Cross Layer Issues in Sensor Networks: *A Line In The Sand*

Anish Arora
Vinod Kulathumani
The Ohio State DARPA NEST team

June 2004

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 01 DEC 2007		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER					
Cross Layer Issues in Sensor Networks: A Line In The Sand				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) The Ohio State University				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES See also ADM002082., The original document contains color images.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	16	RESI ONSIBLE FERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Concept of operations

Put tripwires anywhere—in deserts, borders, or other remove areas where physical terrain does not constrain dismount or vehicle movement—to detect, classify & track intruders

Field experiment: Layout & scenarios

- Hand-placed 90 nodes w/ magnetometer & micro-power impulse radar sensors
- System detects each intruder & classifies it as one or none of known intruder types
- System tracks intruder as it moves & visualizes location/type remotely
- · Soldier carrying "gun"
 - walks/runs across line on trails
 - with another soldier on different trail/times
- Car
 - runs across line on trails at 5-20mph
- Civilian
 - walks across line in zig-zag pattern

APPROVED FOR PUBLIC RELEASE Concept of system design

Traditional approach: centralized, resource-rich

- each sensor classifies intruders independently
- technique: each intruder type has unique,
 sophisticated time-frequency signature

The A Line in the Sand approach: distributed, dense, resource-poor

- multiple sensors coordinate, each with multiple modalities
- sample concept: each intruder type has unique influence field

Implications of our approach

focus on network middleware & its impact on application

System setup and devices

System challenges vs. application requirements

Requirements:

- accurate classification & tracking (<2% false positives&negatives, <3m)
- bounded latency (<15 sec)

Challenge: Unreliable network of mote nodes & links

- low capacity, time varying links
- contention unavoidable for large, bursty traffic
- limited energy
- hostile environment: heat, humidity, tall grass
- misbehaving nodes: yield both false negatives & positives

System architecture:

- application layer:
 - at mote tier: detection, generation of local reports
 - at higher tier: classification & tracking
- network layer: PHY, MAC, routing, timesync, ...

APPROVED FOR PUBLIC RELEASE Cross layer issues: network service design

Resource constraints in our embedded platform substantially affected service design

Correctness issues were discovered when system scaled (from ~10 to ~100 nodes); led to:

- 1. redesign of networks protocols
 - to accommodate unreliability, nonuniformity of network
- 2. tuning of network parameters
 - for helping achieve accuracy of application
- tuning application to accommodate network behavior
 - for managing despite network quality

Lesson learned:

- simulations insufficient for discovering/predicting issues
- · easy for application to be operating at close to capacity

Redesign of network protocols to deal with scaling

Large event traffic bursts compromised several network services

Time-sync

- tree-based solution failed to scale: due to partitions
- ⇒ Max-based multipath scheme had to be implemented

Routing

- reliability was too low: link estimation during traffic bursts is hard
- but reliability was necessary to guarantee:
 - separation of influence field sizes (for classification)
 - shape preservation of influence field (for tracking)
- and application required minimum jitter
- ⇒ Grid routing + Reliable link layer had to be implemented (but implicit ack vs. explicit ack selected only by experiments)

Grid Routing vs. Mint Routing under bursty traffic

Grid Routing

Greater reliability

Uniform across the network

Mint Routing

Lesser reliability

Nonuniform

Implicit vs. Explicit acks

Grid Routing & Implicit Ack with up to 2 retransmissions

Average of 98 %

Grid Routing & Explicit Ack with up to 2 retransmissions Average of 81%

APPROVED FOR PUBLIC RELEASE Co-design of network protocol parameters

- Several parameters had to be tuned to help meet application requirements:
 - transmission power level at PHY layer
 - when high: decreases reliability, more contention
 - when low: more hops, decreases reliability and increases delay
 - MAC layer random back-off
 - tune along with power level to reduce collisions
 - large back-off gives more reliability, but tradeoff with delay
 - number of re-transmissions
 - increases reliability only if spaced apart
 - increases latency as well

Statistics on packet delivery ratio

- delivery ratio increases as the power level increases
- for car, decreases when the retransmission goes from 1 to 2, & increases from 1 to 3

Delivery ratio critical for accurate classification

- MAC (power, number of transmissions, delay at classifier)
- Power level = 9, number of transmissions = 3, gives best accuracy
- Delay = 13 seconds

APPROVED FOR PUBLIC RELEASE Co-design of application

Application design also dependent on network quality

- O. Window of spatial aggregation of events at higher tier depended on network jitter
- 1. For influence fields where network reliability cannot guarantee separation, need to stretch interval for calculation of influence field: *Temporal Aggregation*
- 2. Since unreliability increases with distance from relay, higher tier had to compensate by adjusting number of received messages based on distance: *Spatial Reconstruction*
- 3. Generation of reports from the mote application made probabilistic to compensate for network effects: *Probabilistic Reporting*

APPROVED FOR PUBLIC RELEASE Probabilistic reporting

Without probabilistic reporting

With probabilistic reporting

With P(Reporting) = 0.5

APPROVED FOR PUBLIC RELEASE Future work

- Team is leading the fielding of Echelon this year
 - application to protect 10km by .5km area
 - 10,000 Tier 1 nodes, <5 hop sections
 - 300 Tier 2 nodes, 30 hop network

Space and time varying conditions across sections of network

- ⇒ Echelon is to autonomic/adaptive wrt cross layer interactions
 - scale in the presence of cyclic dependencies across layers
 - stability across layers will be key