

Álgebra Linear e Geometria Analítica

2011-11-21

1ª Prova de Avaliação

- Identifique as folhas de capa (nome completo), bem como as folhas de continuação usadas.
- O exame tem a duração de 1h45m, sendo considerados 30m de tolerância para a sua conclusão. A desistência só é possível 1h após o seu início.
- Não é permitida a utilização de máquina de calcular gráficas nem de microcomputadores.

ATENÇÃO: Resolva cada um dos Grupos utilizando folhas de capa distintas.

GRUPO I

- 1. Seja o conjunto de vectores $S = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} \subset \mathbb{R}^4$, em que $\vec{a} = (1,1,0,1)$, $\vec{b} = (2,-1,3,2)$, $\vec{c} = (0,-1,\alpha,1)$ e $\vec{d} = (-1,-2,1,\beta)$. Obtenha α e β de modo que o conjunto S seja linearmente independente. Poderão existir em S não mais de dois vectores linearmente independentes? Justifique a resposta.
- 2. Considere $\alpha = 1$ e $\beta = 2$ no conjunto *S* do exercício anterior.
 - a) Determine o subespaço, L(S), gerado por S; obtenha uma base para L(S) e conclua em relação à dimensão do subespaço.
 - b) Calcule uma base ortogonal, U, para o subespaço L(S), que seja constituída por vectores com norma igual a $\sqrt{3}$.
 - c) Exprima o vector $\vec{b} = (2, -1, 3, 2)$ como combinação linear dos elementos da base U.
- 3. Sejam o plano $M = \left\{ X \in \mathbb{R}^3 : X = P + s\vec{a} + t\vec{b}, s, t \in \mathbb{R} \right\}$ e o vector \vec{n} , não nulo, de \mathbb{R}^3 que é perpendicular aos vectores geradores de M. Mostre que qualquer elemento do conjunto $R = \left\{ X \in \mathbb{R}^3 : (X P) \cdot \vec{n} = 0 \right\}$ pertence ao conjunto M.

(continua no verso)

GRUPO II

- 4. Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} vectores do espaço \mathbb{R}^3 , tais que $\|\vec{a}\| = 3$, $\|\vec{b}\| = 1$, $\|\vec{c}\| = 2$, $\|\vec{a} + \vec{b}\| = \sqrt{6}$, $\angle(\vec{c}, \vec{b}) = 30^\circ$, $\vec{c} \cdot \vec{b} \times \vec{a} = -2$ e $\vec{d} = \vec{c} + \vec{a} \times \vec{b}$. Determine:
 - a) A norma do vector \vec{d} .
 - b) O ângulo formado pelos vectores \vec{b} e \vec{d} e a norma do vector $\vec{c} \times \vec{d}$ (se não resolveu a alínea a) admita que $\|\vec{d}\| = \sqrt{13}$).
- 5. Considere o plano M: x+z=4, a recta $r: X(u)=P+u\vec{a}$, $u \in \mathbb{R}$, em que P=(1,0,1) e $\vec{a}=(1,1,-1)$, e o ponto Q=(1,0,-1). Determine:
 - a) Os pontos do eixo dos yy que se encontram à mesma distância da recta r e do plano M.
 - b) A equação cartesiana do plano M_1 , perpendicular à recta r e que passa no ponto, I, desta recta mais próximo da origem.
 - c) A equação vectorial de uma recta s que passa no ponto Q, é paralela ao plano xOy e faz um ângulo de 30° com o plano M.
- 6. Sejam \vec{a} e \vec{b} vectores do espaço \mathbb{R}^3 . Mostre que se o conjunto $S = \{\vec{a}, \vec{b}\}$ é linearmente dependente, então $\vec{a} \times \vec{b} = \vec{0}$.

Cotação prevista

1 2.1 ; 2 a) 2.0 b) 1.6 c) 1.6 ; 3 1.3 ; 4 a) 1.3 b) 1.2
5 a) 2.5 b) 2.5 c) 2.7 ; 6 1.2.