LaPIS Diagnostic Test Workbook - Mathematics

Name : Bandita A

Class: 7

Section : A

School : AKV Public School

Login ID : AKV121

Bandita A's Performance Report

Score: 21/40 Percentage: 52.5%

Bandita A's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved	
LCM Finding LCM	
Types of angles	Identification of types of angles

Hi, here in this video you will learn LCM

Question: 1

Fill the hexagon with factors and multiples of 10.

......

\underline{Answer} :

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

Question: 2

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

.....

The LCM of 50, 100 is 2 x 2 x ____ x ___.

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of $2 = \underline{\hspace{1cm}}$

Multiple of 13 =

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Hi, here in this video you will learn **Types of Angles**

Question: 4

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is $__$.

The straight line measures $___^{\circ}$.

Question: 5

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 6

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is _____°

The measurement of right angle is _____°.

Straight angle + Right angle = ____ + ___ = ____

It is called as _____ angle.

Data handling

Topics to be Improved		
Arithmetic mean, mode and median	Mean, Median and Mode	
Chance of probability	Basis of probability, Sample space in probability	

Hi, here in this video you will learn Mean, Median, Mode

Question: 7	
-------------	--

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

Question: 8

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____ and it is the _____ of a data.

Question: 9

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.

Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation = $___$, number of observation = $___$ Therefore, mean = $___$
Arrange the data in ascending order:
Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.
Hi, here in this video you will learn Basics of probability
Question: 10
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
$\underline{Answer:}$
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is
event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 11
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}(0/\ 1/\ any\ number)$. Probability of impossible event = $\underline{\hspace{1cm}}(0/\ 1/\ any\ number)$. Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
Therefore, I robability of sure event I robability of impossible event.
Question: 12
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have
Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is $(0/1)$

Hi, here in this video you will learn Basics of probability

Question: 13

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 14

Write the possible outcomes while spinning the given wheel.

Answer:

Outcomes are _____ (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\mathbf{\xi}0$, $\mathbf{\xi}10$, _____

Question: 15

A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.

......

Answer:

A bag contains,	and balls.	
If one of the ball is blue in colou	r, then other ball can be or	
If one of the ball is green in colo	ur, then other ball can be or	
If one of the ball is red in colour	, then other ball can be or	
Therefore, if two balls are taken	out then possible outcomes are blue +	- ,
+	_	

Geometry

Topics to be Improved		
Transversal angle made by transversal	Basics of Transversal angle	
Angle sum property of triangle	Angle sum property of triangle	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Right angle triangle and pythagoras property Basics of Pythagoras property		
Related angles	Basic of angles	

Hi, here in this video you will learn Basics of Transversal angle

Question: 16

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles.

Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, $_$ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Angle sum property

Question: 19

Sum of the angles of triangle is ______

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

.....

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 20

Which of the following triangle satisfy the angle sum property.

......

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _____

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

In $\triangle PQR$, Sum of the angles = _____ = ____ = ____

In $\triangle KLM$, Sum of the angles = ____ = __ = ___ = ___

In $\triangle XYZ$, Sum of the angles = _____ = ____ = ____

Therefore, the triangles that satisfy the angle sum property are = _____

Question: 21

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is _______ Let's consider the angles of triangle be 8x, ____ and ____ We know sum of the angles of a triangle is _____ Therefore, 8x+ ____ = 180° . The value of x= _____ The angles of the triangle are _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 22

Find the greatest distance to reach C from A in the given diagram.

......

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

Side AC = _____

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 23

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

etween which two numbers can length
tween which two numbers can length
than the third side of the triangle. greater) than sum of other two sides. =
than the third side of the greater) than sum of other two sides.
but less than
model(Vertex/ edges/ faces). meet(Vertex/ edges/ faces).
be.

Answer:

Mark the vertex, edges and faces in a cube.

Count the Cube have			, ,					es.				
Question:	27							 	 	 	 	
TT	, .	1	1.0	1	1.	1	0					

How many vertices, edges and faces does dices have?

Answer: The shape of dice is ______. Dices have _____ vertices, _____ edges and _____ faces. Hi, here in this video you will learn Pythagoras property Question: 28

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____(hypotenuse/ legs).

Pythagoras theorem states that _____

......

Question: 29

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

Therefore, hypotenuse of the triangle is _____.

Question: 30

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on Is Pythagoras theorem applicable in rectangle? ____ (yes/ no). Given: breadth = ______, length of diagonal = _____ By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$ Therefore, diagonal of the rectangle is ___ Hi, here in this video you will learn Related Angles Question: 31 (i) When two rays of an angle are perpendicular, then the angle formed between them is a _____ angle . (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle . Answer: A ______ (line segment /ray) begins from one point and travels endlessly in a direction. (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle. (ii) If two rays starting at same point moves in opposite direction, they form a _ (straight / perpendicular) line. The measure of the angle formed is ____oand it is called _____ angles.

Question: 32

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is $__$, $\angle ABC = __$.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 33

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Number system

Topics to be Improved					
Exponents	Solving exponents				
Positive and negative rational numbers	Identification of positive rational numbers				
Fractions	Division of fraction				

Hi,	here	in	this	video	you	will	learn	Exponents	and	power
,					•			1		_

Question:	34
a account	04

Find the exponential form of 1000.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

......

1000 can be written as = $10 \times$ ____ \times ____ 10 is raised to the power of ____ = (10)

Question: 35

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

......

.....

In this exponential form $(-2)^3$, base = ____, power = ____. $(-2)^3$ = ____ × ___ = ___.

Question: 36

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ___

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 37

Segregate positive and negative rational number.

......

Answer:

- If both the numerator and the denominator of a rational number are _____ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

.....

Question: 38

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \boxed{\ }$ and this _____ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 39

The product of a positive rational number and a negative rational number is ______rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers:

Examples for negative rational numbers:

Positive rational number \times Negative rational number = ____ \times ___ = ___ and this is ____ rational number

Hi, here in this video you will learn Division on fractions

Question: 40

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

.....

......

.....

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction.

Here, 5 is ______ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}})$

$$5 \frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

Question: 41

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

0 11 10	
Question: 42	

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{\underline{}} = \underline{\underline{}}$$

Then the answer is _____

Comparing Quantities

Topics to be Improved						
Conversion of fraction into percentage	Conversion of fraction into percentage					
Percentage	Basic of percentage					

.....

Hi, here in this video you will learn Converting fraction into percentage

Question: 43

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

Question: 44

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is _____

Question: 45

Find the percentage of shaded part of square.

1	n	011	10	n

The square shape is divided into	parts
Number of shaded part of square is $_$	
Shaded part of square in fraction is -	

To Convert	into percentage,	x 100

Hi, here in this video you will learn Basics of percentage

Question: 46

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

.....

Question: 47

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for ______ marks. He got _____ marks. 75 % can be written in fraction form _____

Then the mark scored by Arun = Total mark \times 75% = \times =
Question: 48
There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.
$\underline{Answer:}$
There are apples in a basket. Number of rotten apples are Fraction form of rotten apples in a basket =
Convert it into a percent= x% =

Algebra

Topics to be Improved					
Basics of simple equation	Solving of simple equation				
Addition and subtraction of algebraic expressions	Like terms and Unlike terms				
subtraction of algebraic expressions	subtraction of algebraic expressions				

Hi,	here in	this	video	you	will	learn	Solving	an	equation
-----	---------	------	-------	-----	------	-------	---------	----	----------

Ougation	10
Question:	49

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 50

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

.....

$$7 \Box + 3 = -4$$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times __+3 = __$$

$$7 \times$$
 ____+ $3 =$ ____

$$7 \times$$
 ____+ $3 =$ ____

Therefore, _____ is the number that can be placed in a box to make the equation correct.

<u>Question: 51</u>

Arrange the terms in the descending order when the value of x is 2. $2x 5x \times 1 x + 3 2x - 4 \frac{1}{2}x$

Answer:

The given expression are _____

The value of x is _____.

substituting value of $\mathbf x$

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$
$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $\frac{1}{2}x = \frac{1}{2} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, _____.

Hi, here in this video you will learn **Addition on expression**

Question: 52

Shade the like terms.

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are ______.

<u>Question: 53</u>

Complete the expression $7r^2 + r \square - 2 \square = \underline{\qquad} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$7r^2 + r \Box - 2 \Box = (7 + \underline{ } - 2)r^2 = \underline{ }$$

Question: 54

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have: _____.
- (ii) How many icecreams Sam have more than Ram : ______ .

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i)	Total choc	olates Ran	n and	Sam have	:			
		Ram's cho	ocolat	te + Sam's	choco	$olates = _$	 +=	=
/\	**		~	-		-		

(11)	How many	icecreams Sa	m have mor	e than Ram:		
		icec	ream	$\underline{}$ icecream = $\underline{}$	 =	

Hi, here in this video you will learn Subtraction on expression

Question:	55
WILESLIUIL	

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms.
The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.
The answer is

Question: 56

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

Answer:

- (i) Number of boys in school A = _____,
 - Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is $___$ + $___$ = $___$.

- (ii) Number of boys in school B = _____,
 - Number of girls in school $B = \underline{\hspace{1cm}}$

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 57

Solve the following:

$$\begin{array}{c|c}
 3a - 5b \\
 \hline
 (-) & 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{r}
3a - 5b \\
\underline{(-) \quad 5a - 7b} \\
-2a - \underline{\qquad}
\end{array}$$