

Classe: 4^{ème}Math (Gr standard)

Serie2 chimie:

Cinétique chimique d'une réaction

Prof: Karmous Med

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

cours du temps.

L'oxydation des ions iodure I⁻ par tes ions peroxodisulfate $S_2O_8^{2-}$ est une réaction chimique lente et totale. Cette réaction est symbolisée par l'équation suivante : $2 I^- + S_2O_8^{2-} \longrightarrow I_2 + 2SO_4^{2-}$ Dans un bêcher, on mélange, à l'instant t=0 min, un volume $V_1 = 20$ mL d'une solution aqueuse d'iodure de potassium KI de concentration molaire $C_1 = 0.4$ mol.L⁻¹, avec un volume $V_2 = 20$ mL d'une solution aqueuse de peroxodisulfate de potassium $K_2S_2O_8$ de concentration molaire $C_2 = 0.1$ mol.L⁻¹. Par une méthode expérimentale convenable, on suit la formation du diiode I_2 au

1-Déterminer les nombres de moles initiales des ions I^- et $S_2O_8^{2-}$ dans le mélange réactionnel, notées respectivement n_{01} et n_{02} . (0,5pt)

2-a- Dresser le tableau d'avancement du système chimique contenu dans le bêcher. (0,5pt)

b- Préciser, en le justifiant, le réactif limitant. (0,5pt)

3-Les résultats expérimentaux obtenus pendant les cinquante premières minutes ont permis de tracer la courbe d'évolution

de l'avancement x de la réaction en fonction du temps : x = f(t). (Fig.1).

b- Déterminer graphiquement les vitesses de la réaction aux instants t_0 = 0 min et t_1 = 20 min.(0,5pt)

d- Quel est le facteur cinétique responsable de cette variation de vitesse ? Justifier **(0,5pt)**

4-On refait l'expérience en utilisant le mélange réactionnel, mais, à une température plus élevée.

Préciser en le justifiant, si la vitesse de la réaction à l'instant $t_0 = 0$ min, est modifiée ou non par rapport à l'expérience initiale (0,5pt)

Exercice 2

On mélange une solution aqueuse de peroxodisulfate de potassium $K_2S_2O_8$ de concentration molaire C_1 et de volume V_1 = 100 mL avec une solution aqueuse d'iodure de potassium KI de concentration molaire C_2 = 0,1 mol.L⁻¹ et de volume V_2 = V_1 = 100 mL . Il se produit alors la réaction totale d'équation :

$$\mathrm{S}_2\mathrm{O}_8^{2-}\left(\mathrm{aq}\right) \ + \ 2\ \mathrm{I}^{-}\!\left(\mathrm{aq}\right) \ \rightarrow \ 2\ \mathrm{SO}_4^{2-}\left(\mathrm{aq}\right) \ + \ \mathrm{I}_2\left(\mathrm{aq}\right)$$

- 1- a- Déterminer le nombre de moles initiale $n_0(\Gamma)$ des ions iodure (0,25pt)
 - b- Compléter le tableau d'avancement(1) sur la feuille à rendre avec les copies (0,5pt)
- **2-** Les résultats expérimentaux obtenus ont permis de tracer la courbe suivante qui représente l'évolution au cours du temps, du rapport de l'avancement x de la réaction sur le nombre de moles

initiale $n_0(\Gamma)$ des ions iodure : $\frac{x}{n_0(\Gamma)} = f(t)$. (**Figure 1**).

20

30

10

- a-Déterminer l'avancement final x_f de la réaction (0,5pt)
- **b-** Montrer que l'ion $S_2O_8^{2-}$ est le réactif limitant (0,5pt)
- **c-** Déterminer la concentration molaire C_1 de la solution aqueuse de peroxodisulfate de potassium (0,5pt)
- d- Déterminer la vitesse maximale de la réaction (0,75pt)
- **3-** Au bout de 10 min, on dose la quantité de matière de diiode formé par une solution de thiosulfate de sodium $(Na_2S_2O_3)$ de concentration $C_0 = 0,2$ mol.L⁻¹
 - a- Ecrire l'équation de la réaction du dosage (0,25pt)
 - b- Déterminer le volume V_{0E} de thiosulfate de sodium ajouté à l'équivalence, (0,5pt)

Exercice 3

On donne M(Zn) = 65.4 g.mol⁻¹

Le "lugol" est une solution antiseptique à base de diiode I_2 . Quand on plonge une grenaille de zinc dans cette solution, on peut observer, au bout d'un temps assez long, une décoloration et une attaque du zinc. L'équation de la réaction **supposée totale** est :

$$\operatorname{Zn}_{(\operatorname{sd})} + \operatorname{I}_2 \longrightarrow \operatorname{Zn}^{2+} + 2\operatorname{I}^{-}$$

On introduit une grenaille de zinc de masse m =1,31g dans un volume $V_0 = 50$ mL d'une solution de diiode S_0 de concentration C_0 . On étudie l'évolution du système au cours du temps et on suppose que le volume reste V_0 au cours de la réaction. La température est maintenue à 50°C. A l'aide de moyens appropriés, on a pu tracer la courbe de la figure-1- qui représente l'évolution au cours du temps de la concentration des ions Z_0^{2+} formés.

1-Calculer la quantité de matière initiale $n_0(Zn)$ de zinc introduite dans le mélange. (0,5pt)

- 2- Dresser le tableau d'avancement (0,75pt)
- 3-Déterminer l'avancement final de cette réaction (0,5pt)
- 4- Quel est le réactif limitant? (0,25pt)
- **5-** Déduire que la concentration de la solution (S_0) de diiode, est $C_0 = 0.1 \text{ mol.L}^{-1}$. (0.25pt)

- 6-a- Déterminer, à partir du graphe, les vitesses volumiques instantanées de la réaction aux instants $t_0 = 0$ min et $t_1 = 8$ min. (0,5pt)
 - b- Comparer ces deux vitesses volumiques et déduire le facteur cinétique responsable (0,5pt)
- 7- Au bout de 2 min, on dose la quantité de matière de diiode restant par une solution de thiosulfate de sodium (Na₂S₂O₃) de concentration C = 0,3 mol.L⁻¹
 - a- Ecrire l'équation de la réaction du dosage (0,25pt)
 - **b** Déterminer le volume de thiosulfate de sodium ajouté à l'équivalence, notéV_{0E}. (0,5pt)

 \mathcal{D} ans un bécher, on mélange à t=0s, un volume $V_1 = 100 \text{mL}$ d'une solution aqueuse d'iodure de potassium (KI) acidifiée de concentration molaire $C_1 = 0.9 \text{mol.L}^{-1}$ et un volume $V_2 = V_1$ d'une solution aqueuse d'eau oxygénée (H_2O_2) de concentration molaire C_2 .

L'équation de la réaction supposée totale entre les ions I et H_2O_2 est $2 I + H_2O_2 + 2 H_3O^+ \longrightarrow I_2 + 4 H_2O$

- 1°) Déterminer la quantité de matière initiale de I.
- 2°)Dresser le tableau descriptif d'évolution de système
- **3°)** Les résultats expérimentaux obtenus ont permis de tracer la courbe d'évolution de la quantité de matière des ions iodure I⁻ dans le mélange réactionnel au cours de temps.

En exploitant la courbe ci-dessous :

- a-Identifier, en le justifiant, le réactif limitant.
- **b**-Calculer la valeur de l'avancement final x_f de la réaction.
- c-Déduire la valeur de la concentration molaire C₂.
- 4°) a- Déterminer la vitesse de la réaction aux instants $t_1=0$ et $t_2=15$ min
 - **b-** Comparer ces vitesses et conclure.
 - c- Quel est le facteur cinétique responsable à la variation de vitesse ? Justifier
- 5°) Déterminer la quantité de matière minimale qu'il faut ajouter au mélange à l'instant t= 0s pour quela quantité de matière des ions iodure à l'état final soit égale à zéro.

(5)

A t=0 s, On introduit un volume $V_1=200$ mL d'une solution (S₁) d'iodure de potassium KI de concentration molaire C_1 , un volume $V_2=300$ mL d'une solution (S₂) de peroxodisulfate de potassium $K_2S_2O_8$ de concentration molaire $C_2=10^{-2}$ mol.L⁻¹.

Une étude expérimentale a permis de tracer la courbe des variations de la concentration de l'ion iodure I^- en fonction du temps (**Voir figure**).

2- Dresser le tableau descriptif d'évolution du système.

3-

- a- Déterminer la quantité de matière initiale $n_0(I^-)$ dans le mélange. Déduire la valeur de C_1 .
- **b** Déterminer le réactif limitant. En déduire l'avancement *x f*

4-

Avec $V = V_1 + V_2$ volume du mélange réactionnel.

- b- Comment varie cette vitesse au cours du temps ? Quel est le facteur cinétique responsable à cette variation ?
- c- Déterminer sa valeur maximale.
- 5- **a**-A l'instant $\mathbf{t} = t_{1/2}$ déterminer la valeur de l'avancement x puis calculer $[I^-]_{t_{1/2}}$ **b**---Déduire de la courbe $t_{1/2}$.
- 6-Faire le calcul nécessaire et compléter approximativement l'allure de la courbe $[I^-]=f(t)$ sachant que la réaction se termine à la date $t_f=24$ min.
- 7-A l'instant $t_2 = 5.5$ min on prélève un volume $v_p = 10$ mL du mélange réactionnel que l'on refroidit dans l'exglacée puis on dose la quantité de diiode formé à cet instant par une solution (S) de thiosulfate de sodium $Na_2S_2O_3$ de concentration $C = 10^{-2}$ mol.L⁻¹.
- *a* En utilisant la courbe déterminer $[I^-]_{t_2}$.
- b- Ecrire l'équation de la réaction de dosage et préciser les couples rédox mis en jeu.
- $\emph{c-}$ Déterminer le volume V_0 de (S) ajouté pour atteindre l'équivalence.

Deux groupes d'élèves réalisent les expériences suivantes :

* Expérience1

 \mathcal{L} e premier groupe introduit A t=0 s, un volume V_1 =200 mL d'une solution (S_1) d'iodure de potassium K_1 de concentration molaire C_1 , un volume V_2 =300 mL d'une solution (S_2) de péroxodisulfate de potassium $K_2S_2O_8$ de concentration molaire C_2 =10⁻² mol.L⁻¹ et quelques gouttes d'empois d'amidon.

Une étude expérimentale a permis de tracer la courbe des variations de la concentration de l'ion iodure I^- en fonction du temps (*Voir figure 1*).

- 1°)- Ecrire l'équation de la réaction chimique symbolisant la réaction d'oxydoréduction supposée lente et totale. Préciser les couples rédox mis en jeu.
 - 2°) a- En utilisant le graphe, déterminer la quantité de matière initiale $n_0(I^-)$ dans le mélange
 - **b-** Déduire la valeur de C_1
 - c- Définir puis déterminer le temps de demi-réaction(t_{1/2})
 - d- Compléter la courbe de $[I^-]=f(t)$ sachant que la réaction se termine à la date $t_f=32min$.

(voir fig 1 : page 6 à compléter et à remettre avec la copie)

- 3°) a- Définir la vitesse de la réaction à la date t.
 - **b** Montrer que son expression s'écrit sous la forme $v = \frac{V}{2} \frac{dI^{-1}}{dt}$. Avec V volume du mélange

réactionnel

- c- Comment varie cette vitesse au cours du temps ? Justifier.
- d- Déterminer sa valeur maximale.

4°) a- Définir la vitesse moyenne V_{mov} de la réaction. Donner son expression en fonction de où $\Delta[I^-]$ est la variation de la concentration des ions I^- pendant la durée Δt .

 $\Delta[I^{-}]$

b- Calculer sa valeur entre les instants $t_1=0$ et $t_2=4$ min.

*Expérience 2

Dans le but d'étudier l'influence de certains facteurs cinétiques sur la vitesse moyenne de la réaction des ions I avec les ions $S_2O_8^{2-}$, Le deuxième groupe considère trois béchers (A) et (B) et (C), contenant chacun:

- un volume $V_I = 40 mL$ d'une solution aqueuse (S_I) d'iodure de potassium (K⁺+I⁻) de concentration molaire $C_1 = 0.5 mol. L^{-1}$
- un volume V'=10mL d'une solution diluée d'empois d'amidon.
- un volume $V_0 = 0.5$ ml d'une solution aqueuse (s) de thiosulfate de sodium $(2Na^+ + S_2O_3^2)$ de concentration molaire $C_0 = 0.2 \text{mol} L^{-1}$.
 - Au contenu du bécher (A), on ajoute quelques gouttes de sulfate de fer II,
 - Au contenu du bécher (B) on ajoute encore 20mL d'eau glacée.
 - le bécher (C) utilisé comme témoin

A l'instant t=0, on ajoute simultanément au mélange contenu dans chacun des trois béchers un volume $V_2=10ml$ d'une solution de peroxodisulfate de potassium $(2K^+ + S_2O_8^{2-})$ de concentration molaire $C_2=$ 0,05molL⁻¹ et déclencher aussitôt le chronomètre.

On note, pour chaque système chimique, la durée Δt qui s'écoule entre l'instant initial et l'instant d'apparition d'une coloration bleue noire.

Les résultats sont consignés dans le tableau ci-dessous :

bécher	(A)	<i>(B)</i>	(C)
Δt (min)	0,5	0,9	0,6

En faisant appel aux calculs nécessaires et aux conditions expérimentales

- 5°) Quels sont les différents facteurs cinétiques mis en jeu par ces trois expériences.
- 6°) Préciser leurs influences sur la vitesse de la réaction?

