МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

МЕТОДЫ ЧИСЛЕННОГО АНАЛИЗА

Лабараторная работа №4 студента 2 курса 3 группы **Лопатин Павел Юрьевич**

> Преподаватель Полещук Максим Александрович

1 Условие

В соответствии с вариантом, равным номеру в списке академической группы, значения функции f(x), заданной на интервале [a,b], даны в узлах $x_i=a+\frac{b-a}{n}*i, i=\overline{0,n}, n=50$. Значения функции и узлы сетки заданы с тремя значащими цифрами. Построить квадратичную функцию $P(x)=a_2x^2+a_1x+a_0$, которая даёт для f(x) наилучшее приближение по методу наименьших квадратов. Вывести значения коэффициентов a_0,a_1,a_2 с тремя значащими цифрами и среднеквадратичного уклонения с произвольным числом значащих цифр. Для вычислений использовать тип float.

2 Вариант

$$x^2 * \operatorname{arctg}(7 * x/13), x \in [-3, 3], n = 50$$
 (1)

3 Теория

Пусть функция y=f(x) задана таблицей своих значений: $y_i=f(x_i), i=\overline{0,n}$. Требуется найти многочлен фиксированной степени m, для которого среднеквадратичное отклонение $\sigma=\sqrt{\frac{1}{n+1}\sum_{i=0}^n(P_m(x_i)-y_i)^2}$ минимально.

Так как многочлен $P_m(x) = a_0 + a_1 x + \dots + a_m x^m$ определяется своими коэффициентами, то фактически нужно подобрать набор кофициентов a_0, a_1, \dots, a_m , минимизирующий функцию

$$\Phi(a_0, a_1, \dots, a_m) = \sum_{i=0}^n (P_m(x_i) - y_i)^2 = \sum_{i=0}^n \left(\sum_{j=0}^m a_j x_i^j - y_i \right)$$

Используя необходимое условие экстремума, $\frac{\delta\Phi}{\delta a_k}=0,\ k=\overline{0,m}$ получаем так называемую нормальную систему метода наименьших квадратов:

$$\sum_{i=0}^{m} \left(\sum_{i=0}^{n} x_i^{j+k} \right) a_j = \sum_{i=0}^{n} y_i x_i^k, \ k = \overline{0, m}$$

Полученная система есть система алгебраических уравнений относительно неизвестных $a_0,\ a_1,$

 \dots , a_m . Можно показать, что определитель этой системы отличен от нуля, то есть решение существует и единственно. Однако при высоких степенях m система является плохо обусловленной. Поэтому метод наименьших квадратов применяют для нахождения многочленов, степень которых не выше 5.

Если же используется многочлен второй степени $P_2(x) = a_0 + a_1 x + a_2 x^2$, то нормальная система уравнений примет вид:

$$\begin{cases} (n+1)a_0 + \left(\sum_{i=0}^n x_i\right)a_1 + \left(\sum_{i=0}^n x_i^2\right)a_2 = \sum_{i=0}^n y_i \\ \left(\sum_{i=0}^n x_i\right)a_0 + \left(\sum_{i=0}^n x_i^2\right)a_1 + \left(\sum_{i=0}^n x_i^3\right)a_2 = \sum_{i=0}^n y_i x_i \\ \left(\sum_{i=0}^n x_i^2\right)a_0 + \left(\sum_{i=0}^n x_i^3\right)a_1 + \left(\sum_{i=0}^n x_i^4\right)a_2 = \sum_{i=0}^n y_i x_i^2 \end{cases}$$

4 Отчет

$$a_0 = 0.000422$$

 $a_1 = 2.080$
 $a_2 = 0.00112$
 $r = 1.352$