Statistical Inference Assignment 9

Junhao Yuan (20307130129)

December 7, 2022

Problem 1.

Suppose $X_1, \ldots, X_{20} \stackrel{iid}{\sim} B(p)$. We want to test the hypothesis

$$H_0: p = 0.2 vs H_1: p \neq 0.2.$$
 (1)

Suppose the decision rule is $\phi(x)$ and $\phi(x) = 1$ if and only if $\sum_{i=1}^{20} x_i \ge 7$ or $\sum_{i=1}^{20} x_i \le 1$.

- (a) Find the power of the decision rule when $p = 0, 0.1, 0.2, \dots, 0.9$. Draw a graph of the power as a function of p.
- (b) Find the type I error probability of the rule ϕ . What is the type II error probability when p = 0.05?

SOLUTION.

(a) The power of the decision rule can be computed by:

$$\beta(p) = (1-p)^{20} + 20p(1-p)^{19} + \sum_{k=7}^{20} p^k (1-p)^{20-k}.$$

And the result is shown below:

(b) By the calculation results in problem (a), we can know that the type I error probability is $\beta(0.2) \approx 0.156$.

When p = 0.05, by (1), we have $\beta(0.05) \approx 0.736$. Therefore, the type II error probability is $1 - \beta(0.05) \approx 0.264$.

Problem 2.

Suppose $X_1, \ldots, X_{10} \stackrel{iid}{\sim} U(0, \theta)$. Construct a test for testing

$$H_0: \theta \le 1 \qquad vs \qquad H_a: \theta \ge 1$$
 (2)

at a level α (Construct a test means finding a rejection region).

SOLUTION.

Intuitively, we can use $X_{(n)}$ to estimate θ , and $X_{(n)}/\theta \sim Beta(n,1)$. Under H_0 , we have $X_{(n)} \sim Beta(n,1)$. Suppose there exists a c such that

$$P(X_{(n)} > c) = \alpha,$$

then a level α rejection region is $(c, +\infty)$. Since $P(X_{(n)} > c) \stackrel{H_0}{=} 1 - c^n$, we have $c = (1 - \alpha)^{1/n}$, which means the rejection region with level α is $((1 - \alpha)^{1/n}, +\infty)$. In this problem, it's $((1 - \alpha)^{1/10}, +\infty)$. Therefore, when $X_{(10)}$ is grater than $(1 - \alpha)^{1/n}$, we can reject the null hypothesis. Otherwise, we can not reject it.

Problem 3.

Suppose $X_1, \ldots, X_n \stackrel{iid}{\sim} U(0, \theta)$. Use $\max \{X_i\}_{i=1}^n$ to find a $(1 - \beta, 1 - \gamma)$ tolerance interval.

Problem 3.

Suppose there exists a λ such that

$$P_{\theta}(P_{\theta}^*(\lambda X_{(n)} \le X \le X_{(n)}) \ge 1 - \beta) \ge 1 - \gamma. \tag{3}$$

Since

$$P_{\theta}^*(\lambda X_{(n)} \le X \le X_{(n)}) = (1 - \lambda) \frac{X_{(n)}}{\theta},$$

where $X_{(n)}/\theta \sim Beta(n,1)$, we can rewrite (3) as

$$P_{\theta}\left(\frac{X_{(n)}}{\theta} \ge \frac{1-\beta}{1-\lambda}\right) \ge 1-\gamma.$$

Let $Y = X_{(n)}/\theta \sim Beta(n,1)$ with cdf $F(y) = y^n$. Then we have

$$P_{\theta}\left(\frac{X_{(n)}}{\theta} \ge \frac{1-\beta}{1-\lambda}\right) = 1 - F\left(\frac{1-\beta}{1-\lambda}\right) \ge 1 - \gamma.$$

We can let

$$1 - F\left(\frac{1-\beta}{1-\lambda}\right) = 1 - \left(\frac{1-\beta}{1-\lambda}\right)^n = 1 - \gamma,$$

which gives us a reasonable value of λ :

$$\lambda_0 = 1 - \frac{1 - \beta}{\gamma^{1/n}}.$$

Therefore, one $(1 - \beta, 1 - \gamma)$ tolerance interval is

$$[\lambda_0 X_{(n)}, X_{(n)}].$$