# ECE368 Homework #11

**IMPORTANT**: Write your user (login) ID at the TOP of EACH page. Also, be sure to *read* and *sign* the *Academic Honesty Statement* that follows:

| "In signing this statement, I hereby certify that the work on this exercise is my own and that I have not copied the work of any other student while completing it. I understand that, if I fail to honor this agreement, I will receive a score of ZERO for this exercise and will be subject to possible disciplinary action." |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Printed Name: Solution                                                                                                                                                                                                                                                                                                           |
| Login: Solution                                                                                                                                                                                                                                                                                                                  |
| Signature:                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                  |

Please acknowledge those people who have helped you with this homework.

| # of Question | Credits |
|---------------|---------|
|               |         |
|               |         |
|               |         |
|               |         |
|               |         |
|               |         |

## 1. Dijkstra's

We are given a directed graph G = (V, E) on which each edge  $(u, v) \in E$  has an associated value r(u, v), which is a real number in the range  $0 \le r(u, v) \le 1$  that represents the reliability of a communication channel from vertex u to vertex v. We interpret r(u, v) as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent. Give an efficient algorithm to find the most reliable path between two given vertices.

#### **Solution:**

To find the most reliable path between s and t, run Dijkstra's algorithm with edge weights  $w(u, v) = -\lg r(u, v)$  to find shortest paths from s in  $O(E+V\lg V)$  time. The most reliable path is the shortest path from s to t, and that path's reliability is the product of the reliabilities of its edges.

Here's why this method works. Because the probabilities are independent, the probability that a path will not fail is the product of the probabilities that its edges will not fail. We want to find a path  $s \stackrel{p}{\leadsto} t$  such that  $\prod_{(u,v)\in p} r(u,v)$  is maximized. This is equivalent to maximizing  $\lg(\prod_{(u,v)\in p} r(u,v)) = \sum_{(u,v)\in p} \lg r(u,v)$ , which is in turn equivalent to minimizing  $\sum_{(u,v)\in p} -\lg r(u,v)$ . (Note: r(u,v) can be 0, and  $\lg 0$  is undefined. So in this algorithm, define  $\lg 0 = -\infty$ .) Thus if we assign weights  $w(u,v) = -\lg r(u,v)$ , we have a shortest-path problem.

Since  $\lg 1 = 0$ ,  $\lg x < 0$  for 0 < x < 1, and we have defined  $\lg 0 = -\infty$ , all the weights w are nonnegative, and we can use Dijkstra's algorithm to find the shortest paths from s in  $O(E + V \lg V)$  time.

#### Alternate answer

You can also work with the original probabilities by running a modified version of Dijkstra's algorithm that maximizes the product of reliabilities along a path instead of minimizing the sum of weights along a path.

In Dijkstra's algorithm, use the reliabilities as edge weights and substitute

- max (and EXTRACT-MAX) for min (and EXTRACT-MIN) in relaxation and the queue,
- × for + in relaxation,
- 1 (identity for  $\times$ ) for 0 (identity for +) and  $-\infty$  (identity for min) for  $\infty$  (identity for max).

For example, the following is used instead of the usual RELAX procedure:

```
RELAX-RELIABILITY (u, v, r)

if d[v] < d[u] \cdot r(u, v)

then d[v] \leftarrow d[u] \cdot r(u, v)

\pi[v] \leftarrow u
```

This algorithm is isomorphic to the one above: It performs the same operations except that it is working with the original probabilities instead of the transformed ones.

# 2. Dijkstra's

Suppose we change line 4 of Dijkstra's algorithm to the following:

4 while |Q| > 1

This change causes the while loop to execute |V| - 1 times instead of |V| times. Is this proposed algorithm correct?

# **Solution:**

Yes, the algorithm still works. Let u be the leftover vertex that does not get extracted from the priority queue Q. If u is not reachable from s, then  $d[u] = \delta(s, u) = \infty$ . If u is reachable from s, there is a shortest path  $p = s \sim x \rightarrow u$ . When the node x was extracted,  $d[x] = \delta(s, x)$  and then the edge (x, u) was relaxed; thus,  $d[u] = \delta(s, u)$ .

3. **Max flow graph**. Following the example shown in the lecture slides, show how *Ford-Fulkerson* works on the following graph to find the max s-t flow. In each step: show the flow on the input graph; show the residual graph; highlight the augmenting path on the residual graph. Describe how you identify the augmenting path in each step.



## **Answer:**

There are multiple ways depending how you choose augmenting paths. Here is one possible execution.



Figure 26.5 The execution of the basic Ford-Fulkerson algorithm. (a)–(d) Successive iterations of the while loop. The left side of each part shows the residual network  $G_f$  from line 4 with a shaded augmenting path p. The right side of each part shows the new flow f that results from adding  $f_p$  to f. The residual network in (a) is the input network G. (e) The residual network at the last while loop test. It has no augmenting paths, and the flow f shown in (d) is therefore a maximum flow.

### 4. Min spanning Tree.

Suppose that we represent the graph G = (V, E) as an adjacency matrix. Give a simple implementation of Prims algorithm for this case that runs in  $O(V^2)$  time.

**Solution.** If Graph G = (V, E) is represented as an adjacency matrix, for an vertex u, to find its adjacent vertices, instead of searching the adjacency list, we search the row of u in the adjacency matrix. We assume that the adjacency matrix stores the edge weights, and those unconnected edges have weights 0. The Prim's algorithms is modified as:

# Algorithm 1: MST-PRIM2(G, r)

```
1 for each u \in V[G] do
      key[u] = \infty;
      \pi[u] = NIL;
 4 end
 5 key[r] = 0;
 6 \text{ Q=V[G]}:
 7 while Q \neq \emptyset do
       u=EXTRACT-MIN(Q);
       for each v \in V/G/ do
          if A/u,v \neq 0 and v \in Q and A/u,v < key/v  then
10
              \pi[v] = u;
11
              key[v] = A[u, v];
12
          end
13
      end
14
15 end
```

The outer loop (while) has |V| variables and the inner loop (for) has |V| variables. Hence the algorithm runs in  $O(V^2)$ .

Remarks There are several ways to implement Prim's algorithm in  $O(V^2)$  algorithm:

- (a) Using the priority queue as above;
- (b) Using an array so each time extracting the minimum by one-by-one comparison, which takes O(V) time;
- (c) Converting the adjacency matrix into adjacency list representation in  $O(V^2)$  time, then using the implementation in textbook.

All above methods run in  $O(V^2)$  time.

# 5. Min spanning tree

Professor Borden proposes a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as follows. Given a graph G = (V, E), partition the set V of vertices into two sets  $V_1$  and  $V_2$  such that  $|V_1|$  and  $|V_2|$  differ by at most 1. Let  $E_1$  be the set of edges that are incident only on vertices in  $V_1$ , and let  $E_2$  be the set of edges that are incident only on vertices in  $V_2$ . Recursively solve a minimum-spanning-tree problem on each of the two subgraphs  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$ . Finally, select the minimum-weight edge in E that crosses the cut  $V_1, V_2$ , and use this edge to unite the resulting two minimum spanning trees into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree of G, or provide an example for which the algorithm fails.

**Solution.** We claim that the algorithm will fail. A simple counter example is shown in Figure 1. Graph G = (V, E) has four vertices:  $\{v_1, v_2, v_3, v_4\}$ , and is partitioned into subsets



Figure 1: An counter example.

G1 with  $V_1 = \{v_1, v_2\}$  and  $G_2$  with  $V_2 = \{v_3, v_4\}$ . The minimum-spanning-tree(MST) of  $G_1$  has weight 4, and the MST of  $G_2$  has weight 5, and the minimum-weight edge crossing the cut  $(V_1, V_2)$  has weight 1, in sum the spanning tree forming by the proposed algorithm is  $v_2 - v_1 - v_4 - v_3$  which has weight 10. On the contrary, it is obvious that the MST of G is  $v_4 - v_1 - v_2 - v_3$  with weight 7. Hence the proposed algorithm fails to obtain an MST.