1. Consider the following training relation:

Salary	Education	Label
10,000	High-school	Reject
40,000	Undergraduate	Accept
15,000	Undergraduate	Reject
75,000	Graduate	Accept
18,000	Graduate	Accept

Using entropy as the impurity function, build a decision tree. Show all the calculations involved in finding the winning attributes and the best split points.

Answer:

If Salary $\leq 10,000$, two subsets $D_1 = \{r_1\}$, $D_2 = rest$

- $\operatorname{Ent}(D_1) = -[1 \log 1 + 0 \log 0] = 0$
- Ent(D₂) = -[$0.75 \log 0.75 + 0.25 \log 0.25$] = 0.81
- Ent(D) = $[0.6 \log 0.6 + 0.4 \log 0.4] = 0.97$
- Entropy reduction = $Ent(D) [1/5 *Ent(D_1) + 4/5*Ent(D_2)] = 0.322$

If Salary $\leq 15,000$, two subsets $D_1 = \{r_1, r_3\}, D_2 = \text{rest}$

- $\operatorname{Ent}(D_1) = -[1 \log 1 + 0 \log 0] = 0$
- $\operatorname{Ent}(D_2) = -[1 \log 1 + 0 \log 0] = 0$
- Ent(D) = $[0.6 \log 0.6 + 0.4 \log 0.4] = 0.97$
- Entropy reduction = $Ent(D) [2/5 *Ent(D_1) + 3/5*Ent(D_2)] = 0.97$.

Because both the entropies of D_1 and D_2 are 0, we split the two classes completely already. No more calculation is needed. The decision tree has a single node, which is salary $\leq (15000+18000)/2 = 16,500$.