COMP9313: Big Data Management

Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 9: Mining Data Streams

Data Streams

- In many data mining situations, we do not know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

Characteristics of Data Streams

- Traditional DBMS: data stored in *finite*, *persistent data sets*
- Data Streams: distributed, continuous, unbounded, rapid, time varying, noisy, . . .
- Characteristics
 - Huge volumes of continuous data, possibly infinite
 - Fast changing and requires fast, real-time response
 - Random access is expensive—single scan algorithm (can only have one look)
 - Store only the summary of the data seen thus far

Massive Data Streams

- Data is continuously growing faster than our ability to store or index it
- There are 3 Billion Telephone Calls in US each day, 30 Billion emails daily, 1 Billion SMS, IMs
- Scientific data: NASA's observation satellites generate billions of readings each per day
- IP Network Traffic: up to 1 Billion packets per hour per router. Each ISP has many (hundreds) routers!
-

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of memory?

Database Management System (DBMS) Data Processing

General Data Stream Management System (DSMS) Processing Model

DBMS vs. DSMS #1

DBMS vs. DSMS #2

Traditional DBMS:

- stored sets of relatively static records with no pre-defined notion of time
- good for applications that require persistent data storage and complex querying

DSMS:

- support on-line analysis of rapidly changing data streams
- data stream: real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) sequence of items, too large to store entirely, no ending
- continuous queries

DBMS vs. DSMS #3

DBMS

- Persistent relations (relatively static, stored)
- One-time queries
- Random access
- "Unbounded" disk store
- Only current state matters
- No real-time services
- Relatively low update rate
- Data at any granularity
- Assume precise data
- Access plan determined by query processor, physical DB design

DSMS

- Transient streams (on-line analysis)
- Continuous queries (CQs)
- Sequential access
- Bounded main memory
- Historical data is important
- Real-time requirements
- Possibly multi-GB arrival rate
- Data at fine granularity
- Data stale/imprecise
- Unpredictable/variable data arrival and characteristics

Problems on Data Streams

- Types of queries one wants on answer on a data stream: (we'll learn these today)
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream

Applications

- Mining query streams
 - Google wants to know what queries are more frequent today than yesterday
- Mining click streams
 - Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
 - E.g., look for trending topics on Twitter, Facebook
- Sensor Networks
 - Many sensors feeding into a central controller
- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing

Example: IP Network Data

- Networks are sources of massive data: the metadata per hour per IP router is gigabytes
- Fundamental problem of data stream analysis:
 - Too much information to store or transmit
- So process data as it arrives
 - One pass, small space: the data stream approach
- Approximate answers to many questions are OK, if there are guarantees of result quality

Part 1: Sampling Data Streams

Sampling from a Data Stream

Since we can not store the entire stream, one obvious approach is to store a sample

- Two different problems:
 - (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
 - As the stream grows the sample also gets bigger
 - (2) Maintain a random sample of fixed size over a potentially infinite stream
 - As the stream grows, the sample is of fixed size
 - At any "time" t we would like a random sample of s elements
 - What is the property of the sample we want to maintain?
 For all time steps t, each of t elements seen so far has equal probability of being sampled

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single days
 - Have space to store 1/10th of query stream

■ Naïve solution:

- Generate a random integer in [0..9] for each query
- Store the query if the integer is 0, otherwise discard

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - Correct answer: d/(x+d)
 - Proposed solution: We keep 10% of the queries
 - Sample will contain x/10 of the singleton queries and 2d/10 of the duplicate queries at least once
 - ▶ But only d/100 pairs of duplicates
 - $d/100 = 1/10 \cdot 1/10 \cdot d$
 - Of d "duplicates" 18d/100 appear exactly once
 - $-18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$
 - So the sample-based answer is d/100 / x/10 + d/100 + 18d/100 = d/10x+19d

Solution: Sample Users

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets
 - We hash each user name to one of ten buckets, 0 through 9
 - If the user hashes to bucket 0, then accept this search query for the sample, and if not, then not.

Generalized Problem and Solution

- Problem: Give a data stream, take a sample of fraction a/b.
- Stream of tuples with keys:
 - Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
 - Choice of key depends on application
- To get a sample of a/b fraction of the stream:
 - Hash each tuple's key uniformly into b buckets
 - Pick the tuple if its hash value is at most a

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Maintaining a Fixed-size Sample

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
 - Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2Stream: $|a \times c y \mid k \mid d \in g...$ Note that the same item is treated as different tuples at different timestamps

At n= 5, each of the first 5 tuples is included in the sample S with equal prob. At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the *n* tuples seen so far and out of them pick *s* at random

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen *n-1* elements, and now the *nth* element arrives (*n > s*)
 - ▶ With probability *s/n*, keep the *n*th element, else discard it
 - If we picked the n^{th} element, then it replaces one of the s elements in the sample s, picked uniformly at random
- Claim: This algorithm maintains a sample S with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

Proof: By Induction

We prove this by induction:

- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element n+1 the sample maintains the property
 - Sample contains each element seen so far with probability s
 /(n+1)

Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s
 = 1

Proof: By Induction

- Inductive hypothesis: After *n* elements, the sample *S* contains each element seen so far with prob. *s/n*
- Now element *n+1* arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

$$\left(1 - \frac{S}{n+1}\right) + \left(\frac{S}{n+1}\right) \left(\frac{S-1}{S}\right) = \frac{n}{n+1}$$
Element **n+1** discarded sample not picked

- So, at time *n*, tuples in *S* were there with prob. **s/n**
- Time $n \rightarrow n+1$, tuple stayed in S with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = s/n \cdot n/n+1 = s/n+1$

Part 2: Querying Data Streams

Sliding Windows

- A useful model of stream processing is that queries are about a window of length N the N most recent elements received
- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored
- Amazon example:
 - For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
 - We want answer queries, how many times have we sold X in the last k
 sales

Sliding Window: 1 Stream

N = 7

Sliding window on a single stream:

q w e r t y u i o p a s d f g h j k | z x c v b n m q w e r t y u i o p a s d f g h j k l z x c v b n m q w e r t y u i o p a s d f g h j k l z x c v b n m q w e r t y u i o p a s d f g h j k l z x c v b n m ← Past Future

Counting Bits (1)

- Problem:
 - Given a stream of 0s and 1s
 - Be prepared to answer queries of the form:
 How many 1s are in the last k bits? where k ≤ N
- Obvious solution:
 - Store the most recent N bits
 - ▶ When new bit comes in, discard the **N+1**st bit

Counting Bits (2)

- You can not get an exact answer without storing the entire window
- Real Problem:

What if we cannot afford to store *N* bits?

• E.g., we're processing 1 billion streams and N = 1 billion

But we are happy with an approximate answer

An attempt: Simple solution

- Q: How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: Uniformity Assumption

- Maintain 2 counters:
 - S: number of 1s from the beginning of the stream
 - **Z**: number of 0s from the beginning of the stream
- How many 1s are in the last N bits? $N \cdot S/S + Z$
- But, what if stream is non-uniform?
 - What if distribution changes over time?

The Datar-Gionis-Indyk-Motwani (DGIM) Algorithm

- Maintaining Stream Statistics over Sliding Windows (SODA'02)
- DGIM solution that does not assume uniformity
- We store $O(\log 2N)$ bits per stream
- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits

Idea: Exponential Windows

- Solution that doesn't (quite) work:
 - Summarize exponentially increasing regions of the stream, looking backward
 - Drop small regions if they begin at the same point as a larger region

We can reconstruct the count of the last **N** bits, except we are not sure how many of the last **6** 1s are included in the **N**

What's Good?

- Stores only *O*(log2*N*) bits
 - $O(\log N)$ counts of $\log 12 N$ bits each
- Easy update as more bits enter
- Error in count no greater than the number of 1s in the "unknown" area

What's Not So Good?

- As long as the 1s are fairly evenly distributed, the error due to the unknown region is small – no more than 50%
- But it could be that all the 1s are in the unknown area at the end
- In that case, the error is unbounded!

Fixup: DGIM Algorithm

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s:
 - Let the block sizes (number of 1s) increase exponentially
- When there are few 1s in the window, block sizes stay small, so errors are small

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting from 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(\log 12 N)$ bits
 - E.g., given the windows size 40 (*N*), timestamp 123 will be recorded as 3, and thus the encoding is on 3 rather than 123

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [$\mathbf{O}(\log N)$ bits]
 - (B) The number of 1s between its beginning and end [O(loglogN) bits]
- Constraint on buckets:
 - Number of 1s must be a power of 2
 - That explains the *O*(loglog*N*) in (B) above

Representing a Stream by Buckets

- The right end of a bucket is always a position with a 1
- Every position with a 1 is in some bucket
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is > N time units in the past

Example: Bucketized Stream

- Three properties of buckets that are maintained:
 - Either one or two buckets with the same power-of-2 number of 1s
 - Buckets do not overlap in timestamps
 - Buckets are sorted by size

Updating Buckets

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time
- 2 cases: Current bit is 0 or 1
- If the current bit is 0: no other changes are needed
- If the current bit is 1:
 - (1) Create a new bucket of size 1, for just this bit
 - ▶ End timestamp = current time
 - (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
 - (4) And so on ...

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

001010110001011 010101010101011 010101010111 0101010111 01010101 000 101 001 01

Two white buckets get merged into a yellow bucket

Next bit 1 arrives, new orange white is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

How to Query?

- To estimate the number of 1s in the most recent N bits:
 - Sum the sizes of all buckets but the last
 - (note "size" means the number of 1s in the bucket)
 - Add half the size of the last bucket
- Remember: We do not know how many 1s of the last bucket are still within the wanted window
- **Example:**

Error Bound: Proof

- Why is error 50%? Let's prove it!
- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its **1s** are still within the window, we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than **2**^r, the true sum is at least

$$1 + 2 + 4 + ... + 2^{r-1} = 2^r - 1$$

■ Thus, error at most **50%**

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either r-1 or r buckets (r > 2)
 - Except for the largest size buckets; we can have any number between 1 and r of those
- **Error** is at most O(1/r)
- By picking r appropriately, we can tradeoff between number of bits we store and the error

Extensions

- Can we use the same trick to answer queries How many 1's in the last k? where k < N?
 - A: Find earliest bucket B that at overlaps with k.
 Number of 1s is the sum of sizes of more recent buckets + ½ size of B

■ Can we handle the case where the stream is not bits, but integers, and we want the sum of the last *k* elements?

Summary

- Sampling a fixed proportion of a stream
 - Sample size grows as the stream grows
- Sampling a fixed-size sample
 - Reservoir sampling
- Counting the number of 1s in the last N elements
 - Exponentially increasing windows
 - Extensions:
 - Number of 1s in any last k (k < N) elements</p>
 - Sums of integers in the last N elements

Part 3: Filtering Data Streams

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S
- Obvious solution: Hash table
 - But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream

Applications

- Example: Email spam filtering
 - We know 1 billion "good" email addresses
 - If an email comes from one of these, it is NOT spam
- Publish-subscribe systems
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user's interest

First Cut Solution (1)

- Given a set of keys S that we want to filter
- Create a bit array B of n bits, initially all 0s
- Choose a hash function h with range [0,n)
- Hash each member of s∈ S to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element *a* of the stream and output only those that hash to bit that was set to 1
 - Output a if B[h(a)] == 1

First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it

First Cut Solution (3)

- ISI = 1 billion email addresses IBI= 1GB = 8 billion bits
- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)
 - False negative: a result indicates that a condition failed, while it actually was successful
- Approximately 1/8 of the bits are set to 1, so about 1/8th of the addresses not in S get through to the output (false positives)
 - False positive: a result that indicates a given condition has been fulfilled, when it actually has not been fulfilled
 - Actually, less than 1/8th, because more than one address might hash to the same bit
 - Since the majority of emails are spam, eliminating 7/8th of the spam is a significant benefit

Analysis: Throwing Darts (1)

- More accurate analysis for the number of false positives
- Consider: If we throw m darts into n equally likely targets, what is the probability that a target gets at least one dart?
- In our case:
 - Targets = bits/buckets
 - Darts = hash values of items

Analysis: Throwing Darts (2)

- We have **m** darts, **n** targets
- What is the probability that a target gets at least one dart?

Analysis: Throwing Darts (3)

- Fraction of 1s in the array B
 - = probability of false positive = $1 e^{-m/n}$
- **Example: 10**⁹ darts, **8**·**10**⁹ targets
 - Fraction of 1s in $B = 1 e^{-1/8} = 0.1175$
 - ▶ Compare with our earlier estimate: 1/8 = 0.125

Bloom Filter

- Consider: ISI = m, IBI = n
- Use k independent hash functions $h_1, ..., h_k$
- Initialization:
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i , set $B[h_i(s)] = 1$ (for each i = 1,..., k)

■ Run-time:

- When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all i = 1,..., k then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function h_i(x)
 - Otherwise discard the element x

Bloom Filter Example

- Consider a Bloom filter of size m=10 and number of hash functions k=3. Let H(x) denote the result of the three hash functions.
- The 10-bit array is initialized as below

0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0

■ Insert x_0 with $H(x_0) = \{1, 4, 9\}$

0	1	2	3	4	5	6	7	8	9
0	1	0	0	1	0	0	0	0	1

■ Insert x_1 with $H(x_1) = \{4, 5, 8\}$

0	1	2	3	4	5	6	7	8	9
0	1	0	0	1	1	0	0	1	1

- Query y_0 with $H(y_0) = \{0, 4, 8\} \Rightarrow ???$
- Query y_1 with $H(y_1) = \{1, 5, 8\} \Rightarrow ???$ False positive!

Another Example: https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filter – Analysis

- What fraction of the bit vector B are 1s?
 - Throwing k·m darts at n targets
 - So fraction of 1s is $(1 e^{-km/n})$
- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1
- So, false positive probability = $(1 e^{-km/n})^k$

Bloom Filter – Analysis (2)

- m = 1 billion, n = 8 billion
 - k = 1: $(1 e^{-1/8}) = 0.1175$
 - k = 2: $(1 e^{-1/4})^2 = 0.0493$

■ What happens as we keep increasing *k*?

- "Optimal" value of k: n/m In(2)
 - In our case: Optimal $k = 8 \ln(2) = 5.54 \approx 6$
 - Error at k = 6: $(1 e^{-1/6})^2 = 0.0235$

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized
- Is it better to have 1 big B or k small Bs?
 - It is the same: $(1 e^{-km/n})^k$ vs. $(1 e^{-m/(n/k)})^k$
 - But keeping 1 big B is simpler

References

Chapter 4, Mining of Massive Datasets.

End of Chapter 9

Part 4: Counting Data Streams (Sketch)

Counting Distinct Elements

- Problem:
 - Data stream consists of a universe of elements chosen from a set of size N
 - Maintain a count of the number of distinct elements seen so far
- **Example:**

Data stream: 3 2 5 3 2 1 7 5 1 2 3 7

Number of distinct values: 5

- Obvious approach: Maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large

Sketches

- Sampling does not work!
 - If a large fraction of items aren't sampled, don't know if they are all same or all different
- Sketch: a technique takes advantage that the algorithm can "see" all the data even if it can't "remember" it all
- Essentially, sketch is a linear transform of the input
 - Model stream as defining a vector, sketch is result of multiplying stream vector by an (implicit) matrix

Flajolet-Martin Sketch

- Probabilistic Counting Algorithms for Data Base Applications. 1985.
- Pick a hash function h that maps each of the N elements to at least log₂ N bits
- For each stream element a, let r(a) be the number of trailing 0s in h(a)
 - **r(a)** = position of first 1 counting from the right
 - E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R = the maximum r(a) seen
 - R = max_a r(a), over all the items a seen so far
- **E**stimated number of distinct elements = 2^R

Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
 - *h(a)* hashes *a* with **equal prob.** to any of *N* values
 - Then h(a) is a sequence of log₂ N bits, where 2^r fraction of all as have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of r=2 (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why It Works: More formally

- Formally, we will show that **probability of finding a tail of** *r* **zeros:**
 - Goes to 1 if $m \gg 2 \uparrow r$
 - Goes to 0 if $m \ll 2 \uparrow r$

where *m* is the number of distinct elements seen so far in the stream

Thus, 2^R will almost always be around m!

Why It Works: More formally

- The probability that a given h(a) ends in at least r zeros is 2^{-r}
 - h(a) hashes elements uniformly at random
 - Probability that a random number ends in at least r zeros is 2-r
- Then, the probability of **NOT** seeing a tail of length *r* among *m* elements:

Why It Works: More formally

- Note: $(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$
- **■** Prob. of NOT finding a tail of length *r* is:
 - If $m << 2^r$, then prob. tends to 1

$$(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$$
 as $m/2^r \rightarrow 0$

- So, the probability of finding a tail of length r tends to 0
- If $m >> 2^r$, then prob. tends to 0

$$(1-2^{-r})^m \approx e^{-m2^{-r}} = 0$$
 as $m/2^r \to \infty$

- So, the probability of finding a tail of length r tends to 1
- Thus, 2^R will almost always be around m!

Flajolet-Martin Sketch

- Maintain FM Sketch = bitmap array of L = log N bits
 - Initialize bitmap to all 0s
 - For each incoming value a, set FM[r(a)] = 1
- If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]...

- Use the leftmost 1: R = max_a r(a)
- Use the rightmost 0: also an indicator of log(d)
 - ► Estimate $d = c2^R$ for scaling constant $c \approx 1.3$ (original paper)
- Average many copies (different hash functions) improves accuracy