Automated and Scalable QoS Control - For Network Convergence

Wonho Kim (Princeton Univ.) Puneet Sharma, Jeongkeun Lee, Sujata Banerjee, Jean Tourrilhes, Sung-Ju Lee, and Praveen Yalagandula (HP Labs)

INM/WREN'10 Proceedings of the 2010 internet network management conference on Research on enterprise networking

Motivation

- Why do we care about QoS control?
 - Network convergence
 - Multi-tenancy networks

Automated QoS control is needed

Network convergence

Different protocols, adapters, switches, and configuration

Network convergence

Fewer switches, ports, adapters, cables

Reduced power, equipment, cooling cost

Simpler topology

I/O consolidation

Unified resource management

Converged Enhanced Ethernet (CEE)

Data Center Ethernet (DCE)

Data Center Bridging (DCB)

Fibre Channel over Ethernet (FCoE)

Fibre Channel over CEE (FCoCEE)

Multi-tenancy networks

Customer B

- Serve multiple customers with a single fabric
- Better utilization of network infrastructure

Virtualized Servers

Variable Workloads

Bugs, malicious attack

- Need virtual network slices
- Need fine-grained performance isolation

Goal

Enables performance isolation with QoS control

Good news

- Most commodity switches have QoS knobs
 - rate limiter
 - priority queues
 - schedulers

- Single network domain
 - datacenters, enterprise networks, ...
 - free from Layer-8 issues (billing, collaborations, ...)
 - fine-grained control becomes feasible

Challenges

- Coarse-grained QoS knobs
 - designed for distributed management
 - class-based
 - no e2e performance
- Manual configuration
 - no standards for classifiers
 - error-prone
 - static (not adaptive)

Storage Traffic Fibre Channel

CEO/CTO

Managers

Interns

Our Solution: OpenFlow QoS Controller

Overview of OpenFlow QoS controller

Adaptive aggregation

Available QoS Knobs (Priority queue)

Available QoS Knobs (Rate limiter)

OpenFlow QoS APIs

Rate limiter

Priority queue mapping

- Extension of OpenFlow specification
- Expose QoS capability in switches

OpenFlow QoS APIs

- With OpenFlow flow control
 - fine-grained control of flows
 - automated flow management

- With OpenFlow QoS APIs
 - uniform control of QoS knobs
 - configure QoS for individual (or aggregate) flows

Admission Control

Input

- new flow arrival event
- performance requirements (peak rate, e2e delay)
- database for the current network state
- end-to-end performance model

Output

- admission control result (accept/reject)
- priority queue assignment, rate limiter settings
- path selection

Admission Control

- Two conditions should be satisfied
 - satisfy f's performance requirement
 - not violate existing flows in the networks

Difficulties in queue assignment

We should consider interactions between

- · flows in a switch
- flows in multiple switches

Admission control heuristic

- Goal
 - increase the ratio of admitted flows
 - lower the complexities in queue allocation
- Shortest Span First (SSF)
- Basic ideas
 - estimate affordable options for a flow
 - try first switches more likely to reject flow

Highest level & Lowest level

- Highest level: not violate existing flows
- Lowest level: not violate the new flow
- Span: available options for f

Step 1: compute highest & lowest levels independently

Step 2: sort switches in order of the span

Step 2: sort switches in order of the span

- Step 3: try highest level at each hop
 - try first a switch more likely to reject flow

Implementataion

- QoS APIs implemented on
 - hardware switch (HP ProCurve 5406zl)
 - software switch (Open vSwitch)

- QoS Controller implemented on top of NOX
 - open-source OpenFlow controller
 - http://noxrepo.org
- QoS Controller web interface

Prototype

Evaluation

- Traffic generation
 - generate 3 guaranteed flows from emulated services (UDP)
 - generate cross traffic (UDP, TCP)

Disable/Enable QoS controller

Measured throughput and packet loss in testbeds

Throughput with UDP cross traffic

Flow name	Route (queue assignment)
Customer DB	H3 – S3(8) – S1(8) – H1
Employee DB	H4 - S3(8) - S1(8) - H2
VoD	H3 – S3(7) – S1(7) – H1
System Backup	H4 – S3(1) – S1(1) – H2

QoS controller protects guaranteed flows in congestion

Throughput with UDP cross traffic

QoS controller protects guaranteed flows in congestion

Packet loss with TCP cross traffic

QoS control is needed even when most traffic in network is TCP

Future works

Evaluations

- effectiveness of admission control heuristics (ratio of admitted flows)
- compare with offline optimal assignment
- simulations on a variety of datacenter networks (e.g., Hierarchical, FatTree, ...)

Deployment

- extend deployment to large networks
- test with mixture of services

Conclusion

Single integrated network fabric is desirable

We need fine-grained automated QoS control

- Contributions
 - Design & Implement OpenFlow QoS APIs
 - QoS controller: automated QoS control for network slicing

Thank you

