The receiver

- The receiver is in a form of a
 - It can converse AC signals into

full-bridge rectifier (Fig. 12).

- DC, and is capable of coupling its frequency to that of the Fig. 12. The transmitter (Fig.13).
- receiver circuit. Frequency matching can largely improve the efficient in power receiving.

AC in

- Remarkably, the power transmitted can also be tuned by the capacitor used in the circuit. A capacitance of 0.3 µF generates maximum power (Fig. 14).
 - helps to increase the current for loading.

Reduction of the voltage at the receiver end

power can be as far as 20 cm. 2. It is capable of supply the power needed to

drive a modeled train.

- 3. Charging of a battery at 2.5 V with 100 hmA is feasible. 4. Capable of lighting up 8 LEDs in series.

charger can be greatly improved, when it is coupled to:

1. Customized automatic on-and-off switching circuit, which repeatedly couples and decouples the charger to the DC source at a customized frequency for a

2. An DC-to-AC inverter circuit, which is capable in frequency matching to that of the power amplifier. 3. A self-adhesive multicore receiver coil was

used to avoid skin effect.

continuous supply of induction current.

- 4. A full-bridge rectifier circuit that converts AC power back to DC at the receiver side. 5. A total transmit power of 29 W at 69%
- efficiency can be achieved. References

1. T. Bieler, M. Perottet, V. Nguyen, and Y. Perriard, IEEE Trans.

- Ind. Appl. **38**, 1226 (2002). 2. C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, IEEE Trans. Ind. Appl. 48, 1238 (2001).
- 3. Y. Jang, and M. M. Jovanovic, IEEE Trans. Ind. Electronics 50, 520 (2003).
- 4. B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, IEEE Trans. Ind. Electronics **51**, 140 (2004).