# Aluminium - Cobalt - Manganese

Eberhard E. Schmid, Gerhard Schneider, Qingsheng Ran, updated by Andy Watson

### Literature Data

The Al-Co-Mn system was first investigated by Köster and Gebhardt [1938Koe1]. They determined seven temperature-concentration sections and constructed the liquidus surface projection as well as the reaction scheme in the region between 0 and 50 mass% Al by thermal analysis and microstructural observation. The materials they used were of technical purities: Co with 1.4 mass% Fe, Mn with 1.4 mass% Si and 0.24 mass% (S+P) and Al with 0.4 mass% (Fe+Si). The solubility limits of Mn in (Mn,Co)Al were determined by the same authors by magnetic measurement [1938Koe2]. [1942Ven] used the same methods as [1938Koe1], but with purer materials (Al 99.99%, Mn 99.9% and Co 99.1%) and established liquidus isotherms and the liquidus surface projection in the Al-corner at compositions of more than 90 mass% Al. [1944Ray] reported small solubility of Co in MnAl<sub>6</sub> by microstructural analysis. [1947Ray] presented the results of thermal analysis and metallographic observation along three vertical sections and three isothermal sections, which are in the composition range 0 to 5.6 mass% Mn and 0 to 4.0 mass% Co. The alloys were prepared from superpure aluminium, aluminium manganese master alloy and aluminium cobalt master alloy; the impurity levels of the last two alloys being about 0.01 to 0.02 mass%. Using electrolytic Mn and Co (both 99.9%) and pure Al, [1962Tsu] constructed a partial isothermal section at 900°C using the results of magnetic measurements but the concentration scale was uncertain. Based on earlier work, using newer versions of the binary boundary systems and pure materials (99.9% Co, 99.99% Mn and 99.99% Al), Gödecke and Köster [1972Goe] performed a comprehensive study of the system using thermal analysis and metallography. The experimental details were not given. Apart from [1938Koe1] and [1942Ven], the above works agree well or complement each other. However, more recent studies by [1998Kai] indicate that the phase equilibria in the ternary system are more complex. Previous studies had assumed a continuous solid solution between the CoAl (B2) phase and the (δMn) (A2) phase. [1998Kai] prepared diffusion couples that were annealed in sealed quartz tubes at temperatures between 1000 and 1200°C. Using EDS, the critical compositions of the A2/B2 ordering transition between the two phases were determined from concentrationpenetration curves. They found that both a continuous and a discontinuous transition from A2 to B2 exists between the two phases, resulting in the presence of an A2+B2 region at certain compositions and temperatures. Isothermal sections for Al contents less than 50 mole % at 1000, 1050, 1100 and 1200°C and an isopleth between CoAl-Mn were presented. Several works [1962Tsu, 1971Web, 1981Sol1, 1981Sol2, 1983Kue] contributed to the crystal structure of the Heusler alloy MnCo<sub>2</sub>Al.

### **Binary Systems**

The Al-Co and Al-Mn binary systems were taken from the MSIT binary evaluation programme, [2003Gru, 2003Pis]. The Co-Mn system was accepted from [Mas2].

#### **Solid Phases**

Solid phases are presented in Table 1. These include a ternary phase  $Mn_2Co_4Al_{62}$  ( $\tau$ ) having a small homogeneity range [1972Goe]. [1972Goe] had suggested a continuous solid solution between CoAl,  $\gamma$  and ( $\delta$ Mn) at temperatures greater than 1000°C. However, as CoAl is ordered there must be an order/disorder transition between CoAl and MnAl and ( $\delta$ Mn) somewhere in the ternary. Such a reaction was discovered by [1998Kai], between CoAl and ( $\delta$ Mn), but there should also be one between CoAl and MnAl. [1981Sol2] reports the occurrence of order-disorder transformations in the Heusler alloy MnCo<sub>2</sub>Al:

However, this would not be consistent with the work of [1972Goe] and [1998Kai], where it is suggested that this composition would most likely result in a two-phase mixture of ( $\gamma$ Co) and the cP2  $\beta$  phase. The

Landolt-Börnstein
New Series IV/11A1

MSIT®

Curie temperature of the  $MnCo_2Al$  alloy was measured to be ~422°C [1983Kue, 1971Web]. A small solubility of Co in  $MnAl_6$  was reported by [1944Ray].

# **Pseudobinary Systems**

The CoAl-Mn section was reported to be pseudobinary by [1938Koe1]. However, this was found not to be the case by [1972Goe] and [1998Kai].

### Invariant Equilibria

A reaction scheme was constructed by [1972Goe] (Fig. 1). Details of the invariant points are listed in Table 2. In order to distinguish between the ordered and disordered variants of the  $\delta$  phase, the ordered CoAl based phase is given as  $\delta$ '. Also, in order to differentiate between the reactions involving the ( $\delta$ Mn) and Mn<sub>55</sub>Al<sub>45</sub> phases in the Al-Mn binary, these phases have been designated as  $\delta_1$  and  $\delta_2$ , respectively.

### Liquidus Surface

A liquidus surface was constructed by [1972Goe] and is given in Fig. 2. Figure 3 shows an enlarged Al-rich portion of the liquidus surface.

#### **Isothermal Sections**

Isothermal sections for 500, 800 and 900°C are given in Figs. 4-6 taken from [1972Goe]. Figures 7 and 9 show composite isothermal sections for 1000 and 1100°C taken from the work of [1972Goe] for Al contents greater than 50 mole%, and from [1998Kai] for Al contents less than 50 mole%. Figures 8 and 10 show partial isothermal sections for 1050 and 1200°C, respectively, for Al contents less than 50 mole%, taken from [1998Kai]. In all cases, slight adjustments have been made to make the sections consistent with the accepted binary phase diagrams. It should be noted that [1972Goe] did not distinguish between the M- and O- modifications of  $\text{Co}_4\text{Al}_{13}$ , and hence they appear in the diagrams as the same phase.

### **Temperature – Composition Sections**

Figures 11-15 show isopleths for 25, 40, 70, 85 and 95 mass% Al, respectively, taken from [1972Goe]. A section at 45 mass% Mn was also presented by [1972Goe], but was found to be incompatible with [1998Kai], hence, it is omitted here. Figure 16 shows the vertical section from CoAl-Mn taken from [1998Kai]. Vertical sections were presented in [1938Koe1, 1947Ray, 1978Urs] but were found to be incompatible with the above.

# **Notes on Materials Properties and Applications**

On investigating the use of thin films of  $Mn_{60}Al_{40}$  as a recording medium, it was found that substituting Mn with Co increased the saturation magnetization by a factor of up to 2 for  $Mn_{55}Co_5Al_{40}$  [1991Mat].

# References

| [1938Koe1] | Köster, W., Gebhardt, E., "The Cobalt - Manganese - Aluminium System" (in German), Z. |
|------------|---------------------------------------------------------------------------------------|
|            | Metallkd., 30, 281-286 (1938) (Equi. Diagram, Experimental, 7)                        |

- [1938Koe2] Köster, W., Gebhardt, E., "The Magnetic Properties of the Cobalt Manganese Aluminium Alloys" (in German), *Z. Metallkd.*, **30**, 286-290 (1938) (Equi. Diagram, Experimental, 7)
- [1942Ven] Venturello, G., Predosa, P.B., "The Ternary Aluminium-Cobalt-Manganese System" (in Italian), *Atti Acad. Sci. Tor., Classe Sci. Fis. Mat. Nat.*, 77, 10-21 (1942) (Equi. Diagram, Experimental, 19)
- [1944Ray] Raynor, G.V., "The Effect on the Compound MnAl<sub>6</sub> of Iron, Cobalt and Copper", *J. Inst. Met.*, **70**, 531-542 (1944) (Equi. Diagram, Experimental, 15)

MSIT<sup>®</sup>
Landolt-Börnstein
New Series IV/11A1

- [1947Ray] Raynor, G.V., "The Constitution of the Aluminium-Rich Aluminium Manganese Cobalt Alloys", *J. Inst. Met.*, **73**, 521-536 (1947) (Equi. Diagram, Experimental, 19)
- [1962Tsu] Tsuboya, I., Sugihata, M., "The Magnetic Properties of the K-Phase in Mn-Al-Co System", J. Phys. Soc. Japan, 17, 172 (1962) (Equi. Diagram, Crys. Structure, Experimental, 5)
- [1966Rid] Ridley, N., "Defect Structures in Binary and Ternary Alloys Based on CoAl", *J. Inst. Met.*, **94**, 255-258 (1966) (Crys. Structure, Equi. Diagram, Experimental, 9)
- [1971Web] Webster, P.J., "Magnetic and Chemical Order in Heusler Alloys Containing Cobalt and Manganese", *J. Phys. Chem. Solids*, **32**, 1221-1231 (1971) (Crys. Structure, Experimental, 28)
- [1972Goe] Gödecke, T., Köster, W., "The Three Component Cobalt Manganese Aluminium System" (in German), Z. Metallkd., 63, 422-430 (1972) (Equi. Diagram, Experimental, #, 11)
- [1978Urs] Ursache, M., "Studies of the Possibilities of Using some Alloys of the Al-Mn-M System of the Possibilities of Permanent Magnets" (in Romanian), *Bul. Inst. Politeh. Bucaresti Chim. Met.*, **40**, 105-112 (1978) (Equi. Diagram, Experimental, 9)
- [1981Sol1] Soltys J., Kozubski, R., "A Simple Model of the Order-Disorder Phase Transitions in Ternary Alloys and its Application to Several Selected Heusler Alloys", *Phys. Status Solidi A*, **63**, 35-44 (1981) (Crys. Structure, Theory, 23)
- [1981Sol2] Soltys J., "X-ray Diffraction Research of the Order-Disorder Transitions in the Ternary Heusler Alloys B<sub>2</sub>MnAl (B = Cu, Ni, Co, Pd, Pt)", *Phys. Status Solidi A*, **66**, 485-491 (1981) (Crys. Structure, Experimental, 18)
- [1983Kue] Kübler, T., Williams, A.R., Sommers, C.B., "Formation and Coupling of Magnetic Moments in Heusler Alloys", *Phys. Rev. B, Condens. Matter.*, **28**, 1745-1755 (1983) (Crys. Structure, Experimental, 30)
- [1991Mat] Matsumoto, M., Morisako, A. and Ohshima, J., "Properties of Ferromagnetic MnAl Thin Films with Additives", *J. Appl. Phys.*, **69**(8), 5172-5174 (1991) (Electr. Prop., Experimental, Magn. Prop., Mechan. Prop., 4)
- [1996Bur] Burkhardt, U., Grin, J., Ellner, M., Grin, Yu., "Powder Diffraction Data for the Intermetallic Compounds Co<sub>2</sub>Al<sub>5</sub>, Monoclinic m-Co<sub>4</sub>Al<sub>13</sub> and Orthorhombic o-Co<sub>4</sub>Al<sub>13</sub>", *Powder Diffr.*, **11**(2), 123-128 (1996) (Crys. Structure, Experimental, 23)
- [1996Fre] Freiberg, C., Grushko, B., Wittenberg, R., Reichert, W., "Once More about Monoclinic Co<sub>4</sub>Al<sub>13</sub>", *Mater. Sci. Forum*, **228-231**, 583-586 (1996) (Crys. Structure, Experimental, 8)
- [1996Gru] Grushko, B., Wittenberg, R., Bickmann, K., Freiburg, C., "The Constitution of Aluminium-Cobalt Alloys between Al<sub>5</sub>Co<sub>2</sub> and Al<sub>9</sub>Co<sub>2</sub>", *J. Alloys Compd.*, 233, 279-287 (1996) (Crys. Structure, Equi. Diagram, Experimental, 18)
- [1998Kai] Kainuma, R., Ise, M., Ishikawa, K., Ohnuma, I., Ishida, K., "Phase Equilibria and Stability of the B2 Phase in the Ni-Mn-Al and Co-Mn-Al Systems", *J. Alloys Compd.*, **269**, 173-180 (1998) (Equi. Diagram, Experimental, #, \*, 19)
- [1998Mo] Mo, Z.M., Sui, X.L., Kuo, K.H., "Structural Models of  $\tau^2$ -Inflated Monoclinic and Orthorhombic Al-Co Phases", *Metall. Mater. Trans.*, A29, 1565-1572 (1998) (Crys. Structure, Experimental, 20)
- [2003Gru] Grushko, B, Cacciamani, G., "Al-Co (Aluminium Cobalt)", MSIT Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart, to be published, (2003) (Equi. Diagram, Crys. Structure, Assessment, 72)
- [2003Pis] Pisch, A., "Al-Mn (Aluminium-Manganese)", MSIT Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart, to be published, (2003) (Equi. Diagram, Crys. Structure, Assessment, 40)

Landolt-Börnstein
New Series IV/11A1

MSIT®

 Table 1: Crystallographic Data of Solid Phases

| Phase/<br>Temperature Range<br>[°C]          | Pearson Symbol/<br>Space Group/<br>Prototype                     | Lattice Parameters [pm]                                           | at 25°C [Mas2] Dissolves 0.62 at.% Mn at 658.5°C                                                           |  |  |
|----------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| (αAl)<br>< 660.452                           | <i>cF4 Fm3m</i> Cu                                               | a = 404.96                                                        |                                                                                                            |  |  |
| (βΑΙ)                                        | hP2<br>P6 <sub>3</sub> /mmc<br>Mg                                | a = 269.3<br>c = 439.8                                            | at 25°C, 20.5 GPa [Mas2]                                                                                   |  |  |
| (γCo)(h)<br>1495-422                         | <i>cF</i> 4<br><i>Fm</i> 3̄ <i>m</i><br>Cu                       | a = 354.46                                                        | [V-C2]. Dissolves 59.4 at.% Mn at 1161°C and ~17 at.% Al at 1400°C                                         |  |  |
| (εCo)(r)<br>< 422                            | hP2<br>P6 <sub>3</sub> /mmc<br>Mg                                | a = 250.71<br>c = 406.95                                          | [V-C2, Mas2]                                                                                               |  |  |
| (γMn)<br>1138-1100                           | <i>cF</i> 4<br><i>Fm</i> 3̄ <i>m</i><br>Cu                       | a = 386.2                                                         | [Mas2]. Dissolves ~4.5 at.% Co 1145°C and 9.33 at.% Al at 1073°C.                                          |  |  |
| (βMn)<br>1100-727                            | cP20<br>P4 <sub>1</sub> 32<br>βMn                                | a = 631.52                                                        | [Mas2]. Dissolves 45 at.% Co at 546°C and 41.79 at.% Al at 840°C                                           |  |  |
| (αMn)<br>< 727                               | cI58<br>I3̄m<br>αMn                                              | a = 891.26                                                        | at 25°C [Mas2].                                                                                            |  |  |
| $\delta$ , $(Mn_{1-y},Co_y)_{1-x}Al_x$       |                                                                  |                                                                   |                                                                                                            |  |  |
| (δMn)<br>1246-840                            | cI2<br>Im3m<br>W                                                 | a = 308.0                                                         | [Mas2]. Dissolves ~8 at.% Co at 1188°C and 31.91 at.% Al at 1275°C [V-C2]. Dissolves 65 at.% Al at 1048°C, |  |  |
| Mn <sub>55</sub> Al <sub>45</sub> < 1177     |                                                                  | <i>a</i> = 306.3                                                  | 46 at.% Al at 870°C.<br>$\sim 0.2 < x < 0.537$ for $y = 1$                                                 |  |  |
| δ', CoAl<br>< 1640°C                         | $cP2$ $Pm\overline{3}m$ $CsC1$                                   | a = 286.2                                                         | at $x = 0.5$ , $y = 1$ [1966Rid]                                                                           |  |  |
| Co <sub>2</sub> Al <sub>5</sub><br><1188     | hP28<br>P6 <sub>3</sub> /mmc<br>Co <sub>2</sub> Al <sub>5</sub>  | a = 767.2<br>c = 760.5                                            | [1996Gru]<br>[1996Bur]                                                                                     |  |  |
| O-Co <sub>4</sub> Al <sub>13</sub><br>< 1080 | oP102<br>Pmn2 <sub>1</sub><br>O-Co <sub>4</sub> Al <sub>13</sub> | a = 815.8<br>b = 1234.7<br>c = 1445.2                             | [1996Gru]<br>[1996Bur]                                                                                     |  |  |
| M-Co <sub>4</sub> Al <sub>13</sub><br>1093-? | mC102<br>C2/m<br>Fe <sub>4</sub> Al <sub>13</sub>                | a = 1517.3<br>b = 810.9<br>c = 1234.9<br>$\beta = 107.84^{\circ}$ | [1996Fre]                                                                                                  |  |  |

MSIT®

Landolt-Börnstein
New Series IV/11A1

| Phase/<br>Temperature Range<br>[°C]                       | Pearson Symbol/<br>Space Group/<br>Prototype                       | Lattice Parameters [pm]                                                                                                                                                  | Comments/References                                                    |  |  |
|-----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| Z, CoAl <sub>3</sub> < 1158                               | mC*                                                                | a = 3984.0<br>b = 814.8<br>c = 3223.0<br>$\beta = 107.97^{\circ}$                                                                                                        | [1998Mo] often designated $\tau_2$ -Co <sub>4</sub> Al <sub>13</sub> . |  |  |
| Co <sub>2</sub> Al <sub>9</sub>                           | mP22<br>P12 <sub>1</sub> /c1<br>Co <sub>2</sub> Al <sub>9</sub>    | a = 855.65<br>b = 629.0<br>c = 621.3<br>$\beta = 94.76^{\circ}$                                                                                                          | [V-C2]                                                                 |  |  |
| MnAl <sub>12</sub>                                        | cI26<br>Im <del>3</del><br>Wal <sub>12</sub>                       | a = 747                                                                                                                                                                  | [V-C2]                                                                 |  |  |
| MnAl <sub>6</sub> < 705                                   | oC28<br>Cmcm<br>MnAl <sub>6</sub>                                  | a = 755.51<br>b = 649.94<br>c = 887.24                                                                                                                                   | [V-C2]                                                                 |  |  |
| λ, MnAl <sub>4</sub><br>< 693                             | hP586<br>P6 <sub>3</sub> /m                                        | a = 2838.2<br>c = 1238.9                                                                                                                                                 | [2003Pis] space group does not fit 100%, probably $P6_3$               |  |  |
| μ, MnAl <sub>4</sub><br>< 923                             | hP574<br>P6 <sub>3</sub> /mmc<br>MnAl <sub>4</sub>                 | a = 1998<br>b = 2467.3<br>c = 1389.7                                                                                                                                     | [2003Pis]                                                              |  |  |
| Mn <sub>4</sub> Al <sub>11</sub> (h)<br>1002 - 916        | oP160<br>Pnma                                                      | ?                                                                                                                                                                        | [2003Pis]                                                              |  |  |
| Mn <sub>4</sub> Al <sub>11</sub> (r) < 916                | aP30<br>P <i>I</i><br>Mn <sub>4</sub> Al <sub>11</sub>             | $a = 509.5 \pm 0.4$<br>$b = 887.9 \pm 0.8$<br>$c = 505.1 \pm 0.4$<br>$\alpha = 89.35 \pm 4^{\circ}$<br>$\beta = 100.47 \pm 5^{\circ}$<br>$\gamma = 105.08 \pm 6^{\circ}$ | [V-C2]                                                                 |  |  |
| γ <sub>1</sub> , ≈MnAl <sub>2</sub> < 1048                |                                                                    | ?                                                                                                                                                                        | [2003Pis]                                                              |  |  |
| γ <sub>2</sub> , Mn <sub>5</sub> Al <sub>8</sub><br>< 991 | hR26<br>R3m<br>Cr <sub>5</sub> Al <sub>8</sub>                     | a = 1273.9<br>c = 1586.1                                                                                                                                                 | at 58 at.% Al [V-C2]                                                   |  |  |
| ε, Mn <sub>3</sub> Al <sub>2</sub> < 1312                 | hP2<br>P6 <sub>3</sub> /mmc<br>Mg                                  | a = 270.5 to 270.5<br>c = 436.1 to 438                                                                                                                                   | 44.2 - 44.9 at.% Al [2003Pis]                                          |  |  |
| MnCo<br>< 545°C                                           | cI58<br>I3π<br>αMn                                                 | a = 628.1                                                                                                                                                                | [V-C2]                                                                 |  |  |
| *τ, Mn <sub>12</sub> Co <sub>4</sub> Al <sub>62</sub>     | oC156<br>Cmcm<br>Mn <sub>12</sub> Ni <sub>4</sub> Al <sub>62</sub> | ?                                                                                                                                                                        | [1972Goe]                                                              |  |  |

Landolt-Börnstein New Series IV/11A1

 Table 2: Invariant Equilibria

| Reaction                                                                              | T[°C] | Type  | Phase                            | Composition (at.%) |      |      |
|---------------------------------------------------------------------------------------|-------|-------|----------------------------------|--------------------|------|------|
|                                                                                       |       |       |                                  | Al                 | Co   | Mn   |
| $L + (\gamma Co) \rightleftharpoons \delta' + (\beta Mn)$                             | 1152  | $U_1$ | L                                | 8.0                | 32.2 | 59.8 |
| , , ,                                                                                 |       | 1     | (γCo)                            | 3.1                | 39.2 | 57.7 |
|                                                                                       |       |       | δ',                              | 12.7               | 36.8 | 50.5 |
|                                                                                       |       |       | $(\beta Mn)$                     | 2.5                | 36.7 | 60.8 |
| $L + Z \Rightarrow Co_2Al_5 + Co_4Al_{13}$                                            | ~1090 | $U_2$ | L                                | 78.5               | 15.4 | 6.1  |
|                                                                                       |       | _     | Z                                | 74.3               | 25.1 | 0.6  |
|                                                                                       |       |       | $Co_2Al_5$                       | 71.8               | 26.2 | 2.0  |
|                                                                                       |       |       | $Co_4Al_{13}$                    | 76.5               | 21.9 | 1.6  |
| $L + \delta \rightleftharpoons \text{Co}_2\text{Al}_5 + \text{Mn}_4\text{Al}_{11}(h)$ | 1038  | $U_3$ | L                                | 69.1               | 6.7  | 24.2 |
|                                                                                       |       |       | δ                                | 53.0               | 18.7 | 28.3 |
|                                                                                       |       |       | $Co_2Al_5$                       | 66.9               | 15.0 | 18.1 |
|                                                                                       |       |       | $Mn_4Al_{11}(h)$                 | 62.0               | 9.7  | 28.3 |
| $L + MnAl_2 \Rightarrow Mn_4Al_{11}(h) +$                                             | 990   | $U_4$ | L                                | 78.8               | 1.1  | 20.1 |
| $Co_2Al_5$                                                                            |       |       | $MnAl_2$                         | 69.8               | 2.1  | 28.1 |
|                                                                                       |       |       | $Mn_4Al_{11}(h)$                 | 73.0               | 0.3  | 26.7 |
|                                                                                       |       |       | $Co_2Al_5$                       | 72.3               | 3.6  | 24.1 |
| $\delta + Mn_4Al_{11}(h) \rightleftharpoons Co_2Al_5 +$                               | 980   | $U_5$ | δ                                | 50.8               | 20.1 | 29.1 |
| $Mn_4Al_{11}(r)$                                                                      |       |       | $Mn_4Al_{11}(h)$                 | 62.9               | 8.0  | 29.1 |
|                                                                                       |       |       | $Co_2Al_5$                       | 67.8               | 15.5 | 16.7 |
|                                                                                       |       |       | $Mn_4Al_{11}(r)$                 | 59.0               | 10.9 | 30.1 |
| $MnAl_2 \rightleftharpoons Mn_4Al_{11}(h) +$                                          | ~935  | $E_1$ | $MnAl_2$                         | 68.5               | 2.1  | 29.4 |
| $Mn_4Al_{11}(r) + Co_2Al_5$                                                           |       |       | $Mn_4Al_{11}(h)$                 | 72.2               | 0.6  | 27.2 |
|                                                                                       |       |       | $Mn_4Al_{11}(r)$                 | 66.3               | 1.8  | 31.9 |
|                                                                                       |       |       | Co <sub>2</sub> Al <sub>5</sub>  | 71.2               | 6.3  | 22.5 |
| $L + Mn_4Al_{11}(h) \rightleftharpoons \mu MnAl_4 +$                                  | 920   | $U_6$ | L                                | 85.3               | 0.5  | 14.2 |
| $Co_2Al_5$                                                                            |       |       | $Mn_4Al_{11}(h)$                 | 76.1               | 0.4  | 23.5 |
|                                                                                       |       |       | $\mu$ MnAl <sub>4</sub>          | 79.5               | 0.3  | 20.2 |
|                                                                                       |       |       | Co <sub>2</sub> Al <sub>5</sub>  | 78.8               | 1.3  | 19.9 |
| $Mn_4Al_{11}(h) + \mu MnAl_4 \Rightarrow$                                             | 908   | $U_7$ | $Mn_4Al_{11}(h)$                 | 74.2               | 0.9  | 24.9 |
| $Co_2Al_5 + Mn_4Al_{11}(r)$                                                           |       |       | $\mu$ MnAl <sub>4</sub>          | 79.1               | 0.1  | 20.8 |
|                                                                                       |       |       | $Co_2Al_5$                       | 77.3               | 1.4  | 21.3 |
|                                                                                       |       |       | $Mn_4Al_{11}(r)$                 | 73.8               | 0.3  | 25.9 |
| $L + Co_2Al_5 + \mu MnAl_4 \rightleftharpoons \tau$                                   | 895   | $P_1$ | L                                | 89.1               | 0.7  | 10.2 |
|                                                                                       |       |       | Co <sub>2</sub> Al <sub>5</sub>  | 78.4               | 1.7  | 19.9 |
|                                                                                       |       |       | $\mu$ MnAl <sub>4</sub>          | 79.6               | 0.2  | 20.2 |
|                                                                                       |       |       | τ                                | 79.5               | 1.1  | 19.4 |
| $L + Co_2Al_5 \rightleftharpoons \tau + Co_4Al_{13}$                                  | 877   | $U_8$ | L                                | 90.6               | 1.3  | 8.1  |
|                                                                                       |       |       | $Co_2Al_5$                       | 76.4               | 4.6  | 19.0 |
|                                                                                       |       |       | τ<br>Co. A1                      | 78.9               | 2.2  | 18.9 |
|                                                                                       | 0.55  |       | Co <sub>4</sub> Al <sub>13</sub> | 76.9               | 7.7  | 15.4 |
| $Mn_4Al_{11}(h) \rightleftharpoons Co_2Al_5 +$                                        | 868   | $E_2$ | $Mn_4Al_{11}(h)$                 | 73.0               | 0.6  | 26.4 |
| $Mn_4Al_{11}(r) + Mn_5Al_8$                                                           |       |       | $Co_2Al_5$                       | 73.1               | 3.5  | 23.3 |
|                                                                                       |       |       | $Mn_4Al_{11}(r)$                 | 73.8               | 0.2  | 26.0 |
|                                                                                       |       |       | $Mn_5Al_8$                       | 68.0               | 0.4  | 31.6 |

MSIT®

Landolt-Börnstein New Series IV/11A1

| Reaction                                             | T[°C] | Type            | Phase                           | Composition (at.%) |      |      |
|------------------------------------------------------|-------|-----------------|---------------------------------|--------------------|------|------|
|                                                      |       |                 |                                 | Al                 | Co   | Mn   |
| $L + Co_4Al_{13} \rightleftharpoons \tau + Co_2Al_9$ | 770   | U <sub>9</sub>  | L                               | 96.2               | 1.0  | 2.8  |
| 1 13 2 3                                             |       |                 | $Co_4Al_{13}$                   | 76.0               | 12.8 | 11.2 |
|                                                      |       |                 | τ                               | 78.9               | 2.8  | 18.3 |
|                                                      |       |                 | $Co_2Al_9$                      | 81.5               | 17.6 | 0.9  |
| $L + \mu MnAl_4 \rightleftharpoons \tau + MnAl_6$    | 698   | U <sub>10</sub> | L                               | 98.0               | 0.3  | 1.7  |
|                                                      |       |                 | $\mu$ MnAl <sub>4</sub>         | 79.8               | 0.6  | 19.6 |
|                                                      |       |                 | τ                               | 78.9               | 3.4  | 17.7 |
|                                                      |       |                 | $MnAl_6$                        | 85.3               | 0.2  | 14.5 |
| $L + \tau = MnAl_6 + Co_2Al_9$                       | 680   | U <sub>11</sub> | L                               | 98.3               | 0.5  | 1.2  |
| ÿ <b>2</b> ,                                         |       |                 | τ                               | 78.6               | 3.9  | 17.5 |
|                                                      |       |                 | $MnAl_6$                        | 85.3               | 0.2  | 14.5 |
|                                                      |       |                 | $Co_2Al_9$                      | 81.9               | 17.2 | 0.9  |
| $L \rightleftharpoons (Al) + MnAl_6 + Co_2Al_9$      | 652   | E <sub>3</sub>  | L                               | 98.5               | 0.7  | 0.8  |
|                                                      |       | -               | (Al)                            | 99.4               | 0.2  | 0.4  |
|                                                      |       |                 | MnAl <sub>6</sub>               | 85.3               | 0.2  | 14.5 |
|                                                      |       |                 | Co <sub>2</sub> Al <sub>9</sub> | 81.5               | 17.6 | 0.9  |



Fig. 1a: Al-Co-Mn. Reaction scheme, part 1



Fig. 1b: Al-Co-Mn. Reaction scheme, part 2





 $MSIT^{\tiny{\circledR}}$ 

Landolt-Börnstein New Series IV/11A1



**Fig. 5:** Al-Co-Mn. Isothermal section at 800°C



Landolt-Börnstein New Series IV/11A1

**Fig. 6:** Al-Co-Mn. Isothermal section at 900°C



**Fig. 7:** Al-Co-Mn. Isothermal section at 1000°C



 $MSIT^{\tiny{\circledR}}$ 

Fig. 8: Al-Co-Mn.
Isothermal section at 1050°C

60

80

(yCo)

Со

Fig. 9: Al-Co-Mn. Isothermal section at  $1100^{\circ}\text{C}$ 

 $(\beta Mn)$ 

40

20

Mn

(\alpha Mn)

Mn

Landolt-Börnstein New Series IV/11A1  $\text{MSIT}^{\circledR}$ 

Со

**Fig. 10: Al-Co-Mn.** Isothermal section at 1200°C



**Fig. 11: Al-Co-Mn.** Isopleth at 25 mass% Al



**Fig. 12: Al-Co-Mn.** Isopleth at 40 mass% Al



**Fig. 13: Al-Co-Mn.** Isopleth at 70 mass% Al







**Fig. 15: Al-Co-Mn.** Isopleth at 95 mass% Al



 $\begin{array}{c} \text{Landolt-B\"{o}rnstein} \\ \text{New Series IV/11A1} \end{array}$ 

**Fig. 16:** Al-Co-Mn. Vertical section at Mn-CoAl



Landolt-Börnstein
New Series IV/11A1

MSIT®