

Sequential Controlled Sensing to Detect an Anomalous Process

Ph. D. Colloquium

Department of Electrical Communication Engineering
Indian Institute of Science, Bengaluru

P. N. Karthik

Advisor: Prof. Rajesh Sundaresan

Motivation

Visual Search Experiments, Multi-Armed Bandits

Find the "Odd" Image — 1

Find the "Odd" Image — 2

Find the "Odd" Image — 3

Finding the Odd Image

- Time to find the odd image depends on the image pairs
- The "closer" the image pairs are to the eyes, the longer it takes to find the odd image

Fix error and characterise the time to find odd arm as a function of error

Goal: to find the odd image quickly and accurately

- π : strategy to find the odd image
- $\tau(\pi)$: time to find the odd image under π
- For $\epsilon \in (0,1)$, let $\Pi(\epsilon) = \{\pi : P_{\text{error}}(\pi) \le \epsilon\}$
- Vaidhiyan et al. 1,2 showed that for any two image pairs I_1 and I_2 ,

$$\inf_{\pi \in \Pi(\epsilon)} E[\tau(\pi) \,|\, I_1, I_2] \approx \alpha(I_1, I_2) \cdot \left(\log \frac{1}{\epsilon}\right)$$

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) | I_1, I_2]}{\log(1/\epsilon)} = \alpha(I_1, I_2)$$

- 1. Vaidhiyan, N. K., Arun, S. P., & Sundaresan, R. (2017). Neural Dissimilarity Indices that Predict Oddball Detection in Behaviour. *IEEE Transactions on Information Theory*, 63(8), 4778-4796.
- 2. Vaidhiyan, N. K., & Sundaresan, R. (2017). Learning to Detect an Oddball Target. *IEEE Transactions on Information Theory*, 64(2), 831-852.

Fix error and characterise the time to find odd arm as a function of error

From Static Images to Movies

Find the Odd Movie — 1

Find the Odd Movie — 2

Finding the Odd Movie

- Time to find the odd movie depends on the drifts of the movies
- The "closer" the drifts of the odd movie and the non-odd movies are, the longer it takes to find the odd movie
- Given movies with drifts d_1 and d_2 , can we say

$$\inf_{\pi \in \Pi(\epsilon)} E[\tau(\pi) \mid d_1, d_2] \approx \alpha(d_1, d_2) \cdot \left(\log \frac{1}{\epsilon}\right)?$$

This talk: a detailed analysis of the above question

Odd Movie Experiments	Multi-Armed Bandits		
Movie	Arm		
Frame	Observation		
Positions of dots in successive frames related	Observations form a Markov process		
One movie is observed at a time	One arm is selected at a time		
Unobserved movies continue to play	Unobserved arms continue to evolve (restless arms)		
Drift of one of the movies is different	Markov law (TPM) of one of the arms is different		

TPM:

The Odd Restless Markov Arm Problem

- A multi-armed bandit with $K \ge 3$ arms
- Each arm is a time homogeneous and ergodic Markov process
- Markov processes evolve on a common, finite state space
- The TPM of one of the arms (odd arm) is P_1 ; TPM of rest of the arms is P_2
- Arms are restless
- TPMs may be known beforehand or unknown

The Odd Rested Markov Arm Problem

- A multi-armed bandit with $K \ge 3$ arms
- Each arm is a time homogeneous and ergodic Markov process
- Markov processes evolve on a common, finite state space
- The TPM of one of the arms (odd arm) is P_1 ; TPM of rest of the arms is P_2
- Arms are rested
- TPMs may be known beforehand or unknown

Simpler to analyse; first step before analysing the more difficult setting of restless arms

Putting Our Work in Perspective — Optimal Stopping

Part 1: Rested Arms

P. N. Karthik and Rajesh Sundaresan, "Learning to Detect an Odd Markov Arm", IEEE Transactions on Information Theory, 66(7), 4324-4348.

The Odd Rested Markov Arm Problem

- A multi-armed bandit with $K \geq 3$ arms
- Each arm is a time homogeneous and ergodic Markov process
- Markov processes evolve on a common, finite state space
- The TPM of one of the arms (odd arm) is P_1 ; TPM of rest of the arms is P_2
- Arms are rested
- TPMs unknown (learning)

Our Contributions

- Let $C = (h, P_1, P_2)$ be a problem instance
- Lower bound:

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \ge \frac{1}{D^*(h, P_1, P_2)}$$

• Policy — matching upper bound as $\epsilon \downarrow 0$

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} = \frac{1}{D^*(h, P_1, P_2)}$$

$$D^*(h, P_1, P_2) = \max_{\lambda} \min_{C': h' \neq h} \sum_{a=1}^{K} \lambda(a) D(P_C^a | P_{C'}^a | \mu_C^a)$$

Time	Arm	Observation
0	1	X_0^1
1	2	X_0^2
2	3	X_0^3
3	4	X_0^4
4	3	X_1^3
5	3	X_2^3
6	2	X_1^2
7	1	X_1^1
8	3	X_3^3
9	4	X_1^4

 X_t^a : tth observation from arm a

Arm a — sampled $N_a(n)$ times up to time n

$$A_0, \dots, A_n, X_0^1, \dots, X_{N_1(n)-1}^1, \dots, X_0^K, \dots, X_{N_K(n)-1}^K$$
 arm 1 arm K

$$Z_C(n) = \log P(A_0, ..., A_n, X_0^1, ..., X_{N_1(n)-1}^1, ..., X_0^K, ..., X_{N_K(n)-1}^K \mid C)$$

$$C = (h, P_1, P_2)$$

$$Z_{C}(n) = \sum_{i,j \in \mathcal{S}} N_{h}(n,i,j) \log P_{1}(j \mid i) + \sum_{a \neq h} \sum_{i,j \in \mathcal{S}} N_{a}(n,i,j) \log P_{2}(j \mid i) + \log P_{C}(A_{0}) + \log \nu(\bar{X}_{0}) + \sum_{t=1}^{n} \log P_{C}(A_{t} \mid A_{0},...,A_{t-1},\bar{X}_{0},...,\bar{X}_{t-1})$$

$$C' = (h', P'_1, P'_2)$$
 $h' \neq h$

$$Z_{C'}(n) = \sum_{i,j \in \mathcal{S}} N_{h'}(n,i,j) \log P_1'(j \mid i) + \sum_{a \neq h'} \sum_{i,j \in \mathcal{S}} N_a(n,i,j) \log P_2'(j \mid i) + \log P_{C'}(A_0) + \log \nu(\bar{X}_0) + \sum_{t=1}^n \log P_{C'}(A_t \mid A_0, \dots, A_{t-1}, \bar{X}_0, \dots, \bar{X}_{t-1})$$

Time	Arm	Obs.
0	1	X_0^1
1	2	X_0^2
2	3	X_0^3
3	4	X_0^4
4	3	X_1^3
5	3	X_2^3
6	2	X_1^2
7	1	X_1^1
8	3	X_3^3
9	4	X_1^4
		•

Converse: Key Ideas

transitions from i = # transitions to $i \pm 1$

$$\lim_{n\to\infty} \frac{\text{\# transitions from } i}{n} = \lim_{n\to\infty} \frac{\text{\# transitions to } i}{n}$$

Time	Arm	Observatio
0	1	X_0^1
1	2	X_0^2
2	3	X_0^3
3	4	X_0^4
4	3	X_1^3
5	3	X_2^3
6	2	X_1^2
7	1	X_1^1
8	3	X_3^3
9	4	X_1^4

Converse: Key Ideas

$$\inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \gtrsim \frac{1}{D^*(h, P_1, P_2)}$$

$$\pi \in \Pi(\epsilon)$$

Configuration	Decision = h	Decision = h'	Others
$C = (h, P_1, P_2)$	$\geq 1 - \epsilon$	$\leq \epsilon$	$\leq \epsilon$
$C' = (h', P'_1, P'_2)$	$\leq \epsilon$	$\geq 1 - \epsilon$	$\leq \epsilon$

$$C = (h, P_1, P_2)$$

$$Z_{C}(n) = \sum_{i,j \in \mathcal{S}} N_{h}(n,i,j) \log P_{1}(j|i) + \sum_{a \neq h} \sum_{i,j \in \mathcal{S}} N_{a}(n,i,j) \log P_{2}(j|i) + \log P_{C}(A_{0}) + \log \nu(\bar{X}_{0}) + \sum_{t=1}^{n} \log P_{C}(A_{t}|A_{0},...,A_{t-1},\bar{X}_{0},...,\bar{X}_{t-1})$$

$$C' = (h', P'_1, P'_2)$$
 $h' \neq h$

$$Z_{C'}(n) = \sum_{i,j \in \mathcal{S}} N_{h'}(n,i,j) \log P'_1(j|i) + \sum_{a \neq h'} \sum_{i,j \in \mathcal{S}} N_a(n,i,j) \log P'_2(j|i) + \log P_{C'}(A_0) + \log \nu(\bar{X}_0) + \sum_{t=1}^n \log P_{C'}(A_t|A_0,...,A_{t-1},\bar{X}_0,...,\bar{X}_{t-1})$$

 $C = (h, P_1, P_2)$

$$C = (h, P_1, P_2)$$

Nearest alternative:

$$P_1' = P_2$$

 $P_2^\prime = {
m convex\ combination\ of}\ P_1 \ {
m and}\ P_2$

$$D^*(h, P_1, P_2) = \max_{\lambda} \min_{C': h' \neq h} \sum_{a=1}^{K} \lambda(a) D(P_C^a | P_{C'}^a | \mu_C^a)$$

Achievability

$$D^*(h, P_1, P_2) = \max_{\lambda} \min_{C': h' \neq h} \sum_{a=1}^{K} \lambda(a) D(P_C^a | P_{C'}^a | \mu_C^a)$$

$$(h, P_1, P_2) \mapsto \lambda_{h, P_1, P_2}^*$$

continuous (Berge's maximum theorem)

$$(\hat{h}(n), \hat{P}_{\hat{h}(n),1}(n), \hat{P}_{\hat{h}(n),2}(n))$$

$$(\hat{h}(n), \hat{P}_{\hat{h}(n),1}(n), \hat{P}_{\hat{h}(n),2}(n)) \approx (h, P_1, P_2)$$

$$\lambda_{\hat{h}(n), \hat{P}_{\hat{h}(n), 1}(n), \hat{P}_{\hat{h}(n), 1}(n)}^{*} \approx \lambda_{h, P_{1}, P_{2}}^{*}$$

$$(\hat{h}(n), \hat{P}_{\hat{h}(n),1}(n), \hat{P}_{\hat{h}(n),2}(n))$$

$\hat{h}(n) \in \arg \max_{h} \min_{h' \neq h} M_{hh'}(n)$

$$\hat{P}_{\hat{h}(n),1}(n)(j|i) = \frac{N_{\hat{h}(n)}(n,i,j)}{\sum_{j} N_{\hat{h}(n)}(n,i,j)}$$

$$\mathcal{D}(P_1, P_2) = \Gamma(P_1) \cdot \Gamma(P_2)$$

Prior $\Gamma(\cdot)$ on the space of all TPMs:

Pick each row of a TPM independently according to uniform distribution on the probability simplex.

average likelihood
$$_h(n) = \int\limits_{P_1,P_2} \exp(Z_C(n)) \ \mathcal{D}(P_1,P_2) \ dP_1 \ dP_2$$

$$M_{hh'}(n) = \frac{\text{average likelihood}_{h}(n)}{\text{maximum likelihood}_{h'}(n)}$$

$$\hat{P}_{\hat{h}(n),2}(n)(j|i) = \frac{\sum_{\substack{a \neq \hat{h}(n) \\ a \neq \hat{h}(n)}} N_a(n,i,j)}{\sum_{\substack{a \neq \hat{h}(n) \\ j}} N_a(n,i,j)}$$

$$Z_{C}(n) = \sum_{i,j \in \mathcal{S}} N_{h}(n,i,j) \log P_{1}(j \mid i) + \sum_{a \neq h} \sum_{i,j \in \mathcal{S}} N_{a}(n,i,j) \log P_{2}(j \mid i) + \log P_{C}(A_{0}) + \log \nu(\bar{X}_{0}) + \sum_{t=1}^{n} \log P_{C}(A_{t} \mid A_{0}, ..., A_{t-1}, \bar{X}_{0}, ..., \bar{X}_{t-1})$$

Policy $\pi^*(L, \delta)$

$$(\hat{h}(n), \hat{P}_{\hat{h}(n),1}(n), \hat{P}_{\hat{h}(n),2}(n)) \approx (h, P_1, P_2)$$

$$\lambda_{\hat{h}(n), \hat{P}_{\hat{h}(n), 1}(n), \hat{P}_{\hat{h}(n), 1}(n)}^{*} \approx \lambda_{h, P_1, P_2}^{*}$$

- Select each arm once (n = 0, ..., K 1)
- For $n \ge K$, repeat the following until stoppage:
 - Estimate $\hat{h}(n)$
 - . If $\min_{h' \neq \hat{h}(n)} M_{\hat{h}(n),h'}(n) \geq \log((K-1)L)$, stop and declare $\hat{h}(n)$ as the odd arm
 - Else, toss a coin with $\Pr(\text{heads}) = \delta$
 - If coin lands heads, sample an arm uniformly randomly
 - If coin lands tails, sample according to $\lambda^*_{\hat{h}(n),\;\hat{P}_{\hat{h}(n),1}(n),\;\hat{P}_{\hat{h}(n),2}(n)}$

$$D^*(h, P_1, P_2) = \max_{\lambda} \min_{C': h' \neq h} \sum_{a=1}^{K} \lambda(a) D(P_C^a | P_{C'}^a | \mu_C^a)$$

$$(h, P_1, P_2) \mapsto \lambda_{h, P_1, P_2}^*$$

$$(\hat{h}(n), \hat{P}_{\hat{h}(n),1}(n), \hat{P}_{\hat{h}(n),2}(n))$$

$$\hat{h}(n) \in \arg\max_{h} \min_{h' \neq h} M_{hh'}(n)$$

$$\hat{P}_{\hat{h}(n),1}(n)(j|i) = \frac{N_{\hat{h}(n)}(n,i,j)}{\sum_{j} N_{\hat{h}(n)}(n,i,j)}$$

$$\hat{P}_{\hat{h}(n),2}(n)(j | i) = \frac{\sum_{\substack{a \neq \hat{h}(n) \\ a \neq \hat{h}(n)}} N_a(n, i, j)}{\sum_{\substack{a \neq \hat{h}(n) \\ j}} N_a(n, i, j)}$$

Why not Sample the Arms Repeatedly?

$$D^*(h, P_1, P_2) = \max_{\lambda} \min_{C': h' \neq h} \sum_{a=1}^{K} \lambda(a) D(P_C^a | P_{C'}^a | \mu_C^a)$$

$$\inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \gtrsim \frac{1}{D^*(h, P_1, P_2)}$$

$$(h, P_1, P_2) \mapsto \lambda_{h, P_1, P_2}^*$$

$$(\hat{h}(n), \, \hat{P}_{\hat{h}(n),1}(n), \, \hat{P}_{\hat{h}(n),2}(n)) \approx (h, P_1, P_2)$$

$$\lambda_{\hat{h}(n), \hat{P}_{\hat{h}(n), 1}(n), \hat{P}_{\hat{h}(n), 1}(n)}^{*} \approx \lambda_{h, P_{1}, P_{2}}^{*}$$

$$\Pi(\epsilon) = \{\pi : P_{\mathsf{error}}(\pi) \le \epsilon\}$$

$$\hat{h}(n) \in \arg\max_{h} \min_{h' \neq h} M_{hh'}(n)$$

$$\hat{P}_{\hat{h}(n),1}(n)(j \mid i) = \frac{N_{\hat{h}(n)}(n,i,j)}{\sum_{j} N_{\hat{h}(n)}(n,i,j)}$$

$$\hat{P}_{\hat{h}(n),2}(n)(j | i) = \frac{\sum_{\substack{a \neq \hat{h}(n) \\ a \neq \hat{h}(n)}} N_a(n, i, j)}{\sum_{\substack{a \neq \hat{h}(n) \\ j}} N_a(n, i, j)}$$

Performance of $\pi^*(L, \delta)$

$$\inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \gtrsim \frac{1}{D^*(h, P_1, P_2)}$$

- Stops in finite time w.p. 1
- $\hat{h}(n) = h$ for all n large, almost surely
- $(\hat{P}_{\hat{h}(n),1}(n), \hat{P}_{\hat{h}(n),2}(n)) \longrightarrow (P_1, P_2)$ (ergodic theorem)
- If $L = 1/\epsilon$, then $\pi^*(L, \delta) \in \Pi(\epsilon)$
- Upper bound:

$$\limsup_{L \to \infty} \frac{E[\tau(\pi^*(L,\delta)) \mid h, P_1, P_2]}{\log L} \le \frac{1}{D_{\delta} (h, P_1, P_2)}, \qquad D_{\delta} (h, P_1, P_2) \longrightarrow D^*(h, P_1, P_2) \text{ as } \delta \downarrow 0$$

$$D_{\delta}(h, P_1, P_2) \longrightarrow D^*(h, P_1, P_2)$$
 as $\delta \downarrow 0$

Therefore,

$$\lim_{\delta \downarrow 0} \limsup_{L \to \infty} \frac{E[\tau(\pi^*(L,\delta)) | h, P_1, P_2]}{\log L} \le \frac{1}{D^*(h, P_1, P_2)}$$

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} = \frac{1}{D^*(h, P_1, P_2)}$$

$$D^*(h, P_1, P_2) = \max_{\lambda} \min_{C': h' \neq h} \sum_{a=1}^{K} \lambda(a) D(P_C^a | P_{C'}^a | \mu_C^a)$$

Part 2: Restless Arms with TPMs Known

The Odd Restless Markov Arm Problem with Known TPMs

- A multi-armed bandit with $K \ge 3$ arms
- Each arm is a time homogeneous and ergodic Markov process
- Markov processes evolve on a common, finite state space
- The TPM of one of the arms (odd arm) is P_1 ; TPM of rest of the arms is P_2
- Arms are restless
- TPMs known beforehand

Our Contributions

- Let $C = (h, P_1, P_2)$ be a problem instance
- Lower bound:

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \ge \frac{1}{R^*(P_1, P_2)}$$

• Policy — matching upper bound as $\epsilon \downarrow 0$

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} = \frac{1}{R^*(P_1, P_2)}$$

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{\substack{\underline{(d,\underline{i}) \in \mathbb{S}}}} \sum_{a=1}^{K} \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{hh'}(\underline{d}, \underline{i}, a)$$

Trembling Hand

- Often in visual search experiments, at each time t, the actual focus location (A_t) differs from the intended focus location (B_t) with small probability
- This can be captured as a trembling hand:

$$A_t = \begin{cases} B_t, & \text{w.p. } 1 - \eta, \\ \text{uniformly randomly chosen,} & \text{w.p. } \eta \end{cases}$$

• $\eta \in (0,1]$: trembling hand parameter

t	A_t	Ar	m 1	Arı	m 2	Arr	n 3	Arr	m 4
		$d_1(t)$	$i_1(t)$	$d_2(t)$	$i_2(t)$	$d_3(t)$	$i_3(t)$	$d_4(t)$	$i_4(t)$
0	1								
1	2								
2	3								
3	4								
4	3	4	X_0^1	3	X_1^2	2	X_2^3	1	X_3^4
5	3	5	X_0^1	4	X_1^2	1	X_4^3	2	X_3^4
6	2	6	X_0^1	5	X_1^2	1	X_5^3	3	X_3^4
7	1	7	X_0^1	1	X_6^2	2	X_{5}^{3}	4	X_3^4
8	3	1	X_{7}^{1}	2	X_6^2	3	X_{5}^{3}	5	X_3^4
9		2	X_7^1	3	X_6^2	1	X_8^3	6	X_3^4

 X_t^a : observation from arm a at time t

 $d_a(t)$: delay of arm a at time t

 $i_a(t)$: last observed state of arm a at time t

$$C = (h, P_1, P_2)$$

$$\begin{split} Z_{C}(n) &= \sum_{d} \sum_{i,j \in \mathcal{S}} \ N_{h}(n,d,i,j) \ \log P_{1}^{d}(j\,|\,i) + \sum_{d} \ \sum_{a \neq h} \ \sum_{i,j \in \mathcal{S}} \ N_{a}(n,d,i,j) \ \log P_{2}^{d}(j\,|\,i) \\ &+ \log P_{C}(A_{0},B_{0}) + \log \nu(\bar{X}_{0}) + \sum_{t=1}^{n} \ \log P_{C}(A_{t},B_{t}\,|\,B_{0}^{t-1},A_{0}^{t-1},\bar{X}_{0}^{t-1}) \end{split}$$

Time	Arm	Obs.
0	1	X_0^1
1	2	X_1^2
2	3	X_2^3
3	4	X_3^4
4	3	X_4^3
5	3	X_5^3
6	2	X_6^2
7	1	X_7^1
8	3	X_8^3
9	4	X_0^4

1 2		13	12	11	10	9	8	7	6	5	4	3	2	1	0	Arm\Time
2																1
																2
3																3
4																4

d = 2

n = 14

d = 3

$$\sum_{j} N_a(n, d, i, j) = N_a(n, d, i)$$

$$(a-1) + \sum_{i \in \mathcal{S}} \sum_{d=1}^{\infty} d \cdot N_a(n,d,i) = n$$

Arm\Time	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1															
2															
3															
4															

$$\lim_{n \to \infty} \sum_{i \in \mathcal{S}} \sum_{d=1}^{\infty} d \cdot \frac{N_a(n, d, i)}{n} = 1$$

$$E[Z_h(\tau(\pi)) - Z_{h'}(\tau(\pi)) | C] \lesssim E[\tau(\pi) | C] \cdot R_1^*(P_1, P_2)$$

Information theoretic bottleneck: maximum discrimination per unit time

 $C = (h, P_1, P_2)$

$$R_1^*(P_1, P_2) = \sup_{\kappa} \min_{h' \neq h} \sum_{a=1}^{K} \sum_{d=1}^{\infty} \sum_{i \in \mathcal{S}} \kappa(d, i, a) D((P_h^a)^d(\cdot | i) || (P_{h'}^a)^d(\cdot | i))$$

subject to

$$\sum_{i \in \mathcal{S}} \sum_{d=1}^{\infty} d \kappa(d, i, a) = 1 \quad \text{for all } a,$$

$$\sum_{d=1}^{\infty} \sum_{i \in \mathcal{S}} \sum_{a=1}^{K} \kappa(d, i, a) = 1,$$

$$\kappa(d, i, a) \ge 0 \quad \text{for all } a, d \in \{1, 2, \dots\}, i \in \mathcal{S}$$

$$Z_h(n) = \sum_{d} \sum_{i,j \in \mathcal{S}} N_h(n,d,i,j) \log P_1^d(j|i) + \sum_{d} \sum_{a \neq h} \sum_{i,j \in \mathcal{S}} N_a(n,d,i,j) \log P_2^d(j|i)$$

$$+\log P_C(A_0, B_0) + \log \nu(\bar{X}_0) + \sum_{t=1}^n \log P_C(A_t, B_t | B_0^{t-1}, A_0^{t-1}, \bar{X}_0^{t-1})$$

d = 8

d = 3

d=2

Arm 1

d = 6

Arm 2

$$d = 2 \qquad d = 1 \qquad d = 3 \qquad \qquad d = 2$$

Arm 3

$$d = 7$$

Delays and Last Observed States

•
$$\underline{d}(t) = (d_1(t), ..., d_K(t))$$
 $\underline{i}(t) = (i_1(t), ..., i_K(t))$

•
$$(B_0, A_0, X_0^{A_0}, \dots, B_{t-1}, A_{t-1}, X_{t-1}^{A_{t-1}}) \equiv (B_0, \dots, B_{t-1}, \{\underline{d}(s), \underline{i}(s) : K \le s \le t\})$$

• $\{(d(t), i(t)) : t \ge K\}$ is a controlled Markov process with controls $\{B_t : t \ge 0\}$

$$P(\underline{d}(t+1),\underline{i}(t+1)|B_0,...,B_t,\{(\underline{d}(s),\underline{i}(s)):K\leq s\leq t\})=P(\underline{d}(t+1),\underline{i}(t+1)|B_t,(\underline{d}(t),\underline{i}(t)))$$

$$(B_0, \ldots, B_{t-1}, \{(\underline{d}(s), \underline{i}(s)) : K \le s \le t\}) \to B_t \to (\underline{d}(t+1), \underline{i}(t+1))$$

$$(B_0, \ldots, B_{t-1}, \{(\underline{d}(s), \underline{i}(s)) : K \le s \le t\}) \to B_t \to (\underline{d}(t+1), \underline{i}(t+1))$$

State space	$\mathbb{S} = \{(\underline{d}, \underline{i})\}$
Action space	$\{1,\ldots,K\}$
State at time <i>t</i>	$(\underline{d}(t),\underline{i}(t))$
Action at time <i>t</i>	\boldsymbol{B}_t

$$(B_0, \ldots, B_{t-1}, \{(\underline{d}(s), \underline{i}(s)) : K \le s \le t\}) \to B_t \to (\underline{d}(t+1), \underline{i}(t+1))$$

MDP Transition Probabilities

$$\underline{d}(t) = \underline{d} = (4,3,2,1) \qquad \underline{i}(t) = \underline{i} = (i_1, i_2, i_3, i_4)$$

$$B_t = b A_t = 1$$

$$P(A_t = 1 | B_t = b) = \frac{\eta}{K} + (1 - \eta) \mathbb{I}_{\{b=1\}}$$

$$\underline{d}(t+1) = \underline{d}' = (1,4,3,2)$$
 $\underline{i}(t+1) = \underline{i}' = (X_t^1, i_2, i_3, i_4)$

 X_t^a : observation from arm a at time t

 $i_a(t)$: last observed state of arm a at time

$$\underline{P(\underline{d}(t+1) = \underline{d}', \underline{i}(t+1) = \underline{i}' | \underline{d}(t) = \underline{d}, \underline{i}(t) = \underline{i}, B_t = b)} = \left(\frac{\eta}{K} + (1-\eta) \mathbb{I}_{\{b=1\}}\right) (P_2)^4 X_t^1 | i_1)$$

$$\underline{Q(\underline{d}', \underline{i}' | \underline{d}, i, b)}$$

 $E[\tau(\pi) \mid C]$ Characterise $\log(1/\epsilon)$ $\epsilon \downarrow 0 \ \pi \in \Pi(\epsilon)$

$$(B_0, \ldots, B_{t-1}, \{(\underline{d}(s), \underline{i}(s)) : K \le s \le t\}) \to B_t \to (\underline{d}(t+1), \underline{i}(t+1))$$

MDP Transition Probabilities

$$\underline{d}(t+1) = \underline{d}' = (1,4,3,2)$$
 $\underline{i}(t+1) = \underline{i}' = (X_t^1, i_2, i_3, i_4)$

$$B_{t+1} = b'$$
 $A_{t+1} = 3$

$$P(A_{t+1} = 3 \mid B_{t+1} = b') = \frac{\eta}{K} + (1 - \eta) \mathbb{I}_{\{b'=3\}}$$

$$\underline{d}(t+2) = \underline{d}'' = (2,5,1,3) \qquad \underline{i}(t+2) = \underline{i}'' = (X_t^1, i_2, X_{t+1}^3, i_4)$$

 X^a : observation from arm a at time t

$$\underline{P(\underline{d}(t+2) = \underline{d}', \underline{i}(t+2) = \underline{i}'' | \underline{d}(t+1) = \underline{d}', \underline{i}(t+1) = \underline{i}', B_{t+1} = b')} = \left(\frac{\eta}{K} + (1-\eta) \mathbb{I}_{\{b'=3\}}\right) (P_1)^3 X_{t+1}^3 | i_3)$$

$$\underline{Q(\underline{d}'', \underline{i}'' | \underline{d}', \underline{i}', \underline{b})}$$

Characterise

 $E[\tau(\pi) \mid C]$ $\log(1/\epsilon)$ $\epsilon \downarrow 0 \ \pi \in \Pi(\epsilon)$

$$C = (h, P_1, P_2)$$

Information theoretic bottleneck: maximum discrimination per unit time

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \ge \frac{1}{R^*(P_1, P_2)}$$

$$R^*(P_1, P_2) = \sup_{\nu} \min_{h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^K \nu(\underline{d}, \underline{i}, a) \ k_{hh'}(\underline{d}, \underline{i}, a)$$

$$k_{hh'}(\underline{d},\underline{i},a) = \begin{cases} D(P_1^{d_a}(\cdot | i_a) || P_2^{d_a}(\cdot | i_a)), & a = h, \\ D(P_2^{d_a}(\cdot | i_a) || P_1^{d_a}(\cdot | i_a)), & a = h', \\ 0, & a \neq h, h', \end{cases}$$

$$\pi \in \Pi(\epsilon)$$

Configuration	Decision = h	Decision = h'	Others
$C = (h, P_1, P_2)$	$\geq 1 - \epsilon$	$\leq \epsilon$	$\leq \epsilon$
$C' = (h', P'_1, P'_2)$	$\leq \epsilon$	$\geq 1 - \epsilon$	$\leq \epsilon$

$$Z_h(n) = \sum_{(\underline{d},\underline{i}) \in \mathbb{S}} \sum_{i,j \in \mathcal{S}} N_h(n,\underline{d},\underline{i},j) \log P_1^{d_h}(j \mid i_h) + \sum_{(\underline{d},\underline{i}) \in \mathbb{S}} \sum_{a \neq h} \sum_{i,j \in \mathcal{S}} N_a(n,\underline{d},\underline{i},j) \log P_2^{d_h}(j \mid i_h)$$

$$+\log P_C(A_0, B_0) + \log \nu(\bar{X}_0) + \sum_{t=1}^{n} \log P_C(A_t, B_t | B_0^{t-1}, A_0^{t-1}, \bar{X}_0^{t-1})$$

SRS Policy

$$(B_0, \ldots, B_{t-1}, \{(\underline{d}(s), \underline{i}(s)) : K \le s \le t\}) \to B_t \to (\underline{d}(t+1), \underline{i}(t+1))$$

• π is a stationary randomised strategy (SRS policy in short) if $\exists \lambda(\cdot | \cdot)$ such that

$$P(B_t|B_0,\ldots,B_{t-1},\{(\underline{d}(s),\underline{i}(s)):K\leq s\leq t\})=\lambda(B_t|\underline{d}(t),\underline{i}(t))$$

- Such an SRS policy will be denoted as π^{λ}
- Π_{SRS} : set of all SRS policies

Ergodicity

• Under an SRS policy π^{λ} , the process $\{(\underline{d}(t),\underline{i}(t)):t\geq K\}$ is a Markov process

- Thanks to the trembling hand, the above Markov process is ergodic
- Let $\mu^{\lambda}=\{\mu^{\lambda}(\underline{d},\underline{i}):(\underline{d},\underline{i})\in\mathbb{S}\}$ be the stationary distribution for π^{λ}

$$\int_{-\infty}^{\lambda} (\underline{d}, \underline{i}, a) = \mu^{\lambda}(\underline{d}, \underline{i}) \cdot \left(\frac{\eta}{K} + (1 - \eta) \lambda(a | \underline{d}, \underline{i}) \right)$$

ergodic state-action occupancy

$R^*(P_1, P_2)$ in More Detail

$$R^*(P_1, P_2) = \sup_{\nu} \min_{h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^{K} \nu(\underline{d}, \underline{i}, a) \ k_{hh'}(\underline{d}, \underline{i}, a)$$

 $\sum_{a=1}^{K} \nu(\underline{d}', \underline{i}', a) = \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^{K} \nu(\underline{d}, \underline{i}, a) Q(\underline{d}', \underline{i}' | \underline{d}, \underline{i}, a) \quad \forall \ (\underline{d}', \underline{i}'),$ $\sum_{a=1}^{K} \sum_{v(\underline{d}, \underline{i}, a) = 1,$

 $\nu(\underline{d},\underline{i},a) \ge 0 \quad \forall \ (\underline{d},\underline{i},a)$

 $(d,i) \in \mathbb{S}$ a=1

Difficult to show that this supremum is attained

Theorem 8.8.2, Puterman³

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{\substack{(\underline{d}, \underline{i}) \in \mathbb{S}}} \sum_{a=1}^{K} \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{hh'}(\underline{d}, \underline{i}, a)$$

3. M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, 2014.

δ -Optimal Solutions

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{\substack{i \leq \underline{d}, \underline{i} \in \mathbb{S} \\ (\underline{d}, \underline{i}) \in \mathbb{S}}} \sum_{a=1}^{K} \nu^{\lambda}(\underline{d}, \underline{i}, a) k_{hh'}(\underline{d}, \underline{i}, a)$$

- Computability of the sup is an issue. Q-learning may be needed.
- For $\delta>0$, under $C=(h,P_1,P_2)$, let $\lambda_{h,P_1,P_2,\delta}$ be such that

$$\min_{h'\neq h} \sum_{\substack{(\underline{d},\underline{i})\in\mathbb{S}}} \sum_{a=1}^{K} \nu^{\lambda_{h,P_1,P_2,\delta}} (\underline{d},\underline{i},a) \ k_{hh'}(\underline{d},\underline{i},a)) \geq \frac{R^*(P_1,P_2)}{1+\delta}$$

 δ -optimal solution for $C=(h,P_1,P_2)$

Policy $\pi_1^*(L, \delta)$

$$Z_h(n) = \sum_{(\underline{d},\underline{i}) \in \mathbb{S}} \sum_{i,j \in \mathcal{S}} N_h(n,\underline{d},\underline{i},j) \log P_1^{d_h}(j|i_h) + \sum_{(\underline{d},\underline{i}) \in \mathbb{S}} \sum_{a \neq h} \sum_{i,j \in \mathcal{S}} N_a(n,\underline{d},\underline{i},j) \log P_2^{d_h}(j|i_h)$$

$$+\log P_C(A_0, B_0) + \log \nu(\bar{X}_0) + \sum_{t=1}^n \log P_C(A_t, B_t | B_0^{t-1}, A_0^{t-1}, \bar{X}_0^{t-1})$$

• Select each arm once (n = 0, ..., K - 1)

- $R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{\substack{(d,i) \in \mathbb{S} \\ a=1}} \sum_{a=1}^{K} \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{hh'}(\underline{d}, \underline{i}, a)$
- For $n \ge K$, repeat the following until stoppage:
 - Estimate $\hat{h}(n)$

 $h \mapsto \lambda^*_{h,P_1,P_2,\delta}$

- . If $\min_{\substack{h' \neq \hat{h}(n) \\ \text{the odd arm}}} Z_{\hat{h}(n),h'}(n) \geq \log((K-1)L),$ stop and declare $\hat{h}(n)$ as
- $\hat{h}(n) \in \arg\max_{h} \min_{h' \neq h} Z_{hh'}(n)$

. Else, sample next arm according to $\lambda_{\hat{h}(n),\;P_1,\;P_2,\;\delta}^*(\;\cdot\;|\underline{d}(n),\underline{i}(n))$

Performance of $\pi_1^*(L, \delta)$

- Stops in finite time w.p. 1
- $\hat{h}(n) = h$ for all n large, almost surely
- If $L = 1/\epsilon$, then $\pi_1^*(L, \delta) \in \Pi(\epsilon)$
- Upper bound:

$$\limsup_{L \to \infty} \frac{E[\tau(\pi_1^*(L, \delta)) \mid C]}{\log L} \le \frac{1 + \delta}{R^*(P_1, P_2)}$$

• Therefore,

$$\lim_{\delta \downarrow 0} \limsup_{L \to \infty} \frac{E[\tau(\pi_1^{\star}(L, \delta)) \mid C]}{\log L} \le \frac{1}{R^{*}(P_1, P_2)}$$

$$C = (h, P_1, P_2)$$

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} = \frac{1}{R^*(P_1, P_2)}$$

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{\substack{(\underline{d}, \underline{i}) \in \mathbb{S}}} \sum_{a=1}^{K} \nu^{\lambda}(\underline{d}, \underline{i}, a) k_{hh'}(\underline{d}, \underline{i}, a)$$

Part 3: Restless Arms with TPMs Unknown

Learning to Detect an Odd Restless Markov Arm

- A multi-armed bandit with $K \ge 3$ arms
- Each arm is a time homogeneous and ergodic Markov process
- Markov processes evolve on a common, finite state space
- The TPM of one of the arms (odd arm) is P_1 ; TPM of rest of the arms is P_2
- Arms are restless
- TPMs are unknown (learning)

Our Contributions

- Let $C = (h, P_1, P_2)$ be a problem instance
- Lower bound:

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \ge \frac{1}{R^*(P_1, P_2)}$$

- Policy matching upper bound as $\epsilon \downarrow 0$ under
 - Continuous selection assumption
 - Regularity assumption on the TPMs

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{C': \ h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^{K} \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{CC'}(\underline{d}, \underline{i}, a)$$

$$(B_0, \ldots, B_{t-1}, \{(\underline{d}(s), \underline{i}(s)) : K \le s \le t\}) \to B_t \to (\underline{d}(t+1), \underline{i}(t+1))$$

MDP Transition Probabilities

$$\underline{d}(t) = \underline{d} = (4,3,2,1) \qquad \underline{i}(t) = \underline{i} = (i_1, i_2, i_3, i_4)$$

$$B_t = b A_t = 1$$

$$P(A_t = 1 | B_t = b) = \frac{\eta}{K} + (1 - \eta) \mathbb{I}_{\{b=1\}}$$

$$\underline{d}(t+1) = \underline{d}' = (1,4,3,2)$$
 $\underline{i}(t+1) = \underline{i}' = (X_t^1, i_2, i_3, i_4)$

 X_t^a : observation from arm a at time t

 $i_a(t)$: last observed state of arm a at time

$$P(\underline{d}(t+1) = \underline{d}', \underline{i}(t+1) = \underline{i}' | \underline{d}(t) = \underline{d}, \underline{i}(t) = \underline{i}, B_t = b) = \left(\frac{\eta}{K} + (1-\eta) \mathbb{I}_{\{b=1\}}\right) (P_2)^4 X_t^1 | i_1)$$

$$Q(\underline{d}'', \underline{i}'' | \underline{d}', \underline{i}', \underline{b})$$

 $E[\tau(\pi) \mid C]$ Characterise $\log(1/\epsilon)$ $\epsilon \downarrow 0 \ \pi \in \Pi(\epsilon)$

MDP Transition Probabilities

- The MDP transition probabilities are parameterised by the arms configuration
- The value of the true parameter (underlying arms configuration) is unknown and must be learnt (identification / identifiability)
- The set of all possible parameters is uncountably infinite

$$d(\epsilon, 1 - \epsilon) \leq E[Z_C(\tau(\pi)) - Z_{C'}(\tau(\pi)) | C] \leq E[\tau(\pi) | C] \cdot R^*(P_1, P_2)$$

$$C = (h, P_1, P_2)$$

$$C' = (h', P'_1, P'_2)$$

$$h' \neq h$$

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \ge \frac{1}{R^*(P_1, P_2)}$$

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{C': \ h' \neq h} \sum_{\substack{\underline{(\underline{d}, \underline{i}) \in \mathbb{S}}}} \sum_{a=1}^{K} \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{CC'}(\underline{d}, \underline{i}, a)$$

$$k_{CC'}(\underline{d},\underline{i},a) = \begin{cases} D(P_1^{d_a}(\cdot | i_a) || (P_2')^{d_a}(\cdot | i_a)), & a = h, \\ D(P_2^{d_a}(\cdot | i_a) || (P_1')^{d_a}(\cdot | i_a)), & a = h', \\ D(P_2^{d_a}(\cdot | i_a) || (P_2')^{d_a}(\cdot | i_a)), & a \neq h, h', \end{cases}$$

$$\pi \in \Pi(\epsilon)$$

Information theoretic bottleneck:

maximum discrimination per unit time

Configuration	Decision = h	Decision = h'	Others
$C = (h, P_1, P_2)$	$\geq 1 - \epsilon$	$\leq \epsilon$	$\leq \epsilon$
$C' = (h', P'_1, P'_2)$	$\leq \epsilon$	$\geq 1 - \epsilon$	$\leq \epsilon$

$$Z_{C}(n) = \sum_{(\underline{d},\underline{i}) \in \mathbb{S}} \sum_{i,j \in \mathcal{S}} N_{h}(n,\underline{d},\underline{i},j) \log P_{1}^{d_{h}}(j \mid i_{h}) + \sum_{(\underline{d},\underline{i}) \in \mathbb{S}} \sum_{a \neq h} \sum_{i,j \in \mathcal{S}} N_{a}(n,\underline{d},\underline{i},j) \log P_{2}^{d_{h}}(j \mid i_{h})$$

$$+\log P_C(A_0, B_0) + \log \nu(\bar{X}_0) + \sum_{t=1}^{n} \log P_C(A_t, B_t | B_0^{t-1}, A_0^{t-1}, \bar{X}_0^{t-1})$$

δ -Optimal Solutions

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{C': h' \neq h} \sum_{\substack{(\underline{d}, \underline{i}) \in \mathbb{S}}} \sum_{a=1}^{K} \nu(\underline{d}, \underline{i}, a) \ k_{CC'}(\underline{d}, \underline{i}, a)$$

- Computability of the sup is an issue. Q-learning may be needed.
- For $\delta>0$, under $C=(h,P_1,P_2)$, let $\lambda_{h,P_1,P_2,\delta}$ be such that

$$\min_{C': \ h' \neq h} \sum_{(\underline{d},\underline{i}) \in \mathbb{S}} \sum_{a=1}^{K} \lambda_{h,P_1,P_2,\delta}(\underline{d},\underline{i},a) \ k_{CC'}(\underline{d},\underline{i},a)) \geq \frac{R^*(P_1,P_2)}{1+\delta}$$

 δ -optimal solution for $C=(h,P_1,P_2)$

δ -Optimal Solutions

Fix $\delta > 0$

Set of all possible arms configurations (parameters)

 $(h, P, Q) \mapsto \lambda_{h,P,Q,\delta}$

 $\{\lambda_{h,P,Q,\delta}\}_{h,P,Q}$

$$(\hat{h}(n), \hat{P}_{\hat{h}(n),1}(n), \hat{P}_{\hat{h}(n),2}(n)) \approx (h, P_1, P_2)$$

$$\lambda_{\hat{h}(n), \hat{P}_{\hat{h}(n),1}(n), \hat{P}_{\hat{h}(n),1}(n), \delta} \approx \lambda_{h,P_1,P_2,\delta}$$

Two Key Assumptions

For each $\delta > 0$, there exists a selection $\{\lambda_{h,P,Q,\delta}\}_{h,P,Q}$ such that $(h,P,Q)\mapsto \lambda_{h,P,Q,\delta}$ is continuous

$$\mathscr{P}(\bar{\varepsilon}^*) = \{P: P \text{ is ergodic}, P^d(j|i) > 0 \implies P^d(j|i) \ge \bar{\varepsilon}^* \text{ for all } d \ge 1, i, j\}$$

There exists $\bar{\varepsilon}^* \in (0,1)$ such that for any (h,P,Q), the TPMs $P,Q \in \mathcal{P}(\bar{\varepsilon}^*)$

 $P,Q\in \mathscr{P}(\bar{\varepsilon}^*)$ are harder to distinguish than otherwise

Arbitrary P, Q

$$0 \le D(P^d(\,\cdot\,|\,i) \| Q^d(\,\cdot\,|\,i)) \le \infty$$

$$P,Q \in \mathscr{P}(\bar{\varepsilon}^*)$$

$$0 \le D(P^d(\,\cdot\,|\,i)||Q^d(\,\cdot\,|\,i)) \le \log\frac{1}{\bar{\varepsilon}^*}$$

Policy $\pi_2^*(L,\delta)$

- For n = 0, ..., K 1, sample each of the K arms once
- For all $n \ge K$, repeat the following steps until stoppage:
 - Compute ML estimates $(\hat{P}_1(n), \hat{P}_2(n))$ of the TPMs [no closed-form expressions]
 - Let

 $\hat{h}(n) \in \arg \max_{h} \min_{h' \neq h} \log \frac{1}{h}$

avg. likelihood up to time n when h is the odd arm

max. likelihood up to time n when h' is the odd arm

$$M_h(n)$$

- If $M_{\hat{h}(n)}(n) \ge \log((K-1)L)$, stop and declare $\hat{h}(n)$ as the odd arm
- Else, sample the next arm according to $\hat{\lambda}_{\hat{h}(n),\hat{P}_1(n),\hat{P}_2(n),\delta}(\cdot|\underline{d}(n),\underline{i}(n))$
- Update $n \leftarrow n + 1$

Performance of $\pi_2^*(L, \delta)$

For each $\delta > 0$, there exists a selection $\{\lambda_{h,P,Q,\delta}\}_{h,P,Q}$ such that $(h,P,Q)\mapsto \lambda_{h,P,Q,\delta}$ is continuous

There exists $\bar{\varepsilon}^* \in (0,1)$ such that for any C=(h,P,Q), the TPMs $P,Q\in \mathcal{P}(\bar{\varepsilon}^*)$

- $(\hat{h}(n), \hat{P}_1(n), \hat{P}_2(n)) \rightarrow (h, P_1, P_2)$ (identification/identifiability)
- If $L=1/\epsilon$, then $\pi_2^{\star}(L,\delta)\in\Pi(\epsilon)$ for all $\delta>0$
- Under $C = (h, P_1, P_2)$, we have

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{C'} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^{K} \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{CC'}(\underline{d}, \underline{i}, a)$$

$$\limsup_{L \to \infty} \frac{E[\tau(\pi_2^*(L, \delta)) \mid C]}{\log L} \le \frac{(1 + \delta)^2}{R^*(P_1, P_2)}$$

$$\lim_{\delta \downarrow 0} \limsup_{L \to \infty} \frac{E[\tau(\pi_2^{\star}(L, \delta)) \mid C]}{\log L} \le \frac{1}{R^*(P_1, P_2)}$$

In a Nutshell

Rested Arms, Unknown TPMs

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} = \frac{1}{D^*(h, P_1, P_2)}$$

$$D^*(h, P_1, P_2) = \max_{\lambda} \min_{C': h' \neq h} \sum_{a=1}^{K} \lambda(a) D(P_C^a | P_{C'}^a | \mu_C^a)$$

$$\lim_{n\to\infty} \frac{\text{\# transitions from } i}{n} = \lim_{n\to\infty} \frac{\text{\# transitions to } i}{n}$$

Restless Arms, Known TPMs

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} = \frac{1}{R^*(P_1, P_2)}$$

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{(d, i) \in \mathbb{S}} \sum_{a=1}^K \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{hh'}(\underline{d}, \underline{i}, a)$$

$$(B_0, ..., B_{t-1}, \{(\underline{d}(s), \underline{i}(s)) : K \le s \le t\}) \to B_t \to (\underline{d}(t+1), \underline{i}(t+1))$$

Restless Arms, Unknown TPMs

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} = \frac{1}{R^*(P_1, P_2)}$$

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^K \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{hh'}(\underline{d}, \underline{i}, a)$$

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{C': h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^K \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{CC'}(\underline{d}, \underline{i}, a)$$

There exists $\bar{\varepsilon}^*\in(0,1)$ such that for any (h,P,Q), the TPMs $P,Q\in\mathcal{P}(\bar{\varepsilon}^*)$

For each $\delta > 0$, there exists a selection $\{\lambda_{h,P,Q,\delta}\}_{h,P,Q}$ such that $(h, P, Q) \mapsto \lambda_{h, P, Q, \delta}$ is continuous

Future Work

The Case $\eta = 0$

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^{K} \mu^{\lambda}(\underline{d}, \underline{i}) \cdot \left(\frac{\eta}{K} + (1 - \eta) \lambda(a | \underline{d}, \underline{i})\right) k_{hh'}(\underline{d}, \underline{i}, a)$$

$$\frac{1}{R^*(P_1, P_2)} \leq \lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \leq \lim_{\delta \downarrow 0} \lim_{L \to \infty} \frac{E[\tau(\pi_1^*(L, \delta)) \mid C]}{\log L} \leq \frac{1}{R^*(P_1, P_2)}$$

$$\frac{1}{R_{\eta}^{*}(P_{1}, P_{2})} \leq \lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \leq \lim_{\delta \downarrow 0} \lim_{L \to \infty} \sup_{L \to \infty} \frac{E[\tau(\pi_{1}^{*}(L, \delta)) \mid C]}{\log L} \leq \frac{1}{R_{\eta}^{*}(P_{1}, P_{2})}$$

What happens as $\eta \downarrow 0$?

The Case $\eta = 0$

$$R_{\eta}^{*}(P_{1}, P_{2}) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^{K} \mu^{\lambda}(\underline{d}, \underline{i}) \cdot \left(\frac{\eta}{K} + (1 - \eta) \lambda(a | \underline{d}, \underline{i})\right) \cdot k_{hh'}(\underline{d}, \underline{i}, a)$$

Monotonicity: $\eta' < \eta \implies R_{\eta}^*(P_1, P_2) \le R_{\eta'}^*(P_1, P_2)$

 $\lim_{\eta\downarrow 0} \ R_{\eta}^*(P_1,P_2) \text{ exists}$

$$R_0^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{\substack{i=1 \ (d,i) \in \mathbb{S}}} \sum_{a=1}^K \mu^{\lambda}(\underline{d}, \underline{i}) \cdot \lambda(a | \underline{d}, \underline{i}) \cdot k_{hh'}(\underline{d}, \underline{i}, a)$$

 $\lim_{\eta \downarrow 0} R_{\eta}^*(P_1, P_2) = R_0^*(P_1, P_2) ?$

Restless arms : $\lim_{\eta \downarrow 0} R_{\eta}^*(P_1, P_2) \le R_0^*(P_1, P_2)$

Envelope theorem

Rested arms

The Case $\eta = 0$

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^{K} \mu^{\lambda}(\underline{d}, \underline{i}) \cdot \left(\frac{\eta}{K} + (1 - \eta) \lambda(a | \underline{d}, \underline{i})\right) k_{hh'}(\underline{d}, \underline{i}, a)$$

$$\frac{1}{R^*(P_1, P_2)} \leq \lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \leq \lim_{\delta \downarrow 0} \lim_{L \to \infty} \frac{E[\tau(\pi_1^*(L, \delta)) \mid C]}{\log L} \leq \frac{1}{R^*(P_1, P_2)}$$

$$\frac{1}{R_{\eta}^{*}(P_{1}, P_{2})} \leq \lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} \leq \lim_{\delta \downarrow 0} \lim_{L \to \infty} \sup_{L \to \infty} \frac{E[\tau(\pi_{1}^{*}(L, \delta)) \mid C]}{\log L} \leq \frac{1}{R_{\eta}^{*}(P_{1}, P_{2})}$$

What happens as $\eta \downarrow 0$?

$$\frac{1}{R_0^*(P_1, P_2)}$$

$$\lim_{\eta \downarrow 0} R_{\eta}^{*}(P_{1}, P_{2}) \leq R_{0}^{*}(P_{1}, P_{2})$$

$$\frac{1}{\lim_{\eta \downarrow 0} R_{\eta}^{*}(P_{1}, P_{2})}$$

Computability of $R^*(P_1, P_2)$

$$R^*(P_1, P_2) = \sup_{\lambda(\cdot|\cdot)} \min_{h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^K \mu^{\lambda}(\underline{d}, \underline{i}) \cdot \left(\frac{\eta}{K} + (1 - \eta) \lambda(a | \underline{d}, \underline{i})\right) \cdot k_{hh'}(\underline{d}, \underline{i}, a)$$

- Computability of supremum in the above expression is an issue $d \in \{1,2,...\}$
- Q-learning for restless bandits⁴
- In practice we may want to impose $d \leq M$ for some large M
 - ullet Forcefully sample an arm if its delay exceeds M
 - How to prove ergodicity?
- 4. K. Avrachenkov and V. S. Borkar, "Whittle Index Based Q-Learning for Restless Bandits with Average Reward," 2020.

Second Order Term

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) | P_1, P_2]}{\log(1/\epsilon)} = \alpha(P_1, P_2)$$

$$\inf_{\pi \in \Pi(\epsilon)} E^{\pi}[\tau(\pi) \mid P_1, P_2] \approx \alpha(P_1, P_2) \cdot \log(1/\epsilon)$$

Is there
$$g$$
 such that $E^{\pi}[\tau(\pi) \mid C] \approx \alpha \cdot \log(1/\epsilon) + \beta \cdot g(\epsilon) + o(g(\epsilon))$?

Future Work (contd.)

Switching costs

Grasping multiple objects at once

Memory Constrained Search

• General sequential hypothesis testing (L-anomalous arms identification, best arm identification)

Hidden Markov models

 Prabhu, Bhashyam, Gopalan, Sundaresan

G. R. Prabhu, S. Bhashyam, A. Gopalan, and R. Sundaresan, "Sequential Multi- Hypothesis Testing in Multi-Armed Bandit Problems: An Approach for Asymptotic Optimality," arXiv preprint arXiv:2007.12961, 2020

Acknowledgements

- Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India. (Grant no: EMR/2016/002503)
- Ministry of Human Resource Development, Govt. of India
- Centre for Networked Intelligence, Indian Institute of Science
- Robert Bosch Centre for Cyber-Physical Systems, Indian Institute of Science

My Heartfelt Thanks

Rajesh Sundaresan IISc

Srikrishna Bhashyam IIT Madras

Navin Kashyap IISc

Aditya Gopalan IISc

Sandeep Juneja TIFR Mumbai

Himanshu Tyagi IISc

Student Brigade

Sarath A Y
PhD student, IISc

Prathamesh Mayekar PhD student, IISc

Sahasranand K R PhD student, IISc

Shubhada Agrawal PhD student, TIFR Mumbai

Gayathri Prabhu PhD student, IIT Madras

Lakshmi Priya M E PhD student, IISc

Takeaway

Look for invariant quantities

Rested Arms, Unknown TPMs

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} = \frac{1}{D^*(h, P_1, P_2)}$$

$$D^*(h, P_1, P_2) = \max_{\lambda} \min_{C': h' \neq h} \sum_{a=1}^{K} \lambda(a) D(P_C^a | P_{C'}^a | \mu_C^a)$$

$$\lim_{n\to\infty} \frac{\text{\# transitions from } i}{n} = \lim_{n\to\infty} \frac{\text{\# transitions to } i}{n}$$

Solve a simpler model and lift the ideas

Restless Arms, Known TPMs

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} = \frac{1}{R^*(P_1, P_2)}$$

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^K \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{hh'}(\underline{d}, \underline{i}, a)$$

$$(B_0, ..., B_{t-1}, \{(\underline{d}(s), \underline{i}(s)) : K \le s \le t\}) \to B_t \to (\underline{d}(t+1), \underline{i}(t+1))$$

Identifiability

Search for the right keyword

Restless Arms, Unknown TPMs

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{E[\tau(\pi) \mid C]}{\log(1/\epsilon)} = \frac{1}{R^*(P_1, P_2)}$$

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{C': \ h' \neq h} \sum_{(\underline{d}, \underline{i}) \in \mathbb{S}} \sum_{a=1}^K \nu^{\lambda}(\underline{d}, \underline{i}, a) \ k_{CC'}(\underline{d}, \underline{i}, a)$$

There exists $\bar{\varepsilon}^* \in (0,1)$ such that for any (h,P,Q), the TPMs $P,Q \in \mathcal{P}(\bar{\varepsilon}^*)$

For each $\delta > 0$, there exists a selection $\{\lambda_{h,P,Q,\delta}\}_{h,P,Q}$ such that $(h,P,Q) \mapsto \lambda_{h,P,Q,\delta}$ is continuous

Thank You!