Compte-rendu de travaux pratiques de physique

Mesure de longueurs d'onde et célérités de phénomènes ondulatoires

Benjamin Loison et Sara de Francqueville (MPSI 1)

24 novembre 2018

1 Ondes ultrasonores

1.1 Utilisation d'une mesure de déphasage

Aux travaux pratiques précédents, on a montré que si les deux signaux sont en phase alors en mode XY sur l'oscilloscope nous observons un segment de droite à pente strictement positive.

On mesure la distance par courue en déplaçant le récepteur mobile après 10 remises en phase a fin de réduire l'erreur. Nous obtenons alors une distance de 9 centimètres, on en conclut que la longueur du signal est d'environ $\frac{10}{9}$ cm soit 1.11 cm.

Ayant réglé la fréquence ν à 40 kilohertz, on a:

$$\lambda = \frac{c}{\nu}$$

Soit:

$$c = \lambda * \nu$$

D'où par application numérique:

$$c = \frac{10}{9} * 10^{-2} * 40 * 10^{3}$$

Donc:

$$c = \frac{4000}{9} \ m.s^{-1}$$

Soit:

$$c = 444.44 \ m.s^{-1}$$

Les mesures sont effectuées à la règle millimétrée donc on a une précision $\Delta=0.5$ mm soit 0.05 cm. On a alors l'incertitude sur la mesure de la des 10 remises en phase: $d=9\pm0.05$ cm d'où: $\lambda=1.11\pm0.005$ cm.

1.2 Interférences

La distance a mesure 5.4 centimètres. On prend d=60 cm. On relève les valeurs suivantes:

$\Delta x \text{ (en cm)}$	ΔV (en mV)
0.0	7.6
0.5	11.0
1.0	12.4
1.5	14.6
2.0	15.6
2.5	16.8
3.0	17.0
3.5	18.6
4.0	20.0
4.5	19.2
5.0	18.6
5.5	16.8
6.0	13.4
6.5	13.0
7.0	10.8
7.5	9.4
8.0	5.8
8.5	3.6
9.0	5.6
9.5	8.0
10.0	9.6
10.5	10.0
11.0	12.2
11.5	13.8
12.0	14.6
12.5	14.6
13.0	14.6
13.5	16.2
14.0	15.2
14.5	15.0
15.0	13.8
15.5	12.2
16.0	11.4
16.5	9.6
17.0	8.6
17.5	6.8
18.0	6.4

On relève les deux maximums d'ordonnées pour les couples suivants: (4.0, 20.0) et (13.5, 16.2). Par différence des abscisses on obtient une interfrange $\Delta = 9.5$ cm.

On utilise la formule:

$$\Delta = \frac{\lambda * d}{a}$$

avec d la distance entre les émetteurs et le récepteur et a la distance entre les deux émetteurs. D'où:

$$\lambda = \frac{\Delta * a}{d}$$

Par application numérique, on a:

$$\lambda = \frac{9.5*10^{-2}*5.4*10^{-2}}{60*10^{-2}}$$

Soit:

$$\lambda = 8.55 * 10^{-3} m$$

Donc on obtient un résultat proche d'un centimètre comme nous l'avions mesuré.

2 Corde de Melde

On utilise la formule suivante afin de déterminer la longueur d'onde λ :

$$\frac{L}{n} = \frac{\lambda}{2}$$

avec L la longueur de la corde et n le nombre de faisceaux observés. Soit:

$$\lambda = \frac{2L}{n}$$

Application numérique:

$$\lambda = \frac{2*1.62}{2} = 1.62 \ m$$

Puis on utilise la formule suivante afin de déterminer la célérité c de l'onde parcourant la corde:

 $\lambda = \frac{c}{\nu}$

avec ν la fréquence de l'onde réglé nous-même sur le générateur basse-fréquence. Soit:

$$c = \lambda * \nu$$

Par application numérique, on a:

$$c = 1.62 * 35 = 57.75 \ m.s^{-1}$$

On détermine maintenant cette célérité à l'aide de la formule théorique. On calcule la tension T:

$$T = mq$$

avec m la masse du poids mis après la poulie et g la constante de gravité terrestre. D'où par application numérique, on a:

$$T = 200 * 10^{-2} * 10 = 2 N$$

On calcule la masse linéique μ :

$$\mu = \frac{m}{L}$$

Par application numérique, on a:

$$\mu = \frac{1.5}{1.62}$$

Donc:

$$\mu = 0.93 \ g.m^{-1}$$

Soit:

$$\mu = 9.3*10^{-4}~kg.m^{-1}$$

On calcule alors la célérité théorique:

$$c = \sqrt{\frac{T}{\mu}}$$

D'où par application numérique, on a:

$$c = \sqrt{\frac{2}{9.3 * 10^{-4}}}$$

Donc:

$$c = 46.37 \ m.s^{-1}$$

Cette célérité théorique est proche de la célérité mesurée précédemment.

2.1 c varie comme la racine carrée de T

```
On veut montrer que c est proportionnelle à \sqrt{T}. Or c = \lambda * f.
```

On a:

[c] = m/s

 $[\lambda] = m$

T = m.g

[f] = Hz

On va chercher à obtenir 2 ventres pour différentes valeurs de m en faisant varier la fréquence f avec $\lambda = 138$ cm.

 $50~\mathrm{g} \to 21~\mathrm{Hz}$

 $100 \text{ g} \rightarrow 29 \text{ Hz}$

 $150~\mathrm{g} \to 36~\mathrm{Hz}$

 $200 \text{ g} \rightarrow 42 \text{ Hz}$

 $250~\mathrm{g} \rightarrow 46~\mathrm{Hz}$

On peut à présent faire une régression linéaire avec c en ordinnée et \sqrt{T} en abscisse. On obtient une droite qui passe par l'origine. Conclusion c'est propotionnelle à \sqrt{T} .

2.2 la fréquence de résonance f_n du n-ième mode propre est inversement proportionnelle à la longueur L de la corde

On veut montrer que f_n est proportionnel à $\frac{1}{L}$ On fait donc la même chose en faisant varier L la longueur de la corde, pour 2 ventres donc en fonction de la fréquence f nécessaire.

On obtient une droite qui passe par l'origine en fesant une régression linéaire. Donc L est inversement proportionnelle à f_n .

On a la relation: $c = \sqrt{\frac{T}{\mu}}$ avec $\mu = m_c orde * L_c orde$. On a ici: $T = 100 * 10^{-3} * 9.81 m^2.s^{-2}$ et $\mu = 0.9 * 10^{-3} * 138 * 10^{-2} kg.m.$. Donc $c = \sqrt{\frac{100*10^{-3}*9.81}{0.9*10^{-3}*138*10^{-2}}} = 2.81 m/s$. On sait que $\lambda = \frac{2L}{n}$ avec n le nombre de ventres.

Donc $c = \sqrt{\frac{100*10^{-3}*9.81}{0.9*10^{-3}*138*10^{-2}}} = 2.81 m/s$. On sait que $\lambda = \frac{2L}{n}$ avec n le nombre de ventres. Donc dans notre situation $c' = \frac{2*138*10^{-2}}{2} * 29 = 40.0$. Onremarque un léger écart entre les deux valeurs. On écrit l'écart relatif: $\frac{|c-c'|}{c} = \frac{|28.1-40.0|}{28.1} = 0.42$. Soit 42 %. Ceci est non négligeable.