Applications

A.Belcaid

Université Euromed de Fès

November 16, 2020

One appelle une **application** $f: E \to F$ entre deux ensembles E et F, une correspondance qui associe a tout élément $x \in E$ un élément unique $y \in F$ noté f(x)

One appelle une **application** $f: E \to F$ entre deux ensembles E et F, une correspondance qui associe a tout élément $x \in E$ un élément unique $y \in F$ noté f(x)

One appelle une **application** $f: E \to F$ entre deux ensembles E et F, une correspondance qui associe a tout élément $x \in E$ un élément unique $y \in F$ noté f(x)

• E: Ensemble de départ.

One appelle une application $f: E \to F$ entre deux ensembles E et F, une correspondance qui associe a tout élément $x \in E$ un élément unique $y \in F$ noté f(x)

- E: Ensemble de départ.
- F: Ensemble d'arrivée.

Application sur ${\mathbb R}$

• Si E et F sont des **sous ensembles** de \mathbb{R} . On peut représenter $f: \mathbb{R} \to \mathbb{R}$ par son **graphe**:

$$\Gamma_{f} = \{ (x, f(x)) \in E \times F \mid x \in E \}$$
 (1)

Application sur ${\mathbb R}$

• Si E et F sont des **sous ensembles** de \mathbb{R} . On peut représenter $f: \mathbb{R} \to \mathbb{R}$ par son **graphe**:

$$\Gamma_{f} = \{ (x, f(x)) \in E \times F \mid x \in E \}$$
 (1)

Application sur ${\mathbb R}$

• Si E et F sont des sous ensembles de \mathbb{R} . On peut représenter $f: \mathbb{R} \to \mathbb{R}$ par son graphe:

$$\Gamma_{f} = \{ (x, f(x)) \in E \times F \mid x \in E \}$$
 (1)

Égalité et Composition

Égalité

Deux applications f et $g: E \to F$ sont dites **égales** f = g si:

$$\forall x \in E \quad f(x) = g(x)$$

Égalité et Composition

Égalité

Deux applications f et $g: E \to F$ sont dites **égales** f = g si:

$$\forall x \in E \quad f(x) = g(x)$$

Composition

Soit les deux applications $f: E \to F$ et $g: F \to G$. On définit alors la **composée**:

$$(g \circ f)(x) = g(f(x))$$

Égalité et Composition

Égalité

Deux applications f et $g : E \to F$ sont dites **égales** f = g si:

$$\forall x \in E \quad f(x) = g(x)$$

Composition

Soit les deux applications $f: E \to F$ et $g: F \to G$. On définit alors la **composée**:

$$(g \circ f)(x) = g(f(x))$$

Identité

Identité

Une application particulière est l'application **identité**:

$$\mathsf{id}_E \ : \ E \to E$$

$$\boldsymbol{x} \to \boldsymbol{x}$$

Identité

Une application particulière est l'application identité:

$$\begin{array}{ccc} id_E & : & E \rightarrow E \\ & x \rightarrow x \end{array}$$

Mini Exercice

Soit
$$f:]0,+\infty[\to]0,+\infty[$$
 tel que $f(x)=\frac{1}{x},$ et $g:]0,+\infty[\to\mathbb{R}$ tel que $g(x)=\frac{x-1}{x+1}.$

• Donner $f \circ id$, $id \circ g$, $g \circ f$ et $f \circ g$.

Image directe

Soit $f: E \to F$ une application, et A une partie de E. On note l'image directe de A par f l'ensemble:

$$f(A) = \{f(x) \mid x \in E\}$$
 (2)

Image directe

Soit $B \subset F$ et $f : E \to F$ une application de E dans F. On définit **l'image réciproque** de B par f:

$$f^{-1}(B) = \{x \in A \mid f(x) \in B\}$$
 (3)

Antécédent

Soit une application $f:E\to F$ et $y\in F.$ Un élément x est un antécédent de y si on as

$$y = f(x)$$

• Soient f et $g: E \to F$ deux applications. Donner la **négation** de f = g.

- Soient f et $g: E \to F$ deux applications. Donner la **négation** de f=g.
- Représenter le graphe de la fonction $f:\mathbb{N}\to\mathbb{R}$ définie par $f(n)=\frac{4}{n+1}$

- Soient f et $g: E \to F$ deux applications. Donner la **négation** de f = g.
- Représenter le graphe de la fonction $f: \mathbb{N} \to \mathbb{R}$ définie par $f(n) = \frac{4}{n+1}$
- Soient f, g et $h : \mathbb{R} \to \mathbb{R}$ définies par:

Donner l'expression des fonctions suivantes: $f \circ (h \circ h)$ et $(f \circ g) \circ h$

- Soient f et $g: E \to F$ deux applications. Donner la **négation** de f = g.
- Représenter le graphe de la fonction $f: \mathbb{N} \to \mathbb{R}$ définie par $f(n) = \frac{4}{n+1}$
- Soient f, g et $h : \mathbb{R} \to \mathbb{R}$ définies par:
 - $f(x) = x^2$

Donner l'expression des fonctions suivantes: $f \circ (h \circ h)$ et $(f \circ g) \circ h$

- Soient f et $g: E \to F$ deux applications. Donner la **négation** de f = g.
- Représenter le graphe de la fonction $f:\mathbb{N}\to\mathbb{R}$ définie par $f(n)=\frac{4}{n+1}$
- Soient f, g et $h : \mathbb{R} \to \mathbb{R}$ définies par:
 - $f(x) = x^2$
 - g(x) = 2x + 1

Donner l'expression des fonctions suivantes: $f\circ (h\circ h)$ et $(f\circ g)\circ h$

- Soient f et $g: E \to F$ deux applications. Donner la **négation** de f = g.
- Représenter le graphe de la fonction $f: \mathbb{N} \to \mathbb{R}$ définie par $f(n) = \frac{4}{n+1}$
- Soient f, g et $h : \mathbb{R} \to \mathbb{R}$ définies par:
 - $f(x) = x^2$
 - q(x) = 2x + 1
 - $h(x) = x^3 1$

Donner l'expression des fonctions suivantes: $f \circ (h \circ h)$ et $(f \circ g) \circ h$

- Soient f et $g: E \to F$ deux applications. Donner la **négation** de f = g.
- Représenter le graphe de la fonction $f: \mathbb{N} \to \mathbb{R}$ définie par $f(n) = \frac{4}{n+1}$
- Soient f, g et $h : \mathbb{R} \to \mathbb{R}$ définies par:
 - $f(x) = x^2$
 - q(x) = 2x + 1
 - $h(x) = x^3 1$

Donner l'expression des fonctions suivantes: $f \circ (h \circ h)$ et $(f \circ g) \circ h$

• Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$. Donner les ensembles suivants: $f([0,1[), f(\mathbb{R}), f(]-1,2[), f^{-1}([1,2[), f^{-1}(]-1,1[), f^{-1}(3).$

Injection/Surjection/Bijection

Définition

Soit E et F deux ensembles et $f: E \to F$ une application. L'application f est dite **injective** si:

$$\forall x_1, x_2 \in \mathsf{E} \quad \big(\mathsf{f}(x_1) = \mathsf{f}(x_2) \implies x_1 = x_2\big) \tag{4}$$

Soit E et F deux ensembles et $f: E \to F$ une application. L'application f est dite **injective** si:

$$\forall x_1, x_2 \in E \quad \left(f(x_1) = f(x_2) \implies x_1 = x_2 \right) \tag{4}$$

• Formuler l'injectivité en utilisant la notion d'antécedent?

Définition

Soit E et F deux ensembles et $f : E \to F$ une application. L'application f est dite surjective si:

$$\forall y \in F \quad \exists x \in E (y = f(x))$$
 (5)

Définition

Soit E et F deux ensembles et $f : E \to F$ une application. L'application f est dite surjective si:

$$\forall y \in F \quad \exists x \in E (y = f(x))$$
 (5)

Définition

Soit E et F deux ensembles et $f : E \to F$ une application. L'application f est dite surjective si:

$$\forall y \in F \quad \exists x \in E (y = f(x))$$
 (5)

Définition

Soit E et F deux ensembles et $f : E \to F$ une application. L'application f est dite surjective si:

$$\forall y \in F \quad \exists x \in E (y = f(x))$$
 (5)

Définition

Soit E et F deux ensembles et $f : E \to F$ une application. L'application f est dite surjective si:

$$\forall y \in F \quad \exists x \in E (y = f(x))$$
 (5)

• Formuler la surjectivitié en utilisant la notion d'antécedent?

Exercices rapides

Exemple :

Domontrer que la fonction $f:\mathbb{N}\to\mathbb{Q}$ définie par $f(n)=\frac{1}{n+1}$ est injective.

Exemple 2

Démonter par **contre exemple** que la fonction x^3 n'est pas **injective**.

Exemple 3

La fonction $g: \mathbb{R} \to \mathbb{R}$ est elle surjective?

Définition

Une fonction $f:E\to F$ est dite **bijective** si elle est injective et surjective. Cela revient à dire que:

$$\forall y \in F \quad \exists! x \in E \quad (y = f(x))$$
 (6)

<u>A.Belcaid</u> 15/30

Résultat Bijection

Proposition

Soit E, F deux ensembles et $f: E \to F$ une application.

- ① L'application f est bijective si et seulement si il existe une application $g: F \to E$ telle que:
 - $\bullet \ f\circ g=id_F$
 - $g \circ f = id_E$.
- Si f est bijective alors l'application g est unique et elle est aussi bijective.
 - L'applicaiton g s'appelle bijection réciproque de f est elle est notée f^{-1} . On vérifie que $(f^{-1})^{-1} = f$

Exemple

La bijection réciproque de la fonction $f: R \to]0, \infty[$ par $f(x) = \exp(x)$ est la fonction $g:]0, \infty[\to \mathbb{R}$ par $g(x) = \ln(x)$

A.Belcaid 16/30

Résultat Bijection

Proposotion

Soit $f: E \to F$ et $g: F \to G$ deux applications.

- Si les deux applications f et g sont injectives, alors g ∘ f est injective.
- Si les deux applications f et g sont surjectives, alors $g \circ f$ est surjective.
- Ainsi si, f et g sont bijectives, alors $g \circ f$ est bijective.

Alors l'application $(g \circ f)$ est **bijective**. Sa bijection réciproque est donnée par:

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1} \tag{7}$$

A.Belcaid 17/30

Mini Exercices

- Les fonctions suivantes sont-elles injectives, surjectives, bijectives?
 - $f_1: \mathbb{R} \to [0, \infty[, f_1(x) = x^2].$
 - ② $f_2:[0,\infty] \to [0,\infty[, f_2(x)=x^2]$.

 - **⑤** $f_5 : \mathbb{R} \to [0, \infty], f_5(x) = |x|.$
- Montrer que la fonction $f:]1,\infty[\to]0,\infty[$ définie par $f(x)=\frac{1}{x-1} \text{ est bijective. Calculer sa bijection réciproque.}$

A.Belcaid 18/30

Cardinal

Un ensemble E est **fini** si il existe une bijection entre E et l'ensemble $\{1, 2, ..., n\}$.

Dans ce cas l'entier $\mathfrak n$ s'appelle cardinal de E et il est noté CardE ou |E|.

Voici quelque exemples:

<u>A.Belcaid</u> 19/30

Cardinal

Un ensemble E est **fini** si il existe une bijection entre E et l'ensemble $\{1, 2, ..., n\}$.

Dans ce cas l'entier $\mathfrak n$ s'appelle cardinal de E et il est noté CardE ou |E|.

Voici quelque exemples:

 \bullet E = {Rouge, Bleu, Vert} est de CardE = 3.

A.Belcaid 19/30

Cardinal

Un ensemble E est **fini** si il existe une bijection entre E et l'ensemble $\{1, 2, ..., n\}$.

Dans ce cas l'entier $\mathfrak n$ s'appelle cardinal de E et il est noté CardE ou |E|.

Voici quelque exemples:

 \bullet E = {Rouge, Bleu, Vert} est de CardE = 3.

N n'est pas un ensemble fini.

A.Belcaid 19/30

Cardinal

Un ensemble E est **fini** si il existe une bijection entre E et l'ensemble $\{1, 2, ..., n\}$.

Dans ce cas l'entier $\mathfrak n$ s'appelle cardinal de E et il est noté CardE ou |E|.

Voici quelque exemples:

- \bullet E = {Rouge, Bleu, Vert} est de CardE = 3.
- N n'est pas un ensemble fini.
- \bigcirc Le cardinal de \emptyset est 0.

A.Belcaid 19/30

Propriétés Cardinal

A.Belcaid 20/30

Propriétés Cardinal

Propriétés Cardina

• Si $B \subset A$ et A est **fini**. Alors B est aussi fini et

$$CardB \leqslant CardA$$
 (8)

$$Card(A - B) = CardA - CardB$$
 (9)

Ainsi si $CardA = CardB \implies A = B$

Propriétés Cardinal

Propriétés Cardina

• Si B \subset A et A est **fini**. Alors B est aussi fini et

$$CardB \leqslant CardA$$
 (8)

$$Card(A - B) = CardA - CardB$$
 (9)

Ainsi si Card $A = CardB \implies A = B$

Pour deux ensembles A et B disjoints:

$$Card(A \cup B) = CardA + CardB \tag{10}$$

Cardinal union

Cardinal Union

Pour deux ensembles quelconques

$$Card(A \cup B) = CardA + CardB - Card(A \cap B)$$
 (11)

• Preuve: Utiliser la décomposition:

$$A \cup B = A \cup (B - (A \cap B))$$

Relation avec Injectivité, Surjectivité

Proposition

Soit E et F deux ensembles finis et $f : E \to F$ une application. Alors:

- **①** Si f est injective alors CardE \leq CardF.
- ② Si f est surjective alors CardE \geqslant CardF.
- Si f est bijective alors CardE = CardF.

Relation avec Injectivité, Surjectivité

Proposition

Soit E et F deux ensembles finis et $f : E \to F$ une application. Alors:

- **①** Si f est injective alors CardE \leq CardF.
- ② Si f est surjective alors CardE \geqslant CardF.
- Si f est bijective alors CardE = CardF.

Démonstration

- Supposons que f est injective. Notons F' = f(E) ⊂ F l'image directe de E.
 Ainsi chaque élément de F' admet un antécédent unique dans E. On conclut
 que CardF' = CardE ≤ CardF.
- Supposons que f est surjective, Ainsi tous les éléments de F admet au moins un antécédent, On conclut alors que CardE ≥ CardF.

A.Belcaid 22/30

Egalité cardinal

Proposition

Soit E et F deux ensembles et $f: E \rightarrow F$ une application. Si

$$CardE = CardF$$
 (12)

les trois propriétés suivantes sont équivalentes:

- f est injective.
- f est surjective.
- f est bijective.
 - Indice: Prouver que $(1) \implies (2) \implies (3) \implies (1)$

A.Belcaid 23/30

Nombre d'applications

Proposition

Soit E et F tel que CardE = n et CardF = p.

Alors le nombre d'applications différentes entre E et F est $\mathbf{p}^{\mathbf{n}}$

• Indice Preuve: On fixe l'ensemble F et on démontre par récurrence sur le cardinal de E.

Exemple

- Donner le nombre d'application entre $\{0, 1, 3\}$ et $\{0, 1, 2\}$.
- Codage binaire: Combien de nombre entiers peut on coder sur 8 bits.

A.Belcaid 24/30

Nombre d'injections

Soit E et F tel que CardE = n et CardF = p. Alors le nombre **d'injections** est donné par:

$$p \times (p-1) \times (p-2) \times ... \times (p-(n-1))$$

Nombre d'injections

Soit E et F tel que CardE = n et CardF = p. Alors le nombre **d'injections** est donné par:

$$p \times (p-1) \times (p-2) \times ... \times (p-(n-1))$$

 Indice Preuve: Fixer l'ensemble F et considérer une récurrence sur E.

Nombre d'injections

Soit E et F tel que CardE = n et CardF = p. Alors le nombre **d'injections** est donné par:

$$p \times (p-1) \times (p-2) \times ... \times (p-(n-1))$$

 Indice Preuve: Fixer l'ensemble F et considérer une récurrence sur E.

Nombre d'injections

Soit E et F tel que CardE = n et CardF = p. Alors le nombre **d'injections** est donné par:

$$p \times (p-1) \times (p-2) \times ... \times (p-(n-1))$$

 Indice Preuve: Fixer l'ensemble F et considérer une récurrence sur E.

Bijections

Le nombre de bijections entre deux ensembles de même cardinal est n :

n!

A.Belcaid 25/30

Nombre sous ensembles

Nombre sous ensemble

Soit E un ensemble fini tel que CardE = n. Le nombre de sous ensembles de E est donné par:

$$\mathsf{Card} \mathcal{P}(\mathsf{E}) = 2^n \tag{13}$$

Nombre sous ensemble

Soit E un ensemble fini tel que CardE = n. Le nombre de sous ensembles de E est donné par:

$$Card \mathcal{P}(E) = 2^n \tag{13}$$

Exemple

Énumérer les éléments de $\mathcal{P}(\{1, 2, 3, 4, 5\})$ selon leur cardinal.

• Indice preuve:: Utiliser une récurrence sur le cardinal de E.

A.Belcaid 26/30

Définition

Le nombre de parties contenant k éléments d'un ensemble de cardinal n est noté $\binom{n}{k}$ ou $\binom{n}{k}$.

A.Belcaid 27/30

Définition

Le nombre de parties contenant \mathbf{k} éléments d'un ensemble de cardinal \mathbf{n} est noté $\binom{\mathbf{n}}{\mathbf{k}}$ ou $C^n_{\mathbf{k}}$.

Corrolaire

•
$$\binom{n}{0} = 1$$

A.Belcaid 27/30

Définition

Le nombre de parties contenant \mathbf{k} éléments d'un ensemble de cardinal \mathbf{n} est noté $\binom{\mathbf{n}}{\mathbf{k}}$ ou $C^n_{\mathbf{k}}$.

Corrolaire

- $\bullet \binom{n}{n} = 1$

Définition

Le nombre de parties contenant \mathbf{k} éléments d'un ensemble de cardinal \mathbf{n} est noté $\binom{\mathbf{n}}{\mathbf{k}}$ ou $C^n_{\mathbf{k}}$.

Corrolaire

- $\binom{n}{0} = 1$
- $\bullet \binom{n}{1} = n$

Définition

Le nombre de parties contenant k éléments d'un ensemble de cardinal n est noté $\binom{n}{k}$ ou C^n_k .

Corrolaire

- $\binom{n}{0} = 1$
- $\binom{n}{n} = 1$
- $\bullet \ \binom{\mathfrak{n}}{k} = \binom{\mathfrak{n}}{\mathfrak{n}-k}$

Définition

Le nombre de parties contenant k éléments d'un ensemble de cardinal n est noté $\binom{n}{k}$ ou C^n_k .

Corrolaire

- $\binom{n}{0} = 1$
- $\binom{n}{n} = 1$
- $\bullet \ \binom{\mathfrak{n}}{\mathfrak{k}} = \binom{\mathfrak{n}}{\mathfrak{n}-\mathfrak{k}}$
- $\bullet \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots \binom{n}{n} = 2^{n}.$

Définition

Le nombre de parties contenant k éléments d'un ensemble de cardinal n est noté $\binom{n}{k}$ ou C^n_k .

Corrolaire

- $\binom{n}{0} = 1$
- $\binom{n}{n} = 1$
- $\bullet \ \binom{\mathfrak{n}}{\mathfrak{k}} = \binom{\mathfrak{n}}{\mathfrak{n}-\mathfrak{k}}$
- $\bullet \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots \binom{n}{n} = 2^{n}.$

Propriétées Coefficiens Binôme

Proposition

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \quad (0 < k < n)$$
 (14)

A.Belcaid 28/30

Propriétées Coefficiens Binôme

Proposition

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \quad (0 < k < n) \tag{14}$$

Indice preuve: Pour un un ensemble E de cardinal n.
Considérer un élément x ∈ E, Diviser les parties de taille k en ceux qui contiennent x et ce ceux qui ne le contiennent pas.

Expression Coefficient Newton

Proposition

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{15}$$

A.Belcaid 29/30

Expression Coefficient Newton

Proposition

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{15}$$

A.Belcaid 29/30

Expression Coefficient Newton

Proposition

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{15}$$

• **Indice Preuve:** Utiliser une récurrence sur n et la proposition précédante du cours.

Mini exercices

① Donner le nombre d'injections entre un ensemble de cardina ${\bf n}$ et un autre de cardinal n+1.

<u>A.Belcaid</u> 30/30

Mini exercices

- ① Donner le nombre d'injections entre un ensemble de cardina ${\bf n}$ et un autre de cardinal n+1.
- ② Calculer le nombre main de taille 5 cartes d'un jeu de 32 cartes.

<u>A.Belcaid</u> 30/30

Mini exercices

- ① Donner le nombre d'injections entre un ensemble de cardina ${\bf n}$ et un autre de cardinal n+1.
- ② Calculer le nombre main de taille 5 cartes d'un jeu de 32 cartes.
- Calculer le nombre de listes de taille 3 qu'on peut construire avec des chiffres (< 10). Par exemple (1, 2, 3) et (2, 2, 3) mais pas (10, 2, 3).

<u>A.Belcaid</u> 30/30