

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : C12N 15/12, C07K 14/705, 16/28, A61K 38/17, G01N 33/68		A1	(11) Numéro de publication internationale: WO 98/35034 (43) Date de publication internationale: 13 août 1998 (13.08.98)
(21) Numéro de la demande internationale: PCT/FR98/00270 (22) Date de dépôt international: 11 février 1998 (11.02.98)		(81) Etats désignés: CA, JP, US, brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Données relatives à la priorité: 97/01574 11 février 1997 (11.02.97) 97/09587 28 juillet 1997 (28.07.97)		FR FR	Publiée Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.
(71) Déposant (pour tous les Etats désignés sauf US): CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) [FR/FR]; 3, rue Michel Ange, F-75015 Paris (FR).			
(72) Inventeurs; et (75) Inventeurs/Déposants (US seulement): WALDMANN, Rainer [FR/FR]; Chemin de Chense, F-83600 Les Adrets de l'Esterel (FR). BASSILANA, Frédéric [FR/FR]; 15, rue Deville, F-06000 Nice (FR). LAZDUNSKI, Michel [FR/FR]; 21, avenue Colombo, 06000 Nice (FR). CHAMPIGNY, Guy [FR/FR]; 3, place Carrée, F-06560 Valbonne (FR). HEURTEAUX, Catherine [FR/FR]; Résidence Elvira Hills D1, 1187, route de Saint Jean, F-06600 Antibes (FR). LINGUEGLIA, Eric [FR/FR]; 20, boulevard Dubouchage, F-06000 Nice (FR).			
(74) Mandataire: BREESE-MAJEROWICZ; 3, avenue de l'Opéra, F-75001 Paris (FR).			
(54) Title: MAMMAL NEURONAL ACID SENSING CATIONIC CHANNEL, CLONING AND APPLICATIONS THEREOF			
(54) Titre: CANAL CATIONIQUE NEURONAL DE MAMMIFERE SENSIBLE A L'ACIDITE, SON CLONAGE ET SES APPLICATIONS			
(57) Abstract			
The invention concerns a protein constituting a mammal neuronal amiloride sensing channel and activated by protons, and the nucleic acid molecules coding for this protein. The invention also concerns a method for screening substances capable of modulating the activity of mammal neuronal acid sensing ionic channels.			
(57) Abrégé			
L'invention concerne une protéine constituant un canal cationique neuronal de mammifère sensible à l'amiloride et activé par les protons, ainsi que les molécules d'acide nucléique codant cette protéine. L'invention concerne aussi un procédé de criblage de substances capables de moduler l'activité de canaux ioniques neuronaux de mammifère.			

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroon	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Liberia	SG	Singapour		
EE	Estonie						

CANAL CATIONIQUE NEURONAL DE MAMMIFERE SENSIBLE A L'ACIDITE, SON CLONAGE ET SES APPLICATIONS

5 La présente invention concerne une nouvelle famille de canaux ioniques de mammifère, notamment humain, sensible à l'acidité. Elle concerne plus particulièrement l'identification et la caractérisation moléculaire, chez l'homme et le rat, d'un nouveau canal cationique activé par les protons, dénommé ci-après "ASIC" pour désigner les termes anglais "Acid Sensing Ionic Channel". Le canal ASIC 10 constitue le premier membre d'un groupe de canaux cationiques, appartenant à la famille des canaux sodium de dégénérine sensible à l'amiloride (6, 11-14), qui est activé transitoirement par une acidification extracellulaire.

La sensibilité à l'acide est associée à la fois à la nociception (1) et à la transduction du goût (2). La stimulation de neurones sensoriels par les acides revêt une grande importance, car l'acidité accompagne de nombreuses situations inflammatoires et ischémiques douloureuses. La douleur causée par les acides est interprétée comme étant médiée par des canaux cationiques présents au niveau des neurones sensoriels, et qui sont activés par les protons (3-5). Les propriétés biophysiques et pharmacologiques des canaux ASIC de l'invention sont proches de celles des canaux cationiques activés par les protons décrits dans les neurones sensoriels (3, 15, 16). Toutefois, comme cela apparaîtra dans la description ci-après, il n'a été à ce jour jamais décrit de canaux ioniques activés par un ligand plus simple que les canaux ASIC.

35 La présente invention a donc pour objet une protéine constituant un canal cationique neuronal sensible à l'amiloride et activé par les protons. Plus

COPIE DE CONFIRMATION

particulièrement l'invention concerne la protéine constituant le canal ASIC dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 1 ou un dérivé fonctionnellement équivalent de cette protéine.

De tels dérivés sont ceux dont la séquence comprend une modification et/ou une suppression et/ou une addition d'un ou plusieurs résidus d'acides aminés, dès lors que cette modification et/ou suppression et/ou addition ne modifie pas les propriétés fonctionnelles et structurelles du canal ASIC, principalement son activation par les protones. De tels dérivés peuvent être analysés par l'homme du métier selon les techniques décrites dans les exemples donnés ci-après qui ont permis de mettre en évidence les propriétés biophysiques et pharmacologiques du canal ASIC.

Un exemple d'un tel dérivé fonctionnellement équivalent, est la protéine ASIC humaine dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 2, et qui est sensiblement identique à celle du canal ASIC de rat, désigné ASIC1A, représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 1.

Un autre exemple d'un tel dérivé fonctionnellement équivalent, est la protéine constituant un canal cationique de dégénérine dénommé "MDEG" (14) ou "BNaCI" (20) ou encore désigné ci-après "ASIC2A" ou "MDEG1" dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 3. MDEG a été décrit comme un canal cationique de mammifère sensible à l'amiloride qui est activé par des mutations responsables de neurodégénérescence avec les dégénérines de *C. elegans*. Le canal MDEG est un parent structural du canal ASIC, dont la séquence en acides aminés présente environ 67% d'homologie avec la séquence du canal ionique MDEG. Toutefois, les propriétés

électrophysiologiques de ces deux canaux sont différentes car ils ne sont pas activés par les mêmes changements de pH. Ainsi, la gamme de sensibilité de MDEG ($EC_{50} = 4,05$) est différente de celle de ASIC ($EC_{50} = 6,2$).

Il a été montré que le canal MDEG est activé par les mêmes mutations que celles causant une dégénérescence neuronale chez *C. elegans*. Ainsi, comme les mutants de dégénérine de *C. elegans* hyperactifs, les mutants actifs de MDEG sont responsables d'une mort cellulaire, indiquant que l'acquisition de fonction par ce canal ionique neuronal serait impliquée dans plusieurs formes de dégénérescence neuronale de mammifère et notamment humaine. Mais aucune fonction physiologique normale de MDEG n'était connue jusqu'à la mise en évidence de son activation par les protons conformément aux canaux cationiques de la présente invention.

D'autres exemples de protéines constituant un canal cationique neuronal sensible à l'amiloride et activé par les protons selon l'invention sont donnés ci-après :

- Un canal désigné ASIC1B dont la séquence de 559 acides aminés est représentée dans la liste de séquence en annexe sous le numéro SEQ ID NO : 4. ASIC1B est un variant dépiissage du canal ASIC1A cloné à partir du cerveau de rat par PCR dégénérée. Les premier 185 amino acids sont remplacés par une nouvelle séquence de 218 amino acids qui est soulignée dans la SEQ ID NO : 4.

- Un canal désigné DRASIC dont la séquence de 533 acides aminés est représentée dans la liste de séquence en annexe sous le numéro SEQ ID NO : 5. DRASIC a été cloné à partir des neurones sensoriels de rat en utilisant une séquence partielle dans les banque de données ("Expressed Sequence Tag" avec le numéro d'accès W62694). Les propriétés de DRASIC sont les suivantes :

- Il est exprimé dans les neurones sensoriels mais pas dans le cerveau.

- Son expression dans les oocytes de Xénope ou dans des cellules de mammifère permet d'enregistrer un courant sodium activé par le proton qui présente deux composantes : une composante s'activant et s'inactivant rapidement et une composante s'activant plus lentement et ne s'inactivant pas. Les deux composantes sont sélectives pour le Na^+ . Un canal cationique activé par le proton et ne s'inactivant pas a été impliqué dans la sensation de douleur prolongée causée par une acidose.

10

L'invention concerne aussi un canal cationique hybride constitué de l'association d'une première protéine constituant un canal ionique activé par les protons selon l'invention avec une seconde protéine 15 constituant un canal ionique activé par les protons. Avantageusement, ladite seconde protéine est aussi une protéine constituant un canal ionique activé par les protons selon l'invention. A titre d'exemple d'une telle association, on peut citer l'association de la protéine du 20 canal ASIC1A ou ASIC2A ou DRASIC avec la protéine du canal MDEG1, permettant de former un canal hybride présentant une troisième gamme de sensibilité au pH (avec ASIC : EC₅₀ = 4,8). Un autre exemple d'un tel canal hybride est 25 l'association de la protéine des canaux ASIC1A, ASIC1B, MEDG1 ou DRASIC avec la protéine du canal MDEG2.

MDEG2 est un canal qui a été cloné à partir du cerveau de rat en utilisant une séquence partielle de souris accessible dans les banques de données ("Expressed Sequence Tag avec le numéro d'accésion W50528") et dont 30 la séquence de 563 acides aminés est représentée dans la liste de séquence en annexe sous le numéro SEQ ID NO : 6.

MDEG2 est un variant d'épissage de MDEG1. Les premier 185 amino acides sont remplacés par une nouvelle séquence de 236 amino acides qui est soulignée 35 dans la SEQ ID NO : 6. MDEG2 est exprimé dans le cerveau

et dans les neurones sensoriels des ganglions de la racine dorsale.

MDEG2 exprimé seul dans les oocytes de Xénope ou dans des cellules de mammifères ne forme pas un canal cationique activé par le proton. Néanmoins, il peut s'associer avec MDEG1 ou DRASIC pour former des canaux hétéromultimériques activés par le proton avec des propriétés modifiées :

- Le pH d'activation du canal formé après la co-expression de MDEG1 et MDEG2 est différent. Après expression dans les cellules COS, le courant n'a pas atteint sa valeur maximale à pH 3 alors que le courant induit par MDEG1 seul sature à un pH compris entre 4,5 et 4,0.

- Les cinétiques d'inactivation et la sélectivité ionique du canal formé après la co-expression de MDEG1 et MDEG2 sont clairement différentes de celles de MDEG1 seul. Un courant s'inactivant lentement et peu sélectif pour le Na⁺ et le K⁺ apparaît.

- Le courant sodique soutenu obtenu après expression de DRASIC devient non sélectif (il ne différencie plus le sodium et le potassium) quand MDEG2 est co-exprimé avec DRASIC. Cette nouvelle propriété est similaire à celle du canal cationique activé par le proton qui a été impliqué dans la sensation de douleur prolongée causée par une acidose. Il est très probable que DRASIC et MDEG2 fassent partie de ce canal:

Les homologies de séquences en acides aminés des protéines constituant les canaux ASIC1A, ASIC1B, cités selon l'invention sont données dans la tableau 1 ci-dessous.

Tableau 1

Canaux	ASIC 1B	ASIC 1A	MEDG2	MDEG1	DRASIC
ASIC1B	100	80	56	61	52
ASIC1A		100	59	68	53
MDEG2			100	78	48
MDEG1				100	51
DRASIC					100

Des anticorps poly ou monoclonaux dirigés contre au moins une protéine constituant un canal ionique de l'invention et/ou contre un canal hybride ci-dessus, peuvent être préparés par les méthodes classiques décrites dans la littérature. Ces anticorps sont utiles pour rechercher la présence des canaux ioniques de l'invention dans différents tissus humains ou animaux, mais ils peuvent aussi trouver des applications dans le domaine thérapeutique pour inhiber ou activer *in vivo*, grâce à leur spécificité, un canal ASIC et/ou ses dérivés.

La présente invention a aussi pour objet une molécule d'acide nucléique comprenant ou constituée par une séquence nucléique codant pour une protéine constituant un canal cationique neuronal sensible à l'amiloride et activé par les protons. Plus particulièrement l'invention concerne une molécule d'acide nucléique comprenant au moins une séquence codant pour la protéine constituant le canal ASIC dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 1 ou pour un dérivé fonctionnellement équivalent de cette protéine. Une molécule d'ADN comprenant la séquence codant pour la protéine ASIC est celle représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO:1 ou sa séquence complémentaire. Une autre molécule d'ADN selon l'invention est celle représentée dans la liste de

séquence en annexe sous le numéro SEQ ID NO : 2 ou sous le numéro SEQ ID NO : 3, ou leur séquence complémentaire.

Une molécule d'ADN codant pour la protéine ASIC1B est celle de 3647 pb
5 représentée dans la liste de séquence en annexe sous le numéro SEQ ID NO : 4 ou sa séquence complémentaire. Plus particulièrement l'invention concerne la séquence nucléique comprise entre les nucléotides 109 et 1785 de la séquence représentée dans la liste de séquence en annexe
10 sous le numéro SEQ ID NO : 4 ou sa séquence complémentaire.

Une molécule d'ADN codant pour la protéine DRASIC est celle de 1602 pb représentée dans la liste de séquence en annexe sous le numéro SEQ ID NO : 5 ou sa
15 séquence complémentaire.

Une molécule d'ADN codant pour la protéine MDEG2 est celle de 1602 pb représentée dans la liste de séquence en annexe sous le numéro SEQ ID NO : 6 ou sa séquence complémentaire.

20 L'invention concerne également un vecteur comprenant au moins une molécule d'acide nucléique précédente, avantageusement associée à des séquences de contrôle adaptés, ainsi qu'un procédé de production ou d'expression dans un hôte cellulaire d'une protéine
25 constituant un canal ionique selon l'invention. La préparation de ces vecteurs ainsi que la production ou l'expression dans un hôte des canaux de l'invention peuvent être réalisées par les techniques de biologie moléculaire et de génie génétique bien connues de l'homme
30 du métier.

A titre d'exemple, un procédé de production d'une protéine constituant un canal cationique selon l'invention consiste :

35 - à transférer une molécule d'acide nucléique de l'invention ou un vecteur contenant ladite molécule dans un hôte cellulaire,

- à cultiver ledit hôte cellulaire dans des conditions permettant la production de la protéine constituant le canal cationique,

5 - à isoler, par tous moyens appropriés les protéines constituant les canaux ioniques de l'invention.

A titre d'exemple, un procédé d'expression d'un canal ionique selon l'invention consiste :

- à transférer une molécule d'acide nucléique de l'invention ou un vecteur contenant ladite molécule dans une cellule,

- à cultiver ledit hôte cellulaire dans des conditions permettant l'expression de canaux ioniques de l'invention.

L'hôte cellulaire mis en oeuvre dans les 15 procédés précédents peut être choisi parmi les procaryotes ou les eucaryotes et notamment parmi les bactéries, les levures, les cellules de mammifères, de plantes ou d'insectes.

Le vecteur utilisé est choisi en fonction de 20 l'hôte dans lequel il sera transféré; il peut s'agit de tout vecteur comme un plasmide.

L'invention concerne donc aussi les cellules transformées exprimant les canaux ASIC et/ou ses dérivés 25 comme MDEG obtenues conformément aux procédés précédents.

Ces cellules sont utiles pour le criblage de substances capables de moduler la perception de l'acidité, tant en ce qui concerne la nociception que la transduction du goût.

Ce criblage est effectué en mettant en contact des 30 quantités variables d'une substance à tester avec des cellules exprimant les canaux ASIC, puis en mesurant, par tous moyens appropriés, les effets éventuels de ladite substance sur les courants desdits canaux. Des techniques électrophysiologiques permettent également ces études et 35 font aussi l'objet de la présente invention dès lors qu'elles mettent en oeuvre les canaux ASIC ou leurs

dérivés. Ces criblages permettent d'identifier de nouveaux médicaments utiles dans le traitement ou la prévention de la douleur. Ils permettent également de rechercher des agents modulateurs du goût acide. En outre, ils permettent 5 de rechercher des bloqueurs qui sont susceptibles d'inhiber des neurodégénérescences provoquées par hyperexpression de ces canaux. Ces médicaments, isolés et détectés grâce aux procédés ci-dessus, font également partie de l'invention. Les canaux ASIC ont en effet des 10 propriétés de sélectivité ionique, notamment en ce qui concerne leur perméabilité sélective au sodium, potassium et calcium, qui les destinent à avoir des propriétés excitotoxiques lorsqu'ils sont hyperstimulés.

Une protéine constituant un canal ionique 15 neuronal ASIC peut être aussi utile pour la fabrication de médicaments destinés à traiter ou prévenir des pathologies impliquant la perception douloureuse de l'acidité qui intervient dans les maladies inflammatoires, les ischémies et dans un certain nombre de tumeurs. L'invention concerne 20 donc aussi les composition pharmaceutiques comprenant comme principe actif au moins une protéine constituant un canal ionique selon l'invention.

Une molécule d'acide nucléique codant pour 25 une protéine constituant un canal ASIC ou un dérivé de celui-ci, ou un vecteur comprenant cette molécule d'acide nucléique ou encore une cellule exprimant des canaux ASIC, sont aussi utiles pour la préparation d'animaux transgéniques. Il peut s'agir d'animaux sur-exprimant 30 lesdits canaux, mais surtout d'animaux dit "knock out", c'est à dire présentant une déficience en ces canaux; ces animaux transgéniques sont préparés par des méthodes connues de l'homme du métier, et permettent de disposer de modèles vivants pour l'étude de pathologies animales associées aux canaux ASIC.

35 Les molécules d'acide nucléique de l'invention ou les cellules transformées par ladite

molécule sont donc susceptibles d'être utilisées dans des stratégies de thérapie génique afin de compenser une déficience des canaux ASIC au niveau de un ou plusieurs tissus d'un patient. L'invention concerne donc aussi un 5 médicament comprenant des molécules d'acide nucléique de l'invention ou de cellules transformées par lesdites molécules pour le traitement de pathologie impliquant les canaux ASIC et leurs dérivés.

10 Outre la propriété d'être activé par les protons et les applications décrites ci-dessus qui en résultent dans le domaine de la perception de l'acidité, le canal ASIC, du fait de sa parenté structurale avec le canal MDEG, est susceptible de se comporter comme une 15 dégénérescence neuronale à la suite de mutation.

La mort de certains neurones est caractéristique de plusieurs types de dégénérescences neuronales telles que les maladies d'Alzheimer, d'Huntington, de Parkinson, la sclérose latérale 20 amyotrophique, l'ataxie cérébelleuse. Seuls quelques gènes déficients sont connus et plusieurs restent encore à identifier. Le réseau neuronal primitif du nématode *C. elegans* constitue un bon modèle du développement et de la mort neuronal. La dégénérescence héréditaire chez *C. 25 elegans* peut être due à des mutations des dégénérines *deg-1*, *mec-4* et *mec-10*. Les homologies avec les sous-unités du canal sodium sensible à l'amiloride, le produit d'expression fonctionnel des chimères *mec-4* du canal sodium épithélial, suggèrent que les dégénérines sont des 30 canaux ioniques dont l'acquisition de fonction est la cause de dégénérescence neuronale.

La présente invention concerne donc aussi les applications du canal ASIC pour l'étude de ces modifications pathologiques susceptibles de conduire à des 35 dégénérescences. Les techniques mises en oeuvre pour ces applications, par exemple pour le criblage de drogues,

sont similaires à celles décrites précédemment pour la recherche d'agents modulateurs du goût ou d'analgésiques.

En outre, une protéine constituant un canal ionique neuronal ASIC, un agoniste ou un antagoniste de celle-ci, peuvent être aussi utiles pour la fabrication de médicaments destinés à traiter ou prévenir des pathologies impliquant une dégénérescence neuronale cérébrale. L'invention concerne donc aussi les compositions pharmaceutiques comprenant comme principe actif au moins une de ces protéines éventuellement associée à un véhicule physiologiquement acceptable.

Plus particulièrement, l'invention concerne une substance chimique ou biologique capable de modifier les courants d'un canal ionique et/ou un canal hybride selon l'invention pour la préparation d'un médicament capable de moduler la perception de l'acidité, tant en ce qui concerne la nociception que la transduction du goût, chez un sujet humain ou animal.

D'autres caractéristiques et avantages de l'invention apparaîtront dans la description qui suit se rapportant aux travaux de recherche ayant mené à la mise en évidence et à la caractérisation du canal ASIC, et dans laquelle il sera fait référence aux séquences et dessins en annexe dans lesquels :

- SEQ ID NO : 1 représente la séquence de 526 acides aminés de la protéine du canal ASIC déduite de la séquence de l'ADNc de rat.

- SEQ ID NO : 2 représente la séquence partielle de 514 acides aminés de la protéine du canal ASIC déduite de la séquence partielle de l'ADNc humain.

- SEQ ID NO : 3 représente la séquence de 512 acides aminés de la protéine du canal MDEG déduite de la séquence de l'ADNc humain.

-SEQ ID NO : 4 représente la séquence de 559 acides aminés de la protéine du canal ASIC1B ainsi que la

séquence d'une molécule d'ADN comprenant la séquence codant pour cette protéine.

-SEQ ID NO : 5 représente la séquence de 533 acides aminés de la protéine du canal DRASIC et la 5 séquence d'ADN codant pour cette protéine.

-SEQ ID NO : 6 représente la séquence de 563 acides aminés de la protéine du canal MDEG2 ainsi que la séquence d'une molécule d'ADN comprenant la séquence codant pour cette protéine.

10 - La figure 1 représente l'alignement des séquences des protéines ASIC de rat (en haut) et humain (en bas) des séquences SEQ ID NO : 1 et SEQ ID NO : 2. La comparaison de ces séquences fait apparaître l'absence de 14 acides aminés au début de la phase codante humains par rapport à celle du rat.
15

La figure 2 représente la comparaison de la séquence de la protéine du canal ASIC avec la séquence d'autres canaux ioniques :

20 - MDEG (14), un canal cationique de mammifère qui est activé par des mutations responsables de neurodégérescences avec les dégénérines de *C. elegans*.

- FaNaCh (10), un peptide d'un canal sodium de *Helix aspersa* qui est activé par la FMRFamide.

- La dégénérine MEC-4 (12) de *C. elegans*.

25 Dans cette figure, les résidus identiques ou similaires à ceux de ASIC sont imprimés respectivement en blanc sur fond noir et en noir sur fond gris. Les régions supposées transmembranaires (MI, MII) d'ASIC sont marquées par des barres noires.

30 La figure 3 représente l'arbre phylogénétique des protéines des sous unités α NaCh, β NaCh, γ NaCh, δ NaCh du canal sodium sensible à l'amiloride et des dégénérines MEC-4, MEC-10 et DEG-1 de *C. elegans*.

35 La figure 4 représente la topologie qui est proposée pour cette dernière famille de canaux ioniques (30).

La figure 5 montre les propriétés biophysiques du canal ASIC1 activé par les protons.

- En a : les courants macroscopiques entrant enregistrés à -70 mV après des rapides changements du pH de pH 7,4 à pH 6.

- En b : La courbe dose réponse du pH extracellulaire. Le pH initial était de 7,4 et les points représentent les valeurs moyennes de 6 expériences. L'encart dans cette figure montre les réponses typiques à -70 mV.

- En c : les relations Q-V des patch "outside-out" avec 140 mM de Na⁺(■) ou de Li⁺(•) dans la solution du bain. Q est la charge transportée durant la transition de pH acide. L'encart dans cette figure montre les réponses typiques dans un milieu contenant du Na⁺.

- En d : les courants activés par les protons H⁺ enregistrés à différents potentiels dans un patch "outside-out" dans un milieu contenant du Na⁺.

- En e : les relations moyennes i-V mesurées à partir de patch "outside-out" avec 140 mM de Na⁺(■), 140 mM de Li⁺(•) ou 1,8 mM de Ca²⁺ (), en tant qu'ions perméables majoritaires dans les solutions externes ; les potentiels d'inversion étaient respectivement de 65 mV, 58 mV et -34 mV.

- En f : le courant de protons à travers le canal ASIC1. Les relations entre le pic de courant et le voltage ont été mesurées à partir de patch "outside-out" dans une solution de Na⁺ libre, Ca²⁺ libre avec des pipettes contenant une solution de K⁺ libre, à pH 4 (•) et à pH 3 (■).() représentent les résultats obtenus dans les mêmes conditions que (■) mais avec du KCl dans la pipette. L'encart dans cette figure montre les réponses typiques enregistrées dans les conditions ().

La figure 6 montre l'effet du Ca²⁺ et de l'amiloride sur le courant ASIC.

- En a : les courants activés par les protons H⁺ enregistrés à différents potentiels membranaires à partir d'un patch outside-out avec 1,8 mM de Ca²⁺ dans une solution de Na⁺ libre ; les courants se 5 sont inversés à -35 mV.

- En b : Les relations Q-V moyennes à partir d'un patch outside-out enregistrées dans des solutions de Na⁺ libre contenant 1,8 mM de Ca²⁺ (○, potentiel d'inversion -34 mV) ou 0,1 mM de Ca²⁺ (•, potentiel 10 d'inversion -80 mV).

- En c : L'effet du Ca²⁺ externe sur le pic macroscopique de courant entrant enregistré à -70 mV et activé par un changement rapide de pH de pH 7,4 à pH 6. L'encart dans cette figure montre les réponses typiques. 15 Les points représentent les valeurs moyennes ± se de 5 oocytes.

- En d : L'effet de l'amiloride sur les courants activés par les protons H⁺ enregistré à 0 mV à partir d'un patch outside-out.

- En e : L'inhibition du courant macroscopique (induit par un changement de pH de pH 7,4 à pH 6) à -70 mV par l'amiloride et dérivés. Les points représentent les valeurs moyennes ± se de 5 oocytes.

La figure 7 montre la distribution 25 tissulaire de l'ARNm du canal ASIC.

- En a : L'analyse en Northern blot de l'expression ARNm du canal ASIC dans des tissus humains.

- En b : L'analyse en RT-PCR de l'expression de l'ARNm du canal ASIC dans le cerveau de rat et dans le 30 ganglion de la racine dorsale (DRG). (+), (-) représentent respectivement les échantillons avec ou sans reverse transcriptase. Des sections d'un gel d'agarose révélé au bromure d'éthidium 1%. Les flèches indiquent la taille escomptée (657 pb) du produit de PCR.

35 La figure 8 représente l'hybridation *in situ*.

- En a et b : L'hybridation de sections de 6 µm d'un ganglion de la racine dorsale d'un rat agé de 3 mois avec la sonde E marquée à la digoxigénine. En a : Une microphotographie à faible pouvoir éclairant (grossissement de 30 fois). En b : Une image à haute résolution (grossissement de 80 fois) de a. On note le marquage intense des neurones de petit diamètre (flèches). Des résultats similaires ont aussi été obtenus avec les sondes A, C et D.

- En c : La distribution de l'ARNm du canal ASIC dans le cerveau d'un rat adulte analysée par hybridation in situ avec l'oligonucléotide antisens C. Des résultats identiques ont été obtenus avec l'oligonucléotide B. Les couleurs indiquent l'abondance (rouge : haute expression ; bleu : non détectable). Les abréviations utilisées dans la figure sont les suivantes : Cer = Cerebellum ; Hip = Hippocampe ; OB = Bulbe olfactif ; Cx = Cortex.

20

I - Matériels et Méthodes.

1) Clonage du canal ASIC.

Les séquences conservées de la famille de canaux ioniques ASIC ont été utilisées pour préparer les 25 amorces PCR de séquences suivantes :

TTYCCIGCIRTIACIITNTGYAAY, et
CAIARICCIACIITGNCCNCCDAWRTC.

Une banque d'ADNC de cerveau de rat (Stratagène #936515) a été hybridée avec le produit de PCR 30 de 1 kB de cerveau de rat et des clones partiels ont été isolés. L'extrémité 5é de l'ADNC (202 bp) a été isolée par PCR après une ligation adaptée à l'ADNC double brin.

2) Electrophysiologie.

35 0,25 ng d'ARNC a été injecté dans des oocytes de *Xenopus laevis* et les microélectrodes

d'enregistrement pour le voltage imposé et pour le patch-clamp ont été mises en place deux jours après l'injection. Les solutions de bains pour les enregistrements de patch outside-out et les pipettes pour les enregistrements de patch outside-out et de cellules totales, contenaient : 5 140 mM KCl (ou NMDG), 2 mM MgCl₂, 5 mM EGTA, 10 mM Hepes, pH 7,4 (avec KOH). Les pipettes pour les enregistrements de patch outside-out et les solutions de bains pour les enregistrements de patch outside-out et de cellules 10 totales, contenaient : 140 mM NaCl (ou LiCl ou NMDGCl), 2 mM MgCl₂, 1,8 mM CaCl₂, 10 mM Hepes, pH 7,4 (ajusté avec HCl, NaOH, LiOH ou TMAOH). Les changements rapides de pH depuis le pH initial ont été obtenus par perfusion avec une solution de bain ajustée aux pH indiqués dans les 15 figures. L'acidification intracellulaire des oocytes a été réalisée en injectant 50 nl de la solution interne à pH2 ou par perfusion et retrait d'un milieu de bain contenant 20 mM NH₄Cl. Aucun des courants enregistrés n'était contaminé par le courant Ca²⁺ sensible au Cl⁻ de l'oocyte 20 de *Xenopus*. Les données ont été échantillonnées à 2 kHz et filtrées à 500 Hz pour l'analyse (Logiciel Biopatch).

3) Analyse Northern Blot, RT-PCR et hybridation in situ.

25 Le Northern blot a été obtenu auprès de la Société Clontech (Palo Alto, Ca) et contenait environ 2 µg d'ARN poly(A+) par ligne. Le blot a été hybridé avec un fragment du clone partiel humain (correspondant aux bases 270 à 764 du clone de rat) marqué au ³²P, à 65°C dans 30 6xSSC. Pour l'analyse RT-PCR, 5 µg de l'ARN total de cerveau de rat et 3 µg de ganglion de la racine dorsale ont été reverse transcrits et 1/30 de l'échantillon a été amplifié par 30 cycles de PCR avec les amorces de séquences ci-dessous :

35 ATTGCTCTTCCCATCTCTAT, et
TTCAAGGCCCATACCTAAGT.

Les contrôles négatifs ont été traités de façon identique, à l'exception de la reverse transcriptase qui n'a pas été ajoutée. Les oligonucléotides antisens correspondant aux base 70 à 114 (A), 215 à 248 (B), 1821 à 5 1859 (C), 1896 à 1940 (D) et l'ADN double brin correspondant aux base 1685 à 2672 ont été utilisés pour les hybridations *in situ*. Les sections de cerveau de rat adulte ont été hybridées avec les oligonucléotides B ou C dont l'extrémité était marquée au ^{32}P , pour une nuit à 10 37°C dans 50% formamide, 2xSSC, puis lavées à température ambiante dans 1xSSC. Le signal a été aboli par un excès 500 fois d'oligonucléotides non marqués. Les sections de ganglion de la racine dorsale ont été hybridées avec les oligonucléotides A, C ou D marqués par la 15 digoxigénine(DIG)-dUTP et avec la sonde E marquée par DIG-d-UTP par PCR. Le marquage des sondes, la préparation des échantillons, l'hybridation et la visualisation des acides nucléiques DIG avec la phosphatase alcaline conjuguée à des anticorps anti-DIG ont été réalisés conformément aux 20 protocoles du fournisseur (Boehringer Mannheim).

4) Analyse informatique.

L'alignement de séquences et l'arbre phylogénétique (substitution Kimura, option UPGMA) ont été 25 réalisés avec le logiciel GCG (Genetics Computer Group, Madison WI).

II - Résultats.

30 L'ADNC de 35 kb isolé de cerveau de rat code pour une protéine de 526 acides aminés qui présente, comme montré sur la figure 2, des homologies avec tous les membres clonés de la famille des canaux sodium de dégénérine sensibles à l'amiloride.

35 Comme montré sur la figure 5, l'expression de l'ARNC dans des oocytes de Xenopus a induit un courant

entrant activé par les protons H^+ . Les propriétés biophysiques et la pharmacologie du canal ASIC sont proches de celles décrites pour les canaux cationiques activés par les protons des neurones sensoriels (3, 15, 16). Une baisse du pH extracellulaire au dessous d'un pH de 6,9 active un courant entrant rapidement élevé et désensibilisé (figure 5 a et b). Ce canal est activé par les protons extracellulaires, puisque, comme montré sur la figure 5 (c et d), l'application d'un acide sur la face extracellulaire de patch outside-out active le canal. L'acidification intracellulaire d'oocytes et l'acidification de la face intracellulaire de patch outside-out n'active pas le canal ASIC ni n'altère le courant ASIC induit par les protons extracellulaires.

L'analyse des courbes I-V de la figure 5 (c et e) enregistrées avec différents cations extracellulaires montre que Na^+ est l'ion perméable majoritaire (canal de conductance simple 14,3 pS). Comme le canal ionique sensible aux protons des neurones sensoriels (15, 16), le canal ASIC discrimine faiblement entre les cations (figure 5 c, e, f). En effet, le canal est aussi perméable à Li^+ , K^+ , Ca^{2+} et H^+ , avec des rapports $pNa^+/pLi^+ = 1,3$ (figure 5 c, e), $pNa^+/pK^+ = 13$ (figure 5 c, e), $pNa^+/Ca^{2+} = 2,5$ (figure 5 e) et $pNa^+/H^+ = 0,8$ (figure 5 f). La perméabilité au Ca^{2+} de ASIC pourrait être un chemin d'entrée voltage indépendant de Ca^{2+} dans la cellule. Un courant entrant de Ca^{2+} dans la cellule à travers les canaux ASIC peut être détecté en l'absence de Na^+ extracellulaire (figure 6 a, b). Comme indiqué sur la figure 5 (e) la conductance unitaire pour Ca^{2+} était de 5,2 pS. En présence de 140 mM de Na^+ extracellulaire, l'augmentation des concentrations en Ca^{2+} externe, a diminué l'amplitude du courant activé par les protons (figure 6c), démontrant ainsi que Ca^{2+} inhibe la perméabilité au Na^+ . Un blocage par le Ca^{2+} externe est caractéristique du $I(H^+)$ des neurones sensoriels (17). Le

courant entrant activé par H^+ dans les neurones sensoriels est inhibé par l'amiloride (18) et l'éthylisopropylamiloride (EIPA) (19). Comme montré à la figure 6 (d, e) le canal ASIC présente la même pharmacologie et est bloqué de façon réversible ($K_d = 10 \mu M$) par l'amiloride et ses dérivés benzamil et EIPA.

Par ailleurs, la protéine du canal ASIC présente environ 67% d'homologie de séquences avec le canal ionique de dégénérine dénommé "MDEG" (14) ou "BNaCI" (20). Toutefois, les propriétés électrophysiologiques de ces deux clones exprimés dans les oocytes de *Xenopus* sont clairement différentes :

- Comme montré sur la figure 5a, le canal MDEG n'est pas activé par les mêmes changements de pH que le canal ASIC.

- La substitution du résidu glycine en position 430 de MDEG par un acide aminé encombrant acide, comme la valine ou la phénylalanine active le canal (14), tout comme la mutation de l'alanine en position 704 de la dégénérine MEC-4 cause une neurodégénérescence chez *C. elegans* (12). Des mutations identiques d'ASIC (glycine en position 431 remplacée par la valine ou la phénylalanine) n'entraînent pas d'activité et les mutants ne peuvent pas être activés par les protons.

Les canaux cationiques activés par les protons ont été décrits dans les neurones sensoriels mais aussi dans les neurones du système nerveux central (21). La distribution tissulaire de l'expression de l'ARNm du canal ASIC est en accord avec cette observation. Comme rapporté dans la figure 7a, un transcrit de 4,3 kb a été détecté dans le cerveau par analyse en Northern blot, et les résultats de la RT-PCR rapportés à la figure 7b montrent que le ganglion de la racine dorsale exprime l'ARNm de ASIC. La figure 8 (a,b) montre que l'ARNm de ASIC est bien exprimé dans les petits neurones du ganglion de la racine dorsale, ce qui supporte le fait que ASIC est

le canal cationique activé par les protons rapidement désensibilisant décrit dans les neurones sensoriels nociceptifs. Alors que la présence de canaux cationiques activés par les protons dans le ganglion de la racine dorsale est en accord avec leur fonction de détecteur de l'acidité dans la nociception, leur rôle dans le cerveau reste à établir. Les résultats d'hybridation *in situ* de la figure 8c montrent une expression large et hétérogène de l'ARNm du canal ASIC. Les niveaux d'expression les plus élevés ont été observés dans le bulbe olfactif principal, le cortex cérébral, l'hippocampe, l'habenula, le noyau amygdaloïde basolatéral et le cerebellum. L'activité synaptique s'accompagne de changements du pH extracellulaire (22, 23) et les changements localisés rapides de pH dans ou à proximité de la fente synaptique sont sensiblement plus saturés et forts que les fluctuations macroscopiques du pH rapportées.

Les canaux cationiques activés par les protons sont les seuls canaux ioniques connus qui sont directement activés par un changement du pH et il a été envisagé que les fluctuations extracellulaires du pH jouent un rôle neuromodulateur (23). L'expression de canaux cationiques dans le cerveau supporte en outre l'hypothèse que les fluctuations de pH ne sont pas seulement une activation neuronale par un produit, mais davantage un chemin de communication dans le système nerveux central.

Outre les canaux cationiques activés par les protons rapidement inactivés, il a été rapporté la présence dans les neurones sensoriels de canaux cationiques activés par les protons présentant des cinétiques plus lentes (4, 24). Les canaux cationiques activés par les protons forment probablement, comme d'autre canaux cationiques activés par un ligand (25, 26), une famille de canaux cationiques où différentes sous-unités ou combinaisons de sous-unités constituent les

canaux avec diverses propriétés pharmacologiques et biophysiques.

La sensation de l'acidité n'est pas uniquement impliquée dans la nociception, mais est aussi 5 associée à la transduction du goût (2). Les stimulations acides activent les canaux cationiques activés par les protons dans les cellules du goût (2, 27) et l'amiloride inhibe la perception du goût acide (2). Aussi, les données 10 tant physiologiques que pharmacologiques indiquent que ASIC et d'autres membres de cette famille sont impliqués dans la transduction du goût. Il est en effet particulièrement frappant que la même classe de canaux ioniques soit associée à différentes facettes de la perception sensorielle :

15 - Les canaux sodium sensibles à l'amiloride sont associés à la transduction du goût salé (2).

- Les dégénérines de *C. elegans* sont 20 impliquées dans la mécanotransduction et ont été proposées comme formant des canaux ioniques mécanosensibles (28, 29).

- les canaux ASIC sont impliqués dans la nociception et dans la transduction du goût acide.

Le clonage du canal ASIC permet de disposer 25 d'un nouvel outil d'investigation de ce groupe de canaux ioniques et de développer des bloquants spécifiques trouvant leur utilisation notamment comme analgésiques.

Liste des références

1. Rang, H.P., Bevan, S. & Dray, A. *Br. Med. Bull.* **47**, 534-548 (1991).
2. Lindemann, B. *Physiol. Rev.* **76**, 718-766 (1996).
3. Krishtal, O.A. & Pidoplichko, V.I. *Neuroscience* **6**, 2599-2601 (1981).
4. Bevan, S. & Geppetti, P. *Trends Neurosci.* **17**, 509-512 (1994).
5. Akaike, N., Krishtal, O.A. & Maruyama, T. *J. Neurophysiol.* **63**, 805-813 (1990).
6. Canessa, C.M., Horisberger, J.D. & Rossier, B.C. *Nature* **361**, 467-470 (1993).
7. Canessa, C.M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J.D. & Rossier, B.C. *Nature* **367**, 463-467 (1994).
8. Lingueglia, E., Voilley, N., Waldmann, R., Lazdunski, M. & Barbry, P. *Febs Lett.* **318**, 95-99 (1993).
9. Lingueglia, E., Renard, S., Waldmann, R., Voilley, N., Champigny, G., Plass, H., Lazdunski, M. & Barbry, P. *J. Biol. Chem.* **269**, 13736-13739 (1994).
10. Lingueglia, E., Champigny, G., Lazdunski, M. & Barbry, P. *Nature* **378**, 730-733 (1995).
11. Waldmann, R., Champigny, G., Bassilana, F., Voilley, N. & Lazdunski, M. *J. Biol. Chem.* **270**, 27411-27414 (1995).
12. Driscoll, M. & Chalfie, M. *Nature* **349**, 588-593 (1991).
13. Huang, M. & Chalfie, M. *Nature* **367**, 467-470 (1994).
14. Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I. & Lazdunski, M. *J. Biol. Chem.* **271**, 10433-10434 (1996).
15. Kovalchuk Yu, N., Krishtal, O.A. & Nowycky, M.C. *Neurosci. Lett.* **115**, 237-242 (1990).
16. Konnerth, A., Lux, H.D. & Morad, M. *J. Physiol.* **386**, 603-633 (1987).
17. Davies, N.W., Lux, H.D. & Morad, M. *J. Physiol.* **400**, 159-187 (1988).
18. Korkushko, A. O. & Krishtal, O.A. *Neurofiziologija* **16**, 557-561 (1984).
19. Grantyn, R., Perouansky, M., Rodriguez-Tobar, A. & Lux, H.D. *Dev. Brain Res.* **49**, 150-155 (1989).

20. Price, M.P., Snyder, P.M. & Welsh, M.J. *J. Biol. Chem.* **271**, 7879-7882 (1996).
21. Akaike, N. & Ueno, S. *Prog. Neurobiol.* **43**, 73-83 (1994).
22. Krishtal, O.A., Osipchuk, Y.V., Shelest, T.N. & Smirnoff, S.V. *Brain Res.* **436**, 352-356 (1987).
23. Chesler, M. & Kaila, K. *Trends Neurosci.* **15**, 396-402 (1992).
24. Bevan, S. & Yeats, J. *J. Physiol.* **433**, 145-161 (1991).
25. Lewis, C., Neidhart, S., Holy, C., North, R. A., Buell, G. & Surprenant, A. *Nature* **377**, 432-435 (1995).
26. Barnard, E.A. *Trends Pharmacol. Sci.* **17**, 305 - 309 (1996).
27. Okada, Y., Miyamoto, T. & Sato, T. *J. Exp. Biol.* **187**, 19-32 (1994).
28. Liu, J., Schrank, B. & Waterston, R. *Science* **273**, 361 (1996).
29. Waldmann, R., Champigny, G. & Lazdunski, M. *J. Biol. Chem.* **270**, 11735-11737 (1995).
30. Renard, S., Lingueglia, E., Voilley, N., Lazdunski, M. & Barbry, P. *J. Biol. Chem.* **269**, 12981-12986 (1994).

LISTE DE SÉQUENCES.

NOMBRE DE SÉQUENCES : 6

5 INFORMATION CONCERNANT LA SEQ ID NO:1 :

i) CARACTRISTIQUE DE LA SEQUENCE :

- A) LONGUEUR : 3562 paires de base
 B) TYPE : acide nucléique
 10 C) NOMBRE DE BRINS : double
 D) CONFIGURATION : linéaire

ii) TYPE DE MOLECULE : ADN

vi) ORIGINE : rat

15 ix) CARACTERISTIQUE

- A) NOM/CLE : ASIC
 B) LOCALISATION : 123 .. 1700

20 xi) DESCRIPTION DE LA SEQUENCE : SEQ ID NO:1 :

CACACACACA CACACACACA CACACACACA CACACAGAAC CTGCGCCTGT 60

GCCTGTGCCT GTGCCTGTGC CTGTTTGAGA GCTGGAGACA CAGAAGGATC CCCTTGGCAA 120

25 GG ATG GAA TTG AAG ACC GAG GAG GAG CTG GGT GGT GTC CAG CCG 167
 Met Glu Leu Lys Thr Glu Glu Glu Val Gly Gly Val Gln Pro
 1 5 10 1530 GTG AGC ATC CAG GCT TTC GCC AGC AGC TCC ACG CTG CAT CGT CTT GCC 215
 Val Ser Ile Gln Ala Phe Ala Ser Ser Thr Leu His Gly Leu Ala
 20 25 3035 CAC ATC TTC TCC TAT GAG CGG CTG TCT CTG AAG CGG GCA CTG TGG GCC 263
 His Ile Phe Ser Tyr Glu Arg Leu Ser Leu Lys Arg Ala Leu Trp Ala
 35 40 4540 CTG TGC TTC CTG GGT TCG CTG GCC GTC CTG CTG TGT GTG TGC ACT GAG 311
 Leu Cys Phe Leu Gly Ser Leu Ala Val Leu Leu Cys Val Cys Thr Glu
 50 55 6045 CGT GTG CAG TAC TAC TTC TGC TAT CAC CAC GTC ACC AAG CTT GAC GAA 359
 Arg Val Gln Tyr Tyr Phe Cys Tyr His His Val Thr Lys Leu Asp Glu
 65 70 7550 GTG GCT GCC TCC CAG CTC ACC TTC CCT GCT GTC ACA CTG TGC AAT CTC 407
 Val Ala Ala Ser Gln Leu Thr Phe Pro Ala Val Thr Leu Cys Asn Leu
 80 85 90 9555 AAT GAG TTC CGC TTT AGC CAA GTC TCC AAG AAT GAC CTG TAC CAT GCT 455
 Asn Glu Phe Arg Phe Ser Gln Val Ser Lys Asn Asp Leu Tyr His Ala
 100 105 11055 GGG GAG CTG CTG GCC CTG CTC AAC AAC AGG TAT GAG ATC CCG GAC ACA 503
 Gly Glu Leu Leu Ala Leu Leu Asn Asn Arg Tyr Glu Ile Pro Asp Thr
 115 120 125

	CAG ATG GCT GAT GAA AAG CAG CTA GAG ATA TTG CAG GAC AAG GCC AAC Gln Met Ala Asp Glu Lys Gln Leu Glu Ile Leu Gln Asp Lys Ala Asn 130 135 140	551
5	TTC CGG AGC TTC AAG CCC AAG CCC TTC AAC ATG CGT GAA TTC TAC GAC Phe Arg Ser Phe Lys Pro Phe Asn Met Arg Glu Phe Tyr Asp 145 150 155	599
10	AGA GCG GGG CAC GAT ATT CGA GAC ATG CTG CTC TCG TGC CAC TTC CGT Arg Ala Gly His Asp Ile Arg Asp Met Leu Leu Ser Cys His Phe Arg 160 165 170 175	647
15	GGG GAG GCC TGC AGC GCT GAA GAT TTC AAA GTG GTC TTC ACT CGG TAT Gly Glu Ala Cys Ser Ala Glu Asp Phe Lys Val Val Phe Thr Arg Tyr 180 185 190	695
20	GGG AAG TGT TAC ACA TTC AAC TCG GGC CAA GAT GGG CGG CCA CGG CTG Gly Lys Cys Tyr Thr Phe Asn Ser Gly Gln Asp Gly Arg Pro Arg Leu 195 200 205	743
25	AAG ACC ATG AAA GGT GGG ACT GGC AAT GGC CTG GAG ATC ATG CTG GAC Lys Thr Met Lys Gly Thr Gly Asn Gly Leu Glu Ile Met Leu Asp 210 215 220	791
30	ATT CAG CAA GAT GAA TAT TTG CCT GTG TGG GGA GAG ACC GAC GAG ACA Ile Gln Gln Asp Glu Tyr Leu Pro Val Trp Gly Glu Thr Asp Glu Thr 225 230 235	839
35	TCC TTC GAA GCA GCC ATC AAA GTG CAG ATC CAC AGT CAG GAT GAA CCC Ser Phe Glu Ala Gly Ile Lys Val Gln Ile His Ser Gln Asp Glu Pro 240 245 250 255	887
40	CCT TTC ATC GAC CAG CTG GGC TTT GGT GTG GCT CCA GGT TTC CAG ACG Pro Phe Ile Asp Gln Leu Gly Phe Gly Val Ala Pro Gly Phe Gln Thr 260 265 270	935
45	TTT GTG TCT TGC CAG GAG CAG AGG CTC ATC TAC CTG CCC TCA CCC TGG Phe Val Ser Cys Gln Gln Arg Leu Ile Tyr Leu Pro Ser Pro Trp 275 280 285	983
50	GGC ACC TGC AAT GCT GTT ACC ATG GAC TCG GAT TTC TTC GAC TCC TAC Gly Thr Cys Asn Ala Val Thr Met Asp Ser Asp Phe Phe Asp Ser Tyr 290 295 300	1031
55	AGC ATC ACT GCC TGC CGG ATT GAT TGC GAG ACG CGT TAC CTG GTG GAG Ser Ile Thr Ala Cys Arg Ile Asp Cys Glu Thr Arg Tyr Leu Val Glu 305 310 315	1079
	AAC TGC AAC TGC CGT ATG GTG CAC ATG CCA GGG GAC GCC CCA TAC TGC Asn Cys Asn Cys Arg Met Val His Met Pro Gly Asp Ala Pro Tyr Cys 320 325 330 335	1127
	ACT CCA GAG CAG TAC AAG GAG TGT GCA GAT CCT GCC CTG GAC TTC CTA Thr Pro Glu Gln Tyr Lys Glu Cys Ala Asp Pro Ala Leu Asp Phe Leu 340 345 350	1175
	GTG GAG AAA GAC CAG GAA TAC TGC GTG TGT GAG ATG CCT TGC AAC CTG Val Glu Lys Asp Gln Glu Tyr Cys Val Cys Glu Met Pro Cys Asn Leu 355 360 365	1223

	ACC CGC TAC GGC AAG GAG CTG TCC ATG GTC AAG ATC CCA AGC AAA GCC Thr Arg Tyr Gly Lys Glu Leu Ser Met Val Lys Ile Pro Ser Lys Ala 370 375 380	1271
5	TCC GCC AAG TAC CTG GCC AAG AAG TTC AAC AAA TCG GAG CAG TAC ATA Ser Ala Lys Tyr Leu Ala Lys Lys Phe Asn Lys Ser Glu Gln Tyr Ile 385 390 395	1319
10	GGG GAG AAC ATT CTG GTG CTG GAC ATT TTC TTT GAA GTC CTC AAC TAT Gly Glu Asn Ile Leu Val Leu Asp Ile Phe Phe Glu Val Leu Asn Tyr 400 405 410 415	1367
15	GAG ACC ATC GAG CAG AAA AAG GCC TAT GAG ATC GCA GGG CTG TTG GGT Glu Thr Ile Glu Gln Lys Lys Ala Tyr Glu Ile Ala Gly Leu Leu Gly 420 425 430	1415
20	GAC ATC GGG GGC CAG ATG GGG TTG TTC ATC GGT GCC ACC ATC CTC ACC Asp Ile Gly Gln Met Gly Leu Phe Ile Gly Ala Ser Ile Leu Thr 435 440 445	1463
25	GTG CTG GAA CTC TTT GAC TAT GCC TAC GAG GTC ATT AAG CAC AGG CTG Val Leu Glu Leu Phe Asp Tyr Ala Tyr Glu Val Ile Lys His Arg Leu 450 455 460	1511
30	TGC AGA CGT GGA AAG TGC CAG AAG GAG GCT AAG AGG ACC ACC GCA GAC Cys Arg Arg Gly Lys Cys Gln Lys Glu Ala Lys Arg Ser Ser Ala Asp 465 470 475	1559
35	AAG GGC GTG GCG CTC AGC CTG GAT GAC GTC AAA AGA CAC AAT CCC TGC Lys Gly Val Ala Leu Ser Leu Asp Asp Val Lys Arg His Asn Pro Cys 480 485 490 495	1607
40	GAG AGC CTC CGA GGA CAT CCT GCC GGG ATG ACG TAC GCT GCC AAC ATC Glu Ser Leu Arg Gly His Pro Ala Gly Met Thr Tyr Ala Ala Asn Ile 500 505 510	1655
45	CTA CCT CAC CAT CCC GCT CGA GGC ACG TTT GAG GAC TTT ACC TGC TAA Leu Pro His His Pro Ala Arg Gly Thr Phe Glu Asp Phe Thr Cys *	1703
50	515 520 526	
55	GCCCTCGCAG GCCGCTGTAC CAAAGGCATA GGTGGGGAGG GCTGGGGAG CAAGGGGCC CCAACTGCC CCAGCTACCC TGTGGACTTA ACTGCATTCC TGGTCAGTGG TTCCCTCTTG TCTGTGGTGA GAAAGGAGTC TTGACCATAG AGTCCTCTCC CAGCCTCTAT CCCATCTTT TATTATAATT TAATCACATT TGCTCTGTAA TATTGCTTGA GGCTGGGGAT CGTGATTTCC CCCCAGTTCT TTTATTGTTG AGAATAGTT TCTCTATTCT GGGTTTCTG TTATTTCAA TGAATCTGCA ATTGCTCTT CCCATCTCTA TGAAGAATTG CGTTGGAATT TTGATGGGA TTGTATTGAA TCTGTAGATT GCCTTTGGTA AGATGCCAT TTTTACTATG TTAATCCTGC CAATTCTATGA GCAAGGGAGA TCTTTCTATC TCTGAAATCT ACTTCAGTTT CTTTCTTCAG AGACTTGAAG TTCTTGTCAAT AAAATCTTT TTGGTTAGAG CCACACCAAG GTATTTTATA TTGTTTGTGA CTATTGTGAA TGGTGTCAATT TCCCTAATTT CCTTCTCAGC CTACTTATCC	1763 1823 1943 2003 2063 2123 2183 2243 2303 2363

	TPTTGAGTAGA GGAAGGCTTC TGATTTGTTT GGGTTAATT TATAACCCAGC 'TGCTTTGCTA	2423
	AAGTTCTTTA TCAGGTTTAG GTGTTCTCTG CTGGAAC'TTT TGGGGTCACG TAAGAATAC'P	2483
5	ATTATATCAT CTGCAAATAG TGATATT'TCA CTTCTTCCTT TCCAATTCT ATCCCTCTGG	2543
	GGACTTTT'PG T'TGTCTAAATT GCTCTGGCTA GGACTTCAAA TTCTATATTG AATAGATAGG	2603
10	GAGAGAGTGG GCAGCCTTGT CTAGTTCCCTG GTTTTCGTGG GATCGTTCA AATTCTCTC	2663
	CATTTAGTTT GATATTGGCT ACTGGTTGC TGTATATGGC TTTTACTGTA CTTAGGTATG	2723
	GGCCTTGAAT 'TCCTGATATT TCCAAGAC'TT TTAACATGAA GGGTTTTGA AATTGCCAA	2783
15	ATGCTTTCTC AGCATCTAAT GAGATGATCA TGTGCCCTCC CCCCACCTTG AGTTTGT'TTA	2843
	TATAGTGGCT TACATGAAAG GATCATTCT AATAGTCCAC AAGTCTGCCA AA'TCTTGCTG	2903
20	ATTGTGACTC ATTTCCATAG CAGGCTCTAT AACTTCTCTA ACAGATTGCA TTAAACTCTG	2963
	CTTGGGGAAG GCATTACCTC T'PGGTTGAAG CAATGTTGTA GTTTCTATGC CTGCTGAGTA	3023
	AATAGCCTCA AGTCCAAGTA CTTGCCAGA CTAATGATCA AACGTATCCA GGAGTTCCAT'	3083
25	ACCAGAGATG TACTCTTCTC TCCTTTGAAG TACATTGCTG GAAGAGTAAT TGTCTTGCT'	3143
	AGAGATACTC CTTCGAACTG CAAAAGAAAT CTCTTGCTA AGCATATAAT CAAGCCTCAG	3203
30	GT'TTCTTT TATTAAATAG CTGCTTGTAA GAAAGTGGAC ACTAAGCATA TACCTCAAAG	3263
	GGAGACAGAA TGACTCTGTG CCTTCACTGA TGGAAGTCTG GGTTACAAAT TACATCAGAA	3323
	GAACCTATCA TAGTGAACACA TCTCAT'TCCC CTGGTATAAT CCCTTCTAGA AATACACTTG	3383
35	TGACTCTGAA ATGTTATAAT CGTGACAACt AGGCTGTTAC AGATACACCA AGTTAAATT	3443
	GATAGAGAAA CCAGGCTTGG AGCCTCATGT CCATAGGGCA AGAGGAAGAT GCTGAGTGT	3503
	TAAGGTTGGT TTGAGCGAAG AACAAATACCT TGTGTACAA AAATGAAAGG AAAAAGAAA	3563
40	AAAGGAAAGA AGGAAAGAAA GAGAGAGAAA GAAAAAGAAA GAAAGAAAAA AAAAAAA	3562

INFORMATION CONCERNANT LA SEQ ID NO:2 :

	i) CARACTRISTIQUE DE LA SEQUENCE :	
	A) LONGUEUR : 1620 paires de base	
5	B) TYPE : acide nucléique	
	C) NOMBRE DE BRINS : double	
	D) CONFIGURATION : linéaire	
	ii) TYPE DE MOLECULE : ADN	
10	vi) ORIGINE : homme	
	ix) CARACTERISTIQUE	
	A) NOM/CLE : ASIC	
15	B) LOCALISATION : 1 .. 1542	
	xi) DESCRIPTION DE LA SEQUENCE : SEQ ID NO:2 :	
	CCG GTG AGC ATC CAG GCC TTC GCC AGC AGC TCC ACA CTG CAC CGC ATG Pro Val Ser Ile Gln Ala Phe Ala Ser Ser Ser Thr Leu His Gly Met	48
20	1 5 10 15	
	GCC CAC ATC TTC TCC TAC GAG CGG CTG TCT CTG AAG CGG GCA CTG TGG Ala His Ile Phe Ser Tyr Glu Arg Leu Ser Leu Lys Arg Ala Leu Trp	96
	20 25 30	
25	GCC CTG TGC TTC CTG GGC TCG CTG GCT GTG CTG CTG TGT GTG TGC ACG Ala Leu Cys Phe Leu Gly Ser Leu Ala Val Leu Leu Cys Val Cys Thr	144
	35 40 45	
30	GAG CGT GTG CAG TAC TTC CAC TAC CAC CAT GTC ACC AAG CTC GAC Glu Arg Val Gln Tyr Tyr Phe His Tyr His His Val Thr Lys Leu Asp	192
	50 55 60	
35	GAG GTG GCT GCC TCT CAG CTT ACC TTC CCT GCT GTC ACG CTG TGC AAC Glu Val Ala Ala Ser Gln Leu Thr Phe Pro Ala Val Thr Leu Cys Asn	240
	65 70 75 80	
40	CTC AAC GAG TTC CGC TTT ACC CAA GTC TCC AAG AAT GAC CTG TAT CAT Leu Asn Glu Phe Arg Phe Ser Gln Val Ser Lys Asn Asp Leu Tyr His	288
	85 90 95	
	GCT GGG GAG CTG CTG GCC CTC AAC AAC AGG TAT GAG ATA CCA GAC Ala Gly Glu Leu Leu Ala Leu Leu Asn Asn Arg Tyr Glu Ile Pro Asp	336
	100 105 110	
45	ACA CAG ATG GCA GAT GAA AAG CAG CTG GAG ATA CTG CAG GAC AAA GCC Thr Gln Met Ala Asp Glu Lys Gln Leu Glu Ile Leu Gln Asp Lys Ala	384
	115 120 125	
50	AAC TTC CGC AGC TTC AAA CCC AAA CCC TTC AAC ATG CGT GAG TTC TAC Asn Phe Arg Ser Phe Lys Pro Lys Pro Phe Asn Met Arg Glu Phe Tyr	432
	130 135 140	
55	GAC CGA GCT GGG CAC GAC ATT CGA GAC ATG CTG CTC TCC TGC CAC TTC Asp Arg Ala Gly His Asp Ile Arg Asp Met Leu Leu Ser Cys His Phe	480
	145 150 155 160	

	CGG GGG GAG GTC TGC AGC GCT GAA GAC TTC AAG GTG GTC TTC ACA CGC Arg Gly Glu Val Cys Ser Ala Glu Asp Phe Lys Val Val Phe Thr Arg 165 170 175	528
5	TAT GGA AAG TGC TAC ACG TTC AAC TCG GGC CGA AAT GGG CGG CCG CGG Tyr Gly Lys Cys Tyr Thr Phe Asn Ser Gly Arg Asn Gly Arg Pro Arg 180 185 190	576
10	CTG AAG ACC ATG AAG GGT GGG ACG GGC AAT GGG CTG GAA ATC ATG CTG Leu Lys Thr Met Lys Gly Gly Thr Gly Asn Gly Leu Glu Ile Met Leu 195 200 205	624
15	GAC ATC CAG CAG GAC GAG TAC CTG CCT GTG TGG GGG GAG ACT GAC GAG Asp Ile Gln Gln Asp Glu Tyr Leu Pro Val Trp Gly Glu Thr Asp Glu 210 215 220	672
20	ACG TCT TTC GAA GCA GGC ATC AAA GTG CAG ATC CAT AGT CAG GAT GAA Thr Ser Phe Glu Ala Gly Ile Lys Val Gln Ile His Ser Gln Asp Glu 225 230 235 240	720
25	CCT CCT TTC ATC GAC CAG CTG GGC TTT GGC GTG GCC CCA GGC TTC CAG Pro Pro Phe Ile Asp Gln Leu Gly Phe Gly Val Ala Pro Gly Phe Gln 245 250 255	768
30	ACC TTT GTG GCC TGC CAG GAG CAG CGG CTC ATA TAC CTG CCC CCA CCC Thr Phe Val Ala Cys Gln Glu Gln Arg Leu Ile Tyr Leu Pro Pro Pro 260 265 270	816
35	TGG GGC ACC TGC AAA GCT GTT ACC ATG GAC TCG GAT TTG GAT TTC TTC Trp Gly Thr Cys Lys Ala Val Thr Met Asp Ser Asp Leu Asp Phe Phe 275 280 285	864
40	GAC TCC TAC AGC ATC ACT GCC TGC CGC ATC GAC TGT GAG ACG CGC TAC Asp Ser Tyr Ser Ile Thr Ala Cys Arg Ile Asp Cys Glu Thr Arg Tyr 290 295 300	912
45	CTG GTG GAG AAC TGC AAC TGC CGC ATG GTG CAC ATG CCA GGG GAT GCC Leu Val Glu Asn Cys Asn Cys Arg Met Val His Met Pro Gly Asp Ala 305 310 315 320	960
50	CCA TAC TGT ACT CCA GAG CAG TAC AAG GAG TGT GCA GAT CCT GCT CTG Pro Tyr Cys Thr Pro Glu Gln Tyr Lys Glu Cys Ala Asp Pro Ala Leu 325 330 335	1008
55	GAC TTC CTG GTG GAG AAG GAC CAG GAG TAC TGC GTG TGT GAA ATG CCT Asp Phe Leu Val Glu Lys Asp Gln Glu Tyr Cys Val Cys Glu Met Pro 340 345 350	1056
60	TGC AAC CTG ACC CGC TAT GGC AAA GAG CTG TCC ATG GTC AAG ATC CCC Cys Asn Leu Thr Arg Tyr Gly Lys Glu Leu Ser Met Val Lys Ile Pro 355 360 365	1104
65	AGC AAA GCC TCA GCC AAG TAC CTG GCC AAG AAG TTC AAC AAA TCT GAG Ser Lys Ala Ser Ala Lys Tyr Leu Ala Lys Lys Phe Asn Lys Ser Glu 370 375 380	1152
70	CAA TAC ATA GGG GAG AAC ATC CTG GTG CTG GAC ATT TTC TTT GAA GTC Gln Tyr Ile Gly Glu Asn Ile Leu Val Leu Asp Ile Phe Phe Glu Val 385 390 395 400	1200

	CTC AAC TAT GAG ACC ATT GAA CAG AAG AAG GCC TAT GAG ATT GCA GGG Leu Asn Tyr Glu Thr Ile Glu Gln Lys Lys Ala Tyr Glu Ile Ala Gly 405 410 415	1248
5	CTC CTG CGT GAC ATC GGG GCC CAG ATG CGG CTG TTC ATC GGG GCC AGC Leu Leu Gly Asp Ile Gly Gly Gln Met Gly Leu Phe Ile Gly Ala Ser 420 425 430	1296
10	ATC CTC ACG GTG CTG GAG CTC TTT GAC TAC CCC TAC GGG GTC ATT AAG Ile Leu Thr Val Leu Glu Leu Phe Asp Tyr Ala Tyr Gly Val Ile Lys 435 440 445	1344
15	CAC AAG CTG TGC CGA CGA GGA AAA TGC CAG AAG GAG GCC AAA AGG AGC His Lys Leu Cys Arg Arg Gly Lys Cys Gin Lys Glu Ala Lys Arg Ser 450 455 460	1392
20	AGT GCG GAC AAG GGC GTG GCC CTC AGC CTG GAC GAC GTC AAA AGA CAC Ser Ala Asp Lys Gly Val Ala Leu Ser Leu Asp Asp Val Lys Arg His 465 470 475 480	1440
25	AAC CCG TGC GAG AGC CTT CCG GGC CAC CCT GCC GGG ATG ACA TAC GCT Asn Pro Cys Glu Ser Leu Arg Gly His Pro Ala Gly Met Thr Tyr Ala 485 490 495	1488
30	GCC AAC ATC GTA CCT CAC CAT CCG GCC CGA GGC ACG TTC GAG GAC TTT Ala Asn Ile Val Pro His His Pro Ala Arg Gly Thr Phe Glu Asp Phe 500 505 510	1536
	ACC TGC TGA GCCCCGAGG CCGCCGAACC AAAGACCTAG ATGGGGAGGA CTAGGAGAGC Thr Cys * 514	1595
	GAGGGGGCCC CCAGCTGCCT CCTAA	1620

INFORMATION CONCERNANT LA SEQ ID NO:3 :

- i) CARACTRERISTIQUE DE LA SEQUENCE :
- 5 A) LONGUEUR : 1666 paires de base
 B) TYPE : acide nucléique
 C) NOMBRE DE BRINS : double
 D) CONFIGURATION : linéaire
- 10 ii) TYPE DE MOLECULE : ADN
 vi) ORIGINE : homme
- 15 ix) CARACTERISTIQUE
 A) NOM/CLE : MDEG
 B) LOCALISATION : 127 .. 1663
- 15 xi) DESCRIPTION DE LA SEQUENCE : SEQ ID NO:3 :
- | | | | | | | |
|--|---|------------|------------|------------|------------|-----|
| TCTGGCGCGA | TGCTTACCTT | CCGTTCTCTC | CCCTGAACGT | CAAGCTTAA | GCAGAGCCCG | 60 |
| 20 AGGACTGGGA | GCTCTTCTCT | GAAATTGAT | CAACCTGAAG | CCAGTTGCGG | AACTGCACGG | 120 |
| GGTCCCG ATG GAC CTC AAG GAA AGC CCC AGT GAG GGC AGC CTG CAA CCT | Met Asp Leu Lys Glu Ser Pro Ser Glu Gly Ser Leu Gln Pro | 10 | 169 | | | |
| 1 G | 5 | | | | | |
| 25 TCT AGC ATC CAG ATC TTT GCC AAC ACC TCC ACC CTC CAT GGC ATC CGC | Ser Ser Ile Gln Ile Phe Ala Asn Thr Ser Thr Leu His Gly Ile Arg | 20 | 217 | | | |
| 15 His Ile Phe Val Tyr Gly Pro Leu Thr Ile Arg Arg Val Leu Trp Ala | 25 | 30 | | | | |
| 30 CAC ATC TTC GTG TAT GGG CCG CTG ACC ATC CGG CGT GTG CTG TGG GCA | 35 | 40 | 45 | 265 | | |
| GTG GCC TTC GTG GGC TCT CTG GCC CTG CTG GTG GAG AGC TCT GAG | 50 | 55 | 60 | 313 | | |
| 35 Val Ala Phe Val Gly Ser Leu Gly Leu Leu Val Glu Ser Ser Glu | | | | | | |
| 40 AGG GTG TCC TAC TAC TTC TCC TAC CAG CAT GTC ACT AAG GTG GAC GAA | 65 | 70 | 75 | 361 | | |
| Arg Val Ser Tyr Tyr Phe Ser Tyr Gln His Val Thr Lys Val Asp Glu | | | | | | |
| 45 GTG GTG GCT CAA AGC CTG GTC TTC CCA GCT GTG ACC CTC TGT AAC CTC | 80 | 85 | 90 | 409 | | |
| Val Val Ala Gln Ser Leu Val Phe Pro Ala Val Thr Leu Cys Asn Leu | | | | | | |
| 50 AAT GGC TTC CGG TTC TCC AGG CTC ACC ACC AAC GAC CTG TAC CAT GCT | 95 | 100 | 105 | 457 | | |
| Asn Gly Phe Arg Phe Ser Arg Leu Thr Thr Asn Asp Leu Tyr His Ala | | | | | | |
| 55 505 GGG GAG CTG CTG GCC CTG CTG GAT GTC AAC CTG CAG ATC CCG GAC CCC | 115 | 120 | 125 | 505 | | |
| Gly Glu Leu Leu Ala Leu Leu Asp Val Asn Leu Gln Ile Pro Asp Pro | | | | | | |
| 55 553 CAT CTG GCT GAC CCC TCC GTG CTG GAG GCC CTG CGG CAG AAG GCC AAC | 130 | 135 | 140 | 553 | | |
| His Leu Ala Asp Pro Ser Val Leu Glu Ala Leu Arg Gln Lys Ala Asn | | | | | | |

	TTC AAG CAC TAC AAA CCC AAG CAG TTC AGC ATG CTG GAG TTC CTG CAC Phe Lys His Tyr Lys Pro Lys Gln Phe Ser Met Leu Glu Phe Leu His 145 150 155	601
5	CCT GTG GGC CAT GAC CTG AAG GAT ATG ATG CTC TAC TGC AAG TTC AAA Arg Val Gly His Asp Leu Lys Asp Met Met Leu Tyr Cys Lys Phe Lys 160 165 170	649
10	GGG CAG GAG TGC GGC CAC CAA GAC TTC ACC ACA GTG TTT ACA AAA TAT Gly Gln Glu Cys Gly His Gln Asp Phe Thr Thr Val Phe Thr Lys Tyr 175 180 185 190	697
15	GGG AAG TGT TAC ATC TTT AAC TCA GGC GAG GAT GCC AAA CCT CTG CTC Gly Lys Cys Tyr Met Phe Asn Ser Gly Glu Asp Gly Lys Pro Leu Leu 195 200 205	745
20	ACC ACG GTC AAG GGG GGG ACA GGC AAC GGG CTG GAG ATC ATG CTG GAC Thr Thr Val Lys Gly Thr Gly Asn Gly Leu Glu Ile Met Leu Asp 210 215 220	793
25	ATT CAG CAC GAT GAG TAC CTG CCC ATC TGG GGA GAG ACA GAG GAA ACG Ile Gln Gln Asp Glu Tyr Leu Pro Ile Trp Gly Glu Thr Glu Glu Thr 225 230 235	841
30	ACA TTT GAA GCA GGA GTG AAA GTT CAG ATC CAC AGT CAG TCT GAG CCA Thr Phe Glu Ala Gly Val Lys Val Gln Ile His Ser Gin Ser Glu Pro 240 245 250	889
35	CCT TTC ATC CAA GAG CTG GGC TTT GGG GTG GCT CCA GGG TTC CAG ACC Pro Phe Ile Gln Glu Leu Gly Phe Gly Val Ala Pro Gly Phe Gin Thr 255 260 265 270	937
40	TTT GTG GCC ACA CAG GAG CAG AGG CTC ACA TAC CTG CCC CCA CCG TGG Phe Val Ala Thr Gln Glu Gln Arg Leu Thr Tyr Leu Pro Pro Trp 275 280 285	985
45	GGT GAG TGC CGA TCC TCA GAG ATG GGC CTC GAC TTT TTT CCT GTT TAC Gly Glu Cys Arg Ser Ser Glu Met Gly Leu Asp Phe Phe Pro Val Tyr 290 295 300	1033
50	AGC ATC ACC GCC TGT AGG ATT GAC TGT GAG ACC CGC TAC ATT GTG GAA Ser Ile Thr Ala Cys Arg Ile Asp Cys Glu Thr Arg Tyr Ile Val Glu 305 310 315	1081
55	AAC TGC AAC TGC CGC ATG GTT CAC ATG CCA GGG GAT GCC CCT TTT TGT Asn Cys Asn Cys Arg Met Val His Met Pro Gly Asp Ala Pro Phe Cys 320 325 330	1129
60	ACC CCT GAG CAG CAC AAG GAG TGT GCA GAG CCT GCC CTA GGT CTG TTG Thr Pro Glu Gln His Lys Glu Cys Ala Glu Pro Ala Leu Gly Leu Leu 335 340 345 350	1177
65	GCG GAA AAG GAC AGC AAT TAC TGT CTC TGC AGG ACA CCC TGC AAC CTA Ala Glu Lys Asp Ser Asn Tyr Cys Leu Cys Arg Thr Pro Cys Asn Leu 355 360 365	1225
70	ACC CGC TAC AAC AAA GAG CTC TCC ATG GTG AAG ATC CCC AGC AAG ACA Thr Arg Tyr Asn Lys Glu Leu Ser Met Val Lys Ile Pro Ser Lys Thr 370 375 380	1273

	TCA GCC AAG TAC CTT GAG AAG AAA TTT AAC AAA TCA GAA AAA TAT ATC Ser Ala Lys Tyr Leu Glu Lys Lys Phe Asn Lys Ser Glu Lys Tyr Ile 385	390	395	1321	
5	TCA GAG AAC ATC CTT GTT CTG GAT ATA TTT TTT GAA GCT CTC AAT TAT Ser Glu Asn Ile Leu Val Leu Asp Ile Phe Phe Glu Ala Leu Asn Tyr 400	405	410	1369	
10	GAG ACA ATT GAA CAG AAG AAG GCG TAT GAA GTT GCT GCC TTA CTT GGT Glu Thr Ile Glu Gln Lys Lys Ala Tyr Glu Val Ala Ala Leu Leu Gly 415	420	425	430	1417
15	GAT ATT CGT GGT CAG ATG GGA TTG TTC ATT GGT GCT AGT ATC CTT ACA Asp Ile Gly Gly Gln Met Gly Leu Phe Ile Gly Ala Ser Ile Leu Thr 435	440	445	1465	
20	ATA CTA GAG CTC TTT GAT TAT ATT TAT GAG CTG ATC AAA GAG AAG CTA Ile Leu Glu Leu Phe Asp Tyr Ile Tyr Glu Leu Ile Lys Glu Lys Leu 450	455	460	1513	
25	TTA GAC CTG CTT GGC AAA GAG GAG GAT GAA GGG AGC CAC GAT GAG AAT Leu Asp Leu Leu Gly Lys Glu Glu Asp Glu Gly Ser His Asp Glu Asn 465	470	475	1561	
30	GTG AGT ACT TGT GAC ACA ATG CCA AAC CAC TCT GAA ACC ATC AGT CAC Val Ser Thr Cys Asp Thr Met Pro Asn His Ser Glu Thr Ile Ser His 480	485	490	1609	
35	ACT GTG AAC GTG CCC CTG CAG ACG ACC CTG GGG ACC CTG GAA GAA ATA Thr Val Asn Val Pro Leu Gln Thr Thr Leu Gly Thr Leu Glu Glu Ile 495	500	505	510	1657
	GCC TGC TGA Ala Cys *	512			1666

INFORMATION CONCERNANT LA SEQ ID NO:4 :

- | | | | |
|----|-----|---|-----|
| | i) | CARACTRERISTIQUE DE LA SEQUENCE : | |
| 5 | A) | LONGUEUR : 3647 paires de base | |
| | B) | TYPE : acide nucléique | |
| | C) | NOMBRE DE BRINS : double | |
| | D) | CONFIGURATION : linéaire | |
| 10 | ii) | TYPE DE MOLECULE : ADN | |
| | vi) | ORIGINE : rat | |
| 15 | ix) | CARACTERISTIQUE | |
| | A) | NOM/CLE : ASIC1B | |
| | B) | LOCALISATION : 109 .. 1785 | |
| 20 | xi) | DESCRIPTION DE LA SEQUENCE : SEQ ID NO:4 : | |
| | | CTGCCACAGA GGCTCTCGTG AGGAAGGACA GACAGCTGGA CCGGCGCAGA CCTAGCCGAA | 60 |
| 25 | | GTCCAACCTC CGTCCTCTCT GGTGGCTTCT TCCTGTCTCC TGAACAAG ATG CCC ATC
Gln Ile Phe Cys Ser Val Ser Phe Ser Gly Glu Ala Pro Gly
5 10 15 | 117 |
| 30 | | CAG ATC TTT TGT TCT GTG TCA TTC TCC TCT GGA GAG GAG GCC CCG GGA
Ser Met Ala Asp Ile Trp Gly Pro His His Arg Gln Gln Gln Asp
20 25 30 35 | 165 |
| 35 | | TCC ATG GCA GAT ATC TGG GGT CCC CAC CAC CAC CGG CAG CAG CAG GAC
Ser Met Ala Asp Ile Trp Gly Pro His His Arg Gln Gln Gln Asp
40 45 50 | 213 |
| 40 | | AGC TCA GAA TCG GAA GAA GAG GAG AAG GAA ATG GAG GCA GGG TCG
Ser Ser Glu Ser Glu Glu Glu Glu Lys Glu Met Glu Ala Gly Ser
55 60 65 | 261 |
| 45 | | GAG TTG GAT GAG GCT GAT GAC TCA CCT AGG GAC TTG GTG GCC TTC GCC
Glu Leu Asp Glu Gly Asp Asp Ser Pro Arg Asp Leu Val Ala Phe Ala
70 75 80 | 309 |
| 50 | | AAC AGC TGT ACC TTC CAT GGT GCC AGC CAT GTG TTT GTG GAA GGG GGC
Asn Ser Cys Thr Phe His Gly Ala Ser His Val Phe Val Glu Gly Gly
85 90 95 | 357 |
| 55 | | CCA GGG CCA AGG CAG GCC TTA TGG GCA GTG GCC TTT GTC ATA GCA CTG
Pro Gly Pro Arg Gln Ala Leu Trp Ala Val Ala Phe Val Ile Ala Leu
100 105 110 115 | 405 |
| | | GGT GCC TTC CTG TGC CAG GTA GGG GAC CGC GTT GCT TAT TAC CTC AGC
Gly Ala Phe Leu Cys Gln Val Gly Asp Arg Val Ala Tyr Tyr Leu Ser
120 125 130 | 453 |
| | | TAC CCA CAC GTG ACT TTG CTA GAC GAA GTG GCC ACC ACG GAG CTG GTC
Tyr Pro His Val Thr Leu Leu Asp Glu Val Ala Thr Thr Glu Leu Val | 501 |

	TTC CCA GCT GTC ACC TTC TGC AAC ACC AAT GCC GTG CGG TTG TCC CAG Phe Pro Ala Val Thr Phe Cys Asn Thr Asn Ala Val Arg Leu Ser Gln 135	140	145	549
5	CTC AGC TAC CCT GAC TTG CTC TAC CTG GCC CCC ATG CTA GGA CTG GAT Leu Ser Tyr Pro Asp Leu Leu Tyr Leu Ala Pro Met Leu Gly Leu Asp 150	155	160	597
10	GAG AGT GAT GAC CCC GGG GTG CCC CTT GCT CCT GGC CCA GAG GCT Glu Ser Asp Asp Pro Gly Val Pro Leu Ala Pro Pro Gly Pro Glu Ala 165	170	175	645
15	TTC TCC GGG GAG CCT TTT AAC CTC CAT CGT TTC TAT AAT CGC TCT TGC Phe Ser Gly Glu Pro Phe Asn Leu His Arg Phe Tyr Asn Arg Ser Cys 180	185	190	693
20	CAC CGG CTG GAG GAC ATG CTG CTC TAT TGT TCC TAC TGT GGG GGC CCC His Arg Leu Glu Asp Met Leu Leu Tyr Cys Ser Tyr Cys Gly Gly Pro 200	205	210	741
25	TGT GGT CCC CAC AAC TTC TCA GTG GTC TTC ACT CGG TAT GGG AAG TGT Cys Gly Pro His Asn Phe Ser Val Val Phe Thr Arg Tyr Gly Lys Cys 215	220	225	789
30	TAC ACA TTC AAC TCG GGC CAA GAT GGG CGG CCA CGG CTG AAG ACC ATG Tyr Thr Phe Asn Ser Gly Gln Asp Gly Arg Pro Arg Leu Lys Thr Met 230	235	240	837
35	AAA GGT GGG ACT GGC AAT GGC CTG GAG ATC ATG CTG GAC ATT CAG CAA Lys Gly Thr Gly Asn Gly Leu Glu Ile Met Leu Asp Ile Gln Gln 245	250	255	885
40	GAT GAA TAT TTG CCT GTG TGG GGA GAG ACC GAC GAG ACA TCC TTC GAA Asp Glu Tyr Leu Pro Val Trp Gly Glu Thr Asp Glu Thr Ser Phe Glu 260	265	270	933
45	GCA GGC ATC AAA GTG CAG ATC CAC ACT CAG GAT GAA CCC CCT TTC ATC Ala Gly Ile Lys Val Gln Ile His Ser Gln Asp Glu Pro Pro Phe Ile 280	285	290	981
50	GAC CAG CTG GGC TTT GGT GTG GCT CCA GGT TTC CAG ACG TTT GTG TCT Asp Gln Leu Gly Phe Gly Val Ala Pro Gly Phe Gln Thr Phe Val Ser 295	300	305	1029
55	TGC CAG GAG CAG AGG CTC ATC TAC CTG CCC TCA CCC TGG GGC ACC TGC Cys Gln Glu Gln Arg Leu Ile Tyr Leu Pro Ser Pro Trp Gly Thr Cys 310	315	320	1077
55	AAT GCT GTT ACC ATG GAC TCG GAT TTC TTC GAC TCC TAC AGC ATC ACT Asn Ala Val Thr Met Asp Ser Asp Phe Phe Asp Ser Tyr Ser Ile Thr 325	330	335	1125
55	GCC TGC CCG ATT GAT TGC GAG ACG CGT TAC CTG GTG GAG AAC TGC AAC Ala Cys Arg Ile Asp Cys Glu Thr Arg Tyr Leu Val Glu Asn Cys Asn 340	345	350	1173
			355	

	TGC CGT ATG GTG CAC ATG CCA GGG GAC GCC CCA TAC TGC ACT CCA GAG Cys Arg Met Val His Met Pro Gly Asp Ala Pro Tyr Cys Thr Pro Glu 360 365 370	1221
5	CAG TAC AAG GAG TGT GCA GAT CCT GCC CTG GAC TTC CTA GTG GAG AAA Gln Tyr Lys Glu Cys Ala Asp Pro Ala Leu Asp Phe Leu Val Glu Lys 375 380 385	1269
10	GAC CAG GAA TAC TGC GTG TGT GAG ATG CCT TGC AAC CTG ACC CGC TAC Asp Gln Glu Tyr Cys Val Cys Glu Met Pro Cys Asn Leu Thr Arg Tyr 390 395 400	1317
15	GCC AAG GAG CTG TCC ATG GTC AAG ATC CCA AGC AAA GCC TCC GCC AAG Gly Lys Glu Leu Ser Met Val Lys Ile Pro Ser Lys Ala Ser Ala Lys 405 410 415	1365
20	TAC CTG GCC AAG AAG TTC AAC AAA TCG GAG CAG TAC ATA GGG GAG AAC Tyr Leu Ala Lys Lys Phe Asn Lys Ser Glu Gln Tyr Ile Gly Glu Asn 420 425 430 435	1413
25	ATT CTG GTC CTG GAC ATT TTC TTT GAA GTC CTC AAC TAT GAG ACC ATC Ile Leu Val Leu Asp Ile Phe Glu Val Leu Asn Tyr Glu Thr Ile 440 445 450	1461
30	GAG CAG AAA AAG GCC TAT GAG ATC GCA GGG CTG TTG GGT GAC ATC GGG Glu Gln Lys Lys Ala Tyr Glu Ile Ala Gly Leu Leu Gly Asp Ile Gly 455 460 465	1509
35	GCC CAG ATG GGG TTG TTC ATC GGT GCC AGC ATC CTC ACC GTG CTG GAA Gly Gln Met Gly Leu Phe Ile Gly Ala Ser Ile Leu Thr Val Leu Glu 470 475 480	1557
40	CTC TTT GAC TAT GCC TAC GAG GTC ATT AAG CAC AGG CTG TGC AGA CGT Leu Phe Asp Tyr Ala Tyr Glu Val Ile Lys His Arg Leu Cys Arg Arg 485 490 495	1605
45	GGA AAG TGC CAG AAG GAG GCT AAG ACG AGC AGC GCA GAC AAG GGC GTG Gly Lys Cys Gln Lys Glu Ala Lys Arg Ser Ser Ala Asp Lys Gly Val 500 505 510 515	1653
50	GCG CTC AGC CTG GAT GAC GTC AAA AGA CAC AAT CCC TGC GAG AGC CTC Ala Leu Ser Leu Asp Asp Val Lys Arg His Asn Pro Cys Glu Ser Leu 520 525 530	1701
55	CGA GGA CAT CCT GCC GGG ATG ACG TAC GCT GCC AAC ATC CTA CCT CAC Arg Gly His Pro Ala Gly Met Thr Tyr Ala Ala Asn Ile Leu Pro His 535 540 545	1749
60	CAT CCC GCT CGA GGC ACG TTT GAG GAC TTT ACC TGC TAA GCCCTCGCAG His Pro Ala Arg Gly Thr Phe Glu Asp Phe Thr Cys *	1798
65	550 55 559	
70	GCCGCTGTAC CAAAGGCCTA GGTGGGGAGG GCTGGGGAGG CAAGGGGCC CCAACTGCC CCAGCTACCC TGTGGACTTA ACTGCATTCC TGGTCAGTGG TTCCCTCTTG TCTGTGGTGA GAAAGGAGTC TTGACCATAG AGTCCTCTCC CAGCCTCTAT CCCATCTTT TATTTAATT TAATCACATT TGCTCTGTAA TATTGCTTGA GGCTGGGGAT CGTGATTTCC CCCCCAGTTCT	1858 1918 1978 2038

	TTTATGTTCG AGAATAGTT TCTCTATTCT GGGTTTCTG TTATTCAAA TGAATCTGCA	2098
	AATTGCTCTT CCCATCTCTA TGAAGAATTG CGTTGGAATT TTGATGGGA TTGTATTGAA	2158
5	TCTGTAGATT GCCTTGGA AGATGCCAT TTTTACTATG TTAATCCTGC CAATTCATGA	2218
	GCAAGGGACA TCTTTCTATC TCTGAAATCT ACTTCAGTTT CTTCTTCAG AGACTTGAAG	2278
10	TTCTTGTCA AAAAATCTTT TTGGTTAGAG CCACACCAAG GTATTTATA TTGTTTGTGA	2338
	CTATTGTGAA TGGTGTCAATT TCCCTAATT CTTCTCAGC CTACTTATCC TTTGAGTAGA	2398
	GGAAGGCTTC TGATTTGTTT GGTTAATT TATACCCAGC TGCTTGCTA AAGTTCTTTA	2458
15	TCAGGTTAG GTCTCTCTG GTGGAACCTT TGGGTCACG TAAGAATACT ATTATATCAT	2518
	CTGCAAATAG TGATATTCA CTTCTCCTT TCCAATTCT ATCCCTCTGG GGACTTTTG	2578
	TTGTCTAAATT CCTCTGGCTA GGACTTCAAA TTCTATATTG AATAGATAGG GAGAGAGTGG	2638
20	GCAGCCTTGT CTAGTTCTG GTTTCGTGG GATCGCTTCA AATTCTCTC CATTAGTTT	2698
	GATATTGGCT ACTGGTTTGCG TGTATATGCC TTTTACTGTA CTTAGGTATG GCCCTTGAAT	2758
25	TCCTGATATT TCCAAGACTT TTAACATGAA GGGTTTTGA AATTGCCAA ATGCTTCTC	2818
	AGCATCTAAT GAGATGATCA TGTGCCCTCC CCCCACCTTG AGTTGTTA TATAGTGGGT	2878
	TACATGAAAG GATCATTCT AAATAGTCCAC AAGTCTGCCA AATCTTGCTG ATTGTGACTC	2938
30	ATTCCATAG CAGGCTCTAT AACTCTCTA ACAGATTGCA TTAAACTCTG CTTGGGAAG	2998
	GCATTACCTC TTGGTTGAAG CAATGTTGTA GTTCTATGC CTGCTGAGTA AATAGCCTCA	3058
35	AGTCCAAGTA CTTGCCAGA CTAATGATCA AACGTATCCA GGAGTCCAT ACCAGAGATG	3118
	TACTCTCTC TCCTTGAAG TACATTGCTG GAAGAGTAAT TGTGTTTGCT AGAGATACTC	3178
	CTTCGAACTG CAAAAGAAAT CTCTGGCTA AGCATATAAT CAAGCCTCAG GTTTCTTT	3238
40	TATTAATAG CTGCTTGAA GAAAGTGGAC ACTAACGATA TACCTCAAAG GGAGACAGAA	3298
	TGACTCTGTG CCTTCACTGA TGGAAGTCTG GGTTACAAAT TACATCAGAA GAACCTATCA	3358
45	TAGTGAACAA TCTCATTCCC CTGGTATAAT CCCTCTAGA AATACACTTG TGACTCTGAA	3418
	ATGTTATAAT CGTGACAAC AGGCTGTTAC AGATACACCA AGTTAAATT GATAGAGAAA	3478
	CCAGGCTTGG AGCCTCATGT CCATAGGGCA AGAGGAAGAT GCTGAGTGTT TAAGGTTGGT	3538
50	TTGAGCGAAG ACAATACCT TGTGTCACAA AAATGAAAGG AAAAAAGAAA AAAGGAAAGA	3598
	AGGAAAGAAA GAGAGAGAAA GAAAAAGAAA GAAAGAAAAA AAAAAAAA	3647

INFORMATION CONCERNANT LA SEQ ID NO:5 :

- i) CARACTRISTIQUE DE LA SEQUENCE :
 A) LONGUEUR 1602 paires de base
 5 B) TYPE : acide nucléique
 C) NOMBRE DE BRINS : double
 D) CONFIGURATION : linéaire
- ii) TYPE DE MOLECULE : ADN
 10 vi) ORIGINE : rat
- ix) CARACTERISTIQUE
 A) NOM/CLE : DRASIC
 B) LOCALISATION : 1 .. 1602
 15 xi) DESCRIPTION DE LA SEQUENCE : SEQ ID NO:5 :
- | | |
|--|-----|
| ATG AAA CCT CGC TCC GGA CTG GAG GAG GCC CAG CGG CGA CAG GCC TCA
Met Lys Pro Arg Ser Gly Leu Glu Ala Gln Arg Arg Gln Ala Ser
1 5 10 15 | 48 |
| GAC ATC CGG GTG TTT GCC ACC AGC TGC ACA ATG CAT GGT CTG GGC CAC
Asp Ile Arg Val Phe Ala Ser Ser Cys Thr Met His Gly Leu Gly His
20 25 30 | 96 |
| ATC TTT GGC CCT GGA GGC CTG ACC CTG CGC CGA GGG CTG TGG GCC ACA
Ile Phe Gly Pro Gly Gly Leu Thr Leu Arg Arg Gly Leu Trp Ala Thr
25 35 40 45 | 144 |
| GCT GTG CTC CTG TCG CTG GCG GCC TTC CTC TAC CAG GTG GCT GAG CGG
Ala Val Leu Leu Ser Leu Ala Ala Phe Leu Tyr Gln Val Ala Glu Arg
30 50 55 60 | 192 |
| GTT CGC TAC TAT GGG GAG TTC CAC CAT AAG ACC ACC CTG GAT GAG CGT
Val Arg Tyr Tyr Gly Glu Phe His His Lys Thr Thr Leu Asp Glu Arg
35 65 70 75 80 | 240 |
| GAG AGC CAC CAG CTC ACC TTC CCA GCT GTG ACT CTG TGT AAT ATC AAC
Glu Ser His Gln Leu Thr Phe Pro Ala Val Thr Leu Cys Asn Ile Asn
40 85 90 95 | 288 |
| CCA CTG CGC CGC TCA CGC CTC ACA CCC AAT GAC TTG CAC TGG GCT GGA
Pro Leu Arg Arg Ser Arg Leu Thr Pro Asn Asp Leu His Trp Ala Gly
45 100 105 110 | 336 |
| ACA GCG CTG CTG GGC CTG GAC CCT GCT GAA CAT GCT GCT GCC TAC CTT CGT
Thr Ala Leu Leu Gly Leu Asp Pro Ala Glu His Ala Ala Tyr Leu Arg
50 115 120 125 | 384 |
| GCA CTG GGC CAG CCC CCC GCA CCA CCT GGC TTC ATG CCC AGT CCG ACC
Ala Leu Gly Gln Pro Pro Ala Pro Pro Gly Phe Met Pro Ser Pro Thr
55 130 135 140 | 432 |
| TTT GAC ATG GCA CAA CTC TAC GCC AGA GCC GGC CAC TCC CTT GAG GAC
Phe Asp Met Ala Gln Leu Tyr Ala Arg Ala Gly His Ser Leu Glu Asp
55 145 150 155 160 | 480 |

	ATG TTG TTG GAT TGC CGA TAC CGT GGC CAG CCC TGT GGG CCT GAG AAC Met Leu Leu Asp Cys Arg Tyr Arg Gly Gln Pro Cys Gly Pro Glu Asn 165 170 175	528
5	TTC ACA GTG ATC TTT ACT CGA ATG GGG CAA TGC TAC ACC TTC AAC TCT Phe Thr Val Ile Phe Thr Arg Met Gly Gln Cys Tyr Thr Phe Asn Ser 180 185 190	576
10	GCT GCC CAC GGT GCA GAG CTG CTC ACC ACT CCA AAG GGT GCT GGC Gly Ala His Gly Ala Glu Leu Leu Thr Thr Pro Lys Gly Gly Ala Gly 195 200 205	624
15	AAC GGA CTG GAG ATT ATG CTA GAT GTA CAG CAA GAG GAG TAT CTG CCC Asn Gly Leu Glu Ile Met Leu Asp Val Gln Gln Glu Glu Tyr Leu Pro 210 215 220	672
20	ATC TGG AAG GAC ATG GAA GAG ACC CCG TTT GAG GTG GGG ATC CGA GTG Ile Trp Lys Asp Met Glu Glu Thr Pro Phe Glu Val Gly Ile Arg Val 225 230 235 240	720
25	CAG ATT CAC AGC CAG GAT GAG CCC CCT GCC ATT GAC CAG CTG GGC TTC Gln Ile His Ser Gln Asp Glu Pro Pro Ala Ile Asp Gln Leu Gly Phe 245 250 255	768
30	GGG GCA GCC CCA GGC CAT CAG ACT TTT GTG TCC TGT CAG CAG CAG CAA Gly Ala Ala Pro Gly His Gln Thr Phe Val Ser Cys Gln Gln Gln 260 265 270	816
35	CTG AGT TTC CTG CCA CCA CCC TGG GGT GAC TGC AAT ACC GCA TCT TTG Leu Ser Phe Leu Pro Pro Pro Trp Gly Asp Cys Asn Thr Ala Ser Leu 275 280 285	864
40	GAT CCC GAC GAC TTT GAT CCA GAG CCC TCT GAT CCC TTG GGT TCC CCC Asp Pro Asp Asp Phe Asp Pro Glu Pro Ser Asp Pro Leu Gly Ser Pro 290 295 300	912
45	AGA CCC AGA CCC AGC CCT CCT TAT AGT TTA ATA GGT TGT CGC CTG GCC Arg Pro Arg Pro Ser Pro Pro Tyr Ser Leu Ile Gly Cys Arg Leu Ala 305 310 315 320	960
50	TGT GAG TCT CGC TAT GTG GCT CGG AAG TGT GGC TGT CGA ATG ATG CAT Cys Glu Ser Arg Tyr Val Ala Arg Lys Cys Gly Cys Arg Met Met His 325 330 335	1008
55	ATG CCT GGA AAC TCC CCA GTG TGC AGC CCC CAG CAG TAC AAG GAC TGC Met Pro Gly Asn Ser Pro Val Cys Ser Pro Gln Gln Tyr Lys Asp Cys 340 345 350	1056
60	GCC AGC CCA GCT CTG GAC GCT ATG CTG CGA AAG GAC ACG TGT GTC TGC Ala Ser Pro Ala Leu Asp Ala Met Leu Arg Lys Asp Thr Cys Val Cys 355 360 365	1104
65	CCC AAC CCG TGC GCT ACT ACA CGC TAT GCC AAG GAG CTC TCC ATG GTG Pro Asn Pro Cys Ala Thr Thr Arg Tyr Ala Lys Glu Leu Ser Met Val 370 375 380	1152
70	CGG ATT CCC AGC CGC GCG TCA GCT CGC TAC CTG GCC CGG AAA TAC AAC Arg Ile Pro Ser Arg Ala Ser Ala Arg Tyr Leu Ala Arg Lys Tyr Asn 385 390 395 400	1200

	CGC AGC GAG TCC TAC ATT ACG GAG AAT GTA CTG GTT CTG GAT ATC TTC Arg Ser Glu Ser Tyr Ile Thr Glu Asn Val Leu Val Leu Asp Ile Phe 405 410 415	1248
5	TTT GAG GCC CTC AAC TAT GAA GCG GTG GAA CAA AAG GCG GCC TAT GAA Phe Glu Ala Leu Asn Tyr Glu Ala Val Glu Gln Lys Ala Ala Tyr Glu 420 425 430	1296
10	G TG TCG GAG CTG CTG GGA GAC ATT GGG GGA CAG ATG GGA CTG TTT ATT Val Ser Glu Leu Leu Gly Asp Ile Gly Gly Gln Met Gly Leu Phe Ile 435 440 445	1344
15	GGA GCA AGC CTG CTT ACC ATC CTT GAG ATC CTC GAC TAT CTC TGT GAG Gly Ala Ser Leu Leu Thr Ile Leu Glu Ile Leu Asp Tyr Leu Cys Glu 450 455 460	1392
20	GTT TTC CAA GAC AGA GTC CTG GGG TAT TTC TGG AAC AGA AGG AGC GCT Val Phe Gln Asp Arg Val Leu Gly Tyr Phe Trp Asn Arg Arg Ser Ala 465 470 475 480	1440
25	CAA AAG CGC TCT GGC AAC ACT CTG CTC CAG GAA GAG TTG AAT GGC CAT Gln Lys Arg Ser Gly Asn Thr Leu Leu Gln Glu Glu Leu Asn Gly His 485 490 495	1488
30	CGA ACA CAT GTT CCC CAC CTC AGC CTA GGG CCC AGG CCT CCT ACC ACT Arg Thr His Val Pro His Leu Ser Leu Gly Pro Arg Pro Pro Thr Thr 500 505 510	1536
35	CCC TGT GCT GTC ACC AAG ACA CTC TCT GCC TCC CAC CGT ACC TGT TAC Pro Cys Ala Val Thr Lys Thr Leu Ser Ala Ser His Arg Thr Cys Tyr 515 520 525	1584
	CTC GTC ACA AGG CTC TAG Leu Val Thr Arg Leu * 530 533	1602

INFORMATION CONCERNANT LA SEQ ID NO:6 :

- | | | | | |
|----|---|---|-----|-----|
| | i) | CARACTRISTIQUE DE LA SEQUENCE : | | |
| 5 | A) | LONGUEUR 1948 paires de base | | |
| | B) | TYPE : acide nucléique | | |
| | C) | NOMBRE DE BRINS : double | | |
| | D) | CONFIGURATION : linéaire | | |
| 10 | ii) | TYPE DE MOLECULE : ADN | | |
| | vi) | ORIGINE : rat | | |
| | ix) | CARACTERISTIQUE | | |
| | A) | NOM/CLE : MDEG2 | | |
| 15 | B) | LOCALISATION : 16 .. 1707 | | |
| | xi) | DESCRIPTION DE LA SEQUENCE : SEQ ID NO:6 : | | |
| | CCTCGGGCTG | AATGA ATG AGC CGG AGC GGC GGA GCC CGG CTG CCC GCG ACC | 51 | |
| 20 | Met | Ser Arg Ser Gly Gly Ala Arg Leu Pro Ala Thr | | |
| | 1 | 5 | 10 | |
| | CCG CTC AGC GGC CCG GGA CGC TTC CGT ATG GCC CGC GAG CAG CCG GCG | 99 | | |
| | Ala Leu Ser Gly Pro Gly Arg Phe Arg Met Ala Arg Glu Gln Pro Ala | | | |
| | 15 | 20 | 25 | |
| 25 | CCC GTG GCG GTG GCG GCA GCT AGG CAG CCC GGA GGA GAC CGG AGC GGC | 147 | | |
| | Pro Val Ala Val Ala Ala Arg Gln Pro Gly Gly Asp Arg Ser Gly | | | |
| | 30 | 35 | 40 | |
| 30 | GAT CCG GCG CTG CAG GGG CCA GGG GTC GCC CGC AGG GGG CGG CCC TCC | 195 | | |
| | Asp Pro Ala Leu Gln Gly Pro Gly Val Ala Arg Arg Gly Arg Pro Ser | | | |
| | 45 | 50 | 55 | 60 |
| 35 | CTG AGT CGC ACT AAA TTG CAC GGG CTG CGG CAC ATG TGC GCG GGG CGC | 243 | | |
| | Leu Ser Arg Thr Lys Leu His Gly Leu Arg His Met Cys Ala Gly Arg | | | |
| | 65 | 70 | 75 | |
| 40 | ACG GCG GCG GGA GGC TCT TTC CAG CGA CGG GCG CTG TGG GTG CTG GCC | 291 | | |
| | Thr Ala Ala Gly Gly Ser Phe Gln Arg Arg Ala Leu Trp Val Leu Ala | | | |
| | 80 | 85 | 90 | |
| 45 | TTC TGC ACG TCC CTC GGC TTG CTG CTG TCC TGG TCC TCG AAC CGC CTG | 339 | | |
| | Phe Cys Thr Ser Leu Gly Leu Leu Ser Trp Ser Ser Asn Arg Leu | | | |
| | 95 | 100 | 105 | |
| 50 | CTC TAC TGG CTC AGC TTC CCG TCA CAC ACA CGA GTG CAC CGT GAG TGG | 387 | | |
| | Leu Tyr Trp Leu Ser Phe Pro Ser His Thr Arg Val His Arg Glu Trp | | | |
| | 110 | 115 | 120 | |
| 55 | AGC CGC CAG CTG CCG TTC CCC GCC GTC ACC GTG TGC AAC AAC AAC CCC | 435 | | |
| | Ser Arg Gln Leu Pro Phe Pro Ala Val Thr Val Cys Asn Asn Asn Pro | | | |
| | 125 | 130 | 135 | 140 |
| | CTG CGC TTC CCG CGC CTC TCC AAG GGG GAC CTC TAC TAC GCG GGC CAC | 483 | | |
| | Leu Arg Phe Pro Arg Leu Ser Lys Gly Asp Leu Tyr Tyr Ala Gly His | | | |
| | 145 | 150 | 155 | |

	TGG CTA GGG CTG CTG CTT CCC AAC CGC ACC GCG CGC CCG CTG GTC AGC Trp Leu Gly Leu Leu Pro Asn Arg Thr Ala Arg Pro Leu Val Ser 160 165 170	531
5	GAG CTG CTG CGG GGC GAC GAG CCG CGC CGC CAG TGG TTC CGC AAA CTG Glu Leu Leu Arg Gly Asp Glu Pro Arg Arg Gln Trp Phe Arg Lys Leu 175 180 185	579
10	GCC GAC TTC CGC CTC TTC CTG CCG CGC CAC TTC GAG GGC ATC AGC Ala Asp Phe Arg Leu Phe Leu Pro Pro Arg His Phe Glu Gly Ile Ser 190 195 200	627
15	GCT GCC TTC ATG GAC CGT TTG GGC CAC CAG CTG GAG GAT ATG CTG CTC Ala Ala Phe Met Asp Arg Leu Gly His Gln Leu Glu Asp Met Leu Leu 205 210 215 220	675
	TCC TGC AAG TAC CGG GGC GAG CTC TGT GGC CCG CAC AAC TTC TCC TCA Ser Cys Lys Tyr Arg Gly Glu Leu Cys Gly Pro His Asn Phe Ser Ser 225 230 235	723
20	GTG TTT ACA AAA TAC GGG AAG TGT TAC ATG TTT AAC TCA GGC GAG GAT Val Phe Thr Lys Tyr Lys Cys Tyr Met Phe Asn Ser Gly Glu Asp 240 245 250	771
25	GGC AAG CCG CTG CTC ACC ACG GTC AAG GGG GGG ACG GGC AAC GGG CTG Gly Lys Pro Leu Leu Thr Thr Val Lys Gly Gly Thr Gly Asn Gly Leu 255 260 265	819
30	GAG ATC ATG CTG GAC ATT CAG CAA GAT GAG TAC CTG CCC ATC TGG GGA Glu Ile Met Leu Asp Ile Gln Gln Asp Glu Tyr Leu Pro Ile Trp Gly 270 275 280	867
35	GAG ACA GAG GAA ACA ACG TTT GAA GCA GGA GTG AAG GTT CAG ATC CAC Glu Thr Glu Glu Thr Thr Phe Glu Ala Gly Val Lys Val Gln Ile His 285 290 295 300	915
	AGT CAG TCT GAG CCG CCT TTC ATC CAA GAG CTG GGC TTT GGG GTG GCT Ser Gln Ser Glu Pro Pro Phe Ile Gln Glu Leu Gly Phe Gly Val Ala 305 310 315	963
40	CCG GGG TTC CAG ACC TTC GTG GCC ACA CAA GAG CAG AGG CTC ACA TAT Pro Gly Phe Gln Thr Phe Val Ala Thr Gln Glu Gln Arg Leu Thr Tyr 320 325 330	1011
45	CTG CCC CCA CCA TGG GGG GAG TGC CGG TCC TCA GAG ATG GGA CTC GAC Leu Pro Pro Pro Trp Gly Glu Cys Arg Ser Ser Glu Met Gly Leu Asp 335 340 345	1059
50	TTC TTT CCT GTT TAC AGC ATC ACA GCC TGT CGG ATT GAC TGT GAG ACC Phe Phe Pro Val Tyr Ser Ile Thr Ala Cys Arg Ile Asp Cys Glu Thr 350 355 360	1107
55	CGC TAC ATC GTG GAG AAC TGT AAC TGC CGC ATG GTC CAC ATG CCA GGG Arg Tyr Ile Val Glu Asn Cys Asn Cys Arg Met Val His Met Pro Gly 365 370 375 380	1155

	GAC GCC CCT TTC TGC ACC CCT GAG CAG CAC AAG GAG TGT GCA GAG CCT Asp Ala Pro Phe Cys Thr Pro Glu Gln His Lys Glu Cys Ala Glu Pro 385 390 395	1203
5	GCC CTC GGT CTA CTG GCA GAA AAC GAC AGC AAT TAC TGT CTC TGC AGG Ala Leu Gly Leu Leu Ala Glu Lys Asp Ser Asn Tyr Cys Leu Cys Arg 400 405 410	1251
10	ACA CCC TGC AAC CTG ACA CCC TAC AAC AAA GAG CTC TCC ATG GTG AAG Thr Pro Cys Asn Leu Thr Arg Tyr Asn Lys Glu Leu Ser Met Val Lys 415 420 425	1299
15	ATC CCC AGC AAG ACG TCA GCC AAG TAC TTA GAG AAG AAA TTT AAC AAA Ile Pro Ser Lys Thr Ser Ala Lys Tyr Leu Glu Lys Phe Asn Lys 430 435 440	1347
20	TCG GAA AAA TAT ATC TCA GAG AAC ATT CTT GTT CTG GAC ATA TTT TTT Ser Glu Lys Tyr Ile Ser Glu Asn Ile Leu Val Leu Asp Ile Phe Phe 445 450 455 460	1395
25	GAG GCG CTC AAT TAC GAA ACA ATT GAA CAG AAG AAG GCG TAT GAA GTT Glu Ala Leu Asn Tyr Glu Thr Ile Glu Gln Lys Lys Ala Tyr Glu Val 465 470 475	1443
30	GCT GCC TTA CTT CGT GAC ATC CGT GGT CAG ATG GGA CTG TTC ATT GGT Ala Ala Leu Leu Gly Asp Ile Gly Gly Gln Met Gly Leu Phe Ile Gly 480 485 490	1491
35	GCT AGT CTC CTC ACA ATA CTA GAG CTC TTT GAT TAT ATT TAT GAG CTG Ala Ser Leu Leu Thr Ile Leu Glu Leu Phe Asp Tyr Ile Tyr Glu Leu 495 500 505	1539
40	ATC AAA GAG AAG CTA TTA GAC CTG CTT GGC AAA GAA GAA GAG GAA GGG Ile Lys Glu Lys Leu Leu Asp Leu Leu Gly Lys Glu Glu Glu Gly 510 515 520	1587
45	AGC CAC GAT GAG AAC ATG ACC TGT GAC ACA ATG CCA AAC CAC TCT Ser His Asp Glu Asn Met Ser Thr Cys Asp Thr Met Pro Asn His Ser 525 530 535 540	1635
50	GAA ACC ATC AGC CAC ACT GTG AAC GTG CCC CTG CAG ACA GCT TTG GGC Glu Thr Ile Ser His Thr Val Asn Val Pro Leu Gln Thr Ala Leu Gly 545 550 555	1683
45	ACC CTG GAG GAG ATT GCC TGC TGA CACCTCTCAG GCAACGCAGC ACCTCCAAAC Thr Leu Glu Ile Ala Cys *	1737
50	AGACCTTAAA GGCCCAAGAC CTAGGACAGG AGACAGCAAG CGCAGGTGGG ATCGCCCCTG ACGACTGAAA GAAGCAGAGC CCCCCATATG CACACATTGC GAACCTCTGC CAAACCTCAC CTGGCCACAT CTGACATGAA CCGTCCCGGG CCCTGCGTCA TGTCCCTCGC AGGACCGATG AGTCGCACTC CGGAACGTGTC CAAGAACTAA C	1797 1857 1917 1948

REVENDICATIONS

- 1) Protéine constituant un canal cationique neuronal de mammifère sensible à l'amiloride et activé par les protons.
- 5
- 2) Protéine selon la revendication 1 dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ IS No : 1 ou un dérivé fonctionnellement équivalent de cette protéine.
- 10
- 3) Protéine selon l'une des revendications 1 ou 2 dont la séquence en acides aminés est représentée dans la liste de séquence en annexe sous le numéro SEQ ID No : 2 ou un dérivé fonctionnellement équivalent de cette protéine.
- 15
- 4) Protéine selon l'une des revendications 1 ou 2 dont la séquence en acides aminés est représentée dans la liste de séquence en annexe sous le numéro SEQ ID No : 3 ou un dérivé fonctionnellement équivalent de cette protéine.
- 20
- 5) Protéine selon la revendication 1 dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 4 ou un dérivé fonctionnellement équivalent de cette protéine.
- 25
- 6) Protéine selon la revendication 1 dont la séquence en acides aminés est représentée dans la liste de séquence en annexe sous le numéro SEQ ID No : 5 ou un dérivé fonctionnellement équivalent de cette protéine.
- 30
- 7) Canal cationique hybride constitué de l'association d'une première protéine constituant un canal ionique activé par les protons selon l'une quelconque des
- 35

revendications 1 à 6 avec une seconde protéine constituant un canal ionique activé ou non par les protons.

5 8) Canal cationique hybride constitué de l'association d'une première protéine constituant un canal ionique activé par les protons selon l'une quelconque des revendications 1 à 6 avec une seconde protéine constituant un canal ionique activé par les protons selon l'une quelconque des revendications 1 à 6.

10 9) Canal cationique hybride selon la revendication 8, caractérisé en ce que ladite première protéine est une protéine dont la séquence en acides aminés est représentée dans la liste de séquence en annexe sous le numéro SEQ ID No 1, SEQ ID No 2, SEQ ID No 3, SEQ ID No 4 ou SEQ ID No 5 et la seconde protéine est une protéine dont la séquence en acides aminés est représentée dans la liste de séquence en annexe sous le numéro SEQ ID No : 3 ou SEQ ID No 6.

20 10) Anticorps monoclonal ou polyclonal dirigé contre au moins une protéine selon l'une quelconque des revendications 1 à 6 et/ou contre au moins un canal hybride selon l'une quelconque des revendications 7 à 9.

25 11) Molécule d'acide nucléique comprenant ou constituée par une séquence nucléique codant pour une protéine constituant un canal cationique selon l'une quelconque des revendications 1 à 6 ou un canal hybride selon l'une quelconque des revendications 7 à 9.

30 12) Molécule d'acide nucléique selon la revendication 11 comprenant ou constituée par la séquence nucléique comprise entre les nucléotides 123 et 1700 de la séquence représentée dans la liste de séquences en annexe

sous le numéro SEQ ID No : 1, ou sa séquence complémentaire.

5 13) Molécule d'acide nucléique selon la revendication 11 comprenant ou constituée par la séquence nucléique comprise entre les nucléotides 1 et 1542 de la séquence représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 2, ou sa séquence complémentaire.

10

14) Molécule d'acide nucléique selon la revendication 11 comprenant ou constituée par la séquence nucléique comprise entre les nucléotides 127 et 1663 de la séquence représentée dans la liste de séquences en annexe
15 sous le numéro SEQ ID No : 3, ou sa séquence complémentaire.

20

15) Molécule d'acide nucléique selon la revendication 11 comprenant ou constituée par la séquence nucléique comprise entre les nucléotides 109 et 1785 de la séquence représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 4, ou sa séquence complémentaire.

25
30

16) Molécule d'acide nucléique selon la revendication 11 comprenant ou constituée par la séquence nucléique comprise entre les nucléotides 1 et 1602 de la séquence représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 5, ou sa séquence complémentaire.

35

17) Vecteur comprenant au moins une molécule d'acide nucléique selon l'une quelconque des revendications 11 à 16, avantageusement associée à des séquences de contrôle.

18) Procédé de production d'une protéine constituante un canal ionique selon l'une quelconque des revendications 1 à 6 ou un canal hybride selon l'une quelconque des revendications 7 à 9, caractérisé en ce qu'il consiste :

- à transférer une molécule d'acide nucléique selon l'une des revendications 11 à 16 ou un vecteur selon la revendication 17 dans un hôte cellulaire,
- à cultiver ledit hôte cellulaire dans des conditions permettant la production de la protéine constituant le canal ionique,
- à isoler, par tous moyens appropriés les protéines constituant les canaux ioniques.

19) Procédé d'expression d'une protéine constituante un canal ionique selon l'une quelconque des revendications 1 à 6 ou un canal hybride selon l'une quelconque des revendications 7 à 9, dans hôte cellulaire, caractérisé en ce qu'il consiste :

- à transférer une molécule d'acide nucléique selon l'une des revendications 11 à 16 ou un vecteur selon la revendication 17 dans ledit hôte cellulaire,
- à cultiver ledit hôte cellulaire dans des conditions permettant la production de la protéine constituant le canal ionique.

20) Procédé selon l'une des revendications 18 ou 19, caractérisé en ce que l'hôte cellulaire est choisi parmi les procaryotes ou les eucaryotes et notamment parmi les bactéries, les levures, les cellules de mammifères, de plantes ou d'insectes.

21) Cellule transformée exprimant des canaux cationiques neuronaux de mammifère sensibles à l'amiloride

et activés par les protons, obtenue par le procédé selon l'une des revendications 18 à 20.

5 22) Procédé de criblage de substances capables de moduler l'activité de canaux ioniques neuronaux de mammifère, caractérisé en ce que l'on met en contact des quantités variables d'une substance à tester avec des cellules selon la revendication 21, puis l'on mesure, par tous moyens appropriés, les effets éventuels 10 de ladite substance sur les courants des canaux cationiques sensibles à l'amiloride et activés par les protons.

15 23) Procédé selon la revendication 22 appliqué au criblage de substances capables de moduler la perception de l'acidité, tant en ce qui concerne la nociception que la transduction du goût.

20 24) Composition pharmaceutique comprenant comme principe actif au moins une protéine constituant un canal ionique selon l'une quelconque des revendications 1 à 6 ou un canal hybride selon l'une quelconque 7 à 9 ou encore un anticorps selon la revendication 10.

25 25) Utilisation d'une substance chimique ou biologique capable de modifier les courants d'un canal ionique selon l'une quelconque des revendications 1 à 6 et/ou un canal hybride selon l'une quelconque des revendications 7 à 9 pour la préparation d'un médicament capable de moduler la perception de l'acidité, tant en ce qui concerne la nociception que la transduction du goût, chez un sujet humain ou animal.

1/9

Met Glu Leu Lys Thr Glu Glu Glu Val Gly Gly Val Gln Pro Val Ser Ile
Pro Val Ser Ile
Gln Ala Phe Ala Ser Ser Ser Thr Leu His Gly Leu Ala His Ile Phe Ser Tyr
Gln Ala Phe Ala Ser Ser Ser Thr Leu His Gly Met Ala His Ile Phe Ser Tyr
Glu Arg Leu Ser Leu Lys Arg Ala Leu Trp Ala Leu Cys Phe Leu Gly Ser Leu
Glu Arg Leu Ser Leu Lys Arg Ala Leu Trp Ala Leu Cys Phe Leu Gly Ser Leu
Ala Val Leu Leu Cys Val Cys Thr Glu Arg Val Gln Tyr Tyr Phe Cys Tyr His
Ala Val Leu Leu Cys Val Cys Thr Glu Arg Val Gln Tyr Tyr Phe His Tyr His
His Val Thr Lys Leu Asp Glu Val Ala Ala Ser Gln Leu Thr Phe Pro Ala Val
His Val Thr Lys Leu Asp Glu Val Ala Ala Ser Gln Leu Thr Phe Pro Ala Val
Thr Leu Cys Asn Leu Asn Glu Phe Arg Phe Ser Gln Val Ser Lys Asn Asp Leu
Thr Leu Cys Asn Leu Asn Glu Phe Arg Phe Ser Gln Val Ser Lys Asn Asp Leu
Tyr His Ala Gly Glu Leu Leu Ala Leu Leu Asn Asn Arg Tyr Glu Ile Pro Asp
Tyr His Ala Gly Glu Leu Leu Ala Leu Leu Asn Asn Arg Tyr Glu Ile Pro Asp
Thr Gln Met Ala Asp Glu Lys Gln Leu Glu Ile Leu Gln Asp Lys Ala Asn Phe
Thr Gln Met Ala Asp Glu Lys Gln Leu Glu Ile Leu Gln Asp Lys Ala Asn Phe
Arg Ser Phe Lys Pro Lys Pro Phe Asn Met Arg Glu Phe Tyr Asp Arg Ala Gly
Arg Ser Phe Lys Pro Lys Pro Phe Asn Met Arg Glu Phe Tyr Asp Arg Ala Gly
His Asp Ile Arg Asp Met Leu Leu Ser Cys His Phe Arg Gly Glu Ala Cys Ser
His Asp Ile Arg Asp Met Leu Leu Ser Cys His Phe Arg Gly Glu Val Cys Ser
Ala Glu Asp Phe Lys Val Val Phe Thr Arg Tyr Gly Lys Cys Tyr Thr Phe Asn
Ala Glu Asp Phe Lys Val Val Phe Thr Arg Tyr Gly Lys Cys Tyr Thr Phe Asn
Ser Gly Gln Asp Gly Arg Pro Arg Leu Lys Thr Met Lys Gly Gly Thr Gly Asn
Ser Gly Arg Asn Gly Arg Pro Arg Leu Lys Thr Met Lys Gly Gly Thr Gly Asn
Gly Leu Glu Ile Met Leu Asp Ile Gln Gln Asp Glu Tyr Leu Pro Val Trp Gly
Gly Leu Glu Ile Met Leu Asp Ile Gln Gln Asp Glu Tyr Leu Pro Val Trp Gly
Glu Thr Asp Glu Thr Ser Phe Glu Ala Gly Ile Lys Val Gln Ile His Ser Gln
Glu Thr Asp Glu Thr Ser Phe Glu Ala Gly Ile Lys Val Gln Ile His Ser Gln
Asp Glu Pro Pro Phe Ile Asp Gln Leu Gly Phe Gly Val Ala Pro Gly Phe Gln
Asp Glu Pro Pro Phe Ile Asp Gln Leu Gly Phe Gly Val Ala Pro Gly Phe Gln

Fig. 1

2 / 9

Thr Phe Val Ser Cys Gln Glu Gln Arg Leu Ile Tyr Leu Pro Ser Pro Trp Gly
Thr Phe Val Ala Cys Gln Glu Gln Arg Leu Ile Tyr Leu Pro Pro Pro Trp Gly

Thr Cys Asn Ala Val Thr Met Asp Ser Asp Phe Phe Asp Ser Tyr Ser
Thr Cys Lys Ala Val Thr Met Asp Ser Asp Leu Asp Phe Phe Asp Ser Tyr Ser

Ile Thr Ala Cys Arg Ile Asp Cys Glu Thr Arg Tyr Leu Val Glu Asn Cys Asn
Ile Thr Ala Cys Arg Ile Asp Cys Glu Thr Arg Tyr Leu Val Glu Asn Cys Asn

Cys Arg Met Val His Met Pro Gly Asp Ala Pro Tyr Cys Thr Pro Glu Gln Tyr
Cys Arg Met Val His Met Pro Gly Asp Ala Pro Tyr Cys Thr Pro Glu Gln Tyr

Lys Glu Cys Ala Asp Pro Ala Leu Asp Phe Leu Val Glu Lys Asp Gln Glu Tyr
Lys Glu Cys Ala Asp Pro Ala Leu Asp Phe Leu Val Glu Lys Asp Gln Glu Tyr

Cys Val Cys Glu Met Pro Cys Asn Leu Thr Arg Tyr Gly Lys Glu Leu Ser Met
Cys Val Cys Glu Met Pro Cys Asn Leu Thr Arg Tyr Gly Lys Glu Leu Ser Met

Val Lys Ile Pro Ser Lys Ala Ser Ala Lys Tyr Leu Ala Lys Lys Phe Asn Lys
Val Lys Ile Pro Ser Lys Ala Ser Ala Lys Tyr Leu Ala Lys Lys Phe Asn Lys

Ser Glu Gln Tyr Ile Gly Glu Asn Ile Leu Val Leu Asp Ile Phe Phe Glu Val
Ser Glu Gln Tyr Ile Gly Glu Asn Ile Leu Val Leu Asp Ile Phe Phe Glu Val

Leu Asn Tyr Glu Thr Ile Glu Gln Lys Ala Tyr Glu Ile Ala Gly Leu Leu
Leu Asn Tyr Glu Thr Ile Glu Gln Lys Ala Tyr Glu Ile Ala Gly Leu Leu

Gly Asp Ile Gly Gly Gln Met Gly Leu Phe Ile Gly Ala Ser Ile Leu Thr Val
Gly Asp Ile Gly Gly Gln Met Gly Leu Phe Ile Gly Ala Ser Ile Leu Thr Val

Leu Glu Leu Phe Asp Tyr Ala Tyr Glu Val Ile Lys His Arg Leu Cys Arg Arg
Leu Glu Leu Phe Asp Tyr Ala Tyr Glu Val Ile Lys His Arg Leu Cys Arg Arg

Gly Lys Cys Gln Lys Glu Ala Lys Arg Ser Ser Ala Asp Lys Gly Val Ala Leu
Gly Lys Cys Gln Lys Glu Ala Lys Arg Ser Ser Ala Asp Lys Gly Val Ala Leu

Ser Leu Asp Asp Val Lys Arg His Asn Pro Cys Glu Ser Leu Arg Gly His Pro
Ser Leu Asp Asp Val Lys Arg His Asn Pro Cys Glu Ser Leu Arg Gly His Pro

Ala Gly Met Thr Tyr Ala Ala Asn Ile Leu Pro His His Pro Ala Arg Gly Thr
Ala Gly Met Thr Tyr Ala Ala Asn Ile Leu Pro His His Pro Ala Arg Gly Thr

Phe Glu Asp Phe Thr Cys
Phe Glu Asp Phe Thr Cys

Fig. 1 (suite)

3 / 9

Fig. 2

FNaCh		MEC-4		M 1			
	I	M S W M Q N L K N Y Q H L D P S E Y M S Q V Y G O P L A Y L O E N T K F V T E R E Y Y E D F G Y G E C F N S E S E V					
ASIC	55	A E I L K I E E E E V G C O P V S I O A F A S S S S T I L H G B A H I F S Y E R L S K R A L W A E C F E G S L					
MDEG	54	A D L K E S P S E . G S T O P S S I O A F A S S S S T I L H G B A H I F S Y E R L S K R A L W A E C F E G S L					
FaNaCh	34	S D N R S A A I O F . I A E L E S S S N A H G R A K I V T S R D T K A K V A W A L V V A X G F					
NEC-4	61	O C E L I T G E F D P K I L P Y D K R L A W H F K E F C Y K E S A H G I P . M I G E K P N V V Y R A M V V I L G C M					
ASIC	113	E V I L L C V C I E R V O Y Y F C Y L H V T K I D E V A A S O L I F P A V T L C N L N E F R S O Q Y S K N D L Y H A G					
MDEG	112	E V I L L C V C I E R V O Y Y F C Y L H V T K I D E V A A S O L I F P A V T L C N L N E F R S R E T T I N D L Y H A G					
FaNaCh	135	E V I L L C V C I E R V O Y Y F C Y L H V T K I D E V A A S O L I F P A V T L C N L N E F R S R E T T I N D L Y H A G					
NEC-4	359	E V I L L C V C I E R V O Y Y F C Y L H V T K I D E V A A S O L I F P A V T L C N L N E F R S R E T T I N D L Y H A G					
ASIC	146	S E K P K P F N I . A E F Y D R A G H D I E D M N L S C H F E G C S A E . D F K V V F . T E V Y G K C Y T F					
MDEG	145	H V K P K G F S M . E E F L H R Y G H D I E D M N L S C H F E G C S A E . D F K V V F . T E V Y G K C Y T F					
FaNaCh	168	G O D A K K L S . H N I L E D M N H C R E N R C H V S . S E F S T F D G N Y F N C E T F					
NEC-4	419	T K A K E N I M F A M A T S K D O R E R S T T K R E S A M H K C S E N G K A C D I . E A D F L T H I D P V E G S C E T F					
ASIC	198	N S G G D G G P R L K F W K G G I G N G L E I M L D I Q D E Y L P . A V G E T D E T S F E A G V K V Q I H S O D					
MDEG	197	N S G G D G G P R L K F W K G G I G N G L E I M L D I Q D E Y L P . A V G E T D E T T F E A G V K V Q I H S O S					
FaNaCh	212	R L O M H A I G P E N G L S I F F S V E K D D L P C I T Y G Y N F O N N I L H S A G V R V V H A P G					
NEC-4	479	N . H I N R T V N L T S E R E K G P M Y G L A R E V Y V N A S D W M P . I T E A R a g u R a t I H D K E					
ASIC	254	E P P F I D E L G F G V A P G F O T F V S C Q E O R L L P S P W G I C N A V T A D S F F D S . Y S I T A C R I					
MDEG	253	E P P F I O E L G F G V A P G F O T F V S C Q E O R L L P S P W G I C R S S E A G L D F E P V . Y S I T A C R I					
FaNaCh	268	S M P S P V R H G I O D P G V S S U V L K A I L H I R L P Y P Y G N C T N D M I N G I O Y K K . Y T F F A C L O					
NEC-4	526	D F P P D T F G V S A P T G V S S F G L R K M S I R L P A Y G D C V P O G K T S D Y I S N Y E V S V E G C Y R					

4 / 9

Fig. 2 (SUITE)

				C T P E Q	C T P E Q	C T P E Q	C T P E Q
ASIC	311	D C E T R Y L V E N C H C R M V H M P G D A P					
MDEG	310	D C E T R Y I V E N C H C R M V H M P G D A P					
FaNach	325	L C K Q R L I T E R C G C M S A I P E V P S	N A T I F C G V I K O W Q E I N R N H S N E D H N O S E D R A F I G T P				
MEC-4	586	S C F O O L E I K E C R A C D P R F P V	P E G	A R H C D A A D P V A R R			
ASIC	340	Y K E C A D P A L D F I V E K D	O E Y C V C E M P C N L T R Y G K E L S M V K I P				
MDEG	339	H K E C A D P A L G I L A E K D	S N Y C V C R T P C N L T R Y G K E L S M V K I P				
FaNach	385	Y L A C E E E R E O K N	I N D A T Y E L S C G G F O P C S E L S Y L K S T S T S Y W P L E F Y O L S A V E R F F K O E R				
MEC-4	622	C L B A R M N D G G L H G	S F R C R C O O P C G O S I Y S V T Y S P A K W P S S L S L Q I O G				
ASIC	381	S K T S A K Y L A K K F N K S E Q					V I G E N I
MDEG	380	S K T S A K Y L E K K F N K S E X					V I S E N I
FaNach	445	O A G O N H F M K T A V E Y L E K L A H P S	G K H L A R N D S H M D D I L S K S Y S I L S E K E M A K E A S D L I R Q N M				
MEC-4	670		S C N G T A V E C N K H Y K E N G				
				M II			
ASIC	404	L V L D I F F E V L N Y E T I E Q K K A V E I A G L L G D I G G O M G L F I G A S	N I T I V L E L F D Y A V E V I K H A L				
MDEG	403	L V L D I F F E A L N Y E T I E Q K K A V E I A G L L G D I G G O M G L F I G A S	N I T I V L E L F D Y A V E V I K H A L				
FaNach	505	L R L A N I S Y E D L S V Y E Y R Q L P A Y G E A D L F	D G G I I G L W G I S A L T I W E L L I B L W I R L T G L V F				
MEC-4	687	A R S S E F W E O L N H E M M E N T E S A Y G F V N L L	D F G G O I G I W C G I S F L I C E F V F L F L E T A Y M S A				
ASIC	464	C R R G K C O K E A K R S S A D K G T S	E S T E R G H P A G I T Y A N N R L P H H P A R G T F E D I F F I C				
MDEG	463	L D D L G K E E E G S H D E N S	T C D P H S E T I S H V N N P L O T O A L G T I E E F I C				
FaNach	565	N S E K G L P D G P T I V N N G S N H S O S T I S O H O L Y N G Y M U H D S H Y S D A G A S V F D F R R G V E S P M					
MEC-4	747	E H N Y S L Y K K K A E K A K K V A S G S F					

5 / 9

Fig. 3

Fig. 4

6 / 9

Fig. 5

7 / 9

Fig. 6

8 / 9

Fig. 7

9 / 9

Fig. 8

INTERNATIONAL SEARCH REPORT

Int. Application No

PCT/FR 98/00270

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/12 C07K14/705 C07K16/28 A61K38/17 G01N33/68

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WALDMANN R ET AL: "THE MAMMALIAN DEGENERIN MDEG, AN AMILORIDE-SENSITIVE CATION CHANNEL ACTIVATED BY MUTATIONS CAUSING NEURODEGENERATION IN CAENORHABDITIS ELEGANS" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 18, 3 May 1996, pages 10433-10436, XP002051361 cited in the application see the whole document ---	1,4,11, 14,17-22
Y	---	23,25
X	COREY D P ET AL: "MECHANOSENSATION AND THE DEG/ENAC ION CHANNELS" SCIENCE, vol. 273, no. 5273, 19 July 1996, page 323/324 XP002051360 see the whole document ---	1,3,11, 13, 17-22,24
	---	-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

" Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

10 July 1998

16/07/1998

Name and mailing address of the ISA

European Patent Office, P. B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Gurdjian, D

INTERNATIONAL SEARCH REPORT

In tional Application No
PCT/FR 98/00270

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	GILBERTSON, TIMOTHY A. ET AL: "Proton currents through amiloride-sensitive sodium channels in isolated hamster taste cells: Enhancement by vasopressin and cAMP" NEURON (1993), 10(5), 931-42 CODEN: NERNET; ISSN: 0896-6273, XP002068540 see page 938 - page 939 ---	1,10,11, 17-25
Y	PRICE MP ET AL: "Cloning and expression of a novel human brain Na ⁺ channel." J BIOL CHEM, APR 5 1996, 271 (14) P7879-82, UNITED STATES, XP002068541 see the whole document ---	1,10,11, 17-22,24
A	EMBL databank Accession number w62694 09-JUN-1996 Marra M et al. XP002068546 cited in the application see the whole document ---	1,11, 17-22,24
A	AKAIKE N ET AL: "Proton-induced current in neuronal cells." PROG NEUROBIOL, MAY 1994, 43 (1) P73-83, ENGLAND, XP002068567 see the whole document ---	1,2, 10-12, 17-24
P,X	WALDMANN R ET AL: "A proton-gated cation channel involved in acid-sensing." NATURE, MAR 13 1997, 386 (6621) P173-7, ENGLAND, XP002068589 see the whole document ---	1,2, 10-12, 17-25
P,X	BASSILANA F ET AL: "The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H ⁺ -gated Na ⁺ channel with novel properties." J BIOL CHEM, NOV 14 1997, 272 (46) P28819-22, UNITED STATES, XP002068543 see the whole document ---	1,2, 10-12, 17-25
P,X	LINGUEGLIA E ET AL: "A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells." J BIOL CHEM, NOV 21 1997, 272 (47) P29778-83, UNITED STATES, XP002068544 see the whole document ---	1,2, 10-12, 17-25

-/--

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 98/00270

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X	BARBRY P ET AL: "Molecular biology of Na+ absorption." AM J PHYSIOL, SEP 1997, 273 (3 PT 1) PG571-85, UNITED STATES, XP002068545 see page 573, right-hand column, paragraph 2 - page 576, left-hand column, paragraph 2 ----	1, 2, 4, 10-12, 14, 17-25
P, X	GARCIA-ANOVEROS J ET AL: "BNAC1 AND BNAC2 CONSTITUTE A NEW FAMILY OF HUMAN NEURONAL SODIUM CHANNELS RELATED TO DEGENERINS AND EPITHELIAL SODIUM CHANNELS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 94, no. 4, 18 February 1997, pages 1459-1464, XP002051359 see the whole document -----	1, 3, 4, 11, 13, 14, 17-22, 25

RAPPORT DE RECHERCHE INTERNATIONALE

D. de Internationale No

PCT/FR 98/00270

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
 CIB 6 C12N15/12 C07K14/705 C07K16/28 A61K38/17 G01N33/68

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 6 C07K C12N

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Categorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	WALDMANN R ET AL: "THE MAMMALIAN DEGENERIN MDEG, AN AMILORIDE-SENSITIVE CATION CHANNEL ACTIVATED BY MUTATIONS CAUSING NEURODEGENERATION IN CAENORHABDITIS ELEGANS" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 18, 3 mai 1996, pages 10433-10436, XP002051361 cité dans la demande voir le document en entier ---	1, 4, 11, 14, 17-22
Y	---	23, 25
X	COREY D P ET AL: "MECHANOSENSATION AND THE DEG/ENAC ION CHANNELS" SCIENCE, vol. 273, no. 5273, 19 juillet 1996, page 323/324 XP002051360 voir le document en entier ---	1, 3, 11, 13, 17-22, 24
		-/-

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (elle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

Date d'expédition du présent rapport de recherche internationale

10 juillet 1998

16/07/1998

Nom et adresse postale de l'administration chargée de la recherche internationale
 Office Européen des Brevets, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Gurdjian, D

RAPPORT DE RECHERCHE INTERNATIONALE

Ode Internationale No

PCT/FR 98/00270

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
Y	GILBERTSON, TIMOTHY A. ET AL: "Proton currents through amiloride-sensitive sodium channels in isolated hamster taste cells: Enhancement by vasopressin and cAMP" NEURON (1993), 10(5), 931-42 CODEN: NERNET:ISSN: 0896-6273, XP002068540 voir page 938 - page 939 ---	1,10,11, 17-25
Y	PRICE MP ET AL: "Cloning and expression of a novel human brain Na ⁺ channel." J BIOL CHEM, APR 5 1996, 271 (14) P7879-82, UNITED STATES, XP002068541 voir le document en entier ---	1,10,11, 17-22,24
A	EMBL databank Accession number w62694 09-JUN-1996 Marra M et al. XP002068546 cité dans la demande voir le document en entier ---	1,11, 17-22,24
A	AKAIKE N ET AL: "Proton-induced current in neuronal cells." PROG NEUROBIOL, MAY 1994, 43 (1) P73-83, ENGLAND, XP002068567 voir le document en entier ---	1,2, 10-12, 17-24
P,X	WALDMANN R ET AL: "A proton-gated cation channel involved in acid-sensing." NATURE, MAR 13 1997, 386 (6621) P173-7, ENGLAND, XP002068589 voir le document en entier ---	1,2, 10-12, 17-25
P,X	BASSILANA F ET AL: "The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H ⁺ -gated Na ⁺ channel with novel properties." J BIOL CHEM, NOV 14 1997, 272 (46) P28819-22, UNITED STATES, XP002068543 voir le document en entier ---	1,2, 10-12, 17-25
P,X	LINGUEGLIA E ET AL: "A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells." J BIOL CHEM, NOV 21 1997, 272 (47) P29778-83, XP002068544 voir le document en entier ---	1,2, 10-12, 17-25
	-/--	

RAPPORT DE RECHERCHE INTERNATIONALE

Dé	de Internationale No
PCT/FR 98/00270	

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec le cas échéant, l'indication des passages pertinents	no. des revendications visées
P, X	BARBRY P ET AL: "Molecular biology of Na+ absorption." AM J PHYSIOL, SEP 1997, 273 (3 PT 1) PG571-85, UNITED STATES, XP002068545 voir page 573, colonne de droite, alinéa 2 - page 576, colonne de gauche, alinéa 2 ---	1, 2, 4, 10-12, 14, 17-25
P, X	GARCIA-ANOVEROS J ET AL: "BNAC1 AND BNAC2 CONSTITUTE A NEW FAMILY OF HUMAN NEURONAL SODIUM CHANNELS RELATED TO DEGENERINS AND EPITHELIAL SODIUM CHANNELS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 94, no. 4, 18 février 1997, pages 1459-1464, XP002051359 voir le document en entier ----	1, 3, 4, 11, 13, 14, 17-22, 25

