TRANSLATION OF EUROPEAN PATENT

European Patent Office

Publication Number:

Publication Date of the Patent:

Application Number:

21 MAR 84 81100412.6

Filing Date:

21 JAN 81

Priority:

DE 3016010: 25 APR 80

Patentee:

Degussa Aktiengesellschaft

Weissfrauenstrasse 9

D-6000 Frankfurt/Main (DE)

Inventors:

Schwarz, Rudolf

Kleinschmit, Peter

Lydo shoxure

Method for the Production of Pyrogenic Silicic Acid

Claim (as in original EP):

A process for the pyrogenic production of silica having a specific BET surface of from 250 \pm 25 to $350 \pm 25 \text{ m}^2/\text{g}$ and a thickening of from 4000 to 8000 mPas in unsaturated polyesters, characterized in that a siloxane or a mixture of various siloxanes is burned in the presence of hydrogen or a hydrocarbon,

Specification:

The production of pyrogenic, large-surface silicić acids by high-temperature hydrolysis of silicon halides, in particular of silicon tetrachloride, in a hydrogen flame is not new. For decades, large amounts of highly pure, highly disperse silicic acids have been produced with this method and widely used as thickeners in varnish and paint chemistry, in the production of pastes or salve-like materials, e.g., in the production of toothpastes, and in the pharmaceutical industry,

It has been known that the degree of thickening attainable with pyrogenic silicic acid is dependent on a number of different factors. These factors include in particular the type of system that is to be thickened, the type of silicic acid and the concentration in which it is used, the pH value of the system, and the degree of dispersion achieved with the given dispersing means.

第 (716) 244-8958

The effect of the type of silicic acid is particularly significant because the thickening of a system becomes greater with increasing activity of the type of silicic acid used. A measure of this activity can be the simple observation of the external specific surface of a silicic acid. For this reason pyrogenic silicic acid types are grouped by the size of their specific surface. However, it is not true — considering the given dispersing means — that the type of silicic acid exhibiting the largest specific surface has the greatest thickening effect. Rather, in general, it is true that the thickening effect increases initially with an increasing specific surface of the silicic acid until a maximum has been reached and then diminishes with a further increasing surface. For example, a commercially available pyrogenic silicic acid has the following thickening effect as a function of the specific surface in an unsaturated polyester test resin using a given concentration:

Specific surface	<u>Viscosity</u>
(m²/g)	(mPas)
130	2000
200	2900
300	3500
380	3000

As is obvious a given concentration of silicic acid will not go beyond a viscosity of approximately 3500 mPas.

Indeed, there exist numerous technological possibilities in the production of silicic acids for reaching even greater specific surfaces; however, as has been shown, they do not produce an improvement of the thickening effect of pyrogenic silicic acid when the same quantity ratios are used. On the other hand the technological possibilities of improving the thickening effect of pyrogenic silicic acid with a given specific surface are highly limited or are intolerably expensive and tedious.

DE-OS 2,904,199 (laid open). Example 4, discloses a pyrogenically produced silicic acid having a specific BET surface of 309 m²/g and a thickening effect of 4040 m² ascal.

It has been found that the use of siloxane or a mixture of various siloxanes as starting material for the production of pyrogenic silicic acid results, under certain conditions, in products which have an unusually pronounced thickening effect in organic fluids as well as in aqueous systems.

The object of the invention herein is a method for the pyrogenic production of silicic acid having a specific BET surface of from 250 \pm 25 to 350 \pm 25 m²/g and a thickening of 4000 to 8000 mPas in

1716) 244-8958

unsaturated polyesters, characterized in that siloxane or a mixture of various siloxanes is burned in the presence of hydrogen or a hydrocarbon.

The following siloxanes may be used: octamethyltrisiloxane, 1,1,3,3,5,5 hexamethylcyclotrisiloxane or 1,1,3,3,5,5,7,7-octamethylcyclotetrasiloxane.

In a preferred embodiment of the present invention hexamethyldisiloxane may be used as siloxane.

One advantage of using this starting material is that it is free of chlorine, thereby eliminating the otherwise absolutely required subsequent deacidification of the silicic acid by means of a mixture of water vapor and air at high temperature.

Due to the high energy content of hexamethyldisiloxane it is possible to burn off this substance in the form of a mixture of water vapor and air in a suitable burner without the addition of e.g. hydrogen, thus resulting in products with surfaces which are a function of the operating parameters as is possible in the case of other starting materials, e.g. silicon tetrachloride. However, the thickening effect of products obtained in this manner is not as pronounced as would be the case with the additional introduction of hydrogen in the mixture of water vapor and air and, considering sufficient amounts of air, the simultaneous burning-off of hexamethyldisiloxane.

Therefore, in accordance with the invention herein, the siloxane must be burned in the presence of hydrogen or a hydrocarbon.

In this way products may be obtained which have a so far unknown thickening effect on the most diverse liquid systems.

The examples hereinafter are meant to explain and describe the subject matter of the invention in detail:

Reference Example 1

An amount of 3.5 l/h (5.03 kg) of silicon tetrachloride is evaporated in an evaporator and mixed with 4.3 m³ of air which has been heated to 80°C. The mixture of silane and air is introduced tangentially in the shaft end of the burner as described in US Patent 3,086,851 and mixed there 03:15

in a homogeneous manner with 1.76 m 3/h of hydrogen introduced through a second inlet. The star-shaped interior elements of the burner shaft cause a lamination of the gas mixture which exits from the burner orifice at a rate of 23.8 m/sec and burns off at said opening following ignition. The burner orifice has a diameter of 10 mm. In order to stabilize the flame and prevent deposits on the burner orifice 0.35 m³/h of hydrogen is allowed to flow through a circular gap surrounding the burner orifice and burn off like a flame shield. The hot reaction products of the flame zone are drawn into a cooling chamber and, after cooling to < 150°C, fed to a filtration arrangement by pneumatic means. In this filtration arrangement the obtained pyrogenic silicic acid is separated from the still gaseous reaction products - oxygen, nitrogen, water vapor and hydrogen chloride, The silicic acid, which still contains approximately 1% of chlorine, is then further deacidified by means of a mixture of water vapor and air having a temperature of 800°C in a reaction column and then deposited in a bin. The yield is 1.78 kg of SiO 2/h

The specific BET surface of the resultant silicic acid is 215 m²/g. By using this product an unsaturated polyester resin can be imparted in a yet to be described test with a viscosity of 2980 mPas. Using the same product, a yet to be described toothpaste test mixture can be thickened to a viscosity of 2200 mPas.

Reference Example 2

Analogous to Example 1, 0.546 l/h (= 0.752 kg) of hexamethyldisiloxane is evaporated and mixed with 7.11 m3/h of air which has been preheated to 120°C. The mixture of siloxane and air is transferred to a burner as described in US Patent 3,086,851 and allowed to exit from the burner orifice at a rate of approximately 25.5 m/sec and burn off. Analogous to Example 1, the reaction flame is shielded by a pure hydrogen flame of 0.35 m³H₂/h. After cooling the flame reaction products in the cooling zone to < 150°C, the obtained silicic acid is separated from the gaseous reaction mixture of nitrogen, oxygen, water vapor and carbon dioxide by filtration or by means of a cyclone.

The yield is 0.55 kg/h of pyrogenic silicic acid. The specific BET surface of the silicic acid is 159 m2/g. The viscosity of an unsaturated polyester resin thickened in accordance with Example 1 is at1575 mPas.

Reference Example 3

Analogous to Example 1, 0.819 I/h (= 1,13 kg) of hexamethyldisiloxane is evaporated, mixed with 16.86 Nm³ of air having a temperature of 120°C and introduced in a burner having the described design. Simultaneously, 1.46 m ³ of hydrogen is introduced in the burner and mixed in a homogeneous manner with the other two components. The three starting components exit at a rate of 65.4 m/sec and, following ignition, are burned off in a blazing flame. The amount of shielding hydrogen used is again 0.35 m ³/h. A subsequent deacidification of the silicic acid (0.83 kg SiO₂/h) obtained after cooling the reaction products and separation from the gaseous substances as in Example 1 is not required. The specific BET surface of the obtained silicic acid is 334 m²/g. The viscosity of the unsaturated polyester test varnish at 7595 mPas thickened with the product of this Example is unusually high.

Toothpaste base material thickened in accordance with this test reaches a thickening value of 4300 mPas. The silicic acid can be dispersed well in the base material. The homogeneity of the thickened base material is good as well. Unpleasant grit particles are not observed. After several days of storage of the thickened base paste the viscosity has increased further and, finally, thickness values of more than 6000 mPas are achieved.

Reference Example 4

In order to produce a silicic acid with small specific surface and thickening behavior which is reduced compared to that achieved with Example 3, the procedure is carried out as in Example 3 with the difference that only 15,08 m ³ of air is used. In this case the three-component mixture leaves the burner at a rate of 59 m/sec. The specific surface of the resultant silicic acid is 241 m ²/g and the viscosity of the unsaturated polyester resin of Example 1 is at 4405 mPas.

Examination of the thickening behavior of pyrogenic silicic acid using a dissolver dispersion

1. Parameters

The viscosity of a polyester resin mixed with pyrogenic silicic acid represents the measure of the thickening behavior.

The unit of dynamic viscosity is the Pascal second (Pas). One millipascal second (mPas) corresponds to the so far used unit of Centipolse (cP). The viscosity was determined by means of a rotation viscosimeter (DIN 53 214).

2. Apparatus and reagents

- Rotovisko RV 1-3 or later models (by Firma Haake, Karlsruhe) using a water thermostat, testing element MV2 and measuring head 50.
- Dissolver; Ø of the dispersing disk, 5 cm,
- Plastic cup, outside diameter 8.4 cm.
- Ludopal P6 (BASF, viscosity of 1100 ± 100 mPas).
- Monostyrene solution (100 g of monostyrene and 0.4 g of paraffin).
- Tabular paraffin, 50/50°C; oil content, 1-1.5%; Firma Jung, Atlantic Refining GmbH, Hamburg.

3. Test

An amount of 7.5 parts by weight of pyrogenic silicic acid is combined (mixed manually with a spatula) with 142.5 parts by weight of Ludopal [®] P6 in a plastic cup and dispersed for five minutes at 3000 rpm with a dissolver (dissolver disk is at a distance of approximately 1 mm from the bottom of the plastic cup).

An amount of 60 g of the resultant paste is combined with 63 g of polyester resin and 27 g of monostyrene solution, mixed well with the use of a spatula and dispersed with said dissolver for three minutes at 1500 rpm in said plastic cup.

To prevent styrene loss, the cup is covered with a plastic blanket during dispersion. To remove included air bubbles, the sample is evacuated briefly.

After standing for 1 hour and 45 minutes the sample is filled into the measuring cup. The measuring cup is screwed into the tempering head and tempered at 22°C. After standing for 15 minutes the viscosity is measured at a shearing slope of D = 2.72 s⁻¹. The indicator on the measuring device is read after 30 seconds. After this period of time an almost constant value has been reached.

11/05/98

Powerbook 150

Considering the determined rate, the reading indicated and the calibration constant of the rotary element used, the viscosity is obtained satisfying the following equation:

$$\eta = U, U, K (mPas)$$

where U = rate of the Rotovisko (RVI = 162)

S = indicated scale increments

K = calibration constant of the rotary element used

Test composition for toothpastes

Composition of the phosphate base material:

Water	35.05 g
Dehydrazol A 400 P	0.80 g
Solbrol M-Na	0.15 g
Glycerin	12.00 g
Sorbitol	15.00 g
Dicalciumphosphate-dihydrate (L)	34.00 g
	97.00 g

An amount of 3 g of pyrogenic silicic acid was worked into 97 g of this preliminary concentrate and then homogenized three times on a three-roller frame. Then the included air was removed in an exsiccator. One day later the viscosity of the paste prepared in this manner was determined at a rate of 27 by means of Rotovisko System PK No. 8012.

EP38900

11/05/96 03:16 **2**607 974 3848 Powerbook 150 CORNING PATENT

→→→ NIXON, HARGRAVE

. . .

Ø 017

3 (716) 244-8958

2011/1/96

05:00 AM

08/8

Translated by: Technical & Patent Translations P. M. Riefler-Bonham 145 Laburnum Crescent Rochester, New York 14620

Tel./Fax/Modern: (716) 244-8958 internet: 102262,1424@compuserve.com

1 November 1996

EP38900

8

Europäieches Patentamt European Patent Office Office européen des brevets

(1) Veröffentlichungsnummer: 0 038 900

(12)

EUROPÄISCHE PATENTSCHRIFT

- Veröffentlichungstag der Patentachrift: 21,03,84
- (f) Int. Cl. : C 01 B 33/12, C 08 K 3/36

- (21) Anmeldenummer : 81100412.6
- (2) Arimeldetag : 21,01,61

(A) Verlahren zur Herstellung pyrogener Kleseisäure.

- 30 Priorität : 25.04.80 DE 3016010
- (43) Veröffentlichungstag der Anmeldung: 04.11.81 Patentblatz 81/44
- 46 Bekanntmachung des Hinweises auf die Patemertellung : 21.03.84 Patenthlatt 84/12
- (A) Benarinte Vertragsstaaten: AT BE CH DE FR GB IT LI LU NL SE
- (6) Entgegenhaltungen : DE-A- 2107 082 DE-A- 2403 783 DE-A- 2 620 787 DE-A- 2 904 199 DE-B- 1 933 291 DE-B- 2 123 233 DE-B- 2 344 388 128 880 E -A-8U US-A- 3772 427

- Patentinhaber: Deguses Aktiengeselischaft Weissfrauenstrasse 9 D-6000 Frankfurt am Main 1 (DE)
- 72 Erlinder: Schwarz, Rudolf, Dr. Taunusstrasse 2 D-8755 Alzenau (DE) Erfinder : Kielnschmit, Peter, Dr. Wildaustrasse 19 D-8450 Hanau 9 (DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinwelses auf die Erteilung des europäischen Patents im Europäischen Patentbiatt kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Jouve, 18, rue St-Denis, 75001 Paris, France

0 038 900

Verfahren zur Herstellung pyrogener Klaselsäure

Die Herstellung pyrogener hochoberliächiger Kleselsäuren durch Hochtemperaturhydrotyse von Siliciumhalogeniden, insbesondere von Siliciumtetrachlorid in einer Wasserstofflamme, ist nicht neu. Seit Jahrzehnten werden nach diesem Verfahren große Mengen sehr reiner hochdisperser Kleselsäuren hergestellt, die als Verdickungsmittel in der Lack- und Farbenchemie, bei der Herstellung pasteuser oder salbenartiger Massen, z. B. bei der Zahnpastenbereitung und in der pharmazeutischen industrie eine sehr große Verbreitung gefunden haben.

Es ist bekannt, daß der Grad der mit der pyrogenen Kleselsäure erzielbaren Verdickung von vieleriel Faktoren abhängig ist. Insbesondere bestehen Abhängigkeiten zur Art des Systems, das verdickt werden soll, zur Kleselsäuretype und Ihrer angewendeten Konzentration, zum pH-Wert des Systems und zum Grad der Dispergierung, der mit einem bestimmten Dispergierungsaufwand erreicht wurde.

Dem Einfluß der Kleselsäuretype kommt eine besonders große Bedeutung zu. Die Verdickung eines Systems ist nämlich um so größer, je höher die Aktivität der verwendeten Kleselsäuretype ist. Als Maß für die Aktivität kann man vereinfachend die äußere spezifische Oberfläche einer Kleselsäure ansehen. Aus diesem Grund sind auch die pyrogenen Kleselsäuretypen nach der Größe der spezifischen Oberfläche geordnet. Es trifft aber nicht zu, daß bei einem gegebenen Dispergierungsaufwand die Kleselsäuretype mit der höchsten spezifischen Oberfläche auch die größte Verdickungswirkung ausübt. Vielmehr ist es im aligemeinen so, daß die Verdickungswirkung mit stelgender spezifischer Oberfläche der Kleselsäure zunächst bis zu einem Maximum zunimmt und sich bei weiter stelgender Oberfläche wieder vermindert.

So hat zum Beispiel eine handelsübliche pyrogene Kleselsäure in einem ungesättigten Polyester-Testharz bei gegebener Konzentration folgende Verdickungswirkungen in Abhängigkeit von der spezifischen Oberfläche:

25	Spez. Oberfläche m²/g	•	Viskositāt mPas
11.	190 200		2.000 2.900
30	300 380	ė .	3.500 3.000

Wie man sieht, kommt man bei einer gegebenen Konzentration an Kieselsäure über eine Viskosität von ca. 3.500 mPas nicht hinaus.

Es gibt zwar zahlreiche betriebstechnische Möglichkeiten bei der Herstellung pyrogener Kieselsäusen zu noch höheren spezifischen Oberflächen zu gelangen. Sie alle führen aber, wie gezeigt wurde, bei
gleichen mengenmäßigen Verhältnissen nicht zu einer Verbesserung der verdickenden Wirkung der
pyrogenen Kieselsäure. Andererseits sind die betriebstechnischen Möglichkeiten, die verdickende
Wirkung von pyrogener Kieselsäure bei gegebener spezifischer Oberfläche zu verbessern, sehr eng
begrenzt oder erfordern einen unvertretbaren hohen Aufwand.

Aus der DE-OS 2 904 199 Beispiel 4 ist eine pyrogen hergestellte Kleselsäure mit einer spezifischen BET-Oberfläche von 309 m²/g und einer Verdickung von 4 040 mPascal bekannt.

Es wurde nun gefunden, daß sich bei Verwendung von Siloxan oder einem Gemisch von verschiedenen Siloxanen als Rohstoff für die Herstellung von pyrogener Kleselsäure unter bestimmten Betriebsbedingungen Produkte erhalten lassen, die sowohl in organischen Flüssigkeiten als auch in wäßerigen Systemen eine ungewöhnlich hohe verdickende Wirkung ausüben.

Gegenstand der Erfindung ist ein Verfahren zur pyrogenen Herstellung von Kleselsäure mit einer spezifischen BET-Oberliäche von 250 ± 25 bis 350 ± 25 m²/g und einer Verdickung von 4 000 bis 8 000 mPas in ungesättigten Polyestern, dadurch gekennzeichnet, daß man Siloxan oder ein Gemisch von verschiedenen Siloxanen in Gegenwart von Wasserstoff oder einem Kohlenwasserstoff verbrennt.

Als Siloxan kann man Octamethyltrisiloxan, 1,1,3,3,5,5-Hexamethylcyclotrisiloxan oder 1,1,3,3,5,5,7,-Octamethylcyclotetrasiloxan verwenden.

in einer bevorzugten Ausführungsform der Erfindung kann man als Siloxan Hexamethyldisiloxan verwenden.

Ein Vorteil der Verwendung dieses Rohstoffes liegt in seiner Chlorfreiheit, die einen Verzicht auf eine sonst unbedingt erforderliche nachträgliche Entsäuerung der Kleselsäure mit einem Wasserdampf/Luftgemisch bei hoher Temperatur ermöglicht.

Aufgrund des sehr hohen Energiseinhaltes von Hexamethyldisiloxan ist es möglich, diese Substanz als Dampf/Luftgemisch in einem geeigneten Brenner ohne Zusatz von z.B. Wasserstoff abzubrennen, wobei Produkte mit Oberflächen in Abhängigkeit von den Betriebseinsteilungen erhalten werden können, wie das mit anderen bekannten Rohstoffen, z.B. Siliciumtetrachlorid, möglich ist. Allerdings ist die verdickende Wirkung dieser so hergestellten Produkte nicht so ausgeprägt, wie wenn man zusätzlich Wasserstoff mit in das Dampf/Luftgemisch einbringt und unter Berücksichtigung ausreichender Luftmengen gemeinsam mit dem Hexamethyldisiloxan abbrennen läßt.

1. AlalineAa

Maßstab des Verdickungsverhaltens ist die Viskosität eines mit pyrogener Kieselsäure vermischten Polyesterharzes.

Die Einheit der dynamischen Viskosität ist die Pascalsekunde (Pas). Eine Millipascalsekunde (mPas) entspricht der bisher gebräuchlichen Einheit Centipolse (cP). Die Bestimmung der Viskosität erfolgt mit einem Rotationsviskosimeter nach DiN 53 214.

2. Gerate und Reagenzien

Rotovisko RV 1-3 oder Nachfolgetypen (Firma Haake, Karlaruhe) mit Wasserthermostat, Prüfkörper MV 2 und Meßkopf 50.

Dissolver, Ø der Dispergierschreibe 5 cm. Plastikbecher, äußerer Durchmesser 8,4 cm. Ludopai P6 (BASF, mit einer Viskosität von 1 100 ± 100 mPas). Monostyrollösung (100 g Monostyrol und 0,4 g Paraffin). Tafelparaffin 50/52 °C, Ölgehalt 1-1,5 %, Firma Jung, Atlantic Refining GmbH, Hamburg.

3. Durchführung

15

20

In 142,5 Gew.-Telle Ludopal^A P6 werden 7,5 Gew.-Telle pyrogene Kleselsäure in einem Plastikbecher eingewogen (mit dem Spatel von Hand vermischt) und mit einem Dissolver fünf Minuten lang bei 3 000 Upm dispergiert (Dissolverscheibe ca. 1 mm von Bodem des Plastikbechers entfernt).

60 g der erhaltenen Paste werden mit 63 g Polyesterharz und 27 g Monostyroliösung versetzt, mit einem Spatel gut verrührt und in dem genannten Plastikbecher mit dem Dissolver drei Minuten bei

1 500 Upm dispergiert.

Um Verluste an Styrol zu vermeiden, wird der Becher während der Disperglerung mit einem Plastikdecke abgedeckt. Zur Entfernung von eingeschlossenen Luftbläschen wird die Probe kurzzeitig evakulert.

Nach einer Standzeit von 1 Stunde und 45 Minuten wird die Probe in den Meßbecher eingefüllt. Der Meßbecher wird in den Temperierkopf eingeschraubt und bei 22°C temperiert. Nach 15 Minuten Standzeit erfolgt die Viskositätsmessung bei einem Schergefälle von D = 2,72 s-1. Der Zeiger am Anzeigeninstrument wird nach 30 Sekunden abgelesen. Nach dieser Zeit ist ein annähernd konstanter 40 Wart erreicht.

4. Auswertung

Aus der vorgelegten Geschwindigkeit, dem Zeigerausschlag und der Eichkonstante des verwendeten Drehkörpers erhält man die Viskosität nach der Gielchung:

η = U. S. K (mPas) U — Geschwindigkeitsstufe des Rotovisko (Bei RVI = 162)

8 — angezeigte Skalentelle

K — Elchkonstante des verwendeten Drehkörpers.

Testrezeptur für Zahnpasten

Zusammensetzung der Phosphatgrundmasse:

	Wesser			
<i>5</i> 5	Dehydazol A 400 P			35,05
	Solbrol M-Na			0,80
	Glyzerin			0,15
	Sorbitoi	* .		12,00
	Dicatziumphosphat-Dihydrat (L)		8	15,00
60				34,00
				97.00

in 97 g dieses Vorkonzentrates wurden 3 g pyrogene Kleseksäure mit einem Spatel eingearbeitet und anschließend 3 x auf einem Dreiwalzenstuhl homogenisiert. Anschließend wurde die eingeschlossene Luft im Exsiccator entfernt. Von der so hergestellten Paste wurde nach 1. Tag die Viskosität mit dem Rotovisko System PK Nr. 8012 Geschwindigkeit 27 bestimmt.

30

0 038 900

Gemäß der Erfindung muß man daher das Siloxan in Gegenwart von Wasserstoff oder einem Kohlenwasserstoff verbrennen.

Auf diesem Wege konnten Produkte erhalten werden, die eine bisher nicht gekannte verdickende Wirkung auf die verschiedensten flüssigen Systeme ausüben.

Die folgenden Beispiele sollen den Erfindungsgegenstand näher erläutern und beschreiben :

Vergleichsbeispiel 1

In einem Verdampfer werden 3,4 Liter Siliciumtetrachlorid pro Stunde, das sind 5,03 kg, verdampft und mit 4,3 m³ auf 80 °C erwärmte Luft vermischt. Des Silan/Luftgemisch wird sodann in das Schaftende des Brenners, gemäß US-PS 3 086 851 tangential eingeleitet und dort mit 1,78 m³/h Wasserstoff, der durch einen zweiten Stutzen einströmt, homogen vermischt. Die stermförmigen Einbauten des Brennerschaftes bewirken eine Laminierung der Gasgemische, die an der Brenneröffnung mit einer Geschwindigkeit von 23,8 m/sec austritt und dort nach der Zündung abbrennt. Der Brenneraustritt hat einen Durchmesser von 10 mm. Zur Stabilisierung der Fiamme und zur Verhinderung von Ansätzen am Brennerende läßt man durch einen die Brennermündung umgebenden Ringspalt 0,35 m³/h Wasserstoff austreten und als Fiammenmantei ebenso abbrennen. Die heißen Reaktionsprodukte der Fiammenzone werden in eine Kühlkammer eingesaugt und nach der Abkühlung auf < 150 °C pneumatisch einer Filtrationsanlage zugeführt. In der Filteranlage trennt man die erhaltene pyrogene Kieselsäure von den gasförmigen Reaktionsprodukten Sauerstoff, Stickstoff, Wasserdampf und Chiorwasserstoff. Die noch etwa 1 % Chior enthaltende Kieselsäure wird anschließend in einer auf 600 °C geheizten Reaktionsstrecke mit Hilfe eines Wasserdampf/Luftgemisches nachentsäuert und schließlich in einem Bunker abgesetzt. Die Ausbeute pro Stunde beträgt 1,78 kg SiO₂

Die spezifische Oberfläche der erhaltenen Kleselsäure bestimmt nach BET beträgt 215 m²/g. Mit diesem Produkt läßt sich ein ungesättigtes Polyesterharz in einem Test, wie er welter unten beschrieben ist, auf eine Viskosität von 2,980 mPas bringen. Mit dem gleichen Produkt erreicht man in einer Zahnpasta-Testrezeptur, die welter unten ist, eine Verdickung von 2,200 mPas.

Vergleichsbeispiel 2

Es werden pro Stunde 0,55 kg pyrogene Kleselsäure erhalten. Die spezifische Oberfläche nach BET der Kleselsäure beträgt 159 m²/g. Die Viskosität eines nach der Prüfvorschrift gemäß Beispiel 1 verdickten ungesättigten Polyesterharzes liegt bei 1.575 mPas.

Vergleichabeispiel 3

45 Gemāß Beispiel 1 werden 0,819 Liter ≥ 1,13 kg Hexamethyldisiloxan verdampft, mit 16,88 Nm³ auf 120 °C erwärmter Luft vermischt und in einen Brenner der beschriebenen Konstruktion eingeleitet. Gleichzeitig werden 1,48 m³ Wasserstoff in den Brenner eingeleitet und mit den anderen beiden

→→→ NIXON, HARGRAVE

0 038 900

Anspruch

Verfahren zur pyrogenen Herstellung von Klesolsäure mit einer epezifischen BET-Oberfläche von 250 ± 25 bis 350 ± 25 m²/g und einer Verdickung von 4 000 bis 8 000 mPas in ungesättigten Polyestern, dadurch gekennzeichnet, daß man Siloxan oder ein Gemisch von verschiedenen Siloxanen in Gegenwart von Wasserstoff oder einem Kohlenwasserstoff verbrennt.

Claim

10

15

25

35

*5*5.

65

A process for the pyrogenic production of silica having a specific BET surface of from 250 to \pm 25 to 350 \pm 25 m²/g and a thickening of from 4 000 to 8 000 mPas in unsaturated polyesters, characterised in that a siloxane or a mixture of various siloxanes is burnt in the presence of hydrogen or a hydrocarbon.

Revendication

Procédé pour la fabrication par pyrogénation d'acide silicique ayant une aurface spécifique BET de 250 ± 25 à 350 ± 25 m²/g et donnant un épaississement de 4 000 à 8 000 mPas dans des polyesters insaturés, procédé caractérisé en ce qu'on fait brûler un siloxane ou un mélange de différents siloxanes en présence d'hydrogène ou d'un hydrocarbure.

5