발 간 등 록 번 호 11-1480745-000007-10 영목한 대한민국을 여는 기 정부 기 ()

사업장 고유 배출계수 개발 가이드라인

2014.10

목 차

제1장 총칙

1	. 개 요	
	가. 근 거 ··································	
2.	Tier3 계수 개발·보고 기준 3	3
	가. Tier3 계수 개발·보고 원칙 ······ 3 나. Tier3 계수 개발 대상 ····· 2	
3.	Tier3 계수 개발·보고 절차 5	-
	가. Tier3 계수 개발 계획 보고 절차 5 나. Tier3 계수 개발 결과 보고 절차 6	

목 차

제2장

배출활동별 사업장 고유 배출계수 개발

1.	• 13
2. 배출활동별 시업장 고유 배출계수 개발 방법	· 17
(1) 고체연료연소	· 18
(2) 기체연료연소	· 28
(3) 액체연료연소	39
(4) 시멘트 생산	
(5) 석회 생산	61
(6) 탄산염의 기타 공정사용	. 68
(7) 암모니아 생산	75
(8) 질산 생산	. 81
(9) 아디프산 생산	91
(10) 카바이드 생산	96
(11) 소다회 생산	100
(12) 수소제조 공정	104
(13) 촉매재생 공정	111
(14) 석유화학제품 생산	
(15) 불소화합물 생산	134
(16) 철강 생산	
(17) 합금철 생산	145
(18) 이연 생산	151
(19) 납 생산	
(20) 마그네슘 생산	162
(21) 전자산업	171
(22) 연료전지	182
(23) 열 생산 및 공급	188
별첨 1. 원소주기율표	200
별첨 2. 시료 채취 및 분석의 최소 주기	201
별점 3. 배출활동별명세서 입력코드 구분	202
별점 4. 천연가스 성분별 몰질량 및 발열량 참고표	210

제 1 장

총칙

1 개 요

가. 근 거

「온실가스·에너지 목표관리 운영 등에 관한 지침('14.10월, 이하 목표관리 지침)은 기존의 지침을 목표관리제 운영을 위한 행정적 부분을 규정한 1편과 명세서 작성방법, 온실가스 배출량 산정방법론 등 기술적 부분을 기술한 2편으로 나누었다. 1편은 목표관리제 대상 업체에만, 2편은 목표관리제 대상 업체와 배출권거래제 대상 업체에 공통으로 적용된다.

「사업장 고유 배출계수 개발 가이드라인1)」은 목표관리 지침 제2편 제81조에 근거하고 있으며 제91조, 제92조에 따라 사업장 자체적으로 개발·보고하여야 하는 매개변수에 관한 필요한 정보를 제공하고 있다.

나. 정 의

배출계수란 당해 배출시설의 단위 연료 사용량, 단위 제품 생산량, 단위 원료 사용량, 단위 폐기물 소각량 또는 처리량 등 단위 활동자료 당 발생하는 온실가스 배출량을 나타내는 계수(係數)를 말한다. 목표관리지침에 따라 배출계수는 Tier1~3로 구분된다.

Tier1 계수(기본 배출계수)는 목표관리 지침에 Tier1 계수로 명시된 배출계수 및 별도로 사업장 배출량 산정 편이를 돕기 위해 온실가스종합정보센터가 Tier1 계수로 제시하는 배출계수를 의미한다.

¹⁾ 사업장에서 온실가스 배출량 산정·보고와 관련하여 개발·보고하여야 하는 매개변수에는 활동자료, 배출계수, 발열량, 산화율, 탄소함량 등이 있다. 매개변수 중 가장 대표적인 변수는 배출계수로 단위 연·원료 사용량 당 온실가스 배출량을 나타낸다. 동 가이드라인은 매개변수에 대한 개발·보고 방법을 다루고 있으나 배출계수가 매개변수의 광의적인 개념으로 통용되고 있는 바 『사업장 고유배출계수 개발 가이드라인』으로 한다.

Tier2 계수(국가 고유 배출계수)는 온실가스종합정보센터에서 검증·공표한 배출계수로서 일부 Tier2 계수는 사업장 적용범위 및 적용기간 등이 명시된다.

Tier3 계수(사업장 고유 배출계수)는 사업장에서 실험·분석을 통해 개발·보고한 배출계수로서, 사업장 자체적으로 개발 적용한 모든 배출계수를 포함한다.

» 배출계수 정의

배	출계수	구 분	적용기간	출 처	종류
Tier1 계수	기본 배출계수	- 목표관리 지침에 명시된 기본 배출 계수 또는 온실 가스종합정보센터 에서 제시하는 기본 계수	- 적용기간은 별도로 명시되지 않음	- 온실가스·에너지 목표관리 운영 등에 관한 지침 - 온실가스종합정 보센터 제공	- 기본 배출계수
Tier2 계수	국가 고유 배출계수	- 온실가스종합정 보센터에서 검증· 공표한 국가 고유 배출계수	- 배 출 활 동 별 로 Tier2 계수 적용 범위 및 적용기간 등이 명시되는 경우 가 있음	목표관리 운영 등에 관한 지침	 국가 고유 배출 계수 국가 고유 전력 간접 배출계수 국가 고유 열 간접 배출계수
Tier3 계수	사업장 고유 배출계수	- 사업장에서 실험· 분석을 통해 개발· 보고한 배출계수 로서, Tie1~2 계수 에 규정되지 않은 사업장 지체적으로 개발 적용한 모든 배출계수를 포함	- 배출계수가 개발된 기간의 배출량 산정시에만 적용	- 명세서	- 사업장 고유 배출계수

다. 적용기준

배출시설의 연간 배출량 규모를 기준(A그룹~C그룹)으로 배출계수의 Tier를 구분 하여 적용한다.

배출시설별 배출계수 적용기준

배출시설 구분	배출시설 구분기준	적용 가능한 배출계수
A그룹	연간 5만톤 미만의 배출시설	Tier1 계수*, Tier2 계수, Tier3 계수
B그룹	연간 5만톤 이상, 연간 50만톤 미만의 배출시설	Tier2 계수*, Tier3 계수
C그룹	연간 50만톤 이상의 배출시설	Tier3 계수*

^{*}목표관리 지침에 따른 최소적용 기준

2 Tier3 계수 개발·보고 기준

가. Tier3 계수 개발·보고 원칙

Tier3 계수는 다음과 같은 원칙에 따라 구체적이고 명확하게 개발·보고되어야 한다.

(1) 정확성(Accuracy)

사업장은 온실가스 배출량이 과대 또는 과소평가되지 않도록 Tier3 계수 산정과정에서 정확한 데이터를 사용하여야 한다. 이를 위해 배출계수 불확도에 대해 평가하고가능한 불확도를 줄이려는 노력을 기울여야 한다.

(2) 투명성(Transparency)

사업장은 Tier3 계수 개발 및 적용에 이용되는 산정방법 및 계산 워크시트 등의 근거자료를 문서화하고, 필요한 경우 출처를 공개하며 그 사용 근거와 타당성을 명확하게 기술하여야 한다. 만일 비공개 자료를 이용하였을 경우에는 그 이유를 명확히 기술하여야 한다.

(3) 일관성(Consistency)

사업장은 Tier3 계수 개발 시 일관된 방법론과 시험측정법을 적용하여야 한다.

(4) 완전성(Completeness)

사업장은 Tier3 계수 개발에 필요한 원소분석 및 성분분석 시 누락 없이 개발하여야 한다.

(5) 비교가능성(Comparability)

사업장은 Tier3 계수 개발에 필요한 원소분석 및 성분분석과 단위 등의 형식이 타배출시설의 동일 배출계수와 비교가능하도록 개발하여야 한다.

나. Tier3 계수 개발 대상

사업장에서 Tier3 계수를 개발하여야 하는 경우는 아래와 같다.

(1) 배출시설 규모가 C그룹에 해당되는 경우

(가) 모든 매개변수를 Tier3 계수로 개발

배출계수와 열량계수는 시험·산정 값이 연관성이 있으므로 배출계수를 Tier3 계수로 개발하는 경우 열량계수도 필수적으로 개발하여야 한다.

<Tier3 계수 개발 제외 대상>

초기가동·착화연료 등 소량으로 사용하는 보조연료의 배출량이 시설 총 배출량의 5% 미만일 경우 차하위 산정등급을 적용할 수 있다. 이때 차하위 산정등급을 적용하는 배출시설 보조연료의 배출량 총합은 25,000tCO₂eq 미만이어야 한다.

* 온실가스·에너지 목표관리 운영 등에 관한 지침 [별표 15] 배출활동별, 시설규모별 산정 등급(Tier) 최소 적용기준

(2) 배출시설 규모와 관계없이 Tier3 계수를 적용하는 경우

- (가) 배출시설 규모가 A, B그룹에 해당되나 배출량의 정확도를 높이기 위하여 Tier3 계수를 개발·적용
- (나) 목표관리 지침에 Tier1 계수 또는 Tier2 계수가 제시되지 않아 사업장 자체적으로 Tier3 계수를 개발·적용

- (다) 타 사업장에 열을 공급함에 따라 열 간접 배출계수인 Tier3 계수를 개발·적용
- (라) 공급업체가 개발·제공한 시험성적서 등으로 Tier3 계수를 개발·적용

단일 연·원료 공급업체가 개발하여 제공한 배출계수를 그대로 적용하는 경우, 다수의 연/원료 공급업체에서 제공한 Tier3 계수를 재산정하거나 사업장 자체 연료와 혼합되어 배출계수를 재산정하는 경우에도 Tier3 계수로 보고한다.

3 Tier3 계수 개발·보고 절차

가. Tier3 계수 개발 계획 보고 절차

관리업체가 Tier3 계수를 개발하여 배출량을 산정할 경우 사업장은 목표관리 지침 제91조에 의거 동 지침 별표 17의 절차를 따라야 한다.

≫ Tier3 계수 개발 계획 제출 절차

※ 배출권거래제에서는 부문별 관장기관의 역할을 주무관청(환경부장관)이라 한다

≫ Tier3 계수 개발 기준 및 제출자료

주체	기준	근거	작성(제출)자료
사업장	개발방법 정확성 및 정합성	- 온실가스·에너지 목표관리 운영 등에 관한 지침 - 사업장 고유 배출계수 개발 가이드라인	모니터링계획 (이행계획)근거자료
관장 기관	개발방법 정확성 및 정합성	- 온실가스·에너지 목표관리 운영 등에 관한 지침 - 사업장 고유 배출계수 개발 가이드라인	- 검토결과서
총괄 기관	개발방법 정확성 및 정합성	- 온실가스·에너지 목표관리 운영 등에 관한 지침 - 사업장 고유 배출계수 개발 가이드라인	- 검토결과서

나. Tier3 계수 개발 결과 보고 절차

이행연도에 개발된 Tier3 계수는 제3자 검증 완료 후 명세서(목표관리 지침 별지 제16호 서식)에 보고·제출된다. 명세서에 제출된 Tier3 계수는 정부의 사용 가능여부를 통보받은 후 최종 적용가능하다.

Tier3 계수 개발 결과 제출 절차

- ※ 배출권거래제에서는 부문별 관장기관의 역할을 주무관청(환경부장관)이라 한다
- * 모니터링 계획은 주무관청의 사전검토를 받은 최종 버전을 제출하여야 함

≫ Tier3 계수 개발 결과 보고 기준 및 제출자료

주체	기준	근거	작성(제출)자료
사업장	- 개발방법 및 개발결과의 정확성	온실가스·에너지 목표관리 운영 등에 관한 지침사업장 고유 배출계수 개발 가이드라인	명세서사업장 고유배출계수 자동산정결과 시트근거자료
검증 기관	- 개발방법 및 개발결과의 정확성	 온실가스·에너지 목표관리 운영등에 관한 지침 사업장 고유 배출계수 개발가이드라인 온실가스·에너지 검증수준 향상을위한 일반매뉴얼 및 세부검증가이드라인 	- 검증보고서
관장 기관	- 개발방법 및 개발결과의 정확성	- 온실가스·에너지 목표관리 운영 등에 관한 지침 - 사업장 고유 배출계수 개발 가이드라인	- 검토결과서
총괄 기관	- Tier2 계수와의 정합성 - 부문간 유사시설에 대한 정합성 및 등가성	- 온실가스·에너지 목표관리 운영 등에 관한 지침 - 사업장 고유 배출계수 개발 가이드라인	- 검토결과서

참 고

[산정결과 시트]

- 사업장에서 배출계수를 도출하기 위해 관리되는 일련의 자료로서, 주로 전산 프로그램으로 관리된다. 산정 결과 시트에는 활동자료, 성분분석 결과 등의 원자료(raw data)가 포함되어 있으며, 배출계수를 도출하는 과정을 수식으로 확인할 수 있어야 한다.
- 산정결과 시트에는 사업장에서 자체적으로 관리하는 "산정결과 시트"와 온실가스 종합정보센터에서 제공하는 "자동 산정결과 시트"가 있다.

목표관리 지침 [별표 17] 자체 개발 산정 방법론 및 사업장 고유 배출계수의 승인·통보 절차 (제87조, 제91조, 제92조 관련)

1. 배출권거래제 할당대상업체

1단계 자체 개발 산정 방법론 및 사업장 고유 배출계수의 개발 계획 제출

할당대상업체가 제87조제4항에 따른 자체 개발 산정방법론 및 제92조 제3항에 따른 배출시설 단위 고유 배출계수의 개발 계획이 포함된 제99조에 따른 모니터링 계획을 주무관청에게 제출한다.

V

2단계 주무관청의 검토

주무관청은 할당대상업체가 제출한 자체 개발 산정 방법론 및 사업장 고유 배출계수 개발 계획을 검토하고, 법 제45조 제1항에 의한 국가 배출계수의 개발 방법과의 정합성 등을 확인한다.

\blacksquare

3단계 할당대상업체에게 계회의 사용가능여부 통보

주무관청은 할당대상업체에게 사용가능여부를 통보한다.

4단계 자체 개발 산정 방법론 및 사업장 고유 배출계수의 개발 결과 제출

할당대상업체는 주무관청으로부터 사용가능여부를 통보받은 자체 개발 산정 방법론 및 사업장 고유 배출계수 개발 계획에 따라 배출량 산정 결과 및 사업장 고유 배출계수 개발 결과를 다음연도 명세서에 포함하여 주무관청에게 제출한다.

5단계 주무관청의 검토

주무관청은 할당대상업체가 제출한 자체 개발 산정 방법론 및 사업장 고유 배출계수 개발 결과를 검토하고, 법 제45조 제1항에 의한 국가 배출계수의 개발 결과와의 정합성과 부문간 유사시설에 대한 배출계수의 등가성 및 정확성 등을 확인한다.

6단계 할당대상업체에게 결과의 사용가능여부 통보

주무관청은 할당대상업체에게 사용가능여부를 통보한다.

※ 배출권거래제에서는 부문별 관장기관의 역할을 주무관청(환경부장관)이라 한다.

2. 목표관리제 관리업체

1단계 자체 개발 산정 방법론 및 사업장 고유 배출계수의 개발 계획 제출

관리업체는 제87조제4항에 따른 자체 개발 산정방법론 및 제92조 제3항에 따른 배출시설 단위 고유 배출계수를 개발할 경우, 자체 개발 산정방법론 및 사업장고유 배출계수 개발 계획이 포함된 제40조에 따른 이행계획를 부문별 관장기관에 제출한다.

2단계 자체 개발 산정 방법론 및 사업장 고유 배출계수의 개발 결과 및 근거 제출

 \blacksquare

관리업체는 기 제출한 이행계획서를 기반으로 자체 개발 산정방법론 및 사업장고유 배출계수의 개발결과를 다음연도 명세서에 포함하여 부문별 관장기관에 제출한다.

3단계 부문별 관장기관의 검토 및 환경부 장관에게 검토결과 통보

부문별 관장기관은 관리업체가 제출한 자체 개발 산정방법론 및 사업장 고유 배출계수 개발결과를 검토한 후 그 결과를 환경부 장관에게 통보한다.

4단계 환경부 장관의 확인 및 부문별 관장기관에게 확인결과 통보

환경부 장관은 부문별 관장기관이 통보한 자체 개발 산정방법론 및 사업장고유 배출계수의 개발 결과의 검토 결과에 대해 법 제45조 제1항에 의한 국가배출계수 개발결과와의 정합성과 부문간 유사시설에 대한 배출계수의 등가성및 정확성 등을 확인하여 그 결과를 부문별 관장기관에 통보한다.

5단계 관리업체에게 확인결과 통보

부문별 관장기관은 환경부 장관으로부터 통보받은 결과를 관리업체에 통보한다.

제 2 장

배출활동별 사업장 고유 배출계수 개발

1.	공통사항	. 13
2.	배출활동별 사업장 고유 배출계수 개발 방법	·· 17
	(1) 고체연료연소	·· 18
	(2) 기체연료연소	28
	(3) 액체연료연소	39
	(4) 시멘트 생산	46
	(5) 석회 생산	61
	(6) 탄산염의 기타 공정사용	68
	(7) 암모니아 생산	75
	(8) 질산 생산	81
	(9) 아디프산 생산	91
	(10) 카바이드 생산	96
	(11) 소다회 생산	100
	(12) 수소제조 공정	104
	(13) 촉매재생 공정	111
	(14) 석유화학제품 생산	121
	(15) 불소화합물 생산	134
	(16) 철강 생산	138
	(17) 합금철 생산	145
	(18) 아연 생산	151
	(19) 납 생산	157
	(20) 마그네슘 생산	162
	(21) 전자산업	171
	(22) 연료전지	182
	(23) 열 생산 및 공급	188
	별첨 1. 원소주기율표	200
	별첨 2. 시료 채취 및 분석의 최소 주기	201
	별첨 3. 배출활동별명세서 입력코드 구분	202
	별첨 4. 천연기스 성분별 몰질량 및 발열량 참고표	210

제 2 장

배출활동별 사업장 고유 배출계수 개발

1 공통사항

동 가이드라인은 23개 배출활동별 산정방법 및 개발방법을 제시하고 있다. 각 배출활동별로 공통으로 적용되는 기준은 다음과 같다.

(1) 표준규격 적용

시료 채취 및 분석 방법으로 KS 규격을 우선 선택하고 적합한 KS 규격이 없을 경우, 공인되는 국제 규격(ISO, ASTM, JIS, DIN, UOP, API, Perrys Chemical Engineers Handbook 등)을 이용할 수 있다.

위의 KS 규격 이외의 시료 채취 방법을 사업장에서 선정할 경우, 그 사유에 대하여 명확히 기술하고 필요 시 해당 규격을 모니터링계획서에 첨부하여야 한다. 모니터링계획에서 정해진 규격은 업체 임의로 변경할 수 없다.

참 고

1. 표준규격(예: KS, ASTM 등) 참조를 통한 자체 규격을 운용 자체적으로 규격을 운용하여 시료 채취 및 시료 분석을 실시하는 경우, 자체규격의 근거가 되는 표준규격 및 근거자료를 제출하여야 한다.

(2) 원자량 및 분자량

배출계수 산정과정에서 사용되는 원자량 및 분자량은 별첨1의 원소주기율표 및 별첨4의 천연가스 성분별 몰질량 및 발열량 참고표 등 통일된 방법에 따른다.

С	Н	0	N
12.011	1.00794	15.9994	14.00674

(3) 가중평균

배출량 산정식이나 배출계수 산정식에 적용되는 매개변수는 시험·분석자료의 단순 평균이 아닌 주기별 활동자료를 고려한 가중평균 적용을 원칙으로 한다.

단, 활동자료 측정 주기보다 시료 분석 주기가 더 짧을 경우에는 시료 분석결과를 산술평균하여 적용한다. 시료 분석 주기보다 활동자료 측정 주기가 더 짧을 경우에는 시료 분석 주기에 맞추어서 활동자료 측정값을 합산하여야 한다.

※ 가중평균 계산방법

가중평균을 적용 시, 적용되는 각각의 매개변수에 대하여 가중평균을 적용하고 최종 Tier3 계수를 개발하여야 한다.

구 분	가중평균
순발열량	Σ (분석주기별순발열량 $_i$ $ imes$ 분석주기별활동자료 $_i$)
신 근 근 O	연간활동자료
탄소 질량분율	Σ (분석주기별 탄소질량분율 $_i$ $ imes$ 분석주기별 활동자료 $_i$)
	연간활동자료

※ 가중평균 적용예시

연간평균		구분	활동자료 [ton]	순발열량 [MJ/kg]	탄소 질량분율 [0과 1사이 소수]
		1월	20,000.000	27.983	0.8111
		2월	40,000.000	26.933	0.8413
단순평균		3월	30,000.000	25.413	0.8328
순발열량 26.37	←	4월	25,000.000	24.587	0.8381
탄소 질량분율 0.8383		5월	35,000.000	28.147	0.8679
		6월	30,000.000	27.635	0.8560
	_	7월	32,000.000	25.564	0.8499
가중평균		8월	31,000.000	26.531	0.8545
순발열량 26.40	←—	9월	27,000.000	24.214	0.8176
탄소 질량분율 0.8398		10월	30,000.000	26.314	0.8202
	-	11월	28,000.000	25.783	0.8128
		12월	26,000.000	27.368	0.8577

※ 매개변수간 측정주기 불일치시 가중평균 방법

각 매개변수 간의 측정주기는 일치시켜야 하며, 주기가 다를 경우 다음과 같이 적용한다.

1) 활동자료의 측정 주기보다 시료의 분석 주기가 짧을 경우 매개변수의 분석값을 활동자료 측정 주기에 맞춰 산술평균을 적용하여 산출 하여야 한다.

조성분석 자료				
분석 일시	활동 자료	순발 열량	탄소 질량 분율	
2월08일 06시		56.401	0.6154	
2월08일 12시	10.000ton	56.912	0.5473	
2월08일 18시		58.105	0.6522	
2월08일 24시		55.474	0.5838	
:	:	:	:	

	배출계수 산정 자료			
분석 일시	활동 자료	순발 열량	탄소 질량 분율	
2월08일	10.000ton	56.723	0.5997	
:	:	:	:	

2) 시료의 분석 주기보다 활동자료의 측정 주기가 짧을 경우 시료 분석 주기와 일치되는 활동자료 누적 측정값을 적용하여야 한다.

합산

산술 평균

조성분석 자료			
분석 일시	활동 자료	순발 열량	탄소 질량 분율
2월09일	100.000ton		
2월 12일	40.000ton	58.432	0.6415
2월21일	110.000ton	30.432	0.0413
2월25일	50.000ton		
:	:	:	:

	배출계수 산정 자료			
	분석 일시	활동 자료	발 6 열	산 사 산 산 원
:	2월	300.000ton	58.432	0.6415
	:	:	:	:

(4) 단위 및 소수점 자릿수

Tier3 계수 산정결과 시트나 명세서에 측정·분석값을 입력할 시에는 다음장에 나오는 '2. 배출활동별 배출계수 개발 방법'을 준수하여야 한다. 이에 해당하지 않는 경우 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용하여야 한다.

매개변수	단위	소수점자리
활동자료	ton	소수점 넷째자리에서 반올림하여 셋째자리까지 기입
원소, 수분 등 질량분율	0과 1사이 소수	소수점 다섯째자리에서 반올림하여 넷째자리까지 기입
열량계수	MJ/kg	소수점 셋째자리에서 반올림하여 둘째자리까지 기입
(순발열량)	TJ/Gg	조구점 첫째자디에서 한물림하여 물째자디까지 기법
배출계수	kgCO ₂ /TJ	소수점 첫째자리에서 반올림하여 정수자리까지 기입

참 고

1. 배출계수 산정시, 적용되는 매개변수의 소수점 자릿수 처리

- 측정·분석값 입력을 위한 유효자릿수 처리는 한번에 하여야 한다.
- (예시) 열량계수 가중평균 결과 값이 53.7727 MJ/kg인 경우, 소수점 셋째자리에서 반올림하여 둘째자리까지 산정하면 53.77 MJ/kg이 된다. 이때 소수점 자릿수 처리는 산정과정이 아닌 최종단계에서만 처리하여야 한다.
 - (O) 53.7747 MJ/kg ⇒ [1단계] 53.77 MJ/kg
 - (X) 53.7747 MJ/kg ⇒ [1단계] 53.775 MJ/kg ⇒ [2단계] 53.78 MJ/kg

(5) 공급업체가 제공하는 시험 · 분석 결과서 인정

연 50만톤 미만 배출시설(A, B 그룹 배출시설)에서 Tier3 계수를 적용하는 경우 공급업체가 제공하는 시험·분석 결과서를 Tier3 계수 산정에 적용할 수 있다. 공급업체가 수시 분석한(격주 1회 이상) 시험·분석 결과를 제시하는 경우에는 배출시설 규모와 관계없이 공급업체가 제공하는 시험·분석결과를 Tier3 계수 개발에 적용할 수 있다. 공급업체 및 공급업체의 제공 자료는 다음의 조건을 만족하여야 한다.

- i. 시험·분석기관은 목표관리 지침 92조에 의거한 공인된 시험·교정 기관이어야 함
- ii. 공급업체가 제공한 시험·분석 절차 및 산정절차는 동 가이드라인을 준수하여야 함
- iii. 사업장은 공급업체가 제공한 시험·분석결과가 동 가이드라인을 준수함을 증명하여야 함

2 배출활동별 사업장 고유 배출계수 개발 방법

배출활동별 사업장 고유 배출계수 개발 가이드라인은 23개 배출활동에 대해 다음의 순서로 구성되어 있다.

- 사업장 고유 배출계수 개발 대상
- 사업장 고유 배출계수 산정식
- 시료 채취 및 시료 분석
- 사업장 고유 배출계수 산정 순서
- 사업장 고유 배출계수 산정 예시

1 고체연료연소

고체연료연소는 연료의 성분별 질량분율과 열량계수, 수분 질량분율을 기반으로 개발한다.

가. 배출계수 산정

(1) 배출량 산정식

고체연료연소의 배출량 산정방법론은 다음과 같다.

$$E_{i,j} = Q_i \times EC_i \times EF_{i,j} \times f_i \times 10^{-6}$$

 $E_{i,j}$: 연료(i)의 연소에 따른 온실가스(j)의 배출량(tGHG)

 Q_i : 연료(i)의 사용량(측정값, ton-연료)

 EC_i : 연료(i)의 열량계수(연료 순발열량, MJ/kg-연료)

 $EF_{i,j}$: 연료(i)에 따른 온실가스(j)의 배출계수(kgGHG/TJ-연료)

 f_i : 연료(i)의 산화계수(CH₄, N₂O는 미적용)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
사용량	Q_i	배출시설에 투입되는 고체연료의 양을 측정하여 인수식 기준으로 나타낸 값
열량계수	EC_i	연료의 기건식 총발열량 측정값을 인수식 순발열량으로 전환하여 나타낸 값
배출계수	$EF_{i,j}$	연료의 성분 분석 등을 통하여 인수식 기준의 배출계수 산정식으로 개발한 값

(2) 배출계수 산정식

고체연료연소의 Tier3 방법론에 관한 배출계수 산정식은 다음과 같다.

$$EF_{i,CO_2} = EF_{i,C} \times 3.664 \times 10^3$$
$$EF_{i,C} = C_{ar,i} \times \frac{1}{EC_i} \times 10^3$$

EF_{i,CO2} : 연료(i)에 대한 CO₂ 배출계수(kgCO₂/TJ-연료)

 $EF_{i,c}$: 연료(i)에 대한 탄소 배출계수(kgC/GJ-연료) 3.664 : CO₂의 분자량(44.010)/C의 원자량(12.011)

 $C_{ar.i}$: 연료(i) 중 탄소의 질량 분율(인수식, 0에서 1사이의 소수)

 EC_i : 연료(i)의 열량계수(연료 순발열량, MJ/kg-연료)

배출계수 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
		고체연료의 인수식 기준 탄소 질량분율 ① 원소분석을 통하여 무수(건식) 기준의 탄소 질량분율을 측정 ② 무수(건식) 기준의 탄소 질량분율을 인수식 기준의 함량 으로 베이스 전환
탄소 질량분율		$C_{ar,i} = C_{d,i} imes (1-M_{ar,i})$ $M_{ar,i}$ 고체연료의 인수식 기준 총수분 질량분율 - 수분분석을 통하여 총수분 함량을 측정 $C_{d,i}$ 고체연료의 무수(건식) 기준 탄소 질량분율 - 원소분석을 통하여 무수(건식) 기준의 탄소 함량을 측정
순발열량	EC_i	고체연료의 인수식 기준 순발열량 ① 발열량계 등을 이용하여 기건식 기준의 총발열량을 측정 ② 측정된 기건식 기준의 총발열량을 인수식 기준의 총발열량으로 베이스 전환 ③ 변환된 인수식 기준의 총발열량을 인수식 기준의 순발열량으로 발열량 변환

석탄류 분석 기준(베이스) 전환 방법

환산후 환산전	기건 베이스 (ad)	인수(도착) 베이스 (ar)	무수 베이스 (d)	무수·무회 베이스 (daf)	순회 베이스 (dmmf)
기건 베이스 (ad)		$\frac{1-Mar}{1-Mad}$	$\frac{1}{1-\mathit{Mad}}$	$\frac{1}{1-(M\!ad+Aad)}$	$\frac{1}{1 - (\mathit{Mad} + \mathit{MMad})}$
인수(도착) 베이스 (ar)	$\frac{1 - \mathit{Mad}}{1 - \mathit{Mar}}$		$\frac{1}{1-Mar}$	$\frac{1}{1 - (Mar + Aar)}$	$\frac{1}{1 - (Mar + MMar)}$
무수 베이스 (d)	1-Mad	1-Mar		$\frac{1}{1 - Ad}$	$\frac{1}{1-M\!M\!d}$
무수·무회 배이스 (daf)	1-(Mad+Aad)	1 - (Mar + Aar)	1-Ad		$\frac{1 - Ad}{1 - MMad}$
순회 베이스 (dmmf)	1-(Mad+MMad)	$\frac{1-\mathit{Mad}}{1-\mathit{Mar}}$	100 – MMar	$\frac{1 - MMd}{1 - Ad}$	

비고) 표 안의 기호는 아래와 같이 성분(대문자) 및 상태(첨자)를 나타낸다.

A: 회분, M: 수분, MM: 광물질, ad: 기건, ar: 인수(도착), d: 무수

(daf: 무수 · 무회, dmmf: 무수 무광 물질)

출처 : 「KS E 3709 석탄류 및 코크스류의 샘플링 분석 및 시험방법 통칙」

(3) 열량의 단위환산계수

열량의 단위환산계수 기준은 국제 표준전환계수를 적용한다.

유 형	표준전환계수
열량 단위	1cal = 4.1868J
에너지 단위	$1TOE = 10^7 \text{kcal}$

(4) 가중평균 적용

연간 배출계수 및 열량계수 개발 시 사용되는 매개변수에는 분석주기별 사용량을 고려한 가중평균이 적용되어야 한다.

매개변수	적용 가중치
탄소 질량분율($C_{ar,i}$)	연료사용량($oldsymbol{Q_i}$)
연료(i)의 열량계수(순발열량, EC_i)	린표/(중성(∀; /

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구분	매개 변수	단위	소수점자리
활동자료	Q_i	ton	소수점 넷째자리에서 반올림하여 셋째자리까지 기입
원소 질량분율	$C_{ar,i}$	0과 1사이 소수	소수점 다섯째자리에서 반올림하여 넷째자리 까지 기입
수분 질량분율	$M_{ar,i}$	0과 1사이 소수	소수점 다섯째자리에서 반올림하여 넷째자리 까지 기입
열량계수	E.C.	MJ/kg	소수점 셋째자리에서 반올림하여 둘째자리까지
(순발열량)	EC_i 순발열량)	TJ/Gg	기입
배출계수	EFi,j	kgCO ₂ /TJ	소수점 첫째자리에서 반올림하여 정수자리까지 기입

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

고체연료연소에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
고체 연료	원소함량, 발열량, 수분, 회(Ash) 함량	월 1회 또는 연료 입하시 (더욱 짧은 주기로 분석한다)
고체 폐기물연료	원소함량, 발열량, 수분, 회(Ash) 함량	분기 1회 또는 폐기물 연료 매 5천톤 입하시 (더욱 짧은 주기로 분석한다)

비고) 고체연료·원료가 수시 반입될 경우 월 1회로, 액체연료·폐기물 연료가 수시 반입될 경우 분기 1회로 분석할 수 있다.

(2) 시료 채취 지점

시료 채취 지점은 업종별·연료별 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 고체연료의 시료 채취 지점은 다음에 따른다. 또한 시료 채취 지점은 과거 시료 채취 지점과 일관성을 유지하여야 한다.

〈그림 1〉 고체연료 시료 채취 지점

(3) 시료 채취 규격

시료 채취 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
무연탄	KS E ISO 1988	무연탄 - 샘플링
하드콜 코크스	KS E ISO 13909-1~8	하드콜 및 코크스-기계식 시료채취
폐기물	KS I 5201	산업 폐기물의 시료 채취 방법
석탄	ASTM D2234	Standard Practice for Collection of a Gross Sample of Coal

(4) 시료 분석 규격

시료 분석 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

항 목	규 격	규격명
	KS E 3707:2001	석탄류 및 코크스류의 발열량 측정방법
	ASTM D2015-85	Standard Test Method for Gross Calorific Value of Coal and Coke by the Adiabatic Bomb Calorimeter
발열량	ASTM D5468-02	Standard Test Method for Gross Calorific and Ash Value of Waste Materials
	ASTM D5865	Standard Test Method for Gross Calorific Value of Coal and Coke
	KS E ISO 331	석탄-샘플의 수분질량분율 측정-직접중량법
	KS E ISO 5068	갈탄 및 아탄-수분질량분율 측정-간접중량법
	KS E ISO 579	코크스-총 수분질량분율 측정
수분질량	KS E ISO 589	무연탄-총 수분질량분율 측정
분율	KS E ISO 687	코크스-샘플의 수분질량분율 측정
	ASTM D3173-03	Standard Test Method for Moisture in the Analysis sample of Coal and Coke
	ASTM D7582	Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis
	KS E ISO 609	고체 광물 연료-탄소 및 수소함량 결정-고온 연소법
	KS E ISO 625	고체 광물 연료-탄소 및 수소함량 결정-리비히법
원소함량	ASTM D5291-02	Standard Test Method for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants
	ASTM D5373-08	Standard Test Method for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal)
	원소분석기	원소분석기기로 측정

다. 배출계수 산정

- (1) 매개변수 개발 순서
- ① 샘플링
- ② 총 수분 측정·분석(인수식)
- ③ 고유수분 및 발열량 측정 분석(기건식)
- ④ 무수(건식)상태의 시료로 탄소와 수소 등 원소들의 함량을 측정·분석하여 인수식으로 베이스 전환

》 석탄의 시료채취, 분석 프로세스 및 규격 예시

분석 프로세스		분석항목	시료상태	규 격
입하	지탄장 시료채취	ㅇ 원소분석	인수식	KS E ISO 1988 (시료채취) ASTM D 2234 (시료채취) ASTM D 2013 (시료준비)
	총수분 분석	ㅇ 총 수 분		ASTM D 3302 (총수분)
공업분석 건조	발열량분석	고유수분회 발분회 분고정탄소발열 량	기건식	ASTM D 5142 (공업분석) KS E 3707 (발열량) ASTM D 5865 (발열량)
		- 01 > H 21	-1 11	ASTM D 2013 (시료준비)
	원소분석	○ 원소분석	건 식	ASTM D 5373 (원소분석)

⑤ 기건식 총발열량에 다음의 식을 적용하여 인수식 총발열량으로 전환

⑥ 전환된 인수식 총열량을 다음의 식을 사용하여 인수식 순발열량으로 변환

적용근거	계산식	적용기준
KS E 3707	Hh-600(9H+M)	M : 인수식, H : 인수식,
2006 IPCC G/L	Hh-50.6H-5.85M-1.91Y	M, H, Y : 인수식
ASTM D2015	Hh-5.72*9*Har Har=H*(100-M/100)+0.1119*M	M : 인수식, H : 무수

※ Hh: 총발열량(kcal 기준), H: 수소, M: 수분, Y: 산소

⑦ 배출계수 산정식에 따라 배출계수($EF_{i,CO2}$)를 개발

(2) 산정 예시

가정.

A 업체의 B배출시설은 유연탄을 수입하여 연료로 사용하고 있다. 가중평균을 적용한 유연탄의 분석결과는 다음과 같다.

시 료	항 목	측정 ·분석값
	탄소 질량분율	0.7700
	수소 질량분율	0.0450
유연탄	기건식 수분 질량분율	0.0400
	인수식 수분 질량분율	0.1200
	기건식 총발열량	6,800kcal/kg

B 배출시설 유연탄 배출계수 산정과정.

배출계수 산정식.

$$EF_{i,CO_2} = EF_{i,C} \times 3.664 \times 10^3$$

$$EF_{i,C} = C_{ar,i} \times \frac{1}{EC_i} \times 10^3$$

 $EF_{i,CO2}$: 연료(i)에 대한 CO_2 배출계수(kg CO_2 /TJ-연료)

 $EF_{i,c}$: 연료(i)에 대한 탄소 배출계수(kgC/GJ-연료)

3.664 : CO₂의 분자량(44.010)/C의 원자량(12.011)

 $C_{ar.i}$: 연료(i) 중 탄소의 질량 분율(인수식, 0에서 1사이의 소수)

 EC_i : 연료(i)의 열량계수(연료 순발열량, MJ/kg-연료)

- ① 인수식 순발열량($EC_{A,q,p}$) 계산 과정
 - 베이스 전환 : 기건식 총발열량 → 인수식 총발열량

기건식 총발열량(kml/kg) : 6,800 kml/kg

기건식 수분 질량분율 : 0.0400 인수식 수분 질량분율 : 0.1200

인수식 총발열량 = 6,800 × [(1 - 0.1200) / (1 - 0.0400)]

= 6.233 kral/kg

- 발열량 변환 : KS E 3707 적용

인수식 수소 질량분율 : 0.0450 × (1 - 0.1200) = 0.0396

인수식 수분 질량분율 : 0.1200 인수식 총발열량 : 6,233 kml/kg

인수식 순발열량 = 6,233 - 600(9×0.0396+0.1200) = **5,947 kg**

- 단위 환산

단위 환산 계수 : 4.1868 J/cal

순발열량 $EC_{\Re GE} = 5,947 \times 4.1868 \div 10^3$

= 24.90 MJ/kg

총발열량 $EC_{\Re GE} = 6,233 \times 4.1868 \div 10^3$ = 26.10 MJ/kg

- ② 인수식 탄소 질량분율($C_{ar, \theta' \theta' E'}$) 계산 과정
 - 베이스 전환

무수(건식) 탄소 질량분율: 0.7700

 C_{ar} . कल्ल = $0.770 \times (1 - 0.1200)$

= 0.6776

③ 탄소 배출계수($EF_{\mathcal{H}\mathfrak{GE},c}$) 계산 과정

인수식 탄소 질량분율: 0.6776 인수식 순발열량 : 24.90 MJ/kg

 $EF_{\text{ਜ਼ਿੰਦੀ,c}} = 0.6776 \times 1 / 24.90 \times 10^3$

= 27.213 kgC/GJ

④ CO₂ 배출계수(**EF**#연란,CO₂) 계산 과정

탄소 배출계수 : 27.213 kgC/GJ

 $EF_{\text{#eH,CO2}} = 27.213 \times 3.664 \times 10^3$

= $99,708 \text{ kgCO}_2/\text{TJ}$

∴ CO₂ 배출계수(EF_{유연탄,CO2})는 99,708 kgCO₂/TJ이다.

2 기체연료 연소

기체연료연소는 연료의 가스성분 분석결과와 열량계수, 가스성분의 몰질량 등을 기반으로 개발한다.

가. 배출계수 산정

(1) 배출량 산정식

기체연료연소의 배출량 산정방법론은 다음과 같다.

$$E_{i,j} = Q_i \times EC_i \times EF_{i,j} \times f_i \times 10^{-6}$$

 $E_{i,j}$: 연료(i)의 연소에 따른 온실가스(j)의 배출량(tGHG)

 Q_i : 연료(i)의 사용량(측정값, 천Nm³-연료 또는 ton)

 EC_i : 연료(i)의 열량계수(연료 순발열량, MJ/Nm^3 -연료 또는 MJ/kg)

 $EF_{i,i}$: 연료(i)에 따른 온실가스(j)의 배출계수(kgGHG/TJ-연료)

 f_i : 연료(i)의 산화계수(CH₄, N₂O는 미적용)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
사용량	Q_i	배출시설에 투입되는 기체연료의 양을 측정한 값
열량계수	EC_i	연료의 순발열량을 측정·분석한 값
배출계수	$EF_{i,j}$	연료의 성분 분석 등을 통하여 배출계수 산정식으로 개발한 값

(2) 배출계수 산정식

기체연료연소의 Tier3 방법론에 관한 배출계수 산정식은 다음과 같다.

$$EF_{i,CO_2} = \frac{EF_{i,t}}{EC_i} \times D_i \times 10^3$$

$$EF_{i,t} = \sum_{y} \! \left[\! \left(rac{MW_y}{MW_{y,\,total}} \!
ight) \! imes \! \left(rac{44.010}{mw_{_y}} \! imes \! N_y \!
ight) \!
ight]$$

 $EF_{i,CO2}$: 연료(i)의 CO_2 배출계수 $(kgCO_2/TJ$ -연료)

 EC_i : 연료(i)의 열량계수(연료 순발열량, MJ/Nm^3 -연료 또는 MJ/kg)

 $EF_{i,t}$: 연료(i)의 CO₂ 환산계수(kgCO₂/kg-연료)

 D_i : 연료(i)의 밀도 $(g-연료/Nm^3-연료)$

 $MW_{\mathbf{v}}$: 연료(i) 1몰에 포함된 가스성분 (\mathbf{y}) 별 질량 $(\mathbf{g/mol})$

 mw_v : 연료(i)의 가스성분(y)의 몰질량(g/mol) $N_{\mathbf{v}}$: 연료(i)의 가스성분(y)의 탄소 원자수(개)

 $MW_{y,total}: MW_{y,total} = \sum_{y} MW_{y}$

배출계수 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
열량계수	EC_i	기체연료가 가지고 있는 순발열량 •연료의 성분별 몰분율을 통하여 표준규격에 따라 발열량을 계산한 값 •천연가스와 도시가스의 경우 공급처에서 제공받은 분석 결과를 우선적용
환산계수	$EF_{i,t}$	기체연료의 CO ₂ 환산계수 • 측정·분석으로 도출된 연료 1kg당 배출되는 CO ₂ (kg)를 계산한 값
밀도	D_i	기체연료의 밀도 $^{\circ}$ - 공급자가 밀도값을 별도 제공할 경우 해당 값을 우선 적용하며, 제공하지 않을 경우 아래식을 활용하여 자체 계산한 값을 반영 $D_i\left(g/m^3\right) = \frac{MW_y\left(g/mol\right)}{22.414(L/mol)} \times 10^3$

구 분	매개변수	내 용
밀도	D_i	• 천연가스 등 무게단위로 활동자료를 보고하는 경우 밀도를 적용하지 않음 $EF_{\rm { { }^{}_{} 0}} = \frac{EF_{\rm { { }^{}_{} 0}} + 10^3}{EC_{\rm { { }^{}_{} 0}}} \times 10^3$
가스성분 질량	MW_y	기체연료 1몰에 포함된 가스성분(y)의 질량 • 측정·분석으로 도출된 해당 가스의 몰함량과 몰질량의 곱으로 계산한 값
가스성분 몰질량	mw_y	가스성분(y)의 몰질량 • 측정·분석으로 도출된 해당 가스성분의 몰질량
가스성분 탄소원자수	N_{y}	기체연료의 가스성분의 탄소 원자수 • 측정·분석으로 도출된 가스 성분에 포함된 탄소 원자수의 합
몰질량 합	$MW_{ ext{y,total}}$	기체연료에 포함된 가스성분 질량($MW_{m{y}}$)의 총합

(3) 열량의 단위환산계수

열량의 단위환산계수 기준은 국제 표준전환계수를 적용한다.

유 형	표준전환계수
열량 단위	1cal = 4.1868J
에너지 단위	$1\text{TOE} = 10^7 \text{kcal}$

(4) 가중평균 적용

연간 배출계수 및 열량계수 개발 시 사용되는 매개변수에는 분석주기별 사용량을 고려한 가중평균이 적용되어야 한다.

매개변수	적용 가중치
연료의 열량계수(순발열량, <i>EC_i</i>)	
연료의 CO ₂ 배출계수(EF _{i,t})	연료사용량($oldsymbol{Q_i}$)
연료의 밀도(D_i)	

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

매개변수	단위	소수점자리
활동자료	천Nm³	소수점 넷째자리에서 반올림하여 셋째자리까지 기입
	ton	※ 천연가스의 경우 무게단위(ton) 적용
몰질량	g/mol	해당 발열량 규격의 몰질량 자리수를 그대로 기입
열량계수 (순발열량)	MJ/Nm ³	소수점 셋째자리에서 반올림하여 둘째자리까지 기입
	MJ/kg	※ 천연가스의 경우 무게단위 열량(MJ/kg) 적용
밀도	g/Nm^3	소수점 둘째자리에서 반올림하여 첫째자리까지 기입
배출계수	kgCO ₂ /kg	소수점 다섯째자리에서 반올림하여 넷째자리까지 기입
	kgCO ₂ /TJ	소수점 첫째자리에서 반올림하여 정수자리까지 기입

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

기체연료연소에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료		분석 항목	최소 분석 주기
기체 연료	천연가스, 도시가스	가스성분, 발열량, 밀도 등	반기 1 회 ¹⁾
	공정 부생가스	가스성분, 발열량, 밀도 등	월 1회
기체 폐기물연료		가스성분, 발열량, 밀도 등	월 1회 또는 폐기물 연료 매 1만톤 입하시 (더욱 짧은 주기로 분석한다)

주1) 가스공급처가 최소분석주기 이상 분석한 데이터를 제공할 경우, 이를 우선 적용한다.

(2) 시료채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 기체연료의 시료 채취 지점은 다음에 따른다.

① 외부로부터 공급받는 경우

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 기체연료의 시료 채취 지점은 다음에 따른다.

〈그림 2〉 기체연료 시료 채취 지점

② 자체적으로 생산하여 사용되는 경우

공정에서 발생된 부생가스 등의 기체연료의 경우, 소비시설 전단의 파이프내 지점에서 채취하여야 한다.

〈그림 3〉 부생가스 시료 채취 지점

(3) 시료 채취 규격

시료 채취 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
배기가스	KS I 2202	배기가스 시료 채취 방법
천연가스	KS I ISO 10715	천연가스-샘플링 지침서
휘발성 유기화합물 (VOCs)	KS I ISO 16071-1부	실내, 대기 및 작업장 공기-흡착 튜브/열탈착/ 모세판 가스 크로마토그래피에 의한 휘발성 유기 화합물의 샘플링과 분석
	KS I ISO 16200-1부	작업장 공기-용매 탈착/기체 크로마토그래피에 의한 휘발성 유기화합물의 채취 및 분석
경질탄화수소	KS M ISO 8943	냉각 경질 탄화수소유-액화 천연가스 시료채취- 연속법
에틸렌	KS M ISO 7382	공업용 에틸렌-액상 및 기체상 시료 채취
천연가스 (LNG)	KS M 2071	액화 석유 가스- 시료 채취 방법

(4) 시료 분석 규격

시료 분석 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

항 목	규 격	규격명
	KS I ISO 6570	천연가스-존재가능한 액화탄화수소의 함량 측정-중량법
	KS I ISO 6974 (1~6부)	천연가스-가스 크로마토그래프법에 의한 정의된 불확도와 조성의 분석
조성 분석	KS M ISO 7941	상업용 프로판 및 부탄-가스 크로마토그래프법에 의한 조성 분석
	KS M 2085-1부	액화 석유 제품-탄화수소분 시험방법-가스크로마토그래프

항 목	규 격	규격명
	ASTM D2505-88	Standard Test Method for Ethylene, Other Hydrocarbons, and Carbon Dioxide in High-Purity Ethylene by Gas Chromatography
	ASTM D1945-03	Standard Test Method for Analysis of Natural Gas by Gas Chromatography
	ASTM D1946	Standard Method for Analysis of Reformed Gas by Gas Chromatography
	ASTM D2163	Standard Test Method for Analysis of Liquefied Petroleum (LP) Gases and Propane Concentrates by Gas Chromatography
	ASTM D2427	Standard Test Method for Determination of C2 through C5 Hydrocarbons in Gasolines by GC
	ASTM D2504 Standard Test Method for Noncondensable Gas and Lighter Hydrocarbon Products by Gas Chrom.	
	ASTM D2593	Standard Test Method for Butadiene Purity and Hydrocarbon Impurities by Gas Chromatography
	UOP 539	REFINERY GAS ANALYSIS BY GC
	KS I ISO 6976 천연가스-가스 조성을 이용한 발열량, 밀도, 상대 웨버지수 계산	
	KS I ISO 15971	천연가스-특성치의 측정-발열량 및 웨버지수
발열량	ASTM D3588	Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels
	API	COMPENDIUM OF GREENHOUSE GAS EMISSIONS METHODOLOGIES FOR THE OIL AND NATURAL GAS INDUSTRY
	페리핸드북	Perrys Chemical Engineers Handbook

다. 배출계수 산정

- (1) 매개변수 개발 순서
- ① 샘플링
- ② 해당 시료의 조성을 측정·분석
- ③ 발열량 분석
 - ②의 결과와 시료 측정 시의 온도 및 압력을 확인한 후, 발열량 규격에서 해당 시료의 성분별 발열량 등을 합산한 결과를 토대로 해당 시료의 발열량을 산정 ※ 별첨 4. 천연가스 성분별 몰질량 및 발열량 참고표 참조
 - 공급처로부터 제공받은 발열량을 적용(단, 발열량 산출에 적용한 방식을 확인 할 수 있도록 산출 과정을 증빙할 수 있는 근거자료를 제출하여야 함)
- ④ 조성분석의 결과로 몰질량(mw_y), 탄소원자수(N_y)를 산정 (단, 몰질량은 발열량 규격과 같은 규격에서 구하여야 함)
- ⑤ 몰함량과 몰질량으로 연료 1몰에 포함된 가스성분별 질량(MW_y)과 총합($MW_{y,total}$)을 산정
- ⑥ 연료 1몰에 포함된 가스성분별 질량과 몰함량 등으로 밀도(Di)를 산정(밀도값은 공급자로부터 제공받은 값을 우선 적용)
- ⑦ 연료 1몰에 포함된 가스성분별 질량의 총합과 몰질량, 탄소원자수로 연료(i)의 CO₂ 환산계수(EFi,t)를 산정
- \otimes CO₂ 환산계수와 순발열량, 밀도로 배출계수($EF_{i,CO2}$)를 산정

(2) 산정 예시

가정.

A 업체는 사업장내에서 발생한 부생가스를 B 배출시설의 연료로 사용하고 있다. 해당 부생가스의 활동자료로 가중평균된 조성분석과 발열량 분석 결과는 다음과 같다.(0℃, 1기압 기준)

CH ₄	0.1582	C ₆ H ₁₄	0.0024
C ₂ H ₆	0.2107	CO	0.0022
C ₃ H ₈	0.1135	N_2	0.0565
C ₄ H ₁₀	0.0182	H ₂	0.4296
C ₅ H ₁₂	0.0037	O ₂	0.0046
총발열량	41.00 MJ/Nm ³	순발열량	37.00 MJ/Nm ³

B 배출시설 부생가스 배출계수 산정과정.

배출계수 산정식.

$$EF_{i,CO_2} = \frac{EF_{i,t}}{EC_i} \times D_i \times 10^3$$

$$EF_{i,t} = \sum_{y} \left[\left(\frac{MW_y}{MW_{y,total}} \right) \times \left(\frac{44.010}{mw_y} \times N_y \right) \right]$$

 $EF_{i,CO2}$: 연료(i)의 CO_2 배출계수 $(kgCO_2/TJ$ -연료)

 EC_i : 연료(i)의 열량계수(연료 순발열량, MJ/Nm^3 -연료)

EF_{i,t} : 연료(*i*)의 CO₂ 환산계수(kgCO₂/kg-연료)

 D_i : 연료(i)의 밀도(g-연료 $/Nm^3$ -연료)

 MW_y : 연료(i) 1몰에 포함된 가스성분(y)별 질량(g/mol)

 mw_y : 연료(i)의 가스성분(y)의 몰질량(g/mol) N_y : 연료(i)의 가스성분(y)의 탄소 원자수 (π)

 $MW_{y,total}: MW_{y,total} = \sum_{y} MW_{y}$

성분	몰분율	mw _y g/mol	N _y	D _i g/Nm³	MW_y	$MW_y/MW_{y,total}$	<i>EF_{i,t}</i> kgCO ₂ /kg
CH ₄	0.1582	16.043	1	113.3	2.5380026	0.140469565	0.3853
C ₂ H ₆	0.2107	30.070	2	283.0	6.335749	0.350661541	0.5132
C ₃ H ₈	0.1135	44.097	3	223.5	5.0050095	0.277009766	0.2765
C ₄ H ₁₀	0.0182	58.123	4	47.2	1.0578386	0.058547666	0.0443
C ₅ H ₁₂	0.0037	72.150	5	11.9	0.266955	0.014775025	0.009
C ₆ H ₁₄	0.0024	86.177	6	9.2	0.2068248	0.011447029	0.0058
CO	0.0022	28.010	1	2.8	0.061622	0.003410562	0.0054
N_2	0.0565	28.0135	0	70.7	1.58276275	0.087600381	0.1376
H ₂	0.4296	2.0159	0	38.7	0.86603064	0.047931766	1.0464
O ₂	0.0046	31.9988	0	6.6	0.14719448	0.0081467	0.0112
합계	0.9996	_	1	806.9	18.06798937	1	2.4347

① 연료(부생가스)의 열량계수(*EC_{부생가스}*) EC 부생가스 = 37.00 MJ/Nm³

- ② 가스성분(y)의 몰질량(mw_y)
- 해당 발열량 규격의 각 가스성분 몰질량을 그대로 입력
- ③ 가스성분(\mathbf{v})의 탄소 원자수($N_{\mathbf{v}}$)
- 각 가스성분의 분자식에서 탄소 원자수 확인
- ④ 연료(부생가스)의 밀도($D_{\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}}$)
- 가스성분별 몰질량과 해당 조건의 부피로 가스성분별 이상 가스 상대밀도를 구한 후 합산하여, 연료의 이상 가스 상대밀도를 구함
- 연료의 밀도는 공급처로 부터 해당 연료의 질량과 부피에 대한 값을 같이 제공받았을 경우, 그 값을 사용하여 산정할 수 있음

$$D$$
부생가스 = 806.9 g/Nm³

- ⑤ 연료(부생가스) 1몰에 포함된 가스성분(v)별 질량(MW_v)
- 부생가스의 가스성분별 몰함량과 몰질량을 곱한 값으로 가스성분별 질량을 산정한 후 몰함량의 합계로 나누어 보정한 값

- ⑥ 연료(부생가스) 1몰의 질량($MW_{y,total}$)
- MW_y 를 모두 합산한 값

 $MW_{y,total} = 18.06798937 \text{ kg}$

- ⑦ 연료(부생가스)의 CO_2 환산계수($EF_{+ rac{1}{2} rac{1}{2}$
- 부생가스의 가스성분별 CO_2 환산계수를 모두 합산한 값 $EF_{F\#J\gamma \to t} = 2.4347 \ kgCO_2/kg$
- ⑧ 연료(부생가스)별 CO₂ 배출계수(*EF + 생가스, CO2*)
- 부생가스의 환산계수를 순발열량으로 나눈 후, 밀도를 곱한 값

$$EF \neq 37.602 = 2.4347 \text{kgCO}_2/\text{kg} \div 37.00 \text{MJ/Nm}^3 \times 806.9 \text{g/Nm}^3 \times 10^3 = 53,096 \text{ kgCO}_2/\text{TJ}$$

∴ CO₂ 배출계수(*EF + 생가스, CO2*)는 53,096 kgCO₂/TJ이다.

3 액체연료연소

액체연료연소는 연료의 원소분석을 통해 결정된 탄소 질량분율과 순발열량, 밀도 등을 기반으로 개발한다.

가. 배출계수 산정

(1) 배출량 산정식

액체연료연소의 배출량 산정방법론은 다음과 같다.

$$E_{i,j} = Q_i \times EC_i \times EF_{i,j} \times f_i \times 10^{-6}$$

 $E_{i,i}$: 연료(i)의 연소에 따른 온실가스(j)의 배출량(tGHG)

 Q_i : 연료(i)의 사용량(측정값, kL-연료)

 EC_i : 연료(i)의 열량계수(연료 순발열량, MJ/L-연료)

 $EF_{i,j}$: 연료(i)에 따른 온실가스(j)의 배출계수(kgGHG/TJ-연료)

 f_i : 연료(i)의 산화계수(CH₄, N₂O는 미적용)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용	
사용량	Q_i	배출시설에 투입되는 액체연료의 양을 측정한 값	
순발열량	EC_i	연료의 순발열량을 측정·분석한 값	
배출계수	$EF_{i,j}$	연료의 성분 분석 등을 통하여 배출계수 산정식으로 개발한 값	

(2) 배출계수 산정식

액체연료연소의 Tier3 방법론에 관한 배출계수 산정식은 다음과 같다.

$$EF_{i,CO2} = C_i \times \frac{D_i}{EC_i} \times 10^3 \times 3.664$$

EF_{i,CO2} : 연료(i)의 CO₂ 배출계수(kgCO₂/TJ-연료)

 C_i : 연료(i)중 탄소의 질량분율(0에서 1사이의 소수)

 D_i : 연료(i)의 밀도(g-연료/L-연료)

 EC_i : 연료(i)의 열량계수(연료 순발열량, MJ/L-연료)

3.664 : CO₂의 분자량(44.010)/C의 원자량(12.011)

액체연료연소의 Tier3 배출계수에 필요한 매개변수는 다음과 같다.

매개변수	매개 변수	내 용	
탄소 질량분율	C_i	액체 연료의 탄소 질량분율	
밀도	D_i	액체 연료의 밀도 · 측정·분석을 통하여 연료의 부피당 무게를 계산한 값	
순발열량	EC_i	액체 연료의 순발열량 ① 발열량계 등을 이용하여 총발열량을 직접 측정 ② 측정된 총발열량을 발열량 변환식을 통하여 순발열량으 변환하거나, 시험성적서의 순발열량 데이터가 있을 경 그대로 적용	

(3) 열량의 단위환산계수

열량의 단위환산계수 기준은 국제 표준전환계수를 적용한다.

유 형	표준전환계수
열량 단위	1cal = 4.1868J
에너지 단위	1TOE = 10 ⁷ kcal

(4) 가중평균 적용

연간 배출계수 및 열량계수 개발 시 사용되는 매개변수에는 분석주기별 사용량을 고려한 가중평균이 적용되어야 한다.

매개변수	적용 가중치
연료의 탄소 질량분율 $C_{,i}$)	
연료의 밀도 (D_i)	연료사용량($oldsymbol{Q_i}$)
연료의 열량계수(순발열량, <i>EC_i</i>)	

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항(3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구분	매개변수	단위	소수점자리
활동자료	Q_i	kl	소수점 넷째자리에서 반올림하여 셋째자리까지 기입
원소 질량분율	C_i	0과 1사이 소수	소수점 다섯째자리에서 반올림하여 넷째자리까지 기입
수분 질량분율	M_i	0과 1사이 소수	소수점 다섯째자리에서 반올림하여 넷째자리까지 기입
열량계수	E.C.	MJ/ℓ	소수점 첫째자리에서 반올림하여 정수자리까지 기입
(순발열량)	EC_i	TJ/kℓ	소수점 셋째자리에서 반올림하여 둘째자리까지 기입
밀도	D_i	g/ℓ	소수점 둘째자리에서 반올림하여 첫째자리까지 기입
배출계수	$EF_{i,j}$	kgCO ₂ /TJ	소수점 첫째자리에서 반올림하여 정수자리까지 기입

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

액체연료연소에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
액체연료	원소 질량분율, 수분질량분율, 발열량, 밀도 등	분기 1회 또는 연료 입하시 (더욱 짧은 주기로 분석한다)
액체 폐기물연료	원소함량, 수분질량분율, 발열량, 밀도 등	월 1회 또는 폐기물 연료 매 1만톤 입하시 (더욱 짧은 주기로 분석한다)

비고) 고체연료·원료가 수시 반입될 경우 월 1회로, 액체연료·폐기물 연료가 수시 반입될 경우 분기 1회로 분석할 수 있다.

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 액체연료의 시료 채취 지점은 다음에 따른다.

업체가 모든 사항을 고려하여 최종적인 채취지점을 결정하여야 하며, 시료의 샘플 지점 확인을 위하여 측정 지점을 표시하여야 한다. ① 고정탱크: 단일·복수 탱크 혼합 시료 또는 시료 밸브 등에서 시료를 채취한다.

〈그림 4〉액체연료 시료 채취 지점_1

② 파이프라인: 저장탱크에서 배출시설로 이동하는 파이프라인에서 시료를 채취한다.

〈그림 5〉 액체연료 시료 채취 지점_2

(3) 시료 채취 규격

시료 채취 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
원유·석유	KS M 2001	원유 및 석유 제품 시료 채취 방법
석유류	KS M ISO 3171	석유액체-파이프라인으로부터 자동 시료 채취
에틸렌	KS M ISO 7382	공업용 에틸렌-액상 및 기체상 시료 채취
프로필렌 부타디엔	KS M ISO 8563	산업용 프로필렌 및 부타디엔-액상 시료 채취

(4) 시료 분석 규격

시료 분석 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

항 목	규 격	규격명
	KS M 2418	석유제품 및 윤활유의 탄소, 수소 및 질소의 기기 분석 시험방법
원소분석	KS M ISO 10370	석유 제품-잔류 탄소분 시험 방법-마이크로법
	ASTM D5291	Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants

항 목	규 격	규격명
발열량 분석	KS M 2057	원유 및 석유제품 발열량 시험방법 및 계산에 의한 추정방법
수분분석	KS M ISO 6296	석유제품-수분 시험방법-칼피셔식 전위차 적정법
	KS M 2002	석유계 원유 및 액체 석유 제품 밀도 또는 상대밀도 측정방법-하이드로미터법
밀도측정	KS M ISO 12185	원유 및 석유 제품-밀도의 측정-진동 U자관법
	ASTM D1298	Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method

다. 배출계수 산정

(1) 매개변수 개발 순서

액체연료연소의 매개변수 개발은 다음의 순서를 따른다.

① 샘플링

② 해당 시료의 탄소 질량분율, 수소 질량분율, 수분 질량분율, 밀도 (D_i) , 총발열량을 측정·분석

③ 발열량 분석

- 총발열량, 수소 질량분율, 수분 질량분율 등을 토대로 해당 시료의 순발열량 (EC_i) 을 산정
- 공급처에서 제공한 순발열량(EC_i)을 적용(단, 발열량 산출에 적용한 방식을 확인할 수 있도록 산출 과정을 증빙할 수 있는 근거자료를 제출하여야 함)
- ④ 분석한 탄소 질량분율, 밀도, 순발열량으로 배출계수($EF_{i,CO2}$)를 산정

(2) 산정 예시

가정.

A 업체는 B-C유를 B 배출시설의 연료로 사용하고 있다. 해당 연료의 분석결과를 활동자료로 가중평균한 분석결과는 다음과 같다.

탄소 질량분율	0.85	수소 질량분율	0.0880
수분 질량분율	0.05	밀도	990.0 g/l
총발열량	43,000 J/g		

B 배출시설 B-C유 배출계수 산정과정.

배출계수 산정식.

$$EF_{i,CO2} = C_i \times \frac{D_i}{EC_i} \times 10^3 \times 3.664$$

EF_{i,CO2} : 연료(i)의 CO₂ 배출계수(kgCO₂/TJ-연료)

 C_i : 연료(i)중 탄소의 질량 분율(0에서 1사이의 소수)

 D_i : 연료(i)의 밀도(g-연료/L-연료)

 EC_i : 연료(i)의 열량계수(연료 순발열량, MJ/L-연료) 3.664 : CO₂의 분자량(44.010)/C의 원자량(12.011)

① 연료(B-C유)의 탄소 질량분율(C_{B-CR})

- $-C_{B-C} = 0.8500$
- ② 연료(B-C유)의 밀도(**D_{B-C유}**)
- $-D_{B-C^{2}} = 990.0 \text{ g/1}$
- ③ 연료(B-C유)의 열량계수(EC_{B-C})
- 순발열량 = 총발열량 6 × 4.1868 × (9 × 수소 질량분율 + 수분 질량분율)
- $-EC_i = 43,000 6 \times 4.1868 \times (9 \times 0.0880 + 0.05) = 41,009 \text{J/g}$ $= 41.009 \text{ J/g} \times 990.0 \text{ g/l} \times 10^{-6}$
 - = 40.60 MJ/1
- ④ 연료(B-C유)별 CO₂ 배출계수(**EF**_{B-C유,CO2})
- $-EF_{B-C^{*}_{H},CO2} = C_{B-C^{*}_{H}} / 100 \times D_{B-C^{*}_{H}} / EC_{B-C^{*}_{H}} \times 3.664 \times 10^{3}$ $= 0.8500 \times 990.0$ g/l / 40.60MJ/l $\times 3.664 \times 10^3$ $= 75.942 \text{ kgCO}_2/\text{TJ}$
- ∴ CO₂ 배출계수(*EF_{B-C+,CO2}*)는 75,942 kgCO₂/TJ이다.

4 시멘트 생산

시멘트 생산에 따른 고유배출계수는 제품인 클링커의 생산량과 CaO 및 MgO 질량분율을 기반으로 개발한다.

가. 배출계수 산정

(1) 배출량 산정식

시멘트 생산에 관한 배출량 산정식은 다음과 같다.

$$E_i = (Q_i \times EF_i) + (Q_{CKD} \times EF_{CKD}) + (Q_{toc} \times EF_{toc})$$

 E_i : 클링커(i) 생산에 따른 CO_2 배출량(tCO_2)

 Q_i : 클링커(i) 생산량(ton)

EF_i: 클링커(i) 생산량 당 CO₂ 배출계수 (tCO₂/t-clinker)

 Q_{CKD} : 시멘트 킬른먼지(CKD) 반출량(ton)

 EF_{CKD} : 시멘트 킬른먼지(CKD) 배출계수($tCO_2/t-CKD$)

 Q_{toc} : 원료 투입량(ton)

 EF_{toc} : 투입원료(탄산염, 제강슬래그 등) 중 탄산염 성분이 아닌 기타 탄소성분에

기인하는 CO₂ 배출계수

(기본값으로 0.0073 tCO₂/t-원료를 적용한다)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구분	매개변수	내 용	
Q_i 실제 배출시설에서 2		실제 배출시설에서 생산된 클링커의 양	
클링커	EF_i	중간 생성물인 클링커 성분 측정·분석을 통하여 클링커 배출계수 산정식으로 계산한 값	
CKD	Q_{CKD}	킬른에서 재활용되지 않고 배출시설의 경계 외부로 반출되는 CKD의 양 - CKD는 'Bypass Dust'까지 포함 - 반출이 없을 시에는 제외함	

구분	매개변수	내 용	
	EF_{CKD}	CKD 분석을 통하여 CKD 배출계수 산정식으로 계산한 값	
	Q_{toc}	클링커 생산을 위하여 투입된 원료의 양	
투입 원료	EF_{toc}	탄산염 성분은 아니지만 탄소를 포함하고 있기 때문에 CO_2 를 배출하는 원료에 대한 배출계수 - 기본계수로 '0.0073 tCO_2/t -원료'가 주어졌음	

(2) 배출계수 산정식

시멘트 생산에서 배출량 산정식의 배출계수 중 개발이 요구되는 배출계수는 클링커 배출계수와 시멘트 킬른먼지(CKD) 배출계수로 모두 두 가지이다. 이중 클링커 배출 계수 산정식은 목표관리지침 별표14 Tier3 계수 개발 방법론을 동일하게 적용된다.

¬ 클링커 배출계수(EF_i)

$$EF_{i} = (\mathit{Cli}_{\mathit{ChO}} - \mathit{Cli}_{\mathit{nChO}}) \times 0.785 + (\mathit{Cli}_{\mathit{MyO}} - \mathit{Cli}_{\mathit{nMyO}}) \times 1.092$$

 EF_i : 클링커(i) 생산량 당 배출계수(tCO₂/t-clinker)

Clicao: 생산된 클링커(i)에 함유된 CaO의 질량 분율 (0에서 1사이의 소수, tCaO/tClinker)

ClinCaO: ClinzidnCaO와 ClinteldenCaO를 합한 CaO의 질량 분율(0에서 1사이의 소수)

- ※ Cli пь УпСаО: CaCO3 중 소성되지 못하고 클링커(i)에 잔존하여 분석된 CaO의 질량 분율(측정값이 없을 경우, 기본값인 '0'을 적용 가능)
- ※ Cliゅ탄산염nCaO : 비탄산염 원료(CaSO₄, Ca(OH)₂ 등)가 소성되어 클링커(i)에 함유된 CaO의 질량 분율(측정값이 없을 경우, 기본값인 '0'을 적용 가능)

Cli_{MgO}: 생산된 클링커(i)에 함유된 MgO의 질량 분율(0에서 1사이의 소수)

Cli_{nMgO}: Cli_{n≤dnMgO}와 Cli_{n탄산염nMgO}를 합한 CaO의 질량 분율(0에서 1사이의 소수)

- % $Cli_{\P extit{nMgO}}$: $CaCO_3$ 중 소성되지 못하고 클링커(i)에 잔존하여 분석된 CaO의 질량 분율(측정값이 없을 경우, 기본값인 '0'을 적용 가능)
- ※ Cli 비탄산염nMgO : 비탄산염 원료(MgSO4, Mg(OH)₂ 등)가 소성되어 클링커(i)에 함유된 CaO의 질량 분율(측정값이 없을 경우, 기본값인 '0'을 적용 가능)

0.785 (tCO₂/tCaO) : CO₂의 분자량(44.01) / CaO의 분자량(56.077)

1.092 (tCO₂/tCaO) : CO₂의 분자량(44.01) / MgO의 분자량(40.304)

\bigcirc 시멘트 킬른먼지 배출계수(EF_{CKD})

$$EF_{CKD} = (CKD_{ChO} - CKD_{nChO}) \times 0.785 + (CKD_{MgO} - CKD_{nMgO}) \times 1.092$$

 EF_{CKD} : 시멘트 킬른먼지(CKD) 배출계수(tCO_2/t -CKD)

CKD_{CaO} : 킬른에 재활용되지 않는 CKD의 CaO 질량 분율(0에서 1사이의 소수)

CKD_{nCaO} : **CKD**_{미소성nCaO}와 **CKD**_{비탄산염nCaO}를 합한 CaO의 질량 분율(0에서 1사이의 소수)

※ *CKD 미소성nCaO*: CaCO₃ 중 소성되지 못하고 클링커(i)에 잔존하여 분석된 CaO의 질량 분율(측정 값이 없을 경우, 기본값인 '0'을 적용 가능)

※ CKD 비탄산염nCaO : 비탄산염 원료(CaSO₄, Ca(OH)₂ 등)가 소성되어 클링커(i)에 함유된 CaO의 질량 분율(측정값이 없을 경우, 기본값인 '0'을 적용 가능)

CKD_{MgO} : 킬른에 재활용되지 않는 CKD의 MgO 질량 분율(0에서 1사이의 소수)

 CKDnMgO
 CKDnEvanMgO

 (0에서 1사이의 소수)

CKD_{nMgO}: CKD_{미소성nMgO}와 CKD_{비탄산염nMgO}를 합한 CaO의 질량 분율(0에서 1사이의 소수)

※ CKD 미소성nMgO: CaCO₃ 중 소성되지 못하고 클링커(i)에 잔존하여 분석된 CaO의 질량 분율(측정값이 없을 경우, 기본값인 '0'을 적용 가능)

※ CKD 비탄산염nMgO : 비탄산염 원료(MgSO₄, Mg(OH)₂ 등)가 소성되어 클링커(i)에 함유된 CaO의 질량 분율(측정값이 없을 경우, 기본값인 '0'을 적용 가능)

0.785 (tCO₂/tCaO) : CO₂의 분자량(44.01) / CaO의 분자량(56.077)

1.092 (tCO₂/tCaO) : CO₂의 분자량(44.01) / MgO의 분자량(40.304)

배출계수 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용	
	Cli_{CaO}	생산된 클링커에 함유된 CaO의 총질량분율	
	Cli_{MgO}	생산된 클링커에 함유된 MgO의 총질량분율	
클링커	Cli 미소성nCaO	킬른에서 소성이 되지 않고 클링커에 잔존한 탄산염의 CaO 질량분율	
배출계수	Cli 미소성nMgO	킬른에서 소성이 되지 않고 클링커에 잔존한 탄산염의 MgO 질량분율	
	Cli 비란산염nCaO	클링커의 CaO 중 비탄산염 원료로부터 기인한 CaO의 질량분율	
	Cli비탄산염nMgO	클링커의 MgO 중 비탄산염 원료로부터 기인한 MgO의 질량분율	
	$CKD_{\it CaO}$	킬른에서 재활용되지 않고 반출된 CKD에 함유된 CaO의 총질량분율	
	CKD_{MgO}	킬른에서 재활용되지 않고 반출된 CKD에 함유된 MgO의 총질량분율	
시멘트	CKD 미소성nCaO	킬른에서 소성이 되지 않고 CKD에 잔존한 탄산염의 CaO 질량분율	
킬른먼지 · 배출계수	CKD 미소성nMgO	킬른에서 소성이 되지 않고 CKD에 잔존한 탄산염의 MgO 질량분율	
	CKD 비란산염nCaO	CKD의 CaO 중 비탄산염 원료로부터 기인한 CaO의 질량분율(Cli _{비탄산염nCaO} 동일)	
	CKD 비탄산염nMgO	CKD의 MgO 중 비탄산염 원료로부터 기인한 MgO의 질량분율(Cli _{비탄산염nMgO} 동일)	

< Cli 미소성nCaO, Cli 미소성nMgO와 Cli 비탄산염nCaO, Cli 비탄산염nMgO의 계수 산정식 >

ClinsdnCaO의 산정식

ClinzdnMgO의 산정식

CKD 미소성nCaO의 산정식

$$\frac{CKD_{CaO}}{2} 질량분율 \times \frac{CKD$$
에 포함된 미소성 탄산염의 CO_2 질량분율
$$\frac{CO_2}{CaO} = \frac{CO_2}{CaO} = \frac{CO_2$$

$CKD_{\eta \leq \delta nMgO}$ 의 산정식

$$\frac{CKD_{MgO}}{2} 질량분율 \times \frac{CKD$$
에 포함된 미소성 탄산염의 CO_2 질량분율
$$\frac{CO_2}{CKD_{CaO}} 질량분율 \times \left(\frac{CO_2}{CaO} 의 분자량}{CaO} + CKD_{MgO} 질량분율 \times \left(\frac{CO_2}{MgO} 의 분자량}\right)$$

< Cli 비탄산염nCaO, Cli 비탄산염nMgO와 Cli 비탄산염nCaO, Cli 비탄산염nMgO의 계수 산정식 >

비탄산염nCaO의 산정식

비탄산염
$$_{CaO}$$
질량분율 \times $\left(1-\frac{$ 비탄산염 원료의 $_{CO_2}$ 질량분율 $}{$ 비탄산염 $_{CaO}$ 질량분율 $\times \frac{CO_2$ 분자량 $}{CaO$ 분자량 $}+$ 비탄산염 $_{MgO}$ 질량분율 $\times \frac{CO_2$ 분자량 $}{MgO$ 분자량 $}$

비탄산염nMgO의 산정식

비탄산염
$$_{MgO}$$
질량분율 \times $\left(1-\frac{$ 비탄산염원료의 $_{CO_2}$ 질량분율 $}{$ 비탄산염 $_{CaO}$ 질량분율 $\times\left(\frac{CO_2$ 의분자량}{CaO의분자량}\right)+비탄산염 $_{MgO}$ 질량분율 $\times\left(\frac{CO_2$ 의분자량}{MgO의분자량}\right)

Clineteancao 및 CKDneteancao의 산정식

비탄산염_{nCaO} 질량분율×비탄산염원료의투입량 클링커의 생산량 + CKD의 반출량

Cli 비탄산염nMgO 및 CKD비탄산염nMgO의 산정식

비탄산염 $_{nMgO}$ 질량분율 \times 비탄산염 원료의 투입량 클링커의 생산량+ CKD의 반출량

(3) 열량의 단위환산계수

시멘트 생산의 배출량 산정식과 배출계수 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(4) 가중평균 적용

클링커 배출계수에서 Cli_{CaO} , Cli_{MgO} , $Cli_{Uz \ bhCaO}$, $Cli_{Uz \ bhMgO}$ 와 $Cli_{UEV \ thCaO}$, $Cli_{UEV \ thCaO}$, $Cli_{UEV \ thCaO}$ 각각 해당 분석주기의 클링커 생산량과 비탄산염 원료를 가중치로 적용한다.

시멘트 킬른먼지 배출계수에서 CKD_{CaO} , CKD_{MgO} , $CKD_{UstanCaO}$, $CKD_{UstanCaO}$, $CKD_{UstanCaO}$ 이와 $CKD_{UstanCaO}$, $CKD_{UstanCaO}$ 이는 각각 해당 분석주기의 CKD 반출량과 비탄산염 원료를 가중치로 적용한다.

구 분	매개변수	적용 가중치
클링커 배출계수	Cli _{CaO} , Cli _{MgO} , Cli 미소성nCaO, Cli 미소성nMgO	클링커 생산량
배발계부	Cli비탄산염nCaO, Cli비탄산염nMgO	비탄산염 원료
시멘트 킬른먼지 배출계수	CKD _{CaO} , CKD _{MgO} , CKD 미소성nCaO, CKD 미소성nMgO	CKD 반출량
매팔세구 	CKD비탄산염 $nCaO$, CKD 비탄산염 $nMgO$	비탄산염 원료

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항(3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수	
	Q_{i}	ton	· 소수점 넷째자리에서 반올림	
	Q_{CKD}	ton	하여 소수점 셋째자리까지 입력	
배출량 산정식	Q_{toc}	ton	H 극	
	EF_i	tCO ₂ /t- _{클링커}	소수점 다섯째자리에서 반 림하여 소수점 넷째자리까?	
	EF_{CKD}	tCO ₂ /t- _{CKD}	입력	
	Cli_{CaO} , Cli_{MgO}	0과 1사이의 소수		
클링커 배출계수	Cli 미소성nCaO, Cli 미소성nMgO	0과 1사이의 소수	소수점 다섯째자리에서 반올 림하여 소수점 넷째자리까지 입력	
	Cli 비탄산염nCaO, Cli 비탄산염nMgO	0과 1사이의 소수	н ¬	

구 분	매개변수	단 위	소수점 자릿수
	CKD_{CaO} , CKD_{MgO}	0과 1사이의 소수	
시멘트 킬른먼지 배출계수	CKD 미소성nCaO, CKD 미소성nMgO	0과 1사이의 소수	소수점 다섯째자리에서 반올림 하여 소수점 넷째자리까지 입력
"E/"	CKD비란산염nCaO, CKD 비란산염nMgO	0과 1사이의 소수	п

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

시멘트 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기	
탄산염 원료	광석 중 탄산염 성분, 원소함량 등	월 1회 또는 원료 매 5만톤 입하시 (더욱 짧은 주기로 분석한다)	
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)	
생산물	원소함량 등	월 1회	

비고) 고체연료·원료가 수시 반입될 경우 월 1회로, 액체연료·폐기물 연료가 수시 반입될 경우 분기 1회로 분석할 수 있다.

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 한다.

- 클링커는 클링커 쿨러에서 나와서 클링커 저장탱크로 들어가기 전 등을 시료 채취 지점으로 선택
- CKD의 시료 채취 지점은 CKD 저장탱크에서나 CKD가 배출시설의 경계 외부로 반출되기 전 등이다.
- 비탄산염 원료의 시료 채취 지점은 원료가 입하된 후부터 소성시설에 투입되기 전 등이다.

시 료	위치	시료 채취 지점
클링커	1	클링커 쿨러와 저장탱크 사이의 이송장치
CKD	2	CKD 저장탱크에서 혹은 배출시설의 경계 외부로 반출 전
비탄산염 원료	3	원료 입하와 소성시설 투입 사이

(3) 시료 채취 규격

시료 채취 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

시 료	규 격	규격명	
클링커	KS L 5101	시멘트의 시료 채취 방법	
CKD	KS L 3101	시원으러 시호 세계 8 십	
비탄산염 원료	KS E 3605	분괴 혼합물-샘플링 방법 통칙	

(4) 시료 분석 규격

시료 분석 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

시 료	항 목	규 격	규격명
클링커 CKD	CaO MgO	KS L 5222	시멘트의 형광 X선 분석방법
	CO_2	ASTM C114	Standard Test Methods for Chemical Analysis of Hydraulic Cement
비티시어	CaO MgO	해당 비탄산염의 종류에 따름	-
비탄산염 원료	CO_2	ASTM C114	Standard Test Methods for Chemical Analysis of Hydraulic Cement

다. 배출량(배출계수)의 산정

- (1) 매개변수 개발 순서
- Cli_{CaO}, Cli_{MgO}, CKD_{CaO}, CKD_{MgO}의 시험 방법은 다음의 순서를 따른다.
 - ① 클링커와 CKD로부터 시료를 채취
 - ② 클링커와 CKD의 CaO 및 MgO 질량분율을 분석
- CliuzdanCaO, CliuzdanMgO, CKDuzdanCaO, CKDuzdanMgO의 시험 방법은 다음의 순서를 따른다.
 - ① 클링커와 CKD로부터 시료를 채취
 - ② 클링커와 CKD에 대한 CaO와 MgO의 질량분율을 분석
 - ③ ②에서 분석한 CaO와 MgO는 탄산염 형태의 원료로부터 전환되는 방법론을 적용하여 화학양론적인 CO₂의 질량분율을 산정
 - ④ ASTM C114의 Appendix X2에 따라 TGA(Thermogravimetric Analysis, 열중량분석법)로 미소성된 탄산염에 의한 CO₂의 질량분율을 분석
 - ⑤ ④에서 분석된 미소성된 탄산염에 의한 CO_2 질량분율을 ③에서 분석한 CaO와 MgO의 질량분율에 대한 화학양론적인 CO_2 질량분율로 나누어 탄산염의 미소성 비율을 산정
 - ⑥ CaO와 MgO의 질량분율에 ⑤에서 구한 미소성 비율을 곱하여 클링커와 CKD에 대한 미소성된 CaO와 MgO의 질량분율을 산정
- Cli_{비탄산염nCaO}, Cli_{비탄산염nMgO}, CKD_{비탄산염nCaO}, CKD_{비탄산염nMgO}의 시험 방법은 다음의 순서를 따른다.
 - ① 비탄산염 원료로부터 시료를 채취
 - ② 비탄산염 원료의 CaO와 MgO에 대한 질량분율을 분석
 - ③ ②에서 분석한 CaO와 MgO는 탄산염 형태의 원료로부터 전환되는 방법론을 적용하여 화학양론적인 CO₂의 질량분율을 산정

- ④ ASTM C114의 Appendix X2에 따라 TGA(Thermogravimetric Analysis, 열중량분석법)로 비탄산염에 의한 CO₂의 질량분율을 분석
- ⑤ ④에서 분석된 비탄산염에 의한 CO_2 질량분율을 ③에서 분석한 CaO와 MgO의 질량분율에 대한 화학양론적인 CO_2 질량분율로 나누어 비탄산염의 탄산화비율 산정
- ⑥ CaO와 MgO의 질량분율에 ⑤에서 구한 탄산화 비율을 곱하여 비탄산염 원료에 존재하는 탄산염에 의한 CaO와 MgO의 질량분율을 산정
- ⑦ CaO와 MgO의 질량분율로부터 ⑥에서 산정한 비탄산염 원료에 존재하는 탄산염에 대한 CaO와 MgO의 질량분율을 제외하여 비탄산염 원료의 비탄산염에 대한 CaO와 MgO의 질량분율을 산정(예시. 비산탄염의 CaO = 전체의 CaO 탄산염의 CaO)
- ⑧ 비탄산염 원료의 양을 클링커 생산량과 CKD 반출량의 합으로 나누어, 비탄 산염 원료의 질량분율 대 클링커 생산량과 CKD 반출량 합의 비를 산출
- ⑨ 클링커와 CKD의 비탄산염에 의한 CaO와 MgO의 질량분율을 구하기 위하여,
 ⑦에서 구한 비탄산염의 CaO와 MgO에 ⑧에서 구한 비탄산염 원료의 양에 대한 클링커 생산량과 CKD 반출량의 비를 산출

(2) 산정 예시

가정.

A 업체는 B소성시설을 가동하고 있으며, 원료 중 일부분은 비탄산염이 포함되어 있다. 또한, 예열기로부터 나온 CKD는 모두 회수되어 재활용지만, 킬른 내의 Bypass 설비로부터 나오는 CKD는 소성시설 외부로 반출되고 있다. 각 시료의 측정 결과와 가중평균을 적용한 분석 결과는 다음과 같다.

시 료	항 목	측정 ·분석값
	생 산량(<i>Q_i</i>)	3,000,000.000 ton
클링커	CaO(<i>Cli_{CaO}</i>)	0.6300
287	MgO(<i>Cli_{MgO}</i>)	0.0300
	미소성 탄산염의 CO ₂	0.0100
	반출량(<i>Q_{CKD}</i>)	3,000.000 ton
CKD	CaO(<i>CKD_{CaO}</i>)	0.2000
CND	MgO(<i>CKD_{MgO}</i>)	0.0100
	미소성 탄산염의 CO ₂	0.0200
	사용량	60,000.000 ton
비티시어 이크	CaO(비산탄염nCaO)	0.3000
비탄산염 원료	MgO(비산탄염nMgO)	0.0400
	CO ₂	0.0500
ol ¬	투입량(<i>Q_{toc}</i>)	5,000,000.000 ton
원료	배출계수(<i>EF_{toc}</i>)	0.0073 tCO₂/t-원료

- B 소성시설 배출계수 산정과정.
- ① 클링커 배출계수 (EF_i)

$$\textit{EF}_{\textit{i}} = (\textit{Cli}_{\textit{ChO}} - \textit{Cli}_{\textit{nChO}}) \times 0.785 + (\textit{Cli}_{\textit{MyO}} - \textit{Cli}_{\textit{nMyO}}) \times 1.092$$

- ⑤ 클링커의 CaO(Clicao) = 0.6300
- © 클링커의 nCaO(ClicaO)

$$Cli_{\text{plank}} = 0.6300 \times \frac{0.0100}{0.6300 \times \left(\frac{44.010}{56.077}\right) + 0.0300 \times \left(\frac{44.010}{40.304}\right)} = 0.0120$$

비탄산염
$$_{nChO} = 0.3000 imes \left(1 - \frac{0.0500}{0.3000 imes \left(\frac{44.010}{56.007}\right) + 0.0400 imes \left(\frac{44.010}{40.304}\right)}\right) = 0.2463$$

$$Cli_{\text{비탄산염}_nChO} = \frac{0.2463 \times 60,000t}{3,000,000t + 3,000t} = 0.0049$$

$$\therefore$$
 $Cli_{nCaO} = 0.0120 + 0.0049 = 0.0169$

- © 클링커의 MgO(Cli_{MgO}) = 0.0300
- ② 클링커의 nMgO(ClinMgO)

$$Cli_{\text{plankgO}} = 0.0300 \times \frac{0.0100}{0.6300 \times \left(\frac{44.010}{56.077}\right) + 0.0300 \times \left(\frac{44.010}{40.304}\right)} = 0.0006$$

비탄산염
$$nMgO = 0.0400 \times \left(1 - \frac{0.0500}{0.3000 \times \left(\frac{44.010}{56.077}\right) + 0.0400 \times \left(\frac{44.010}{40.304}\right)}\right) = 0.0328$$

$$Cli$$
비탄산염 $nMgO = \frac{0.0328 \times 60,000t}{3,000,000t + 3,000t} = 0.0007$

$$\therefore$$
 $Cli_{nMgO} = 0.0006 + 0.0007 = 0.0013$

 \bigcirc , \bigcirc , \bigcirc , \bigcirc , \bigcirc 을 클링커 배출계수(EF_i) 산정식에 입력한 결과는 다음과 같다.

$$EF_i = (0.6300 - 0.0169) \times 0.785 + (0.0300 - 0.0013) \times 1.092 = 0.5126$$

따라서, EF_i 는 0.5126 tCO_2/t -클링커이다.

② CKD 배출계수(EF_{CKD})

$$EF_{\mathit{CKD}} = (\mathit{CKD}_{\mathit{ChO}} - \mathit{CKD}_{\mathit{nChO}}) \times 0.785 + (\mathit{CKD}_{\mathit{MgO}} - \mathit{CKD}_{\mathit{nMgO}}) \times 1.092$$

 \bigcirc CKD의 CaO(CKD_{CaO}) = 0.2000

$$CKD_{\square \preceq \forall nChO} = 0.2000 \times \frac{0.0200}{0.2000 \times \left(\frac{44.010}{56.077}\right) + 0.0100 \times \left(\frac{44.010}{40.304}\right)} = 0.0238$$

$$= 0.3000 \times \left(1 - \frac{0.0500}{0.3000 \times \left(\frac{44.010}{56.077}\right) + 0.0400 \times \left(\frac{44.010}{40.304}\right)}\right) = 0.2463$$

$$CKD_{\square \preceq \forall nChO} = \frac{0.2463 \times 60,000t}{3,000,000t + 3,000t} = 0.0049$$

$$\therefore$$
 CKD_{nCaO} = 0.0238 + 0.0049 = 0.0287

- © CKD의 MgO(CKD_{MgO}) = 0.0100
- ② CKD의 nMgO(CKD_{nMgO})

$$CKD_{\text{미소성}nMgO} = 0.0100 \times \frac{0.0200}{\frac{0.2000 \times 44.010}{56.077} + \frac{0.0100 \times 44.010}{40.304}} = 0.0012$$

$$CKD_{\text{비탄산염}nMgO} = \frac{0.0328 \times 60,000t}{3,000,000t + 3,000t} = 0.0007$$

$$\frac{0.0500}{0.3000 \times \left(\frac{44.010}{56.077}\right) + 0.0400 \times \left(\frac{44.010}{40.304}\right)} = 0.0328$$

$$\therefore CKD_{nMgO} = 0.0012 + 0.0007 = 0.0019$$

①, ©, © 은을 CKD 배출계수(
$$EF_{CKD}$$
) 산정식에 입력한 결과는 다음과 같다.
$$EF_{CKD} = (0.2000 - 0.0287) \times 0.785 + (0.0100 - 0.0019) \times 1.092 = 0.1433$$

따라서, EF_{CKD} 는 $0.1433~tCO_2/t-_{CKD}$ 이다.

5 석회 생산

석회 생산에 따른 고유배출계수 Tier 3 계수는 원료의 생산량과 조성성분 등을 기준으로 개발한다.

가. 배출계수 산정

(1) 배출량 산정식

석회 생산의 배출량 산정식은 다음과 같다.

$$E_i = (EF_i \times Q_i \times r_i \times F_i) - Q_{LKD} \times EF_{LKD} \times (1 - F_{LKD})$$

 E_i : 석회 생산에서 탄산염(i)으로 인한 CO_2 배출량 (tCO_2)

 Q_i : 소성시설에 투입된 탄산염(i) 사용량(ton)

 r_i : 석회(i)의 순도(전체 투입량 중 순수 탄산염의 비율, <math>0에서 1사이의 소수)

 EF_i : 순수탄산염(i)의 하소에 따른 CO_2 배출계수(tCO_2/t -탄산염)

 F_i : 석회 소성시설에 투입된 탄산염(i)의 하소율(0)에서 1사이의 소수)

 Q_{LKD} : 석회생산시 반출된 석회킬른먼지(LKD)의 양(ton)

 EF_{LKD} : 석회생산시 반출된 석회킬른먼지(LKD)에 따른 CO_2 배출계수 (투입 탄산염이

석회석인 경우 0.4397 tCO₂/t-LKD, 백운석인 경우 0.4773 tCO₂/t-LKD)

 F_{LKD} : 석회킬른먼지(LKD)의 하소율(0에서 1사이의 소수)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
활동자료	Q_i	석회소성시설에 투입된 순수탄산염의 사용량 - 순수 탄산염의 양은 투입원료의 사용량에 해당 탄산염의 비율을 적용한 값
배출계수	EF_i	석회소성시설에 투입된 원료 및 부원료의 성분 측정·분석을 통하여 순수탄산염의 배출계수 산정식으로 계산한 값 생석회와 경소백운석으로 구분하였을 때 경소백운석에 대한 배출계수는 계산이 필요함을 설명(IPCC 06 GL 2.3.1.2) 결론적으로는 0.750으로 동일함

구 분	매개변수	내 용
하소율	F_i	석회소성시설에 투입된 탄산염의 탈탄산반응이 발생한 비 - 각 탄산염의 소성계수는 사업장 측정값을 활용 - 측정값이 없을 경우 1.0을 적용
	킬른에서 재활용되지 않고 배출시설의 경계 외부로 반출되는 LKD의 양 - LKD는 'Bypass Dust'까지 포함 - 반출이 없을 시에는 제외함	
LKD	LKD 성분 측정·분석을 통하여 LKD의 배출계수 산정식으로 계산 한 값 - 투입 탄산염이 석회석인 경우 0.4397 tCO ₂ /t-LKD, 백운석인 경우 0.4773 tCO ₂ /t-LKD	
	F_{LKD}	킬른에서 재활용되지 않고 배출시설의 경계 외부로 반출되는 LKD의 탈탄산반응이 발생한 비 - 측정값이 없을 경우 1.0을 적용한다.
순도	ri	활동자료 전체량 대비 순수 탄산염의 비율

(2) 배출계수 산정식

석회 생산에서 Tier 3 배출량 산정식의 매개변수 중 개발이 요구되는 변수는 순도, EF_{i} , F_{i} , EF_{LKD} , F_{LKD} 이다. 다만, F_{i} 와 F_{LKD} 인 경우 1.0을 적용할 수 있으며, EF_{LKD} 의 값은 EF_{i} 값과 동일하게 적용할 수 있다.

배출량 산정 과정에서 순도를 별도로 반영하므로 배출계수는 순수한 탄산염 기준 으로 산출하며 산정식은 다음과 같다.

$$EF_{i} = \frac{Mw_{CO_{2}}}{(Y \times Mw_{X} + Z \times Mw_{CO_{3}^{-2}})}$$

* 가정 : 탄산염(i)의 분자식 = $X_{v}(CO_{3})_{z}$

EF_i: 원료로 투입된 탄산염(i)의 CO₂ 배출계수(tCO₂/t-탄산염)(표-10 참조)

Mw_{CO2} : CO₂의 분자량 (44.010 g/mol)

Mw_X: X(알칼리 금속, 혹은 알칼리 토금속)의 분자량(g/mol)

 Mw_{CO3}^{-2} : CO₃⁻²의 분자량 (60.009 g/mol)

Y: X의 화학양론계수(알카리토금속류 "1", 알카리금속류 "2")

 $Z: CO_3^{-2}$ 의 화학양론계수(1)

배출계수 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
	$Mw_{\it CO2}$	탄산염 등이 탈탄산 반응에 의해 대기중으로 배출된 CO ₂ 의 분자량
탄산염 배출계수	Mw_x	탄산염의 분자식이 $X_{y}(CO_3)_z$ 인 경우, X 원소의 분자량
	Mw_{CO3}^{2-}	탄산염의 분자식이 $X_{y}(CO_{3})_{z}$ 인 경우, CO_{3}^{2} 의 분자량

(3) 열량의 단위환산계수

석회 생산 Tier 3의 배출량 산정식과 배출계수 산정식에서는 열량에 관한 단위환 산계수가 적용되지 않는다.

(4) 가중평균 적용

배출량 산정식에서 원료별 순수탄산염의 함량은 원료별 투입량을 가중치로 적용한다.

구 분	매개변수	적용 가중치
배출량 산정식	원료별 순수탄산염의 함량	원료별 투입량

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수	
활동자료	Q_i	ton	소수점 넷째자리에서 반올림하여 소수점	
설등자료	Q_{LKD}	ton	셋째자리까지 입력	
순도	r_i	0과 1사이의 소수		
-1	F_i	0과 1사이의 소수	소수점 다섯째자리에서 반올림하여 소수점	
하소율	F_{LKD}	0과 1사이의 소수	넷째자리까지 입력	

구 분	매개변수	단 위	소수점 자릿수
.11 11 2	EF_i	tCO ₂ /t-탄산염	소수점 다섯째자리에서 반올림하여 소수점
배출계수	EF_{LKD}	tCO ₂ /t-LKD	넷째자리까지 입력
탄산염 배출계수	$Mw_{\it CO2}$	g/mol	
	Mw_x	g/mol	원소주기율표 등 규격(또는 출처)에 따라 동일한 값(유효숫자 포함)으로 입력
	Mw_{CO3}^{2-}	g/mol	

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

석회 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
탄산염 원료	광석 중 탄산염 성분, 원소함량 등	월 1회 또는 원료 매 5만톤 입하시 (더욱 짧은 주기로 분석한다)
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)
생산물	원소함량 등	월 1회

비고) 고체연료·원료가 수시 반입될 경우 월 1회로, 액체연료·폐기물 연료가 수시 반입될 경우 분기 1회로 분석할 수 있다.

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 시멘트 생산에서 시료 채취 지점은 다음에 따른다.

(3) 시료 채취 규격

석회 생산에서 시료 채취 규격은 각 시료의 특성에 맞게 결정이 되어야 하며, 대표적인 규격은 다음과 같다.

시 료	규격	규격명	
탄산염 원료	KS Q 1003	랜덤 샘플링 방법	
인신급 전요	KS E 3605	분괴 혼합물-샘플링 방법 통칙	

(4) 시료 분석 규격

시멘트 생산에서 시료 분석 규격은 각 시료의 특성에 맞게 결정이 되어야 하며, 대표적인 규격은 다음과 같다.

시 료	분석 항목	규격	규격명
	이 기사 뒤 키	KS E 3071	석회석의 화학 분석방법
탄산염 원료	탄산염 함량	KS E 3075	석회석과 백운석의 형광엑스선 분석방법

다. 배출계수의 산정

(1) 매개변수 개발 순서

탄산염 원료의 성분 결정을 위한 시험 방법은 다음의 순서와 같다.

- ① 사용되는 탄산염 원료로부터 시료를 채취
- ② 시료의 성분 조성을 분석
- ③ 각 성분의 배출계수를 산정
- ④ 각종 탄산염류 대비 총중량의 비율을 결정
- ⑤ 탄산염류의 종류별로 해당 탄산염과 CO₂의 분자량을 계산

(2) 산정 예시

가정.

D 업체는 석회 생산업체로서 B 소성시설에서 탄산염 원료들로 석회를 생산하고 있다. 또한, 예열기로부터 나온 LKD는 모두 회수되어 재활용지만, 킬른 내의 Bypass 설비로부터 나오는 LKD는 소성시설 외부로 반출되고 있다. 활동자료와 가중평균된 분석결과는 다음과 같다.

- 산정일자 : 2014년

- LKD 반출량 : 10,000.000ton

- 원료 종류 및 성상

구 분	A원 료	B원료
CaCO ₃	0.9821	0.5423
MgCO ₃	0.0175	0.4561
MnCO ₃	-	_
С	_	_
기타	0.0004	0.0016
투입량(ton)	1,000,000.000	10,000.000

B 소성시설 배출계수 산정과정.

- ① 순수 탄산염(i)의 소성에 따른 CO_2 배출계수 (EF_i)
 - $-EF_{CaCO3} = 0.4397 \text{ tCO}_2/\text{t}-\text{CaCO3}$
 - $-EF_{MgCO3} = 0.5220 \text{ tCO}_2/\text{t}_{-MgCO3}$
 - ※ 해당 탄산염의 기본계수인 배출계수를 적용
- ② 소성시설에 투입된 탄산염(i)의 소성계수 $(F_i) = 0.9995$
- ③ 반출된 석회킬른먼지(LKD)에 따른 CO_2 배출계수(EF_{LKD})
 - = $CaCO_3$ 의 질량imes $CaCO_3$ 의 배출계수 $+MgCO_3$ 의 질량imes $MgCO_3$ 의 배출계수 $CaCO_3$ 의 질량 + $MqCO_3$ 의 질량
 - $= \underbrace{(1,000,000 \times 0.9821 + 10,000 \times 0.5423) \times 0.4397 + (1,000,000 \times 0.0175 + 10,000 \times 0.4561) \times 0.5220}_{}$ $(1,000,000 \times 0.9821 + 10,000 \times 0.5423) + (1,000,000 \times 0.0175 + 10,000 \times 0.4561)$
 - $= \frac{987,523 \times 0.4397 + 22,061 \times 0.5220}{}$ 987,523 + 22,061
 - $= 0.4415 \text{ tCO}_2/\text{t-}_{LKD}$
 - ※ 기본계수인 CaCO3의 배출계수를 적용
- ④ 석회킬른먼지(LKD)의 하소율(F_{LKD}) = 0.4415 tCO₂/t-_{LKD}

6 탄산염의 기타 공정사용

시멘트 생산 및 석회 생산 공정을 제외한 기타 공정에 사용하는 탄산염류 원료의 탈탄산 반응에 의하여 CO₂가 배출된다.

가. 배출계수 산정

(1) 배출량 산정식

탄산염 사용과 유리 생산의 배출활동에 관한 Tier 3의 배출량 산정식은 다음과 같다.

1) 탄산염 사용

$$E_i = \sum_i (Q_i \times EF_i \times r_i \times F_i)$$

 E_i : 탄산염(i)의 소비에 따른 CO_2 배출량(t CO_2)

 Q_i : 소비된 탄산염(i)의 질량(ton)

 EF_i : 탄산염(i) 사용량 당 CO_2 배출계수(tCO_2/t -탄산염)

 r_i : 탄산염(i)의 순도(전체 사용량 중 순수 탄산염의 비율, 0에서 1사이의 소수)

 F_i : 탄산염(i)의 기타 공정사용에서 소성율(0에서 1사이의 소수)

2) 유리 생산

$$E_i = \sum_i (M_i \times EF_i \times r_i \times F_i)$$

 E_i : 유리생산으로 인한 CO_2 배출량(tCO_2)

 M_i : 유리제조공정에 소비된 탄산염(i) 사용량(ton)

 r_i : 탄산염(i)의 순도(전체 사용량 중 순수 탄산염의 비율, 0에서 1사이의 소수)

 EF_i : 탄산염(i)에 대한 CO₂ 배출계수(tCO₂/t-탄산염)

 F_i : 탄산염(i)의 소성비율(0에서 1사이의 소수)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	설 명 내 용
	Q_i	공정에서 소비된 탄산염의 양
'탄산염 사용'의 배출량	EF_i	성분분석을 통하여 나온 탄산염을 배출계수 산정식으로 계산한 값
산정식	r_i	탄산염(i)의 순도 (전체 소비량 중 순수 탄산염의 비율, 0에서 1사이의 소수)
	F_i	공정에서 소비된 탄산염이 탈탄산 반응을 일으킨 비율 - 비율을 확인할 수 없을 경우에는 1.00로 가정하여 적용
	M_i	유리 생산에 사용된 탄산염의 양
'유리 생산'의	r_i	탄산염(i)의 순도 (전체 소비량 중 순수 탄산염의 비율, 0에서 1사이의 소수)
배출량 산정식	EF_i	성분분석을 통하여 나온 탄산염을 배출계수 산정식으로 계산한 값
	F_i	유리 생산에 사용된 탄산염이 탈탄산 반응을 일으킨 비율 - 비율을 확인할 수 없을 경우에는 1.00로 가정하여 적용

(2) 배출계수 산정식

탄산염의 기타 공정사용의 Tier 3 배출계수는 순수 탄산염 성분에 따른 기본 배출계수를 적용하며, 순도를 별도 측정하여 배출량 산정식의 매개변수로 반영한다.

성분분석을 통하여 확인한 순수 탄산염의 분자식을 기준으로 산정이 가능하다.

$$EF_{i} = \frac{Mw_{CO_{2}}}{(Y \times Mw_{X} + Z \times Mw_{CO_{3}^{-2}})}$$

* 가정 : 탄산염(i)의 분자식 = $X_v(CO_3)_z$

EF_i: 원료로 투입된 탄산염(i)의 CO₂ 배출계수(tCO₂/t-탄산염)

Mw_{CO2} : CO₂의 분자량 (44.010 g/mol)

 Mw_X : X(알칼리 금속, 혹은 알칼리 토금속)의 분자량(g/mol)

Mw_{CO3}⁻²: CO₃⁻²의 분자량 (60.009 g/mol)

Y: X의 화학양론계수(알카리토금속류 "1", 알카리금속류 "2")

 $Z: CO_3^{-2}$ 의 화학양론계수

매개변수 MW_{CO2} , MW_X 및 MW_{CO3}^{2-} 은 생성된 CO_2 와 사용된 탄산염의 분자량을 의미한다. 따라서, '탄산염의 기타 공정사용' 배출활동의 고유 배출계수를 계산하기위해 측정·분석되어야 항목은 사용된 순수 탄산염 그 자체이며, 탄산염의 종류를 분석하여 해당 탄산염의 분자량과 CO_2 의 분자량으로 산정하여야 한다.

구 분	매개변수	내 용		
	Mw_{CO2}	탄산염의 탈탄산반응에 의하여 대기중으로 배출된 CO ₂ 의 분자량 (44.010 g/mol)		
분자량	Mw_x	탄산염의 분자식이 $X_y(CO_3)_z$ 인 경우, X 원소의 분자량		
	$M{w_{CO3}}^{2 ext{-}}$	탄산염의 분자식이 $X_y(CO_3)_z$ 인 경우, CO_3^{2-} 의 분자량 (60.009 g/mol)		

(3) 열량의 단위환산계수

탄산염의 기타 공정사용의 배출량 산정식과 배출계수 산정식에서는 열량에 관한 단위환산 계수가 적용되지 않는다.

(4) 가중평균 적용

배출량 산정식에서 원료별 순수탄산염의 함량은 원료별 투입량을 가중치로 적용한다.

구 분	매개변수	적용 가중치
배출량 산정식	원료별의 순수탄산염의 함량	원료별 투입량

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수
ull 초 라	$Q_i \mathrel{/} M_i$	ton	소수점 넷째자리에서 반올림하여 소 수점 셋째자리까지 입력
배출량 산정식	F_i	0과 1사이의 소수	소수점 다섯째자리에서 반올림하여
EF_i		tCO ₂ /t-탄산염	소수점 넷째자리까지 입력
	$Mw_{\it CO2}$	g/mol	- 원소주기율표 등 규격(또는 출처)에
탄산염 배출계수	Mw_x	g/mol	따라 동일한 값(유효숫자 포함)으로
	$Mw_{{CO3}}^{^{2+}}$	g/mol	' 입력
순도	r_i	0과 1사이의 소수	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

탄산염의 기타공정사용에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
탄산염 원료	광석 중 탄산염 성분, 원소함량 등	월 1회 또는 원료 매 5만톤 입하시 (더욱 짧은 주기로 분석한다)
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)
생산물	원소함량 등	월 1회

비고) 고체연료·원료가 수시 반입될 경우 월 1회로, 액체연료·폐기물 연료가 수시 반입될 경우 분기 1회로 분석할 수 있다.

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 한다.

- 업체에서 자체적으로 탄산염의 원료를 측정·분석하는 경우, 시료 채취 지점은 일반적으로 배출시설로 원료가 주입되기 전 원료 저장탱크(사일로) 또는 이송장치 등이다.

(3) 시료 채취 규격

탄산염 원료의 시료 채취 규격은 각 시료의 특성에 맞게 결정이 되어야 하며, 대표적인 규격은 다음과 같다.

시 료	규격	규격명
탄산염 원료	KS E 3605	분괴 혼합물-샘플링 방법 통칙

(4) 시료 분석 규격

탄산염 원료의 시료 분석 규격은 각 시료의 특성에 맞게 결정이 되어야 하며. 대표적인 규격은 다음과 같다.

시 료	분석 항목 규격		규격명
		KS M 1104	산업용 소다회 성분분석
탄산염 원료	조성 및 함량	KS M 1303	탄산칼륨 성분분석
		KS M 1405	탄산바륨 성분분석

다. 배출계수의 산정

(1) 매개변수별 개발 순서

순수 탄산염의 양(Qi)을 결정하기 위한 시험 방법은 다음의 순서와 같다.

- ① 사용되는 각 탄산염 원료들의 양을 측정하고 시료들을 채취
- ② 각 탄산염 원료의 시료들로부터 순수 탄산염들에 대한 조성 및 질량분율을 분석
- ③ 탄산염 원료별 순수 탄산염들의 양을 분석
- ④ 분석 결과를 순수 탄산염별로 분류
- ⑤ 배출계수($EF_{i,CO2}$)를 산정

(2) 산정 예시

가정.

C 업체는 유리제조업체로서 탄산염 원료들을 사용하여 B 용융·용해시설에 유리를 생산하고 있다. 각 탄산염 원료의 투입량과 가중평균된 분석결과는 다음과 같으며, 탄산염의 소성비율은 0.9995이다.

구 분	A원 료	B원료	C원료	D원 료
CaCO₃	0.9818	0.5423	_	_
MgCO ₃	0.0163	0.4571	_	_
Na ₂ CO ₃	-	-	0.9948	-
С	-	-	_	0.8854
투입량(ton)	1,000.000	10,000.000	100,000.000	100.000

B 용용·용해시설 배출계수 산정과정.

- ① 유리제조공정에 사용된 순수 탄산염(i) 사용량 (M_i)
- ② 탄산염(j)에 대한 CO_2 배출계수 (EF_i)
- ③ 탄산염(i)의 하소비율 (F_i) = 0.9995

구 분	A원료	B원료	C원료	D원 료	① <i>M_i</i> (ton)	② <i>EF</i> ₁ (tCO ₂ /t)
CaCO ₃	0.9818	0.5423	_	_	6,404.800	0.4397
MgCO ₃	0.0163	0.4571	-	_	4,587.300	0.5220
Na ₂ CO ₃	_	-	0.9948	-	99,480.000	0.4149
С	_	-	-	0.8854	0.8854	3.6640
투입량(ton)	1,000.000	10,000.000	100,000.000	100.000		

[※] 해당 탄산염의 기본계수인 배출계수를 적용

암모니아 생산

암모니아 생산에서 배출량 산정식의 배출계수 중 개발이 요구되는 매개변수는 암모니아 원료와 제품의 생산량 중 탄소질량분율이다.

가. 배출계수 산정

(1) 배출량 산정식

암모니아 생산에 관한 배출량 산정식은 다음과 같다.

$$E_{CO_2} = \sum_i (\sum_j (AP_{ij} \times AEF_{ij})) - R_{CO_2}$$

 E_{CO2} : 암모니아 생산에 따른 CO_2 의 배출량(tCO_2)

 AP_{ii} : 공정(j)에서 연료(i)(천연가스 및 나프타 등) 사용에 따른 암모니아 생산량(ton)

 AEF_{ii} : 공정(j)에서 암모니아 생산량 당 CO_2 배출계수 $(tCO_2/t-NH_3)$

 R_{CO2} : 요소 등 부차적 제품생산에 의한 CO_2 회수·포집·저장량(ton)

(2) 배출량 산정식의 매개변수

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
생산량	AP_{ij}	• 공정(j)에서 원료(i)(CH4 및 나프타 등) 사용에 따른 암모 니아 생산량(ton) • 원료가 아닌 수소를 직접 구매하여 질소와 반응을 통해 생산한 암모니아 생산량은 제외시켜야 함
배출계수	AEF_{ij}	• 공정(j)에서 원료(i)(CH4 및 나프타 등)에 의한 암모니아 생산에 따른 배출계수
회수량	R_{CO2}	• 공정(j)에서 발생한 CO ₂ 회수·포집·저장에 대한 측정값

(3) 열량의 단위환산계수

암모니아 생산 공정사용의 배출량 산정식과 배출계수 산정식에서는 열량에 관한 단위환산 계수가 적용되지 않는다.

(4) 가중평균 적용

배출계수 산정식에서 암모니아 생산량 당 CO_2 배출계수 (AEF_i) 는 각 분석주기별투입 암모니아 생산량 (AP_{ii}) 을 가중치로 적용한다.

구 분	매개변수	적용 가중치
배출계수 산정식	원료의 탄소 질량분율	암모니아 생산량

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수
생산량	AP_{ij}	ton	소수점 넷째자리에서 반올림하여 소수점
회수량	R_{CO2}	tCO ₂	셋째자리까지 입력
배출계수	AEF_i	tCO ₂ /t-NH ₃	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

암모니아 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)
생산물	원소함량 등	월 1회

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 대표적인 지점은 다음과 같다.

(3) 시료 채취 규격

암모니아 생산에서 시료 채취 규격은 각 시료의 특성에 맞게 결정이 되어야 하며, 대표적인 규격은 다음과 같다.

시 료	시료 채취 규격	규격명
투입 원료	KS I ISO 10715	•천연가스 - 샘플링 지침서

(4) 시료 분석 규격

암모니아 생산에서 시료 분석 규격은 각 시료의 특성에 맞게 결정이 되어야 하며, 대표적인 규격은 다음과 같다.

시 료	분석 항목	시료 분석 규격	규격명
투입 원료	성분 조성 및 몰분율	KS I ISO 6974	• 천연 가스-가스 크로마토그래피에 의한 불확도를 표시한 조성의 측정-제6부: 세 개의 모세관 칼럼을 사용한 수소, 헬륨, 산소, 질소, 이산화탄소 및 C1에서 C8까지의 탄화수소의 조성 측정
		ASTM D1945	• Standard Test Method for Analysis of Natural Gas by Gas Chromatography

다. 배출계수 산정

(1) 매개변수 개발 순서

- ① 샘플링
- ② 연료의 탄소 질량분율 측정·분석
- ③ 원단위 결정

(2) 산정 예시

가정.

A 업체는 LNG, 나프타 등 혼합 원료를 정제한 후 개질과정을 통해 수소를 제조 하고, 제조한 수소를 이용하여 암모니아를 생산하고 있다. 원료인 나프타, LNG는 탄화수소와 수증기(Steam)가 화학반응을 일으켜 수소를 생산하고 부산물로 CO2가 발생하고 있다. 원료의 활동자료와 가중평균된 분석 결과는 다음과 같다.

- 투입 원료(수분 제외) : 100,000.000ton

- 암모니아 생산량 : 560,000.000ton

성분 조성	몰분율	물질량(<i>mw_y</i> , g/mol)	탄소원자수(<i>N</i> _y)
CH₄	0.8512	16.043	1
C ₂ H ₆	0.0788	30.070	2
C ₄ H ₁₀	0.0315	58.123	4
N ₂	0.0385	28.0135	0

[※]몰 질량은 KS I ISO 6976의 수치임.

배출계수 산정과정.

1단계: 투입원료의 순 발열량 및 총 발열량을 계산한다.

항 목	연소열 (cal/mol)	분자량 (g)	평균 분자량 (g)	순도 (몰분율)	순도를 고려한 연소열 (cal/mol)
CH₄	191,698	16.043	13.6558016	0.8512	163,173.33760
C ₂ H ₆	341,215	30.070	2.369516	0.0788	26,887.74200
C ₄ H ₁₀	634,685	58.123	1.8308745	0.0315	19,992.57750
N_2	_	28.0135	1.07851975	0.0385	0.00000
TOTAL	-	-	18.93471185	1.0000	210,053.65710
총 연소열		cal/mol	210,	053.6571 cal/mol	
순발열량		kcal/Nm ³	9,377.3899 kcal/Nm ³		
	T 크 걸 당		Gcal/MT	11.0935755856248 Gcal/MT	

따라서 순 발열량은 11.0935755856248 Gcal/MT× 0.1 MT÷(1,000 Gcal/4.1868TJ) = 0.00464465823 TJ 따라서 소수점 다섯째자리에서 반올림하여 최종 결정하면 0.0046 TJ이 됨.

2단계 : 투입된 화석원료의 CCF_i (탄소 질량분율계수)를 구하면 다음과 같다.

- ① 원료(i) 투입량 (FR_i)
- ② 투입 원료(i)의 배출계수(EF_i)
 투입 원료(i)의 배출계수(EF_i)의 계산 과정

$$\begin{split} EF_i &= \sum_y \left[\left(\frac{MW_y}{MW_{y,\,total}} \right) \!\!\times\! \left(\frac{44.01}{mw_{_y}} \!\!\times\! N_y \right) \right] \\ MW_y &= \frac{\text{가스성분}(y) 의 몰분율}{100} \times \text{가스성분}(y) 의 몰질량 (mw_y) \\ MW_{y,total} &= \sum_y MW_y \end{split}$$

성분 조성	몰분율	몰질량 <i>mw_y</i> (g/mol)	탄소원자수 <i>N</i> _/	몰분율×몰질량 <i>MW_y</i> (g/mol)	배출계수 <i>EF_i</i>
CH ₄	0.8512	16.043	1	13.6558016	1.9784464
C ₂ H ₆	0.0788	30.070	2	2.369516	0.3663101
C ₄ H ₁₀	0.0315	58.123	4	1.8308745	0.2928621
N ₂	0.0385	28.0135	0	1.07851975	0
합계	1			18.93471185	2.6376186

- 따라서, $MW_{y,total}$ 는 18.93471185g/m이이며, 배출계수 EF_i 는 2.6376tCO $_2$ /ton (소수점 다섯째 자리에서 반올림하여 결정)이다.

CCF_i(탄소 질량분율계수)= 2.63762tCO₂/ton÷3.664÷1,109.3576TJ

$$\times 100.000 \text{ MT} = 64.8911094 \text{ tC/TJ}$$

- *CCF_i*(탄소 질량분율계수)는 소수점 다섯째 자리에서 반올림하여 64.8911tC/TJ로 결정한다.

3단계 : 암모니아 생산량 당 원료 사용량 FR_{ij} (원료원단위)을 다음과 같이 구한다.

- = $0.046 TJ / 560,000.000 ton = 8.214285714 \times 10^{-8} TJ / t-NH_3$
- 따라서 FR_{ij} (원료원단위)는 8.214285714 × 10^{-8} TJ / t-NH₃로 결정한다.

8 질산 생산

질산 생산에서 배출량 산정식의 배출계수 중 개발이 요구되는 배출계수는 질산 1톤 생산당 N₂O 배출량, 저감기술별 분해계수, 저감기술별 저감시스템 이용계수 모두 3가지이다.

특히 "질산 1톤 생산량 당 N₂O 배출량"은 촉매의 활성도에 따라 차이가 있으므로 이점을 유의하여 배출계수를 개발하여야 한다.

가. 배출계수 산정

(1) 배출량 산정식

질산 생산에 관한 배출량 산정식은 다음과 같다.

$$E_{N_2O} = \sum_{k,h} [EF_{N2O} \times NAP_k \times (1 - DF_h \times ASUF_h)] \times 10^{-3}$$

E_{N2O} : N₂O 배출량(tN₂O)

EF_{N20} : 질산 1 ton 생산당 N₂O 배출량(kgN₂O/t-질산)

 NAP_k : 생산기술(k)별 질산생산량(t-질산)

 DF_h : 저감기술(h)별 분해계수(0에서 1사이의 소수)

 $ASUF_h$: 저감기술(h)별 저감시스템 이용계수(0에서 1사이의 소수)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개 변수	내 용
배출량	EF_{N2O}	 질산 1 ton 생산당 N₂O 배출량 질산 1 ton 생산당 N₂O 배출량은 촉매의 활성도에 따라 차이가 있음 N₂O발생량은 저감기술 적용 전의 발생량으로 측정
생산량	NAP_k	• 생산기술 별 질산 생산량 • 생산기술별 질산 생산량과 촉매에 따른 N_2O 발생량도 차이가 있으므로 가중 평균 적용이 원칙이어야 함

구 분	매개 변수	내 용	
분해계수	DF_h	• 저감기술별 분해계수 "촉매환원장치 전단에서 실측 한 값(A) 저감 기술이 적용된 후단의 배출구에서 실측 한 값(B)" [분해계수=(A-B)/A]	
이용계수	$ASUF_h$	• 저감기술(h)별 저감 시스템 이용계수 •[저감 시스템 이용계수= 1 - 저감기술 미적용 가스 비율] 저감기술 미적용 가스 비율 = 저감기술 시설 미가동 시간 / 총 생산 시간	

[※] 질산 생산 산회공정에서 백금 로듐 촉매의 활성도에 따른 1산화 공정의 부반응의 N2O 발생량 특성 과 관련된 기술 자료를 관리하여야 함.

(2) 열량의 단위환산계수

질산 생산의 배출량 산정 식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(3) 가중평균 적용

질산 생산에서 "질산 1 ton 생산당 N_2O 배출량 $(kg-N_2O/ton-질산생산량)$ "은 백금로듐 촉매의 촉매 활성도에 따라 부반응의 정도가 변화되어 N_2O 발생량의 정도가 변동이 되므로 변동에 따른 값에 의한 가중평균이 적용되어야 한다.

단, 1회/일 또는 실시간 농도를 측정하여 누적된 실측값을 적용한 경우는 가중 평균으로 간주한다.

구 분	매개변수	적용 가중치
배출계수	EF_{N2O}	질산 생산량(NAP _k) 또는 N ₂ O 가스 표준 상태 유량(Nm ³) ※ 상관 관계가 높은 N ₂ O 가스 유량 적용을 원칙으로 하되, 불가한 경우 에는 질산 생산량을 적용

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(4) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수
생산량	NAP_k	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력
배출계수	EF_{N2O}	kgN ₂ O/t-질산	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력
분해계수	DF_h	0과 1사이의 소수	소수점 다섯째자리에서 반올림하여 소수점
이용계수	$ASUF_h$	0과 1사이의 소수	넷째자리까지 입력

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

질산 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
기체연료 (천연·도시가스)	가스성분, 발열량, 밀도 등	반기 1회 ¹⁾
기체연료 (공정부생가스)	가스성분, 발열량, 밀도 등	월 1회

주1) 가스공급처가 최소분석주기 이상 분석한 데이터를 제공할 경우, 이를 우선 적용한다.

(2) 시료 채취 지점

시료 채취 지점은 활동량 및 매개변수 적용 시 최적 대표 지점에서 시료를 채취한다. "촉매환원장치 전단, 후단"의 시료 채취 지점과 동일한 채취 지점에서 시료를 채취 할 수 있다. 매개변수 개발을 위한 주요 모니터링 지점에 참고하여 시료 채취 지점을 선정한다.

(3) 시료 채취 규격

국제적으로 공인된 시료채취 규격을 적용하여야 한다.(대기오염공정시험법 및 유사한 기체시료에 대한 시료채취 규격 적용)

(4) 시료 분석 규격

시 료	항 목	규 격	규격명
질산	농도, 유량	ASTM E1584	Standard Test Method for Assay of Nitric Acid

 N_2O 의 공인된 시료분석 규격이 없을 경우, 기존에 사업장에서 사용하고 있는 시료 분석 규격을 제시하고 이를 승인 받은 후 시료 분석 규격으로 사용하는 것으로 한다.

다. 배출량(배출계수) 산정

- (1) 매개변수 개발 순서
 - (가) 샘플링
 - (나) 촉매환원장치 후단의 N₂O 발생량 측정
 - (다) 원단위 결정
 - ① 질산 생산량(NAPk)값과 ② 촉매환원장치 후단의 N₀O 발생량 측정 분석한 N₂O 발생량 값를 사용하여 "②÷①"로 매개변수를 계산하여야 한다.
 - (라) 분해계수 결정

분해계수는 "촉매환원장치 후단에서 실측 한 값(A)과 저감 기술이 적용된 후단의 배출구에서 실측 한 값(B)"을 토대로 다음과 같이 계산하여야 한다.

[분해계수=(A-B)/A]

(마) 저감기술(h)별 저감시스템 이용계수 결정

저감기술 적용 시설의 실제 가동률

[저감 시스템 이용계수= 1 - 저감기술 미적용 가스 비율]을 적용함.

저감기술 미적용 가스 비율 = 저감기술 시설 미가동 시간 / 총 생산 시간

저감기술 시설 미가동 비율: 유지 보수, 고장 등으로 인해 N₂O 가스가 처리시설을 통과하지 않은 시간의 비

(2) 산정 예시

가정.

질산 생산 공정을 가진 A 업체의 활동자료와 가중평균된 분석 결과는 다음과 같다.

- 생산 기술로는 상압법과 전가압법 기술을 적용하고 있음
- 상압법에 따라 생산한 질산 : 10,000.000ton

- 전가압법에 따른 질산 생산량 : 10,000.000ton
- 상압법 및 전가압법 촉매환원장치 후단 및 저감기술 후단 유량 및 N_2O 가스 농도

적용			측정 더	이터			
기술	측정월	IN N₂O 농도(ppm)	OUT N₂O 농도(ppm)	N₂O 가스 유량 (Nm ^{3/} h)	질산생산량 (톤/h)		
	N년 1월	1579	1198	57254.0344	10.2545		
	N년 2월	1980	1485	57256.68261	11.357		
	N년 3월	2045	1468	57255.51289	10.792		
	N년 4월	1980	1485	57256.68261	11.357		
	N년 5월	2019	1548	57243.27593	11.952		
상압법	N년 6월	2019	1613	57247.65762	12.579		
0 11	N년 7월	1799	1387	57239.8431	12.560		
	N년 8월	2021	1263	57233.35726	12.542		
	N년 9월	1793	1280	57231.7582	10.255		
	N년 10월	1920	1300	57235.6365	10.240		
	N년 11월	1930	1310	57233.13525	10.225		
	N년 12월	1903	960	57222.48599	10.210		
적용		측정 데이터					
기술	측정월	IN N₂O 농도(ppm)	OUT N₂O 농도(ppm)	N₂O 가스 유량 (Nm ^{3/} h)	질산생산량 (톤/h)		
	N년 1월	1,869	1,056	57226.60378	12.524		
	N년 2월	1,870	1,050	57216.72673	12.505		
	N년 3월	2,268	1,319	57215.58532	12.487		
	N년 4월	2,110	1,301	53380.18542	12.469		
	N년 5월	1,759	1,186	57223.09157	12.451		
전가압법	N년 6월	2,014	1,470	57242.53577	12.433		
선가합합 	N년 7월	1,440	1,404	57244.14727	12.414		
	N년 8월	1,333	1,057	57256.35597	12.396		
	N년 9월	1,339	703	47454.48157	12.378		
	N년 10월	1,481	781	47364.50562	12.360		
	N년 11월	1,650	1,060	47611.29985	12.342		
	N년 12월	2,268	1,319	57215.58532	12.324		

배출계수 산정과정.

1단계 : 촉매환원장치 후단(IN) 및 저감기술 후단(OUT) 시간당 N_2 O 발생량과 제거율을 구한다.

			측경	정 데이터		계산값		
적용	측정월	N₂O	농도	N₂O	질산	①In	②out	③제거율
기술	702	IN	OUT	가스 유량	생산량	UIII		● (세기)
		PPM	PPM	Nm3/h	톤/h	kg/h	kg/h	%
	N년 1월	1579	1198	57254.0344	10.2545	177.580	134.731	24.1292%
	N년 2월	1980	1485	57256.68261	11.357	222.688	167.016	25.0000%
	N년 3월	2045	1468	57255.51289	10.792	229.993	165.100	28.2152%
	N년 4월	1980	1485	57256.68261	11.357	222.688	167.016	25.0000%
	N년 5월	2019	1548	57243.27593	11.952	227.021	174.060	23.3284%
상압법	N년 6월	2019	1613	57247.65762	12.579	227.038	181.383	20.1090%
0 11	N년 7월	1799	1387	57239.8431	12.560	202.271	155.948	22.9016%
	N년 8월	2021	1263	57233.35726	12.542	227.206	141.990	37.5062%
	N년 9월	1793	1280	57231.7582	10.255	201.568	143.897	28.6113%
	N년 10월	1920	1300	57235.6365	10.240	215.860	146.155	32.2917%
	N년 11월	1930	1310	57233.13525	10.225	216.975	147.273	32.1244%
	N년 12월	1903	960	57222.48599	10.210	213.900	107.905	49.5533%
			측경	정 데이터		계산값		
적용	측정월	N₂O	농도	N ₂ O	질산	①In	②out	③제거율
기술		IN	OUT	가스 유량	생산량	UIII	E out	· 에기크
		PPM	PPM	Nm3/h	톤 /h	kg/h	kg/h	%
	N년 1월	1,869	1,056	57226.60378	12.524	210.093	118.704	43.4992%
	N년 2월	1,870	1,050	57216.72673	12.505	210.169	118.009	43.8503%
	N년 3월	2,268	1,319	57215.58532	12.487	254.895	148.239	41.8430%
	N년 4월	2,110	1,301	53380.18542	12.469	221.242	136.415	38.3412%
	N년 5월	1,759	1,186	57223.09157	12.451	197.716	133.309	32.5753%
전가	N년 6월	2,014	1,470	57242.53577	12.433	226.456	165.288	27.0109%
압법	N년 7월	1,440	1,404	57244.14727	12.414	161.919	157.871	2.5000%
	N년 8월	1,333	1,057	57256.35597	12.396	149.920	118.879	20.7052%
	N년 9월	1,339	703	47454.48157	12.378	124.814	65.530	47.4981%
	N년 10월	1,481	781	47364.50562	12.360	137.788	72.662	47.2654%
	N년 11월	1,650	1,060	47611.29985	12.342	154.312	99.134	35.7576%
	N년 12월	2,268	1,319	57215.58532	12.324	254.895	148.239	41.8430%

- ① INPUT (촉매환원장치 후단) N₂O 중량
 - = IN 농도(PPM) ×10⁻⁶ × (44.013 kg/22.4 Nm³) ÷ N₂O 가스 유량(Nm³/h)
- ② OUTPUT (저감기술 후단) N₂O 중량
 - = OUT 농도(PPM) ×10⁻⁶ × (44.013 kg/22.4 Nm3) ÷ N₂O 가스 유량(Nm3/h)
- ③ N₂O 제거율 = (① ②) ÷ ①

2단계 : 생산기술별 EF_{N2O} (질산 1ton 생산당 N_2O 배출량(kg- N_2O /ton-질산 생산량)을 구한다.

생산기술 별 즉, 상압법 및 전가압법에 의한 "월별 생산량"과 "월별 ② OUTPUT (저감기술 후단) N_2 O 발생량"을 토대로 월별 EF_{N2O} (질산 1ton 생산당 N_2 O 배출량 $(kg-N_2O/ton-질산 생산량)를 구한다.$

■ 상압법

		측정 데이터			계산 값			계산 값	
적용 기술	측정월	N₂O IN	농도 OUT	N₂O 가스 유량	①In	@out	③제거율	질산 생산량	④배출 계수
	0	PPM	PPM	Nm³/h	kg/h	kg/h	%	톤/h	kgN₂O/ ton 질산
	N년 1월	1,579	1,198	57,254.034	177.580	134.731	24.1292%	10.255	17.31723
	N년 2월	1980	1485	57,256.683	222.688	167.016	25.0000%	11.357	19.60739
	N년 3월	2,045	1,468	57,255.513	229.993	165.100	28.2152%	10.792	21.31179
	N년 4월	1,980	1,485	57,256.683	222.688	167.016	25.0000%	11.357	19.60739
	N년 5월	2,019	1,548	57,243.276	227.021	174.060	23.3284%	11.952	18.99365
	N년 6월	2,019	1,613	57,247.658	227.038	181.383	20.1090%	12.579	18.04932
	N년 7월	1,799	1,387	57,239.843	202.271	155.948	22.9016%	12.560	16.10390
상압법	N년 8월	2,021	1,263	57,233.357	227.206	141.990	37.5062%	12.542	18.11555
	N년 9월	1,793	1,280	57,231.758	201.568	143.897	28.6113%	10.255	19.65656
	N년 10월	1,920	1,300	57,235.637	215.860	146.155	32.2917%	10.240	21.08106
	N년 11월	1,930	1,310	57,233.135	216.975	147.273	32.1244%	10.225	21.22091
	N년 12월	1,903	960	57,222.486	213.900	107.905	49.5533%	10.210	20.95074
	계			686,910.06				134.323	232.01549
				월간 평균	2			11.194	19.33462
				⑤가중평	 균			11.194	19.33456

- ④ 월별 kgN₂O/ton 질산 배출계수 = [② OUTPUT N₂O 중량 ÷ 질산 생산량] 예를 들어 N년 1월의 경우 kgN₂O/ton 질산 배출계수 17.31723 [= 177,580÷10.255] 로 구함
- ⑤ 가중평균 kgN₂O/ton 질산 배출계수 = (월별 가중평균 N₂O 가스 유량, 월별 가중평균 질산배출계수)/ 연간 전체 N₂O 가스 유량 합 예를 들어 19.33456 kgN₂O/ton 질산 = (N₂O 가스 유량 N년. 1 ~ N년. 12 범위 설정, 질산배출계수 N년 .1 ~ N년 .12 범위설정) ÷ 686,910.06

위의 경우와 같이 N₂O 가스 유량 데이터가 있을 경우에는 N₂O 가스 유량이나 질산 생산량 2가지 중 어느 것을 해도 가중 평균 질산 배출량은 거의 유사하다, 그러나 위와 같이 상관관계 계수가 높은 것이 N_2O 가스 유량이므로 이를 적용하는 것이 더 정확하므로 이를 적용하여야하며 일관성이 유지되어야 한다.

따라서 상압법 적용기술의 kgN_2O/ton 질산 배출계수는 소숫점 다섯째 자리에서 반올림하여 19.3346 kgN₂O/ton질산이 된다.

	측정 데이터				계산 i	 값	측정 데이터	계산 값		
적용 기술	측정월	<u> 실</u>	IN N₂O 농도	OUT N₂O 농도	N₂O 가스 유량	①In	②out	③N₂O 제거율	질산 생산량	배출계수 산정
			PPM	PPM	Nm³/h	kg/h	kg/h	%	톤/h	kgN₂O/ton 질산
	N년 11	월	1,869	1,056	57226.60378	210.09	118.70	43.4992%	10.195	20.60799
	N년 21	월	1,870	1,050	57216.72673	210.17	118.01	43.8503%	10.180	20.64560
	N년 3f	월	2,268	1,319	57215.58532	254.90	148.24	41.8430%	10.165	25.07580
	N년 4	월	2,110	1,301	53380.18542	221.24	136.41	38.3412%	10.150	21.79689
	N년 5	월	1,759	1,186	57223.09157	197.72	133.31	32.5753%	10.135	19.50759
	N년 6	월	2,014	1,470	57242.53577	226.46	165.29	27.0109%	10.121	22.37584
	N년 7	월	1,440	1,404	57244.14727	161.92	157.87	2.5000%	10.106	16.02246
전가 압법	N년 8	월	1,333	1,057	57256.35597	149.92	118.88	20.7052%	10.091	14.85675
	N년 9	월	1,339	703	47454.48157	124.81	65.53	47.4981%	10.076	12.38689
	N년 10)월	1,481	781	47364.50562	137.79	72.66	47.2654%	10.062	13.69453
	N년 11	월	1,650	1,060	47611.29985	154.31	99.13	35.7576%	10.047	15.35917
	N년 12	2월	2,268	1,319	57215.58532	254.90	148.24	41.8430%	10.032	25.40771
	계				596,424.50				111.165	207.12922
					월간 평균				10.106	18.82993
				가중평균	군(N₂O 가스 ·	유량 기존	돈)		10.108	19.05677

■ 전가압법

전가압법 적용기술의 kgN_2O/ton 질산 배출계수는 소숫점 다섯째 자리에서 반올림하여 $19.0568\ kgN_2O/ton$ 질산이 된다.

아디프산생산

아디프산 생산에서 배출량 산정식의 배출계수 중 개발이 요구되는 배출계수는 기술유형에 따른 1톤당 아디프산의 N₂O 배출계수, 저감 기술별 분해계수, 저감 기술별 저감 시스템 이용계수 모두 3가지이다.

특히 "기술유형에 따른 1톤당 아디프산의 N₂O 배출계수"은 촉매의 활성도에 따라 차이가 있으므로 이점을 유의하여 배출계수를 개발하여야 한다.

가. 배출계수 산정

(1) 배출량 산정식

아디프산 생산에 관한 배출량 산정식은 다음과 같다.

$$E_{N_2O} = \sum_{k,h} [EF_k \times AAP_k \times (1 - DF_h \times ASUF_h)] \times 10^{-3}$$

E_{N2O} : N₂O 배출량(tN₂O)

 EF_k : 기술유형(k)에 따른 아디프산의 N₂O 배출계수 (kgN_2O/t -아디프산)

 AAP_k : 기술유형(k)에 따른 아디프산 생산량(ton) DF_h : 저감기술(h)별 분해계수(0에서 1사이의 소수)

 $ASUF_h$: 저감기술(h)별 저감시스템 이용계수(0에서 1사이의 소수)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
EF_k 제품		 아디프산 1 ton 생산당 N₂O 배출량 아디프산 1 ton 생산당 N₂O 배출량은 기술 유형에 따라 차이가 있음 N₂O발생량은 저감기술 적용 전의 발생량으로 측정
	AAP_k	- 생산기술 별 아디프산 생산량
분해계수	DF_h	- 저감기술별 분해계수 "가열로 전단에서 실측 한 값(A) 과 후단의 배출구에서 실측한 값(B)" [분해계수=(A-B)/A]

구 분	매개변수	내 용
이용계수	$ASUF_h$	- 저감기술(h)별 저감 시스템 이용계수 - [저감 시스템 이용계수= 1 - 저감기술 미적용 가스 비율] 저감기술 미적용 가스 비율 = 저감기술 시설 미가동 시간 / 총 생산시간

(2) 열량의 단위환산계수

아디프산 생산의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(3) 가중평균 적용

아디프산 생산에서 아디프산 1 ton 생산당 N_2O 배출량 $(kgN_2O/ton-$ 아디프산)은 적용된 아디프산 기술 유형에 따라 부반응의 정도가 변화되어 N_2O 발생량의 정도가 변동이 되므로 변동에 따른 값에 의한 가중평균 적용하여야 하며 일관성이 유지되어야 한다.

단, 1회/일 또는 실시간 농도를 측정하여 누적된 실측값을 적용한 경우는 가중 평균으로 간주한다.

(4) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수
생산량	AAP_k	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력
배출계수	EF_k	kgN ₂ O/ton-아디프산	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력
분해계수	DF_h	0과 1사이의 소수	소수점 다섯째자리에서 반올림하여
이용계수	$ASUF_h$	0과 1사이의 소수	소수점 넷째자리까지 입력

나. 시료 채취 및 시료 분석

국제적으로 공인된 시료채취 규격을 적용하여야 한다.(대기오염공정시험법 및 유사한 기체시료에 대한 시료채취 규격 적용)

(1) 최소 분석 주기

아디프산 생산공정에서 시료 채취에 대한 대표적인 규격은 다음과 같다.

연료 및 원료	분석 항목	최소 분석 주기
기체연료 (공정 부생가스)	가스성분, 발열량, 밀도 등	월 1회

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 한다.

(3) 시료 채취 규격

국제적으로 공인된 시료채취 규격을 적용하여야 한다.(대기오염공정시험법 및 유사한 기체시료에 대한 시료채취 규격 적용)

(4) 시료 분석 규격

시 료	항 목	규 격	규격명
질산	농도, 유량	ASTM E1584	Standard Test Method for Assay of Nitric Acid

 N_2O 의 공인된 시료분석 규격이 없을 경우, 기존에 사업장에서 사용하고 있는 시료 분석 규격을 제시하고 이를 승인 받은 후 시료 분석 규격으로 사용하는 것으로 한다.

다. 배출량(배출계수) 산정

(1) 매개변수 개발 순서

- (가) 샘플링
- (나) 분해기술 적용 전단과 후단의 N₂O 발생량 측정
- (다) 원단위 결정
 - (A) 아디프산 생산량 (AAP_k) 값과 (B) 분해기술 적용 전단의 측정된 농도를 토대로 얻은 (A)0 발생량 값을 사용하여 (B)2 매개변수를 계산
- (라) 분해계수 결정

분해계수는 "분해기술 적용 전단에서 실측 한 값(A)과 저감 기술이 적용된 후단의 배출구에서 실측 한 값(B)"을 토대로 다음과 같이 계산

[분해계수=(A-B)/A]

(마) 저감시스템 이용계수 결정

- 저감기술 적용 시설의 실제 가동률[저감 시스템 이용계수= 1 저감기술 미 적용 가스 비율]을 적용함
- 저감기술 미적용 가스 비율
 - = 저감기술 시설 미가동 시간 / 총 생산 시간
- 저감기술 시설 미가동 비율 : 유지 보수, 고장 등으로 인해 N_2O 가스가 처리시설을 통과하지 않은 시간의 비율

10 카바이드 생산

카바이드 생산에서 배출량 산정식의 배출계수 중 개발이 요구되는 배출계수는 코크스 탄소 질량분율비, 석유코크스의 산화계수, 탄화규소 생산시 석유코크스 배출계수(tCO₂/t), 탄산칼슘 생산시 석유코크스 배출계수(tCO₂/t) 모두 네 가지이다.

가. 배출계수 산정

(1) 배출량 산정식

카바이드 생산에 관한 배출량 산정식은 다음과 같다.

$$E_{i,j} = AD_i \times EF_{i,j}$$

 $E_{i,j}$: 카바이드 생산에 따른 온실가스(j) 배출량(tGHG)

 AD_i : 활동자료(i) 사용량(ton) (사용된 원료, 카바이드 생산량)

 EF_{ij} : 활동자료(i)에 따른 온실가스(j) 배출계수(tGHG/t-카바이드, tGHG/t-사용된 원료)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
활동자료	AD_i	사용된 원료, 카바이드 생산량
배출계수	EF_{ij}	공정(l)에서 카바이드 생산량 또는 카바이드 생산에 사용된 원료(i)사용량당 온실가스 배출량

(2) 배출계수 산정식

원료에 대한 배출계수 산정식은 다음과 같다.

$$EF_{SiC} = 0.65 \times CCF_{SiC} \times 3.664$$

 EF_{SiC} : 탄화규소(SiC) 생산시 석유코크스의 배출계수(tCO_2/t)

CCF_{sic}: 석유코크스의 배출계수(tC/t-Coke)

0.65 : 투입된 탄화규소(SiC) 중에서 반응되지 않은 비율, 0~1사이 소수)

3.664 : CO₂의 분자량(44.010)/C의 원자량(12.011)

 $EF_{C_1C_2} = 0.33 \times CCF_{C_1C_2} \times 3.664$

 EF_{CaC2} : 탄화칼슘(CaC₂) 생산시 석유코크스의 배출계수(tCO_2/t)

CCF_{CaC2} : 석유코크스의 배출계수(tC/t-Coke)

0.33 : 투입된 탄화칼슘(CaC2) 중에서 반응하지 않은 비율, 0~1사이 소수)

3.664 : CO₂의 분자량(44.010)/C의 원자량(12.011)

(3) 열량의 단위환산계수

카바이드 생산의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(4) 가중평균 적용

카바이드 생산에서 석유코크스 종류별 탄소 질량분율 비를 구하여 가중평균 방식을 적용하여야 한다.

구 분	매개변수	적용 가중치	
	$EF_{\it CaC2}$	AD_i :원료인 탄화칼슘	
배출계수	EF_{SiC}	AD_i :원료인 탄화규소	
	CCF_{CaC2} , CCF_{SiC}	AD_i :석유 코크스	

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항(3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수
생산량 회수량	AD_i	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력
배출계수 -	EF_{SiC} , EF_{CaC2}	tCO ₂ /t	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력
	CCF _{SiC} , CCF _{CaC2}	tC/t	CH ₄ 및 N ₂ O는 "고체연료"와 동일한 Tier를 적용.

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

카바이드 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)
생산물	원소함량 등	월 1회

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 한다.

(3) 시료 채취 규격

시료 채취 규격은 "고체연료"와 규격과 동일한 규격을 사용하여야 한다.

시 료	규 격	규격명	
석탄류 및 코크스류	KS E 3709	석탄류 및 코크스류의 샘플링, 분석 및 시험 방법 통칙	

(4) 시료 분석 규격

시료 분석 규격은 "고체연료"와 규격과 동일한 규격을 사용하여야 한다.

시 료	규 격	규격명
석탄류 및 코크스류	ASTM D5373	Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal

다. 배출량(배출계수) 산정

(1) 매개변수 개발 순서

(가) 샘플링

- (나) 탄화규소 및 탄화칼슘에 사용된 석유 코크스 시료의 탄소 질량분율 분석 및 시료에 대한 탄소 질량분율 결정
- (다) 배출계수 산정식을 적용하여 석유코크스의 배출계수(EFsic, EFcacz) 결정

11 소다회 생산

소다회 생산에서 배출량 산정식의 배출계수 중 개발이 요구되는 배출계수는 원료 1톤 투입량 당 CO₂ 배출량, 제품 소다회 1톤당 CO₂ 배출량 두 가지이다.

가. 배출계수 산정

(1) 배출량 산정식

소다회 생산에 관한 배출량 산정식은 다음과 같다.

$$E_{CO_0} = AD \times EF$$

 E_{CO2} : 소다회 생산 공정에서의 CO_2 배출량(tCO_2)

AD : 사용된 트로나(Trona) 광석의 양 또는 생산된 소다회 양(ton)

EF: 배출계수(tCO₂/t-Trona 투입량, tCO₂/t-소다회 생산량)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
제품	AD	천연소다회 생산인 원료인 트로나 광석 사용량, 합성 소다회인 경우 생산된 소다회 양
배출 계수	EF	소다회 생산량 또는 천연 소다회 생산을 위해 투입된 트로나 광석 사용량 당 CO_2 배출량

[※] 천연소다회 배출계수는 트로나의 탄소 질량분율에 따른 온실가스 배출량 / 투입된 트로나 투입량을 말함. 합성소다회 배출계수는 대기 중으로 배출되는 CO₂ 배출 농도 측정 값 / 생산된 합성 소다회 생산량을 말함.

(2) 열량의 단위환산계수

소다회 생산의 배출량 산정 식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(3) 가중평균 적용

소다회 생산에서 온실가스 배출계수 트로나의 CO_2 함량 결정 시 트로나 투입량 또는 소다회 생산량에 대한 가중평균 적용되어야 하며 일관성이 유지되어야 한다.

구 분	매개변수	적용 가중치
배출계수	EF	소다회 생산량, 트로나 투입량

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(4) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수
소다회 생산량 또는 트로나 투입량	AD	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력
배출계수	EF	tCO ₂ /t	소수점 다섯째자리에서 반올림하여 소수 점 넷째자리까지 입력

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

트로나 또는 소다회가 기타 원료로 분류되므로 기타 원료의 최소 분석 주기 (월 1회 이상)를 따른다.

연료 및 원료	분석 항목	최소 분석 주기
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)

(2) 시료 채취 지점

트로나 또는 소다회의 경우 시료 채취 지점은 다음과 같이 수행한다.

(3) 시료 채취 규격

국제적으로 공인된 시료 채취 규격을 적용하여야 한다.

공인된 시료 채취 규격이 없을 경우, 기존에 사업장에서 사용하고 있는 시료 채취 규격을 제시하고 이를 승인 받은 후 시료 채취 규격으로 사용하는 것으로 한다.

(4) 시료 분석 규격

국제적으로 공인된 시료분석 규격을 적용하여야 한다.

공인된 시료 분석 규격이 없을 경우, 기존에 사업장에서 사용하고 있는 시료 분석 규격을 제시하고 이를 승인 받은 후 시료 분석 규격으로 사용하는 것으로 한다.

다. 배출량(배출계수) 산정

- (1) 매개변수 개발 순서
 - (가) 샘플링
 - (나) 흡수탑/회수탑의 CO₂ 배출 농도와 유량 측정
 - (다) 배출계수 산정
 - 천연소다회 배출계수 : 트로나에 따른 이산화탄소 배출량(ton) / 투입된 트로나 양(ton)
 - 합성소다회의 배출계수 : 주기적 측정에 의해 CO₂ 배출량(ton) / 소다 생산량 (ton)

12 수소제조공정

수소제조 공정에서 생산·소비되는 수소제조 공정가스의 양과 성분을 측정·분석하여 산정 한다.

수소제조 공정에서 사용되는 수소제조 공정가스 소비량은 공정배출량 산정에 포함 하여야 하며, 연료로 사용되는 부생가스는 기체연료연소 배출활동으로 산정하여야 한다.

가. 배출계수 산정

(1) 배출량 산정식

수소제조 공정에 관한 배출량 산정식은 다음과 같다.

$$E_{i,CO_2} = FR_i \times EF_i \times 10^{-3}$$

 $E_{i,CO2}$: 수소제조 공정에서의 CO_2 배출량(tCO_2)

 FR_i : 수소제조 공정가스(i) 투입량 $(m^3, \text{ 단 H}_2\text{O}$ 는 제외) EF_i : 수소제조 공정가스(i)의 CO_2 배출계수 $(tCO_2/\overline{\Delta}m^3)$

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
투입량	FR_i	H ₂ O를 제외한 수소제조 공정가스(i) 투입양을 측정한 값
배출계수	EF_i	수소제조 공정가스 (i) 의 투입 원료의 성분 분석을 통하여 배출계수 산정식으로 개발한 값

(2) 배출계수 산정식

수소제조 공정에 관한 배출계수 산정식은 다음과 같다.

$$EF_i = \sum_y \left[\left(\frac{MW_y}{MW_{y, \, total}} \right) \times \left(\frac{44.010 \times N_y}{mw_{_y}} \right) \right] \times D_i$$

 EF_i : 수소제조공정가스(i)의 CO_2 배출계수(tCO_2 /천 m^3)

 MW_v : 수소제조공정가스(i)의 몰당 해당 가스성분(v)의 질량(g/mol)

 mw_v : 해당 가스성분(y)의 몰질량(g/mol)

44.010 : CO₂의 몰질량(g/mol)

 $N_{\mathbf{v}}$: 가스성분(y)의 탄소 원자수

 $MW_{y,total}$: $MW_{y,total} = \sum_{y} MW_{y}$ D_i : 해당 가스(i)의 밀도(kg/m³)

배출계수 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
	MW_y	측정·분석된 해당 가스성분(y)의 몰분율과 <i>mw</i> y를 곱한 계산 값
몰질량	$MW_{y,total}$	투입 원료에 대한 $MW_{_{_{\! 2}}}$ 값들의 총합을 계산한 값
	mw_y	해당 가스성분(y)의 몰질량을 측정·분석한 값
탄소원자수	N_y	측정·분석된 해당 가스성분(y)의 탄소원자의 수를 분석한 값
밀도	D_i	해당 가스(i)의 밀도를 측정·분석한 값

(3) 열량의 단위환산계수

수소제조 공정의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(4) 가중평균

배출계수 산정식에서 투입 원료(i)의 CO₂ 배출계수(EFi)는 각 분석주기별 투입 원료의 양(FRi)을 가중치로 적용하여야하며 일관성이 유지되어야 한다.

구 분	매개변수	적용 가중치
투입 원료(i)	CO ₂ 의 배출계수(<i>EF_i</i>)	수소제조공정가스(i) 투입량(FR_i)

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단위	소수점 자릿수	
투입량	FR_i	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력	
배출계수	EF_i	tCO ₂ /t	소수점 다섯째자리에서 반올림하여 소수점 넷째자리 까지 입력	
	MW_y			
몰질량	$MW_{y,total}$	g/mol	원소주기율표 등 규격(또는 출처)에 따라 동일한 값 (유효숫자 포함)으로 입력	
	mw_y			
탄소원자수	N_{y}	_	정수로 입력	
밀도	Di	kg/m ³	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력	

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙 으로 한다.

(1) 최소 분석 주기

수소제조 공정에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
기체연료 (천연·도시가스)	가스성분, 발열량, 밀도 등	반기 1회 ¹⁾
기체연료 (공정부생가스)	가스성분, 발열량, 밀도 등	월 1회

주1) 가스공급처가 최소분석주기 이상 분석한 데이터를 제공할 경우, 이를 우선 적용한다.

(2) 시료 채취 지점

시료 채취 지점은 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 한다.

- 수소제조 공정에 투입되는 공정가스의 경우 수소제조 공정에 투입되기 전단에서 시료를 채취하여야 한다.

(3) 시료 채취 규격

수소제조공정에 투입되는 원료의 시료 채취에 대한 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
투입 원료	KS I ISO 10715	천연가스 - 샘플링 지침서

(4) 시료 분석 규격

수소제조 공정에 투입되는 원료의 대표적인 시료 분석 규격으로는 KS I ISO 6974와 ASTM D1945 등이 있다.

시 료	항 목	규 격	규격명
투입 원료	성분 조성	KS I ISO 6974	천연 가스-가스 크로마토그래피에 의한 불확도를 표시한 조성의 측정-제6부: 세 개의 모세관 칼럼을 사용한 수소, 헬륨, 산소, 질소, 이산화탄소 및 C1에서 C8까지의 탄화수소의 조성 측정
		ASTM D 1945	Standard Test Method for Analysis of Natural Gas by Gas Chromatography

다. 배출량(배출계수)의 산정

- (1) 매개변수 개발 순서
 - ① 샘플링
 - ② 샘플링 시료의 매개변수 mwy과 Ny의 개발
 - 투입 원료의 성분 조성과 몰분율 분석
 - 해당 성분별 몰질량(mwy)과 탄소 원자의 수(Ny) 확인
 - ③ 샘플링 시료의 매개변수 MWy과 MWy,total의 개발
 - 투입 원료의 성분 조성과 몰분율 분석

- 생산된 산물에 대한 해당 성분의 몰분율과 몰질량(mw_v)을 곱하여 생산된 산물 1mol에 포함된 가스성분별 질량(MW_v)을 구함
- MWv들을 모두 합하여 생산된 산물 1mol의 총질량(MWv.total)을 구함

 $MW_y =$ 가스성분(y)의 몰분율 × 가스성분(y)의 몰질량

$$MW_{y,total} = \sum_y MW_y$$

※ 가스성분들의 몰분율 합이 1이 되어야함

- ④ 시료 1몰에 포함된 가스성분별 질량과 몰분율 등으로 밀도(Di)를 산정(밀도값은 공급자로부터 제공받은 값을 우선 적용)
- ⑤ 배출계수 개발식에 따라 배출계수($EF_{i,co2}$) 산정

(2) 산정 예시

가정.

A 업체는 LNG, 나프타 등 혼합 원료를 정제한 다음 개질과정을 통해 수소를 제조한 후, PSA 공정에서 수소의 순도를 높인다. 그 과정 중에 탄화수소와 수증기 (Steam)가 화학반응을 일으키고 부산물로 CO2가 발생하고 있다. 또한, 부생가스가 발생이 되고 발생된 부생가스를 개질공정의 열원을 위한 연료로 사용하고 있다. 생성된 산물의 활동자료와 가중평균된 분석 결과는 다음과 같다.

투입된 공정가스(i)의 양 : 270,000 천m³

배출계수 산정과정.

$$EF_i = \sum_y \left[\left(\frac{MW_y}{MW_{y,\,total}} \right) \times \left(\frac{44.010 \times N_y}{mw_{_y}} \right) \right] \times D_i$$

 $MW_y =$ 가스성분(y)의 몰분율imes 가스성분(y)의 몰질량 (mw_y)

$$MW_{y,total} = \sum_{y} MW_{y}$$

성분 조성	몰분율	몰질량 <i>mw_y</i> (g/mol)	탄소 원자수 <i>N</i> _/	몰분율×몰질량 <i>MW_y</i> (g/mol)	배출계수 (kgCO ₂ /t)	D _i (kg/m³)
CH ₄	0.8512	16.043	1	13.765929	2.002143	0.6142
C ₂ H ₆	0.0788	30.070	2	2.388625	0.370698	0.1066
C ₄ H ₁₀	0.0315	58.123	4	1.8456396	0.296370	0.0823
N ₂	0.0305	28.0135	0	0.8613022	0.000000	0.0384
합계	0.9920	_	_	18.861496	2.669211	0.8415

- ※ 가스성분들의 몰분율의 합이 0.9920이므로 몰분율 합을 "1"로 보정함
- □ 밀도(*D_i*)는 0.8415 kg/m³이고, 배출계수는 2.6692 tCO₂/t이다. 따라서, 배출계수에 밀도를 곱하면 2.2461 tCO₂/천㎡이 나온다.

배출량 산정과정.

$$E_{i,co_2} = FR_i \times EF_i \times 10^{-3}$$

 ∴ 투입된 공정가스(i)(FR_i)는 270,000 천m³이고, 배출계수(EF_i)는 2.2461 tCO₂/천㎡ 이다. 따라서 배출량은 606,447 tCO₂이다.

13 촉매재생공정

Tier 3A

촉매재생 공정에서 연소되는 코크의 양을 파악할 수 있고 코크의 성분을 측정·분석 하여 탄소 질량분율을 구할 수 있을 경우에 Tier 3A의 산정식을 적용하여야 한다. 단, 연소된 코크의 탄소성분은 모두 CO2로 배출된다고 가정한다.

가. 배출계수 산정

(1) 배출량 산정식

촉매재생 공정 Tier 3A에 관한 배출량 산정식은 다음과 같다.

$$E_{CO_9} = CC \times EF$$

 E_{CO2} : 촉매재생 공정에서의 CO_2 배출량(ton)

CC: 연소된 Coke 량(ton)

EF: 연소된 Coke의 배출계수(tCO₂/t-Coke)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
Coke	CC	촉매 중 연소된 Coke의 양을 산정한 값 - 재생전 촉매량과 촉매에 대한 Coke의 침착율 등으로 계산 - CC = 재생전 촉매량 × Coke의 침착율
	EF	연소되는 Coke의 측정·분석된 탄소 질량분율 값에 3.664(CO ₂ /C)의 값을 곱하여 개발

(2) 열량의 단위환산계수

촉매재생 공정 Tier 3A의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용 되지 않는다.

(3) 가중평균 적용

배출량 산정식에서 연소되는 코크의 배출계수(EF)는 각 분석주기별 연소된 코크의 양(CC)을 가중치로 적용한다.

구 분	매개변수	적용 가중치	
Coke	코크의 배출계수(<i>EF</i>)	연소된 Coke의 양(<i>CC</i>)	

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(4) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수
Coke	CC	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력
	EF	tCO ₂ /t-Coke	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

촉매재생 공정 Tier 3A 에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)
생산물	원소함량 등	월 1회

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 한다.

- 촉매재생 공정에서 Tier 3A의 경우, 재생기 전단 등을 코크의 시료 채취 지점으로 선택

(3) 시료 채취 규격

시료채취 규격이 없을 경우, 기존에 사업장에서 사용하고 있는 시료채취 규격을 제시 하고 이를 승인 받은 후 사용하는 것으로 한다.

(4) 시료 분석 규격

촉매재생 공정의 촉매와 코크에 대한 시료 분석 규격으로는 ASTM D5373이나 JIS M 8813, 원소분석기 등이 있다.

시 료	항 목	규 격	규격명
	탄소	ASTM D5373	Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal
Coke	질량분율	JIS M 8813	Coal and coke - Determination of constituents
		원소분석기	원소분석기로 Coke의 탄소함량을 분석

다. 배출량(배출계수)의 산정

- (1) 매개변수 개발 순서
 - ① 샘플링
 - ② 촉매재생 공정의 매개변수 연소된 코크의 양(CC)을 산정
 - 재생전 촉매량과 코크의 침착율 측정 및 분석
 - 재생전 촉매량과 코크의 침착율 곱하여 연소된 코크량 산출
- ③ 촉매재생 공정의 매개변수 연소되는 코크의 배출계수(EF)의 개발
 - 코크 중 탄소 질량분율 분석

$$CC=$$
 재생전 촉매량 \times $Coke$ 의 침착율 $EF=Coke$ 의 탄소질량분율 \times 3.664 $3.664=\frac{CO_2$ 의 분자량 C 의 원자량

(2) 산정 예시

가정.

A 업체는 원유정제 공정 중 개질공정에 촉매를 사용하고 있다. 이 촉매에 활성도를 감소시키는 Coke가 침착되어, Coke를 제거하기 위하여 촉매재생 공정을 가동한다. 촉매재생 공정의 재생기에서 연소를 통하여 CO나 CO2 형태로 Coke를 제거하고 있다.

구 분	내 용
산정일자	2014년
재생전 촉매량	100,000,000톤
Coke의 침착율	0.05
Coke의 탄소 질량분율	0.9714

배출계수 산정과정.

$$E_{CO_0} = CC \times EF$$

① 연소된 Coke의 양(*CC*)

CC = 재생전 촉매량 × Coke의 침착율

 $= 100,000,000 \text{ ton } \times 0.0500$

= 5,000,000 ton

② 연소된 Coke의 배출계수(*EF*)

EF = Coke의 탄소질량분율 $\times \frac{CO_2$ 의 분자량 C의 원자량

 $= 0.9714 \times 3.664$

= $3.5592 \text{ tCO}_2/\text{ton-Coke}$

배출량 산정과정.

$$E_{CO_2} = CC \times EF$$

∴ 연소된 Coke의 양(CC)은 **5,000,000 ton**이고, 연소된 Coke의 배출계수(*EF*)는 3.5592 tCO₂/ ton-Coke 이므로, 배출량은 17,796,000 tCO₂ 이다.

Tier 3B

촉매재생 공정에서 공기투입량과 배기가스 중 CO, CO₂의 농도를 측정·분석하여 Tier 3B의 산정식에 적용한다.

가. 배출계수 산정

(1) 배출량 산정식

촉매재생 공정 Tier 3B에 관한 배출량 산정식은 다음과 같다.

$$E_{CO_0} = AR \times CF \times 1.963$$

Eco2 : 촉매재생 공정에서의 CO₂ 배출량(tCO₂)

AR : 공기투입량(천m³)

CF: 배기가스 중 CO, CO₂ 농도비의 합

1.963 : CO₂의 분자량(44.010) / 표준상태(0℃, 1기압)시 몰당 CO₂의 부피(22.414)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
투입량	AR	촉매재생공정으로 투입된 공기량
농도	CF	배기가스의 CO, CO ₂ 의 농도비를 측정·분석하여 합산한 값

(2) 열량의 단위환산계수

촉매재생 공정 Tier 3B의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(3) 가중평균 적용

배출량 산정식에서 배기가스 중의 CO_2 의 농도비(CF)는 각 분석주기별 공기투입량(AR)를 가중치로 적용한다.

구 분	매개변수	적용 가중치
탄소함량	CO, CO ₂ 농도비의 합(<i>CF</i>)	공기투입량(AR)

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항(3)가중평균 참조

(4) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수
투입량	AR	천 m³	소수점 넷째자리에서 반올림하여 소수점 셋째자리 까지 입력
함량비	CF	0과 1사이의 소수	소수점 다섯째자리에서 반올림하여 소수점 넷째 자리까지 입력

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

촉매재생 공정 Tier 3B에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
기체연료 (천연·도시가스)	가스성분, 발열량, 밀도 등	반기 1회 ¹⁾
기체연료 (공정 부생가스)	가스성분, 발열량, 밀도 등	월 1회

주1) 가스공급처가 최소분석주기 이상 분석한 데이터를 제공할 경우, 이를 우선 적용한다.

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 한다.

- 촉매재생 공정에서 Tier 3B의 경우, 재생 공정의 후단을 시료 채취 지점으로 선택

(3) 시료 채취 규격

촉매재생공정에서 시료 채취에 대한 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
배기가스	KS I ISO 10715	천연 가스-샘플링 지침서

(4) 시료 분석 규격

시료 분석 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

시 료	항 목	규 격	규격명
배기	CO, CO ₂	KS I ISO 6974	천연 가스-가스 크로마토그래피에 의한 불확도를 표시한 조성의 측정-제6부:세 개의 모세관 칼럼을 사용한 수소, 헬륨, 산소, 질소, 이산화탄소 및 C1에서 C8까지의 탄화수소의 조성 측정
가스	농도	ASTM D1946	Analysis of Reformed Gas by Gas Chromatography
		UOP 539	REFINERY GAS ANALYSIS BY GAS CHROMATO GRAPHY

다. 배출량(배출계수)의 산정

- (1) 매개변수 개발 순서
 - ① 샘플링
 - ② 촉매재생 공정의 매개변수 공기투입량(AR) 산정
 - 투입 가스의 유량과 투입 시간으로 공기투입량을 산정
 - ③ 촉매재생 공정의 매개변수 배기가스 중의 CO, CO₂ 농도비의 합(CF)의 개발
 - 배기가스에 대한 CO와 CO2의 농도를 측정 및 분석

AR = 공기투입량

CF = 배기가스에 대한 CO와 CO_2 농도비의 합

④ ②~③의 값을 배출계수 산정식에 대입하여 배출계수 개발

(2) 산정 예시

가정.

A 업체는 원유정제 공정 중 개질공정에 촉매를 사용하고 있다. 이 촉매에 활성도를 감소시키는 코크가 침착되어, 코크를 제거하기 위하여 촉매재생 공정을 가동한다. 촉매재생 공정의 재생기에서 연소를 통하여 CO나 CO₂ 형태로 코크를 제거하고 있다.

구 분	내 용
산정일자	2014년
투입공기량	93,056.137 천m ³ /hr
CO의 농도	0.0812
CO₂의 농도	0.1188
온도	15℃
압력	1기 압

배출량 산정 과정.

$$E_{CO_2} = AR \times CF \times 1.963$$

① 공기투입량(AR)

AR = 93,056.137 천m³/hr × 24 hr × 365 day = 815,171.760 천m³/yr

- 온도 보정 : AR = 815,171.760 천 $m^3/yr \times [273.15 / (273.15+15)]$ = 772,737.000 천 m^3/yr

② 배기가스 중의 CO, CO₂ 농도비의 합(CF)

CF = CO의 농도 + CO₂의 농도 = 0.0812 + 0.1188 = 0.2000

배기가스 중의 CO, CO₂ 농도비의 합(CF) 0.2000

∴ 공기투입량(AR)은 **772,737.000 천m³/yr**이고, 배기가스 중의 CO, CO₂ 농도비의 합(CF)은 **0.2000**이므로 연간 총 배출량은 **154,547.400 tCO₂** 이다.

14) 석유화학제품 생산

석유화학 제품 생산에서 배출계수는 산정식이 탄소물질 수지에 기초하고 있으므로 "원료소비량, 일차 생산제품, 이차 생산제품의 탄소 원단위 방식"으로 결정된다.

동 가이드라인은 "메탄올, EDC/VCM, 에틸렌옥사이드(EO), 아크릴로니트릴(AN), 카본블랙(CB)"에 대한 Tier3 계수 개발방법을 제시하고 있다.

석유화학 공정의 배출량 산정은 물질수지 방법론을 적용한다. 공정경계 내로 투입된 물질(원료 등)의 탄소량과 산출되는 물질(제품 등)의 탄소량이 같다고 가정하고 그 차이 값은 경계 내에 축적되거나 화학반응에 의해 생성/소멸된 탄소량으로 본다.

- (1) Input = Output + 축적되거나 화학반응에 의해 생성/소멸 질량
- (2) 원료 등에 포함된 탄소량 = 제품 등에 포함된 탄소량 + 온실가스 배출 탄소량
- :. 원료 등에 포함된 탄소량 제품 등에 포함된 탄소량
 - = 온실가스 배출 탄소량

〈 석유화학제품 생산시설의 배출량 산정(물질수지) 개념도 〉

가. 배출계수 산정

(1) 배출량 산정식

$$E_{iCO2} = \sum_{k} (FA_{i,k} \times EF_k) - \left\{ PP_i \times EF_i + \sum_{j} (SP_{ij} \times EF_{ij}) \right\}$$

i:1차 석유화학생산제품(반응공정의 주생산물을 의미한다)

j: 2차 석유화학생산제품(반응공정의 부생산물을 의미한다)

k: 원료(해당 반응공정으로 투입되는 에틸렌, 프로필렌, 부타디엔, 합성가스, 천연가스 등 원료를 모두 포함한다)

 E_{iCO2} : 석유화학제품(i) 생산으로부터의 CO_2 배출량(t CO_2)

 $FA_{i,k}$: 석유화학제품(i) 생산에서 사용된 원료(k) 소비량(ton)

 EF_k : 원료(k)의 배출계수(tCO_2/t -원료)

 PP_i : 1차 석유화학제품(i) 생산량(ton)

 EF_i : 1차 석유화학제품(i)의 배출계수(tCO₂/t-제품(i))

 $SP_{i,i}$: 2차 석유화학제품(j)의 생산량(ton)

 $EF_{i,j}$: 2차 석유화학제품(j)의 배출계수 $(tCO_2/t$ -제품(j))

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용	
원료 EF_k 원료 (k) 의 배출계수			
EF_i 1차 석유화학제품 (i) 의 배출계수			
세품	제품 $EF_{i,j}$ 2차 석유화학제품 (j) 의 배출계수		
원료	$SSP_{j,k}$	원료 (k) 당 2 차 제품생산물 (j) 의 생산계수	

(2) 배출계수 산정식

석유화학제품 생산의 배출계수 산정식은 다음과 같다.

$$EF_{i,CO_2} = C_i \times 3.664$$

 $EF_{i,CO2}$: 원료 및 제품(i)에 대한 CO_2 배출계수(tCO_2/t -원료 및 제품)

 C_i : 원료 및 제품(i)의 탄소 질량 분율(tC/t-원료 및 제품)

3.664 : CO₂의 분자량(44.010)/C의 원자량(12.011)

(3) 열량의 단위환산계수

석유화학 제품 생산 배출량 산정 식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(4) 가중평균 적용

원료, 제품, 부산물의 배출계수 및 생산계수에 대하여 해당 분석주기의 각 활동자료에 대한 양을 가중치로 적용한다.

구 분	매개변수	적용 가중치
이 크 (1-)	EF_k	원료 소비량(<i>FA_{i,k}</i>)
원료(<i>k</i>)	$SSP_{j,k}$	원료 (k) 당 2 차 제품생산물 (j) 의 생산계수 (FA_k)
제품(j)	EF_i	1 차 석유화학제품 (i) 의 생산량 (PP_i)
	$EF_{i,j}$	2 차 석유화학제품 (j) 의 생산량 $(SP_{i,j})$

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항(3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	유효숫자
생산량 소비량	$FA_{i,k}$, PP_i $SP_{i,j}$, FA_k	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력
배출계수	EF_k , EF_i $EF_{i,j}$, $SSP_{j,k}$	tCO ₂ /t	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

석유화학 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)
생산물	원소함량 등	월 1회

(2) 시료 채취 지점

① 메탄올 반응시설

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 대표적인 지점은 다음과 같다.

② EDC/VCM 반응시설

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 대표적인 지점은 다음과 같다.

③ 에틸렌옥사이드(EO) 반응시설

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며. 대표적인 지점은 다음과 같다.

127

④ 아크로니트릴(AN) 반응시설

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 대표적인 지점은 다음과 같다.

시 료	위치	시료 채취 지점		
원료	1)~4)	• 원료투입구(①프로필렌, ②암모니아, ③촉매, ④황산)		
	5	• 황산암모늄 저장탱크		
제품	6	• 아세토니트릴(CH3CN) 저장탱크		
제품	7	• 아크로니트릴(AN) 저장탱크		
	8	• 시안화 수소(HCN) 저장탱크		
부산물	9	• CO ₂		
	촉매 원료(R3) 황산 원료(R4)	2 1 황산암모늄 제품 (P1) 3 막모산화 반응기 (Propylene ammoxidation) 4 내각기 (Quench) 황산암모늄 결정화(비촉매) 학산암모늄 결정화(희촉매) Vent 기간 (Recovery) 6 CH₃CN 제품(P2) HCN 저장시설 7 8 AN제품 (P3) HCN제품 (P4) AN제품 (P4) AN제품 (P4) AN제품 (P4)		

⑤ 카본블랙(CB) 반응시설

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 대표적인 지점은 다음과 같다.

시 료	위치	시료 채취 지점		
원료	1)	• 원료투입구(①유연탄 등)		
연료	2	• LNG 등 보조연료		
제품	3	• 카본블랙 제품 저장탱크		
부생가스	4,6	• 부생가스 이송 배관		
부산물	5	• CO ₂		

〈그림 21〉 카본블랙(CB) 반응시설 시료 채취 지점

(3) 시료 채취 규격

석유화학 생산에서 시료 채취에 대한 대표적인 규격은 다음과 같다.

시 료	규 격 규격명			
제품	ASTM D4057-06	Standard Practice for Manual Sampling of Petrol eum and Petroleum Products		
	KS M 2001	원유 및 석유 제품 시료 채취 방법		
원료	ASTM D2234	Standard Practice for Collection of a Gross Sam ple of Coal		
	KS E ISO 1988	무연탄의 샘플링 분석		
	KS I ISO 10715	천연 가스-샘플링 지침서		
	ASTM F-307	Standard Practice for Sampling Pressurized Gas for Gas Analysis, gas analysis, gas sampling, pressurized gas		
	ASTMD5503	Standard Practice for Natural Gas Sample-Handling and Conditioning Systems for Pipeline Instrumentation		
부생가스	KS I ISO 16017-1	실내, 대기 및 작업장 공기-흡착 튜브/열 탈착/ 모세관 가스 크로마토그래피에 의한 휘발성 유기 화합물의 샘플링과 분석		
	KS M ISO 2001	원유 및 석유 제품 시료 채취 방법		
	KS M ISO 8943	냉각 경질 탄화수소유-액화 천연 가스 시료 채취-연 속법		
	KS M ISO 7382	공업용 에틸렌-액상 및 기체상 시료 채취		

(4) 시료 분석 규격

시료 분석 규격은 다음과 같다.

시 료	규 격	규격명		
제품	KS M 2418	석유 제품 및 윤활제의 탄소, 수소 및 질소의 기기 분석시험방법		
	KS M ISO 10370	석유제품 잔류 탄소분 시험방법 마이크로법		
	KS E 3707	석탄류 및 코크스류의 발열량 측정 방법		
원료	KS M 2418	석유 제품 및 윤활제의 탄소, 수소 및 질소의 기기 분석시험방법		
	KS M 2085	액화 석유제품-탄화수소분 시험 방법-가스 크로마토그래프법		
	KS I ISO 6976 ASTM D3588	천연가스-가스 조성을 이용한 열량값(발열량), 밀도, 상대밀도 및 웨버 지수 계산		
	KS M ISO 2077	액화 석유 가스의 탄화수소 성분 시험방법(가스 크로마토그래프법)		
	KS M ISO 7382	공업용 에틸렌-액상 및 기체상 시료 채취		
부생가스	KS M ISO 7941	상업용 프로판 및 부탄-가스 크로마토그래피에 의한 조성 분석		
	KS I ISO 6974	천연 가스-가스 크로마토그래피에 의한 불확도를 표시한 조성의 측정-제6부:세 개의 모세관 칼럼을 사용한 수소, 헬륨, 산소, 질소, 이산화탄소 및 C1에서 C8까지의 탄화수소의 조성 측정		
	KS I ISO 6976	천연가스-가스 조성을 이용한 열량값(발열량), 밀도, 상대밀도 및 웨버 지수 계산		
	KS M ISO 8943	냉각 경질 탄화수소유-액화 천연 가스 시료 채취 -연속법		

다. 배출계수 산정

- (1) 매개변수 개발 순서
 - ① 샘플링
 - ② 원료의 탄소 질량분율 및 제품의 탄소 질량분율 분석
 - ③ 원료의 탄소 질량분율 결정
 - ④ 제품 생산물의 생산계수 결정
- (2) 산정 예시

가정.

업체 A사는 아크릴 섬유제조에 사용되는 아크릴로니트릴 생산시설을 보유하고 있다. 1차 제품으로 아크릴로니트릴을 생산하며, 발생되는 부산물을 활용하여 2차 제품을 생산한다.

이 때, 반응과정에서 VOCs(Volatile Organic Compounds)라고 불리는 폐가스가 발생하며, 환경적인 이유로 인하여 VOCs 가스를 소각하여 대기 중에 배출한다.(폐가스소각 시설은 해당 시설(AN 생산 시설)의 폐가스 소각용으로만 사용되며 타 시설과 공유하지 않는다.) 아크릴로니트릴(AN) 생산 공정은 VOCs 가스를 소각하는 과정에서 온실가스(CO₂)가 배출된다.

물질수지 방법을 적용하기 위해서는 원료가 투입되는 시점에서부터 탄소가 포함된 최종 제품이 산출되는 지점까지의 탄소 흐름을 추적하기 위한 경계설정이 필요하다. 아래 <그림>과 같이 페가스 소각시설과 그 외 제조 시설까지를 경계로 설정할 수 있다.

≫ 아크릴로니트릴(AN) 생산시설 배출량 산정을 위한 경계설정

- 원료소비량 : 100,000 ton프로필레/vr
- 원료의 탄소 질량분율: 0.8 ton-C/ton 프로필렌
- 1차 석유화학제품 생산량 : 90,000 ton_{AN}/vr
- 1차 석유화학제품의 탄소 질량분율: 0.7 ton-C/ton_{AN}
- 2차 석유화학제품(A)의 생산량 : 10,000 ton_A/yr
- 2차 석유화학제품(A)의 탄소 질량분율: 0.5 ton-C/ton_A
- 2차 석유화학제품(B)의 생산량 : 8,000 ton_B/yr
- 2차 석유화학제품(B)의 탄소 질량분율: 0.3 ton-C/tong

배출량 산정 과정.

$$E_{iCO2} = \sum_k (FA_{i,k} \times EF_k) - \left\{ PP_i \times EF_i + \sum_j (SP_{ij} \times EF_{ij}) \right\}$$
 ① ② ③, ④
원료의 탄소량 제품의 탄소량

① 원료의 탄소량

- = 1차 석유화학제품 생산에 사용된 원료소비량 × 원료(k)의 배출계수
- = $100,000(ton_{\Xi \Xi \Xi \Xi \Xi}/yr) \times 0.8(ton-C/ton_{\Xi \Xi \Xi \Xi}) \times 3.664 = 293,120 ton-CO₂$

② 1차 석유화학제품의 탄소량

- = 1차 석유화학제품 생산량 × 1차 석유화학제품의 배출계수
- $= 90,000(ton_{AN}/yr) \times 0.7(ton-C/ton_{AN}) \times 3.664 = 230,832 ton-CO₂$

③ 2차 석유화학제품(A)의 탄소량

- = 2차 석유화학제품 생산량 × 2차 석유화학제품의 배출계수
- = $10,000(ton_A/yr) \times 0.5(ton-C/ton_A) \times 3.664 = 18,320 ton-CO_2$

④ 2차 석유화학제품(B)의 탄소량

- = 2차 석유화학제품 생산량 × 2차 석유화학제품의 배출계수
- $= 8.000(ton_B/vr) \times 0.3(ton-C/ton_B) \times 3.664 = 8.794 ton-CO_2$

$$E_{iCO2} = \text{ (2 + 3 + 4)}$$

따라서 아크릴로니트릴(AN) 생산시설의 온실가스 배출량은 35.174 tCO₂ 이다.

15 불소화합물 생산

Tier 3C〈공정 내 측정법〉

가. 배출계수 산정

(1) 배출량 산정식

지침의 불소화합물 생산에 관한 배출량 산정식은 다음과 같다.

$$E_{HFC-23} = (C \times P \times t - R) \times 10^{-3}$$

E_{HFC-23} : HFC-23배출량(tGHG)

C : 반응조 안의 HFC-23 농도(kgHFC-23/kg-HCFC-22생산량)

P: HCFC-22 생산량(kg)

t: HFC-23이 실제로 배기되는 시간 분율(0에서 1사이의 소수)

R : 회수한 HFC-23의 양(kg)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용	
배출량	С	 반응공정 안의 HFC-23 농도 HCFC-22 생산량(kg), HFC-23(kg)는 측정불확도 ±2.5% 이내의 자료 사용 반응공정 안의 농도 값은 반응공정->분리공정으로 결정한 시점의 농도를 적용하여야 함. 	
생산량	P	• HCFC-22 생산량(kg)는 측정불확도 ±2.5% 이내의 자료 사용	
시간 분율	t	• HFC-23이 실제로 배기되는 시간 분율(열분해로 투입 포함). • HFC-23이 실제 배출되는 배출구의 운영시간을 관리하여야 함 • HFC-22 총 운전 시간 대비 HFC-23이 배출되는 배출구 운전 시간를 통해 시간 비율을 구하는 것으로 함	
회수량	R	화수되거나 파괴되는 HFC-23의 양 열분해를 통해 파괴되는 농도는 측정을 통해 계산 [R= 열분해 시설 유입 HFC-23(kg=농도*유량) - 최종 배출구를 통해 배출되는 HFC-23 (kg=농도*유량)]	

[※] 위의 방법은 HFC-22의 생산량과 HFC-23의 수율을 토대로 계산하는 방식임.

(2) 열량의 단위환산계수

불소화합물 생산의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(3) 가중평균 적용

배출량 산정식에 적용되는 HFC-23의 농도는 HCFC-22의 생산량을 가중치로 적용한다.

구 분	매개변수	적용 가중치
HFC-23	HFC-23 농도	HCFC-22 생산량

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항(3)가중평균 참조

(4) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분	매개변수	단 위	소수점 자릿수
생산량 회수량	P, R	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력
매개변수	С	kgHFC-23/kg-gas	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력
	t	0과 1사이의 소수	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기	
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)	
생산물	원소함량 등	월 1회	

(2) 시료 채취 지점

불소화합물의 경우 농도의 시료 채취 지점은 다음과 같이 수행한다.

(3) 시료 채취 규격

국제적으로 공인된 시료채취 규격을 적용하여야 한다.

공인된 시료채취 규격이 없을 경우, 기존에 사업장에서 사용하고 있는 시료채취 규격을 제시하고 이를 승인 받은 후 시료 채취 규격으로 사용하는 것으로 한다.

(4) 시료 분석 규격

국제적으로 공인된 시료분석 규격을 적용하여야 한다.

공인된 시료분석 규격이 없을 경우, 기존에 사업장에서 사용하고 있는 시료분석 규격을 제시하고 이를 승인 받은 후 시료 분석 규격으로 사용하는 것으로 한다.

16 철강 생산

Tier 3 〈물질수지법〉

코크스로, 소결로, 고로, 전로, 전기로 등 공정별로 분리하여 배출량을 산정하고, 배출량이 중복 산정되거나 누락되지 않도록 하여야 한다.

일관제철시설의 경우, 관련된 공정들을 하나의 배출시설 경계로 설정하여 배출량을 보고할 수 있다.

가. 배출계수 산정

(1) 배출량 산정식

철강생산에 관한 배출량 산정식은 다음과 같다.

$$E_{f} = \Sigma(Q_{i} \times EF_{i}) - \Sigma(Q_{p} \times EF_{p}) - \Sigma(Q_{e} \times EF_{e})$$

 E_f : 공정에서의 온실가스(f) 배출량(tCO₂)

 Q_i : 공정에 투입되는 각 연료 및 원료(i)의 사용량(ton)

 Q_n : 공정에서 생산되는 각 제품(p)의 생산량(ton)

 Q_e : 공정에서 배출되는 각 부산물(e)의 반출량(ton)

EF_X: X 물질의 배출계수(tCO₂/t)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
	EF_i	배출시설에 투입되는 각 연료 및 원료(i)에 대한 탄소 질량분율을 측정·분석값에 3.664(CO ₂ /C)의 값을 곱하여 개발
연료 및 원료(i)	Q_i	배출시설에 투입되는 각 연료 및 원료(i)의 양 •주원료: 석탄류(환원제), 철광석, 코크스, 소결광, 용선, 합금철 등 •부원료: 탄소함유물, 탄산염, 스크랩, 가탄제, 탈류제, 기타 첨가물 등

구 분	매개변수	내 용		
기 프 (a)	EF_p	배출시설에서 생산되는 각 제품(p)에 대한 탄소 질량분율을 측정·분석값에 $3.664(CO_2/C)$ 의 값을 곱하여 개발		
제품(p)	Q_p	배출시설에서 생산되는 각 제품(p)의 양 • 제품 : 코크스, 소결광, 용선, 조강, 조경유, 타르 등		
부산물 (e)	EF_e	배출시설의 경계 밖으로 반출되는 각 부산물(e)에 대한 탄소 질량분율과 농도값에 3.664(CO ₂ /C)의 값을 곱하여 개발		
	Q_e	배출시설의 경계 밖으로 반출되는 각 부산물(e)의 양 • 부산물 : 슬래그, 부생가스, 폐기물 등		

(2) 열량의 단위환산계수

철강생산의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(3) 가중평균 적용

연료 및 원료, 제품, 부산물의 배출계수에 대하여 해당 분석주기의 활동자료에 대한 양을 가중치로 적용한다.

구 분	매개변수	적용 가중치
연료 및 원료 (i)	배출계수(<i>EF_i</i>)	사용량 (Q_i)
제품(p)	배출계수(<i>EF_p</i>)	생산량 (Q_p)
부산물(e)	배출계수(<i>EF_e</i>)	반출량 (Q_e)

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항(3)가중평균 참조

(4) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분		매개변수	단 위	소수점 자릿수
	연료 및 원료(i)	Q_i	ton	
활동자료	제품(p)	Q_p	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력
	부산물(e)	Q_e	ton	
	연료 및 원료(i)	EF_i	tCO ₂ /t	
배출계수	제품(p)	EF_p	tCO ₂ /t	소수점 다섯째자리에서 반올림 하여 소수점 넷째자리까지 입력
	부산물(e)	EF_e	tCO ₂ /t	

나. 시료 채취 및 시료 분석

시료 채취와 분석은 활동자료 측정 때와 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

철강 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료		분석 항목	최소 분석 주기
고체 연료		원소함량, 발열량, 수분, 회(Ash) 함량	월 1회 또는 연료 입하시 (더욱 짧은 주기로 분석한다)
액체 연료		원소함량, 발열량, 밀도 등	분기 1회 또는 연료 입하시 (더욱 짧은 주기로 분석한다)
기체 연료	천연가스, 도시가스	가스성분, 발열량, 밀도 등	반기 1회 ¹⁾
	공정 부생가스	가스성분, 발열량, 밀도 등	월 1회
폐기물 연료	고체	원소함량, 발열량, 수분, 회(Ash) 함량	분기 1회 또는 폐기물 연료 매 5천톤 입하시 (더욱 짧은 주기로 분석한다)

연료 및 원료		분석 항목	최소 분석 주기
	액체	원소함량, 발열량, 밀도 등	분기 1회 또는 폐기물 연료 매 1만톤 입하시 (더욱 짧은 주기로 분석한다)
	기체	가스성분, 발열량, 밀도 등	월 1회 또는 폐기물 연료 매 1만톤 입하시 (더욱 짧은 주기로 분석한다)
탄산염 원료		광석 중 탄산염 성분, 원소함량 등	월 1회 또는 원료 매 5만톤 입하시 (더욱 짧은 주기로 분석한다)
기타 원료		원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)
생산물		원소함량 등	월 1회

비고) 고체연료·원료가 수시 반입될 경우 월 1회로, 액체연료·폐기물 연료가 수시 반입될 경우 분기 1회로 분 석할 수 있다.

- 주1) 가스공급처가 최소분석주기 이상 분석한 데이터를 제공할 경우, 이를 우선 적용한다.
- * 투입되는 물질(철스크랩 등)의 탄소과 생성되는 물질(용선 등)의 성분의 변동이 없는 경우 생성물질의 성분 은 투입물질의 성분분석 결과를 동일하게 적용할 수 있다.

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며. 대표적인 지점은 다음과 같다.

(3) 시료 채취 규격

철강생산에서 시료 채취에 대한 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
석탄 및 코크스	KS E ISO 13909-1~8	하드콜 및 코크스-기계식 시료채취
석유 제품	KS M 2001	원유 및 석유 제품 시료 채취 방법
부생가스	KS I ISO 10715	천연 가스-샘플링 지침서
철 및 강	KS D ISO 14284	철 및 강 - 화학조성을 측정하기 위한 샘플링 및 시료제조
탄산염	KS E 3605	분괴 혼합물-샘플링 방법 통칙
폐기물 KS I 5201		산업 폐기물의 시료 채취 방법

(4) 시료 분석 규격

철강생산에서 시료 분석 규격은 각 시료의 특성에 맞게 결정이 되어야 하며, 대표적인 규격은 다음과 같다.

시 료	시료 분석 규격	규격명
석탄 및 코크스	ASTM D5373	Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal
석유 제품	KS M 2418	석유 제품 및 윤활제의 탄소, 수소 및 질소의 기기 분석시험방법
부생가스	KS I ISO 6974	천연 가스-가스 크로마토그래피에 의한 불확도를 표시한 조성의 측정
철 및 강	KS D 1804	철 및 강의 탄소 분석방법
탄산염	KS E 3075	석회석과 백운석의 형광 엑스선 분석방법
폐기물	시료 특성에 따름	_

다. 배출계수의 산정

(1) 매개변수 개발 순서

철강생산의 매개변수인 원료, 제품, 부산물의 배출계수(EFi, EFp, EFe) 개발은 다음의 순서를 따른다.

① 샘플링

- ② 원료, 제품, 부산물의 탄소 질량분율을 측정·분석
- ③ ②에서 구한 탄소 질량분율을 구한 후, CO2의 분자량과 C의 원자량의 비 (3.664)를 곱하여 산정

$$EF =$$
 시료의 탄소질량분율 $\times \frac{CO_2$ 의 분자량 C 의 원자량

(2) 산정 예시

가정.

A 업체는 일관제철공정으로 철강을 생산하고 있으며, 각 원료·제품·부산물의 활동 자료와 가중평균된 탄소 질량분율은 다음과 같다.(재고의 증감은 없음)

구 분	물 질	활동자료(ton)	탄소 질량분율 (0~1사이 소수)
	유연탄	1,000,000.000	0.7431
	PCI탄	100,000.000	0.7525
	석회석	300,000.000	0.1200
원료	백운석	10,000.000	0.1303
전표	합금철	2,000.000	0.0458
	가탄제	1,000.000	0.8745
	탈류제	2,000.000	0.0852
	전극봉	200.000	0.9804

구 분	물 질	활동자료(ton)	탄소 질량분율 (0~1사이 소수)
	코크스	9,000.000	0.8992
	콜타르	30,000.000	0.8587
제품	조경유	10,000.000	0.9014
	강	2,000,000.000	0.0065
	철·스크랩	200,000.000	0.0065
	BFG	500,000.000	0.1751
нлп	COG	30,000.000	0.4686
부산물 	LDG	10,000.000	0.2972
	폐수	30,000.000m ³	100ppm

B 소성시설 배출계수 산정과정.

① 원료(i)의 배출계수(EF_i)

 $EF_{\mathcal{H} \oplus \mathcal{H}} = 0.7431 \times 3.664 = 2.7227 \ \mathrm{tCO_2/t-_{\mathrm{H} \oplus \mathrm{H}}}$ $EF_{PCI \oplus} = 0.7525 \times 3.664 = 2.7572 \ \mathrm{tCO_2/t-_{\mathrm{H} \oplus \mathrm{H}}}$ $EF_{\mathcal{A} \oplus \mathcal{A}} = 0.1200 \times 3.664 = 0.4397 \ \mathrm{tCO_2/t-_{\mathcal{A} \oplus \mathcal{A}}}$ $EF_{\mathcal{H} \oplus \mathcal{A}} = 0.1303 \times 3.664 = 0.4774 \ \mathrm{tCO_2/t-_{\mathcal{H} \oplus \mathcal{A}}}$ $EF_{\mathcal{H} \oplus \mathcal{A}} = 0.0458 \times 3.664 = 0.1678 \ \mathrm{tCO_2/t-_{\mathcal{H} \oplus \mathcal{A}}}$ $EF_{\mathcal{H} \oplus \mathcal{A}} = 0.8745 \times 3.664 = 3.2042 \ \mathrm{tCO_2/t-_{\mathcal{H} \oplus \mathcal{A}}}$ $EF_{\mathcal{H} \oplus \mathcal{A}} = 0.0852 \times 3.664 = 0.3122 \ \mathrm{tCO_2/t-_{\mathcal{H} \oplus \mathcal{A}}}$ $EF_{\mathcal{A} \oplus \mathcal{A}} = 0.9804 \times 3.664 = 3.5922 \ \mathrm{tCO_2/t-_{\mathcal{A} \oplus \mathcal{A}}}$

② 제품(p)의 배출계수(EF_p)

③ 부산물(e)의 배출계수(EF_e)

 $EF_{BFG} = 0.1751 \times 3.664 = 0.6416 \text{ tCO}_2/\text{t-}_{BFG}$ $EF_{COG} = 0.4686 \times 3.664 = 1.7170 \text{ tCO}_2/\text{t-}_{COG}$ $EF_{LDG} = 0.2972 \times 3.664 = 1.0890 \text{ tCO}_2/\text{t-}_{LDG}$ $EF_{M\uparrow} = 0.0001 \times 3.664 = 0.0004 \text{ tCO}_2/\text{m}^3$ - $_{M\uparrow}$ * $3.664 = \text{CO}_2$ 의 분자량(44.010) / C의 원자량(12.011)

17) 합금철 생산

합금철 제조공정에서의 CO₂ 배출은 코크스 같은 환원제의 야금환원(metallurgical reduction) 과정 및 전극봉 사용에 의해서 발생한다. 전기아크로(EAF)를 사용하는 경우 모든 합금철 생산에서 CO₂가 발생하며, 실리콘(Si)계 합금철(ferrosilicon)을 생산 할 경우에는 CH₄가 발생한다.

가. 배출계수 산정

(1) 배출량 산정식

합금철 생산에 관한 배출량 산정식은 다음과 같다.

$$E_{CO2} = \sum (M_i \times EF_i) - \sum (M_p \times EF_p) - \sum (M_{npos} \times EF_{npos})$$

 E_{CO2} : 합금철 생산에 따른 CO_2 배출량(tCO_2)

 M_i : 원료(i)의 투입량(ton)

 EF_i : 투입되는 원료(i)의 배출계수(tCO₂/t-원료)

 M_n : 제품(p)의 생산량(ton)

 EF_p : 제품(p)의 탄소 질량분율(tCO₂/t-제품)

*M*_{npos} : 부산물(non-product outgoing stream)의 외부 반출량(ton) EF_{npos} : 외부로 반출되는 부산물의 탄소 질량분율 $(tCO_2/t-$ 비제품)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	설 명 내 용
원료(i)	M_i	생산에 투입되는 원료의 양을 측정한 값 •원료 : 환원제, 원석, 슬래그 형성물질, 전극봉, 각종 첨가물 등
	EF_i	생산에 투입되는 원료에 대한 탄소 질량분율을 측정·분석 값에 CO ₂ /C의 값을 곱하여 개발
제품(p)	M_p	배출시설에서 생산되는 제품의 양을 측정한 값

구 분	매개변수	설 명 내 용
제품(p)	EF_p	배출시설에서 생산되는 제품에 대한 탄소 질량분율을 측정·분석값에 CO ₂ /C의 값을 곱하여 개발
부산물	M_{npos}	배출시설 외부로 반출되는 부산물(슬래그 등)의 양을 측정한 값
(npos)	EF_{npos}	배출시설 외부로 반출되는 부산물에 대한 탄소 질량분율 측정·분석값에 CO ₂ /C의 값을 곱하여 개발

(2) 열량의 단위환산계수

합금철 생산의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(3) 가중평균 적용

원료, 제품, 외부 반출 부산물의 배출계수에 대하여 해당 분석주기의 활동자료에 대한 양을 가중치로 적용한다.

구 분	가중평균 대상	적용 가중치
원료(i)	배출계수(<i>EF_i</i>)	투입량 (M_i)
생산물(p)	배출계수(EF_p)	생산량 (M_p)
부산물(npos)	배출계수(<i>EF_{npos}</i>)	반출량 (M_{npos})

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(4) 단위 및 소수점 자릿수

산정식의 중간 계산과정에서는 유효자리에 가공없이 모든 수치를 적용하여 계산하나, 산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 한다.

	구 분	매개변수	단 위	소수점 자릿수
활동 자료	원료	M_i	ton	
	제품	M_p	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력
	부산물	M_{npos}	ton	
	원료	EF_i	tCO ₂ /t	
배출 계수	제품	EF_p	tCO ₂ /t	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력
	부산물	EF_{npos}	tCO ₂ /t	

나. 시료 채취 및 시료 분석

시료 채취와 분석은 활동자료 측정 때와 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

합금철 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료 분석 항목		최소 분석 주기
탄산염 원료	광석 중 탄산염 성분, 탄소 질량분율 등	월 1회 또는 원료 매 5만톤 입하시 (더욱 짧은 주기로 분석한다)
기타 원료 원소함량 등		월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)
생산물 원소함량 등		월 1회

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 각 시료별 대표적인 지점은 다음과 같다.

시 료	번호	시료 채취 지점			
원료(i)	①, ②, ③ 하역 또는 공정 입하 후 배출시설 투입 이전 등				
제품(p)	4	고려 ㅇ 기爿 ㅣㅇ ㅎ ㅠ느 귀차테ㅋ ㄷ			
부산물(npos)	5	공정을 거쳐 나온 후 또는 저장탱크 등			
금속광석 ② 	환원제 탄소전극봉				
	〈그림 24〉 합금철 생산시설 시료 채취 지점				

(3) 시료 채취 규격

합금철 생산에서 시료 채취에 대한 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
	KS E ISO 13909-1~8	하드콜 및 코크스-기계식 시료채취
원료(i)	KS E 3908	비철금속 광석의 샘플링 시료 조제 및 수분결정방법
	KS E 3605	분괴 혼합물-샘플링 방법 통칙
제품(p)	KS D 0006	훼로아로이의 샘플링 방법 통칙
부산물(npos)	KS I 5201	산업 폐기물의 시료 채취 방법

(4) 시료 분석 규격

합금철 생산에서 시료 분석 규격은 각 시료의 특성에 맞게 결정이 되어야 하며, 대표적인 규격은 다음과 같다.

시 료	규 격	규격명	
원료(i)	ASTM D5373	Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal	
	KS D 1780	금속 재료의 탄소 정량 방법 통칙	
	KS E 3071	석회석의 화학분석 방법	
기 포 (n)	KS E 3075	석회석과 백운석의 형광 엑스선 분석방법	
제품(p)	KS D 1816	페로알로이의 분석 방법 통칙	
부산물(npos)	원소분석기	원소분석기에 의한 분석	

다. 배출계수의 산정

(1) 매개변수별 개발 순서

합금철 생산의 매개변수인 원료, 제품, 비제품의 배출계수(EFi, EFp, EFnpos)의 개발은 다음의 순서를 따른다.

- ① 샘플링
- ② 샘플링한 시료를 적절한 규격으로 탄소 질량분율을 측정·분석
- ③ ②에서 구한 탄소 질량분율을 구한후, CO₂의 분자량과 C의 원자량의 비(3.664)를 곱하여 산정

$$EF =$$
 시료의 탄소질량분율 $\times \frac{CO_2$ 의 분자량 C 의 원자량

(2) 산정 예시

가정.

A 업체는 전기아크로로 합금철을 생산하고 있으며, 각 원료·제품·비제품의 활동자료와 가중평균된 탄소 질량분율은 다음과 같다.

구 분	시 료	활동자료(ton)	탄소 질량분율 (0과 1사이의 소수)
	코크스	60,000.000	0.8992
	원료A	150,000.000	0.0095
	원료B	100,000.000	0.0201
이 큰 (;)	원료C	50,000.000	0.1043
원료(i)	원료D	2,000.000	0.0628
	원료E	1,000.000	0.0056
	백운석	10,000.000	0.1303
	전극봉	400.000	0.9804
	제품A	20,000.000	0.0005
생산물(p)	제품B	30,000.000	0.0177
	제품C	100,000.000	0.0679
부산물(npos)	슬래그	15,000.000	0.0005

산정예시.

① 원료(i)의 배출계수(EF_i)

 $EF_{_{_{\!\!6},\!\!6,\!\!6,\!\!4}}=0.8992$ \times 3.664 = 3.2947 $tCO_2/t-_{_{\!\!6},\!\!6,\!\!4}$ $EF_{_{\!6},\!\!6,\!\!6,\!\!4}=0.0095$ \times 3.664 = 0.0348 $tCO_2/t-_{_{\!6},\!\!6,\!\!4}$ $EF_{_{\!6},\!\!6,\!\!6}=0.0201$ \times 3.664 = 0.0736 $tCO_2/t-_{_{\!6},\!\!6,\!\!6}$ $EF_{_{\!6},\!\!6,\!\!6}=0.1043$ \times 3.664 = 0.3822 $tCO_2/t-_{_{\!6},\!\!6,\!\!6}$ $EF_{_{\!6},\!\!6,\!\!6}=0.0628$ \times 3.664 = 0.2301 $tCO_2/t-_{_{\!6},\!\!6,\!\!6}$ $EF_{_{\!6},\!\!6,\!\!6}=0.0056$ \times 3.664 = 0.0205 $tCO_2/t-_{_{\!6},\!\!6,\!\!6}$ $EF_{_{\!6},\!\!6,\!\!6}=0.1303$ \times 3.664 = 0.4774 $tCO_2/t-_{_{\!6},\!\!6,\!\!6}$ $EF_{_{\!6},\!\!6,\!\!6}=0.9804$ \times 3.664 = 3.5922 $tCO_2/t-_{_{\!6},\!\!6,\!\!6}$

② 제품(p)의 배출계수 (EF_p)

 $EF_{M \not\equiv A} = 0.0005 \times 3.664 = 0.0018 \text{ tCO}_2/\text{t}-_{M \not\equiv A}$ $EF_{M \not\equiv B} = 0.0177 \times 3.664 = 0.0649 \text{ tCO}_2/\text{t}-_{M \not\equiv B}$ $EF_{M \not\equiv C} = 0.0679 \times 3.664 = 0.2488 \text{ tCO}_2/\text{t}-_{M \not\equiv C}$

③ 비제품(npos)의 배출계수(EF_{npos})

 $EF_{ \pm 31.7} = 0.0005 \times 3.664 = 0.0018 \text{ tCO}_2/\text{t}$ - 슬래그

18) 아연 생산

아연 생산에서의 CO₂배출은 1차 생산 공정과 2차 생산 공정으로 구분될 수 있다. 1차 생산 공정은 크게 전열 증류법으로 불리는 야금 공정, ISF(Imperial Smelting Furnace)를 사용하는 건식 야금 공정, 습식 제련기술이 사용된 전해법 공정에서 CO₂가 발생한다. 2차 아연 생산 공정에서도 1차 아연 생산공정과 동일하게 사용되는 환원제의 종류 및 아연을 광물로부터 증류시키는 과정에서 CO₂가 발생한다.

가. 배출계수 산정

(1) 배출량 산정식

아연 생산에 관한 배출량 산정식은 다음과 같다.

$$E_{C\!O\!2} = \sum (Z_{\!\scriptscriptstyle i}\!\times\! E\!F_{\!\scriptscriptstyle i}) - \sum (Z_{\!\scriptscriptstyle o}\!\times\! E\!F_{\!\scriptscriptstyle o})$$

 E_{CO2} : 아연 생산으로 인한 CO_2 배출량(tCO_2)

 Z_i : 아연 생산을 위하여 투입된 원료(i)의 양(ton)

 EF_i : 투입된 원료의 배출계수(tCO_2/t -원료)

 Z_o : 아연 생산에 의하여 생산된 생산물(o)의 양(ton)

 EF_o : 배출된 생산물의 배출계수(tCO_2/t -생산물)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개 변수	내 용
	EF_i	배출시설에 투입되는 각 원료(i)에 대한 탄소 질량분율을 측정·분석값에 CO ₂ /C의 값을 곱하여 개발
원료(i)	Z_i	배출시설에 투입되는 각 원료(i)의 양 • 아연함유물질, 용융제, 탄소전극, 탄소계 물질, 잔류물, 환원제, 탄산염류, 기타 부원료 등
<i>EF。</i> 생산물 (o)		배출시설에서 배출되는 각 생산물(o)에 대한 탄소 질량분율 측정·분석값에 CO ₂ /C의 값을 곱하여 개발
	Z_o	배출시설에서 생산되는 각 생산물(o)의 양

(2) 열량의 단위환산계수

아연 생산의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(3) 가중평균 적용

투입되는 원료와 배출되는 생산물의 배출계수에 대하여 해당 분석주기의 활동자료에 대한 양을 가중치로 적용한다.

구 분	매개변수	적용 가중치
원료(i)	EF_i (투입된 원료의 배출계수)	Z_i (투입된 원료)
생산물(o)	EF_o (배출된 생산물의 배출계수)	Z_o (배출된 생산물)

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(4) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분		매개변수	단 위	소수점 자릿수	
활동자료	원료(i) Z i ton 소수점 넷제		소수점 넷째자리에서 반올림하여 소		
활 당사묘	생산물(o)	Z_o	ton	수점 셋째자리까지 입력	
베츠ᅰ스	원료(i)	EF_i	tCO ₂ /t	소수점 다섯째자리에서 반올림하여	
배출계수	생산물(o)	EF_o	tCO ₂ /t	소수점 넷째자리까지 입력	

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

아연 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
탄산염 원료	광석 중 탄산염 성분, 원소함량 등	월 1회 또는 원료 매 5만톤 입하시 (더욱 짧은 주기로 분석한다)
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)
제품	원소함량 등	월1회

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 대표적인 지점은 다음과 같다.

구 분	위 치	시료 채취 지점	
	①, ②, ③, ④	하역 또는 공정 입하 후 배출시설 투입 이전 등	
원료(i)	5	공정을 거쳐 나온 후 또는 저장탱크 등	
	6, 7, 8	하역 또는 공정 입하 후 배출시설 투입 이전 등	
생산물(o)	9, 10, 11, 12	공정을 거쳐 나온 후 또는 저장탱크 등	
전해 미액 (zinc spent) Flux Solve So			

(3) 시료 채취 규격

아연 생산에서 시료 채취에 대한 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
아연함유물질	KS D ISO 20081	아연 및 아연 합금 -시료 채취 방법-
자한함ㅠ물설 잔류물	KS E ISO 12743	구리, 납, 아연 및 니켈 정광-금속과 수 분량의 정량을 위한 샘플링 절차
용융제 탄산염류	KS E 3605	분괴 혼합물-샘플링 방법 통칙
탄소계물질 환원제	KS E ISO 13909-1~8	하드콜 및 코크스-기계식 시료채취
탄소전극 기타 부원료	시료의 특성에 따름	-

(4) 시료 분석 규격

아연 생산에서 시료 분석 규격은 각 시료의 특성에 맞게 결정이 되어야 하며, 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
아연함유물질 잔류물	KS D 1780	금속 재료의 탄소 정량 방법 통칙
용용제 탄산염류	KS E 3075	석회석과 백운석의 형광 엑스선 분석방법
탄소계물질 환원제	ASTM D5373	Standard Test Methods for Instrumental Det ermination of Carbon, Hydrogen, and Nitrog en in Laboratory Samples of Coal
탄소전극 기타 부원료	시료의 특성에 따름	-

다. 배출계수의 산정

(1) 매개변수 개발 순서

아연생산의 매개변수인 투입 원료의 배출계수(EF_i)와 배출된 생산물의 배출계수 (EF_i) 의 개발은 다음의 순서를 따른다.

① 샘플링

- ② 샘플링한 시료를 적절한 규격으로 탄소 질량분율을 측정·분석
- ③ ②에서 구한 탄소 질량분율 값에 CO₂의 분자량과 C의 원자량의 비(3.664)를 곱 하여 산정

$$EF_x = x$$
의 탄소질량분율 $imes \frac{CO_2$ 의 분자량 C 의 원자량

(2) 산정 예시

가정.

A 업체는 용융로와 휘발(Fuming)공정을 통하여 아연을 생산하고 있으며, 각 시료의 활동자료와 가중평균된 탄소 질량분율은 다음과 같다.

구 분	시 료	활동자료(ton)	탄소 질량분율 (0과 1사이의 소수)
	아연함유물질	10,000.000	0.0070
	용융제(Flux materials)	15,000.000	0.1202
	탄소전극	400.000	0.9804
ol ⊒ (;\	탄소계물질	10,000.000	0.8758
원 료(i)	잔류물(Residue)	2,000.000	0.0094
	환원제	20,000.000	0.8524
	탄산염류	30,000.000	0.1303
	기타 부원료	2,000.000	0.0915

배출계수 산정과정.

EF아연합유물질 = $0.0070 \times 3.664 = 0.0256 \ tCO_2/t$ -아연합유물질

 $EF_{\$\$\!\!/\!\!\!\!/} = 0.1202 \times 3.664 = 0.4404 \text{ tCO}_2/\text{t-}_{\$\!\!\!/\!\!\!\!/}$

EF 탄소전국 = $0.9804 \times 3.664 = 3.5922 tCO₂/t- 탄소전국$

EF 탄소계물질 = $0.8758 \times 3.664 = 3.2089 tCO₂/t-탄소계물질$

 $EF_{\frac{3}{4}} = 0.0094 \times 3.664 = 0.0344 \text{ tCO}_2/\text{t} - \frac{3}{4}$

 $EF_{223} = 0.8524 \times 3.664 = 3.1232 \text{ tCO}_2/\text{t}$

EF 탄산염류 = 0.1303 × 3.664 = 0.4774 tCO₂/t-_{탄산염류}

EF기타부원료 = $0.0915 \times 3.664 = 0.3353 tCO₂/t-기타부원료$

19) 납 생산

납 생산에서의 CO₂배출은 납산화물의 환원과정에서 환원제의 종류와 양에 따라 달라진다.

가. 배출계수 산정

(1) 배출량 산정식

지침의 Tier 3에 관한 배출량 산정식은 다음과 같다.

$$E_{CO2} = \sum (P_i \! \times \! EF_i) - \sum (P_o \! \times \! EF_o)$$

Eco2 : 납 생산으로 인한 CO₂ 배출량(tCO₂)

 P_i : 납 생산을 위하여 투입된 원료(i)의 양(ton)

 EF_i : 투입된 원료의 배출계수(tCO_2/t -원료)

 P_0 : 납 생산에 의하여 배출된 생산물(o)의 양(ton) EF_o : 배출된 생산물의 배출계수(tCO_2/t -생산물)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
의 근 (;)	EF_i	배출시설에 투입되는 각 원료(i)에 대한 탄소 질량분율을 측정· 분석값에 CO ₂ /C의 값을 곱하여 개발
원료(i)	P_i	배출시설에 투입되는 각 원료(i)의 양 • 연정광, 잔류, 환원제, 탄산염류 등
H 'H' ' ' ' ' ' ' ' ' ' ' ' ' '		배출시설에서 배출되는 각 생산물(o)에 대한 탄소 질량분율을 측정·분석값에 CO ₂ /C의 값을 곱하여 개발
	P_o	배출시설에서 생산되는 각 생산물(o)의 양

(2) 열량의 단위환산계수

납 생산의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(3) 가중평균 적용

투입되는 원료와 배출되는 생산물의 배출계수에 대하여 해당 분석주기의 활동자료에 대한 양을 가중치로 적용한다.

구 분	매개변수	적용 가중치
원료(i)	EF_i (투입된 원료의 배출계수)	P_i (투입된 원료)
생산물(o)	EF_o (배출된 생산물의 배출계수)	P_o (배출된 생산물)

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(4) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

구 분		매개변수	단 위	소수점 자릿수
활동	원료(i)	P_i	ton	소수점 넷째자리에서 반올림하여
자료	생산물(o)	P_o	ton	소수점 셋째자리까지 입력
배출	원료(i)	EF_i	tCO ₂ /t	소수점 다섯째자리에서 반올림하여
계수	생산물(o)	EF_o	tCO ₂ /t	소수점 넷째자리까지 입력

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

납 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장 되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
탄산염 원료	광석 중 탄산염 성분, 탄소 질량분율 등	월 1회 또는 원료 매 5만톤 입하시 (더욱 짧은 주기로 분석한다)
기타 원료	원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)
생산물	원소함량 등	월 1회

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 대표적인 지점은 다음과 같다.

(3) 시료 채취 규격

납 생산에서 시료 채취에 대한 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
연정광	KS E ISO 12743	구리, 납, 아연 및 니켈 정광-금속과 수분량의 정량을 위한 샘플링 절차
잔류물	KS E 3605	분괴 혼합물-샘플링 방법 통칙
환원제	KS E ISO 13909-1~8	하드콜 및 코크스-기계식 시료채취
탄산염류	KS E 3605	분괴 혼합물-샘플링 방법 통칙

(4) 시료 분석 규격

납 생산에서 시료 분석 규격은 각 시료의 특성에 맞게 결정이 되어야 하며, 대표적인 규격은 다음과 같다.

시 료	규 격	규격명	
연정광	KS D 1780	금속 재료의 탄소 정량 방법 통칙	
잔류물	KS D 1700		
환원제	ASTM D5373	Standard Test Methods for Instrumental Determinati on of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal	
탄산염류	KS E 3075	석회석과 백운석의 형광 엑스선 분석방법	

다. 배출계수의 산정

(1) 매개변수 개발 순서

납 생산의 매개변수인 투입 원료의 배출계수(EF_i)와 배출된 생산물의 배출계수(EF_i)의 개발은 다음의 순서를 따른다.

- ① 샘플링
- ② 샘플링한 시료를 적절한 규격으로 탄소 질량분율을 측정·분석
- ③ ②에서 구한 탄소 질량분율 값에 CO2의 분자량과 C의 원자량의 비(3.664)를 곱 하여 산정

$$EF_x = x$$
의 탄소질량분율 $imes \frac{CO_2$ 의 분자량 C 의 원자량

(2) 산정 예시

가정.

A 업체는 용융·용해시설을 통하여 납을 생산하고 있으며, 각 시료의 활동자료와 가중평균된 탄소 질량분율은 다음과 같다.

구 분	시 료	활동자료(ton)	탄소 질량분율 (0과 1사이의 소수)
	연정광	300,000.000	0.0082
납 생산	잔류물 (Residue 또는 Cake)	5,000	0.1039
	환원제	10,000	0.8824
	탄산염류	50,000.000	0.0765

배출계수 산정과정.

EF ਖ਼ਬ = $0.0082 \times 3.664 = 0.0300 \text{ tCO}_2/\text{t}$ - ਖ਼ਬ ਸ

 $EF_{- ... + F} = 0.1039 \times 3.664 = 0.3807 \text{ tCO}_2/\text{t}-- 관류물$

EFអូម្មា = $0.8824 \times 3.664 = 3.2331 \text{ tCO}_2/\text{t-}$ អូម្មា

EF 타사염류 = 0.0765 × 3.664 = 0.2803 tCO₂/t-_{탄산염류}

20 마그네슘 생산

1차 생산 공정

1차 마그네슘은 광물 자원에서 추출한 금속성 마그네슘을 의미하며 전해 공정이나 열 환원 공정 등을 통해 생산된다. 1차 마그네슘 생산 공정에서의 CO_2 배출은 마그네슘 생산을 위해 사용되는 다양한 원료 중 돌로마이트($Mg\cdot Ca(CO_3)_2$)와 마그네사이트($MgCO_3$)와 같은 광물의 배소(calcination) 시 이루어진다.

가. 배출계수 산정

(1) 배출량 산정식

마그네슘 생산에서 Tier 3에 관한 배출량 산정식은 다음과 같다.

$$E_i = \sum_i (Q_i \times EF_i \times r_i \times F_i)$$

Ei : 마그네슘 1차 생산으로 인한 CO₂ 배출량(tCO₂)

Qi: 마그네슘 1차 생산에 사용된 탄산염(i)의 질량(ton)

EFi : 순수 탄산염(i)에 대한 CO₂ 배출계수(tCO₂/t-탄산염)

ri: 탄산염(i)의 순도(0에서 1사이의 소수)

Fi: 순수 탄산염(i)의 소성비율(0에서 1사이의 소수)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	설 명 내 용	
활동자료	Q_i	공정에서 소비된 탄산염의 양 - 순수 탄산염의 양과 기타 불순물을 포함한 전체 소비량	
배출계수	EF_i	성분분석을 통하여 나온 탄산염을 배출계수 산정식으로 계산한 값	
소성비율	F_i	공정에서 소비된 탄산염이 탈탄산 반응을 일으킨 비율 - 비율을 확인할 수 없을 경우에는 1.00로 가정하여 적용	
순도	ri	활동자료 전체량 대비 순수 탄산염의 비율	

(2) 배출계수 산정식

$$EF_{i} = \frac{\mathit{Mw}_{\mathit{CO}_{2}}}{(\mathit{Y} \times \mathit{Mw}_{\mathit{X}} + \mathit{Z} \times \mathit{Mw}_{\mathit{CO}_{3}^{-2}})}$$

* 가정 : 탄산염(i)의 분자식 = $X_{v}(CO_{3})_{z}$

 EF_i : 원료로 투입된 탄산염(i)의 CO_2 배출계수(tCO_2/t -탄산염)

Mw_{CO2}: CO₂의 분자량 (44.010 g/mol)

 Mw_X : X(알칼리 금속, 혹은 알칼리 토금속)의 분자량(g/mol)

Mw_{CO3}⁻²: CO₃⁻²의 분자량 (60.009 g/mol)

Y: X의 화학양론계수(알카리토금속류 "1", 알카리금속류 "2")

 $Z: CO_3^{-2}$ 의 화학양론계수

매개변수 MW_{CO2} MW_x 및 MW_{CO3}²⁻은 생성된 CO₂와 사용된 탄산염의 분자량을 의미한다. 따라서, 배출활동의 고유 배출계수를 계산하기 위해 측정·분석되어야 항목은 사용된 순수 탄산염 그 자체이며, 탄산염의 종류를 분석하여 해당 탄산염의 분자량과 CO₂의 분자량으로 산정하여야 한다.

구 분	매개변수	내 용
	$Mw_{\it CO2}$	탄산염의 탈탄산반응에 의하여 대기중으로 배출된 CO_2 의 분자량
분자량	$Mw_{\scriptscriptstyle X}$	탄산염의 분자식이 $X_{y}(CO_{3})_{z}$ 인 경우, X 원소의 분자량
	$Mw_{CO3}^{2^-}$	탄산염의 분자식이 $X_y(CO_3)_z$ 인 경우, $\mathrm{CO_3}^{2-}$ 의 분자량

(3) 열량의 단위환산계수

1차 마그네슘 생산의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(4) 가중평균 적용

배출량 산정식에서 원료별 순수탄산염의 함량은 원료별 투입량을 가중치로 적용한다.

연간 배출계수 및 열량계수 개발 시 사용되는 매개변수에는 분석주기별 사용량을 고려한 가중평균이 적용되어야 한다.

구 분	매개변수	적용 가중치
배출량 산정식	원료별의 순수탄산염의 함량	원료별 투입량

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(5) 단위 및 소수점 자리수

산정식의 중간 계산과정에서는 유효자리에 가공없이 모든 수치를 적용하여 계산하나, 산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 한다.

구 분	매개변수	단 위	소수점 자릿수
활동자료	Q_i	ton	소수점 넷째자리에서 반올림하여 소수점 셋째자리까지 입력
소성비율	F_i	0과 1사이의 소수	
배출계수	EF_i	tCO ₂ /t-탄산염	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력
순도	r_i	0과 1사이의 소수	
	Mw_{CO2}	g/mol	
몰분율	Mw_x	g/mol	원소주기율표 등 규격(또는 출처)에 따라 동일한 값(유효숫자 포함)으로 입력
	Mw_{CO3}^{2+}	g/mol	

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

1차 마그네슘 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료 및 원료	분석 항목	최소 분석 주기
탄산염 원료	광석 중 탄산염 성분, 원소함량 등	월 1회 또는 원료 매 5만톤 입하시 (더욱 짧은 주기로 분석한다)

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 한다.

(3) 시료 채취 규격

1차 마그네슘 생산에서 시료 채취에 대한 대표적인 규격은 다음과 같다.

시 료	시료 채취 규격	규격명
탄산염 원료	KS E 3605	분괴 혼합물-샘플링 방법 통칙

(4) 시료 분석 규격

1차 마그네슘 생산에서 시료 분석 규격은 각 시료의 특성에 맞게 결정이 되어야하며, 대표적인 규격은 다음과 같다.

시 료	시료 분석 규격	규격명
탄산염 원료	KS E 3075	석회석과 백운석의 형광 엑스선 분석방법

다. 배출계수의 매개변수 산정

(1) 배출계수의 매개변수별 개발 순서

순수 탄산염의 양(Qi)을 결정하기 위한 시험 방법은 다음의 순서와 같다.

- ① 사용되는 각 탄산염 원료들의 양을 측정하고 시료들을 채취
- ② 각 탄산염 원료의 시료들로부터 순수 탄산염들에 대한 조성 및 질량분율을 분석
- ③ 탄산염 원료별 순수 탄산염들의 양을 분석
- ④ 분석 결과를 순수 탄산염별로 분류
- ⑤ 배출계수(EF_i)를 산정

■ 2차 마그네슘 생산

1차 마그네슘 생산 공정으로 제조한 마그네슘 잉곳을 용융시켜 틀에 주입하는 주조공정(casting process)을 채택하고 있으며 고온의 마그네슘 용탕의 착화를 방지 하기 위하여 SF₆가스 등을 용탕 보호가스로 사용하고 있는데 이로 인한 온실가스가 배출된다.

가. 배출계수 산정

(1) 배출량 산정식

2차 마그네슘 생산 공정의 배출량 산정식은 다음과 같다.

$$E_{\boldsymbol{j}} = \sum_{\boldsymbol{j}} \left[\, Q_{\boldsymbol{j}} \! \times \! \left(1 - D R_{\boldsymbol{j}} \right) \, \right] + \sum_{\boldsymbol{p}} Q_{\boldsymbol{p}}$$

 E_j : 가스(j)의 배출량(tGHG) Q_i : 가스(j)의 소비량(ton)

 DR_i : 소비된 가스(j)의 파괴율(0에서 1사이의 소수)

 Q_p : 2차 생성된 가스(p)의 질량(ton)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	설 명 내 용		
활동자료	Q_{j}	공정에 투입되어 소비된 가스의 양을 측정한 값		
파괴율	DR_j	소비된 가스(j)가 대기로 배출되지 않고 파괴된 비율		
생산물	Q_p	투입된 가스가 공정에서 2차 생성 가스로 변환된 양		

(2) 배출계수 산정식

$$DR_{j} = (\frac{\text{주조시 투입량}}{\text{주조시 배출량}}) - (\frac{\text{냉간시 투입량}}{\text{냉간시 배출량}})$$

 DR_i : 냉간 조건에서의 가스(j)에 대한 투입량과 배출량의 비와 주조 조건에서의 가스(i)에 대한 투입량과 배출량의 비의 차

(3) 열량의 단위환산계수

2차 마그네슘 생산의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(4) 가중평균 적용

배출량 산정식에서 투입되는 커버가스의 유량, 커버가스 농도, 추적자의 농도를 분석주기의 활동자료에 대한 양으로 가중평균하여 적용한다.

구 분	가중평균 대상	적용 가중치
커버가스	DR_j	Q_{j}

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항(3)가중평균 참조

(5) 단위 및 소숫점 자리수

산정식의 중간 계산과정에서는 유효자리에 가공없이 모든 수치를 적용하여 계산하나, 산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 한다.

구 분	매개변수	단 위	유효숫자
활동자료	Q_{j}	ton	소수점 넷째자리에서 반올림하여 소수점
생산물	Q_p	ton	셋째자리까지 입력
파괴율	DR_j	0과 1사이의 소수	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력

나, 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

2차 마그네슘 생산에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

시 료	최소 분석 주기
커버가스, 2차 생성가스	월 1회 또는 원료 입하시 (더욱 짧은 주기로 분석한다)

(2) 시료 채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 한다.

〈그림 28〉 2차 마그네슘 생산시설 시료 채취 지점

2차 생성가스

(3) 시료 채취 규격

2차 마그네슘 제품 생산에서 시료 채취 규격은 각 시료의 특성에 맞게 결정이 되어야 하며, 커버가스, 2차 생성 가스에 대하여 시행한다.

(4) 시료 분석 규격

2차 마그네슘 생산에서 시료 분석 규격은 각 시료의 특성에 맞게 결정이 되어야 한다.

다. 배출계수의 매개변수 산정

2차 마그네슘 생산의 매개변수인 소비된 가스의 파괴율은 다음의 순서를 따른다.

- ① 주조 시 커버가스의 투입량과 배출량을 측정
- ② 냉간 시 커버가스의 투입량과 배출량을 측정
- ③ 다음 식에 따라 커버가스의 파괴율(DRj)을 산정

$$DR_{j} = (\frac{\text{주조시투입량}}{\text{주조시배출량}}) - (\frac{\text{냉간시투입량}}{\text{냉간시배출량}})$$

21 전자산업

가 배출계수 산정

(1) 배출량 산정식

반도체/LCD/PV 생산 분야의 배출량 산정식은 다음과 같다.

[Tier 2a]

- Tier 2a는 식각, 증착 공정 종류를 구분하지 않고 활동데이터 및 매개변수를 적용하다.
- 반도체/LCD/PV 생산 부문 산정식 Tier 2a

$$FC_{qas} = (1-h) \times FC_{i} \times (1-U_{i}) \times (1-a_{i} \times d_{i}) \times 10^{-3}$$

FCgas : FC 가스(j)의 배출량(tGHG)

 FC_i : 가스(j)의 소비량(kg)

h: 가스 Bombe 내의 잔류비율(0에서 1사이의 소수, 기본값은 0.10)

 U_i : 가스(j)의 사용비율(0에서 1사이의 소수, 공정 중 파기되거나 변환된 비율) a_i : 배출제어기술이 있는 공정 중의 가스(j)의 부피 분율(0에서 1 사이의 소수)

 d_i : 배출제어기술에 의한 가스(j)의 저감효율(0에서 1사이의 소수)

■ 부생가스 배출량 산정식 - Tier 2a

$$\textit{BPE}_{\textit{i},\textit{j}} = (1-h) \times \sum_{j} (B_{\textit{i},j} \times FC_{j} \times (1-a_{j} \times d_{i}) \times 10^{-3})$$

 $BPE_{i,i}$: FC 가스(j)의 사용에 따른 부생가스(i)의 배출량(tGHG)

h: 가스 Bombe 내의 가스(j)의 잔류 비율(0에서 1사이의 소수)

 $B_{i,i}$: 배출계수, 부생가스(i)의 발생량(kg)/가스(j)의 사용량(kg)

 FC_i : 가스(j)의 소비량(kg)

 a_i : 배출제어기술이 있는 공정 중의 가스(j)의 부피 분율(0에서 1 사이의 소수)

 d_i : 배출제어기술에 의한 부생가스(i)의 저감 효율(0에서 1사이의 소수)

[Tier 2b]

각각의 세부공정은 구분하지 않고 크게 식각과 증착 공정으로만 구분하여 계수를 적용한다.

■ 반도체/LCD/PV 생산 부문 산정식 - Tier 2b

$$FC_{gas} = (1-h) \times \sum_{j} [FC_{j,p} \times (1-U_{j,p}) \times (1-a_{j,p} \times d_{j,p})] \times 10^{-3}$$

FCgas : FC 가스(j)의 배출량(tGHG)

p : 공정 종류(식각 또는 CVD 세척)

 $FC_{j,p}$: 공정 p에 주입되는 가스(j)의 질량(kg)

h: 가스 Bombe 내의 가스(j)의 잔류 비율(0에서 1사이의 소수)

 $U_{i,p}$: 공정 p에서의 각 가스(j)의 사용 비율(0에서 1사이의 소수)

 $a_{j,p}$: 배출제어기술이 있는 공정 p에서의 가스(j)의 부피 분율(0에서 1사이의 소수)

 $d_{j,p}$: 배출제어기술에 의한 공정 p에서의 가스(j)의 저감 효율(0에서 1사이의 소수) * 제어기술이 하나 이상일 때에는 제어기술들에 의한 가중 평균된 저감 효율 이용

■ 부생가스 배출량 산정식 - Tier 2b

$$BPE_{i,j} = (1-h) \times \sum_{p} \left[B_{i,j,p} \times FC_{j,p} \times \left(1 - a_{j,p} \times d_{i,p}\right) \right] \times 10^{-3}$$

BPE_{i,i}: FC 가스 j의 사용에 따른 부생가스(i)의 배출량(tGHG)

h: 가스 Bombe 내의 가스(j)의 잔류비율(0에서 1사이의 소수)

 $B_{i,j,p}$: 배출계수, 공정(p)에서 가스(j)의 사용에 따른 부생가스(i)의 배출량, 부생가스(i) 생산량(kg)/가스(j) 사용량(kg)

 $FC_{j,p}$: 공정(p)에 주입되는 가스(j)의 질량(kg)

 $a_{j,p}$: 배출제어기술이 있는 공정(p) 중의 가스(j)의 부피 분율(0에서 1사이의 소수) $d_{i,p}$: 공정(p)에서 배출제어기술에 의한 부생가스(i)의 파괴율(0에서 1사이의 소수)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개 변수	설 명 내 용			
배출량 산정식	a_{j}	- 공정에서 배출되는 가스 j 중 배출제어기술로 처리되는 가스량의 비			
	$a_{j,p}$	- 공정의 종류(식각 또는 세정)가 구별되는 경우 공정(p)에서 배출된 가스(j) 중 배출제어기술(통합처리시설이나 개별처리 시설)에서 처리되는 가스량의 비			
	h	- 가스 Bombe 잔류비율 측정 값 ※ Bombe의 잔류 비율은 중량과 압력 게이지를 통해 잔류 비율을 측정 ※ Bombe마다 잔류 비율이 차이가 있을 경우, 가중 평균을 적용			
	d_{j}	 - 공정의 종류(식각 또는 세정)가 구별되지 않는 경우 배출제어 기술에 투입된 가스(j) 중 해당 기술에서 제거된 가스량의 비 (가스(j)가 복수의 배출제어기술에서 제거되는 경우, 제거된 가스량은 제거된 가스량을 모두 합한 값임) 			
	$d_{j,p}$	- 공정의 종류(식각 또는 세정)가 구별되는 경우 공정(p)의 배출 제어기술에 투입된 가스(j) 중 해당 기술에서 제거된 가스량의 비(가스(j)가 복수의 배출제어기술에서 제거되는 경우, 제거된 가스량은 제거된 가스량을 모두 합한 값임)			
	U_{j}	- 공정에서의 가스비율율 뜻하며, 공정중 변환되거나 부분적으로 파괴된 비율이다.			
	$U_{j,p}$	- 공정의 종류(식각 또는 세정)가 구별되는 경우 공정(p)에 투입을 가스(j)의 사용비율을 뜻하며 식각, 증착 공정에서 변환되거다 부분적으로 파괴된 비(가스(j)가 복수의 공정에서 사용된 변환될 경우, 변환된 모든 가스량을 합한 값이다.)			
	Bi,j	- 배출계수. 부생가스(i)의 발생량/가스j의 사용량			
	Bj,i,p	- 배출계수. 공정p에서 가스 j의 사용에 따른 부생가스 I의 배출량, 부생가스 I 생산량/가스j 사용량			

저감기술 분류

- Plasma : 마이크로파, 고주파 등을 이용하여, 높은 에너지 상태의 플라즈마를 발생시킨 후 PFCs가 포함된 폐가스를 흘려보내 분해. 특히 CF4와 같은 화학적으로 안정한 PFCs를 제거하는데 효과적이며 높은 에너지로 부반응물을 발생시킴
- Burn/Wet : 가장 보편적으로 사용하는 분해법으로 평균 1,000℃ 정도의 높은 온도의 연소 불꽃으로 직접 가열하거나, 전기 가열로를 이용하여 가열한 상태에서 PFC를 산소와 접촉시켜 분해
- **촉매적 분해법** : PFCs, 층착가스(SiH₄, TEOS, WF₆, NO)등을 제거하는데 사용한다. 촉매를 사용하여 평균 600∼800℃의 온도로 물질을 처리하는 방식
- Wet/Dry scrubbing : 상온에서 'HF, HCl, NH₃, CIF₃ 등 산·염기성 물질을 주로 처리하는데 사용
- **통합처리시설**: 건물내 설치되는 개별처리시설(P.O.U)와는 달리, 옥상 등에 설치하여 각 line별 배출되는 PFCs, SF₆ 등을 일괄 처리하는 방식. 저감 시설은 사업장환경에 따라 촉매를 투입하여 상대적으로 낮은 온도에서 처리하기도 한다.
- 기타 : 상단에 언급되지 않은 신규 저감기술 등

(2) 열량의 단위환산계수

반도체/LCD/PV 생산의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(3) 가중평균 적용

배출저감시설에서 처리 또는 유입되는 양을 적용하여 산정한다.

구 분	매개변수	적용 가중치
가스(j)	$a_{j},\;a_{j,p}$	공정에서 배출되는 가스(j)의 양
가스(j) 및 부생가스 (i)	$d_{j},\ d_{j,p},\ bi,\ bi,\ j$	배출저감 시설에서 유입되는 가스(j) 및 부생 가스(i)의 양

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(4) 단위 및 소수점 자릿수

산정식의 중간 계산과정에서는 유효자리에 가공없이 모든 수치를 적용하여 계산하나, 산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 한다.

구 분	매개변수	단 위	유효숫자
	h		
	$U_{j},\ U_{j,p}$		
배출량 산정식	$a_{j}, a_{j,p}$	0과 1사이의 소수	소수점 다섯째자리에서 반올림하여 소수점 넷째자리까지 입력
	$d_{j},\ d_{j,p},\ d_{i,p}$		
	$b_{i,j}, b_{i,j,p}$		

나. 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다. 또한 목표관리제 지침의 "배출제어기술 적용에 따른 FC가스 저감효율 (90%)" 적용시 동 지침에 제시된 방법론을 준수해야 한다.

(1) 최소 분석 주기

측정 주기는 사업장에서 사용되는 FC 가스별로 '다'항의 매개변수 개발순서의 샘플링에 따라 측정 되어야 한다.

연료 및 원료	분석 항목	최소 분석 주기	
	aj		
기타 원료	Uj bj, dj	분기 1회	
	h		

[※] 만약, 측정 모수가 월 단위로 진행할 수 없는 소수일 경우 그 수에 해당하는 만큼 측정하도록 한다 예) A군집(group)내 3개의 시설만 구성될 경우

[☞] 연중 측정해야 할 시설은 3대임(측정주기: 3대/12개월) = 4.8.12월에 측정

(2) 시료 채취 지점

※ 자세한 측정방법은 (4) 시료 분석 규격 참조

(3) 시료 샘플링 규격

샘플링은 하단의 CDM 방법론을 우선 적용하며 측정 주기는 분기별 균일하게 진행하여야 한다. 동 방법론을 적용하기 위해 최소 1년 이상의 저감효율 측정 결과값이 필요하나 존재하지 않을 경우 KS Q 1003 랜덤 샘플링 방법론을 대체 적용할 수 있다.

측정은 각 군집(Group)별로 진행되어야 하며 최소 측정범위는 10%로 정한다. 군집을 만들기 위해 아래 예시에 있는 "공정, 저감시설의 처리타입, 챔버"등을 고려해야 하며 적용이 어려울 경우 그 근거를 제시한 후 자체 개발한 방법론을 적용할 수 있다. 랜덤 샘플링은 기본적으로 한번 측정된 기기를 재 측정하지 않도록 하며 연간 계획을 수립할 당시 특정 분기에 측정이 편중되지 않도록 균등 분배하여 진행하도록 한다.

항 목	규격	규 격 명
제요리 작의 제리	CDM-EB50 A30-STAN	Sampling and Surveys for CDM Project Activities and Programme of Activities Ver.04.1
샘플링 결정 방법	KS Q 1003	랜덤 샘플링 방법(충화임의추출법) ※샘플링시 난수표를 사용하며, 최소 분석주기내 동일 저감시설에 대해 중복 측정하지 않는다.

[※] 랜덤 샘플링 측정을 위해 전체 저감시설의 50%이상 포트를 설치해야 함

>> 군집구성을 위한 예시

공정		타입별		챔버수팀	별	군집(GROUP)	시설댓수	측정댓수 (10%)
Etching	Е	Burn	В	1 개	1	EB1	350대	35대
CVD	С	Heat	Н	2 개	2	CH2	220대	22대
Etching	Е	Plasma	Р	3 개	3	EP3	600대	60대
CVD	С	Catalytic	С	4 개	4	CC4	200대	20대

- ※ 통합처리시설은 군집 구성을 위한 최소 조건에 부합하지 않으므로 전수 조사 권고
- ※ 초년('15년)에 한해 각 군집별 샘플링 최소측정 범위를 5%를 적용하고 이 후('16년~) 10%적용
- ☞ '15년 측정시(최소범위 5% 이상) 소숫점 이하 반올림 처리(예 : EB1(5%) : 350대→17.5대→18대)

(4) 시료 분석 규격

정확성 확보를 위해, 효율 측정은 공정시설 가동 중에 이루어져야 하며 자세한 사항은 아래와 같다.

항 목	규 격	규 격 명
가스분석 장치	KS I 2219	가스분석장치 교정방법 통칙
교정	UNFCCC CDM (AM0078)	Point of use abatement device to reduce SF_6 emissions in LCD manufacturing operations
효율측정 계산	EPA DRE Protocol	Protocol for Measuring Destruction or Removal Efficiency(DRE) of Fluorinated Greenhouse Gas Abatement Equipment in Electronics Manufacturing
FT-IR 측정	Technology Transfer #06124825B-ENG (SEMATECH)	Guideline For Environmental Characterization of Semiconductor Process Equipment-revision 2
QMS 측정	Technology Transfer #06124825B-ENG (SEMATECH)	Guideline For Environmental Characterization of Semiconductor Process Equipment-revision 2
희석계수 측정	ASTM E 2029	Standard Test Method for Volumetric and Mass Flow Rate Measurement in Duct using tracer gas dilution

[※] 통합처리시설은 QMS의 다른 장치를 이용한 측정가능. 단, 업체는 대체 이유와 근거, 타당성 등을 입증 하여야 함

다. 배출계수의 매개변수 산정

- (1) 배출계수의 매개변수별 개발 순서
 - ① Ui, Uip(가스 i 사용비율)

공정 중 파괴되거나 변환된 비율인 Ui는 공정별 레시피 자료를 참고하여 값을 개발할 수 있다. 각 공정(식각·증착)에 사용되는 불소화합물(FCs)는 공정에 투입되는 가스량 및 배출량의 차이를 이용하여 구할 수 있다. 이때 투입량은 각 공정별 레시피에 기초하여 그 근거를 작성하고, 배출량은 저감효율(di)측정시 유입량을 사용하여 대체할 수 있다.

② B_{CF4 i}, B_{CF4 in}(가스 i 사용에 따른 부생가스 CF₄ 생성비율, 배출계수)

공정에 투입되는 가스 i의 사용에 따라 생성되는 부산물(부생가스)의 비율을 의미 한다. 매개변수 개발은 공정에 유입·배출되는 가스 i의 량 및 부생가스 CF₄의 량을 FT-IR로 측정하고 그 결과에 따라 부생가스 비율을 개발한다.

③ Aj, Aj,p(배출제어기술이 있는 공정 중의 가스 j의 부피분율)

배출제어 기술이 있는 공정 중의 사용된 가스 부피분율을 의미하며, 공정배출 가스가 저감시설(스크러버) 등으로 유입되는 비율이다. 여기서 배출제어 기술이란 앞서 설명된 "플라즈마, Burn/Wet 및 그 외" 등이 있으며 이에 해당하는 항목을 뜻한다. 측정은 각 공정(식각·증착)에 투입된 가스가 저감 시설로 유입되는 비율 로서 저감시설의 가동률이 근거 자료가 된다. 대규모 통합처리시설, 개별처리시설의 가동률에 관한 자료는 각 시설별로 운영·관리되어야 한다.

PFCs 통합처리시설 및 개별처리시설 가동률 산출방법

- ◇ 통합처리시설: 가동일수(운영일지 기준)/365일
- ◇ 개별 처리시설 : 타입별* 개별처리시설 댓수/전체 개별처리시설 댓수 × (가동일수(운영일지 기준)/365일)
 - *타입(Plasma, B/W 그 외)
- ※ 가동률 산출시 유지보수(PM) 기간은 제외하고 산출해야 함
- ※ 저감시설 운영현황(가동률)은 현장에 설치된 모든 저감시설을 대상으로 함
 - 운영일지의 주요정보는"점검일, 대상시설, 가동시간"등이며 일지정지, 폐쇄, 유지 보수, 기타 등 특정 사유가 발생시에는 비고란에 관련 정보를 서술해야 한다.

④ Dj, Dj,p(배출제어기술에 의한 가스 j의 저감효율)

□ 샘플링

- 샘플링 지점은 저감시설 유입(inlet), 유출구(outlet)에서 FT-IR, QMS 각각 2대씩 설치하여 동시에 측정한다.
- 배출저감시설 전단과 후단의 가스 유량 및 농도 분석
 - 배출저감시설 유입구에 농도를 알고 있는 Kr(Krypton) 가스(인증표준물질)를 교정된 유량제어기(Mass Flow Controller)를 이용하여 유입구에 주입
 - 배출저감시설 유입구와 유출구에 투입된 Kr(Krypton) 가스의 농도를 교정된 사중극자질량분석기(Quadrupole Mass Spectrometer)를 이용하여 Kr 가스의 농도를 측정.
 - Kr 가스 농도 결과값을 이용하여 희석계수 결정

© 저감효율 계산

- 배출저감시설의 저감 효율은 유입구의 유량과 FC 가스의 농도를 이용하여 시설로 들어가는 FC 가스의 단위시간당 부피총량(SLM, standard liter per minute)을 계산한다.
- 유출구에서의 유량과 FC 가스의 농도를 이용하여 유출구의 FC 가스 단위시간당 부피총량(SLM)을 계산 한 후 아래 식을 통해 배출저감시설의 제거효율을 산정한다.

Total dj=
$$\frac{Q_{in,j-}Q_{out,j}}{Q_{in,j}}$$

Total dj : 배출제어기술에 의한 FC 가스 저감 효율, 비율

Qin,j: 저감시설 유입구에서의 FC 가스 총 유량(단위:SLM)

Qout, i : 저감시설 유출구에서의 FC 가스 총 유량(단위:SLM)

⑤ h (봄베 잔류비율)

봄베내 공정중에 투입되는 불소화합물(FCs)의 잔류비율을 측정한다. 봄베의 잔류비율은 중량측정, 압력게이지를 통해 공정에 사용되는 FCs의 잔류 비율을 각각 측정해야 한다. 만일 잔류 비율의 차이가 있을 경우 가중 평균을 적용한다.

22 연료전지

공정에 투입되는 원료의 양과 성분을 측정 분석하여 개발한다.

가. 배출계수 산정

(1) 배출량 산정식

연료전지 배출활동의 배출량 산정방법론은 다음과 같다.

$$E_{i,co_2} = FR_i \times EF_i$$

 $E_{i,CO2}$: 연료전지 공정에서의 CO_2 배출량(tCO_2)

 FR_i : 원료(i) 투입량(ton)

EF_{i,} : 원료(i)별 CO₂ 배출계수(tCO₂/t-원료)

배출량 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
투입량	FR_i	배출시설에 투입되는 원료의 양을 측정한 값
배출계수	EF_i	연료의 성분 분석 등을 통하여 배출계수 산정식으로 개발한 값

(2) 배출계수 산정식

연료전지의 Tier3 방법론에 관한 배출계수 산정식은 다음과 같다.

$$EF_i = \sum_y \left[\left(rac{MW_y}{MW_{y,\,total}}
ight) \!\! imes \! \left(rac{44.010}{mw_{_y}} \!\! imes N_y
ight)
ight]$$

 EF_i : 투입 원료(i)의 CO₂ 배출계수(tCO2/t-원료)

 MW_v : 투입 원료(i)의 몰당 해당 가스성분(y)의 질량 (g/mol)

 $MW_{v,total}$: 투입 원료(i)의 몰당 모든 가스성분(y)의 질량 (g/mol)

44.010 : CO₂의 몰질량 (g/mol)

 N_v : 가스성분(y)의 탄소 원자수(개)

 mw_v : 해당 가스성분(y)의 몰질량(g/mol)

배출계수 산정식의 매개변수에 대한 내용은 다음과 같다.

구 분	매개변수	내 용
배출계수	EF_i	원료의 CO ₂ 배출계수 • 측정·분석으로 도출된 연료 1kg당 배출되는 CO ₂ (kg)를 계산한 값
가스성분 질량	MW_y	투입 원료의 몰당 해당 가스성분(y)의 질량 • 측정·분석으로 도출된 해당 가스의 몰함량과 몰질량의 곱으로 계산한 값
가스성분 몰질량	mw_y	해당 가스성분(y)의 몰질량 • 측정·분석으로 도출된 해당 가스성분의 몰질량
가스성분 탄소원자수	N_{y}	가스성분(y)의 탄소 원자수 • 측정·분석으로 도출된 가스 성분에 포함된 탄소 원자수의 합
몰질량 합	$MW_{ ext{y,total}}$	투입 원료의 몰당 모든 가스성분 질량($MW_{m{y}}$)의 총합

(3) 열량의 단위환산계수

연료전지의 배출량 산정식에서는 열량에 관한 단위환산계수가 적용되지 않는다.

(4) 가중평균 적용

연간 배출계수 및 열량계수 개발 시 사용되는 매개변수에는 분석주기별 사용량을 고려한 가중평균이 적용되어야 한다.

매개변수	적용 가중치
원료(i)별 CO ₂ 배출계수(EF _i)	원료 (i) 투입량 $(\emph{FR}_{\emph{i}})$

[※] 상세 방법론은 동 가이드라인 제2장 1.공통사항 (3)가중평균 참조

(5) 단위 및 소수점 자릿수

산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 하며 배출계수 및 배출량 산정시에도 동일하게 적용되어야 한다.

매개변수	단위	소수점자리
활동자료	ton	소수점 넷째자리에서 반올림하여 셋째자리까지 기입 ※ 천연가스의 경우 무게단위(ton) 적용
몰질량	g/mol	해당 발열량 규격의 몰질량 자리수를 그대로 기입
배출계수	tCO ₂ /t	소수점 다섯째자리에서 반올림하여 넷째자리까지 기입

나, 시료 채취 및 시료 분석

시료 채취와 분석은 동일한 시료를 채취하여 동일한 조건으로 분석하는 것을 원칙으로 한다.

(1) 최소 분석 주기

연료전지 활동에서 시료 분석은 시료의 대표성을 확보할 수 있도록 충분한 횟수가 보장되어야 하며, 다음의 최소 분석 주기를 준수하여야 한다.

연료	및 원료	분석 항목	최소 분석 주기
기체 연료	천연가스	가스성분, 발열량, 밀도 등	반기 1회 ¹⁾

주1) 가스공급처가 최소분석주기 이상 분석한 데이터를 제공할 경우, 이를 우선 적용한다.

(2) 시료채취 지점

시료 채취 지점은 각 시료의 대표성을 확보할 수 있는 지점으로 선택하여야 하며, 시료 채취 지점은 다음에 따른다.

(3) 시료 채취 규격

시료 채취 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

시 료	규 격	규격명
천연가스	KS I ISO 10715	천연가스-샘플링 지침서
천연가스 (LNG)	KS M 2071	액화 석유 가스- 시료 채취 방법

(4) 시료 분석 규격

시료 분석 규격은 각 시료의 특성에 맞게 결정되어야 하며, 각 시료별 대표적인 규격은 다음과 같다.

항 목	규 격	규격명
조성	KS I ISO 6974	천연가스-가스 크로마토그래프법에 의한 정의된 불확도와
분석	(1~6부)	조성의 분석

다. 배출계수 산정

(1) 매개변수 개발 순서

- ① 샘플링
- ② 해당 시료의 조성을 측정·분석
- ③ 조성분석의 결과로 몰질량(mw_y), 탄소원자수(N_y)를 산정(단, 몰질량은 표준규격에서 구하여야 함)
- ④ 몰함량과 몰질량으로 원료 1몰에 포함된 가스성분별 질량(MW_y)과 총합($MW_{y,total}$)을 산정
- ⑤ 원료 1몰에 포함된 가스성분별 질량의 총합과 몰질량, 탄소원자수로 원료(i)의 CO₂ 환산계수(EFi,t)를 산정
- ⑥ CO_2 환산계수와 순발열량, 밀도로 배출계수($EF_{i,CO2}$)를 산정

(2) 산정 예시

가정.

A 업체는 LNG, 나프타 등 혼합 원료를 정제한 다음 개질과정을 통해 수소를 제조한 후, 연료전지 공정에 투입되어 전기를 생산한다. 이 과정에서 CO_2 가 배출된다.

투입된 원료(i)의 양: 250,000 ton

배출계수 산정과정.

$$EF_i = \sum_{y} \left[\left(\frac{MW_y}{MW_{y, \, total}} \right) \times \left(\frac{44.010 \times N_y}{mw_y} \right) \right]$$

 $MW_{\boldsymbol{y}} =$ 가스성분 (\boldsymbol{y}) 의 몰분율imes 가스성분 (\boldsymbol{y}) 의 몰질량 $(\boldsymbol{m}\boldsymbol{w}_{\boldsymbol{y}})$

$$MW_{y,total} = \sum_{y} MW_{y}$$

※ 가스성분들의 몰분율의 합이 0.9920이므로 몰분율 합을 "1"로 보정함

성분 조성	몰분율	몰질량 <i>mw_y</i> (g/mol)	탄소원자수 <i>N</i> _/	몰분율×몰질량 <i>MW_y</i> (g/mol)	배출계수 (tCO ₂ /t)
CH ₄	0.8512	16.043	1	13.7659	2.0021
C ₂ H ₆	0.0788	30.070	2	2.3886	0.3707
C ₄ H ₁₀	0.0315	58.123	4	1.8456	0.2964
N ₂	0.0305	28.0135	0	0.8613	0.0000
합계	0.9920	-	-	18.8615	2.6692

: 따라서 배출계수는 2.6692 tCO₂/t이다.

배출량 산정과정.

$$E_{i,co_2} = FR_i \times EF_i$$

: 사용된 원료량(FR)는 250,000 tan이고 배출계수(EF)는 2.6692 tCO₂/t 이다. 따라서 배출량은 667,300 tCO2이다.

23 열 생산 및 공급

열을 생산하여 공급하는 업체는 공급한 열에 대하여 사업장 고유 열 간접 배출계수(이하 열 간접 배출계수)를 개발하여 보고하여야 한다.

열 생산시설 운영 및 공급체계에 따라 달라지는 열 특성을 반영한 계수별로 개발· 보고하는 것을 원칙으로 한다.

가. 배출계수 산정

(1) 배출계수 산정식

열 생산 및 공급에 관한 배출계수 산정식은 다음과 같다.

- 1. 열 생산에 따른 온실가스 배출계수
- ① 열전용 생산 시설 : 연료를 연소하여 열 에너지를 생산하는 시설 $GHG_{Emission,i}$ = 해당 배출시설의 온실가스 배출량

$$EF_{H,i} = \frac{GHG_{emission,i}}{H} \times 10^3$$

 $EF_{H,i}$: 열 생산에 따른 온실가스 간접배출계수(kgGHG/TJ)

 $GHG_{Emission,i}$: 열 생산에 따른 해당 배출시설의 온실가스 배출량(tGHG/yr)

H : 열 생산량(TJ/yr)

i: 배출 온실가스 (CO₂, CH₄, N₂O)

② 열병합 발전 시설 : 동일한 연료를 사용하여 두 가지 유형(전기, 열)의 에너지를 생산하는 시설

 $GHG_{Emission,i} = E_{H,i}$

$$E_{\!H\!,i} = \left\{ \frac{H}{H \! + \! P \! \times R_{\!e\!f\!f}} \right\} \! \times E_{T\!,i} \ , \ R_{\!e\!f\!f} = \frac{e_H}{e_P}$$

 $E_{T,i}$: 열병합 발전 시설(CHP)의 총 온실가스 배출량(tGHG/yr)

 $E_{H,i}$: 열병합 발전 시설(CHP)에서 열 생산에 따른 온실가스 배출량(tGHG/yr)

H: 열 생산량 (TJ/yr)P: 전기 생산량 (TJ/yr)

 $R_{\it eff}$: 열 생산 효율과 전력생산 효율의 비율 (ratio)

e_H: 열 생산효율 (자체데이터를 활용, 자료가 없는 경우 기본값 0.8)

ep: 전기 생산효율 (자체데이터를 활용, 자료가 없는 경우 기본값 0.35)

i : 배출 온실가스 (CO₂, CH₄, N₂O)

2. 폐기물 소각에서 열회수를 통한 외부 열공급시 간접배출계수

$$EF_{H,i} = \frac{GHG_{emission,i}}{H}$$

 $EF_{H,i}$: 배출원별 열 간접 배출계수(kgGHG/TJ)

GHG_{Emission,i} : 「별표 16-33. 폐기물 소각」 산정방법에 따라 산정된 배출원별 배출

량(kgGHG/yr)

H : 열 회수량(TJ/yr)

i : 배출 온실가스 (CO₂, CH₄, N₂O)

배출계수 산정식의 매개변수에 대한 내용은 다음과 같다.

매개변수		내 용
GHG_{Emi}	ission,i	열 생산에 따른 해당 배출시설의 온실가스 배출량
열병합		시설의 총 온실가스 배출량 •시설 전체의 온실가스 배출량으로 열 생산에 따른 온실가스 배출량을 산정하기 위한 기준이 됨
발전시설	E_H	시설의 열 생산에 따른 온실가스 배출량 • 전기생산 효율을 적용하여 이를 열 생산량으로 환산
Н, Р		H: 열 생산량, P: 전기생산량 • 열량계 또는 전력량계를 토대로 측정된 값 • 열량계를 사용하지 않는 경우 생산된 열의 열량의 경우, 온도와 압력 등의 조건에 따라 열량 산정식 또는 Steam Table(증기포화표) 등을 활용하여 결정 해야 한다.
$e_H,\;e_P$		열, 전기 생산효율 • 자체적으로 관리하는 생산효율을 적용하되 값이 없는 경우, 열(0.8), 전기(0.35) 적용

(2) 열량의 단위환산계수

열량의 단위환산계수 기준은 국제 표준전환계수를 적용한다.

유 형	표준전환계수		
열량 단위	1cal = 4.1868J		
에너지 단위	$1TOE = 10^7 \text{kcal}$		

(3) 단위 및 소수점 자릿수

산정식의 중간 계산과정에서는 단위에 상관없이 소수점 자릿수를 한정짓지 않으나, 산정결과시트나 명세서에 측정·분석값을 입력할 시에는 다음의 내용을 준수하여야 한다.

매개변수	단위	소수점자리
Q_i	TJ	소수점 넷째자리에서 반올림하여 셋째자리까지 기입
$EF_{i,j}$	kgGHG/TJ	소수점 첫째자리에서 반올림하여 정수자리까지 기입
E_H , E_T	kgCO ₂ -eq/yr	소수점 넷째자리에서 반올림하여 셋째자리까지 기입
Н, Р	TJ/yr	소수점 넷째자리에서 반올림하여 셋째자리까지 기입
e_H , e_P	0과 1사이의 소수	소수점 셋째자리에서 반올림하여 둘째자리까지 기입

나. 모니터링 방법

(1) 모니터링 주기

모니터링 대상 모니터링 항목		최소 모니터링 주기
열	열량(온도, 압력)	월 1회

(2) 모니터링 지점

(3) 열량 관리 시 고려사항

열 간접 배출계수를 개발하기 위해서는 열 생산에 따른 온실가스 배출량의 산정이 선행되어야 한다. 열 간접 배출계수 산정에 적용한 열 생산에 따른 배출량은 명세서에 보고된 해당 열 생산 시설의 직접 배출량과 일치하여야 한다. 이 때. 열 생산 과정 에서 전력 사용 및 바이오매스 연료의 보조연료 사용에 의한 배출량은 계수 산정 시 고려하지 않는다. 열 간접 배출계수 산정의 원칙은 공급된 열의 회수 여부와 상관없이 총 생산량을 기준으로 한다.

열을 전달하는 매체(스팀, 온수, hot-air, 기타열매)가 함유하고 있는 열의 종류는 전열, 현열 및 잠열의 세 종류가 있다. 스팀 형태로 열을 생산하는 경우, 계수 개발을 위한 열량 환산 시 스틲테이블의 전열 기준을 적용하여 산정한다.

1	전열	현열과 잠열을 합계한 열량
2	현열	열의 증감에 의하여 그 물질의 상태는 변화하지 않고 온도만이 변하는 경우의 열량
3	잠열	물질의 온도는 변화하지 않고 일정하게 상태의 변화에만 소비되는 열량

열량 측정을 위한 온도. 압력 적산 시 "계량에 관한 법률(국가기술표준원 고시. 법률 제12282호, 2014.1.21.) "에 따른다.

공정폐열 및 소각회수열을 생산하거나 구매하는 경우, 계수는 0으로 적용하고 온실가스 배출량을 산정하지 않는다. 해당 분류에 대한 정의는 다음과 같다.

1	공정폐열	판매 목적으로 생산되는 것이 아니라 공정에서 발생되어 버려지는 열
2	소각 회수열	폐기물소각로에서 발생하는 고온의 연소가스로부터 회수 되어 발전 및 냉난방에 이용되는 열

[※] 바이오매스 사용열의 경우, CO₂ 배출계수는 0으로 하여 배출량 산정시 제외하고 Non-CO₂ 계수는 산정해야 한다.

위의 조건에 따른 계수 산정 여부와 상관없이 열 거래량에 대한 정보는 산정·보고에 활용되므로 확보·제공해야 한다.

$$EF_{H} = \frac{9 \text{ 생산에 따른 온실가스 배출량}}{3 \text{ 공급업체에서 생산한 스팀의 열량}}$$

다. 열 공급 유형별 열 간접 배출계수 산정 방법

대부분의 경우 공급업체에서 손실열을 관리하도록 하나, 이는 구매업체와의 계약 관계를 토대로 결정한다.

(1) 자체 생산 열 공급

업체(A)에서 직접 생산한 열을 다수의 구매업체(B)에 공급하는 경우, 이 중 할당 대상업체에 포함되는 업체(B-1, B-2)를 대상으로 판매업체(A)에서 개발한 열 간접 배출계수를 제공해야 한다.

위의 경우 열 간접 배출계수 개발 식은 다음과 같다.

$$EF_{H} = \frac{\text{스팀}(9) \text{생산에 따른 온실가스 배출량}}{\text{생산되스팀의 열량 + 폐열스팀의 열량}}$$

(2) 자체 생산열 및 외부 구매열 공급

업체(A)에서 직접 생산한 열을 다수의 구매업체(C)에 공급하는 경우, 이 중 할당 대상업체에 포함되는 업체(C-1, C-2)를 대상으로 판매업체(A)에서 개발한 열 간접 배출계수를 제공해야 한다.

A업체는 열 간접 배출계수 개발 시 B업체로부터 배출계수 정보를 받아 열 간접 배출계수를 개발해야 한다. B업체로부터 받은 열 간접 배출계수를 개발에 적용하는데 있어 스팀 생산량(거래량)을 기준으로 한 가중평균이 적용되어야 한다.

위의 경우 열 간접 배출계수 개발 식은 다음과 같다.

$$EF_{H} = \frac{A, B$$
스팀(열)생산에 따른 온실가스 배출량 A, B 생산 스팀의 열량 $+ E, F$ 폐열스팀의 열량

(3) 산정예시

가정 1.

A업체는 자체 생산한 스팀b와 c를 각각 다른 관로를 통해 B, C 업체에 공급하고 있으며, 스팀a는 전량 자가소비 한다. 이 과정에서 열 생산 시설에 사용된 연료와 스팀 (전력)생산량은 다음과 같다.

구분	시설 유형	사용 연료	연료 사용량	스팀생산량 (TJ)	전력생산량 (TJ)
스팀a	열전용	LNG	800 천m ³	30	_
	열전용	LNG	800 천m ³	30	-
스팀b	어버링	유연탄	120,000 t	3,000	400
	열병합		2,000 kl	80	8
스팀C	열병합	유연탄	120,000 t	3,000	400

열 간접 배출계수 산정과정.

- * 사용 연료별 배출계수 및 발열량은 2006 IPCC 및 국가값 사용
- * 예시에서는 CO₂배출계수 산정과정만 제시(CH₄, N₂O도 동일적용)

(1) 스팀(b)의 열 간접 배출계수 산정

- ① 열전용 보일러 시설에서의 열 간접 배출계수 산정
 - 에너지투입량 $_{LNG,b}(TJ)$ = 연료사용량 × 순발열량(NCV) = 800,000 m³ × 39.4 = 31.520 TJ
 - *GHG Emission_{LNG,b}* = 에너지투입량(TJ) × EF_{CO2,LNG} × 산화계수_{LNG} = 31.520 TJ × 56,100 kgCO₂/TJ × 1 = 1,768,272 kgCO₂
 - $-EF_{b, ext{ 열 전용}} = GHG \ Emission_{LNG,b} \ / \ Q = 1,768,272 \ kgCO_2 \ / \ 30 \ TJ = 58,942 \ kgCO_2/TJ$

- ② 열병합 보일러 시설에서의 열 간접 배출계수 산정
 - **에너지투입량유여타.b(TJ)** = 연료사용량 × 순발열량(NCV) $= 120,000 t \times 24.7 = 2.964 TI$
 - $E_{T,i}$ = 에너지투입량(TJ) × $\mathrm{EF}_{\mathrm{CO2.유연탄}}$ × 산화계수 $_{\mathrm{유연탄}}$ $= 2,964 \text{ TJ} \times 95,300 \text{ kgCO}_2/\text{TJ} \times 0.98 = 276,819,816 \text{ kgCO}_2$
 - $GHG_{Emission.i}$ = $E_{H.i}$

$$E_{H,i} = \left\{ \frac{H}{H + P \times R_{eff}} \right\} \times E_{T,i} \text{ , } R_{eff} = \frac{e_H}{e_P}$$

 $E_{T,i}$: 열병합 발전 시설(CHP)의 총 온실가스 배출량(kgGHG/yr)

 $E_{H,i}$: 열병합 발전 시설(CHP)에서 열 생산에 따른 온실가스 배출량(kgGHG/yr)

H : 열 생산량 (TJ/vr)

P : 전기 생산량 (TJ/vr)

 $R_{\it eff}$: 열 생산 효율과 전력생산 효율의 비율 (ratio)

ен: 열 생산효율 (자체데이터를 활용, 자료가 없는 경우 기본값 0.8)

ep: 전기 생산효율 (자체데이터를 활용, 자료가 없는 경우 기본값 0.35)

i: 배출 온실가스 (CO₂, CH₄, N₂O)

$$\begin{split} E_{H,CO2} = & \left\{ \frac{3,000\ TJ}{3,000\ TJ + 400\ TJ \times \left(0.8/0.35\right)} \right\} \times 276,819,816kg\ CO_2 \\ = & 212,161,173\ \ \text{kgCO}_2 \end{split}$$

- **에너지투입량중유.b(TJ)** = 연료사용량 × 순발열량(NCV) $= 2,000 \text{ kl} \times 39.2 = 78.4 \text{ TJ}$
- $E_{T,i}$ = 에너지투입량(TJ) × $\mathrm{EF}_{\mathrm{CO2}, \hat{\forall} \hat{\pi}}$ × 산화계수 $_{\hat{\forall} \hat{\pi}}$ = $78.4 \text{ TJ} \times 75,500 \text{ kgCO}_2/\text{TJ} \times 0.99 = 5,860,008 \text{ kgCO}_2$
- $GHG_{Emission,i} = E_{H,i}$ $= \left\{ \frac{80\,TJ}{80\,TJ + 8\,TJ \times (0.8/0.35)} \right\} \times 5,860,008kg\,CO_{2}$ $= 4,769,774 \text{ kgCO}_2$

열병합 보일러 시설에서 열 생산시 CO2 배출량

 $= 212,161,173 \text{ kgCO}_2 + 4,769,774 \text{ kgCO}_2 = 216,930,947 \text{ kgCO}_2$

- ③ 전체 열 간접 배출계수(EF_{스팀b})
 - 시설별로 계산한 열 간접 배출계수를 스팀생산량 기준으로 가중평균하여 전체 열 간접 배출계수를 구한다.

- B업체로 공급하는 스팀 b의 배출계수는 70,318 kgCO₂/TJ이다.
- (2) 스팀c의 열 간접 배출계수 산정
- ① 열병합 보일러 시설

-
$$E_{T,i}$$
 = 에너지투입량(TJ) × $EF_{CO2, 유연탄}$ × 산화계수_{유연탄}
= 2,964 TJ × 95,300 kg CO_2/TJ × 0.98 = 276,819,816 kg CO_2

-
$$GHG_{Emission,i} = E_{H,i}$$

$$\begin{split} &-E_{H,i} = \left\{\frac{H}{H + P \times R_{eff}}\right\} \times E_{T,i} \;\;, \;\; R_{eff} = \frac{e_H}{e_P} \\ &E_{H,CO2} = \left\{\frac{3,000\;TJ}{3,000\;TJ + 400\;TJ \times (0.8/0.35)}\right\} \times 276,819,816kg\;CO_2 \\ &= 212,161,173\;\; kgCO_2 \end{split}$$

② 전체 열 간접 배출계수(*EF*_{스팀c})

단일 시설에서 스팀을 생산하였으므로 열병합 시설에서의 CO_2 배출량을 스팀 생산량으로 나누어 열 간접 배출계수를 산정한다.

$$EF_{
m riangle like} = rac{E_{H,CO2}}{
m riangle like} = 212,161,173 \; {
m kgCO}_2 \; / \; 3,000 \; {
m TJ}$$
 = $70,720 \; {
m kgCO}_2/{
m TJ}$

- C업체로 공급하는 스팀 c의 배출계수는 70,720 kgCO₂/TJ이다.

(3) 계수별 열 간접 배출계수 보고

B업체에 공급하는 스팀b와 C업체에 공급하는 스팀c에 대해 산정한 각각의 배출 계수를 해당 구매업체에 제공하고 명세서에 계수별로 보고해야 한다.

가정 2.

A업체는 지역난방 열 공급업체로서 자체 생산한 스팀a와 타 발전사로부터 공급받은 스팀b를 혼합하여 전량을 지역 내 다수 업체 및 민간가구에 공급하고 있다. 이 과정에서 열 생산 및 공급에 사용된 연료와 스팀(전력)의 양은 다음과 같다.

	시설 유형	사용연료	연료사용량	스팀생산량 (TJ)	전력생산량 (TJ)
스팀a	열전용	LNG	6,000 천m ³	230	-
	열병합	B-C유	46,000 kl	1,000	400
	공급 유형	생산유형	스팀유입량 (TJ)	배출계수((gCO₂/TJ)
스팀b	외부 유입	열병합 발전	650	25,000	
	외부 유입	소각 회수열	1,000	()

열 간접 배출계수 산정과정.

- *사용 연료별 배출계수 및 발열량은 2006 IPCC 및 국가값 사용
- *예시에서는 CO2배출계수 산정과정만 제시(CH4, N2O도 동일적용)

(1) 스팀(a)의 열 간접 배출계수 산정

- ① 열전용 보일러 시설에서의 열 간접 배출계수 산정
 - 에너지투입량 $_{LNG,a}(TJ)$ = 연료사용량 \times 순발열량(NCV) $= 6,000,000 \text{ m}^3 \times 39.4 = 246.4 \text{ TJ}$

$$-EF_{b, \, \text{열정용}} = GHG \; Emission_{LNG,a} \; / \; Q = 13,823,040 \; kgCO_2 \; / \; 230 \; TJ = 60,100 \; kgCO_2/TJ$$

- ② 열병합 보일러 시설에서의 열 간접 배출계수 산정
 - **에너지투입량**_{B-C유,a}(TJ) = 연료사용량 × 순발열량(NCV) = 46,000 kl × 34.3 = 1,577.8 TJ
 - E_{T,i} = 에너지투입량(TJ) × EF_{CO2,유연탄} × 산화계수_{유연탄} = 1,577.8 TJ ×75,500 kgCO₂/TJ × 0.99 =117,932,661 kgCO₂
 - $GHG_{Emission,i} = E_{H,i}$

$$E_{H\!,i} = \left\{\frac{H}{H\!+\!P\!\times\!R_{e\!f\!f}}\right\}\!\!\times\!E_{T\!,i} \ , \ R_{e\!f\!f} = \frac{e_H}{e_P}$$

 $E_{T,i}$: 열병합 발전 시설(CHP)의 총 온실가스 배출량(kgGHG/yr)

 $E_{H,i}$: 열병합 발전 시설(CHP)에서 열 생산에 따른 온실가스 배출량(kgGHG/yr)

H : 열 생산량 (TJ/yr)

P : 전기 생산량 (TJ/yr)

 $R_{\it eff}$: 열 생산 효율과 전력생산 효율의 비율 (ratio)

 e_{H} : 열 생산효율 (자체데이터를 활용, 자료가 없는 경우 기본값 0.8)

ep: 전기 생산효율 (자체데이터를 활용, 자료가 없는 경우 기본값 0.35)

i : 배출 온실가스 (CO₂, CH₄, N₂O)

$$\begin{split} E_{H,CO2} = & \left\{ \frac{1,000\ TJ}{1,000\ TJ + 500\ TJ \times (0.8/0.35)} \right\} \times 117,932,661 kg\ CO_2 \\ = & 55,035,242\ \ \text{kgCO}_2 \end{split}$$

- **EF**_{a, 열병함} = GHG Emission_{a, 열병함} / H = 55,035,242 kgCO₂ / 1,000TJ = **55,035 kgCO₂/TJ**
- ③ 전체 열 간접 배출계수(*EF*스팀a)
 - 시설별로 계산한 열 간접 배출계수를 스팀생산량 기준으로 가중평균하여 전체 열 간접 배출계수를 구한다.

$$EF_{\triangle Ba} = EF_{\underline{9}\Delta \$}(\frac{\triangle EW + EF_{\underline{9}\Delta \$}}{\triangle EW + EF_{\underline{9}B}}) + EF_{\underline{9}B}(\frac{\triangle EW + EF_{\underline{9}B}}{\triangle EW + EW})$$
 = 60,100 kgCO2/TJ (230TJ / 1,230TJ) + 55,035 kgCO2/TJ (1,000TJ/ 1,230TJ) = 55,982 kgCO2/TJ

(2) 스팀b의 열 간접 배출계수 산정

- ① 타 발전사 생산열 유입
 - 열 거래 시 공급사로부터 제공받은 열 간접 배출계수 적용(가정) **EF**발정사 = 25,000 kgCO₂/TJ
- ② 소각회수열 유입
 - 소각회수열은 계수를 0으로 하며 스팀거래량을 계산에 적용
- ③ 전체 열 간접 배출계수(*EF* 스 티b)
 - 외부 수열의 유입량을 기준으로 가중평균하여 외부수열에 대한 열 간접 배출 계수를 구한다.

$$EF_{\triangle Hb} = EF_{\underline{y}} \times \frac{\triangle \mathrm{Elh} \, \mathrm{Gis}_{\underline{y}}(TJ)}{\triangle \mathrm{Elh} \, \mathrm{Gis}(TJ)} + EF_{\underline{x}} \times \frac{\triangle \mathrm{Elh} \, \mathrm{Gis}_{\underline{x}}(TJ)}{\triangle \mathrm{Elh} \, \mathrm{Gis}(TJ)}$$

$$= 25,000 \, \, \mathrm{kgCO}_2/\mathrm{TJ} \times (650\mathrm{TJ} \, / \, 1,650\mathrm{TJ}) + 0 \times (1,000\mathrm{TJ}/1,650\mathrm{TJ})$$

$$= 9,848 \, \, \mathrm{kgCO}_2/\mathrm{TJ}$$

(3) 전체 열 간접 배출계수 산정

외부로 공급하는 자체 생산분 및 외부 수열의 열 간접 배출계수를 공급량 기준으로 가중평균하여 도출한다. 도출된 전체 배출계수를 구매업체에 제공 및 주무관청에 보고해야 한다.

$$EF_{\triangle \mathrm{ll}} = EF_{\triangle \mathrm{ll}a} \times \frac{\triangle \mathrm{ll} \, \mathrm{a} \, \mathrm{d} \, \mathrm{rl}_{\Delta \mathrm{ll}a}(TJ)}{\Delta \mathrm{ll} \, \mathrm{rd} \, \mathrm{rl}(TJ)} + EF_{\Delta \mathrm{ll}b} \times \frac{\triangle \mathrm{ll} \, \mathrm{rd} \, \mathrm{rl}_{\Delta \mathrm{ll}b}(TJ)}{\Delta \mathrm{ll} \, \mathrm{rd} \, \mathrm{rl}(TJ)}$$

 $= 55,982 \text{kgCO}_2/\text{TJ} \times (1,230 \text{TJ}/2,880 \text{TJ}) + 9,848 \text{kgCO}_2/\text{TJ} \times (1,650 \text{TJ}/2,880 \text{TJ})$

 $= 29,551 \text{ kgCO}_2/\text{TJ}$

원소주기율표

TABLE OF ELEMENTS AND THEIR ATOMIC WEIGHTS

Atomic Number	Element	Symbol	Atomic Weight	Atomic Number	Element	Symbol	Atomic Weight
1	Hydrogen	Н	1.00794	55	Cesium	Cs	132.90543
2	Helium	He	4.002602	56	Barium	Ва	137.327
3	Lithium	Li	6.941	57	Lanthanum	La	138.9055
4	Beryllium	Be	9.012182	58	Cerium	Ce	140.115
5	Boron	В	10.811	59	Praseodymium	Pr	140.9076
6	Carbon	С	12.011	60	Neodymium	Nd	144.24
7	Nitrogen	N	14.00674	61	Promethium	Pm	144.9127
8	Oxygen	0	15.9994	62	Samarium	Sm	150.36
9	Fluorine	F	18.9984032	63	Europium	Eu	151.965
10	Neon	Ne	20.1797	64	Gadolinium	Gd	157.25
11	Sodium	Na	22.989768	65	Terbium	Tb	158.9253
12	Magnesium	Mg	24.3050	66	Dysprosium	Dy	162.50
	9						164.9303
13	Aluminum	Al	26.981539	67	Holmium	Но	
14	Silicon	Si	28.0855	68	Erbium	Er	167.26
15	Phosphorus	Р	30.973762	69	Thulium	Tm	168.9342
16	Sulfur	S	32.066	70	Ytterbium	Yb	173.04
17	Chlorine	CI	35.4527	71	Lutetium	Lu	174.967
18	Argon	Ar	39.948	72	Hafnium	Hf	178.49
19	Potassium	K	39.0983	73	Tantalum	Та	180.9479
20	Calcium	Ca	40.078	74	Tungsten	W	183.84
21	Scandlum	Sc	44.955910	75	Rhenium	Re	186.207
22	Titanium	Ti	47.867	76	Osmium	Os	190.23
23	Vanadium	V	50.9415	77	Iridium	Ir	192.217
24	Chromium	Cr	51.9961	78	Platinum	Pt	195.08
25	Manganese	Mn	54.93805	79	Gold	Au	196.9665
26	Iron	Fe	55.845	80			200.59
				3073777	Mercury	Hg	
27	Cobalt	Co	58.93320	81	Thallium	TI	204.3833
28	Nickel	Ni	58.6934	82	Lead	Pb	207.2
29	Copper	Cu	63.546	83	Bismuth	Bi	208.9803
30	Zinc	Zn	65.39	84	Polonium	Po	208.9824
31	Gallium	Ga	69.723	85	Astatine	At	209.9871
32	Germanium	Ge	72.61	86	Radon	Rn	222.0176
33	Arsenic	As	74.92159	87	Francium	Fr	223.0197
34	Selenium	Se	78.96	88	Radium	Ra	226.0254
35	Bromine	Br	79.904	89	Actinium	Ac	227.0278
36	Krypton	Kr	83.80	90	Thorium	Th	232.0381
37	Rubidium	Rb	85.4678	91	Protactinium	Pa	231.0388
38	Strontium	Sr	87.62	92	Uranium	U	238.0289
39	Yttrium	Y	88.90585	93	Neptunium	Np	237.0482
40	Zirconium	Zr	91.224	94	Plutonium	Pu	244.0642
41	Niobium	Nb	92.90638	95	Americium	Am	243.0614
42		Мо	95.94	96	Curium	Cm	243.0614
	Molybdenum			96			
43	Technetium	Te	97.9072*	15.00	Berkelium	Bk	247.0703
44	Ruthenium	Ru	101.07	98	Californium	Cf	251.0796
45	Rhodium	Rh	102.90550	99	Einsteinium	Es	252.083*
46	Palladium	Pd	106.42	100	Fermium	Fm	257.0951
47	Silver	Ag	107.8682	101	Mendelevium	Md	258.10*
48	Cadmium	Cd	112.411	102	Nobelium	No	259.1009
49	Indium	In	114.818	103	Lawrencium	Lr	262.11*
50	Tin	Sn	118.710	104	Unnilquadium	Unq	261.11*
51	Antimony	Sb	121.760	105	Unnilpentium	Unp	262.114*
52	Tellurium	Te	127.60	106	Unnilhexium	Unh	263.118*
53	lodine	ı	126.90447	107	Unnilseptium	Uns	262.12*
54	Xenon	Xe	131.29	1.07	Ommocpitum	0110	EOE. 12

[▶] 출처 : Based on 1993 IUPAC Table of Standard Atomic Weights of the Elements

^{별첨} 2

시료 채취 및 분석의 최소 주기

■ 시료 채취 및 분석의 최소 주기 등 (제92조제1항 관련)

연호	로 및 원료	분석 항목	최소 분석 주기		
고체 연료		원소함량, 발열량, 수분, 회(Ash) 함량	월 1회 또는 연료 입하시 (더욱 짧은 주기로 분석한다)		
<u>01</u>	서체 연료	원소함량, 발열량, 밀도 등	분기 1회 또는 연료 입하시 (더욱 짧은 주기로 분석한다)		
기체	천연가스, 도시가스	가스성분, 발열량, 밀도 등	반기 1회 ^{주1)}		
연료			월 1회		
	고체	원소함량, 발열량, 수분, 회(Ash) 함량	분기 1회 또는 폐기물 연료 매 5천톤 입하시 (더욱 짧은 주기로 분석한다)		
폐기물 연료	액체	원소함량, 발열량, 밀도 등	분기 1회 또는 폐기물 연료 매 1만톤 입하시 (더욱 짧은 주기로 분석한다)		
	기체	가스성분, 발열량, 밀도 등	월 1회 또는 폐기물 연료 매 1만톤 입하시 (더욱 짧은 주기로 분석한다)		
탄산염 원료		광석 중 탄산염 성분, 원소함량 등	월 1회 또는 원료 매 5만톤 입하시 (더욱 짧은 주기로 분석한다)		
기타 원료		원소함량 등	월 1회 또는 매 2만톤 입하시 (더욱 짧은 주기로 분석한다)		
	생산물	원소함량 등	월 1회		

^{*} 비고) 고체연료·원료가 수시 반입될 경우 월 1회로, 액체연료·폐기물 연료가 수시 반입될 경우 분기 1회로 분석할 수 있다.

^{**} 주1) 가스공급처가 최소분석주기 이상 분석한 데이터를 제공할 경우, 이를 우선 적용한다.

[▶] 출처 : (환경부 고시 제2014-186호) 온실가스에너지 목표관리 운영 등에 관한 지침 [별표23]

^{별첨} 3

배출활동별명세서 입력코드 구분

■ [참고1] 배출활동 코드

배출활동 구분	코드	배출활동명	배출활동 구분	코드	배출활동명
	1001	고체연료연소		4021	철강생산
고정연소	1002	기체연료연소		4022	합금철 생산
	1003	액체연료연소	금속산업	4023	아연생산
	2001	이동연소(항공)		4024	납생산
	2002	이동연소(도로)		4098	마그네슘 생산
	2003	이동연소(철도)		4025	전자산업(반도체)
이동연소	2004	이동연소(선박)	전자산업	4026	전자산업(디스플레이)
이중연도	3001	석탄의 채굴		4027	전자산업(광전지)
	3002	석탄의 처리 및 저장	0 A A	4029	오존층파괴물질의 대체물질 사용
	3003	천연가스 시스템	오존층	4030	오존층파괴물질의 대체물질 사용(전기설비)
	3004	원유(석유) 시스템		5001	고형폐기물의 매립
	4001	시멘트 생산	폐기물의 처리	5002	고형폐기물의 생물학적처리
고나무 사이	4002	석회 생산		5003	하수처리 및 배출
광물산업	4003	탄산염의 기타 공정사용		5004	폐수처리 및 배출
	4004	인산 생산		5005	폐기물의 소각
	4011	석유정제활동(수소제조)	기저비ᄎ	6001	간접배출(외부전기사용)
석유정제	4012	석유정제활동(촉매재생)	간접배출	6002	간접배출(외부 열사용)
	4013	석유정제활동(코크스제조)		7001	기타 온실가스 배출 및 사용
	4014	암모니아 생산	기타 산업	4099	기타 공정배출
	4015	질산 생산		4050	연료전지
	4016	아디프산 생산			
화학산업	4017	카바이드 생산			
작의산업	4018	소다회 생산			
	4019	석유화학제품생산			
	4020	불소화합물생산(HCFC-22 생산)			
	4031	카프로락탐 생산			

▶ 출처 : (환경부 고시 제2014-186호) 온실가스에너지 목표관리 운영 등에 관한 지침 [명세서 작성 참고자료]

■ [참고2] 배출시설 코드

배출시설 구분	코드	배출시설명	배출시설 구분	코드	배출시설명
	0005	공정 연소시설		0001	개질공정
	0021	발전용 내연기관		0009	기타 불소화합물 생산 공정
고정연소	0048	열병합 발전시설		0018	메탄올 생산 공정
	0055	일반 보일러시설		0019	메탄화 공정
	0082	화력 발전시설		0025	변성공정
	0003	고속차량(철도)		0027	비닐 클로라이드 모노머 생산 공정
	0010	기타 선박		0040	아디프산 생산 시설
	0011	기타 자동차(비도로)	화학산업	0042	아크릴로니트릴 생산 공정
	0100	기타 항공기(국내 운항)		0043	암모니아 소다회 제조시설
	0101	기타 항공기(시운전)	* 와약산입	0047	에틸렌 옥사이드 생산 공정
	0102	기타 항공기(헬리콥터)		0049	염화비닐 모노머 생산 공정
	0016	디젤기관차		0065	질산 제조 시설
	0017	디젤동차		0067	천연 소다회 생산 공정
	0020	민간항공기(국내 운항)		0070	카본블랙 생산 시설
	0028	비도로 및 기타 자동차		0071	칼슘 카바이드 제조 시설
이동연소	0035	수상항해 선박(국내 운항)		0084	CO ₂ 제거 및 회수공정
	0037	승용 자동차		0085	HCFC-22 생산 공정
	0038	승합 자동차		0104	암모니아 생산시설
	0045	어선		0023	배소로
	0053	이륜 자동차		0032	소결로
	0058	전기기관차		0041	아연제련공정
	0059	전기동차		0051	용선로 또는 제선로
	0074	특수 자동차		0054	일관제철 공정
	0075	특수차량		0060	전기로(전기아크로)
	0083	화물 자동차		0061	전로
	0086	철도수송시설	7.4.4.0	0062	전해로
	0024	배연탈황시설	금속산업	0073	코크스로
	0033	소성시설(kiln)		0077	평로
광물산업	0052	용융·용해시설	1	0105	마그네슘 제련시설
	0044	약품회수시설			
	0103	인산생산시설	1		
	0036	수소제조 공정	1		
석유정제	0068	촉매재생공정	1		
	0072	코크스 제조 공정			

배출시설 구분	코드	배출시설명	배출시설 구분	코드	배출시설명
전자산업	0039	식각시설		0014	냉동 및 냉방용 냉매 사용 시설
선사인법	0064	증착시설	오존파괴	0022	발포제 사용 시설
	0004	공공하수처리시설	물질의	0029	비에어로졸 용매사용 시설
	0006	관리형매립시설	대체물질	0034	소화약제 사용 시설
	0013	기타 하·폐수 처리시설	사용	0046	에어로졸 용매사용 시설
	0015	대기오염물질 방지시설		0063	절연제 사용 시설
	0026	분뇨처리시설		0000	사업장 전체
	0030	사료화·퇴비화·소멸화·부숙토생산 시설		0002	건축물
	0031	소각보일러		0007	기타
폐기물의	0056	일반폐기물 소각시설		8000	기타로
처리	0057	적출물 소각시설		0050	온실가스 기타 사용 시설
	0066	차단형 매립시설	기타	0097	사업장단위스팀사용시설
	0069	축산폐수공공처리시설		0098	사업장단위전력사용시설
	0076	특정폐기물 소각시설		0099	소량배출사업장
	0078	폐가스소각시설		0103	연료전지
	0079	폐수소각시설			
	0080	폐수종말처리시설			
	0081	호기성·혐기성 분해시설			

[▶] 출처 : (환경부 고시 제2014-186호) 온실가스에너지 목표관리 운영 등에 관한 지침 [명세서 작성 참고자료]

■ [참고3] 온실가스 (지구온난화지수)

코드	온실가스 명	화학식	GWP	코드	온실가스 명	화학식	GWP
01	이산화탄소	CO ₂	1	13	HFC-143a	C ₂ H ₃ F ₃	3,800
02	메탄	CH ₄	21	14	HFC-227ea	C ₃ HF ₇	2,900
03	아산화질소	N ₂ O	310	15	HFC-236fa	C ₃ H ₂ F ₆	6,300
04	HFC-23	CHF ₃	11,700	16	HFC-245ca	C ₃ H ₃ F ₅	560
05	HFC-32	CH ₂ F ₂	650	17	PFC-14	CF ₄	6,500
06	HFC-41	CH₃F	150	18	PFC-116	C ₂ F ₆	9,200
07	HCF-43-10mee	C ₅ H ₂ F ₁₀	1,300	19	PFC-218	C ₃ F ₈	7,000
08	HFC-125	C ₂ HF ₅	2,800	20	PFC-318	c-C ₄ F ₈	8,700
09	HFC-134	C ₂ H ₂ F ₄	1,000	21	PFC-31-10	C ₄ F ₁₀	7,000
10	HFC-134a	CH ₂ FCF ₃	1,300	22	PFC-41-12	C ₅ F ₁₂	7,500
11	HFC-152a	C ₂ H ₄ F ₂	140	23	PFC-51-14	C ₆ F ₁₄	7,400
12	HFC-143	C ₂ H ₃ F ₃	300	24	육불화황	SF ₆	23,900

^{*} GWP(Global Warming Potential) : 지구온난화지수

^{*} 출처: IPCC 2차 평가보고서

■ [참고4] 활동자료 코드

〈활동자료 대분류〉

구분	코드	활동자료 대분류명
연료	F0	연료
	R1	원료
원료	R2	촉매
	R3	환원제
	P1	최종생산물
생산물	P2	중간생산물
	P3	기타 부산물
열/전기	S0	열
을/선기 	E0	전기
폐기물	W0	폐기물
기타	00	기타

〈활동자료 중분류 및 세분류〉

중분류명	코드	활동자료명(세분류명)					
	0039	국내무연탄					
ㅁ 어 FL	0105	수입무연탄(연료)					
무연탄	0106	수입무연탄(원료)					
	0006	제철용 PCI탄					
	0044	갈탄					
유여타	0042	연료용 유연탄					
тое	0041	원료용 유연탄					
	0043	하위 역청탄(아역청탄)					
코크스	0007	석유코크(고체)					
<u> </u>	0045	코크스(석탄)					
경유	0020	가스/디젤 오일(경유)					
	0021	보일러 등유					
등유	0018	실내 등유					
	0017	제트용 등유(JET A-1, JP-8)					
	0012	오리멀젼					
	0011	원유					
정제원료	0028	정제원료(반제품)					
	0013	천연가스액(NGL)					
	0019	혈암유					
	0032	B-A유					
중유	0033	B-B유					
	0034	B-C유					
	0016	제트용 가솔린					
휘발유	0015	항공용 가솔린					
	0014	휘발유					

중분류명	코드	활동자료명(세분류명)
	0049	LPG(차량)
	0056	도시가스(LPG)
LPG	0036	부탄
	0022	액화석유가스(LPG)
	0035	프로판
	0031	백 유(용제)
	0107	OCE (Organic Caustic Effluents)
	0108	가스 코크스
	0109	경소백운석(고토석회,CaO·MgO)
	0110	골회(bone ash)
	0111	공기
	0112	정광
	0024	나프타(납사)
	0113	납
공통	0114	납스크랩
	0115	능철광(FeCO ₃)
	0116	도시폐기물
	0117	마그네사이트(MgCO₃)
	0118	마그네슘(Mg)
	0119	망간광(MnCO ₃)
	0120	망간철(Fe-Mn)
	0121	밀스케일
	0122	반도체/LCD/PV
	0123	백운석(돌로마이트,CaMg·(CO₃)₂)

중분류명	코드	활동자료명(세분류명)	중분류명	코드	활동자료명(세분류명)
	0048	CNG(차량)		0124	산업폐기물
	0047	LNG(차량)		0125	생석회(산화칼슘,CaO)
LNG		도시가스(LNG)		0126	석회석(CaCO ₃)
	0051	천연가스(LNG)		0127	석회킬른먼지(LKD)
		선철(냉선)		0169	아크릴로니트릴(AN)
	0129	슬래그		0170	암모니아(NH3)
	0130	슬러지(고체)		0171	액상 탄산소다
	0131	시멘트 킬른먼지(CKD)		0023	에 탄(C ₂ H ₆)
	0132	실리콘 망간(Si-Mn)		0172	에 탄올(C ₂ H ₅ OH)
	0133	아연		0173	에 틸렌(C ₂ H ₄)
	0025	역청(아스팔트)		0174	에틸렌글리콜(EG)
		유리		0175	에틸렌디클로라이드(EDC)
		윤활유		0176	에틸렌옥사이드(EO)
	0135	인광석		0177	염화나트륨(NaCl)
		진류물(Residue 또는 Cake)		0178	염화비닐 모노머(VCM)
		재(ash)	기초화학	0179	요소(CO(NH ₂) ₂)
		전극봉 페이스트(Electrode paste)	물질	0180	이산화탄소(CO ₂)
	0139	전기로 가탄제		0181	자일렌(Xylene,C ₆ H ₄ (CH ₃) ₂)
	0030	접착제(파라핀왁스)		0182	질산(HNO3)
공통	0140	조강		0183	카본 블랙 원료
				0184	카본블랙(CB)
	0141	조경유 조합 원료(시멘트 생산)		0185	카프로락탐
	0142			0186	칼슘 카바이드(탄화칼슘,CaC ₂)
	0143	철광석 참배용서(Co/Fo Ma Ma)(CO))		0187	탄산바륨(BaCO ₃)
		철백운석(Ca(Fe,Mg,Mn)(CO ₃) ₂)		0188	탄산스트론튬(SrCO ₃)
	0145	철스크랩		0189	탄산칼륨(K ₂ CO ₃)
	0146	코크(촉매재생)		0190	
	0147	코크스분탄(coke breeze)		0191	프로필렌(C ₃ H ₆)
	0148	콜타르		0053	. (- :)
	0149	클링커		0192	
	0150	탄소전극봉	1	0054	
	0151	토탄(이탄)	부생가스		정유가스(정제가스)
	0152			0052	
	0153	펠렛		0193	
	0154	합금철(Fe-Si)			폐가스
	0155	고상 탄산소다	HUGG	0057	
	0156	메탄(CH4)	부생오일	0058	부생연료 2호
		메탄올(CH3OH)		0195	
	0158	부타디엔(C4H6)		0009	공정폐열
	0159	산화규소(SiO2)		8000	폐기물 소각열
	0160	소다회(탄산나트륨,Na2CO3)		0062	열(스팀)
기초화학	0161	수소(H2)	열	0264	열(온수)
물질	0162	시안화수소(HCN)		0265	열(hot-air)
	0163	실리콘메탈		0266	열(기타 열매)
-	0164	아니솔(C6H5OCH3)		0104	자가소비(열)
	0165	아디프산(Adipic Acid)		0103	자가소비(전력)
	0166	아산화질소(N2O)	전기	0061	전력
	0167	아세토니트릴(CH3CN)			
	0168	아세틸렌(C2H2)	기타	0231	HCFC-22
			_		

중분류명	코드	활동자료명(세분류명)	3
	0096	RDF(화석연료)	
	0097	RPF(화석연료)	
	0196	기타화석연료 기원 폐기물	H
	0095	폐기물 유화/가스화 등(화석연료)	
폐기물	0197	폐목재/톱밥	
(순환자원)	0198	폐유(폐석유제품)	
	0199	폐용제	
	0200	폐타이어/폐합성고무	
	0201	폐플라스틱/폐합성수지	
	0202	혼합된 산업폐기물	
	0092	RDF(바이오매스)	
	0093	RPF(바이오매스)	
	0065	농업작물(유채, 옥수수 등)	H
	0066	농임산부산물	
	0203	도시폐기물(바이오매스)	
	0086	매립지가스(LFG)	
바이오매스	0073	목재/목재 폐기물	
	0090	목탄	
	0204	바이오가솔린	
	0087	바이오디젤	
	0205	슬러지가스	
	0206	아황산염 잿물(흑액)	
	0072	유기성폐기물	
	0207	고무 피혁류	
	0208	금속류	IL
	0209	기저귀	
	0210	나무류	
생활	0211	섬유류	
폐기물	0212	유리류	
(폐기물	0213	음식물류	
매립·소각)	0214	정원 및 공원 폐기물류	
"" — "	0215	종이류	
	0216	플라스틱류	
	0217	기타 생활폐기물	
	0218	혼합 폐기물(bulk)	
	0219	건설 및 파쇄 잔재물	
	0220	석유제품, 용매, 플라스틱류	
	0221	음식물류	
	0222	의료폐기물	
사업장	0223	폐목재류	
폐기물	0224	폐섬유류	
(폐기물	0225	폐지류	
내립·소각)	0226	폐합성고무	
/	0227	폐수 슬러지(오니)	
	0228	하수 슬러지(오니)	
	0229	기타 사업장 폐기물	
	0230	혼합 폐기물(bulk)	
		i i i	· -

중분류명	코드	활동자료명(세분류명)
	0232	C2F6(PFC-116)
	0233	C2H2F4(HFC-134)
	0234	C2H3F3(HFC-143)
	0235	C2H3F3(HFC-143a)
	0236	C2H4F2(HFC-152a)
	0237	C2HF5(HFC-125)
	0238	C3F8(PFC-218)
	0239	C3H2F6(HFC-236fa)
	0240	C3H3F5(HFC-245ca)
	0241	C3HF7(HFC-227ea)
	0242	C4F6
온실가스	0243	C4F8O
[근글기그	0244	C4F10(PFC-31-10)
	0245	C5F8
	0246	C5F12(PFC-41-12)
	0247	C5H2F10(HCF-43-10mee)
	0248	C6F14(PFC-51-14)
	0249	c-C4F8(PFC-318)
	0250	CF4(PFC-14)
	0251	CH2F2(HFC-32)
	0252	CH2FCF3(HFC-134a)
	0253	CH3F(HFC-41)
	0254	CHF3(HFC-23)
	0102	육불화황(SF6)
		기타 고체연료
	0059	
	0038	기타 액체연료
	0255	기타 탄산염류
	0037	기타 석유제품(기타)
	0256	기타 광석·원석(Ore)
		기타 원료/촉매/환원제
	0258	기타 최종·중간생산물/부산물 기타 부생오일
	0259	기타 고체바이오매스
	0260	기타 액체바이오연료
기타	0083	기타 바이오가스
	0262	기타 액상폐기물
	0263	기타 기상폐기물
	0100	기타 불소계 온실가스(HFCs)
	0101	기타 불소계 온실가스(PFCs)
	0.01	

▶ 출처 : (환경부 고시 제2014-186호) 온실가스에너지 목표관리 운영 등에 관한 지침 [명세서 작성 참고자료]

■ [참고5] 단위코드

Ē	2분	코드	단위	구	분	코드	단위
	거리	0065	kg/m			0090	TJ/t
	면적	0012	kg/m ²		무게	0045	TJ/Gg
	몰	0018	kg/kg-mole			0046	MJ/kg
		0066	kg/t-fuel			0047	MJ/L
		0009	ton-C/t	에너지환산		0048	MJ/N m³
		0086	tCO ₂ /t		부피	0080	TJ/1000m ³
	무게	0071	kgCH ₄ /t			0042	TJ/1000000Nm ³
		8000	kgN ₂ O/t		저러라	0049	MJ/kWh
		0074	kgN ₂ O-N/kgN		전력량	0041	TJ/GWh
		0013	kg/L		거리	0016	km
		0079	mgN/L		면적	0076	m²
		0100	kg/m ³			0067	kgCH₄
		0004	ton-C/1000m ³		무게	0096	kg
	부피	0017	ton-C/m ³			0010	ton
		0025	kg-C/GJ		부피	0002	kL
		0027	tCO ₂ /1000m ³			0005	천 m³
계수		0101	kgCH ₄ /Nm ³			0057	%
		0102	kgN ₂ O/Nm ³		비율	0058	0과 1사이
	시간	0020	kg/hour			0081	ppm
		0050	kgGHG/TJ		시간	0097	시간(h)
		0087	tCO ₂ /TJ	일반	에너지량	0024	kWh
	열량	0103	kgCO ₂ /TJ	일만		0093	MWh
		0104	kgCH ₄ /TJ		에디지당	0099	GJ
		0105	kgN₂O/TJ			0001	TJ
		0085	tCO ₂ /MWh		온도	0059	${\mathbb C}$
	전력량	0070	kgCH ₄ /MWh			0033	ton • km
		0073	kgN ₂ O/MWh		수송	0075	km/대
		0077	mgBOD/L			0092	대
	폐기물	0078	mgCOD/L		횟수	0098	회
	뻬시크 	0069	kgCH ₄ /kgBOD			0055	m³/h
		0082	tCH ₄ /tCOD		단위시간	0054	ton/h
	수송	0064	kg/LTO			0106	GJ/h
	기타	0011	kg/unit		기타	0051	KVA

[▶] 출처 : (환경부 고시 제2014-186호) 온실가스에너지 목표관리 운영 등에 관한 지침 [명세서 작성 참고자료]

천연가스 성분별 몰질량 및 발열량 참고표 [참고 : KS | ISO 6976 발췌]

■ 천연가스 성분의 몰질량

	성 분	값 kg · kmol ⁻¹
1	메탄	16.043
2	에탄	30.070
3	프로판	44.097
4	<i>n</i> -부탄	58.123
5	2-메틸프로판	58.123
6	<i>n</i> −펜 탄	72.150
7	2-메틸부탄	72.150
8	2,2-디메틸프로판	72.150
9	<i>n</i> -헥산	86.177
10	2-메틸펜탄	86.177
11	3-메틸펜탄	86.177
12	2,2-디메틸부탄	86.177
13	2,3-디메틸부탄	86.177
14	<i>n</i> -헵탄	100.204
15	<i>n</i> -옥탄	114.231
16	<i>n</i> -노난	128.258
17	<i>n</i> -데칸	142.285
18	에틸렌	28.054
19	프로필렌	42.081
20	1-부텐	56.108
21	<i>cis-</i> 2-부텐	56.108
22	trans-2-부텐	56.108
23	2-메틸프로펜	56.108
24	1-펜텐	70.134
25	프로파디엔	40.065
26	1,2-부타디엔	54.092
27	1,3-부타디엔	54.092
28	아세틸렌	26.038
29	사이클로펜탄	70.134
30	메틸사이클로펜탄	84.161
31	에틸사이클로펜탄	98.188
32	사이클로헥산	84.161
33	메틸사이클로헥산	98.188
34	에틸사이클로헥산	112.215
35	벤젠	78.114
36	톨루엔	92.141
37	에틸벤젠	106.167
38	<i>o</i> −자일렌	106.167

	성 분	값 kg • kmol ⁻¹
39	메탄올	32.042
40	메탄티올	48.109
41	수소	2.015 9
42	물	18.015 3
43	황화수소	34.082
44	암모니아	17.030 6
45	시안화수소	27.026
46	일산화탄소	28.010
47	황화카보닐	60.076
48	이황화탄소	76.143
49	헬륨	4.002 6
50	네온	20.179 7
51	아르곤	39.948
52	질소	28.013 5
53	산소	31.998 8
54	이산화탄소	44.010
55	이산화황	64.065
56	일산화이질소	44.012 9
57	크립톤	83.80
58	제논	131.29
	공기	28.962 6

<비고>

물질량 값은 포함되어 있는 주요 원소에 대한 다음의 상대 원자량 값을 이용하여 얻은 상대 분자량 값과 동일하다. 여기에서 괄호 안의 숫자는 인용된 마지막 자릿수의 불확도이다 (부속서 M의 참고 문헌 [14] 참조).

C 12.011 (1) H 1.007 94 (7) O 15.999 4 (3) N 14.006 74 (7) S 32.066 (6)

C 및/또는 S가 들어 있는 화합물의 경우, 도출된 몰질량은 소수점 셋째 자리에서 반 올림하였다. 다른 화합물의 경우 소수점 넷 째 자리에서 반올림이 주어졌다. 표준 조 성의 건조 공기값(표 B.2 참조) 또한 소수 점 넷째 자리로 주어졌다.

■ 다양한 연소 기준 조건에서 천연가스 각 성분의 단위 몰당 이상 발열량

메탄을 제외한(부속서 G 참조) H°s(25℃)의 모든 값은 부속서 M의 참고문헌 [13] 으로부터 구할 수 있다. \mathbf{H}° s의 값 $(t_1 \neq 25^\circ\mathbb{C})$ 과 \mathbf{H}° s (t_1) 의 모든 값은 \mathbf{H}° s $(25^\circ\mathbb{C})$ 의 규정된 계산에 의해 얻어진다(E.1 참조).

		단위 몰당 이상 발열량, Ħ ^º (kJ · mol ⁻¹)								
	성 분	25℃		20℃		15℃		0℃		
		고위	저위	고위	저위	고위	저위	고위	저위	
1	메탄	890.63	802.60	891.09	802.65	891.56	802.69	892.97	802.82	
2	에탄	1 560.69	1 428.64	1 561.41	1 428.74	1 562.14	1 428.84	1 564.34	1 429.12	
3	프로판	2 219.17	2 043.11	2 220.13	2 043.23	2 221.10	2 043.37	2 224.01	2 043.71	
4	<i>n</i> −부탄	2 877.40	2 657.32	2 878.57	2 657.45	2 879.76	2 657.60	2 883.82	2 658.45	
5	2-메틸프로판	2 868.20	2 648.12	2 869.38	2 648.26	2 870.58	2 648.42	2 874.20	2 648.83	
6	<i>n</i> −펜탄	3 535.77	3 271.67	3 537.17	3 271.83	3 538.60	3 272.00	3 542.89	3 272.45	
7	2-메틸부탄	3 528.83	3 264.73	3 530.24	3 264.89	3 531.68	3 265.08	3 535.98	3 265.54	
8	2,2-디메틸프로판	3 514.61	3 250.51	3 516.01	3 250.67	3 517.43	3 250.83	3 521.72	3 251.28	
9	<i>n</i> -헥산	4 194.95	3 886.84	4 196.58	3 887.01	4 198.24	3 887.21	4 203.23	3 887.71	
10	2-메틸펜탄	4 187.32	3 879.21	4 188.95	3 879.38	4 190.62	3 879.59	4 195.61	3 880.09	
11	3-메틸펜탄	4 189.90	3 881.79	4 191.54	3 881.97	4 193.22	3 882.19	4 198.24	3 882.72	
12	2,2-디메틸부탄	4 177.52	3 869.41	4 179.15	3 869.59	4 180.83	3 869.80	4 185.84	3 870.32	
13	2,3-디메틸부탄	4 185.28	3 877.17	4 186.93	3 877.36	4 188.60	3 877.57	4 193.63	3 878.11	
14	<i>n</i> −헵 탄	4 853.43	4 501.30	4 855.29	4 501.49	4 857.18	4 501.72	4 862.87	4 502.28	
15	<i>n</i> −옥탄	5 511.80	5 115.66	5 513.88	5 115.87	5 516.01	5 116.11	5 522.40	5 116.73	
16	<i>n</i> -노난	6 171.15	5 730.99	6 173.46	5 731.22	6 175.82	5 731.49	6 182.91	5 732.17	
17	<i>n</i> -데칸	6 829.77	6 345.59	6 832.31	6 345.85	6 834.90	6 346.14	6 842.69	6 346.88	
18	에틸렌	1 411.18	1 323.15	1 411.65	1 323.20	1 412.11	1 323.24	1 413.51	1 323.36	
19	프로필렌	2 058.02	1 925.97	2 058.72	1 926.05	2 059.43	1 926.13	2 061.57	1 926.35	
20	1-부텐	2 716.82	2 540.76	2 717.75	2 540.86	2 718.70	2 540.97	2 721.55	2 541.25	
21	<i>cis-</i> 2-부텐	2 710.0	2 533.9	2 711.0	2 534.1	2 711.9	2 534.2	2 714.9	2 534.6	
22	trans-2-부텐	2 706.4	2 530.3	2 707.4	2 530.5	2 708.3	2 530.5	2 711.1	2 530.8	
23	2-메틸프로펜	2 700.2	2 524.1	2 701.1	2 524.2	2 702.0	2 524.3	2 704.8	2 524.5	
24	1-펜 텐	3 375.42	3 155.34	3 376.57	3 155.45	3 377.75	3 155.59	3 381.29	3 155.92	

			단위 몰당 이상 발열량, 甘 ⁰ (kJ · mol ⁻¹)							
	성 분	25	$^{\circ}$	20	$^{\circ}\mathbb{C}$	15℃		0℃		
		고위	저위	고위	저위	고위	저위	고위	저위	
25	프로파디엔	1 943.11	1 855.08	1 943.53	1 855.08	1 943.96	1 855.09	1 945.25	1 855.10	
26	1,2-부타디엔	2 593.79	2 461.74	2 594.45	2 461.78	2 595.12	2 461.82	2 597.13	2 461.91	
27	1,3-부타디엔	2 540.77	2 408.72	2 541.43	2 408.76	2 542.10	2 408.80	2 544.13	2 408.91	
28	아세틸렌	1 301.05	1 257.03	1 301.21	1 256.98	1 301.37	1 256.94	1 301.86	1 256.79	
29	사이클로펜탄	3 319.59	3 099.51	3 320.88	3 099.76	3 322.19	3 100.03	3 326.14	3 100.77	
30	메틸사이클로펜탄	3 969.44	3 705.34	3 970.93	3 705.59	3 972.46	3 705.86	3 977.04	3 706.60	
31	에틸사이클로펜탄	4 628.47	4 320.36	4 630.19	4 320.63	4 631.95	4 320.92	4 637.27	4 321.75	
32	사이클로헥산	3 952.96	3 688.86	3 954.47	3 689.13	3 956.02	3 689.42	3 960.67	3 690.23	
33	메틸사이클로헥산	4 600.64	4 292.53	4 602.35	4 292.78	4 604.09	4 293.06	4 609.34	4 293.82	
34	에틸사이클로헥산	5 263.05	4 910.92	5 264.98	4 911.19	5 266.95	4 911.49	5 272.88	4 912.29	
35	벤젠	3 301.43	3 169.38	3 302.15	3 169.48	3 302.86	3 169.56	3 305.03	3 169.81	
36	톨루엔	3 947.89	3 771.83	3 948.84	3 771.95	3 949.81	3 772.08	3 952.72	3 772.42	
37	에틸벤젠	4 607.15	4 387.07	4 608.32	4 387.20	4 609.53	4 387.37	4 613.14	4 387.77	
38	<i>o</i> −자일렌	4 596.31	4 376.23	4 597.46	4 376.34	4 598.64	4 376.48	4 602.17	4 376.80	
39	메탄올	764.09	676.06	764.59	676.14	765.09	676.22	766.59	676.44	
40	메탄티올	1 239.39	1 151.36	1 239.83	1 151.39	1 240.28	1 151.41	1 241.63	1 151.48	
41	수소	285.83	241.81	285.99	241.76	286.15	241.72	286.63	241.56	
42	물 ^a	44.016	0	44.224	0	44.433	0	45.074	0	
43	황화수소	562.01	517.99	562.19	517.97	562.38	517.95	562.94	517.87	
44	암모니아	382.81	316.79	383.16	316.82	383.51	316.86	384.57	316.96	
45	시안화수소	671.5	649.5	671.6	649.5	671.7	649.5	671.9	649.4	
46	일산화탄소	282.98	282.98	282.95	282.95	282.91	282.91	282.80	282.80	
47	황화카보닐	548.23	548.23	548.19	548.19	548.15	548.15	548.01	548.01	
48	이황화탄소	1 104.49	1 104.49	1 104.41	1 104.41	1 104.32	1 104.32	1 104.06	1 104.06	

^a 0인 아닌 수중기의 발열량은 공식적으로 연소산물의 모든 수증기가 액체 상태로 응축되는 고위 발열량 정의로부터 도출된다. 그래서 건조 가스에 존재하는 수증기의 기화 잠열이 혼합 가스의 고위 발열량에 포함된다(완전한 설명은 부속서 F를 참조).

■ 다양한 연소 기준 조건에서 천연가스 각 성분의 단위 질량당 이상 발열량

모든 값은 표 <연소 기준 조건에서 천연가스 각 성분의 단위 몰당 이상 발열량>에 있는 \mathbf{H}° 값을 표 <천연가스 성분의 몰질량>에 있는 몰질량(반올림 전)으로 나누어진 값이다.

		단위 질량당 이상 발열량, <i>H</i> ^0 (MJ·kg-1)									
	성분	25	$^{\circ}\mathbb{C}$	20	${\mathbb C}$	15	\mathbb{C}	0℃			
		고위	고위 저위		저위	고위	저위	고위	저위		
1	메탄	55.516	50.029	55.545	50.032	55.574	50.035	55.662	50.043		
2	에탄	51.90	47.51	51.93	47.51	51.95	47.52	52.02	47.53		
3	프로판	50.33	46.33	50.35	46.34	50.37	46.34	50.44	46.35		
4	<i>n</i> -부탄	49.51	45.72	49.53	45.72	49.55	45.72	49.62	45.74		
5	2-메틸프로판	49.35	45.56	49.37	45.56	49.39	45.57	49.45	45.57		
6	<i>n</i> -펜탄	49.01	45.35	49.03	45.35	49.04	45.35	49.10	45.36		
7	2-메틸부탄	48.91	45.25	48.93	45.25	48.95	45.25	49.01	45.26		
8	2,2-디메틸프로판	48.71	45.05	48.73	45.05	48.75	45.06	48.81	45.06		
9	<i>n</i> -헥산	48.68	45.10	48.70	45.10	48.72	45.11	48.77	45.11		
10	2-메틸펜탄	48.59	45.01	48.61	45.02	48.63	45.02	48.69	45.02		
11	3-메틸펜탄	48.62	45.04	48.64	45.05	48.66 45.05		48.72	45.06		
12	2,2-디메틸부탄	48.48	44.90	48.49	44.90	48.51	44.91	48.57	44.91		
13	2,3-디메틸부탄	48.57	44.99	48.59	44.99	48.60	45.00	48.66	45.00		
14	<i>n</i> -헵탄	48.44	44.92	48.45	44.92	48.47	44.93	48.53	44.93		
15	<i>n</i> -옥탄	48.25	44.78	48.27	44.79	48.29	44.79	48.34	44.79		
16	n-노난	48.12	44.68	48.13	44.69	48.15	44.69	48.21	44.69		
17	n-데칸	48.00	44.60	48.02	44.60	48.04	44.60	48.09	44.61		
18	에틸렌	50.30	47.16	50.32	47.17	50.34	47.17	50.39	47.17		
19	프로필렌	48.91	45.77	48.92	45.77	48.94	45.77	48.99	45.78		
20	1-부텐	48.42	45.28	48.44	45.29	48.46	45.29	48.51	45.29		
21	<i>cis</i> -2-부텐	48.30	45.16	48.32	45.16	48.33	45.17	48.39	45.17		
22	trans-2-부텐	48.24	45.10	48.25	45.10	48.27	45.10	48.32	45.11		
23	2-메틸프로펜	48.13	44.99	48.14	44.99	48.16	44.99	48.21	44.99		
24	1-펜텐	48.13	44.99	48.14	44.99	48.16	44.99	48.21	45.00		
25	프로파디엔	48.50	46.30	48.51	46.30	48.52	46.30	48.55	46.30		
26	1,2-부타디엔	47.95	45.51	47.96	45.51	47.98	45.51	48.01	45.51		
27	1,3-부타디엔	46.97	44.53	46.98	44.53	47.00	44.53	47.03	44.53		
28	아세틸렌	49.97	48.28	49.97	48.28	49.98	48.27	50.00	48.27		

		단위 질량당 이상 발열량, <i>H</i> ^0 (MJ·kg-1)										
	성분	25	$^{\circ}\mathbb{C}$	20	$^{\circ}\mathbb{C}$	15	\mathbb{C}	0℃				
		고위 저위		고위	고위 저위		저위	고위	저위			
29	사이클로펜탄	47.33	44.19	47.35	44.20	47.37	44.20	47.43	44.21			
30	메틸사이클로펜탄	47.16	44.03	47.18	44.03	47.20	44.03	47.25	44.04			
31	에틸사이클로펜탄	47.14	44.00	47.16	44.00	47.17	44.01	47.23	44.01			
32	사이클로헥산	46.97	43.83	46.99	43.83	47.01	43.84	47.06	43.85			
33	메틸사이클로헥산	46.86	43.72	46.87	43.72	46.89	43.72	46.94	43.73			
34	에틸사이클로헥산	46.90	43.76	46.92	43.77	46.94	43.77	46.99	43.78			
35	벤젠	42.26	40.57	42.27	40.58	42.28	40.58	42.31	40.58			
36	톨루엔	42.85	40.94	42.86	40.94	42.87	40.94	42.90	40.94			
37	에틸벤젠	43.40	41.32	43.41	41.32	43.42	41.33	43.45	41.33			
38	o−자일렌	43.29	41.22	43.30	41.22	43.31	41.22	43.35	41.23			
39	메탄올	23.85	21.10	23.86	21.10	23.88	21.10	23.92	21.11			
40	메탄티올	25.76	23.93	25.77	23.93	25.78	23.93	25.81	23.93			
41	수소	141.79	119.95	141.87	119.93	141.95	119.91	142.19	119.83			
42	물 ^a	2.44	0	2.45	0	2.47	0	2.50	0			
43	황화수소	16.49	15.20	16.50	15.20	16.50	15.20	16.52	15.19			
44	암모니아	22.48	18.60	22.50	18.60	22.52	18.61	22.58	18.61			
45	시안화수소	24.85	24.03	24.85	24.03	24.85	24.03	24.86	24.03			
46	일산화탄소	10.10	10.10	10.10	10.10	10.10	10.10	10.10	10.10			
47	황화카보닐	9.13	9.13	9.12	9.12	9.12	9.12	9.12	9.12			
48	이황화탄소	14.51	14.51	14.50	14.50	14.50	14.50	14.50	14.50			

a 0이 아닌 수증기의 발열량은 공식적으로 연소산물의 모든 수증기가 액체 상태로 응축되는 고위 발열량 정의로부터 도출된다. 그래서 건조 가스에 존재하는 수증기의 기화 잠열이 혼합 가스의 고위 발열량에 포함된다(완전한 설명은 부속서 F를 참조).

■ 다양한 연소 기준 조건에서 천연가스 각 성분의 단위 부피당 이상 발열량

모든 값은 표 <연소 기준 조건에서 천연가스 각 성분의 단위 몰당 이상 발열량>의 \mathbf{H}_o 값에 $p_2/R \cdot T_2$ 를 곱함으로써 얻어진다.

		단위 부피당 이상 발열량, <i>H</i> ~ (MJ⋅m-3)											
	성분		15/15℃		0/0℃		15/0℃		25/0℃		20/20℃		20℃
		고위	저위	고위	저위	고위	저위	고위	저위	고위	저위	고위	저위
1	메탄	37.706	33.948	39.840	35.818	39.777	35.812	39.735	35.808	37.044	33.367	37.024	33.365
2	에탄	66.07	60.43	69.79	63.76	69.69	63.75	69.63	63.74	64.91	59.39	64.88	59.39
3	프로판	93.94	86.42	99.22	91.18	99.09	91.16	99.01	91.15	92.29	84.94	92.25	84.93
4	n-부탄	121.79	112.40	128.66	118.61	128.48	118.57	128.37	118.56	119.66	110.47	119.62	110.47
5	2-메틸프로판	121.40	112.01	128.23	118.18	128.07	118.16	127.96	118.15	119.28	110.09	119.23	110.08
6	n−펜 탄	149.66	138.38	158.07	146.00	157.87	145.98	157.75	145.96	147.04	136.01	146.99	136.01
7	2-메틸부탄	149.36	138.09	157.76	145.69	157.57	145.67	157.44	145.66	146.76	135.72	146.70	135.72
8	2,2-디메틸프로판	148.76	137.49	157.12	145.06	156.93	145.04	156.80	145.02	146.16	135.13	146.11	135.13
9	n-헥산	177.55	164.40	187.53	173.45	187.30	173.43	187.16	173.41	174.46	161.59	174.39	161.58
10	2-메틸펜탄	177.23	164.08	187.19	173.11	186.96	173.09	186.82	173.07	174.14	161.27	174.07	161.26
11	3-메틸펜탄	177.34	164.19	187.30	173.23	187.08	173.20	186.93	173.19	174.25	161.38	174.18	161.37
12	2,2-디메틸부탄	176.82	163.66	186.75	172.67	186.53	172.65	186.38	172.63	173.73	160.86	173.66	160.86
13	2,3-디메틸부탄	177.15	163.99	187.10	173.02	186.87	173.00	186.73	172.98	174.05	161.19	173.99	161.18
14	n−헵탄	205.42	190.39	216.96	200.87	216.70	200.84	216.53	200.82	201.84	187.13	201.76	187.12
15	n-옥탄	233.28	216.37	246.38	228.28	246.10	228.25	245.91	228.23	229.22	212.67	229.13	212.66
16	n-노난	261.19	242.40	275.85	255.74	275.53	255.71	275.32	255.69	256.64	238.25	256.54	238.24
17	n-데칸	289.06	268.39	305.29	283.16	304.94	283.13	304.71	283.11	284.03	263.80	283.92	263.79
18	에틸렌	59.72	55.96	63.06	59.04	63.00	59.04	62.96	59.03	58.68	55.01	58.66	55.00
19	프로필렌	87.10	81.46	91.98	85.94	91.88	85.93	91.82	85.93	85.58	80.07	85.55	80.06
20	1-부텐	114.98	107.46	121.42	113.38	121.29	113.36	121.21	113.36	112.98	105.63	112.94	105.62
21	cis-2-부텐	114.69	107.18	121.12	113.08	120.99	113.06	120.91	113.05	112.70	105.34	112.66	105.34
22	trans-2-부텐	114.54	107.02	120.96	112.91	120.83	112.90	120.75	112.89	112.55	105.19	112.51	105.19
23	2-메틸프로펜	114.27	106.76	120.67	112.63	120.55	112.62	120.47	112.61	112.29	104.93	112.25	104.93
24	1-펜텐	142.85	133.46	150.86	140.80	150.70	140.79	150.59	140.77	140.37	131.18	140.32	131.17
25	프로파디엔	82.21	78.46	86.79	82.76	86.73	82.76	86.69	82.76	80.79	77.12	80.78	77.12
26	1,2-부타디엔	109.75	104.12	115.87	109.84	115.78	109.83	115.72	109.83	107.85	102.34	107.83	102.34
27	1,3-부타디엔	107.51	101.87	113.51	107.47	113.42	107.47	113.36	107.46	105.65	100.13	105.62	100.13
28	아세틸렌	55.04	53.16	58.08	56.07	58.06	56.08	58.05	56.08	54.09	52.25	54.09	52.26
29	사이클로펜탄	140.50	131.11	148.40	138.34	148.22	138.31	148.10	138.28	138.05	128.86	138.00	128.85

		단위 부피당 이상 발열량, <i>H</i> ~0 (MJ·m-3)												
	성분	15/15℃		0/0℃		15/	15/0℃		25/0℃		20/20℃		25/20℃	
		고위	저위	고위	저위	고위	저위	고위	저위	고위	저위	고위	저위	
30	메틸사이클로펜탄	168.00	156.73	177.43	165.37	177.23	165.34	177.10	165.31	165.08	154.04	165.01	154.03	
31	에틸사이클로펜탄	195.90	182.74	206.89	192.81	206.65	192.78	206.50	192.75	192.48	179.61	192.41	179.60	
32	사이클로헥산	167.31	156.03	176.70	164.64	176.50	164.60	176.36	164.58	164.39	153.36	164.33	153.35	
33	메틸사이클로헥산	194.72	181.56	205.64	191.57	205.41	191.53	205.26	191.51	191.32	178.45	191.25	178.44	
34	에틸사이클로헥산	222.75	207.72	235.25	219.16	234.98	219.13	234.81	219.10	218.87	204.16	218.79	204.15	
35	벤 젠	139.69	134.05	147.45	141.42	147.36	141.41	147.29	141.40	137.27	131.76	137.24	131.75	
36	톨루엔	167.05	159.53	176.35	168.31	176.22	168.29	176.13	168.28	164.16	156.80	164.12	156.80	
37	에틸벤젠	194.95	185.55	205.81	195.76	205.65	195.74	205.55	195.73	191.57	182.38	191.52	182.37	
38	o−자일렌	194.49	185.09	205.32	195.27	205.17	195.26	205.06	195.24	191.12	181.93	191.07	181.92	
39	메탄올	32.36	28.60	34.20	30.18	34.13	30.17	34.09	30.16	31.78	28.11	31.76	28.10	
40	메탄티올	52.45	48.70	55.40	51.37	55.33	51.37	55.30	51.37	51.54	47.86	51.52	47.86	
41	수소	12.102	10.223	12.788	10.777	12.767	10.784	12.752	10.788	11.889	10.050	11.882	10.052	
42	물 ^a	1.88	0	2.01	0	1.98	0	1.96	0	1.84	0	1.83	0	
43	황화수소	23.78	21.91	25.12	23.10	25.09	23.11	25.07	23.11	23.37	21.53	23.36	21.53	
44	암모니아	16.22	13.40	17.16	14.14	17.11	14.14	17.08	14.13	15.93	13.17	15.91	13.17	
45	시안화수소	28.41	27.47	29.98	28.97	29.97	28.98	29.96	28.98	27.92	27.00	27.91	27.00	
46	일산화탄소	11.96	11.96	12.62	12.62	12.62	12.62	12.63	12.63	11.76	11.76	11.76	11.76	
47	황화카보닐	23.18	23.18	24.45	24.45	24.46	24.46	24.46	24.46	22.79	22.79	22.79	22.79	
48	이황화탄소	46.70	46.70	49.26	49.26	49.27	49.27	49.28	49.28	45.91	45.91	45.91	45.91	

비고 1 연소 및 계량 기준 압력은 모든 경우에서 101.325 kPa이다.

비고 2 세로줄 상단의 "t1/t2 ℃"는 연소 및 계량 기준 온도를 각각 나타낸다.

a 0이 아닌 수증기의 발열량은 공식적으로 연소산물의 모든 수증기가 액체 상태로 응축되는 고위 발 열량 정의로부터 도출된다. 그래서 건조 가스에 존재하는 수증기의 기화 잠열이 혼합 가스의 고위 발열량에 포함된다(완전한 설명은 부속서 F를 참조).

사업장 고유 배출계수 개발 가이드라인

2014년10월인쇄2014년10월발행

펴낸이 / 온실가스종합정보센터장

펴낸곳 / Ġ 🕟 온실가스종합정보센터

110-999 서울특별시 종로구 신문로1가 163 오피시아빌딩 5층 501호 대표전화:02-6943-1371 팩스:02-6943-1331

홈페이지 / http://www.gir.go.kr

〈비매품〉