

NATIONAL BUREAU OF STANDARDS REPORT

5320

SKELETON TABLES
FOR
MANUAL ON EXPERIMENTAL STATISTICS
FOR ORDNANCE ENGINEERS

A Report to

Office of Ordnance Research Department of the Army

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$0.75), available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

Inquiries regarding the Bureau's reports should be addressed to the Office of Technical Information, National Bureau of Standards, Washington 25, D. C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

1103-40-5146

5320

5 August 1957

Skeleton Tables

for

Manual on Experimental Statistics for Ordnance Engineers

Prepared by

Statistical Engineering Laboratory

A Report to

Office of Ordnance Research Department of the Army

IMPORTANT NOTICE

NATIONAL BUREAU OF intended for use within the to additional evaluation and listing of this Report, either the Office of the Director, however, by the Governmento reproduce additional co.

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015

r progress accounting documents formally published it is subjected ig, reproduction, or open-literature ission is obtained in writing from . Such permission is not needed, lly prepared if that agency wishes

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NATIONAL BURBAR OF STANBARDS REPORT

NOS PROJECT:

SMITS AND SMITS

Language Stanguage

Single Committee of the Committee of the

.

enlicetrars Enterorrogas on Escale

Etakhetionl Haydorevay Sabbanati

and property &

Orficerof Ordonace Research

NATIONAL SURFACE THE SLANDARDS DEPORTS are usually prolineary or organic accountry, no one or extended the superior substitution and review of the superior substitution and review of the substitution of the

U. S. DEPARTMENT OF CONSIDERS.
WARDING SUREMU OF STANDARDS.

NOTICE

This report presents in skeleton form the tables which will eventually appear in the Manual on Experimental Statistics for Ordnance Engineers, as an aid to evaluation of drafts of various portions of the Manual being circulated for comment.

HOT I CH

dories enterent and anti-material and anti-material and anti-material of the standard of the s

LIST OF TABLES

		Page
Ia	Cumulative Normal Distribution	1
Ib	Cumulative Normal Distribution	2
11	Percentiles of the t Distribution	3
III	Percentiles of the F Distribution	4
IV	Percentiles of q (Studentized Range)	5
v	Percentiles of the χ^2 Distribution	6
VI	Confidence Belts for Proportions	7
VII	Confidence Belts for the Correlation Coefficient	8
VIII	Weighting Coefficients for Probit Analysis	9
IX	Maximum and Minimum Working Probits and Range	10
х	Tolerance Factors for Normal Distributions	11
XI	Criteria for Rejection of Outlying Observations	12
XII	Percentiles of T(n) for the "Wilcoxon Signed-ranks Test"	13
XIII	Probabilities Associated with the Mann-Whitney Test	14
XIV	Percentiles of U(n ₁ ,n ₂) for the "Mann-Whitney" Test	15
xv	Tables for Distribution-free Tolerance Limits (Two-sided)	16
XVI	Tables for Distribution-free Tolerance Limits (One-sided)	17
XVII	Confidence Associated with a Tolerance Limit	18

PERSON SO TELL

75 6 .		
1	Cumulative Normal Dielethorion	
	Cundantive Normal Distribution	
	Percentiles of the t. Distriction	
b	Fercentiles of the F Wisterburgen	III
	Percentiles of g (Studenthead-nergo)	
	Percentiles of the x2 Distribution	
	Confidence Belie for Proportions	
	Confidence Belts for the Correlation	ITV
4	"Meighting Coefficients for Probit Analysis	ILIV
A.O	Maximum and Minimum Working Probits and Hange	
II	Tolerance Factors for Normal Distributions	
	Oritoria for Rejection of Outlying Observations	
	Percentiles of T(n) for the "Wilcoxon Signed-	
	Probabilities Associated with the Mann-Whitney	
	Percentiles of U(n_nng) for the "Vand-Whiteney"	
2.1	Tables for Distribution-from Tolerance Limits (Tro-mided)	
	Tables for Distribution-free Tolerance Limits (One-sided)	IVX
	Confidence Associated with a Tolerance Limit Statement	

List of	Tables (Continued)	Page
XVIIIa	Table of Required Sample Sizes	19 - 20
XVIIIb	Table of Required Sample Sizes	21 - 22
XIX	Percentiles for $\varphi = (\overline{X}-m_0)/w$	23
xx	Percentiles for $\varphi' = \frac{\overline{X}_A - \overline{X}_B}{(w_A + w_B)/2}$	24
XXI	Critical values of L for the Link-Wallace Test.	25 - 2 6
XXII	Percentiles of F' = w _A /w _B	27
XXIII	Tables for Computing Confidence Limits for o	28

		Rables (Continued)	lo jabl
		Table es Bequies Sample States to elder	
		Table of Required Sample Signer	
	2.2	Percentiles for p = (X-m ₀)/w	
		Percentiles for $\phi' = \frac{X_A - X_B}{(W_A - W_B)/2}$	KK
38		.reeT ecalist-Enth eds tot I to seniev Lacitito	1-7.34
	1.50	Percentiles of P - 14 April 10 Religious Proposed	LIKK
	80	Tables for Computing Confidence Limits for c	IIIXX

Cumulative Normal Distribution

Values of P corresponding to z_p for the normal curve z is the standard normal variable.

တ့	0000°	6100°	.0287	.1841	.8159	.9713	. 9981	1.0000
œ.	.0001	.0026	.0359	.2119	. 7881	.9641	. 9974	6666°
7.	.0001	.0035	.0446	.2420	.7580	.9554	. 9965	6666°
9.	.0002	.0047	.0548	.2743	.7257	. 9452	. 9953	8666°
ů.	.0002	0062	0668	.3085	6915	. 9332	. 9938	8666.
4.	0003	.0082	0808	. 3446	,6554	.9192	. 9918	2666°
.3	0000°	.0107	0968	, 3821	.6179	. 9032	. 9893	. 9995
2,	2000.	.0139	1111	.4207	.5793	.8849	.9861	. 9993
۲.	00100°	0119	,1357	.4602	5398	.8643	. 9821	0666
0	.0013	.0228	1587	. 5000	. 5000	.8413	.9772	. 9987
d _z	-3	-2	-	0-	0+	-	2	က

Cumulative Normal Distribution

Values of z_p Corresponding to P for the normal curve. z is the standard normal variable

60.	-1.34	-0.88	-0.55	-0.28	-0.03	0.23	0.50	0.81	1.23	2.33
80°	-1.41	-0.92	-0.58	-0.31	-0.05	0.20	0.47	0.77	1.18	2.05
.07	-1,48	-0.95	-0.61	-0.33	-0 °08	0.18	0.44	0.74	1.13	1.88
90°	-1.55	-0.99	-0.64	-0.36	-0.10	0,15	0.41	0.71	1.08	1.75
.05	-1.64	-1.04	-0.67	-0.39	-0.13	0.13	0.39	0.67	1.04	1.64
.04	-1,75	-1.08	-0.71	-0.41	-0.15	0.10	0.36	0.64	0.99	1.55
.03	-1.88	-1,13	-0.74	-0.44	-0.18	0.08	0.33	0.61	0.95	1.48
.02	-2.05	-1.18	-0.77	-0.47	-0.20	0.05	0.31	0.58	0.92	1.41
.01	-2.33	-1.23	-0.81	-0.50	-0.23	0.03	0.28	0.55	0.88	1.34
00.		-1.28	-0.84	-0.52	-0.25	00.0	0.25	0.52	0.84	1.28
Ъ	00.	01.	.20	.30	.40	.50	09.	. 70	.80	06.

Special values

.100	-1.282	006.	1.282
.050	-1.645	.950	1.645
.025	-1.960	.975	1.960
010.	-2.326	066.	2.326
.005	-2.576	. 995	2.576
.001	-3.090	666.	3.090
Ъ	Z P	Ф	$^{\mathbf{z}}_{\mathbf{p}}$

TABLE II

Percentiles of the t Distribution

d.f.	^t .90	^t .95	t.975	t.99	t.995
1 2	3.078	6.314	12.706	31.821	63.657
9			2.262	2.821	
19 : 120		1.729	2.093		
ω	1.282	1.645	1.960	2.326	2.576

Use d.f. 1(1)30, 40, 60, 120, ∞ . Values taken from Table A-5 Dixon and Massey "Introduction to Statistical Analysis," Second Edition, McGraw-Hill (1957).

TABLE III

Percentiles of the F Distribution

 n_1 = degrees of freedom for numerator

Reproduce from Dixon and Massey, Table A-7a, Second Edition, McGraw-Hill (1957).

Reproduce also F.99 (n₁,n₂). This is Table A-7b of the above reference.

The second of th

TABLE IV

Percentiles of q (Studentized Range)

q = w/s. w is the range of t observations, and v is the number of degrees of freedom associated with the standard deviation s.

q.95

νt	2(1)20
1 (1) 20	

q 99

νt	2(1)20
1 (1) 20	

Values for above tables taken from Table A-18, Dixon and Massey, Second Edition (1957).

n province presidente de la servició de la compansión de la compansión de la compansión de la compansión de la La compansión de la compa

TABLE V

Percentiles of the χ^2 Distribution

Values of $\chi^2_{\mathbf{p}}$ corresponding to P

d.f.	χ².90	χ _{.95}	χ ² .975	χ².99	χ ² .995

For large degrees of freedom,

$$\chi_{\rm p}^2 = (z_{\rm p} + \sqrt{2(\rm d.f.)-1})^2/2$$

where z_p is given in Table I.

d.f. = 1(1) 16, 18, 20, 24, 30, 40, 60, 120

Values taken from Table A-6a, Dixon and Massey, McGraw-Hill Second Edition (1957).

TABLE VI

Confidence Belts for Proportions

(Change labels, Ordinate label - P Abscissae label - p)

1st chart Confidence coefficient .90

2nd chart Confidence coefficient .95

3rd chart Confidence coefficient .99

Charts 1,2,3 are reproduced from Dixon and Massey, p. 414, 415, 416, Second Edition, McGraw-Hill (1957).

TABLE VII

Confidence Belts for the Correlation Coefficient (confidence coefficient .95)

Reproduced from Table A-27, Dixon and Massey, Second Edition, McGraw-Hill (1957).

TABLE VIII

Weighting Coefficients for Probit Analysis

1	
6.0	0.011 0.110 0.405 0.634 0.471 0.154 0.019
0.8	0.008 0.092 0.370 0.627 0.503 0.180 0.025
0.7	0.006 0.036 0.532 0.532 0.031 0.0031
9.0	0.005 0.062 0.601 0.558 0.038 0.040
0.5	0.003 0.050 0.269 0.581 0.269 0.050
0.4	0.002 0.040 0.238 0.558 0.601 0.302 0.062
0.3	0.002 0.208 0.208 0.532 0.532 0.336 0.076
0.2	0.001 0.025 0.180 0.503 0.627 0.370 0.092
0.1	0.001 0.019 0.154 0.471 0.634 0.405 0.110
0.0	0.001 0.015 0.131 0.439 0.637 0.439 0.131
Y	H 00 00 4 00 00 7 00

Values obtained from page 32, Finney, Cambridge University Press (1952).

Maximum and Minimum Working Probits and Range

TABLE IX

Expected probit	Minimum working probit y0	Range 1/z	Maximum working probit y ₁₀₀	Expected probit
1.1	0.8579	5034	9.1421	8.9
1.2	0.9522	3425	9.0478	8.8
1.3	1.0462	2354	8.9538	8.7
1.4	1.1400	1634	8.8600	8.6
1.5	1.2334	1146	8.7666	8.5
1.6	1.3266	811.5	8.6734	8.4
1.7	1.4194	580.5	8.5806	8.3
1.8	1.5118	419.4	8.4882	8.2
1.9	1.6038	306.1	8.3962	8.1
2.0	1.6954	225.6	8.3046	8.0
2.1	1.7866	168.00	8.2134	7.9
2.2	1.8772	126.34	8.1228	7.8
2.3	1.9673	95.96	8.0327	7.7
2.4	2.0568	73.62	7.9432	7.6
2.5	2.1457	57.05	7.8543	7.5
2.6	2.2339	44.654	7.7661	7.4
2.7	2.3214	35.302	7.6786	7.3
2.8	2.4081	28.189	7.5919	7.2
2.9	2.4938	22.736	7.5062	7.1
3.0	2.5786	18.5216	7.4214	7.0
3.1	2.6624	15.2402	7.3376	6.9
3.2	2.7449	12.6662	7.2551	6.8
3.3	2.8261	10.6327	7.1739	6.7
3.4	2.9060	9.0154	7.0940	6.6
3.5	2.9842	7.7210	7.0158	6.5
3.6	3.0606	6.6788	6.9394	6.4
3.7	3.1351	5.8354	6.8649	6.3
3.8	3.2074	5.1497	6.7926	6.2
3.9	3.2773	4.5903	6.7227	6.1
4.0	3.3443	4.1327	6.6557	6.0
4.1	3.4083	3.7582	6.5917	5.9
4.2	3.4687	3.4519	6.5313	5.8
4.3	3.5251	3.2025	6.4749	5.7
4.4	3.5770	3.0010	6.4230	5.6
4.5	3.6236	2.8404	6.3764	5.5
4.6	3.6643	2.7154	6.3357	5.4
4.7	3.6982	2.6220	6.3018	5.3
4.8	3.7241	2.5573	6.2759	5.2
4.9	3.7407	2.5192	6.2593	5.1
5.0	3.7467	2.5066	6.2533	5.0

TABLE X

Tolerance Factors for Normal Distributions

Factors K such that the probability is γ that at least a proportion P of the distribution will be included between \overline{X} + Ks, where \overline{X} and s are estimates of the mean and standard deviation computed from a sample of n.

Use format as pp. 102-107, "Techniques of Statistical Analysis", Eisenhart, Hastay and Wallis, McGraw-Hill (1947). Abridge, using $n=2(1)20,\ 25,\ 30(10)100,\ 100(100)600,\ 800,1000,\infty$.

TABLE XI

Criteria for Rejection of Outlying Observations

Statistic	Number of observations n	Critical values						
		α= .30	α= .20	α= .10	α=- .05	α'= .02	α'= .01	α'= .005

Reproduced from Table A-8e, Dixon and Massey, McGraw-Hill, Second Edition (1957).

Percentiles of T(n) for the "Wilcoxon Signed-ranks Test"

n	T.025 ⁽ⁿ⁾	T.01 ⁽ⁿ⁾	T.005 ⁽ⁿ⁾
6	0	· pan	-
6	2 4 6 8	0	
8	4	2	0
9	6	3 5	2
10	8	5	2 3
11	11	7	5 7
12	14	10	7
13	17	13	10
14	21	16	13
15	25	20	16
16	30	24	20
17	35	28	23
18	40	33	28
19	46	38	32
20	52	43	38
21	59	49	43
22	66	56	49
23	73	62	55
24	81	69	61
25	89	77	68

Adapted from Table II, F. Wilcoxon, 1949, "Some rapid approximate statistical procedures", New York: American Cyanamid Company, p. 14.

(See also, Table G, p. 254, Siegel, "Non-parametric Statistics", McGraw-Hill (1956).

For large n,

$$T_p(n) = \frac{n(n+1)}{4} - z_{1-p} \sqrt{\frac{n(n+1)(2n+1)}{24}}$$
 approximately

where z is given in Table I.

TABLE XIII

Probabilities Associated with the Mann-Whitney Test

Probabilities associated with values as small as U.

Reproduce tables of Mann and Whitney from Annals of Mathematical Statistics Volume 18, (1947), pp. 52-54. (Same tables are in Siegel, McGraw-Hill, 1956, Table J). Eliminate last two columns of last table. Put note above each table:

"n₁ is the smaller of n_A,n_B,

n₂ is the larger of n_A,n_B."

TABLE XIV

Percentiles of U(n1,n2) for the "Mann Whitney" Test

- a) $U_{.001}(n_1,n_2)$ Reproduce Table K_1 p. 274 of *.
- b) $U_{01}(n_1,n_2)$ Reproduce Table K_2 p. 275 of *.
- c) $U_{.025}(n_1, n_2)$ Reproduce Table K_3 p. 276 of *.
- d) $U_{.05}(n_1,n_2)$ Reproduce Table K_4 p. 277 of *.

Put note above each table: " n_2 , n_1 are the larger and smaller respectively of n_A , n_B ."

*) Siegel, McGraw-Hill, 1956.

NOTE: for n > 20,

$$U_{\alpha/2} = \frac{n_A n_B}{2} - z_{1-\alpha/2} \sqrt{\frac{n_A n_B (n_A + n_B + 1)}{12}}$$

approximately where z is given in Table I.

Tables for Distribution-free Tolerance Limits (Two-sided)

Values (r,s) such that we may assert with confidence at least γ that 100P percent of a population lies between the rth smallest and the sth largest of a random sample of n from that population (no assumption of normality required).

		_			_	_			-	_					-			_				_		_			
	66.	1	ı	1	ı	1	ı	1	i	ı	t	ı	ı	i	2	ı	1	ı	1	1	ı	1	ı	1,1		2,1	2,1
0.99	.95	ı	ł	1	ı	ı	ı	ı	ı	ŧ	ı	ı	ı	1	1,1	1,1	1,1	2,1	2,2		N	7,7			3	15,15	ထ်
1	06.	1	1	1	1,1	1,1	1,1	1,1	2,1	2,1	2,1	2,2	2,2	3,2	ຕຸກ	3,3	4,3	5,4				18,17			31,30		
	.75	3,3	4,3	4,4	5,4	ດຸນ	5,5	6,5	6,6	7,6	7,7		ອ້ອ	. •	. •	12,11	13,13	15,15	18,18	29,29	40,40	52,51	63,63	75,74	86,86	98,97	10,109
	66.	ı	1	1	1	,		1	1	ı	i	1	1	ı	ı	1	1	1	1	ı	,	1,1	1,1		2,2		
.95	. 95	ŧ	1	1	1	1	1	1	1	1	1,1	1,1	1,1	1,1	2,1	2,1	2,1	2,2	3,2		7,6		1,10				
γ = 0.	06	,1	,1	, T.	۲,	, ₁	,1	2,	,2	,2	,2,	2,	ູ້	ຕູ້	4,	4,	4	ທູ	9,	,11	,15	13	,24	,28	33	,37	,42
	٠	1	_	7	2	2	2	2	2	က	က	က	3	4	77	3 4	1 5	9 6	7			1 20					
	.75	4,4	व्	5,5	6,5	6,6	7,6	7,7	8,7	ສ໌ສ ສ	9,6	ດ໌ ດ	10,10	11,11	13,12	14,13	15,14	17,16	20,20	32,31		55,54	67,66	78,78	90,90	102,102	
	66.	-	,	1	1	ı	ı	i	ı	1	1	1	ı	ı	1	1	1	ı	ı	1	1,1	1,1	2,1		3,2		
.90	.95	1	ı	1	ı	1	1	1,1	1,1	1,1	1,1	1,1	2,1	2,1	2,1	2,2	2,2		ຕູ້ຕ		-	0	12,11			6	
γ = 0.	06.	1,1	2,1	2,1	2,3	2,2	2,2	3,2	3,2	3,2	ລັກ	ຕຸຕ	£,3	4,4	4,00	5,5	5,5	9,9	8,7	12,11	16,16	21,20	26,25	30,30	35,34	40,39	44,44
	.75	•	5,5	6,5	6,6	7,6	7,7	8,7	ຜູ້ຜ	ຜູ້ດ	9,9	10,10	11,11	12,12	13,13	14,14	16,15	18,17	21,21	33,32	45,44	57,56	68,68	80,80	92,92	104,104	117,116
	66.	1	ı	ı	1	1	ı	i	ı	1	1	1	1	1	ı	1	ı	1	ı	1,1	2,1	2,1			3,3		
0.75	.95	-	1,1	1,1	1,1	1,1	1,1	2,2	2,2	2,2	2,2	2,2	2,2	2,2	3,2		3,3		4,4			11,11					23,22
λ = (06.	2,1	2,2	2,2	3,2	3,2	3,3	3,3	4,3	4,3	4,3	4,4	5,4	-	6,3	•	•	•	-	13,13		23,22	28,27		37,37		47,47
	.75	5,5	6,6	7,6	7,7	8,7	ຜູ້ສ	8,6	10,9	10,10	11,10	-	12,12	14,13	15,14	16,15	17,17	20,19	23,23	35,35	47,47	59,59	72,71	84,83	96,96	108,108	121,120
d	n	50	55	09	65	70	75	80	85	06	95	100	110	120	130	140	150	170	200	300	400	200	009	200	300	006	1000

Tables for Distribution-free Tolerance Limits (One-sided)

Largest values of m such that we may assert with confidence at least γ that 100P percent of a population lies below the mth largest (or above the mth smallest) of a random sample of n from that population (no assumption of normality required).

				_																							
6	66°	ı	ı	ł	1	1	ı	ī	1	1	ı	8	t	i	ı	8	i	1	ı	ı	ı	Н	7	2	2	က	က
= 0.99	.95	i	ì	ı	1	ı	i	i	ı	٢	٦	7	- i	-	7	07.	7	က	4	2	11	14	18	22	26	30	35
٠,	06°	7	٢	-	27	07	23	2	က	က	က	4	4	r3	9	9	7	6	11	19	27	35	44	52	19	20	62
	.75	9	7	00	6	10	10	11	12	13	14	15	17	19	21	23	56	30	36	58	80	0	S	4	172	9	-
2	66.	ı	i	ı	1	ı	ı	1	1	1	I,	1	1	ı	ı	ı	ı	ı	1	7	7	7	2	က	4	4	വ
0.95	.95	1	1	-	Н		-	7	-	7	87	7	7	01	က	က	က	4	D.	6	13	17	21	56	30	35	39
٨	06°	2	7	7	က	က	က	4	4	5	S	S	9	7	œ	∞	6	11	13	22	30	39	48	22	99	75	82
	.75	00	6	10	11	12	13	14	15	16	17	18	20	22	25	27	29	33	40	63	86	0	3	S	180	0	N
	66°	6	8	1	•	ı	1	i	1	1	í	ı	1	ı	ı	ı	1	1	ı	<u></u>	2	7	က	4	3	_C	9
00°00	.95	1	-	-	٦	-	-	7	03	7	07	7	က	က	က	4	4	2							32		
٦ ـ	06°	2	က	က	4	4	4	က	S	Ŋ	9	9	7	œ	6	10	10	12	15	23	32	41	21	09	69	42	88
	.75	6	10	11	12	13	14	15	16	17	18	20	22	24	56	28	31	35	42	65	89	7	3	9	184	0	3
	66.	1	i	1	1	1	1	1	ı	ı	ı	1	ı	ı	ı	٦	-	-	7	7	က	က	4	S	9	2	œ
0.75	.95		7	2	07	7	2	က	က	က	က	က	4	4	D.	ည	9	2	σ	12	17	22	56	31	36	41	45
٦ ـ	06°	က	4	4	S	S	9	9	7	7	7	00	6	10	11	12	12	14	17	56	36	45	55	65	74	84	94
	.75	10	12	13	14	15	91	17	19	20	21	22	24	27	53	31	34	39	46	20	94	_	4	9	192		4
	d d	50	55	09	65	70	75	80	85	90	95	100	110	120	130	140	150	170	200	300	400	200	009	200	800	006	1000

Confidence Associated with a Tolerance Limit Statement

Confidence γ with which we may assert that 100P percent of the population lies between the largest and smallest of a random sample of n from that population (continuous distribution assumed).

	+	_												
P=.99	.01	.01	.02	.02	.03	0.04	90°	60°	.12	.16	.19	.23	.26	
P=.95	.21	. 23	. 25	.26	.36	.45	09°	. 72	.81	.87	.91	.94	96°	
P=, 90	.52	. 55	. 58	.61	.73	.82	.92	.97	66°	66.	1.00-			
P=, 75	.95	96°	26°	86.	66°	1.00-								
n	17	18	19	20	25	30	40	20	09	20	80	06	100	
P=.99	00°	00.	00.	00°	° 00	°00°	00°	00.	.01	.01	.01	01	01	01
												•	•	•
P=.95	.01	.01	°00°				.07		.10	.12	.14	.15	. 17	• 19
P=.90 P=.95	.03 .01	.05 .01							.30 .10	.34 .12				
			.02	.03	.04	90°	.23 .07	60°	.30		.38 .14	.15	.17	°19

TABLE XVIIIa

Table of Required Sample Sizes

Sample size required for detecting, with probability $1-\beta$, whether the average m of a new product differs from the standard m (or whether two product averages m and m differ).

$$d = \frac{m-m_0}{\sigma}$$
 (or $d = \sqrt{\frac{m_A-m_B}{\sigma_A^2 + \sigma_B^2}}$ if we are comparing two products).

The standard deviations are assumed to be known.

 $\alpha = .01$

1-β d	.50	.60	.70	.80	.90	.95	. 99
.1	664	801	962	1168	1488	1782	2404
.2	166	201	241	292	372	446	601
.4	42	51	61	73	93	112	151
.6	19	23	27	33	42	50	67
.8	11	13	16	19	24	28	38
1.0	7	9	10	12	15	18	25
1.2	5	6	7	9	11	13	17
1.4	4	5	5	6	8	10	13
1.6	3	4	4	5	6	7	10
1.8	3	3	3	4	5	6	8
2.0	2	3	3	3	4	5	7
3.0	1	1	2	2	2	2	3

If we must estimate σ from our sample, and use Student's t then we should add 4 to the tabulated values to obtain the approximate required sample size. (If we are comparing two product averages, add 2 to the tabulated values, For this case, we must have $\sigma_A = \sigma_B$).

TABLE XVIIIa (Continued)

 $\alpha = .05$

1-β d	.50	.60	.70	,80	.90	.95	.99
.1	385	490	618	785	1051	1300	1838
.2	97	123	155	197	263	325	460
. 4	25	31	39	50	66	82	115
.6	11	14	18	22	30	37	52
.8	7	8	10	13	17	21	29
1.0	4	5	7	8	11	13	19
1.2	3	4	5	6	8	10	13
1.4	2	3	4	5	6	7	10
1.6	2	2	3	4	5	6	8
1.8	2	2	2	3	4	5	6
2.0	1	2	2	2	3	4	5
3.0	1	1	1	1	2	2	3

If we must estimate σ from our sample and use Student's t, then we should add 2 to the tabulated values to obtain the approximate required sample size. (If we are comparing two produce averages, add 1 to the tabulated values).

TABLE XVIIIb

Table of Required Sample Sizes

Sample size required for detecting with probability $1-\alpha$ whether

- a) the average m of a new product exceeds that of a standard m_0
- b) the average m of a new product is less than that of a standard m_0
- c) the average of a specified product m_A exceeds the average of another specified product m_B .

The standard deviations are assumed to be known

a)
$$d = \frac{m-m_0}{\sigma}$$

b)
$$d = \frac{m_0 - m}{\sigma}$$

c)
$$d = \sqrt{\frac{m_A - m_B}{\sigma_A^2 + \sigma_B^2}}$$

$$\alpha = .01$$

1-β d	.50	.60	.70	.80	. 90	.95	.99
.1	542	666	813	1004	1302	1578	2165
.2	136	167	204	251	326	395	542
.4	34	42	51	63	82	99	136
.6	16	19	23	28	37	44	61
.8	9	11	13	16	21	25	34
1.0	6	7	9	11	14	16	22
1.2	4	5	6	7	10	11	16
1.4	3	4	5	6	7	9	12
1.6	3	3	4	4	6	7	9
1.8	2	3	3	4	5	5	7
2.0	2	2	3	3	4	4	6
3.0	1	1	1	2	2	2	3

If we must estimate σ from our sample, and use Student's t, then we should add 3 to the tabulated values to obtain the approximate required sample size. (If we are comparing two product averages, add 2 to the tabulated values. For this case, we must have $\sigma_A = \sigma_B$).

Table XVIIIb (Continued)

 $\alpha = .05$

1-β d	.50	.60	.70	.80	.90	. 95	.99
.1	271	361	471	619	857	1083	1578
.2	68	91	118	155	215	271	395
.4	17	23	30	39	54	68	99
.6	8	11	14	18	24	31	44
.8	5	6	8	10	14	17	25
1.0	3	4	5	7	9	11	16
1.2	2	3	4	5	6	8	11
1.4	2	2	3	4	5	6	9
1.6	2	2	2	3	4	5	7
1.8	1	2	2	2	3	4	5
2.0	1	1	2	2	3	3	4
3.0	1	1	1	1	1	2	2

If we must estimate σ from our sample, and use Student's t, then we should add 2 to the tabulated values to obtain the approximate required sample size. (If we are comparing two product averages, add 1 to the tabulated values. For this case, we must have $\sigma_A = \sigma_B$).

TABLE XIX

Percentiles for $\varphi = \frac{\overline{X} - m_0}{w}$

n	φ.95	φ.975	φ.99	φ.995	φ.999	φ.9995
2 (1) 20						

Reproduced from Table A-8c(1), Dixon and Massey, Second Edition, McGraw-Hill (1957).

TABLE XX

Percentiles for
$$\varphi' = \frac{\overline{X}_A - \overline{X}_B}{1/2(w_A + w_B)}$$

n=nA=nB	Φ. 95	φ.975	Ψ. 99	φ. 995	φ. 999	φ. 9995
2 3		·				·
20						

Reproduced from Table A-8c(2), Dixon and Massey, Second Edition, McGraw-Hill (1957).

Critical values of L for the Link-Wallace Test

 $\alpha = .05$

t = number of groups = number of ranges

20	% % % % % % % % % % % % % % % % % % %
19	20000000000000000000000000000000000000
18	20000000000000000000000000000000000000
17	22000000000000000000000000000000000000
16	######################################
15	74
17	
13	200 mm m
12	55-56-69-99-99-5-5-5-5-5-5-5-5-5-5-5-5-5
Ħ	2005 2005 2005 2005 2005 2005 2005 2005
10	0.47.47.47.47.47.47.47.47.47.47.47.47.47.
6	\$2000000000000000000000000000000000000
ω	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
7	00000000000000000000000000000000000000
9	11.00000000000000000000000000000000000
אר	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7	444 444 444 444 444 444 444 444 444 44
3	2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
2	20000000000000000000000000000000000000
	00000000000000000000000000000000000000

t = number of groups = number of ranges

20	44 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
19	34446666644666666666666666666666666666
18	847.46.66.66.66.66.66.66.66.66.66.66.66.66.
17	1, m,
16	76666666666666666666666666666666666666
15	££££££\$9999999944
14	22436344444444444
13	88444444444444
12	7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
11	8272952007720077200000
10	466444444444444669
6	5.66.66.66.66.66.66.66.66.66.66.66.66.66
8	02.1 02.0 02.0 02.0 02.0 02.0 02.0 02.0
7	688777778688888888888888888888888888888
9	99-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
70	11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.
7	388 25 27 27 27 27 27 27 27 27 27 27 27 27 27
6	44466666666666666666666666666666666666
2	22,22 22,22 22,22 22,22 23,22 23,22 23,22 23,23
	200000000000000000000000000000000000000

Percentiles of $F' = \frac{w_A}{w_B}$

						n _A				
n _B		2	3	4	5	6	7	8	9	10
2	.005 .01 .025 .05	.0078 .0157 .039 .079								
3	.005 .01 .025 .05									
4	17									
5	11						-			
6	11									
7	19									
8	17									
9	11									
10	17									

Taken from Table A-8d, Dixon and Massey, Second Edition, (1957).

Tables for Computing Confidence Limits for o

									-											
A _{.995}	.57	6.467 4.396	.48	. 66	2,439	7.	0.	တ	1.909	0 00	9	5	.47	1,390	. 33	. 29	.27	. 25	.23	.21
A.005	356	.4834	546	87	.6037	30	641	51	. 6603	92	707	729	47	.7740	93	07	19	29	37	44
A . 99	. 78	5.111	00°	.37	2.204 2.076	.97	.89	80	1.779	69	.55	.47	.41	1,343	. 29	. 26	. 24	. 22	. 20	.19
A.01	.3882	514 548	575	15	.6310	56	299	676	6852	00	729	751	167	. 7925	810	23	34	843	851	58
A.975		10	.45	.03	1.916	. 75	69°	.65	1.611	.54	. 44	. 38	.3	1.279	. 24	. 21	. 19	. 18	.17	.16
A .025	.4461	99	244	199	.6754	98	08	17	7321	38	65	84	799	.8210	36	48	28	99	72	878
A . 95	0.4	2.920	.08	. 79	1,711	0	S	-	1.460	3	5	0	1.274		0	-	9			
A.05	. 5103 . 5778		72	05	.7183	39	47	55	7688	74	97	14	.8279	47	09	7	79	9	91	96
Degrees of Freedom	22	က 4	ນດ	7	တတ				1.3 1.4				30	40	50	09	70	80	06	100

For large degrees of freedom, the following approximate formula may be used

		0.784 Je 754 Tea Pas	
1000 1 1000 1 1 1000 1 1 1 1 1 1 1 1 1	200000000000000000000000000000000000000		
	2222222		
	Separation		
	RESERVE	- mmm	

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its headquarters in Washington, D. C., and its major field laboratories in Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside front cover of this report.

WASHINGTON, D. C.

Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instruments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat and Power. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology and Lubrication. Engine Fuels.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments,

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering Mathematical Physics.

Data Processing Systems. SEAC Engineering Group. Components and Techniques. Digital Circuitry. Digital Systems. Analogue Systems. Application Engineering.

• Office of Basic Instrumentation

• Office of Weights and Measures

BOULDER, COLORADO

Cryogenic Englineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. lonospheric Research. Regular Propagation Services. Sun-Earth Relationships.

Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Systems. Navigation Systems. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Radio Systems Application Engineering.

Radio Standards. Radio Frequencies. Microwave Frequencies. High Frequency Electrical Standards. Radio Broadcast Service. High Frequency Impedance Standards. Calibration Center. Microwave Physics. Microwave Circuit Standards.

