

Independent Verification And Validation (IV & V)

JOSE' MARTIN

MIKE M^cGEE

DEAN BARTEN

7 MARCH 2001

Agenda

- **Background & Definitions**
- **IV & V Functions & Perspectives**
- **IV & V Process**
- **9 Elements of Complete IV & V**
- **Methodology**
- **Software Criticality Analysis**
- **Software Requirements Inspection**
- **Conclusions**

Purpose

- Enhances the probability that software:
 - will be released on time
 - will be cost effective
 - will enhance success
 - will be released with fewer software errors
 - performs correctly

Background

- **Genesis:** Early Space & Missile Programs
- **Motivation:** “No Second Chance”
- **Performance**
- **Failure Impact:** Loss of Human Life / National Pride
- **Twist:** Independence of Evaluator

IV & V Definition

- “**Systematic evaluation of software product activities by an agency that is not responsible for developing the product or performing the activities being evaluated.**” [para 3.23]

- Per MIL-STD-498/IEEE-1498

Verification vs... Validation

- Difference is in the level of detail and criticality of software to be tested and analyzed

Verification Definition

- **Process to determine if products in each phase of software developments are consistent with respect to the previous phase**
- **Test and analysis are done at the lower tier (module)**

Verification Focus

- **Software requirements are complete, correct and consistent with respect to system specification**
- **Interface requirements (Hardware vs. Software)**
- **Design verification vs. requirements**
- **Code verification vs. the design**

Verification Elements

- Analytical activities ensuring the Software Requirements Specification (SRS) reflects allocated system requirements
- Evaluation activities ensuring the Computer Configuration Item (CSCI) meets SRS requirements at each level of detail
- Informal testing at the CSCI and component levels

Verification Elements (continued)

- Ensuring software products, processes, service documents conform to specified requirements
- Documenting verification methods, cases, evidence and corrective actions
- Assigning a criticality value for each requirement and each software unit

Validation Definition

- **Process to determine if the fully integrated software operated correctly, completely, and consistently with system specifications and requirements**
- **Test and analysis are done at the “system” level**

Validation Focus

- Ensuring the system requirements have been met
 - Ensuring the executable code is derived from source code
 - Ensuring that the integrated code meets system requirements

Validation Elements

- Analytical and evaluation activities ensuring system requirements have been addressed
- Testing at the fully integrated computer system
- Ensuring software products, processes, service documents conform to specified requirements
- Documenting verification methods, cases, evidence and corrective actions

IV & V Functions

- **Independently tests performance**
- **Measure satisfaction of requirements**
- **Independent criticality analysis**
- **Defect impact, detection & removal**
- **Complements prime contractor's activities**

IV & V Perspectives

	<u>IV & V Agent</u>	<u>Developer</u>
Product Mindset	Push to Failure	Pull to Success
Testing Allegiance	Pessimistic Inherently Good	Optimistic Necessary Evil
Customer		Contractor

IV & V Process

- 1) Determine need**
- 2) Establish scope**
- 3) Estimate costs**
- 4) Select IV & V agent**
- 5) Conduct IV & V**

IV & V Process (continued)

Need Determination

- Early EMD
- Impact of Undetected errors
 - Loss of life
 - Personnel injury
 - Mission failure
 - Catastrophic equipment loss

Scope

- Tailored to criticality of SW
- Use system req spec & interface req spec
- Benefit must exceed cost

IV & V Process (continued)

Cost Estimation

- Cost varies by each effort
- Typically, 10 - 50% of development cost
- > 50% for catastrophic effects on new technology

Selection of Agent

- Autonomous operations
- Independent Analysis
- Unbiased decision making
- Strong experience & solid methodology
- If in-house Must be truly independent

9 Elements of a Complete IV & V Effort

- 1) Review SW developer's methodologies**
- 2) Requirements identification & allocation**
- 3) Test matrix development**
- 4) Verification tests**
- 5) Validation tests**
- 6) Quality control**
- 7) Configuration management**
- 8) Data management**
- 9) Code Execution**

9 Elements of a Complete IV & V Effort (cont)

- 1) Review of the SW developers methodologies**
 - Evaluate robustness of developers process
- 2) Requirements identification & allocation**
 - Analyze all spec & req documents
 - Enter identified SW requirements into database
 - Perform a requirements allocation flow-down

9 Elements of a Complete IV & V Effort (cont)

- 3) Keys to test matrix development**
 - For each identified SW requirement, develop a test requirement and determine a test method and success criteria**
 - Record the pass/fail results for each test**
 - Use the same database for all SW test activities**

9 Elements of a Complete IV & V Effort (cont)

4) Keys to verification tests

- Verify that SW requirements are complete, correct and consistent with respect to the system specifications**
- Verify the physical, external interfaces of SW versus the identified requirements and system hardware**
- Verify the design versus identified requirements**

9 Elements of a Complete IV & V Effort (cont)

5) Keys to validation tests

- Validate the build of the executable code
- Validate the integrated code versus the system specifications and identified requirements.
(nominal, stress test, and failure mode runs)

6) Keys to quality control

- Have a documented quality system in place

9 Elements of a Complete IV & V Effort (cont)

- 7) Configuration management**
 - Use a rigorous configuration management system to control all versions of documents, databases, code under test, test results and reports**
- 8) Data management**
 - Have the ability to automatically report any requirement or flow-down test that is not satisfied completely**
- 9) Code execution**
 - For module-level tests and integrated**

Methodology

5 Key Steps

Step 1: Review all pertinent documents:

- **SW requirements specifications methodology**
- **SW design methodology**
- **SW coding standards**
- **CASE tool documentation**
- **Test plan and procedure methodology**
- **SW quality control methodology**
- **SW configuration management methodology**

Methodology (continued)

Step 2: Interview to confirm the intended methodologies:

Step 3: Analyze the methodologies individually & whole

- Each methodology supports the needs of its phase**
- Each methodology supports the needs of the program management**
- Data and document configuration control are an integral part of the development cycle**
- Quality assurance is an integral part of the development cycle**

Methodology

Step 4: Develop a report on the results of the analysis including recommendations for change

Step 5: Support all discussions and corrective actions undertaken to improve the software development methodologies

Criticality Analysis

- **Identification of appropriate levels of verification and validation testing**
- **Reduces costs and schedule by including all software units in detailed tests**

Criticality Analysis (cont)

- Several Methods
- One method is computed by identifying:
 - Error impact categories
 - Error occurrence probabilitiesto compute the criticality probabilities
- The results are applied to verification testing determining a criticality threshold
- Below this threshold, verification tests will be performed

Software Criticality Analysis

Error Relationship

Error Impacts

Negligible

Marginal

Critical

Catastrophic

Error Occurrence Probabilities

Impossible

Improbable

Probable

Frequent

Error Impact Categories

<u>Weight</u>	<u>Category</u>	<u>Description</u>
1	Negligible	Causes inconvenience, effort for future updates, no chance of injury, and/or minor cost
2	Marginal	Causes secondary goal degradation, minor, required system update, chance of minor injury, and/or marginal cost
3	Critical	Causes primary operational requirement degradation, major system update, change of moderate injury, and/or critical cost
4	Catastrophic	Causes operational failure, chance of serious injury or death,

Error Occurrence Probabilities

<u>Weight</u>	<u>Category</u>	<u>Description</u>
0	Impossible	Simple and mature; little bearing on overall system performance; well-defined, allocatable, measurable, & testable
1	Improbable	Somewhat complex w/ few interfaces; Relaxed accuracy & precision; some bearing on overall system performance
2	Probable	Moderately coupled and complex w/clearly defined interfaces; moderate accuracy, moderate stress, definite bearing on system performance
3	Frequent	Tightly coupled, complex, numerous interfaces: extreme

Conclusions

- Independence
- Cost Effective Return on Investment
- Rigorous Methodology
- Critical Defect ID

IV&V

QUESTIONS???