

BRITISH PHYSICS OLYMPIAD 2015-16

A2 Challenge Sept/Oct 2015

SOLUTIONS

Question 1

a.

i) Suitable diagram ☑

ii) Momentum calculation; $1 \times 0.2 + 2 \times (-0.2) = 0$ i.e. total zero. At rest

iii) At a point dividing the distance between the ships in the ratio 1:2 (closer to 2 tonne mass) ☑ Zero ☑

iv) Before KE = $\frac{1}{2}$ m₁ u₁² + $\frac{1}{2}$ m₂ u₂² = $\frac{1}{2}$ (1000 x 0.2² + 2000 x 0.1²) = 30 J \square ;

After - zero \square

v) Suitable diagram \square , Momentum calculation, total $0.1\,\mathrm{m\,s^{-1}}$ to the right \square ; position of c of m as before \square ; 45 J before and 15 J after \square

vi) Kinetic energies may differ according to frame of reference, but the loss remains the same \square (As a de-brief point, it is instructive to demonstrate that the energy change, $\Delta E = \frac{1}{2}(m_1+m_2)(u_1-u_2)^2 \text{ is unaltered by a change to a frame of reference}$ moving at speeds, which simply alters both u_1 and u_2 by the same amount, $(u_1-u_2) \to ((u_1+\Delta u)-(u_2+\Delta u)) \text{leaving the term } (u_1-u_2) \text{ unaltered.})$

b.

i) Momentum calculation to show appropriate velocities \square Initial velocity, u. Final velocities v_1, v_2 . Identical masses.

Mom cons. $v_1+v_2=u$ (cancel through the m) KE cons. $v_1^2+v_2^2=u^2$ (cancel through by ½ m)

Algebra: $(u - v_1)(u + v_1) = v_2^2$

And also $(u - v_1) = v_2$ from the initial relation

If $v_2 \neq 0$ then can divide the two equations, to get $(u+v_1)=v_2$. Now add $(u+v_1)=v_2$ and $(u-v_1)=v_2$ to obtain $u=v_2$, so that $v_1=0$

Note that if $v_2=0$ then $v_1=u$ and momentum and KE are both conserved, but the particles do not actually collide.

There are several other algebraic routes, including direct substitution for u say, giving v_1 . $v_2 = 0$. So either $v_1 = 0$ or $v_2 = 0$.

ii) Neutron comes to rest; proton ejected (as masses are virtually equal)

☑

iii)

Note: the analysis given in (i) is adaptable. Write cons. of mom as $\overrightarrow{u}=\overrightarrow{v_1}+\overrightarrow{v_2}$. Squaring, $u^2=v_1^2+v_2^2+2\overrightarrow{v_1}.\overrightarrow{v_2}$. With the KE result, $u^2=v_1^2+v_2^2$ clearly $2\overrightarrow{v_1}.\overrightarrow{v_2}=0$ Thus $v_1=0$ (linear collision as in (i)), $v_2=0$ (no collision), or $\cos\theta=0 \Rightarrow \theta=\pi/2$

iv) Traces (such as cloud chamber tracks) seen to be perpendicular, when in the plane normal to the line of sight.

✓

[16 marks]

Question 2

a.

- i) Initial volume 1000 mm³; final volume 1000.40 mm³ ☑ Increased (trivial)
- ii) Bonds between atoms stretched, so a net volume increase reasonable **owtte** ☑
- iii) lateral strain= (-)0.0003; longitudinal strain= 0.001. So Poisson Ratio (-)0.3 ☑.

b.

- i) Use binomial theorem or error theory ideas : $V = lA \text{ so } \frac{\delta V}{V} = \frac{\delta A}{A} + \frac{\delta l}{l} \text{, from binomial or by differentiation.}$ Since $\frac{\delta V}{V} = 0$ for rubber, and since $\frac{\delta l}{l}$ increases by 2%, then $\frac{\delta A}{A}$ reduces by 2% \square
- ii) $A = w^2$ so $\frac{\delta A}{A} = 2 \frac{\delta w}{w}$. Hence $\frac{\delta w}{w}$ is reduced by 1% \square
- iii) By inspection (-)0.5 ☑

[6 marks]

Question 3

- a. i) Suitable *symmetrical* diagram ☑
 - ii) Angle-sum of triangles gives Li for incident ray as (A+D)/2 \square Lr = A/2 \square

$$n=\frac{\sin((A+D)/2)}{\sin(A/2)}$$
 follows from Snell's Law \square

i) For
$$\sin\theta \approx \theta$$
 this reduces to $n=\frac{(A+D)/2}{A/2}$ \square which re-arranges to $D=(n-1)A$ \square

- b.
- i) Deviation = $(n-1)A = 0.5 \times 0.02 = 0.01 \text{ rad}$
- ii) $SS_1 = \text{distance to prism} \times \text{deviation angle} = 0.1 \text{ m x } 0.01 = 0.001 \text{ m}$ \square So $S_1S_2 = 0.002 \text{ m}$. \square
- iii) Both derived from same source **owtte** ✓
- iv) fringe width, $w = L \lambda / S_1 S_2 = (1.9+0.1) \boxtimes x 5x10^{-7} / 0.002 = 5x10^{-4} m \square$

[12 marks]

Question 4

- a. A real source with emf 3.0 V and internal resistance 1.0 Ω is connected to a resistor of resistance 2.0 Ω .
 - i) $I = V/R_{circuit} = 3/3 = 1 A \square$; $V = IR_{2\Omega} = 1 \times 2 = 2 V \square$
 - ii) Net emf = 3 V 3 V = 0, thus zero current also \square
 - By symmetry, or folding over the circuit to superimpose the cells and 1 Ω resistors, the system has E = 3 V, r = 0.5 Ω connected to 2.5 Ω load. I = V/R = 3 V/3 Ω = 1 A \square
 - iv) Now for whole circuit, I= V/R = 6 V/2 Ω = 3 A. \square Consider either cell: V_{XY} = zero \square
- b. We will now explore the effect of internal resistance in some practical situations.
 - i) Current through person is V/R = $5000 \text{ V} / 10\,001\,000 \approx 0.5 \text{ mA}$ (or potential divider idea, pd across person $\approx 5 \text{ V}$ leads to I = 0.5 mA) \square Therefore harmless (trivial)
 - ii)
- 1) Vit = 12 V x 1 A x (60x3600) s = 2.59 MJ
- 2) I = V/R = 12/0.01 = 1200 A \square ; $P = V^2/R = 144/0.01 = 14.4 \text{ kW}$
- 3) Heat inside the battery ☑ eventually boils electrolyte with explosion risk or other sensible comment.

[11 marks]

Question 5

This question looks at some practical consequences of the evaporation of liquids.

Placing a liquid in a vacuum (e.g. a leak from a space vehicle) forces it to evaporate and can lead to rapid cooling.

- a. $mc \Delta T = 0.01mL$ hence $\Delta T = 0.01L/c = .01x 2.26x10^6 / 4200 = 5.4°C <math>\square$, new temperature (assuming no other losses) is $4.6°C \square$
- b. All factors lead to rapid evaporation and thus heat loss and sensation of cold owtte ☑
- c. Draught enhances evaporation rate. Thus faster cooling $\$ **owtte** $\$
- d. More volatile liquids evaporate even faster

 ✓

[5 marks]