# Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

# Лабораторная работа №4

по дисциплине «Машинное обучение»

Выплолнил студент гр. 33534/5

Стойкоски Н.С.

Руководитель И.А. Селин

## Оглавление

| Постановка задачи | 3 |
|-------------------|---|
| Ход работы        | 3 |
| Вывод             | 8 |
| Текст программы   | 8 |

#### Постановка задачи

- 1. Постройте алгоритм метода опорных векторов типа "*C-classification*" с параметром С = 1, используя ядро "*linear*" (LinearSVC или SVC с ядром "*linear*"). Визуализируйте разбиение пространства признаков на области с помощью полученной модели (пример визуализации). Выведите количество полученных опорных векторов, а также ошибки классификации на обучающей и тестовой выборках.
- 2. Используя алгоритм метода опорных векторов типа "*C-classification*" с линейным ядром (LinearSVC или SVC с ядром "*linear*"), добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра С. Выберите оптимальное значение данного параметра и объясните свой выбор. Всегда ли нужно добиваться минимизации ошибки на обучающей выборке?
- 3. Среди ядер "poly", "rbf" и "sigmoid" выберите оптимальное в плане количества ошибок на тестовой выборке. Попробуйте различные значения параметра degree для полиномиального ядра.
- 4. Среди ядер "poly", "rbf" и "sigmoid" выберите оптимальное в плане количества ошибок на тестовой выборке.
- 5. Среди ядер "poly", "rbf" и "sigmoid" выберите оптимальное в плане количества ошибок на тестовой выборке. Изменяя значение параметра gamma, продемонстрируйте эффект переобучения, выполните при этом визуализацию разбиения пространства признаков на области.

### Ход работы

**1.** Был построен алгоритм метода опорных векторов типа "C-classification" с параметром C=1, с ядром "linear" на наборе svmdata1, svmdata1test. Было визуализировано разбиение пространства признаков на области с помощью полученной модели.



Количество опорных векторов: [3, 3]

Точность на обучающая выборка: 1.0

Точность на тестовая выборка: 1.0

**2.** Путем изменения параметра C была получена нулевая ошибка сначала на обучающей выборке (C=483) , а затем на тестовой (C=1). При этом, можно заметить что значение параметра C=483 приводит к переобучением и поэтому добиваемся меньшей точностью на тестовой выборке (C=483, TestAcc = 0,94) по сравнению с непереобученной моделью (C=1, TestAcc = 1.0). Можно сделать вывод что более оптимально выбрать параметр C=1 и не нужно всегда добиваться минимизации ошибки на обучающей выборке.

C = 483, TrainAcc = 1.0 TestAcc = 0.94 C = 1, TrainAcc = 0.98 TestAcc = 1.0





**3**. На наборе svmdata3, svmdata3test были построени алгоритмы метода опрных векторов с ядер "poly", "rbf" и "sigmoid". Были рассмотрени разные значения параметра degree для полиномиального ядра. Так же было визуализировано разбиение пространства признаков на области. Было найдено, что оптимальное в плане количества ошибок на тестовой выборке является ядро "rbf".

kernel=poly, degree=1, TestAcc = 0.58 kernel=poly, degree=2, TestAcc = 0.84 kernel=poly, degree=3, TestAcc = 0.54 kernel=poly, degree=4, TestAcc = 0.8 kernel=poly, degree=5, TestAcc = 0.46 kernel=poly, degree=6, TestAcc = 0.78 kernel=rbf, TestAcc = **0.94** kernel=sigmoid, TestAcc = 0.46



**4**. Аналогично как в (3) были использовани модели с ядрам "poly", "rbf" и "sigmoid" на наборе svmdata4, svmdata4test. Найдено что оптимальное в плане количества ошибок на тестовой выборке является ядро "rbf".

kernel=poly, TestAcc = 0.865 kernel=rbf, TestAcc = **0.935** kernel=sigmoid, TestAcc = 0.485



**5**. На наборе svmdata5, svmdata5test были использованы модели с ядрам "poly", "rbf" и "sigmoid". При этом были рассмотрени разные значения параметра gamma. Найдено, что оптимальное в плане количества ошибок на тестовой выборке является ядро "rbf" с параметром gamma=10. Так же выполнена визуализация разбиения пространства признаков на области для соответствующие модели и продемонстрирован эффект переобучения.



```
kernel=poly, gamma=0.1, TestAcc = 0.5333
kernel=poly, gamma=1, TestAcc = 0.51666
kernel=poly, gamma=10, TestAcc = 0.525
kernel=rbf, gamma=0.1, TestAcc = 0.625
kernel=rbf, gamma=1, TestAcc = 0.9166
kernel=rbf, gamma=10, TestAcc = 0.925
kernel=rbf, gamma=100, TestAcc = 0.908
kernel=rbf, gamma=1000, TestAcc = 0.675
kernel=sigmoid, gamma=0.1, TestAcc = 0.6416
kernel=sigmoid, gamma=1, TestAcc = 0.5833
kernel=sigmoid, gamma=10, TestAcc = 0.5
kernel=sigmoid, gamma=100, TestAcc = 0.45
kernel=sigmoid, gamma=1000, TestAcc = 0.4583
```

#### Вывод

В ходе данной лабораторной работы был получен опыт работы с методом опорных векторов для решения задач классификации. Было исследовано как разные ядра и соответствующие параметры влияют на характер обученного моделя при визуализации разбиения пространства признаков на области.

#### Текст программы

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn import preprocessing, metrics
def make meshgrid(x, y, h=.02):
   x \min, x \max = x.\min() - 1, x.\max() + 1
   y \min, y \max = y.\min() - 1, y.\max() + 1
   xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    return xx, yy
def plot_contours(ax, clf, xx, yy, **params):
   Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
   Z = Z.reshape(xx.shape)
    out = ax.contourf(xx, yy, Z, **params)
   return out
def make_subplot(ax, clf, x, y, title=None):
    xx, yy = make meshgrid(x[:, 0], x[:, 1])
    plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
    ax.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
    ax.set_xlabel('X1')
```

```
ax.set ylabel('X2')
    ax.set title(title)
def make_subplot2(ax, clf, x1, y1, x2, y2, title=None):
    make_subplot(ax, clf, x1, y1, title)
    ax.scatter(x2[:, 0], x2[:, 1], c=y2, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
def make plot1(clf, x, y, title=None):
    fig, sub = plt.subplots(1, 1)
    make subplot(sub, clf, x, y, title)
    return sub
def make plot2(clf, x1, y1, x2, y2, title=None):
    sub = make_plot1(clf, x1, y1, title)
    sub.scatter(x2[:, 0], x2[:, 1], c=y2, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
def getData(filename, y_encoder):
    df1 = pd.read_csv(filename, delim_whitespace=True)
    x = df1[['X1', 'X2']].values
   y = y encoder.fit transform(df1['Colors'].values)
   return x, y
def task1():
    le = preprocessing.LabelEncoder()
    x_train, y_train = getData('svmdata1.txt', le)
   x_test, y_test = getData('svmdata1test.txt', le)
    clf = SVC(kernel='linear', C=1)
    clf.fit(x_train, y_train)
    make_plot2(clf, x_train, y_train, x_test, y_test)
    print('number of support vectors: ', clf.n_support_)
    print('train accuracy: ', metrics.accuracy_score(y_train, clf.predict(x_train)))
    print('test accuracy: ', metrics.accuracy_score(y_test, clf.predict(x_test)))
def task2():
    le = preprocessing.LabelEncoder()
   x_train, y_train = getData('svmdata2.txt', le)
   x_test, y_test = getData('svmdata2test.txt', le)
    clf = SVC(kernel='linear', C=483)
    clf.fit(x_train, y_train)
   train_accuracy = metrics.accuracy_score(y_train, clf.predict(x_train))
   test_accuracy = metrics.accuracy_score(y_test, clf.predict(x_test))
    print(f'C = 483, TrainAcc = {train_accuracy} TestAcc = {test_accuracy}')
   make_plot1(clf, x_train, y_train, 'C=483, train data')
   make_plot2(clf, x_train, y_train, x_test, y_test, 'C=483, train+test data')
    clf = SVC(kernel='linear', C=1)
    clf.fit(x_train, y_train)
   train_accuracy = metrics.accuracy_score(y_train, clf.predict(x_train))
    test accuracy = metrics.accuracy score(y test, clf.predict(x test))
    print(f'C = 1, TrainAcc = {train accuracy} TestAcc = {test accuracy}')
   make_plot2(clf, x_train, y_train, x_test, y_test, 'C=1, train+test data')
def task3():
    le = preprocessing.LabelEncoder()
    x train, y train = getData('svmdata3.txt', le)
    x test, y test = getData('svmdata3test.txt', le)
   fig, sub = plt.subplots(2, 3)
    plt.subplots_adjust(wspace=0.1, hspace=0.6)
```

```
#poly
    for degree in range(1, 7):
        clf = SVC(kernel='poly', degree=degree, gamma='auto')
        clf.fit(x_train, y_train)
        test_accuracy = metrics.accuracy_score(y_test, clf.predict(x_test))
        print(f'kernel=poly, degree={degree}, TestAcc = {test_accuracy}')
        ax = sub.flatten()[degree-1]
        make_subplot2(ax, clf, x_train, y_train, x_test, y_test, f'kernel=poly,
degree={degree}')
    #rbf
    clf = SVC(kernel='rbf', gamma='auto')
    clf.fit(x_train, y_train)
    test_accuracy = metrics.accuracy_score(y_test, clf.predict(x_test))
    print(f'kernel=rbf, TestAcc = {test_accuracy}')
   make_plot2(clf, x_train, y_train, x_test, y_test, 'rbf')
   #sigmoid
    clf = SVC(kernel='sigmoid', gamma='auto')
    clf.fit(x_train, y_train)
    test_accuracy = metrics.accuracy_score(y_test, clf.predict(x_test))
    print(f'kernel=sigmoid, TestAcc = {test_accuracy}')
    make_plot2(clf, x_train, y_train, x_test, y_test, 'sigmoid')
def task4():
    le = preprocessing.LabelEncoder()
    x_train, y_train = getData('svmdata4.txt', le)
    x_test, y_test = getData('svmdata4test.txt', le)
    clf = SVC(kernel='poly', gamma='auto')
    clf.fit(x_train, y_train)
    test_accuracy = metrics.accuracy_score(y_test, clf.predict(x_test))
    print(f'kernel=poly, TestAcc = {test_accuracy}')
   make_plot2(clf, x_train, y_train, x_test, y_test, 'poly')
    clf = SVC(kernel='rbf', gamma='auto')
    clf.fit(x train, y train)
   test_accuracy = metrics.accuracy_score(y_test, clf.predict(x_test))
    print(f'kernel=rbf, TestAcc = {test_accuracy}')
   make_plot2(clf, x_train, y_train, x_test, y_test, 'rbf')
    clf = SVC(kernel='sigmoid', gamma='auto')
    clf.fit(x_train, y_train)
   test_accuracy = metrics.accuracy_score(y_test, clf.predict(x_test))
    print(f'kernel=sigmoid, TestAcc = {test_accuracy}')
    make_plot2(clf, x_train, y_train, x_test, y_test, 'sigmoid')
def task5():
    le = preprocessing.LabelEncoder()
    x train, y train = getData('svmdata5.txt', le)
    x_test, y_test = getData('svmdata5test.txt', le)
    gammas = [0.1, 1, 10, 100, 1000]
    fig, sub = plt.subplots(1, 3)
    for i in range(3):
        gamma = gammas[i]
        clf = SVC(kernel='poly', gamma=gamma)
        clf.fit(x_train, y_train)
        test_accuracy = metrics.accuracy_score(y_test, clf.predict(x_test))
```

```
print(f'kernel=poly, gamma={gamma}, TestAcc = {test_accuracy}')
        ax = sub.flatten()[i]
        make_subplot2(ax, clf, x_train, y_train, x_test, y_test, f'kernel=poly,
gamma={gamma}')
   fig, sub = plt.subplots(2, 3)
   for i in range(5):
        gamma = gammas[i]
        clf = SVC(kernel='rbf', gamma=gamma)
        clf.fit(x_train, y_train)
        test_accuracy = metrics.accuracy_score(y_test, clf.predict(x_test))
        print(f'kernel=rbf, gamma={gamma}, TestAcc = {test_accuracy}')
        ax = sub.flatten()[i]
        make_subplot2(ax, clf, x_train, y_train, x_test, y_test, f'kernel=rbf,
gamma={gamma}')
   fig, sub = plt.subplots(2, 3)
    for i in range(5):
       gamma = gammas[i]
        clf = SVC(kernel='sigmoid', gamma=gamma)
        clf.fit(x_train, y_train)
        test_accuracy = metrics.accuracy_score(y_test, clf.predict(x_test))
        print(f'kernel=sigmoid, gamma={gamma}, TestAcc = {test_accuracy}')
        ax = sub.flatten()[i]
        make_subplot2(ax, clf, x_train, y_train, x_test, y_test, f'kernel=sigmoid,
gamma={gamma}')
task1()
task2()
task3()
task4()
task5()
plt.show()
```