Série 8

Exercice 1. Soit $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ une application lineaire.

- 1. Montrer que si ϕ preserve la longueur $(\forall \vec{u} \in \mathbb{R}^2, \|\phi(\vec{u})\| = \|\vec{u}\|)$ alors ϕ est une isometrie.
- 2. Soit $\mathcal{B}_0 = (\mathbf{e}_{0,1} = (1,0), \mathbf{e}_{0,2} = (0,1))$ la base canonique. Montrer que si sa transformee par ϕ , $\phi(\mathcal{B}_0) = (\phi(\mathbf{e}_{0,1}), \phi(\mathbf{e}_{0,2}))$ est orthonormee alors ϕ est une isometrie.
- 3. Etant donne une base orthonormee \mathcal{B} , montrer qu'il existe une isometrie ϕ qui envoie \mathcal{B}_0 sur \mathcal{B} (on cherchera une application lineaire).
- 4. Etant donne deux bases orthonormees $\mathcal{B}, \mathcal{B}'$, montrer qu'il existe une isometrie ϕ qui envoie \mathcal{B} sur \mathcal{B}' .

Exercice 2. Montrer qu'une isometrie φ de partie lineaire φ_0 verifie

$$\forall P, Q \in \mathbb{R}^2, \ \overrightarrow{\varphi(P)\varphi(Q)} = \varphi_0(\overrightarrow{PQ})$$

Exercice 3. Soit $\mathcal{P} = (P_1, \dots, P_n)$ un ensemble ordonne de points du plan et $\Lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n_{\geq 0}$ un vecteur de reels positifs ou nuls tels que

$$\sum_{i} \lambda_i = 1.$$

Le barycentre des points \mathcal{P} affectes des poids Λ est le point

$$\operatorname{Bar}(\mathcal{P}, \Lambda) = \sum_{i=1}^{n} \lambda_i P_i.$$

Par exemple si n=2 et $\lambda_1=\lambda_2=1/2$ le barycentre est le milieu.

1. Montrer que le barycentre $\mathrm{Bar}(\mathcal{P},\Lambda)$ est l'unique point $G\in\mathbb{R}^2$ qui verifie

$$\sum_{i} \lambda_i \overrightarrow{GP_i} = \overrightarrow{0}.$$

2. Soit $\varphi \in \text{Isom}(\mathbb{R}^2)$ une isometrie. Montrer que φ preserve les barycentres :

$$Bar(\varphi(\mathcal{P}), \Lambda) = \varphi(Bar(\mathcal{P}, \Lambda)).$$

Pour cela on pourra decomposer ϕ en translation et partie lineaire.

Exercice 4. Une application affine $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ est une application de la forme

$$\varphi: P \mapsto t \circ \varphi_0(P)$$

ou t est une translation et $\varphi_0: \mathbb{R}^2 \to \mathbb{R}^2$ est une application lineaire.

- 1. Montrer plus generalement que la propriete de preserver les barycentres est vraie pour toute application affine.
- 2. Montrer que toute application $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ qui preserve les barycentres est une application affine; on pourra commencer par se ramener au cas ou $\varphi(\mathbf{0}) = \mathbf{0}$ et montrer qu'alors φ est lineaire; pour cela on considerera des barycentres particuliers.

Exercice 5. Soit σ_0 la symetrie orthogonale par rapport a la droite d'equation

$$2x + 3y = 0.$$

1. Montrer que σ_0 peut s'ecrire sous la forme

$$\sigma_0: \vec{w} \to \sigma_0(\vec{w}) = \vec{w} - 2 \frac{\langle \vec{w}, \vec{v} \rangle}{\langle \vec{v}, \vec{v} \rangle} \vec{v}$$

avec \vec{v} un vecteur non-nul convenable (\vec{v} n'est pas forcement unique) (cf. Exercice 7 de la serie 7.)

- 2. Ecrire la matrice M_{σ_0} de l'application lineaire σ dans la base canonique. Calculer $M_{\sigma_0} \times M_{\sigma_0}$.
- 3. Soit $\sigma = t_{(2,3)} \circ \sigma_0$. Montrer que si on pose P = (x,y) et $(X,Y) = \sigma(P)$ alors on a

$$X = \alpha + ax + by$$

$$Y = \beta + cx + dy$$

avec $\alpha, \beta, a, b, c, d$ des reels convenables.

4. Quel est l'ensemble des points fixes de σ (ie. l'ensemble des $P \in \mathbb{R}^2$ verifiant $\sigma(P) = P$?) Comment s'appelle l'isometrie σ ?