太极图形课

第11讲 Fluid Simulation 02: The Grid-based Methods

Season Finale Alert

- Ailing Zhang 张爱玲
 - Compiler Architect @ Taichi Graphics
 - THU → UIUC → Facebook (PyTorch) → Taichi
- Dec. 14th:
 - 手把手教你如何向Taichi仓库贡献代码,成为Taichi开 发者

Where are we?

Procedural Animation

Deformable Simulation

Rendering

Fluid Simulation

Fluid simulation

Forecast

Animation

Recap

- Incompressible fluid dynamics
 - Incompressible Navier–Stokes equations
- Time discretization
 - Operator splitting
 - Integration with the weakly compressible assumption
- Spatial discretization
 - Smoothed particle hydrodynamics (SPH)
- Implementation details (WCSPH)
 - Simulation Pipeline
 - Boundary conditions
 - Neighbor search

Lagrangian view

What will be covered today...

Code of the day

- Code:
 - https://github.com/taichidev/taichi/blob/master/python/taichi/examples/simulation/stable_fluid.py
- Code courtesy of 刘嘉枫 [@Hanke98]

Outline today

- N-S equations and their time integration
 - Operator splitting
- From the Lagrangian view to the Eulerian view
 - Spatial derivatives using finite difference
 - MAC grid
- Advection
 - Material derivative
 - Quantity advection
- Projection
 - Poisson's equation
 - Boundary conditions

N-S equations and the time integration

Incompressible Navier-Stokes equation

$$ma = f_{ext} + f_{pres} + f_{visc}$$

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

Operator splitting: a toy example

- Let's integrate $\frac{dq}{dt} = 1 + 2$
- (We know that the answer is: $q^{n+1} = q^n + 3\Delta t$)
- Operator splitting:
 - $\tilde{q} = q^n + 1\Delta t$
 - $q^{n+1} = \tilde{q} + 2\Delta t$

Operator splitting: a general example

• Let's integrate
$$\frac{dq}{dt} = f(q) + g(q)$$

- Operator splitting:
 - $\tilde{q} = q_n + \Delta t f(q^n)$
 - $q^{n+1} = \tilde{q} + \Delta t g(\tilde{q})$

Operator splitting: N-S equations

• Let's integrate
$$\frac{Dv}{Dt} = g - \frac{1}{\rho} \nabla p + v \nabla^2 v$$
$$\nabla \cdot v = 0$$

- Operator splitting:
 - Advection: $\frac{Dq}{Dt} = 0$, where q can be velocity, density, temperature etc.
 - Applying forces: $\frac{\partial v}{\partial t} = g + v \nabla^2 v$
 - Projection: $\frac{\partial v}{\partial t} = -\frac{1}{\rho} \nabla p \ s. \ t. \ \nabla \cdot v = 0$

One numerical time-stepping for N-S equations

- Given q^n , where q can be velocity, density, temperature etc.
 - Step 1 Advection:
 - $q^{n+1} = advect(v^n, \Delta t, q^n)$
 - $\tilde{v} = advect(v^n, \Delta t, v^n)$
 - Step 2 Applying forces:
 - $\tilde{\tilde{v}} = \tilde{v} + \Delta t (g + \nu \nabla^2 \tilde{v})$
 - Step 3 Projection:
 - $v^{n+1} = project(\Delta t, \tilde{\tilde{v}})$
 - Return v^{n+1} , q^{n+1}

$$\frac{Dv}{Dt} = g - \frac{1}{\rho}\nabla p + v\nabla^2 v$$
$$\nabla \cdot v = 0$$

From the Lagrangian view to the Eulerian view

Lagrangian view v.s. Eulerian view

• Lagrangian view:

• Eulerian view:

Lagrangian view v.s. Eulerian view

• Lagrangian view:

Dynamic Markers

• Eulerian view: **Grid index** Velocity Density **Temperature** Grid size etc.

Static Markers

Pros and cons

- Lagrangian view:
 - Pros:
 - Advection (Quantity preservation)
 - Boundary condition (Conformal discretization)
 - Coupling with solids
 - Cons:
 - Spatial derivative
 - High spatial discretization error
 - Neighbor search
 - Unbounded distortion
 - Explicit collision handling

Eulerian view:

- Pros:
 - Spatial derivative for free (finite difference)
 - Low spatial discretization error
 - Fixed topology (good for neighbor search)
 - Bounded distortion
 - Collision free
- Cons:
 - Advection
 - Boundaries
 - Coupling with solids

Spatial derivatives under the Eulerian viewpoint

Spatial derivative in a grid:

•
$$\nabla q_{i,j,k} = \begin{bmatrix} \partial q_{i,j,k}/\partial x \\ \partial q_{i,j,k}/\partial y \\ \partial q_{i,j,k}/\partial z \end{bmatrix}$$

• The dimensions can be *decoupled* when computing the spatial derivatives due to the *structural grid*.

Spatial derivatives under the Eulerian viewpoint

Spatial derivative in a grid:

•
$$\nabla q_{i,j,k} = \begin{bmatrix} \frac{\partial q_{i,j,k}}{\partial x} \\ \frac{\partial q_{i,j,k}}{\partial y} \\ \frac{\partial q_{i,j,k}}{\partial z} \end{bmatrix}$$

• The dimensions can be *decoupled* when computing the spatial derivatives due to the *structural grid*.

How to compute $\partial q/\partial x$?

- Finite difference, two options:
 - Forward difference:

•
$$\left(\frac{\partial q}{\partial x}\right)_i \approx \frac{q_{i+1} - q_i}{\Delta x}$$

- Accurate to $\mathcal{O}(\Delta x)$
- Biased
- Central difference:

•
$$\left(\frac{\partial q}{\partial x}\right)_i \approx \frac{q_{i+1} - q_{i-1}}{2\Delta x}$$

- Accurate to $\mathcal{O}(\Delta x^2)$
- Unbiased

How to compute $\partial q/\partial x$?

- Finite difference, two options:
 - Forward difference:

•
$$\left(\frac{\partial q}{\partial x}\right)_i \approx \frac{q_{i+1} - q_i}{\Delta x}$$

- Accurate to $\mathcal{O}(\Delta x)$
- Biased
- Central difference:

•
$$\left(\frac{\partial q}{\partial x}\right)_i \approx \frac{q_{i+1} - q_{i-1}}{2\Delta x}$$

- Accurate to $\mathcal{O}(\Delta x^2)$
- Unbiased

The problem of central difference
$$\left(\frac{\partial q}{\partial x}\right)_i \approx \frac{q_{i+1} - q_{i-1}}{2\Delta x}$$
:

Non-constant functions are able to register a zero spatial derivative:

Solution: central difference with a "staggered" grid

$$\bullet \left(\frac{\partial q}{\partial x}\right)_i \approx \frac{q_{i+1/2} - q_{i-1/2}}{\Delta x}$$

- Also accurate to $\mathcal{O}(\Delta x^2)$
- Unbiased

- Usually we store the *velocity* using the staggered fashion.
- ... and store the other (scalar) quantities in the grid centers:
 - e.g. temperature / density / pressure

Staggered grid for fluid simulation

 Compositing a velocity vector in a staggered grid:

•
$$v_{i,j} = \left[\frac{v_{x_{i-1/2,j}} + v_{x_{i+1/2,j}}}{2}, \frac{v_{y_{i,j-1/2}} + v_{y_{i,j+1/2}}}{2}\right]$$

•
$$v_{i+1/2,j} = \left[v_{x_{i+1/2,j}}, \frac{v_{y_{i,j-1/2}} + v_{y_{i,j+1/2}} + v_{y_{i+1,j-1/2}} + v_{y_{i+1,j+1/2}}}{4}\right]$$

$$v_{i+1/2,j} = \left[v_{x_{i+1/2,j}}, \frac{v_{y_{i,j-1/2}} + v_{y_{i,j+1/2}} + v_{y_{i+1,j-1/2}} + v_{y_{i+1,j+1/2}}}{4} \right]$$

$$v_{i,j+1/2} = \left[\frac{v_{x_{i-1/2,j}} + v_{x_{i+1/2,j}} + v_{x_{i-1/2,j+1}} + v_{x_{i+1/2,j+1}}}{4}, v_{y_{i,j+1/2}} \right]$$

Note: The staggered grid is first introduced to computational fluid dynamics by Harlow and Welch [1965]. It was called the Marker-and-Cell (MAC) method. Sometimes the staggered grid is also called the MAC grid.

Quiz:

- For a $row \times col$ grid (row = 3, col = 3):
 - How many temperature T values do we need to store? $row \times col = 9$
 - How many horizontal velocity v_{χ} values do we need to store? $row \times (col + 1) = 12$
 - How many vertical velocity v_y values do we need to store? $(row + 1) \times col = 12$

Staggered grid: another viewpoint (optional)

• Stokes Theorem (exterior calculus):

Further Readings:

Discrete Differential Geometry: An Applied Introduction [Crane 2019][Course][Video] 《简明微积分》-- 龚昇

Advection

Revisit incompressible Navier-Stokes equation

$$ma = f_{ext} + f_{pres} + f_{visc}$$

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

Material derivative $\frac{Df}{Dt} = \frac{\partial f}{\partial t} + v \cdot \nabla f$

- Some functions we want to evaluate depends on both space and time coordinates:
 - f = f(x, t)
- We have the total derivative w.r.t.
 time of f expanded using chain rule:

•
$$\frac{d}{dt}f(x,t) = \frac{\partial f}{\partial t} + \frac{dx}{dt} : \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} + v \cdot \nabla f$$

Other names for Df/Dt:

 advective derivative
 convective derivative
 derivative following the motion
 hydrodynamic derivative
 Lagrangian derivative
 particle derivative
 substantial derivative

 Stokes derivative

Material derivative explained using a train

32

Material derivative explained using a train

N

"I took a train from the **south** to the **north**.

The train took off at **1:00 PM**. It was **35 °C** outside.

I arrived at **7:00 PM**, and it was so freaking cold there.

The temperature dropped to only **5 °C**!"

Why was it so cold when I arrived?

When we freeze the *space* coordinate

Temperature drops with

time:
$$\frac{\partial T}{\partial t} < 0$$

When we freeze the *time* coordinate

Temperature drops along my moving trajectory: $v \cdot \nabla T < 0$

Material derivative explained using a train

"I took a train from the **south** to the **north**.

The train took off at **1:00 PM**. It was **35 °C** outside.

I arrived at **7:00 PM**, and it was so freaking cold there.

The temperature dropped to only **5 °C**!"

It was getting colder because:

$$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + v \cdot \nabla T < 0$$

Material derivative of vectors

•
$$\frac{Dq}{Dt} = \frac{\partial q}{\partial t} + v \cdot \nabla q$$

• If \boldsymbol{q} is a vector: $\boldsymbol{q} = \left[q_x, q_y, q_z\right]^T$

$$\bullet \quad \frac{Dq}{Dt} = \frac{\partial q}{\partial t} + v \cdot \nabla q = \frac{\partial q}{\partial t} + v \cdot \begin{bmatrix} \frac{\partial q_x}{\partial x} \\ \frac{\partial q_y}{\partial x} \\ \frac{\partial q_y}{\partial y} \\ \frac{\partial q_y}{\partial y} \\ \frac{\partial q_y}{\partial z} \\ \frac{\partial q_z}{\partial z} \end{bmatrix} = \frac{\partial q}{\partial t} + v_x \begin{bmatrix} \frac{\partial q_x}{\partial x} \\ \frac{\partial q_x}{\partial x} \\ \frac{\partial q_y}{\partial x} \\ \frac{\partial q_z}{\partial x} \\ \frac{\partial q_z}{\partial y} \\ \frac{\partial q_z}{\partial z} \end{bmatrix} + v_y \begin{bmatrix} \frac{\partial q_x}{\partial q_x} \\ \frac{\partial q_y}{\partial y} \\ \frac{\partial q_z}{\partial z} \\ \frac{\partial q_z}{\partial z} \end{bmatrix} = \frac{\partial q}{\partial t} + v_x \begin{bmatrix} \frac{\partial q_x}{\partial x} \\ \frac{\partial q_y}{\partial x} \\ \frac{\partial q_z}{\partial y} \\ \frac{\partial q_z}{\partial z} \end{bmatrix} = \frac{\partial q}{\partial t} + v_y \begin{bmatrix} \frac{\partial q_x}{\partial x} \\ \frac{\partial q_y}{\partial y} \\ \frac{\partial q_z}{\partial y} \\ \frac{\partial q_z}{\partial z} \end{bmatrix} = \frac{\partial q}{\partial t} + v_z \begin{bmatrix} \frac{\partial q_x}{\partial x} \\ \frac{\partial q_x}{\partial y} \\ \frac{\partial q_z}{\partial z} \\ \frac{\partial q_z}{\partial z} \end{bmatrix}$$

Material derivative of vectors (cont'd)

• If $m{q}$ is a vector: $m{q} = \left[q_x, q_y, q_z\right]^T$

$$\bullet \frac{D\boldsymbol{q}}{Dt} = \frac{\partial \boldsymbol{q}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{q} = \begin{bmatrix} \frac{\partial q_x}{\partial t} + \boldsymbol{v} \cdot \nabla q_x \\ \frac{\partial q_y}{\partial t} + \boldsymbol{v} \cdot \nabla q_y \\ \frac{\partial q_z}{\partial t} + \boldsymbol{v} \cdot \nabla q_z \end{bmatrix}$$

Material derivative of velocity

• The "self-advection"

•
$$\frac{Dv}{Dt} = \frac{\partial v}{\partial t} + v \cdot \nabla v = \begin{bmatrix} \frac{\partial v_x}{\partial t} + v \cdot \nabla v_x \\ \frac{\partial v_y}{\partial t} + v \cdot \nabla v_y \\ \frac{\partial v_z}{\partial t} + v \cdot \nabla v_z \end{bmatrix}$$

• ... is nothing but the material derivative of the velocity itself.

Advection:
$$\frac{Dq}{Dt} = \frac{\partial q}{\partial t} + v \cdot \nabla q = 0$$

"Quantities flow with the velocity field"

Attempt 1: Finite difference

Attempt 1: Finite difference

$$\bullet \frac{\partial q}{\partial t} + v \cdot \nabla q = 0$$

$$\bullet \Rightarrow \frac{q_i^{n+1} - q_i^n}{\Delta t} + v^n \cdot \frac{q_{i+1}^n - q_{i-1}^n}{2\Delta x} = 0$$

•
$$\Rightarrow q_i^{n+1} = q_i^n - \Delta t v^n \cdot \frac{q_{i+1}^n - q_{i-1}^n}{2\Delta x}$$

This advection scheme is *unconditionally unstable*!

- It is extremely simple to handle advection in the Lagrangian view...
 - shall we reuse this idea in our Eulerian grid too?
 - The answer is "yes"

•
$$q^{n+1} = q^n$$

- It is extremely simple to handle advection in the Lagrangian view...
 - shall we reuse this idea in our Eulerian grid too?
 - The answer is "yes"
 - $q^{n+1}(x^{n+1}) = q^n(x^n) = q^n(x^{n+1} \Delta t v^n)$

Eulerian view

- How do we get the value for $q^n(x^{n+1} \Delta t v^n)$?
 - Interpolation!
 - $q^{n+1}(x^{n+1}) = interpolate(q^n, x^{n+1} \Delta t v^n)$

Eulerian view

 $q_{i,j}^{n+1} = q^n$

Bi-linear interpolation in 2D:

$$q = lerp(a, b, c, d)$$

$$= lerp(lerp(a, b), lerp(c, d))$$

$$= \frac{D * a + C * b + B * c + A * d}{A + B + C + D}$$

$$\bullet \frac{\partial q}{\partial t} + \nu \cdot \nabla q = 0$$

• $\Rightarrow q_i^{n+1} = interpolate(q^n, x^{n+1} - \Delta t v^n)$

Eulerian view

$$\bullet \, \frac{\partial q}{\partial t} + v \cdot \nabla q = 0$$

•
$$\Rightarrow q_i^{n+1} = interpolate(q^n, x^{n+1} - \Delta t v^n)$$

This advection scheme is *unconditionally stable*!

Semi-Lagrangian advection: what is that?

• What we want (in 1D):

•
$$\frac{Dq}{Dt} = \frac{\partial q}{\partial t} + v \frac{\partial q}{\partial x} = 0$$

• Assuming $v^n \Delta t < \Delta x$:

•
$$q_i^{n+1} = \frac{\Delta t v^n}{\Delta x} q_{i-1}^n + \left(1 - \frac{\Delta t v^n}{\Delta x}\right) q_i^n$$

•
$$\Rightarrow q_i^{n+1} = q_i^n - \Delta t v^n \frac{q_i^n - q_{i-1}^n}{\Delta x}$$

•
$$\Rightarrow \frac{q_i^{n+1} - q_i^n}{\Delta t} + v^n \frac{q_i^n - q_{i-1}^n}{\Delta x} = 0$$

The semi-Lagrangian scheme is essentially a forward Euler scheme with a "velocity-aware" one-sided finite difference

Eulerian view

Semi-Lagrangian advection: what do we lose?

$$q_i^{n+1} = q_i^n - \Delta t v^n \frac{q_i^n - q_{i-1}^n}{\Delta x}$$

• We can also expand q_{i-1}^n at q_i^n using the Taylor series:

•
$$q_{i-1}^n \approx q_i^n - \left(\frac{\partial q}{\partial x}\right)_i^n \Delta x + \left(\frac{\partial^2 q}{\partial x^2}\right)_i^n \frac{\Delta x^2}{2}$$

•
$$\Rightarrow q_i^{n+1} \approx q_i^n - \Delta t v^n \left(\frac{\partial q}{\partial x}\right)_i^n + \frac{\Delta t v^n \Delta x}{2} \left(\frac{\partial^2 q}{\partial x^2}\right)_i^n$$

•
$$\Rightarrow \frac{q_i^{n+1} - q_i^n}{\Delta t} + v^n \left(\frac{\partial q}{\partial x}\right)_i^n \approx \frac{v^n \Delta x}{2} \left(\frac{\partial^2 q}{\partial x^2}\right)_i^n$$

•
$$\Rightarrow \frac{Dq}{Dt} \approx \frac{v^n \Delta x}{2} \frac{\partial^2 q}{\partial x^2} \neq 0$$

The semi-Lagrangian advection scheme introduces "numerical dissipation/viscosity"

Eulerian view

A better advection scheme with less dissipation?

- Sharper interpolation
 - Cubic Hermite spline interpolation [Link]
- Better error correction schemes
 - MacCormack method [Link]
 - Back and Forth Error Compensation and Correction (BFECC) [Kim et al. 2005][Paper]

BFECC [Kim et al. 2005]

What if the backtracked "particle" is out-of-boundary?

- Simplest solution:
 - Take the value on the boundary

One numerical time-stepping for N-S equations

- Given q^n , where q can be velocity, density, temperature etc.
 - Step 1 Advection:
 - $q^{n+1} = advect(v^n, \Delta t, q^n)$
 - $\tilde{v} = advect(v^n, \Delta t, v^n)$
 - Step 2 Applying forces:
 - $\tilde{\tilde{v}} = \tilde{v} + \Delta t (g + v \nabla^2 \tilde{v})$
 - Step 3 Projection:
 - $v^{n+1} = project(\Delta t, \tilde{\tilde{v}})$
 - Return v^{n+1} , q^{n+1}

One numerical time-stepping for N-S equations

- Given q^n , where q can be velocity, density, temperature etc.
 - Step 1 Advection:
 - $q^{n+1} = advect(v^n, \Delta t, q^n)$
 - $\tilde{v} = advect(v^n, \Delta t, v^n)$
 - Step 2 Applying forces:

•
$$\tilde{\tilde{v}} = \tilde{v} + \Delta t (g + \nu \nabla^2 \tilde{v})$$
 •

• Step 3 Projection:

•
$$v^{n+1} = project(\Delta t, \tilde{v})$$

• Return v^{n+1} , q^{n+1}

Sometimes we can drop the viscous force term $v \nabla^2 \tilde{v}$ for water/smoke/"inviscid fluid" simulations. Sometimes we can even drop the gravitational force term g for smoke simulations.

One numerical time-stepping for N-S equations

- Given q^n , where q can be velocity, density, temperature etc.
 - Step 1 Advection:
 - $q^{n+1} = advect(v^n, \Delta t, q^n)$
 - $\tilde{v} = advect(v^n, \Delta t, v^n)$
 - Step 2 Applying forces:

•
$$\tilde{\tilde{v}} = \tilde{v} + \Delta t (g + \nu \nabla^2 \tilde{v})$$

- Step 3 Projection:
 - $v^{n+1} = project(\Delta t, \tilde{\tilde{v}})$
- Return v^{n+1} , q^{n+1}

$$\frac{Dv}{Dt} = g - \frac{1}{\rho} \nabla p + v \nabla^2 v$$

$$\nabla \cdot v = 0$$

Projection

The projection step

• We want to solve:
$$\frac{\partial v}{\partial t} = -\frac{1}{\rho} \nabla p$$

$$\nabla \cdot v = 0$$

• Well, the finite difference comes to the rescue again:

•
$$\frac{v_{x_{i-1/2,j}}^{n+1} - v_{x_{i-1/2,j}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i,j} - p_{i-1,j}}{\Delta x}$$
• s.t. $\frac{v_{x_{i+1/2,j}}^{n+1} - v_{x_{i-1/2,j}}^{n+1}}{\Delta x} + \frac{v_{y_{i,j+1/2}}^{n+1} - v_{y_{i,j-1/2}}^{n+1}}{\Delta x} = 0$

$$\frac{\partial v_{x}}{\partial x} \qquad \frac{\partial v_{y}}{\partial y}$$

Finite difference

•
$$\frac{v_{x_{i-1/2,j}}^{n+1} - v_{x_{i-1/2,j}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i,j} - p_{i-1,j}}{\Delta x}$$

•
$$\frac{v_{x_{i+1/2,j}}^{n+1} - v_{x_{i+1/2,j}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i+1,j} - p_{i,j}}{\Delta x}$$
 2

•
$$\frac{v_{y_{i,j-1/2}}^{n+1} - v_{y_{i,j-1/2}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i,j} - p_{i,j-1}}{\Delta x}$$
 3

•
$$\frac{v_{y_{i,j+1/2}}^{n+1} - v_{y_{i,j+1/2}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i,j+1} - p_{i,j}}{\Delta x}$$
 4

$$\bullet \frac{v_{x_{i+1/2,j}}^{n+1} - v_{x_{i-1/2,j}}^{n+1}}{\Delta x} + \frac{v_{y_{i,j+1/2}}^{n+1} - v_{y_{i,j-1/2}}^{n+1}}{\Delta x} = 0$$

Finite difference

$$\frac{v_{x_{i+1/2,j}}^{n+1} - v_{x_{i-1/2,j}}^{n+1} + v_{y_{i,j+1/2}}^{n+1} - v_{y_{i,j-1/2}}^{n+1}}{\Delta t}$$

$$-\frac{v_{x_{i+1/2,j}}^{n} - v_{x_{i-1/2,j}}^{n} + v_{y_{i,j-1/2}}^{n} - v_{y_{i,j-1/2}}^{n}}{\Delta t}$$

$$= \frac{1}{\rho} \frac{4p_{i,j} - p_{i+1,j} - p_{i-1,j} - p_{i,j+1} - p_{i,j-1}}{\Delta x}$$

$$\bullet \frac{v_{x_{i+1/2,j}}^{n+1} - v_{x_{i-1/2,j}}^{n+1}}{\Delta x} + \frac{v_{y_{i,j+1/2}}^{n+1} - v_{y_{i,j-1/2}}^{n+1}}{\Delta x} = 0$$

$$\frac{v_{x_{i-1/2,j}}^{n+1} - v_{x_{i-1/2,j}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i,j} - p_{i-1,j}}{\Delta x}$$

$$\frac{v_{x_{i+1/2,j}}^{n+1} - v_{x_{i+1/2,j}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i+1,j} - p_{i,j}}{\Delta x}$$

$$\frac{v_{y_{i,j-1/2}}^{n+1} - v_{y_{i,j-1/2}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i,j} - p_{i,j-1}}{\Delta x}$$

$$\frac{v_{y_{i,j+1/2}}^{n+1} - v_{y_{i,j+1/2}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i,j+1} - p_{i,j}}{\Delta x}$$

Finite difference

$$2-1+4-3\frac{\Delta t}{\Delta x}$$

$$\frac{v_{x_{i+1/2,j}}^{n+1} - v_{x_{i-1/2,j}}^{n+1} + v_{y_{i,j+1/2}}^{n+1} - v_{y_{i,j-1/2}}^{n+1}}{\Delta x}$$

$$= \frac{v_{x_{i+1/2,j}}^{n} - v_{x_{i-1/2,j}}^{n} + v_{y_{i,j-1/2}}^{n} - v_{y_{i,j-1/2}}^{n}}{\Delta x}$$

$$= \frac{\Delta t}{\rho} \frac{4p_{i,j} - p_{i+1,j} - p_{i-1,j} - p_{i,j+1} - p_{i,j-1}}{\Delta x^{2}}$$

$$\frac{v_{x_{i+1/2,j}}^{n+1} - v_{x_{i-1/2,j}}^{n+1}}{\Delta x} + \frac{v_{y_{i,j+1/2}}^{n+1} - v_{y_{i,j-1/2}}^{n+1}}{\Delta x} = 0$$

$$\frac{v_{x_{i-1/2,j}}^{n+1} - v_{x_{i-1/2,j}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i,j} - p_{i-1,j}}{\Delta x}$$

$$\frac{v_{x_{i+1/2,j}}^{n+1} - v_{x_{i+1/2,j}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i+1,j} - p_{i,j}}{\Delta x}$$

$$\frac{v_{y_{i,j-1/2}}^{n+1} - v_{y_{i,j-1/2}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i,j} - p_{i,j-1}}{\Delta x}$$

$$\frac{v_{y_{i,j+1/2}}^{n+1} - v_{y_{i,j+1/2}}^{n}}{\Delta t} = -\frac{1}{\rho} \frac{p_{i,j+1} - p_{i,j}}{\Delta x}$$

 $\nabla \cdot n^{n+1}$

 $-\overline{rac{\Delta t}{
ho}}
abla \cdot
abla p$

The projection step (A Poisson problem)

$$\bullet - \frac{\Delta t}{\rho} \nabla \cdot \nabla p = -\nabla \cdot v^n$$

• Or:

$$\bullet \frac{\Delta t}{\rho} \frac{4p_{i,j} - p_{i+1,j} - p_{i-1,j} - p_{i,j+1} - p_{i,j-1}}{\Delta x^2} = - \frac{v_x n_{i+1/2,j} - v_x n_{i-1/2,j} + v_y n_{i,j-1/2} - v_y n_{i,j-1/2}}{\Delta x}$$

Another way to achieve the Poisson problem

What we want (the pressure equation):

•
$$\frac{\partial v}{\partial t} = -\frac{1}{\rho} \nabla p$$
 s.t. $\nabla \cdot v = 0$

• Discretize the pressure equation in time:

•
$$v^{n+1} - v^n = -\frac{\Delta t}{\rho} \nabla p$$
 s.t. $\nabla \cdot v^{n+1} = 0$

• Apply divergence operator ($\nabla \cdot$) on both sides:

$$\bullet \ -\nabla \cdot v^n = -\frac{\Delta t}{\rho} \nabla \cdot \nabla p$$

Pressure solve $-\frac{\Delta t}{\rho} \nabla \cdot \nabla p = -\nabla \cdot v^n$

- ullet For every grid, there is one unknown $p_{i,j}$
- For every grid, there will be one equation:

$$\bullet \frac{\Delta t}{\rho} \frac{4p_{i,j} - p_{i+1,j} - p_{i-1,j} - p_{i,j+1} - p_{i,j-1}}{\Delta x^2} = - \frac{v_{x_{i+1/2,j}}^n - v_{x_{i-1/2,j}}^n + v_{y_{i,j-1/2}}^n - v_{y_{i,j-1/2}}^n}{\Delta x}$$

- This requires us only a linear solve Ap = -d
- Once we have all the pressure values...
 - We can solve for the velocity update:

•
$$v_{x_{i-1/2,j}}^{n+1} = v_{x_{i-1/2,j}}^n - \frac{\Delta t}{\rho} \frac{p_{i,j} - p_{i-1,j}}{\Delta x}$$

Boundary conditions $-\frac{\Delta t}{\rho} \nabla \cdot \nabla p = -\nabla \cdot v^n$

• p = 0 for void grids

 $p_{i,j+1}$

Solid wall (Neumann boundary condition)

•
$$v^{n+1} \cdot n = v^{solid} \cdot n$$

• or
$$v_x^{n+1} = v_x^{solid}$$
, $v_y^{n+1} = v_y^{solid}$

• For solid grids:

•
$$v_{x}^{solid} = v_{x_{i-1/2,j}}^{n+1} = v_{x_{i-1/2,j}}^{n} - \frac{\Delta t}{\rho} \frac{p_{i,j} - p_{i-1,j}}{\Delta x}$$

•
$$\Rightarrow p_{i-1,j} = p_{i,j} - \frac{\rho \Delta x}{\Delta t} \left(v_{x_{i-1/2,j}}^n - v_x^{solid} \right)$$

The Poisson's equation with boundaries

•
$$p_{i,j+1} = 0$$

Neumann boundary:

•
$$p_{i-1,j} = p_{i,j} - \frac{\rho \Delta x}{\Delta t} \left(v_{x_{i-1/2,j}}^n - v_x^{solid} \right)$$

•
$$\frac{\Delta t}{\rho} \frac{4p_{i,j} - p_{i+1,j} - p_{i-1,j} - p_{i,j+1} - p_{i,j-1}}{\Delta x^2} = -\frac{v_{x_{i+1/2,j}}^n - v_{x_{i-1/2,j}}^n + v_{y_{i,j-1/2}}^n - v_{y_{i,j-1/2}}^n}{\Delta x}$$

• The Poisson's equation with boundaries:

$$\bullet \quad \frac{\Delta t}{\rho} \frac{4p_{i,j} - p_{i+1,j} - \left(p_{i,j} - \frac{\rho \Delta x}{\Delta t} \left(v_{x_{i-1/2,j}}^n - v_x^{solid}\right)\right) - 0 - p_{i,j-1}}{\Delta x^2} = - \frac{v_{x_{i+1/2,j}}^n - v_{x_{i-1/2,j}}^n + v_{y_{i,j-1/2}}^n - v_{y_{i,j-1/2}}^n}{\Delta x}$$

• Or equivalently:

•
$$\frac{\Delta t}{\rho} \frac{3p_{i,j} - p_{i+1,j} - p_{i,j-1}}{\Delta x^2} = -\frac{v_x \frac{n}{i+1/2,j} - v_x^{solid} + v_y \frac{n}{i,j-1/2} - v_y \frac{n}{i,j-1/2}}{\Delta x}$$

The Poisson's equation with boundaries

•
$$Ap = -d$$

Linear solvers Ax = b [Lecture 09]

Direct solvers:

• Inversion: $x = A^{-1}b$ • Factorization: $A = \begin{cases} LU & \text{, if A is a square matrix} \\ LDL^T & \text{, if A} = A^T \\ LL^T & \text{, if A} = A^T \text{ and A} > 0 \end{cases}$

$$\begin{bmatrix} LL^{T} & , if A = A^{T} \ and A > 0 \end{bmatrix}$$

- Iterative solvers:
 - Stationary iterative linear solvers: Jacobi / Gauss-Seidel / SOR / Multigrid
 - Krylov subspace methods: Conjugate Gradient (CG) / biCG / CR / MinRes / GMRes

Put things together

- Given q^n , where q can be velocity, density, temperature etc.
 - Step 1 Advection:
 - $q^{n+1} = advect(v^n, \Delta t, q^n)$
 - $\tilde{v} = advect(v^n, \Delta t, v^n)$
 - Step 2 Applying forces:

•
$$\tilde{\tilde{v}} = \tilde{v} + \Delta t (g + v \nabla^2 \tilde{v})$$

• Step 3 Projection:

•
$$v^{n+1} = project(\Delta t, \tilde{v})$$

• Return v^{n+1} , q^{n+1}

$$\frac{Dv}{Dt} = g - \frac{1}{\rho}\nabla p + v\nabla^2 v$$
$$\nabla \cdot v = 0$$

- N-S equations and their time integration
 - Operator splitting
- From the Lagrangian view to the Eulerian view
 - Spatial derivatives using finite difference
 - MAC grid
- Advection
 - Material derivative
 - Quantity advection
- Projection
 - Poisson's equation
 - Boundary conditions

$$\frac{Dv}{Dt} = g - \frac{1}{\rho} \nabla p + v \nabla^2 v \qquad \nabla \cdot v = 0$$
Operator splitting:
$$\text{Advection: } \frac{Dq}{Dt} = 0$$

$$\text{forcing: } \frac{\partial v}{\partial t} = g + v \nabla^2 v$$

$$\text{Projection: } \frac{\partial v}{\partial t} = -\frac{1}{\rho} \nabla p \text{ s. t. } \nabla \cdot v = 0$$

- N-S equations and their time integration
 - Operator splitting
- From the Lagrangian view to the Eulerian view
 - Spatial derivatives using finite difference
 - MAC grid
- Advection
 - Material derivative
 - Quantity advection
- Projection
 - Poisson's equation
 - Boundary conditions

- N-S equations and their time integration
 - Operator splitting
- From the Lagrangian view to the Eulerian view

 $\frac{Dq}{Dt} = 0$

- Spatial derivatives using finite difference
- MAC grid
- Advection
 - Material derivative
 - Quantity advection
- Projection
 - Poisson's equation
 - Boundary conditions

- N-S equations and their time integration
 - Operator splitting
- From the Lagrangian view to the Eulerian view
 - Spatial derivatives using finite difference
 - MAC grid
- Advection
 - Material derivative
 - Quantity advection
- Projection
 - Poisson's equation
 - Boundary conditions

$$\frac{\partial v}{\partial t} = -\frac{1}{\rho} \nabla p$$

$$\nabla \cdot v = 0$$

- N-S equations and their time integration
 - Operator splitting
- From the Lagrangian view to the Eulerian view
 - Spatial derivatives using finite difference
 - MAC grid
- Advection
 - Material derivative
 - Quantity advection
- Projection
 - Poisson's equation
 - Boundary conditions

Further readings

- Stable Fluids [Stam 1999][Paper][Slides]
- Fluid Simulation, Chapter 1 ~ 6 [Bridson and Müller 2007][Course Notes]
- Books
 - Fluid Simulation for Computer Graphics [Bridson 2015]
 - 科普向:
 - The Art of Fluid Animation [Stam 2015]
 - 《流体动画的计算艺术》 -- 叶军涛、杨旭波译

Homework

Homework Today

- Check Taichi examples:
 - https://github.com/taichidev/taichi/blob/master/python/taichi/examples/simulation/stable_fluid.py
- Try:
 - free surface (Dirichlet boundary condition)
 - buoyancy/vorticity confinement force for smoke [Chapter 5]
 - sharper interpolation schemes [<u>Link</u>]
 - MacCormack method [<u>Link</u>] / BFECC [<u>Paper</u>]
 - Conjugate gradient linear solvers

Candidate projects for your final

- Candidate topics:
 - Good performance! [Section 4.3]
 - Multigrid-preconditioned CG / Modified-incomplete-Cholesky-preconditioned CG
 - Complex boundaries [<u>Section 4.5</u>]
 - Eulerian water [Chapter 6]
 - Advection-reflection method [Paper]
 - Render your Eulerian fluid with your own renderer
- Both 2D and 3D projects are great!
 - As long as your pictures look great ☺

Final project

- 死线: 2022年1月3日
- 要求:
 - 使用大作业模板
 - 需要有设计文档, 如果有参照代码也需要标明
- 题材:
 - 任何使用Taichi完成的内容(图形学更佳)
 - 可以参考每节图形课后给出的大作业选题灵感 [参考第07,09,10,11讲]
 - 鼓励实现任意图形学论文/图形学课程内容
 - 可以在小作业的基础上完成大作业 (Homework Promotion!)
- 形式:
 - 使用 GitHub/Gitee提交并邀请tgc01@taichi.graphics加入你的代码仓
 - 允许三人以下合作,记得管理多人合作的git commits
- 奖励:
 - 太极图形课第一季结业证书一份+神秘Taichi小礼物一份

Excellent homework assignments

Excellent homework assignments

Excellent homework assignments

[@moxunbai]

Gifts for the gifted

- Use <u>Template</u> for your homework
- Next check in the next week! Dec. 14, 2021

S300

Questions?

本次答疑: 12/09 ←作业分享也在这里

下次直播: 12/14 ←小作业抽奖以及第一季大结局

直播回放: Bilibili 搜索「太极图形」

主页&课件: https://github.com/taichiCourse01

主页&课件(backup): https://docs.taichi.graphics/tgc01