EXERCISE-I (B)

Show that the integral part in each of the following is odd. $n \in N$ Q.1

(A) $(5 + 2\sqrt{6})^n$ (B) $(8 + 3\sqrt{7})^n$

(C) $\left(6 + \sqrt{35}\right)^n$

Show that the integral part in each of the following is even. $n \in N$ Q.2

(A) $(3\sqrt{3}+5)^{2n+1}$

(B) $\left(5\sqrt{5} + 11\right)^{2n+1}$

- If $(7+4\sqrt{3})^n = p+\beta$ where n & p are positive integers and β is a proper fraction show that Q.3
- If x denotes $(2 + \sqrt{3})^n$, $n \in \mathbb{N}$ & [x] the integral part of x then find the value of : $x x^2 + x[x]$. Q.4
- If $P = (8 + 3\sqrt{7})^n$ and f = P [P], where [] denotes greatest integer function. Q.5 Prove that: $P(1-f) = 1 (n \in N)$
- If $(6\sqrt{6} + 14)^{2n+1} = N \& F$ be the fractional part of N, prove that $NF = 20^{2n+1}$ $(n \in N)$ 0.6
- Prove that if p is a prime number greater than 2, then the difference $\left| \left(2 + \sqrt{5} \right)^p \right| 2^{p+1}$ is divisible by Q.7 p, where [] denotes greatest integer.
- Prove that the integer next above $\left(\sqrt{3}+1\right)^{2n}$ contains 2^{n+1} as factor $(n \in N)$ Q.8
- Let I denotes the integral part & F the proper fractional part of $(3 + \sqrt{5})^n$ where $n \in \mathbb{N}$ and if ρ Q.9 denotes the rational part and σ the irrational part of the same, show that

 $\rho = \frac{1}{2}(I+1)$ and $\sigma = \frac{1}{2}(I+2F-1)$.

Prove that $\frac{2^{n}C_{n}}{n+1}$ is an integer, $\forall n \in \mathbb{N}$. Q.10