Automatizovaný systém měření činitele odrazu

Ing. Rudolf Bayer

Katedra elektroenergetiky, Fakulta elektrotechnická, ČVUT v Praze, bayerrud@fel.cvut.cz

Přesnost výpočtu fotometrických veličin je závislá na přesnosti popisu mnohonásobných odrazů, probíhajících v daném místě. Důležité je proto znát přesné odrazné vlastnosti použitých materiálů. Činitele odrazu povrchů lze změřit reflektometrem jako je OPTE-F3K. Tento článek si klade za cíl popsat právě probíhající návrh nové řídicí a napájecí elektroniky tohoto zařízení.

Úvod

Člověk získává 80 až 90 % informací o svém okolí prostřednictvím zraku. Jak objekty ovlivňují světelný tok tvoří to, čemu říkáme vzhled objektu. Většina světelně-činných ploch kolem nás jsou sekundárními zdroji světla. Světlo, vyzařované primárními světelnými zdroji (Slunce, umělé světelné zdroje), dopadá na dané plochy, mění své vlastnosti a tím zprostředkuje informaci o charakteru povrchu objektu. Fotometrické vlastnosti povrchů materiálů jsou důležité zejména při navrhování a konstrukci světelně-aktivních povrchů z hlediska prostorového rozložení odraženého světelného toku, např. ke snížení jasů v určitých směrech, zatímco je potřeba zachovat co nejvyšší účinnost daného uspořádání.

Měření prostorového rozložení jasu

Pro umožnění měření prostorového rozložení jasu sekundárních zdrojů světla (odrazných ploch) byl na katedře Elektroenergetiky navržen a sestrojen přípravek OPTE-F3K z obr. 1.

obr. 1 Přístroj pro měření prostorového rozložení jasu sekundárních zdrojů světla OPTE-F3K

obr. 2 Geometrické uspořádání měřeného vzorku, světelného zdroje a fotosenzoru v OPTE-F3K

OPTE-F3K umožňuje otočení měřeného vzorku ve dvou směrech (úhly β a γ) a světelného zdroje v jednom směru (úhel α) podle obr. 2. Díky této konfiguraci je zařízení vhodné pouze pro měření isotropně-odrážejících povrchů. Úhly α , β a γ lze nastavit s přesností 0,5° [1]. Zařízení je poměrně malých rozměrů (20 x 26 x 18 cm), z čehož plyne i maximální velikost měřených vzorků materiálů 2 x 2 cm a tloušťkou 0,5 cm. Navíc lze měřit povrchy s nepříliš hrubým povrchem, neboť zařízení osvětluje pouze malou část povrchu měřeného vzorku [1].

K vyhodnocení množství odraženého světla od měřeného vzorku v určitém směru je použit digitální přistroj pro měření kontrastu jasu Brüel & Kjaer typ 1100 (obr. 3). Toto zařízení je schopné měřit jasy až do 199 kcd/m² pod úhlem 3° [3].

obr. 3 Digitální přístroj pro měření kontrastu jasu typu 1100 dánské firmy Brüel & Kjaer

Původní proces měření

Zadní část zařízení OPTE-F3K byla opatřena speciálním konektorem pro připojení zdroje, napájejícího interní světelný zdroj 12 volty a elektroniku s krokovými motory 9 volty, a paralelním 36-pinovým konektorem, který sloužil k propojení s počítačem. Pro ovládání krokových motorků byl naprogramován software "Pgm KALO" v jazyku QBasic, který sloužil k otáčení vzorku a světelného zdroje pod neprůhledným krytem.

Přístrojem OPTE-F3K naměřené hodnoty z [1] byly zaznamenávány ručně. Všechny úhly byly nastaveny nejprve ručně, poté byly zaznamenány hodnoty jasu z měřiče kontrastu jasu. Příklad naměřených hodnot zpracovaných do grafu lze nalézt na obr. 4.

obr. 4 Průběhy prostorového rozložení jasu pro různé úhly dopadu (viz legenda) [1]

Na obr. 4 je uveden polární graf naměřených hodnot jasů v různých úhlech, uvedených v legendě. Vzorek byl v tomto případě osvětlován pouze v rovině γ = -90° (viz obr. 5). Průběh, uvedený v legendě jako první, je průběh jasů pro paprsek dopadající pod úhlem α = 25°, když horizontální úhel γ = -90° a fotosenzor se pohybuje v úhlech β = 0°až β = 90°, jak je uvedeno na obr. 5.

obr. 5 Popis úhlů podle [1]

Přepracovaná verze ovládací elektroniky

Pro umožnění plně automatizovaného měření odrazných vlastností materiálů je v současné době navrhována nová elektronika, která si za hlavní cíle klade:

- Nastavení úhlů přes USB (viz obr. 2)
- A/D převod analogového výstupu přístroje pro měření kontrastu jasů a načítání této hodnoty přes USB

Pohon motorů

Nově navrhovaná elektronika zařízení OPTE-F3K bude nejen komunikovat s počítačem, ale také bude muset zajistit napájení krokových motorů. Přehled logických částí lze nalézt na obr. 6.

obr. 6 Diagram řízení krokových motorů (viditelná část se opakuje pro všechny tři motory)

Deska plošných spojů s mikroprocesorem (na obr. 6 popsaná "uProcessor") bude šesti výstupy řídit tři krokové motory přes tři řídicí logické obvody (na obr. 6 jeden popsán "driver logic 1"), které ze signálu směru a kroku vygenerují signály pro budiče vinutí krokových motorů, z nichž schéma jednoho je uvedeno na obr. 7.

obr. 7 Schéma propojení hradel XOR a D-klopných obvodů pro řízení budičů krokových motorů

Výstupy A1, B1, A2, B2 (podle obr. 7) budou vyvedeny na budiče vinutí, na obr. 6 označeny jako "driver…". Celkem bude tedy zapojení obsahovat 12 budičů (obr. 8) pro tři motory o dvou vinutích.

obr. 8 Schéma budiče vinutí krokového motoru

Výstupy generátorů signálů (obr. 7) budou s budiči (obr. 8) propojeny přes optočleny pro galvanické oddělení 5V části, napájející procesor a hradla, a 9V části, napájející budiče a motory.

Mikroprocesor a FTDI

Procesorová deska bude osazena mikroprocesorem Atmega8 (obr. 9), který umožňuje komunikaci přes UART RS-232 a A/D převod analogového výstupu z měřicího přístroje kontrastu jasů. Komunikaci mikroprocesoru a počítače přes USB umožní integrovaný obvod FTDI232R (obr. 10).

obr. 9 Část schématu desky s mikroprocesorem (ATmega8)

obr. 10 Část schématu desky s mikroprocesorem (FTDI232R)

Pro tento projekt byl zvolen integrovaný obvod FTDl232R nejen z důvodu, že dokáže generovat hodinový signál pro procesor, ale také proto, že dokáže uspat mikroprocesor, pokud dojde k takovému požadavku ze strany počítače [2]. Integrovaný obvod FTDl232R se po propojení s počítačem pomocí rozhraní USB prezentuje jako virtuální komunikační port, což značně ulehčuje práci pro budoucího programátora softwaru, kterým se bude automatizovaná měření provádět. Navíc bude potřeba transformovat úhly podle obr. 2 na úhly podle obr. 5

Závěr

Cílem toho projektu je umožnit automatizované měření prostorového rozložení jasu vzorků povrchů materiálů přístrojem OPTE-F3K. Původní rozhraní tohoto přístroje není již s pokrokem počítačů možné jednoduše použít. V tomto článku byla popsána elektronická část projektu. Další částí bude naprogramování softwaru pro počítač, který bude zpracovávat naměřené hodnoty napětí výstupu z přístroje pro měření kontrastů jasů.

Literatura

- [1] MÁLEK, Jan. ČVUT FEL. Disertační práce Odrazné vlastnosti světelně činných materiálů. Praha, 2007
- [2] FTDI. FT232R USB UART IC Datasheet Version 2.10. 2010. Dostupné z: http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
- [3] BRUEL&KJAER. Application Notes: Contrast and Luminance Measurements on work places with CRT display terminal. Soborg (Dánsko): K. Larsen & Son A/S, 1980. Dostupné z: http://81.70.242.211/eab1/manual/Magazine/T/Technical%20Review,%20Bruel%20&%20Kjaer%20DK/1980-1%20[26].pdf