BRAC University

Department of Electrical & Electronic Engineering
Assignment 1a, Spring 2025
EEE/ECE101: Electrical Circuits I

EEE/ECE101: Electrical Circuits I

Total Marks: 100

Q1. [10 marks]

Calculate the value of V_{ab} in the following circuit.

Q2. [10 marks]

Find the value of v_x in the following circuit.

Q3. [10 marks]

Find the value of the resistance, R such that the voltage, $V_0 = -1 V$, for the following circuit.

Q4. [10 marks]

Determine the current, I_0 for the following circuit.

Q5. [10 marks]

The equations of the charge, q(t) flowing through and the voltage, v(t) across a device are as follows:

$$q(t) = 100 (1 + e^{-2.5t}) Coulombs$$
$$v(t) = 20 e^{1.2t} Volts$$

- a) Determine the current, i(t) flowing through the device.
- b) Calculate the voltage and the current at t = 1 sec.
- c) Determine the power at t = 1 sec and explain whether the device is delivering or consuming power.

Q6. [10 marks]

Find the power absorbed or supplied by element 3.

Q7. [10 marks]

Find the power absorbed or supplied by element 3.

Q8. [10 marks]

Find the value of V_x, such that the 5-A current source supplies 50 W.

Q9. [10 marks]

Find the currents and voltages in the following circuit.

Q10. [10 marks]

(a) Calculate the equivalent resistance R_{AB} at terminals A-B.

(b) Calculate the equivalent resistance at terminals a-b.

