One only needs to separate the all-zero vedor from the rest by a linear hyperplane.
This may be done by a classifier of the where $1=\begin{pmatrix}1\\1\\1\end{pmatrix}$ is the all-ones vector. The distance of (:) to this plane is to the origin is (since the newest point in the plane to the origin is (41.1) The distance to both classes is maximized for $C = \frac{1}{2}$ (Rallway between the two extremes) which gives $2/\sqrt{g}$ as the margin.
In the second case the optimal separating plane is xT. 1 > 1/2 The margin is half the distance Velween the planes $x^{T} = \frac{d+1}{2}$ and $x^{T} = \frac{d-1}{2}$ which is again 2/Ja