線形代数学・同演習 B

11 月 8 日分 演習問題*1

$$T(\widetilde{\boldsymbol{u}}) = T(\boldsymbol{u}) - (b_1 T(\boldsymbol{u}_{r+1}) + \dots + b_s T(\boldsymbol{u}_{r+s})) = \boldsymbol{0}_V$$

であるので, $\widetilde{u}\in {\rm Ker}\,T$ となる.つまり, $\widetilde{u}=a_1u_1+\dots+a_ru_r$ と書くことができる.以上より,

$$\boldsymbol{u} = a_1 \boldsymbol{u}_1 + \dots + a_r \boldsymbol{u}_r + b_1 \boldsymbol{v}_1 + \dots + b_s \boldsymbol{v}_s$$

となるので,U の任意の要素はこれらの線形結合で書ける.(3) $u'=a_1u_1+\cdots+a_ru_r+b_1u_{r+1}+\cdots+b_su_{r+s}$ とし,方程式 $u'=\mathbf{0}_U$ を考える. u_1,\ldots,u_r は $\mathrm{Ker}\,T$ の基底であること,および線形写像は零元を零元にうつすことより,

$$\mathbf{0}_V = T(\mathbf{u}') = b_1 T(\mathbf{u}_{r+1}) + \dots + b_s T(\mathbf{u}_{r+s}) = b_1 \mathbf{v}_1 + \dots + b_s \mathbf{v}_s$$

であるが, v_1,\dots,v_s は ${\rm Im}\,T$ の基底なので,これを満たす (b_1,\dots,b_s) は $(0,\dots,0)$ しかありえない.よって $u'=a_1u_1+\dots+a_ru_r$ であり特に $u'\in{\rm Ker}\,T$ であるが,今度は u_1,\dots,u_r が ${\rm Ker}\,T$ の基底であるため, $a_1=\dots=a_r=0$ を得る.よって, u_1,\dots,u_{r+s} は線形独立となる.

- 2^{\dagger} いずれの場合も $T(\mathbf{0}_U)=\mathbf{0}_V$ より,零元を持つことが分かる.また, $\lambda,\mu\in\mathbb{K}$ としておく.(1) $\mathbf{v_1},\mathbf{v_2}\in\mathrm{Im}\,T$ とする.このとき,U のある要素 $\mathbf{u_1},\mathbf{u_2}$ を用いて $\mathbf{v_1}=T(\mathbf{u_1})$, $\mathbf{v_2}=T(\mathbf{u_2})$ とかけるが, $T(\lambda\mathbf{u_1}+\mu\mathbf{u_2})=\lambda\mathbf{v_1}+\mu\mathbf{v_2}$ であるので, $\lambda\mathbf{v_1}+\mu\mathbf{v_2}\in\mathrm{Im}\,T$ となる.よって部分空間となる.(2) $\mathbf{u},\mathbf{u}'\in\mathrm{Ker}\,T$ とすると, $T(\lambda\mathbf{u}+\mu\mathbf{u}')=\lambda T(\mathbf{u})+\mu T(\mathbf{u}')=\mathbf{0}_V$ であるので, $\lambda\mathbf{u}+\mu\mathbf{u}'\in\mathrm{Ker}\,T$,つまり部分空間となる.
- 3. 与えられた行列を簡約化すれば,それぞれ次のようになる.(1) $\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \end{pmatrix}$ (2) $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (3) $\begin{pmatrix} 1 & -1 & 0 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ (4) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ (5) $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ (6) $\begin{pmatrix} 1 & 0 & 3 & 0 & -1 \\ 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ 余白の都合で次ページへ.
- 4. $(1) \bigcirc (2) \times (3) \bigcirc (4) \bigcirc (5) \bigcirc (6) \times$
- 5. (1) $h(x)=\lambda p(x)+\mu q(x)$ (p,q は多項式)とおいて, $T(h(x))=\lambda T(p(x))+\mu T(q(x))$ を満たすことを確認すればよい.(2) 退化次元は 1,階数は 3 (3) $1,x,x^2(-3,3-2x,-3+6x-x^2$ でもよい)

^{*1} 凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題.

	(a)		(b)	
(1)	1	$\begin{pmatrix} -3 \\ -3 \\ 1 \end{pmatrix}$	2	$\begin{pmatrix} 1\\1 \end{pmatrix}, \ \begin{pmatrix} -4\\1 \end{pmatrix}$
(2)	1	$\begin{pmatrix} -2\\1\\0 \end{pmatrix}$	2	$\begin{pmatrix} -1\\2 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix}$
(3)	2	$\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\2\\1 \end{pmatrix}$	2	$\begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -5 \end{pmatrix}$
(4)	1	$\begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}$	3	$\begin{pmatrix} -1\\5\\4 \end{pmatrix}, \begin{pmatrix} 2\\1\\-4 \end{pmatrix}, \begin{pmatrix} -4\\3\\-1 \end{pmatrix}$
(5)	2	$\begin{pmatrix} -1\\ -2\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ -2\\ 0\\ 1 \end{pmatrix}$	2	$\begin{pmatrix} 1\\-5\\-2 \end{pmatrix}, \begin{pmatrix} -3\\1\\-1 \end{pmatrix}$
(6)	2	$\begin{pmatrix} -3\\0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\0\\0\\1 \end{pmatrix}$	3	$\begin{pmatrix} 1\\1\\-1\\-3 \end{pmatrix}, \begin{pmatrix} -1\\-1\\2\\2 \end{pmatrix}, \begin{pmatrix} -3\\-5\\1\\-1 \end{pmatrix}$