Sequential Elimination Contests with All-Pay Auctions

Yanwei Sun

Imperial College Business School

with Fupeng Sun (Imperial), Chiwei Yan (Berkeley), Li Jin (UM-SJTU)

July 07, 2023

Motivation

In many contests, the designer filters candidates prior to the round of competing for prizes.

Motivation

In many contests, the designer filters candidates prior to the round of competing for prizes:

NSF Proposals: National Science Foundation in the US filters potential low-quality submissions without going through the costly formal review process.

Motivation

In many contests, the designer filters candidates prior to the round of competing for prizes:

➤ Start-up competitions: Y Combinator, a top incubator in the San Francisco Bay area, invite roughly top 7% of the applicants who fill out a short application form for on-site interviews to compete for a \$500,000 funding.

Why Elimination is in Common Use?

► Limited resources to hold all registers

Why Elimination is in Common Use?

- Limited resources to hold all registers
- Even with enough resources, it might be better for the contest designer to strategically eliminate some registers
 - the contest designer wishes to incentivize participants exert more efforts

Why Elimination is in Common Use?

- ► Limited resources to hold all registers
- Even with enough resources, it might be better for the contest designer to strategically eliminate some registers
 - ▶ the contest designer wishes to incentivize participants exert more efforts

How many admitted players should be to maximize their efforts?

Number vs. Beliefs?

The contest designer might want to increase the competition, which comes from two parts:

- number of admitted players
- ▶ their beliefs about opponents' abilities

Model Setup

Stage 1: Designer sets up the number of admitted players n_2 and prize structure $V = [V_1, V_2, \dots, V_{n_2}], \ \mathbb{1}^\top V = 1$

Stage 1: Designer sets up the number of admitted players n_2 and prize structure $V = [V_1, V_2, \dots, V_{n_2}], \ \mathbb{1}^\top V = 1$ Stage 2: n_1 players register the contest. Player i's *private* ability (type) $a_i \stackrel{i.i.d}{\sim} F$ with density f with support (0,1)

Stage 1: Designer sets up the number of admitted players n_2 and prize structure $V = [V_1, V_2, \dots, V_{n_2}], \ \mathbb{1}^\top V = 1$

Stage 2: n_1 players register the contest. Player i's private ability (type) $a_i \overset{i.i.d}{\sim} F$ with density f with support (0,1)

Stage 3: Top n_2 players are allowed to attend the contest based on the admission-elimination signal $s = \{0, 1\}^{n_1}$

- \triangleright admitted player *i*'s decision variable: e_i
- ex-post utility of admitted player i:

$$u_i(e_i,e_{-i}) = V_\ell \mathbb{1}\{e_i \text{ is } \ell^{\text{th}} \text{ highest among } e\} - \frac{g(e_i)}{g_i}$$

Research Questions

Research Questions

What is the optimal (n_2, V) in terms of

- expected highest equilibrium efforts?
- expected total equilibrium efforts?

Bayesian Nash Equilibrium

A BNE is a tuple of *posterior beliefs* (densities) $[\beta_i(a_{-i} \mid s, a_i) : i \in \mathcal{I}]$ and *strategies* $[b_i(\cdot) : i \in \mathcal{I}]$ that satisfies the following conditions:

Bayesian Nash Equilibrium

A BNE is a tuple of *posterior beliefs* (densities) $[\beta_i(a_{-i} \mid s, a_i) : i \in \mathcal{I}]$ and *strategies* $[b_i(\cdot) : i \in \mathcal{I}]$ that satisfies the following conditions:

(*Bayesian Updating***)** For every admitted player $i \in \mathcal{I}$, which is the set of admitted n_2 players, Bayes' rule is used to update her posterior belief $\beta_i(a_{-i} \mid s, a_i)$.

Bayesian Nash Equilibrium

A BNE is a tuple of *posterior beliefs* (densities) $[\beta_i(a_{-i} \mid s, a_i) : i \in \mathcal{I}]$ and *strategies* $[b_i(\cdot) : i \in \mathcal{I}]$ that satisfies the following conditions:

- (*Bayesian Updating*) For every admitted player $i \in \mathcal{I}$, which is the set of admitted n_2 players, Bayes' rule is used to update her posterior belief $\beta_i(a_{-i} \mid s, a_i)$.
- **(**Sequential Rationality) For every admitted player $i \in \mathcal{I}$,

$$b_i(a_i) \in rg \max_{e_i} \sum_{\ell=1}^{n_2} V_\ell P_{i\ell}\left(e_i\right) - rac{g\left(e_i
ight)}{a_i},$$

where $P_{i\ell}(e_i)$ is the probability that e_i ranks ℓ^{th} highest in

$$\{ {\color{red} b_j(A_j)}: j \in \mathcal{I}_{-i} \} \cup \{e_i\}$$

▶ the random variables $A_{-i} \sim \beta_i (a_{-i} \mid s, a_i)$

Equilibrium Analysis

Posterior Belief: Example $n_2 = 2$

When $n_2 = 2$, for any player $i \neq j \in \mathcal{I}$, player i's posterior belief (PDF) about player j's ability is

$$\beta_{i}\left(a_{j} \mid s, a_{i}\right) = \begin{cases} \frac{f(a_{j})F^{n_{1}-2}(a_{j})}{\frac{F^{n_{1}-1}(a_{i})}{n_{1}-1} + 1 - F(a_{i})}, & 0 < a_{j} < a_{i}, \\ \frac{f(a_{j})}{\frac{F^{n_{1}-1}(a_{i})}{n_{1}-1} + 1 - F(a_{i})}, & a_{i} < a_{j} < 1 \end{cases}$$

When $a_j = a_i$, $\beta_i (a_j \mid s, a_i)$ could be defined arbitrarily.

Posterior Belief: Example $n_2 = 2$

When $n_2 = 2$, for any player $i \neq j \in \mathcal{I}$, player i's posterior belief (PDF) about player j's ability is

$$\beta_{i}\left(a_{j} \mid s, a_{i}\right) = \begin{cases} \frac{f(a_{j})F^{n_{1}-2}(a_{j})}{\frac{F^{n_{1}-1}(a_{i})}{n_{1}-1} + 1 - F(a_{i})}, & 0 < a_{j} < a_{i}, \\ \frac{f(a_{j})}{\frac{F^{n_{1}-1}(a_{i})}{n_{1}-1} + 1 - F(a_{i})}, & a_{i} < a_{j} < 1 \end{cases}$$

When $a_j = a_i$, $\beta_i(a_j \mid s, a_i)$ could be defined arbitrarily.

Remark 1: beliefs are asymmetric and private

Example $n_1 = 5$, $n_2 = 2$ with uniform priors

Posterior Beliefs: General *n*₂

Remark 2: Marginal posterior belief first-order stochastic dominates prior belief

Posterior Beliefs: General *n*₂

Remark 2: Marginal posterior belief first-order stochastic dominates prior belief

Remark 3: One player's marginal posterior beliefs about different players' abilities can be correlated. Formally, $\beta_i(a_{-i} \mid s, a_i) \neq \prod_{j \in \mathcal{I}_{-i}} \beta_i(a_j \mid s, a_i)$ in general.

Equilibrium Strategy

Proposition

There exists a unique symmetric Bayesian Nash equilibrium strategy.

Optimal Mechanism

Equilibrium Dominance

Theorem (Equilibrium Dominance)

Fix any prize structure V, $\underline{\mathit{all}}$ admitted players exert weakly lower efforts compared with those under a regular one-round contest that admits all players.

Equilibrium Dominance

Theorem (Equilibrium Dominance)

Fix any prize structure V, <u>all</u> admitted players exert weakly lower efforts compared with those under a regular one-round contest that admits all players.

Remark 1: Given $n_2 = n_1$, optimal prize structure is winner-take-all when the cost function g is linear (Moldovanu and Sela 2001, Chawla, Hartline, and Sivan 2019).

Equilibrium Dominance

Theorem (Equilibrium Dominance)

Fix any prize structure V, $\underline{\textit{all}}$ admitted players exert weakly lower efforts compared with those under a regular one-round contest that admits all players.

Remark 1: Given $n_2 = n_1$, optimal prize structure is winner-take-all when the cost function g is linear (Moldovanu and Sela 2001, Chawla, Hartline, and Sivan 2019).

Proposition (Non-monotone)

The equilibrium effort of admitted player i with ability a_i is increasing in n_2 when $n_2 \in [\lfloor (n_1+1)/2 \rfloor + 1, n_1]$, and is in general *not monotone* in n_2 when $n_2 \in [2, \lfloor (n_1+1)/2 \rfloor + 1]$.

Comparison: Sequential Elimination vs. Sub-elimination

Our setting: sequential elimination

Sub-elimination (Moldovanu and Sela 2006)

Admitting best players could backfire!

Limited Resources

Remark: When the designer cannot admit all registered n_1 players, numerical results show that the <u>optimal</u> n_2 <u>lies at the corner points</u> — either admitting 2 players or the maximum allowed.

Example: Expected Total Efforts

Prior distribution: $F(x) = x^{\theta}$; Cost function: $g(x) = x^{5}$

Figure: Expected Total Efforts ($n_1 = 20$)

Two-stage SEC

Two-stage Sequential Elimination Contests

If the designer does not know the ranking of all registered players' abilities,

Proposition

There does *not* exist a symmetric and monotone Perfect Bayesian Equilibrium (PBE) in any two-stage sequential elimination contest.

Main Take-away

- **Equilibrium Dominance:** Admit all registers if you can.
- Otherwise, admit two players or the maximum allowed

References

Chawla, Shuchi, Jason D Hartline, and Balasubramanian Sivan (2019). "Optimal crowdsourcing contests". In: *Games and Economic Behavior* 113, pp. 80–96.

Moldovanu, Benny and Aner Sela (2001). "The optimal allocation of prizes in contests". In: *American Economic Review* 91.3, pp. 542–558.

Equilibrium Strategy

$$b(a_i) = g^{-1} igg(\sum_{\ell=1}^{n_2-1} V_\ell \int_0^{a_i} rac{x}{J(F(x), n_1, n_2)} ig(dF_{(\ell, n_1-1)}(x) - dF_{(\ell-1, n_1-1)}(x) ig) \ - V_{n_2} \int_0^{a_i} rac{(n_2-1)x}{I(F(x), n_1, n_2)} ig(1 - F(x) ig)^{n_2-2} dF(x) ig),$$

where

$$J(x, n_1, n_2) := \binom{n_1 - 1}{n_2 - 1} \cdot I(x, n_1, n_2)$$
 $I(x, n_1, n_2) := (1 - x)^{n_2 - 1} + (n_2 - 1) \cdot B(x, n_1 - n_2 + 1, n_2 - 1)$
 $B(x, p, q) := \int_0^x t^{p-1} (1 - t)^{q-1} dt$

Posterior Belief

Posterior Belief:

$$\beta_{i}(a_{-i} \mid s, a_{i}) = \begin{cases} \frac{1}{I(F(a_{i}), n_{1}, n_{2})} \prod_{j \in \mathcal{I}_{-i}} f(a_{j}), & a_{i} < \min_{j \in \mathcal{I}_{-i}} a_{j}, \\ \frac{F^{n_{1} - n_{2}} \left(\min_{j \in \mathcal{I}_{-i}} a_{j}\right)}{I(F(a_{i}), n_{1}, n_{2})} \prod_{j \in \mathcal{I}_{-i}} f(a_{j}), & a_{i} > \min_{j \in \mathcal{I}_{-i}} a_{j}. \end{cases}$$

Marginal Posterior Belief:

$$\beta_{i} (a_{j} | s, a_{i}) = \begin{cases} \frac{f(a_{j})}{I(F(a_{i}), n_{1}, n_{2})} \left((n_{2} - 2)B(F(a_{i}), n_{1} - n_{2} + 1, n_{2} - 2) \right) + \left(1 - F(a_{i}) \right)^{n_{2} - 2} \right), & a_{j} > a_{i}, \\ \frac{f(a_{j})}{I(F(a_{i}), n_{1}, n_{2})} \left((n_{2} - 2)B(F(a_{j}), n_{1} - n_{2} + 1, n_{2} - 2) + F^{n_{1} - n_{2}}(a_{j})(1 - F(a_{j}))^{n_{2} - 2} \right), & a_{j} < a_{i}. \end{cases}$$