Examenul de bacalaureat național 2019 Proba E. c) Matematică *M_st-nat*

Clasa a XII-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3(a+ib)+2(a-ib)=5+2i \Leftrightarrow 5a+ib=5+2i$, unde $z=a+ib$ cu $a \neq b$ numere reale	3p
	a = 1 și $b = 2$, deci $z = 1 + 2i$	2 p
2.	$(f \circ f)(x) = f(x+a) = x+2a, (f \circ f \circ f)(x) = x+3a$	3 p
	x + 3a = x + 3, pentru orice număr real x, deci $a = 1$	2 p
3.	$\log_3 \frac{2x+3}{x} = 1 \Rightarrow \frac{2x+3}{x} = 3$	3p
	$2x+3=3x \Rightarrow x=3$, care convine	2p
4.	Sunt 900 de numere naturale de trei cifre, deci sunt 900 de cazuri posibile	1p
	Sunt 90 de numere naturale de trei cifre care se divid cu 10, deci sunt 90 de cazuri	2 p
	favorabile	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{10}$	2p
5.	$\frac{a+1}{1} = \frac{5a-1}{3} \Leftrightarrow 3a+3 = 5a-1$	3p
	a=2	2 p
6.	$\sin A = \frac{4}{5}$	2p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC \cdot \sin A}{2} = \frac{6 \cdot 10 \cdot \frac{4}{5}}{2} = 24$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$ \left \begin{array}{ccc} M\left(-1\right) = \begin{vmatrix} 0 & -1 & 0 \\ 4 & 0 & 5 \end{array} \right \Rightarrow \det\left(M\left(-1\right)\right) = \begin{vmatrix} 0 & -1 & 0 \\ 4 & 0 & 5 \end{vmatrix} = $	2 p
	=0+0+0-(-4)-0-0=4	3 p
b)	$ \left \begin{array}{cccc} M(x) + M(y) = \begin{vmatrix} 0 & x & 0 \\ 3 - x & 0 & 4 - x \end{vmatrix} + \begin{vmatrix} 0 & y & 0 \\ 3 - y & 0 & 4 - y \end{vmatrix} = \begin{vmatrix} 0 & x + y & 0 \\ 6 - x - y & 0 & 8 - x - y \end{vmatrix} = \right $	3p
	$= \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 3 & 0 & 4 \end{pmatrix} + \begin{pmatrix} (x+y)+1 & 0 & (x+y)+2 \\ 0 & x+y & 0 \\ 3-(x+y) & 0 & 4-(x+y) \end{pmatrix} = M(0)+M(x+y), \text{ pentru orice numere}$ reale $x \neq y$	2 p

c)	$M(m) \cdot M(1) = \begin{pmatrix} 4m+6 & 0 & 6m+9 \\ 0 & m & 0 \\ 14-4m & 0 & 21-6m \end{pmatrix}, M(1) \cdot M(n) = \begin{pmatrix} 11-n & 0 & 16-n \\ 0 & n & 0 \\ 11-n & 0 & 16-n \end{pmatrix}, \text{ unde } m \text{ §i } n$ sunt numere naturale	2p
	$50 + m = 54 - 3n \Leftrightarrow m + 3n = 4$ şi, cum m şi n sunt numere naturale, obţinem $m = 1$, $n = 1$ sau $m = 4$, $n = 0$	3р
2.a)	x * y = 1 - 4xy + 4x + 4y - 4 =	3p
	=1-4x(y-1)+4(y-1)=1-4(x-1)(y-1), pentru orice numere reale x şi y	2p
b)	$x * \frac{1}{x} = 1 - 4(x - 1)(\frac{1}{x} - 1) = 1 - 4(x - 1) \cdot \frac{1 - x}{x} =$	3p
	$=1+\frac{4(x-1)^2}{x} \ge 1$, pentru orice $x \in (0,+\infty)$	2 p
c)	$x*x=1-4(x-1)^2$, $x*x*x=1+4^2(x-1)^3$, $x*x*x*x=1-4^3(x-1)^4$, unde x este număr real	3 p
	$(x-1)(1+4^3(x-1)^3)=0$, deci $x=\frac{3}{4}$ sau $x=1$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 5 \cdot \frac{1}{x} - 2x - 3 =$	3 p
	$= \frac{-2x^2 - 3x + 5}{x} = \frac{(1 - x)(2x + 5)}{x}, \ x \in (0, +\infty)$	2p
b)	$f''(x) = \frac{-2x^2 - 5}{x^2}, x \in (0, +\infty)$	2 p
	$f''(x) < 0$, pentru orice $x \in (0, +\infty)$, deci funcția f este concavă pe $(0, +\infty)$	3 p
c)	f este crescătoare pe $(0,1]$ și descrescătoare pe $[1,+\infty)$, deci $f(x) \le f(1)$, pentru orice $x \in (0,+\infty)$	3p
	$f(1) = -4 \Rightarrow 5 \ln x - x^2 - 3x \le -4$, deci $5 \ln x \le x^2 + 3x - 4$, pentru orice $x \in (0, +\infty)$	2p
2.a)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x) = (x^2 + 4x + 5)e^x$, $x \in \mathbb{R}$	2p
	$f(x) > 0 \Rightarrow F'(x) > 0$, pentru orice număr real x , deci funcția F este crescătoare pe \mathbb{R}	3 p
b)	$\int_{0}^{1} \left(\left(x^{2} + 4x + 5 \right) e^{x} - x^{2} e^{x} - 5 e^{x} \right) dx = \int_{0}^{1} 4x e^{x} dx = 4(x - 1) e^{x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = $	3p
	$=0-4\cdot \left(-1\right) =4$	2 p
c)	Pentru orice $x \in [-3, -1]$, obţinem $1 \le x^2 + 4x + 5 \le 2$, deci $e^x \le f(x) \le 2e^x$	2p
	$\int_{-3}^{-1} e^x dx \le \int_{-3}^{-1} f(x) dx \le 2 \int_{-3}^{-1} e^x dx \text{ si, cum } \int_{-3}^{-1} e^x dx = \frac{e^2 - 1}{e^3} \Rightarrow \frac{e^2 - 1}{e^3} \le \int_{-3}^{-1} f(x) dx \le \frac{2(e^2 - 1)}{e^3}$	3 p