Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный университет»

ПРОГРАММЫ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПО ДИСЦИПЛИНАМ «ТЕОРИЯ УПРУГОСТИ», «СТРОИТЕЛЬНАЯ МЕХАНИКА», «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ЧАСТЬ І

Методические указания

Составитель Б.А. Тухфатуллин

Программы для решения задач по дисциплинам «Теория упругости», «Строительная механика», «Сопротивление материалов». Часть І : методические указания / Сост. Б.А. Тухфатуллин. – Томск : Изд-во Том. гос. архит.-строит. ун-та, 2012. – 42 с.

Рецензент ст. преподаватель Л.Е. Путеева Редактор Е.Ю. Глотова

В методических указаниях приводятся сведения о подготовке исходных данных и порядке работы с программами «Расчет геометрических характеристик плоских сечений», «Расчет балки на прочность и жесткость», «Расчет трехшарнирной арки». Программы могут быть использованы при выполнении расчетно-графических и контрольных работ студентами всех форм обучения направлений и профилей подготовки бакалавров, изучающих дисциплины «Сопротивление материалов», «Строительная механика».

Печатаются по решению методического семинара кафедры строительной механики № 8 от 10.11.2011 г.

Утверждены и введены в действие проректором по учебной работе В.В. Дзюбо

<u>с</u> 01.09.2012 ло 01.09.2017

Оригинал-макет подготовлен автором.

Подписано в печать 18.01.12. Формат $60\times84/16$. Бумага офсет. Гарнитура Таймс. Уч.-изд. л. 2,2. Тираж 300 экз. Заказ № 2

Изд-во ТГАСУ, 634003, г. Томск, пл. Соляная, 2. Отпечатано с оригинал-макета в ООП ТГАСУ. 634003, г. Томск, ул. Партизанская, 15.

ВВЕДЕНИЕ

При выполнении расчетно-графических работ по сопротивлению материалов, строительной механике и теории упругости студенту приходится выполнять большой объем вычислений. С целью сокращения вычислений, поиска и устранения допущенных в ручном расчете ошибок на кафедре строительной механики ТГАСУ проводится работа по составлению учебных программ для ПЭВМ.

В методических указаниях представлены программы по определению геометрических характеристик плоских сечений, построению эпюр внутренних усилий и перемещений в изгибаемой балке, расчету трехшарнирной арки на действие постоянной нагрузки.

Все программы составлены автором методических указаний и зарегистрированы в Реестре программ для ЭВМ Российской Федерации [1–3].

1. ПРОГРАММА «GEOMW»ДЛЯ РАСЧЕТА ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК ПЛОСКИХ СЕЧЕНИЙ

При расчете строительных конструкций на прочность и жесткость необходимо определять геометрические характеристики — площадь сечения, координаты центра тяжести, угол наклона главных центральных осей, главные центральные моменты инерции, моменты сопротивления и радиусы инерции.

Традиционный путь решения задачи состоит в разбиении сечения на отдельные фигуры, для которых площадь, положение центра тяжести, осевые и центробежный моменты инерции вычисляются по готовым формулам или определяются по сортаменту прокатных профилей. Затем вычисляются координаты центра тяжести всего сечения, моменты инерции относительно центральных осей и т. д. Этот алгоритм легко программируется

и лежит в основе многих программ расчета геометрических характеристик. В программе «**GeomW**» предложен другой подход.

Все сечение разбивается на простые фигуры:

- прямоугольник;
- прямоугольный треугольник правый (левый);
- круг;
- полукруг;
- четверть круга;
- двутавр;
- швеллер;
- равнополочный уголок;
- неравнополочный уголок правый (левый).

Для каждой фигуры вводятся характерные размеры:

прямоугольник, треугольник – ширина и высота;

круг, полукруг, четверть круга – радиус;

двутавр, швеллер – номер профиля;

равнополочный уголок – размер полки, толщина полки;

неравнополочный уголок – размеры полок, толщина полки.

Для определения положения фигуры задаются координаты одной точки (точки привязки) в выбранной системе координат. Для всех фигур, кроме круга, вводится угол поворота фигуры вокруг точки привязки относительно исходного состояния, принятого в программе (положительным считается угол поворота по часовой стрелке). Характерные размеры, точки привязки и исходное состояние показаны на рис 1.1.

Фигуру, не являющуюся прокатным профилем, можно задать в виде отверстия (фигуры с отрицательной площадью). Рекомендуется следующий порядок ввода фигур. Сначала вводятся сплошные фигуры, затем отверстия. В этом случае отображение информации на экране будет правильным.

Если в состав сечения не входят прокатные профили, то единицы измерения вводимых величин могут быть любыми. Вся информация должна быть представлена в одних единицах, в этих же единицах будут выведены и результаты расчета. Для

сечений, включающих прокатные профили, все размеры необходимо задавать в сантиметрах. Заложенный в программу сортамент прокатных профилей соответствует [4].

Рис. 1.1. Простые фигуры, из которых формируется сечение

Контрольные величины:

- площадь сечения;
- координаты центра тяжести;
- осевые и центробежный моменты инерции;
- положение главных центральных осей;
- главные центральные моменты инерции;
- радиусы инерции сечения.

Для поиска ошибок в ручном расчете следует вывести геометрические характеристики по фигурам (площадь, координаты центра тяжести, осевые и центробежный моменты инерции относительно собственных центральных осей).

Окно программы на этапе создания сечения показано на рис. 1.2, справочная информация, предоставляемая программой, (формулы для простых фигур, сортамент прокатных профилей и т. д.) представлена на рис 1.3.

Puc. 1.2. Окно программы «GeomW» на этапе создания сечения

Задача Опро	о программе														
Сечение	Результаты		Формулы Де	Двутавры	Швеллеры		Уголки равнополочные		/голки не	Уголки неравнополочные		Инструкция	я Сертификат	оикат	
№ проф.	(MM)	(MM) q	S (MM)	t (MM)	R (MM)	r (MM)	A (cm^2)		Jz (cm^4) Wz (cm^3 iz (cm)	3 iz (cm)	Sz (cm^3	3) Jy (cm^4)	Sz (cm^3)Jy (cm^4) Wy (cm^3 ly (cm)	(N)	W (KIT)
10	100	99	4,5	7,2	7,0	2,5	12,0	198,0	39.7	4,06	23,0	17,9	6,5	1,22	9,5
12	120	64	4,8	7,3	7,5	3,0	14,7	350,0	58,4	4,88	33,7	27,9	8.7	1,38	11,5
14	140		4,9	7,5	0′8		17,4	572,0	81,7	5,73	46,8	41,9	11,5	1,55	
16	160	18	6,0	7,8	8,5	3,5	20,2	873,0	109,0	6,57	62,3	9'89	14,5	1,70	15,9
18	180	06	5,1	8,1	0,0	3,5	23,4	1290,0	143,0	7,42	81,4	82,6	18,4	1,88	18,4
18a	180	100	5,1	8,3	0.0	3,5	25,4	1430,0	159,0	7,51	868	114,0	22,8	2.12	19,9
20	200	100	5,2	8,4	9,5	4,0	26,8	1840,0	184,0	8,28	104,0	115,0	23,1	2,07	21.0
20a	200	110	5,2	9,6	9,5	4,0	28,9	2030,0	203,0	8,37	114,0	155,0	28,2	2,32	22.7
22	220	110	5,4	8,7	10,0	4,0	90'08	2550,0	232.0	9,13	131,0	157,0	28,6	2,27	24,0
22a	220	120	5,4	8,9	10,0	4,0	32,8	2790,0	254,0	9,22	143,0	206,0	34,3	2,50	25,8
24	240	115	9	ъ С	10.5	40	848	3460.0	289.0	0 0 7	163.0	108.0	2/15	287	973

9

 $Puc.\ 1.3.\$ Справочная информация программы «GeomW»: справочные формулы (a); сортамент (δ) ; обозначения основных размеров и осей для прокатного профиля (ϵ)

7

Пример 1.1. Рассчитаем сечение [5, с. 51], состоящее из пяти простых фигур (рис. 1.4, а): прямоугольник, полукруг, прямоугольный треугольник, четверть круга, круг. Две последние фигуры задаются в виде отверстия.

Выберем систему координат, как показано на рис. 1.4, δ . Определим характерные размеры фигур, координаты точек привязки и углы поворота.

Первая фигура — прямоугольник. Ширина $b_1 = 8$ см, высота $h_{\!\scriptscriptstyle 1}=\!10~{\rm cm}$, координаты точки привязки $z_{\scriptscriptstyle 1}=\!4~{\rm cm}$, $y_{\scriptscriptstyle 1}=\!5~{\rm cm}$, угол поворота $\alpha_1 = 0^\circ$.

Вторая фигура — полукруг ($r_2 = 4$ см; $z_2 = 4$ см; $y_2 = 10$ см; $\alpha_2 = 0^{\circ}$).

Третья фигура – прямоугольный треугольник правый $(b_3 = 4 \text{ cm}; h_3 = 10 \text{ cm}; z_3 = 8 \text{ cm}; y_3 = 0 \text{ cm}; \alpha_3 = 0^\circ).$

фигура — четверть круга ($r_4 = 4 \text{ см}$; Четвертая $z_4 = y_4 = 0 \text{ cm}; \ \alpha_4 = 0^{\circ}$).

Пятая фигура – круг ($r_5 = 2$ см; $z_5 = 4$ см; $y_5 = 8$ см).

Геометрические характеристики отдельных фигур и всего сечения, вычисленные в [5], сведены в табл. 1.1.

Таблица 1.1

Номер	$A_{\dot{2}}$	z_i ,	y_i ,	J_{zi} ,	$J_{_{yi}}$,	$J_{_{zyi}}$,	a_i ,	b_i ,
фигуры	CM ²	CM	СМ	cm ⁴	cm ⁴	cm ⁴	СМ	CM
1	80,0	4,0	5,0	666,7	426,7	0,0	-1,387	-1,356
2	25,120	4,0	11,696	28,160	100,61	0,0	5,309	-1,356
3	20,0	9,333	3,333	111,1	17,78	-22,22	-3,054	3,977
4	-12,56	1,696	1,696	-14,05	-14,05	4,224	-4,691	-3,660
5	-12,56	4,0	8,0	-12,56	-12,56	0,0	1,613	-1,356

 $A = 100,0 \text{ cm}^2 \; ; \; z_C = 5,356 \text{ cm} \; ; \; y_C = 6,387 \text{ cm} \; ; \; J_{ZC} = 1518,7 \text{ cm}^4 \; ; \; J_{YC} = 836,8 \text{ cm}^4 \; ; \\ J_{ZCYC} = -479,5 \text{ cm}^4 \; ; \; tg(2\alpha) = 1,406 \; ; \; \alpha = 27,3^\circ \; ; \; J_{\max} = 1766,1 \text{ cm}^4 \; ; \\ J_{\min} = 589,4 \text{ cm}^4 \; ; \; i_{\max} = 4,202 \text{ cm} \; ; \; i_{\min} = 2,428 \text{ cm} \; .$

 $Puc.\ 1.4.$ Поперечное сечение (a) с разбивкой на фигуры (б) для примера 1.1

Порядок работы с программой следующий.

1. Создаем новую задачу

2. Добавляем фигуру

3. Выбираем фигуру – прямоугольник

4. Вводим исходные данные для прямоугольника

5. Выбираем фигуру – полукруг

6. Вводим исходные данные для полукруга

7. Выбираем фигуру – треугольник (правый)

8. Вводим исходные данные для треугольника

9. Выбираем фигуру – четверть круга

10. Вводим исходные данные для четверти круга

11. Выбираем фигуру – круг

12. Вводим исходные данные для круга

Для просмотра исходных данных, редактирования или удаления фигуры выбираем ее из списка

Данные для выбранной фигуры выводятся в режиме просмотра (редактирование недоступно)

При необходимости редактирования исходных данных

Для удаления фигуры из сечения

Подтверждение операции удаления фигуры

Вид сечения после ввода всех фигур

13. Выполняем расчет

14. Переходим на закладку «Результаты» и проверяем результаты для всего сечения

Для поиска ошибок выбираем опцию «вывести результаты по фигурам» и проверяем все расчетные величины по каждой фигуре в отдельности

15. При необходимости сохраняем данные в файле

16. Завершаем работу

Пример 1.2. Поперечное сечение [5, с. 57] состоит из трех фигур (рис. 1.5, а):

- прямоугольник с размерами 40×1.0 см;
- двутавр № 24;
- неравнополочный уголок 200×125×12.

Выберем систему координат, как показано на рис. 1.5, δ , и определим координаты точек привязки и углы поворота фигур.

Первая фигура — прямоугольник ($b_1 = 1 \text{ см}$; $h_1 = 40 \text{ см}$; $z_1 = y_1 = 0 \text{ cm}; \ \alpha_1 = 0^{\circ}$).

Вторая фигура – двутавр. Номер профиля 30, координаты точки привязки $z_2 = 13,25 \text{ см}$, $y_2 = 15,5 \text{ см}$, угол поворота $\alpha_2 = 0^\circ$.

Третья фигура – неравнополочный уголок 200×125×12. Развернем уголок вокруг точки привязки до совпадения с базовым положением (неравнополочный уголок левый, рис. 1.5, в). Координаты точки привязки $z_3 = -20 \,\mathrm{cm}$, $y_3 = -0.5 \,\mathrm{cm}$, угол поворота $\alpha_3 = 180^{\circ}$.

Геометрические характеристики отдельных фигур и всего сечения, вычисленные в [5], сведены в табл. 1.2.

Результаты расчета показаны на рис. 1.6.

Таблииа 1.2

Номер фигуры	A , cm^2	z_i , cm	y_i , cm	J_{zi} , cm ⁴	J_{yi} , cm ⁴	J_{zyi} , cm ⁴	a_i , cm	b_i ,
1	40,0	0,0	0,0	3,333	5333,3	0,0	-3,650	0,277
2	46,5	13,25	15,5	7080,0	337,0	0,0	11,85	13,527
3	37,89	-17,17	-7,04	1568,2	481,9	503,0	-10,69	-16,89

$$A = 124.4 \text{ cm}^2$$
; $z_C = -0.277 \text{ cm}$; $y_C = 3.650 \text{ cm}$; $J_{ZC} = 20043.9 \text{ cm}^4$;

$$J_{YC} = 25476,7 \text{ cm}^4$$
; $J_{ZCYC} = 14758,7 \text{ cm}^4$; $tg(2\alpha) = 5,433$; $\alpha = 39,8^\circ$;

$$A = 124.4 \text{ cm}^2; \ z_C = -0.277 \text{ cm}; \ y_C = 3,650 \text{ cm}; \ J_{ZC} = 20043.9 \text{ cm}^4; \\ J_{YC} = 25476.7 \text{ cm}^4; \ J_{ZCYC} = 14758.7 \text{ cm}^4; \ \text{tg}(2\alpha) = 5,433; \ \alpha = 39.8^\circ; \\ J_{\text{max}} = 37766.9 \text{ cm}^4; J_{\text{min}} = 7753.8 \text{ cm}^4; \ i_{\text{max}} = 17,425 \text{ cm}; \ i_{\text{min}} = 7,895 \text{ cm}.$$

Рис. 1.5. Поперечное сечение (a) с разбивкой на фигуры (б) для примера 1.2; схема для определения угла поворота неравнополочного уголка (в)

Рис. 1.6. Результаты расчета поперечного сечения (пример 1.2)

Пример 1.3. Поперечное сечение балки [6, с. 60] с размерами, выраженными через параметр a.

Для расчета примем параметр a за единицу. Разделим сечение на три фигуры:

– прямоугольник (
$$b_1 = 7$$
 ; $h_1 = 10$; $z_1 = 3.5$; $y_1 = 5$; $\alpha_1 = 0^{\circ}$);

– прямоугольник (
$$b_2 = 5$$
 ; $h_2 = 6.5$; $z_2 = 3.5$; $y_2 = 3.25$;

 $\alpha_2 = 0^\circ$, отверстие);

— полукруг ($r_3=2,5$; $z_3=3,5$; $y_3=6,5$; $\alpha_3=0^\circ$, отверстие).

Результаты расчета показаны на рис. 1.8.

a

Рис. 1.7. Поперечное сечение (а) с разбивкой по фигурам (б) для примера 1.3

Рис. 1.8. Вид сечения и результаты расчета (пример 1.3)

По результатам решения записываем геометрические характеристики сечения:

координата центра тяжести $y_C = 6,147a$;

момент инерции $J_{ZC} = 264,35a^4$;

момент сопротивления
$$W_Z = \frac{264,35a^4}{6,147a} = 43,0a^3$$
.

Построенное программой изображение можно масштабировать, сдвигать по вертикали и горизонтали, заливать сплошным цветом или заштриховывать. Предусмотрена возможность вернуться к исходным параметрам.

Примеры 1.1 и 1.2 использованы в программе «GeomW» в качестве тестовых (вызов теста «Задача» – «Тестовый пример»).

2. ПРОГРАММА «ВЕАМW»ДЛЯ РАСЧЕТА БАЛКИ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ

Программа «**BeamW**» вычисляет внутренние усилия (изгибающие моменты, поперечные силы) и перемещения (прогибы, углы поворота) в статически определимой балке. Для расчета используется метод начальных параметров.

Исходные данные для программы:

- длина балки;
- координаты опорных сечений;
- количество сосредоточенных сил, моментов, равномерно распределенных нагрузок, дополнительных сечений;
- величины сосредоточенных сил, моментов, равномерно распределенных нагрузок (в начале и в конце участка приложения);
- координаты точек приложения сил, моментов, начала и конца действия распределенных нагрузок, дополнительных сечений.

Начало координат принято на левом конце балки. Положительные направления нагрузок и координатных осей показаны на рис. 2.1.

Рис. 2.1. Система координат, направления нагрузок для программы «ВеатW»

Для консольной балки (рис. 2.2) координаты левой и правой опоры задаются нулевыми (заделка находится слева) или равными длине балки (заделка справа).

Рис. 2.2. Задание исходной информации для консольной балки

По исходным данным программа автоматически разделит балку на участки и назначит расчетные сечения в начале и в конце каждого участка.

Контрольные величины:

- опорные реакции;
- изгибающие моменты и поперечные силы в двух выбранных сечениях;
 - прогиб и угол поворота в одном сечении.

При выборе контрольных сечений следует учитывать следующие требования:

- контрольное сечение нельзя назначить в начале (конце) балки или в опорном сечении;
- контрольные сечения для проверки внутренних усилий не должны совпадать друг с другом.

Если в контрольном сечении приложена сосредоточенная сила (момент) и на соответствующей эпюре будет скачок, то программа сделает запрос «сечение расположено слева от силы (момента)?».

Точность вычисления контрольных величин:

- для опорных реакций 1 %;
- для внутренних усилий, прогибов и углов поворота 3 %.

При желании можно проверить правильность определения начальных параметров: прогиба и угла поворота в начале координат (точность 1 %), результаты этой проверки не влияют на вывод эпюр.

Значения опорных реакций, эпюры внутренних усилий, перемещений будут выведены в окне программы, если соответствующие контрольные величины найдены правильно.

Пример 2.1. Исходные данные для расчета балки [6, с. 56], показаны на рис. 2.3. Назначаем одно дополнительное сечение на расстоянии x = 3.0 м от начала балки.

Рис. 2.3. Балка для расчета на прочность и жесткость (пример 2.1)

Длина балки $L=9.0\,\mathrm{m}$; координата левой опоры $x_A=0.0\,\mathrm{m}$; правой опоры $x_B=9.0\,\mathrm{m}$; количество сосредоточенных сил -1; моментов -1; распределенных нагрузок -2; дополнительных сечений -1.

Для сосредоточенной силы $F_1 = 50.0 \, \mathrm{kH}$; $x_F = 6.2 \, \mathrm{m}$; для сосредоточенного момента $M_1 = -40.0 \, \mathrm{kHm}$ (направлен по часовой стрелке); $x_M = 0.0 \, \mathrm{m}$.

Для треугольной нагрузки $q_{1\mathrm{H}}=0.0\,\frac{\mathrm{kH}}{\mathrm{M}}\,\mathrm{m};~q_{1\mathrm{k}}=50.0\,\,\frac{\mathrm{kH}}{\mathrm{M}}\,\mathrm{m};$ $x_{1\mathrm{H}}=1.2\,\mathrm{m};~x_{1\mathrm{K}}=4.8\,\mathrm{m}.$ Для равномерно-распределенной нагрузки $q_{2\mathrm{H}}=q_{2\mathrm{K}}=-30.0\,\frac{\mathrm{kH}}{\mathrm{M}}\,$ (направлена снизу вверх); $x_{2\mathrm{H}}=6.2\,\mathrm{m};$ $x_{2\mathrm{K}}=9.0\,\mathrm{m}.$ Для дополнительного сечения $x=3.0\,\mathrm{m}.$

Назначаем два контрольных сечения.

Контрольное сечение № 1 находится на расстоянии $x_1 = 4.8$ м от начала балки.

Контрольное сечение № 2 находится на расстоянии $x_2 = 6.2$ м от начала балки (справа от сосредоточенной силы).

По результатам ручного расчета [6] определяем контрольные величины.

Опорные реакции: $V_A = 52,0$ кH; $V_B = 3,96$ кH.

$$M_Z(4.8) = 181.8 \text{ kH} \cdot \text{m}; \ Q_v(4.8) = -38.0 \text{ kH}.$$

Для контрольного сечения № 2:

$$M_Z(6,2) = 128,7 \text{ kH} \cdot \text{m}; \ Q_y(6,2) = -88,0 \text{ kH}.$$

Прогиб и угол поворота в контрольном сечении № 1:

$$EJ_{z}v(4,8) = -1474,0$$
; $EJ_{z}\varphi(4,8) = 105,99$.

Начальные параметры: $EJ_zv_0 = 0.0$; $EJ_z\phi_0 = -588.4$.

Окно программы при задании исходных данных показано на рис. 2.4.

Построенные программой эпюры прогибов и углов поворота показаны на рис 2.5.

Puc. 2.4. Окно программы «ВеатW» на этапе ввода исходных данных

Порядок работы с программой следующий.

1. Создаем новую задачу

2. Задаем информацию о задаче

3. Вводим исходные данные

4. Производим расчет

5. Переходим на закладку «Проверка», вводим контрольные величины и проверяем результаты ручного расчета

6. Опорные реакции

7. Внутренние усилия

8. Уточняем, где находится контрольное сечение

9. Прогиб и угол поворота (при необходимости проверяем прогиб и угол поворота в начале балки)

11. При необходимости сохраняем данные в файле

12. Завершаем работу

 $Puc.\ 2.5.\$ Эпюры прогибов (a) и углов поворота (δ) , построенные программой «BeamW»

3. ПРОГРАММА «ARKAW» ДЛЯ РАСЧЕТА ТРЕХПІАРНИРНОЙ АРКИ

При определении внутренних усилий в трехшарнирной арке многократно вычисляются геометрические параметры (координаты сечений, тригонометрические функции углов наклона касательной к оси арки) и внутренние усилия в балке. Контроль вычислений производится по соответствию эпюр внутренних усилий приложенной к арке нагрузке.

В программе «**ArkaW**» внутренние усилия вычисляются студентом самостоятельно в одном контрольном сечении, и при правильных результатах выводится полная информация для всех сечений (таблица значений, эпюры усилий).

Исходные данные для программы:

- уравнение оси арки (парабола или окружность);
- пролет арки;
- стрела подъема;
- координата ключевого шарнира;
- координата контрольного сечения;
- количество сосредоточенных сил;
- количество распределенных нагрузок;
- количество дополнительных сечений.

Для сосредоточенных сил вводятся величина и координата точки приложения, для распределенных нагрузок величина, координаты начального и конечного сечения. Для дополнительных сечений вводятся их координаты.

В программе принята правая система координат, начало на левой опоре арки. После ввода и корректировки (в случае необходимости) исходной информации программа выбирает расчетные сечения — у опор и ключевого шарнира, одно сечение в точке приложения сосредоточенной силы, следующее правее на расстоянии 0,01 м. Для распределенных нагрузок назначаются три сечения — в начале, в середине и конце участка приложения нагрузки. Все сечения сортируются в порядке возрастания.

Контрольные величины:

- опорные реакции в арке;
- изгибающий момент, поперечная и продольная силы в заданном сечении арки.

Дополнительно могут быть проверены внутренние усилия в заданном сечении в балке, координата сечения по оси y, тригонометрические функции для угла наклона касательной ϕ , радиус дуги окружности R.

В программе заложены следующие пределы отклонения контрольных величин. Для опорных реакций 1 %, внутренних усилий в арке 3 %, для геометрических параметров и внутренних усилий в балке 1 %. Если любая из контрольных величин по модулю меньше единицы, то абсолютная ошибка допускается не более величины 0,1.

Пример 3.1. Исходные данные для расчета арки [7, с. 37] показаны на рис. 3.1. Уравнение оси арки — окружность, пролет L=30,0 м; стрела подъема f=5,0 м; координата ключевого шарнира $x_C=15,0$ м; координата контрольного сечения $x_k=5,0$ м; количество сосредоточенных сил — 1; распределенных нагрузок — 1; дополнительных сечений — 1.

Для сосредоточенной силы $F_1=5.0~{\rm kH};~x_{_F}=25.0~{\rm m};$ для равномерно-распределенной нагрузки $q_1=2.0~{\rm \frac{kH}{M}};~x_{_{q{\rm H}}}=0.0~{\rm m};$ $x_{_{q{\rm K}}}=10.0~{\rm m}.$ Для дополнительного сечения $x=20.0~{\rm m}.$

По результатам ручного расчета [7] определяем контрольные величины.

Опорные реакции в арке:

$$V_A = 17,50$$
 кH; $V_B = 7,50$ кH; $H_A = H_B = H = 12,50$ кH.

Внутренние усилия в контрольном сечении арки:

$$M_A = 26,09 \text{ kH} \cdot \text{m}; \ Q_A = 1,878 \text{ kH}; \ N_A = -14,463 \text{ kH}.$$

Рис. 3.1. Трехшарнирная арка (пример 3.1)

Puc. 3.2. Окно программы «ArkaW» на этапе ввода исходных данных

Дополнительные величины для проверки следующие. Изгибающий момент и поперечная сила в контрольном сечении для балки:

 $M_{\rm F} = 62,50 \text{ kH} \cdot \text{m}; \ Q_{\rm F} = 7,50 \text{ kH}.$

Геометрические параметры:

 $y = 2.913 \text{ m}; \cos \varphi = 0.917; \sin \varphi = 0.400; R = 25.0 \text{ m}.$

По результатам расчета заполнена таблица и построены эпюры внутренних усилий в сечениях арки (рис. 3.3, 3.4).

Порядок работы с программой следующий.

1. Создаем новую задачу

2. Задаем информацию о задаче

4. Производим расчет

5. Переходим на закладку « Проверка», вводим контрольные величины и проверяем результаты ручного расчета

6. Опорные реакции

7. Внутренние усилия

8. При необходимости проверяем внутренние усилия в балке и геометрические параметры

Неверные данные выделяются цветом

10. При необходимости сохраняем данные в файле

11. Завершаем работу

Јанные Пр	оверка Эпюры	Таблица Инст	грукция						
N	х	у	CosFi	SinFi	Mb	Qb	Ма	Qa	Na
1	0,000	0,000	0,800	0,600	0,000	17,500	0,000	6,500	-20,500
2	5,000	2,913	0,917	0,400	62,500	7,500	26,089	1,874	-14,456
3	10,000	4,495	0,980	0,200	75,000	-2,500	18,814	-4,949	-11,747
4	15,000	5,000	1,000	0,000	62,500	-2,500	0,000	-2,500	-12,500
5	20,000	4,495	0,980	-0,200	50,000	-2,500	-6,186	0,051	-12,747
6	25,000	2,913	0.917	-0.400	37,500	-2,500	1,089	2.709	-12,456
7	25,010	2,909	0,916	-0,400	37,425	-7,500	1,069	-1,868	-14,457
8	30,000	0,000	0,800	-0,600	0,000	-7,500	0,000	1,500	-14,500

Рис. 3.3. Таблица результатов расчета арки:

N – номер сечения;

х, у - координаты сечения;

cosFi, SinFi – тригонометрические функции угла;

Mb, Qb – внутренние усилия в балке;

Ma, Qa, Na – внутренние усилия в арке

Рис. 3.4. Эпюры изгибающих моментов (a), поперечных сил (δ), продольных сил (ϵ) в арке, построенные программой «ArkaW»

-20.500

ЗАКЛЮЧЕНИЕ

Всем работающим с программами напоминаем о том, что программы работают с *исходными данными пользователя*. Если результаты работы программы не совпадают с контрольными величинами, это может означать, что в ручном расчете действительно сделана ошибка или же *неверно подготовлены исходные данные*. Будьте внимательны и не экономьте время на вычерчивании расчетных схем, проставлении размеров, оформлении исходной информации надлежащим образом.

Программы, представленные в методических указаниях, доступны для использования в компьютерных классах кафедры строительной механики (ауд. 109/1) и строительного факультета (ауд. 406/5). При несанкционированном переносе на другие компьютеры программы работают в демонстрационном режиме, т. е. возможно только решение тестовых задач, предусмотренных программой.

Программы для выполнения расчетно-графических работ по сопротивлению материалов представлены также в [8]. Использование пакета Mathcad для выполнения расчетов прочности, жесткости и устойчивости элементов конструкций при статических и динамических воздействиях рассмотрено в [9]. Большое количество различных программ для инженерных расчетов можно найти на сайте www.dwg.ru.

В готовящихся к изданию методических указаниях «Программы для решения задач по дисциплинам «Теория упругости», «Строительная механика», «Сопротивление материалов». Часть ІІ» будут представлены программы для расчета статически неопределимых систем методом сил и методом перемещений [10, 11], программа для расчета балки-стенки методом конечных разностей.

Сведения о пакетах программ, созданных для использования в учебном процессе на кафедре строительной механики ТГАСУ, содержатся в методических разработках «Библиотека

программ для выполнения расчетно-графических работ по сопротивлению материалов и строительной механике на ЭВМ СМ-1420», «Решение некоторых задач сопротивления материалов, строительной механики и теории упругости на персональном компьютере». Ознакомиться с ними можно в методическом кабинете кафедры строительной механики (ауд. 105/1).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Учебная программа для расчета геометрических характеристик сечения. Свидетельство о государственной регистрации программы для ЭВМ № 2010614542 (зарегистрировано в Ресстре программ для ЭВМ 9 июля 2010 г.)
- 2. Учебная программа для расчета статически определимой балки. Свидетельство о государственной регистрации программы для ЭВМ № 2010614656 (зарегистрировано в Реестре программ для ЭВМ 16 июля 2010 г.)
- 3. Учебная программа для расчета трехшарнирной арки. Свидетельство о государственной регистрации программы для ЭВМ № 2010614556 (зарегистрировано в Реестре программ для ЭВМ 9 июля 2010 г.)
- 4. *Писаренко, Г.С.* Справочник по сопротивлению материалов / Г.С. Писаренко, А.П. Яковлев, В.В. Матвеев. Киев : Наук. думка, 1988. 736 с.
- 5. *Липкин, В.И.* Механика твердого деформируемого тела. Геометрические характеристики плоских сечений: учебное пособие / В.И. Липкин, М.О. Моисеенко. Томск: Изд-во Том. гос. архит.-строит. ун-та, 2009. 86 с.
- 6. *Липкин, В.И.* Расчет на прочность и жесткость при поперечном изгибе: учебное пособие / В.И. Липкин, А.П. Малиновский. Томск: Изд-во Том. гос. архит.-строит. ун-та, 2005. 79 с.
- 7. Тухфатуллин, Б.А. Строительная механика. Расчет статически определимых систем: учебное пособие / Б.А. Тухфатуллин,

- А.П. Малиновский, О.М. Лоскутов. Томск : Изд-во Том. гос. архит.-строит. ун-та, 2006. 106 с.
- 8. *Мкртычев*, *О.В.* Сопротивление материалов. Обучающий программный комплекс на CD-ROM : учеб. пособие. М. : Издво ACB, 2005. 104 с.
- 9. *Макаров*, *Е.Г.* Сопротивление материалов на базе Mathcad : учеб. пособие. СПб.: БХВ-Петербург, 2004. 512 с.
- 10. *Тухфатуллин, Б.А.* Расчет статически неопределимых систем методом сил: методические указания / Б.А. Тухфатуллин, Р.И. Самсонова. Томск: Изд-во Том. гос. архит.-строит. унта, 2004. 34 с.
- 11. *Тухфатуллин, Б.А.* Расчет статически неопределимых систем методом перемещений: методические указания / Б.А. Тухфатуллин, Р.И. Самсонова. Томск: Изд-во Том. гос. архит.-строит. ун-та, 2006. 36 с.

ОГЛАВЛЕНИЕ

Введение	3
1. Программа «GeomW» для расчета	3
геометрических характеристик плоских сечений	3
2. Программа «ВеатW» для расчета балки	
на прочность и жесткость	21
3. Программа «ArkaW» для расчета трехшарнирной арки	30
Заключение	39
Библиографический список	40