

Introduction:

Project Overview

- Context: The project targets predicting potential credit card leads for Happy Customer Bank.
- The bank aims to identify customers with a higher likelihood of taking a recommended credit card. Various customer demographics, account details, and engagement metrics are included to support targeted marketing.
- Dataset Summary: Key features include Age, Average Account Balance, Occupation, and Credit Product status, with the target variable being Is_Lead
- Business Importance: Accurate prediction can enhance marketing efficiency and customer targeting

2

Objectives:

Project Objectives

1. Data Understanding & Cleaning:

- Handle missing values.
- Perform categorical encoding and feature scaling.

2. Exploratory Data Analysis (EDA):

- Analyze customer demographics and financial behavior.
- Visualize relationships between features and the target variable.

3. Model Development & Evaluation:

- Test and compare different machine learning models.
- Tune hyperparameters for better performance.

4. Model Selection:

• Choose the best model based on precision, recall, and F1-score

Observations:

The Age distribution is likely unimodal, with most values concentrated around a specific range (e.g., 25–45 years), depending on the dataset.

Skewness:

Since the distribution is right-skewed it indicates younger customers dominate.

Avg_Account_Balance might show significant right-skewness, meaning most customers have a low balance while a few have very high balances.

Entrepreneurs stand out as the occupation category with the highest proportion of leads (above 60%).

This suggests that entrepreneurs are highly interested in the financial product or service being offered.

Males seems to dominate the lead conversions

The pairplot reveals some separability between Is_Lead = 0 and Is_Lead = 1 based on features like Age and Avg_Account_Balance.

However, there's also overlap, indicating some noise in the data.

Imbalance in Target Variable:

The dataset is highly imbalanced, requiring resampling techniques or model adjustments

Metrics:

Use **Precision**, **Recall**, **F1-Score**, to evaluate the model, rather than accuracy, due to imbalance.

Feature Selection: The most Important Features are Occupation, Vintage, Credit_Product

Best Model Before Tuning:

Logistic Regression and **Gradient Boosting** had the highest precision (0.8496 and 0.8497).

Best Model After Tuning:

Decision Tree Classifier achieved the highest tuned precision (0.8567), followed closely by Random Forest Classifier (0.8550).

Thus, **Decision Tree Classifier** is the best model after hyperparameter tuning.

Model	Cross-Val Precision	Best Tuned Precision
Logistic Regression	0.8496 (Test)	0.8009
Random Forest Classifier	0.7429 (Test)	0.855
Gradient Boosting	0.8497 (Test)	0.8417
Decision Tree Classifier	0.7487 (Test)	0.8567

Evaluation of Models:

Logistic Regression (LR)

- Precision:
 - Train: **0.8496**, Test: **0.8496**
 - Consistently high precision, indicating the model has a strong ability to correctly identify positive cases when it predicts them.
- Recall:
 - Train: **0.4248**, Test: **0.4248**
 - Low recall, meaning the model misses a significant number of true positives.
- F1-Score:
 - Train: **0.5664**, Test: **0.5663**
 - Balanced but moderate F1-score, reflecting the trade-off between precision and recall.
- Conclusion: Logistic Regression offers high precision but sacrifices recall, which might not be ideal for imbalanced data where identifying true positives is critical.

Random Forest Classifier (RFC)

- Precision:
 - Train: **0.8350**, Test: **0.7435**
 - Train precision is good but overfits slightly, as the test precision drops.
- Recall:
 - Train: **0.4997**, Test: **0.4464**
 - Higher recall compared to LR, but still not ideal.
 Overfitting is noticeable.

F1-Score:

- Train: 0.6225, Test: 0.5544
- Higher than LR on training but drops significantly on testing, again indicating overfitting.
- Conclusion: Random Forest improves recall slightly over LR but suffers from overfitting, as evidenced by the precision and F1-score drop on the test set.

Evaluation of Models:

Gradient Boosting (GB)

- Precision:
 - Train: 0.8500, Test: 0.8497
 - Very consistent between train and test, with minimal overfitting.

Recall:

- Train: 0.4252, Test: 0.4251
- Similar recall performance to LR, which is relatively low.

F1-Score:

- Train: **0.5669**, Test: **0.5665**
- Matches LR almost identically but offers
 slightly better stability.

 Conclusion: Gradient Boosting performs similarly to Logistic Regression but with slightly better generalization. Its precision-recall tradeoff is still an issue for imbalanced data.

Decision Tree Classifier (DTC)

Precision:

Train: **0.8628**, Test: **0.7490**

High train precision but overfits significantly, as test precision is much lower.

Recall:

Train: **0.4748**, Test: **0.4179**

Recall drops significantly on the test set, suggesting overfitting.

S

F1-Score:

Train: **0.6118**, Test: **0.5351**

Higher than LR and GB on training but lower on testing due to overfitting.

Conclusion: Decision Tree overfits the training data and generalizes poorly compared to other models.

Recommendation:

For this imbalanced dataset, the goal is to achieve a balance between **precision and recall** while minimizing overfitting. Based on the metrics:

Decision Tree Classifier:

- **Best Model After Tuning:** achieved the highest tuned precision (0.8567), followed closely by Random Forest Classifier (0.8550).
- Highest precision (critical for minimizing false leads).
- Balanced trade-off between precision and recall

Gradient Boosting:

- Offers the best balance between train and test scores, with minimal overfitting.
- Precision and recall are consistent, making it more reliable.
- Works well with imbalanced data and supports further tuning (e.g., adding class weights or resampling).

Random Forest:

- 1. Slightly better recall than GB, but suffers from overfitting.
- 2. If recall is a higher priority than precision, RFC could be improved with techniques like hyperparameter tuning or balanced class weights.