

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

SEMESTER II RESIT EXAMINATION - 2010

CHEM 10030 Chemistry For Engineers

Professor Wayne

Professor Waghorne

Dr. Sullivan *

Dr Quinn *

Time Allowed: 2 hours

Instructions for Candidates

Use a separate answer book provided for each question.

No loose rough work sheets are to be used. The rough work for each question should be included in the answer book for that question.

ONLY STUDENTS SEEKING TO IMPROVE THEIR LABORATORY GRADE SHOULD ATTEMPT QUESTION 3

Instructions for Invigilators

The use of electronic calculators is permitted
A Periodic Table of the Elements is attached to these sheets
Graph paper should be provided

© UCD 2009/10 /Modular

Page 1 of 6

Students seeking to improve their laboratory grade should also answer question 3

Question 1

Answer any *three* of the following (a) - (e)

- (a) Answer *all* sections (i) (iii)
 - (i) Draw a diagram of the apparatus used to generate a hydrogen emission spectrum. (10)
 - (ii) Explain, at an atomic level, the processes taking place during the absorption and emission of energy during this experiment. (10)
 - (iii) Determine the energy (in J) of the light emitted when an electron makes a transition from the n = 4 orbital to the n = 3 orbital in a hydrogen atom. (13.3)

Rydberg constant = 2.18×10^{-18} J molecule⁻¹

- **(b)** Answer *all* sections (i) (iii)
 - (i) Order the following regions of the electromagnetic spectrum in increasing order of energy: γ Ray, Ultra Violet, Microwave, Infra red, X Ray, Radiowave.
 - (ii) Write an equation expressing the relationship between the wavelength of light and its energy. (5)
 - (iii) Explain why electromagnetic radiation with a high frequency may be (5) considered dangerous.
 - (iv) Microwave ovens operate at a frequency of 2.45 GHz (Giga = 10⁹). What is the wavelength of this radiation? What is its energy per photon? (13.3)

The speed of light is 3×10^8 m s⁻¹ and Planck's constant is 6.626×10^{-34} J s.

(c) Answer *all* sections (i) - (ii)

(i) The conversion of C₆H₆ + O₂ mixtures into CO₂+ H₂O mixtures is an exothermic process. What does this suggest about the relative strengths of the C – C, C—H, C = O and O – H bonds in the C₆H₆, O₂, H₂O and CO₂. (20)

(ii) Determine the number of moles of H_2O and the mass of CO_2 formed following the combustion of 500kg of C_6H_6 . (13.3)

(d) Answer all sections

Draw Lewis structures and predict the shapes of the following molecules:

NH ₃	(5)
CH ₄	(5)
H_2O	(5)
PCl ₅	(5)
BrF ₅	(7)
SF ₄	(7.3)

- (e) Answer *all* sections (i) (iii)
 - (i) Draw a diagram showing the experiment that Rutherford performed using gold foil and α particles and explain how his conclusions following this experiment furthered the development of modern atomic theory. (20)
 - (ii) Explain how Rutherford would have produced a stream of α particles for use in the experiment described in section (i). (13.3)

Question 2

Answer any *two* of the following (a) - (c)

(a) For the endothermic reaction:

$$N_2(g) + O_2(g) \Rightarrow 2 NO(g)$$

Write and expression for the equilibrium constant in terms of concentrations.

At 2010 K, the equilibrium constant, K_c for the reaction is 4.0×10^{-4} . If the equilibrium concentrations of N_2 and O_2 are 0.28 mol/L and 0.38 mol/L at 2010 K in a 1 L flask, what is the equilibrium concentration of NO?

Predict the effect on amount of NO in the system when the reaction temperature is increased. Explain your reasoning.

Would you expect the equilibrium constant to be the same for a 50 L flask? (50)

- (b) Answer all parts (i), (ii) and (iii).
 - (i) Define the standard enthalpy of formation of a compound ΔH_f^{\bullet} ;
 - (ii) State Hess's Law;
 - (iii) Given the following information:

$$4\text{CO}_2(g) + 6\text{H}_2\text{O}(1) \rightarrow 2\text{C}_2\text{H}_6(g) + 7\text{ O}_2(g) \quad \Delta_r H^{-\Theta} = +3120 \text{ kJ mol}^{-1}$$
 $C(s) + O_2(g) \rightarrow CO_2(g) \quad \Delta_r H^{-\Theta} = -394 \text{ kJ mol}^{-1}$
 $2\text{H}_2\text{O}(1) \rightarrow 2\text{H}_2(g) + O_2(g) \quad \Delta_r H^{-\Theta} = +572 \text{ kJ mol}^{-1}$

Calculate the standard enthalpy of formation of ethane $C_2H_6(g)$ (50)

- (c) Answer all parts (i), (ii) and (iii).
 - (i) Explain briefly the meaning of the following terms in chemical kinetics:

 *Rate equation** Reaction half-life** Rate determining step**
 - (ii) The complex reaction: $O_3(g) + 2 NO_2(g) \rightarrow N_2O_5(g) + O_2(g)$ Is proposed to occur by the following two ELEMENTARY reactions:

$$O_{3}\left(g\right) \ + NO_{2}\left(g\right) \rightarrow \ NO_{3}\left(g\right) + O_{2}\left(g\right) \ \ \text{slow, rate constant } k_{1}$$

$$NO_3(g) + NO_2(g) \rightarrow N_2O_5(g)$$
 fast, rate constant k_2

Write the rate equation for the complex reaction.

(iii) Molecular iodine dissociates at 625 K with a first-order rate constant of 0.27 s⁻¹. What is the half-life of this reaction? (50)

Question 3

ONLY ANSWER THIS QUESTION IF YOU ARE SEEKING TO IMPROVE YOUR LABORATORY MARK FOR THE MODULE.

Design an experiment that will measure the concentrations of sodium carbonate and sodium bicarbonate in a solid sample of unknown composition.

Discuss the chemical principles behind the experiment, the chemicals and apparatus that you will require, as well as the modes of data collection and analysis that will yield a reasonable result. (50)

000

Periodic Table of the Elements

18 MII	2 Helium He 4.0026	6	Neon	ָט מָּ	9 2	uoß	7	.948	38	rpton	호	3.80	54	nou	e	1.29	98	uop	듄	22			
	I - 4	┝			┿				⊢			,	┝				L						
<u> </u>		6	Pluorine T	18 0087	17	Chlorir	ប	35.45	35	Bromin	ፙ	79.90	53	lodine	<u>-</u>	126.90	85	Astatin	Αt	210			
8 ≥		8	Oxygen	15 0007	16		တ	32.066	34	Selenium	Se	78.96	52	Tellurium	<u>1</u> e	127.60	8	Polonium	Po	509			
55 >		7	Nitrogen	14 0067	15	Phosphorus	Ω.		ı		As				gs	121.75	83	Bismuth	Ö	208.98			
<u>4</u> ⋝		9	Carbon	5 25 5	14	Slicon	Ś	28.086	32	Germanium	ge	72.61	50	Ē	Sn	118.71	82	Lead	Pb	207.19			
€ ≡		5	Boron D	ָבָ בַּבְּ	13	Auminium	₹	26.9815			Ga				_		81	Thallium	F	204.38			
							12		30	Zinc	Zn	62.39	48	Cadmium	ਲ	112.411	08	Mercury	Εď	200.59			
							£		58	Copper	ರ	63.546	47	Silver	Ag	107.868	79	<u>8</u>	Au	196.967			
							5		28	Nickel	Z	58.69	46	Palladium	Pd	106.42	78	Hatinum	굽	195.09			
ation) ation)	nber 8 O						О		22	Cobalt	රි	58.933	45	Rhodium	문	102.905	11	lridium	<u>-</u>	~	109 Meitnerium	Mt	268
Group (new notation) Group (old notation)	Atomic number Name Sym bol Atomic mass						.00	-	26	lron	Fe	55.847	44	Ruthenium	Z	101.07	9/	Osmium	ő	190.2	108 Hassium		269
Group Grou	N Name Mass						7		52	Manganese	Ç. Mn	54.938	43	Technetium	ည	98	2/2	Rhenium	Re	186.207	107 Bohrium	뮵	264
							9		24	Chromium	ර්	51.996	42	Molybdenum	Mo Tc Ru	95.94	14	Tungsten	≥	183.85	104 105 106 107 Rutherfordium Dubnium Seaborgium Bohrit	Sq	266
							S		23	Vanadium	>	50.942	41	Jobium	S Z	32.906	73	Tantalum	Ta	180.948	105 Dubnjum	Dp	262
							4		22	litanium	F	47.87	4	Zrconium	Ž	91.224	72	Hafnium	Έ	178.49	89 104 Actinium Rutherfordium	쪼	261
							က		21	Scandium	တွ	44.956	සි	Yttrium	>	88.905	22	Lanthanum	٦	138.91	89 Actinium	Ac	227
7 E		4 :	Beryllium		1	Magnesium	Ø	24.305	20	Calcium	င္ပ	40.08			က်	87.62	26	Barium	Ba	137.34	88 Radium		
-	1 Hydrogen H 1.0079	3		6.941	+	Sodium	e Z	22.989	6	Potassium	¥	39.0983	37	Rubidium	8 8	85.468	22	Cestum	ප	132.905	87 Frandum	亡	223

	28	59	90	61	62	63	64	65	99	- 29	89	69	20	7.1
	Cerium	Praesodymium	<u>¥</u>	Promethium	Samarium	Europium	Gadoloinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
Lanthanides	ඵ	Se P	P N	Pa	Sm	Ec	B	T P	٥	운	ш	Ę	Ϋ́	Ξ
	140.12	140.907	_	144.913	150.35	151.96	157.25	158.925	162.50	164.93	167.26	168.934	173.04	174.97
	06	91	_	93	94	95	96	97	86	66	100	101	102	103
	Thorium	Proactinium	_	Neptunium	Plutonium	Americium	Ourium	Berkelium	Californium	Ensteinium	Fermium	Mendelevium	Nobelium	Lawrencium
Actinides	ᄕ	Ъа	כ	S N	Pu	Am	క్ర	鮝	ざ	Es	E	Md	°	Ľ
	232.038 231.03	231.036	238.03	237.048	244.064	243	247	247	242.058	254	257.095	258.10	259.101	260.105