Eurisko Assignment 33

Charlie Weinberger

April 7, 2021

1 33-1

Suppose you are given the following dataset:

$$data = [(1, 0.2), (2, 0.25), (3, 0.5)]$$

Fit a logistic regression model $y = \frac{1}{1 + e^{ax+b}}$ by hand.

- 1. Re-express the model in the form ax + b = some function of y (i.e. isolate ax + b in the logistic regression model). Hint: your function of y will involve ln.
 - 2. Set up a system of equations and turn the system into a matrix equation.
- 3. ind the best approximation to the solution of that matrix equation by using the pseudoinverse.
- 4. Substitute your solution for the coefficients of the model, and plot the model along with the 3 given data points on the same graph to ensure that the model fits the data points well.

Show all of your steps. No code allowed!

Solution

First, we must isolate ax + b. We see that

$$\frac{1}{1+e^{ax+b}} = y$$

$$1+e^{ax+b} = \frac{1}{y}$$

$$e^{ax+b} = \frac{1}{y} - 1$$

$$ax+b = \ln\left(\frac{1}{y} - 1\right)$$

Using the data points that we have, we have the equations

$$a + b = \ln\left(\frac{1}{0.2} - 1\right) = 1.3863$$
$$2a + b = \ln\left(\frac{1}{0.25} - 1\right) = 1.0986$$
$$3a + b = \ln\left(\frac{1}{0.5} - 1\right) = 0$$

Turning that into a matrix equation, we get

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} 1.3863 \\ 1.0986 \\ 0 \end{bmatrix}$$

We know that the pseudoinverse of a matrix A is $(A^TA)^{-1}A^T$. In our case,

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$

Therefore, the pseudoinverse of A is

$$(A^T A)^{-1} A^T = \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \end{pmatrix}^{-1} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 6 \\ 6 & 14 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$= \frac{1}{3 \cdot 14 - 6 \cdot 6} \begin{bmatrix} 14 & -6 \\ -6 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$= \frac{1}{6} \begin{bmatrix} 8 & 2 & -4 \\ -3 & 0 & 3 \end{bmatrix}$$

Multiplying both sides by the pseudoinverse, we get

$$\frac{1}{6} \begin{bmatrix} 8 & 2 & -4 \\ -3 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} b \\ a \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 8 & 2 & -4 \\ -3 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1.3863 \\ 1.0986 \\ 0 \end{bmatrix}
= \frac{1}{6} \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} \cdot \begin{bmatrix} b \\ a \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 13.2876 \\ -4.1589 \end{bmatrix}
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} 2.2146 \\ -0.69315 \end{bmatrix}
= \begin{bmatrix} b & 0 \\ 0 & a \end{bmatrix} = \begin{bmatrix} 2.2146 \\ -0.69315 \end{bmatrix}$$

Therefore,

$$y = \frac{1}{1 + e^{(-0.69315x + 2.2146)}}$$

When we plot the model and out points, we get the following graph:

2 33-2

(a) Given that $X \sim p(x)$, where p(x) is a continuous distribution, prove that for any real number a we have $\mathrm{E}[aX] = a\mathrm{E}[X]$. You should start by writing $\mathrm{E}[aX]$ as an integral, manipulating it, and then simplifying the result into $a\mathrm{E}[X]$. The manipulation will just be 1 step.

We know that

$$E[X] = \int_{-\infty}^{\infty} x \cdot p(x) \, \mathrm{d}x$$

We can use that to show E[aX] = aE[X] here:

$$E[aX] = \int_{-\infty}^{\infty} (ax) \cdot p(x) \, dx = a \cdot \int_{-\infty}^{\infty} x \cdot p(x) \, dx = a \cdot (E[X]) = aE[X]$$

(b) Given that $X \sim p(x)$ where p(x) is a continuous probability distribution, prove the identity $Var[X] = E[X^2] - E[X]^2$.

$$\operatorname{Var}[X] = \int_{-\infty}^{\infty} (x - E[X])^{2} \cdot p(x) \, dx$$

$$= \int_{-\infty}^{\infty} (x^{2} - 2x \operatorname{E}[X] + \operatorname{E}[X]^{2}) \cdot p(x) \, dx$$

$$= \left(\int_{-\infty}^{\infty} x^{2} \cdot p(x) \, dx \right) - \left(\int_{-\infty}^{\infty} 2x \operatorname{E}[X] \cdot p(x) \, dx \right) + \left(\int_{-\infty}^{\infty} \operatorname{E}[X]^{2} \cdot p(x) \, dx \right)$$

$$= \operatorname{E}[X^{2}] - 2\operatorname{E}[X] \cdot \left(\int_{-\infty}^{\infty} x \cdot p(x) \, dx \right) + \operatorname{E}[X]^{2} \cdot \left(\int_{-\infty}^{\infty} p(x) \, dx \right)$$

$$= \operatorname{E}[X^{2}] - \left(2\operatorname{E}[X] \cdot \operatorname{E}[X] \right) + \left(\operatorname{E}[X]^{2} \cdot 1 \right)$$

$$= \operatorname{E}[X^{2}] - 2\operatorname{E}[X]^{2} + \operatorname{E}[X]^{2}$$

$$\operatorname{Var}[X] = \operatorname{E}[X^{2}] - \operatorname{E}[X]^{2}$$