

Applications of finite spaces to the study of the asphericity of LOT complexes

Manuela Ana Cerdeiro

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

ECCO 2016 - Medellín

Problem: Asphericity of ribbon disc complements.

Ribbon discs are a generalization of classical knot theory.

Definitions

• A ribbon disc is a "good" immersion

$$i: D^2 \hookrightarrow D^4$$

• A *ribbon disc complement* is the complement $D^4 - i(D^2)$ of such an immersion.

Problem: Asphericity of ribbon disc complements.

Knots conjecture (proved in 1957 by Papakyriakopoulos)

Knot complements are aspherical.

Ribbon discs conjecture (open)

Ribbon discs complements are aspherical.

Connection to the Whitehead conjecture.

Whitehead conjecture (open) 1941

If *K* is an aspherical 2-dimensional polyhedron and $L \subseteq K$, then *L* is aspherical.

Andrews-Curtis + RDC conjecture

↓ (Howie)

Whitehead conjecture

(compact case)

 $RDC \simeq L \hookrightarrow K^2 \simeq * \forall RDC$ Whitehead conjecture $\Rightarrow RDC$ conjecture Ribbon discs complements are considered test cases for the Whitehead conjecture.

LOTs: Labeled Oriented Trees

A LOT $\Gamma = (E, V, s, t, \lambda)$ consists of two sets E, V of edges and vertices, and three maps $s, t, \lambda : E \to V$ source, target and label, such that the underlying graph is a tree.

LOTs, group presentation and 2-complexes

To every LOT Γ we associate:

A group presentation $P(\Gamma)$

- one generator for every vertex in Γ
- one relation $s\lambda = \lambda t (\lambda t \lambda^{-1} s^{-1})$ for every edge $s \xrightarrow{\lambda} t$

A 2-complex K_{Γ} , for which π_1 is the presented group

- one 0-cell
- one 1-cell for every vertex
- one 2-cell for every edge

$$P = \langle a, b, c, d, e, f \mid faf^{-1}b^{-1}, ece^{-1}b^{-1}, ede^{-1}c^{-1}, beb^{-1}c^{-1}, aea^{-1}f^{-1} \rangle$$

Ribbon disc complements and LOTs

J. Howie associates a LOT Γ to every ribbon disc, satisfying

$$K_{\Gamma} \simeq D^4 - i(D^2).$$

Every LOT can be associated to a ribbon disc.

Asphericity of RDC ⇔ Asphericity of LOT complexes.

Finite spaces and posets

Given *X* a **finite topological space**, we define

$$x \le y \Leftrightarrow x \in U \ \forall \ \text{open} \ U \ni y$$

reflexivity and transitivity antisymmetry $\Leftrightarrow T_0$

If (X, \leq) is a **finite poset**

$$U_x \coloneqq \{y \in X: \ y \le x\} \subseteq X$$

are a basis for a T_0 toplogy in X

Examples: finite spaces and posets

Examples: posets and their associated complexes

Colorings

Fundamental tool

Results of Barmak and Minian on homotopy groups of 2-complexes in terms of colorings of the Hasse diagram of the corresponding poset.

A *G-coloring* of *X* is a map $c : \mathcal{E}(X) \to G$.

- D a subdiagram $\mathcal{H}(X)$ that contains all the elements of X and such that the corresponding finite poset is 1-connected.
- $\pi_1(X)$:
 - One generator for every edge $\notin D$.
 - One relator for every simple digon.
- $\pi_2(X) \subseteq \mathbb{Z}[G]$ -module generated by $\{x : \deg x = 2\}$. $(G = \pi_1(X))$

$$\left\{ \sum_{\substack{\deg x=2\\g\in G}} n_g^x gx : \sum_{x>y} \epsilon(x,y) n_{gc(x,y)}^x = 0 \quad \forall y : \deg y = 1, \forall g \in G \right\}.$$

Colorings

The space *X* is a model of $S^2 \vee S^1$.

The digons induce the relations d = 1, a = 1, ea = 1, db = 1, c = 1, ec = b, therefore $\pi_1(X) \simeq \mathbb{Z}$, generated by f.

The generators of $\pi_2(X)$ are x_1, x_2 and the equations are

$$(y_1) \quad n_g^{x_1} + n_g^{x_2} = 0 \quad \forall \ g \in \mathbb{Z}$$

$$(y_2) \quad -n_g^{x_1} - n_g^{x_2} = 0 \quad \forall \ g \in \mathbb{Z}$$

$$(y_3) \quad n_g^{x_1} + n_g^{x_2} = 0 \quad \forall \ g \in \mathbb{Z}$$

Therefore $\pi_2(X) = \{\sum_{g \in \mathbb{Z}} n_g^{x_1} g(x_1 - x_2) : n_g^{x_1} \in \mathbb{Z}\} \simeq \mathbb{Z}[\mathbb{Z}].$

LOT poset

To a given LOT Γ, we associate a LOT poset $\mathcal{X}(\Gamma) \approx K_{\Gamma}$. That is, $\pi_n(K_{\Gamma}) = \pi_n(\mathcal{X}(\Gamma)) \forall n$.

π_2 of LOTs

If *X* is a LOT-poset, and fixing a certain subdiagram, we obtain

- $\pi_1(\Gamma)$ -presentation: equivalent to the LOT presentation $P(\Gamma)$.
- $\pi_2(\Gamma) \subseteq \text{free-}\mathbb{Z}[G]$ -module generated by $\{x\}_{x \in E}$, given by the equations

$$\big\{-\sum_{s_x=v}n^x_{gv^{-1}}+\sum_{t_x=v}n^x_{gv^{-1}\lambda_x^{-1}}+\sum_{\lambda_x=v}\big(n^x_{gv^{-1}}-n^x_{gt_x^{-1}v^{-1}}\big)=0\big\}_{v\in V,g\in G}$$

$$a \xrightarrow{c} b \xrightarrow{a} c \qquad \pi_2(\Gamma)$$
 has generators x, y and equations:

(a)
$$-n_{\varphi a^{-1}}^x + n_{\varphi a^{-1}}^y - n_{\varphi c^{-1}a^{-1}}^y = 0 \ \forall g \in G$$

(b)
$$-n_{gb^{-1}}^y + n_{gb^{-1}c^{-1}}^x = 0, \forall g \in G$$

(c)
$$n_{gc^{-1}a^{-1}}^{y} + n_{gc^{-1}}^{x} - n_{gb^{-1}c^{-1}}^{x} = 0, \forall g \in G$$

Results

$$e \xrightarrow{b} (2)$$

$$e \xrightarrow{h} (2)$$

$$e \xrightarrow{h} (3)$$

$$b \xrightarrow{f} (6)$$

$$e \xrightarrow{f} h$$

$$(a) - n_{\gamma a^{-1}}^g + n_{\gamma a^{-1}}^a - n_{\gamma b^{-1} a^{-1}}^a = 0 \quad \forall \gamma \in C$$

$$(g) - n_{\gamma g^{-1}}^e + n_{\gamma g^{-1}}^g - n_{\gamma b^{-1} g^{-1}}^g = 0 \quad \forall \gamma$$

$$(e) \quad n^h_{\gamma e^{-1}h^{-1}} + n^e_{\gamma e^{-1}} - n^e_{\gamma c^{-1}e^{-1}} = 0 \quad \forall \gamma$$

(h)
$$-n_{\gamma h^{-1}}^f + n_{\gamma h^{-1}}^h - n_{\gamma e^{-1}h^{-1}}^h = 0 \quad \forall \gamma$$

$$(f) \quad n_{\gamma f^{-1}c^{-1}}^c + n_{\gamma f^{-1}}^f - n_{\gamma d^{-1}f^{-1}}^f = 0 \quad \forall \gamma$$

$$(d) - n_{\gamma d^{-1}}^b + n_{\gamma d^{-1}}^c - n_{\gamma d^{-1} f^{-1}}^f = 0 \quad \forall \gamma$$

(c)
$$-n_{\gamma c^{-1}}^{a} - n_{\gamma c^{-1}}^{h} + n_{\gamma c^{-1} e^{-1}}^{e} - n_{\gamma c^{-1} b^{-1}}^{b} = 0 \quad \forall \gamma$$

(b)
$$n_{\gamma b^{-1} g^{-1}}^g + n_{\gamma b^{-1} a^{-1}}^a + n_{\gamma b^{-1}}^b - n_{\gamma c^{-1} b^{-1}}^b = 0 \quad \forall \gamma$$

Results

Theorem

Let Γ be a LOT admitting a "good enumeration", and such that $G(\Gamma)$ satisfies UPP. Then Γ is aspherical.

Example

If $\pi_1(\Gamma)$ is UPP $\Rightarrow \Gamma$ is aspherical.

Muchas gracias.

