

Amazon Web Services Data Engineering Immersion Day

Lab 4. AWS Lake Formation

Table of Contents

Introduction	3
Prerequisites	3
Get Started Using the Lab Environment	4
Setup Network Configuration for AWS Glue	6
Create an IAM role to use with Lake Formation:	6
Create Glue JDBC connection for RDS	6
Lake Formation – Add Administrator and start workflows using Blueprints	8
Explore the Underlying Components of a Blueprint	14
Explore workflow results in Athena	14
[Optional] Grant fine grain access controls to Data Lake user	17
[Optional] Verify data permissions using Athena	21

Introduction

This lab will give you an understanding of the AWS Lake Formation – a service that makes it easy to set up a secure data lake, as well as Athena for querying the data you import into your data lake.

Today, you are attending a formal AWS event. If in the future you might want to perform these labs in your own AWS environment by yourself, you can follow instructions on GitHub - https://github.com/aws-samples/data-engineering-for-aws-immersion-day.

Prerequisites

- 1. Make sure you have the value of **DMSInstanceEndpoint** parameter from your Team Dashboard handy. We will use the postgres database you used in Lab 1 as the source in this lab.
- 2. Completed Lab 1. Hydrating the Data Lake with DMS
- 3. Completed Lab 2. ETL with AWS Glue

Get Started Using the Lab Environment

Today, you are attending a formal event and you will have been sent your access details beforehand. If in the future you might want to perform these labs in your own AWS environment by yourself, you can follow instructions on GitHub - https://github.com/aws-samples/data-engineering-for-aws-immersion-day.

A 12-character access code (or 'hash') is the access code that grants you permission to use a dedicated AWS account for the purposes of this workshop.

1. Go to https://dashboard.eventengine.run/, enter the access code and click Proceed:

2. On the Team Dashboard web page you will see a set of connection strings and parameters that you will need during the labs. Best to save them to a text file locally, alternatively you can always go to this page to review them. Replace the parameters with the corresponding values from here where indicated in subsequent labs:

Because you're at a formal event, some AWS resources have been pre-deployed for your convenience, for example

 RDS Postgres database that you will use as your source endpoint (parameter DMSInstanceEndpoint)

Lab 4. AWS Lake Formation

3. On the Team Dashboard, please click AWS Console to log into the AWS Management Console:

4. Click Open Console. For the purposes of this workshop, you will not need to use command line and API access credentials

Setup Network Configuration for AWS Glue

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can establish a private connection between your VPC and AWS Glue. You use this connection to enable AWS Glue to communicate with the resources in your VPC without going through the public internet.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network that you define. With a VPC, you have control over your network settings, such the IP address range, subnets, route tables, and network gateways. To connect your VPC to AWS Glue, you define an interface VPC endpoint for AWS Glue. When you use a VPC interface endpoint, communication between your VPC and AWS Glue is conducted entirely and securely within the AWS network.

In this event, we've pre-created an s3 VPC Endpoint for you, if you're doing this lab outside of a formal event, you will need to create necessary VPC Endpoints yourself.

Create an IAM role to use with Lake Formation:

With AWS Lake Formation, you can import your data using *workflows*. A workflow defines the data source and schedule to import data into your data lake. You can easily define workflows using *blueprints*, or templates, that Lake Formation provides.

When you create a workflow, you must assign it an AWS Identity and Access Management (IAM) role that enables Lake Formation to set up the necessary resources on your behalf to ingest the data.

In this event, we've pre-created an IAM role for you, called crandom>LakeFormationWorkflowRole-

If you're doing this lab outside of a formal event, you will need to create an IAM role yourself.

Create Glue JDBC connection for RDS

- 1. Navigate to the AWS Glue console: https://console.aws.amazon.com/glue/home?region=us-east-1
- 2. On the AWS Glue menu, select Connections.

- 3. Click Add Connection.
- 4. Enter glue-rds-connection as the connection name.
- 5. Choose RDS for connection type and PostgreSQL for Database Engine

6. Optionally, enter the description. This should also be descriptive and easily recognized and Click **Next**.

7. Choose dmslabinstance as Instance, enter master123 as Password, click Next and click Finish.

8. **glue-rds-connection** was created successfully. To test it, select the connection, and choose **Test connection**.

9. To test the connection, choose the pre-created IAM role called <random>LakeFormationWorkflowRole-<random> and then click Test Connection.

Test connection

×

Test connection from your VPC and subnet to data stores and Amazon S3.

Lake Formation – Add Administrator and start workflows using Blueprints.

Navigate to the AWS Lake Formation service:

https://console.aws.amazon.com/lakeformation/home?region=us-east-1#databases

- 1. If you are logging into the lake formation console for the first time then you must add administrators first in order to do that follow Steps 2 and 3. Else skip to Step 4.
- 2. Click Add administrators

3. Add TeamRole Role as the Lake Formation Administrator and Click Save

4. Navigate to Databases on left pane. Select ticketdata and click on Actions, select Grant to grant permissions. If you can't see any databases, make sure to complete Part A of Lab 2. ETL with AWS Glue

5. Under "IAM Users and Roles", select two roles: the Lake Formation role that was pre-created: <random>-LakeFormationWorkflowRole-<random> and TeamRole. Grant super permissions for Database permissions and Grantable permissions.

6. Select Actions->Edit on the ticketdata database

7. Clear the checkbox **Use only IAM access control** and click **Save**. Changing the default security setting so that access to Data Catalog resources (databases and tables) is managed by Lake Formation permissions.

8. On the left pane navigate to **Blueprints** and click **Use blueprints**.

- a. For Blueprint Type, select Database snapshot
- b. Under Import Source
 - i. For Database Connection choose glue-rds-connection
 - ii. For Source Data Path enter sportstickets/dms_sample/player

- c. Under Import Target
 - i. For Target Database, choose ticketdata
 - ii. For **Target storage location** browse and select the **...dmslabS3bucket...** created in the previous lab.

- iii. Add /lakeformation at the end of the bucket url path, e.g. s3://mod-08b80667356c4f8a-dmslabs3bucket-nh54wqg771lk/lakeformation
- iv. For Data Format choose Parquet

- d. For Import Frequency, Select Run On Demand
- e. For Import Options:
 - i. Give a Workflow Name RDS-S3-Glue-Workflow
 - ii. For the IAM role choose the precreated ...-LakeFormationWorkflowRole-...
 - iii. For Table prefix type lakeformation

- 9. Leave other options as default, click **Create**, and wait for the console to report that the workflow was successfully created.
- 10. Once the blueprint gets created, select it and click **Action -> Start.** There may be a delay of 5-10s delay in the blueprint showing up. You may have to **hit refresh**.
- 11. Once the workflow starts executing, you will see the status changes from running → discovering → Completed

Explore the Underlying Components of a Blueprint

The Lake Formation blueprint creates a Glue Workflow under the hood which contains Glue ETL jobs – both python shell and pyspark, Glue crawlers and triggers. It will take somewhere between 15-20 mins to finish its first execution. In the meantime, let us drill down to see what it creates for us;

- 1. On the Lake Formation console, in the navigation pane, choose Blueprints
- 2. In the **Workflow section**, click on the **Workflow name**. This will direct you to the Workflow run page. Click on the **Run Id**.

- 3. Here you can see the graphical representation of the Glue workflow built by Lake Formation blueprint. Highlighting and clicking on individual components will display the details of those components (name, description, job run id, start time, execution time)
- 4. To understand what all Glue Jobs got created as a part of this workflow, in the navigation pane, click on **Jobs**.
- 12. Every job comes with history, details, script and metrics tab. Review each of these tabs for any of the python shell or pyspark jobs.

Explore workflow results in Athena

 Navigate to the Lake Formation Console: https://console.aws.amazon.com/lakeformation/home?region=us-east-1#databases

- 2. Navigate to **Databases** on the left panel and select **ticketdata**
- 3. Click on View tables

Select table **lakeformation_sportstickets_dms_sample_player**. As per our configuration above, Lake Formation tables were prefixed with **lakeformation_**

4. And Click Action -> View Data

This will now take you to **Athena** console.

If you see a "Get Started" page, it's because it's the first time we're using Athena in this AWS Account. To proceed, click **Get Started**

Then click set up a query result location in Amazon S3 at the top

ources	Workgroup : primary
Bef	fore you run your first query, you need to set up a query result location in Amazon S3. Learn more

In the pop-up window in the **Query result location** field, enter your s3 bucket location followed by /, so that it looks like **s3://xxx-dmslabs3bucket-xxx/** and click **Save**

To select some rows from the table, try running:

SELECT * FROM "ticketdata"."lakeformation_sportstickets_dms_sample_player"
limit 10;

To get a row count, run:

SELECT count(*) as recordcount FROM
"ticketdata"."lakeformation_sportstickets_dms_sample_player" limit 10;

Congratulation!!! You have completed lake formation lab. To explore more fine grain data lake security feature, continue to next section.

[Optional] Grant fine grain access controls to Data Lake user

Before we start the querying the data, let us create an IAM User **datalake_user** and grant column level access on the table created by the Lake formation workflow above, to **datalake_user**.

 Login as admin user to your account. Navigate to IAM Console: https://console.aws.amazon.com/iam/home?region=us-east-1#/users and click on Add User.

2. Create a user named datalake_user and give it a password: master123.

- 3. Next click on Permissions
- 4. Choose Attach existing policies directly and search for AthenaFullAccess

- 5. Keep navigating to the next steps until reached the end. Review the details and click on "Create User".
- 6. On the final screen, write down the sign-in link and hit Close

7. Click on the datalake_user user, and add inline policy and switch to the JSON tab

Use the following json snippet replacing <your_dmslabs3bucket_unique_name> with the name of your dmslabs3bucket, e.g. mod-08b80667356c4f8a-dmslabs3bucket-nh54wqg771lk

- 8. Give a name athena_access to the policy, then Create Policy
- Navigate to the Lake Formation console: https://console.aws.amazon.com/lakeformation/home?region=us-east-1#dashboard, in the navigation pane, under Permissions, choose Data permissions.

- 10. Choose **Grant**, and in the **Grant permissions** dialog box, do the following:
 - a. For IAM user and roles, choose datalake_user.
 - b. For Database, choose ticketdata
 - c. The **Table** list populates.
 - d. For Table, choose lakeformation_sportstickets_dms_sample_player.
 - e. For Columns, select Include Columns and choose id, first_name
 - f. For **Table permissions**, untick **Super** and choose **Select**.
- 11. Choose Grant.

[Optional] Verify data permissions using Athena

Using Athena, let us now explore the data set as the datalake_user.

1. In a new incognito browser window, navigate to the sign-in URL you wrote down earlier when you created an IAM User. Sign in as **datalake_user** using **master123** as password

2. Make sure to change the region to us-east-1 (N. Virginia):

Navigate to the Athena console (Services -> Athena). If you see a "Get Started" page, it's
because it's the first time we're using Athena in this AWS Account. To proceed, click Get
Started

Amazon Athena

Amazon Athena is a fast, cost-effective, interactive query service that makes it easy to analyze petabytes of data in S3 with no data warehouses or clusters to manage.

Then click set up a query result location in Amazon S3 at the top

Before you run your first query, you need to set up a query result location in Amazon S3. Learn more

In the pop-up window in the **Query result location** field, enter your s3 bucket location followed by /, so that it looks like **s3://xxx-dmslabs3bucket-xxx/** and click **Save**

- 4. Next, ensure database ticketdata is selected.
- 5. Now run a **Select** query on the **lakeformation_sportstickets_dms_sample_player** table within the **ticketdata** database:

```
SELECT * FROM
"ticketdata"."lakeformation_sportstickets_dms_sample_player" limit
10;
```

6. You will notice that the **datalake_user** can **only see the columns id, first_name** in the select query result. The datalake_user cannot see **last_name**, **sports_team_id**, **full_name** columns in the table.