Media & Data Science

Lecturer: Changjun Lee

changjunlee@hanyang.ac.kr

College of Communication Media Informatics

Create a new project

```
*.Rproj
```

*.R

getwd()

Create a variable

```
<-
c()
Object? Variable?
rm()
1:10
sample(1:10, 10)
X[2:5]
```

{Base} functions

```
mean()
sd()
[
:
c()
```

Check your libraries

Files	Plots	Packages	Help	Viewer					_	
1	nstall 🗎 🔼	Update					Q			IC
	Name		Descrip	tion			Ve	ersion	П	
			for DoE	Package	s					
	doParallel		Foreac	h Parallel	Adaptor for the 'pa	arallel' Packag	je 1.	0.15	● (8
	dotCall64		Enhand Long V		n Function Interfa	ce Supporting	1.0	0-1	₩ (8
\checkmark	dplyr		A Gran	nmar of Da	ata Manipulation		1.0	0.2	● (8
	DT		A Wrap	per of the	JavaScript Library	y 'DataTables'	0.	15	● (8
	e1071				f the Department or y Group (Formerly		1.	7-3	₩ (8
	EconGeo			ting Key I nomic Acti	ndicators of the Sp vities	oatial Distribut	ion 1.	3	₩ (8
	offectsize		Indices	of Effect	Size and Standard	lized Paramet	ore 0	3 2	A	

Function conflict

```
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
```

dplyr::filter stats::filter

지난시간복습

(Basic syntax)

Choose two answers if its type cannot be 'factor' variable in R	Choose two	answers if its type	cannot be	'factor'	variable in R	*
---	------------	---------------------	-----------	----------	---------------	---

- GPA (Grade Point Average)
- Blood type
- Grade (A, B, C, D, F)
- Height
- Gender

Choose a line if it cannot be run in R *

$$X = 1$$

$$Z = X + T$$

Let X is a vector of $\{1,2,3,4,5,6,7,8,9,10\}$. If we run the sentence X () 2 == 1. The result is $\{TRUE\ FALSE\ TRUE\ TRUE\ FALSE\ TRUE\ T$

- O +
- &
- %%
- \$
- \bigcirc /

Choose the right codes below to print out (1) 12 3 12 3 12 3 (2) 1112 2 2 3 3 3 *

- (1) rep(c(1,2,3), times=3) / (2) rep(c(1,2,3), each=3)
- (1) rep(c(1,2,3), each=3) / (2) rep(c(1,2,3), times=3)
- (1) rep(c(1,2,3), 3) / (2) rep(c(1,2,3), times=3)
- (1) rep(c(1,2,3), each=3) / (2) rep(c(1,2,3), 3)

To create a vector

```
> x<-vector(length=3)
> x
[1] FALSE FALSE FALSE
> x[2]=1
> x
[1] 0 1 0
```

- X<- c(1:5)
- c(1:5) * 2
- c(1:5) * 2 1
- Using seq() rep()

Vector Indexing

Vector1[vector2]

```
> X<-1:10 * 2
> X
[1] 2 4 6 8 10 12 14 16 18 20
> X[3:6]
[1] 6 8 10 12
> |
```

- X[-1]
- X[c(2,2,5,7)]

Vector Operation

```
x < -c (1:10)
   1 2 3 4 5 6 7 8
                           9 10
all(x < 5)
  FALSE
any(x < 5)
  TRUE
```

```
> x<5
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
```

Vector Filtering

Vector[condition]

```
> x
[1] 1 2 3 4 5 6 7 8 9 10
> x[x < 5]
[1] 1 2 3 4</pre>
```

Quiz (Vector)

What will the following code return? MyVector <- c(12, 456, 34.5, 23, 55, "34hello") typeof(MyVector)

- 1. integer
- 2. double
- 3. character
- 4. FALSE

Which of these functions is NOT used to create vectors?

- 1. c()
- 2. typeof()
- 3. seq()
- 4. rep()

What is the name of the function used to install packages from the internet?

- 1. rnorm()
- 2. paste()
- 3. install.packages()
- 4. library

Create the vector below by using 'seq' function

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Ans: seq(2, 5, 0.5) # or seq(from=2, to=5, by=0.5)

Create the vector below by using 'rep' function

3 3 3 3 3 3 3 3

Ans: rep(3, 9)

Create the vector below by using 'rep' function

80 20 80 20 80 20 80 20

Ans: x < -c(80,20)

rep(x,4)

Are these vectors possible forms in R?

"1"	"2"	"a"	"b"	"c"	"4"	"5"	"6"	"9"	"z"
"1"	"2"	"a"	"b"	"c"	"4"	5	6	"9"	"z"
1	100	1	20	20	29	128	23	78	2387

You have a vector: mountain <- c("tree", "rock", "dirt", "dolphin", "waterfall") How would you access the word "dolphin" in this vector?

- 1. c[4]
- 2. mountain[-2]
- 3. mountain[4]
- 4. mountain(4)

How to extract 3rd and 5th values from the vector below?

X <- "1" "2" "a" "b" "c" "4" "5" "6" "9" "z"

X[c(3,5)]

From x vector

X <- "1" "2" "a" "b" "c" "4" "5" "6" "9" "z"

How to extract vectors like below?

"2"	"a"	"b"	"c"	"5"	"6"	"9"	"z"

You have two vectors: number.of.unit <- c(10, 12, 10, 9) price.per.unit <- c(200, 250, 230, 190) How would you calculate the *total.price.unit* vector in which each element is the product of the corresponding elements of the two given vectors? **Y** is a vector of a sequence from 1 to 5000

Y <- 1:5000

Write an R code for counting the number of values in Y that are divisible by 26 (0 remains)

#hint: [], %%, length

Modify Vector by using filtering

X

[1] 2 4 6 8 10 12 14 16 18 20

$$x[x >= 10] <- 10$$

[1] 2 4 6 8 10 10 10 10 10 10

X<-c(1, 2, 3, 4, NA, NA, 7, 8, NA, 10)

Let's convert all NA values to 0

Modify Vector by using filtering

There is a vector X below

X <- sample(1:30, 30)

Modify all the values > 24 to 24

Matrix

```
x<-cbind(1:4, 12:15)
 X
     [,1] [,2]
[1,]
            12
          13
[2,]
     3 14
[3,]
        4
            15
[4,]
> dim(x)
[1] 4 2
```

```
> x<-matrix(1:10, ncol=2)
> X
      [,1] [,2]
[1,]
[2,]
              8
[3,]
[4,]
[5,]
         5
             10
> x<-matrix(1:10, ncol=2, byrow=T)</pre>
 X
      [,1] [,2]
[1,]
[2,]
         3
              6
[3,]
         5
              8
[4,]
[5,]
         9
             10
```

Practice (Array)

Create a blank matrix with 10 rows and 5 columns

```
m = matrix(, nrow = 10, ncol = 5)
```

Write an R program to create a matrix taking a given vector of numbers as input.

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	

c(1:16)

M = matrix(c(1:16), nrow = 4, byrow = TRUE)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Write an R program to access the element from the matrix left

- 1. Access the element at 3rd column and 2nd row
- 2. Access only the 3rd row
- 3. Access only the 4th column

Run the code below and create a matrix M

```
row_names = c("row1", "row2", "row3", "row4")
col_names = c("col1", "col2", "col3", "col4")
M = matrix(c(1:16), nrow = 4, byrow = TRUE, dimnames = list(row_names, col_names))
```

Write an R program to extract a TRUE FALSE matrix if the matrix M's value > 7 and show the result.

Run the code below and create a matrix M

```
row_names = c("row1", "row2", "row3", "row4")
col_names = c("col1", "col2", "col3", "col4")
M = matrix(c(1:16), nrow = 4, byrow = TRUE, dimnames = list(row_names, col_names))
```

Write an R program to convert a matrix to a 1 dimensional array.

1 dimensional array (column wise):

```
[1] 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 as.vector(M)
```

1 dimensional array (column wise):

```
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 as.vector(t(M))
```

Vectorized codes

$$c(1, 2, 4) + c(2, 3, 5)$$

Recycling rule

$$1:4 + c(1, 2)$$

$$X<-c(1,2,4,5)$$

Practice with the real-world data

dd your blog!

Learn R

R jobs ▼

Contact us

Tidying the new Johns Hopkins Covid-19 timeseries datasets

March 23, 2020

By An Accounting and Data Science Nerd's Corner

Like 461

Share

This article was first published on An Accounting and Data Science Nerd's Corner, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

'ant to share your content on R-bloggers? click here if you have a blog, or here ou don't.

Share

Tweet

r my old blog post about tidying Johns Hopkins CSSE

SEARCH R-BLOGGERS

Search..

Go

MOST VISITED ARTICLES OF THE WEEK

- 1. Google Big Query with R
- 2. 5 Ways to Subset a Data Frame in R
- 3. Covid 19 Tracking
- 4. How to write the first for loop in R
- 5. Tidying the John Hopkins Covid-19 da
- 6. Simulating COVID-19 interventions wi
- 7. Survey Results: What Degree is Ber Data Science?
- 8. How to create a simple Corona dashboard specific to your co
- 9. COVID-19 Tracker: Days sir

Download the data for class

Data & Files in use for the class

- ▼ Download (Click)
- + :: m_conf_case.RData.rdata 1.3KB
- COV19_data_for_class.RData.rdata 4.9KB

Matrix 1: Confirmed cases

	2020-02- 01	 2020-10- 01	 2022-09- 01
China	11891	 90567	 2510703
Italy			
Japan			
Korea			
Spain			
UK			
US	8	 7279272	 94665567

Matrix 2: Death cases

	2020- 02-01	 2020- 10-01	 2022- 09-01
China	18		
Italy			
Japan			
Korea			
Spain			
UK			
US	0		

7 rows and 32 columns

Access to the matrix

- 1. UK's total confirmed cases on 2022-09-01
- 2. South Korea's total confirmed cases on 2022-09-01
- 3. China's total confirmed cases on 2022-09-01
- 4. South Korea's increasing confirmed cases on 2022-09-01 compared to the previous month
- 5. Japan's increasing confirmed cases on 2022-09-01 compared to the previous month

Vector 1: GDP

```
country.name<-c("China","Italy","Japan","Korea","Spain","UK","US")
GDP<-c(12237700479375,
1943835376342,
4872415104315,
1530750923149,
1314314164402,
2637866340434,
19485394000000)
names(GDP)<-country.name
```

Vector 3: Population Density

country.name<-c("China","Italy","Japan","Korea","Spain","UK","US") pop.density<-c(148, 205, 347, 530, 94, 275, 36) names(pop.density)<-country.name

Vector 2: Population

pop<-c(1439323776, 60461826, 126476461, 51269185, 46754778, 67886011, 331002651)
names(pop)<-country.name

5 mins

We have

- 1. GDP vector
- 2. Population vector

We know

- 1. barplot()
- 2. Vector calculation
- 3. Sort()
- 4. Decreasing=T option

Confirmed cases bar graph

See which columns indicate the dates above (2020-03-01 / 2020-05-01 / 2021-10-01) in the matrix

Mat.name[,]Use barplot() , sort() , decreasing=T option

	2020- 01-23	 2020- 02-15	 2020- 04-07
China	643	 64813	 82718
Italy			
Japan			
Korea			
Spain			
UK			
US	1	 13	 396223

First, try

matplot(m.conf.case)

You must transpose the matrix

t(m.conf.case)

	2020- 01-23	 2020- 02-15	 2020- 04-07
China	643	 64813	 82718
Italy			
Japan			
Korea			
Spain			
UK			
US	1	 13	 396223

	China	 Korea	•••	US
2020-01- 23	643	 64813		82718
2020-04- 07	1	 13	•••	396223

Let's try

matplot(t(m.conf.case))

This is the cascade

matplot(t(m.conf.case))

matplot(t(m.conf.case), type='b')

matplot(t(m.conf.case), type='b', pch=15:20)

matplot(t(m.conf.case), type='b', pch=15:20, col=c(1:6, 8), ylab="Confirmed cases")

legend("topleft", inset=0.01, legend=country.name, pch=15:20, col=c(1:6, 8), horiz=F)

Try the same graph but now use the death rate

County's wealth and COVID19

I'm now curious about the relationship between countries' GDP per capita and the death rate at the latest time

plot

plot(GDP.pc, m.death.rate[,16])

plot

plot(GDP.pc, m.death.rate[,32])

plot(GDP.pc, m.death.rate[,32], ylab="Death rate")

text(GDP.pc, m.death.rate[,32], row.names(m.death.rate), cex=1, pos=4, col="blue")

Let's change
this to 2,3,4

Let's change
this to 1,2,3

this to "red",
"black"

County's pop density and COVID19

Let's explore the relationship between countries' population density and the death rate at the latest time

Increasing rate!

When you wonder if the number of confirmed cases is in increasing phase or flattened..

Increasing rate!

	2020- 02-01		2020- 10-01		2022- 09-01	
China						
Italy						
Japan						
Korea						
Spain						
UK						
US						
	m1<-m.conf.case[,-1]					

	02-01	•••	2020- 10-01	 2022- 09-01
China				
Italy				
Japan				
Korea				
Spain				
UK				
US				

m2<-m.conf.case[,-32]

Increasing rate of confirmed cases

Let's visualize like an example →

5 mins

Increasing rate of confirmed cases

Let's also visualize the first four periods and the last (recent) four periods

Increasing rate of confirmed cases

Can you also do for the specific countries like Korea, China, and Japan?

