Machine Learning

1. Motivation + Theorie

Siegfried Gessulat

MSAID

Technical University of Munich Chair of Proteomics and and Bioanalytics

s.gessulat@tum.de

FH Ludwigshafen 2019-09-30

Course Outline

Block I Foundations

Sep 30: Introduction

- Overview machine learning
- Theory: Linear Algebra
- Algorithms: Knn, K-means

Oct 01: Basics

- Theory: linear regression, logistic regression
- Algorithms: gradient descent

Block II Best practices

Neural Networks

- Data cleaning
- Algorithm: Neural Networks

Best practices

- Theory: Cross validation
- Theory: Regularization

Course Outline

Block III Dark Arts

Tricks of the Trade

- Ensembles
- Hyperparameter Search
- Deep Learning Black Magic

Outlook

- Theory: Dimensionality Reduction

Outline Today

- 1. Preliminaries
- 2. Dataset: MNIST
- 3. What is Machine Learning?
- 4. Notation
- 5. Classification: K nearest neighbours (Knn)
- 6. Clustering: K-means
- 7. Theory: Linear Algebra refresher
- 8. Application: Python Intro, Implementation
- 9. Dataset: CIFAR-10

Preliminaries

1. Programming Assignments

Teams of two (1 SAP 1 non-SAP), randomly assigned.

2. Schedule, Dates & Deadlines

3 blocks. 1 assignment per block.

Help desk: Monday after each block - doodle your slot.

<u>Deadlines</u>: Friday after the help desk.

Results: Friday after the deadline.

Lecture							
Sep 30 MO	Oct 01 Tue	Wed	Thu	Oct 04	Fr		
Help				Deadl	ine		
Oct 07 MO	Tue	Wed	Thu	Oct 11	Fr		
						Results	Oct 20
Oct 14 MO	Tue	Wed	Thu	Oct 18	Fr	So	

Preliminaries

1. Programming Assignments

Teams of two (1 SAP 1 non-SAP), randomly assigned.

2. Schedule, Dates & Deadlines

3 blocks. 1 assignment per block.

Help desk: Monday after each block

<u>Deadlines</u>: Friday after the help desk.

Results: Friday after the deadline.

What's your schedule Monday?

3. Grades

Assignment I: 30 points

Assignment II: 30 points

Assignment III: 40 points

Late assignments will cost you points.

4. Resources

After the end of one block, you will get an email with slides, code demonstrations, assignments and a doodle link to the Help desk.

Dataset: MNIST

http://yann.lecun.com/exdb/mnist/

70,000 samples images of handwritten digits 28x28 grayscale images labels are digits from 0-9

Images

image: wikipedia.com

image: research.fb.com

Label

8

image: di.ku.dk

Corinna Cortes

image: microsoft.com

Yann LeCun

Deep Learning (ConvNets)

NYU Professor Head Google Research NY facebook Chief Al Scientist Support Vector Machines

Christopher J.C. Burges formerly Microsoft Research

formerly Microsoft Research Support Vector Machines

What is Machine Learning?

What is Machine Learning?

Do you have labeled data?

supervised what kind of label?

continuous regression

Boston Housing

predict real estate price by attributes of the property

discrete classification

MNIST

classify handwritten digit as 0-9

unsupervised what to generate?

sample → <u>label</u>
clustering

MNIST

cluster handwritten digits in 10 clusters

sample → <u>sample</u> generative

MNIST

generate images of handwritten digits

Do you have labeled data?

supervised what kind of label?

discrete classification

continuous

regression

- K-nearest-neighbours
- -Linear Regression
- Regression Trees
- Support Vector Regression
- Neural Networks

- -Logistic Regression
- Support Vector Machines
- Decision Trees / Forests
- Neural Networks
- -(Gaussian) Mixture Model

unsupervised what to generate?

- -K-means
- (Gaussian) Mixture Models
- Self-organising maps*

- Markov Chains
- Autoencoder*
- Generative Adversarial Networks*

Do you have labeled data?

supervised what kind of label?

continuous regression

- K-nearest-neighbours
- -Linear Regression
- Regression Trees
- Support Vector Regression
- Neural Networks

discrete classification

- -Logistic Regression
- Support Vector Machines
- Decision Trees / Forests
- Neural Networks
- -(Gaussian) Mixture Model

unsupervised what to generate?

- -K-means
- (Gaussian) Mixture Models
- Self-organising maps*

- Markov Chains
- · Autoencoder*
- Generative Adversaria Networks*

Do you have labeled data?

supervised what kind of label?

continuous regression

-Linear Regression

Sep 30

Oct 01

discrete classification

- Logistic Regression
- Support Vector Machines

Oct 02

sample → <u>label</u> clustering

Sep 30

generative

Notation

A machine learning model is a function mapping X to Y. Θ is what the model "learned".

$$f_{\theta}: X \rightarrow Y$$

Classification: k-nearest neighbors (knn)

Intuition

- 1. Of all neighbors, which are the k nearest to my sample?
- 2. What label does the majority of the k neighbors have?

Classification: k-nearest neighbors (knn)

Algorithm

Input

- dataset **M** matrix of samples (vector, class)
- sample **v** to classify
- number of neighbors **n**

Output

- class **k**
- 0. Calculate distance of \mathbf{v} to all samples in \mathbf{M}
- 1. Select the $\bf n$ samples closest to $\bf v$
- 2. choose ${\bf k}$ to be the majority of classes in selection

Classification: k-nearest neighbors (knn)

Clustering: k-means

Intuition

Initially, select k random samples, those are your class centroids.

- 1. assign each sample the class of the closest centroid.
- 2. determine centroid for each class with smallest distance to each all samples in class
- 3. if one of the centroids changed, repeat.

Clustering: k-means

Algorithm

Input

- dataset **M** matrix of samples (vector)
- number of clusters **k**

Output

- dataset **R** matrix of samples (vector, class)
- select k samples from M at random (K cluster centroids)
- 2. assign all samples in ${\bf M}$ to the nearest sample in ${\bf K}$
- 3. Calculate the cluster centroid $\mathbf{k'}$ for each cluster \mathbf{k} in \mathbf{K} as $\mathbf{K'}$.
- 4. if **K** != **K**' then set **K** := **K**'; Repeat from 3.

Clustering: k-means

Theory: Linear Algebra

Euclidean distance

$$dist(x,y) = ||x - y||_2 = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Example

$$\sqrt{\sum_{i=1}^{2} \left(\begin{bmatrix} 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 4 \\ 1 \end{bmatrix} \right)^2} = \sqrt{\sum_{i=1}^{2} \left(\begin{bmatrix} -2 \\ 2 \end{bmatrix} \right)^2}$$

$$= \sqrt{\sum_{i=1}^{2} \begin{bmatrix} 4 \\ 4 \end{bmatrix}}$$

$$= \sqrt{8}$$

Code

dist = np.linalg.norm(x - y)

Dataset: CIFAR-10

cs.toronto.edu/~kriz/cifar.html

60,000 samples images of objects 32x32 color images with labels labels are 10 categories

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

image: <u>kaggle.com</u>

image: qz.com

Alex Krizhevsky

Dessa, formerly Google

Deep Learning (AlexNet)

image: cs.toronto.edu

Vinod Nair

Yahoo Labs
Deep Learning

image: thestar.com

Geoffrey Hinton

U Toronto Professor Google Brain Deep Learning

