Formula Sheet

Grade 9 Academic

Collin Susie

Geometric Shape	Perimeter	Area
Rectangle <i>l</i>	P = l + l + w + w	A = lw
	or	
† † w	P = 2(l + w)	

Elaine Tho Jay

omas		
den en		\int_{c}^{c}
	<i>b</i>	

Parallelogram

$$P = b + b + c + c$$
 $A = bh$ or $P = 2(b + c)$

Marcus Courage Jack

$$P = a + b + c$$

$$A = \frac{bh}{2}$$
or
$$A = \frac{1}{2}bh$$

Kyle

Harshan

$$A = \frac{(a+b)h}{2}$$
 or

 $A = \pi r^2$

Jakob Julien

Mr. Gordon

$C = \pi d$	
or	
$C = 2\pi r$	

P = a + b + c + d

	Geometric Figure	Surface Area	Volume
Danie Conn Nicho	or h	$A_{\rm base} = \pi r^2$ $A_{\rm lateral\ surface} = 2\pi r h$ $A_{\rm total} = 2A_{\rm base} + A_{\rm lateral\ surface}$ $= 2\pi r^2 + 2\pi r h$	$V = (A_{\text{base}})(\text{height})$ $V = \pi r^2 h$
Hannı Kaan Tiffan	()	$A = 4\pi r^2$	$V = \frac{4\pi r^3}{3} \qquad \text{or} \qquad V = \frac{4}{3}\pi r^3$
Kevin Kevin Skye	Cone	$A_{\mathrm{base}} = \pi r^{2}$ $A_{\mathrm{lateral\ surface}} = \pi r s$ $A_{\mathrm{total}} = A_{\mathrm{base}} + A_{\mathrm{lateral\ surface}}$ $= \pi r^{2} + \pi r s$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{\pi r^2 h}{3} \qquad \text{or} \qquad V = \frac{1}{3}\pi r^2 h$
Kevin L Ainsle Ethan Neil	Square- based pyramid y	$A_{\text{base}} = b^2$ $A_{\text{triangle}} = \frac{bs}{2}$ $A_{\text{total}} = A_{\text{base}} + 4A_{\text{triangle}}$ $= b^2 + 2bs$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{b^2h}{3} \qquad \text{or} \qquad V = \frac{1}{3}b^2h$
Micha Thomas Joseph		A = 2(wh + lw + lh)	$V = (A_{\text{base}})(\text{height})$ $V = lwh$
Isla Josep Seb	Triangular prism	$A_{\text{base}} = \frac{bl}{2}$ $A_{\text{rectangles}} = ah + bh + ch$ $A_{\text{total}} = 2A_{\text{base}} + A_{\text{rectangles}}$ $= bl + ah + bh + ch$	$V = (A_{\text{base}}) \text{(height)}$ $V = \frac{blh}{2} \qquad \text{or} \qquad V = \frac{1}{2}blh$