Problem Set #4

Danny Edgel Econ 711: Microeconomics I Fall 2020

October 5, 2020

Question 1

Let X be a choice set and \succsim be a complete and transitive preference relation on X. Let

$$C(A, \succsim) = \{x \in A | x \succsim y \ \forall y \in A\}$$

Be the choice rule induced by \succeq .

- 1. Assume $A \subseteq X$ and $B \subseteq X$, where $x, y \in A \cap B$, $x \in C(A)$, and $y \in C(B)$
- 2. $y \in A \cap B \Rightarrow y \in A$
- 3. $x \in C(A) \to x \succsim z \forall z \in A$. Thus, $x \succsim y$
- 4. $x \in A \cap B \Rightarrow x \in B$
- 5. $y \in C(B) \Rightarrow y \succeq z \forall z \in B$
- 6. Since \succsim is transitive, $x \succsim y$ and $y \succsim z \forall z \in B$ implies that $x \succsim z \forall z \in B$. Thus, $x \in C(B)$
- 7. Since $y \in C(B)$ and $x \in B$, $y \succsim x$. $y \in A$ and, since $x \in C(A)$, $x \succsim z \forall z \in A$. Thus, by the transitivity of \succsim , $y \succsim z \forall z \in A$. Therefore, $y \in C(A)$

∴ If $A, B \subseteq X$ where $x, y \in A \cap B$, then $x \in C(A) \land y \in C(B) \Rightarrow x \in C(B) \land y \in C(A)$ ■

Question 2

Let X be a choice set and $C: \mathcal{P}(X) \to \mathcal{P}(X)$ be a nonempty choice rule that satisfies WARP. Define the preference relation defined on X, \succeq_C , as

$$x \succsim_C y \iff \exists A \subseteq X \text{ s.t. } x, y \in A \land x \in C(A)$$

Completeness.

- 1. Let $x, z \in A \subseteq X$, where $x \in C(A)$
- 2. Suppose $\neg(x \succsim_C z) \land \neg(z \succsim_C z)$
- 3. By the definition of \succsim_C , $A \subseteq X \land x, z \in A \land x \in C(A) \to x \succsim_C z$
- 4. By 2 and 3, $\neg(x \succsim_C z) \land (x \succsim_C z)$
 - \therefore by contradiction, \succsim_C has complete preferences on X

Transitivity.

- 1. Suppose $x \succsim_C y$ and $y \succsim_C z$.
- 2. By the definition of \succeq_C , $\exists A \subseteq X$ s.t. $x, y \in A \land x \in C(A)$ and $\exists B \subseteq X$ s.t. $x, z \in B \land x \in C(B)$
- 3. Clearly, $y \in A \cap B$. By WARP, if $x \in B$, then $x \in C(B)$. By the definition of \succsim_C , since $B \subseteq X \land x, z, \in B \land x \in C(B)$, it must be the case that $x \succsim_C Z$
- 4. Thus, $x \succsim_C y \land y \succsim_C z \Rightarrow x \succsim_C z$
 - $\therefore \succsim_C$ has transitive preferences on X

$$\mathbf{C}\left(\cdot,\succsim_{\mathbf{C}}\right) = \mathbf{C}$$

- 1. Suppose $A \subseteq X$ is nonempty, where $x, y \in A, x \in C(A)$, and $y \in C(A, \succsim_C)$.
- 2. By the definition of \succsim_C , $x \succsim_C y \ \forall y \in A$. Thus, $x \in C(A, \succsim_C)$. Thus,

$$x \in C(A) \Rightarrow x \in C(A, \succeq_C)$$

3. $y \in C(A, \succsim_C) \Rightarrow y \succsim_C x \forall x \in A$. By the definition of \succsim_C , $y \in C(A)$. Thus,

$$y \in C(A, \succsim_C) \Rightarrow y \in C(A)$$

- 4. By (2) and (3), $x \in C(A) \iff x \in C(A, \succeq_C)$
 - $\therefore C(\cdot, \succsim_C) = C$

 $\therefore \succsim_C$ is complete and transitive, and $C(\cdot,\succsim_C) = C \blacksquare$

Question 3

Let X be finite and \succeq be a complete and transitive relation on X.

(a)

Suppose $A \neq \emptyset$ and $A \subseteq X$.

- 1. Base step. Let $A = \{x\}$. $x \sim x$, so $x \succeq x$. Thus, $C(A, \succeq) = \{x\} \neq \emptyset$
- 2. Induction step. Let $A = \{x_1, ..., x_n\}$ and assume $C(A, \succeq) \neq \emptyset$. Then, $\exists x^* \in A \text{ s.t. } x^* \succeq y \ \forall y \in A.$ Say $\exists x_{n+1} \in X.$ Then, since \succeq is complete, either $x_{n+1} \succeq x^*$ or $x^* \succeq x_{n+1}$ (or both).
 - (a) If $x_{n+1} \succsim x^*$, then, since \succsim is transitive and $x^* \succsim y \ \forall y \in A$, $x_{n+1} \in C(A \bigcup \{x_{n+1}\}, \succsim)$
 - (b) If $x^* \succsim x_{n+1}$, then $x^* \succsim y \forall y \in A \bigcup \{x_{n+1}\}$. Thus, $x^* \in C(A \bigcup \{x_{n+1}\}, \succsim)$
- \therefore by induction, $A \neq \emptyset \Rightarrow C(A, \succeq) \neq \emptyset \blacksquare$

(b)

- 1. Base step. Let $A = \{x\}$. Let u(x) = 1. Then, $\forall x, y \in A, x \succeq y \Rightarrow u(x) \geq u(y)$
- 2. Induction step. Now let |A| = n. Since \succeq is complete and transitive, A can be sorted such that

$$A = \{x_1, ..., x_n\}, \text{ where } x_n \succeq x_{n-1} \succeq ... \succeq x_2 \succeq x_1$$

Define $u(x_i) = i$ for all $i \in \{1, ..., n\}$.

Suppose $x_{n+1} \in X$. Since \succeq is complete, then $x_{n+1} \succeq x_n$ or $x_n \succeq x_{n+1}$, or both.

- (a) If $x_{n+1} \gtrsim x_n$, define $u(x_{n+1}) = n+1$. Then, $\forall x, y \in A \bigcup \{x_{n+1}\}, x \gtrsim y \Rightarrow u(x) \geq u(y)$.
- (b) If $\neg(x_{n+1} \succsim x_n)$ and $x_n \succsim x_{n+1}$, then set $u(x_n) = n+1$. If $x_{n+1} \succsim x_{n-1}$, then set $u(x_{n+1}) = n$ and leave the utility mappings for i < n unchanged. If $\neg(x_{n+1} \succsim x_{n-1})$, then continue this reassignment process until, for some $i, \ x_{n+1} \succsim x_i$. Then, set $u(x_{n+1}) = i+1$ and $u(x_j) = j+1 \ \forall j > i$ and leave the utility mappings unchanged for all x_k , where k <= i. If $x_1 \succsim x_{n+1}$ and $\nexists i \in \{1, ..., n\}$ such that $x_{n+1} \succsim x_i$, then set $u(x_{n+1}) = 1$ and set $u(x_i) = i+1$ for all x_i , where $i \in \{1, ..., n\}$. Then, $\forall x, y \in A \bigcup \{x_{n+1}\}, \ x \succsim y \Rightarrow u(x) \ge u(y)$

 \therefore When X is finite, $\exists u: X \to \mathbb{R}$ such that $\forall x, y \in X, x \succsim y \Rightarrow u(x) \ge u(y)$