Operating Systems (INFR09047) 2019/2020 Semester 2

Course Overview

Antonio Barbalace: abarbala@inf.ed.ac.uk

Tom Spink: tspink@inf.ed.ac.uk

How to Get The Most Out of the Course

- Read ahead and use lectures to ask questions
- Take notes
- Do the coursework well. Straightforward schedule smartly
- Exam questions are a mix of simple conceptual and challenging applied ones
- If you are struggling, ask earlier rather than later
- If you don't understand ask!

Course Aims

- Understanding the concepts that underlie OS
- Purpose, structure and functions of OS
- Illustration of key OS aspects by example

Course Outcomes

- By the end of the course you should be able to
 - Describe, contrast and compare differing structures for OSes
 - Understand and analyze theory and implementation of: processes, resource control (concurrency etc.), physical and virtual memory, scheduling, I/O and files
- During the practical exercise and associated self-study, you will
 - Become familiar (if not already) with the C/C++ languages, gcc compiler, and Makefiles
 - Understand the high-level structure of the OS kernel both in concept and source code
 - Acquire a detailed understanding of at least three aspects of the OS kernel

Course Structure

- Introduction: overview of OS
- Basic OS structure and functions
- Process management, scheduling, concurrency
 - Processes and threads implementations
 - Scheduling: CPU utilization and task scheduling
 - Concurrency: mutual exclusion, synchronization, deadlock, starvation, etc.
- Memory management
 - Physical memory, early paging and segmentation techniques
 - Modern virtual memory concepts and techniques
 - Paging policies
- Storage Management
 - Low level I/O functions, high level I/O functions and filesystems
- Other topics to be determined, e.g., virtualization

Course Schedule (Tentative)

- Overview
- Introduction to CW1
- Introduction
- OS Structure
- Processes and Threads (2)
- Scheduling
- Introduction to CW2
- Memory and Virtual Memory (3)
- Synchronization, Semaphore/Mutexes, Monitors (3)
- Deadlock
- Introduction to CW3
- Devices and Disks
- File Systems
- Virtual Machines
- Reviews (2)

Administrative Details #1

- Instructors
- Antonio Barbalace
 - IF-2.04B
 - abarbala@inf.ed.ac.uk
- Tom Spink
 - IF-1.46
 - tspink@inf.ed.ac.uk

Administrative Details #2

- Teaching Assistants (TAs)
 - Dimitra Giantsidi <u>s1879801@sms.ed.ac.uk</u> IF-1.05
 - Chris Vasiladiotis <u>C. Vasiladiotis@sms.ed.ac.uk</u>?
 - Resul Tugay <u>s1822053@sms.ed.ac.uk</u> IF-4.31
- Out-of-class communication
 - Instructors/TAs
 - Course mailing list: <u>os-students@inf.ed.ac.uk</u>
 - Q&A via Piazza

Administrative Details #3

- When and Where: (Semester 2)
 - Mondays 10:00-10:50 @ Medical School, Teviot Lecture Theatre –
 Doorway 5
 - Thursdays 10:00-10:50 @ Appleton Tower, Lecture Theatre 1
- Course descriptor
 - http://www.drps.ed.ac.uk/19-20/dpt/cxinfr09047.htm
- Course webpage
 - http://course.inf.ed.ac.uk/os
 - Schedule w/ lecture slides, assignments, TA contact info, past exampapers, examinable material, etc.

Assessment

- Exam: 70% and Practical exercise: 30%
- 3 practical exercises (Coursework, CW)
 - Part 1: Scheduler
 - Due: 4pm on Thurs, 30th of January (10% of practical)
 - Part 2: Memory Management
 - Due 4pm on Thurs, 5th of March (60% of practical)
 - Part 3: Device Driver
 - Due 4pm on Thurs, 19th of March (30% of practical)
 - Check Learn -> Course Material -> Coursework Specification

Exam

Past exam papers: http://www.exampapers.ed.ac.uk

Textbooks

- Main Textbook: A. Silberschatz, P. Galvin and G. Gagne, "Operating System Concepts", 10th Edition, John Wiley, 2018
- Most of the other major OS texts are also suitable
- You are expected to read/know Silberschatz 10th edition
- Slides are a supplement not a replacement for the book
- If in doubt, read the book!
- Notes
 - We will not cover anything about Java
 - We will mostly focus on Linux/UNIX

Attendance

It is required to take attendance in at least one lecture a week

https://app-ca.tophat.com/e/974323/

• Join Code: **974323**

Let's take attendance!

Acknowledgments

Slides from many sources (ab)used in this course

Mike O'Boyle, Myungjin Lee, Ed Lazowska, Abraham Silberschatz allowed use of teaching slides for this course