Information Retrieval

Luiz Celso Gomes Jr - André Santanchè MC536 2013/2

Chapter 27
Introduction to
Information
Retrieval and
Web Search

Outline

- Information Retrieval (IR) Concepts
- Retrieval Models
- Types of Queries in IR Systems
- Inverted Indexing
- Text Preprocessing
- Evaluation Measures of Search Relevance
- Web Search and Analysis
- Trends in Information Retrieval

Information Retrieval (IR) Concepts

- "Discipline that deals with the structure, analysis, organization, storage, searching, and retrieval of information"
- Process of retrieving documents from a collection in response to a query by a user
- Documents are unstructured
- Text, images, sound, etc

Information Retrieval (IR) Concepts (cont'd.)

- User's information need expressed as a free-form search request
 - Keyword search query
 - Also: images, speech, context... becoming more and more important
- High noise-to-signal ratio

Information Retrieval (IR) Concepts (cont'd.)

- IR systems characterized by:
 - Types of users
 - Types of data
 - Types of information needed
 - Levels of scale

- Examples:
 - Web search
 - Enterprise search systems
 - Desktop/mobile search engines
 - Image search
 - Library catalog search

Databases and IR Systems: A Comparison

Table 27.1 A Comparison of Databases and IR Systems

Databases

- Structured data
- Schema driven
- Relational (or object, hierarchical, and network) model is predominant
- Structured query model
- Rich metadata operations
- Query returns data
- Results are based on exact matching (always correct)

IR Systems

- Unstructured data
- No fixed schema; various data models (e.g., vector space model)
- Free-form query models
- Rich data operations
- Search request returns list or pointers to documents
- Results are based on approximate matching and measures of effectiveness (may be imprecise and ranked)

Brief History of IR

- Inverted file organization
 - Based on keywords and their weights (SMART system in 1960s)
- Text Retrieval Conference (TREC)
- Search engine
 - Application of information retrieval to large-scale document collections
 - Crawler: Responsible for discovering, analyzing, and indexing new documents
- Google

IR Modern Trends

- Social Search
- Mobile
 - Context-aware
 - Conversational

Modes of Interaction in IR Systems

- Query
 - Set of terms
 - Used by searcher to specify information need
- Main modes of interaction with IR systems:
 - Retrieval: Extraction of information from a repository of documents through an IR query
 - Browsing: User visiting or navigating through similar or related documents

Modes of Interaction in IR Systems (cont'd.)

- Web search
 - Combines browsing and retrieval
- Rank of a Webpage
 - Measure of relevance to query that generated result set

Generic IR Pipeline

Generic IR framework.

inverted index

Figure 27.2 Simplified IR process pipeline.

Generic IR framework.

Retrieval Models

- Three main statistical models
 - Boolean
 - Vector space
 - Probabilistic
- Semantic model

Boolean Model

- Documents represented as a set of terms
- Form queries using standard Boolean logic set-theoretic operators
 - AND, OR and NOT
- Retrieval and relevance
 - Binary concepts
- Lacks sophisticated ranking algorithms

Vector Space Model

Documents

 Represented as terms (features) and weights in an ndimensional vector space

Query

- Specified as a terms vector
- Compared to the document vectors for similarity/relevance assessment

Vector Space Model (cont'd.)

- Different similarity functions can be used
 - Cosine of the angle between the query and document vector commonly used
- TF-IDF
 - Statistical weight measure
 - Used to evaluate the importance of a document word in a collection of documents

TF-IDF

- Term Frequency–Inverse Document Frequency
- Numerical statistic which reflects how important a term
 (t) is to a document (d) in a collection or corpus (D)
- tf(t,d) = (number of t in d)/(size of d)
- df(t, D) = (number of times t appears in a document in D)/(number of documents in D)
- TF-IDF = tf/df
- Many more sophisticated ranking functions are variants of this simple model

Document Vectors

Document ids

1	nova	galaxy	heat	h'wood	film	role	diet	fur
A	10	5	3					
В	5	10						
C				10	8	7		
D				9	10	5		
E							10	10
F							9	10
G	5	7			9			
Н		6	10	2	8			
I				7	5		1	3

We Can Plot the Vectors

Assumption: Documents that are "close" in space are similar.

We Can Plot the Vectors

Assumption: Documents that are "close" in space are similar.

Cosine similarity

- + Simple model
- + Works well in average
- + Allows ranking
- No term order information
- Term similarity often not related to semantic similarity

$$\cos \theta = \frac{\mathbf{d_2} \cdot \mathbf{q}}{\|\mathbf{d_2}\| \|\mathbf{q}\|} \qquad \|\mathbf{q}\| = \sqrt{\sum_{i=1}^{n} q_i^2}$$

Exercício 1

- Imagine que você precisa desenvolver um sistema de recuperação de fotos de rostos de pessoas. O sistema recebe como entrada uma foto de um rosto e retorna fotos ordenadas por similaridade com a foto da consulta.
- O modelo escolhido para a implementação foi o de Vector Space.
- Que tipo de informação poderia ser usada nos vetores?

Probabilistic Model

- Probability ranking principle
 - Decide whether the document belongs to the relevant set or the nonrelevant set for a query
- Conditional probabilities calculated using Bayes' Rule
- BM25 (Best Match 25)
 - Popular probabilistic ranking algorithm
- Okapi system

Semantic Model

- Knowledge-based IR systems
 - Based on semantic models
 - DBPedia
 - Cyc knowledge base
 - WordNet
- Latent Semantic Indexing/Analysis
- Case: Wikipedia-based cross-language IR

Generic IR framework.

Types of Queries in IR Systems

Keywords

- Consist of words, phrases, and other characterizations of documents
- Used by IR system to build inverted index
- Queries compared to set of index keywords
- Most IR systems
 - Allow use of Boolean and other operators to build a complex query

Keyword Queries

- Simplest and most commonly used forms of IR queries AND or OR
- Keywords implicitly connected by a logical AND operator

- may or may not...
 Remove stopwords Most commonly occurring words (a, the, of)
- IR systems do not pay attention to the ordering of these words in the query

Boolean Queries

- AND: both terms must be found
- OR: either term found
- NOT: record containing keyword omitted
- (): used for nesting
- +: equivalent to AND
- Boolean operators: equivalent to AND NOT
- Document retrieved if query logically true as exact match in document

Phrase Queries

- Phrases encoded in inverted index or implemented differently
- Phrase generally enclosed within double quotes
- More restricted and specific version of proximity searching

Proximity Queries

- Accounts for how close within a record multiple terms should be to each other
- Common option requires terms to be in the exact order
- Various operator names
 - NEAR, ADJ(adjacent), or AFTER
- Computationally expensive

Wildcard Queries

- Support regular expressions and pattern matchingbased searching
 - 'Data*' would retrieve data, database, datapoint, dataset
- Involves preprocessing overhead
- Not considered worth the cost by many Web search engines today
- Retrieval models do not directly provide support for this query type

Natural Language Queries

- Few natural language search engines
- Active area of research

Inverted Indexing

- Vocabulary
 - Set of distinct query terms in the document set
- Inverted index
 - Data structure that attaches distinct terms with a list of all documents that contains term

Document 1

This example shows an example of an inverted index.

Document 2

Inverted index is a data structure for associating terms to documents.

Document 2

Stock market index is used for capturing the sentiments of the financial market.

Figure 27.4
Example of an
inverted index.

ID	Term	Document: position
1.	example	1:2, 1:5
2.	inverted	1:8, 2:1
3.	index	1:9, 2:2, 3:3
4.	market	3:2, 3:13

ID	Term	Document: position
1.	example	1:2, 1:5
2.	inverted	1:8, 2:1
3.	index	1:9, 2:2, 3:3
4.	market	3:2, 3:13

Faça o pseudo-código para um algoritmo que, baseado num índice invertido como o do exemplo ao lado, processe consultas booleanas conjuntivas (a AND b AND c AND...).

Generic IR framework.

Text Preprocessing

- Commonly used text preprocessing techniques
- Part of text processing task

Stopword Removal

Stopwords

- Very commonly used words in a language
- Expected to occur in 80 percent or more of the documents
- the, of, to, a, and, in, said, for, that, was, on, he, is, with, at, by, and it
- Removal must be performed before indexing
- Queries can be preprocessed for stopword removal

Stemming

- Stem
 - Word obtained after trimming the suffix and prefix of an original word
- Reduces different forms of the word formed by inflection
- Most famous stemming algorithm:
 - Martin Porter's stemming algorithm

Utilizing a Thesaurus

- Thesaurus: Precompiled list of important concepts and the main word that describes each
 - Synonym converted to its matching concept during preprocessing
- Examples:
- UMLS: Large biomedical thesaurus of concepts/meta concepts/relationships
- WordNet: Manually constructed thesaurus that groups words into strict synonym sets

Other Preprocessing Steps: Digits, Hyphens, Punctuation Marks, Cases

- Digits, dates, phone numbers, e-mail addresses, and URLs may or may not be removed during preprocessing
- Hyphens and punctuation marks
 - May be handled in different ways
- Most information retrieval systems perform caseinsensitive search
- Text preprocessing steps language specific

Information Extraction

- Generic term
- Extracting structured content from text
- Mostly used to identify contextually relevant features that involve text analysis, matching, and categorization

 Considerando o sistema de recuperação de rostos do Exercício 1, que tipo de pré-processamento deve ser feito nas imagens da base e nas imagens das consultas?

Generic IR framework.

Evaluation Measures of Search Relevance

Topical relevance

 Measures extent to which topic of a result matches topic of query

User relevance

 Describes "goodness" of a retrieved result with regard to user's information need

Web information retrieval

Must evaluate document ranking order

Recall and Precision

Recall

 Number of relevant documents retrieved by a search / Total number of existing relevant documents

Precision

- Number of relevant documents retrieved by a search / Total number of documents retrieved by that search
- Other combinations...

Searching the Web

- Hyperlink components
 - Destination page
 - Anchor text
- Hub
 - Web page or a Website that links to a collection of prominent sites (authorities) on a common topic

Analyzing the Link Structure of Web Pages

- The PageRank ranking algorithm
 - Used by Google
 - Highly linked pages are more important (have greater authority)
 than pages with fewer links
 - Measure of query-independent importance of a page/node
- HITS Ranking Algorithm
 - Contains two main steps: a sampling component and a weightpropagation component

Trends in Information Retrieval

Faceted search

- Allows users to explore by filtering available information
- Facet: Defines properties or characteristics of a class of objects

Social search

- New phenomenon facilitated by recent Web technologies: collaborative social search, guided participation
- Conversational search (CS)
 - Interactive and collaborative information finding interaction
 - Aided by intelligent agents

Summary

- IR introduction
- Basic terminology, query and browsing modes, semantics, retrieval modes
- Web search analysis
- · Content, structure, usage
- Algorithms
- Current trends

- Imagine que você precisa desenvolver um sistema de recuperação de fotos de rostos de pessoas. O sistema recebe como entrada uma foto de um rosto e retorna fotos ordenadas por similaridade com a foto da consulta. O modelo escolhido para a implementação foi o de Vector Space.
- Que tipo de informação poderia ser usada nos vetores?
- Resposta: distância entre os olhos, distância entre os olhos e boca, porcentagem de prevalência de cores (histograma). . .

- Faça o pseudo-código para um algoritmo que, baseado num índice invertido, processe consultas booleanas conjuntivas (a AND b AND c AND...).
- D = {} //documentos de resposta
- Para cada termo t na consulta
 - D = interseção de D e documentos contendo t obtidos no índice.
- Retorna D

- Considerando o sistema de recuperação de rostos do Exercício 1, que tipo de pré-processamento deve ser feito nas imagens da base e nas imagens das consultas?
- Resposta: redimensionamento de imagens (para padronizar), recortar a imagem para que o rosto ocupe espaços parecidos em todas as fotos, rotacionar as fotos para alinhar, ajustar cores, iluminação, contraste, converter para preto e branco para otimizar . . .