Desenvolvimento de um WebLab para Estudo e Caracterização de Sistemas WDM

Erik Aceiro Antonio

Orientador: Dr. Sérgio Szpigel

Co-orientador: Dr. Eunézio de Souza

Sumário.

- Motivação e Objetivos
- Estrutura Geral do WebLab
- Integração do WebLab ao MOODLE
- Sistemas WDM
- Simulação de Sistemas WDM em VPI
- Experimento para Caracterização de Sistemas WDM
- Instrumentos Virtuais LabVIEW

Motivação e Objetivos.

- O advento da Internet e o desenvolvimento das Tecnologias de Informação e Comunicação (TIC's) geraram novos espaços para a comunicação e colaboração entre grupos de pessoas localizadas em regiões geograficamente distintas.
- WebLabs são ambientes/laboratórios distribuídos que permitem o acesso e controle remoto via Internet de experimentos reais com a sensação de presença.
- O Objetivo deste trabalho é o desenvolvimento de um WebLab para estudo e caracterização de um sistema WDM

Estrutura do WebLab.

Estrutura do WebLab.

Arquitetura Cliente/Servidor Dupla.

Integração do WebLab ao MOODLE.

 O WebLab foi integrado a um ambiente virtual de ensino-aprendizagem, implementado através do programa MOODLE.

 Módulo WebLab: aplicativos desenvolvidos com base em linguagens suportadas pelo MOODLE (PHP, XML, Java, Javascript, etc.).

Sistemas WDM.

- Necessidade por alta capacidade em sistemas de Comunicação.
- Tecnologias existentes OTDM e WDM.
- Fornecer estudo do comportamento de um sistema WDM de dois canais.

Componentes para sistemas WDM

- Transmissores Ópticos
- Moduladores
- Fibras Ópticas
- Amplificadores Ópticos
- Receptores Ópticos
- Multiplexadores e Demultiplexadores
- Acopladores, Circuladores e Isoladores.

Simulação de Sistemas WDM em VPI.

- Componentes do VPI
- Desenvolvimento Modular em VPI
- Dynamic dataSheet (DDS)

Simulação - VPI

Setup do VPI

Parâmetros de Configuração

Canal (nm)	Coeficiente de Atenuação (dBm/km)	Coeficiente de Dispersão (ps/nm.km)	
1310	0,35	0,22	
1550	0	17,38	

Simulação - VPI

Foram realizadas simulações com o objetivo de analisar a BER do sistema nos seguintes casos:

- BER em função da Potência do Laser para vários Comprimentos
- BER em função da Largura do Laser para vários Comprimentos
- BER em função da Potência Recebida (ROP) para várias Taxas de Bits
- BER em função da Comprimento da Fibra para várias Taxas de Bits
- BER em função da Taxa de Bits para várias Larguras

A BER é definida como a razão entre o número de bits recebidos errados (n)

e o número total de bits transmitidos (m).

$$BER = \frac{n}{m}$$

BER em função da Potência do Laser para vários Comprimentos

Parâmetros fixos/alterados (negrito):

Parâmetros	Valores	
Largura do Laser 1310 nm	50 MHz e 1 GHz	
Largura do Laser 1550 nm	50 MHz e 1 GHz	
Potência Laser	0,01 mW até 0,5 mW (55 pontos)	
Taxa de Bit	1 Gbps e 10 Gbps	
Atenuação de Entrada 1310 nm	0 dBm	
Atenuação de Entrada 1550 nm	0 dBm	
Comprimento da Fibra	10 até 50 km (5 curvas)	
Perda por Inserção	1,3 dBm	
Atenuação da Fibra 1310nm	0,35 dBm/km	
Atenuação da FIbra 1550nm	0,22 dBm/km	
Dispersão 1310 nm	0 ps/nm.km	
Dispersão 1550 nm	$17,38.10^{-6}$ ps/nm.km	

- BER diminui com a potência
- O canal de 1550 nm apresenta melhor desempenho
- BER aumenta; quando passa de 1 Gbps para 10 Gbps
- BER aumenta; quando passa de 50 MHz para 1 GHz (ambos canais)

BER em função da Largura do Laser para vários Comprimentos

Parâmetros fixos/alterados (negrito):

Parâmetros	Valores	
Largura do Laser 1310 nm	50 MHz até 1 GHz (55 pontos)	
Largura do Laser 1550 nm	50 MHz até 1 GHz (55 pontos)	
Potência Laser	0,1 mW e 0,065 mW	
Taxa de Bit	1 Gbps e 10 Gbps	
Atenuação de Entrada 1310 nm	0 dBm	
Atenuação de Entrada 1550 nm	0 dBm	
Comprimento da Fibra	10 até 50 km (5 curvas)	
Perda por Inserção	1,3 dBm	
Atenuação da Fibra 1310nm	0,35 dBm/km	
Atenuação da FIbra 1550nm	0,22 dBm/km	
Dispersão 1310 nm	0 ps/nm.km	
Dispersão 1550 nm	17,38.10 ⁻⁶ ps/nm.km	

- BER aumenta com a largura do laser
- BER diminui para; quando passa de 1 Gbps para 10 Gbps
- A atenuação é o fator limitante; sempre maior para 1310 nm

0,1 mW

0,065 mW

BER em função da Potência Recebida (ROP) para várias Taxas de Bits

Parâmetros fixos/alterados (negrito):

Parâmetros	Valores		
Largura do Laser 1310 nm	50 MHz e 1 GHz		
Largura do Laser 1550 nm	50 MHz e 1 GHz		
Potência Laser	1,2 mW		
Taxa de Bit	0,25 até 1,25 Gbps (5 curvas)		
	2,5 até 12,5 Gbps (5 curvas)		
Atenuação de Entrada 1310 nm	0 até 6 dBm (55 pontos)		
Atenuação de Entrada 1550 nm	6,5 até 12,5 dBm (55 pontos)		
Comprimento da Fibra	50 km		
Perda por Inserção	1,3 dBm		
Atenuação da Fibra 1310nm	0,35 dBm/km		
Atenuação da FIbra 1550nm	0,22 dBm/km		
Dispersão 1310 nm	0 ps/nm.km		
Dispersão 1550 nm	17,38.10 ⁻⁶ ps/nm.km		

- BER diminui com a ROP
- Varia pouco para taxas entre 0,25 e 1,25 Gbps
- BER aumenta; quando aumenta a taxa de 2,5 para 12,5 Gbps
- BER diminui; quando a largura passa de 50 MHz para 1 GHz (0,25 até 1,25 Gbps)
- BER aumenta; para Taxas de Bits de 2,5 até 5 Gbps

dBm

dBm

3

dBm

ဖ

BER em função da Taxa de Bits para várias Larguras

Parâmetros fixos/alterados (negrito):

Parâmetros	Valores	
Largura do Laser 1310 nm	50 MHz até 1,05 GHz	
Largura do Laser 1550 nm	50 MHz até 1,05 GHz	
Potência Laser	0,035 mW para 10 km e 0,25 mW para 50 km	
Taxa de Bit	0,25 Gbps até 12,5 Gbps (5 curvas)	
Atenuação de Entrada 1310 nm	0 dBm	
Atenuação de Entrada 1550 nm	0 dBm	
Comprimento da Fibra	10 e 50 km	
Perda por Inserção	1,3 dBm	
Atenuação da Fibra 1310nm	0,35 dBm/km	
Atenuação da FIbra 1550nm	0,22 dBm/km	
Dispersão 1310 nm	0 ps/nm.km	
Dispersão 1550 nm	17,38.10 ⁻⁶ ps/nm.km	

- BER diminui com a Taxa de Bits
- Valor mínimo (1 5 Gbps) para a BER em função da Largura do Laser
- BER aumenta com a Taxa de Bits

1550 nm

1310 nm

Diagrama da Montagem Experimental.

Diagrama e Experimento

Modulação Direta da Corrente dos Lasers.

$$P(t) = P_0[1 + m \sin(\omega t)]$$

$$m = \frac{\Delta I}{I_B} \qquad I_B = I_{op} - I_{th}$$

- Determinação das Curvas L-I e Espectros dos Lasers
- Análise das Formas de Onda e Espectros (sinais entrada/saída)
- Determinação das Curvas de Resposta em Freqüência

Caracterização Local - Modulação Direta da Corrente dos Lasers.

Caracterização Local - Modulação Direta da Corrente dos Lasers.

10 kHz

150 kHz

300 kHz

Caracterização Remota - Modulação Direta da Corrente dos Lasers.

10 kHz

150 kHz

300 kHz

Caracterização Remota - Modulação Direta da Corrente dos Lasers.

10 kHz 150 kHz 300 kHz

Curvas de Resposta em Freqüência

Entrada

Saída

Instrumentação Vistual.

Instrumentação Virtual.

Arquitetura do Sistema WDM.

Instrumentação Virtual – Máquina de Estados.

Máquina de Estados

Instrumentação Virtual — Producer Consumer Design Patter.

Produtor x Consumidor.

Conclusões e Trabalhos Futuros.

- Desenvolvimento do Módulo WebLab (MOODLE).
- Análise via simulações (VPI) para os várias parâmetros empregos em um sistema WDM.
- Desenvolvimento do DDS para simulações via MOODLE.
- Uso de Padrões de Projeto (State Machine Diagram e Producer/Consumer - Events).
- Limitações quanto as opções de equipamentos.
- Implementação Futura do Sistema WDM para outros tipos de equipamentos.