

TECHNICAL UNIVERSITY OF DENMARK

42186 - Model Based Machine Learning

GTD - Global Terrorism Dataset

Betlem Aguado Pérez - s
182245

Ignacio Agudo Rodrigo - s185227

Philip Nielsen Butenko - s182824

Our dataset is The Global Terrorism Database (GTD). Even though is open-source, it has been downloaded from Kaggle. The GTD per se, includes information of more than 180.000 terrorist attacks that have been taken place all around the world from 1970 to 2017. The consideration of this dataset is due to its officiality, the data quality, its format and size (182k-x-135).

The research question of this project is:

Number of possible wounded people in a terrorist attack, to provide a good, fast and efficient medical service and mobilization.

The final attributes selected for our data-input are: year, region, type of attack, type of weapon used, number of killed people and finally number of wounded people as our target attribute.

1 Models Roadmapping

The next figure shows the roadmap followed for the elaboration of the project:

Figure 1.1: Models Roadmap

As indicated in the figure, different implementations of the model have been used for trying to improve the results. The obtained results are the ones indicated in the table:

Linear regression	STAN alpha	STAN alpha & beta	STAN Poisson	STAN Hesteroscedastic
	1min 22s	1min 23s	11min 32s (5000 iter.)	1h 42min 46s
CorrCoef: 0.366	CorrCoef: 0.366	CorrCoef: 0.369	CorrCoef: 0.017	CorrCoef: -0.077
MAE: 4.128	MAE: 4.145	MAE: 4.253	MAE: 3.941	MAE: 12.133
RMSE: 16.628	RMSE: 16.639	RMSE: 16.572	RMSE: 18.312	RMSE: 21.711
R2: 0.114	R2: 0.113	R2: 0.120	R2: 0.000	R2: 0.000

STAN hierarchical by weapon type							
Alpha	Alpha with priors	Beta with priors	Alpha & beta with priors				
4min 14s	3min 53s	3min 45s	3min 21s				
CorrCoef: 0.255	CorrCoef: 0.169	CorrCoef: 0.736	CorrCoef: -0.032				
MAE: 15.667	MAE: 10.337	MAE: 14.057	MAE: 11.555				
RMSE: 26.910	RMSE: 20.204	RMSE: 25.219	RMSE: 24.352				
R2: 0.000	R2: 0.000	R2: 0.000	R2: 0.000				

STAN hierarchical by attack type							
Alpha	Alpha with priors	Beta with priors	Alpha & beta with priors				
3min 12s	3min 51s	3min 34s	2min 56s				
CorrCoef: 0.071	CorrCoef: 0.181	CorrCoef: 0.611	CorrCoef: 0.965				
MAE: 20.016	MAE: 9.607	MAE: 10.166	MAE: 24.495				
RMSE: 26.977	RMSE: 21.892	RMSE: 20.557	RMSE: 32.717				
R2: 0.000	R2: 0.000	R2: 0.000	R2: 0.000				

Figure 1.2: Tenor IR swap table (Prepared by the authors)

Throughout all the process, it is not possible to appreciate the improvements of the different models. However, there are some aspects that can be highlighted:

- The Poisson regression obtains bad results as the events in the dataset does not occur with a known-constant rate.
- The variance of the Heteroscedastic model is really big, something that can influence the effectiveness. According with other results obtained with a more restricted variance, shows better results even though they are not good ones.
- Referring to the hierarchical models, using attack type as the hierarchic attribute gets better results than weapon type.
- Tuning the distribution of the priors has not given significative differences because of dataset. This is the main reason why its analysis is not included in the notebook.
- The best possible model cannot be determined as each trial with X₋train gives very different outputs, as the relationship between the attacks is almost negligible.
- It has been confirmed, that using a bigger dataset (f.e. including the attribute target type) the results are much better. On the other hand, the computing time is so incredibly bigger (20 more columns to analyze) that was impossible to implement due to our computing capacity.
- In spite of being something absolutely motivational, the use of real-life datasets leads to these complicated problem. Real-life information is full of noise and difficult parameters to analyze. The proof is not even improving the models, the calculated errors did not get better.

Our first intention, was to implement a model capable of deducting the main players when an attack occurs. Looking at the selected parameters, they seemed relevant according to the target (wounded people) as for example, everybody would think that if the attack implies a bomb, the result would be much different than with a knife. Unfortunately, the results were not the expected, the noise and complexity of the dataset did not allow to obtain the predictions for materialize the improvements as is shown above.

Workload

Section	Betlem Aguado Pérez (s182245)	Ignacio Agudo (s185227)	Philip Nielsen Butenko (s182824)
Data preparation	X	X	X
Statistical Analysis	X	X	X
Models development	X	X	X
STAN	X	X	
Report	X	X	