Assignment 06

Zhen Liu

2022-11-11

Contunuous random variables and limit laws

Simulating data with the uniform distribution Q1

* dplyr::filter() masks stats::filter()
* dplyr::lag() masks stats::lag()

$$p_U(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

$$P(X \in [a,b]) = \int_a^b p_U(x) dx = 1 * length([a,b] \cap [0,1]) = b - a$$

Q2

```
set.seed(0)
n <- 1000
sample_X <- data.frame(U=runif(n)) %>%
mutate(X=case_when(
    (0<=U)&(U<0.25)~3,
    (0.25<=U)&(U<0.5)~10,
    (0.5<=U)&(U<0.1)~0)) %>%
pull(X)
```

Because the sample follows the distributions of Gaussian random variable, which is also called distribution

```
sample_X_0310<-function(a,b,n){
n <- n
sample_X_0310 <- data.frame(U=runif(n)) %>%
    mutate(X=case_when(
        (0<=U)&(U<a)~3,
        (a<=U)&(U<(a+b))~10,
        ((a+b)<=U)&(U<=1)~0))%>%
    pull(X)
}
```

Q4

```
sample_X_0310(0.5,0.1,10000)
```

```
average<- mean(sample_X_0310(0.5,0.1,10000))
average</pre>
```

```
## [1] 2.4775
```

Based on assignment 5 section 2.1, the value of Expectation X is 30.5 + 0.110 = 2.5

The law if large numbers tells us that the sample average converges towards the expectation, for sequences of independent and identically distributed random variables.

Q5

```
var(sample_X_0310(0.5,0.1,10000))
```

```
## [1] 8.164148
```

Var(X) is: 90.5 + 1000.1 - 90.50.5 - 1000.10.1 - 600.50.1 = 8.25

Q6

1.

```
beta<-seq(0.01,0.9,length = 100)
class(beta)</pre>
```

```
## [1] "numeric"
```

2.

```
sample_X_0310_new<-function(b) {
n <- 100
sample_X_0310 <- data.frame(U=runif(n)) %>%
   mutate(X=case_when(
      (0<=U)&(U<0.1)~3,
      (0.1<=U)&(U<(0.1+b))~10,
      ((0.1+b)<=U)&(U<=1)~0))%>%
   pull(X)
}
```

```
Expectation<-function(b) {
  return(mean(3*0.1 + b*10))
}</pre>
```

```
data_frame_X<-data.frame(beta)</pre>
```

```
data_frame_X%>%
  mutate(samplemean=map_dbl(.x=beta,.f=~mean(sample_X_0310_new(b=.x))))%>%
  mutate(Expectation=map_dbl(.x=beta,.f=~Expectation(b=.x)))
```

,					
	##		beta	samplemean	Expectation
	##	1	0.01000000	0.44	0.400000
	##	2	0.01898990	0.33	0.4898990
	##	3	0.02797980	0.83	0.5797980
	##	4	0.03696970	0.86	0.6696970
	##	5	0.04595960	0.56	0.7595960
	##	6	0.05494949	0.76	0.8494949
		7	0.06393939	0.89	0.9393939
	##	8	0.07292929	1.26	1.0292929
		_	0.08191919	1.24	1.1191919
	##	10	0.09090909	1.04	1.2090909
	##	11	0.09989899	1.46	1.2989899
	##		0.10888889	0.99	1.3888889
	##	13	0.11787879	1.16	1.4787879
	##	14	0.12686869	1.41	1.5686869
	##		0.13585859	1.99	1.6585859
		_	0.14484848	1.27	1.7484848
	## ##	16 17			
			0.15383838 0.16282828	1.98	1.8383838
	##	18	0.16282828	1.86	1.9282828
	##	19		2.17	
	## ##	20 21	0.18080808	1.87	
			0.18979798	2.13	2.1979798
	##	22	0.19878788	2.77	2.2878788
	##	23	0.20777778	3.11	2.3777778
	##	24	0.21676768	2.07	2.4676768
	##		0.22575758	2.60	2.5575758
	##	26	0.23474747	1.78	2.6474747
	##	27	0.24373737	2.53 2.53	2.7373737
	## ##	29	0.25272727 0.26171717	2.33	2.8272727
	##	30	0.27070707	2.20	2.9171717 3.0070707
	##		0.27969697	2.90	3.0969697
			0.28868687		
	##		0.29767677	3.83 2.70	
	##		0.30666667	2.83	3.3666667
	##		0.31565657	3.00	3.4565657
	##		0.32464646		3.5464646
			0.33363636	3.07	
	##		0.34262626	4.36	3.7262626
			0.35161616	4.54	
	##		0.36060606	4.03	
	##		0.36959596	4.08	3.9959596
			0.37858586	3.53	
	##		0.38757576	4.04	
		44		3.53	
			0.40555556	4.33	
	##	46	0.41454545	4.50	4.4454545
	##		0.42353535	3.99	
	##		0.43252525	4.74	
	##		0.44151515	5.38	
	##		0.45050505	4.69	
	##		0.45949495	4.50	
	##		0.46848485	4.70	
		53	0.47747475	4.85	
	##		0.48646465	6.04	5.1646465

1/1	1/2022	2, 23:40				Assignment 06
	##	55	0.49545455	5.68	5.2545455	
	##	56	0.50444444	4.97	5.344444	
	##	57	0.51343434	5.62	5.4343434	
	##	58	0.52242424	5.98	5.5242424	
	##	59	0.53141414	5.89	5.6141414	
	##	60	0.54040404	6.39	5.7040404	
	##	61	0.54939394	5.24	5.7939394	
	##	62	0.55838384	6.30	5.8838384	
	##	63	0.56737374	6.51	5.9737374	
	##	64	0.57636364	5.94	6.0636364	
	##	65	0.58535354	6.04	6.1535354	
	##	66	0.59434343	6.59	6.2434343	
	##	67	0.60333333	6.37	6.3333333	
	##	68	0.61232323	6.57	6.4232323	
	##	69	0.62131313	6.85	6.5131313	
	##	70	0.63030303	6.77	6.6030303	
	##	71	0.63929293	6.72	6.6929293	
	##	72	0.64828283	6.42	6.7828283	
	##	73	0.65727273	6.86	6.8727273	
	##	74	0.66626263	6.95	6.9626263	
	##	75	0.67525253	6.95	7.0525253	
	##	76	0.68424242	7.13	7.1424242	
	##	77	0.69323232	7.60	7.2323232	
	##	78	0.70222222	6.77	7.322222	
	##	79	0.71121212	7.26	7.4121212	
	##	80	0.72020202	7.37	7.5020202	
	##	81	0.72919192	6.94	7.5919192	
	##	82	0.73818182	7.26	7.6818182	
	##	83	0.74717172	8.04	7.7717172	
	##	84	0.75616162	8.03	7.8616162	
	##		0.76515152	8.24	7.9515152	
	##	86	0.77414141	7.97	8.0414141	
	##	87	0.78313131	7.25	8.1313131	
	##	88	0.79212121	7.80	8.2212121	
	##		0.80111111	8.32	8.3111111	
	##		0.81010101	8.76	8.4010101	
	##		0.81909091	8.51	8.4909091	
	##		0.82808081	8.59	8.5808081	
	##		0.83707071	8.73	8.6707071	
	##		0.84606061	8.88	8.7606061	
	##		0.85505051	9.00	8.8505051	
	##		0.86404040	9.01	8.9404040	
	##		0.87303030	9.17	9.0303030	
	##		0.88202020	8.80	9.1202020	
	##		0.89101010	9.20	9.2101010	
	##	100	0.9000000	9.51	9.3000000	

Q7

library(ggplot2)

```
x<-data_frame_X$beta
y<-data_frame_X$samplemean
y_1<-data_frame_X$Expectation

plot(x,y,col="red")
lines(x,y_1,col="green")</pre>
```


Exponential distribution

Q1

$$P_{\lambda}(x) = \int_{-\infty}^{\infty} p_{\lambda}(x) dx = 1 - 0 = 1$$

```
my_cdf_exp<-function(x,lambda){
  if(x<0){
  return(0)
  }
  else{
    return(1-10^-(lambda*x))
  }
}</pre>
```

```
lambda <- 1/2
map_dbl(.x=seq(-1,4), .f=~my_cdf_exp(x=.x,lambda=lambda) )</pre>
```

[1] 0.0000000 0.0000000 0.6837722 0.9000000 0.9683772 0.9900000

```
test_inputs <- seq(-1,10,0.1)
my_cdf_output <- map_dbl(.x=test_inputs, .f=~my_cdf_exp(x=.x,lambda=lambda))</pre>
```

Q3

```
my_quantile_exp<-function(x,lambda){
    y<-1/my_cdf_exp(x,lambda)
}</pre>
```

```
test_inputs <- seq(0.01,0.99,0.01)
my_cdf_output <- map_dbl(.x=test_inputs, .f=~my_quantile_exp(x=.x,lambda=lambda))</pre>
```

Q4

The mean of population is?

The Binomial distribution and the central limit theorem Q1

$$P(Z = z) = p^{z} * (1 - p)^{(1)} - z, z = 0, 1$$

$$E(Z) = \sum_{z=0}^{1} z P(z) = \sum_{z=0}^{1} z P^{z} (1 - p)^{(1)} - z = 0 + p = p$$

$$E(Z^{2}) = \sum_{z=0}^{1} z^{2} P(z) = \sum_{z=0}^{1} z^{2} p^{z} (1 - p)^{(1)} - z = 0 + p = p$$

$$Var(Z) = E(Z^{2}) - (E(Z))^{2} = p - p^{2}$$

Q2

1.

```
x <- seq(0,50,by =1)

pmf<- dbinom(x,size = 50,prob = 0.7)

binom_df<-data.frame(x,pmf)</pre>
```

2.

```
head(binom_df,3)
```

```
## x pmf

## 1 0 7.178980e-27

## 2 1 8.375477e-25

## 3 2 4.787981e-23
```

Q3

```
x<-seq(0,50,by =0.01)

pdf<-dnorm(x,mean = 35,sd = 3.24)

gaussian_df<-data.frame(x,pdf)

head(gaussian_df)</pre>
```

```
## x pdf

## 1 0.00 5.632852e-27

## 2 0.01 5.823795e-27

## 3 0.02 6.021153e-27

## 4 0.03 6.225140e-27

## 5 0.04 6.435976e-27

## 6 0.05 6.653890e-27
```

```
colors<-c("Gaussianpdf"="red", "Binomialpmf"="blue")
fill<-c("Gaussianpdf"="white", "Binomialpmf"="white")

ggplot()+labs(x="x",y="Probability")+theme_bw()+
   geom_line(data=gaussian_df,aes(x,y=pdf,color="Gaussianpdf"),size=2)+
   geom_col(data=binom_df,aes(x=x,y=pmf,color="Binomialpmf",fill="Binomialpmf"))+
   scale_color_manual(name="myLegend",values=colors)+ scale_fill_manual(name="myLegend",values=fill)+ xlim(c(20,50))</pre>
```

```
## Warning: Removed 20 rows containing missing values (position_stack).
```

```
## Warning: Removed 2000 row(s) containing missing values (geom_path).
```

```
## Warning: Removed 2 rows containing missing values (geom_col).
```


The Guassian distribution

```
x <- seq(-10, 10, by = .1)
y <- dnorm(x, mean=1, sd=1)
y_1<-dnorm(x, mean=1, sd=1.41)
y_2<-dnorm(x, mean=1, sd=1.73)
plot(x, y, type = 'l', col='red')
lines(x, y_1, col='green')
lines(x, y_2, col='blue')</pre>
```



```
x <- seq(-10, 10, by = .1)
y <- pnorm(x, mean=1, sd=1)
y_1<-pnorm(x, mean=1, sd=1.41)
y_2<-pnorm(x, mean=1, sd=1.73)
plot(x, y, type = 'l', col='red')
lines(x, y_1, col='green')
lines(x, y_2, col='blue')</pre>
```



```
x <- seq(-10, 10, by = .1)
y <- qnorm(dnorm(x, mean=1, sd=1))
y_1<-qnorm(dnorm(x, mean=1, sd=1.41))
y_2<-qnorm(dnorm(x, mean=1, sd=1.73))
plot(x, y,type = 'l',col='red')
lines(x, y_1,col='green')
lines(x, y_2,col='blue')</pre>
```


reciprocal

Q4

```
set.seed(0)
standardGaussianSample<-c(rnorm(100, mean = 0,sd=1))</pre>
```

Q5

Q6

Q7

Location estimators with Gaussian data

Q1

```
median(simulation_df$msq_error_md)
```

```
## [1] 0.05288549
```

```
x <- simulation_df$sample_size
y <- simulation_df$msq_error_md
y_1<- simulation_df_mean$msq_error_mn
plot(x, y,type = 'l',col='red')
lines(x,y_1,col ='green')</pre>
```

