Carl von Ossietzky Universität Oldenburg Institut für Mathematik Prof. Dr. Alexey Chernov M.Sc. Nick Wulbusch Wintersemester 2017/2018

Klausur zur Vorlesung "Einführung in die Numerik"

Montag, 05.02.2018, 10:00 Uhr

- 6 KP: nur Aufgaben 1.a-d und 2–4, 120 Minuten, bestanden ab 32 Punkten
- 9 KP: alle Aufgaben, 180 Minuten, bestanden ab 48 Punkten
- Die erreichten **Bonuspunkte** aus der Übung werden **bei Bestehen der Klausur** zur Bestimmung der Note **addiert**.
- Erlaubte Hilfsmittel sind 2 handbeschriebene DIN A4-Blätter.
- Bitte begründen Sie alle Ihre Antworten!

Name:			
Vorname:			
(bitte ankreuzen)	6 KP 🔘	9 KP 🔘	
Matrikelnummer:			
Unterschrift:			

Aufgabe	1.a-d	1.e	2	3	4	5	6	Summe	Bonus	Note
max. Punkte	24	7	15	24	27	18	20	90/135	9/13	
err. Punkte										

Aufgabe 1.(a)–(d): (3+7+7+7=24 Punkte)

Die Aufgabe

"Für ein vorgegebenes
$$a > 0$$
 finde $x = \frac{1}{\sqrt{a}}$ " (1)

soll näherungsweise mittels arithmetischer Operationen " $+, -, \cdot, /$ " gelöst werden.

- (a) Formulieren Sie die Aufgabe (1) als eine nichtlineare Gleichung der Form f(x) = 0 ohne Wurzelausdrücke.
- (b) Stellen Sie das Newton-Verfahren zur Lösung der Gleichung aus (a) auf. Lässt sich das Newton-Verfahren als die Fixpunktiteration

$$x^{(n+1)} = \Phi(x^{(n)}), \text{ wobei } \Phi(x) = \frac{x}{2} \cdot (3 - ax^2)$$
 (2)

interpretieren?

- (c) Bestimmen Sie alle Fixpunkte von Φ sowie die lokale Konvergenzordnungen zu jedem der Fixpunkte.
- (d) Betrachten Sie das untenstehende Matlab-Programm und erklären Sie in 2-3 Sätzen, was das Programm macht. Das Bild unten rechts ist die Ausgabe des Programms. Erklären Sie das Bild.

```
1 Phi = @(x,a) x/2.*(3-a*x.^2);
                                                   1.5
2 \times 0 = linspace(-3, 3, 1000);
3
  x = x0;
                                                   0.5
4
5
                                                    0
  for k=1:100
      x = Phi(x, 1);
6
                                                   -0.5
7
  end
                                                    -1
8
                                                   -1.5
  plot (x0, max(min(x, 2), -2), 'o-');
                                                    -2
```

Aufgabe 1.(e): (7 Punkte, nur 9KP-ler)

(e) Beweisen Sie, dass die Fixpunktiteration (2) gegen $x_* = \frac{1}{\sqrt{a}}$ für alle $x^{(0)} \in (0, \frac{3}{2\sqrt{a}})$ konvergiert¹.

Die Identität $t^3 - 3t + 2 = (t+2)(t-1)^2$ könnte dabei behilflich sein.

Aufgabe 2: (7+8=15 Punkte)

Gegeben sei die Matrix

$$A = \left(\begin{array}{rrr} 1 & -2 & 1 \\ -2 & 5 & -3 \\ 1 & -3 & 6 \end{array}\right).$$

- (a) Ist die Cholesky-Zerlegung für die Matrix A durchführbar? Begründen Sie Ihre Antwort ohne die Cholesky-Zerlegung zu berechnen.
- (b) Wenn die Cholesky-Zerlegung für die Matrix A durchführbar ist, berechnen Sie diese, wenn nicht, berechnen Sie die LR-Zerlegung der Matrix A.

Aufgabe 3: (3+8+6+7=24 Punkte)

Die Werte $\mathbf{f} = (f_0, f_1, f_2, f_3)$ sind durchs Abtasten eines periodischen Signals

$$f(x) = x \cdot (L - x)$$

mit der Periode $L=2\pi$ an den N=4 Stellen $x_\ell=\frac{\pi}{2}\ell$ mit $\ell=0,\ldots,N-1$ erhalten worden.

(a) Vervollständigen Sie die Tabelle

- (b) Bestimmen Sie zu ${\bf f}$ den Vektor ${\bf \hat f}=(\hat f_0,\hat f_1,\hat f_2,\hat f_3)$ der diskreten Fourier-Transformation.
- (c) Bestimmen Sie mithilfe von (b) das zugehörige reelle trigonometrische Interpolationspolynom $T_N(x)$.
- (d) Skizzieren Sie f(x) und $T_N(x)$ für $-2\pi \le x \le 2\pi$. Erklären Sie das unterschiedliche Verhalten von f(x) und $T_N(x)$ in der Umgebung von x=0.

3

Aufgabe 4: (3+8+8+8=27 Punkte)

Betrachtet wird die Approximation des Integrals

$$\int_0^1 f(x)dx$$

durch Drei-Punkte-Quadraturregeln der Art

$$Q(f) := w_0 f(0) + w_1 f(x_1) + w_2 f(1)$$
(3)

mit den Stützstellen $(0, x_1, 1)$ und den zugehörigen Gewichten (w_0, w_1, w_2) .

- (a) Definieren Sie den Begriff "Genauigkeitsgrad einer Quadraturregel".
- (b) Bestimmen Sie den höchstmöglichen Genauigkeitsgrad, den die Quadraturregel (3) haben kann, und geben Sie die entsprechende Stützstelle x_1 und die Gewichte (w_0, w_1, w_2) an.
- (c) Finden Sie mindestens eine Quadraturregel der Art (3) mit positiven Gewichten, die den Genauigkeitsgrad r=2 (und nicht höher) hat. Geben Sie die Stützstellen und die Gewichte dieser Quadraturregel explizit an.
- (d) Gibt es Zwei-Punkte-Quadraturregeln, die den Genauigkeitsgrad r=2 (und nicht höher) haben? Wenn nein, erklären Sie warum. Wenn ja, geben Sie ein Beispiel an.

Aufgabe 5: (6+6+6=18 Punkte, <u>nur 9KP-ler</u>)

Zu den Messdaten

$$(t_i, y_i), \qquad i = 1, \dots, m \tag{4}$$

wird ein funktionaler Zusammenhang der Form $y(t) = a + b \cdot t$ mit $a, b \in \mathbb{R}$ vermutet.

- (a) Formulieren Sie die Fehlerquadratmethode (das lineare Ausgleichsproblem) zur Bestimmung von a und b für die Messdaten in allgemeiner Form (4). Geben Sie die entsprechende Matrix A explizit an.
- (b) Stellen Sie die Normalgleichung zur Bestimmung von *a* und *b* auf. Vereinfachen Sie die Normalgleichung für die Messdaten in allgemeiner Form (4) soweit möglich.
- (c) Betrachten Sie nun die Messdaten

und lösen Sie das lineare Ausgleichsproblem ohne QR-Zerlegung zu verwenden.

Aufgabe 6: (8+8+4=20 Punkte, <u>nur 9KP-ler</u>)

Gegeben sei die Matrix

$$A = \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix}.$$

- (a) Formulieren Sie das QR-Verfahren zur Approximation der Eigenwerte der Matrix A und schreiben Sie es als einen Pseudocode nieder. Erklären Sie, welche Größe gegen die Eigenwerte λ_1 und λ_2 von A konvergiert, und wo sich die Startnäherungen $\lambda_1^{(0)}$ und $\lambda_2^{(0)}$ an die Eigenwerte λ_1 und λ_2 aus der Matrix A ablesen lassen.
- (b) Führen Sie einen Schritt der QR-Iteration durch und berechnen Sie die ersten Näherungen $\lambda_1^{(1)}$ und $\lambda_2^{(1)}$ an die Eigenwerte λ_1 und λ_2 von A.
- (c) Bestimmen Sie die Eigenwerte λ_1 und λ_2 von A und die relativen Fehler

$$\frac{|\lambda_1-\lambda_1^{(k)}|}{|\lambda_1|}\quad \text{und}\quad \frac{|\lambda_2-\lambda_2^{(k)}|}{|\lambda_2|}\quad \text{für}\quad k=0,1.$$

Für welchen der beiden Eigenwerte konvergiert der relative Fehler schneller zu Null?