- Syed Ameran Ariz (RA2011030010078)

Worksheef-1

MCQs

1) b
$$\rightarrow P(k) = m^{(k)} + 5$$

Descriptive Questiers.

D) let statement is true for ne!

$$= 2^{2} - 1$$

= $2^{2} - 1 - 4 - 1$

De let it is true for n-k

133) W 2 -1 - 3 y, divisible by 3

-'. P(K+1) is tout when P(K) 15 tout

$$a^2 - 3k$$
, a^2 divisible by 3

 $a = (3k+1)$ or $(3k+2)$ a divisible by 3

Let a^2 in divisible by 3, $a^2 - 3k$
 a is divisible by 3, $a = (3k+1)$ or $(3k+2)$

Thue

 $a^2 = (3k+1)^2$ or $(3k+2)^2$
 $a^2 = (9k^2 + 6k + 1)$ or $(9k^2 + 12k + 4) + 22k$
 $a^2 = 3(3k^2 + 2k) + 1$ or $3(3k^2 + 4k + 1) + 1$
 $a^2 = 3k + 1$ or $3k + 1$
 $a^2 = 3k + 1$ or $3k + 1$
 $a^2 = 3k + 1$ or $3k + 1$
 $a^2 = 3k + 1$ or $3k + 1$
 $a^2 = 3k + 1$ or $3k + 1$

3) Assume following cares

a	P	a+b
odd	099	creu
even	000	odd
odd.	even	011
even	even	even

Let
$$\alpha \ge 0 dd$$
, $b \ge 0 dd$

$$\alpha \ge 2 k - 1$$

$$b \ge 2 k - 1$$

$$\alpha + b \ge 2 k - 1 + 2 k - 1$$

$$\Rightarrow 4 k - 1$$

$$\Rightarrow 2(2 k \cdot 1) \text{ is even.}$$

i. a+b is odd if either of them is odel

$$l = 2n^2 - (6n + 31)$$
put $n = U$

$$= 2x4^2 = -16x4 + 31$$

$$= -1 = -1$$

$$= -1 = -1$$

$$= -1 = -1$$

$$= -1 = -1$$

$$= -1 = -1$$

$$= -1 = -1$$

Let it in true for n > 5

(n-1) >2

which is Same is D Hume proved.

LHS = 12 = 1

Assume statement in tour for nek

(if
$$P(K)$$
 is true, prone true for $n > k+1$)
$$1^{2} + 2^{2} + 3^{3} + - - - - 2 (K+1) (k+1) (2K+3)$$

$$= K(K+1)(2K+1) + (K+1)^{2}$$

$$= K(K+1)(2K+1) + (K+1)^{2} - (K+1)K(2K+1) + 6(K+1)$$

$$= 6$$

True for n21, n2 k I true for n2 K+1

$$\sum_{n=1}^{3} r^{2} = 1^{2} + 2^{2} - \frac{n(n+1)(an+1)}{6}$$

Pur

Worksheet - 2

MCQs

1) Not of all strings starting I Eneling with '10' lang number of I's in between '10'.

2)(11) L = (0+1) 1001(0+1)

3) (111) (11) and (111)

4) (1) Regular dangneyes

5) c) The set of all strings containing at least two 0's.

Part-B

1) Language general by RE O+(101)"11 string - is any no. of 0's followed by (101) any no. of times I end with \$11.

(011) 0x (010110111)

- 2) Identify the RE for→

 cury combination of 0's 4 1's beginning & Eneling with '01',

 PE = (01) (0+1)*(01)
- 3) RE for Bet of all which contains repeated substrings of any length.

 The FSA can not whose any monony to check for repeating symbol so we can write a R.D.

No €" of 90 → ?90,9,9

Worksheet-3

MCQs

- 1) 6-) 2
- 2) A >h
- 3) eriann
- 4) C>15
- 5) a-) increuse computation
- 6) c → 2n
- 7) C-> I is false & I is true
- 8) d > DFA is more powerful
- 9) 9>5
- 10)

Pout B

1) Pass that with 'a b'

$$\begin{array}{c} \alpha) \longrightarrow A \xrightarrow{\alpha} & \alpha \xrightarrow{b} & \alpha_{1}b_{1}c \\ b_{1}c & \alpha_{2}b_{1}c \end{array}$$

b) not end with 'bb

2) Multiple of 5

Worksheet 4

Mca,

- 1) Diff between DFA 1 NFA in-thert we get multiple choices in NFA So it we have a language substying a DFA. it will also setisfy its Equivalent NDFA.
- a) త్రి

- 3) n.24
- 4). 8 = 0 x (5 U.E) = P(a)
- 5) Same ivit final status as E-NFA

Paul-B

3	a	Ь	C
%	•	9/2	9,
ra,	Φ	ф	ф
9/2	Ø	9,	9/2

3) find E-Closure

E-closuse (1) = \$1,2,3,6,43

4) Binary of ! 1001

NFA that accepts 1001(89) L 0101(5)

$$\rightarrow @ \longrightarrow @ / o \rightarrow W / o$$

Workhert. 5

NCAR Poul B

2) L=90°.14 (n >1) q is not a Regular Expression

i. b'a'b (a+b)" is R.E

