

Programming experience

tinyurl.com/f6sby8su

Example Final Projects

- https://drive.google.com/file/d/1VMIuv29u4wwjghJalscGvCDYK0XALxPD/view
- https://mbtaviz.github.io/
- https://www.washingtonpost.com/graphics/2020/world/corona-simulator/
- Your implementation of an existing research paper

Data types

Need to process data with a computer. What does it look like? How can we organize it?

Data types

- 5 basic data types:
 - Items
 - Attributes
 - Links
 - Positions
 - Grids
- Provides a "language" that we can use to organize data viz concepts

Dataset types

- Collection of data → dataset
- Can be static or dynamic

Tables

- Items
- Attributes

Networks

- Items (nodes)
- Links
- Attributes

Fields

- Grids
- Positions
- Attributes

Geometry

- Items
- Positions
- Attributes (sometimes)

Dataset types: Tables

• Much of the data we consider in life can be arranged in a table

Country	Year	Population	Case
A	2020	10	1
Α	2021	11	2
В	2020	50	3
В	2021	55	5

Dataset types: Tables

- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell

Rule of thumb:

- Variables often map to aesthetics
- Observations can be compared

Dataset types: Networks

- Good for specifying relationships between items
- A node is an item in a network (vertex)
- A link is a relation between two items (edge)
- Nodes and links often have attributes
 - Do not have to be related
- Examples:
 - Social network
 - Computer network
 - Gene interaction network

Dataset types: Networks - Trees

- A tree is a special type of network
- Trees have hierarchical structure

Dataset types: Fields

- Each cell is a measurement/calculation from a continuous domain
 - Infinite number of possible measurements, but fields discretize the domain
- Sampling strategy is important
 - Don't want to mislead the reader
 - Interpolation can help (can be misleading!)

Dataset types: Fields

- Each cell is a measurement/calculation from a continuous domain
 - Infinite number of possible measurements, but fields discretize the domain
- Sampling strategy is important
 - Don't want to mislead the reader
 - Interpolation can help (can be misleading!)
- Examples:
 - Medical scans

Dataset types: Fields

- Each cell is a measurement/calculation from a continuous domain
 - Infinite number of possible measurements, but fields discretize the domain
- Sampling strategy is important
 - Don't want to mislead the reader
 - Interpolation can help (can be misleading!)
- Examples:
 - Medical scans
 - Aerodynamics data

Dataset types: Geometry

- Specifies info about the shape of items
 - Explicit spatial positions
- Intrinsically spatial (like fields)
- May or may not have attributes!
 - Examples: Roads, Lidar scans

Attribute types

- Attributes are the measured properties of items
 - Person's height
 - Density of a cloud
 - Annual rainfall for a country
- Usually maps onto visual aesthetics of the viz

Attribute types

Different kinds of attributes

Attribute types: Categorical (nominal)

- Does not have an implicit ordering
- Also called nominal data
- Can still be a number, but doesn't make sense to aggregate
- Examples:
 - Dog breeds (hierarchical!)
 - Song genres
 - City names

Attribute types: Ordered

Ordered data has an implicit ordering

Ordinal

- Has an order but differences between categories may not be equal/measurable
- Example:
 - Likert scale (questionnaire responses)

Quantitative

- Supports arithmetic, differences between values are measurable
- Interval data: We can derive the gap between data values, and it has meaning
- Ratio data: Similar to interval data, but has a true zero that has meaning. Allows math operations
- Example:
 - 1, 2, 3, 4, 5.4, 345.2221, 17366105.23872, 1000000000000

Attribute types: Ordered

- Data may have different types of ordering
- Sequential: Values have a minimum and a maximum
 - Example: Person's height
- Diverging: Values can be divided into 2 sequences pointing in opposite directions, meeting at a common zero point
 - Example: Terrain elevation (sea level = 0)
- Cyclic: Values wrap around back to a starting point
 - Example: Hour of the day

Attribute hierarchies

- Attributes can often be grouped hierarchically
- Interesting patterns may emerge at different hierarchy levels
- Example: stock price

Attribute types

Also makes sense to group into dependent and independent

Independent attributes:

- Way of describing the data
- Usually discrete (i.e., categorical)

Dependent attributes:

- Their value is a function of one or more independent variables
- Numerical data that can be analyzed, manipulated, and aggregated

Metadata

- Data about data
- Can be difficult to visualize since it adds complexity
 - Underlying task of visualization remains the same, though

Exercise: US Census

- What are the types of these attributes?
 - Categorical, ordinal, or quantitative (ratio or interval)?
 - Dependent or independent?
- Talk with your neighbor for ~2 min
- People count: # of people in group
- **Year:** 1850 2000 (every decade)
- Age: 0 90 +
- Sex: male, female
- Marital status: single, married, divorced

	4	Α	В	С	D	E
1	L	year	age	marst	sex	people
2	2	1850	0	0	1	1483789
3	3	1850	0	0	2	1450376
4	1	1850	5	0	1	1411067
5	5	1850	5	0	2	1359668
6	5	1850	10	0	1	1260099
7	7	1850	10	0	2	1216114
8	3	1850	15	0	1	1077133
9)	1850	15	0	2	1110619
1	0	1850	20	0	1	1017281
1	1	1850	20	0	2	1003841
1	2	1850	25	0	1	862547
1	3	1850	25	0	2	799482
1	4	1850	30	0	1	730638
1	5	1850	30	0	2	639636
1	6	1850	35	0	1	588487
1	7	1850	35	0	2	505012
1	8	1850	40	0	1	475911
1	9	1850	40	0	2	428185
2	0	1850	45	0	1	384211
2	1	1850	45	0	2	341254
2	2	1050	50	_	4	224242

Exercise: US Census

- What are the types of these attributes?
 - Categorical, ordinal, or quantitative (ratio or interval)?
 - Dependent or independent?
- Talk with your neighbor for ~2 min
- People count: quantitative (ratio)
- Year: quantitative (interval) or ordinal
- Age: quantitative (ratio) or ordinal
- Sex: categorical
- Marital status: categorical

	Α	В	С	D	E
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1050	50		4	224242

Exercise: US Census

- What are the types of these attributes?
 - Categorical, ordinal, or quantitative (ratio or interval)?
 - Dependent or independent?
- Talk with your neighbor for ~2 min
- **People count:** dependent
- Year: independent
- Age: dependent (?)
- **Sex:** independent
- Marital status: independent (?)

	Α	В	С	D	E
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1050	50		4	224242

Visualization techniques Percentage of Video Submissions by State to the **World of 7 Billion Student Video Competition 20** 27% A choropleth map of the United States showing the percentage of videos sub whole grains in each state. % of all grains Percent of video submissions 100% fibre fats ratio % of target 100% 6 protein from vegetable non red meat % of target % plant based foods % of target % whole and minimally ı Datawrapper Alpha 100 Richest People, According to Forbes Eta Beta Wages Budget Delta 12

1000

600

200

Python + matplotlib

 https://colab.research.google.com/drive/1PJqGp_vcKx62hC0ba9g2zzxzJ8NySVq?usp=sharing

Python + bokeh

 https://colab.research.google.com/drive/1SYAirRVHoGK-zxXyMn4VT0yONMEDiY8-?usp=sharing

LaTeX crash course

- Essentially a Markup Language (like HTML, XML and RTF)
- Invented in the 70s by Donald Knuth
 - He was writing a book, but there were no good typesetting solutions, so he made his own!
- You should use https://www.overleaf.com/
 - Requires internet connection, but avoids somewhat annoying installation + compile process

LaTeX vs Word processors

- High typeset quality
- Easy to include math formulas
- Source file format id not bounded to a particular OS or platform
- Latex implementations exists for all platforms (DOS, Windows, Unices,..)
- Latex is free

LaTeX vs Word processors

- De facto standard for scientific publishing
- Very few bugs
- Good for large documents
- Not very easy to learn

LaTeX file structure

- Document Class
 - Predefined Formats (article, report, book,..)
- Packages used
 - Added Functionality (graphics, reference style,...)
- Main Body
 - Text and Bibliography References

LaTeX basics

Document class

```
\documentclass[options] {class}
options = a4paper, 11pt, 12pt, 10pt, twocolumn, landscape,...
class = article, report, book,...
```

Packages

```
\usepackage{package name}
epsfig = insert PS pictures into the document
fancyhdr = easy definition of footer and header
```

Body of text

- Start with \begin { document }
- End with \end { document }
- Typesetting Text
 - \\ or \newline and \newpage
 - Quotations use backtick (`) and apostrophe (')
 - Bold \textbf{.....} or \bf
 - Italics \emph{......} or \textit{......} or \it
 - Underline \underline \..... or \ul

Organizing a document

Sections

- \section{Latex is Great} = 1. Latex is Great
- \subsection{Why Latex is Great} = 1.1 Why Latex is Great
- \subsubsection{Reason One} = 1.1.1 Reason One
- \appendix changes numbering scheme
- \chapter {...} To be used with book and report document classes

Titles, authors, and others

- \title{...}
- \author{...}
- \footnote{...}

Labels

- \label{marker} Marker in document.
- \ref{marker} Displays section location of marker.

Lists

LaTeX source:

```
\begin{itemize}
\item Apple
\item Orange
\end{itemize}
```

- Result:
 - Apple
 - Orange
- Enumerate instead of itemize gives a numbered list
- Lists can be nested

- \begin{...} is called an *environment* in LaTeX
 - Itemize, figure, table, enumerate, etc

Example document

```
\documentclass{article}
\title{Simple Example}
\author{Andrei Gurtov}
\date{March 2000}
\begin{document}
\maketitle
Hello world!
\end{document}
```

Simple Example

Andrei Gurtov March 2000

Hello world!

1

Tables

```
\begin{tabular}{|||r|c} \hline
Date & Price & Size \\ \hline
Yesterday & 5 & big \\ \hline
Today & 3 & small \\ \hline
\end{tabular}
```

Date	Price	Size
Yesterday	5	Big
Today	3	Small

Figures

```
\usepackage{graphicx}
\graphicspath{ {./images/} }
\begin{document}
The universe is immense and it
seems to be homogeneous, in a large
scale, everywhere we look at.
\includegraphics { universe }
There's a picture of a galaxy above
\end{document}
                              The universe is immense and it seems to be homogeneous, in a large scale,
                            everywhere we look at.
```

There's a picture of a galaxy above

Bibliography

- Bibliography information is stored in a *.bib file, in Bibtex format.
- Include chicago package
 - \usepackage{chicago}
- Set referencing style
 - \bibliographystyle{chicago}
- Create reference section by
 - \bibliography{bibfile with no extension}

Bibliography

- Citing references in text
 - \cite{cuc98} = (Cuce 1998)
 - \citeN{cru98} = Crud (1998)
 - \shortcite{tom98} = (Tom, et. al. 1998)
- Creating Bibtex Files


```
X
                                 Cite
              O'Brien, Stephen J., and Warren E. Johnson, "The evolution of
               cats." Scientific American 297.1 (2007): 68-75.
               O'Brien, S. J., & Johnson, W. E. (2007). The evolution of cats.
               Scientific American, 297(1), 68-75.
               O'Brien, Stephen J., and Warren E. Johnson, "The evolution of
               cats." Scientific American 297, no. 1 (2007): 68-75.
               O'Brien, S.J. and Johnson, W.E., 2007. The evolution of cats.
               Scientific American, 297(1), pp.68-75.
               O'Brien SJ, Johnson WE. The evolution of cats. Scientific
               American. 2007 Jul 1;297(1):68-75.
                          EndNote RefMan
                                             RefWorks
                       @article{o2007evolution,
                          title={The evolution of cats},
                          author={0'Brien, Stephen J and Johnson, Warren E},
                          journal={Scientific American},
                          volume={297},
                          number=\{1\},
                          pages=\{68--75\},
                          year={2007},
                          publisher={JSTOR}
```