ZADANIA POWTÓRZENIOWE PRZED DRUGIM KOLOKWIUM Z ANALIZY MATEMATYCZNEJ I

1. Obliczyć pochodne funkcji

(a)
$$y = \frac{2}{3x-1}$$
,

(a)
$$y = \frac{2}{3x-1}$$
, (b) $f(x) = \sqrt[3]{\frac{1}{2}x+1}$, (d) $f(x) = (3x^2 - 7)e^{-x^2 + 2x + 1}$, (e) $f(x) = e^{-x^2} \cdot \ln x$,

(c)
$$f(x) = \sin(5x - 1)$$
,

(d)
$$f(x) = (3x^2 - 7)e^{-x}$$

(e)
$$f(x) = e^{-x^2} \cdot \ln x$$

(f)
$$f(x) = \ln^3 x - e^{-x}$$

(g)
$$f(x) = e^{\sqrt{\sin x}}$$
,

(h)
$$f(x) = \ln (e^{1/x} - x)$$
.

- **2.** (a) Znaleźć styczną do wykresu funkcji $f(x) = \ln(1-3x)$ w punkcie o odciętej $x_0 = 0$. (b) Znaleźć styczną do wykresu funkcji $f(x) = e^{2x-1} + 2$ w punkcie o odciętej $x_0 = \frac{1}{2}$.

 - (c) Znaleźć równanie prostej stycznej do wykresu funkcji $f(x) = (3\pi 4x) \sin x$ w punkcie $(\frac{\pi}{2}, \pi)$.

 (d) Wyznaczyć dziedzinę funkcji $y = \frac{\ln(3-\sqrt{x})}{\sqrt{x}}$ oraz równanie prostej stycznej do tej krzywej w punkcie (4,0).

 (e) Wyznaczyć dziedzinę funkcji $y = \frac{\ln(2x+1)}{x-1}$ oraz napisać równanie prostej do niej stycznej i przechodzącej przez poczatek układu współrzednych przez początek układu współrzędnych.

3. Korzystając z reguły de l'Hôpitala obliczyć

(a)
$$\lim_{x\to 0} \frac{3x+e^{2x}-1}{2x}$$

(b)
$$\lim_{x\to\infty} \frac{e^{3x} - e^{-x}}{r^2}$$
,

(a)
$$\lim_{x\to 0} \frac{3x + e^{2x} - 1}{2x}$$
, (b) $\lim_{x\to \infty} \frac{e^{3x} - e^{-x}}{x^2}$, (c) $\lim_{x\to -\infty} x \ln\left(\frac{1-2x}{3-2x}\right)$, (d) $\lim_{x\to 2} \frac{(x-2)^2}{\ln\cos(3\pi x)}$, (e) $\lim_{x\to 0^+} x^{\frac{1}{\ln(e^x-1)}}$, (f) $\lim_{x\to 0^+} x^x$,

(d)
$$\lim_{x\to 2} \frac{(x-2)^2}{\ln\cos(3\pi x)}$$

(e)
$$\lim_{x\to 0^+} x^{\frac{1}{\ln(e^x-1)}}$$
,

$$(f) \lim_{x \to 0^+} x^x,$$

- 4. (a) Znaleźć asymptotę prawostronną ukośną funkcji $f(x) = \frac{e^{-3x} + 4x^2}{2x 1}$.
 - (b) Wyznaczyć lewostronną asymptotę ukośną funkcji $f(x) = 2x e^{3x}$.
 - (d) Wyznaczyć asymptoty funkcji $f(x) = x^2 e^{\frac{1}{x}}$.
 - (c) Wyznaczyć asymptoty funkcji $f(x) = \frac{e^x}{4-x^2}$. (e) Wyznaczyć asymptoty funkcji $f(x) = \frac{\ln x}{x}$.
- (f) Wyznaczyć asymptoty funkcji $f(x) = xe^{1-2x}$
- 5. Wyznaczyć asymptotę pionową i ekstrema funkcji $f(x) = \frac{e^{2x}}{3x+1}$
- 6. Wyznaczyć ekstrema i przedziały monotoniczności funkcji (a) $f(x)=\frac{e^{-4x}}{x^2-3}$, (b) $f(x)=(x^2-x-1)e^{-x}$, (c) $f(x)=xe^{-x^3}$, (d) $f(x)=\frac{\ln x}{x}$.

(a)
$$f(x) = \frac{e^{-4x}}{x^2 - 3}$$
,

(b)
$$f(x) = (x^2 - x - 1)e^{-x}$$

(c)
$$f(x) = xe^{-x^3}$$

(d)
$$f(x) = \frac{\ln x}{x}$$
.

7. Wyznaczyć przedziały wklęsłości i wypukłości funkcji oraz jej punkty przegięcia

(a)
$$f(x) = e^{-x^2}$$

(a)
$$f(x) = e^{-x^2}$$
, (b) $f(x) = \frac{x^2 - 3x + 3}{x^2 - 3x + 2}$, (c) $f(x) = \frac{\ln x}{x}$.

(c)
$$f(x) = \frac{\ln x}{x}$$

- 8. (a) Wyznaczyć przedziały, w których funkcja $f(x) = (x^2 + x + 2)e^{-x}$ jest wypukła.
 - (b) Wyznaczyć przedziały, w których funkcja $f(x) = \ln(1+x^2)$ jest wklęsła.

ODPOWIEDZI:

- 1. (a) $\frac{-6}{(3x-1)^2}$ (b) $\frac{1}{6(\sqrt[3]{\frac{1}{2}x+1})^2}$ (c) $5\cos(5x-1)$ (d) $(-6x^3+6x^2+20x-14)e^{-x^2+2x+1}$ (e) $-2xe^{-x^2}\ln x + \frac{1}{x}e^{-x^2}$
 - (f) $\frac{3}{x} \ln^2 x + e^{-x}$ (g) $e^{\sqrt{\sin x}} \frac{\cos x}{2\sqrt{\sin x}}$ (h) $\frac{-\frac{1}{x^2} e^{1/x} 1}{e^{1/x} x}$
- **2.** (a) y = -3x (b) y = 2x + 2 (c) $y = -4x + 3\pi$ (d) $D = (0,9), y = -\frac{1}{8}x + \frac{1}{2}$ (e) $D = (-\frac{1}{2}, 1) \cup (1, \infty), y = -2x$
- **3.** (a) $\frac{5}{2}$ (b) ∞ (c) 1 (d) $-\frac{2}{9\pi^2}$ (e) e (f) 1
- **4.** (a) y = 2x + 1 (b) y = 2x (c) y = 0 to asymptota pozioma lewostronna, x = 2, x = -2 to asymptoty pionowe obustronne (d) x=0 to asymptota pionowa prawostronna (e) y=0 to asymptota pozioma prawostronna, x=0to asymptota pionowa prawostronna (f) y=0 to asymptota pozioma prawostronna
- **5.** $x=-\frac{1}{3}$ to asymptota pionowa obustronna, $f_{min}(\frac{1}{6})=\frac{2}{3}\sqrt[3]{e}$
- **6.** (a) $D = R \setminus \{-\sqrt{3}, \sqrt{3}\}, f'(x) = \frac{(-4x^2 2x + 12)e^{-4x}}{(x^2 3)^2}, f_{min}(-2) = e^8, f_{max}(\frac{3}{2}) = -\frac{4}{3}e^{-6}, \text{ rośnie w przedziałach}$ $(-2, -\sqrt{3}), (-\sqrt{3}, \frac{3}{2}),$ maleje w przedziałach $(-\infty, -2), (\frac{3}{2}, \sqrt{3}), (\sqrt{3}, \infty)$ (b) $D = R, f'(x) = e^{-x}(-x^2 + 3x), f_{min}(0) = -1, f_{max}(3) = \frac{5}{e^3},$ rośnie dla $x \in (0, 3),$ maleje w przedziałach
- (c) D = R, $f'(x) = e^{-x^3} (1 3x^3)$, $f_{max} \left(\sqrt[3]{\frac{1}{3}} \right) = \sqrt[3]{\frac{1}{3}} e^{-\frac{1}{3}}$, rośnie dla $x \in \left(-\infty, \sqrt[3]{\frac{1}{3}} \right)$, maleje dla $x \in \left(\sqrt[3]{\frac{1}{3}}, \infty \right)$
- (d) $D=(0,\infty), f'(x)=\frac{1-\ln x}{x^2}, f_{max}(e)=\frac{1}{e}, \text{ rośnie dla } x\in(0,e), \text{ maleje dla } x\in(e,\infty)$
- 7. (a) $D=R, f''(x)=2e^{-x^2}(2x^2-1)$, wypukła w przedziałach $\left(-\infty,-\sqrt{\frac{1}{2}}\right),\left(\sqrt{\frac{1}{2}},\infty\right)$, wklęsła w przedziałach $\left(-\sqrt{\frac{1}{2}},\sqrt{\frac{1}{2}}\right), \text{ punkty przegięcia: } \left(-\sqrt{\frac{1}{2}},e^{-\frac{1}{2}}\right), \left(\sqrt{\frac{1}{2}},e^{-\frac{1}{2}}\right)$ (b) $D=R\setminus\{1,2\}, \ f''(x)=\frac{(x^2-3x+2)(6x^2-18x+14)}{(x^2-3x+2)^4}, \text{ wypukła w przedziałach } (-\infty,1)\,,(2,\infty), \text{ wklęsła w przedziałach }$
- (1,2), brak punktów przegięcia (c) $D=(0,\infty)$, $f''(x)=\frac{2\ln x-3}{x^3}$, wypukła w przedziale $\left(e^{\frac{3}{2}},\infty\right)$, wklęsła w przedziałe $\left(0,e^{\frac{3}{2}}\right)$, punkt przegięcia: $\left(e^{\frac{3}{2}},\frac{3}{2e^{\frac{3}{2}}}\right)$
- 8. (a) $f''(x) = e^{-x}(x^2 3x + 2), (-\infty, 1), (2, \infty)$ (b) $f''(x) = \frac{2-2x^2}{(1+x^2)^2}, (-\infty, -1), (1, \infty)$