Theorem (2.2.6a). Let A be a set. The set identity for A is $A \cup \emptyset = A$.

Proof. Let x be an element in $A \cup \emptyset$. By the definition of set union $(x \in A) \vee (x \in \emptyset)$. But $x \in \emptyset$ is \bot because \emptyset is empty. Therefore x must be in A. It follows directly that $A \cup \emptyset = A$. Thus proves the set identity law for set union.