Week 8 Sorting, HashTables

LM Data Structures, Algorithms, and Databases (34141)

Dr Ahmad Ibrahim <u>a.ibrahim@bham.ac.uk</u> March 04, 2024

Contents based on lecture notes from Uday, Mirco, Martin, Alan

Topics by Week

Week	Date	Topic
1	15 Jan	Searching algorithms
 2	22 Jan	Binary Search Tree
3	29 Jan	Balancing Trees – AVL Tree
4	5 Feb	Databases – Conceptual Design
5	14 Feb	Databases – Logical Design & Relational Algebra
6	19 Feb	Consolidation Week
7	26 Feb	Complexity analysis, Stacks, Queues, Heaps
8	4 Mar	Sorting Algorithms, Hash tables
9	11 Mar	Graph Algorithms
10	18 Mar	Databases – Normalization
		Easter break and Eid break
11	22 Apr	Databases – Concurrency
12	29 Apr	Revision Week

Timetable & Office hours

Time	Event	Location		
4:00-5:00pm	Online support session*	Online*		
4:00-5:00pm	Office hour 1 (by appointment)*	Online*		
_	-	-		
4:00-5:00pm	Office hour 2 (by appointment)*	Online*		
Ramadan Timetable March 17 th and March 24 th 2024 Sunday 1:00-4:00pm				
	4:00-5:00pm 4:00-5:00pm - 4:00-5:00pm Ramad March 17 th a	4:00-5:00pm Online support session* 4:00-5:00pm Office hour 1 (by appointment)*		

*Zoom link: https://bham-ac-

uk.zoom.us/j/81310444523?pwd=T01tZlZGdmdUL2lkeHZsVFpjcWxUUT09

Assessments

Assessments (Test 1, Test 2, Test 3): 20%

Exam: **80%**

Week 10

Test 3

Not available until 20 Mar at 16:00 | Due 21 Mar at 16:00 | -/20 pts

Important Note (Ramadan)

4:00pm UAE Time

(12:00 noon UK Time)

Weekly Reading

Data Structures and Algorithm Analysis by Clifford A. Shaffer (3rd Ed)

Section 7 Sorting Section 9.4 Hashing

https://people.cs.vt.edu/~shaffer/Book/JAVA3elatest.pdf

Section 2.1 Insertion sort

Section 2.3.1 The divide-and-conquer method

Chapter 6 Heapsort

Chapter 7 Quicksort

Chapter 11 HashTables

https://ebookcentral.proquest.com/lib/bham/detail.action?docID=6925615

Last Week

Complexity analysis

Stacks

Queues

Heaps

Sorting Algorithm

Insertion Sort

Heapsort

This Week

Sorting Algorithm

Insertion Sort

Heapsort

Merge sort (Divide and conquer)

Quick Sort (Divide and conquer)

HashTables

Insertion sort

A simple, intuitive sorting algorithm.

Insertion Sort

Insertion Sort (Complexity)

```
Insertion-Sort (A):
  for i=2 to n
       Key=A[i]
                                           O(n)
       j=i-1
      while A[j]>Key and j>=0
             A[j+1] = A[j]
                                           O(n)
             j=j-1
      A[j+1] = Key
```

 $O(n^2)$

Exercise: Insertion Sort

Show step by step working of Insertion sort algorithm for the given array A (5, 2, 4, 6, 1, 3)

This Week

Sorting Algorithm

Insertion Sort

Heapsort

Merge sort (Divide and conquer)

Quick Sort (Divide and conquer)

HashTables

Errata (last week Exercise Sheet 07)

Q6. Show the heap that results from deleting the maximum value from the max-heap of following Figure.

Errata (last week Exercise Sheet 07)

Q6. Show the heap that results from deleting the maximum value from the max-heap of following Figure.

Answer: We can move the element in the last position in the heap (the current last element in the array) to the root position and then order the heap.

Heapsort

For a Max-Heap, the largest item is stored at the root node.

1.Swap: Remove the root element and put at the end of the array (nth position). Put the last item of the tree (heap) at the vacant place.

- **2.Remove**: Reduce the size of the heap by 1.
- **3.Heapify**: Heapify the root element again so that we have the highest element at root.


```
HEAPSORT(A, n)
```

- 1 BUILD-MAX-HEAP(A, n)
- 2 for i = n downto 2
- exchange A[1] with A[i]
- A.heap-size = A.heap-size 1
- 5 MAX-HEAPIFY(A, 1)

dsadb24_introto-sorting.pdf

Heapsort (Complexity)


```
HEAPSORT(A, n)

1 BUILD-MAX-HEAP(A, n)

2 for i = n downto 2

3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size -1

5 MAX-HEAPIFY(A, 1)

O (n)
```


Exercise Heapsort

Consider the following array

Index	1	2	3	4
Value	9	7	5	11

Carry out the steps of sorting in ascending order using HeapSort.

This Week

Sorting Algorithm

Insertion Sort

Heapsort

Merge sort (Divide and conquer)

Quick Sort (Divide and conquer)

HashTables

Merge sort (Divide and conquer)

Merge Sort (Divide & Conquer)

(Slides from Alan P. Sexton)

Merge-sort.pdf

Exercise Merge Sort

Consider the following array

9 7	5	11
-----	---	----

Carry out the steps of sorting in ascending order using Merge Sort.

This Week

Sorting Algorithm

Insertion Sort

Heapsort

Merge sort (Divide and conquer)

Quick Sort (Divide and conquer)

HashTables

Quick sort (Divide and conquer)

Quick Sort (Divide & Conquer)

(Slides from Alan P. Sexton)

Quick-sort.pdf

Exercise Quick Sort

Consider the following array

9 7 5 11

Carry out the steps of sorting in ascending order using quick Sort.

This Week

Sorting Algorithm

Insertion Sort

Heapsort

Merge sort (Divide and conquer)

Quick Sort (Divide and conquer)

HashTables

Hash tables

Hashtables.pdf

Exercise HashTable

Create Hashtable for the given input: Input: [120, 130, 241, 253, 367, 446]

Hash Function: studentID mod 10

Each student ID is a three-digit number, ranging from 000 to 999.

Summary

Sorting Algorithm

Insertion Sort

Heapsort

Merge sort (Divide and conquer)

Quick Sort (Divide and conquer)

HashTables

Weekly Reading

Data Structures and Algorithm Analysis by Clifford A. Shaffer (3rd Ed)

Section 7 Sorting Section 9.4 Hashing

https://people.cs.vt.edu/~shaffer/Book/JAVA3elatest.pdf

Section 2.1 Insertion sort

Section 2.3.1 The divide-and-conquer method

Chapter 6 Heapsort

Chapter 7 Quicksort

Chapter 11 HashTables

https://ebookcentral.proquest.com/lib/bham/detail.action?docID=6925615

Next Week

Week	Date	Topic
1	15 Jan	Searching algorithms
2	22 Jan	Binary Search Tree
3	29 Jan	Balancing Trees – AVL Tree
4	5 Feb	Databases – Conceptual Design
5	14 Feb	Databases – Logical Design & Relational Algebra
6	19 Feb	Consolidation Week
7	26 Feb	Complexity analysis, Stacks, Queues, Heaps
8	4 Mar	Sorting Algorithms, Hash tables
9	11 Mar	Graph Algorithms
10	18 Mar	Databases – Normalization
		Easter break and Eid break
11	22 Apr	Databases – Concurrency
12	29 Apr	Revision Week

Thank you.

Questions?

