	基本参数				
参数	描述 组数 每个组的行数				
S=2 ^s					
E					
$B=2^b$	块大小 (字节)				
$m = \log_2(M)$	(主存) 物理地址位数				

	衍生出来的量				
参数	描述				
M=2 ^m	内存地址的最大数量				
$s = \log_2(S)$	组索引位数量				
$b = \log_2(B)$	块偏移位数量				
t=m-(s+b)	标记位数量				
$C=B\times E\times S$	不包括像有效位和标记位这样开销的高速缓存大小(字节)				

图 6-26 高速缓存参数小结

○ 练习题 6.9 下表给出了几个不同的高速缓存的参数。确定每个高速缓存的高速缓存组数(S)、标记位数(t)、组索引位数(s)以及块偏移位数(b)。

高速缓存	m	C	B	E	S	t	S	b
1.	32	1024	4	1				
2.	32	1024	8	4				
3.	32	1024	32	32				

6.4.2 直接映射高速缓存

根据每个组的高速缓存行数 E,高速缓存被分为不同的类。每个组只有一行(E=1)的高速缓存称为直接映射高速缓存(direct-mapped cache)(见图 6-27)。直接映射高速缓存是最容易实现和理解的,所以我们会以它为例来说明一些高速缓存工作方式的通用概念。

图 6-27 直接映射高速缓存(E=1)。每个组只有一行

假设我们有这样一个系统,它有一个 CPU、一个寄存器文件、一个 L1 高速缓存和一个主存。当 CPU 执行一条读内存字 w 的指令,它向 L1 高速缓存请求这个字。如果 L1 高速缓存有 w 的一个缓存的副本,那么就得到 L1 高速缓存命中,高速缓存会很快抽取出 w,并将它返回给 CPU。否则就是缓存不命中,当 L1 高速缓存向主存请求包含 w 的块的一个副本时,CPU 必须等待。当被请求的块最终从内存到达时,L1 高速缓存将这个块存放在它的一个高速缓存行里,从被存储的块中抽取出字 w,然后将它返回给 CPU。高速