Задача 1

Рассмотрим бесконечные последовательности из 0, 1, 2, в которых никакая цифра не встречается два раза подряд. Какова мощность множества таких последовательностей?

Решение: На первом месте может стоять одна из трех цифр: $\{0,1,2\}$

Если это 2, то на 2-ю позицию у нас ставиться уже одна из двух оставшихся цифр, а именно $\{0,1\}$. На 3-ю мы можем поставить снова одну из двух оставшихся соответственно. Приведем явную биекцию данных последовательностей our_i с множеством бесконечных двоичных последовательностей bin_i : $our_i[2] = bin_i[1]$, а далее 0 будет значить меньшее число из двух оставшихся, 1 соответсвенно большее. $\Rightarrow OUR_{[2]} \sim 2^{\mathbb{N}}$.

Аналогично с $OUR_{[0]}$ и $OUR_{[1]} \Rightarrow OUR \sim 3 \cdot 2^{\mathbb{N}} \sim 2^{\mathbb{N}}$ - континум.

Задача 2

Докажите, что множество отношений эквивалентности на множестве натуральных чисел имеет мощность конти нум.

Решение: Множество всех подмножеств на натуральных числах имеет мощность $2^{\mathbb{N}}$. Каждое множество натуральных чисел, разделенных на 2 класса эквивалентности 0 и 1 (в данном случае это будет подмножестовом искомого множества X) однозачно задается множеством тех элементов, которым сопоставлена $1 \Rightarrow$ оно не менее, чем континуально.

С другой стороны, X является подмножеством всех бинарных отношений из $\mathbb N$ в $\mathbb N$, что равномощно $2^{\mathbb N \times \mathbb N} \sim 2^{\mathbb N}$ - имеет мощность континум.

Отсюда, можем сказать, что множество отношений эквивалентности на натуральных числах имеет мощность континум.

Задача 3

Найдите мощность множества отношений эквивалентности, определенных на множестве действительных чисел.

Pewenue: Множество всех подмножеств на натуральных числах имеет мощность $2^{\mathbb{R}}$. Каждое множество действительных чисел, разделенных на 2 класса эквивалентности 0 и 1 (в данном случае это будет подмножестовом искомого множества

X) однозачно задается множеством тех элементов, которым сопоставлена $1\Rightarrow$ оно имеет мощность не менее, чем $2^{\mathbb{R}}.$

С другой стороны, X является подмножеством всех бинрных отношений из $\mathbb R$ в $\mathbb R$, что равномощно $2^{\mathbb R \times \mathbb R} \sim 2^{\mathbb R}$.

Отсюда, можем сказать, что множество отношений эквивалентности на действительных числах имеет мощность $2^{\mathbb{R}}$.

Задача 4

Запишите ДНФ, которая равна булевой функции

$$(x_1 \lor x_2) \land (\overline{x_1} \lor x_3) \land (\overline{x_2} \lor x_4) \lor \dots \lor (\overline{x_7} \lor x_9)$$

Решение: Найдем все знания x_i , при которых функция принимает значение 1. Для решения задачи произведем умный перебор. Разделим наше выражение на $(x_1 \lor x_2)$ и $(\overline{x_1} \lor x_3)...(\overline{x_7} \lor x_9)$. Для начала поработаем со второй частью:

$$\begin{cases} x_1 \to x_3 \\ x_3 \to x_5 \\ x_5 \to x_7 \\ x_7 \to x_9 \\ x_2 \to x_4 \\ x_4 \to x_6 \\ x_6 \to x_8 \end{cases}$$

Так как производиться глобальная конъюнкция, значит значение каждой скобки 1. Если начать перебирать варианты, то можно заметить, что если в строке матрицы встретилась 1, то все последующие цифры будут так же 1, для сохранения истинности.

x_1	x_3	x_5	x_7	x_9
0	0	0	0	0
0	0	0	0	1
0	0	0	1	1
0	0	1	1	1
0	1	1	1	1
1	1	1	1	1

x_2	x_4	x_6	x_8
0	0	0	0
0	0	0	1
0	0	1	1
0	1	1	1
1	1	1	1

Приняв в рассмотрений первое выражение $(x_1 \lor x_2 = 1)$, получаем, что данная функция истинна только при 10 значениях: 6 комбинация первой матрицы на 5 кобинаций второй и 5 комбинация второй матрицы на 5 комбинаций первой. Теперь, когда мы знаем значения на которых функция принимает 1, без труда составляем ДНФ:

$$(x_{1} \wedge \overline{x_{2}} \wedge x_{3} \wedge \overline{x_{4}} \wedge x_{5} \wedge \overline{x_{6}} \wedge x_{7} \wedge \overline{x_{8}} \wedge x_{9}) \vee (x_{1} \wedge \overline{x_{2}} \wedge x_{3} \wedge \overline{x_{4}} \wedge x_{5} \wedge \overline{x_{6}} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (x_{1} \wedge \overline{x_{2}} \wedge x_{3} \wedge \overline{x_{4}} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (x_{1} \wedge \overline{x_{2}} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge \overline{x_{5}} \wedge x_{6} \wedge \overline{x_{7}} \wedge x_{8} \wedge \overline{x_{9}}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge \overline{x_{5}} \wedge x_{6} \wedge \overline{x_{7}} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge \overline{x_{5}} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge x_{8} \wedge x_{9}) \vee (\overline{x_{1}} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6}$$

Задача 5

Докажите полноту системы связок, состоящей из одной связки штрих Шеффера $x|y=\neg(x\wedge y)$

Решение: Зная, что связка $\{\neg, \lor, \land\}$ является полной, выразим каждую компоненту через штрих Шеффера:

$$X|X= \neg X$$
 - отрицание
$$(X|X)|(Y|Y)=X\vee Y$$
 - дизъюнкция
$$(X|Y)|(X|Y)=X\wedge Y$$
 - конъюнкция

Таким образом, записав вместо $\{\neg, \lor, \land\}$ подстановки через штрих Шеффера, мы можем выразить любое логическое выражение.

Задача 6

 $KH\Phi$ (конъюктивно нормальной формой) называется конъюнкция дизъюнкций переменных или их отрицаний. Докажите, что любое высказывание можно выразить в виде $KH\Phi$.

Решение: Обозначим наше исходное высказывание за X. Так как любое высказывание выражается через ДНФ, запишем $\bar{X} = S$ в данном виде. Тогда:

$$\overline{S} = \overline{s_1 \vee s_2 ... \vee s_n} = \overline{s_1} \wedge \overline{s_2} ... \wedge \overline{s_n}$$

Причем каждое $\overline{s_i}$ представляется в виде:

$$\overline{s_i} = \overline{s_{i,1} \land s_{i,2} \dots \land s_{i,m}} = \overline{s_{i,1}} \lor \overline{s_{i,2}} \dots \lor \overline{s_{i,m}}$$

Так как $X = \overline{\overline{X}} = \overline{S} \Rightarrow$ представлятся в виде КНФ.

Задача 7

Сколько ненулевых коэффицентов в многочлене Жегалкина, которых равен $x_1 \vee x_2 \vee ... \vee x_n$

Peшение: Ненулевых слогаемых получается $2^n - 1$. Докажем утверждение по индукции.

- 1. База при n = 1 получаем $2^1 1 = 1$. Верно.
- 2. Шаг: допустим утверждение выполняется для какого-то n, докажем что оно верно и для n+1:

$$x_1 \lor x_2 ... \lor x_{n+1} = (x_1 \lor x_2 ... \lor x_n) \lor x_{n+1} = (x_1 \lor x_2 ... \lor x_n) x_{n+1} \oplus (x_1 \lor x_2 ... \lor x_n) \oplus x_{n+1}$$

Тогда количество слогаемых:

$$2^n - 1 + 2^n - 1 = 2^{n+1} - 1$$

Доказано.

Задача 8

Будет ли полной система $\{\neg, MAJ(x_1, x_2, x_3)\}$?

Решение: Будем решать методом от противного. Если такая система является полной, то рассмотрим конъюнкцию элементов $x_1 = 0$ и $x_2 = 1$, $x_1 \wedge x_2 = 0$. Сделаем инверсию относительно x_1 и x_2 . Заметим, что в таком случае все функции MAJ, в цепочке из которой состоит конъюнция, изменят свое значение на противоложное, \neg так же будет выдавать противоположное значение, так как все слагаемые перед ним изменились на противоположные \Rightarrow изменится и значение, выдаваемое функцией, оно станет равно 1, что неверно. Противоречие.