5.1. MC Fragen: Doppelte Summation, monotone Funktionen, Stetigkeit. Wählen Sie die einzige richtige Antwort.

(a) Sei $(a_{m,n})_{m,n\geq 0}$ eine reelle Doppelfolge. Welche der folgenden Bedingungen impliziert, dass die folgende Gleichung gilt:

$$\sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} a_{m,n} \right) = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} a_{m,n} \right) ?$$

- O Keine Bedingung ist erforderlich. Diese Gleichung ist immer wahr.
- \bigcirc Es gibt eine Konstante $C \in \mathbb{R}$, so dass $|a_{m,n}| \leq C$ für alle $m, n \geq 0$.
- \bigcirc Es gibt eine Konstante $C \in \mathbb{R}$, so dass $\sum_{m=0}^{M} \sum_{n=0}^{N} a_{m,n} \leq C$ für alle $M, N \geq 0$.
- Es gibt eine Konstante $C \in \mathbb{R}$, so dass $\sum_{m=0}^{M} \sum_{n=0}^{N} |a_{m,n}| \leq C$ für alle $M, N \geq 0$.

Lösung: Das Beispiel auf Seite 37 im Skript ist ein Gegenbeispiel für die ersten drei Antwortmöglichkeiten $(a_{m,m} = 1 \text{ und } a_{m,m+1} = -1 \text{ für alle } m \in \mathbb{N}, a_{m,n} = 0$ wenn $n \notin \{m, m+1\}$). Dass die vierte Bedingung hinreichend ist, folgt aus dem Doppelreihensatz (Satz 2.7.23).

- (b) Welche der folgenden Implikationen ist immer wahr?
 - $\bigcirc \ f \colon [0,1] \to \mathbb{R}$ beschränkt $\implies f$ monoton.

Falsch: Die Funktion $f: [0,1] \to \mathbb{R}, x \mapsto |x-1/2|$ ist zwar beschränkt, aber nicht monoton.

 $\bigcirc f : [0,1] \to \mathbb{R}$ streng monoton wachsend $\Longrightarrow f$ stetig.

Falsch: Die Funktion kann trotzdem einen unstetigen "Sprung" haben:

$$f(x) = \begin{cases} x, & \text{wenn } x \in [0, 1/2], \\ x+1, & \text{wenn } x \in (1/2, 1]. \end{cases}$$

 $\bigcirc f \colon (0,1] \to \mathbb{R}$ monoton $\implies f$ beschränkt.

Falsch: Zum Beispiel ist $f\colon (0,1]\to \mathbb{R},\, x\mapsto \frac{1}{x}$ monoton fallend, aber unbeschränkt.

• $f: [0,1] \to \mathbb{R}$ monoton $\Longrightarrow f$ beschränkt.

Richtig: Angenommen f ist monoton steigend (der Fall "monoton fallend" ist analog). Dann gilt $f(0) \leq f(x) \leq f(1)$ für alle $x \in [0, 1]$, das heisst

$$f(x) \in [f(0),f(1)], \quad \forall x \in [0,1],$$

was Beschränktheit von f zeigt.

24. März 2024

- (c) Welche der folgenden Bedingungen impliziert *nicht*, dass $f: \mathbb{R} \to \mathbb{R}$ stetig ist?
 - \bigcirc Es gibt $C \ge 0$, so dass $|f(x) f(y)| \le C|x y|$ für alle $x, y \in \mathbb{R}$.

Falsch: Diese Bedingung impliziert die Stetigkeit. In der Tat, wenn C = 0, dann ist f konstant, und sonst wähle in der Definition der Stetigkeit $\delta = \varepsilon/C$.

- Es gibt $C \ge 0$, so dass $|f(x) f(y)| \le C|x y|$ für alle $x, y \in \mathbb{R}$ mit $|x y| \ge 1$. Richtig: Ein Gegenbeispiel ist gegeben durch C = 1, f(x) = 0 wenn x < 0 und f(x) = 1 wenn $x \ge 0$. Diese Funktion ist unstetig in $x_0 = 0$, jedoch gilt $|f(x) - f(y)| \le 1 \le |x - y|$ für alle $x, y \in \mathbb{R}$ mit $|x - y| \ge 1$.
- Es gibt $C \ge 0$, so dass $|f(x) f(y)| \le C|x y|^2$ für alle $x, y \in \mathbb{R}$ mit $|x y| \le 1$. Falsch: Diese Bedingung impliziert die Stetigkeit. In der Tat, wenn C = 0, dann ist f konstant, und sonst wähle in der Definition der Stetigkeit $\delta = \min\left\{\sqrt{\varepsilon/C}, 1\right\}$.
- (d) Sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion. Welche der folgenden Aussagen ist richtig?
 - \bigcirc Es gibt $x_0 \in \mathbb{R}$, so dass $f(x_0) = 0$.
- \bigcirc Wenn $(x_n)_{n\geq 0}$ eine reelle Folge ist, die $\sum_{n=0}^{\infty}x_n=2$ erfüllt, dann gilt die Gleichung

$$f(2) = \sum_{n=0}^{\infty} f(x_n).$$

• Es gilt $f(0) = \lim_{n \to \infty} f\left(\frac{(-1)^n}{n}\right)$.

Lösung: Die konstante Funktion f = 1 ist ein Gegenbeispiel für die ersten beiden Antwortmöglichkeiten. Dass die dritte Antwortmöglichkeit richtig ist, folgt aus dem Satz über Folgenstetigkeit (Satz 3.2.4).

- (e) Welche der folgenden Aussagen ist richtig?
 - \bigcirc Jede bijektive Funktion $f \colon [0,1] \to [0,1]$ ist monoton.

Falsch: Ein Gegenbeispiel ist

$$f(x) = \begin{cases} x, & \text{wenn } x \in [0, 1/2), \\ 3/2 - x, & \text{wenn } x \in [1/2, 1]. \end{cases}$$

 \bigcirc Es gibt eine injektive stetige Funktion $f:[0,1] \rightarrow [0,1]$ mit f(0)=0 und f(1)=1, die nicht monoton ist.

Falsch: Wenn f die angegebenen Eigenschaften hat, aber nicht monoton steigend wäre, dann gäbe es 0 < x < y < 1 mit f(x) > f(y). Aus dem Zwischenwertsatz folgt nun, dass es $z_1 \in (0,x)$ und $z_2 \in (x,y)$ gibt mit $f(z_1) = f(z_2) = \frac{f(x) + f(y)}{2}$. Dies widerspricht der Injektivität.

- Jede stetige Funktion $f: [0,1] \to [0,1]$ ist surjektiv, wenn f(0) = 0 und f(1) = 1. Richtig: Dies folgt direkt aus dem Zwischenwertsatz.
- **5.2.** Cauchy Produkt. Zeigen Sie, dass für jedes $x \in \mathbb{R}$ mit |x| < 1 gilt:

$$\sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}.$$

Lösung: Falls |x| < 1, wissen wir, dass $\sum_{n \ge 0} x^n$ absolut konvergiert und

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

Nach dem Satz über Cauchy-Produkte (Satz 2.7.26) gilt dann

$$\frac{1}{(1-x)^2} = \frac{1}{1-x} \cdot \frac{1}{1-x} = \left(\sum_{n=0}^{\infty} x^n\right) \cdot \left(\sum_{m=0}^{\infty} x^m\right)$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} x^{n-k} x^k = \sum_{n=0}^{\infty} \sum_{k=0}^{n} x^n = \sum_{n=0}^{\infty} (n+1)x^n.$$

5.3. Stetigkeit I. Finden Sie Werte $a, b \in \mathbb{R}$, so dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x^2 - ax + b, & \text{wenn } x \le -1, \\ (a+b)x, & \text{wenn } -1 < x < 1, \\ x^2 + ax - b, & \text{wenn } x \ge 1, \end{cases}$$

stetig auf ganz \mathbb{R} ist. Zeichnen Sie den Graphen der Funktion.

Lösung: Die polynomialen Funktionen

$$f_1(x) = x^2 - ax + b$$
, $f_2(x) = (a+b)x$, $f_3(x) = x^2 + ax - b$,

sind stetig auf ganz \mathbb{R} (Korollar 3.2.7) für beliebige Werte von $a, b \in \mathbb{R}$. Die Funktion f ist das Resultat des "Zusammenklebens" von f_1 und f_2 in -1 und von f_2 und f_3 in 1. Somit ist f stetig, wenn a, b so gewählt sind, dass $f_1(-1) = f_2(-1)$ und $f_2(1) = f_3(1)$. Nun ist

$$f_1(-1) = f_2(-1) \text{ und } f_2(1) = f_3(1) \iff \begin{cases} 1 + a + b = -a - b, \\ a + b = 1 + a - b, \end{cases}$$

 $\iff a = -1, b = \frac{1}{2}.$

Hier ist eine Skizze der Funktion f. Gepunktet sind die Funktionen f_1 , f_2 und f_3 .

5.4. Stetigkeit II. Sei $f:[0,\infty)\to\mathbb{R},\,x\mapsto\sqrt{x+1}$. Zeigen Sie, dass f stetig ist.

Hinweis: Zeigen Sie, dass $|f(x) - f(y)| \le |x - y|$ für alle $x, y \ge 0$.

Lösung: Es gilt für alle $x, y \ge 0$:

$$|f(x) - f(y)| = |\sqrt{x+1} - \sqrt{y+1}| = \left| (\sqrt{x+1} - \sqrt{y+1}) \frac{\sqrt{x+1} + \sqrt{y+1}}{\sqrt{x+1} + \sqrt{y+1}} \right|$$
$$= \left| \frac{(x+1) - (y+1)}{\sqrt{x+1} + \sqrt{y+1}} \right| = \frac{|x-y|}{|\sqrt{x+1} + \sqrt{y+1}|} \le |x-y|.$$

Um zu zeigen, dass f in einem Punkt $x_0 \in [0, \infty)$ stetig ist, genügt es nun, $\delta = \varepsilon$ in der Definition der Stetigkeit zu wählen. Denn für alle $x \in [0, \infty)$ mit $|x - x_0| < \delta = \varepsilon$ folgt aus der obigen Ungleichung, dass

ETH Zürich

FS 2024

$$|f(x) - f(x_0)| \le |x - x_0| < \varepsilon.$$

5.5. Stetigkeit III. Zeigen Sie, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x, & x \in \mathbb{Q}, \\ 1 - x, & x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

nur in $x_0 = \frac{1}{2}$ stetig ist und in allen anderen Punkten von \mathbb{R} unstetig ist.

Lösung: Zuerst zeigen wir, dass f in $x_0 = \frac{1}{2}$ stetig ist. Sei $\varepsilon > 0$ beliebig. Wir nehmen $\delta = \varepsilon$. Sei $x \in (1/2 - \delta, 1/2 + \delta)$. Wenn $x \in \mathbb{Q}$, dann haben wir

$$|f(x) - f(1/2)| = |x - 1/2| < \delta = \varepsilon,$$

und wenn $x \notin \mathbb{Q}$, dann gilt

$$|f(x) - f(1/2)| = |1 - x - 1/2| = |1/2 - x| = |x - 1/2| < \delta = \varepsilon.$$

Somit ist f in $x_0 = \frac{1}{2}$ stetig.

Jetzt zeigen wir, dass f in allen anderen Punkten $x_0 \neq \frac{1}{2}$ nicht stetig ist. Nach Satz 3.2.4. genügt es eine Folge $(a_n)_{n\geq 1}$ zu finden, die gegen x_0 konvergiert und für welche $(f(a_n))_{n\geq 1}$ nicht gegen $f(x_0)$ konvergiert.

Nehmen wir zuerst an, dass $x_0 \neq \frac{1}{2}$ in $\mathbb{R} \setminus \mathbb{Q}$ liegt. Dann ist $f(x_0) = 1 - x_0$. Sei $(a_n)_{n \geq 1}$ eine Folge rationaler Zahlen, so dass $x_0 \leq a_n \leq x_0 + \frac{1}{n}$. Solche rationalen Zahlen existieren aufgrund der Dichtheit von \mathbb{Q} in \mathbb{R} . Dann konvergiert $(a_n)_{n \geq 1}$ gegen x_0 und $f(a_n) = a_n$ für alle $n \geq 1$. Deshalb ist

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} a_n = x_0 \neq 1 - x_0 = f(x_0).$$

Nehmen wir nun an, dass $x_0 \neq \frac{1}{2}$ in Q liegt. Dann ist $f(x_0) = x_0$. Sei $(b_n)_{n \geq 1}$ nun eine Folge irrationaler Zahlen, so dass $x_0 \leq b_n \leq x_0 + \frac{1}{n}$. Solche irrationalen Zahlen existieren aufgrund der Dichtheit von $\mathbb{R} \setminus \mathbb{Q}$ in \mathbb{R} (welche z.B. daraus folgt, dass jedes Intervall der Form (a,b) für a < b überabzählbar ist, während \mathbb{Q} abzählbar ist). Dann konvergiert $(b_n)_{n \geq 1}$ gegen x_0 und $f(b_n) = 1 - b_n$ für alle $n \geq 1$. Deshalb ist

$$\lim_{n \to \infty} f(b_n) = \lim_{n \to \infty} (1 - b_n) = 1 - x_0 \neq x_0 = f(x_0).$$

24. März 2024 5/7

Damit ist der Beweis abgeschlossen.

5.6. Stetigkeit IV. Seien $D \subset \mathbb{R}$ und $f: D \to \mathbb{R}$ eine stetige Funktion. Sei $x_0 \in D$ ein Punkt mit $f(x_0) > 0$. Zeigen Sie, dass $\delta > 0$ existiert, so dass

$$\inf \left\{ f(x) \mid x \in D \cap (x_0 - \delta, x_0 + \delta) \right\} > 0.$$

Lösung: Da f in x_0 stetig ist, gibt es für jedes $\varepsilon > 0$ ein $\delta > 0$, so dass für alle $x \in D$ die Implikation

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

gilt. Es folgt, dass

$$|x - x_0| < \delta \implies f(x) > f(x_0) - \varepsilon.$$

Es genügt nun, in Obigem $\varepsilon = f(x_0)/2$ zu wählen. Für das zugehörige $\delta > 0$ gilt dann, dass

$$|x - x_0| < \delta \implies f(x) > \frac{f(x_0)}{2} > 0.$$

Hieraus folgt

$$\inf \{ f(x) \mid x \in D \cap (x_0 - \delta, x_0 + \delta) \} \ge \frac{f(x_0)}{2} > 0.$$

5.7. Gegenbeispiele zum Zwischenwertsatz.

(a) Sei $D = [0, 1] \cup [2, 3]$. Finden Sie eine stetige Funktion $f: D \to \mathbb{R}$ und $a, b \in D$ und $c \in \mathbb{R}$ mit $f(a) \le c \le f(b)$, so dass $kein \ z \in D$ existiert mit f(z) = c.

Lösung: Die Funktion $f: D \to \mathbb{R}$, $x \mapsto x$ ist stetig und erfüllt die Anforderungen, beispielsweise durch die Wahl von a = 1, b = 2 und $c = \frac{3}{2}$.

(b) Finden Sie eine stetige Funktion $f: \mathbb{Q} \to \mathbb{Q}$ und $a, b, c \in \mathbb{Q}$ mit $f(a) \leq c \leq f(b)$, so dass $kein \ z \in \mathbb{Q}$ existiert mit f(z) = c.

Lösung: Wir zeigen, dass die Funktion $f: \mathbb{Q} \to \mathbb{Q}$, $x \mapsto x^2$ die Anforderungen erfüllt. Es handelt sich hierbei um eine Polynomfunktion, welche stetig ist. (In der Tat, dies folgt z.B. aus der Stetigkeit von $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ unter Verwendung der Definition der Stetigkeit mit $D = \mathbb{Q}$ oder auch aus einer Anwendung von Satz 3.2.4 mit $D = \mathbb{Q}$.) Nun wählen wir a = 0, b = 2 und c = 2. Dann gilt f(a) = 0 < 2 = c < 4 = f(b). Es gibt allerdings kein $z \in \mathbb{Q}$ mit f(z) = c = 2, da die Wurzel aus 2 irrational ist.

5.8. Existenz eines Fixpunkts. Sei $f: [0,1] \to [0,1]$ eine stetige Funktion. Beweisen Sie, dass es ein $x_0 \in [0,1]$ gibt, so dass $f(x_0) = x_0$.

Lösung: Wir definieren die Funktion $g: [0,1] \to \mathbb{R}$ durch g(x) = f(x) - x für alle $x \in [0,1]$. Dann ist g aufgrund von Korollar 3.2.5 eine stetige Funktion. Aus $f(x) \in [0,1]$ für alle $x \in [0,1]$ folgt

$$g(0) = f(0) - 0 \ge 0$$
, $g(1) = f(1) - 1 \le 1 - 1 = 0$.

Aus dem Zwischenwertsatz folgt nun, dass ein $x_0 \in [0, 1]$ existiert, so dass $g(x_0) = 0$. Aufgrund der Definition von g ist dies äquivalent zu $f(x_0) = x_0$.

24. März 2024 7/7