IN THE CLAIMS

Claims 1-11 (Canceled).

Claim 12 (Previously Presented): An organic EL device comprising a cathode, an anode, and at least one organic compound layer,

wherein the organic compound layer comprises an organic compound represented by formula (I):

$$(R_{01})r_1$$
 $(R_{04})r_4$ (I) $(R_{02})r_2$ (I)

L₀ is substituted or unsubstituted p-phenylene group having two rings;

- r₂ and r₄ are each an integer of from 1-2,
- R_{02} and R_{04} are each a methoxy or phenoxy, when r_2 and r_4 , respectively, are each 1, or together with the phenyl group bonded thereto each form a naphthyl group, when r_2 and r_4 , respectively, are each 2,
- r₁ and r₃ equal 1, and
- R_{01} and R_{03} are each a diarylamino group having the following formula:

$$-N(R_{11}$$

where R_{11} and R_{12} are each an aryl group.

Claim 13 (Previously Presented): The organic EL device of claim 12, wherein L_0 is a 4,4'-biphenylene group.

Claim 14 (Previously Presented): The organic EL device of claim 13, further comprising at least two organic compound layers, wherein the organic compound layer comprising an organic compound represented by formula (I) is a hole injecting and transporting layer.

Claim 15 (Previously Presented): The organic EL device of claim 13, further comprising three or more layers comprising at least one organic compound layer having a function of injecting holes and at least one organic compound layer having a function of transporting holes, wherein:

the organic compound layer having said function of injecting holes comprises said organic compound represented by formula (I).

Claim 16 (Previously Presented): The organic EL device of claim 14, wherein at least one layer of said at least two organic compound layers comprises a light emitting layer containing a hole transporting compound and an electron transporting compound.

Claim 17 (Previously Presented): The organic EL device of claim 16, wherein said light emitting layer is disposed between an organic compound layer having a function of injecting holes and/or transporting holes and an organic compound layer having a function of transporting electrons and/or injecting electrons.

Claim 18 (Previously Presented): The organic EL device of claim 14 comprising a hole injecting electrode, at least one organic compound layer having a function of injecting and transporting holes, an organic compound layer having a function of transporting holes, a light emitting layer, and an electron injecting electrode laminated on said hole injecting electrode in the described order.

Claim 19 (Previously Presented): The organic EL device of claim 12 comprising a hole injecting electrode, at least one organic compound layer comprising said compound of formula (I), a light emitting layer, and an electron injecting electrode laminated on said hole injecting electrode in the described order.

Claim 20 (Previously Presented): The organic EL device of claim 14, wherein each of said at least one organic compound layer comprising said compound of formula (I) has a thickness of at least 100 nm.

Claim 21 (Previously Presented): The organic EL device of claim 16, wherein said layer comprising said organic compound represented by formula (I) has a Hole mobility of at least 1.0×10^{-3} cm²/Vs.

Claims 22-30 (Canceled).

is

Claim 31 (New): The organic EL device of claim 13, wherein the organic compound

$$H_3C$$
 N
 CH_3

Claim 32 (New): The organic EL device of claim 13, wherein the organic compound

is

Claim 33 (New): The organic EL device of claim 13, wherein the organic compound

$$H_{3}C$$
 CH_{3} -O- CH_{3}

Claim 34 (Currently Amended): The organic EL device of claim 13, wherein the organic compound is