- 1. An $m \times n$ matrix is said to be a queen if the restriction of A to the orthogonal complement of its kernel is an isometry.
 - (a) Show that A is a queen if and only if A^*A is an orthogonal projection.

Solution: Suppose that A is a queen. We know already that $(A^*A)^* = A^*A$, so me need only prove that $(A^*A)^2 = A^*A$. Let $v \in \mathbb{C}^n$ Then v = x + y for some $x \in \ker A, y \in (\ker A)^{\perp} = \operatorname{ran} A^*$.

$$A^*AA^*Av = A^*AA^*A(x+y)$$
$$= A^*AA^*Ay$$

Conversely, suppose that A^*A is an orthogonal projection. Choose $v \in (\ker A)^{\perp} = \operatorname{ran} A^*$, so that we have some w, where $A^*w = v$.

$$||Av||^2 = \langle Av, Av \rangle$$

$$= \langle A^*Av, v \rangle$$

$$= \langle AA^*w, w \rangle$$

$$= \langle A^*w, A^*w \rangle$$

$$= \langle v, v \rangle$$

$$||Av|| = ||v||.$$

(b) Show that A is a queen if and only if AA^* is an orthogonal projection.

Solution: Suppose that *A* is a queen.

Conversely, suppose that AA^* is an orthogonal projection. Then let $v \in (\ker A)^{\perp}$. So we have some w, where $A^*w = v$.

$$||Av||^{2} = \langle Av, Av \rangle$$

$$= \langle AA^{*}w, AA^{*}w \rangle$$

$$= \langle A^{*}AA^{*}w, A^{*}w \rangle$$

$$= \langle AA^{*}AA^{*}w, w \rangle$$

$$= \langle AA^{*}w, w \rangle$$

$$= \langle AA^{*}w, A^{*}w \rangle$$

$$= \langle V, V \rangle$$

$$= ||V||^{2}$$

$$||Av|| = ||V||.$$

(c) Show that a gueen A is an isometry if and only if ker A = 0.

Solution: If $\ker A = \{0\}$, then $(\ker A)^{\perp} = V$, so the restriction of A to the orthogonal complement of its kernel is A restricted to all of V. Then A is an isometry on any vector.

Conversely, suppose A is an isometry. Then:

$$v \in \ker A \iff Av = 0$$

 $\iff ||Av|| = ||v|| = 0$
 $\iff v = 0$.

Therefore $ker A = \{0\}$.

(d) Find an example of a 4×2 queen that has non-zero kernel. Be sure to prove it's a queen!

Solution: Take the matrix:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Then clearly $A\begin{bmatrix} t \\ 0 \end{bmatrix} = 0$ for any $t \in \mathbb{C}$, so A has nonzero kernel, and all we must show is that A is a queen.

Begin by observing that since $\ker A = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$, we can find:

 $(\ker A)^{\perp} = \operatorname{span}\left\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$. Then let $v = \begin{bmatrix} 0 \\ t \end{bmatrix} \in (\ker A)^{\perp}$. Computing both ||v||, ||Av||, we see:

$$||Av|| = ||\begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ t \end{bmatrix} || = ||\begin{bmatrix} t \\ 0 \\ 0 \\ 0 \end{bmatrix} || = |t| = ||\begin{bmatrix} 0 \\ t \end{bmatrix} || = ||v||.$$

So the restriction of A to the orthogonal complement of its kernel is an isometry, and A is a queen.

2. (a) Given a singular value decomposition $A = W\Sigma V^*$ of a square matrix A, construct a polar decomposition of A using W, V, Σ .

Solution: Suppose $A = W\Sigma V^*$ is given, we wish to find |A| and some U unitary with A = U|A|.

$$|A| = \sqrt{A^*A} = \sqrt{V\Sigma^*W^*W\Sigma V^*} = \sqrt{V\Sigma^*\Sigma V^*}$$

But recalling that Σ is a real diagonal matrix, we have $\Sigma = \Sigma^*$:

$$|A| = \sqrt{V\Sigma V^* V\Sigma V^*} = V\Sigma V^*.$$

Now we wish to right cancel V, and get back our W. So take $U = WV^*$ as the unitary (since it is the product of unitaries); and then:

$$U|A| = (WV^*)(V\Sigma V^*) = W\Sigma V^* = A.$$

(b) Using the method above, compute a polar decomposition for

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}.$$

Solution: Compute A^*A ;

$$A*A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 15 \\ 15 & 45 \end{bmatrix}.$$

And find the characteristic polynomial:

$$C_{A*A}(z) = \det(A - zI) = \begin{vmatrix} 5 - z & 15 \\ 15 & 45 - z \end{vmatrix} = z^2 - 50 = z(z - 50).$$

Which gives the nonzero singular value $\sigma_1 = 5\sqrt{2}$, and our $\Sigma = \begin{bmatrix} 5\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}$. Then find an associated eigenvector for σ_1^2 .

$$(50I - A^*A)v_1 = 0 \implies \begin{bmatrix} -45 & 15 \\ 15 & -5 \end{bmatrix} v_1 = 0$$

$$\implies \begin{bmatrix} -3 & 1 \\ 0 & 0 \end{bmatrix} v_1 = 0$$

$$\implies v_1 = t \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

$$\implies v_1 = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 \\ -3 \end{bmatrix}.$$

Now that we have v_1 , we need only pick v_2 so that V is unitary, so by inspection take $v_2 = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ -1 \end{bmatrix}$, which is normal, and orthogonal to v_1 . And so we have our matrix $V = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}$.

Now we find W. Begin by computing:

$$w_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{5\sqrt{2}} \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \frac{1}{\sqrt{20}} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

And again by inspection, $w_2 = \frac{1}{\sqrt{20}} \begin{bmatrix} -4 \\ 2 \end{bmatrix}$, and $W^* = \frac{1}{\sqrt{20}} \begin{bmatrix} 2 & 4 \\ -4 & 2 \end{bmatrix}$. So then we have our SVD:

$$A = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 5\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{20}} \begin{bmatrix} 2 & 4 \\ -4 & 2 \end{bmatrix}.$$

After a quick sanity check that all our matrix multiplication gives us back A, we just need to find $|A| = V\Sigma V^*$ and $U = WV^*$.

$$|A| = V\Sigma V^*$$

$$= \frac{1}{10} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 5\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}$$

$$= \frac{1}{10} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 5\sqrt{2} & 15\sqrt{2} \\ 0 & 0 \end{bmatrix}$$

$$= \frac{1}{10} \begin{bmatrix} 5\sqrt{2} & 15\sqrt{2} \\ 15\sqrt{2} & 45\sqrt{2} \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}$$

$$U = WV^*$$

$$= \frac{1}{\sqrt{200}} \begin{bmatrix} 2 & -4 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}$$

$$= \frac{1}{10\sqrt{2}} \begin{bmatrix} -10 & 10 \\ 10 & 10 \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}.$$

And so we have the polar decomposition:

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1\\ 1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 3\\ 3 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 3\\ 2 & 6 \end{bmatrix}.$$

3. Find your favorite 4 × 2 matrix A of rank 2 and compute a singular value decomposition for A. All of the entries of A must be nonzero.

4. For an $m \times n$ matrix A, show that the set of nonzero eigenvalues for A^*A coincide with that of AA^* .

Solution: Let $0 \neq \lambda \in \sigma(A^*A)$, with an associated eigenvector ν .

Then $A^*Av = \lambda v$. Applying A on both sides, we have $AA^*Av = A\lambda v = \lambda Av$, and so Av is an eigenvector for AA^* associated with λ .

Then suppose $AA^*v = \lambda v$. Applying A^* on both sides, we have $A^*AAv^* = A\lambda v = \lambda Av$, and so A^*v is an eigenvector for A^*A associated with λ .

5. Suppose $A = W\Sigma V^*$ is a singular value decomposition for A. Show that the columns of W are eigenvectors for AA^* .

Solution: Let $1 \le i \le n$, and take:

$$W = \begin{bmatrix} w_1 & \dots & w_n \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} \sigma_1 & & & 0 \\ & \ddots & & \vdots \\ & & \sigma_r & 0 \\ 0 & \dots & 0 & 0 \end{bmatrix}.$$

Then begin the computation:

$$AA^* w_i = W\Sigma V^* V\Sigma^* W^* w_i$$

$$= W\Sigma^2 W^* w_i$$

$$= W\Sigma^2 \begin{bmatrix} w_1^* \\ \vdots \\ w_n^* \end{bmatrix}$$

$$= W\Sigma^2 \begin{bmatrix} w_1^* w_i \\ \vdots \\ w_n^* w_i \end{bmatrix}$$

$$= W\Sigma^2 \begin{bmatrix} \langle w_i, w_1 \rangle \\ \vdots \\ \langle w_i, w_n \rangle \end{bmatrix}$$

$$= W\Sigma^2 \begin{bmatrix} \langle w_i, w_1 \rangle \\ \vdots \\ \langle w_i, w_i \rangle \end{bmatrix}$$

$$= W\Sigma^2 \begin{bmatrix} 0 \\ \vdots \\ \langle w_i, w_i \rangle \\ \vdots \\ 0 \end{bmatrix}$$
Since w_i form an o.n.b.
$$= W\Sigma^2 \begin{bmatrix} 0 \\ \vdots \\ ||w_i||^2 \\ \vdots \\ 0 \end{bmatrix}$$

Now we split by cases. If i > r, then the i-th column of Σ will be exactly zero, and we will have $AA^*w_i = W0 = 0$, and $w_i \in \ker AA^*$

But if $i \le r$, then the *i*-th column of Σ^2 will be of the form $\Sigma^2 = \begin{bmatrix} 0 & \dots & \sigma_i^2 & \dots & 0 \end{bmatrix}^T$

Name: Thomas Boyko; UCID: 30191728

Then our equation becomes

$$AA * w_i = W\sigma_i^2 \begin{bmatrix} 0 \\ \vdots \\ \|w_i\|^2 \\ \vdots \\ 0 \end{bmatrix}$$

$$= \sigma_i^2 \begin{bmatrix} w_1 & \dots & w_n \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ \|w_i\|^2 \\ \vdots \\ 0 \end{bmatrix}$$

$$= (\sigma_i \|w_i\|)^2 w_i.$$

And as we wanted to show, w_i is an eigenvector for AA^* .