Universidade Federal do Rio Grande do Sul Instituto de Informática

Teoria da Computação N - INF05501 Trabalho 4 - Redução de Problemas

Bruno Samuel Ardenghi Gonçalves — 550452 João Pedro Müller Alvarenga — 577252 Matheus Luís de Castro — 314943

1

PP

Entrada: um par (M, w), sendo M uma máquina de Turing sobre o alfabeto Σ , e $w \in \Sigma^*$ uma palavra de entrada para M.

Pergunta: $w \in (ACEITA(M) \cup REJEITA(M))$?

PAT

Entrada: uma máquina de Turing M.

Pergunta: ACEITA $(M) = \Sigma^*$?

Teorema. PAT é indecidível.

Demonstração. Vamos construir uma redução $r: PP \Rightarrow PAT$ tal que, dada uma instância (M, w) de PP, produzimos uma nova máquina de Turing M' como entrada para PAT. A redução deve satisfazer:

$$(M, w) \in \mathcal{Y}(PP) \iff M' \in \mathcal{Y}(PAT)$$

A máquina M' opera da seguinte forma para uma entrada t:

1. Simula M com entrada w:

- \bullet Se M para (aceitando ou rejeitando), aceita.
- \bullet Se M não para, M' entra em loop infinito.

Agora mostramos que r é uma redução correta:

- Caso 1: Se $(M, w) \in \mathcal{Y}(PP)$, ou seja, M para com w, então M' aceita qualquer $t \in \Sigma^*$. Assim, ACEITA $(M') = \Sigma^*$ e, portanto, $M' \in \mathcal{Y}(PAT)$.
- Caso 2: Se $(M, w) \in \mathcal{N}(PP)$, ou seja, M não para com w, então M' entra em loop infinito para qualquer $t \in \Sigma^*$. Assim, ACEITA $(M') = \emptyset \neq \Sigma^*$ e, portanto, $M' \in \mathcal{N}(PAT)$.

Como a redução r está corretamente definida e sabemos que PP é indecidível, segue que PAT também é indecidível. \Box

PP

Entrada: um par (M, w), sendo M uma máquina de Turing sobre o alfabeto Σ , e $w \in \Sigma^*$ uma palavra de entrada para M.

Pergunta: $w \in (ACEITA(M) \cup REJEITA(M))$?

PAPV

Entrada: uma máquina de Turing M sobre alfabeto Σ .

Pergunta: $\varepsilon \in ACEITA(M)$?

Teorema. PAPV é indecidível.

Demonstração. Vamos construir uma redução $r: PP \Rightarrow PAPV$ tal que, dada uma instância (M, w) de PP, produzimos uma nova máquina de Turing M' como entrada para PAPV. A redução deve satisfazer:

$$(M, w) \in \mathcal{Y}(PP) \iff M' \in \mathcal{Y}(PAPV)$$

A máquina M' opera da seguinte forma para uma entrada t:

1. Simula M com entrada w:

- Se M para (aceitando ou rejeitando), aceita.
- \bullet Se M não para, M' entra em loop infinito.

Agora mostramos que r é uma redução correta:

- Caso 1: Se $(M, w) \in \mathcal{Y}(PP)$, ou seja, M para com w, então M' aceita qualquer $t \in \Sigma^*$, incluindo ε . Assim, $\varepsilon \in ACEITA(M')$ e, portanto, $M' \in \mathcal{Y}(PAPV)$.
- Caso 2: Se $(M, w) \in \mathcal{N}(PP)$, ou seja, M não para com w, então M' entra em loop infinito para qualquer $t \in \Sigma^*$, incluindo ε . Assim, $\varepsilon \notin ACEITA(M')$ e, portanto, $M' \in \mathcal{N}(PAPV)$.

Como a redução r está corretamente definida e sabemos que PP é indecidível, segue que PAPV também é indecidível.

PP

Entrada: um par (M, w), sendo M uma máquina de Turing sobre o alfabeto Σ , e $w \in \Sigma^*$ uma palavra de entrada para M.

Pergunta: $w \in (ACEITA(M) \cup REJEITA(M))$?

PLAU

Entrada: uma máquina de Turing M sobre alfabeto Σ .

Pergunta: ACEITA $(M) = \{w\}$ (conjunto unitário contendo w), para um $w \in \Sigma^*$ qualquer?

Teorema. PLAU é indecidível.

Demonstração. Vamos construir uma redução $r: PP \Rightarrow PLAU$ tal que, dada uma instância (M, w) de PP, produzimos uma nova máquina de Turing M' como entrada para PLAU. A redução deve satisfazer:

$$(M, w) \in \mathcal{Y}(PP) \iff M' \in \mathcal{Y}(PLAU)$$

A máquina M' opera da seguinte forma para uma entrada t:

- 1. Verifica se t = w:
 - Se t = w, continua.
 - Se $t \neq w$, rejeita.
- **2.** Simula M com entrada w:
 - Se M para (aceitando ou rejeitando), aceita.
 - Se M não para, M' entra em loop infinito.

Agora mostramos que r é uma redução correta:

- Caso 1: Se $(M, w) \in \mathcal{Y}(PP)$, ou seja, M para com w, então M' aceita t se, e somente se, t = w. Assim, ACEITA $(M') = \{w\}$ e, portanto, $M' \in \mathcal{Y}(PLAU)$.
- Caso 2: Se $(M, w) \in \mathcal{N}(PP)$, ou seja, M não para com w, então M' rejeita para entradas diferentes de w ou entra em loop infinito para t = w. Assim, ACEITA $(M') = \emptyset$ e, portanto, $M' \in \mathcal{N}(PLAU)$.

Como a redução r está corretamente definida e sabemos que PP é indecidível, segue que PLAU também é indecidível. \Box