Hierarchical Clustering

## Hierarchical clustering: ward

let's run clustering withu the 'ward' method and plot.



#### Basically:

- step 1: linkage (df,method: "ward", metric: "eucledian")
- step 2: fcluster(linkage, n\_of\_clusters, criterion: "maxclust")

# Hierarchical CLustering: Single Method

we do the same thing. Only this time, our clustering method is single istead of ward.





Single and ward are similar.

# Hierarchical Clustering: Complete method

We do the same thing. Only this time our clustering method is complete instead of single



Coincidently, war, single and complete are the same in this example.

# Visualize clusters: matplotlib

we do a scatter plot with the XY coordinates in question.

The colors are sstored in a dictionary that isi accessed yhrouigh the lambda function lambda x: dict[x]

```
# Import the pyplot class
import matplotlib.pyplot as plt

# Define a colors dictionary for clusters
colors = {1:'red', 2:'blue'}

# Plot a scatter plot
```



# Visualizing in seaborn

Seaborn is similar to pyplot. but the author prefers seaborn for two reasons: simplicity and the templates of seaborn.



## How many clusters?

We draw a dendrogram to see the distances between our datapoints.

Choosing the number of cluster is more of an art than a science. With the help of dendrograms

## Creating a dendrogram

we feed the distance matrix to the dendrogram() function.

```
# Import the dendrogram function
from scipy.cluster.hierarchy import dendrogram

# Create a dendrogram
dn = dendrogram(distance_matrix)

# Display the dendogram
plt.show()
```

now we have a plot to see



We might say that we need two clusters.

I would go about it with a LOD way, Tableau style

# Limitation of hierarchical clustering

linkage is slow as datasets get bigger.

## FIFA 18: exploring defenders

Before doing the work, I need to prepare my dataset.

### **Imports**

Best practice: put the imports on top

This doesn't necessarily mean that we should remember **ALL** of them at the beginning.

#### scaling the points

I scale both datapoints with the whiten function:

```
import matplotlib.pyplot as plt
from scipy.cluster.vq import whiten
import pandas as pd
fifa=pd.read_csv("data/fifa_18_dataset.csv")
sliding_tackle= fifa['sliding_tackle']
agression= fifa['aggression']
#scaling
sliding_tackle_scaled=whiten(sliding_tackle)
agression_scaled=whiten(agression)
# Plot original data
plt.plot(sliding_tackle, label='original')
# Plot scaled data
plt.plot(sliding_tackle_scaled, label='scaled')
# Show the legend in the plot
plt.legend()
plt.title("Sliding Tackle")
# Display the plot
plt.show()
```

#### This gives me:



#### Agression:

```
plt.plot(agression, label='original')
plt.plot(agression_scaled, label='scaled')
plt.title("Agression")
plt.show()
```



### Fitting the data with linkage()

Now, I input both scaled

```
distance_matrix=linkage(fifa[['sliding_tackle_scaled','agression_scaled']]
,"ward")
```

#### Cluster data with fcluster

To get the clusters, we create a new column using the two columns and the distancematrix

```
# Assign cluster labels to each row of data
fifa['cluster_labels'] = fcluster(distance_matrix, 3,
criterion='maxclust')
```

### Display cluster centers of each cluster

```
print(fifa[['scaled_sliding_tackle', 'scaled_aggression',
  'cluster_labels']].groupby('cluster_labels').mean())
```

cluster\_labels

| Centroid  | X        | У        |
|-----------|----------|----------|
| Cluster 1 | 0.987373 | 1.849142 |
| Cluster 2 | 3.013487 | 4.063492 |
| Cluster 3 | 1.934455 | 3.210802 |

### Create a scatter plot through seaborn

```
sns.scatterplot(x='scaled_sliding_tackle', y='scaled_aggression',
hue='cluster_labels', data=fifa)
plt.show()
```

The scatter plot with seaborn is elegantly beautiful.

