Alarma de fuga de gas

Estudiantes: Daniel Chacón Mora, Erick Sancho Alvarado

Justificación

Este circuito se desarrolla para abordar la necesidad de un sistema de seguridad asequible, compacto, de bajo mantenimiento y con alerta temprana para usuarios de gas. La detección oportuna de fugas es crucial debido a los posibles accidentes y concentraciones de gas. Un dispositivo pequeño y portátil permite a los usuarios estar al tanto de fugas en cualquier ubicación, facilitando la ejecución rápida de un plan de acción para controlar la fuga.

Objetivos

Objetivo general

 Desarrollar una alarma de fuga de gas con conexión a internet para envío de alerta.

Objetivos específicos

- Diseñar un
 circuito funcional
 que integre un
 microcontrolador,
 sensores y
 módulos de
 comunicación
- Implementar un firmware que permita brindar información valiosa por correo al usuario

Alcance

El proyecto busca desarrollar un detector de fugas de gas compacto y económico utilizando un Arduino Uno y un módulo de WiFi. Este dispositivo tiene como objetivo alertar al usuario sobre posibles fugas de gas mediante notificaciones a través de la red WiFi. La idea es proporcionar una medida de seguridad preventiva en entornos con gas LP, propano o metano, especialmente en áreas donde la vigilancia constante no es práctica.

Metodología

Durante el desarrollo del código para el Arduino Uno, se utilizará el lenguaje de programación de Arduino, basado en C/C++. El código comienza con la definición de pines en la función integrada setup(), que establece la configuración inicial de los componentes. Posteriormente, se entra en un bucle mediante la función integrada loop(), que continuamente evalúa las lecturas del sensor de gas. En caso de detectar una fuga, se ejecutan comandos para crear un URL y enviar una solicitud al servidor de IFTTT [7], que a su vez activa una serie de acciones, como el envío de un correo electrónico al usuario.

Las bibliotecas de Arduino simplifican la interacción con hardware y ofrecen funciones predefinidas, la comunicación con el usuario se logra mediante un applet, una automatización que conecta servicios y dispositivos para ejecutar acciones específicas, se emplea para alertar al usuario mediante un correo electrónico ante una posible fuga de gas con el sensor de gas. El Arduino y Thingsboards se utilizarán para visualizar y controlar los datos del barómetro (presión atmosférica, temperatura y humedad) en tiempo real.

Componentes

Cronograma

Fecha.	Actividad.	Responsables.
22/01/24	Inicio e investigación sobre el proyecto a realizar.	Erick Sancho
	Escogencia del tema de proyecto.	Daniel Chacón
24/01/24	Presentación de escogencia de proyecto.	Erick Sancho
		Daniel Chacón
26/01/24	Investigar sobre costos y precios de los componentes.	Daniel Chacón
	Conseguir componentes que estén a nuestro alcance.	Erick Sancho
27/01/24	Comprar los componentes que vamos a necesitar.	Daniel Chacón y
		Erick Sancho
29/01/24	Comenzar con el diseño del circuito a implementar.	Daniel Chacón
	Realizar pruebas simuladas y físicas con el arduino.	Erick Sancho
29/01/24	Iniciar la programación del proyecto.	Erick Sancho
		Daniel Chacón
5/02/24	Continuar la programación.	Erick Sancho y
		Daniel Chacón
12/02/24	Iniciar el informe técnico final.	Erick Sancho
	Continuar con la programación.	Daniel Chacón
17/02/24	Afinar detalles del proyecto y terminar la programación.	Erick Sancho
	Realizar presentación final.	Daniel Chacón
19/02/24	Terminar pendientes del proyecto. (Si los hay)	Daniel Chacón
	Presentación final del proyecto.	Erick Sancho

Referencias

- [1] microjpm.com. Tienda de componentes electronicos. https://www.microjpm.com/.
- [2] microjpm. KIA78R09 Low Dropout Voltage Regulator. https://www.microjpm.com/products/ad38934/.
- [3] microjpm. KIA78R09 Low Dropout Voltage Regulator. https://www.microjpm.com/products/ad38934/.
- [4] Steren. Capacitor de poliester metalizado, de 0.1 uF. https://www.steren.cr/capacitor-de-poliester-metalizado-de-0-1-uf-micro-faradios-a-250-volts. html.
- [5] microjpm. Sitio web, 2024. https://www.microjpm.com/products/push-button-4-pines/.
- [6] microjpm. Sitio web, 2024. https://www.microjpm.com/products/polymer-lithium-ion-battery-40mah/.
- [7] microjpm. Sitio web, 2024. https://www.microjpm.com/products/polymer-lithium-ion-battery-40mah/.
- [8] Steren. M'odulo wi-fi. Sitio web, 2024. https://www.steren.cr/modulo-wi-fi.html.
- [9] Steren. Led de 5 mm, color rojo claro. Sitio web, 2024. https://www.steren.cr/led-de-5-mm-color-rojo-claro.htmll.
- [10] Steren. Buzzer de 3,3 khz, de 8 a 15 vcc, con se nal de tono constante de 85 db. Sitio web, 2024. https://www.steren.cr/buzzer-de-3-3-khz-de-8-a-15-vcc-con-se-al-de-tono-constante-de-85-db. html.
- [11] IFTTT. IFTTT plataforma de automatizaci´on. 23/01/2024.
- [12] Proyecto: lot-based lpg gas leakage detector using esp8266 and arduino. Sitio web, 2024. https://iotdesignpro.com/projects/iot-based-lpg-gas-leakage-detector-using-esp8266-and-arduino.