

自动控制原理实验报告

院(系):智能工程学院

学号: 20354027

姓名: 方桂安

自期: 2022.9.23

实验名称:基于 Matlab 的控制系统稳定性分析

一、 实验目的

1. 掌握三阶控制系统模拟电路的构成,掌握运用典型环节构造复合控制系统的方法。

- 2. 观察系统的不稳定现象,总结系统稳定的条件,并加深理解线性系统的 稳定性是属于系统本身的特性,只与其自身的结构和参数有关,而与外 作用无关。
- 3. 研究系统本身结构参数(开环增益和时间常数)与系统稳定性的关系, 并加深理解系统的稳定性只取决于系统的特征根(极点),而与系统的零 点无关。
- 4. 了解劳斯稳定判据的应用。

二、实验任务

- 1. 研究系统的稳定条件与开环增益的关系,确定临界稳定增益。
- 2. 研究时间常数的改变对系统稳定性的影响。
- 3. 在系统开环增益不变的情况下,研究不同时间常数对系统动态性能的影响。

三、实验设备

- 1. 笔记本电脑——Windows 11
- 2. MATLAB———R2021b

四、实验原理

1、由典型环节构造三阶控制系统的模拟电路

将两个惯性环节和一个积分环节串联等效而成三阶控制系统,在实验中为了实现系统开环增益的线性调节,前向通道中加入一个比例环节,得到如图 1 所示的三阶控制系统的模拟电路。在模拟电路中 $R_0=R=R_2=100$ k Ω , C=1uF, R_3 为可调电阻。

图 1: 三阶控制系统的模拟电路

该电路对应的结构图如图 2 所示,图中T = RC, $T_1 = RC_1$, $K = \frac{R_3}{R_2}$ 。

该三阶控制系统的开环传递函数为 $G(s) = \frac{K}{Ts(Ts+1)(T_1s+1)}$ 。

- **2**、线性系统稳定的充分必要条件是:闭环系统特征方程的所有根全部具有负实部,或闭环传递函数的极点均位于S左半平面。
- 3、系统的稳定性是系统本身的特性,它只与自身的结构与参数有关,而与初始条件、外界扰动的大小等无关。
- 4、劳斯稳定判据是:线性系统稳定的充分必要条件是劳斯表中第 1 列的系数均为正值。即系统特征方程的根都在 S 左半平面,则系统是稳定的。如果劳斯表中第 1 列系数有小于 0 的值,系统就不稳定,且其符号变化的次数等于该特征方程的根在 S 右半平面上的个数(或正实部根的数目)。

五、 实验步骤

1、研究系统的稳定条件与开环增益的关系,确定临界稳定增益 K_c 。

在模拟电路中令 $R_0=R=100~\mathrm{k}\Omega$ 、 $C=1~\mathrm{uF}$ 、 $C_1=1~\mathrm{uF}$ 、 R_3 为可调电阻,

范围为 $0\sim500$ k Ω 可调,那么只要调节 R_3 就可以线性地调节开环增益K。此时系

统的开环传递函数为

$$G(s) = \frac{10K}{s(0.1s+1)(0.1s+1)}$$

系统的特征方程式为 $0.01s^3+0.2s^2+s+10K=0$,由劳斯稳定判据判断系统临界稳定的条件。列出劳斯表:

$$s^{3}$$
 0.01 1
 s^{2} 0.2 10K
 s^{1} $\frac{0.2 - 0.1K}{0.01}$
 s^{0} 10K

由于系统稳定的充分必要条件是劳斯表中第 1 列的系数均为正值,所以可以得出:只有在0 < K < 2的情况下系统处于稳定状态,即系统的临界稳定增益为 $K_c = 2$,此时 $R_3 = 200$ k Ω 。

对系统进行单位阶跃响应, R_3 在 200k Ω 附近调节,观察系统在临界稳定、稳定和不稳定状态(即系统发生等幅振荡、减幅振荡和增幅振荡)时,系统开环增益的变化,将 3 种状态的响应曲线及相应的数据记录在表 1 对应的单元格中。

表 1: 三阶系统稳定性分析实验记录表

C_1	状态	R_3 $G(s)$	s) 阶跃响应曲线
	减幅振荡		
$C_1 = 1 \text{ uF}$	等幅振荡		
	增幅振荡	100 101	
	减幅振荡		
$C_1 = 0.1 \text{ uF}$	等幅振荡	ATA OF	
	增幅振荡		

2、研究时间常数的改变对系统稳定性的影响

在实验步骤 1 的模拟电路中改变第 2 个惯性环节的时间常数,令 $C_1 = 0.1 \text{uF}$,那么此时系统的开环传递函数为:

$$G(s) = \frac{10K}{s(0.1s+1)(0.01s+1)}$$

系统的特征方程式为 $0.001s^3+0.11s^2+s+10K=0$,由劳斯稳定判据判断系统临界稳定的条件。列出劳斯表:

$$s^{3} = 0.001 = 1$$

$$s^{2} = 0.11 = 10K$$

$$s^{1} = \frac{0.11 - 0.01K}{0.001}$$

$$s^{0} = 10K$$

由于系统稳定的充分必要条件是劳斯表中第 1 列的系数均为正值,所以可以得出:只有在0 < K < 11的情况下系统处于稳定状态,即系统的临界稳定增益为 $K_c = 11$,此时 $R_3 = 1100$ k $\Omega = 1.1$ M Ω 。

对系统进行单位阶跃响应, R_3 在 $1.1\,\mathrm{M}\Omega$ 附近调节,观察系统在临界稳定、稳定和不稳定状态(即系统发生等幅振荡、减幅振荡和增幅振荡)时,系统开环增益的变化,将3种状态的响应曲线及相应的数据记录在表1对应的单元格中。

与实验步骤 1 的结果比较可见,系统时间常数减小后(或者说系统的开环极点远离虚轴),系统稳定的开环增益得到了提高,系统的稳定性能得到了提高。

3、在系统开环增益不变的情况下,研究不同时间常数对系统动态性能的影响。

在模拟电路中, 令 $R_0 = R = 100 \text{ k}\Omega$ 、C = 1 uF、 $R_3 = 100 \text{ k}\Omega$, 此时 K = 1。

(1)分别当 $C_1=1$ uF和 $C_1=0.1$ uF时,对系统做单位阶跃响应,观察系统响应并记录动态性能指标(超调量 M_p 、峰值时间 t_p 、调整时间 t_s)的值,并填入表 2 中。

比较这两组数据可以发现:系统时间常数减小后,系统的动态性能得到了改善。

(2)将系统模拟电路中第 2 个惯性环节去除,系统编程一个二阶系统,对其做单位阶跃响应,观察系统响应并记录动态性能指标(超调量 M_p 、峰值时间 t_p 、调整时间 t_s)的值,并填入表 2 中。

$$R_0 = R = 100 \text{ k}\Omega$$

$$M_p \qquad t_p \qquad t_p$$

 $I_p t_p t_s$ 阶跃响应曲线

C = 1 uF, $R_3 = 100 \text{ k}\Omega$

$$C_1 = 1 \text{ uF}$$
 $G(s) = \frac{10}{s(0.1s+1)(0.1s+1)}$

$$C_1 = 0.1 \text{ uF}$$
 $G(s) = \frac{10}{s(0.1s+1)(0.01s+1)}$

二阶系统
$$G(s) = \frac{10}{s(0.1s+1)}$$

将这组数据与 $C_1 = 0.1 \text{ uF}$ 时的三阶系统的动态响应数据做比较,可以发现:它们只是在响应起始部分差别大一些,随着时间的推移趋于一致。

因此,在开环系统中,将两时间常数的数值相比,当时间常数相对值(即 $\frac{T_1}{T}$) 大于 $\frac{1}{5}$ 时,可将其中小的时间常数忽略不计,使系统的数学模型从三阶降为二阶处理。但是这要求开环增益的配合,否则不能简化近似,不然闭环系统将受到较大影响。

六、 实验结果

1. 任务一与任务二

由于传递函数 $G(s) = \frac{10K}{s(0.1s+1)(0.1s+1)}$, 且 $K = \frac{R_3}{R_2}$, 故由分析可计算出

临界稳定增益 K。, 在临界附近调节 R3, 绘制三种状态响应曲线如图:

表 1: 三阶系统稳定性分析实验记录表

C_1	状态	R_3 (k Ω)	K	G(s)	阶跃响应曲 线
	减幅振 荡	190	1.9	$\frac{19}{s(0.1s+1)(0.1s+1)}$	
$C_1 = 1 \text{ uF}$	等幅振 荡	200	2	$\frac{20}{s(0.1s+1)(0.1s+1)}$	见图 3
	增幅振 荡	210	2.1	$\frac{21}{s(0.1s+1)(0.1s+1)}$	

图 3: 任务 $-C_1 = 1$ uF的三种阶跃响应曲线

图 4: 任务二 $C_1 = 0.1 \text{ uF}$ 的三种阶跃响应曲线

可以看出任务二系统的稳定性能相较于任务一得到了提高,R₃需要变化较大才能改变系统的稳定状态。

2. 任务三

表 2: 系统单位阶跃响应及其动态性能指标记录表

	$R_0 = R = 100 \text{ k}\Omega$ $1 \text{ uF} R_3 = 100 \text{ k}\Omega$	M_{p}	t_p	t_s	阶跃响应曲 线
$C_1 = 1 \text{ uF}$	$G(s) = \frac{10}{s(0.1s+1)(0.1s+1)}$	54.4%	0.478	3.09	见图 5
$C_1 = 0.1 \text{ uF}$	$G(s) = \frac{10}{s(0.1s+1)(0.01s+1)}$	20.6%	0.362	0.849	见图 6
二阶系统	$G(s) = \frac{10}{s(0.1s+1)}$	16.3%	0.359	0.808	见图 7

图 5: 情况一的单位阶跃响应

图 6: 情况二的单位阶跃响应

图 7: 情况三的单位阶跃响应

可以看出情况二与三几乎一致,但需注意要开环增益的配合,否则不能近似。

七、 实验心得

通过本次实验学习了三阶系统的仿真,通过典型环节构造复合控制系统并进行稳定性分析。深入研究了系统本身结构参数与系统稳定性的关系,复习回顾了劳斯稳定判据的相关知识。

