

Topics to be covered

- Medics Test, Revision of Last Class
- Gibbs free energy
- 3 Nernst equation
- Home work from modules

Rule to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- 2. Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your home work along with DPP.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

Rule to Attend Class

- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.
- 7. Don't watch the videos in high speed if you want to understand better.

MEDICS

Mastery

Checks your grasp over NEET-level concepts

Evaluation

Judging both knowledge and test-smartness

Decision Making

Testing your speed + accuracy under pressure

Intuition

Some answers need gut + logic - can you spot the trick?

Concepts

It's all about strong basics no shortcuts here

Strategy

The MEDICS test – built for those who heal, hustle, and hope.

216

1296 3×3×3×3

If the solubility of lithium sodium hexafluorido aluminate, $Li_3Na_3(AlF_6)_2$ is 's' mol lt⁻¹, its solubility product is equal to:

- \bigcirc 729 s⁸
- \bigcirc 12 s⁸
- 3900 s⁸
- 2916 s⁸

3hit + 3 Nat + 2 ALF 6 253 2=2 253

In a saturated solution of the sparingly soluble strong electrolyte AgIO₃ (Molecular mass = 283) the equilibrium which sets in is:

 $AgIO_3(s) \longrightarrow Ag^+(aq) + IO_3^-(aq)$

If the solubility product constant K_{sp} of AgIO₃ at a given temperature is 1 × 10⁻⁸; what is the mass of AgIO₃ contained in 100 mL of its saturated solution?

A 1×10^{-7} g

$$2.83 \times 10^{-3} \,\mathrm{g}$$

M (OH)_x has $K_{sp} = 4 \times 10^{-12}$ and solubility 10^{-4} M. The value of x is:

カミ メニズ

D 4

 $u \times 10^{-12} = x \times y \times (x)$ $u \times 10^{-12} = x \times (x)$

The solubility of Fe(OH)₃ would be maximum in:

- 0.1 M HCL
- © 0.1 M KOH X
- $0.1 \, \text{M} \, \text{H}_2 \text{SO}_4 \rightarrow 2 \, \text{M}^{\dagger}$ 2×6.2

- Fe (OH)3 + 120 = Fe3+ 30HT/ HTV
 - Oh tht > to

A PKa = 6

pH when solution containing HA ($K_a = 10^{-6}$) and NaA show maximum buffer action will be:

Revision of Last Class

Ecen = Ecathode - Eanoch 5. R.P. S. R.P. S. R.P. S. R.P. Ecenthode Ecol = Eanoch + Ecathode Volimeter S. R.P.

M/M+(G) 11 M'(G)/M(B)

Flow of Electrons

Standard Hydrogen Electrode (S.H.E.)

MEDICS test = Lec-1+Lec-2 = Electrochem
Tomorrow
Tonic eq. Complete

120

Given the following half-cell reactions and corresponding standard

(reduction) electrode potentials.

I.
$$A + e^- \rightarrow A^-$$
; $E^\circ = -0.24V$

II. $B^- + e^- \rightarrow B^{2-}$; $Cathods$
 $E^\circ = -1.25V$

III. $C^- + 2e^- \rightarrow C^{3-}$; $Cathods$
 $E^\circ = -1.25V$

IV. $D + 2e^- \rightarrow D^{2-}$; $Cathods$
 $E^\circ = -1.25V$
 $E^\circ = -1.25V$

Which combination of two half-cells would result in a cell with the largest potential?

smallest.

East (+) ve

Latimer diagram

diagram - elements diff oxid stt series in dec oxid no.

species disperoporation occur > (E) H.S < ER.H.S.) = A61 = H)VE en apontaneme

(2)
$$A^{+5} + 3/6 \rightarrow A^{3+} = 6$$
 $A^{3+} = 6$ $A^{3+} = 6$

QUESTION-(NEET 2018)

Consider the change in oxidation state of Bromine corresponding to

different emf values as shown in the diagram below:
$$BrO_{4} = \frac{1.82 \text{ V}}{BrO_{3}} = \frac{1.5 \text{ V}}{$$

Then the species undergoing disproportionation is:

- A BrO₃
- G HBr0

- BrO₄-
- \bigcirc Br₂

Gibbs Free Energy and E.M.F. of Cell

井丁

1) AG'=-nFE.cul

n=no. y é lost on gained in balanced Chem. si

F=Faraday Constt2 96500 C

AGO = -RT(INK)

1n=2.303 lay10

K>1=> AG=(-) ve => on spontaneous.

K<1=1 AG° = (+) ve= = on non-spontaneous.

oncell ext. = Int. ext Es Int' 1Ca >1Ca +2e 260-7264+4E 7=4

Es.o.R. un s. R.P.

A button cell used watches function as following:

Zn(s) + Ag₂O(s) + H₂O
$$\longrightarrow$$
 2Ag(s) + Zn²⁺(aq) + 2OH⁻(aq), if half cell potentials are Zn²⁺(aq) + 2e⁻ \longrightarrow Zn(s); E° = -0.76 V Ag₂O(s) + H₂O(l) + 2e⁻ \longrightarrow 2Ag(s) + 2OH⁻(aq); E° = 0.34 V The Cell potential will be:

- 1.34 V
- 0.42 V

QUESTION (NEET 2019)

For the cell reaction: $2Fe^{3+}(aq) + 2I^{-}(aq) \longrightarrow 2Fe^{2+}(aq) + I_2(aq)$ $E^{\circ} = 0.24$ V at 298 K. The standard Gibbs energy ($\Delta_r G^{\circ}$) of the cell reaction is: [Given that Faraday constant F = 96500 C mol⁻¹]

- A 23.16 kJ mol⁻¹
- -46.32 kJ mol⁻¹
- -23.16 kJ mol⁻¹
- 46.32 kJ mol⁻¹

1KJ=1600 J

The Gibb's energy for the decomposition of Al₂O₃ at 500°C is as follows:

$$\frac{2}{3}$$
Al₂O₃² $\longrightarrow \frac{4}{3}$ Al + O₂, ΔrG° = -966 kJ mol⁻¹ $\gamma = 4$

The potential difference needed for electrolytic reduction of Al₂O₃ at 500°C

is at least the

VAG=-NFE +966000 = +4x96560 E E-10-2.5V

QUESTION (NEET (Phase-II) 2016)

If the E°_{Cell} for a given reaction has a negative value, which of the following gives the correct relationship for the values of ΔG° and K_{eq} ?

$$\Delta G^{\circ} > 0$$
; $K_{eq} < 1$

- $\Delta G^{\circ} > 0; K_{eq} > 1$
- $\Delta G^{\circ} < 0; K_{eq} > 1$
- $\Delta G^{\circ} < 0; K_{eq} < 1$

Consider the following equations for a cell reaction:

$$A + B \longrightarrow C + D;$$

 $2A + 2B \longrightarrow 2C + 2D;$

 $E^{\circ} = x \text{ volt, } K_{eq} = K_1$ $E^{\circ} = y \text{ volt, } K_{eq} = K_2 = K_1$

Then:

$$X = y, K_1 = K_2$$

$$x = y, K_1^2 = K_2$$

$$x^2 = y, K_1^2 = K_2$$

What is the standard electrode potential for the reduction of HClO? HClO(aq) + H⁺(aq) + 2e⁻ \longrightarrow Cl⁻(aq) + H₂O(l) E°_{ClO}-/_{Cl}- = ? Given: Cr²⁺(aq) \longrightarrow Cr³⁺(aq) + e⁻, E° = 0.41 V HClO(aq) + H⁺(aq) + 2Cr²⁺(aq) \longrightarrow 2Cr³⁺(aq) + Cl⁻(aq) + H₂O(l), E°_{cell} = 1.80

- A 1.39
- B 1.54
- **c** 1.22
- 0.90

Standard electrode potential of SHE at 298 K is:

- (A) 0.05 V
- B 0.10 V
- 0.50 V
- 0.00 V

The nature of curve of E° cell vs log Kc is:

- A Straight line
- B Parabola
- C Hyperbola
- Elliptical curve

Cathode anode

®

The cell reaction $2Ag^{+}(aq) + H_{2}(g) \longrightarrow 2H^{+}(aq) + 2Ag(s)$, is best represented by:

- Ag(s) | Ag+(aq) | H+(aq) | H2(g) | Pt(s) Pt, H2(0) / HG+ | Ag+(aq) / Ag(s)
- Pt(s) | H₂(g) | H⁺(aq) || Ag⁺(aq) | Ag(s)
- Ag(s) | Ag⁺(aq) || H₂(g) | H⁺(aq) | Pt(s)
- D Ag+(aq) | Ag(s) || H₂(g) | H+(aq)

Salt Bridge & its Functions

Soult bridge -> Ageon-agen gel + Inevit electeraly

- @ Completes the Circuit to get Continuous supply of Current.
- 2) Tremove Changes by movement of
- 3) removes LJP (Liquid Tunction potential)

Both Cation 2 anion velocity, Brould the same ionic mobility transport

#>Cn THE WANTE 21 ZnSon Potential CIM) develop Liquid Tunction potential.

Effect on external E.M.F. of cell

When $E_{ext} < 1.1 V$

- (i) Electrons flow from Zn rod to Cu rod hence current flows from Cu to Zn.
- (ii) Zn dissolves at anode and copper deposits at cathode.

CuSO₄

ZnSO₄

(i) No flow of

current.

(ii) No chemical

reaction.

electrons or

When $E_{ext} > 1.1 \text{ V}$

(i) Electrons flow from Cu to Zn and current flows from Zn to Cu.

(ii) Zinc is deposited at the zinc electrode and copper dissolves at copper electrode.

- effect of external e.m.f. of Cell

 O Ecell > External => electorochemical Cell work => 2n > anode > oxid

 Cu > Cathode > orean
 - 2) Ecel = Eexternal => No Cell on (I=0)
 - (3) Ecel L'External = electrolytic Cell work = Cu = anode = oxid"

 Zn = Cathode = red"

QUESTION - (NCERT Exemplar)

An electrochemical cell can behave like an electrolytic cell when _____

- $E_{cell} = 0$
- $E_{cell} > E_{ext}$
- $E_{\text{ext}} > E_{\text{cell}}$
- $E_{cell} = E_{ext}$

Eeset 7 E ceu Cu-> Cu²⁺+2e - 2n.

Assertion: For the Daniel cell, $Zn|Zn^{2+}||Cu^{2+}||Cu||$ with, $E_{cell} = 1.1$ V, the application of opposite potential greater than 1.1 V results into flow of electron from cathode of anode.

Reason: Zn is deposited at anode and Cu is deposited at cathode. X

- If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
- If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
- If the Assertion is correct but Reason is incorrect.
- If both the Assertion and Reason are incorrect.
- If the Assertion is incorrect but the Reason is correct.

Nernst Equation

(Effect of temperature and concentration on electrode potential or e.m.f. of cell)

Find electrode potential of following:

$$Cu/Cu^{2+}$$
 (0.1 M); $E_{Cu^{2+}/Cu}^{o} = +0.34 \text{ V}$

Find electrode potential of following:

$$Zn^{2+} (10^{-2} M)/Zn (s); E_{Zn^{2+}/Zn}^{0} = -0.76 V$$

QUESTION - (NCERT Exemplar)

Electrode potential for Mg electrode varies according to the equation

$$E_{Mg^{2+}|Mg} = E_{Mg^{2+}|Mg}^{\Theta} - \frac{0.059}{2} log \frac{1}{[Mg^{2+}]} \cdot \text{ The graph of } E_{Mg^{2+}|Mg} vs log[Mg^{2+}] \text{ is:}$$

Find Oxidation potential of the following:

Pt, H₂ (1 atm)/H+ (10-3 M)

Find Reduction potential of the following:

Pt, H₂ (1 atm)/H+ (10-2 M)

QUESTION (NEET 2016, Phase-I)

The pressure of H_2 required to make potential of H_2 electrode. Zero in pure water at 298 K.

- A 10⁻¹⁰ atm
- B 10⁻⁴ atm
- 10⁻¹⁴ atm
- D 10⁻¹² atm

QUESTION (AIIMS-2019)

At 298 K temperature, a hydrogen gas electrode is made by dipping platinum wire in a solution of HCl of pH = 10 and by passing hydrogen gas around the platinum wire at one atm pressure. The potential of electrode would be

- (A) 0.59 V
- B 0.118 V
- 1.18 V
- 0.059 V

