Série de TD n°5 : Conducteurs en équilibre électrostatique

Exercice 1:

Une sphère conductrice S_1 , de centre O_1 et de rayon $R_1 = 10$ cm, porte une charge électrique Q = 10 nC.

- 1. Calculer son potentiel V et son énergie interne W;
- 2. On relie, par un fil conducteur, S₁ à une seconde sphère conductrice S₂, initialement neutre, de centre O₂ et de rayon R₂ = 1 cm. Les centres des deux sphères sont séparés par une distance d = O₁O₂ = 50 cm. On néglige les caractéristiques du fil de jonction et on ne tient pas compte du phénomène d'influence. Calculer, à l'équilibre, les charges Q₁ et Q₂ portées respectivement par S₁ et S₂;
- 3. Calculer l'énergie du système formé par les deux sphères avant et après la connexion. Où est passée l'énergie perdue?

Exercice 2:

Un conducteur sphérique creux A, initialement neutre, de rayon intérieur $R_2 = 2R$ et rayon extérieur $R_3 = 4R$ entoure un deuxième conducteur sphérique B, de rayon $R_1 = R$, porté à un potentiel V_0 par l'intermédiaire d'un générateur (Voir figure ci-contre). Le conducteur B porte une charge Q_0 .

- **1.** Quelles sont les charges portées par les surfaces intérieure et extérieure du conducteur *A* ?
- 2. En appliquant le théorème de Gauss, déterminer l'expression du champ électrique \vec{E} dans les quatre régions suivantes : r < R, R < r < 2R, 2R < r < 4R, r > 4R

Année universitaire 2019/2020

Matière: Physique 2

Durée: 02 séances

Exercice 3:

- 1. Les caractéristiques d'un condensateur sont : sa capacité $C=0.12\,mF$, épaisseur du diélectrique $e=0.2\,mm$; permittivité relative de l'isolant $\varepsilon_r=5$; tension de service $U_s=100\,V$ et $\varepsilon_0=8.84\,10^{-12}F/m$. Calculer :
- a- La surface des armatures ;
- **b-** La charge du condensateur soumis à la tension de service ;
- c- L'énergie emmagasinée dans ces conditions.
- 2. Le condensateur étant chargé, on l'isole, puis on l'associe en parallèle à un condensateur de capacité $C_1 = 0.15 \ mF$ initialement déchargé. Calculer :
- **a-** La charge totale de l'ensemble formé par les deux condensateurs ;
- **b-** La tension commune aux deux condensateurs en régime permanent ;
- c- L'énergie emmagasinée par le montage.

Exercice 4:

Un condensateur de capacité $C_1 = 3.3 \, mF$ est chargé sous la tension $U_1 = 20 \, V$, un autre condensateur de capacité $C_2 = 2200 \, \mu F$ est chargé sous la tension $U_2 = 10 \, V$.

- 1. Calculer les charges Q_1 et Q_2 de ces deux condensateurs ;
- 2. Les deux condensateurs sont isolés et branchés en parallèle. Quelle est alors la charge Q portée par l'ensemble?
- **3.** En déduire la tension U aux bornes de l'ensemble.

Exercice 5:

Soit le groupement de condensateurs de la figure ci-contre :

1. Calculer la capacité C_{AB} du condensateur équivalent ;

2. Une tension $U_{AB} = 220 V$ est appliquée entre les points A et B. Calculer les tensions aux bornes de chaque condensateur ainsi que les charges qu'ils portent.

On donne : $C_1 = C_2 = 1 \, \mu F$, $C_3 = 220 \, nF$, $C_4 = 70 \, nF$, $C_5 = 720 \, nF$

Exercice 6 : (à traiter en cours)

Déterminer l'expression de la capacité d'un condensateur sphérique et celle d'un condensateur cylindrique.

Exercices supplémentaires:

Exercice S1: (suite de l'exercice 2)

1. En considérant que V_A est le potentiel du conducteur A et sachant que le potentiel électrique est nul à l'infini, déterminer l'expression du potentiel électrique V dans les quatre régions :

$$r < R, R < r < 2R, 2R < r < 4R, r > 4R$$

2. En déduire la charge Q_0 en fonction de R, V_0 et ε_0 .

Exercice S2:

Soit un condensateur plan constitué de deux armatures placées perpendiculairement à l'axe OX. L'armature positive porte la charge (+Q) et est située à l'abscisse x=0; l'armature négative est située à l'abscisse x=e. On note U la tension positive établie entre ces armatures.

- 1. Le condensateur étant isolé (la charge des armatures reste constante), on déplace l'armature négative de l'abscisse e à l'abscisse e + h. Établir l'expression de la nouvelle tension U' qui s'établit entre les armatures ;
- 2. Quel travail fournit l'opérateur lors de ce déplacement ?
- **3.** Quelle est la variation d'énergie potentielle du condensateur quand il passe de sa position initiale à sa position finale ? Conclure.

Exercice S3:

Soit le montage de condensateurs comme indiqué sur la figure ci-contre.

- 1. Redessiner le schéma de ce montage en faisant apparaître la symétrie par rapport à la branche ED;
- 2. Si U=100~V et $U_{ED}=0~V$, calculer la capacité du condensateur équivalent, la charge de chaque condensateur ainsi que la différence de potentiel entre les armatures de chaque condensateur. On donne : $C_1=C_2=C_3=C_4=1~\mu F$

Année universitaire 2019/2020

Matière: Physique 2

Durée: 02 séances

Exercice S4:

Soit le groupement de condensateurs de la figure ci-contre :

- 1. La capacité C_1 étant donnée, quelle doit être la capacité C_2 pour qu'il y ait entre A et B une capacité équivalente C_e telle que $C_e = C_2$? A.N.: $C_1 = 8 \mu F$
- 2. Une tension $U_{AB} = 500 V$ est appliquée entre les points A et B. Calculer les tensions aux bornes de chaque condensateur ainsi que les charges qu'ils portent.

Corrigé de la série n°4

Année universitaire 2018/2019

Module: Physique 2

Exercice 1:

$$V = K \frac{Q}{R_1} ; W = \frac{1}{2} QV = \frac{1}{2} K \frac{Q^2}{R_1}$$

$$\begin{cases} Q_1 + Q_2 = Q \\ V_1 = V_2 \end{cases} \Rightarrow \begin{cases} Q_1 + Q_2 = Q \\ K \frac{Q_1}{R_1} = K \frac{Q_2}{R_2} \end{cases} \Rightarrow \begin{cases} Q_1 + Q_2 = Q \\ Q_2 = \frac{R_2}{R_1} Q_1 \end{cases} \Rightarrow \begin{cases} Q_1 = \left(\frac{R_1}{R_1 + R_2}\right) Q \\ Q_2 = \left(\frac{R_2}{R_1 + R_2}\right) Q \end{cases}$$

$$W_{av} = W_{av1} + W_{av2} = \frac{1}{2} K \frac{Q^2}{R_1}$$

$$W_{ap} = W_{ap1} + W_{ap2} = \frac{1}{2} Q_1 V_1 + \frac{1}{2} Q_2 V_2 = \frac{1}{2} (Q_1 + Q_2) V_1 = \frac{1}{2} Q V_1 = \frac{1}{2} Q \left(K \frac{Q_1}{R_1}\right) = \frac{1}{2} K \frac{Q}{R_1} \left(\frac{R_1}{R_1 + R_2}\right) Q$$

$$= \frac{1}{2} K \frac{Q^2}{R_1 + R_2} < W_{av}$$

Une partie de l'énergie initiale a été dissipée en chaleur par effet Joule dans le fil de jonction

Exercice 2:

$$\begin{cases} Q_{A,int} = -Q_0 \text{ (Influence totale)} \\ Q_{A,ext} = -Q_{A,int} = Q_0 \text{ (le conducteur A est neutre)} \end{cases}$$

Symétrie sphérique (champ radial) : $\vec{E} = E(r)\vec{e}_r$

Surface de Gauss : sphère de centre O et de rayon r = OM

Flux:

$$\Phi = \iint_{(S_C)} \vec{E} \cdot \vec{dS} = ES_G = E(4\pi r^2)$$

Théorème de Gauss:

$$\begin{split} \Phi = \bigoplus_{(S_G)} \vec{E}.\overrightarrow{dS} &= \frac{Q_{int}}{\varepsilon_0} \Rightarrow E = \frac{Q_{int}}{4\pi\varepsilon_0 r^2} \\ r &< R \Rightarrow Q_{int} \Rightarrow E = 0 \\ R &< r < 2R \Rightarrow Q_{int} = Q_0 \Rightarrow E = \frac{Q_0}{4\pi\varepsilon_0 r^2} \\ 2R &< r < 4R \Rightarrow Q_{int} = Q_0 - Q_0 = 0 \Rightarrow E = 0 \\ r &> 4R \Rightarrow Q_{int} = Q_0 - Q_0 + Q_0 = Q_0 \Rightarrow E = \frac{Q_0}{4\pi\varepsilon_0 r^2} \end{split}$$

Exercice 3:

$$C_{1} = \varepsilon_{0} \varepsilon_{r} \frac{S}{e} \Rightarrow S = \frac{C_{1} e}{\varepsilon_{0} \varepsilon_{r}}$$

$$Q = C_{1} U_{S}$$

$$W = \frac{1}{2} Q U_{S}$$

$$\begin{cases} Q_{1} + Q_{2} = Q \\ U_{1} = U_{1} \end{cases} \Rightarrow \begin{cases} Q_{1} + Q_{2} = Q \\ \frac{Q_{1}}{C_{1}} = \frac{Q_{2}}{C_{2}} \end{cases} \Rightarrow \begin{cases} Q_{1} = \left(\frac{C_{1}}{C_{1} + C_{2}}\right) Q \\ Q_{2} = \left(\frac{C_{2}}{C_{1} + C_{2}}\right) Q \end{cases}$$

$$U = U_{1} = U_{1} = \frac{Q_{1}}{C_{1}} = \frac{Q_{2}}{C_{2}} = \frac{Q}{C_{1} + C_{2}}$$

$$W = \frac{1}{2}C_1U_1^2 + \frac{1}{2}C_2U_2^2 = \frac{1}{2}(C_1 + C_2)U^2$$

Exercice 4:

$$\begin{cases} Q_1' + Q_2' = Q_1 + Q_2 \\ U_1' = U_2' \end{cases} \Rightarrow \begin{cases} Q_1' + Q_2' = Q_1 + Q_2 \\ \frac{Q_1'}{C_1} = \frac{Q_2'}{C_2} \end{cases} \Rightarrow \begin{cases} Q_1' = \left(\frac{C_1}{C_1 + C_2}\right)(Q_1 + Q_2) \\ Q_2' = \left(\frac{C_2}{C_1 + C_2}\right)(Q_1 + Q_2) \end{cases}$$

$$U = U_1' = U_2' = \frac{Q_1 + Q_2}{C_1 + C_2}$$

Exercice 5:

$$\begin{split} C_{12} = \frac{C_1 C_2}{C_1 + C_2} \; ; \; C_{45} = C_4 + C_5 \; ; \; C_{345} = \frac{C_3 C_{45}}{C_3 + C_{45}} \; ; \; C_{AB} = C_{12} + C_{345} \\ \begin{cases} Q_1 = Q_2 \\ Q_3 = Q_4 + Q_5 \\ Q_{AB} = C_{AB} U_{AB} = Q_1 + Q_3 \\ U_4 = U_5 \\ U_{AB} = U_1 + U_2 = U_3 + U_4 \\ \end{split}$$