# TECNOLOGÍA ELECTRÓNICA DE COMPUTADORES

2º Curso – GRADO EN INGENIERÍA INFORMÁTICA EN TECNOLOGÍAS DE LA INFORMACIÓN

Tema 3: Componentes electrónicos.

Diodos y transistores

Lección 3. El diodo semiconductor



# Tema 3: Componentes electrónicos. Diodos y transistores Lección 3. El diodo semiconductor

- 3.1. Principio de funcionamiento
- 3.2. Curva característica del diodo. Diodo real y curvas linealizadas
- 3.3. Tipos de Diodos. Diodo zener. LED. Fotodiodo. Otros diodos
- 3.4. Circuitos con diodos y aplicaciones



## Bibliografía de la lección

#### **Lectura clave**

Capítulo 3 de diodos de A.P. Malvino Principios de Electrónica Editorial Mc. Graw Hill

#### Otras lecturas complementarias

Capítulo 2 sobre semiconductores (Malvino)

Regulador de tensión con zener 5.1 y 5.2 de Malvino (exceptuando coef. temperatura)

Consultar http://es.rs-online.com/web/

http://es.farnell.com/

para buscar diferentes diodos

Funcionamiento diodo: <a href="http://youtu.be/DbjR-2knrpo">http://youtu.be/DbjR-2knrpo</a>



## 3.1. Principio de funcionamiento

#### Nociones de física de estado sólido: Concepto de bandas de energía

Estructura cristalina (cristal): es un espacio ordenado de átomos (o iones) en forma de bloque y repetido regularmente en tres dimensiones.

#### Ideas básicas:

- a) Cuando los átomos forman un cristal, sólo los niveles de energía de los electrones de la capa exterior se ven afectados por la presencia de átomos vecinos: al acercarse a otros átomos, cambian los niveles de energía permitidos (ver ejemplo con el carbono)
- b) El acoplamiento de capas de electrones exteriores da lugar a unas BANDAS DE ESTADOS DE ENERGÍA muy próximos entre si
- c) En los niveles inferiores, los electrones están próximos al átomo (banda de valencia). Estos electrones forman parte de los enlaces entre los átomos
- d) En los niveles superiores, los electrones pueden extraerse fácilmente y desplazarse por el cristal facilitando la conducción
- e) Las energías de cada banda dependen del cristal: átomos que lo componen y ordenación



#### Ejemplo con el carbono (C)



Capas y niveles de energía en el carbono

#### ¿Que pasa al reducir la distancia entre átomos?





#### Tipos de materiales, según sus propiedades eléctricas





#### **Material Semiconductor**

Energía



A temperatura ambiente algunos electrones de la Banda de valencia poseen la energía necesaria para saltar a la Banda de conducción



Pueden moverse a estados vacíos de la banda de conducción de otros átomos vecinos



Se genera corriente eléctrica

#### **Semiconductores**

# Single Crystal Silicon Ingot



#### Semiconductores elementales:

Germanio (Ge) Silicio (Si)

- Tienen 4 e<sup>-</sup> en la última capa

Compuestos IV: SiC y SiGe

Compuestos III-V:

Binarios: GaAs, GaP, GaSb, AlAs, AlP, AlSb, InAs, InP y InSb

Ternarios: GaAsP, AlGaAs

Cuaternarios: InGaAsP

Compuestos II-VI: ZnS, ZnSe, ZnTe, CdS, CdSe y CdTe











#### **Semiconductor EXTRÍNSECO = Semiconductor DOPADO**

Los materiales empleados para dopar pertenecen al Grupo III (3 e<sup>-</sup> en la última

capa: In, Al, Ga, B) o al Grupo V (5 e<sup>-</sup> en la última capa: As, Sb, Bi).

Los dopados se realizan mediante difusión o implantación iónica: se mantiene el semiconductor en una atmósfera de la sustancia "dopante" con concentración, temperatura y tiempo controlados.



Ion Implanter

Semiconductores TIPO P: (dopantes grupo III, p.e. In)



Semiconductores TIPO N: (dopantes grupo V, p.e. Sb)





# Los dispositivos electrónicos surgen de la unión de trozos de semiconductor de dos tipos: P y N



Asociación de dispositivos:
Optoacoplador, Display, Puente rectificador ...
iii CIRCUITOS INTEGRADOS iii



#### **Unión PN**

Los semiconductores por sí solos, son poco útiles. El interés surge cuando se unen semiconductores P y N





#### **Diodo semiconductor**



#### a) Polarización directa





Huecos (zona P) y e<sup>-</sup> (zona N) "invaden" la zona de transición, estrechándola. La corriente directa (mayoritarios) puede ser importante.

#### b) Polarización inversa





Huecos (zona P) y e<sup>-</sup> (zona N) "escapan" de la zona de transición, ensanchándola. La corriente inversa (minoritarios) es muy pequeña, idealmente nula.



# 3.2 Curva característica del diodo. Diodo real y curvas linealizadas

Recordar: la curva característica es la representación del comportamiento del componente en un diagrama I-V

#### Un diodo ideal:

- Permite el paso de la corriente cuando i>0 (se comporta casi como un cortocircuito)
- No permite el paso de corriente cuando i<0 (se comporta como un abierto)





#### RESUMEN del comportamiento de un diodo:

En esencia, un diodo es un dispositivo que sólo permite la conducción de la corriente en un sentido.





#### **Diodo real vs ideal**

- En bloqueo los diodos reales son casi ideales, la corriente es prácticamente cero aunque no cero (corriente de fugas)
- En conducción no son cortos perfectos, hay una pequeña caída de tensión
- El paso de conducción a bloqueo o al revés es rápido, pero no instantáneo (no afecta a la curva, en principio)



#### Diodo real: característica

#### Curva real (simulador, resolución gráfica)



Otros parámetros importantes: rapidez, caída de tensión



#### Linealización de la curva característica: aproximaciones



#### 3. Linealización de la curva, con:

- Corriente inversa nula
- Resistencia dinámica no nula







#### Estrategias de análisis

1<sup>er</sup> método: hacer suposiciones arbitrarias sobre la zona de funcionamiento del diodo y tratar de ver si los resultados son compatibles con la suposición.

2º método: tratar de "ver" de antemano la zona de funcionamiento y ver si los resultados son compatibles.

#### Ejemplo 1: Determinar la corriente y la tensión en el diodo (ideal)





#### Ejemplo de análisis 2

Calcular la corriente la corriente, i, y la tensión, v:

- 1. Suponiendo diodo ideal
- 2. Suponiendo caída de tensión de 0,6 V
- 3. Suponiendo caída de tensión de 0,6 V y Rd=0,1Ω





#### Ejemplo de análisis 3

Analizar el circuito de forma gráfica suponiendo que la curva característica es la que se indica en la figura







#### **Aspectos importantes**

- Resolver circuitos con fuentes de tensión y/o fuentes de corriente, resistencias y varios diodos
- Resolver los circuitos tratando de ver de antemano el funcionamiento de los diferentes diodos
- Manejar con soltura las diferentes linealizaciones
- Utilización de la recta de carga para la resolución gráfica
- Resolver circuitos en los que haya transitorios de primer orden (circuitos con resistencias y condensadores o bobinas) y haya diodos
- Buscar hojas de características de diodos populares (ej. D1N4148, D1N4007).



## 3.3. Tipos de Diodos. Diodo zener. LED. Fotodiodo. Otros

# diodos El diodo zéner id ' Zona directa: trabaja como Vz diodo **Tensión Zener** Ud Zona inversa: trabaja como zener, con una tensión de codo más elevada denominada tensión zener.

Nota: Si trabaja como zener, se suele tomar como referencia:



#### **MODELO LINEALIZADO MÁS SIMPLE**





#### Ejemplo de análisis 4

Calcular la corriente la corriente, i, y la tensión, v, suponiendo zener ideal de tensión de zener 5 V





#### El diodo emisor de luz (LED)



El semiconductor es un compuesto III-V (p.e. Ga As) que con la unión PN polarizada directamente emite fotones (luz) de una cierta longitud de onda (color).



La tensión de codo " $V\gamma$ " depende del color y no se desprecia (entre 1,5V y 2V, aprox.).

La corriente media típica es 10mA.

#### **Asociación (DISPLAY)**



#### Cátodo común



#### Ánodo común





#### **El fotodiodo**



Se basan en compuestos III-V que presentan una corriente inversa proporcional a la luz incidente (son sensibles a una determinada longitud de onda).

Aplicaciones: Sensores de luz Comunicaciones l=f(luz)

Zona de uso como CELDA SOLAR





u





#### **Otros diodos**

 Diodos láser: parecidos a los LED. Para que empiecen a funcionar como láser hay que superar una corriente umbral (typ. Entre 10 y 100 mA). Tienen algunas particularidades en su gobierno.

 Diodos Schottky: unión metal-semiconductor N. Usados en electrónica digital. Rápidos y caída de tensión baja, 0,2 V



· Otros: diodos Varicap, Diodos de efecto túnel, ...



### 3.4. Circuitos con diodos y aplicaciones

#### Rectificador de media onda



$$u_e > 0 \Rightarrow u_S = u_e$$
  
 $u_S = 0$   
 $u_e < 0 \Rightarrow u_S = 0$ 





Obtener la salida para este circuito Calcular el valor medio y el eficaz de u<sub>s</sub> Analizar el circuito con una forma de onda cuadrada simétrica





#### Rectificador de onda completa



$$u_e > 0 => u_S = u_e$$
  
 $u_e < 0 => u_S = - u_e$ 



#### ii MASAS DIFERENTES EN LAS TENSIONES DE ENTRADA Y SALIDA ii

#### Resolver:







#### Regulador zéner



En zona zéner si:

$$u_{E} \cdot \frac{R_{L}}{R_{S} + R_{I}} > Vz$$

Demostrar esta expresión. Razonar qué sucede si  $R_L \rightarrow 0$  Razonar qué sucede si y  $R_L \rightarrow \infty$ 

