

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Computer Science and Engineering	Semester	III
Course Code	20CS31P	OCS31P Type of Course	
Course Name	Python Programming	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1.Rationale

Computer programming is the core of the computer science and strong fundamentals of programming can give competitive edge in this technology driven world. It not only instils coding skills but also enhances problem solving ability. Python is one of the programming languages which is versatile and feature rich yet simple and easy to learn, has applications in various domains. Python programming sets the basis for further study of web development, data science, IoT, machine learning etc.

2. Course Outcomes: At the end of the Course, the student will be able to:

	·
CO-01	Install the latest version of python distribution and configure it for an appropriate workspace
	as needed for a given project.
CO-02	Write a program by selecting python constructs needed to solve a given problem and then code,
	execute, test and debug the program to obtain the desired result.
CO-03	Demonstrate how a program can be optimized by using modular programming approach.
CO-04	Identify and resolve both syntactical and semantic errors in a given code snippet.

3. Course Content

Week	СО	РО	Lecture (Knowledge Criteria)	Tutorial (Activity Criteria)	Practice (Performance Criteria)
Week			3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	1,2	1,4	Fundamental Concepts: brief history; features; applications of python; python distributions; versions; python IDEs; Python interpreter; Execution of python programs, debugging python code; Indentation, Comments; best practices for python programming; Character set; tokens; keywords, variables, naming rules for variables, Assignment,	ble 1	 Setup python environment Executing python: explore different ways to run python program debug python code
2	2,4	1,2,4	Basics I/O operations Input-input (), raw_input(); output - print (), formatting output. Datatypes	Refer Table 1	Code, execute and debug programs that Use i/o statements

			Scalar type: Numeric (int, long, float, complex), Boolean, bytes, None; Type casting Operators Arithmetic, Comparison/Relational, Logical/Boolean, Bitwise; string operators; Expressions and operator precedence	b) Evaluate expressions and displays formatted output c) Evaluate expressions to examine the operator precedence 2. Identify and resolve syntactic and semantic issues in the given code snippet
3	2,4	1,2,4	Control Flow: Conditional blocks If statement: general format; Multiway branching; Sufficient examples;	 Identify and Code, execute and debug programs using conditional statements. Identify and resolve syntactic and semantic issues in the given code snippet
4	2,4	1,2,4	Control Flow: Loops While loop: general format; examples For loop: general format, examples. Range();nesting loops and conditional statements; Controlling loop execution: Break, continue, pass statements;	 Code, execute and debug programs using loops. Code, execute and debug programs using loops and conditional statements Identify and resolve syntactic and semantic issues in the given code snippet
5	2,4	1,2,4	Data Collections Concept of mutability Set – features, declaration, initialization, operations, comprehension; Tuple-features; declaration, initialization, basic operations; indexing; slicing; built in functions; Nested tuples;	1. Code, execute and debug programs to perform following set operations set comprehension 2. Code, execute and debug programs to perform following basic operations on tuples tuple indexing and slicing 3. Identify and resolve syntactic and semantic issues in the given code snippet
6	2,4	1,2,4	List features; declaration, initialization, basic operations; indexing; List iterations; Slicing; built in functions; Nested Lists; Comprehensions; Applications	 Write code snippet to perform following on List basic operations on List indexing and slicing comprehension

	1		Г	2	Identify and maralan
				2.	•
					syntactic and semantic issues in the
				1	given code snippet
				1.	Code, execute and
					debug programs to
					perform basic
			D: .:		operations on
			Dictionary		Dictionary
			features; declaration, initialization,	2.	,
7	2.4	124	basic operations; indexing;		debug programs to
7	2,4	1,2,4	adding and removing keys, iterating		perform Dictionary
			through dictionaries; built in		indexing
			functions; Comprehensions;		Iterating comprehension
			Applications	3.	=
				3.	<i>y</i>
					syntactic and semantic issues in the
					given code snippet
				1.	Code, execute and
					debug programs to
					perform string
			Arrays and Strings		manipulation
			Arrays: features; create, initialize,	2.	Code, execute and
8	2,4	1,2,4	indexing, traversal, manipulation;		debug programs to
			Strings: create, assign, indexing, built		perform array
			in functions;		manipulation
				3.	Identify and resolve
					syntactic and
					semantic issues in the
					given code snippet
				1.	Code, execute and
					debug programs to
					solve the given
					problem using built in
					functions
				2.	′
					debug programs to
			Functions		solve the given
			Need of function; types; define		problem by defining a
			function, calling function, function		function
	224	124		3.	′
9	2,3,4	1,2,4	arguments; return and yield; None		debug programs to
			keyword; Scope of variables;		solve the given
			Recursion; anonymous functions;		problem using
			sufficient examples;	4	recursion
				4.	Define anonymous
					function and code to
					solve the given
				-	problem
				5.	,
					syntactic and
					semantic issues in the
	-			4	given code snippet
10	224	124	Modulos and Paskages	1.	
10	2,3,4	1,2,4	Modules and Packages		Packages
	<u> </u>				

			Why modules? Module creation; Importing modules; Module Namespace; Packages: basics; path setting; Packageinitpy Files; Commonly used modules: Math,		Code, execute and debug programs using built in modules
11	2,3,4	1,2,4	NumPy Brief about NumPy module; NumPy arithmetic functions; NumPy array manipulation functions; NumPy statistical functions; Pandas Introduction, series, data frame; Create dataframes; formatting data; fundamental data frame operations;		 Code, execute and debug programs using NumPy module. Code, execute and debug programs using series. Code, execute and debug programs using dataframes. Identify and resolve syntactic and semantic issues in the given code snippet
12	2,3,4	1,2,4	Files Concept; features; file operations; Opening Files; Closing Files; Writing to Files; Reading to Files; File methods; Working with files using data frame.		 write code snippet to perform following operations on different types of files read file write to file. Write code to perform file operations using dataframes on different file types. Identify and resolve syntactic and semantic issues in the given code snippet
13	2,3,4	1,2,4	Error and Exception Handling: Python errors; exceptions: built in, user defined. How to catch exceptions? Raising exceptions;		 Integrate exception handling into above code Write code snippet to raise exceptions Identify and resolve syntactic and semantic issues in the given code snippet
Total i	n hour	s	39	13	52

^{*}PO = Program outcome as listed and defined in year 1 curriculum

Table 1: Suggestive activities for tutorials (the list is only shared as an example and not inclusive of all possible activities for that course. Student and faculty are encouraged to choose activities that are relevant to the topic and the availability of such resources at their institution)

Sl no	Activity				
1	1. Compare and contrast excel and python				
1	2. Identify various python IDEs and identify differences between them.				
	1. Identify use cases like reading student name and contact details and display in a required				
2	format				
	2. Compare and contrast input () and raw_input() and identify its appropriate use.				

	T -	
	3.	Identify use of operators and develop algorithms to solve the same
	4.	Compare and contrast different types of operators
3	1.	Identify use cases that involve decision making and develop algorithms to solve the same
3	1.	Identify common syntactical errors when using control flow statements
	1.	Identify use cases that involve iteration and develop algorithms to solve the same
4	2.	Compare and contrast different types of loops
1	2.	Identify common syntactical errors when using loops
	1.	Identify use cases and solve them using sets
5	2.	Identify use cases and solve them using tuples
	3.	Identify common syntactical errors when working with sets and tuples
	1.	Identify use cases and solve them using List
6	2.	Identify common syntactical errors when working with List
	3.	Reimplement built in list functions
	1.	Identify use cases and solve them using dictionary
7	2.	Reimplement built in dictionary functions
	3.	Identify common syntactical errors when working with dictionary
	1.	Identify use cases and solve them using arrays
8	2.	Reimplement built in string functions
	3.	Identify common syntactical errors when working with arrays and strings
9	1.	Optimize previously written programs by using modular programming approach
10	1.	Identify and present pros and cons of modules and packages
10	1.	Explore and present python built in modules.
11	1.	Identify the applications of Pandas
11	2.	Perform data analysis using Pandas module on a dataset such as .
12	1.	Identify use cases on files concept and develop algorithms to solve the same
12	2.	Explore regular expressions and present how they can be used for file manipulation
12	3.	Compare and contrast error and exception.
13	4.	Rewrite the programs using exceptions if needed

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Average of three
2.	CIE-2 Written Test	9	80	30	tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	tests reduced to 20
6	CIE-6 Portfolio continuous evaluation of Activity through Rubrics	1-13		10	10
		60			
	Semester End Examination	100	40		
		100			

5. Format for CIE written Test

Course Name Python Programming		Test	I/II/III	Sem	III/IV			
Course Code		20CS31P	Duration	80 Min	Marks	30		
Note: Answ	Note: Answer any one full question from each section. Each full question carries 10 marks.							
Section		Assessment Questions		Cognitive Levels	Course Outcome	Marks		
I	1							

	2		
11	3		
11	4		
III	5		
	6		

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students	
No.							Score	
		2	4	6	8	10		
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8	
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6	
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2	
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2	
	Average Marks= (8+6+2+2)/4=4.5							

 $\it Note:$ Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description	
1	Core python programming, Wesley J. Chun Publisher: Prentice Hall PTR	
2	Fluent Python by Luciano Ramalho	
3	https://www.softcover.io/read/e4cd0fd9/conversational-python	
4	https://realpython.com/	
5	https://www.python-course.eu/	
6	https://www.datacamp.com/	
7	https://www.w3schools.com/	

8. CIE Skill Test and SEE Scheme of Evaluation

SL. No.	Particulars/Dimension	Marks
1	Develop an algorithmic solution for the given problem statement based on the documentation of each of the steps involved, including input, output and logic.	20
2	Write program for the above given problem choosing relevant python constructs.	
3	Code, execute, test and debug the above program.	30
4	Demonstrate how your program has solved the given problem In the event of, a student fails to get the desired result (with no syntactical and least semantic errors), the examiner shall use viva voce to assess the student's problem-solving and python programming skills	20
5	Portfolio evaluation based on aggregate of all practice sessions	10
	Total Marks	100

9. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
1	Python 3.8		20
2	Editor such as iPython, Jupyter, spider, PyCharm, google CoLab		20
3	Computers		20