# Лабораторная работа 2.4.1 "Определение теплоты испарения жидкости"

Учащийся 1 курса ЛФИ Гусаров Николай

Февраль 2021

## 1. Цель лабораторной работы

1) Измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона–Клаузиуса.

# 2. Оборудование

Термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчетный микроскоп.

## 3. Теория

В работе для определения теплоты испарения применен метод, основанный на формуле Клапейрона–Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$$

Здесь P — давление насыщенного пара жидкости при температуре T, T — абсолютная температура жидкости и пара, L — теплота испарения жидкости,  $V_1$  — объем жидкости,  $V_2$  — объем пара над ней.

С помощью уравнения Ван-дер-Ваальса можно получить зависимость P(T), с помощью которой определить искомую величину:

$$(P + \frac{a}{V_2^2})(V_2 - b) = RT$$

В таблице ниже приведены все значения параметров различных жидкостей уранения Ван-дер-Ваальса.

|                | $T_{\kappa u \pi}$ | $V_1$ ,   | $V_2$ ,   | b,        | a                                | $a/V_2^2$ |
|----------------|--------------------|-----------|-----------|-----------|----------------------------------|-----------|
| Вещество       |                    | $10^{-6}$ | $10^{-3}$ | $10^{-6}$ |                                  |           |
|                | K                  | моль      | моль      | моль      | $\frac{\Pi a \cdot M^6}{MOJD^2}$ | кПа       |
| Вода           | 373                | 18        | 31        | 26        | 0,4                              | 0,42      |
| $CCl_4$        | 350                | 97        | 29        | 126       | 1,95                             | 2,3       |
| Этиловый эфир  | 307                | 104       | 25        | 137       | 1,8                              | 2,9       |
| Этиловый спирт | 351                | 58        | 29        | 84        | 1,2                              | 1,4       |

Видно, что  $\frac{V_1}{V_2} < 0.005$ , а  $\frac{a}{PV^2} < 0.03$ , тогда, записав уравнение Менделеева-Клайперона для насыщенного пара, получим:  $V_2 = \frac{RT}{P}$ 

Пренебрегая  $V_1$  (который не превосходит 0,5% от  $V_2$ ), запишем:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{1}$$

Формула (1) является расчетной.

## 4. Эксперементальная установка

Схема установки изображена на Рис. 1. Наполненный водой резервуар 1 играет роль термостата. Нагревание термостата производится спиралью 2, подогреваемой электрическим током. Для охлаждения воды в термостате через змеевик 3 пропускается водопроводная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измеряетс я термометром 5. В термостат погружен запаянный прибор 6 с исследуемой жидкостью. Над ней находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по ртутному манометру, соединенному с исследуемым объемом. Отсчет показаний манометра производится при помощи микроскопа, закрепленного на штангенциркуле.



Рис. 1: Схема установки для определения теплоты испарения

## 5. Эксперимент

Измеряем разность уровней в ртутном U-образном манометре с помощью микроскопа и температуру по термометру. H – высота высокого колена, h – низкого. При этом будем настраивать микроскоп, так, чтобы каждый раз основание мениска было у одной метки прибора (в дальнейшем считаем, что общая высота мениска не меняется). Результаты представлены в таблице (??). Под  $P_0$  подразумевается давление 1 мм рт.ст.

## 5.1. Производные величины

Формула для измеряемого давления:

$$P = \rho_{\text{DTYTM}} g(H - h)$$

#### 5.1.1. Погрешности

Посколько давление напрямую зависит от разности уровней ртути (пренебрегаем давлением насыщенных паров ртути, так как при комнатной температуре оно приблизительно равно 0.24 Па, а так же изменением уровня столба воды, так как он слишком мал), то для погрешности давления Р воспользуемся следующей формулой:

$$\Delta_P = P_{a_{\text{TM}}} \cdot \frac{\Delta_{H-h}}{H_{a_{\text{TM}}}} = 13 \, \Pi a$$

где  $H_{\text{атм}}=760\,\text{мм},\,P_{\text{атм}}=101325\,\Pi\text{a},\,\Delta_{H-h}=\Delta_{H}+\Delta_{h}=2\cdot0,05\,(\text{мм})=0,1\,(\text{мм}),\,\text{т.к.}$  точность измерения каждого из уровня  $0,05\,\text{мм}$ 

$$\Delta_{\ln \frac{P}{P_0}} = \frac{\Delta_P}{P} = 0,050$$

Погрешность определения температуры возьмём учитывая точность прибора и тот факт, что во время измерений уровней температура могла немного изменяться

$$\Delta_T = 0,05 K.$$

$$\Delta_{\frac{1}{T}} = \frac{\Delta_T}{T^2} = 6 \cdot 10^{-7} \ K^{-1}.$$

#### 5.1.2. Измерения

Данные представлены в таблице ниже

| h, cm | H, cm | t, °C | <i>P</i> , кПа | $\ln(\frac{P}{P_0})$ | T, K | $\frac{1}{T} \cdot 10^{-3}, K^{-1}$ |
|-------|-------|-------|----------------|----------------------|------|-------------------------------------|
| 8,66  | 10,55 | 19,00 | 2,5            | 2,93                 | 292  | 3,42                                |
| 8,32  | 10,94 | 25,00 | 3,5            | 3,26                 | 298  | 3,35                                |
| 7,96  | 11,34 | 30,00 | 4,5            | 3,52                 | 303  | 3,30                                |
| 7,50  | 11,80 | 35,00 | 5,8            | 3,76                 | 308  | 3,24                                |
| 6,88  | 12,50 | 40,00 | 7,6            | 4,02                 | 313  | 3,19                                |
| 6,05  | 13,28 | 45,00 | 9,8            | 4,28                 | 318  | 3,14                                |

# 6. Обработка измерений

Построим графики в координатах T, P и в координатах  $\frac{1}{T}$ , lnP. На графики нанесём точки, полученные при нагревании жидкости. По формуле (1) вычислим L, пользуясь данными, полученными из второго графика.





 $L = -R \cdot k$ , где  $k = -4,768 \pm 0,238$  - коэффициент наклона графика. Итак,

$$L_{
m эксп} = 39,6 \pm 1.4 \, rac{{
m кДж}}{{
m моль}}$$

Погрешность взята из ошибки в определении коэффициента фитирующей прямой с помощью МНК.

## 7. Заключение

В работе изучалась зависимость давления насыщенного пара воды от температуры. По полученным данным искалась удельная теплота парообразования воды. Заметим, что экспериментальная величина с хорошей точностью совпала с табличной:

$$L_{ ext{эксп}} = 39,6 \pm 1.4 \, rac{ ext{кДж}}{ ext{моль}}$$
  $L_{ ext{теор}} = 40,7 \, rac{ ext{кДж}}{ ext{моль}}$