修士論文

詳細な交通行動推定のための アクティビティシミュレーションと 観測データの統合に関する研究

Integration of Activity-based Simulation and Observation Data for Estimation of Detailed Travel Behavior

37156041 原田 遼

主查:布施 孝志 准教授

副查:羽藤 英二 教授

署名	日付	卸
主査		
副査		

東京大学大学院 工学系研究科 社会基盤学専攻 2017年3月

論文要旨

近年,交通需要予測の結果から,安全性・利便性・快適性といった質的評価が求められており,個人の移動及びその変化について詳細に把握する必要性が高まってきている.個人の移動に関する情報取得のため,従来から,パーソントリップ(PT)調査や,アクティビティベースの非集計交通行動モデルの開発が行われてきた.アクティビティベースモデルによる分析では個人の1日の活動全体を詳細に表現できるが,10年に1度のPT調査データを前提とするため,現況に即した個人の移動の把握には限界がある.一方,PT調査データに加え,ETC2.0 やモバイル空間統計等,多様な交通データの取得可能性が広がってきている.これらのデータは,PT調査と比べて高頻度に取得可能であるため,現況に合った交通状態の推計への寄与が期待される.しかし,多くの交通データは集計データであり,個人属性が不明であること等から,交通データ単体での個人の移動やその変化に関する分析は困難である.そこで本研究では,個人の1日の活動全体を詳細に表現できるアクティビティモデルと,動的な交通状況の再現が可能な交通データの両者を統合することにより,現況に即した個人の移動の再現を目指すことを目的とする.

アクティビティモデルと交通データの統合は、データ同化手法における状態空間モデルの枠組みに基づき定式化する。データ同化手法を用いることにより、観測データの補完的利用によるアクティビティモデルの予測精度の改善や、シミュレーションによる観測データの補間が可能となる。本研究では、状態空間モデルにおいて、各個人の位置を状態ベクトルとして表現し、観測データから得られるゾーン滞留人口を観測ベクトルとして定義する。さらにシステムモデルとして、アクティビティモデル PCATS を利用し、観測モデルについては、状態ベクトルと観測ベクトルの類似度として定式化する。フィルタリングにおいては、モデルの非線形性や非正規性を考慮し、パーティクルフィルタにより実装する。具体的には、まずアクティビティモデル PCATS により各個人の1日の移動を予測する。ここで任意の時間帯において逐次観測データによるフィルタリングを行うことにより、現況に即した1日の個人の移動が再現可能となる。さらに、再現された個人の行動結果に基づき、交通需要予測において重要な情報となる時間帯別ゾーン滞留人口やOD表の推計も可能となる。

本研究で提案した統合手法を、実際に東京都心三区(千代田区・中央区・港区)に居住する個人に対して適用し、現況に即した 1 日の個人の移動を再現した. さらにその行動結果に基づき推計される時間帯別ゾーン滞留人口や OD 表を、観測データと比較することにより、精度検証を行った. その結果、時間帯別ゾーン滞留人口や OD 表の推定において、提案手法により再現性が改善され、本研究で提案した統合手法の有効性が確認された. 今後の課題としては、さらなる精度向上のためのフィルタリング手法の改善や広域への適用による手法の有効性の検証、観測データとしての異種データの利用が挙げられる.

以上により,本研究は現況に即した個人の移動の再現するための手法として,今後の質的 交通需要予測に貢献することが期待される.

目次

第1章	序	論	. 1
1.1	研究	記の背景	. 1
1.2	研究	己 の目的	. 3
1.3	本談	(主)	. 3
第2章	即	E往の研究とデータの整理	. 5
2.1	アク	⁷ ティビティモデル	. 5
2.1.	1	代表的なアクティビティモデル	. 5
2.1.	2	生活行動シミュレータ PCATS	. 6
2.2	利用	引可能な交通データ	13
2.2.	1	パーソントリップ調査	13
2.2.	2	モバイル空間統計	14
2.2.	3	ETC2.0 プローブデータ	15
2.3	デー	- 夕同化	16
第3章	ラ	[*] ータ同化の理論	17
3.1	デー	- 夕同化の概要	17
3.2	一般	は状態空間モデルの概要	17
3.3	逐步	マベイズ推定	19
3.4	パー	-ティクルフィルタ	21
第4章	ア	クティビティモデルと観測データの統合手法の開発	24
4.1	デー	- 夕同化による統合手法の枠組み	24
4.2	状態	ミベクトル・観測ベクトル	24
4.2.	1	状態ベクトル	24
4.2.	2	観測ベクトル	25
4.3	シブ	マスモデル・観測モデル	27
4.3.	1	システムモデル	27
4.3.	2	観測モデル	28
4.4	フィ	アルタリング手法の枠組み	29
4.4.	1	フィルタリング手法の概要	29
4.4.	2	フィルタリングにおける制約	33
4.5	構築	こしたモデル	36
4.6	ETO	C2.0 データの導入に向けて	36
第5章	遃	5用	38
5.1	適用	対象ゾーン・利用データ	38
5.1.	1	適用対象ゾーン	38

5.1	1.2	利用データ	40
5.2	適用]手順	41
5.2	2.1	適用のための諸条件	41
5.2	2.2	適用の流れ	42
5.3	精度	E検証実験	43
5.4	東京	『三区時間帯別ゾーン滞留人口推計	50
5.5	考察	₹	58
第6章	絹	ta	60
6.1	研究	ごの成果	60
6.2	今後	その課題	61

参考文献

謝辞

図 目次

図	1-1	パーソントリップ調査の調査票一例	. 1
図	1-2	非集計交通行動分析モデルの変遷	2
図	2-1	PCATS の入出力	. 7
図	2-2	PCATS における意思決定時点での意思決定過程	. 8
図	2-3	自由時間帯における意思決定時点とその対象時間帯	. 8
図	2-4	活動内容選択モデルにおける選択構造	9
図	2-5	交通機関・目的地選択モデルにおける選択構造	10
図	2-6	時空間プリズム概念図	12
図	2-7	PT 調査の概念図	14
図	2-8	モバイル空間統計イメージ	15
図	3-1	一般状態空間モデル	18
図	3-2	状態推定のための条件付分布の模式図	20
図	3-3	パーティクルフィルタの概念図	22
図	4-1	面積按分	27
図	4-2	フィルタリングの操作①	30
図	4-3	フィルタリングの操作②	30
図	4-4	フィルタリングの操作③	31
図	4-5	フィルタリングの操作④	32
図	4-6	フィルタリングの操作⑤	33
図	4-7	フィルタリングの制約①	34
図	4-8	プリズム制約を考慮した個人の再配置	35
図	4-9	手法の全体像	36
図	5-1	対象ゾーンマップ	39

表 目次

表	2-1	PCATS 内の主なモデルの概要	.11
表	2-2	ETC2.0 プローブデータ概要	15
表	4-1	入手可能な交通データの比較表	25
表	4-2	PCATS の入力・出力データ	28
表	5-1	都心三区ゾーン対応表	39
表	5-2	時間帯区分の定義	42
表	5-3	ゾーン滞留人口比較結果(①午前ピーク/9:00)(検証実験)	44
表	5-4	ゾーン滞留人口比較結果(②日中/12:00)(検証実験)	44
表	5-5	ゾーン滞留人口比較結果(③夕方ピーク/17:00)(検証実験)	45
表	5-6	ゾーン滞留人口比較結果(④夜間ピーク/21:00)(検証実験)	45
表	5-7	内々OD 表比較結果 (①午前ピーク/9:00) (検証実験)	46
表	5-8	内々OD 表比較結果(②日中/12:00)(検証実験)	47
表	5-9	内々OD 表比較結果 (③夕方ピーク/17:00) (検証実験)	48
表	5-10	内々OD 表比較結果(④夜間ピーク/21:00)(検証実験)	49
表	5-11	精度比較結果(検証実験)	50
表	5-12	同化後のゾーン滞留人口比較(①午前ピーク/9:00)	51
表	5-13	同化後のゾーン滞留人口比較(②日中/12:00)	52
表	5-14	同化後のゾーン滞留人口比較(③夕方ピーク/17:00)	52
表	5-15	同化後のゾーン滞留人口比較(④夜間ピーク/21:00)	
表	5-16	精度検証結果(ゾーン滞留人口)	53
表	5-17	居住地別ゾーン滞留人口比較(①午前ピーク/9:00)	54
表	5-18	居住地別ゾーン滞留人口比較(②日中/12:00)	55
表	5-19	居住地別ゾーン滞留人口比較(③夕方ピーク/17:00)	56
表	5-20	居住地別ゾーン滞留人口比較(④夜間ピーク/21:00)	57
表	5-21	統計量比較結果	58

第1章 序論

1.1 研究の背景

地域交通計画策定や,道路施策等の事業評価において,これまでも交通需要の予測が重要な位置を占めてきた.さらには,環境負荷,交通サービス水準の評価,個人の生活の質の変化等の観点から見た安全性・利便性・快適性といった質的評価や,施策実施による経済インパクト等の評価が求められており,そのために個人の移動や移動目的,さらにそれらの変化についての詳細な知見を得る必要性が高まってきている.個人の移動や目的に関する情報取得のため,従来からパーソントリップ調査が実施されている.パーソントリップ調査は一日の移動軌跡に性別・年代等の個人属性や移動目的が紐付けられた重要なデータであり,都市圏の総合的な交通計画策定のために利用されてきた.しかしながら,調査間隔が10年に一度であるため,種々の環境の変化に伴う現況との間に乖離が生じている可能性があるという点,また大規模調査であるために多大な費用と労力を要するという点において課題も存在している.また,上記の分析目的のために,より詳細な情報取得が求められている.

図 1-1 パーソントリップ調査の調査票一例

個人の移動とその目的の変化に関してさらなる詳細な知見を得るため、非集計の交通行動分析モデルが発展を遂げてきた. モデルは、従来のトリップ単位で分析を行うトリップベースから、ツアー単位での分析を行うツアーベース、そしてアクティビティベースへと変遷をたどっている. 特に、個人の移動は活動の派生需要であるという立場に立ったアクティビ

ティベースのモデルは、時空間制約等の考慮等、従来の交通行動分析モデルに転換をもたらした。アクティビティベースモデルでは、さまざまな個人属性や制約条件の下、個人が無数の活動可能性の中からどのように活動内容や活動時間を決定し、行動しているかを推定する。従来の四段階推定法との違いとして、各モデルの整合性や一貫性、時空間の解像度、行動理論との整合性等が挙げられる。時空間の細かな表現が出来ることにより、アクティビティモデルを用いた分析では個人の一日の活動全体をより詳細に表現できるメリットがある。しかし、これらのアクティビティベースモデルの多くはパーソントリップ調査データを前提としているため、現況に即した個人の移動・移動目的の変化への対応は限界があると考えられる。

図 1-2 非集計交通行動分析モデルの変遷

一方,近年ではパーソントリップ調査データの他にも、 ETC2.0 プローブデータやモバイル空間統計等,多様な交通データの取得可能性が広がってきている。 ETC2.0 プローブデータは、車両と路側機間の通信により、車両が ETC スポットを通過するたびにリアルタイムに得られる車両の移動データで、車両毎の基本情報・走行履歴を含むが、個人属性は不明である。また、モバイル空間統計は通信基地局通信履歴 (CDR: Call Detail Record) に含まれる位置情報を利用して集計され、1時間毎に日本全国のメッシュ別の滞在人数を24時間365日把握することが出来るデータである。データの個人属性は性別・年代・居住地のみとなっている。これらの交通データは、パーソントリップ調査と比較してデータの取得は高頻度であるため、現況に合った交通 OD 推計や滞留人口の推計等への寄与が期待される。一方、個人属性や移動目的は不明であるため、これらの交通データ単体で移動目的等の変化に関する分析は困難であると考えられる。また、得られる交通データ間で、時空間的にバラつきがあることも、交通状態推定に向けた利用に対して課題となっている。

そこで本研究では、個人の一日の活動全体をより詳細に表現できるアクティビティモデルと、高頻度の取得により動的な交通状況の再現が可能な交通データの両者を統合し、補完的に利用することにより、現況に即した個人の移動の再現を目指す.これにより、各個人の行動から、現状に即したゾーン滞留人口や OD 表といった、交通需要予測において重要な交通状態に関する情報を推計することも可能となる.アクティビティモデルと観測データ

を統合するための手法を検討するにあたり、最も適切なものの一つとして、データ同化アプローチが挙げられる。データ同化は、数値シミュレーションと実測データの両者を用いることにより、数値シミュレーションの精度・性能の改善を図る、あるいはシミュレーションモデルにより観測の不足を補うことができるといった特性を持つ手法で、地球科学の分野で広く用いられてきた。本研究でもデータ同化手法を用いる利点として、同様に 2 点考えられる。1 点目は、観測データを補完的に利用することで、アクティビティベースシミュレーションの予測精度を改善し、個人の1日の行動パターンの再現性を向上する事である。2 点目は、シミュレーションにより、観測データの補間を行うこと、例えば調査間隔の長いパーソントリップ調査が得られない調査間におけるデータ補間を行う事である。近年では、このデータ同化アプローチを交通データに適用した研究も多く見られる。しかし、アクティビティモデルと交通データの統合にデータ同化アプローチを適用し、現況に即した個人の移動の再現を目指す研究は例がなく、本研究で取り組む意義があると考える。

1.2 研究の目的

以上の背景の下,本研究では,アクティビティモデルと観測データの統合により,現況に即した詳細な個人の移動を推定することを目的とする.さらに,推定された各個人の行動結果に基づき,現況に即したゾーン滞留人口や OD 表の推計を行う.具体的には,まずアクティビティモデルにより対象域内の各個人の1日の移動とその目的を再現する.ここで,アクティビティモデルの再現精度を向上させるため,1日の中の任意の時間帯において逐次観測データによるフィルタリングを行うことで,より現況に即した個人の移動を再現し,それにより,「どのような人が,いつ,どこにいるのか」を示す時間帯別ゾーン滞留人口やOD表を推計する.

両者の統合は、データ同化手法における状態空間モデルの枠組みに基づいて行う. 各個人の位置をシステムの状態ベクトルとして表現し、観測データとして交通データのうちモバイル空間統計を用いる. そして、システムモデルとしてアクティビティモデルを利用し、観測モデルを定式化する事で、各時間帯においてフィルタリングを行うことにより、現況に即した個人の移動を時間帯毎に推定することが可能になる.

1.3 本論文の構成

本論文は、本章を含む全6章で構成される.

第2章にて,現在利用可能な交通データと,アクティビティモデルの最新状況の整理,またデータ同化を利用した交通状態推定に関する研究のレビューを行う.第3章では,デー

夕同化の理論について詳細を述べる. 第 4 章では、本研究においてデータ同化アプローチを適用するに当たり、具体的な手法の詳細を述べる. 第 5 章では、第 4 章で提案した手法の適用を行う. 検証方法を述べると共に、精度検証結果を示す. 最後に、第 6 章で本研究の成果と課題について述べる.

第2章 既往の研究とデータの整理

これまで、主に交通工学の分野でシミュレーションや交通データを利用した多くの交通 状態推計に関する研究が行われてきた。その中で、本研究の目的は、アクティビティベース モデルと異種交通データを統合する事で、現況に即した個人の移動を再現し、その結果より、 対象ゾーンの時間帯別ゾーン滞在人数や OD 表を高精度に再現することである。本章では まず、アクティビティモデルに関する研究と本研究で利用するアクティビティモデルにつ いて整理する。その後、本研究で用いる交通データを検討するため、公開・販売が行われて おり、企業や研究機関が利用可能な交通データを紹介する。その後、提案手法の詳細検討の ため、データ同化を用いた交通状態推定に関して、既往研究のレビューを行う。

2.1 アクティビティモデル

従来の交通需要予測はいわゆるトリップベースと呼ばれ、トリップ (移動) に着目して、OD を与件としてその手段・経路などを説明するものであった. 一方、本研究で対象とするアクティビティモデルは活動に着目したモデルであり、活動を選択の対象として分析を行う. 具体的には活動の内容と時間・空間を主な要素として説明することで、異なる時空間での活動と同時にそこまでのトリップが把握できる. また、活動の分析には時間の概念が含まれるため、一日単位での生活の分析となり、その結果移動手段の関連性を持たせることができる. これらの特性によって、様々な交通政策に対する反応がより正確に把握できると考えられている. 本節ではまずこのアクティビティベースモデルについて、従来に提案されている代表的なモデルを概観し、特徴を整理する.

2.1.1 代表的なアクティビティモデル

1970年に、Hemmens が、各個人が時間空間軸の中でどのように行動したのかを理解することが都市計画の立案、評価のために有効な手法であると主張し、Hagerstrand が個人の生活行動を時間空間座標上での軌跡と言う形で定量的に表現する方法を提案して以来、個人の時間軸・空間軸上での生活行動を再現し、それによって交通需要の解析を目指す生活行動モデルが多く提案されてきた。これまで、構造方程式モデルや、効用理論の枠組みに基づくモデル等、様々なモデルアプローチが生活行動を再現するための枠組みとして適用されてきた。構造方程式モデルの枠組みに基づくモデルは、個人の生活行動を、活動内容別の

活動数,活動時間等のいくつかの指標で表現し、それらの指標を内生変数.個人属性や交通ネットワークに関する属性等を外生変数として構造方程式を定式化するものである.このアプローチに基づいた研究として Kitamura らの研究が挙げられる.効用理論の枠組みに基づくモデルは、個人が制約条件下で効用を最大化するように行動を行うと仮定したモデルである.個人の生活パターンを効用理論に基づいて定式化した初期的な研究としては、Becker の研究が挙げられる.

こういったアクティビティモデルの開発が進む流れの中で、近年ではマイクロシミュレーションの枠組みで、時間軸上での個人の生活行動の再現を図る研究も行われてきた.種々の交通需要マネジメント政策の実施に伴う個人の生活行動の変化を予測することを目的として開発された AMOS がその例としてあげられる。中でも、個人の生活行動を再現するモデルを構築する際、個人が種々の制約条件の下で交通行動を行っているとの認識を前提とするアプローチの重要性が示されてきている。

本研究では、実用時の利点を考え、アクティビティモデルの中で、藤井らによって開発された PCATS を利用することとする。このモデルは、時間軸上での個人の生活行動を再現する際に特に重要な制約とされる時空間プリズム制約を考慮しており、また入力データとして PT 調査等の既存データを活用できるメリットも有している。

2.1.2 生活行動シミュレータ PCATS

PCATS は、時空間プリズム制約条件を考慮した上で、個人の生活行動に関する意思決定を時間軸上で逐次再現し、それに伴い一日を通じての生活行動の軌跡を生成する生活行動マイクロシミュレーションモデルである。PCATS を用いることで、勤務条件や交通・生活環境の変化に伴う個人の活動の実行・非実行、活動時間・場所・内容そして移動時の交通機関等の変化を予測することが可能となる。以下、PCATS の概要を述べていく。

①PCATS の前提

PCATSでは、個人の一日は、自由時間帯と固定時間帯に分類されるものと仮定する. 固定時間帯では、活動内容・場所・時間等の活動の要素は予め決められており、個人の自由意志では変更不可能であるものとする. 一方、自由時間帯では、個人の自由意志で活動及び移動の各要素を決定することが可能であると考える.

また、個々の活動、及び移動は以下の要素で表現している.

活動:開始時刻,終了時刻,活動内容,活動場所

移動:出発地,目的地,交通機関,出発時刻,到着時刻

ここで,活動内容は以下のように分類されている.

在宅、宅外スポーツ運動、宅外での趣味・娯楽、宅外での交際・訪問、外食、日常的な

買い物, 娯楽としての買い物, 固定活動周辺での活動

また,活動場所および移動の出発地,目的地については,対象地域を複数のゾーンに分割 することで表現している.

交通機関については,

自動車,公共交通機関,自転車,徒歩の4つの交通機関を考慮している.

次に、PCATS の入力、出力を図-1 に示す。図-1 に示したように、PCATS は個人・世帯 属性、交通ネットワーク属性、地域属性、および固定時間帯のスケジュールを入力すること で、自由時間帯における各活動の要素および移動の要素を生成する。なお、上述のように移 動の出発地、目的地、および活動場所はゾーンで表現することから、入力データである地域 属性、交通ネットワーク条件についても、ゾーン単位で入力するものとする。

図 2-1 PCATS の入出力

② PCATS における仮想個人の意思決定過程

PCATS では、図 2-2 に示した固定活動時間帯から自由時間帯へ移行する時点、および自由時間帯において 1 つの自由活動が終了した時点を、「意思決定時点」と定義している。 PCATS 内の仮想個人は意思決定時点ごとに、その意思決定時点に続く活動及び移動の要素を逐次的に決定していくものと仮定した。また、図-3 には、PCATS 内の仮想個人のある自由時間帯jにおける意思決定の過程を示した。図 2-3 において、k は対象とする自由時間帯に含まれる意思決定時点番号を意味する.

図 2-3 自由時間帯における意思決定時点とその対象時間帯

図 2-2 PCATS における意思決定時点での意思決定過程

先述のように、PCATS における仮想個人は、意思決定時点で、活動の時間、場所、内容および移動の交通機関を段階的に決定していく、段階的な意思決定過程としては、「仮想個人はます活動内容を決定し、その次に活動場所及びその場所を目的地とする移動での交通機関を同時に決定し、最後にその時間で活動を実行するための時間を決定する」と仮定している。図-3 に示した意思決定過程は、この考え方に基づいたものである。

③ 個々の意思決定に関する過程とそのモデル化

ここでは、意思決定過程における活動想定時間、活動内容選択、目的地・交通機関選択を 再現するために構築されたモデルについて述べる.

[想定時間分布モデル]

PCATSでは、個人は在宅、外食などのそれぞれの活動を行う前に、予め各活動を実行する場合に要するであろう時間を想定し、それに基づいて活動の内容や場所などの意思決定を行っていると仮定している。ここで、予め活動内容ごとに想定する活動時間を「想定活動時間」、その分布を「想定時間分布」と呼び、これを推定するモデルを「想定時間分布モデル」としている。想定時間活動は、以下のようなワイブル分布を仮定した Duration Modelを用いてモデル化している。

$y = Y_0 \exp(BX)$

y: 想定活動時間, $Y_0:$ 確率変数

 Y_0 :確率変数, B:パラメータベクトル, X:説明変数ベクトル

[活動内容選択モデル]

活動内容選択は、図 2-3 の選択構造を仮定したネスティッドモデルを用いてモデル化している. 説明変数としては、個人属性(年齢・性別・職業・免許有無)の他、「各自由活動

図 2-4 活動内容選択モデルにおける選択構造

の時間が、プリズム制約により規定される最大活動時間より小さい確率(=probL)」を用いている. probLについては以下の手順で算出するものとする.

最大活動時間Dfreeを,

 $Dfree = TS \cdot TN \cdot D_{od}$

TS:次の固定活動開始時刻 TN:現在時刻

 D_{od} : 最速で到達できる交通機関での、現在の場所から固定活動場所への移動時間として求める。そして、想定時間分布モデルから算出される在宅活動や外食等の宅外活動の想定時間分布に基づいて、それぞれの活動時間がDfreeを超過しない確率を求め、これをprobLとする。

[交通機関・目的地選択モデル]

交通機関・目的地選択モデルは、図 2-5 の選択構造を仮定したネスティッドモデルを用いてモデル化している. 説明変数としては、目的地選択レベルでは地域データ(人口・事業所数)、「活動時間が目的地での実行可能な最大時間より長い確率」、「目的地までの所要時間と目的地から次の固定活動場所への移動最小時間」、交通機関選択レベルでは、個人属性の他、交通機関 LOS データ(目的地までの機関別の時間・費用・乗換回数)を設定している.

交通機関の選択肢集合に関しては、公共交通機関、自転車、自動車、徒歩の4つとし、次の固定活動開始時刻にその場所に到達不可能な交通機関は選択し集合から削除する。自動車・自転車に関しては、現在の場所に利用可能な自動車・自転車が無い場合に削除している。また、目的地選択レベルにおける選択肢集合は、ゾーン単位で設定されている。

図 2-5 交通機関・目的地選択モデルにおける選択構造

表 2-1 に、以上の内容をまとめた各モデルの概要を示した.

表 2-1 PCATS 内の主なモデルの概要

モデル名	概要	構造	説明変数
活動時間	自由活動を行う場合 に,その活動時間を決 定する.	y = Y ₀ exp(BX) y: 想定活動時間 Y ₀ : 確率変数 B: パラメータベクトル X: 説明変数ベクトル	・個人属性 ・活動パターン 特性
活動内容選択	上位選択として,在宅 活動,宅外活動を選択 し,下位活動として活 動内容を 選択.	・ネステッドロジットモデル・効用関数は、パラメータと説明変数の積の線形和	・個人属性・活動パターン 属性
目的地・交通	<次の活動が自由活動> 上位選択として目的地 を選択し、各目的地の 下位選択として交通機 関を選択	・ネステッドロジットモデル・効用関数は、パラメータと説明変数の積の線形和	・個人属性・目的地属性・トリップ属性・活動パターン 属性
機関選択	<次の活動が固定活動> 活動場所は入力データ として与えているの で、交通機関のみを選 択する	・マルチロジットモデル・効用関数は、パラメータと説明変数の積の線形	・個人属性・目的地属性・トリップ属性・活動パターン 属性

④ 活動実行時間の決定

PCATS では、仮想個人の活動実行時間を決定する際、まず、現在位置とすでに選択した 交通機関と活動場所から、活動開始時刻を決定する。次に、活動開始時刻と活動場所、およ び次の固定活動の場所と開始時刻から、実行可能な活動時間の最大値を求める。そして、想 定時間分布モデルより推定された想定時間分布を最大活動時間において打切り、想定時間 分布を補整する。この補整後の想定時間分布に基づいて、活動時間を決定する。

⑤時空間プリズム制約の考慮

個人の活動およびそのための移動を再現するにあたり、活動可能な領域、つまり移動先にて自由に時間を割り当てることが出来る時空間を把握することは非常に重要である。時間地理学では、ある一日の活動場所と活動時間、移動状況を連続的に軌跡として表現した時空間パスを描き、活動可能な領域が分析されている。また、時空間プリズムとは、ある滞在場所から移動し、活動できる時空間であり、出発時刻と帰宅時刻、利用交通手段等の移動制約(プリズム制約)によって規定される。本研究で用いるアクティビティベースシミュレーション PCATS は、この時空間プリズム制約を考慮している。具体的には、プリズム制約によって活動内容選択や目的地選択、交通機関選択のそれぞれの選択し集合を特定化しているだけでなく、それぞれの選択モデルで十分な活動時間が確保できないような場所、交通機関、活動内容の選択確率が低くなる、という効用関数が推定されている。

図 2-6 により、時空間プリズム制約について具体的に説明する. 自宅から別の場所へ移動してある活動を行い、自宅へ戻る時間が決まっている場合、出発時間から帰宅時間までの間に移動し、活動できる時空間の範囲はプリズム制約により決まる. 図 2-6 では、外枠のひし形で囲まれた部分がプリズム制約である. 自宅からある場所jまでの移動交通手段にバスもしくは電車を使おうとすると、その交通機関での速度で初めから最後まで移動したときに移動可能な範囲となる. このような時空間プリズムを考慮することで、次に行う予定の活動が実際に活動可能かを判断することが出来る.

図 2-6 時空間プリズム概念図

2.2 利用可能な交通データ

近年では、様々な交通データの取得可能性が広がってきている.ここでは、公開・販売が行われており、企業や研究機関が利用可能な交通データを紹介し、その特徴について整理する.

2.2.1 パーソントリップ調査

パーソントリップ調査(以下 PT 調査とする)とは、地方公共機関によって10年に一度行われる交通実態調査である。PT 調査は、「どのような人が」「どのような目的で」「どこからどこへ」「どのような交通手段で」移動したかを調べるアンケート調査で、その結果から、各個人の交通行動の起点(出発地:Origin)、終点(到着地:Destination)、目的の他、鉄道や自動車、徒歩といった各交通手段の利用割合や交通量などを求めることができる。アンケートの回答内容には、トリップ情報に加え年齢・性別・職業等の属性情報も含まれており、属性ごとの分析も可能となっている。PT 調査データは対象都市圏からのサンプリングデータであるため、都市圏全体の交通実態を把握するためには、適切に拡大する必要がある。そこで、PT 調査では、個人を属性によって複数のカテゴリに分類し、カテゴリ別のサンプリング率の逆数を拡大係数として設定している。例えば、あるゾーンに住む30代前半の男性のサンプル数が20で、そのゾーンにおける30代前半の人口が200人であった場合、各サンプルの拡大係数は10となる。

東京都市圏における直近の PT 調査は平成 20 年 10 月~11 月に行われた第 5 回調査で、対象都市数は東京都・神奈川県・埼玉県・千葉県・茨城県南部の計 238 市区町村、対象者は東京都市圏に居住する約 1,600 万世帯のうち無作為に選ばれた約 140 万世帯の方で、その内約 34 万世帯表を回収したと公開されている.

この PT 調査は、都市圏の総合的な将来交通計画・マスタープランの策定や都市交通における個別課題への対応、特定施設の計画に関する検討などに役立てることを期待されているが、その一方で調査間隔が 10 年に一度であるため、最新のデータと現実の間に乖離が生じている可能性がある点は考慮すべきであろう.

図 2-7 PT調査の概念図

2.2.2 モバイル空間統計

モバイル空間統計は NTT ドコモが推計し、公共分野の街づくりや防災計画に役立てる目的で専門化との共同研究に用いられている。データは NTT ドコモの携帯電話の GPS 機能を利用して集計され、日本全国の 1 時間ごとのメッシュ別人口分布を、24 時間 365 日把握することが可能である。このモバイル空間統計により、人口分布、人口推移、人口構成等の人口統計を推計することが出来る。人口分布とは、ある日・時間帯における人口の地理的な分布を表し、人口推移とはある地域における現在人口の変化の時間推移、人口構成は、ある地域・ある時間帯における性別・年齢別の人口や居住地別などの、属性ごとの人口の構成である。データの個人属性は性別・年代・居住地のみとなっている。また、性別・年代別の属性別に携帯電話の台数を数え、さらにドコモの携帯電話の普及率を加味することで、ドコモの携帯電話を持つ個人以外の個人も含む人口を推計している。近年では、モバイル空間統計データを利用した交通状態推計の研究も増えてきており、例えばモバイル空間統計データを利用して交通手段別 OD 交通量を推計した金森らの研究がある。

モバイル空間統計イメージ:東京23区周辺の人口分布

図 2-8 モバイル空間統計イメージ

2.2.3 ETC2.0 プローブデータ

ETC2.0 データは、現在公的な収集が進められる唯一の交通ビッグデータである. ETC2.0 は、従来の ETC に情報サービスを組み合わせ、ドライバーを支援することを目的とした「世 界初の路車協調システム」として開発されている.200m 間隔走行時または 45 度以上の進 行方向変化時に車載器で走行履歴情報を自動的に蓄積し、路側機(ITS スポット) 通過時に 路車間通信によりデータを収集している. ETC プローブデータとは、ETC2.0 に対応した 車載器・カーナビを搭載した個々の車両から収集される走行履歴や挙動履歴に関するデー タである.

項目	内容
走行履歴	時刻、位置情報、道路種別
挙動履歴	時刻、位置情報、道路種別、進行方向、速度、加速度
基本情報	車載器の情報など固定情報

表 2-2 ETC2.0 プローブデータ概要

なお、ETC2.0 プローブデータは、プライバシー保護の観点から、個別車両が特定できない ようにデータの ID を付与すると共に、起終点付近(500m 程度)のデータが秘匿される仕 組みになっている.

しかし、現時点での ETC2.0 プローブデータを交通状態推計に利用する上ではまだ課題も多い. その中でも特に ETC2.0 車載器の普及率やサンプルの偏りが挙げられる. ETC2.0 車載器は現在普及過程にあり、平成 27 年 9 月末時点での普及台数は約 82 万台(自動車保有台数に対して約 1%)となっている. また、現時点での路側機の整備範囲は高速道路及び直轄国道であり、これらの道路を走行しない車両のデータについては現状では収集されない. これらの課題は、ETC2.0 車載器の普及や路側機の整備が進めば解消される事項だと考えられる.

ETC2.0 プローブデータを利用した交通状態推計の研究例としては、高速道路の交通状態 把握手法に関する研究(松田ら,2015)がある。また、ETC データを利用して時間帯別 OD を推計する研究も行われている。(倉内ら,2008)

2.3 データ同化

本研究では、アクティビティモデルと交通データを、データ同化を用いて統合することで、現状に即した個人の移動に関する詳細な情報を得ることを目指す。データ同化は、主に地球科学の分野で発展してきた、数理モデルを観測データとの融合により補正する手法である。データ同化の手法は地球科学以外の分野にも用いられており、近年では交通データへ適用した研究も増えてきている。

例えば、若生らは、データ同化手法を用いて、シミュレーションモデルにメッシュ集計データを統合することにより、都市圏レベルでの人流推定を行った. さらに、川口らは、観測データを用いて人流シミュレーションの精度を向上させ、OD 表の推定を行った. このように、データ同化アプローチを交通データに適用した研究は増えているが、本研究のようにアクティビティシミュレーションにデータ同化を適用した研究は例がなく、独自性があるといえる.

第3章 データ同化の理論

本章では、アクティビティモデルと交通データの統合に用いるデータ同化の手法とその理論について解説する.本節は樋口(2011)を参考に記述する.

3.1 データ同化の概要

データ同化において登場するものは、実システム、シミュレーションモデル、観測モデルの3つである。実システムとは、解析対象とする現象についての情報である。いま、この実システムに関する情報それ自体は直接観測することができない場合を考える。この場合実システムはシミュレーションモデルにより表現されるが、シミュレーションモデルは本質的に実システムに対して誤差をもつ。また、実システムから、あるモデルに従って生起するデータを観測できると考える(このモデルを観測モデルと呼ぶ)。この場合、実システムに関する情報(「状態」と呼ばれる)は、観測データからでは直接得る事ができない、データを手がかりに、直接観測できない状態を推定することは、一般に潜在状態の推定と呼ばれる問題である。後述するように、データ同化における状態推定は、状態の時系列推移をシミュレーションモデルにより表現した場合の潜在状態の推定に相当する。このとき、シミュレーションによって予測された状態に対して、観測モデルを作用させることにより、観測データが得られていると想定する。

3.2 一般状態空間モデルの概要

シミュレーションでは、実システムの現象が思うように表現できないことが多くある.この場合、シミュレーションの計算結果に遊びを許し、観測データを取り込める自由度を持ったものへと拡張する.同時に、シミュレーションの計算結果と観測データの間に自由度を持った関係を構築する.以上の2つの自由度を持った関係をそれぞれシステムモデル、観測モデルと呼び、あわせて状態空間モデルと呼ぶ.これにより、観測で得られたデータをシミュレーションに埋め込み、予測精度を向上させ、予測のみでは真の状態から徐々に離れていく解析結果を、真の状態へ近づけることが可能になる.本節では、データ同化を数学的に記述したモデルである状態空間モデルおよびその一般形である一般状態空間モデルについて説明する.

線形・ガウス型の状態空間モデルの式を以下に示す.

$$x_t = F_t x_{t-1} + G_t v_t$$

$$y_t = H_t x_t + w_t$$
(3.1)

 x_t は時刻tにおける状態ベクトル, y_t を観測ベクトル, v_t をシステムノイズ, w_t を観測ノイズと呼ぶ.状態ベクトルは直接観測が不可能な値である.また, F_t , G_t , H_t はそれぞれ対応する行列とする.式(1.1)の第一式はシステムモデルと呼ばれ,状態 x_t の時間発展を表す.第二式は観測モデルと呼ばれ,状態ベクトルと観測ベクトルの関係を表す.データ同化では,この二式を連立させたモデルを考え,このモデルを状態空間モデルと呼ぶ.状態空間モデルの運用には,あらかじめ以下の式(1.2)のように初期状態,システムノイズ,観測ノイズの確率分布を指定する.

$$x_0 \sim p(x_0)$$

$$v_t \sim p(v_t)$$

$$w_t \sim p(w_t)$$
(3.2)

式(3-1)で表される状態空間モデルを非線形・非ガウス型に対応させたモデルは以下の式(3-3)で表される.

$$x_{t} = f_{t}(x_{t-1}, v_{t})$$

$$y_{t} = h_{t}(x_{t}, w_{t})$$
(3.3)

システムノイズ v_t と観測ノイズ w_t は、それぞれ確率密度関数 $p(v|\theta_{sys})$ および $p(w|\theta_{obs})$ に従う白色雑音である。 θ_{sys} および θ_{obs} は、それぞれの確率分布を記述するのに必要なパラメータベクトルである。また、 f_t および h_t は行列ではなくそれぞれ x_{t-1} および x_t に関する非線形関数である。この非線形・非ガウス型をさらに一般化し、システムモデルと観測モデルを条件付分布により表現したモデルを一般状態空間モデルと呼び、以下の式 $(3\cdot 4)$ で表される。

$$x_t \sim p(x_t|x_{t-1})$$

$$y_t \sim p(y_t|x_t)$$
(3.4)

式 (3-4) の第一式は x_{t-1} が与えられたときの x_t の条件付分布,第二式は x_t が与えられたときの y_t の条件付分布である.一般状態空間モデルのグラフィカル表現は以下の図 3-1 のようになる.

図 3-1 一般状態空間モデル

以上より、一般状態空間モデルは「初期分布」「状態ベクトル」「観測ベクトル」「システム モデル」「観測モデル」の5つの要素により構成されていることがわかる。以下では各要素 について解説する。

• 初期分布

一般状態空間モデルにおいて計算を開始する際には、初期分布をあらかじめ設定しておく必要がある。初期分布には状態に関する情報に従って適した分布を設定することが多いが、状態に関する情報が得られていない場合は一様分布など適当な分布を仮定する。

状態ベクトル

状態ベクトルには直接観測できない変量を定義する。状態ベクトルに含まれる変量の値は観測データのみからでは算出することができないが、一般状態空間モデルを用いた推定を行うことで、状態ベクトルの値を推定することが可能となる。状態ベクトルの時間推移はシステムモデルにより規定される。

観測ベクトル

観測ベクトルには実際に観測が可能な変量が並べられる。観測ベクトルと状態ベクトルの関係は観測モデルにより規定され、観測ベクトルからは直接観測できない状態についての情報が得られる。

・システムモデル

通常のシミュレーションであれば、解は一意に定まるが、ここで言うシステムモデルは確率論的なシミュレーションに用いられるモデルであり、解は確率分布に従って得られる。このシステムモデルにより状態ベクトルの時間推移が表される。

観測モデル

観測モデルもシステムモデルと同様に確率論的なシミュレーションで用いられるモデルである。ある状態からある観測が発生する分布を表しており、状態ベクトルと観測ベクトルの関係を算出するのに用いられる。

3.3 逐次ベイズ推定

直接観測できない状態ベクトルは、逐次ベイズ推定と呼ばれる手法により事後分布として推定を行うことが可能である。この際に非常に便利な3つの条件付分布を以下に示す

予測分布: $p(x_t|y_{1:t-1}) = p(x_t|y_1, y_2, \dots, y_{t-1})$ フィルタ分布: $p(x_t|y_{1:t}) = p(x_t|y_1, y_2, \dots, y_t)$

平滑化分布: $p(x_t|y_{1:T}) = p(x_t|y_1, y_2, \dots, y_T)$ (ただしT>n)

3 つの条件付分について説明していく. まず、t-1期までの観測データに基づくt期の状

態ベクトルの分布が予測分布 $p(x_t|y_{1:t-1})$ である.そこから新たにt期における観測データが入ってきて,t期までの観測データに基づくt期の状態ベクトルの分布がフィルタ分布 $p(x_t|y_{1:t})$ である.総数 T 個の観測データが全て得られているときのt期の状態ベクトルの分布が平滑化分布である.当然,平滑化分布が状態ベクトルの推定に関して一番精度が高い.

この 3 つの分布間には便利な漸化式の存在が知られている。それを図化したものが図 3-2 である。まず,手元にt-1期のフィルタ分布 $p(x_{t-1}|y_{1:t-1})$ があるものとする。このフィルタ分布が与えられると,予測の操作でもって,t期における予測分布 $p(x_t|y_{1:t-1})$ が計算できる。式で書くと以下のようになる。

[一期先予測]

$$p(x_{t}|y_{1:t-1}) = \int p(x_{t}, x_{t-1}|y_{1:t-1}) dx_{t-1}$$

$$= \int p(x_{t}|x_{t-1}, y_{1:t-1}) p(x_{t-1}|y_{1:t-1}) dx_{t-1}$$

$$= \int p(x_{t}|x_{t-1}) p(x_{t-1}|y_{1:t-1}) dx_{t-1}$$

$$= \int p(x_{t}|x_{t-1}) p(x_{t-1}|y_{1:t-1}) dx_{t-1}$$
(3.5)

2 行目から 3 行目への式変形は、状態空間モデルで仮定しているマルコフ性による. マルコフ性とは、将来における確率分布は現在の状態だけから決まり、過去の状態には依存しないという性質のことである. また、 $p(x_t|x_{t-1})$ はシステムモデルである.

図 3-2 状態推定のための条件付分布の模式図

t期における予測分布が得られると、t期のデータ y_t が入ってきて、ベイズの定理を用いてフィルタを行い、t期におけるフィルタ分布が得られる.

[フィルタ]

$$p(x_{t}|y_{1:t}) = p(x_{t}|y_{1:t-1}, y_{t})$$

$$= \frac{p(x_{t}, y_{t}|y_{1:t-1})}{p(y_{t}|y_{1:t-1})} = \frac{p(y_{t}|x_{t}, y_{1:t-1})p(x_{t}|y_{1:t-1})}{p(y_{t}|y_{1:t-1})}$$

$$= \frac{p(y_{t}|x_{t})p(x_{t}|y_{1:t-1})}{p(y_{t}|y_{1:t-1})} = \frac{p(y_{t}|x_{t})p(x_{t}|y_{1:t-1})}{\int p(y_{t}, x_{t}|y_{1:t-1})dx_{t}}$$

$$= \frac{p(y_{t}|x_{t})p(x_{t}|y_{1:t-1})}{\int p(y_{t}|x_{t})p(x_{t}|y_{1:t-1})dx_{t}}$$
(3.6)

4 行目の式の $p(y_t|x_t)$ は y_t に対する確率変数 x_t の尤度関数, $p(x_t|y_{1:t-1})$ はt期における予測分布である.

以上のように、一期先予測とフィルタの操作を最後のデータ y_T まで繰り返し行うことで、全てのデータ $y_{1:T}$ に基づいた、最後の時点 Tの状態ベクトルのフィルタ分布が得られる.

3.4 パーティクルフィルタ

線形・ガウス型の状態空間モデルでは、状態の分布 $p(x_t|y_{1:t})$ は全て正規分布となるので、状態推定のためには平均ベクトルと分散協分散行列だけを求めればよい。これらを逐次的に求めるのがカルマンフィルタ等のアルゴリズムである。一方、一般状態空間モデルは、条件付分布 $p(x_t|y_{1:t})$ は一般に非ガウス分布となる。そこで、その分布表現を近似する手法として、非線形カルマンフィルタ、アンサンブルカルマンフィルタ、非ガウス型フィルタ、逐次モンテカルロ法等がある。パーティクルフィルタは、逐次モンテカルロ法の特殊ケースで、あらゆるタイプの高次元の非線形・非ガウス型状態空間に応用可能な上、計算機への実装が容易であるという特徴を持ち、多方面で用いられている。以下、パーティクルフィルタの概要について述べていく。

パーティクルフィルタにおいて特徴的な発想は、推定すべき分布(予測分布・フィルタ分布・平滑化分布)を、「状態ベクトル x_t^i とその点に対応する尤度 w_t^i の集合で近似する」ところである。本来であれば、推定すべき分布の解析解が得られれば最も良いはずであるが、パーティクルフィルタが想定する非線形・非ガウス型状態空間モデルではそのような解析解が得られることはほとんどない。そのため、モンテカルロ法で状態ベクトル x_t^i を発生させ、さらにその尤度 w_t^i を適切に評価して経験分布を構成する。

たとえば、フィルタ分布 $p(x_t|y_{1:t})$ を経験分布で近似することを考える. パーティクルフィルタでは以下のような記法が採用されることが多い.

$$p(x_t|y_{1:t}) \cong \sum_{i=1}^{M} \frac{w_t^i}{\sum_{i=1}^{M} w_t^i} \delta(x_t - x_{t|t-1}^i)$$
(3.7)

ここで、 $x_{t|t-1}^i$ はシステムモデルによりモンテカルロ法で発生させた状態ベクトル、 w_t^i は $x_{t|t-1}^i$ に対応する尤度、すなわち、 $x_{t|t-1}^i$ が観測値 y_t にどれだけ当てはまっているのかを表しており、Mはモンテカルロ法の試行回数、 $\delta(\cdot)$ はデルタ関数である。なお、 \cong は分布の近似を表す。また、この分野では、状態ベクトル $x_{t|t-1}^i$ を「粒子」、尤度 w_t^i を粒子の「重み」と呼ぶ習慣があり、これから述べるアルゴリズムがパーティクル(粒子)フィルタと呼ばれる由来となっている。パーティクルフィルタでは、以下のようにして逐次的に各ステップの予測分布、フィルタ分布の近似を求めていく。

- 1) 初期分布を近似する粒子群 $\{x_{0|0}^i\}_{i=1}^N (x_{0|0}^i \sim p(x_0))$ を生成する.
- 2) t=1, ・・・ Tについて(a)~(e)のステップを実行する.
 - (a) 各i(i=1, ..., N) について、システムノイズを表現する乱数 $v_t^i \sim p(v_t)$ を生成.
 - (b) 各i(i=1, ..., N) について、 $x_{t|t-1}^i = f_t(x_{t-1|t-1}^i, v_t^i)$ を計算し、予測分布のパーティクル近似 $\{x_{t|t-1}^i\}_{i=1}^N$ を得る.
 - (c) 各i(i=1, ..., N) について、尤度 $w_t^i = p(y_t|x_{t|t-1}^i)$ を計算する.
 - (d) 各i(i=1, ..., N) について、 $\beta_t^i = \frac{w_t^i}{\left(\sum_{i=1}^N w_t^j\right)}$ を求める.
 - (e) 粒子群 $\{x_{t|t-1}^i\}_{i=1}^N$ から各粒子 $x_{t|t-1}^i$ が β_t^i の確率で抽出されるようN回の復元 抽出を行い,得られたN個のサンプルで,フィルタ分布を近似する粒子群 $\{x_{t|t}^i\}_{i=1}^N$ を構成する.

このうち、2)の(a)、(b)が一期先予測の操作で、2)の(c)~(e)がフィルタの操作である。図 3-3 にパーティクルフィルタの概念図を示す。

図 3-3 パーティクルフィルタの概念図

パーティクルフィルタでは、復元抽出によって、観測データへの当てはまりが悪い粒子 (尤度が小さい粒子)を破棄し、そのかわりに観測データへの当てはまりが良い粒子を複製することになる。この操作によって観測データの情報を取り込んだ事後確率密度分布が表現され、それがさらに次のステップの一期先予測に反映されることになる。

第4章 アクティビティモデルと観測デー

夕の統合手法の開発

本章では、第3章で述べたデータ同化手法を、アクティビティシミュレーションと交通 データの統合に適用するための手法について述べる.

4.1 データ同化による統合手法の枠組み

本研究では、一般状態空間モデルの枠組みにおける状態ベクトル x_t を、時刻tにおける対象ゾーン内の全個人の位置 $\mathbf{x}_t = [x_t^1, x_t^2, x_t^3, \dots x_t^M]^T$ 、観測ベクトル y_t を、時刻tにおけるゾーン別滞留人口 $\mathbf{y}_t = [y_t^1, y_t^2, y_t^3, \dots y_t^L]^T$ と定義した.ここで、Mは対象個人の人数、Lは対象ゾーン数である.状態ベクトル x_t を、時刻tにおける対象ゾーン内の全個人の位置としたのは、利用する観測データが、ゾーンごとの集計値であるため、個人の位置座標を独立に扱うことが適切でないためである.また、システムモデルとして、各個人の時刻tにおける個人の位置を表すアクティビティシミュレーション PCATS を利用し、観測モデルを定式化することで、逐次フィルタリングを行った.本研究では、観測モデルを、システムモデルにより推計された状態(全個人の位置)から得られるゾーン別滞留人口ベクトルと,観測データから得られるゾーン滞留人口ベクトルの時刻tにおける類似度として定義した.逐次フィルタリングにおいては、モデルの非線形性や非正規性を考慮し、パーティクルフィルタによる実装を行った.これにより、アクティビティモデルから予測された個人の1日の移動に対し、任意の時間帯でフィルタリングを行うことで、現況に即した個人の移動の再現が可能になる.以下、手法の詳細について述べていく.

4.2 状態ベクトル・観測ベクトル

4.2.1 状態ベクトル

本研究では、状態ベクトル x_t を、時刻tにおける対象ゾーン内の全個人の位置 $\mathbf{x}_t = [x_t^1, x_t^2, x_t^3, ... x_t^M]^\mathsf{T} \qquad M: 適用対象個人の総数$

とする. なお,個人の位置は座標値ではなく,ゾーン単位で離散的に表されるものとする. これは利用するアクティビティシミュレーションモデルが,各個人の位置をゾーン単位で出力するのに合わせるためである. 状態ベクトル x_t を,時刻tにおける対象ゾーン内の全個人の位置としたのは,利用する観測データが,ゾーンごとの集計値であるため,個人の位置座標を独立に扱うことが適切でないためである. また,各個人位置を表す x_t^i は,個人位置のほかに,各個人に付与されている個人 ID,自宅ゾーン,年齢,時刻tにおける活動内容,プリズム制約等の詳細なデータも付与されているものとする. すなわち,状態ベクトル x_t は対象ゾーン内の全個人の位置を表すが,各個人に関する詳細な情報を取り出すことも出来るということになる.

4.2.2 観測ベクトル

① 利用観測データの選定

本研究で利用するアクティビティシミュレーションは、個人の一日の行動を再現し、これを集計することで OD 交通量であったり、総トリップ数であったり、もしくはある時点でのゾーン別滞在人数など、様々な交通状態を再現することが可能である。そこで、データ同化に用いる観測データも、断面ごとに多様な観測データを利用することが可能となる。ここでは、市販されている利用可能データの特性を検討した上で、本研究で観測データとして最も望ましいデータについて検討を行っていく。以下の表 4-1 に、現時点で入手可能な交通データについて列挙したものをまとめた。

データ名	利用可能情報	移動手段	収集方法	取得頻度
PT 調査 データ	全OD	全モード (識別可能)	アンケート	10年に一度
モバイル 空間統計	滞在人数	全モード (識別不可)	CDR	1 時間毎
ETC2.0	自動車 OD	自動車のみ	GPS	リアルタイム

表 4-1 入手可能な交通データの比較表

今回,アクティビティモデルと同化するデータに求められる条件としては,以下の2つが挙げられる.

- 1) 高いデータ取得頻度
- 2) データ自体の精度が高いもしくは誤差構造が明確

この視点から各データを比較すると、まず PT 調査データは、利用可能情報は申し分ない が、今回一日単位で個人の活動を再現するアクティビティシミュレーションとの同化にあ たり、一日の中で継続的なデータの入手が必要になることから、不適である.一方、モバイ ル空間統計は、1時間単位でのデータ取得が可能で、アクティビティシミュレーションとの 同化に適している. また, モバイル空間統計により得られる時間帯別滞在人数は, アクティ ビティシミュレーションでも出力が可能であり、さらにモバイル空間統計は基地局との通 信記録によるので、抽出率は契約率と同等であり、高い精度と偏りの小ささが見込める.そ のため, 本研究では同化に用いる観測データとして, モバイル空間統計を用いることとした. また, ETC2.0 に関しては, 今回は同化対象データとして利用しないこととした. その理 由は大きく分けて 2 点ある. まず 1 点目は, 車載器や ITS スポットの普及率が十分でなく (ITS スポットは現状高速道路に設置されているのがほとんど), 集計レベルでの活用は量・ 質共に不十分であると考えられたからである. 2 点目は、次章で述べるが、今回は対象区域 を東京都心三区の内々交通量に絞っているため、そもそも対象ゾーンにおいて、高速道路を 利用した移動が見込めないからである.しかし,今後車載器の普及と,ITS スポットの設置 増加に伴う抽出率の増大、データ精度の向上によりトリップ分布が自然な状況になるよう ならば、集計データとしての活用は十分可能になると考えられる.

② 観測ベクトル

観測データとしてモバイル空間統計を利用するため、観測ベクトルは時刻tにおける各ゾーンの滞在人数

$$\mathbf{y}_t = [y_t^1, y_t^2, y_t^3, ... y_t^L]^T$$
 L:対象ゾーンの総数

とする. アクティビティシミュレーションの個人位置の出力がゾーン単位であるため, 観測ベクトルもゾーン別滞在人数としている. モバイル空間統計は, 500m メッシュごとの時間毎の滞在人数のデータであるため, メッシュ滞在人数データをゾーン別滞在人数データに変換する必要がある. 本研究では, ArcGISによる面積按分を用いた変換を行った. 面積按分とは, 面積に応じてデータを配分することである. 具体例を用いて配分の仕方を説明していく. 図 4-1 に示すゾーン (黄色部分) とメッシュがあるとき, メッシュデータからゾーン

データへの変換を考える。まず、対象ゾーンに重なる図中の①~⑨のメッシュに注目し、各メッシュにおいてゾーンと重なる部分の面積を求め、メッシュ全体の面積に対する割合を求める。これにより、メッシュのうち、ゾーンに重なる部分の滞在人口はメッシュ全体の滞在人数に面積比率を掛け合わせることで求められる。この操作をメッシュ①~⑨に対して行い、対象部分の人口を集計することで、ゾーン内の滞在人数を算出することが可能となる。

4.3 システムモデル・観測モデル

4.3.1 システムモデル

本研究では、システムモデルとして、各個人の時刻tにおける個人の位置を表すアクティビティシミュレーション PCATS を利用する。PCATS の詳細・処理フローは第 2 章を参照されたい。時刻tにおけるある個人iの位置 x_t^i が分かっているとき、これを入力データに加えることで、PCATS により時刻t+1におけるある個人iの位置 x_{t+1}^i が推計される。これを式で表すと、

$$x_{t+1}^i \sim p(x_{t+1}^i | x_t^i)$$

となる。システムモデルとして PCATS を利用するに当たり、時刻tにおけるある個人iの位置 x_t^i から時刻t+1における位置 x_{t+1}^i を推計する際の PCATS への入力データと PCATS の出力データを整理する。上述の通り、各個人の位置はゾーン単位で出力される。

図 4-1 面積按分

入力データ	個人データ	年齢・性別・職業・免許有無・居住地/就業地・固定	
		活動内容/場所/時間・時刻tでの位置・活動	
	ゾーンデータ	面積・人口・事業所数・人口密度・事業所数密度	
	交通機関データ	交通機関別所要時間・料金	
出力データ	個人データ	時刻 $t+1$ での位置/活動内容・プリズム制約データ	

表 4-2 PCATS の入力・出力データ

4.3.2 観測モデル

本項では、観測モデルの定式化を行う.

ここでは、システムモデルによって予測された時刻tにおける状態ベクトル x_t (全個人の位置 x_t)の尤度を、観測データであるゾーン別滞在人数によって評価する。観測データであるモバイル空間統計のゾーン別滞在人数は集計データであるため、 x_t の尤度を求めるためには、全個人の位置 x_t をゾーン別人数に変換し、観測データと比較すればよい。本研究では、観測モデルを状態ベクトルと観測ベクトルの類似度として定義した。以下、尤度算出の具体的な流れを示す。

まず、時刻tにおける状態ベクトル x_t と観測ベクトル y_t が以下のように与えられているとする.

 $\mathbf{x}_t = [x_t^1, x_t^2, x_t^3, ... x_t^M]^T$ M: 適用対象個人の総数 $\mathbf{v}_t = [y_t^1, y_t^2, y_t^3, ... y_t^L]^T$ L: 対象ゾーンの総数

ここで、全個人の位置を表す状態ベクトル x_t を、集計マトリックス H を用いてゾーン別人数を表すベクトル \mathbf{x}_t' に変換する.

$$\mathbf{y}'_t = [y'_t^1, y'_t^2, ..., y'_t^L]^T = \mathbf{H}\mathbf{x}_t$$
 L:対象ゾーンの総数

このように算出された \mathbf{y}_t' と観測ベクトル \mathbf{y}_t の類似度を尤度として定義する. 類似度は、両ベクトル間の重み付きユークリッド距離の逆数とした. すなわちゾーンごとの人数誤差 (重み付き) の二乗和の逆数となる. 式で表すと以下の(4-1)のようになる.

$$p(y_t|x_t) = \frac{1}{d^2(\mathbf{y}_t', \mathbf{y}_t)}$$

$$d^2(\mathbf{y}_t', \mathbf{y}_t) = \sum_{j=1}^{L} w_j (y_t'^j - y_t^j)^2$$

$$(4.1)$$

式中の $d^2(y'_t, y_t)$ はベクトル y'_t と y_t のユークリッド平方距離, w_i は各変数の重みを表す. 重

 $みw_i$ は

$$w_j = \frac{1}{\left(y_t^j\right)^2} \tag{4-2}$$

とする.これは、ゾーンjでの人数誤差の二乗に対する重みを、観測データによるゾーンjの滞在人数の 2 乗の逆数とすることを意味する.このように重みを設定した理由を、具体例を挙げて述べていく、例えば、対象域内のゾーンiとゾーンkにおいて、状態ベクトル x_t を変換して算出した y_t' における人数と観測ベクトル y_t における人数との差が同数であったとする.しかし、観測データによるゾーンiとゾーンkの滞在人数に大きな差があった場合(例えばゾーンiの人数がゾーンkの 10 倍)、この 2 ゾーン間で人数誤差の二乗和に対する重みをつけることで、類似度を適切に評価できると考えられるからである。観測データによるゾーンの滞在人数の 2 乗の逆数を重みとして定義することで、ある複数ゾーンにおいて人数誤差が同数であった場合でも、滞在人数が少ないゾーンの誤差の重みを大きくすることができる.

4.4 フィルタリング手法の枠組み

前節までで定義した状態ベクトル・観測ベクトル、システムモデル・観測モデルを用いて、 各時刻における状態ベクトルを逐次推定していく。本研究では、パーティクルフィルタを利 用してフィルタリングを行っていくが、本節ではそのフィルタリング手法の枠組みを説明 していく。

4.4.1 フィルタリング手法の概要

本項では、アクティビティシミュレーション PCATS と観測データであるモバイル空間統計のフィルタリング手法の概要について、パーティクルフィルタによる状態推定のアルゴリズムを流れに沿って簡潔に説明する。

- 1. 時刻t=0 (初期状態) 全個人の位置(対象個人総数はMとする)は、初期分布によって表される.
- 2. 時刻t 時刻tにおける各個人位置のフィルタ分布 $p(x_t^i|y_t)$ が与えられている. (i=1,2,...M)

この時,各個人iに対して,フィルタ分布 $p(x_t^i|x_{t-1}^i)$ に従って時刻tにおける個人iの位置を表すパーティクルをそれぞれN個生成する.この操作のイメージを図 4-2 に示す.

図 4-2 フィルタリングの操作①

このように各個人に対してN個のパーティクルを生成した後,全個人のp番目パーティクルを要素としてもつパーティクル \mathbf{x}_t^p を新たに生成する.この新たなパーティクル \mathbf{x}_t^p は全個人のp番目パーティクルが示す位置を収納し,これは全個人の位置を示すパーティクルをN個生成する,ということを意味する.この操作を図 4-3 に示す.

図 4-3 フィルタリングの操作②

<一期先予測>

パーティクル $\mathbf{x}_t^i(i=1,2,...N)$ を生成した後、システムモデル PCATS に従い、時刻tにおける各パーティクル \mathbf{x}_t^i を遷移させて時刻t+1における予測分布を表す予測パーティクル群 $\mathbf{x}_{t+1|t}^i$ を得る. (図 4-4)

図 4-4 フィルタリングの操作③

3. 時刻t+1

<尤度推定>

得られた各予測パーティクル $\mathbf{x}_{t+1|t}^i$ は、全個人の位置を要素としてもつベクトルであるが、集計マトリックスを用いて、各パーティクルのベクトルの要素をゾーン別滞在人数に変換する.この変換後の各パーティクルを $\mathbf{x}_{t+1|t}^{i}$ とする.($\mathbf{x}_{t+1|t}^{i}$ = $\mathbf{H}\mathbf{x}_{t+1|t}^i$)

この各パーティクルに対して,実際の観測データであるモバイル空間統計のゾーン別滞在人数から,式(4-1)の観測モデルを利用して,各パーティクルの重み β_{t+1}^i (i=1,2,...N)を算出する.重み β_{t+1}^i は第3章のパーティクルフィルタの項で述べたとおり,以下の式で算出することにする.

$$\beta_{t+1}^{i} = \frac{w_{i}^{i}}{\left(\sum_{i=1}^{N} w_{t+1}^{j}\right)}, w_{t}^{i} = p(\mathbf{y}_{t+1}|\mathbf{x}_{t+1|t}^{i}) = p(\mathbf{y}_{t+1}|\mathbf{x}_{t+1|t}^{\prime i})$$
(4-3)

これまでの流れを図示したものが図 4-5 である.

図 4-5 フィルタリングの操作④

 β_{t+1}^N

<フィルタリング>

 β_{t+1}^1

 β_{t+1}^2

各予測パーティクル $\mathbf{x}_{t+1|t}^{i}$ を,重み β_{t+1}^{i} に比例する割合で,N個復元抽出する.抽出後の各パーティクル \mathbf{x}_{t+1}^{i} を,再度全個人の位置を要素として持つパーティクル \mathbf{x}_{t+1}^{i} に変換する.このパーティクルから,時刻t+1における各個人位置のフィルタ分布 $p(\mathbf{x}_{t+1}^{i}|\mathbf{y}_{t+1})$ を求める.例えば,個人iの位置のフィルタ分布は,全パーティクルの要素のうち,個人iの位置を表すものを抜き出すことにより得られる.この操作は以下の図 4-6 に示した.

以上のように時刻t+1における各個人位置のフィルタ分布が求められれば、このフィルタ分布から得られる代表値を各個人位置、すなわち状態ベクトルの推定結果とする.本研究

図 4-6 フィルタリングの操作⑤

では,フィルタ分布における最頻値 \hat{x}_{t+1}^i を各個人位置の推定結果とした.この結果を元に各個人位置の再配置を行う.時刻t+1における各個人位置が推定されれば,その結果を利用して時刻t+1におけるゾーン別滞留人口,OD 表の推計も行うことが可能になる.この後,t=t+1として,以上の手順を繰り返し行っていくことにより,観測データが得られるたびに,状態ベクトルのフィルタ分布を求めることが出来る.

4.4.2 フィルタリングにおける制約

前項で述べたアルゴリズムにより、アクティビティシミュレーションと観測データであるモバイル空間統計のフィルタリングを行い、対象個人の位置の再配置を行う.しかし、制約条件を考慮せずに再配置を行うと、現実には起こりえない移動を引き起こしてしまう可能性がある.本研究では、フィルタリングによる再配置において種々の制約を考慮することで、より現実的な個人の移動の再現を目指す.今回考慮する制約は、「フィルタリング対象個人」と「再配置ゾーン」の2つである.以下にその詳細を示す.

①フィルタリング対象個人

フィルタリングを行うある時刻tにおいて,個人の活動は「固定活動」「自由活動(宅外)」「自由活動(宅内)」「移動中」の4パターンが考えられる。本研究では,時刻tにおけるフィルタリング対象の個人を,時刻tにおいて「自由活動(宅外)」を行っている個人に限定した.固定活動中の個人は,PCATS における「固定活動」の定義により,活動内容・場所・時間等の活動の要素は予め決められており,個人の自由意志ではこれらを変更することは不可能であるものとしているため,フィルタリングによる再配置の対象外とした.また,時刻tにおいて在宅の自由活動を行っている個人も,この時点では宅外活動の意思が無いものとみなし,再配置は行わず,個人位置を自宅ゾーンのままとした.移動中の場合は,後述する時空間プリズム制約の考慮が難しいため,フィルタリングによる再配置の対象外とした.

そこで、実際にフィルタリングを行う際には、全個人の位置を表す状態ベクトルの各パーティクルの要素を、宅外自由活動を行う個人と、「固定活動」「宅内自由活動」「移動中」の個人の要素にわけ、フィルタリングの際は宅外自由活動を行う個人の位置のみを状態ベクトルの各パーティクルとして扱う。この時、観測データをそのまま利用すると宅外自由活動を行う個人の位置のみを要素に持つ状態ベクトルとの間に人数差が生じてしまい、観測ベクトルにより尤度を適切に評価できない可能性がある。そこで、フィルタリングを行う時刻における「固定活動」「宅内自由活動」「移動中」の個人のゾーン別滞留人口を算出し、観測データ(モバイル空間統計)により得られるゾーン別滞留人口から、「固定活動」「宅内自由活動」「移動中」の個人を除いたものを、フィルタリングの際の観測データとして用いることにする。図 4-7 に流れを示した。このようにして算出された各パーティクルの尤度を元にパーティクルを復元抽出する。復元抽出されたパーティクルは、再配置された宅外自由活動

図 4-7 フィルタリングの制約①

を行う個人位置のみを表しているので、フィルタリング対象外の「固定活動」「宅内自由活動」「移動中」の個人位置を加えて、各パーティクルが全個人の位置を示すようにする.

②再配置ゾーン

2章で述べたように、PCATSでは、個人の活動及びそのための移動を再現する際に、時空間プリズム制約を考慮している。それにより、ある個人が PCATSによって時刻tから時刻t+1のなかで移動を行ったとする。この時はその個人の時空間プリズム制約を満たした移動を行うことになる。今回、フィルタリングによる個人位置の再配置を行うにあたってもこの時空間プリズム制約を考慮することにする。

PCATS において、ある時刻tでの各個人のプリズム制約は、時刻t-1での各個人のゾーン、交通機関 LOS データ、自動車有無等によって決定される。PCATS においてプリズム制約データは、各個人ごとに、プリズム制約を満たすゾーン一覧の形で出力される。そこで、時刻tにおいてゾーン x_t^i にいる個人tが PCATS によって、時刻t+1でプリズム制約内のあるゾーン x_{t+1}^i に移動したとする。(個人は宅外自由活動を行っており、フィルタリングの対象であるとする)その後、時刻t+1でのフィルタリングによって個人tの位置が $t_{t+1}^{\prime i}$ に再配置されたとする。この時刻t+1における個人tの位置 $t_{t+1}^{\prime i}$ が、プリズム制約を満たさないゾーンであった場合、t から t+1 までの間、t からt の移動はプリズム制約を満たさないため、現実的に起こりえない移動となる。この場合には再配置を行わず、t+1における個人t の位置を t の 以下の図 t 4・8 にこの様子を示す。

図 4-8 プリズム制約を考慮した個人の再配置

以上のように、「フィルタリング対象個人」と「再配置ゾーン」の 2 つの制約を考慮したフィルタリング及び再配置を実行することで、より現実に即した個人の移動を再現する事が可能になると考えられる。

4.5 構築したモデル

提案手法の全体像及び本研究において構築したモデルを図 4-9 に示す.

図 4-9 手法の全体像

4.6 ETC2.0 データの導入に向けて

本研究では、観測データとしてモバイル空間統計データのみを利用したが、今後車載器や ITS スポットの普及が進み、ETC2.0 プローブデータが集計レベルで利用可能になれば、観測データとして ETC2.0 プローブデータを利用することも期待される。本節では、ETC2.0 を観測データとして用いる場合のフィルタリングの流れについて簡単に説明することにする。

ETC2.0 プローブデータは、車両ごとに設定される車両 ID、トリップ起終点、時刻、場所(緯度・経度)等の情報を含む. これらのデータは車両が 200m 進むか、進行方向が 45度以上変化したタイミングで蓄積される. 本手法の観測データとして利用する場合は、対象ゾーン内にトリップ起終点を持つ車両データのみを抽出する. データは、モバイル空間統計と同じく、ゾーン別(車両)滞在数もしくは OD 表の形で整理することが考えられる. OD表の形で観測データを整理する場合は、本研究で用いた観測モデルではない新たなモデル

を検討する必要がある.

また、ETC2.0 プローブデータを観測データとして用いる場合、状態ベクトルの再定義が必要となる. これまでに述べてきたように、PCATS では、ある時刻におけるアウトプットとして、各個人の場所の他に、各個人の活動タイプ(自由活動・固定活動・移動中)や利用交通手段(徒歩・電車・自動車・その他公共交通機関)のデータが付与されている. ETC2.0 データは移動車両の位置データ、すなわち自動車で移動中の個人の位置データであるため、フィルタリング時刻において、「自動車」で「移動中」の個人の位置のみを抜き出して状態ベクトルとすることで適切なフィルタリングが可能になる. フィルタリングの枠組み・操作は前節で述べたとおりである.

以上のように、本手法はモバイル空間統計を観測データとして用いた場合でも適用可能である。今後 ETC2.0 プローブデータが集計レベルで利用可能となり、観測データとして ETC2.0 プローブデータを利用することができれば、アクティビティシミュレーションによる個人の移動の再現度がさらに向上することが期待される。

第5章 適用

本章では、前章で述べた手法を実際に適用し、アクティビティモデル PCATS と観測データの同化を行い、現況に即した個人の移動を再現し、その結果を利用して、時間帯別のゾーン別滞留人口の推定を行った結果を示す。また、その精度検証の結果を示す。適用にあたり、手法の精度検証実験として、PCATS の入力個人データとして利用したものと同じパーソントリップ調査データ自体を新たな観測データとして仮定した上で利用し、それにより得られる時間帯別ゾーン滞留人口を利用して同化を行う。得られた個人の移動軌跡から時間帯別ゾーン滞留人口・内々OD表の推計を行い、同化前・同化後に関してそれぞれパーソントリップの時間帯別ゾーン滞留人口・内々OD表との比較を行い、本手法の有効性・妥当性の検証実験を行った。続いて、観測データとしてPT調査後に新たに取得されたモバイル空間統計データを利用して本手法の適用を行う。検証実験と同様に、得られた個人の移動結果より、時間帯別ゾーン滞留人口を推計し、観測値との比較を行うことで精度検証を行った。

本章では、まず適用対象ゾーン・個人、利用データ(観測データ・PCATS 入力データ)、に関する詳細を述べた後に、適用条件や適用の具体的な手順を述べる。観測データとしてパーソントリップ調査を利用した場合の精度検証結果を述べ、本手法の妥当性・有効性を示す。最後に、観測データとしてモバイル空間統計を利用して本手法を適用することで現況に即した個人の移動を再現し、その精度検証を行った結果を示す。

5.1 適用対象ゾーン・利用データ

5.1.1 適用対象ゾーン

今回対象としたのは、都心三区(千代田区・中央区・港区)の14 ゾーンである。各ゾーンの範囲および位置関係をそれぞれ表 5-1、図 5-1 に示す。千代田区は合計 4 ゾーン、中央区・港区はそれぞれ合計 5 ゾーンである。ゾーンレベルは、パーソントリップ調査で用いられている計画基本ゾーンレベルを採用した。本研究では、この対象ゾーンの内の個人の移動およびゾーン滞留人口・内々OD表の再現を目指すものとする。

表 5	-1 7	都心三	区ゾー	ン	対応表
-----	-------------	-----	-----	---	-----

ゾーン番号	区名	地名
1(千1)		大手町・丸の内など
2(千2)	- - 千代田区 ·	永田町・飯田橋など
3(千3)	ТИШЕ	神田など
4(千4)		有楽町・霞が関など
5(中1)		日本橋など
6(中2)		日本橋・八重洲など
7(中3)	中央区	銀座など
8(中4)		築地・明石町など
9(中5)		勝どき・晴海など
10(港1)		赤坂・青山など
11(港2)		六本木・虎ノ門・新橋など
12(港3)	港区	芝浦・台場など
13(港4)		麻布・芝など
14(港5)		高輪・白金など

図 5-1 対象ゾーンマップ

5.1.2 利用データ

①PCATS 入力データ

【個人データ】

今回移動の再現対象とする個人のデータは、平成 20 年に実施された第 5 回東京都市圏パーソントリップ調査のデータを利用した。今回、対象ゾーンの内々交通を適用対象としているため、対象 14 ゾーンに居住地を持つ個人のデータに限定して抽出した。さらに、今回は対象ゾーンの内々交通のみを再現するため、対象ゾーン買いに固定活動を持つ個人は対象外とした。対象人数は 253182 人であった。個人データの詳細は、{個人 ID, カテゴリ、居住地ゾーン、就業(就学)ゾーン、性別、年齢、職業、免許有無、世帯保有自動車数、拡大係数、世帯人数、固定活動内容/場所/時間}である。今回、個人の固定活動については、パーソントリップデータから得られる各個人の就業先活動と就学先活動を固定活動と定義した。さらに、シミュレーション時間の最初と最後に各 10 分の自宅活動を固定活動として挿入している。これは、一日の最初と最後には自宅にいるという仮定をおいた事による。

【交通機関 LOS データ】

交通機関 LOS データも、第 5 回東京都市圏パーソントリップ調査のデータを利用した. 対象ゾーン間のトリップを代表交通手段別に抽出し、費用・時間・乗換回数等の平均値を算出し、これを交通機関 LOS データとして利用した.

【地域データ】

PCATS の入力データとして必要な地域データ(ゾーン別面積,人口,サービス事業所数,人口密度,サービス事業所数密度)に関しては,平成26年商業統計調査結果を利用した.商業統計データは,2次メッシュデータであるため,ArcGISによる面積按分を行い,ゾーンごとのデータを算出した.

②PCATS 内部モデルパラメータ

前述の通り、PCATSには、内部モデルとして「想定時間分布モデル」「活動内容選択モデル」「交通機関・目的選択モデル」がある。PCATSでは、これらのモデルの構築にあたって、大阪湾岸パネル調査の第三回調査で収集された平日のダイアリーデータおよび京阪神パーソントリップ調査データを利用している。本研究で対象とする個人は東京都心三区居住者であるため、内部モデルのパラメータの変更が必要となる。しかし、本研究においては、「想定時間分布モデル」と「活動内容選択モデル」に関して、京阪神地域と東京都市圏での差異はないと仮定し、この2つのモデルに関しては、パラメータをそのまま利用することとした。交通機関選択モデルに関しては、交通政策審議会陸上交通分科会鉄道部会によって、東

京都市圏パーソントリップデータを用いた非集計ロジットモデルが推定されている.しかし、このモデルは説明変数に交通機関別のラインホール時間・駅端末利便性・都心ダミー等が含まれており、本研究では説明変数の整備が難しいと考えた.そこで本研究では、このロジットモデルにより推計された東京都市圏の交通機関別分担率を用いて、PCATSの交通機関選択モデルに対し、定数項補正を行うことで、東京都市圏に対応した交通機関・目的選択モデルに調整した.

③観測データ

【精度検証実験テストデータ】

精度検証のためのテスト観測データとして、PCATS の入力個人データで用いたものと同じ平成 20 年第 5 回東京都市圏パーソントリップ調査のデータ自体を新たな観測データと仮定し、その時間帯別ゾーン滞留人口データを利用した。また、手法適用により推計される時間帯別ゾーン滞留人口の精度検証に加え、パーソントリップ調査のデータから得られる時間帯内々OD 表を利用して、手法適用により推計された時間帯別内々OD の精度検証も行った。

【適用データ】

観測データとして、先に述べたモバイル空間統計を利用した。これは1時間おきの500mメッシュの人口を表すもので、個人の居住地大字別に人口が分類されている。本研究では、2015年6月の東京23区内のメッシュ人口の平均データ(1時間毎)を利用した。このデータから、ます対象とする東京都心三区内のメッシュデータを抜き出した後、対象ゾーン内に居住地を持つ個人のゾーン別滞留人口データを抽出し、これを観測データとして用いることとした。手法適用により推計される時間帯別ゾーン滞留人口の精度検証を行った。

5.2 適用手順

本節では、適用のための諸条件を示した後、適用の具体的な流れについて示す.

5.2.1 適用のための諸条件

【時間帯区分】

時間帯区分に関しては、本研究では、一日を午前ピーク・日中・夕方ピーク・夜間ピーク・ その他の 5 つの時間帯区分にわけ、各時間において観測データとの同化を行うことにする (表 5-2).

表 5-2 時間帯区分の定義

時間区分	同化時刻	観測データ
①3:00~9:00	9:00(午前ピーク)	9:00
②9:00~12:00	12:00(日中)	12:00
312:00~17:00	17:00(夕方ピーク)	17:00
4 17:00~21:00	21:00(夜間ピーク)	21:00
521:00~3:00	同化せず	同化せず

【初期状態】

本研究では、初期状態(各個人のAM3:00での位置)に関して、各個人は初期時刻においては自宅に滞在しているという仮定のもと、全個人はAM3:00において居住地ゾーンに滞在しているとした.

【パーティクル数】

本研究では、個人位置の確率分布をパーティクルで近似するパーティクルフィルタを用いるが、ここではパーティクル数を 100 と設定してフィルタリングを実行した.

5.2.2 適用の流れ

ここまでで述べた諸条件のもと, 手法を適用する具体的な手順に関して, 以下に述べる.

- 1) 初期状態(AM3:00)において、全個人は自宅に滞在しているとする
- 2) ①の時間帯で、全個人に対し、それぞれ 100 回 (パーティクル数) PCATS を実行し、同化時刻における各個人位置の予測分布を得る.
- 3) 同化時刻において観測データとのフィルタリングを行い、得られた各個人のフィルタ 分布から、個人位置の再配置を行う.
- 4) フィルタリングにより再配置された全個人位置のデータを入力データとして、次の時間帯で PCATS を実行. (個人総数 \times 100回) \rightarrow 手順 3)へ.
- 5) 時間帯⑤まで実行したのち、全個人の移動軌跡より、時間帯別ゾーン滞留人口を推計し、 観測データとの比較を行い、精度検証を行う. (検証実験では、時間帯別内々OD の推 計も行い、観測データとの比較も行う)

5.3 精度検証実験

実際にモバイル空間統計を観測データとして利用する前に、PCATSの入力個人データに利用したものと同じ平成20年第5回東京都市圏パーソントリップ調査のデータ自体を新たな観測データとして仮定した上で利用し、手法を適用することでPCATSによって推定された個人の移動を再推定し、本手法の妥当性・有効性の検証実験を行った。具体的な流れとしては、観測データとしてパーソントリップ調査データから得られる時間帯別ゾーン滞留人口を利用して、前節で述べた流れに沿って手法を適用する。その結果推計される時間帯別ゾーン滞留人口に関して、同化前と同化後に関してそれぞれ観測データ(パーソントリップ調査により得られる時間帯別ゾーン滞留人口)との比較を行う。また、同様に推計される時間帯別 OD 表に関しても、同化前と同化後に関してそれぞれ観測データ(パーソントリップ調査により得られる時間帯別内々OD表)との比較を行う。以上により、本手法の有効性を示す。以下に、各時間帯でのゾーン滞留人口および内々OD表に関して、それぞれPCATSによる予測値・手法適用による同化後の値・観測値(パーソントリップ調査データ)を比較した結果を示す。

また、各時間帯におけるゾーン滞留人口、内々OD表に関して、精度検証を行った結果を表に示す. ゾーン滞留人口に関しては、予測値のゾーン滞留人口を表すベクトル、同化後のゾーン滞留人口を表すベクトルに関して、それぞれ観測値のゾーン滞留人口を表すベクトルとの重み付きユークリッド距離を算出した. この時の重み付きユークリッド距離は4章で述べた観測モデルで設定したものとする. 内々OD表に関しては、14×14のゾーンペアすべてにおいて、予測OD、同化後ODの2つのODと、観測値によるODとの残差の平均値を求め、比較を行った. 表に示した結果より、ゾーン滞留人口の重み付きユークリッド距離、内々OD表の残差の平均値ともに各時間帯において、同化後に減少したことから、ゾーン滞留人口・内々OD表の精度が改善されたことが示され、本手法の妥当性・有効性を確認できた..

表 5-3 ゾーン滞留人口比較結果 (①午前ピーク/9:00) (検証実験)

ゾーン	予測値	同化後	観測値
1	8134	7825	7626
2	20322	19811	21665
3	16066	17206	18110
4	4322	4030	3641
5	20804	20543	21151
6	3658	3438	3019
7	4288	4729	3746
8	22770	21285	24070
9	25343	25991	27622
10	18944	19622	21272
11	24988	25286	28359
12	22689	22388	27535
13	35581	35142	38590
14	25273	25886	30975

表 5-4 ゾーン滞留人口比較結果(②日中/12:00)(検証実験)

ゾーン	予測値	同化後	観測値
1	8030	8031	9126
2	20753	20832	20838
3	17235	16703	16378
4	5556	5496	6652
5	18270	18826	17252
6	3100	3484	4114
7	4425	4704	6344
8	20696	21154	20943
9	24821	24717	20236
10	20751	20472	19275
11	27968	27411	28953
12	21977	22216	22112
13	34857	34527	32796
14	24743	24609	22977

表 5-5 ゾーン滞留人口比較結果 (③夕方ピーク/17:00) (検証実験)

ゾーン	予測値	同化後	観測値
1	8642	8636	9045
2	19278	19753	19431
3	16987	16717	15174
4	5546	5821	5925
5	18495	18528	16543
6	3741	3874	3758
7	4426	5242	5646
8	20671	20361	18699
9	26516	26273	21462
10	20961	20528	18027
11	26570	26498	25442
12	22464	22071	22119
13	33894	33849	30358
14	24991	25031	22100

表 5-6 ゾーン滞留人口比較結果 (④夜間ピーク/21:00) (検証実験)

ゾーン	予測値	同化後	観測値
1	3209	3255	4001
2	17722	17633	17369
3	17788	17995	15418
4	2343	1901	1790
5	20892	21664	19131
6	1876	1586	1519
7	4220	4568	5380
8	20466	20383	19932
9	30778	30389	29773
10	19985	20263	19205
11	21886	22011	21371
12	25659	25353	28820
13	37348	37341	36601
14	29010	28840	28147

表 5-7 内々OD 表比較結果 (①午前ピーク/9:00) (検証実験)

								観測OD							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	計
1	353	234	0	0	0	0	0	0	0	0	0	0	0	46	633
2	728	15794	600	711	80	165	64	128	53	46	470	107	0	64	19010
3	171	1018	14163	372	386	0	0	214	47	33	611	116	117	59	17307
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	598	855	255	368	18465	313	166	1068	458	353	472	437	440	191	24439
-	0	0	0	0	0	534	0	48	0	0	43	48	0	0	673
6	-						-				-	-	-		
7	54	0	0	0	0	0	1850	122	0	0	0	0	0	0	2026
8	753	238	394	433	490	381	496	18456	179	168	795	0	303	61	23147
9	1105	1109	629	0	761	482	430	2397	26572	239	1440	101	521	0	35786
10	441	176	319	454	168	151	51	220	62	17565	706	108	596	260	21277
11	350	521	0	50	0	114	0	337	48	535	16721	428	686	246	20036
12	985	378	710	697	229	236	423	479	90	540	2101	24322	2073	780	34043
13	1310	616	536	265	481	344	42	378	63	1039	3057	1171	32779	925	43006
14	778	726	504	291	91	299	224	223	50	754	1943	697	1075	28343	35998
_															
計	7626	21665	18110	3641	21151	3019	3746	24070	27622	21272	28359	27535	38590	30975	277381
								予測OD							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	計
1	378	221	0	0	0	0	0	0	0	0	0	0	0	0	599
2	625	13983	512	546	194	189	64	558	99	46	668	99	215	64	17862
3	111	1091	11845	492	463	33	214	326	223	185	831	149	200	93	16256
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	651	946	282	368	16102	519	176	971	398	493	405	515	612	324	22762
6	0	0	0	0	0	410	0	0	0	48	0	48	0	0	506
7	54	51	45	0	0	0	1480	226	0	0	0	59	0	0	1915
8	633	338	526	448	412	330	451	16174	267	350	635	103	350	97	21114
9	1296	917	793	134	1043	705	578	1756	23015	452	1279	252	703	183	33106
10	562	268	334	575	474	189	211	347	297	14839	550	209	548	234	19637
11	486	557	89	177	179	190	42	639	132	534	13743	709	642	483	18602
12	1057	462	680	759	598	257	411	700	181	521	1669	19290	1623	668	28876
13	1365	711	640	399	752	514	261	779	228	830	2902	615	29663	551	40210
14	916	777	320	424	587	322	400	294	503	646	2306	641	1025	22576	31737
計	8134	20322	16066	4322	20804	3658	4288	22770	25343	18944	24988	22689	35581	25273	25318
								司化後OI	D						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	計
1	381	172	46	0	0	0	0	0	0	0	0	0	0	0	599
2	857	13886	617	611	154	112	197	248	237	152	384	108	113	186	1786
3	111	975	12425	324	444	46	36	181	124	254	641	146	371	178	1625
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	643	772	421	458	16111	372	228	979	603	537	317	538	493	290	2276
6	0	0	0	0	0	407	0	0	0	0	0	48	0	51	506
7	54	0	59	0	45	0	1539	122	45	0	51	0	0	0	1915
8	666	441	538	409	561	380	581	15521	217	332	892	47	362	167	2111
9	1032	1123	753	77	916	677	476	1874	23466	502	1260	148	526	276	3310
10	518	223	542	547	491	52	197	295	25466	14823	585	170	634	296	1963
11	341	356	171	112	121	275	97	410	157	544	14577	552	655	234	1860
	922	450	617	752	620	319	423		_	559			1846	_	2887
12	_			343	_			570	126	_	1778	19363		531 713	
13	1505 793	741 672	712 305	343	835 245	550 248	352 603	552 533	263 489	752	2814 1950	643 625	29020	22964	4021
14 計									_		_		1161	_	3173
ēΤ	7825	19811	17206	4030	20543	3438	4729	21285	25991	19622	25286	22388	35142	25886	2531

表 5-8 内々OD表比較結果 (②日中/12:00) (検証実験)

								観測OD							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	計
1	7192	99	0	0	0	0	131	96	0	46	0	0	0	0	7564
2	138	18394	335	440	96	82	104	0	0	132	172	46	63	34	20036
3	185	296	14491	151	176	0	127	50	173	49	53	69	87	100	16007
4	0	0	0	3505	0	0	0	0	0	0	0	51	0	0	3556
5	102	125	402	196	15851	313	328	289	48	130	658	72	90	126	18730
6	51	53	0	0	0	2720	0	0	0	0	0	0	0	0	2824
7	146	166	0	143	0	0	2616	216	54	0	70	0	0	0	3535
8	44	268	163	361	107	184	599	18865	260	304	574	0	36	0	21765
9	286	309	201	388	380	382	941	774	19229	266	568	0	157	33	23914
10	43	139	195	113	127	179	205	96	35	16222	693	250	314	48	18659
11	197	353	81	196	0	0	309	42	80	538	23092	519	742	285	26434
12	271	105	78	379	98	0	88	211	135	413	1116	19644	1006	139	23683
13	173	243	192	397	143	48	432	164	136	641	1201	615	29410	803	34598
14	298	288	240	383	150	206	464	140	86	534	756	846	891	21409	26691
計	9126	20838	16378	6652	17252	4114	6344	20943	20236	19275	28953	22112	32796	22977	24799
								予測OD							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	計
1	6204	96	146	47	213	0	0	101	139	258	291	176	222	80	7973
2	203	16932	151	534	161	82	0	122	291	422	153	550	206	313	20120
3	83	419	13619	114	245	158	99	318	391	178	256	236	512	215	16843
4	0	46	174	3042	207	0	0	71	259	0	93	155	48	161	4256
5	151	280	558	196	15393	131	266	504	294	441	580	310	654	613	20371
6	0	117	136	0	47	2119	35	157	465	0	182	50	152	163	3623
7	87	199	293	107	374	33	2461	244	111	220	102	192	436	172	5031
8	92	339	213	292	281	101	275	16961	468	604	1028	425	579	357	22015
9	316	687	244	300	229	91	388	501	21000	423	732	137	476	299	25823
10	89	299	440	113	158	95	152	308	313	16023	559	346	131	208	19234
11	187	355	275	63	264	0	179	244	289	473	22158	198	600	438	25723
12	210	152	160	217	98	0	98	425	294	489	625	18282	556	411	22017
13	209	400	357	278	399	119	255	369	85	595	874	497	29536	354	34327
14	199	432	469	253	201	171	217	371	422	625	335	423	749	20959	25826
計	8030	20753	17235	5556	18270	3100	4425	20696	24821	20751	27968	21977	34857	24743	25318
	0000	20,00	17200	5555	10270	0100				20.01	2,700	22577	0.007	20	20010.
								同化後0[
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	計
1	6251	274	0	0	227	130	0	134	124	125	94	48	333	83	7823
2	146	16776	242	534	89	82	0	340	251	179	177	395	385	215	19811
3	184	368	13608	146	382	0	158	378	322	295	318	218	604	225	17206
4	0	111	82	3042	90	0	0	82	128	109	62	140	78	106	4030
5	102	345	326	249	15352	193	171	721	450	558	640	523	584	329	20543
6	0	0	94	0	141	2151	0	148	297	0	157	132	258	60	3438
7	34	204	79	53	229	0	2447	391	178	111	97	111	345	450	4729
8	92	316	284	248	264	152	294	16730	788	428	816	167	313	393	21285
9	316	661	331	246	383	145	502	671	20458	528	851	84	419	396	25991
10	93	238	415	113	247	236	209	260	263	16019	519	275	461	274	19622
11	228	354	83	63	298	0	285	255	304	372	21642	359	526	480	25249
12	210	207	162	175	359	0	133	210	281	496	655	18584	591	325	22388
13	176	554	613	278	289	173	288	499	511	570	1080	664	28870	616	35181
14	199	424	384	349	476	222	217	335	362	682	303	516	760	20657	25886
計	8031	20832	16703	5496	18826	3484	4704	21154	24717	20472	27411	22216	34527	24609	25318

表 5-9 内々OD 表比較結果 (③夕方ピーク/17:00) (検証実験)

								観測OD							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	計
1	8085	105	33	55	0	0	122	0	0	95	0	120	127	51	8793
2	203	17737	442	69	177	0	124	60	278	152	97	42	131	193	19705
3	49	365	13799	173	368	48	37	180	382	0	114	0	51	0	15566
4	0	168	136	5007	0	47	125	177	92	0	102	232	220	89	6395
5	53	139	259	59	14565	0	145	153	360	42	55	45	0	115	15990
6	0	0	0	0	90	3175	46	0	282	179	0	48	0	35	3855
7	131	270	81	0	0	0	3231	466	614	226	177	91	263	352	6044
8	107	140	71	160	493	151	480	16984	894	82	114	111	66	42	1989
9	97	0	71	0	92	146	329	286	18050	134	0	0	124	0	1932
10	95	119	81	0	49	72	239	83	0	15520	664	339	504	126	1789
11	0	199	0	139	233	41	290	249	386	755	22111	851	1245	814	2731
12	110	0	48	83	158	0	101	0	49	294	428	18473	536	468	20748
13	115	151	94	87	142	48	194	0	42	500	1081	1245	25994	1105	30798
14	0	38	59	93	34	30	183	61	33	48	499	522	1097	18710	2140
計	9045	19431	15174	5925	16543	3758	5646	18699	21462	18027	25442	22119	30358	22100	23372
								予測OD							
	4	2	2	4	-	•	7		0	10	11	12	12	1.4	
_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	計
1	7322	53	0	0	0	0	0	0	162	92	81	169	40	101	8020
2	150	17404	361	90	114	299	114	285	433	142	375	118	186	462	20533
3	109	93	15028	82	110	0	0	194	372	137	103	325	310	237	17100
4	0	48	46	4716	171	0	0	47	44	0	0	217	128	35	5452
5	246	207	111	0	15978	62	51	159	153	307	319	107	441	140	18281
6	0	0	0	0	45	2544	0	123	157	0	0	48	42	42	3001
7	0	102	210	0	54	0	3229	108	153	39	39	134	102	128	4298
8	0	215	299	0	526	133	212	18047	675	106	221	331	316	214	21295
9	62	71	135	118	130	154	123	335	22805	171	171	257	138	199	24869
10	0	64	52	120	199	103	206	104	247	19047	202	183	239	327	21093
11	183	262	51	113	393	99	94	94	206	347	24191	562	616	620	2783
12	98	340	216	51	245	143	102	363	520	0	184	19386	263	350	22261
13	265	213	204	103	243	51	101	548	333	433	514	420	30800	610	34838
14	207	206	274	153	287	153	194	264	256	140	170	207	273	21526	24310
計	8642	19278	16987	5546	18495	3741	4426	20671	26516	20961	26570	22464	33894	24991	25318
								同化後〇匹)						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	計
1	7320	53	55	0	0	0	0	0	162	77	89	134	40	101	8031
2	91	17587	344	263	189	168	113	219	350	282	361		246	505	20832
3			-			48	0			39	901	114			
	114	122	14621	196	57			292	364			183	553	114	16703
4	0	48	78	4716	122	0	0	47	270	0	0	217	128	96	5496
5	235	108	239	0	15895	61	246	570	278	96	326	108	398	266	18820
6	130	0	0	0	0	2583	0	174	168	137	0	99	89	104	3484
7	0	50	130	61	54	0	3325	207	276	48	180	35	229	109	4704
8	53	201	206	0	501	257	346	17767	838	140	259	111	205	270	2115
9	61	223	46	123	315	338	61	114	22523	48	0	299	420	146	2471
10	52	240	156	52	0	102	188	0	167	18657	243	223	154	238	2047
11	166	249	257	0	342	0	237	269	261	398	23734	484	489	525	2741
12	152	223	171	103	305	102	207	150	251	267	415	19420	314	136	2221
13	159	495	311	154	419	103	215	289	223	235	483	438	30389	614	34527
14	103	154	103	153	329	112	304	263	368	104	408	206	195	21807	24609
計	8636	19753	16717	5821	18528	3874	5242	20361	26273	20528	26498	22071	33849	25031	25318

表 5-10 内々OD 表比較結果 (④夜間ピーク/21:00) (検証実験)

								観測OD							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	計
1	3082	520	53	0	421	0	390	518	826	402	614	629	998	515	896
2	116	14653	823	0	497	0	88	461	1093	473	594	344	529	358	200
3	101	330	12285	46	292	0	94	265	549	379	105	626	487	311	158
4	61	755	393	1659	247	0	153	400	208	414	454	598	331	547	622
5	116	33	349	0	14629	54	171	456	550	126	0	327	492	126	174
6	0	102	103	0	364	1351	0	480	376	100	50	100	494	353	38
7	190	30	0	0	0	0	2652	747	710	274	218	291	229	344	58
8	53	60	150	0	1020	0	282	14929	1102	335	401	288	424	286	193
9	37	53	185	0	126	0	399	205	22459	0	98	141	105	50	23
0	52	184	152	85	306	0	359	89	387	14891	740	483	1132	595	19
1	0	324	690	0	355	43	262	887	1087	884	16450	1225	2994	1352	26
2	145	136	70	0	493	0	182	62	124	77	301	21583	782	657	240
3	48	0	123	0	243	0	270	370	302	646	902	1543	27001	960	32
4	0	189	42	0	0	71	78	63	0	204	444	642	603	21693	24
+	4001	17369	15418	1790	19131	1519	5380	19932	29773	19205	21371	28820	36601	28147	248
								予測OD							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
1	2491	716	270	0	628	0	166	542	709	395	572	702	941	510	86
2	115	13697	675	51	749	113	385	672	668	142	393	584	591	443	192
<u>^</u> }	0	323	13193	117	167	57	160	310	535	458	0	398	646	623	169
, ļ	0	788	269		221	0	167	352	153	326	509	314	246	646	55
+ 5	61	324	364	1555 109	15086	61	178	470	426	177	167	611	278	183	184
5	103	228	152	0	428	846	0	386	292	48	244	355	278	381	37
o 7	0	0	52	0	61	62	2087	474	487	292	48	360	288	215	44
	0	231	524	0		02	391		1242	261		621			200
3	-	219	517	61	1068 287	109	191	15024 334	23332	165	517 163	467	536 295	256 262	26
•	114														
0	123	246	198	103	353	102	175	261	566	16535	487	362	778	672	209
1	51	473	664	212	452	118	0	773	1353	485	17381	902	2450	1256	26
2	49	158	268	50	539	99	83	175	167	0	483	18773	1022	598	224
.3	51	119	501	0	521	143	159	477	606	331	530	915	28759	782	338
.4 †	51	200	141	85	332	166	78	216	242	370	392	295	240	22183	249
Т	3209	17722	17788	2343	20892	1876	4220	20466	30778	19985	21886	25659	37348	29010	253
	1	2	•	1	-	6		同化後O[。		10	11	12	12	1.4	=1
_	2401	745	3	4	5	6	7	8	9	10	11	12	1040	14	961
<u> </u>	2491	745	283	0	470	0	34	520	885	253	629	693	1049	584	863
2	59	13786	790	0	857	0	348	380	809	236	498	812	502	676	197
3	0	422	12952	0	342	161	155	368	457	468	224	405	305	458	167
1	0	723	439	1555	351	0	160	413	282	270	170	513	298	647	582
5	155	95	393	0	15023	0	178	404	551	320	264	476	382	287	185
5	0	280	102	51	437	846	0	626	236	223	102	139	512	320	387
7	62	62	321	52	277	52	2036	536	549	348	100	258	276	313	524
8	0	118	287	51	1105	100	514	15099	971	376	431	432	570	307	203
9	116	299	569	0	362	51	295	170	23074	223	263	310	280	261	262
.0	113	195	182	0	550	49	42	267	339	16357	587	542	813	492	205
.1	108	497	818	55	588	43	108	790	1245	490	17244	807	2458	1247	264
2	100	46	127	52	533	161	83	114	204	0	546	18850	581	674	220
.3	0	210	583	0	469	0	435	373	389	437	633	701	28908	711	338
4	51	155	149	85	300	123	180	323	398	262	320	415	407	21863	250

計 3255 17633 17995 1901 21664 1586 4568 20383 30389 20263 22011 25353 37341 28840 253182

		9:00	12:00	17:00	21:00
ゾーン滞留人口	同化前	0.228777	0.530884	0.216377	0.185872
ユークリッド距離	同化後	0.215409	0.399816	0.100542	0.113271
内々OD表	同化前	261.352	210.3469	258.5765	188.4031
残差平均值	同化後	244.4133	206.9082	243.352	176.352

表 5-11 精度比較結果(検証実験)

5.4 東京三区時間帯別ゾーン滞留人口推計

前節で行った検証実験の結果より、本手法により現況に即した個人の移動を再現できることが確かめられた。本節では同様の対象ゾーン・対象個人に対して、観測データとして2015年6月のモバイル空間統計を利用し、本研究の手法を用いてアクティビティシミュレーション PCATS と観測データ(モバイル空間統計)の統合を行うことにより、予測精度の改善を図り、再現された個人の移動から推計される時間帯別ゾーン滞留人口集計結果、及びその精度検証の結果を示す。

まずは、以上に述べた条件のもと、アクティビティシミュレーション PCATS により対象個人の一日の活動を予測し、その結果から各時間帯におけるゾーン滞留人口の推計を行う. 次に、PCATS での個人の一日の活動再現において上記の同化時刻において、前節の手法の適用手順磯って逐次観測データとの同化を行うことで、現況に即した個人の移動の再現を図る.この結果得られる同化後の時間帯別ゾーン滞留人口と、PCATS により予測される時間帯別ゾーン滞留人口とを、それぞれ観測データ(モバイル空間統計)によるゾーン滞留人口と比較する.

なお、本研究では、対象ゾーンに居住地を持っていても、ゾーン外で固定活動を行っている個人はシミュレーションの対象外としたが、夜間ピーク・その他の各時間帯で固定活動を終えている個人に関しては、その時間帯では自宅に戻っていると仮定し、その個人の人口をゾーン別滞留人口に加えている。これは、観測データにおいて、ゾーン滞留人口の総和が夜間ピークとその他の時間帯で大きく増えているため、この変化に対応するためである。この観測データによるゾーン滞留人口の総和の変化は、外部で固定活動を行っていた個人が夜間ピークとその他の時間帯で対象ゾーンに戻ってきたことにより引き起こされていると考えられる。

各時間帯のゾーン滞留人口に関して、1回のシミュレーションで得られた予測値と、観測データとの同化を各時間帯において逐次行った結果の値、そして観測値を比較した結果を以下の表 5-12 から 5-15 に示す、また、これらの精度評価のため、観測データでの各ゾーン

の滞留人口を表すベクトルと、同化前・同化後の各ゾーンの滞留人口を表すベクトルの重み付きユークリッド距離をそれぞれ各時間において算出した。重み付きユークリッド距離は第4章で述べた観測モデルのユークリッド距離とする。また、各時間帯において同化後に、ゾーン滞留人口が観測値に近づいているゾーン数を求めた。その結果を表 5-16 に示す。表が示すとおり、全時間帯において同化後のゾーンの滞留人口ベクトルと観測データのゾーン滞留人口ベクトルの重み付きユークリッド距離が同化前に比べて減少しており、観測値に近づいていることがわかる。また、ゾーン単位でみても、各時間帯において同化により観測値に近づいているゾーンが多いことがわかる。この結果より、本手法によってシミュレーション PCATS と観測データを統合することで、より現況に即した個人の移動の再現及び時間帯別ゾーン滞留人口推計を行うことが示された。

表 5-12 同化後のゾーン滞留人口比較 (①午前ピーク/9:00)

ゾーン	予測	削値	同化	比後	観測データ
	滞留人口	誤差	滞留人口	誤差	滞留人口
1	8134	-3244	8399	-2979	11378
2	20322	+2808	20127	+2613	17514
3	16066	-204	17014	+744	16270
4	4322	-128	4433	-17	4450
5	20804	+2097	20672	+1965	18707
6	3658	-788	4287	-159	4446
7	4288	-1254	4942	-600	5542
8	22770	+964	22113	+307	21806
9	25343	+2843	25160	+2660	22500
10	18944	-3143	18721	-3366	22087
11	24988	-8493	25290	-8191	33481
12	22689	-6434	21963	-7160	29123
13	35581	+1836	35201	+1456	33745
14	25273	+3674	24860	+3261	21599

表 5-13 同化後のゾーン滞留人口比較(②日中/12:00)

ゾーン	予涉	削値	同亻	比後	観測データ
)—2	滞留人口	誤差	滞留人口	誤差	滞留人口
1	8020	-4792	8126	-4686	12812
2	20533	+3666	21314	+4447	16867
3	17100	+750	17089	+739	16350
4	5452	-240	5633	-59	5692
5	18281	+2010	18682	+2411	16271
6	3001	-2038	3198	-1841	5039
7	4298	-3324	4409	-3213	7622
8	21295	+1956	21190	+1851	19339
9	24869	+6257	24648	+6036	18612
10	21093	+141	20598	-354	20952
11	27831	-5309	27565	-5575	33140
12	22261	-2585	21686	-3160	24846
13	34838	+5833	34593	+5588	29005
14	24310	+6661	24451	+6802	17649

表 5-14 同化後のゾーン滞留人口比較 (③夕方ピーク/17:00)

ゾーン	予測	削値	同亻	匕後	観測データ
	滞留人口	誤差	滞留人口	誤差	滞留人口
1	8642	-3799	8688	-3753	12441
2	19278	+2093	19793	+2608	17185
3	16987	+377	16570	-40	16610
4	5546	-447	5897	-96	5993
5	18495	+1544	19022	+2071	16951
6	3741	-1147	3682	-1206	4888
7	4426	-3930	4654	-3702	8356
8	20671	+1782	20498	+1609	18889
9	26516	+6160	26088	+5732	20356
10	20961	-914	20608	-1267	21875
11	26570	-7412	26911	-7071	33982
12	22464	-4106	21964	-4606	26570
13	33894	+3760	33905	+3771	30134
14	24991	+6310	24902	+6221	18681

表 5-15 同化後のゾーン滞留人口比較(④夜間ピーク/21:00)

ゾーン	予涉	則値	同亻	比後	観測データ
7-2	滞留人口	誤差	滞留人口	誤差	滞留人口
1	3292	-3027	3586	-2733	6319
2	17722	+263	16931	-528	17459
3	17788	+970	16933	+115	16818
4	2343	-1652	2388	-1607	3995
5	20892	-2014	21285	-1621	22906
6	2180	-1129	2210	-1099	3309
7	4562	-3346	4565	-3343	7908
8	23961	+1587	24761	+2387	22374
9	30778	+1951	30635	+1808	28827
10	23059	-1328	23767	-620	24387
11	26385	-9696	26543	-9538	36081
12	32929	-2909	32175	-3663	35838
13	37348	-822	37788	-382	38170
14	29010	+2715	28682	+2387	26295

表 5-16 精度検証結果 (ゾーン滞留人口)

		9:00	12:00	17:00	21:00
観測値との	同化後	0.299	0.883	0.676	0.748
ベクトル距離	同化前	0.386	0.903	0.702	0.810
同化後,滯留	人口が	10/14	9/14	8/14	13/14
観測値に近づいた	とゾーン数	10/14	0/14	0/14	10/14

さらに、本研究では、各時間帯において、同化前と同化後の個人の居住地別ゾーン滞留人口の推計を行い、モバイル空間統計の居住地別ゾーン滞留人口との比較を行った。以下にその結果を示す。また、同化前/同化後のゾーン別滞留人口と、観測値のゾーン別滞留人口の残差について、14×14のゾーンペア全てについて統計量をまとめたものが表 5-14 である。ここでは、誤差平均・誤差分散を算出し、精度の比較を行った。この結果より、居住地別のゾーン滞留人口に関しても、誤差平均及び誤差分散共に、同化によって小さくなったことから、精度が改善されていることがわかる。

表 5-17 居住地別ゾーン滞留人口比較(①午前ピーク/9:00)

						街	測データ	(モバイ)	レ空間統計	-)					
								滞留	! ゲーン						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	224	170	178	31	1	0	0	0	0	0	0	0	0	0
	2	2329	9884	3433	589	148	54	25	0	0	144	105	15	0	0
	3	1724	3196	8495	386	366	44	15	0	0	24	17	19	11	1
	4	0	0	0	9	0	0	1	0	0	0	0	0	0	0
	5	1045	255	1112	432	12498	1161	1126	3944	3176	94	1163	135	79	2
居	6	26	0	15	9	295	233	117	374	385	0	64	4	0	0
住	7	98	13	64	76	206	151	576	852	251	1	128	3	9	0
ソ	8	749	150	409	400	2206	997	1514	10331	2773	91	904	104	48	2
I	9	1140	630	871	548	2428	903	1359	5668	15848	406	1642	455	258	41
ン	10	600	794	242	302	75	115	99	85	21	10608	3339	1568	2159	1173
	11	494	348	94	356	9	69	83	26	0	3221	11459	3316	3941	1907
	12	939	612	447	417	179	263	218	200	23	2045	3708	16457	3483	1962
	13	1162	855	513	525	139	262	238	173	23	3533	7785	4359	19475	3636
	14	848	607	397	370	157	194	171	153	0	1920	3167	2688	4282	12875

							予測化	直(PC	ATS)						
								滞留	留ゾーン						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	378	221	0	0	0	0	0	0	0	0	0	0	0	0
	2	625	13983	512	546	194	189	64	558	99	46	668	99	215	64
	3	111	1091	11845	492	463	33	214	326	223	185	831	149	200	93
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	651	946	282	368	16102	519	176	971	398	493	405	515	612	324
居	6	0	0	0	0	0	410	0	0	0	48	0	48	0	0
住	7	54	51	45	0	0	0	1480	226	0	0	0	59	0	0
ゾ	8	633	338	526	448	412	330	451	16174	267	350	635	103	350	97
	9	1296	917	793	134	1043	705	578	1756	23015	452	1279	252	703	183
ン	10	562	268	334	575	474	189	211	347	297	14839	550	209	548	234
	11	486	557	89	177	179	190	42	639	132	534	13743	709	642	483
	12	1057	462	680	759	598	257	411	700	181	521	1669	19290	1623	668
	13	1365	711	640	399	752	514	261	779	228	830	2902	615	29663	551
	14	916	777	320	424	587	322	400	294	503	646	2306	641	1025	22576
	計	8134	20322	16066	4322	20804	3658	4288	22770	25343	18944	24988	22689	35581	25273

								同化後							
								滞留	留ゾーン						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	427	172	0	0	0	0	0	0	0	0	0	0	0	0
	2	676	14201	549	500	205	451	136	263	119	46	553	99	0	64
	3	165	986	12023	455	444	76	98	440	95	129	792	206	219	128
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	754	815	417	467	16167	563	166	1122	504	501	220	340	582	144
居	6	0	0	0	0	0	458	0	0	0	0	0	48	0	0
住	7	54	0	0	44	0	111	1533	173	0	0	0	0	0	0
ゾ	8	839	378	586	454	462	338	443	15643	90	496	678	70	460	177
	9	1106	1078	1038	214	843	655	616	1717	23017	285	1421	244	627	245
ン	10	654	252	458	536	411	264	264	156	77	14559	733	307	631	335
	11	346	445	223	139	315	293	132	563	173	511	14026	506	619	311
	12	964	337	617	702	594	306	417	719	384	538	1974	18816	1869	639
	13	1528	584	608	396	764	378	519	774	340	947	3019	788	28997	568
	14	886	879	495	526	467	394	618	543	361	709	1874	539	1197	22249
	計	8399	20127	17014	4433	20672	4287	4942	22113	25160	18721	25290	21963	35201	24860

表 5-18 居住地別ゾーン滞留人口比較(②日中/12:00)

						観	測データ	(モバイル	レ空間統計	 					
								滞留	ゾーン						
		1	2	3	4	5	6	7	8	9	10	11	1 2	13	14
	1	212	148	152	31	1	2	0	0	0	0	0	0	0	0
	2	2209	8271	3189	635	124	87	118	4	0	253	188	8	0	0
	3	1706	2778	7531	426	337	101	51	1	0	67	59	8	11	0
	4	0	0	0	9	0	0	1	0	0	0	0	0	0	0
	5	1258	467	1293	573	10374	1194	1294	3558	2754	233	1381	191	79	6
居	6	43	0	12	9	258	210	108	311	284	0	52	1	0	0
住	7	104	46	84	101	189	143	594	719	196	1	164	3	15	0
ソ	8	965	307	609	521	1977	1017	1731	8662	2342	194	1126	127	63	4
1	9	1397	797	1003	743	2239	1006	1818	4994	12913	590	1951	574	371	67
ン	10	743	896	357	380	96	156	248	119	23	8801	3287	1357	1898	952
	11	662	518	205	532	36	144	274	69	0	2985	9963	2619	3652	1670
	12	1106	766	641	540	219	348	462	340	45	2114	3813	13437	3229	1782
	13	1405	1115	775	703	203	359	542	281	45	3679	7781	3985	15793	3069
	14	1002	758	499	489	218	272	381	281	10	2035	3375	2536	3894	10099
	#H	12812	16867	16350	5692	16271	5039	7622	19339	18612	20952	33140	24846	29005	17649

							予測値	(PCA	ATS)						
								滞留	習ゾーン						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	427	172	0	0	0	0	0	0	0	0	0	0	0	0
	2	782	13920	414	1034	116	194	64	128	110	235	480	287	0	98
	3	194	965	12893	356	353	0	87	200	121	33	664	161	170	59
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	439	925	406	666	15540	442	195	1261	362	574	841	520	393	198
居	6	0	0	0	0	0	415	0	0	0	0	43	48	0	0
住	7	88	71	0	53	70	0	1285	303	0	0	0	0	0	45
ゾ	8	624	343	439	610	364	332	553	15511	101	409	1347	46	374	61
1	9	1265	1262	736	246	608	514	632	1598	23339	601	1656	163	486	0
ン	10	402	267	474	516	126	100	171	253	0	15752	744	108	515	209
	11	467	677	165	113	35	114	135	518	91	514	14677	365	520	211
	12	1119	344	582	787	327	148	493	625	324	679	2139	18726	2023	560
	13	1345	806	470	492	538	383	254	507	148	1223	3259	983	29151	651
	14	868	781	521	579	204	359	429	391	273	1073	1981	854	1206	22218
	計	8020	20533	17100	5452	18281	3001	4298	21295	24869	21093	27831	22261	34838	24310

								同化後							
								滞留	留ゾーン						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	427	172	0	0	0	0	0	0	0	0	0	0	0	0
	2	725	13906	323	1034	116	194	109	293	99	224	421	168	93	157
	3	194	1009	12630	356	418	0	82	250	47	114	697	149	221	89
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	439	1022	353	618	15774	397	326	1146	452	483	695	466	393	198
居	6	0	0	0	0	0	415	0	0	0	0	43	48	0	0
住	7	88	71	0	98	70	0	1282	252	0	54	0	0	0	0
ゾ	8	624	520	440	610	410	332	612	15346	101	462	1246	0	350	61
1	9	1265	1366	819	246	608	573	678	1644	23056	528	1656	101	566	0
ン	10	432	595	544	609	126	151	163	204	99	15185	786	108	515	120
	11	434	731	63	161	42	114	135	414	43	514	14819	365	520	247
	12	1125	383	584	823	327	148	410	745	417	669	2233	18429	2023	560
	13	1395	767	804	534	414	391	290	548	198	1267	3219	1019	28707	657
	14	978	772	529	544	377	483	322	348	136	1098	1750	833	1205	22362
	計	8126	21314	17089	5633	18682	3198	4409	21190	24648	20598	27565	21686	34593	24451

表 5-19 居住地別ゾーン滞留人口比較(③夕方ピーク/17:00)

		-				観	測データ	モバイル	レ空間統計	-)					
								滞留	ゾーン						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	246	153	163	39	1	3	1	0	0	0	0	0	0	0
	2	2228	8996	3200	649	97	85	100	6	0	228	158	11	0	1
	3	1663	2849	7952	409	346	96	41	2	0	46	54	8	11	0
	4	0	0	0	11	0	0	2	0	0	0	0	0	0	0
	5	1231	354	1316	608	11163	1191	1436	3510	2758	191	1367	154	93	6
居	6	28	0	13	9	278	215	112	309	361	0	65	4	0	0
住	7	118	28	74	118	187	150	624	707	208	11	172	13	13	1
ゾ	8	947	258	559	608	2023	1037	1937	8725	2451	192	1249	98	62	3
ı	9	1333	735	960	825	2217	961	1993	4667	14491	552	2020	493	320	51
ン	10	670	890	316	382	88	146	247	113	10	9530	3330	1422	1943	968
	11	614	474	158	558	32	112	338	56	0	3192	10355	2905	3682	1583
	12	1055	714	637	561	170	318	523	281	34	2118	3850	14859	3254	1768
	13	1344	1028	768	726	167	329	605	268	43	3770	7994	4095	16785	3198
	14	964	706	494	490	182	245	397	245	0	2045	3368	2508	3971	11102
	#H	12441	17185	16610	5993	16951	4888	8356	18889	20356	21875	33982	26570	30134	18681

							予測値	(PCA	ATS)						
								滞留	留ゾーン						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	427	172	0	0	0	0	0	0	0	0	0	0	0	0
	2	763	12921	548	1133	204	424	178	254	167	202	643	156	57	212
	3	299	654	12634	392	360	0	0	318	218	90	721	172	284	114
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	815	927	414	495	14952	459	141	1190	293	852	772	589	614	249
居	6	0	0	0	0	0	415	0	0	0	0	43	48	0	0
住	7	88	71	0	53	70	61	1381	130	0	0	0	61	0	0
ゾ	8	677	458	515	563	783	329	606	14613	287	453	1203	61	505	61
1	9	1165	1043	539	263	516	511	541	1505	23870	628	1677	176	480	192
ン	10	367	258	413	636	177	151	286	305	103	15502	615	108	544	172
	11	501	509	0	175	110	286	200	349	318	487	14712	386	410	159
	12	1103	647	670	621	704	243	410	974	600	537	1616	18646	1553	552
	13	1464	839	521	518	339	494	346	692	269	1362	3190	1205	28553	418
	14	973	779	733	697	280	368	337	341	391	848	1378	856	894	22862
	計	8642	19278	16987	5546	18495	3741	4426	20671	26516	20961	26570	22464	33894	24991

								同化後							
			滞留ゾーン												
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	427	172	0	0	0	0	0	0	0	0	0	0	0	0
	2	819	13092	392	1076	262	194	178	255	224	204	628	155	171	212
	3	299	711	12577	392	417	172	57	200	161	92	778	173	227	0
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	814	988	414	617	15074	520	387	1315	417	545	588	466	369	248
居	6	0	0	0	0	0	415	0	0	0	0	43	48	0	0
住	7	88	71	61	53	70	0	1381	130	0	0	0	0	61	0
ゾ	8	677	336	385	686	689	451	667	14559	347	515	1387	0	354	61
1	9	1226	1234	478	264	638	510	541	1355	23596	657	1554	175	754	124
ン	10	367	280	361	516	349	151	132	459	51	15378	717	108	441	327
	11	449	406	0	269	52	216	164	349	163	590	14782	490	358	314
	12	1171	647	601	911	594	242	463	743	657	486	1764	18392	1653	552
	13	1464	1043	620	467	544	341	399	624	183	1191	3241	1205	28623	265
	14	887	813	681	646	333	470	285	509	289	950	1429	752	894	22799
	計	8688	19793	16570	5897	19022	3682	4654	20498	26088	20608	26911	21964	33905	24902

表 5-20 居住地別ゾーン滞留人口比較(④夜間ピーク/21:00)

						観	測データ	(モバイ	ル空間統訂	†)					
			滞留ゾーン												
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	236	193	167	8	2	2	1	0	0	0	0	0	0	0
	2	2147	12041	3724	415	149	34	45	0	0	85	16	0	0	0
	3	1477	3324	10358	280	492	37	32	0	0	30	13	0	0	0
	4	0	1	4	8	0	0	1	0	0	0	0	0	0	0
居	5	367	12	953	427	16522	987	1486	3917	3508	29	1133	48	0	0
	6	16	0	15	11	325	251	125	398	434	0	69	3	0	0
住	7	49	0	28	109	252	155	717	862	266	0	163	4	0	0
ナ	8	307	8	274	473	2524	948	2120	11921	3190	17	1111	40	19	0
I	9	475	152	545	661	2596	632	1839	5162	21429	182	1623	167	100	6
ン	10	183	650	125	209	7	32	174	19	0	12659	3606	1752	2318	1301
	11	123	225	6	349	0	10	217	12	0	3779	13352	3862	4489	2226
	12	275	246	203	340	13	70	396	40	0	2004	3675	22349	3529	2080
	13	384	394	247	444	18	90	482	30	0	3690	8353	4759	23140	4073
	14	280	213	169	261	6	61	273	13	0	1912	2967	2854	4575	1660
	81	6319	17459	16818	3995	22906	3309	7908	22374	28827	24387	36081	35838	38170	2629

							予測値	(PCA	ATS)						
								滞留	留ゾーン						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	542	0	0	0	0	0	57	0	0	0	0	0	0	0
	2	47	15284	341	413	203	196	235	242	57	110	270	122	114	228
	3	194	156	14694	180	0	171	46	46	57	224	53	46	161	228
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	332	406	502	255	18974	195	434	203	351	130	500	169	187	124
居	6	0	0	43	0	0	463	0	0	0	0	0	0	0	0
住	7	54	0	0	0	0	0	1739	0	0	0	0	61	0	61
ゾ	8	238	62	318	211	415	61	309	18225	54	192	478	185	244	122
1	9	321	361	175	222	324	227	305	442	29148	374	474	232	439	62
ン	10	175	100	267	238	51	0	52	0	155	17664	338	279	215	103
	11	0	174	114	103	207	64	48	205	52	51	17270	201	113	0
	12	450	353	526	210	154	207	196	631	201	228	1107	23873	637	103
	13	595	576	434	323	112	90	372	256	360	531	979	243	35102	237
	14	261	250	374	188	452	202	427	216	343	481	417	248	136	27742
	計	3209	17722	17788	2343	20892	1876	4220	20466	30778	19985	21886	25659	37348	29010

								同化後							
								滞留	留ゾーン						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	599	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	161	14929	450	357	203	170	177	221	171	280	336	236	114	57
	3	308	156	14479	237	110	34	102	317	171	0	135	103	104	0
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	454	385	310	194	19299	72	236	209	107	375	396	106	372	247
居	6	0	0	0	0	0	506	0	0	0	0	0	0	0	0
住	7	54	0	0	0	61	0	1739	0	0	0	0	61	0	0
ゾ	8	300	123	248	211	245	171	247	18242	237	501	466	0	62	61
	9	197	245	362	100	635	165	481	414	29045	292	620	48	318	184
ン	10	175	151	115	300	0	0	51	52	103	17586	473	313	214	104
	11	51	185	42	52	63	218	203	174	52	52	17248	150	112	0
	12	347	300	324	264	264	102	235	849	201	443	1187	23227	825	308
	13	494	361	307	486	301	151	392	417	154	480	864	294	35324	185
	14	363	96	296	187	104	317	360	371	394	684	319	367	343	27536
	計	3503	16931	16933	2388	21285	1906	4223	21266	30635	20693	22044	24905	37788	28682

		9:00	12:00	17:00	21:00
誤差平均	同化前	780.64	837.30	822.64	902.69
一跃左半均 	同化後	772.86	830.49	813.09	888.62
誤差分散	同化前	2221575	3500392	2872285	3170097
一段左分割 	同化後	2081996	3379990	2841110	3144376

表 5-21 統計量比較結果

5.5 考察

まず、観測データとしてパーソントリップ調査データを利用した精度検証実験において、対象の東京三区のゾーン滞留人口の推計精度が、本手法により向上していることが確認できた。さらに、個人の移動再現結果から推計された OD 表に関しても、本手法の適用により、精度よく推定できていることが確認でき、本手法によってゾーン滞留人口の推定のみならず OD 表の推定精度改善にも有効であることが示された。同様に、観測データとしてモバイル空間統計を利用して本手法を適用した場合においても、本手法により同化を行うことでゾーン滞留人口を精度よく推定できていることが検証された。これにより、同化によってより現況に沿って再現された PCATS による個人の移動の結果を利用することで、より精度の良い時間帯別 OD 表や、カテゴリ別・目的別ゾーン滞留人口等の推計も可能となる。

一方で、まず精度検証実験において得られた結果を見ると、12 時では同化前と同化後の ゾーン滞留人口ベクトルと、観測値によるゾーン滞留人口ベクトルとの重み付きユークリッド距離でみた精度改善の程度が小さくなっていることが分かる。この原因は、12 時時点では、就業活動・就学活動といった固定活動中の個人が多く、フィルタリング対象である自由活動の個人の総数が少なくなっているため、フィルタリングによる精度改善の効果が他の時間帯に比べて低くなっている事によると考えられる。また、今回シミュレーションによる予測値と観測値とのずれは、シミュレーション自体の再現精度・観測値の誤差のほかに、全個人が一日対象の三区内のみで活動しているという仮定によるものであると考えられる。内部モデルのパラメータ推定や、対象ゾーン外のLOSデータ、地域データを入力することによる個人の活動域拡大により、シミュレーション自体の再現精度の向上を図ることは出来るであろう。

次に、観測データとしてモバイル空間統計を利用して手法を適用した結果について考察する. ゾーン滞留人口に関して、PCATS による予測値とモバイル空間統計による観測値のずれは、パーソントリップ調査データを観測値として利用した検証実験よりも大きくなっている. これはシミュレーションの再現精度・観測値の誤差の他に、入力個人データによる

ものが大きいと考えられる. PCATS の個人入力データとして用いたパーソントリップ調査 データは 2008 年時のものであるのに対して、観測データであるモバイル空間統計は 2015 年時のデータである. 当然、2008 年の個人データと 2015 年の個人データでは、人口・年齢・カテゴリ分布等に変化が生じていると考えられる. 本研究では、個人データの変化を考慮していないため、予測値と観測値のずれが大きくなってしまったと推測される. また、精度検証の結果をみると、同化後のゾーン滞留人口ベクトルは、同化前と比べて観測値とのユークリッド距離が小さくなり、全体として精度向上が確認できたものの、各時間帯においてゾーン単位で比較結果を見ると、同化前に比べて観測値との誤差が大きくなっているゾーンもあることがわかる. 今回、観測モデルとして状態ベクトルと観測ベクトルのゾーン滞留人口ベクトル間の重み付きユークリッド距離を定義しているが、観測モデルの修整やゾーン毎の重みの設定を変更することによる対応が考えられる.

第6章 結論

6.1 研究の成果

本研究では、現況に即した個人の移動の再現を目的として、データ同化アプローチを用いたアクティビティモデルと観測交通データの統合手法を開発した。また、再現された個人の行動結果を基に、各時間帯のゾーン滞留人口や OD 表の推計を行った。実際に東京三区を対象とした適用と精度検証を行うことにより、提案手法の適用可能性を検討した。具体的な成果は以下の通りである。

(1) アクティビティモデル PCATS の東京三区への適用

アクティビティベースモデル PCATS は、主に京阪神地域を対象に開発された。そのため、東京都市圏への適用に当たっては、各種の改良が必要になる。適用対象の東京都心三区(千代田区・中央区・港区)に適用するため、各種データ整備を行った。個人データと交通機関LOS データは、平成20年度第5回パーソントリップ調査データ、地域データは平成26年商業統計調査データを利用した。また、PCATSの内部モデルのうち、交通機関選択モデルについて、東京都心三区への適用のため、東京都市圏の1日の交通機関分担率推定結果を利用した定数項補正を行った。これにより、アクティビティモデルPCATSの東京都心三区における適用を可能とした。

(2) アクティビティモデルと観測交通データの統合手法の開発

データ同化アプローチに基づき、アクティビティモデルと観測交通データの両者の統合 手法を開発した.本研究では、状態空間モデルにおいて、各個人の位置をシステムの状態ベクトルとして表現し、観測データから得られるゾーン滞留人口を時系列の観測ベクトルとして定義した.そして、システムモデルとしてアクティビティモデル PCATS を利用し、観測モデルを定式化することで、逐次フィルタリングを行った。逐次フィルタリングにおいては、モデルの非線形性や非正規性を考慮し、パーティクルフィルタによる実装を行った。また、観測モデルは、各個人の位置を表す状態ベクトルをゾーン滞留人口に変換したベクトルと、観測データから得られるゾーン滞留人口を表すベクトルの類似度として定義した。これにより、アクティビティモデルから予測された個人の 1 日の移動に対し、任意の時間帯でフィルタリングを行うことで、より現況に即した個人の移動の再現が可能となった。

(3) 東京都心三区への提案手法の適用と精度検証

東京都心三区を対象に、提案手法を適用し、現況に即した個人の移動の再現を実現した. 適用に先立って行った精度検証実験では、入力個人データに用いたものと同じ平成 20 年度第 5 回 PT 調査によるゾーン滞留人口自体を新たな観測値と仮定して、その再現性を検証した. また、得られた個人の移動結果より、各時間帯でのゾーン滞留人口・OD 表の推計を行い、観測値と仮定している PT 調査より得られるゾーン滞留人口・OD 表との比較を行った. これらにより、提案手法の妥当性を確認した. 続いて、観測データとして 2015 年 6 月のモバイル空間統計データを利用して提案手法の適用を行った. 検証実験と同様に、得られた個人の移動結果より、各時間帯でのゾーン滞留人口の推計を行い、モバイル空間統計によるゾーン滞留人口との比較を行い、提案手法による推定精度の向上を確認した. さらに、これらの結果より、手法の適用による高精度なカテゴリ別のゾーン滞留人口や、時間帯 OD の推計可能性も示された.

6.2 今後の課題

本研究において提案した手法は一定の有効性を示したものの,実際の応用を考えると課題となる点もある.以下に今後の課題を示す.

(1) フィルタリング手法の改良による精度向上

本研究において提案したフィルタリング手法は一定の有効性を示したものの、実際の応用に向けては、フィルタリング手法の改良によるさらなる精度の改善が見込まれる。例えば、本研究で利用したモバイル空間統計データは個人の居住地別ゾーン滞留人ロデータであるため、観測ベクトルに居住地別ゾーン滞留人口の要素を組み込むことや、居住地別にフィルタリングを実行すること等が考えられる。他にも、本研究では利用しなかったが、モバイル空間統計は性別や年代別の人ロデータを取得することが出来るため、これらのデータを観測データとして利用する場合は、性別・年代別にフィルタリングを実行することで、さらなる精度の改善が期待される。

また、本研究では、フィルタリングによる位置再配置の対象個人を、「宅外自由活動」中の個人に限定したが、詳細な条件の設定の下、「自宅自由活動」や「移動」中の個人に対してもフィルタリングの対象とするという改良も考えられる.

(2) 適用条件の改良による精度向上

フィルタリング手法の改良に加え、手法適用にあたって諸条件の変更も精度向上のためには必要となる。まず、交通機関選択モデルにおいては、定数項補正により調整を行ったが、より詳細なパラメータ推定に基づくモデルの適用が望まれる。さらに、今回は2008年のPT調査データを個人データとして利用し、観測データとして2015年6月のモバイル空間統計

データを利用した. 2015 年における各個人の移動を再現するにあたり、対象ゾーンにおける人口や年齢構造等個人データの経年変化も考慮するべきである. これは、例えば国勢調査のデータを利用して個人データの改定を行う、またはシミュレーション内のパラメータで個人データの変化に対応するといった形での工夫が必要となる.

(3) 広域への適用による提案手法の有効性の確認

本研究では、計算量の関係から、適用対象を東京都心三区に限定した。地域データ・交通機関 LOS データに関して、対象ゾーン内のデータのみを整備したため、対象とするゾーン内々交通のみを再現するにとどまっている。広域への適用においては、より多様な行動パターンが存在するため、その適用可能性を考慮する必要が生じる。対象ゾーン外に出る活動に対して、対象ゾーン外の地域データ・交通機関 LOS データを整備する、もしくは他の何らかの処理によって対象ゾーン外への活動も考慮できるようにするべきである。この場合には、観測モデルの改良も必要になる可能性がある。また、計算量が膨大になることが予想されるため、効率的な計算アルゴリズムの開発も課題となる。

(4) 観測データとしての ETC2.0 プローブデータの利用

本研究では、データ量・データ形式・取得頻度を考慮したうえで、観測データとしてモバイル空間統計を利用し、普及率・データの偏りの面から ETC2.0 プローブデータの利用は困難であるとした。しかし、今後 ETC2.0 の普及が進み、集計データとして ETC2.0 プローブデータが利用可能になると、本手法における観測データとしての利用も期待される。 ETC2.0 により、リアルタイムの自動車 OD データを取得することが出来るため、この自動車 OD データとアクティビティモデルを統合し、OD データでの同化を行う事で、さらに精度の高い OD 表の推計を得ることが可能になると考えられる。

参考文献

Becker, G.: A Theory of the Allocation of Time, Economic Journal, 75, pp. 493-517, 1965.

Bowman, J.L., Ben-Akiva, M.E., 2001, Activity-based disaggregate travel demand model system with activity schedules, *Transportation Research Part A*, Vol. 35, Issue 1, pp.1-28.

Ettema. D., A. Borgers and H. Timmermans, SMASH (Simulation Model of Activity Scheduling Heuristics): Some Simulations, *Transportation Research Record*, **1551**, pp. 88-94, 1996.

Garling, T., K. Brannas, J.Garvill, R.G. Golledge, S. Gopal, E. Holm and E. Lindberg: Household Activity Scheduling. *Paper persented at the Fifth World Conference on Transport Research*, Yokohama, 1989.

Hemmens, G.C: Analysis and Simulation of Urban Activity Patterns, *Socio-Econometrics Planning Science*, Vol. 4, pp.53-66, 1970.

Hagerstrand, T.: What about People in Regional Science? *Papers of the Regional Science Association*, **23**, pp. 7-21, 1970.

Kitamura R., J.P. Robinson, T.F. Golob, M.A. Bradley, J. Leonard, T. van der Hoorn: A comparative analysis of time use data in the Netherlands and California, In Proceedings of Seminar E, *PTRC 20th Summer Annual Meeting*, PTRC Education and Research Services, Ltd., London, pp. 127-138, 1992.

Kitamura, R., Pendyala, R. M., Pas, E. I.: Application of AMOS, An Activity-Based TCM Evaluation Tool to the Washington, D. C., Metropolitan Area, Proceedings of Seminar E held at the PTRC European Transport Forum,

Vol.P392, pp.177-190, 1995

Jones, P.M., Dix, M.C., Clarke, M.I. and Haggie, I.G. (1983) *Understanding Travel Behavior*, Gower, Aldershot.

川口英俊,野田五十樹,2015. 人流シミュレーションにおける複数の評価基準を考慮したOD表の推定. *情報処理学会研究報告*,Vol.2015-ICS-178 No.5

北村隆一,1996. 交通需要予測の課題-次世代手法の構築にむけて,土木学会論文集, No. 530/IV-30, pp. 17-30

北村隆一, 1994. 時間利用データを用いた交通行動分析-次世代の交通計画に向けて, 交 通工学, Vol,29, No,1, pp. 11-13

藤井聡,大塚祐一郎,北村隆一,門間俊幸,1997.時間的空間的制約を考慮した生活行動 軌跡を再現するための行動シミュレーションの構築, *土木計画学研究・論文集*, No.14, pp.643-652.

藤井聡,北村隆一,大塚祐一郎,1996.個人の意思決定過程を考慮した生活行動マイクロシミュレーション PCATS の構築、日本行動計量学会大会発表論文抄録集 24,pp.92-95

高比良論,金森亮,伊藤孝行,2013. 生活行動調査のための時空間プリズムに基づくスケジューリングシステムの試作, The 27th Annual Conference of the Japanese Society for Artificial Intelligence,2013

金森亮,水野敬太,野田五木樹,中島秀之,2015. 滞留人口データを利用した交通手段別 OD 交通量推計手法の提案, *情報処理学会研究報告* Vol.2015-ICS-178 No.8

NTT ドコモ-モバイル空間統計, http://www.docomo.biz/html/service/spatial statistics/, [アクセス日:1222016]

松田奈緒子,牧野浩志,吉村仁志,山田康右,堀口良太,2015. ETC2.0 プローブ情報を活用した環状高速道路の交通状態把握手法に関する研究,第54回土木計画学研究発表会・講演集,CD-ROM.

倉内文孝, 宇野伸宏, 金, 石橋, 2008. ETC 統計データによる時間帯別ランプ間 OD 交通量推定, 第 26 回交通工学研究発表会, pp.205-208

中山栄作, 宇野伸宏, 倉内文孝, 大藤武彦, 2009. 交通流シミュレーションにおける ETC データに基づく OD 交通量適用結果の評価, 第39回土木計画学研究発表会, pp.253-256

樋口知之, 2011. 予測にいかす統計モデリングの基本—ベイズ統計入門から応用まで. 東京: 講談社.

樋口知之,2011. データ同化入門-次世代のシミュレーション技術-,朝倉書店.

矢野浩一, 2014. 粒子フィルタの基礎と応用, 日本統計学会誌, 第 44 巻, 第 1 号, pp.189-216

中村和幸,上野玄太,樋口知之,2005. データ同化:その概念とアルゴリズム,統計数理,第53巻,第2号,pp211-229.

経済産業省,2016,商業統計,[オンライン] http://www.meti.go.jp/statistics/tyo/syougyo/ [アクセス日:3112016]

国土交通省,2016. 鉄道需要分析手法に関するテクニカルレポート,[オンライン] http://www.mlit.go.jp/common/001138608.pdf/[アクセス日:512017]

謝辞

本研究の執筆にあたり、多くの方にご協力頂きました。ここに感謝の意を記します。

主査である布施先生には、学部時代から合わせて 3 年間ご指導いただきました。決して優秀とはいえない自分ですが、3 年間楽しく研究に取り組むことが出来たのは、布施先生が私に興味深い研究テーマを与えてくださり、温かくご指導していただいたおかげと感じております。修士 1 年時には学会発表の機会を与えてくださり、貴重な経験をさせていただきました。ありがとうございました。副査の羽藤先生は副査説明の際に研究に関するアドバイスを頂き、自分の研究を見つめなおすきっかけを与えてくださいました。学生部屋にお見えになられた際も時々研究の様子を気にかけてくださり、感謝しています。

清水先生にはゼミのたびに研究に関するアドバイスを頂いたほか、飲み会では様々なテーマついてお話を聞かせていただきました。3 年間,地域/情報研究室に所属できて本当に良かったと感じています。ありがとうございました。元助教の中西さんにも大変お世話になりました。異動後も度々研究室に顔を出していただき、研究のアドバイスを頂いたほか、研究の気分転換に楽しく趣味のJリーグの話をする機会もありました。

また、東北工業大学の菊池先生には、本研究で PCATS を利用するにあたって丁寧な説明をしてくださったほか、研究で利用するための改修もしていただき、大変感謝しております。地域未来研究所の岡田様にも、モデルに関する資料をご用意していただき、そのおかげで理解を深めることができました。

同じく地域/情報研究室で共に過ごした学生の皆さんにも大変お世話になりました。博士の神谷さんは身近なお手本としての存在で、常に刺激を受けていました。研究に取り組む様子や発表に関して等多くのことを学ばせていただきました。B4の時は同期がいなかった自分にとって、M2同期の池澤君と泉君の存在は大きな支えであり、また刺激を受けました。修論繁忙期に3人で行った打ちっぱなしは最高の気分転換でした。M1の大倉君と福冨君は2人とも優秀で、2人が揃って田辺朔郎賞を受賞した際は自分も頑張らねばと刺激を受けました。修士研究も引き続き頑張ってください。B4の妹背君、佐藤さん、森田さん、横澤君は4人とも個性的で研究室を盛り上げてくれました。ゼミのたびに、自分のB4のときと比べて皆発表が上手いなと感じておりました。最後論文生で打ち上げしましょう。また、秘書の石田さんにも多くの事務仕事でお世話になりました。交通研のみなさん、羽藤先生、鳩山先生、原先生、福山さんにも同じラボで生活を送る上で大変お世話になりました。

修論提出を間近に控えた今、3年間の地域/情報研究室生活が終わろうとしていることに 寂しさを覚えています。3年間で学んだこと・培ってきた経験に自信を持って、社会にでで も、充実した生活を送り、活躍していきたいと思います。

最後に、今まで自分を温かく見守り、いつも自分のやりたいことに対して理解を示して支えてくれた両親に感謝します。ここに記しきれなかった友人等も含め、私を支えてくださった全ての方々に対し、ここに感謝の意を記します。

付録 作成プログラムソースコード

本研究で開発した

アクティビティモデルと観測データの統合手法のアルゴリズムの主要部分を記す. プログラムは、Microsoft Visual Studio2010 の環境を用いて作成した。

作成した主要プログラムは以下のものである.

1.PCATSoutputdata.cpp

PCATS から出力された個人活動データを exercise.cpp (後述) への入力データとして整理するプログラム

2.exercise.cpp

同化時刻における状態ベクトル・観測ベクトルを整理した後、パーティクルフィルタによるフィルタリングを実行し、個人位置の再配置と、ゾーン別滞留人口の算出を行うプログラム

PCATSoutputdata.cpp

```
#include "stdafx.h"
 #include <fstream>
   #include <iostream>
#include <stdio.h>
#include <cstdlib>
#include <string>
#include<fstream>
#include<iostream>
 #include<sstream>
using namespace std;
 int _tmain(int argc, _TCHAR* argv[])
                                                                                                 //シミュレーションの開始・終了時刻を設定
                                                                                                 //パーティクル有りver
                                                                                                 int start=1020;
                                                                                                 int end=1260;
                                                                                                 FILE* fp;
                                                                                               char filename1[200];
sprintf(filename1, "C:\forall VUSers\forall VU
 2010 \pm \Psi P Construction that the property of the property of
                                                                                               fp = fopen(filename1,"r");
                                                                                               if(fp == NULL){
                                                                                                                                                                                             cout<<"入力エラー"<<endl;
                                                                                               }
                                                                                               FILE *PZ;
                                                                                                 char filenamePD[200];
                                                                                                 \verb|sprintf| (filenamePD, "C: \verb|Y$$ Users \verb|Y$$ Y hararyo \verb|Y$$ Y Documents \verb|Y$$ Y visual Studio
 2010 \\ \pm \\ \Psi P colonial \\ \Psi P control \\ \Psi 
 end);
                                                                                                 PZ=fopen(filenamePD,"w");
                       if( PZ == NULL ){
cout<<"ファイルが開けません"<<endl;
                                return -1;
```

```
}
                                   FTIF *P72:
                                   char filenamePZ2[200];
sprintf(filenamePZ2,"C:\frac{x\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex
.2010¥¥Projects¥¥PCÀTSoutputdatᥥPCATSoutputdatᥥpersonzone¥¥trpersonzonedata_%d-%d(100particle).data",start
                                   PZ2=fopen(filenamePZ2,"r");
        if( PZ2 == NULL ){
cout<<"ファイルが開けません"<<endl;
          return -1:
     }
                                  FILE *PT3;
char filename2[200];
sprintf(filename2, "C:\forall_Sultnutnarticle\forall_YVavancise\forall_PCATSoutnutnarticle\forall_YPCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\forall_PCATSoutputparticle\foral
2010¥¥Projects¥¥exercise¥¥exercise¥¥PCATSoutputparticle¥¥trPCATSoutputparticle_%d-%d(100particle)(除固定活
動).data",start,end);
                                  PT3=fopen(filename2, "w");
       if( PT3 == NULL ){
cout<<"ファイルが開けません"<<endl;
           return -1;
     }
                                   FILE *PT4;
                                   2010¥¥Projects¥¥exercise¥¥exercise¥¥PCATSoutputparticle¥¥trPCATSoutputparticle_%d-%d(100particle)(固定活
動).data",start,end);
                                  PT4=fopen(filename4, "w");
        if( PT4 == NULL ){
cout<<"ファイルが開けません"<<endl;
          return -1;
                                   char ch1[20];
                                   char ch2[8];
                                   int num[28];
                                   int i=0;
                                   int j=0;
                                   //ch1.個人ID 0.カテゴリー 1.自宅ゾーン 2.就業ゾーン 3.性別 4.年齢 5.職業 6.免許有無 7.自動車台数 8.拡大計
数 9.世帯人数 10.活動内容 11.活動開始時刻
//12.活動終了時刻 13.活動場所ゾーン 14.活動施設 15.固定活動ダミー 16.活動後の移動有無 17.移動開始時刻 18.移
動終了時刻 19.移動手段 20.自動車ゾーン 21.自動車場所 22.中断か否か ch2中断時活動
//PCATSのoutputファイルを読み込み、中断時のデータを抜き出し
cout<<"各個人パーティクルの中断時のデータを抜き出しています...."<<endl<<endl;
                                  while(fscanf(fp,"%s %d %d %d %d %d %d %d %d
%d %d %d %s",ch1,&num[0],&num[1],&num[2],&num[3],&num[4]
                                                                                                                                                                                                                                          %d %d %d %d %d
                                                                                                                                                                                                                                                                                                                      %d %d %d %d
                                     &num[5],&num[6],&num[7],&num[8],&num[9],&num[10],&num[11],&num[12],&num[13],&num[14],&num[15],&num,
[16],&num[17],&num[18],&num[19],&num[20],&num[21],&num[22],ch2)!=EOF)
                                                                       //Pcatsoutput.dataに中断時の各個人のID,活動場所,活動種類を書き込み(720,1020の時)
//personzonedata ID, カテゴリ, 自宅ゾーン, 年齢, 拡大係数, 活動内容, 活動ゾーン, 中断時活動
                                                                       if(end!=1620){
if(strcmp(ch2,"FIX")==0||strcmp(ch2,"FREE")==0||strcmp(ch2,"HOME")==0||strcmp(ch2,"MOVING")==0) \\ \{ (ch2,"FIX")==0 | (ch2,"FIX")==0 | (ch2,"FIX")==0 \\ (ch2,"
                                   fprintf(PZ, "%s %d %d %d %d %d %d %d %s 4 %s 4 mr, ch1, num[0], num[1], num[4], num[8], num[10], num[13], ch2);
                                                                       ,
//Pcatsoutput.dataに中断時の各個人のID,活動場所,活動種類を書き込み(1620の時)
                                                                       if(end==1620){
                                                                       if(num[12]==1620){
                                   fprintf(PZ,"%s %d %d %d %d %d %d %d %s\superstantial, num[0], num[1], num[4], num[8], num[10], num[13], ch2);
                                                                       if(i==400000){cout<<"40万行目処理完了"<<endl;}
                                                                       if(i==800000){cout<<"80万行目処理完了"<<end1;}
                                                                       if(i==1200000){cout<<"120万行目処理完了"<<endl;}
if(i==140000){cout<<"140万行目処理完了"<<endl;}
                                                                       i++;
                                   fclose(PZ);
```

```
//中断時の抜き出しデータから,各個人の位置のみをPcatsoutput2.data抜き出し、収納 //→exerciseの入力ファイルを作成
 char ID[20];
                                                                                   char IDhozon[20]="ABCDEFGHIJLAAAAAAA";
                                                                                   int category;
                                                                                   int homezone;
                                                                                   int age;
                                                                                   char naiyou[8];
                                                                                   int kakudai;
                                                                                   int act;
                                                                                   int actzone;
                                                                                 int zonepop[14]={0};
                                                                                 while (fscanf(PZ2, "%s %d %d %d %d %d %s in", ID, & category, & homezone, & age, & kakudai, & act, & actzone, nain (figure and figure action) and the state of 
you)!=EOF)
                                                                                                                                                                   if(strcmp(naiyou,"FIX")==0){
                                                                                   if (j>0 \& IDhozon[0]==ID[0] \& IDhozon[1]==ID[1] \& IDhozon[2]==ID[2] \& IDhozon[3]==ID[3] \& IDhozon[4]==ID[2] \& IDhozon[4]==ID
4]&&IDhozon[5]==ID[5]&&IDhozon[6]==ID[6]&&IDhozon[7]==ID[7]&&
                                                                                    IDhozon[8] = ID[8] \& IDhozon[9] = ID[9] \& IDhozon[10] = ID[10] \& IDhozon[11] = ID[11] \& IDhozon[12] = ID[12] \& 
                                                                                                                                                                                                             {fprintf(PT4, "%d ",actzone);}
                                                                                                                                                                   if(j==0){fprintf(PT4,"%s %d %d %d %d %d %d
  ",ID,category,homezone,age,kakudai,act,actzone);}
                                                                                                                                                                   if(j>0){
if(IDhozon[\emptyset]!=ID[\emptyset]||IDhozon[1]!=ID[1]||IDhozon[2]!=ID[2]||IDhozon[3]!=ID[3]||IDhozon[4]!=ID[4]||IDhozon[5]!=ID[5]||IDhozon[6]!=ID[6]||IDhozon[7]!=ID[7]||
                                                                                   IDhozon[8]! = ID[8] \\ | IDhozon[9]! = ID[9] \\ | IDhozon[10]! = ID[10] \\ | IDhozon[11]! = ID[11] \\ | IDhozon[12]! = ID[12] \\ | IDhozon[12]! = ID[12] \\ | IDhozon[12]! = ID[12] \\ | IDhozon[13]! = ID[10] \\ | IDHozon[13]! = ID[10
                                                                                                                                                                    { fprintf(PT4,"\u00e4n%s %d %d %d %d %d %d ",ID,category,homezone,age,kakudai,act,actzone); }
                                                                                                                                                                    strcpy(IDhozon,ID);
                                                                                                                                                                    j++;
                                                                                                                                                                    else if(strcmp(naiyou,"FIX")!=0){
                                                                                   if(j) = ID[0] & ID = ID[0] & ID = ID[1] & ID = ID[2] & ID = ID[2] & ID = ID[2] & ID = ID[3] & 
 4]&&IDhozon[5]==ID[5]&&IDhozon[6]==ID[6]&&IDhozon[7]==ID[7]&&
                                                                                    IDhozon[8] = ID[8] \& IDhozon[9] = ID[9] \& IDhozon[10] = ID[10] \& IDhozon[11] = ID[11] \& IDhozon[12] = ID[12] \& 
 )
                                                                                                                                                                                                           {fprintf(PT3,"%d ",actzone);}
                                                                                                                                                                   ",ID,category,homezone,age,kakudai,act,actzone);}
                                                                                                                                                                 if(j>0){
 if(IDhozon[\emptyset]!=ID[\emptyset]||IDhozon[1]!=ID[1]||IDhozon[2]!=ID[2]||IDhozon[3]!=ID[3]||IDhozon[4]!=ID[4]||IDhozon[5]!=ID[5]||IDhozon[6]!=ID[6]||IDhozon[7]!=ID[7]|| \\
                                                                                    IDhozon[8]! = ID[8] | | IDhozon[9]! = ID[9] | | IDhozon[10]! = ID[10] | | IDhozon[11]! = ID[11] | | IDhozon[12]! = ID[12] | IDhozon[12]! = ID[12]! = ID
 )
                                                                                                                                                                                                             { fprintf(PT3,"\pmn%s %d %d %d %d %d %d
  ",ID,category,homezone,age,kakudai,act,actzone); }
                                                                                                                                                                                                       strcpy(IDhozon,ID);
                                                                                                                                                                                                      j++;
                                                                                                                                                                   }
                                                                                   }
                                                                                   cout<<"各個人パーティクルの位置を入力しています...."<<endl<<endl;
                                                                                   char ID[20];
                                                                                   char IDhozon[20]="ABCDEFGHIJLAAAAAAA";
```

```
int zone;
                                                                               char naiyou[8];
                                                                               int kakudai:
                                                                               int zonepop[14]={0};
                                                                               while(fscanf(PZ2,"%s %d %s %d¥n",ID,&zone,naiyou,&kakudai)!=EOF)
                                                                               if(j) 0 \& IDhozon[0] == ID[0] \& IDhozon[1] == ID[1] \& IDhozon[2] == ID[2] \& IDhozon[3] == ID[3] \& IDhozon[4] == ID[2] \& IDhozon[3] == ID[3] \& IDhozon[4] == ID[3] \& IDhozon[4] == ID[3] \& IDhozon[4] == ID[4] \& IDhozon[4]
 4]&&IDhozon[5]==ID[5]&&IDhozon[6]==ID[6]&&IDhozon[7]==ID[7]&&
                                                                               IDhozon[8] = ID[8] \& IDhozon[9] = ID[9] \& IDhozon[10] = ID[10] \& IDhozon[11] = ID[11] \& IDhozon[12] = ID[12] \& I
 )
                                                                                                                                                             {fprintf(PT3,"%d ",zone);}
                                                                                                                                                             if(j==0){fprintf(PT3,"%s %d %d ",ID,kakudai,zone);}
                                                                                                                                                             if(\bar{j}>0){
                                                                               if(IDhozon[0]!=ID[0]||IDhozon[1]!=ID[1]||IDhozon[2]!=ID[2]||IDhozon[3]!=ID[3]||IDhozon[4]!=ID[4]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]||IDhozon[2]|||IDhozon[2]||IDhozon[2]||IDhozon[2]|||IDhozon[2]|||IDhozon[2]|||IDhozon[2]
Dhozon[5]!=ID[5]||IDhozon[6]!=ID[6]||IDhozon[7]!=ID[7]||
                                                                                IDhozon[8]! = ID[8]||IDhozon[9]! = ID[9]||IDhozon[10]! = ID[10]||IDhozon[11]! = ID[11]||IDhozon[12]! = ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[12]||ID[1
 )
                                                                                                                                                           { fprintf(PT3,"¥n%s %d %d ",ID,kakudai,zone); }
}
                                                                                                                                                             strcpy(IDhozon,ID);
                                                                                                                                                           if(j=100000){cout<<"10万行目まで完了"<<endl;}
if(j=200000){cout<<"20万行目まで完了"<<endl;}
if(j=300000){cout<<"30万行目まで完了"<<endl;}
                                                                                                                                                             if(j==400000){cout<<"40万行目まで完了"<<endl;}
                                                                                                                                                             j++;
                                                                             }
                                                                               //シミュレーションの開始・終了時刻を設定
                                                                               //パーティクル無しver
                                                                               int start=1020;
                                                                             int end=1260;
                                                                             FILE* fp;
                                                                             2010 \verb|x|| P Call Soutput data \verb|x|| P Call Soutput data \verb|x|| P Call Soutput Soutpu
                                                                               fp = fopen(filename1,"r");
                                                                               if(fp == NULL){
                                                                                                                                                          cout<<"入力エラー"<<endl;
                                                                               }
                                                                               FILE *PZ;
                                                                             char filenamePD[200];
sprintf(filenamePD,"C:\text{Y}Users\text{Y}Hararyo\text{Y}Documents\text{Y}visual Studio
  2010¥¥Projects¥¥PCATSoutputdata¥¥PCATSoutputdata¥¥personzone¥¥personzonedata(traffic)_%d-%d.data",start,end);
                                                                             PZ=fopen(filenamePD,"w");
                   if( PZ == NULL ){
cout<<"ファイルが開けません"<<endl;
                         return -1:
                                                                               FILE *PZ2;
char filenamePZ2[200];
sprintf(filenamePZ2,"C:\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users\frac{2}{4}Users
                                                                             PZ2=fopen(filenamePZ2,"r");
                                                                             if( PZ2 == NULL ){
                    cout<<"ファイルが開けません"<<endl;
                         return -1;
                                                                             2010¥¥Projects¥¥PCATSoutputdata¥¥PCATSoutputdata¥¥zonepopulation¥¥Zonepopulation(traffic)_%d.csv",end);
                                                                             ZP=fopen(filenameZP,"w");
                   if( ZP == NULL ){
cout<<"ファイルが開けません"<<endl;
                         return -1;
                                                                               FILE *PT3;
```

```
char filename2[200];
    sprintf(filename2, "C:\footnote{\footnote{\text{obstack}}} can studio
2010\footnote{\footnote{\text{obstack}}} exercise\footnote{\text{act}} end);
start,end);
         PT3=fopen(filename2, "w");
  if( PT3 == NULL ){
cout<<"ファイルが開けません"<<endl;
  return -1;
         char ch1[20];
char ch2[8];
         int num[28];
         int i=0;
         int j=0:
         //chi.個人ID 0.カテゴリー 1.自宅ゾーン 2.就業ゾーン 3.性別 4.年齢 5.職業 6.免許有無 7.自動車台数 8.拡大計
数 9.世帯人数 10.活動内容 11.活動開始時刻 //12.活動終了時刻 13.活動場所ゾーン 14.活動施設 15.固定活動ダミー 16.活動後の移動有無 17.移動開始時刻 18.移動終了時刻 19.移動手段 20.自動車ゾーン 21.自動車場所 22.中断か否か ch2中断時活動
//PCATSのoutputファイルを読み込み、中断時のデータを抜き出し
cout<<"各個人パーティクルの中断時のデータを抜き出しています...."<<endl<<endl;
        %d %d %d %d %d
                                                                              %d %d %d %d
         anum[5],&num[6],&num[7],&num[8],&num[9],&num[10],&num[11],&num[12],&num[13],&num[14],&num[15],&num,
\hbox{\tt [16],\&num[17],\&num[18],\&num[19],\&num[20],\&num[21],\&num[22],ch2)!=EOF)}
                  //Pcatsoutput.dataに中断時の各個人のID,活動場所,活動種類を書き込み(720,1020の時)
                  if(end!=1620){
 if(strcmp(ch2,"FIX") == \theta | | strcmp(ch2,"FREE") == \theta | | strcmp(ch2,"HOME") == \theta | | strcmp(ch2,"MOVING") == \theta ) \{ fprintf(PZ,"%s %d %s %d\forall num[13],ch2,num[8]); \} 
                  ,
//Pcatsoutput.dataに中断時の各個人のID,活動場所,活動種類を書き込み(1620の時)
                  if(end==1620){
                  if(num[12]==1620){
                           fprintf(PZ,"%s %d %s %d\u00e4n",ch1,num[13],ch2,num[8]);
                  if(i==400000){cout<<"40万行目処理完了"<<endl;}
                  if(i==800000){cout<<"80万行目処理完了"<<end1;}
                  if(i==1200000){cout<<"120万行目処理完了"<<endl;}if(i==1400000){cout<<"140万行目処理完了"<<endl;}
                  i++;
         fclose(PZ):
//中断時の抜き出しデータから、各個人の位置のみをPcatsoutput2.data抜き出し、収納
//→exerciseの入力ファイルを作成
cout<<"各個人パーティクルの位置を入力しています...."<<endl<<endl;
         char ID[20];
         char IDhozon[20]="ABCDEFGHIJLAAAAAAAA";
         int zone;
         char naiyou[8];
         int kakudai:
         int zonepop[14]={0};
         while(fscanf(PZ2, "%s %d %s %d¥n", ID, &zone, naiyou, &kakudai)!=EOF)
                  if(zone==10){zonepop[0]+=kakudai;}
                  else if(zone==11){zonepop[1]+=kakudai;}
else if(zone==12){zonepop[2]+=kakudai;}
else if(zone==13){zonepop[3]+=kakudai;}
                  else if(zone==20){zonepop[4]+=kakudai;}
                  else if(zone==21){zonepop[5]+=kakudai;}
                  else if(zone==22){zonepop[6]+=kakudai;}
```

```
else if(zone==23){zonepop[7]+=kakudai;}
    else if(zone==24){zonepop[8]+=kakudai;}
    else if(zone==30){zonepop[9]+=kakudai;}
    else if(zone==31){zonepop[10]+=kakudai;}
    else if(zone==32){zonepop[11]+=kakudai;}
    else if(zone==33){zonepop[12]+=kakudai;}
    else if(zone==34){zonepop[13]+=kakudai;}
}

for(int z=0;z<14;z++){
    fprintf(ZP,"%d,",zonepop[z]);
}

fclose(ZP);
*/
    return 0;
}</pre>
```

exercise.cpp

```
#include "stdafx.h"
#include "kansu.h"
#include <vector>
#include <math.h>
#include <iostream>
#include <stdio.h>
#include <fstream>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <string>
#include <time.h>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
                             int start=1020; //PCATS開始時刻
                                                                         //PCATS終了時刻
                             int end=1260;
                            int personnum=5092; //適用人数
int particlenum=100; //パーティクル数
                             FILE *ZONEALL;
char filenameZAL[200];
sprintf(filenameZAL, "C:\forall YUsers\forall Yhoruments\forall Yvisual Studio
2010\forall Yrojects\forall Yexercise\forall Yexercise\fo
                             ZONEALL=fopen(filenameZAL,"w");
                             for(int p=0;p<100;p++){
                                   //各個人ごとのパーティクルをまとめたデータファイルの読み込み(固定活動個人を除く)
                                   FILE *POUT;
                                   2010¥¥Projects¥¥exercise¥¥exercise¥¥PCATSoutputparticle¥¥trPCATSoutputparticle_%d-%d(100particle)(除固定活
 動).data",start,end);
                                   POUT=fopen(filename2,"r");
                                   int zone[14]={0}; //zone配列を初期化int num[100];
                                   char ID[20];
                                   int category;
                                   int homezone;
                                   int age;
                                   int kakudai:
                                   int act;
                                   //縦割りしたパーティクルを生成(Particle.data)
                                                        FILE *fp;
                                     2010¥¥Projects¥¥exercise¥¥exercise¥¥pre_particle¥¥ParticleNo.%d.data",p+1);
                                     fp=fopen(filenamep, "w");
```

```
//ID, カテゴリ, 自宅ゾーン, 年齢, 拡大係数, 活動内容, 活動ゾーン×100
                       ,ID,&category,&homezone,&age,&kakudai,&act,&num[0],&num[1],&num[2],&num[3],&num[4],&num[5],&num[6],
&num[7],&num[8],&num[9],&num[10],&num[11],&num[12],&num[13],&num[14],&num[15],&num[16],&num[17],&num[18],&num[
19],&num[20],&num[21],&num[22],&num[23],&num[24],
                       %num[25],&num[26],&num[27],&num[28],&num[29],&num[30],&num[31],&num[32],&num[33],&num[34],&num[35],
n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 
um[48], &num[49], &num[50], &num[51], &num[52], &num[53], &num[54],
                       &num[55],&num[56],&num[57],&num[58],&num[59],&num[60],&num[61],&num[62],&num[63],&num[64],&num[65],
&num[66],&num[67],&num[68],&num[69],&num[70],&num[71],&num[72],&num[73],&num[74],&num[75],&num[76],&num[77],&n
um[78],&num[79],&num[80],&num[81],&num[82],&num[83],&num[84],
//particle.data
                                                                    //ID, カテゴリ, 自宅ゾーン, 年齢, 拡大係数, 活動内容, 活動ゾーン が人数分収納
                       fprintf(fp, \text{\em %d \%d \%d \%d \%d \%d \%d \text{\em %d } \text{\em more}, category, homezone, age, kakudai, act, num[p]);}
                                             fclose(fp);
                                             FILE *fpR;
char filenamep2[200];
sprintf(filenamep2, "C:\filenamep2 \text{*\filenamep2} \text{
                              fpR=fopen(filenamep,"r");
                                             int actzone:
                                              //ゾーン別人数に変換
                       while(fscanf(fpR,"%s %d %d %d %d %d %d*m",ID,&category,&homezone,&age,&kakudai,&act,&actzone)!=EOF)
                                                                    if(actzone==10){zone[0]+=kakudai;}
                                                                    if(actzone==11){zone[1]+=kakudai;}
                                                                    if(actzone==12){zone[2]+=kakudai;}
                                                                    if(actzone==13){zone[3]+=kakudai;}
                                                                    if(actzone==20){zone[4]+=kakudai;}
                                                                    if(actzone==21){zone[5]+=kakudai;}
                                                                    if(actzone==22){zone[6]+=kakudai;}
if(actzone==23){zone[7]+=kakudai;}
                                                                    if(actzone==24){zone[8]+=kakudai;}
                                                                    if(actzone==30){zone[9]+=kakudai;}
                                                                    if(actzone==31){zone[10]+=kakudai;}
                                                                    if(actzone==32){zone[11]+=kakudai;}
                                                                    if(actzone==33){zone[12]+=kakudai;}
if(actzone==34){zone[13]+=kakudai;}
                                             }
                                              //パーティクル別ゾーン別人口を収納するdataファイル (固定活動除く)
                                              FILE *ZONEP;
                                              char filenameZONEP[200];
sprintf(filenameZONEP, "C:¥¥Users¥¥hararyo¥¥Documents¥¥visual Studio 2010¥¥Projects¥¥exercise¥¥exercise¥¥zoneparticle¥¥trZoneParticleNo.%d.data",p+1);
                              ZONEP=fopen(filenameZONEP,"w");
                       one[5],zone[6],zone[7],zone[8],zone[9],zone[10],zone[11],zone[12],zone[13]);
                       4],zone[5],zone[6],zone[7],zone[8],zone[9],zone[10],zone[11],zone[12],zone[13]);
                                              fclose(fpR);
                                              fclose(POUT):
                                              fclose(ZONEP);
                                              if(p==1){cout<<"フィルタリングのためのパーティクル生成を開始しました..."<<endl; cout<<"ただ今
";}
                                              if(p<10){cout<<p<<"%"<<"\b";}
```

//outputparticle読み込み

```
if(p>9){cout<<p<"%"<<"\p"<<"\p"<\"\p"<\"\p";}
                            }
                            fclose(ZONEALL);
                            cout<<"各個人がどのゾーンにいるかを示すパーティクルを"<<particlenum<<"個生成完了しました.(ParticleNo.data
 参照)"<<endl;
                            cout<<"ゾーン別人数を表すパーティクルを"<<particlenum<<"個生成完了しました.(ZONEparticle.data参
 照)"<<endl<<endl;
                            //固定活動個人のデータから、固定活動個人のゾーン別人口を算出
                FILE *POUTFIX;
                                  OUIFIA;
char filenamefix[200];
comintf/filenamefix, "C:\\U00e4\U00ffusers\\U00e4\U00ffhararyo\\U00e4\U00e4\U00ffusers\\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U00e4\U
動).data",start,end);
                                   POUTFIX=fopen(filenamefix, "r");
                                   char csvfilenameZPFIX[200];
                \verb|sprintf| (csvfilenameZPFIX, "C:YYUsersYYhararyoYYDocumentsYYvisual Studio")| \\
2010¥¥Projects¥¥exercise¥¥exercise¥¥zonepopulation¥¥trzonepopulation_%d-%d(固定活動個人).csv",start,end); FILE *ZONEPFIX;
                                   ZONEPFIX=fopen(csvfilenameZPFIX,"w");
                                   int zonenumFIX[14]={0};
                                   int numF[100];
                                   char IDF[20];
                                   int categoryF;
                                   int homezoneF:
                                   int ageF;
                                   int kakudaiF;
                                   int actF;
,IDF,&categoryF,&homezoneF,&ageF,&kakudaiF,&actF,&numF[0],&numF[1],&numF[2],&numF[3],&numF[4],&numF[5],&numF[6],&numF[7],&numF[8],&numF[9],&numF[10],&numF[11],&numF[12],&numF[13],&numF[14],&numF[15],&numF[16],&numF[17],&numF[18],&numF[19],&numF[20],&numF[21],&numF[22],&numF[23],&numF[24],
 %numF[25],&numF[26],&numF[27],&numF[28],&numF[29],&numF[30],&numF[31],&numF[32],&numF[33],
%numF[35],&numF[36],&numF[37],&numF[38],&numF[39],&numF[40],&numF[41],&numF[42],&numF[43],&numF[44],&numF[45]
 , numF[46], numF[47], numF[48], numF[49], numF[50], numF[51], numF[52], numF[53], numF[54], nu
                            &numF[55],&numF[56],&numF[57],&numF[58],&numF[59],&numF[60],&numF[61],&numF[62],&numF[63],&numF[64]
 ,&numF[65],&numF[66],&numF[67],&numF[68],&numF[69],&numF[70],&numF[71],&numF[72],&numF[73],&numF[74],&numF[75]
 ,&numF[76],&numF[77],&numF[78],&numF[79],&numF[80],&numF[81],&numF[82],&numF[83],&numF[84],
if(numF[0]==10){zonenumFIX[0]+=kakudaiF;}
else if(numF[0]==11){zonenumFIX[1]+=kakudaiF;}
                                                                                     else if(numF[0]==12){zonenumFIX[2]+=kakudaiF;}
                                                                                    else if(numF[0]==12){ZonenumFIX[2]+=kakudaiF;}
else if(numF[0]==13){ZonenumFIX[3]+=kakudaiF;}
else if(numF[0]==20){ZonenumFIX[4]+=kakudaiF;}
else if(numF[0]==21){ZonenumFIX[5]+=kakudaiF;}
else if(numF[0]==22){ZonenumFIX[6]+=kakudaiF;}
else if(numF[0]==23){ZonenumFIX[7]+=kakudaiF;}
else if(numF[0]==24){ZonenumFIX[8]+=kakudaiF;}
                                                                                     else if(numF[0]==30){zonenumFIX[9]+=kakudaiF;}
                                                                                     else if(numF[0]==31){zonenumFIX[10]+=kakudaiF;}
                                                                                     else if(numF[0]==32){zonenumFIX[11]+=kakudaiF;}
else if(numF[0]==33){zonenumFIX[12]+=kakudaiF;}
else if(numF[0]==34){zonenumFIX[13]+=kakudaiF;}
                                                         }
                                   for(int z=0;z<14;z++){
                                                                fprintf(ZONEPFIX,"%d,",zonenumFIX[z]);
                                   fclose(ZONEPFIX);
```

```
//ここからは、各パーティクルの重み付け、リサンプリングを行う cout<<"各パーティクルの重み計算を開始します..."<<endl<<endl;
          FILE *ZP;
          char filenameZPD2[200];
sprintf(filenameZPD2,"C:\footnote{\text{SP}}\footnote{\text{SP}}\text{Sers}\footnote{\text{Y}}\text{Documents}\footnote{\text{Y}}\text{Visual Studio}
2010¥¥Projects¥¥exercise¥¥exercise¥¥zoneparticle¥¥trZONEparticle_%d-%d(100particle).data",start,end);
   ZP=fopen(filenameZPD2,"r");
     if( ZP == NULL ){
cout<<"ファイルが開けません"<<endl;
      return -1;
           vector<vector<int>> pre_zoneparticle(particlenum+1, vector<int>(14,0));
&pre_zoneparticle[i][4],&pre_zoneparticle[i][5],&pre_zoneparticle[i][6],&pre_zoneparticle[i][7],&pr
e_zoneparticle[i][8],&pre_zoneparticle[i][9],&pre_zoneparticle[i][10],
                     \label{lem:coneparticle} $$ pre\_zoneparticle[i][11], \\ pre\_zoneparticle[i][12], \\ pre\_zoneparticle[i][13])! = EOF) (
                               i+=1;
          }
          //観測データの読み込み
       2010¥¥Projects¥¥exercise¥¥exercise¥¥zonepopulation¥¥obsdata_%d-%d(PT).csv",start,end);
              FILE *Obs;
              Obs = fopen(csvfilenameO,"r");
       if( Obs == NULL ){
cout<<"ファイルが開けません"<<endl;
        return -1;
          //ゾーン別人口 (観測データ)
                     int zonepopOBS[14]={0}; //観測値収納配列
for(int o=0;o<14;o++){ fscanf(Obs,"%d,",&zonepopOBS[o]); }
          //固定活動個人ゾーン人数の読み込み
char csvfilenameZPFIX2[250];
      2010¥¥Projects¥¥exercise¥¥exercise¥¥zonepopulation¥¥trzonepopulation_%d-%d(固定活動個人).csv",start,end);
             FILE *ZONEPFIX2;
             ZONEPFIX2=fopen(csvfilenameZPFIX2,"r");
             int zonepopFIX[14]={0};
             for(int f=0;f<14;f++){ fscanf(ZONEPFIX2,"%d,",&zonepopFIX[f]);}</pre>
             int numberinobs[14]={0};
             for(int o=0;o<14;o++){
                       numberinobs[o]=zonepopOBS[o]-zonepopFIX[o];
          //各パーティクルの重みを収納するベクトル
                     vector<double> omomi(particlenum,0); //重み計算用配列
                     double sum2=0;
                     double pp1=0;
                     double pp2=0;
          //パーティクルごとの重みを計算
//ユークリッド距離を観測ベクトルに
             for(int o=0;o<particlenum;o++){</pre>
                                double sum=0;
                                for(int i=0;i<14;i++){
                                \verb|pp1=(pre_zone particle[o][i]-numberinobs[i])*(pre_zone particle[o][i]-numberinobs[i])*|
numberinobs[i]);
                                sum+=pp1;
                                sum2=(sum/10);
                                omomi[o]=1/sum2;
             */
                     //重み付きユークリッド距離を観測ベクトルに
                     for(int p=0;p<particlenum;p++){</pre>
                                double sum=0;
                                for(int i=0;i<14;i++){
                                pp1=(pre_zoneparticle[p][i]-numberinobs[i])*(pre_zoneparticle[p][i]-
```

```
numberinobs[i]);
                                                                                                         pp2=pp1/(numberinobs[i]*numberinobs[i]);
                                                                                                          sum+=pp2;
                                                                                                         omomi[p]=1/(sum*sum);
                                                                      }
                                   //重みの正規化
                                                       double sumw=0.0;
                                                       vector<double> pre_particleweight(particlenum,0); //正規化後の各パーティクルの重み
                                                       for(int i=0; i<particlenum;i++){sumw+=omomi[i];}</pre>
                                                       for(int w=0;w<particlenum;w++){pre_particleweight[w]=omomi[w]/sumw;}</pre>
                                   cout<<"各パーティクルの重み計算が終了しました..."<<endl<<endl;
                                               FILE *WEIGH;
                                              2010¥¥Projects¥¥exercise¥¥exercise¥¥particleweight¥¥Particleweight.csv","w");
                                              for(int p=0;pppfor(weight[p]);
fprintf(WEIGH, "%.9f,%f\u00e4n", omomi[p], pre_particleweight[p]);
                                                    }
                                                                       fclose(WEIGH);
                                   //重みに基づきリサンプリング (ルーレット選択)
                                   //累積重み
                                   double *w= new double[particlenum];
                                               w[0]=pre_particleweight[0];
                                               for(int i=1;i<particlenum;i++){</pre>
                                                                                 w[i] = w[i-1] + pre\_particleweight[i];
                                                                       cout<<"-----リサンプリングを行います-----"<<endl<<endl;
                                                                     int parMAP[100]={0};
double darts[100];
                                                                       srand((unsigned int)time(NULL));
                                                                       for(int p=0;p<particlenum;p++){</pre>
                                                                            darts[p]=((double)rand()/((double)RAND_MAX+1));
                                                                       for(int i=0;i<particlenum;i++){</pre>
                                                                                  for(int j=0;j<particlenum;j++){
    if(darts[i]>w[j]){
                                                                                                                                            continue;
                                                                                                                                             //リサンプリング
                                                                                                                                                        FILE *RSP;
                                                                                                                                                                              char csvfilenameR[200];
                                                           sprintf(csvfilenameR, "C:\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footn
2010¥¥Projects¥¥exercise¥¥exercise¥¥res_particle¥¥RSP.ParticleNo.%d.data",i+1);
                                                                                                                                                                                RSP=fopen(csvfilenameR,"w");
                                                                                                                                                                                FILE *PRP;
                                                                                                         char filenamePR[200];
sprintf(filenamePR, "C:\filenamePR \filenamePR \filena
                                                                                  PRP=fopen(filenamePR, "r");
                                                                                                                                                                                char IDR[20];
                                                                                                                                                                                int categoryR;
                                                                                                                                                                                int homezoneR:
                                                                                                                                                                                int ageR;
                                                                                                                                                                                int kakudaiR;
                                                                                                                                                                                int actR;
                                                                                                                                                                                int actzoneR;
                                   while(fscanf(PRP, "%s %d %d %d %d %d %d %d*m", IDR, &categoryR, &homezoneR, &ageR, &kakudaiR, &actR, &actzoneR
)!=EOF){
                                   fprintf(RSP,"%s %d %d %d %d %d %d %d %d %mu, IDR, categoryR, homezoneR, ageR, kakudaiR, actR, actzoneR);
                                                                                                                                                                                 parMAP[j]+=1;
                                                                                                                                                                                fclose(RSP):
                                                                                                                                                                                fclose(PRP);
                                                                                                                                                        break;
                                                                                                                                            }
```

```
} cout<<"-----リサンプリングが終了しました-----"<<endl<<endl;
           cout<<"最頻パーティクルはParticleNo."<<MAP(parMAP,100)<<endl<<endl;
cout<<"-----各個人の事後確率を表すパーティクルを生成します-----"<<endl<<endl;
     //リサンプリングされたパーティクルから、各個人の事後確率を算出する
           FILE *POUT2;
           char filenamePP[200];
POUT2=fopen(filenamePP,"w");
    if( POUT2== NULL ){
cout<<"ファイルが開けません"<<endl;
   return -1;
           FILE *POUT3;
char filenamePP2[200];
if( POUT3== NULL ){
cout<<"ファイルが開けません"<<endl;
   return -1;
       for(int p=0;p<personnum;p++){</pre>
                 for(int r=0;r<particlenum;r++){</pre>
                       int k=0;
                       int zoneP=0;
                      int kakudaiP;
                      FILE *RSP;
                      char csvfilenameR2[200];
       2010¥¥Projects¥¥exercise¥¥exercise¥¥res_particle¥¥RSP.ParticleNo.%d.data",r+1);
                      RSP=fopen(csvfilenameR2,"r");
                      ",ID,kakudaiP); }
                            if(p==k){ fprintf(POUT2, "%d ", zoneP);
     fprintf(POUT3,"%d\u00e4n",zoneP);
                            k++;
                       fclose(RSP);
                 fprintf(POUT2,"\u00e4n");
                 if((p/personnum)==1){ cout<<"各個人の事後確率を表すパーティクルの生成が完了しまし
た"<<endl;}
                 fclose(POUT2);
           fclose(POUT3);
//ここは、個人の位置を、個人の確率分布の最頻値を代表値とするパターン
       if stream\ if s ("C: \verb"Y*Users*Y* hararyo*Y* Documents*Y* visual\ Studio
2010¥¥Projects¥¥exercise¥¥exercise¥¥res_particle¥¥PcatsoutputPosteriorparticle170-720.data");
       string person[18760];
       int ii=0;
   string str;
```

```
string kojinID;
                                                        int zonepar[100]={0}; //個人ごとのパーティクル内容を一旦収納 int zoneperson[14]={0}; //フィルタリング後のゾーン別人口を収納する配列
                                                         while(getline(ifs,str)){
                                                                                     string token;
                                                                                    strang token, istringstream stream(str); int zone2[14]={0}; //個人ごとのゾーンカウント用配列 int pp=0; //カウント用定数 int kakudaiR;
                                                                                     while(getline(stream,token,' ')){
                                                                                                                  if(pp==0){kojinID=token;}
                                                                                                                  if(pp==1){int temp=stoi(token); kakudaiR=temp;}
                                                                                                                 if(pp>1){}
                                                                                                                                                                                                      int temp=stoi(token); zonepar[pp-
2]=temp;
                                                                                                                                                                                    if(zonepar[pp-2]==10){zone2[0]+=1;}
                                                                                                                                                                                    if(zonepar[pp-2]==11){zone2[1]+=1;}
if(zonepar[pp-2]==12){zone2[2]+=1;}
                                                                                                                                                                                   if(zonepar[pp-2]==12){zone2[2]+=1;}
if(zonepar[pp-2]==20){zone2[3]+=1;}
if(zonepar[pp-2]==20){zone2[4]+=1;}
if(zonepar[pp-2]==21){zone2[6]+=1;}
if(zonepar[pp-2]==23){zone2[7]+=1;}
if(zonepar[pp-2]==24){zone2[8]+=1;}
if(zonepar[pp-2]==30){zone2[9]+=1;}
if(zonepar[pp-2]==30){zone2[9]+=1;}
                                                                                                                                                                                    if(zonepar[pp-2]==31){zone2[10]+=1;}
if(zonepar[pp-2]==32){zone2[11]+=1;}
if(zonepar[pp-2]==33){zone2[12]+=1;}
                                                                                                                                                                                    if(zonepar[pp-2]==34){zone2[13]+=1;}
                                                                                                                  pp++;
                                                                         if(maximum(zone2,14)==10){zoneperson[0]+=kakudaiR;}
                                                                              else if(maximum(zone2,14)==11){zoneperson[1]+=kakudaiR;} else if(maximum(zone2,14)==12){zoneperson[2]+=kakudaiR;}
                                                                              else if(maximum(zone2,14)==13){zoneperson[3]+=kakudaiR;}
                                                                             else if(maximum(zone2,14)==20){zoneperson[4]+=kakudaiR;}
else if(maximum(zone2,14)==21){zoneperson[5]+=kakudaiR;}
else if(maximum(zone2,14)==21){zoneperson[6]+=kakudaiR;}
else if(maximum(zone2,14)==23){zoneperson[7]+=kakudaiR;}
else if(maximum(zone2,14)==24){zoneperson[8]+=kakudaiR;}
                                                                              else if(maximum(zone2,14)==30){zoneperson[9]+=kakudaiR;}
else if(maximum(zone2,14)==31){zoneperson[10]+=kakudaiR;}
                                                                              else if(maximum(zone2,14)==32){zoneperson[11]+=kakudaiR;}
                                                                              else if(maximum(zone2,14)==33){zoneperson[12]+=kakudaiR;}
else if(maximum(zone2,14)==34){zoneperson[13]+=kakudaiR;}
                                                                                                                    if(ii<50){
                                                                                                                    cout<<maximum(zone2,14)<<endl<<endl;</pre>
                                                                                                                    ii++;
                                                        }
                                                         cout<<"----フィルタリング後のゾーン別人口を出力します-----"<<endl<<endl;
char csvfilenameZP[200];
   sprintf(csvfilenameZP, "C:\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2
                                                        FILE *ZONEP;
                                      ZONEP=fopen(csvfilenameZP,"w");
                                                         for(int z=0;z<14;z++){}
                                                                                     fprintf(ZONEP, "%d, ", zoneperson[z]);
                                                        }
                                                        fclose(ZONEP);
//最頻パーティクルをゾーン人口代表値として用いるパターン
                  cout<<"----フィルタリング後のゾーン別人口を算出します-----"<<endl<<endl;
                                                        FILE *RSP;
                                                        int reszone[14];
                                      char csvfilenameR2[200];
```

```
\verb|sprintf| (csvfilenameR2, "C: \verb|Y$$$ Users \verb|Y$$ Yhararyo \verb|Y$$ Documents \verb|Y$$$ Visual Studio and the sum of the sum 
2010\frac{2010\frac{2010}{2010}}{2010\frac{2010}{2010}} = \frac{2010}{2010} = \frac{20
                                                                              RSP=fopen(csvfilenameR2, "r"):
                                                                               fscanf(RSP, "%d %d %d,
                                        &reszone[0],&reszone[1],&reszone[2],&reszone[3],&reszone[4],&reszone[5],&reszone[6],&reszone[7],&re
 szone[8],&reszone[9],&reszone[10],&reszone[11],&reszone[12],&reszone[13]);
                                                                               char csvfilenameZP[200];
                          2010¥¥Projects¥¥exercise¥¥exercise¥¥zonepopulation¥¥trzonepopulation_%d-%d(100particle).csv",start,end);
                                                                              FILE *ZONEP;
                                                    ZONEP=fopen(csvfilenameZP,"w");
                                                                               for(int z=0;z<14;z++){}
                                                                                                                     fprintf(ZONEP, "%d, ", reszone[z]+zonepopFIX[z]);
                                                                               fclose(ZONEP);
                                                                               fclose(RSP);
                                                                              //中断明けのPCATS用入力データを作成(再配置後の入力データ)
//PCATSのoutputデータと、Posterior(ZONE)を読み込み
                                                                               cout<<"-----中断明けPCATS入力データを作成しています-----"<<end1<<end1;
                                                                               char ch1[20];
                                                   char ch2[8];
char chhozon[20]="00000000000000";
                                                                              int particlezone[100]={0};
                                                                               int freezone[100]={0};
                                                                               int filzone;
                                                                               int count=1:
                                                                               int freecount=0:
                                                    int freecount2=0;
//ch1.個人ID 0.カテゴリー 1.自宅ゾーン 2.就業ゾーン 3.性別 4.年齢 5.職業 6.免許有無 7.自動車台数 8.拡
大計数 9.世帯人数 10.活動内容 11.活動開始時刻 //12.活動終了時刻 13.活動場所ゾーン 14.活動施設 15.固定活動ダミー 16.活動後の移動有無 17.移動開始時刻 18.移動終了時刻 19.移動手段 20.自動車ゾーン 21.自動車場所 22.中断か否か ch2中断時活動
                                                                              //FREEのパーティクルのみ再配置、HOMEとMOVINGのパーティクルは再配置せずそのままの位置で再開
//再配置に当たって自動車の位置もそれにあわせて変更
                                                                               //全パーティクルを再配置する
                                                                              FILE *POUTN;
                                                   2010¥¥Projects¥¥exercise¥¥exercise¥¥PCATSoutput¥¥trtest %d-%d(100particle).data",start,end);
                                                    POUTN=fopen(filenamePN,"r");
                            if( POUTN== NULL ){
cout<<"ファイルが開けません"<<endl;
                         return -1;
                                                                              FILE *PERSONNEXT;
char filenamePNEXT[200];
sprintf(filenamePNEXT, "C:\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\text{YUsers\footnote{\tex{
                                                                             PERSONNEXT=fopen(filenamePNEXT, "w");
                                                                             FILE *RSPZ:
                                                     char csvfilenameRZ[200];
                           2010¥¥Projects¥¥exercise¥¥exercise¥¥pre_particle¥¥ParticleNo.%d.data",MAP(parMAP,100));
                                                                              RSPZ=fopen(csvfilenameRZ,"r");
                                                                               int countt=0:
                                                                               char IDD[20];
                                                                               int categoryD;
                                                                               int homezoneD;
                                                                               int ageD;
                                                                               int kakudaiD;
                                                                               int actD:
                                                                               int actzoneD;
                                        %d %d %d %d %d %d %d %d %d %d
                                                                                                                                                                                                                                                                                                                                                                 %d %d %d
%d
                   %d
```

```
num2[5], num2[6], num2[7], num2[8], num2[9], num2[10], num2[11], num2[12], num2[13], num2[14], num2[14],
m2[15],&num2[16],&num2[17],&num2[18],&num2[19],&num2[20],&num2[21],&num2[22],ch2)!=EOF)
                                                      //読み込みの中で個人が変わった時を抽出
|| ch1[8]!=chhozon[8] || ch1[9]!=chhozon[9] || ch1[10]!=chhozon[10] ||
ch1[11]!=chhozon[11] || ch1[12]!=chhozon[12] )
                                                      {
                                                                        countt=10:
                                                      //中断時のデータ行にきた場合,リサンプリングパーティクル情報を読み込み
                                                      if(countt==10 && num2[22]==1){
                                                                        countt=1;
                                                                        if(strcmp(ch2,"HOME")==0
||strcmp(ch2, "FREE")==0||strcmp(ch2, "MOVING")==0){
                  fscanf(RSPZ,"%s %d %d %d %d %d %d %d\n",IDD,&categoryD,&homezoneD,&ageD,&kakudaiD,&actD,&actzoneD);
                                                                        }
                                                      //同化時間が活動中の場合
                                                      if(num2[11] \le end \& num2[12] \ge end){
                                                                         //自由活動であれば,再配置
                                                                        if(strcmp(ch2,"FREE")==0){
                                                                        //車と一緒の場合は、車も再配置
                                                 if(num2[13]==num2[20]){
                                     //fscanf(POSZ,"%d¥n",&filzone);
fprintf(PERSONNEXT,"%s %2d %6d %6d %3d %3d %3d %2d %3d %5d %5d %5d %6d %3d %2d %2d %5d %5d %3d %3d %5d %3d %5d
%3d %s¥n",ch1,num2[0],num2[1],num2[2],num2[3],num2[4]
                                 .num2[5],num2[6],num2[7],num2[8],num2[9],num2[10],num2[11],num2[12],actzoneD,num2[14],num2[
15],num2[16],num2[17],num2[18],num2[19],actzoneD,num2[21],num2[22],ch2);
                                      if(num2[13]!=num2[20]){
                                     //fscanf(POSZ, "%d¥n", &filzone);
fprintf(PERSONNEXT,"%s %2d %6d %6d %3d %3d %3d %2d %3d %2d %5d %5d %5d %6d %3d %2d %2d %5d %5d %5d %3d %3d %3d
%3d %sn",ch1,num2[0],num2[1],num2[2],num2[3],num2[4]
                    num2[5],num2[6],num2[7],num2[8],num2[9],num2[10],num2[11],num2[12],actzoneD,num2[14],num2[15],num,
2[16],num2[17],num2[18],num2[19],num2[20],num2[21],num2[22],ch2);
                                                                        }
                                                                        else{
                                                                                          //fscanf(POSZ,"%d¥n",&filzone);
                  fprintf(PERSONNEXT,"%s %2d %6d %6d %3d %3d %3d %2d %3d %2d %3d %2d %5d %6d %6d %3d %2d %2d %5d
%3d %5d %3d %3d %s\u00e4n",ch1,num2[0],num2[1],num2[2],num2[3],num2[4]
                               .num2[5],num2[6],num2[7],num2[8],num2[9],num2[10],num2[11],num2[12],num2[13],num2[14],num2[1
5],num2[16],num2[17],num2[18],num2[19],num2[20],num2[21],num2[22],ch2);
                                                      else if(strcmp(ch2,"MOVING")==0){
                                                                        fscanf(POSZ,"%d\u00e4n",&filzone);
                  fprintf(PERSONNEXT,"%s %2d %6d %6d %3d %3d %3d %2d %3d %5d %5d %5d %6d %3d %2d %2d %5d %5d
%3d %5d %3d %3d %s¥n",ch1,num2[0],num2[1],num2[2],num2[3],num2[4]
                                num2[5],num2[6],num2[7],num2[8],num2[9],num2[10],num2[11],num2[12],actzoneD,num2[14],num2[1
5],num2[16],num2[17],num2[18],num2[19],num2[20],num2[21],num2[22],ch2);
                                                                        count+=1;
                                                      }
fprintf(PERSONNEXT,"%s %2d %6d %6d %3d %3d %3d %2d %3d %5d %3d %2d %5d %6d %3d %2d %2d %5d %5d %3d %5d %3d
%3d %s¥n",ch1,num2[0],num2[1],num2[2],num2[3],num2[4]
                               num2[5],num2[6],num2[7],num2[8],num2[9],num2[10],num2[11],num2[12],num2[13],num2[14],num2[1,
5],num2[16],num2[17],num2[18],num2[19],num2[20],num2[21],num2[22],ch2);
```

```
strcpy(chhozon,ch1);
                                                         }
                                                          //PCATSの同化後の各個人の移動軌跡
                                                          //固定活動個人読み込み
                                                          FILE *POUTFIX2;
動).data",start,end);
                                      POUTFIX2=fopen(filenamefix2, "r");
                                                         FILE *PCATSzoneF;
char filenamePCZ[200];
sprintf(filenamePCZ, "C:¥¥Users¥¥hararyo¥¥Documents¥¥visual Studio
2010¥¥Projects¥¥exercise¥¥exercise¥¥ODdata¥¥PCATSzone%d-%d(固定活動).csv",start,end);
                                      PCATSzoneF=fopen(filenamePCZ,"w");
,IDF,&categoryF,&homezoneF,&ageF,&kakudaiF,&actF,&numF[0],&numF[1],&numF[2],&numF[3],&numF[4],&numF
[5],&numF[6],&numF[7],&numF[8],&numF[9],&numF[10],&numF[11],&numF[12],&numF[13],&numF[14],&numF[15],&numF[16],
&numF[17],&numF[18],&numF[19],&numF[20],&numF[21],&numF[22],&numF[23],&numF[24],
%numF[55],&numF[56],&numF[57],&numF[58],&numF[59],&numF[60],&numF[61],&numF[62],&numF[63],&numF[64],&numF[64],
%numF[65],&numF[66],&numF[67],&numF[68],&numF[69],&numF[70],&numF[71],&numF[72],&numF[73],&numF[74],&numF[75],
 ,&numF[76],&numF[77],&numF[78],&numF[89],&numF[80],&numF[81],&numF[82],&numF[83],&numF[84],
                             &numF[85],&numF[86],&numF[87],&numF[88],&numF[89],&numF[90],&numF[91],&numF[92],&numF[93],&numF[94]
 ,&numF[95],&numF[96],&numF[97],&numF[98],&numF[99])!=EOF)
                                                                                      fprintf(PCATSzoneF,"%s,%d,%d,%d\fomation",IDF,kakudaiF,homezoneF,numF[0]);
                                                          //自由活動個人の移動軌跡
                                                         FILE *RSPZ2;
                   char csvfilenameRZ2[200];
sprintf(csvfilenameRZ2, "C:\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\footnote{\text{YUsers}}\
2010\forall \forall Projects\forall \forall \f
                                                         RSPZ2=fopen(csvfilenameRZ2,"r");
                                                         FILE *PCATSzoneR;
                                      char filenamePCZR[200];
sprintf(filenamePCZR, "C:\frac{\text{Y}Users\frac{\text{Y}}{\text{H}}araryo\frac{\text{Y}}{\text{V}}cuments\frac{\text{Y}}{\text{V}}isual Studio
2010¥¥Projects¥¥exercise¥¥exercise¥¥0Ddata¥¥PCATSzone%d-%d(自由活動).csv",start,end);
                                      PCATSzoneR=fopen(filenamePCZR,"w");
                                                          char IDD2[20];
                                                          int categoryD2;
                                                          int homezoneD2;
                                                          int ageD2;
                                                          int kakudaiD2:
                                                          int actD2:
                                                         int actzoneD2:
                             while(fscanf(RSPZ2,"%s %d %d %d %d %d %d¥n",IDD2,&categoryD2,&homezoneD2,&ageD2,&kakudaiD2,&actD2,&
actzoneD2)!=EOF)
                                                                                      fprintf(PCATSzoneR, "%s, %d, %d, %d\fm", IDD2, kakudaiD2, homezoneD2, actzoneD2);
                                                          fclose(POUTN);
                                                          fclose(PERSONNEXT);
                                                          fclose(RSPZ);
                                                          fclose(POUTFIX):
                                                          fclose(RSPZ2);
                            return 0;
```