МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

АДЫГЕЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Инженерно-физический факультет Кафедра автоматизированных систем обработки информации и управления

ОТЧЕТ ПО ПРАКТИКЕ

Программаная реализация численного метода Решение системы линейных алгебраических уравнений методом Гаусса-Жордана

1 курс, группа 1ИВТ АСОИУ

Выполнил:	
	_ Д. А. Шалаев
«»	_ 2024 г.
Руководитель:	
	_ С.В. Теплоухов
« »	2024 г.

Майкоп, 2024 г.

1. Введение

1.1. Текстовая формулировка задачи (Вариант 2)

Написать программу для решения системы линейных алгебраических уравнений методом Гаусса-Жордана.

1.2. Теория метода

Метод Гаусса — Жордана (метод полного исключения неизвестных) — метод, который используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе или отыскания ранга матрицы. Метод является модификацией метода Гаусса.

Алгоритм

- 1) Выбирают первый слева столбец матрицы, в котором есть хоть одно отличное от нуля значение.
- 2) Если самое верхнее число в этом столбце ноль, то меняют всю первую строку матрицы с другой строкой матрицы, где в этой колонке нет нуля.
- 3) Все элементы первой строки делят на верхний элемент выбранного столбца.
- 4) Из оставшихся строк вычитают первую строку, умноженную на первый элемент соответствующей строки, с целью получить первым элементом каждой строки (кроме первой) ноль.
- 5) Далее проводят такую же процедуру с матрицей, получающейся из исходной матрицы после вычёркивания первой строки и первого столбца.
- 6) После повторения этой процедуры n-1 раз получают верхнюю треугольную матрицу.
- 7) Вычитают из предпоследней строки последнюю строку, умноженную на соответствующий коэффициент, с тем, чтобы в предпоследней строке осталась только 1 на главной диагонали.
- 8) Повторяют предыдущий шаг для последующих строк. В итоге получают единичную матрицу и решение на месте свободного вектора (с ним необходимо проводить все те же преобразования).

2. Ход работы

2.1. Выбор средств для разработки

Для создания программы, решающей систему линейных алгебраических уравнений методом Гаусса — Жордана, я выбрал язык программирования TypeScript и

фреймворк Angular 17 для разработки веб-приложений. Такой выбор был сделан для того, что бы обеспечить использование программы не только на ПК, но и на мобильных устройствах.

2.2. Код приложения

```
gaussJordanElimination(matrix: number[][]): { solution: number[],
    reducedMatrix: number[][] } {
 let n = matrix.length;
 let m = matrix[0].length - 1;
 let reducedMatrix = matrix.map(row => row.slice());
 for (let i = 0; i < n; i++) {
    let maxEl = Math.abs(reducedMatrix[i][i]);
    let maxRow = i;
    for (let k = i + 1; k < n; k++) {
      if (Math.abs(reducedMatrix[k][i]) > maxEl) {
        maxEl = Math.abs(reducedMatrix[k][i]);
        maxRow = k;
      }
    }
    for (let k = i; k < m + 1; k++) {
      let tmp = reducedMatrix[maxRow][k];
      reducedMatrix[maxRow][k] = reducedMatrix[i][k];
      reducedMatrix[i][k] = tmp;
    }
    if (reducedMatrix[i][i] !== 0) {
      for (let k = i + 1; k < m + 1; k++) {
        reducedMatrix[i][k] /= reducedMatrix[i][i];
      reducedMatrix[i][i] = 1;
    } else {
      continue;
    for (let k = 0; k < n; k++) {
      if (k != i) {
        let c = reducedMatrix[k][i];
        for (let j = i; j < m + 1; j++) {
          reducedMatrix[k][j] -= c * reducedMatrix[i][j];
        reducedMatrix[k][i] = 0;
      }
    }
 let solution = new Array(n);
 for (let i = 0; i < n; i++) {
    solution[i] = parseFloat(reducedMatrix[i][m].toFixed(10));
```

```
}
return { solution, reducedMatrix };
}
```

Листинг 1. Gauss-Jordan Elimination Function

3. Скриншоты программы

Пример внешнего вида программы представлен на рис. 1 и рис. 2.

Рис. 1. Внешний вид программы на ПК

Рис. 2. Внешний вид программы на мобильных устройствах

4. Источники

Список литературы

- [1] Кнут Д.Э. Всё про Т
EX. Москва: Изд. Вильямс, 2003 г. 550 с.
- [2] Львовский С.М. Набор и верстка в системе LATeX. 3-е издание, исправленное и дополненное, 2003 г.
- [3] Воронцов К.В. IАТЕХ в примерах. 2005 г.
- [4] Документация Angular 17. https://v17.angular.io/docs, 2024 г.
- [5] Документация TypeScript. https://www.typescriptlang.org/docs, 2024 г.
- [6] TypeScript CheatSheets. https://www.typescriptlang.org/cheatsheets, 2024 г.