考慮懸臂樑如圖所示,求x=L之變形量。

- (1) 分析目的 利用樑的理論,求x=L之變形量
- (2) 定義問題(理論分析解)

材料楊氏係數 E=200X109 N/m2

截面參數 t=0.01 m

w = 0.03 m

 $A=3\times10^{-4} \text{ m}^2$

 $I=2.5\times10^{-9}$ m⁴

幾何參數 L=4 m

a=2 m

b=2 m

(3) 系統之組合及求解

$$y(L) = \frac{Fa^2(3L-a)}{6EI} + \frac{q(3L^4 - 4a^3L + a^4)}{24EI}$$

(4) 檢視結果

$$y(L) = 0.0266667 + 0.002733 \approx 0.0294 \text{ m}$$

❖ 單位系統

單位系統	長度	カ	壓力、應力與楊氏模數	質量	密度
SI 制	m	N	Pa = N/m²	kg	kg/m³
mm 尺度	mm	N	MPa = $N/(mm)^2=10^6 N/m^2$	t (公制噸)	t/(mm) ³
μm 尺度 (μ=10 ⁻⁶)	μm	μN	MPa = μ N/(μ m) ² = 10 ⁶ N/m ²	kg	$kg/(\mu m)^3$
英制	in	lb	psi = lb/in²	lb-s²/in	lb-s ² /in ⁴

如果以 ANSYS 有限元素法,則上例之執行命令如下:

/FILNAME, EX2-7 /TITLE, Cantilever Beam Deflection		
/UNITS, SI		
/PREP7 ET, 1, 3		
	(2)	
MP, EX, 1, 200E9	(2)	
R, 1, 3E-4, 2.5E-9, 0.01	定	
N, 1, 0, 0	義	
N, 2, 1, 0	問	
N, 3, 2, 0	題	
N, 4, 3, 0		
N, 5, 4, 0		
E, 1, 2		
E, 2, 3		
E, 3, 4		
E, 4, 5		
FINISH		

/SOLU D, 1, ALL, 0 F, 3, FY, -2 SFBEAM, 3, 1, PRES, 0.05 SFBEAM, 4, 1, PRES, 0.05 SOLVE FINISH	(3) 求 解
/POST1	(4)
SET, 1, 1	檢
PRDISP	視
PLDISP	結
FINISH	果

BEAM3 輸入資料

Element Name	BEAM3	
Nodes	I, J	
Degrees of Freedom	UX, UY, ROTZ	
Real Constants	AREA, IZZ, HEIGHT, SHEARZ, ISTRN, ADDMAS	
Material Properties	EX, NUXY, GXY, ALPX, DENS, DAMP	
Surface Loads	Pressure face 1, face 2, face 3, face 4	
Body Loads	Temperature T1, T2, T3, T4	
Special Features	Stress stiffening, Large deflection, etc.	
etc.		

○指令說明≪

ET, ITYPE, Ename

定義元素的種類。

ITYPE:表示元素參考號碼。

ENAME:表示元素的編號,用全名也可以。

KEYOPT, ITYPE, KNUM, VALUE

設定元素的選項功能。

ITYPE:表示元素參考編號。

KNUM:表示功能選項能的編號。

VALUE:表示功能選項的設定號碼。

○指令說明≪

R, NSET, R1, R2, R3, R4, R5, R6 設定特性參數。

NSET:為參考編號。

R1~R6:分別表示 1-6 個參數所要指定得數值,如果超過 6 個,就直接在 R 這 個指令的下一行加入 RMORE, R7, R8, R9, R10, R11, R12, R7-R12 表示第 7 個到第 12 個參數,不斷的重複 RMORE,就可以一直增加參

數的個數。

○指令說明◁◁

N, NODE, X, Y, Z, THXY, THYZ, THZX 建立節點。

NODE:節點編號。

X, Y, Z:座標位置,需根據 Active CS, X 爲 P 時,其餘參數省略。

THXY, THYZ, THZX: Nodal CS 的旋轉角度。

○指令說明◁◁

E, *I*, *J*, *K*, *L*, *M*, *N*, *O*, *P* 建立元素。

I, J, K, L, M, N, O, P: 分別代表節點編號,需注意順序,I=P 時其餘參數省略。

當元素的節點數目超過8個時,可於後加上 EMORE 指令。

○指令說明尽

F, NODE, Lab, VALUE, VALUE2, NEND, NINC 施加負載於節點上。

NODE: 節點編號。可爲 ALL、P 或 Component 的名稱。

Lab:設定負載的種類,以結構分析爲例,可爲 FX、FY、FZ 和 MX、MY、MZ。

VALUE: 負載的大小。

VALUE2:如果分析的方式允許使用複數形式的負載,則 VALUE2代表虛部

NEND, NINC: 指定節點的範圍 (NODE-NEND), NINC表示號碼的間距。

FK, KPOI, Lab, VALUE, VALUE2

施加*負載*於點上。

KPOI:點的編號。可爲 ALL、P 或 Component 的名稱。

Lab, VALUE, VALUE2:使用方式同指令 F。

/FILNAME,

/PREP7

ET, MP, R,	建立元素屬性, 元素建立之前宣 告即可
: N,	建立節點
E,	建立元素

FINISH

/SOLU

ANTYPE,STATIC

D,
宣告負載,大部分
F,
指令,在/PREP7
與/SOLU處理器
皆可接受。
SF,
:

SOLVE

FINISH

/POST1

PLDISP PLNSOL

檢視列示結果

○指令說明尽

ANTYPE, antype

指定分析的種類。

antype:分析種類的編號

Static 或 0

Static Analysis,可用於各種物理現象的模擬。

Buckle 或 1

Buckling Analysis,只可用於結構分析中。

Modal 或 2

Modal Analysis,可用於結構和流體(非計算流體)的分析中。

Harmic或3

Harmonic Analysis,可用於結構、流體(非計算流體)、磁場和電場。

Trans 或 4

Transient Analysis,各物理現象的模擬均可使用。

Substr或7

Substructure Analysis,可用於模擬各種物理現象。

Spectr或8

Spectrum Analysis,必須先做模態分析後才可使用,只可用於結構分析中。

○指令說明✓

PLDISP, KUND

畫出變形圖。

KUND: 0 表示只畫出變形圖, 1 表示同時也畫出原始圖形, 2 表示同時畫出原始圖形的外框。

/DSCAL, WN, DMULT

設定顯示變形圖時的變形量的放大倍數。

WN: Graphic Windows 中的視窗編號。有關多視窗顯示請見第 10 章

DMULT:變形量乘上的數值,設定爲 AUTO 或 0 表示讓 ANSYS 自動計算,1 表示以實際變形量顯示。

當做線性分析時,預設為 AUTO,非線性分析時預設為1。

表 2-2.1 ANSYS 檔案類型

	檔案名稱	型式
Log file	Jobname.log	ASCII
Error file	Jobname.err	ASCII
Output	Jobname.out	ASCII
Database file	Jobname.db	Binary
Results file	Jobname.rxx	Binary
(Structural)	Jobname.rst	
(Thermal)	Jobname.rth	
(Magnetic)	Jobname.rmg	
Load step file	Jobname.sn	ASCII
Graphics file	Jobname.grph	Binary
Element matrices	Jobname.emat	Binary