$\left[\left[\left[\left(\frac{1}{6} \left(6 \,\, \mathcal{R}^{\alpha\beta\chi} \,\, \sigma_{\alpha\beta\chi} + 6 \,\, f^{\alpha\beta} \,\, \tau \left(\Delta + \mathcal{K} \right)_{\alpha\beta} - 3 \, r_{\frac{1}{3}} \, \partial_{\beta} \mathcal{R}^{\,\,\theta}_{\,\,\,\theta} \, \partial^{\prime} \mathcal{R}^{\alpha\beta}_{\,\,\,\alpha} - 3 \, r_{\frac{1}{3}} \, \partial_{\beta} \mathcal{R}^{\,\,\theta}_{\,\,\,\alpha} - 3 \, r_{\frac{1}{3}} \, \partial_{\alpha} \mathcal{R}^{\alpha\beta\prime}_{\,\,\,\alpha} \, \partial_{\theta} \mathcal{R}^{\,\,\theta}_{\,\,\beta} \right] + 6 \, r_{\frac{1}{3}} \, \partial^{\prime} \mathcal{R}^{\alpha\beta}_{\,\,\,\alpha} \, \partial_{\theta} \mathcal{R}^{\,\,\theta}_{\,\,\beta} - 3 \, r_{\frac{1}{3}} \, \partial_{\alpha} \mathcal{R}^{\alpha\beta\prime}_{\,\,\,\alpha} \, \partial_{\alpha} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\beta} \, \partial_{\alpha} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\beta} \, \partial_{\alpha} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\beta} + 6 \, r_{\frac{1}{3}} \, \partial^{\prime} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\alpha} \, \partial_{\theta} \mathcal{R}^{\,\,\theta}_{\,\,\beta} - 3 \, r_{\frac{1}{3}} \, \partial_{\alpha} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\alpha} \, \partial_{\alpha} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\beta} + 6 \, r_{\frac{1}{3}} \, \partial^{\prime} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\alpha} \, \partial_{\alpha} \mathcal{R}^{\,\,\beta}_{\,\,\beta} + 6 \, r_{\frac{1}{3}} \, \partial_{\alpha} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\alpha} \, \partial_{\alpha} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\beta} + 6 \, r_{\frac{1}{3}} \, \partial_{\alpha} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\alpha} \, \partial_{\alpha} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\beta} + 6 \, r_{\frac{1}{3}} \, \partial_{\alpha} \mathcal{R}^{\,\,\alpha\beta\prime}_{\,\,\alpha} \, \partial_{\alpha} \mathcal{R}^{$ $r. \, \partial_{\alpha}\mathcal{R}^{\alpha\beta} \, \partial_{\theta}\mathcal{R}^{\,\,\theta}_{,\,\,\beta} + 6 \, r. \, \partial' \mathcal{R}^{\alpha\beta}_{\,\,\alpha} \, \partial_{\theta}\mathcal{R}^{\,\,\theta}_{,\,\,\beta} + 8 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha \iota \theta} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} - 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\iota\theta\alpha} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} - 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} - 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} - 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} - 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} - 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} - 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} - 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} - 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}_{\alpha\theta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}^{\alpha\beta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}^{\alpha\beta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}^{\alpha\beta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}^{\alpha\beta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}^{\alpha\beta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}^{\alpha\beta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}^{\alpha\beta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} + 4 \, r. \, \partial_{\beta}\mathcal{R}^{\alpha\beta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta \iota} \, \partial^{\theta} \mathcal{R}^{\alpha\beta$ $24r. \frac{\partial_{\beta}\mathcal{R}_{_{1}\theta\alpha}}{3}\partial^{\theta}\mathcal{R}^{\alpha\beta\prime} - 2r. \frac{\partial_{_{1}}\mathcal{R}_{_{\alpha\beta\theta}}}{2}\partial^{\theta}\mathcal{R}^{\alpha\beta\prime} + 2r. \frac{\partial_{_{\theta}}\mathcal{R}_{_{\alpha\beta\prime}}}{2}\partial^{\theta}\mathcal{R}^{\alpha\beta\prime} - 4r. \frac{\partial_{_{\theta}}\mathcal{R}_{_{\alpha\prime\beta}}}{2}\partial^{\theta}\mathcal{R}^{\alpha\beta\prime} + 6r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}}{5}\partial_{_{1}}\mathcal{R}_{_{1}}^{\kappa}\partial^{\theta}\mathcal{R}^{\alpha\prime}_{_{1}} - 4r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}}{2}\partial_{_{1}}\mathcal{R}_{_{1}}^{\alpha\beta\prime} + 6r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}}{5}\partial_{_{1}}\mathcal{R}_{_{1}}^{\kappa}\partial^{\theta}\mathcal{R}^{\alpha\prime}_{_{1}} - 4r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}}{2}\partial_{_{1}}\mathcal{R}_{_{1}}^{\alpha\beta\prime} + 6r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}}{5}\partial_{_{1}}\mathcal{R}_{_{1}}^{\kappa}\partial^{\theta}\mathcal{R}^{\alpha\prime}_{_{1}} - 4r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}}{2}\partial_{_{1}}\mathcal{R}_{_{1}}^{\alpha\beta\prime} + 6r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}}{5}\partial_{_{1}}\mathcal{R}_{_{1}}^{\alpha\beta\prime} + 6r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}}{2}\partial_{_{1}}\mathcal{R}_{_{1}}^{\alpha\beta\prime} + 6r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}^{\alpha\beta\prime} + 6r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}}{2}\partial_{_{1}}\mathcal{R}_{_{1}}^{\alpha\beta\prime} + 6r. \frac{\partial_{_{1}}\mathcal{R}_{_{1}}^{\alpha\beta\prime} + 6r. \frac{\partial_{_{1}}\mathcal{$ $6r_{5}\partial_{\theta}\mathcal{R}_{,\kappa}^{\kappa}\partial^{\theta}\mathcal{R}_{\alpha}^{\alpha} + 4t_{2}\mathcal{R}_{,\theta\alpha}\partial^{\theta}f^{\alpha} + 2t_{2}\partial_{\alpha}f_{,\theta}\partial^{\theta}f^{\alpha} - t_{2}\partial_{\alpha}f_{,\theta}\partial^{\theta}f^{\alpha} - t_{2}\partial_{\alpha}f_{\alpha\theta}\partial^{\theta}f^{\alpha} + t_{2}\partial_{\theta}f_{\alpha}\partial^{\theta}f^{\alpha} - t_{2}\partial_{\alpha}f_{\alpha\theta}\partial^{\theta}f^{\alpha} - t_{2}\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha} - t_{2}\partial_{\alpha}f^{\alpha}\partial$ $t_{2} \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} - 4t_{2} \mathcal{A}_{\alpha \theta i} \left(\mathcal{A}^{\alpha i \theta} + \partial^{\theta} f^{\alpha i} \right) + 2t_{2} \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) - 6r_{5} \partial_{\alpha} \mathcal{A}^{\alpha i \theta} \partial_{\kappa} \mathcal{A}_{i \theta}^{\kappa} + 2r_{5} \partial_{\alpha} \mathcal{A}^{\alpha i \theta} \partial_{\kappa} \mathcal{A}_{i \theta}^{\kappa} + r_{5} \partial_{\alpha} \mathcal{A}^{\alpha i \theta} \partial_{\kappa} \mathcal{A}_{i \theta}^{\kappa} + r_{5} \partial_{\alpha} \mathcal{A}^{\alpha i \theta} \partial_{\kappa} \mathcal{A}_{i \theta}^{\kappa} + r_{5} \partial_{\alpha} \mathcal{A}^{\alpha i \theta} \partial_{\kappa} \mathcal{A}_{i \theta}^{\kappa} + r_{5} \partial_{\alpha} \mathcal{A}^{\alpha i \theta} \partial_{\kappa} \mathcal{A}_{i \theta}^{\kappa} + r_{5} \partial_{\alpha} \mathcal{A}^{\alpha i \theta} \partial_{\kappa} \mathcal{A}_{i \theta}^{\kappa} + r_{5} \partial_{\alpha} \mathcal{A}^{\alpha i \theta} \partial_{\kappa} \mathcal{A}_{i \theta}^{\kappa} + r_{5} \partial_{\alpha} \mathcal{A}^{\alpha i \theta} \partial_{\kappa} \mathcal{A}_{i \theta}^{\kappa} + r_{5} \partial_{\alpha} \mathcal{A}_{i \theta}^{\kappa} + r_{5} \partial_{$ $12r_{.5}\partial^{\theta}\mathcal{R}^{\alpha_{.}}_{\phantom{\alpha_{.}}\phantom{\alpha_{.}}\phantom{\alpha_{.}}\partial_{\kappa}\mathcal{R}^{}_{\phantom{,}\phantom{,}\phantom{\beta_{.}}\phantom{\beta_{.}}\phantom{\beta_{.}}+6r_{.5}\partial_{\alpha}\mathcal{R}^{\alpha_{.}\theta}\partial_{\kappa}\mathcal{R}^{}_{\phantom{,}\phantom{,}\phantom{\beta_{.}\phantom{\beta_{.}}\phantom{\beta_{.}}\phantom{\beta_{.}}\phantom{\beta_{.}\phantom{\beta_{.}}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom{\beta_{.}\phantom$ **Wave operator** $k^2 r. + t.$ $\overset{1^+}{\cdot} \mathcal{H}^{\perp}{}_{lphaeta} \quad \overset{1^+}{\cdot} f^{\parallel}{}_{lphaeta}$ ${}^1{\mathscr H}_{lpha}^{\scriptscriptstyle \parallel}$ $1^{+}_{\cdot}\mathcal{A}^{\parallel} + {}^{\alpha\beta} k^{2} (2r_{\cdot} + r_{\cdot}) + {2t_{\cdot} \over 3} \frac{\sqrt{2} t_{\cdot}}{3} \frac{1}{3} i \sqrt{2} kt_{\cdot}$ $^{1.}\mathcal{H}^{\scriptscriptstyle\perp}\,\mathcal{H}^{\scriptscriptstyle\perp}$

PSALTer results panel

 ${}^{1}\mathcal{A}^{\parallel} + {}^{\alpha}$

 $^{1}\mathcal{A}^{\scriptscriptstyle \perp}\,\dagger^{\scriptscriptstyle lpha}$

0

										^{2,+} <i>J</i> €	$\uparrow^{\alpha\beta}$ $\uparrow^{\alpha\beta}$	$\frac{k^2 r_{\cdot 3}}{2}$	0
										$\overset{2^+}{\cdot}f^{\parallel}$	† ^{αβ}	0	0
										². ⁻ Æ †	αβχ	0	0
Saturated propagator													
	0.+ σ	0.+ _T	0.+ τ [⊥]	0-σ∥									
$\overset{0^+}{\cdot}\sigma^{\parallel}$ †	0	0	0	0									
$0.^+\tau^{\parallel}$ †	0	0 0 0	0	0									
$0.^+\tau^{\perp}$ †	0	0	0	0									
0⁻σ∥†	0	0	0	$\frac{1}{k^2 r. + t.}$	$^{1.^{+}}\sigma ^{\parallel }{}_{\alpha \beta }$	$\overset{1}{\cdot} \sigma^{{\scriptscriptstyle \perp}}{}_{\alpha\beta}$	$\overset{1,^{+}}{.}\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$1 \sigma^{\perp}$	$1 \tau_{\alpha}$	$1^{-}\tau^{\perp}_{\alpha}$		
				$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$		$-\frac{\sqrt{2}}{k^2(1+k^2)(2r.+r.)}$		0	0	0	0		
				$1.^+\sigma^{\perp}$ †	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r.+r.)\atop 3}$	$\frac{3k^{2}(2r.+r.)+2t.}{(k+k^{3})^{2}(2r.+r.)+t.}$ $\frac{i(3k^{2}(2r.+r.)+2t.)}{k(1+k^{2})^{2}(2r.+r.)+2t.}$	$\frac{i(3k^2(2r.+r.)+2t.)}{k(1+k^2)^2(2r.+r.)t.}$	0	0	0	0		
				1^+ τ^{\parallel} $\uparrow^{\alpha\beta}$	$\frac{i \sqrt{2}}{k (1+k^2) (2r.+r.)}$	$-\frac{i(3k^2(2r.+r.)+2t.)}{k(1+k^2)^2(2r.+r.)t.}$	$\frac{3k^2(2r.+r.)+2t.}{(1+k^2)^2(2r.+r.)t.}$	0	0	0	0		
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	$\frac{2}{k^2(r+2r)}$	0	0	0		

0

0

0

0

0

 $3k^2r_1$

0

 $2.^{+}\tau^{\parallel} + \alpha^{\beta}$

0

0

 $2^{+}\mathcal{A}^{\parallel}_{\alpha\beta}^{2^{+}}f^{\parallel}_{\alpha\beta}^{2^{-}}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$

0

0

$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$ 0 Source constraints Spin-parity form Covariant form Multiplicities $0^+ \tau^{\perp} == 0$ $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$ $0.^+\tau^{\parallel}==0$ $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$ $0.^+\sigma^{\parallel}=0$ 1 $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta\!+\!\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta\!+\!\mathcal{K}\right)^{\alpha\beta}$ $1^{-}\tau^{\perp}^{\alpha} == 0$ 3 $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta\!+\!\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta\!+\!\mathcal{K}\right)^{\beta\alpha}$ $\mathbf{1}^{-} \boldsymbol{\tau}^{\parallel \alpha} == \mathbf{0}$ 3 $\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} == 0$ $1^{-}\sigma^{\perp}^{\alpha} == 0$ 3 $ik \ 1 + \sigma^{\perp \alpha \beta} + 1 + \tau^{\parallel \alpha \beta} = 0 \ \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 2 \ \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \ \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\chi \alpha \beta} = 0$ 3 $\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\,\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$ $3\,\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 3\,\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta}_{\delta} + 2\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\chi\alpha\delta} +$ $2^{-}\sigma^{\parallel^{\alpha\beta\chi}}=0$ 5 $2\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$ $3\ \eta^{\beta\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\alpha}\sigma^{\delta}_{\ \delta}{}^{\epsilon} + 3\ \eta^{\alpha\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\beta\epsilon} + 3\ \eta^{\beta\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\alpha}_{\ \delta} =$

 $3\,\partial_\epsilon\partial_\delta\partial^\chi\partial^\beta\sigma^{\delta\alpha\epsilon} + 3\,\partial_\epsilon\partial^\epsilon\partial^\chi\partial^\beta\sigma^{\delta\alpha}_{\delta} + 2\,\partial_\epsilon\partial^\epsilon\partial_\delta\partial^\alpha\sigma^{\beta\chi\delta} + 4\,\partial_\epsilon\partial^\epsilon\partial_\delta\partial^\alpha\sigma^{\chi\beta\delta} +$

 $3\ \eta^{\alpha\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta}_{\ \delta}{}^{\epsilon} + 3\ \eta^{\beta\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\alpha\epsilon} + 3\ \eta^{\alpha\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\beta}_{\ \delta}$

 $3\,\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\,(\Delta+\mathcal{K})^{\beta\chi}+3\,\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\,(\Delta+\mathcal{K})^{\chi\beta}+3\,\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\,(\Delta+\mathcal{K})^{\alpha\chi}+$

 $4\,\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\,(\Delta+\mathcal{K})^{\chi\delta}+2\,\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\,(\Delta+\mathcal{K})^{\chi}_{\chi}+$

 $3\,\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\,(\Delta+\mathcal{K})^{\chi\alpha} + 2\,\,\eta^{\alpha\beta}\,\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau\,(\Delta+\mathcal{K})^{\chi}_{\chi}$

 $2\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} +$

 $3\,\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\,\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\,\,\eta^{\alpha\beta}\,\,\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}=$

Massive spectrum

Massive particle

Pole residue:

Square mass:

Total expected gauge generators:

 $2^+_{i} \tau^{\parallel \alpha \beta} == 0$

Unitarity conditions $r_{2} < 0 \&\& t_{2} > 0 \&\& ((r_{3} < 0 \&\& (r_{5} < -\frac{r_{3}}{2} || r_{5} > -2 r_{3})) || (r_{3} > 0 \&\& -2 r_{3} < r_{5} < -\frac{r_{3}}{2}))$