Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports

(0.5pt)

année scolaire 2021-2022 Professeur : Zakaria Haouzan

Établissement : Lycée SKHOR qualifiant

Devoir Surveillé N°2 Filière 1Bac Sciences Expérimentales Durée 2h00

Chimie 7pts/42min ____

Partie 1 :Les comprimés effervescents de Vitamine B5 .(3.5pts)

Les comprimés effervescents de Vitamine B5, contiennent acide pantothénique $C_9H_{17}NO_5$ et le pantothénate de sodium $NaC_9H_{16}NO_5$ est le sel de sodium de la vitamine B5, ce dernier est employé comme additif alimentaire

additif alimentaire.
1. Écrire l'équation de dissolution de pantothénate de sodium dans l'eau
2. Identifier le couple acide / base mettant en jeu l'acide pantothénique et écrire la demi-équation acido-basique correspondante(1pt)
3. On fait réagir une masse m = 3,00 g d'acide pantothénique avec 150 mL d'une solution d'hydroxyde de sodium (Na^+, HO^-) de concentration $C=2,50.10^{-1}mol.L^{-1}$.
 (a) Identifier les couples acide / base mis en jeu, puis écrire l'équation de la réaction envisagée.(1pt) (b) Établir un tableau d'avancement et déterminer l'avancement maximal de la réaction. Quel est le réactif limitant?
On donne : $M(H)=1g/mol$, $M(C)=12g/mol$, $M(N)=14g/mol$, $M(O)=16g/mol$
On donne : M(H)=1g/mol , M(C)=12g/mol , M(N)=14g/mol , M(O)=16g/mol Partie 2 : L'eau de javel
Partie 2 : L'eau de javel

Physique 13pts - 78min _____

Les parties sont indépendantes

Partie 1 : Comportement globale d'un circuit électrique. (6pts)

On dispose d'un circuit électrique comprenant, un générateur linéaire de caractéristique ($E=12V, r=1\Omega$), un conducteur ohmique de résistance $R=10\Omega$ et un électrolyseur (E'=4V, r'). L'ensemble des dipôles est en série.

- 1. Schématiser le circuit en y incluant un ampèremètre mesurant l'intensité qui traverse le conducteur ohmique et un voltmètre qui mesure la tension aux bornes de l'électrolyseur.....(1pt)
- 2. L'intensité de courant ne varie pas au cours de l'expérience et a une valeur de 500mA pour une durée de fonctionnement de 12 minutes.
 - (a) En déduire l'énergie dissipée par effet joule par le conducteur ohmique.....(1pt)
 - (b) Calculer la résistance interne r' de l'électrolyseur à l'aide de l'intensité de courant I. (1pt)
- 3. On a changé le conducteur ohmique par un nouveau conducteur ohmique. On a maintenant une intensité de 0,35 A qui traverse le circuit.
 - (a) Calculer la valeur de l'énergie totale produite par le générateur en 20 minutes.....(1pt)
 - (b) Calculer la valeur de l'énergie électrique fournie au circuit par le générateur en 20 minutes.(1pt)
 - (c) Calculer la nouvelle résistance du nouveau conducteur ohmique et en déduire l'énergie dissipée par effet joule par l'ensemble des dipôles récepteurs de ce circuit......(1pt)

Partie 2 : Bilan énergétique(7pts)

On considère le montage suivant constitué:

-d'Un générateur de force électromotrice E et de résistance interne r et un intérrupteur .

-d'un moteur de force électromotrice E'=2,4V et de résistance interne $r'=2\Omega$ et d'un fil inextensible enroulé sur la poulie du moteur et auquel est suspendu à l'autre extrémité un corps de masse m=50g. -d'un conducteur ohmique de résistance $R=30\Omega$.

On ferme l'intérrupteur et il passe dans le circuit un courant électrique d'intensité I=0,1A.

- 2. Calculer la puissance utile du moteur électrique.....(1pt)
- 3. En déduire la puissance P_e fournie par le générateur au reste du circuit......(1pt)
- 4. Sachant que la puis sance totale déssipée dans tout le circuit par effet joule est égale à $0{,}36\mathrm{W}$.
 - (a) Déteminer la valeur de la puissance déssipée par effet joule dans le moteur......(1pt)
 - (b) En déduire la valeur de la résistance du générateur.....(1pt)
- 5. Déterminer la valeur de la force électromotrice du générateur puis retrouver l'intensité du courant en utilisant la loi de pouillet......(2pt)