Perfect Secrecy

CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

Perfect Secrecy

 Observing ciphertext c has no effect on an adversary's knowledge regarding message m

Theorem An encryption scheme (KeyGen, Enc, Dec) with message space \mathcal{M} is **perfectly secret** if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$:

$$\Pr[M = m | C = c] = \Pr[M = m]$$

Perfect Secrecy

 The distribution of the ciphertext does not depend on distribution of the plaintext

Lemma An encryption scheme (KeyGen, Enc, Dec) with message space \mathcal{M} is **perfectly secret** if for every $m, m' \in \mathcal{M}$ and every $c \in \mathcal{C}$

$$\Pr[\mathsf{Enc}_K(m) = c] = \Pr[\mathsf{Enc}_K(m') = c]$$

where the probabilities are over choice of K and any randomness of Enc .

Security Game

Ciphertexts of m₀, m₁ are <u>indistinguishable</u>.

Given $\Pi = (KeyGen, Enc, Dec), security game PrivK_{A,\Pi}^{eav}$:

- 1. Adversary \mathcal{A} outputs $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$
- 2. Challenger flips a (fair) coin $b \in \{0, 1\}$, compute $c_b \leftarrow \operatorname{Enc}_k(m_b)$, where $k \leftarrow \operatorname{KeyGen}(1^l)$, and return c_b to A
- 3. \mathcal{A} guesses a bit b'
- 4. Output 1 if b' = b, otherwise 0; \mathcal{A} wins if it is 1

Security Game

Random guess is 1/2, but cannot do better

Def. Encryption scheme $\Pi = (KeyGen, Enc, Dec)$, with message space \mathcal{M} is **perfectly indistinguishable** if for every \mathcal{A} it holds that

$$\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] = \frac{1}{2}$$

Adversary does not have <u>any advantage</u>

$$Adv_{\mathcal{A},\Pi}^{\mathsf{eav}} = \left| \Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1] - \frac{1}{2} \right| = 0$$

Vigenere Cipher

- Vigenere Cipher is <u>not</u> perfectly indistinguishable
- Example: message $\mathcal{M} = \{aa, ab\}$, key is a string of 1 or 2 (key length is uniformly chosen)
- 1. Adversary \mathcal{A} chooses $m_0 = aa$ and $m_1 = ab$
- 2. Challenger flips a coin, obtains b and $c_b \leftarrow \mathsf{Enc}_k(m_b)$
- 3. Given $c_b = c_{b1}c_{b2}$, Adversary \mathcal{A} guesses b' = 0 if $c_{b1} = c_{b2}$; otherwise b' = 1
- 4. \mathcal{A} wins iff b' = b

- Adversary A wins if b'=0|b=0 or b'=1|b=1
- Random guess 1/2, prove A can win greater than 1/2

$$\begin{split} &\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{VC}} = 1] \\ &= &\Pr[b = 0] \cdot \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{VC}} = 1 | b = 0] \\ &+ &\Pr[b = 1] \cdot \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{VC}} = 1 | b = 1] \\ &= &\frac{1}{2} \cdot \Pr[b' = 0 | b = 0] + \frac{1}{2} \cdot \Pr[b' = 1 | b = 1] \end{split}$$

- b'=0|b=0 ($c_b=c_{b1}c_{b2}$, $c_{b1}=c_{b2}$ $m_0=aa$) has two cases:
 - Key length is 1 (k₁), any k₁ in {0,1, ..., 25}
 - E.g., $aa + k_1k_1 = XX$
 - Key length is 2 (k₁k₂), and k₁,k₂ are same
 - E.g., $aa + k_1k_2 = k_1k_1 = XX$

$$\Pr[b' = 0|b = 0] = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{26} \approx 0.52$$

- $b'=1|b=1(c_b=c_{b1}c_{b2},c_{b1}!=c_{b2}|m_1=ab)$ has two cases:
 - Key length is 1 (k₁), any k₁ in {0,1, ..., 25}
 - E.g., $ab + k_1k_1 = XY$
 - Key length is 2 (k₁k₂), and k₂ is not k₁-1
 - E.g, $ab + k_1k_2 = k_1(k_1-1) = XX$
- Practice: Pr[b'=1|b=1] = ?

$$\Pr[b' = 1 | b = 1] = \frac{1}{2} + \frac{1}{2} \cdot (1 - \frac{1}{26}) \approx 0.98$$

Put everything together

$$\begin{split} &\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{VC}} = 1] \\ = & \frac{1}{2} \cdot \Pr[b' = 0 | b = 0] + \frac{1}{2} \cdot \Pr[b' = 1 | b = 1] \\ \approx & \frac{1}{2} \cdot 0.52 + \frac{1}{2} \cdot 0.98 \\ = & 0.75 \quad > \quad \frac{1}{2} \end{split}$$

- Practice: message $\mathcal{M} = \{aaa, aab\}$, key is a string of 1, 2 or 3 (uniformly chosen)
- Complete the steps for adversary A in the game
- 1. Adversary \mathcal{A} chooses ????
- 2. Challenger flips a coin, obtains b and ????
- 3. Given $c_b = c_{b1}c_{b2}c_{b3}$, Adversary \mathcal{A} guesses b' = 0 if $c_{b2} = c_{b3}$; otherwise b' = 1
- 4. \mathcal{A} wins iff ???

- Practice: message $\mathcal{M} = \{aaa, aab\}$, key is a string of 1, 2 or 3 (uniformly chosen)
- Complete the steps for adversary A in the game
- 1. Adversary \mathcal{A} chooses $m_0 = aaa$ and $m_1 = aab$
- 2. Challenger flips a coin, obtains b and $c_b \leftarrow \mathsf{Enc}_k(m_b)$
- 3. Given $c_b = c_{b1}c_{b2}c_{b3}$, Adversary \mathcal{A} guesses b' = 0 if $c_{b2} = c_{b3}$; otherwise b' = 1
- 4. \mathcal{A} wins iff b'=b

- Choose $m_0=aaa$, $m_1=aab$
- Given c_b=c_b1c_b2c_b3, guess b'=0 if c_b2=c_b3
- Adversary A wins if b'=0|b=0 or b'=1|b=1
- Practice: Prove A can win greater than 1/2

$$\begin{split} &\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{VC}} = 1] \\ &= &\Pr[b = 0] \cdot \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{VC}} = 1 | b = 0] \\ &+ &\Pr[b = 1] \cdot \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{VC}} = 1 | b = 1] \\ &= &\frac{1}{2} \cdot \Pr[b' = 0 | b = 0] + \frac{1}{2} \cdot \Pr[b' = 1 | b = 1] \end{split}$$

- b'=0|b=0 (c_b=c_{b1}c_{b2}c_{b3}, c_{b2}=c_{b3}|m₀=aaa) has 3 cases:
 - Key length is 1 (k₁)
 - E.g., $aaa + k_1k_1k_1 = XXX$
 - Key length is 2 (k₁k₂), and k₁,k₂ are same
 - E.g., $aaa + k_1k_2k_1 = k_1k_1k_1 = XXX$
 - Key length is 3 (k₁k₂k₃), and k₂,k₃ are same
 - E.g., $aaa + k_1k_2k_3 = k_1k_2k_2 = \#XX$

$$\Pr[b' = 0|b = 0] = \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{26} + \frac{1}{3} \cdot \frac{1}{26} \approx 0.359$$

- b'=1|b=1 (c_b=c_b1c_b2c_b3, c_b2!=c_b3 m₁=aab) has 3 cases:
 - Key length is 1 (k₁)
 - E.g., $aab + k_1k_1k_1 = XXY$
 - Key length is 2 (k_1k_2), and k_2 is not k_1+1
 - E.g., aab + $k_1k_2k_1 = k_1(k_1+1)k_1 = WXX$
 - Key length is 3 (k₁k₂k₃), and k₃ is not k₂-1
 - E.g., aab + $k_1k_2k_3 = k_1k_2(k_2-1) = \#XX$

$$\Pr[b' = 1 | b = 1] = \frac{1}{3} + \frac{1}{3} \cdot (1 - \frac{1}{26}) + \frac{1}{3} \cdot (1 - \frac{1}{26}) \approx 0.974$$

Put everything together

$$\begin{split} &\Pr[\mathsf{PrivK}_{\mathcal{A},\mathsf{VC}}^{\mathsf{eav}} = 1] \\ = & \frac{1}{2} \cdot \Pr[b' = 0 | b = 0] + \frac{1}{2} \cdot \Pr[b' = 1 | b = 1] \\ \approx & \frac{1}{2} \cdot 0.359 + \frac{1}{2} \cdot 0.974 \\ = & 0.667 \quad > \quad \frac{1}{2} \end{split}$$

Perfect Secrecy of OTP

Theorem An encryption scheme (KeyGen, Enc, Dec) with message space \mathcal{M} is **perfectly secret** if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$:

$$\Pr[M = m | C = c] = \Pr[M = m]$$

Bayes' Theorem

$$\Pr[M = m | C = c] = \frac{\Pr[C = c | M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$$

Perfect Secrecy of OTP

We need to prove

$$\frac{\Pr[C = c | M = m]}{\Pr[C = c]} = 1$$

• For an arbitrary c in space C and m in space $\mathcal M$

$$\Pr[C=c|M=m] = \Pr[\operatorname{Enc}_K(m)=c]$$
 $= \Pr[m \oplus K=c]$
 $= \Pr[K=m \oplus c]$
 $= 2^{-l}$ key is uniformly distributed

Perfect Secrecy of OTP

Total probability: for any c in space C

$$\Pr[C = c] = \sum_{m' \in \mathcal{M}} \Pr[C = c \cap M = m']$$

$$= \sum_{m' \in \mathcal{M}} \Pr[C = c | M = m'] \cdot \Pr[M = m']$$

$$= 2^{-l} \cdot \sum_{m' \in \mathcal{M}} \Pr[M = m'] = 2^{-l} \cdot 1 = 2^{-l}$$

Finally, we have

$$\Pr[M = m | C = c] = \frac{2^{-l} \cdot \Pr[M = m]}{2^{-l}} = \Pr[M = m]$$

Limitations of OTP

- Key is as long as message
 - Cannot decide message size in advance
 - Why not share the message directly while sharing the key
- Use each key only once

$$c \oplus c' = (m \oplus k) \oplus (m' \oplus k) = m \oplus (k \oplus k) \oplus m'$$
$$= m \oplus \{0\}^{\lambda} \oplus m' = m \oplus m'$$

$$k = m \oplus c$$

OTP is Optimal

- OTP is optimal for perfect secrecy
 - Key size is the <u>smallest</u> we can get
- If perfectly secret, then key space size $|\mathcal{K}|$ must be greater than or equal to message space size $|\mathcal{M}|$
- Prove $|\mathcal{K}| < |\mathcal{M}|$ cannot be perfectly secret
 - Uniformly distribution over message space ${\mathcal M}$
 - A ciphertext c occurs with non-zero probability

OTP is Optimal

• $\mathcal{M}(c)$: the set of messages that are possible decryption of ciphertext c

$$\mathcal{M}(c) = \{m | m = \mathsf{Dec}_k(c) \text{ for some } k \in \mathcal{K}\}$$

• Decryption algorithm is deterministic, each m in $\mathcal{M}(c)$ should be decrypted by a different key, therefore $|\mathcal{M}(c)| <= |\mathcal{K}|$

OTP is Optimal

- Learn $|\mathcal{M}(c)| <= |\mathcal{K}|$, assume $|\mathcal{K}| < |\mathcal{M}|$,
 - $\longrightarrow |\mathcal{M}(c)| < |\mathcal{M}|$
 - \longrightarrow some m' in \mathcal{M} but not in $\mathcal{M}(c)$
 - m' in $\mathcal M$ and uniformly distribution over $\mathcal M$:

$$\Pr[M = m'] > 0$$

• m' not in $\mathcal{M}(c)$

$$\Pr[M = m' | C = c] = 0$$

However, perfect secrecy needs

$$\Pr[M = m' | C = c] = \Pr[M = m']$$

Additional Reading

Chapter 2, Introduction to Modern Cryptography, Drs. J. Katz and Y. Lindell, 2nd edition