

Formação Inteligência Artificial

Programação Paralela em GPU

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Uma Breve Historia das Placas de Vídeo

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Uma Breve Historia das Placas de Vídeo

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Uma Breve História das Placas de Vídeo

(Compute Unified Device Architecture)

(Open Computing Language)

O clock rate normalmente se refere à frequência na qual um núcleo (core) de um processador multicore, está sendo executado e é usado como um indicador da velocidade do processador.

MULTI-CORE CPU

GPU
THOUSANDS OF CORES

Como aumentar a capacitade computacional?

- Clocks mais rápidos
- Mais processamento por ciclo de clock
- Mais núcleos (cores)

- Maior complexidade
- Maior flexibilidade
- Maior custo em termos de consumo de energia

- Maior simplicidade
- Requer mais hardware para computação
- Menor custo em termos de consumo de energia (potencialmente)
- Modelo de Programação mais restritivo

Latência x Throughput

Latência

Quantidade de tempo necessária para concluir uma tarefa

Throughput

Total de tarefas concluídas por unidade de tempo

CPU

GPU

Latência x Throughput

Em computação gráfica, por exemplo, estamos mais preocupados com a quantidade de pixels por segundo (throughput) do que a latência de um pixel em particular.

Não seria problema, se o processamento de um pixel em particular levar um pouco mais de tempo, se ao final o throughput de pixels for maior.

Latência x Throughput Data Science Academy Data Science Academy

Outro exemplo é o processamento de imagens, onde o throughput também é mais importante, pois estamos mais preocupados com pixels produzidos por segundo (throughput), do que o tempo de um pixel individual (latência).

Largura de Banda da Memória na GPU

Data Science Academy raphaelbsfontenelle@gmail.com 615c1 Largura de Banda da Memória na GPU

Data Science Academy raphaelbsfontenelle@gmail.com 615c1 Largura de Banda da Memória na GPU

A quantidade de dados que a GPU pode transferir é justamente a chamada "Largura de banda" (que também é associada ao termo Taxa de transferência).

A largura de banda é a quantidade de dados que pode ser lida ou escrita na memória em um determinado intervalo de tempo.

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Largura de Banda da Memória na GPU

Largura de Banda da Memória na GPU

DDR3

Memória RAM

GDDR5

Memória da GPU

Como Funciona uma GPU

CPU

Boa para obter pequenas quantidades de memória rapidamente 50 GB/s

GPU

Boa para obter grandes quantidades de memória (como multiplicação de matrizes) 750 GB/s

Como Funciona uma GPU

Por que as GPUs são Ideais para Deep Learning?

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

Por que as GPÜs são Ideais para Deep Learning?

Por que as GPUs são Ideais para Deep Learning?

Por que as GPUs são Ideais para Deep Learning?

Em resumo, as GPUs funcionam bem com os cálculos Redes Neurais Profundas, porque:

- 1. GPUs têm muitos mais recursos e uma banda mais rápida para a memória
- 2. Os cálculos DNN se encaixam bem com a arquitetura GPU.

A velocidade computacional é extremamente importante porque o treinamento de Redes Neurais Profundas pode variar de dias a semanas, mas com o uso de GPUs, estamos reduzindo isso a horas.

Na verdade, muitos dos suces<mark>s</mark>os em Deep Learning poderiam não ter sido descobertos, se não fosse a disponibilidade de GPUs.

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Instruction-Level Parallelism

Data Parallelism

Task Parallelism

O Tipo de Paralelismo na GPU

Em GPUs, o tipo de paralelismo oferecido é o Data Parallelism, mais precisamente baseado no modelo SIMT(Single Instruction Multiple Thread).

Conector SLI

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2

Obrigado

