CE 3121: Geotechnical Engineering Laboratory

Class 8

Triaxial Test on Sand & Unconfined Compression Test

Sources:

Soil Mechanics – Laboratory Manual, B.M. DAS (Chapter 16 & 18) Soil Properties, Testing, Measurement, and Evaluation, C. Liu, J. Evett

Class Outlines

- Triaxial Shear Test
- Advantages over DST
- Principles of Triaxial Compression Test
- Soil Shear Strength under Drained and Undrained Conditions
- Triaxial Compression Tests
 - Types of tests
 - Differences among test
 - Graphs and results
- Unconfined Compression Test

Triaxial Shear Test

- Developed by Casagrande in an attempt to overcome some of the serious disadvantages of the direct shear test.
- Advantages over DST
 - More Versatile
 - Drainage can be well controlled
 - There is no rotation of the principal stresses like the direct shear test
 - Also the failure plane can occur anywhere

Principles of the Triaxial Compression (TC) Test

- The triaxial compression test is used to measure the shear strength of a soil under controlled drainage conditions
- A cylindrical specimen of soil is subjected encased in a to a confining fluid/air pressure and then loaded axially to failure.
- The test is called "triaxial" because the three principal stresses are assumed to be known and are controlled.

Principles of the TC Test

- During shear, the major principal stress, σ_1 is equal to the applied axial stress ($\Delta \sigma = P/A$) plus the chamber (confining) pressure, σ_3
- The applied axial stress, σ₁ σ₃ is termed the "principal stress difference" or sometimes the "deviator stress"
- The intermediate principal stress, σ₂ and the minor principal stress, σ₃ are identical in the test, and are equal to the confining or chamber pressure

Soil Shear Strength under Drained and Undrained Conditions

- Drained conditions occur when rate at which loads are applied are slow compared to rates at which soil material can drain (k - dependent)
- Sands drain fast; therefore under most loading conditions <u>drained conditions exist in sands</u>
- Exceptions: pile driving, earthquake loading in fine sands

Soil Shear Strength under Drained and Undrained Conditions

- In clays, drainage does not occur quickly; therefore excess pore water pressure does not dissipate quickly
- Therefore, in clays the short-term shear strength may correspond to undrained conditions
- Even in clays, long-term shear strength is estimated assuming drained conditions

Types of Tests

- There are three types of tests:
 - Unconsolidated-undrained (UU or Q) Test
 - 2. Consolidated-undrained (CU or R) Test
 - Consolidated-drained (CD or S) Test
 - Unconfined Compression (UC) Test

Unconsolidated-undrained Test

- This test is also called the quick test.
- \bullet σ_3 and $\Delta \sigma$ are applied fast so the soil does not have time to settle or consolidate.
- The test is performed with the drain valve closed for all phases of the test. (Water is not allowed to drain)
- UU test simulates <u>short term</u> shear strength for cohesive soils.
- For this test, $\phi = \phi' = 0$

■
$$s = c_u = Su = (\sigma_1 - \sigma_3)/2 = (\sigma'_1 - \sigma'_3)/2$$

UU Test Results

Consolidated-undrained Test

- Apply σ_3 and wait until the soil consolidates
- Drainage valves open during consolidation phase but closed during the shearing phase

(Drainage and consolidation is allowed to take place during the application of the confining pressure σ_3)

- Loading does not commence until the sample ceases to drain (or consolidate).
- This test can simulates <u>long term</u> as well as <u>short term</u> shear strength for cohesive soils if <u>pore water pressure is measured</u> during the shearing phase
- For this Test, $c_T \neq c'$ and $\phi_T = \phi'$
- From this test we obtain;
 - \bullet c', ϕ and u (Effective stress)
 - $\mathbf{c}_{\mathsf{T}}, \phi_{\mathsf{T}}$ (Total stress)

CU Test Results

Consolidated-drained Test

- Also called slow test.
- Drainage <u>valves OPEN</u> during consolidation as well as shearing phases.
- Complete sample drainage is achieved prior to application of the vertical load.
- The <u>load is applied</u> at such a <u>slow</u> strain rate that particle readjustments in the specimen do not induce any excess pore pressure. (can take up to 2 weeks)
- Since there is <u>no excess pore pressure</u> total stresses will equal effective stresses.
- This test simulates long term shear strength for cohesive soils.

CD Test Results

Triaxial Test on Sand

- You will conduct a CD test on sand.
- Soil specimens will be loaded to failure under 3 different confining pressures; 15, 30 and 45 psi
- Failure will be defined as the peak or 3 maximum value of principal stress difference reached.
- ASTM D 2850

Triaxial Test Equipment

The Cell (Chamber)

Loading Frame

Control Panel

Civil Engineering - Texas Tech University

Civil Engineering - Texas Tech University

Procedure

- Follow steps numbers 1 through 31 in the lab manual.
- Soil sample size 140 g
- Rate of loading 0.1 in/min
- Record axial deformation and deviator load at different time intervals (every 15 seconds for 2 minutes then every 30 s for the remaining time)
- Stop test after load peaks and drops down about 20%

Test Results and Calculations

vertical		0				
deflection	3	3		Load	Area	P/A
mm	in/in	in/in X 10-3		lbs	ft^2	lb/ft^2
0.02	0.000	0.28		1.81	0.0097	186.0
0.04	0.001	0.56		2.43	0.0097	250.4
0.06	0.001	0.84		3.06	0.0097	314.7
0.08	0.001	1.12		5.57	0.0097	572.3
0.1	0.001	1.40		6.82	0.0097	701.0
0.12	0.002	1.69		8.70	0.0097	893.9
0.14	0.002	1.97		9.95	0.0097	1022.4
0.16	0.002	2.25		11.21	0.0097	1150.8
0.18	0.003	2.53		12.46	0.0097	1279.2
0.2	0.003	2.81		13.40	0.0097	1375.3
0.22	0.003	3.09		15.28	0.0097	1567.8
0.24	0.003	3.37		15.91	0.0097	1631.6
0.00	0.004	0.05	\Box	40.05	0.0000	4707.0

$$\varepsilon = \frac{\Delta l}{l_0}$$

$$A_c = \frac{A_0}{(1 - \varepsilon)}$$

$$\sigma = \frac{P}{A_c}$$

Determining σ_1

