CS2040S Tutorial 2

Group T40

Week 4

Picture of the Day

Problem 1: Time Complexity Analysis

Problem 1: Time Complexity Analysis

Analyse the following code snippets and find the best asymptotic bound for time complexity of the following functions with respect to n

Problem 1a

```
public int niceFunction(int n) {
  for (int i = 0; i < n; i++) {
    System.out.println("I am nice!");
  }
  return 42;
}</pre>
```

Solution 1a

```
public int niceFunction(int n) {
  for (int i = 0; i < n; i++) { // O(n)
    System.out.println("I am nice!");
  }
  return 42;
}</pre>
```

Time complexity: $\mathcal{O}(n)$

Problem 1b

```
public int meanFunction(int n) {
  if (n == 0) return 0;
  return 2 * meanFunction(n / 2) + niceFunction(n);
}
```

Solution 1b

```
public int meanFunction(int n) { // T(n)
  if (n == 0) return 0;
  return 2 * meanFunction(n / 2) + niceFunction(n); // 1 + T(n / 2) + O(n)
}
```

Suppose the running time for meanFunction is T(n).

$$T(n) = egin{cases} 1, & ext{if } n = 0 \ T(n/2) + \mathcal{O}(n), & ext{otherwise} \end{cases}$$

$$T(n) = egin{cases} 1, & ext{if } n = 0 \ T(n/2) + \mathcal{O}(n), & ext{otherwise} \end{cases}$$

We can try to solve the equation by substitution

$$T(n) \leq T(n/2) + cn$$
 $\leq T(n/4) + cn/2 + cn$
 \cdots
 $\leq T(0) + cn(... + 1/2 + 1)$
how many times?

The number of terms in summation = the number of divide-by-2 needed from n to 0 (floored division). For simplicity, we assume we divide it until 1.

Suppose the number of steps is k, we need to solve

$$rac{n}{2^k} \leq 1$$

Multiply by $\overline{2^k}>0$ and take log on both sides:

$$\lg n \le k$$

So we need at least $\lg n$ terms.

$$egin{align} T(n) & \leq T(0) + cn \sum_{k=0}^{\lg n-1} rac{1}{2^k} \ & \leq 1 + cn \cdot rac{1((1/2)^{\lg n} - 1)}{1/2 - 1} \ & \leq 1 + cn \cdot rac{2^{-(\lg n)} - 1}{-1/2} \ & \leq 1 + cn \cdot 2(1 - n^{-1}) \ & \leq 1 + 2cn - 2c \ & \leq 2cn + 1 - 2c \ & = \mathcal{O}(n) \ \end{cases}$$

• Less tedious approach: draw recursion tree

Problem 1c

```
public int strangerFunction(int n) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
       System.out.println("Execute order?");
    }
  }
  return 66;
}</pre>
```

Solution 1c

```
public int strangerFunction(int n) {
  for (int i = 0; i < n; i++) { // O(n)}
    for (int j = 0; j < i; j++) { // i instructions every loop
       System.out.println("Execute order?");
    }
}
return 66;
}</pre>
```

Simply
$$\sum_{i=1}^n i = n(n+1)/2 = \mathcal{O}(n^2)$$

Problem 1d

```
public int suspiciousFunction(int n) {
  if (n == 0) return 2040;

  int a = suspiciousFunction(n / 2);
  int b = suspiciousFunction(n / 2);

  return a + b + niceFunction(n);
}
```

Solution 1d

```
public int suspiciousFunction(int n) { // T(n)
  if (n == 0) return 2040;

int a = suspiciousFunction(n / 2); // T(n/2)
  int b = suspiciousFunction(n / 2); // T(n/2)

return a + b + niceFunction(n); // 2 + O(n) = O(n)
}
```

Solve for
$$T(n) = 2T(n/2) + \mathcal{O}(n)$$

$$T(n) = \mathcal{O}(n \lg n)$$

Details: see tutorial solution

Problem 1e

```
public int badFunction(int n) {
  if (n <= 0) return 2040;
  if (n == 1) return 2040;

  return badFunction(n - 1) + badFunction(n - 2) + 0;
}</pre>
```

Solution 1e

```
public int badFunction(int n) { // T(n)
   if (n <= 0) return 2040;
   if (n == 1) return 2040;

   return badFunction(n - 1) + badFunction(n - 2) + 0; // T(n) + T(n - 1) + 1
}</pre>
```

Solve for
$$T(n) = T(n-1) + T(n-2) + 1$$

Result: $\mathcal{O}(\phi^n)$

Note: Not the same as Fibonacci sequence! Details on tutorial solution

Problem 1f

```
public int metalGearFunction(int n) {
    for (int i = 0; i < n; i++) {
        for (int j = 1; j < i; j *= 2) {
            System.out.println("!");
        }
    }
    return 0;
}</pre>
```

Solution 1f

```
public int metalGearFunction(int n) {
    for (int i = 0; i < n; i++) { // O(n)
        for (int j = 1; j < i; j *= 2) { // O(lg i)
            System.out.println("!");
        }
    }
    return 0;
}</pre>
```

Each loop takes $\sim \lg(i+1)$ steps.

Time complexity: $\sum_{i=1}^n \lg i = \lg n! \leq \lg n^n = \mathcal{O}(n\lg n)$

Problem 1g

```
public String simpleFunction(int n) {
   String s = "";
   for (int i = 0; i < n; i++) {
        s += "?";
   }
   return s;
}</pre>
```

Solution 1g

```
public String simpleFunction(int n) {
   String s = "";
   for (int i = 0; i < n; i++) { // O(n)
        s += "?"; // O(len(s))
   }
   return s;
}</pre>
```

Note that \mid -= operation on \mid string $\mid s$ takes $\mathcal{O}(len(s))$ time. Hence, it is $\mathcal{O}(n^2)$

For faster appending, you may want to look at StringBuilder that appends in $\mathcal{O}(1)$ time

Reflection on Problem 1

- Analysis of recursive function
 - \circ Assume the time need to execute input of size n is T(n)
 - Form recursive formula and solve it
- Seem harmless, but costly :(
 - If memoization is possible, do it!
- Recursion tree to gain intuition
- Know your library

Problem 2: Sorting Review

Problem 2a

How would you implement insertion sort recursively? Analyse the time complexity by formulating a recurrence relation.

Solution 2a

Let insertionSort(A, n) be an algorithm that sorts first n elements of array A.

- What is the base case?
 - When n is 0, no need to sort
- What is the recursive property?
 - o Take n -th element, sort the rest, insert it

Solution 2a (cont.)

```
public void insertionSort(int[] A, int n) {
    if (n == 0) { // Base case
        return;
    insertionSort(A, n - 1); // Recurse!
    int cur = n;
    while (cur > 0 && A[cur] < A[cur - 1]) {</pre>
        swap(A[cur], A[cur - 1]);
        cur--;
```

Solution 2a (cont.)

```
public void insertionSort(int[] A, int n) { // T(n)
    if (n == 0) {
        return; // 0(1)
    insertionSort(A, n - 1); // T(n - 1)
    int cur = n;
    while (cur > 0 && A[cur] < A[cur - 1]) { // O(n)</pre>
        swap(A[cur], A[cur - 1]);
        cur--;
```

Solution 2a (cont.)

Problem 2b

Consider an array of pairs (a,b). Your goal is to sort them by a in ascending order first, and then by b in ascending order. For example, [(2, 1), (1, 4), (1, 3)] should be sorted into [(1,3), (1,4), (2,1)].

You are given 2 sorting functions, which are a MergeSort and a SelectionSort. You can use each sort at most once. How would you sort the pairs? Assume you can only sort by one field at a time.

Solution 2b

- Insertion sort with key = b and value = a. After that, merge sort with key = a and value = b.
- After the insertion sort, value of b will be nondecreasing.
- Merge sort is stable, hence for the same value a, the corresponding values b is nondecreasing.

Problem 2c

Implement Merge Sort iteratively.

Solution 2c

- ullet Merge every chunk of k elements, where k iterates from 2, 4, 8, and so on.
- Similar as recursive merge sort.
- Since k is always two times larger than its previous value, it will iterate about $\lg n$ times.
- ullet In each iteration, we run through the whole array, i.e. n
- Total time complexity: $\mathcal{O}(n \lg n)$
- ullet Requires $\mathcal{O}(n)$ additional space

Problem 3: Queues and Stacks Review

Recall the Stack and Queue Abstract Data Types (ADTs) that we have seen in CS1101S. Just a quick recap, a Stack is a "LIFO" (Last In First Out) collection of elements that supports the following operations:

- push
- pop
- peek

Problem 3: Queues and Stacks Review (Cont.)

And a Queue is a "FIFO" (First In First Out) collection of elements that supports these operations:

- enqueue
- dequeue
- peek

Problem 3a

Implement Stack and Queue with fixed-size array in Java. Assume that the number of items never exceed the size of array.

Problem 3c

What sorts of problem handling do we need? (Applies for 3a and 3b)

Solution 3a & 3c

Stack

- Use a pointer, let it be tail. Initialize with 0
- When push, add the element to where tail points to. Increase tail by 1
- When pop , decrease tail by 1
- When peek , look through element at tail 1
- Error handling:
 - cannot pop and peek -- tail == 0
 - o cannot push when it is full -- tail == array.length

Solution 3a & 3c

Queue

- Use two pointers, let it be head and tail
- head will be the pointer to to-be-popped element
- tail will be the pointer to to-be-inserted element
- Increase head when dequeue
- Increase tail when enqueue
- Circular array (e.g. head = (head + 1) % A.length)
- Error handling:
 - o cannot dequeue and peek -- head == tail && A[tail] == null
 - cannot enqueue when it is full -- head == tail && A[tail] != null

Problem 3b

Implement Deque (double-ended queue) with fixed-size array in Java, which have the following operations:

- enqueue_front
- dequeue_front
- enqueue_back
- dequeue_back

Assume that the number of items never exceed the size of array.

Solution 3b

- Similar to the idea as before, we have head and tail.
- Here, head = 0 and tail = A.length 1. Hence, we have the invariant that when we run from head to tail (in left direction) circularly (excluding both head and tail), those are elements inside your deque.
- enqueue_front and dequeue_front should increase and decrease head by 1
- enqueue_back and dequeue_back should decrease and increase tail by 1
- Empty when (tail + 1) % A.length == head and both are empty
- Full when (tail + 1) % A.length == head and both are filled

Problem 3d

A set of parentheses is said to be balanced as long as every opening parenthesis "
(" is closed by a closing parenthesis ")". So for example, the strings "()()" and
"(())" are balanced but the strings ")(())(" and "((" are not. Using a stack,
determine whether a string of parentheses are balanced.

Solution 3d

- Push when encounter open brackets
- Pop when encounter closing brackets
- If stack is empty when popping, then it's not balanced
- If at the end it is not empty, then it's not balanced
- Invariant: When we success fully pop a bracket, we found a pair of balanced bracket

Problem 4: Stac and Cue

Problem 4: Stac and Cue

Abridged Problem Statement

Given N houses, each of which has height of H_i . Find the number of houses such that there exist a house to its left and right such that it has higher height than itself.

Leetcode 42. Trapping Rain Water

Solution 4

- Keep track with Stack that store nonincreasing height
- If current house is higher than the previous one, pop from stack -> the house is flooded
- Anything odd?
 - You cannot flood if the left-side is empty!

Test Cases

- [5, 4, 3, 0, 5, 1, 6] -- [F, T, T, T, F, T, F]
- [5, 4, 5, 1, 6, 1, 6] -- [F, T, T, F, F, T, F]

Pseudocode

```
int findFlooded(int n, int[] heights) {
    Stack<Integer> stack;
    int floodedCount = 0;
    int maxHeight = -1;
    for (int height: heights) {
        int popCount = 0;
        while (!stack.empty() && stack.top() < height) {</pre>
            stack.pop();
            popCount += 1;
        if (maxHeight >= height) {
            floodedCount += popCount;
        stack.push(height);
        maxHeight = Math.max(maxHeight, height)
    return floodedCount;
```

Runtime Analysis

Each height is at pushed at least once and popped at most once. Each operation takes $\mathcal{O}(1)$ time. Hence it takes $\mathcal{O}(n)$.

Problem 5: Sorting with Queues (Optional)

Sort a queue using another queue with O(1) additional space

Solution 5

- Use the same idea as problem 1c, i.e. iterative merge sort
- ullet When we want to sort a chunk of size k
 - $\circ~$ Dequeue k/2 elements and put it to the other queue (Call it Q_2)
 - \circ Merging phase takes place in enqueuing in the original queue (Call it Q_1)
- Invariant (after dequeue k/2 elements):
 - \circ The first k/2 elements in Q_1 are sorted
 - \circ The k/2 elements in Q_2 are also sorted
 - \circ After merge, the last inserted k elements in Q_1 are sorted