SD-TSIA: Ridge / Tikhonov

Joseph Salmon

http://josephsalmon.eu Télécom ParisTech

Outline

Ridge Definitions

Regularization parameter choice

Algorithms and computational aspects

Table of Contents

Ridge Definitions

SVD point of view
Penalty point of view
Bias analysis with the SVD
Variance analysis with the SVD

Regularization parameter choice

Algorithms and computational aspects

Reminder

$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}$$

- $\mathbf{y} \in \mathbb{R}^n$ observations
- $X \in \mathbb{R}^{n \times p}$ is the design matrix (column-wise: features)
- $oldsymbol{ heta}^{\star} \in \mathbb{R}^p$ is the **true** model parameter we aim at finding
- $\boldsymbol{\varepsilon} \in \mathbb{R}^n$ is the noise

Rem: possibly a supplementary variable is added for the constants

Singular Value Decomposition (SVD)

Theorem Golub and Van Loan (2013)

For any matrix $X \in \mathbb{R}^{n \times p}$, there exists two orthogonal matrices $U = [\mathbf{u}_1, \dots, \mathbf{u}_n] \in \mathbb{R}^{n \times n}$ and $V = [\mathbf{v}_1, \dots, \mathbf{v}_p] \in \mathbb{R}^{p \times p}$, such that

$$U^{\top}XV = \operatorname{diag}(s_1, \dots, s_{\operatorname{rg}(X)}) = \Sigma \in \mathbb{R}^{n \times p}$$

with $s_1 \geqslant s_2 \geqslant \cdots \geqslant s_{\operatorname{rg}(X)} > 0$, with $\operatorname{rg}(X) = \operatorname{rang}(X)$.

 $\underline{\mathsf{Rem}} \colon \forall i, i' \in [n], j, j' \in [p], \text{ one has } \mathbf{u}_i^\top \mathbf{u}_{i'} = \delta_{i,i'} \text{ and } \mathbf{v}_j^\top \mathbf{v}_{j'} = \delta_{j,j'}$

$$X = U\Sigma V^{\top} \Leftrightarrow X = \sum_{i=1}^{\operatorname{rg}(X)} s_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

A least squares solution is then:

$$\hat{\boldsymbol{\theta}}^{\mathrm{OLS}} = X^{+}\mathbf{y} = \sum_{i=1}^{\mathrm{rg}(X)} \frac{1}{s_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{\top} \mathbf{y}$$

Numerical instabilities

$$\hat{\boldsymbol{\theta}}^{\mathrm{OLS}} = X^{+}\mathbf{y} = \sum_{i=1}^{\mathrm{rg}(X)} \frac{1}{s_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{\top} \mathbf{y}$$

If the smallest singular values s_i get close to zero then the numerical solution of the SVD is unstable!

<u>Rem</u>: this drawback is common not only for least squares, but also to other inverse problems (also referred to as "ill posed" in numerical analysis and signal processing)

Normal equations

A solution least squares solution θ need to satisfy:

$$X^{\top}X\dot{\boldsymbol{\theta}} = X^{\top}\mathbf{y} \Leftrightarrow V\Sigma^{\top}\Sigma V^{\top}\boldsymbol{\theta} = V\Sigma^{\top}U^{\top}\mathbf{y}$$

and if we look for $\pmb{\theta}$ with the following form: $\pmb{\theta} = V \pmb{\beta}$, this is equivalent to

$$\boldsymbol{\Sigma}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta} = \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top} \mathbf{y}$$

 $\Sigma^{ op}\Sigma$ diagonal with $r=\mathrm{rang}(X)$ non zero elements that are the s_i^2

$$\Sigma^{\top} \Sigma = \begin{bmatrix} s_1^2 & & 0 & & \\ & \ddots & & 0 \\ 0 & & s_r^2 & & \\ & 0 & & 0 \end{bmatrix} \in \mathbb{R}^{p \times p}$$

Normal equations (continued)

Regularized alternative: solve normal equations where

$$\begin{bmatrix} s_1^2 & & 0 & & \\ & \ddots & & & \\ 0 & & s_r^2 & & \\ & & & & \end{bmatrix} \text{ replaced by } \begin{bmatrix} s_1^2 & & 0 & & \\ & \ddots & & & \\ 0 & & s_r^2 & & \\ & & & & & \end{bmatrix} + \lambda \operatorname{Id}_p$$

It can be re-written by:

$$(\lambda \operatorname{Id}_p + \Sigma^{\top} \Sigma) \boldsymbol{\beta} = \Sigma^{\top} U^{\top} \mathbf{y}$$

i.e.,we add a small $\lambda>0$ to all the eigen values of $X^{\top}X$, λ being called the **regularization parameter**

$$\boldsymbol{\beta} = (\lambda \operatorname{Id}_p + \boldsymbol{\Sigma}^{\top} \boldsymbol{\Sigma})^{-1} \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top} \mathbf{y}$$

and hence

$$\boldsymbol{\theta} = V(\lambda \operatorname{Id}_p + \Sigma^{\mathsf{T}} \Sigma)^{-1} \Sigma^{\mathsf{T}} U^{\mathsf{T}} \mathbf{y}$$

Ridge: explicit formulation

With the SVD, the following equation simplifies:

$$\boldsymbol{\theta} = V(\lambda \operatorname{Id}_p + \Sigma^{\mathsf{T}} \Sigma)^{-1} \Sigma^{\mathsf{T}} U^{\mathsf{T}} \mathbf{y}$$

This gives a simple formulation for the Ridge estimator

$$\widehat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}} = (\lambda \operatorname{Id}_{p} + X^{\top} X)^{-1} X^{\top} \mathbf{y}$$

Reminder: under the full rank hypothesis $\hat{\boldsymbol{\theta}}^{OLS} = (X^{\top}X)^{-1}X^{\top}\mathbf{y}$

Rem:
$$\lim_{\lambda \to 0^+} \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} = \hat{\boldsymbol{\theta}}^{\mathrm{OLS}}$$

$$\lim_{\lambda \to +\infty} \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} = 0 \in \mathbb{R}^{p}$$

Kernel trick

Kernel trick: According to whether n>p or $n\leqslant p$, it is more suitable to consider the following equivalent formulation of the Ridge estimator:

$$X^{\top} (XX^{\top} + \lambda \operatorname{Id}_n)^{-1} \mathbf{y} = (X^{\top} X + \lambda \operatorname{Id}_p)^{-1} X^{\top} \mathbf{y}$$

- ▶ LHS: inverse/solve an $n \times n$ matrix
- ▶ RHS: inverse/solve an $p \times p$ matrix

Rem: this property is also useful for kernel method such as SVM (cf.machine learning course)

Exo: Show the kernel trick using the SVD of X

Ridge / Tikhonov : penalized definition

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \underbrace{\lambda \|\boldsymbol{\theta}\|_2^2}_{\text{regularization}} \right)$$

- Note that the *Ridge* estimator is **unique** for any fixed $\lambda > 0$
- We recover the limiting cases:

$$\lim_{\lambda o 0} \hat{m{ heta}}_{\lambda}^{ ext{rdg}} = \hat{m{ heta}}^{ ext{OLS}} ext{(solution with smallest } \| \cdot \|_2 ext{ norm)} \ \lim_{\lambda o +\infty} \hat{m{ heta}}_{\lambda}^{ ext{rdg}} = 0 \in \mathbb{R}^p$$

Link between the two formulation thanks to the first order conditions: for $f(\boldsymbol{\theta}) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2/2 + \lambda \|\boldsymbol{\theta}\|_2^2/2$ $\nabla f(\boldsymbol{\theta}) = X^\top (X\boldsymbol{\theta} - \mathbf{y}) + \lambda \boldsymbol{\theta} = 0 \Leftrightarrow (X^\top X + \lambda \operatorname{Id}_p) \boldsymbol{\theta} = X^\top \mathbf{y}$

Regularize: simplify the problem when ill-conditioned

Regularize: simplify the problem when ill-conditioned

 $\label{eq:Regularize:model} Regularize: \ simplify \ the \ problem \ when \ ill-conditioned$

Regularize: simplify the problem when ill-conditioned

Regularize: simplify the problem when ill-conditioned

Constraint interpretation

A "Lagrangian" formulation is as follows:

has for a certain
$$T>0$$
 the same solution as:
$$\begin{cases} \arg\min_{{\boldsymbol{\theta}}\in\mathbb{R}^p}\|{\mathbf{y}}-X{\boldsymbol{\theta}}\|_2^2\\ \text{s.t. } \|{\boldsymbol{\theta}}\|_2^2\leqslant T \end{cases}$$

Rem: the link $T \leftrightarrow \lambda$ is not explicit!

- If $T \to 0$ we recover the null vector: $0 \in \mathbb{R}^p$
- If $T \to \infty$ we recover $\hat{\boldsymbol{\theta}}^{\text{OLS}}$ (un-constrained)

Level lines and and constraints set

Optimization under ℓ_2 constraints

The orthogonal case

Consider the simple case:
$$X^{\top}X = \mathrm{Id}_p$$

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} = (\lambda \, \mathrm{Id}_p + X^{\top}X)^{-1}X^{\top}\mathbf{y}$$

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} = (\lambda \, \mathrm{Id}_p + \mathrm{Id}_p)^{-1}X^{\top}\mathbf{y} = \frac{1}{\lambda + 1}X^{\top}\mathbf{y}$$

$$\hat{\mathbf{y}} = \frac{1}{\lambda + 1}\mathbf{y} = (\eta_{\mathrm{rdg},\lambda}(\mathbf{y}_i))_{i=1,\dots,n}$$

<u>Rem</u>: the real function $\eta_{rdg,\lambda}$ is a linear contraction (shrinkage)

Associated prediction

From the *Ridge* coefficient:

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}} = (\lambda \operatorname{Id}_p + X^{\top} X)^{-1} X^{\top} \mathbf{y}$$

the associated prediction is given by:

$$\hat{\mathbf{y}} = X \hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}} = X (\lambda \operatorname{Id}_p + X^{\top} X)^{-1} X^{\top} \mathbf{y}$$

Rem: the estimator \hat{y} is linear w.r.t. y

Rem: reminding $X = \sum_{i=1}^{\operatorname{rg}(X)} s_i \mathbf{u}_i \mathbf{v}_i^{\top}$, (SVD) the matrix $H_{\lambda} := X(\lambda \operatorname{Id}_p + X^{\top}X)^{-1}X^{\top} = \sum_{j=1}^{\operatorname{rg}(X)} \frac{s_j^2}{s_j^2 + \lambda} \mathbf{u}_j \mathbf{u}_j^{\top}$ is the equivalent of the **hat matrix** If $\lambda \neq 0$, we do not have $H_{\lambda}^2 = H_{\lambda} = \sum_{j=1}^{\operatorname{rg}(X)} \mathbf{u}_j \mathbf{u}_j^{\top}$ anymore, so H_{λ} is not a projection (in general).

N remarks

Reminder: normalizing the p features the same way is necessary if you want the penalty to be similar for all features:

- center the observation and the features ⇒ no coefficient for the constants (hence no constraint on it)
- not centering features ⇒ do not put constraint on the constant feature (bias/intercept)

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \|\mathbf{y} - X\boldsymbol{\theta} - \theta_0 \mathbf{1}_n\|_2^2 + \lambda \sum_{j=1}^p \theta_j^2$$

Alternative (without normalization): change the penalty in

$$\underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\arg\min} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \sum_{j=1}^p \alpha_j \boldsymbol{\theta}_j^2 \quad (\textit{e.g., } \alpha_j = \|\mathbf{x}_j\|_2^2)$$

Rem: for cross validation one can use $\frac{\|\mathbf{y}-X\boldsymbol{\theta}\|_2^2}{2n}$ rather than $\frac{\|\mathbf{y}-X\boldsymbol{\theta}\|_2^2}{2}$ as the data fitting part

Normalization (continued)

Consider the estimator Ridge with variables $X' = [\mathbf{x}_1', \dots, \mathbf{x}_K']$, such that there exist a linear link $\sum_{k=1}^K \mu_k \mathbf{x}_k' = 1$ (e.g.,qualitative variable):

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^{p}, \boldsymbol{\theta}' \in \mathbb{R}^{K}}{\text{arg min}} \|\mathbf{y} - X\boldsymbol{\theta} - X'\boldsymbol{\theta}' - \theta_{0}\mathbf{1}_{n}\|_{2}^{2} + \lambda \sum_{j=1}^{p} \theta_{j}^{2} + \lambda \sum_{k=1}^{K} \theta_{k}'^{2}$$

is equivalent to solve :

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^{p}, \boldsymbol{\theta}' \in \mathbb{R}^{K}}{\text{arg min}} \|\mathbf{y} - X\boldsymbol{\theta} - X'\boldsymbol{\theta}' - \theta_{0}\mathbf{1}_{n}\|_{2}^{2} + \lambda \sum_{j=1}^{p} \theta_{j}^{2} + \lambda \sum_{k=1}^{K} \theta_{k}'^{2}$$

Exo: proof; help: cf.Park (2006), page 35

General form of the bias

Under Additive White Gaussian Noise (AWGN) assumption $\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}$ with $\mathbb{E}(\boldsymbol{\varepsilon}) = 0$:

$$\mathbb{E}(\hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}}) = \mathbb{E}[(\lambda \operatorname{Id}_{p} + X^{\top} X)^{-1} X^{\top} \mathbf{y}]$$

$$= \mathbb{E}[(\lambda \operatorname{Id}_{p} + X^{\top} X)^{-1} X^{\top} X \boldsymbol{\theta}^{\star} + (\lambda \operatorname{Id}_{p} + X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon}]$$

$$= (\lambda \operatorname{Id}_{p} + X^{\top} X)^{-1} X^{\top} X \boldsymbol{\theta}^{\star}$$

$$= \sum_{i=1}^{\operatorname{rg}(X)} \frac{s_{i}^{2}}{s_{i}^{2} + \lambda} \mathbf{v}_{i} \mathbf{v}_{i}^{\top} \boldsymbol{\theta}^{\star}$$

Rem: one recovers
$$\mathbb{E}(\hat{\boldsymbol{\theta}}^{\text{OLS}}) = \sum_{i=1}^{\operatorname{rg}(X)} \mathbf{v}_i \mathbf{v}_i^{\top} \boldsymbol{\theta}^{\star}$$
 when $\lambda \to 0$

Rem: the bias is
$$\mathbb{E}(\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}}) - \boldsymbol{\theta}^{\star} = -\lambda (X^{\top}X + \lambda \operatorname{Id}_{p})^{-1}\boldsymbol{\theta}^{\star}$$

Variance in the general case

Under the assumption $\mathbb{E}(\varepsilon) = 0$, and with a homoscedastic model: $\mathbb{E}(\varepsilon \varepsilon^\top) = \sigma^2 \operatorname{Id}_n$

Variance / Covariance

$$V_{\lambda}^{\mathrm{rdg}} = \mathbb{E}\left((\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} - \mathbb{E}(\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}}))(\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} - \mathbb{E}(\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}})^{\top}\right)$$

Explicit computation:

$$\begin{split} \dot{V}_{\lambda}^{\mathrm{rdg}} = & \mathbb{E}(\dot{\lambda} \operatorname{Id}_{p} + X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top} X (\lambda \operatorname{Id}_{p} + X^{\top} X)^{-1}) \\ &= (\lambda \operatorname{Id}_{p} + X^{\top} X)^{-1} X^{\top} \mathbb{E}(\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top}) X (\lambda \operatorname{Id}_{p} + X^{\top} X)^{-1} \\ &= \sigma^{2} (\lambda \operatorname{Id}_{p} + X^{\top} X)^{-2} X^{\top} X \quad \text{(matrix commute here)} \\ &= \sum_{i=1}^{\operatorname{rg}(X)} \frac{s_{i}^{2} \sigma^{2}}{(s_{i}^{2} + \lambda)^{2}} \mathbf{v}_{i} \mathbf{v}_{i}^{\top} \end{split}$$

<u>Rem</u>: one recovers $V^{\text{OLS}} = \sum_{i=1}^{\operatorname{rg}(X)} \frac{\sigma^2}{s_i^2} \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}}$ when $\lambda \to 0$

Rem: one find a null variance when $\dot{\lambda} \rightarrow \infty$

Prediction risk

Homoscedastic assumption: $\mathbb{E}(\varepsilon \varepsilon^{\top}) = \sigma^2 \operatorname{Id}_n$

Quadratic prediction risk $\mathbb{E}\|Xoldsymbol{ heta}^{\star}-X\hat{oldsymbol{ heta}}_{\lambda}^{\mathrm{rdg}}\|^2$

Under the Homoscedastic assumption:

$$R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}} - \boldsymbol{\theta}^{\star})^{\top} (X^{\top} X)(\hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}} - \boldsymbol{\theta}^{\star})\right]$$

Explicit computation (begins as for OLS):

$$R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}} - \boldsymbol{\theta}^{\star})^{\top} (X^{\top}X) (\hat{\boldsymbol{\theta}}_{\lambda}^{\text{rdg}} - \boldsymbol{\theta}^{\star}) \right]$$

$$= \mathbb{E}\left[(X(X^{\top}X + \lambda \operatorname{Id}_{p})^{-1} X^{\top} \boldsymbol{\varepsilon})^{\top} (X(X^{\top}X + \lambda \operatorname{Id}_{p})^{-1} X^{\top} \boldsymbol{\varepsilon}) \right]$$

$$+ \lambda^{2} \boldsymbol{\theta}^{\star \top} (X^{\top}X + \lambda \operatorname{Id}_{p})^{-2} \boldsymbol{\theta}^{\star}$$

$$= \sum_{i=1}^{\operatorname{rg}(X)} \frac{s_{i}^{4} \sigma^{2}}{(s_{i}^{2} + \lambda)^{2}} + \lambda^{2} \boldsymbol{\theta}^{\star \top} (X^{\top}X + \lambda \operatorname{Id}_{p})^{-2} \boldsymbol{\theta}^{\star}$$

$$\underline{\mathsf{Rem}} \colon \lim_{\lambda \to 0} R_{\mathrm{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}}) = \mathrm{rg}(X)\sigma^{2}, \lim_{\lambda \to \infty} R_{\mathrm{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}}) = \|X\boldsymbol{\theta}^{\star}\|_{2}^{2}$$

Bias / Variance: simulated example

$$X \in \mathbb{R}^{51 \times 50}, \boldsymbol{\theta}^{\star} = (2, 2, 2, 2, 2, 0, \dots, 0)^{\top}$$

Table of Contents

Ridge Definitions

Regularization parameter choice Regularization path Cross-Validation (CV)

Algorithms and computational aspects

Choosing λ

```
n_features = 50; n_samples = 50
X = np.random.randn(n_samples, n_features)
theta_true = np.zeros([n_features, ])
theta_true[0:5] = 2.
y_true = np.dot(X, theta_true)
y = y_true + 1. * np.random.rand(n_samples,)
```


- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, \mathbf{y}) into K blocks (sample-wise):

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, y) into K blocks (sample-wise):

$$k = 1$$

- 1. Compute with the training part the estimators for $\lambda_1, \ldots, \lambda_r$: $\hat{\boldsymbol{\theta}}^{\lambda_1} \qquad \hat{\boldsymbol{\theta}}^{\lambda_r}$
- 2. Evaluate the (prediction) error $\operatorname{Error}_1^k, \ldots, \operatorname{Error}_r^k$ over the validation part,

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, y) into K blocks (sample-wise):

$$k = 2$$

- 1. Compute with the training part the estimators for $\lambda_1, \ldots, \lambda_r$: $\hat{\boldsymbol{\theta}}^{\lambda_1}, \ldots, \hat{\boldsymbol{\theta}}^{\lambda_r}$
- 2. Evaluate the (prediction) error $\operatorname{Error}_1^k, \dots, \operatorname{Error}_r^k$ over the validation part,

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, y) into K blocks (sample-wise):

$$k = 3$$

- 1. Compute with the training part the estimators for $\lambda_1, \ldots, \lambda_r$: $\hat{\boldsymbol{\theta}}^{\lambda_1}, \ldots, \hat{\boldsymbol{\theta}}^{\lambda_r}$
- 2. Evaluate the (prediction) error $\operatorname{Error}_1^k, \dots, \operatorname{Error}_r^k$ over the validation part,

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, y) into K blocks (sample-wise):

$$k = 4$$

- 1. Compute with the training part the estimators for $\lambda_1,\ldots,\lambda_r$: $\hat{\pmb{\theta}}^{\lambda_1}$ $\hat{\pmb{\theta}}^{\lambda_r}$
- 2. Evaluate the (prediction) error $\operatorname{Error}_1^k, \ldots, \operatorname{Error}_r^k$ over the validation part,

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, y) into K blocks (sample-wise):

$$k = 5$$

- 1. Compute with the training part the estimators for $\lambda_1, \ldots, \lambda_r$: $\hat{\boldsymbol{\rho}}^{\lambda_1} \qquad \hat{\boldsymbol{\rho}}^{\lambda_r}$
- 2. Evaluate the (prediction) error $\operatorname{Error}_1^k, \dots, \operatorname{Error}_r^k$ over the validation part,

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, y) into K blocks (sample-wise):

$$k = 6$$

- 1. Compute with the training part the estimators for $\lambda_1, \ldots, \lambda_r$: $\hat{\boldsymbol{\theta}}^{\lambda_1} \qquad \hat{\boldsymbol{\theta}}^{\lambda_r}$
- 2. Evaluate the (prediction) error $\operatorname{Error}_1^k, \dots, \operatorname{Error}_r^k$ over the validation part,

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, y) into K blocks (sample-wise):

$$k = 7$$

- 1. Compute with the training part the estimators for $\lambda_1, \ldots, \lambda_r$: $\hat{\boldsymbol{\theta}}^{\lambda_1}, \ldots, \hat{\boldsymbol{\theta}}^{\lambda_r}$
- 2. Evaluate the (prediction) error $\operatorname{Error}_1^k, \ldots, \operatorname{Error}_r^k$ over the validation part,

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, y) into K blocks (sample-wise):

$$k = 8$$

- 1. Compute with the training part the estimators for $\lambda_1, \ldots, \lambda_r$: $\hat{\boldsymbol{\theta}}^{\lambda_1}, \ldots, \hat{\boldsymbol{\theta}}^{\lambda_r}$
- 2. Evaluate the (prediction) error $\operatorname{Error}_1^k, \ldots, \operatorname{Error}_r^k$ over the validation part,

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, y) into K blocks (sample-wise):

$$k = 9$$

- 1. Compute with the training part the estimators for $\lambda_1, \ldots, \lambda_r$: $\hat{\boldsymbol{\theta}}^{\lambda_1}, \ldots, \hat{\boldsymbol{\theta}}^{\lambda_r}$
- 2. Evaluate the (prediction) error $\operatorname{Error}_1^k, \ldots, \operatorname{Error}_r^k$ over the validation part,

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, \mathbf{y}) into K blocks (sample-wise):

$$k = 10$$

- Compute with the training part the estimators for $\lambda_1,\ldots,\lambda_r$: $\hat{\boldsymbol{\theta}}^{\lambda_1},\ldots,\hat{\boldsymbol{\theta}}^{\lambda_r}$
- 2. Evaluate the (prediction) error $\operatorname{Error}_1^k, \ldots, \operatorname{Error}_r^k$ over the validation part,

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, \mathbf{y}) into K blocks (sample-wise):

<u>Parameter choice</u>: compute $\widehat{\text{Error}}_1, \dots, \widehat{\text{Error}}_r$, average the errors and choose $\hat{i}^{\text{CV}} \in \llbracket 1, r \rrbracket$ achieving the smallest one

- Choose a grid of r λ 's to test: $\lambda_1, \ldots, \lambda_r$
- ▶ Divide (X, \mathbf{y}) into K blocks (sample-wise):

<u>Parameter choice</u>: compute $\widehat{\operatorname{Error}}_1, \ldots, \widehat{\operatorname{Error}}_r$, average the errors and choose $\widehat{i}^{\operatorname{CV}} \in [\![1,r]\!]$ achieving the smallest one **Re-calibration**: compute $\widehat{\boldsymbol{\theta}}^{\lambda_{i^{\operatorname{CV}}}}$ this time over the whole sample

this time over the whole sample

CV in practice

Extreme cases of CV

- K=1 impossible, needs K=2
- K = n, "leave-one-out" strategy (cf.Jackknife): as many blocks as observations

<u>Rem</u>: K = n (often) computationally efficient but instable

Practical advice:

- "randomise the sample": having samples in random order avoid artifacts block (each fold needs to be representative of the whole sample!)
- standard choices: K = 5, 10

<u>Alternatives</u>: random partition validation/test, time series variants, etc. http://scikit-learn.org/stable/modules/cross_validation.html

<u>Rem</u>: in prediction the best predictors can be averaged/combined instead of recomputing an estimators over the whole set

CV variants sklearn

Crucial points: the structures train/test artificially created should represent faithfully the underlying learning problem

Classical alternatives:

- random partitioning in train/test sets (cf.train_test_split)
- Time series variant: TimeSeriesSplit (never predict the past with future information)
- For classification tasks with unbalanced classes StratifiedKFold

<u>Rem</u>: averaging estimators (with weights reflecting their performance) is also relevant for prediction

More details:

http://scikit-learn.org/stable/modules/cross_validation.html

Choosing λ : example with CV = 5 (I)

Choosing λ : example with CV = 5 (II)

Table of Contents

Ridge Definitions

Regularization parameter choice

Algorithms and computational aspects

Algorithms to compute the Ridge estimator

- 'svd': most stable method, useful for computing many λ 's cause the SVD price is paid only once
- 'cholesky': matrix decomposition leading to a close form solution scipy.linalg.solve
- 'sparse_cg': conjugate gradient descent, useful also for sparse cases and high dimension (set tol/max_iter to a small value)
- stochastic gradient descent approaches : if n is huge

cf.the code of Ridge, ridge_path, RidgeCV in the module linear_model of sklearn

 $\underline{\mathsf{Rem}}$: it is rare to compute the Ridge estimator only for one single λ

Rem: crucial issue of computing SVD for huge matrices...

References I

- G. H. Golub and C. F. van Loan.
 Matrix computations.
 Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.
- M. Y. Park.
 Generalized linear models with regularization.
 PhD thesis, Stanford University, 2006.