

Resumen

Introduction to Computers (Universidad de Deusto)

TEMA 1: Historia de la informática

- -INFORmación + autoMÁTICA.
- -Conjunto de conocimientos que nos capacita para tratar la información por medio de los ordenadores.
- -Computador: máquina capaz de leer datos de entrada, operar con ellos y dar la información resultante por un medio de salida.

LOS PRECURSORES:

- -Ábaco 2400ac.
- -Máquinas calculadoras:
 - .Blaise Pascal (s.XVII): inv. de la primera calculadora mecánica (sumar y restar dos números)
 - .Gottfried Leibniz (s.XVII-XVIII): creó Step Reckoner (sumar, restar, multiplicar, dividir).
 - .Thomas de Colmar (s.XVII-XIX): impulsa la industria de calculadoras mecánicas con su arithmometer.

EL PRIMER ORDENADOR:

- -Charles Babbage (s.XVIII-XIX):
- . Considerado padre de los ordenadores.
- .Maquina de diferencias:
 - +Calculadora mecánica automática.
 - +Permite funciones polinómicas (y aproximar muchas funciones (ej. logs y f. trígono).
 - +Financiada por UK.
 - +Se podría considerar una computadora digital con un programa fijo.

.Máquina analítica:

- +Primer ordenador de propósito general
- +Mecánico
- +Diseñada para leer instrucciones de tarjetas perforadas (era programable).
- -¿Qué significa programable?
 - .Computadora: dispositivo que cambia la información de un formato a otro
 - .Toda información de entrada -> información de salida.
 - .Información variada.

-Ada Lovelace:

- .Primera programadora.
- .Un programa para calcular los números de Bernoulli usando la Máquina Analítica.
- -Herman Hollerith:
 - .Crea el *Tabulator* para realizar el censo de EEUU. El conteo se realizó meses antes de lo planeado.
 - .Usaba tarjetas perforadas.
 - .Su empresa -> el núcleo de IBM

EL INICIO DE LA ERA DIGITAL:

- -Empezó a desarrollarse en la GM2.
- -Las máquinas eran electromecánicas
- -Alan Turing:
 - .matemático, cripto-analista...
 - .Formalizó los conceptos de algoritmo y computación.
 - .Considerado padre de la ciencia de los computadores teórica y la IA.
- -La Máquina de Turing:
 - .1931 Kurt Gödel enuncia teorema de incompletitud (establece los límites de sistemas formales).
- .Las máquinas de Turing definen lo que puede ser computado (son construcciones matemáticas, no objetos físicos).
 - .Test de Turing: base de la IA.
- -La GM2 ayudó al avance tecnólogico. *El proyecto Manhattan:* uso de ordenadores en el desarrollo de la Bomba atómica.
- -Nuevas capacidades usadas en dos áreas principalmente: análisis criptográfico y el Proyecto Manhattan.
- -Enigma: máquina de cifrado Atamanam-during trabaja parargesolve en ifs tudo cu

LA PRIMERA GENERACIÓN DE COMPUTADORAS (1946-1954):

- -Surge la Computación Digital y los componentes electrónicos.
 - .Claude Shannon.
 - .Se convierte en la base de los ordenadores digitales.
- -Colossus (1943): primer ordenador electrónico digital programable.
- -Esta generación usaba tubos de vacío.
- -Las computadoras mecánicas tenían 2 problemas:
 - .La velocidad limitada por las partes móviles.
 - .Transmisión de información por medios mecánicos, engorrosa y no fiable.
- -Computadoras electrónicas:
 - .Partes móviles -> electrones.
 - .La información se transmite por corrientes eléctricas.
- -Los tubos de vacío eran muy caros.
- -ENIAC (1946):
 - .Electronic Numerical Integrator And Compute.
 - .Primer ordenador digital de propósito general (30 toneladas).
 - .Uso del ejercito de EEUU.
- -Los ordenadores eran cruciales en diversos campos.
- -La ciencia de la computación -> disciplina académica (Cambridge).
- -John von Neumann (s.XX):
 - .Matemático/Físico, Austro-Húngaro/Estadounidense.
 - .Parte importante en el desarrollo de la Bomba H.
 - .Define la arquitectura von Neumann (1947) ->->
 - .Utiliza siempre representación binaria.
- .Define: **programa de almacenado de memoria** (la memoria para almacenar datos e instrucciones).

- .Estrategia de las armas nucleares o Destrucción Mutua Asegurada.
- -Almacenamiento magnético: en 1956 un megabyte costaba \$90.000 actuales.

LA SEGUNDA GENERACIÓN DE COMPUTADORAS (1955-1963):

- -Los transistores empiezan a sustituir a los tubos de vacío, más pequeños, menos consumo -> menos calor.
- -Ordenadores: más baratos/pequeños/barato de mantener.
- -Finales 50: ordenadores únicos e incompatibles.

LA TERCERA GENERACIÓN DE COMPUTADORAS (1964-1970):

- -Circuitos integrados con cientos de transistores (hechos de materiales semiconductores) -> maquinas + potentes y pequeñas. Menor coste (imprimidos en de construirlos individualmente), mayor rendimiento (menor consumo electrico).
- -Jack Kilby -> primer chip.

-ARPANET:

- .Finales 60.
- .Objetivo conectar universidades y centros de investigación.
- .Uso restringido a proyectos federales.
- .A partir de ARPANET: email, TCP/IP, FTP...
- .Leng prog: RPG, APL...

LA CUARTA GENERACIÓN DE COMPUTADORAS (1971-1983):

- -Aparecen los microprocesadores.
- -Intel -> primeros microprocesadores comerciales (ya había otros pero tenían fines militares).
- -Permiten hacer ordenadores más pequeños (ayudan a problemas como el espacio o la temp).
- -Más baratos.
- -Usados en el Apolo para llegar a la luna.
- -Ingeniería del Software: comienza a ser una disciplina aparte. Margaret Hamilton una de las pioneras (acuñó el término Ing de. Soft).
- -A partir 70: el desarrollo del hardware sigue la Ley de Moore (cada dos años el doble de trasnsistores en un circuito integrado).
- -Dos nuevas tendencias finales 70:
 - .Mainframes: grandes ordenadores con muchas terminales, se usan en empresas.
 - .Minicomputers: más pequeños que los mainframes, mas interaccion.
 - +Xerox Alto: primer ordenador en usar la metáfora 'escritorio'. Uno de los primeros en usar ratón.

-UNIX OS:

.Creado entre otros por Ken Thompson y Dennis Ritchie.

.Se convierte en la base de una familia de OSs. : Linux, Android, iOs... Estos OSs son la base de la infraestructura de internet.

- -Leng. Prog.: Pascal, C ...
- -Primer teléfono móvil:
 - .1973, comercializado en 1984
 - .Martín Cooper hizo la primera llamada a su mayor rival del sector.

LA QUINTA GENERACIÓN DE COMPUTADORAS (1981-actualidad):

-Gracias a los baratos microprocesadores: Aficionados a la electrónica -> saludables empresarios.

.Steve Jobs y Stephen Wozniak contruyeron una computadora doméstica, y fundaron Apple Computer.In en 1976.

.Estos productos fueron populares entre aficionados. Cuanddo IBM lanzó su computadora se extendió.

DECADA DE LOS 80:

- -1981 IBM lanza su primera computadora -> PC, software de Microsoft -> MS-DOS.
- -Precio del hardware suficiente barato para producir millones dirigidos al hogar.
- -GUI: Graphical User Interfaces:

.Ganan popularidad frente a las consolas -> más fáciles de usar por usuarios no expertos

-Leng. Prog: C++, Ada...

DECADA DE LOS 90:

- -Nuevas tecnologías: CD-ROM, USB, DVD...
- -Desde los 90 los OSs mas comunes en pcs -> Windows, OS X, Linus
- -GNU/LINUX:
 - .Linus Torbald empieza el desarrollo de Linux en 1991.
 - .kernel de Linux + userland de GNU = GNU/LINUX.
 - .Se libera bajo licencia abierta.
 - .SO más usado en mainframes y supercomputadores.
 - .Se puede encontrar en sistemas embebidos, routers...
 - .Android está basado en Linux.

-Open Source Software:

- .Termino propuesto por miembros del free software movement>.
- .4 Libertades del código abierto:
 - +0. Ejecutar programas con cualquier propósito
 - +1. Estudiar y modificar el programa (para eso -> acceso al código fuente)
 - +2. Distribuir el programa de forma que se ayude al vecino
 - +3. Distribuir versiones modificadas.
- -Mainframes y supercomputadoras:

- .Varios usuarios pueden estar simultáneamente.
- .Muchos procesos ahora necesitan supercomputadoras (mayor capacidad de procesamiento).
- .Tianhe-2: supercomputadora mas potente.
- -Internet:
 - .ARPANET retirada en 1990.
 - .Internet estaba explotada comercialmente.
 - .Los programas de email atrajeron al público.
 - .Revolucion a finales 90 -> Web.
- -Deep Blue: supercomputador que gana a Kasparov a la segunda
- -Leng Prog: Python, Ruby, Java...
- -Segunda generación moviles (2G):
 - .Teléfonos celulares: mejor batería, mayor definición, mejor calidad sonido
 - .SMS
 - .Tecnologias predominantes: GSM, PDC (Personal Digital Communications) solo en Japon...

LOS 2000:

- -Los ordenadores siguen evolucionando: WiFi, Memoria flash...
- -Tercera generación móviles (principios 2000):
 - .Usan teléfono ejecutivos y jóvenes
 - .Aparece la SIM
 - .Japon -> 3G -> MMS, acceso a email, videollamadas.
- -Cuarta generación de móviles (2009):
 - .300Mbps de bajada.
- -Quinta generación de moviles (2014):
 - .Samsung hizo la primera prueba
 - .Se espera para 2020
 - .7Gbps
- -Internet: millones de dispositivos conectados a ella: teléfonos, televisores...
- -España destaca como país avanzado tecnológicamente entre internautas y early adopters (internautas que disponen de smartphone, no consideran la tecnología como algo complicado, disfrutan usandolas).
- -Los Wearables.
- -Len Prog: C#, F#...

TEMA 2: Introducción a los computadores

CONCEPTOS BÁSICOS:

- -Computadora: máquina capaz de aceptar unos datos de entrada, efectuar operaciones lógicas y aritméticas y proporcionar información resultante.
- -Datos: conjunto de símbolos que expresan o representan un número/ hecho/ objeto...
- -Codificación:
 - .Transformación para representar elementos de un conjunto mediante los de otro.
 - .En los computadores se hace en código binario (solo dos valores 1 y 0):
- -BInary+digiT = bit.
- -Binario puro -> 2^x. Sistema Internacional -> 10^x.
- -Hardware: soporte físico. Software: conjunto de programas ejecutables

ESTRUCTURA FUNCIONAL DE LOS COMPUTADORES:

- -Mem. ROM: solo leer. Mem. RAM: leer y escribir. Mem. Externa: gran capac. Almacen. , dispositivo lento.
- -Unidad de tratamiento (ALU):
 - .Contiene los circuitos que hacen las operaciones de tipo aritmético y lógico.
 - .Tiene elementos auxiliares para transmitir/almacenar temporalmente datos.
- -Unidad de control (director de orquestra):
 - .toma las instrucciones, decodifica el código y envía señales de control a las otras unidades.
 - .Frecuencia: determina la velocidad de funcionamiento del computador.
- -Buses:
 - .permiten la transferencia de datos binarios. Descargado por Alvaro Martín García (alvi.martin@opendeusto.es)

- .Bus: cables que transmiten información en paralelo.
- .Bus de datos: transferir instrucciones o datos entre los componentes del sistema.
- 8,16... bits en paralelo = ancho del bus.
- -Bus de direcciones:
 - .Transfiere instrucciones.
 - .Unidireccional: de la CPU a la memoria.
 - .Ancho del bus -> determina el tamaño de la memoria que puede direccionarse.
- -Bus de control: transmite señales generadas por la unidad de control a ca da elemente del computador.

PARÁMETROS CARACTERÍSTICOS DE UN COMPUTADOR:

- -Juego de instrucciones: conjunto de instrucciones que el computador puede ejecutar.
- -Respecto a la Memoria:
 - .Capacidad de almacenamiento (cuantos bytes puede almacenar).
 - .Tiempo de acceso: tiempo entre que se pide que se lea/escriba un dato hasta que se obtiene/escribe el dato.
- -Palabra: datos que recibe.
- -Longitud: Nº de bits que la forman.
- -Con respecto a los buses: ancho de banda (velocidad de transferencias): 8 Mbytes/seg.
- -Rendimiento: cada instrucción consume un nº predeterminado de ciclos.

TIPOS DE COMPUTADORES:

- -Uso:
 - .General: pueden ejecutar diferentes aplicaciones (portátiles).
 - .Especifico: solo ejecuta una tarea (programa).
- -Paralelismo: cuantas operaciones a la vez.

TEMA 3: Representación de la información:

REPRESENTACIÓN DE NÚMEROS:

- -Sistema decimal (de base 10).
- -Sistema binario (de base 2).
- -Sistema octal (de base 8).
- -Sistema hexadecimal (de base 16).

-De decimal a binario:

-De octal a decimal:

A

В

C

D

E

F

0010 1010

-Numeros positivos/negativos:

-Overflow: cuando el resultante de una suma no tiene el mismo numero de bits que los operandos.

REPRESENTACIÓN DE TEXTOS:

-El código ASCII:

- .Cada carácter -> código de 8 bits.
- .Suficientes para representar: números, letras, caracteres especiales.

00 ٥, 0 0 4 7 2 3 SP 0 0 0 0 NUL DLE 0 0 1 SOH DC1 Q 0 1 0 STX DC2 0 1 FTX DC3 # 100 EOT DC4 D 1 0 ENQ NAK 5 Ε u 1 1 0 ACK SYN 1 1 1 BEL ETB G 1000 8 8 BS CAN 0 0 1 HT EM 9 1 0 1 0 10 LF SUB 1011 11 VT ESC K 1 1 0 0 12 FF FS 1 1 м 101 13 CR GS m 10 14 so RS N

USASCII code chart

-Problemas del ASCII:

- .Insuficiente para representar algunos lenguajes (ej. chino).
- .Solución -> UNICODE (16 bits).

REPRESENTACIÓN DE IMÁGENES:

- -Mapa de bits:
 - .Colección de puntos.
 - .Cada pixel codifica su apariencia (color).

COMPRESIÓN DE DATOS:

- -Hacen que los archivos ocupen menos.
- -Factor de compresión: $\int_{C} = \frac{Ca}{a}$ lo que ocupa el fichero antes
 - lo que ocupa después de comprimirse
- -Porcentaje compresión: $p_c = \frac{C_s}{C_c} \text{Descargado por Álvaro Martín García (alvi.martin@opendeusto.es)}$

-Tipos:

.Sin pérdidas: ZIP, TAR.

.Con pérdidas :JPEG, MPEG...

- -Mayor compresión pero calidad.
- -Bit de paridad (método de detección de errores):
- -Paridad par: hacer que el número de 1s de un bloque sea par.
- .Ejemplo: $1011101 \rightarrow paridad par: 1$.
- -Paridad impar: hacer que el número de 1s de un bloque sea impar.
- .Ejemplo: $1011101 \rightarrow paridad impar: 0$.
- -Si al enviar datos hay error -> destruir datos y reenviar.
- -Problema: si cambian dos bits ya no es correcto.

TEMA 4: Fundamentos del Software:

EL SOFTWARE:

- -Conjunto de programas de cómputos procedimientos, reglas... que forman parte de un sistema de computación.
- -Programas con ambigüedades -> inservible.
- -Algoritmo: conjunto de procedimientos secuenciales para hacer una tarea.
- -El desarrollador convierte el algoritmo en programa.

EL LENGUAJE DE LAS COMPUTADORAS:

- -La computadora procesa lenguaje máquina.
- -Antes los programadores escribían en lenguaje máquina.
- -Ahora -> lenguajes de alto nivel (cercanos al nuestro).
- -Lenguaje máquina:
 - .El único que entiende el procesador.
 - .Instrucciones: secuencia de bits.
 - .Problemas: repertorio de instrucciones reducido, laborioso trabajar con el.
 - .Solución: Java, Python...
- -Compilador: transforma el programa en otro programa de lenguaje a bajo nivel.
- -Intérprete: ejecuta cada línea del programa de forma inmediata, una a una, no como el compilador.

EL SISTEMA OPERATIVO:

- -Software de sistema: programas que controlan el funcionamiento y operaciones del ordenador.
- -Dos tipos: sistema operativo (OS), utilidades.
- -Beneficios: abstracción (más visual), arbitraje (acceso concurrente a recursos).
- -Funcionamiento:
 - .Llamadas al sistema para operar con módulos. Cada SO sus propias llamadas, cambiar SO -> cambiar el programa.
 - .Interrupción: señal que envía un dispositivo a la CPU para avisar de que ya ha terminado con la operación.
 - .Excepción: situación de error mientras la ejecución. (código no correcto/operación no definida)
- -Arranque (booting): boot drive -> unidad que se usa para arrancar. Disco especializado en arrancar ordenadores.
- -Apagado: diferentes modos de apagado: apagado, reinicio, sleep (guarda el estado de la RAM, modo bajo consumo), hibernate (guarda estado actual en disco duro y apaga el ordenador).
- -Interfaz de usuario: interfaces graficas / de línea de comandos.
- -Gestión de procesos:
 - .Proceso: un programa ejecutándose. -> necesita recursos para hacer su tarea.
 - .SO responsable de: crear/destruir/parar/reanudar procesos; ofrecer mecanismo para que los procesos se comuniquen.
 - .Single user+tasking: 1 programa + 1 usuario.
 - .Single user+ multitasking: 1 usuario + >1 programa. Foreground: programa usándose,
 - Background: programas ejecutándose pero no usándose.
 - .Preventive multitasking: SO interrumpe periódicamente procesos para que demás programas tengan Recursos.
 - .Multiusuario: >1 usuario, servidores, mainframes...
- -Gestion de memoria:
 - .Todo programa y sus datos tienen que estar en la RAM.
 - .SO responsable de: saber qué parte de la memoria se usa, decidir qué procesos se cargaran en memoria cuando haya memoria, asignar y reclamar espacio de memoria.
 - .Memoria virtual:
 - +Swap file: parte del disco que se usa como memoria virtual
 - +Page: cantidad de datos que se pueden transferir en un momento.
 - +Paging: transferir datos entre memoria y memoria virtual.
 - +Thrasing: el SO mucho tiempo sin ejecutar aplicaciones.
- -Monitorización de recursos y contabilización: mantienen estadísticas de utilización de máquina de cada usuario.

Descargado por Álvaro Martín García (alvi.martin@opendeusto.es)

- -Gestión de seguridad: usuario root tiene todos los permisos, el resto cada uno tiene un login y una contraseña, y una serie de permisos.
- -Comunicación con los periféricos:
 - .Driver: pequeño programa que indica como comunicarse con un modelo concreto de dispositivo.
 - .Cada modelo un driver.
 - .Plug and play: dispositivo que se configura automáticamente cuando se conecta.
- -Gestión de archivos:
 - .Almacenan programas y datos.
 - .SO responsable de: construir/eliminar archivos y directorios, ofrecer funciones para manipularlos, hacer copias de seguridad.
- -Gestión de las comunicaciones de una red: controlar envio y recepción de información a través de la red.
- -Stand-alone operating system: SOs que se ejecutan en desktops, notebooks... (Linux, Windows, Mac OS).
- -Funcionamiento:
 - 1. Arranque: el ROM tiene la BIOS que carga el SO desde el HDD
 - 2.De la ROM se cogen los datos y se mandan a la RAM para que la CPU los use

PROGRAMAS DE UTILIDAD:

-Gestor de ficheros, CCleaner, Firewall, Antivirus.

SISTEMAS OPERATIVOS ACTUALES:

- -GNU:
- .Richard Stallman (MIT) crea la Fundación del Software libre.
- .Proyecto GNU: sistema operativo libre
- .Libertades software libre:
- ."Libertad 0":ejecutar el programa en cualquier dispositivo.
- ."Libertad 1":tener el código fuente para estudiar y modificarlo.
- ."Libertad 2": copiar el programa para ayudar a cualquiera.
- ."Libertad 3": mejorar el programa en beneficio de la comunidad.
- -GNU + LINUX: Linus Torvalds desarrolla el núcleo.

TEMA 5: Fundamentos del Hardware:

- -Datos:
 - .Dato: valor recolectado sin contexto (6, Pablo).
 - .Información: datos relacionados (Pablo ha sacado un 6).
- .Conocimiento: se usa la información y se gana experiencia (Pablo ha sacado un 6, si hubiera estudiado hubiera sacado un 9).
- .Inteligencia: gracias al conocimiento prevemos o planificamos nuevas acciones (Pablo solo ha estudiado el martes, y ha sacado 6, yo voy a estudiar mas).
- -Proceso de datos: datos (números...) -> ordenador (suma,...) -> información (resultado).
- -Arquitectura de Von Neumann:

ELEMENTOS INTERNOS DE UN PROCESADOR:

1.CPU

2.1. RT: resgistro de memoria, sumando 1(Registro Temporal)

rX sumando 2 ALU: los suma se almacena en rF

- -Banco de registros: celdas de almacenamiento temporal de datos.
- -Registro de dirección (AR)
- -Registro de datos (DR)
- -Flips-flops:
 - .Z: indicador de 0 (si ultimo resultado de la ALU es cero (Z <- 1)
 - .S: Indicador de signo (si último resultado de la ALU es negativo (S <- 1))
 - .C: Acarreo
 - .V: overflow
- -Puntero de pila (SP): para hacer llamadas a subrutinas
- -Registro de instrucción (IR): memoriza temporalmente la instrucción del programa.
- -Contador de programa (PC): contiene la dirección de memoria donde está la siguiente instrucción.
- -PC con conjunto de instrucciones: reducido (RISC) / complejo (CISC)

INSTRUCCIONES MÁQUINA:

Código de

Operando

Transferencia de datos en CODE 2

Binario	Hex	Nombre	Nem.	Param.	Explicacion
0000	0	Cargar	LD	rx,[v]	rx←M(rD+v)
0001	1	Almacenar	ST	[v],rx	M(rD+v)-rx
0010	2	Carga inmediata baja	LLI	rx,v	rx(15:8)←H'00; rx(7:0)←v
0011	3	Carga inmediata alta	LHI	rx,v	rx(15:8)←v
0100	4	Entrada	IN	rx,IPv	rx←IPv
0101	5	Salida	OUT	OPv,rx	OPv←rx
0110	6	Suma	ADDS	Rx,rs,ra	$ \begin{array}{l} \text{rx} \leftarrow \text{rs} + \text{ra} \\ \text{rx} \leftarrow \text{rs} - \text{ra} \\ \text{rx} \leftarrow (\text{rs} \cdot \text{ra})' \\ \text{C} \leftarrow \text{rx}(15), \text{rx}(i) \leftarrow \text{rx}(i-1), i=15,,1; \text{rx}(0) \leftarrow \\ \text{C} \leftarrow \text{rx}(0), \text{rx}(i) \leftarrow \text{rx}(i+1), i=0,,14; \text{rx}(15) \leftarrow \\ \text{C} \leftarrow (\text{rx}(0), \text{rx}(i) \leftarrow \text{rx}(i+1), i=0,,14 \end{array} $
0111	7	Resta	SUBS	rx,rs,ra	
1000	8	NAND	NAND	rx	
1001	9	Desplaza izquierda	SHL	rx	
1010	A	Desplaza derecha	SHR	rx	
1011	B	Desplaza arit. dcha.	SHRA	rx	
1100 1101 1110 1111	C D E F	Salto Subrutina Retorno Parar	B- CALL- RET HALT	cnd cnd -	Si cumple cnd, $PC \leftarrow rD$ Si cumple cnd, $rE \leftarrow rE-1$, $M(rE) \leftarrow PC$, $PC \leftarrow rC$ $PC \leftarrow M(rE)$; $rE \leftarrow rE+1$ Parar

-Tipos de instrucciones:

.Transferencias de daots: solicitan el movimiento de datos de una ubicación a otra

.Control: dirigen la ejecución del programa

EJECUCIÓN DE UN PROGRAMA:

- -¿Cómo ejecuta la CPU un programa?
- 1.Introducirlo en memoria
- 2. Almacenarlo en PC
- 3.Se ejecuta una a una cada instrucción .Fase de captación: , de ejecución)

AR: resgistro de direccion, de memoria donde escribir o leer DR: resgistro de datos que voy a escribir en la memoria o que acabo de leer de la memoria

(1 y 2 de forma secuencialy 3 y 4 de forma paralela)

COMPONENTES HW:

- -Carcasa: contiene los componentes (p.ej: los ventiladores)
- -Placa base:

.Alberga: CPU, RAM (tipo de almacenamiento primario. Tipos: DRAM: para implementar memoria principal, SRAM: cache -> ram, muy rápida y cara), ranuras de expansión, BIOS, Chipset -> (puente norte: controla acceso a la RAM y a la tarjeta de video, puente sur: permite la comunicación de la CPU con el disco duro, tarjeta de sonido...)

MEMORIAS EXTERNAS:

- .Memorias magnéticas: discos internos y externos
 - cintas magnéticas
- .Memorias ópticas:
 - CD-ROM
 - DVD
 - -Blue Ray
- .Memorias en estado sólido: -SSD
 - -Pendrive
 - Tarietas SD
- -Disco duro:
 - .Contiene uno o más platos flexibles que usan partículas magnéticas para almacenar información.
 - .Sellado y hermético (el polvo podría dañarlo).
 - .Múltiples platos uno encima del otro
 - .Cada plato tiene dos cabezales (lectura y escritura).
 - .El plato -> hecho de pequeños "imanes" a los que se le cambia la orientación de su polo para 0s y 1s.
 - .Pista: pequeña banda que da una vuelta entera
 - .Sector: arco que divide el disco en pequeños "trozos de pastel".

.Cilindros: la localización de los cabezales de lectura suele venir dada en cilindros.

.Head crash: cuando los cabezales tocan la superficie del plato.

- -Discos ópticos:
 - .utilizan láseres para leer datos (CD, DVD, BD)
 - .única pista en espiral
 - .también dividida en sectores
 - .no magnéticos
 - .un laser hace valles y colinas en la superficie para grabar los bits.
- -Almacenamiento en estado sólido: no tienen partes móviles, utilizan menos energía.
- -SSD:
 - .+: tiempos de acceso bajos, transferencia rápida, menor consumo eléctrico, más resistentes.
 - .-: menor capacidad, mayor precio.
- -Tarjeta de memoria: memoria flash removible, puede ser insertada en móviles, cámaras...
- -USB flash drives: se conectan al ordenador is available free of charge on
- -Disco duro externo

