哈尔滨工业大学(深圳)2021年秋季学期

概率论与数理统计期末试卷(A卷)

题	号	_	=	Ξ	四	五	六	七	八	九	总分
得	分										
阅卷人											

考生须知:本次考试为闭卷考试,考试时间为120分钟,总分100分。

一、**填空题** (每题 2 分, 共 20 分)

- 1. 设随机事件 A, B 满足 $\mathbb{P}(A) = \mathbb{P}(B) = \frac{3}{4}$, $\mathbb{P}(A \cap B) = \frac{2}{3}$. 则 $\mathbb{P}(A \cup B) = ______$, 而 A, B 中 恰好只有一个事件发生的概率为 ______.
- 2. 两人相约于早8时至9时之间在某地会面,则一人要等另一人半小时以上的概率为____.
- 3. 投掷一枚非均匀硬币,正面朝上的概率为 ½. 甲、乙两人轮流投掷该硬币进行赌博. 约定甲先投,且先投掷得到正面朝上者获胜(从而结束赌局). 从甲第一次投掷开始,直到赌局结束为止,共需要投掷 4 次(包括第一次、最后一次)的概率为_______,甲胜的概率为
- 4. 设二维随机变量 $(X,Y) \sim N(\mu_1,0,\sigma_1^2,\sigma_2^2,0)$. 则 $\mathbb{E}(XY^2) = _____, X-Y$ 的方差为_____.
- 5. 投掷一枚非均匀硬币,正面朝上的概率为 0.6. 现独立随机地投掷 n 次,为使所得结果中硬币正面朝上的频率在 0.5 与 0.7 之间的概率不小于 0.9,用切比雪夫不等式估计,n 至少应该为
- 6. 设 1, 1.5, 2.5, 3 是来自总体 $U(0,\theta)(\theta > 0)$ 的一个样本的观测值,则 θ 的矩估计值为______, θ 的极大似然估计值为______.
- 7. 设 X_1, X_2, X_3, X_4 是来自总体 $X \sim N(\mu, \sigma^2)$ 的一个样本, $\bar{X} = \frac{1}{4}(X_1 + X_2 + X_3 + X_4)$,且 $\frac{\bar{X} 5}{5} \sim N(0, 1)$,则 $\mu = \underline{\qquad}$, $\sigma^2 = \underline{\qquad}$.
- 8. 设 X, Y 服从 (0,1) 上的均匀分布,且 X, Y 独立, $U = \min\{X, Y\}, V = \max\{X, Y\}$,则 $\mathbb{P}(V < \frac{1}{3}) = _______,$ $\mathbb{E}(U + V) = _______.$
- 9. 设 X_1, X_2, \dots, X_n 为来自正态总体 N(0,1) 的样本,则 $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, U = \sum_{i=1}^n (X_i \bar{X})^2, W = \sqrt{n}\bar{X}$,则 W^2 服从自由度为______ 的 χ^2 分布,U 服从自由度为______ 的 χ^2 分布.
- 10. 设 Ω 为样本空间, \mathcal{F} 为所考虑事件的全体. 按柯尔莫哥洛夫的概率的公理化定义,对任意事件 $A \in \mathcal{F}$ 都有实数 $\mathbb{P}(A)$ 与之对应,称 $\mathbb{P}(A)$ 为事件 A 的概率,且概率满足如下三条公理:

新祖

<u>(A</u>

逃逃

	(1) 规范性: $\mathbb{P}(\Omega) = 1$.										
	(2)										
	(3)										
Ξ,	单项选择题 (每题 2 分, 共 10 分)										
1	. 设随机事件 A,B 满足 $\mathbb{P}(A)=\frac{3}{4},\ \mathbb{P}(B)=\frac{1}{3},\ 则下列说法错误的是()$										
	(A) $\mathbb{P}(A \cap B) \le \frac{1}{3}$. (B) $\mathbb{P}(A \cap B) \ge \frac{1}{12}$.										
	(C) 如果 $\mathbb{P}(A \cap B) = \frac{1}{4}$, 则 A, B 独立. (D) 若另有事件 C 满足 $\mathbb{P}(C) = 1$, 则 A, B, C 独立.										
2	. 设 X_1, X_2 是任意两个相互独立的连续型随机变量,它们的概率密度分别为 $f_1(x)$ 和 $f_2(x)$,允 布函数分别为 $F_1(x)$ 和 $F_2(x)$,则则下列说法正确的是()										
	(A) $f_1(x) + f_2(x)$ 必为某一随机变量的概率密度.										
	(B) $f_1(x)f_2(x)$ 必为某一随机变量的概率密度.										
	(C) $F_1(x) + F_2(x)$ 必为某一随机变量的分布函数.										
	(D) $F_1(x)F_2(x)$ 必为某一随机变量的分布函数.										
3	. 设 X,Y 为方差都有限的随机变量,则下列叙述中不成立的是()										
	(A) $(\mathbb{E}X)^2 \le \mathbb{E}X^2$.										
	(B) 对任意实数 a , X 的方差不超过 $\mathbb{E}(X-a)^2$.										
	(C) 若 $\mathbb{E}(XY) = (\mathbb{E}X) \cdot (\mathbb{E}Y)$, 则 X, Y 独立.										
	(D) 设 $p,q \ge 0$ 满足 $p+q=1$, X,Y 不相关且同分布,则 $pX+qY$ 的方差不小于 $\frac{1}{2}(X+f)$ 方差.										
4	. 设事件 A 发生的概率为 0.2 ,随机变量 X 定义如下: 如果事件 A 发生,则 $X = 1$;否则 $X = 0$ 设 X_1, X_2, \cdots, X_n 独立同分布,且都与 X 同分布. 设 $Y = \sum_{i=1}^{100} X_i$, Φ 为标准正态随机变量的布函数. 则下列说法错误的是()										
	(A) Y 的分布函数 $F(y)$ 近似等于 $\Phi\left(\frac{y-20}{4}\right)$.										
	(B) $Y = 20$ 的概率近似于 $2\Phi(0.125) - 1$.										
	(C) Y 服从二项分布.										
	(D) 当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^{n} X_i^3$ 依概率收敛到 0.3.										
5	. 设随机变量 X 服从参数为 λ 的 Poisson 分布, X_1, X_2, \cdots, X_n 为来自总体 X 的一个样本, $\bar{X} : \frac{1}{n} \sum_{i=1}^n X_i, \ S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$,则下列统计量中不是参数 λ 的无偏估计的是()										
	(A) \bar{X} . (B) X_1 . (C) S^2 . (D) $\frac{n-1}{n}S^2$.										

以下为解答题, 共 7 题, 各 10 分, 共计 70 分.

三、将两信息分别编码为 X 和 Y 传递出去,接受站接收时,X 被误为 Y 的概率为 0.1,Y 被误为 X 的概率为 0.2,信息 X 与信息 Y 传递的频繁程度之比为 1:2,若接收站收到的信息是 X,问原来发送的信息也是 X 的概率是多少?

四、设 X_1, X_2 服从参数为 1 的指数分布,且相互独立,设 $X = X_1 + X_2$. (1) 求 X 的概率密度函数. (2) 求 X 的分布函数. (3) 求 X 的期望与方差.

五、设 X,Y 为随机变量,X 关于 Y 的条件概率密度函数 $f_{X|Y}(x|y)$ 与 Y 的概率密度函数 $f_{Y}(y)$ 如下

$$f_{X|Y}(x|y) = \begin{cases} \frac{3x^2}{y^3}, & 0 < x < y, \\ 0, & \text{ i.e. } \end{cases} \qquad f_Y(y) = \begin{cases} 5y^4, & 0 < y < 1, \\ 0, & \text{ i.e. } \end{cases}$$

(1) 求 (X,Y) 的联合概率密度函数. (2) 求 X 的概率密度函数. (3) 求概率 $\mathbb{P}(X > \frac{1}{3})$.

六、设事件 A, B 的概率分别为 p_1, p_2 , 且

$$X = \begin{cases} 1, & A$$
 发生,
$$0, & A$$
 不发生,
$$Y = \begin{cases} 1, & B$$
 发生,
$$0, & B$$
 不发生.

(1) 求 X 的期望和方差. (2) 求 $\mathbb{E}(XY)$, $\operatorname{Cov}(X,Y)$. (3) 证明 $|\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| \leq \frac{1}{4}$.

七、设 $\mu \in \mathbb{R}, \sigma > 0$,随机变量X的概率密度函数如下

$$f(x; \mu, \sigma) = \begin{cases} \frac{1}{\sqrt{2\pi}x\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right), & x > 0, \\ 0, & \text{ #.d.}, \end{cases}$$

此时称 X 服从参数为 μ , σ^2 的对数正态分布. (1) 求 $\ln X$ 的概率密度函数. (2) 求 μ , σ^2 的极大似然估计.

八、设某种油漆的干燥时间(单位:h)服从正态分布 $N(\mu, \sigma^2)$,现有 9 个样品的干燥时间的样本均值为 $\bar{x}=6$ h,样本方差为 $s^2=0.33$.

- 1. 如果已知 $\sigma = 0.6$ h, 求 μ 的置信水平为 0.95 的置信区间.
- 2. 如果 σ 未知, 求 μ 的置信水平为 0.95 的置信区间.

附: 设 $Z \sim N(0,1)$, $T_n \sim t(n)$, 则

 $\mathbb{P}(Z > 1.96) = 0.025, \qquad \mathbb{P}(T_9 > 2.262) = 0.025, \qquad \mathbb{P}(T_8 > 2.306) = 0.025.$

九、考虑某设备发生故障的次数和时间.

- (1) 设某设备在任何时长为 t (小时) 的时间内发生故障的次数 N(t) 服从参数为 λt 的 Poisson 分 布(设 $\lambda > 0$). 设 X 为从 0 时刻开始到第一次故障发生的时刻之间的时间. 求 X 的分布.
- (2) 记某设备从 0 时刻开始运行起到第一次故障发生的时间间隔为 X, 第一次故障发生到第二次故障发生的时间间隔为 Y. 设 X,Y 相互独立,且都服从参数为 $\lambda > 0$ 的指数分布. 求 (0,t] 时间内该设备只发生一次故障的概率.