Example: the production of paints (Product Mix)

$$\max Z = 3x_E + 2x_I$$

$$x_E + 2x_I \le 6$$

$$2x_E + x_I \le 8$$

$$-x_E + x_I \le 1$$

$$x_I \le 2$$

$$x_E \ge 0 \quad x_I \ge 0$$

In standard form

$$\max Z = 3x_E + 2x_I$$

$$x_E + 2x_I + s_1 = 6$$

$$2x_E + x_I + s_2 = 8$$

$$-x_E + x_I + s_3 = 1$$

$$x_I + s_4 = 2$$

$$x_E \ge 0, x_I \ge 0, s_1 \ge 0, s_2 \ge 0, s_3 \ge 0, s_4 \ge 0$$

$$n = 6 m = 4$$

Initialization with slack variables is possible

Equation for the starting BFS

$$\underline{x}_{B} = \begin{bmatrix} s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \\ 1 \\ 2 \end{bmatrix}$$

$$\underline{x}_{B} = \begin{bmatrix} s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \\ 1 \\ 2 \end{bmatrix}$$

$$z_{1} = 6 - (x_{E} + 2x_{I})$$

$$s_{2} = 8 - (2x_{E} + x_{I})$$

$$s_{3} = 1 - (-x_{E} + x_{I})$$

$$s_{4} = 2 - (0x_{E} + x_{I})$$

BFS not optimal

First iteration

 x_E enters the basis

$$s_1 = 0 \Rightarrow x_E = 6$$
$$s_2 = 0 \Rightarrow x_E = 4$$

 s_2 leaves the basis

$$Z = 12 - (3/2s_2 - 1/2x_I)$$

$$s_1 = 2 - (-1/2s_2 + 3/2x_I)$$

$$x_E = 4 - (1/2s_2 + 1/2x_I)$$

$$s_3 = 5 - (3/2s_2 + 1/2x_I)$$

$$s_4 = 1 - (0s_2 + x_I)$$

BFS not optimal

Second iteration

 x_I enters the basis

Equation for the second iteration

$$s_1 = 0 \Rightarrow x_I = 4/3$$
 $Z = 38/3 - (4/3s_2 + 1/3s_1)$ $x_E = 0 \Rightarrow x_I = 8$ $x_I = 4/3 - (-1/3s_2 + 2/3s_1)$ $x_E = 10/3 - (2/3s_2 - 1/3s_1)$ $x_E = 10/3 - (2/3s_2 - 1/3s_1)$ $x_I = 0 \Rightarrow x_I = 2$ $x_I = 2$ $x_$

BFS is optimal
The algorithm stops after 2 iterations

Simplex on the Tableau

Initial tableau

1st iteration: x_E enters s_2 leaves

Gauss-Jordan elimination for the first iteration

- 1. s_2 row divided by pivot
- 2. x_E becomes basic in place of s_2
- 3. Zero all coeff. in x_E column except the one in row x_E

	x_E	x_I	s_1	s_2	<i>s</i> ₃	<i>s</i> ₄		
z	-3	-2	0	0	0	0	0	
 s_1	1	2	1	0	0	0	6	
x_E	1	1/2	0	1/2	0	0	4	
<i>s</i> ₃	-1	1	0	0	1	0	1	
s ₄	0	1	0	0	0	1	2	

Example for objective row:

Multiply row x_E by -3

$$x_E$$
 | -3 -3/2 0 -3/2 0 0 | -12

and subtract it from row Z

Obtaining the new row Z

$$Z \mid 0 -1/2 \quad 0 \quad 3/2 \quad 0 \quad 0 \mid 12$$

Gauss-Jordan elimination for the first iteration

Zero the coeff. in column x_E for row s_1 and s_3

Example for row s_1 :

Multiply row x_E by 1 (unchanged)

 x_E | 1 1/2 0 1/2 0 0 | 4 Subtract from row s_1

 s_1 | 1 2 1 0 0 0 | 6

Obtaining the new row s_1

 $s_1 \mid 0 \quad 3/2 \quad 1 \quad -1/2 \quad 0 \quad 0 \mid 2$

	x_E	x_I	s_1	s_2	<i>s</i> ₃	<i>s</i> ₄	
Z	0	-1/2	0	3/2	0	0	12
s_1	1	2	1	0	0	0	6
x_E	1	1/2	0	1/2	0	0	4
s_3	-1	1	0	0	1	0	1
<i>s</i> ₄	0	1	0	0	0	1	2

	x_E	x_I	s_1	s_2	<i>s</i> ₃	<i>s</i> ₄	
\mathcal{Z}	0	-1/2	0	3/2	0	0	12
s_1	0	3/2	1	-1/2	0	0	2
x_E	1	1/2	0	1/2	0	0	4
<i>s</i> ₃	-1	1	0	0	1	0	1
<i>s</i> ₄	0	1	0	0	0	1	2

Update rows

Second iteration

Tableau after 1st iteration

	Pivot		enterin	g					
		x_E	x_I	s_1	s_2	<i>s</i> ₃	s_4		
	Z	0	-1/2	0	3/2	0	0	12	
	s_1	0	3/2	1	-1/2	0	0	2	2 · 2/3 =
	x_E	1	1/2	0	1/2	0	0	4	$4\cdot 2=8$
	s_3	0	3/2	0	1/2	1	0	5	$5 \cdot 2/3 = 7$
	s ₄	0	1	0	0	0	1	2	2
leavin	g								

 2^{nd} iteration: x_I enters s_1 leaves

Tableau after 2nd iteration

A second example

Standard form
$$\max x_0 = 2x_1 + x_2$$

 $x_1 + x_2 + x_3 = 5$
 $-x_1 + x_2 + x_4 = 0$
 $6x_1 + 2x_2 + x_5 = 21$
 $x_1 \ge 0x_2 \ge 0x_3 \ge 0x_4 \ge 0x_5 \ge 0$

Initialization with slack variables

$$\underline{x}_{B} = \begin{bmatrix} x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ 21 \end{bmatrix}$$
 (Degenerate)

Initial tableau

	1			ϵ	enterin	g	•	
		x_3	x_4	x_5	x_1	x_2		
	x_0	0	0	0	-2	- 1	0	
·	x_3	1	0	0	1	1	5	5/1
	x_4	0	1	0	-1	1	0	_
	<i>x</i> ₅	0	0	1	6	2	21	21/6 = 7/2
					Pivot	_		

leaving

1st iteration: x_1 enters x_5 leaves

Tableau after 1st iteration

 2^{nd} iteration: x_2 enters x_3 leaves

Tableau after 2nd iteration

Optimal tableau

Unbounded solution

Example

$$\max x_0 = 2x_1 + x_2$$

$$x_1 - x_2 \le 10$$

$$2x_1 \le 40$$

$$x_1 \ge 0 \ x_2 \ge 0$$

in standard form

$$\max x_0 = 2x_1 + x_2$$

$$x_1 - x_2 + x_3 = 10$$

$$2x_1 + x_4 = 40$$

$$x_1 \ge 0 \ x_2 \ge 0 \ x_3 \ge 0 \ x_4 \ge 0$$

Initializing with slacks (vertex C)

$$\underline{x}_B = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 10 \\ 40 \end{bmatrix}$$

Unbounded solution

Initial Tableau

	x_3	x_4	x_1	x_2	
x_0	0	0	-2) –1	0
x_3	1	0	1	-1	10
x_4	0	1	2	0	40

 x_1 enters x_3 leaves From C to B along axes x_1 Tableau after first iteration

	x_3	x_4	x_1	x_2	
x_0	2	0	0	<u>-3</u>	20
x_1	1	0	1	-1	10
x_4	-2	1	0	2	20

 x_2 enters x_4 leaves From B to A along constraint (1)

Unbounded solution

Tableau after second iteration

	x_3	x_4	x_1	x_2	
x_0	$\left(\overline{1} \right)$	3/2	0	0	50
x_1	0	1/2	1	0	20
x_2	-1	1/2	0	1	10

 x_3 enters moving solution along (2) without reaching any other constraint

Solution grows to infinity (unbounded solution)
Simplex stops

Unbounded solution

A second example

$$\max x_0 = x_1$$

$$x_1 + x_2 \ge 1$$
 in standard form
$$x_1 \ge 0 x_2 \ge 0$$

$$\max x_0 = x_1$$

$$x_1 + x_2 - x_3 = 1$$

$$x_1 \ge 0 x_2 \ge 0 x_3 \ge 0$$

n=3, m=1

Polyhedron X is open

We cannot initialize with slacks. Why?

Unbounded solution

• Initialize the tableau with the BFS for vertex $x_1=1$ $x_2=0$

$$\underline{x}_B = [x_1] = [1] \quad \underline{x}_N = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \underline{0}$$

	x_1	x_2	x_3	
x_0		0	0 (0
$\overline{(x_1)}$	1	1	-1	1

Initial tableau
But something is wrong (what?)

Unbounded solution

Objective must be a function of non basic variables x_2 and x_3 only

We need a pivoting

Subtracting row x_1 to objective row

	x_1	x_2	x_3	
x_0	-1	0	0	0
x_1	1	1	-1	1

Correct objective value

	x_1	x_2	x_3		
x_0	0	1	-1	(1)	
x_1	1	1	-1	1	

x₃ enters without violating the constraint

Increasing x_3 the solution moves on axes x_1 (following an *extreme direction*)

LP: extreme directions

How many extreme directions are there in a polyhedron?

If \underline{d} is a direction for a polyhedron $X = \{A\underline{x} = \underline{b}, \underline{x} \ge \underline{0}\}$

then
$$A(\underline{x} + \lambda \underline{d}) = \underline{b} \implies A\underline{d} = \underline{0}$$

Rewriting as a function of basis B

$$A\underline{d} = \underline{0} \Rightarrow \left[B | N \right] \left[\frac{\underline{d}B}{\underline{d}N} \right] = \underline{0} \Rightarrow B\underline{d}B + N\underline{d}N = \underline{0}$$

Obtaining $\underline{d}_B = -B^{-1}N\underline{d}_N$

Then arbitrarily fixing d_N we compute an extreme direction as

$$\underline{d} = \begin{bmatrix} \underline{d}_B \\ \underline{d}_N \end{bmatrix} = \begin{vmatrix} -B^{-1}N\underline{d}_N \\ \underline{d}_N \end{vmatrix}$$

LP: extreme directions

A possible choice

A possible choice
$$\underline{d}_N = \underline{e}_j = \begin{bmatrix} 0 & 1 \\ \vdots & \\ 1 & j & \underline{e}_j \in \mathbf{R}^{n-m} \\ \vdots & \\ 0 & n-m \end{bmatrix}$$
 Obtaining $\underline{d} = \begin{bmatrix} -B^{-1}\underline{a}_j \\ \underline{e}_j \end{bmatrix}$

Obtaining
$$\underline{d} = \begin{bmatrix} -B^{-1}\underline{a}_j \\ \underline{e}_j \end{bmatrix}$$

where a_i is the *j*-th column of N

For each basis B distinct n-m vectors a_i can be chosen

Then the maximum number of extreme direction is

$$(n-m)\binom{n}{m}$$

LP: extreme directions

Computing the extreme directions for the example (basis matrix formed by x_i column)

$$A = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 \end{bmatrix}$ $N = \begin{bmatrix} 1 & -1 \end{bmatrix}$

$$N = \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$\underline{d}_{1} = \begin{bmatrix} -B^{-1}\underline{a}_{j} \\ \underline{e}_{j} \end{bmatrix} = \begin{bmatrix} -1 \cdot 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} (j=1) \qquad \underline{d}_{2} = \begin{bmatrix} -B^{-1}\underline{a}_{j} \\ \underline{e}_{j} \end{bmatrix} = \begin{bmatrix} -1 \cdot -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (j=2)$$

For both directions $\underline{A}\underline{d}=\underline{0}$ (e.g., for \underline{d}_2)

$$A\underline{d}_2 = 0 \Longrightarrow \begin{bmatrix} 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 1 - 1 = 0 \quad (n = 3, m = 1)$$

LP: finite optimality condition

Theorem

Given the LP problem

$$\max x_0 = \underline{c}^T \underline{x}$$
$$A\underline{x} = \underline{b}$$
$$\underline{x} \ge \underline{0}$$

Let d_j , j=1,...,D the extreme directions of the non empty polyhedron $X=\{A\underline{x}=\underline{b}, \ \underline{x}\geq 0\}$

An finite optimal solution exists if and only if

$$\underline{c}^T \underline{d}_j \le 0 \quad \forall j = 1,...,D$$

Such optimum corresponds to an extreme point of X

LP: alternative optimal solutions

Example

$$\max x_0 = 2x_1 + 4x_2$$

$$x_1 + 2x_2 \le 5$$

$$x_1 + x_2 \le 4$$

$$x_1 \ge 0 \quad x_2 \ge 0$$

in standard form

$$\max x_0 = 2x_1 + 4x_2$$

$$x_1 + 2x_2 + x_3 = 5$$

$$x_1 + x_2 + x_4 = 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

 x_2 enters x_3 leaves

Optimal tableau

	x_3	x_4		x_2	
x_0	2) 0	0	0	10
x_2	1/2	0	1/2	1	5/2
x_4	-1/2	1	1/2	0	3/2

LP: alternative optimal solutions

There are alternative optimal solutions: pivoting to let x_1 enter the basis

	$ x_3 $	x_4	x_1	x_2	
x_0	2	0	0	0	10
x_2	1/2	0	1/2	1	5/2
x_4	-1/2	1	1/2	0	3/2

 x_1 enters x_4 leaves

	x_3	x_4	x_1	x_2	
x_0	2	0	0	0	10
x_2	1	-1	0	1	1
x_1	-1	2	1	0	3

Alternative optimum

essere

verificata

 x_2

В

(2)

X

 x_1

All points on BC segment are optimal

Example – Two-phase Method

$$\min x_0 = 4x_1 + x_2 \\ 3x_1 + x_2 = 3 \\ 4x_1 + 3x_2 \ge 6 \\ x_1 + 2x_2 \le 4 \\ x_1, x_2 \ge 0$$
Not a canonical form
$$4x_1 + 3x_2 - x_3 = 6 \\ x_1 + 2x_2 + x_4 = 4 \\ x_1, x_2, x_3, x_4 \ge 0$$

I Phase (Definition and solution of the auxiliary problem)

Tableau for I phase

We must eliminate the basic variables from the objective row

	ı					,	/
	x_1	x_2	x_3	x_4	y_1	<i>y</i> ₂	
Z	0	0	0	0	1	1	0
y_1	3	1	0	0	1	0	3
<i>y</i> ₂	4	3	-1	0	0	1	6
x_4	1	2	0	1	0	0	4

Initial tableau

	$ x_1 $	x_2	x_3	<i>x</i> ₄	<i>y</i> ₁	<i>y</i> ₂	
z	-7	-4	1	0	0	0	-9
<i>y</i> ₁	3	1	0	0	1	0	3
<i>y</i> ₂	4	3	-1	0	0	1	6
x_4	1	2	0	1	0	0	4

Il tableau finale

i numeri della riga z per le variabili nella base DEVONO essere 0

	x_1	x_2	x_3	x_4	y_1	<i>y</i> ₂	
z	0	0	0	0	1	1	0
x_1	1	0	1/5	0	3/5 - 4/5	-1/5	3/5
x_2	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	-3/5	0	- 4/5	-1/5 3/5	6/5
x_4	0		1	:	1	-1	1

 y_1 and y_2 out of optimal basis

Values for initializing the original tableau

II Phase (Initializing and solving the original problem)

Eliminate the basic variables from the objective row

	x_1	x_2	x_3	x_4	
x_0	4	1	0	0	0
x_1	1	0	1/5	0	3/5
x_2	0	1	-3/5	0	6/5
x_4	0	0	1	1	1

Initial tableau for the original problem

	$ x_1 $	x_2	x_3	x_4	
x_0	0	0	-1/5	0	-18/5
x_1	1	0	1/5	0	3/5
x_2	0	1	-3/5	0	6/5
x_4	0	0	1	1	1

Solve for exercise ...

The Big-M method

$$\max x_0 = 3x_1 + 2x_2$$

$$2x_1 + x_2 \le 2$$

$$3x_1 + 4x_2 \ge 12$$

$$x_1, x_2 \ge 0$$

In standard form

$$\max x_0 = 3x_1 + 2x_2$$

$$2x_1 + x_2 + x_3 = 2$$

$$3x_1 + 4x_2 - x_4 = 12$$

$$x_1, x_2, x_3, x_4 \ge 0$$
 $x_1, x_2, x_3, x_4 \ge 0$

The modified problem

$$\max x_0 = 3x_1 + 2x_2 - My$$

$$2x_1 + x_2 + x_3 = 2$$

$$3x_1 + 4x_2 - x_4 + y = 12$$

$$x_1, x_2, x_3, x_4, y \ge 0$$

	x_1	x_2	x_3	x_4	y	
x_0	-3	-2	0	0	M	0
x_3	2	1	1	0	0	2
y	3	4	0	- 1	1	12

Eliminating y from the objective function row

Initial tableau

	x_1	x_2	x_3	x_4	y	
x_0	-3-3M	-2-4M	0	M	0	-12M
x_3	2	1	1	0	0	2
y	3	4	0	- 1	1	12

 x_2 enters x_3 leaves Tableau after the first iteration

	x_1	x_2	x_3	x_4	y	
x_0	1+5M	0	2+4 <i>M</i>	M	0	4-4M
x_2	2	1	1	0	0	2
y	- 5	0	-4	- 1	1	4

The tableau is optimal (M > 0) y is in the optimal basis
The problem is unfeasible