

## Lenguaje Algebraico

las operaciones aritmética, de esta forma se pueden manipular cantidades desconocidas lo que nos permite, formular expresiones algebraicas para luego poder resolver problemas mediante ecuaciones.

#### Expresión algebraica

por los signos de las operaciones aritméticas.

 $A = \pi \cdot R^2$  es la expresión algebraica para calcular el área de un círculo

#### **Monomios**

producto de un número por varias letras.

$$4x^2yz^3 \quad \rightarrow \quad \begin{cases} 4 & \rightarrow \quad \textit{Coeficiente} \\ x^2yz^3 & \rightarrow \quad \textit{Parte Literal} \end{cases}$$

• Dos *monomios* son *semejantes* si tienen la misma parte literal.

5x3 y 3x3 Son semejantes

5x y 3x<sup>2</sup> No son semejantes

- El grado de un monomio es el número de letras de la parte literal (la suma de todos los exponentes de su parte literal)
- El valor numérico de un monomio es el valor que se obtiene al sustituir la letra (o letras) por un número (o números) y realizar los cálculos.

El valor numérico de  $3x^2$  para x=2 es  $3\cdot(2)^2=3\cdot 4=12$ 

#### **Operaciones con Monomios**

Fara sumar o restar monomios, se suman o se restan los coeficientes de los monomios que sean semejantes:

$$5x^2 - 3x^2 = 2x^2$$

$$4x^3 + 7x^3 - 5x^3 = 6x^3$$

Fara *multiplicar* monomios se multiplican los coeficientes por un lado y las partes literales por otro (Propiedades de las potencias)

$$5x^2 \cdot 3x^3 = 15 x^5$$

$$4x^5 \cdot 7x^2 = 28 x^7$$

Fara dividir monomios se dividen los coeficientes por un lado y las partes literales por otro.

$$10x^4 : 2x^3 = 5x$$

$$24x^5: 6x^2 = 4x^3$$

### **Polinomios**

**■ Un polinomio, P(x), es l**a suma de varios monomios no semejantes, a los que llamaremos términos del polinomio. El coeficiente del término de mayor grado es el coeficiente principal, y el término sin letra (o de grado 0) se llama término independiente. Los representaremos por letras mayúsculas P, Q, R ....y entre paréntesis expresaremos la variable de la que depende. P(x), Q(x)...

$$P(x) = \underbrace{4x^3}_{\text{Término}} + \underbrace{3x^2}_{\text{Término}} - \underbrace{2x}_{\text{Término}} + \underbrace{5}_{\text{Itérmino independiente organol 3}}$$

El grado de un polinomio es el mayor de los grados de los monomios que los componen.

Grado de P(x) = 
$$4x^3 + 3x^2 - 2x + 5 = 3$$
 (el mayor) 
$$\begin{cases} grado: 3 \\ Coef. \ principal: 4 \end{cases}$$
 Término independiente: - 7

Un polinomio es *completo* si contiene todos los términos consecutivos desde el de mayor grado hasta el de menor, si no es así, será incompleto

$$P(x) = \underbrace{8x^4 + 3x^2 + 2x + 5}_{\text{Incompleto, falta término de grado 3}}$$

$$Q(x) = \underbrace{3x^3 + 2x^2 - 4x + 5}_{Completo}$$

**El valor numérico de un polinomio** P(x) para x=a, P(a), es el número que se obtiene al cambiar x por el número a, y realizar las operaciones indicadas.

Sea el polinomio  $P(x) = 3x^2 + 2x + 5$ 

Expresiones Algebraicas

$$P(-1) = 3(-1)^2 + 2(-1) + 5 = 3\cdot 1 - 2 + 5 = 3 - 2 + 5 = 6$$

$$P(2) = 3(2)^{2} + 2(2) + 5 = 3.4 + 4 + 5 = 12 + 4 + 5 = 21$$

**ば** Un número cualquiera *x=a es raíz de un polinomio P(x)*, cero de un polinomio, cuando el valor numérico de dicho polinomio si x=a es nulo.

$$x=a$$
 es raíz de  $P(x)$  si  $P(a)=0$ 

$$P(x) = x^2 - 4$$

$$P(-2) = (-2)^2 - 4 = 4 - 4 = 0$$
  $P(2) = (2)^2 - 4 = 4 - 4 = 0$ 

$$P(2) = (2)^2 - 4 = 4 - 4 = 0$$

## Operaciones con polinomios

Fara sumar o restar polinomios, sumaremos o restaremos los monomios semejantes que los componen y damos el resultado en orden decreciente en grado.

$$(x^{4} - 3x^{2} + x + 1) + (x^{3} - x^{2} + 5x - 2) =$$

$$= x^{4} - 3x^{2} + x + 1 + x^{3} - x^{2} + 5x - 2 = x^{4} + x^{3} - 4x^{2} + 6x - 1$$

$$(x^{4} - 3x^{2} + x + 1) - (x^{3} - x^{2} + 5x - 2) =$$

$$= x^{4} - 3x^{2} + x + 1 - x^{3} + x^{2} - 5x + 2 = x^{4} - x^{3} - 2x^{2} - 4x + 3$$
cambiamos el signo de todos los miembros del segundo

Para multiplicar dos polinomios, multiplicaremos todos los monomios del primero por todos los monomios del segundo y después agruparemos los monomios semejantes dando el resultado en orden decreciente en grado.



Fara *dividir* un polinomio *P(x)* entre otro Q(x), dividimos cada término del dividendo entre todos los términos del divisor usando la regla de la división "cociente por divisor más resto igual a Dividendo"

Fara sacar factor común en un polinomio se buscan todos los factores comunes (los que se repiten) a todos los términos y se aplica la propiedad distributiva de la multiplicación con respecto a la suma:

$$60x^4 + 18x^3 - 24x^2 = 6x^2 \cdot (10x^2 + 3x - 4)$$

## **Identidades Notables**

primero, más el doble del producto del primero por el segundo, más el cuadrado del segundo.

$$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$
  $(x+3)^2 = x^2 + 6x + 9$ 

primero, menos el doble del producto del primero por el segundo, más el cuadrado del segundo.

$$(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$
  $(2x-4)^2 = 4x^2 - 16x + 16$ 





# Expresiones Algebraicas

Departamento de Matemáticas http://selectividad.intergranada.com

**€** Suma por diferencia. La suma de dos términos multiplicada por su diferencia es igual al cuadrado del primero menos el cuadrado del segundo.

$$(a+b)(a-b) = a^2 - b^2$$
  $(x+3) \cdot (x-3) = x^2 - b^2$ 

## Factorización de polinomios

♠ Factorizar un polinomio consiste en descomponerlo en producto de polinomios del menor grado posible, de forma que ninguno de ellos pueda descomponerse a su vez.

Un polinomio se puede factorizar de tres maneras:

Sacando factor común.

$$10x^3 + 2x^2 - 8x = 2x(5x^2 + x - 4)$$
  $x^5 - 5x^3 = x^3(x^2 - 5)$ 

Identificando identidades notables.

$$x^{2} + 5x + 6 = (x + 3)^{2}$$
  $4x^{2} - 20x + 25 = (2x - 5)^{2}$ 

Buscando sus raíces mediante Ruffini.

El proceso de factorización comienza *buscando divisores* de la forma *x-a*, tales que, *a*, sea divisor del término independiente de nuestro polinomio.

Como cada raíz origina un factor de la forma x-a, cuando en la división por Ruffini el resto para un x=a sale 0, estamos diciendo que el polinomio de partida es divisible por el binomio x-a, y por tanto, este binomio junto con el cociente obtenido nos dará una factorización del polinomio [recuerda que si R(x)=0, entonces,  $D(x)=d(x)\cdot C(x)$ ]. Habrá que ir comprobando si los cocientes que vamos obteniendo se pueden descomponer, puesto que se trata de conseguir factores irreducibles.

$$P(x) = x^3 - 4x^2 + x + 6$$

|    | 1 | -4 | 1  | 6  |
|----|---|----|----|----|
| -1 | 0 | -1 | 5  | -6 |
|    | 1 | -5 | 6  | 0  |
| 2  | 0 | 2  | -6 |    |
| 0  | 1 | -3 | 0  | <· |

Los divisores de 6 son  $\pm 1$ ,  $\pm 2$ ,  $\pm 3$  y  $\pm 6$ , probamos con -1 y obtenemos resto 0. Probamos con 1, y nada, probamos con 2 y obtenemos resto 0. Por tanto la factorización es  $P(x) = (x+1) \cdot (x-2) \cdot (x-3)$ 

#### Fracciones algebraicas

$$\frac{x+3}{x-5} \qquad \frac{x+2}{x^2-4} \qquad \frac{x^2-5x+6}{x^2-3x}$$

Al igual que en las fracciones de números enteros, *en las fracciones algebraicas se suele trabajar con la fracción irreducible*, es decir, con aquella fracción equivalente a la original, pero que no se puede simplificar más.

Para simplificar una fracción algebraica se dividen numerador y denominador por un polinomio que sea factor común de ambos, y para ello nos ayudaremos de la factorización de polinomios.

a) 
$$\frac{x^2 + 4x + 4}{x^2 - 4} = \frac{(x+2)^2}{(x+2)\cdot(x-2)} = \frac{\cancel{(x+2)}\cdot(x+2)}{\cancel{(x+2)}\cdot(x-2)} = \frac{x+2}{x-2}$$

Las dos son identidades notables que convertimos en producto y simplificamos

b) 
$$\frac{x^2 - 4x + 4}{x^2 - x - 6} = \frac{(x - 2)^2}{(x + 3)(x - 2)} = \frac{(x - 2) \cdot (x - 2)}{(x - 2) \cdot (x - 3)} = \frac{x - 2}{x - 3}$$

En el numerador hay una identidad notable, y en el denominador factorizamos con Ruffini después y simplificamos.



En el numerador hacemos Ruffini y en el denominador sacamos factor común y después simplificamos.

d) 
$$\frac{x^3 + 2x^2 - x - 2}{x^3 - 2x^2 - 4x + 8} = \frac{(x+1)\cdot(x-1)\cdot(x+2)}{(x-2)\cdot(x-2)\cdot(x+2)} = \frac{x^2 - 1}{(x-2)^2}$$

Hacemos Ruffini tanto en el numerador como en el denominador y después simplificamos.

## Resolución de Problemas Algebraicos

A la hora de *resolver problemas algebraicos* seguiremos el siguiente esquema:

- a) Lectura y comprensión del enunciado.
- b) Análisis de los datos del enunciado. (Ayudarse con un dibujo)
- c) Traducción del problema al lenguaje algebraico
- d) Planteamiento de las operaciones a realizar y realización.
- Resolución del problema paso a paso intentando explicar los pasos seguidos para ello.
- f) Dar la solución del problema (responder a las preguntas).
- g) Evaluar e interpretar los resultados obtenidos con los datos del problema. ¿Son lógicos? ¿Se corresponden con lo pedido en el enunciado? ¿Puedo comprobar si la solución es correcta?
- 1.- Fíjate en la figura y expresa algebraicamente:
  - a) El área del triángulo Azul.
  - b) El área del trapecio amarillo.
  - c) La longitud de l.
  - d) Calcula la longitud de l, si x=5 cm



a) El área de un triángulo viene dada por:

$$A = \frac{Base \cdot Altura}{2} = \frac{B \cdot h}{2}$$

En el dibujo podemos observar que la base del triángulo es x, y la altura es 2/3 x. Por tanto si sustituimos en la fórmula obtenemos:

$$A_{a}(x) = \frac{B \cdot h}{2} = \frac{x \cdot \frac{2}{3} \cdot x}{2} = \frac{\frac{2}{3} x^{2}}{2} = \frac{1}{3} x^{2} u.a.$$

 El área del trapecio amarillo la podemos calcular restando al área del cuadrado, el área del triángulo azul.

$$A_{T}(x) = A_{D} - A_{A} = x^{2} - \frac{1}{3}x^{2} = \frac{2}{3}x^{2}$$
 u.a.

c) La longitud de I, la podemos calcular utilizando el teorema de Pitágoras  $a^2 = b^2 + c^2$  en el triángulo azul.

Sustituyendo nuestros valores llegamos a:  $I^2 = x^2 + \left(\frac{2}{3}x\right)^2$ 

Si operamos y despejamos I

$$l^2 = x^2 + \left(\frac{2}{3}x\right)^2 = x^2 + \frac{4}{9}x^2 = \frac{13}{9}x^2$$
  $\rightarrow$   $l = \sqrt{\frac{13}{9}x^2} = \frac{\sqrt{13}}{3}x$  u.l.

d) Si x=5, el valor de I será:

$$l(x) = \frac{\sqrt{13}}{3}x$$
  $\rightarrow$   $l(5) = \frac{\sqrt{13}}{3}\cdot 5 = \frac{5\sqrt{13}}{3} = 6 \text{ cm}$ 

2.- Doblando un alambre de 40 cm formamos un rectángulo. Halla la expresión algebraica que define el área del rectángulo y calcula su valor para x=4.

Si formamos un rectángulo de altura x, como 40 cm es el perímetro, las dos bases medirán 40-2x y una sola base medirá 20-x. Por tanto el área del rectángulo será (base x altura):

$$A(x) = base \times altura = (20 - x) \cdot x = 20x - x^2$$
  $\rightarrow$   $A(4) = 80 - 16 = 64 \text{ cm}^2$ 

