KAIST

2021 MAS575 Combinatorics

Homework 5

Fanchen Bu

University: KAIST

Department: Electrical Engineering

Student ID: 20194185

May 25, 2021

Contents

1	HW 5.1	2
2	HW 5.2	3
3	HW 5.3	4
4	HW 5.4	6
5	HW 5.5	7

Let G be a simple graph on the vertex set $\{v_1, \ldots, v_n\}$. let $A = (a_{ij})$ be an $n \times n$ real symmetric matrix such that for all $i, j \in [n]$, $a_{ij} \neq 0$ iff v_i is adjacent to v_j . Let $\alpha(G)$ be the maximum size of an independent set in G. Among n eigenvalues of A, let N^+ be the number of positive eigenvalues of A and N^- be the number of negative eigenvalues of A. Prove that $\alpha(G) \leq \min(n - N^+, n - N^-)$.

Proof. Recall Cauchy's interlacing theorem.

Theorem 1.1 (Corollary in the lecture). Let A be an $n \times n$ real symmetric matrix and let B be a $k \times k$ principal submatrix of A. Let $r_1 \geq \cdots \geq r_n$ be the eigenvalues of A and let $s_1 \geq \cdots \geq s_k$ be the eigenvalues of B. Then $r_{i+n-k} \leq s_i \leq r_i$ for each $i \in [k]$.

Set $k = \alpha(G)$ and fix an independent set $K \subset \{v_1, \ldots, v_n\}$ with |K| = k. We now let B be the principal submatrix of A induced by the subgraph of G on K. Let $r_1 \geq \cdots \geq r_n$ be the eigenvalues of A and let $s_1 \geq \cdots \geq s_k$ be the eigenvalues of B. By the above theorem, we have $r_{i+n-k} \leq s_i \leq r_i$ for each $i \in [k]$. Note that B is a zero-matrix and thus $s_i = 0$ for each $i \in [k]$, which implies that $r_{i+n-k} \leq 0$ and $r_i \geq 0$ for each $i \in [k]$. This immediately gives that both N^+ and N^- are at most n-k and thus provides the desired bound for $k = \alpha(G)$, completing the proof.

Assume that n is not too small. Prove that if A is a subset of [n] with |A| > 2n/3, then A has an arithmetic progression of length 3.

Remark 2.1. When n = 4 or n = 5 the result does not hold. When n = 4, we can choose $A = \{1, 2, 4\}$ with |A| = 3 > 8/3 = 2n/3 but A does not contain any arithmetic progression of length 3. When n = 5, we can choose $A = \{1, 2, 4, 5\}$ with |A| = 4 > 10/3 = 2n/3 but A does not contain any arithmetic progression of length 3.

Proof. First consider the case when 3 divides n. We partition [n] into n/3 consecutive triples

$$\{1,2,3\},\{4,5,6\},\ldots,\{n-2,n-1,n\}.$$

The key fact is that if $A \subset [n]$ contains no arithmetic progression, then A can have at most 2 elements of each triple, which implies that $|A| \leq 2n/3$. This is a contradiction with the given condition |A| > 2n/3, completing the proof.

Now we assume 3 does not divide n and $n \ge 7$. First consider the case when $n \equiv 1 \pmod 3$, we partition [n] into (n+2)/3 groups

$$\{1,2,3\},\{4,5,6\},\ldots,\{n-3,n-2,n-1\},\{n\}.$$

Suppose $A \subset [n]$ contains no arithmetic progression. Together with the condition that |A| > 2n/3, A contains exactly two elements in each triple and n must be in A. Moreover, to avoid 3-AP, n-2 and n-1 cannot be in A together, so $n-3 \in A$, then $n-6 \notin A$, which implies that both n-5 and n-4 are in A. However, this forms a 3-AP n-5, n-4, n-3, contradicting with the assumption that A contains no arithmetic progression.

Now consider the case when $n \equiv 2 \pmod{3}$. In this case, |A| > 2n/3 means that $|A| \ge (2n+2)/3$. Suppose $A \subset [n]$ contains no arithmetic progression. We partition [n] into (n+1)/3 groups

$$\{1, 2, 3\}, \{4, 5, 6\}, \dots, \{n - 4, n - 3, n - 2\}, \{n - 1, n\}.$$

Then to avoid arithmetic progressions, A must contain exactly two elements in each triple and both n-1 and n must be in A. Then the above argument for the case when $n \equiv 1 \pmod{3}$ can be applied and this completes the proof.

Prove that for all n, there exists N satisfying the following: for every bipartite graph G with the bipartition (A, B) such that no two vertices in A have the same set of neighbors and $|A| \geq N$, there exist distinct vertices $a_1, a_2, \ldots, a_n \in A$ and $b_1, b_2, \ldots, b_n \in B$ such that one of the following hold:

- 1. For all $1 \leq i, j \leq n, a_i$ is adjacent to b_j iff i = j.
- 2. For all $1 \le i, j \le n, a_i$ is adjacent to b_i iff $i \le j$.
- 3. For all $1 \le i, j \le n, a_i$ is adjacent to b_i iff $i \ne j$.

Remark 3.1. We have |A| different subsets of [|B|]. Equivalently, we have a $\{0,1\}$ -matrix with |A| columns and |B| rows such that no two columns are identical.

Remark 3.2. Equivalently, we need to show that with the given conditions, when |A| is sufficiently large, we cannot avoid all the three induced subgraphs.

Proof. Consider a $\{0,1\}$ -matrix M with |A| columns and |B| rows, representing the adjacency matrix of G. The given conditions is equivalent to that no two columns of M are identical. We need to show that when |A| is sufficiently large, we cannot avoid all the three submatrices I_n , $J_n - I_n$, and U_n when the permutations of rows and columns are allowed, where I_n is the identity $n \times n$ matrix, J_n is the all-one $n \times n$ matrix, and $U_n = (u_{i,j})$ is the $n \times n$ matrix with $u_{i,j} = 1$ iff $1 \le j \le i \le n$. We follow the paper Unavoidable Minors of Large 3-Connected Binary Matroids.

Definition 3.1. Let $n, p \ge 0$ with n + p > 0. A $\{0, 1\}$ -matrix $M = (m_{i,j})$ is [n, p]-semidiagonal if M has exactly n + p columns and at least n rows, and, for every row $i \in [n] \setminus \{n + p\}$, we have $m_{i,i} \ne m_{i,i+1}$ and $m_{i,i+1} = m_{i,j}$ for all $j \in [n + p] \setminus [i]$.

Lemma 3.1. For all $n \geq 2$, let $g_1(n) = 3^{n+1}$. Let C be a $\{0,1\}$ -matrix with at least $g_1(n)$ columns with no two columns identical. Then there is an [n,0]-semidiagonal matrix D obtained from C by deleting columns and permuting rows.

Proof of Lemma 3.1. We may assume that C has exactly $g_1(n)$ columns. We will inductively construct a sequence of matrices $C = C_0, C_1, \ldots, C_n = D$ where for each $m \in \{0, 1, \ldots, n\}$, C_m is $[m, g_1(n-m)]$ -semidiagonal and has been obtained from C by deleting columns and permuting rows. It it easy to check that $C_0 = C$ is $[0, g_1(n)]$ -semidiagonal. Now suppose $m \in [n]$ and $C_{m-1} = (c_{i,j})$ is $[m-1, g_1(n-m+1)]$ -semidiagonal and has been obtained from C by deleting columns and permuting rows. Note that C_{m-1} has $m-1, g_1(n-m+1) \ge m+2$ columns. By the definition of semidiagonality and the property of C, the m-th and (m+1)-th columns of C_{m-1} are not identical but agree in the first m-1 rows. Therefore, there exists $i \ge m$ such that $c_{i,m} \ne c_{i,m+1}$. Let $J = [m-1+g_1(n-m+1)] \setminus [m+1]$ and consider the entries $c_{i,t}$ for $t \in J$, where $|J| = m-1+g_1(n-m+1)-(m+1) > 2g_1(n-m)$. By pigeonhole, there exist $J' \subset J$ with $|J'| = g_1(n-m)$ and $\alpha \in \{0,1\}$ such that $c_{i,t} = \alpha$ for all $t \in J'$. Moreover, since $c_{i,m} \ne c_{i,m+1}$, there is an $m' \in \{m, m+1\}$ such that $c_{i,m'} \ne \alpha$. We construct C_m from C_{m-1} by only keeping columns with index in $[m-1] \cup \{m'\} \cup J'$ and swapping rows i and m. It is

easy to check that the constructed C_m is $[m, g_1(n-m)]$ -semidiagonal and has been obtained from C by deleting columns and permuting rows. By induction, we complete the proof.

Definition 3.2. We say that a $k \times k$ $\{0,1\}$ -matrix $M = (m_{i,j})$ is **good** if $M \in \{I_k, J_k - I_k, U_k, J_k - U_k\}$.

Lemma 3.2. For all $n \geq 2$, let $g_2(n) = 2R(n,n)$, where $R(\cdot,\cdot)$ is the Ramsey number. Suppose $D = (d_{i,j})$ is a $[g_2(n), p]$ -semidiagonal matrix. Then D has a good principal submatrix E that has n columns.

Proof. Let $m = g_2(n) = 2R(n, n)$ and consider $d_{1,1}, d_{2,2}, \ldots, d_{m,m}$. By pigeonhole, there exist $J \subset [m]$ with |J| = R(n, n) such that all $d_{i,i}$ are identical for $i \in J$. We construct a principal submatrix $F = (f_{i,j})$ of D by only keeping the columns and rows with index in J. Note that all elements on the main diagonal of F are identical. Also note that by the definition of semidiagonality, all $f_{i,j}$ with j > i are identical and not equal to the elements on the main diagonal. Consider a 2-edge-coloring of $K = K_{R(n,n)}$ with vertex set [R(n,n)] where for all i > j, the edge (i,j) is colored by $f_{i,j}$. By the definition of Ramsey numbers, there exists $J' \subset [R(n,n)]$ with |J'| = n such that the induced subgraph of K on J' is monochromatic. Construct E from F by only keeping the rows and columns with index in J'. It is easy to check that E is a principal submatrix of D and E is good, which completes the proof.

Combining the above to lemmas, we let $N = g_1(g_2(n+1))$ and require $|A| \ge N$, and then we conclude that there exists a $(n+1) \times (n+1)$ submatrix of M that is in $\{I_{n+1}, J_{n+1} - I_{n+1}, U_{n+1}, J_{n+1} - U_{n+1}\}$ when the permutations of rows and columns are allowed. By choosing n rows and n columns properly with some permutations if needed, we can always have a $n \times n$ submatrix that is I_n or $J_n - I_n$ or U_n , completing the proof.

Let t, r be positive integers. Prove that there exists a number N such that any r-coloring of numbers in [N] contains an arithmetic progression $a, a+d, \ldots, a+(t-1)d \in [N]$ of length t $(d \neq 0)$ such that $a, a+d, \ldots, a+(t-1)d$ and d have the same color.

Remark 4.1. Maybe we can leave the first D numbers [D] representing the possible distances uncolored and apply V and V are V are V and V are V are V are V are V are V and V are V and V are V and V are V and V are V are V are V are V and V are V are V and V are V are

Proof. I follow the idea of a classmate **Yuil Kim**. Recall Van der Waerden's Theorem.

Theorem 4.1 (Van der Waerden's Theorem). For any positive integers k and l, there exists a positive integer $N_v = N_v(k, l)$ such that any k-coloring of [N] with $N \ge N_v$ creates a monochromatic l-AP.

We fix t and apply induction on r. When r=1, it is trivially true. Now suppose we have $N_0=N(t,r-1)$ such that any (r-1)-coloring of $[N_0]$ contains an arithmetic progression $a,a+d,\ldots,a+(t-1)d\in[N_0]$ of length t $(d\neq 0)$ such that $a,a+d,\ldots,a+(t-1)d$ and d have the same color. Let M be a large integer to be specified later and let $N_1=N_v(r,Mt)$ be a positive number given by Van der Waerden's theorem such that any r-coloring of $[N_1]$ creates a monochromatic Mt-AP. Let $c,c+e,c+2e,\ldots,c+(Mt-1)e$ with $e\neq 0$ be such a monochromatic Mt-AP. If any element in $\{e,2e,\ldots,Me\}$ has the same color with the monochromatic Mt-AP, then we are done. So we may assume that none element in $\{e,2e,\ldots,Me\}$ has the same color with the monochromatic Mt-AP, which means at most r-1 colors appear in $\{e,2e,\ldots,Me\}$. By induction, if $M\geq N_0$, then any (r-1)-coloring of [M] contains an arithmetic progression $a,a+d,\ldots,a+(t-1)d\in [M]$ of length t $(d\neq 0)$ such that $a,a+d,\ldots,a+(t-1)d$ and d have the same color, which, by coloring each element $ie\in\{e,2e,\ldots,Me\}$ for $i\in [M]$ with the same color of i in the previous coloring of [M], immediately gives an arithmetic progression $ae,(a+d)e,\ldots,(a+(t-1)d)e\in\{e,2e,\ldots,Me\}$ such that $ae,ae+de,\ldots,ae+(t-1)de$ and de have the same color. Therefore, we can let $N=N(t,r)=N_v(r,tN(t,r-1))$ and complete the proof by the induction.

Prove that for all k and q, there exists N such that every sequence a_1, a_2, \ldots, a_N of positive integers with $a_1 < a_2 < \cdots < a_N$ and $a_{i+1} - a_i \le q$ for all $i \in [N-1]$ has a subsequence that is an arithmetic progression of length k.

Remark 5.1. This result directly follows from Szemerédi's Theorem because for every sequence a_1, a_2, \ldots, a_N of positive integers with $a_1 < a_2 < \cdots < a_N$ and $a_{i+1} - a_i \le q$ for all $i \in [N-1]$, we may assume that $a_1 = 1$ and then it has a upper density at least 1/(q+1) in [N(q+1)].

Proof. Recall Van der Waerden's Theorem again.

Theorem 5.1 (Van der Waerden's Theorem). For any positive integers k and l, there exists a positive integer $N_0 = N_0(k, l)$ such that any k-coloring of [N] with $N \ge N_0$ creates a monochromatic l-AP.

We may assume that $a_1 = 1$. Fix a sequence $A = (1 = a_1, a_2, ..., a_M)$ of positive integers with $a_1 < a_2 < \cdots < a_M$ and $a_{i+1} - a_i \le q$ for all $i \in [M-1]$, where M is a positive integer to be determined later. Clearly, $a_M \le (M-1)q + 1$. We apply a q-coloring of [Mq] as follows:

- 1. We color $V_0 = A$ with color 0;
- 2. We color $V_1 = \{a+1 : a \in A\} \setminus V_0$ with color 1;
- 3. We color $V_2 = \{a + 2 : a \in A\} \setminus (V_0 \cup V_1)$ with color 2;
- 4. ...
- 5. We color $V_{q-1} = \{a + q 1 : a \in A\} \setminus \bigcup_{i=0}^{q-2} V_i$ with color q 1.

By the above Van der Waerden's Theorem, there exists a positive integer $N_0 = N_0(q, k)$ such that any q-coloring of [N] with $N \geq N_0$ creates a monochromatic k-AP. Therefore, we can choose M such that $Mq \geq N_0$ and then there exists $j \in \{0, 1, \ldots, q-1\}$ such that V_j contains a k-AP, say $(b, b+d, b+2d, \ldots, b+(k-1)d)$ with $d \neq 0$, which gives a k-AP $(b-j, b-j+d, b-j+2d, \ldots, b-j+(k-1)d)$ in A, completing the proof.