

Figure 12-3

Long polling

Because polling could be inefficient, the next progression is long polling (Figure 12-4).

Figure 12-4

In long polling, a client holds the connection open until there are actually new messages available or a timeout threshold has been reached. Once the client receives new messages, it immediately sends another request to the server, restarting the process. Long polling has a few drawbacks:

- Sender and receiver may not connect to the same chat server. HTTP based servers are usually stateless. If you use round robin for load balancing, the server that receives the message might not have a long-polling connection with the client who receives the message.
- A server has no good way to tell if a client is disconnected.
- It is inefficient. If a user does not chat much, long polling still makes periodic connections after timeouts.

WebSocket

WebSocket is the most common solution for sending asynchronous updates from server to client. Figure 12-5 shows how it works.

Figure 12-5

WebSocket connection is initiated by the client. It is bi-directional and persistent. It starts its life as a HTTP connection and could be "upgraded" via some well-defined handshake to a WebSocket connection. Through this persistent connection, a server could send updates to a client. WebSocket connections generally work even if a firewall is in place. This is because they use port 80 or 443 which are also used by HTTP/HTTPS connections.

Earlier we said that on the sender side HTTP is a fine protocol to use, but since WebSocket is bidirectional, there is no strong technical reason not to use it also for sending. Figure 12-6 shows how WebSockets (ws) is used for both sender and receiver sides.

Figure 12-6

By using WebSocket for both sending and receiving, it simplifies the design and makes implementation on both client and server more straightforward. Since WebSocket connections are persistent, efficient connection management is critical on the server-side.

High-level design

Just now we mentioned that WebSocket was chosen as the main communication protocol between the client and server for its bidirectional communication, it is important to note that everything else does not have to be WebSocket. In fact, most features (sign up, login, user profile, etc) of a chat application could use the traditional request/response method over HTTP. Let us drill in a bit and look at the high-level components of the system.

As shown in Figure 12-7, the chat system is broken down into three major categories: stateless services, stateful services, and third-party integration.

Stateless Services

Stateless services are traditional public-facing request/response services, used to manage the login, signup, user profile, etc. These are common features among many websites and apps.

Stateless services sit behind a load balancer whose job is to route requests to the correct services based on the request paths. These services can be monolithic or individual

microservices. We do not need to build many of these stateless services by ourselves as there are services in the market that can be integrated easily. The one service that we will discuss more in deep dive is the service discovery. Its primary job is to give the client a list of DNS host names of chat servers that the client could connect to.

Stateful Service

The only stateful service is the chat service. The service is stateful because each client maintains a persistent network connection to a chat server. In this service, a client normally does not switch to another chat server as long as the server is still available. The service discovery coordinates closely with the chat service to avoid server overloading. We will go into detail in deep dive.

Third-party integration

For a chat app, push notification is the most important third-party integration. It is a way to inform users when new messages have arrived, even when the app is not running. Proper integration of push notification is crucial. Refer to Chapter 10 Design a notification system for more information.

Scalability

On a small scale, all services listed above could fit in one server. Even at the scale we design for, it is in theory possible to fit all user connections in one modern cloud server. The number of concurrent connections that a server can handle will most likely be the limiting factor. In our scenario, at 1M concurrent users, assuming each user connection needs 10K of memory on the server (this is a very rough figure and very dependent on the language choice), it only needs about 10GB of memory to hold all the connections on one box.

If we propose a design where everything fits in one server, this may raise a big red flag in the interviewer's mind. No technologist would design such a scale in a single server. Single server design is a deal breaker due to many factors. The single point of failure is the biggest among them.

However, it is perfectly fine to start with a single server design. Just make sure the interviewer knows this is a starting point. Putting everything we mentioned together, Figure 12-8 shows the adjusted high-level design.

In Figure 12-8, the client maintains a persistent WebSocket connection to a chat server for real-time messaging.

- Chat servers facilitate message sending/receiving.
- Presence servers manage online/offline status.
- API servers handle everything including user login, signup, change profile, etc.
- Notification servers send push notifications.
- Finally, the key-value store is used to store chat history. When an offline user comes online, she will see all her previous chat history.

Storage

At this point, we have servers ready, services up running and third-party integrations complete. Deep down the technical stack is the data layer. Data layer usually requires some effort to get it correct. An important decision we must make is to decide on the right type of database to use: relational databases or NoSQL databases? To make an informed decision, we

will examine the data types and read/write patterns.

Two types of data exist in a typical chat system. The first is generic data, such as user profile, setting, user friends list. These data are stored in robust and reliable relational databases. Replication and sharding are common techniques to satisfy availability and scalability requirements.

The second is unique to chat systems: chat history data. It is important to understand the read/write pattern.

- The amount of data is enormous for chat systems. A previous study [2] reveals that Facebook messenger and Whatsapp process 60 billion messages a day.
- Only recent chats are accessed frequently. Users do not usually look up for old chats.
- Although very recent chat history is viewed in most cases, users might use features that require random access of data, such as search, view your mentions, jump to specific messages, etc. These cases should be supported by the data access layer.
- The read to write ratio is about 1:1 for 1 on 1 chat apps.

Selecting the correct storage system that supports all of our use cases is crucial. We recommend key-value stores for the following reasons:

- Key-value stores allow easy horizontal scaling.
- Key-value stores provide very low latency to access data.
- Relational databases do not handle long tail [3] of data well. When the indexes grow large, random access is expensive.
- Key-value stores are adopted by other proven reliable chat applications. For example, both Facebook messenger and Discord use key-value stores. Facebook messenger uses HBase [4], and Discord uses Cassandra [5].

Data models

Just now, we talked about using key-value stores as our storage layer. The most important data is message data. Let us take a close look.

Message table for 1 on 1 chat

Figure 12-9 shows the message table for 1 on 1 chat. The primary key is *message_id*, which helps to decide message sequence. We cannot rely on *created_at* to decide the message sequence because two messages can be created at the same time.

Figure 12-9

Message table for group chat

Figure 12-10 shows the message table for group chat. The composite primary key is *(channel_id, message_id)*. Channel and group represent the same meaning here. *channel_id* is the partition key because all queries in a group chat operate in a channel.

group_message	
channel_id	bigint
message_id	bigint
user_id	bigint
content	text
created_at	timestamp
Figure 12-10	

Message ID

How to generate <code>message_id</code> is an interesting topic worth exploring. <code>Message_id</code> carries the responsibility of ensuring the order of messages. To ascertain the order of messages, <code>message_id</code> must satisfy the following two requirements:

- IDs must be unique.
- IDs should be sortable by time, meaning new rows have higher IDs than old ones.

How can we achieve those two guarantees? The first idea that comes to mind is the "auto_increment" keyword in MySql. However, NoSQL databases usually do not provide such a feature.

The second approach is to use a global 64-bit sequence number generator like Snowflake [6]. This is discussed in "Chapter 7: Design a unique ID generator in a distributed system".

The final approach is to use local sequence number generator. Local means IDs are only unique within a group. The reason why local IDs work is that maintaining message sequence within one-on-one channel or a group channel is sufficient. This approach is easier to implement in comparison to the global ID implementation.

Step 3 - Design deep dive

In a system design interview, usually you are expected to dive deep into some of the components in the high-level design. For the chat system, service discovery, messaging flows, and online/offline indicators worth deeper exploration.

Service discovery

The primary role of service discovery is to recommend the best chat server for a client based on the criteria like geographical location, server capacity, etc. Apache Zookeeper [7] is a popular open-source solution for service discovery. It registers all the available chat servers and picks the best chat server for a client based on predefined criteria.

Figure 12-11 shows how service discovery (Zookeeper) works.

Figure 12-11

- 1. User A tries to log in to the app.
- 2. The load balancer sends the login request to API servers.
- 3. After the backend authenticates the user, service discovery finds the best chat server for User A. In this example, server 2 is chosen and the server info is returned back to User A.
- 4. User A connects to chat server 2 through WebSocket.

Message flows

It is interesting to understand the end-to-end flow of a chat system. In this section, we will

explore 1 on 1 chat flow, message synchronization across multiple devices and group chat flow.

1 on 1 chat flow

Figure 12-12 explains what happens when User A sends a message to User B.

Figure 12-12

- 1. User A sends a chat message to Chat server 1.
- 2. Chat server 1 obtains a message ID from the ID generator.
- 3. Chat server 1 sends the message to the message sync queue.
- 4. The message is stored in a key-value store.
- 5.a. If User B is online, the message is forwarded to Chat server 2 where User B is connected.
- 5.b. If User B is offline, a push notification is sent from push notification (PN) servers.
- 6. Chat server 2 forwards the message to User B. There is a persistent WebSocket connection between User B and Chat server 2.

Message synchronization across multiple devices

Many users have multiple devices. We will explain how to sync messages across multiple devices. Figure 12-13 shows an example of message synchronization.

Figure 12-13

In Figure 12-13, user A has two devices: a phone and a laptop. When User A logs in to the chat app with her phone, it establishes a WebSocket connection with Chat server 1. Similarly, there is a connection between the laptop and Chat server 1.

Each device maintains a variable called *cur_max_message_id*, which keeps track of the latest message ID on the device. Messages that satisfy the following two conditions are considered as news messages:

- The recipient ID is equal to the currently logged-in user ID.
- Message ID in the key-value store is larger than cur_max_message_id .

With distinct *cur_max_message_id* on each device, message synchronization is easy as each device can get new messages from the KV store.

Small group chat flow

In comparison to the one-on-one chat, the logic of group chat is more complicated. Figures 12-14 and 12-15 explain the flow.

Figure 12-14

Figure 12-14 explains what happens when User A sends a message in a group chat. Assume there are 3 members in the group (User A, User B and user C). First, the message from User A is copied to each group member's message sync queue: one for User B and the second for User C. You can think of the message sync queue as an inbox for a recipient. This design choice is good for small group chat because:

- it simplifies message sync flow as each client only needs to check its own inbox to get new messages.
- when the group number is small, storing a copy in each recipient's inbox is not too expensive.

WeChat uses a similar approach, and it limits a group to 500 members [8]. However, for groups with a lot of users, storing a message copy for each member is not acceptable.

On the recipient side, a recipient can receive messages from multiple users. Each recipient has an inbox (message sync queue) which contains messages from different senders. Figure 12-15 illustrates the design.

Figure 12-15

Online presence

An online presence indicator is an essential feature of many chat applications. Usually, you can see a green dot next to a user's profile picture or username. This section explains what happens behind the scenes.

In the high-level design, presence servers are responsible for managing online status and communicating with clients through WebSocket. There are a few flows that will trigger online status change. Let us examine each of them.

User login

The user login flow is explained in the "Service Discovery" section. After a WebSocket connection is built between the client and the real-time service, user A's online status and <code>last_active_at</code> timestamp are saved in the KV store. Presence indicator shows the user is online after she logs in.

User logout

When a user logs out, it goes through the user logout flow as shown in Figure 12-17. The online status is changed to offline in the KV store. The presence indicator shows a user is offline.

User A: {status:offline}

Figure 12-17

User disconnection

We all wish our internet connection is consistent and reliable. However, that is not always the case; thus, we must address this issue in our design. When a user disconnects from the internet, the persistent connection between the client and server is lost. A naive way to handle user disconnection is to mark the user as offline and change the status to online when the connection re-establishes. However, this approach has a major flaw. It is common for users to disconnect and reconnect to the internet frequently in a short time. For example, network connections can be on and off while a user goes through a tunnel. Updating online status on every disconnect/reconnect would make the presence indicator change too often, resulting in poor user experience.

We introduce a heartbeat mechanism to solve this problem. Periodically, an online client sends a heartbeat event to presence servers. If presence servers receive a heartbeat event within a certain time, say x seconds from the client, a user is considered as online. Otherwise, it is offline.

In Figure 12-18, the client sends a heartbeat event to the server every 5 seconds. After sending 3 heartbeat events, the client is disconnected and does not reconnect within x = 30 seconds (This number is arbitrarily chosen to demonstrate the logic). The online status is changed to offline.

Figure 12-18

Online status fanout

How do user A's friends know about the status changes? Figure 12-19 explains how it works. Presence servers use a publish-subscribe model, in which each friend pair maintains a channel. When User A's online status changes, it publishes the event to three channels, channel A-B, A-C, and A-D. Those three channels are subscribed by User B, C, and D, respectively. Thus, it is easy for friends to get online status updates. The communication between clients and servers is through real-time WebSocket.

The above design is effective for a small user group. For instance, WeChat uses a similar approach because its user group is capped to 500. For larger groups, informing all members about online status is expensive and time consuming. Assume a group has 100,000 members. Each status change will generate 100,000 events. To solve the performance bottleneck, a possible solution is to fetch online status only when a user enters a group or manually refreshes the friend list.

Step 4 - Wrap up

In this chapter, we presented a chat system architecture that supports both 1-to-1 chat and small group chat. WebSocket is used for real-time communication between the client and server. The chat system contains the following components: chat servers for real-time messaging, presence servers for managing online presence, push notification servers for sending push notifications, key-value stores for chat history persistence and API servers for other functionalities.

If you have extra time at the end of the interview, here are additional talking points:

- Extend the chat app to support media files such as photos and videos. Media files are significantly larger than text in size. Compression, cloud storage, and thumbnails are interesting topics to talk about.
- End-to-end encryption. Whatsapp supports end-to-end encryption for messages. Only the sender and the recipient can read messages. Interested readers should refer to the article in the reference materials [9].
- Caching messages on the client-side is effective to reduce the data transfer between the client and server.
- Improve load time. Slack built a geographically distributed network to cache users' data, channels, etc. for better load time [10].
- Error handling.
 - The chat server error. There might be hundreds of thousands, or even more persistent connections to a chat server. If a chat server goes offline, service discovery (Zookeeper) will provide a new chat server for clients to establish new connections with.
 - Message resent mechanism. Retry and queueing are common techniques for resending messages.

Congratulations on getting this far! Now give yourself a pat on the back. Good job!

Reference materials

- [1] Erlang at Facebook: https://www.erlang-
- factory.com/upload/presentations/31/EugeneLetuchy-ErlangatFacebook.pdf
- [2] Messenger and WhatsApp process 60 billion messages a day:
- $\frac{https://www.theverge.com/2016/4/12/11415198/facebook-messenger-whatsapp-number-messages-vs-sms-f8-2016}{messages-vs-sms-f8-2016}$
- [3] Long tail: https://en.wikipedia.org/wiki/Long_tail
- [4] The Underlying Technology of Messages: https://www.facebook.com/notes/facebook-engineering/the-underlying-technology-of-messages/454991608919/
- [5] How Discord Stores Billions of Messages: https://blog.discordapp.com/how-discord-stores-billions-of-messages-7fa6ec7ee4c7
- [6] Announcing Snowflake: https://blog.twitter.com/engineering/en_us/a/2010/announcing-snowflake.html
- [7] Apache ZooKeeper: https://zookeeper.apache.org/
- [8] From nothing: the evolution of WeChat background system (Article in Chinese): https://www.infoq.cn/article/the-road-of-the-growth-weixin-background
- [9] End-to-end encryption: https://faq.whatsapp.com/en/android/28030015/
- [10] Flannel: An Application-Level Edge Cache to Make Slack Scale: https://slack.engineering/flannel-an-application-level-edge-cache-to-make-slack-scale-b8a6400e2f6b

CHAPTER 13: DESIGN A SEARCH AUTOCOMPLETE SYSTEM

When searching on Google or shopping at Amazon, as you type in the search box, one or more matches for the search term are presented to you. This feature is referred to as autocomplete, typeahead, search-as-you-type, or incremental search. Figure 13-1 presents an example of a Google search showing a list of autocompleted results when "dinner" is typed into the search box. Search autocomplete is an important feature of many products. This leads us to the interview question: design a search autocomplete system, also called "design top k" or "design top k most searched queries".

Figure 13-1