P/ TENT COOPERATION TREATM

	TTOM the INTERNATIONAL BUREAU
PCT	To:
NOTIFICATION OF ELECTION (PCT Rule 61.2)	Commissioner US Department of Commerce United States Patent and Trademark Office, PCT 2011 South Clark Place Room CP2/5C24 Arlington, VA 22202
Date of mailing (day/month/year)	ETATS-UNIS D'AMERIQUE
02 May 2001 (02.05.01)	in its capacity as elected Office
International application No.	Applicant's or agent's file reference
PCT/JP00/05260 ·	T-412
International filing date (day/month/year)	
	Priority date (day/month/year)
04 August 2000 (04.08.00)	04 August 1999 (04.08.99)
Applicant	
SHIOTA, Tatsuki et al	
1. The designated Office is hereby notified of its election made: X In the demand filed with the International Preliminary 6 22 February 200 In a notice effecting later election filed with the International Preliminary 6 22 February 200 In a notice effecting later election filed with the International Preliminary 6 22 February 200 In a notice effecting later election filed with the International Preliminary 6 22 February 200 In a notice effecting later election filed with the International Preliminary 6 22 February 200 In a notice effecting later election filed with the International Preliminary 6 23 February 200 In a notice effecting later election filed with the International Preliminary 6 24 February 200 In a notice effecting later election filed with the International Preliminary 6 24 February 200 In a notice effecting later election filed with the International Preliminary 6 24 February 200 In a notice effecting later election filed with the International Preliminary 6 25 February 200 In a notice effecting later election filed with the International Preliminary 6 25 February 200 In a notice effecting later election filed with the International Preliminary 6 26 February 200 In a notice effecting later election filed with the International Preliminary 6 26 February 200 In a notice effecting later election filed with the International Preliminary 6 27 February 200 In a notice effecting later election filed with the International Preliminary 6 28 February 200 In a notice effecting later election filed with the International Preliminary 6 In a notice effecting later election filed with the International Preliminary 6 In a notice effecting later election filed with the International Preliminary 6 In a notice effecting later election filed with the International Preliminary 6 In a notice effecting later election filed with the International Preliminary 6 In a notice effecting later election filed with the International Preliminary 6 In	Examining Authority on: 01 (22.02.01) tional Bureau on:

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

Antonia Muller

Telephone No.: (41-22) 338.83.38

Form PCT/IB/331 (July 1992)

Facsimile No.: (41-22) 740.14.35

PCT

NOTIFICATION CONCERNING

SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

MAEDA, Sumihiro Teijin Limited, Intellectual **Property Center** 1-1, Uchisaiwaicho 2-chome Chiyoda-ku, Tokyo 100-0011 JAPON -

Date of mailing (day/month/year) 06 November 2000 (06.11.00)	·
Applicant's or agent's file reference T-412	IMPORTANT NOTIFICATION
International application No. PCT/JP00/05260	International filing date (day/month/year) 04 August 2000 (04.08.00)
International publication date (day/month/year) Not yet published	Priority date (day/month/year) 04 August 1999 (04.08.99)
Applicant TELLIN LIMITED et al.	

- The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
- An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority date

Priority application No.

Country or regional Office or PCT receiving Office

Date of receipt of priority document

04 Augu 1999 (04.08.99)

11/220864

JP

21 Sept 2000 (21.09.00)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Magda BOUACHA

Facsimile No. (41-22) 740.14.35

Telephone No. (41-22) 338.83.38

003636649

tzy 室V

7 NOV 17

Translation

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference T-412	FOR FURTHER ACTION	ACTION SeeNotificationofTransmittalofInternational Preliminary Examination Report (Form PCT/IPEA/416)				
International application No. PCT/JP00/05260	International filing date (day/n 04 August 2000 (04.0					
International Patent Classification (IPC) or national classification and IPC A61K 31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192, 429, 53, A61P 37/08, 29/00, 31/18, 11/08, 43/00 // C07D 207/14, 211/56, 401/04, 06, 12, 14						
Applicant TEIJIN LIMITED						
This international preliminary examinated and is transmitted to the applicant action.		by this Intern	ational Preliminary Examining Authority			
2. This REPORT consists of a total of	4 sheets, including	g this cover sl	heet.			
been amended and are the base Rule 70.16 and Section 607 of	sis for this report and/or sheets cof the Administrative Instruction	ontaining rec	ption, claims and/or drawings which have tifications made before this Authority (see CT).			
These annexes consist of a to	tai ofsheets.					
3. This report contains indications relating to the following items: I						
Date of submission of the demand	Date of	completion o	f this report			
22 February 2001 (22.0	02.01)	06 .	June 2001 (06.06.2001)			
Name and mailing address of the IPEA/JP	Author	ized officer				
Facsimile No.	Telepho	one No.				

I. Basis	of the report	
1. With	regard to the elements of the international application:*	
	the international application as originally filed	
	the description:	
	pages, as originally	y filed
	pages, filed with the do	emand
	pages, filed with the letter of	
	the claims:	
	os originally	v filed
	pages, as originally pages, as amended (together with any statement under Arti	
ł	pages, filed with the do	emand
	pages, filed with the letter of	
	the drawings:	. ~
	pages, as originall	
	pages, filed with the do	emanu
	pages, filed with the letter of	
🗀 '	he sequence listing part of the description:	
	pages, as originall	ly filed
	pages, filed with the de	emand
	pages, filed with the letter of	
the in	regard to the language, all the elements marked above were available or furnished to this Authority in the language in aternational application was filed, unless otherwise indicated under this item. The elements were available or furnished to this Authority in the following language where the property was a support of the property of the pr	
	the language of a translation furnished for the purposes of international search (under Rule 23.1(b)).	
	the language of publication of the international application (under Rule 48.3(b)).	
	the language of the translation furnished for the purposes of international preliminary examination (under Rule 55. or 55.3).	2 and/
3. With preli	regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international application, the international application, the international application are international application.	ational
	contained in the international application in written form.	
	filed together with the international application in computer readable form.	
	furnished subsequently to this Authority in written form.	
	furnished subsequently to this Authority in computer readable form.	
	The statement that the subsequently furnished written sequence listing does not go beyond the disclosure international application as filed has been furnished.	in the
	The statement that the information recorded in computer readable form is identical to the written sequence listing been furnished.	ng has
4.	The amendments have resulted in the cancellation of:	
_	the description, pages	
	the claims, Nos.	
	the drawings, sheets/fig	
5.	This report has been established as if (some of) the amendments had not been made, since they have been considered beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**	d to go
in th	acement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are refer is report as "originally filed" and are not annexed to this report since they do not contain amendments (Rule	rred to 70.16
1	70.17).	
Any	replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.	

V.	Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability;
	citations and explanations supporting such statement

Novelty (N)	Claims	11	YE
	Claims	1-10	NO
Inventive step (IS)	Claims	11	YE
	Claims	1-10	NO
Industrial applicability (IA)	Claims	1-11	YE
	Claims		NO

2. Citations and explanations

Documents:

- 1. WO, 99/25686, A1 (Teijin Limited), 27 May, 1999 (27.05.99)
- 2. EP, 217286, A1 (Okamoto, Shosuke), 8 April, 1987 (08.04.87)
- 3. WO, 98/50534, A1 (Smithkline Beecham Corporation), 12 November, 1998 (12.11.98)
- 4. GB, 2106108, A (John Wyeth and Brothers Limited), 7 April, 1983 (07.04.83)
- 5. WO, 97/40051, A1 (Takeda Chemical Industries, Ltd.), 30 October, 1997 (30.10.97)
- 6. "N, N'-disubstituted L-isoglutamines as Novel Cancer Chemo-therapeutic Agents," Drugs Exp. Clin. Res. (1987), Vol. 13, Suppl. 1, pages 57-60

Explanation:

Claims 1-6

The subject matters of claims 1-6 do not appear to be novel or to involve an inventive step in view of documents 1-6 cited in the ISR. Since medical use is not specified on the medicines having CCR3 antagonism described in claims 1-6, it is not possible to distinguish them as medicines from the medicines containing compounds represented by formula (1) of claim 1 of the present application.

Claims 7-10

The subject matters of claims 7-10 do not appear to be novel or to involve an inventive step in view of documents 1 and 2 cited in the ISR. Documents 1 and 2 respectively disclose remedies or preventives for various allergic disease and inflammatory intestinal troubles, which contain the compounds represented by formula (1) described in claim 1 of the present application.

Claim 11

The subject matter of claim 11 appears to be novel and to involve an inventive step in view of documents 1-6 cited in the ISR. None of documents 1-6 describes that compounds represented by formula (1) of claim 1 of the present application are useful in treating or preventing AIDS and this feature could not have been easily conceived by a person skilled in the art based on the description of these documents.

VI. Certain documents cited 1. Certain published documents (Rule 70.10) Priority date (valid claim) Application No. Filing date Publication date (day/month/year) Patent No. (day/month/year) (day/month/year) 11 November 1999 (11.11.1999) 20 November 1998 (20.11.1998) WO,00/31032,A1 EX 02 June 2000 (02.06.2000) 2. Non-written disclosures (Rule 70.9) Date of written disclosure referring to non-written disclosure Date of non-written disclosure Kind of non-written disclosure (day/month/year) (day/month/year)

特許協力条約

PCT

国際予備審査報告

(法第12条、法施行規則第56条) 【PCT36条及びPCT規則70] REC'D 2 2 JUN 2001

WIPO PCT

出願人又は代理人 の書類記号 T-412	今後の手続きについては、国際予備審査報 IPEA/41	吸告の送付通知(様式PCT/ 16)を参照すること。
国際出願番号 PCT/JP00/05260	国際出願日 (日.月.年) 04.08.00	優先日 (日.月.年) 04.08.99
	31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 403, 29/00, 31/18, 11/08, 43/00 // C07D207/14,	
出願人(氏名又は名称)	帝人株式会社	,
2. この国際予備審査報告は、この表記 この国際予備審査報告には、同 査機関に対してした訂正を含さてアスカー (PCT規則70.16及びPCT	附属書類、つまり補正されて、この報告の基 む明細書、請求の範囲及び/又は図面も添作	ジからなる。 基礎とされた及び/又はこの国際予備審
IV 開の単一性の欠如		
国際予備審査の請求書を受理した日 22.02.01	国際予備審査報告を任	作成した日 0 6 . 0 6 . 0 1
名称及びあて先 日本国特許庁(IPEA/JP 郵便番号100-8915 東京都千代田区霞が関三丁目4	番3号 榎本 佳予子	のある職員) 4P 9638 印 581-1101 内線 3492

Ι.	国際予備審査報	報告の基礎					
1.	1. この国際予備審査報告は下記の出願書類に基づいて作成された。(法第6条(PCT14条)の規定に基づく命令に 応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。 PCT規則70.16,70.17)						
	x 出願時の国際	祭出顧書類					
	明細書 明細書 明細書	第 第 第	ページ、 ページ、 ページ、 ページ、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの			
!	請求の範囲 請求の範囲 請求の範囲	第 第	項、 項、 	出願時に提出されたもの PCT19条の規定に基づき補正されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの			
	請求の範囲 図面 図面 図面	第	ページ/図、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの			
	明細書の配	列表の部分 第 列表の部分 第 列表の部分 第	ページ、 ページ、 	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 			
2.	上記の書類は 国際調査 PCT規	、下記の言語である ≨のために提出された P 現則48.3(b)にいう国際4	語であ CT規則23.1(b)にい 公開の言語	• • •			
3.	_			おり、次の配列表に基づき国際予備審査報告を行った。			
 □ この国際出願に含まれる書面による配列表 □ この国際出願と共に提出されたフレキシブルディスクによる配列表 □ 出願後に、この国際予備審査(または調査)機関に提出された書面による配列表 □ 出願後に、この国際予備審査(または調査)機関に提出されたフレキシブルディスクによる配列表 □ 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった □ 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。 							
4.	補正により、 明細書 請求の範囲	下記の書類が削除される 第 第 図面の第	ページ 項	ジ/図			
5.	□ 図面 図面の第 ヘーシノ図 5. □ この国際予備審査報告は、補充欄に示したように、補正が出願時における開示の範囲を越えてされたものと認められるので、その補正がされなかったものとして作成した。(PCT規則70.2(c) この補正を含む差し替え用紙は上記1.における判断の際に考慮しなければならず、本報告に添付する。)						

国際出願番号	РСТ	/ J P	00/	0 5	26	0

V. 新規性、進歩性又は産業上の利用 文献及び説明	可能性についての法第12条(PC [*] 	Γ35条(2)) に定める見解、 	それを嬰付ける
1. 見解			
新規性(N)	請求の範囲	1 1 1 - 1 0	有 無
進歩性(IS)	請求の範囲 請求の範囲	1 1 1 - 1 0	
産業上の利用可能性(IA)	請求の範囲 請求の範囲	1-11	有 無

2. 文献及び説明 (PCT規則70.7)

(対献)

- 1. WO, 99/25686, A1 (TEIJIN LIMITED) 27.5月.1999(27.05.99)
- 2. EP, 217286, A1 (OKAMOTO SHOSUKE) 8.4月.1987(08.04.87)
- 3. WO, 98/50534, A1 (SMITHKLINE BEECHAM CORPORATION) 12.11月.1998(12.11.98)
- 4. GB, 2106108, A (JOHN WYETH AND BROTHER LIMITED) 7.4月.1983(07.04.83)
- 5. WO, 97/40051, A1 (TAKEDA CHEMICAL INDUSTRIES, LTD.) 30.10月.1997(30.10.97)
- 6. Drugs Exp. Clin. Res. (1987), Vol. 13, Suppl. 1, p. 57-60

(説明)

・請求の範囲1-6について

請求の範囲1-6に記載された発明は、国際調査報告で引用された文献1-6から新規性及び進歩性を有しない。請求の範囲1-6に記載されたCCR3拮抗作用を有する薬剤は、医薬用途が特定されるものではないから、本願の請求の範囲1に記載の式(I) の化合物を含有する、文献1-6に記載された薬剤と薬剤として区別することができない。

・請求の範囲7-10について

請求の範囲7-10に記載された発明は、国際調査報告で引用された文献1、2から新規性及び進歩性を有しない。文献1及び2には、本願の請求の範囲1に記載の式(I)の化合物を含有する、各種アレルギー性疾患や炎症性腸疾患の治療薬もしくは予防薬がそれぞれ開示されている。

・請求の範囲11について

請求の範囲11に記載された発明は、国際調査報告で引用された文献1-6に対して新規性及び進歩性を有する。文献1-6のいずれにも、本願の請求の範囲1に記載の式(I)の化合物についてエイズ治療薬の治療もしくは予防に有用であることは記載されておらず、しかもその点は、これらの文献の記載から当業者といえども容易に想到し得ないものである。

This Page Blank (uspto)

上文書(PC?	Γ規則70.10)			
}	公知日			日(有効な優先権の主 (日.月.年)
2, A1 EX	02. 06. 00	11. 11.	99	20. 11. 98
	 C. T規則70, 9)			
	書面による開示以		書面による開示。 書面 <i>の</i>	以外の開示に言及して 0日付(日.月.年)
	·			
	₹ ₹ 2, A1 EX	会 (日.月.年 2,A1 EX 02.06.00 期示の種類 書面による開示以 (日.月.	会 (日、月、年) 出願日 (日、月、年) (日、月、 2, A1 EX 02.06.00 11.11. 外の開示 (PCT規則70.9) 関示の種類 書面による開示以外の開示の日付 (日、月、年)	会 公知日 出願日 優先日子 (日.月.年) 李面による開示による開示による開示による開示による開示による開示による開示による開示

特許協力条約

PCT

国際調査報告

(法8条、法施行規則第40、41条) [PCT18条、PCT規則43、44]

一出願人又は代理人 の書類記号 T-412	及び下記5を参照すること。				
国際出願番号 PCT/JP00/05260	国際出願日 (日.月.年) 04.0	8.00	優先日 (日.月.年)	04.08.99	
出願人(氏名又は名称)	帝人株式会社				
国際調査機関が作成したこの国際調金にの写しは国際事務局にも送付された。		(PCT18条 、	€)の規定に従い	N出願人に送付する。	
この国際調査報告は、全部で 3	ページである。				
この調査報告に引用された先行	支術文献の写しも添付され	ている。			
1. 国際調査報告の基礎 a. 言語は、下記に示す場合を除 この国際調査機関に提出さ				ずった。	
b. この国際出願は、ヌクレオチ この国際出願に含まれる書	国による配列及		列表に基づき国	閣僚調査を行った。	
<u> </u>	れたフレキシブルディスク				
出願後に、この国際調査機	関に提出された書面による 関に提出されたフレキシブ		よる配列表		
<u> </u>	る配列表が出願時における			る事項を含まない旨の陳述	
■ 書面による配列表に記載し 書の提出があった。	た配列とフレキシブルディ	スクによる配 [?]	列表に記録した	配列が同一である旨の陳述	
2. 請求の範囲の一部の調査	ができない(第 I 欄参照)。			•	
3. ② 発明の単一性が欠如して	ハる(第Ⅱ欄参照)。				
4. 発明の名称は 🗓 出	類人が提出したものを承認。	する。		\$,	
	こ示すように国際調査機関	が作成した。		•	
- 5. 要約は x 出	願人が提出したものを承認・	 する。	•		
国	Ⅲ欄に示されているように、 際調査機関が作成した。出 国際調査機関に意見を提出	類人は、この国	国際調査報告の発	見則38.2(b)) の規定により €送の日から1カ月以内にこ	
6. 要約書とともに公表される図は 第 図とする。 □ 出		,	x な	L	
□ 曲	願人は図を示さなかった。				
本	図は発明の特徴を一層よく	表している。			

A. 発明の属する分野の分類(国際特許分類(IPC)).

Int. C1⁷ A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192, 429, 53, A61P37/08, 29/00, 31/18, 11/08, 43/00 // C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1⁷ A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192, 429, 53, A61P37/08, 29/00, 31/18, 11/08, 43/00 // C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

REGISTRY (STN), CA (STN), CAOLD (STN), CAPLUS (STN)

	C. 関連すると認められる文献			
Ì	引用文献の	. 44.	関連する	
1	カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号	
	Х	WO, 99/25686, A1 (TEIJIN LIMITED) 27.5月.1999(27.05.99)	1-10	
	Α	&EP, 1030840, A1 &AU, 9913741, A &NO, 2000002486, A	11	
	X A	EP, 217286, A1 (OKAMOTO SHOSUKE) 8.4月.1987(08.04.87) 化合物No.42参照 &JP, 63-022061, A &US, 4895842, A &AU, 8663051, A &CA, 1297633, A	1, 5, 7-10 2-4, 6, 11	
	X A	WO, 98/50534, A1 (SMITHKLINE BEECHAM CORPORATION) 12.11月.1998(12.11.98) &EP, 991753, A1 &AU, 9872885, A &BR, 9808502, A &ZA, 9803843, A	1, 2, 5 3, 4, 6-11	

x C欄の続きにも文献が列挙されている。

| パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

This Page Blank (uspto)

	国際調査
C(続き)	関連すると認められる文
引用文献の	

C (続き)	関連すると認められる文献	
引用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
<u>カテゴリー*</u> X A	GB, 2106108, A (JOHN WYETH AND BROTHER LIMITED) 7. 4月. 1983(07.04.83) &US, 4443461, A	1, 5 2-4, 6-11
X A	WO, 97/40051, A1 (TAKEDA CHEMICAL INDUSTRIES, LTD.) 30.10月.1997(30.10.97) &JP, 10-226689, A &EP, 915888, A1 &CA, 2251625, A &AU, 9724048, A &ZA, 9703493, A &CN, 1223659, A	1, 5 2-4, 6-11
X A_	KHALID, M. et al., "N, N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res. (1987), Vol. 13, Suppl. 1, p. 57-60	1, 5 2-4, 6-11
PX PA	WO, 00/31032, A1 (F. HOFFMANN-LA ROCHE AG) 2.6月.2000(02.06.00) &DE, 19955794, A &GB, 2343893, A &FR, 2786185, A	1, 2, 7–11 3–6
,		
		(Table)
	(1) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
-		
·		
		` !
·		

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年2月15日(15.02.2001)

PCT

(10) 国際公開番号 WO 01/10439 A1

(51) 国際特許分類7: A61K 31/40, 31/4025, 31/445, 31/4468, 31/4525, 31/4535, 31/454, 31/422, 31/404, 31/4155, 31/4245, 31/5377, 31/4545, 31/4709, 31/4184, 31/427, 31/506, 31/433, 31/423, 31/4192, 31/429, 31/53, A61P 37/08, 29/00, 31/18, 11/08, 43/00 // C07D 207/14, 211/56, 211/58, 211/26, 401/04, 401/06, 401/12, 401/14, 403/06, 403/12, 405/06, 405/12, 405/14, 409/12, 409/14, 413/06, 413/14, 417/06, 487/04, 495/06, 495/04, 513/04

(21) 国際出願番号:

PCT/JP00/05260

(22) 国際出願日:

2000年8月4日 (04.08.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/220864

1999 年8 月4 日 (04.08.1999)

- (71) 出願人 (米国を除く全ての指定国について): 帝人株 式会社 (TEIJIN LIMITED) [JP/JP]; 〒541-0054 大阪府 大阪市中央区南本町1丁目6番7号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 塩田辰樹 (SH-IOTA. Tatsuki) [JP/JP]; 〒191-0065 東京都日野市旭 が丘4丁目3番2号 帝人株式会社 東京研究センター 内 Tokyo (JP). 須藤正樹 (SUDOH_Masaki) [JP/JP]; 〒 475-0837 愛知県半田市有楽町7丁目106-1 ユートピ アタウン112D Aichi (JP). 横山朋典 (YOKOYAMA,

Tomonori) [JP/JP]. 室賀由美子 (MUROGA, Yumiko) [JP/JP]. 上村 孝 (KAMIMURA, Takashi) [JP/JP]. 中 西顕伸 (NAKANISHI, Akinobu) [JP/JP]; 〒191-0065 東 京都日野市旭が丘4丁目3番2号 帝人株式会社 東京研 究センター内 Tokyo (JP).

- (74) 代理人: 前田純博(MAEDA, Sumihiro); 〒100-0011 東 京都千代田区内幸町2丁目1番1号 帝人株式会社 知的 財産センター内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL. IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: CYCLIC AMINE CCR3 ANTAGONISTS

(54) 発明の名称: 環状アミンCCR3拮抗剤

(57) 要約:

下記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分として含有する医薬。喘息、アレルギー性鼻炎などのCCR3が関与する疾患を治療、予防する作用を有する。

$$\begin{array}{c}
R^{1} \\
 \longrightarrow \\
 (CH_{2})_{j} - N \\
 (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
 O \\
 (CH_{2})_{n} - N - C \\
 (CH_{2})_{p} - C \\
 (CH_{2})_{p}
\end{array}$$

$$\begin{array}{c}
 R^{4} \\
 (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

明細書

環状アミンCCR3拮抗剤

5 技術分野

本発明は、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性腸症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病など、好酸球、好塩基球、活性化丁細胞などの増加、組織への浸潤が病気の進行、維持に主要な役割を演じている疾患、またはHIV(ヒト免疫不全ウイルス)の感染に起因するエイズ(AIDS:後天性免疫不全症候群)に対する治療薬および/または予防薬として効果が期待できるCCR3拮抗剤に関する。

15 背景技術

20

25

30

近年、気管支喘息などのアレルギー性疾患の本質的な病態は慢性炎症であるという概念が確立され、なかでも好酸球の炎症局所への集積がその大きな特徴の一つとしてとらえられている(例えば、Busse, W. W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; 藤澤隆夫,現代医療,1999, 31, 1297など参照)。例えば、サルの喘息モデルにおいて抗接着分子(I C A M - 1)抗体を投与することにより、好酸球の集積が抑えられ、遅発型の喘息症状発現が抑制されることからもアレルギー性疾患における好酸球の重要性が強く示唆されている(Wegner, C. D. et al., Science, 1990, 247, 456)。

この好酸球の集積/遊走を引き起こす特異的走化因子としてエオタキシンが同定された(例えば、Jose, P. J., et al., J. Exp. Med., 1994, 179, 881; Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449; Ponath, P. D. et al., J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725など参照)。さらに、エオタキシンは好酸球上に発現しているCCR3レセプターに結合し作用を発現することが解明され、また、エオタキシン-2、RANTES(regulated upon activation normal T-cell expressed and secretedの略称)、MCP-2(monocyte chemoattractant protein-2の略称)、MCP-3(

25

30

monocyte chemoattractant protein—3の略称)、MCP—4 (monocyte chemoatt ractant protein—4の略称) などの走化性因子もエオタキシンよりも作用強度は弱いもののCCR3を介してエオタキシンと同様の作用を示し得ることが知られている (例えば、Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty, B. L. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. et al., J. Exp. Med., 1996, 183, 2437; Hiath, H. et al., J. Clin. Invest., 1997, 99, 178; Patel, V. P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997など参照)。

エオタキシンの好酸球への作用は、遊走惹起のみでなく、接着分子受容体 (CD 11b) の発現増強 (例えば、Tenscher, K. et al., Blood, 1996, 88, 3195など参照)、活性酸素の産生促進 (例えば、Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919など参照)、EDN (eosinophil-derived neurotoxineの略称)の放出促進 (El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55参照)など、好酸球の活性化に関する作用も報告されている。また、エオタキシンは骨髄からの好酸球およびその前駆細胞の血中への遊離を促進する作用を有することも報告されている (例えば、Palframan, R. T. et al., Blood, 1998, 91, 2240など参照)。

エオタキシンおよびCCR3が気管支喘息などのアレルギー性疾患において重要な役割を演じていることが、多くの報告により示されている。例えば、マウス喘息モデルにおいて抗エオタキシン抗体により好酸球浸潤が抑制されること(Gonzalo, J.-A. et al., J. Clin. Invest., 1996, 98, 2332参照)、マウス皮膚アレルギーモデルにおいて抗エオタキシン抗血清により好酸球浸潤が抑制されること(Teixeir a, M. M. et al., J. Clin. Invest., 1997, 100, 1657)、マウスモデルにおいて抗エオタキシン抗体が肺肉芽腫の形成を抑制すること(Ruth, J. H. et al., J. Immunol., 1998, 161, 4276参照)、エオタキシン遺伝子欠損マウスを用いた喘息モデルおよび間質性角膜炎モデルにおいて好酸球の浸潤が抑制されること(Rothenber g, M. E. et al., J. Exp. Med., 1997, 185, 785参照)、喘息患者の気管支では健常者に比べエオタキシンおよびCCR3の発現が、遺伝子レベル、蛋白レベルともに亢進していること(Ying, S. et al., Eur. J. Immunol., 1997, 27, 3507参照)、慢性副鼻腔炎患者の鼻上皮下組織ではエオタキシンの発現が亢進していること(Am. J. Respir. Cell Mol. Biol., 1997, 17, 683参照)などが報告されている。

WO 01/10439 PCT/JP00/05260

3

また、炎症性大腸疾患である潰瘍性大腸炎およびクローン病の炎症部位において、エオタキシンが多く発現していることが報告されていることから(Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449参照)、これらの疾患においてもエオタキシンが重要な役割を担っていることがわかる。

5 これらのデータから、エオタキシンは、CCR3を介して好酸球を病変部位に集積、活性化することにより、好酸球が病変の進展に深く関わっていると想定され得る疾患、例えば、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性 10 腸症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病などの発症、進展、維持に深く関与していることが強く示唆されている。

さらに、CCR3レセプターは好酸球のみならず好塩基球、Th2リンパ球上にも発現しており、エオタキシンによりこれらの細胞の細胞内カルシウムイオン濃度上昇および細胞遊走が惹起されることが報告されていることから、エオタキシンおよびCCR3は、これらの細胞を集積させ、活性化することによってもアレルギー性疾患など、これらの細胞が関与する疾患の発症、進展、維持に関わっていると考えられる(例えば、Sallusto, F. et al., Science, 1997, 277, 2005; Gerber, B. O. et al., Current Biol., 1997, 7, 836; Sallusto, F. et al., J. Exp. Med., 1998, 187, 875; Uguccioni, M. et al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Biophys. Res. Commun., 1997, 231, 365など参照)。

15

20

25

したがって、エオタキシンのCCR3に対する結合を阻害する化合物、すなわち、CCR3拮抗剤は、エオタキシンに代表されるCCR3のリガンドの標的細胞への作用を阻害することにより、アレルギー性疾患、炎症性腸疾患などの疾患の治療薬および/または予防薬として有用であるといえるが、そのような作用を有する薬剤は現在知られてない。

また、HIV-1 (ヒト免疫不全ウイルス-1)が宿主細胞に感染する際にCCR3を利用することも報告されていることから、CCR3拮抗剤はHIVウイルス 30 感染に起因するエイズ (AIDS:後天性免疫不全症候群)の治療薬もしくは予防 薬としても有用であると考えられる (例えば、et al., Choe, H. et al., Cell, 19 96, 85, 1135; Doranz, B. J. et al., Cell, 1996, 85, 1149参照)。

最近、キサンテンー 9 ーカルボキサミド誘導体(W09804554参照)、ピペラジンまたはピペリジン誘導体(EP903349; W00029377; W00031033; W00035449; W00035451; W00035452; W00035453; W00035454; W00035877参照)、ピロリジン誘導体(W00031032参照)、フェニルアラニン誘導体(W09955324; W09955330; W00004003; W00027800; W00027835; W00027843参照)、およびその他の低分子化合物(W09802151参照)が、CCR3レセプターに対する拮抗活性を有することが報告されている。しかしながら、これらの化合物は、本発明で用いる化合物とは異なる。また、本発明で用いる化合物は、W09925686に記載されている化合物と同のものであるが、これらの化合物がCCR3レセプターに対する拮抗活性を有することは知られていない。

発明の開示

5

10

したがって、本発明の目的は、エオタキシンなどのCCR3のリガンドが標的細 15 胞上のCCR3に結合することを阻害する活性を有する低分子化合物を提供するこ とである。

本発明のさらなる目的は、CCR3拮抗剤を用いて、エオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することが病因の一つであるような疾患の治療法および/または予防法を提供することである。

20 本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン誘導体、その薬学的に許容し得る $C_1 \sim C_6$ アルキル付加体、または薬学的に許容され得る酸付加体が、エオタキシンなどのCCR3のリガンドの標的細胞に対する結合を阻害する活性を有することを発見し、さらにはそれらの化合物がCCR3が関与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、さらに研究を進めた結果、本発明を完成した。

すなわち、本発明によれば、下記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 - C_6$ アルキル付加体を有効成分とする、CCR3拮抗作用を有する薬剤が提供される。

10

20

25

「式中、R¹はフェニル基、C₃-C₃シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1~3個有する芳香族複素環基を 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1~3個有する 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフ ェニル基、C₃~C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ ・イル基、C₁-C₆アルキル基、C₃-C₈シクロアルキル基、C₂-C₆アルケニル基 、 $C_1 - C_5$ アルコキシ基、 $C_1 - C_5$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 C_2 -C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C2 -C,アルカノイル基、C,-C,アルコキカルボニル基、C,-C,アルカノイルオ キシ基、C,-C,アルカノイルアミノ基、C,-C, N-アルキルカルバモイル基、 $C_4 - C_6 N - シクロアルキルカルバモイル基、<math>C_1 - C_6 アルキルスルホニル基、C$ 3-C。(アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ($C_1 - C_6$ アルキル)アミノ基、もしくは、ジ($C_1 - C_6$ アルキル)アミノ基で置換されていてもよく、これらのフェニル基、C3-C8シク ロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲ ン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、С1-С6アルキル基、 もしくはC,-C。アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 $C_1 - C_6$ アルキル基、 $C_2 - C_7$ アルコキシカルボニル基、ヒ 30 ドロキシ基、またはフェニル基を表し、 R^2 における $C_1 - C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルキル基、もしくは

15

20

 $C_1 - C_6$ アルコキシ基によって置換されていてもよい。ただし、j = 0 のときは R^2 はヒドロキシ基ではない。

jは0-2の整数を表す。

kは0-2の整数を表す。

5 mは2-4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または C_1-C_6 アルキル基を表し、 R^4 および R^5 における C_1-C_6 アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 C_3-C_8 シクロアルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、もしくは(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、 R^4 および R^5 は、いっしょになって3-6員環状炭化水

25 素を形成していてもよい。

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ 30 R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 と

30

いっしょになってC2-C5アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、3-2 エニルウレイド基、2-2 アルカルボニ

- C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、もしくはビス(C_1-C_6 アルキルスルホニル)アミノ基により置換されていてもよく、これらのフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、
- 25 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によって置換されていてもよい。]

さらに、本発明によれば、上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬が提供される。

ここに、上記式(I)で表される化合物は、エオタキシンなどのCCR3レセプ

ターのリガンドが標的細胞に結合することを阻害する活性、およびエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する活性を有する。すなわち、上記式(I)で表される化合物はCCR3拮抗剤である。

5 発明を実施するための最良の形態

上記式(I)において、R¹はフェニル基、C₃-C₈シクロアルキル基、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基を表し、上記R¹におけるフェニル基または芳香族複素環基は、ベン ゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子 10 を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに 上記R¹におけるフェニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または 縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキ シル基、カルバモイル基、C1-C6アルキル基、C3-C8シクロアルキル基、C2 $-C_6$ アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_3-C_5 15 アルキレン基、C₂-C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フ エニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベン ゾイルアミノ基、C₂-C₁アルカノイル基、C₂-C₁アルコキカルボニル基、C。 $-C_1$ アルカノイルオキシ基、 C_2 - C_3 アルカノイルアミノ基、 C_3 - C_3 N-アル キルカルバモイル基、 $C_4 - C_9 N - シクロアルキルカルバモイル基、<math>C_1 - C_6 アル$ キルスルホニル基、C3-C8(アルコキシカルボニル)メチル基、N-フェニルカ 20 ルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1-ピロリジ ニルカルボニル基、式:-NH(C=O)O-で表される2価基、式:-NH(C =S) O-で表される2価基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、も しくはジ(C」-C。アルキル)アミノ基で置換されていてもよい。

 R^1 における「 C_3 - C_8 シクロアルキル基」とは、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基などの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、シクロペンチル基、およびシクロヘキシル基などが挙げられる。

R¹における、「ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原 30 子を1-3個有する芳香族複素環基」とは、例えば、チエニル、フリル、ピロリル 、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イ

30

ソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル(フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

5 R¹における「縮合環」とは、上記フェニル基または芳香族複素環基が、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としては、ナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンゾフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

なかでもR¹は、フェニル基、チエニル基、ピラゾリル基、イソオキサゾリル基、ベンゾフラニル基、またはインドリル基である場合が特に好ましい。

 R^{1} におけるフェニル基、 $C_{3}-C_{8}$ シクロアルキル基、芳香族複素環基、または縮 15 合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、 ヨウ素原子などを意味する。

 R^1 の置換基としての「 C_1 - C_6 アルキル基」とは、例えばメチル、エチル、n- プロピル、n-ブチル、n-ペンチル、n-ペンチル、n-ペプチル、n-ペンチル、

 R^1 の置換基としての「 C_3-C_8 シクロアルキル基」とは、前記 R^1 における「 C_3-C_8 シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

 R^1 の置換基としての「 C_2-C_6 アルケニル基」とは、例えば、ビニル、アリル、 $1-\mathcal{I}$ ロペニル、 $2-\mathcal{I}$ テニル、 $3-\mathcal{I}$ テニル、 $2-\mathcal{I}$ チルー $1-\mathcal{I}$ ロペニル、 $4-\mathcal{I}$ ーペンテニル、 $5-\mathcal{I}$ ーペンテニル、 $4-\mathcal{I}$ を意味し、その好適な具体例としては、ビニル基 および $2-\mathcal{I}$ および $2-\mathcal{I}$ ポープロペニル基などが挙げられる。

15

20

 R^1 の置換基としての「 C_1-C_6 アルコキシ基」とは、前記 C_1-C_6 アルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、メトキシ基、エトキシ基などが挙げられる。

 R^1 の置換基としての「 C_1 - C_6 アルキルチオ基」とは、前記 C_1 - C_6 アルキル 基とチオ基とからなる基を意味し、その好適な具体例としては、メチルチオ基、エチルチオ基などが挙げられる。

 R^1 の置換基としての「 C_3-C_5 アルキレン基」とは、例えば、トリメチレン、テトラメチレン、ペンタメチレン、および1-メチルトリメチレン基などの C_3-C_5 の2価のアルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

 R^1 の置換基としての「 C_2-C_4 アルキレンオキシ基」とは、例えば、エチレンオキシ($-CH_2CH_2O-$)、トリメチレンオキシ($-CH_2CH_2CH_2O-$)、テトラメチレンオキシ($-CH_2CH_2CH_2CH_2O-$)、1,1-ジメチルエチレンオキシ($-CH_2C$ (CH_3) $_2O-$)基などの、 C_2-C_4 の2価アルキレン基とオキシ基とからなる基を意味し、その好適な具体例としては、エチレンオキシ基、トリメチレンオキシ基などが挙げられる。

 R^1 の置換基としての「 C_1 - C_3 アルキレンジオキシ基」とは、例えばメチレンジオキシ($-OCH_2O-$)、エチレンジオキシ($-OCH_2CH_2O-$)、トリメチレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH$ (CH_3)O-)基などの C_1-C_3 の2価アルキレン基と2個のオキシ基とからなる基を意味し、その好適な具体例としては、メチレンジオキシ基、エチレンジオキシ基などが挙げられる。

 R^1 の置換基としての「 C_2 - C_7 アルカノイル基」とは、例えば、アセチル、プロパノイル、ブタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリル、3-メチルブタノイル、2-メチルブタノイル、ピバロイル、4-メチルペンタノイル、3, 3-ジメチルブタノイル、5-メチルヘキサノイル基などの C_2 - C_7 の直鎖または分枝状のアルカノイル基を意味し、その好適な具体例としては、アセチル基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルコキシカルボニル基」とは、前記 C_1-C_6 30 アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。

25

30

 R^1 の置換基としての「 C_2-C_7 アルカノイルオキシ基」とは、前記 C_2-C_7 アルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシキ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルアミノ基」とは、前記 C_2-C_7 ア ルカノイル基とアミノ基とからなる基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルキルカルバモイル基」とは、前記 C_1-C_6 アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 C_4-C_9 N-シクロアルキルカルバモイル基」とは、前記 C_3-C_8 シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-シクロペンチルカルバモイル基、N-シクロヘキシルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 C_1-C_6 アルキルスルホニル基」とは、前記 C_1-C_6 アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

 R^1 の置換基としての「 C_3-C_8 (アルコキシカルボニル)メチル基」とは、前記 C_2-C_7 アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具体例としては、メトキシカルボニルメチル基、エトキシカルボニルメチル基などが 挙げられる。

 R^1 の置換基としての「モノ($C_1 - C_6$ アルキル)アミノ基」とは、前記 $C_1 - C_6$ アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

 R^1 の置換基としての「ジ(C_1-C_6 アルキル)アミノ基」とは、同一または異なった2つの前記 C_1-C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチル- N- メチルアミノ基などが挙げられる。

上記の中でも、 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素 環基、または縮合環の置換基としては、ハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ 基、 $C_3 - C_5$ アルキレン基、 $C_2 - C_4$ アルキレンオキシ基、メチレンジオキシ基、

10

15

20

25

フェニル基、N-フェニルカルバモイル基、アミノ基、およびジ(C_1 - C_6 アルキル)アミノ基を特に好ましい具体例として挙げることができる。特に好ましくは、ハロゲン原子、ヒドロキシ基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキルチオ基、メチレンジオキシ基、およびN-フェニルカルバモイル基を挙げることができる。

さらに、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ここで、ハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ基を好適な具体例として挙げることができる。

上記式(I)において、 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

 R^2 における $C_1 - C_6$ アルキル基および $C_2 - C_7$ アルコキシカルボニル基は、 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^2 における C_1-C_6 アルキル基またはフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

なかでもR²は、水素原子を表す場合が特に好ましい。

上記式 (I) において、j は 0-2 の整数を表す。j は 0 である場合が特に好ましい。

30 上記式(I)において、kは0-2の整数を表し、mは2-4の整数を表す。なかでもkが0でmが3である場合の2-置換ピロリジン、kが1でmが2である場

20

合の3-置換ピロリジン、kが1でmが3である場合の3-置換ピペリジン、kが2でmが2である場合の4-置換ピペリジン、またはkが1でmが4である場合の3-置換ヘキサヒドロアゼピンが好ましい。特に好ましくは、kが1でmが2である場合の3-置換ピロリジンおよびkが2でmが2である場合の4-置換ピペリジンを挙げることができる。

上記式(I)において、nは0または1を表す。

特に、kが1でmが2でnが0である場合の3-7ミドピロリジン、およびkが2でmが2でnが1である場合の4-(アミドメチル)ピペリジンを特に好ましい例として挙げることができる。

上記式(I)において、 R^3 は水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

 R^3 における C_1-C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、その好適な具体例としては、メチル基、エチル基、およびプロピル基が挙げられる。

 R^3 における $C_1 - C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、および $C_1 - C_6$ アルコキシ基は、それぞれ、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

なかでも、 R^3 は水素原子または無置換の C_1 - C_6 アルキル基である場合が特に好ましい。

上記式(I)において、 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または C_1-C_6 アルキル基を表し、 R^4 および R^5 における C_1-C_6 アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 C_3-C_8 シクロアルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_1-C_6 アルキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、

15

ベンジルオキシ基、ベンジルオキシカルボニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、 R^4 および R^5 は、いっしょになって3-6 員環状炭化水素を形成していてもよい。

 R^4 および R^5 における C_1 $-C_6$ アルキル基は、前記 R^1 におけるフェニル基、 C_3 $-C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における $C_1 - C_6$ アルキル基の置換基としてのハロゲン原子、 C_1 $- C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_2 - C_7$ アルカノイル基、 $C_2 - C_7$ アルカノイル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ アルカルバモイル基、 $C_1 - C_6$ アルキルスルホニル基、モノ($C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における $C_1 - C_6$ アルキル基の置換基としての $C_3 - C_8$ シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基は、前記 R^1 において定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基 としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前 記 R^1 においてフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮 合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体 例として挙げることができる。

R⁴、R⁵およびその隣接炭素原子とからなる「3-6員環状炭化水素」の好適な 30 具体例としては、シクロプロパン、シクロブタン、シクロペンタン、およびシクロ ヘキサンなどが挙げられる。なかでも、水素原子とC₁-C₆アルキル基を、R⁴とR

20

25

5の特に好ましい例として挙げることができる。

上記式(I) において、pは0または1を表し、qは0または1を表す。pとqがともに0である場合が特に好ましい。

上記式(I)において、Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-$ CO-、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7 ^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH- で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

10 ここで、 $-CO-はカルボニル基を、<math>-SO_2-はスルホニル基を、-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば<math>-NR^7$ -CO-および-NH-CO-NH-で表される基などが挙げられる。

 R^7 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^5 と R^7 とからなる「 C_2 - C_5 アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1-メチルトリメチレン、ペンタメチレンなどの C_2 - C_5 の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

上記式(I)において、 R^6 はフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、

30 トリフルオロメチル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 C_1

 $-C_6$ アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイル アミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモイル基、N, N-ジ(C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、ベンジルアミノ基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、もしくはピス(C_1-C_6 アルキルスルホニル)アミノ基ノ基により置換されていてもよい。

 R^6 における C_3 - C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基、および、縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^6 における「 C_3 - C_8 シクロアルケニル基」とは、例えば、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、およびシクロオクテニル 基など環状アルケニル基を意味し、その好適な具体例としては、1-シクロペンテニル基、1-シクロヘキセニル基などが挙げられる。なかでも、 R^6 としては、フェニル基、フリル基、チエニル基、インドリル基、ベンゾフラザニル基を特に好まし い例として挙げることができる。

 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_1 - C_6$ アルキレンジオキシ基、 $C_2 - C_7$ アルカノイル基、 $C_2 - C_7$ アルカノイルオキシカルボニル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ アルカルバモイル基、 $C_1 - C_6$ アルキルスルホニル基、モノ($C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^6 の置換基としての $C_3 - C_8$ シクロアルキル基は、前記 R^1 における $C_3 - C_8$ シ

を挙げることができる。

5

10

15

クロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^6 の置換基としての「N, N-ジ(C_1-C_6 アルキル)スルファモイル基」とは、同一または異なった2つの前記 C_1-C_6 アルキル基によって置換されたスルファモイル基を意味し、その好適な具体例としては、例えばN, N-ジメチルスルファモイル基、N, N-ジエチルスルファモイル基、N-エチル-N-メチルスルファモイル基などが挙げられる。

 R^6 の置換基としての「 C_2-C_7 (アルコキシカルボニル)アミノ基」とは、前記 C_2-C_7 アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具体例としては、例えばメトキシカルボニルアミノ基、エトキシカルボニルアミノ基 などを挙げることができる。

 R^6 の置換基としての「 C_1-C_6 (アルキルスルホニル)アミノ基」とは、前記 C_1-C_6 アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては、(メチルスルホニル)アミノ基などを挙げることができる。

 R^6 の置換基としての「ビス(C_1-C_6 アルキルスルホニル)アミノ基」とは、同 20 一または異なった 2 つの前記 C_1-C_6 アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基などを挙げることができる。

なかでも、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、

25 ハロゲン原子、メルカプト基、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニル基、ベンジルオキシ基、フェニルスルフィニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルアミノ基、アミノ基などを好ましい例として挙げることができる。特に好ましくは、ハロゲン原子、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニ 30 ルスルフィニル基、およびアミノ基を挙げることができる。

さらに、R⁶におけるフェニル基、C₃-C₈シクロアルキル基、C₃-C₈シクロ

10

15

20

アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によって置換されていてもよい。

 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルキルチオ基、モノ($C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明のエオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することを阻害する医薬、あるいはエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する作用をもつ医薬、さらにはCCR3が関与すると考えられる疾患の治療薬もしくは予防薬とすることができる。すなわち上記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加塩体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、経口的に、あるいは、静脈内、皮下、筋肉内、経皮、または直腸内など非経口的に投与することができる。

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、カ プセル剤などが挙げられる。

25 錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤; カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなどの結 合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウムなど の崩壊剤などを用いて通常の方法により成形することができる。

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形 30 することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどの グリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法に WO 01/10439 PCT/JP00/05260

19

よって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤の配合の処置を適宜行うことによって無菌化される。

5

15

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は 10 、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤 は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの 乳化剤を用いて通常の方法によって成形される。

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる。本発明の環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢や性別、および疾患の程度などによって異なるが、通常成人一人当たり1-500mg/日である。

上記式 (I) の環状アミン誘導体の好適な具体例として、以下のTable 1. 1-1. 221に示される各置換基を含有する化合物を挙げることができる。

20 Table1.1-1.221において、「chirality」は「絶対配置」、すなわち環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置をもつこと、「S」は、不斉炭素原子がSの絶対配置をもつこと、「-」はラセミ体であるか、あるいはその化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

Table 1.1

Compd. No.	R ¹ (CH ₂) _i -	. k	m	n	chirality	R ³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}G-R^6$
1	CHCH ₂ -	1	2	0	-	н	- CH ₂ -N-C-
2	СН-СН ₂ -	1	2	0	-	н	- CH ₂ -N-C-CH ₃
3	CHCH ₂ -	1	2	.0	-	н	- CH ₂ - N- C- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4	CH2-	1	. 2	0	- ·	H	- CH ₂ -N-C-CF ₃
5	C⊢CH₂-	1	2	0	S	H	-CH ₂ -N-C-CF ₃
6	C├ \ CH ₂ -	1	2	0	S	н	$-CH_2-NC$
7	C├────────────────────────────────────	. 1	2	0	S	Н	-CH ₂ -N-C-
8	CH-CH ₂ -	1	2	0	S	Н	-CH2-N-C
9	CHCH ₂ -	1	2	0	S	н	-CH2-N-C
10	CH ₂ -	1	2	0	S	н	- CH ₂ -N-C
11	CHCH2-	1	2	0	S	н	- CH ₂ - N- C- OCH ₃

Table 1.2

. 45.5							
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
12	CI—(CH₂-	1	2	0	S	н	-CH ₂ -N-C-OCH ₃
13	с⊢СН₂-	1	2	0	S	Н	- CH ₂ -N-C-
14	С⊢СН2-	1	2	0	S	н .	-CH ₂ -N-C-CH ₃
15	CCH₂-	1	2	0	S	н	-CH ₂ -N-C-CI
16	C├ - CH ₂ -	1	2	O _.	S	н	-CH ₂ -N-C- OCH ₃
17	CH ₂ -	1	2	0	S	н	-CH₂-N-C-CI
18	C⊢CH₂-	1	2	0	S ·	. н	- CH ₂ -N-C-CN
19	CHCH ₂ -	1	2	0	S	Н	- CH ₂ -N-C
20	CHCH ₂ -	1	2	0	S .	Н	- CH ₂ -N-C-CF ₃
21	CH ₂ -	1	2	0	S	Н .	-CH ₂ -N-C- F-CF ₃
22	C├ - CH₂-	1	2	0	S	H	- CH ₂ -N-C

Table 1.3

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
23	CH2-	1	2	0	S	Н	-CH ₂ -N-C- H
24	C├ - CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-OCF ₃
25	C├───── CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
26	C├────CH ₂ -	1	2	0	S .	н	-CH2-N-C-
27	С├-СН₂-	1	2	0	S .	, н	-CH2-HC-NO2
28	CH ₂ -	1	2	0	S	н	- CH ₂ -N-C-NO ₂
29	СН2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
30	CH-2-	1	2	0	R	н	$-CH_2-NC$
31	CH_CH ₂ -	1	2	0	R	н	- CH ₂ - N- C-
32	С⊢СН₂-	1	2	0	R	н	- CH ₂ -N-C
33	C├ ~ CH₂-	1	2	0	R	H .	- CH ₂ -N-CI

Table 1.4

· abic	1.7						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	·R³	$-(CH_2)_p + (CH_2)_q G - R^6$
34	С├── СН₂-	. 1	2	0	R	н	- CH ₂ -№ C-
35	CH2-	1	2	0	R	н	- CH ₂ -N-C
36	CH-2-	1	2	0	R _.	н	-CH ₂ -N-C- OCH ₃
37	C├ ~ CH ₂ -	1	2	0	R	н .	- CH2-N-C- CF3
38	С⊢СН2-	1	2	0	R	H	-CH ₂ -N-C-CH ₃
39	CHCH ₂ -	1	2	0	R	Н	- CH ₂ -N-C-CI
40	сн Сн2-	1	2	0	R	Н	-CH ₂ -N-C
41	CHCH ₂ -	1	2	0	R	н	- CH ₂ - N C
	CH-2-						- CH ₂ -N-C-CN
43	CH-CH2-	1	2	0	R	Н	$-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CF_{3}$
44	C├─ \ CH ₂ -	1	2	0	R	н	- CH ₂ -N-CF ₃

Table 1.5

·abie	1.3						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
45	CH-2-	1	2	0	R	Н	-CH ₂ -N-C
46	CH-CH2-	1	2	0	R	н	- CH ₂ -N-C- CF ₃
47	CHCH_2-	1	2	0	R	H	- CH ₂ -N-C
48	CH-CH2-	1	2	0	R	н	- CH ₂ -N-C
49	C	1	2	0	R	н	-CH ₂ -N-C
50	С⊢С СН₂-	1	2	0	R	Н	- CH ₂ -N-C-CF ₃
51	C├────────────────────────────────────	1	2	0	R .	н	-CH ₂ -N-C-
52	C├ - CH ₂ -					н	-CH ₂ -N-C-F
53	СН-2-	1	2	0	R	н	- CH ₂ -N-CI
54	CHCH ₂ -	1	2	0	R.	н	-CH₂-N-C-
55	C⊢(1	2	0	R	н	- CH ₂ -N-C-CI

Table 1.6

							•
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
56	CI—CH₂-	1	2	0	R	Н	- CH ₂ -N-C-
57	CH ₂ -	1	2.	0	R	н	-CH ₂ -N-C-
- 58	C	1	2	0	R	Н.	- CH ₂ -N-C-
59	C├ ─ CH ₂ -	1	2	0	R	н	- CH ₂ - N- C- Br
60	C	1	2	0	R	'н	-CH ₂ -N C-
61	C	1	2	0	R	н	-CH ₂ -NC
62	C⊢√ CH₂-	1	2	0	R .	Н	-CH ₂ -N C- H
63	C├ ~ CH ₂ -	1	2	0	R	н	-СH ₂ -N-С-СH ₂ СH ₃
64	C⊢√CH₂-	1	2	0	R	н	-CH2-N-C-CN
65	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ - N C-
66	CHCH ₂ -	1	2	0	R	н	-CH₂-N-C-

Table 1.7

able	1.7						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
67	CI—CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C
68	C	1	. 2	0	R	н	-CH2-N-C-F
69	СН-СН2-	1	2	0	R	Н	-CH ₂ -N-C
70	СН-СН2-	1	2	0	R	н	-CH ₂ -N-C
71	CH-2-	1	2	0	R	н	-CH ₂ -N-C
72	C├ \	1	. 2	0	R R	н	$-CH_2-N-C$
73	C ⊢ CH ₂ -	1	2	0	R	н ′	$-CH_2-NC$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
74	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H-C- CO ₂ CH ₃
75	CH-2-	1	2	0	R	н	-CH ₂ -N-C
76	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H F ₃ C
77	C├ - CH₂-	1	2	0	R		- CH ₂ -N-C-F

Table 1.8

			•				•
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
78	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
79	CH2-	1	2	0	R	н	$-CH_2-NC$ F_3C CF_3
80	CH2-	1	2	0	R	н	$-CH_2-NC - CF_3$ F_3C
81	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
82	CH-2-	1	2	0	-	—CH ₃	-CH ₂ -N-C-CF ₃
83	C├─ \ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
84	C├ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-√-NO ₂
	CH2 ⁻				-	H	-(CH ₂) ₂ -N-C-
86	C├ ─ CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -N-C-NO ₂
87	СН2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
88	CHCH ₂ -	1	2	0	S	H	-(CH ₂) ₂ -N-C H F ₃ C

Table 1.9

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	· R³	$-(CH_2)_p + G^4$ $+ $
89	C ⊢ CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-Br
90	CI—CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
91	CH-2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
92	С├───────── СН₂-	1	2	0	S	H	-(CH ₂) ₂ -N-C
93	CH2-	1	2	0	S	н	$-(CH_2)_2$ -N-C-OCH ₃
94	C⊢CH₂-	1	2	0	S .	Н	$-(CH_2)_2 - N - C - OCH_3$ OCH ₃
95	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
96	CH-2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CH ₃
97	C├	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
	C⊢√CH₂-						-(CH ₂) ₂ -N-C
99	C⊢CH₂-	1	2	0	S _.	н	-(CH ₂) ₂ -N-C

Table 1.10

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
100	с⊢С сн₂-	1	2	0	S	н	-(CH ₂) ₂ - N- C-
101	С⊢СН2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-O
102	сн-Сн2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
103	CH2-	. 1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
104	CCH₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-F ₃
105	СН ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
106	СН ₂ -	1	2	0	S	н .	-(CH ₂) ₂ -N-C
107	C├ - CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-F
108	СН-СН2-	1	2	0	S	H .	-(CH2)2-N-C-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V
109	CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-NO ₂
110	C├ - CH ₂ -	1	2	0	S	н	O -(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Table 1.11

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
111	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
112	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
113	C⊢(CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br
114	CH2⁻	1	2	0	R	н	-(CH ₂) ₂ -N-C
115	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
116	C├ - CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C
117	CH-2-	1	2	-0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
118	CH-2-	1	2	0	R R	н	-(CH2)2-N-C-OCH3 OCH ₃
119	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
120	C├─ \ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
121	С⊢{Сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C

Table 1.12

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $G-R^6$
122	с⊢С сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
123	CH2−	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
_124	C	1	2	0	R	н	-(CH ₂) ₂ -N-C-(CH ₂)
125	CH2-	1	2	0	R	H	-(CH ₂) ₂ -N-C
126	C⊢-(CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃
127	CH_CH₂-	1	2	O	R	н	-(CH ₂) ₂ -N-CF ₃
128	CH-€T-CH2-	1	2	О	R	н	-(CH ₂) ₂ -N-C-CF ₃
129	CHCH ₂ -	1	2	Ö	R	Н	-(CH ₂) ₂ -N-C-CF ₃
130	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
131	C├─ \ CH ₂ -	1	2	0 _.	R	н	-(CH ₂) ₂ -N-CF ₃
132	CH-CH2-	1	2	0	R	н	$-(CH2)2-N-C-F$ $-(CH2)2-N-C-O-F$ O_{2} O_{2}

Table 1.13

Compd. No.	R ² (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
133	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NO ₂
134	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NO ₂
135	CI—CH₂-	1	2	0	R	н .	-(CH ₂) ₂ -N-C
136	C├ - CH ₂ -	1	2	0	R	н.	-(CH ₂) ₂ -N-C-
137	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
138	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
139	CH_CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
140	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
141	CHCH ₂ -	1	2	0	R	H	H ₃ CO O -(CH ₂) ₂ -NC- H ₃ CO
142	CI	1	2	0	R	н	-(CH ₂) ₂ -N C-
143	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N·C

Table 1.14

Compd.	R ¹ (CH ₂) _j -	 k	m		chirality	Ŗ³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}G-R^6$
No.	R ² (3.27)			,,	Crimanty	 it.	-(CH ₂) _p + (CH ₂) _q G-R ^o
144	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
145	с⊢С сн₂-	1	2	0	R	Н	-(CH ₂) ₂ -NC-CF ₃
146	С├──СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
147	C├	1	2	0	.R	н	-(CH ₂) ₂ - N C-CH ₂ CH ₃
148	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CN
149	С⊢СН₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
150	С⊢СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
151	с⊢СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
152	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
153	CH-CH ₂ -	1.	2	0	R	н	-(CH ₂) ₂ -N-C-F
154	С⊢-{СН₂-	. 1	2	0	R	н	-(CH ₂) ₂ -N-C-F

Table 1.15

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}$ $- R^6$
155	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
156	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCF ₃
157	с⊢СН₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
158	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
159	CHCH ₂ -	1	2	0	. R	H.	-(CH ₂) ₂ -N-C
160	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- H F ₃ C
161	CH_CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-F
	С⊢—СН₂-					Н	-(CH ₂) ₂ -N-C
163	C	1	2	0	R	н	-(CH2)2-N-C- $+$ $F3C$
164	С⊢ СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
	C⊢(CH₂-						-(CH ₂) ₂ -N-C-CH ₃

Table 1.16

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
166	С⊢—СН₂-	4	2	0	R	н .	(S) P CF ₃ -CH-N-C CH ₃
167	CH2⁻	1	2	0	R	н	CH ₃
168	C	1	2	0	R	н 	(S) P CI
169	CH2-	1	2	0	R	н	(S) P CI
170	CHCH ₂ -	1	2	0	R .	н	CHN-C-CF3
171	CH-€-CH ₂ -	1	2	. 0	R	н .	(S) P -CHN-C-C-CI CH3
172	СЊ_СН2-	1	2	0	·R	н .	(S) P -CH-N-C- CH ₃
173	CH2-	1	2	0	R	н	(S) PNO _{2.} -CHN-C
174	CH-2-	1	2	0	R	н	(F) P CF3 -CH-N-C-CF3 CH3
	C├ - CH ₂ -					н	ČH ₃
176	C├	1	2	0	R	н	CH3 CH2
							·

Table 1.17

Compd. No.	R ¹ /(CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{15} (CH_2)_q G - R^6$
177	CI—CH ₂ -	1	2	0	R	н	(A) O CI -CH-N-C-CI -CH3
178	CI-CH ₂ -	1	2	0	R	н	(A) O CF ₃ -CH-N-C- F
179	С⊢СН₂-	1	2	0	R	н	(A) O CI
180	CHCH ₂ -	1	2	0	R	Н	(F) P -C+N-C- CH ₃
181	CH2-	1	2	0	R	н	(A) O NO₂ -C+N-C- NO₂ CH₃
182	C⊢CH₂-	1	2	0	R	н	СН ₃ О СБ3 -СН Н С С СН ₃
183	C⊢CH₂-	1	2	0	R	н	CH ₃ O Br
184	CHCH ₂ -	1	2	0	R	н	ÇH₃ 0 - CH⋅N C- CI CH₃
185	CH ₂ -	1	2	0	R	Н	CH3 O CI
186	CH-2-	1	2	0	R	н	- CF ₂
187	CH ₂ -	1	2	0	R	H	CH3 O -CH N C-CI CH3

Table 1.18

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _р G-R ⁶
188	CH2-	1	2	0	R	Н	СH ₃ О СН ₃ С
189	CI—CH₂-	1	2	0	R	н	CH ₃ P -CH ₃ P CH ₃ NO ₂
190	CH₂-	1	2	0	R	н	(A) P -CHNC-CF3 CH2-S
191	C	1	2	0	R	н	CH ₂ -S
192	C	1	2	0	R	н	(A) CH-NC-C
193	CH-CH₂-	1	2	0	R	н	(A) P CI - CI+ N- C - CI - CH ₂ - CI
194	CH2-	1	2	0	R	н	(A) P -CH-NC- CH ₂ F
195	C⊢CH₂-	1	2	0	R	н	(R) P -CH+N-C-C-CI CH2-CS
196	C ⊢ CH₂-	1	2	0	R ·	н	(A) P -CHN-C- CH2-S
197	C├	1	2	0	R	н	(A) P NO 2 -CH+N-C- CH2-S
198	C├ - CH ₂ -	1	2	0	R	. н	(S) P CF3 -CH-N-C-

Table 1.19

1 able	1.13						•
Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
199	CI-CH ₂ -	1	2	0	R	н	(S) P Br C+++C-++C+++++++++++++++++++++++++++++
200	C⊢√CH₂-	1	2	0	R	н	
201	CH2-	1	. 2	0	· R	H	(5) - CH N C - CI CH ₂ - C
202	С⊢(СН₂-	1	2	0	R	н	(S) -C++ N-C
203	CH_CH ₂ -	1	2	0	R	н	(S) P C-CI
204	C├ - CH ₂ -	1	2	0	R	н .	(S) P -CH ₂ -CCC
205	С├──СН2-	1	2	0	R	н.	(S) P NO 2 - CH-N-C- CH ₂ CH ₂ S
206	CHCH ₂ -	1	2	0	R	н	(OH ₂) ₂ – S-CH ₃
207	CHCH ₂ -	1	2	0	R	н	(3) P -CH-N-C- H O (OH ₂) ₂ -\$-CH ₃
208	CH_2^-	1	2	0	R	н	(O+2)2-9-0+3
209	C├ ─ CH ₂ -	1	2	0	R	н	(CH2)2-1-CH2
	•						

Table 1.20

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	-(CH ₂) p (CH ₂) q G-R ⁶
210	CI—CH ₂ -	1	2	0	R	н	(S) OF3 -CH-N-C- H O CH ₂) ₂ -S-CH ₃ F
211	СН-СН2-	1	2	0	R	Н.	(CH ₂) ₂ -2-CH ₃
212	CH-2-	1	2	0	R	Н	(S) P -CH N-C- (CH ₂) ₂ -5-CH ₃
213	с⊢СН₂-	1	2	0	R	н	(O+2)2-9-CH3
214	CH2-	1	2	0	- .	Н	-(CH ₂) ₃ -C-
215	CH ₂ -	1	2	0	- .	н	-(CH ₂) ₃ -C-C-OCH ₃
216	CI—CH₂-	1	2	0	-	н	-(CH ₂) ₃ -C-S
	CI—CH₂-				-	н	$-(CH_2)_2$ - C - O CH ₃ H_3 CO
218	CH_CH ₂ -	1	2	0	-	н	$-(CH_2)_2 - CH_3$ H_3C
	C├─ੑੑCH₂-						-(CH ₂) ₂ -С ← ОСН ₃
220	CI—CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-CH ₃

Table 1.21

i ubic							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
221	CH2 ⁻	1	2	0	-	н	-(CH ₂) ₂ -C-
222	CH2-	1	2	0	-	н	-(CH ₂) ₂ -C-CI
223	CH ₂ −	1	2	0	-	н	O -(CH ₂) ₂ -C-C-Q(CH ₂) ₃ CH ₃
224	СН2-	1	2	0	-	H	-CH ₂ -S-CH ₃
225	С├-{СН₂-	1	2	0	-	н	-(CH ₂) ₃ - C· N-
226	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ - C·N
227	C ⊢ CH ₂ -	1	2 .	0	· -	н	-(CH ₂) ₃ -C-NH
228	CHCH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N
229	С⊢ СН₂-	1	2	0	-	н	- CH ₂ - C - CH ₂ - C - N - CH ₃ CH ₃
230	с⊢С≻сн₂-	1	2	0	-	н	-CH ₂ -CH ₂ -CH ₂ -F
231	C├ - CH₂-	1	2	0	-	н	-(CH ₂) ₃ - С- N- С- СН ₃

Table 1.22

Compd.	R ¹ (CH ₂);	k	m	n	chirality	· R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
232	CI————————————————————————————————————	1	2	0	-	н	-(CH ₂) ₃ -C-N-
233	С⊢-{СН₂-	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₂
234	C	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
235	C├ ~ CH ₂ -	1	2	0	-	н	- CH ₂ - CH- CH ₂ - C- N- CH ₂ - CI CH ₃
236	CH-CH2-	1	2	0	-	H .	- CH ₂ -N-S-CH ₃
237	CH ₂ -	1	2	0	-	н	- CH ₂ - N- С- O- CH ₂ -
238	CH-2-	1.	2	0	-	H .	- CH O C N CI
239	CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
240	CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
241	CI CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
242	CH_CH ₂ -	1	2	0	S	н	-сн ₂ -N-С-С-С-Г3

Table 1.23

iable	1.25						
Compd.	R ² (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- \frac{1}{4}$ $- \frac{1}{4}$
243	CI CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
244	CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
245	F_CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
246	CICH ₂ -	1	2	0	S·	н	-CH ₂ -N-C-CF ₃
247	CH ₂ -	1	2	0	s S	н	-CH₂-N-C-CF3
248	H ₃ CO —CH ₂ —	1	2	0	S _.	Н .	-сн ₂ -N-С-С-С-Г3
249	F ₃ C ————————————————————————————————————	1	2	0	S	н	-сн ₂ -N-с-С-
250	H ₃ C —CH ₂ -	1	2	0	S	н	-сн ₂ -N-с-С _{Б3}
251	F-(1 .	2	0			-сн ₂ -N-с-С-С-С-
252	H₃CO-{CH₂-	1	2	0	S	H	-CH ₂ -N-C-C-CF ₃
253	H₃C-€ CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.24

Table	1.4 T						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
254	NO ₂	1	2	0	S	н	-CH2-N-C- CF3
255	O ₂ ·N —CH ₂ -	1	2	0	S	н	CH2-N-C-C-CE3
256	0 ₂ N-CH ₂ -	1 .	2	0	S	н	-CH2-N-C-CF3
257	CF₃ CH₂−	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
258	CO ₂ CH ₂ CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
259	СН₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
260	CI CH₂−	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
261	F ₃ C—CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
	Br CH ₂ -						-CH ₂ -N-C-CF ₃
263	Br_CH ₂ -	1	2	0	S	_. H	-CH ₂ -N-C-CF ₃
264	OH2 ⁻	1	2	0	S	H	-CH ₂ -N-C-CF ₃

Table 1.25

lable	1.23			_			
Compd.	R ¹ /(CH ₂) _i -	k	m	n	chirality	R³	ー(CH ₂) _p
265	Br—{CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
266	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
267	OCH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
268	ньс-с-и———сн _г	1	2 .	0	S	н	-CH ₂ -N-C-CF ₃
269	H ₃ C-S-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C —CH ₂ -	1 .	2	0	S	Н	-CH ₂ -N-C- CF₃ CF₃
271	CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
272	но-{	1	2	0	S	н	-CH ₂ -N-C-CF ₃
273	CN CH₂−	· 1	2	0	S	H	-CH ₂ -N-C-CF ₃
274	CN -CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
275	NC-CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.26

·abic	1.20	_					
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
276	F—CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277	OH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	н₃∞₂с-{	1	2	0	S	н	-CH ₂ -N-C-CF ₃
279	F ₃ CO-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
280	F ₃ CQ CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
281	HO ₂ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
282	(H ₃ C) ₃ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
283	CH ₃ CH ₂ - CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
284	c⊢()—c⊢	1	2	0	S	н	-CH ₂ -N-C-CF ₃
285	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
286	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.27

Table I	.21						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
287	CI CH₂-	1	2	0	· R	н	-CH2-N-C-CF3
288	CI CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CH₂− CI	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
290	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
291	F_CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
292	Cl CH₂-	1.	2	0	R	н	
293	Ct CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
294	H₃CQ —CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
295	F ₃ C ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
296	H ₃ C ————————————————————————————————————	1	2	0	R	· н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
297	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.28

able	1.20						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p
298	H₃CO-(CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
299	H ₃ C-CH ₂ -	·1	2	0	R	н	-CH2-N-C-C-CE3
300	NO ₂	1	2	0	R	H	-CH ₂ -N-C-CF ₃
301	O ₂ N — CH ₂ —	1	2	0	R.	Н	$-CH_2-N-C-$
302	O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF₃
303	CF ₃	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
304	CH− CO ₂ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
305	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
306	CI CH2-	1	2	0	R		-CH ₂ -N-C-CF ₃
307	F ₃ C—CH ₂ -	1	2	O _.	R	н	-CH ₂ -N-C-CF ₃
308	Br CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.29

lable	1.23						·
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) p G (CH ₂) q G−R ⁶
309	Br_CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
310	O-O-OH ₂ -	1	2	0	R	H,	-CH ₂ -N-C-CF ₃
311	Br—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
312	CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
313	OCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
314	н°с-с-Й-{—анъ	1	2	0	R	н	-CH ₂ -N-C-CF ₃
315	H ₂ C-\$\frac{\text{O}}{\text{O}}\tag{OH}_2\tag	İ	2	0	R .	H	-CH ₂ -N-C-CF ₃
316	H ₃ CO ₂ C —CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
317	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
318	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
319	CN −CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.30

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
320	NC CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
321	NC-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃ CF ₃
322	F-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-
323		1	2	0	R .	н	-CH ₂ -N-C-CF ₃
324	н₃∞₂с-{	1	2	0	R ,	н	-CH ₂ -N-C-CF ₃
325	F ₃ CO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
326	F ₃ CO —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
327	но₂с-СН₂-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
328	(H ₃ C) ₃ C-CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C-CF ₃
329	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
	CH2-					н	- CH ₂ -N-C-

Table 1.31

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
331	CI-CH ₂ -	0	3	1	-	н	- CH ₂ - N- C- CH ₃
332	C├ \ CH ₂ -	0	.3	1	-	н	- CH ₂ - N- С- ОСН ₃
333	CHCH2-	0	3	1	-	. н	- CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
334	CH-€-CH2-	0	3	1,	-	н	- CH ₂ -N-С-СН ₃
335	CH2-	0	3	1	-	н	- CH ₂ -N-C-\(\sigma\)
336	CH2−	0	3	1	-	н	- CH ₂ -N-C-CF ₃
337	С⊢—СН₂-	0	3	1	-	н	- CH ₂ -N-C
338	C├ - CH ₂ -	0	3	1	-	H	- CH ₂ -N-C-CH ₃
339	CH_CH ₂ -	0	3	1	R	н	- CH ₂ -N-C-CF ₃
340	C├	0	3	1	S	н	- CH ₂ -N-C
341	C├ ~ CH₂-	0	3	1	-	н	-(CH ₂) ₂ -N-C-

Table 1.32

Table I	.5 2						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
342	CH-CH ₂ -	0	3	1	-	н	-CH3 0 -CH4-C-
343	C	0	3	1	-	н	- CH N- C- H CH(CH ₃) ₂
344	CH₂-	0	3	1	-	Н	O - CH N- C - H CH ₂ CH(CH ₃) ₂
345	C⊢√_CH₂-	0	3	1	-	н	-(CH ₂) ₃ -C-
346	CH2-	0	3	1	-	н	-(CH ₂) ₂ -C-C-OCH ₃
347	C├ - CH ₂ -	0 ·	3	1	-	н	-(CH2)2-CH3 $H3C$
348	C├ - CH ₂ -	0	3	1		н	-(CH ₂) ₂ -C-CH ₃
349	CH2-	0	3	1	-	н	- CH ₂ -S-CH ₃
350	CH2-	0	3	1	-	н	- CH ₂ - N- S- CH ₃
351	CH2-	0	3	1	-	н	-сн ₂ -х-с-о-сн ₂ -
							- CH3 CH3

Table 1.33

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
353	С⊢СН₂-	1	2	1	-	<u>.</u> н	- CH ₂ -N-C-
354	C├ CH ₂ -	1	3	0	-	н	- CH ₂ -N-C-
355	С⊢—СН₂-	1	3	0	-	н	- CH ₂ -N-C
356	C⊢—CH₂-	1	3	0_	-	н	- CH₂- N- C-
357 ·	C├ - CH ₂ -	1	3	0	-	н	-CH ₂ -N-C
358	CH-€	1	3	0	-	н	- CH ₂ -N-C-CF ₃
359	CH-2-	1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	CH-2-	1	3	0	-	н	-(CH ₂) ₂ -N-CNO ₂
361	CH-2-	1	3	.0		н	-(CH ₂) ₃ -C-
362	CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -C
363	СН2-	1	3	0	-	Н	-(CH ₂) ₃ - C-(S)

Table 1.34

lable	1.34						
Compd.	R ¹ (CH ₂)-	k	m	ກ	chirality	[°] R³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
364	с⊢С сн₂-	1	3	0	-	н	$-(CH_2)_2 - C \longrightarrow OCH_3$ H_3CO
365	CH2-	1	3	0	-	н	-(CH2)2-C-CH3 $H3C$
366	CH2-	1	3	Ö	-	Н	-(CH ₂) ₂ -C-C-OCH ₃
367	CH-2-	1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
368	CH2-	1	3	. 0	-	• н	-(CH ₂) ₂ -C-
369	CH2-	1	3	0		н	-(CH ₂) ₂ -C-CI
370	CH2-	1	3	0	-	н	-(CH ₂) ₂ -C-C-CH ₂) ₃ CH ₃
371	CH2-	1	3	0	-	н	-(CH ₂) ₂ -C-C-S-CH ₃
372	CH2-	1	3	0	-	н	$-CH_2$ - S - CH_3
373	CH-2-	1	3	0	-	н	-(CH ₂) ₃ -C-N-
374	CH2-	1	3	0	-	н	-(CH ₂) ₃ -C-N-OCH ₃

Table 1.35

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
375	CH-CH₂-	1	3	0	-	н	-(CH ₂) ₃ -C-N-CI
376	С⊢-{СН₂-	1	3	0	-	Н	-(CH ₅) ³ -C·N-OCH ³
377	CH-CH₂-	1	3	0	-	н	CH ₃ O - CH ₂ -C-CH ₂ -C-N-CI CH ₃
378	CH-CH₂-	1	3	0	-	н .	- CH ₂ -CH ₂ -C-N-F
379	CH-2 ⁻	1	3	0		н	-(CH ₂) ₃ - С- N-С- СН ₃
380	СЊ_СН₂-	1	3	0	-	н	-(CH ₂) ₃ -C-N-CH ₂
3.81	CH2 ⁻	1	3	0	-	н .	-CH ₂ -N-S-CH ₃
382	CH2 ⁻	1	3	0	-	н	- CH ₂ - N- C- O- CH ₂ -
383	C├	1	3	0	-	н	- c н о с н С н С С I
384	CH2-	2	2	0	-	Н	-CH ₂ -N-C-CH ₃
385	C ← CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-

Table 1.36

i abie							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
386	()—CH₂-	2	2	0	-	H	-CH ₂ -N-C-
387	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
388	CH₂-	2	2	0	-	н	-CH ₂ -N-C-\(\sigma\)
389	-CH ₂ -	2	2	0	-	. н	-сн ₂ -N-с
390	CH₂-	2	2	0	-	н	-CH ₂ -N-C-CF ₃
391	CH₂-	2	2	0	-	н	-CH ₂ -N-C- F
392	(CH₂-	2	2	0	-	н	-CH₂-N-C-
393	CH₂-	2	2	0	-	Н	-CH ₂ -N-C-
394	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
395	CH₂-	2	2	0	-	н	-CH ₂ -N-C-Br
396							-CH₂-N-CF

Table 1.37

397 \bigcirc CH ₂ - 2 2 0 - H \bigcirc CI 398 \bigcirc CH ₂ - 2 2 0 - H \bigcirc CH ₂ -N-C \bigcirc CI 399 \bigcirc CH ₂ - 2 2 0 - H \bigcirc CH ₂ -N-C \bigcirc CI 400 \bigcirc CH ₂ - 2 2 0 - H \bigcirc CH ₂ -N-C \bigcirc CI 400 \bigcirc CH ₂ - 2 2 0 - H \bigcirc CH ₂ -N-C \bigcirc NO ₂	. 45.0							
398 \bigcup_{-CH_2-} 2 2 2 0 -	Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
399 \(\bigcup_{-CH_2^-} \) 2 2 0 - H \(\bigcup_{-CH_2} \bigcup_{-H}^{\infty} \bigcup_{-C}^{\infty} \bigcu	397	CH₂-	2	2	0	-	н	-CH ₂ -N-C-CI
400	398	(CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
401 \bigcircledge -CH_2	399	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C
402 \bigcirc	400	—CH₂-	2	2	0		н	-(CH ₂) ₂ -N-C-NO ₂
403 \bigcirc CH ₂ - 2 2 0 - H \bigcirc CF ₃ 404 \bigcirc -CH ₂ - 2 2 0 - H \bigcirc CCF ₃ 405 \bigcirc -CH ₂ - 2 2 0 - H \bigcirc CH ₂ -N-C \bigcirc Br 406 \bigcirc -CH ₂ - 2 2 0 - H \bigcirc CH ₂ -N-C \bigcirc CI	401	-CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-√-∞ ₂ CH ₃
404 \bigcirc CH ₂ - 2 2 0 - H \bigcirc CH ₂ -N-C \bigcirc Br \bigcirc CI \bigcirc CH ₂ - CH ₂ - 2 2 0 - H \bigcirc CH ₂ -N-C \bigcirc CI \bigcirc CH ₂ - CH ₂ - 2 2 0 - H \bigcirc CI \bigcirc CH ₂ -N-C \bigcirc CH ₂ -N-C \bigcirc CI \bigcirc CH ₂ -N-C \bigcirc	402	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
405 \bigcirc -CH ₂ - 2 2 0 - H \xrightarrow{O} Br -(CH ₂) ₂ -N-C $\stackrel{O}{\longrightarrow}$ CI -(CH ₂) ₂ -N-C $\stackrel{O}{\longrightarrow}$ H	403	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
406 — CH ₂ - 2 2 0 - H — (CH ₂) ₂ -N-C	404	CH₂-	2	2	0	- ·	н	-(CH ₂) ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
	405	CH₂-	2	2	0	-		
407 CH ₂ - 2 2 0 - H -(CH ₂) ₂ -N-C-Br	406	—CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
	407		2	2	0	· -	H	-(CH ₂) ₂ -N-CBr

Table 1.38

•					<u>.</u>		
Compd.	R ¹ / _{R²} (CH ₂) _j	k	m	n	chirality	⁻ R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
408	(CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-F
409	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CI
410	CH₂-	2	2	0	-	Н	(S) P -CH-N-C- CH ₂ CH(CH ₃) ₂ :
411	_CH ₂ -	2	2	0	-	Н	(S) P CH ₂ CH(CH ₃) ₂
412	СH ₂ −	2	2	0	-	н	(5) -CH-N-C- H CH ₂ CH(CH ₃) ₂
413	CH ₂ -	2	2	0	-	H .	(S) -CH-N-C
414	CH2-	2	2	0	-	H	(S) O CF ₃ -CH ₂ CH(CH ₃) ₂
415	CH2-	2	2	0	-	Н	(5) Q CF ₃ -CH-N-C CH ₂ CH ₂ CH(CH ₃) ₂ F
416	€ CH2-	2	2	0	-	H	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
417	CH₂-	2	2	0	-	H	(5) Pr -CH-N-C
418	—CH₂-	2	2	0	-	н	(S) CI -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.39

Compd.	R^1 $(CH_2)_j$,k	m	n	chirality	['] R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
419.	CH₂-	2	2	0	-	н	(S) P -CH-N-C-Br CH ₂ CH(CH ₃) ₂
420	CH₂-	2	2	0	-	H	(S) 0 -CH-N-C
421	CH₂-	2	2	0	-	н	(S) (CI -CH-N-C-C-CI H CH ₂ CH(CH ₃) ₂
422	CH ₂ -	2	2	0	-	H .	(<i>R</i>)
423	CH₂-	2	2	. 0	-	н	(F) 0 -CH-N-C- EH-CH ₂ CH(CH ₃) ₂
424	CH₂-	2	2	0	-	н	(R)
425	CH₂-	2	2	0	· -	н	(<i>H</i>)
426	—CH ₂ -	2	2	0	-	н	(A) O CF3 -CH-N-C- H CH ₂ CH(CH ₃) ₂
427	CH 2⁻	2	2	0	-	Н	(F) O CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
428	CH ₂ -	2	2	0.	-	н	(<i>F</i>)
429	CH₂-	2	2	0	-	н	(FI) Br -CH-N-C- Br -CH ₂ CH(CH ₃) ₂

Table 1.40

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	['] R³	$-(CH_2)_p + (CH_2)_q G - R^6$
430	(Сн₂-	2	2	. 0	-	н	(A) -CH-N-C- H CH ₂ CH(CH ₃) ₂
431	CH ₂ -	2	2	0	-	н	(<i>H</i>) P -CH-N-C- Br CH ₂ CH(CH ₃) ₂
432	CH₂-	2	2	0	-	н	(FI) P −CH−N-C− CH ₂ CH(CH ₃) ₂
433	CH ₂ -	2	2	0	-	н	(A) CI -CH-N-C-CI CH ₂ CH(CH ₃) ₂
434	CH_CH ₂ -	1	3	1	-	H	-CH ₂ -N-C-
435	с⊢Сту−сн₂-	1	3	1	-	н	-CH ₂ -N-C-
436	Ci-CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-\(\sigma\)
437	С⊢—СН₂-	1	3	1	-	Н	-CH ₂ -N-C- H -CO ₂ CH ₃
	CHCH ₂ -						-CH ₂ -N-C-CF ₃
439	CCH₂-	1	3	1	-	H	-CH ₂ -N-C-⟨ CF ₃
							-CH ₂ -N-C-OCF ₃

Table 1.41

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\rho}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G - R^6$
441	C├ - CH ₂ -	1	3	1	-	н	-CH₂-N-C-
442	СН ₂ -	1	3	1	-	н	-CH2-N-C-
443	с⊢(Сн₂-	1	3	1	-	н	-CH ₂ -N-C-Br
444	CH2-	1	3	1	-	н	-CH ₂ -N-C
445	С——СН ₂ -	1	3	1	-	н	-CH ₂ -N-C-CI
446	CH_CH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	CH2-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
448	CHCH_2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-NO ₂
449	CHCH_2-	1	3	1		н	-(CH ₂) ₂ -N-C- H -(CH ₂) ₂ -N-C- H -(CH ₃) ₃
							-(CH ₂) ₂ -N-C-CF ₃
451	_ CH- 2 −	1	3	1	-	н _.	-(CH ₂) ₂ -N-C-CF ₃

Table 1.42

Idole	1.72						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
452	С⊢СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C
453	CH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-Br
454	С⊢—СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-C
455	с⊢—СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-Br
456	С⊢—СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C
457	СЊ2-	1	3	1		Н	-(CH ₂) ₂ -N-C-CI
458	C⊢————————————————————————————————————	2	2	1 .	-	Н	- CH ₂ -N-C-
	CH2⁻					H _.	- CH ₂ - N- C-
460	CH2-	2	2	1	-	н	- CH₂- N- C
							- CH ₂ -N-C-CF ₃
462	CH-2-	2	2	1	-	н -	- CH ₂ -N-C-

Table 1.43

Compd.	R ² (CH ₂);-	k	m	n	chirality	. R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q-G}^{-R^6}$
463	С⊢СУ-СН₂-	2	2	1	-	н	-CH ₂ -N-C-
464	CH2-	2	2	1	-	н	$-CH_2-N-C \longrightarrow OCH_3$ $-CH_2-N-C \longrightarrow OCH_3$ $-CH_3$
465	CH2−	2	2	1	-	Н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
466	CH2-	2	2	1	-	, H	- CH ₂ -N-C-
467	CH2-	2	2 ·	1	-	Н	- CH ₂ -N-C-
468	C⊢√CH2-	2	2	1	-	н	- CH ₂ -N-C-\(\text{N(CH ₃) ₂ }
469	C	2	2	1	-	н	-CH ₂ -N-C-OCH ₃
470	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CN
471	CH2-	2	2	1	-	Н	-CH ₂ -N-C- H C- CO ₂ CH ₃
472	CH2−	2	2	1	-	н	- CH2-N-C
473	с⊷Ст-сн₂-	2	2	1	-	н	- CH2-N-C

Table 1.44

lable	1.44						
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	. R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
474	СН2-	2	2	1	-	н	- CH ₂ - N C-CF ₃
475	С⊢√СН₂-	2	2	1	-	H	- CH ₂ - N- CH(CH ₃) ₂
476	CH2-	2	2	1	-	н	-CH ₂ -N-C-NO ₂
477	C⊢√CH2-	2	2	1		н	- CH ₂ -N-C
478	с⊢СН₂-	2	2	1	-	н	- CH ₂ - N C N H ₃ C
479	CH2−	2	2	1	-	Н	-CH2-HC-
480	C├────────────────────────────────────	2	2	1	-	Н	-CH ₂ -N-C
481	C├ ─ CH ₂ -	2	2	1	· •	H	-CH ₂ -N-C-(S)
482	CH2-	2	2	1	-	н	-CH ₂ -N-C-S
483 ⁻	CHCH ₂ -	2	. 2	1	-	[′] H	-CH ₂ -N-C-S CH ₃
484	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H

Table 1.45

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
485	с⊢{	2	2	1	-	н	- CH ₂ -N-C-CF ₃
486	с⊢{Сн₂-	2	2	1	-	н	-CH ₂ -N-C-CN
487	CH2⁻	2	2	1		버	- CH ₂ -N-C-CI
488	С⊢СН₂-	2	2	1	-	H .	- CH ₂ -N-C-NH ₂
489	CH2−	2	2	1	-	н	-CH ₂ -NC-CF ₃
490	CH₂-	2	2	1	-	н	-CH ₂ -N-C
491	CH2-	2	2	1	-	н	- CH ₂ -NC-CF ₃
492	C⊢√CH₂-	2	.2	1	-	н	-CH ₂ -N-C
493	CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
494	C⊢√_CH₂-	2	2	1	-	н	- CH ₂ -N-C-
495	С⊢(Сн₂-	2	2	1	-		- CH ₂ -N-C- CF ₃

Table 1.46

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_q$ $-(CH_2)_q$ $-(CH_2)_q$ $-(CH_2)_q$
	C⊢(¯)−CH₂−		-			Н	- CH ₂ -N-C
497	CH-2-	2	2	1	-	н	-CH ₂ -N-C-CH(CH ₃) ₂
498	C⊢-CH₂-	2	2	1	-	н	- CH ₂ -N-C
499	с⊢СН₂-	2	2	1	· -	н	- CH ₂ -N-C-\ N(CH ₃) ₂
500	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C
501	СІ—СН₂-	2	2	1	. -	н · ·	- CH ₂ - N- C- Br
502	CI—CH₂-	2	2	1	-	н	- CH ₂ -N-C
503	CH-2-	2	2	1	• .	Н	- CH ₂ - N- C- NO ₂
504	CH-2-	2	2	1	-	н	- CH ₂ -N-C-OCH ₃
505	CH-2-	2	2	1	-	н	- CH ₂ - N- C- Br
506	C	2	2	1	-	н	- CH ₂ -N-C

Table 1.47

Table I							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality —	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
507	CI⟨ CH ₂	2	2	1	-	н	- CH ₂ -N-C-
508	CI—CH₂-	2	2	1	-	н .	-CH2-N-C-S
509	CH2-	2	2	1	-	Н	- CH ₂ -N-C-S
510	C⊢√CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
511	с⊢СН2-	2	2	1	-	H	-CH ₂ -N-C-(CH ₃) ₃
512	C├ - CH ₂ -	2	2	1	-	н	- CH ₂ -N-C- CHCH ₃
513	CI—CH₂-	2	2	1	-	н	CH ₂ -N-C-CH ₃
514	CI—CH₂-	2	2	1	-	н	- CH ₂ -N-C-C(CH ₃) ₃
515	CH2-	2	2	1	-	Н	-CH ₂ -N-CH ₂ OH
	H ₂ N-CH ₂ -						-CH ₂ -N-C- CF ₃
517	H ₂ N —CH ₂ -	2	2	1	-		-CH ₂ -N-C-CF ₃

Table 1.48

lable	1.48						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	˳	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
518	NH ₂ -CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
519	C-N-CH2-	2	2	. 1	-	н	CH ₂ -N-C-CF ₃
520	C├ \ _}CH ₂ -	2	2	1	-	-сн _з	-CH ₂ -N-C-CF ₃
521	С⊢—СН₂-	2	2	1		-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	с⊢—СН₂-	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C CF ₃
523	C⊢ √ _CH ₂ -	2	2	1	-	-(CH ₂) ₂ CH-	-CH ₂ -N-C-
524	C⊢√_CH₂-	2	2	1	· .	-CH ₂ CH-	-CH ₂ -N-C-
525 _.	CI— CH₂-	2	. 2	1	-	н	-CH2-N-C-
526	CH2-	2	2	1	-	н	-CH ₂ -N-C-
527	CH2-	2	2	1	-	Н	-CH ₂ -N-C-S
528	CH-2-	2	2	1	-	н	$-CH_{2}-N-C-V_{S}$ $-CH_{2}-N-C-V_{S}$ $F_{3}C$

Table 1.49

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
529	CH2−	2	2	1	-	н	-CH2-N-C
530	CH2-	2	2	1	-	Н	-CH ₂ -N-C-
531	CI—CH₂-	2	2	1	-	Н .	-CH ₂ -N-C-S
532	CI—CH₂-	2	2	1	-	н	$-CH_{2}-N-C$ H_{3} $H_{3}C$
533	С⊢—СН₂-	2	2	1	-	Н	$-CH_2-N-C H_3C$
534	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-VO
535	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₃ C-C ₀
536	C├ - CH ₂ -	2	2	1	<u>.</u>	н	$-CH_{2}-N-C$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
537	C⊢-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃
538	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C
539	с⊢-{СН₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃

Table 1.50

lable	1.50					_	
Compd. No.	R ¹ (CH ₂)j	k	m	n (chirality	'R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
540	CH2-	2	2	1 .	•	н	-CH ₂ -N-C-N-CH ₃
541	CH2-	2	2	1 .	-	н	-CH ₂ -N-C-NO ₂
542	C → CH ₂ -	2	2	1 .	•	н	$-CH_2-N-C$ $-CH_2-N-C$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
543	CH2-	2	2	1	7.	н	-CH ₂ -N-C
544	C├ - CH ₂ -	2	2	1	-	н	-CH2-N-C-
545	CH2-	2	2	1	-	H	-CH ₂ -N-C-CI
546	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
547	C├────────────────────────────────────	2	2	1	-	. Н	-CH ₂ -N-C-CI
548	CH-2-	2	2	1	-	H	-CH₂-N-C-CI
	CH2 ⁻					Н	-CH ₂ -N-C-
550	CH2-	2	2 .	1	-		-CH2-N-C-

Table 1.51

lable	1.5 1						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
551	С⊢—СН2-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CH ₃
552	C	2	2	1	-	н	-CH ₂ -N-C-CH ₂
553	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CH ₂ CF ₃
554	CH-2-	2	2	1	-	н	-CH ₂ -N-C-N-H
555	СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H
556	CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-H
557	CH2−	2	2	1	-	н	-(CH ₂) ₂ -N-C-
558	CH ₂ -	2	2	·1	-	н	- CH M C-
559	СНСН2-	2	2	1	-	н	-CHNC-CF3 CH3 CF3
560	C├ ~ CH ₂ -	2	2	1	-	Н	-CHNC-CN
561	CI—€ CH ₂ -					H	- CH N C - Bt

Table 1.52

, abic			_				
Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	Ħ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
562	CH-€	2	2	1	-	н	-CH N-C-CI
563	CH2-	2	2	1	-	Н	O CF ₃ -CHNC-CH ₃ CH ₃ F ₃ C
564	CH-CH ₂ -	2	2	1	-	н	O O O O O O O O O O O O O O
565	CH2-	2	2	1	-	н	-CHNC-CF3
566	CI—CH₂-	2	2	1	-	н	- CH N C- OCF3
567	C⊢√CH₂-	2	2	. 1	-	H	-CHNC-CF3
568	C⊢√CH₂-	2	2	1	-	Н	-CHNC-CF3
569	C⊢√CH₂-	2	2	1	-	н	-CHNC-CF3
570	CI—CH₂-	2	2	1			-CHNC-F
571	CI—CH ₂ -	2	2	1	. -	н	-CH N C
572	C⊢————————————————————————————————————	2	2	1	-	н	CH ₃ He N CF ₃ -CH N C CH ₃

Table 1.53

Table 1	1.53						
Compd.	R ¹ /(CH ₂) _i -	k	m	ัก	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
573	CI—CH ₂ -	2	2	1	-	Н	-CHNC-S
574	CH ₂ -	2	2	1	-	н	-CHNC-S Br
575	CH ₂ -	2	2.	1	-	н	-CH H C C(CH ₃) ₃
576	CI-CH ₂ -	2	2	1	-	Н	-CHNC-OSCH3
577	C	2	2	1	-	Н	- CH3 CH3 CH3
578 .	C├ - CH ₂ -	2	2	1	-	H .	-CHNC-S
579	, C⊢———— CH ₂ -	2	2	1	-	н	-CHNC-NH
580	CH2-	2	2	1	-	н	-CHNC-SCH3
581	C⊢√CH₂-	2	2	1	- -	Н	-CHNC-S
582	CH ₂ -	2	2	1	-	н	-CHACCAD
583	C	2	2	1	-	н	-CH 4 CH3

Table 1.54

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p
584	CI—CH₂-	2	2	1	-	н	-CH M C - C - C - C - C - C - C - C - C - C
585	C⊢√CH ₂ -	2	2	1	-	н	- CH N С-СИ
586	CH ₂ -	2	2	1	-	н	-CHNC-CI
587	CI-CH ₂ -	2	2	1	-	Н	-CHNC-CF3
588	CH-2-	2	2	1		H	$-CHNC-NH_2$ CH_3
589	CH-2-	2	2	1		н	-CH N C - C(CH ₃) ₃
590	CH-2-	2	2	1	-	Н	- CH № C- CH(CH ₃) ₂ CH ₃
591	C	2	2	1	-	н	-CH N C N(CH ₃) ₂ CH ₃
592	CH-CH ₂ -	2	2	1	-	Н	-сн у с н сн ₃
593	CCH₂-	2	2	1	-	H .	-СН И С- СН ³ СН ³
594	CI—CH ₂ -	2	2	1	•	н	- СН V- С—— ОН

Table 1.55

1 able	1.55						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	−(CH ₂) _ρ + (CH ₂) _q G−R ⁶
595	С⊢СН₂-	2	2	1	-	н	-СН М С — CO2CH3 СН3
596	CH2-	2	2	1	-	н	-CHNC
597	CH2-	2	2	1	-	н	О С-СН ₃ СН ₃
598	CCH₂-	2	2	1	-	н	- CH N- C- O CH3
599	CH2-	2	2	1	<u>-</u> ·	н	-CH-N-C-N-CH3 CH3
600	C├─ \ CH ₂ -	2	2	1	-	н	-CHNC-OBr CH3
601	CH₂-	2	2	1	-	н 	-CHNC-OCH3
602	C├	2	2	1	-	Н	- CH- N- C- N(CH ₃) ₂ - CH- N- C- N(CH ₃) ₂ - CH ₃
603	CH ₂ -	2	2	1		н	- CH N C - NH2 CH3
604	CH2-	2	2	1	-	н	-CH-N-C-\
605	C├ - CH ₂ -	2	2	1	-	н	-CH-V-C-CO

Table 1.56

Compd.	R ¹ (CH ₂)	k	m	n	chirality	⁻ R³	-(CH ₂) p 5 (CH ₂)q G−R ⁶
606	CH-2-	2	2	1	-	н	-CHMC-S
607	CI—CH₂-	2	2	1	-	н	-CH-N-C-S
608	CHCH ₂ -	2	2	1	-	Н	-CH-N-CCH3
609	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
610	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-S CH ₃ O=C _{CH₃}
611	C⊢√CH ₂ -	2	2	1	-	н	-CH-N-C-C(CH ₃) ₃ -CH ₃ H ₃ C
612	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
613	C├ - CH ₂ -	2	2	1	· -	н	$-CH-N-C$ CH_3 F_3C
614	С⊢ СН₂-	2	2	1	-	н	$-CHNC - CH_3$ $CH_3 F_3C CH_3$
	C⊢√CH₂-						-chych
616	C	2	2	1	-	н	-ch-N-c-CN

Table 1.57

:

Table 1							
Compd. No.	R ¹ (CH ₂)j-	k 	m	n	chirality	⁻ R³	—(CH ₂) _p
617	C├ - CH₂-	. 2	2	1	-	н	-C+N-C-CF3
618	CH-CH ₂ -	2	2	1	-	н	-CHNC- HCH(CH ₃) ₂
619	CHCH ₂ -	2	2	1	-	· H	-C+ N-C-
620	CHCH2-	2	2	1	-	н	-CHNC- HH CH(CH ₃) ₂ Br
621	CHCH_2	2	2	1	-	н	-C+N-C- H CH(CH ₃)₂
622	CH	2	2	1	-	н	- CH N C N(CH ₃) ₂ - CH(CH ₃) ₂
623	CHCH2-	2	2	1	-	н	CH(CH3)2 OCH3 CH(CH3)2
624	CHCH ₂ -	2	2	1	-	н	- CH N C - NO ₂ - CH (CH ₃) ₂
625	CH-2-	2	2	1	-	н	- CH N C - NH ₂ - CH(CH ₃) ₂
626	CH2-	2	2	1	· <u>-</u>	, н	-CH+N-C- H CH(CH ₃) ₂ CF ₃
627	CH-2-	2	2	1	-	н	- CH N C - OCH ₂ CH ₃ - CH(CH ₃) ₂

Table 1.58

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
628	CI—CH ₂ -	2	2	1	-	Н	- CH N- C- CO ₂ CH ₃
629	СН ₂ -	2	2	1	-	н	O F CF ₃ - CH N C
630	CH2-	. 2	2	1.	-	н	CH(CH ₃) ₂ OCF ₃ OCF ₃
631	CH2-	2	2	1	-	н	-CH N-C- I H CH(CH ₃) ₂ CF ₃
632	CH2-	2	2	1	-	н	-CH N C- -CH CH ₃) ₂ CF ₃
633	CH2-	2	2	1	-	н	-CHNC-CF3 -CH(CH ₃) ₂ F
634	CH₂-	2	2	1	-	н	-CHNC
635	·CH ₂ -	2	2	1		н	CH(CH ₃) ₂ OCH(CH ₃) ₂ -CHNC H CH(CH ₃) ₂
636	CH2-	2	2	1	-	Н	-CH-N-C
637	C ⊢ CH₂-	2	2	1		н	- CH N C - CF ₃ - CH(CH ₃) ₂
638	CH2-	2	2	1	-	н	- CH N C - CN

Table 1.59

· ubic ·							
Compd.	R (CH ₂)	k	m	n	chirality	[°] R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
639	CH2-	2	2	1	-	н	O - CH N C — N(CH ₃) ₂ CH(CH ₃) ₂
640	C⊢CH₂-	2	2	1	-	Н	- CH-N-C 1 H-C CH(CH ₃) ₂
641	CCH₂-	2	2	1	-	н	O - CH N C CO ₂ CH ₃ I H C CO ₂ CH ₃ CH(CH ₃) ₂
642	С⊢ СН₂-	2	2	1	-	H	-CHNC
643	C├ - CH ₂ -	2	2	1	-	Н .	- CH- N-C
644	C├ - CH ₂ -	2	2	1	-	н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
645	C⊢————————————————————————————————————	2	2	1	-	Н	- CH N C - NH ₂ CH(CH ₃) ₂
646	C ├── CH ₂ -	2	2	1	· <u>-</u>	Н	- СН- № С - СН ₂ ОН - СН(СН ₃) ₂
647	CH ₂ -	2	2	1	-	Н	- CH N- C- C- CH ₃ CH(CH ₃) ₂
648	C├ - CH ₂ -	2	2	1	-	н	- CH N C - CH(CH ₃) ₂ - CH(CH ₃) ₂ - CH(CH ₃) ₂
649	C├ - CH ₂ -	. 2	2	1	-	н	- СН И С- ОСН(СН3)2 СН(СН3)2
							•

Table 1.60

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
650	CH2-	2	2	1	-	н	- CH-W-C
651	C ├── CH ₂ -	2	2	1	-	н	-CH-W-C
652	СН2-	2	2	1	-	н	$-CH-N-C-V-NO_2$ $CH(CH_3)_2$
653	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
654	CH2-	2	2	1	-	н	-CH-N-C-CH ₃ -CH(CH ₃) ₂
655	C├ - CH ₂ -	. 2	2	1	-	н	-CH-N-C
656	CH-CH ₂ -	2	2	1	-	H .	-CHN-C- CH(CH ₃) ₂
657	C├ - CH ₂ -	2	2	1	· -	Н	-CH-N-C- H H CH(CH ₃) ₂
658	C├ - CH₂-	2	2	1	-	Ĥ.	-CH-N-C-NH
659	с⊢(Сн₂-	2	2	1	-	Н	-CH-N-C- S CH(CH ₃) ₂ NO ₂
660	CH2-	2	2	1	- -	н	-CH-N-C-N CH(CH ₃) ₂

Table 1.61

iable i	1.0 1						
Compd. No.	R ¹ (CH ₂)j-	k	m m	n	chirality	⁻ R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
661	CH2-	2	2	1	-	н	-CH-N-C
662	CH2-	2	2	1	-	н	-CH-N-C
663	C⊢√CH₂-	2	2	1	-	Н	-CHNCCO H CH(CH ₃) ₂
664	CI—CH₂-	2	2	1	-	н	-CH-N-C- O-CH ₃ -CH(CH ₃) ₂
665	CH ₂ -	2	2	1	•	Н	- CH-N-C-S - CH(CH ₃) ₂
666	CI—CH₂-	2	2	1	-	Н	-CH-N-C- CH ₃ -CH(CH ₃) ₂ -CH ₃
667	CH₂-	2	2	1	<u>-</u>	Н	-CH-N-C- CH (CH ₃) ₂
668	CH ₂ -	2.	2	1	-	Н	-CH-N-C-CH ₃ CH(CH ₃) ₂ CH ₃
669	CH₂-	2	2	1	-	н	-CHNC- H CH(CH ₃) ₂ CH ₃
670	CH-2-					н	-CH-N-C- CH(CH ₃) ₂ Br
671	CH2-	. 2	2	1	- "	н	-CH-N-C- NO ₂

Table 1.62

lable	1.0 2						·
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q-1}^{R^6}$
672	CH2-	2	2	1	-	н	-CH(CH ³) ⁵ H
673	CH2-	2	2	1	-	Н	-CHNC-S C(CH ₃) ₂
674	CH2-	2	2	1	-	н	-CH-N-C-S
675	CH2-	2	2	1	-	н	-CHN-C-S-CH3
676	CH2⁻	2	2	1	-	Н	-CHNC-N CH(CH ₃) ₂ H
677	C⊢√CH₂-	2	2	1	~	н	-CH-N-C-N CH(CH ₃) ₂ CH ₃
678	CH2-	2	2	1	-	н	-CH-V-C
679	CH-€	2	2	1	-	н	-CH-N-C-S-CH(CH ₃) ₂
	C├ - CH ₂ -						-CHN-C-S Br CH(CH ₃) ₂
681	C├ - CH ₂ -	2	2	i	-	H	-CH-N-C-CH ₃ CH(CH ₃) ₂ CH ₃
682	C⊢√CH₂-	2	2	1	-	н	-CH-N-C

Table 1.63

Compd.	R ¹ (CH ₂)j-	k		n	chirality	˳	$-(CH_2)_{\overline{p}} \stackrel{\mathbb{R}^4}{\underset{5}{\downarrow}_5} (CH_2)_{\overline{q}} G - \mathbb{R}^6$
No.	R ²						R ⁵ ,
683	CH-€	2	2	1	-	н	-CHN-C- H S SCH ₃
684	CH2-	2	2	1	-	н	-CH-N-C-S-S-CH(CH ₃) ₂ CH(CH ₃) ₂
685	C	2	2	1	-	н	-CH-N-C- H S S-CH ₃ CH(CH ₃) ₂
686	С⊢-СН₂-	2	2	1	-	Н	- CH N- C- H CH ₂ CH(CH ₃) ₂
687	C⊢√CH ₂ -	2	2	1	-	Н	-c+n-c-
688	C ⊢ CH ₂ -	2	2	1	-	н	-CH N C- C+3
689	C⊢—CH₂-	2	2	1	-	Н ,	-c+v-c-
690	C⊢-{CH ₂ -	2	2	1	-	н	-CHNC-Br
691	с⊢С≻сн₂-	2	2	1	-	н	-CH N-C- (CH3)2
692	C⊢—CH₂-	2	2	1	-	H	-CHNC-CF3
	CI—CH₂-					н	-CHNC+

Table 1.64

lable	1.04						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
694	CI—CH ₂ -	2	2	1	-	н .	-CH N-C-OCH2CH3
695	CI————————————————————————————————————	2	2	1	-	н	-CH N C- CH3
696	CH-2-	2	2	1	-	н	- CH N-C-OCF3
697	CI—CH₂-	2	2	1	-	н	-СH-И-С-СИ
698	C ← CH ₂ -	2	2	1	-	н	-CH N-C-N(CH ₃) ₂
699	C├ - CH ₂ -	2	2	1	- -	н	-CH N-C- OCH3
700	C⊢-⟨¯¯) CH ₂ -	2	2	1	-	Н	-CH N-C- CO ₂ CH ₃
701	CI—CH ₂ -	2	2	1	~	Н	-CH M-C
702	CH€	2	2	1	-	H	-CHNC-CF3
703	CI—CH₂-	2	2	1	-	н	-CHN-C-CH(CH3)2
							-CH N-C

Table 1.65

					_		
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
705	C├────────── CH ₂ -	2	2	1	-	Н	-CHNC-S H3C
706	СН-СН2-	2	2	1	<u>-</u>	н	-CHYC-(STCH3
707	CHCH ₂ -	2	2	1	-	н	-CH-N-C
708	CHCH ₂ -	2	2	1	-	Н	-CHNC-STBr
709	C├ \ CH ₂ -	2	2	1	- .	н	-CH-N-C-\S SCH₃
710	CI—CH₂-	2	2	1	-	н	-CHN-C-S Br
711	CH⊋-	2	2	1	-	н	-CHN-C-CH3
712	CHCH_2-	2	2	1	-	н	-CHNC-S
	CH2-						-CH-N-C
	C⊢-€CH ₂ -						-CH-N-C-N-
715	C(CH ₂ -	2	2	1	-	н	-CHYC-5
•							

Table 1.66

Compd. No.	R^1 $(CH_2)_i$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
716	CH2-	2	2	1	-	н	-c+4c-1
717	CI—CH ₂ -	2	2	1	-	H [.]	-CHN-C-OT NO2
718	CHCH_2-	2	2	1	- .	Н	-c+n-c-N
719	CH2-	2	2	1	-	Н	-CHN-C-
720	C	2	2	1	•	н	-CH-N-C-OBr
721	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-N CH3
722	C├─ \ -CH ₂ -	2	2	1	-	н .	-CH-N-CCH₂OH
723	С⊢СН2-	2	2	1	-	н	-CH-N-C-NH2
724	CHCH ₂ -	2	2	.1	-	H	-CH-N-C
725	CHCH2-	2	2	1	-	н	-c+n-c
726	C├ - CH₂-	2	2	1	-	н	-снис-снэ
						•	

Table 1.67

iable	1.07						
Compd.	R ¹ / _{R²} (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
727	СН2-	2	2	1	-	н	-CH-4-C
728	CI—CH2-	2	2	1	-	н	-CH-N-C-NH₂
729	CH2-	2	2	1	-	н	-CH-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
730	C⊢√CH₂-	2	2	1	-	Н	-CHN-C-
731	с⊢—СН₂-	2	2	1	-	н	-ch-hc-ch3
732	CH2-	2	2	1	-	н	-CHNC-CF3
733	C├─ \ CH ₂ -	2	2	1	-	н	-CH-N-C- HO CH(CH ₃) ₂
734	Ci—CH₂-	2	2	1	-	H	-CHNC-CF3
	CI—CH ₂ -						\sim
736	CI—CH₂-	2	2	1	-	н	-CH-N-C
737	CI—CH ₂ -	2	2	1	-	н	-CH-N-C- H ₂ N CF ₃ -CH-N-C- F

Table 1.68

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
738	C⊢CH₂-	2	2	1	-	н	-CH-N-C
739	_ CH_2-	2	2	1	-	Н	-CH-N-GNH
740	CH-€	2	2	1	-	н	-CH-N-C
741	CH-CH ₂ -	2	2	1	-	Н	-CHN-C-S
742	CH2-	2	2	1	÷	н	-c+n-c-s
743	CH2⁻	2	2	1	-	Н	-CHNC-CO
744	C├──────────────────────	2	2	1	- '	Н	-сн-м-с-СН ₃
745	CHCH ₂ -	2	2	1.	-	н	-CH-N-C-(CH ₃) ₃
746	CH2-	2	2	1	-	н	-CH-N-C-N CH3
747	CHCH ₂ -	2	2	1	-	н	-CH-N-C-CH ₃
748	С⊢√_СН₂-	2	2	1	-	н	-chyc-Cs

Table 1.69

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
749	CH2−	2	2	1	-	н	-c+-n=
750	CH-CH ₂ -	2	2	1	-	н .	-CH-N-C
751	C⊢√CH₂-	2	2	1		H	-CHN-C-CH3 CH2OH
752	CH2-	2	2	1	<u>.</u> .	н	-CH-N-C-CF ₃ -CH ₂ OH CF ₃
753	CI⟨CH ₂	2	2	1	-	н	-CH-N-C
754	C├ - CH ₂ -	2	2	1	-	. Н	-CH-N-C- H CH2OH
755	C⊢√CH₂-	2	2	1	-	н	-CH-N-C
756	CI—CH₂-	2	2	1	-	н	-CH-N-C-S CH ₂ OH
757	C├ ─ CH₂-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C- CH ₂ OH
758	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C- CH₂OH
759	C├ - CH₂-	2	2	1	-	н	OCF ₃ -CH-N-C

Table 1.70

14010							
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
760	CH2-	2	2	1	-	н	-CH-N-C-CF ₃ -CH ₂ OH F
761	C├	2	2	1	-	н	-CHN-C-F H CH2OH
762	CH-€	2	2	1	-	Н	-CH-N-C-CF3 -CH2OH
763	CH-2-	2	. 2	1	-	н	-ÇH-N-C- H CH₂OH
764	C├ - CH ₂ -	2	2	1	-	, Н	-C-N-C- -H -CH3
765	C⊢-{CH ₂ -	2	2	1	-	Н	CH3 CH3
766	C⊢-{CH ₂ -	2	2	1	-	н	CH ₃ O CF ₃
767	CI—CH₂-	2	2	1	-	н	CH ₃ Q -C-N-C
768	CI—CH₂-	2	2	1	-	н	CH ₃ P Br
769	C ⊢ C H ₂ -	2	2	1	-	Н	
770	CCH₂-	2	2	1	-	н	CH ₃ P -C-N-C-C-F CH ₃ P

Table 1.71

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
771	CI—CH₂-	2	2	1	•	н	CH ₃ P CF ₃ -C-N-C-F CH ₃
772	C├ - CH ₂ -	2	2	1	-	н	CH ₃ O -C-N-C-CF ₃ CH ₃
773	CHCH ₂ -	2	2	1	· -	Н	C(CH ₃) ₃
774	CH ₂ -	2	2	1	· <u>-</u>	н	CH ₃ O CH ₃ O SCH ₃
775	CHCH ₂ -	2	2	1	-	н	CH ₃ P CH ₃ -C-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
776	CH-2-	2	2	1	-	н	CH3 0 CH3 -C-N-C-C
777	CH ₂ -	2	2	1	-	Н	CH ₃ O CF ₃
778	CHCH ₂ -	2	2	1	-	Н	CH ₃ Q NO ₂ -C-N-C-C-CI CH ₃
779	C├ ─ CH ₂ -	2	2	1	-	н	CH ₃ Q CI -C-N-C-C
780	CHCH_2-	2	2	1	-	н	CH ₃ 0 NO₂ -C-N-C-
781	C├ ~ CH ₂ -	2	2	1	-	н	CH ₃ P -C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-

Table 1.72

lable	1.7 2						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
782	CH2-	2	2	1	-	н	CH ₃ OCH ₃
783	C├ - CH ₂ -	2	2	1	•	H	CH ₃ OCH ₂ CH ₃
784	CHZ-	2	2	1	-	н	CH ₃ O -C-N-C-CH ₂ CF ₃ -CH ₃
785	C → CH ₂ -	2	2	1	- -	н	CH ₃ POCH ₃ CH ₃ OCH ₃
786	CH2-	2	2	1	-	н	
787	СН2-	2	2	1		H .	H ₂ C—CH ₂
788	CH2-	2	2	1	- -	н .	-C-N-C-CF3
789	CH2-	2	2	1	-	Н	-C-N-C-CH ₃
790	CH2-	2	2	1	-	Н	H ₂ C CH ₂
791	CH-2-	2	2	1	-	н	H ₂ C—CH ₂ OCF ₃ H ₂ C—CH ₂
792	С⊢С СН₂-	2	2	1	-	н	H ₂ C—CH ₂ OCF ₃

Table 1.73

rable i	1.70						•
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
793	CI—CH₂-	2	2	1	-	н	H ₂ C-CH ₂ CF ₃
794	C├────────────────────────────────────	2	2	1	-	Н .	-C - N - C - C - C - C - C - C - C - C -
795	CH ₂ -	2	2	1	-	н	$ \begin{array}{c} $
796	C├─ ─ CH ₂ -	2	2	1	-	н	-C-N-C-S SCH ₃
797	CH ₂ -	2	2	1	-	н	-C-N-CH ₂ C(CH ₃) ₃
798	CH ₂ -	2	2	1	-	н	-C-H2 CH2
799	CH ₂ -	2	2	1	- -	_. H	-C-N-C-O H-C-CH ₂
800	CHCH ₂ -	2	2	1		н	-C-N-C-NO ₂ H ₂ C-CH ₂
801	C├ ~ CH₂-	2	2	1	-	н	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$
802	CH2-	2	2	1	-	н	-C-N-C
803	СН2-	2	2	1	-	н	H ₂ C—CH ₂ H OCH ₃ OCH ₃ H ₂ C—CH ₂ OCH ₂ CH ₃ H ₂ C—CH ₂ OCH ₂ CH ₃

Table 1.74

labic i							
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
804	С⊢√_СН₂-	2	2	1	-	Н	-C-N-C-CH ₂ -CF ₃
805	CH2-	2	2	1	-	н	H_2C-CH_2 OCH ₃
806	CH-CH ₂ -	2	2	1	• •	н	H ₂ C CH ₂ Br
807	CH ₂ -	2	2	1	-	н	-CH-N-C-N-2
808	C├ - CH ₂ -	2	2	1	-	H	-CH-N-C
809	C⊢(CH ₂ -	2	2	1	-	Н	-CH-N-C- H C-NH ₂ (CH ₂) ₂ C-NH ₂
810	C⊢(¯)−CH ₂ −	2	2 .	1	· -	н .	-CH-N-C
811	C⊢√CH₂-	2	2	1	-	Н	-CH-N-C-NH ₂ (CH ₂) ₂ -C-NH ₂
812	C ⊢ C H ₂ -	2	2	1		Н	Ö
813	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
814	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C

Table 1.75

lable	1.75						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
815	CH-2-	2	2	1	-	н	· - CH-N-C
816	CH2-	2	2	1	-	н	-CH-N-C
817·	CH2-	2	2	1	-	н	OF3 -CH-N-C
818	CH2−	2	2	1	-	н	-CH-N-C-WH ₂ (CH ₂) ₂ -C-NH ₂
819	CH2−	2	2	.1	-	н	CF ₃ -CH-N-C CF ₃ (CH ₂) _Z -C-NH ₂ CF ₃
820	CH ₂ -	2	2	1	-	н	-ÇH-N-C
821	CH-€	2	2	1	-	H	-CH-N-C
822	CH2-	2	2	1	-	Н	-CH-N-C-S-SCH ₃ -CH ₂ OCH ₃
823	CH2−	2	2	1	-	н	-CH-N-C-
824	CH-2-	2	2	1	- .	н	-CH-N-C
825	CHCH ₂ -	2	2	1	-	н	-CH-N-C-OCH3

Table 1.76

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p \frac{R^4}{R^5} (CH_2)_q G - R^6$
826	С├-{}СН₂-	2	2	1	-	н	-CH-N-C-CH3 CH2OCH3
827	CH2−	2	2	1	-	н	-CH-N-C-NH CH ₂ OCH ₃
828	CH2-	2	2	1	-	н	-CH-N-C-C-CCF3
829	C├ - CH ₂ -	Ż	2	1	-	Н	-CH-N-C- H CH₂OCH3 F
830	C├─ \ CH ₂ -	2	2	1	-	н	-CH-N-CF H CH2OCH3
831	CH ₂ -	2	2	1 .	-	н	-CH-N-C- H CH2OCH3
832 .	CH2-	2	2	1	-	н	-CH-N-C
833	CH2−	2	2	1	-	Н	-CH-N-C-\(\sigma\) CH ₂ OCH ₃
834	C	2	2	1	-	н	$-CH-N-C-CF_3$ CH_2OCH_3
835	C	2	2	1	-	н	-¢H-N-C- CH₂OCH3
836	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-CH ₃ -CH ₂ OCH ₃
	•						

Table 1.77

	• • •						
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
837	C├────────────────────────────────────	2	2	1	-	н	-CH-N-C-CF3 -CH2OCH3
838	CH2-	2	2	1	- -	н	-CH-N-C
839	CH₂-	2	2	1	-	н	$-CH-N-C- OCH_3$ $-CH_2OCH_3 OCH_3$
840	C├-CH ₂ -	2	2	1	-	н	-(CH ₂) ₃ -C-
841	CH2−	2	2	1	-·	н	-(CH ₂) ₂ -C-
842	CH2-	2	. 2	1	-	н	O -(CH ₂) ₂ -C-CI
843	C├ - CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
844	CH2-	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
845 <u>.</u>	C├ - CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C
846	CHCH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-C-
847	C├─ ()- CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-C-OCH ₃

Table 1.78

lable	1.70						
Compd.	R ¹ (CH ₂) _j -	k	m	n ·	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + G$
848	CH2−	2	2	1	-	н	-(CH2)2-CH3 $H3C$
849	CH2-	2	2	1	-	н	-(CH ₂) ₂ -C-
850	CH2-	2	2	1	-	Н	- СH ₂ -\$-СН ₃
851	CH-CH₂-	2	2	1	-	н	- CH ₂ - N- C- N- H H
852	CH2-	2	2	1	-	· H	-CH ₂ -N-C-N-C-S
853	CH-CH₂-	2	2	1	-	н	-CH2-N-C-N-
854	С⊢—СН2-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
855	C⊢CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
856	CH2-	2	2	1 '	-	н	O O C-CH ₃ -CH ₂ -N-C-N-
857	CH2-	2	2	1	-	н	-CH2-N-C-N-C-N-
858	С⊢-{Сн₂-	2	2	1	-	н	-CH ₂ -N-C-N-OCH ₃

Table 1.79

	•••						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
859	CH2-	2	2	1	-	Н	- CH ₂ -N-C-N-CI
860	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CN
861	C	2	2	1	-	. н	- CH ₂ -N-C-N-
862	С⊢СН2-	2	2	1	-	н	-CH ₂ -N-C-N-C-CH ₃
863	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	C├─ \ CH ₂ -	2	2	`· 1	-	·Н	-CH ₂ -N-C-N-C-H OCH ₃
865	C⊢CH₂-	2	2	1	-	Н .	- CH ₂ -N-S-CH ₃
866	CHCH ₂ -	2	2	1	- · .	н .	- CH ₂ -N-S-CF ₃
867	CHCH ₂ -	2	2	1	-	н	- CH ₂ -N- S-CF ₃
868	CH2-	2	2	1	-	н	-CH ₂ -N-S-CH ₂ CH ₃
869	CH_CH ₂ -	2	2	1	-	н	- CH ₂ -N-S-CH(CH ₃) ₂

Table 1.80

Compd. No.	R (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
870	C⊢CH ₂ -	2	2	1	-	н	- CH ₂ -N-S-CH ₃
871	CH2-	2	2	1	-	н .	- CH ₂ - N S (CH ₂) ₃ CH ₃
872	С⊢—СН₂-	2	2	1	-	н	- CH ₂ -N-S-
873	C	2	2	1	-	н •	- CH ₂ - N- C- O CH ₂ €
874	C	2	2	1	-	н	- CH O- C- N- CI
875	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
876	Br—CH₂-	2	2	1	-	H	-CH ₂ -N-C-CF ₃
877	NC-CH ₂ -					н	- CH ₂ -N-C-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C- CF ₃
879	O-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
880	O^O CH₂-	2	. 2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.81

· ubic	1.6 1						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
881	Br CH₂-	2	2	1	-	н	- CH ₂ - N- C-
882	OH ₂ -	2	2	1	-	н	- CH ₂ - N C CF ₃
883	CI CH ₂ -	2	2	. 1	· ·	H	- CH ₂ - N- C- CF ₃
884	₩С·С-Й—ач⁵-	2	2	1	-	н	- CH ₂ -N-C- CF ₃
885	H ₃ C-\$-CH ₂ -	2	2	1	• •	H .	- CH ₂ -N-C- CF ₃
886	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
887	F ₃ C-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
888	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
889	CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
890	CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
891	CH ₂ -	. 2	2	1		н	- CH ₂ -N-C-CF ₃

Table 1.82

Table 1	1.82						
Compd.	R ¹ (CH ₂) _j -	k	m	n (chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$
892	H₃CO CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
893	O ₂ N CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C
894	HO CH_3 CH_2 - CH_3	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
895	(CH ₂) ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C-CF ₃
896	CN CH₂-	2 ~	2	1	-	н	- CH ₂ -N-C-CF ₃
897	HO₂C CH₂-	2	2	1	- ,	Н	-CH ₂ -N-C-CF ₃
898	HO ₂ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1		Н	-CH ₂ -N-C-CF ₃
90 <u>0</u>	н₃∞₂с-{-}-сн₂-	2	2	1	-	H	-CH ₂ -N-C-CF ₃
901	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
.902	O ₂ N CH ₂ -	2	2	1.	-	н	- CH ₂ -N-C-CF ₃

Table 1.83

Compd.	R ¹ (CH ₂) _j	k	m	п	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
903	H₃CO CH₂- OCH₃	2	2	1	-	H	- CH ₂ - N- C- CF ₃
904	HO CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
905	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2	1	-	н .	- CH ₂ - N- C- CF ₃
907	-CH(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
908	H CH2-	2	2	1	-	. н	-CH ₂ -N-C-CF ₃
909	N C-√- CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
910	CI CH ₂ -	2	2	1	-	អ	- CH ₂ -N-C-CF ₃
911	CICH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
912	Br CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃
913	H ₃ COCH ₂ -	2	2	. 1	-	н	CF ₃

Table 1.84

1 4010	1.0 4					·	
Compd.	R ¹ (CH ₂) _j -	k	m	n d	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
914	CH ₂ O-CH ₂ -	2	2	1	-	Н	- CH ₂ - N-C
915	OH CHCH₂-	2	2	1	-	Н	- CH ₂ - N-C-
916	. N CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
917	N— CH₂-	2	2	.1	-	Н	- CH ₂ - N- C- CF ₃
918	н₃со₂с∙ан₂-{{}}-ан₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
919	H₃C-{}CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
920	OCF ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
921	CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
922	CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
923	CI-CI-	2	2	1	- .	H	- CH ₂ -N-C- CF ₃
924	H ₂ N-C	2	2	1	-	н	-сн ₂ -N-с-С ₅

Table 1.85

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
925	H ₂ N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C- CF ₃
927	F ₃ CQ —CH ₂ —	2	2	1	;	н	-CH ₂ -N-C
928	F₃CO-{CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	н₃СЅСН₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
930	CH ₃	2	2	1	-	н	-CH ₂ -N-C-CF ₃
931	NC CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
932	NO ₂	2	2	1	-	н	-CH ₂ -N-C CF ₃
							-CH ₂ -N-C-CF ₃
934	N − CH ₂ −	2	2	1	-	н	-CH ₂ -N-C-CF ₃
935	O ₂ N —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.86

Table	1.00						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶ R ⁵
936	NO ₂	2	2	1	-	н	-CH _{2-N} -C-CF ₃
937	(H ₃ C) ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
938	CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
940	OH CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
941	F ₃ C CH———————————————————————————————————	2	2	1	-	Н.	-CH ₂ -N-C-CF ₃
942	C⊢√CH₂-	2	2	1		Н	$-CHNCH_{3})_{2}$ $-CH_{3}$ $CH(CH_{3})_{2}$ CF_{3}
943	CH2-	1	4	0		Н	-CH ₂ -N-C-CF ₃
944	CHCH ₂ -	1	4	0	-	н	-CH ₂ -N-C-CH ₃
945	CH2-	1	4	0	<u>.</u> ·	н	-CH ₂ -N-C
946	С├-СН₂-	1	4	0	-	н	-(CH ₂) ₂ -N-C-NO ₂

Table 1.87

Compd. No.	R (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
947	с⊢СН₂-	1	4	0	-	н	-(CH ₂) ₂ -N-C
948	с⊢СН₂-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CI
949	С⊢{СН₂-	1	4	0	-	н .	-(CH ₂) ₃ -C-N-CH ₂ -
950	С⊢-{}СН₂-	0	4	1	-	н	- CH ₂ -N-C-
951	с⊢(сн₂-	1	2	0	R	н	-сн ₂ -и-с-сн ₃
952 ·	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)-N(CH ₃) ₂
953	C	1	2	0	R	Н	-(CH ₂) ₂ -N-C-\N(CH ₃) ₂
954	C├ - CH ₂ -	1	2	0	R [.]	н	-CH ₂ -N-C-\ H H ₃ C-NH
955	CI————— CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
956	CH-√CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C- H
957	CH2⁻	1	2	0	R	н	-CH ₂ -N-C-OH

Table 1.88

. 45.5						•	
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
958	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OH
959	CI─CH₂-	1	. 2	0	R	H	-CH ₂ -N-C-CH ₃
960	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CH ₃
961	CH2-	1	2	0	R	н	-СH ₂ -N-С- Н С- Н С- Н С- Н С Н 3
962	CHCH ₂ -	1	2	0	R	н	-(CH ₂) _Z -N-CH ₃
963	C├ - CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-СОН
964	C├ - CH ₂ -	1	2	O	R	Н	-CH ₂ -N-C- H CO ₂ CH ₃
965	C⊢√-CH ₂ -	1	2	0	Ŗ	Н	-(CH ₂) ₂ -N-C-_2CH ₃
966	C├ - CH ₂ -	1	2	0	R	Н	-сн ₂ -N-с-С-сн ₃
967	CH2-	1	2	0	R	н .	-(CH ₂) ₂ -N-C-CH ₃
968	C	1	2	0	R	н	-CH ₂ -N-C-✓NH

Table 1.89

IdDie	1.0 5						
Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p
969	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
970	CH2-	1	2	0	R	н	-CH ₂ -N-C-N(CH ₃) ₂
971	C	1	2	0	R	Н	-(CH ₂) ₂ -N-C
972	C⊢√-CH₂-	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\) NH ₂
973	СН2−СН2−	1	2	0	R	H	-(CH ₂) ₂ -N-C-NH ₂
974	C├ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-√NH ₂
975	CH2−	1	2	O	Ŗ	H .	-(CH ₂) ₂ -N-C-\(\times\)-NH ₂
976	C	1	2	. 0	R	н	-CH ₂ -N-C-NH
977	CH2−	1	2	0	R	H	-(CH ₂) ₂ -N-C-NH
978	CH-2-	1	2	0	R	Н	-CH ² -N-C-NH
979	C⊢CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH

Table 1.90

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
980	CHCH2-	1	2	0	R	· H	-CH ₂ -N-C-CH ₃
981	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
982	с⊢{Сн₂-	1	2	0	R	. н	$-CH_2-N-C$ $(H_3C)_2N$
983	C├ - CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C- H (H ₃ C) ₂ N
984	C├ - CH ₂ -	1	2	0	R	н	-СH ₂ -N-С-СH ₂ ОН
985	CI⟨ CH ₂ -	1	2	0 .	R	Н	-(CH ₂) ₂ -N-С-СН ₂ ОН
986	CH-CH-	1	2	0	R	н .	-CH ₂ -N-C
987	CH-CH₂-	2	2	1	-	н	-CH ₂ -N-C
988	С⊢С СН₂-	1	4	0	-	н .	-CH ₂ -N-C-CF ₃
989	C├ ─ CH ₂ -	1	4	0	-	н	-CH ₂ -N-C-O-CH ₂ -
990	C├ - CH₂-	1	4	0	-	н	-CH ₂ -N-C-

Table 1.91

Compd.	R (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
991	CH-€ CH ₂ -	1	4	0	- -	н	-(CH ₂) ₂ -C-
992	CH2⁻	1	4	0	-	н	$\begin{array}{c} O \\ O \\ -(CH_2)_2 - C \end{array} \begin{array}{c} OCH_3 \\ -OCH_3 \end{array}$
993	C⊢√CH ₂ -	1	. 4	0	- -	Ė	$-(CH_2)_2$ CH_3 H_3C
994	C├────────────────────────────────────	1	4	0	-	н	-(CH ₂) ₃ -C-
995	CH₂-	1	4	0	-	н	-(CH ₂) ₃ -C
996	CI—CH₂-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
997	CI—CH₂-	2	2	1	-	Н	-CH-N-C
998	CHCH ₂ -	2	2	1	-	н	-CH-N-C
999	C├ - CH ₂ -	2	2	1	-	H	-CH-N-C-CH ₃ -CH ₂ CH(CH ₃) ₂
1000	CH-CH ₂ -	2	2	1	-	н	- CH-N-C- H CH2CH(CH3)2
1001	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- CH ₂ CH(CH ₃) ₂

Table 1.92

rable	.9 4						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	`R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1002	С├-СН2-	2	2	1	-	н	OCF ₃ -CHN-C
1003	CH2-	. 2	2	1	-	· H	CH ₂ CH(CH ₃) ₂
1004	CI—CH₂-	2	2	1	-	H	CH2CH(CH3)2 OCH3
1005	C├─────────────────────	2	2	1	-	н	-CH-N-C
1006	CH2-	2	2	1	- '	H	OCH₂CH₃ -CHN-C- CH₂CH₃ CH₂CH(CH₃)₂
1007	CH2−	2	2	1	-	H	ОСН ₂ СН ₃ — СН № С— — ОСН ₂ СН ₃ — СН ₂ СҢ(СН ₃) ₂ ОСН ₂ СН ₃
1008	СН2-	2	2	1	-	H	CH-N-C
1009	C	2	2 ·	1	-	н	O CH ₃ - CH-N-C- CH ₂ (CH ₂) ₂ -C-NH ₂
1010	C├ - CH₂-	2	2	1	-	н	- CH-N-C
1011	С⊢СН2-	2	2	1	-	н	- CH-N-C- (CH ₂) ₂ -C-NH ₂
1012	C├ - CH ₂ -	2	2	1	-	н	- CHN-C

Table 1.93

	•						
No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) p 1 (CH ₂) q G−R ⁶
1013	CH-CH2-	2	2	1	•	. н	OCH3 -CH-N-C-C-OCH3 (CH2)2-C-NH2 OCH3
1014	CI—CH ₂ -	2	2	1	-	н	CH ₂) z − C − NH ₂ CH ₃ (CH ₂) z − C − NH ₂ CH ₃
1015	C⊢√CH₂-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
1016	CH2-1	2	2	0	-	н	-СH ₂ -N-С-СF ₃
1017	CH₂-	2	2	0 ·	-	н	-CH ₂ -N-C-
1018	С⊢СН₂-	2	2	1	<u>.</u>	н	-сн ₂ -N-С- ОСН ₂ СН ₃
1019	С⊢—Сӊ₂-	2	2	1	-	н	$-CH_2-N-C- \bigcirc OCH_2CH_3$ $-CH_2-N-C- \bigcirc OCH_2CH_3$ $-CH_2-N-C- \bigcirc OCH_2CH_3$
1020	C⊢—CH₂-				<u>.</u>	Н .	OCH ₂ CH ₃
1021	с⊢Ср-сн₂-	2	2	1	-	н	-CH ₂ -N-C
1022	с⊢С сн₂-					н	CH ₃ OCH ₃
1023	CI-CH ₂ -	2	2	1	-	н	(S) Q CH₂CH₃ −CH-N-C− H CH₃

Table 1.94

Table	1.5						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	⁻ R³	-(CH ₂) p G -R ⁶
1024	CH-2-	2	2	1	-	н	$(S) \qquad OCH_3$ $-CH \sim C - OCH_3$ $CH_3 \qquad OCH_3$
1025	CH2-	2	2	1	-	н	(S) OCH₂CH₃ -CH-N-C OCH₂CH₃ CH₃
1026	СН2-	2	2	1	-	н .	(S) OCH ₂ CH ₃ -CH-N-C
1027	CH2-	2	2	1	-	н	(S) OCH₂CH₃ -CHNC-OCH3 CH3
1028	СН-СН2-	2	2	1	<u>.</u> .	Н	(S) QCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1029	CH-CH ₂ -	2	2	1	·	н	(S) OCH ₂ CH ₃ -CHN-C-CH
1030	CH_CH ₂ -	2	2	1	· 	Н	(S) Q OCF ₃ -CH-N-C-OCF ₃ CH ₃
1031	C├ - CH ₂ -	2	2	1	-	н	(S) OCH ₃ -CH-N-C-C
1032	C├ - CH ₂ -	2	2	1	-	н	(A) OCH3 -CH-N-C OCH3 CH3 OCH3
1033	C├ - CH ₂ -	2	2	1	-	Н	(F) CH ₂ CH ₃ -CH-N-C-C
1034	CICH₂-	2	2	1	-	н	(R) OCH ₃ -CH-N-C

Table 1.95

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1035	С⊢√СН₂-	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C
1036	C(CH ₂ -	2	2	1	-	н	(A) Q OCH ₂ CH ₃ −CH-N-C OCH ₂ CH ₃ H OCH ₂ CH ₃
1037	. C⊢()-CH ₂ -	2	2	1	-	H	(A) OCH₂CH₃ -CH-N-C OCH₃ H CH₃
1038	C├ - CH ₂ -	2	2	1	-	н	(A) OCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1039	C├ - CH ₂ -	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1040	CHCH ₂ -	2	2	1	-	Н	(A) OCF3 -CH-N-C-CH-CH-CH3
1041	C⊢√CH₂-	2	2	1	-	H .	(F) OCH ₃ -CH-N-C-C
1042	CH2-	2	2	1	-	H	-CH ₂ -N-C
1043	C⊢-{	2	2	1		н	$-CH_2-N+C-$ H_2N CH_3
	C├ - CH ₂ -				-	н	$-CH_2-N$ C H_2N
1045	C⊢————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N

Table 1.96

	51						
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1046	C	2	2	1		H.	-CH ₂ -N-C-
1047	СН2-	2	2	. 1	-	н	$-CH_2-N-C$ H_2N CH_3
. 1048	C	2	2	1	-	H _.	$-CH_2-N-C- OCH_3$ $+ H_2N OCH_3$
1049	С⊢СТ-СН₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N Br
1050	С⊢—СН₂-	2	2	1	- .	H .	(S) OCH ₃ -CH-N-C-CH CH ₂ CH(CH ₃) ₂ OCH ₃
1051	CH-2-	2	2	1	-	н	(S) CH ₂ CH ₃ -CH-N-C
1052	C⊢(CH ₂ -	2	2	1	-	н	$(S) \qquad \bigcirc OCH_3$ $-CH-N-C- \bigcirc OCH_3$ $-CH_2CH(CH_3)_2 OCH_3$
1053	C⊢(CH ₂ -	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C
1054	C├ - CH ₂ -	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C
1055	C├ - CH ₂ -	2	2	1	-	н	(S) Q −CH-N-C− −OCH ₃ H CH ₂ CH(CH ₃) ₂
1056	C	2	2	1	•	н	(S) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Table 1.97

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1057	C├ - CH ₂ -	2	. 2	1	-	.Н	(A) OCH2CH3 -CH-N-C- H CH2CH(CH3)2
1058	CH-CH ₂ -	2	2	1	-	н	(S) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1059	C	2	2	1	-	H	(S) OCF ₃ -CH-N-C
1060	CH2-	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C
1061	CH₂-	2	2	1	-	H	CH ₂ CH ₂ CF ₃ OCH ₂ CF ₃ OCH ₂ CF ₃ OCH ₂ CF ₃
1062	CH2	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1063	CH2 [−]	2	2	1	-	н	(FI) OCH ₃ -CH-N-C- EH ₂ CH(CH ₃) ₂
1064	CH2-	2	2	1	-	н	(F) OCF ₃ -CH-N-C-CH CH ₂ CH(CH ₃) ₂
1065	CH2-	2	2	1	-	н	(F) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1066	с⊢—СН₂-	2	2	1	-	н	(A) CH2CH3 -CH-N-C- H CH2CH(CH3)2
1067	CHCH_2-	2	. 2	1	-	H	(F) Q OCH ₃ -CH-N-C- OCH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₃

Table 1.98

lable							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1068	C├ - CH ₂ -	2	2	1	-	н	$(H) \qquad OCH_2CH_3$ $-CH_1CH_2CH_3$ $CH_2CH(CH_3)_2$
1069	СН2-	2	2	1	-	H	(A) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ H CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1070	C├────────── CH ₂ -	2	2	1	-	н	CH ₂ OCH ₂
1071	CI—CH₂-	2	2	1	-	н	-CH-N-C
1072	CH2⁻	2	2	1	: -	н	OH ₂ O CH ₂ -C(CH ₃) ₃
1073	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
1074	CH₂-	2	2	1	-	н	- CH N-C - OH3 OH20 CH2 - OH3
1075	CH2-	2	2	1	. -	н	OCF ₃
1076	CH-€-	2	2	1	<u>-</u>	Н	-CH-N-C
. 1077	C⊢—CH₂-	2	2	1	-	Н	-CH-NC
1078	CI—CH₂-	2	2	1	-	н	-CH-N-C-C

Table 1.99

rable i							·····
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$
1079	CH2-	2	2	1	-	н	-CH-N-C
1080	CH2⁻	2	2	1	-	, н	-CH-N-C-CH ₂ CH ₃
1081	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C OCH3 -CH-N-C OCH3 -CH-N-C OCH3
1082	CH₂-	2	2	1		н	(S) P O O
1083	C⊢√CH₂-	2	2	1	-	н	(F) O O O
1084	C├ - _CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1085	C├ - CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1086	CH2-	1	2	0	R	Н	$-CH_2-N$ H_2N
1087	CH2-	1	2	0	R	н	-CH2-N-C-NH
1088	C├─ ॔ CH₂-	1	2	0	R	н	-сн ₂ - № С-С
1089	CI—CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-N-H

Table 1.100

· ubic ·							
Compd. No.	R (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G^{-R^6}$
1090	CH2-	1	2	0	R	н	-CH ₂ -N-C
1091	CH_CH ₂ -	1	2	0	. R	н	-CH ₂ CH ₂ -N-C-
1092	С⊢СН2-	1.	2	0	R	н	$-CH_2CH_2-N-C-$ H_2N
1093	С⊢√_СН₂-	1	2	0	R	Н	$-CH_2CH_2-N-C-$
1094	С⊢СН2-	1	2	0	R	Н	-CH₂CH₂-N-C-NH H
1095	C├ - CH ₂ -	1	2	0	R _.	н	-CH2CH2-N-C-
1096	C├ - CH ₂ -	1	2	0	. R	н	-CH ₂ CH ₂ -N-C-N-H
1097	C⊢—CH₂-	1	2	0	R	н	-CH2OH2-N-C-
1098	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	С⊢СН₂-					н	-CH ₂ -N-C
1100	С⊢СН₂-	1	2	0	R	н	-CH2-N-C-CI

Table 1.101

i able	1.101					·	
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1101	C⊢√CH₂-	1	2	0	R	н	-CH ₂ -N-C
1102	C├─ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1103	H ₃ C-⟨□⟩-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Sr CH ₃
1104	H ₃ C-⟨CH ₂ - /	1	2	0	R	н	-CH ₂ -N-C
1105	H₃C-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C-CI
1106	H ₃ C-CH ₂ -	1	2	0	R R	H	$-CH_2-N-C H$ CH_3
1107	H ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	H	-CH ₂ -N-CNO ₂
	CH ₃ N→CH ₂ - CH ₃						-CH ₂ -N-C
1109	CH ₃ N CH ₂ −. CH ₃	1	2	0	R	H	-CH ₂ -N-C-√Br
1110	CH₃ N—CH₂- CH₃	· 1	2	0.	R	н	$-CH_{2}-N-CF$ $-CH_{2}-N-CF$
1111	CH ₃ CH ₂ −	1	2	0	R	н .	-CH ² -N-C- → CH ³

Table 1.102

1112 CH_2 1 2 0 R H $-CH_2$ 1 1 2 0 R $-CH_2$ 1 1113 CH_2 2 2 1 - H $-CH_2$ 1114 CH_2 2 2 1 - H $-CH_2$ 1115 CH_2 2 2 1 - H $-CH_2$	
1113 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ 1114 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ 1115 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$	R ⁴ (CH ₂) q G-R ⁶
1114 CH2- 2 2 1 - H -CH2- 1115 CH2- 2 2 1 - H -CH2-	CH ₃
1115 CH₂- 2 2 1 - H -CH₂-	Br CH ₃
	N-C
1116 CH₂- 2 2 1 - H -CH₂-N	2-C
	Р НС-СН3
1117 CH₂- 2 2 1 - H -CH₂-N	CH ₃
1118	-N-C− H
	-N-C-CF3
H ₃ CO 1120 — CH ₂ - 1 2 0 R H — CH ₂ - OCH ₃	-N-C-CF3
1121 O ₂ N CH ₂ - 1 2 0 R H -CH ₂ -	-N-C-CF3
1120 H_3CO CH_2 1 2 0 R H $-CH_2$ 1 121 O_2N CH_2 1 2 0 R H $-CH_2$ 1 122 O_2N O_2CH_2 1 2 0 R H O_2CH_2 1 2 0 R O_2CH_2 1 1 2 0 R O_2CH_2 1 2 0 R O_2CH_2 1 1 1 2 0 R O_2CH_2 1 1 2 0 R O_2CH_2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CF ₃

Table 1.103

. 4510							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	'R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G - R^6$
1123	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1124	O ₂ N	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1125	с⊢—СН₂-	2	2	1	-	H	-CH-N-C
1126	с⊢СН₂-	2	2	1	-	н	- CH-N-C- Br H H - Br
1127	C ⊢ ← CH ₂ -	2	2	1	-	н	-CH-N-C-NH CH ₂ OCH ₂ C
1128	С⊢—СН₂-	2	2	1	-	H	-CH-N-C
1129	С⊢СН₂-	.2	2	1	-	н	-CH-N-C
1130.	CCH₂-	2	2	1	-	н	-CH-N-C
1131	с⊢СН₂-	2	2	1	-	H ·	-CH-N-C
1132	с⊢—Сн₂-	2	2	1	-	. H	- CH-N-C
1133	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.104

Table	1.704						
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1134	H ₃ CO − CH ₂ − H ₃ CO	1	2	0	R	н	-CH ₂ -N-C
1135	CH ₂ -NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1137	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
1138	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1139	(CH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1140	O ₂ N — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1141	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1142		1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1143	OH2O CH2	1	2	0	R	н	-CH ₂ -N-C- CF ₃ CF ₃
1144	Он ₂ О Он ₂ О—Сн ₂ - Сн ₂ - Н ₃ СО	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.105

. 45.0							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$
1145	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1146	OH2O-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1147	Hc-c-N-CH2	1	2	0	R	Н	-CH2-N-C-CF3
1148	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1149	CH₃ N—CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1150	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1151	CH ₃ N→CH ₂ - CH ₃	1	2	0	R.	H .	-CH ₂ -N-C-CH ₂ CF ₃
	CH ₃ CH ₂ -					Н.	H N
1153	CH ₃ N→CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-H-CH ₃
1154	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1155	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃ F ₃ C

Table 1.106

1 abic	1.100						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	. K3	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $+$
1156	CH ₃ N − CH ₂ − CH ₃	1	2	0	R	н ,	-CH ₂ -N-C-(CH ₃) ₃
1157	CH ₃ CH ₂ - CH ₃	1	2	Ö	R	н	-CH ₂ -N-C-SCH ₃
1158	CH ₃ N CH₂-	1	2	0	R	н	$-CH_2-N$ H_2N CI
1159	CH₃ N—CH₂− CH₃	1	2	0	R	н	$-CH_{2}-N-C$
1160	CH₃ CH₃	1	2	0	R	н	$-CH_2-N-C$ H_2N B_r
1161	OH -CH ₂ -	1	2	0.	R	н	-CH ₂ -N-C-CF ₃
1162	H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
~	H ₃ CO-CH ₂ -					Н	-CH₂-N-C-CF3
1164	H ₃ CO—CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1165	О—СН₂-	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{3}-N-C$ $-CH_{3}-N-C$
1166	H ₃ CO—CH ₂ -	1,	2	0	R	н	-CH₂-N-C-CF₃

Table 1.107

Compd.	R ¹ (CH ₂) _j -	k	m	n chi	rality	·R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1167	с⊢{Сн₂-	2	2	1	-	н	-CH ₂ -N-C
1168	CL N CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1169	H ₃ C-C-N N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1170	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1171	CH-CH2-	1	2	0	R	Н	-CH ₂ -N-C-Br
1172	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1173	CH-CH ₂ -	1	2	· 0	R	Н	-CH ₂ -N-C-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1174	CH-2-	1	2	0 1	r.	Н	-CH ₂ -N-C
1175	H ₃ C-CH ₂ -	1	2	0 1	R ·	Н	-CH ₂ -N-C-Br
1176	H ₃ C-CH ₂ -	1	2	O 1	R	Н	-CH ₂ -N-C-N-C-N-H
1177	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-H

Table 1.108

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1178	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1179	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N NO_2
1180	н₃С-{Сн₂-	1	2	0	R	н	-CH ₂ -N-C-NH
1181	CH ₃ N CH₂- CH₃	, 1	2	0	R	Н	-CH ₂ -N-C-Br
1182	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-N-H
1183	CH ₃ N CH₂-	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1184	CH ₃ CH ₂ -	1	2	0	R	H ·	$-CH_2-N-C$ H_2N
1185	CH ₃ CH ₂ − CH ₃						-CH ₂ -N-C
1186	CH ₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-NH
1187	С├—СН₂-	2	2	1	-	н	-CH ₂ -N-C- CH ₃
1 1 88	C├ - CH ₂ -	2	2	1	· -	н	-CH ₂ -N-C

Table 1.109

· ubic	1.100						
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	[°] R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1189	С├-{	2	2	. 1	-	н	-CH ₂ -N-C-N-D-OCH ₃
1190	С├──СН2-	2	2	1	-	н	-CH ₂ -N-C
1191	CH ₃ N CH ₂ − CH ₃	1	2	. 0	R	н	-CH ₂ -N-C-CF ₃
1192	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1193	CH₃ N CH₂- CH₃					н	-CH ₂ -N-C-C-C-C-S
1194	CH ₃ CH ₂ -					н	$-CH_2-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
1195	CH ₃ CH ₂ − CH ₃					Н	-CH ₂ -N-C
1196	CH ₃ CH ₂ - CH ₃						-CH ₂ -N-C-\(\sigma\)
1197	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1198	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH2-N-C-
1199	CH ₃ CH₂− CH ₃	1	2	0	R	н	F $-CH_{2}-N\cdot C-CH_{3}$ $-CH_{2}-N\cdot C-CH_{3}$

Table 1.110

IdDie							
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1200	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CI
1201	CH ₃ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1202	CH ₃ CH ₂ CH ₃	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1203	H ₃ CCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
	H ₃ C-CH ₂ -					н	$-CH_2-N-C$ F_3C
1205	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1206	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
1207	H ₃ CCH ₂ -	1	2	0	R	н _	-CH ₂ -N-C-
1208	H₃C————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CI
1209	H ₃ CCH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CH ₃
1210	H ₃ C-CH ₂ -	1	2	0	R	. Н	-CH₂-N-C-CI

Table 1.111

I able							
Compd.	R ² (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1211	H₃C-⟨CH₂-	1	2	0	R	н	-CH₂-N-C-F
1212	н₃С-{СН₂-	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1213	C├ - CH₂-	2	2	1	-	H	-CH ₂ -N-C
1214	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C
1215	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
1216	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1217	CH-2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1218	CH2-	1	2	0	R	н	-CH ₂ -N-C- H F
1219	C⊢√CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1220	CH2-	1	2	0	R ·	н	-CH ₂ -N-C-
							$-CH_{2}-N+C$ $H_{2}N$

Table 1.112

		•					
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1222	C⊢	1	. 2	0	R	Н	-CH ₂ -N-C-N-H
1223	C⊢—CH₂-		,			Н	-CH ₂ -N-C-
1224	C⊢√CH₂-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1225	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1226	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH₂-N-C-S-CH3
1227	H ₃ C-CH ₂ -	1	2	0	R	H	-CH₂-N-C-CI
1228	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1229	H₃C—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-F H ₂ N
1230	H ₃ CCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N H
1231	H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1232	H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂

Table 1.113

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1233	CH₃ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1234	CH ₃ N CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CH ₃
1235	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-CI
1236	CH₃ N CH₂- CH₃	1	2	0	R	H	$-CH_2-NC-$ H_2N
1237	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F H ₂ N
1238	CH ₃ N CH ₂ - CH ₃				R	н	-CH ₂ -N-C-N-H
1239	CH ₃ N CH ₂ -					н	-CH ₂ -N-C-
1240	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1241	C⊢————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1242	C⊢CH₂-	2	2	1	-	н	-CH ₂ -N-C
1243	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI

Table 1.114

lable	1.17						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1244	с⊢{}-сн₂-	2	2	1	<u>.</u> ·	н	-CH ₂ -N-C-
1245	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-F
1246	с⊢—СН₂-	2	2	1		H	-CH ₂ -N-C-VI
1247	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C
1248	CH2−	2	2	1	- ·	н	-CH ₂ -N-C- HO
1249	с⊢{	1	2	0	R	н	-CH ₂ -N-C
1250	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1251	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1252	С⊢—СН₂-	1	2	0	R	Н	-CH ₂ -N-CCH(CH ₃) ₂
1253	H₃C————CH₂-	1	2	0	R	н	-CH ₂ -N-C-CH(CH ₃) ₂
							-CH2-N-C-(CH3)2

Table 1.115

₂) _q G-R ⁶
Br
Br
Br
∑CI
ÇI
OCH₂CH₃
,C(CH₃)₃)
,C(CH₃)₃)
,C(CH ₃) ₃
)))

Table 1.116

i abic ,							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1266	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1267	CHCH2-	1	2	0	R	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1268	С-СН2-	1	2	0	R	н	$-CH_2-NC$ H_3CO
1269	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1270	СН2−	1	2	Ó	R	н	-CH₂-N-C
1271	с⊢{	1	2	0	R	н	-CH ₂ -N-C
1272	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
	H ₃ C-CH ₂ -		•			Н	-CH ₂ -N-C- H H ₃ CO
1274	H ₃ C-CH ₂ -	1	2	0	R _.	н	-CH ₂ -N-C- HO C-CI
1275	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- HO
1276	H ₃ C-()-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.117

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	[*] R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1277	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-H
1278	CH ₃ CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-CI
1279	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C HO
1280	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- HO
1281	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CF
1282	С⊢С СН₂-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1283	C⊢(2	2	1	-	н	-CH ₂ -N-C
1284	C⊢√_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1285	CH2-	2	2	1	- .	н	-CH ₂ -N-C
1286	H ₃ ¢	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1287	NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.118

lable	1.110						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1288	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1289	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1290	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N CH_3
1291	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1292	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N Br
1293	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H
1294	H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1295	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1296	H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- S SCH ₃
1297	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N$ F_3C CH_3 F_3C
1298	H_3CO CH_2 Br	1	2	0	R	н	-CH ₂ -N-C

Table 1.119

rapie	1.119						
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
1299	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1300	OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1301	OCH ₃ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1302	H ₃ C CH ₃ H ₃ CO−CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1303	H ₃ CO H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1304	H ₂ CQ CH ₂ O-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	н '	-CH ₂ -N-C-CF ₃
1306	H₃CCH2Q H₃CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO ————————————————————————————————————	1	2	0	R	н	-CH₂-N-C-CF3
	CH₂-					н	-CH2-N-C-CF3
1309	H ₃ CO ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C

Table 1.120

		_					
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1310	H ₃ CQ HO————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1311	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1314	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1315	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	F ₃ C CH ₂ -					н	-CH ₂ -N-C-CF ₃
1317	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1318	CH2−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1319	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1320	Br-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃

Table 1.121

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1321	С⊢{СН₂-	1	2	0	R .	н	-CH ₂ -N-C- H
1322	С⊢{СН₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1323	с⊢Ст₂-	1	2	0	R	н	-CH ₂ -N-C-CI
1324	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C- HO CH ₃
1325	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1326	С├-{}СН₂-	1	2	0	R	н	-CH₂-N-C
1327	СНСН2-	1	2	0	R	н	$-CH_2-N-C \xrightarrow{\qquad \qquad CH_3 \qquad \qquad } H_2N$
1328	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1329	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1330	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C
1331	H ₃ C-(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- HO

Table 1.122

· ubic							
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1332	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C
	H ₃ C-CH ₂ -						-CH ₂ -N-C
1334	H ₃ C-(CH ₂ -	1	2	0	· R	н	$-CH_2-N+C-$ H_2N CH_3
1335	CH ₃ N CH ₂ -	1	2	0	R .	н	-CH₂-N-C
1336	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- CH ₃
1337	CH₃ N CH₂- CH₃					н	$-CH_2-N$ C-CI
1338	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1339	CH ₃ N—CH ₂ - CH ₃					H ·	н 👄 😅
1340	CH ₃ N − CH ₂ - CH ₃	. 1	2	0	R	н	$-CH_2-N$ C HO
1341	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_{2}-N$ $H_{2}N$ CH_{3} $H_{2}N$
1342	CCH₂-	2	2	1	-	н	-CH ₂ -N-C- Br CI

Table 1.123

, abic	20				·		
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
1343	C⊢√CH₂-	2	2	1	-	H	-CH ₂ -N-C-CH ₃
1344	CH2-	2	2	1	-	н	-CH ₂ -N-C
1345	CH2-	2	2	1	-	H .	-CH ₂ -N-C
1346	СН-СН2-	2	2	1	-	н .	-CH ₂ -N-C
1347	СН2-	1	2	0	R	н	-CH ₂ -N-C-STCH ₃
1348	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-STCH ₃
1349	CH ₃ CH ₂ − CH ₃	1	2	0	R .	н	-CH ₂ -N-C-S CH ₃
1350	CH-2-	2	2	1	-	н	-CH ₂ -N-C-S-CH ₃
1351	CH2−	1	2	0	R	н	-045-Hri
1352	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-012-HC-012
1353	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-012-H C-013

Table 1.124

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1354	С⊢СН₂−	2	2	1	-	н	, -015-Hui
1355	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CN
1356	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1357	CH ₃ CH ₂ CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1358	снсн ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1359	CH ₃ CH ₂ — CH ₃	. 1	2	0	R	Н	-CH ₂ -N-C-
1360	CH ₃ CH ₂ -	1	2	0	R	H	$-CH_{2}-N-C$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$
1361	H ₃ C-CH ₂ -				•		-CH ₂ -N-C- H C- OCH ₃
1362	CH ₃ CH ₂ - CH ₃	1	2	0	R		-CH ₂ -N-C-CH ₃
1363	CH ₃ CH ₂ -	1	[,] 2	0	R	н	-CH ₂ -N-C-CH ₃
1364	H₃C−CH₂−	1	2	0	R	н	-CH ⁵ -M-C- ∪ CH ³

Table 1.125

						R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
	CH ₃ CH ₂ − CH ₃					н	-CH ₂ -N-C- H
1366	CH₃ N CH₂- CH₃	1	2	0	R	H	-CH ₂ -N-C-CH ₃
1367	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1368	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1369	CH-(-)-CH2-	1	2	0	R	н	-CH ₂ -N-C
1370	CH	1	2	0	R	н	-CH ₂ -N-C-SBr
1371	C	1	2	0	R	н	-CH ₂ -N-C-S
1372	С-СН2-	1	2	0	R	н	- CH 2- N C-
1373	H₃C	1	2	. 0	R		-CH ₂ -N-C
1374	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C- F ₃ CCH ₂ O
	H ₃ CCH ₂ -						-CH2-N-C-SJBr

Table 1.126

lable	1.120						
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1376	H₃C⟨}-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
	H ₃ C-CH ₂ -					Н	- CH ₂ -N+C-
1378	CH₃ N CH₂- CH₃	1	2	0	R	H	-CH ₂ -N-C
	CH₃ N—CH₂- CH₃					Н	-CH ₂ -N-C- H F ₃ CCH ₂ O
1380	CH₃ N—CH₂- CH₃					н	-CH ₂ -N-C-SBr
1381	CH₃ N CH₂- CH₃					Н	-CH ₂ -N-C-
1382	CH ₃					н	-OH 2-N C-
1383	CH ₂	2	2	1	-	Н .	-CH ₂ -N-C-CF ₃
1384	С⊢—СН₂-	2	2	1	-	H	-CH ₂ -N-C-S Br
1385	CH2-	2	2	1.	-	Н	-CH ₂ -N-C-
1386	C⊢————————————————————————————————————	2	2	1	-	н	-OH2-N+C-

Table 1.127

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1387	CH₃ CH₃	1	2	0	R	н	-CH2-N-C-
1388	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н.	$-CH_2-N-C-\bigvee_{N}^{\square}C(CH_3)_3$ $-CH_2-N-C-\bigvee_{N}^{\square}N$ $-CH_3$
	CH ₃ CH ₂ -					Н	-CH2-N-C-
1390	H_3C CH_3 H_3C CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1391	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1392	CI H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1393	н ₃ ссн ₂ —Сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1394	O ₂ N H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H ₂ C=CH-CH ₂ -						-CH ₂ -N-C-CF ₃
1396	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1397	Br CH ₂ -	1	· 2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.128

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
1398	CH→CH→	1	2	0	R	н	-CH₂-N-C-CF3
1399	CH-CH-CH	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	с⊢СН-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1401	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CI
1402	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1403	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-_N
1404	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1405	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N H ₃ CS
1406	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√CH ₃
1407	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H ₃ CCH ₂ S
1408	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N

Table 1.129

lable	1.129						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1409	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1410	CH ₃	1 .	2	0	R	н	-CH ₂ -N-C-
1411	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-S-NH
1412	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N+C-NH
1413	CH₃ N CH₂- CH₃	· 1	2	0	R	н	
1414	C€	2	2	1	-	н	
1415	C	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
	H ₃ C-CH ₂ -				R	Н	-CH ₂ -N-C-SCN
							-CH ₂ -N-C-SCN H ₂ N
						н	-CH ₂ -N-C-SCN
1419	CCH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N

Table 1.130

Table	1.130						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1420	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SH H ₂ N
1421	CH₃ N—CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-SH
1422	С⊢СН₂-	2	2	1		н	$-CH_2-N-C$ H_2N SH H_2N
1423	СН-СН2-	1	2	0	R	н	-CH ₂ -N-C-
1424	H ₃ C-\	1	2	0	R	Н .	-CH ₂ -N-C-
1425	CH ₃ CH ₂ CH ₃	1	2	0	R	. н	-CH ₂ -N-C-
1426	СНСН	2	2	1	-	н	-CH ₂ -N+C-
1427	CHCH2-	2	2	1	-	н .	−CH ₂ −N-C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1428	С├─────СН₂-	2	2	Ť	-	н	-CH ₂ -N-C
1429	H ₃ CCH 2O-СН2-	2	2	1	-	н	-CH ₂ -N-C
1430	O————————————————————————————————————	2	2	i	-	н	-CH ₂ -N-C

Table 1.131

Compd No.	· R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1431	њссн₂о-{_} сн₂-	2	2	1	-	н	-CH ₂ -N-C
1432	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1433	ңссн 20-√—Сн2-	2	2	1	-	н	-CH2-N-CH2CH
1434	H ₃ CCH ₂ O-CH ₂ -	2	2	1	-	Н	-CH2-NC-S HN CH2-CH3CH3
1435	ң ссн₂—Сн₂-	. 2	2	1	-	Н	-CH ₂ -N-C-
1436	(H ₃ C) ₂ CH-(2	2	1	-	н	$-CH_2-N-C$ H_2N
1437	ӉС(СН ₂) ₂ О—(¯¯)—СН ₂ -	2	2	1	-	H,	-CH ₂ -N-C-CI
1438	н₃ссн₂———сн₂-	2	2	1	-	н	-CH ₂ -N-C
1439	(HgC)2CH	2	2	1	-	н	-CH ₂ -N-C-S
1440	ң ₅ С(СН ₂) ₂ О	2	2	1	-	н	-CH ₂ -N-C
1441	н₃сѕ—Сн₂-	2	2	1	-		-CH ₂ -N-C

Table 1.132

. 45.0							
Compd No.	. R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1442	н₃ссн₂—Сн₂-	2	2	1	-	н	-CH2-N-CH2CH2
1443	(HgC)2CH—CH2-	2	2	1	-	н	-CH2-N-C
1444	H ₃ C(CH ₂) ₂ O{\bigcitcle} - CH ₂ -	2	2	1	-	н	-CH2-NC
1445	н₃ссн₂—Сн₂-	2	2	1	-	Н	-CH2-N-C
1446	(H ₃ C) ₂ 'CH-⟨CH ₂ -	2	2	1,	-	н	-CH2-NC-ST
1447	H ₂ C(CH ₂) ₂ O	2	2	1	-	н	-0+2-N-C
1448	H₃Ç S- ⟨CH ₂ -	2	2	1	-	н [:]	-CH ₂ -N-C
1449	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1450	(H ₂ C) ₂ CH-(-)-CH ₂ -	2	2	1	-	Н ,	-CH ₂ -N-C-CF ₃
1451	(H3CCH2)2N—()-CH2-	2	2	1	-	н	-CH2-N-C-CF3
1452	HQ H ₃ CO—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃

Table 1.133

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
1453	н ₅ с(сн ₂)₂О—Др-Он₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1454	H ₆ CCH 2O−€ CH2−	2	2	. 1	-	Н	-CH ₂ -N-C CF ₃
1455	H ₃ CQ HO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1456	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1458	H ₃ CQ HO—CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1459	(H ₃ C) ₂ N-CH ₂ -	2	2	1	<u>.</u> ·	н	$-CH_2-N-C$ H_2N H_2N Br
1460	H ₃ CQ HO—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C \longrightarrow Br$ H_2N
1461	H0-CH ₂ -	2	2	1	-	Н	-CH2-NC-OCH
1462	H ₃ CQ HO- C H ₂ -	2	2	1 .	-	н .	-CH2-N-CH2-OCH
1463	C	2	1	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.134

1464 $CH_{2}-CH_{2}-2$ 1 1 - H $-CH_{2}-NC_{2}-CF_{3}$ 1465 $CH_{2}-CH_{2}-2$ 1 1 - H $-CH_{2}-NC_{2}-CF_{3}-CF_{3}$ 1466 $CH_{2}-CH_{2}-2$ 1 1 - H $-CH_{2}-NC_{2}-CF_{3}-CF_$		• • •				•		
1465 CH_{2} CH_{2	Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1466 $C \mapsto CH_{2^{-}} = 2 + 1 + 1 + \cdots + H + C \mapsto CH_{2^{-}} \mapsto CH_{2^{-}} = CH_{2^{-}} \mapsto C \mapsto CH_{2^{-}} = CH_{2^{-}} \mapsto CH_{2^{-}} \mapsto CH_{2^{-}} = CH_{2^{-}} \mapsto CH_{2$	1464	C-CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-C-C-S
1467 $C \mapsto C $	1465	CH_CH2-	2	1	1	-	н	-CH ₂ -N-C- F ₃ C
1468 $CH_{2}-CH_{2}-2$ 1 1 - H $-CH_{2}-NC$ CF_{3} 1469 $CH_{2}-CH_{2}-2$ 1 1 - H $-CH_{2}-NC$ CF_{3} 1470 $CH_{2}-CH_{2}-2$ 1 1 - H $-CH_{2}-NC$ CI 1471 $CH_{2}-CH_{2}-2$ 1 1 - H $-CH_{2}-NC$ CI 1472 $CH_{2}-CH_{2}-1$ 2 0 R H $-CH_{2}-NC$ $CF_{3}-CC$	1466	с⊢С}–сн₂-	2	1	1	-	н	-CH2-N-C-
1469 $CH - CH_2 - 2$ 1 1 - $H - CH_2 - N - CH_3 - CH_4 - CH_2 - N - CH_5 - N - CH_5 - N - CH_5 - N - CH_5 $	1467	C⊢√CH₂-	2	1	1	-	н	-CH ₂ -N-C
1470 CH_2 2 1 1 - H CH_2 2 1 1 - CH_2 CH_2 2 1 1 - CH_2 CH	1468	CHCH ₂ -	2	1	-1	-	Н	-CH ₂ -N-C-\(\sigma\)
1471 CH_2 2 1 1 - H CH_2 2 1 1 - CH_2 CH_3 1 2 0 R H CH_2 CH_3 CH_2 1 2 0 R CH_3 CH_4 CH_2 CH_5	1469	CHCH ₂ -	2	1	1		н	-CH ₂ -N-C
1472 CH ₂ - 1 2 0 R H -CH ₂ -N-C- CF ₃	1.470	СН2-	2	1	1		н	-CH ₂ -N-C-CI
	1471	С⊢—СН₂∸	2	1	1	-	Н	-CH ₂ -N-C-F
1473 $\xrightarrow{Br} \xrightarrow{S} \xrightarrow{CH_2^-} $ 1 2 0 R H $\xrightarrow{-CH_2^-} \xrightarrow{N} \xrightarrow{C} \xrightarrow{CF_3} $								-CH₂-N-C
1474 CH ₂ - 1 2 0 R H -CH ₂ -N-C-CF ₃	1473	Br S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1474	CH3-CH3-	1	2	0	R	н	-CH₂-N-C-CF3

Table 1.135

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1475	Ch CH2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1476	Br S CH ₂ -	1	2	0	. _. R	Н .	-CH2-N-C-CF3
1477	Br	1	2	0	R	н	-CH ₂ -N-C
	Br Q - OH2-					н	-CH ₂ -N-C-CF ₃
1479	H ₃ C-CH ₃ CH ₃	1	2	0	R _.	н	-CH₂-N-C-CF3
1480	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1481	СН ₃ Н ₃ С — СН ₂ − Н ₃ С	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1482	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1483	H ₃ C CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1484	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
							-CH ₂ -N-C-S-F

Table 1.136

	• • • • •						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1486	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1487	H₃C	1	2	0	R	H	$-CH_2-N$ - C - H - H_2N - C 1
1488	н₃С{СН₂-	1	2	0	R	н	-cH₂-N-C
1489	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1490	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1491	H ₃ C-CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C
1492	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
	CH_3 CH_2 CH_3					н	-01-Hc-50
1494	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C
1495	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1496	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C

Table 1.137

Compd. No.	R ¹ (CH ₂);	k	m	ก	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1497	CH ₃ CH ₃	1	2	0	R	н	-CH ⁵ -V-CH ³ CH ³
1498	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1499	CH₃ N—CH₂- CH₃	1	2	0	R	H .	-CH ₂ -N-C-√
1500	CH ₃ N—CH ₂ -	1	2	0	R	Н	-CH ⁵ -M-C- O CH ³
1501	CH ₃	1	2	0	R .	н	$-CH_2-N-C-$
1502	CH ₃ CH ₂ −					н	-CH ₂ -N-C-CF ₃
1503	CH ₃	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1504	H₂N-CH₂-	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1505	CH ₂ O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	C├ - CH₂-	2	1	1	-	н	-CH ₂ -N-C-SBr H ₂ N
1507	CH-2-	2	1	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$

Table 1.138

rabie	1.138						
Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1508	C⊢—CH₂-	2	1	1		н	-CH ₂ -N-C
1509	С⊢—СН₂-	2	1	1	-	н	- CH ₂ -N-C-
1510	CH ₂ -	2	1	7	-	H	$-CH_2-NCC \longrightarrow H_2N$
1511	CH2-	2	1	1	-	н	-CH ₂ -N-C-\S Br
1512	C⊢-{	2	1	1	-	н	-CH ₂ -N-C
1513	CHCH ₂ -	2	1	1	-	н	CH2-N-C
1514	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
	HQ H ₃ CO—CH ₂ -				-	Н	-CH ₂ -N-C
1516	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1517	HQ . H ₃ CO-CH ₂ -	2	2	1	-	н	-CH₂-N-C-SBr
1518	HQ H₃CO-CH₂-	2	2	1	-	н	-CHZ-NC-OCH
							•

Table 1.139

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1519	HQ H ₃ CO-CH ₂ -	2	2	1	-	н	-сн ₂ -мс- ни сн ₂ -оснь
1520	Br——CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1521	H ₃ CO	1	2	0	R	Н	-CH ₂ -N-C-S
1522	-CH ₂ -	1	2	0	R	н	-CH₂-N-C-
1523	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1524	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-
1525	Br—CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1526	Н₃СО-{СН₂-	1	2	0	R	н	-CH ₂ -N-C-C-C-C-S
1527	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C-C-C-C-C-S
1528	H₃COCH₂-	1	2	O	R	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1529 .	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-OCF ₃

Table 1.140

lable	1.140						
Compd. No.	R ² -(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1530	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1531	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH₂-N-C-(CF3
1532	O————————————————————————————————————	1	2	0	R	H [°]	-CH2-N-C- F
1533	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1534	H ₃ CQ HO————————————————————————————————————	1	2	O	R	н	-CH₂-N-C-CF3
1535	ВСН2-	1	2	O	R	Н	-CH ₂ -N-C-CF ₃
1536	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
1537	CH₂-	1	2	0	R	н Н	-CH ₂ -N-C-CF ₃
1538	H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1539	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$
1540	Вг—СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	•						

Table 1.141

rabie	1.141							
Compd No.	R ¹	-(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}^{-}G-R^6$
1541	н₃со—		1	2	0	R	Н	-CH₂-N-CFF
1542		CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1543	H₃CO(-C	1	2	0	R	н	-CH ₂ -N-C
1544	но-√		1	2	0	R	н	-CH ₂ -N-CF
1545	CL	S—CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1546	H₃CO	CH ₂ -	. 1	2	0	R	H.	-CH ₂ -N-C
1547	н₃со-{	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C CF ₃
1548	н₃с⊸{¯		1	2	0	R	Н	-СH ₂ -N-С СН ₃ СН ₃ СН ₃
1549 ·	н₃с⊸{¯	CH2-	1	2	0	R	н .	-CH ₂ -N-C
1550	Н₃С-{	CH2	1	2	0	R	Н	-042-H-C-H-C-H-CO
1551	н₃с-{¯	CH2-	1	2	0	R	н	-CH2-HC-

Table 1.142

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1552	H ₃ C-(CH ₂ -	1	2	0	R	н	-CH2-N-C-
1553	H ₃ C-CH ₂ -	1	2	0	R	н	-013-Hc-\n 6 CH3
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1555	H ₃ C-CH ₂ -	1	2	0	R	н	CH ₂ -N-C-N CH ₃ H ₃ C
1556	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N$ CH_3 H_3C
1557	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1558	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1559	H ₃ C-CH ₂ -	- 1	2	0	R	н	$-CH_{2}-N-C-(CH_{3})_{3}$ $H_{3}C$
1560	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1561	H ₃ C-CH ₂ -	1	2	0	. R		$-CH_{2}-N$ CH_{3} CH_{3} CH_{3}
1562	H₃C	1	2	0	R	н	-CH ₂ -N-C

Table 1.143

	•••						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. K ₃	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1563	H₃C-√	1	2	0	R	. н	-cH,-Mc-
1564	H₃C-⟨CH ₂ -	1	2	Ó	R	н	-cH ⁵ -H _C -
1565	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1566	CH ₃ CH ₂ − CH ₃	· 1	2	0	R	н	-CH ₂ -N-C
1567	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	-cu ⁵ -H _C -
1568	CH ₃ CH ₂ CH ₃	1	2	O	R	н	-042-17 C-
1569	CH_3 CH_2 CH_3	1	2	0	· R	H	-сн₂-й-с-
1570	н₃сѕ-{}сн₂-	2	2	1	-	н	$-CH_2-N-C-$ $-CH_2-N-C-$ H_2N
1571	н₃сѕ-{	2	2	1	-	н	-CH2-N-C
1572	Cho-C-OH2	2	. 2	1	-	н	-CH ₂ -N-C-CF ₃
1573	н,со-Дрс-Оч,-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.144

Table	1.144						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1574	H°C	2 .	2	1	-	н	-CH ₂ -N-C-CF ₃
1575	CF	2	2	1.	-	н	$-CH_2-N-C$
1576	0 N-C- CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1577	HOICH3 2- H C	2	2	1	-	Н	-сн ₂ -N-С-СF ₃
1578	H ₃ C Q CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-CF ₃
1579	CH3 P CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1580	O-N-C	2	2	1	- -	H	-CH ₂ -N-C-CF ₃
1581	ССН2-	2	2	1	-	H	-CH ₂ -N-C-S-NH
1582	CHCH ₂ -						- CH2- N. C- CH3
1583	CHCH ₂ -	1	2 [.]	0	R	н	$-CH_2-N-C-$ H_2N
1584	CHCH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N$

Table 1.145

Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1585	С⊢√СН₂-	1	2	0	. R	H	-CH ₂ -N-C
1586	C├ ~ CH ₂ -	·1	2	0	R	н	-CH ₂ -N-C-
1587	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1588	C├ - CH ₂ -	1	2	0	R	Н	-CH2-N-C- HC- CH3
1589	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1590	H ₃ C-CH ₂ -	1	2	0	R	Н.	$-CH_2-N+C-$ H_2N
1591	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-S
1592	H ₃ C-CH ₂ -	1	2	0	R .	H .	-CH ₂ -N-C-\(\sigma\)
1593	H₃C-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1594	CH ₃ CH ₃	1	2	0	R	н	$-CH_{2}-NC$ $-CH_{2}-NC$ $+CH_{2}-NC$ $+CH$
1595	CH ₃ CH ₂ -	1	2	0		н	$-CH_{2}-N+C$ $H_{2}N$ $H_{2}N$

Table 1.146

	•	_					
Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1596	CH ₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-CBr
1597	CH ₃ CH₂-	1	2	0	R	н .	-CH ₂ -N-C-
1598	CH ₃ CH ₂ - CH ₃		2	0	R	н	-CH ₂ -N-C-
1599	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-√CH ₃
1600	CH2-	2	2	1	-	н	$-CH_2-N-C$ H_2N
1601	CH2-	2	2	<u>,</u> 1	-	н	$-CH_2-N$ C H_2N O
1602	CH2-	2	2	1	-	н	-CH₂-N-C-S
1603	CH2-	2	2	1	-	Н .	-CH2-N-C-
1604	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-
1605	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃ :
1606	CH2-	1	2	0	R	н .	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+C$ $-CH_{2}-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$

Table 1.147

Table	1.177						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	. R ³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1607	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1608	CH ₃ N—CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	С⊢—СН₂-	2	2	1	-	н .	-CH ₂ -N-C-SCF ₃
1610	CF3 P N-C-CH2-	2	2	1	-	. н	CH ₂ -N-C
1611	CH	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1612	H²CO(CH3Y- H°C-C-CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1613	H 0 CH3 0	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1614	F3CS-CH2-	1	2	0	R	н	-CH₂-N-C-CF3
1615	F3CS-CH2-	2	2	1	-	Н	-CH ₂ -N-C- CF ₃
1616	F ₃ CSCH ₂ -	2	2	1	-	• н	-CH ₂ -N-C
1617	F3CS-CH2-	2	2	1	-	' н	$-CH_2-N-C$ H_2 H_2 H_2

Table 1.148

I abic	1.140		_				
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1618	HQ H₃CO—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1619	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1620	HQ H ₃ CO—CH ₂ -	1	2	0	R	. H	-CH ₂ -N-C-CF ₃
1621	HQ H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- CF ₃
1622	HQ H ₃ CO—CH ₂ -	1	2	0	R	Ĥ	-CH ₂ -N-C-CF ₃
1623	HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1624	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1625						н	-CH ₂ -N-C-CF ₃
1626	HO(CH₂-	1	2	0	R	H	-CH ₂ -N-C
1627	HO€	1	2	0	R	н	-CH ₂ -N-CF
1628	H₃CS- ()-CH₂-	1	2	0	R .	н	-CH ₂ -N-C-CF ₃

Table 1.149

I able	1.145						
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \stackrel{\mathbb{R}^4}{\underset{\mathbb{R}^5}{ }} (CH_2)_{\overline{q}} G^- \mathbb{R}^6$
1629	H₃CSCH₂-	. 1	2	0	R	н	-CH ₂ -N-CF
1630	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1632	CF ₃ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC—CH ₂ —	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1634	(H ₂ C) ₂ CH CH ₂ -	1	.2	0	R	Н	-CH₂-N-C-CF₃
1635	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1636	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1637	CH ₃ CH ₂ - CH ₃	1	2	0	R	• н	-OH ₂ -N-C-(CH ₂) ₄ CH ₃
1638	CH ₃ CH ₂ − CH ₃	1	2	0	R	н _.	-CH ₂ -N-C
1639	CH ₃ CH ₂ - CH ₃	1	2	0	R	, н	-сн3-Ц с-осн3сн3

Table 1.150

. 4510							•
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1640	CH₃ N—CH₂− CH₃	1	2	0	R	н	-CH2-N-C- H-CH2)3CH3
1641	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C
1642	CH ₃ N CH ₂ − CH ₃	1	2	0	R	H	$-CH_{2}-N-C-$ H $O_{2}N-$ O_{3}
1643	CH₃ N CH₂− CH₃	1	2	0	Ŕ	Н	-CH ₂ -N-C
1644	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-
1645	CI CH₂-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1646	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1647	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1649	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1650	H ₃ C(CH ₂) ₂ —CH ₂ -	.1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.151

· ubic	1.10.						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1651	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	н	-CH2-N-CH2)3CH3
1652	н ₃ С(СН ₂) ₃ —СН ₂ -	2	2	1	-	н	$-CH_2-N-C-\longrightarrow_{H_2N}^{O}$
1653	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1654	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N H_2N
1655	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	Н	-CH2-N-C
1656	H ₃ C(CH ₂) ₃ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1657	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH2-NC
1658	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N
1659	С⊢—СН₂-	2	2	1	-		$-CH_2-N-C-$ H_2N H_2N CI
1660	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1661	Br—CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $+CH_{2}-N-C-$ $+CH_$
							•

Table 1.152

H ₂) _q -G-R ⁶
F
CI
CF₃
OCF ₃
F
Br Br
F
OCF ₃
OCF ₃
CF ₁

Table 1.153

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1673	н₃ссн₂-{	2	2	1	•	н	-CH ₂ -N-C-Sr CI
1674	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-OBr
1675	F-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1676	F————CH ₂ -	2	2	1	-	H	$-CH_2-N-C-$ H_2N
1677	F-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1678	F	2	2	1	-	н	$-CH_2-NC-$ H_2N
1679	F—CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H H_2N
1680	F—————————————————————————————————————	2	2	1	<u>-</u>	н	-CH ₂ -N-C
1681	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1682	F-CH ₂ -	2	2	1	-		-CH₂-N-C
1683		2	2	1	-	н	-CH₂-N-C-(Br

Table 1.154

Compd.	R ¹ (CH ₂)	k	m	n	chirality	. K3	ー(CH ₂) _p + (CH ₂) _q G-R ⁶ R ⁵
1684	₩ C-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1685	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	2	1	-	н	-CH2-N-C
1686	H C-CH2-	2	2	1	-	н	-CH ₂ -N-C
1687	₩°Ç-₩-C+12-	2	2	1	-	н	$-CH_2-N-C$ H_2N
1688	— H c — CH2-	2	2	1	-	н ·	-CH ₂ -N-C-
1689	Р. С.—С. С.Н.2-	2	2	1	-	Н .	$-CH_2-N-C-$ H H_2N
1690	— N c − C + 2 −	2	2	1	· -	_. H	$-CH_{2}-N-C$ $H_{2}N$
1691		2	2	1	-	Н	-CH ₂ -N-C
1692	CH ₃	1	2	0	R ·	Н	-CH2-N-C-OBr
1693	H ₃ C—CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C
1694	H_3C CH_3 CH_2	1	2	0	R	н	-CH ₂ -N-C-F
1054	H₃C-()-CH₂-	•	-		• • •	• •	+ H >=✓ H₂N

Table 1.155

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}}$
1695	CH ₃ H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1696	H ₃ C————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1697	H_3C CH_3 CH_2	1	2	0	R	Н	-CH ₂ -N-C
1698	H_3C — CH_2 — CH_2 —	1	2	0	R	Н.	-CH ₂ -N-C
1699	H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1700	H ₃ C—CH ₂ -	1	2	.0	R	Н	-CH ₂ -N-C
1701	H ₂ C=CH-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1702					R	н	$-CH_2-N-C$ H_2N
1703	CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N CF_3 CF_3
1704	HO€	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{2}-N-C$
1705	CH2-	1	2	0	R	н	-CH ₂ -N-C
					•		

Table 1.156

Compo No.	$H^{2} \longrightarrow (CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1706	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N CF_3
1707	н₃СЅ-{СН₂-	1	2	0	R	H·	$-CH_2-NCC \longrightarrow H_2N$
1708	н₃ссн₂—СҺ₂-	1	2	0	R ,	н	-CH ₂ -N-C
1709	(HgC)₂CH-{\rightarrow}-CH2	1	2	0	R	н	$-CH_2-N-C-$ H_2 H_2 N
1710	H ₃ C Br————————————————————————————————————	1	2	0	R	н	-CH₂-N-C-CF₃
1711	CH₃ —CH₂-	1	2	0	R	н	-CH₂-N-C-CF₃
1712	H ₃ CCH ₂ Q HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1713	H ₃ C HO—CH₂−					Н	-CH ₂ -N-C-CF ₃
1714	HQ . H ₃ CO—CH ₂ — HO	1	2	0	R	н	-CH ₂ -N-C
1715	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
1716	CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{3}-N-C$ $-CH_{2}-N-C$ $-CH_{3}-N-C$

Ta	ble	1.	1	5	7
----	-----	----	---	---	---

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1717	OCH ₃ H ₃ CO-⟨N-) - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1718	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1719	ÇN—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1720	H ₂ CO-C, H ₃ C ← CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1721	ңссн₂-√—сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1722	-CH ₂ -	1	2	0.	R	н	-CH ₂ -N-C-CF ₃
1723		1	2	0	R	н	-CH ₂ -N-C-CF ₃
	CH ₃					Н	-CH ₂ -N-C-CF ₃
1725	CH ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1726	н₃ссн₂-{	1	2	0	R	н	-CH ₂ -N-C
1727	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F

Table 1.158

Compd.	R^{1} $(CH_{2})_{j}$	k	m	'n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1728	CH₂-	1	2	0	R	н	-CH ₂ -N-C-F
1729	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1730	H ₂ C	1	2	0	R	Н	-CH2-N-C-CF3
1731	H ₃ COH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1732	носн ₂ —Сн ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1733	-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1734	н₃сѕ—СҺ₂-	1	2 ,	0	R	н	-CH ₂ -N-C-CF ₃
1735	н₃ссн₂—Сн₂	1	2	O	R	н	$-CH_2-N-CF$
						н ,	-CH ₂ -N-CF
1737	CH ₃	1	2	0	R	н	-CH ₂ -N-CF
1738	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.159

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1739	(H ₂ C) ₂ CH————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃ F
1740	−CH ₂ −	1	2	0	R	. н	-CH ₂ -N-C
1741	H₃CS—()—CH₂-	1 .	2	0	R	н	-CH₂-N-C-
1742	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1743	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1744	H_3C CH_2 CH_2	1	2	· 0	R	Н	-CH ₂ -N-C-✓Br
1745	CH ₃ H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1746	(HgC)2CH CH2	1	2	0	R	Н	-CH ₂ -N-C-→Br
1747	-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-\longrightarrow_{H_2N}^{Q}$
1748	н₃ссн₂—Сн₂-	1	2	0		н	-CH ₂ -N-C-
1749	CH ₃ · CH ₂ −	1	2	0	Ŕ	н	-CH ₂ -N-C

Table 1.160

						-	
Compo No.	i. R ¹ (CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶ R ⁵
1750	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1751	н₃СЅ—(СН₂-	1	2	0	·R	н	-CH ₂ -N-C
1752	н₃ссн₂————сн ₂ -	1	2	0	R.	н	-СH ₂ -N-С-СОСF ₃
1753	CH₂-	1	2	0	R	• н	-CH ₂ -N-C
1754	H_3 C- CH_2 -	1	2	0	R	H.	-CH₂-N-C-OCF3
1755	Н ₃ С—СН ₂ -	1 .	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1756	(H ₂ C) ₂ CH CH2	1 ·	2	0	R	н	-CH ₂ -N-C
1757	Br Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
1758	H ₃ CO Br CH ₂ -	1	2.	0	R	н	-CH ₂ -N-C-CF ₃
1759	H ₃ C- (CH ₂ -	1	2	0	R	н	-01-Hg-
1760	H₃CCH₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.161

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (C$
1761	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-H-CI
1762	CH³ CH³	1	2	0 ·	R	н	-CH2-HCC-HCC
1763	CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C
1764	CH₂-	2	2	0	-	н	-CH2CH2-N-C
1765	CH₂−	2	2	0	- .	Н	(S) OCH ₂ CH ₃ -CH-N-C
1766	CH₂-	· 2	2	0	-	н	(<i>R</i>) Q OCH ₂ CH ₃ -CH-N-C
1767	CH-2-	1	3	1	•	н	-CH ₂ -N-C-OCH ₂ CH ₃
1768	CH-CH ₂ -				•	н	-CH2CH2-N-C
1769	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C
1770	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-NCNC-O CI
1771	CH ₃ CH ₂ - CH ₃	1	2	.0	R	н	-CH ₂ -NC- (H ₃ C) ₃ C-CH-N-C H ₃ C

Table 1.162

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	·R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1772	CH ₃ CH ₂ CH ₃	1	2	0	R	н	H ₃ C H
1773	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	H ³ C H C O
1774	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1775	HO—CH ₂ — H ₃ CO	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1776	H ₃ CO—CH ₂ —	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1777	CH ₂ − Cl	2	2	1	•	Н	$-CH_2-N-C-$ H_2N
1778	H₃C-⟨	2	2	1	-	Н	$-CH_2-N-CF_3$ H_2N
1779	CH₂-				-	H	$-CH_2-N+C-$ H_2N
1780	Br—CH ₂ —	2	2	1	·	н	$-CH_2-N_1-C H_2N$ CF_3 CF_3
	HO-{					н	$-CH_2-N-C \xrightarrow{\bigcap_{H_2 N}} CF_3$
1782	H ₂ C=CH-{\bigce}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	-R3	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1783	NC-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-CF ₃
1784	€ CH ₂ -	2	2	1	-	н ·	$-CH_2-N+C-$ H_2N
1785	CH ₃ (CH ₂) ₂ -CH ₂ -	2	2	1	-	н	$-CH_{2}-N+C$ $H_{2}N$ $H_{2}N$
1786	CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1787	CH ₃ (CH ₂) ₂ —————————————————————————————————	· 1	2	0	R	н	-CH ₂ -N-C- H H ₂ N
1788	H₃C-⟨CH₂-	2	2	1	-	H	$-CH_2-N-C$ H_2N H_2N
1789	H₃CO-()-CH₂-	2	2	1 ·	-	н	$-CH_2-N-C$ H_2N
17 <u>9</u> 0	CH-2-				S	H	$-CH_2-N-C$ H_2N
1791	CHCH_2-	1	2	0	S	н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$ F
1792	CH ₃ CH ₂ −	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1793	CH ₂ —CH ₂ —	2	2	1	-	н	$-CH_2-N-C$ H_2N

Table 1.164

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1794	H ₃ C-\(\bigcirc\)-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F H ₂ N
1795	CH₂-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1796	Br——CH₂-	2	2	1	-	н	-CH ₂ -N-C
1797	HOCH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1798	H ₃ CO-CH ₂ -	2	2	1	-	H	$-CH_2-N-C$ H_2N H_2N
1799	H ₂ C=CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1800	NC-⟨CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1801	CH₂−			1	-	н	$-CH_2-N-C$ H_2N F
1802	HO-CH ₂ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1803	HO-√	1	2	0	R	H	$-CH_2-N-C$ $H_2 N$
	H ₃ C(CH ₂) ₂ —CH ₂ -					н	-CH ₂ -N-C

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
1805	B-CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1807	H ₃ CO HO————CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1808	HQ H ₃ CO—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-SCF ₃
1809	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1812	H₃CS-CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1813	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1814	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1815	CH ₃ H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	. _K 3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1816	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	н.	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	B	1	2	0	R	н	-CH2-N-C-OCHF2
1819	H ₃ CO-()-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1820	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1821	HQ . H₃CO————————————————————————————————————	1	2	0	R	н	-CH2-N-C-
1822	HO(CH ₂	1	2	0	R	н	-CH ₂ -N-C-C
1823	O-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1824	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1825	н₃сs-{}сн₂-	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1826	н₃ссн ₂ —Сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-
	•						

• •

Т	а	b	le	1.	1	6	7
	•	~				•	

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1827	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1828	H ₃ C — CH ₂ — CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
1829	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C
1830	(CH ₃) ₂ CH−€ CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1831	Вг—√СН2-	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1832	H₃CO-()-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1833	H ₃ CO HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1834	HQ H ₃ CO-CH ₂ -	1	2	0	R	H :	-CH ₂ -N-C-C(CH ₃) ₃
1835	но-{	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1836	CH₂-	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1837	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
— —							

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
1838	H₃CS-(1	2	0	['] R	н	-CH2-N-C-(CH3)3
1839	H ₃ CCH ₂ -CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-C(CH ₃) ₃
1840	O—CH₂-	1	2	0	R ·	н	-CH ₂ -N-C-C(CH ₃) ₃
1841	CH ₃ CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1842	H_3C CH_3 CH_2	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1843	(CH ₃) ₂ C H— ← CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1844	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1845	H₃CCH₂CH₂-	1	2	0	R	н	-CH2-N-C
1846	H_3C CH_3 CH_2 CH_2	1	2	0	R .	н	-CH ₂ -N-C-SCF ₃
1847	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C

188

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1849	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1850	н₃ССН₂———————————————————————————————————	1	2	0	R	н	- CH ₂ -N-C
1851	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-
1852	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1853	H₃CQ HO—CH₂-	1 .	2	0	R	Н	-CH ₂ -N-C-
1854	CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-
1855	н₃ссн ₂ —{	1	2	0	R	Н	-CH ₂ -N-C-
1856	H ₃ C-⟨CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1857	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1858	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1859	H₃CO-{CH₂-	.1	2	0	R	н	-CH ₂ -N-C-Br

Table 1.170

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
1860	H ₃ CQ HO—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-Br
1861	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1862	HO-€ CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1863	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1864	H ₃ CS-CH ₂ -	1	2	0	R .	H	$-CH_2-N-C$ H_2N H_2N
1865	CH₂-				R	Н	$-CH_{2}-N$ $H_{2}N$ $H_{2}N$ $H_{3}N$
1866	H ₃ C — CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N H_2N
1867	(CH ₃) ₂ C H————————————————————————————————————		2	0	R	н	$-CH_2-N-C$ H_2N
1868	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1869	B-CH ₂ -	1	2	0	R	н ·	$-CH_2-N-C$ H_2N
1870	н₃со-Сн₂-	1	2	0	R	н	$-CH_2-N-C$ $H_2 N$

190

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
1871	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1872	HQ H ₃ CO—CH ₂ -	1	2	0	R	·H	$-CH_2-N-C$ H_2N
1873	но-{}-сн₂-	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
1874	CH ₂ -	. 1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
1875	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1876	H₃CS-()-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1877	H₃CCH₂	1	2	0	R	н	-CH ₂ -N-C-
1878	O-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1879	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C
1880	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	н ,	$-CH_2-N-C \longrightarrow H_2N$
1881	(CH ₃) ₃ C-\(\bigc\)-CH ₂ -	1	2	0		н	-CH ₂ -N-C

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	. R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1882	BrCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1883	H₃CO-(CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1884	H ₃ CO HO	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1885	HQ H ₃ CO—CH ₂ -	1	2	0	R ·	н	$-CH_2-N-C$ H_2N NO_2 H_2N
1886	HO-CH ₂ -	1	2	0	Ŗ	н	$-CH_2-N-C$ H_2N H_2N
1887	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1888	CH₂-	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1889	H ₃ CS-CH ₂ -	1	2	0	R	H	$-CH_2-N-C$ H_2N
1890	H₃CCH₂—⟨	. 1	2	0	Ŕ	Н	-CH ₂ -N-C-NO ₂
1891	CH ₂ -	1	2	0	, R		-CH ₂ -N-C
1892	CH ₃ H ₃ C ← CH ₂ -	.1	2	0	R	Н	-CH ₂ -N-C-NO ₂

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1893	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C
1894	(CH ₃) ₂ C H−€ CH ₂ −	1	2	0	R	н	-CH ₂ -N-C NO ₂
1895	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1896	HQ H ₃ CO————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1897	H3CS-CH2-	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1898	H₃CCH₂——————————————————————————————————	1	2	0	R	н	$-CH_2-N^{-}C- \bigcirc OCF_3$ H_2N
1899	(CH ₃) ₂ C H-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1900	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C \longrightarrow 0$ H_2N
1901	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1902	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1903	(CH ₃) ₂ CH-√	2	2	1	-	н	-CH ₂ -N-C

Table 1.174

							<u> </u>
Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n c	hirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1904	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C
1905	CH2−	1	2	0	R	Н	$-CH_2-N-C$ $H_2 N$ $H_2 N$ OCF_3
1906	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1907	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N$ H_2N OCF_3
1908	H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1910	Br—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1911	CI—CH₂−	2	2	1	•	н	$-CH_2-N-C$ H_2N OCF_3
	HO-CH ₂ -					Н	$-CH_2-N$ C H_2 N C
1913	СН ₃ Н ₃ С—СН ₂ —	2	2	1	-	н	-CH ₂ -N-C
1914	H ₃ C-()-CH ₂ -	2	2	1	-	н	$-CH_{2}-N$ $-CH_$

Table 1.175

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1915	H ₃ CCH ₂ Q HO————————————————————————————————————	1	2	0	R	н	$-CH_2-N$ C H_2N O
1916	H ₃ C HO—CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1917	H ₃ CC H ₂ Q HO————————————————————————————————————	2	2	1	-	н	$-CH_2-N$ H_2N OCF_3 H_2N
1918	H ₃ C HO—CH₂-	2	2	1		н	$-CH_2-N$ C H_2N C
1919	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$
1920	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N F H_2N
1921	CH-2-	1	2	0	R	н	$-CH_2-N+C-$ H_2N OCF_3 H_2N
1922	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1923	Br-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1924	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1925	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃

Table 1.176

Compd. No.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1926	F-CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-SCF ₃
1927	HO-{CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1928	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1929	CH ₂ -	. 2	2	1	-	. н	-CH ₂ -N-C-SCF ₃
1930	H ₃ CS-CH ₂ -	2	2	1		н	-CH ₂ -N-C-SCF ₃
1931	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1932	O-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-SCF ₃
1933	CH ₃ .	2	2	1	-	. н	-CH ₂ -N-C-SCF ₃
1934	H_3C CH_3 CH_2 CH_2	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1935	02 N-(CH2-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1936	н₃с-√сн₂-	2	` 2	1	-	Н	-CH ₂ -N-C-SCF ₃

Table 1.177

Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	-(СН ₂) ,
1937	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	н	-CH2-N-C-SCF3
1938	B	2	2	1	-	H	-CH ₂ -N-C
1939	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1940	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1941	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1942	HO€	2	2	1	-	Н	-CH ₂ -N-C
1943	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1944	CH ₂ -	2	2	1	- ,	Н	-CH ₂ -N-C
1945	H3CS-CH2-	2	2	1	-	н	-CH ₂ -N-C
1946	н₃ссн₂—Сн₂-	2	2	1	-	н	-CH ₂ -N-C
1947	CH ₂ -	2	2	1	-	Н	-CH2-N-C- HC-CH3

T :	h	le	1.	1	7	R
10	12	16		. 1		u

							
Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1948	CH ₃	2	2	1		Н	-сн ₂ -м-с- Вг сн ₃
1949	H_3C CH_3 CH_2 CH_2	2	2	1		н	-CH ₂ -N-C-Br
1950	O ₂ N—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
1951	H ₃ C-CH ₂ -	2	2	1	·	н	CH ₂ -N-C
1952	В-СН2-	2	2	1	-	н	-CH ₂ -N-C
1953	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH₂-N-C-SF
1954	F—()—CH ₂ —	2	2	1	-	н	-CH₂-N-C-SF
1.955	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C Br
1956	HO-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1957	CH₂-	2	2	1	-	н	-CH ₂ -N-C Br
1958	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table	1.	1	7	9
-------	----	---	---	---

Compd. No.	R ¹ /(CH ₂) _j -	k	m	'n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1959	H ₃ CS-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1960	н₃ссн₂—Сн₂-	2	2	1	-	н	-CH ₂ -N-C
1961	O ← CH2-	2	2	. 1	-	н	-CH ₂ -N-C
1962	H ₃ C ← CH ₂ −	2	2	1	- ,	Н	-CH ₂ -N-C Br
1963	H_3C CH_3 CH_2	2	2	1	· _	. н	-CH₂-N-C Br
1964	O ₂ N-CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C- Br
1965	H ₃ C-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C- Br
1966	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1967	Br—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1968	H ₃ CO-CH ₂ -	2	2	1	- -	н	-CH ₂ -N-C
1969	HO€	2	2	1	•	н	$-CH_2-NC \longrightarrow H_2N$

Table 1.180

	pt						
No.	R ¹ (CH ₂) _i -	k	m	n	chirality	H³	—(CH ₂) p
1970	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1971	CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C
1972	H₃CS-CH₂-	2	2	1	-	н	$-CH_2 - \dot{N} - C - \dot{N} - C - \dot{N} - C - \dot{N} - \dot$
1973	н₃ссн₂—Сн₂-	2	2	1	-	Н	-CH ₂ -N-C
1974	CH ₃ −CH ₂ −	2	2	1	-	н	$-CH_2-N-C$ H_2N
1975	O ₂ N-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$
1976	H ₃ C-CH ₂ -	2	2	.1		н	$-CH_2-N-C$ H_2N
1977	NC-CH ₂ -	2	2	1		н	$-CH_{2}-N-C$ $H_{2}N$
	(CH ₃) ₂ C H————————————————————————————————————					Н	-CH ₂ -N-C
1979	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
1980	CH₂-	2	2	1	<u>-</u>	н	$-CH_2-N-C$ H_2N

Compd.	R ¹ / _R 2/(CH ₂) _j -	k	m	n	chirality	À³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1981	O ₂ N—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1982	NC-CH2-	2	2	1	•	н	$-CH_2-N-C$ H_2N H_2N
1983	(CH ₃) ₂ C H-CH ₂ -	2	2	1	<u>-</u>	н	$-CH_2-N+C \longrightarrow F$ H_2N
1984	Br—CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1985	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1986	HO⟨	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1987	CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N'
1988	CH ₂ -	2	2	1	- ·	н	-CH ₂ -N-C-
1989	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-N$ C H_2 N
1990	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1991	CH ₂ -	2	. 2	1	-		$-CH_2-NC$ H_2N

Table 1.182

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + + (CH_2)_{\overline{q}} - G - R^6$
1992	CH ₃	2	2	1	-	Н	-CH ₂ -N-C-
1993	O ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
1994	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
1995	NC-CH₂-	2	2	1	-	н	$-CH_2-N-C$ $H_2 N$
1996	(CH ₃) ₂ CH————————————————————————————————————			1	-	Н	$-CH_2-N-C$ H_2 H_2 N
1997	H_3C CH_3 CH_2	2	2	1	-	н	$-CH_2-N-C-$ H_2 H_2 N
1998	Br—CH ₂ —	2	2	1	-	H	-CH ₂ -N-C-CI
1999	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C
2000	F—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
2001	HOCH₂-	2	2	1	- .	н	-CH ₂ -N-C
2002	CH ₂ -	2	2	1		н	-CH ₂ -N-C-

202

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2003	CH ₂ -	2	2	1	-	н	-сн ₂ -N-с-
2004	H ₃ CS-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-
2005	н ₃ ссн ₂ —Сн ₂ -	2	2	1	-	Н	- CH ₂ -N-C-
2006	H ₃ C-⟨CH ₃ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2007	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2008	H ₃ CCH ₂ -	2	2	1	-	н .	-CH2-N-C-
2009	NC-CH ₂ -	2	2	1	-	Н	-CH2-N-C-
	(CH ₃) ₂ C H————————————————————————————————————				<u>.</u> ·	H	-CH ₂ -N-C-CI
2011	CH ₃	2	2	1	-	н	-CH ₂ -N-C-CI
2012	B-CH ₂ -	2	2	1	-	Н .	-CH ₂ -N-C- Br Cl
2013	H₃CO—()—CH₂-	2	2	1	<u>-</u> ·	н	-CH ₂ -N-C

Table 1.184

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}}^{\overline{H}^4}(CH_2)_{\overline{q}}G-R^6$
2014	HO-{	2	2	1	1	н	-CH ₂ -N-C- Br
2015	CH₂-	2	2	1	-	н	-CH ₂ -N-C
2016	CH ₂ -	2	2	1	-	н	-CH2-N-C-Br
2017	H3CS-(CH2-	2	2	1	-	н	-CH ₂ -N-C-Br CI
2018	H ₃ ССҢ ₂ —СН ₂ -	2	2	1	-	н	-CH ₂ -N-C
2019	CH₂-	2	2	1	-	н	-CH₂-N-CBr
2020	H_3 C C H_2 C	2	2	1	-	н	-CH ₂ -N-C
2021	O ₂ N—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2022	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2023	NC-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Br
2024	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	-CH2-N-C- Br

Ta	h	ما	1	1	R	5
	_				u	J

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2025	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	-CH2-N-C-Br
2026	F-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C- H
20 <u>2</u> 7	B	2	2	1	-	н .	-CH ₂ -N-C
2028	H ₃ CO-CH ₂ -	. 2	2	1	-	н	$-CH_2-N$ C H_2 N H_2 N
2029	но—СН₂-	2	2	1	-	. н	$-CH_2-N-C$ H_2N H_2N H_2N
2030	CH ₂ -	2	2	1	-	н .	$-CH_2-N-C-$ H_2N H_2N
2031	CH ₂ -	2	2	1	-	н	$-CH_2-N+C-\longrightarrow_{H_2N}^{O}$
2032	CH ₂ -				-	H	-CH ₂ -N-C
2033	CH ₃	2	2	1	-	н	-CH ₂ -N-C
2034	O ₂ N—CH ₂ —	2	2	1	-	Н	-CH ₂ -N-C
2035	H ₃ C-⟨	2	2	1		Н	-CH ₂ -N-C

205

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2036	NC-⟨CH₂-	2	2	1	-	н	-CH ₂ -N-C-
2037	H_3C CH_3 CH_2 CH_2	2	2	1	-	н	-CH ₂ -N-C
2038	F—CH ₂ -	2	2	1	-	н :	-CH ₂ -N-C
2039	H ₃ C-CH ₂ -	2	2	1	-		-CH ₂ -N-C- H CN
2040	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ² -W-C-CH-OH
2041	H ₃ C-CH ₂ -	1	2	0	,R	н	-CH2-N-C-CH-
2042	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ $+I_3C$ $+I_3C$
2043	H ₃ C-CH ₂ -				R	н	−CH ₂ −N-C-CH ₂ −CH ₃ CH ₃
2044	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	CH ₂ -N-C
2045	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-H
2046	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃

Table 1.187

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2047	CH ₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₇ -N C-CH ₂ CH ₃
2048	CH_3 CH_2 CH_3	1	2	0	. R	н	-CH ₂ -N-C
2049	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- HN-C- CH ₃
2050	H ₃ C S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2051	H ₃ C —N—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
2052	Br_CH ₂ - OCH ₂ CH ₃	2	2	1	å <u> </u>	н	$-CH_2-N-C$ H_2N
2053	H ₃ CQ CH ₂ -	2	2	1	-	, н	$-CH_2-N-C$ H_2 H_2 N
2054	H ₃ CO-CH ₂ -	2	2	1	. •	Н	$-CH_2-N-C$ H_2N
2055	H ₃ CQ CH ₂ − OH	2	2	1	-	. н	$-CH_2-N-C H_2N$
2056	Br CH ₂ -	2	2	1		н	-CH ₂ -N-C
2057	Br CH₂-	2	2	1	-	Н	$-CH_2-N-C +$ H_2N

Table 1.188

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-}R^6$
2058	H ₃ CQ OCH ₃	2	2	1	-	·Н	-CH ₂ -N-C
2059	CH₂F	2	2	1	-	н	-CH ₂ -N-C
2060	H ₃ CO CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2061	F CH ₃ CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2062	H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2063	H ₃ CQ H ₃ C————————————————————————————————————	2	2	1	-	H	-CH ₂ -N-C
2064	Br CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2065	H ₃ CCH ₂ O CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2066	OC H ₂ -	2	2	1	-	н	-CH ₂ -N-C
2067	(H ₂ C) ₂ CHCH ₂ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2068	CICH ₂ _	2	2	1	•	Н	$-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$

Table 1.189

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
2069	H ₃ C H ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2070	Br.—CH ₂ —OCH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N F
2071	H_3 CO \longrightarrow CH $_2$ -OCH $_3$	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2072	· (H ₃ C) ₂ CHO - CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
2073	CH ₂ Q -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2074	H ₃ CO- CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2075	H ₃ CQ CH ₂ − F	2	2	1	-	н	$-CH_2-N-C$ H_2N
2076	F-CH ₂ -					н	$-CH_2-N-C$ H_2N
2077	Ct CH₂− OH	2	2	1	-	н.	$-CH_2-N-C$ H_2N F
2078	H ₃ CCH ₂ Q OH CH ₂ -	2	2	1	-	H	-CH ₂ -N-C- H
2079	-CH ₂ Q H ₃ CO	2	2	1	•	н	$-CH_2-N-C$ H_2N H_2N

Table 1.190

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2080	H ₃ CO————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2081	CI HO—CH ₂ —	2	2	1	• <u>•</u>	н	$-CH_2-N-C$ H_2N H_2N
2082	ОН Н₃СО-СН ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2083	H ₃ CQ HO—CH ₂ —	1	2	. 0	R	н	$-CH_2-N-C \longrightarrow H_2N$
2084	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
2085	OH H ₃ CO-CH ₂ -	1	2	0	R	н .	$-CH_2-N-C-$ H_2N
2086	CI HOCH ₂ -	1	2	0	R	Н .	$-CH_2-N-C \longrightarrow H_2N$
2087	(H ₃ C) ₂ N-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C \longrightarrow H_{2}N$
2088	(H ₃ CCH ₂) ₂ N-⟨	1	2	0	R	Н	-CH ₂ -N-C
2089	F—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-S
2090	С о С ⊢сн₂-	1	2	0	R	н	$-CH_2-N-C H_2N$

Table 1.191

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
2091	CHCH ₂ -	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
2092	CHCH ₂ -	2	2	1	-	Н	(A) OCH2CH3 -CH-NC
2093	CH ₂ -	2	2	1	-	н	(R) 0 -CH-N-C
2094	с⊢СН₂-	2	2	1		H	(R O OCH ₂ CH ₃ -CH N C OCH ₂ CH ₃ CH ₂)
2095	C├─ \ CH ₂ -	2	2	1	-	Н	(R) OCH ₂ CH ₃ -CH-N-C- H C(CH ₃) ₃
2096	C├ \ CH ₂ -	2	2	1	-	Н	CHNCCHOCH ₂ CH ₃
2097	CH ₂ -	2	2	1	-	н	(R) Q -CH-N-C- CH ₂ CH ₂ CH ₃
2098	С├-{	2	2	1	-	H	CH-NC-CI
2099	CHCH ₂ -	2	2	1	-	н	()
2100	C	2	2	1	-	н	CH-N-C-OCH ₃
2101	CICH ₂	2	2	1	•	н	CH2-OCH2-CH3 CH2-OCH2-CH3

Table 1.192

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2102	с⊢С}-сн₂-	2	2	1	-	н	O OCH ₂ CH ₃ -CH-N-C
2103	с⊢С сн₂-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C-
2104	CH-2−	2	2	1	-	н	() OCH ₂ CH ₃ -C+++-C
2105	H ₃ CO OH CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2106	H ₃ C OH	2	2	1	-	H	-CH ₂ -N-C
2107	Br CH ₂ -	2	2	1		. н	CH ₂ -N-C
2108	CH ₃ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2109	Br O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2110	H ₃ C CH ₂ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
							-CH ₂ -N-C
							-CH ₂ -N-C

Table 1.193

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
2113	H ₂ N H ₃ CO—CH ₂ -	. 2	2	. 1	-	Н	-CH ₂ -N-C
2114	H ₂ N H ₃ C—CH ₂ -	[,] 2	2	1	-	н	-CH ₂ -N-C
2115	CH ₂ -	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C-CH H CH(CH ₃) ₂
2116	C├─ੑ	2	2	1,	-	н	(F) OCH ₂ CH ₃ −CH-N-C OCH ₂ CH ₃ H CH(CH ₃)CH ₂ CH ₃
2117	CHCH ₂ -	2	2	1	-	н .	CH2-NH
2118	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2119	OH HO-CH₂-	1	2	0	R	H	$-CH_2-N-C-$ H_2N CF_3
2120	Br—√FCH₂-	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2121	OCH ₃	1	2	0	R	н	-CH ₂ -N-C
2122	CH₂-	1	2	0	R	н	-CH ₂ -N-C
2123	CH ₂ -NO ₂	1	2	0	,R·	н	-CH ₂ -N-C

Table 1.194

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
2124	O ₂ N CH ₂ -	1	2	0	Ř	Ĥ	-CH ₂ -N-C-CF ₃
2125	O ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2126	O ₂ N H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2127	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2128	H ₂ N H ₃ CO—CH ₂ —	1	2	0	R	Н	$-CH_2-N-C \xrightarrow{P_2-N-C} CF_3$
2129	H_2N H_3C — CH_2 —	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2130	0° N N=CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2131	CH ₃ CH ₂ - CH ₃	2	2	1	-	H	-CH ₂ -N-C
2132	H ₂ N CI—CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$ H_2N
2133	(H ₃ C) ₂ N CH-2-	1	2	0	R	н	-CH ₂ -N-C-
2134	(H ₃ C) ₂ N CI————————————————————————————————————	1	2	0	R	Н	H ₂ N −CH ₂ −N-C− H ₂ N

Table 1.195

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{\overline{q}}$ $G-R^6$
2135	(H ₃ C) ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C$ H_2N
2136	(H ₃ C) ₂ N H ₃ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
2137	CH ₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C
2138	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C$ H_2N
2139	H ₃ C, CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2140	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$
2141	H ₂ N HO—CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2142	CH2-					н	-CH ₂ -N-C
2143	нис-сн³	2	2	1	-	н	$-CH_2-N-C H_2N$ CF_2
	H ₂ N H ₃ CO-CH ₂ -					Н	-CH ₂ -N-C
2145	H ₂ N HO—CH ₂ -	2	2	1	•	Н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ CF_{3} $-CH_{2}-N-C$ $H_{2}N$

Table 1.196

Table	1.130						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2146	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2147	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N$ C H_2N F
2148	Н ₃ С-С−NH НО-СН ₂ -	2	2	1	-	н	$-CH_2-N$ C H_2N F H_2N
2149	O ₂ N HO————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2150	CIF—CH2-	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2151	нис-сн³	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
2152	H ₃ C-C-NH H ₃ CO-CH ₂ -CH ₂ -	. 1	2	0	R	Н	$-CH_2-N-CF_3$ H_2N
2153	H ₃ C-C-NH H ₃ C-CH ₂ -	. 1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2154	О Н₃ С-С-NH Н₃ СО——— СН₂-	. 2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2155	H ₃ C-C-NH HO-CH ₂ -	•	2	1	-	Н	$-CH_2-N-C-$ H_2N
2156	HMC-CH2-	2	2	1	-	Н	$-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$

Table 1.197

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2157	CH ₃ HO—CH₂–	1	2	0	R	H	-CH ₂ -N-C
2158	H ₃ C-NH HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2
2160	H ₃ C-NH HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2-N H_2-N H_2-N
2161	H ₃ C-NH CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C \longrightarrow F$ H_2N
2162	H ₃ CO-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃ .
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$ CF_3
2164	<i>O</i> 32			0	R	Н	-CH ₂ -N-C
2165	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-S-CF ₃
2166	CH₂-	1	2	0	R	Н	$-CH_2-N-C H_2N$ CF_3
2167	H N CH ₂ -	1	2	0	R	H	$-CH_{2}-N-C$

Table 1.198

							4
Compd. No.	R^2					R³ 	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2168	H ₃ C CH ₂ - H ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C
2169	H_3C CH_3 CH_3 CH_3	1	2	0	R	н	$-CH_2-NC - CF_3$ $H_2N - CF_3$
2170	CI CH ₂ -	1	2	0	R	н	$-CH_2-NCC \longrightarrow H_2N$
2171	H ₃ C N CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2172	F ₃ C CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
2173	S—CH ₂ —CH ₃	1	2	0	R	Н	-CH ₂ -N-C
2174	H ₃ C CH ₃ Br S CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	OC H ₃ H ₃ CO-CH ₂ -					н	-CH ₂ -N-C-CF ₃
2176	H ₃ C-N CH ₂ -	1	. 2	0	R	н .	$-CH_2-NCC \longrightarrow H_2N$
2177	H ₃ C OH CH ₂ -CH ₂ OH	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2178	HN - CH2-	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$

Table 1.199

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2179	H ₃ C-CNCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2180	CH(CH ₂) ₂ —	1	2	0	R	H	$-CH_2-N+C H_2N$ CF_3
2181	H ₃ CO	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
2182	H ₃ C N CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2183	S-N CH ₂ -	1	2	0	R	Н .	$-CH_2-N+C H_2N$ CF_3
2184	\$-N CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C-F H H ₂ N
2185	\$-N CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N CF_3
2186	H N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2187	H ₂ N HO—CH ₂ —	1	2	0	R	н	$-CH_2-N-CF_3$ H_2N
2188	CH₂-	2	2	1	-	н	-CH ₂ -N-C
2189	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$

Table 1.200

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
2190	H N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₂ N
2191	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2192	S H CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2193	S H CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
2194	H ₂ N H ₃ C — CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N CF_3
2195	H_2N CH_2-	2	2	1	-	н	$-CH_{2}-NC \xrightarrow{C} CF_{3}$ $+H_{2}N.$
2196	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N CF_3
2197	H ₃ C-NH H ₃ CO————————————————————————————————————	1	2	0	. R	н	-CH ₂ -N-C-
2198	H ₃ C-NH CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ CF_{3}
2199	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-
2200	H ₃ C-NH CH ₂ -CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$

Table 1.201

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2202	SH CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2203	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2204	CH ₃ CH ₂	2	2	1	-	Н	$-CH_2-NCH_{H_2N}$
2205	CH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 N
2206	CH ₃	2	2	1	-	H	$-CH_2-NC- CF_3$ H_2N
2207	CH ₃	2	2	1		Н	$-CH_2-N-C$ H_2N
2208	CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N CF_3
2209	CH ₂ —CH ₂ —	2	2	.1	-	Н	-CH ₂ -N-C
2210	CH₂-	1	2	0	R	Ĥ	-CH ₂ -N-CF ₃
2211	CH ₂ −	2	2	1	-	н	$-CH_{2}-N+C-$ $-CH_$

Table 1.202

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2212	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2213	H ₂ N CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-CF ₃
2214	H_2N $H_3C CH_2-$	2	2	1	-	H	-CH ₂ -N-C-SCF ₃
2215	H ₃ C-HN CH2-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2216	H ₃ CCH ₂ H	1	2	0	. R	н	$-CH_2-N-CF_3$ H_2N
2217	H ₃ CO-Ç H ₃ C-CH ₂ -CH ₂ -	1	2	0	R	Н	$-CH_2-N+CF_3$ H_2N
2218	CHCH ₂ -	1	2	0	R	Н	-CH-NC-NC-N
2219	CHCH ₂ -	1	2	0	, R	Н	-CH ₂ -N-CF ₃ HN-N-CF ₃
	СН-СН2-					н	-CH ₂ -N-C-N-CH(CH ₃) ₂
2221	C⊢-∕CH₂-	1	2	0	R	н .	-CH₂-N°C-N°CF3
2222	H_3 C CO_2 C H_3 CH_2 - CH_3	1	2	0	R	н	$-CH_{2}-N+C-M+C+3$ $-CH_{2}-N+C-M+C+3$ $-CH_{2}-N+C-M+C+3$ $-CH_{2}-N+C-M+C+3$

Table 1.203

_							
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
2223	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-N-N
2224	C	1	2	0	R	Н	-CH ₂ -N-C-N
2225	ССН2-	1	2	0	R	· н	CH ₂ -N-C-N-N-N
2226	H ₃ C, CI N CH ₂ − CH ₃	1	2	0	Ŗ	Н	$-CH_2-N-C-\longrightarrow H_2N$
2227	CH-CH ₂ -	1	2	0	R	н	-CH2-N C-N-CH3/2
2228	CH-CH ₂ -	1	2	0	R	H	-CH ₂ -N-CF ₃ HN C-N-CF ₃
2229	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2230	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2231	H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
2232	H ₃ C H ₃ CO—CH ₂ -	1	2	0	. R	Н	-CH ₂ -N-C
2233	CH ₂ ·	1	2	0	R	н	$-CH_2-N-C-$ H_2N

Table 1.204

labic							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
2234	N H	1	2	0	R	н	-CH ₂ -N-C
2235	CH₂-	1	2	0	R	н	$-CH_2-N+C$ H_2N H_2N
2236	FCH ₂ -	1	2	0	R	н	$-CH_2-N-C \xrightarrow{Q} OCF_3$ $+ G$
2237	CH ₂ -				R	н	$-CH_2-N-C$ H_2N C
2238	H ₃ CO CH ₂ -	1	2	0	R	н	$-CH_2-N^*C \xrightarrow{OCF_3}$ H_2N
2239	CH₂- N CH₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
2240	CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
2241	H ₃ C N	1	2	0	R	Н	-CH ₂ -N-C
2242	CH ₂ -	1	. 2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
	(H₃Ç) ₂ N-{CH₂-					н	-CH ₂ -N-C
2244	FIN H	1	2	0	R	н	H ₂ N OCF ₃ -CH ₂ -N-C

Table 1.205

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
2245	H ₃ C N CH ₂	1	2	0	R	Н	-CH ₂ -N-C
2246	H ₃ CCH ₂ -N CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2 H_2 N
2247	(H:C) ₂ CH N N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2248	H ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SOCF ₃
2249	H ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
2250	H ₂ N HO—CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
2251	H_2N H_3C CH_2	1	2	0	R	H	$-CH_2-N-C$ H_2N OCF_3 H_2N
2252	CH ₂ -				-	н	-CH ₂ -N-C- H ₂ N
2253	F CH ₂ -					н	CH ₂ -N-C
2254	H ₃ CO CH ₂ -					н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$
2255	H ₃ C N H	2	2	1	-	н	-CH ₂ -N-C

Table 1.206

rapie	1.206						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
2256	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2257	H ₃ CQ CH ₂ -	2	2	1	-	Н	$-CH_2-NC-$ H_2N H_2N
2258	C├─ C H₂─	1	2	0	R	Н	(S) P CI -CH-N-C CI CH ₃
2259	H ₃ CS—CH ₂ -	1	2	0	R	Н	(S) PCI CH ₃ CI
2260	CH2-	1	2	0	R	Н	(S) P -CH-N-C-N-C-N-CH3
2261	C⊢∕CH2-	1	2	0	R	н	(S) P -CH-N-C-N-CH CH ₃
2262	H₃CS-⟨CH₂-	1	2	0	Ŗ	н	(S) P -CH-N-C-N-C-N-CH _H H
	CI CI—CH₂-					Н	CH ₃
2264	CHCH2-	1	. 2	0	S	Н.	(S) Q CI -CH-N-C-CI CH ₃
2265	H₃CS—CH₂-	1	2	0	S		(S) CI -CH-N-C-CI CH ₃
2266	CH_CH2	1	2	0	S	н	CH ₃

Table 1.207

	201						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2267	CI CH ₂ -	2	2	1	-	н .	(S) P CI -CH-N-C-CI CH ₃
2268	C	2	2	1	-	н	(S) P CI -CH-N-C-CI
2269	H ₃ CS—CH ₂ -	2	2	1	-	н	CH ₃
2270	CL CH ₂ -	2	2	1	-	Н	(S) P -CH-N-C-N-C-N-CH3
2271	CH-2-	2	2	1	-	· н	(S) P -CH-N-C-N-C-N-CH3
2272	H ₃ CS—CH ₂ -	2	2	1	-	Н	(S) P -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2273	CH_CH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C CI H CH(CH ₃) ₂
2274	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C- CI H CH(CH ₃) ₂
2275	CL CH ₂ —CH ₂ —	2	2	1	-	Н	(S) 0 -CH-N-C-N- -CH(CH ₃) ₂
2276	C	2.	2	1	-	Н	(S) P -CH-N-C-N- CH(CH ₃) ₂
2277	H₃CS—CH₂-	2	2	1	-	Н	(S) P -CH-N-C-N- H H H CH(CH ₃) ₂

Table 1.208

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2278	CICH ₂	1	2	0	R	н	(S) P CF ₃ -CH-N-C- CF ₃ -CH ₃ H ₂ N
2279	CH_CH ₂ -	1	2	0	R	н	$ \begin{array}{ccc} (S) & P & CF_3 \\ -CH_1 & C & CF_3 \\ CH_3 & H_2N \end{array} $
2280	CI CI—CH ₂ -	1	2	0	S	н	$ \begin{array}{c c} (S) & O \\ -C + N - C \\ \downarrow & H \\ CH_3 & H_2 N \end{array} $
2281	H ₃ CS-CH ₂ -	. 1	2	0	S	Н	(S) (F_3)
2282	CH-2-	2	2	1	-	н	$ \begin{array}{ccc} (S) & & & \\ -CH & N-C & & \\ CH_3 & & H_2N \end{array} $
2283	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) (S)
2284	CL CH ₂ -	2	2	1	-	н	$(S) \qquad \begin{array}{c} NH_2 \\ -CH N-C \\ I \qquad H \\ CH (CH_3)_2 \qquad CF_3 \end{array}$
2285	CH2	2	2	1	-	н	(S) P NH2 -CH-N-C CH ₃ CH(CH ₃) ₂ CF ₃
2286	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) NH ₂ CH ₁ CH ₂ CF ₃
2287	CH_CH2-	2	2	1	-	н	(S) S CH C N C CH CH CH CH
2288	H₃CS—CH₂-	2	2	1	-	н .	$(S) \qquad \begin{array}{c} C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

Table 1.209

Compd.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
2289	CL CH ₂ —CH ₂ —	2	2	1	<u>-</u>	Н	(S) P -CH-N-C-N- H H (CH ₂) ₂ CONH ₂
2290	CICH ₂ -	2	2	1	-	Н	(S) P CHNC CI CH₂OH
2291	СН2-	2	2	1	-	н	(S) P CH-N-C CI CH ₂ OH
2292	H ₃ CS-CH ₂ -	2	2	1		н	(S) PCI -CH-N-C CI CH₂OH
2293	CH ₂ -	2	2	1	-	н	(S) 0 -CH-N-C-N- CH₂OH
2294	CHCH ₂ -	2	2	1	- -	н	(S) P -CH-N-C-N-CH CH ₂ OH
2295	H₃CS—CH₂-	2	2	1	-	н	(S) P -CH-N-C-N- CH ₂ OH
2296	CL CH2-	1	2	0	R	н	(S) P CI -CH-N-C - CI (CH ₂) ₂ SO ₂ CH ₃
2297	H₃CS—CH₂-	1	2	.0	R	. н	(S) Q CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2298	CH_CH2	1	2	0	R	н	(S) 0 -CH-N-C-N- H-C-N- (CH ₂) ₂ SO ₂ CH ₃
2299	H₃CS—CH₂-	1	2	0	R	н	(S) 0 -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃

Table 1.210

iable	1.210						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+_{R^5}$ $+_{R^5}$ $+_{R^5}$ $+_{R^5}$ $+_{R^6}$
2300	CI—CH₂-	1	2	0	S	Н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2301	Cl CH2−CH2−	1	2	0	S	Н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2302	CI CI—CH ₂ —	1	2	0	R	Н	(S) PH2 -CH-N-C CH2 (CH2) ₂ SO ₂ CH ₃ CF ₃
2303	CH_CH2-	1	2	0	R	Н	(S) P NH ₂ -CH-N-C
2304	H ₃ CS—CH ₂ —	1	2	0	R	Н	(S) PH2 -CH-N-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2305	CICH ₂ -	1	2	0	S	н	(S) NH ₂ -CHN-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2306	; H ₃ CS-CH ₂ -	1	2	O	S	н	(S) P - CHN-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2307	CH2-	1	2	0	R	Н	(S)
2308	H ₃ C ₂ S—CH ₂ -	1	2	0	R	н .	(S) P C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N
2309	Cl CH₂−	1	2	0	S	н	(S)
2310	CH ₂ -	1	2	0	S	н	(S)

Table 1.211

- abie	1.211						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}$ $G-R^6$
2311	H ₃ CS-{CH ₂ -	1	2	0	S	Н	(S)
2312	H ₃ CS-()-CH ₂ -	1	2	0	R	н	$ \begin{array}{c c} (S) & P \\ -CH & C \\ CH_3 & H_2N \end{array} $
2313	CICH ₂ -	1	2	0	R	н	(S) P CI CH ₃ CI
2314	H ₃ CS-CH ₂ -	1	2	0	S	н	(S) O -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2315	CHCH ₂	2	2	1	-	H	(S) P CI -CH-N-C CI CH(CH ₃) ₂
2316	C	1	2	0	S	н	(S) NH ₂ CH N-C
2317	CICH ₂ _	2	2	1	-	н	(S) NH ₂ -CH-N-C CF ₃
2318	CICH_2-	1	2	0	R	н	(S) S -C++ N-C-N- (CH ₂) ₂ SO ₂ C H ₃
2319	CH_CH2-	2	2	1	-	н	(S) S CH N C - N - CH (CH ₃) ₂
2320	С⊢СН₂−	2	2	1,	· -	н	(S)
2321	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) S -CH-N-C-N- H H H CH(CH ₃) ₂

Table 1.212

Table	1.212						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
2322	CI CI——————————————————————————————————	2	2	1	-	Н	(S) S -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2323	H₃CS	2	2	1	-	н	(S) S - CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N
2324	Cl Cl—CH₂-	2	2	1	-	Н	$ \begin{array}{c c} (S) & \bigcirc \\ -CH & \square \\ CH_3 & H_2N \end{array} $
2325	Cl Cl—CH₂-	1	2	0	R	н	CH ₃ S N C N C N C N C N C N C N C N C N C N
2326	CHCH_2	1	2	0	R	Н	(S) S CH ₃ CH ₃
2327	H ₃ CS—CH ₂ —	1	2	0	R	н	(S) S CH N C N CH CH CH CH CH
2328	CICH ₂ -	1	2	0	S	н	CH ₃ S CH ₃ CH ₃
2329	C	1	2	0	S	н	(S) S CH N - C - N - CH CH CH CH CH CH CH CH
2330	H₃CS—CH₂-	1	2	0	S	н	(S)
2331	CI—CH2-	1	2	0	S	н	(S) Q CF ₃ -CH-N-C CH ₃ H ₂ N
2332	CI—CH2-	1	2	0	R	н	$(S) \qquad \bigcap_{C} CI$ $-CH+N-C-\longrightarrow CI$ $(CH_2)_2SO_2CH_3$

Table 1.213

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2333	CHCH_2-	1	2	0	R	н	(S) O - CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2334	H ₃ CS—CH ₂ -	1	2	0	S	Н	$(S) \qquad \bigcap_{CH+N-C} CI$ $(CH_2)_2SO_2CH_3$
2335	CH_CH2-	1	2	0	S	Н	(S) P -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2336	CH_CH ₂ -	1	2	0	S	Н	(S) P - CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2337	H ₃ CS—CH ₂ -	1	2	0	S	н	(S)
2338	H3CS-CH2-	2	2	1	-	н	$(S) \qquad \bigcap \\ -CH-N-C-N- \\ H \qquad H$ $(CH_2)_2CONH_2$
2339	CH_CH2-	2	2	1	-	н	(S) P NH ₂ -CHN C
2340	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) P NH ₂ -CHN-C CHO CHO CHO CHO CHO CHO CHO CHO CHO CH
2341	C├─ ─ CH ₂ -	2	2	1	-	н	(S) P NH ₂ -CHN-C- H CH ₂ OH CF ₃
2342	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) P NH2 -CHN-C CH2OH CF3
2343	CL———CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-C-CI (CH ₂) ₂ CONH ₂

Table 1.214

i abic i	.217						
Compd.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
2344	C├─ ॔ CH₂-	2	2	1	-	н	(S) Q CI -CH-N-C-CI (CH ₂) ₂ CONH ₂
2345	C├─ ─ _CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- (CH ₂) ₂ CONH ₂
2346	CLCH ₂ -	2	2	1	-	н	$(S) \qquad \bigcap_{\substack{C \\ C \\ H}} \bigvee_{N \\ C \\ $
2347	CL CH ₂ -	1	2	0	S	н	(S) P -CH-N-C-N-CH CH ₃
2348	CICH ₂ -	1	. 2	0	R	н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2349	F—CH ₂ -	1	2	0	R	н	(S) CI -CH-N-C
2350	F—CH ₂ -	1	2	0	R	н	(S) Q CI -CH-N-C CI H CCH ₂) ₂ SO ₂ CH ₃
2351	CH ₂ -	1	2	0	R	н	(S) Q CI -CH-N-C CI H H CI (CH ₂) ₂ SO ₂ CH ₃
2352	CICH ₂ -	2	2	1	-	н	(S) 0 -CH-N-C-N-C-CI CH ₃
2353	CLCH ₂ -	2	2	1	-	н	
2354	Cl CH₂-	1	2	0	R	н	(S) QCI -CHN-C-CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.215

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2355	CL CH ₂ -	1	2	0	R	Н	(S) PCI CI -CH-N-C (CH ₂) ₂ SO ₂ CH ₃
2356	CL CH₂-	1	2	0	R	Н	(S) CI -CH-N-C- H (CH ₂) ₂ SO ₂ CH ₃ CI
2357	CI CH2−	1	2	0	R	. н	(S) P -CH-N-C-S CI (CH ₂) ₂ SO ₂ CH ₃
2358	CI CH2−	· 1	2	0	R	н	(S) P CH_3 $CH_2)_2SO_2CH_3$
2359	CICH ₂ -	1	2	0	R	, H	(S) P -CH-N-C-S (CH ₂) ₂ SO ₂ CH ₃
2360	CICH ₂ -	1	2	0	R	н	(S) Q -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2361	CICH ₂ -	1	2	0	R	Н	(S) C -CH-N-C-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
2362	CI, CH2−	1	2	0	R	Н	(S) P -CHN-C-N-C-OCH ₃ (CH ₂) ₂ SO ₂ CH ₃
	CL————————————————————————————————————						
2364	CICH ₂ -	2	2	1	-	н	(S) PC CI -CHN-C CI
2365	CLCH ₂ -	2	2	1	-	н	(S) OCI CI CI CI CH N-C-CH N-C-CI CI C

Table 1.216

lable 1	.216						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2366	CI CI→CH ₂ -	2	2	1	-	Н	(S) 0 -CH-N-C CH ₃ CH ₃
2367	CICH ₂ -	2	2	1	-	н	(S) 0 -CHN-C-(S) CH3
2368	CICH ₂ _	2	2	1	-	н	CH ₃
2369	CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N-C-OCH ₃
2370	CH ₂ —	2	2	1	-	н	CH ₃
2371	CI——CH ₂ -	2	2	1	-	н	CH N C CI
2372	CI CH ₂ -	2	2	1	-	Н	CH ₃ CCI CI CI
2373	F—CH ₂ -	2	2	1	-	Н	CH ₃ CCI CI CI CH ₃
	F_CH₂-						
2375	F—CH ₂ -	. 2	2	1	-	н	(S) P CI -CH-N-C-CI CH ₃
2376	E—CH ₂ -	2	2	1	-	н	(S) P CI CH N C CI
							CH₃

Table 1.217

						•	
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\rho} + (CH_2)_{q} G - R^6$
2377	F-CH ₂	2	2	1	-	Н	(S) P CI -CH-N-C-CI
2378	CH ₂ -	2	2	1	-	н	(S) CI -CH-N-C-CI CH ₃
2379	CICH ₂ -	2	2	1	-	н	(S) P Br -CHN-C-S -CH3 H ₂ N
2380	CICH ₂ -	2	2	1	-	Н	(S) O -CH-N-C
2381	CICH ₂ -	2	2	1	-	Н	CH ₃ HO
2382	CI↓ CI←CH₂−	. 2	2	1	-	н	(S) Р -СН-N-С-ОН СН ₃
2383	CL CH ₂ -	2	2	1		н	(S) S CH CH CH CH CH CH CH
2384	CICI _CH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2385	Ć———CH³– CI	1	2	0	R	н	(S) P CI -CH-N-C
2386	CI CH ₂ -	1	2	0	R	Н	(S) CI -CH-N-C
2387	CH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.218

	.2 10						
Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
2388	F—CH ₂ -	1	2	0	R	Н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2389	CH₂−	1	2	0	R	Н	$(S) \qquad \bigcap_{CH-N-C-} CI$ $(CH_2)_2SO_2CH_3$
2390	Cl C⊢CH₂−	1	2	0	R	. H	(S) O NH ₂ -CH-N-C- H C- (CH ₂) ₂ SO ₂ CH ₃ Br
2391	CI CI—CH₂—	1	2	0	R	н	(S) P NH ₂ -CH N-C- H H (CH ₂) ₂ SO ₂ CH ₃ CI
2392	CH ₂ -	1	2	0	R	н	(S) P NH2 -C+N-C- (CH ₂) ₂ SO ₂ CH ₃
2393	CH ₂ —CH ₂ —	1 ·	2	0	R	Н	(S) S CH C-N-CH ₂ (CH ₂) ₂ SO ₂ CH ₃
2394	CL CH₂-	2	2	1	-	н	(S) O CI -CH-N-C-CI H (CH ₂) ₂ SCH ₃
2395	CL CH ₂ −	2	2	1	-	н	(S) OCH -CH-N-C-CI -CH ₂ OCH ₂ Ph
	CL CH₂-						(CH ₂)4NH ₂
2397	CI CI—CH ₂ -	2	2	1	-	Н	H
2398	CL CH ₂ -	2	2	1	-	н	(S) CI -CH-N-C-C-C H ₂ C C(CH ₃) ₃

Table 1.219

	, ,						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2399	CI—CH ₂ -	2	2	1	-	Н	(S) Q CI -CH-N-C-CI H ₂ C CI
2400	CI CH₂−	2	2	1	-	н	(S) OF CI CI + C CI H ₂ C OH
2401	CH ₂ -	2	2	1	-	н	CI CH-N-C- H ₂ C- CI
2402	CI→CH ₂ -	2	2	1	-	н	(S) P CH-N-C CI CH ₂ OH
2403	F—CH ₂ —	2	2	1	-	н	(S) PCI CH2OH
2404	CH ₂ -	2	2	1	-	н	(S) PCI -CH-N-C-CI CH₂OH
2405	F-CH ₂ -	2	2	1	-	Н	(S) O CI -CH-N-C-CI H CH₂OH
2406	F CH ₂ -	2	2	1	-	н	(S) P CH+N+C-CI CH₂OH
2407	CH ₂ -	2	2	1	-	н	(S) PCI -CH+N-C-CI CH₂OH
2408	H₃CSO₂—CH₂-	2	2	1	-	Н	(S) OCI CH2OH
2409	H ₃ CO ₂ C-CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C-CI CH ₂ OH

Table 1.220

i abie i	.220						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
2410	CI CH₂-	2	2	1	-	Н	(S) OCI -CH-N-C
2411	CH ₂ -	2	2	1	-	н	(S) PCI CI -CH-N-C C
2412	CL CH2−	.2	2	1	-	н	(S) P -CH-N-C-S CH ₂ OH
2413	CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- OCH ₃ -CH ₂ OH
2414	CICH ₂ -	2	2	1	-	н	(S)
	CH ₂ -					н	(S) OCH ₃ -CH-N-C-N-CH-N-CH ₃
	CI↓ CI←CH ₂ −					н	(S) S OCH ₃ CH ₃
2417	CI CI→CH ₂ -	2	2	1	-	н	(S) IS CH ₃ CH ₃ CH ₃
2418	CICH ₂ -	2	2	1	-	н	(S) S CH ₃ CH ₃
2419	CL CH ₂ -	2	2	1	-	Н	(S) S CI
2420	CL CH2−	2	2	1	-	Н	(S) S CH ₃

Table 1.221

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2421	CI———CH₂-	2	2	1	-	Н	(S) S C H C
2422	CICH ₂ -	1	2	0	R	Н	(S) S OCH ₃ CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C
2423	CL CH ₂ -	1	2	0	R	н	(S) S $-CHN-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N$
2424	CI————————————————————————————————————	1	2	0	R	н	(S) S
2425	CH ₂ -	1	2	0	R	н	(S) S -CH-N-C-N-C-CH ₃ H H (CH ₂) ₂ SO ₂ CH ₃
2426	CH ₂ -	1	2	0	R	н	(S) CI - CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2427	CL CH ₂ -	1	2	0	R	н	(S) S CI CI CH ₂) ₂ SO ₂ CH ₃
2428	Cl Cl—CH₂-	1	2	0	R	н	(S)

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、クエン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸などの有機酸が挙げられる。

5 さらに、本発明においては、例えばヨウ化1- (4-クロロベンジル) -1-メ チルー4- [{N-(3-トリフルオロメチルベンゾイル) グリシル} アミノメチル] ピペリジニウムのような、環状アミン化合物のC₁-C₆アルキル付加体も用いられる。ここで、アルキル基としては、例えばメチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、イソプロピル、イソプチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、2-メチルペンチル、1-エチルブチル基が好適な具体例として挙げられるが、特に好ましい例としては、メチル基、エチル基が挙げられる。また、アンモニウム陽イオンの対陰イオンの好適な具体例としては、フッ化物、塩化物、臭化物、またはヨウ化物などのハロゲン化物陰イオンを挙げることができる。

本発明においては、上記式(I)で表される化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

上記式(I)で表される化合物は、国際公開WO9925686号パンフレットに記載されているように、下記に示すいずれかの一般的な製造法を用いることにより合成可能である。

(製造法1)

20

下記式 (11)

[式中、 R^1 、 R^2 、 R^3 、j、k、m、およびnは、上記式(I)におけるそれぞれ の定義と同じである。]

で表される化合物1当量と、下記式([[[])

$$\begin{array}{c} O \\ HO - C - (CH_2)_p - \frac{R^4}{R^5} (CH_2)_q - G - R^6 \end{array}$$
 (III)

10

[式中、R⁴、R⁵、R⁶、G、p、およびqは、上記式(I)におけるそれぞれの定 義と同じである。]

で表されるカルボン酸、またはその反応性誘導体の0.1-10当量を無溶媒下、 または溶媒存在下に反応させることによる製造方法。

上記式(III)で表されるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン 化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反 応性の高いカルボン酸誘導体を意味する。

かかる反応は、適当量のモレキュラーシープなどの脱水剤;ジシクロヘキシルカ 15 ルボジイミド(DCC)、N-エチル-N'-(3-ジメチルアミノプロピル)カ ルボジイミド(EDCIまたはWSC)、カルボニルジイミダゾール(CDI)、 Nーヒドロキシサクシンイミド(HOSu)、Nーヒドロキシベンゾトリアゾール (HOBt)、ベンゾトリアゾール-1-イルオキシトリス (ピロリジノール) ホ スホニウム ヘキサフルオロホスフェート (PyBOP)、2-(1H-ベンゾト リアゾール-1-1イル)-1,1,3,3-テトラメチルウロニウム ヘキサフ 20 ルオロホスフェート(HBTU)、2-(IH-ベンゾトリアゾール-1-イル)-1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレート (TBTU)、2-(5-ノルボルネン-2,3-ジカルボキシイミド)-1,1,3,3-テトラメチルウロニウム テトラフルオロボレート (TNTU)、O-(N- サク シニミジル) -1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレー 25 ト(TSTU)、プロモトリス(ピロリジノ)ホスホニウム ヘキサフルオロホス フェート (PyBroP) などの縮合剤;炭酸カリウム、炭酸カルシウム、炭酸水 素ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、 ピリジンなどのアミン類、(ピペリジノメチル)ポリスチレン、(モルホリノメチ ル) ポリスチレン、(ジメチルアミノメチル) ポリスチレン、ポリ(4-ビニルピ

30 リジン)などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進 行させることができる。

(製造法2)

下記式 (IV)

5

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} \longrightarrow X
\end{array} \qquad (IV)$$

10 [式中、 R^1 、 R^2 、および j は、上記式(I)におけるそれぞれの定義と同じであり、X はハロゲン原子、アルキルスルホニルオキシ基、またはアリールスルホニルオキシ基を表す。]

で表されるアルキル化試薬1当量と、下記式(V)

15

$$\begin{array}{c} \begin{pmatrix} (CH_{2})_{k} \\ +N \\ (CH_{2})_{m} \end{pmatrix} - (CH_{2})_{n} - N - C - (CH_{2})_{p} - \frac{R^{4}}{R^{5}} (CH_{2})_{q} - G - R^{6} \end{array}$$

$$(V)$$

20 [式中、R³、R⁴、R⁵、R⁶、G、k、m、n、p、およびqは、上記式(I)に おけるそれぞれの定義と同じである。]

で表される化合物 0 1 - 1 0 当量を無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、上記製造法1と同様の塩基を適宜用いることにより、より円滑に 25 に進行させることができる。さらに、本製造方法において、ヨウ化カリウム、ヨウ 化ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場合があ る。

上記式(IV)において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基を表す。かかるハロゲン原子としては、塩素原子、臭素原30 子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基

WO 01/10439

2 4 4

などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシル オキシ基を挙げることができる。

(製造法3)

下記式 (VI)

5

$$R^1$$
 $(CH_2)_{j-1}$ —CHO (VI)

10

25

[式中、 R^1 および R^2 は、上記式 (I) におけるそれぞれの定義と同じであり、jは 1 または 2 を表す。]

または、下記式 (VII)

$$R^{1}-CHO$$
 (VII)

[式中、 R^1 は、上記式(I)における R^1 の定義と同じであり、jは0を表す場合に相当する。]

で表されるアルデヒド1当量と、上記式 (V) で表される化合物 0. 1-10 当量 20 を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボランを用いる水素化反応、または電解還元反応などを用いることができる。

2 4 5

(製造法4)

下記式 (VIII)

[式中、R¹、R²、R³、R⁴、R⁵、R⁷、j、k、m、n、p、およびqは、上記 10 式(I)におけるそれぞれの定義と同じである。] で表される化合物1当量と、下記式(IX)

$$HO-A-R^6$$
 (IX)

15 [式中、R⁶は、上記式 (I) におけるR⁶の定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表されるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 0. 1-1 0 当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(IX)で表されるカルボン酸またはスルホン酸の反応性誘導体とは、例え 20 ば酸ハロゲン化物、酸無水物、混合酸無水物などの、合成有機化学分野で一般に使 用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いる ことにより、より円滑に進行させることができる。

(製造法5)

25 上記式 (VIII) で表される化合物 1 当量と、下記式 (X)

$$Z = C = N - R^{6} \tag{X}$$

 [式中、R⁶は上記式(I)におけるR⁶の定義と同じであり、Zは酸素原子または

 30 硫黄原子を表す。]

で表されるイソシアネートまたはイソチオシアネート0.1-10当量を、無溶媒

30

下または溶媒存在下に反応させることによる製造方法。

(製造法6)

下記式 (XI)

10 [式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、j、k、m、n、p、およびqは、上記式(I)におけるそれぞれの定義と同じであり、Aはカルボニル基またはスルホニル基 を表す。]

で表される化合物1当量と、下記式 (XII)

$$R^{6}-NH_{2} \qquad (XII)$$

[式中、 R^6 は、上記式(I)における R^6 の定義と同じである。] で表されるアミン0. 1-10当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

20 かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

上記製造法1-6において、各反応に供する基質が、一般に有機合成化学において各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換基を有する場合には、その官能基を既知の適当な保護基で保護して反応に供した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

さらに、本発明で用いられる化合物は、例えばアルキル化反応、アシル化反応、 還元反応などの、一般に有機合成化学において使用される既知の反応を用いて、上 記製造法6により製造される化合物の(単数または複数の)置換基をさらに変換す ることによっても得ることができる。

上記各製造法において、反応溶媒としてはジクロロメタン、クロロホルムなどの

10

ハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが反応に応じて適宜用いられる。

いずれの製造方法においても、反応温度は-7.8℃から+1.5.0℃、好ましくは0℃から1.0.0℃の範囲である。反応完了後、通常の単離、精製操作、すなわち濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(I)で表される環状アミン化合物を単離することができる。また、それらは通常の方法により、薬学的に許容される酸付加体または C_1-C_6 アルキル付加体に変換することができる。

実施例

本発明を以下、実施例に基づいて説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。以下の実施例において各化合物に付された化合物番号は、Table1.1-1.221において好適な具体例として挙げた化合物に付された化合物番号(Compd.No.)と対応している。

[参考例1] (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフ ルオロベンゾイル) グリシル} アミノ] ピロリジン(化合物番号69) の合成

本発明の化合物はWO 9 9 2 5 6 8 6 号パンフレット記載の製造法により合成したが、例えば化合物番号 6 9 の (R) -1-(4-クロロベンジル) $-3-[{N-(3,4-$ ジフルオロベンゾイル) グリシル} アミノ] ピロリジンは以下のように合成した。

25

20

1) 3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩

4-クロロベンジルクロリド (4. 15g、25,8mmol)と *i*-Pr₂NE t (6.67g,51.6mmol)を、3-{(*tert*-ブトキシカルボニル)アミノ}ピロリジン(4.81g、25.8mmol)のDMF溶液(50mL)に加えた。反応混合物を70℃で15時間攪拌し、溶媒を減圧下に除去した。再結晶(CH₃CN、50mL)により目的とする3-{(tert-ブトキシカルボ

30

3.35g、99%)を得た。

ニル) アミノ $}$ -1-(4-クロロベンジル) ピロリジン (6.43g、80%) を黄白色固体として得た:

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ

1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83
5 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた(9 8 %); ESI/MS m/e 3 1 1.0 (M++H、C₁₆H₂₄C1N₂O₂)

 $3-\{(tert-ブトキシカルボニル)アミノ\}-1-(4-クロロベンジル) ピロリジン(6.38g、20.5mmol)の<math>CH_3OH(80mL)$ 溶液に1

10 M HCl-Et₂O(100mL)を加え、25℃で15時間攪拌した。溶媒を減圧下に除去し、固体を得、再結晶(CH₃OH/CH₃CN=1:2、130mL)で精製することにより、3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩(4.939g、85%)を白色粉末として得た:

 $^{1}H-NMR$ ($d_{6}-DMSO$, 300MHz) δ

15 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた(>99%); ESI/MS m/e 211.0 (M++H、C11H16ClN2)

光学活性(R)-3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸20 塩と(S)-3-アミノ-1-(4-クロロベンジル)ピロジジン・二塩酸塩を、それぞれ対応する原料を用いて上記の方法により合成した。生成物は、上記ラセミ体と同じ¹H-NMRを示した。

- 2) $(R) 3 \{ (N t e r t \overline{J}) + \overline{J} + \overline{J$

- (R) -3-アミノ-1-(4-クロロベンジル)ピロリジン(3.35g、16mmol)のCH₂Cl₂(80mL)溶液に、Et₃N(2.5mL、17.6mmol)、N-tert-プトキシカルボニルグリシン(2.79g、16.0mmol)、N-tert-プトキシカルボニルグリシン(2.79g、16.0mmol)、EDCI(3.07g、16.0mmol)およびHOBt(12.16g、16mmol)を加えた。反応混合物を25℃で16時間攪拌した後、2MNaOH溶液(80mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(100mL×3)。有機層を合わせて水(100mL×2)と食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル)により、目的とする(R) -3-{N-(10tert-プトキシカルボニル)グリシル}アミノ-1-(4-クロロベンジル)ピロリジン(5.40g、92%)を得た。
 - 3) (R) 1 (4 クロロベンジル) 3 (グリシルアミノ) ピロリジンの合成
- $(R) 3 \{N (tert ブトキシカルボニル) グリシル } アミノー 1 (R) 3 \{N (tert ブトキシカルボニル) グリシル } アミノー 1 (R) 3 (R) ($ 15 (4-クロロベンジル) ピロリジン(5.39g、14.7mmol) のメタノー ル (60mL) 溶液に、4M HClジオキサン (38mL) 溶液を加えた。この 溶液を室温で2時間攪拌した。反応混合物を濃縮し、2M NaOH溶液(80m L) を加えた。混合液をジクロロメタン(80mL×3) で抽出し、抽出液を合わ せて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(SiOo、 20 $AcOEt/EtOH/Et_3N=90/5/5$) により、(R) -3-(グリシルアミノ) -1-(4-0ロロベンジル) ピロリジン(3.374g、86%) を得 $t: ^{1}H-NMR (CDC1_{3}, 270MHz) δ$ 1.77 (dd, J = 1.3および6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 25 および9.6 Hz, 1 H), 2.62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H) , 3. 31 (s, 2 H), 3. 57 (s, 2 H), 4. 38-4. 53 (br, 1 H), 7. 18-7. 32 (m, 4 H), 7. 3 9 (br. s. 1 H)
- 4) (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベ 30 ンゾイル) グリシル} アミノ] ピロリジン(化合物番号69)
 - 3, 4-ジフルオロベンゾイルクロリド(0, 060mmol)のクロロホルム

10

溶液(0.4mL)を、(R)-1-(4-クロロベンジル)-3-(グリシルアミノ)ピロリジン(0.050mmol)とトリエチルアミン(0.070mmol)のクロロホルム(1.0mL)溶液に加えた。この反応混合物を室温で2.5時間攪拌した後、(アミノメチル)ポリスチレン樹脂(1.04mmol/g、50mg、50mmol)を加え、混合物を室温で12時間攪拌した。反応混合物を濾過し、樹脂をジクロロメタン(0.5mL)で洗浄した。濾液と洗液とを合わせ、ジクロロメタン(4mL)を加え、溶液を2M NaOH水溶液(0.5mL)にて洗浄し、濃縮することにより、(R)-1-(4-クロロベンジル)-3-[N-(3,4-ジフルオロベンゾイル)グリシル}アミノ]ピロリジン(化合物番号69)を得た(7.8mg、38%):純度はRPLC/MSで求めた(>99%);ESI/MS m/e 408.0(M*+H、C20H20C1F2N3O2)

[実施例1] <u>エオタキシンにより惹起されるCCR3発現細胞の細胞内カルシウム</u> 濃度上昇に対する被験化合物の阻害能の測定

15 CCR3レセプターを安定して発現するK562細胞を用いて、細胞内カルシウム濃度上昇に対する本発明による化合物の阻害能を次の方法にて測定した。

CCR3発現K562細胞を10mM HEPES含有HBSS溶液に懸濁した ものに1mM Fura2アセトキシメチルエステル(同仁化学社製)を加え、37℃にて30分間インキュベートした。これを340nmと380nmで励起し、

340/380比をモニターすることにより、細胞内カルシウム濃度を測定した。 アゴニストとしてヒトエオタキシン(0.5μ g/ml)を用い、被験化合物の阻 害能はエオタキシンで刺激する5分前にCCR3発現K562細胞を被験化合物で 処理したときの細胞内カルシウム濃度を測定し、下記の式により抑制率(%)を算出した。

25

抑制率 $(\%) = \{1 - (A - B) / (C - B)\} \times 100$

(A:被験化合物で処理した後エオタキシンで刺激したときの細胞内カルシウム濃度、B:無刺激のときの細胞内カルシウム濃度、C:被験化合物で処理せずにエオ 30 タキシンで刺激したときの細胞内カルシウム濃度)

本発明で用いる環状アミン誘導体の阻害能を測定したところ、例えば、下記の化

合物は、 10μ Mの濃度おいて、それぞれ20-50%、50%-80%、および、>80%の阻害能を示した。

 $10 \mu M$ の濃度において 20% - 50%の阻害能を示した化合物:

化合物番号11、156、234、330、392、424、481、523、5 5 25, 533, 558, 567, 582, 602, 613, 630, 646, 64 9, 701, 738, 741, 754, 767, 814, 816, 833, 839 . 873. 902. 909. 945. 1002. 1159. 1170. 1258. 1315, 1352, 1357, 1407, 1417, 1448, 1472, 15 04, 1508, 1531, 1558, 1562, 1569, 1661, 1670 10 . 1686, 1719, 1751, 1756, 1769, 1775, 1783, 1 797, 1802, 1803, 1815, 1834, 1841, 1846, 188 3, 1887, 1889, 1892, 1913, 1924, 1928, 1960, 2006, 2013, 2035, 2052, 2083, 2113, 2127, 21 36, 2189, 2320, 2321, 2323, 2327, 2330, 2334 , 2336, 2338, 2345, 2394, 2394, 2398, 2398, 2 15 400, 2400, 2406, 2406, 2407, 2407, 2409, 240 9, 2420, 2420, 2421, 2421

 10μ Mの濃度において 50% - 80%の阻害能を示した化合物:

化合物番号83、115、146、150、216、294、297、322、4 20 05, 440, 459, 461, 466, 482, 484, 487, 490, 49 2, 503, 526, 528, 550, 562, 570, 578, 620, 623 . 659, 685, 687, 703, 716, 730, 733, 755, 770, 850, 856, 867, 876, 998, 1015, 1024, 1223, 12 59, 1267, 1295, 1377, 1402, 1412, 1420, 1485 25 . 1519, 1550, 1560, 1595, 1601, 1650, 1701, 1 725, 1754, 1836, 1856, 1870, 1912, 1923, 192 9, 2095, 2120, 2138, 2179, 2258, 2260, 2261, 2267, 2268, 2270, 2275, 2276, 2278, 2287, 22 90.2291.2294.2297.2300.2301.2302.2307 30 . 2309, 2313, 2317, 2322, 2324, 2326, 2328, 2 329, 2333, 2335, 2343, 2344, 2346, 2347, 234

329, 2333, 2335, 2343, 2344, 2346, 2347, 234 8, 2350, 2351, 2353, 2358, 2360, 2361, 2364, 2365, 2368, 2369, 2377, 2379, 2381, 2402, 24 03, 2404, 2405, 2408, 2410, 2411, 2416, 2417

10μMの濃度において>80%の阻害能を示した化合物:

化合物番号7、32、68、169、173、203、209、215、520、544、547、851、852、855、874、910、1003、1012、1032、1038、1042、1043、1046、1114、1190、1

10 244、1247、1384、1441、1513、1527、1545、1582、1673、1687、1689、1705、1850、1869、1871、1876、1877、1899、2027、2289、2293、2296、2298、2315、2318、2319、2325、2332、2349、2352、2354、2355、2356、2357、2359、2362、2363、2366、2367、2370、2371、2372、2373、2374、2375、2376、2378、2382、2383、2390、2393、2396、2412、2413、2414、2415、2422、2423、2424、2425、2426、2427、2428

- [実施例2] <u>CCR3発現細胞膜画分へのエオタキシンの結合に対する阻害能の測定</u> ヒトCCR3発現K562細胞より調製した細胞膜画分を0.5mg/mLになるようにアッセイバッファー(25mM HEPES、pH7.6、1mM Ca Cl₂、5mM MgCl₂、0.5%BSA) に懸濁し膜画分懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。[125 I] 標準 25 識ヒトエオタキシン(アマシャム社製)を1μCi/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。0.5%BSAで被覆した96ウェルマイクロプレートに、1ウェルあたり被験化合物溶液25μL、標識リガンド溶液25μL、膜画分懸濁液50μLの順番に分注し撹拌後(反応溶液100μL)、25℃で90分インキュベートした。
- 30 反応終了後、あらかじめ0.5%ポリエチレンイミン溶液にフィルターを浸漬した96ウェルフィルタープレート(ミリポア社製)で反応液をフィルター濾過し、フィ

WO 01/10439 PCT/JP00/05260

253

ルターを冷洗浄バッファー(アッセイバッファー+0.5M NaCl) 150μL で4回洗浄した(冷洗浄バッファー150μLを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウェルあたり25μLずつ加え、フィルター上の膜画分が保持する放射能をトップカウント(パッカード社製)にて測定した。

5 被験化合物の代わりに非標識ヒトエオタキシン100ngを添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを100%として、ヒトエオタキシンのCCR3膜画分への結合に対する被験化合物の阻害能を算出した。

10 阻害率 (%) = $\{1 - (A - B) / (C - B)\} \times 100$

(A:被験化合物添加時のカウント、B:非標識ヒトエオタキシン100ng添加時のカウント、C: [125 I] 標識ヒトエオタキシンのみ添加したときのカウント) 本発明で用いる環状アミン誘導体の阻害能を測定したところ、本実施例における代表的な化合物の阻害能は、実施例1で認められた阻害能とほぼ同等であった。

産業上の利用可能性

15

20

25

本発明の環状アミン化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする薬剤、もしくはCCR3が関与する疾患の治療薬もしくは予防薬は、CCR3拮抗剤として、エオタキシンなどのCCR3のリガンドの標的細胞に対する作用を抑制する作用を有する。したがって、これらは気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、ならびに潰瘍性大腸炎およびクローン病などの炎症性腸疾患など、好酸球、好塩基球、活性化T細胞などの組織への浸潤が病気の進行、維持に主要な役割を演じている疾患に対する治療薬および/または予防薬として有用である。また、CCR3拮抗作用に基づくHIV-1の感染を阻害する作用により、エイズの治療薬および/または治療薬としても有用である。

請求の範囲

1. 下記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3拮抗 作用を有する薬剤。

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \\
\downarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

[式中、 R^1 はフェニル基、 C_3-C_8 シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはへ 15 テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフ ェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基 20 、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 C_2 - C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C2 $-C_7$ アルカノイル基、 C_2 $-C_7$ アルコキカルボニル基、 C_2 $-C_7$ アルカノイルオ キシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_4-C_9 N-シクロアルキルカルパモイル基、 C_1-C_6 アルキルスルホニル基、C $_3-\mathsf{C}_8$ (アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2 価基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、もしくはジ(C_1-C_6 ア 30 ルキル)アミノ基で置換されていてもよく、これらのフェニル基、C3-C8シクロ

アルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、もしくは $C_1 - C_6$ アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0 のときは R^2 はヒドロキシ基ではない。

jは0-2の整数を表す。

10 kは0-2の整数を表す。

mは2-4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、 ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換 されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ 20 ルバモイル基、メルカプト基、グアニジノ基、C3-C8シクロアルキル基、C1-C ₆アルコキシ基、C₁-C₆アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 、C」-C。アルキル基、C」-C。アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、C₂-C₁アルカノイル基、C₂-C₁アルコキシカルボニル 25 基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_9 - C_7$ アルカノイルアミノ基、 $C_9 - C_7$ N -アルキルカルバモイル基、C₁-C₆アルキルスルホニル基、アミノ基、モノ(C₁ - C₆アルキル)アミノ基、ジ(C₁-C₆アルキル)アミノ基、もしくは(ヘテロ原 子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族 複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6員環状炭化水 30 素を形成していてもよい。

15

20

25

30

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基 、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒 素原子を1-3個有する芳香族複素環基を表し、上記R⁶におけるフェニル基、ベン ジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子 、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合し て縮合環を形成していてもよく、さらに上記R 6 におけるフェニル基、C $_3$ -C $_8$ シク ロアルキル基、C₃-C₆シクロアルケニル基、ベンジル基、芳香族複素環基、また は縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニ トロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル 基、C1-C6アルキル基、C3-C8シクロアルキル基、C2-C6アルケニル基、C $_1$ - C_6 アルコキシ基、 C_3 - C_8 シクロアルキルオキシ基、 C_1 - C_6 アルキルチオ基 、C,-C。アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基 、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、 3-フェニルウレイド基、C2-C7アルカノイル基、C2-C7アルコキシカルボニ ル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_9 - C_7$ アルカノイルアミノ基、 $C_9 - C_7$ N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモ イル基、N, Nージ(C_1 - C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1 $-C_6$ アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、ベンジルアミノ基、 С2-С7(アルコキシカルボニル)アミノ基、С1-С6(アルキルスルホニル)ア ミノ基、もしくは、ビス($C_1 - C_6$ アルキルスルホニル)アミノ基により置換され ていてもよく、これらのフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任 意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基 、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、モノ(

 $C_1 - C_6 P$ ルキル)アミノ基、もしくはジ($C_1 - C_6 P$ ルキル)アミノ基によって置換されていてもよい。]

- 上記式(I)においてk=1かつm=2である、請求項1記載のCCR3括
 抗作用を有する薬剤。
 - 3. 上記式(I)においてk=0かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。
- 4. 上記式(I)においてk=1かつm=3である、請求項1記載のCCR3拮 抗作用を有する薬剤。
 - 5. 上記式 (I) においてk=2かつm=2である、請求項1記載のCCR3拮抗作用を有する薬剤。
 - 6. 上記式(I)においてk=1かつm=4である、請求項1記載のCCR3拮抗作用を有する薬剤。
- 7. 上記式 (I) で表される化合物、その薬学的に許容される酸付加体、または 20 その薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬。
 - 8. 疾患がアレルギー性疾患である請求項7記載の治療薬もしくは予防薬。
- 25 9. 疾患が気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、またはアレルギー性結膜炎である請求項8記載の治療薬もしくは予防薬。
 - 10. 疾患が炎症性腸疾患である請求項7記載の治療薬もしくは予防薬。
- 30 11. 疾患がエイズである請求項7記載の治療薬もしくは予防薬。

This Page Blank (uspto)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/05260

		•
C07D207/14, 211/56, 58 26 401/04 06		
According to International Patent Classification (IPC) or to both	513/04 national classification and IPC	
B. FIELDS SEARCHED		
Minimum documentation searched (classification system follows: Int.Cl7 A61K31/40, 4025, 445, 4468, 4: 4709, 4184, 427, 506, 433, 423, 4192, 42 C07D207/14, 211/56, 58, 26, 401/04, 06, 413/06, 14, 417/06, 487/04, 495/06, 04, Documentation searched other than minimum documentation to	525, 4535, 454, 422, 404, 4155, 29, 53, A61P37/08, 29/00, 31/1 12, 14, 403/06, 12, 405/06, 1	8, 11/08, 43/00 // 2, 14, 409/12, 14,
Electronic data base consulted during the international search (na REGISTRY (STN), CA (STN), CAOLD (STN), C	ame of data base and, where practicable, sea	rch terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
X WO, 99/25686, A1 (TEIJIN LIMIT A 27 May, 1999 (27.05.99) & EP, 1030840, A1 & AU, 991 & NO, 2000002486, A)	1-10 11
X EP, 217286, A1 (OKAMOTO SHOSUM 08 April, 1987 (08.04.87), Compound No.42 & JP, 63-022061, A & US, 4854 & AU, 8663051, A & CA, 129	5842, A	1,5,7-10 2-4,6,11
X WO, 98/50534, A1 (SMITHKLINE E 12 November, 1998 (12.11.98) & EP, 991753, A1 & AU, 9872 & BR, 9808502, A & ZA, 9803	2885, A	1,2,5 3,4,6-11
X GB, 2106108, A (JOHN WYETH AND 07 April, 1983 (07.04.83) & US, 4443461, A	BROTHER LIMITED),	1,5 2-4,6-11
X WO, 97/40051, A1 (TAKEDA CHEMI A 30 October, 1997 (30.10.97)		1,5 2-4,6-11
Further documents are listed in the continuation of Box C.	See patent family annex.	
Special categories of cited documents; document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	"T" later document published after the inter priority date and not in conflict with the understand the principle or theory under document of particular relevance; the cl considered novel or cannot be considered step when the document is taken alone document of particular relevance; the cl	e application but cited to rlying the invention laimed invention cannot be ed to involve an inventive
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	considered to involve an inventive step combined with one or more other such a combination being obvious to a person a document member of the same patent fa	when the document is documents, such skilled in the art
Date of the actual completion of the international search 31 October, 2000 (31.10.00)	Date of mailing of the international search 07 November, 2000 (07	h report 7 . 11 . 0 0)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer	
Facsimile No.	Telephone No.	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/05260

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	& JP, 10-226689, A & EP, 915888, A1 & CA, 2251625, A & AU, 9724048, A & ZA, 9703493, A & CN, 1223659, A	
X A	KHALID, M. et al., "N,N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res. (1987), Vol.13, Suppl. 1, p.57-60	1,5 2-4,6-11
PX PA	WO, 00/31032, A1 (F.HOFFMANN-LA ROCHE AG), 02 June, 2000 (02.06.00) & DE, 19955794, A & GB, 2343893, A & FR, 2786185, A	1,2,7-11 3-6
		;

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際出願番号 PCT/JP00/05260 国際調査報告 発明の属する分野の分類(国際特許分類、(IPC)/// Int. C1, A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192, 429,53, A61P37/08, 29/00, 31/18, 11/08, 43/00 // C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192. 429, 53, A61P37/08, 29/00, 31/18, 11/08, 43/00 // C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) REGISTRY (STN), CA (STN), CAOLD (STN), CAPLUS (STN) 関連すると認められる文献 関連する 引用文献の 請求の範囲の番号 カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 Х WO, 99/25686, A1 (TEIJIN LIMITED) 27.5月.1999(27.05.99) 1-10 &EP, 1030840, A1 &AU, 9913741, A &NO, 2000002486, A 11 Α EP, 217286, A1 (OKAMOTO SHOSUKE) 8-4月、1987 (08.04.87) X 1, 5, 7–10 2-4, 6, 11 化合物No. 42参照 &JP, 63-022061, A &US, 4895842, A &AU, 8663051, A &CA, 1297633, A 1, 2, 5 WO. 98/50534, A1 (SMITHKLINE BEECHAM CORPORATION) X 12.11月.1998(12.11.98) 3, 4, 6-11 Α &EP, 991753, A1 &AU, 9872885, A &BR, 9808502, A &ZA, 9803843, A □ パテントファミリーに関する別紙を参照。 C欄の続きにも文献が列挙されている。 引用文献のカテゴリー の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの 「E」国際出願目前の出願または特許であるが、国際出願日 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) 「〇」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 07.11.**00** 国際調査報告の発送日 国際調査を完了した日 31.10.00

特許庁審査官(権限のある職員)

榎本 佳予子

電話番号 03-3581-1101 内線 3492

9638

様式PCT/ISA/210(第2ページ)(1998年7月)

日本国特許庁(ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

国際調査機関の名称及びあて先

国際調査報告

国際出願番号 PCT/JP00/05260

こ(続き).	関連すると認められる文献	関連する
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Х	GB, 2106108, A (JOHN WYETH AND BROTHER LIMITED)	1, 5
A	7. 4月. 1983 (07. 04. 83)	2-4, 6-11
_	&US, 4443461, A	
X	WO, 97/40051, A1 (TAKEDA CHEMICAL INDUSTRIES, LTD.)	1, 5
A	30. 10月. 1997 (30. 10. 97)	2-4, 6-11
.	&JP, 10-226689, A &EP, 915888, A1 &CA, 2251625, A &AU, 9724048, A &ZA, 9703493, A &CN, 1223659, A	
X	KHALID, M. et al., "N,N'-disubstituted L-isoglutamines as	1,5
Α	novel cancer chemotherapeutic agents",	. 2-4, 6-11
	Drugs Exp. Clin. Res. (1987), Vol. 13, Suppl. 1, p. 57-60	
PX PA	WO, 00/31032, A1 (F. HOFFMANN-LA ROCHE AG) 2.6月.2000(02.06.00) &DE, 19955794, A &GB, 2343893, A &FR, 2786185, A	1, 2, 7-11 3-6
	. •	
	· · · · · · · · · · · · · · · · · · ·	
]
		. [
	·	
		1
•		