1. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} x-2y\\2x+y\end{array}\right)$$

(a) Find A_T $\begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{pmatrix}$

- (b) Is T 1-1? If not, does there exist a 1-1 map $P: \mathbb{R}^3 \to \mathbb{R}^2$? Justify. No, and no, $A_T \in \mathcal{M}_{2\times 3}$ which means that $\dim(\text{Null}(A_T)) \geq 1$. And so $\{0\}$ is a proper subset of $\text{Null}(A_T)$ and always will be regardless of our choice of A_T .
- (c) Is T onto? Justify. Yep, it's onto. The column space clearly has dimension 2, and so it is equivalent to \mathbb{R}^2
- (d) Find dim(ker T) and dim(ImT)

 The dimension of the column space is the same as the dimension of the image, and as we just pointed out, dim(Col A_T) = 2 = dim(ImT). And the null space dimension is the number of columns of A_T minus the dimension of the column space, and so dim(NullT) = 1
- 2. Let $S: \mathbb{R}^2 \to \mathbb{R}^4$ be given by

$$S\left(\begin{array}{c} x\\y\end{array}\right) = \left(\begin{array}{c} 3x\\y-2x\\2x\\x+2y\end{array}\right)$$

Find a formula for $(S \circ T) : \mathbb{R}^3 \to \mathbb{R}^4$

$$\begin{pmatrix} 3 & 0 \\ -2 & 1 \\ 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & -6 & 0 \\ 0 & 5 & 0 \\ 2 & -3 & 0 \\ 5 & 0 & 0 \end{pmatrix}$$

3. Prove theorem 11: If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a bijective linear transformation, then $T^{-1}: R^n \to R^n$ is a linear transformation. Moreover, $A_{T^{-1}} = A_T^{-1}$

We know that $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T\mathbf{y}$. If we apply T^{-1} to both sides of the equation, then we have $T^{-1}(T(\mathbf{x}) + T(\mathbf{y})) = T^{-1}(T(\mathbf{x} + \mathbf{y})) = \mathbf{x} + \mathbf{y} = T^{-1}(T(\mathbf{x})) + T^{-1}(T(\mathbf{y}))$. Now we we observe $cT^{-1}(T(\mathbf{x})) = c\mathbf{x} = T^{-1}(T(c\mathbf{x}))$ and so T^{-1} is linear. Now we know that $T \circ T^{-1}$ maps any $\mathbf{x} \in \mathbb{R}^n$ to itself. And so if $A_{T^{-1} \circ T}\mathbf{x} = \mathbf{x}$ then $A_{T^{-1} \circ T} = I_n$. And so $A_{T^{-1}} = I_n$. This means that $A_{T^{-1} = A_n^{-1}}$

4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x + 3y + z \\ 3x + 3y + z \\ 2x + 4y + z \end{pmatrix}$$

Prove that T is an invertible map (1-1 and onto) and find a formula for $T^{-1}: \mathbb{R}^3 \to \mathbb{R}^3$.

$$\begin{pmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ 3 & 3 & 1 & 0 & 1 & 0 \\ 2 & 4 & 1 & 0 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 3 & 1 & 3 & -2 & 0 \\ 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} 0 & 0 & 1 & 6 & -2 & -3 \\ 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 6 & -2 & -3 \end{pmatrix}$$

So Null $(A_T) = \{ \mathbf{0} \}$ and dim $(\operatorname{Col}(A_T)) = 3$ or dim $(\operatorname{Col}(A_T)) = \mathbb{R}^3$. Thus T is 1-1 and onto.

$$T^{-1} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x+y \\ -x+z \\ 6x-2y-3z \end{pmatrix}$$

5. Construct a linear transformation $\rho: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates every vector through an angle of $\theta = \frac{\pi}{2}$. Find the standard matrix A_{ρ} of the transformation and verify that ρ really does rotate the plane through $\theta = \frac{\pi}{2}$.

$$\rho\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix} \qquad \qquad A_{\rho} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$r = \sqrt{x^2 + y^2} \qquad \qquad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r\cos\theta \\ r\sin\theta \end{pmatrix}$$

$$\rho\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r\cos\theta \\ r\sin\theta \end{pmatrix} \qquad \qquad = \begin{pmatrix} -r\sin\theta \\ r\cos\theta \end{pmatrix}$$

$$= \begin{pmatrix} r\sin-\theta \\ r\cos-\theta \end{pmatrix} \qquad \qquad = \begin{pmatrix} r\sin(\theta + \frac{\pi}{2}) \\ r\cos(\theta + \frac{\pi}{2}) \end{pmatrix}$$

- 6. Let $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis of \mathbb{R}^n . Let $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ be a list of n vectors in \mathbb{R}^m . Prove the following statements.
 - (a) There exists a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $T(\mathbf{v}_i) = \mathbf{w}_i$ for each index $i \leq n$. We say B is the matrix ($\mathbf{v}_1 \ldots \mathbf{v}_n$) and C is the matrix ($\mathbf{v}_1 \ldots \mathbf{v}_n$). Now because $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ are linearly independent, we know that B has rankn and is therefore nonsingular, or it has an inverse. Now $C = CI_n = (CB^{-1})B$. Thus we see that $CB^{-1}\mathbf{v}_i = \mathbf{w}_i$ and we have found our transformation.
 - (b) If $S: \mathbb{R}^n \to \mathbb{R}^m$ is another linear transformation such that $S(\mathbf{v}_i) = \mathbf{w}_i$ for each index $i \leq n$, then S = T.

If $S \neq T$ then there exists some $x \in \mathbb{R}^n$ such that $T(\mathbf{x}) \neq S(\mathbf{x})$. Because the \mathbf{v}_i 's form a basis for \mathbb{R}^n , we can rewrite $\mathbf{x} = a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n$. And so we have

$$T(a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n) \neq S(a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n)$$

$$a_1T(\mathbf{v}_1) + \dots + a_nT(\mathbf{v}_n) \neq a_1S(\mathbf{v}_1) + \dots + a_nS(\mathbf{v}_n)$$

$$a_1\mathbf{w}_1 + \dots + a_n\mathbf{w}_n \neq a_1\mathbf{w}_1 + \dots + a_n\mathbf{w}_n$$

That is absurd, so we must conclude that T = S

- (c) T is onto if and only if $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ spans \mathbb{R}^m .
 - We can express any element in the image of T as a linear combination of the images of the elements of B under T which means each element in the image of T can be expressed as a linear combination of $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$. Now if T is onto, then every element in \mathbb{R}^m must then be in the span of our \mathbf{w} 's. We note that every linear combination of our \mathbf{w} 's can be expressed at a linear combination of our $T(\mathbf{v})$'s and so every linear combination of \mathbf{w} is in the image of T. Now if T is not onto, then there is an element in \mathbb{R}^m that is not in the image of T and therefore not in the span of our \mathbf{w} 's.
- (d) T is 1-1 iff $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ is a linearly independent subset of \mathbb{R}^m . If T is not 1-1 then the nullspace of A_T is not trivial and there exists some $0 = A_T(a_1\mathbf{v}_1 + \dots + a_n mathbf v_n) = a_1A_T\mathbf{v}_1 + \dots + a_nA_t\mathbf{v}_n = a_1\mathbf{w}_1 + \dots + a_n\mathbf{w}_n$ where at least one $a_i \neq 0$. Thus our

 \mathbf{w} 's are not linearly independent. Now if our \mathbf{w} 's are not linearly independent, then there exists at least one $a_i \neq 0$ such that $0 = a_1 \mathbf{w}_1 + \cdots + a_n \mathbf{w}_n = A_T(a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}_n)$ and we have found a nonzero element in the nullspace of A_T and so T is not 1-1.

(e) T is a bijection iff $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ is a basis of \mathbb{R}^m

From c and d we know that if T is 1-1 and onto then our \mathbf{w} 's are a linearly independent and span \mathbb{R}^m . Also if our \mathbf{w} 's are linearly independent and span \mathbb{R}^m then T is 1-1 and onto. Thus by the definitions of basis and bijection we have our result.

7. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove the following statements.

We say A_T is the $m \times n$ matrix that is associate with T

(a) $\dim(\operatorname{Im} T) \leq n$.

 $\operatorname{Im} T$ is the column space of A_T which is the rank of A_T which is less than n

(b) $n = \dim(\ker T) + \dim(\operatorname{Im} T)$

ker T is the nullspace of A_T and dim(ImT) is the rank of A_T . The dimension of the rank plus the dimension of the nullspace is the width of a matrix.

(c) If T is 1-1 then $n \leq m$

If T is 1-1 then the nullspace of A_T is trivial, and so rank $(A_T) = n$. Because the rank cannot be greater than either of a matrix's dimensions, then $n \leq m$

(d) If T is onto then $m \leq n$

If T is onto then $\operatorname{rank}(A_T) = \dim(\operatorname{Im}) = \dim(\mathbb{R}^m)$ and since the rank cannot be greater than either of the dimensions then $m \leq n$.

(e) If n = m, then T is onto if and only if T is a bijection if and only if T is 1-1.

We always assume that n=m. Now if T is onto then $\operatorname{Im} T=\mathbb{R}^m=\operatorname{Col}(A_T)$. Now because $\dim(\operatorname{Null}(A_T)+\dim(\operatorname{Col} T)=m=n$ then $\dim(\operatorname{Null}(A_T))=0$ and $\operatorname{Null}(A_T)=\{0\}$. And so T is onto. Now if T is 1-1 then $\operatorname{Null}(A_T)=\{0\}$ and because $\dim(\operatorname{Null}(A_T)+\dim(\operatorname{Col} T)=m=n$ then $\operatorname{Col} A_T=\mathbb{R}^m$ and so T is onto. The bijective bit in the middle comes for free since T is 1-1 iff T is onto.