

Q1. Lin		perior to STL vectors b) False				
Q2. De a) True	_	· ·	natter of usi	ng the delete o	perator to free	e the node's memory
Q3. Th	e advantage of link	list over array is				
a)	Link list can grow	and shrink in size du	ring the time	e		
b)	Less space is requi	ired for storing eleme	ents			
c)	Both 1 and 2 are c	orrect				
d)	None of the above	غ				
a) Quid Q5. Th the sar a) DBA	ck Sort b) Ne inorder traversal me tree produced t	of some binary tree p the sequence DEBFCA b) ABEDFC	oroduces the c.) ABD	d) Bina e sequence DBB ne following is	EAFC, and the posterior correct preord d) None of the	postorder transversal of ler transversal sequence?
u, c	2,716 16436				. 45010	
_	_	es then correspo <mark>ndin</mark>	ng adjacency	V	11.41	
a) Unit	matrix	b) Zero ma <mark>trix</mark>		c) Matrix with	all 1's	d) None of the above
a) It is	Q8. What is not true for linear collision processing? a) It is easier to program b) It may include more collision c) It requires space for links d) All are true					
_	Q9. Algorithms can be represented in various ways EXCEPT a) PROGRAMS b) FLOWCHARTS c) DECISION CHARTS d) SPREADSHEET					
Q10. T	he element at the i	root of heap is				
a) Larg c) Sma		b) Depending o d) None of the a		ap it may be s	mallest or larg	est
	Q11. The end at which a new element gets added to queue is called a) Front b) Rear c) Top d) Bottom					

PG DAC Feb 20 Data Structure Question Bank

a)	Arrays	b) Arrays o	r linked list	c) Only link	ed list	d) None of th	e above
	t is connec	ted and there a	ree, if it satisfies Ire no cycles in t and there are cy	the graph.		a)	
b)	If it co	nnected and th	ere are cycles in	the graph			
c)	None	of the above					
Q1	4. Hashing	refers to the pr	ocess of derivin	g			
a)	A record k	cey from storage	e address		b) Storage a	ddress from a	record key
c)	A floating-	point code fror	n a record key		d) None of t	he above	
tra tra		ne same tree pr	oduced the sequ	•	Which of the		d the postorder correct preorder e
a)	empty(Q)	b) deque(Q,X	is not an operat) c) enque(Q,) parallel edges ar	d) push(<mark>: queue h</mark> as iter	ns `Q` and `X`?
	Similar colu	•	b) Similar		c) Not repres	sentable	d) None of the above
Q1	8. A dynan	nic data structu	re where we <mark>car</mark>				ie is
а) heap		b) binary searc	h tree	c) circularly l	inked list	d) array
Q1	9. We can	efficiently reve	rse a string using	g a			
a)	linear que	ue	b) circular que	ıe	c) Stack	d) doubly linl	ked list
ро	pped four t shed back	times and each	element is inser ow one item is p	ted in a queue	. Then two el	ements are del	rom A. The stack is eted from the queue and
	1. The mer loor addre	-	the first element dation address		s called ess d. base a	ıddress	
Q2	2. The mer	mory address of	fifth element o	f an array can	be calculated	by the formula	ı

a. LOC(Array[5]=Base(Array)+w(5-lower bound), where w is the number of words per memory cell for the

array

2

b.	LOC(Array[5])=Base(Array[5])+(5-lower bound), where w is the number of words per memory cell for the array				
c. arra		(Array[4])+(5-Upper bound)	where w is the numb	er of words per mer	mory cell for the
	None of above				
Q2:	3. Which of the follow	wing data structures are inde	exed structures?		
a)	linear arrays	b) linked lists	c) both of above	d) none of al	bove
	4. Which of the follow st be sorted	wing is not the required cond	dition for binary search	algorithm?a) The	list
b)	there should be	the direct access to the mide	lle element in any sub	list	
c)	There must be n	nechanism to delete and/or	insert elements in list	d) none of above	
	must use a sorted arr	MIVI VI VVIII	i Mant	rlA	
b)	requirement of s	sorted array is expensive who	en a lot of insertion an	<mark>d deletio</mark> ns are nee	ded
c)	there must be a	mechanism to access mid <mark>dle</mark>	element directly		
d)	binary search algorithm is not efficient when the data elements are more than 1000.				
	6. Two dimensional a		a) h a th a f a h a	d)	
a) 1	tables arrays	b) matrix arrays	c) both of above	d) none of abo	ve
Q2 ⁻	7. A variable P is calle	ed pointer if			
a)		ddress of an element in DAT	A		
b)		ddress of first element in DA			
c)	•	memory addresses			
d)	-	TA and the address of DATA			
•					
Q2	8. Which of the follow	wing data structure can't sto	re the non-homogene	ous data elements?	
a)	Arrays	b) Records	c) Pointers	d) No	one
Q29	9. Before deleting an	element from list we make	sure that		
a) it	t is an list	b) it is not a invalid list	c) it is not an e	mpty list	d) it must be full.
ind	0. Each data item in a ecomposable are cal Elementary items	a record may be a group iten led b) atoms	n composed of sub-ite c) scalars	ms; those items whi	
uj I	Licincintally Itellis	טן מנטוווס	c _i scalais	aj ali di abb	V C

PG DAC Feb 20 Data Structure Question Bank

Q31. The difference between linear array and a record is

a) FAEKCDBHG

a)	An array is	suitable for homoger	neous data but th	e data items in a reco	ord may have different	data type
b)	In a record, there may not be a natural ordering in opposed to linear array.					
c)	A record fo	orm a hierarchical stru	ıcture but a lineaı	r array does not		
d)	All of abov	ve				
Q32. \	Which of the	e following statement	is false?			
a)	Arrays are	dense lists and static	data structure			
b)	data elem	ents in linked list need	not be stored in	adjecent space in me	emory	
c)	pointers s	tore the next data ele	ement of a list			
d)	linked lists	are collection of the	nodes that contai	n information part a	nd next pointer	
	Binary searc ted linked li	h algorithm cannot be st b) sorted bin		orted linear array	d) pointer array	
	When new o	data are to be inserted	l into a data <mark>struc</mark>	ture, but there is no	<mark>availa</mark> ble space; this sit	uation is
a) und	derflow	b) overflow	c) housef	ull d) s	aturated	
Q35. 1	Γhe situatio	n when in a linked list	START=NULL is			
a) und	lerflow	b) overflo	w	c) housefull	d) saturate	d
O36 /	Which of the	e following name does	not relate to sta	cks?		
a) FIF		b) LIFO list	c) Piles	d) Push-do	wn lists	
Q37. \	Which of the	e following is two way	list?			
a) gro	unded head	er list		b) circular header	list	
c) link	ed list with	header and trailer noc	les	d) none of above		
Q38. 1	Γhe term "p	ush" and "pop" is rela	ted to the			
a) arra	ау	b) lists	c) stacks	d) all of al	oove	
Q39. <i>A</i>	A data struc	ture where elements (can be added or r	emoved at either end	d but not in the middle	l.
a) Lin	ked lists	b) Stacks c) Queues	d) Deque			
Q40. \	When inorde	er traversing a tree re	sulted E A C K F H	D B G; the preorder	traversal would return	

c) EAFKHDCBG

d) FEAKDCHBG

b) FAEKCDHGB

Q41. V	Vhich data stru	cture allows dele	eting data elemen	ts from fron	t and inserting at rear	? a)
Stacks		b) Queues	c) Deques	C	d) Binary search tree	
Q42. I	dentify the data	a structure which	n allows deletions	at both end	s of the list but inserti	on at only one end.
a) Inpu	ut-restricted de	eque	o) Output-restrict	ed deque	c) Priority queu	ies d) None of above
Q43. V	Vhich of the fol	lowing data stru	cture is non-linea	r type?		
a) Strii	ngs	b) Lists	c) Stacks	d) None	of above	
Q44. V	Vhich of the fol	lowing data stru	cture is linear typ	e?		
a) Strii	ngs	b) Lists	c) Queues	•	d) All of above	
Q45. T	o represent hie	erarchical relatio	nship between ele	ements, whi	ch data structure is su	itable?
a) Dec	ue	b) Priori	ty c) T	ree d	d) All of above	
		Shr	iram	Ma	ntri	
	omplete binary		has either zero or search tree			d) None of above
a) CC	inplete billary	tree by billary	/ Search tiee	C) LXter	ided billary tree	u) None of above
Q47. T	he depth of a c	complete binary	tree is given by			
a)	Dn = n log2n		n log2n+1	c) Dn =	log2n d) Dn =	log2n+1
Q48. V	Vhen represent	ting anv algebrai	c expression E wh	ich uses onl	y binary operations in	a 2-tree. a)
	· ·		nal nodes and ope			, , ,
b)	the operation	s in E will appear	as <mark>external</mark> node:	s and variab	les in internal nodes	
c)	the variables a	and operations in	n E <mark>will app</mark> ear onl	y in internal	nodes	
d)	the variables a	and operations in	n E will appear onl	y in externa	I nodes	
Q49. <i>A</i>	s binary tree ca	n easilv be conve	erted into q 2-tree	!		
a)	•	•	ree by a new inter			
b)	, ,	. ,	for non-empty no			
c)	,		for non-empty no			
d)	,		ree by a new exte			
<i></i> /	.,					
Q50. V	Vhen convertin	g binary tree int	o extended binary	tree, all the	e original nodes in bina	ary tree are
a) inte	rnal nodes on	extended tree	b) e	xternal nod	es on extended tree	
c) vani	shed on extend	led tree		d) None	of above	
O51. T	he post order t	raversal of a hin	arv tree is DFRFC4	A. Find out t	ne pre order traversal	
a) ABF	•	b) ADBF	•	ABDECF	d) ABDCEF	

PG DAC Feb 20 Data Structure Question Bank

Q52. Which of the followin	g sorting algorithm is	of divide-and-cond	quer type? quick	,binary,merge
a) Bubble sort	b) Insertion sort	c) Quic		l of above
Q53. An algorithm that call a) Sub algorithm	s itself directly or ind b) Recursion	irectly is known as c) Polish notat	ion d) Tr	aversal algorithm
Q54. In a binary tree, certa for efficiency. These specia a) Leaf b) br	l pointers are called	olaced by special potential by special by special potential by special by special potential by special by spe	·	o nodes higher in the tree
Q55. The in order traversal a) Binary trees	·	orted listing of elem	ents of tree in c) Heaps	d) None of above
Q56. In a Heap tree a) Values in a node is §	greater than every va	lue in left sub tree	and smaller than rig	tht sub tree
b) Values in a node is	greater than every v	alue in children of	it	
c) Both of above cond	itions applies			
d) None of above cond	litions applies			
Q57. In a graph if e=[u, v], a) endpoints of e	Then u and v are <mark>call</mark> b) adj <mark>acen</mark> t		c) neighbors	d) all of above
Q58. A connected graph T v	without any cycles is	called		
a) a tree graph	b) free tree	e c) a tre	e d) Al	l of above
Q59. In a graph if e=(u, v) n a) u is adjacent to v but v is			b) e begins at u and	ends at v
c) u is processor and v is su	ccessor		d) both b and c	
Q60. If every node u in G is a) isolated	adjacent to every ot b)complete	her node v in G, A g c) finite	graph is said to be d) strongly o	connected
Q61. Two main measures for	or the efficiency of ar	n algorithm are		
a) Processor and memory	b) Comple	exity and capacity	c) Time and space	d) Data and space
Q62. The time factor when	determining the effic	ciency of algorithm	is measured by	
a) Counting microseconds		b) Counting th	e number of key op	erations

d) Counting the kilobytes of algorithm

c) Counting the number of statements

Q63. T	he space factor	when determinin	g the efficiency	of algorithm is me	asured by	
a) Cou	nting the maxii	mum memory nee	eded by the algo	orithm		
b)	Counting the r	ninimum memory	needed by the	algorithm		
c)	Counting the a	verage memory n	eeded by the al	gorithm		
d)	Counting the r	naximum disk spa	ce needed by th	ne algorithm		
		lowing case does r				
a)	Best case	b) Worst o	case c) i	Average case	d) Null case	
065 -	ila a NAV a wata a a a a			de a se		
Q65. I		occur in linear sea here in the middle		rnen a)		
b)	Item is not in t		e of the array			
c)		t element in the ar	rav			
d)		t element in the a	•	nere at all		
,		Shri	ram	Mant	triA	
Q66. T	he Average cas	e occur in linear se	earch algori <mark>thm</mark>			
a)		somewhere in the				
b)	When Item is r	not in the array at	all			
c)	When Item is t	the last element in	the arr <mark>ay</mark>			
d)	When Item is t	the last element in	the a <mark>rray or is</mark>	not there at all		
Q67. T	he complexity of	of the average cas	e o <mark>f an algo</mark> rithi	m is		
a)	Much more co	mplicated to ana	ly <mark>ze than</mark> that o	of worst case		
b)	Much more sir	mpler to analyze tl	han that of wor	st case		
c)	Sometimes mo	ore complicated ar	nd some other t	imes simpler than	that of worst case d)	None or above
Q68. T	he complexity o	of linear search alg	gorithm is			
a) O(n)		b) O(log n)	c) O(n2)		d) O(n log n)	
	• •	of Binary search a	_	1) 0/ 1		
a) O(n)) k	o) O(log) n	c) O(n2)	d) O(n log n)		
070	The complexity	of Bubble sort alg	orithm is			
a) O(n)	• •	b) O(log n)	c) O(n2)	d) O(n	log n)	
-, -(,		-, - (0)	-, - ()	2, 3(-01	
Q71. T	The complexity	of merge sort algo	orithm is			
a) O(n))	b) O(log n)	c) O(n2)	d) O(n	log n)	

Q72 <mark>.</mark>	The indirect	change of the valu	ies of a variable in o	ne module by a	ınother modu	ale is called
a) int	ternal change		b) inter-module ch	nange c) si	de effect	d) side-module upda
072	NAVIorials a Culsia	Calla dan dan ar		.1		
		_	ructure is not linear			of about
a) Ar	rays	b) Linked lists	c) Both of a	above	d) None o	of above
Q74.	Which of the	e following data st	ructure is linear dat	a structure?		
a) Tr	ees	b) Graphs	c) Arrays	d) N	one of above	!
Q <mark>75</mark> .	The operatio	on of processing ea	ach element in the li	st is known as		
	-) Merging	c) Inserting	d) Traversa	al	
070		anation of the clay		alua ia		
	Traversal	b) Sea	ment with a given va r ch c) S		d) None c	of above
	•	~ =		700		n above
Q77.	Arrays are be	est data structures	riram	Man	itri	
a)		ely permanent col				
b)	for the size	e of the structure a	and the data i <mark>n the s</mark>	structure are co	nstantly char	nging c)
	for	both of above situ	uation			
d)	for none o	f above situation				
		re best suited			/	
a)		ely permanent coll				
b)			and the data in the	structure are co	onstantly cha	anging c)
۹/		both of above situation	lation			
d)	for none o	f above situation				
Q80.	Each array d	eclaration need no	ot give, implicitly or	explicitly, the in	nformation al	oout
	e name of arr				type of array	
•		om the set to be s	tored	•	ne index set c	
∩ 81	The element	s of an array are s	tored successively in	n memory cells	hecause	
a)		•	ep track only the ad	•		nd the
u,	addresses	•	cp track only the ac		se cicinene ai	id the
elem	ents can be c	alculated				
b)	the archite	cture of compute	r memory does not	allow arrays to	store other t	han serially c)
	bot	th of above				
d)	none of ab	ove				

Q82.	When is a line	ear queue said to b	e empty?			
a) fro	nt > rear	b) front = =	- 1 c) front	> rear + 1		d) rear = = front + 1
i) In s ii) mem	equential repr Linear queud ory is not allov		s logically as well wastage as reuse	as physically full		
iii)	A Queue-tul i & ii	l condition for a ci b) i & iii	rcular queue is 're c) ii & iii	ar=front + 1' a) d) All.		
	Queue-full cor ont = = rear	ndition for the circ b) rear +		ented sequential rear+1)%arraysize		d) None of the these
	In a linked rep ta, link, heade	resentation a node er	e consists of whicl o) Only link field		fields? y data field	d) Data and link fields
a) Ar	•	ked list to hold the list y of pointer to the		Every linked node All of the above C		the next node
	Which of the f s are linked in	ollowing is not tru	e regar <mark>ding a sin</mark> g	ly linked list? a)		
b)	The last nod	e is pointing to NU	JLL in <mark>dicating</mark> the	end <mark>of list</mark>		
c)	_	or a node always st ress of the list is th			through every	subsequent nodes d)
Q89.	The header of	main function whi	ich takes comman	d line arguments	looks like	
-	-	gc, char *argv) gc, char *argv[])			main(char *arg	
Q90. a) <mark>va</mark> _	_	nacro, we can displ b) va_list	ay the argument of c) va_show		_	ent function?
	ude <stdio.h> ain()</stdio.h>	ne output of the fo 12.5,5.4,7.3,21.6,8				

PG DAC Feb 20 Data Structure Question Bank

```
printf("%d\n",sizeof(arr)/sizeof(arr[0]));
       return 0;
}
   a) 4
                      b) 5
                                    c) 8
                                                           d) 20
Q92. What is the output of the following program?
Int main()
{
       Int j,sum;
       for( j=1, sum=0; j<5; j++)
       sum+=j;
sum=j;
              cout<<sum;
              return 0;
}
  a) 5
                                           c) Compilation error: undefined variable sum and j
                                                                                                       d) 6
Q93. A program P reads in 500 integers in the range [0 to 100] representing the score of 500 students. It then
prints the frequency of each score above 50. What would be the best way for P to store the frequencies?
                                                                                                           a)
An array of 50 numbers
                                                   b) An array of 100 numbers
c) An array of 500 numbers
                                                   d) A dynamically allocated array of 550 numbers
Q94. Which is true about reference variable?
a)
       A reference can never be null
       A reference once established cannot be changed
b)
       Reference doesn't need an explicit dereferencing mechanism.
c)
       All of the above.
d)
Q95. Dynamic objects are stored in
a) Code segment
                                     b) Data segment
                                                                  c) Heap
                                                                                  d) Run time stack
Q96. What is the output of the following code? const
int a=124;
void main()
{
     const int* Sample();
int *p; p=Sample();
       cout<<*p;
```

const int* Sample()

{	(0.5)			
}	return (&a);			
	Varning	b) compilation error	c) output : 124	d) garbage value
Q97. \	What is the size of po	ointer in C++ on 32 bit archit	ecture?	
a) 1	b) 2 c) 4	d) It depends on size of t	he datatype of a variab	le to which pointer is pointing to
Q98. \	Which are the main t	hree features of OOP langua	ige?	
a)	Data Encapsulation	, Inheritance and Exception	handling	
b)	Inheritance , polym	orphism and exception han	dling	
c)	Data encapsulation	n, inheritance and polymorp	hism	
d)	Overloading, inheri	tance and polymorphism		
•	0.	77	1/	• \Lambda
Q99. \	Which out of the give	en function types cannot be	declared "virtual"?	
a) Nor	mal member functio	ns b) Constru	c) Destruct	or d) None of the above
0400	Decidalis and a conf			
class E	Read the code caref	rully		
{ (base			
privat	te: int I; protected:	int j;		
•	public: int k			
} ;				
class [Derived:public Base			
{		V		
priva	te: int x; protected:	•		
} ;	public: int	2 ;		
	(Base)= bytes	, sizeof(Derived) k	ovtes on a 32 bit archite	cture.
		c) 12, 24 d) 4, 16	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	otal ci
Q101.	Static_cast can be a	pplied at		
a) Cor	npile time	b) runtime	c) linking time	d) both a and b
		ype is used in the class giver	below? Class A:	
	B: public C			
{ }				
	lti-level	b) multiple	c) hybrid	d) hierarchical

PG DAC Feb 20 Data Structure Question Bank

Q103. Which	of the following o	perators canno	ot be overloaded?		
a) []	b) ->	c) 1	?:	d) *	
Q104. Which a) Vector	of the following S b) list		will store the eleme) set	ents in adjacent mem d) map	nory locations?
a) It speeds	of the following s s up execution ses the code size	tatement is inc	-	slows down execution	on e without inline specifier
Q106. Which a) Static fur	of the following is		r of class? I function	c) constructor	d) virtual function
	ment / decrement		b) Pre incr	a dummy integer as ement / decrement of the above	
a) Abstract	of the following is class object can't se to abstract class	be created	ment regarding abs		ract class can be created e
Q109. During a) Friend fu		n of the following of t	ing is not inherited r c) Overload		d) All of the above
Q110. What i {	s the output of th	e following pro	ogram? class mycla	SS	
public					
١.	static int counte	r;			
}; void main()					
{		cout< <m< td=""><td>/class::counter; }</td><td></td><td></td></m<>	/class::counter; }		
a) Output	0 b) Compil	ation error	c) Linking error	d) Output garba	ge value
Q111. What i	s the primary pur	oose of templa	te function?		
		·	with varying types	of arguments	
•	_			ting duplicate symbo	ols)

c)

To improve execution speed of the program

d)	To enable better deb	ugging		
	Which of the following nt in it is less than its s	g data structure may give over ize?	rflow error, even though the o	current number of
a) Sim	p <mark>le queue</mark>	b) Circular queue	c) Primary queue	d) Stack
Q113.	The most appropriate	matching for the following pa	airs:	
a)	Bubble sort	1) O(nlog(n))		
b)	Insertion sort	2) O(n)		
c)	Quick sort	3) O(n^2)		
a) a=1	b=2 c=3	b) a=3 b=1 c=2	c) a=3 b=2 c=1	d) a=2 b=3 c=1
		in null entries are replaced by cial pointers are called	special pointers which point	to nodes higher in the
a) roo	t	b) node c) brai	nch d) thread	
	·	hose left subtree a <mark>nd right</mark> su		
a) AV	Ltree	b) Red-black tree	c) L <mark>emma t</mark> ree	d) None of the above
Q116.	algoritl	hm is not an ex <mark>ample o</mark> f divid	e <mark>and conq</mark> uer rule.	
a) Qu	ick sort	b) bubble sort	c) merge sort d) bin	ary search
		stack operations could resul		
a) Pu	ısh	b) pop c) is_f	ull d) none of th	e above
	Which of the following	g sorting algorithm has the wo	· · · · · · · · · · · · · · · · · · ·)? cket sort
Q119. a) 3	The number of binary b) 5 c) 7	trees with 3 nodes which who	en traversed in post order giv	es the sequence A, B , C is
Q120. a) <mark>n-1</mark>	-	n leaf nodes, all at same level) 2n d) 2n-1	l. The number of non-leaf noc	les in such tree is
	Queue can be used to ecursion	implement b) Breadth- first sear	<mark>ch</mark> c) Depth – first searc	h d) None of these

a) Chain of resp	onsibility	b) Interpreter	pattern	
c) Builder patte	rn	d) Adapter pat	tern	
O123 Which dos	ign pattern you would use to	limit the class instantiation	n to one object? a)	
Factory method de		Builder design pattern	to one object:	
c) Prototype desig	• ,	d) Singleton design patter	n	
o, o to type desig	patte	a, eg.ete desig patter.		
Q124. <mark>The object v</mark>	which outlives the program e	xecution time and exists be	tween executions of the program	m is
known as				
a) Global object	b) persistent object	c) transient object	d) delegate object	
Q125. Which desig	gn pattern you would use to	translate an existing class ir	terface into a compatible target	
interface?	,	<u> </u>		
a) Proxy design pa		b) Adapter des	sign pattern	
c) Façade design p	attern Shrira	d) Bridge desig	n pattern	
Q126. The adapter	r, bridge and composite design	gn patterns are examples of	a)	
Creational pattern	b) Structural pattern			
c) Behavioral patte	ern	d) Interaction	pattern	
O127 Communica	ition diagram, sequence diag	ram and timing diagram ca	a all he categorized as	
a) Behavior diagr			ity diagram d) Interaction dia	– gram
a, zenavier alag.	2,50.000	o, riota	a, meeraana aa	B. a
Q128. Linked link a	are not superior to STL vecto	rs a)		
True	b) False			
O120 Doloting an	ando in a linkad list is a simple	a matter of using the delete	e operator to free the node's me	mony
a) True	b) False	e matter or using the delete	operator to free the flode 3 me	пот у
a) True	b) i disc			
Q130. The advanta	age of link list over array is			
a) Link list ca	n grow and shrink in size du	ring the time		
b) Less space	is required for storing eleme	nts		
c) Both 1 and	2 are correct			
d) None of the	e above			
Q131. Which one	of the following algorithm is	NOT an example of Divide a	and conquer technique	
a) Quick Sort	b) Merge Sort	c) Bubble Sort	d) Binary Search	

			•	•	ostorder transversal of
	•	•	_	•	transversal sequence?
a) DBA	AECF	b) ABEDFC	c) ABDECF	d) None of the al	oove
Q133. a) 0	How many cycles shown b) at least 1		tree? er d) None of the abo	ove	
Q134.	If graph G has no edge	es then correspondin	g adjacency matrix is		
a) ur	nit matrix	b) zero matrix	c) matrix with all 1	's d) None o	of the above
Q135.	What is not true for li	near collision process	sing?		
a) It is	s easier to program	b) It may inc	lude more collision		
c) It re	quires space for links		d) All are true		
Q136.	In an adjacency matrix	x parallel edges are g	iven by	- A	
a)	Similar columns	b) Similar ro	ws c) Not repre	esentable d)	None of the above
Q137.	The element at the ro	ot of heap is a)			
h)	Largest Smallest				
b) c)	Depending on type of	f hoan it may be small	allast or largost		
d)	None of the above	in heap it may be sind	allest of largest		
uj	None of the above				
Q138.	The end at which a ne	w element gets adde	ed to gueue is called		
a) Fron		c) Top d) Bo			
,	,				
Q139.	If we traverse a follow	ing tree in Pre order	then what will be tra-	versal	
a)	ABDGCEHIF b) ABD	OGHEICF c) AB	DGFCIEH d) N	lone of the above	
	A graph is said to be a	,	• •		
•	is connected and ther	•	•		
b)	If it is not connected	•			
c)	If it connected and th	iere are cycles in the	graph		
d)	None of the above				
Q141.	Hashing refers to the	process of deriving			
a) A re	cord key from storage	address	b) Storage	address from a reco	rd key
c) A flo	oating-point code from	a record key	d) None of	the above	

the same tree p	oduced the sequence	DEBFCA. Which o	f the following is a cor	FC, and the postorder traversal of rect preorder traversal sequence?
a) DBAECF b) A	ABEDFC c) ABDECF d) N	one of the above	
Q143. What is n a) It is easier to p c) It requires spa	_	· -	nclude more collision rue	
Q144. In an adja	cency matrix parallel o	edges are given by		
a) Similar colum	ns b) Similar rows	c) Not representab	le d) None of the above
<pre>#include<iostrea a="32," b="" enum="" int="" main()="" pre="" std;="" test="" {="" {<="" };=""></iostrea></pre>	ne output of the follow nm> using namespace , C; <<","< <b<<","<<c;< td=""><td>iram</td><td>Mantra 2, 31, 30 d) N</td><td>Ione of the above</td></b<<","<<c;<>	iram	Mantra 2, 31, 30 d) N	Ione of the above
	c data structure where nary search tree c) ci		r desired records in O((log2n) time is d) array
Q147. We can e	ficiently reverse a stri	ng using a		
a) linear queue	b) circular queue	c) stack	d) doubly linked list
Q148. Deleting a a) True	node in a linked list is b) False	s a simple matter o	of using the delete ope	erator to free the node's memory.
		•	•	FC, and the postorder traversal of rect preorder traversal sequence? the above
Q150. What is n	ot true for linear collis program	ion processing?	b) It may include m	nore collision

c) It re	quires space for links		d) All ar	e true	
	In an adjacency matri lar columns	x parallel edges are give b) Similar row	-	epresentable	d) None of the above
The bi	nary search tree uses ant tree?			-	empty binary search tree. traversal sequence of the
a) 7 9	6103254	b) 103254796	c) 7 9 0	123456	d) 0 1 2 3 4 5 6 7 9
Q153.	Two main measures f	for the efficiency of an a	algorithm are		
a) Data	a and space.		ŀ) Processor and me	mory
•	plexity and capacity			d) Time and space	,
5, 55		77	7/		
Q154. The complexity of the average case of an algorithm is					
a)	Much more complication	ated to analyze than th	at of worst case		
b)	Much more simpler t	to analyze than that of t	worst case		
c)	Sometimes more cor	mplicated and some oth	ner times simpler	than that of worst	case d) None or above
Q155. The time factor when determining the efficiency of algorithm is measured by a) Counting microseconds b) Counting the number of key operations, c) Counting the number of statements d) Counting the kilobytes of algorithm Q156. The space factor when determining the efficiency of algorithm is measured by a) Counting the maximum memory needed by the algorithm b) Counting the minimum memory needed by the algorithm c) Counting the average memory needed by the algorithm d) Counting the maximum disk space needed by the algorithm					
Q157.	Which of the followin	g case does not exist in	complexity thec	ory	
a) Bo	est case	b) Worst case	c) Average case	d) Null case	
	The running time of ir O(n log n)	nsertion sort is b) O(log n)	c) O(n)	d) O(n^2)	
Q159.	Which of the followin	g sorting procedure is t	he slowest?		
a)	Quick sort b) Merge sort	c) Bubble sort	d) Heap	sort

	der of the efficiency of the	e following sorting algoritl	nms according to th	neir overall running
time comparisons is				
a) bubble>selection:		b) Insertion>selection>b	oubble	
c) Merge=Quick=He	ap	d) none above		
Q161. A sort which it	teratively passes through a	a list to exchange the first	element with any e	element less than it
and then repeats wit	th a new first element is ca	alled		
a) quick sort	b) se	election sort		
Q162. The way a car	d game player arranges his	s cards as he picks them o	ne by one can be c	ompared to
a) Quick sort	b) Insertion sort	c) Selection sort	d) Merge sort	
_	the following is the best v		A	
a) Merge sort	b) Quick sort	c) Insertion sort	d) Selection	on sort
Q164. Which of the	following sorting algorithm	n is o <mark>f divide-</mark> an <mark>d-conquer</mark>	type?	
a) Bubble sort	b) Insertion	on sort c) Quick sort	d) All of a	bove
_	that calls itself directly or i			
a) Sub algorithm	b) Recurs	ion c) Polish not	ation d) Travers	sal algorithm
O166. Representation	on of data structure in men	nory is known as:		
a) recursive	b) abstract data		ructure d)	file structure
Q167. An ADT is defi	ned to be a mathematical	model of a user-defined t	ype along with the	collection of all
·	ations on that model.			
a) Cardinality	b) Assigni	ment c) Primitive	d) Structu	ıred
Q168 <mark>. An algorithm i</mark>	is made up of two indepen	dent time complexities f	n) and g (n). Then t	the complexities of th
algorithm is in the or	rder of			
a) f(n) x g(n)	b) Max (f(n),g(n))	c) Min (f(n),g(n))	d) f(n) + g	(n)
Q169. As part of the	maintenance work, you a	re entrusted with the wor	k of rearranging the	e library books in a
shelf in proper order	r, at the end of each day. T	he ideal choice will be		
a) Bubble sort	b) Quick	sort c) Insertion s	sort d) Selec	tion sort
Q170.The running ti	me of merge sort can be re	ecursively represented by		
a) T(n)=2T(n/4)+n	b) T(n)=2	T(n/2)+n c) T(n)=2T(n/2)+2 d)	T(n)=2T(n/3)+n

Algorithm & Data Structure Question Bank eDAC Sept 21

Q171. You have a sorted array and n array is also sorted, the best sorting	-	· ·	n that array s	o that the resulting	
a) Bubble sort	b) Selection sort	c) Insertion s	ort d) l	Merge sort	
Q172. The input to a merge sort is 6 algorithm in this case	,5,4,3,2,1 and the sam	e input is applied to q	uick sort the	n which is the best	
a) Merge sort	b) Quick sort	c) Cannot be decided	d		
Q173. The memory available for sto approach amongst the following	rage is less, in this cas	e if you want to sort tl	ne data whic	n is the better	
a) Merge sort	b) Quick sort	c) Heap sort	d) All		
Q174. Arrange heap sort, merge sor	t and quick sort in the	order of their space o	omplexity		
a) heap>merge>quick	b) quick <heap<merg< td=""><td>ge c) merge>qu</td><td>ick>heap</td><td>d) none</td></heap<merg<>	g e c) merge>qu	ick>heap	d) none	
Q175. One of the reason why quick	sort is better compare	d to other sorts is			
a) its running time is O(n)		space complexity is th	neta(log n),		
Q176. The running time of quick sor a) arrangement of elements		of pivot element	c) small list	c, d) none	
Q177. The running time of heapify is a) T(n) = T(2n/3) + Omega(1)) = T(2n/2) , T(n) = T(2	n)	c) None	
Q178. Which of the following stater	nents are right about r	adix sort?		N.	
a) LSD radix sort is a stable sort	b) MS	D radix sort is a stable	sort	c) None.	
Q179. LSD radix sort is applied on the following set of numbers: 21,86,124,33,29,163. What will be the order of numbers just before the MSD is considered?					
a) (21,29,86,33,124,163)	b) (21,124,29	9,33,163,86)	c) (21,29,	124,163,33,86)	
Q180. The worst case time and worst O(k*lg (N)) b) O(N^2) c) O(k*N)	•	ty of radix sort is: a)			
Q181. The Worst case occur in linea	_	en			
a) Item is somewhere in the mib) Item is not in the array at all	dale of the array,				
c) Item is the last element in th	e array,				

Item is the last element in the array or is not there at all

d)

PG DAC Feb 20 Data Structure Question Bank

Q182. The Average case occur in linear search algorithm

When Item is the last element in the array.

When Item is not in the array at all.

a)

b) c) When Item is somewhere in the middle of the array.

d)	When Item is the last elem	ent in the array or is	not there a	t all.	
Q183.	Arrays are best data structu	res			
a)	For relatively permanent of	ollections of data			
b)	for the size of the structure	and the data in the	structure a	re constantly	
changi	ing c) for both of above situ	ation			
d) for	none of above situation				
a) The	Each array declaration need name of array first data from the set to be	rıram	or explicitly,	the information about b) The data type of array d) The index set of the arra	ay
Q185.	Which of the following data	structures are inde	xed structur	es?	
a) <mark>line</mark>	<mark>ear arrays</mark> b) linked list	s c) both o <mark>f abov</mark>	e d) none c	<mark>f abov</mark> e	
Q186.	Which of the following is no	t the requ <mark>ired con</mark> d	ition for <mark>bin</mark>	<mark>ary s</mark> earch	
algorit	thm? a) The list mus	t be sorte <mark>d,there</mark> s	hould be the	e direct access to the	
middle	e element in any sub list				
b) The	ere must be mechanism to d	elete <mark>and/or i</mark> nsert	elements in	list c)	
non	ne of above	V			A.
Q187.	Which of the following state	ement is false?			
a)	Arrays are dense lists and s	tatic data structure			
b)	data elements in linked list	need not be stored	in adjecent	space in memory	
c)	pointers store the next date	a element of a list			
d)	linked lists are collection of	the nodes that con	tain informa	ation part and next pointer	
Q188.	Binary search algorithm can	not be applied to			
a) sort	ted linked list	b) sorted binary	trees	c) sorted linear array	d) pointer array
Q189.	The extra key inserted at th	e end of the array is	called a,		
a) End	key. b) St	op key. c)	Sentinel.	D) Transposition.	
Q190.	The goal of hashing is to pro	duce a search that	takes		

a) O(1) time	b) O(n2) time	c) O(log n) time	d) O(n log n) time
Q191. The largest eleme	nt of an array index is ca	lled its	
a) lower bound.	b) range.	c) upper b	ound. d) All of these.
usually called			ere is no available space; this situation is
a) underflow	b) overflow	c) house full	d) saturated
Q193. Which of the folloa) grounded header list c) linked list with header		b) circular heade	
Q194. Which of the follo	wing name does not rela	ite to stacks?	
a) FIFO lists	b) LIFO list	c) Piles	d) Push-down lists
Q195. A data structure v	vhere elements can be a	dd <mark>ed or removed at e</mark>	<mark>ither end but</mark> not in the middle
a) Linked lists	b) Stacks	c) Queues	d) Deque
Q196. Identify the data s a) Input-restricted dequ c) Priority queues			of the list but insertion at only one end. restricted deque above
Q197. Which of the follo	wing data struct <mark>ure is no</mark>	on-linear type?	
a) Strings b) Lis	sts c) Stacks	d) None of above	
0198 What is the nost	tfix form of the following	nrefix *+ah_cd	
a) ab+cd-*	b) abc+*–	c) ab+*cd-	d) ab+*cd-
1, 11 · · · · ·	<i>5</i> , 5, 5	3, 3.3	
Q199. The situation wh	nen in a linked list START	=NULL is	
a) underflow	b) overflow	c) house full	d) saturated
Q200. Linked lists are be	est suited for relatively pe	ermanent collections	of data
a) for the size of the	e structure and the data	in the structure are	constantly changing
b) for both of above	esituation		
c) for none of above	e situation		
Q201. In list implementa	ation, a node carries info	mation regarding	
a) the data	b) the link		and the data d) non above

PG DAC Feb 20 Data Structure Question Bank

Q202. The link field in the last node	of the linked list contains		
a) Zero value	b) link to the	e first node	
c) Pointer to the next element location	on d) all above		
Q203. To delete a node at the begin	ning of the list, the location o	f the list is modified as the ad	dress of the.
a) second element in the list		b) first element in the list	
c) last element in the list		d) no element	
Q204. A linked list in which the last r	•		
a) Doubly linked list	b) Circular list c) Generalize	d list d) reveres lis	t
Q205. A doubly linked list facilitates	list traversal in		
a) Any direction	b) Circular direction	c) Either direction	d) no direction
Shi	uram Ma	Intri	,
Q206. In the linked list representation	on of the stacks <mark>, the top</mark> of the	e stack is represented by	
a) the_last node b) any	of the nodes c) first	t node d) non above	!
Q207. Polynodes consists of three fie	elds repres <mark>enting</mark>		
a) Coefficient, exponential and	link b) Coefficient, data it	em and the link	
b) Previous item link, data item	and next item link d) on	ly exponential and link	
Q208. Linked list data structure usag	e off <mark>ers cons</mark> iderable <mark>saving i</mark>	n	
a) Computational time		b) Space utilization	
c) Space utilization as well as compu	ıtational time.	d) all above	
Q209. Whether a list is full or empty			
a) The status operation	b) The length of the list	c) The size of the list	d) zero value
Q210. To represent hierarchical rela	tionshin hotwoon alamonts .	which data etructuro ic cuitabl	o2
a) Deque b) Priority	•	of above	e:
a) beque b) Thomey	c) free a) Air c	on above	
Q211. The depth of a complete binar	ry tree is given by		
a) Dn = n log2n	b) Dn = n log2n+1	c) Dn = log2n	d) Dn = log2n+1
		,	, 3
Q212. When inorder traversing a tre	e resulted E A C K F H D B G; 1	the preorder traversal would	return
a) FAEKCDBHG	b) FAEKCDHGB	c) EAFKHDCBG d) FEA	AKDCHBG

Q213. The post order traversal of a binary tree is DEBFCA. Find out the pre order traversal

a) ABFCDE b) ADBFEC		c) ABDECF	d) A	BDCEF	
for efficiency. These sp	pecial pointers a	re called		pointers which	h point to nodes higher in the tree
a) Leaf b) br	anch	c) path	u) t	nreau	
Q215. The in order tra	versal of tree w	ill yield a sorte	ed listing of ele	ements of tree	in
a) Binary trees	b) Binary	search trees	;	c) Heaps	d) None of above
Q216. If every node u a) isolated b) comp	-	to every othe) finite	r node v in G, a		to be
Q217. A binary tree of a) Each leaf in the tree	•	•	•	e if	A
b) For any node " leaves, are also at leve None of the ab	el "d" d) Both a		cendent at lev	el "d" all the l	eft descendents of "n" that are
Q218. The degree of a	node in a gener	al tree ca <mark>n be</mark>			
a) maximum two	b) two	c) more t	han two	d) zero	
Q219. In an ordered tr	ee the left most	son is the			
a) oldest son	b) youngest	son	c) left son	d) Nor	ne of the above
Q220. An element of a	tree is called a				
a) node b) root	c) leaf			
Q221. The node which a) ancestor	_	e branch node) grandfather		c) root node	
Q222. Going from leav	res to the root is	called			
a) traversing	b) descending		c) climbing	
Q223. A binary tree in	which every no	n-leaf node ha	as non-empty	right and left s	subtrees is said to be a
a) Strictly binary tree	e t) complete bi	inary tree	c) alm	nost complete binary tree
Q224. In the inorder to	ree traversal the	root is visited	d		
a) before left sub	tree visit	b) in be	etween subtre	e visits	c) before right subtree visit

PG DAC Feb 20 Data Structure Question Bank

Q225. In the sequential representation of binary tree implementation each node of the tree will have a) no link field b) info, left, right and father fields three fields, data and the pointers to left and right subtrees. c) Q226. An adjacency matrix representation of a graph cannot contain information of: b) edges c) direction of edges d) parallel edges a) nodes Q227. In Breadth First Search of Graph, which of the following data structure is used? c) Linked List. d) None of the above. a) Stack. b) Queue. Q228. The binary tree in which the descendent points to the ancestor is called? a) linked tree b) threaded tree c) pointer tree Q229. A binary tree whose every node has either zero or two children is called: a) Complete Binary Tree b) Binary Search Tree c) None of the Above d) Extended Binary Tree Q230. What is the output of the following program? #include <iostream> int main() { char arr[20]; int I; for(i=0;i<10;i++) *(arr+i)=65+l; *(arr+i)='\0'; cout<<arr; return(0); } Select one: a) มมมมมม b) ABCDEFGHIJ c) None of these d) AAAAAAAAA Q231. What is the running time of the following code fragment? for (int i=0; i<10; i++) for (int j=0; j<N; J++) for (int k=N-2; k<N+2; K++) cout<<in<<" "<<j<<end a) O (log N) b) O (N) d) O (N log N) c) O (N²)

	. The initial configura s a minimum of?	tion of the queue is a, b, o	d (a is the front end).To get the confi	guration d, c, b, a one		
a) 2 deletions and 3 additions			b) 3 deletions and 4 add	b) 3 deletions and 4 additions		
	3 deletions and 2 ad		d) 3 deletions and 3 add			
Q233	. What is the infix ve	rsion of the following post	x expression? X12+z17Y +42*/+			
a) x+1	L2+z/ (17+y)*42		b) x+12+z ((17+y)*42			
c) x+1	.2+z/17+y*42		d) x+12+z)/ (17+Y*42)			
Q234	. Linked lists are not	used in:				
a) Linl	ker b) OS	c) None of thes	d) Compiler			
Q235	. The balance factor f	or an AVL tree are:				
a) 0, 1	l, or -1	b) All of these	1, 2 or 3 d) 0, 1 or 2			
Q236 List no	V	ne following class whose u	derlying data structure is a linked lis	t of of		
class l						
public						
	er public functions					
struct); private:					
	ode{ int					
item;	-					
•	*next;	V				
} ;						
ListNo	ode*head;					
} ;						
		ving sequence of code cou ch ones are legal, even if	d be used in the destructor~List () to one of the destructor.	correctly delete all of		
l.	for(ListNode*n=he	ad;head!=NULL;head=n){	=head->next;			
delete	e head;					
}						
II. }	for (ListNode *n=h	ead;n!=NULL;n->next){ de	te n;			
J						
III.	ListNode*n;					

Q238. while(head!=N	IULL){				
n=head>next; delete	, -				
head=n;					
}					
a) I and II only	b) III only	c) II aı	nd III only	d) and III only	
Q239. Find the outpu	t of the following pro	ogram?			
Main ()					
{					
int x=20, y=35; x=y++-	+x;				
cout< <x<<y;< td=""><td></td><td></td><td></td><td></td><td></td></x<<y;<>					
}					
a) 56, 91	b) 55, 90	c) 57, 94	d) 57, 92		
Q240. The numbers o	f swapping needed t	o sort the numb	ers 25,23,21,22,24 i	in ascending order using bubble so	rt
is:	DILILLI	urre 1	VIUILLI		
a) 12 b)	20 c) 6	d) 13			
Q241. What is the exp	pected time required	I to search for a	value in a binary sea	arch tree containing n nodes? (You	
should make reasona	· 1			9	
	N. T.	c) O(1)	d) O(n log n)		
Q242. The inorder an	d preorder traversal	of a binary tree	a <mark>re a b c a</mark> f c e g an	dabdecfg, Respectively. The	
postorder traversal of	the binary tree is:				
a) d e b f g c a	b) e d b g <mark>f c</mark>	c) e d	<mark>bfca</mark> d) c	d e f b c a	
Q243 <mark>. Which one is n</mark> e	ot a type of a queue	1			
a) Non-liner Queue	b) Circular (queue	c) Deque	d) Priority Queue	
Q244. Consider the fo	ollowing C				
declaration struct{	short s[5]				
union{ float y;	long z; }u; }t:				
Q245. Assume the ob	iects of type short, f	loat and long oc	cupy 2 byte, 4 byte a	and 8 byte respectively. The	
memory requirement	• •	_		, , ,	
	_	18byte	d) 10byte	2	
Q246. In a complete b	oinary tree of 'n' leve	els ,there are:			
a) 2n-1leaves and 2n	-	•	b) 2 ⁿ leaves and	d 2^n-1 non-leaf nodes	
c) n^2leaves and n^2			,	nd 2^n non-leaf nodes	

Q247. Which is	not a sorting technique:			
a) Merge sort	b) Radix so	rt c) Quic	k sort	d) Poll sort
Q248. The way a) insertion		_	e picks them selection sort	up one by one, is an example o
	e is the simplest data stru			
a) Strut	b) Tree	c) Linked List		d) Array
	mplate in C++ has the fol T> class TemplatedClass			
 } ;		ram N	1an	tri
	ne meaning of T in the ab	- / - /) It is a string	, variable
•	integer constant Ider for a type name) It is a string) It is a place	holder for a pointer value
Q252. In double a) Every node is c) Some node a	V.	d) <mark>Ev</mark>	b) Only root ery node is v	node is visited twice isited twice
Q253. What is the	ne output of the following	g?		
using namespace				
int main ()				
{				
int i; char*art [] = {"(C","C++","JAVA","VBA"};			
char *(*ptr)[4] =				
char<<++ (*ptr) return 0;	[2];			
}			_	
a) Java	b) C++	c) ava	d) co	mpile time error
Q254. In recursion	on which data structure i	s used:		
	o) Linked List	c) Array	ď) Stack

PG DAC Feb 20 Data Structure Question Bank

Q256. Which of the	following operators	cannot be ove	erloaded?		
a) =	b) ->	c) ::	d) =	:=	
Q257. The postfix eq	juivalent of the infix	4 \$2*3-3+8/4	(1+1)is		
a) 42\$3*3-8/411+/+		b)	42\$3*3-84/1	1+/+	
c) 42\$33*-84/11+/+		d)	42\$3*3-84/1	1++/	
-, , , ,		-,	, ,	•	
Q.258) Stack is also	called as				
a) First in first out	b) First in last	out c)	Last in last o	ut d) L	ast in first out
Q.259) Any node is t	the path from the ro	ot to the node	e is called		
a) Ancestor node c)	Successor node	c) Internal n	ode	d) None of the	above
Q.260) Which of the	following is not the	type of queue	27 /	4	
a) Priority queue b)	Circular queue	c) Single en	ded queue	d) Ordinary que	eue
Q.261) A graph is a c	collection of nodes, o	called And	l line segment	s called arcs or	that connect pair of
	h)ti		Lucido a Ale	and and a	ما المام
a) vertices, paths	b) vertices, e	ages c	graph node,	eages	d) edges, vertices
Q.262) In, sear	rch start at the begin	nning of the lis	t and check e	<mark>ve</mark> ry element in	the list.
a) Binary search	b) Hash Search	y /=	ar search	d) Binary Tree :	
O. 263) In the ti	raversal we process	all of a vertex	's descendant	s before we mo	ve to an adjacent vertex.
a) Depth Limited	b) With First			epth First	
Q. 267) To represent	t hierarchical relation	nship betweer	n elements, W	/hich data struc	ture is suitable?
a) Graph	b) Tree	c) Deq	ueue	d) Priority	,
Q.268) Which of the	e following data stru	cture is linear	type?		
a) Stack	b) Graph	c) rees	d) Binary	tree	
Q.269) Herder node	is used as sentinel i	n			
a) Queues	b) Stacks	c)	Graphs d)	
Binary tree	•	,	•	-	
Q. 270) Which of the	e following data strue	cture can't sto	re the nonho	mogeneous dat	a elements?
a) Arrays	b) Stacks	c) Reco		one of the above	

Q.271) A binary search tree whose left subtree and right subtree differ in hight by at most 1 unit is called

a)	Lemma tree	b) Redblack tree	c) AVL tree	d) None of the abo	ove
	272) is a List d) Array	pile in which items are added b) Queue	at one end and remove c) Stack	ed from the other.	
	, ,	of the following is non-linear d	ata structure? Strings d) All of th	e above	
Q.	274) The nun	nber of comparisons done by s	sequential search is		
a)	(N/2)+1	b) (N+1)/2	c) (N-1)/2	d) (N-2)/2	
	275) is no	ot the operation that can be p b) Insertion	erformed on queue. c) Deletion	d) Retrieval	
a)	Function calls	s/are the application(s) of stac s arithmetic expressions	k b) Large number Arith d) All of the abo		
	277) Which o Stack	of the following data structure b) Linked lists		o? d) None of the above	
	278) Which of Lists	of the following data structure b) Pointers	store the homogeneou c) Records	us data elements? d) Arrays	
	279) Linear a One-dimensi	rrays are also called ional array b) Vertic	cal array c) Ho	rizontal array d)	All of the above
	•	does not keep track of address b) Queue c) String	•	e list.	
	-	plexity of linear search algorit b) O(log n) c) O(n2)	hm is d) O(n log n)		
	-	nplexity of Binary search algori b) O(log n) c) O(n2)			
	-	nplexity of Bubble sort algorith b) O(log n) c) O(n2)			
Q.	284) The com	nplexity of merge sort algorith	m is		

a) O(n)	b) O(log n)	c) O(n2)	d) O(n log n)	
Q.285 <mark>) The s</mark>	pace factor wher	n determining the o	efficiency of algorithm	is measured by
a) Cour	ting the maximu	m memory neede	d by the algorithm	
b) Cour	ting the minimur	n memory needed	by the algorithm	
c) Cour	ting the average	memory needed b	y the algorithm	
d) Cour	ting the maximu	m disk space neede	ed by the algorithm	
Q.286) The	operation of prod	essing each eleme	nt in the list is known	as
a) Traversa	b)	Inserting	c) Merging	d) Sorting
Q.287) Bina a) Special tr		eads are called as Pointer trees		es d) None of the above
Q.288) In Bi	A 39	with no successor Final nodes	are called c) Last nodes	d) Terminal nodes

Q.289 The depth	n of a complete binary	tree is given by	
a) Dn = n log2n	b) Dn = n log2r	+1 c) Dn = log	2n d) Dn = log2n+1
Q.290) Every node	N in a binary tree T ex	cept the root has a ur	nique parent called the of N
a) Predecessor	b) Antecedent	s c) Precurs	or d) None of the above
Q.291) The in orde	r traversal of tree will	yield a sorted listing o	f elements of tree in
a) Merging	b) AVL Trees	c) Binary t	rees d) Binary search trees
Q.292 <mark>) A binary tre</mark>	ee whose every node l	nas either zero or two	children is called
a) Extended binary	y tree b) Comple	ete binary tree	
c) Binary Search tro	ee d) Di	sjoint tree	
	Shrii	om VI	antri
			out the pre order traversal
a) ABFCDE	b) ADBFE	c) AB	d) ABDCEF
Q.294) Three stand	dards ways of traversi	ng a bi <mark>nary tree</mark> T with	root R
a) Prefix, infix, pos	tfix	b) Pre-prod	c <mark>ess, in-p</mark> rocess, post-process
c) Pre-traversal, in	-traversal, post-traver	sal d) Pre	e-order, in-order, post-order
O 295) A techniqu	e for direct search is		
a) Hashing	b) Tree Search	c) Binary Search	d) Linear Search
Q.296) If a node ha	aving two children is d	eleted from a binary t	ree, it is replaced by its
a) Preorder predec	cessor b) In	order predecessor	
c) Inorder successo	or d) Pi	eorder successor	
Q.297) A full binar	y tree with 2n+1 node	s contain	
a) n leaf nodes	b) n non-leaf nodes	c) n-1 leaf node	d) n-1 non-leaf nodes
Q.298) A full bina	ry tree with n leaves c	ontains	
a) n - 1 nodes	b) log2n nodes	c) 2n – 1 nodes	d) 2n nodes
Q.299) The small	est element of an arra	y's index is called its	
a) extraction	b) range	c) lower bound	d) upper bound

Q.300) The data str	ucture required for B	readth First Traversa	l on a graph is
a) queue	b) stack	c) array	d) None of the above
0.2011 072 227 227		: to mainson income h	tura variana ita ira
	vert a binary tree into		
a) inorder	b) preorder	c) postorder	d) None of the above
Q.302) The data str	ucture required to eva	aluate a postfix expre	ession is
a) queue	b) stack	c) linked-list	d) All of the above
-, 4	,	.,	-
Q.303) Which of the	e following sorting me	thods would be mos	t suitable for sorting a list which is almost sorted
a) Insertion Sort	b) Selection Sort	c) Quick Sort	d) Bubble Sort
•	Chair	ACTION 11	Caratui A
Q.304) The process	of accessing data sto	red in a serial access	memory is similar to manipulating data on a
	ueue c) st		lone of the above
, , ,			
Q.305) The postfix	form of A*B+C/D is		
a) ABCD+/*	b) AB*CD/+	c) *AB/CD+	d) A*BC+/D
, - ,			
Q.306) A linear coll	ection of data elemer	nts where the linear r	node is given by means of pointer is called
a) linked list	b) node list	c) primitive lis	
•			
Q.307) Representa	tion of data structure	in memory is known	as:
a) storage structure			ct data type d) None of the above
Q.308) The goal of h	nashing is to produce	a search that takes	
a) O(1) time	b) O(n2) time	c) O(log r	n) time d) O(n log n) time
Q.309) The comple	exity of multiplying tw	o matrices of order r	n*n and n*p is
a) np	b) mn+p c) m		
, .	, ,		•
Q.310) For an undi	rected graph with n ve	ertices and e edges, t	he sum of the degree of each vertex is equal to
a) 2n	b) 2e	c) (e2+1)/2	d) (2n-1)/2
		, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
Q.311) Which data	structure allows delet	ing data elements fro	om and inserting at rear?
a) Stacks	b) Queues c) De		

Q.312) Which (data structure i	s used in brea	dth first sea	irch of a graph to hold no	des?
a) Array	b) Tree	c) Stack	d) queu	e	
Q.313) Identify	y the data stru	cture which all	ows deletic	ns at both ends of the list	but insertion at only one end.
a)					
Stack b) Prio	rity queues				
c) Output rest	ricted qequeue	d) Input rest	ricted dequ	eue	
Q.314) Which	of the followin	g data structu	re is non lin	ear type?	
a) Graph	b) Stack	s c) Lists		d) None of the above	
	C	7 .		1/	A
Q.315 In	a queue, the i	nitial values of	front point	er f rare pointer r should	be and
respectively.					
a) 0 and 1	b) 0 and	- 1 c)	-1 and 0	d) 1 and 0	
Q.316) There i				called a	
a) Sentinel	b) Antine	el c) List	head	d) List header	
Q.317) The pro					
a) The root car		1	7	rst <mark>subset i</mark> s called left sul	
c) The second s	subtree is calle	d right sub <mark>tree</mark>	e d) '	T <mark>he right</mark> subtree can be	empty
Q.318) When r	new data are to	be inserted in	nto a data si	ructure, but there is not a	available space; this situation is
usually	called				
a) overflow	b) Unde	rflow c)	housefull	d) memoryfull	
Q.319) A data s	structure wher	e elements cai	n be added	or removed at either end	but not in the middle is called
a) stacks	b) queu	es c) deq	ueuer	d) linked lists	
Q.320) The use	of pointers to	refer element			its are logically adjacent is
a) stack	b) queue	c) pointers	d)	linked allocation	
Q.321) Binary s	_				
a) pointer arra	ay b) sorte	d linear array	c)	sorted binary trees	d) sorted linked list

Q.322)	is the method	l used by card so	rter?		
a) Quick	b) Heap	c) Insertion	d) Radi	ix sort	
Q.323) Which	of the followir	ng conditions che	ecks available f	ree space in	avail list?
a) Avail=Top	b) Null=	Avail c)	Avail=Null	d) Avail=	Max stack
Q.324) Which	of the followir	ng is not the type	of queue?		
a) Priority que	ue b) Circular	queue	c) Ordinary	queue	d) Single ended queue
Q.325) is	a directed tre	e in which outde	egree of each n	ode is less th	nan or equal to two.
a) Binary tree	b)	Dinary tree	c) Unar	y tree	d) None of the above
Q.326) <mark>The nu</mark>	mber of compa	arisons done by s	s <mark>equential sear</mark>	ch is	tri
a) (N/2)-1	b) (N+1)/2	c) (N-1)/2	d) (N+2)/	2
Q.327) In,	search start a	t the beginning o	of t <mark>he list a</mark> nd c	heck every e	lement in the list.
a) Hash Search	n b) Binai	y search	c) Linear sea	arch	d) Binary Tree search

Q.328 The operatio	n that combines the	element is of A a	nd B in a single	e sorted list C with n=r+s			
element is called							
a) Sharing	b) Merging	c) Insertin	g d)	None of the above			
Q.329) Which of th	e following is an into	ernal sorting?					
a) 2-way Merge Sor	t b) Tape	Sort c) M	lerge Sort	d) Tree Sort			
Q.340) Which of the							
a) Merge Sort	b) Tree	Sort c) Bu	abble Sort	d) Insertion Sort			
Q.341) is the to	erm used to insert a	n element into sta	ick?				
a) Push	b) Pull	c) Pop	d) All of	the above			
Q.342) is the term used to delete an element from the stack?							
a) Push	b) Pull	c) Pop	d) All of	the above			
Q.343) Before inserting into stack one must check the condition							
a) Overflow	b) Underflow	c) Maximi	um elements	d) Existing elements			
Q.344) Deletion in		W . / /	g				
a) Beginning of the	list b)	En <mark>d of the l</mark> ist					
c) Middle of the list		d) Node pointe	d by the start	process.			
Q.345) The value of	REAR is increased b	y 1 when					
a) An element is me	erged in a queue	b) An elen	nent is added	in a queue			
c) An element is tra			is deleted in a	queue			
Q.346) The operati	on of processing eac	ch element in the	list is known a	S			
a) merging	b) traversal	c) inserting	d) sortii	ng			
Q.347) Sequential r	epresentation of bi	nary tree uses					
a) Array with point							
c) Two dimensional							
Q.348) In a 2-tree,	nodes with 0 childre	n are called					
a) Outer node	b) Exterior no	ode c) Ex	ternal node	d) Outside node			
Q.349) In a extende	ed-binary tree node	s with 2 children a	re called				
· ·	b) Internal node						

Q.350)	The line d	rawn from a no	de N of tree T t	o a successo	r is called		
a) Rou	ite	b) Arrow	c) Edge	d)	Path		
	Which of thertion sort	ne following sor b) Quid		does not ha c) Bubbl		ase running time of O(n2)? d) Merge sort	
Q.352)	In a circula	ar linked list					
a)	there is no	beginning and	no end.			20.0	
b)	componen	its are arranged	hierarchically.	7/4		• 🐧	
c)	forward ar	nd backward tra	versal within th	ne list is perr	nitted.	rla	
d)	componen	ts are all linked	together in sor	ne sequentia	al manner.		
Q.353)	The quick	sort algorithm e	exploit	design te	chnique		
a) Ove	rflow	b) Backtrack	ing c) <mark>Dyn</mark>	<mark>amic</mark> progra	m <mark>ming d) Di</mark> v	vide and Conquer	
Q.354)	The data s	tructure require	ed to check whe	ether an exp	ression conta	ains balanced parenthesis is	
a) Stac		- 1	Tree	d) Array			
Q.355) algorit		structure woul	d yo <mark>u mostly l</mark> ik	cely see in a	<mark>no</mark> nrecursive	e implementation of a recurs	ive
a) Tree	es b)	Linked list	c) Stack	d) Queu	e		
	The numb	er of leaf nodes					
a) 2d		b) 2d-1+1	c) 2d+1+1	d) 2d+1			
0.357	The pre-or	der and post or	der traversal of	a Binary Tre	ee generates	the same output. The tree of	an have
maxim	•	acrama posto.			20 80a.a.a.		, , , , , , , , , , , , , , , , , , , ,
a) One		b) Two node	es c) Thre	ee nodes	d) Any nur	mber of nodes	
Q.358)	A binary tr	ee of depth "d"	is an almost co	mplete bina	ry tree if		
a)	Each leaf i	n the tree is eith	ner at level "d"	or at level "d	d−1"		
b)	For any no	de "n" in the tr	ee with a right (descendent	at level "d" a	II the left descendents of "n	" that
	are leave	es, are also at le	vel "d" c) Both	(A) & (B)			

d)	None of th	e above			
Q.359) a) Path				ve edges is called y d) Conne	
				graph cannot conta	
a) node	es b)	edges c)	parallel edges	d) directi	on of edges
Q.361)	is no	ot the operation	that can be pe	erformed on queue	
a) Trav	ersal	b) Retrieval	c) Del	etion d) Ir	nsertion
Q.362)	A linear lis			to the first node is	A
		Shi	riran	n Mai	ntri
a) singl	y linked lis	V.			t d) none of the above
-				only to the successive) doubly linked list	
		cates the end c			
a) Guar		Sentinel ne pointer point	c) End poin	ter d) Last po	ointer
-	d node	•	V-	ccessor node	d) predecessor node
Q.366)	Indexing t	he elemer	nt in the list is n	ot possible in linke	
a) first		b) middle	c) last	d) A	ll of the above
-	A doubly l	nked list has	-		
a) 0		b) 1	c) 2	d) 3	
	A linear list y linked lis		· ·		and successors nodes is called ed list d) None of the above
•		e pointer point	_		
a) last i	node	b) head	d node 💢 🕻	c) successor node	d) predecessor node

PG DAC Feb 20 Data Structure Question Bank

Q370) In a linked list, insertion can be done as.......

a)beginning b) middle c) end **d) all of the above**

Q.371 The link field of last node, in a singly link list representation is linked with

a) The data field of the first node b) The link field of the first node

c) A null d) The link field of the prior node

