UNIVERSITÀ DEGLI STUDI DI ROMA "TOR VERGATA"

Corso di laurea magistrale in Ingegneria Energetica

Esame di:

Gestione ed economia dell'energia e fonti rinnovabili

Docente:

Prof. Angelo Spena

Titolo relazione:

Prestazioni sul campo di un pannello fotovoltaico

Alunno: Valerio Pagliarella

Matricola: **0287800**

Anno accademico: 2021-2022

Indice

1	Intr	roduzione	3
2	Dat	i di progetto	5
	2.1	Bilancio termico del pannello	8
	2.2	Rendimento e temperatura del pannello	8
	2.3	Energia prodotta dal pannello	11

Elenco delle figure

1	Curva caratteristica pannello fotovoltaico
2	Curva I-V al variare della T del pannello
3	Curva I-V al variare dell'irraggiamento solare
4	Rendimento pannello in funzione di T_p
5	Dati radiazione solare
6	Dati temperatura ambiente
7	Dati velocità del vento
8	$\eta = f(T_p)$ - dicembre
9	$\eta = \mathrm{f}(\mathrm{T_p})$ - marzo
10	$\eta = f(T_p)$ - luglio
11	Andamento giornaliero T _p
12	Andamento giornaliero η
13	Energia prodotta dal pannello durante la giornata
Elen	aco delle tabelle
1	Caratteristiche pannello fotovoltaico
2	Valori medi giornalieri grandezze meteorologiche
3	Calcolo iterativo prestazioni pannello

1 Introduzione

L'obbiettivo di questa esercitazione è determinare l'energia elettrica prodotta da un pannello fotovoltaico in silicio monocristallino, valutando:

- le prestazioni in termini di efficienza;
- il surriscaldamento del pannello nelle diverse stagioni.

Per l'analisi sono stati forniti dati meteo relativi ad uno specifico anno solare, di cui sono stati presi in considerazione tre giorni di cielo sereno per i mesi di marzo, luglio e dicembre. Prima di entrare nel merito dell'esercitazione, vengono fatti dei brevi richiami teorici i quali saranno utili per una migliore interpretazione dei risultati ottenuti. L'elemento chiave per la generazione di energia elettrica dalla radiazione solare è la cella fotovoltaica, un dispositivo elettrico che per mezzo dell'effetto fotovoltaico converte la radiazione incidente in energia elettrica. Le celle fotovoltaiche sono dispositivi a semiconduttore, nel caso in esame si tratta di silicio sonocristallino, il quale fa parte dei "componenti di prima generazione" sviluppati per la prima volta in ambito aereospaziale. Le prestazioni di un modulo fotovoltaico vengono valutate in laboratorio mediante delle **Standard Test Conditions** (STC), ovvero delle condizioni standard di valutazione delle caratteristiche del modulo fotovoltaico. Tali prestazioni si definiscono attraverso la **curva caratteristica** del pannello rappresentata nel **diagramma I-V** in figura 1:

Figura 1: Curva caratteristica pannello fotovoltaico

Nel grafico il **rettangolo di massima potenza** individua il punto di funzionamento ottimale del pannello, in cui si eroga la maggiore potenza possibile:

$$P_{\text{max}} = V_m I_m \qquad [W] \tag{1.1}$$

In generale le prestazioni del dispositivo fotovoltaico sono sensibili a due fattori, la **tempe-**ratura del pannello e l'irraggiamento solare. All'aumentare della temperatura, infatti,

cresce la resistività elettrica del componente e la curva caratteristica si modifica come illustrato in figura 2, dove essenzialmente si nota una riduzione dell'area corrispondente a quella del rettangolo di massima potenza:

Figura 2: Curva I-V al variare della T del pannello

All'aumentare dell'irraggiamento solare, invece, le prestazioni migliorano, in quanto la corrente fotogenerata dipende linearmente dall'irraggiamento. La curva caratteristica si modifica come mostrato in figura 3:

Figura 3: Curva I-V al variare dell'irraggiamento solare

2 Dati di progetto

Il pannello fotovoltaico oggetto dell'analisi ha le seguenti caratteristiche:

Coefficiente di assorbimento	a	0,95	
Superficie captante	Su	$1 \mathrm{m}^2$	
Orientazione		Sud	
Angolo di inclinazione	σ	30°	

Tabella 1: Caratteristiche pannello fotovoltaico

Come precedentemente introdotto, il pannello è in silicio monocristallino e presenta una curva del rendimento in funzione della temperatura del pannello T_p illustrata in figura 4:

Figura 4: Rendimento pannello in funzione di T_p

Le prestazioni del pannello, in termini di rendimento, diminuiscono quindi linearmente secondo la legge:

$$\eta = 16 - \frac{3}{40} T_p \tag{2.1}$$

Oltre al curva di rendimento, sono forniti dati meteo e radiometrici per i mesi di marzo, luglio e dicembre con rilevazioni ogni mezz'ora. I dati comprendono:

- data e ora della rilevazione;
- valore della velocità del vento in m/s;
- temperatura ambiente T_{amb} in °C;
- valore della radiazione solare incidente su una superficie con angolo di inclinazione di 30°.

I dati forniti corrispondono solamente all'intervallo di tempo in cui è presente radiazione solare (quindi il numero di rilevazioni giornaliere varia secondo la stagione). Per prima cosa dai dati messi a disposizione sono stati individuati tre giorni di cielo sereno nei mesi di interesse, corrispondenti al 12 marzo, 12 dicembre e 17 luglio. Nelle figure 5, 6 e 7 sono rappresentati rispettivamente radiazione solare, temperatura ambiente e velocità del vento per i tre giorni in esame:

Figura 5: Dati radiazione solare

Figura 6: Dati temperatura ambiente

Figura 7: Dati velocità del vento

Sulla base dei grafici appena illustrati possono essere fatte delle considerazioni preliminari:

- la T_{amb} per il giorno di luglio è decisamente superiore rispetto agli altri due mesi, fattore che si prevede inciderà negativamente sulle prestazioni del pannello;
- la radiazione incidente nei mesi di luglio e marzo è confrontabile, con valore di picco intorno ai 1000 W/m^2 ;
- \bullet la v_{vento} a marzo è superiore rispetto agli altri due mesi, e questa buona condizione di ventilazione inciderà positivamente sulle prestazione del pannello.

In tabella 2 sono riportati i valori medi giornalieri delle tre grandezze meteorologiche:

Mese	N. osservazioni	$v_{ m vento} \ [{ m m/s}]$	T_{amb} [°C]	$ m W_{solare} \ [W/m^2]$
Luglio	26	2,8445	30,18	645,199115
Marzo	22	7,525	12,445	709,0611982
Dicembre	16	1,856	9,37	604,3387466

Tabella 2: Valori medi giornalieri grandezze meteorologiche

2.1 Bilancio termico del pannello

Per il calcolo delle prestazioni è stata utilizzata l'equazione:

$$W_{\text{tot}} \cdot a \cdot S_{\text{utile}} = \eta \cdot W_{\text{tot}} \cdot S_{\text{utile}} + [h_{\text{add}} \cdot S_{\text{tot}}(T_p - T_{\text{amb}})]$$
 (2.2)

dove:

$$h_{\text{add}} \cdot S_{\text{tot}} = h_{\text{sup}} \cdot S_{\text{sup}} + h_{\text{inf}} \cdot S_{\text{inf}} + h_{l} \cdot S_{l}$$
 (2.3)

$$h_{\text{sup}} = 5, 7 + 3, 8v \tag{2.4}$$

$$h_{\inf} = 5, 7 + 3, 8\frac{v}{2} \tag{2.5}$$

Il termine h_{add} indica il coefficiente medio globale di adduzione verso l'ambiente esterno mentre h_{sup} e h_{inf} sono rispettivamente i coefficienti di adduzione della superficie superiore e inferiore del pannello. Per l'analisi vengono considerate trascurabili le superfici laterali del pannello, dunque la S_{tot} così come la S_{sup} e S_{inf} possono essere considerate pari alla superficie utile S_{u} .

2.2 Rendimento e temperatura del pannello

Per il calcolo del rendimento e della temperatura del pannello si sfruttano le equazioni 2.1 e 2.2. Per ogni rilevazione meteorologica si assume una temperatura di primo tentativo:

$$T_{1t} = T_{\text{amb}} + 5$$
 (2.6)

Con tale temperatura si calcola il rendimento dalla 2.1 con cui esplicitare la T_p dalla 2.2. La convergenza del processo iterativo è stata raggiunta dopo tre iterazioni, quando l'errore tra il rendimento iniziale e quello finale tra un'iterazione e l'altra è giunto a 10^{-2} . A titolo di esempio viene riportato in tabella 3 il calcolo iterativo per il mese di dicembre:

Analisi dicembre							
Orario	${ m h_{add}}$	$\eta_{ ext{1it}}$	T_{P1it} [°C]	$\eta_{\mathbf{2it}}$	$\mathrm{T_{P2it}[^{\circ}C]}$	$\eta_{\mathbf{3it}}$	$\mathrm{T_{P3it}[^{\circ}C]}$
08:30:00	21,5916	0,15329725	14,05863743	0,149456022	14,10743796	0,149419422	14,10790294
09:00:00	20,1723	0,1530865	20,26305414	0,144802709	20,42983996	0,14467762	20,43235851
09:30:00	19,608	0,15264625	25,42410032	0,140931925	25,72702591	0,140704731	25,73290101
10:00:00	19,5339	0,15190975	30,24196836	0,137318524	30,68907065	0,136983197	30,69934569
10:30:00	19,2318	0,15157225	33,29315691	0,135030132	33,85371625	0,134609713	33,86796292
11:00:00	24,5043	0,1510735	29,84097697	0,137619267	30,22727826	0,137329541	30,23559694
11:30:00	25,4733	0,1503475	31,19262199	0,136605534	31,59341945	0,136304935	31,60218668
12:00:00	25,2738	0,1497175	32,43254095	0,135675594	32,84878107	0,135363414	32,85803493
12:30:00	28,8306	0,1487275	30,89314865	0,136830139	31,20292644	0,136597805	31,20897582
13:00:00	27,6222	0,1482325	31,55936032	0,13633048	31,86916029	0,13609813	31,87520817
13:30:00	23,4213	0,148045	33,94501899	0,134541236	34,33239029	0,134250707	34,34072444
14:00:00	22,1787	0,147685	33,49119584	0,134881603	33,84340948	0,134617443	33,85067636
14:30:00	21,489	0,1477375	31,38934781	0,136457989	31,67109354	0,13624668	31,67637174
15:00:00	21,7797	0,14764	27,13219516	0,139650854	27,288045	0,139533966	27,2903252
15:30:00	23,6664	0,147535	22,22342977	0,143332428	22,27896077	0,143290779	22,27951109
16:00:00	19,2318	0,14758	19,4040824	0,145446938	19,42493422	0,145431299	19,42508709

Tabella 3: Calcolo iterativo prestazioni pannello

Di seguito è mostrato rendimento del pannello nelle diverse stagioni in funzione della T_p :

Figura 8: $\eta = f(T_p)$ - dicembre

Figura 9: $\eta = f(T_p)$ - marzo

Figura 10: $\eta=f(T_p)$ - luglio

Si evince come a marzo, mese in cui si hanno le condizioni meteorologiche più favorevoli, l'efficienza del pannello sia superiore rispetto alle altre due stagioni. A luglio η raggiunge un minimo vicino al 10%. In figura 11 e in figura 12 è mostrato l'andamento della T_p e del rendimento del pannello nell'arco della giornata:

Figura 11: Andamento giornaliero T_p

Figura 12: Andamento giornaliero η

2.3 Energia prodotta dal pannello

L'energia elettrica prodotta dal pannello è data dall'equazione:

$$E_{\rm el} = 0.5 \cdot W_{\rm tot} \cdot \eta \qquad \left[\frac{Wh}{m^2}\right] \tag{2.7}$$

dove il fattore 0,5 tiene conto che le rilevazioni sono fornite ogni mezz'ora. In figura 2.7 è riportato l'andamento dell'energia prodotta durante la giornata:

Figura 13: Energia prodotta dal pannello durante la giornata

Dunque a marzo la producibilità del pannello è migliore rispetto le altre stagioni, essenzialmente grazie alla temperatura ambiente minore e alle buone di condizioni di vento durante tutta la giornata. A luglio l'elevata temperatura del pannello T_p penalizza l'energia elettrica producibile per via di una significativa riduzione del rendimento a causa dell'incremento della resistività elettrica del dispositivo, in accordo con quanto mostrato nella figura 2.