Examenul de bacalaureat național 2018 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$n = \sqrt{16} + \sqrt{8} - 2\sqrt{2} =$	2p
	$= 4 + 2\sqrt{2} - 2\sqrt{2} = 4 = 2^2$	3 p
2.	$f(a) = a^2 - a + 2$, $g(a) = a + 1$	2p
	$a^2 - a + 2 = a + 1 \Leftrightarrow a^2 - 2a + 1 = 0 \Leftrightarrow a = 1$	3 p
3.	$2x^2 - 6x + 5 = x^2 - 2x + 1 \Rightarrow x^2 - 4x + 4 = 0$	3 p
	x = 2 care convine	2p
4.	Prima cifră se poate alege în 5 moduri	1p
	Pentru fiecare alegere a primei cifre, a doua cifră se poate alege în câte 4 moduri	1p
	Pentru fiecare alegere a primelor două cifre, a treia cifră se poate alege în câte 3 moduri,	3 p
	deci se pot forma $5 \cdot 4 \cdot 3 = 60$ de numere	
5.	$m_{AB} = -1$, deci panta dreptei d este $m_d = -1$	2p
	Mijlocul segmentului OA este punctul $M\left(1,\frac{1}{2}\right)$, deci ecuația dreptei d este $y=-x+\frac{3}{2}$	3 p
6.	$(\sin x + 7\cos x)^2 = \sin^2 x + 14\sin x\cos x + 49\cos^2 x$	2p
	$(7\sin x - \cos x)^2 = 49\sin^2 x - 14\sin x \cos x + \cos^2 x \Rightarrow (\sin x + 7\cos x)^2 + (7\sin x - \cos x)^2 =$ $= 50\sin^2 x + 50\cos^2 x = 50(\sin^2 x + \cos^2 x) = 50, \text{ pentru orice număr real } x$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} =$	2p
	=1-0=1	3 p
b)	$A(m) + A(-m) = \begin{pmatrix} 1 & 2 \\ m & m+1 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ -m & -m+1 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 0 & 2 \end{pmatrix} =$	3 p
	$=2\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = 2A(0)$, pentru orice număr real m	2p
c)	$A(2) = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, \det(A(2)) = -1 \Rightarrow (A(2))^{-1} = \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$	3p
	$X = (A(2))^{-1} \cdot A(5) \Rightarrow X = \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 7 & 6 \\ -3 & -2 \end{pmatrix}$	2p
2.a)	$x \circ y = 3xy + 3x + 3y + 3 - 1 =$	2p
	=3x(y+1)+3(y+1)-1=3(x+1)(y+1)-1, pentru orice numere reale x şi y	3p

Probă scrisă la matematică M tehnologic

Barem de evaluare și de notare

Model

1	b)	$x \circ \left(-\frac{2}{3}\right) = 3(x+1)\left(-\frac{2}{3}+1\right) - 1 = 3(x+1)\cdot\frac{1}{3} - 1 =$	3 p
		= x + 1 - 1 = x, pentru orice număr real x	2p
•	c)	$3(n+1)n-1<17 \Leftrightarrow n^2+n-6<0$	3 p
		$n \in (-3,2)$ și, cum n este număr natural, obținem $n = 0$, $n = 1$	2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$(2 \cdot \cdot \cdot \zeta)(\cdot \cdot \cdot 2) \cdot (\cdot^2 \cdot \cdot \zeta)$	
	$f'(x) = \frac{(2x+6)(x-2) - (x^2+6x) \cdot 1}{(x-2)^2} =$	3 p
	$= \frac{x^2 - 4x - 12}{\left(x - 2\right)^2} = \frac{\left(x - 6\right)\left(x + 2\right)}{\left(x - 2\right)^2}, \ x \in (2, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 + 6x}{x(x-2)} = 1$	2p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{x^2 + 6x - x^2 + 2x}{x - 2} = \lim_{x \to +\infty} \frac{8x}{x - 2} = 8, \text{ deci dreapta de ecuație}$ $y = x + 8 \text{ este asimptotă oblică spre } +\infty \text{ la graficul funcției } f$	3р
c)	$f''(x) = \frac{32}{(x-2)^3}, x \in (2,+\infty)$	3 p
	$f''(x) > 0$, pentru orice $x \in (2, +\infty) \Rightarrow f$ nu are puncte de inflexiune	2p
2.a)	$\int_{0}^{1} (e^{x} + 1) f(x) dx = \int_{0}^{1} (e^{x} + 1) \cdot \frac{1}{e^{x} + 1} dx = \int_{0}^{1} 1 dx = x \Big _{0}^{1} =$	3p
	=1-0=1	2p
b)	$\int_{0}^{1} \frac{x}{f(x)} dx = \int_{0}^{1} x \left(e^{x} + 1\right) dx = \int_{0}^{1} x e^{x} dx + \int_{0}^{1} x dx =$	2p
	$= (x-1)e^{x} \begin{vmatrix} 1 & x^{2} \\ 0 & \frac{1}{2} \end{vmatrix} = 1 + \frac{1}{2} = \frac{3}{2}$	3р
c)	$g(x) = \sqrt{\frac{e^x}{e^x + 1}} \Rightarrow V = \pi \int_0^1 g^2(x) dx = \pi \int_0^1 \frac{e^x}{e^x + 1} dx =$	2p
	$= \pi \ln\left(e^x + 1\right) \bigg _0^1 = \pi \ln\frac{e + 1}{2}$	3 p