8. Implicit Differentiation

Lec 7 mini review.

Two Special Limits:

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Trig Rules:

$$\frac{d}{dx}[\sin x] = \cos x$$

$$\frac{d}{dx}[\csc x] = -\csc x \cot x$$

$$\frac{d}{dx}[\cos x] = -\sin x$$

$$\frac{d}{dx}[\sec x] = \sec x \tan x$$

 $\frac{d}{dx}[\tan x] = \sec^2 x$ $\frac{d}{dx}[\cot x] = -\csc^2 x$

The Chain Rule:

$$\frac{d}{dx} \left[f(g(x)) \right] = f'(g(x))g'(x)$$

Power Chain Rule:

$$\left[\frac{d}{dx}\left[\left(g(x)\right)^n\right] = n\left(g(x)\right)^{n-1}g'(x)$$

Exponential Chain Rule:

$$\frac{d}{dx} \left[e^{g(x)} \right] = e^{g(x)} g'(x)$$

WARM-UP FOR IMPLICIT DIFFERENTIATION

Differentiate each of the following expressions:

$$f(x) = x^3 g(x) + [h(x)]^5$$

$$V(t) = \pi [R(t)]^2 H(t)$$

$$y = \left(\sqrt[3]{v(x)}\right) \left[u(x)\right]^{10}$$

^{*} These notes are solely for the personal use of students registered in MAT1320. ©EJM All rights reserved.

$$p(x) = e^{x^3} + e^{g(x)/h(x)} + \frac{h(x)}{\cos(x)} + \sin(f(x) + g(x))$$

GRAPHS

- \diamond Any equation in two variables (let's use x and y) has a graph.
- \diamond The graph consists of all pairs of the form (x,y) that satisfy the equation.
- \diamond It might not be possible to isolate y and write an *explicit* formula y = f(x).
- ♦ Nonetheless, we still think of *y* as an **implicit** function of *x* (where "function" is being used loosely; the graph of the equation could fail the vertical line test, hence not technically be a function of *x*)

Example 8.1. Consider the equation $x^2 + y^2 = 4$.

IMPLICIT DIFFERENTIATION

- **1.** Start with some equation with x's and y's.
- **2.** Implicitly differentiate both sides of the equation:
 - Treat y as a "mystery" function of x (an implicitly defined function)
 - When you need to write the derivative of y, just write $\frac{dy}{dx}$
 - Differentiate x's as usual.
 - When you are done differentiating both sides, you will have a new equation that may contain some x's, some y's, and some $\frac{dy}{dx}$'s. Because you performed the same operation (differentiation) to both sides of the original equation, the new equation is still a valid equation.
- **3.** Isolate $\frac{dy}{dx}$ from your new equation:
 - Put all terms that have a $\frac{dy}{dx}$ on one side of the equation, and put all other terms on the other side of the equation.
 - Factor out $\frac{dy}{dx}$ from all terms on the $\frac{dy}{dx}$ -side of the equation, then divide to isolate $\frac{dy}{dx}$.
- **Example 8.2.** a. Find $\frac{dy}{dx}$ for the equation $x^2 + y^2 = 4$.

b. What is the slope of the tangent line to the graph of $x^2 + y^2 = 4$ at the point $(-1, \sqrt{3})$? What is it at $(-1, -\sqrt{3})$?

Example 8.3. For the following equation, find $\frac{dy}{dx}$ at the point (1,0): $e^{2y+x} + x^2y^3 = e^x$

Example 8.4. Find $\frac{dy}{dx}$ if $\sin(x+y) = y^2 \cos(x)$.

	Inverse Trig Derivatives
Derivative of Arcsine	
Derivative of Arctangent	
3	
Inverse Trig Rules	

Log Chain Rules

Example 8.5. Find f'(x) if $f(x) = \ln |x|$.

$$f(x) = \arctan(3e^x - 2x^5)$$

$$\overline{y = \ln(x)\sin^{-1}(x)}$$

LOGARITHMIC DIFFERENTIATION

Example 8.7. Find f'(x) where $f(x) = x^x$.

Exercise 8.8. Use logarithmic differentiation to prove that the Power Rule (which we've been using for all sorts of powers $n \in \mathbb{R}$) is in fact valid.

That is, prove $\frac{d}{dx}[x^n] = nx^{n-1}$ for all $n \in \mathbb{R}$.

STUDY GUIDE

- implicit differentiation strategy

$$\diamond$$
 derivative rules for inverse trig functions:
$$\boxed{\frac{d}{dx}[\sin^{-1}x] = \frac{1}{\sqrt{1-x^2}}} \boxed{\frac{d}{dx}[\tan^{-1}x] = \frac{1}{1+x^2}} \quad \text{(and others!)}$$

- $\diamond \ \, \textbf{derivative rules for logs:} \boxed{\frac{d}{dx}[\ln(x)] = \frac{1}{x}} \qquad \boxed{\frac{d}{dx}[\log_b(x)] = \left(\frac{1}{\ln b}\right)\frac{1}{x}}$
- \diamond log chain rule: $\left[\frac{d}{dx}[\ln(g(x))] = \frac{g'(x)}{g(x)}\right]$
- logarithmic differentiation strategy