

ET0730

Chapter 9 IPv6

Singapore Polytechnic
School of Electrical & Electronic Engineering

Objectives

- Understand the limitation of IPv4 Addressing.
- Understand the IPv6 Addressing representation.
- Describe various types of IPv6 Unicast Addresses and their uses.
- Describe how IPv4 and IPv6 co-exist in the network.

Outline

- Depletion of IPv4 Public Addresses
- IPv6 Addressing
- IPv6 Unicast Addresses
- Configure IPv6 Address on Windows Computers
- IPv4 and IPv6 "Co-existence"
 - Dual-stack
 - Tunnelling
 - Translation

ET0730, Chapter 9, ver 1.0

3

Limitation of IPv4 Addressing

- Available IPv4 addresses (Classes A, B and C)
 ≈ 3.7 billions.
 - Insufficient for anticipated growth in the number of internet users and connected devices (e.g. Internet of Things, IoT).
- Temporary solution: Sharing of IP Addresses.
 - Example: Network Address Translation (NAT)
- Long term solution is IPv6.

Depletion of IPv4 Public Addresses (1)

- IP addresses are assigned by IANA, through the Regional Internet Registries (RIRs).
 - IANA = Internet Assigned Numbers Authority
- There are 5 RIRs world-wide:

ET0730, Chapter 9, ver 1.0

Depletion of IPv4 Public Addresses (2)

- Depletion of IPv4 address space has been the main reason for moving to IPv6.
- It is anticipated that all five RIRs will run out of IPv4 addresses between 2015 and 2020.

IPv6 Addressing

- IPv6 addresses use 128 bits.
- 128 bits give $2^{128} = 3.4 \times 10^{38}$ IPv6 addresses.
 - 340 undecillions
- IPv6 addresses are too long to be expressed in dotted-decimal format.
- Solution: Use Hexadecimal Numbering System + simplification + compression.

ET0730, Chapter 9, ver 1.0

7

Revision:

Jump to "Appendix"

- Hexadecimal Numbering System
- Conversion between Decimal and Hexadecimal Numbering Systems

You may skip this if you are already familiar with the conversion among decimal, binary and hexadecimal numbering systems.

IPv6 Address Representation (1)

- IPv6 addresses use hexadecimal numbering system.
- Example: 2001:0000:0000:008F:0003:5005:CAA1:0001
- IPv6 addresses are written in groups of 16-bit sections (called "hextet") separated by colon.
- Each hextet represents 16 binary bits:
 - 0x2001 = 0010 0000 0000 0001
 - 0x0000 = 0000 0000 0000 0000
 - 0x0000 = 0000 0000 0000 0000
 - 0x008F = 0000 0000 1000 1111
 - 0x0003 = 0000 0000 0000 0011
 - 0x5005 = 0101 0000 0000 0101
 - 0xCAA1= 1100 1010 1010 0001
 - 0x0001 = 0000 0000 0000 0001

ET0730, Chapter 9, ver 1.0

9

IPv6 Address Representation (2)

- IPv6 can be written in both uppercase or lowercase.
- Example: The two IPv6 addresses below are same.
 - 2001:CAFE:0000:BEEF:0003:57FE:CAA1:0001
 - 2001:cafe:0000:beef:0003:57fe:caa1:0001

How to make IPv6 Addresses "Shorter"? (1)

- Even in hexadecimal format the IPv6 addresses are too long to be written (let alone to be remembered).
- IPv6 addresses can be represented in a shorter format, following three rules:
 - 1. Any leading '0's (zeros) in any 16-bit section or hextet can be omitted.
 - 2. A double colon (::) can replace any single, contiguous string of one or more 16-bit segments (hextets) consisting of all 0's.
 - 3. Double colon (::) can only be used once within an address otherwise the address will be ambiguous.

ET0730, Chapter 9, ver 1.0

11

How to make IPv6 Addresses "Shorter"? (2)

- Rule #1: Any leading 0's (zeros) in any hextet can be omitted.
- Example:

2001:0000:0000:008F:0003:5005:CAA1:0001

can be simplified to:

2001:0:0:8F:3:5005:CAA1:1

How to make IPv6 Addresses "Shorter"? (3)

Rule #1:

Any leading 0's (zeros) in any hextet can be omitted.

2001:0:0:8F:3:5005:CAA1:1

ET0730, Chapter 9, ver 1.0

13

Exercise on Rule #1

- Simplify this IPv6 address using Rule #1:
 2002:F000:0400:0008:0CE3:0000:CAA1:0081
- Answer:
- Those leading zeros (underlined) can be omitted.

2002:F000:<u>0</u>400:<u>000</u>8:<u>0</u>CE3:<u>0000</u>:CAA1:<u>00</u>81

Therefore, answer is

2002:F000:400:8:CE3:0:CAA1:81

How to make IPv6 Addresses "Shorter"? (4)

- Rule #2: A double colon (::) can replace any single, contiguous string of one or more 16-bit segments (hextets) consisting of all 0's.
- This step is known as "Compression".
- Example:
 - 2001:0000:0000:0000:0000:5555:0000:0001
 can be simplified to 2001:0:0:0:5555:0:1 first.
 - Then it can be "compressed" to 2001::5555:0:1, where the double colon :: represents the 4 "0000" hextets.

ET0730, Chapter 9, ver 1.0

15

How to make IPv6 Addresses "Shorter"? (5)

Rule #2:

A double colon (::) can replace any single, contiguous string of one or more 16-bit segments (hextets) consisting of all 0's.

2001:0000:0000:0000:5555:0000:0001

Rule #1: Simplification

2001: 0 : 0 : 0 : 5555: 0 : 1

Rule #2: Compression

2001: :5555: 0 : 1

1

2001**::**5555:0:1

Exercise on Rule #2

 Rewrite this IPv6 address in the compressed format:

2055:8888:0000:0000:0000:0070:0000:0033

- Answer:
 - Step 1: Simplification
 - 2055:8888:0:0:0:70:0:33
 - Step 2: Compression
 - 2055:8888**::**70:0:33

ET0730, Chapter 9, ver 1.0

17

Exercise on Rule #2

 Rewrite this IPv6 address in the compressed format:

FE80:0000:0000:0000:0000:0000:0001

- Answer:
 - Step 1: Simplification
 - FE80:0:0:0:0:0:0:1
 - Step 2: Compression
 - FE80::1

Exercise on Rule #2

 Rewrite this IPv6 address in the compressed format:

0000:0000:0000:0000:0000:0000:0001

• Answer: ::1

- Re-write the IPv6 address with all 0's in the compressed format.
- Answer: ::

ET0730, Chapter 9, ver 1.0

19

How to make IPv6 Addresses "Shorter"? (6)

- Rule #3: Double colon (::) can only be used <u>once</u> within an address, otherwise the address will be ambiguous.
- Example: 2001:0000:0000:3333:0000:0000:4444:5555 can be simplified to:

2001::3333:0:0:4444:5555 or

2001:0:0:3333**::**4444:5555

But 2001::3333::4444:5555 is **not** allowed.

Reason: No way to tell the original content of each double-colon.

Exercise

• Re-write the compressed IPv6 address in its original 8-hextet format (i.e. no simplification, no compression).

2222:3333::1

- Answer:
- "2222", "3333" and "1" are three hextets. Since there are 8 hextets in IPv6 addresses, the double-colon represents the other 5 hextets of "0000".
- Therefore, the original IPv6 address is
 2222:3333:0000:0000:0000:0000:0000

ET0730, Chapter 9, ver 1.0

21

Exercise

• Re-write the compressed IPv6 address in its original 8-hextet format.

2001:D8B::44:2:1

Answer:

2001:0D8B:0000::0000:0000:0044:0002:0001

IPv6 Prefix Length

- IPv6 addresses are also divided into Network Portion and Host Portion.
- The indication of the Network and Host portion does not use the subnet mask.
- IPv6 addresses use Prefix Length to indicate their network portion.
- Example: For an IPv6 address with 64 bits in the Network Portion, the Prefix Length is /64.
- Example: 2001:CAFE:3::1/64

ET0730, Chapter 9, ver 1.0

23

Exercise

- What is the Network Portion of the IPv6 address 2001:CAFE:3::5555:1/64?
- Answer:
- Expand into original IPv6 address
 2001:CAFE:0003:0000:0000:0000:5555:0001
- Since the prefix length is /64, the first 64 bits (64/16 = 4 hextets) belong to the Network Portion.
- Answer: 2001:CAFE:0003:0000

Exercise

• What is the Network Portion of the IPv6 address 2001::CAFE:4:3:2:1/64?

- Answer:
- Expand into original IPv6 address
 2001:0000:0000:CAFE:0004:0003:0002:0001
- Since the prefix length is /64, the first 64 bits (64/16 = 4 hextets) belong to the Network Portion.
- Answer: 2001:0000:0000:CAFE

ET0730, Chapter 9, ver 1.0

25

Exercise

- What is the Network Portion of the IPv6 address 2001:3456:CAFE::2/48?
- Answer:
- Expand into original IPv6 address
 2001:3456:CAFE:0000:0000:0000:0000
- Since the prefix length is /48, the first 48 bits (48/16 = 3 hextets) belong to the Network Portion.
- Answer: 2001:3456:CAFE

Types of IPv6 Addresses

- There are 3 types of IPv6 addresses:
 - Unicast
 - Multicast
 - Anycast
- Note: IPv6 does not have broadcast addresses.
- This module will only cover IPv6 Unicast Addresses.

ET0730, Chapter 9, ver 1.0

27

Types of IPv6 Addresses

IPv6 Unicast Addresses

- There are 6 types of IPv6 Unicast addresses:
 - Global Unicast
 - Link-Local
 - Loopback
 - Unspecified Address
 - Unique Local
 - Embedded IPv4
- In this module, we will only discuss the first 4 types.

Types of IPv6 Addresses

Global Unicast Address

- Similar to a public IPv4 address, which is internet-routable.
- Globally unique, no two devices should have identical global unicast address.
- Can be static (manual) or dynamic (e.g. DHCPv6).
- ICANN allocates IPv6 address blocks to the 5 RIRs.
- Currently, only global unicast addresses with the first three bits of 001 are being assigned.
 - The first hextet is 0010 or 0011
 - IPv6 address is 2000::/3.

ET0730, Chapter 9, ver 1.0

29

Types of IPv6 Addresses

Link-Local Unicast Address

- For communication with other devices on the same subnet (subnet" is also referred to as "link" in IPv6).
- Link-Local Unicast Address is confined to a subnet, not routable beyond the subnet.
- Link-local addresses are FE80::/10.
- Every IPv6-enabled network interface is required to have a link-local address.

ET0730, Chapter 9, ver 1.0

30

Types of IPv6 Addresses

Loopback

- Used by a host to send a packet to itself.
- Ping an IPv6 loopback address to test the configuration of TCP/IP on the local host.
- Cannot be assigned to a physical interface.
- The loopback address is all-0s except for the last bit, represented as ::1/128 or just ::1.

ET0730, Chapter 9, ver 1.0

31

Types of IPv6 Addresses

Unspecified Address

- Unspecified Address is all-0's address represented as ::/128 or just :: .
- Cannot be assigned to an interface.
- Can only used as a source address, when
 - the device does not yet have a permanent IPv6 address, or
 - the source of the packet is irrelevant to the destination.

Configure IPv6 Address on Windows Computers

IPv6 global unicast address

ET0730, Chapter 9, ver 1.0

33

SINGAPORE POLYTECHNIC

Verify IPv6 Configuration on Windows Computers

• DOS command: ipconfig

IPv6 global unicast address

ET0730, Chapter 9, ver 1.0

IPv4 and IPv6 "Co-existence"

- There are billions of existing devices that only support IPv4.
- IPv4 and IPv6 are NOT compatible.
- Migration to IPv6 should still allow IPv4-only devices to be usable "co-existence".
- Three categories of migration techniques:
 - Dual-stack
 - Tunnelling
 - Translation

ET0730, Chapter 9, ver 1.0

35

IPv6 Migration Technique (1) Dual-stack

- Allows IPv4 and IPv6 to co-exist on the same network.
- Devices run both IPv4 and IPv6 protocol stacks simultaneously.

	IPv4-only server	IPv6-only server	Dual-stack server
IPv4-only server	٧	x	٧
IPv6-only server	х	٧	٧
Dual-stack server	٧	٧	٧

IPv6 Migration Technique (2)

Tunnelling

- A method of transporting an IPv6 packet over an IPv4 network.
- The IPv6 packet is encapsulated inside an IPv4 packet.

ET0730, Chapter 9, ver 1.0

37

IPv6 Migration Technique (3)

Translation

- IPv6 packets are translated to IPv4 packets, and vice versa using NAT64 (Network Address Translation 64).
- Through the translation technique, IPv6-only devices can communicate with IPv4-only devices.

Questions & Answers

ET0730, Chapter 9, ver 1.0

39

Appendix

- Hexadecimal Numbering System
- Conversion between Decimal and Hexadecimal Numbering Systems

Decimal Numbering System (1)

- Before learning
 Hexadecimal Numbering
 System, let's re-visit the
 Decimal Numbering
 System that you are very familiar with.
- Decimal Numbering System is a base-10 system.
- Base-10 system uses 0 to 9.

Decimal Numbering System			
$x10^3 = 1000$	x10 ² = 100	x10 ¹ = 10	x10 ⁰ =
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

ET0730, Chapter 9, ver 1.0

41

Appendix

Decimal Numbering System (2)

• Example: $365 = (3x10^2) + (6x10^1) + (5x10^0)$ = 300 + 60 + 5

Decimal Numbering System					
$x10^2 = 100$) x10 ¹ =	$x10^1 = 10$		X10 ⁰ = 1	
0	0		0		
1	1	1	1		
2	2		2		
3	3		3		
4	4		4		
5	5		5		
6	6)	6		
7	7		7		
8	8		8		
9	9		9		

Decimal Numbering System (3)

- When we count from 0 to 9, we have 0, 1, 2, 3, ..., 7, 8, 9.
- After counting to "9", we all know that the next number is "10".
- But, why should the number after "9" be "10"? (We take things for granted...)
- Answer:
 - Since "9" is the maximum digit in base-10 system, to go beyond "9", we will roll back to "0", and +1 to the digit with next higher power (i.e. tens).

ET0730, Chapter 9, ver 1.0

43

Appendix

Hexadecimal Numbering System

(1)

- Hexadecimal is a base-16 system.
- Base-16 Numbering System uses the numbers 0 to 9 and the letters A to F (to represent 10 to 15).
- Counting from 0 to F, we have 0, 1, 2, ..., 8, 9, A, B, C, D, E, F.
- After "F", the next number is " 10_{16} ".

Hexadecimal Numbering System			
x16 ³ = 4096	x16 ² = 256	x16 ¹ = 16	x16 ⁰ =
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9
Α	А	Α	A (10 ₁₀)
В	В	В	B (11₁₀)
С	С	С	C (12 ₁₀)
D	D	D	D (13 ₁₀)
Е	E	E	E (14 ₁₀)
F	F	F	F (15 ₁₀)

Hexadecimal Numbering System (2)

- After counting to "F", the next number is "10₁₆" (pronounced as "hex one zero", not "ten").
- But, why "10₁₆"?
- Answer:
 - Since "F" is the maximum digit in base-16 system, to go beyond "F", we will roll back to "0", and +1 to the digit with next higher power (i.e. Sixteens).

Sixteens Ones

ET0730, Chapter 9, ver 1.0

45

Appendix

Hexadecimal Numbering System (3)

• To show that 10_{16} ("one zero in hexadecimal") indeed equals to 16₁₀ ("sixteen in decimal"), consider the comparison below:

	Decimal Numbering System		em	
	x10 ¹ = 10	$X10^0 = 3$	1	
<u>Decimal:</u> (1x10)+(6x1) = 16	0	0		
	1	1		
	2	2		Hexadecimal:
	3	3		$(1\times16)+(0\times1)$
	4	4		= 16
	5	5		. April 1
	6	6		Andrea
	7	7		and the second
	8	8		Cama thorofora
	8	9		Same, therefore
ET0730, Chapter	9, ver 1.0			$16_{10} = 10_{16}$

Hexadecimal Numbering System		
x16 ¹ = 16	X16 ⁰ = 1	
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
Α	Α	
В	В	
С	С	
D	D	
E	E	
F	F	

Exercise: Hexadecimal to Decimal Conversion

- Express 52₁₆ in decimal numbering system.
- Answer:

```
• 52_{16} = (5x16) + (2x1) = 80 + 2 = 82_{10}
```

- Express FB₁₆ in decimal numbering system. Hint: F=15, B=11.
- Answer:

```
• FB_{16} = (15x16) + (11x1) = 240 + 11 = 251_{10}
```

- Express CAFE₁₆ in decimal numbering system.
- Answer:

```
• CAFE<sub>16</sub>= (13x4096) + (10x256) + (15x16) + (14x1)
= 53248 + 2560 + 240 + 14 = 56062_{10}
```

ET0730, Chapter 9, ver 1.0

47

Appendix

Decimal to Hexadecimal Conversion

- It is possible to directly convert decimal to hexadecimal.
 - See YouTube video at https://www.youtube.com/watch?v=QgVc1Tl-JDA
- You may also convert a decimal number into binary, and then hexadecimal:
 - 1. Convert decimal number to binary number.
 - 2. Segment the binary number (long string of '1's and '0's) into groups of 4 bits (called "nibble").
 - 3. Convert each nibble into a single hexadecimal digit.

Exercise: Decimal to Hexadecimal Conversion

- Express 37₁₀ in hexadecimal numbering system.
- Answer:
 - $37_{10} = 100101$
 - 100101 = 0010 0101 (add two '0's in front to form groups of 4 bits)
 - 0010 = 2 and 0101 = 5.
 - Therefore $37_{10} = 25_{16}$.
- Express 200₁₀ in hexadecimal numbering system.
- Answer: C8₁₆ (Since 200 = 1100 1000)
- Express 583₁₀ in hexadecimal numbering system.
- Answer: 247₁₆ (Since 583 = 10 0100 0111)

ET0730, Chapter 9, ver 1.0

49

Appendix

Hexadecimal Numbering System (4)

- It is quite clumsy to express hexadecimal numbers in the format involving subscript style, for example, 2001_{16} .
 - Typewriters (if you know what they are and how to operate them) certainly find it very clumsy to produce the text '16' with subscript effect.
 - Even modern word processing finds it tedious.
- More often, we use 0x2001 to represent 2001_{16} . The 0x in front of the digits indicates that this is a hexadecimal number, not 2001_{10} .