Semaine 28 - Déterminants

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Déterminant et polynôme

Soit ϕ une application de \mathbb{C} dans $\mathcal{G}l_n(\mathbb{C})$. On pose ψ l'application de \mathbb{C} dans $\mathcal{G}l_n(\mathbb{C})$ telle que $\psi(z) = \phi(z)^{-1}$. On suppose de plus que $\forall (i,j) \in [1,n]^2$, $\phi(z)(i,j) = P_{i,j}(z)$ avec $P_{i,j} \in \mathbb{C}[X]$.

1 Montrer qu'il existe $Q_{i,j} \in \mathbb{C}[X]$ tel que $\psi(z)(i,j) = Q_{i,j}(z)$.

2 Déterminant et nombres entiers (1)

Soit $M \in \mathcal{M}_n(\mathbb{Z})$.

1 Montrer que M est inversible (c'est-à-dire qu'il existe $N \in \mathcal{M}_n(\mathbb{Z})$ tel que MN = NM = Id) si et seulement si $|\det(M)| = 1$.

2 Montrer que $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ sont premiers entre eux dans leur ensemble si et seulement si il existe $M \in \mathcal{G}l_n(\mathbb{Z})$ telle que la première ligne de M soit (a_1, \ldots, a_n) .

3 Déterminants et nombres entiers (2)

Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$. On suppose que pour tout $k \in [0, 2n]$, $A + kB \in \mathcal{G}l_n(\mathbb{Z})$.

1 Calculer det(A) et det(B).

Indication : on pourra utiliser la question 1 de l'exercice précédent.

4 Déterminants de Cauchy

Soit $(a_1, \ldots, a_n) \in (\mathbb{R}_+^*)^n$ et $(b_1, \ldots, b_n) \in (\mathbb{R}_+^*)^n$.

1 Calculer
$$\begin{vmatrix} \frac{1}{a_1+b_1} & \cdots & \frac{1}{a_n+b_1} \\ \vdots & \vdots & \vdots \\ \frac{1}{a_1+b_n} & \cdots & \frac{1}{a_n+b_n} \end{vmatrix}.$$

Remarque : dans le cas très particulier où $a_i = i$ et $b_j = j$ on parle de déterminant de Hilbert. Que vaut le déterminant dans ce cas ?

1

5 Déterminants de Van der Monde et Van der Monde généralisé

Soit $(a_1, \ldots, a_n) \in (\mathbb{R}_+^*)^n$ (on les suppose distincts et rangés par ordre croissant).

1 Calculer
$$\begin{vmatrix} 1 & \dots & 1 \\ a_1 & \dots & a_n \\ \vdots & \vdots & \vdots \\ a_1^n & \dots & a_n^n \end{vmatrix}.$$

2 En déduire l'existence et l'unicité du polynôme interpolateur de Lagrange aux points (a_1, \ldots, a_n) .

3 Calculer
$$\begin{vmatrix} 1 & \dots & 1 & 0 & \dots & 0 \\ a_1 & \dots & a_n & 1 & \dots & 1 \\ a_1^2 & \dots & a_n^2 & 2a_1 & \dots & 2a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1^{2n} & \dots & a_n^{2n} & (2n-1)a_1^{2n} & \dots & (2n-1)a_n^{2n} \end{vmatrix}.$$

4 Soit f une application dérivable de \mathbb{R} dans \mathbb{R} . Déduire de la question précédente l'existence et l'unicité d'un polynôme de $\mathbb{R}_{2n}[X]$ tel que $P(a_i) = f(a_i)$ et $P'(a_i) = f'(a_i)$.

Remarque : ces polynômes sont appelés les polynômes de Hermite et possèdent, comme les polynômes de Lagrange, de nombreuses propriétés.

6 Transformée de Fourier discrète

Soit $(a,b) \in \mathbb{C}^2$.

2 Soit
$$(a_1, \ldots, a_n) \in \mathbb{C}^n$$
. On considère $C(a_1, \ldots, a_n)$ la matrice circulante associée : $C(a_1, \ldots a_n) = \begin{pmatrix} a_1 & \ldots & a_n \\ a_n & a_1 & \ldots & a_{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ a_2 & \ldots & a_n & a_1 \end{pmatrix}$

On pose
$$\omega = e^{\frac{2i\pi}{n}}$$
. On pose $\Lambda_k = \begin{pmatrix} \omega^k \\ \omega^{2k} \\ \vdots \\ \omega^{nk} \end{pmatrix}$. Montrer que $(\Lambda_k)_{k \in \llbracket 1, n \rrbracket}$ est une base de \mathbb{C}^n qui diagonalise $C(a_1, \dots, a_n)$.

3 En déduire le déterminant de $C(a_1, \ldots, a_n)$.

7 Déterminants de Hurwitz

Soit $(\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$ et $a \in \mathbb{C}$.

1 Calculer
$$\begin{vmatrix} a + \lambda_1 & a & \dots & \dots & a \\ a & a + \lambda_2 & a & \dots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & a & a + \lambda_{n-1} & a \\ \dots & \dots & \dots & a & a + \lambda_n \end{vmatrix}$$

8 Matrice antisymétrique et déterminant (1)

Soit A une matrice antisymétrique de $\mathcal{M}_n(\mathbb{C})$.

1 Montrer que si n est impair le déterminant de A est nul.

2 Que peut-on dire si n est pair ?

9 Matrice antisymétrique et déterminant (2)

Soit A une matrice antisymétrique de $\mathcal{M}_n\left(\mathbb{C}\right)$ et J la matrice de $\mathcal{M}_n\left(\mathbb{C}\right)$ dont tous les coefficients sont égaux à 1.

1 Montrer que $\forall z \in \mathbb{C}$, $\det(A + zJ) = \det(A)$.

10 Une équation sur les endomorphismes

On suppose que f est un endomorphisme de \mathbb{R}^3 . On suppose également que $f^3+f=Id$. On suppose que $\ker f\neq 0$.

1 Montrer que $\dim(\ker f) = 1$.

11 Un déterminant linéaire ?

1 Déterminer tous les $A \in \mathcal{M}_n(\mathbb{C})$ tels que $\forall X \in \mathcal{M}_n(\mathbb{C})$, $\det(A + X) = \det(A) + \det(X)$.

Remarque: on pourra commencer par traiter le cas de la dimension 1...

12 Matrice de rang 1 et déterminant

Soit $(A, H) \in \mathcal{M}_n(\mathbb{R})^2$. On suppose que $\operatorname{rg}(H) = 1$.

1 Montrer que $\det(A+H)\det(A-H) \le (\det(A))^2$.

13 Déterminant par bloc

Soit $(A, B, C, D) \in \mathcal{M}_n(\mathbb{C})^4$. On suppose que D est inversible et que D commute avec C.

- $\mathbf{1} \quad \text{Montrer que } \det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(D).$
- $\mathbf{2} \quad \text{Montrer que } \det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det (AD BC).$
- **3** Que peut-on dire si D n'est plus inversible?
- 4 En déduire que si AB = BA, $det(A^2 + B^2) \ge 0$.

Indication : on pourra penser à introduire $\begin{pmatrix} A & B \\ -B & A \end{pmatrix}$ et multiplier les n dernières colonnes par i et les n dernière lignes par i.

14 Au signe près...

Soit $A = (a_{i,j})_{i \in \llbracket 1,n \rrbracket, j \in \llbracket 1,n \rrbracket} \in \mathcal{M}_n(\mathbb{C})$. On considère $\tilde{A} = ((-1)^{i+j}a_{i,j})_{i \in \llbracket 1,n \rrbracket, j \in \llbracket 1,n \rrbracket} \in \mathcal{M}_n(\mathbb{C})$.

1 Que dire du déterminant de $det(\tilde{A})$ en fonction de det(A)?

15 Divisibilité et déterminant

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On suppose que les coefficients de A appartiennent tous à $\{-1,1\}$.

1 Montrer que 2^{n-1} divise det(A).

16 Déterminant et maximum

Soit
$$(a_1, \ldots, a_n) \in \mathbb{C}^n$$
.

- 1 Que vaut $det(a_{\max(i,j)})$?
- **2** Que vaut det(max(i, j)) ? det(min(i, j)) ?

17 Un dernier calcul...

Soit
$$(a_1, \ldots, a_n) \in \mathbb{C}^n$$
.

$$\mathbf{1} \quad \text{Calculer} \begin{vmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ a_1 & a_1 & a_2 & \dots & a_{n-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_1 & \dots & \dots & a_1 \end{vmatrix}.$$