2.3 Sistema Formal de Dedução Natural

Definição 98: As regras de inferência do sistema formal DNP são apresentadas de Definição 98: As regras de inferência do sistema formal DNP são apresentadas de Definição 122: Um tipo de inquaque a) $F \in \mathcal{R}$ são conjuntos disjuntos; seguida. Cada regra origina uma regra na definição indutiva do conjunto das derivações (Definição 100). As regras de inferência recebem derivações (uma ou mais) e produzem

ıma nova derivação.

Regras de Introdução $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \rightarrow E \quad \frac{\varphi \wedge \psi}{\omega} \wedge_1 E \quad \frac{\varphi \wedge \psi}{\psi} \wedge_2 E$ $\rightarrow I$ $\frac{\dot{\varphi}}{\varphi \wedge \psi} \wedge I$ $\frac{\perp}{\neg \varphi} \neg I$ $\frac{\psi}{\varphi \vee \psi} \vee_2 I$ 76 $\frac{\perp}{\varphi}$ (RAA)

Numa regra de inferência, as fórmulas in liatamente acima do traço de inferência serão ma regra de interencia, as tormulas limeutaramente acuma do *traço de inferencias*. madas as *premissas* da regra e a fórmula abaixo do traço de inferência é chama-*clusão* da regra de inferência. Uma *aplicação* ou *instância* de uma regra de inferência é uma *substituição*

fórmulas da regra (meta-variáveis) por fórmulas do CP. Chamaremos inferência a uma aplicação de uma regra de inferência.

Exemplo 99: Vejamos dois exemplos de inferências $\wedge_1 E$:

xemplo 99: Vejamos dois exemplos de inferências
$$\wedge_1 E$$
:
$$\frac{p_1 \wedge p_2}{p_1} \wedge_1 E \qquad \frac{(p_1 \wedge p_2) \wedge (p_1 \rightarrow p_3)}{p_1 \wedge p_2} \wedge_1 E \qquad \text{em } E_{Arit}.$$
Estas duas inferências podem ser combinadas do seguinte modo:
$$\frac{(p_1 \wedge p_2) \wedge (p_1 \rightarrow p_3)}{p_1 \wedge p_2} \wedge_1 E \qquad \text{em } E_{Arit}.$$
Combinando esta construção com uma inferência $\rightarrow I$ podemos obter:
$$\left[(p_1 \wedge p_2) \wedge (p_1 \rightarrow \neg p_3)\right]_{\wedge E} \qquad (2.2)$$

$$\frac{\frac{(p_1 \wedge p_2) \wedge (p_1 \wedge p_3)}{p_1 \wedge p_2} \wedge_1 E}{\frac{p_1 \wedge p_2}{p_1} \wedge_1 E}$$
(2.2)

$$\frac{\frac{p_1 \wedge p_2}{p_1} \wedge_1 E}{p_1 \wedge p_2) \wedge (p_1 \rightarrow \neg p_3)) \rightarrow p_1} \rightarrow I$$
(2.3)
$$p_1(2)$$
assim come as combinacións de inferências em (2.2) e

Combinando esta construção com uma inferência $\to I$ podemos obter: $\frac{[(p_1 p_2) \wedge (p_1 \to p_2)]}{p_1 \wedge p_2} \wedge [(p_1 \to p_2) \wedge (p_1 \to p_2)]} \frac{p_1 \wedge p_2}{p_1} \wedge [E]$ $\frac{p_1 \wedge p_2}{p_1} \wedge [E] \wedge [p_1 \to p_2] \rightarrow [E]$ As duas inferências em (2.1), assim como as combinações de inferências em (2.2) e (2.3), são exemplos de demonstrações no sistema formal DNP. Definição 100: O conjunto D^{DNP} as derivações de DNP é o menor conjunto X de árvores finitas de fórmulas, com folhas possivelmente cortadas, tal que:

a) para todo $\varphi \in \mathcal{F}^{CP}$, a árvore cujo único nodo é φ pertence a X;

b) X é fechado para cada uma das regras de inferência de DNP; por exemplo, X é fechado para as regras $\rightarrow E$ e $\rightarrow I$ quando as seguintes condições são satisfeitas

$$\mathbf{i}) \stackrel{D}{\psi} \in X \implies \frac{\stackrel{D}{\psi}}{\varphi \to \psi} \to I \in X \qquad \qquad \cancel{\varphi}$$

D (onde ψ denota uma derivação (árvore de fórmulas) cuja raiz é ψ e ψ denota a árvore de fórmulas obtida de D cortando todas as eventuais ocorrências de φ como folha);

$$\begin{array}{ll} \text{ha);} & \\ \text{ii)} & \stackrel{D_1}{\varphi} \in X \text{ e } \varphi \xrightarrow{D_2} \psi \in X \implies \frac{\stackrel{D_1}{\varphi} \stackrel{D_2}{\varphi \to \psi}}{\psi} \xrightarrow{E} \in X. \end{array}$$

derivações de DNP são também chamadas deduções. No nosso estudo, privilegiaremos a terminologia derivação. A terminologia demonstração será reservada

ρωτισκού a usiminougia terrivação. A terminologia demonstração será reservada para uma classe especial de derivações (ver Definição 104). Exemplo 102: Para quaisquer fórmulas do $\mathrm{CP}\,\varphi,\,\psi$ e $\sigma,\,$ as construções abaixo são exemplos de derivações de DNP. $\varphi \not \sim \psi \psi$

1)
$$\frac{\varphi K \psi^{(1)}}{\frac{\varphi}{(\varphi \wedge \psi) \to \sigma} \to I^{(1)}} \to E$$

$$\mathbf{2)} \quad \frac{\frac{\mathscr{S}^{(2)} \neg \mathscr{S}^{(1)}}{\frac{1}{\varphi} RAA^{(2)}} \neg E}{\frac{1}{\varphi} RAA^{(2)}} \qquad \qquad \mathbf{3)} \quad \frac{\frac{\mathscr{S}^{(1)}}{\psi \rightarrow \varphi} \rightarrow I^{(2)}}{\varphi \rightarrow (\psi \rightarrow \varphi) \rightarrow I^{(1)}}$$

Os números naturais que aparecem a anotar inferências e fórmulas cortadas estabelecem uma correspondência, univoca, entre as fórmulas cortadas e as regras que permitem efetuar esses cortes. Por exemplo, em 3), a inferência $\rightarrow I$ anotada com (1) é utilizada para cortar a única ocorrência como folha de φ , enquanto que a inferência $\to I$ anotada com (2) não é utilizada para efetuar qualquer corte. **Exemplo 105.** Sejam φ , ψ e σ formulas.

1. Seja D_1 a seguinte derivação de DNP.

$$\frac{\cancel{\psi} \xrightarrow{(2)} \cancel{\psi} \rightarrow E \quad \psi \not \rightarrow \sigma^{(1)}}{\frac{\sigma}{\cancel{\psi} \rightarrow \sigma} \rightarrow I^{(2)}} \rightarrow E \quad (\psi \rightarrow \sigma) \rightarrow I^{(1)}$$

- (a) o conjunto de hipóteses de D₁ é {φ, φ → ψ, ψ → σ};
- (b) o conjunto de hipóteses não canceladas de D_1 é $\{\varphi \rightarrow \psi\}$;
- (c) a conclusão de D_1 é $(\psi \to \sigma) \to (\varphi \to \sigma)$;
- (d) D_1 é uma derivação de $(\psi \to \sigma) \to (\varphi \to \sigma)$ a partir de $\{\varphi \to \psi\}$

Seja D₂ a seguinte derivação de DNP.

ação de DNP.
$$\frac{\varphi \not \wedge \neg \varphi^{(1)}}{\varphi} \wedge_1 E \frac{\varphi \not \wedge \neg \varphi^{(1)}}{\neg \varphi} \wedge_2 E$$
$$\frac{\bot}{\neg (\varphi \wedge \neg \varphi)} \neg I^{(1)}$$

Então:

- (a) o conjunto de hipóteses de D₂ é {φ ∧ ¬φ};
- (b) o conjunto de hipóteses não canceladas de D₂ é vazio;
- (c) a conclusão de D₂ é ¬(φ ∧ ¬φ);
- (d) D_2 é uma derivação de $\neg(\varphi \wedge \neg \varphi).$

Definição 106: Uma fórmula φ diz-se derivéwel a partir de um conjunto de fórmulas Γ ou uma consequência sintifica de Γ (notação: $\Gamma \vdash \varphi$) quando existe uma derivação de Exemplo 129: $L_0 = DNP$ cuja conclusão $\ell \varphi$ e cujo conjunto de hipóteses não canceladas ℓ um subconjunto de Γ . Escreveremos $\Gamma \not V \varphi$ para denotar que φ não ℓ derivêvel a partir de Γ . Definição 107: Uma fórmula φ diz-se um teorema de DNP (notação: $\Gamma \vdash \varphi$) quando existe uma demonstração de φ . Escreveremos $V \not \varphi$ para denotar que φ não ℓ teorema denotar que φ não ℓ teorema demonstração de φ . Escreveremos $V \not \varphi$ para denotar que φ não ℓ teorema deformação de φ . Escreveremos $V \not \varphi$ para denotar que φ não ℓ teorema deformação de φ . Escreveremos $V \not \varphi$ para denotar que φ não ℓ teorema deformação de φ . Escreveremos $V \not \varphi$ para denotar que φ não ℓ teorema deformação de φ . Escreveremos $V \not \varphi$ para denotar que φ não ℓ teorema deformação da última fórmula): $R_{\ell(x)}$

existe uma cemonsaração de φ . Les terestantes φ per uma de DNP.

de DNP.

Definição 109: Um conjunto de fórmulas Γ (\bar{p}_2 -se sintaticamente meconsistente quando Γ $| \bot$, ou seja,
quando não existem derivações de \bot a partir de Γ).

Exemplo 110: O conjunto $\Gamma = \{p_0, p_0 \to \neg p_0\}$ é sintaticamente inconsistente. Uma

Definição 155: A operação de substituição das coorrências livres de por um L-termo t numa L-fórmula φ é notada por $\varphi[t]$ e definic

derivação de \bot a partir de Γ é: $\frac{p_0 \quad p_0 \rightarrow \neg p_0}{p_0 \quad \neg p_0} \rightarrow E$ Proposição 113: Para toda a fórmula φ , $\vdash \varphi$ se e só se $\emptyset \vdash \varphi$.
Proposição 114: Sejam $\varphi \in \psi$ fórmulas e $\Gamma \in \Delta$ conjuntos de fórmulas. Então: a) se $\varphi \in \Gamma$ entêo $\Gamma \vdash \varphi$.

a) se $\varphi \in \Gamma$, então $\Gamma \vdash \varphi$; b) se $\Gamma \vdash \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \vdash \varphi$;

c) se $\Gamma \vdash \varphi$ e $\Delta, \varphi \vdash \psi$, então $\Delta, \Gamma \vdash \psi$; d) $\Gamma \vdash \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \vdash \psi$;

e) se $\Gamma \vdash \varphi \rightarrow \psi$ e $\Gamma \vdash \varphi$, então $\Gamma \vdash \psi$. Teorema (Correção): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subseteq \mathcal{F}^{CP}$,

se $\Gamma \vdash \varphi$, então $\Gamma \models \varphi$. Proposição 117: Γ é sintaticamente consistente sse Γ é semanticamente c Teorema 118 (Completude): Para todo $\varphi \in \mathcal{F}^{\mathcal{CP}}$ e para todo $\Gamma \subseteq \mathcal{F}^{\mathcal{CP}}$,

se
$$\Gamma \models \varphi$$
, então $\Gamma \vdash \varphi$.

Teorema 119 (Adequação): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subset \mathcal{F}^{CP}$,

$$\Gamma \vdash \varphi$$
 se e só se $\Gamma \models \varphi$.

Corolário 120: Para todo $\varphi \in \mathcal{F}^{CP}$, φ é um teorema de DNP se e só se φ é uma tautologia.

Cálculo de Predicados de Primeira
3.1 Sintaxe

m é um terno $(\mathcal{F}, \mathcal{R}, \mathcal{N})$ t.q.

b) \mathcal{N} é uma função de $\mathcal{F} \cup \mathcal{R}$ em \mathbb{N}_0 . Os elementos de \mathcal{F} são chamados símbolos de função e os elementos de \mathcal{R} são

Os elementos de $\mathcal F$ são chamados símbolos de função e os elementos de $\mathcal R$ são chamados símbolos de relação ou símbolos de predicado. A função $\mathcal N$ é chamada função aridade, chamando-se ao número natural $n=\mathcal N(s)$ (para cada $s\in \mathcal F\cup \mathcal R$) a aridade de se e dizendo-se que s é um símbolo n-drio. Intuitivamente, a aridade de um símbolo corresponde ao seu número de argumentos. Os símbolos de função de aridade 0 são chamados constantes. Neste estudo, assumiremos que os símbolos de relação nunca têm aridade 0.

Os símbolos de aridade 1 dir-se-ão também símbolos unários, os de aridade 2

oniarios, etc. Exemplo 123: O terno $L_{Arit} = (\{0, s, +, \times\}, \{=, <\}, \mathcal{N})$, onde $\mathcal{N}(0) = 0$, $\mathcal{N}(s) = 1$, $\mathcal{N}(+) = 2$, $\mathcal{N}(\times) = 2$, $\mathcal{N}(=) = 2$ e $\mathcal{N}(<) = 2$, é um tipo de linguagen. Chamaremos a L_{Arit} o tipo de linguagem para a Aritmética. **Definição 125**: O alfabeto A_L induzido pelo tipo de linguagem L é o conjunto formado

pelos seguintes símbolos:

respetivamente: c) $x_0, x_1, \dots, x_n, \dots$, chamados variáveis ($ae\ p_1, \dots, \dots$ numerável, denotado por V: d) "(", ")" e ",", chamados simbolos auxiliares; e) os símbolos de função e os símbolos de relação de L (que se assume serem distintos de todos os símbolos anteriores), s funções $a_0: \mathcal{V} \longrightarrow \mathbb{N}_0$ e $a^{ind}: \mathcal{V} \longrightarrow \mathbb{N}_0$ são atribuições $x \mapsto 0$ $x_i \mapsto i$ $x_1, x_2, 0, s(0), \times (x_1, x_2), +(\times (x_1, x_2), s(0)).$

$$r \mapsto 0$$
 $r_0 \mapsto i$

$$x_1, x_2, 0, s(0), \times(x_1, x_2), +(\times(x_1, x_2), s(0)).$$
como uma sequência de palavras sobre A_L ... esta sequência consti

sequência de formação de $+(\times (x_1, x_2), s(0))$. 2. As palavras sobre $A_{L_{Arit}} = (0, x_1)$ e $< (0, x_1)$ (ambas de comprimento 6) não são L_{Arit} termos. Appear de = e < serem simbolos de aridade 2 e de 0 e x_1 serem A_{Arit} La transporte < e < e < serem simbolos de aridade 2 e de 0 e x_1 serem A_{Arit} La transporte < e < e < serem simbolos de aridade 2 e de 0 e x_1 serem A_{Arit} La transporte < e < e < serem simbolos de aridade 2 e de 0 e x_1 serem < e < e < serem simbolos de aridade 2 e de 0 e x_1 serem < e < serem simbolos de aridade 2 e de 0 e x_1 serem < e < serem < e < serem simbolos de aridade 2 e de 0 e x_1 serem < e < e < serem < e < serem < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e < e

exigido na condição c) da definição anterior. Estas que adiante designaremos por fórmulas atómicas.

 L_{Arit} -termos a) para todo $x \in V$, $x \in T_L$;

a) para todo $x \in V_+, x \in I_L$.
b) para todo a constante ce L_- ce L_- ;
c) para todo o símbolo de função f de L_- de aridade $n \ge 1$,
Teorema 131 (Indução Estrutural em L-Termos): Seja P(t) uma propriedade qu Teorema 131 (Indugão Estrutural em L-Termos): Seja P(t) un depende de um L-termo t. Se: a) para todo $x \in V$, P(x);
b) para todo $c \in C$, P(c);
c) para todo $f \in \mathcal{F}$, de aridade $n \ge 1$, e para todo $t_1, \dots, t_n \in \mathcal{T}_L$, $P(t_1)$ e... e $P(t_n) \Longrightarrow P(f(t_1, \dots, t_n))$;
então para todo $t \in \mathcal{T}_L$, P(t).

Observação 132: A definição indutiva do conjunto dos L-termos é determinista e te Orservação 132: a cemação minura ao conjunto dos L-termos e eterminista e to associado um princípio de recursão estrutural, para definir funções cujo domínio é conjunto dos L-termos. Este princípio é usado nas três definições que se seguem. Definição 133: O conjunto VAR(t), das variáveis que coorren um L-termo t, definido, por recursão estrutural em L-termos, do seguinte modo:

a) $VAR(x) = \{x\}$, para todo $x \in V$;

b) $VAR(c) = \emptyset$, para todo $c \in C$;

c) $VAR(f(t_1, ..., t_n)) = \int_{\mathbb{R}^n} VAR(t_i)$, para todo $f \in \mathcal{F}$ de aridade $n \geq 1$ e pa

todo t_1 .

todo $t_1, ..., t_n \in I_L$. =: Exemple 134: O conjunto das variáveis que ocorrem no L_{cheit} -termo $x_2 + s(x_1)$ é: $VAR(x_2 + s(x_1)) = VAR(x_2) \cup VAR(s(x_1)) = \{x_2\} \cup VAR(x_1) = \{x_2, x_1\}$. Definição 135: O conjunto subt(t), dos subtermos de um L-termo t, é definido, po

recursão estrutural em L-termos, do seguinte modo: **a)** $subt(x) = \{x\}$, para todo $x \in \mathcal{V}$; **b)** $subt(c) = \{c\}$, para todo $c \in \mathcal{C}$;

c) $subt(f(t_1,...,t_n)) = \{f(t_1,...,t_n)\} \cup \prod_{i=1}^{n} |subt(t_i), \text{ para todo } f \in \mathcal{F} \text{ de aridade } n \geq 1\}$

e para todo $t_1, ..., t_n \in \mathcal{T}_t$. $\stackrel{i=1}{}$ Exemplo 136: O conjunto dos subternos do L_{Arit} -termo $(x_2 + s(x_1)) \times 0$ é: $\{x_2, x_1, s(x_1), x_2 + s(x_1), 0, (x_2 + s(x_1)) \times 0\}$ Definição 137: A operação de substituição de uma variável x por um L-termo t nur

L-termo t' é notada por t'[t/x] e é definida por recursão estrutural (em t') do seguint

do:
a)
$$y[t/x] = \begin{cases} t, & se \ y = x \\ \\ y, & se \ y \neq x \end{cases}$$
, para todo $y \in \mathcal{V}$; b) $c[t/x] = c$, para todo $c \in \mathcal{C}$;

c) $f(t_1,...,t_n)[t/x]=f(t_1[t/x],...,t_n[t/x])$, para todo $f\in\mathcal{F}$ de aridade $n\geq 1$ e partodo $t_1,...,t_n\in T_L$. Exemple 138:

O L_{Arit}-termo que resulta da substituição da variável x₁ pelo L_{Arit}-termo s(0) no

 $\begin{array}{ll} 1. \ O\ L_{Arat}\text{-termo} \ que resulta da \ \text{substituçao} \ du \ \text{anavel} \ x_1 \ \text{pelo} \ L_{Arat}\text{-term} \\ L_{Arat}\text{-termo} \ x_2 + s(x_1) \ \dot{\epsilon}: & (x_2 + s(x_1))[s(0)/x_1] \\ & = \ x_2[s(0)/x_1] + s(x_1)[s(0)/x_1] \\ & = \ x_2 + s(x_1)[s(0)/x_1] \\ & = \ x_2 + s(s(0)) \\ 2. \ (x_2 + s(x_1))[s(0)/x_0] = x_2 + s(x_1) \ \text{(observe que} \ x_0 \not\in VAR(x_2 + s(x_1))). \end{array}$

Exemplo 141: As três palavras sobre A_{LArit} que se seguem são L_{Ari}

$$=(0,x_1), <(0,x_1), =(+(0,x_1), \times(s(0),x_1)).$$

2. Já a palavra sobre $\mathcal{A}_{L_{krit}} \times (0, x_1) = (+(0, x_1), \times (s(0), x_1))$. 2. Já a palavra sobre $\mathcal{A}_{L_{krit}} \times (0, x_1)$ não é uma L_{Arit} -formula atómica (note × é um símbolo de função e não um símbolo de relação: de facto, esta pa um L_{Arit} -termo). um L_{Arlt^*} termo). Definição 143: O conjunto \mathcal{F}_L é o menor conjunto de palavras sobre \mathcal{A}_L que satisfaz

a) $\varphi \in \mathcal{F}_L$, para todo $\varphi \in At_L$; b) $\bot \in \mathcal{F}_L$; c) $\varphi \in \mathcal{F}_L \implies (\neg \varphi) \in \mathcal{F}_L$, para todo $\varphi \in (\mathcal{A}_L)^*$;

d) $\varphi \in \mathcal{F}_L$ e $\psi \in \mathcal{F}_L \implies (\varphi \Box \psi) \in \mathcal{F}_L$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in (\mathcal{A}_L)^*$; e priz $\sim \vee^{r_L}$, e
p $\varphi\in \mathcal{F}_L\implies (Qx\varphi)\in \mathcal{F}_L,$ para todo $Q\in \{\exists,\forall\},$ para todo
 $x\in \mathcal{V}$ e para todo $\varphi\in (\mathcal{A}_L)^*.$

 $\overline{\varphi}$ não é teorema de formação da última fórmula): $R_1(x_1)$, $R_2(x_1, f_2(c, x_1))$,

por um L-termo t numa L-fórmula φ é notada por $\varphi[t/x]$ e é definida, por recursão

strutural em L-formulas do seguinte mode: a) $R(t_1, ..., t_n)[t/x] = R(t_1[t/x], ..., t_n[t/x])$ para todo $R \in \mathcal{R}$ de aridade n e para todo $t_1, ..., t_n \in \mathcal{T}_L$; b) $\lfloor t/x \rfloor = \lfloor t \rfloor$; $(-\psi)[t/x] = -\psi[t/x]$, para todo $\psi \in \mathcal{F}_L$;

todo $t_1, ..., t_n \in I_L$; b) $\perp [t/x] = \perp$; c) $(\neg \psi)[t/x] = \neg \psi[t/x]$, para todo $\psi \in \mathcal{F}_L$; d) $(\psi_1 \Box \psi_2)[t/x] = \psi_1[t/x] \Box \psi_2[t/x]$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \psi_1, \psi_2 \in \mathcal{F}_L$; $\mathbf{e)} \ \, (Qy \, \psi)[t/x] = \begin{cases} \begin{array}{c} \displaystyle \sum_{x \in \mathcal{T}(x) \sqcup \mathcal{V}_{\mathbb{Z}}[t/x],} \\ Qy \, \psi \ \, \text{se} \ \, y = x \end{array} \end{aligned}$

, para todo $Q \in \{\exists, \forall\}, y \in V, \psi \in F_L$. ($Qy \psi[t/x]$ se $y \neq x$

Observação 159: Se x é uma variável que não tem ocorrências livres numa L-formula

 φ out f é um L-termo onde não ocorrem variáveis, x é substituível por t em φ . Exemplo 160: Seia $\varphi = \forall x_1(x_1 \times x_2) \lor \neg (x_1 \times x_2)$. Então: a x_0 é substituível por $x_1 + s(x_2)$ em φ , pois x_0 não tem ocorrências livres na fórmula; b) x_1 é substituível por $x_1 + s(x_2)$ em φ , pois a única ocorrência livre de x_1 não está

b) x_1 e substituivel por $x_1 + s(x_2)$ em φ , pois a unica ocorrencia livre de x_1 nao esta no alcance de qualueur cuantificador: \mathbf{c}) x_2 não é substituível por $x_1 + s(x_2)$ em φ , pois x_2 tem uma ocorrência livre no alcance do quantificador $\forall x_1$ e $x_1 \in VAR(x_1 + s(x_2))$; d) x_2 é substituível por $x_0 + s(x_2)$ em φ , pois, embora exista uma ocorrência livre de x_2 no alcance do quantificador $\forall x_2$. $x_1 \notin VAR(x_2 + s(x_2))$.

3.2 Semântica Observação 165: As fórmulas do Cálculo de Predicados são construídas a partir das fórmulas atómicas (símbolos de relação "aplicados" a termos) e, por esta razão, as fórmulas atómicas desempenham papel semelhante ao das variáveis proposicionais no Cálculo Proposicional. Contudo, ao passo que no Cálculo Proposicional podemos atribuir "diretamente" um valor lógico a uma variável proposicional, a atribuição de valores lógicos às fórmulas atómicas é mais complexa.

Para atribuirmos valores lógicos a fórmulas atómicas, em particular, será necessário

Para atribuirmos valores logicos a formulas atomicas, em particular, sera necessario fixar previamente a interpretação dos termos. Tal requer que indiquemos qual o universo de objetos (domínio de discurso) pretendido para a denotação dos termos (por exemplo, números naturais, conjuntos, etc.), bem como a interpretação pretendida quer para os símbolos de função do tipo de linguagem em questão (por exemplo, para indicar que tomando No por universo, o símbolo de função binário + denotará a operação de adição) quer para as variáveis de primeira ordem. Para a interpretação das fórmulas auracio quar para as variaveis use primeira otucien. Tara a interpretação das ionimais atómicas, será ainda necessário fixar a interpretação dos símbolos de relação como relações entre objetos do domínio de discurso.

A indicação de qual o domínio de discurso pretendido e de quais as interpretações que

deverão ser dadas aos diversos símbolos será efetuada através daquilo que designaremos Definição 125: O dibeto A_L induzido pelo tipo de linguagem L é o conjunto formado colors seguintes símbolos:
a) ⊥, ∧, ∨, ¬→ e ↔ (conscituos proposicionais);
b) ∃ e ∀, chamados quantificador existencial e quantificador universal, respectimente;
c) x₀, x₁, ..., x_n, ..., chamados veriáveis (de primeira ordem), formando um conjunto universal, conscituos proposicionais (e.g., x_n, x_n, ..., chamados veriáveis (de primeira ordem), formando um conjunto universal, conscituos proposicionais);
a) e ∀, chamados quantificador universal, conscituos proposicionais (e.g., x_n, x_n, x_n, ..., chamados veriáveis (de primeira ordem), formando um conjunto ordem será feita no contexto de um domínio de discurso, através daquilo a que será para destunda estrutura. Um par (estrutura, atribuição) permitirá fixar ovalor [óigo de qualquer fórmula e, portanto, pode ser pensado como uma audoraçõe, do Cálculo Proposicionais);
b) ∃ e ∀, chamados quantificador universal, constituição suma estrutura para um tipo de linguagem. A interpretação de variáveis de primeira ordem será feita no contexto de um domínio de discurso, através daquilo a que estem para destunda através daquilo que desegnaremos ordem será feita no contexto de um domínio de discurso, através daquilo a que será para destunda estrutura. Um par (estrutura, atribuição) permitirá fixar destunda estrutura varia destunda estrutura v

Proposicional. Definição 166: Seja L um tipo de linguagem. Uma estrutura de tipo L, que breviadamente designaremos por L-estrutura, é um par (D, \neg) t.q. a) D é um conjunto não vazio, chamado o domínio da estrutura;

- é uma função, chamada a função interpretação da estrutura, e é t.q.:
 a cada constante c de L faz corresponder um elemento de D, que será notado

 - função de tipo $\mathcal{D}^p \longrightarrow \mathcal{D}$, que será notada por \overline{I} ; a cada símbolo de relação R de L, de aridade n, haz corresponder uma relação n-ária em D (i.e. um subconjunto de \mathcal{D}^p), que será notada por \overline{R} . Para cada símbolo de função ou relação se de L, \overline{s} é chamada a interpretação de s

na estrutura. Exemplo 168:

| Ixemplo 168: a) Seja $E_{Ant} = (\mathbb{N}_0, \neg)$, onde:

• \mathbb{U} é o número zero;
• \mathbb{T} é a função sucessor em \mathbb{N}_0 , i.e., $\mathbb{T}: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$;
• \mathbb{T} é a função adição em \mathbb{N}_0 , i.e., $\mathbb{T}: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$;
• \mathbb{T} é a função multiplicação em \mathbb{N}_0 , i.e., $\mathbb{T}: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$;
• \mathbb{T} é a função multiplicação em \mathbb{N}_0 , i.e., $\mathbb{T}: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$

 $(m,n) \mapsto m \times n$ • = é a relação de igualdade em \mathbb{N}_0 , i.e., = = $\{(m,n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m = n\}$;

• \prec é a relação menor do que em \mathbb{N}_0 , i.e., \prec = $\{(m,n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m < n\}$.

Então, E_{Ari} é uma L_{Arit} -estrutura. Designaremos, por vezes, esta estrutura por estrutura standard para o tipo de linguagem L_{Arit} . b) O par $E_0 = (\{a,b\}, ^-)$, onde:

 $\begin{array}{ll} \bullet \ \overline{0} = a; \\ \bullet \ \overline{s} \ \acute{\rm e} \ {\rm a \ funç\~ao} \ \ \{a,b\} \ \ \longrightarrow \ \ \{a,b\} \ ; \\ \end{array}$

 $\bullet \ \overline{\times}$ é a função $\ \{a,b\} \times \{a,b\} \ \longrightarrow$ $\{a,b\}$ $\{a,b\} \times \{a,b\} \longrightarrow \{a, \nu_f\}$ $\{x,y\} \mapsto \begin{cases} a & \text{se } x = y \\ b & \text{se } x \neq y \end{cases}$

• = = {(a, a), (b, b)};

é também uma L_{Arit} -estrutura. Exemplo 172: Seja t o L_{Arit} -termo $s(0) \times (x_0 + x_2)$.

1. O valor de
$$t$$
 para a atribuíção and, na L_{Acti} -teriturua E_{Acti} , é $(s(0) \times (x_0 + x_2)) a^{inal}$ $= s(0) a^{inal} + (x_0 + x_2) a^{inal}$ $= s(0) a^{inal} + (x_0 + x_2) a^{inal}$ $= (0) a^{inal} + 1) \times (x_0 a^{inal} + x_2 a^{inal})$ $= (0 + 1) \times (0 + 2)$

Já para a atribuição a₀ (do exemplo anterior), o valor de t é 0 (porquê?).
 Considere-se agora a L_{ver}-estrutura E₀ do Exemplo 168 e considere-se a seguinte atribuição nesta estrutura: a': V → {a, b}
 O valor de t em E₀ para a' é: x → b

O valor de t em E_0 para a' é:

 $\begin{array}{ll} a' \ \dot{\mathbf{e}}; & \times & \vee & \vee \\ & (s(0) \times (x_0 + x_2))[a'] \\ & = & \overline{\times} (s(0)[a'], (x_0 + x_2)[a']) \\ & = & \overline{\times} (\overline{s}(0[a']), \overline{+} (x_0[a'], x_2[a'])) \\ & = & \overline{\times} (\overline{s}(a), \overline{+}(b,b)) \end{array}$

Exemplo 170: As funções $a_0: V \longrightarrow \mathbb{N}_0$ e $a^{ind}: V \longrightarrow \mathbb{N}_0$ são atribuições em E_{Arit} . $x\mapsto 0$ $x_i\mapsto i$ Notação 174: Sejam a uma atribuição numa L-estrutura $E,\ d\in dom(E)$ e x uma

variável. Escrevemos $a\begin{pmatrix} x \\ d \end{pmatrix}$ para a atribuição $a': V \longrightarrow dom(E)$ em E definida por:

$$\text{para todo } y \in \mathcal{V}, \quad a'(y) = \begin{cases} d \text{ se } y = x \\ a(y) \text{ se } y \neq x \end{cases}$$

Exemplo 175: $a^{ind} \binom{x_0}{1}$ denota a atribuição em L_{Arit} definida por

para todo
$$i \in \mathbb{N}_0$$
, $a^{ind} \binom{x_0}{1} (x_i) = \begin{cases} 1 \text{ se } i = 0 \\ i \text{ se } i \neq 0 \end{cases}$

Definição 178: O valor lógico de uma L-fórmula φ numa L-estrutura $E = (D, \overline{\ })$ para uma atribuição a em E, é notado por $\varphi[a]_E$ ou, simplesmente, por $\varphi[a]$ (quando é claro qual a estrutura que deve ser considerada) e é o elemento do conjunto dos valores lógicos $\{0,1\}$ definido, por recursão em φ , do seguinte modo:

 c) (¬φ₁)[a] = 1 − φ₁[a], para todo φ₁ ∈ F_L; a) $\perp [a] = 0$;

b) $R(t_1,...,t_n)[a]=1$ sse $(t_1[a],...,t_n[\underline{a}])\in \overline{R},$ para todo o símbolo de relação R de aridade n e para todo $t_1, ..., t_n \in \mathcal{T}_L$; **d**) $(\varphi_1 \wedge \varphi_2)[a] = min(\varphi_1[a], \varphi_2[a])$, para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$; **e**) $(\varphi_1 \vee \varphi_2)[a] = max(\varphi_1[a], \varphi_2[a])$, para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;

 $\begin{array}{l} \mathbf{f}) \ (\varphi_1 \rightarrow \varphi_2)[a] = 0 \ \mathrm{sse} \ \varphi_1[a] = 1 \ \mathrm{e} \ \varphi_2[a] = 0, \quad \mathrm{para} \ \mathrm{todo} \ \varphi_1, \varphi_2 \in \mathcal{F}_L; \\ \mathbf{g}) \ (\varphi_1 \leftrightarrow \varphi_2)[a] = 1 \ \mathrm{sse} \ \varphi_1[a] = \varphi_2[a], \quad \mathrm{para} \ \mathrm{todo} \ \varphi_1, \varphi_2 \in \mathcal{F}_L; \end{array}$

h) $(\exists x \varphi_1)[a] = m \acute{a} x imo \{ \varphi_1[a \begin{pmatrix} x \\ d \end{pmatrix}] : d \in D \}$, para todo $x \in V, \varphi_1 \in F_L$; $\begin{array}{ll} & (\forall x\varphi_1)[a] = \min \{ \varphi_1[a \stackrel{f}{=} x] : a \in \mathcal{D}_I, & \text{para todo } x \in \mathcal{V}, \varphi_1 \in \mathcal{F}_L; \\ \text{i)} & (\forall x\varphi_1)[a] = \min \{ \varphi_1[a \stackrel{f}{=} x] : d \in D \}, & \text{para todo } x \in \mathcal{V}, \varphi_1 \in \mathcal{F}_L. \\ & \text{Proposição 179:} & \text{Para quaisquer L-estrutura E, atribuição a em E, L-fórmula φ e variável x,} \end{array}$

a) $(\exists x \varphi)[a] = 1$ sse existe $d \in dom(E)$ t.q. $\varphi[a \cap x \cap A] = 1$; b) $(\exists x \varphi)[a] = 0$ sse para todo $d \in dom(E)$, $\varphi[a\begin{pmatrix} a \\ x \end{pmatrix}] = 0$;

c) $(\forall x\varphi)[a] = 1$ sse para todo $d \in dom(E), \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 1;$ d) $(\forall x \varphi)[a] = 0$ see existe $d \in dom(E)$, $\varphi[a \begin{pmatrix} x \\ d \end{pmatrix}] = 0$. Exemplo 180: Consideremos a estrutura L_{Arit} e as atribuições em E_{Arit} a^{ind} e a_0

Exemplo 160: Consequence of the definidas no Exemplo 170.

1. Para a L_{trit} -formula $\varphi_0 = s(0) < x_2$, tem-se:

i) $\varphi_0[a^{ind}] = 1$, dado que $s(0)[a^{ind}] = 1$, $x_2[a^{ind}] = 2$ e $(1, 2) \in \mathbb{Z}$ (pois 1 é menor

i) $\varphi_0[a^{ind}] = 1$, dado que $s(0)[a^{ind}] = 1$, $x_2[a^{ind}] = 2$ e $(1, 2) \in \mathbb{Z}$ (pois 1 \(\phi\$ menor que 2);

ii) $\varphi_0[a_0] = 0$, dado que $s(0)[a_0] = 1$, $x_2[a_0] = 0$ e $(1, 0) \notin \mathbb{Z}$ (pois 1 não \(\phi\$ menor que 0);

2. Para a L_{Ant} -fórmula $\varphi_1 = \exists x_2(s(0) < x_2)$ tem-se:

i) $\varphi_1[a^{ind}] = 1$, pois existe $n \in \mathbb{N}_0$ t.q. $s(0) < x_2[a^{ind}] = 1$ (como $s(0)[a^{ind}\begin{pmatrix} x_2 \\ n \end{pmatrix}] = 1$, basta tomar n > 1);

ii) $\varphi_1[a_0]=1,$ pois existe $n\in\mathbb{N}_0$ t.q. $s(0)< x_2[a_0(\frac{x_2}{n})]=1$ (também neste caso se tem $s(0)[a_0\binom{x_2}{n}]=1$, pelo que, basta tomar n>1); Para a L_{Arit} -fórmula $\varphi_2=2xx_2-(s(0)< x_2)$ tem-se também o valor lógico 1, quer

para a^{ind} quer para a_0 (porquê?);

 Já para a L_{Arit}-fórmula φ₃ = ∀x₂(s(0) < x₂) tem-se valor lógico 0 para ambas as atribuições (de facto, a afirmação "para todo $n \in \mathbb{N}_0, 1 < n$ " é falsa).

Construa derivações em DNP que provem que: (i) $(p_0 \rightarrow p_1) \rightarrow \neg (p_0 \land p_1)$ é um teorema; (ii) $\neg (p_0 \land p_1) \vdash (p_0 \rightarrow p_1)$. (ii) $\neg (p_0 \land p_1) \vdash (p_0 \rightarrow p_1)$. (i) Um teorema é uma fórmula que admite deriva Uma tal derivação de $(p_0 \rightarrow \neg p_1) \rightarrow \neg (p_0 \land p_1)$ é:

$$\frac{p_0 \not/ p_1^{(2)}}{\frac{p_1}{p_1}} E \wedge_2 \frac{p_0 \not/ p_1^{(2)}}{\frac{p_0}{p_0}} E \wedge_1 p_0 \neq \neg p_1^{(1)}}{\frac{1}{\neg (p_0 \wedge p_1)} I \neg (2)} E \rightarrow$$

$$\frac{1}{\neg (p_0 \wedge p_1)} I \neg (2)$$

Uma tal derivação de $(p_0 \rightarrow p_1) \rightarrow \neg (p_1 \land p_1)$ \in : $\frac{p_0 \not p_1 p_1^{(2)}}{p_1} E \land_2 \frac{p_0 \not p_1^{(2)}}{p_0} E \land_1 p_0 \not - p_1^{(1)}}{p_0} E \rightarrow$ $\frac{1}{p_0 p_1} E \land_2 \frac{p_0 \not p_1^{(2)}}{p_0} E \rightarrow$ $\frac{1}{p_0 p_1} (p_0 \rightarrow p_1) I^{-(2)}$ $(ii) \dot{E} necessário construir uma derivação cuja conclusão seja <math>p_0 \rightarrow p_1 e$ cujo conjunto d hipóteses por cancelar seja um subconjunto de $\{\neg (p_0 \land p_1)\}$. Uma derivação nestas condiçõe e: $\frac{p_0 (1) \ p_1 (2)}{p_0 \land p_1} I \land \neg (p_0 \land p_1)$ $\frac{p_0 (1) \ p_1 (2)}{p_0 \land p_1} I \land \neg (p_0 \land p_1)$ $\frac{p_0 (1) \ p_1 (2)}{p_0 \land p_1} E \rightarrow$

$$\frac{y_0^{(1)} \quad y_1^{(2)}}{\frac{p_0 \land p_1}{p_0 \land p_1}} \stackrel{(1)}{I \land} \quad \neg (p_0 \land p_1)}{\frac{\frac{1}{\neg p_1}}{p_0 \rightarrow \neg p_1}} \stackrel{E}{I} \rightarrow \stackrel{(1)}{\longrightarrow} E$$

(b) Seja Γ um conjunto de fórmulas do Cálculo Proposicional. Prove que, se $\Gamma \vdash \neg (p_0 \land p_1)$, então

Sega I un compano o consension $\Gamma \vdash p_0 \rightarrow p_1$. Então, existe uma derivação D cuja conclus cujo conjunto de hipôteses não concoladas é um subconiunto de Γ . Assim, $\frac{p_0(1) \cdot p_1(2)}{p_0 \wedge p_1} \frac{1}{I} \wedge \frac{O}{(p_0 \wedge p_1)} \frac{O}{L} \wedge \frac{1}{I}$

$$\frac{p_0^{(1)} \quad p_1^{(2)}}{p_0 \wedge p_1} \quad I \wedge \quad \mathcal{D}}{\frac{1}{p_0 \wedge p_1}} \quad E - \frac{1}{p_0} \quad I \rightarrow (p_0 \wedge p_1)} \quad E - \frac{1}{p_0} \quad I \rightarrow (p_0 \wedge p_1)}{p_0 \rightarrow p_1} \quad I \rightarrow (p_0 \wedge p_1)$$

ão cuja conclusão $\epsilon p_0 \rightarrow -p_1 \ \epsilon \text{ conjunto de } h$

mto de hinóteses não canceladas é um

\'e uma derivação cuja conclusão \'e $p_0 \rightarrow \neg p_1$ e conjunto de hipóteses não canceladas ê um subcomjunto de I, o que prova I + $p_0 \rightarrow \neg p_1$. Uma resolução alternativa é a que se segue. Suponhamos Γ I − $(p_0 \land p_1)$. Então, pelo Torrema da Correcção, Γ $\models \neg (p_0 \land p_1)$. Para provar I I $\models p_0 \rightarrow \neg p_1$, pelo Torrema da Completude, basta provar Γ $\models p_0 \rightarrow \neg p_1$. Seja v uma valoração arbitrária que satisfaça Γ . De Γ $\models \neg (p_0 \land p_1)$, seque que $v(p_0 \rightarrow \neg p_1)$ = 1. Provamos, assim, que toda a valoração que satisfac Γ atribui valor I a $p_0 \rightarrow \neg p_1$, o que prova Considere o tipo de linguagem L = ({0, s, -}, {P, <}, N) em que N(0) = 0, N(s) = 1, N(-) = 2,

- $\mathcal{N}(P) = 1 \text{ e } \mathcal{N}(<) = 2.$
- Consider to tipo the imaging in $L = \{(t), s, -f\}, \{r, s\}, f\}$ in the N(0) = 0, N(0) = 1, N(-1) = 1, N(P) = 1 is N(P) = 1 in N(P) = 1, N

$$x_1 \in T_L$$
 x_1
 $x_2 \in T_L$
 $x_2 = x_2$
 $x_2 \in T_L$
 $x_3 \in T_L$
 $x_4 = x_2$
 $x_2 = x_3 \in T_L$
 $x_4 = x_3 \in T_L$
 $x_5 \in T_L$
 $x_7 = x_7 \in T_L$
 $x_7 = x_7$

$$\frac{\overline{\mathsf{P}(x_1) \in \mathcal{F}_L}}{(\mathsf{P}(x_1) \land \forall_{x_1}(x_2 < x_1)) \in \mathcal{F}_L} \bigvee_{x_1} \bigvee_{x_2 \in \mathcal{F}_L} \bigvee_{x_3 \in \mathcal{F}_L} \bigvee_{x_4 \in \mathcal{F}$$

- s(x₁) − (x₂ − s(0)) ∈ T_L

 (b) Indique (justificando) o conjunto das variáves substituíveis pelo L-termo x₂ − s(x₁) na L-fórmula γ₁(P(x₁) → 3_m − (x₀ < x₂ − s(x₁ − 0))).

 R: Sejam t e ψ respectivamente o termo e a fórmula dados. O conjunto pedido ℓ V\{x₂, x₄}, onde V ℓ o conjunto de todos as variáveis. Por um lado, quer x₂, quer x₄, têm, em φ, uma ocorrência livre no alcance do quantificador V₁, Como x₁ ∈ VAR(t), nem x₂, nem x₄ são substituíveis por t em φ. Por outro lado, nenhuma outra variável tem ocorrências livres em φ. Portanto, qualquer outro variável ℓ substituível por t em φ.

 (c) Defina por recursão estrutural a função f : T_L N₀ que a cada L-termo t faz corresponder o número de cocorrências da variável x₂ muent.

$$\begin{array}{lll} f(x) & = & 1 & se \ i = 2011 \\ f(x_i) & = & 0 & se \ i \neq 2011 \\ f(0) & = & 0 & \\ f(s(t) & = & f(t) & para \ todo \ t \in \mathcal{T} \\ f(t-t') & = & f(t) + f(t') & para \ todo \ t, t' \in \mathcal{T} \\ \end{array}$$

- - $$\begin{split} &\text{(i)} \ \, (0-\mathsf{s}(x_1-x_8)) \, [a] \\ &\text{(ii)} \ \, (\mathsf{P}(x_2) \wedge \exists_{x_1} (\mathsf{s}(x_1) < 0)) \, [a] \end{split}$$
- R: (i) O valor do I-term $O = s(x_1 x_8)$ para a atribuição a ϵ o elemento de \mathbb{Z} , o domínis E, obtido pelos seguintes cálculos recursivos: $(0 s(x_1 x_8))[a] = 0[a] \equiv s(x_1 x_8)[a]$
 - $= \overline{0} = \overline{s} ((x_1 x_8)[a])$ $= 0 = \overline{s} (x_1[a] = x_8[a])$ $=0\equiv \mathtt{s}\left(a(x_1)\equiv a(x_8)\right)$ $=0 \equiv \pi (1 \equiv 8)$
- (ii) A L-fórmula $P(x_2) \land \exists_{x_1}(s(x_1) < 0)$ é a conjunção das L-fórmulas $P(x_2)$ e $\exists_{x_1}(s(x_1) < 0)$ Tem-se portanto que $(P(x_2) \land \exists_{x_1} (s(x_1) < 0))[a] = \min\{P(x_2)[a], (\exists_{x_1} (s(x_1) < 0))[a]\}$

Ora, por um lado, $P(x_2)[a]=1$ se e só se $(x_2)[a]\in\overline{P}$, se e só se $2\in\overline{P}$. Como, de facto, 2 é um elemento do conjunto \overline{P} , deduz-se que $P(x_2)[a]=1$.

we demente do conjunto \overline{V} , dedus-se que $P(x_2)[a] = 1$. Por outro lado, $(\exists_{x_1}(s(x_1) < 0))[a] = 1$ see existe $n_1 \in \mathbb{Z}$ tal que $(s(x_1) < 0)[a\binom{\pi_1}{n_1}] = 1$

sse existe
$$n_1 \in \mathbb{Z}$$
 tal que $\mathbf{s}(x_1)[a\binom{x_1}{n_1}] \supset 0[a\binom{x_1}{n_1}]$
sse existe $n_1 \in \mathbb{Z}$ tal que $\mathbf{s}(x_1[a\binom{x_1}{n_1}]) \supset \overline{0}$
sse existe $n_1 \in \mathbb{Z}$ tal que $\mathbf{s}(x_1) \supset 0$

sse existe $n_1 \in \mathbb{Z}$ tal que $n_1 + 1 \leq 0$.
Dado que esta última afirmação é verdadeira (basta tomar, por exemplo, $n_1 = -2$), conclui-se que $(\exists_{x_1}(s(x_1) < 0))[a] = 1$. Pode-se finalmente deduzir que

 $(P(x_2) \land \exists_{x_1} (s(x_1) < 0))[a] = \min\{P(x_2)[a], (\exists_{x_1} (s(x_1) < 0))[a]\} = \min\{1, 1\} = 1.$

- (b) Seja φ = ¬P(x₀ − x₁) → ((x₀ < x₁) ∨ (x₁ < x₀)). Prove que:
- (ii) φ e válida em E; (ii) φ não ĉ universalmente válida. R: (i) A I-fórmula φ ε válida em E, ou seja E $\models \varphi$, s $\varphi[a]_E = 1$ para toda a atribuição a em E. Seja a uma atribuição qualquer em E. Tem-se $\varphi[a]_E = 1$ sae $(-\Phi(x_0 x_1))[a] = 0$ ou $((x_0 < x_1) \lor (x_1 < x_0))[a] = 1$

$$\varphi[u]E = 1$$
 see $(\neg v(x_0 - x_1)/u] = 1$ our $(x_0 < x_1) \cdot (x_1) \cdot (x_0)/u] = 1$
see $(x_0 - x_1)[a] = 1$ our $(x_0 < x_1)[a] = 1$ our $(x_1 < x_0)[a] = 1$
see $(x_0 - x_1)[a] \in \overline{P}$ our $x_0[a] \not\sim x_1[a]$ our $x_1[a] \nearrow x_0[a]$
see $a(x_0) = a(x_1) \in \overline{P}$ our $a(x_0) \nearrow a(x_1)$ our $a(x_1) \nearrow a(x_0)$.

see $(x_0 - x_1)|a| \in P$ ou $x_0|a| < x_1|a|$ ou $x_1|a| < x_0|a|$ see $a(x_0) = a(x_0) \in P$ ou $a(x_0) < a(x_0)$ ou $a(x_1) < a(x_0)$. Suponhamos que $a(x_0) = a(x_1) \notin P$. Entáo $a(x_0) = a(x_1) \neq 0$, donde $a(x_0) \neq a(x_1)$. Daqui revellta que $a(x_0) < a(x_0)$ ou $a(x_1) < a(x_0) e$, portanto, $\varphi[a]_E = 1$. Como a é uma artibuição arbitrária en E conclui-se assim que φ é délida em E. (ii) Seja $E' = \{Z_i - \}$ a I-estruture em tudo idéntica a E salvo em < que é definida como sendo a relação de igualdade em E. Seja a a artibuição da alinea (a). T-ense $(-P(x_0 - x_1)|a| = 1)$ P fonde $P(x_0 - x_1)[a| = 0$. Definite como service I-do an $(x_0 < x_1)(x_0 < x_1)(x$

 $sse (0,1) \notin \overline{<} e(1,0) \notin \overline{<}$

- sse $(0,1) \notin \mathbb{R} = (1,0) \notin \mathbb{R}$ sse $0 \neq 1 \in 1 \neq 0$ afirmação esta que é, evidentemente, válida. Logo $\varphi[a]_F = 0$ e, portanto, a L-fórmula φ não é universalmente válida. (c) Indique (justificando) uma L-fórmula universalmente válida. R: A fórmula $\psi = \mathbb{P}(x_1) \vee -\mathbb{P}(x_1)$ é uma L-fórmula universalmente válida. Para justificar esta afirmação basta notar que ψ é uma instância da fórmula $\varphi = p_1 \vee \neg p_1$ do cálculo proposicional (pois $\psi = \mathbb{P}(x_1)/p_0$) $\psi \in \psi$ uma instância da fórmula $\psi = p_1 \vee \neg p_2$ do cálculo proposicional (pois $\psi = \mathbb{P}(x_1)/p_0$) $\psi \in \psi$ uma instância da fórmula $\psi = p_1 \vee \neg p_2$ do cálculo proposicional (d) Para cada uma das seguintes afirmações, indique (sem justificar) uma L-fórmula que a represente:
- nte: Todo o número é menor do que algum número par.
- (ii) A diferença de quaisquer dois números pares é par
- (i) $\forall_{x_0} \exists_{x_1} (P(x_1) \land (x_0 < x_1))$. (ii) $\forall_{x_0} \forall_{x_1} ((P(x_0) \land P(x_1)) \rightarrow P(x_0 x_1))$.

(a) Sejam L, φ, ψ ∈ F_L e x arbitrários. Mostre que ∃_x(φ ∧ ψ) ⊨ (∃_xφ ∧ ∃_xψ).
 R: Sejam E = (D. ¬) uma L-estrutura e a uma atribuição em E tais que

$$E \vDash \exists_x (\varphi \land \psi)[a]$$
 (*)

Oueremos $E \models \exists_{-} \varphi \land \exists_{-} \psi[a]$.

De (*) segue que existe $d \in D$ tal que $E \models \varphi[a\binom{x}{d}]$ e $E \models \psi[a\binom{x}{d}]$. Mas então pod trivialmente afirmar

(i) existe $d_1 \in D$ (a saber: $d_1 = d$) tal que $E \models \varphi[a(\frac{x}{x})a]$;

(ii) existe $d_2 \in D$ (a saber: $d_2 = d$) tal que $E \models \psi[a\binom{x}{d_2}]$.

De (i) segue $E \vDash \exists_x \varphi[a]$ e de (ii) segue $E \vDash \exists_x \psi[a]$. Logo $E \vDash \exists_x \varphi \land \exists_x \psi[a]$. (b) Indique (justificando) L tipo de linguagem, φ e ψ L-fórmulas e x variável tais que

- Hindigu (Islandanio) z upo us inagongom, y v y z zo (x,y,y) = (x,y,y) = (x,y) = (x,y) = (x,y) = (x,y). Sejam Lo tipo de linguagem da questão $\partial_x x = x_0$, $\varphi = P(x_0)$ $e \psi = \neg P(x_0)$. Vamos exibir uma L-estrutura E e uma atribuição a em E tais que $E \not\models (\exists_0 \varphi \wedge \exists_x \psi) \rightarrow \exists_x (\varphi \wedge \psi)[a]$. Tome-se E a estrutura da questão \bar{g} e a atribuição arbitrária. Falta ver que:
- (i) E ⊨ ∃_{x0} φ[a];

(ii) $E \vDash \exists_{x_0} \psi[a];$ (iii) $E \nvDash \exists_{x_0} (\varphi \land \psi)[a].$

 $(i) \; \textit{Sejam d'} = 2 \; e \; a' = a {x_0 \choose d'}. \; \textit{Então} \; E \vDash \varphi[a'] \; \textit{pois} \; x_0[a'] = d' \; e \; d' \in \overline{\mathbb{P}}.$

(ii) Sejam d'' = 1 e $a'' = a \begin{pmatrix} x_0 \\ d' \end{pmatrix}$. Então $E \vDash \psi[a'']$ pois $x_0[a''] = d''$ e $d'' \notin \overline{P}$.

(iii) $E \models \exists_{x_0} (\varphi \land \psi)[a]$ see existe $d \in \mathbb{Z}$ tal que $x_0[a {x_0 \choose d}] \in \overline{\mathbb{P}}$ e $x_0[a {x_0 \choose d}] \notin \overline{\mathbb{P}}$. Mas $x_0[a \stackrel{(x_0)}{\longrightarrow}] = d$ e não se pode ter simultaneamente $d \in \overline{P}$ e $d \notin \overline{P}$.

(c) Sejam $\varphi, \psi \in \mathcal{F}_L$ e x tais que $x \notin LIV(\psi)$. Prove que $(\forall_x \varphi) \to \psi \Leftrightarrow \exists_x (\varphi \to \psi)$. (Sugestão: exiba uma série de equivalências lógicas.)

Note that series of equivalents agrees,
$$(\forall x \varphi) \rightarrow \psi \iff \forall x \varphi \vee \psi \\ \Leftrightarrow \exists_x \neg \varphi \vee \psi \\ \Leftrightarrow \exists_x \neg \varphi \vee \exists x \psi \quad (x \notin LIV(\psi)) \\ \Leftrightarrow \exists_x (\varphi \rightarrow \psi)$$

- (a) Construa derivações em DNP que provem que:
 (i) (p₀ ∧ ¬p₁) → ¬(p₀ → p₁) é um teorema;
 (ii) p₀ → p₁, ¬y₂ ∨ p₁ P → ¬(p₁ ∧ p₁).
 (b) Seja Γ um conjunto de fórmulas do Cálculo Proposicional. Prove que, se Γ ⊨ p₀ → p₃, então
- Γ , $\neg p_3 \lor p_1 \vdash p_0 \to (p_3 \land p_1)$. [Sugestão: use (a)(ii)] Considere o tipo de linguagem $L = (\{0, q, +\}, \{P, =\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(q) = 1$, $\mathcal{N}(+) = 2$,
- $\mathcal{N}(P) = 1 \text{ e } \mathcal{N}(=) = 2.$
- (a) Das seguintes palavras sobre A_L, apresente árvores de formação das que pertencem a T_L ou

- - (ii) $(P(x_5) \land \exists_{x_3}(q(x_3) = 0 + x_5))[a]$
- (b) Seja φ a L-fórmula $\mathsf{P}(\mathsf{q}(x_1)) \to \neg \forall_{x_2} (0 = \mathsf{q}(x_2))$. Prove que:
 - (i) φ é válida em E;
 - (ii) φ não é universalmente válida.
- (c) Indique, justificando, uma L-fórmula ψ tal que $\psi[a']_E=0$ para toda a atribuição a'numa qualquer L-estrutura E'.
- (d) Para cada uma das seguintes afirmações, indique (sem justificar) uma L-fórmula que a repre-
- sente: (i) Existe um número cujo quadrado é positivo;
- (ii) O quadrado da soma de quaisquer dois números é não nulo
- (a) Sejam Lum tipo de linguagem, $\varphi,\psi\in\mathcal{F}_L$ e xuma variável. Mostre que:
 - ∀_xφ ∨ ∀_xψ ⊨ ∀_x(φ ∨ ψ);
 - (ii) $\neg \forall_x (\varphi \to \psi) \Leftrightarrow \exists_x (\varphi \land \neg \psi)$. [Sugestão: exiba uma série de equivalências lógicas.]
- (b) Indique, justificando, um tipo de linguagem L, uma L-fórmula φ e duas variáveis x e y tais que $\nvDash \forall_x \exists_y \varphi \to \exists_y \forall_x \varphi$.

Definição 189: Uma L-fórmula φ é (universalmente) válida (notação: $\models \varphi$) quando é válida em toda a L-estrutura. Utilizamos a notação $\not\models \varphi$ quando φ não é (universalmente) válida, i.e., quando existe uma L-estrutura E tal que $E \not\models \varphi$. Observação 190: Uma L-fórmula φ não é universalmente válida quando existe alguma L-estrutura que não valida φ , ou seja, quando existe alguma L-estrutura E e alguma atribuição a em E t.q. $E \not\models \varphi[a]$.

Exemplo 191:

- Exemplo 191: 1. A L_{Avi} -fórmula $x_0 = x_1$ não é universalmente válida. Como vimos no exemplo anterior, esta fórmula não é válida na estrutura E_{Avi} . 2. No exemplo anterior, vimos que a fórmula $x_0 = x_0$ é válida na estrutura E_{Avi} . No entanto, esta fórmula não é válida em todas as L_{Avi} -estruturas. Por exemplo, se considerarmos uma L_{Avi} -estrutura $E_1 = \{\{a_0 b\}, \neg\}$ em que = seja a relação $\{(a_0, a)\}, E_1$ não valida $x_0 = x_0$, pois considerando uma artivuição a' em E_1 , $t_0 = x_0$, $t_0 = x_0$, pois considerando uma artivuição a' em E_1 , $t_0 = x_0$, t_0
- E, tem-se

- $$\begin{split} E &\models \forall x_0(x_0=x_1 \vee \neg (x_0=x_1))[a]\\ \text{sse} \quad E &\models (x_0=x_1 \vee \neg (x_0=x_1))[a]^{-\frac{x_0}{d}} \, ^1], \text{ para todo } d \in D \end{split}$$
- sse $E \models x_0 = x_1[a^{\binom{x_0}{d}}]$ ou $E \models \neg(x_0 = x_1)[a^{\binom{x_0}{d}}]$, para todo $d \in D$
- sse $(d, a(x_1)) \in \Xi$ ou $E \not\models x_0 = x_1[a \begin{pmatrix} x_0 \\ d \end{pmatrix}]$, para todo $d \in D$
- sse $(d, a(x_1)) \in = \text{ou}(d, a(x_1)) \notin =$, para todo $d \in D$
- sse $(d, a(x_1)) \in \neg$ ou $(d, a(x_1)) \notin \neg$, para todo $d \in D$ a áltima afirmació e verdadeira. Exemplo 187: Consideremos a estrutura E_{Arit} . 1. A fórmula $x_0 = x_0$ é válide ame E_{Arit} , de facto, para qualquer atribuição a em E_{Arit} tenses $E_{Arit} = x_0 = x_0[a]$, uma vez que $x_0[a] = a(x_0)$ e $(a(x_0), a(x_0)) \in \neg$ $(a(x_0) \in a(x_0)$ são naturais iguais).

- $(a(x_0) \in a(x_0) \text{ sion naturais guasis})$. 2. A fórmula $x_0 = x_1$ não é válida em E_{Avit} ; por exemplo, para a atribuição a^{ind} temes $x_0 a^{ind} = 0$, $x_1 (a^{ind}) = 1$ e $(0, 1) \notin \neg$ pel que $E_{Avit} \not\models x_0 = x_1 (a^{ind})$. 3. A fórmula $\neg (x_0 = x_1)$ não é válida em E_{Avit} ; por exemplo, para a atribuição a^{ind} que atribui o a todas as variáveis temes $x_0 a_0 = 0$, $x_1 (a_0) = 0$ e $(0, 0) \in \neg$ pelo que $E_{Avit} \models x_0 = x_1 a_0 \in$ consequentemente, $E_{Avit} \not\models \neg (x_0 x_1) a_0 \in$ consequentemente, $E_{Avit} \not\models \neg (x_0 x_1) a_0 \in$ and $E_{Avit} \not\models \neg (x_0 x_1) a_0 \in$ consequentemente, $E_{Avit} \not\models \neg (x_0 x_1) a_0 \in$ of $E_{Avit} \not\models$

Proposição 194: Sejam $x, y \in V$ e $\varphi, \psi \in \mathcal{F}_L$. As seguintes afirmações são

- verdaderras.

 a) $\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$ b) $\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$ c) $\forall x \varphi \Leftrightarrow \neg \exists x \neg \varphi$ d) $\exists x \varphi \Leftrightarrow \neg \forall x \neg \varphi$

m) $\langle x\varphi \Leftrightarrow \xi y\varphi y|x = y \notin LIV(\varphi) = x$ e substiturel por y em φ , para todo $Q \in \{\pm X\}$. Teorema 198 (Teorema da Instanciação): Se $\varphi \in$ universalmente válida. Proposicional, então toda a instância de $\varphi \in$ universalmente válida. Exemplo 199: Como vimos no exemplo anterior, a L_{Avit} -formula $(x_0 = x_1) + (2x_0(x_0 = 0) - \varphi (x_0 = x_1)) \in$ instância da tautologia $p_0 \rightarrow (p_1 \rightarrow p_0)$. Logo, pelo Teorema da Instanciação, podemos concluir que esta L_{Avit} -formula $(x_0 = x_1) = (x_0 + y_0)$.

universalmente válida. Observação 200: Como seria de esperar, nem todas as fórmulas universalmente válidas asía instâncias de tautologias. Por exemplo, vimos no Exemplo 191 que a fórmula $\forall x_0(x_0=x_1) \land \forall (x_0=x_1) \land \forall (x_0=x_1) \land (x_0=x_1) \land$

todo $\varphi \in \Gamma$, $E \models \varphi[a]$. Diremos que (E,a) é uma realização de Γ quando (E,a) realiza