Control Principles

Block Diagram

Block diagram

Transfer Function

Consists of Blocks

Can be reduced

Reduction techniques

1. Combining blocks in cascade or in parallel

2. Moving a summing point behind a block

3. Moving a summing point ahead of a block

4. Moving a pickoff point behind a block

5. Moving a pickoff point ahead of a block

6. Eliminating a feedback loop

7. Swap with two neighboring summing points

Example 1

Find the transfer function of the following block diagrams

- 1. Moving pickoff point A ahead of block G_2
- 2. Eliminate loop I & simplify

3. Moving pickoff point B behind block $G_4 + G_2G_3$

4. Eliminate loop III

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G_1(G_4 + G_2G_3)}{1 + G_1G_2H_1 + H_2(G_4 + G_2G_3) + G_1(G_4 + G_2G_3)}$$

1. Eliminate loop I

2. Moving pickoff point A behind block $\frac{G_2}{1+G_2H_2}$

3. Eliminate loop II

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G_1 G_2}{1 + G_2 H_2 + G_1 G_2 H_3 + G_1 H_1 + G_1 G_2 H_1 H_2}$$

2. Eliminate loop I and Simplify

3. Eliminate loop II & IIII

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3 G_4}{1 + G_2 G_3 H_3 + G_3 G_4 H_4 + G_1 G_2 G_3 H_2 - G_1 G_2 G_3 G_4 H_1}$$

(d)

2. Eliminate loop I & Simplify

3. Eliminate loop II

$$T(s) = \frac{Y(s)}{R(s)} = G_4 + \frac{G_1 G_2 G_3}{1 + G_2 H_1 + G_2 G_3 H_2 + G_1 G_2 H_1}$$

Example 2

Determine the effect of R and N on Y in the following diagram

In this linear system, the output Y contains two parts, one part is related to R and the other is caused by N:

$$Y = Y_1 + Y_2 = T_1 R + T_2 N$$

If we set N=0, then we can get Y1:

$$Y_1 = Y_{N=0} = T_1 R$$

The same, we set R=0 and Y2 is also obtained:

$$Y_2 = Y_{R=0} = T_2 N$$

Thus, the output Y is given as follows:

$$Y = Y_1 + Y_2 = Y_{N=0} + Y_{R=0}$$

Rewrite the diagram:

We can easily get Y_1

$$Y_1 = \frac{G_1G_2 + G_1G_3 + G_1G_2G_3H_1}{1 + G_2H_1 + G_1G_2 + G_1G_3 + G_1G_2G_3H_1}R$$

4. Let R=0, we can get:

5. Break down the summing point M:

6. Eliminate above loops:

$$Y_2 = \frac{1 + G_2 H_1 + G_1 G_2 G_4 + G_1 G_3 G_4 + G_1 G_2 G_3 G_4 H_1}{1 + G_2 H_1 + G_1 G_2 + G_1 G_3 + G_1 G_2 G_3 H_1} N$$

7. According to the principle of superposition, Y_1 and Y_2 can be combined together, So:

$$Y = Y_1 + Y_2$$

$$= \frac{1}{1 + G_2 H_1 + G_1 G_2 + G_1 G_3 + G_1 G_2 G_3 H_1} [(G_1 G_2 + G_1 G_3 + G_1 G_2 G_3 H_1)R$$

$$+ (1 + G_2 H_1 + G_1 G_2 G_4 + G_1 G_3 G_4 + G_1 G_2 G_3 G_4 H_1)N]$$

End