Partiel - Vendredi 22 octobre 2021.

dur'ee: 2h00.

Les documents, calculatrices, téléphones et ordinateurs portables sont interdits.

La qualité de la rédaction sera prise en compte dans la notation.

Le barème est donné à titre indicatif.

Questions de cours. On considère un ensemble Ω .

- 1. Donner la définition d'une tribu sur Ω .
- 2. Donner la définition d'une mesure de probabilité.
- 3. Donner la définition d'une variable aléatoire réelle.

Correction. C'est du cours.

Exercice 1. Soient (Ω, \mathcal{F}, P) un espace probabilisé et E et F deux événements.

- 1. Montrer que si P(E) = 1 alors $P(E \cup F) = P(E)$.
- 2. Montrer que si P(E) = 0 alors $P(E \cup F) = P(F)$.

On définit

$$\mathcal{G} = \{ A \in \mathcal{F} \text{ tel que } P(A) = 0 \text{ ou } P(A) = 1 \}.$$

3. Montrer que \mathcal{G} est une tribu.

Correction.

- 1. On note $E \subset E \cup F$ donc $1 = P(E) \leq P(E \cup F)$.
- 2. On a $E \cup F = F \cup (E \setminus F)$ et l'union est disjointe donc $P(E \cup F) = P(F) + P(E \setminus F)$. Or $(E \setminus F) \subset E$ donc $P(E \setminus F) \leq P(E) = 0$.
- 3. Nous avons trois points à vérifier :
 - (a) On a $P(\emptyset) = 0$ donc $\emptyset \in \mathcal{G}$
 - (b) Soit $A \in \mathcal{G}$. Comme $P(A) \in \{0, 1\}$, $P(A^c) = 1 P(A) \in \{0, 1\}$ et donc $A^c \in \mathcal{G}$.
 - (c) Soit $(A_n)_{n\geq 1}$ une suite de parties dans \mathcal{G} .
 - S'il existe n_0 tel que $P(A_{n_0}) = 1$ alors $\bigcup_{n \geq 1} A_n \supset A_{n_0}$ donc $P(\bigcup_{n \geq 1} A_n) \geq P(A_{n_0}) = 1$. D'où $P(\bigcup_{n \geq 1} A_n) = 1$. Donc $\bigcup_{n \geq 1} A_n \in \mathcal{G}$. On pouvait bien sûr utiliser directement la question 1 en écrivant $\bigcup_{n \geq 1} A_n = A_{n_0} \cup (\bigcup_{n \neq n_0} A_n)$
 - Sinon pour tout $n \geq 1$, $P(A_n) = 0$. On a alors par sigma sous-additivité $P(\cup_{n\geq 1} A_n) \leq \sum_{n\geq 1} P(A_n) = 0$. Et à nouveau $\cup_{n\geq 1} A_n \in \mathcal{G}$

Exercice 2.

1. Énoncer une condition nécessaire et suffisante pour qu'une fonction $F: \mathbb{R} \to \mathbb{R}$ soit fonction de répartition d'une variable aléatoire réelle.

2. En déduire les couples $(a,b) \in \mathbb{R}^2$ tels que la fonction F définie par

$$F(x) = \frac{a(x+4)}{b+|x|} 1_{]-4,+\infty[}(x), \quad x \in \mathbb{R},$$

soit une fonction de répartition.

Correction.

- 1. Une fonction $F: \mathbb{R} \to \mathbb{R}$ est fonction de répartition d'une variable aléatoire réelle si et seulement si elle est : croissante ; continue à droite ; vérifie $\lim_{x\to -\infty} F(x) = 0$ et $\lim_{x\to +\infty} F(x) = 1$.
- 2. La fonction F vérifie la troisième condition si et seulement si a=1. On considère donc maintenant a=1. On vérifie alors que F est càd si et seulement si le dénominateur ne s'annule pas ce qui équivaut à b>0 ce que l'on supposera désormais. Enfin, en dérivant, on vérifie que F est croissante sur $]0,+\infty[$ et sur $[-\infty,0[$ si et seulement si $b\geq 4$. On en déduit que la fonction F est fonction de répartition d'une variable aléatoire si et seulement si a=1 et $b\geq 4$.

Exercice 3. On considère un espace de probabilité (Ω, \mathcal{F}, P) et X une variable aléatoire réelle sur cet espace de loi uniforme sur [0, 1]. On fixe également un réel p dans [0, 1].

- 1. Montrer que $Y = 1_{\{X < p\}}$ est une variable aléatoire.
- 2. Est elle-discrète? À densité? Donner sa loi.
- 3. On considère trois réels a < b < c ainsi que trois réels p, q et r dans]0,1[tels que p+r+q=1. Construire une variable Z à l'aide de X tel que Z prenne la valeur a (resp. b, c) avec probabilité p (resp. q, r).
- 4. Donner et tracer la fonction de répartition de Z.

Correction.

- 1. Comme Y est à valeur dans $\{0,1\}$, il suffit de vérifier que $\{Y=1\}$ et $\{Y=0\}$ sont dans \mathcal{F} . Or $\{Y=1\}=\{X\leq p\}$ et comme X est une variable aléatoire ce dernier ensemble est bien un événement de \mathcal{F} . De la même façon $\{Y=0\}=\{X>p\}\in\mathcal{F}$.
- 2. La variable Y est discrète puisque elle prend un nombre fini de valeurs. Elle ne peut donc pas être à densité puisqu'elle prend au moins une de ces valeurs avec probabilité strictement positive. Sa loi est caractérisée par $Im(Y) = \{0, 1\}$ et $P(Y = 1) = 1 P(Y = 0) = P(X \le p) = p$.
- 3. On définit $Z=a1_{X\leq p}+b1_{p< X\leq p+q}+c1_{p+q< X}$. En raisonnant de même on vérifie aisément que Z est une variable aléatoire discrète dont la loi est caractérisée par $Im(Z)=\{a,b,c\}$ et $P(Z=a)=P(X\leq p)=p,$ $P(Z=b)=P(p< X\leq p+q)=q$ et P(Z=c)=P(p+q< X)=r.
- 4. La fonction de répartition de Z est définie par $F: u \to P(Z \le u)$ et vérifie donc F(u) = 0 si u < a, F(u) = p si $a \le u < b$, F(u) = p + q si $b \le u < c$ et F(u) = 1 si $c \le u$.

Exercice 4. Soit $p \in]0,1[$. On dit qu'une variable aléatoire à valeurs dans \mathbb{N}^* satisfait la propriété (\star) si

$$P(X = n) = p P(X \ge n)$$
 pour tout $n \ge 1$.

- 1. Que vaut P(X = 1)?
- 2. Montrer que si X suit une loi géométrique de paramètre p alors X satisfait (\star) .
- 3. Soit X une variable satisfaisant (\star) . On note $G: \mathbb{N}^* \to \mathbb{N}^*$ la fonction qui a tout $n \geq 1$ associe $G(n) = P(X \geq n)$. Calculer G.
- 4. En déduire la loi de X.

Correction.

- 1. On a $P(X = 1) = p P(X \ge 1) = p$.
- 2. Supposons que $X \leadsto Geo(p)$. Pour tout $n \ge 1$, $P(X \ge n) = \sum_{k \ge n} P(X = k) = \sum_{k \ge n} (1-p)^{k-1}p = (1-p)^{n-1}$ et $P(X = n) = (1-p)^{n-1}p$. On en déduit que X satisfait à (\star) .
- 3. Soit X une variable satisfaisant (\star) . On note que pour tout $n \geq 1$, $P(X = n) = P(X \geq n) P(X \geq n+1) = G(n) G(n+1)$. On en déduit que G satisfait la relation de récurrence :

$$G(n+1) = (1-p)G(n) \quad n \ge 1,$$

et comme G(1) = 1, on en déduit par récurrence que pour tout $n \ge 1$, $G(n) = (1-p)^{n-1}$.

On notera la coquille dans le sujet : G n'est bien sûr pas à valeur dans \mathbb{N}^* mais dans [0,1].

4. On déduit que pour tout $n \ge 1$, $P(X = n) = G(n) - G(n+1) = (1-p)^{n-1} - (1-p)^n = (1-p)^{n-1}p$ et on reconnait une variable géométrique de paramètre p.