The Theory of Monopoly

E. Glen Weyl

University of Chicago

First Guest Lecture
Price Theory
Fall 2011

Introduction

Much of course will focus on price-taking

- Keep in mind what happens when not from start
- Models with market power useful for three reasons
 - More detailed understanding of pricing behavior
 - Allows study of policies (antitrust, regulation, IP)
 - Government impacts prices: tool in optimal policy
- Foundational model focuses on one firm ("monopoly")
 - Quantity reduction incentive
 - Lerner's elasticity pricing rule
 - Deadweight loss and measurement
 - Pass-through rate and comparative statics
 - Connections of pass-through to other concepts
 - Division of surplus, strategic effects
 - Evidence on pass-through

Quantity reduction and marginal revenue

Basic idea: monopolies reduce quantity to raise price

- To sell more, price must fall on all *infra-marginal* units
- → Trade-off between selling more and higher price
 - Maximize $\pi(q) = P(q)q C(q)$; but don't set P = MC
 - Instead set MR = MC: MR formula?

$$MR(q) = \underbrace{P(q)}_{\text{good, competitive}} + \underbrace{P'(q)q}_{\text{market power/Cournot distortion}}$$

- Distortion is proportional to:
 - The number of units you sell
 - If you are small part of industry, small impact
 - 2 The amount you move the price
 - If industry impact on price is small, distortion small
- Distortion proportional to "bigness", elasticity (soon)

Graphical examples of marginal revenue

Lerner's mark-up pricing rule

Another way to write *MR* is $P(q)\left(1-\frac{1}{\epsilon(q)}\right)$; why?

$$\bullet$$
 $\epsilon = -rac{dQ}{dp}rac{p}{q}$ so $-rac{1}{\epsilon} = rac{dP}{dq}rac{q}{p}$

• So
$$-\frac{P}{\epsilon} = P'q = MR - P$$

 \implies Marginal revenue is negative if $\epsilon < 1$

- ⇒ Elasticity of demand determines level of prices
 - Summarizes "bigness" in market, substitution to other goods
 - Rearranging yields canonical formula:

Lerner's elasticity pricing rule

$$\frac{p-MC}{p} = \frac{1}{\epsilon}$$

- Can be problematic measure when price negative
 - Credit cards have market power, but negative cost
 - ⇒ Subsidies consumers to profit from merchants
 - Better to use absolute mark-up P'q in this case

The monopoly wedge

Monopoly raises prices above costs; two effects:

- Transfers wealth from consumer to monopoly
 - Distributive problems, but no net social loss
- Peduces quantity of goods consumed
 - Some generate net surplus, but don't because of price
 - → Deadweight loss from monopoly
 - Monopolist raises prices on all to charge infra-marginal
 - If could tell who is who, price discriminate, no distortion
 - → Monopolist doesn't like, tries to avoid with discrimination
 - → Consumer purchases create externality, firm profits
 - Could internalize in Pigouvian manner
 - Could also mandate higher quantity, lower price
 - These solutions rarely used...why not?
 - Information problems are a major issue
 - Incentives for best products to be created

Deadweight loss from monopoly

Like any externality/tax, value of production $Mdq \equiv (p - MC)dq$

- Measure with standard deadweight loss "triangle"
 - Only difference is size determined by monopoly's optimum
- → Particular size, relationship to monopoly profits
 - We'll explore this in a bit
 - Note: assumes 0 mark-up on all substitutes
 - Real formula $(M \overline{M}) dq$, \overline{M} avg mark-up switched into
 - Thus it is not really market power, but heterogeneity thereof
 - One firm competitive and others monopolies bad
 - Sticking with standard version, measure graphically
 - DWL: triangle between supply, demand, eq. quantity
 - Profits: between demand or MR and MC
 - CS: between demand and price or MR
 - Gain from monopoly: profit square -firm half of DWL

Graphical examples of deadweight loss triangle

When does monopoly apply?

Monopoly sounds like "this is the only company"

- But basic mechanism applies to any non-price-taker
- More or less severe depending on size of distortion
- So when do we use monopoly v. oligopoly?
 - Monopoly focuses on direct effects of interventions
 - Effects through changes in other eq. behavior ignored
 - Monopoly takes these as fixed, changes small
 - Monopoly ignores welfare effects on other firms
 - Cannot be used to think about cross-firm externalities
 - Ignores other firms mark-ups: often overstates DWL
 - Monopoly model cannot study changes in structure
 - Useless for topics like merger analysis, effect of competition
 - Even with problems, many intuitions from monopoly
 - Teaches focus on elasticity: substitutes can raise production
- → Focus on incentives of one firm, input to other analysis

Pass-through under monopoly v. competition

Prominent example is tax incidence, classic comparative static

• Competition:
$$P = MC$$
 so $\rho_C \equiv \frac{dp}{dt} = \frac{P'}{P' - MC'}$ or $\frac{dp}{dt} = \frac{1}{1 + \frac{\epsilon_D}{\epsilon_S}}$

- Classical incidence formula
- Under monopoly MR = MC so $\rho \equiv \frac{dp}{dt} = \frac{P'}{MR' MC'}$ or

$$\rho = \frac{1}{1 + \frac{\epsilon_D}{\epsilon_S} + \frac{\overline{\epsilon}_D}{\epsilon_D} - \frac{1}{\epsilon_S} - \frac{1}{\epsilon_D}}$$

- Always positive (bottom is second-order condition)
- $\bar{\epsilon}_D \equiv \frac{d\epsilon_D}{dp} \frac{p}{\epsilon_D}$ is *super-elasticity*: what intuitive property?
 - Curvature of demand function; new element from monopoly
 - When demand v. elastic (almost competitive) doesn't matter
 - Large the more concave demand is; negative if very convex
 - → More convex demand has higher pass-through
 - If MR slopes up, may be infinite
 - We'll see real-world example below; meantime made-up

Pass-through and consumer surplus

Raising taxes enough eliminates market

- Thus use pass-through to trace out surplus of market
- How much does raising taxes reduce profits?
 - Envelope theorem on price, just current quantity: $\frac{d\pi}{dt} = -q$
- How much does it reduce CS?
 - ullet Consumer surplus formula: $rac{dCS}{dt}=-qrac{dp}{dt}=-q
 ho$
- $\implies \frac{CS}{\pi}$ = average pass-through rate

$$rac{\mathit{CS}}{\pi} = \overline{
ho} \equiv rac{\int_{t=0}^{\overline{t}}
ho \mathit{qdt}}{\int_{t=0}^{\overline{t}} \mathit{qdt}}$$

- Similar argument under competition
- Profits fall by 1ρ , so $\frac{CS}{\pi} = \frac{\bar{\rho}}{1 \bar{\rho}}$
- More general ($\lambda=1$ competition, 0 monopoly): $\frac{CS}{\pi}=\frac{\bar{\rho}}{1-\lambda\bar{\rho}}$

Pass-through and price strategic effects

Pass-through also determines response to demand; why?

- Subsidy *s* to consumers: *demand pass-through* $\rho_d \equiv \frac{dP}{ds}$
- Consumer subsidy and producer tax of \$1 has no effect
 - If firm raises price \$1, everything exactly the same
 - Fundamental result on neutrality of physical incidence
 - ⇒ Quantity does not change, price rises by \$1

Theorem

$$\rho + \rho_d = 1$$

- $\rho > 0$, but may be > 1 so ρ_d may be negative
 - May seem counter-intuitive, but monopolist follows demand
- Tight link to strategic complements v. substitutes in prices
 - Others changing prices shifts willingness to pay
 - Direct with perfect complements

Graphical representation of pass-through results

Pass-through and the division of surplus Pass-through and strategic effects Evidence on pass-through

Einav et al. (2011) analysis of seller experiments

Easy to measure demand curves on internet

- Einav et al. collect data from seller experiments on EBay
 - Many seller try identical items at different prices
 - Trying to figure out what price to charge, terms to use
 - Just like they should do to learn
- Use to construct "demand curve" in auctions?
 - Higher reserve price set ⇒ higher price if sale
 - If higher than bid of second highest, raises price
 - Also reduces probability of sale
 - If no one bids above, no sale occurs
 - Just like a demand curve
 - Draw out average price, probability of sale relationship
 - Marginal cost always constant (probability of sale)
 - Basic shape very similar across products
 - Interestingly, has non-montone MR, requires ironing

Einav et al. data

