Certification of Termination

Adam Koprowski

Eindhoven University of Technology Department of Mathematics and Computer Science

> 24 May 2007 TeReSe

Outline

- CoLoR
 - Motivation
 - CoLoR architecture
 - History
 - Overview
 - Related work
 - Certified competition
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities

Motivation

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, dots),
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

CoLoR approach to termination

How to certify termination results?

- Possibility: certification of tools source code.
 - ⇒ difficult, tool dependent, extra work with every change, ...
- CoLoR approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoR architecture overview

History

Project started	(Blanqui)	١
i i ojeci starteu	(Dialigui)	,

- First release
- First certified proofs
- First certification workshop
- First certified competition

March 2004

March 2005

July 2006

May 2007

June 2007

Content of CoLoR.

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

Content of ColoR.

- General libraries:
 - matrices [Koprowski]
 - simply typed lambda-terms [Koprowski]
 - finite multisets [Koprowski]
 - varyadic terms [Blanqui]
 - algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
 - integer polynomials with multiple variables [Hinderer]
 - vectors [Hinderer, Blanqui]
 - lists, relations, etc.

Size of CoLoR

- 42.000 lines of code.
- half of the size of Coq standard library.
- 5% of Cog contribs.

Structure:

• Terms	44%
Data structures	29%
 Termination criteria 	17%
 Mathematical structures 	10%
Cog constructs:	

Coq constructs:	
 Inductive definitions 	38
 Recursive functions 	116
 Non-recursive definitions 	560

Lemmas and theorems

2170

Related work

CoLoR project

Authors: Blanqui, ...

Tool: TPA, ...

Proof assistant: Coq

A3PAT project

Authors: Contejean, ...

Tool: CiME

Proof assistant: Coq

Isabelle/HOL termination checker

Authors: Bulwahn, Krauss, Nipkow, ...

Tool: T_TT

Proof assistant: Isabelle/HOL

Certified competition

- In the termination competition this year a new "certified" category introduced.
- Participants:
 - CiME + A3PAT
 - TPA + CoLoR
 - T_TT₂ + CoLoR
 - AProVE + A3PAT (?)
- Many questions remain, like
 - Who's the winner?
 - Competition VS Cooperation

Termination competition

Example

z086.trs

$$a(a(x)) \rightarrow c(b(x)), \quad b(b(x)) \rightarrow c(a(x)), \quad c(c(x)) \rightarrow b(a(x))$$

Matrix interpretation for z086.trs

$$a(x) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$b(x) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$c(x) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Example ctd.

Termination proof for z086.trs

$$a(a(x)) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$c(b(x)) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Monotone algebras

Definition (Monotonicity)

An operation $[f]: A \times \cdots \times A \rightarrow A$ is *monotone* with respect to a binary relation \triangleright on A if

$$a_i \triangleright a'_i \implies [f](a_1,\ldots,a_i,\ldots a_n) \triangleright [f](a_1,\ldots,a'_i,\ldots,a_n).$$

Definition

Given a relation \triangleright on A we define its extension to a relation on terms as:

$$s \rhd_{\mathcal{T}} t \equiv \forall \alpha : \mathcal{X} \to \mathcal{A}, [s, \alpha] \rhd [t, \alpha]$$

Monotone algebras

Definition (A weakly monotone Σ -algebra)

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations $>, \gtrsim$ on A such that

- > is well-founded;
- $\bullet > \cdot \geq \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim .

Definition (An extended monotone Σ-algebra)

An extended monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ in which moreover for every $f \in \Sigma$ the operation [f] is monotone with respect to >.

Monotone algebras

Theorem

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in R',

Then $SN(R_{top}/S)$ implies $SN((R \cup R')_{top}/S)$.

Formalization of monotone algebras

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ must be decidable.
- More precisely the requirement is to provide a relation >>, such that
 - $\gg \subseteq >_{\mathcal{T}}$ and
 - >> is decidable
 - similarly for \geq .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

Formalization of matrices

- Matrices are formalized as a functor taking as an argument the semi-ring of coefficients $\mathcal R$ and providing a structure of matrices of arbitrary sizes with coefficients in $\mathcal R$ and
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M,
 - M * (N * P) = (M * N) * P
 - monotonicity of *
 - ...

Polynomial interpretations in the setting of monotone algebras

- \bullet $A = \mathbb{Z}$.
- \bullet > = > \mathbb{Z} , $\geq = \geq \mathbb{Z}$,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- \bullet $>_{\mathcal{T}}$ not decidable (positiveness of polynomial) heuristics required.

Matrix interpretations in the setting of monotone algebras

- fix a dimension d,
- $A = \mathbb{N}^d$.
- $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d)$ iff $\forall i, u_i \geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1, ..., x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and >.

Practicalities

Formalization size (LOC):

Monotone algebras:	351
Matrices:	642
Matrix interpretations:	673
Polynomial interpretations in MA setting:	116

Evaluation of Rainbow

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:matrix interpretations:237

polynomial and matrix interpretations:

Verification time: AVG: 5sec. MAX: 75sec.
 Certificate size: AVG: 25kB. MAX: 437kB
 Proof steps: AVG: 5 MAX: 29

·

275

Figure: Before

Figure: Now

The end

http://color.loria.fr

Thank you for your attention.