

BINOMIAL THEOREM

1. BINOMIAL EXPRESSION:

Any algebraic expression which contains two dissimilar terms is called binomial expression.

For example :
$$x - y$$
, $xy + \frac{1}{x}$, $\frac{1}{z} - 1$, $\frac{1}{(x - y)^{1/3}} + 3$ etc.

2. BINOMIAL THEOREM:

The formula by which any positive integral power of a binomial expression can be expanded in the form of a series is known as **BINOMIAL THEOREM**.

$$\text{If } x, \ y \ \in R \ \text{ and } \ n \in N, \ \text{then} \ : \ (\ x \ + \ y)^n \ = \ ^n C_0 x^n + \ ^n C_1 x^{n-1} \ y \ + \ ^n C_2 x^{n-2} \ y^2 \ + \ \dots \ + \ ^n C_r x^{n-r} \ y^r \ + \ \dots \ + \ ^n C_n y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^r \ + \ \dots \ + \ ^n C_n x^{n-r} y^n \ = \ \sum_{r=0}^n \ ^n C_r x^{n-r} y^n \ = \ \sum_{r=0}$$

This theorem can be proved by induction.

Observations:

- (a) The number of terms in the expansion is (n+1) i.e. one more than the index.
- (b) The sum of the indices of x & y in each term is n.
- (c) The binomial coefficients of the terms (${}^{n}C_{0}$, ${}^{n}C_{1}$) equidistant from the beginning and the end are equal. i.e. ${}^{n}C_{r} = {}^{n}C_{r-1}$
- (d) Symbol ${}^n\!C_r$ can also be denoted by $\binom{n}{r},$ $C(n,\ r)$ or A^n_r .

Some important expansions :

(i)
$$(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$$

(ii)
$$(1 - x)^n = {}^nC_0 - {}^nC_1x + {}^nC_2x^2 + \dots + (-1)^n \cdot {}^nC_nx^n$$

Note: The coefficient of x^r in $(1+x)^n = {}^nC_r$ & that in $(1-x)^n = (-1)^r$. nC_r

Illustration 1: Expand: $(y + 2)^6$.

Solution:
$${}^{6}C_{0}y^{6} + {}^{6}C_{1}y^{5}.2 + {}^{6}C_{2}y^{4}.2^{2} + {}^{6}C_{3}y^{3}.2^{3} + {}^{6}C_{4}y^{2}. \ 2^{4} + {}^{6}C_{5}y^{1} \ . \ 2^{5} + {}^{6}C_{6} \ . \ 2^{6}.$$
 $= y^{6} + 12y^{5} + 60y^{4} + 160y^{3} + 240y^{2} + 192y + 64.$

Illustration 2: Write first 4 terms of $\left(1 - \frac{2y^2}{5}\right)^7$

Solution:
$${}^{7}C_{0}$$
, ${}^{7}C_{1}\left(-\frac{2y^{2}}{5}\right)$, ${}^{7}C_{2}\left(-\frac{2y^{2}}{5}\right)^{2}$, ${}^{7}C_{3}\left(-\frac{2y^{2}}{5}\right)^{3}$

Illustration 3: The value of
$$\frac{\left(18^3 + 7^3 + 3.18.7.25\right)}{3^6 + 6.243.2 + 15.81.4 + 20.27.8 + 15.9.16 + 6.3.32 + 64}$$
 is - (A) 1 (B) 2 (C) 3 (D) 4

Solution: The numerator is of the form
$$a^3 + b^3 + 3ab(a + b) = (a + b)^3$$

Denominator can be written as

$$3^{6} + {}^{6}C_{1} \cdot 3^{5} \cdot 2^{1} + {}^{6}C_{2} \cdot 3^{4} \cdot 2^{2} + {}^{6}C_{3} \cdot 3^{3} \cdot 2^{3} + {}^{6}C_{4} \cdot 3^{2} \cdot 2^{4} + {}^{6}C_{5} \cdot 3 \cdot 2^{5} + {}^{6}C_{6} \cdot 2^{6} = (3+2)^{6} = 5^{6} = (25)^{3}$$

$$\therefore \frac{Nr}{Dr} = \frac{(25)^3}{(25)^3} = 1$$
 Ans.

Illustration 4: If in the expansion of $(1 + x)^m (1 - x)^n$, the coefficients of x and x^2 are 3 and -6 respectively then m is -

Solution :

$$(1 + x)^{m} (1 - x)^{n} = \left[1 + mx + \frac{(m)(m-1).x^{2}}{2} + \dots\right] \left[1 - nx + \frac{n(n-1)}{2}x^{2} + \dots\right]$$

Coefficient of
$$x = m - n = 3$$

Coefficient of
$$x^2 = -mn + \frac{n(n+1)}{2} + \frac{m(m-1)}{2} = -6$$
(ii)

Solving (i) and (ii), we get m = 12 and n = 9.

Do yourself - 1:

(i) Expand
$$\left(3x^2 - \frac{x}{2}\right)^5$$
 (ii) Expand $(y + x)^n$

Pascal's triangle : A triangular arrangement of numbers as shown. The numbers give the coefficients for the expansion of $(x + y)^n$. The first row is for n = 0, the second for n = 1, etc. Each row has 1 as its first and last number. Other numbers are generated by adding the two numbers immediately to the left and right in the row above.

3. IMPORTANT TERMS IN THE BINOMIAL EXPANSION:

(a) General term: The general term or the (r+1)th term in the expansion of $(x+y)^n$ is given by $T_{r+1}^{} = {}^nC_r \ x^{n-r} \ y^r$

Illustration 5: Find: (a) The coefficient of x^7 in the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$

(b) The coefficient of
$$x^{-7}$$
 in the expansion of $\left(ax-\frac{1}{bx^2}\right)^{\!11}$

Also, find the relation between a and b, so that these coefficients are equal.

Solution: (a) In the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$, the general term is:

$$T_{r+1} \ = \ ^{11}C_r(ax^2)^{11-r} \bigg(\frac{1}{bx}\bigg)^r \ = \ ^{11}C_r.\frac{a^{11-r}}{b^r}.x^{22-3r}$$

putting
$$22 - 3r = 7$$

$$\therefore 3r = 15 \Rightarrow r = 5$$

$$T_6 = {}^{11}C_5 \frac{a^6}{b^5}.x^7$$

Hence the coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ is $^{11}C_5a^6b^{-5}$.

Ans.

Note that binomial coefficient of sixth term is ${}^{11}\mathrm{C}_5$.

(b) In the expansion of $\left(ax - \frac{1}{bx^2}\right)^{11}$, general term is :

$$T_{r+1} = {}^{11}C_r(ax)^{11-r} \left(\frac{-1}{bx^2}\right)^r = (-1)^{r} {}^{11}C_r \frac{a^{11-r}}{b^r}.x^{11-3r}$$

putting 11 - 3r = -7

$$\therefore 3r = 18 \Rightarrow r = 6$$

$$\therefore T_7 = (-1)^6. {}^{11}C_6 \frac{a^5}{b^6}.x^{-7}$$

Hence the coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$ is $^{11}C_6a^5b^{-6}$. Ans.

Also given:

Coefficient of
$$x^7$$
 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ = coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$

$$\Rightarrow$$
 ${}^{11}C_5a^6b^{-5} = {}^{11}C_6a^5b^{-6}$

$$\Rightarrow$$
 ab = 1 $(::^{11}C_5 = ^{11}C_6)$

which is the required relation between a and b.

Ans.

Illustration 6: Find the number of rational terms in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$.

Solution: The general term in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$ is

$$T_{r+1} = {}^{1000}C_r \left(9^{\frac{1}{4}}\right)^{1000-r} \left(8^{\frac{1}{6}}\right)^r = {}^{1000}C_r \cdot 3^{\frac{1000-r}{2}} 2^{\frac{r}{2}}$$

The above term will be rational if exponents of 3 and 2 are integers

It means $\frac{1000-r}{2}$ and $\frac{r}{2}$ must be integers

The possible set of values of r is $\{0, 2, 4, \dots, 1000\}$

Hence, number of rational terms is 501

Ans.

(b) Middle term:

The middle term(s) in the expansion of $(x + y)^n$ is (are) :

- (i) If n is even, there is only one middle term which is given by $T_{(n+2)/2} = {}^{n}C_{n/2}$, $x^{n/2}$. $y^{n/2}$
- (ii) If n is odd, there are two middle terms which are $T_{(n+1)/2}$ & $T_{((n+1)/2)+1}$

Important Note:

Middle term has greatest binomial coefficient and if there are 2 middle terms their coefficients will be equal.

$$\Rightarrow \quad ^{n}C_{_{r}} \text{ will be maximum} \\ \hline\\ When r=\frac{n}{2} \text{ if n is even} \\ \hline\\ When r=\frac{n-1}{2} \text{ or } \frac{n+1}{2} \text{ if n is odd} \\ \hline$$

 \Rightarrow The term containing greatest binomial coefficient will be middle term in the expansion of $(1 + x)^n$

Illustration 7 : Find the middle term in the expansion of $\left(3x - \frac{x^3}{6}\right)^9$

Solution: The number of terms in the expansion of $\left(3x - \frac{x^3}{6}\right)^9$ is 10 (even). So there are two middle terms.

i.e.
$$\left(\frac{9+1}{2}\right)^{th}$$
 and $\left(\frac{9+3}{2}\right)^{th}$ are two middle terms. They are given by T_5 and T_6

$$\therefore \qquad T_5 = T_{4+1} \qquad = {}^9C_4(3x)^5 \left(-\frac{x^3}{6}\right)^4 = {}^9C_43^5x^5. \quad \frac{x^{12}}{6^4} = \frac{9.8.7.6}{1.2.3.4}. \frac{3^5}{2^4.3^4}x^{17} = \frac{189}{8}x^{17}$$

and
$$T_6 = T_{5+1} = {}^9C_5(3x)^4 \left(-\frac{x^3}{6}\right)^5 = -{}^9C_43^4.x^4.\frac{x^{15}}{6^5} = \frac{-9.8.7.6}{1.2.3.4}.\frac{3^4}{2^5.3^5}x^{19} = -\frac{21}{16}x^{19}$$
 Ans.

(c) Term independent of x:

Term independent of x does not contain x; Hence find the value of r for which the exponent of x is zero.

Illustration 8: The term independent of x in $\left[\sqrt{\frac{x}{3}} + \sqrt{\left(\frac{3}{2x^2}\right)}\right]^{10}$ is -

- (A) 1
- (B) $\frac{5}{12}$
- (C) 10 C₁
- (D) none of these

Solution: General term in the expansion is

$$^{10}C_{r}\bigg(\frac{x}{3}\bigg)^{\frac{r}{2}}\bigg(\frac{3}{2x^{2}}\bigg)^{\frac{10-r}{2}}=^{10}C_{r}x^{\frac{3r}{2}-10}\cdot\frac{3^{5-r}}{2^{\frac{10-r}{2}}} \quad \text{ For constant term, } \frac{3r}{2}=10 \Rightarrow r=\frac{20}{3}$$

which is not an integer. Therefore, there will be no constant term.

Ans. (D)

Do yourself - 2:

- (i) Find the 7th term of $\left(3x^2 \frac{1}{3}\right)^{10}$
- (ii) Find the term independent of x in the expansion : $\left(2x^2 \frac{3}{x^3}\right)^{25}$
- (iii) Find the middle term in the expansion of : (a) $\left(\frac{2x}{3} \frac{3}{2x}\right)^6$ (b) $\left(2x^2 \frac{1}{x}\right)^7$

(d) Numerically greatest term:

Let numerically greatest term in the expansion of (a + b) $^{\rm n}$ be $\rm T_{\rm r+1}$

$$\Rightarrow \begin{cases} \mid T_{r+1} \mid \ge \mid T_r \mid \\ \mid T_{r+1} \mid \ge \mid T_{r+2} \mid \end{cases} \text{ where } T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$

Solving above inequalities we get $\frac{n+1}{1+\left|\frac{a}{b}\right|}-1 \le r \le \frac{n+1}{1+\left|\frac{a}{b}\right|}$

Case I: When $\frac{n+1}{1+\left|\frac{a}{b}\right|}$ is an integer equal to m, then T_m and T_{m+1} will be numerically greatest term.

Case II: When $\frac{n+1}{1+\left|\frac{a}{b}\right|}$ is not an integer and its integral part is m, then T_{m+1} will be the numerically greatest term.

Illustration 9: Find numerically greatest term in the expansion of $(3-5x)^{11}$ when $x=\frac{1}{5}$

Using
$$\frac{n+1}{1+\left|\frac{a}{b}\right|}-1 \le r \le \frac{n+1}{1+\left|\frac{a}{b}\right|}$$

$$\frac{11+1}{1+\left|\frac{3}{-5x}\right|} - 1 \le r \le \frac{11+1}{1+\left|\frac{3}{-5x}\right|}$$

solving we get $2 \le r \le 3$

$$\therefore$$
 r = 2, 3

so, the greatest terms are T_{2+1} and T_{3+1} .

$$\therefore$$
 Greatest term (when r = 2)

$$T_3 = {}^{11}C_2.3^9 (-5x)^2 = 55.3^9 = T_4$$

From above we say that the value of both greatest terms are equal.

Ans.

Illustration 10: Given T_3 in the expansion of $(1 - 3x)^6$ has maximum numerical value. Find the range of 'x'.

Solution :

$$Using \quad \frac{n+1}{1+\left|\frac{a}{b}\right|}-1 \leq r \leq \frac{n+1}{1+\left|\frac{a}{b}\right|}$$

$$\left| \frac{6+1}{1+\left| \frac{1}{-3x} \right|} - 1 \le 2 \le \frac{7}{1+\left| \frac{1}{-3x} \right|}$$

Let
$$|x| = 1$$

$$\frac{21t}{3t+1} - 1 \le 2 \le \frac{21t}{3t+1}$$

$$\begin{cases} \frac{21t}{3t+1} \le 3 \\ \frac{21t}{3t+1} \ge 2 \end{cases} \Rightarrow \begin{cases} \frac{4t-1}{3t+1} \le 0 \implies t \in \left[-\frac{1}{3}, \frac{1}{4}\right] \\ \frac{15t-2}{3t+1} \ge 0 \implies t \in \left[-\infty, -\frac{1}{3}\right] \cup \left[\frac{2}{15}, \infty\right) \end{cases}$$

Common solution $t \in \left[\frac{2}{15}, \frac{1}{4}\right] \implies x \in \left[-\frac{1}{4}, -\frac{2}{15}\right] \cup \left[\frac{2}{15}, \frac{1}{4}\right]$

Do yourself -3:

- (i) Find the numerically greatest term in the expansion of $(3 2x)^9$, when x = 1.
- (ii) In the expansion of $\left(\frac{1}{2} + \frac{2x}{3}\right)^n$ when $x = -\frac{1}{2}$, it is known that 3^{rd} term is the greatest term. Find the possible integral values of n.

4. PROPERTIES OF BINOMIAL COEFFICIENTS:

$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \dots + C_n x^n = \sum_{r=0}^{n} {}^{n}C_r r^r ; n \in \mathbb{N}$$

where $C_0, C_1, C_2, \dots, C_n$ are called combinatorial (binomial) coefficients.

(a) The sum of all the binomial coefficients is 2^n .

Put x = 1, in (i) we get

$$C_0 + C_1 + C_2 + \dots + C_n = 2^n \implies \sum_{r=0}^{n} C_r = 0$$
(ii)

(b) Put x=-1 in (i) we get

$$C_0 - C_1 + C_2 - C_3 - C_3 - C_1 + C_n = 0 \Rightarrow \sum_{r=0}^{n} (-1)^r C_r = 0$$
 ...(iii)

(c) The sum of the binomial coefficients at odd position is equal to the sum of the binomial coefficients at even position and each is equal to 2^{n-1} .

From (ii) & (iii),
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

- ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ (d)
- $\frac{{}^{n}C_{r}}{{}^{n}C_{r+1}} = \frac{n-r+1}{r}$ (e)
- ${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n}{r} \cdot \frac{n-1}{r-1} {}^{n-2}C_{r-2} = \dots = \frac{n(n-1)(n-2)\dots(n-r+1)}{r(r-1)(r-2)\dots 1}$ (f)
- ${}^{n}C_{r} = \frac{r+1}{r+1} \cdot {}^{n+1}C_{r+1}$ (g)

Illustration 11 : Prove that : ${}^{25}C_{10} + {}^{24}C_{10} + \dots + {}^{10}C_{10} = {}^{26}C_{11}$ Solution :

LHS = ${}^{10}C_{10} + {}^{11}C_{10} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$ $\Rightarrow {}^{11}C_{11} + {}^{11}C_{10} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$ $\Rightarrow {}^{12}C_{11} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$ $\Rightarrow {}^{13}C_{11} + {}^{13}C_{10} + \dots + {}^{25}C_{10}$ and so on. \therefore LHS = ${}^{26}C_{11}$

LHS = coefficient of x^{10} in $\{(1 + x)^{10} + (1 + x)^{11} + \dots (1 + x)^{25}\}$

$$\Rightarrow \quad \text{coefficient of } x^{10} \text{ in } \left[(1+x)^{10} \, \frac{\{1+x\}^{16} - 1}{1+x-1} \right]$$

$$\Rightarrow \quad \text{coefficient of } x^{10} \text{ in } \frac{\left[(1+x)^{26} - (1+x)^{10} \right]}{x}$$

$$\Rightarrow$$
 coefficient of x^{11} in $\left[(1+x)^{26} - (1+x)^{10} \right] = {}^{26}C_{11} - 0 = {}^{26}C_{11}$

Illustration 12: Prove that:

(i)
$$C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$$

(ii)
$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1} - 1}{n+1}$$

Solution: (i) L.H.S. =
$$\sum_{r=1}^{n} r. {}^{n}C_{r} = \sum_{r=1}^{n} r. \frac{n}{r}. {}^{n-1}C_{r-1}$$

$$= n \sum_{r=1}^{n} {}^{n-1}C_{r-1} = n \cdot \left[{}^{n-1}C_0 + {}^{n-1}C_1 + \dots + {}^{n-1}C_{n-1} \right]$$

$$= n \cdot 2^{n-1}$$

Aliter: (Using method of differentiation)

$$(1 + x)^n = {^nC_0} + {^nC_1}x + {^nC_2}x^2 + \dots + {^nC_n}x^n \qquad \dots \dots \dots (A)$$

Differentiating (A), we get

$$n(1 + x)^{n-1} = C_1 + 2C_2x + 3C_3x^2 + \dots + n.C_nx^{n-1}.$$

Put x = 1.

$$C_1 + 2C_2 + 3C_3 + \dots + n.C_n = n.2^{n-1}$$

(ii) L.H.S.
$$=\sum_{r=0}^{n} \frac{C_r}{r+1} = \frac{1}{n+1} \sum_{r=0}^{n} \frac{n+1}{r+1} {}^{n}C_r$$

$$= \ \frac{1}{n+1} \sum_{r=0}^{n} {}^{n+1}C_{r+1} = \frac{1}{n+1} \left[{}^{n+1}C_1 + {}^{n+1}C_2 + \ldots + {}^{n+1}C_{n+1} \right] = \frac{1}{n+1} \left[2^{n+1} - 1 \right]$$

Aliter: (Using method of integration)

Integrating (A), we get

$$\frac{(1+x)^{n+1}}{n+1} + C = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1}$$
 (where C is a constant)

Put x = 0, we get,
$$C = -\frac{1}{n+1}$$

$$\therefore \frac{(1+x)^{n+1}-1}{n+1} = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1}$$

Put x = 1, we get

$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$$

Put x = -1, we get

$$C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots = \frac{1}{n+1}$$

 $\textit{Illustration} \quad \textit{13} \quad \text{:} \quad \text{If } (1+x)^n = \sum_{r=0}^n {}^n C_r x^r \text{ , then prove that } \quad C_1^2 + 2.C_2^2 + 3.C_3^2 + \dots + n.C_n^2 = \frac{(2n-1)!}{\left((n-1)!\right)^2}$

Solution: $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_2 x^3 + \dots + C_n x^n$ (i)

Differentiating both the sides, w.r.t. x, we get

$$n(1 + x)^{n-1} = C_1 + 2C_2x + 3C_2x^2 + \dots + n.C_nx^{n-1}$$
 (ii)

also, we have

$$(x + 1)^n = C_0 x^n + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_n$$
(iii)

Multiplying (ii) & (iii), we get

$$(C_1 + 2C_2x + 3C_2x^2 + \dots + C_nx^{n-1})(C_0x^n + C_1x^{n-1} + C_2x^{n-2} + \dots + C_n) = n(1 + x)^{2n-1}$$

Equating the coefficients of x^{n-1} , we get

$$C_1^2 + 2C_2^2 + 3C_3^2 + \dots + n.C_n^2 = n.^{2n-1}C_{n-1} = \frac{(2n-1)!}{((n-1)!)^2}$$
 Ans.

Illustration 14: Prove that : $C_0 - 3C_1 + 5C_2 - \dots (-1)^n (2n + 1)C_n = 0$

Solution: $T_r = (-1)^r (2r + 1)^n C_r = 2(-1)^r r \cdot {}^n C_r + (-1)^r {}^n C_r$

$$\Sigma T_{r} = 2\sum_{r=1}^{n} (-1)^{r} \cdot r \cdot \frac{n}{r} \cdot {^{n-1}C_{r-1}} + \sum_{r=0}^{n} (-1)^{r} {^{n}C_{r}} = 2\sum_{r=1}^{n} (-1)^{r} \cdot {^{n-1}C_{r-1}} + \sum_{r=0}^{n} (-1)^{r} \cdot {^{n}C_{r}}$$

$$= \ 2 \left\lceil {^{n-1}C_0} \right. - ^{n-1} C_1 + \ldots \cdot \left\rceil + \left\lceil {^nC_0} \right. - ^nC_1 + \ldots \ldots \cdot \right\rceil = \ 0$$

Illustration 15: Prove that $\binom{2n}{0}^2 - \binom{2n}{0}^2 + \binom{2n}{0}^2 - \dots + (-1)^n \binom{2n}{0}^2 = (-1)^n$.

Solution:
$$(1-x)^{2n} = {}^{2n}C_0 - {}^{2n}C_1x + {}^{2n}C_2x^2 - \dots + (-1)^n {}^{2n}C_{2n}x^{2n}$$
 ...(i)

and
$$(x + 1)^{2n} = {}^{2n}C_0x^{2n} + {}^{2n}C_1x^{2n-1} + {}^{2n}C_2x^{2n-2} + ... + {}^{2n}C_{2n}$$
(ii)

Multiplying (i) and (ii), we get

$$(x^2 - 1)^{2n} = {2^n C_0 - {2^n C_1 x} + \dots + (-1)^n {2^n C_{2n} x}^{2n}})$$

$$({2^n C_0 x}^{2n} + {2^n C_1 x}^{2n-1} + \dots + {2^n C_{2n}})$$

$$\dots (iii)$$

Now, coefficient of x^{2n} in R.H.S.

$$= {\binom{2n}{C_0}}^2 - {\binom{2n}{C_1}}^2 + {\binom{2n}{C_2}}^2 - \dots + {(-1)^n} {\binom{2n}{C_{2n}}}^2$$

$$\therefore$$
 General term in L.H.S., $T_{r+1} = {}^{2n}C_r(x^2)^{2n-r}(-1)^r$

Putting 2(2n - r) = 2n

$$\therefore$$
 $r = n$

$$T_{n+1} = {^{2n}C_n}x^{2n}(-1)^n$$

Hence coefficient of x^{2n} in L.H.S. = $(-1)^n$. $^{2n}C_n$

But (iii) is an identity, therefore coefficient of x^{2n} in R.H.S. = coefficient of x^{2n} in L.H.S.

$$\Rightarrow \qquad (^{2n}C_0)^2 - (^{2n}C_1)^2 + (^{2n}C_2)^2 - \dots + (-1)^n (^{2n}C_{2n})^2 = (-1)^n. \ ^{2n}C_n$$

Illustration 16: Prove that : ${}^{n}C_{0}$. ${}^{2n}C_{n} - {}^{n}C_{1}$. ${}^{2n-2}Cn_{n} + {}^{n}C_{2}$. ${}^{2n-4}Cn_{n} + = 2^{n}$ **Solution :**L.H.S. = Coefficient of x^{n} in $[{}^{n}C_{0}(1+x)^{2n} - {}^{n}C_{1}(1+x)^{2n-2}]$ = Coefficient of x^{n} in $[(1+x)^{2} - 1]^{n}$ = Coefficient of x^{n} in $x^{n}(x+2)^{n} = 2^{n}$

Illustration 17: If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ then show that the sum of the products of the

 $C_i\text{'s taken two at a time represented by}: \sum_{0 \leq i < j \leq n} C_i C_j \text{ is equal to } 2^{2n-1} - \frac{2n!}{2.n!n!}$

 $\begin{array}{lll} \textit{Solution} & : & & \text{Since } (C_0 + C_1 + C_2 + \ldots + C_{n-1} + C_n)^2 \\ \\ & = & C_0^2 + C_1^2 + C_2^2 + \ldots + C_{n-1}^2 + C_n^2 + 2(C_0C_1 + C_0C_2 + C_0C_3 + \ldots + C_0C_n + - C_1C_2 + - C_1C_3 + \ldots \\ \\ & & + & C_1C_n + - C_2C_3 + - C_2C_4 + \ldots + C_nC_n + - C_nC_n) \\ \\ & & (2^n)^2 = & {}^{2n}C_n + 2\sum_{n=1}^{\infty}\sum_{i=1}^{\infty}C_iC_i \\ \\ \end{array}$

Hence $\sum_{0 \le i < j \le n} C_i C_j = 2^{2n-1} - \frac{2n!}{2 \cdot n! \, n!}$

Illustration 18: If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + + C_n x^n$ then prove that $\sum_{0 \le i \le n} (C_i + C_j)^2 = (n - 1)^{2n} C_n + 2^{2n} C_n + 2^{2n}$

Do yourself - 4:

(i)
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} =$$

(A) 2^{n-1} (B) $2^{n}C_{n}$ (C) 2^{n}

(ii) If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, $n \in \mathbb{N}$. Prove that (a) $3C_0 - 8C_1 + 13C_2 - 18C_3 + \dots$ upto (n + 1) terms = 0, if $n \ge 2$.

(b)
$$2C_0 + 2^2 \frac{C_1}{2} + 2^3 \frac{C_2}{3} + 2^4 \frac{C_3}{4} + \dots + 2^{n+1} \frac{C_n}{n+1} = \frac{3^{n+1} - 1}{n+1}$$

(c)
$$C_0^2 + \frac{C_1^2}{2} + \frac{C_2^2}{3} + \dots + \frac{C_n^2}{n+1} = \frac{(2n+1)!}{((n+1)!)^2}$$

5. MULTINOMIAL THEOREM:

Using binomial theorem, we have $(x + a)^n = \sum_{r=0}^n {^nC_rx^{n-r}a^r}, n \in N$

$$= \ \sum_{r=0}^{n} \frac{n!}{(n-r)! \, r!} x^{n-r} a^r = \sum_{r+s=n} \frac{n!}{r! \, s!} x^s a^r \ , \ \text{where} \ s \ + \ r \ = \ n$$

This result can be generalized in the following form.

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{r_1 + r_2 + \dots + r_k = n} \frac{n!}{r_1! r_2! \dots . r_k!} x_1^{r_1} x_2^{r_2} \dots . \dots x_k^{r_k}$$

Ans.

The general term in the above expansion $\frac{n!}{r_1!r_2!r_3!....r_k!}.x_1^{r_1}x_2^{r_2}x_3^{r_3}.....x_k^{r_k}$

The number of terms in the above expansion is equal to the number of non-negative integral solution of the equation $r_1 + r_2 + \dots + r_k = n$ because each solution of this equation gives a term in the above expansion.

The number of such solutions is ${}^{n+k-1}C_{k-1}$

Particular cases:

(i)
$$(x + y + z)^n = \sum_{\substack{r+s+t=n \ r!s!t!}} \frac{n!}{r!s!t!} x^r y^s z^t$$

The above expansion has ${}^{n+3} - {}^{1}C_{3-1} = {}^{n+2}C_{2}$ terms

(ii)
$$(x + y + z + u)^n = \sum_{p+q+r+s=n} \frac{n!}{p!q!r!s!} x^p y^q z^r u^s$$

There are $^{n+4-1}C_{4-1} = ^{n+3}C_3$ terms in the above expansion.

Illustration 19: Find the coefficient of $x^2 y^3 z^4 w$ in the expansion of $(x - y - z + w)^{10}$

Solution:
$$(x - y - z + w)^{10} = \sum_{p+q+r+s=10} \frac{n!}{p!q!r!s!} (x)^p (-y)^q (-z)^r (w)^s$$

We want to get $x^2y^3z^4w$ this implies that p = 2, q = 3, r = 4, s = 1

:. Coefficient of
$$x^2y^3z^4w$$
 is $\frac{10!}{2! \cdot 3! \cdot 4! \cdot 1!}(-1)^3(-1)^4 = -12600$ Ans.

Illustration 20: Find the total number of terms in the expansion of $(1 + x + y)^{10}$ and coefficient of x^2y^3 .

Solution: Total number of terms =
$${}^{10+3-1}C_{3-1} = {}^{12}C_2 = 66$$

Coefficient of
$$x^2y^3 = \frac{10!}{2! \times 3! \times 5!} = 2520$$
 Ans.

Illustration 21: Find the coefficient of x^5 in the expansion of $(2 - x + 3x^2)^6$.

Solution: The general term in the expansion of $(2-x+3x^2)^6=\frac{6!}{r!s!t!}2^r(-x)^s(3x^2)^t$, where r+s+t=6.

$$= \frac{6!}{r! s! t!} 2^{r} \times (-1)^{s} \times (3)^{t} \times x^{s+2t}$$

For the coefficient of x^5 , we must have s + 2t = 5.

But,
$$r + s + t = 6$$
,

$$\therefore$$
 s = 5 - 2t and r = 1 + t, where $0 \le r$, s, t ≤ 6 .

Now
$$t = 0 \implies r = 1$$
, $s = 5$.
 $t = 1 \implies r = 2$, $s = 3$.

$$t = 2 \Rightarrow r = 3, s = 1.$$

Thus, there are three terms containing x⁵ and coefficient of x⁵

$$= \frac{6!}{1! \ 5! \ 0!} \times 2^{1} \times (-1)^{5} \times 3^{0} + \frac{6!}{2! \ 3! \ 1!} \times 2^{2} \times (-1)^{3} \times 3^{1} + \frac{6!}{3! \ 1! \ 2!} \times 2^{3} \times (-1)^{1} \times 3^{2}$$
$$= -12 - 720 - 4320 = -5052.$$

Illustration 22: If $(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$, then prove that (a) $a_r = a_{2n-r}$ (b) $\sum_{r=0}^{n-1} a_r = \frac{1}{2}(3^n - a_n)$

Solution: (a) We have

$$(1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r$$
(A)

Replace x by $\frac{1}{x}$

$$\therefore \qquad \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^n = \sum_{r=0}^{2n} a_r \left(\frac{1}{x}\right)^r$$

$$\Rightarrow \qquad \left(x^2 + x + 1\right)^n = \sum_{r=0}^{2n} a_r x^{2n-r}$$

$$\Rightarrow \sum_{r=0}^{2n} a_r x^r = \sum_{r=0}^{2n} a_r x^{2n-r}$$
 {Using (A)}

Equating the coefficient of x^{2n-r} on both sides, we get

$$a_{2n-r} = a_r \text{ for } 0 \le r \le 2n.$$

Hence

$$a_r = a_{2n-r}$$
.

(b) Putting x=1 in given series, then

$$a_0 + a_1 + a_2 + \dots + a_{2n} = (1+1+1)^n$$

 $a_0 + a_1 + a_2 + \dots + a_{2n} = 3^n$ (1)

But $a_r = a_{2n-r}$ for $0 \le r \le 2n$

: series (1) reduces to

$$2(a_0 + a_1 + a_2 + \dots + a_{n-1}) + a_n = 3^n$$

$$\therefore a_0 + a_1 + a_2 + \dots + a_{n-1} = \frac{1}{2} (3^n - a_n)$$

Do yourself - 5:

(i) Find the coefficient of x^2y^5 in the expansion of $(3 + 2x - y)^{10}$.

6. APPLICATION OF BINOMIAL THEOREM:

Illustration 23: If $\left(6\sqrt{6}+14\right)^{2n+1}=[N]+F$ and F=N-[N]; where [.] denotes greatest integer function, then

NF is equal to

- (A) 20^{2n+1}
- (B) an even integer
- (C) odd integer
- (D) 40^{2n+1}

Solution: Since $(6\sqrt{6} + 14)^{2n+1} = [N] + F$

Let us assume that $f = \left(6\sqrt{6} - 14\right)^{2n+1}$; where $0 \le f \le 1$.

Now, [N] + F - f =
$$(6\sqrt{6} + 14)^{2n+1}$$
 - $(6\sqrt{6} - 14)^{2n+1}$
= $2^{\left[2n+1\right]}C_1(6\sqrt{6})^{2n}(14) + {2n+1}{2n+1}C_2(6\sqrt{6})^{2n-2}(14)^3 + \dots$

 \Rightarrow [N] + F - f = even integer.

Now $0 \le F \le 1$ and $0 \le f \le 1$

so $-1 \le F - f \le 1$ and F - f is an integer so it can only be zero

Thus NF =
$$(6\sqrt{6} + 14)^{2n+1} (6\sqrt{6} - 14)^{2n+1} = 20^{2n+1}$$
.

Ans. (A,B)

Illustration 24: Find the last three digits in 11^{50} .

Solution: Expansion of
$$(10 + 1)^{50} = {}^{50}C_0^{}10^{50} + {}^{50}C_1^{}10^{49} + + {}^{50}C_{48}^{}10^2 + {}^{50}C_{49}^{}10 + {}^{50}C_{50}^{}$$

$$= \underbrace{{}^{50}C_010^{50} + {}^{50}C_110^{49} + \dots + {}^{50}C_{47}10^3}_{1000K} + 49 \quad 25 \quad 100 + 500 + 1$$

 \Rightarrow Last 3 digits are 001.

Illustration 25: Prove that $2222^{5555} + 5555^{2222}$ is divisible by 7.

Solution: When 2222 is divided by 7 it leaves a remainder 3. So adding & subtracting 3^{5555} , we get:

$$E = \underbrace{2222^{5555} - 3^{5555}}_{E_1} + \underbrace{3^{5555} + 5555^{2222}}_{E_2}$$

For $\rm E_1$: Now since 2222–3 = 2219 is divisible by 7, therefore $\rm E_1$ is divisible by 7

(:
$$x^n - a^n$$
 is divisible by $x - a$)

For E_2 : 5555 when devided by 7 leaves remainder 4. So adding and subtracting 4^{2222} , we get :

$$E_2 = 3^{5555} + 4^{2222} + 5555^{2222} - 4^{2222}$$
$$= (243)^{1111} + (16)^{1111} + (5555)^{2222} - 4^{2222}$$

Again $(243)^{1111} + 16^{1111}$ and $(5555)^{2222} - 4^{2222}$ are divisible by 7

(: $x^n + a^n$ is divisible by x + a when n is odd)

Hence $2222^{5555} + 5555^{2222}$ is divisible by 7.

Do yourself - 6:

- (i) Prove that $5^{25} 3^{25}$ is divisible by 2.
- (ii) Find the remainder when the number 9^{100} is divided by 8.
- (iii) Find last three digits in 19^{100} .
- (iv) Let $R = (8 + 3\sqrt{7})^{20}$ and [.] denotes greatest integer function, then prove that :

(a) [R] is odd (b)
$$R - [R] = 1 - \frac{1}{(8 + 3\sqrt{7})^{20}}$$

(v) Find the digit at unit's place in the number $17^{1995} + 11^{1995} - 7^{1995}$.

7. BINOMIAL THEOREM FOR NEGATIVE OR FRACTIONAL INDICES:

If
$$n \in Q$$
, then $(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 + \dots \infty$ provided $|x| \le 1$.

Note:

- (i) When the index n is a positive integer the number of terms in the expansion of (1+ x)ⁿ is finite i.e. (n+1) & the coefficient of successive terms are : ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{n}$
- (ii) When the index is other than a positive integer such as negative integer or fraction, the number of terms in the expansion of $(1+x)^n$ is infinite and the symbol nC_r cannot be used to denote the coefficient of the general term.
- (iii) Following expansion should be remembered (|x| < 1).

(a)
$$(1 + x)^{-1} = 1 - x + x^2 - x^3 + x^4 - \dots \infty$$

(b)
$$(1 - x)^{-1} = 1 + x + x^2 + x^3 + x^4 + \dots = \infty$$

(c)
$$(1 + x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \dots = \infty$$

(d)
$$(1 - x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots = \infty$$

(e)
$$(1 + x)^{-3} = 1 - 3x + 6x^2 - 10x^3 + \dots + \frac{(-1)^r(r+1)(r+2)}{2!}x^r + \dots$$

(f)
$$(1-x)^{-3} = 1 + 3x + 6x^2 + 10x^3 + \dots + \frac{(r+1)(r+2)}{2!}x^r + \dots$$

(iv) The expansions in ascending powers of x are only valid if x is 'small'. If x is large i.e. |x| > 1 then we may find it convenient to expand in powers of 1/x, which then will be small.

APPROXIMATIONS : 8.

$$(1 + x)^n = 1 + nx + \frac{n(n-1)}{1.2} x^2 + \frac{n(n-1)(n-2)}{1.2.3} x^3 \dots$$

If x < 1, the terms of the above expansion go on decreasing and if x be very small, a stage may be reached when we may neglect the terms containing higher powers of x in the expansion. Thus, if x be so small that its square and higher powers may be neglected then $(1 + x)^n = 1 + nx$, approximately.

This is an approximate value of $(1 + x)^n$

Illustration 26: If x is so small such that its square and higher powers may be neglected then find the approximate value of $\frac{(1-3x)^{1/2}+(1-x)^{5/3}}{(4+v)^{1/2}}$

Solution :
$$\frac{(1-3x)^{1/2}+(1-x)^{5/3}}{(4+x)^{1/2}} = \frac{1-\frac{3}{2}x+1-\frac{5x}{3}}{2\left(1+\frac{x}{4}\right)^{1/2}} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1+\frac{x}{4}\right)^{-1/2} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1-\frac{x}{8}\right)$$
$$= \frac{1}{2}\left(2-\frac{x}{4}-\frac{19}{6}x\right) = 1-\frac{x}{8}-\frac{19}{12}x = 1-\frac{41}{24}x$$
 Ans.

Illustration 27: The value of cube root of 1001 upto five decimal places is -

- (A) 10.03333
- (B) 10.00333
- (C) 10.00033

Solution:
$$(1001)^{1/3} = (1000+1)^{1/3} = 10 \left(1 + \frac{1}{1000}\right)^{1/3} = 10 \left\{1 + \frac{1}{3} \cdot \frac{1}{1000} + \frac{1/3(1/3-1)}{2!} \cdot \frac{1}{1000^2} + \dots \right\}$$

$$= 10\{1 + 0.0003333 - 0.00000011 + \dots \} = 10.00333$$
 Ans. (B)

Illustration 28: The sum of $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.812} + \dots \infty$ is -

(A)
$$\sqrt{2}$$

(B)
$$\frac{1}{\sqrt{2}}$$

(C)
$$\sqrt{3}$$

(D)
$$2^{3/2}$$

Solution: Comparing with
$$1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$$

and
$$\frac{n(n-1)x^2}{n(n-1)} = 1$$

and
$$\frac{n(n-1)x^2}{2!} = \frac{1.3}{4.8}$$

or
$$\frac{nx(nx-x)}{2!} = \frac{3}{32} \implies \frac{1}{4} \left(\frac{1}{4} - x\right) = \frac{3}{16}$$

$$\Rightarrow \qquad \left(\frac{1}{4} - x\right) = \frac{3}{4} \Rightarrow x = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2}$$

putting the value of x in (i)

$$n(-1/2) = 1/4 \Rightarrow n = -1/2$$

$$\therefore$$
 sum of series = $(1 + x)^n = (1 - 1/2)^{-1/2} = (1/2)^{-1/2} = \sqrt{2}$

Ans. (A)

9. EXPONENTIAL SERIES:

- (a) e is an irrational number lying between 2.7 & 2.8. Its value correct upto 10 places of decimal is 2.7182818284.
- (b) Logarithms to the base 'e' are known as the Napierian system, so named after Napier, their inventor. They are also called **Natural Logarithm**.
- (c) $e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \infty$; where x may be any real or complex number & $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n}$
- (d) $a^x = 1 + \frac{x}{1!} \ln a + \frac{x^2}{2!} \ln^2 a + \frac{x^3}{3!} \ln^3 a + \dots \infty$, where a > 0
- (e) $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \infty$

10. LOGARITHMIC SERIES:

- (a) $\ln (1 + x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots + \infty$, where $-1 \le x \le 1$
- **(b)** $\ln (1 x) = -x \frac{x^2}{2} \frac{x^3}{3} \frac{x^4}{4} + \dots + \infty$, where $-1 \le x < 1$

Remember: (i) $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ell n 2$ (ii) $e^{lnx} = x$; for all x > 0

(iii) $\ell n2 = 0.693$ (iv) $\ell n10 = 2.303$

ANSWERS FOR DO YOURSELF

(ii)
$${}^{n}C_{0}y^{n} + {}^{n}C_{1}y^{n-1}.x + {}^{n}C_{2}.y^{n-2}.x^{2} + \dots + {}^{n}C_{n}.x^{n}$$

- **2**: **(i)** $\frac{70}{3}$ x⁸; **(ii)** $\frac{25!}{10! \ 5!}$ 2¹⁵3¹⁰; **(iii)** (a) -20; (b) -560x⁵, 280x²
- **3.** (i) $4^{th} \& 5^{th}$ i.e. 489888 (ii) n = 4, 5, 6
- 4. (i) C
- **5.** (i) -272160 or $-{}^{10}C_{5}$ ${}^{5}C_{2}$ 108
- 6. (ii) 1 (iii) 801 (v) 1

EXERCISE - 01

CHECK YOUR GRASP

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1.	If the	coefficients	of x ⁷	& x ⁸	in the	expansion	of	$\left[2+\frac{x}{3}\right]$]n ar	e	equal ,	then	the	value	of 1	n	is	-
----	--------	--------------	-------------------	------------------	--------	-----------	----	------------------------------	-------	---	---------	------	-----	-------	------	---	----	---

(A) 15

(B) 45

(C) 55

(D) 56

The sum of the binomial coefficients of $\left|2x + \frac{1}{x}\right|^n$ is equal to 256. The constant term in the expansion 2.

- (A) 1120
- (B) 2110
- (C) 1210

The sum of the co-efficients in the expansion of $(1 - 2x + 5x^2)^n$ is 'a' and the sum of the co-efficients in the 3. expansion of $(1 + x)^{2n}$ is b. Then -

- (A) a = b
- (B) $a = b^2$
- (C) $a^2 = b$
- (D) ab = 1

Given that the term of the expansion $(x^{1/3}-x^{-1/2})^{15}$ which does not contain x is 5 m where $m \in N$, then m is equal to -

- (A) 1100
- (B) 1010
- (C) 1001

The expression $\frac{1}{\sqrt{4x+1}} \left[\left[\frac{1+\sqrt{4x+1}}{2} \right]^7 - \left[\frac{1-\sqrt{4x+1}}{2} \right]^7 \right]$ is a polynomial in x of degree -5.

(A) 7

(B) 5

(C) 4

(D) 3

In the binomial $(2^{1/3} + 3^{-1/3})^n$, if the ratio of the seventh term from the beginning of the expansion to the 6. seventh term from its end is 1/6, then n is equal to -

(A) 6

(B) 9

(D) 15

The term independent of x in the product $(4 + x + 7x^2)\left(x - \frac{3}{x}\right)^{11}$ is -7.

- (A) $7.^{11}C_6$
- (B) 3^6 . ${}^{11}C_6$
- (C) 3^5 . ${}^{11}C_{E}$
- (D) -12. 2¹¹

If 'a' be the sum of the odd terms & 'b' be the sum of the even terms in the expansion of $(1 + x)^n$, then 8. $(1-x)^n$ is equal to -

- (A) a b
- (C) b a

The sum of the co-efficients of all the even powers of x in the expansion of $(2x^2 - 3x + 1)^{11}$ is -9.

- (A) 2 . 6¹⁰
- (B) 3 . 6¹⁰

(D) none

The greatest terms of the expansion $(2x + 5y)^{13}$ when x = 10, y = 2 is -

- (A) $^{13}C_{5}$. 20^{8} . 10^{5} (B) $^{13}C_{6}$. 20^{7} . 10^{4} (C) $^{13}C_{4}$. 20^{9} . 10^{4}
- (D) none of these

Number of rational terms in the expansion of $\left(\sqrt{2} + \sqrt[4]{3}\right)^{100}$ is -

(D) 28

12. If $\binom{p}{q} = 0$ for p < q, where $p, q \in W$, then $\sum_{r=0}^{\infty} \binom{n}{2r} = 0$

(A) 2ⁿ

(C) 2^{2n-1}

(D) ²ⁿC

13. $\binom{47}{4} + \sum_{i=1}^{5} \binom{52-i}{3} = \binom{x}{y}$, then $\frac{x}{y} = \binom{x}{y}$

(A) 11

(B) 12

(C) 13

(D) 14

14. If
$$n \in \mathbb{N}$$
 & n is even, then $\frac{1}{1.(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots + \frac{1}{(n-1)!1!} = \frac{1}{n-1}$

(A) 2ⁿ

- (B) $\frac{2^{n-1}}{n!}$
- (C) 2ⁿ n!
- (D) none of these
- 15. Let $R = (5\sqrt{5} + 11)^{31} = I + f$, where I is an integer and f is the fractional part of R, then R f is equal to -
 - (A) 2^{31}

(B) 3^{31}

(C) 2^{62}

(D) 1

- **16.** The value of $\sum_{r=0}^{10} {10 \choose r} {15 \choose 14-r}$ is equal to -
 - (A) ²⁵C₁₂

(B) ²⁵C₁₅

- (C) 25C₁₀
- (D) ²⁵C₁₁

- 17. $\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_{10}}{11}$ is equal to (here $C_r = {}^{10}C_r$)
 - (A) $\frac{2^{11}}{11}$
- (B) $\frac{2^{11}-1}{11}$
- (C) $\frac{3^{11}}{11}$

(D) $\frac{3^{11}-1}{11}$

18. If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, then $\sum_{r=0}^n \frac{r}{{}^nC_r}$ equals -

[JEE 98]

- (A) (n-1) a
- (B) n a

- (C) n $a_{n}/2$
- (D) none of these

- 19. The last two digits of the number 3^{400} are -
 - (A) 81

(B) 43

(C) 29

(D) 01

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- **20.** If the coefficients of three consecutive terms in the expansion of $(1 + x)^n$ are in the ratio of 1 : 7 : 42, then n is divisible by -
 - (A) 9

(B) 5

(C) 3

(D) 11

- **21.** In the expansion of $\left(\sqrt[3]{4} + \frac{1}{\sqrt[4]{6}}\right)^{20}$ -
 - (A) the number of irrational terms = 19
- (B) middle term is irrational
- (C) the number of rational terms = 2
- (D) 9^{th} term is rational
- **22.** If $(1 + x + x^2 + x^3)^{100} = a_0 + a_1 x + a_2 x^2 + \dots + a_{300} x^{300}$, then -
 - (A) $a_0 + a_1 + a_2 + a_3 + \dots + a_{300}$ is divisible by 1024
 - (B) $a_0 + a_2 + a_4 + \dots + a_{300} = a_1 + a_3 + \dots + a_{299}$
 - (C) coefficients equidistant from beginning and end are equal
 - (D) $a_1 = 100$
- **23.** The number $101^{100} 1$ is divisible by -
 - (A) 100

- (B) 1000
- (C) 10000
- (D) 100000
- **24.** If $(9 + \sqrt{80})^n = I + f$ where I, n are integers and 0 < f < 1, then -
 - (A) I is an odd integer

(B) I is an even integer

(C) (I + f)(1 - f) = 1

- (D) $1 f = \left(9 \sqrt{80}\right)^n$
- **25.** In the expansion of $\left(x^{2/3} \frac{1}{\sqrt{x}}\right)^{30}$, a term containing the power x^{13}
 - (A) does not exist

- (B) exists and the co-efficient is divisible by 29
- (C) exists and the co-efficient is divisible by 63
- (D) exists and the co-efficient is divisible by 65

- **26.** The co-efficient of the middle term in the expansion of $(1+x)^{2n}$ is -
 - $\text{(A)} \ \ \frac{1.3.5.7.....(2\,n-1)}{n\,!} \ \, 2^n$

- (B) ²ⁿC_n
- (C) $\frac{(n+1) (n+2) (n+3) \dots (2n-1) (2n)}{1.2.3.\dots (n-1) n}$
- (D) $\frac{2.6.10.14.....(4n-6)(4n-2)}{1.2.3.4....(n-1).n}$

CHECK	YOUR GR	RASP		A	NSWER	KEY	EXERCI				
Que.	1	2	3	4	5	6	7	8	9	10	
Ans.	С	Α	Α	С	D	В	В	Α	В	С	
Que.	11	12	13	14	15	16	17	18	19	20	
Ans.	В	В	С	В	С	D	В	С	D	B,D	
Que.	21	22	23	24	25	26					
Ans.	A,B,C,D	A,B,C,D	A,B,C	A,C,D	B,C,D	A,B,C,D					

EXERCISE - 02

BRAIN TEASERS

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

1. The element of x (0 = 1 = 11 1) in the expression	1.	The	coefficient	of	x^{r} (0 $\leq r \leq n-1$) in the express	ion :
--	----	-----	-------------	----	---	-------

$$(x+2)^{n-1} + (x+2)^{n-2} \cdot (x+1) + (x+2)^{n-3} \cdot (x+1) + \dots + (x+1)^{n-1}$$
 is

(A)
$${}^{n}C_{n}(2^{r}-1)$$

(A)
$${}^{n}C_{r}(2^{r}-1)$$
 (B) ${}^{n}C_{r}(2^{n-r}-1)$

(C)
$${}^{n}C_{r}(2^{r}+1)$$

2. If
$$(1 + x + x)^{25} = a_0 + a_1 x + a_2 x + \dots + a_{50} \cdot x^{50}$$
 then $a_0 + a_2 + a_4 + \dots + a_{50}$ is -

(C) odd & of the form
$$(3n-1)$$

(D) odd & of the form
$$(3n + 1)$$

3. The co-efficient of
$$x^4$$
 in the expansion of $(1 - x + 2x^2)^{12}$ is -

(D)
$${}^{12}C_3 + 3 {}^{13}C_3 + {}^{14}C_4$$

4. Let
$$(1 + x^2)^2 (1 + x)^n = A_0 + A_1 x + A_2 x^2 + \dots$$
 If A_0, A_1, A_2 are in A.P. then the value of n is -

5. If
$$\sum_{k=1}^{n-r} {}^{n-k}C_r = {}^{x}C_y$$
 then -

(A)
$$x = n + 1$$
; $y = r$

(B)
$$x = n$$
; $y = r + 1$

(C)
$$x = n ; y = r$$

(D)
$$x = n + 1$$
; $y = r + 1$

6. Co-efficient of
$$\alpha^t$$
 in the expansion of $(\alpha+p)^{m-1}+(\alpha+p)^{m-2}$ $(\alpha+q)+(\alpha+p)^{m-3}$ $(\alpha+q)^2+.....$ $(\alpha+q)^{m-1}$ where $\alpha\neq -q$ and $p\neq q$ is -

(A)
$$\frac{{}^{m}C_{t}\left(p^{t}-q^{t}\right)}{p-q}$$

(B)
$$\frac{{}^{m}C_{t}\left(p^{m-t}-q^{m-t}\right)}{p-q}$$

(C)
$$\frac{{}^{m}C_{t}\left(p^{t}+q^{t}\right)}{p-q}$$

(A)
$$\frac{{}^{m}C_{t}\left(p^{t}-q^{t}\right)}{p-q}$$
 (B) $\frac{{}^{m}C_{t}\left(p^{m-t}-q^{m-t}\right)}{p-q}$ (C) $\frac{{}^{m}C_{t}\left(p^{t}+q^{t}\right)}{p-q}$ (D) $\frac{{}^{m}C_{t}\left(p^{m-t}+q^{m-t}\right)}{p-q}$

7. The co-efficient of
$$x^{401}$$
 in the expansion of $(1 + x + x^2 + + x^9)^{-1}$, $(|x| \le 1)$ is -

(B)
$$-1$$

(D)
$$-2$$

8. Number of terms free from radical sign in the expansion of
$$(1 + 3^{1/3} + 7^{1/7})^{10}$$
 is -

9. The value r for which
$$\binom{30}{r}\binom{15}{r}+\binom{30}{r-1}\binom{15}{1}+\dots+\binom{30}{0}\binom{15}{r}$$
 is maximum is/are

10. If the 6th term in the expansion of
$$\left(\frac{3}{2} + \frac{x}{3}\right)^n$$
 when $x = 3$ is numerically greatest then the possible integral value(s) of n can be -

11. In the expansion of
$$(1 + x)^n (1 + y)^n (1 + z)^n$$
, the sum of the co-efficients of the terms of degree 'r' is -

(A)
$$n^3 C_r$$

(B)
$${}^{n}C_{r^3}$$

(C)
$${}^{3n}C_r$$

(D)
$$3 \cdot {}^{2n}C_r$$

12.
$$\binom{35}{6} + \sum_{r=0}^{10} \binom{45-r}{5} = \binom{x}{y}$$
, then $x - y$ is equal to -

13. The value of
$$\sum_{\substack{r=0\\r\leq s}}^{s}\sum_{s=1}^{n}{}^{n}C_{s}{}^{s}C_{r}$$
 is -

(A)
$$3^n - 1$$

(B)
$$3^n + 1$$

(D)
$$3(3^n - 1)$$

- **14.** In the expansion of $\left(x^3 + 3.2^{-\log \sqrt{x}}\right)^{11}$ -
 - (A) there appears a term with the power x^2
 - (B) there does not appear a term with the power x^2
 - (C) there appears a term with the power $\,x^{-3}$
 - (D) the ratio of the co-efficient of x^3 to that of x^{-3} is $\frac{1}{3}$
- **15.** The sum of the series (1 + 1).1! + (2 + 1).2! + (3 + 1).3! + + (n + 1).n! is -
 - (A) (n + 1) . (n + 2)!
- (B) $n \cdot (n + 1)!$
- (C) $(n+1) \cdot (n+1)!$
- (D) none of these
- **16.** The binomial expansion of $\left(x^k + \frac{1}{x^{2k}}\right)^{3n}$, $n \in N$ contains a term independent of x -
 - (A) only if k is an integer

(B) only if k is a natural number

(C) only if k is rational

- (D) for any real k
- **17.** Let $n \in N$. If $(1 + x)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ and $a_{n-3}, a_{n-2}, a_{n-1}$ are in AP, then -
 - (A) a_1 , a_2 , a_3 are in AP

(B) a_1 , a_2 , a_3 are in HP

(C) n = 7

- D) n = 14
- **18.** Set of values of r for which, ${}^{18}C_{r-2}$ + 2 . ${}^{18}C_{r-1}$ + ${}^{18}C_r$ \geq ${}^{20}C_{13}$ contains -
 - (A) 4 elements
- (B) 5 elements
- (C) 7 elements
- (D) 10 elements

BRAIN	TEASERS			А	NSWER	KEY	EXERCISE-2							
Que.	1	2	3	4	5	6	7	8	9	10				
Ans.	В	Α	D	A,B	В	В	В	С	B,C	B,C,D				
Que.	11	12	13	14	15	16	17	18						
Ans.	С	D	Α	B,C,D	В	D	A,C	С						

EXERCISE - 03

MISCELLANEOUS TYPE QUESTIONS

FILL IN THE BLANKS

- The greatest binomial coefficient in the expansion of $(a + b)^n$ is given that the sum of all the 1. coefficients is equal to 4096.
- The number 7^{1995} when divided by 100 leaves the remainder _____. 2.
- The term independent of x in the expansion of $\left[x^2 + \frac{1}{y}\right]^{15}$ is ______. 3.
- 4.
- If $(1+x+x+\dots+x^p)^n=a_0+a_1x+a_2x+\dots+a_{np}x^{np}$ then $a_1+2a_2+3a_3+\dots+npa_{np}=$. If $(1+x)(1+x+x^2)(1+x+x^2+x^3)$ $(1+x+x^2+x^3+\dots+x^n)\equiv a_0+a_1x+a_2x^2+a_3x^3+\dots+a_mx^m$ 5. then $\sum_{r=0}^{\infty} a_r$ has the value equal to ______.
- If the 6th term in the expansion of the binomial $\left[\frac{1}{x^{8/3}} + x^2 \log_{10} x\right]^8$ is 5600, then x =______. 6.
- $(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3)$ $(1 + x + x^2 + + x^{100})$ when written in the ascending power of 7. x then the highest exponent of x is x.

MATCH THE COLUMN

Following question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with ONE statement in Column-II.

1.		Column-I		Column-II
	(A)	(2n+1)(2n+3)(2n+5) $(4n-1)$ is equal to	(p)	$\frac{(n+1)^n}{n!}$
	(B)	$\frac{C_1}{C_0} + \frac{2 \cdot C_2}{C_1} + \frac{3 \cdot C_3}{C_2} + \dots + \frac{n \cdot C_n}{C_{n-1}}$ is equal to	(q)	$n \cdot 2^n \cdot (2^n - 1)$
		here C_{r} stand for ${}^{n}C_{r}$.		
	(C)	If $(C_0 + C_1)$ $(C_1 + C_2)$ $(C_2 + C_3)$ $(C_{n-1} + C_n)$ = m . $C_1C_2C_3$ C_{n-1} , then m is equal to	(r)	(4n)! n! 2 ⁿ . (2n)! (2n)!
		= $m \cdot C_1 C_2 C_3 \cdot \cdot C_{n-1}$, then m is equal to		
	(D)	If $C_{_{\rm r}}$ are the binomial co-efficients in the expansion of	(s)	$\frac{n (n+1)}{2}$
		$(1 + x)^n$, the value of $\sum_{i=1}^n \sum_{j=1}^n (i+j) C_i C_j$ is		

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- Statement-I : Coefficient of $ab^8c^3d^2$ in the expansion of $(a + b + c + d)^{14}$ is 180180Because

Statement-II: General term in the expansion of $(a_1 + a_2 + a_3 + \dots + a_m)^n$

$$= \sum \frac{n!}{n_1! n_2! n_3! n_m!} a_1^{n_1} a_2^{n_2} ... a_m^{n_m} \; , \; \text{where} \; n_1 \; + \; n_2 \; + \; n_3 \; + \; ... \; + \; n_m \; = \; n.$$

(A) A

(C) C

(D) D

Statement-I: If $q = \frac{1}{3}$ and p + q = 1, then $\sum_{r=0}^{15} r^{-15} C_r p^r q^{15-r} = 15 \times \frac{1}{3} = 5$

Because

Statement-II : If p + q = 1, $0 \le p \le 1$, then $\sum_{r=0}^{n} r^{r} C_{r} p^{r} q^{n-r} = np$

- (A) A (B) B (C) C (D) D Statement-I : The greatest value of ${}^{40}\text{C}_0$. ${}^{60}\text{C}_r$ + ${}^{40}\text{C}_1$. ${}^{60}\text{C}_{r-1}$ ${}^{40}\text{C}_{40}$. ${}^{60}\text{C}_{r-40}$ is ${}^{100}\text{C}_{50}$ 3.

Statement-II: The greatest value of ${}^{2n}C_r$, (where r is constant) occurs at r = n.

(A) A

- **Statement-I**: If $x = {}^{n}C_{n-1} + {}^{n+1}C_{n-1} + {}^{n+2}C_{n-1} + \dots + {}^{2n}C_{n-1}$, then $\frac{x+1}{2n+1}$ is integer. 4.

Statement-II : ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ and ${}^{n}C_{r}$ is divisible by n if n and r are co-prime.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

If n is positive integer and if $(1 + 4x + 4x^2)^n = \sum_{r=0}^{2n} a_r x^r$, where a_i 's are (i = 0, 1, 2, 3,, 2n) real numbers.

On the basis of above information, answer the following questions:

- The value of $2\sum_{r=0}^{n} a_{2r}$ is -1.
 - (A) $9^n 1$
- (B) $9^n + 1$
- (C) $9^n 2$
- (D) $9^n + 2$

- The value of $2\sum_{r=1}^{n} a_{2r-1}$ is -2.
 - (A) $9^n 1$
- (B) $9^n + 1$
- (C) $9^n 2$
- (D) $9^n + 2$

- The value of a_{2n-1} is -3.
- (B) $(n 1).2^{2n}$
- (C) n.2²ⁿ
- (D) $(n + 1).2^{2n}$

- The value of a₂ is -4.
 - (A) 8n

- (B) $8n^2 4$ (C) $8n^2 4n$ (D) 8n 4

MISCELLANEOUS TYPE QUESTION

ANSWER KEY

EXERCISE-3

- Fill in the Blanks

3. C

- **1.** ${}^{12}C_6$ **2.** 43 **3.** 3003 **4.** $\frac{np}{2}(p+1)^n$ **5.** (n+1)! **6.** x=10 **7.** 5050

- Match the Column
 - 1. (A) \rightarrow (r), (B) \rightarrow (s), (C) \rightarrow (p), (D) \rightarrow (q)
- Assertion & Reason
- **2**. D
- Comprehension Based Questions
 - Comprehension # 1 : 1. B
 - **2**. A
- **3**. C
- **4**. C

EXERCISE - 04 [A]

CONCEPTUAL SUBJECTIVE EXERCISE

- 1. If the coefficients of $(2r + 4)^{th}$, $(r 2)^{th}$ terms in the expansion of $(1 + x)^{18}$ are equal, find r.
- 2. If the coefficients of the r^{th} , $(r + 1)^{th}$ & $(r + 2)^{th}$ terms in the expansion of $(1 + x)^{14}$ are in AP, find r.
- 3. Find the term independent of x in the expansion of : (a) $\left[\sqrt{\frac{x}{3}} + \frac{\sqrt{3}}{2x^2}\right]^{10}$ (b) $\left[\frac{1}{2}x^{1/3} + x^{-1/5}\right]^8$
- **4.** Prove that: ${}^{n-1}C_r + {}^{n-2}C_r + {}^{n-3}C_r + \dots + {}^{r}C_r = {}^{n}C_{r+1}$
- $\textbf{5.} \qquad \text{If} \quad ^{40}C_{_{1}} \text{ . } x(1-x)^{39} \text{ + 2 . } ^{40}C_{_{2}} \text{ } x^{2} \text{ } (1-x)^{38} \text{ + 3 } ^{40}C_{_{3}} \text{ } x^{3} \text{ } (1-x)^{37} \text{ +} \text{ + 40. } ^{40}C_{_{40}} \text{ } x^{40} \text{ = ax + b, then find a \& b. }$
- **6.** If ${}^{n+1}C_2 + 2 ({}^{2}C_2 + {}^{3}C_2 + {}^{4}C_2 + \dots + {}^{n}C_2) = 1^2 + 2^2 + 3^2 + \dots + 100^2$, then find n.
- 7. Which is larger: $(99^{50} + 100^{50})$ or $(101)^{50}$.
- 8. Show that ${}^{2n-2}C_{n-2} + 2$. ${}^{2n-2}C_{n-1} + {}^{2n-2}C_n > \frac{4n}{n+1}$, $n \in \mathbb{N}$, n > 2
- 9. Find the coefficient of x^4 in the expansion of :

(a)
$$(1 + x + x^2 + x^3)^{11}$$

(b)
$$(2 - x + 3x^2)^6$$

10. Find numerically the greatest term in the expansion of :

(a)
$$(2 + 3x)^9$$
 when $x = \frac{3}{2}$

(b)
$$(3-5x)^{15}$$
 when $x=\frac{1}{5}$

- 11. Prove that the ratio of the coefficient of x^{10} in $(1-x^2)^{10}$ & the term independent of x in $\left(x-\frac{2}{x}\right)^{10}$ is 1:32.
- 12. Find the term independent of x in the expansion of $(1+x+2x^3)\left(\frac{3x^2}{2}-\frac{1}{3x}\right)^9$.
- 13. Prove that $\sum_{k=0}^{n} {C_k} \sin Kx$. cos (n K)x = $2^{n-1} \sin nx$.
- **14.** Find the coefficient of :
 - (a) x^6 in the expansion of $(ax^2 + bx + c)^9$.
- (b) $x^2 y^3 z^4$ in the expansion of $(ax by + cz)^9$.
- (c) $a^2 b^3 c^4 d$ in the expansion of $(a b c + d)^{10}$.
- **15.** (a) $\sum_{r=0}^{20} {20 \choose r} {30 \choose 25-r} = {}^{x}C_{y}, \text{ then find } x, y. \text{ (b)}$ Prove that : $\sum_{r=0}^{25} {30 \choose r} {70 \choose 25-r} = {}^{100}C_{25}$
- **16.** Prove that : $\binom{n}{r} \binom{r}{k} = \binom{n}{k} \binom{n-k}{r-k}$
- 17. Prove that : $\sum_{r=0}^{25} (-1)^r \binom{30}{r} \binom{30}{25-r} = 0$
- **18.** Prove that : $\sum_{r=0}^{n-2} {n-1 \choose r} {n \choose r+2} = {2n-1 \choose n-2}$

Prove the following (here $C_r = {}^nC_r$) (Q. 19 to 26):

19.
$$C_0C_1 + C_1C_2 + C_2C_3 + \dots + C_{n-1}C_n = \frac{(2n)!}{(n+1)!(n-1)!}$$

20.
$$C_0C_r + C_1C_{r+1} + C_2C_{r+2} + \dots + C_{n-r}C_n = \frac{2n!}{(n-r)!(n+r)!}$$

21.
$$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{(2n)!}{n!n!}$$

22.
$$C_0 - C_1 + C_2 - C_3 + \dots + (-1)^r \cdot C_r = \frac{(-1)^r (n-1)!}{r! \cdot (n-r-1)!}$$

23.
$$C_1 + 2C_2 + 3C_3 + \dots + n.$$
 $C_n = n.$ 2^{n-1}

24.
$$C_0 + 2C_1 + 3C_2 + \dots + (n + 1) C_n = (n + 2) 2^{n-1}$$

25.
$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1} - 1}{n+1}$$

26.
$$\frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + \dots + \frac{n.C_n}{C_{n-1}} = \frac{n(n+1)}{2}$$

27. Prove the identity
$$\frac{1}{2n+1}C_r + \frac{1}{2n+1}C_{r+1} = \frac{2n+2}{2n+1}\frac{1}{2n}C_r$$

28. If
$$(1 + x)^{15} = C_0 + C_1$$
, $x + C_2$, $x^2 + \dots + C_{15}$, x^{15} and $C_2 + 2C_3 + 3C_4 + \dots + 14C_{15} = a2^b + c$, then find $a + b + c$.

29. Evaluate :
$$2^{15} \binom{30}{0} \binom{30}{15} - 2^{14} \binom{30}{1} \binom{29}{14} + 2^{13} \binom{30}{2} \binom{28}{13} \dots - \binom{30}{15} \binom{15}{0}$$

ANSWER

EXERCISE-4(A)

- **2.** r = 5 or 9 **3.** (a) $T_3 = \frac{5}{12}$ (b) $T_6 = 7$ **5.** a = 40, b = 0

- **7.** 101^{50} **9.** (a) 990 (b) 3660 **10.** (a) $T_7 = \frac{7 \cdot 3^{13}}{2}$ (b) 455 x 3^{12} **12.** $\frac{17}{54}$
- $\textbf{14.} (a) \ 84b^6c^3 + \ 630ab^4c^4 + 756a^2b^2c^5 + \ 84a^3c^6 \ ; \quad \ (b) \ -1260.a^2b^3c^4 \quad ; \quad \ (c) \ -12600a^2b^3c^4 \quad ; \quad \ (c) \ -12600a^2b^$
- **15** (a) x = 50, y = 25
- **28**. 28
- 29.

ERCISE - 04 [B]

BRAIN STORMING SUBJECTIVE EXERCISE

$$\textbf{1.} \qquad \text{If } \sum_{r=0}^{2n} a_r (x-2)^r = \sum_{r=0}^{2n} b_r (x-3)^r \text{ \& } a_k = 1 \text{ for all } k \geq n, \text{ then show that } b_n = \frac{2n+1}{n} C_{n+1}$$

- 2. Prove the following:
 - $C_0^2 C_1^2 + C_2^2 C_3^2 + \dots + (-1)^n C_n^2 = \begin{cases} 0 & \text{if n is odd} \\ (-1)^{n/2} & C_{n/2} & \text{if n is even} \end{cases}$
 - $1.C_0^2 + 3.C_1^2 + 5.C_2^2 + \dots + (2n+1)C_n^2 = \frac{(n+1)(2n)!}{n!n!}$
- Find the index n of the binomial $\left(\frac{x}{5} + \frac{2}{5}\right)^n$ if the 9th term of the expansion has numerically the greatest 3. coefficient (n \in N).
 - For which positive values of x is the fourth term in the expansion of $(5 + 3x)^{10}$ is the greatest.
- If a_0 , a_1 , a_2 , be the coefficients in the expansion of $(1 + x + x^2)^n$ in ascending powers of x, then prove that : 4.
 - $a_0 a_1 a_1 a_2 + a_2 a_3 \dots = 0$
 - $a_0 a_2 a_1 a_3 + a_2 a_4 \dots + a_{2n-2} a_{2n} = a_{n+1} \text{ or } a_{n-1}$
 - $E_1 = E_2 = E_3 = 3^{n-1}$; where $E_1 = a_0 + a_3 + a_6 + \dots$; $E_2 = a_1 + a_4 + a_7 + \dots$ & $E_3 = a_2 + a_5 + a_8 + \dots$
- Prove that : 1^2 . $C_0 + 2^2$ $C_1 + 3^2$. $C_2 + 4^2$. $C_3 + \dots + (n + 1)^2$. $C_n = 2^{n+2} (n + 1) (n + 4)$. 5.
- If $(1+x)^n = \sum_{r=0}^n C_r \cdot x^r$ then prove that $\frac{2^2 \cdot C_0}{12} + \frac{2^3 \cdot C_1}{23} + \frac{2^4 \cdot C_2}{34} + \dots + \frac{2^{n+2} \cdot C_n}{(n+1)(n+2)} = \frac{3^{n+2} 2n 5}{(n+1)(n+2)}$ 6.
- Prove that : $\sum_{k=0}^{r} {n+i \choose k} = {n+r+1 \choose k+1} {n \choose k+1}$
- Prove that : $\sum_{i=0}^{\infty} {p \choose i} {q \choose n+i} = {p+q \choose p+n}, \ p, \ q \in N; \ p, \ q \text{ are constants.}$ 8.
- Prove that : $\sum_{r=0}^{n} {n-1 \choose n-r} {n \choose r} = {2n-1 \choose n-1}$
- **10.** Prove that : $\frac{C_0}{2} + \frac{C_1}{3} + \frac{C_2}{4} + \frac{C_3}{5} + \dots + \frac{C_n}{n+2} = \frac{1+n}{(n+1)(n+2)}$
- 11. Prove that $: \frac{1}{2} \, {}^{n} \, C_{1} \frac{2}{3} \, {}^{n} \, C_{2} + \frac{3}{4} \, {}^{n} \, C_{3} \frac{4}{5} \, {}^{n} \, C_{4} + \dots + \frac{(-1)^{n+1} \, n}{n+1} \, {}^{n} \, C_{n} = \frac{1}{n+1}$
- **12.** Prove that : $\binom{2n}{1}^2 + 2$. $\binom{2n}{2}^2 + 3$. $\binom{2n}{3}^2 + \dots + 2n$. $\binom{2n}{2n}^2 = \frac{(4n-1)!}{[(2n-1)!]^2}$

3. (a)
$$n = 12$$
 (b) $\frac{5}{8} < x < \frac{20}{21}$

EXERCISE - 05 [A]

JEE-[MAIN]: PREVIOUS YEAR QUESTIONS

- The sum of the coefficients in the expansion of $(x + y)^n$ is 4096. The greatest coefficient in the expansion [AIEEE 2002]
 - (1) 1024
- (2) 924

- (3) 824
- (4) 724
- If for positive integers r > 1, n > 2 the coefficients of the $(3r)^{th}$ and $(r+2)^{th}$ powers of x in the expansion 2. of $(1+x)^{2n}$ are equal, then-
 - (1) n = 2r
- (2) n = 3r
- (3) n = 2r + 1
 - (4) n = 2r 1
- If $(1+x)^n = C_0 + C_1x + C_2x^2 + ... + ... + C_nx^n$, then $\frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + ... + \frac{nC_n}{C_{n-1}} = \frac{1}{2}$ [AIEEE-2002]
 - (1) $\frac{n(n-1)}{2}$
- (2) $\frac{n(n+2)}{2}$
- (3) $\frac{n(n+1)}{2}$
- (4) $\frac{(n-1)(n-2)}{2}$
- The number of integral terms in the expansion of $\left(\sqrt{3} + \sqrt[8]{5}\right)^{256}$ is-4.

[AIEEE 2003]

(1) 32

(2) 33

(3) 34

- (4) 35
- The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of 5. $(1 - \alpha x)^6$ is the same if α equals-[AIEEE 2004]
 - (1) $-\frac{5}{3}$

(2) $\frac{10}{3}$

(4) $\frac{3}{5}$

The coefficient of x^n in expansion of $(1 + x)(1 - x)^n$ is-6.

[AIEEE 2004]

- $(2) (-1)^n (1-n)$
- (3) $(-1)^{n-1}$ (n -1)²
- $(4) (-1)^{n-1}n$
- If the coefficients of r^{th} , $(r + 1)^{th}$ and $(r + 2)^{th}$ terms in the binomial expansion $(1 + y)^m$ are in A.P., then 7. m and r satisfy the equation-
 - (1) $m^2 m (4r 1) + 4r^2 + 2 = 0$
- (2) $m^2 m (4r + 1) + 4r^2 2 = 0$
- (3) $m^2 m (4r + 1) + 4r^2 + 2 = 0$
- (4) $m^2 m(4r 1) + 4r^2 2 = 0$
- If the coefficient of x^7 in $\left[ax^2 + \left(\frac{1}{bx}\right)\right]^{11}$ equals the coefficient of x^{-7} in $\left[ax \left(\frac{1}{bx^2}\right)\right]^{11}$, then a and b satisfy

the relation-[AIEEE 2005]

- (1) ab = 1
- (2) $\frac{a}{b} = 1$
- (3) a + b = 1 (4) a b = 1
- For natural numbers m, n if $(1-y)^m$ $(1+y)^n = 1 + a_1y + a_2y^2 + ...$, and $a_1 = a_2 = 10$, then (m, n) 9.
 - (1) (45, 35)
- (2) (35, 45)
- (3) (20, 45)
- (4) (35, 20)
- 10. The sum of the series ${}^{20}C_0 {}^{20}C_1 + {}^{20}C_2 {}^{20}C_3 + \dots + {}^{20}C_{10}$ is -

- (1) $\frac{1}{2}$ ²⁰C₁₀
- (2) 0

- $(3) {}^{20}C_{10}$
- $(4)^{20}C_{10}$
- In the binomial expansion of $(a b)^n$, $n \ge 5$, the sum of 5^{th} and 6^{th} terms is zero, then $\frac{a}{b}$ equals [AIEEE 2007]
 - (1) $\frac{6}{n-5}$

- (3) $\frac{n-4}{5}$

12. Statement -1 :
$$\sum_{r=0}^{n} (r+1)^{n} C_{r} = (n+2)2^{n-1}$$

$$\textbf{Statement-2} \ : \ \sum_{r=0}^{n} \! \left(r+1\right){}^{n} C_{r} x^{r} = \ (1 \ + \ x)^{n} + nx \ (1+x)^{-1}$$

[AIEEE 2008]

- (1) Statement -1 is false, Statement -2 is true
- (2) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- (4) Statement-1 is true, Statement-2 is false
- 13. The remainder left out when 8^{2n} $(62)^{2n+1}$ is divided by 9 is :-

[AIEEE 2009]

(1) 7

(2) 8

(3) 0

(4) 2

$$\textbf{14.} \quad \text{Let} \ \ S_1 = \sum_{j=1}^{10} j (j-1)^{10} \, C_j, \ \ S_2 = \sum_{j=1}^{10} j^{10} C_j \ \ \text{and} \ \ S_3 = \sum_{j=1}^{10} j^{2^{10}} C_j \ .$$

[AIEEE-2010]

Statement-1: $S_3 = 55 2^9$.

Statement-2: $S_1 = 90 2^8$ and $S_2 = 10 2^8$.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for statement-1.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is false, Statement-2 is true.
- **15.** The coefficient of x^7 in the expansion of $(1 x x^2 + x^3)^6$ is :-

[AIEEE 2011]

(1) -144

(2) 132

(3) 144

(4) - 132

16. If n is a positive integer, then $\left(\sqrt{3}+1\right)^{2n}-\left(\sqrt{3}-1\right)^{2n}$ is :

[AIEEE 2012]

- (1) a rational number other than positive integers
- (2) an irrational number

(3) an odd positive integer

- (4) an even positive integer
- **17**. The term independent of x in expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$ is : [JEE (Main)-2013]
 - (1) 4

(2) 120

(3) 210

(4) 310

PREVI	OUS Y	EARS (QUESTIC	ONS		A	NSW	ER I	KEY		ERCISE	-5 [A]			
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	2	3	3	2	3	2	2	1	2	1	3	2	4	3	1
Que.	16	17		-		-	-		-	-		-			-
Ans	2	3													

EXERCISE - 05 [B]

JEE-[ADVANCED]: PREVIOUS YEAR QUESTIONS

(a) For $2 \le r \le n$, $\binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2} = \frac{n}{r-2}$

[JEE 2000, (Screening), 1+1M]

- (A) $\binom{n+1}{r-1}$ (B) $2\binom{n+1}{r+1}$ (C) $2\binom{n+2}{r}$
- (D) $\binom{n+2}{n}$
- (b) In the binomial expansion of $(a b)^n$, $n \ge 5$, the sum of the 5^{th} and 6^{th} terms is zero, Then $\frac{a}{b}$ equals -
- (B) $\frac{n-4}{5}$
- (C) $\frac{5}{2}$
- (D) $\frac{6}{n-5}$
- For any positive integers $\,m\,,\,\,n\,$ (with $n\,\geq\,m)$, $\,let{n\choose m}\,\,=\,\,^nC_{_m}$. Prove that : 2.

$$\begin{pmatrix} n \\ m \end{pmatrix} + \begin{pmatrix} n-1 \\ m \end{pmatrix} + \begin{pmatrix} n-2 \\ m \end{pmatrix} + \dots + \begin{pmatrix} m \\ m \end{pmatrix} = \begin{pmatrix} n+1 \\ m+1 \end{pmatrix}$$

Hence or otherwise prove that

[JEE 2000 (Mains), 6M]

$$\binom{n}{m} + 2 \binom{n-1}{m} + 3 \binom{n-2}{m} + \dots + (n-m+1) \binom{m}{m} = \binom{n+2}{m+2}.$$

- The sum $\sum_{i=0}^m \binom{10}{i} \binom{20}{m-i}$ (where $\binom{p}{q} = 0$) if $p \leq q$ is maximum when m is -3. [JEE 02(Screening), 3M]

- (D) 20
- (a) Coefficient of t^{24} in the expansion of $(1 + t^2)^{12}$ $(1 + t^{12})$ $(1 + t^{24})$ is [JEE 03, Screening, 3M out of 60] 4. (B) ${}^{12}C_6 + 1$ (A) ${}^{12}C_6 + 2$ (D) none
 - (b) If n and k are positive integers, show that

[JEE 03, Mains 2M out of 60]

$$2^k \binom{n}{0} \binom{n}{k} - 2^{k-1} \binom{n}{1} \binom{n-1}{k-1} + 2^{k-2} \binom{n}{2} \binom{n-2}{k-2} \dots (-1)^k \binom{n}{k} \binom{n-k}{0} = \binom{n}{k}$$

If n, r \in N and $^{\text{n-1}}C_{_{r}}$ = (k^2 - 3) (^{n}C_{_{r+1}}), then k lies in the interval

[JEE 04, Screening, 3M out of 84]

- (A) $\left[-\sqrt{3}, \sqrt{3}\right]$
- (B) (2, ∞)
- (C) $\left[-\sqrt{3}, \infty\right]$ (D) $\left(\sqrt{3}, 2\right]$
- The value of $\binom{30}{0}\binom{30}{10} \binom{30}{1}\binom{30}{11} + \binom{30}{2}\binom{30}{12} \dots + \binom{30}{20}\binom{30}{30}$, is where $\binom{n}{r} = {}^{n}C_{r}$

[JEE 05, Screening, 3M out of 84]

- (A) ${}^{30}C_{10}$ (B) ${}^{60}C_{20}$ (C) ${}^{31}C_{11}$ or ${}^{31}C_{10}$ (D) ${}^{30}C_{11}$ For r = 0, 1,...,10, let A_r, B_r and C_r denote, respectively, the coefficient of x^r in the expansions of $(1+x)^{10}$, $(1+x)^{20}$ and $(1+x)^{30}$. Then $\sum_{r}^{10}A_{r}(B_{10}B_{r}-C_{10}A_{r})$ is equal to -[JEE 10, 5M, -2M]
- (B) $A_{10} (B_{10}^2 C_{10} A_{10})$ (C) 0

- The coefficients of three consecutive terms of $(1 + x)^{n+5}$ are in the ratio 5 : 10 : 14. Then n =8.

[JEE-Advanced 2013, 4, (-1)]

PREVIOUS YEARS	QUESTIONS		ANSWER	KEY			EXERCISE-5 [B]
1. (a) D; (b) B	3. C	4. (a) A	5 . D	6. A	7.	D	8. 6