UNIDAD VIII: LA INTEGRAL DEFINIDA

Teorema del Valor Medio para el cálculo integral. La derivada de la integral definida. Cálculo de la integral mediante la primitiva. Regla de Barrow.

Objetivos Instructivos. Con esta clase pretendemos que los alumnos conozcan el Teorema del Valor Medio, así como la Fórmula de Barrow.

Area =
$$\lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k$$

$$= \int_{a}^{b} f(x) dx$$

$$=F(x)-F(a)$$

Teorema Fundamental del Cálculo

- 1. Derivada de una integral.
- 2. Coincide el límite superior con la variable de la derivada.
- 3. El límite inferior es constante.

Ejemplo.

$$\frac{d}{dx} \int_{-\pi}^{x} \cos t \ dt = \cos x$$

$$\frac{d}{dx} \left(\sin t \Big|_{-\pi}^{x} \right)$$

$$\frac{d}{dx} \left(\sin x - \sin \left(-\pi \right) \right)$$

$$\frac{d}{dx} \sin x$$

$$\frac{d}{dx} \sin x$$

 $\cos x$

$$\frac{d}{dx} \int_0^x \frac{1}{1+t^2} dt = \frac{1}{1+x^2}$$

- 1. Derivada de una integral.
- 2. Coincide el límite superior con la variable de la derivada.
- 3. Límite inferior constante.

$$\frac{d}{dx} \int_0^{x^2} \cos t \ dt$$

$$\cos\left(x^2\right) \cdot \frac{d}{dx} x^2$$

$$\cos(x^2) \cdot 2x$$

$$2x\cos(x^2)$$

El límite superior no coincide con la variable de derivación, pero podemos aplicar la Regla de la Cadena.

$$\frac{d}{dx} \int_{x}^{5} 3t \sin t \ dt$$

$$-\frac{d}{dx}\int_{5}^{x}3t\sin t\ dt$$

El límite inferior no es una constante, pero el límite superior si.

Podemos invertir los límites y cambiar el signo de la integral.

 $-3x\sin x$

$$\frac{d}{dx} \int_{2x}^{x^2} \frac{1}{2 + e^t} dt$$

Ninguno de los límites de integración es constante.

Separemos en dos integrales.

$$\frac{d}{dx} \left(\int_0^{x^2} \frac{1}{2 + e^t} dt + \int_{2x}^0 \frac{1}{2 + e^t} dt \right)$$

$$\frac{d}{dx} \left(\int_0^{x^2} \frac{1}{2 + e^t} dt - \int_0^{2x} \frac{1}{2 + e^t} dt \right)$$

$$\frac{1}{2+e^{x^2}} \cdot 2x - \frac{1}{2+e^{2x}} \cdot 2 = \frac{2x}{2+e^{x^2}} - \frac{2}{2+e^{2x}}$$

Regla de Leibnitz

Si f(x) es integrable, y $\alpha(x)$, $\beta(x)$ son funciones derivables, tales que para todo x, $\alpha(x)$, $\beta(x)$ están en el dominio de f(x), entonces

$$\frac{d}{dx} \left(\int_{\alpha(x)}^{\beta(x)} f(x) dx \right) = f(\beta(x))\beta'(x) - f(\alpha(x))\alpha'(x)$$

El <u>valor medio</u> de una función es el valor que tendría la misma área si la función fuese una constante:

$$A = \int_0^3 \frac{1}{2} x^2 dx$$

$$= \frac{1}{6}x^3 \bigg|_0^3 = \frac{27}{6} = \frac{9}{2} = 4.5$$

Valor
$$Medio = \frac{4.5}{3} = 1.5$$

Valor
$$Medio = \frac{Area}{Ancho} = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$

El Teorema del Valor Medio para integrales definidas dice que para una función continua, en cierto punto del intervalo el valor actual será igual al valor medio.

Teorema del Valor Medio (para Integrales Definidas)

Si f es integrable en [a,b] y
$$m = \inf_{[a,b]} f(x)$$
, $M = \sup_{[a,b]} f(x)$,

entonces existe μ , m μ M, tal que $\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

m f(x) M, para $x \in [a,b]$

$$\int_{a}^{b} m dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} M dx$$

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a)$$

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le M$$

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Corolario. Si f(x) es continua en [a,b], entonces existe $c \in [a,b]$ tal que

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Observación. En el caso donde la función f(x) no sea continua en [a,b] la fórmula del valor medio no necesariamente cierta.

$$f(x) = \begin{cases} 1, si \ 0 \le x \le 1 \\ 1, si \ 1 < x \le 2 \end{cases}$$

$$\int_{0}^{2} f(x)dx = \int_{0}^{1} f(x)dx + \int_{1}^{2} f(x)dx = 1 + 2 = 3 = \frac{3}{2}.2$$

2do Teorema del Valor Medio. Sean f(x) y g(x) funciones definidas e integrables en el intervalo [a,b], $m=\inf f(x)$ y $M=\sup f(x)$ en el intervalo [a,b], entonces existe μ tal que m μ M y además,

$$\int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx$$

Corolario. Si añadimos que la continuidad de la función f(x) en [a,b], entonces existirá c∈[a,b] tal que

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx$$

Demuestre que para cualquier par de funciones f(x) y g(x) integrables sobre el intervalo [a,b] se cumple la desigualdad:

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \le \sqrt{\int_{a}^{b} f^{2}(x)dx} \int_{a}^{b} g^{2}(x)dx$$

Desigualdad de Cauchy-Bunyakovski

Examinemos la función $F(x)=[f(x)-\lambda g(x)]^2$, donde λ es un número real cualquiera.

$$\int_{a}^{b} [f(x) - \lambda g(x)]^{2} dx \ge 0$$

$$\lambda^2 \int_a^b g^2(x) dx - 2\lambda \int_a^b f(x)g(x) dx + \int_a^b f^2(x) dx \ge 0$$

Para todo valor de λ

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} - \int_{a}^{b} f^{2}(x)dx \int_{a}^{b} g^{2}(x)dx \le 0$$

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \le \sqrt{\int_{a}^{b} f^{2}(x)dx} \int_{a}^{b} g^{2}(x)dx$$

Problema

Acote la integral $\int_{0}^{1} \sqrt{1+x^4} dx$ utilizando:

a) El Teorema del Valor Medio,

b) La desigualdad
$$\sqrt{1+x^4} < 1 + \frac{x^4}{2}$$
 ,

c) La desigualdad de Cauchy-Bunyakovski.

Cálculo de la Integral Definida

Método de Integración por Sustitución

Teorema. Sea f(x) continua en (a,b), g(t) definida y continua junto a su primera derivada en el intervalo (α,β) y para todo $t \in (\alpha,\beta)$ se cumple que $g(t) \in (a,b)$. Entonces, si $\alpha_0 < \beta_0$; $\alpha_0,\beta_0 \in (\alpha,\beta)$ y $a0 = g(\alpha_0)$, $b_0 = g(\beta_0)$ se tiene que

$$\int_{a_0}^{b_0} f(x) dx = \int_{\alpha_0}^{\beta_0} f[g(t)].g'(t) dt$$

Método de Integración por Partes

Teorema. Si u(x) y v(x) son continuas junto a sus derivadas en el intervalo [a,b], entonces

$$\int_{a}^{b} u dv = \left[u.v\right]_{a}^{b} - \int_{a}^{b} v du$$

Regla de Barrow