

SEQUENCE LISTING

<110> Friddle, Carl Johan
 Hilbun, Erin
 Gerhardt, Brenda
 Turner, C. Alexander Jr.

<120> Novel Human Ion Channel Protein and Polynucleotides Encoding the Same

<130> LEX-0251-USA

<150> US 60/239,623
 <151> 2000-10-10

<160> 3

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1371

<212> DNA

<213> homo sapiens

<400> 1

atggagccgc	ggtgcccgcc	gccgtgcggc	tgctgcgagc	ggctgggtct	caacgtggcc	60
ggctgcgt	tcgagacgcg	ggcgcgcacg	ctggccgct	tcccgacac	tctgcttaggg	120
gaccgcgc	gcccggccg	tttctacgac	gacgcgcgc	gcgagtattt	tttcgaccgg	180
caccggccca	gtttcgacgc	cgtgctctac	tactaccgt	ccgggtggcg	gctgcggcgg	240
ccggcgcacg	tgccgctcga	cgttccctg	gaagaggtgg	ccttctacgg	gctgggcgcg	300
gccgcctgg	cacgcctgcg	cgaggacgag	ggctgcccgg	tgccgcccga	gcgcgcctcg	360
ccccgcgcg	ccttcgcggc	ccagctgtgg	ctgccttcg	agtttcccg	gagctctcag	420
gccgcgcgc	tgctcgcgt	agtctccgt	ctggatcatcc	tcgtctccat	cgtcgtcttc	480
tgcctcgaga	cgctgcctga	cttccgcgac	gaccgcgacg	gcacgggct	tgctgctgca	540
gccgcagccg	gcccgttccc	cgctcggctg	aatggctcca	gccaatgcc	tgaaaatcca	600
ccccgcctgc	ccttcaatga	cccggtcttc	gtgggtggaga	cgctgtgtat	ttgttggttc	660
tcctttgagc	tgctggta	cctcctggtc	tgtccaagca	aggctatctt	tttcaagaac	720
gtgatgaacc	tcatcgattt	tgtggctatc	tttcctact	ttgtggact	gggcaccgag	780
ctggcccgcc	agcgaggggt	gggcccagcag	gccatgtcac	tggccatcct	gagagtcatc	840
cgatttggtc	gtgtcttccg	catcttcaag	ctgtccggc	actcaaagg	cctgcaaatc	900
ttggggccaga	cgcttcgggc	ctccatgcgt	gagctggcc	tcctcatctt	tttctcttc	960
atcggtgtgg	tccttttgc	cagcgcgc	tacttgcgg	aagttgaccg	ggtggactcc	1020
catttcacta	gcatccctga	gtccttctgg	tggcggtag	tcaccatgac	tacagttggc	1080
tatggagaca	tggcacccgt	cactgtgggt	ggcaagatag	tgggctctct	gtgtgccatt	1140
gccccgcgtgc	tgactatttc	cctgccagt	cccgtcattt	tctccaattt	cagctacttt	1200
tatcaccggg	agacagaggg	cgaagaggt	gggatgtca	gcccattgttga	catgcagcct	1260
tgtggccac	tggagggcaa	ggccaatggg	gggctggtg	acggggaggt	acctgagctt	1320
ccacctccac	tctggcacc	cccaggaaa	cacctggta	ccgaagtgtg	a	1371

<210> 2

<211> 456

<212> PRT

<213> homo sapiens

<400> 2

Met Glu Pro Arg Cys Pro Pro Pro Cys Gly Cys Cys Glu Arg Leu Val

1	5	10	15												
Leu	Asn	Val	Ala	Gly	Leu	Arg	Phe	Glu	Thr	Arg	Ala	Arg	Thr	Leu	Gly
20									25						30
Arg	Phe	Pro	Asp	Thr	Leu	Leu	Gly	Asp	Pro	Ala	Arg	Arg	Gly	Arg	Phe
35									40						45
Tyr	Asp	Asp	Ala	Arg	Arg	Glu	Tyr	Phe	Asp	Arg	His	Arg	Pro	Ser	
50									55						60
Phe	Asp	Ala	Val	Leu	Tyr	Tyr	Gln	Ser	Gly	Gly	Arg	Leu	Arg	Arg	
65									70						80
Pro	Ala	His	Val	Pro	Leu	Asp	Val	Phe	Leu	Glu	Glu	Val	Ala	Phe	Tyr
									85						95
Gly	Leu	Gly	Ala	Ala	Ala	Leu	Ala	Arg	Leu	Arg	Glu	Asp	Glu	Gly	Cys
									100						110
Pro	Val	Pro	Pro	Glu	Arg	Pro	Leu	Pro	Arg	Arg	Ala	Phe	Ala	Arg	Gln
									115						125
Leu	Trp	Leu	Leu	Phe	Glu	Phe	Pro	Glu	Ser	Ser	Gln	Ala	Ala	Arg	Val
									130						140
Leu	Ala	Val	Val	Ser	Val	Leu	Val	Ile	Leu	Val	Ser	Ile	Val	Val	Phe
145									150						160
Cys	Leu	Glu	Thr	Leu	Pro	Asp	Phe	Arg	Asp	Asp	Arg	Asp	Gly	Thr	Gly
									165						175
Leu	Ala	Ala	Ala	Ala	Ala	Gly	Pro	Phe	Pro	Ala	Arg	Leu	Asn	Gly	
									180						190
Ser	Ser	Gln	Met	Pro	Gly	Asn	Pro	Pro	Arg	Leu	Pro	Phe	Asn	Asp	Pro
									195						205
Phe	Phe	Val	Val	Glu	Thr	Leu	Cys	Ile	Cys	Trp	Phe	Ser	Phe	Glu	Leu
									210						220
Leu	Val	Arg	Leu	Leu	Val	Cys	Pro	Ser	Lys	Ala	Ile	Phe	Phe	Lys	Asn
225									230						240
Val	Met	Asn	Leu	Ile	Asp	Phe	Val	Ala	Ile	Leu	Pro	Tyr	Phe	Val	Ala
									245						255
Leu	Gly	Thr	Glu	Leu	Ala	Arg	Gln	Arg	Gly	Val	Gly	Gln	Gln	Ala	Met
									260						270
Ser	Leu	Ala	Ile	Leu	Arg	Val	Ile	Arg	Leu	Val	Arg	Val	Phe	Arg	Ile
									275						285
Phe	Lys	Leu	Ser	Arg	His	Ser	Lys	Gly	Leu	Gln	Ile	Leu	Gly	Gln	Thr
									290						300
Leu	Arg	Ala	Ser	Met	Arg	Glu	Leu	Gly	Leu	Ile	Phe	Phe	Leu	Phe	
305									310						320
Ile	Gly	Val	Val	Leu	Phe	Ser	Ser	Ala	Val	Tyr	Phe	Ala	Glu	Val	Asp
									325						335
Arg	Val	Asp	Ser	His	Phe	Thr	Ser	Ile	Pro	Glu	Ser	Phe	Trp	Trp	Ala
									340						350
Val	Val	Thr	Met	Thr	Thr	Val	Gly	Tyr	Gly	Asp	Met	Ala	Pro	Val	Thr
									355						365
Val	Gly	Gly	Lys	Ile	Val	Gly	Ser	Leu	Cys	Ala	Ile	Ala	Gly	Val	Leu
									370						380
Thr	Ile	Ser	Leu	Pro	Val	Pro	Val	Ile	Val	Ser	Asn	Phe	Ser	Tyr	Phe
385									390						400
Tyr	His	Arg	Glu	Thr	Glu	Gly	Glu	Glu	Ala	Gly	Met	Phe	Ser	His	Val
									405						415
Asp	Met	Gln	Pro	Cys	Gly	Pro	Leu	Glu	Gly	Lys	Ala	Asn	Gly	Gly	Leu
									420						430
Val	Asp	Gly	Glu	Val	Pro	Glu	Leu	Pro	Pro	Pro	Leu	Trp	Ala	Pro	Pro
									435						445
Gly	Lys	His	Leu	Val	Thr	Glu	Val								

<210> 3
 <211> 1792
 <212> DNA
 <213> homo sapiens

<400> 3

cgcgccggcc	cgaggcgggcc	gaggcggggc	cgcacccgggg	ccgggcgtcg	gggccacacg	60
tcgggtcgcg	gtcgccggg	gctgcgcgcg	ccatggagcc	gcgggtccccg	ccggcgtcg	120
gctgctgcga	gcggctgggt	ctcaacgtgg	ccgggctcg	cttcgagacg	cgggcgcgca	180
cgcgtggccg	cttccggac	actctgttag	gggaccccagc	gcgcgcggc	cgcttctacg	240
acgacgcgcg	ccgcgagtag	ttcttcgacc	ggcacccggcc	cagcttcgac	gcccgtct	300
actactacca	gtccgggtgg	cggtcgccgc	ggccggcgca	cgtggccctc	gacgtttcc	360
tggaagaggt	ggccttctac	gggctggggc	cgccggccct	ggcacgcctg	cgcgaggacg	420
agggctgccc	ggtgcgcgccc	gagcgcggccc	tgcggccggc	cgccttcgccc	cgccagctgt	480
ggctgttttt	cgagttcccc	gagagctctc	aggccgcgcg	cgtgctcgcc	gtagttctccg	540
tgcgtggcat	cctcgctctcc	atcgctcgct	tctggctcg	gacgctgcct	gacttccgcg	600
acgaccgcga	cggcacgggg	cttgcgtctg	cagccgcgc	cgccccgttc	cccgctcgcc	660
tgaatggctc	cagccaaatg	cctggaaatc	cacccggcct	gcccgttcaat	gaccgttct	720
tcgtgggtgg	gacgctgtgt	attttgttgg	tctccttga	gctgctggta	cgcctctgg	780
tctgtccaaag	caaggctatc	ttcttcaaga	acgtgatgaa	cctcatcgat	tttgggtggcta	840
tccttcctta	ctttgtggca	ctgggcacccg	agctggcccg	gcagcgaggg	gtggggccagc	900
aggccatgtc	actggccatc	ctgagagtc	tccgattgg	gctgttcttc	cgcatcttca	960
agctgtcccg	gcactcaaag	ggcctgcaa	tcttggccca	gacgcttcgg	gcctccatgc	1020
gtgagctggg	cctcctcata	tttttcctt	tcatcggtgt	ggtcctctt	tccagcgccg	1080
tctactttgc	cgaagttgac	cggtgtggact	cccatttcac	tagcatccct	gagtccttct	1140
ggtggggcggt	agtccatgt	actacagtt	gctatggaga	catggcaccc	gtcaactgtgg	1200
gtggcaagat	agtgggtct	ctgtgtgc	ttgcgggctgt	gctgactatt	tccctgcccag	1260
tgcggcgtcat	tgtctccaaat	ttcagctact	tttattcaccg	ggagacagag	ggcgaagagg	1320
ctgggatgtt	cagccatgt	gacatgc	cttgcggccc	actggaggcc	aaggccaatg	1380
gggggctgg	ggacggggag	gtacctgagc	taccaccc	actctggca	cccccaggga	1440
aacacccgtt	caccgaagt	tgaggaacag	ttgaggtct	caggaccc	cacctccct	1500
gagggaggga	gggagggcag	ggtggagggc	aaggctgggg	ggaggggatt	gggtttagga	1560
agagcttaggt	taagtcrtaa	cgagtgggaa	aacactgagt	cttgggtgg	cttgggtt	1620
gtgggttgggt	agctcctgt	ggtacctct	gaagcagcag	cgaatggcaa	tgggtgtgt	1680
tgtgttaatg	aagactcaat	tggttcatat	tactctgagt	tgtgc	aaagc	1740
ttttgggtta	gtgtttagat	aggttggc	rtatcattt	gtgagtttcc	ta	1792