

/TMO YHUBEPCUTET UTMO

«Телекоммуникационные системы»

АЛИЕВ Тауфик Измайлович, д.т.н., профессор Лектор:

комн. 1334, E-mail: tialiev@itmo/ru

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники

Рекомендуемая литература

- 1. Электронные учебно-методические материалы в ИСУ Университета ИТМО.
- 2. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 5-е изд. (Юбилейное издание) СПб: Питер, 2016 (2021). 944 с. (1005 с.) (Часть П. Технологии физического уровня)
- 3. Алиев Т.И. Сети ЭВМ и телекоммуникации. СПб: СПбГУ ИТМО, 2011. 400 с. (*Pasden 2. Средства телекоммуникаций*)
 https://books.ifmo.ru/book/628/seti evm i telekommunikacii.htm
- 4. Алиев Т.И., Соснин В.В., Шинкарук Д.Н. Компьютерные сети и телекоммуникации: задания и тесты. СПб: Университет ИТМО, 2018. 111 с. (задания 1 и 2)
- 5. Давыдов А.Е., Смирнов П.И., Парамонов А.И. Проектирование телекоммуникационных систем и сетей. (Раздел Коммутируемые сети связи. Расчет параметров сетей связи и анализ трафика). СПб: Университет ИТМО, 2016. 47 с.
- 6. Таненбаум Э., Уэзеролл Д. Компьютерные сети. 5-е изд. Питер, 2016. 960 с.
- 7. Зингеренко Ю.А.. Оптические цифровые телекоммуникационные системы и сети синхронной цифровой иерархии. Учебное пособие. СПб: НИУ ИТМО, 2013. 393 с.

Разделы дисциплины

- 1. Введение в телекоммуникацию
- 2. Кабельные телекоммуникационные системы
- 3. Беспроводные телекоммуникационные системы
- 4. Телекоммуникационные технологии

Раздел 1 Введение в телекоммуникацию

- 1.1. Основные понятия и терминология
- 1.2. Данные и информация
- 1.3. Сигналы
- 1.4. Методы модуляции и кодирования данных
- 1.5. Технические средства телекоммуникаций
- 1.6. Методы мультиплексирования

1.1. Основные понятия и терминология

- <u>Телекоммуникация</u> (греч. *tele* далеко и лат. *communicatio* общение) передача данных на большие расстояния.
- <u>Телекоммуникации</u> любые формы связи и способы передачи данных (информации?) на большие расстояния с применением электронных, оптических, электромагнитных, компьютерных технологий.
- <u>Средства телекоммуникаций</u> <u>технические</u> (оборудование, устройства), <u>программные</u> (методы, алгоритмы, протоколы) и <u>организационные</u> (рекомендации и стандарты) средства, предназначенные для передачи данных на большие расстояния.
- Система телекоммуникации взаимосвязанная совокупность технических и программных средств телекоммуникаций.
- <u>Телекоммуникационная сеть</u> (сеть связи) множество средств телекоммуникаций, связанных между собой и образующих сеть определённой *топологии* (конфигурации).
- <u>Сеть передачи данных</u> (СПД) телекоммуникационная сеть, предназначенная для передачи *цифровых* (дискретных) данных. СПД основа компьютерной сети.
- <u>Первичная (транспортная) сеть</u> телекоммуникационная сеть, содержащая типовые каналы и оборудование для передачи *пользовательских данных* без их изменения основа компьютерных и телефонных сетей, образующих <u>вторичную (пользовательскую) сеть</u>.

1.1. Основные понятия и терминология

- *Компьютерная сеть* универсальная телекоммуникационная сеть, объединяющая множество компьютеров.
- **Вычислительная сеть** компьютерная сеть, основной функцией которой является обработка данных (вычисления), включая распределенную обработку.
- *Конвергенция* (от лат. *convergo* сближаю) процесс объединения (взаимопроникновения, слияния) телекоммуникационных и компьютерных сетей.
- *Трафик* телекоммуникационной сети поток данных (информации?).
- Сигнализация процедура установления, поддержания (управления) и разрыва соединения для передачи данных в телекоммуникационной сети.
- <u>Синхронизация</u> средство поддержания работы цифрового оборудования в телекоммуникационной сети, направленное на обеспечение правильного распознавания передаваемых *цифровых* сигналов за счет согласования таймеров приемника и передатчика.
- Кодирование (в широком смысле) способ представления данных.
- Модуляция перенос низкочастотного сигнала в высокочастотный диапазон.
- Синхронность согласованность двух и более процессов во времени.
- Асинхронность временная рассогласованность процессов.

1.2. Данные и информация

<u>Данные</u> — "сведения, необходимые для какого-нибудь вывода, решения" (*Ожегов С.И. Словарь русского языка*).

<u>Информация</u> — "сведения, осведомляющие о положении дел, о состоянии чего-нибудь" (*Ожегов С.И. Словарь русского языка*).

 $\emph{Информационная энтропия}$: $H=-\sum_{i=1}^n p_i \log_2 p_i$, где p_i – вероятность появления i –го символа некоторого алфавита или i-го сообщения (i = 1, ..., n). Информация **Данные** Обработка (поиск) Виды данных Непрерывные (аналоговые) Дискретные (цифровые) Телефонные Видео Телеграфные Факсимильные Аудио Символьные (н/п изображение (голос) **(3BVK)** (азбука Морзе) (компьютерные) Данные / информация Сигналы дискретные дискретные непрерывные непрерывные

Виды сигналов

Коэффициент затухания

Сигнал: 1) искажение (изменение формы); 2) затухание/усиление (изменение мощности)

$$d$$
[дБ]= 10 lg $\frac{P_{8blX}}{P_{6X}}$, - коэффициент затухания / усиления

$$K = P_{\theta bl X}/P_{\theta X}$$
 - коэффициент передачи

В электрических ЛС:

$$d[дБ] = 20 \lg(U_{eblx}/U_{ex})$$
 $d[дБ] = 20 \lg(I_{eblx}/I_{ex})$

$$d$$
[дБ] = 20 lg (I_{eblx}/I_{ex})

<i>d</i> , дБ	1	2	3	5	10	13	16	17	20	25	30
K	1,26	1,59	2,0	3,16	10	19,95	39,8	50,1	100	316,2	1000

Мощность сигнала

Характеристики мощности сигнала:

- 1) абсолютная мощность **P** [Вт, мВт, ...];
- 2) *относительная* мощность *d* [дБ];
- *3) опорная* мощность **р** [дБм].

Соответствие между абсолютной мощностью P и опорной мощностью p:

1 мВт = 0 дБм

10 мВт = 10 дБм

20 мВт = 13 дБм

100 мВт = 20 дБм

1 вт = 30 дБм

1 кВт = 60 дБм

1 кВт = 70 дБм

$$d=10\lgrac{P_1}{P_2}$$
 [дБ / dВ]

$$p = 10 \lg \frac{P}{1 \text{мВт}} [дБм]$$

$$P = ?$$

Опорная мощность используется при энергетических расчетах канала связи (КС):

$$\begin{array}{ll} d_{\rm KC} = 10 \lg \frac{P_{\rm BX}}{P_{\rm BbIX}} = & 10 \lg \frac{P_{\rm BX}/1}{P_{\rm BbIX}/1} = \\ = 10 \lg (P_{\rm BX}/1 {\rm MBT}) & -10 \lg (P_{\rm BbIX}/1 {\rm MBT}) = p_{\rm BX} - p_{\rm BbIX} \\ p_{\rm BX} = p_{\rm BbIX} + d_{\rm KC} & \longrightarrow & P_{\rm BX} = 10^{0.1 p_{\rm BX}} \end{array}$$

Пример расчета:
$$P_{\text{BX}} = ?$$

$$P_{\text{вых}} = 20 \text{ мВт} \longrightarrow p_{\text{вых}} = 13 \text{ дБм}$$

$$d = 5 \, \text{дБ} / 100 \, \text{м} \longrightarrow d_{\text{KC}} = 20 \, \text{дБ}$$

$$p_{\text{BX}} = 13 + 20 = 33 \text{ дБм}$$

$$P_{\text{BX}} = 10^{0.1} p_{\text{BX}} = 10^{3.3} = 1995 \text{ MBT} \approx 2 \text{ BT}$$

$$y(t) = A\sin(\omega t + \varphi) = A\sin(2\pi f t + \varphi)$$

$$y(t) = A\cos(\omega t + \varphi') = A\cos(2\pi f t + \varphi')$$
 $\varphi' = \varphi - \pi/2$

$$\varphi' = \varphi - \pi / 2$$

Ряд Фурье:

$$y(t) = \frac{C}{2} + \sum_{i=1}^{\infty} (A_i \cos(\omega_i t) + B_i \sin(\omega_i t))$$

, где
$$\omega_i = i\omega_1 = 2\pi i f_1$$
 $(\omega_1 < \omega_2 < ...)$ $f_1 = 1/T$ - частота основной гармоники

$$A_i = \frac{2}{T} \int_{0}^{T} y(t) \cos(\omega_i t) dt$$

$$B_i = \frac{2}{T} \int_0^T y(t) \sin(\omega_i t) dt$$

$$C = \frac{2}{T} \int_{0}^{T} y(t)dt$$

Спектр

<u>Сигнал (функция) с ограни<mark>ч</mark>енным спектром:</u>

$$y(t) = \frac{C}{2} + \sum_{i=1}^{n} (A_i \cos(\omega_i t) + B_i \sin(\omega_i t))$$

$$\omega_1 < \omega_2 < \ldots < \omega_n$$

$$S = (f_n - f_1)$$
 - **спектр** сигнала

Функция с неограниченным спектром:

$$y(t) = \sum_{i=0}^{\infty} A_i \cos(\omega_i t) \qquad \omega_0 < \omega_1 < \dots < \omega_\infty \qquad \omega_0 = 0 \qquad (f_0 = 0)$$
$$\omega_\infty = \infty \quad (f_\infty = \infty)$$

$$\omega_0 < \omega_1 < \ldots < \omega_{\infty}$$

$$\omega_0 = 0 \qquad (f_0 = 0)$$

$$\omega_{\infty} = \infty \quad (f_{\infty} = \infty)$$

Полоса пропускания

<u>Условия качественной передачи</u> <u>сигнала:</u>

- •полоса пропускания (частот) и спектр сигнала: $F \ge S$;
- •ослабление сигнала (затухание) (искажение амплитуды сигнала);
- •дрожание фазы (джиттер) (искажение фазы).

Спектр и полоса пропускания непрерывных сигналов

Энергетический спектр сигнала

Характеристики энергетического спектра:

- •мощность сигнала (абсолютная):
 - •максимальная (пиковая) $P_{\text{макс}}$;
 - •средняя $P_{\rm cp}$;
 - •минимальная $P_{\text{мин}}$;
- •динамический диапазон:

$$D[дБ] = 10lg \frac{P_{\text{макс}}}{P_{\text{мин}}}$$

•*пикфактор*:

$$\nu$$
[дБ] = $10 \lg \frac{P_{\text{макс}}}{P_{\text{cp}}}$

Для **ТфОП:**

$$P_{\text{мин}} = 0.01 \text{ мкВт};$$

$$P_{\text{макс}} = 10000 \text{ мкВт;}$$

$$P_{cp} = 10$$
 мкВт:

$$D = 60$$
 дБ; $\nu = 30$ дБ.

|Расчетные значения:

$$D = 23 - 27$$
 дБ; $\nu = 14 - 18$ дБ.

|Kанал ТЧ: 300 – 3400 Гц

<u>Для аудиоданных:</u>

F от 16 до 20 000 Γ ц; D до 100 дБ.

Ограничения:

для каналов первого класса:

F от 50 до 10 000 Γ ц; D = 40 дБ.

для каналов высшего класса:

F от 30 до 15 000 Гц;

D = 50 дБ.

Электромагнитный спектр

Каноническая схема передачи сообщения

Телекоммуникационная система (система связи) – совокупность среды передачи (канала связи), *оконечного оборудования* (терминальные устройства) отправителя (источника) и получателя *сообщения* (*данных*), характеризующаяся определенными способами преобразования (кодирование и модуляция) передаваемого сообщения в сигнал и восстановления сообщения по принятому сигналу.

Усилители в *аналоговых* и *регенераторы в* цифровых системах связи.

Принцип модуляции

Модуляция (modulation) — перенос сигнала в заданную полосу частот путем изменения амплитуды, частоты, фазы в соответствии с информативным сигналом.

Несущая (carrier) - аналоговый высокочастотный сигнал, подвергаемый модуляции в соответствии с информативным сигналом (имеет меньшие показатели затухания и искажения, чем немодулированный информативный сигнал).

Понятие кодирования

Кодирование — представление дискретных данных в виде дискретных сигналов: *потенциальных* и *импульсных*.

Особенности передачи дискретных сигналов в телекоммуникационных системах:

- требуется широкая полоса пропускания линии связи;
- последовательный интерфейс (без модуляции);
- необходимость синхронизации приемника и передатчика;
- обеспечение помехозащищенности;
- проблема защиты передаваемых данных от несанкционированного доступа.

Классификация методов преобразования сигналов

сигнал

(AM, ЧΜ, ΦΜ, ...)

(NRZ, RZ, M2,

AMI, ...)

кодирование

1. Аналоговая модуляция непрерывных данных

x(t) — первичный информативный низкочастотный сигнал

y(t) — линейный высокочастотный сигнал

$$x(t) \longrightarrow y(t) \longrightarrow x(t)$$

Используется в радиовещании при работе множества радиостанций в одной общей среде (радиоэфире):

- *амплитудная модуляция* для радиостанций, работающих в **AM**-диапазоне (*Amplitude Modulation*);
- частотная модуляция для радиостанций, работающих в FM-диапазоне (Frequence Modulatin).

2. Импульсная модуляция непрерывных данных

- 1. Амплитудно-импульсная модуляция (АИМ) (Pulse Amplitude Modulation PAM)
- 2. Импульсно-кодовая модуляция (ИКМ) (Pulse Code Modulation PCM)

Теорема Котельникова: $F_d \ge 2f_{\rm B}; \ \Delta t \le 1/(2f_{\rm B})$

Для ТфКС: $f_H = 300 \ \Gamma$ ц, $f_B = 3400 \ \Gamma$ ц:

частота дискретизации: $F_d >= 6800 \, \Gamma$ ц $\longrightarrow 8000 \, \Gamma$ ц

<u>Скорость передачи ИКМ (битрейт):</u> 8000 [раз/с] *8 [бит] = 64 кбит/с = 64 000 бит/с

Модификации ИКМ:

Стандарт G.726:

3. Методы модуляции (манипуляции) дискретных данных

Комбинированные методы модуляции

Амплитудно-фазовые диаграммы

V=6C

ASK – Amplitude Shift Keying

FSK – Frequency Shift Keying

PSK – Phase Shift Keying

QPSK – Quadrature PSK

<u>Пропускная способность канала:</u> $C [\text{бит/c}] = 1/t_b$

QAM – Quadrature Amplitude Modulation

4. Цифровое кодирование

Проблемы передачи дискретных сигналов: искажение и затухание, шумы в канале, рассинхронизация

4. Цифровое кодирование

Формирование потенциального сигнала: одна гармоника

(n=1, 2, ...) $f_1 = C/2 -$ частота основной (первой) гармоники

Характеристики сигнала с одной гармоникой

Длина периода синусоидального сигнала: $T = 2t_b = 200$ нс = 0.2 мкс

Формирование потенциального сигнала: две гармоники

Формирование потенциального сигнала: три гармоники

$$A_3 = \frac{A_1}{5};$$

$$f_3 = 5f_1;$$

$$S = f_3 - f_1 = 4f_1$$

Формирование потенциального сигнала: четыре гармоники

$$A_4 = \frac{A_1}{7};$$

$$f_4 = 7f_1;$$

$$S = f_4 - f_1 = 6f_1$$

4. Цифровое кодирование

Особенности распознавания дискретных сигналов

Передача чередующихся нулей и единиц

$$C = 10 \text{ Мбит/с}$$
 $f_0 = C/2 = 5 \text{ МГц}$

$$F = 5 - 15 M \Gamma \mu$$
 (2 гармоники)

$$F = 5 - 25 M \Gamma \mu$$
 (3 гармоники)

$$F = 5 - 35 M \Gamma \mu$$
 (4 гармоники)

Передача длинной последовательности единиц (или нулей)

$$C = 10 \text{ Мбит/с}$$

 $f_0 = C/2 = 5 \text{ МГц}$

$$F = 5 - 35 MГц$$

$$F = 1,3 - 35 MГц$$

$$F = 1,3 - 5 MГц$$

$$F = 0 - 5 M\Gamma$$
ц

$$F = 0 - 10 M \Gamma \mu$$

4. Цифровое кодирование

Требования к методам кодирования:

- минимизация спектра сигнала;
- самосинхронизация;
- отсутствие постоянной составляющей;
- обнаружение и коррекция ошибок;
- низкая стоимость реализации.

Обнаружение ошибок — желательно для экономии времени за счет отбрасывания ошибочных данных до их полного приёма в буфер.

Спектр результирующего сигнала зависит от:

- метода кодирования (модуляции);
- скорости модуляции (скорости передачи данных);
- состава передаваемых данных.

Отсутствие постоянной составляющей:

- •синхронизация приёмника с передатчиком;
- •уменьшение спектра сигнала за счет низкочастотной составляющей;
- •наличие трансформаторных схем гальванической развязки в электрических линиях связи.

Низкая стоимость реализации — чем больше уровней сигнала, тем требуется более мощное и более дорогое приемопередающее оборудование.

Параметры сравнения: 1) спектр сигнала; 2) самосинхронизация;

3) постоянная составляющая; 4) обнаружение ошибок; 5) стоимость реализации.

Методы физического кодирования дискретных данных

4. Цифровое кодирование

Логическое кодирование

1. <u>Избыточное кодирование</u>

4B/5B; 5B/6B; 8B/10B; 8B/6T; ...

A=110110000001

4B	5B	4B	5B
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

B=110111001001001

Избыточность метода -25% Избыточных кодов -16

2. Скремблирование

$$B_i = A_i \oplus B_{i-3} \oplus B_{i-5}$$

A=110110000001

$$B_{1} = A_{1} = 1;$$

$$B_{2} = A_{2} = 1;$$

$$B_{3} = A_{3} = 0;$$

$$B_{4} = A_{4} \oplus B_{1} = 1 \oplus 1 = 0;$$

$$B_{5} = A_{5} \oplus B_{2} = 1 \oplus 1 = 0;$$

$$B_{6} = A_{6} \oplus B_{3} \oplus B_{1} = 0 \oplus 0 \oplus 1 = 1;$$

$$B_{7} = A_{7} \oplus B_{4} \oplus B_{2} = 0 \oplus 0 \oplus 1 = 1;$$

$$B_{8} = A_{8} \oplus B_{5} \oplus B_{3} = 0 \oplus 0 \oplus 0 \oplus 0 = 0;$$

$$B_{9} = A_{9} \oplus B_{6} \oplus B_{4} = 0 \oplus 1 \oplus 0 = 1;$$

$$B_{10} = A_{10} \oplus B_{7} \oplus B_{5} = 0 \oplus 1 \oplus 0 = 1;$$

$$B_{11} = A_{11} \oplus B_{8} \oplus B_{6} = 0 \oplus 0 \oplus 1 = 1;$$

$$B_{12} = A_{12} \oplus B_{9} \oplus B_{7} = 1 \oplus 1 \oplus 1 = 1.$$

$$C_i = B_i \oplus B_{i-3} \oplus B_{i-5} = A_i$$

1.5. Технические средства телекоммуникаций Классификация средств телекоммуникаций

1.5. Технические средства телекоммуникаций Классификация каналов связи

1.5. Технические средства телекоммуникаций

Характеристики каналов связи

1. Скорость модуляции [бод]:
$$B = 1/t$$

где t — длина единичного интервала;

T — период синусоидального сигнала: T=2t;

F – полоса пропускания канала: F = 1/T.

$$t=100$$
 нс \longrightarrow $C=10$ Мбит/с

$$T = 2t = 0,2$$
 мкс

$$B=10$$
 Мбод $F=5$ МГц

2. *Пропускная способность канала связи*: C [бит/с или bps – bits per second]

$$C = F\log_2(1 + \frac{P_{\rm c}}{P_{\rm II}})$$

1) формула Шеннона:
$$C = F\log_2(1 + \frac{P_c}{P_{III}})$$
 $\frac{P_c}{P_{III}} - SNR$ (Signal-to-Noise Ratio)

$$F = 100 \text{ M}\Gamma$$
ц:

$$\frac{P_{\rm c}}{P_{\rm cr}} = 1$$
 — $C = 100 \,{\rm M}$ бит/c;

F = 100 МГц:
$$\frac{P_{\rm c}}{P_{\rm rrr}} = 1$$
 $\longrightarrow C = 100 \, {\rm Mбит/c};$ $\frac{P_{\rm c}}{P_{\rm rrr}} = 3$ $\longrightarrow C = 200 \, {\rm Mбит/c}$

$$C = \frac{1}{t} \log_2 n_c = 2F \log_2 n_c = B \log_2 n_c$$

$$F = 100 \text{ M}\Gamma$$
ц:

$$F = 100 \text{ M}\Gamma$$
ц: $n_c = 2$ \longrightarrow $C = 200 \text{ M} \text{бит/c};$ $n_c = 4$ \longrightarrow $C = 400 \text{ M} \text{бит/c}$

$$n_c = 4$$
 — $C = 400 \text{ Мбит/с}$

3. <u>Достоверность передачи данных</u> – вероятность искажения бита (10-4 до 10-10 и выше) при передаче по каналу связи [BER – Bit Error Rate].

1.5. Технические средства телекоммуникаций

Телекоммуникационная система на основе непрерывного канала

ДС - дискретный (двоичный) сигнал; НС - непрерывный сигнал; ИДС (ПДС) - источник (приемник) двоичных сигналов; М (ДМ) - модулятор (демодулятор); Ф - фильтр.

Канал ТЧ: $F=3100 \, \Gamma \text{ц} \, (f_{\text{H}}=300 \, \Gamma \text{ц}; f_{\text{B}}=3400 \, \Gamma \text{ц})$

Телекоммуникационная система на основе дискретного канала

УС - устройство сопряжения с КС; УЗО - устройство защиты от ошибок; УПС - устройство преобразования

сигналов.

Многоканальные системы связи

Уплотнение каналов связи в ТКС

Традиционные методы уплотнения каналов в ТКС: частотный и временной.

1. Частотное мультиплексирование (Frequency Division Multiplexing – FDM)

2. Временное мультиплексирование (Time Division Multiplexing – TDM)

Статическое (синхронное)

Статистическое (асинхронное)

3. Волновое мультиплексирование (Wavelength Division Multiplexing – WDM), спектральное уплотнение

Уплотнённое волновое мультиплексирование — DWDM (Dense WDM): 16, 32 или 40 спектральных каналов по 10 Гбит/с

