

Hierarchical representations of topics to uncover the underlying knowledge of semantically related texts

Borja Lozano Álvarez, Ontology Engineering Group Universidad Politécnica de Madrid, Spain Carlos Badenes

borja.lozano.alvarez@alumnos.upm.es

Topic Models

Topic Models

Topic Models

In Probabilistic Topic Models a **topic** is a multinomial distribution over the vocabulary

In Probabilistic Topic Models a **topic** is a multinomial distribution over the vocabulary

People	Cognitive	President	Neuron	Ballot
0.08	0.4	0.01	0.5	0.01
0.25	0.03	0.35	0.07	0.2
0.2	0.01	0.48	0.01	0.3

In Probabilistic Topic Models a **topic** is a multinomial distribution over the vocabulary

	People	Cognitive	President	Neuron	Ballot
topic_0	0.08	0.4	0.01	0.5	0.01
topic_1	0.25	0.03	0.35	0.07	0.2
topic_2	0.2	0.01	0.48	0.01	0.3

Documents

In Probabilistic Topic Models a <u>document</u> is a multinomial distribution over the topics

0.9	0.01	0.09
0.01	0.2	0.79
0.8	0.05	0.15

Documents

In Probabilistic Topic Models a <u>document</u> is a multinomial distribution over the topics

topic_0	topic_1	topic_2
0.9	0.01	0.09
0.01	0.2	0.79
0.8	0.05	0.15

$$JSD(Q, D) = \sum_{i=1}^{\infty} q_i \log \frac{2q_i}{q_i + d_i} + \sum_{i=1}^{\infty} d_i \log \frac{2d_i}{q_i + d_i}$$

$$JSD(Q, D) = \sum_{i=1}^{\infty} q_i \log \frac{2q_i}{q_i + d_i} + \sum_{i=1}^{\infty} d_i \log \frac{2d_i}{q_i + d_i}$$

Problems

$$JSD(Q, D) = \sum_{i=1}^{\infty} q_i \log \frac{2q_i}{q_i + d_i} + \sum_{i=1}^{\infty} d_i \log \frac{2d_i}{q_i + d_i}$$

Problems

Pairwise computation of document similarity is costly and grows linearly with the size of the corpus.

$$JSD(Q, D) = \sum_{i=1}^{\infty} q_i \log \frac{2q_i}{q_i + d_i} + \sum_{i=1}^{\infty} d_i \log \frac{2d_i}{q_i + d_i}$$

Problems

Probability metrics do not offer a semantic explanation for the similarity obtained.

$$JSD(Q, D) = \sum_{i=1}^{\infty} q_i \log \frac{2q_i}{q_i + d_i} + \sum_{i=1}^{\infty} d_i \log \frac{2d_i}{q_i + d_i}$$

Problems

These metrics cannot be extended to support semantic restrictions to enrich queries in the corpus.

$$JSD(Q, D) = \sum_{i=1}^{\infty} q_i \log \frac{2q_i}{q_i + d_i} + \sum_{i=1}^{\infty} d_i \log \frac{2d_i}{q_i + d_i}$$

Problems

Hierarchical representations of topics

Source: Badenes-Olmedo, C., Redondo-García, J., Corcho, O.: Large-Scale Semantic Exploration of Scientific Literature using Topic-based Hashing Algorithms.

Hierarchical representations of topics

Hierarchical representations of topics

$$WJL(H^{A}, H^{B}) = \sum_{i=0}^{L} \sum_{j=0}^{L} w_{i}w_{j} * \frac{|H_{i}^{A} \cap H_{j}^{B}|}{|H_{i}^{A} \cup H_{j}^{B}|}$$

Metric Comparison & Vocabulary Size

- How well does the hierarchical metrics perform in comparison to state-of-the-art metrics, both in performance and accuracy
- How does the size (in number of tokens) of the documents affect the document similarity task when using PTM

DATA

EuroVoc Thesaurus

- Multilingual thesaurus with a taxonomy of 7,193 concepts/labels from 21 domains
- The concepts from which all categories derive leaved us with 452 root concepts *
- Two documents are relevant if they share categories

*Source: Badenes-Olmedo, C., Redondo-García, J.L., Corcho, O.: Scalable Cross-Lingual Document Similarity through Language-Specific Concept Hierarchies

DATA

Acquis Corpus

 Corpus of the Official Journey of the EU constructed by merging the JRC Acquis (manually annotated) and the DGT Acquis

			English		Spanish				
		DGT JRC Acqu		Acquis	DGT JRC		Acquis		
Documents		51521	16260	67781	51585	16470	68055		
	Median	135	197	152	129	204	150		
	Mean	185.8762	261.9931	204.1359	181.9172	271.2842	203.5449		
Tokens	Variance	34806.26	35716.91	36080.66	34624.02	38700.03	37074.97		
	Min	7	7	7	6	6	6		
	Max	1360	1063	1360	1411	1110	1411		

Table 1: Number of documents and tokens by dataset

EVALUATION

Ground truth

- To evaluate a PTM with a test collection:
 - Create ground truth by creating a relevant list for each document.
 - Create a retrieved list by pairwise comparison with the PTM representation
 - Compare both list for all documents in the testcollection to obtain MAP@10

Results

Materialisation of Knowledge in Topics

Acquis (MAP@10)

Lang	Topics	JSD	HE	WJL
	50	0.80060	0.79665	0.70583
Spanish	100	0.82741	0.77930	0.75555
Spanish	300	0.84261	0.58531	0.79036
	500	0.81238	0.68482	0.79336
	50	0.81421	0.80150	0.73367
English	100	0.85510	0.74060	0.80315
Eligiisii	300	0.84005	0.52082	0.83277
	500	0.78874	0.43636	0.84555

Methodology

Results

Influence of Text Length

Acquis-9 (MAP@10)

			Training Set																
		1		2		3		4		5		6		7		8		9	
		es	en	es	en	es	en	es	en	es	en	es	en	es	en	es	en	es	en
1	jsa	0.88	0.85	0.87	0.87	0.88	0.88	0.88	0.8	0.89	0.89	0.88	0.88	0.89	0.89	0.89	0.88	0.88	0.82
1	wj	0.89	0.79	0.89	0.82	0.87	0.86	0.88	0.86	0.89	0.87	0.88	0.87	0.89	0.87	0.89	0.87	0.87	0.77
2	jsd	0.70	0.66	0.70	0.63	0.71	0.64	0.69	0.63	0.71	0.66	0.72	0.68	0.73	0.70	0.74	0.73	0.71	0.71
	wj	0.64	0.59	0.69	0.69	0.69	0.70	0.71	0.68	0.69	0.69	0.71	0.69	0.71	0.70	0.72	0.71	0.67	0.68
3	jsd	0.83	0.82	0.86	0.80	0.80	0.75	0.81	0.75	0.83	0.77	0.83	0.79	0.85	0.81	0.86	0.81	0.84	0.82
'	wj	0.80	0.78	0.84	0.83	0.87	0.86	0.88	0.86	0.88	0.85	0.87	0.85	0.86	0.85	0.87	0.84	0.84	0.83
4	jsd	0.74	0.72	0.77	0.70	0.72	0.67	0.65	0.63	0.69	0.63	0.73	0.66	0.76	0.70	0.78	0.72	0.77	0.73
-	wj	0.68	0.67	0.73	0.73	0.76	0.77	0.78	0.80	0.79	0.78	0.80	0.79	0.80	0.79	0.80	0.77	0.77	0.76
5	jsa	0.68	0.68	0.73	0.67	0.70	0.66	0.68	0.64	0.62	0.59	0.69	0.62	0.71	0.67	0.73	0.67	0.74	0.70
ag D	wj	0.60	0.65	0.64	0.72	0.67	0.73	0.72	0.76	0.75	0.77	0.77	0.78	0.73	0.78	0.75	0.77	0.74	0.77
6	jsd	0.61	0.61	0.68	0.59	0.64	0.58	0.63	0.59	0.63	0.56	0.57	0.54	0.65	0.59	0.68	0.60	0.68	0.62
0	wj	0.53	0.58	0.61	0.65	0.60	0.65	0.67	0.70	0.69	0.71	0.69	0.73	0.71	0.73	0.71	0.74	0.69	0.71
7	jsd	0.53	0.57	0.62	0.52	0.59	0.53	0.56	0.54	0.58	0.52	0.57	0.52	0.52	0.50	0.59	0.53	0.63	0.55
'	wj	0.47	0.55	0.53	0.63	0.52	0.64	0.58	0.66	0.62	0.66	0.65	0.69	0.65	0.70	0.66	0.71	0.63	0.68
8	jsa	0.52	0.48	0.60	0.47	0.59	0.48	0.56	0.47	0.56	0.47	0.57	0.48	0.58	0.47	0.53	0.45	0.60	0.50
	wj	0.47	0.49	0.53	0.56	0.47	0.56	0.55	0.57	0.56	0.59	0.61	0.62	0.62	0.63	0.64	0.66	0.64	0.66
9	jsd	0.54	0.48	0.62	0.47	0.62	0.50	0.58	0.49	0.59	0.48	0.59	0.49	0.60	0.51	0.60	0.50	0.54	0.45
	wj	0.51	0.48	0.55	0.55	0.54	0.57	0.59	0.59	0.61	0.59	0.64	0.62	0.63	0.65	0.66	0.65	0.67	0.67

Results

Computational time

Conclusion

- If we assuming that the complexity of a text increases as its length increases, the logic used to infer topics is unable to capture more complex knowledge than was proposed during training
- The larger the corpus and the more topics it contains (i.e. the more diverse the content of its documents), the more appropriate it is to use similarity metrics based on hierarchical representations of the topics

Hierarchical representations of topics to uncover the underlying knowledge of semantically related texts

Borja Lozano Álvarez, Ontology Engineering Group Universidad Politécnica de Madrid, Spain Carlos Badenes

