STATISTICAL METHODS IN FINANCE, PROBLEM SHEET 5 MSC IN MATHEMATICS AND FINANCE, 2023-2024

CRIS SALVI, WILL TURNER

Exercise 1 (Method of moments). We consider the model $Z = c + e^X$, where $X \sim \mathcal{N}(\mu, \sigma^2)$.

- (i) Compute $\mathbb{E}[Z]$, $\mathbb{E}[Z^2]$ and $\mathbb{E}[Z^3]$.
- (ii) Deduce a Method of Moments estimator for the triplet (c, μ, σ^2) . (challenging!).

Exercise 2 (Degenerate Likelihood). Consider the function

(0.1)
$$f(x) = \frac{1}{6} \left(\frac{\mathbb{1}_{(0,1]}(|x|)}{\sqrt{|x|}} + \frac{\mathbb{1}_{(1,\infty)}(|x|)}{x^2} \right).$$

Show that f is a genuine density function on \mathbb{R} . Consider now the family $(f_{\theta})_{\theta \in \mathbb{R}}$ obtained by translation $f_{\theta}(x) := f(x - \theta)$ for all $x \neq \theta$, which corresponds to the common distribution of an iid sample (X_1, \ldots, X_n) .

- (i) Compute the log-likelihood function, and discuss the existence of any maximum likelihood estimator.
- (ii) What about an estimator obtained by the method of moments?
- (iii) Compute the cumulative distribution function corresponding to f, and show that the median is null.
- (iv) By translation, determine an estimator for θ .

Exercise 3 (Maximum Likelihood). Let $\theta \in (0,1)$ be the unknown parameter and consider the random variable X satisfying, for any non-negative integer n,

$$\mathbb{P}_{\theta}[X=n] = (n+1)(1-\theta)^2 \theta^n.$$

(i) Show that, for any $\theta \in (0,1)$,

$$\mathbb{E}[X] = \frac{2\theta}{1-\theta} \quad \text{and} \quad \mathbb{V}[X] = \frac{2\theta}{(1-\theta)^2}.$$

- (ii) Give a method of moment estimator $\widehat{\theta}_n$ for θ given an iid sample $\mathcal{X} = (X_1, \dots, X_n)$.
- (iii) Is the maximum likelihood estimator of θ given the sample \mathcal{X} well defined?
- (iv) Check whether $\hat{\theta}_n$ is consistent and compute its limiting distribution when n tends to infinity.

Date: May 9, 2024.

Exercise 4 (Exponential distribution). Let $(X_n)_{n\in\mathbb{N}}$ denote an iid sequence with common distribution given by the shifted Exponential distribution with density

$$f_X(x) = be^{-b(x-a)} \mathbf{1}_{(a,\infty)}(x),$$
 for some $b > 0, a \in \mathbb{R}$.

- (i) Compute $\mathbb{E}[X]$
- (ii) Compute the cumulative distribution of X.
- (iii) Derive the maximum likelihood estimators $\hat{a}_{\rm ML}$ and $\hat{b}_{\rm ML}$.
- (iv) Compute $\mathbb{E}\left[\hat{a}_{\mathrm{ML}}\right]$.
- (v) For a random variable Y, a zero-order approximation to $\mathbb{E}[1/Y]$ is given by $1/\mathbb{E}[Y]$. Compute a zero-order approximation to $\mathbb{E}\left[\hat{b}_{\mathrm{ML}}\right]$.

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON

Email address: wft17@ic.ac.uk