method and each property

Primary	cooling	rate/°C/S		-	0.05							1 (3
Resident time in the	temperature range from	annealing/ $^{\circ}$ C $ $ 0.1×(Ac ₃ -Ac ₁)+Ac ₁ ($^{\circ}$ C) to annealing/ $^{\circ}$ C $ $ Ac ₂ -30 ($^{\circ}$ C) min	1.4	1.4	59	3.2	3.2	3.2	3.2	3.2	3.2	2.1	2.1
Maximum	temperature	auring annealing/°C	850	850	1000	850	850	850	850	850	850	830	830
0.1×	$(Ac_3-Ac_1)+Ac_1$	(calculated)/°C quring anneali	828	828	828	763	763	763	763	763	763	765	765
Ac3	(calculated)) //>) nc-	1259	1259	1259	266	266	997	997	997	997	1162	1162
Steel Treatment Ac	number		T	2	3	1-1	1-2	1-3	2-1	2-2	2-3	1-1	1-2
Steel	code		J	J	ت	К	K	K	К	K	K	ı	L

വവ

വവ

0.2

837.00.00 Table 4-2-2 (Continued): Production method and each property 830 830 830 830 830 880 900 hot-Many cracks occurred at 765 756 763 760 750 849 740 Many cracks occurred cold-rolling 1162 1162 1150 1225 1208 984 939 1176 1067 rolling $\frac{1-3}{1-4}$ 4 0 5 B S 9 G 0 니니 М Z

SUBSTITUTE SHEET (RULE 26)

Table 4-2-3 (Continued): Production method and each property

	1		T	1	7	T	7	1		_I	1
Alloying temperature/°C	7	520	580	Not applied	Not applied	Not applied	505	505	505	500	500
Secondary cooling Retaining conditions including rate, °C/S	For 30 seconds at a temperature of 475 to 460°C	For 30 seconds at a temperature of 475 to 460°C	For 30 seconds at a temperature of 465 to 460°C	For 30 seconds at a temperature of 475 to 460°C	For 30 seconds at a temperature of 475 to 460°C	For 30 seconds at a temperature of 475 to 460°C	For 30 seconds at a temperature of 475 to 460°C	For 30 seconds at a temperature of 475 to 460°C	For 30 seconds at a temperature of 475 to 460°C	For 30 seconds at a temperature of 465 to 460°C	For 30 seconds at a temperature of 465 to 460°C
Secondary cooling rate/°C/S	10	10	0.1	7	7		7	7	7	10	10
Steel Primary cooling halt code temperature/°C	089	089	009	680	089	089	680	680	680	680	089
Steel code	ŋ	ŋ	ŋ	×	Ж	M	×	×	×	ц	ı

Table 4-2-4 (Continued): Production method and each property

L 680 10 For 30 seconds at a temperature of 460°C 500 L 680 10 For 460°C 500 M 680 5 For 30 seconds at a temperature of 460°C 500 N 680 5 For 30 seconds at a temperature of 460 to 455°C 500 P 680 5 For 460 to 455°C 500 P 680 5 For 60 seconds at a temperature of 460 to 455°C 500 CA 700 1 For 50 seconds at a temperature of 460 to 455°C 500 CA 700 1 For 50 seconds at a temperature of 460°C 500 CA 700 1 For 50 seconds at a temperature of 460°C 550 CA 700 1 For 50 seconds at a temperature of 460°C 550 CB 700 1 For 5 seconds at a temperature of 460°C 550 CB 700 1 For 5 seconds at a temperature of 460°C 550 CB 700 1 For 5 seconds at a temperature of 460°C 660°C CB					
680	п	089	10	seconds at a temperature to 460°C	00
680 5 For 30 seconds at a temperature of 460 5 For 30 seconds at a temperature of 460 5 For 30 seconds at a temperature of 460 5 For 30 seconds at a temperature of 460 5 For 30 seconds at a temperature of 460 5 For 60 seconds at a temperature of 460 680	I.	089	10	30 seconds at a temperature 165 to 460°C	00
680 5 For 30 seconds at a temperature of 460 to 455°C For 30 seconds at a temperature of 460 to 455°C For 60 seconds at a temperature of 460 to 455°C For 60 seconds at a temperature of 460 to 455°C For 90 seconds at a temperature of 460 to 455°C 700 1 For 300 seconds at a temperature of 465 to 460°C 700 30 For 5 seconds at a temperature of 465 to 460°C 700 1 For 5 seconds at a temperature of 475 to 460°C 700 1 For 5 seconds at a temperature of 475 to 460°C 700 1 For 5 seconds at a temperature of 475 to 460°C	M	089	S	30 seconds at a temperature 160 to 455°C	00
For 30 seconds at a temperature of 460 to 455°C For 60 seconds at a temperature of 460 to 455°C For 90 seconds at a temperature of 460 to 455°C Too 1 For 30 seconds at a temperature of 460°C For 50 seconds at a temperature of 460°C Too 30 For 5 seconds at a temperature of 460°C For 5 seconds at a temperature of 460°C Too of 475 to 460°C	Z	680	. 55	seconds at a temperature to 455°C	00
680 5 For 60 seconds at a temperature of 460 to 455°C 680 5 For 90 seconds at a temperature of 460 to 455°C 700 1 For 300 seconds at a temperature of 465 to 460°C 700 30 For 5 seconds at a temperature of 460°C 700 1 For 5 seconds at a temperature of 460°C 700 1 For 5 seconds at a temperature of 460°C 700 1 For 5 seconds at a temperature of 475 to 460°C	0	680	5	30 seconds at a temperature 60 to 455°C	00
For 90 seconds at a temperature of 460 to 455°C For 300 seconds at a temperature 1 For 300 seconds at a temperature of 475 to 460°C For 5 seconds at a temperature of 475 to 460°C of 475 to 460°C	д	680	5	60 seconds at a temperature 160 to 455°C	00
700 1 temperature of 465 to 460°C For 5 seconds at a temperature of 465 to 460°C of 475 to 460°C For 5 seconds at a temperature of 475 to 460°C for 5 seconds at a tem	a	680	5	seconds at a temperature to 455°C	00
700 30 For 5 seconds at a temperature of 475 to 460°C For 5 seconds at a temperature of 475 to 460°C	CA	700	1	seconds at a cure of 465 to 460°C	50
700 1 For 5 seconds at of 475 to 460°C	ĊB	700	30	a temperature	50
CD CE	ည	700	1	5 seconds at 475 to 460°C	
CE	3				
	S				

Table 4-2-5 (Continued): Production method and each property

	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel
pearance after Fatigue life under the stress peated salt spray corresponding to 50% of strength/cycles	1.40臣+06	1.33E+06	2.50E+05	1.38氏+06	1.22E+06	1.10E+06	1.40E+06	1.13E+06	1.36E+06	1.07E+06	1.10E+06	1.07E+06	1.37E+06
Appearance after repeated salt spray test	Rust not formed	Rust not formed	Rust formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed	Rust not formed
Depth of grain boundary oxidized layer/µm	9.65	2.0	1.54	0.05	0.04	0.05	0.04	40.0	0.04	0.04	90*0	50.0	£0°0
Steel code	Ŋ	ſ	J	К	Ж	K	К	K	К	Ţ	μĮ	ы	IJ

Table 4-2-6 (Continued): Production method and each property

Invented steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel				
2.23E+06	2.10E+06	2.20E+06	2.70E+06	2.10E+06	9.45E+04	7.50E+05	1.20E+05		
Rust not formed	Rust formed	Rust not formed	Rust formed						
0.03	0.02	0.08	0.25	0.07	1.26	0.65	1.65		
M	N	0	Ъ	õ	CA	CB	သ	CD	CE

t to (Note) The underlined numerals are the conditions which are outside the range according the present invention.

(Example) "4.55E - 03" means 4.55×10^{-3} .

Table 5-1 (Continued)

Steel	Treatment	1	Ratio of area	Type of oxide existing in
code	number	in the range from the	percentages:	steel in the range from the
		interface between plated	$(MnO + Al_2O_3)/SiO_2$	(MnO + Al ₂ O ₃)/SiO ₂ interface between plated layer
		layer and steel sheet		and steel sheet to 10 µm depth
	_	10 µm depth in steel		in steel
Σ	 4	35	70	MnO, Al ₂ O ₃ , SiO ₂
N	 1	20	20	MnO, Al ₂ O ₃ , SiO ₂
0	1	25	250	Mno, Al ₂ 03, SiO ₂ , La ₂ O ₃ , Ce ₂ O ₃
Ъ	1	45	5	Mno, Al_2O_3 , SiO_2 , Y_2O_3
Õ	1	15	50	MnO, Al ₂ O ₃ , SiO ₂
CA	T	8	0.01	$\mathtt{MnSiO_3}$, $\mathtt{SiO_2}$

Table 5-2 (Continued)

Steel	Appearance after	Fatigue life under the stress	
code	repeated salt splay test	st corresponding to 50% of tensile strength	
Σ	Rust not formed	2.23E+06	Invented steel
z	Rust not formed	2.10E+06	Invented steel
0	Rust not formed	2.20E+06	Invented steel
д	Rust not formed	2.70E+06	Invented steel
٥	Rust not formed	2.10E+06	Invented steel
CA	Rust formed	9.45E+04	Comparative steel

(Note) The underlined numerals are the conditions which are outside the range according to the present invention.

(Example) "2.23E + 6" means 2.23×10^6 .

- 56 -

Example 2 of Embodiment 1

5

10

15

20

25

30

35

The present invention will hereunder be explained in detail based on Example 2 of Embodiment 1.

Steels having chemical compositions shown in Table 6 were heated to the temperature of 1,200°C; the hot-rolling of the steels was finished at a temperature of not less than the Ar₃ transformation temperature; and the hot-rolled steel sheets were cooled and then coiled at a temperature of not less than the bainite transformation commencement temperature which was determined by the chemical composition of each steel, pickled, and cold-rolled into cold-rolled steel sheets 1.0 mm in thickness.

After that, the Ac_1 transformation temperature and the Ac_3 transformation temperature were calculated from the components (in mass %) of each steel according to the following equations:

 $Ac_1 = 723 - 10.7xMn% - 16.9xNi% + 29.1xSi% + 16.9xCr%,$

 $Ac_3 = 910 - 203x(C%)^{1/2} + 15.2xNi% + 44.7xSi% + 104xV% + 31.5xMo% - 30xMn% - 11xCr% - 20xCu% + 700xP% + 400xAl% + 400xTi%.$

The steel sheets were plated by: heating them to the annealing temperature calculated from the Ac₁ transformation temperature and the Ac₃ transformation temperature and retaining them in the N₂ atmosphere containing 10% of H₂; thereafter, cooling them up to 680°C at a cooling rate of 0.1 to 10°C/sec.; successively cooling them to the plating bath temperature at a cooling rate of 1 to 20°C/sec.; and dipping them in the zinc plating bath at 460°C for 3 seconds, wherein the compositions of the plating bath were varied.

Further, as the Fe-Zn alloying treatment, some of the steel sheets were retained in the temperature range from 300 to 550°C for 15 seconds to 20 minutes after they were zinc plated and Fe contents in the plated layers were adjusted so as to be 5 to 20% in mass. The plating

5

10

15

20

25

30

35

- 57 -

properties were evaluated by visually observing the state of dross entanglement on the surface and measuring the area of non-plated portions. The compositions of the plated layers were determined by dissolving the plated layers in 5% hydrochloric acid solution containing an inhibitor and chemically analyzing the solution.

JIS #5 specimens for tensile test were prepared from the zinc plated steel sheets (rolled in the skin-pass line at the reduction rate of 0.5 - 2.0%) and mechanical properties thereof were measured. Then, the plating adhesion after severe deformation was evaluated by applying 60° bending and bending-back forming to a steel sheet after giving the tensile strain of 20%. The plating adhesiveness was evaluated relatively by sticking a vinyl tape to the bent portion after bending and bending-back forming and peeling it off, and then measuring the rate of the exfoliated length per unit length. The production conditions are shown in Table 8.

As shown in Table 7, in the case of the steels according to the present invention, namely, D1 to D8 (Nos. 1, 2, 5 to 8, 10 to 14), non-plating defects are not observed, the strength and the elongation are well balanced, and the plating exfoliation rate is as low as not more than 1% even when bending and bending-back forming is applied after giving the tensile strain of 20%. On the other hand, in the case of the comparative steels, namely, C1 to C5 (Nos. 17 to 21), cracks were generated abundantly during the hot-rolling for producing the test specimens and the producibility was poor. hot-rolled steel sheets were cold-rolled and annealed after cracks were removed by grinding the hot-rolled steel sheets obtained, and then used for the material quality tests. However, some of the steel sheets (C2 and C4) were very poor in plating adhesiveness after heavy working or could not withstand the forming of 20%.

As shown in Table 8, in Nos. 3, 9, 19 and 21, which do not satisfy the equation 1, the plating wettability

5

- 58 -

deteriorates and the plating adhesion after revere deformation is inferior. Also, in the case that the regulation on the microstructure of a steel sheet is not satisfied, the plating adhesiveness after heavy working is inferior.

In case of No. 4, since the secondary cooling rate is slow, martensite and austenite are not generated but pearlite is generated instead, and the plating adhesiveness after heavy working is inferior.

Table 6-1 (Continued): Chemical composition, producibility and plating wettability

1															
	Cu						0.42						8.54		
	Ŋį						0.74								
	Cr					0.09				1.65					
	Mo		0.15	0.12	0.19	0.09		0.23		0.55		6.52			
	Al	1.12	0.95	0.48	1.51	0.62	0.31	0.75	0.03	0.03	4.56	0.03	0.05	90.0	0.02
	Mn	0.95	0.98	1.01	1.11	1.21	1.49	1.09	1.56	1.68	2.81	1.97	9.0	0.4	1.32
	Si	0.45	0.48	1.21	0.49	0.89	1.23	1.31	0.91	0.91	0.32	1.22	7.41	0.21	3.61
	C	0.15	91.0	0.13	60.0	90.0	0.11	0.22	0.07	0.05	0.42	0.27	0.05	0.08	0.15
	Steel	DI	D2	D3	D4	D2	90	D7	Ω8	ρ3	Cl	C2	C3	C4	C2

producibility and plating wettability Table 6-2 (Continued): Chemical composition,

ana															
rapio o-2 (concinded). Chemical composition, producibility and						Invented steel							Comparative steel		
COMPOST	В									0.0026					0.5
IEIIITCAT	Δ						0.005								
رد الرام (رام الرام ا	Tí								0.01						
	qN								0.01					3.22	
7 7 7	స్ట							0.08							
	Steel code	D1	D2	D3	D4	D2	9Q	D7	D8	D3	C1	C2	ငဒ	C4	CS

The Shaded numerals in the table are the conditions which are outside the range according to the present invention.

Mn and Fe in plated layer and plating property Table 7-1 (Continued): Content of Al,

ical	τy	EL/8			39	42	41	31	36	37	36	36	36	40	33	33	32
Mechanical	property	TS/MPa EL/			575	585	580	530	605	615	610	620	615	565	635	089	810
	;	Application Occurrence of	treatment defect on	steel sheet before working	No	No	Trivial	No	No	No	No	No	Frequent	No	No	Trivial	Trivial
					Yes	No	No	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes
		Value	in plated expression	(1)	10.1	10.1	0.17	10.1	2.98	2.98	3.53	3.53	2.22	2.27	1.78	0.89	6.97
	,	Fe	in plated	layer %**	10			11	æ		10		∞	6	15	10	15
		Mn	in plated	layer %	8.0	8.0	0	8.0	0.1	0.1	0.2	0.2	0	0.05	7	0.1	0.5
		Al	in plated i	layer %	0.1	0.1	0.18	0.1	0.03	0.03	0.04	0.04	0.3	0.02	1	0.15	0.04
		NO NO			7	7	3	ħ	2	9	7	8	6	10	11	12	13
		Steel	3		D1	D1	Dl	DI	D2	D2	D3	D3	D3	D4	D2	D6	D7

30 22 12 795 645 775 995 890 Table 7-2 (Continued): Content of Al, Mn and Fe in plated layer and plating property Poor plating Poor plating wettability wettability Trivial Trivial Trivial Trivial Trivial No No Yes Yes Yes No 6.24 4.48 92.0 5.81 5.7 10 0.01 0.01 0.01 0.8 0 0 0.5 0.04 0.04 0.01 0.01 0.01 0.5 0.4 14 15 16 17 18 13 20 21 D7 D8 6000 C4 \mathbb{S} S

SUBSTITUTE SHEET (RULE 26)

in plated layer and plating property Table 7-3 (Continued): Content of Al, Mn and Fe

	Average Ratio of average	grain size of	ferrite to that	of second phase	<u> </u>			0.176	0.205	0.195			0.228	0.245	0.292	0.310	0.306	0.200	0.453	0.358	0.391
		grain	size of	marten-	mil/ojim	100 to													3.4		
	Average Average	grain	size of	auste-	ni+e/"	, mad />> = 11		2.2	2.5	2.3			2.3	2.5	2.6	2.7	2.6	2.3		1.9	1.8
cucture	Average	grain	size of	ferrite	m11/	11774		12.5	12.2	11.8	L C F	13.3	10.1	10.2	8.9	8.7	8.5	11.5	7.5	5.3	4.6
Microstructure	Struct-	nre of	remainder	portion/%	* * *			***	***	***	Pearlite	15%	***	**	**	* *	* *	***	***	**	**
	Volume	ber-	centage	of	rten- bainite	*** %/		3.5	3.9	3.7	•	>	3.9	4.3	3.8	4.5	4.1	2.8	3.1	6.5	7.8
	Volume	per-	centage	of	marten-	site/%	* * *	0	0	0		>	0	0	0	0	0	0	8.1	0	0
	Volume	per-	centage	of	auste-	nite/%	* * *	4.9	5.3	5.1	c	>	2.6	6.2	6.4	2.9	6.4	3.5	0	8.1	9.7
	Volume	per-	centage	of	ferrite	8/		91.6	8.06	91.2	uo	60	90.5	89.5	8*68	8*88	5 *68	93.7	88.8	85.4	82.5
	No		_					1	7	3	_	†	2	9	7	8	6	10	11	12	13
	Steel	code						D1	DI	D1	2	1	D2	D2	. D3	D3	D3	D4	DS	D6	D7

0.514 0.513 Table 7-4 (Continued): Content of Al, Mn and Fe in plated layer and plating property 1.8 3.5 ferrite ferrite ferrite ** ** *** the mixture of οf of the mixture the mixture 5.3 11.2 10.5 Main phase is composed of and bainite.* composed of Main phase is composed of and bainite.* 000 Main phase is and bainite.* 83.5 89.5 77 C1 20 28 C4 3 D7 C_2 င္သ

SUBSTITUTE SHEET (RULE 26)

Table 7-5 (Continued): Content of Al, Mn and Fe in plated layer and plating property

 ····												_		
	Invented steel	Invented steel	Comparative steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Comparative steel
Exfoliation rate of plated layer after giving 20% tensile strain and then applying 60° bending and bending-back forming/%	0	0.1	12	4	0	0.1	0	0.2	97	0	0.3	0.5	0.4	
No	-1	7	3	4	2	9	1	8	6	10	11	12	13	14
Steel No	D1	D1	DI	D1	D2	D2	ρ3	D3	D3	D4	D5	D6	D7	D7

Table 7-6 (Continued): Content of Al, Mn and Fe in plated layer and plating property

		_		_		
Invented steel	Invented steel	Comparative steel				
0.5	0.7	75				
15	16	17	18	19	20	21
D8	D9	C1	C2	C3	C4	CS

shaded numerals in the table are the conditions which are outside the range according to present invention. \mathbf{The} the *

Further, the rupture elongation is not more than 20% Main phase is composed of the mixture of ferrite and bainite and it is difficult to which means low ductility, and therefore it is impossible to evaluate the plating adhesiveness after heavy working. quantitatively identify them.

In case that an alloying treatment is not applied, Fe is scarcely included in the plated The sum of the volume percentage of each phase is 100%, and the phases which are hardly observed and identified by an optical microscope, such as carbides, oxides, sulfides, layer. ***

*

Table 8-1 (Continued): Production condition and plating adhesiveness after heavy working

Secondary cooling rate: °C/s	10	10	0.5	10	10	. 10	2	2	2	3	7	8	10	70	10	3	30	10	10	30	30
Primary cooling halt temperature: °C	089	089	089	089	089	089	089	089	089	089	089	650	089	089	089	650	089	069	089	089	089
Primary cooling rate: °C/s		1		1	г		Н		Н	0.5	0.5	0.3		70	1	0.5	5	H	5	2	1
Annealing condition: °C × min.	800°C × 3 min.	800°C × 3 min.	800°C × 3 min.	800°C × 3 min.	800°C × 3 min.	800°C × 3 min.	810°C × 3 min.	810°C × 3 min.	830°C × 3 min.	830°C × 3 min.	830°C × 3 min.	800°C × 3 min.	800°C × 3 min.	1200°C × 0.5 min.	860°C × 3 min.	860°C × 3 min.	850°C × 3 min.	850°C × 3 min.	1000°C × 3 min.	850°C × 3 min.	950°C × 3 min.
No	1	2	3	ħ	2	9	2	8	6	10	11	12	13	14	15	91	17	18	19	20	21
Steel code	D1	D1	D1	D1	D2	D2	D3	. D3	ρg	D4	20	9 0	LQ	2 0	90	6Q	C1	C2	C3	C4	CS

Table 8-2 (Continued): Production condition and plating adhesiveness after heavy working

			ပ																					
1	Alloying	processing	temperature:	515	No	No	009	520	No	510	No	510	515	520	520	520	No	No	No	510	No	No	510	510
	Retaining conditions including zinc plating	treatment		For 18 seconds at a temperature of 465 to 460°C	For 23 seconds at a temperature of 465 to 460°C	For 23 seconds at a temperature of 465 to 460°C	For 18 seconds at a temperature of 465 to 460°C	For 15 seconds at a temperature of 470 to 460°C	For 25 seconds at a temperature of 470 to 460°C	For 18 seconds at a temperature of 470 to 460°C	For 33 seconds at a temperature of 470 to 460°C	For 25 seconds at a temperature of 470 to 460°C	For 20 seconds at a temperature of 475 to 460°C	For 5 seconds at a temperature of 475 to 460°C	For 20 seconds at a temperature of 480 to 460°C	For 25 seconds at a temperature of 470 to 460°C	For 25 seconds at a temperature of 470 to 460°C	For 5 seconds at a temperature of 480 to 460°C	For 5 seconds at a temperature of 470 to 460°C	For 15 seconds at a temperature of 470 to 460°C	For 5 seconds at a temperature of 470 to 460°C	For 15 seconds at a temperature of 470 to 460°C	For 15 seconds at a temperature of 470 to 460°C	For 15 seconds at a temperature of 470 to 460°C
	secondary		temperature: °C	465	465	465	465	470	470	470	470	470	475	475	480	470	470	480	480	470	470	470	470	470
;	0 7	code code	tei	D1 1	D1 2	D1 3	D1 4	D2 5		D3 7	D3 8	D3 9.	D4 10	D5 11		D7 13			D9 16	C1 17	7	\neg	C4 20	C5 21

Table 8-3 (Continued): Production condition and plating adhesiveness after heavy working

		Invented steel	Invented steel	Comparative steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel
Exfoliation rate of plated layer after giving 20%	tensile strain and then applying 60° bending and bending-back forming	0	0.1	12	7	0	0.1	0	0.2	95	0	0.3	0.5	0.4	Unbearable to 20% tensile stress	0.5	0.7	Unbearable to 20% tensile stress	Unbearable to 20% tensile stress	Non-plating defects generated prior to tensile test	Unbearable to 20% tensile stress	Non-plating defects generated prior to tensile test
Alloying	processing time:	25	No	No	25	25	No	25	No	25	25	25	25	25	No	No	No	25	No	No	25	25
No		1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21
Steel	code	D1	DI	D1	D1	D2	D2	D3	D3	D3	D4	D2	D6	D7	D7	8 D	D9	C1	C2	<u>3</u>	C4	C2

ç The shaded portions in the table are the conditions which are outside the range according the present invention. (refer to Table 7 with regard to Nos. 9 and 17 to 21)

Primary cooling rage: cooling rate in the temperature range from after annealing up to $650\,$ to $700\,^{\circ}\mathrm{C}$

Secondary cooling rate: cooling rate in the temperature range from 650 to 700°C to plating bath

- 62 -

Example 3 of Embodiment 1

The present invention will hereunder be explained in detail based on Example 3 of Embodiment 1.

Steels having chemical compositions shown in Table 9 were heated to the temperature of 1,200°C; the hotrolling of the steels was finished at a temperature of not less than the Ar₃ transformation temperature; and the hot-rolled steel sheets were cooled and then coiled at a temperature of not less than the bainite transformation commencement temperature which was determined by the chemical composition of each steel, pickled, and cold-rolled into cold-rolled steel sheets 1.0 mm in thickness.

After that, the Ac_1 transformation temperature and the Ac_3 transformation temperature were calculated from the components (in mass %) of each steel according to the following equations:

 $Ac_1 = 723 - 10.7xMn% + 29.1xSi%,$ $Ac_3 = 910 - 203x(C%)^{1/2} + 44.7xSi% + 31.5xMo% - 30xMn% - 11xCr% + 400xAl%.$

20

25

30

35

5

10

15

The steel sheets were plated by: heating them to the annealing temperature calculated from the Ac_1 transformation temperature and the Ac_3 transformation temperature and retaining them in the N_2 atmosphere containing 10% of H_2 ; thereafter, cooling them up to 680°C at a cooling rate of 0.1 to 10°C/sec.; successively cooling them to the plating bath temperature at a cooling rate of 1 to 20°C/sec.; and dipping them in the zinc plating bath of 460°C for 3 seconds, wherein the compositions of the plating bath were varied.

Further, as the Fe-Zn alloying treatment, some of the steel sheets were retained in the temperature range from 300 to 550°C for 15 seconds to 20 minutes after they were zinc plated and Fe contents in the plated layers were adjusted so as to be 5 to 20% in mass. The plating properties were evaluated by visually observing the state of dross entanglement on the surface and measuring the

5

10

15

20

25

30

35

- 63 -

area of non-plated portions. The compositions of the plated layers were determined by dissolving the plated layers in 5% hydrochloric acid solution containing an inhibitor and chemically analyzing the solution.

JIS #5 specimens for tensile test were prepared from the zinc plated steel sheets (rolled in the skin-pass line at the reduction rate of 0.5 - 2.0%) and mechanical properties thereof were measured. Then, the plating adhesion after severe deformation was evaluated by applying 60° bending and bending-back forming to a steel sheet after giving the tensile strain of 20%. The plating adhesiveness was evaluated relatively by sticking a vinyl tape to the bent portion after bending and bending-back forming and peeling it off, and then measuring the rate of the exfoliated length per unit length. The production conditions are shown in Table 11.

As shown in Table 10, in the case of the steels according to the present invention, namely, D1 to D12 (Nos. 1, 2, 5, 12, 13, 20, 22 to 24, 32, 34 to 36, 39 and 42), non-plating defects are not observed, the strength and the elongation are well balanced, and the plating exfoliation rate is as low as not more than 1% even when bending and bending-back forming is applied after giving the tensile strain of 20%. Further, it is understood that, when the other elements in plated layer as shown in Table 10 are contained in a plated layer, the plating properties are good even in the case where the value determined by left side of the equation 1 is relatively small.

On the other hand, in the case of the comparative steels, namely, C1 to C5 (Nos. 44 to 48), cracks were generated abundantly during the hot-rolling for producing the test specimens and the producibility was poor. The hot-rolled steel sheets were cold-rolled and annealed after cracks were removed by grinding the hot-rolled steel sheets obtained, and then used for the material quality tests. However, some of the steel sheets (C2 and

5

- 64 -

C4) were very poor in plating adhesiveness after heavy working or could not withstand the forming of 20%.

As shown in Table 10, in Nos. 3, 21, 46 and 48, which do not satisfy the equation 1, the plating wettability deteriorates and the plating adhesiveness after heavy working is inferior. Also, in the case that the regulation on the microstructure of a steel sheet is not satisfied, the plating adhesion after revere deformation is inferior.

In case of No. 3, as the secondary cooling rate is slow, martensite and austenite are not generated but pearlite is generated instead, and the plating adhesion after severe deformation is inferior.

Table 9-1 (Continued): Chemical composition, producibility and plating wettability 0.0026 ф 0.5 0.005 \triangleright 0.01 끉 0.01 Ng Ng 0.08 ဥ 0.42 0.54 Ca 0.74 Ni. 0.09 1.65 Cr 0.55 0.15 0.19 0.09 0.08 0.38 6.52 8 0.03 0.06 0.95 0.62 0.75 0.03 0.05 0.03 4.56 0.67 1.51 Al 1.56 96.0 1.49 1.09 1.68 1.05 2.81 9.0 0.4 Mn 0.48 0.49 69.0 $\frac{1.23}{1.31}$ 0.91 0.21 0.32 0.91 0.11 0.11 .41 3.61 Si 0.18 0.16 0.03 0.22 0.05 0.03 0.21 0.05 0.08 0.17 Ö Steel code D10 D1 D2 D3 D6 D6 D9

SUBSTITUTE SHEET (RULE 26)

Table 9-2 (Continued): Chemical composition, producibility and plating wettability

							דוו אפוולפת שרפפד			0.0007					Comparative steel		
REM																	
X	į.											0.009					
S	0.02 0.005	0.01 0.008	0.01 0.007	0.001	0.03 0.004	0.003	0.004	0.02 0.004	0.002	0.03	0.03 0.02	0.03					
Дi	0.02	0.01	0.01	0.02	0.03	0.01	0.01	0.02	0.01	0.02	0.03	0.01 0.03					
M										0.05		0.025					
Па											0.02						
B£											0.01						
Zr										0.01							
Steel code	DI	D2	D3	. D4	20	9 0	D7	D8	6α	D10	D11	D12	C1	C2	C3	C4	C2

The underlined numerals in the table are the conditions which are outside the range according to the present invention.

EL/8 Mechanical 36 36 36 41 36 36 31 property and plating property TS/MPa 605 605 585 580 530 605 605 605 Occurrence of non-plating steel sheet Trivia defect on S 8 222 No No No working before in plated layer Applicaalloying tion of treat-Yes Yes Yes Yes Yes Yes Yes 8 S S ment Ca: 0.9, Mg: 0.005 elements Ag: 0.5, Ni: 0.1 Na 0.01, Ca: 0.01 Mo: 0.01 ъe platedOther layer and Mn calculated expression 1.855 1.855 1.73 2.98 1.73 Table 10-1-1 (Continued): Content of Al, 0.17 10.1 10.1 10.1 Value ρλ content plated layer % ω 6 9 σ 10 content content plated layer 0.01 0.01 0.01 0.02 0.8 0.8 0 plated layer % 0.18 0.03 0.03 0.04 0.04 0.04 0.1 0.1 0.1 S ず 2 9 9 σ Steel code 02 01 01 **D2** D1 D2 02

Table 10-1-2 (Continued): Content of Al, Mn and Fe in plated layer and plating property

35	36	37	36	36	36	36	36	36	36	36	36
605	605	615	610	610	610	610	610	019	610	620	615
No	No	No	No	No	Trivial	No	No	No	No	No	Frequent
Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Pb: 0.4	Ta: 0.02			Si: 0.01	Ti: 0.08	Nd: 0.04	Ba: 0.01	In: 0.7	K: 0.04		
1.73	2.355	2.98	3.53	2.779	0.279	2.779	2.154	1.529	0.279	3.53	2.22
6	8		10	8	10	6	6	10	10		ω
0.01	0.05	0.1	0.2	0.4	0.2	0.2	0.2	0.2	0.3	0.2	0
0.04	0.03	0.03	0.01	0.3	0.3	0.1	0.15	0.2	0.4	0.04	0.3
10	11	12	13	14	15	16	17	18	13	20	21
D2	D2	D2	D3	D3	D3	D3	D3	D3	D3	D3	D3

33 in plated layer and plating property 33 665 635 680 680 680 680 089 089 No Trivial No Trivial Trivial No S S No 8 Yes Yes Yes Yes Yes Yes Yes 0.5, 0.03 0.01 0.01 0.07 ъ О cd: Ca: Rb: Cu: Ni: Ti: and Mn 0.288 2.143 0.288 0.288 Table 10-1-3 (Continued): Content of Al, 0.89 15 10 10 6 0.05 0.25 0.05 0.16 0.1 0.2 0.1 0.15 0.15 0.25 0.02 0.65 0.2 24 25 30 D4 D6 D8 D8 80 08 08 08

in plated layer and plating property ъ Э and Table 10-1-4 (Continued): Content of Al,

Volume Volume Structure Average Rain Average Rain Average Rain Grain Gra		
Volume Volume age of marten- bainite/ site/% % *** 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9		0.228
Volume Volume age of marten- bainite/ site/% % *** 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9		
Volume Volume age of marten- bainite/ site/% % *** 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9		2.3
Volume Volume age of marten- bainite/ site/% % *** 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9 0 3.9	e	10.1
Volume Volume age of age of marten-bainit site/% % *** 0 3.5 0 3.7 0 3.9 0 3.9 0 3.9	rostructur	* * *
	Mic	3.9
of of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0
Volume percentage of austenite/% *** 6.3 6.3 6.3 5.1 0		5.6
Volume percentage of ferrite/ 8 91.6 90.5 90.5 90.5		90.5
NO NO 1		8
Steel No code D1 1		D2 D2

Table 10-1-5 (Continued): Content of Al, Mn and Fe in plated layer and plating property

3.9 *** 10.1 2.3 0.228 3.9 *** 10.1 2.3 0.245 4.3 *** 10.2 2.5 0.245 3.8 *** 8.9 2.6 0.292 3.8 *** 8.9 2.6 0.292 3.8 *** 8.9 2.6 0.292 3.8 *** 8.9 2.6 0.292 3.8 *** 8.9 2.6 0.292 4.5 *** 8.9 2.6 0.292 4.5 *** 8.9 2.6 0.292 4.1 *** 8.5 2.6 0.310	0.200
9 *** 10.1 2 3 *** 10.1 2 3 *** 10.2 2 8 *** 8.9 2 8 *** 8.9 2 8 *** 8.9 2 8 *** 8.9 2 8 *** 8.9 2 8 *** 8.9 2 5 *** 8.9 2 7 *** 8.9 2 8 *** 8.9 2 8 *** 8.9 2 2 *** 8.5 2	
9 *** 10.1 2 3 *** 10.1 2 3 *** 10.2 2 8 *** 8.9 2 8 *** 8.9 2 8 *** 8.9 2 8 *** 8.9 2 8 *** 8.9 2 8 *** 8.9 2 5 *** 8.9 2 7 *** 8.9 2 8 *** 8.9 2 8 *** 8.9 2 2 *** 8.5 2	╄
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.3
	11.5
0. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	***
	2.8
	0
5.6 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4	3.5
90.5 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89	93.7
10 11 11 13 13 14 16 17 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	22
D2 D3	

0.358 0.358 and plating property 3.4 1.9 Fe in plated layer 7.5 6.3 6.3 6.3 *** ** Al, Mn and 3.1 Table 10-1-6 (Continued): Content of 6.] 85.4 85.4 85.4 25 26 27 28

0.358 0.358

1.9

* * * *** 1.9

00

SUBSTITUTE SHEET (RULE 26)

Table 10-1-7 (Continued): Content of Al, Mn and Fe in plated layer and plating property

		Invented steel	Invented steel	Comparative steel	Comparative steel	Invented steel				
	Exfoliation rate of plated layer after giving 20% tensile strain and then applying 60° bending and bending-back forming/%	0	0.1	12	7	0	0	0	0	0
	No	1	2	က	4	9	9	1	8	6
	Steel No code	DI	DI	DI	Ia	2 0	ZQ	2 0	2 0	D2

Table 10-1-8 (Continued): Content of Al, Mn and Fe in plated layer and plating property

| Invented steel |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 0 | 0 | 0.1 | 0 | . 0 | 0.1 | 0 | 0 | 0 | 0 | 0.2 |
| 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| D2 | D2 | 2Q | £a | £a | £0 | D3 | D3 | £a | ٤a | _ D3 |

Table 10-1-9 (Continued): Content of Al, Mn and Fe in plated layer and plating property

		_			,				
Comparative steel	Invented steel								
46	0	0.3	0.5	0	0	0.1	0.1	. 0	0
21	22	23	24	25	26	27	28	29	30
D3	D4	90	8 0	8α	80	8 0	D8	D8	8Q

The underlined numerals in the table are the conditions which are outside the range according to the present invention.

Further, the rupture elongation is not more than 20% Main phase is composed of the mixture of ferrite and bainite and it is difficult to which means low ductility, and therefore it is impossible to evaluate the plating adhesiveness after heavy working. quantitatively identify them.

In case that an alloying treatment is not applied, Fe is scarcely included in the plated layer. *

The sum of the volume percentage of each phase is 100%, and the phases which are hardly observed and identified by an optical microscope, such as carbides, oxides, sulfides, etc., are included in the volume percentage of the main phase. ***

Table 10-2-1 (Continued)

												,				
ical	tty	EL/8	•				33	32	18	30	27	33	33	33	31	31
Mechanical	property	TS/MPa EL/8					880	810	890	795	845	620	620	620	0/9	029
		Application Occurrence of	non-plating	defect on steel	sheet before	working	No	Trivial	Trivial	Trivial	Trivial	No	Trivial	No	No	NO
		Application	of alloying non-plating	treatment			Yes	Yes	No	No	No	Yes	Yes	Yes	No	NO
		Other	elements	in	plated	layer	V: 0.05					La: 0.005	Zr: 0.01, W: 0.01	K: 0.04	Hf: 0.01	Mo: 0.01, Ta: 0.02
		Value	calculated elements	by	expression plated	(1)	1.518	6.97	6.97	6.24	5.7	4.99	1.24	0.615	1.05	0.425
		Fе	content	in plated by	layer %	*	10	. 15	15			11	10	6		
		Mn	content	in	plated	layer %	0.1	0.5	9.0	8.0	8.0	2.0	7.0	0.25	0.2	0.15
		Al	content content conten	in	plated plated	layer %layer	0.1	0.04	0.04	0.4	0.5	0.5	0.5	0.4	0.3	0.3
		S N		_			31	32	33	34	35	36	37	38	39	40
		Steel No Al	code				9 0	D7	D7	D8	D9	D10	D10	D10	D11	D11

Table 10-2-2 (Continued)

_	_				ĺ	Co: 0.2				
D11 41 0.25 0.1		0.1			0.425	B: 0.005	No	Trivial	029	31
D12 42 0.05 0.02 11	-	0.02 11	11		2.167	Y: 0.01	Yes	No	620	37
D12 43 0.1 0.01 11		0.01	11		1.417	Mo: 0.02, K: 0.02	Yes	No	620	37
10	0.8 10	10			5.81		Yes	Trivial	775	22
45 0.04 0.5	0.5		<u> </u>	L	.23		No	Trivial	995	12
0.01	0.01		4	41	4.46		No	Poor plating wettability		
47 0.01 0.01 12	0.01 12	12			2.75		Yes	No	895	13
48 0.01 0.01	0.01				0 75		VAG	Poor plating		
			>	ا اد ا	2		100	wettability		

Table 10-2-3 (Continued)

	Ratio of	average	grain	size of	ferrite	to that	of	second	phase	0.358	0.391			0.513	0.514	0.255	0.255	0.255	0.314	0.314
	Average		size of	marten-	nite/um site/um									2	1.8				2.2	2.2
	Average		size of	auste-	nite/um	•				1.9	1.8					2.8	2.8	2.8		
	Average	grain	size of	ferrite	mn/	•				6.3	4.6			3.9	3.5	11	11	11	7	7
Microstructure	Structure Average	of	remainder size of	portion/%	**					* * *	**	ure of		***	* *	**	* * *	**		
Micr	Volume	percent-	age of	bainite/	* * *	-				6.5	7.8	composed of the mixture of		5.3	0	3.5	3.5	3.5	1.5	1.5
	Volume	percent-	age of	marten-	site/%	* * *				0	0	o pesodwo:	ainite.*	11.2	10.5	0	0	0	9.2	9.2
	Volume	percent-	age of	auste-	nite/%	* * *				8.1	9.7	ı	ferrite and bai	0	0	7	4	4	0	0
		percent-	age of	ferrite/	₀ ₽	_				85.4	82.5	Main	ferri	83.5	89.5	92.5	95.5	92.5	89.3	89.3
	S S									31	32	33	3	34	32	36	37	38	39	40
	Steel	code				_				9Q	D7	24	ò	D8	D9	D10	D10	D10	D11	D11

0.294 0.314 0.294 2.5 8 8 of of the mixture the mixture 23 4 Main phase is composed of ferrite and bainite.* οĘ Main phase is composed ferrite and bainite.* 00 Table 10-2-4 (Continued) 0 88.5 89.3 41 42 43 44 45 46 47 48 D12 D12 C1 D11 CS **C**2 ဌ C4

SUBSTITUTE SHEET (RULE 26)

Table 10-2-5 (Continued)

	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel
Steel No Exfoliation rate of plated layer after code giving 20% tensile strain and then applying 60° bending and bending-back forming/%	0	₽•0		9*0	<u>L*0</u>	0	0
No	31	32	33	34	35	36	37
Steel code	9 0	D7	D7	D8	D9	D10	D10

Table 10-2-6 (Continued)

0 Invented steel	0 Invented steel	1	0.1 Invented steel	0 Invented steel	0 Invented steel	75 Comparative steel					
0 38	1 39	1 40	1 41	2 42	2 43	44	45	46	47	48	
D10	D11	D11	D11	D12	D12	c_1	C2	C3	C4	C2	

The underlined numerals in the table are the conditions which are outside the range

Further, the rupture elongation is not more than 20%, Main phase is composed of the mixture of ferrite and bainite and it is difficult to which means low ductility, and therefore it is impossible to evaluate the plating adhesiveness after heavy working. according to the present invention. quantitatively identify them.

In case that an alloying treatment is not applied, Fe is scarcely included in the plated layer. *

The sum of the volume percentage of each phase is 100
m \$, and the phases which are hardly observed and identified by an optical microscope, such as carbides, oxides, sulfides, etc., are included in the volume percentage of the main phase. ***

Table 11-1 (Continued): Production condition and plating adhesiveness after heavy working Secondary cooling halt temperature: 465 465 465 465 470 470 470 Secondary cooling rate: °C/s 0.5 10 10 2 ູນ Primary cooling halt temperature: 089 089 989 680 089 089 680 680 condition: Primary cooling rate: °C/s min. min. min. min. min. min. min. 3 min. ന က m 800°C× × Annealing ລູ008 x min. 3,008 3,008 3,008 ວ。008 810°C 810°C ပ S S 20 2 4 2 12 Steel code 20 **D3 D3** DI **D1** Z **D**2 01

SUBSTITUTE SHEET (RULE 26)

Table 11-2 (Continued): Production condition and plating adhesiveness after heavy working 470 475 475 480 470 470 480 480 2 ന ω 10 089 680 089 650 680 089 089 650 0.5 0.5 0.5 0.3 --0.5 min. 3 min. min. min. 3 min. min. min. 3 min. ന 800°C× 830°C × 830°C × 860°C× 1200°C 830°C ວ。098 810°C 840°C 21 22 23 24 33 35 36 32 34 D10 **D**5 8 D3 **D4 9**0 70 07 62

SUBSTITUTE SHEET (RULE 26)

plating adhesiveness after heavy working 460 470 470 470 470 460 30 10 10 680 680 680 069 680 680 680 Table 11-3 (Continued): Production condition and Ŋ ហ 5 3 min. min. min. min. min. min. min. က × 850°C× × 950°C× 1000°C 8**5**0 ° c 850°C **3**058 830°C 42 44 45 46 48 47 D12 D11 CS CC2 C3 C4

Table 11-4 (Continued): Production condition and plating adhesiveness after heavy working

								_									
Alloying processing	tıme:	25	7	ÇN.	ON	~M	O.	J.C	C 7	u C	67	ON.	ONT	36	C 7	CN.	O Z
Alloying processing	temperature: c	r l	010	€N	O.	Ç.	O.	009		520		- N	ON	и С	OTC	C Z	2
lg.		18	465 to 460°C	For 23 seconds at a temperature of	465 to 460°C	For 23 seconds at a temperature of	465 to 460°C	For 18 seconds at a temperature of	465 to 460°C	For 15 seconds at a temperature of	470 to 460°C	For 25 seconds at a temperature of	470 to 460°C	For 18 seconds at a temperature of	470 to 460°C	For 33 seconds at a temperature of	470 to 460°C
No		,-	•	6	7	۲	ر ا	V	"	u	n	12	77	13	7.7	00	2.0
Steel	code	נם	- C	נת	7.7	10	7.0	,	7.7	24	70	20	70	נת		2.4	2

Table 11-5 (Continued): Production condition and plating adhesiveness after heavy working 25 25 25 25 25 8 No NO 25 515 510 520 520 520 510 No $^{\circ}$ 80 of a temperature of of of of of For 20 seconds at the temperature of 460°C at a temperature temperature temperature temperature a temperature a temperature temperature ಡ ൯ ಡ ಹ at at at ä 5 seconds at to 460°C For 20 seconds For 20 seconds 25 seconds seconds 25 seconds For 5 seconds 480 to 460°C For 5 seconds 460°C to 460°C to 460°C to 460°C to 460°C to 460°C 25 480 For For 480 470 475 For 475 For 470 21 22 23 24 32 34 36 D10 **D3 9**0 **D**8 D4 **D**5 70 D7 **D**3

SUBSTITUTE SHEET (RULE 26)

Table 11-6 (Continued): Production condition and plating adhesiveness after heavy working

1		·	· ·		,	Ţ	
1	NO	25	25	NO	NO	25	25
1	No	510	510	NO	NO	510	510
	For 5 seconds at the temperature of 460°C	For 20 seconds at the temperature of 460°C	For 15 seconds at a temperature of 470 to 460°C	For 5 seconds at a temperature of 470 to 460°C	For 15 seconds at a temperature of 470 to 460°C	For 15 seconds at a temperature of 470 to 460°C	For 15 seconds at a temperature of 470 to 460°C
	39	42	44	45	46	47	48
	D11	D12	c1	C2	c3 ·	C4	CS

Table 11-7 (Continued): Production condition and plating adhesiveness after heavy working

	Invented steel	Invented steel	Comparative steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel
Exfoliation rate of plated layer after giving 20% tensile strain and then applying 60° bending and bending-back forming	0	0.1	12	7	0	0.1	0 - 0.1	0.2
No	1	2	3	ħ	2	12	13	20
Steel code	D1	D1	D1	D1	D2	D2	D3	D3

Table 11-8 (Continued): Production condition and plating adhesiveness after heavy working

T								
	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel
	95	0	0.3	0 - 0.5	0.4	Unbearable to 20% tensile stress	0.5	0.7
	21	22	23	24	32	33	34	35
	D3	D4	DS	D6	D7	D7	D8	D9

Table 11-9 (Continued): Production condition and plating adhesiveness after heavy working

Invented steel	Invented steel	Invented steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel
0	0	0 - 0.1	Unbearable to 20% tensile stress	Unbearable to 20% tensile stress	Non-plating defects generated prior to tensile test	Unbearable to 20% tensile stress	Non-plating defects generated prior to tensile test
36	39	42	44	45	97	47	48
D10	D11	D12	C1	C2	C3	C4	C5

The underlined numerals in the table are the conditions which are outside the range according to the present invention.

Primary cooling rate: cooling rate in the temperature range from after annealing up to $650\,$ to $700\,^{\circ}\mathrm{C}$

Secondary cooling rate: cooling rate in the temperature range from 650 to 700°C to plating

bath temperature to plating bath temperature +100°C.

WO 02/101112 PCT/JP02/05627

Example of Embodiment 2

The present invention will hereunder be explained in detail based on Example of Embodiment 2.

Steels having chemical compositions shown in Table 12 were heated to the temperature of 1,180 to 1,250°C; the hot-rolling of the steels was finished at a temperature of 880 to 1,100°C; and the hot-rolled steel sheets were cooled and then coiled at a temperature of not less than the bainite transformation commencement temperature which was determined by the chemical composition of each steel, pickled, and cold-rolled into cold-rolled steel sheets 1.0 mm in thickness.

After that, the Ac_1 transformation temperature and the Ac_3 transformation temperature were calculated from the components (in mass %) of each steel according to the following equations:

 $Ac_1 = 723 - 10.7xMn\% + 29.1xSi\%,$ $Ac_3 = 910 - 203x(C\%)^{1/2} + 44.7xSi\% + 31.5xMo\% - 30xMn\% - 11xCr\% + 400xAl\%.$

20

25

30

35

5

10

15

The steel sheets were plated by: heating them to the annealing temperature calculated from the Ac_1 transformation temperature and the Ac_3 transformation temperature and retaining them in the N_2 atmosphere containing 10% of H_2 ; thereafter, cooing them in the temperature range from 650 to 700°C at a cooling rate of 0.1 to 10°C/sec.; successively cooling them to the plating bath temperature at a cooling rate of 0.1 to 20°C/sec.; and dipping them in the zinc plating bath of 460 to 470°C for 3 seconds, wherein the compositions of the plating bath were varied, rolled in the skin-pass line at the reduction rate of 0.5 - 2.0%.

Further, as the Fe-Zn alloying treatment, some of the steel sheets were retained in the temperature range from 400 to 550°C for 15 seconds to 20 minutes after they were plated and Fe contents in the plated layers were adjusted so as to be 5 to 20% in mass. The plating

PCT/JP02/05627 WO 02/101112

5

10

15

- 70 -

appearance was evaluated by visually observing the state of dross entanglement on the surface and measuring the area of non-plated portions. The compositions of the plated layers were determined by dissolving the plated layers in 5% hydrochloric acid solution containing an inhibitor and chemically analyzing the solution, and the results are shown in Table 13.

From Tables 13 and 14, in the steels according to the present invention, which satisfy the expression (2), the all appearance evaluation ranks are 5, and the strength and the elongation are well balanced. other hand, in the comparative steels which do not satisfy the ranges specified in the present invention, the appearance evaluation ranks are low without exception, and the strength and the elongation are badly Further, in the steels produced within the ranges specified in the claims of the present invention, the microstructures are composed of the aforementioned structures, and the steels are excellent in appearance 20 and the balance between strength and elongation.

Table 12-1 (Continued): Chemical composition

	Γ			Γ			
>							0.01
Ţį						0.01 0.01	
qN						0.01	
M				0.11			
පි					0.01		
g					0.42 0.25 0.01		
Ni					0.42		
TJ J				0.05	·		
ß	0.005	0.004	900.0	0.006 0.05	0.002	0.003	0.005
Ð	0.02	0.01	0.01	0.01	0.22 0.015 0.002	0.025 0.003	0.01
Mo	5 0.13 0.02	0.21	0.14	0.05	0.22	0.22	0.13
AL	0.95	1.1	1.05	0.65	1.52	0.67	1.34
Mn	1.1	1.25	6.0	8.0	0.81	1.73	1.23
Si	0.009	0.09	0.005	0.005	0.05	0.008	0.007
ບ	0.19	0.15	0.18	0.17	0.15	0.22	80.0
Steel code	Ą	മ	ပ	Ω	មា	[Z4	ტ

0.57 0.18 0.15 5.8 0.0 0.005 0.003 0.002 0.003 0.004 0.004 0.02 0.02 0.01 0.02 0.05 1.8 1.63 0.52 0.03 0.05 0.04 0.03 1.12 1.68 2.56 1.41 0.87 0.007 0.08 9.52 0.08 0.09 0.14 0.24 6 3 8 8 9 E H

Table 12-2 (Continued): Chemical composition

Invented steel
Invented steel
Invented steel Invented steel Invented steel Invented steel Invented steel Remarks 0.0005 0.0003 Rem 9000.0 G × 0.0008 Table 12-3 (Continued): Chemical composition 0.0005 щ 0.005 Ta 0.005 Η£ 0.01 Steel code A B C D E E C

SUBSTITUTE SHEET (RULE 26)

Table 12-4 (Continued): Chemical composition

Г	Γ	Γ	Г		Γ.		Γ
Invented steel	Invented steel	Invented steel	Comparative steel				
						0.64	
0.0003							
					0.02		
0.001							0.15
H	ы	ŗ	CA	CB	သ	CD	Œ

The underlined numerals are the conditions which are outside the range according to the present invention. (Note)

Table 13-1-1 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

Steel	Treatment	Mn	Al	Mo	Fe	Value
code	number	content	content	content	content	calculated
	Į	in	in	in	in	by
			plated	plated	plated	expression
		layer %	layer %	layer %	layer %	(1)
A	1	0.01	0.1	0.0001		0.43
A	2	0.05	0.15	0.001	12	0.38
A	3	0.04	0.6	0.001	11	-0.07
В	4	0.03	0.3	0.001		0.141
В	5	0.11	0.4	0.002	10	0.041
В	6	0.04	0.4	<0.0001		0.041
С	7	0.1	0.3	0.002	12	0.245
С	8	0.04	0.8	0.003	1.1	<u>-0.26</u>
D	9	0.7	0.5	<0.0001		0.051
D	10	0.6	0.4	0.002	10	0.151
E	11	0.2	0.3	0.005	11	0.205
E	12	0.15	0.4	0.002	10	0.105
E	13	0.3	0.3	0.005	10	0.205
F	14	0.5	0.45	0.001		0.046
F	15	0.1	0.05	0.003	9	0.446

Table 13-1-2 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

Steel	Treatment	Mn	Al	Мо	Fe	Value
code	number	content	content	content	content	calculated
1	}	in	in	in	in	by
		plated	plated	plated	plated	expression
		layer %			layer %	(1)
G	16	1	0.5	0.002	10	0.025
G	17	1	0.4	0.002	10	0.125
H	18	0.5	0.7	0.0003		<u>-0.19</u>
H	19	0.4	0.35	0.0002	10	0.165
H	20	0.5	0.45	0.0002	9	0.065
I	21	0.7	0.1	0.001	11	0.442
I	22	0.7	0.5	0.003	12	0.042
I	23	1	0.4	0.002	12	0.142
I	24	0.05	0.45	0.004	11	0.092
Ī	25	0.5	0.3	0.007	12	0.242
I	26	0.5	0.35	0.001		0.192
I	27	0.6	0.13	<0.0001		0.412
J	28	0.05	0.34	0.0002	11	0.118

Table 13-1-3 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

Steel	Treatment	Mn	Al	Мо	Fe	Value
code	number	content	content	content	content	calculated
1		in	in	in	in	by
			plated		plated	expression
			layer %		layer %	(1)
J	29	0.06	0.2	<0.0001	10	0.258
J	30	0.06	0.45	0.0001		0.008
CA	31	0.1	0.2	0.007	9	-3.22
CB	32	1.5	0.3	0.08	8	0.078
CC	33	0.5	0.4	0.007		-0.04
CD	34	Many c	racks of			
	J#	during hot-rolling				
CE	35	Many cracks occurred				
		during hot-rolling			i	

PCT/JP02/05627

Table 13-1-4 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

Other	Application of	Appearance	<u> </u>
elements	alloying heat	evaluation	
in plated		rank	
layer %	plating treatment	Lank	
Idyer 6	No No		Threated stool
		5	Invented steel
	Yes	5	Invented steel
	Yes	<u>3</u> 5	Comparative steel
	No		Invented steel
Si: 0.001	Yes	5	Invented steel
	No	<u>3</u> 5	Comparative steel
	Yes	5	Invented steel
	Yes	2	Comparative steel
Cr: 0.004, W: 0.005	No	<u>3</u>	Comparative steel
Cr: 0.005, W: 0.007	Yes	5	Invented steel
K: 0.01	Yes	5	Invented steel
Ag: 0.004	Yes	5	Invented steel
Ni: 0.01, Cu: 0.01, Co: 0.002	Yes	5	Invented steel
Ti: 0.002, Cs: 0.003	No	5	Invented steel
Rb: 0.002	Yes	5	Invented steel

Table 13-1-5 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

Other	Application of	Annoarango	
elements	alloying heat	Appearance evaluation	
			_
	treatment after	rank	i i
	plating treatment	 	
V: 0.003,			
Zr: 0.003,	Yes	5	Invented steel
Hf: 0.002,	res	5	Invented steel
Ta: 0.002			
V: 0.002,			
Zr: 0.002,	Yes	5	Invented steel
Nd: 0.007			
B: 0.002,		•	
Y: 0.003	ИО	3	Comparative steel
B: 0.003,	***	-	
Y: 0.002	Yes	5	Invented steel
Na: 0.007	Yes	5	Invented steel
Cd: 0.01	Yes	5	Invented steel
La: 0.02	Yes	5	Invented steel
T1: 0.02	Yes	5	Invented steel
In: 0.005	Yes	5	Invented steel
Be: 0.01	Yes	5	Invented steel
Pb: 0.02	No	5	Invented steel
	No	<u>4</u> 5	Comparative steel
	МО	5	Invented steel

Table 13-1-6 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

Other elements in plated layer %	Application of alloying heat treatment after plating treatment	Appearance evaluation rank	
W: 0.005, Co: 0.02	Yes	4	Comparative steel
W: 0.01, Co: 0.03, Tc: 0.002, Ge: 0.008	Yes	5	Invented steel
	Yes	<u>2</u>	Comparative steel
Ag: 0.01	Yes	5	Comparative steel
	No	<u>3</u>	Comparative steel
			Comparative steel
			Comparative steel

- 5 (Note) The underlined bold type numerals are the conditions which are outside the range according to the present invention.
- to the present invention.

 * The sum of the volume percentage of each phase is 100%, and the phases which are hardly observed and identified by an optical microscope, such as carbides, oxides, sulfides, etc., are included in the volume percentage of the main phase. In case that the main phase is composed of bainite, since the structure is very fine, it is difficult to quantitatively measure each grain size and the volume percentage of each phase.

Table 13-2-1 (Continued)

_												_	_	
Volume percentage	of martensite/%	0	0	0	0	0	65	0	0	0	0	0	0	0
Volume percentage Average grain size Volume percentage	of main phase/µm	1	6	21	12	1.4	11	12	10	11	11	9	7	9
Volume percentage	of ferrite/% *	88	88.5	<u>Pearlite</u> generated	90.5	91.5	35	5.06	91	<u>Pearlite</u> generated	68	88	85.5	88.5
~	main phase	Ferrite	Ferrite	Ferrite	Ferrite	Ferrite	Ferrite	Ferrite	Ferrite	Ferrite	Ferrite	Ferrite	Ferrite	Ferrite
Treatment	number	Ţ	2	3	4	5	9	7	8	6	10	11	12	13
Steel	code	A	A	A	В	В	В	ບ	ບ	D	Ω	មា	H	田

000

7072000000 Ferrite Table 13-2-2 (Continued) 1 | 田田田田 | 日 | 田田田 | 日 |

110000000

SUBSTITUTE SHEET (RULE 26)

Table 13-2-3 (Continued)

_				_	_	Ψ-		_	_
0	0	0	0	0	0	Immeasurable	Immeasurable		
8	8	10	15	11	10	Immeasurable	Immeasurable	Many cracks occurring bat-rolling	Many cracks occurring bat-rolling
79	82	90.5	84.5	90.5	100	Immeasurable	Immeasurable	Many cracks or	Many cracks or
Ferrite	Ferrite	Ferrite	Ferrite	Ferrite	Ferrite	Bainite	Bainite		
26	27	28	29	30	31	32	33	34	35
Ι	Ι	J	J	J	CA	CB	ည	CD	CE

Table 13-2-4 (Continued)

_								.,.						
Value calculated	by expression (2)	2.3225	2.48083		3.11417	3.40205		2.87058	3.11417		3.11417	2.66179	2.48083	2.87058
tage Volume percentage Average grain size of	martensite or austenite by expression (2)	2.5	2		3	3		2	1.9		2.2	1.8	1.5	2
Volume percentage	of bainite/8 *		4	0	3.5	3	0	3	3	0,	5	2	9	5
percer	of austenite/%	8	7.5	0	9	5.5	0	6.5	9	0	9	7	7.5	6.5
Treatment Volume	number	1	7	3	ħ	2	9	7	80	6	10	11	12	13
Steel	code	A	A	A	В	В	В	၁	၁	Q	D	មា	ы	3

Table 13-2-5 (Continued)

2.3225	2.05861						1.53083	1.67477	1.53083	1.53083	1.8475
1.8	1.9	0.75	0.8	1.2	8.0	0.75	1.5	1.3	1.5	1.4	1.3
9	6.5	2	-	3	3	2	2	5	9	C	4.5
8	6	0	0	0	0	0	12	11	12	12	10
14	15	16	17	18	19	20	21	22	23	24	25
F	দ্র	g	ტ	H	Н	H	I	I	I	Ι	H

Table 13-2-6 (Continued)

	_	_	т	1	_	_	_	т_	_
1.30464	1.53083	2.87058	1.9475	3.11417					
1.2	1.2	2	2	1.8		asurable	Immeasurable		
7	9	3	9	3.5	0	Imme	Imme		
14	12	6.5	9.5	9	0	Immeasurable	Immeasurable		
26	27	28	29	30	31	32	33	34	35
I	1	J	ם	J.	CA	CB	ည	ස	띩

Table 13-2-7 (Continued)

<u> </u>		Т	Т		1	_		1		_		Г	Γ-	_
		Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Comparative stee]	Invented steel	Comparative steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel
	(%)		ŀ											
Tensile strength	(MPa)× elongation (%	24765	23940	19080	23100	23220	12375	23800	23600	17820	23010	23100	23100	23120
%/uc	-													
Elongation/%	!	39	38	36	42	43	15	40	40	33	39	33	33	34
	MPa													
Tensile	strength/MPa	635	630	530	550	540	825	565	290	540	290	700	700	089
Treatment	number	1	2	3	4	5	9	7	8	6	10	11	12	13
Steel	code	A	A	A	В	В	В	ວ	၁	Ω	Ω	ម	E	3

Table 13-2-8 (Continued)

F 14 795 32

Invented steel	Invented steel	Invented steel	Invented steel	Comparative steel	Invented steel						
25440	24180	19320	18860	18745	18960	18840	22620	22765	22120	22620	22620
32	31	24	23	23	24	24	29	29	28	29	29
795	780	805	820	815	790	785	780	785	790	780	780
14	15	91	11	18	19	20	2.1	22	23	24	25
F	ધ	ტ	G	н	Н	H	H	I	I	H	Ι

Table 13-2-9 (Continued)

Invented steel	Comparative steel	Invented steel	Comparative steel	Invented steel	Comparative steel				
22540	22910	23595	20880	23205					
28	29	39	36	39	22	4	7		
805	790	605	580	595	620	1155	965		
26	27	28	29	30	31	32	33	34	35
н	н	Ŋ	ט	J	CA	CB	ນ	ස	CE

(Note) The underlined bold type numerals are the conditions which are outside the range invention. according to the present

sum of the volume percentage of each phase is 100%, and the phases which are hardly observed and identified by an optical microscope, such as carbides, oxides, sulfides, In case that the main phase is composed of bainite, since the structure is very fine, it is difficult to quantitatively measure each grain size and the volume percentage of each phase. etc., are included in the volume percentage of the main phase.

Table 14-1 (Continued): Production method and each property

Primary	cooling	halt	temperature	200	680	009	089	680	089	680	089	700	700	089
Primary	cooling	rate/°C	/S tempe	3	3	3	1	1	50	1	1	1	1	0.5
Maximum	temperature cooling cooling	during	annealing/ °c	830	830	830	820	820	1300	820	820	830	830	850
0.1	×(AGAG.)	+Ac.	(calculated) annealing/	758	758	758	765	765	765	763	763	749	749	787
Ac ₃	temperature temperature (calculated+ x(AcAc.)	ຼ ລູ/(ລູ) 09		1223	1223	1223	1295	1295	1295	1272	1272	1114	1114	1474
Finishing Ac ₃	temperature	of hot-	rolling/°C	006	006	006	910	910	820	890	068	910	910	895
Heating	temperature	prior to	hot- rolling/°C	1200	1200	1200	1220	1220	1120	1200	1200	1200	1200	1200
Steel Treatment Heating	number			1	. 2	3	4	2	9	7	8	6	10	11
Steel	code			A	A	A	В	В	В	ပ	ပ	Q	D	H

Table 14-2 (Continued): Production method and each property

_	_	т		_		1			т-	T .	_
089	069	069	099	099	700	089	089	029	069	089	
0.5	0.5	2	2	8	10	10	10	10	7	I	
850	850	850	850	810	810	850	850	850	850	840	
787	787	738	738	775	775	790	790	790	787	787	
1474	1474	1088	1088	1406	1406	1579	1579	1579	1494	1494	
895	895	920	920	006	006	890	890	890	890	890	
1200	1200	1230	1230	1200	1200	1210	1210	1210	1190	1190	
12	13	14	15	16	17	18	19	2.0	2.1	22	
凶	臼	F	Ŀ	G	S	Н	н	H	I	Н	

Table 14-3 (Continued): Production method and each property

	cold-	lling and	Many cracks occurred during hot-rolling and cold-rolling disfavor	ks occurred isfavor	Many cracks occu rolling disfavor	1200
					rolling disfavor	_
	cold-		during hot-rolling and	rred	Many crac	
700	5	820	721	880	910	1200
700	2	820	718	952	068	
700	1	820	821	1001	006	
089	1	850	743	1064	920	
710	0.02	950	743	1064	0.26	
700		850	743	1064	920	
069	0.01	1050	787	1494	068	
069	П	850	787	1494	068	
670		810	787	1494	068	
670	1	820	787	1494	068	
670	1	830	787	1494	068	

Table 14-4 (Continued): Production method and each property

A A A 3	3 3	0/00/0464			במוית כ	
4 4 4	3 2	Tare/ C/3	treatment	layer &	layer %	layer %
A A	3	7	For 15 seconds at a temperature of 465 to 455°C		0.01	0.1
Ą	က	10	For 15 seconds at a temperature of 465 to 455°C	510	0.05	0.15
		0.03	For 15 seconds at a temperature of 465 to 455°C	280	0.04	9.0
В	4	5	For 30 seconds at a temperature of 465 to 460°C		0.03	0.3
æ	5	. 5	For 30 seconds at a temperature of 465 to 460°C	510	0.11	0.4
В	9	150	For 3 seconds at a temperature of 465 to 460°C		0.04	0.4
ວ	7	10	For 15 seconds at a temperature of 475 to 460°C	510	0.1	0.3
ນ	8	10	For 15 seconds at a temperature of 475 to 460°C	510	0.04	8.0
Q	6	S	For 300 seconds at a temperature of 540 to 460°C		7.0	0.5
Q	10	7	For 5 seconds at a temperature of 475 to 460°C	200	8.0	0.4
띮	11	5	For 30 seconds at a temperature of 465 to 460°C	505	0.2	0.3

Table 14-5 (Continued): Production method and each property

ध्य	12	Ŋ	For 30 seconds at a	505	0.15	0.4
			temperature of 465 to 460°C))	•
ſΥ	13	<u>.</u>	For 30 seconds at a	7.0 P.	۳,	6 0
1		•	temperature of 465 to 460°C	ה ה	?	?
Ţ	14	٦. ا	For 60 seconds at a		u c	7 7 6
	¥ -1	C #	temperature of 470 to 460°C		C	0.40
Ē	15	15	For 30 seconds at a	בטם	-	100
7	7	CT .	temperature of 470 to 460°C	coc .	-i -o	0.00
ر	71	00	For 3 seconds at a	505	-	
5	70	0.7	temperature of 470 to 460°C	coc	٦	c • o
ט	21	2.0	For 3 seconds at a	505	-	
,	7.7	0.3	temperature of 470 to 460°C		-	* •
Ħ	18	г С	For 5 seconds at a		LI C	
,	0 7	C +	temperature of 470 to 460°C		· · ·	
Ħ	10	0.6	For 3 seconds at a		5	0.05
	7.7	0.2	temperature of 470 to 460°C	000	, ,	66.0
ц	20	15	For 3 seconds at a	003	и	u 7
:	3	6.1	temperature of 475 to 460°C	0	· •	
⊢	2.1	10	For 100 seconds at a	510	2 0	
,	1	2	temperature of 465 to 460°C	21	•	- • •
۲	22	10	For 60 seconds at a	012	7 0	C
	3	>	temperature of 465 to 460°C	010	•	•
İ						

Table 14-6 (Continued): Production method and each property

I	23	10	For 30 seconds at a temperature of 465 to 460°C	520	1	0.4
н	24	10	For 15 seconds at a temperature of 465 to 460°C	520	0.05	0.45
Ħ	25	10	For 15 seconds at a temperature of 465 to 460°C	520	0.5	0.3
н	26	10	For 100 seconds at a temperature of 465 to 460°C		0.5	0.35
н	27	10	For 15 seconds at a temperature of 465 to 460°C		0.5	0.13
כן	28	10	For 30 seconds at a temperature of 475 to 460°C		0.05	0.34
J	29	7	For 50 seconds at a temperature of 475 to 460°C	515	90.0	0.2
ņ	30	10	For 30 seconds at a temperature of 475 to 460°C	515	90.0	0.45
CA	31	H	For 30 seconds at a temperature of 475 to 460°C	520	0.1	0.2
CB	32	30	For 30 seconds at a temperature of 465 to 460°C	520	1.5	0.3
သ	33	30	For 30 seconds at a temperature of 475 to 460°C		0.5	0.4
වු	34					

Table 14-7 (Continued): Production method and each property

Steel code	A Invented steel	A Invented steel	A Comparative steel	B Invented steel	B Invented steel	B Comparative steel	C Invented steel	C Comparative steel	D Comparative steel	D Invented steel	E Invented steel
Elongation /%	39	38	36	42	43	15	40	40	33	39	33
rensile strength/ MPa	635	630	230	925	540	825	595	290	540	065	002
Value Appearance Tensile calculated evaluation strength/by RPa expression (1)	5	2	ম	S	ഹ	ट	2	7	က	5	5
Value calculated by expression (1)	0.4299	0.3799	Z0°0-	0.1406	0.0406	0.0406	0.245	-0.26	0.0506	0.1506	0.205
Fe content in plated layer %		12	11		10		12	11		10	11
Mo content in plated layer %	0.0001	0.001	0.001	0.001	0.002	<0.0001	0.002	0.003	<0.0001	0.002	0.005
Treatment number	1	2	3	4	S	9	2	8	6	10	11
Steel code	Æ	A	А	В	В	В	၁	၁	Q	D	ы

H

Comparative Invented steel Invented Invented Invented Invented Invented Invented Invented Invented Invented steel Ġ G 团 国 Ŀι ĒΨ 田 田 田 $\boldsymbol{\vdash}$ 33 32 31 24 23 23 24 24 29 700 089 795 780 805 820 815 785 790 785 780 Table 14-8 (Continued): Production method and each property Ŋ S Ŋ S S S ω 7 S Ŋ S 0.4459 0.0459 0.0247 0.1247 0.1647 0.0647 0.4417 0.0417 0.105 0.205 -0.1910 10 10 δ 10 σ 11 12 0.0003 0.0002 0.0002 0.005 0.003 0.002 0.002 0.003 0.001 0.001 0.002 12 13 15 16 17 18 19 20 21 22 团 ы ſΞų ہتا G Q 耳 耳 田 H \vdash

SUBSTITUTE SHEET (RULE 26)

Table 14-9 (Continued): Production method and each property

	·			, 				<u></u>	,	,		
Invented steel	Invented steel	Invented steel	Invented steel	Comparative steel	Invented steel	Comparative steel	Invented steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel
н	H	н	H	н	b	Ъ	ņ	CA	B)	သ	8	CE
28	. 29	29	28	29	39	38	39	22	ъ	L		
780	780	780	805	790	605	280	262	620	1155	586		-
5	5	5	5	41	വ	4	9	2	5	દો		
0.1417	0.0917	0.2417	0.1917	0.4117	0.1178	0.2578	0.0078	-3.223	0.0778	-0.043		
12	11	12			11	10		9	8			
0.002	0.004	0.007	0.001	<0.0001	0.0002	<0.0001	0.0001	0.007	0.08	0.007		
23	24	25	26	27	28	29	30	31	32	33	34	35
I	1	H	н	н	م	J.	ני	CA	CB	ည	S	CE

(Note) The underlined bold type numerals are the conditions which are outside the range according to the present invention.

Example of Embodiment 3

5

10

20

The present invention will hereunder be explained in detail based on Example of Embodiment 3.

Steels having chemical compositions shown in Table 15 were heated to the temperature of 1,200 to 1,250°C; the heated steels were rough-rolled at a total reduction rate of not less than 60% and at a temperature of not less than 1,000°C; then the hot-rolling of the steels was finished; and the hot-rolled steel sheets were cooled and then coiled at a temperature of not less than the bainite transformation commencement temperature which was determined by the chemical composition of each steel, pickled, and cold-rolled into cold-rolled steel sheets 1.0 mm in thickness.

After that, the Ac₁ transformation temperature and the Ac₃ transformation temperature were calculated from the components (in mass %) of each steel according to the following equations:

 $Ac_1 = 723 - 10.7xMn\% + 29.1xSi\%,$ $Ac_3 = 910 - 203x(C\%)^{1/2} + 44.7xSi\% + 31.5xMo\% - 30xMn\% - 11xCr\% + 400xAl\%.$

The steel sheets were: heated to the annealing temperature calculated from the Ac, transformation 25 temperature and the Ac₃ transformation temperature and retained in the N, atmosphere containing 10% of H2; after the annealing, cooled, when the highest attained temperature during annealing is defined as Tmax (°C), in the temperature range from Tmax - 200°C to Tmax - 100°C at a cooling rate of Tmax/1,000 to Tmax/10 °C/sec.; 30 successively, cooled in the temperature range from the plating bath temperature - 30°C to the plating bath temperature + 50°C at a cooling rate of 0.1 to 100°C/sec.; then dipped in the plating bath; and retained 35 in the temperature range from the plating bath temperature - $30\,^{\circ}\text{C}$ to the plating bath temperature + $50\,^{\circ}\text{C}$ for 2 to 200 seconds including the dipping time.

WO 02/101112 PCT/JP02/05627

5

10

15

20

25

30

35

Thereafter, as the Fe-Zn alloying treatment, some of the steel sheets were retained in the temperature range from 400 to 550°C for 15 seconds to 20 minutes after they were plated and Fe contents in the plated layers were adjusted so as to be 5 to 20% in mass, further, rolled in the skin-pass line at the reduction rate of 0.5 - 2.0%. steel sheets were subjected to full flat bending (R=1t) and to a JASO cyclic corrosion test up to 150 cycles as a means of evaluating the corrosion resistance in an environment containing chlorine, and the progress of corrosion was evaluated. The compositions of the plated layers were determined by dissolving the plated layers in 5% hydrochloric acid solution containing an inhibitor and chemically analyzing the solution, and the results are shown in Table 16.

- 76 -

From Tables 16 and 17, in the steels according to the present invention, which satisfy the expression (3), all the corrosion evaluation ranks are 4 or 5, and the strength and the elongation are well balanced.

On the other hand, in the comparative steels which do not satisfy the ranges specified in the present invention, since they do not satisfy the regulations on a microstructure or the regulations on production conditions, the strength and the elongation are badly balanced without exception. In the steels of Nos. 3, 13 and 20, which are the comparative steels, the corrosion evaluation ranks are 4 or 5. However, in case of Nos. 13 and 20, the balance between the strength and the elongation is inferior, and in case of No. 3, the tensile strength is low. Further, in the steels produced within the ranges specified in the claims of the present invention, the microstructures are composed of the aforementioned structures, and the steels are excellent in appearance and the balance between strength and elongation.

Table 15-1 (Continued): Chemical composition

			Γ										
C S1 Mn AL MO	Mn AL	¥		Mo		Д,	ശ	Cr	T N	ກວ	ပိ	M	QN Q
0.18 0.005 1.12 0.69 0.17 0.01	1.12 0.69	1.12 0.69	0.69	0.17 0	0	.01	0.005						
0.15 0.009 0.91 1.33 0.22 0	0.91 1.33 0.22	0.91 1.33 0.22	1.33 0.22	0.22	\subseteq	0.01	0.004						
0.13 0.08 0.98 0.36 0.09 0.01	0.98 0.36	0.36	0.36	0.09	二	0.01	900.0	0.12			0.37	0.37 0.05	
0.1 0.09 1.32 0.55 0.05 0.02	9 1.32 0.55	0.55	0.55	0.05		0.02	0.004		0.83	0.44			
┝	5 1.75 0.03	1.75 0.03 0.02	0.03 0.02	0.02	<u> </u>	0.015	0.002			-			0.01
0.0	08 2.33 0.03	2.33 0.03	┡	0.04	<u> </u>	0.025	0.003						
0.21 0.012 1.16 1.67 0.18 0.01	0.012 1.16 1.67	1.16 1.67				0.01	0.005						
0.24 0.005 0.78 0.85 0.17 0.02	0.005 0.78 0.85	0.78 0.85	0.85 0.17 0	0.17 0	0	.02	0.004						
0.008 0.08 0.05 2.5	0.008 0.08 0.05 2.5	0.08 0.05 2.5	2.5	2.5		800.0	0.004						
0.15	0.15 1.31 0.03	1.31 0.03	0.03	0.01		0.01	0.004						0.15
0.33 2.98 0.05 0.9	0.33 2.98 0.05 0.9	2.98 0.05 0.9	0.05 0.9	6.0	_	0.02	0.005		3.5	8.8			
1.05 0.04 0.8	1 1.05 0.04 0.8	1.05 0.04 0.8	0.04 0.8	_	_	0.02	0.002	2.98	1.5				
1.21 1.51 0.13	1.21 1.51 0.13	1.21 1.51 0.13	0.13	0.13		0.01	0.005						
0.23 0.008 1.43 1.45 0.18 0.01	1.43 1.45	1.43 1.45	1.45	0.18		0.01	900.0						
0.18 0.02 1.31 1.52 0.11 0.01	1.31 1.52	1.31 1.52 0.11 0	1.52 0.11 0	0.11 0	\subseteq	.01	0.004						
					ı								

Table 15-2 (Continued): Chemical composition

											,			_					
Remarks	Invented steel	Comparative	steel	Comparative	steel	Comparative	Steel	Comparative	steel	Invented steel	Invented steel	Invented steel							
Rem					0.0003										7.5				
Ca				0.0005	-											İ			
¥	,				0.0004														
Ca			0.001																
Mg			0.0003 0.001										0.015						
д				0.0003									0.15						
Та						0.01													
ΗĘ						0.01													
л2					0.005														
Λ						0.05					0.88								
Ti					0.01				0.05										
Steel code	A	В	C	D	Ξ	F	G	H	0	,]	J.J.		KK		ŢŢ		M	N	0

(Note) The underlined numerals are the conditions which are outside the range according to the present invention.

Table 16-1-1 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel
Corrosion resistance evaluation rank after JASO 150 cycle test	5	5	5	5	4	2	4	5	4	4	5
Fe content in plated layer %		6	10	9.5				11		10.5	
on ng ting	No	Yes	Yes	Yes	No	No	No	Yes	No	Yes	No
Value Applicati calculated of alloyi by heat expression treatment (1) # after pla treatment	1.42E-01	4.01E+00	4.36E+00	4.20E+00	2.73E-01	9.09E-03	3.34E-01	1.01E+00	2.40E+01	2.20E+01	1.32E+00
Mo content in steel %	0.17	0.17	0.17	0.22	0.22	0.22	0.09	0.09	0.05	0.05	0.02
Mo content in plated layer	0.0002	0.001	0.001	0.003	0.0001	a	0.0001	0.003	0.0001	0.001	0.0004
Al content in plated layer %	0.012	0.34	0.37	0.46	0.03	0.001	0.015	0.044	9.0	0.55	0.013
Steel Treatment Al code number cc ir ir pl	- 1	2	3	4	5	9	7	æ	6	10	11
Steel code	Æ	А	A	В	В	æ	ဎ	ບ	Q	Q	团

Table 16-1-2 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

	Invented steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Comparative steel	Comparative steel	Comparative steel
Corrosion content resistance in plated rank after layer % JASO 150 cycle test	4	4	വ	7	4	5	. 5	5	5	7	El
Fe content in plated layer %	12			8.5		10		10	6		11
on ng ting	Yes	No	No	Yes	No	Yes	No	Yes	Yes	No	Yes
Value Application of alloying by the at after play (1) # treatment treatment treatment	5.15E+00	3.03E+01	4.53E-01	3.78E+00	2.01E-01	5.68E+00	6.01E-01	4.95E+00	6.48E+00	8.80E-03	2.25E+02
Mo content in steel %	0.02	0.02	0.04	0.04	0.18	0.18	0.17	0.17	0.17	2.5	0.005
Mo content in plated layer &*	0.003	500.0	0.0001	0.003	0.0001	0.002	0.0002	0.001	0.002	0	0.007
Al content in plated layer %	0.05	0.3	0.009	0.074	0.018	0.51	0.051	0.42	0.55	0.011	0.56
Steel Treatment Al code number co in pl	12	13	14	15	16	17	18	19	20	21	22
Steel code	囯	된	দি	ĮΉ	უ	ტ	Ħ	н	ш	II	JJ

and corrosion resistance, microstructure steel wettability, life of each Table 16-1-3 (Continued): Plating fatique

	Comparative steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel
Fe Corrosion content resistance in evaluation plated rank after layer % JASO 150	7		5	5	دی	5
Fe content in plated layer %			10		6	10
ication lloying ment plating			Yes	No	Yes	Yes
Mo Value Application to content calculated of alloying in by heat after plays after plays (1) # after plays treatment			2.35E-01	0.13 7.92E-02	1.5E-01	2.05E-01
Mo content in steel %			0.13	0.13	0.18	0.11
	acks d during ling	acks d during ling	0.0005	0.0003	0.0010	9000.0
Al content in plated layer %	Many cracks occurred duri hot-rolling	Many cracks occurred duri hot-rolling	0.015	0.005	0.013	0.011
Steel Treat- Al code ment cor number in pla	23	24	25	26	27	28
Steel code	KK	TT	M1	M2	z	0

The underlined bold type numerals are the conditions which are outside the range according to the present invention. (Note)

value is regarded as 0 when Mo content is less than 0.0001%.

and the phases which are hardly The sum of the volume percentage of each phase is 100%, and the phases which are hard observed and identified by an optical microscope, such as carbides, oxides, sulfides, In case that the main is composed of bainite, since the structure is very fine, it is difficult to quantitatively measure each grain size and the volume percentage of each phase. are included in the volume percentage of the main phase. - 01" means 1.42×10^{-1} phase etc., * #=

Table 16-2-1 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

	Volume percentage of martensite/8	0	0	0	0	0	1	0	0	0	0	6	8.5	78		17	16	0	0
	Average grain size	13	14	22	15	16	6	11	13	8	7.5	5	5.5	4	11	4	5	12	10
	Volume percentage of ferrite	86.5	88	Pearlite generated	68	06	95.7	91.5	91	80	81.5	98	85.5	15		77	79	87	87.5
	Kind or main phase	Ferrite	Ferrite	Ferrite and pearlite	Ferrite and	<u>baınıte</u>	Ferrite	Ferrite	Ferrite	Ferrite									
	code number	1	2	3	4	5	9	7	8	6	10	11	12	13		14	15	16	17
7	code	A	A	A	В	В	В	ပ	ပ	Ω	D	田	ы	Œ١		H	ĒΊ	ტ	ტ

Table 16-2-2 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

_										
0		Ō	O		1				-	C
8	7	7	18	8			12	12	6	\ \ -
81.5	83	Pearlite generated	100	199			85	85	77	87
Ferrite	Ferrite	Ferrite and pearlite	Ferrite	Ferrite			Ferrite	Ferrite	Ferrite	Ferrite
18	19	20	2.1	22	23	24	25	26	27	28
 ш	Н	н	II	JJ	KK	LL	M1	M2	Z	0

Table 16-2-3 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

_																				
Ratio f grain	size of main	phase to that	of second phase	0.19231	0.14286	0	0.21333	0.175	0.13333	0.2	0.14615	0.1875	0.22667	0.24	0.16364	0.625	0.175	0.12	0.15833	0.18
Value	calculated by	ression	(2)	2.15176	2.432		2.17089	2.34067	9.83376	2.415523	2.22417	1.15773	1.21643						2,385	2.51676
Average grain size	of martensite or	austenite/μ		2.5	2		3.2	2.8	1.2	2.2	1.9	1.5	1.7	1.2	6.0	2.5	0.7	9.0	1.9	1.8
Volume	percentage	of bainite		വ	4.5	0	4	3.5	1.8	3	3	6	8	5	9	51	9	5	4	4
Volume	percentage of	austenite/%		8.5	7.5	0	7	6.5	1.5	5.5	8	111	10.5	0	0	01	0	0	6	8.5
Treatment Volume	number			П	2	3	7	2	9	7	8	6	10	11	12	13	14	15	16	1.7
Steel	code			Ä	Ą	Ą	В	В	g	ບ	ວ	Q	Q	ы	闰	댠	ഥ	Ēų	១	ტ

Table 16-2-4 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

		_	_								
0.15	0 11/20	C75110	ə l	0	Al C	>1		0 1667	0 1667	0 2111	1636
1.6082	1 7691	7/2/						2.13125	1.9608	1,8194	2.0584
1.2	0.8							2.0	2.0	1.9	1.8
3	3		>	0	0			4.5	4.5	7.0	3.5
15.5	14	0	기	0	0			9.5	10.5	15.0	9.5
18	19	20	2	21	22	23	24	25	26	27	28
н	Н	Œ	:	II	JJ	KK	111	Ml	M2	z	0

Table 16-2-5 (Continued): Plating wettability, corrosion resistance, microstructure and fatigue life of each steel

		Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Comparative steel
Elongation Tensile strength	(MPA)xelongation(%)	23865	24320	18360	22620	22230	16200	23000	22800	21980	21840	20240	20355	9450
Elongation		37	38	34	39	38	27	40	40	28	28	23	23	10
Tensile	strength/MPa	645	640	540	580	585	009	575	570	785	780	880	885	945
Treatment	number	I	2	3	7	5	9	7	8	6	10	11	12	13
Steel	code	A	A	A	В	В	В	ບ	ບ	Ω	Q	田	臼	ഥ

and corrosion resistance, microstructure steel Table 16-2-6 (Continued): Plating wettability, life of each fatigue

Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel
20020	20470	23125	22755	18745	18960	16950	15555	14250			22320	22755	21330	22610
22	23	37	37	23	24	30	51	25			36	37	27	38
910	068	625	615	815	790	565	305	570			620	615	. 062	595
14	15	16.	17	18	19	20	21	22	23	24	25	26	27	28
F	£	Ð	5	н	H	Н	II	££	KK	TT	M1	M2	N	0

The underlined bold type numerals are the conditions which are outside the invention. according to the present (Note)

value is regarded as 0 when Mo content is less than 0.0001%. *

In the case that the main and the phases which are hardly observed and identified by an optical microscope, such as carbides, oxides, sulfides, it is difficult to quantitatively measured each grain size and the volume percentage of each phase. etc., are included in the volume percentage of the main phase. phase is composed of bainite, since the structure is very fine, percentage of each phase is 100%, The sum of the volume *

Table 17-1-1 (Continued): Production method and each property

_															,
0 12×(20 - 20 1+20	+50(°C)/°C 0.12. (AC3-AC1) AC1	י י י י י י י י י י י י י י י י י י י		692	769	769	803	803	803	758	758	764	764	731	731
Ac, (calculated	+50(°c)/°c			1122	1122	1122	1393	1393	1393	1006	1006	1082	1082	852	852
Finishing	temperature	of rough hot-	rolling/°C	1020	1020	1020	1020	1020	930	1095	1050	1030	1030	1070	1070
Total	reduction	rate in rough	hot-rolling/8	90 1020	06	9.6	88	88	20	85	92	91	91	85	85
Heating	temperature	prior to hot-	rolling/°C	1230	1230	1230	1220	1220	1120	1250	1210	1220	1220	1245	1245
Steel Treatment Heating	number			Ţ	2	3	4	5	9	7	8	6	10	11	12
Steel	code			A	A	A	В	В	В	ပ	ပ	D	D	ы	臼

Table 17-1-2 (Continued): Production method and each property

Cooling Cool	Steel			Primary		Secondary	cond
annealing: /S °C 830 1 680 7 For 35 seconds at a temperature of 465 to temperature of 475 to temperatur		Inniner	ø	cooling rate/°C	cooling halt temperature/	cooling rate/°C/S	
830 1 680 7 For 35 seconds at a temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 475 to temperatu			၁	s/	່ວຸ		
830 1 680 10 For 15 seconds at a temperature of 465 to 1580 1 580 10 For 15 seconds at a temperature of 465 to 1580 1 580 0.01 For 15 seconds at a temperature of 465 to 1580 1 680 5 For 30 seconds at a temperature of 465 to 150 120 680 150 For 30 seconds at a temperature of 465 to 150 120 680 150 For 30 seconds at a temperature of 465 to 150 120 680 150 For 30 seconds at a temperature of 465 to 150 150		Н	830	-	680	7	35 seconds at a
830 1 680 10 For 15 seconds at a temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 475 to temperature of 465 to temperat	T			1	0	,	465
830 1 580 0.01 For 15 seconds at a temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 475 to temperature of 465 to		7	830	Н	680	10	at a
830 1 580 0.01 For 15 seconds at a temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 475 to temperature of 465 to temper	Т					2	465
820 1 680 5 For 30 seconds at a temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to seconds at a temperature of 465 to seconds at a temperature of 465 to seconds at a temperature of 475 to seconds at a temperature of 465 to second		m	830	-	580	0 01	seconds at a
820 1 680 5 For 30 seconds at a temperature of 465 to 680 150 For 30 seconds at a temperature of 465 to 120 680 150 For 3 seconds at a temperature of 465 to 150 120 680 150 For 3 seconds at a temperature of 465 to 150 10 For 60 seconds at a temperature of 475 to 150 10 For 45 seconds at a temperature of 475 to 150 10 For 300 seconds at a temperature of 455 to 150 10 For 50 seconds at a temperature of 475 to 150 10 For 10 seconds at a temperature of 475 to 150 10 For 10 seconds at a temperature of 465 to 150 10 For 10 seconds at a temperature of 465 to 150 10 For 3 seconds at a temperature of 465 to 150 150	Т			•		70.0	465
820 1 680 5 For 30 seconds at a temperature of 465 to For 30 seconds at a temperature of 465 to 680 150 For 3 seconds at a temperature of 465 to 670 10 For 60 seconds at a temperature of 475 to 690 5 For 300 seconds at a temperature of 475 to 690 5 For 300 seconds at a temperature of 475 to 675 5 690 10 For 50 seconds at a temperature of 475 to 690 10 For 10 seconds at a temperature of 475 to 690 10 For 10 seconds at a temperature of 465 to 690 10 For 3 seconds at a temperature of 465 to 690		4	820		680	ហ	seconds at
820 1 680 5 For 3 seconds at a temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 475 to temperature of 455 to temperature of 465 to temperatur	T			1	>	•	465
770 120 680 150 For 3 seconds at a temperature of 465 to temperature of 465 to temperature of 475 to temperature of 455 to temperature of 475 to temperature of 465 to		52	820	-	680	ע	30 seconds at a
770 120 680 150 For 3 seconds at a temperature of 465 to temperature of 475 to temperature of 455 to temperature of 455 to temperature of 475 to temperature of 465 to temper	T			•		, ו	465
850 3 670 10 For 60 seconds at a temperature of 475 to temperature of 475 to temperature of 475 to temperature of 475 to temperature of 475 to temperature of 455 to temperature of 455 to temperature of 455 to temperature of 475 to temperature of 465 to temperat		9	770	120	680	150	For 3 seconds at a
850 3 670 10 For 60 seconds at a temperature of 475 to temperature of 475 to temperature of 475 to temperature of 475 to temperature of 475 to temperature of 455 to temperature of 455 to temperature of 455 to temperature of 475 to temperature of 475 to temperature of 465 to temperat	Т		<u> </u>	234		<u>ال</u>	temperature of 465 to 450°C
820 0.1 690 5 For 45 seconds at a temperature of 475 to temperature of 475 to temperature of 475 to temperature of 455 to temperature of 455 to temperature of 455 to temperature of 475 to temperature of 475 to temperature of 465 to tempera		7	850	~	670	10	60 seconds at a
820 0.1 690 5 For 45 seconds at a temperature of 475 to temperature of 475 to temperature of 455 to temperature of 455 to temperature of 455 to temperature of 475 to temperature of 475 to temperature of 465 to tempera	T)	2	10	475
835 2 700 5 For 300 seconds at a temperature of 475 to temperature of 475 to temperature of 475 to temperature of 475 to temperature of 475 to temperature of 475 to temperature of 465 to temperat		œ	820		069	ľ	seconds at a
835 2 700 5 For 300 seconds at a temperature of 455 to temperature of 455 to temperature of 475 to temperature of 475 to temperature of 475 to temperature of 465 to	\neg			•))	,	ture of
835 5 675 7 For 50 seconds at a temperature of 455 to temperature of 475 to temperature of 475 to temperature of 475 to temperature of 465 to 825 3 690 30 For 3 seconds at a temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to temperature of 465 to		6	835	2	700	Ľ	seconds at a
835 5 675 7 For 50 seconds at a temperature of 475 to temperature of 475 to temperature of 465 to temperatu	7			1	2	•	455
825 5 690 10 For 10 seconds at a temperature of 465 to temperat		10	835	ľ	675	7	at a
825 5 690 10 For 10 seconds at a temperature of 465 to temperature of 465 to temperature of 465 to	\dashv)	2		475
825 3 690 30 For 3 seconds at a temperature of 465 to			825	r	069	10	seconds at a
825 3 690 30 For 3 seconds at a temperature of 465 to	\dashv			,		>	£ 465
temperature of 465 to		12	825	r	069	30	ds at a
	1				-		of 465

Table 17-1-3 (Continued): Production method and each property

	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel	Invented steel
Steel code	A	A	Ą	æ	Д	щ	ນ	ບ	Ω	Ω	闰	田
Elongation Steel	37	38	34	. 39	38	30	40	40	33	32	23	23
Tensile strength /MPa	645	640	540	580	290	595	575	570	795	800	880	885
Corrosion resistance evaluation rank after JASO 150 cycle test	5	5	5	5	4	2	4	5	4	4	5	4
Value calculated by expression (1)#	1.42E-01	4.01E+00	4.36E+00	4.20E+00	2.73E+00	9.09E-03	3.34E-01	1.01E+00	2.40E+01	2.20E+01	1.32E+00	5.15E+00
Treatment Alloying number temperature /°C		500	575		510			500		500		500
Treatment number	П	2	Э	4	5	9	7	8	6	1.0	11	12
Steel code	A	A	A	В	В	В	ນ	ပ	Q	Д	Þì	M

Table 17-2-1 (Continued): Production method and each property (Continue)

_																
Ac, (calculated	ວ。/(ວ。)05+		854	854	854	1506	1506	1183	1183	1183	1049	882	1444	1444	1406	1447
Finishing	temperature of rough	hot-rolling/°C	1030	1030	1030	1010	1010	1025	1025	1025	1030	1000	1050	1050	1050	1050
Total reduction	rate in rough hot-	rolling/8	88	88	88	06	06	92	92	92	93	95	06	06	06	06
Heating	temperature prior	to hot-rolling/°C	1240	1240	1240	1200	1200	1210	1210	1210	1200	1250	1200	1200	1200	1200
Steel Treatment Heating	number		13	14	15	16	1.7	18	19	20	2.1	22	23	24	25	26
Steel	code		£4	된	Ή	G	G	Н	н	H	II	JJ	M1	M2	N	0

Table 17-2-2 (Continued): Production method and each property (Continue)

_																
200000000000000000000000000000000000000	secondary cooling rate	s/2 _^ /	50	3	7	8	20	15	20	0.05	10	0.3	5	5	5	5
Drimary 000 ling	cooling rate halt	temperature/°C	730	099	665	089	700	089	089	710	650	089	670	670	670	670
Drimary	cooling rate	s/2_/	10	2	2	5	3	10	10	0.03	0.1	0.05	2	2	2	2
Mayimim	temperature	during annealing: / Tmax (°C)/°C	086	820	820	850	850	830	830	770	800	830	800	800	800	800
	code number (calculated)/°C		725	725	725	815	815	779	622	779	770	742	792	792	786	792
Treatment	number		13	14	15	91	11	18	19	20	21	22	23	24	25	26
Stop	code		ţ.	표	Ξų	ტ	ტ	Н	H	H	II	JJ	M1	M2	N	0

Table 17-2-3 (Continued): Production method and each property (Continue)

Steel	Treatment	Refaining conditions including	777	
code	number		temperature/°C	expression (1)#
뇬	13			3 038401
		10		10 taco.c
[14	For 160 seconds at a temperature of		4.53E-01
		15 0000000 1 1 100000000000000000000000		
ţ	15	to 460°C	505	3.78E+00
ტ	16	For 20 seconds at a temperature of 470 to $460^{\circ}\mathrm{C}$		2.01E-01
ტ	17	For 10 seconds at a temperature of 470 to 460° C	510	5.68E+00
Н	. 18	For 5 seconds at a temperature of 470 to 460°C		6.01E-01
Н	19	For 3 seconds at a temperature of 470 to 460°C	200	4.95E+00
ш	20	For 3 seconds at a temperature of 475 to 460°C	540	6.48E+00
II	21	For 5 seconds at a temperature of 465 to 460 °C	510	8.80E-03
JJ	22	For 60 seconds at a temperature of 465 to 460°C	545	2.25E+02
M1	23	For 30 seconds at a temperature of 460 to 450°C	525	2.35E-01
M2	24	For 60 seconds at a temperature of 460 to 450°C		7.92E-02
Z	25	For 60 seconds at a temperature of 460 to 450°C	500	1.50E-01
0	26	For 60 seconds at a temperature of 460 to 450°C	500	2.05E-01

Table 17-2-4 (Continued): Production method and each property (Continue)

		Comparative steel	Invented steel	Invented steel		Invented steel	Invented steel	Invented steel	Comparative steel	Comparative steel	Comparative steel	Invented steel	Invented steel	Invented steel	Invented steel
Steel code		M	Œ	Œ	G	ß	H	H	H	II	JJ	MI	M2	Z	0
Elongation/%		10	22	23	37	37	23	24	30	51	25	36	37	27	38
Tensile strength/MPa		945	910	890	625	615	615	790	565	305	570	620	615	790	595
Corrosion resistance evaluation rank after	JASO 150 cycle test	4	5	4	4	5	5	5	5	7	(C)	5	5	5	5
Steel Treatment code number		13	14	15	16	17	18	19	20	2.1	22	23	24	25	26
Steel		Œį	ഥ	Ŀ	ტ	ტ	ш	H	H	II	JJ	M1	M2	Z	0

(Note) The underlined bold type numerals are the conditions which are outside the range according to the present invention.

"1.42E - 01" means 1.42 \times 10⁻¹

- 82 -

Industrial Applicability

5

10

15

20

The present invention provides: a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet excellent in ductility, which improves non-plating defects and plating adhesion after severe deformation, and a method of producing the same; a high-strength high-ductility hot-dip galvanized steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet excellent in appearance and workability, which suppresses the generation of non-plating defects, and a method of producing the same; and a high-strength hot-dip galvannealed steel sheet and a high-strength hot-dip galvanized steel sheet, which suppress non-plating defects and surface defects and have both corrosion resistance, in particular corrosion resistance, in an environment containing chlorine ion, and high ductility, and a method of producing the same.

WO 02/101112

5

10

15

20

25

30

35

- 83 -

PCT/JP02/05627

CLAIMS

- 1. A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance, the hot-dip galvanized or galvannealed steel sheet having a plated layer on the surface of the base layer consisting of a steel sheet, characterized in that the maximum depth of the grain boundary oxidized layer formed at the interface between the plated layer and the base layer is not more than 0.5 μm .
- 2. A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance, the hot-dip galvanized or galvannealed steel sheet having a zinc plated layer on the surface of the base layer consisting of a steel sheet, characterized in that the maximum depth of the grain boundary oxidized layer at the interface between the plated layer and the base layer is not more than 1 μm and the average grain size of the main phase in the microstructure of the base layer is not more than 20 μm .
- 3. A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance, the hot-dip galvanized or galvannealed steel sheet having a plated layer on the surface of the base layer consisting of a steel sheet, according to claim 1 or 2, characterized in that the value obtained by dividing the maximum depth of the grain boundary oxidized layer formed at the interface between the plated layer and the base layer by the average grain size of the main phase in the microstructure of the base layer is not more than 0.1.
- 4. A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion

resistance according to any one of claims 1 to 3, characterized in that the steel sheet contains, in its microstructure, ferrite or ferrite and bainite 50 to 97% in volume as the main phase, and either or both of martensite and austenite 3 to 50% in total volume as the second phase.

5. A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to any one of claims 1 to 4, characterized in that: the plated layer contains, in mass,

Al: 0.001 to 0.5%, and Mn: 0.001 to 2%,

5

10

25

30

35

with the balance consisting of Zn and unavoidable impurities; and Si content: X (in mass %), Mn content: Y (in mass %) and Al content: Z (in mass %) in the steel sheet, and Al content: A (in mass %) and Mn content: B (in mass %) in the plated layer satisfy the following equation 1:

 $3-(X+Y/10+Z/3)-12.5\times(A-B) \ge 0 \dots 1$

- 6. A high-strength high-ductility hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to claim 5, characterized in that the plated layer contains Fe at 5 to 20% in mass.
- 7. A high-strength hot-dip galvanized steel sheet having high plating adhesion after severe deformation and ductility, the hot-dip galvanized steel sheet having a plated layer containing, in mass,

Al: 0.001 to 0.5%, and

Mn: 0.001 to 2%,

with the balance consisting of Zn and unavoidable impurities, on the surface of a steel sheet consisting of, in mass,

C: 0.0001 to 0.3%,

10

15

20

.25

30

35

Si: 0.01 to 2.5%,

Mn: 0.01 to 3%,

Al: 0.001 to 4%, and

the balance consisting of Fe and unavoidable impurities, characterized in that: Si content: X (in mass %), Mn content: Y (in mass %) and Al content: Z (in mass %) in the steel, and Al content: A (in mass %) and Mn content: B (in mass %) in the plated layer satisfy the following equation 1; and the microstructure of the steel sheet has the main phase comprising ferrite at 70 to 97% in volume and the average grain size of a main phase being not more than 20 μm , and a second phase comprising austenite and/or martensite at 3 to 30% in volume and the average grain size of the second phase being not more than 10 μm :

 $3-(X+Y/10+Z/3)-12.5\times(A-B) \ge 0 \dots 1$

- 8. A high-strength hot-dip galvannealed steel sheet having high plating adhesion after severe deformation and ductility according to claim 7, characterized in that the plated layer further contains Fe at 5 to 20% in mass.
- 9. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high plating adhesion after severe deformation and ductility according to claim 7 or 8, characterized in that the average grain size of austenite and/or martensite which constitute(s) the second phase of the steel sheet is 0.01 to 0.7 times the average grain size of ferrite.
- 10. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high plating adhesion after severe deformation and ductility according to any one of claims 7 to 9, characterized in that the microstructure of the steel sheet: has a main phase comprising ferrite at 50 to 95% in volume and the average grain size of the main phase being not more than 20 μm, and a second phase comprising austenite and/or martensite at 3 to 30% in volume and the average grain size of the

second phase being not more than 10 μm ; and further contains bainite at 2 to 47% in volume.

11. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high plating adhesion after severe deformation and ductility according to any one of claims 7 to 10, characterized in that the steel further contains Mo at 0.001 to 5% in mass.

- 86 -

- 12. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high plating adhesion after severe deformation and ductility according to any one of claims 7 to 11, characterized in that the steel further contains P at 0.0001 to 0.1% and S at 0.0001 to 0.01%, in mass.
- 13. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to any one of claims 7 to 12, characterized in that the Si content in the steel is 0.001 to 2.5%.
- 14. A high-strength hot-dip galvannealed steel
 20 sheet having superior appearance and workability, the
 hot-dip galvannealed steel sheet having a plated layer
 containing, in mass,

Mn: 0.001 to 3%,

Al: 0.001 to 4%,

Mo: 0.0001 to 1%, and

Fe: 5 to 20%,

with the balance consisting of Zn and unavoidable impurities, on the surface of a steel sheet consisting of, in mass,

30 C: 0.0001 to 0.3%,

5

10

15

25

Si: 0.001 to less than 0.1%,

Mn: 0.01 to 3%,

Al: 0.001 to 4%,

Mo: 0.001 to 1%,

35 P: 0.0001 to 0.3%,

S: 0.0001 to 0.1%, and

the balance consisting of Fe and unavoidable impurities,

characterized in that: Mn content: X (in mass %) and Si content: Y (in mass %) in the steel, and Al content: Z (in mass %) in the plated layer satisfy the following equation 2:

 $0.6-(X/18+Y+Z) \ge 0 \dots 2$

15. A high-strength hot-dip galvanized steel sheet having superior appearance and workability, the hot-dip galvanized steel sheet having a plated layer containing, in mass,

10 Mn: 0.001 to 3%,

Al: 0.001 to 4%,

Mo: 0.0001 to 1%, and

Fe: less than 5%,

with the balance consisting of Zn and unavoidable impurities, on the surface of a steel sheet consisting of, in mass,

C: 0.0001 to 0.3%,

Si: 0.001 to less than 0.1%,

Mn: 0.01 to 3%,

20 Al: 0.001 to 4%,

25

Mo: 0.001 to 1%,

P: 0.0001 to 0.3%,

S: 0.0001 to 0.1%, and

the balance consisting of Fe and unavoidable impurities, characterized in that: Mn content: X (in mass %) and Si content: Y (in mass %) in the steel, and Al content: Z (in mass %) in the plated layer satisfy the following equation 2:

 $0.6-(X/18+Y+Z) \ge 0 \dots 2$

16. A high-strength high-ductility hot-dip galvannealed steel sheet having high corrosion resistance, the hot-dip galvannealed steel sheet having a plated layer containing, in mass,

Al: 0.001 to 4%, and

35 Fe: 5 to 20%,

with the balance consisting of Zn and unavoidable

impurities, on the surface of a steel sheet consisting of, in mass,

C: 0.0001 to 0.3%,

Si: 0.001 to less than 0.1%,

5 Mn: 0.001 to 3%,

Al: 0.001 to 4%,

Mo: 0.001 to 1%,

P: 0.001 to 0.3%,

S: 0.0001 to 0.1%, and

the balance consisting of Fe and unavoidable impurities, characterized in that: Al content: A (in mass %) and Mo content: B (in mass %) in the plated layer, and Mo content: C (in mass %) in the steel satisfy the following equation 3; and the microstructure of the steel consists of the main phase comprising ferrite or ferrite and bainite 50 to 97% in volume and the balance consisting of a complex structure containing either or both of martensite and retained austenite 3 to 50% in volume:

 $100 \ge (A/3+B/6)/(C/6) \ge 0.01 \dots 3$

20 17. A high-strength high-ductility hot-dip galvanized steel sheet having high corrosion resistance, the hot-dip galvanized steel sheet having a plated layer containing, in mass,

Al: 0.001 to 4%, and

Fe: less than 5%,

with the balance consisting of Zn and unavoidable impurities, on the surface of a steel sheet consisting of, in mass,

C: 0.0001 to 0.3%,

30 Si: 0.001 to less than 0.1%,

Mn: 0.001 to 3%,

Al: 0.001 to 4%,

Mo: 0.001 to 1%,

P: 0.001 to 0.3%,

35 S: 0.0001 to 0.1%, and

the balance consisting of Fe and unavoidable impurities, characterized in that: Al content: A (in mass %) and Mo

10

15

20

25

30

35

content: B (in mass %) in the plated layer, and Mo content: C (in mass %) in the steel satisfy the following equation 3; and the microstructure of the steel consists of the main phase comprising ferrite or ferrite and bainite 50 to 97% in volume and the balance consisting of a complex structure containing either or both of martensite and retained austenite at 3 to 50% in volume:

 $100 \ge (A/3+B/6)/(C/6) \ge 0.01 \dots 3$

- 18. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of claims 14 to 17, characterized in that the microstructure of the steel consists of the main phase comprising ferrite or ferrite and bainite at 50 to 97% in volume and the balance consisting of a complex structure containing either or both of martensite and retained austenite at 3 to 50% in total volume.
- 19. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of claims 14 to 18, characterized in that the microstructure of the steel sheet has a main phase comprising ferrite at 70 to 97% in volume and the average grain size of the main phase being not more than 20 μm , and a second phase comprising austenite and/or martensite at 3 to 30% in volume and the average grain size of the second phase being not more than 10 μm .
- 20. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of claims 14 to 19, characterized in that: the second phase of the steel sheet is composed of austenite; and C content: C (in mass %) and Mn content: Mn (in mass %) in the steel, and the volume percentage of austenite: Vγ (in %) and the volume percentage of ferrite and bainite: Vα (in %) satisfy the following equation 4:

10

15

$(\nabla y + \nabla \alpha) / \nabla y \times C + Mn/8 \ge 2.0 \dots 4$

- 21. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of claims 14 to 20, characterized in that the microstructure of the steel sheet: has a main phase comprising ferrite at 50 to 95% in volume and the average grain size of the main phase being not more than 20 μm , and a second phase comprising austenite and/or martensite at 3 to 30% in volume and the average grain size of the second phase being not more than 10 μm ; and further contains bainite at 2 to 47% in volume.
- 22. A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high corrosion resistance according to any one of claims 14 to 21, characterized in that the average grain size of austenite and/or martensite which constitute(s) the second phase of the steel sheet is 0.01 to 0.6 times the average grain size of ferrite.
- 23. A high-strength hot-dip galvanized steel sheet having high plating adhesion after severe deformation and ductility according to any one of claims 1 to 22, characterized in that the plated layer further contains, in mass, one or more of,

25 Ca: 0.001 to 0.1%,
Mg: 0.001 to 3%,
Si: 0.001 to 0.1%,
Mo: 0.001 to 0.1%,
W: 0.001 to 0.1%,
Zr: 0.001 to 0.1%,
Cs: 0.001 to 0.1%,
Rb: 0.001 to 0.1%,
K: 0.001 to 0.1%,
Ag: 0.001 to 5%,
Na: 0.001 to 3%,
Cd: 0.001 to 3%,

```
Cu: 0.001 to 3%,
           Ni: 0.001 to 0.5%,
           Co: 0.001 to 1%,
           La: 0.001 to 0.1%,
 5
           Tl: 0.001 to 8%,
           Nd: 0.001 to 0.1%,
           Y: 0.001 to 0.1%,
           In: 0.001 to 5%,
           Be: 0.001 to 0.1%,
10
           Cr: 0.001 to 0.05%,
           Pb: 0.001 to 1%,
           Hf: 0.001 to 0.1%,
           Tc: 0.001 to 0.1%,
           Ti: 0.001 to 0.1%,
15
           Ge: 0.001 to 5%,
           Ta: 0.001 to 0.1%,
           V: 0.001 to 0.2%, and
           B: 0.001 to 0.1%.
```

24. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of claims 1 to 23, characterized in that the steel further contains, in mass, one or more of,

Cr: 0.001 to 25%,

Ni: 0.001 to 10%,

Cu: 0.001 to 5%,

Co: 0.001 to 5%, and

W: 0.001 to 5%.

- 25. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of claims 1 to 24, characterized in that the steel further contains, in mass, one or more of Nb, Ti, V, Zr, Hf and Ta at 0.001 to 1% in total.
- 26. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of claims

5

10

15

20

25

30

35

- 92 -

1 to 25, characterized in that the steel yet further contains B at 0.0001 to 0.1% in mass.

- 27. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability according to any one of claims 1 to 26, characterized in that the steel yet further contains one or more of Y, Rem, Ca, Mg and Ce at 0.0001 to 1% in mass.
- 28. A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to any one of claims 1 to 27, characterized in that: the steel contains one or more of SiO₂, MnO and Al₂O₃ at 0.1 to 70% in total area percentage in the range from the interface between the plated layer and the steel sheet to the depth of 10 μm; and the following equation 5 is satisfied:

{MnO (in area percentage)+ Al_2O_3 (in area percentage)}/ SiO_2 (in area percentage) $\geq 0.1 \dots 5$

- 29. A high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance according to any one of claims 1 to 28, characterized in that the steel contains one or more of Y₂O₃, ZrO₂, HfO₂, TiO₃, La₂O₃, Ce₂O₃, CeO₂, CaO and MgO at 0.0001 to 10.0% in total area percentage in the range from the interface between the plated layer and the steel sheet to the depth of 10 µm.
- 30. A method of producing a high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high plating adhesion after severe deformation and ductility during heavy working, characterized by: casting a steel comprising the chemical components according to any one of claims 1 to 29 or once cooling the cast slab after the casting; then heating the cast slab again; thereafter, hot-rolling the cast slab

5

10

15

20

25

30

35

- 93 -

into a hot-rolled steel sheet and coiling it, and then pickling and cold-rolling the hot-rolled steel sheet; thereafter, annealing the cold-rolled steel sheet for 10 seconds to 30 minutes in the temperature range from not less than $0.1x(Ac_3 - Ac_1)+Ac_1$ (°C) to not more than Ac_3+50 (°C); then cooling the steel sheet to the temperature range from 650 to 700°C at a cooling rate of 0.1 to 10°C/sec.; thereafter, cooling the steel sheet to the temperature range from the plating bath temperature to the plating bath temperature + 100°C at a cooling rate of 1 to 100°C/sec.; keeping the steel sheet in the temperature range from the zinc plating bath temperature to the zinc plating bath temperature + 100°C for 1 to 3,000 seconds including the subsequent dipping time; dipping the steel sheet in the zinc plating bath; and, after that, cooling the steel sheet to room temperature.

A method of producing a high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet according to any one of the claims 1 to 29, which hot-dip galvanized steel sheet being excellent in appearance and workability, characterized by: casting a steel comprising the chemical components according to any one of claims 1 to 29 or once cooling the cast slab after the casting; then heating the cast slab again to a temperature of 1,180 to 1,250°C; finishing the hotrolling at a temperature of 880 to 1,100°C; then pickling and cold-rolling the coiled hot-rolled steel sheet; thereafter, annealing the cold-rolled steel sheet for 10 seconds to 30 minutes in the temperature range from not less than $0.1x(Ac_3 - Ac_1)+Ac_1$ (°C) to not more than Ac_3+50 (°C); then cooling the steel sheet to the temperature range from 650 to 700°C at a cooling rate of 0.1 to 10°C/sec.; thereafter, cooling the steel sheet to the temperature range from the plating bath temperature -50°C to the plating bath temperature + 50°C at a cooling rate of 0.1 to 100°C/sec.; then dipping the steel sheet in the plating bath; keeping the steel sheet in the

10

15

20

25

30

35

temperature range from the plating bath temperature - 50°C to the plating bath temperature + 50°C for 2 to 200 seconds including the dipping time; and, thereafter, cooling the steel sheet to room temperature.

- A method of producing a high-strength highductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet according to any one of claims 1 to 29, the hot-dip galvanized steel sheet being excellent in corrosion resistance, characterized by: casting a steel comprising the chemical components according to any one of claims 1 to 29 or once cooling the cast slab after the casting; then heating the cast slab again to a temperature of 1,200 to 1,300°C; then rough-rolling the heated slab at the total reduction rate of 60 to 99% and at a temperature of 1,000 to 1,150°C; then pickling and cold-rolling the finished and coiled hot-rolled steel sheet; thereafter, annealing the cold-rolled steel sheet for 10 seconds to 30 minutes in the temperature range from not less than $0.12x(Ac_3 - Ac_1)+Ac_1$ (°C) to not more than Ac_3+50 (°C); then, after the annealing, cooling the steel sheet, when the highest attained temperature during annealing is defined as Tmax (°C), to the temperature range from Tmax - 200°C to Tmax - 100°C at a cooling rate of Tmax/1,000 to Tmax/10 °C/sec.; thereafter, cooling the steel sheet to the temperature range from the plating bath temperature - 30°C to the plating bath temperature + 50°C at a cooling rate of 0.1 to 100°C/sec.; then dipping the steel sheet in the plating bath; keeping the steel sheet in the temperature range from the plating bath temperature - 30°C to the plating bath temperature + 50°C for 2 to 200 seconds including the dipping time; and, thereafter, cooling the steel sheet to room temperature.
- 33. A method of producing a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance, characterized by: casting a steel comprising the chemical components according to any

5

10

15

20

25

- 95 -

one of claims 1 to 29 or once cooling the cast slab after the casting; then heating the cast slab again; thereafter, hot-rolling the cast slab into a hot-rolled steel sheet and coiling it, and then pickling and coldrolling the hot-rolled steel sheet; thereafter, annealing the cold-rolled steel sheet controlling the annealing temperature so that the highest temperature during annealing may fall within the range from not less than $0.1x(Ac_3 - Ac_1)+Ac_1$ (°C) to not more than Ac_3-30 (°C); then cooling the steel sheet to the temperature range from 650 to 710°C at a cooling rate of 0.1 to 10°C/sec.; thereafter, cooling the steel sheet to the temperature range from the zinc plating bath temperature to the zinc plating bath temperature + 100°C at a cooling rate of 1 to 100°C/sec.; keeping the steel sheet in the temperature range from the zinc plating bath temperature to the zinc plating bath temperature + 100°C for 1 to 3,000 seconds including the subsequent dipping time; dipping the steel sheet in the zinc plating bath; and, after that, cooling

34. A high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance, corrosion resistance, and plating adhesion after severe deformation and ductility and a method of producing the same, according to any one of claims 30 to 33, characterized by: after dipping the steel sheet in the zinc plating bath, applying an alloying treatment to the steel sheet at a temperature of 300 to 550°C and cooling it to room temperature.

the steel sheet to room temperature.