

Senior 3D-DRAM

Created	@October 6, 2024 9:05 PM
∷ Class	DRAM Controller

Table 2: Addressing

Parameter	512 Meg x 4	256 Meg x 8	128 Meg x 16
Configuration	64 Meg x 4 x 8 banks	32 Meg x 8 x 8 banks	16 Meg x 16 x 8 banks
Refresh count	8K	8K	8K
Row addressing	32K (A[14:0])	32K (A[14:0])	16K (A[13:0])
Bank addressing	8 (BA[2:0])	8 (BA[2:0])	8 (BA[2:0])
Column addressing	2K (A[11, 9:0])	1K (A[9:0])	1K (A[9:0])
Page size	1KB	1KB	2KB

Basic spec and modification to DDR3

• This is modified from 256Meg x 8

Figure 3.8 Rearrangement of I/O pin

- Manufacture process: 40nm
- DQ 128 bits, A[13:0], BA[1:0] for 4 banks due to stacking of 4 layers
- Internal memory bits modified to 128 bits
- Page size should be 128, with no row buffer locality at all

Figure 3.12 Proposed 3D-stacked DRAM

Proposed Wide-I/O 3D-stacked DRAM Specification			
VDD [V]	1.5		
Density	4Gb		
Organization	4-bank per vertical slice (Rank)		
I/O pin	x512 (128pin per rank)		
Data Rate [MHz]	333		
Data Bandwidth [GB/s]	21.3		

Table 3.3 Proposed Wide-I/O 3D-stacked DRAM specification

Test Pattern configuration				
Data access bits per cycle	128			
Number of random R/W command	10000			
System configuration				
Clock rate	333MHz			
Command FIFO depth	128			
Data FIFO depth	128			
DRAM configuration				
Channel/Rank/Bank	1/1/4 (One Vertical Slice)			
Model	Proposed 3D-stacked DRAM			

Table 4.2 Local slice controller simulation configuration

• Since the voltage is 1.5

DDR3 timing constraints used by seniors

```
elsif sg125E
  parameter TCK_MIN
                                  1250; // tCK
  parameter TJIT_PER
  parameter TJIT CC
                                   140; //
  parameter TERR_2PER
  parameter TERR_3PER
  parameter TERR_4PER
  parameter TERR_5PER
  parameter TERR_6PER
  parameter TERR_7PER
  parameter TERR_8PER
  parameter TERR_9PER
  parameter TERR_10PER
                                   180; //
  parameter TERR_11PER
                                   184; //
  parameter TERR_12PER
                                  ·188; // ·tERR(12per)ps ·
  parameter TDQSQ
                                  100; //
  parameter TDQSS
  parameter TDSS
                                  0.18; //
  parameter TDSH
  parameter TDQSCK
                                  0.40; //
  parameter TQSL
                                  0.40; //
  parameter TDIPW
                                   360; //
  parameter TIPW
                                   560; //
                                  170; // tIS
120; // tIH
  parameter TRAS_MIN
                                 35000; // tRAS
                                 47500; //
  parameter TRCD
  parameter TRP
                                12500; // tRP · ·
                                 6000; // tXP
                                  5000; // tCKE
  parameter TAON
                                   250; // tAON
  parameter TWLS
  parameter TWLH
                                  165; // tWLH
  parameter TWLO
                                  -7500; -// tWLO-
  parameter TAA_MIN
                                 12500; // TAA
                                                            Internal READ command to first data
  parameter CL_TIME
                                 12500; ·// ·CL ·
```

```
622 elsif sg125E
623 page-size) Active bank a to Active bank b command time
624 page-size) Four Bank Activate window
```

CACTI-3DD Modeling Results

```
🖻 3DDRAM_DDR34Gb_senior_cfg.log U 🔹 3DDRAM_DDR34Gb_senior.cfg U 🗲 extio_technology.cc 9+ 🗲 io.cc 9+, M 🗲 extio.cc
      ----- CACTI (version 7.0.3DD Prerelease of Aug, 2012) 3D DRAM Main Memory
     Memory Parameters:
          Total memory size (Gb): 4
          Stacked die count: 4
          TSV projection: industrial conservative
          Number of banks: 4
          Technology size (nm): 40
          Page size (bits): 16384
          Burst depth: 1
          Chip IO width: 128
          Best Ndwl: 128
          Best Ndbl: 128
          # rows in subarray: 128
          # columns in subarray: 128
      Results:
      Timing Components:
             t_RCD (Row to column command delay): 7.79592 ns
             t_RAS (Row access strobe latency): 10.993 ns
           t_RC (Row cycle): 13.1979 ns
           t_CAS (Column access strobe latency): 14.4662 ns
             t_RP (Row precharge latency): 2.9324 ns
             t RRD (Row activation to row activation delay): 2.19039 ns
     Power Components:
             Activation energy: 0.52456 nJ
             Read energy: 0.941145 nJ
             Write energy: 0.941151 nJ
             Precharge energy: 0.45601 nJ
     Area Components:
             DRAM core area: 32.5495 mm2
             Area efficiency: 32.4602%
             DRAM die width: 4.90998 mm
             DRAM die height: 6.52147 mm
      TSV Components:
            TSV area overhead: 0.5292 mm2
             TSV latency overhead: 0.72752 ns
             TSV energy overhead per access: 0.0859231 nJ
```

- Need for finding a sweet spot, shall perform design space exploration for practical needs
- This makes sense since now we are only accessing one single bank per layer, thus faster access.

Model on Ramulator2

 Uses the same timing as 16, since it is not modified in DDR3 dram model either.

Address mapping scheme

Figure 5.13 mapping scheme for the 3D-stacked DRAM

Scheduler