

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
КАФЕДРА	Прикладная математика

Отчёт по лабораторной работе №1

Методы численного решения обыкновенных дифференциальных уравнений

Студент:	ФН2-62Б		А.И. Токарев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
			Ю. А. Сафронов
		(Подпись, дата)	(И. О. Фамилия)
Проверил:			
1 1		(Подпись, дата)	(И. О. Фамилия)

Оглавление

1.	Исходные данные	3
	1.1. Тестовые примеры	3
2.	Таблица	3
3.	Контрольные вопросы	4

1. Исходные данные

Модель Лотки - Вольтерры динамики системы «хищник-жертва»

$$\begin{cases} \frac{dx_1}{dt} = x_1' = r_1 x_1 - b_{11} x_1^2 - b_{12} x_1 x_2 \\ \frac{dx_2}{dt} = x_2' = -r_2 x_2 - b_{22} x_2^2 + b_{21} x_1 x_2 \\ r_1 = 0.4, \quad r_2 = 0.1, \quad b_{11} = 0.05, \\ b_{12} = 0.1, \quad b_{21} = 0.08, \quad b_{22} = 0.003, \\ t = 0...150, \\ x_1(0) = 1.0, \quad x_2(0) = 4.0. \end{cases}$$

1.1. Тестовые примеры

1.

$$\begin{cases} \frac{dx}{dt} = x' = 2x + y^2 - 1, \\ \frac{dy}{dt} = y' = 6x - y^2 + 1. \end{cases}$$

Особые точки: (0,1) — центр, (0,-1) — фокус.

2.

$$\begin{cases} \frac{dx}{dt} = x' = 1 - x^2 - y^2, \\ \frac{dy}{dt} = y' = 2x. \end{cases}$$

Особые точки: (0,1) — центр, (0,-1) — седло.

3.

$$\begin{cases} \frac{dx}{dt} = x' = \sigma(y - x), \\ \frac{dy}{dt} = y' = x(r - z) - y, \\ \frac{dz}{dt} = z' = xy - bz, \\ \sigma = 10, \quad r = 28, \quad b = \frac{8}{3}. \end{cases}$$

2. Таблица

Расчет порядка для методов с параметрами $h=0.03,\ q=0.5,$ количества умножений и вычислений правой части:

Метод	Я. Эйлера	Н. Эйлера	Симм.	PK 2	PK 4	Адамс-Башфот	Прогноз-корр.
Порядок	1.00162	0.998336	1.99999	1.99313	4.01972	3.76745	3.6865
Кол-во оп.	n	_	_	4n	9n	36 + 6n	12n
Правая часть	n	_	_	2n	4n	16 + 4n	8n

3. Контрольные вопросы

1. Сформулируйте условия существования и единственности решения задачи Коши для обыкновенных дифференциальных уравнений. Выполнены ли они для вашего варианта задания?

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Для того, чтобы существовало решение задачи Коши достаточно, чтобы функция f(x,y) была непрерывна в ограниченной замкнутой области $G = \{(x,y) \in \mathbb{R} : |x-x_0| \leq a, |y-y_0| \leq b\}$. Чтобы решение было единственным, должно выполняться условие Липшица по правому аргументу (или должна существовать непрерывная частная производная по y), т.е.

$$\forall (x, y_1), (x, y_2) \exists L > 0 : |f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|.$$

Для системы

$$\begin{cases} x_1' = f_1(t, x_1, x_2) \\ x_2' = f_2(t, x_1, x_2) \\ x_1(t_0) = x_{10}, \quad x_2(t_0) = x_{20}, \end{cases}$$

если в области $G \subset \mathbb{R}^3$ функции f_1, f_2 непрерывны и имеют непрерывные частные производные по x_1, x_2 , то в некотором интервале существует единственное решение системы, удовлетворяющее начальным условиям.

Для модели Лотки - Вольтерры:

$$\begin{cases} f_1 = r_1 x_1 - b_{11} x_1^2 - b_{12} x_1 x_2; \\ f_2 = -r_2 x_2 - b_{22} x_2^2 + b_{21} x_1 x_2; \\ \frac{\partial f_1}{\partial x_1} = r_1 - 2b_{11} x_1 - b_{12} x_2; & \frac{\partial f_1}{\partial x_2} = -b_{12} x_1; \\ \frac{\partial f_2}{\partial x_1} = b_{12} x_2; & \frac{\partial f_2}{\partial x_2} = -r_2 - 2b_{22} x_2 + b_{21} x_1; \end{cases}$$

функции непрерывны всюду на \mathbb{R}^3 , точка $(0, 1.0, 4.0) \in \mathbb{R}^3$, значит существует единственное решение задачи Коши.

2. Что такое фазовое пространство? Что называют фазовой траекторией? Что называют интегральной кривой?

 Φ азовое пространство — это пространство, каждая точка которого соответствует одному состоянию из множества всех возможных состояний системы.

Траекторию движения в фазовом пространстве называют фазовой траекторией.

Интегральной кривой называется график решения дифференциального уравнения. Фазовая траектория является проекцией интегральной кривой.

- 3. Каким порядком аппроксимации и точности обладают методы, рассмотренные в лабораторной работе?
 - (а) Явный метод Эйлера первый порядок
 - (b) Неявный метод Эйлера первый порядок
 - (с) Симметричная схема второй порядок
 - (d) Метод РК 2-го порядка второй порядок
 - (е) Метод РК 4-го порядка четвертый порядок
 - (f) Метод прогноза и коррекции четвертый порядок
- 4. Какие задачи называются жесткими? Какие методы предпочтительны для их решения? Какие из рассмотренных методов можно использовать для решения жестких задач?

Система ОДУ y'=Ay с постоянной матрицей A называется жесткой, если все собственные числа $A=A_{n\times n}$ имеют отрицательную действительную часть ($\operatorname{Re} \lambda_i < 0, i=1,n$), причем число $S=\frac{\max|\operatorname{Re} \lambda|}{\min|\operatorname{Re} \lambda|}$, называемое числом жесткости, велико. Для решения жестких задач используются неявные методы, так как они обладают лучшими свойствами устойчивости. Из рассмотренных можно использовать неявный метод Эйлера, симметричную схему.

- 5. Как найти $\vec{y}_1, \vec{y}_2, \vec{y}_3$, чтобы реализовать алгоритм прогноза и коррекции? Смотря какой порядок у метода прогноза-коррекции. В этой лабораторной работе можно использовать метод РК 4-го порядка аппроксимации для нахождения первых приближений, так как сам метод прогноза-коррекции имеет 4-ый порядок аппроксимации. Если взять метод более низкого порядка, то и прогнозкоррекция понизит свой порядок до порядка этого метода.
- 6. Какой из рассмотренных алгоритмов является менее трудоемким? Какой из рассмотренных алгоритмов позволяет достигнуть заданную точность, используя наибольший шаг интегрирования? Какие достоинства и недостатки рассмотренных алгоритмов вы можете указать?

Явный метод Эйлера является самым нетрудоемким. Метод прогноза-коррекции позволяет достичь заданную точность. Достоинства явных методов в простоте их реализации, неявных в высокой устойчивости. Основной недостаток неявных методов — это необходимость решать нелинейные уравнения. У многошаговых методов более высокая точность, но нужно знать информацию из предыдущих итераций. При этом они требуют меньшего числа вычислений правой части по сравнению с методами Рунге - Кутты при том же порядке

аппроксимации.

7. Какие алгоритмы, помимо правила Рунге, можно использовать для автоматического выбора шага?

Вложенные методы Рунге-Кутты. Эти методы кроме основного решения содержат вспомогательное решение более высокого порядка. По вспомогательному решению можно оценить погрешность основного. Ошибка основного решения оценивается через норму разности основного и вспомогательного решений. На практике широко используются вложенные методы Мерсона, Инглэнда, Фельдберга, а также Дормана — Принса.