Progetto SISTEMI OPERATIVI 2022-2023

Simone Cappabianca - Mat: 5423306 simone.cappabianca@edu.unifi.it

Dicembre 31, 2023

Contents

1	Istruzioni per la compilazione e esecusione	3
2	Sistema obiettivo	3
3	Elementi facoltativi	4
4	Progettazione e implementazione	5
5	Esecuzione	6

1 Istruzioni per la compilazione e esecusione

Tutti i comandi sottostanti vanno eseguti dalla directory del progetto. Per l'installazione del progetto è necessario eseguire i seguenti comandi:

- 1. make all
- 2. make install

Per disinstallare il progetto è necessario eseguire il comando:

1. make uninstall

Per eseguire il progetto è necessario aprire una prima shell ed eseguire il comando con l'opzione di lancio che desideriamo (NORMALE/ARTIFICIALE):

1. ./bin/ecu.out "OPZIONE-DI-LANCIO"

In una seconda shell è necessario eseguire il comando:

1. ./bin/hmi_output.out

2 Sistema obiettivo

Il progetto è stato sviluppato sulla distribuzione linux **Ubuntu 22.04 LTS**.

3 Elementi facoltativi

#	Elemento Facoltativo	Realizzato (SI/NO)	Metodo o file principale
1	Ad ogni accelerazione, c'è una probabilità di 10 ⁻⁵ che l'acceleratore fallisca. In tal caso, il componente throttle control invia un segnalealla Central ECU per evidenziare tale evento, e la Central ECU avvia la procedura di AR-RESTO	NO	
2	Componente "forward facing radar"	NO	
3	Quando si attiva l'interazione con park assist,la Central ECU sospende (o rimuove) tutti i sensori e attuatori, tranne park assist e surround view cameras.	NO	
4	Il componente Park assist non è generato all'avvio del Sis- tema, ma creato dalla Central ECU al bisogno.	SI	
5	Se il componente surround view cameras è implementato, park assist trasmette a Central ECU anche i byte ricevuti da surround view cameras.	NO	

6	Componente "surround view	NO	
	cameras"		
7	Il comando di PARCHEGGIO	NO	
	potrebbe arrivare mentre i vari		
	attuatori stanno eseguendo ul-		
	teriori comandi (accelerare o		
	sterzare). I vari attuatori		
	interrompono le loro azioni,		
	per avviare le procedure di		
	parcheggio.		
8	Se la Central ECU riceve il	NO	
	segnale di fallimento acceler-		
	azione da "throttle control",		
	imposta la velocità a 0 e invia		
	all'output della HMI un mes-		
	saggio di totale terminazione		
	dell'esecuzione.		

4 Progettazione e implementazione

Le scelte implementativi per la realizzazione del progetto sono le seguenti:

- il componente **Central ECU** di occupa di generare i processi dei componenti necessari per esecuzione ad esclusione dell'output della Human-Machine Interface;
- la **Human-Machine Interface** è stata divisa in due processi distinti uno relativo all'input e uno relativo all'output.

Nello specifico il Central ECU genera i processi dei seguenti componenti:

- 1. front windshield camera;
- 2. steer-by-wire;

- 3. throttle control;
- 4. brake-by-wire;
- 5. **Human-Machine interface** (input);
- 6. park assit.

Mentre i processi dei primi 5 componeti vengono generati al momento dell'avvio della **Central ECU**, il componente **park assist** viene creato quando **Central ECU** riceve il comando *PARCHEGGIO*.

Per quando riguarda la comunicazione tra i processi è stato utilizzato un socket di tipo FIFO nei seguenti casi:

- front windshield camera \rightarrow Central ECU;
- Central ECU \rightarrow steer-by-wire;
- Central ECU \rightarrow brake-by-wire;
- Central ECU → throttle control;
- Central ECU → Human-Machine Intervace output;
- park assist \rightarrow Central ECU.

Sono stati usati i segnali invece nei seguenti casi:

- Human-Machine Interface input → Central ECU per la gestione tutti i comandi in input (INIZIO, PARCHEGGIO, ARRESTO);
- Central ECU \rightarrow brake-by-wire per la gestione del comando AR-RESTO

5 Esecuzione