### Chương 6: Chọn đường - Routing

Giảng viên: Nguyễn Đức Toàn

Bộ môn Truyền thông và Mạng máy tính Viện CNTT&TT - ĐHBK Hà Nội







- Tuần trước
  - Giao thức IP
  - ðịa chỉ IP và cấu trúc gói tin IP
  - Giao thức ICMP
- Tuần này: Tiếp tục về tầng mạng
  - Thế nào là chọn đường?
  - Chọn đường tĩnh và chọn đường động
  - Giải thuật và giao thức chọn đường

### Chọn đường là gì?

Các nguyên lý chọn đường Cơ chế chuyển tiếp gói tin Quy tắc "Longest matching"







- Khi một máy trạm gửi một gói tin IP tới một máy khác
  - Nếu địa chỉ đích nằm trên cùng một đường truyền vật lý: Chuyển trực tiếp
  - Nếu địa chỉ đích nắm trên một mạng khác: Chuyển gián tiếp qua bộ định tuyến (chọn đường)



### Cơ bản về chọn đường (2)









- Cơ chế để máy trạm hay bộ định tuyến chuyển tiếp gói tin từ nguồn đến đích
- Các thành phần của chọn đường
  - Bảng chọn đường
  - Thông tin chọn đường
  - Giải thuật, giao thức chọn đường





- Thiết bị chuyển tiếp các gói tin giữa các mạng
  - Là một máy tính, với các phần cứng chuyên dụng
  - Kết nối nhiều mạng với nhau
  - Chuyển tiếp gói tin dựa trên bảng chọn đường
- Có nhiều giao diện
- Phù hợp với nhiều dạng lưu lượng và phạm vi của mạng

### Một số ví dụ...





BUFFALO BHR-4RV



PLANEX GW-AP54SAG



YAMAHA RTX-1500



Cisco 2600



Router ngoại vi



Hitachi GR2000-1B



Juniper M10



**Cisco 3700** 



Foundry Networks NetIron 800

Router cot trung

Cisco CRS-1

#### Router mang truc

http://www.cisco.com.vn

http://www.juniper.net/

http://www.buffalotech.com





- Chỉ ra danh sách các đường đi có thế, được lưu trong bộ nhớ của router
- Các thành phần chính của bảng chọn đường
  - ðịa chỉ đích/mặt nạ mạng
  - Router ké tiép

## Bảng chọn đường và cơ chế chuyển tiếp (1)





Lưu ý quy tắc: No routes, no reachability!





- Giả sử một địa chỉ mạng đích lại có nhiều hơn một mục trong bảng chọn đường
- ðja chỉ đích : 11.1.2.5
- Router kế tiếp nào sẽ được sử dụng?

| Network     | Next hop |  |  |  |
|-------------|----------|--|--|--|
| 11.0.0.0/8  | A        |  |  |  |
| 11.1.0.0/16 | В        |  |  |  |
| 11.1.2.0/24 | С        |  |  |  |

## Quy tắc "Longest matching"(2)



ðịa chỉ đích:

11.1.2.5 = 00001011.00000001.00000010.00000101 ðường đi 1:

"Longest matching" là gì? Tại sao phải cần quy tắc này?

## Bảng chọn đường và cơ chế chuyển tiếp (2)



| Network        | Next-hop |
|----------------|----------|
| 10.0.0.0/24    | Α        |
| 172.16.0.0/24  | С        |
| 192.168.0.0/24 | Direct   |

Q. Mô tả bảng chọn đường trên C

Nếu C nối vào Internet?

Internet



### ðường đi mặc định

- Nếu đường đi không tìm thấy trong bảng chọn đường
  - ðường đi mặc định trỏ đến một router kết tiếp
  - Trong nhiều trường hợp, đây là đường đi duy nhất
- 0.0.0.0/0

Là một trường hợp đặc biệt, chỉ tất cả các đường đi



# Kết hợp đường đi (Routing aggregation)



- Có bao nhiêu mạng con trên mạng Internet?
- Sẽ có rất nhiều mục trong bảng chọn đường?
- Các mạng con kế tiếp với cùng địa chỉ đích có thể được tổng hợp lại để làm giảm số mục trong bảng chọn đường.







- Ví dụ về Viettel
  - Không gian địa chỉ IP: khá lớn
    - 203.113.128.0-203.113.191.255
  - ðể kết nối đến một mạng con của Vietel (khách hàng): Chỉ cần chỉ ra đường đi đến mạng Viettel
- ðường đi mặc định chính là một dạng của việc kết hợp đường
  - 0.0.0.0/0

# Ví dụ về bảng chọn đường – máy trạm



C:\Documents and Settings\hongson>netstat -rn Route Table

\_\_\_\_\_

#### **Interface List**

0x1 ......MS TCP Loopback interface

0x2 ...08 00 1f b2 a1 a3 ...... Realtek RTL8139 Family PCI Fast Ethernet NIC -

\_\_\_\_\_\_

#### **Active Routes:**

| Network         | Netmask         | Gateway      | Interface    | Metric |
|-----------------|-----------------|--------------|--------------|--------|
| 0.0.0.0         | 0.0.0.0         | 192.168.1.1  | 192.168.1.34 | 20     |
| 127.0.0.0       | 255.0.0.0       | 127.0.0.1    | 127.0.0.1    | 1      |
| 192.168.1.0     | 255.255.255.0   | 192.168.1.34 | 192.168.1.34 | 20     |
| 192.168.1.34    | 255.255.255.255 | 127.0.0.1    | 127.0.0.1    | 20     |
| 192.168.1.255   | 255.255.255.255 | 192.168.1.34 | 192.168.1.34 | 20     |
| 224.0.0.0       | 240.0.0.0       | 192.168.1.34 | 192.168.1.34 | 20     |
| 255.255.255.255 | 255.255.255.255 | 192.168.1.34 | 192.168.1.34 | 1      |

Default Gateway: 192.168.1.1

\_\_\_\_\_

# Ví dụ về bảng chọn đường – Router (trích)



```
#show ip route
Prefix Next Hop
203.238.37.0/24 via 203.178.136.14
203.238.37.96/27 via 203.178.136.26
203.238.37.128/27 via 203.178.136.26
203.170.97.0/24 via 203.178.136.14
192.68.132.0/24 via 203.178.136.29
203.254.52.0/24 via 203.178.136.14
202.171.96.0/24 via 203.178.136.14
```

## Chọn đường tĩnh và chọn đường động

Chọn đường tĩnh Chọn đường động Ưu điểm – nhược điểm



### Vấn đề cập nhật bảng chọn đường

- Sự thay đổi cấu trúc mạng: thêm mạng mới, một nút mạng bị mất điện
- Sự cần thiết phải cập nhật bảng chọn đường
  - Cho tất cả các nút mạng (về lý thuyết)
  - Thực tế, chỉ một số nút mạng phải cập nhật

| Network        | Next-<br>hop |
|----------------|--------------|
| 192.168.0.0/24 | В            |
| 172.16.0.0/24  | В            |

| Network       | Next-<br>hop |
|---------------|--------------|
| 10.0.0.0/24   | А            |
| 172.16.0.0/24 | С            |

| Network        | Next-<br>hop |
|----------------|--------------|
| 10.0.0.0/24    | В            |
| 192.168.0.0/24 | В            |

172.16.1.0/24

В

172.16.1.0/24







- Chọn đường tĩnh
  - Các mục trong bảng chọn đường được sửa đối thủ công bởi người quản trị
- Chọn đường động
  - Tự động cập nhật bảng chọn đường
  - Bằng các giao thức chọn đường

### Chọn đường tĩnh

- Khi có sự cố:
  - Không thể nối vào
     Internet kể cả khi có tồn
     tại đường đi dự phòng
  - Người quản trị mạng cần thay đổi



Bảng chọn đường của 10.0.0.1 (1 phần)

| Prefix    | Next-hop |
|-----------|----------|
| 0.0.0.0/0 | 10.0.0.3 |
|           | ć        |

Next-hop 10.0.0.1

### Chọn đường động

- Khi có sự cố:
  - ðường đi thay thế được cập nhật một cách tự động







### ðặc điểm của chọn đường tĩnh



- Uu
  - Ôn định
  - An toàn
  - Không bị ảnh hưởng bởi các yếu tố tác động
- Nhược
  - Cứng nhắc
  - Không thể sử dụng tự động kết nối dự phòng
  - Khó quản lý





- Uu
  - Dễ quản lý
  - Tự động sử dụng kết nối dự phòng
- Nhược
  - Tính an toàn
  - Các giao thức chọn đường phức tạp và khó hiểu
  - Khó quản lý

# Các giải thuật và giao thức chọn đường

Giải thuật Dijkstra và Bellman-Ford Giao thức dạng link-state và dạng distance-vector







- ðồ thị với các nút (bộ định tuyến) và các cạnh (liên kết)
- Chi phí cho việc sử dụng mỗi liên kết c(x,y)
  - Băng thông, độ trễ, chi phí, mức độ tắc nghẽn...
- Giả thuật chọn đường: Xác định đường đi ngắn nhất giữa hai nút bất kỳ



### Cây đường đi ngắn nhất - SPT





- SPT Shortest Path Tree
- Các cạnh xuất phát từ nút gốc và tới các lá
- ðường đi duy nhất từ nút gốc tới nút v, là đường đi ngắn nhất giữa nút gốc và nút v
- Mỗi nút sẽ có một SPT của riêng nút đó





- Tập trung
  - Thu thập thông tin vào một nút mạng
  - Sử dụng các giải thuật tìm đường đi trên đồ thị
  - Phân bổ bảng chọn đường từ nút trung tâm tới các nút
- Phân tán
  - Mỗi nút tự xây dựng bảng chọn đường riêng
  - Giao thức chọn đường: Link-state hoặc distancevector
  - ðược sử dụng phổ biến trong thực tế





- Thông tin chọn đường là cần thiết để xây dựng bảng chọn đường
- Tập trung hay phân tán?
  - Tập trung:
    - Mỗi router có thông tin đầy đủ về trạng thái của mạng
    - Giải thuật dạng "link state"
  - Phân tán:
    - Các nút chỉ biết được trạng thái của liên kết vật lý tới nút kế bên
    - Liên tục lặp lại việc tính toán và trao đổi thông tin với nút kế bên
    - Giải thuật dạng "distance vector"
    - "Bạn của bạn cũng là bạn"





#### Giải thuật Dijkstra's

- Mỗi nút đều có sơ đồ và chi phí mỗi link
  - Quảng bá "Link-state"
- Tìm đường đi chi phí nhỏ nhất từ một nút ('nguồn') tới tất cả các nút khác
  - dùng để xây dựng bảng chọn đường





- G = (V, E): đồ thị với tập đỉnh V và tập cạnh E
- c(x,y): chi phí của liên kết x tới y; = ∞ nếu không phải 2 nút kế nhau
- d(v): chi phí hiện thời của đường đi từ nút nguồn tới nút đích. v
- p(v): nút ngay trước nút v trên đường đi từ nguồn tới đích
- T: Tập các nút mà đường đi ngắn nhất đã được xác định





Init():

```
Với mỗi nút v, d[v] = \infty, p[v] = NIL
d[s] = 0
```

 Improve(u,v), trong dó (u,v) là một cạnh nào đó của G

```
if d[v] > d[u] + c(u,v) then

d[v] = d[u] + c(u,v)
p[v] = u
```

### Dijkstra's algorithm: Ví dụ

uxyvwz •



| Step | Т                  | d(v),p(v)      | d(w),p(w) | d(x),p(x) | d(y),p(y) | d(z),p(z) |
|------|--------------------|----------------|-----------|-----------|-----------|-----------|
| 0    | u                  | 2,u            | 5,u       | 1,u       | ∞         | ∞         |
| 1    | UX <b>←</b>        | 2,u            | 4,x       |           | 2,x       | ∞         |
| 2    | uxy <mark>←</mark> | <del>2,u</del> | 3,y       |           |           | 4,y       |
| 3    | uxyv               |                | 3,y       |           |           | 4,y       |
| 4    | uxyvw 🕶            |                |           |           |           | 4,y       |
| 5    | uxyvwz <b>←</b>    |                |           |           |           |           |



### Ví dụ



| # | N                  | D2 | D3 | D4 | D5       | D6 | P2 | Р3 | P4 | P5 | Р6 |
|---|--------------------|----|----|----|----------|----|----|----|----|----|----|
|   | {1}                | 3  | 2  | 5  | $\infty$ | ∞  | 1  | 1  | 1  | 1  | 1  |
| 1 | {1, 3}             | 3  | 2  | 4  | $\infty$ | 3  | 1  | 1  | 3  | 1  | 3  |
| 2 | {1, 3, 2}          | 3  |    | 4  | 7        | 3  | 1  |    | 3  | 2  | 3  |
| 3 | {1, 3, 2, 6}       |    |    | 4  | 5        | 3  |    |    | 3  | 6  | 3  |
| 4 | {1, 3, 2, 6, 4}    |    |    | 4  | 5        |    |    |    | 3  | 6  |    |
| 5 | {1, 3, 2, 6, 4, 5} |    |    |    | 5        |    |    |    |    | 6  |    |





Được dùng trong ARPNet và RIP

#### Ban đầu:

Mỗi node biết thông tin về khoảng cách (distance, cost) tới các node hàng xóm

#### Kết thúc giải thuật:

Khoảng cách tới tất cả các node được biết bao gồm thông tin về node kế tiếp

#### Để thực thi giải thuật distance-vector



- 1. Thông tin gì được trao đổi?
- 2. Khi nhận được thông tin thì các node làm gì?
- 3. Khi nào thì thông tin được gửi đi?

#### Thông tin bảng định tuyến

- Mỗi node có 1 bảng định tuyến (distance-vector)
  - 1. Thông tin về đích đến
  - 2. Ước lượng chi phí đến đích
  - 3. Node kế tiếp để đi đến đích



#### Bảng định tuyến lúc khởi tạo

| Destination | Cost | Next-hop |
|-------------|------|----------|
| Α           | 0    | Α        |
| В           | 3    | В        |
| С           | 5    | С        |
| D           | 2    | D        |

#### Thông tin trao đổi giữa routers

- Một phần thông tin trong bảng định tuyến
  - 1. Thông tin về đích đến
  - 2. Ước lượng chi phí đến đích
  - 3. Node kế tiếp để đi đến đích

# Router tính đường đi dựa trên thông tin nhận được thế nào?



Phương trình Bellman-Ford

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

 $d_x(y) := chi phí của đường đi ngắn nhất từ x tới y$ 

Áp dụng phương trình Bellman-Ford cho tất cả các v là hàng xóm của x → d<sub>x</sub>(y)

#### Các bước thực thi trên router

- Khi nhận thông tin từ router hàng xóm v
  - Cập nhật thông tin về chi phí tới đích theo phương trình Bellman-Ford
  - Thay đổi thông tin node kế tiếp tương ứng
- Lặp lại tính toán với mỗi đích đến trong bảng định tuyến
- Sau chuỗi thông tin định tuyến trao đối, tính chi phí tối ưu nhất.

## Minh họa – Node A + thông tin từ node B





| Dest | Cost | NH |
|------|------|----|
| Α    | 0    | Α  |
| В    | 3    | В  |
| С    | 5    | С  |
| D    | 2    | D  |

| Dest | Cost |
|------|------|
| В    | 0    |
| Α    | 3    |
| С    | 1    |
| E    | 4    |

Bảng định tuyến node A

Thông tin từ node **B** 



| Dest | Cost                  | NH |
|------|-----------------------|----|
| Α    | 0                     | Α  |
| В    | 3                     | В  |
| С    | <del>5</del> <b>4</b> | В  |
| D    | 2                     | D  |
| E    | 7                     | В  |

## Minh họa – Node A + thông tin từ node C





| Dest | Cost | NH |
|------|------|----|
| Α    | 0    | Α  |
| В    | 3    | В  |
| С    | 5    | С  |
| D    | 2    | D  |

| Dest | Cost |
|------|------|
| С    | 0    |
| Α    | 5    |
| В    | 1    |
| Е    | 3    |
| D    | 2    |

Thông tin từ node **C** 

Bảng định tuyến node A



| Dest | Cost | NH  |
|------|------|-----|
| Α    | 0    | Α   |
| В    | 3    | В   |
| С    | 4    | С   |
| D    | 2    | D 3 |
| Е    | 7    | В   |

#### Minh họa – Node A + thông tin từ node D





| Dest | Cost | NH |
|------|------|----|
| Α    | 0    | Α  |
| В    | 3    | В  |
| С    | 5    | С  |
| D    | 2    | D  |

| Dest | Cost |
|------|------|
| D    | 0    |
| Α    | 2    |
| С    | 2    |
| F    | 1    |

Thông tin từ node **D** 

Bảng định tuyến node A



| Dest | Cost | NH |
|------|------|----|
| Α    | 0    | Α  |
| В    | 3    | В  |
| С    | 4    | С  |
| D    | 2    | D  |
| E    | 7    | В  |
| F    | 3    | D  |

#### Minh họa – Node B + thông tin từ node A





| Dest | Cost | NH |
|------|------|----|
| В    | 0    | В  |
| Α    | 3    | Α  |
| С    | 1    | С  |
| E    | 4    | E  |

Bảng định tuyến node B



| Dest | Cost |
|------|------|
| Α    | 0    |
| В    | 3    |
| С    | 4    |
| D    | 2    |
| Ε    | 7    |
| F    | 3    |

Thông tin từ node **A** 

| Dest | Cost | NH |
|------|------|----|
| В    | 0    | В  |
| Α    | 3    | Α  |
| С    | 1    | С  |
| E    | 4    | Е  |
| D    | 5    | A  |
| F    | 6    | A  |

## Minh họa – Node B + thông tin từ node C





| Dest | Cost | NH |
|------|------|----|
| В    | 0    | В  |
| Α    | 3    | Α  |
| С    | 1    | С  |
| E    | 4    | Е  |
| D    | 5    | Α  |
| F    | 6    | Α  |

| Dest | Cost |
|------|------|
| С    | 0    |
| Α    | 5    |
| В    | 1    |
| Е    | 3    |
| D    | 2    |

Thông tin từ node **C** 

| Bảng địn | ıh | tuyến |
|----------|----|-------|
| node B   |    |       |
|          |    |       |
|          | ı  |       |

| Dest | Cost           | NH         |
|------|----------------|------------|
| В    | 0              | В          |
| Α    | 3              | Α          |
| С    | 1              | С          |
| Е    | 4              | E          |
| D    | <del>5</del> 3 | <b>C</b> 3 |
| F    | 6              | Α          |

## Minh họa – Node B + thông tin từ node E





| Dest | Cost | NH |
|------|------|----|
| В    | 0    | В  |
| Α    | 3    | Α  |
| С    | 1    | С  |
| Е    | 4    | E  |
| D    | 3    | Α  |
| F    | 6    | Α  |

| Dest | Cost |
|------|------|
| Е    | 0    |
| В    | 4    |
| С    | 3    |
| F    | 2    |

Thông tin từ node **E** 

| Bảng đị | nh | tuyến |
|---------|----|-------|
| node B  |    |       |
|         |    |       |
|         | ı  |       |

| Dest | Cost | NH |
|------|------|----|
| В    | 0    | В  |
| Α    | 3    | Α  |
| С    | 1    | С  |
| E    | 4    | E  |
| D    | 3    | А  |
| F    | 6    | Α  |

## Minh họa – Node C + thông tin từ node A





| Dest | Cost | NH |
|------|------|----|
| С    | 0    | С  |
| Α    | 5    | Α  |
| В    | 1    | В  |
| D    | 2    | D  |
| Е    | 3    | Е  |

Bảng định tuyến node D



| Dest | Cost |
|------|------|
| А    | 0    |
| В    | 3    |
| С    | 4    |
| D    | 2    |
| E    | 7    |
| F    | 3    |

Thông tin từ node **A** 

| Dest | Cost           | NH  |
|------|----------------|-----|
| С    | 0              | С   |
| A    | <del>5</del> 4 | A B |
| В    | 1              | В   |
| D    | 2              | D   |
| Ε    | 3              | Ε   |
| F    | 8              | A   |

## Minh họa – Node C + thông tin từ node B





| Dest | Cost | NH |
|------|------|----|
| С    | 0    | С  |
| Α    | 4    | В  |
| В    | 1    | В  |
| D    | 2    | D  |
| Ε    | 3    | E  |
| F    | 8    | Α  |

| Dest | Cost |
|------|------|
| В    | 0    |
| Α    | 3    |
| С    | 1    |
| Е    | 4    |
| D    | 3    |
| F    | 6    |

Thông tin từ node **B** 

Bảng định tuyến node C



| Dest | Cost | NH |
|------|------|----|
| С    | 0    | С  |
| Α    | 4    | В  |
| В    | 1    | В  |
| D    | 2    | D  |
| Е    | 3    | Е  |
| F    | 8 7  | В  |

## Minh họa – Node C + thông tin từ node E





| Dest | Cost | NH |
|------|------|----|
| С    | 0    | С  |
| Α    | 4    | В  |
| В    | 1    | В  |
| D    | 2    | D  |
| Е    | 3    | Е  |
| F    | 7    | В  |

| Bảng đ | tịnh | tuyến |
|--------|------|-------|
| node C |      | ·     |
|        |      |       |
|        |      |       |
|        |      |       |

| Dest | Cost |
|------|------|
| E    | 0    |
| В    | 4    |
| С    | 3    |
| F    | 2    |

Thông tin từ node **E** 

| Dest | Cost       | NH |
|------|------------|----|
| С    | 0          | С  |
| Α    | 4          | В  |
| В    | 1          | В  |
| D    | 2          | D  |
| E    | 3          | E  |
| F    | <b>7</b> 5 | E  |

## Minh họa – Node C + thông tin từ node D





| Dest | Cost | NH |
|------|------|----|
| С    | 0    | С  |
| Α    | 4    | В  |
| В    | 1    | В  |
| D    | 2    | D  |
| Е    | 3    | Е  |
| F    | 5    | Е  |

| n |
|---|
|   |

| Dest | Cost |
|------|------|
| E    | 0    |
| Α    | 2    |
| С    | 2    |
| F    | 1    |

Thông tin từ node **D** 

| Dest | Cost           | NH |
|------|----------------|----|
| С    | 0              | С  |
| Α    | 4              | В  |
| В    | 1              | В  |
| D    | 2              | D  |
| Е    | 3              | Ε  |
| F    | <del>5</del> 3 | D  |

#### Minh họa – Node D + thông tin từ node A





| Dest | Cost | NH |
|------|------|----|
| D    | 0    | D  |
| Α    | 2    | Α  |
| С    | 2    | С  |
| F    | 1    | F  |

Bảng định tuyến node D



| Dest | Cost |
|------|------|
| Α    | 0    |
| В    | 3    |
| С    | 4    |
| D    | 2    |
| Е    | 7    |
| F    | 3    |

Thông tin từ node **A** 

| Dest | Cost | NH |
|------|------|----|
| D    | 0    | D  |
| Α    | 2    | Α  |
| С    | 2    | С  |
| F    | 1    | F  |
| В    | 5    | A  |
| E    | 9    | A  |

## Minh họa – Node D + thông tin từ node C





| Dest | Cost | NH |
|------|------|----|
| D    | 0    | D  |
| Α    | 2    | Α  |
| С    | 2    | С  |
| F    | 1    | F  |
| В    | 5    | Α  |
| E    | 9    | Α  |

| Dest | Cost |
|------|------|
| С    | 0    |
| Α    | 4    |
| В    | 1    |
| D    | 2    |
| Е    | 3    |
| F    | 3    |

Thông tin từ node **C** 

Bảng định tuyến node D



| Dest | Cost       | NH         |
|------|------------|------------|
| D    | 0          | D          |
| Α    | 2          | Α          |
| С    | 2          | С          |
| F    | 1          | F          |
| В    | <b>5</b> 3 | <b>C</b> 3 |
| E    | 9 5        | C          |

#### Minh họa – Node D + thông tin từ node F





| Dest | Cost | NH |
|------|------|----|
| D    | 0    | D  |
| Α    | 2    | Α  |
| С    | 2    | С  |
| F    | 1    | F  |
| В    | 3    | С  |
| Е    | 5    | С  |

| Dest | Cost |
|------|------|
| F    | 0    |
| E    | 2    |
| D    | 1    |

Thông tin từ node **F** 

| Bảng đị | nh tuyến |
|---------|----------|
| node D  |          |



#### Minh họa – Node E + thông tin từ node B





| Dest | Cost | NH |
|------|------|----|
| Е    | 0    | Е  |
| В    | 4    | В  |
| С    | 3    | С  |
| F    | 2    | F  |

Bảng định tuyến node E

| Dest | Cost |
|------|------|
| В    | 0    |
| Α    | 3    |
| С    | 1    |
| Е    | 4    |
| D    | 3    |
| F    | 6    |

Thông tin từ node **B** 



| Dest | Cost | NH |
|------|------|----|
| Е    | 0    | E  |
| В    | 4    | В  |
| С    | 3    | С  |
| F    | 2    | F  |
| Α    | 7    | B  |
| D    | 7    | В  |

## Minh họa – Node E + thông tin từ node C





| Dest | Cost | NH |
|------|------|----|
| E    | 0    | Е  |
| В    | 4    | В  |
| С    | 3    | С  |
| F    | 2    | F  |
| Α    | 7    | В  |
| D    | 7    | В  |



Thông tin từ node **C** 

Bảng định tuyến node E



| Dest | Cost           | NH |
|------|----------------|----|
| Е    | 0              | E  |
| В    | 4              | В  |
| С    | 3              | С  |
| F    | 2              | F  |
| Α    | 7              | В  |
| D    | <del>7</del> 5 | В  |

## Minh họa – Node E + thông tin từ node F





| Dest | Cost | NH |
|------|------|----|
| E    | 0    | Е  |
| В    | 4    | В  |
| С    | 3    | С  |
| F    | 2    | F  |
| Α    | 7    | В  |
| D    | 5    | С  |

| Dest | Cost |
|------|------|
| F    | 0    |
| Е    | 2    |
| D    | 1    |

Thông tin từ node **F** 

Bảng định tuyến node E



| Dest | Cost           | NH |
|------|----------------|----|
| E    | 0              | E  |
| В    | 4              | В  |
| С    | 3              | С  |
| F    | 2              | F  |
| Α    | 7              | В  |
| D    | <del>5</del> 3 | F  |

## Minh họa – Node F + thông tin từ node E





| Dest | Cost | NH |
|------|------|----|
| F    | 0    | F  |
| E    | 2    | Е  |
| D    | 1    | D  |

Bảng định tuyến node F



| Dest | Cost |
|------|------|
| Е    | 0    |
| В    | 4    |
| C    | 3    |
| F    | 2    |
| A    | 7    |
| D    | 3    |

Thông tin từ node **E** 

| Dest | Cost | NH         |
|------|------|------------|
| F    | 0    | F          |
| Е    | 2    | Е          |
| D    | 1    | D          |
| Α    | 9    | E          |
| В    | 6    | E          |
| С    | 5    | <b>E</b> , |

## Minh họa – Node F + thông tin từ node D





| Dest | Cost | NH |
|------|------|----|
| F    | 0    | F  |
| Е    | 2    | Е  |
| D    | 1    | D  |
| Α    | 9    | Е  |
| В    | 6    | Е  |
| С    | 5    | Е  |





Thông tin từ node **D** 



#### Minh họa – Node A + thông tin từ node B





| Dest | Cost | NH |
|------|------|----|
| Α    | 0    | Α  |
| В    | 3    | В  |
| С    | 4    | С  |
| D    | 2    | D  |
| E    | 7    | В  |
| F    | 3    | D  |

| Dest | Cost |
|------|------|
| В    | 0    |
| Α    | 3    |
| С    | 1    |
| E    | 4    |
| D    | 3    |
| F    | 6    |

Thông tin từ node **B** 

Bảng định tuyến node A



#### Minh họa – Node A + thông tin từ node C





| Dest | Cost | NH |
|------|------|----|
| Α    | 0    | Α  |
| В    | 3    | В  |
| С    | 4    | С  |
| D    | 2    | D  |
| E    | 7    | В  |
| F    | 3    | D  |

| Dest | Cost |
|------|------|
| С    | 0    |
| Α    | 4    |
| В    | 1    |
| D    | 2    |
| Е    | 3    |
| F    | 3    |

Thông tin từ node **C** 

Bảng định tuyến node A



#### Minh họa – Node A + thông tin từ node D





| Dest | Cost | NH |
|------|------|----|
| Α    | 0    | А  |
| В    | 3    | В  |
| С    | 4    | С  |
| D    | 2    | D  |
| Е    | 7    | В  |
| F    | 3    | D  |

Bảng định tuyến node A



| Dest | Cost |
|------|------|
| D    | 0    |
| Α    | 2    |
| С    | 2    |
| F    | 1    |
| В    | 3    |
| E    | 3    |

Thông tin từ node **D** 

| Dest | Cost       | NH |
|------|------------|----|
| Α    | 0          | Α  |
| В    | 3          | В  |
| С    | 4          | С  |
| D    | 2          | D  |
| Е    | <b>7</b> 5 | В  |
| F    | 3          | D  |

#### Minh họa – Node B + thông tin từ node A





| Dest | Cost | NH |
|------|------|----|
| В    | 0    | В  |
| Α    | 3    | Α  |
| С    | 1    | С  |
| Е    | 4    | Е  |
| D    | 3    | С  |
| F    | 6    | С  |

| Dest | Cost |
|------|------|
| Α    | 0    |
| В    | 3    |
| С    | 4    |
| D    | 2    |
| Е    | 5    |
| F    | 3    |

Thông tin từ node **A** 

Bảng định tuyến node B



## Minh họa – Node B + thông tin từ node C





| Dest | Cost | NH |
|------|------|----|
| В    | 0    | В  |
| Α    | 3    | Α  |
| С    | 1    | С  |
| Е    | 4    | Е  |
| D    | 3    | С  |
| F    | 6    | Α  |

| Dest | Cost |
|------|------|
| С    | 0    |
| Α    | 4    |
| В    | 1    |
| D    | 2    |
| Ε    | 3    |
| F    | 3    |

Thông tin từ node **C** 

| Bảng địn | ıh | tuyến |
|----------|----|-------|
| node B   |    |       |
|          |    |       |
|          |    |       |

| Dest | Cost | NH |
|------|------|----|
| В    | 0    | В  |
| Α    | 3    | Α  |
| С    | 1    | С  |
| Е    | 4    | E  |
| D    | 3    | С  |
| F    | 6 4  | C  |

#### Minh họa – Node B + thông tin từ node E





| Dest | Cost | NH |
|------|------|----|
| В    | 0    | В  |
| Α    | 3    | Α  |
| С    | 1    | С  |
| Е    | 4    | Е  |
| D    | 3    | Α  |
| F    | 4    | С  |

| Dest | Cost |
|------|------|
| Е    | 0    |
| В    | 4    |
| С    | 3    |
| F    | 2    |
| Α    | 7    |
| D    | 3    |

Thông tin từ node **E** 

Bảng định tuyến node B



#### Minh họa – Node C + thông tin từ node A





| Dest | Cost | NH |
|------|------|----|
| С    | 0    | С  |
| Α    | 4    | В  |
| В    | 1    | В  |
| D    | 2    | D  |
| E    | 3    | Е  |
| F    | 3    | D  |

| Dest | Cost |
|------|------|
| Α    | 0    |
| В    | 3    |
| С    | 4    |
| D    | 2    |
| E    | 5    |
| F    | 3    |

Thông tin từ node **A** 

Bảng định tuyến node C



#### Minh họa – Node C + thông tin từ node B





| Dest | Cost | NH |
|------|------|----|
| С    | 0    | С  |
| Α    | 4    | В  |
| В    | 1    | В  |
| D    | 2    | D  |
| Ε    | 3    | Е  |
| F    | 3    | D  |

| Dest | Cost |
|------|------|
| В    | 0    |
| Α    | 3    |
| С    | 1    |
| Е    | 4    |
| D    | 3    |
| F    | 4    |

Thông tin từ node **B** 

Bảng định tuyến node C



#### Minh họa – Node C + thông tin từ node E





| Dest | Cost | NH |
|------|------|----|
| С    | 0    | С  |
| Α    | 4    | В  |
| В    | 1    | В  |
| D    | 2    | D  |
| Е    | 3    | Е  |
| F    | 3    | D  |

| Dest | Cost |
|------|------|
| Е    | 0    |
| В    | 4    |
| С    | 3    |
| F    | 2    |
| Α    | 7    |
| D    | 3    |

Thông tin từ node **E** 

Bảng định tuyến node B



## Minh họa – Node C + thông tin từ node D





| Dest | Cost | NH |
|------|------|----|
| С    | 0    | С  |
| Α    | 4    | В  |
| В    | 1    | В  |
| D    | 2    | D  |
| Е    | 3    | Е  |
| F    | 5    | E  |

| Dest | Cost |
|------|------|
| D    | 0    |
| Α    | 2    |
| С    | 2    |
| F    | 1    |
| В    | 3    |
| Е    | 3    |

Thông tin từ node **D** 

| Bảng đị | nh | tuyến |
|---------|----|-------|
| node B  |    |       |
|         |    |       |

| Dest | Cost           | NH |
|------|----------------|----|
| С    | 0              | С  |
| Α    | 4              | В  |
| В    | 1              | В  |
| D    | 2              | D  |
| Е    | 3              | E  |
| F    | <del>5</del> 3 | D  |

#### Minh họa – Node D + thông tin từ node A





| Dest | Cost | NH |
|------|------|----|
| D    | 0    | D  |
| Α    | 2    | Α  |
| С    | 2    | С  |
| F    | 1    | F  |
| В    | 3    | С  |
| Е    | 3    | F  |

| Dest | Cost |
|------|------|
| Α    | 0    |
| В    | 3    |
| С    | 4    |
| D    | 2    |
| E    | 5    |
| F    | 3    |

Thông tin từ node A

Bảng định tuyến node D



#### Minh họa – Node D + thông tin từ node C





| Dest | Cost | NH |
|------|------|----|
| D    | 0    | D  |
| Α    | 2    | Α  |
| С    | 2    | С  |
| F    | 1    | F  |
| В    | 3    | С  |
| Е    | 3    | F  |

| Dest | Cost |
|------|------|
| С    | 0    |
| Α    | 4    |
| В    | 1    |
| D    | 2    |
| E    | 3    |
| F    | 3    |

Thông tin từ node **C** 

Bảng định tuyến node D



#### Minh họa – Node D + thông tin từ node F





| Dest | Cost | NH |
|------|------|----|
| D    | 0    | D  |
| Α    | 2    | Α  |
| С    | 2    | С  |
| F    | 1    | F  |
| В    | 3    | С  |
| E    | 3    | F  |

| Dest | Cost |
|------|------|
| F    | 0    |
| Е    | 2    |
| D    | 1    |
| Α    | 3    |
| В    | 4    |
| С    | 3    |

Thông tin từ node F

Bảng định tuyến node D



#### Minh họa – Node E + thông tin từ node B





| Dest | Cost | NH |
|------|------|----|
| E    | 0    | E  |
| В    | 4    | В  |
| С    | 3    | С  |
| F    | 2    | F  |
| Α    | 7    | В  |
| D    | 3    | F  |

| Dest | Cost |
|------|------|
| В    | 0    |
| Α    | 3    |
| С    | 1    |
| E    | 4    |
| D    | 3    |
| F    | 4    |

Thông tin từ node B

Bảng định tuyến node E



## Minh họa – Node E + thông tin từ node C





| Dest | Cost | NH |
|------|------|----|
| E    | 0    | Е  |
| В    | 4    | В  |
| С    | 3    | С  |
| F    | 2    | F  |
| Α    | 7    | В  |
| D    | 3    | F  |

| Dest | Cost |
|------|------|
| С    | 0    |
| Α    | 4    |
| В    | 1    |
| D    | 2    |
| E    | 3    |
| F    | 3    |

Thông tin từ node **C** 

Bảng định tuyến node E



## Minh họa – Node E + thông tin từ node F





| Dest | Cost | NH |
|------|------|----|
| E    | 0    | Е  |
| В    | 4    | В  |
| С    | 3    | С  |
| F    | 2    | F  |
| Α    | 7    | В  |
| D    | 3    | F  |

Bảng định tuyến node E



| Dest | Cost |
|------|------|
| F    | 0    |
| Е    | 2    |
| D    | 1    |
| A    | 3    |
| В    | 4    |
| С    | 3    |

Thông tin từ node **F** 

| Dest | Cost       | NH |
|------|------------|----|
| Е    | 0          | Е  |
| В    | 4          | В  |
| С    | 3          | С  |
| F    | 2          | F  |
| Α    | <b>7</b> 5 | F  |
| D    | 3          | F  |

## Minh họa – Node F + thông tin từ node E





| Dest | Cost | NH |
|------|------|----|
| F    | 0    | F  |
| Е    | 2    | Е  |
| D    | 1    | D  |
| Α    | 3    | D  |
| В    | 4    | D  |
| С    | 3    | D  |

| Dest | Cost |
|------|------|
| E    | 0    |
| В    | 4    |
| С    | 3    |
| F    | 2    |
| Α    | 5    |
| D    | 3    |

Thông tin từ node **E** 

Bảng định tuyến node F



## Minh họa – Node F + thông tin từ node D





| Dest | Cost | NH |
|------|------|----|
| F    | 0    | F  |
| Е    | 2    | Е  |
| D    | 1    | D  |
| Α    | 3    | D  |
| В    | 4    | D  |
| С    | 3    | D  |

| Dest | Cost |
|------|------|
| D    | 0    |
| Α    | 2    |
| С    | 2    |
| F    | 1    |
| В    | 3    |
| Е    | 3    |

Thông tin từ node **D** 

Bảng định tuyến node F



## Khi nào gửi thông tin định tuyến?

- Gửi ngay khi có sự kiện
  - Link/node lõi
  - Chi phí thay đổi
- Gửi định kỳ
  - Báo cho các node khác, mình vẫn sống
  - Cập nhật thông tin về chi phí (distance vector)
  - Chu kỳ: vài giây → vài phút

#### Distance Vector

d(u) > d(v) + c(u,v) d(u) = d(v) + c(u,v)Bellman Ford



$$A = 0$$

$$d(B) = 3 > d(A) + c(A,B) = 0 + 3$$

$$d(C) = \infty, 5, 4$$

$$d(D) = \infty, 2$$

$$d(E) = \infty$$
, 7

$$d(F) = \infty$$
, 3

(A,B)(A,C)(A,D)(B,C)(B,E)(C,D)(C,E)(D,F)(E,F)

#### So sánh các giải thuật LS và DV



#### Thông điệp trao đổi

- LS: n nút, E cạnh, O(nE) thông điệp
- DV: Chỉ trao đổi giữa các hàng xóm
  - Thời gian hội tụ thay đổi

#### Tốc độ hội tụ

- LS: Thuật toán: O(n²) cần O(nE) thông điệp
- DV: Thay đổi

Sự chắc chắn: Giải sử một router hoạt động sai

#### <u>LS:</u>

- nút gửi các chi phí sai
- Mỗi nút tính riêng bảng chọn đường -> có vẻ chắc chắn hơn

#### DV:

- DV có thể bị gửi sai
- Mỗi nút tính toán dựa trên các nút khác
  - Lỗi bị lan truyền trong mạng





- Nguyên lý của bài toán chọn đường
- Tĩnh vs. động, tập trung vs. phân tán
- Link-state vs. distance-vector

# Tuần tới: Các giao thức chọn đường trên Internet



- Chọn đường phân cấp
- RIP
- OSPF
- BGP