ADATSZERKEZETEK ÉS ALGORITMUSOK

Összefoglalás

- Bináris keresőfa
 - Minden művelet ideje a magassággal arányos: O(h)
 - Viszont kiegyensúlyozatlan esetben akár: h = n
- AVL fa
 - Kiegyensúlyozott: h <= 1.44(log₂n)
 - Stabil teljesítmény minden esetben: O(log₂n)
- Piros-Fekete fa
 - Kiegyensúlyozott: h <= 2(log₂n)
 - Stabil teljesítmény minden esetben: O(log₂n)

Piros-Fekete fa szabályok

- Szabályok:
 - Minden csúcs színe vagy piros, vagy fekete.
 - A gyökércsúcs színe fekete.
 - Minden levél érték nélküli (NIL), színük fekete.
 - Minden piros csúcsnak mindkét gyereke fekete.
 - Bármely csúcsból bármely levélig vezető úton ugyanannyi fekete csúcs van.

 Megjegyzés: minden érték a belső csúcsokban van, azaz a levél (NIL) nem tárol értéket.

Szabályok következménye

- A 4. (piros csomópontok nem követhetik egymást) és 5. pont (minden azonos gyökerű úton ugyanannyi fekete csúcs van) garantálja, hogy a gyökértől levélig vezető leghosszabb út legfeljebb kétszerese a legrövidebbnek.
- Ez garantálja a maximum 2(log2(n+1)) magasságot a PF fára
- Az AVL fa "kiegyensúlyozottabb" a piros-fekete fánál.
 - Emiatt a keresés gyorsabb.
 - Viszont módosítás után "drágább" a karbantartás.
- Törlés után szükséges forgatások száma
 - AVL fánál: O(log2n)
 - Piros-fekete fánál: O(log2n)

A NIL csúcs

- Értékek csak a belső csúcsokban vannak.
- Mivel a levelekben nincs érték, így egyetlen NIL csúcsot foglalunk le minden levél számára.
- Ezeket általában elhagyjuk az ábrákon.

Szabályok helyreállítása

- Keresés
 - mint a bináris keresőfánál
- Beszúrás és törlés
 - Először mint a bináris keresőfánál
 - Majd helyreállítjuk a piros-fekete fa szabályokat
- Szabályok helyreállítása
 - Átszínezésekkel
 - Forgatásokkal

- A hagyományos módon beszúrjuk a csúcsot a fába.
- A beszúrt csúcs színe legyen piros.
 - Csak az 1. és 4. szabály sérülhet.
- Amíg a piros csúcs szülője is piros vagy el nem érjük a fa gyökerét elvégezzük a kiegyensúlyozást.
- A végén a fa gyökerét feketére állítjuk.

Beszúrás - Esetek

1. eset: Az elem(N), a nagybácsi(U) és a szülő(P) is piros, N mindegy, hogy melyik gyereke P-nek.

Lépések: Cseréljük ki a színeket úgy, hogy a nagyszülő legyen csak piros, szülő és nagybácsi fekete!

Megjegyzés: Ezzel lehet, hogy a nagyszülőnek a felmenőjével lesznek konfliktusai, ezért állítsuk át az ellenőrzési mutatót a nagyszülőre, és kezdjük elölről! 2. eset: Az aktuális elem(N) és a szülő(P) piros, de a nagybácsi(U) fekete és N ellenkező oldali gyereke P-nek, mint P G-nek.

Lépések: Forgassunk P szerint úgy, hogy azonos oldali gyermek legyen az elem, mint a szülője (az ábra esetében balra forgatás).

Megjegyzés: Állítsuk át az ellenőrzést a régi szülőre, és folytassuk a 3. esettel.

3. eset: P piros, U fekete(mint előbb) de N ugyanolyan oldali gyermeke P-nek, mint P G-nek.

Lépések: Cseréljük meg P és G színét, majd forgassunk G (nagyszülő) szerint úgy, hogy az eredeti szülő kerüljön fölé (az ábra szerinti jobbra forgatás).

Magyarázat a kódhoz

- A szín tárolásához bevezetünk egy felsoroló (enumeration) szín típust
 - enum color_t { black, red };
- Az értéket nem tároló levelek (NIL) számára ténylegesen lefoglalunk egy empty_leaf csúcsot.
 - empty_leaf bal és jobb gyereke, valamint szülője önmaga
 - empty_leaf színe fekete
 - empty_leaf kulcs mezője lényegtelen
- Ez sok esetben jelentősen egyszerűsíti a dolgunkat.

- Ugyanúgy fogunk neki, mint a bináris keresőfánál
- Ha a kidrótozott csúcs színe piros, akkor a piros-fekete fa szabályok nem sérülnek, nincs semmi dolgunk.
- Ha a kidrótozott csúcs színe fekete, akkor ezt a fekete színt átadjuk a gyerekének.
- Kétszeresen fekete csúcs keletkezhet.
- Itt is esetek szerint kell a fában felfelé haladva helyreállítani a pirosfekete tulajdonságokat.
- Jelölések:
 - x kétszeresen **fekete** node
 - w x aktuális testvére (figyelem: w a forgatások során változhat)

1. eset - testvér piros

- Megoldás:
 - B,D átszínezése
 - forgatás a szülő körül
- Következmény:
 - (új) testvér fekete

2. eset - testvér és gyermekei feketék

- Megoldás:
 - x legyen egyszeresen fekete
 - w legyen piros
 - szülő kap egy extra feketét
- Következmény:
 - Az extra fekete egy szinttel feljebb propagál

3. eset – Testvér és távolabbi gyermeke fekete (a másik piros)

- Helyreállítás:
 - C, D átszínezése
 - forgatás w körül
- Következmény:
 - testvér távolabbi gyermeke piros

4. eset – Testvér fekete és távolabbi gyermeke piros

- Helyreállítás:
 - D megkapja B tetszőleges színét
 - B, E legyen fekete
 - forgatás a szülő körül
- Következmény:
 - PF fa tulajdonságai helyreálltak.

Top-down kiegyensúlyozás

- A beszúrt csúcs színe legyen piros.
 - Csak az 2. és 4. szabály sérülhet.
- A keresés közben a cél, hogy a beszúráskor a szülő vagy fekete legyen, vagy a piros szülő testvére legyen fekete, ekkor a fában felfele lépés nélkül helyreállíthatóak a tulajdonságok.
- Ehhez a keresés közben az 1. esetnek megfelelően javítunk.
- A beszúrás elvégzésekor ha a beszúrt csúcs szülője piros, akkor 2. vagy 3. eset szerint javítjuk.
- A végén a fa gyökerét feketére állítjuk.

- 1. eset:
 - Az elem(X) fekete, a gyerekei (L, R) pirosak.
 - Ezt kell javítani, hogy ne kelljen feljebb lépni a beszúrás után.
 - Cseréljük ki a színeket úgy, hogy X legyen piros, a gyerekek feketék!
 - Ha a szülő piros, akkor megsértjük a 4. szabályt garantáltan 2. vagy 3. eset következik (P testvére garantáltan fekete, különben javítottuk volna korábban)!

• 2. eset:

- Az aktuális elem(X) és a szülő(P) piros, de a nagybácsi(U) fekete és X ellenkező oldali gyereke P-nek, mint P G-nek.
- Forgassunk P szerint úgy, hogy azonos oldali gyermek legyen az elem, mint a szülője (az ábra esetében balra forgatás).
- Folytassuk a 3. esettel

- 3. eset:
 - P piros, U fekete(mint előbb) de X ugyanolyan oldali gyermeke P-nek, mint P G-nek.
 - Cseréljük meg P és G színét, majd forgassunk G (nagyszülő) szerint úgy, hogy az eredeti szülő kerüljön fölé (az ábra szerinti jobbra forgatás).

- Ugyanúgy fogunk neki, mint legutóbb. Lefele lépésekkor javítjuk a potenciálisan problémás állapotokat.
- Ha a kidrótozott csúcs színe piros, akkor a piros-fekete fa szabályok nem sérülnek, nincs semmi dolgunk.
- Ha a kidrótozott csúcs színe fekete, akkor ezt a fekete színt átadjuk a gyerekének.
- A cél, hogy a kidrótozott csúcs vagy piros legyen, vagy olyan fekete csúcs, akinek van egy piros gyereke.
 - Az ötlet az, hogy minden lelépéskor az aktuális X csúcsot pirosra állítjuk, ha elérjük az empty leaf-et, így a törlendő előző csúcs biztosan piros lesz.

Kezdés:

• Ha a gyökér mindkét gyereke fekete, színezzük a gyökeret pirosra, lépjünk le egyet és folytassuk onnan az algoritmust. Ha van piros gyereke, akkor állítsuk az aktuális elemet a gyökérre, majd kezeljük 1-es esetként.

- 1. eset:
 - X legalább egy gyereke piros
 - Megoldás:
 - Lépjünk lefelé egyet
 - Ha pirosra lépünk lépjünk még egyet le és folytassuk a ciklust
 - Ha feketére léptünk, akkor W-t állítsuk feketére, X szülőjét pirosra.
 - Ekkor az új w fekete lesz folytathatjuk a következő esetekkel.
 - Következmény:
 - Lejjeb lépünk egy vagy két szintet
 - (új) testvér fekete

• 2. eset:

- testvér fekete, testvér gyermekei feketék, szülő piros az előző iterációból
- Helyreállítás:
 - x és w legyen piros
 - szülő legyen fekete
- Következmény:
 - X piros, lejjebb léphetünk

- 3. eset:
 - testvér fekete, testvér távolabbi gyermeke fekete, másik piros
 - Helyreállítás:
 - C, D átszínezése
 - forgatás w körül
 - Következmény:
 - testvér távolabbi gyermeke piros

- 4. eset:
 - testvér fekete, testvér távolabbi gyermeke piros
 - Helyreállítás:
 - D megkapja B színét
 - B, E legyen fekete
 - forgatás a szülő körül
 - Következmény:
 - PF fa tulajdonságai helyreálltak, X piros léphetünk lefelé.

PF megvalósítás

Következő téma