# **SOLUTIONS**

# CSC 384 Winter 2023 Test 4 Version B

March 27 and 28, 2023

| Last Name:  |  |
|-------------|--|
|             |  |
| First Name: |  |
|             |  |
| Email:      |  |

There are 3 questions with a total of 26 marks.

- Q1 (8 marks)
- Q2 (12 marks)
- Q3 (6 marks)

# Q1 D-Separation (8 marks)

Consider Figure 1 below. For each question below, circle the best answer and provide an explanation. Use the following format for your explanation (where X, A, B, C, and D are variables).

(Observing/Not observing) X (blocks/doesn't block) the path A-B-C-D by rule 1/2/3.

Q1.1 (2 marks) C and E are unconditionally independent.

True or False

Explain:

Q1.2 (2 marks) F and E are conditionally independent given B.

True or False

Explain:

Q1.3 (2 marks) A and I are unconditionally independent.

True or False

Explain:

Q1.4 (2 marks) C and E are conditionally independent given I.

True or False

Explain:



Figure 1 Above

### **Q1 Solutions**

Q1.1 (2 marks) C and E are unconditionally independent.

#### **True**

Not observing D nor D's descendants blocks path CADBE by rule 3. Not observing H nor H's descendants blocks the path CHGDBE and the path CHFDBE by rule 3.

Q1.2 (2 marks) F and E are conditionally independent given B.

#### **True**

Observing B blocks the path FDBE by rule 2.

Q1.3 (2 marks) A and I are unconditionally independent.

#### **False**

All the nodes on the three paths between A and I follow the chain structure (rule 1). Since none of the nodes are observed, they do not block any path by rule 1.

Q1.4 (2 marks) C and E are conditionally independent given I.

#### **False**

Observing I does not block the path CHGDBE by rule 3.

# **Q2 Variable Elimination Algorithm (12 marks)**



Consider the Bayesian network above. A, B, C, and D are binary variables. We use the lower-case letters to denote the values of the variables, e.g. a denotes A = true and  $\neg a$  denotes A=false.

Calculate  $P(A \mid \neg d)$  by using the Variable Elimination Algorithm.

Eliminate the hidden variables in alphabetical order.

For each step, indicate the following.

- Indicate the operation (e.g. Restrict, Multiply, Sum out, or Normalize).
- Indicate the **factors** on which you are applying the operations.
- Each operation should produce a new factor. Give this factor a unique name and draw a table containing its contents. The table should indicate the variables in the factor and the value for each combination of the variables' values.

Show all your work on pages 6 and 7.

We have created the initial factors for you below.

Factor f1

| ractor 11 |     |  |
|-----------|-----|--|
| а         | 0.1 |  |
| $\neg a$  | 0.9 |  |

| Fa | cto | r f2 |
|----|-----|------|
| ıа | CLU | 1 12 |

| b        | 0.2 |
|----------|-----|
| $\neg b$ | 0.8 |

Factor f3

| d        | b        | 0.3 |
|----------|----------|-----|
| $\neg d$ | b        | 0.7 |
| d        | $\neg b$ | 0.4 |
| $\neg d$ | $\neg b$ | 0.6 |

Factor f4

| С        | а        | b        | 0.5 |
|----------|----------|----------|-----|
| $\neg c$ | а        | b        | 0.5 |
| С        | а        | $\neg b$ | 0.6 |
| $\neg c$ | а        | $\neg b$ | 0.4 |
| С        | $\neg a$ | b        | 0.7 |
| $\neg c$ | $\neg a$ | b        | 0.3 |
| С        | $\neg a$ | $\neg b$ | 0.8 |
| $\neg c$ | $\neg a$ | $\neg b$ | 0.2 |

### Your Q2 final answers:

| $P(a \mid \neg d) =$ | $P(\neg a \mid \neg d) =$ |
|----------------------|---------------------------|
|                      | l                         |

Your Q2 work starts here.

Your Q2 work continues.

| This page is intentionally left blank. | You can use this page for rough work. |
|----------------------------------------|---------------------------------------|
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |

### **Q2 Version B Solutions**

### The final answers:

| $P(a \mid \neg d) = 0.1$ | $P(\neg a \mid \neg d) = 0.9$ |
|--------------------------|-------------------------------|
|                          |                               |

### 1 Restrict factor f3 to D = false to produce factor f5

#### **f5**

| b        | 0.7 |
|----------|-----|
| $\neg b$ | 0.6 |

The remaining factors are f1, f2, f4, and f5.

There are two hidden variables, B and C. We will eliminate B first.

2. Multiply factors f2, f4, and f5 to produce factor f6.

### f6

| 10       |          |          |       |
|----------|----------|----------|-------|
| c        | а        | b        | 0.07  |
| $\neg c$ | а        | b        | 0.07  |
| c        | а        | $\neg b$ | 0.288 |
| $\neg c$ | а        | $\neg b$ | 0.192 |
| c        | $\neg a$ | b        | 0.098 |
| $\neg c$ | $\neg a$ | b        | 0.042 |
| С        | $\neg a$ | $\neg b$ | 0.384 |
| $\neg c$ | $\neg a$ | $\neg b$ | 0.096 |

The remaining factors are f1 and f6.

3. Sum out B from factor f6 to produce factor f7.

**f7** 

| С        | а        | 0.358 |
|----------|----------|-------|
| C        | $\neg a$ | 0.482 |
| $\neg c$ | a        | 0.262 |
| ¬с       | $\neg a$ | 0.138 |

The remaining factors are f1 and f7.

4. Sum out C from factor f7 to produce factor f8.

**f8** 

| a        | 0.62 |
|----------|------|
| $\neg a$ | 0.62 |

The remaining factors are f1 and f8.

5. Multiply factors f1 and f8 to produce factor f9.

f9

| a        | 0.062 |
|----------|-------|
| $\neg a$ | 0.558 |

The remaining factor is f9.

6. Normalize factor f9 to produce factor f10.

f10

| a        | 0.1 |
|----------|-----|
| $\neg a$ | 0.9 |

## Q3 Filtering (6 marks)

### Consider the hidden Markov model on the next page.

- $S_t$  denotes the hidden state at time t.  $S_t = true$  means it rained on day t ( $S_t = false$  otherwise).
- $E_t$  denotes the observation at time t.  $E_t = true$  means the director brought an umbrella on day t and  $E_t = false$  otherwise.
- α is the normalization constant.

Assume that the first three observations are  $e_0$ ,  $\neg e_1$ , and  $e_2$ . That is, the director brought an umbrella on days 0 and 2 and didn't bring an umbrella on day 1.

Calculate the filtering probabilities for **day 2**. We have provided the filtering formulas on the next page. **For full marks**, **show ALL your work** and present your solutions to **3 decimal places**.



### The Filtering Formulas:

- Base case:  $P(S_0|E_0) = \alpha P(S_0) P(E_0|S_0)$
- Recursive case:

$$P(S_k | E_0 \land ... \land E_{k-1}) = \sum_{S_{k-1}} P(S_{k-1} | E_0 \land ... \land E_{k-1}) * P(S_k | S_{k-1})$$

$$\circ P(S_k|E_0 \wedge ... \wedge E_k) = \alpha P(E_k|S_k) P(S_k|E_0 \wedge ... \wedge E_{k-1})$$

### **Assume that**

$$P(s_1|e_0 \land \neg e_1) = 0.280$$

and 
$$P(\neg s_1 | e_0 \land \neg e_1) = 0.720$$

### Your final answers:

$$P(s_2|e_0 \land \neg e_1 \land e_2) = P(\neg s_2|e_0 \land \neg e_1 \land e_2) =$$

# Your calculations:

| This page is intentionally left blank. | You can use this page for rough work. |
|----------------------------------------|---------------------------------------|
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |

### **Q3 Version B Solutions**

### Step 1: (2 marks)

$$P(s_{2} | e_{0} \land \neg e_{1})$$

$$= P(s_{1} | e_{0} \land \neg e_{1})P(s_{2} | s_{1}) + P(\neg s_{1} | e_{0} \land \neg e_{1})P(s_{2} | \neg s_{1})$$

$$= 0.280 * 0.75 + 0.720 * 0.35 = 0.462$$

$$P(\neg s_{2} | e_{0} \land \neg e_{1}) = 1 - 0.462 = 0.538$$

### Step 2: (4 marks)

### (2 marks)

$$P(e_2|s_2)P(s_2|e_0 \land \neg e_1) = 0.15 * 0.462 = 0.393$$
  
 $P(e_2|\neg s_2)P(\neg s_2|e_0 \land \neg e_1) = 0.90 * 0.538 = 0.054$ 

## (2 marks)

$$P(s_2 | e_0 \land \neg e_1 \land e_2) = 0.393/(0.393 + 0.054) = 0.879$$

$$P(\neg s_2 | e_0 \land \neg e_1 \land e_2) = 1 - 0.879 = 0.121$$