Dark Matter Probes with LIGO & Extended Freq Band

"LIGO and Beyond"

Sunghoon Jung

LIGO Meeting @ SNU, Sep 2018 (hosted by KASI, KISTI, KGWG)

- 1. Detecting Point-mass Lensing @ LIGO : "GW Fringe"
- 2. Overlooked Broadband : 0.1-1000 Hz = "highest-frequency" band where binaries can spend a "year"
 - A. Natural localization Doppler effect
 - B. GW Fringe finer Cosmic strings and early-Universe fossils
 - C. Relaxion/Fuzzy/Axion-like scalar DM astro-scale waves
- 3. Moving Farther Beyond : boosting high-f benefits
 - A. Higher-frequency detectors?! serious brainstorming
 - B. Mapping & ringing with LIGO

To discuss

- 1. To improve/realize GW Fringe analysis at LIGO
 - A. Spin precession
 - B. Realistic lens and merger distributions
 - C. Dedicated search analysis
 - D. Understanding Fisher correlations better
- 2. Which direction to go: Extended frequency bands?
 - A. Motivations, physics cases, uniqueness
 - B. Realization

Time-delayed images

Consider time-delayed lensed images of GW.

Two separate rays with different amplitude and time-delay

Interfered images

Unresolved GW images rather "interfere" in our observation.

Fringe

It is the *GW chirping* that makes it observable — continuously changing interference pattern: lensing "Fringe".

"GW Fringe"

NS-NS merger lensed by 100 Msun compact DM.

Compact DM fraction

Blackboard discussion of lensing calculation

GW lifetime curve

Is mid-frequency just an interpolation of LIGO and LISA?

LIGO and Beyond

GW lifetime curve

No! Forming a highest-frequency band with year-long measurement,,,

Mid + LIGO

Unique & ideal test bed for dark matter and precision GW:

 1. GW Localization on the sky is most naturally well done here!

[1710.03269 with Peter W. Graham]

2. Dark matter effects are most pronounced here too!

[works to appear soon:

Cosmic String: GW Fringe — w/ TaeHun Kim

Scalar DM: NS Mass Shift — w/ HanGil Choe]

Let's consider a simple detector:

One single-baseline detector measuring mid-band (0.03 Hz-) on the Earth orbit.

Benchmark for single-baseline detector: atom interferometer

GW150914 in the mid-band

GW150914 (36-29 Ms) spends 9.6 months in the mid-band.

1710.03269 SJ, P.W.Graham

Angular localization

"Reorients" hourly and monthly.
 This already makes it able to localize w/ one detector.

$$\Delta\theta \sim \text{SNR}$$

"Doppler" shift — Unique effects at mid-band:

huge phase-lag across the Sun.

$$\Delta \theta \sim \mathrm{SNR} \cdot \frac{L}{\lambda}$$

is largest for highest frequency that lasts for 0.5~1 year

Fisher matrix element

$$\Gamma_{ij} = 4 \operatorname{Re} \int \frac{(\partial_i \tilde{h}^*) \partial_j \tilde{h}}{S_n(f)} df$$

$$\Psi(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128} (\pi \mathcal{M}_z f)^{-5/3} - \phi_P(t) - \phi_D(t) + \cdots$$

$$\phi_D = 2\pi f \left(R_{AI} \mathbf{r}_{AI} \cdot \mathbf{n}/c + R_{AU} \mathbf{r}_{Ea} \cdot \mathbf{n}/c \right)$$

Sky-location n=n(theta, phi) components grow with (f R)^2!

(N.B. Note that to component also grow with f^2)

What info in the Fisher?

Appendix C: Optimal separation of measurements

Given that the *change* of Doppler shift contains measurable angular information, which two angles from a circular orbit can yield maximum angular information? By solving the 2×2 Fisher matrix $\Gamma_{2\times 2}$ composed of θ and ϕ (thus, ignoring any uncertainties correlated with other parameters), we obtain

$$\Delta\Omega_s \approx 2\pi \sin\theta \left(\det\Gamma_{2\times 2}\right)^{-1/2}$$
. (C1)

From the two measurements of δ -duration($\delta \ll 1$ rad) separated by an orbit angle α , the above 2×2 Fisher with Doppler effects only gives

$$\Delta\Omega_s^{-1} \propto (fR)^2 \sin 2\theta \sqrt{4\delta^2 + \cos 2\delta - 1 - 2\sin^2 \delta \cos 2\alpha}$$
$$\approx (fR)^2 \sin 2\theta \sqrt{2\delta^2 (1 - \cos 2\alpha)}.$$
 (C2)

Thus, Doppler effects are maximized for $\alpha \simeq \pi/2$. Locating two detectors separated by $\pi/2$ along the orbit, or measuring a GW at two different times separated by $\pi/2$ can thus maximize the Doppler effect. The former result is

Only accumulation of info over 6 months (alpha>0) can tell sky-localization.

Only non-linear motion (alpha>0) can tell.

Doppler can dominate

 $\Delta \theta \sim \mathrm{SNR} \cdot \frac{L}{\lambda}$

is largest for highest frequency that lasts for 6 months

DM effect most pronounced

- Scalar DM as light as 10^-23 eV.
 (ex: relaxion/fuzzy/axion-like. all very important today.)
- As a light DM, it is a classical wave, almost coherently oscillating at its Compton frequency, in the background.
- If such scalar DM interacts with the neutron, the neutron-star mass will shift and oscillate in time.

$$\frac{\delta \mathcal{M}}{\mathcal{M}}(t) \propto \phi(t) \propto \sqrt{\rho_{\rm DM}} \cos m_{\phi} t$$

$$\frac{1}{m_{\rm DM}}$$
 ~ 1 yr for 10^-22 eV, 1 month for 10^-20 eV

Exquisite chirp-mass accuracy

- Again aided by highest-frequency year-long measure!
- GW phase evolution is governed by the chirp mass.
 - → A tiny phase-shift due to the mass-shift accumulates over millions of GW cycles!

$$\frac{\Delta \mathcal{M}}{\mathcal{M}} \sim (\text{SNR})(N_{\text{cyc}}) \sim 10^{-8}$$

c.f.)
$$\Delta D_L/D_L \sim {\rm SNR} \sim 10^{-2}$$

SNR ~ 500, Ncyc ~ 10^7 huge enhancement (NS-NS @ 10Mpc, last 1year)

Fisher matrix element

$$\Gamma_{ij} = 4 \operatorname{Re} \int \frac{(\partial_i \tilde{h}^*) \partial_j \tilde{h}}{S_n(f)} df$$

$$\frac{\partial \tilde{h}(f)}{\partial \ln \mathcal{M}} = -\frac{5i}{4} (8\pi \mathcal{M}f)^{-5/3} \tilde{h}(f) \left[1 + \frac{55\mu}{6M} x + (8\pi - 2\beta) x^{3/2} \right]$$
$$\sim N_{\text{cyc}} \cdot (\text{SNR}) (1 + \cdots)$$

$$N_{\rm cyc} \approx 2.44 \times 10^7 \left(\frac{\mathcal{M}_z}{1.5 M_{\odot}}\right)^{-5/3} \left(\frac{f_i}{10^{-1} {\rm Hz}}\right)^{-5/3}$$

Long-time spent at low frequency accumulates a lot of cycles and SNR!

Long measurement at low-frequency accumulates Ncyc (and SNR)

1809.xxxxx HanGil Choe, SJ

But that's not all. Highest-frequency resolves important correlations.

1809.xxxxx HanGil Choe, SJ

Can we better understand correlated part of Fisher?

???

Which parameter improves by itself? Which improves by resolving correlations? How much?

Cosmic string detection

- Likely fossils of early Universe w/ U(1) phase transitions.
- Flat spacetime with azimuthal angle deficit $\ \Delta = 8\pi G \mu$
- Fringe pattern more varieties (btwn 3 rays & phase flip)

1809.xxxxx SJ, TaeHun Kim

Cosmic string detection

- Again detectable at LIGO(+mid band) with GW Fringe.
- An example that highest-frequency broadband can see smaller objects with precision.

1809.xxxxx SJ, TaeHun Kim

Moving Farther Beyond

Boosting high-frequency benefits:

- 1. Higher-frequency detectors?!
 - A. Sub-solar mass PBH, compact DM, Inflation
 - B. Technology?
- 2. Mapping & ringing with LIGO (with HanGil Choe)
 - A. Arc-sec precision of LIGO for sub-solar mass DM (Doppler)
 - B. Any comments, suggestions, ideas?