DMath U11 bf

11.4

Let $\Sigma=(\mathcal{S},\mathcal{P}, au,\phi)$ be a proof system. Consider the proof system. $\overline{\Sigma}=(\mathcal{S},\mathcal{P},\overline{ au},\overline{\phi})$, where for all $s\in\mathcal{S}$ and $p\in\mathcal{P}$ we define

$$\overline{ au}(s) = 1 \iff au(s) = 0, \ \overline{\phi}(s,p) = 1 \iff \phi(s,p) = 0.$$

Prove or disprove the following statements.

- a) If Σ is sound, then $\overline{\Sigma}$ is complete.
- b) If Σ is complete, then $\overline{\Sigma}$ is sound.

Through tertium non datur we can assume;

$$egin{aligned} \overline{ au}(s) = 0 & \Longleftrightarrow \ au(s) = 1, \ \overline{\phi}(s,p) = 0 & \Longleftrightarrow \ \phi(s,p) = 1. \end{aligned}$$

ΩΩ Definition 6.2.

A Proof System is sound if no false statement has a proof, i.e. for all statements for which there exists a proof $p \in \mathcal{P}$ such that the verification function returns true $\phi(s,p)=1$, the statement must be true $\tau(s)=1$.

ΩΩ Definition 6.3.

A Proof System is complete if every true statement has a proof, i.e. for all statements $s \in \mathcal{S}$ that are true, there exists a proof $p \in \mathcal{P}$ such that the verification function returns true $\phi(s,p)=1$.

a)

For the scope of this exercise, we assume that $\mathcal{S} \neq \varnothing$ and $\mathcal{P} \neq \varnothing$.

If Σ is sound that means "for all statements $s \in \mathcal{S}$ for which there exists a $p \in \mathcal{P}$ with $\phi(s,p)=1$ we have $\tau(s)=1$ ", which is the same as to say that "there does not exist an $s \in \mathcal{S}$ with $\tau(s)=0$ such that there exists a $p \in \mathcal{P}$ with $\phi(s,p)=1$ ".

Which is the same as to say that "there does not exist an $s \in \mathcal{S}$ with $\overline{\tau}(s) = 1$ such that there exists a $p \in \mathcal{P}$ with $\overline{\phi}(s,p) = 0$ ". Since $\overline{\tau}(s)$ and $\overline{\phi}(s,p)$ in $\overline{\Sigma}$ are, per definition the opposite of $\tau(s)$ and $\phi(s,p)$ in Σ .

Which is to say that "for all $s\in\mathcal{S}$ with $\overline{\tau}(s)=1$ there exists a $p\in\mathcal{P}$ such that $\overline{\phi}(s,p)=1$ ". All this essentially tells us, that if Σ is sound, there is no $s\in\mathcal{S}$ in $\overline{\Sigma}$ for which $\overline{\tau}(s)=1$ and $\overline{\phi}(s,p)=0$.

So all true statements in $\overline{\Sigma}$ have a proof $p \in \mathcal{P}$ for which $\overline{\phi}(s,p) = 1$. Thus, if Σ is sound $\overline{\Sigma}$ is complete (if we assume $\mathcal{S}, \mathcal{P} \neq \varnothing$).

If we consider $\mathcal S$ and $\mathcal P$ to possibly be the empty set, the implication could be disproven by contradiction as follows:

Let
$$\Sigma = \{\mathcal{S}, \mathcal{P}, \tau, \phi\}$$
 where $\mathcal{S} = \{0\}$, $\mathcal{P} = \varnothing$, $\tau(0) = 0$ and $\phi : \mathcal{S} \times \mathcal{P} \to \{0, 1\}$ (Definition of cartesian product between set and empty set implies $\mathcal{S} \times \varnothing = \varnothing$)

Let
$$\overline{\Sigma} = \{\mathcal{S}, \mathcal{P}, \overline{\tau}, \overline{\phi}\}$$
 where $\mathcal{S} = \{0\}, \mathcal{P} = \varnothing, \overline{\tau}(0) = 1$ and $\overline{\phi} : \mathcal{S} \times \mathcal{P} \to \{0, 1\}$

 Σ is sound, as there is no $s\in\mathcal{S}$ such that au(s)=1 (Definition of Sound). Let's assume, for the sake of contradiction, that the implication holds, i.e. for all $\overline{\tau}(s)=1$ there exists a $p\in\mathcal{P}$ such that $\overline{\phi}(s,p)=1$. However, we arrive at a contradiction, as we defined $\mathcal{P}=\varnothing$. Thus there exists no $p\in\mathcal{P}$ such that $\overline{\phi}(s,p)=1$ if we consider \mathcal{P} to be the empty set.

b)

For the scope of this exercise we again assume that $\mathcal{S} \neq \varnothing$ and $\mathcal{P} \neq \varnothing$.

If Σ is complete that means "for all statements $s \in \mathcal{S}$ with $\tau(s) = 1$ there exists a proof $p \in \mathcal{P}$ such that $\phi(s,p) = 1$ ".

Which (per definition) is the same as to say "for all statements $s \in \mathcal{S}$ with $\overline{\tau}(s) = 0$ there exists a proof $p \in \mathcal{P}$ such that $\overline{\phi}(s,p) = 0$ in $\overline{\Sigma}$ ".

Which gives us no further information on the soundness of the proof system $\overline{\Sigma}$, as all we know is that for all false statements there exists a proof, such that the verification of that statement with that proof is false.

Let's disprove the implication with a counterexample:

Let
$$\Sigma = \{\mathcal{S}, \mathcal{P}, \tau, \phi\}$$
 where $\mathcal{S} = \{0, 1\}, \ \mathcal{P} = \{0, 1\}, \ \tau(1) = 1 \ \text{and} \ \phi(1, 0) = 0, \ \phi(1, 1) = 1.$ Let $\overline{\Sigma} = \{\mathcal{S}, \mathcal{P}, \tau, \phi\}$ where $\mathcal{S} = \overline{\{1\}}, \ \mathcal{P} = \{0, 1\}, \ \overline{\tau}(1) = 0 \ \text{and} \ \overline{\phi}(1, 0) = 1, \ \overline{\phi}(1, 1) = 0.$ defined for all valves. $\frac{3}{4}$

As we can clearly see, Σ is complete (per definition of complete) but $\overline{\Sigma}$ is not sound (since there exist a $s \in \mathcal{S}$ such that $\overline{\tau}(s) = 0$ but $\overline{\phi}(s,p) = 1$, i.e. a false statement has a proof). The implication is thus disproven by counterexample.

