Обнаружение изменений в потоке данных с непрерывным распределением

Нагаев Артур, 444 группа Научный руководитель: к.т.н, доц. Ю.В. Литвинов Рецензент: Руководитель команды аналитики ООО "Интеллиджей Лабс" Поваров Н. И.

Поток данных

- Транспортные средства
- Финансовые учреждения
- Веб-сайты
- Игры
- ...

2018 This Is What Happens In An Internet Minute

Изменение концепции

- Анализ текстов
- Автономные транспортные системы
- Мониторинг сетей
- Энергопотребление

Обнаружение изменения концепции в распределенных системах

Постановка задачи

- Изучить существующие технологии обнаружения изменений концепции в потоке данных.
- Реализовать фреймворк для обработки и обнаружения изменений в потоковых данных.
- Провести эксперименты, сравнить распределенный и нераспределенный случаи и провести анализ результатов.

Методы обнаружения изменения потока данных

- Основанные на скользящих окнах (sliding windows)
 - Фиксированный размер окна
 - Параллельное использование нескольких окон
 - Окна с затухающими весами
- Основанные на статистическом последовательном анализе
 - Последовательный критерий отношения вероятностей (SPRT)
 - Кумулятивная сумма (CUSUM)
 - Экспоненциальные методы скользящих средних (EWMA)

Методы распределенного обнаружения изменения потока данных

- Обнаружение изменение на одном reduce-элементе
- Micro-Cluster Nearest Neighbour (MC-NN)
- Online Map-Reduce Drift Detection Method (OMR-DDM)

Реализация

Реализация

Эксперименты: данные

- Haбop: elecNormNew
- 45311 экземпляров
- 2 класса (26075 'down', 19236 'up')
- 6 признаков

Эксперименты: модель

- Классификаторы: GaussianNB, SGDClassifier
- Детекторы: None, Page-Hinkley, Adaptive Window
- Метрика: Mean accuracy for sliding window

Эксперименты: результаты

Таблица 1: Сравнение детекторов

Модель	Детектор	Mean accuracy	Число изменений
GaussianNB	None	0.718	0
GaussianNB	PageHinkley	0.736	25
GaussianNB	ADWIN	0.75	139
SGDClassifier	None	0.84	0
SGDClassifier	PageHinkley	0.844	2
SGDClassifier	ADWIN	0.846	14

Таблица 2: Сравнение результатов для различного числа обработчиков

Число обработчиков	1	2	3	4	5	6	7	8
Mean accuracy	0.846	0.844	0.841	0.839	0.837	0.834	0.832	0.83
Время (сек)	15.97	8.34	6.61	5.23	4.29	3.87	3.66	3.43

Вывод

- Повторное обучение модели в местах изменения концепции позволяет улучшить её качество.
- Не смотря на то, что качество моделей, используемых параллельно, уменьшается с ростом числа обработчиков, можно значительно сократить время обработки благодаря естественной их масштабируемости.

Результаты

- Изучены существующие технологии обнаружения изменений концепции в потоке данных.
- Реализован фреймворк для обработки и обнаружения изменений потоковых данных.
- Проведены эксперименты, проведено сравнение распределенного и нераспределенного случаев, а также проведен анализ результатов.

Дополнительные слайды

Page Hinkley

$$M_n = \frac{x + M_{n-1} \cdot (n-1)}{n}$$

$$S_n = S_{n-1} \cdot \alpha + (x - M_n - \delta)$$

Дополнительные слайды

Adaptive window

Algorithm 1 ADWIN

```
_{1:} Инициализировать окно W
```

- 2: for each t > 0 do
- 3: $W \leftarrow W \cup x_t$
- 4: repeat
- 5: Исключить элемент из W
- 6: **until** $|\hat{\mu}W_0 \hat{\mu}W_1| < e$ для каждого разделения W на $W_0 \cup W_1$
- 7: end for

return $\hat{\mu}W$