Assignment No. 2

Step-I

Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them

```
In [17]:
```

```
import numpy as np
import pandas as pd
```

In [4]:

```
df = pd.read_csv("Academic_performace.csv")
```

In [6]:

df

Out[6]:

	Sno	gender	NationalITy	PlaceofBirth	StageID	GradeID	SectionID	Topic	Sen
0	1	М	KW	KuwalT	lowerlevel	G-04	А	IT	
1	2	М	KW	KuwalT	lowerlevel	G-04	Α	IT	
2	3	М	KW	KuwalT	lowerlevel	G-04	Α	IT	
3	4	М	KW	KuwalT	lowerlevel	G-04	Α	IT	
4	5	М	KW	KuwalT	lowerlevel	G-04	Α	IT	
475	476	F	Jordan	Jordan	MiddleSchool	G-08	Α	Chemistry	
476	477	F	Jordan	Jordan	MiddleSchool	G-08	Α	Geology	
477	478	F	Jordan	Jordan	MiddleSchool	G-08	Α	Geology	
478	479	F	Jordan	Jordan	MiddleSchool	G-08	Α	History	
479	480	F	Jordan	Jordan	MiddleSchool	G-08	Α	History	

480 rows × 18 columns

In [7]:

df.head()

Out[7]:

	Sno	gender	NationallTy	PlaceofBirth	StageID	GradeID	SectionID	Topic	Semester	Rı
0	1	М	KW	KuwalT	lowerlevel	G-04	А	IT	F	
1	2	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F	
2	3	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F	
3	4	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F	
4	5	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F	
4										•

In [8]:

df.tail()

Out[8]:

	Sno	gender	NationallTy	PlaceofBirth	StageID	GradeID	SectionID	Topic	Sen
475	476	F	Jordan	Jordan	MiddleSchool	G-08	А	Chemistry	
476	477	F	Jordan	Jordan	MiddleSchool	G-08	Α	Geology	
477	478	F	Jordan	Jordan	MiddleSchool	G-08	Α	Geology	
478	479	F	Jordan	Jordan	MiddleSchool	G-08	А	History	
479	480	F	Jordan	Jordan	MiddleSchool	G-08	Α	History	
4									•

In [9]:

df.describe()

Out[9]:

	Sno	raisedhands	VislTedResources	AnnouncementsView	Discussion
count	480.000000	480.000000	480.000000	480.000000	478.000000
mean	240.500000	46.775000	54.797917	38.462500	43.278243
std	138.708327	30.779223	33.080007	30.095579	27.646238
min	1.000000	0.000000	0.000000	0.000000	1.000000
25%	120.750000	15.750000	20.000000	14.000000	20.000000
50%	240.500000	50.000000	65.000000	33.000000	39.000000
75%	360.250000	75.000000	84.000000	58.000000	70.000000
max	480.000000	100.000000	99.000000	350.000000	99.000000

```
In [10]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 480 entries, 0 to 479
Data columns (total 18 columns):
     Column
                                Non-Null Count
                                                Dtype
     ----
                                480 non-null
                                                 int64
 0
     Sno
                                480 non-null
 1
     gender
                                                object
 2
     NationalITy
                                480 non-null
                                                object
 3
     PlaceofBirth
                                480 non-null
                                                object
 4
     StageID
                                480 non-null
                                                 object
 5
     GradeID
                                480 non-null
                                                object
 6
     SectionID
                                480 non-null
                                                object
 7
     Topic
                                480 non-null
                                                object
 8
     Semester
                                480 non-null
                                                object
 9
     Relation
                                480 non-null
                                                object
 10
     raisedhands
                                480 non-null
                                                 int64
    VisITedResources
                                480 non-null
                                                 int64
 11
     AnnouncementsView
                                480 non-null
                                                 int64
 12
 13
     Discussion
                                478 non-null
                                                 float64
     ParentAnsweringSurvey
                                480 non-null
                                                object
     ParentschoolSatisfaction 480 non-null
                                                 object
 16
     StudentAbsenceDays
                                480 non-null
                                                object
                                480 non-null
 17 Class
                                                 object
dtypes: float64(1), int64(4), object(13)
memory usage: 67.6+ KB
In [11]:
df.shape
Out[11]:
(480, 18)
In [12]:
df.isnull().any().any()
Out[12]:
```

True

```
In [13]:
```

```
df.isnull().sum()
Out[13]:
                             0
Sno
gender
                             0
NationalITy
                             0
PlaceofBirth
                             0
StageID
                             0
GradeID
                             0
SectionID
                             0
Topic
                             0
Semester
                             0
Relation
                             0
raisedhands
                             0
VisITedResources
                             0
AnnouncementsView
                             0
Discussion
                             2
ParentAnsweringSurvey
ParentschoolSatisfaction
                             0
StudentAbsenceDays
                             0
Class
                             0
dtype: int64
In [14]:
avg_val = df["Discussion"].astype("float").mean()
avg_val
Out[14]:
43.27824267782427
In [15]:
```

df["Discussion"].replace(np.NaN, avg_val, inplace=True)

In [16]:

```
df.isnull().sum()
```

Out[16]:

0 Sno gender 0 NationalITy 0 PlaceofBirth 0 StageID 0 GradeID 0 SectionID 0 Topic 0 Semester 0 Relation 0 raisedhands 0 VisITedResources 0 AnnouncementsView 0 Discussion 0 ParentAnsweringSurvey 0 ParentschoolSatisfaction 0 StudentAbsenceDays 0 Class 0 dtype: int64

Step-II

Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.

In [20]:

```
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
```

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

matplotlib.pyplot is a collection of functions that make matplotlib work like MATLAB. Each pyplot function makes some change to a figure: e.g., creates a figure, creates a plotting area in a figure, plots some lines in a plotting area, decorates the plot with labels, etc

SciPy is a free and open-source Python library used for scientific computing and technical computing. SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.

In [45]:

```
sns.regplot(x='Sno', y='AnnouncementsView', data=df)
plt.show()
```


In [47]:

```
sns.boxplot(x=df['AnnouncementsView'])
plt.show()
```


In [57]:

```
z = np.abs(stats.zscore(df['AnnouncementsView']))
print(z)
```

```
0 1.212821

1 1.179559

2 1.279345

3 1.113034

4 0.880199

...

475 1.113034

476 0.813675
```

476 0.813675477 0.447792

478 0.813675

479 0.514316

Name: AnnouncementsView, Length: 480, dtype: float64

In [51]:

```
threshold = 3
print(np.where(z > 3))
```

```
(array([419], dtype=int64),)
```

```
In [60]:
```

```
z[419]
```

Out[60]:

10.3624031636167

The standard z score is calculated by dividing the difference from the mean by the standard deviation. The modified z score is calculated from the mean absolute deviation (MeanAD) or median absolute deviation (MAD). These values must be multiplied by a constant to approximate the standard deviation.

Step-III

Apply data transformations on at least one of the variables

In [62]:

In [63]:

df1

Out[63]:

	Income	Age	Department
0	15000	25	HR
1	1800	18	Legal
2	120000	42	Marketing
3	10000	51	Management

In [65]:

```
df1_scaled = df1.copy()
col_names = ['Income', 'Age']
features = df1_scaled[col_names]
```

In [67]:

features

Out[67]:

	Income	Age
0	15000	25
1	1800	18
2	120000	42
3	10000	51

In [70]:

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df1_scaled[col_names] = scaler.fit_transform(features.values)
```

scikit-learn

- scikit-learn is an open-source Python library that implements a range of machine learning, preprocessing, cross-validation, and visualization algorithms using a unified interface.
- · Important features of scikit-learn:
 - Simple and efficient tools for data mining and data analysis. It features various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, k-means, etc.
 - Accessible to everybody and reusable in various contexts.
 - Built on the top of NumPy, SciPy, and matplotlib.
 - Open source, commercially usable BSD license.

In [71]:

```
print(df1_scaled[col_names])
```

```
Income Age
0 0.111675 0.212121
1 0.000000 0.000000
2 1.000000 0.727273
3 0.069374 1.000000
```

There is another way of data scaling, where the minimum of feature is made equal to zero and the maximum of feature equal to one. MinMax Scaler shrinks the data within the given range, usually of 0 to 1. It transforms data by scaling features to a given range. It scales the values to a specific value range without changing the shape of the original distribution.

```
The MinMax scaling is done using:

x_std = (x - x.min(axis=0)) / (x.max(axis=0) - x.min(axis=0))

x_scaled = x_std * (max - min) + min

Where,

min, max = feature_range
x.min(axis=0) : Minimum feature value
x.max(axis=0):Maximum feature value

Sklearn preprocessing defines MinMaxScaler() method to achieve this.
```

In []: