Практическая работа № 4

Исследование и определение оптимального распределения поставок и минимальных затрат при решении транспортных задач

3.1 Цель работы

Целью лабораторной работы является приобретение студентами практических навыков решения транспортных задач и использования инструмента Поиск решения среды Excel для нахождения оптимального распределения поставок и минимальных затрат.

3.2 Формулировка транспортной задачи

Транспортная компания занимается перевозкой зерна специальными зерновозами от трех элеваторов к четырем мельницам. Максимально возможное количество отгружаемых зерновозов в сутки a_i составляет 15, 25 и 10. Суточные потребности мельниц b_j составляют 5, 15, 15 и 15 зерновозов. Затраты на перевозку зерна от i-го элеватора к j-ой мельнице в тыс. руб. представлены в виде матрицы.

$$C_{ij} = \begin{vmatrix} 10 & 2 & 20 & 11 \\ 12 & 7 & 9 & 20 \\ 4 & 14 & 16 & 18 \end{vmatrix}$$

Требуется определить структуру перевозок между элеваторами и мельницами с минимальной стоимостью.

3.3 Математическая модель транспортной задачи

Обозначим через $x_{i\,j}$ переменную решения, т.е. количество зерновозов, отгружаемых от i-го элеватора к j-ой мельнице $\left(x_{i\,j}\geq 0, i=1,2,3;\,j=1,2,3,4\right)$. Тогда система ограничений задачи будет иметь вид:

1. Все возможное количество зерновозов в сутки должно быть отправлено

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} = 15, \\ x_{21} + x_{22} + x_{23} + x_{24} = 25, \\ x_{31} + x_{32} + x_{33} + x_{34} = 10. \end{cases}$$

2. Весь спрос на зерно должен быть удовлетворен

$$\begin{cases} x_{11} + x_{21} + x_{31} = 5, \\ x_{12} + x_{22} + x_{32} = 15, \\ x_{13} + x_{23} + x_{33} = 15, \\ x_{14} + x_{24} + x_{34} = 15. \end{cases}$$

3. Целевая функция имеет вид:

$$Z = 10 \cdot x_{11} + 2 \cdot x_{12} + 20 \cdot x_{13} + ... + 16 \cdot x_{33} + 18 \cdot x_{34} \rightarrow \min$$

Необходимо отметить, что выполняется условие сбалансированности, т.е. максимальный спрос равен максимальному предложению.

3.4 Решение транспортной задачи

Представим исходные данные задачи в виде таблицы.

Таблица 3.1 — Транспортная таблица

					Мель	ницы						
		1		2		3		4		Предложение		9
			10		2		20		11			
	1	2010/2010				VCV1.75		2000				
		X11		X12	*	X13		X14		15		
			12		7		9		20			
🧐 Элеваторы	2					1						
		X21		X22		X23		X24		25		
15			4		14		16		18			
	3											
	52	X31		X32		X33		X34		10		= 0
Спрос		5		15		15		15				

Решение транспортной задачи состоит из двух этапов.

- 1. Определение начального базисного допустимого решения.
- 2. Поиск оптимального решения транспортной задачи.

Этап 1. Определение начального базисного допустимого решения.

Используем метод северо-западного угла. Выполнение начинается с верхней левой ячейки (северо-западного угла) транспортной таблицы, т.е. с переменной x_{11} .

Шаг 1. Переменной x_{11} присваивается максимальное значение, допускаемое ограничениями на спрос и предложение.

Шаг 2. Вычеркивается строка (или столбец) с полностью реализованным предложением (с удовлетворенным спросом). Это означает, что в вычеркнутой строке (столбце) мы не будем присваивать значения остальным переменным (кроме переменной, определенной на первом этапе). Если одновременно удовлетворяются спрос и предложение, вычеркивается только строка или только столбец.

Шаг 3. Если не вычеркнута только одна строка или только один столбец, процесс останавливается. В противном случае переходим к ячейке справа, если вычеркнут столбец, или к нижележащей ячейке, если вычеркнута строка. Затем возвращаемся к первому этапу.

Применив описанную процедуру, получим начальное базисное решение, представленное в табл. 3.2. В этой таблице стрелками показана последовательность определения базисных переменных.

Таблица 3.2 – Базисное решение транспортной задачи

Получено следующее начальное базисное решение:

$$\begin{cases} x_{11} = 5, x_{12} = 10, \\ x_{22} = 5, x_{23} = 15, x_{24} = 5, \\ x_{34} = 10. \end{cases}$$

Соответствующая суммарная стоимость перевозок равна

$$Z = 10 \cdot 5 + 2 \cdot 10 + 7 \cdot 5 + 9 \cdot 15 + 20 \cdot 5 + 18 \cdot 10 = 520$$
 тыс. руб.

Этап 2. Поиск оптимального решения транспортной задачи.

Используя полученное начальное базисное решение, произведем улучшение плана перевозок. В таблице 3.2 назначим потенциалы строк и столбцов. В методе потенциалов каждой i-ой строке и каждому j-му столбцу транспортной таблицы ставятся в соответствие числа (потенциалы) u_i и v_j , которые для базисных переменных удовлетворяют уравнению

$$u_i + v_j = c_{ij}$$
.

Примем $u_1 = 0$, тогда

$$\begin{cases} u_1 + v_1 = c_{11} = 10; & v_1 = 10; \\ u_1 + v_2 = c_{12} = 2; & v_2 = 2; \\ u_2 + v_2 = c_{22} = 7; & u_2 = 5; \\ u_2 + v_3 = c_{23} = 9; & v_3 = 4; \\ u_2 + v_4 = c_{24} = 20; & v_4 = 15; \\ u_3 + v_4 = c_{34} = 18; & u_3 = 3. \end{cases}$$

Используя найденные значения потенциалов, для каждой небазисной переменной вычислим величины оценки $u_i + v_j - c_{ij}$

$$\begin{cases} u_1 + v_3 - c_{13} = -16; \\ u_1 + v_4 - c_{14} = 4; \\ u_2 + v_1 - c_{21} = 3; \\ u_3 + v_1 - c_{31} = 9; \\ u_3 + v_2 - c_{32} = -9; \\ u_3 + v_3 - c_{33} = -9. \end{cases}$$

Найденные значения поместим в таблицу 3.3.

 $v_x = 10$ $v_2 = 4$ $v_2 = 2$ $v_4 = 15$ Предложение 2 10 28 11 $u_1 = 0$ 10 -1615 12 7 9 20 W2 = 5 3 15 25 4 14 16 18 45=3 g -0 -9 10 10 15 Спрос 5 15 15

Таблица 3.3 – Модифицированная транспортная таблица

Среди небазисных переменных выберем переменную, имеющую максимальное значение оценки $u_i + v_j - c_{ij}$ (правый нижний угол ячейки). В данном случае будет выбрана ячейка соответствующая x_{31} . Нам необходимо найти величину перевозок по данному маршруту θ , которая уменьшит общую стоимость перевозок.

Построим замкнутый цикл перерасчета, включающий базовое распределение поставок и выбранную нами ячейку (табл. 3.4).

Таблица 3.4 – Замкнутый цикл перерасчета для переменной x_{31}

Максимально возможное значение θ определяется исходя из условий:

- 1. Выполнение ограничения на спрос и предложение.
- 2. Отсутствие перевозок с отрицательным объемом грузов.

Для удовлетворения ограничения по спросу и предложению, нужно поочередно отнимать и прибавлять θ к значениям базисных переменных, расположенных в угловых ячейках цикла (ячейка x_{23} пропускается).

Условие отсутствия перевозок с отрицательным объемом грузов сохраняется при выполнении следующих неравенств:

$$\begin{cases} x_{11} = 5 - \theta \ge 0, \\ x_{22} = 5 - \theta \ge 0, \\ x_{34} = 10 - \theta \ge 0. \end{cases}$$

Тогда максимально возможное значение $\theta = 5$ и $x_{11} = x_{22} = 0$. Соответственно можно определить значения базисных переменных и исключить из базиса x_{11} или x_{22} . Выбираем x_{11} . Получим новое базисное решение (табл. 3.5). Новая суммарная стоимость перевозок равна Z = 475 тыс. руб.

Таблица 3.5 — Транспортная таблица для второго базисного решения

Произведем вычисление новых значений потенциалов для строк и столбцов, по описанной выше методике. Определим для каждой небазисной переменной величины оценки $u_i + v_j - c_{ij}$. Результаты приведены в табл. 3.5.

Выбираем максимальное значение величины оценки, соответствующее ячейке x_{14} . Строим замкнутый цикл (табл. 3.6).

Таблица 3.6 – Замкнутый цикл перерасчета для переменной x_{14}

Находим значение $\theta = x_{14} = 10$ и исключаем переменную x_{24} . Новое решение показано в табл. 3.7. Новая суммарная стоимость перевозок равна Z = 435 тыс. руб.

Таблица 3.7 – Транспортная таблица для третьего базисного решения

Произведем вычисление значений потенциалов строк и столбцов, а так же величин оценки (табл. 3.7). Все значения величин оценки небазисных переменных отрицательные. Это указывает на то, что найденное решение транспортной задачи оптимально.

1.5 Использование среды Excel для решения транспортной задачи

Решение транспортной задачи может быть найдено в Excel с помощью инструмента Поиск решения. Данный шаблон может быть использован для решения моделей, которые состоят из не более 10 пунктов отправления и не более 10 пунктов назначения. Рабочий лист состоит из разделов входных и выходных данных. На рис. 3.1 показаны входные данные транспортной задачи в Excel. В разделе входных данных обязательно должны содержаться следующие данные:

- 1) количество пунктов отправлений (ячейка ВЗ);
- 2) количество пунктов назначений (ячейка В4);
- 3) транспортная таблица (диапазон В6:К15);
- 4) названия пунктов отправления (диапазон А6:A15);
- 5) названия пунктов назначения (диапазон В5:К5);
- 6) объемы предложения (диапазон L6:L15);
- 7) объемы спроса (диапазон В16:К16).

1		111	Te	arrest or a	тная модель	111-1111-111	111111111111111111111111111111111111111
*			- 19	anchop	тная модель		
	Входные данные						
3	К-во п. отправления	3	< <make< th=""><th>имум 10</th><th></th><th></th><th></th></make<>	имум 10			
4	Сво п. назночения	4	< <make< th=""><th>ивиум 10</th><th></th><th></th><th></th></make<>	ивиум 10			
5	Матрица стоимостей	D1	D2	D3	D4	Пр	едпожение
6	51	10	2	20	11		15
7	52	12	7	9	20		25
6 7 8 9	S3	4	14	16	18		10
9	1000		4,5011	SHE	(-)		-30
10							
11							
12							
11 12 13							
14							
15							
16	Спрос	- 5	15	15	15		

Рисунок 3.1 – Входные данные транспортной задачи в Excel

После заполнения раздела входных данных в рабочий лист необходимо ввести следующие формулы:

1. Формула вычисления значения целевой функции в ячейке A19: =CУММПРОИЗВ(В6:К15;В20:К29).

- 2. Формулы вычисления объемов перевозок от пунктов отправления:
 - в ячейку L20 сначала вводится формула =СУММ(B20:K20), после чего она копируется в диапазон L21:L29.
- 3. Формулы вычисления объемов перевозок до пунктов назначения:

в ячейку B30 вводится формула = CУММ(B20:B29), затем она копируется в диапазон C30:K30.

Ограничения модели связаны с отношениями объемов перевозок и объемов предложения в пунктах отправления и спросом в пунктах назначения. В меню Сервис выберите команду Поиск решения. Откроется одноименное диалоговое окно, показанное на рис. 3.3. В этом окне вводим адрес ячейки, в которой вычисляется значение целевой функции \$А\$19, и адреса ячеек, содержащих значения переменных \$В\$20:\$К\$29.

Рисунок 3.3 – Диалоговое окно Поиск решения

Используя диалоговое окно **Добавление ограничения** вводим ограничения модели в таком виде

\$B\$30:\$K\$30=\$B\$16:\$K\$16 \$L\$20:\$L\$29=\$L\$6:\$L\$15

После ввода исходных данных откройте средство Поиск решения и щелкните на кнопке ОК. Решение появится в диапазоне B20:К29 (рис. 3.2). Соответствующее значение общей стоимости вычислено в ячейке A19.

	А	В	С	D	E	F	G	Н	1	J	ΙK	L	M
17	17 Оптимальное решение												
18	Общая стоимость									U.			
19	435	D1	D2	D3	D4								
20	S1	0	5	0	10	Û	0	Û	Û	0	Û	15	
21	S2	0	10	15	0	0	0	0	0	0	0	25	
22	S 3	5	0	0	5	0	0	0	0	0	0	10	
23		0	0	0	0	0	0	0	0	0	0	0	
24		0	0	0	0	0	0	0	0	0	0	0	
25		0	0	0	0	0	0	0	0	0	0	0	
26		0	0	0	0	0	0	0	0	0	0	0	
27		0	0	0	0	0	0	0	0	0	0	0	
28		0	0	0	0	0	0	0	0	0	0	0	
29		0	0	0	0	0	0	0	0	0	0	0	
30		5	15	15	15	0	0	0	0_	0	0		
31										[0			
32													

Рисунок 3.2 – Выходные данные транспортной задачи в Excel

3.6 Порядок выполнения лабораторной работы

- Получить у преподавателя № задания и выбрать условия задачи в таблице 3.8.
- 2. Определить начальное базисное допустимое решение, используя метод северо-западного угла
- 3. Найти оптимальное решение транспортной задачи.
- 4. Проверить полученные результаты, найдя оптимальное решение транспортной задачи, используя табличный редактор Excel.
- 5. Разработать словесную формулировку транспортной задачи и учесть ее при составлении отчета.

Таблица 3.8 – Варианты заданий для самостоятельного решения

Nº	Задача	Nº	Задача
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2	$ \begin{vmatrix} 2 & 6 & 3 & 4 & 8 & 60 \\ 1 & 5 & 6 & 9 & 7 & 30 \\ 3 & 4 & 1 & 6 & 10 & 15 \end{vmatrix} $ $ b_{j} 20 34 16 10 25$	8	$ \begin{vmatrix} 1 & 3 & 3 & 4 & 50 \\ 5 & 2 & 7 & 5 & 30 \\ 6 & 4 & 8 & 2 & 30 \\ 7 & 1 & 5 & 7 & 10 \\ b_j & 40 & 30 & 35 & 15 \end{vmatrix} $
3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ø	$ \begin{vmatrix} a_i \\ 2 & 4 & 3 & 2 & 60 \\ 3 & 1 & 2 & 3 & 65 \\ 5 & 4 & 1 & 5 & 70 \\ b_j & 40 & 60 & 70 & 25 \end{vmatrix} $
4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	$ \begin{vmatrix} 6 & 4 & 4 & 5 & 200 \\ 6 & 9 & 5 & 8 & 300 \\ 8 & 2 & 10 & 6 & 100 \\ b_j & 150 & 250 & 100 & 100 \end{vmatrix} $
5	$ \begin{vmatrix} 4 & 5 & 5 & 7 & 100 \\ 8 & 7 & 5 & 4 & 120 \\ 9 & 6 & 4 & 5 & 150 \\ 3 & 2 & 9 & 3 & 130 \\ b_j & 140 & 130 & 90 & 140 \end{vmatrix} $	11	$\begin{vmatrix} 2 & 4 & 3 & 6 & 25 \\ 3 & 5 & 7 & 5 & 18 \\ 1 & 8 & 4 & 5 & 12 \\ 4 & 3 & 2 & 8 & 15 \\ b_{j} & 15 & 25 & 18 & 12 \end{vmatrix}$
6	$\begin{vmatrix} 10 & 5 & 7 & 4 & 90 \\ 7 & 4 & 9 & 10 & 25 \\ 6 & 14 & 8 & 7 & 35 \\ b_j & 40 & 30 & 30 & 50 \end{vmatrix}$	12	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

3.7 Содержание отчета

- 1. Наименование и цель работы.
- 2. Вариант задания для самостоятельного решения.
- 3. Словесная формулировка транспортной задачи.
- 4. Последовательность действий при поиске начального базисного допустимого решения.
- 5. Последовательность действий при поиске оптимального решения транспортной задачи
- 6. Последовательность действий при решении транспортной задачи в среде Excel.