实验 6 存储器实验

1.	存储器扩展	1
2	双字显示	3

1. 存储器扩展

(1) 位数扩展(扩展字长)

存储器位数的扩展: 地址位数不变, 数据位扩展

电路连接方式:将多片存储器芯片的地址、片选、读写控制端并联,数据端单独引出。

例如:按如下图所示进行存储器容量扩展,并回答问题:

问题 (答案可在电路图中直接标注):

- ①上图中存储器的扩展是从多少扩展到多少?
- ②扩展后存储器的地址总线多少位?每个地址单元有多少位二进制数据?

(2) 位数字数同时扩展

存储器位数字数同时扩展,意味着扩大地址范围,并扩大字长。

使用 L 字 \times K 位芯片扩充成 M 字 \times N 位存储器,需(M/L) \times (N/k)片芯片,分 M/L 组,每组 N/K 片芯片。

例如:将 1K*16 位的存储器芯片,扩展为 4K*32 位,并回答问题。

1K*16 位的存储器芯片如下图所示,地址范围: 000~3ff,每个地址单元中有16 位数据。

如下图扩展连接可得到 4K*32 位存储器: 地址范围: 000~fff:

- 图中芯片 0 和芯片 1 的地址范围: 000~3ff(地址最高 4 位的二进制 0000~0011),每个地址单元中有 32 位数据,芯片 1 中为高 16 位,芯片 0 中 为低 16 位。
- 图中芯片 2 和芯片 3 的地址范围: 400~7ff(地址最高 4 位的二进制 0100~0111),每个地址单元中有 32 位数据,芯片 3 中为高 16 位,芯片 2 中 为低 16 位。
- 图中芯片 4 和芯片 5 的地址范围: 800~bff(地址最高 4 位的二进制 1000~1011),每个地址单元中有 32 位数据,芯片 5 中为高 16 位,芯片 4 中 为低 16 位。
- 图中芯片 6 和芯片 7 的地址范围: c00~fff (地址最高 4 位的二进制 1100~1111),每个地址单元中有 32 位数据,芯片 7 中为高 16 位,芯片 6 中 为低 16 位。

问题: 地址总线在扩展之前是多少位?扩展之后是多少位?

2. 汉字显示

(1) 16*16 点阵字库设计

完成实验素材中 16*16 点阵字库中存储器扩展部分。如下图所示,字库文件中数据 D0~D7 对应汉字的点阵数据,其中 D1 数据位对应红色两行的点阵信息,目前 D1 数据位没有连接,所以对应点阵信息显示有误,请按字扩展方式扩展连接 D1 的 4 个 4K*32 位的存储芯片,扩展结果是 16K*32 位。

连接成功后的显示结果应如下图所示。

(2) 显示学号姓名学院

利用"信息与编码"小工具,查找对应汉字的机内码 16 进制形式:

在"16*16 姓名显示"电路的存储器中录入汉字的机内码 16 进制形式(按 16 位格式录入)。

完成录入后,启动时钟模拟,应显示对应汉字,如下图所示。

其中"16*16字库"为前一个实验"16*16点阵字库"电路的封装。

