Summary of Censored Regression: Local Linear Approximations and Their Applications

Presenter: Jaehyeong Ahn

Konkuk University jayahn0104@gmail.com

January 9, 2021

Table of Contents

- Introduction
- Summary of the Methodology
- Surther Explanation of the Methodology
 - Transformation of the Data
 - Local Linear Regression Smoothers
- 4 Asymptotic Result
- Simulation Result
 - Simulated Data
 - Real Data
- 6 References

Introduction

Introduction

Introduction

- Fan and Gijbels [1994] suggest a methodology which estimate a regression relationship between response and covariate by using non-parametric regression model, when censored observations (responses) are included in the dataset
- Censoring is a condition in which the value of an observation is only partially known
 - For example, suppose a study is conducted to measure the impact of a heart transplant on survival time
 - If an individual is alive at the end of the study, the true survival time is not observable
 - Then the survival time of this individual is recorded as the last measured value which is called as (right) censored data
- In this paper, only the case of right censoring on response is discussed

Introduction

- When censored observations (responses) are included in the dataset, it is hard to estimate the true relationship between response and covariate
- Fan and Gijbels [1994] propose a methodology for modeling the association, based on censored data
- The methodology implements a proper transformation for censored data and then fit a local linear regression function given the transformed data

Summary of the Methodology

Notation

Model

- $Y = m(X) + \sigma(X)\epsilon$
 - Y : Survival time,
 - X : Associated covariate,
 - $m(\cdot)$: Unknown regression curve,
 - ullet $\sigma(\cdot)$: Conditional variance representing the possible heteroscedacity
- Assume that,
 - $X \perp \!\!\! \perp \epsilon$
 - $E(\epsilon) = 0$, $var(\epsilon) = 1$
- Denote.
 - C: censoring time according to Y
 - $(Y \perp \!\!\!\perp C|X)$
 - Z = min(Y, C), $\delta = I(Y \leq C)$
 - $\{(X_i, Z_i, \delta_i) : i = 1, \dots, n\}$: a dataset (all observations are ordered according to the X_i 's)

Data Example

Simulated Data

\overline{X}	\overline{Y}	C	\overline{Z}	δ
0.0012	0.0867	0.6407	0.0867	1
0.0021	0.2862	0.2844	0.2844	0
0.0026	0.3944	0.1937	0.1937	0
0.0110	0.7629	1.7458	0.7629	1
0.0164	0.9275	0.3252	0.3252	0

Real Data

Z	δ
2.3296	1
1.4261	1
3.5382	0
3.8240	0
3.5343	0
	2.3296 1.4261 3.5382 3.8240

1 Transformation of the data

- For a given integer k and a non-negative weight function K,
- Replace the observed data $\{(X_i, Z_i, \delta_i)\}$ by $\{(X_i, Y_i^*)\}$, where

$$Y_i^{\star} = \delta_i Z_i + \left(1 - \delta_i\right) \frac{\Sigma_{j:Z_j > Z_i} Z_j K\left(\frac{X_i - X_j}{(X_{i+k} - X_{i-k})/2}\right) \delta_j}{\Sigma_{j:Z_j > Z_i} K\left(\frac{X_i - X_j}{(X_{i+k} - X_{i-k})/2}\right) \delta_j}$$

$$\tag{1}$$

Figure: The triangle indicates the censored observations, and the uncensored observations are presented by circle

2 Application of the local linear regression technique

- Given the transformed data $\{(X_i, Y_i^*)\}$,
- Fit a local linear regression using the same smoothing parameter k.
 Namely, compute

$$\hat{m}(x) = \sum_{i=1}^{n} w_i(x) Y_i^* / \sum_{i=1}^{n} w_i(x), \tag{2}$$

With

$$w_i(x) \stackrel{\text{def}}{=} K(\frac{x - X_i}{\hat{h}_k(x)})[s_{n,2} - (x - X_i)s_{n,1}],$$

Where

$$s_{n,l} = \sum_{i=1}^{n} K(\frac{x - X_i}{\hat{h}_k(x)})(x - X_i)^l, \ l = 0, 1, 2.$$

• $\hat{h}_k(x) = (X_{l+k} - X_{l-k})/2$: an adaptive variable bandwidth (l is the index of the design point X_l closest to x

3 Selection of the smoothing parameter k by cross-validation

• For a given k, Compute below CV function

$$CV(k) = \sum_{i=1}^{n} (Y_i^* - \hat{m}_{-i}(X_i))^2$$
(3)

• Get \hat{k} which minimize CV(k)

$$\hat{k} = \underset{k}{\operatorname{argmin}} \ CV(k), \quad k = 1, ..., [(n-1)/2]$$

ullet where [a] is the greatest integer part of a

4 Calculation of the local linear smoother

• With \hat{k} as a smoothing parameter, transform the data by (1) and use the smoother (2) to estimate the regression function

Further Explanation of the Methodology

Further Explanation of the Methodology

Transformation of the Data

Transformation of the Data

- Let ϕ_1 and ϕ_2 are the transformation functions acting on the uncensored and censored observations
- According to this, we can express the transformation as below

$$Y^{\star} = \phi_1(X, Y)$$
 if uncensored
$$= \phi_2(X, C) \text{ if censored}$$

$$= \delta \phi_1(X, Z) + (1 - \delta)\phi_2(X, Z)$$
 (4)

- This is regarded as an "ideal transformation" because it assumes that ϕ_1 and ϕ_2 are known
- However, those transformation functions typically must be estimated

Transformation of the Data

• To tackle the problem (estimating the transformation functions), Buckley and James [1979] suggested below transformation

$$\phi_1(x,y) = y \text{ and } \phi_2(x,y) = E(Y|Y > y, X = x)$$
 (5)

- This transformation can be written as $Y_o^* = E(Y|\delta,Z,X)$
- It is closest to the original response in the sense that $E(Y-Y_o^\star)^2 \leq E(Y-Y^\star)^2$; thus it can be regarded as the "best restoration"
- But this transformation depends on the unknown regression function leading to an iterative procedure
- And computing the conditional expectation requires strong model assumptions

Transformation of the Data

 Fan and Gijbels [1994] provide the "estimated transformation" as follow

$$Y_i^{\star} = \delta_i Z_i + \left(1 - \delta_i\right) \frac{\Sigma_{j:Z_j > Z_i} Z_j K\left(\frac{X_i - X_j}{(X_{i+k} - X_{i-k})/2}\right) \delta_j}{\Sigma_{j:Z_j > Z_i} K\left(\frac{X_i - X_j}{(X_{i+k} - X_{i-k})/2}\right) \delta_j}$$

$$(6)$$

- This transformation estimate the conditional expectation in "best restoration" by using the concept of Nadaraya-Watson (Nadaraya [1964]; Watson [1964]) estimator
- According to this, uncensored observations remain unchanged (i.e., $Y_i^*=Z_i$, if $\delta_i={\bf 1}$) and only the censored observations are transformed
- ullet Finally, we get the transformed data $\{(X_i,Y_i^*):i={\scriptscriptstyle 1},\cdots,n\}$

Local Linear Regression Smoothers

Local Linear Regression Smoothers

- Given the transformed data $\{(X_i, Y_i^*) : i = 1, \dots, n\}$, estimate the true regression function $m(\cdot)$
- Fix a point x and approximate the unknown function for z in a neighborhood of x as below

$$m(z) \approx m(x) + m'(x)(z-x) \stackrel{\text{def}}{=} a + b(z-x)$$
 (7)

- Estimating m(x) is equivalent to estimate the intercept a (m(x) = E[m(z)|z = x] = a)
- The local neighborhood and weight are determined by an adaptive variable bandwidth $\hat{h}_k(x)$ and a kernel function K
- the problem of estimating m(x) becomes minimizing w.r.t. a, b

$$\sum_{i=1}^{n} (Y_i^* - a - b(X_i - x))^2 K\left(\frac{x - X_i}{\hat{h}_k(x)}\right)$$

Local Linear Regression Smoothers

• Estimation of $\hat{m}(x)(=\hat{a})$ is provided as follow

$$\hat{m}(x) = \hat{a} = \sum_{i=1}^{n} w_i(x) Y_i^* / \sum_{i=1}^{n} w_i(x), \tag{8}$$

With

$$w_i(x) \stackrel{\text{def}}{=} K(\frac{x - X_i}{\hat{h}_k(x)})[s_{n,2} - (x - X_i)s_{n,1}],$$

Where

$$s_{n,l} = \sum_{i=1}^{n} K(\frac{x - X_i}{\hat{h}_k(x)})(x - X_i)^l, \ l = 0, 1, 2.$$

 This estimator possesses several nice properties, including no requirement for boundary modifications, and adaptation to various types of designs such as random and fixed design (Fan [1992])

Asymptotic Result

Adaptive variable bandwidth $\hat{h}_k(x)$

- Let $f_X(\cdot)$ is a marginal probability density function of X
- Following theorem shows that $\hat{h}_k(x)$ behaves approximately as $k/(nf_X(x))$

Theorem 1.

Suppose that $f_X(\cdot)$ is positive and continuous on a compact interval [a,b] and that $k_n\to\infty$ such that $k_n/n\to 0$. Then $\hat{h}_{kn}(x)=[k_n/(nf_X(x)](1+o_p(1))$ uniformly in $x\in [a,b]$.

- According to Theorem 1, we can observe that $\hat{h}_k(x)$ and $f_X(\cdot)$ are in inverse relationship (when $f_X(\cdot) \downarrow$, $\hat{h}_k(x) \uparrow$)
- Hence this variable bandwidth change the value according to the design density $f_X(\cdot)$

Local linear regression based on the ideal transformation

- Let,
 - $\hat{m}(x; \phi_1, \phi_2)$ be the regression estimator (2) based on the ideal transformation (4),
 - $K(\cdot)$ be a compactly supported PDF with mean 0,
 - $c_K = \int_{-\infty}^{\infty} v^2 K(v) dv$, $d_K = \int_{-\infty}^{\infty} K^2(v) dv$
- Then we have the following result (where, $h_k(x) = k_n/(nf_X(x))$)

Theorem 2.

Suppose that $f_X(\cdot), m''(\cdot)$ and $\sigma^*(\cdot)$ are bounded functions, continuous at the point x, and that $f_X(x) > 0$. If $k_n \to \infty$ such that $k_n/n \to 0$, then, conditionally on the covariates $\{X_1, \cdots, X_n\}$,

$$\sqrt{k_n}(\hat{m}(x;\phi_1,\phi_2)-m(x)-m''(x)c_Kh_k^2(x)/2)\to N(0,d_K\sigma^{*2}(x)),$$

• Theorem 2 shows that local linear regression based on the ideal transformation has asymptotic normality

Local linear regression based on the estimated transformation

- Let,
 - $\hat{m}(x; \hat{\phi}_1, \hat{\phi}_2)$ be the regression estimator (2) based on the estimated transformation (1),
 - Where $\hat{\phi}_1, \hat{\phi}_2$ estimate ϕ_1 and ϕ_2 .
- A basic requirement in the consistency result for $\hat{m}(x; \hat{\phi}_1, \hat{\phi}_2)$ is that $\hat{\phi}_1(t, z)$ and $\hat{\phi}_2(t, z)$ are consistent uniformly for t in a neighborhood of x and for z in a chosen interval
- Formally, assume that

$$\beta_n(x) = \max_{j=1,2} \left\{ \sup_{z \in (0,\tau_n), \ t \in (x \pm \tau)} |\hat{\phi}_j(t,z) - \phi_j(t,z)| \right\} = o_p(1)$$
 (9)

• with $\tau_n > 0$ and $\tau > 0$

• Let's extend the definition of $\hat{\phi}_j(j=1,2)$ as follows to deal with the case of tail $(z > \tau_n)$:

$$\hat{\phi}_{j}(t,z) = \hat{\phi}_{j}(t,z), \quad \text{if } z \leq \tau_{n}$$

$$= z \qquad \text{elsewhere}$$
(10)

 According to this definition, we can express the consistency condition of estimates as follow

$$\kappa_n(x) = \max_{j=1,2} \left\{ \sup_{t \in (x \pm \tau)} E\left(I_{[Z > \tau_n]} | Z - \phi_j(t, Z) | \middle| X = t \right) \right\} = o(1)$$
 (11)

• Then we have the following result

Theorem 3.

Assume that the conditions of Theorem 1 hold. Then

$$\hat{m}(x; \hat{\phi}_1, \hat{\phi}_2) - \hat{m}(x; \phi_1, \phi_2) = O_p(\beta_n(x) + \kappa_n(x))$$

provided that K is uniformly Lipschitz continuous and has a compact support.

• As a consequence of Theorem 2 and 3, we obtain that $\hat{m}(x; \hat{\phi}_1, \hat{\phi}_2)$ is a consistent estimator of m(x) for any consistent estimators $\hat{\phi}_1$ and $\hat{\phi}_2$

Simulation Result

Simulation Result

Simulated Data

Simulation Setting

• We simulated 200 data points from the following model:

$$Y_i = 4.5 - 64X_i^2(\mathbf{1} - X_i)^2 - \mathbf{16}(X_i - 0.5)^2 + 0.25\epsilon_i$$

$$X_i^{\mathsf{iid}} \; \mathsf{Uniform}[\mathbf{0}, \mathbf{1}], \; \epsilon_i^{\mathsf{iid}} N(\mathbf{0}, \mathbf{1}), X_i \perp \!\!\! \perp \epsilon_i$$

Where,

•
$$(C_i|X_i=x)^{\text{independent}} exponential(c(x))$$

 $c(x) = 3(1.25 - |4x - 1|), \quad \text{if } 0 \le x \le .5,$
 $= 3(1.25 - |4x - 3|), \quad \text{if } .5 < x \le 1$

 In this example, approximately 40% of the 200 observations are censored

Simulated Data

Simulated Data Example

\overline{X}	Y	C	Z	δ
0.0012	0.0867	0.6407	0.0867	1
0.0021	0.2862	0.2844	0.2844	0
0.0026	0.3944	0.1937	0.1937	0
0.0110	0.7629	1.7458	0.7629	1
0.0164	0.9275	0.3252	0.3252	0

Simulated Data

Figure: Simulated Data Set. The triangle indicates the censored observations, and the uncensored observations are presented by circle. The individual panels show (a)unobserved simulated data; (b)observed simulated data; (c) cross-validation curve; (d) data transformed by local average using an optimal $\hat{k}=5$ and local linear smoothers: black curve-the true regression function, red curve-the smoother based on the transformed data, yellow curve-the smoother based on the observed data in (b)

Real Data

Real Data

- We used the "Stanford Heart Transplant Data set" which is provided in the "survival" library in R
- This data set include the information of patients who were involved in the clinical (heart transplant) program from 1967 to February, 1989
- In this example, we set 'survival time' as response and 'age' as covariate
- 55 observations out of 175 are censored data

Real Data

Real Data Example

X	Z	δ
12	2.3296	1
13	1.4261	1
14	3.5382	0
15	3.8240	0
18	3.5343	0

Real Data

Figure: Stanford Heart Transplant Data Set. The triangle indicates the censored observations, and the uncensored observations are presented by circle. The individual panels show (a)log-survival time plotted against age; (b)cross validation curve; (c) data transformed by local average using an optimal $\hat{k}=22$ and local linear smoothers: black curve-the suggested relationship, red curve-the smoother based on the transformed data, yellow curve-the smoother based on the observed data in (a)

References

- Jonathan Buckley and Ian James. Linear regression with censored data. Biometrika, 66(3):429–436, 1979.
- William S Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the American statistical association, 74(368):829–836, 1979.
- Jianqing Fan. Design-adaptive nonparametric regression. Journal of the American statistical Association, 87(420):998–1004, 1992.
- Jianqing Fan and Irene Gijbels. Censored regression: local linear approximations and their applications. Journal of the American Statistical Association, 89 (426):560–570, 1994.
- Elizbar A Nadaraya. On estimating regression. Theory of Probability Its Applications, 9(1):141–142, 1964.

References

- Charles J Stone. Consistent nonparametric regression. The annals of statistics, pages 595–620, 1977.
- Geoffrey S Watson. Smooth regression analysis. Sankhy a: The Indian Journal of Statistics, Series A, pages 359–372, 1964.

Q&A