

Model Development Phase Template

Date	13 july 2024	
Team ID	739805	
Project Title	Prediction and Analysis of Liver Patient Data Using Machine Learning	
Maximum Marks	6 Marks	

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Selection Report:

	1		Performance Metric
			(e.g., Accuracy, F1 Score)
Model	Description	Hyperparameters	Score)
Wiodei	Description	11yperparameters	

Logistic	Logistic Regression is a linear	random_state=42	Accuracy score = 76%
Regression	model used for binary classification tasks. It estimates the probability that a given input belongs to a particular class by fitting a logistic function (sigmoid) to the linear combination of input features. It's simple, interpretable, and works well for linearly separable data.		

	K neighbors Classifier	The KNeighbors Classifier (k-NN) is a non-parametric, instance-based learning algorithm. It classifies a data point based on the majority class among its k-nearest neighbors in the feature space. The value of k determines the number of neighbors considered.	n_neighbors=6, weights='uniform', algorithm='kd_tree', leaf_size=20	Accuracy score = 77%
--	------------------------------	---	--	----------------------

Random Forest Classifier	.Random Forest Classifier is an ensemble learning method that combines the predictions of multiple decision trees to improve accuracy and prevent overfitting. Each tree is trained on a random subset of the data and features, and their results are aggregated for final classification. This approach leverages the diversity of the individual trees to enhance robustness and accuracy.	n_estimators=500,cri terion='entropy',rand om_state=18	Accuracy score = 76%
SVC	Support Vector Classifier (SVC) is a supervised learning model that constructs a hyperplane or set of hyperplanes in a highdimensional space to classify data points. SVC aims to maximize the margin between different classes, making it robust to outliers and effective for high-dimensional data.	kernel="rbf",random _state=100,gamma=' auto',verbose=2,deci sion_function_shape ='ovo'	Accuracy score = 78%