Designing, Visualizing and Understanding Deep Neural Networks

Lecture 8: Object Detection and Segmentation

CS 182/282A Spring 2019
David Chan

Slides originated from Canny, Chen, Chou, Li, Karpathy, Johnson, and Yang

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$
 // scale and shift

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Reduces need for dropout

Un-normalization!! Re-compute and apply the optimal scaling and bias for each neuron! Learn γ and β (same dims as μ and σ^2). It can (should?) learn the identity mapping!

Last Time: Gradient Clipping by Value or Norm

Last Time: Dropout

"randomly set some neurons to zero in the forward pass"

i.e. multiply by random bernoulli variables with parameter p.

Note, p is the probability of keeping a neuron

(b) After applying dropout.

[Srivastava et al., 2014]

Last Time: Ensembles (VGGNet and CIFAR 10)

Model	Prediction method	Test Accuracy
Baseline (10 epochs)	Single model	0.837
True ensemble of 10 models	Average predictions	0.855
True ensemble of 10 models	Voting	0.851
Snapshots (25) over 10 epochs	Average predictions	0.865
Snapshots (25) over 10 epochs	Voting	0.861
Snapshots (25) over 10 epochs	Parameter averaging	0.864

Last Time: Hyperparameter Optimization

Use Validation blocks to compare hyper-parameter choices

Course Updates/Logistics

- Project Proposals are due today
- Assignment 1 was due yesterday...

This Time: Localization and Detection

This Time: Localization and Detection

Computer Vision Tasks

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

Semantic Segmentation

Label every pixel!

Don't differentiate instances, only worry about pixels

Classic computer vision problem

global information

Idea #2 – Convolutional Network

Design a network as a bunch of convolutional layers to make predictions for all pixels at once!

Idea #2 – Convolutional Network

Design a network as a bunch of convolutional layers to make predictions for all pixels at once!

Issues:

Convolutions at full resolution can be expensive

20

Idea #3 - Fully Connected CNN

Design a network as a bunch of convolutional layers with **downsampling** and **upsampling** inside the network!

Idea #3 - Fully Connected CNN

Design a network as a bunch of convolutional layers with downsampling and upsampling inside the network!

Pooling, strided convolution

Idea #3 - Fully Connected CNN

Design a network as a bunch of convolutional layers with **downsampling** and **upsampling** inside the network!

In-Network Upsampling

Nearest Neighbor

Input: 2 x 2

1	2	
3	4	

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

Output: 4 x 4

"Bed of Nails"

Input: 2 x 2

Output: 4 x 4

In-Network Upsampling: Max Unpooling

Max Pooling Remember which element was max!

Max Unpooling

Use positions from pooling layer

1	2	_
3	4	

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Corresponding pairs of downsampling and upsampling layers

Recall: Typical 3 x 3 convolution, stride 1 pad 1

Recall: Typical 3 x 3 convolution, stride 1 pad 1

Recall: Typical 3 x 3 convolution, stride 2 pad 1

Recall: Typical 3 x 3 convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

Transpose Convolution: Typical 3 x 3 convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

Transpose Convolution: Typical 3 x 3 convolution, stride 2 pad 1

Transpose Convolution: Typical 3 x 3 convolution, stride 2 pad 1

Same as backward pass for normal convolution!

Learnable Upsampling: Transpose Convolution

Idea #3 - Fully Connected CNN

Design a network as a bunch of convolutional layers with **downsampling** and **upsampling** inside the network!

Pooling, strided convolution

Upsampling:

Strided Transpose convolution

Predictions: H x W

Idea #4 – UNet (FCNN + Residuals)

Idea #4 – UNet (FCNN + Residuals)

40

Computer Vision Tasks

Classification

Classification

+ Localization

Computer Vision Tasks

Classification + Localization

Classification

Input: Image

Output: Class Label

Evaluation Metric: Class Accuracy

Classification + Localization

Classification

Input: Image

Output: Class Label

Evaluation Metric: Class Accuracy

- Cat

Localization

Input: Image

Output: Bounding Box

Evaluation Metric: Intersection Over Union (IoU)

Per-Class vs. Class Agnostic Regression

Class Agnostic

Per-Class

Per-Class vs. Class Agnostic Regression

Class Agnostic

Per-Class

Aside: Localizing Multiple Objects

Computer Vision Tasks

Computer Vision Tasks

 We use a metric called "mean average precision" (mAP)

- We use a metric called "mean average precision" (mAP)
- Compute average precision (AP) separately for each class, then average over classes

- We use a metric called "mean average precision" (mAP)
- Compute average precision (AP) separately for each class, then average over classes
- A detection is a true positive if it has IoU (Intersection over Union) with a groundtruth box greater than some threshold (usually 0.5) (mAP@0.5)

- We use a metric called "mean average precision" (mAP)
- Compute average precision (AP) separately for each class, then average over classes
- A detection is a true positive if it has IoU (Intersection over Union) with a groundtruth box greater than some threshold (usually 0.5) (mAP@0.5)
- Combine all detections from all test images to draw a precision / recall curve for each class; AP is area under the curve

- We use a metric called "mean average precision" (mAP)
- Compute average precision (AP) separately for each class, then average over classes
- A detection is a true positive if it has IoU (Intersection over Union) with a groundtruth box greater than some threshold (usually 0.5) (mAP@0.5)
- Combine all detections from all test images to draw a precision / recall curve for each class; AP is area under the curve
- TL;DR mAP is a number from 0 to 100; high is good

DOG (x, y, w, h)
CAT (x, y, w, h)
CAT (x, y, w, h)
DUCK (x, y, w, h)

= 16 numbers

DOG (x, y, w, h) CAT (x, y, w, h)

= 8 numbers

CAT, (x, y, w, h) CAT, (x, y, w, h)

= Many Numbers

DOG (x, y, w, h)
CAT (x, y, w, h)
CAT (x, y, w, h)
DUCK (x, y, w, h)

= 16 numbers

DOG (x, y, w, h) CAT (x, y, w, h)

= 8 numbers

CAT, (x, y, w, h) CAT, (x, y, w, h)

= Many Numbers

Need variable sized outputs

CAT? NO

DOG? NO

CAT? YES!

DOG? NO

CAT? NO

DOG? NO

Problem: Need to test many positions and scales

Solution: If your classifier is fast enough, just do it

Problem: Need to test many positions and scales

Solution: If your classifier is fast enough, just do it

Solution: Only look at promising regions of the image

Region Proposals

- Find "blobby" image regions that are likely to contain objects
- "Class-agnostic" object detector
- Look for "blob-like" regions

Classification + Region Proposals: R-CNN

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

Classification + Region Proposals: R-CNN

Issues

- Finding region proposals can be hard/time consuming
- Classifying each part of the image is time/space consuming

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

R-CNN Problem #1:

Slow at test-time due to independent forward passes of the CNN

R-CNN Problem #1:

Slow at test-time due to independent forward passes of the CNN

Solution:

Share computation of convolutional layers between proposals for an image

R-CNN Problem #2:

Post-hoc training: CNN not updated in response to final classifiers and regressors

R-CNN Problem #3:

Complex training pipeline

Solution:

Just train the whole system end-to-end all at once!

Project region proposal onto conv feature map

Convolution and Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal Fully-connected layers

Problem: Fully-connected layers expect low-res conv features: C x h x w

	R-CNN	Fast R-CNN
Training Time:	84 hours	9.5 hours
(Speedup)	1x	8.8x
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
mAP (VOC 2007)	66.0	66.9

Region proposals are still slow!

Insert a **Region Proposal Network (RPN)** after the last convolutional layer

RPN trained to produce region proposals directly; no need for external region proposals!

After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Slide credit: Ross Girschick

Slide a small window on the feature map

Build a small network for:

- classifying object or not-object, and
- regressing bbox locations

Position of the sliding window provides localization information with reference to the image

Box regression provides finer localization information with reference to this sliding window

Slide credit: Kaiming He

Use **N anchor boxes** at each location

Anchors are **translation invariant**: use the same ones at every location

Regression gives offsets from anchor boxes

Classification gives the probability that each (regressed) anchor shows an object

Slide credit: Kaiming He

Use N anchor boxes at each location

Anchors are **translation invariant**: use the same ones at every location

Regression gives offsets from anchor boxes

Classification gives the probability that each (regressed) anchor shows an object

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

Slide credit: Kaiming He

Aside: Mask R-CNN for Semantic Segmentation

Aside: Mask R-CNN

Aside: Mask R-CNN

Mask branch is a CNN that takes positive regions selected by the ROI classifier, and generates soft binary masks for them.

Generated masks are low-resolution.

During training, we scale down to compute the loss, and during inference, we scale up to compute the mask.

Aside: Mask R-CNN

Within each grid cell:

- Regress from each of the B base boxes to a final box with 5 numbers: (dx, dy, dh, dw, confidence)
- Predict scores for each of C classes (including background as a class)

Output: 7 x 7 x (5 * B + C)

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016 Liu et al, "SSD: Single-Shot MultiBox Detector", ECCV 2016 Image a set of **base boxes** centered at each grid cell Here B = 3

State of the art Models: RetinaNet

Step 1: Run the forward pass of a ResNet/Convolutional model

State of the art Models: RetinaNet

Step 1: Run the forward pass of a ResNet/Convolutional model

Step 2: At each level of downsampling, do single-shot detection.

State of the art Models: RetinaNet

State of the art Models: RetinaNet (Focal Loss)

State of the art Models

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [5]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [8]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [6]	Inception-ResNet-v2 [21]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [20]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [15]	DarkNet-19 [15]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [11, 3]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [3]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [9]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet [9]	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2
YOLOv3 608×608	Darknet-53	33.0	57.9	34.4	18.3	35.4	41.9

Recap

Semantic Segmentation

- Classify at a pixel level
- Ignores "objectness" focuses on semantics
- Mask-RCNN/UNet for pixel-level semantics

Recap

Semantic Segmentation

- Classify at a pixel level
- Ignores "objectness" focuses on semantics
- Mask-RCNN/UNet for pixel-level semantics

Localization:

- Find a fixed number of objects (one or many)
- L2 regression from CNN features to box coordinates
- Much simpler than detection; consider it for your projects!
- Overfeat: Regression + efficient sliding window with FC -> conv conversion
- Deeper networks do better

Recap

Semantic Segmentation

- Classify at a pixel level
- Ignores "objectness" focuses on semantics
- Mask-RCNN/UNet for pixel-level semantics

Localization:

- Find a fixed number of objects (one or many)
- L2 regression from CNN features to box coordinates
- Much simpler than detection; consider it for your projects!
- Overfeat: Regression + efficient sliding window with FC -> conv conversion
- Deeper networks do better

Object Detection:

- Find a variable number of objects by classifying image regions
- Before CNNs: dense multiscale sliding window (HoG, DPM)
- Avoid dense sliding window with region proposals
- R-CNN: Selective Search + CNN classification / regression
- Fast R-CNN: Swap order of convolutions and region extraction
- Faster R-CNN: Compute region proposals within the network
- Deeper networks do better