Ensemble in deep neural network and Uncertainty quantification

Superb AI, Machine Learning Engineer Kyeong Ryeol, Go

Basic concept

- What is Ensemble
 - Combine multiple hypothesis into one
- Why does it work
 - Suppose 5 independent classifiers for majority voting

- The accuracy of majority voting
 - $0.8369 \approx (0.7)^5 + 5 * 0.3 * (0.7)^4 + 10 * (0.3)^2 * (0.7)^3$
- Predictive variance
 - $Var((y_1 + y_2 + \dots + y_K)/K) = \sigma^2/K$ where $Var(y_1) = \sigma^2$
- What matters
 - Combine <u>accurate</u>(low bias) and <u>de-correlated</u>(low variance) solutions

Deep ensemble

Core idea

- Average predictions of M(=5) randomly initialized NNs
 - Predictive probability : $p(y|x) = M^{-1} \sum_{m} p_{\theta_m}(y|x, \theta_m)$
- (Optional) Smooth the predictive distribution to improve the robustness on OOD
 - Adversarial example with ϵ (=0.01) : $x' = x + \epsilon \cdot sign(\nabla_x l(\theta, x, y))$
 - Objective: $\min_{\theta_m} l(\theta_m, x, y) + l(\theta_m, x', y) \quad \forall m \in \{1, ..., M\}$

Experiment

- Compared to MC-dropout,
 - lower error, NLL, Brier score
 - Avoid overconfidence

(**Top row**) known class, (**Bottom row**) unknown class As ensemble size increases, overconfidence is relieved

Confidence : $\max_{k} p(y = k | x)$ MC-dropout is overconfident to wrong prediction

Better than others, too?

- Yes, both for accuracy and calibration under dataset shift
- Calibration metric : $ECE = \sum_{s=1}^{S} \frac{|B_s|}{N} |acc(B_s) conf(B_s)|$
 - $acc(B_s) = \frac{1}{|B_s|} \sum_{i \in B_s} 1(\hat{y}_i = y_i)$
 - conf(B_s) = $\frac{1}{|B_s|} \sum_{i \in B_s} p(\hat{y}_i | x_i)$

where $\{\rho_s: s \in 1, ..., S\}$ are percentiles of held-out predicted prob.

$$B_S = \{ n \in 1, ..., N : p(\hat{y}_n | x_n) \in (\rho_S, \rho_{S+1}] \}$$

Scalability 1: Loss landscape perspective

Cyclic learning rate

SGD (narrow) vs SWA (wide)

Instead of training M models, get M checkpoints

- Snapshot Ensemble (long interval)
 - Use cosine cyclic learning rate schedule
 - Repeat to i) converge to and ii) escape from local optima
- Fast Geometric Ensemble (pre-training + short interval)
 - Use linear cyclic learning rate schedule
 - Interpolate the optima with near-constant loss with small perturbation
- Stochastic Weight Averaging (average weights not predictions)
 - Use high constant or abrupt cyclic learning rate schedule
 - Require only a single forward process for the test-time prediction

Estimating covariance

- Average predictions by multiple samples from $\mathcal{N}(\theta_{swa}, \Sigma)$
 - SWAG-Diagonal : $\Sigma = \Sigma_{\mathrm{diag}} = diag(\overline{\theta^2} \theta_{swa}^2)$
 - SWAG : $\Sigma = \frac{1}{2} \left(\Sigma_{diag} + \Sigma_{low-rank} \right)$ where $\Sigma_{low-rank} = \frac{1}{K-1} \sum_{i=1}^{K} (\theta_i - \overline{\theta_i}) (\theta_i - \overline{\theta_i})^T$
- Deep ensemble can be viewed as Bayesian Model Averaging (BMA)
 - BMA: $p(y|x,D) = \int p(y|x,\theta) p(\theta|D) d\theta \ (\approx M^{-1} \sum_{m} p(y|x,\theta_m))$

Loss along eigenvectors

Superior NLL, Inferior accuracy

Better calibration to OOD

Prediction diversity

Functions from the single training trajectory is <u>very similar in prediction</u>

Subspace sampling (by square), Initialization (by different color)

• Multi-modal approach to BMA leads to better generalization : $1/M\sum_i \mathcal{N}(\theta_{SWa}^{(i)}, \mathbf{\Sigma}^{(i)})$

Fort, Stanislav, Huiyi Hu, and Balaji Lakshminarayanan. "Deep ensembles: A loss landscape perspective." *arXiv preprint arXiv:1912.02757* (2019). Wilson, Andrew G., and Pavel Izmailov. "Bayesian deep learning and a probabilistic perspective of generalization." *Advances in neural information processing systems* 33 (2020): 4697-4708.

Scalability 2: Parameter sharing

Core idea

- Sharing weights W, construct rank-1 matrix F_m for each ensemble member
 - Low memory overhead
 - $\overline{W}_m = W \otimes F_m$ where $F_m = r_m s_m^T$
- Batch computation is available
 - Low computation overhead
 - $y_i = act\left((W \otimes r_m s_m^T)x_i\right)$ where $W \in \mathbb{R}^{P \times Q}$ $\Rightarrow Y = act\left(((X \otimes R)W) \otimes S\right)$ where $R = [r_1^T, ..., r_M^T] \in \mathbb{R}^{M \times P}$ $S = [s_1^T, ..., s_M^T] \in \mathbb{R}^{M \times Q}$

Property

- Diversity is encouraged when:
 - Initializing $\{r_m, s_m\}_{m=1}^M$ to random sign vectors
 - Each ensemble is trained w/ different sub-batch

	Single	MC-drop	BatchE	NaiveE		
C10	95.31	95.72	95.94	96.30		
C100	78.32	78.89	80.32	81.02		
Accuracy						
	Single	MC-drop	BatchE	NaiveE		
C10	3.27	2.89	2.37	2.32		

Expected Calibration Error

8.99

C100

9.28

$$\mathcal{L} = -\frac{N}{B} \sum_{b=1}^{B} \mathbb{E}_{q(\mathbf{r})q(\mathbf{s})} [\log p(y_b \mid \mathbf{x}_b, \mathbf{W}, \mathbf{r}, \mathbf{s})] + \text{KL}(q(\mathbf{r}) || p(\mathbf{r})) + \text{KL}(q(\mathbf{s}) || p(\mathbf{s})) - \log p(\mathbf{W})$$

6.82

8.89

Scalability 3: Distribution of function (GP)

$$p^*(y|x) = p^*(y|x, x \in X_{IND}) \cdot p^*(x \in X_{IND}) + p^*(y|x, x \notin X_{IND}) \cdot p^*(x \notin X_{IND})$$

Overview

- "Input distance-aware" is the key to reliable uncertainty estimation
 - For safety-critical application, one can manually choose conservative $p^*(y|x, x \notin X_{IND})$ ex) Uniform distribution for classification task
 - Then, the only thing that matters is knowing $p^*(x \in X_{IND})$ = knowing (dis-)similarity b/t data
- Acquiring the input distance-aware for DNN
 - 1. make the feature extractor **input distance-preserving**Spectral normalization to weights of feature extractor
 - 2. make the output layer **feature distance-aware**Laplace approximation with Random Fourier Feature

Input distance-preserving

- Bi-Lipchitz condition for the feature extractor $h(\cdot)$
 - $L_1 ||x x'||_X \le ||h(x) h(x')||_H \le L_2 ||x x'||_X$ where $0 < L_1 < 1 < L_2$ $\iff L_1 \le ||h||_{Lip} \le L_2$
 - Lower: not to be loosely invariant to semantically meaningful change
 - Upper: not to be overly sensitive to semantically meaningless perturbation
- For the residual block mapping:
 - $r_{l+1}(x) = x + r_l(x)$ where $r_l(x) = act(W_l x + b_l)$
 - Then, $||r_l||_{Lip} \le \sigma(W_l)$ assuming $||act||_{Lip} = 1$ where $\sigma(\cdot)$ computes spectral norm
 - $h = r_{L-1} \circ \dots \circ r_1 \to ||h||_{Lip} \le \prod_{l=1}^{L-1} \sigma(W_l)$
 - Spectral Normalization : $\overline{W}_l \leftarrow c * W_l/\sigma(W_l)$ if $\sigma(W_l) > c$ so that $\sigma(\overline{W}_l) \leq c$

Feature distance-aware

- Random Fourier Features $\Phi(\cdot)$ construct kernel $k(\cdot,\cdot)$
 - $k(h, h') \approx \mathbb{E}_{W,b} \left[\Phi_{W,b}(h) \Phi_{W,b}(h')^T \right]$ where $\Phi_{W,b}(h) = \sqrt{2/D_h} \cos(Wh + b)$ $W_L^{(j)} \sim \mathcal{N}(0, I), \quad b_L^{(j)} \sim U(0, 2\pi)$
 - $p(y|x,\beta) = \mathbb{E}_{\beta} \left[\operatorname{softmax} \left(\Phi_{W,b} (h(x))^T \beta \right) \right]$ where $\beta = [\beta_1, ..., \beta_C] \in \mathbb{R}^{D_h \times C}$

- Laplace approximation to estimate $p(\beta_c|D) \propto p(y|x,\beta_c)p(\beta_c)$
 - Prior : $\beta_c \sim \mathcal{N}(0, I)$
 - Posterior : $\beta_c | x, y \sim \mathcal{N}(\hat{\beta}_c, \hat{\Sigma}_c)$
 - $\hat{\beta}_c = \arg\max_{\beta_c} \log p(y|x, \beta_c) p(\beta_c) = \arg\max_{\beta_c} \log p(D|\beta_c) \frac{1}{2} ||\beta_c||_2^2$

•
$$\hat{\Sigma}_c^{-1} = -\frac{d^2}{d\beta_c^2} \log p(y|x,\beta_c) p(\beta_c) |_{\beta_c = \hat{\beta}_c} = -\frac{d}{d\beta_c} (1 - p(D|\beta_c)) \Phi_{W,b} |_{\beta_c = \hat{\beta}_c} + I$$

$$= p(y|x,\hat{\beta}_c) (1 - p(y|x,\hat{\beta}_c)) \Phi_{W,b} \Phi_{W,b}^T + I$$

Williams, Christopher KI, and Carl Edward Rasmussen. *Gaussian processes for machine learning*. Vol. 2. No. 3. Cambridge, MA: MIT press, 2006.

Rahimi, Ali, and Benjamin Recht. "Random features for large-scale kernel machines." *Advances in neural information processing systems* 20 (2007).

Liu, Jeremiah, et al. "Simple and principled uncertainty estimation with deterministic deep learning via distance awareness." *Advances in Neural Information Processing Systems* 33 (2020): 7498-7512.

Methods	Additional Regularization	Output Layer	Ensemble Training	P	
Deterministic	-	Dense	7-	-	
MC Dropout Deep Ensemble	Dropout -	Dense Dense	Yes	Yes Yes	
MCD-GP DUQ	Dropout Gradient Penalty	GP RBF	-	Yes	
DNN-SN	Spec Norm	Dense	-	-	
DNN-GP SNGP	Spec Norm	GP GP	(= -	-	

(Blue) Positive, (Orange) Negative, (Red) OOD

Model comparison

Method	Accura Clean	acy (†) Corrupted	ECI Clean	E (↓) Corrupted	NLI Clean	Corrupted	OOD A	UPR (†) CIFAR-100	Latency (↓) (ms / example)
Deterministic	96.0 ± 0.01	72.9 ± 0.01	0.023 ± 0.002	0.153 ± 0.011	0.158 ± 0.01	1.059 ± 0.02	0.781 ± 0.01	0.835 ± 0.01	3.91
MC Dropout Deep Ensembles	96.0 ± 0.01 96.6 ± 0.01	70.0 ± 0.02 77.9 ± 0.01	0.021 ± 0.002 0.010 ± 0.001	0.116 ± 0.009 0.087 ± 0.004	0.173 ± 0.01 0.114 ± 0.01	1.152 ± 0.01 0.815 ± 0.01	$\begin{array}{ c c }\hline 0.971 \pm 0.01 \\ 0.964 \pm 0.01\end{array}$	$\begin{array}{c} 0.832 \pm 0.01 \\ 0.888 \pm 0.01 \end{array}$	27.10 38.10
MCD-GP DUQ	$\begin{array}{c} 95.5 \pm 0.02 \\ 94.7 \pm 0.02 \end{array}$	$70.0 \pm 0.01 \\ 71.6 \pm 0.02$	$ \begin{array}{c c} 0.024 \pm 0.004 \\ 0.034 \pm 0.002 \end{array} $	$\begin{array}{c} 0.100 \pm 0.007 \\ 0.183 \pm 0.011 \end{array}$	$\begin{array}{ c c c c c c }\hline 0.172 \pm 0.01 \\ 0.239 \pm 0.02\end{array}$	$\begin{array}{c} 1.157 \pm 0.01 \\ 1.348 \pm 0.01 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.863 \pm 0.01 \\ 0.854 \pm 0.01$	29.53 8.68
DNN-SN DNN-GP SNGP (Ours)	$\begin{array}{c} 96.0 \pm 0.01 \\ \underline{95.9 \pm 0.01} \\ \underline{95.9 \pm 0.01} \end{array}$	$72.5 \pm 0.01 71.7 \pm 0.01 74.6 \pm 0.01$		0.178 ± 0.013 0.175 ± 0.008 0.090 ± 0.012	$ \begin{vmatrix} 0.171 \pm 0.01 \\ 0.221 \pm 0.02 \\ 0.138 \pm 0.01 \end{vmatrix} $	$\begin{array}{c} 1.306 \pm 0.01 \\ 1.380 \pm 0.01 \\ 0.935 \pm 0.01 \end{array}$	$\begin{array}{ c c }\hline 0.974 \pm 0.01 \\ 0.976 \pm 0.01 \\ \hline \textbf{0.990} \pm \textbf{0.01} \end{array}$	$0.859 \pm 0.01 0.887 \pm 0.01 0.905 \pm 0.01$	5.20 5.58 6.25

Table 2: Results for Wide ResNet-28-10 on CIFAR-10, averaged over 10 seeds.

Conclusion

- **Deep ensemble** is generally better in terms of Acc, ECE, NLL, etc. than typical BNNs (MC-dropout, VI)
- However, scalability is a main huddle for application:
 - 1. Loss landscape

Gather checkpoints along the SGD trajectory (FGE, SWA, SWAG, Multi-SWA(G))

2. Parameter sharing

Element-wise product of rank-1 matrix to weight tensor enables efficiency

3. Distribution of function

Acquire input distance-preserving feature extractor

Acquire feature distance-aware classifier