CAPSTONE PROJECT

PREDICTIVE MAINTENANCE OF INDUSTRIAL MACHINERY

Presented By:

Student Name - Siddharth Tewari

College Name - University of Lucknow

Department - Computer Science and

Engineering (Artificial Intelligence)

OUTLINE

- Y Problem Statement (Should not include solution)
- **Y** Proposed System/Solution
- Y System Development Approach (Technology Used)
- **Y** Algorithm & Deployment
- Y Result (Output Image)
- Y Conclusion
- **Y** Future Scope
- **Y** References

PROBLEM STATEMENT

Develop a predictive maintenance model for a fleet of industrial machines to anticipate failures before they occur. This project will involve analyzing sensor data from machinery to identify patterns that precede a failure. The goal is to create a classification model that can predict the type of failure (e.g., tool wear, heat dissipation, power failure) based on real-time operational data. This will enable proactive maintenance, reducing downtime and operational costs.

PROPOSED SOLUTION

- Develop a Machine Learning model that can predict the type of failure using the dataset provided. The
 model will analyse sensor data from machinery to identify patterns that precede a failure. This will
 enable proactive maintenance, reducing downtime and operational costs.
- Key components:
- Data Collection: Use the Kaggle dataset on predictive maintenance of industrial machinery.
- Preprocessing: Clean and normalise the dataset.
- Model Training: Train a classification model.
- Evaluation: Validate the model using accuracy, precision, recall and F1 score.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the rental bike prediction system. Here's a suggested structure for this section:

- Y System requirements:
- IBM Cloud
- IBM Watson studio for model development and deployment
- IBM Cloud object storage for dataset handling

ALGORITHM & DEPLOYMENT

Y Algorithm Selection:

Snap Random Forest Classifier

Y Data Input:

Air temperature, Process temperature, Rotational speed, Torque, Tool wear, Target

Y Training Process:

Supervised learning using labelled failure type

Y Prediction Process:

Model deployed on IBM Watson studio

Pipeline leaderboard ▽

	Rank	↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1		Pipeline 4	• Snap Random Forest Classifier		0.995	HPO-1 FE HPO-2	00:00:39

Pipeline leaderboard $\ \, \nabla$

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 4	O Snap Random Forest Classifier		0.995	HPO-1 FE HPO-2	00:00:39
	2	Pipeline 3	O Snap Random Forest Classifier		0.995	HPO-1 FE	00:00:29
	3	Pipeline 8	Snap Decision Tree Classifier		0.994	HPO-1 FE HPO-2	00:00:24
	4	Pipeline 2	Snap Random Forest Classifier		0.994	HPO-1	00:00:06

machinefault Openloyed Online

API reference

Enter input data

Text

JSON

Enter data manually or use a CSV file to populate the spreadsheet. Max file size is 50 MB.

Download CSV template 🕹

Browse local files ↗ Search in space ↗

Clear all X

	UDI (double)	Product ID (other)	Type (other)	Air temperature [K] (double)	Process temperature [K] (double)	Rotational speed [rpm] (double)	Torque [Nm] (double)	Tool wear [min] (double)	Target (double)
1	1	M14860	М	298.1	308.6	1551	42.8	0	0
2	15	L47194	L	298.6	309.2	2035	19.6	40	0
3	464	L47643	L	297.4	308.7	2874	4.2	118	1
4	78	L47257	L	298.8	308.9	1455	41.3	208	1
5	161	L47340	L	298.4	308.2	1282	60.7	216	1
6									
7									
8									
9									

5 rows, 9 columns

CONCLUSION

- Y Created a machine learning model that helps us to predict the type of failure (e.g., tool wear, heat dissipation, power failure) based on real-time operational data.
- Y This machine learning model helps industrial machines to anticipate failures before they occur.

FUTURE SCOPE

Integration with IoT :

The convergence of ML with Internet of Things (IoT) devices enables real-time data collection from sensors embedded in machinery. Edge computing allows ML models to process data locally, reducing latency and bandwidth costs.

Cross-Industry Applications Scope :

Beyond traditional industries (manufacturing, energy), predictive maintenance will expand into healthcare (e.g., medical equipment), agriculture (e.g., farming machinery), and smart cities (e.g., infrastructure maintenance).

REFERENCES

Y Kaggle dataset link(for predicting maintenance of industrial machinery):

https://www.kaggle.com/datasets/shivamb/machine-predictive-maintenance-classification

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Siddharth Tewari

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 16, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/faed1baf-df1d-486d-9e46-7992ef9cd949

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Siddharth Tewari

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 20, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/6546d30c-6683-4301-bfba-aa642a115fc0

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

SIDDHARTH TEWARI

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

