WHAT IS CLAIMED IS:

3 4

1

2

1

2

1

2

1

2

1

2

1

2

1. A method for forming an insulation layer over a substrate, the method comprising:

forming a surface sensitive silicon oxide layer over the substrate; and forming a porous silicon oxide layer on the surface sensitive silicon oxide layer by thermal chemical vapor deposition, wherein said porous silicon oxide layer is deposited at a temperature of about 400°C or less.

- 2. The method of claim 1 wherein the porous silicon oxide layer has a carbon content of at least 5 atomic percent.
 - 3. The method of claim 1 wherein the porous silicon oxide layer has a dielectric constant of between about 2.9 and 3.2.
- 4. The method of claim 1 wherein the surface sensitive silicon oxide layer is deposited from a plasma enhanced CVD reaction of TEOS and oxygen.
- 5. The method of claim 1 wherein the porous silicon oxide layer is deposited from a process gas comprising TEOS and ozone.
- 6. The method of claim 5 wherein a molar ratio of said TEOS to ozone is between about 10:1 and 20:1.
- 7. The method of claim 1 further comprising forming a capping silicon oxide layer over the porous silicon oxide layer.
- 1 8. The process of claim 1 wherein said porous silicon oxide layer is 2 deposited using an SACVD process at a pressure of between 100-700 Torr.
- 1 9. The method of claim 1 wherein said surface sensitive and porous 2 silicon oxide layers are deposited in an in situ process.

500 2

10. A process for depositing an intermetal dielectric film over a plurality of conductive lines, the method comprising:

1	depositing a plasma enhanced chemical vapor deposition (CVD) silicon
2	oxide layer over the plurality of conductive lines from a plasma of tetraethyloxysilane
3	(TEOS) and oxygen; and
4	depositing a silicon oxide layer over the plasma enhanced CVD silicon
5	oxide layer by a thermal CVD process from a gas mixture of a TEOS and ozone
6	wherein said thermal silicon oxide layer has a dielectric constant of about 3.2 or less
7	and a carbon content of at least about 5 atomic percent.
1	11. The method of claim 10 wherein the density of said thermal
2	silicon oxide layer is less than or equal to about 1.7 g/cm ³ .
1	12. The method of claim 10 further comprising depositing a plasma
2	enhanced CVD silicon oxide capping layer over the thermal silicon oxide layer.
1	13. The method of claim 10 wherein the dielectric constant of said
2	thermal silicon oxide layer is greater than or equal to about 2.9.
1	14. The method of claim 10 wherein a molar ratio of said TEOS and
2	ozone used to deposit said thermal silicon oxide layer is at least 8:1.
1	15. The method of claim 6 wherein said molar ratio is at least about
2	11.5:1.
1	16. The method of claim 14 wherein said molar ratio is between
2	about 10:1 and 20:1.
1	17. The method of claim 10 wherein said oxygen is provided from a
2	flow of molecular oxygen.
1	18. The method of claim 10 wherein said plasma enhanced and
-	
2	thermal CVD silicon oxide layers are deposited in an in situ process.
1	19. The process of claim 10 wherein said porous silicon oxide layer
2	is deposited using an SACVD process at a pressure of between 100-700 Torr.
1	20. A substrate processing system comprising:

