Demand Modeling in Modern Taxi Services

Making Data Science Work in the Real-World

Neema Davis

Gaurav Raina

Krishna Jagannathan

Outline

- 1. Real-World Connection
- 2. Conceptual Framework
- 3. Spatial Partitioning Techniques
- 4. Spatio-Temporal Models
- 5. Abnormal Data & Anomaly Detection
- 6. Summary

Real-World Connection

FARE 1X Base Price

FARE1.5X Base Price

Demand-Supply Mismatch!
Crucial to develop accurate location-based demand forecasts

Actual demand-supply patterns near Bengaluru city center

What do we want?

Accurate modeling of taxi demand

Why is this important?

Demand - Supply imbalance in online taxi hailing services

- Scarcity of taxis in peak hours
- Under-utilized taxis in off-peak hours

Lots and lots of data!

Where do we start?

Conceptual Framework

Location-Based Prediction Framework

Location-Based Prediction Framework

Break the problem into blocks

- By analyzing intermediate blocks, prediction accuracy can be improved
- Explore spatial tessellation strategies and spatio-temporal modeling techniques

Bengaluru

- GPS traces of taxi passengers booking a taxi by logging into the mobile app
- 15 million data points

New York¹

- GPS traces of government-run street hailing Yellow taxis
- Differs from Bengaluru data set both in terms of data volume and city structure
- 21 million data points

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

Demand patterns over consecutive Mondays near Bengaluru city center

• Demand shows **temporal** correlations

Demand patterns over days of a week near Bengaluru city center

• Demand shows **temporal** correlations

Demand patterns in spatial neighbors near Bengaluru city center (N denotes Neighbor)

- Demand shows **temporal** correlations
- Demand shows spatial correlations
 We need models that can capture both correlations

Spatial Partitioning Techniques

City commonly divided into fixed-sized equidistant grids

Pros?

Easy!

Cons?

Data scarce cells

How about dividing the city into variable-sized grids?

Partitioning based on the demand data distribution

Geohash tessellation

- Encodes any coordinate into alphanumeric string
- Higher the level, longer the string, higher the precision
- $\bullet\,$ A 6 level geohash covers a rectangular area of 1.2×0.6 km

Voronoi tessellation

- Requires K-Means Clustering
- ullet Classify data into K clusters, where K \sim area of the city
- Divides space based on closeness of cluster centroids

Spatio-Temporal Models

Spatio-Temporal Modeling

Common Modeling Techniques

²A. M. Nagy et al, "Survey on traffic prediction in smart cities," *Pervasive and Mobile Computing*, vol. 50, pp. 148163, 2018.

³G. Petneházi, "Recurrent neural networks for time series forecasting," arXiv preprint arXiv:1901.00069, 2019.

Linear Models: Regression

Auto Regressive Moving Average (ARMA)

$$\hat{y}_{t+h|t} = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \ldots + e_t$$

 ϕ AR parameter

 θ MA parameter

 e_{t-i} Forecast error at t-i

Seasonal and Trend decomposition with Loess (STL)

$$y_t = s_t + A_t$$

Non Seasonal s_t modeled using Exponential Smoothing or ARMA, and Seasonal A_t modeled using Seasonal Naive model

Forward Pass

- Feed Information
- Calculate Loss, L(w)

Backward Pass

- Aim: Reduce Loss
- Calculate Gradients, <u>\frac{\partial L}{\partial w}</u>
- Update Weights

Standard Feed-Forward Neural Networks

Output layer

Forward Pass

- Feed Information
- Calculate Loss, L(w)

Backward Pass

- Aim: Reduce Loss
- Calculate Gradients, $\frac{\partial L}{\partial w}$
- Update Weights

Recurrent Neural Networks (RNNs)

RNN unit: No memory!

LSTM unit: Remembers the past, but no spatial memory!

Convolutional LSTM unit: Captures temporal and spatial information!

Convolutional Neural Networks (CNNs)

Image

Filter

w_{11}	<i>W</i> ₁₂	W ₁₃
W ₂₁	W ₂₂	W ₂₃
W ₃₁	W32	W33

Convolutional Neural Networks (CNNs)

Image

$$b_{11} = w_{11}a_{11} + w_{12}a_{12} + w_{13}a_{13} + w_{21}a_{21} + w_{22}a_{22} + w_{23}a_{23} + w_{31}a_{31} + w_{32}a_{32} + w_{33}a_{33}$$

Convolutional Neural Networks (CNNs)

Image

$$b_{ij} = w_{11}a_{ij} + w_{12}a_{i(j+1)}$$

$$+ w_{13}a_{i(j+2)} + w_{21}a_{(i+1)j}$$

$$+ w_{22}a_{(i+1)(j+1)} + w_{23}a_{(i+1)(j+2)}$$

$$+ w_{31}a_{(i+2)j} + w_{32}a_{(i+2)(j+1)}$$

$$+ w_{33}a_{(i+2)(j+2)}$$

Is ConvLSTM Enough?

Geohash partitioned city

ConvLSTM is suitable

33	RR 1.2 I & II	16	21	29		earath 41 ha	11	16	3
2 (3)	18	ு 45கிண் _{Guindy⊡}	33	16	cance Education Operation 129	56	50 Madhya Keil	39 on Temple	5
Region Anna Anna Anna Anna Anna Anna Anna An	ert Office 21	56	10	Accept Q	GUINDY TIONAL ARK all own sp Cp. esp err so Lutripa	National Alexandra Guini	67	a Camples buribal Nepar (2) Volunta 16 a Services (2) resident (3)	Gana 1
harine 49	39	UVING 33	THAVAN	3	5	6	29	ntral Po41nic untid Po41nic untid Pui	4:
6	18	32	ाळ బణ బణ 4	18 Guru Nanas Collego	12	Sri Dur 21	J13 Theramani Pol 3 Setion Cr 3 4 vso	இந்திரா நக 32	9
Kam 5	KAN NAGAR	na 11 Sundan	ANNA 30 on	ARDEN	of Technolog	3	39	11.0	2
		TELACHERI LAKE	P	JEE/GATE OF				Gapride #	nuvanm
41 MA	33 HALAKSHMI NAGAR	Government LAKE	Aruk Karusmega Sa 29 yand	JEE/GATE OF		1	The World Ba	Software Tech 16 Parks	

Is ConvLSTM Enough?

Voronoi partitioned city

ConvLSTM fails!

How Do We Make Progress?

- Standard convolutional filters cannot be applied on variable sized Voronoi partitions
- But, they can be represented as nodes on a graph

LSTM for Graphs

- Can an LSTM receive inputs from a graph? Let's explore
- Create an Adjacency matrix

Consider 5 nodes; node 1 connected to nodes 2,3, node 2 connected to node 1, \cdots

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ & \ddots & \ddots & & \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- Consider the operation: $(W_{gc} \bullet A)X_t$
- GraphLSTM = LSTM with inputs of the above form⁴

⁴Z. Cui et al, "High-order graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting," arXiv preprint arXiv:1802.07007, 2018.

Where is GraphLSTM Applicable?

GraphLSTM is applicable to diverse partitioning schemes! Clear advantage over ConvLSTM

Summary of Models

LSTM:

$$f_t = \delta(W_f \cdot X_t + U_f \cdot h_{t-1} + b_f)$$

$$i_t = \delta(W_i \cdot X_t + U_i \cdot h_{t-1} + b_i)$$

$$o_t = \delta(W_o \cdot X_t + U_o \cdot h_{t-1} + b_o)$$

$$\overline{C}_t = \varphi(W_c \cdot X_t + U_c \cdot h_{t-1} + b_c)$$

$$C_t = f_t \bullet C_{t-1} + i_t \bullet \overline{C}_t$$

$$h_t = o_t \bullet \phi(C_t)$$

Forget Gate

Input Gate

Output Gate

Cell State

Cell State Update

Hidden State Output

where,

 $X_t = \text{input at } t$

 W_x , U_x , & b_x = weights & bias associated with gate x

 $\cdot = \mathsf{matrix} \; \mathsf{multiplication}$

• = element-wise product operation

Summary of Models

ConvLSTM (for Geohashes):

$$f_{t} = \delta(W_{f} * X_{t} + U_{f} * h_{t-1} + b_{f})$$

$$i_{t} = \delta(W_{i} * X_{t} + U_{i} * h_{t-1} + b_{i})$$

$$o_{t} = \delta(W_{o} * X_{t} + U_{o} * h_{t-1} + b_{o})$$

$$\overline{C}_{t} = \varphi(W_{c} * X_{t} + U_{c} * h_{t-1} + b_{c})$$

$$C_{t} = f_{t} \bullet C_{t-1} + i_{t} \bullet \overline{C}_{t}$$

$$h_{t} = o_{t} \bullet \phi(C_{t})$$

Forget Gate

Input Gate

Output Gate

Cell State

Cell State Update

Hidden State Output

where,

* = convolution operator

Summary of Models

GraphLSTM (for all kinds of partitions):

$$f_{t} = \delta(W_{f} \cdot \mathcal{GC}_{t} + U_{f} \cdot h_{t-1} + b_{f}))$$

$$i_{t} = \delta(W_{i} \cdot \mathcal{GC}_{t} + U_{i} \cdot h_{t-1} + b_{i})$$

$$o_{t} = \delta(W_{o} \cdot \mathcal{GC}_{t} + U_{o} \cdot h_{t-1} + b_{o})$$

$$\overline{C}_{t} = \varphi(W_{c} \cdot \mathcal{GC}_{t} + U_{c} \cdot h_{t-1} + b_{c})$$

$$C^{*}_{t-1} = W_{N} \bullet A \cdot C_{t-1}$$

$$C_{t} = f_{t} \bullet C^{*}_{t-1} + i_{t} \bullet \overline{C}_{t}$$

$$h_{t} = o_{t} \bullet \tanh(C_{t})$$

Forget Gate

Input Gate

Output Gate

Cell State

Spatial Information

Cell State Update

Hidden State Output

where,

$$\mathcal{GC}_t = (W_{gc} \bullet \mathcal{A})X_t$$
: input at t

Evaluation Metrics

Root Mean Square Error
$$=\sqrt{\frac{1}{h}\sum_{t=1}^{h}(y_t-\hat{y_t})^2}$$

Symmetric Mean Absolute Percent Error
$$=\frac{100}{h}\sum_{t=1}^{h}\frac{|y_t-\hat{y}_t|}{\hat{y}_t+y_t}$$

$$\textbf{Mean Absolute Scaled Error} = \frac{1}{h} \sum_{t=1}^{h} \left(\frac{|y_t - \hat{y_t}|}{\frac{1}{N-m} \sum_{t=m+1}^{N} |y_t - y_{t-m}|} \right)$$

Ν	Number of samples
y_t , \hat{y}_t	Actual, Predicted
m	Seasonal period
h	Forecast horizon

Observations

- Non-linear deep learning models show better prediction performance than linear regression models
- GraphLSTM has competitive prediction performance against ConvLSTM at lower computational complexity
- Models show non-stationary behavior

Non-Stationary Behavior of Models

Overall winner need not mean winner at all time steps

Need superior performance at each time step in horizon

Ensemble Learning

Modified dHEDGE Algorithm

```
Algorithm: Modified dHEDGE for choosing the best expert
Parameters: Learning parameter \beta \in [0, 1], Discounting factor
 \gamma \in [0, 1]
Initialization: Set w_i[1] = W > 0 for i \in 1, 2 s.t
 \sum_{i=1}^{2} w_i[1] = 1
for t = 1, 2, ... do
    Choose expert with index = argmax(w_i[t])
    Error e_v = MEAN (forecast errors from models based on
     Voronoi at t)
    Error e_{\sigma} = MEAN (forecast errors from models based on
      Geohash at t)
    Loss L at t, l_1[t] = \frac{e_v}{e_v + e_g}, l_2[t] = \frac{e_g}{e_v + e_g}
Update weights as w_i[t+1] = w_i[t]^{\gamma} \cdot \beta^{l_i[t]}
```

Modified dHEDGE Algorithm

Errors from a 24 hour ahead forecast

Let's apply the algorithm on the prediction models

Modified dHEDGE Algorithm

Errors from a 24 hour ahead forecast

Our algorithm tries to pick the best model at each instant

Towards Demand-Supply Equilibrium

Billion dollar question: Can accurate demand forecasting help achieve equilibrium? Yes!

Actual vs predicted demand-supply patterns near Bengaluru city center

The Work so Far

Abnormal Data & Anomaly Detection

Need for Such Analysis

Anomaly Detection

Why? Forecasting models can learn only periodic patterns

Demand patterns over two months near Bengaluru city center

Anomaly Detection: Prior Art

 5 V. Chandola et al, "Anomaly detection: A survey," *ACM Computing Surveys*, vol. 41, pp. 15–63, 2009.

⁶C. Raghavendra et al, "Deep-Learning for anomaly detection: A survey," arXiv preprint arXiv:1901.03407, 2019.

P. Malhotra et al. "Long short term memory networks for anomaly detection in time series,"" ESANN, 2015.

Anomaly Detection: Prior Art

 $^{^{5}}$ V. Chandola et al, "Anomaly detection: A survey," *ACM Computing Surveys*, vol. 41, pp. 15–63, 2009.

⁶C. Raghavendra et al, "Deep-Learning for anomaly detection: A survey," *arXiv preprint arXiv:1901.03407*, 2019.

P. Malhotra et al. "Long short term memory networks for anomaly detection in time series,"" ESANN, 2015.

Anomaly Detection: Contributions

- Hybrid deep anomaly detection
 - Proposed detection strategy based on Extreme Value Theory
 - "Extreme values of any distribution follow a Generalized Pareto Distribution regardless of the parent distribution"
 - ullet Extreme values = high prediction errors o possible anomalies
- End-to-end deep anomaly detection
 - Proposed end-to-end EVT-LSTM model
 - Networks not customized for detection in hybrid models
 - Modify objective function to detect anomalies directly

Hybrid Deep Anomaly Detection

Common Practice

Assume Gaussian distribution on the prediction errors

- Computationally efficient
- Mathematically tractable
- Does not require large memory storage (unlike clustering)
- No kernel functions (unlike Support Vector Machines)
- Only if assumptions regarding underlying data distribution hold, provides a statistically justifiable solution for anomaly detection

Devise a strategy with all the advantages, but without this limitation?

Extreme Value Theory (EVT)

Extreme values of any distribution follow a Generalized Pareto Distribution (GPD) regardless of the parent distribution

- High prediction error
 - ightarrow an instance the model has not seen before
 - ightarrow possible anomaly
- Anomalous instances lie on distribution tail of prediction errors
- EVT can be applied!
 - all advantages of distribution based detection without making critical assumptions about actual distribution

EVT-Based Detection Strategy

A. Siffer et al, "Anomaly detection in streams with extreme value theory," in *International Conference on Knowledge Discovery and Data Mining*, 2017.

Baseline Detection Strategies

Evaluation Metrics

$$\begin{aligned} & \textbf{Precision}, \ P = \frac{\text{TP}}{\text{TP} + \text{FP}} \\ & \textbf{Recall}, \ R = \frac{\text{TP}}{\text{TP} + \text{FN}} \\ & \textbf{F-score}, \ F = 2 \cdot \frac{P \times R}{P + R} \end{aligned}$$

where,

TP: Correctly predicted anomalies

FP: Non-anomalies incorrectly identified as anomalies

FN: Anomalies incorrectly identified as non-anomalies

Experiments and Observations

- Experiments conducted with diverse data sets
 - Traffic speed
 - Vehicular occupancy
 - Travel time
 - Taxi demand
 - Biomedical ECG
 - Finance Bitcoin
- Proposed EVT-based framework consistently outperforms
 Gaussian and Tukey's method based strategies

Performance of Detection Strategies

Modeling using LSTM

Performance of Detection Strategies

Gaussian-based detection technique

Performance of Detection Strategies

EVT-based detection technique

End-to-End Deep Anomaly Detection

```
Algorithm: The training process of the proposed end-to-end
EVT-LSTM model. The threshold \tau_e is updated every k epochs.
Input: Set of examples (\mathbf{x}_n, y_n), n:1,\ldots,N
Output: Set of decision scores \varsigma_n, n:1,\ldots,N
Initialization: Threshold \tau_e \leftarrow 0
while convergence criteria unmet do
    Update weights of the network
    for once in every k epochs do
         Calculate prediction errors, E(\hat{y}_n) = |\hat{y}_n - y_n|
        T_{ini} \leftarrow \text{InitThreshold}(E(\hat{y}_{n:}))
        Excesses \leftarrow \{E(\hat{y}_{n:}) - T_{ini} | E(\hat{y}_{n:}) > T_{ini}\}
         Fit a GPD to excesses by using MLE and find
          parameters
         Update \tau_e
Compute decision score \varsigma_n = |\hat{y}_n - y_n| - \tau_e for each \mathbf{x}_n
if \varsigma_n \geq 0 then
  \mathbf{x}_n is anomalous
else
\mathbf{x}_n is non-anomalous
```

Proposed End-to-End EVT-LSTM Model

Objective function of LSTM modified as

$$\min_{\mathcal{W}} \ \frac{1}{N} \sum_{i=1}^{N} || \frac{\textbf{E}(\boldsymbol{\Phi}(\boldsymbol{x}_i; \mathcal{W})) - \boldsymbol{\tau_e}}{||^2} + \frac{\boldsymbol{\Psi}}{2} \sum_{l=1}^{L} || \boldsymbol{W}^l ||_{\textit{F}}^2$$

where,

Input: $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ in $\mathcal{X}\subseteq\mathbb{R}^p$, Output: $\{y_1,\ldots,y_N\}$ in $\mathcal{Y}\subseteq\mathbb{R}$ Weights: $\mathcal{W}=\{\mathbf{W}^1,\ldots,\mathbf{W}^L\}$ with L layers & regularization $\Psi>0$ Absolute Prediction Error: $\mathsf{E}(\Phi(\mathbf{x}_i;\mathcal{W}))$

EVT Threshold: τ_e

- During training, τ_e updated once in every k epochs
- After training, calculate decision score for each (x_n, y_n) pair

$$\varsigma_n = |\hat{y}_n - y_n| - \tau_e$$
 $\varsigma_n \ge 0 \implies x_n \text{ is anomalous}$

Outperforms traditional and hybrid deep models on seven diverse data sets

Summary

Contributions

Accurate demand forecasting

can limit surge-pricing by balancing taxi demand and supply

- Explored various time-series models
- Exploited spatial information
- LSTM variants better than regression models
- Potential of GraphLSTM
- Proposed EVT-based detection rules for anomaly detection
- Superior to the commonly employed detection rules

Publications

Journals, published

- N. Davis, G. Raina, and K. Jagannathan, "Taxi Demand Forecasting: A HEDGE-Based Tessellation Strategy for Improved Accuracy," IEEE Transactions on Intelligent Transportation Systems, vol. 19, pp. 3686–3697, 2018.
 Conferences
- N. Davis, G. Raina, and K. Jagannathan, "LSTM-Based Anomaly Detection: Detection Rules from Extreme Value Theory," in Proc. of Springer EPIA European Conference on Artificial Intelligence, pp. 572–583, 2019.
- N. Davis, G. Raina, and K. Jagannathan, "Taxi Demand-Supply Forecasting: Impact of Spatial Partitioning on the Performance of Neural Networks," in NeurIPS Workshop on Machine Learning in Intelligent Transport Systems, 2018.
- N. Davis, G. Raina and K. Jagannathan, "A Multi-Level Clustering Approach for Forecasting Taxi Travel Demand," in Proc. of IEEE International Conference on Intelligent Transportation Systems, pp. 223–228, 2016.

Journals, under revision

- N. Davis, G. Raina, and K. Jagannathan, "Grids versus Graphs: Partitioning Space for Improved Taxi Demand-Supply Forecasts," IEEE Transactions on Intelligent Transportation Systems, February 2019.
- N. Davis, G. Raina, and K. Jagannathan, "A Framework for End-to-End Deep Learning-Based Anomaly Detection in Transportation Networks," Elsevier Transportation Research Interdisciplinary Perspectives, October 2019.

44/44