CS455 WEEK 12 HOMEWORK SHOUMYA SINGH ID-19566

Q25. Use <u>Prim's Minimum Spanning Tree</u> algorithm and <u>Kruskal's Minimum Spanning Tree</u> algorithm to find the <u>shortest path</u> of a maze.

- Step 1: Similar to the <u>previous question</u> of finding the shortest path of the a maze. But instead of using Dijkstra's Algorithm, you will use <u>Minimum Spanning Tree</u> Algorithm.
- Step 2: Comparing the performance of these two algorithm in solving this question by
 - Big-O comparison
- o Step 3: <u>Update your portofolio about the Maze project</u>

STEP 1

STEP 3

STEP 4

STEP 5

Prim's Minimum Spanning Tree (MST)

- A. Create a set mstSet that keeps track of vertices already included in MST.
- B. Assign a key value to all vertices in the input graph.
 - 1. Initialize all key values as **INFINITE**.
 - 2. Assign key value as 0 for the first vertex so that it is picked first.
- C. While mstSet doesn't include all vertices
 - 1. Pick a vertex u which is not there in mstSet and has minimum key value.
 - 2. Include u to mstSet.
 - 3. Update key value of all of u's adjacent vertices which are not in mstSet.

STEP 1:

STEP 2:

Starting from S, the tree can link to two nodes then choose the one with the smallest weight which is A and then go to STEP 2.

STEP 3:

Since A doesn't connect to other nodes, go to next smallest node which is B.

STEP 4:

Now repeat the rule like step 1,2 and keep choosing the smallest nodes till all the vertices are visited.

STEP 5:

S->A->B->C->D 1+3+2+2=8

STEP 6:

S->A->B->C->D->F 1+3+2+2+1=9

STEP 7:

S->A->B->C->D->F->J 1+3+2+2+1+2=11

STEP 8:

S->A->B->C->D->F->J->I 1+3+2+2+1+2+3=14

STEP 9:

S->A->B->C->D->F->J->I->K 1+3+2+2+1+2+3+3=17

STEP 10:

S->A->B->C->D->F->J->I->K->L 1+3+2+2+1+2+3+3+1=18

STEP 11:

S->A->B->C->D->F->J->I->K->L->G 1+3+2+2+1+2+3+3+1+5=23

STEP 12:

S->A->B->C->D->F->J->I->K->L->G->H 1+3+2+2+1+2+3+3+1+5+5=28

STEP 13:

S->A->B->C->D->F->J->I->K->L->G->H->M 1+3+2+2+1+2+3+3+1+5+5+5=33 STEP 14:

The shortest path of the given maze with Prim's minimum spanning tree is as follows:

Time Complexity:

O((v + E)logV)

Kruskal's Minimum Spanning Tree

- 1. Sort all the edges in non-decreasing order of their weight.
- 2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
- 3. Repeat step#2 until there are (V-1) edges in the spanning tree.

After Sorting		
Weight	Source	Destination
1	S	A
1	D	F
1	K	L
2	В	С
2	В	D
2	D	J
3	S	В
3	D	I
3	J	K
5	F	G
5	F	Н
5	J	M
8	K	Е

STEP 1:

The smallest weight is 1 which edge is S-A.

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 9:

STEP 10:

STEP 11:

STEP 12:

STEP 13:

The graph contains 14 vertices . So, the minimum spanning tree formed will be having (14-1) = 13 edges.

Since the number of edges equals to (V - 1), the algorithm stops here.

Total weight = 41 Total steps 13. Time complexity: O(E * logV)