Problema 1

Grupa: 241

Cerință

- Fie A un şir de n numere, cu n ≥ 3. Să se scrie un program care să înlocuiască fiecare element nul din şir, a_k, 2 ≤ k ≤ n-1, cu:
 a) media geometrică a celui mai mare şi celui mai mic element din şir;
 - b) media geometrică a modulului vecinilor săi direcți.

Să ne reamintim!

Media Geometrică a 2 numere = radicalul produsului celor 2 numere.

Pe ce mulțime de numere lucrăm?

Putem avea mai multe cazuri în funcție de ce mulțime de numere considerăm: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} . Vom lucra pe \mathbb{Z} .

Cum afectează alegerea lucrului pe mulțimea Z algoritmul nostru?

Trebuie să avem grijă ca produsul să nu fie număr negativ, deoarece radicalul nu acceptă acest lucru.

Ce cazuri distingem?

Fie A un șir de n numere, cu n ≥ 3. Să se scrie un program care să înlocuiască fiecare element nul din şir, a_k , $2 \le k \le n-1$, cu media geometrică a celui mai mare și celui mai mic element din şir.

Subpunctul a)

Exemplul 1: 0, 1, 23, 5, 0, 7

Exemplul 2: -3, 1, 0, -8, 0, 7

Exemplul 3: -9, -7, -8, -2, -3

Exemplul 4: 1, 8, 6, 2, 3, 55

Exemplul 5: 0, 0, 0, 0, 0, 0

Exemplul 1: Dacă min/max este 0, vectorul rămâne neschimbat (produsul=0). Exemplul 2: Dacă min este negativ și max pozitiv, atunci nu putem calcula radicalul (produsul este negativ).

Exemplul 3: Dacă min și max sunt negative, nu avem valori de 0. Exemplul 4: Dacă min și max sunt pozitive > 0, nu avem valori de 0. Exemplul 5: Dacă min=max=0, vectorul rămâne neschimbat.

Ce concluzie tragem?

Vectorul rămâne neschimbat, cu precizarea că, dacă minimul și maximul au semne diferite, vom afișa un avertisment.

Ce cazuri distingem?

Fie A un șir de n numere, cu n ≥ 3. Să se scrie un program care să înlocuiască fiecare element nul din şir, a_k , $2 \le k \le n-1$, cu media geometrică a modului vecinilor săi direcți.

Subpunctul b)

Datorită faptului că lucrăm cu modulul, atunci putem duce la capăt problema. Dar...

Exemplul 1: 8, 0, 0, 9, -8, 0, 0, 0, 8, 0, 9, -1

Dacă avem 0-uri consecutive, atunci valorile nu se vor modifica.

Rezolvare

Pas 1: Citirea datelor de Intrare;

Subpunctul a)

Pas 2: Identificarea minimului și maximului;

Pas 3: Verificarea semnului produsului minimului și maximului;

Pas 4: Afișarea vectorului inițial sau mesajului de avertisment.

Rezolvare - Continuare

Subpunctul b)

Pas 5: Verificare dacă elementul este 0 și înlocuim cu radicalul produsului.

Pas 6: Afișare vector rezultat.

Complexitate?

Complexitate

O(n)

Barem

\star	Din Oficiu	1p
\star	Cunoștințe Generale Necesare	1p
\star	Răspunsuri Preliminare	2p
\bigstar	Lucrul cu Vectori (bonus 1p dacă se folosește biblioteca "vector")	1р
\star	Scrierea unei Funcții de Afișare	1p
\star	Rezolvarea propriu-zisă	3р
	 Lucrul cu biblioteca math.h 	1р
	 Lucrul cu biblioteca algorithm 	1р
	 Funcționabilitate și cod 	1p
\star	Stil (comenatarii, identare)	1р

Observație: Se acordă punctaje parțiale. Spre exemplu, dacă elevul nu folosește funcția "min" implementată în biblioteca "algorithm" și o scrie "de mână", va primi 0.5p.

Întrebări?

Vă mulțumesc pentru atenție!

Pentru întrebări, mă puteți contacta: