Big Data: E-commerce analysis

Group 2

Table of contents

Dataset Introduction

Customer EDA

Customer modelling

Product EDA

D5 Product Modelling

Conclusion

01

Dataset Introduction

UK e-commerce website

Sells gifts and homeware products

Converting it to a Parquet file

Saving it in a Parquet file format

```
"``{r}
#OPEN SAVED PARQUET FILE HERE
transactions_parquet <- arrow::open_dataset(
   sources = "parquet_folder/part-0.parquet",
   format = "parquet")

# Collect the data into a data frame
transaction_df <- transactions_parquet |>
   dplyr::collect()
```

Read the parquet file to Spark

```
library(sparklyr)
library(dplyr)

# Connect to a local instance of Spark
sc <- spark_connect(master = "local", version = "3.4.0")

# Copy the transactions R data frame to Spark memory and create the R reference transaction_ref
transaction_ref <- copy_to(sc, transaction_df)
head(transaction_ref, 4)</pre>
```


Data Cleaning

Removing rows w/empty values or negative quantities

```
transaction_clean <- transaction_ref |>
  filter(!is.na(CustomerNo) & (Quantity > 0 & Quantity < 1000) & !is.null(CustomerNo))</pre>
```

Source: SQL [?? x 8]	Database: spark_c	park_connection						
TransactionNo <chr></chr>	Date ProductNo <chr> <chr></chr></chr>		ProductName Price <chr> <chr> <chr> <chr> <</chr></chr></chr></chr>		Quantity <int></int>	CustomerNo <int></int>	Country <chr></chr>	
C581484	12/9/2019	23843	Paper Craft Little Birdie	6.19	-80995	16446	United Kingdom	
C581490	12/9/2019	22178	Victorian Glass Hanging T-Light	6.19	-12	14397	United Kingdom	
C581490	12/9/2019	23144	Zinc T-Light Holder Stars Small	6.04	-11	14397	United Kingdom	
C581568	12/9/2019	21258	Victorian Sewing Box Large	6.19	-5	15311	United Kingdom	
C581569	12/9/2019	84978	Hanging Heart Jar T-Light Holder	6.19	-1	17315	United Kingdom	
C581569	12/9/2019	20979	36 Pencils Tube Red Retrospot	6.19	-5	17315	United Kingdom	
C581228	12/8/2019	22423	Regency Cakestand 3 Tier	6.19	-6	16019	United Kingdom	
C581228	12/8/2019	23210	White Rocking Horse Hand Painted	6.19	-12	16019	United Kingdom	
C581228	12/8/2019	82494L	Wooden Frame Antique White	6.19	-6	16019	United Kingdom	
C581228	12/8/2019	22781	Gumball Magazine Rack	6.19	-24	16019	United Kingdom	

Data Cleaning

Removing anomalies in sales

```
#remove these
transaction_ref |>
  filter(Quantity >10000)
```

Source: SQL [?? x 8] Database: spark_connection		nection					
TransactionNo <chr></chr>	Date <chr></chr>	ProductNo <chr></chr>	ProductName <chr></chr>	Price <dbl></dbl>	Quantity <int></int>	CustomerNo <int></int>	Country <chr></chr>
581483	12/9/2019	23843	Paper Craft Little Birdie	12.38	80995	16446	United Kingdom
78841	11/25/2019	84826	Asstd Design 3d Paper Stickers	6.19	12540	13256	United Kingdom
541431	1/18/2019	23166	Medium Ceramic Top Storage Jar	11.32	74215	12346	United Kingdom

Data Cleaning

Converting dates into a standard date format

```
2.2 Converting date to date format
```{r}
 (B) ×)
library(dplyr)
transaction_clean <- transaction_clean |>
 month = substring_index(Date, "/", 1), #anyone else can't do substring?
 day = substring_index(substring_index(Date, "/", -2), "/", 1),
 year = substring_index(Date, "/", -1)
Add leading zeros to month and day
transaction_clean <- transaction_clean |>
 mutate(
 month = lpad(month, 2, "0"),
 day = lpad(day, 2, "0")
Combine the formatted values to create the "yyyy/mm/dd" date
transaction clean <- transaction clean |>
 mutate(FormattedDate = concat(year, "-", month, "-", day)) |>
 select(-month, -day, -year, -Date)
#convert to date format from chr
transaction_clean <-transaction_clean |>
 mutate(FormattedDate = to_date(FormattedDate))
transaction_clean
```

Source: SQL [?? x 8]		Database	spark_connection				
4	Price <dbl></dbl>	Quantity <int></int>	CustomerNo <int></int>	Country <chr></chr>	FormattedDate <date></date>		
	21.47	12	17490	United Kingdom	2019-12-09		
	10.65	36	13069	United Kingdom	2019-12-09		
	11.53	12	13069	United Kingdom	2019-12-09		
	10.65	12	13069	United Kingdom	2019-12-09		
	11.94	6	13069	United Kingdom	2019-12-09		
	10.65	24	13069	United Kingdom	2019-12-09		
	11.53	18	13069	United Kingdom	2019-12-09		
	12.25	12	13069	United Kingdom	2019-12-09		
	10.65	12	13069	United Kingdom	2019-12-09		
	10.55	24	13069	United Kingdom	2019-12-09		



# 02

**Customer EDA** 







# Geographical analysis



```
library(dbplot)
library(ggplot2)
country_plot <- transaction_clean |>
 mutate(Country = ifelse(Country == "United Kingdom", Country, "Others"))

dbplot_bar(country_plot, x = Country, Customers = n_distinct(CustomerNo)) +
 theme_minimal()
```





# Seasonality - Day of the week







# Seasonality - Month





# Feature engineering - RFM

#### Recency

Number of days since the last transaction. The higher it is, the longer it has been since the customer's last purchase.

#### Frequency

Total number of unique transactions per customer.

#### Monetary

Total amount the customer has spent in all their purchases with the business

Source: SQL [?? x 12]	Database: spark_	connection	
CustomerNo <int></int>	Recency <dbl></dbl>	Frequency <dbl></dbl>	Monetary <dbl></dbl>
15907	3	3	4766.57
16495	3	4	3277.35
14503	3	6	20398.81
16076	3	10	16260.48
17861	3	8	20308.57
18154	3	2	2363.58
18180	4	6	17879.32
15156	1	3	5097.06
13612	4	1	5521.15
17579	4	3	2537.87





# Feature engineering - Additional columns

Column name	Description
Unique_products	Number of unique products bought
total_qty_of_items	Total quantity of products bought
month_with_max_spending	A number from 1-12, where 1 = January, 2 = February etc. Represents the month where the customer spent the most.
highest_month_spending	The monetary value during the month where the customer spent the most
Avg_spend_per_transaction	Monetary/Frequency
Average_basket_size	This is the average number of items purchased in a transaction





### Feature selection - correlation analysis





# 03

**Customer Modelling** 

## Prepare data for modelling



Due to the different units of measure and ranges of the variables.

```
#standardised values
236
 rfm_stats <- ref_customer |>
 summarize(
239
 r_mean = mean(Recency),
240
 r_sd = sd(Recency),
 f_mean = mean(Frequency).
 f_sd = sd(Frequency),
243
 m_mean = mean(Monetary),
244
 m sd = sd(Monetary)
245
) |> collect() #bring back to local r
246
247
 ref_customer <- ref_customer |>
249
 mutate(R_standardized = (Recency - !!rfm_stats$r_mean) / !!rfm_stats$r_sd,
250
 F_standardized = (Frequency - !!rfm_stats$f_mean) / !!rfm_stats$f_sd,
 M_standardized = (Monetary - !!rfm_stats$m_mean) / !!rfm_stats$m_sd)
251
252
 ref customer |>
 sdf_describe(cols = c("R_standardized","F_standardized","M_standardized"))
```



# Model 1: Customer loyalty

Dependent Variable: Logistic Duration (Proxy)

<u>Duration</u>: last date of purchase - first day of purchase

High loyalty customers: 1 (above median duration) Low loyalty customers: 0 (below median duration)

> Independent Variables: Monetary, Recency, Frequency

How do these variables predict loyalty and which measure it most important?

# Model 1: Customer loyalty

```
fit1_logistic<- ref_customer_split_train |>
ml_logistic_regression(formula = logistic_duration ~ M_standardized + F_standardized + R_standardized)

fit1_logistic$summary$area_under_roc()

fit1_logistic$summary$area_under_roc()

fit1_logistic |> tidy()
```

features <chr></chr>	coefficients <dbl></dbl>
(Intercept)	1.7294993
M_standardized	-0.1302451
F_standardized	8.5105619
R_standardized	-0.6653812

## Model 2: Customer Clustering

K-means clustering: uses multiple iterations to segment the unlabeled data points into "K" different clusters with similar properties.

Step 1: Selecting the best value of K based on the silhouette scores.

We chose K = 4



### Model 2: Customer Clustering

Step 2: created a pipeline to generate 4 customer clusters based on the three standardized RFM variables and create a model.

```
kmeans_pipeline <- ml_pipeline(sc) |>
 ft_vector_assembler(
 input_cols = c("Recency", "Frequency", "Monetary"),
 output_col = "features"
378
379
380
 ft_standard_scaler(
381
 input_col = "features".
 output_col = "features_stdz",
382
383
 with mean = TRUE
) |>
384
385
 ml kmeans (
 features_col = "features_stdz",
386
 prediction_col = "prediction".
387
388
 k=4.
389
 max_iter = 100,
 init_mode = "random".
390
 seed = 2001
391
392
393
 fitted_model <- ml_fit(kmeans_pipeline, ref_customer)</pre>
395
396
 predictions <- ml_transform(fitted_model, ref_customer) |>
398
 collect()
```

# Model 2: Customer Clustering

Step 3: calculated the mean of each cluster to numerically classify them into different groups

cluster <chr></chr>	mean_recency <dbl></dbl>	mean_frequency <dbl></dbl>	mean_monetary <dbl></dbl>
0	66.08283	3.580787	9006.521
1	29.37500	77.187500	657592.798
2	35.02281	19.745247	58923.938
3	267.67701	1.551313	3574.195





# Interpretation of the clusters

#### Cluster 0:

Relatively recent, but frequency and monetary low- could be newer customers

#### Cluster 1:

High frequency and Monetary and most recent customers - they are the most loyal and valuable customers

#### Cluster 2:

Relatively recent, but lower Monetary and Frequency than cluster 2: Potential to become part of most valuable.

#### Cluster 3:

Not very recent, with frequency close to 1 and low monetary value: lost customers or non recurring





# 04

# Product EDA

# Ranking products - Top and Bottom 5

Grouping by product name and number, summarising by sum of quantity and collecting back to R environment for analysis

*Insights*: popular items are sold in **quantities up to 40k**, and the least popular items are only sold once

#### Code:

```
#group the products and sum the quantity for every product, then arrange in descending order based on quantity
ranked_products <- transaction_clean |>
 filter(Quantity >= 0 & !is.na(CustomerNo)) |>
 group_by(ProductName, ProductNo) |>
 summarise(Quantity_sold = sum(Quantity)) |>
 arrange(desc(Quantity_sold)) |>
 collect()

#choose the top 5 rows
top_5_products <- head(ranked_products,5)
#choose the bottom 5 rows
bottom_5_products <- tail(ranked_products, 5)

top_5_products
bottom_5_products
```





# Quantity sold per month (Top 5)

Focused on the top 5 products and UK Calculation of average price for each product Grouped by month, country and product no/product name

ProductNo <chr></chr>	ProductName <chr></chr>	Country <chr></chr>	month_sold <int></int>	Quantity <dbl></dbl>	Avg_Price <dbl></dbl>
22197	Popcorn Holder	United Kingdom			11.241515
85099B	Jumbo Bag Red Retrospot	United Kingdom		3093	6.448385
	Pack Of 72 Retrospot Cake Cases	United Kingdom		2035	9.910551
22197	Popcorn Holder	United Kingdom		2842	11.333818
84879	Assorted Colour Bird Ornament	United Kingdom			12.010833
85099B	Jumbo Bag Red Retrospot	United Kingdom		4768	6.313774
85099B	Jumbo Bag Red Retrospot	United Kingdom			6.460230
21212	Pack Of 72 Retrospot Cake Cases	United Kingdom			11.019885
84077	World War 2 Gliders Asstd Designs	United Kingdom		2067	10.575000
84077	World War 2 Gliders Asstd Designs	United Kingdom		1546	
85099B	Jumbo Bag Red Retrospot	United Kingdom		3303	6.429887
85099B	Jumbo Bag Red Retrospot	United Kingdom			6.423097
22197	Popcorn Holder	United Kingdom		8075	9.606229
85099B	Jumbo Bag Red Retrospot	United Kingdom			6.332621
22197	Popcorn Holder	United Kingdom		1989	11.311158
84077	World War 2 Gliders Asstd Designs	United Kingdom			10.550769
84077	World War 2 Gliders Asstd Designs	United Kingdom			10.580588
21212	Pack Of 72 Retrospot Cake Cases	United Kingdom			11.070294
22197	Popcorn Holder	United Kingdom		1680	11.432647
84879	Assorted Colour Bird Ornament	United Kingdom			12.072740
84879	Assorted Colour Bird Ornament	United Kingdom		3469	10.250833
21212	Pack Of 72 Retrospot Cake Cases	United Kingdom			11.049255
1-22 of 60 rows				Previous 1	2 3 Next

#### Code:

# Quantity sold per month (Top 5)

Using ggplot2 to visualise a line graph showing the quantity sold per month for the top 5 products

Using scale\_x\_continuous for continuous data (months)

*Insights*: popcorn holders are extremely popular during November!



#### Code:

```
#Visualising the quantity sold every month for the top 5 products
ggplot(different_months, aes(x = month_sold, y = Quantity, color = ProductName)) +
geom_line() +
scale_x_continuous(breaks = 1:12, labels = month.abb[1:12]) + # Set numeric months
and labels
labs(x = "Month", y = "Quantity Sold") +
ggtitle("Quantity Sold per Month for Selected Products") +
theme(legend.position = "top") +
theme_minimal()
```

# Change in average prices of products

every month

Using ggplot2 to visualise a line graph on the change in average prices for the top 5 products

Insights: all top products except jumbo bag red retrosport faced a decline during october, november, december (could be from discounts/clearing stocks)





```
#Visualising the change in average prices of the products every month
ggplot(different_months, aes(x = month_sold, y = Avg_Price, color = ProductName)) +
 geom_line() +
 scale_x_continuous(breaks = 1:12, labels = month.abb[1:12]) + # Set numeric months
and labels
 labs(x = "Month", y = "Average Price") +
 ggtitle("Average Price per Month for Selected Products") +
 theme(legend.position = "top") +
 theme_minimal()
```



# 05

# Product Modelling

# Understanding products' contribution

- As an ecommerce company, you would like to understand what contributes most to your revenue
- Using the dplyr package, we calculated the total revenue that each category collected over the period of the dataset
- With that visual analysis, we found out that a small proportion of the product categories brought about majority of the revenue







# Feature engineering

#### Recency

Number of days since the last transaction. The higher it is, the longer it has been since the product has been sold.

#### Frequency

Total number of unique transactions per product.

#### Monetary

Total amount the product has generated through its sales

#### Average Transaction Quantity

The average volume of units sold for each product given any transaction.

#### Average Price

The average price that the product was sold for over the period.



# Feature engineering

```
product_rfm <- transaction_clean |>
 dplyr::mutate(Revenue = Quantity * Price) |>
 group_by(ProductNo, ProductName) |>
 summarize(
 Price = mean(Price),
 Frequency = n(),
 AvgTransactionQuantity = mean(Quantity),
 Recency = as.numeric(datediff(max(FormattedDate), to_date("2019-12-31"))*(-1)),
 Monetary = sum(Revenue)
) |>
 arrange(desc(Monetary), desc(Frequency)) |> collect()
```

ProductNo <sup>‡</sup>	ProductName	Price ‡	Frequency <sup>‡</sup>	AvgTransactionQuantity	Recency	Monetary <sup>‡</sup>	isTopProduct <sup>†</sup>	0
22197	Popcorn Holder	10.807761	1416	28.304379	22	421648.36		1
85123A	Cream Hanging Heart T-Light Holder	13.078984	2333	14.181740	22	421536.89		1
84879	Assorted Colour Bird Ornament	11.638126	1489	21.768301	22	373419.54		1
84077	World War 2 Gliders Asstd Designs	10.269848	526	66.690114	22	360785.63		1
21212	Pack Of 72 Retrospot Cake Cases	10.770898	1370	23.850365	22	350497.83		1

# Finding our "Top Products"

- One of our hypotheses was the Pareto Principle where 80% of outcomes are due to 20% of inputs.
- We hypothesize that 80% of our revenue was due to 20% of our products.
- We found that the top 25% of our products contributed to 80% of our revenue
- However, through KS-testing of our revenue distribution by product category did not found it to be statistically significant for enough for a theoretical Pareto Distribution.
- Nonetheless, a the top 24.8% products had a statistically significant higher mean monetary value through t-tests.



# Conducting logistic regression

```
top_products_logistic_regression <- product_rfm_spark|>
 ml_generalized_linear_regression(
 formula = isTopProduct ~ Price + AvgTransactionQuantity + Frequency,
family = "binomial") |> tidy()
```

*	term ‡	estimate <sup>‡</sup>	std.error ‡	statistic <sup>‡</sup>	p.value <sup>‡</sup>
1	(Intercept)	-7.95329042	0.320145578	-24.842731	0.000000e+00
2	Price	0.01340290	0.003125843	4.287772	1.804742e-05
3	AvgTransactionQuantity	0.18526359	0.010384815	17.839856	0.000000e+00
4	Frequency	0.03104502	0.001317810	23.558029	0.000000e+00

# Conducting logistic regression

```
#creating training and testing validation
product_analysis_split <- product_rfm_spark|>
 sdf_{random_split}(training = 0.8, testing = 0.2, seed = 123)
top_product_analysis_train <- product_analysis_split$training
top_product_analysis_test <- product_analysis_split$testing
lr_fit <- top_product_analysis_train|> ml_logistic_regression(formula =
isTopProduct ~ Price + AvgTransactionQuantity + Frequency)
lr_fit_summary<- ml_evaluate(lr_fit, dataset = top_product_analysis_test</pre>
lr_fit_summary$area_under_roc()
```





# 06

# Conclusion

### Conclusion

Utilized many models to interpret the e-commerce dataset in more detail

High-value products model



Found the highest selling products



Product Strategy
Focus on more popular products

Customer segment model



There are 4 key groups of customers



Targeted Marketing for each customer segment



# **Project Roadmap**

Task	W3	W4	W5	W6	W7	W8	W9	W10	WII	W12	W13	W14
Introduction												
Apache file format												
Data wrangling												
Visualization & EDA												
Modeling												
ML Pipeline												







Do you have any questions?