Seminar zur Stochastik SoSe 2019

Ruhr-Universität Bochum, 24.06.2019

11. Vage Konvergenz von Punktmaßen

Kurzzusammenfassung

von Timo Schorlepp

Einleitung: In diesem Vortrag wollen wir in Vorbereitung auf die Beschäftigung mit schwacher Konvergenz von Punktprozessen den Raum aller Punktmaße auf E, bezeichnet mit $M_p(E)$, derart mit einem Konvergenzbegriff ausstatten und dementsprechend topologisieren ("vage Konvergenz/Topologie"), dass $M_p(E)$ zu einem vollständigen, separablen metrischen Raum wird. Dies ist genau das benötigte Setting für die Diskussion von schwacher Konvergenz von Maßen auf $M_p(E)$ (vgl. Vorlesung Wahrscheinlichkeitstheorie 1, bspw. Skript [3]). Wir werden dabei alle Resultate für den Raum aller Radon-Maße $M_+(E)$ formulieren und entsprechende Aussagen für die, wie sich zeigen wird, abgeschlossene Teilmenge $M_p(E)$ folgern. Nach einer Einführung der vagen Topologie werden wir zunächst ein Portmanteau-Theorem zur Charakterisierung von vager Konvergenz, analog zu ähnlichen Resultaten für die schwache Konvergenz, beweisen, und am Ende eine abzählbare Basis der vagen Topologie und eine zugehörige Metrik auf $M_+(E)$ zu finden. Die Darstellung folgt größtenteils [1].

Definition 11.1. (Setting)

Sei E ein lokal kompakter, zweitabzählbarer T_2 -Raum mit Borel- σ -Algebra \mathcal{E} . Bezeichne mit $M_+(E)$ die Menge aller Radon-Maße auf E und wähle

$$\mathcal{M}_{+}(E) := \sigma\left(\left\{\left\{\mu \in M_{+}(E) | \mu(f) \in B\right\} | f \in C_{K}^{+}(E), B \in \mathcal{B}\left[0, \infty\right)\right\}\right)$$
(11.1)

als σ -Algebra auf $M_+(E)$, wobei $C_K^+(E) := \{f : E \to [0, \infty) | f \text{ stetig, supp}(f) \text{ kompakt} \}$ die Menge aller stetigen, nichtnegativen Funktionen mit kompaktem Träger auf E ist und $ev_f(\mu) = \mu(f) := \int_E f \, \mathrm{d}\mu$.

Lemma 11.2. (Existenz von Höckerfunktionenfolgen, vgl. Lemma 10.2 in [3])

- (a) Sei $K \subseteq E$ kompakt. Dann existieren kompakte Mengen $K_n \downarrow K$ und eine monoton fallende Folge $(f_n)_{n \in \mathbb{N}}$ mit $f_n \in C_K^+(E) \, \forall \, n \in \mathbb{N}$ mit $1_K \leq f_n \leq 1_{K_n} \downarrow 1_K$.
- (b) Sei $G \subseteq E$ offen und relativ kompakt. Dann existieren offene und relativ kompakte Mengen $G_n \uparrow G$ und eine monoton wachsende Folge $(g_n)_{n \in \mathbb{N}}$ mit $g_n \in C_K^+(E) \, \forall \, n \in \mathbb{N}$ mit $1_G \geq g_n \geq 1_{G_n} \uparrow 1_G$.

Proposition 11.3. (vgl. Satz 10.3 in [3])

 $C_K^+(E)$ ist eine trennende Familie für $M_+(E)$, d. h. für $\mu, \nu \in M_+(E)$ gilt:

$$\forall f \in C_K^+(E) : \mu(f) = \nu(f) \Longrightarrow \mu = \nu. \tag{11.2}$$

Definition 11.4. (Vage Konvergenz)

Sei $(\mu_n)_{n\in\mathbb{N}}$ eine Folge in $M_+(E)$ und $\mu\in M_+(E)$. Wir sagen, dass die Folge (μ_n) vage gegen μ konvergiert (geschrieben $\mu_n\stackrel{v}{\to}\mu$), wenn $\forall f\in C_K^+(E): \mu_n(f)\to \mu(f)$.

Wir topologisieren $M_+(E)$ unter diesem Konvergenzbegriff, das heißt eine Subbasis ist gegeben durch Mengen der Form $\{\mu \in M_+(E) | s < \mu(f) < t\}$ für $f \in C_K^+(E)$ und $s, t \in \mathbb{R}, s < t$, und die vage Topologie ist damit die durch alle Auswertungsabbildungen $ev_f : M_+(E) \to [0, \infty), \mu \mapsto \mu(f)$ induzierte Topologie.

Proposition 11.5. Es gilt $\mathcal{M}_{+}(E) = \mathcal{B}(M_{+}(E))$.

Satz 11.6. (Portmanteau-Theorem für vage Konvergenz, vgl. Satz 10.6 in [3] für schwache Konvergenz) Sei $(\mu_n)_{n\in\mathbb{N}}$ eine Folge in $M_+(E)$ und $\mu\in M_+(E)$. Dann sind folgende Aussagen äquivalent:

- (i) $\mu_n \xrightarrow{v} \mu$
- (ii) $\mu_n(B) \to \mu(B)$ für alle relativ kompakten Mengen $B \in \mathcal{E}$ mit $\mu(\partial B) = 0$.
- (iii) $\limsup_{n\to\infty} \mu_n(K) \le \mu(K)$ für alle kompakten $K \in \mathcal{E}$ und $\liminf_{n\to\infty} \mu_n(G) \ge \mu(G)$ für alle offenen, relativ kompakten $G \in \mathcal{E}$.

Proposition 11.7. (Vage Konvergenz von Punktmaßen)

Sei $(m_n)_{n\in\mathbb{N}}$ eine Folge in $M_p(E)$ und $m\in M_p(E)$. Dann sind folgende Aussagen äquivalent:

- (i) $m_n \xrightarrow{v} m$.
- (ii) Für alle $B \in \mathcal{E}$ relativ kompakt mit $m(\partial B) = 0$ gibt es für $n \ge n_0(B)$ eine Nummerierung der Punkte von m_n und m in B mit

$$m_n(\cdot \cap B) = \sum_{i=1}^p \delta_{x_i^{(n)}} \; ; \quad m(\cdot \cap B) = \sum_{i=1}^p \delta_{x_i}$$
 (11.3)

und $(x_1^{(n)}, \dots, x_p^{(n)}) \to (x_1, \dots, x_p)$ in E^p .

Lemma 11.8. (Approximation kompakter Mengen durch randlose Mengen)

Sei $K \subset E$ kompakt und $\mu \in M_+(E)$. Dann exisitert eine reelle Folge $\epsilon_n \downarrow 0$ mit $K^{\epsilon_n} \downarrow K$ und $\mu(\partial K^{\epsilon_n}) = 0 \,\forall n$.

Proposition 11.9. Die Menge der Punktmaße $M_p(E)$ ist vage abgeschlossen in $M_+(E)$.

Proposition 11.10. (Relative Kompaktheitskriterien)

Sei $M \subseteq M_+(E)$ oder $M \subseteq M_p(E)$. Dann sind äquivalent:

- (i) M ist vage relativ kompakt.
- (ii) $\sup_{\mu \in M} \mu(f) < \infty$ für alle $\forall f \in C_K^+(E)$.
- (iii) $\sup_{\mu \in M} \mu(B) < \infty$ für alle relativ kompakten Mengen $B \in \mathcal{E}$.

Satz 11.11. (Metrisierbarkeit)

 $M_{+}(E)$ und $M_{p}(E)$, ausgestattet mit der vagen Topologie, sind metrisierbar zu vollständigen, separablen metrischen Räumen.

Proposition 11.12. (Vage Stetigkeit von Abbildungen zwischen Räumen von Maßen)

Seien E und E' zwei lokal kompakte, zweitabzählbare T_2 -Räume und $T: E \to E'$ eine eigentliche Abbildung. Dann ist $\hat{T}: M_+(E) \to M_+(E'), \mu \mapsto \mu \circ T^{-1}$ stetig. Insbesondere ist also die Einschränkung von \hat{T} auf $M_p(E)$, gegeben durch $\hat{T}(\sum_i \delta_{x_i}) = \sum_i \delta_{T(x_i)}$, stetig.

Literatur

- [1] S. Resnick, "Extreme Values, Regular Variation and Point Processes" Springer-Verlag, 1987, pp. 139-150.
- [2] O. Kallenberg, "Random Measures" Elsevier Science & Technology Books, 1983
- [3] H. Dehling, "Wahrscheinlichkeitstheorie I" Vorlesungsskript, Ruhr-Universität, 2018
- [4] B. BASRAK, H. PLANINIĆ, "A note on vague convergence of measures" arXiv preprint 1803.07024, 2018
- [5] Ausführlichere Notizen zum Vortrag: https://github.com/TimoSchorlepp/MiscCoursework/tree/master/StochastikSeminar