MATH 110, SUMMER 2013 PRACTICE MIDTERM EXAM 1 THURSDAY, JULY 11TH

JAMES MCIVOR

- (1) Which of the following are subspaces of the vector space $P_2(\mathbb{F})$? Explain why or why not.
 - (a) $\{p(x) \mid (p(x))^2 = cx^4 \text{ for some } c \in \mathbb{F}\}$
 - (b) $\{p(x) | p(x-1) = p(x)\}$
- (2) Which of the following functions are linear maps? Explain why or why not.
 - (a) $T: \mathbb{C} \to \mathbb{C}$ given by $Tz = z \overline{z}$. (here \mathbb{C} is regarded as a one-dimensional complex space).
 - (b) $T: \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$ given by $T(a_1, a_2, a_3, \ldots) = (a_1 + a_1, a_1 + a_2, a_1 + a_3, \ldots)$.
- (3) Let $V = P_1(\mathbb{F})$ and $U = \{p(x) \in P_1(\mathbb{F}) \mid p(1) = 0\}$. Find a subspace W of $P_1(\mathbb{F})$ such that $V = U \oplus W$ and prove your choice is correct.
- (4) Prove that $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ is a basis for \mathbb{R}^3 .
- (5) Let $T: V \to V$ be a linear map with the property that $T^2 = I$ (where $T^2 = T \circ T$ and I means the identity map). Prove that Null $T = \{0\}$.
- (6) If $T: \mathbb{C}^3 \to \mathbb{C}^2$ is the map $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2z \\ x iy \end{pmatrix}$, find a basis for Null T and for Range T.
- (7) Consider the map $T: P_2(\mathbb{F}) \to \mathbb{F}^2$ given by $T(p(x)) = \begin{pmatrix} p(1) \\ p(2) \end{pmatrix}$. Write down the matrix of T with respect to the basis $(1, x, x^2)$ for $P_2(\mathbb{F})$ and the standard basis (e_1, e_2) for \mathbb{F}^2 .
- (8) Suppose that V and W are vector spaces with bases $B_1 = (v_1, v_2)$ and $B_2 = (w_1, w_2, w_3)$, respectively. Prove that if

$$M(T, B_1, B_2) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix},$$

then T must be injective.

(9) (harder) Prove that "every subspace is a nullspace". More precisely, let V be a finite-dimensional vector space, and U a subspace of V. Prove that there is a linear map $T: V \to V$ such that Null T = U. (hint: "construct" such a map)