Математика для Data Science. Математический анализ. Шпаргалка

Содержание

Теврая неделя. Введение, множества и доказательства	2
Объекты и целевая функция	2
Функция потерь и данные в машинном обучении	2
Модель машинного обучения	2
Множества	3
How-to по доказательствам	4
Функции	5

Певрая неделя. Введение, множества и доказательства

Объекты и целевая функция

Целевая функция — то, что мы хотим научиться вычислять для объектов из некоторого множества. $\Pi p u s + a \kappa u$ (или $\phi u u u$) — набор того, что описывает объекты.

Регрессия — тип задач, где значение целевой функции может быть произвольным числом из некоторого промежутка.

Классификация — тип задач, в которых нужно отнести объект к одному из классов. *Бинарная классификация* — частный случай классификации, в которой возможных классов всего два.

Объект в машинном обучении часто представляют в виде *вектора* или *матрицы*. Неформально говоря, *вектор* — это набор значений признаков, а *матрица* — это табличка, в которой стоят значения признаков.

Функция потерь и данные в машинном обучении

 Φ ункция $nomep_b$ показывает, насколько предсказанный ответ далёк от реального.

Пусть a — предсказанный ответ, y — реальный ответ. Приведём **примеры функций потерь** L(y,a) в рассмотренных нами типах задач.

- 1. Задача регрессии.
 - Модуль отклонения: L(y, a) = |y a|.
 - Квадрат отклонения: $L(y, a) = (y a)^2$.
- 2. Задача бинарной классификации для классов 0 и 1.
 - Индикаторная функция потерь: L(0,0) = L(1,1) = 1 и для всех остальных аргументов L(y,a) = 0. Обозначается L(y,a) как $\mathbf{1}\{y=a\}$.
 - Функция потерь, предсказывающая не класс объекта, а *вероятность* принадлежности объекта к одному из классов.

 $\it Oбучающая \ выборка$ — набор размеченных данных, то есть набор объектов, для которых известно значение целевой функции.

Пусть объекты пронумерованы числами от 1 до n, и для этих объектов значения целевой функции — y_1, y_2, \ldots, y_n соответственно, а предсказание нашего алгоритма — a_1, a_2, \ldots, a_n соответственно. Приведём **примеры функций потерь для нашей выборки:**

- 1. Задача регрессии.
 - Mean absolute error (MAE) или среднее отклонение по модулю это среднее арифметическое модулей отклонений:

$$MAE(y_1, y_2, \dots, y_n, a_1, a_2, \dots, a_n) = \frac{1}{n}(|y_1 - a_1| + |y_2 - a_2| + \dots + |y_n - a_n|).$$

• Mean squared error (MSE) или среднеквадратичная ошибка — это среднее арифметическое квадратов отклонений:

$$MSE(y_1, y_2, \dots, y_n, a_1, a_2, \dots, a_n) = \frac{1}{n}((y_1 - a_1)^2 + (y_2 - a_2)^2 + \dots + (y_n - a_n)^2).$$

- 2. Задача бинарной классификации.
 - Точность (accuracy) доля правильных ответов: $Acc(y_1, y_2, \dots, y_n, a_1, a_2, \dots, a_n) = \frac{1}{n} (\mathbf{1}\{y_1 = a_1\} + \mathbf{1}\{y_2 = a_2\} + \dots + \mathbf{1}\{y_n = a_n\}).$

Модель машинного обучения

Как правило, при решении задачи машинного обучения выбирается некоторый класс алгоритмов, где каждый конкретный алгоритм из класса задаётся *параметрами* или, иначе говоря, *весами*.

Алгоритм с фиксированными весами называется моделью.

Примеры классов алгоритмов:

- 1. Задача бинарной классификации.
 - Класс *константных функций*. Ему принадлежат алгоритмы, которые всегда выдают один и тот же ответ постоянную величину c.
 - Класс пороговых функций. Ему принадлежат классификаторы вида $\mathbf{1}\{s \leq t\}$. Здесь $\mathbf{1}$ индикаторная функция, которая возвращает 1, если условие внутри фигурных скобок выполнено, и 0 иначе. За s обозначено значение признака, а t фиксированое число, называемое порогом (от слова threshold).

2. Задача регрессии.

• Класс линейных функций. Ему принадлежат функции вида $\hat{f}(r,d,p) = w_r r + w_d d + w_p p + w_0$, где r,d,p- значения признаков (в общем случае их n, где n- количество признаков), а w_r,w_d,w_p,w_0- коэффициенты (в общем случае их n+1). w_0 называется свободным коэффициентом, его ещё называют сдвигом (или bias).

Множества

Множество — математический объект, являющийся набором других объектов.

Объекты, из которых состоит множество, называют *элементами множества* или *точками множества*. Множества обычно обозначают заглавными буквами латинского алфавита, а элементы множества — строчными.

Любой элемент содержится в множестве не больше одного раза. Множества, отличающиеся порядком элементов, считаются одинаковыми.

 $x \in A$ читается как «x является элементом множества A» или «x принадлежит A».

 $y \notin A$ читается как «y не принадлежит A».

Способы задания множества

- Перечислить его элементы внутри фигурных скобок.
- Задать описанием: «множество всех x, таких что для них выполнено условие P». Записывается это в форме $\{x \mid P(x)\}$.

Операции над множествами

- Пересечение множеств A и B это множество $A \cap B := \{x \mid x \in A \text{ и } x \in B\}$. Здесь знак «:=» читается как «по определению равно».
- Объединение множеств A и B это множество $A \cup B := \{x \mid x \in A$ или $x \in B\}$.
- Разность множеств A и B это множество $A \setminus B := \{x \mid x \in A \text{ и } x \notin B\}.$

Множество A называется nodмножеством множества B, если все элементы множества A также являются элементами множества B. Обозначение: $A \subset B$.

 Π устое множество — это множество, в котором нет элементов.

Способы изобразить множества

- 1. На диаграмме Эйлера множества рисуются как круги, а внутри кругов располагаются элементы.
- 2. В общем случае, если про множества ничего не известно, рисуют диаграмму Эйлера-Венна диаграмму Эйлера со всеми возможными пересечениями.

Некоторые часто встречающиеся множества

- $\mathbb{N} = \{1, 2, 3, \dots\}$ множество *натуральных* чисел, то есть чисел, возникающих при счёте.
- $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ множество *целых* чисел.
- \mathbb{Q} множество *рациональных* чисел, то есть чисел, которые можно записать в виде дроби $\frac{m}{n}$, где $m \in \mathbb{Z}$ и $n \in \mathbb{N}$. Числа $x \notin \mathbb{Q}$ называются *иррациональными*.

- \mathbb{R} множество действительных (или вещественных) чисел. Действительное число это бесконечная десятичная дробь, то есть выражение вида $\pm a_0.a_1a_2a_3...$, где \pm это знак + или знак —, a_0 целое неотрицательное число, и $a_i \in \{0, 1, 2, ..., 9\}$ для всех $i \geq 1$.
- \mathbb{R}^n множество всех наборов из n действительных чисел.

Некоторые часто встречающиеся подмножества $\mathbb R$

- При a < b отрезком называется множество $[a,b] := \{x \mid a \le x \le b\}$. Точки a и b называются $\mathit{граничными}$ точками отрезка.
- При a < b интервалом называется множество $(a, b) := \{x \mid a < x < b\}.$
- Замкнутыми лучами называются множества $[a, +\infty) := \{x \mid a \leq x\}$ и $(-\infty, a] := \{x \mid x \leq a\}$. Точка a называется граничной точкой замкнутого луча.
- Открытыми лучами называются множества $(a, +\infty) := \{x \mid a < x\}$ и $(-\infty, a) := \{x \mid x < a\}$.
- Интервал $(x_0 \varepsilon, x_0 + \varepsilon)$ называется ε -окрестностью точки x_0 , где ε (читается как «эпсилон») положительное действительное число.
- Проколотой ε -окрестностью точки x_0 называется ε -окрестность точки x_0 , в которую не входит сама точка x_0 .

How-to по доказательствам

Общепринятые сокращения:

- $\bullet \implies -$ следствие. $A \implies B$ означает следующее: если выполнено утверждение A, то выполнено утверждение B.
- \iff равносильность (читается «тогда и только тогда»). Выражение $A \iff B$ означает, что $A \implies B$ и $B \implies A$. То есть: если выполнено утверждение A, то выполнено утверждение B, и наоборот если верно утверждение B, то верно утверждение A.
- Kвантор всегда идёт вместе с переменной или набором переменных, после чего идёт утверждение, в котором этот x фигурирует. Есть два вида кванторов:
 - 1. $\exists \kappa вантор$ существования. $\exists x : A(x)$ означает, что существует значение x, при подстановке которого утверждение A(x) становится истинным.
 - 2. $\forall \kappa вантор всеобщности. \forall x: A(x)$ означает, что для любого значения x утверждение A(x) истинно.
- \neg отрицаниие. Отрицание к утверждению A записывается как $\neg A$.

Правила построения отрицаний

- 1. $\neg (A$ или $B) = \neg A$ и $\neg B$. То есть отрицанием к утверждению вида «А или B» будет утверждение: «(A неверно) и (B неверно)».
- 2. $\neg (A \cup B) = \neg A \cup \neg B$. То есть отрицанием к утверждению вида «А и В» будет утверждение: «(А неверно) или (В неверно)».
- 3. $\neg (\forall x : A(x)) \iff \exists x : \neg A(x)$. То есть отрицанием к утверждению вида «для всех x верно A(x)» будет утверждение вида «существует x такой, что неверно A(x)».
- 4. $\neg(\exists x: A(x)) \iff \forall x: \neg A(x)$. То есть отрицанием к утверждению вида «существует x такой, что верно A(x)» будет утверждение вида «для всех x неверно A(x)».

 $3 a \kappa o + \kappa o + m p a n o s u u u u$ гласит, что для утверждений X и Y выполнено

$$(X \Longrightarrow Y) \iff (\neg Y \Longrightarrow \neg X).$$

То есть утвеждения «если X, то Y» и «если неверно Y, то X тоже неверно» эквивалентны.

Закон контрапозиции используется при доказательстве от противного: мы предполагаем, что доказываемое утверждение неверно, после чего выводим противоречие.

Функции

 Φ ункция — это соответствие между элементами двух множеств, такое что каждому элементу первого множества соответствует ровно один элемент второго множества. Пусть первое множество обозначено через X, второе через Y, а функция через f. Тогда мы будем говорить, что «функция f отображает X в Y», «функция f из X в Y» или $f: X \to Y$.

Элемент $x \in X$, к которому мы применяем функцию f, называется аргументом функции, а элемент $f(x) \in Y$ называется значением функции.

Если функция f отображает X в Y, то X называется областью определения функции f. Множество всех значений, которые принимает функция f, называется областью значений функции f.

Tочкой минимума функции $f:X \to \mathbb{R}$ называется такой $x_{min} \in X$, что $f(x_{min}) \le f(x)$ для всех $x \in X$.