Marcos López Merino

Prof.: Dr. Ángel Sánchez Cecilio

Examen Parcial 1

Entrega: 28 de octubre de 2025

Problema 1: Función de onda

(30 pts)

Para una partícula de masa m que se encuentra en el estado

$$\Psi(x,t) = Ae^{-a\left[\frac{mx^2}{\hbar} + it\right]},$$

donde A y a son constantes positivas.

- (a) Encuentra A.
- (b) Calcula los valores esperados de los operadores $\hat{x}\,,\hat{x}^2,\hat{p}$ y $\hat{p}^2.$
- (c) Encuentra Δ_x y $\Delta_p,$ ¿es consistente con el principio de incertidumbre?

Problema 2: Barrera de Potencial

(30 pts)

Considear una partícula de masa m, que se mueve dentro de un potencial cuadrado infinito, cuya función de onda es

$$\psi(x) = \frac{3}{\sqrt{30}}\phi_0 + \frac{4}{\sqrt{30}}\phi_1 + \frac{1}{\sqrt{6}}\phi_4,$$

donde ϕ_n es el n-ésimo estado excitado con energía $E_n=\pi^2\hbar^2n^2/(2ma^2).$

Encuentra:

- (a) La probabilidad de encontrar el sistema en el estado base.
- (b) La energía promedio del sistema.

Problema 3: Oscilador Armónico

(40 pts)

Para los primeros estados de un oscilador armónico cuántico, encuentra, en términos de los operadores de ascenso y descenso, \hat{a}^{\dagger} y \hat{a} lo siguiente:

- (a) El valor esperado de $\langle \hat{x} \rangle$ y $\langle \langle p \rangle \rangle$.
- (b) El valor esperado de $\langle \hat{x}^2 \rangle$ y $\langle \hat{p}^2 \rangle$.
- (c) Las desviaciones estándar Δr y Δp .
- (d) ¿Es Δr para n=0 igual que para n=1? Argumenta tu respuesta.
- (e) ¿Es Δp para n=0igual que para n=1? Argumenta tu respuesta.
- (f) Encuentra el valor esperado de la energía cinética $\langle T \rangle$ y la energía potencial $\langle V \rangle$. ¿Qué da su suma?

Hint: Recuerda que los estados excitados se pueden encontrar a partir de los estados contiguos, $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$, $a|n\rangle = \sqrt{n}|n-1\rangle$.

Problema 4

Tomando en cuenta la expresión relativista de la energía para una partícula de masa m y momentum p es $E^2=m_0^2c^4+\overrightarrow{p}^2c^2$. Escribe la versión cuántica de esta ecuación y discute la principal diferencia que existe con la ecuación de Schrödinger.