Biostatistics & Epidemiological Data Analysis using R

2

Manipulating objects in R

Stefan Konigorski

Health Intervention Analytics Group, HPI

November 4, 2021

Content

Block	Class	Content	Date
R, Data manipulation, Descriptives	1	Overview & Introduction to R and data analysis	2021.10.28
	2	First steps in data analysis using R	2021.11.04
	3	Second steps in data analysis using R	2021.11.11
Epidemiology & Statistics: concepts	4	Epidemiological study designs and study planning	2021.11.18
	5	Estimation	2021.11.25
	6	Hypothesis testing	2021.12.02
	7	Missing data	2021.12.09
Data analysis w/ regression models	8	Linear regression I	2021.12.16
	9	Linear regression II	2022.01.13
	10	Regression models for binary and count data	2022.01.20
	11	Analysis of variance & Linear mixed models I	2022.01.27
	12	Linear mixed models II & Meta analysis	2022.02.03
	13	Survival analysis	2022.02.10
	14	Causal inference & Data analysis challenge	2022.02.17

(see full schedule online)

1

Learning objectives

- Introduction to documentation using R Markdown.
- Learn which data checks can be important and how to do them in R.
- Learn and practice how to manipulate objects in R
 (variables=vectors and datasets=data frames) in order to
 create new variables, transform variables, and select subsets of
 variables or observations.

- Review & R Markdown
 - Review class 1
 - R Markdown

- Manipulate & check variables
 - General
 - Tidyverse & times/dates

Main steps of a data analysis

- Import dataset from an external file (e.g. xls, txt, SPSS file).
- Import check: check if dataset has been read correctly.
- Save dataset as R dataset (.Rdata), e.g. as dat_raw.Rdata.
- Data check: check if data is correct/missing, and e.g. remove probands/variables or decide for imputation. Save corrected dataset as new dataset, e.g. dat_corrected.Rdata.
- Transform variables, compute new variables, and/or select subset for final analysis. Save this again as new dataset, e.g. as dat_final.Rdata, and use in all further steps.
- Obscriptives to describe main characteristics of study sample.
- Main analyses.
- Secondary analyses.
- Sensitivity analyses.

Review class 1 - import data

- Overview of R, RStudio, packages and help functions (homework 1, exercises 2-4).
- Different functions available to import csv, excel files, and many more (homework 1, exercises 5-7).
- In order to use some of them, the respective package has to be installed and loaded first!
- Save datasets as .RData files (homework 1, exercise 1).

Review class 1 - objects in R

Important objects

Vectors, data frames

Review class 1 - objects in R

Important objects

- Vectors, data frames
- Vectors = variables
- Data frames = rectangular matrices with observations in rows and variables in columns

Review class 1 - objects in R

Important objects

- Vectors, data frames
- Vectors = variables
- Data frames = rectangular matrices with observations in rows and variables in columns

What else to remember?

- Missing value in R: NA
- Access elements with [.] operator
- R objects have classes, e.g. data frame is a class, and also character, numeric, logical, factor, date are classes (of vectors)

Insert: Documentation of analyses and results

- Use R Markdown.
- See R_2b_RMarkdown.pdf.

Insert: Documentation of analyses and results

- Use R Markdown.
- See R_2b_RMarkdown.pdf.

Exercise 1

See R 2 exercises.Rmd

Main steps of a data analysis

- Import dataset from an external file (e.g. xls, txt, SPSS file).
- 2 Import check: check if dataset has been read correctly.
- Save dataset as R dataset (.Rdata), e.g. as dat_raw.Rdata.
- Oata check: check if data is correct/missing, and e.g. remove probands/variables or decide for imputation. Save corrected dataset as new dataset, e.g. dat_corrected.Rdata.
- Transform variables, compute new variables, and/or select subset for final analysis. Save this again as new dataset, e.g. as dat_final.Rdata, and use in all further steps.
- Obscriptives to describe main characteristics of study sample.
- Main analyses.
- Secondary analyses.
- Sensitivity analyses.

Goal

Now check if data is correct or if there is something weird.

Goal

Now check if data is correct or if there is something weird.

What to do if weird?

Goal

Now check if data is correct or if there is something weird.

What to do if weird?

- Go back and check the raw data.
- Check if weird values are wrong, suspicious, or outliers?
- Transform variable, remove variable or observation?
- If many missing values, think about missing value imputation.
- Important: think critically in order not to bias your analysis (can check e.g. in sensitivity analysis)!!

How to check and transform?

I often use logical evaluations together with the table() function:

How to check and transform?

I often use logical evaluations together with the table() function:

- Important logical operators:
 - logical EQUAL: ==
 - logical AND: &
 - logical OR: I
 - logical NOT: !
- In combination with functions to compare/evaluate values such as <, >, <=, >=, is.na(), and further specific functions to e.g. evaluate strings, many questions can be evaluated.
- The number of times this evaluations is true can be then displayed using the table() function.

How to check and transform?

Examples:

- Does anyone have age smaller than 0: table(age < 0)
- How many missing values does the variable age have: table(is.na(age))
- How people have a BMI of 0: table(BMI == 0)
- How people have insulin level of 0: table(insulin == 0)
- Are those people with BMI 0 the same people with insulin 0: table((BMI == 0) & (insulin == 0))

How to check and transform?

Examples:

- Does anyone have age smaller than 0: table(age < 0)
- How many missing values does the variable age have: table(is.na(age))
- How people have a BMI of 0: table(BMI == 0)
- How people have insulin level of 0: table(insulin == 0)
- Are those people with BMI 0 the same people with insulin 0: table((BMI == 0) & (insulin == 0))

Exercise 2

• Do exercise 2a and 2b in R_2_exercises.Rmd.

Step 5 - Manipulate variables and observations

After checking if the data is correct,

- transform variables and
- select final sample
- in order to prepare the dataset that you will use in all your following analyses.

Step 5 - Transform variables

Examples

 Change variable type using the functions as.numeric(), as.character(), as.factor(), as.numeric(as.character()), as.Date().

Step 5 - Transform variables

Examples

- Change variable type using the functions as.numeric(), as.character(), as.factor(), as.numeric(as.character()), as.Date().
- Create new variable through mathematical operation, e.g.:
 - compute BMI from height and weight: dat\$BMI <- dat\$weight/(dat\$height^2)
 - standardize variables with scale() function: dat\$BMI_z <- scale(dat\$BMI)

Step 5 - Transform variables

Examples

- Change variable type using the functions as.numeric(), as.character(), as.factor(), as.numeric(as.character()), as.Date().
- Create new variable through mathematical operation, e.g.:
 - compute BMI from height and weight: dat\$BMI <- dat\$weight/(dat\$height^2)
 - standardize variables with scale() function: dat\$BMI_z <- scale(dat\$BMI)
- Remove/add/replace values of variable with [.] operator, e.g.:
 - dat\$BMI[1] <- 20
 - dat\$BMI[dat\$BMI < 0] <- NA

Step 5 - Transform data frame

Examples

- Same ideas as for transforming variables (columns of data frame = variables = vectors!
- Select subset of data frame to filter variables/observations, or add columns/rows. This can be done using the [,] operator, data.frame() function, and others, e.g.:
 - dat[!dat\$Age == 0,]
 - dat_female <- dat[dat\$Gender == "F",]
 - dat_final <- data.frame(ID = dat_female\$PatientId, Age = dat_female\$Age, NoShow = dat_female\$No-show)
 - subset() function.

Step 5 - Transform variables and data frames

Exercise 3

See R_2_exercises.Rmd.

- In R, in addition to the "classical" R programming, which we have mostly used so far, there are many new packages and functions that introduce new objects and structures how to program.
- Many are subsumed in the tidyverse (www.tidyverse.org):

Overview and references

- Tidyverse covers the packages dplyr, tidyr, readr, ggplot2 and others.
- Tidyverse manifesto: https://cran.r-project.org/web/ packages/tidyverse/vignettes/manifesto.html.
- Overview of data import functions: https://rawgit.com/ rstudio/cheatsheets/master/data-import.pdf.
- Overview of data manipulation functions: https://dplyr.tidyverse.org/
- See also books https://r4ds.had.co.nz/ and http://adv-r.had.co.nz/.

The pipe %>%

- From magrittr package (https://magrittr.tidyverse.org).
- Sends the output of the left-hand side function to the first argument of the right-hand side function.
- Simple example: sum(1:8) %>% sqrt().
- Using the pipe, simple functions can be composed.

The pipe %>%

- From magrittr package (https://magrittr.tidyverse.org).
- Sends the output of the left-hand side function to the first argument of the right-hand side function.
- Simple example: sum(1:8) %>% sqrt().
- Using the pipe, simple functions can be composed.

More complex example

```
Pima_diabetes %>%
```

```
dplyr::select(Pregnancies, BMI) %>%
dplyr::filter(Pregnancies > 10) %>%
dplyr::summarize(avg_BMI_highP = mean(BMI), n = n())
```

Insert: Times and dates in R

- See R_2c_dates_and_times_in_R.pdf.
- Do exercise 4 in R_2_exercises.Rmd.

Homework

Homework

See file R_2_homework.Rmd

Questions?