코로나 바이러스와 전염병 모델 시뮬레이션

2019-24567 구연재

Settings

Datasets

데이터셋은 covid-19[1]의 countries-aggregated.csv 를 사용하였으며, 2020년 1월 22일부터 5월 30일까지의 한국, 미국, 이탈리아, 일본에 대한 데이터만을 추출해 사용하였다.

Parameters

위의 원본 데이터 그래프를 기반으로 하여, SEIR/SEIRD/SIR 모델에 대해 최적의 파라미터를 **heuristic** 하게 대입해가며 찾아보았다. 이를 통해 모델 시뮬레이션에 사용한 최적 파라미터는 다음과 같다.

한국

	SIR	SEIR	SEIRD
N	51785790	51785790	51785790
Alpha	-	-	0.01
Beta	0.222	0.352	0.354
Gamma	1/25	1/25	1/25
Delta	1/3	1/3	1/3
Rho	-	-	1/9
RO	5.55	8.8	8.85
R0 감소지점	50일째에 95% 감소	50일째에 95% 감소	50일째에 95% 감소

미국

	SIR	SEIR	SEIRD
N	331002651	331002651	331002651
Alpha	-	-	0.03
Beta	0.176	0.44	0.446
Gamma	1/100	1/100	1/80
Delta	1/7.89	1/7.89	1/7.89
Rho	-	-	1/9
R0	17.6	44	35.7
R0 감소지점	80일째에 80% 감소	80일째에 90% 감소	80일째에 87% 감소

이탈리아

	SIR	SEIR	SEIRD
N	60461826	60461826	60461826
Alpha	-	-	0.055
Beta	0.215	0.615	0.626
Gamma	1/40	1/40	1/35
Delta	1/4.01	1/8.08	1/8.08
Rho	-	-	1/9
RO	8.6	24.6	21.9
R0 감소지점	60일째에 80% 감소 90일째에 90% 감소	60일째에 93% 감소 80일째에 80% 감소	60일째에 90% 감소 80일째에 70% 감소

	SIR	SEIR	SEIRD
N	126476261	126476261	126476261
Alpha	-	-	0.03
Beta	0.164	0.228	0.233
Gamma	1/17	1/15	1/15
Delta	1/3	1/3	1/3
Rho	-	-	1/9
RO	2.78	3.425	3.5
R0 감소지점	90일째에 95% 감소	90일째에 95% 감소	90일째에 95% 감소

Simulation

국가별로 SIR, SEIR, SEIRD 모델에 대해 찾은 최적 파라미터를 기반으로 한 그래프는 다음과 같다. 각 모델에 대한 그래프와, 마지막 셀에는 비교에 용이하도록 원본 데이터에 대한 그래프를 삽입했다.

한국

미국

이탈리아

일본

Discussion

시뮬레이션 결과, SEIRD 모델이 현실의 데이터를 가장 정확하게 표현하는 것을 확인할 수 있었다. 하지만 이를 위해선 RO값을 중간에 변화시켜야 했는데, 이는 사회적 거리두기에 따라 beta값(노출확률)이 현저히 감소하기 때문이다. 찾아낸 최적 파라미터에 따르면, 한국과 일본의 경우 beta값을 초기의 95% 까지 감소시켜야 현실과 근접한 그래프를 얻을 수 있었다. 이를 통해 실제로 국가에서 시행하는 사회적 거리두기의 효과를 간접적으로 확인해볼 수 있었다.

또한 **이탈리아**의 경우 R0를 두 번 감소시켜야 현실과 유사한 그래프를 얻을 수 있었는데, 이를 통해 이탈리아에서 **초기에는 전혀 사회적 거리두기가 시행되지 않았지만 후에는 R0값이 다른 국가와 유사한수준으로 감소**하게 되었다고 유추해볼 수 있었다.

미국의 경우, 다른 국가들과 다르게 여전히 가파른 상승세를 보이고 있다는 점에서 이탈리아와같이 앞으로 한번 더 큰 폭의 RO값에 대한 감소가 있어야 다른 국가와 비슷한 수준으로 완만한 상승곡선에 진입할 것이 예상되었다.

하지만 현실을 더욱 정확하게 반영하기 위해서는 R0값이 급상승 하는 시점 (집단감염이 일어나는 경우등) 또한 고려해야 할 것이다.

Conclusion

본 과제에서는 한국, 미국, 이탈리아, 일본의 코로나 바이러스 데이터를 각각 SIR, SEIR, SEIRD 모델에 대해 맞추어보고 각 나라별로 어떤 모델이 가장 정확하며 각 모델의 최적 parameter는 무엇인지 알아보는 것을 목표로 하였다. 그 결과, SEIRD 모델이 가장 현실을 잘 나타낸다는 것과 현실을 제대로 반영하기 위해서는 사회적 거리두기에 따른 RO값의 감소가 모델에 포함되어야 한다는 것을 알게 되었으며, 이를 통해 사회적 거리두기의 효과에 대해 간접적으로 확인해볼 수 있었다. 하지만 현실을 더욱 정확하게 반영하기 위해서는 RO값이 급상승 하는 시점 (집단감염이 일어나는 경우 등) 또한 고려해야 할 것이다.

Codes

- Github에 업로드
 - o corona.ipynb

References

[1] covid-19 datasets, https://github.com/datasets/covid-19/tree/master/data

[2] Epidemic Calculator, http://gabgoh.github.io/COVID/index.html