Continual Learning (CL) — Solution Blueprint

Classification with Concept Drift and Clear Task Boundaries

Data Scientist Postdoc Interview — Thomas Jefferson National Accelerator Facility

September 18, 2025

1. Problem Setup

We observe a sequence of T tasks with clear boundaries. Each task $\tau \in \{1, ..., T\}$ provides labeled data $\mathcal{D}_{\tau} = \{(x,y)\}_{i=1}^{n_{\tau}}$ from distribution $p_{\tau}(x,y)$. We train a *single* classifier $f_{\theta}: \mathcal{X} \to \Delta^{C}$ sequentially and cannot revisit full historical datasets. Goal: maximize performance across all tasks while minimizing forgetting.

Catastrophic forgetting. Let $R_{t,i}$ denote accuracy on task i after finishing training on task t. Forgetting occurs when $R_{T,i} \ll R_{i,i}$ for some past task i < t.

2. Chosen Approach

A lightweight hybrid: Replay + Knowledge Distillation (KD) + Online EWC.

- Replay. Maintain exemplar buffer \mathcal{B} (fixed memory $|\mathcal{B}| \leq M$); mix current and replayed samples.
- **KD** (LwF). Preserve function behavior by distilling from a frozen teacher f_{θ^*} (previous snapshot).
- Online EWC. Apply Fisher-weighted quadratic penalty with a decayed importance estimate Ω .

3. Objective Function (per minibatch)

For a mixed minibatch $\mathcal{M} = \mathcal{M}_{curr} \cup \mathcal{M}_{replay}$ and a teacher snapshot θ^* :

$$\mathcal{L}_{CE} = -\frac{1}{|\mathcal{M}|} \sum_{(x,y)\in\mathcal{M}} \sum_{c=1}^{C} \mathbf{1}[y=c] \log p_{\theta}(c|x), \tag{1}$$

$$\mathcal{L}_{KD} = \frac{T^2}{|\mathcal{M}|} \sum_{x \in \mathcal{M}} KL(p_{\theta^*}^T(\cdot | x) \| p_{\theta}^T(\cdot | x)), \qquad (2)$$

$$\mathcal{L}_{\text{EWC}} = \sum_{i} \frac{\lambda_{\text{EWC}}}{2} \Omega_i (\theta_i - \theta_i^*)^2, \tag{3}$$

$$\mathcal{L} = \mathcal{L}_{CE} + \lambda_{KD} \mathcal{L}_{KD} + \mathcal{L}_{EWC}$$
(4)

where $p_{\theta}^T(\cdot | x) = \operatorname{softmax} (z_{\theta}(x)/T)$ and T > 0 is the distillation temperature.

4. Training Loop (per task τ)

- 1. Freeze teacher: $\theta^* \leftarrow \theta$.
- 2. Batch mixing: sample a minibatch with ratio α current vs. (1α) replay (default $\alpha = 0.8$).
- 3. Optimize \mathcal{L} with AdamW/SGD; early stopping (patience 3).
- 4. Update buffer \mathcal{B} with class-balanced selection (e.g., herding/reservoir) under budget M.
- 5. **Update Online EWC:** estimate Fisher $\Omega^{(\tau)}$ on a few batches; merge $\Omega \leftarrow \gamma\Omega + (1 \gamma)\Omega^{(\tau)}$ with decay $\gamma \in [0, 1)$.

Default knobs. $\alpha = 0.8$ (current) / 0.2 (replay), M = 100 per class (adjust to memory), T = 2, $\lambda_{\rm KD} = 0.5$, $\lambda_{\rm EWC} = 50$, $\gamma = 0.9$, 10–30 epochs per task with early stopping.

5. Evaluation Protocol

Build an accuracy matrix $R \in \mathbb{R}^{T \times T}$ with $R_{t,i}$ accuracy on task i after finishing task t.

$$AvgAcc = \frac{1}{T} \sum_{i=1}^{T} R_{T,i}, \tag{5}$$

$$BWT = \frac{1}{T-1} \sum_{i=1}^{T-1} (R_{T,i} - R_{i,i}),$$
 (6)

$$FWT = \frac{1}{T-1} \sum_{i=2}^{T} (R_{i-1,i} - R_{0,i}).$$
 (7)

Also report footprint: buffer size (MB), model size, train/infer latency.

Baselines / Ablations. Naïve fine-tune; Replay-only; KD-only; Replay+KD; Replay+KD+Online EWC (ours-robust).

6. Minimal Toy Example (Explainable)

Split MNIST. Task 1: digits 0–4. Task 2: digits 5–9. Naïve fine-tune forgets Task 1 (BWT \ll 0). Replay+KD(+EWC) maintains Task 1 while learning Task 2 (BWT \approx 0).

7. Risks & Mitigations

- Privacy. If raw replay is disallowed, use feature replay (store embeddings) or querative replay.
- **Imbalance.** Enforce class-balanced buffer quotas and sampling.
- Strong conflicts. Add small adapters per task or orthogonal gradient constraints.