# Pyruvate Carboxylase: Yet Another Multi-



## Pyruvate Carboxylase Has a Biotin Arm



Avidin in raw egg white causes biotin (vitamin H) deficiency (and is cytostatic)







PEP Carboxykinase uses "activated" CO<sub>2</sub> and GTP to make high-energy PEP



Phase II: arm swings to different subsite

**BUT WAIT: Pyruvate Carboxylase is mitochondrial, PEPCK** mitochondrial and/or cytosolic, other gluconeogenesis cytosolic



03/07/22

# PEP & Oxaloacetate Have to Leave & Enter the Mitochondrial Matrix

COO-

HO-C-H

Cytosol

Inner

mitochondrial

membrane

Mitochondrion

Nils Walter: Chem 4

Oxaloacetate is shuttled either as malate (carrying also NADH reducing equivalents needed in gluconeogenesis) or as aspartate (without NADH, if NADH is available from lactate → pyruvate)





COO-

но-с-н

# Glycolysis and Gluconeogenesis as Two Opposing Pathways Have to be Regulated

#### **Glycolysis:**

Glucose +  $2NAD^+ + 2ADP + 2P_i \rightarrow 2Pyruvate + 2NADH + 4H^+ + 2ATP + 2H_2O$ 

#### **Gluconeogenesis:**

2Pyruvate + 2NADH +  $4H^+$  + 4ATP + 2GTP +  $6H_2O \rightarrow Glucose$  +  $2NAD^+$  + 4ADP + 2GDP +  $6P_i$ 

#### As a "futile cycle":

 $2ATP + 2GTP + 4H_2O \rightarrow 2ADP + 2GDP + 4P_i$ 

 $\Rightarrow$  Must be prevented!  $\Rightarrow$  Regulation!

Nils Walter: Chem



Gerty and Carl Cori Nobel prize 1947

# Chapter 23: What have we learned?

© Gluconeogenesis = Glycolysis reversed: The three key steps

that have to be bypassed

- **Oxaloacetate as a key metabolite**
- **The pyruvate carboxylase mechanism**
- **We will also to the important of the im**
- © Energetics and Regulation of gluconeogenesis; the Cori cycle; <del>Lance Armstrong's story</del>

### Review: Lipids and Membranes

**Greek:** lipos = fat

> soluble in organic solvents Voet & Voet, Chapter 12

 $(CH_3OH, CHCl_3)$ , not in water  $\Rightarrow$  easy fractionation



TABLE 11-1. THE COMMON BIOLOGICAL FATTY ACIDS

| Symbol      | Common Name              | Systematic Name                   | Structure                                                                                                                 | mp (°C) |
|-------------|--------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------|
| Saturated j | fatty acids              |                                   |                                                                                                                           |         |
| 12:0        | Lauric acid              | Dodecanoic acid                   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>10</sub> COOH                                                                     | 44.2    |
| 14:0        | Myristic acid            | Tetradecanoic acid                | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>12</sub> COOH                                                                     | 52      |
| 16:0        | Palmitic acid            | Hexadecanoic acid                 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>14</sub> COOH                                                                     | 63.1    |
| 18:0        | Stearic acid             | Octadecanoic acid                 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>16</sub> COOH                                                                     | 69.6    |
| 20:0        | Arachidic acid           | Eicosanoic acid                   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>18</sub> COOH                                                                     | 75.4    |
| 22:0        | Behenic acid             | Docosanoic acid                   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>20</sub> COOH                                                                     | 81      |
| 24:0        | Lignoceric acid          | Tetracosanoic acid                | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>22</sub> COOH                                                                     | 84.2    |
| Unsaturate  | d fatty acids (all doubl | e bonds are cis)                  |                                                                                                                           |         |
| 16:1        | Palmitoleic acid         | 9-Hexadecenoic acid               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CH=CH(CH <sub>2</sub> ) <sub>7</sub> COOH                                 | -0.5    |
| 18:1        | Oleic acid               | 9-Octadecenoic acid               | $CH_3(CH_2)_7CH = CH(CH_2)_7COOH$                                                                                         | 13.4    |
| 18:2        | Linoleic acid            | 9,12-Octadecadienoic acid         | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> (CH=CHCH <sub>2</sub> ) <sub>2</sub> (CH <sub>2</sub> ) <sub>6</sub> COOH | -9      |
| 18:3        | α-Linolenic acid         | 9,12,15-Octadecatrienoic acid     | CH <sub>3</sub> CH <sub>2</sub> (CH=CHCH <sub>2</sub> ) <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> COOH                 | -17     |
| 18:3        | γ-Linolenic acid         | 6,9,12-Octadecatrienoic acid      | $CH_3(CH_2)_4(CH=CHCH_2)_3(CH_2)_3COOH$                                                                                   |         |
| 20:4        | Arachidonic acid         | 5,8,11,14-Eicosatetraenoic acid   | $CH_3(CH_2)_4(CH=CHCH_2)_4(CH_2)_2COOH$                                                                                   | -49.5   |
| 20:5        | EPA                      | 5,8,11,14,17-Eicosapentanoic acid | CH <sub>3</sub> CH <sub>2</sub> (CH=CHCH <sub>2</sub> ) <sub>5</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH                 | -54     |
| 24:1        | Nervonic acid            | 15-Tetracosenoic acid             | $CH_3(CH_2)_7CH = CH(CH_2)_{13}COOH$                                                                                      | 39      |

- $\triangleright$  fatty acids of <C<sub>14</sub> or >C<sub>20</sub> are uncommon
- $\triangleright$  most have even # of Cs (biosynthesized from  $C_2$ )
- >>50% of natural fatty acids are unsaturated
- > unconjugated cis configuration
- > melting point (mp) decreases with unsaturation

Linoleic acid Stearic acid Oleic acid α-Linolenic acid

a Number of carbon atoms: Number of double bonds.

# Triacylglycerols, the Fatty Ones

> Triacylglycerols = triglycerides = neutral fats = fats and oils in plants and animal



- ➤ Simple triacylglycerols contain only 1 type of fatty acids
- **➤** Mixed triacylglycerols are more common:
- ➤ Triacylglycerols are a highly efficient form of stored energy (less oxidized than carbohydrates or amino acids, and anhydrous ⇒ 6-fold higher metabolic energy than glycogen which binds 2-fold its weight of water)







- > store 2-3 months (!) of energy supply (21%/26% of body weight!)
- > insulation (whales, seals, penguins!)

