$D_{s1}^*(2700)^{\pm}$

$$I(J^P) = 0(1^-)$$

$D_{s1}^*(2700)^+$ MASS

 VALUE (MeV)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

2708.3^{+}_{-} $^{4.0}_{3.4}$ OUR AVERAGE

• • • We do not use the following data for averages, fits, limits, etc. • • •

2694
$$\pm$$
 8 $^{+13}_{-3}$ LEES 15C BABR $B^0 \rightarrow D^- D^0 K^+$
2707 \pm 8 \pm 8 LEES 15C BABR $B^+ \rightarrow \overline{D}{}^0 D^0 K^+$
2688 \pm 4 \pm 3 4UBERT,BE 06E BABR 10.6 $e^+ e^- \rightarrow DKX$

$D_{\epsilon_1}^*(2700)^+$ WIDTH

VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT	
120 ±11		ERAGE					
$127 \begin{array}{c} +24 \\ -19 \end{array}$			⁵ LEES	15 C	BABR	$B \rightarrow DD^0K^+$	
115.8± 7.3	3 ± 12.1	52k	6 AAIJ	12 AU	LHCB	$pp \rightarrow (DK)^+X$ at 7 TeV	
$149 \ \pm \ 7$	$+39 \\ -52$	10.4k	⁷ AUBERT	09 AR	BABR	$e^+e^- \rightarrow D^{(*)}KX$	
108 ±23	$+36 \\ -31$	182	BRODZICKA	80	BELL	$B^+ \rightarrow D^0 \overline{D}{}^0 K^+$	
		the follow	ing data for avera	ges, fi	ts, limit	s, etc. • • •	
145 ±24	$^{+22}_{-14}$		LEES	15 C	BABR	$B^0 \rightarrow D^- D^0 K^+$	
113 ±21	$^{+20}_{-16}$					$B^+ ightarrow \ \overline{D}{}^0 D^0 K^+$	
$112\ \pm\ 7$	± 36		⁸ AUBERT,BE	06E	BABR	$10.6 e^+e^- \rightarrow DKX$	
5 From a combined analysis of $B^0 \to D^- D^0 K^+$ and $B^+ \to \overline{D}{}^0 D^0 K^+$. 6 From the combined fit of the $D^+ K^0_S$ and $D^0 K^+$ modes in the model including the							
$D_{s2}^{*}(2573)^{+}$, $D_{s1}^{*}(2700)^{+}$ and spin-0 $D_{s,I}^{*}(2860)^{+}$.							
7 - 32 .		T	50.				

⁷ From simultaneous fits to the two DK mass spectra and to the total D^*K mass spec-

Created: 5/30/2017 17:21

¹ From a combined analysis of $B^0 \rightarrow D^- D^0 K^+$ and $B^+ \rightarrow \overline{D}{}^0 D^0 K^+$.

² From the combined fit of the $D^+ K_S^0$ and $D^0 K^+$ modes in the model including the $D_{s2}^*(2573)^+$, $D_{s1}^*(2700)^+$ and spin-0 $D_{sJ}^*(2860)^+$.

³ From simultaneous fits to the two DK mass spectra and to the total D^*K mass spectrum

⁴Superseded by AUBERT 09AR.

⁸ Superseded by AUBERT 09AR.

$D_{s1}^*(2700)^{\pm}$ DECAY MODES

	Mode		
Γ ₁	DK		
Γ_2	D^0K^+		
Γ_3	$D^+ K_S^0$		
Γ_4	D^*K		
Γ ₅	$D^{st 0} K^+$		
Γ ₆	$D^{*0} K^+ \ D^{*+} K^0_S$		

$D_{s1}^*(2700)^{\pm}$ BRANCHING RATIOS

$\Gamma(D^*K)/\Gamma(DK)$					Γ_4/Γ_1
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
$0.91 \pm 0.13 \pm 0.12$	10.4k	⁹ AUBERT	09AR BABR	$e^+e^- \rightarrow$	$D^{(*)}KX$
9 From the average	of the corr	esnonding ratios wi	th $D(*)0_{K}$ +	and $D(*)+I$	<0

 $\Gamma(D^{*0}K^+)/\Gamma(D^0K^+)$ Γ_5/Γ_2 Γ_5/Γ_2

• • • We do not use the following data for averages, fits, limits, etc. • • • $0.88 \pm 0.14 \pm 0.14$ 7716 10 AUBERT 09AR BABR $e^+e^- \rightarrow D^{(*)}KX$ 10 From the $D^{*0}K^+$ and D^0K^+ , where $D^{*0} \rightarrow D^0\pi^0$.

 $\Gamma(D^{*+}K^0_S)/\Gamma(D^+K^0_S)$ Γ_6/Γ_3 Γ_6/Γ_3 Γ_6/Γ_3 Γ_6/Γ_3 Γ_6/Γ_3

• • • We do not use the following data for averages, fits, limits, etc. • • • $1.14 \pm 0.39 \pm 0.23 \qquad 2700 \qquad ^{11} \text{ AUBERT} \qquad 09 \text{AR BABR} \quad e^+ \, e^- \to \ D^{(*)} \, K \, X$ $^{11} \text{ From the } D^{*+} \, K_S^0 \text{ and } D^+ \, K_S^0, \text{ where } D^{*+} \to \ D^+ \, \pi^0.$

$D_{s1}^*(2700)^{\pm}$ REFERENCES

LEES	15C	PR D91 052002	J.P. Lees et al.	(BABAR Collab.)
AAIJ	12AU	JHEP 1210 151	R. Aaij et al.	(LHCb Collab.)
AUBERT	09AR	PR D80 092003	B. Aubert et al.	(BABAR Collab.)
BRODZICKA	80	PRL 100 092001	J. Brodzicka <i>et al.</i>	(BELLE Collab.)
AUBERT,BE	06E	PRL 97 222001	B. Aubert et al.	(BABAR Collab.)
				,

Created: 5/30/2017 17:21