Medical Image Processing for Interventional Applications Epipolar Geometry – Part 2 Online Course - Unit 35 Andreas Maier, André Aichert, Frank Schebesch

Pattern Recognition Lab (CS 5)

Topics

Radon Transform (Refresher)

Epipolar Geometry

In Diagrams

Redundancies on Epipolar Lines

Grangeat's Theorem

Applied Example

Summary

Take Home Messages

Further Readings

Radon Transform: 2-D Case

Radon Transform: 3-D Case

3-D X-Ray Transform!

Radon Transform: 3-D Case

3-D X-Ray Transform!

X-Ray Transform and Radon Transform

Topics

Radon Transform (Refresher)

Epipolar Geometry

In Diagrams

Redundancies on Epipolar Lines

Grangeat's Theorem

Applied Example

Summary

Take Home Messages

Further Readings

Two line bundles with 1-1 correspondences!

A single 3x3 matrix **F** encodes the relative geometry!

All epipolar lines intersect in the epipole!

Epipolar Plane

Not true for fan-beam geometry

Suppose C were far away.

- -> Rays would be parallel.
- -> Then: plane integral = line integral!

Integral of Epipolar Plane

$$\rho_f(\mathbf{E}) = \iint f(x, y, 0) dx dy$$

Integral of Epipolar Plane

$$\rho_f(\mathbf{E}) = \iint f(x, y, 0) dx dy$$

Integral of Epipolar Plane

$$\rho_f(\mathbf{E}) = \iint f(x, y, 0) dx dy$$

$$= \iint f(\Phi(\varphi, r)) det(J_{\Phi}) dr d\varphi$$

Weighted line integral on detector

The derivative of the 3-D Radon transform in normal direction is approximately the derivative of the 2-D Radon transform in intercept direction.

$$\frac{d}{dn}\rho_f(\mathbf{E}) \approx \frac{d}{d\kappa} \iint f(\Phi(\varphi, r)) dr d\varphi \approx \frac{d}{dt}\rho_I(\mathbf{l})$$

Topics

Radon Transform (Refresher)

Epipolar Geometry

In Diagrams

Redundancies on Epipolar Lines

Grangeat's Theorem

Applied Example

Summary

Take Home Messages

Further Readings

Metric for Geometric Consistency

Derivative of line integrals

Plane angle (around baseline)

Metric for Geometric Consistency

Derivative of line integrals

Plane angle (around baseline)

Metric defined as difference between blue and green curves!

A Plot for Detector Shifts and Just Two Views

- For a "close" image pair
- Range: 15 pixels
- Epipolar lines almost parallel to u-axis

Topics

Radon Transform (Refresher)

Epipolar Geometry

In Diagrams

Redundancies on Epipolar Lines

Grangeat's Theorem

Applied Example

Summary

Take Home Messages

Further Readings

Take Home Messages

- In this unit you got visual insight into the intricacies of epipolar geometry.
- We also connected line integrals on the detector with integrals of the epipolar plane.
- In the next unit we will learn how to use this to develop an epipolar consistency metric.

Further Readings

André Aichert et al. "Epipolar Consistency in Transmission Imaging". In: *IEEE Transactions on Medical Imaging* 34.11 (Nov. 2015), pp. 2205–2219. DOI: 10.1109/TMI.2015.2426417

Acknowledgements:

Universitätsklinikum Erlangen

