P1 antiga

César A. Galvão - 19/0011572

2022-07-08

Contents

1	Que	stao 1	3
	1.1	Modelo	3
	1.2	ANOVA	3
	1.3	Teste de Fisher	4
	1.4	Teste de Tukey	4
	1.5	Maximização da bioatividade	5
	1.6	Calcule e22	5
	1.7	Erro tipo II	5
	1.8	Probabilidade erro tipo II inferior a 50%	5
2	Que	stão 2	7

1 Questao 1

obs	20g	30g	40g
obs1	24	37	42
obs2	28	44	47
obs3	37	39	52
obs4	30	35	38

1.1 Modelo

O modelo escolhido para a avaliação dos tratamentos é o modelo de efeitos, expresso na equação a seguir

$$y_{ij} = \mu + \tau_i + e_{ij}, \quad i = 1, 2, ..., a; \quad j = 1, 2, ..., n$$
 (1)

em que μ é a média geral, τ_i é a média ou efeito dos grupos e e_{ij} é o desvio do elemento. Os grupos são indexados por i e os indivíduos de cada grupo indexados por j.

Considera-se para utilização do modelo de efeitos:

- independência entre realizações dos testes;
- normalidade de distribuição dos resíduos;
- homogeneidade de variâncias (homocedasticidade) dos resíduos.

Estima-se, considerando \bar{x} o estimador natural para μ e QMRES = $\hat{\sigma}^2$:

\bar{x}	\bar{x} $ au_1$		$ au_3$	$\hat{\sigma}^2$
37.75	29.75	38.75	44.75	27.14

1.2 ANOVA

As hipóteses do teste de análise de variância são as seguintes:

$$\begin{cases} H_0: \tau_1=\ldots=\tau_a=0, & \text{(O efeito de tratamento \'e nulo)} \\ H_1: \exists \tau_i \neq 0 \end{cases} \tag{2}$$

que equivale dizer

$$\begin{cases} H_0: \mu_1 = \dots = \mu_a \\ H_1: \exists \mu_i \neq \mu_j, i \neq j. \end{cases}$$
 (3)

A tabela de análise de variâncias é apresentada a seguir:

term	df	sumsq	meansq	statistic	p.value
dosagem	2	456.00	228.00000	8.401228	0.0087421

(continued)

term	df	sumsq	meansq	statistic	p.value
Residuals	9	244.25	27.13889	NA	NA

Considerando $\alpha=0,05$, rejeita-se a hipótese nula. Isto é, rejeita-se a hipótese de que há igualdade entre as médias de cada tratamento.

De fato, realizando testes diagnósticos para normalidade e igualdade de variâncias, não se rejeita a hipótese de normalidade dos resíduos e considera-se a variância igual entre grupos, conforme apresentado na tabela a seguir:

Estatística de teste	p-valor	Método
0.9382542	0.4757921	Shapiro-Wilk normality test
0.4982699	0.6234012	Levene igual. vars.

1.3 Teste de Fisher

O teste é realizado utilizando as estatísticas de teste t_{0}

$$t_0 = \frac{|\bar{y}_{i.} - \bar{y}_{j.}|}{\sqrt{\mathsf{QMRES}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \tag{4}$$

com an-a graus de liberdade sob a hipótese nula. Seus p-valores são apresentados na tabela a seguir:

Grupo.1	Grupo.2	p.valores
20g	30g	0.0371682
20g	40g	0.0027912
30g	40g	0.1377938

Considerando $\alpha=0,05$ se rejeita a hipótese de igualdade entre as médias do grupo de 20g com o grupo 30g pelo teste de Fisher.

1.4 Teste de Tukey

Comparações	p.valores
30g-20g	0.0859425
40g-20g	0.0070702
40g-30g	0.2833753

Pelo teste de Tukey, apenas se rejeita a hipótese de igualdade entre as médias dos grupos de 40g e 20g, com o mesmo nível de confiança.

1.5 Maximização da bioatividade

Considerando que pelo teste de Tukey os grupos de 20g e 40g têm médias estatisticamente diferentes e que este apresenta maior bioatividade, opta-se pelo tratamento de 40g. O intervalo de confiança é construído da seguinte forma:

$$IC(\bar{x};0,9) = \bar{x} \pm t_{(an-a;1-\alpha/2)} \cdot \sqrt{\frac{\mathsf{QMRES}}{n}}$$
 (5)

$$= 44,75 \pm 1,83 \cdot 2,61 \tag{6}$$

$$= [39, 9737; 49, 5263] \tag{7}$$

1.6 Calcule e22

$$y_{22} = \mu + \tau_2 + e_{22} \tag{8}$$

$$44 = 37.75 + 1 + e_{22} \tag{9}$$

$$e_{22} = 5.25 (10)$$

1.7 Erro tipo II

$$P\left(F_{\text{obs}} < F_{\text{crit}} \middle| \phi^2 = \frac{n}{\sigma^2} \sum_{i=1}^3 \tau_i^2\right),\tag{11}$$

considerando a variância para os resíduos. Portanto,

$$\phi^2 = \frac{n}{\mathsf{QMRES}} 30 \tag{12}$$

$$=\frac{3}{27,139}30\tag{13}$$

$$=4,42$$
 (14)

é o parâmetro de não-centralidade (pnc ou, em inglês, ncp) da distribuição F e, sob H_0 , $\phi^2 = 0$.

O valor $F_{\text{crit}} = F(\gamma = 0, 95; gl_1 = 2; gl_2 = 9, \phi^2 = 0)$ é de 4.256. Considerando $\phi^2 =$ 4.4217, obtém-se

$$P\left(F_{\text{obs}} < F_{\text{crit}} \middle| \phi^2 \text{ sob } H_1\right) = P\left(F_{\text{obs}} < 4,256 \middle| \phi^2 = 4,422\right)$$
 (15)

$$=0,662.$$
 (16)

1.8 Probabilidade erro tipo II inferior a 50%

Considerando os métodos de cálculo já utilizados, constroi-se a tabela a seguir:

n	ϕ^2	ϕ	g.l.	F_{crit}	β	Poder
4	4.42	2.10	9	4.26	0.66	0.34
5	5.53	2.35	12	3.89	0.56	0.44
6	6.63	2.58	15	3.68	0.46	0.54

Considerando os valores da tabela, para que o erro tipo II seja menor que 50% são necessários 6 repetições para cada tratamento nesse experimento.

2 Questão 2

Na tabela, D1 representa a diferença entre as datas 2 e 1 e D2 o mesmo para datas 4 e 3.

Árvores	Data 1	Data 2	Data 3	Data 4	D1	D2
arvore 1	30	58	115	120	28	5
arvore 2	33	69	156	172	36	16
arvore 3	30	51	108	115	21	7
arvore 4	32	62	167	179	30	12
arvore 5	30	49	125	142	19	17

Deseja-se testar se o crescimento entre os períodos é diferente. Interessa testar portanto se as médias de D1 e D2 são diferentes. Antes de realizar um teste de comparação de médias para medidas repetidas, i.e. um teste t pareado, testa-se para igualdade de variâncias.

Considerando H_0 sendo a igualdade entre as variâncias, obtém-se p-valor 0.625. Ou seja, não se rejeita a hipótese de igualdade de variâncias.

Tomando a hipótese de normalidade dos dados como verdadeira, realiza-se o teste t pareado, para variâncias iguais, com nível de confiança $\gamma=0,95$. A hipótese nula do teste é a igualdade entre as médias, de modo que o teste realizado é bilateral.

O p-valor obtido no teste é de 0.014, de modo que é possível rejeitar a hipótese nula a $\alpha=0,05$. Ou seja, pode-se dizer que há uma diferença estatisticamente diferente entre os crescimentos nos dois períodos.