1 Linear regression (for regression)

Model a scalar target with one or more quantitative features.

Although regression computes a linear combination, features can be transformed by nonlinear functions if relationships are known or can be guessed.

Example of prediction using a linear regression model

1.1 Univariate linear regression

• Description

Simple linear regression is a statistical method that studies the relationship between two variables:

- *x*: the predictor, explanatory, independent variable,
- *y*: the response, outcome, dependent variable.
- · Model's hypothesis

$$h(x) = \theta_0 + \theta_1 * x = \hat{y}$$

- Model's parameters (# 2)
 - $\circ \theta_0$
 - \circ θ_1
- Cost function (in this case, the squared error function)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^i - y^{(i)})^2$$

Goal

$$minimize_{\theta_0,\theta_1}J(\theta_0,\theta_1)$$

- Algorithm
 - o gradient descent
 - start with some initial values for θ_0 and θ_1 (usually zero)

• keep changing θ_0 and θ_1 to reduce $J(\theta_0, \theta_1)$

$$\bullet \theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \theta_0 - \alpha \left(\frac{1}{m} \sum_{i=1}^m \left(\hat{y}^i - y^{(i)} \right) \right)$$

$$\bullet \ \theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \theta_1 - \alpha \left(\frac{1}{m} \sum_{i=1}^m \left(\hat{y}^i - y^{(i)} \right) \cdot x^{(i)} \right)$$

o directly use the **formulas** resulting from calculus

$$\bullet \ \theta_1 = \frac{\sum_{i=1}^m (x^{(i)} - \bar{x})(y^{(i)} - \bar{y})}{\sum_{i=1}^m (x^{(i)} - \bar{x})^2}$$

$$\bullet \ \theta_0 = \bar{y} - \theta_1 * \bar{(x)}$$

- Notations
 - *x*: the independent variable
 - *y*: the dependent variable
 - *m*: the number of training examples
 - $x^{(i)}$: the input value of the i^{th} training example
 - $y^{(i)}$: the target value of the i^{th} training example
 - \circ $\hat{y}^{(i)}$: the prediction made on the i^{th} training example by the current hypothesis function
 - \circ α : the learning rate; determines how big steps we take when updating the θ parameters
- Hyperparameters:
 - \circ α : if too small, slow gradient descent; if too large, gradient descent may fail to converge
- Problems:
 - o gradient descent may converge to a local minimum

1.2 Multivariate linear regression

Description

Multivariate linear regression is a statistical method that studies the relationship between multiple variables:

- *n* variables $x = \{x_1, x_2, \dots, x_n\}$: the predictor, explanatory, independent variables,
- one *y* variable: the response, outcome, dependent variable.
- · Model's hypothesis

$$h(x) = \theta_0 + \theta_1 * x_1 + \theta_2 * x_2 + \ldots + \theta_n * x_n = \hat{y}$$

• Model's parameters (# n + 1)

$$\theta = \{\theta_0, \theta_1, \dots, \theta_n\}$$

• Cost function (in this case, the squared error function)

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

Goal

 $minimize_{\theta}J(\theta)$

• Algorithm

- o gradient descent
 - start with some initial values for θ_0 , θ_1 , ..., θ_n (usually 0)
 - keep changing θ s to reduce $J(\theta)$

$$\bullet \theta_0 = \theta_0 - \alpha \frac{\partial J}{\partial \theta_0} = \theta_0 - \alpha \left(\frac{1}{m} \sum_{i=1}^m \left(\hat{y}^i - y^{(i)} \right) \right)$$

$$\bullet \ \theta_1 = \theta_1 - \alpha \frac{\partial J}{\partial \theta_1} = \theta_1 - \alpha \left(\frac{1}{m} \sum_{i=1}^m \left(\hat{y}^i - y^{(i)} \right) \cdot x_1^{(i)} \right)$$

- $\bullet \theta_n = \theta_n \alpha \frac{\partial J}{\partial \theta_n} = \theta_n \alpha \left(\frac{1}{m} \sum_{i=1}^m \left(\hat{y}^i y^{(i)} \right) \cdot x_n^{(i)} \right)$
- Hyperparameters:
 - α
- Notations
 - *x*: the independent variables
 - *y*: the dependent variable
 - *m*: the number of training examples
 - *n*: the number of features representing each training example

 - $x^{(i)}$: the input values of the i^{th} training example $x_j^{(i)}$: the value of the j^{th} feature of the i^{th} training example
 - $y^{(i)}$: the target value of the i^{th} training example
 - \circ $\hat{y}^{(i)}$: the prediction made on the i^{th} training example by the current hypothesis function
 - \circ α : the learning rate; determines how big steps we take when updating the θ parameters