Out[4]:

	video_id	trending_date	title	channel_title	category_id	publish_time	
0	gS1DbvHHVH0	2018-06-06	Going in to brain surgery	Simone Giertz	28.0	2018-05-30 14:22:13+00:00	
1	n1MkZA7yG2U	2017-12-30	La Chute d'une IcÃ ´ne 10 FIN Appo Firenze Esob	esepelisa	24.0	2017-12-29 08:00:04+00:00	esepe l isa'
2	m7lFyINZlBs	2018-04-19	Cardi B Confirms Pregnancy	Wendy Williams	24.0	2018-04-10 01:00:02+00:00	
3	8uP-fpQJT3s	2018-05-04	4 May 2018 - The Hindu Editorial News Paper An	Study IQ education	27.0	2018-05-04 03:02:22+00:00	
4	os5mMTl3lBs	2017-12-03	VLOGMAS DAY 1: We're in Rehearsals!	Giovannasworld	24.0	2017-12-01 09:00:03+00:00	vlogmas "2
4							

In []: # 1. Distribution of Views

```
In [5]:
    plt.figure(figsize=(10,5))
    sns.histplot(df['views'], bins=50, kde=True)
    plt.title("Distribution of Video Views")
    plt.xlabel("Views")
    plt.ylabel("Count")
    plt.show()
```


In [6]: # 2. Top 10 Categories by Average Views

In [8]: # 3. Engagement (Likes vs Views)

```
In [9]: plt.figure(figsize=(10,6))
    sns.scatterplot(data=df, x="views", y="likes", alpha=0.5)
    plt.title("Views vs Likes")
    plt.xlabel("Views")
    plt.ylabel("Likes")
    plt.xscale("log") # log scale for better visualization
    plt.yscale("log")
    plt.show()
```


In [10]: # 4. Like-Dislike Ratio by Category

```
In [11]: df['like_ratio'] = df['likes'] / (df['likes'] + df['dislikes'] + 1)

plt.figure(figsize=(12,6))
sns.boxplot(x="category_name", y="like_ratio", data=df)
plt.title("Like Ratio Distribution by Category")
plt.xticks(rotation=90)
plt.show()
```


In [12]: # 5. Days to Trend Analysis

```
In [13]: plt.figure(figsize=(10,5))
    sns.histplot(df['days_to_trend'], bins=30, kde=True, color="coral")
    plt.title("Distribution of Days to Trend")
    plt.xlabel("Days from Publish to Trending")
    plt.ylabel("Number of Videos")
    plt.show()
```


In [14]: # 6. Heatmap of Correlations

```
In [15]: corr = df[['views','likes','dislikes','comment_count','days_to_trend']].corr()

plt.figure(figsize=(8,6))
sns.heatmap(corr, annot=True, cmap="coolwarm", center=0)
plt.title("Correlation Heatmap")
plt.show()
```



```
In [ ]:
```