(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 14. Dezember 2000 (14.12.2000)

PCT

(10) Internationale Veröffentlichungsnummer WO 00/74741 A2

(51) Internationale Patentklassifikation⁷: A61L 27/00

(21) Internationales Aktenzeichen: PCT/EP00/05313

(22) Internationales Anmeldedatum:

8. Juni 2000 (08.06.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 26 083.4

8. Juni 1999 (08.06.1999) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): UNIVERSITÄTSKLINIKUM FREIBURG [DE/DE]; Hugstetter Str. 49, D-79106 Freiburg (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SCHAEFER, Dirk, Johannes [DE/DE]; Maltererstr. 8, D-79102 Freiburg (DE). KLEMT, Christof [DE/DE]; Krafftgasse 1, D-79379 Mullheim (DE). STARK, Gerhard, Björn [DE/DE]; Am Rossberg 25, D-79874 Breitnau (DE). FRIEDL, Hans-Peter [DE/DE]; Hohenzollernweg 7, D-79224 Umkirch (DE).

- (74) Anwalt: LEDERER, KELLER & RIEDERER; Prinzregentenstr. 16, D-80538 München (DE).
- (81) Bestimmungsstaaten (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: BIOLOGICAL JOINT CONSTRUCT
- (54) Bezeichnung: BIOLOGISCHES GELENKKONSTRUKT
- (57) Abstract: The invention relates to a biological joint construct which is at least partially produced in an in vitro manner and which comprises at least one biocompatible supporting material, cartilaginous tissue and osseous tissue, whereby the cartilaginous tissue and osseous tissue are joined to one another in a fixed manner. The invention also relates to a method for producing this joint construct. An additional aspect of the invention is osseous tissue that contains the transfected cells and a method for producing the same. Another aspect of the invention is osseous tissue that contains angiopoietic cells or angiogenic growth factors as well as a method for the production thereof.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft ein biologisches, zumindest teilweise in vitro hergestelltes Gelenk-konstrukt, das wenigstens ein bioverträgliches Trägermaterial, Knorpelgewebe und Knochengewebe umfasst, wobei Knorpel- und Knochengewebe fest miteinander verbunden sind. Die Erfindung betrifft ausserdem ein Verfahren zur Herstellung dieses Gelenk-konstrukts. Ein weiterer Aspekt der Erfin dung ist Knochengewebe, das transfizierte Zellen enthält, sowie ein Verfahren zu seiner Herstellung. Ein weiterer Aspekt der Erfindung ist Knochengewebe, das gefässbildende Zellen oder angiogene Wachstumsfaktoren enthält, sowie ein Verfahren zu seiner Herstellung.

Biologisches Gelenkkonstrukt

Die vorliegende Erfindung betrifft ein biologisches Gelenkkonstrukt und Verfahren zu seiner Herstellung sowie Knochengewebe, das transfizierte Zellen enthält und Verfahren zu dessen Herstellung.

chirurgisch nur durch bislang Gelenkdefekte können Gelenkresektion, Gelenkversteifung, alloplastischen Ersatz mit Kunststoff- oder Metallimplantaten bzw. Materialkombinationen daraus, oder durch biologische Implantate behandelt werden. Alloplastische Implantate werden jedoch nicht integriert und lockern sich unter Belastung. Als biologisches Implantat beispielsweise als Fremdgewebe, Kniegelenke können nur verwendet werden. Allotransplantate sogenannte lebenslange eine Fremdgewebeverpflanzungen erfordern Immunsupression mit Gefahren der Weichteiltumorentstehung. Ein autogener biologischer Ersatz kann bisher nur teilweise durch Einzelkomponenten erfolgen. Neben den bekannten chirurgischen Maßnahmen beinhalten wissenschaftliche Ansätze gegenwärtig die Knorpeldefekte durch eine Rekonstruktion kleiner Knorpelzelltransplantation mit einem Knochenhautlappen verschiedene Ansätze, (Brittberg-Methode). Es gab Einzelkomponenten zu rekonstruieren:

US-Patent 5,053,050 beschreibt Zusammensetzungen Das Reparatur von Knorpel oder Knochen, wobei Knorpeloder eine biologische, resorbierbare Knochenzellen in Trägersubstanz eingebracht werden, welche Serum, Fibrinogen und Thrombin enthält. Die US-Anmeldung 5,041,138 beschreibt ein Verfahren zur Herstellung einer Knorpelstruktur durch Trägersubstanz mit Knorpelzellen. In einer Besiedelung ähnlicher Weise betrifft die US-Anmeldung 5,786,217 vielzelligen Herstellung eines Verfahren zur

Knorpelkonstrukts, worin Knorpelvorläuferzellen auf ein Trägermaterial aufgebracht werden und durch weiteres Kultivieren differenzieren und Knorpelsubstanz bilden. Das US-Patent 5,736,372 beschreibt eine polymere Trägersubstanz, die Chondrozyten enthält und geeignet ist, in um vivo bilden. Knorpelstrukturen zu WO 98/42389 offenbart ein biologisches Material zur Behandlung von Knochenoder umfassend Knorpeldefekten Periost und knochenoder knorpelbildende Zellen. WO 97/46665 offenbart ein Implantat umfassend eine in vitro gezüchtete Knorpelschicht, die mit einem Knochenersatzmaterial verbunden ist. Es wird jedoch kein lebendes Knochengewebe offenbart. WO 99/25396 beschreibt ein Mischgewebe enthaltend eine Mischung dissoziierter Chondrozyten und Osteoblasten in und auf einer polymeren Matrix. Es wird somit ein Hybridgewebe offenbart, das weder ein Knochengewebe noch ein Knorpelgewebe ist. WO 96/03160 offenbart eine Suspension enthaltend unter anderem Chondrozyten und Osteozyten und Fibrinogen, die mit einer Thrombinlösung zu einer Zell-Fibrinmatrix umgesetzt werden. EP 0 339 607 offenbart eine Zusammensetzung, die Chondrozyten oder Osteoblasten oder andere Zellen enthalten kann, 195 Fibrinkleber. DE 43 110 offenbart ein steriles Knochenmaterial nativen Ursprungs für die Transplantation, das im wesentlichen frei von Fett, Bindegewebe und Knorpelmasse ist durch Erhitzung trockene und nachfolgende Dampfsterilisation erhältlich ist. Das Knochenmaterial kann auch in Granulatform vorliegen. Es ist bekannt, daß bestimmte Wachstumsfaktoren die Proliferation von Zellen verschiedenster stimulieren können. Die internationale Anmeldung 95/22611 beschreibt Verfahren und Zusammensetzungen zum Gentransfer in Knochenzellen in vivo, insbesondere zum Gentransfer von osteotropen Genen, die das Wachstum von Knochenvorläuferzellen in vivo stimulieren sollen.

Bislang sind also erfolgreich lediglich Einzelkomponenten rekonstruiert worden, zum Beispiel Knochen oder Knorpel. Biologische Einzelkomponenten können komplexe, meist osteochondrale Defekte aber nicht ausreichend rekonstruieren.

Ungelöst ist nach wie vor die Rekonstruktion komplexer Gelenkstrukturen bzw. der komplette biologische Gelenkersatz mit Knochen-, Knorpel-, Kapsel- und Bandanteilen.

Eine Aufgabe der vorliegenden Erfindung ist es, ein vorteilhaftes biologisches Gelenkkonstrukt zur Verfügung zu stellen.

Diese Aufgabe wurde durch das erfindungsgemäße biologische, teilweise in vitro hergestellte Gelenkkonstrukt gelöst. Im Rahmen dieser Anmeldung bedeutet "in vitro", daß ein Prozeß außerhalb des tierischen oder menschlichen Körpers sogenannte "ex vivo"die stattfindet. Dazu zählt auch Manipulation von Zellen, also das Kultivieren von isolierten Zellen, ihre Vermehrung und Veränderung. Es handelt sich aber nicht um ein im menschlichen oder tierischen Körper natürlich erfindungsgemäße Gelenkkonstrukt. Das gewachsenes ein bioverträgliches umfaßt wenigstens Gelenkkonstrukt Trägermaterial, Knorpelgewebe enthaltend Chondrozyten und/oder Chondroblasten und Knorpelsubstanz, Knochengewebe enthaltend Osteoblasten und/oder Osteocyten und Knochensubstanz, wobei Knorpel- und Knochengewebe fest miteinander verbunden sind.

Trägermaterialien sind Materialien, die keine zytotoxischen Effekte besitzen, die die Anhaftung von Zellen ermöglichen und die Proliferation und Differenzierung der Zellen zu gewebesynthetisierenden Zellen erlauben. Weiterhin sollte das Material einen stabilen, physiologischen pH-Wert aufweisen. Zur Analyse dieser Kriterien können folgende Untersuchungen durchgeführt werden:

Durch Elektronenmikroskopie kann die Oberflächentopographie des Materials analysiert werden und die Anhaftung der Zellen überprüft werden. Stoffwechseltests, beispielsweise der XTT-Roche proliferation kit, erhältlich von (cell die liefern eine Aussage über Mannheim) Diagnostics, ihrer durch Messung Proliferation der Zellen handelt sich hierbei einen Stoffwechselaktivität. Es um

Proliferationstest für lebende Zellen, bei dem ein Natrium-Tetrazolium-Carboxanilit, kurz Tetrazoliumsalz (mit der Abkürzung XTT), dem Medium zugegeben wird. XTT entspricht Sodium-Tetrazolium-Carboxanilit. Damit kann ein zytotoxischer Effekt ausgeschlossen werden. Durch histologische Methoden können die gewebetypischen Matrizes von Knorpel, Knochen oder Kapsel nachgewiesen werden. Die gewebetypische Matrix kann auch durch immunhistochemische Verfahren bestimmt werden.

Trägersubstanz bevorzugt Knorpelgewebe werden als Für Vliese, visköse, gelierende und schwammartige verfestigende Gele oder netzartige Fadengewebe eingesetzt. Als biologische Varianten kommen dabei Fibrin-Thrombin-Komplexe, Kollagengele oder Alginate in Betracht. Als synthetische Materialien sind Kollagen, Hydrogele oder visköse Polymere denkbar. Sollen für Knorpel vliesartige Trägermaterialien werden, biologische Variante so können als verwendet Kollagenvliese und als synthetische Varianten Polylactid, Polyglycolid oder Polyurethan verwendet werden.

Die Trägermaterialien für Knochen weisen in der Regel eine feste, formbare bzw. bearbeitbare, dreidimensionale poröse (Porosität ca. 80-90%), wobei die Poren Struktur auf können. Die verbunden sein untereinander sollte leicht gerauht sein. Oberflächentopographie können im wesentlichen aus Trägersubstanzen Calciumphosphat oder Fibrin bestehen. Sie können jedoch auch Knochen-Polymeren bestehen. Als aus synthetischen Trägermaterialien können folgende stabile, dreidimensionale, poröse Materialien verwendet werden: humaner oder animaler Knochen, Korallenmatrix, Knochen, gesinterter spongiöser demineralisierte Knochenmatrix (biologische Varianten), Calciumphosphat-Verbindungen, Polylactid, Polyglycolid, andere Polymere (synthetische Varianten). Als visköse, gelierende und sich verfestigende Gele sind folgende Materialien einsetzbar: Fibrin-Thrombin-Komplexe, Kollagengele, Alginate (biologische Hydrogele, Polymere (synthetische Varianten), visköse Varianten). Die Knochen-Trägermaterialien können weiterhin mit

Haftmolekülen beschichtet sein, die die Anheftung von Zellen erleichtern. Solche Haftmoleküle sind bevorzugt Fibronektin oder Laminin. Wesentlich ist, daß keine Abstoßungsreaktionen gegen die Trägermaterialien in dem Empfängerorganismus auftreten.

Für Kapselkomponenten sind bandförmige Gewebenetze oder Vliese zur Herstellung Trägermaterialien geeignet. Als allgemein membranartige synthetische Bandkomponenten sind beispielsweise Fasermaterialien einsetzbar, resorbierbare Polyglycolsäure, Polymilchsäure oder Polyglactin, Hvaluronsäure.

Die Trägermaterialien für Bandkomponenten können auch als Trägermaterialien für Kapselkomponenten verwendet werden.

die Aspekt der vorliegenden Erfindung ist weiterer Ein als Trägermaterial der Verwendung von Spongiosa Knochenkomponente. Überraschenderweise wurde gefunden, daß Spongiosa sehr gut geeignet ist, um Knochenvorläuferzellen zur Synthese von Knochensubstanz anzuregen. Vorzugsweise handelt es sich dabei um autoklavierte, humane, allogene Spongiosa, die aus Hüftköpfen gewonnen wird. Am bevorzugtesten wird das Material aus Hüftköpfen gewonnen, die durch Wasserstrahl und Ultraschallbehandlung von losem Stroma gereinigt Anschließend erfolgt Autoklavierung bei 134°C und 2,5 bar zur Das Material ist steril, nicht immunogen, Sterilisation. resorbierbar und besteht aus Hydroxylapatit und denaturiertem Kollagen Typ 1.

erfindungsgemäßen Gelenkkonstrukt enthaltene in dem Das Knorpelgewebe enthält Chondrozyten und/oder Chondroblasten und Knorpelsubstanz. Unter Knorpelgewebe ist ein aus Knorpelzellen - verschiedener - Grundsubstanz (Chondrozyten) und verschiedenen Faserarten bestehendes viskoelastisches, gefäß-Stützgewebe verstehen. Unter nervenloses zu die Grundsubstanz zusammen mit. den Knorpelsubstanz ist zu verstehen. Die Grundsubstanz verschiedenen Faserarten

enthält Glycosaminoglykane und Proteoglykane, vorzugsweise Hyaluronsäure, Chondroitinsulfat und Keratansulfat. Weiter sind Proteine und Mineralbestandteile enthalten. Als Faserarten können elastische Fasern, kollagene Fibrillen oder kollagene Fasern vorkommen.

Unter Knochengewebe ist ein Gewebe zu verstehen, das aus einer verkalkten Fasern und Knochenzellen, kollagenen Grundsubstanz besteht. Knochensubstanz im Sinne der Anmeldung umfaßt Kollagen, Glycosaminglykane und Proteoglykane, sowie anorganische Substanzen, hauptsächlich Calciumphosphat, das in Form von Hydroxylapatit-Kristallen auftritt. Zur Verbesserung Knochengewebe das Gefäßneubildung kann der Wachstumsfaktorproteine enthalten oder Osteoblasten, die mit für Wachstumsfaktoren kodierenden Genen transfiziert wurden. Schließlich können auch gefäßbildende Zellen enthalten sein, die die Blutgefäßentstehung fördern (z.B. Endothelzellen oder deren Vorläuferzellen).

Erfindungsgemäß sind Knorpelgewebe und Knochengewebe des Gelenkkonstrukts fest miteinander verbunden. Dabei ist das Trägermaterial des Knochens mit der neuen Knochensubstanz verzahnt, es ist auch teilweise in die Knorpelkomponente integriert. Es liegt also keine scharfe Trennfläche zwischen Knochen- und Knorpelgewebe vor, vielmehr wird durch Verzahnung und Interdigitation eine feste Verbindung erreicht. Bevorzugt wird dies dadurch erreicht, daß das Knochengewebe eine rauhe bzw. poröse Oberfläche aufweist, in die das Knorpelgewebe einwachsen kann.

Die in dem Gelenkkonstrukt enthaltenen Knochen- und Knorpelzellen sind vor der Herstellung des Gelenkkonstrukts nach üblichen Methoden isoliert worden. Es können auch Vorläuferzellen isoliert werden, die erst während Kultur in vitro zu Knochen- oder Knorpelzellen differenzieren.

Das biologische Gelenkkonstrukt kann beliebige Größe aufweisen. Damit ist der Teilersatz einer Gelenkfläche, der Totalersatz einer Gelenkfläche oder der Ersatz eines gesamten Gelenks mit zwei Gelenkflächen möglich.

Beim Teilersatz einer Gelenkfläche (ohne Bandersatz) kann ein einzelnes präformiertes Konstrukt oder osteochondrale Zylinder verwendet werden. Bei Verwendung eines einzelnen präformierten Konstrukts wird ein bestimmter Knorpel/Knochendefekt eines Gelenks durch ein einzelnes osteochondrales Konstrukt ersetzt. Die Form wird dabei durch die Knochenkomponente bestimmt. Nach und Herstellung der Komponenten wird Zellgewinnung Konstrukt ex vivo präformiert, das heißt es wird anhand individueller Datenerhebung durch Computertomographie oder Magnetresonanzuntersuchungen auf den zu korrigierenden Defekt hin maßgeschneidert. Die Verankerung erfolgt dann durch den Knochenzapfen. Zur Vermeidung einer jeweiligen individuellen Anfertigung eines Konstrukts wie beschrieben können auch uniforme osteochondrale Zylinder angefertigt werden, die im Sinne einer sogenannten Mosaikplastik zu mehreren in einen Defekt eingefügt werden und die Gelenkfläche rekonstruieren. Diese Zylinder können in verschiedenen Größen und Formen angefertigt werden. In jedem Fall bestehen sie aus einer Knorpelschicht und einem Knochenzapfen. Beide Komponenten sind mit der jeweiligen Zellsorte beladen. Die Knochenzellen können auch mit Wachstumsfaktoren transfiziert sein, um zusätzlich die Knochenbildung und Gefäßbildung einzuleiten. Vorzugsweise haben die Zylinder eine Höhe von 5 bis 25 mm und einen Durchmesser von 2,5 bis 15 mm. Die Schichtdicke des Knorpels beträgt vorzugsweise 0,5 bis 2 mm, die des Knochens wird üblicherweise zwischen 3,5 und 23 mm variieren. Als mögliche Formen sind Zylinder mit rundem Querschnitt, mit dreieckigem Ouerschnitt oder mit mehreckigem Querschnitt (z.B. penta-, hexa-, hepta- oder oktogonal) denkbar. Ebenfalls können Quader rechteckigem Querschnitt (viereckig) bzw. mit mit quadratischem Querschnitt verwendet werden. Die Knorpel sind so geformt, daß ihre Oberfläche eine konvexe Krümmung aufweist oder eine plane Oberfläche ohne Krümmung ist. Die Verwendung osteochondraler Zylinder wurde im Kaninchenmodell überprüft und war erfolgreich in der Rekonstruktion eines

osteochondralen Defekts. Der Vorteil der Methode ist die einfachere Herstellung und die mögliche minimal-invasive Anwendung.

Beim Totalersatz einer Gelenkfläche weist das Gelenkkonstrukt anatomisch sinnvolle Form eine vorzugsweise beispielsweise besitzt es eine Gelenkseite, deren Oberfläche aus Knorpelgewebe besteht und die Kontakt zu einem anderen Gelenkteil haben kann, und es besitzt eine Ankerseite, die zum Teil aus Knochengewebe besteht und die zur Verankerung des Konstrukts in einem Knochenschaft dienen kann. Die Ankerseite ist vorzugsweise in der Form eines zylinderförmigen Zapfens Knochenschaft der besonders qut in einem ausgebildet, Die Gelenkseite besitzt besonders verankert werden kann. bevorzugt eine konkave oder konvexe Oberfläche. Es sind aber auch andere Gelenkkonstruktformen denkbar, je nach Art des Gelenks, für dessen Reparatur das Konstrukt verwendet werden soll.

ebenfalls können erfindungsgemäßen Gelenkkonstrukte Die wenigstens eine Bandkomponente aufweisen. Die Bandkomponente besteht beispielsweise aus einem strangförmigen, faserartigen Biomaterial. Sie kann an membranösen oder des Knochenkomponente der Bandverbindungsstellen erfindungsgemäßen Gelenkkonstrukts befestigt werden. Mögliche Befestigungsarten sind biologische Klebung, beispielsweise durch Fibrin-Thrombin-Komplexe, unterstützende, transossäre Naht oder der Durchzug durch die Knochenkomponente in einem Knochenkanal. Beim Totalersatz einer Gelenkfläche ist die Anfertigung von Bandstrukturen nicht unbedingt notwendig, da die vorhandenen Kapsel-Bandstrukturen im Defekt genutzt werden Die Knochenkomponente kann Verankerungspunkte diese Strukturen aufweisen. Dies sind in der Regel Bohrkanäle, durch die Nahtmaterial hindurchgezogen und damit die Kapsel-Bandstrukturen fixiert werden können. Vorzugsweise wird das Knorpel-Knochenkonstrukt ohne zusätzliche Fixierung der Kapsel oder Bänder eingesetzt.

der vorliegenden Erfindung weitere Ausführungsform besteht in einem biologischen Gelenkersatz, der wenigstens Gelenkkonstrukte umfaßt. Zwei Gelenkkonstrukte können dabei mit Ihren knorpelbeschichteten Gelenkseiten Kontakt die voneinander abgewandten haben, während zueinander Ankerseiten in zwei verschiedenen Knochenschäften verankert werden können. Dieser Gelenkersatz wird vorzugsweise weiter Bandkomponenten Anbringung wenigstens zwei von durch stabilisiert. Schließlich kann ein derartiger biologischer Gelenkersatz auch eine Gelenkkapsel aufweisen. Dazu wird ein Kapselverbindungsarealen an membranöses Biomaterial Knochenkomponente entweder durch biologische Klebung oder durch Naht befestigt. Durch die beschriebene Ausführungsform kann der komplette Ersatz eines Gelenks mit zwei Gelenkflächen erfolgen. Der komplette Gelenkersatz mit zwei Gelenkanteilen ist vor allem bei Arthrose oder Arthritis notwendig und stellt die komplizierteste Form des Gelenkersatzes dar. Prinzipiell und Gelenkteile bestehend aus Knorpelwerden zwei die Knochenkomponente hergestellt. Auf einer Seite Gelenkfläche konvex, auf der anderen passend dazu konkav geformt, so daß eine regelrechte Artikulation der Flächen bei einzeln Komponenten werden Bewegung möglich ist. Die hergestellt und können auch einzeln implantiert werden, wie Totalersatz nur einer Gelenkfläche wie oben stehend beschrieben.

Bevorzugt werden vorhandene Kapseln und Bänder des alten Gelenks benutzt, um die Einzelteile zu verbinden und das neue Gelenk zu stabilisieren. Dazu werden die Bänder durch Nähte, werden, an durch Bohrkanäle qezogen welche dieser Knochenkomponente fixiert. Die Komponente kann an Stelle eine Vertiefung aufweisen. Alternativ werden die beiden Gelenkteile durch Nahtmaterial miteinander verbunden, bis sich nach der Transplantation eine Neokapsel in vivo gebildet hat. Sollte ein Bandersatz durch Tissue engineering notwendig sein, so kann der Bandersatz wie folgt hergestellt werden. Zunächst werden autologe Fibroblasten aus der Dermis durch eine Hautbiopsie isoliert und in vitro vermehrt. Ein bandförmiges

Biomaterial wird mit einer Zellsuspension (2,5 bis 5×10^7 Medium) besiedelt. Als Biomaterial kommen Zellen pro ml Collagenvliese, azelluläre Lederhaut, beispielsweise lyophilisierte Dura oder synthetische Bänder aus PGLA in Betracht. Das Bandkonstrukt wird für 3 bis 7 Tage in vitro Schließlich wird die Struktur Knochenkomponente durch Naht oder Fibrinklebung befestigt. einer erfolgt die Fixierung zunächst nur auf Dabei Gelenkseite, die zweite Verbindung erfolgt erst nach Implantation im Rahmen der Operation.

Alternativ können die Bandstrukturen auch durch die Verpflanzung von Sehnen oder deren Teilen erfolgen, wie es bereits gegenwärtiger Stand der chirurgischen Technik ist.

Die vorliegende Erfindung betrifft außerdem ein Verfahren zur Herstellung eines biologischen Gelenkkonstrukts. Dieses Verfahren umfaßt die Bereitstellung einer Knochenkomponente, die Bereitstellung einer Knorpelkomponente, die Verbindung dieser beiden Komponenten sowie die Züchtung des resultierenden Konstrukts in vitro.

erfolgt Bereitstellung der Knochenkomponente Die bioverträglichen Trägermaterials eines Besiedelung Osteoblasten. Als Trägermaterialien kommen die obengenannten Trägermaterialien für Knochen in Betracht. Vorläuferzellen von Osteoblasten können durch kleine Knochenbiopsien des Beckens, Brustbeines, des Schädels und Kiefers oder von Röhrenknochen gewonnen werden. Aus den Knochenproben wird das lose Stroma herausgespült und nach Zentrifugation in einer Kulturflasche ausplattiert. Die festen Knochenanteile können ebenfalls in Kultur gebracht werden, da hieraus durch Migration weitere Zellen gewonnen werden können. Die auswachsenden Zellen werden im subkonfluenten Stadium gesplittet und zwei- bis dreimal passagiert. Alternativ zu Knochenproben können auch Aspirate dem Becken oder aus dem Brustbein von Knochenmark aus verwendet werden. Hierbei wird der Knochen beispielsweise mit einer Kanüle punktiert, und die Probe wird durch Ansaugen

(Aspiration) erhalten. Die Aspirate werden in Heparinmedium gespült, durch einen Dichtegradienten zentrifugiert, um rote abzutrennen und schließlich Blutkörperchen Kulturflasche ausplattiert. Der osteoblastische Phänotyp der Zellen in Kultur kann durch Nachweis der knochenspezifischen Alkalische Phosphatase und Osteocalcin Proteine Kulturmedium überprüft werden. Immunhistochemische Färbungen Die ebenfalls denkbar. Kontrollkulturen sind durch biologischen Gelenkersatzes Blutversorgung des neugebildete Gefäße ist von entscheidender Bedeutung für das Überleben der Zellen und das Einheilen des Konstrukts. Aus diesem Grund kann die Knochenkomponente auf drei Weisen Sie Wachstumsfaktorproteine modifiziert werden: kann enthalten, die die Gefäßneubildung induzieren (1), sie kann mit Wachstumsfaktorgenen enthalten, die Osteoblasten transfiziert sind (2) oder sie kann gefäßbildende Zellen enthalten, die zur Blutgefäßentstehung führen (3).

Angiogene Wachstumsfaktoren können direkt in rekombinanter Form in der viskösen Matrix der Knochenkomponente in wirksamer Mögliche Faktoren Konzentration gespeichert werden. Vascular endothelial growth factor (VEGF) sowie Isoformen davon, Basic fibroblast growth factor (bFGF), Angiopoetin 1 und 2 (Ang I und II). Die Konzentration der Faktoren beträgt üblicherweise 0,1 bis 10 ng/ml visköse Matrix. Der oder die Wachstumsfaktoren können vorteilhaft einer Calciumchloriddie dann zu einer werden, Thrombinlösung zugesetzt Osteoblastensuspension in Fibrinogenlösung zugegeben wird. Dadurch bildet sich ein dreidimensionales Fibrinnetzwerk mit haftenden Osteoblasten im Kulturmedium und gespeichertem Wachstumsfaktor.

Die Transfektion von Osteoblasten mit gefäßbildenden Wachstumsfaktoren ist ausführlich in einem späteren Teil des Anmeldetextes beschrieben.

Es können auch gefäßbildende Zellen, sogenannte Endothelzellen oder deren Vorläuferzellen, in die visköse Matrix der

gemischt mit werden, Knochenkomponente eingebracht Osteoblasten. Mikrovaskuläre Endothelzellen werden aus Lederhaut (Dermis) eines Patienten isoliert nach einem an sich bekannten Protokoll und mit Endothelzellenmedium in vitro Osteoblasten-Technik). Eine (etablierte vermehrt wird hergestellt, wobei als Fibrinogensuspension sogenanntes Endothelzellmedium verwendet wird, in welchem gemischtzellige können. Die wachsen qut Osteoblasten Osteoblasten-Endothelzell-Fibrinogensuspension wird Knochenkomponente Trägermatrix der porö**se**, feste die eingesogen bzw. appliziert.

Die drei beschriebenen Strategien können auch kombiniert werden. Beispielsweise kann eine Osteoblasten-Endothelzellwerden zusammen Fibrinogensuspension eingesetzt transfiziert Wachstumsfaktorgenen die mit Osteoblasten, Osteoblasten-Endothelzellkönnen wurden. Genauso mit rekombinanten gemeinsam Fibrinogensuspensionen Wachstumsfaktoren verwendet werden.

durch Knochenträgermaterial Vorzugsweise wird das Knochenzellsuspension in einer Aspirationskammer besiedelt. Knochenträgermaterial vor der wird das Üblicherweise Besiedelung durch Knochenzellen in anatomisch sinnvoller Weise geformt. Beispielsweise führt die Formgebung zur Ausbildung einer Gelenkseite, die zur Aufnahme einer Knorpelfläche dienen soll und zur Ausbildung einer Ankerseite, die der Verbindung mit einem Knochenschaft dienen soll.

Chondrozyten werden bevorzugt aus Biopsien von Knorpelgewebe des Ohres, der Rippe und der Gelenke durch enzymatische Auflösung gewonnen. Durch Beimpfung von Biomaterialien wie Zellen können die Fibrinkleber Kollagenschwämmen und dreidimensionalen Kultur weiter einer organotypisch in vermehrt werden. Dadurch wird auch vermieden, daß sich die Fibroblasten entdifferenzieren. zu Zellen chondroblastische Phänotyp bleibt erhalten. Zur Bereitstellung Knorpelkomponente kann nun eine Suspension von

Chondrozyten hergestellt werden entweder in einem flüssigen oder in einem gelartigen Material. Beispielsweise Knorpelzellen der Thrombinkomponente in können Fibrinklebers suspendiert werden und nach Mischen mit der bestimmte vorgefertigte Fibrinogenkomponente in eine Kulturform gegossen werden. Dadurch entsteht ein mit Kulturmedium überschichtet wird und Gebilde, das gezüchtet wird. Alternativ können auch Brutschrank bioverträgliche Trägersubstanzen durch Knorpelzellen besiedelt Beispielsweise werden Schwämme aus Kollagen Chondrozyten angeimpft. Die angeimpften Kollagenvliese können einer bevorzugten kultiviert werden. In Brutschrank Knochender Erfindung werden und Ausführungsform voneinander hergestellt getrennt Knorpelkomponente getrennt kultiviert. Nachdem die jeweiligen Zellen ausreichend Gewebe gebildet haben, werden Knochen- und Knorpelkomponente durch Fibrinklebung miteinander verbunden. Es ist wesentlich für die Erfindung, daß bei der Verbindung von Knochen- und Knorpelkomponente das Trägermaterial der Knochenkomponente in den Knorpel integriert wird. Das resultierende Konstrukt kann in vitro kultiviert werden, so daß die Zellen gewebespezifischen ihrer Anheftung und zur Synthese extrazellulären Matrix stimuliert werden, dadurch wird eine biologische Vernetzung der zusammengesetzten Komponenten erreicht.

In einer besonders bevorzugten Ausführungsform der Erfindung separat Knochen-Knorpelkomponente nicht und werden Vielmehr wird während des hergestellt und kultiviert. der Herstellung der Abbindens Fibrinklebers bei des Knorpelkomponente das Trägermaterial der Knochenkomponente, das noch nicht durch Osteoblasten besiedelt worden ist, in die Knorpelschicht gedrückt, so daß es fest eingebunden wird. Die Besiedelung durch Osteoblasten erfolgt erst später.

Eine weitere Ausführungsform der Erfindung umfaßt auch die Herstellung einer Bandkomponente aus faserartigen Materialien und Fibroblasten. Dabei können Fibroblasten aus Suspension auf bandförmige Materialien geimpft werden und im Brutschrank kultiviert werden. Ähnlich dazu können Ausführungsformen die Herstellung auch einer Kapselkomponente aus faserartigen, membranösen Materialien und Fibroblasten umfassen.

Weiterhin kann das erfindungsgemäße Verfahren das Anbringen von Bandverbindungsstellen oder Kapselverbindungsarealen an dem Trägermaterial der Knochenkomponente umfassen. Daran können Gelenkbänder bzw. Kapselkomponenten befestigt werden. Bandkonstrukte werden bevorzugt dadurch mit der Knochenkomponente verbunden, daß das Bandkonstrukt durch einen Bohrkanal in der Knochenkomponente hindurchgezogen wird.

Ein weiterer Aspekt der Erfindung ist ein Verfahren zur Knochengewebe, wonach Knochenvon Herstellung Knochenvorläuferzellen isoliert werden, diese Zellen durch Gentransfer mit einem Wachstumsfaktorgen nicht-viralen transfiziert werden und zur Besiedelung eines bioverträglichen Trägermaterials benutzt werden. Das entstehende Konstrukt wird schließlich in vitro weitergezüchtet. Gegebenenfalls werden die isolierten Zellen vor der Transfektion in vitro vermehrt. Die Transfektion kann stabil sein, bevorzugt ist jedoch eine transiente Transfektion. Bei der transienten Transfektion werden die Zellen nur vorübergehend, also nicht dauerhaft durch die Einschleusung von DNA genetisch verändert. Transfektion kann nach verschiedenen Methoden erfolgen. Beim Partikel-vermittelten Gentransfer werden Zellen durch eine sogenannte Genkanone (gene gun) mit Plasmid- oder nackter DNAbeschichteten Goldpartikeln beschossen. Alternativ dazu kann die Transfektion durch Elektroporation vorgenommen werden. Die bevorzugte Transfektionsmethode ist jedoch die Lipofektion. Bevorzugt werden dabei die Reagenzien Transfectam® (erhältlich von der Firma Promega), Fugene® (erhältlich von der Firma Roche Diagnostics), Lipofectamin 2000®, Lipofectin® (Firma Life Technology) und Escort® (erhältlich von der Firma Sigma) verwendet.

die Zellen mit wenigstens einem Erfindungsgemäß werden Wachstumsfaktorgen transfiziert. Ein Wachstumsfaktor oder Cytokin im Sinne der Erfindung ist eine Verbindung, die die Proliferation und/oder Differenzierung von Zellen stimulieren Die meisten Wachstumsfaktoren sind Proteine Peptide, so daß Gene, die für diese Proteine oder Peptide kodieren, transfiziert werden können. Bevorzugt sind diese Gene in Plasmide eingebaut, die zusätzliche regulatorische und Kontrollsequenzen enthalten, um die Expression des Gens zu gewährleisten. Zu diesen zusätzlichen Sequenzen zählen ein Replikationsursprung, eine Promotorsequenz, am bevorzugtesten abgeleitet vom Cytomegalievirus (CMV), gegebenenfalls eine Kozaksequenz (eine nahe am Promotor lokalisierte DNA-Sequenz, die die Expression erhöhen soll), ein Polyadenylierungssignal, gegebenenfalls ein Gen, das Resistenz gegen ein Antibiotikum vermittelt. Gemäß der Erfindung können auch Nucleinsäuren für ein Fragment eines die werden, nur transfiziert das aber die Aktivität eines Wachstumsfaktors kodieren, Wachstumsfaktors besitzt.

Mögliche Wachstumsfaktoren, deren Gene transfiziert werden growth factor" (bFGF), "basic fibroblast sind können "insuline-like growth factor" (IGF I, II), "platelet derived factor" (PDGF-AA, -AB, -BB), "bone morphogenetic proteins" (BMP-1 bis BMP-20), "vascular endothelial growth factor" (VEGF), Faktor XIII (F XIII), "transforming growth (TGF-B), Angiopoetin (Ang I, II) und andere factor ß " jedoch das Gen Bevorzugt wird Faktoren. osteotrope transfiziert, das für epidermalen Wachstumsfaktor kodiert (EGF).

In einer besonderen Ausführungsform der Erfindung wird das bioverträgliche Trägermaterial nicht nur mit transfizierten Zellen, sondern auch mit nicht transfizierten Zellen in einem Verhältnis von 1:3 bis 1:9 (transfizierte zu nichttransfizierten Zellen) besiedelt. Die isolierten Zellen können verschiede Knochenzellen oder Knochenvorläuferzellen sein, bevorzugt sind es jedoch stromale Zellen.

Außerdem betrifft die Erfindung Knochengewebe, das wenigstens ein bioverträgliches Trägermaterial und Osteoblasten enthält, die in vitro durch nicht-viralen Gentransfer mit einem Gen, das für einen Wachstumsfaktor kodiert, transfiziert worden sind. Bevorzugte Ausführungsformen betreffen Knochengewebe, die nach einem der oben beschriebenen Verfahren zur Herstellung von Knochengewebe mit Hilfe von transfizierten Zellen hergestellt wurden.

Das erfindungsgemäße Knochengewebe hat zwei wesentliche Vorteile.

nicht-transfizierte Zellen durch Einen werden sezernierten Wachstumsfaktoren parakrin zur Proliferation angeregt. Dabei wird der Wachstumsfaktor von einer Zelle produziert und wirkt auf eine andere Zelle ein. Das hat nicht nur eine verbesserte Besiedelung der Trägermaterialien während der in vitro-Phase zur Folge, sondern auch eine verbesserte Einbindung des Gewebes nach Implantation. Das Knochengewebe stellt dann in vivo Wachstumsfaktoren zur Verfügung, ist also "zelluläres Wachstumsfaktor-Liefersystem". Dabei treten die von anderen Verfahren bekannten Nachteile nicht auf: Es werden keine Zellen außer den gewünschten transfiziert. Es sind keine Risiken zu befürchten, die mit viralen Methoden wiederholt nicht müssen Es einhergehen. rekombinantem Wachstumsfaktorprotein appliziert werden, da die Sekretion "physiologisch" erfolgt. Bei direkter Gabe Wachstumsfaktor bestehen die Risiken biologischer auch Inaktivität oder mangelnder Reinheit des Proteins.

Der zweite wesentliche Vorteil besteht darin, daß bestimmte Gewebes des Implantation nach Wachstumsfaktoren Gefäßneubildung induzieren können. Die Gefäßneubildung ist eines der entscheidenden Probleme beim "TissueEngineering". einer verbesserten Die Faktoren können somit zu Vaskularisierung des Konstrukts führen, was ein wesentlicher Vorteil für die Eigenschaften des implantierten Gewebes ist.

Figur 1a) zeigt die Fusion der Knorpelkomponente mit dem Trägermaterial des Knochens. Während dem Verfestigungsvorgang der Knorpelkomponente wird das Trägermaterial der Knochenkomponente in das Knorpelkonstrukt eingedrückt.

Figur 1b) zeigt das Anbringen der Bandkomponenten. Biologische Bandkomponenten können an den Bandverbindungsstellen integriert werden (hier durch transossären Durchzug). Das Konstrukt hat eine Gelenkseite und eine Ankerseite für den Einbau in den Knochen.

Figur 1c) zeigt Ansichten eines Knorpel-Knochen-Konstrukts. Das Trägermaterial der Knochenkomponente wurde mit Osteoblasten besiedelt. Die Knorpelkomponente ist fest mit der Knochenkomponente Verbunden. Das Konstrukt hat eine anatomisch korrekte Form zum Gelenkersatz. Es weist eine Gelenkseite und eine Ankerseite auf.

Figur 1d) zeigt die Integration des biologischen Gelenkkonstrukts in den Knochen. Darstellung eines einseitigen Gelenkersatzes durch Einbau eines Knorpel-Knochen-Konstrukts ohne Bandverbindung in den Knochen.

kompletten zeigt die Integration eines Figur 1e) mit Bandverbindung. Ein zweiteiliger Gelenkersatzes in Knochen wurde mit Bandverbindung Gelenkersatz Entfernung des ursprünglichen Gelenks (hier Fingergrundgelenk) eingesetzt. Der biologische Gelenkersatz hat die korrekte anatomische Form.

Figur 1f) zeigt ein histologisches Schema nach Fusion der Knorpelkomponente mit dem Knochenträgermaterial. Das Trägermaterial der Knochenkomponente (hier Spongiosa) wurde während dem Verfestigungsvorgang der Knorpelzellsuspension (hier Fibrinkleber) in das Knorpelkonstrukt integriert. Es entsteht eine stabile Verbindung zwischen Knorpelschicht und Trägermaterial des Knochens.

Figur lg) zeigt ein histologisches Schema eines Knorpel-Knochen-Konstrukts nach Synthese von Knochensubstanz durch Osteoblasten. Nach Besiedelung des in Figur lf) gezeigten Konstrukts mit Osteoblasten wurde neue Knochensubstanz synthetisiert.

Figur 1h) zeigt ein histologisches Schema der Grenzfläche zwischen Knorpel und Knochen. Die Vergrößerung zeigt im Schema die Grenzfläche zwischen der Knorpel- und Knochenkomponente mit dem Trägermaterial des Knochens. Es zeigt sich die Verzahnung des Trägermaterials mit der neuen Knochensubstanz und die Vernetzung des Knorpels mit dem Knochen. Das Trägermaterial ist teilweise in die Knorpelkomponente integriert.

Die Erfindung wird durch nachfolgende Beispiele näher erläutert, wobei Tierversuche die Durchführbarkeit der vorliegenden Erfindung belegen müssen, da Experimente am Menschen aus ethischen Gründen nicht vertretbar erscheinen. Gegenstand der vorliegenden Erfindung sind aber bevorzugt biologische Gelenkkonstrukte, die autologe, also vom Empfänger stammende oder allogene, das heißt von einem anderen Menschen stammende Zellen enthalten.

Beispiel 1: Isolierung von Chondroblasten

Es wird zunächst die Isolierung von Chondroblasten aus Kaninchen beschrieben. Diese Methode ist im Prinzip auf Menschen übertragbar.

Das Kaninchen wird durch eine Injektion narkotisiert. Die Haare werden im Operationsgebiet rasiert, die Haut desinfiziert und steril abgedeckt. Über dem knorpeligen Anteil der Rippe wird ein Schnitt von ca. 2 cm gesetzt. Der Rippenanteil wird freipräpariert, etwa 1,5 cm Rippenknorpel einschließlich des Perichondrium werden herausgetrennt. Nach

Blutstillung und Spülung wird die Wunde durch Rückstichnähte verschlossen. Anschließend wird ein Sprühverband angebracht.

Der autologe Rippenknorpel wird in sterile Ringerlösung (DAB 7-Lösung, erhältlich von Fa. Delta Pharma) gegeben, die mit 200 IU/ml Penicillin und 20 μ g/ml Streptomycin supplementiert worden ist. Der Knorpel kann in der Lösung für einige Stunden bei 4°C aufbewahrt werden, muß aber innerhalb von 6-8 Stunden bearbeitet werden. Das Knorpelgewebe wird mit einem Skalpell (20/22) unter sterilen Bedingungen auf eine Größe von 1-2 mm zerkleinert und in eine große Petrischale (130 \times 15 mm) gegeben. Die Knorpelmenge wird gewogen.

Anschließend werden 50 ml 2 mg/ml Kollagenase in einem handelsüblichen, speziell für Chondrozyten hergestellten Standardmedium, nämlich HAM's F12-Medium (Hepes-Modifikation, mit 100 IU/ml Penicillin, 100 μ g/ml Streptomycin) in die Petrischale mit den Knorpelstückchen gegeben. Es folgt für 16-24 h Inkubation im Zellkultur-Brutschrank.

Die Knorpelzellsuspension mit verbliebenen Knorpelstückchen wird abpipettiert, mit dem gleichen Volumen HAM's F12-Medium (Hepes-Modifikation), 100 IU/ml Penicillin, 100 μ g/ml Streptomycin, $\approx 50~\mu$ g/ml Ascorbinsäure, $\approx 10\%$ (v/v) autologes Serum, 2 mM Glutamin verdünnt und ausgiebig auf einem Schüttler gerüttelt, um die angedauten Knorpelstücke zu trennen. Dieser Schritt wird am besten in verschlossenen 50 ml-Zentrifugen-Schraubgefäßen durchgeführt.

Die Zellsuspension wird durch Zellfilter in 50 ml-Schraubgefäße filtriert (ca. 25 ml pro Gefäß) und mit o. g. HAM's F12-Medium auf 50 ml aufgefüllt. Die Zellen werden 3-4 mal mit 30 ml PBS durch Zentrifugation (10 min, 500 g, 21°C) gewaschen. Nach dem letzten Waschschritt werden die Zellen in 30 ml Medium aufgenommen.

Um die Zellzahl zu bestimmen, werden zunächst 0,5 ml einer 0,4% Trypanblaulösung in ein Teströhrchen gegeben. Nach Hinzufügen von 0,3 ml HBSS (Hanks Salzlösung) und 0,2 ml Zellsuspension wird sorgfältig gemischt und 15 Minuten bei Raumtemperatur inkubiert. Anschließend wird durch Zählung mit einem Hämozytometer die Zellzahl ermittelt.

Beispiel 2: Isolierung von Osteoblasten

Es stehen verschiedene Methoden zur Verfügung, erstens die offene Knochenbiopsie (als Migrations- oder stromale Zellkultur) und zweitens die Aspiration von Knochenmark.

a) Knochenmarkbiopsie

Nach örtlicher Betäubung und einem kleinen Hautschnitt wird eine sterile Knochenbiopsie durch einen Hohlbohrer entnommen. Es werden Spongiosablöckchen von 0,5 bis 1 cm³ herausgebohrt. Anschließend wird die Wunde verschlossen. Alternativ dazu können auch 15 ml Knochenmark aspiriert werden. Die Spongiosa sollte sehr schnell weiterverarbeitet werden, wenn möglich nicht länger als 12 Stunden im Transportgefäß bei 4°C lagern. Das Medium wird verworfen, die Spongiosa in die Petrischale gegeben und dort in 2 bis 3 mm kleine Partikel ("Chips") zerkleinert.

Migrationskultur:

bis 4 Partikel in eine Vertiefung einer werden 3 Es Gewebekulturplatte mit 6 Vertiefungen verteilt und mit 3 ml 6 bis 7 Partikel pro 25 cm² Medium aufgefüllt, bzw. Wachstumsfläche mit 7 ml Medium. Die Inkubation erfolgt im Brutschrank bei 37°C und 5% CO2. Zweimal pro Woche sollte das Medium gewechselt werden, dabei werden die Zellen unter dem Phasenkontrastmikroskop inspiziert. Nach 5 bis 9 Tagen sind zu erkennen, nach 10 bis 14 Tagen ein Zellen subkonfluenter Zellrasen mit 65 bis 75% Bodenflächenbedeckung.

Stromale Zellkultur:

Zunächst wird der Knochen von Muskel- und Bindegewebsresten befreit. Mit Hilfe einer Schere und einer Pinzette wird die Spongiosa in möglichst kleine Stückchen zerkleinert. Spongiosa-Fragmente können in ein 50 ml Zentrifugenröhrchen mit Schraubverschluß gegeben und darin gewogen werden. Enthält das Material viel rotes Knochenmark, so kann man später pro 4 bis 6 q Spongiosa eine 75 cm² Gewebekulturflasche beschicken. In das 50 ml Zentrifugenröhrchen mit Schraubverschluß werden zerkleinerten Spongiosa circa 25 ml zur (Basalmedium mit Antibiotika, z.B. Medium 199, Fa. Gibco, 100 IU/ml Penicillin, 100 μg/ml Streptomycin) gegeben und durch Vortexen (hochfrequentes Rütteln, circa 30 Sekunden, höchste Stufe) die Zellen herausgelöst. Der Überstand wird in andere Schraubgefäße überführt. Dieser Schritt wird wiederholt, bis das Medium nach Vortexen nicht mehr trüb wird. Zuletzt kann noch eine Trypsin- (und/oder Kollagenase-)Behandlung (circa 10 Minuten, 37°C) durchgeführt werden, um weitere Zellen zu gewinnen. Die erhaltenen Zellsuspensionen Minuten bei 250g und 4°C zentrifugiert. Überstände werden verworfen, die Zellpellets in resuspendiert und auf Kulturflaschen verteilt. Die gespülten Knochenstückchen können gegebenenfalls in einer Anzüchtung restlicher Zellen verwendet Kulturflasche zur werden (nach Trypsinisierung sind diese aber gut mit Medium zu spülen).

Um die Zellzahl zu bestimmen werden nach der Resuspension der Zellpellets 50 µl der Suspension in ein Eppendorf-Gefäß überführt und mit 46 μ l Trypanblau gemischt. Durch Zugabe von die Erythrocyten lysiert. Essigsäure werden in einer Neubauer-Zellkammer kernhaltigen Zellen werden Zählen von Zellen unter dem Mikroskop) (Glaskammer zum 10⁷ Zellen der Anschließend werden etwa ausgezählt. 75 cm² Kulturflasche verteilt. Der Zellsuspension pro Mediumwechsel erfolgt nach circa 5 Tagen, später zweimal pro Woche. Erste ahärente Zellen sind am zweiten Tag erkennbar, Kolonien ab Tag 4 bis 5. Subkonfluenz wird zwischen Tag 9 und 11 erreicht.

b) Isolierung und Selektion der Knochenvorläuferzellen aus Knochenmarkaspirat

Nach örtlicher Betäubung wird eine sterile Knochenmarkpunktion durchgeführt. Durch Aspiration mit einer großvolumigen Kanüle und einer Heparin-benetzten Spritze werden etwa 15 bis 20 ml Blut aus dem hinteren Beckenkamm entnommen. Die Probe wird bei etwa 400 g zentrifugiert, der Überstand abgenommen und das suspendiert. ml serumfreien Medium 1 5 Zellpellet in Anschließend wird eine Dichtegradientenzentrifugation über einen 70%-Percollgradienten (Percoll ist der Handelsname einer viskösen Lösung mit einer erhöhten Dichte gegenüber Wasser) oder einem Ficoll-Kissen (Ficoll ist eine visköse Lösung mit einer höheren Dichte als Wasser, die chemische Zusammensetzung unterscheidet sich von Percoll, wirkt jedoch nach dem gleichen Beide Lösungen werden zur Dichtezentrifugation benutzt.) bei 400 g für 30 Minuten bei 4°C durchgeführt, um die Roten Blutkörperchen von den Mesenchymalen Zellen zu trennen. Schließlich werden die Mesenchymzellen in einer Gewebekulturflasche ausplattiert und vermehrt.

Der osteoblastische Phänotyp der Zellen kann durch Nachweis der knochenspezifischen Proteine Alkalische Phosphatase und Osteocalcin im Kulturmedium oder durch immunhistochemische Färbungen von Kontrollkulturen nachgewiesen werden.

Bestimmung der alkalischen Phosphatase-Aktivität

Die Zellen werden zweimal mit PBS gewaschen. Pro Ansatz einer Gewebekulturschale mit sechs Vertiefungen werden 2 ml alkalische Phosphatase-Substratpuffer zugegeben (Rotipuran[®], Fa. Roth, 50 mM Glycin, 1 mM MgCl₂, 5 mM p-Nitrophenylphosphat, pH 10,5). Es wird 15 Minuten bei 37°C inkubiert. Die Inkubationszeit kann von 5 bis 20 Minuten

variiert werden. Anschließend wird die inkubierte Pufferlösung in einer Küvette 1:1 mit 1 M NaOH gemischt. Schließlich wird die Absorption bei 405 nm bestimmt. Die Enzymaktivität wird angegeben als Absorption/Zellzahl.

Osteocalcinfärbung

Nach Entfernung des Mediums werden die Zellen einmal mit PBS gewaschen. Anschließend werden die Zellen mit der Lösung A des FIX & PERM-Kit (Handelsname eines Kits, mit dem Zellen fixiert und die Membran permeabilisiert werden kann, so daß Farbstoffe das Zellinnere eindringen können. Eiweiße in Permeabilisation Kit, Fa. AN DER GRUB, erhältlich von Fa. Dianova) für 15 Minuten fixiert, die Lösung wird anschließend abgesaugt. Lösung B des FIX & PERM-Kit wird zusammen mit dem Primärantikörper (rabbit anti human osteocalcin, Fa. PAESL + LOREI; 1:25 in PBS verdünnt) im Verhältnis 1:1 für 2,5 Stunden lichtgeschützt auf den Monolayer pipettiert, danach wird zweidreimal mit PBS gespült. Inkubation bis Sekundärantikörper (FITC - conjugated goat and rabbit IgG, Fa. Sigma, 1:80 in PBS) erfolgt lichtgeschützt für eine Stunde. Der Primärantikörper erkennt nach dem Schlüsselloch-Prinzip ein bestimmtes Epitop. Der Sekundärantikörper erkennt dann bestimmte Domänen des gebundenen Primärantikörpers. Anschluß wird zwei- bis dreimal mit PBS gespült. Anschließend werden die Zellen sofort mit einem Immunfluoreszenzmikroskop mit eingestellter FITC-Anregung untersucht.

Alkalische Phosphatasefärbung

Zur Färbung wurde ein Kit der Fa. Sigma Diagnostics, Katalog Nr. 86-R verwendet. Zunächst werden folgende Lösungen hergestellt: Die Fixierlösung entsteht durch Mischen von 65 ml Aceton, 25 ml "Citrate Solution" und 8 ml 37% Formaldehyd. Die Lösung ist in einer Glasflasche bei 4°C bis zu vier Wochen haltbar. Die "Diazonium Salt Solution" wird durch Mischen von jeweils 1 ml "FRV Alkaline Solution" und "Sodium Nitrite Solution", 2-minütige Inkubation bei Raumtemperatur und Zugabe

des Gemisches zu 45 ml H2O hergestellt. Schließlich stellt man die "Alkaline Dye Mixture" durch Zugabe von 1 ml "Naphthol AS-BI Alkaline Solution" zu obiger "Diazonium Salt Solution" her (vor Licht schützen). Die Fixierlösung wird auf Raumtemperatur werden die Zellen 30 Sekunden gebracht, dann Anschließend werden die Zellen 45 Sekunden mit H2O gespült, es ist darauf zu achten, daß die Zellen nicht austrocknen. In der Folge inkubiert man die Zellen 15 Minuten mit "Alkaline Dye Mixture" bei Raumtemperatur im Dunkeln. Anschließend wird 2 Minuten mit H_2O gespült. Die Gegenfärbung erfolgt "Hämatoxyline Solution". Hämatoxylin ist ein Farbstoff, der der mikroskopischen Untersuchung rot anfärbt. "Hämatoxyline Solution" wird aufgetropft und 2 Minuten auf den Zellen belassen, dann wird gut mit Wasser gespült. Die Zellen getrocknet und können unter der Luft Lichtmikroskop betrachtet werden.

Beispiel 3: Isolierung von Fibroblasten

Ein Stück Hautgewebe wird von Fettgewebe befreit und in etwa 0,5 cm² große Stücke geschnitten. Die Hautstücke werden in 2,5 U/ml Dispase entweder 3 h bei 37°C oder 16 h bei inkubiert. Anschließend wird die Epidermis abgezogen verworfen. Die Stücke werden mit einem Skalpell so gut wie möglich zerkleinert. Der entstehende Brei wird dann mit einer Enzymlösung, enthaltend ca. 90 U/ml Kollagenase und ca. 140 U/ml Hyaluronidase versetzt und 3 h bei 37°C geschüttelt. Anschließend wird der Brei bei 300 g für 30 Minuten bei 4°C zentrifugiert, der Überstand verworfen, der Bodensatz in 5 ml Medium 2 (Medium 1, 10% (v/v) Serum; bei therapeutischem wird autologes, humanes Serum verwendet, Einsatz Experimenten fötales Kälberserum, erhältlich von Fa. Gibco) aufgenommen und in eine 25 cm²-Gewebekulturflasche gegeben.

Sollten noch viele unverdaute Stücke vorhanden sein, wird der Bodensatz anstatt in Medium in 5 ml ca. 185 U Kollagenase/ml Pufferlösung aufgenommen, in eine 25 cm²-Kulturflasche gegeben und über Nacht in einem Zellkultur-Brutschrank inkubiert. Am nächsten Tag wird die Kollagenase-haltige Suspension abgenommen, zentrifugiert, der Bodensatz in Medium 2 aufgenommen und in dieselbe Flasche zurückgegeben.

Beispiel 4: Herstellung der Knorpelkomponente

a) Kollagenschwämme

10⁷ 3 x Zellen/ml Zellsuspension wird auf etwa eingestellt. Kollagenvliese werden in etwa 1 x 1 cm große Stückchen geschnitten (steril). Die Vliese werden mit einer Insulinspritze beimpft. Dabei reichen 2 ml Zellsuspension für Kollagenstückchen aus. Nach drei Brutschrank werden die Stückchen auf eine Gewebekulturplatte mit ieweils Vertiefungen verteilt und sechs alle zwei Tage Medium wird Nährmedium aufgefüllt. Das gewechselt.

Tierversuch:

Primäre Rinder-Chondrozyten wurden als Suspension in Schwämme Rinder-Kollagen Typ 1 geimpft. Die Konstrukte wurden sieben Tage bei 37°C und 5% CO2 im Brutschrank kultiviert und anschließend Nacktmäusen subkutan implantiert. Kontrollgruppen Zellen und Kollagenschwämme ohne waren Chondrozytensuspensionen ohne Trägermaterial. Die Explantation erfolgte nach drei, sechs und neun Wochen. Die Konstrukte histologisch-immunhistochemisch untersucht. erfolgte durch einen "confined biomechanische Prüfung der hydraulischen test" zur Bestimmung compression Kompressionsmoduls (Biomechanisches Permeabilität und des Testverfahren, bei dem auf eine zu prüfende Probe definierte, Kraftrelaxationsmessungen Drücke ausgeübt und durchgeführt werden). Als Ergebnis zeigte sich morphologisch immunhistochemischem mit Nachweis von hyaliner Knorpel knorpeltypischem Kollagen Typ 2. In den Kontrollen wurde der resorbiert. Die Kollagenschwamm drei Wochen leere

Zellsuspension entwickelte nur kleine Knorpelstücke. Die Steifigkeit der Konstrukte nahm im zeitlichen Verlauf zu (1,99 Mpa in Woche 9), war jedoch gegenüber nativem Knorpel (5,25 Mpa) verringert. Die hydraulische Permeabilität zeigte signifikant höhere Werte als die Kontrolle (2,69 x 10^{-14} gegenüber 3,0 x 10^{-15} m⁴/Ns).

b) Fibrinsuspension

Die Knorpelzellen werden gelöst und nach Zentrifugation in der Thrombinkomponente eines Zweikomponentenfibrinklebers in einer Dichte von 2-3 x 10⁷ Zellen/ml eingebracht. Anschließend wird durch synchrones Spritzen mittels einer Doppelspritze die zellhaltige Thrombin- mit der Fibrinogenkomponente vermischt und in eine vorgefertigte Kulturform gegossen. Es entsteht durch Präzipitation des Fibrinogen zu Fibrin ein "Clot". Schließlich wird mit HAM's F12-Medium Modifikation, Zugabe von Hepes-Pufferlösung Nährmedium) überschichtet und im Brutschrank bei 37°C und 5% CO2 inkubiert.

Tierversuch:

Primäre Chondrozytenkulturen werden aus Rippenknorpelbiopsien etabliert und mit einer Dichte von 2 x 10⁷ Zellen/ml in der Thrombinkomponente eines Fibrinklebers suspendiert. Anschließend wird durch eine Doppelspritze die Fibrinogenkomponente mit der chondroblastenhaltigen Thrombinkomponente (4 IE Thrombin/ml) zusammengebracht und in eine strukturierte, anatomisch angepaßte Form gegossen. Der Fibrinkleber verfestigt sich in Abhängigkeit von der Thrombinkonzentration innerhalb von 5-10 Minuten in der gewünschten Form.

Tierversuch:

Die Konstrukte wurden Nacktmäusen subkutan implantiert. Kontrollgruppen wurden "Fibrinclots" ohne Zellen und Chondrozytensuspensionen ohne Fibrin implantiert. Die Explantation erfolgte nach drei, sechs und neun Wochen. Die Konstrukte wurden histologisch-immunhistochemisch untersucht. Die biomechanische Prüfung erfolgt durch einen "confined compression test" zur Bestimmung der hydraulischen Permeabilität und des Kompressionsmoduls.

Als Ergebnis fanden sich in der Gruppe mit Knorpelzellen in Fibrinkleber mikroskopisch neu gebildetes Knorpelgewebe, in kein Knorpelgewebe finden. Kontrollgruppen war zu Histologisch zeigten die Knorpelkonstrukte die Morphologie von mit immunhistochemischem Knorpel hyalinem zeigten bei Die Knorpelkonstrukte der Kollagen Typ 2. biomechanischen Prüfung im "confined compression test" eine Steifigkeit (Kompressionsmodul) von 0,59 Mpa und eine hydraulische Permeabilität von 1,03 x 10⁻¹⁴ m⁴/Ns.

Beispiel 5: Herstellung der Knochenkomponente

a) Herstellung der Zell-Biomaterialkonstrukte

Die Trägermaterialien werden eine Woche vor Besiedelung mit Zellen in Kulturmedium gewässert, um eine Rehydrierung und pH-Stabilität zu erreichen.

Monolayerkultur Trypsinisierung werden die als Durch gezüchteten Zellen aus der Kulturschale abgelöst und nach Zentrifugation und Zählung in einem geringen Volumen als Einzelzellsuspension suspendiert. Das Medium wird abgenommen, ein Teil in ein 1,8 ml-Kryoröhrchen abgefüllt und eingefroren, der Rest wird verworfen. Aus den Überständen wird mittels eines Enzyme-Linked-Immuno-Sorbence-Assay (ELISA) Osteocalcin bestimmt. Ιn einer und alkalische Phosphatase Gewebekulturplatte mit sechs Vertiefungen wird mit 0,5 ml Trypsin/EDTA-Lösung (37°C; 0,025% Trypsin) pro Vertiefung das restliche Medium abgespült. Anschließend werden mit 1 ml Trypsin/EDTA pro Vertiefung die Zellen vom Boden gelöst. Das Trypsin sollte nicht länger als fünf bis acht Minuten auf den Zellen verbleiben, um irreversible Schädigung zu vermeiden. Nachdem sich die Zellen vom Boden gelöst haben, wird mit 1 ml serumhaltigem Kulturmedium 2 neutralisiert (vorgewärmt). Die Zellsuspension wird in einem Zentrifugenröhrchen mit Schraubverschluß gesammelt und bei ca. 300g und 4°C für 10 Minuten zentrifugiert. Der Überstand wird abgesaugt und das Zellpellet mit 1 ml flüssiger oder visköser Lösung suspendiert und ausgezählt.

Die flüssige oder visköse Zellsuspension wird in einer Aspirationskammer in die dreidimensionalen Trägermaterialien durch Unterdruck ohne Volumenverlust eingezogen, so daß die gesamte innere Oberfläche besiedelt wird.

b) Ex vivo-Züchtung der Konstrukte

Zell-Biomaterialkonstrukte werden in eine spezielle Die sterile Perfusionskammer gebracht und eingespannt, so daß ein unidirektioneller Durchfluß des Kulturmediums gewährleistet ist. Neben der Zufuhr von immer frischem Medium werden die Zellen durch den Flüssigkeitsstrom mechanisch stimuliert. Das z.B. BGJ-B-Medium, Kulturmedium (Osteoblastenmedium, Gibco, mit 100 IU/ml Penicillin, 100 µg/ml Streptomycin, 10% (v/v) Serum; bei therapeutischem Einsatz wird autologes, humanes Serum verwendet, bei Experimenten fötales Kälberserum) wird durch Zusatz von 10^{-8} bis 10^{-10} M Dexamethason, 50 μ g/ml Vitamin C und 40 ng/ml Vitamin D3 im zuführenden Teil angereichert, um die Zellen zur Matrixsynthese zu stimulieren.

c) Analyse der Konstrukte in der Kulturphase

Zur Messung des Zellmetabolismus wird den Konstrukten ein Tetrazoliumsalz "XTT" zugesetzt. Der Test beruht auf der kolorimetrischen Biotransformation des Salzes zu dem intensiv gelb gefärbten Formazan in den Mitochondrien. Die Formazankonzentration wird zu bestimmten Zeitpunkten nach der Zugabe der Lösung photometrisch bei 450 nm Wellenlänge gemessen. Das Ergebnis korreliert mit dem Zellmetabolismus

bzw. der Proliferation der Zellen (Cell Proliferation Kit, Firma Roche Diagnostics, Mannheim).

Die Adhäsion kann durch "Environmental Scanning Electron Microscopy" (ESEM) kontrolliert werden. Die "Environmental Scanning Electron Microscopy" ist ein technisches Verfahren der Elektronenmikroskopie, bei dem Zellen nicht fixiert werden lebend im sondern Kulturmedium durch müssen, Elektronenmikroskopie betrachtet werden können. 48 Stunden nach Besiedelung der Biomaterialien werden die Konstrukte auf einen Träger geklebt und in eine ESEM-Kammer (Freiburger Materialforschungsinstitut) gebracht. Hiermit kann in der Vergrößerung eines Elektronenmikroskopes die Anhaftung der Zellen auf der Materialoberfläche dargestellt werden.

d) Analyse der Konstrukte am Ende der Kulturphase

Nach zwei bis vier Wochen in der Perfusionskammer werden die Konstrukte fixiert und durch die klassische HE-Färbung histologisch auf eine neue Matrixbildung auf den Trägermaterialien untersucht. Durch die spezielle Richardson-Levaletzko-Färbung wird neues Knochengewebe intensiv blau angefärbt.

Durch Immunhistochemie wird Kollagen 1 als organischer Hauptbestandteil des Knochengewebes nachgewiesen (z.B. durch die Avidin-Biotin-Methode).

Durch Immunfluoreszenz mit FITC-markierten Antikörpern wird Osteocalcin als spezifischer Knochenmarker in dem neuen Gewebe dargestellt.

e) Zusatz angiogener Wachstumsfaktoren zur Knochenkomponente (optional)

Zur Induktion der Gefäßneubildung können Wachstumsfaktorproteine (VEGF, bFGF, Ang I oder Ang II) der Knochenkomponente zugesetzt werden. Zunächst wird wie in

Beispiel 2 beschrieben eine Osteoblastenzellkultur etabliert. Die subkonfluenten Zellen in einer 75 cm² Zellkulturflasche 0,025% Trypsin/EDTA-Lösung 5 Minuten werden mit 1 ml trypsinisiert. Nach Resuspension in 2 ml Medium mit 10% FCS und 5 Minuten Zentrifugation bei 1000 Upm und 4°C werden die Zellen in 100 µl Medium resuspendiert und gezählt. 20000 Osteoblasten der Zellpassage 1 bis 3 werden in 200 μl Fibrinogenlösung suspendiert (66 mg Fibrinogen in 1 ml αMEM oder Medium 199 oder BGJ-B-Medium ohne Serum mit 100 U/ml Penicillin und 100 mg/ml Streptomycin gelöst; 0,1 bis 10% ϵ -Amino-n-capronsäure). Anschließend werden 40 µl einer 40 mM Calciumchloridlösung enthaltend 1,25 I.E. Thrombin/ml und 0,1 bis 10 ng/ml rekombinanten Wachstumsfaktor zur Osteoblasten-Fibrinogensuspension gegeben. Das Gemisch wird anschließend in 48 Well Zellkulturschale gespritzt (beispielsweise Platte). Nach Zugabe von 760 ml Kulturmedium BGJ-B mit 10% FCS und 100 U/ml Penicillin und 100 mg/ml Streptomycin wird das Zellkonstrukt im Wärmeschrank bei 37°C, 5% CO2 und 100% Luftfeuchte kultiviert.

f) Herstellung einer Osteoblasten-Endothelzell-Fibrinogensuspension OEFS (optional)

Osteoblasten-Zellkultur wird wie in beschrieben etabliert. Die subkonfluente Osteoblastenkultur in einer 75 cm² Zellkulturflasche wird mit 1 ml Trypsin/EDTA-Lösung 5 Minuten trypsinisiert. Nach Resuspension 2 ml Endothelzellmedium ohne Serum und Zentrifugation bei 1000 Upm und 4°C werden die Zellen in 100 μ l Endothelzellmedium resuspendiert und gezählt. 1 bis 10 x 10⁴ (vorzugsweise 20000) Osteoblasten der Zellpassage 1 bis 3 Fibrinogenlösung suspendiert werden in 200 μl Fibrinogen in 1 ml Endothelzellmedium mit 100 U/ml Penicillin, 100 mg/ml Streptomycin und 0,1 bis 10% ε-Amino-n-capronsäure). wird eine Endothelzellkultur Parallel dazu Standardprotokoll Endothelzellkultur als mikrovaskuläre etabliert. Die subkonfluente Endothelzellkultur in einer 75 cm2 Kulturflasche wird mit 1 ml 0,025% Trypsin/EDTA-Lösung 5 Minuten trypsinisiert. Nach Resuspension der Zellen 2 ml Endothelzellmedium ohne Serum und 5 Minuten Zentrifugation bei 4°C die Zellen in 100 1000 mqU und werden ul Endothelzellmedium resuspendiert und gezählt. 1 bis 10×10^4 (vorzugsweise 20000) Endothelzellen der Zellpassage 1 bis 3 in 200 μl der oben genannten Fibrinogenlösung die Osteoblasten-Schließlich werden suspendiert. Fibrinogensuspension und die Endothelzell-Fibrinogensuspension miteinander durch Resuspension vermischt. Die Osteoblasten-Endothelzell-Fibrinogensuspension (OEFS) wird in ein poröses, dreidimensionales Trägermaterial, z.B. autoklavierte eingesaugt. OEFS werden Pro ml μl Spongiosa, Calciumchlorid-Thrombinlösung zugesetzt (1,25 I.E. Thrombin pro ml, 40 mM Calciumchlorid). Das Konstrukt wird in eine eine Perfusionskammer Kulturschale oder eingebracht. Anschließend wird Endothelzellmedium mit 10% FCS, 100 U/ml Penicillin und 100 mg/ml Streptomycin zugegeben. Es erfolgt Kultivierung im Wärmeschrank bei 37°C, 5% CO₂ und Luftfeuchte für 1 bis 7 Tage bis zur Fusion mit Knorpelkomponente.

Durch Zugabe der Calciumchlorid-Thrombinlösung bildet sich ein dreidimensionales Fibrinnetzwerk mit haftenden Osteoblasten und Endothelzellen in der Fibrinmatrix, welche das poröse Trägermaterial ausfüllt. Im Lichtmikroskop (100-fache Vergrößerung) zeigt sich die Ausbildung des osteoblastischen Phänotyps mit dendritischen Zellausläufern und der Aufbau von interzellulären Verbindungen der Osteoblasten. Dazwischen liegen kleinere Endothelzellen, die in vivo proliferieren und sich zu Kapillaren organisieren können.

Die Vitalität kann durch Trypanblaufärbung nach 7 Tagen untersucht werden. Dazu wird der Überstand des Kulturmediums abgesaugt, es werden 50 µl Trypanblaulösung zugegeben, anschließend wird das Präparat unter dem Lichtmikroskop kontrolliert. Nach 7 Tagen finden sich nur wenig abgestorbene Zellen.

WO 00/74741 PCT/EP00/05313

32

Beispiel 6: Herstellung von Bandkomponenten

Fibroblasten werden als Suspension mit 1 x 10^7 bis 5 x 10^7 Zellen/ml Medium auf bandförmige Materialien geimpft und in Dulbecco's Minimal Essential Medium (DMEM)-Medium mit 10% autologem Serum bei 37°C und 5% CO_2 in Kultur gehalten.

Beispiel 7: Fusion der Einzelkomponenten

Primäre Chondrozytenkulturen wurden aus Rippenknorpelbiopsien etabliert und mit einer Dichte von 2 x 10^7 Zellen/ml in der suspendiert. eines Fibrinklebers Thrombinkomponente Doppelspritze die Anschließend wird durch eine Fibrinogenkomponente mit der chondroblastenhaltigen Thrombinkomponente zusammengebracht und in eine strukturierte, Fibrinkleber anatomisch angepaßte Form gegossen. Der verfestigt sich in Abhängigkeit von der Thrombinkonzentration innerhalb von 5-10 Minuten in der gewünschten Form. Parallel werden primäre Osteoblastenkulturen aus Beckenkamm-Biopsien der osteoblastische Beispiel 2) hergestellt und (siehe und Osteocalcin Phänotyp durch Alkalische Phosphatase nachgewiesen. Die Zellen werden auf dreidimensionalen, porösen Biomaterialien (z.B. bovine oder humane Spongiosa) Suspension mit 1 x 10^6 bis 1 x 10^7 Zellen/ml viskösem Gel oder flüssigem Medium durch Vakuumaspiration aufgebracht. Die Adhäsion der Zellen wird durch Elektronenmikroskopie und die Proliferation durch XTT-Stoffwechseltests kontrolliert. einzelnen Konstrukte werden getrennt für drei Tage in vitro bei 37°C und 5% CO2 kultiviert. Im Anschluß erfolgt die Fusion der Knochen- und Knorpelkomponente durch Fibrinklebung.

Die Fusion kann auch abgewandelt wie folgt erreicht werden: Während des Prozesses der Herstellung der Knorpelkomponente und der Abbindung des Fibrinklebers wird das leere, vorgeformte und angepaßte Knochenträgermaterial leicht in die Knorpelschicht eingedrückt, so daß es fest eingebunden wird.

WO 00/74741 PCT/EP00/05313

Im zweiten Schritt erfolgt dann die Besiedelung der Knochenkomponente durch die Osteoblastensuspension in einem viskösem Gel oder flüssigem Medium.

Als Ergebnis eines derartigen Versuchs waren Knorpelund miteinander fusioniert. Die Knochenkomponente fest Knorpelfläche war deutlich von der glatt und war Makroskopisch abgrenzbar. bestand eine Knochenkomponente korrekte, stabile anatomische Gelenkform entsprechend natürlichen anatomischen Gegebenheiten.

Knorpel-Knochenkonstrukte mit Bandapparat:

Die oben beschriebenen Knorpel-Knochenkonstrukte werden mit Bandkonstrukten verbunden, indem ein 0,5 mm großer Bohrkanal durch die Knochenkomponente gebohrt wird und das Bandkonstrukt, bestehend aus Fibroblasten auf einem Kollagenband, hindurchgezogen wird.

Das Bandkonstrukt ist fest integriert und kann zwei Knorpel-Knochenkonstrukte so verbinden und halten, daß die Knorpelflächen artikulieren und sich gegeneinander bewegen können.

Tierversuche:

Ca. sechs bis acht Wochen alte Nacktmäuse wurden in einer einem Isofluran®-Sauerstoffgemisch (3% Narkosekammer mit Isofluran[®] 4 1/min.) 100% 0_2 , Fluß betäubt. Aufrechterhaltung der Narkose mit einer Inhalationsmaske (1,5 - 2% (v/v) Isofluran[®] in 100 % O_2 , Fluß 0,5 bis 1 1/min.) wurden die Tiere mit Betaisodona® abgewaschen und Operationsgebiet steril abgedeckt. Es erfolgte ein ca. 2 cm langer, längs verlaufender Hautschnitt im Bereich des Rückens, der Präparationsschere und Schaffen mit Hauttasche. Das osteochondrale Transplantat (ca. 2 x 0,5 x 0,5 cm) wurde eingelegt und die Wunde mit Einzelknopfnähten verschlossen. Ein steriler Wundverband wurde angelegt. Der Eingriff dauerte etwa 15 Minuten. Die Wunden der Tiere wurden bis zur gesicherten Wundheilung täglich kontrolliert.

Die Nacktmäuse erhielten schließlich eine letale Dosis CO2 per inhalationem am 21., 42. bzw. 63. Tag postoperativ. osteochondralen Konstrukte wurden mit dem umgebenden Gewebe histologisch herauspräpariert und danach immunhistochemisch aufgearbeitet. Als Ergebnis waren in den fusionierten osteochondralen Konstrukten die Knorpel-Knochenkomponente fest miteinander verbunden. Histologisch die Morphologie von hyalinem Knorpelschicht Knorpelgewebe mit immunhistochemischem Nachweis von Kollagen Typ 2. In der Knochenkomponente fand sich nach acht Wochen ein appositionelles Knochenwachstum mit eingesproßten Kapillaren. Die Knorpelkomponente zeigte bei der biomechanischen Prüfung Steifigkeit compression test" eine "confined hydraulische (Kompressionsmodul) von 0,59 Mpa und eine Permeabilität von $1.03 \times 10^{-14} \text{ m}^4/\text{Ns}$.

Beispiel 8: Lipofektion von Osteoblasten mit EGF-Plasmid

Humane Osteoblasten werden am Tag vor der Transfektion auf Gewebekulturbehälter verteilt. Dabei wurden Gewebekulturschalen mit 6 Vertiefungen (Fa. Costar, Kat. Nr. 3506, 9,6 cm² pro Vertiefung), im folgenden "6-well-Platten" genannt, und Zellkultureinsätze (Falcon Cell Culture Insert, Fa. Becton Dickinson, PET-Membran mit 1,6 x 10^6 Poren (1 μ m) pro cm², Kat. Nr. 3102, 4,2 cm² Fläche) verwendet.

Es folgen zwei Protokolle, mit denen hohe Expressionen erreicht werden.

Transfektion subkonfluenter Monolayerkulturen in 6-well-

a)

Platten

Zur Herstellung der Transfektionslösung werden pro Ansatz 230 μ l Medium 1 ohne Zusätze, 15 μ l Escort $^{\infty}$ -Reagens (Fa. Sigma) und 6 µg Plasmid-DNA (enthaltend das Gen für humanes EGF) gemischt. Nach 15 min Inkubation bei Raumtemperatur wird der Lösung pro Ansatz 2 ml Medium 2 hinzugefügt. Das Kulturmedium wird von den Zellen entfernt und das Transfektionsgemisch wird zu den Zellen gegeben (2,25 ml/Vertiefung). Danach werden die Zellen 12 h bei 37°C und 5% CO2 im Brutschrank inkubiert. Das Transfektionsgemisch wird von den Zellen entfernt, die dann gewaschen werden. Schließlich wird Medium 2 Weiterkultivierung ca. 3 ml Vollmedium in jede Vertiefung täglich gewechselt, von Medium wird Das gegeben. Überständen werden Proben bei -20°C aufbewahrt, die dann zur Bestimmung des EGF-Gehalts verwendet werden. Die Epidermal growth factor (EGF)-Konzentration wurde durch einen ELISA bestimmt (Quantikine TM, R&D Systems, Kat. Nr. DEG-00). Hierzu müssen die Proben gegebenenfalls vorher 1:10-1:15 in Medium verdünnt werden, da der Meßbereich des ELISA 0-250 pg/ml beträgt.

Die Analyse ergab, daß EGF über 10 Tage mit einem Maximum am 5. Tag sezerniert wurde.

b) Transfektion subkonfluenter Monolayerkulturen in Zellkultureinsätzen ("Trennkammerversuch")

Bei den Zellkultureinsätzen handelt es sich um Einsätze, die eine poröse Membran aufweisen, an die die Zellen adhärieren können. Der Einsatz wird in eine Gewebekulturplatte mit (meist 6) Vertiefungen eingesetzt, so daß die "apikalen" Zellen in dem Einsatz ca. 3 mm von den "basalen" Zellen in der Vertiefung der Kulturschale räumlich getrennt sind, aber per diffusionem Signalstoffe über die permeable Membran austauschen können. Medium wird zur "basalen" und "apikalen" Seite der Zellen gegeben, also in die Vertiefung der

Zellkulturschale, in die der Einsatz eingesetzt ist und in den Einsatz selbst. Diese Anordnung kann benutzt werden, um einen parakrinen Effekt sezernierter Wachstumsfaktoren auf andere Zellen zu bestimmen. Dazu werden in den Zellkultureinsatz Osteoblasten ausgesät, die transfiziert werden. Nach Transfektion werden die Einsätze in Platten transferiert, die mit nicht-transfizierten Zellen besät sind. Da das Medium und Faktoren, die von den transfizierten Zellen ausgeschieden Filter passieren können, kann durch durch den werden, Zellzahl-Bestimmung der nicht-transfizierten Zellen im anderen eine verstärkte Proliferation nachgewiesen Kompartiment werden.

Die Transfektionslösung wird wie in a) hergestellt. Das Kulturmedium wird aus der Vertiefung der Kulturplatte und aus dem Einsatz möglichst vollständig entfernt. In jeden Einsatz werden 2,25 ml Transfektionslösung gegeben. Nach 30-60 min Inkubation im Brutschrank wird 1 ml Vollmedium zugegeben. Falls während der Inkubationsphase die Transfektionslösung rasch durch den Filter des Einsatzes läuft, muß gegebenenfalls früher Medium zugegeben werden. Anschließend wird 12 h bei 37°C und 5% CO2 inkubiert. Die Transfektionslösung wird abgesaugt, der Einsatz wird ausgiebig mit Medium gewaschen. Der Einsatz kann nun in eine Kulturschale mit Zellen überführt werden. Das Mediumvolumen beträgt insgesamt 4 ml/Vertiefung und Einsatz.

In einem Versuch wurden 10 mit Osteoblasten besäte Einsätze mit EGF-Plasmid transfiziert. Als Kontrollen wurden 10 Inserts mit Zellen nur mit Liposomenlösung ohne Plasmid behandelt, weitere 6 Einsätze wurden völlig unbehandelt gelassen, weitere 6 Einsätze wurden mit EGF-Plasmid transfiziert, nach der µg/ml täglich 11,9 wurde aber Transfektion neutralisierender anti-EGF-Antikörper zugegeben (Fa. R&D, No. AB-236-NA, 1 mg/ml in PBS, pH 7,4, steril). Am Tag 6 nach der Transfektion wurde die Zellzahl der nicht-transfizierten Zellen im unteren Kompartiment durch Zellzählung mit einem "Casy TT"-Zellzähler bestimmt. Mit dem von der Firma Casy

hergestellten Gerät können Zellen in Lösungen spektrometrisch gezählt werden. Das Ergebnis ist in Figur 2 gezeigt. Beide "unbehandelt") ("Liposom" und Kontrollansätze signifikant niedrigere Zellzahlen als der Ansatz, in dem EGF-Plasmid transfiziert wurde("EGF/Liposom"). Das zeigt, daß die transfizierten Zellen einen proliferativen Effekt haben. Die dritte Kontrolle ("Antikörper") zeigt wiederum niedrigere Zellzahlen als der Ansatz mit transfizierten Zellen, aber ohne Antikörper ("EGF/Liposom"). Das beweist, daß der proliferative Effekt auf EGF zurückzuführen ist. Dieses Experiment zeigt, daß durch transiente Lipofektion von Osteoblasten Zellen erzeugt werden können, die Wachstumsfaktoren sezernieren, die das Wachstum anderer Zellen stimulieren können.

In einem weiteren "Trennkammerversuch" wurde der proliferative Effekt EGF-transfizierter Osteoblasten mit dem proliferativen Effekt von rekombinantem, humanem EGF verglichen, das Zellen täglich zugesetzt wurde. Am Tag 4 nach Transfektion wurde die Zellzahl der verschiedenen Ansätze bestimmt. geschah durch automatische Zellzählung mittels "Casy TT" und durch Auszählen in einer Neubauer-Zählkammer. Das Ergebnis ist in Figur 3 gezeigt. Nach Transfektion mit EGF-DNA ("EGF-Transfektion") ist die Zellzahl des Transfektionsansatzes fast nicht transfizierten die des hoch wie doppelt so Kontrollansatzes ("Kontrolle"). Zugegebenes rekombinantes EGF (1 ng/ml jeden Tag) bewirkt zwar auch verstärktes Wachstum ("rhEGF-Zugabe"), jedoch nicht so stark wie es durch die Transfektion erreicht wird.

Beispiel 9: Lipofektion von Osteoblasten mit hbFGF-Plasmid

Osteoblasten werden mit einem Plasmid transfiziert, das eine Nucleinsäure enthält, die für humanen "basic fibroblast growth factor" (hbFGF) codiert.

Am Vortag der Transfektion werden die Zellen auf betreffende Kulturbehälter verteilt (z.B. 6-well-Platten oder

Zellkultureinsätze für den Trennkammerversuch). Eingesetzt werden je 40000 Zellen pro Vertiefung der 6-well-Platte (9,6 cm² Wachstumsfläche pro Vertiefung) oder pro Zellkultureinsatz (4,2 cm² Wachstumsfläche pro Einsatz). Es folgen zwei Protokolle, mit denen eine hohe Expression der transfizierten Gene erzielt wurde.

a) Transfektion subkonfluenter Monolayerkulturen in 6-well-Platten (Escort TM -Reagens, Fa. Sigma)

Die Transfektionslösung wird durch Mischen von 115 µl Medium 1. 9 ul Escort TM-Reagens (Fa. Sigma) und 3 µg hbFGF-Plasmid pro Ansatz hergestellt. Alternativ können auch 115 µl Medium 1, 15 μl EscortTM-Reagens und 5 μg Plasmid gemischt werden. min Inkubation bei Raumtemperatur wird 15 Kulturmedium von den Zellen entfernt, statt dessen wird 1 ml Medium mit Zusätzen zu den Zellen gegeben, gefolgt von der Transfektionslösung. Anschließend wird 1-2 h bei 37°C und 5% CO2 inkubiert. Es folgt Zugabe von 2 ml Medium/Vertiefung und 24 h Inkubation bei 7°C und 5% CO2. Weiterhin wird das Medium täglich gewechselt, wobei Proben des Kulturüberstandes bei -20°C bis zur Analyse aufbewahrt werden. Die bFGF-Konzentration in den Proben wird durch ELISA bestimmt. Das Ergebnis ist in Figur 4 gezeigt. Bei Verwendung von 3 μ g DNA und 9 μ l Escort TM ist die FGF-Sekretion am Tag 3 nach der Transfektion am höchsten, bei Verwendung von 5 μg DNA und 15 μl Escort TM am Tag 5 nach der Transfektion. Die ins Medium abgegebene FGF-Menge ist bei Transfektion mit 5 µg DNA höher.

b) Transfektion subkonfluenter Monolayerkulturen in 6-well-Platten (Fugene®-Reagens)

Die Transfektionslösung wird durch Mischen von Medium ohne Zusätze, Fugene[®]-Reagens (Fa. Roche Diagnostics) und DNA hergestellt. Es wurden 3 Varianten getestet:

Ansatz:	A	В	С
μl Medium ohne Zusätze:	97	94	91
μl Fugene [®] -Reagens:	3	6	9
μg hbFGF-Plasmid:	3	3	3

Dabei werden jeweils das Medium und das Fugene®-Reagens zuerst gemischt und 5 min bei Raumtemperatur inkubiert. Anschließend wird die DNA zugegeben, nach Mischen wird weitere 15 min bei Raumtemperatur inkubiert. Das Medium wird von den Zellen entfernt, dann werden pro Vertiefung 3 ml Medium und danach die Transfektionslösung zugegeben. Es folgt eine 24-stündige Inkubation bei 37°C und 5% CO2 im Brutschrank. Im Folgenden wird täglich das Medium gewechselt, wobei wiederum Proben des Kulturüberstandes bis zur Analyse bei -20°C gelagert werden. Die FGF-Konzentration im Medium wird durch ELISA bestimmt. Auch bei Verwendung des Fugene-Reagens' kann die DNA-Menge variiert werden. Es wurden 3 und 5 µg Plasmid getestet. Das Ergebnis ist in Figur 5 gezeigt. Am Tag 7 Transfektion wird bei Einsatz von 3 μg DNA mehr FGF sezerniert als bei Einsatz von 5 μg DNA ("3 μg Plasmid/Fugene $^{@}$ " und "5 μg Plasmid/Fugene®"). Als Kontrolle wurde auch nur DNA ohne Fugene®-Reagens "transfiziert". Die gemessene FGF-Menge ist deutlich niedriger als bei Verwendung von Fugene® ("3 μq Plasmid" und "5 μ g Plasmid"). Als weitere Kontrolle wurde die Fibroblast-Growth-Factor (FGF)-Konzentration im Medium von völlig unbehandelten Zellen ermittelt ("unbeh. Zellen").

Das Ergebnis zeigt, daß Osteoblasten erfolgreich mit hbFGF-DNA transfiziert werden können und daß daraufhin mehr FGF ans Medium abgegeben wird.

c) Transfektion subkonfluenter Monolayerkulturen in Zellkultureinsätzen ("Trennkammerversuch")

Die Transfektionslösung wird durch Mischen von 115 μ l Medium ohne Zusätze, 15 µl Escort®-Reagens und 5 µg hbFGF-Plasmid hergestellt. Nach 15 min bei Raumtemperatur wird 2 ml Medium 2 zugegeben. Das Kulturmedium wird aus dem Zellkultureinsatz, in zu transfizierenden Zellen sind, und aus Vertiefung der 6-well-Platte, in der sich der Einsatz befindet, möglichst vollständig entfernt. Pro Einsatz werden 2,25 ml Transfektionslösung zu den Zellen gegeben. Es wird 30-CO2 im Brutschrank inkubiert. min bei 37°C und 5% Anschließend wird 1 ml Vollmedium pro Einsatz zugegeben (gegebenenfalls muß früher Medium zugegeben werden, falls die Transfektionslösung schnell durch den Filter des Einsatzes läuft). Es wird nochmals 24 h bei 37°C und 5% CO2 im Brutschrank inkubiert. Danach wird die Transfektionslösung abgesaugt, der Einsatz wird ausgiebig mit Medium gewaschen. eine Kulturschale mit Einsatz wird nun in eingesetzt, deren Proliferation transfizierten Zellen Medium-Volumen Einsatz von überwacht wird. Das Kulturschale zusammen beträgt 4 ml.

An Tag 4 nach der Transfektion wurde in einem solchen Versuch die Zellzahl der nicht-transfizierten Zellen in den unteren Kompartimenten bestimmt. Figur 6 zeigt das Ergebnis. Die Kontrolle zeigt die natürliche Vermehrung von Zellen in 4 Tagen ("unbeh. Zellen"). Sowohl die Anwesenheit hbFGF-transfizierter Zellen ("5 μ g Plasmid/15 μ l Escort TM") als auch Zugabe von rekombinantem humanem bFGF ("rek. bFGF 4 ng/ml") führen im Vergleich mit der Kontrolle zu erhöhter Proliferation der Zellen. Das zeigt, daß die transfizierten Zellen durch FGF-Sekretion parakrin das Wachstum nichttransfizierter Zellen stimulieren können.

Beispiel 10: Lipofektion von Osteoblasten mit hVEGF-Plasmid

Subkonfluente Osteoblasten werden mit DNA transfiziert, die für humanen "vascular endothelial growth factor" (hVEGF) codiert. Am Tag vor der Transfektion werden die Zellen auf betreffende Kulturbehälter verteilt. Bei Verwendung von 6-well-Platten werden 50000 Zellen pro Vertiefung eingesetzt.

Die Transfektionslösung wird durch Mischen von Medium ohne Zusätze, Fugene[®]-Reagens (Fa. Roche Diagnostics) und DNA hergestellt. Es wurden 4 Varianten getestet:

Ansatz:	A	В	С	D
μl Medium ohne Zusätze:	94	91	90	85
μl Fugene-Reagens:	6	9	10	15
μg hVEGF-Plasmid:	3	3	5	5

Dabei werden jeweils das Medium und das Fugene-Reagens zuerst gemischt und 5 min bei Raumtemperatur inkubiert. Anschließend wird die DNA zugegeben, nach Mischen wird weitere 15 min bei Raumtemperatur inkubiert. Das Medium wird von den Zellen entfernt, dann werden pro Vertiefung 3 ml Medium und danach die Transfektionslösung zugegeben. Es folgt eine 24-stündige Inkubation bei 37°C und 5% CO2 im Brutschrank. Im Folgenden wird täglich das Medium gewechselt, wobei wiederum Proben des Kulturüberstandes bis zur Analyse bei -20°C gelagert werden. Die VEGF-Konzentration im Medium wird durch ELISA bestimmt. Das Ergebnis der oben genannten Ansätze ist in Figur 7 gezeigt. Am Tag 7 nach der Transfektion wurde die VEGF-Konzentration bestimmt. Die 4 Ansätze ("A" bis "D") zeigen gegenüber der Kontrolle, die die VEGF-Konzentration im Medium von unbehandelten Zellen zeigt ("unbeh. Zellen"), erhöhte VEGF-Werte. Die Werte sind auch höher als bei Ansätzen, in denen die Zellen nur mit Plasmid, aber ohne Fugene-Reagens behandelt wurden ("5 μ g Plasmid").

Der induktive Effekt transfizierter Osteoblasten (Ansatz B der Tabelle in Beispiel 10) auf das Wachstum von mikrovaskulären Endothelzellen wurde in der Trennkammer untersucht (Verfahren siehe Beispiel 8b)). Das Ergebnis ist in Figur 8 dargestellt. Es zeigte sich ein deutlich beschleunigtes Wachstum der Endothelzellen gegenüber der Kontrolle ohne transfizierte Osteoblasten.

Beispiel 11: Elektroporation von Osteoblasten mit EGF-Plasmid

Osteoblasten in Kultur werden durch Trypsinierung abgelöst, zentrifugiert und gezählt. Die Zellsuspension wird auf $1,5\cdot10^6$ Zellen/ml eingestellt. Je 300 μ l dieser Suspension werden in eine Elektroporationsküvette (Gene Pulser L. Coli Pulser Cuvette, Cat. No. 165-2086, 0,2 cm gap electrode, Fa. BioRad, CA 94547) überführt. Die gap electrode ist eine Elektrode, mit der bei der Elektroporation elektrische Felder im Nähermedium erzeugt werden. 30 μ g DNA (hEGF-Plasmid) werden zu den Zellen in die Küvette gegeben. Eine parallel vorbereitete Kontrollküvette mit Zellen erhält keine DNA. Anschließend werden die Küvetten 10 min auf Eis inkubiert.

Die eigentliche Elektroporation wird mit einem Gerät zur Durchführung von Elektroporationen "Gene Pulser II System" der Fa. BioRad durchgeführt (Cat. No. der main unit: 165-2105). Die Einstellungen sind 150 oder 250 V und 960 μ F; Elektroporationszeit wird von dem Gerät automatisch bestimmt, sie beträgt etwa 4 Sekunden. Die Küvette wird in die Halterung der "shocking chamber" (Kammer, in der Zellen in Näherlösung eingebracht werden und in der elektrische Felder erzeugt werden können) eingespannt, WO die Elektroporation stattfindet. Nach der Elektroporation wird die Küvette aus der Halterung entnommen und 10 min bei 4°C inkubiert. Die Zellen werden in Medium (Osteoblastenmedium, z.B. BGJ-B-Medium, Fa.

Gibco, mit 100 IU/ml Penicillin, 100 µg/ml Streptomycin, 10% (v/v) Serum; bei therapeutischem Einsatz wird autologes, humanes Serum verwendet, bei Experimenten fötales Kälberserum) resuspendiert und auf Gewebekulturschalen verteilt. Das Medium wird täglich gewechselt (Nachweis von EGF "nicht-kumulativ"). Alternativ kann das Medium nicht gewechselt werden (Nachweis von EGF "kumulativ"). In einem "nicht-kumulativen" Experiment wurden von den 4 ml Kulturüberstand täglich Proben entnommen, die bei -20°C aufbewahrt wurden, bis durch ELISA die EGF-Konzentration bestimmt wurde. Es wurden aber 1,25°106 humane Osteoblasten elektroporiert (250 V, 960 μF ; 3,9 s, 20 μg DNA). Das Ergebnis ist in Figur 9 dargestellt. Die gemessene EGF-Konzentration ist in Abhängigkeit von der Zeit in Tagen aufgetragen. Die EGF-Sekretion ins Medium hat am Tag 2 nach Transfektion ein Maximum. EGF-Expression ist mehr als eine Woche lang nachweisbar.

Universitätsklinikum Freiburg

Patentansprüche:

- Biologisches, zumindest teilweise in vitro hergestelltes 1. Gelenkkonstrukt, das wenigstens folgende Bestandteile umfaßt:
 - wenigstens ein bioverträgliches Trägermaterial; a)
 - und/oder Knorpelgewebe Chondrocyten enthaltend b) Chondroblasten und Knorpelsubstanz;

PCT/EP00/05313

Osteoblasten und/oder enthaltend C) Knochengewebe Osteocyten und Knochensubstanz;

und Knochengewebe fest miteinander Knorpelwobei verbunden sind.

- Biologisches Gelenkkonstrukt nach Anspruch 1, dadurch gekennzeichnet, daß das Knochengewebe zur Verbesserung der Angiogenese ein Wachstumsfaktorprotein, Endothelzellen oder oder mit einem Wachstumsfaktorgen deren Vorläuferzellen, transfizierte Zellen enthält.
- Biologisches Gelenkkonstrukt nach Anspruch 1 oder 2, 3. dadurch gekennzeichnet, daß es eine Gelenkseite aufweist, die Kontakt zu einem anderen Gelenkteil haben kann und deren Oberfläche aus Knorpelgewebe besteht, und eine Ankerseite, die zur Verankerung des Gelenkkonstrukts im Knochenschaft dienen kann und die aus Knochengewebe besteht.
- Biologisches Gelenkkonstrukt nach Anspruch 3, 4. gekennzeichnet, daß die Ankerseite wenigstens zylinderförmigen Zapfen aufweist, der mit einem Knochenschaft verbunden werden kann.

- 5. Biologisches Gelenkkonstrukt nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß es zusätzlich wenigstens eine Bandkomponente umfaßt, die zwei Gelenkteile funktionell miteinander verbinden kann.
- 6. Biologisches Gelenkkonstrukt nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Gelenkkonstrukt zum Teilersatz einer Gelenkfläche geeignet ist und als einzelnes präformiertes Konstrukt ausgebildet ist.
- 7. Biologisches Gelenkkonstrukt nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Gelenkkonstrukt zum Teilersatz einer Gelenkfläche geeignet ist und als osteochondraler Zylinder ausgebildet ist.
- 8. Biologischer Gelenkersatz, dadurch gekennzeichnet, daß wenigstens zwei Gelenkkonstrukte nach einem der Ansprüche 3-5 mit ihren Gelenkseiten Kontakt zueinander haben und mit ihren Ankerseiten in 2 verschiedenen Knochenschäften verankert werden können.
- 9. Biologischer Gelenkersatz nach Anspruch 8, dadurch gekennzeichnet, daß wenigstens zwei Gelenkkonstrukte durch wenigstens 2 Bandkomponenten verbunden sind.
- 10. Biologischer Gelenkersatz nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß er eine Gelenkkapsel aufweist.
- 11. Verfahren zur Herstellung eines biologischen Gelenkkonstruktes, das folgende Schritte umfaßt:
 - a) Bereitstellung einer Knochenkomponente durch Besiedelung eines bioverträglichen Trägermaterials mit Osteoblasten;
 - b) Bereitstellung einer Knorpelkomponente durch Herstellung einer Suspension von Chondrocyten in einem

Medium oder Gel oder durch Besiedelung einer bioverträglichen Trägersubstanz mit Chondrocyten;

- c) Verbindung der Knochen- und der Knorpelkomponente, so daß das Trägermaterial in den Knorpel integriert wird;
- d) Züchtung des Konstruktes in vitro, wobei durch Stimulation der Zellen zur Anheftung und zur Synthese ihrer gewebespezifischen extrazellulären Matrix eine biologische Vernetzung der zusammengesetzten Komponenten erreicht wird:
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Trägermaterial der Knochenkomponente (a) so geformt wird, daß es eine Gelenkseite zur Aufnahme einer Knorpelfläche und eine Ankerseite zur Verbindung mit einem Knochen aufweist.
- 13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß zur Bereitstellung der Knorpelkomponente (b)
 - aa) Chondrocyten in der Thrombinkomponente eines Fibrinklebers suspendiert werden,
 - bb) diese Suspension mit der Fibrinogenkomponente des Fibrinklebers gemischt wird,
 - cc) die Mischung in eine anatomisch gewünschte Form gebracht wird.
- 14. Verfahren nach einem der Ansprüche 11-13, dadurch gekennzeichnet, daß die Knochen- (a) und die Knorpelkomponente (b) vor der Verbindung getrennt in vitro kultiviert werden.
- 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Verbindung (c) von Knochen- und Knorpelkomponente mittels Fibrinklebung erfolgt.

- 16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß während der Verfestigung des Fibrinklebers bei der Herstellung Knorpelkomponente das noch nicht durch Osteoblasten Knochenkomponente in die Trägermaterial der besiedelte Knorpelschicht gedrückt wird, so daß es fest eingebunden wird und,
- Besiedelung Knochenkomponente durch der daß später die Osteoblasten erfolgt.
- Ansprüche 11-16, 17. Verfahren nach einem der die Herstellung weiterhin daß es gekennzeichnet, Bandkomponente aus faserartigen Materialien und Fibroblasten umfaßt.
- 11-17, dadurch 18. Verfahren nach einem der Ansprüche die Herstellung gekennzeichnet, weiterhin daß es Kapselkomponente aus faserartigen, membranösen Materialien und Fibroblasten umfaßt.
- 11-18, einem der Ansprüche dadurch 19. Verfahren nach Trägermaterial daß an dem gekennzeichnet, Formgebung wenigstens eine Knochenkomponente nach der Anbringung von Gelenkbändern Bandverbindungsstelle zur angebracht wird.
- Ansprüche 11-19, dadurch der Verfahren nach einem gekennzeichnet, daß dem Trägermaterial der an Knochenkomponente wenigstens ein Kapselverbindungsareal zur Anbringung einer Gelenkkapsel angebracht wird.
- Ansprüche 11-20, Verfahren nach einem der gekennzeichnet, daß wenigstens eine Bandkomponente an einer Bandverbindungsstelle der Knochenkomponente gemäß Anspruch 19 angebracht wird.
- 22. Verfahren nach einem der Ansprüche 11-21, dadurch gekennzeichnet, daß wenigstens eine Kapselkomponente an einem

48

Kapselverbindungsareal der Knochenkomponente gemäß Anspruch 20 angebracht wird.

- Ansprüche 11-22, 23. Verfahren nach einem der gekennzeichnet, daß der Knochenkomponente Endothelzellen, ein Wachstumsfaktorprotein, oder Wachstumsfaktorgen mit einem transfizierte Zellen hinzugefügt werden.
- 24. Verfahren zur Herstellung von Knochengewebe, gekennzeichnet, daß Spongiosa als Trägermaterial verwendet wird.
- 25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß autoklavierte, humane, allogene Spongiosa als Trägermaterial verwendet wird.
- 26. Verfahren zur Herstellung von Knochengewebe, das folgende Schritte umfaßt:
 - Knochenzellen oder Isolierung von a) Knochenvorläuferzellen;
 - Zellen durch nicht-viralen Transfektion der b) Gentransfer mit wenigstens einem Gen, das für einen Wachstumsfaktor codiert;
 - Besiedelung eines bioverträglichen Trägermaterials C) mit den transfizierten Zellen;
 - Zell-Trägermaterial-Konstrukte Züchtung der in d) vitro.
- 27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß die isolierten Zellen vor der Transfektion vermehrt werden.
- 27. 28. Verfahren nach Anspruch 26 oder dadurch gekennzeichnet, daß die Transfektion durch Lipofektion erfolgt.

- 29. Verfahren nach einem der Ansprüche 26-28, dadurch gekennzeichnet, daß die Transfektion transient ist.
- 30. Verfahren nach einem der Ansprüche 26-29, dadurch gekennzeichnet, daß das transfizierte Gen oder wenigstens eines der transfizierten Gene für einen Wachstumsfaktor codiert, der aus folgender Gruppe ausgewählt ist: EGF, bFGF, VEGF, BMP-1 bis BMP-20, TGF-ß, PDGF-AA, PDGF-AB, PDGF-BB, Ang I, Ang II.
- 31. Verfahren nach einem der Ansprüche 26-30, dadurch gekennzeichnet, daß das bioverträgliche Trägermaterial auch mit nicht transfizierten Zellen besiedelt wird.
- 32. Verfahren nach einem der Ansprüche 26-31, dadurch gekennzeichnet, daß die isolierten Zellen stromale Zellen sind.
- 33. Knochengewebe, enthaltend folgende Bestandteile:
 - a) Osteoblasten, die in vitro durch nicht-viralen Gentransfer mit einem Gen, das für einen Wachstumsfaktor codiert, transfiziert worden sind;
 - b) wenigstens ein bioverträgliches Trägermaterial
- 34. Knochengewebe nach Anspruch 33, dadurch gekennzeichnet, daß es nach einem Verfahren gemäß einem der Ansprüche 24-32 erhalten werden kann.
- 35. Verwendung von Knochengewebe gemäß Anspruch 34 bei einem Verfahren zur Herstellung eines biologischen Gelenkkonstrukts gemäß einem der Ansprüche 11 bis 23.

Figur 1a)

2/16

Gelenkseite

Ankerseite

Figur 1b)

Figur 1d)

Figur le)

Figur 1f)

Figur 1g)

Figur 1h)

Figur 2

Figur 3

10/16

Casy TT

☑ Neubauer

Figur 4

Lipofektion (Escort[™]) humaner Osteoblasten mit bFGF

Figur 5

Figur 6

Proliferation humaner Osteoblasten durch Transfektion mit bFGF in der Trennkammer

Figur 7

Figur 8

Figur g

