64. The dispersion relation for a lattice wave propogating in a one dimensional chain of atoms of mass m bound together by a force constant β is given by the relation $\omega = \omega_a \sin(ka/2)$, where a is the distance between atoms and $\beta = \omega_a^2 m/4$.

[Ans: $0, \omega_a a \pi$]

- (a) Show that in the long wavelength limit the medium is non-dispersive.
- (b) Find the group and phase velocities at $k = \frac{\pi}{}$.

Solution:

a.
$$w = w_0 \sin(ka_2)$$
, $\beta = \frac{w_0^2 m}{4}$

Here
$$k = \frac{2\pi}{\lambda}$$

For the case a, ie long wowelength, k will be small $\sin(ka_{1}) \sim ka_{2}$

$$W = WO \frac{1}{2}$$
This is pindependent of k,

$$V_p = W/k = \frac{w_0 a}{2}$$

$$V_l = \frac{dw}{dk} = \frac{w_0 a}{2}$$
Hence the medium is

$$V_l = \frac{dw}{dk} = \frac{w_0 a}{2}$$

$$von - dispersive.$$

$$V_{J} = \frac{dw}{dk} = \frac{w_{o}a}{2} \left(\cos \left(\frac{ka}{h} \right) \right)_{k=II/a} = 0.$$