تمرینات نظریه مجموعه ها: سری اول

$$B = \{x \in \mathbb{R} \mid x < \mathsf{T}\}$$
، $A = \{x \in \mathbb{R} \mid x^{\mathsf{T}} < \mathsf{F}\}$. فرض کنید .\

- (a) آیا $A\subseteq B$ در صورت مثبت بودن درستی ادعای خود نشان را دهید و در صورت منفی بودن یک مثال نقض ارائه دهید.
- آیا $B \subseteq A$ در صورت مثبت بودن درستی ادعای خود نشان را دهید و در صورت منفی بودن یک مثال نقض ارائه دهید.
- ۱. در هریک از حالت های زیر تعیین کنید آیا $A\subseteq B$ یا $A\subseteq B$ یا A=B یا $A\cap B=\emptyset$. (منظور از $a\equiv b\pmod c$ این است که $a\equiv b\pmod c$

(a)

$$A = \{x \in \mathbb{Z} \mid x \equiv \mathsf{Y}(\mod \mathsf{Y})\}, \quad B = \{y \in \mathbb{Z} \mid \mathsf{Y}y \equiv \mathsf{Y}(\mod \mathsf{S})\}.$$

نید و مجموعه و خاصیت بخش پذیری استفاده کنید A=B

$$x\in A\Longrightarrow x\equiv {
m Y}\mod {
m Y}\Longrightarrow x-{
m Y}={
m Y}k\Longrightarrow {
m Y}x-{
m Y}={
m F}k\Longrightarrow {
m Y}x\equiv {
m Y}\mod {
m F}$$
 $\Longrightarrow x\in B\Longrightarrow A\subset B.$

(b)

$$A = \{x \in \mathbb{Z} \mid x \equiv \mathsf{Y} (\mod \mathsf{Y})\}, \quad B = \{y \in \mathbb{Z} \mid y \equiv \mathsf{Y} (\mod \mathsf{Y})\}.$$

(c)

$$A = \{x \in \mathbb{Z} \mid x \equiv \mathsf{V}(\mod \Delta)\}, \quad B = \{y \in \mathbb{Z} \mid y \equiv \mathsf{V}(\mod \mathtt{V})\}.$$

۳. با استفاده از تعریف تساوی دو مجموعه نشان دهید

(a)

 $A = \{x \in \mathbb{R} \mid x^{\mathsf{T}} - \mathsf{T}x - \mathsf{I} \circ < \circ\} = \{x \in \mathbb{R} \mid -\mathsf{T} < x < \mathtt{\Delta}\} = B.$

راهنمایی: رابطه زیر را از شرط تعریف کننده مجموعه A می توان نوشت.

 $x \in A \Longrightarrow x^{\mathsf{T}} - \mathsf{T} x - \mathsf{I} \circ = (x - \Delta)(x + \mathsf{I}) < \circ \Longrightarrow (x - \Delta < \circ \lor x + \mathsf{I} > \circ) \Longrightarrow x < \Delta \lor x > -\mathsf{I} = (x - \Delta)(x + \mathsf{I}) < x - \Delta < x + \mathsf{I} > 0$

فقط باید توضیح دهید چرا حالت دیگر $\alpha > 0 > x + 1$ و $\alpha > 0 > x + 1$ نمی تواند روی دهد.

(b)

 $\{x \in \mathbb{R} \mid x^{\mathsf{Y}} - \Delta x + \mathsf{S} < \circ\} = \{x \in \mathbb{R} \mid \mathsf{Y} < x < \mathsf{Y}\}.$

(c)

 $\{x \in \mathbb{R} \mid x^\mathsf{Y} \geq \mathsf{Y}\} = \{x \in \mathbb{R} \mid x \leq -\mathsf{Y}\} \cup \{x \in \mathbb{R} \mid x \geq \mathsf{Y}\}.$

۴. نقیض گزاره های زیر را با استفاده از تعریف بنویسید.

 $x \in A \cup B$

 $x\in A\cap B$

 $x \in C_B^A$

 $x \in A \cup B \iff x \in A \lor x \in B$

 $\sim (x \in A \cup B) \iff \sim (x \in A \lor x \in B) \iff (x \notin A \land x \notin B).$

 Δ . فرض کنید A و B زیر مجموعه یک مجموعه X باشند. نشان دهید تساوی های زیر برقرارند.

 $(a)A \cap B \subseteq A$, $(b)A \cap B \subseteq B$,

 $(c)A \subseteq A \cup B.$ $(d)A \subseteq A \cup B.$

های یک مجموعه X باشند. نشان دهید A فرض کنید A باشند. نشان دهید

 $A \subseteq B \iff A^c \supseteq B^c$.

- $A \cap B^c = \emptyset \iff A \subseteq B$ نشان دهید $A, B \subset X$ فرض کنید .۷
- های زیر A,B,C,D نرسی کنید کدامیک از گزاره های یک مجموعه X باشند. بررسی کنید کدامیک از گزاره های زیر راست اند و کدام ناراست.
 - $B \cap D = \emptyset$ اگر $A \cap C = \emptyset$ و $C \subset D$ و $A \subset B$ آنگاه (a)
 - $A \cap C = \emptyset$ اگر $A \cap B \cap D = \emptyset$ و $A \cap B \cap B$ آنگاه (b)
 - ۹. فرض کنید A, B, C زیر مجموعه های یک مجموعه X باشند. نشان دهید
 - $A \cap C \subseteq B \cap C$ آنگاه $A \subseteq B$ (a)
 - $A \cup C \subseteq B \cup C$ اگر $A \subseteq B$ آنگاه (b)
- ۱۰ فرض کنید A,B,C زیر مجموعه های یک مجموعه X باشند. آیا گزاره های زیر راست اند؟ اگر بلی درستی پاسخ خود را نشان دهید در غیر اینصورت یک مثال نقض برای آن ارائه دهید.
 - $A\subseteq B$ اگر $A\cap C\subseteq B\cap C$ آنگاه (a)
 - $A \subseteq B$ اگر $A \cup C \subseteq B \cup C$ ، آنگاه (b)
 - A = B اگر $A = B \cup C$ آنگاه (c)
 - A=B اگر $A\cap C=B\cup C$ آنگاه (d)
 - A = B اگر $A \cap C = B \cap C$ و $A \cup C = B \cup C$ آنگاه (e)

با رسم نمودار ون می توانید برای درستی یا نادرستی گزاره های بالا می توانید حدسی اولیه بزنید و بعد تلاش کنید حدستان را ثابت کنید. راهنمایی باید نشان دهید B=C روش معمول این است که از $x\in B$ نتیجه بگیرید $x\in C$ و برعکس از $x\in B$ نتیجه بگیرید $x\in B$

پس اگر $A \in A$ آنگاه چون $X \in A \cup A^c$ پس $X \in A$ پس $X \in A$ پس $X \in A$ پس $X \in A^c$ پس $X \in A \cap B$ و درنتیجه $X \in A \cap B$ پس $X \in A \cap B$ بنابرتعریف اشتراک. اگر $X \in A \cap B$ بنابرتعریف اشتراک. اگر $X \in A \cap B$ بنابرتعریف اشتراک. اگر نتیجه می گیریم $X \in B \cap A^c$ به ترتیبی مشابه نتیجه می شود $X \in B \cap A^c$ به ترتیبی مشابه نتیجه می شود $X \in B \cap A^c$ به ترتیبی مشابه نتیجه می شود $X \in B \cap A^c$ به ترتیبی مشابه نتیجه می شود $X \in B \cap A^c$ به ترتیبی مشابه نتیجه می شود $X \in B \cap A^c$

- ۱۲. تعیین کنید کدامیک از گزاره های دوشرطی زیر راست و کدامیک نا راست اند. دلیل انتخاب خود را بنویسید. اگر یک گزاره دو شرطی ناراست باشد، تعیین کنید کدامیک از گزاره های شرطی تشکیل دهنده گزاره دوشرطی راست اند و برای آن برهانی ارائه دهید.
- $A \cap B^c = \emptyset$ اگر و فقط اگر و فقط اگر کنیم $A \subseteq B$ اگر و فقط اگر کنیم $A \subseteq B$ اگر و فقط اگر کنیم $A \subseteq B$ فرض کنیم $A \subseteq B$ اگر و فقط اگر و فقط اگر کنیم $A \subseteq B$ اگر و فقط اگر و
- $A \cup B = B$ اگر و فقط اگر $A \subseteq B$ اگر و فقط اگر $A \subseteq B$ اگر و فقط اگر $A \subseteq B$ اگر و فقط اگر (b) فرض کنید.
 - $A \cap B = A$ دو زیر مجموعه X باشند. آنگاه $A \subseteq B$ اگر و فقط اگر A, B دو زیر مجموعه A باشند. راهنمایی: از تعریف اشتراک استفاده کنید.
- و $A\subset B$ زیر مجموعه های X باشند. آنگاه $A\subseteq B\cap C$ اگر و فقط اگر A,B,C زیر مجموعه های $A\subset B$ باشند. $A\subset C$

راهنمایی: از تعریف اشتراک استفاده کنید.

فرض کنید A,B,C زیر مجموعه های X باشند. آنگاه $A\subseteq B\cup C$ اگر و فقط اگر A,B,C یا $A\subset C$

راهنمایی: از تعریف اجتماع استفاده کنید.