Université Laval MAT-10364 - Mathématiques de l'ingénieur II Examen partiel, Mercredi le 1 mai 2002

- Durée de l'examen : deux heures.

- Documentation permise : deux feuilles-résumé.

- Aucun échange de matériel ou de documents ne sera toléré.

- Vous êtes priés de vous identifier (nom et numéro matricule et section de cours) sur le cahier et de placer votre carte d'étudiant sur la table à côté de vous.

- Chaque réponse devra être accompagnée des calculs et justifications détaillés. Dans le cas contraire, elle sera considérée comme nulle.

Question 1 (20 pts)

On désigne par S la portion de surface du paraboloïde $z=4(x^2+y^2)$ délimitée par les quatre plans

$$y = x$$
, $y = \sqrt{3}x$, $z = 1$, $z = 4$.

Figure 1 : La surface S

a) (10) Trouver une paramétrisation de S.

b) (10) Calculer le flux du champ $\vec{v} = (x - 1, y, -\frac{1}{2})$ à travers S dans la direction de la normale dont la troisième composante est négative.

Question 2 (15 pts)

Soit f(x) une fonction continue et > 0 sur un intervalle [a,b]. On désigne par D le domaine de \mathbb{R}^2 défini par

$$D = \{(x, y) \mid x \in [a, b], -f(x) \le y \le f(x)\}.$$

Figure 2: Le domaine D

et par I(f) l'intégrale

$$I(f) = \int_{a}^{b} f(x) \, dx.$$

Si $\vec{v} = (y^4, x)$, calculer le travail

$$\int_C ec{v} \cdot dec{r},$$

de \vec{v} le long de la frontière C de D, orientée positivement, en fonction de I(f).

Question 3 (25 pts)

On désigne par C la courbe d'intersection de l'hyperboloïde $x^2 - y^2 + z^2 = 7$ et du plan y = 3.

Figure 3 : L'hyperboloïde

Calculer, au signe près, le travail du champ $\vec{w} = (-yz, 3x - y, z + yx)$ le long de C.

Question 4 (26 pts)

Soit

$$\vec{F} = (4 - (y^2 + z^2), xz, -y^2).$$

Calculer le flux de \vec{F} à travers la surface constituée

- (i) de la portion P du paraboloïde $x = 9 (y^2 + z^2)$, pour laquelle $x \ge 5$.
- (ii) de la portion D du cylindre $y^2 + z^2 = 4$, $x \in [1, 5]$, dans la direction de la normale qui pointe vers l'infini.

Figure 3: la surface S

Question 5 (14 pts)

Qualifier de vrai ou de faux (uniquement) les énoncés qui suivent. Comme d'habitude, \vec{r} dénote le vecteur position $\vec{r} = (x, y, z)$ et \vec{i} , \vec{j} , \vec{k} les vecteurs unitaires des trois axes Ox, Oy et Oz

- 1. Si \vec{F} est un champ de vecteurs continûment dérivable partout sur \mathbb{R}^3 et si div $(\vec{F}) = 0$, alors \vec{F} est conservatif.
- 2. Si \vec{F} est un champ de vecteurs deux fois continûment dérivable partout sur \mathbb{R}^3 et si S est une surface fermée $S \subset \mathbb{R}^3$ quelconque, alors

$$\iint\limits_{S} \nabla \times \vec{F} \cdot \vec{n} \, dA = 0.$$

3. Si $K\subset\mathbb{R}^3$ est un solide quelconque dont la parois est une surface notée S alors que la normale extérieure à S est notée \vec{n} , alors on a

$$\iint_{S} \vec{r} \cdot \vec{n} \, dA = 2 \text{Vol}(K).$$

4. Soit D un domaine du plan yOz (c'est-à-dire x=0) dont la frontière est une courbe fermée C. Soit $\vec{v}=(1,1,1)\times\vec{r}$. On a

$$\int_{C} \vec{v} \cdot d\vec{r} = \pm 2 \operatorname{Aire}(D).$$

5. Soit C une courbe fermée de \mathbb{R}^2 et D le domaine délimité par C. On a

Aire
$$(D) = \frac{1}{2} \int_C (y, x) d\vec{r}$$
.

- 6. Soit $T=x^2+y^2+z^2$ et $\vec{v}=\nabla T$. Si on pose $\vec{w}=\vec{v}\times\vec{k}$, alors le travail de \vec{w} sur toutes les courbes fermées de \mathbb{R}^3 est nul.
- 7. Si \vec{F} est un champ de vecteurs dérivable partout sur \mathbb{R}^3 pour lequel

$$\iint\limits_{S} \vec{F} \cdot \vec{n} \, dA = 0$$

pour toutes les sphères S centrées en (0,0,0), alors la divergence $\operatorname{div}(\vec{F})$ est nulle partout sur \mathbb{R}^3 .

I) Quelques angles remarquables

θ	$\sin \theta$	$\cos \theta$	$\tan heta$
0	0	1	0
$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
$\pi/2$	1	0	-
$2\pi/3$	$\sqrt{3}/2$	-1/2	$-\sqrt{3}$
$3\pi/4$	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1
$5\pi/6$	1/2	$-\sqrt{3}/2$	$-\sqrt{3}/3$
π	0	-1	0
$3\pi/2$	-1	0	_
2π	0	1	0

II) Quelques intégrales utiles.

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

$$\int f'(x)(f(x))^n dx = \frac{1}{n+1} (f(x))^{n+1} + C, \quad \text{si } n \neq -1$$

$$\int \ln x \, dx = x \ln x - x + C$$

$$\int e^{f(x)} f'(x) \, dx = e^{f(x)} + C$$

$$\int x \ln x \, dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C$$

$$\int \sqrt{a^2 x^2 + 1} \, dx = \frac{1}{2} x \sqrt{a^2 x^2 + 1} + \frac{1}{2a} \ln \left(ax + \sqrt{a^2 x^2 + 1} \right) + C$$

Soit $a \neq 0$; alors

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \sin(ax) \, dx = -\frac{1}{a} \cos(ax) + C$$

$$\int \tan(ax) \, dx = -\frac{1}{a} \ln|\cos(ax)| + C$$

$$\int \cot(ax) \, dx = \frac{1}{a} \ln|\sin(ax)| + C$$

$$\int \sec^2(ax) \, dx = \frac{1}{a} \ln|\sec(ax) + C$$

$$\int \csc^2(ax) \, dx = \frac{1}{a} \ln|\sec(ax) + \cot(ax)| + C$$

$$\int \csc(ax) \, dx = \frac{1}{a} \ln|\sec(ax) + \tan(ax)| + C$$

$$\int \csc(ax) \, dx = \frac{1}{a} \ln|\sec(ax) - \cot(ax)| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln(x + \sqrt{x^2 \pm a^2}) + C$$

$$\int \sin^3 x \, dx = -\frac{1}{3} \cos t \left(\sin^2 t + 2\right) + C$$

$$\int \sin^4 x \, dx = -\frac{1}{8} \left(2 \cos^3 x \sin x + 3 \cos x \sin x + 3x\right) + C$$

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C$$