

Presented By:

Kuye Doluwamu

Ashraf Siddiqi

Arsal Abbasi

System Requirement

Obstacle Avoidance

- Sensor notifies lead truck about Obstacles
- Lead truck notifies Platoon
- Status Updated and platoon allignment

Maintaining Distance

- Lead truck receives platoon status.
- Decision is made based on current data
- Following truck performs actions based on the decision

Joining Truck

- Joining truck sends request
- Lead truck Notifies platoon.
- Joining data is sent
- Platoon status is Updated

Track 2 and 3

Scenarios Included in the Timed Automata

- Maintaining distance
- Communication failure
- Truck Join while platooning
- Obstacle avoidance

Task 2 and 3

join_request?

start_process!

Decision

Task 4

- Machine learning algorithm
- Scikit-learn
- Decision Tree
 - Why?
 - Interpretability
 - Feature Importance
 - Data handling

• Training data set

	truck_id	truck_color	truck_height	truck_width	distance_of_route	max_match_of_route	fuel	number_of_sensors	speed
0	1	Red	15	10	250	200	25	7	80
1	2	Green	10	8	150	150	15	6	75
2	3	Blue	12	9	200	50	20	5	78
3	1	Green	15	10	200	150	30	12	90
4	2	Red	8	8	100	100	10	7	85
5	3	Blue	8	10	150	150	15	10	82
6	1	Blue	12	12	150	150	20	16	89
7	2	Green	11	11	100	100	10	7	72
8	3	Red	9	11	50	50	5	15	88
9	1	Red	13	10	300	200	30	10	92
10	2	Green	10	9	100	100	10	6	86
11	3	Blue	9	10	50	50	5	8	80
12	1	Blue	12	12	250	150	25	15	90
13	2	Green	9	10	200	50	10	11	82
14	3	Red	10	11	200	100	5	10	80
15	1	Red	15	10	250	200	25	7	80
16	2	Green	10	8	150	150	15	6	75
17	3	Blue	12	9	200	50	20	5	78
18	1	Green	15	10	200	150	30	12	90
19	2	Red	8	8	100	100	10	7	85
20	3	Blue	8	10	150	150	15	10	82
21	1	Blue	12	12	150	150	20	16	89
22	2	Green	11	11	100	100	10	7	72
23	3	Red	9	11	50	50	5	15	88
24	1	Red	13	10	300	200	30	10	92
25	2	Green	10	9	100	100	10	6	86
26	3	Blue	9	10	50	50	5	8	80
27	1	Blue	12	12	250	150	25	15	90
28	2	Green	9	10	200	50	10	11	82
29	3	Red	10	11	200	100	5	10	80

```
new data = {
    'truck color': ['Red', 'Green', 'Blue'],
    'truck height': [10, 19, 20],
    'truck_width': [17, 18, 20],
    'distance_of_route':[200, 250, 260],
    'max_match_of_route':[200, 250, 250],
    'fuel':[25, 25, 25],
    'number of sensors': [22, 23, 24],
    'speed': [125, 135, 140]
new df = pd.DataFrame(new data)
# Make predictions for the new data
predictions = clf.predict(new df[['truck height', 'truck width', 'number of sensors', 'speed', 'distance of route', 'max match of route', 'fuel']])
# Find the truck with the highest characteristics and assign truck ID 1
predicted df = new_df.copy()
predicted_df['truck_id'] = 0
max_characteristics = new_df[['truck_height', 'truck_width', 'number_of_sensors', 'speed', 'distance_of_route', 'max_match_of_route', 'fuel']].max(axis=1)
predicted df.loc[max characteristics.idxmax(), 'truck id'] = 1
print(predicted df[['truck id', 'truck color']])
```

Lead truck prediction

truck_color	truck_id	
Red	0	0
Green	0	1
Blue	1	2

Task 5

- Joining truck with lead truck integration
- Maintaining distance with lead truck integration

Thank you for your attention!