Correction du DM n°4

Exercice 1:

1.(a) La fonction f_1 est strictement croissante sur \mathbb{R} car composée de fonctions strictement croissantes.

$$f_1$$
 est donc injective.

De plus, elle est continue car composée de fonctions continues. Enfin, $y = \operatorname{th}(x) \xrightarrow[x \to +\infty]{} 1$ et $\operatorname{sh}(y) \xrightarrow[y \to 1]{} \operatorname{sh}(1)$ car la fonction sh est continue. Par composition de limites $f_1(x) \xrightarrow[x \to +\infty]{} \operatorname{sh}(1)$. Par imparité (f_1) est impaire car composée de fonctions impaires), $f_1(x) \xrightarrow[x \to -\infty]{} \operatorname{sh}(-1)$. Dès lors, d'après le théorème de la bijection, f_1 est une bijection de \mathbb{R} dans $] \operatorname{sh}(-1)$; $\operatorname{sh}(1)$ [(faites un tableau de variations).

$$f_1(\mathbb{R}) =] \operatorname{sh}(-1) ; \operatorname{sh}(1) [$$

En particulier, tout élément qui n'appartient pas à cet intervalle n'est pas atteint, par exemple sh(1) + 1:

$$f_1$$
 n'est pas surjective.

1.(b) f_2 est 2π -périodique: en effet, soit $x \in \mathbb{R}$.

$$f_2(x + 2\pi) = \cos(\sin(x + 2\pi))$$

= $\cos(\sin(x))$
= $f_2(x)$

Il en découle que f_2 n'est pas injective puisque, par exemple, $f(0) = f(2\pi)$.

$$f_2$$
 n'est pas injective.

Montrons que $f_2(\mathbb{R}) = [\cos(1); 1]$. Soit $x \in \mathbb{R}$. Alors $\sin(x) \in [-1; 1]$. Si $\sin(x) \ge 0$ alors $0 \le \sin(x) \le 1$ et le cos étant décroissant sur [0; 1] (car $1 \le \pi/2$), alors $\cos(0) = 1 \ge \cos(\sin(x)) \ge \cos(1)$ si bien que $f_2(x) \in [\cos(1); 1]$. Le raisonnement est analogue si $\sin(x) \le 0$ puisque $\cos(-1) = \cos(1)$ par parité de la fonction cos. D'où l'inclusion $f_2(\mathbb{R}) \subset [\cos(1); 1]$.

Réciproquement, soit $y \in [\cos(1); 1]$. Alors $\cos(1) \leq y \leq \cos(0)$. La fonction cos étant continue, il existe $t \in [0; 1]$ tel que $\cos(t) = y$. De plus, $0 = \sin(0) \leq t \leq 1 = \sin(\pi/2)$: la fonction sin étant continue, il existe $x \in [0; \pi/2]$ tel que $\sin(x) = t$ donc tel que $y = \cos(\sin(t)) = f_2(t)$: d'où l'inclusion réciproque, d'où l'égalité.

$$f_2(\mathbb{R}) = [\cos(1); 1]$$

Or, $1 \in [0; \pi/2]$ donc $\cos(1) \ge 0$. On en déduit que -1 n'est pas atteint par f_2 :

$$f_2$$
 n'est pas surjective.

2.(a) Soient (a_1, b_1, c_1) et (a_2, b_2, c_2) deux éléments de \mathbb{R}^3 tels que $h_1(a_1, b_1, c_1) = h_1(a_2, b_2, c_2)$. En d'autres termes, on a l'égalité: $(b_1, a_1, -c_1) = (b_2, a_2, -c_2)$ donc $b_1 = b_2$, $a_1 = a_2$ et $c_1 = c_2$ donc $(a_1, b_1, c_1) = (a_2, b_2, c_2)$:

$$h_1$$
 est injective.

Soit $(x, y, z) \in \mathbb{R}^3$. Alors $h_1(y, x, -z) = (x, y, z)$ donc (y, x, -z) est un antécédent de (x, y, z). En particulier, (x, y, z) admet un antécédent:

 h_1 est surjective donc bijective.

On pouvait montrer en une seule étape que h_1 est bijective: on fixe $(x, y, z) \in \mathbb{R}^3$, on prouve que (x, y, z) admet un unique antécédent donc h_1 est bijective: exo.

2.(b) (0,0,0) n'a aucun antécédent car toutes les images ont une première coordonnée égale à 1.

 h_2 n'est pas surjective.

Soient (a_1, b_1) et (a_2, b_2) deux éléments de \mathbb{R}^2 tels que $h_2(a_1, b_1) = h_2(a_2, b_2)$. Alors $(1, a_1 + b_1, a_1) = (1, a_2 + b_2, a_2)$ donc $a_1 = a_2$ et $a_1 + b_1 = a_2 + b_2$ donc $b_1 = b_2$:

 h_2 est injective.

2.(c)
$$h_3(1,1,1) = h_3(-1,1,1)$$
 donc

 h_3 n'est pas injective.

De plus, (-1,0,0) n'est pas atteint par h_3 car toutes les images ont une première coordonnée positive.

 h_3 n'est pas surjective.

2.(d) Rappelons que la fonction cube est injective (c'est une bijection de \mathbb{R} dans \mathbb{R} d'après le théorème de la bijection). Soient (a_1,b_1) et (a_2,b_2) deux éléments de \mathbb{R}^2 et supposons que $f(a_1,b_1)=f(a_2,b_2)$. Dès lors, $(a_1^3,b_1^3,a_1^3)=(a_2^3,b_2^3,a_2^3)$ donc $a_1^3=a_2^3$ donc $a_1=a_2$ car la fonction cube est injective. De même, $b_1=b_2$ donc

 h_4 est injective.

Cependant, toutes les images par h_3 ont une première et une troisième coordonnée égales. En particulier, (1,0,0) n'est pas atteint.

 h_4 n'est pas surjective.

3.(a) Si A = E alors $i = \operatorname{Id}_{\mathscr{P}(E)}$ donc est bijective. Supposons donc que A \neq E. Si X $\in \mathscr{P}(E)$ alors $i(X) \subset A$ donc E n'est pas atteint par i:

i n'est pas surjective.

Soit $x \in E \setminus A$ (un tel x existe car $A \neq E$). Alors $i(\emptyset) = i(\{x\}) = \emptyset$ donc

i n'est pas injective.

3.(b) Soit $A \in \mathcal{P}(E)$. Alors $A = j(A, \emptyset)$ donc (A, \emptyset) est un antécédent de A par j:

j est surjective.

Cependant, $j(E, E) = j(\emptyset, \emptyset) = \emptyset$ donc

j n'est pas injective.

Problème

Partie I. Tribus

[1] $\mathscr{P}(\Omega)$ contient toutes les parties donc contient Ω , est stable par complémentaire (car il contient toutes les parties) et par union dénombrable (car contient toutes les parties).

 $\mathscr{P}(\Omega)$ est une tribu.

De plus, $\Omega \in \{\emptyset; \Omega\}$ et cet ensemble est stable par passage au complémentaire. Enfin, soit $(A_n)_{n\geqslant 1}$ une suite de parties de $\{\emptyset; \Omega\}$: si tous les A_n sont vides, alors l'union est vide, sinon, l'un des A_n est égal à Ω donc l'union est aussi égale à Ω : dans tous les cas, l'union appartient à $\{\emptyset; \Omega\}$:

 $\{\varnothing;\Omega\}$ est une tribu.

Dès lors, toujours avec cette tribu, si Ω n'est pas réduit à un singleton, on peut avoir B non vide inclus dans Ω , auquel cas $\Omega \in T$, $B \subset \Omega$ mais $B \notin T$: cela n'a rien à voir, ne pas confondre appartenance et inclusion!

On peut avoir $A \in T, B \subset A$ mais $B \notin T!$

1.(b) L'ensemble des intervalles de \mathbb{R} n'est pas une tribu car n'est pas stable par complémentaire: le complémentaire de [0;1] est $]-\infty;0[\cup]1;+\infty[$ qui n'est pas un intervalle.

L'ensemble des intervalles de $\mathbb R$ n'est pas une tribu.

On pouvait aussi dire que cet ensemble n'est pas stable par union dénombrable: par exemple,

$$\bigcup_{n\in\mathbb{N}}]n; n+1[$$

n'est pas un intervalle.

2.(a) $\Omega \in T$ et T est stable par passage au complémentaire.

$$\varnothing \in \mathcal{T}$$

2.(b) Soient $n \ge 1$ et A_1, \ldots, A_n des éléments de T. Posons $B_1 = A_1, \ldots, B_n = A_n$ et, si $i \ge n+1$, $B_i = \emptyset$. Alors

$$\bigcup_{i=1}^n A_i = \bigcup_{i \ge 1} B_i$$

Or, $B_1 = A_1, \ldots, B_n = A_n$ appartiennent à T et, d'après la question précédente, $B_i = \emptyset \in T$. T étant stable par union dénombrable, l'union ci-dessus appartient à T donc $A_1 \cup \cdots \cup A_n \in T$.

T est stable par union finie.

2.(c) Soient $n \ge 1$ et A_1, \ldots, A_n des éléments de T. Alors, d'après les lois de Morgan:

$$A_1 \cap \cdots A_n = \overline{\overline{A_1} \cup \cdots \cup \overline{A_n}}$$

Or, les A_i sont dans T donc, d'après la question 2.(a), les $\overline{A_i}$ également. Dès lors, d'après la question 2.(b), $\overline{A_1} \cup \cdots \cup \overline{A_n} \in T$ donc, à nouveau d'après la question 2.(a), on a le résultat voulu.

Une tribu est stable par intersection finie.

2.(d) Soit $(A_n)_{n\geqslant 1}$ une suite d'éléments de T. Alors, d'après les lois de Morgan:

$$\bigcap_{n\geqslant 1} = \overline{\bigcup_{n\geqslant 1} \overline{\mathbf{A}_n}}$$

On conclut de même que dans la question précédente: complémentaire, puis union dénombrable, puis complémentaire.

Une tribu est stable par intersection dénombrable.

En clair, une tribu, c'est fait pour qu'on ne puisse pas en sortir à l'aide de toutes les opérations qu'on a l'habitude de faire en probabilités (dénombrables) : cf. programme de deuxième année.

3.(a)

- Si $i \in I$, T_i est une tribu donc $\Omega \in T_i$: i étant quelconque, $\Omega \in \bigcap_{i \in I} T_i$.
- Soit $A \in \bigcap_{i \in I} T_i$. Alors, pour tout $i, A \in T_i$ qui est une tribu donc $\overline{A} \in T_i$ donc $\overline{A} \in \bigcap_{i \in I} T_i$.
- Enfin, soit $(A_n)_{n\geqslant 1}$ une suite d'éléments de $\bigcap_{i\in I}A_i$. Alors, pour tout i, la famille $(A_n)_{n\geqslant 1}$ appartient à T_i qui est une tribu donc $\bigcup_{n\geqslant 1}A_n\in T_i$ donc $\bigcup_{n\geqslant 1}A_n\in \bigcap_{i\in I}T_i$.

En conclusion

$$\bigcap_{i\in\mathcal{I}} \mathcal{T}_i$$
 est une tribu.

3.(b) $| \mathscr{P}(\Omega)$ contient F et est une tribu (cf. question 1) donc appartient à A_F donc

D'après la question précédente, I est une tribu, et comme I est une intersections d'ensembles qui contiennent F (car les éléments de A_F contiennent F) alors I contient F. Enfin, si T est une tribu contenant F, alors I est une intersection de tribus donc l'une est égale à T (car $T \in A_F$ puisque $F \subset T$) donc est incluse dans T (cf. cours: $A \cap B \subset A$).

I est la plus petite tribu (au sens de l'inclusion) contenant T.

3.(c) Soit $T = \{\emptyset; A; \overline{A}; \Omega\}$. Alors:

- $\Omega \in T$.
- T est stable par passage au complémentaire.
- Soit $(A_n)_{n\geqslant 1}$ une suite d'éléments de T. Si l'un des A_n vaut Ω , alors l'union vaut Ω . Sinon, ils valent tous \varnothing , A ou \overline{A} . Si on trouve au moins un A et un \overline{A} , alors l'union vaut encore Ω . Sinon, on ne trouve que le vide et A, ou le vide et \overline{A} , ou le vide uniquement : l'union vaut alors A, \overline{A} ou \varnothing . Dans tous les cas, $\bigcup_{n\geqslant 1} A_n \in T$.

On en déduit que T est une tribu. Si C est une tribu contenant A, alors $\emptyset \in C$ (question 2.(a)), Ω et A appartiennent à C et C est stable par passage au complémentaire donc $\overline{A} \in C$ si bien que $T \subset C$: T est une tribu et est incluse dans toute tribu contenant A donc T est la tribu engendrée par A.

$$\sigma(\{A\}) = \{varnothing; A; \overline{A}; \Omega\}$$

4.(a) Soit $b \in \mathbb{R}$. $b : +\infty$ $b : +\infty$

$$b;+\infty[\in B]$$

4.(b) Soient a < b deux réels. Alors $]a;b] =]-\infty;b] \cap]-\infty;a]$, les deux ensembles $]-\infty;b]$ et $]-\infty;a]$ appartiennent à B qui est une tribu donc est stable par intersection finie (question 2.(c)) donc

$$[a;b] \in B$$

- 4.(c) Montrons cette égalité par double inclusion (elle se voit bien sur un dessin analogue à ceux du cours et l'intervalle de gauche est ouvert car a ne sera jamais atteint). Notons U l'union de droite.
 - Soit $x \in]-\infty$; a[. Alors x < a. Puisque $a \frac{1}{n} \xrightarrow[n \to +\infty]{} a$, il existe un entier n_0 tel que $x \leqslant a \frac{1}{n_0}$ donc $x \in]-\infty$; $a \frac{1}{n_0}[$ et donc $x \in U$. Ainsi, $]-\infty$; $a[\subset U.$
 - Réciproquement, soit $x \in U$. Il existe donc n_0 tel que $x \in \left] -\infty$; $a \frac{1}{n_0} \right]$ si bien que $x \leqslant a \frac{1}{n_0} < a$ donc $x \in \left] -\infty$; $a \in \mathbb{R}$. D'où l'inclusion réciproque, d'où l'égalité.

$$\boxed{] -\infty \, ; a \, [\, = \bigcup_{n=1}^{+\infty} \,] -\infty \, ; a - \frac{1}{n} \,] }$$

Finalement, $]-\infty$; a $[=\bigcup_{n=1}^{+\infty}]-\infty$; $a-\frac{1}{n}$ $]\in \mathbf{B}$ car union dénombrable d'éléments de \mathbf{B} .

$$]--\infty; a[\in B]$$

- **4.(d)** Soient $a \leq b$ deux réels.
 - $[b; +\infty[= \overline{]-\infty; b[} \in T \text{ car } T \text{ est stable par passage au complémentaire.}$
 - $[a;b] =]-\infty; b[\cap [a;+\infty[\in T \text{ car } T \text{ est stable par intersection finie.}]$
 - $a; b = a; +\infty \cap -\infty; b \in T.$
 - $[a;b] =]-\infty;b] \cap [a;+\infty[\in T.$

B contient tous les intervalles.

B contient également d'autres ensembles. Elle contient par exemple tous les ensembles avec lesquels on a l'habitude de travailler:

- les singletons: $\{x\} = [x; x] \in B$ car on vient de montrer que B contient tous les intervalles.
- Les ensembles finis: $\{x_1, \dots, x_n\} = \bigcup_{k=1}^n \{x_k\} \in \mathcal{B}$ car on vient de montrer que \mathcal{B} contient les singletons, et \mathcal{B}

est stable par union finie.

• Les unions finies ou dénombrables d'intervalles (par exemple, D_{tan}).

•
$$\mathbb{N} = \bigcup_{n=0}^{+\infty} \{n\} \in \mathcal{B}$$
 car union dénombrable d'éléments de \mathcal{B} .

•
$$\mathbb{Z} = \bigcup_{n=0}^{+\infty} (\{n\} \cup \{-n\}) \in \mathcal{B}.$$

• Si $n \ge 1$ on note

$$\mathbf{A}_n = \left\{ \frac{k}{n} \mid k \in \mathbb{Z} \right\} = \bigcup_{k \in \mathbb{N}} \left(\left\{ \frac{k}{n} \right\} \cup \left\{ -\frac{k}{n} \right\} \right) \in \mathbf{B}$$

 $(\text{par exemple } A_3 = \left\{ \cdots; -\frac{4}{3}; -1; -\frac{2}{3}; -\frac{1}{3}; 0; \frac{1}{3}; \frac{2}{3}; 1; \frac{4}{3}; \cdots \right\}). \text{ Finalement, } \mathbb{Q} = \bigcup_{n=1}^{+\infty} A_n \in B.$

• $\mathbb{R}\setminus\mathbb{Q} = \overline{\mathbb{Q}} \in \mathcal{B}$.

Et ce n'est pas tout! B contient (entre autres) toutes les unions et intersections dénombrables d'intervalles, toutes les unions et intersections dénombrables qu'on peut faire à partir de tels ensembles etc.

Partie II. AUTOUR DES λ -SYSTÈMES

I Soit T une tribu. T est stable par union dénombrable quelconque donc, en particulier, par union croissante dénombrable. De plus, soient $A \subset B$ deux éléments de T. Alors $B \setminus A = B \cap \overline{A}$. Or, A et B appartiennent à T et T est une tribu donc est stable par passage au complémentaire, donc $\overline{A} \in T$, et T est aussi stable par intersection finie donc $B \cap \overline{A} = B \setminus A \in T$: T est un λ -système.

Une tribu est un λ -système.

 $\overline{\mathbf{2.(a)}} \text{ En prenant } A = B = \Omega, A \text{ et } B \text{ sont dans } S \text{ et } A \subset B \text{ donc } B \backslash A = \emptyset. S \text{ \'etant un } \lambda\text{-syst\`eme, } B \backslash A \in S.$

 $\varnothing \in S$

2.(b) Soit $A \in S$. Alors $A \subset \Omega$ et $\Omega \in S$ donc $\Omega \setminus A = \overline{A} \in S$ car S est stable par différence.

S est stable par complémentaire.

[2.(c)] Soit $(A_n)_{n\geqslant 1}$ une suite décroissante pour l'inclusion, c'est-à-dire que $A_{n+1}\subset A_n$ pour tout $n\geqslant 1$. Alors, d'après le cours, $\overline{A_n}\subset \overline{A_{n+1}}$ pour tout n: la suite $(\overline{A_n})$ est croissante pour l'inclusion. De plus, d'après la question précédente, S est stable par passage au complémentaire donc tous les $\overline{A_n}$ appartiennent à S. Dès lors, S étant stable par union croissante, $\bigcup_{n\geqslant 1}\overline{A_n}\in S$. Encore une fois, S étant stable par passage au complémentaire,

$$\overline{\bigcup_{n\geqslant 1}\overline{\mathbf{A}_n}}=\bigcap_{n\geqslant 1}\mathbf{A}_n\in\mathbf{S}\colon\mathbf{S}\ \text{est stable par intersection décroissante}.$$

3 Preuve analogue à la question 3.(a) de la partie I.

Une intersection de λ -systèmes est un λ -système.

4 Posons B_F l'ensemble des λ -systèmes qui contiennent F et posons

$$I = \bigcap_{S \in B_F} S$$

On montre de même que dans la partie I que I est le plus petit λ -système contenant F : c'est un λ -système d'après la question précédente, il contient F et il est contenu dans tout λ -système contenant F, ce qu'on montre comme dans la partie I. Enfin, $\sigma(F)$ est une tribu donc un λ -système et contient F donc contient m(F) car m(F) est contenu dans tous les λ -systèmes contenant F.

$$m(\mathcal{F}) \subset \sigma(\mathcal{F})$$

La notation $\sigma(F)$ vient du fait qu'une tribu est aussi appelée une σ -algèbre, et la notation m(F) vient du fait qu'un λ -système est aussi appelé une classe monotone.

Partie III. Lemme $\lambda - \pi$ de Dynkin

- 1 Pour montrer qu'un élément B est dans m_A , il faut prouver qu'il est dans m(F) et que $B \cap A \in m(F)$.
 - Soit $(B_n)_{n\geqslant 1}$ une suite croissante d'éléments de m_A . Alors, pour tout $n, B_n \in m(F)$ et m(F) est un λ -système donc stable par union croissante, si bien que $\bigcup_{n\geqslant 1} B_n \in m(F)$. De plus, par distributivité de l'intersection sur l'union,

$$\left(\bigcup_{n\geqslant 1} B_n\right) \cap A = \bigcup_{n\geqslant 1} (B_n \cap A)$$

Or, pour tout n, $B_n \cap A \in m(F)$ puisque $B_n \in m_A$, et $(B_n \cap A) \subset (B_{n+1} \cap A)$ puisque $B_n \subset B_{n+1}$ (la suite est croissante). On en déduit que $(B_n \cap A)_{n \geqslant 1}$ est une suite croissante d'éléments de m(F) qui est un λ -système donc

$$\left(\bigcup_{n\geqslant 1} B_n\right) \cap A = \bigcup_{n\geqslant 1} (B_n \cap A) \in m(F)$$

En d'autres termes, $\bigcup_{n\geq 1} B_n \in m_A$.

• Soient à présent B et C (la lettre A est déjà prise) deux éléments de m_A avec $C \subset B$. Alors B et C sont dans m(F) qui est un λ -système donc $B \setminus C \in m(F)$. Prouvons que $(B \setminus C) \cap A = (B \cap A) \setminus (C \cap A)$:

$$\begin{split} (B \cap A) \backslash (C \cap A) &= (B \cap A) \cap \overline{(C \cap A)} \\ &= (B \cap A) \cap (\overline{C} \cup \overline{A}) \\ &= (B \cap A \cap \overline{C}) \cup (B \cap A \cap \overline{A}) \qquad \qquad (\text{distributivit\'e de } \cap \text{sur } \cup) \\ &= (B \cap A \cap \overline{C}) \cup \varnothing \\ &= (B \cap \overline{C}) \cap A \qquad \qquad (\text{associativit\'e de } \cap) \\ &= (B \backslash C) \cap A \end{split}$$

Or, C \subset B donc (C \cap A) \subset (B \cap A) et m(F) est un λ -système donc (B \cap A)\(C \cap A) \in m(F) c'est-à-dire que (B\C) \cap A \in m(F): B\C \in m_A .

$$m_{\rm A}$$
 est un λ -système.

Soit $B \in F$. Alors $B \in m(F)$ puisque $F \subset m(F)$, et F est un π -système donc est stable par intersection finie si bien que $B \cap C \in F$ (car $C \in F$), si bien que $B \in m_C$:

$$F \subset m_C$$

Par définition, $m_{\rm C} \subset m({\rm F})$ (car ${\rm B} \in m_{\rm C}$ si et seulement si ${\rm B} \in m({\rm F})$ et ${\rm B} \cap {\rm C} \in m({\rm F})$ donc en particulier tous les éléments de $m_{\rm C}$ sont dans $m({\rm F})$). De plus, $m_{\rm C}$ est un λ -système qui contient ${\rm F}$ d'après ce qui précède donc contient $m({\rm F})$ car $m({\rm F})$ est le plus petit λ -système (au sens de l'inclusion) inclus dans ${\rm F}$. D'où le résultat par double inclusion.

$$m_{\rm C} = m({\rm F})$$

3 Soit $A \in m(F)$. Rappelons qu'on peut toujours intervertir deux quantificateurs IDENTIQUES. Dès lors, d'après la question précédente,

$$\forall B \in m(F), \forall C \in F, B \cap C \in m(F)$$

C'est en particulier vrai pour B = A puisque $A \in m(F)$, c'est-à-dire que, pour tout $C \in F, C \cap A \in m(F)$. En d'autres termes, F est inclus dans m_A donc m_A est un λ -système contenant C, donc $m(F) \subset m_A$, et l'inclusion réciproque est vraie par définition.

$$\forall A \in m(F), m_A = m(F)$$

4.(a) Montrons que m(F) est un π -système, c'est-à-dire que m(F) est stable par intersection finie. D'après la question précédente, pour tout $A \in m(F)$, $m_A = m(F)$ c'est-à-dire que pour tout $B \in m(F)$, $B \cap A \in m(F)$. En d'autres termes : $\forall A \in m(F), \forall B \in m(F), B \cap A \in m(F)$. En d'autres termes :

L'intersection de deux éléments de
$$m(F)$$
 est encore dans $m(F)$.

Prouvons à présent que m(F) est un π -système par récurrence (portant sur le nombre de termes de l'intersection).

- Si $n \ge 2$, notons $H_n : \langle (A_1, \dots, A_n) \in m(F)^n, A_1 \cap \dots \cap A_n \in m(F) \rangle$.
- On vient de prouver que l'intersection de deux éléments de m(F) est encore dans m(F): en d'autres termes, H_2 est vraie.
- Soit $n \ge 2$. Supposons H_n vraie et prouvons que H_{n+1} est vraie. Soient donc A_1, \ldots, A_{n+1} des éléments de m(F). Par hypothèse de récurrence, $A_1 \cap \cdots \cap A_n \in m(F)$. Or, l'intersection de deux éléments de m(F) est encore dans m(F) donc

$$(A_1 \cap \cdots \cap A_n) \cap A_{n+1} \in m(F)$$

ce qui clôt la récurrence.

$$m(F)$$
 est un π -système.

4.(a) F contient Ω donc, d'après la partie II, m(F) est stable par passage au complémentaire. On prouve ensuite de façon analogue à la partie I que m(F) est stable par intersection finie et par passage au complémentaire donc par union finie.

$$m(F)$$
 est stable par union finie.

5 D'après la question 4 de la partie II, on a l'inclusion $m(F) \subset \sigma(F)$. Montrons l'inclusion réciproque. Il suffit pour cela de prouver que m(F) est une tribu: en effet, $\sigma(F)$ est la plus petite tribu (au sens de l'inclusion) contenant F, et donc si on prouve que m(F) est une tribu, alors m(F) est une tribu contenant F donc contient $\sigma(F)$, ce qui permet de conclure.

- Par hypothèse, $\Omega \in \mathcal{F}$ donc $\Omega \in m(\mathcal{F})$.
- D'après la question 2.(a) de la partie II, $\Omega \in F$ donc m(F) est stable par passage au complémentaire.
- Montrons que m(F) est stable par union dénombrable. Soit $(A_n)_{n\geqslant 1}$ une suite d'éléments de m(F). Posons, pour tout $n\geqslant 1$, $B_n=\bigcup_{i=1}^n A_i$. Alors, d'après l'exercice 10 du chapitre sur les ensembles, la suite $(B_n)_{n\geqslant 1}$ est croissante pour l'inclusion et $\bigcup_{n\geqslant 1} B_n = \bigcup_{n\geqslant 1} A_n$. De plus, d'après la question précédente, m(F) est stable par union finie donc, pour tout n, $B_n\in m(F)$: m(F) étant un λ -système, l'union d'une suite croissante d'éléments de m(F) est encore dans m(F) si bien que $\bigcup_{n\geqslant 1} A_n = \bigcup_{n\geqslant 1} B_n \in m(F)$. Finalement, m(F) est une tribu, ce qui permet de conclure.

$$m(F) = \sigma(F)$$

Partie IV. Unicité des mesures bornées

1 On sait que $\mu(\emptyset) \ge 0$ car μ est à valeurs dans \mathbb{R}_+ . Supposons par l'absurde que $\mu(\emptyset) > 0$. Alors, en posant $A_n = \emptyset$ pour tout $n \ge 1$, les A_n sont deux à deux disjoints donc

$$\mu\left(\bigcup_{n=1}^{+\infty} \mathbf{A}_n\right) = \sum_{n=1}^{+\infty} \mu(\mathbf{A}_n)$$

c'est-à-dire que

$$\mu(\varnothing) = \sum_{n=1}^{+\infty} \mu(\varnothing) = +\infty$$

d'après le résultat (intuitif) de l'énoncé, ce qui est absurde puisque $\mu(\varnothing) \in \mathbb{R}_+$ et donc est un réel.

$$\mu(\varnothing) = 0$$

Une mesure est un moyen de donner la taille d'un ensemble. On vient donc de prouver que la mesure de l'ensemble vide est nulle, ce qui est intuitif.

2 Posons $A_1 = A$, $A_2 = B \setminus A$, et $A_n = \emptyset$ pour tout $n \ge 3$. Alors les A_n sont deux à deux disjoints, et leur union vaut B, si bien que

$$\mu(B) = \mu(A_1) + \mu(A_2) + \sum_{n=3}^{+\infty} \mu(A_n)$$
$$= \mu(A) + \mu(B \setminus A) + \sum_{n=3}^{+\infty} 0$$
$$= \mu(A) + \mu(B \setminus A)$$

ce qui permet de conclure.

Si
$$A \subset B$$
, alors $\mu(B \setminus A) = \mu(B) - \mu(A)$.

 $\boxed{\mathbf{3.(a)}}$ Soient n et p deux entiers distincts, si bien que l'un des deux est strictement inférieur à l'autre. Sans perte de généralité, on peut supposer que n < p, si bien que $n \leqslant p-1$. Or, la suite (A_n) étant croissante, $A_n \subset A_{p-1}$ si bien que $B_n \subset A_n \subset A_{p-1}$. Or, $B_p = A_p \setminus A_{p-1}$ et donc $B_n \cap B_{p-1} = \emptyset$:

Les B_n sont deux à deux disjoints.

3.(b) Soit x appartenant à la première union. Alors il existe $n \ge 1$ tel que $x \in B_n = A_n \setminus A_{n-1}$, si bien que $x \in A_n$ donc x appartient à la première union.

$$\bigcup_{n=1}^{+\infty} B_n \subset \bigcup_{n=1}^{+\infty} A_n$$

3.(c) Puisque x appartient à l'union des A_n , l'ensemble $\{n \mid x \in A_n\}$ est non vide : c'est une partie non vide de \mathbb{N} donc elle admet un plus petit élément.

$$n_0$$
 existe bien.

Si $n_0 \neq 1$, alors $x \notin A_{n_0-1}$ car $n_0 - 1 < n_0$ et n_0 est le minimum de $\{n \mid x \in A_n\}$. Dès lors, $x \in A_{n_0} \setminus A_{n_0-1} = B_{n_0}$ donc x appartient à l'union des B_n . Si $n_0 = 1$, alors $x \in A_1 = B_1$ et x appartient toujours à l'union des B_n .

D'où l'inclusion réciproque, d'où l'égalité.

- **3.(d)** Prouvons que $S = \{A \in T \mid \mu(A) = \nu(A)\}\$ est un λ -système.
 - Soient deux éléments A et B dans S tels que A \subset B. Alors, d'après la question 2, $\mu(B \setminus A) = \mu(B) \mu(A)$, et $\nu(B \setminus A) = \nu(B) \nu(A)$. Or, A et B appartiennent à S donc $\mu(A) = \nu(A)$, et $\mu(B) = \nu(B)$, si bien que $\mu(B \setminus A) = \nu(B \setminus A)$, c'est-à-dire que $B \setminus A \in S$: S est stable par différence.
 - Soit $(A_n)_{n\geqslant 1}$ une suite croissante d'éléments de S. Prenons la suite $(B_n)_{n\geqslant 1}$ associée comme précédemment. Alors on a une famille d'éléments de S (car les B_n appartiennent à S puisque S est stable par différence d'après ce qui précède) deux à deux disjoints, si bien que, par définition d'une mesure,

$$\mu\left(\bigcup_{n=1}^{+\infty} \mathbf{B}_n\right) = \sum_{n=1}^{+\infty} \mu(\mathbf{B}_n)$$

Les B_n étant dans S, il vient :

$$\mu\left(\bigcup_{n=1}^{+\infty} \mathbf{B}_n\right) = \sum_{n=1}^{+\infty} \nu(\mathbf{B}_n)$$
$$= \nu\left(\bigcup_{n=1}^{+\infty} \mathbf{B}_n\right)$$

Or, d'après la question précédente, l'union des B_n est égale à l'union des A_n , donc en particulier:

$$\mu\left(\bigcup_{n=1}^{+\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{+\infty} A_n\right)$$

c'est-à-dire que $\bigcup_{n=1}^{+\infty} A_n \in S$: S est stable par union croissante.

S est un λ -système.

4 On cherche à prouver que $\sigma(C) \subset S = \{A \in T \mid \mu(A) = \nu(A)\}$. D'après la partie précédente, C étant un π-système contenant Ω , $m(C) = \sigma(C)$. Or, S étant un λ-système d'après la question précédente, et puisqu'il contient C par hypothèse (les deux mesures coïncident sur C), alors $m(C) = \sigma(C) \subset S$. En d'autres termes,

$$\mu$$
 et ν coïncident sur $\sigma(C)$.

5.(a) Soit $n \ge 1$. $]n; n+1] =]-\infty; n+1] \setminus]-\infty; n]$ donc, d'après la question 2:

$$\mu(]n; n+1]) = \mu(]-\infty; n+1]) - \mu(]-\infty; n])$$

Puisque μ et ν coïncident en tous les $]-\infty;x]$, on montre comme précédemment que $\mu(]n;n+1])=\nu(]n;n+1])$.

$$\forall n \geqslant 1, \mu(] n; n+1]) = \nu(] n; n+1])$$

2.(a) Soit $x \in \mathbb{R}$. Si $x \leq 1$, alors $x \in]-\infty;1]$, et sinon, alors $n = \lfloor x \rfloor \geqslant 1$ et $x \in [n;n+1]$, d'où l'inclusion $R \subset \cdots$, et l'inclusion réciproque est immédiate.

$$\mathbb{R} =]-\infty;1] \cup \left(\bigcup_{n=1}^{+\infty}]n;n+1]\right)$$

5.(c) Par définition d'une mesure,

$$\mu(\mathbb{R}) = \mu(] - \infty; 1]) + \sum_{n=1}^{+\infty} \mu(]n; n+1])$$

$$= \nu(] - \infty; 1]) + \sum_{n=1}^{+\infty} \nu(]n; n+1]) \qquad \text{(par hypothèse et question 5.(a))}$$

En conclusion

$$\mu(\mathbb{R}) = \nu(\mathbb{R})$$

[5.(d)] Notons C l'ensemble contenant tous les] $-\infty$; x], ainsi que \mathbb{R} . Par hypothèse et d'après la question précédente, μ et ν coïncident sur C, et par définition de B, σ (C) = B. Pour appliquer la question 4, il suffit de prouver que C est un π -système, ce qui est immédiat : soit $n \ge 1$ et soient A_1, \ldots, A_n des éléments de C. Quitte à supprimer les termes égaux à \mathbb{R} (intersecter avec \mathbb{R} ne change rien), on suppose que tous les A_i sont de la forme] $-\infty$; x_i], et donc leur intersection vaut] $-\infty$; m] avec m le minimum des x_i (qui est bien défini car les x_i sont en nombre fini) donc cette intersection appartient à \mathbb{C} : \mathbb{C} est stable par intersection finie, donc est un π -système, ce qui est le résultat voulu.

$$\mu = \nu$$