CS 135 Written Assignment 3

Daniel Detore

February 17, 2024

1

$\neg r$	Hypothesis	(1)
$q \implies r$	Hypothesis	(2)
$\neg q$	Modus tollens, 1,2	(3)
$\neg q \implies u \wedge s$	Hypothesis	(4)
$u \wedge s$	Modus ponens, 3,4	(5)
s	Simplification, 5	(6)
$p \lor q$	Hypothesis	(7)
p	Disjunctive syllogism, 3, 7	(8)
$p \wedge s$	Conjunction, 6, 8	(9)
$p \wedge s \implies t$	Hypothesis	(10)
t	Modus ponens, 9,10	(11)

2

For simplicity's sake, I will use this key to represent the given propositions:

- \bullet p: The dorm is locked.
- \bullet q: The phone is on top of the tall bookshelf.
- r: The dorm room is locked.
- \bullet s: The phone is under the pillow.
- \bullet t: The dorm has more than 10 floors.
- u: The phone is in the bottom drawer of the desk.

This gives us the following list of statements:

$$\begin{array}{l} p \implies \neg q \\ r \implies q \\ \\ p \\ \\ r \lor s \\ t \implies u \end{array}$$

Using this list, we can deduce the following:

We have now confirmed that s must be true. If we check the key, this means that the phone is under the pillow.

3

Let us start at the contradiction form $x = \neg x$ and derive the given formula from it. I will use E to replace x, and introduce new variables in reverse alphabetical order.

$E \vee \neg E$	Original proposition
$\equiv (D \vee E) \wedge (\neg D \vee E) \wedge \neg E$	Resolution
$\equiv (B \vee E) \wedge (\neg B \vee D) \wedge (\neg D \vee E) \wedge \neg E$	Resolution
$\equiv (C \vee B) \wedge (\neg C \vee E) \wedge (\neg B \vee D) \wedge (\neg D \vee E) \wedge \neg E$	Resolution
$\equiv (A \wedge B) \wedge (\neg A \vee C) \wedge (\neg C \vee E) \wedge (\neg B \vee D) \wedge (\neg D \vee E) \wedge \neg E$	Resolution
$\equiv (A \wedge B) \wedge (\neg A \vee C) \wedge (\neg B \vee D) \wedge (\neg C \vee E) \wedge (\neg D \vee E) \wedge \neg E$	Commutative law

4

To make this argument form invalid, its premises need to be true and its conclusion needs to be false. For simplicity's sake I will make P(x) and Q(x)'s domains $\{T, F\}$ and they will return the value I give them.

$$\forall x (P(x) \implies Q(x))$$
$$\neg P(a)$$
$$\therefore \neg Q(a)$$

Because $\forall x(P(x) \implies Q(x))$ places the same x value into both P(x) and Q(x), we can simplify it to $x \implies x$. This statement is a tautology. Using the same logic, $P(a) \implies Q(a)$ (the statement implied by argument form) will be equivalent to $a \implies a$ which is, again, a tautology. Since I have proven all of the statements to be tautologies, this argument form is always true.

5

6

This argument is invalid. If we look past the logic at what argument is being made, the conclusion is always false.