Fundamentos de Processamento Paralelo e Distribuído

Aula de Apresentação

Prof. César A. F. De Rose

Roteiro

- Apresentação do Professor
- Contextualização e Motivação
- Apresentação da Disciplina
- Dinâmica
- Recursos
- Avaliação
- Expectativas

Professor

- Lotado na Politécnica (gabinete 618 andar)
- Áreas de Atuação: Arquitetura de Computadores, Sistemas Operacionais e PPD
- Membro do PPGCC Linha PPD
 - Atuação na revisão dos currículos das disciplinas da área (NDE CC)
- Fundador e pesquisador sênior do LAD
- Disciplinas de Fundamentos e de Programação Paralela na Graduação e no Pós
- e-mail: cesar.derose@pucrs.br

Contexto e Motivação

- Histórico
- Importância dos Sistemas Paralelos e Distribuídos
- Aplicações
- Oportunidades
- Requisitos

Supercomputadores Vetorial/SMP/NUMA

Clusters of Workstations

Gric

Escala / Poder Computacional

Acoplamento

Complexidade de uso

- Fundamentos de Processamento Paralelo e Distribuído
- Objetivos:
 - Entender as semelhanças, diferenças e o escopo de aplicação de sistemas concorrentes, paralelos e distribuídos;
 - Dominar os conceitos fundamentais de concorrência e sincronização, empregando-os para a correta construção dos sistemas referidos;
 - Conhecer as principais características de plataformas para processamento paralelo e empregar os fundamentos de concorrência para a construção de sistemas paralelos
 - Compreender os impactos da distribuição, os diversos padrões de comunicação em ambiente distribuído, e os principais desafios para a construção de sistemas distribuídos

- Sistemas Paralelos e Distribuídos são sistemas concorrentes
 - Processos que disputam recursos
 - Modelagem: responsividade, desempenho, corretude

- Paralelo x Distribuído
- Objetivos diferentes
- Características do sistema resultante nem tanto

Sistema Paralelo

Exemplo de arquitet ura alvo: ser vidor com dois processadores Xeon com 4 núcleos cada (16 núcleos Hypert hreading)

Paralelo: Arquitetura Alvo

16 Gbytes

Aplicação Exemplo

Máquina mais Atual

- Servidor Dell EMC PowerEdge R740 com duas soquetes
- Cada uma com um processador Xeon Gold 5118
 - 2.30 GHz, 12 Cores/24 Threads
 - 12 Mbytes de cache L2
- Total de cores da máquina 24/48
- 16.5 Mbytes de cache L3
 - compartilhada pelas duas soquetes
- 322 Gbytes de memória principal

Sistema Distribuído

Colaboração e Compartilhamento

CLOUD

Data Centers

Thousands

FOG

Nodes

Millions

EDGE

Devices

Billions

- Unidades:
 - Introdução ao Processamento Paralelo e Distribuído
 - Introdução aos Sistemas Concorrentes
 - Sistemas Distribuídos
 - Sistemas Paralelos

- Disciplina Introdutória Compartilhada
 - · CC, EC, ES, SI, CD
- Precede duas Disciplinas Avançadas
 - Computação Paralela
 - Sistemas Distribuídos
- Disciplinas Relacionadas
 - Arquitetura de Computadores
 - Sistemas Operacionais
 - Redes

Dinâmica

- Aulas expositivas na sala de aula sobre os conceitos utilizando exemplos de código
- Prática através de exercícios de Laboratório e Trabalhos Práticos
- Uso de ferramentas que são padrão de fato na academia e na indústria
 - Exemplo: Golang, OpenMP, MPI

Metodologia

- Blended Learning
 - Combina material online com acompanhamento em aula
- Flipped Classroom
 - Inversão do que é feito normalmente em aula com o que é feito fora
 - Professor presente quando os problemas surgem
 - "Guide on the Side"
- Project Based Learning
 - orientado a projeto/problemas

Recursos

- · Sala 314 Prédio 32
- Laboratório (309/312)
- · Página Moodle da disciplina
- Materiais da Internet
 - Tutoriais
 - Códigos exemplo
 - Vídeo Aulas

Avaliação

- Prova sobre a parte conceitual
- Trabalhos práticos em grupo com entrega de relatório em formato de artigo (três, um para cada unidade)
- $G_1 = (P_1 + média TP)/2$
- Aprovado em G1 se >= 7
- *Ver datas deste semestre no cronograma da disciplina no Moodle
- *PS apenas para quem não fez a prova

Expectativas

- Ambiente para discussão de todas as questões ligadas a esta área
 - Nas aulas de acompanhamento e discussão preferencialmente com câmera aberta (não serão gravadas)
- Aberto a manifestações e dúvidas
- Ambiente Moodle como continuidade da sala de aula
- Qual a expectativa de vocês?

Dúvidas?