Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/005045

International filing date: 15 March 2005 (15.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/555,415

Filing date: 23 March 2004 (23.03.2004)

Date of receipt at the International Bureau: 14 July 2005 (14.07.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

21.6.2005

PCT/JP 2005/005045

THIORUNIAND STRABBLE OF MORE CON

TO ALL TO WHOM THESE: PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

May 20, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/555,415

FILING DATE: March 23, 2004

By Authority of the

COMMISSIONER OF PATENTS AND TRADEMARKS

M. SIAS

Certifying Officer

15866

PROVISIONAL APPLICATION FOR PATENT COVER SHEET This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

0		
בי	7	=
	-	Ē

	P	INVENTO	OR(S)		
	ven Name (first and middle [if any])	Family Name or Sum	ame	Resid (City and either State	ence SO Toreign County)
	okazu MIYAZAWA			Shiojiri	Japan
Shi	nichiro TOMIKAWA			Shiojiri	Japan
					Japan
	Additional inventors are being named	d on theseparately numb	ered sheet(s) at	tacked hereto	<u> </u>
		TITLE OF THE INVENTIO	N /500 abassa		
R	OUNDED ELECTROMELTING ALU	MINA SINGLE PARTICLE PR	ODICTION D	OCECC THEREOF AND T	FSIN COMPOSITION
		CONTAINING THE SIN	NGLE PARTIC	CLE	ESTIT COMPOSITION
		CORRESPONDENCE The address for SUGHRUE MION WASHINGTON O 2337 CUSTOMER NU	N, PLLC filed u OFFICE 3 MBER	nder the Customer Number li	sted below:
	Specification	NCLOSED APPLICATION PA	RTS (check a	ll that apply)	
	(Japanese Language) Number of Pages Drawing(s) Number of Sheets Application Data Sheet. See 37 CFR		CD(s), Numbe Other (specify)		
MET					
	HOD OF PAYMENT OF FILING FEI Applicant claims small entity status.	See 37 CER 1 27	APPLICATION	FOR PATENT	
				•	,
	A check or money order is enclosed authorized to charge all required fees No. 19-4880. Please also credit any The USPTO is hereby authorized to The USPTO is directed and authorize Fee, to Deposit Account No. 19-4880	overpayments to said Deposit Ac charge the Provisional filing fees	Publication Fe count. to our Deposit	Account No. 19-4880.	FILING FEE AMOUNT (\$) \$160.00
The in	nvention was made by an agency of the No. Yes, the name of the U.S. Government				ates Government.
Respe	ctfully submitted,				
SIGN	ATURESheldon	I. Landsman	·· ···································	DATEMarch 23, 2004	
TYPE	D or PRINTED NAME Sheldon I.	Landsman		REGISTRATION NO. 25	j.430
ELE	PHONE NO. (202) 293-7060			DOCKET NO. P80549	

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

【掛類名】

明細醬

【発明の名称】 丸味状電融アルミナ単粒子、その製造方法およびそれを含有する樹脂 組成物

【技術分野】

[0001]

本発明は、丸味状電融アルミナ単粒子、特に耐磨耗性床材、電子部品の封止材料、放熱基板材料、充填材、仕上げラッピング材、又は耐火物、セラミックスおよび複合材における骨材あるいは充填材に有用な、設備への低磨耗性かつフロー特性、充填性に優れた丸味状電融アルミナ単粒子に関する。また本発明は、丸味状電融アルミナ単粒子を工業的に安価で製造する方法、およびそれを含有する耐磨耗性樹脂組成物、高熱伝導性ゴム組成物、高熱伝導性樹脂組成物に関する。

【背景技術】

[0002]

近年、環境問題に対応した電気自動車、ハイブリッド自動車、燃料電池自動車などの 進展が著しいが、これに伴って電気部品の大電流化が進んでおり、発熱量も増大の一途 にある。また、電子部品の高集積化、高密度化に伴って、チップ当りの電力消費量も増 大の一途にあり、これらで発生した熱を効率良く放熱し、電気部品、電子部品の温度上 昇を少なくすることが重要な開発課題となっている。

[0003]

これらの課題解決のためには熱伝導性の優れたコランダム (αーアルミナ)を髙充填することが望ましいが、研削材・耐火材用途である安価な電融アルミナ粒子は、破砕して粒子にされるため鋭いカッティングエッジを有しており、高充填できないばかりか、混練機、成形金型等の設備を磨耗させ、製造コストを髙める原因となるので、これまで使用されていなかった。

[0004]

現在、高充填を可能とする丸味状アルミナ粒子としては、特許文献 $1\sim3$ 等に提案されている薬剤添加焼成方法や、特許文献 $4\sim6$ 等に提案されている溶射方法が知られているが、どちらも電融アルミナ単粒子ではない。

[0005]

また、これら薬剤添加焼成方法で得られた丸味状アルミナ粒子は焼結体であるため粒子内に粒界が存在する多結晶体であり、溶射法で得られた丸味状アルミナ粒子も α -アルミナ、 δ -アルミナ、 γ -アルミナを含む多結晶体であることから、ほぼ単結晶である電融アルミナに比べて熱伝導率が小さいばかりか生産工程が長く、熱原単位も大きいため経済的でない。

[0006]

一方で、耐磨耗性を要求される床材には既に電融アルミナ粒子が使用されているが、 鋭いカッティングエッジを持つことから、耐磨耗性向上のための高充填化ができない、 あるいはラミネート時の成形プレートにキズがつくという課題をかかえており、これら の課題解決のためにも丸味状電融アルミナ単粒子の開発が待たれていた。

[0007]

【特許文献1】特開平4-32004号公報

【特許文献 2 】 特開平5-294613号公報

【特許文献 3】 特開2002-348116号公報

【特許文献4】特開平5-193908号公報

【特許文献 5 】 特開昭63-156011号公報

【特許文献 6】 特開2001-19425公報

【発明の開示】

【発明が解決しようとする課題】

[8000]

上記公報に記載されている方法によれば、カッティングエッジを有しない丸味状アル

ミナ粒子が得られているものの、共に熱原単位が大きく経済的でないばかりか熱伝導率 も小さいため、これらの課題を同時に解決するためには熱伝導率の高い電融アルミナ単 粒子を原料として粉砕・整形により丸味状電融アルミナ単粒子が製造できることが好ま しい。

[0009]

また、熱処理を行なわず、粉砕・整形によって丸味状電融アルミナ単粒子が生産できれば熱処理設備、冷却設備も不要となり、設備投資費用が少なくて済むというメリットもある。

【課題を解決するための手段】

[0010]

本発明者は上記従来技術の問題点に鑑み、鋭意研究した結果、丸味状電融アルミナ単粒子を完成するため、その製造方法にジェットミルを用いることにより上記課題を解決して本発明を完成させるに至った。

[0011]

すなわち、本発明は以下の手段によって達成される。

- [1] 平均粒子径が5~4000μmで、円形度が0.85以上の丸味状電融アルミナ単粒子。
- [2] 粉砕機によって電融アルミナ粒子のエッジを取り除くことを特徴とする上記 [1] に記載の丸味状電融アルミナ単粒子の製造方法。
- 〔3〕ジェットミルによって電融アルミナ粒子のエッジを取り除くことを特徴とする上記〔1〕に記載の丸味状電融アルミナ単粒子の製造方法。
- 〔4〕ジェットミルが、カウンター型ジェットミルである上記〔3〕に記載の丸味状電融アルミナ単粒子の製造方法。
- 〔5〕ジェットミルが、旋回型ジェットミルである上記〔3〕に記載の丸味状電融アルミナ単粒子 の製造方法。
- 〔6〕カウンター型ジェットミルが、ノズル圧力、分級機回転数、運転時間を任意に設定できるものである上記〔4〕に記載の丸味状電融アルミナ単粒子の製造方法。
- 〔7〕カウンター型ジェットミルのノズル圧力を0.6~0.8MPaとすることを特徴とする上記〔4〕または〔6〕に記載の丸味状電融アルミナ単粒子の製造方法。
- 〔8〕カウンター型ジェットミルをバッチ運転し、ミル内残留物を製品とすることを特徴とする上記〔4〕、〔6〕または〔7〕に記載の丸味状電融アルミナ単粒子の製造方法。
- 〔9〕耐摩耗性樹脂中に上記〔1〕に記載の丸味状電融アルミナ単粒子を含むことを特徴とする耐摩耗性樹脂組成物。
- 〔10〕高熱伝導性ゴム中に上記〔1〕に記載の丸味状電融アルミナ単粒子を含むことを特徴とする高熱伝導性ゴム組成物。
- 〔11〕高熱伝導性樹脂中に上記〔1〕に記載の丸味状電融アルミナ単粒子を含むことを特徴とする高熱伝導性樹脂組成物。

【発明の効果】

[0012]

本発明により、丸味状の電融アルミナ単粒子を安価に工業的に生産することが可能となり、本発明の丸味状電融アルミナ単粒子は従来の丸味状アルミナ粒子に比べより高熱伝導で、優れた充填性を示すだけでなくユーザーの生産機械装置の摩耗が問題にならないものである。

【発明を実施するための最良の形態】

[0013]

以下、本発明について詳述する。

[0014]

本発明は平均粒子径が5~4000μmで、円形度が0.85以上の丸味状電融アルミナ単粒子であり、これらを一般に粉砕機として用いられるジェットミルにて整形することを特徴とする丸味状電融アルミナ単粒子の製造方法である。

[0015]

本発明において粒子の円形度とは、粒子の投影面積(ア)と周囲長を測定し、周囲長に相当する真円の面積(イ)との比を円形度をいう。円形度は、粒子の形状が円に近いほど1に近い値となる。

[0016]

本発明の丸味状電融アルミナ単粒子は、円形度が0.85以上であるが、0.86以上あるいは0.87以上が好ましく、0.88以上がさらに好ましい。0.90以上も可能である。

[0017]

本発明において出発原料として用いられる電融アルミナは公知の製造方法で製造される電融アルミナを用いることもできるが、その粒度分布は、平均径が $5\sim4000\,\mu\,\mathrm{m}$ 、好ましくは $5\sim500\,\mu\,\mathrm{m}$ の範囲のものがよい。平均径が $5\,\mu\,\mathrm{m}$ 未満の場合は、ジェットミルに付帯する分級機の分級性能が一般に $2\sim3\,\mu\,\mathrm{m}$ 程度であるため、充分な収率が得られない。また、平均径が $4000\,\mu\,\mathrm{m}$ を超える場合は、ジェットミル内で粒子が充分に加速出来ないため丸味化に必要な衝突エネルギーが充分得られない。

[0018]

用いるジェットミルとしてはカウンター型ジェットミル(例えば、ホソカワアルビネ型、Majac型)あるいは旋回流型ジェットミル(例えば、セイシン企業STJ型、日本ニューマチック工業PJM型)などが挙げられるが、これらに限定されるものではない。

[0019]

電融アルミナは元々研削材用途であるため、機械の磨耗が極めて大きくなるという問題がある。従って、ランニングコストを充分考慮する必要があり、本体壁面に直接粉末が当る可能性が少ないカウンター型ジェットミルを選択することが好ましい。

[0020]

また、カウンター型ジェットミルでの粒子の整形においては、限定するわけではないが、通常の連続運転ではなく、バッチ運転を行なうようにする。好ましくは運転開始前に粉砕ノズルが隠れる程度の原料を仕込み、運転をスタートさせ運転中は新原料の投入を行なわない。そして、一定時間経過したら一旦機械を停止して下部排出口からミル内の粉を排出し、これを製品とする。

[0021]

電融アルミナ粒子はほぼ単結晶であり非常に硬いため、ジェットミルではいわゆる「粉砕」が進み難い。電融アルミナをジェットミルにかけると、電融アルミナ粒子に特徴的である鋭いカッティングエッジが粒子同士の衝突によって欠け取れ、ジェットミル内で衝突を繰り返すことによって鋭いカッティングエッジがなくなり、丸味を帯びた電融アルミナ粒子になっていくと推定される。衝突によって欠け取れたチッピング粒子は分級機を介して系外へ排出され、ミル内にはカッティングエッジのなくなった丸味を帯びた粗粒子のみが残る。

[0022]

丸味の程度は運転時間でコントロールするのが望ましく、整形時間が短すぎると丸味が不十分であり、整形時間が長過ぎると細かくなり過ぎて系外へ排出されてしまう。

[0023]

ジェットミルのノズル圧力は特に限定されるものではなく、ノズル圧力が高い方が粉砕・整形効率が良いが、機器の耐圧設計に要する費用等を考慮すると $0.6\sim0.8$ MPa程度が好ましい。

[0024]

分級機の回転数は所望とする製品の微粒側カットポイントにより選定すれば良く、特に限定されるものではない。

[0025]

本発明で完成した丸味状電融アルミナ単粒子は、好ましくはゴムや樹脂に充填され、 高熱伝導性ゴム組成物や、高熱伝導性樹脂組成物、さらには耐摩耗性樹脂組成物として 利用される。 [0026]

高熱伝導性ゴム組成物、高熱伝導性樹脂における丸味状電融アルミナ単粒子の含有量は80質量%以上が好ましい。

[0027]

本発明において前記高熱伝導性樹脂組成物を構成する樹脂は、特に制限されず、公知な樹脂が適用されるが、例えば、不飽和ポリエステル樹脂、アクリル樹脂、ピニルエステル樹脂、エポキシ樹脂等、キシレンホルムアルデヒド樹脂、グアナミン樹脂、ジアリルフタレート樹脂、フェノール樹脂、フラン樹脂、ポリイミド樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。好ましくは、不飽和ポリエステル樹脂、アクリル樹脂、ビニルエステル樹脂、エポキシ樹脂等が例示できる。

[0028]

本発明において前記耐摩耗性樹脂組成物を構成する樹脂は、特に制限されず、公知な樹脂が適用されるが、例えば、不飽和ポリエステル樹脂、アクリル樹脂、ビニルエステル樹脂、エポキシ樹脂等、キシレンホルムアルデヒド樹脂、グアナミン樹脂、ジアリルフタレート樹脂、フェノール樹脂、フラン樹脂、ポリイミド樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。好ましくは、メラミン樹脂、フェノール樹脂等が例示できる。

[0029]

本発明においては前記高熱伝導性ゴム組成物を構成するゴムは、特に制限されず、公知なゴムが適用される。

[0030]

以下、実施例、比較例によって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。

[0031]

(円形度の測定方法)

粒子の投影面積(ア)と周囲長を測定し、周囲長に相当する真円の面積(イ)との比を円形度とする。形状が円に近いほど1に近い値となる。

[0032]

平均粒子径が200μm以下の場合:Sysmex製FPIA-2100にて平均円形度を測定。

[0033]

平均粒子径が200 μm以上の場合:画像解析装置Luzexにて平均円形度を測定。

[0034]

(かさ密度)

旧JIS-R6126 による

(実施例1)

ホソカワアルピネ製カウンター型ジェットミル(200AFG型)にニッカトー製アルミナボール(HD-2, 20mmφ)を8kg敷き詰め、この上に平均径 70μ mの電融アルミナ(昭和電工(株)製)を10kg入れ、ノズル圧力0.6MPa、分級機回転数2000rpmにて粉砕時間を変えて(15min, 30min, 60min, 120min)整形し、円形度、かさ比重、平均粒子径(マイクロトラック HRA)を測定した。結果を表1に示す。

[0035]

【表1】

・ 表 1

	平均径 (μm)	かさ比重	円形度
原料	75. 6	1.80	0. 830
盛形 15min	72. 8	1.88	0. 863
整形 30min	72: 5	1. 92	0. 864
整形 60min	71. 7	1. 96	0. 872
整形 120min	67. 9	1.99	0. 887

[0036]

(実施例2)

ホソカワアルピネ製カウンター型ジェットミル(200AFG型)にニッカトー製アルミナボール(HD-2, 20mmφ)を8kg敷き詰め、この上に平均径500 μ mの電融アルミナ(昭和電工(株)製)を10kg入れ、ノズル圧力0.6MPa、分級機回転数2000rpmにて粉砕時間を変えて(15min, 30min, 60min, 120min)整形し、円形度、かさ比重、粒度(篩粒度)を測定した。結果を表 2 に示す。

[0037]

【表 2】

			篩粒度			4. 4. 11. 45	円形度
	. 1	2	3	3+4	F	かさ比重	
原料	0	4	55	93	0	1.82	0. 803
整形 15min	0	2	34	66	20	2. 07	0. 866
整形 30min	0	1	26	57	26	2.12	0. 870
整形 60min	0	1	26	52	30	2. 18	0. 875
整形 120min	0	1	24	49	34	2. 20	0. 888

[0038]

(実施例3)

ホソカワアルピネ製カウンター型ジェットミル(200AFG型)にニッカトー製アルミナボール(HD-2, 20mm ϕ)を8kg 数き詰め、この上に表 <math>3 に示す平均粒子径 $5\sim4000\,\mu\,m$ (4000 $\mu\,m$ 、2000 $\mu\,m$ 、500 $\mu\,m$ 、 $75\,\mu\,m$ 、 $10\,\mu\,m$ 、 $5\,\mu\,m$)の電融アルミナ(昭和電工(株)製)をそれぞれ10kg入れ、ノズル圧力0.6MPa、分級機回転数を所望の粒度に合わせて変化させ、整形し、円形度、かさ比重を測定した。

[0039]

結果を表3の(1)~(6)に示す。表3の(1)~(6)の欄外の数値は平均粒子 径である。

[0040]

【表3】

表3(その1)

(1) 4000 µ m

	かさ比躗	円形度
原料	1. 93	0. 750
整形後	2. 08	0. 883

(2) 2000 µ m

	かさ比重	円形度
原料	1. 98	0. 784
整形後	2. 39	0. 888

(3) 500 μ m

	かさ比重	円形度
原料	1. 82	0. 829
整形後	2. 18	0. 898

[0041]

【表3続き】

表3(その2)

(4) 75 μ m

	かさ比重	円形度
原料	1. 8	0. 830
整形後	1. 99	0. 872

(5) $10 \mu m$

	かさ比重	円形度
原料	_	0. 823
整形後	_	0. 886

(6) 5 μ m

•	かさ比重	円形度
原料	-	0. 832
整形後	_	0. 901

.[0042]

(実施例4)

セイシン企業製旋回流型ジェットミル(STJ-200型)にてプッシャーノズル圧力0.74MP a、グライディングノズル圧力0.64MPa、原料(平均径 70μ mの電融アルミナ:昭和電工(株)製)フィード量15kg/hr の条件で整形し、円形度、かさ比重、平均粒子径(マイクロトラック HRA)を測定した。結果を表4に示す。

[0043]

【表4】

- 表 4

	平均径 (μm)	かさ比重	円形度
原料	75. 6	1.80	0. 830
. 整形後	74. 5	1.97	0. 856