EP16: Missing Values in Clinical Research: Multiple Imputation

9. Imputation in Complex Settings

Nicole Erler

Department of Biostatistics, Erasmus Medical Center

✓ n.erler@erasmusmc.nl

Quadratic Effect

Consider the case where the **analysis model** (which we assume to be true) is

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots,$$

i.e., y has a **quadratic relationship** with x, and x is incomplete.

The original data show a curved pattern.

Quadratic Effect

The model used to **impute** x when using MICE (naively) is

$$x = \theta_{10} + \theta_{11}y + \dots,$$

i.e., a **linear relation** between x and y is assumed.

The imputed values distort the curved pattern of the original data.

Quadratic Effect

The model fitted on the imputed data gives **severely biased results**; the non-linear shape of the curve has almost completely disappeared.

3

Interaction Effect

Another example: consider the analysis model (again, assumed to be true)

$$y = \beta_0 + \beta_x x + \beta_z z + \beta_{xz} xz + \dots,$$

i.e., y has a **non-linear relationship** with x due to the **interaction term**.

The original data shows a "<" shaped pattern.

4

Interaction Effect

The model used to impute x when using MICE (naively) is

$$x = \theta_{10} + \theta_{11}y + \theta_{12}z + \dots,$$

i.e., a linear relation between x and y is assumed.

The "<" shaped pattern of the true data is **distorted by the imputed values**.

Interaction Effect

And the analysis on these naively imputed values leads to **severely biased estimates**.

 $(x_1, ..., x_4)$ are baseline covariates, i.e., not measured repeatedly, e.g. age at baseline, gender, education level, ...)

For data in long format:

- each row would be regarded as independent
- ▶ ⇒ bias and inconsistent imputations

Imputed values of baseline covariates are imputed with different values, creating data that could not have been observed.

ID	У	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	time	
1	✓	✓	girl	✓	✓	0.87	
1	\checkmark	\checkmark	boy	✓	\checkmark	2.41	
1	\checkmark	\checkmark	girl	✓	\checkmark	4.47	
1	\checkmark	\checkmark	girl	✓	\checkmark	6.06	
1	\checkmark	\checkmark	girl	✓	\checkmark	8.96	
2				mid	38.8	3.00	
2	\checkmark	\checkmark	\checkmark	high	39.9	4.83	
2	\checkmark	\checkmark	\checkmark	mid	40.1	6.45	
- <mark>2</mark> -	\checkmark	\checkmark	\checkmark	low	39.7	8.08	
3				high	40.7	2.51	
3	\checkmark	\checkmark	\checkmark	low	40.4	4.10	
3	\checkmark	\checkmark	\checkmark	mid	39.7	6.85	
4			boy			2.21	
4	\checkmark	\checkmark	boy	\checkmark	\checkmark	4.68	
4	_<_		girl	√	√	6.48	
:	:	:	:	:	:	:	

Estimates can be severely biased.

In some settings imputation in wide format may be possible.

In some settings imputation in wide format may be possible.

id	y.1	time.1	y.3	time.3	y.5	time.5	y.7	time.7	y.9	time.9	
1	31.6	0.9	31.8	2.4	31.7	4.5	31.5	6.1	32.5	9	
2	NA	NA	36.2	3	36.1	4.8	36.1	6.5	36.6	8.1	
3	NA	NA	29.8	2.5	29.8	4.1	30	6.8	NA	NA	
4	NA	NA	36.1	2.2	35.9	4.7	36.3	6.5	NA	NA	
:	:	:	:	:	:	:	:	:	:	:	٠.
:	:	:	:	:	:	:	:	:	:	:	٠.

In wide format:

- missing values in outcome and measurement times need to be imputed (to be able to use them as predictors to impute covariates)
- ▶ inefficient! (we would not need to impute them for the analysis)

Better, but large confidence intervals.

Very **unbalanced** data: transformation to wide format not possible.

(Or requires summary measures)

Naive approaches that are sometimes used are to

▶ **ignore the outcome** in the imputation

Naive approaches that are sometimes used are to

- ▶ ignore the outcome in the imputation, or to
- use only the first/baseline outcome

Naive approaches that are sometimes used are to

- ▶ ignore the outcome in the imputation, or to
- use only the first/baseline outcome
- → Important information may be lost!
- invalid imputations and biased results

Cox proportional hazards model

$$h(t) = h_0(t) \exp(x\beta_x + z\beta_z),$$

- ► h(t): hazard = the instantaneous risk of an event at time t, given that the event has not occurred until time t
- \blacktriangleright $h_0(t)$: unspecified **baseline hazard**
- ▶ x and z: incomplete and complete covariates, respectively

Cox proportional hazards model

$$h(t) = h_0(t) \exp(x\beta_x + z\beta_z),$$

- ► h(t): hazard = the instantaneous risk of an event at time t, given that the event has not occurred until time t
- \blacktriangleright $h_0(t)$: unspecified **baseline hazard**
- ► x and z: incomplete and complete covariates, respectively

Survival outcome representation:

- ▶ observed event time T
- event indicator D (D = 1: event, D = 0: censored).

Naive use of MICE

- ▶ *T* and *D* are treated just like any other variable.
- ▶ The resulting imputation model for X would have the form

$$p(x \mid T, D, \mathbf{z}) = \theta_0 + \theta_1 T + \theta_2 D + \theta_3 z + \dots$$

Naive use of MICE

- ▶ *T* and *D* are treated just like any other variable.
- ▶ The resulting imputation model for X would have the form

$$p(x \mid T, D, \mathbf{z}) = \theta_0 + \theta_1 T + \theta_2 D + \theta_3 z + \dots$$

The **correct conditional distribution** of *x* given the other variables is, however,

$$\log p(x\mid T,D,z) = \log p(x\mid z) + D(\beta_x x + \beta_z z) - H_0(T) \exp(\beta_x x + \beta_z z) + const.,$$

where $H_0(T)$ is the cumulative baseline hazard. (White & Royston, 2009)

Using the naively assumed imputation model can lead to severe bias:

(Results from MICE imputation with two incomplete normal and one incomplete binary covariate.)

References

White, I. R., & Royston, P. (2009). Imputing missing covariate values for the cox model. *Statistics in Medicine*, *28*(15), 1982–1998.