```
In [8]: import pandas as pd
import numpy as np
from sklearn import model_selection, preprocessing, linear_model, naive_bay
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorize
from sklearn import decomposition, ensemble
import textblob, string
```

```
In [2]: # read the dataset as pandas dataframe
abst = pd.read_excel('abstract.xlsx')
```

```
In [3]: # check the column types
abst.info()
```

In [4]: # check the first 5 lines of dataframe abst.head(5)

Out[4]:		foodname	fu	ti	ab	rating1
	0	TI = (sorghum OR milo OR durra OR jowari OR gr	NaN	Pretreatment of Sweet Sorghum Bagasse for Etha	(1) Background: Commercial production of fuel	99
	1	TI = (wheat OR Triticum)	NaN	Metabolites of 4-n- nonylphenol in wheat cell s	4-Nonylphenol, a metabolite of nonionic surfac	99
	2	TI = (sorghum OR milo OR durra OR jowari OR gr	NaN	A sorghum xylanase inhibitor-like protein with	A 25-kDa protein, with an N-terminal amino aci	1
	3	TI = (rice)	NaN	Molecular identification of yeast species asso	A B S T R A C T In Manipur state of North- East	99
	4	TI = (corn OR maize OR Zea mays)	Monsanto Argentina S.A.	Fungal and mycotoxin contamination in Bt maize	A Bt maize hybrid and its non-transgenic count	99

```
In [5]: # change the funding source's datatype to string
abst['fu'] = abst.fu.astype(str)
```

1. Write a script to identify whether the funding source is from industry or not (e.g. if pepsi is the

funder, it should be coded as industry). Explain your steps briefly in a readme document.

```
In [6]: # add column 'fu_source', 1 indicates the funding source is from industry a
  ind = [row for row in abst['fu'] if 'Inc.' in row]
  abst_ind = abst[abst['fu'].isin(ind)]
  abst['fu_source'] = np.where(abst['fu'].isin(ind), 1, 0)
```

In [7]: # check the dataframe

abst.head(5)

Out[7]:		foodname	fu	ti	ab	rating1	fu_source
	0	TI = (sorghum OR milo OR durra OR jowari OR gr	nan	Pretreatment of Sweet Sorghum Bagasse for Etha	(1) Background: Commercial production of fuel	99	0
	1	TI = (wheat OR Triticum)	nan	Metabolites of 4-n- nonylphenol in wheat cell s	4-Nonylphenol, a metabolite of nonionic surfac	99	0
	2	TI = (sorghum OR milo OR durra OR jowari OR gr	nan	A sorghum xylanase inhibitor-like protein with	A 25-kDa protein, with an N-terminal amino aci	1	0
	3	TI = (rice)	nan	Molecular identification of yeast species asso	ABSTRACTIn Manipur state of North-East	99	0
	4	TI = (corn OR maize OR Zea mays)	Monsanto Argentina S.A.	Fungal and mycotoxin contamination in Bt maize	A Bt maize hybrid and its non-transgenic count	99	0

```
In [9]: abst.sum()
```

2. Write a machine learning script to train and classify abstracts. You can assume a binary coding for the rating (positive/not positive) for the ML script.

```
In [11]: # change the abstracts' datatype to string
    abst['ab'] = abst.ab.astype(str)
```

In [12]: # prepare the binary coding data for machine learning
 data = abst[abst['rating1'].isin([-1, 1])]

In [13]: # check the data data

Out[13]:		foodname	fu	ti	ab	rating1	fu_source
	2	TI = (sorghum OR milo OR durra OR jowari OR gr	nan	A sorghum xylanase inhibitor-like protein with	A 25-kDa protein, with an N-terminal amino aci	1	0
	9	TI = (rice)	Genomics for Agricultural Innovation [PMI0004]	Involvement of ethylene signaling in Azospiril	A bacterial endophyte Azospirillum sp. B510 in	1	0
	21	TI = (wheat OR Triticum)	Advanced Food and Materials Network through op	Diets Enriched in Oat Bran or Wheat Bran Tempo	A clear understanding of how diet alters gastr	-1	1
	37	TI = (corn OR maize OR Zea mays)	Dina Food Industrial Group; BehAra Food Indus	Determination of acrylamide level in popular I	Acrylamide is a chemical found in starchy food	-1	0
	55	TI = (wheat OR Triticum)	Kuwaiti Flour Mills and Bakeries Company (Kuwa	Efficacy of wheat- based biscuits fortified wit	Adverse sensory changes prevent the addition o	1	0
	4202	TI = (wheat OR Triticum)	HarvestPlus Program; German Research Foundati	Biofortification and Localization of Zinc in W	Zinc (Zn) deficiency associated with low dieta	1	0
	4208	TI = (wheat OR Triticum)	Primary Industries Innovation Centre; NANO Ma	Effect of beta- Glucan on Technological, Sensor	beta-Glucan is known to have valuable properti	1	0
	4209	TI = (barley)	UNIK (Food, Fitness & Pharma for Health and Di	Extracted Oat and Barley beta- Glucans Do Not A	beta-Glucans are known to exhibit hypocholeste	1	0
	4212	TI = (rice)	Hansells Food Group, Auckland, New Zealand	Consumption of a plant sterol-based spread der	fTo establish the effectiveness of a new phyto	1	0
	4217	TI = (corn OR maize OR Zea mays)	Indian Council of Medical ResearchIndian Counc	Chemopreventive Effect of Different Ratios of	n-3 Polyunsaturated fatty acids (PUFA) have a	1	0

778 rows × 6 columns

```
In [14]: # split the dataset into training and validation datasets
         train_x, valid_x, train_y, valid_y = model_selection.train_test_split(data[
In [16]: # create a count vectorizer object
         count_vect = CountVectorizer(analyzer='word', token_pattern=r'\w{1,}')
         count vect.fit(data['ab'])
         # transform the training and validation data using count vectorizer object
         xtrain_count = count_vect.transform(train_x)
         xvalid_count = count_vect.transform(valid_x)
In [17]: # word level tf-idf
         tfidf vect = TfidfVectorizer(analyzer='word', token pattern=r'\w{1,}', max
         tfidf vect.fit(data['ab'])
         xtrain_tfidf = tfidf_vect.transform(train x)
         xvalid_tfidf = tfidf_vect.transform(valid_x)
         # ngram level tf-idf
         tfidf vect ngram = TfidfVectorizer(analyzer='word', token pattern=r'\w{1,}'
         tfidf_vect_ngram.fit(data['ab'])
         xtrain tfidf ngram = tfidf vect ngram.transform(train x)
         xvalid tfidf ngram = tfidf vect ngram.transform(valid x)
         # characters level tf-idf
         tfidf vect ngram chars = TfidfVectorizer(analyzer='char', token pattern=r'\
         tfidf vect ngram chars.fit(data['ab'])
         xtrain_tfidf_ngram_chars = tfidf_vect_ngram chars.transform(train x)
         xvalid tfidf ngram chars = tfidf vect ngram chars.transform(valid x)
```

3. Given your script, provide validation statistics, i.e. provide classifications of each abstract as positive or not from the script and compare against the actual data.

```
In [18]: def train_model(classifier, feature_vector_train, label, feature_vector_val
    # fit the training dataset on the classifier
    classifier.fit(feature_vector_train, label)

# predict the labels on validation dataset
    predictions = classifier.predict(feature_vector_valid)

return metrics.accuracy_score(predictions, valid_y)
```

In [28]: # Naive Bayes on Word Level TF IDF Vectors accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf, train_y, print('The accuracy rate of NB, WordLevel TF-IDF is', accuracy) # Naive Bayes on Ngram Level TF IDF Vectors accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf_ngram, tra print('The accuracy rate of NB, N-Gram Vectors is', accuracy) # Naive Bayes on Character Level TF IDF Vectors accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf_ngram_char print('The accuracy rate of NB, CharLevel TF-IDF is', accuracy)

The accuracy rate of NB, WordLevel TF-IDF is 0.8871794871794871 The accuracy rate of NB, N-Gram Vectors is 0.9025641025641026 The accuracy rate of NB, CharLevel TF-IDF is 0.8871794871794871

In [27]: # Linear Classifier on Count Vectors accuracy = train_model(linear_model.LogisticRegression(), xtrain_count, tra print('The accuracy rate of LR, WordLevel TF-IDF is', accuracy) # Linear Classifier on Ngram Level TF IDF Vectors accuracy = train_model(linear_model.LogisticRegression(), xtrain_tfidf_ngra print('The accuracy rate of LR, N-Gram Vectors is', accuracy) # Linear Classifier on Word Level TF IDF Vectors accuracy = train_model(linear_model.LogisticRegression(), xtrain_tfidf, tra print('The accuracy rate of LR, CharLevel TF-IDF is', accuracy)

/opt/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.
py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22.
Specify a solver to silence this warning.
 FutureWarning)

```
In [29]: # SVM on Ngram Level TF IDF Vectors
    accuracy = train_model(svm.SVC(), xtrain_count, train_y, xvalid_count)
    print('The accuracy rate of SVM, WordLevel TF-IDF is', accuracy)

# SVM on Ngram Level TF IDF Vectors
    accuracy = train_model(svm.SVC(), xtrain_tfidf_ngram, train_y, xvalid_tfidf
    print('The accuracy rate of SVM, WordLevel TF-IDF is', accuracy)

# SVM on Ngram Level TF IDF Vectors
    accuracy = train_model(svm.SVC(), xtrain_tfidf, train_y, xvalid_tfidf)
    print('The accuracy rate of SVM, WordLevel TF-IDF is', accuracy)
```

/opt/anaconda3/lib/python3.7/site-packages/sklearn/svm/base.py:193: Futur eWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

The accuracy rate of SVM, WordLevel TF-IDF is 0.8871794871794871 The accuracy rate of SVM, WordLevel TF-IDF is 0.8871794871794871 The accuracy rate of SVM, WordLevel TF-IDF is 0.8871794871794871

/opt/anaconda3/lib/python3.7/site-packages/sklearn/svm/base.py:193: Futur eWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

/opt/anaconda3/lib/python3.7/site-packages/sklearn/svm/base.py:193: Futur eWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

4. Comment on how you would improve the ML script given more time and computational resources.

As we can see from data preprocessing part, I use 3 different tf-idf methods (word level, ngram, and character level) after converting the collection of abstraction text to a matrix of token counts. In terms of improving the ML performance, I think we could do it in a few ways. Firstly, here we only have 'abstract' as explantory variable, if we could include more related features, we will presumably increase the ML model performace. Besides, here I include Naive Bayes, Linear, and SVM as ML models, there are other boosting models like XGBoost or LightGBM could potenially help to improve the overall performance as well. But we should definitely add more features as possible in order to achieve better results.

```
In [ ]:
```