Lecture 4 - Integration -

(1) CMOS Scaling

Moore's Law

The number of transistors per square-inch doubles each 18 months

Gordon Moore Co-founder of Intel 1965

Moore, Gordon E. (1965).
"Cramming more components onto integrated circuits"
Electronics Magazine

FIGURE 1. A plot of the increasing number of transistors per CPU confirms the accuracy of Moore's prediction. Note that the vertical axis is log scale.

Solid State Technology, Dec 2015

Complexity No	umber of Gates
---------------	----------------

,	
Small-scale integration (SSI)	Fewer than 12
Medium-scale integration (MSI)	12 to 99
Large-scale integration (LSI)	100 to 9999
Very large-scale integration (VLSI)	10,000 to 99,999
Ultra large-scale integration (ULSI)	100.000 or more

Price for each transistor keeps falling down

If car industry follows Moore's Law

- If the car industry followed the Moore's Law in the past forty years.
 - Nowadays the car should be

 - Speed 40,000 km/per hour
 - Gas mileage 1200 km/per litter
 - Capacity \$\rightarrow\$ 400,000 person/per car

Source: Prof. T. P. Ma / Lo-SVP

Robert Dennard, IBM

1974 "Design of Ion-Implanted MOSFETs with Very Small Physical Dimensions," – Scaling Theory

The term "Moore's law" was coined around 1970 by the Caltech professor, VLSI pioneer, and entrepreneur Carver Mead.

MOSFET scaling

Several driving forces for scaling down size of MOSFET:

- higher density circuits: SSI, MSI, LSI, VLSI, ULSI, RLSI, ...
- higher performance: $L \downarrow \Rightarrow I_D \uparrow \Rightarrow \tau_{switch} \downarrow$
- lower power consumption: $L \downarrow \Rightarrow V_{DD} \downarrow$

Simple L scaling compromises electrostatic integrity and produces punchthrough (extreme case of short-channel effects):

To avoid punchthrough:

•
$$N_A \uparrow \Rightarrow V_T \uparrow \Rightarrow I_D \downarrow$$

•
$$V_{DD} \downarrow \Rightarrow I_D \downarrow$$

•
$$x_{ox} \downarrow \Rightarrow V_T \downarrow \Rightarrow I_D \uparrow$$

Need smart way of scaling:

- constant field scaling
- constant voltage scaling
- generalized scaling

Constant field scaling

Scale keeping vertical and horizontal electric fields constant.

Define: $scaling\ factor\ S > 1$

parameter	scaling factor
device dimensions (L, W, x_{ox})	1/S
doping level (N_A)	S
supply voltage (V_{DD})	1/S

Consequences (use simple long-channel theory):

• gate capacitance:

$$C'_{gs} = C'_{ox}L'W' = SC_{ox}\frac{LW}{S} = \frac{C_{gs}}{S} \downarrow$$

• threshold voltage:

$$V_T' = V_{FB} + \phi_{sth} + \gamma \sqrt{\phi_{sth}} \simeq \frac{1}{C_{ox}'} \sqrt{2\epsilon_s q N_A' \phi_{sth}} \sim \frac{V_T}{\sqrt{S}} \downarrow$$

• drive current:

$$I_D' = \frac{W'}{2L'} \mu_e C'_{ox} (V'_{DD} - V'_T)^2 = \frac{\frac{W}{S}}{2\frac{L}{S}} \mu_e S C_{ox} (\frac{V_{DD}}{S} - \frac{V_T}{\sqrt{S}})^2 = \frac{I_D}{S} \downarrow$$

• gate delay:

$$\tau' = \frac{C'_{gs}V'_{DD}}{I'_{D}} = \frac{\frac{C_{gs}V_{DD}}{S}}{\frac{I_{D}}{S}} = \frac{\tau}{S} \downarrow$$

power-delay product or switching energy:

$$C'_{gs}V'_{DD}^2 = \frac{C_{gs}}{S}(\frac{V_{DD}}{S})^2 = \frac{C_{gs}V_{DD}^2}{S^3} \downarrow \downarrow \downarrow$$

• switching energy density:

$$\frac{C'_{gs}V'_{DD}^2}{L'W'} = \frac{\frac{C_{gs}V^2_{DD}}{S^3}}{\frac{L}{S}\frac{W}{S}} = \frac{1}{S}\frac{C_{gs}V^2_{DD}}{LW} \downarrow$$

• inverse subthreshold slope:

$$n' = 1 + \frac{C'_{sth}}{C'_{ox}} = 1 + \frac{\sqrt{S}C_{sth}}{SC_{ox}} = 1 + \frac{C_{sth}}{\sqrt{S}C_{ox}} \downarrow$$

but since $V_T \downarrow$, $I_{off} \uparrow \uparrow$.

Two key problems with constant field scaling:

- system designers don't want to scale V_{DD}
- $I_{off} \uparrow \uparrow \Rightarrow$ more static power

Constant voltage scaling

Scale all device dimensions but do not scale V_{DD} .

parameter	scaling factor
device dimensions (L, W, x_{ox})	1/S
doping level (N_A)	S
supply voltage (V_{DD})	1

Consequences (using long-channel theory):

figure of merit	scaling factor
C_{gs}	1/S
V_{th}	$1/\sqrt{S}$
I_D	S
au	$1/S^2$
$C_{gs}V_{DD}^2$	1/S
$C_{gs}V_{DD}^2/LW$	S

Features of constant voltage scaling:

- Performance ↑↑
- But:
 - It does not address I_{off} problem.
 - Electric field across oxide ↑:

$$\mathcal{E}_{ox} = \frac{V_{DD}}{x_{ox}} \propto S \uparrow$$

Reliability problems when $\mathcal{E}_{ox} \simeq 4 \ MV/cm$.

Electric field in semiconductor (at drain end of channel) ↑:

$$\mathcal{E}_m = \sqrt{\frac{(V_{DS} - V_{DSsat})^2}{l^2} + \mathcal{E}_{sat}^2} \propto S \uparrow$$

with

$$l^2 = \frac{\epsilon_s}{\epsilon_{ox}} x_{ox} x_j \propto S^{-2}$$

Reliability problems when $\mathcal{E}_m \simeq 0.5 \ MV/cm$.

- Power density $\uparrow \Rightarrow$ system power \uparrow

Generalized scaling

- scale oxide thickness more slowly than other device dimensions
- scale V_{DD} keeping \mathcal{E}_{ox} constant

parameter	scaling factor
L, W	1/S
x_{ox}	1/R
N_A	S
V_{DD}	1/R

with 1 < R < S.

In generalized scaling:

- I_{off} problem alleviated by not scaling V_T so aggresively; trade-off: performance
- V_{DD} scales; trade-off: performance

Modern generalized scaling

- Concept of generation: every 2 years, new technology is deployed with 30% reduced transistor delay and twice as high transistor density (microprocessor performance doubling every 2 years).
- Everything scales: $L(\downarrow)$, $W(\downarrow)$, $x_{ox}(\downarrow)$, $N_A(\uparrow)$, $x_j(\downarrow)$, and $V_{DD}(\downarrow)$.
- Scaling goal: extract maximum performance from each generation (maximize I_{on}), for a given amount of:
 - short-channel effects (DIBL), and
 - off-current

- Scaling goal: extract maximum performance from each generation (maximize I_{on}), for a given amount of:
 - short-channel effects (DIBL), and
 - off-current
- Currently two technology flavors:
 - high-performance: high V_{DD} (high I_D , low τ), low V_T (high I_{off});
 - low-power: low V_{DD} (low I_D , high τ), high V_T (low I_{off}).

Supply Voltage vs. Time

Scaling

Scaling goal: extract maximum performance from each generation (maximize I_{on}), for a given amount of:

- short-channel effects (DIBL), and
- off-current

To preserve electrostatic integrity, scaling has proceeded in a harmonious way: $L(\downarrow)$, $W(\downarrow)$, $x_{ox}(\downarrow)$, $N_A(\uparrow)$, $x_j(\downarrow)$, and $V_{DD}(\downarrow)$.

Illustration of key trade-offs:

• I_{on} vs. I_{off}

Limits to scaling

Four kinds of limits:

- Thermodynamics: doping concentration in source and drain
- Physics: tunneling through gate oxide
- Statistics: statistical fluctuation of body doping
- Economics: factory cost

□ Economics: factory cost also follows Moore's law!

□ Physics: tunneling through gate oxide (most severe limit)

Fig. 2. Measured and simulated I_G – V_G characteristics under inversion conditions of four nMOSFET's. The dotted line indicates the 1 A/cm² limit for leakage current as discussed in the text.

Figure 13 on p. 491 in: Taur, Y., et al. "CMOS Scaling into the Nanometer Regime." Proceedings of the IEEE 85, no. 4 (1997): 486-504. © 1997 IEEE. • Oxide's thickness limit when:

$$I_{gate} \simeq I_{off} @ V_{DD} \simeq 1 \ V, \ T_{oper} (\simeq 100^{\circ} C)$$

• Translates to limiting gate current:

$$I_{gate}(25^{\circ}C) \simeq 100 \ pA$$

• Limiting gate current density:

$$A \simeq 0.1 \ \mu m \times 0.1 \ \mu m = 10^{-10} \ cm^2 \ \Rightarrow \ J_{gate}(25^{\circ}C) \simeq 1 \ A/cm^2$$

- Limiting $x_{ox} \simeq 1.6 \ nm \implies L \sim 35 50 \ nm$
- Solution: high-dielectric constant gate insulator

- ☐ To go beyond this, need:
 - new materials that squeeze more performance out of existing device architecture
 - new channel materials: strained Si, Si/SiGe heterostructores
 - new gate insulators: high-K dielectric, such as HfO
 - new gate conductors: metal gate, such fully silicided gate
 - new device architecture (SOI, double gate, trigate) to improve electrostatic integrity

Evolution of MOSFET design

• PMOS with metal gate:

circa \sim early 70's $L \sim 20 \ \mu m$ $x_{ox} \sim 1000 \ \mathring{A}$ $x_{j} \sim 3 \ \mu m$ $V_{DD} = 12 \ V$

Main point: Na⁺ contamination made NMOS devices to have too negative a threshold voltage

Main point: with Na⁺ contamination under control, NMOS devices became possible (higher performance).

• CMOS with self-aligned polySi gate:

circa \sim 1980 $L \sim 2 \ \mu m$ $x_{ox} \sim 400 \ \mathring{A}$

Main point: self-aligned process allows tighter overlap between gate and n⁺ regions and results in lower parasitic capacitance.

• Lightly-doped drain MOSFET (LDD-MOSFET):

Main point: lightly-doped n-region on drain side reduces electric field there and allows a high V_{DD} to be used.

Main point: salicided gate, source and drain reduces all parasitic resistances.

Main point: p⁺ pockets control short-channel effects.

• Sub-0.1 μm MOSFET:

Main point: p⁺-super-steep retrograde body doping controls shortchannel effects while preserving high mobility.

 $x_i \sim 0.06 \ \mu m$

 $V_{DD} = 0.8 - 1.5 V$

New device architecture: Silicon-on-Insulator (SOI)

Schematic of nFET on SOI and equivalent devices.

Adapted from Shahidi et al., Proc. ISSCC, 1999 (426).

Power vs. Frequency Adapted from Shahidi et al., **Proc. ISSCC**, 1999 (426).

A number of issues associated with existence of buried oxide:

- reduced junction capacitance
- floating body: kink effect, extra drive ($V_{BS} > 0$ during switching)
- increased thermal resistance

Device Scaling

Source: Roger De Keersmaecker, IMEC

Lo/SVP

CMOS Future Directions

Moore's Law & More

Source: ITRS 2006

Semiconductor Growth 1

(IC Knowledge)

Semiconductor Growth 2

Source: IHS iSuppli November 2011

Semiconductor growth tracks global output

Worldwide gross output by industry (\$ in billions, left axis) and semiconductor sales (\$ in millions, right axis)

Smartphone Marketshare Trends

Semiconductor Revenue

World GDP in 2008 = US\$55T Google Revenue in 2008 = US\$21.8B

Singapore GDP in 2008 = US\$181.9B Microsoft Revenue in 2008 = US\$58.4B

IBM Revenue in 2008 – US\$103.6B Qualcomm Revenue in 2009 – US\$10.4B

Intel Revenue in 2008 – US\$37.6B TSMC Revenue in 2007 – US\$9.8B

Integrated Device Manufacturers (IDM) - Chip makers such as Intel that design, manufacture and sell their chips;

Fab-less manufacturers (Design houses) - Such as nVidia and Xilinx that design and sell chips but outsource manufacturing to foundry companies; Foundry Company – Such as TSMC, UMC, and GF that manufacture chips designed and sold by their customers (Fab = Fabrication Plant);

Fab-lites – TI, Freescale;

Outsourced Semiconductor Assembly and Test (OSAT)

Electronic Design Automation (EDA)

Equipments and Materials

2012 Rank	2011 Rank	Company	Headquarters	2011 Tot IC	2011 Tot O-S-D	2011 Tot Semi	2012 Tot IC	2012 Tot O-S-D	2012 Tot Semi	2012/2011 % Change
1	1	Intel	U.S.	49,697	0	49,697	49,114	0	49,114	-1%
2	2	Samsung	South Korea	32,703	780	33,483	29,730	2,521	32,251	-4%
3	3	TSMC*	Taiwan	14,600	0	14,600	17,167	0	17,167	18%
4	7	Qualcomm**	U.S.	9,828	0	9,828	13,177	0	13,177	34%
5	4	TI	U.S.	12,182	718	12,900	11,442	705	12,147	-6%
6	5	Toshiba	Japan	10,024	2,721	12,745	9,055	2,162	11,217	-12%
7	6	Renesas	Japan	8,517	2,136	10,653	7,487	1,827	9,314	-13%
8	9	SK Hynix	South Korea	9,403	0	9,403	9,057	0	9,057	-4%
9	8	ST	Europe	7,117	2,514	9,631	6,227	2,137	8,364	-13%
10	10	Micron	U.S.	8,125	446	8,571	7,567	435	8,002	-7%
11	11	Broadcom**	U.S.	7,160	0	7,160	7,793	0	7,793	9%
12	13	Sony	Japan	4,706	1,387	6,093	4,449	1,260	5,709	-6%
13	12	AMD**	U.S.	6,568	0	6,568	5,422	0	5,422	-17%
14	14	Infineon	Europe	3,560	2,039	5,599	3,143	1,850	4,993	-11%
15	21	GlobalFoundries*	U,S.	3,480	0	3,480	4,560	0	4,560	31%
16	18	Nvidia**	U.S.	3,939	0	3,939	4,229	0	4,229	7%
17	15	Fujitsu	Japan	4,035	395	4,430	3,805	357	4,162	-6%
18	17	NXP	Europe	2,855	1,292	4,147	2,931	1,226	4,157	0%
19	16	Freescale	U.S.	3,750	641	4,391	3,164	571	3,735	-15%
20	20	UMC*	Taiwan	3,760	0	3,760	3,730	0	3,730	-1%
21	26	MediaTek**	Taiwan	2,969	0	2,969	3,366	0	3,366	13%
22	27	Sharp	Japan	1,658	1,250	2,908	1,799	1,505	3,304	14%
23	22	Marvell**	U.S.	3,445	0	3,445	3,157	0	3,157	-8%
24	19	Elpida	Japan	3,891	0	3,891	3,075	0	3,075	-21%
25	24	Rohm	Japan	1,952	1,351	3,303	1,792	1,238	3,030	-8%
-	men	Top 25 Total		219,924	17,670	237,594	216,438	17,794	234,232	-1%

*Foundry **Fabless

IC Market for PCs vs. Cellphones

IC Technology Market Share (2000)

- CMOS 77%
- Analog Bipolar 6%
- Digital Bipolar 2%
- BiCMOS 6%
- GaAs 6%
- Other 3%

Silicon-based

Complementary Metal Oxide Semiconductor (CMOS)

Howe et al, Prentice Hall

CMOS Operation

Howe et al, Prentice Hall

CMOS Logic Gates

INP	UT	OUTPUT			
Α	В	A NOR B			
0	0	1			
0	1	0			
1	0	0			
1	1	0			

Howe et al, Prentice Hall

Intel 22nm

TEM Image of Lower Metals and NMOS and PMOS (right) Transistors

TEM Image of PMOS Gate and Fin Structure

TEM Image of NMOS Gate and Fin Structure

chipworks

Transistor Fin Improvement

22 nm Process

14 nm Process

Transistor Fin Improvement

22 nm 1st Generation Tri-gate Transistor

14 nm 2nd Generation Tri-gate Transistor

The size of transistor gates and "fins," especially to interconnection, were reduced by more than a third from the previous generation of technology.

(Image: Intel 2014)

17% improvement in RC delay