PhxQueue

ryanyycao

1. PhxQueue

PhxQueue Paxos At-Least-Once Delivery /

2. PhxQueue

Producer

Consumer X ... Consumer Y (Backup)

Store | Lock | Sched | S

- Store -
- Producer -

Producer key key

• Consumer -

Consumer Store Consumer Topic Handler

Stor

• Scheduler -

Scheduler , Consumer Consumer Consumer Scheduler Consumer

 $master \qquad , \qquad master \qquad master \qquad master \ failover$

• Lock -

Lock Paxos PhxQueue Scheduler leader Consumer

3. PhxQueue VS Kafka

3.1.

特性	Kafka	PhxQueue	备注
刷盘方式	异步为主,支持同步(但是会出现 写放大降低吞吐量)	同步刷盘	
水平扩展最小粒度	Partition	Queue	
物理文件存储粒度	Partition	Paxos group	PhxQueue 有意区分 queue 和 paxos group 的概念。一个 queue 只属于一个 paxos group, 一个 paxos group 內可包 含多个 queue, 从而避免逻辑水平扩展影 响写盘并发
存储层选举	Broker 依赖 Zookeeper 选举出 Controller,再由 Controller 选举出 各分区的 leader	Store 自身依赖 Paxos 选举 master	Kafka Broker 引入 Controller 解决了 Zookeeper 压力大的问题;PhxQueue Store 不依赖外部选举,每一组均能独立 进行 Paxos 决议,分散了选举压力
批量生产能力	仅 Producer 有 batch 逻辑	Producer、Store 均有独立的 batch 逻辑	PhxQueue 为了应对高扇入场景下 Producer 端 batch 效果不好的情况,在 Store 中加入了 batch 逻辑
同步延迟	全同步协议,所有 ISR 返回 ack 后完成同步,延迟取决于最慢节点	Paxos 协议,多数派 accept 即完成同步,最慢节点不影响整体吞吐	PhxQueue 只需多数派应答即可完成同步,Kafka 同步需要等待最慢节点
存储层的组间容灾隔离	无	有	对于 PhxQueue, Paxos 只要求组内多数 节点存活即可完成写入,所以单节点离线 造成的失败,可以在组内挟节点重试成 功;对于 Kafka,单节点离线会造成整组 暂时不可写,重试逻辑需要换组进行
存储层的服务发现	通过 Metadata RPC 获取存储层信息	通过本地配置文件获取存储层信息	PhxQueue 通过配置文件做服务发现,使用者需维护各机器配置的一致性;Kafka以 Zookeeper 作为配置管理中心
消费隔离	以消费分组(Consumer Group)为 单位	以订阅(Sub)为单位	
消费管理		各 Consumer 与 Schduler 维持心跳并上报负载。Schduler 根据负载调整各 Consumer 的消费权重。Consumer 再根据消费权重决定要处理的队列	PhxQueue 新增了负载均衡功能,当某 Consumer 负载过高时,可自动调整分配;Kafka并无该功能

3.2.

• b70*3

cpu	48 * Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
memory	128G
network	10 Gigabit Ethernet
cluster nodes	3

kafka qps 13 / 230ms PhxQueue kafka qps IOPS kafka Memory Mapped Files

PhxQueue wal

sata kafka PhxQueue PhxQueue cpu 70% sata PhxQueue Kafka

ssd kafka ssd PhxQueue

3.3. failover

• Kafka Failover $0\% \sim 33\%$ Failover 10s

• PhxQueue Failover 66% Failover 5s Failover 90+%

3.4. API

• Kafka API

Producer API topics
Consumer API topics
Streams API input topics

Streams API input topics output topics
Connect API kafka kafka
AdminClient API topics brokers kafka

• Phxqueue bg API

svrkit evcpubid Api, Public Commit/RollBack http httpsvr logicsvr svrkit http httpsvr logicsvr svrkit

4.

PhxQueue Paxos Store batch Producer batch Kafka

 ${\bf Created\ with\ Madoko.net.}$