9.0 Информационные системы и технологии

9.1 Понятие и структура информационной технологии

Информационная технология (ИТ) – процесс, использующий совокупность средств и методов сбора, хранения, обработки и передачи данных для получения информации нового качества о состоянии информационного продукта.

Технология изменяет качество материи.

Цель информационной технологии – производство информации для ее анализа человеком и принятия на его основе решения по выполнению какого-либо действия.

Новая ИТ — информационная технология с «дружественным» интерфейсом работы пользователя, использующая персональные компьютеры и телекоммуникационные средства, а именно — телефон, телеграф, телекоммуникации, факс и др.

Пользовательским интерфейсом называют методы и средства взаимодействия человека с аппаратным и программным обеспечением процесса преобразования первичной информации в информацию нового качества. Термин «дружественный» означает максимально возможное упрощение приемов работы с интерфейсом.

Принципы новой информационной технологии:

- интерактивный (диалоговый) режим работы с ПК;
- стыковка с другими программными продуктами;
- гибкость процесса изменения данных и постановок задач.

Основные черты современных ИТ:

- компьютерная обработка информации по заданным алгоритмам;
- хранение больших объёмов информации на машинных носителях;
- передача информации на значительные расстояния в ограниченное время.

9.2 Структура информационной технологии

Рассмотрим *иерархическую структуру информационной технологии* на примере технологии создания таблицы в текстовом процессоре.

Первый уровень — этапы, где реализуются сравнительно длительные технологические процессы, состоящие из операций, действий и элементарных операций.

Технология создания таблицы будет состоять из следующих этапов:

- этап 1 создание структуры таблицы;
- этап 2 ввод данных;
- этап 3 редактирование данных и структуры таблицы;
- этап 4 форматирование данных и таблицы.

Второй уровень – операции, в результате выполнения которых будет создан конкретный объект, выбранный на 1-м уровне.

Например, этап 3 редактирования данных в ячейки состоит из следующих операций:

- операция 1 замена одних символов (фрагментов) на другие;
- операция 2 манипуляция со строками и/или столбцами;
- операция 3 внедрение в ячейки объектов.

Третий уровень – действия, представляющие собой совокупность стандартных для каждой программной среды приемов работы, приводящих к выполнению поставленной в соответствующей операции цели. Каждое действие изменяет содержание таблицы, отображаемой на экране монитора.

Например, редактирование структуры таблицы состоит из следующих действий:

- действие 1 выделение нужных ячеек;
- действие 2 выполнение команд Таблицы/Добавление (Удаление) строк / столбцов/ячеек;
 - действие 3 выполнение команд Таблицы/Объединение (Разделение) ячеек.

Четвертый уровень — элементарные операции по управлению мышью и клавиатурой. *Например*, «щелчок» правой или левой кнопкой мыши.

Совокупность технологических этапов образует технологию.

Каждая ИТ реализуемся в рамках конкретной информационной системы (ИС).

ИС предназначена для хранения, поиска, обработки и выдачи информации по запросам пользователей.

Составляющими элементами информационной системы являются:

- компьютеры, компьютерные сети,
- программные продукты,
- лингвистические средства,
- базы данных,
- системный персонал,
- различного рода технические и программные средства связи и т.д.

9.3 Виды информационных технологий:

- Информационная технология обработки данных
- Информационная технология управления
- Автоматизация офиса
- Технология поддержки принятия решений
- Информационная технология экспертных систем
- Информационная технология базы данных
- Сетевые информационные технологии
- Геоинформационные
- Виртуальная реальность
- Автоматического ввода информации

<u>Информационная технология обработки данных</u> предназначена для решения задач, по которым имеются необходимые входные данные и известны правила их обработки.

Целью технологии является автоматизация некоторых постоянно повторяющихся операций управленческого труда.

Основные операции с данными:

- *сбор* данных накопление информации с целью обеспечения достаточной полноты для принятия решений;
- формализация данных приведение данных, поступающих из разных источников, к одинаковой форме, чтобы сделать их сопоставимыми между собой, то есть повысить их уровень доступности;
- фильтрация данных отсеивание «лишних» данных, в которых нет необходимости для принятия решений (при этом должен уменьшаться уровень «шума», а достоверность и адекватность данных должны возрастать);
- *сортировка* данных упорядочение данных по заданному признаку с целью удобства использования (при этом повышается доступность информации);
- **архивация** данных организация хранения данных в удобной и легкодоступной форме (служит для снижения экономических затрат по хранению данных и повышает общую надежность информационного процесса в целом);
- защита данных комплекс мер, направленных на предотвращение утраты, воспроизведения и модификации данных;
- *транспортировка* данных прием и передача данных между удаленными участниками информационного процесса (при этом *источник данных* в информатике принято называть *сервером*, а *потребителя клиентом*);
- *преобразование* данных перевод данных из одной формы в другую или из одной структуры в другую.

Существует три основных типа структур данных:

- линейная (списки),
- табличная,
- иерархическая.

Линейные структуры представляют собой обычные списки. **Список** – это простейшая структура данных, каждый элемент которой однозначно определяется своим номером.

В общем случае разделителем может быть любой специальный символ, например **пробел**, символ «*», «;» и т.п.

Линейные структуры данных (списки) – это **упорядоченные структуры**, в которых адрес элемента однозначно определяется его номером.

Табличные структуры данных (матрицы) – это **упорядоченные структуры**, в которых адрес элемента определяется номером строки и номером столбца, на пересечении которых находится ячейка, содержащая искомый элемент.

11	12	13	14
21	22	23	24
31	32	33	34

Нерегулярные данные, которые трудно представить в виде списка или таблицы, часто представляют в виде иерархических структур.

В иерархической структуре адрес каждого элемента определяется маршрутом, ведущим от вершины структуры к данному элементу.

Например, путь доступа (маршрут) к команде, запускающей программу *Калькулятор* в OC Windows:

Пуск/Программы/Стандартные/Калькулятор.

<u>Информационная технология управления</u> предназначена для удовлетворения информационных потребностей всех без исключения пользователей, имеющих дело с принятием решений.

Здесь решаются следующие задачи:

- оценка планируемого состояния объекта управления;
- оценка отклонений от планируемого состояния;
- выявление причин отклонений;
- анализ возможных решений и действий.

Основным компонентом ИТ управления является база данных.

База данных – совокупность связанных данных, правила организации которых, основаны на общих принципах описания, хранения и манипулирования данными.

ИТ управления направлена на создание различных видов отчетов.

Входная информация поступает из ИС операционного уровня в базу данных. Выходная информация формируется в виде отчетов.

Регулярные от создаются в соответствии с установленным графиком (месячный, квартальный анализ),

Специальные от создаются по запросам управленцев или когда произошло чтото не запланированное.

В суммирующих отчетах данные объединены в отдельные группы.

Сравнительные содержат данные различных источников.

Чрезвычайные содержат данные чрезвычайного характера.

Информационная технология автоматизированного офиса — организация и поддержка коммуникационных процессов как внутри организации, так и с внешней средой на базе компьютерных сетей и других современных средств передачи и работы с информацией.

Автоматизированный офис:

- поддерживает внутрифирменную связь персонала;
- предоставляет новые средства коммуникации с внешним миром.

Эта технология особенно привлекательна для группового решения проблем и позволяет повысить производительность труда секретарей и конторских работников.

Основными компонентами данной информационной технологии являются:

- **база данных** концентрирует данные о производственной системе фирмы, которые могут поступать и из внешнего ее окружения (например, по электронной почте);
- **текстовый процессор** предназначен для создания и обработки текстовых документов, предоставляя эффективный вид письменной коммуникации;
- электронная почта дает возможность пользователю получать, хранить и отправлять сообщения своим партнерам по сети (ограничение однонаправленная связь);
- аудиопочта дает возможность передачи сообщений голосом через телефон; присланные сообщения получают также через телефон;
- табличный процессор позволяет выполнять многочисленные операции над данными, представленными в табличной форме;
- электронный календарь предоставляет возможность манипулирования рабочим расписанием управленцев и других работников организации, в том числе и по сети;
- телеконференция включает в себя три типа конференций: аудио, видео и компьютерную.

Компьютерные конференции используют компьютерные сети для обмена информацией между участниками группы, решающей определенную проблему. Количество участников компьютерной конференции может быть довольно большим.

Аудиоконференции используют телефонную связь, оснащенную дополнительными устройствами, дающими возможность участия в разговоре более чем двум участникам. Не требует наличия ПК и предполагает двустороннюю аудиосвязь между ее участниками.

Видеоконференции предназначены для тех же целей, что и аудиоконференции, но с применением видеоаппаратуры для отображения на экране себя и других участников. Одновременно с изображением передается и звуковое сопровождение. Их проведение не требует наличие компьютера. Для автоматизации офиса необходимо:

- хранение изображений сохранение не самого документа, а его образа (изображение) в цифровой форме на оптических дисках большой емкости;
- видеотекст основан на использовании компьютера для получения отображения текстовых и графических данных на экране монитора;
- факсимильная связь основана на использовании факс-аппарата, способного читать документ на одном конце канала и воспроизводить его изображение на другом.
- управленческие программы ведения документов, контроля за исполнением при-казов и т.п.

<u>Информационная технология поддержки принятия решений</u> – выработка решения происходит в результате циклического процесса, окончание которого происходит по воле человека.

Основной целью технологии является выработка решения. В процессе участвуют:

Основными компонентами данной информационной технологии являются:

- база данных включает предварительно обработанные данные от информационной системы операционного уровня, внутренние данные, данные внешних источников;
- база моделей обеспечивает проведение анализа в системах поддержки принятия решений с целью описания и оптимизации некоторого объекта или процесса;
- интерфейс системы поддержки принятия решений определяет эффективность и гибкость информационной технологии.

Интерфейс должен обладать возможностями:

- манипулировать различными формами диалога, изменяя их в процессе принятия решения по выбору пользователя;
 - передавать данные системе различными способами;
 - получать данные от различных устройств системы в различном формате;
 - гибко поддерживать знания пользователя.

Информационная технология экспертных систем предоставляет возможность:

- использовать базу знаний, сформированную человеком в отдельной области, принять решение, превосходящее возможности пользователя,
- пояснять свои рассуждения в процессе получения решения, которые для пользователя часто оказываются более важными, чем само решение,
 - использовать знания экспертов в различных проблемных областях.

Основными компонентами данной информационной технологии являются:

Эксперт и специалист по знаниям

- •интерфейс пользователя используется для ввода информации и команд в экспертную систему и получения выходной информации;
- **база знаний** содержит факты, описывающие проблемную область, а также логическую взаимосвязь этих фактов.

Центральное место в базе знаний принадлежит правилам.

Правило определяет, что следует делать в данной конкретной ситуации, и состоит из двух частей: условия, которое может выполняться или нет, и действия, которое следует произвести, если условие выполняется;

- интерпретатор часть экспертной системы, производящая в определенном порядке обработку знаний (мышление), находящихся в базе знаний. Технология работы интерпретатора сводится к последовательному рассмотрению совокупности правил. Если условие, содержащееся в правиле, соблюдается, выполняется определенное действие, и пользователю предоставляется вариант решения проблемы;
 - модуль создания системы служит для создания набора (иерархии) правил.

В основе модуля создания системы лежит использование:

- алгоритмических языков программирования и
- оболочек экспертных систем.

Для представления базы знаний специально разработаны языки Лисп и Пролог.

Оболочка экспертных систем представляет собой готовую программную среду, которая может быть приспособлена к решению определенной проблемы путем создания соответствующей базы знаний.

В большинстве случаев оболочки позволяют создавать экспертные системы быстрее и легче в сравнении с программированием.

Искусственным интеллектом считаются системы, предназначенные для решения задач, которые требуют определенных интеллектуальных усилий при выполнении их человеком.

<u>Информационная технология базы данных</u> обеспечивает организацию хранения данных, централизованного накопления, коллективного использования данных.

Компонентами банка данных являются:

- база данных;
- система управления базой данных (СУБД);
- вычислительная система (операционная система);
- администратор базы данных (группа специалистов по функционированию и развитию БД);
 - словарь данных;
 - обслуживающий персонал.

СУБД программа, с помощью которой реализуется централизованное управление данными, хранимыми в базе, а также доступ к ним, поддержка их в актуальном режиме.

СУБД классифицируются:

по выполняемым функциям на:

- Операционные
- Информационные;

по сфере применения на:

- Универсальные
- Проблемно-ориентированные;

по используемому языку общения на:

- Замкнутые (имеющие собственные языки общения)
- Открытые (использующие языки программирования для работы с данными); по числу поддерживаемых уровней моделей данных на:
- Одноуровневые системы;
- Двухуровневые системы;
- Трехуровневые системы;

по способу установления связей между данными на:

- Реляционные базы данных;
- Иерархические базы данных;
- Сетевые базы данных;
- Объектно-ориентированные

по способу организации хранения данных и выполнения функций обработки базы данных на:

- Централизованные (архитектуры файл-сервер и клиент-сервер)
- Распределенные (клиент и сервер территориально отделены друг от друга);

Характеристиками СУБД являются:

производительность, обеспечение целостности данных, обеспечение безопасности данных, работа в многопользовательских средах, импорт и экспорт данных, доступ к данным с помощью языка SQL, составление запросов, наличие средств разработки прикладных программ.

Сетевые информационные технологии используют компьютерные сети с целью предоставления территориально разобщенным пользователям возможность обмениваться информацией между собой, используя общие программные, информационные и аппаратные ресурсы.

Вычислительные сети чаще всего подразделяются на два вида: **локальные** и **глобальные**. Существуют **корпоративные** сети, которым одновременно присущи свойства и локальных и глобальных сетей.

Если организация является собственником высокоскоростной линии связи, то это – локальная сеть. Если же организация арендует каналы связи (например, спутниковые) – то это глобальная сеть. Скорость передачи информации измеряется в кБит/с, мБит/с.

Корпоративные информационные системы направлены на поддержку принятия управленческих решений менеджерами более высокого звена. Это предполагает, что предварительно должны быть решены задачи **автоматизации рабочих мест**.

Существуют два подхода к автоматизации рабочих мест:

- Поэтапная разработка корпоративной системы собственными силами (более гибкий подход с учетом всех особенностей корпорации) или
 - Внедрение готовой информационной системы корпоративного уровня. Второй подход является более привлекательным и перспективным.

Информационные технологии широко применяются в электронной коммерции.

Электронная коммерция – это всякого рода экономическая деятельность, имеющая основной целью получения прибыли, осуществляемая с помощью современных электронных средств связи. Это целый и неразрывный комплекс автоматизации коммерческого цикла за счет использования средств вычислительной техники.

- Исследование рынка товаров и услуг (маркетинг);
- Управление свойствами товаров и услуг (производственный менеджмент);
- Оповещение рынка о свойствах товаров и услуг (реклама);
- Подготовка рынка к использованию заданных свойств товаров и услуг (пропаганда);
- Прием, обработка и использование заказов на товары и услуги (торговый менеджмент);
 - Оптимизация товарных потоков и складских запасов (логистика);
 - Взаиморасчеты с клиентами и поставщиками (финансовый менеджмент);
 - Послепродажное обслуживание (сопровождение).

В электронной коммерции используются разные Интернет-технологии (служба WWW – Web страницы и Web узлы, электронная почта, Telnet системы, FTP служба, Web и чатфорумы).

<u>Геоинформационные технологии (ГИС)</u> – это современные компьютерные технологии, предназначенные для составления карт и анализа объектов реального мира, а также событий, происходящих на нашей планете..

Эта технология объединяет традиционные операции работы с **базами данных**, такими как *запрос* и *статистический анализ*, с преимуществами полноценной визуализации и **географического** (пространственного) **анализа**, которые предоставляет карта.

Эту технологию применяют практически во всех сферах человеческой деятельности – глобальные проблемы (перенаселение, загрязнение территории, природные катастрофы,

– частные задачи (поиск наилучшего маршрута между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи).

ГИС хранит информацию о реальном мире в виде набора *тематических слоев*, которые объединены на основе географического положения. При этом в качестве подложки – *темы* можно использовать топографическую карту, что позволит наносить информацию визуально, используя в качестве ориентиров участки местности.

Объекты хранятся в отдельном файле карты, совпадающем по габаритам с картой города. В бумажной картографии этот процесс похож на наложение кальки или прозрачной пленки с объектами на топографическую основу. При этом количество прозрачных слоев теоретически не ограничено (рис.).

ГИС общего назначения обычно выполняет пять процедур (задач) с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.

Для успешного функционирования ГИС-технологий требуются специальные аппаратные и программные средства.

Аппаратные средства в этом случае предназначены для:

- измерения внешних характеристик объекта и окружающей среды;
- определения точных координат объекта (GPS приёмники);
- передачи информации на расстояние (спутниковая телефония, мобильная связь, интернет);
- системы обработки данных: персональные компьютеры, карманные коммуникаторы и другие виды компьютерного оборудования.

Программные средства предназначены для:

- хранения информации в виде баз данных;
- визуализация оперативной информации в режиме текущего времени (схематичное отображение);
- визуализация определённых условий местности с конкретными характеристиками (электронные карты);
- создание трёхмерных моделей местности, с возможным графическим анализом и на основании анализа получения новой информации об объектах и окружающем мире;
- накопление новой информации, текущей в виде баз данных проведение определённых видов анализа информации и предоставление информации в графическом режиме;
 - слияние различных баз данных;
- формирование из оперативных баз данных базы долговременного использования.

<u>Технология Виртуальная реальность</u> – это новая информационная технология, позволяющая пользователю в реальном времени находиться и перемещаться в иллюзорном трехмерном пространстве.

Первой системой виртуальной реальности стала «Кинокарта Аспена» (Aspen Movie Map), созданная в Массачусетском Технологическом Институте в 1977 г.. Эта компьютерная программа симулировала прогулку по городу Аспен, штат Колорадо, давая возможность выбрать между разными способами отображения местности.

В данный момент технологии виртуальной реальности широко применяются в различных областях человеческой деятельности: проектировании и дизайне, добыче полезных ископаемых, военных технологиях, строительстве, тренажерах и симуляторах, маркетинге и рекламе, индустрии развлечений и т.д.

Для реализации виртуальной реальности применяются различные методы и оборудование. В настоящее время наиболее широко распространены компьютерные игры и программы-симуляторы.

Интерактивные компьютерные игры основаны на взаимодействии игрока с создаваемым ими виртуальным миром.

Существует целый класс программ-симуляторов какого-либо рода деятельности. Распространены авиасимуляторы, автосимуляторы, разного рода экономические и спортивные симуляторы, игровой мир которых моделирует важные физические и экономические законы, создавая приближенную к реальности модель.

Специально оборудованные тренажёры и определённый вид игровых автоматов к выводу изображения и звука компьютерной игры/симулятора добавляют дополнительные ощущения. Подобные профессиональные тренажёры с соответствующими реальными средствами управления применяются для обучения.

Имитация ощущений достигается за счет

- специальных шлемов, в которые встроены свой экран для каждого глаза,
- специальных комнат, в которых на стены проецируется 3D стереоизображение,
- специальные костюмы с перчатками для управления (тактильные ощущения).

Положение пользователя, повороты его головы отслеживаются специальными системами, что позволяет добиться максимального эффекта погружения.

Данные системы активно используются в маркетинговых, военных, научных целях.

Родственное искусственной реальности явление **есть дополненная реальность** – добавление к поступающим из реального мира ощущениям мнимых объектов, вспомогательного, информативного свойства. Известным примером дополнительной реальности может служить нашлемное указание в самолётах-истребителях таких, как Су-27 или вывод на лобовое стекло водителя информации приборной панели автомобиля.

Технологии автоматизации ввода информации – направлена на достоверный и автоматический ввод данных в систему.

Особенно актуальным это становится при построении автоматизированных систем управления предприятием. Ошибочная информация, попавшая в такую систему способна привести к **глобальным** ошибкам управления. **Поиск и устранение ошибок** приводит к **непроизводительным** потерям рабочего времени, требуемого для выверки всего массива обрабатываемой информации.

В современных условиях ввод информации возлагается на оператора. Возникает, так называемый *«человеческий фактор»*, часто приводящий к искажению информации.

Для устранения этого недостатка используются информационные технологии автоматического ввода данных. Примером технологии могут служить технология штрихового кодирования и технология радиочастотной идентификации. Если штрих-коды в настоящее время получили повсеместное распространение, то технология радиоидентификационных меток рассматривается как будущее автоматического контроля.

Основой технологии штрихового кодирования является индивидуальный идентифицирующий штрих-код товара, представляющий собой графический образ, в котором каждый символ информации изображается комбинацией темных полосок и светлых пробелов между ними. Правило, при помощи которого выбирается ширина и комбинация сочетаний этих элементов, заключается в виде определенного стандарта.

Штрих-коды можно условно разделить на две большие группы:

- товарные и технологические штрих-коды.

4 600051 000033

Товарный штрихкод

Технологический штрихкод

Товарные штрих-коды используются для идентификации товаров, продаваемых через торговую сеть. Они основаны на 13-ти разрядной системе, включающей четыре группы

- код региона, где находится предприятие-изготовитель (2-4 цифры);
- код предприятия-изготовителя (3-5 цифр);
- номер товара из номенклатуры этого предприятия (5 цифр);
- контрольное число (1 цифра).

Контрольное число гарантирует достоверность информации. Расчет его производится по определенному алгоритму. При каждом считывании штрих-кода в компьютере подсчитывается контрольное число, которое сравнивается со считанной тринадцатой цифрой. При совпадении этих цифр код товара передается далее в компьютерную систему, при несовпадении – нет.

Технологические штрих-коды используются «внутри предприятия» и позволяют отобразить практически любую цифро-буквенную информацию, например, последовательно — серийный номер изделия, дату производства, номер участка, фамилию сборщика и т.д.

Для считывания штрих-кода используется специальное устройство – сканер, конструктивно состоящий из трех частей: источника света, фотодетектора и декодера. Для того чтобы считать штрих-код необходимо его пересечь лучом света сканера. Разная отражающая способность черных и светлых полос штрих-кода фиксируется фотодетектором, преобразуется в электрический сигнал, а декодер переводит его в цифровой код, «понятный» компьютеру.

Штрих-кодовая технология управления отличается тем, что позволяет оперативно вести сбор информации о поступающих товарах, управлять их перемещением со 100 % гарантией идентификации товара и исключения злоупотреблений персонала/

На смену штрих-кодированию приходит новая технология бесконтактной идентификации объектов – радиоэтикетки (RFID).

Технология радиочастотной идентификации RFID (Radio Frequency Identification) – метод хранения и удаленного считывания данных посредством радиосигналов с небольших недорогих устройств (радиометок). Эта технология позволяет автоматически собирать сведения об объектах, например, упаковках с товаром, их местонахождении и перемещении, вести повременный учет событий с их участием и получать информацию о совершении операций с объектом быстро и просто – без вмешательства человека и с минимальным числом ошибок.

Любая RFID-система состоит из двух частей: считывающего устройства (считыватель, или ридер) и транспондера (метка).

Reader (считыватель) – прибор, который читает информацию с меток и записывает в них данные.

Антенна ридера испускает радиосигнал малой мощности, который улавливается антенной радиометки и питает встроенную в нее микросхему. Используя полученную энергию, радиометка вступает с опросчиком в радиообмен для самоидентификации и передачи данных. Полученную от транспондера информацию ридер пересылает в информационную систему.

Большинство RFID-меток состоит из двух частей. Первая – интегральная схема, предназначенная для хранения и обработки информации, модулирования и демодулирования радиочастотного сигнала и некоторых других функций. Вторая – антенна для приёма и передачи сигнала.

9.4. Проблемы использования информационных технологий

ИТ устаревают и заменяются новыми. При внедрении новой ИТ надо оценить:

- риск отставания от конкурентов при использовании старой ИТ (программные продукты имеют высокую скорость сменяемости новыми видами и версиями);
- риск модернизации уже новой ИТ, при ее длительном внедрении (т.к. программные продукты устаревают от нескольких месяцев до 1 года).

9.5. Методы использования ИТ

Централизованная обработка информации – (60 – 70 г.г.) связана с созданием крупных вычислительных центров коллективного пользования, оснащенных большими ЭВМ. Позволяет обработать большие массивы информации и получать информационную продукцию, для передачи пользователям.

Достоинства:

- возможность общения с большим массивом данных в виде БД;
- легкость внедрения ИТ.

Недостатки:

- ограниченная ответственность низшего персонала при передаче информации пользователю для своевременного принятия решения;
- ограничение возможностей пользователя в процессе получения и использования информации.

Децентрализованная обработка информации – (80 г.г.) связана с появлением ПК и развитием средств телекоммуникаций.

Предоставляет пользователю широкие возможности в работе с информацией и не ограничивает его инициативу.

Достоинства:

- гибкость структуры;
- простор инициативы пользователя;
- уменьшение потребности в использовании центрального компьютера и контроля со стороны вычислительного центра;
 - более полная реализация творческого потенциала пользователя.

Недостатки:

- сложность стандартизации из-за большого числа уникальных разработок;
- неравномерность развития уровня ИТ на локальных местах, что определяется уровнем квалификации конкретного работника.

Рациональная обработка информации – (90 г.г.) – разумное применение первых двух методов.

Информационный центр отвечает за выработку общей стратегии использования ИТ, помогает пользователю в работе и обучении, вырабатывает стандарты и определяет политику применения программных продуктов и технических средств.

Персонал разрабатывает свои локальные системы и технологии в соответствии с общим планом организации.

9.6 Информационные системы (ИС)

ИС – (среда для внедрения ИТ) совокупность взаимосвязанных технических объектов, объединенных единой целью и общим алгоритмом функционирования. **С**оставляющими элементами ИС являются компьютеры, компьютерные сети, программные продукты, базы данных, люди, технические и программные средства связи.

Информационная система – взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной задачи.

Процессы, обеспечивающие работу ИС можно представить в виде блоков:

Аппаратная и программная части информационной системы

- ввод информации из внешних или внутренних источников;
- обработка входной информации и представление ее в удобном виде;
- вывод информации для представления потребителям или передачи в другую систему;
- обратная связь это информация, переработанная людьми данной организацией для коррекции входной информации.

Структура ИС

Структуру ИС составляет совокупность отдельных ее частей, называемых подсистемами. *Подсистема* – это часть системы, выделенная по какому-либо признаку.

Информационное обеспечение — совокупность единой системы классификации и кодирования информации, систем документации, схем информационных потоков в организации, а также методология построения баз данных.

Организационное обеспечение — совокупность методов и средств, регламентирующих взаимодействие работников с техническими средствами и между собой при эксплуатации.

Правовое обеспечение – совокупность правовых норм, определяющих создание, юридический статус и функционирование ИС. Его цель – укрепление законности.

Техническое обеспечение – комплекс технических средств, предназначенных для работы ИС, а также соответствующая документация на эти средства. Это компьютеры, оргтехника, устройства передачи и автоматического съема информации, линии связи.

Математическое и программное обеспечение - совокупность математических методов, моделей, алгоритмов и программ для реализации целей и задач ИС.

К средствам математического обеспечения относятся:

- средства моделирования процесса управления,
- типовые задачи управления,
- методы математического программирования, статистики, массового обслуживания. В состав программного обеспечения (ПО) входят:
- **общесистемное** ПО предназначено для решения типовых задач обработки информации. Расширяет возможности компьютеров, контролирует и управляет процессом обработки данных;
- *специализированное* ПО предназначено для решения задач определенного класса конкретной предметной области. К нему относятся пакеты прикладных программ;
 - *техническая документация* на разработку программных средств.