Aprendizagem Automática

ENUNCIADO

FICHA N. 4

Nome: Miguel Eduardo Ferreira Távora

Número: A45102

ATENÇÃO: Fixa de respostas múltiplas. Só uma única resposta em cada alínea está correta. Cada alínea vale 2 valores. Respostas erradas descontam 0.5 valores.

- 1. Considere o conjunto "diabetes" disponível em sklearn. datasets (usar a função load_diabetes ()). Pretende-se estimar e avaliar modelos de regressão polinomial com os dados deste conjunto: use as primeiras 180 amostras para treino e as restantes para teste.
 - (a) i. O número de coeficientes, incluindo w_0 , numa regressão polinomial de ordem 2, é igual a 66.
 - ii. O número de coeficientes, incluindo w_0 , numa regressão polinomial de ordem 3, é igual a 293.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
 - (b) Considere que utiliza função Lasso (sub-módulo linear_model do sklearn) para uma regressão polinomial de 4ª ordem dos dados de treino. Instancie o regressor somente com os seguintes parâmetros:

Lasso(random_state=42,alpha=0.01)

- i. No conjunto de treino, o erro quadrático médio é igual a 2446.54.
- ii. Excluindo w_0 , o número de coeficientes do polinómio igual a zero é 966.
- iii. Todas as respostas anteriores.
- iv. Nenhuma das respostas anteriores.
- (c) Considere o modelo de regressão polinomial de 2ª ordem que minimiza o erro quadrático médio no conjunto de treino.
 - i. No conjunto de teste, o erro absoluto médio é igual a 98.06.
 - ii. No conjunto de teste, o coeficiente de determinação, R², é igual a 0.197.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
- 2. No ficheiro A45102_Q002_data.p, encontra-se um conjunto de dados bidimensionais divididos em duas classes Ω = {ω0, ω1} (negativos e positivos). Há duas variáveis num dicionário: X é uma matriz de dados, e y é um array com as classes dos dados. Considere o seguinte modelo linear de classificação:

$$\hat{y} = \mathbf{w}^{\top} \mathbf{x} = w_0 + w_1 x_1 + w_2 x_2$$
, com $\mathbf{x} \in \hat{\omega}_1$ para $\hat{y} \ge 0$, e para $\mathbf{w} = [w_0, w_1, w_2]^{\top}$ e $\mathbf{x} = [1, x_1, x_2]^{\top}$.

Considere ainda que o vetor \mathbf{w}_{MSE} é o vetor de pesos que minimiza o erro quadrático

1 1011/11/11

médio deste conjunto: $\mathcal{E}=\frac{1}{N}\sum_{n=1}^N \left(y[n]-\hat{y}[n]\right)^2$, onde N é o número total de pontos, e $n=1,\ldots,N$. As saídas desejadas são: y[n]=-1 para $\mathbf{x}[n]\in\varpi_0$ e y[n]=+1 para $\mathbf{x}[n]\in\varpi_1$.

- (a) Consider o classificador com o seguinte vetor de pesos $\mathbf{w} = [0.00, 0.98, 0.19]$.
 - i. O valor da precisão é de 0.915.
 - ii. O número de acertos na classe ϖ_0 é de 381.
 - iii. O número de erros na classe ϖ_0 é de 168.
 - iv. O número de erros na classe ϖ_1 é de 115.
- (b) Considere o classificador com vetor de pesos, w_{MSE}, que minimiza o erro quadrático médio do conjunto.
 - i. O erro quadrático médio é igual a 1.180.
 - ii. O número de acertos na classe ϖ_0 é de 189.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
- (c) Consider o classificador com o seguinte vetor de pesos $\mathbf{w} = [0.00, 0.49, -0.87]$.
 - i. O número de acertos na classe ϖ_1 é de 1619.
 - ii. O número total de acertos é de 2001.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
- 3. No ficheiro A45102_Q003_data.p encontra-se disponível uma variável independente x e uma variável dependente y. Pretende-se estimar a variável y através de uma regressão polinomial da variável x, minimizando o erro quadrático médio.
 - (a) Considere o conjunto de treino composto pelo "fold" 1, e o conjunto de teste composto pelo "fold" 0. Considere ainda que, através da minimização do erro quadrático médio do conjunto de treino, se estimou um modelo regressão polinomial de 3ª ordem: $\hat{y} = w_0 + w_1 x + w_2 x^2 + w_3 x^3$.
 - i. No conjunto de teste, o erro quadrático médio é igual a 63.22.
 - ii. No conjunto de treino, o erro absoluto médio é igual a 0.20.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
 - (b) Considere o conjunto de treino composto pelo "fold" 1, e o conjunto de teste composto pelo "fold" 0. Considere ainda que, através da minimização do erro quadrático médio do conjunto de treino, se estimou um modelo regressão polinomial de 4ª ordem: $\hat{y} = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$.
 - i. Arredondando a zero casas decimais, o valor de w_0 é 89.
 - ii. No conjunto de teste, o erro absoluto médio é igual a 6.92.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.

- (c) Considere que \hat{y}_{A} é o modelo de regressão polinomial de 4ª ordem obtido minizando o erro quadrático médio com os primeiros 53 pontos do conjunto. Considere ainda que \hat{y}_{B} é modelo e regressão polinomial de 4ª ordem obtido minizando o erro quadrático médio com o "fold" 0. Finalmente, considere que o modelo \hat{y}_{A} é avaliado com os últimos 53 pontos do conjunto, e que \hat{y}_{B} é avaliado com os dados do "fold" 1.
 - i. O modelo $\hat{y}_{\rm B}$ apresenta melhores resultados que $\hat{y}_{\rm A}$.
 - ii. Ambos os modelos obtêm resultados comparáveis.
 - iii. Os resultados de $\hat{y}_{\rm B}$ são devidos a este modelo ter entrado em sobre-aprendizagem.
 - iv. \hat{y}_{A} modela melhor os dados que \hat{y}_{B} .