

Data Presentation

CS-479

Bibek Sharma

Introduction & Goal of Data Collection

•Objective:

The goal of this data collection exercise was to retrieve historical weather data for Idaho, USA, using an automated observation-based approach. The dataset includes:

- Maximum temperature (TMAX)
- Minimum temperature (TMIN)
- Precipitation (PRCP)
- Wind speed (AWND)
- •The purpose of this data collection was to **analyze weather trends** over time and compare them with typical seasonal patterns.
- •Mode of Collection:
- ✓ Observation-based approach using publicly available APIs
- ✓ Initially, OpenWeatherMap API was considered, but it required a paid subscription for historical data.
- ✓ Switched to NOAA's Climate Data Online (CDO) API, which provides free access to historical weather records.
- ✓ Python script was used to fetch and store data in CSV format for structured management.

```
import requests
import pandas as pd
import datetime
import json
import os
# CONFIGURATION
NOAA API KEY = "uagEMkVRBjNQvHyUVEUDmOffkWEaMvSN" # My actual NOAA API key
STATION ID = "GHCND:USW00024131" # Boise Airport, Idaho
BASE URL = "https://www.ncdc.noaa.gov/cdo-web/api/v2/data"
# Define parameters for data collection
START DATE = (datetime.datetime.now() - datetime.timedelta(days=365)).strftime("%Y-%m-%d") # 365 days ago
END DATE = datetime.datetime.now().strftime("%Y-%m-%d") # Today
# Create a directory for storing data
FOLDER NAME = "WeatherData"
if not os.path.exists(FOLDER NAME):
   os.makedirs(FOLDER NAME)
# NOAA Request Parameters
params = {
    "datasetid": "GHCND", # Daily Global Historical Climatology Network
    "stationid": STATION ID,
    "startdate": START DATE,
    "enddate": END DATE,
    "limit": 1000,
    "units": "metric",
    "datatypeid": ["TMAX", "TMIN", "PRCP", "AWND"], # Max temp, Min temp, Precipitation, Wind speed
    "sortfield": "date",
    "sortorder": "asc"
headers = {"token": NOAA API KEY} # Authorization header
# Fetch historical weather data
response = requests.get(BASE URL, params=params, headers=headers)
```

CODE Snapshot

```
import requests
import pandas as pd
import datetime
import json
import os
NOAA API KEY = "uagEMkVRBjNQvHyUVEUDmOffkWEaMvSN" # My actual NOAA API key
STATION_ID = "GHCND:USW00024131" # Boise Airport, Idaho
BASE_URL = "https://www.ncdc.noaa.gov/cdo-web/api/v2/data"
START_DATE = (datetime.datetime.now() - datetime.timedelta(days=365)).strftime("%Y-%n-%d") # 365 days ago
END_DATE = datetime.datetime.now().strftime("%Y-%m-%d") # Today
FOLDER_NAME = "WeatherData"
if not os.path.exists(FOLDER_NAME):
   os.makedirs(FOLDER_NAME)
# NOAA Request Parameters
params - [
    "datasetid": "GHCND", # Daily Global Historical Climatology Network
    "stationid": STATION_ID,
    "startdate": START_DATE,
    "enddate": END_DATE,
    "limit": 1000,
    "units": "metric",
    "datatypeid": ["TMAX", "TMIN", "PRCP", "AWND"], # Max temp, Min temp, Precipitation, Wind speed
    "sortfield": "date",
headers - {"token": NOAA_API_KEY} # Authorization header
# Fetch historical weather data
response = requests.get(BASE_URL, params=params, headers=headers)
if response status code -- 200:
    data = response.json()
    records = data.get("results", [])
    weather_data - []
    for record in records:
        date = record["date"][:10] # Extract date from timestamp
        datatype = record["datatype"]
        value = record["value"]
        existing_record = next((item for item in weather_data if item["Date"] -- date), None)
        if not existing record:
            existing record - ("Date": date, "Max Temperature (°C)": None, "Min Temperature (°C)": None, "Wind Speed (m/s)": None, "Precipitation (mm)": None)
           weather data.append(existing record)
           existing record["Max Temperature (°C)"] = round(value / 10, 2) # Convert tenths of Celsius to Celsius
        elif datatype == "TMIN":
            existing record["Him Temperature ("C)"] = round(value / 10, 2)
        elif datatype -- "PRCP"
            existing record["Precipitation (mm)"] - round(value / 10, 2) # Convert tenths of mm to mm
            existing record["Wind Speed (m/s)"] - round(value, 2) # NOAA returns wind speed in m/s
    weather_df = pd.DataFrame(weather_data)
    csv_file_path = os.path.join(FOLDER_NAME, f"noss_weather_data {END_DATE}.csv")
    weather_df.to_csv(csv_file_path, index=False)
    print(f" Weather data successfully saved as (csv_file_path)")
```

Data Acquisition & Challenges

- How Data Was Acquired
- API requests were made to NOAA's CDO API for an active weather station in Idaho.
- Data was fetched for a selected time range (30 days or more).
- The script handled data extraction, storage, and metadata documentation automatically.
- Challenges Faced & Solutions Implemented
- **X** API Limitations: NOAA enforces rate limits on requests.
- ✓ **Solution:** Implemented **delays and retries** to avoid request failures.
- X Missing Data: Some NOAA stations did not have complete historical records.
- ✓ **Solution:** Tested **multiple NOAA stations** to find the most reliable one.
- **Excel Formatting Issues:** Some dates appeared as # due to formatting errors.
- ✓ Solution: Forced correct date formatting in Python before exporting data.

Data & Metadata Organization

- ✓ CSV file for raw weather data
- **✓ JSON** metadata file for documentation
- Logical Organization & Metadata Documentation
- Metadata elements included:
 - Dataset title, description, and time period
 - Data source and NOAA station ID
 - OVariable descriptions (temperature, wind speed, precipitation)
 - Collection method and data standards (Dublin Core, ISO 19115)
- **•** ✓ Successes:
- ✓ Data was structured properly for easy processing.
- ✓ Metadata was comprehensive and well-documented.
- •**⚠** Failures:
- X Some stations did not have complete records, leading to gaps in the dataset.
- X Metadata did not initially include **versioning** to track changes over time.

Field	Value		
Title	Daily Weather Data Analysis		
Creator	Bibek Sharma		
Date Created	01/27/2024		
Description	Dataset containing daily weather metrics (temperature, humidity, wind speed, precipitation) for analysis.		
Location	Idaho, USA		
Timeframe	February 10, 2024, to February 14, 2025		
Columns	Date, Temperature (°C), Humidity (%), Wind Speed (m/s), Precipitation (mm)		
Data Types	Numeric (temperature, humidity, wind speed, precipitation), Date		
Units	Degrees Celsius (temperature), Percent (% for humidity), Meters per second (wind speed), Millimeters (precipitation)		
Collection Method	Python script utilizing <u>OpenWeatherMap</u> API		
Environment	Python environment (e.g., <u>Jupyter</u> Notebook, Google <u>Colab</u>)		
Extraction Date	02/10/2025		
Motivation	Understanding daily weather trends and their correlation with seasonal averages.		
Scope	Analyze weather patterns for a specific location over a one-week period.		
Future Changes	Potential expansion to include multiple locations or additional weather metrics.		

MY METADATA

Sample Data & Curation

Future Improvements & Next Steps

- Validate multiple NOAA stations before data collection to avoid missing data.
- Improve metadata tracking by versioning each dataset update.
- Automate data backup to cloud storage (Google Drive, AWS).
- **Expand time range** to analyze long-term climate trends over a year.

А	В	С	D	E
Date	Max Temperature (°C)	Min Temperature (°C)	Wind Speed (m/s)	Precipitation (mm)
2/11/2024	0.89	-0.16	4	0
2/12/2024	1.06	0.11	3.2	0
2/13/2024	0.94	0	2.4	0
2/14/2024	0.89	-0.1	5	0.05
2/15/2024	1.06	0.39	3.5	0.28
2/16/2024	0.83	-0.05	4.6	0.28
2/17/2024	0.89	-0.16	4.9	0
2/18/2024	0.72	0.06	3.3	0.46
2/19/2024	0.94	0.11	6.1	0
2/20/2024	1.5	0.28	4.6	0
2/21/2024	1.17	0.11	2.1	0
2/22/2024	1.28	0	1.9	0
2/23/2024	1.39	0	1.9	0
2/24/2024	1.67	0	2.4	0
2/25/2024	1.72	0.28	3.7	0
2/26/2024	1.11	-0.1	3.5	0.58
2/27/2024	0.56	-0.32	3.1	0
2/28/2024	1	0.11	6.4	0
2/29/2024	1.72	0.33	7.2	0.48
3/1/2024	1.06	0.22	4.9	0.18
3/2/2024	0.67	-0.05	4.1	0.13
3/3/2024	0.28	-0.21	2.7	0.3
3/4/2024	0.33	-0.49	4.1	0.3
3/5/2024	0.22	0	4.4	1.22
3/6/2024	0.17	-0.21	1.9	0
3/7/2024	0.5	-0.38	2.4	0
3/8/2024	0.67	-0.43	4.1	0
3/9/2024	1.06	-0.27	6	0
3/10/2024	1.28	0.17	4.6	0

REFRENCES

National Centers for Environmental Information (NCEI). (n.d.). Climate Data Online (CDO) Web Services API v2. National Oceanic and Atmospheric Administration (NOAA). Retrieved February 10, 2025, from https://www.ncdc.noaa.gov/cdo-web/webservices/v2

National Centers for Environmental Information (NCEI). (n.d.). Find a weather station: NOAA Climate Data Online. National Oceanic and Atmospheric Administration (NOAA). Retrieved February 10, 2025, from https://www.ncdc.noaa.gov/cdo-web/datatools/findstation

Dublin Core Metadata Initiative (DCMI). (n.d.). *Dublin Core Metadata Element Set, Version 1.1*. Retrieved February 10, 2025, from https://www.dublincore.org/

Reitz, K., & Banz, C. (2023). *Requests: HTTP for Humans*. Python Software Foundation. Retrieved February 10, 2025, from https://docs.python-requests.org/en/latest/

The Pandas Development Team. (2023). pandas: Powerful Python Data Analysis Toolkit. Python Software Foundation. Retrieved February 10, 2025, from https://pandas.pydata.org/docs/

The Python Software Foundation. (2023). Python JSON module documentation. Retrieved February 10, 2025, from https://docs.python.org/3/library/json.html

The Matplotlib Development Team. (2023). *Matplotlib:Visualization with Python*. Retrieved February 10, 2025, from https://matplotlib.org/stable/index.html

University of California, Berkeley Library. (n.d.). Best practices for data collection and storage. Retrieved February 10, 2025, from https://guides.lib.berkeley.edu/data-management

DataONE. (n.d.). *Guide to metadata for data repositories*. Retrieved February 10, 2025, from https://www.dataone.org/metadata

Thank you

Bibek Sharma

