[2HS306] Applied Engineering Mathematics - Sept-Oct 2021

MCQ [1 mark each]

1. Using Euler's Method, value of y(0.1) from the differential equation -y'=y, y(0)=2 with stepsize equal to 0.1 is

1.8

(c) 2.0

(b) 2.2

(d) None of these

MCQ [2 mark each]

1. If E denotes shift operator, Δ denotes the forward difference operator and ∇ denotes backward difference operator then the value of $\Delta \nabla$ is

(a) E

 $(\Delta - \nabla$

(b) $\Delta - 1$

- (d) None of these
- 2. In which of the following interval the root of equation $f(x) = x^3 7x^2 + 6x 1$ will lie

(a) (-1,0)

(c) (1,2)

(b) (0,1)

- (d) None of these
- 3. The approximate close value of $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x}$ using Trapezoidal rule with $h = \frac{\pi}{4}$ is

(a) 0.66044

(c) 0.56412

(b) 0.76084

- (d) 0.60064
- 4. The approximate close value of $\int \sqrt{\sin x + \cos x}$ using appropriate Simpson's rule with h = 0.25correct to 4 decimal places is

(a) 1.2840

(c) 1.0027

(b) 1.0582

- (d) None of these
- 5. The iterative formula to compute fourth root of positive number S using Newton-Raphson method is

(a) $x_{n+1} = \frac{4}{3}x_n + \frac{S}{4x^3}$

(c) $x_{n+1} = \frac{4}{3}x_n - \frac{S}{3x_n^3}$ (d) $x_{n+1} = \frac{3}{4}x_n - \frac{S}{3x_n^3}$

 $(x_{n+1}) = \frac{3}{4}x_n + \frac{S}{4x_n^3}$

- 6. The approximate root of $x^3 6x + 1 = 0$ correct to two decimal place using Bisection method is

(a) 0.12

(c) 0.21

(b) 0.20

(A) 0.16

7. The solution of $y' = x^2 + 1$ where y(0) = 0 upto second approximation using Picard's method is

(a)
$$\frac{x^7}{63} + 2\frac{x^5}{15} + \frac{x^3}{3}$$

(b) $\frac{x^9}{81} + 2\frac{x^5}{15} + \frac{x^3}{3}$

(c)
$$\frac{x^7}{63} + 2\frac{x^5}{12} + \frac{x^4}{16}$$

(d) None of these

(b)
$$\frac{x^9}{81} + 2\frac{x^5}{15} + \frac{x^3}{3}$$

SUBJECTIVE QUESTIONS [5 mark each]

- 1. Using Fourth order Runge-Kutta method find y(0.2) where $y' + 2y = \sin 3x$, y(0) = 1 with a step size 0.2.
- 2. Find value of f(0.56) from the following table using Newton forward interpolation formula.

x	0.5	0.6	0.7	0.8
f(x)	1.127626	1.185465	1.225169	1.337435

3. Solve the following system of equations by Gauss-Seidel Method 5x - y + 2z = 10, 2x + 4y = 12, x + y + 5z = -1.
