

Inteligência Artificial Aplicada

UniSenai PR-São José dos Pinhais

Categoria	Descrição	Algoritmos/técnicas	Exemplos de aplicação
Métodos de busca	Encontram soluções em um espaço de estados.	BFS, A*	GPS traçando a melhor rota.
Raciocínio temporal	Modelam eventos ao longo do tempo.	Cadeias de Markov, Redes Bayesianas	Previsão do tempo, reconhecimento de fala.
Lógica fuzzy	Lida com incertezas e valores intermediários.	Conjuntos fuzzy, Inferência fuzzy	Controle de temperatura em ar-condicionado.
Representação do conhecimento	Estrutura e organiza informações para tomada de decisão.	C4.5, Árvores de decisão	Diagnóstico médico, sistemas especialistas.
Modelos de aprendizado	Ajustam pesos para identificar padrões em dados.	Redes Neurais (Perceptron, MLP)	Reconhecimento facial, chatbots.

Alternativa à lógica binária que só admite a existência de verdadeiro e falso, não admitindo qualquer tipo de imprecisão entre estes dois extremos.

Lógica fuzzy

- Ideia principal: Lógica que permite valores intermediários entre verdadeiro (1) e falso (0).
- Funcionamento: trabalha com regras e graus de pertinência.

Lógica fuzzy vs. lógica "clássica"

Situação	Lógica clássica	Lógica Fuzzy		
Está quente? (30°C)	Sim (1) ou não (0) 0,8 quente; 0,2 morno			
É adulto? (17 anos)	Sim (1) ou não (0)	0,9 adulto; 0,1 adolescente		
Representação				
Lógica clássica	Verdadeiro ou falso	1 ou 0		

- 1. Variável linguística: temperatura, velocidade, etc.
- 2. Conjuntos fuzzy: frio, quente, morno, etc.
- 3. Função de pertinência: definem o grau em que um valor pertence a um conjunto fuzzy.
- 4. Fuzzificação: converter valor real em um grau fuzzy.
- 5. Inferência fuzzy: aplicar regras do tipo "Se... então...".
- 6. Defuzzificação: converter saída fuzzy em valor real.

DEFINIÇÃO

Generalização dos conjuntos clássicos, em cada elemento pertence parcialmente ao conjunto, com um grau de pertinência entre 0 e 1.

Ex: 25°C é meio quente (pertinência de 0,6).

Temperatura	Lógica clássica: quente?	Lógica Fuzzy: grau de "quente"
20°C	Não (0)	0,0
25°C	Não (0)	0,4
30°C	Sim (1)	0,9
35°C	Sim (1)	1,0

Nota: o valor pode pertencer parcialmente a vários conjuntos fuzzy ao mesmo tempo.

Um **conjunto fuzzy** *A* pode ser definido como:

$$A = \{ (x, \mu_A(x)) | x \in X \}$$

Onde:

x: valor real qualquer (Ex:25°C; 1,70m)

X: universo de discurso (Ex: 0°C a 50°C)

 $\mu_A(x)$: grau de pertinência de x ao conjunto A

 $(x, \mu_A(x))$: par valor-grau de pertinência

Suponha $X = \{20, 25, 30, 35, 40\}$

A função de pertinência $\mu_A(x)$ pode ser:

x(°C)	Lógica clássica: quente?	Lógica Fuzzy: grau de "quente"
20	Não (0)	0,0
25	Não (0)	0,3
30	Sim (1)	0,6
35	Sim (1)	0,9
40	Sim (1)	1,0

Então, o conjunto fuzzy seria:

$$X = \{(20,0,0), (25,0,3), (30,0,6), (35,0,9), (40,1,0)\}$$

É uma função que atribui a cada elemento x do universo de discurso X um valor entre 0 e 1:

$$\mu_A(x) \in [0,1]$$

Onde:

 $\mu_A(x) = 0$: x não pertence ao conjunto;

 $\mu_A(x) = 1: x \ pertence \ totalmente;$

 $0 < \mu_A(x) < 1$: x pertence parcialmente

Funções de pertinência (Triangular)

Definida por três pontos: a, b, c (com a < b < c):

$$\mu(x) = \begin{cases} \frac{0 \text{ se } x \leq a \text{ ou } x \geq c}{x - a} \\ \frac{x - a}{b - a} \text{ se } a < x < b \\ \frac{c - x}{c - b} \text{ se } b \leq x < c \end{cases}$$

Temperatura média com a=15, b=25, c=35.

Funções de pertinência (Trapezoidal)

Semelhante à triangular, mas com um platô.

Quatro pontos: a, b, c, d:

$$\mu(x) = \begin{cases} 0 & \text{se } x \le a \text{ ou } x \ge d \\ \frac{x - a}{b - a} & \text{se } a < x < b \\ 1 & b \le b \text{ } x \le c \\ \frac{d - x}{d - c} & \text{se } b \le x < c \end{cases}$$

Temperatura confortável entre 20°C e 30°C, com platô de 23°C a 27°C.

Funções de pertinência (Gaussiana)

Suave e contínua;

Parâmetros: centro (c) e desvio padrão (σ)

$$\mu(x) = \left\{ e^{-\frac{(x-c)^2}{2\sigma^2}} \right\}$$

Funções de pertinência (Sigmoide)

Transições suaves entre 0 e 1.

Ela tem a forma de um "S" suave e é ideal para modelar conceitos como "grande", "velho", "rápido", etc., onde não há um limite exato.

$$\mu(x) = \left\{ \frac{1}{1 + e^{(-a(x-c))}} \right\}$$

x: valor de entrada

a: parâmetro que controla a inclinação

c: ponto central da transição

DEFINIÇÃO

Primeira etapa de um sistema fuzzy.

Responsável por transformas valores precisos (crisp) em valores fuzzy.

Conjunto	а	b	С
Frio	0	15	25
Agradável	15	25	35
Quente	25	35	45

Agora, para 28°C, usando uma função de pertinência triangular:

$$\mu(x) = \begin{cases} 0 & \text{se } x \le a \text{ ou } x \ge c \\ \frac{x - a}{b - a} & \text{se } a < x < b \\ \frac{c - x}{c - b} & \text{se } b \le x < c \end{cases}$$

Frio: $\mu(28) = 0$ (for a do intervalo)

Agradável:
$$\mu(28) = \frac{35 - 28}{35 - 25} = \frac{7}{10} = 0,7$$

Quente:
$$\mu(28) = \frac{28-25}{35-25} = \frac{3}{10} = 0.3$$

Conjunto	a	b	С	Fórmula	$\mu(x)$
Frio	0	15	25	$x > c \Rightarrow 0$	0,0
Agradável	15	25	35	$\frac{c-x}{c-b}$	0,7
Quente	25	35	45	$\frac{x-a}{b-a}$	0,3

DEFINIÇÃO

Processo de aplicar regras linguísticas (do tipo SE...ENTÃO...) sobre os valores fuzzy obtidos na fuzzificação.

Simula o raciocínio humano com variáveis incertas ou graduais.

Variável de entrada temperatura = 28 °C.

Fuzzificação:

- frio: 0,0;
- agradável: 0,7;
- quente: 0,3.

Regras:

- Se temperatura é fria, então conforto é baixo;
- Se temperatura é agradável, então conforto alto;
- Se temperatura é quente, então conforto é médio.

TÉCNICAS

Mandani	Sugeno
Regras produzem conjuntos fuzzy na saída	
Usa mínimo para interseção (AND), e máximo para união (OR)	Saída das regras é uma função ou valor escalar
Saída é um conjunto fuzzy → precisa de defuzzificação	

Mandani

- 1. Fuzzificar a entrada;
- 2. Aplicar as regras usando min para ativar a saída;
- 3. Combinar os conjuntos fuzzy de saída com max (união);
- 4. Fazer defuzzificação para obter o valor final.

DEFINIÇÃO

Etapa final do sistema de inferência fuzzy: converte um valor fuzzy (difuso) em um valor preciso (crisp).

Isso é necessário porque o sistema fuzzy lida com graus de pertencimento, mas no final queremos um único valor.

MÉTODO MAIS COMUM

Centroide (Center of Gravity (COG))

Calcula a média ponderada das saídas fuzzy.

$$Saida = \frac{\sum \mu(x) * x}{\sum \mu(x)}$$

Onde:

 $\mu(x)$: grau de pertinência para x

x: valor do universo de saída

Usando o valor de 28°C, e as pertinências obtidas anteriormente:

Calcula a média ponderada das saídas fuzzy.

$$Saida = \frac{(0.7 * 25) + (0.3 * 35)}{0.7 + 0.3} = 28$$

