Отчёт по лабораторной работе

Лабораторная работа №6

Серегин Денис Алексеевич

Содержание

1	. Цель работы В Задание				
2					
3	Теоретическое введение 3.1 Формулировка модели				
4			ие лабораторной работы	9 9	
	4.1		лнение в Julia	9	
		4.1.2	Полученные графики	9	
		4.1.3	Второй случай	10	
		4.1.4	Полученные графики	10	
	4.2	Выпо.	лнение в Openmodelica	11	
		4.2.1	Описание модели	11	
		4.2.2	Полученные графики	12	
		4.2.3	Второй случай	13	
		4.2.4	Полученные графики	14	
5	Выв	оды		16	
Сп	Список литературы				

Список иллюстраций

4.1	Описание системы уравнений на языке Julia	9
4.2	Начальные условия	9
	Графики	
4.4	Описание системы уравнений на языке Julia	10
4.5	Графики	11
4.6	Листинг модели	12
4.7	Графики	13
4.8	Листинг модели	14
4.9	Графики	15

Список таблиц

1 Цель работы

При помощи Julia и Openmodelica построить графики изменения числа особей в каждой из трех групп. А также рассмотреть разные случаи протекания эпидемии.

2 Задание

Вариант 6

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12000) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=212, А число здоровых людей с иммунитетом к болезни R(0)=12. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1) если \$I(0)≤I^*\$
- 2) если \$I(0)> I^* \$

3 Теоретическое введение

3.1 Формулировка модели

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t)>I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

3.2 Скорости изменения S(t), I(t), R(t)

Скорость изменения числа S(t):

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \begin{cases} -\alpha S, \ I(t) > I^* \\ 0, \ I(t) \le I^* \end{cases}$$

Скорость изменения числа I(t):

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \begin{cases} \alpha S - \beta I, \ I(t) > I^* \\ -\beta I, \ I(t) \leq I^* \end{cases}$$

Скорость изменения числа R(t):

$$\frac{\mathrm{d}R}{\mathrm{d}t}=\beta I$$

Подробнее в [1]

4 Выполнение лабораторной работы

4.1 Выполнение в Julia

4.1.1 Описание системы уравнений

На языке Julia я описал систему дифференциальных уравнений, по которой затем построил графики изменения S(t), I(t), R(t). (рис. 4.1) (рис. 4.2)

Рассмотрим первый случай в которм $I(0) \leq I^*$

```
"""Правая часть нашей системы, p, t не используются
u[1] -- S, u[2] -- I, u[3] -- R
"""
function F!(du, u, p, t)
du[1] = 0
du[2] = -0.02 * u[2]
du[3] = 0.02 * u[2]
```

Рис. 4.1: Описание системы уравнений на языке Julia

```
begin
u<sub>0</sub> = [12000 - 212 - 12, 212, 12]
T = (0.0, 45.0)
prob = ODEProblem(F!, u<sub>0</sub>, T)
end
```

Рис. 4.2: Начальные условия

4.1.2 Полученные графики

В результате работы программы получились следующие графики. (рис. 4.3)

Рис. 4.3: Графики

4.1.3 Второй случай

Теперь рассмотрим второй случай, где $I(0)>I^{st}$ при тех же начальных условиях:

(рис. 4.4)

```
"""Правая часть нашей системы, p, t не используются

u[1] -- S, u[2] -- I, u[3] -- R

"""

function F!(du, u, p, t)

# du[1] = 0

# du[2] = -0.02 * u[2]

# du[3] = 0.02 * u[2]

du[1] = -0.01 * u[1]

du[2] = 0.01 * u[1] - 0.02 * u[2]

du[3] = 0.02 * u[2]

end
```

Рис. 4.4: Описание системы уравнений на языке Julia

4.1.4 Полученные графики

В результате работы программы получились следующие графики. (рис. 4.5)

Рис. 4.5: Графики

4.2 Выполнение в Openmodelica

4.2.1 Описание модели

Написал код для модели первого случая, где $I(0) \leq I^*$, в программе OMEdit. (рис. 4.6)

```
model d
 3 Real a = 0.01;
 4 Real b = 0.02;
 5 Real s;
 6 Real i;
 7 Real r;
 8 Real t = time;
 9 initial equation
10 i = 212;
11 r = 12;
12 s = 12000 - 212-12;
13 equation
14 der(s) = 0;
15 der(i) = -b * i;
16 \operatorname{der}(r) = b *i;
17
18 end d;
```

Рис. 4.6: Листинг модели

Далее запустил симуляцию.

4.2.2 Полученные графики

После симуляции получаем графики. (рис. 4.7)

Рис. 4.7: Графики

4.2.3 Второй случай

Теперь рассмотрим второй случай, где $I(0)>I^{st}$ при тех же начальных условиях:

(рис. 4.8)

```
1 model d
2
3 Real a = 0.01;
4 Real b = 0.02;
5 Real s;
6 Real i;
7 Real r;
8 Real t = time;
9 initial equation
10 i = 212;
11 r = 12;
12 s = 12000 - 212-12;
13 equation
14 der(s) = - a * s;
15 der(i) = a * s - b * i;
16 der(r) = b *i;
17
18 end d;
```

Рис. 4.8: Листинг модели

4.2.4 Полученные графики

В результате работы программы получились следующие графики. (рис. 4.9)

Рис. 4.9: Графики

5 Выводы

В результате работы мне удалось изучить модель эпидемии, построить графики здоровых, инфицированных и обладающих иммунитетом особей.

Список литературы

1. Кулябов Д.С. Задача об эпидемии [Электронный ресурс]. RUDN, 2022. URL: https://esystem.rudn.ru/pluginfile.php/1971664/mod_resource/content/2/%D 0%9B%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D0%B1%D0%BE%D1%82% D0%B0%20%E2%84%96%205.pdf.