Linear systems with constant coefficients

(1) X'= AX, where A&Mn(R), n&M*

Recall from the last lecture:

-the F.T. If $X_1, -$, X_n are a linearly independent solutions of (1), then the general solution of (1) is $X = C_1 X_1 + ... + C_n X_n$, $C_1, ..., c_n \in \mathbb{R}$ - we defined the matrix expanential and we showed that e^{At} is the principal matrix of (1) and that the general solution of (1) can be written as $X = e^{At} \cdot C$, $C \in \mathbb{R}^n$

Notation: $[\lambda_1,...,\lambda_n \in \mathbb{C}]$ the eigenvalues of A (counted with their multiplities, thus it is not necessary to be distinct) multiplities, thus it is not necessary to be distinct) $[u_1,...,u_m \in \mathbb{C}^n]$ a set of timearly independent eigenvectors $(m \leq n)$

Similar matrices:

Def. Let A, B & Mn (R). We say that A is similar to B if there exists P&Mn (R) invertible s.t. A=PBP-1.

Property. Let $\lambda \in \mathbb{C}$ and $u \in \mathbb{C}^n$ be such that u is an eigenvector of A corresponding to the eigenvalue λ . Then λ is an eigenvalue of B and P^+u is an eigenvector of B corresponding to λ .

The hypothesis is that A is similar to b.

Acof. $Au = \lambda u$ $u \neq 0$ $PBP'u = \lambda u$ $1 \cdot P'$ to the left. $(P'P)BP'u = P'\lambda u$ xolar

$$= \lambda \int \frac{[P^{-1}u]}{\text{vector}} = \lambda \underbrace{[P^{-1}u]}_{\text{vector}}$$

Since u +0 we have P-1 u +0

=> p^u is an eigenvector of b corresponding to the eigenvalue h

Property. Let A be similar to B. Then:

(i) AD= PBRP-1, XX=1

(ii) eAt = PeBtp-1, HER

froof (i) k=1 A=PBP-1 (def) k=2 $A^{2}=(PBP^{-1})(PBP^{-1})=PB(P^{-1}P)BP^{-1}=PB^{2}P^{-1}$ by induction assume that $A^{R} = PB^{R}P^{-1}$ prove that $A^{R+1} = PB^{R}P^{-1}$ indeed $A^{R+1} = A^{R} \cdot A = (PB^{R}P^{-1}) \cdot (PBP^{-1}) = PB^{R}(PP)BP^{-1} = PB^{R+1}P^{-1}$ $(\bar{u}) e^{At} = \sum_{h=0}^{\infty} \frac{1}{h!} (At)^h = \sum_{h=0}^{\infty} \frac{1}{h!} A^h (\underline{u}) \sum_{h=0}^{\infty} \frac{1}{h!} ph^h p^h = p (\sum_{h=0}^{\infty} \frac{1}{h!} bh) p^h = 1$ = P (= + (bt)h) p-1 det P ebt p-1

Diagonalizable matrix Def. We say that A € Mn (R) is diagonalizable if there exists a diagonal matrix D € Mn (R) s.t. A is similar to D.

UA matrix that is not diagonalizable is said to be dejective.

Property. We have that $A \in \mathcal{M}_n(\mathbb{R})^d$ is diagonalizable over \mathbb{R} if and only if it's eigenvalues 1, ... In ER and there exist n eigenvectors u, ..., un ER

Remark. Denote by ui an eigenvector corresp. to li, i=1, n.

! From now on we assume that A is diagonalizable.

Property. Let D = diag (\langle 1, -, \langle n) and P a matrix whose ith column is the eigenvector ui. Then A = PDP-1.

Consequences:

 $D^{h} = \operatorname{diag}(\lambda_{1}^{h}, \dots, \lambda_{n}^{h}) \Rightarrow A^{h} = P \operatorname{diag}(\lambda_{1}^{h}, \dots, \lambda_{n}^{h}) P^{n}$ est fosture diag (e ht, ..., eht) => e ht = p diag (e ht, ..., eht) p-1

So, we gave a procedure to find the general sol. of X'= AX in the case that A is diagonalizable.

Step 1. Find the eigenvalues and eigenvectors of A. If hi,..., hield and I n linearly independent eigenvectors, then we conclude that A is diagonalizable.

Step? We find D and P Step 3. We find et using (1) Step 4. $X = e^{At}C$, $C \in \mathbb{R}^n$

Proposition. Let A=Mn(R), N=R be an eigenvalue of A, u=R be an eigenvector of A corresponding to λ . Then the function $Y: R \to R^n$, $Y(T) = e^{\lambda t}u$ is a solution of X' = AX. Proof. We have to prove that P'(t)= A P(t), HER. We compute $e'(t) = \frac{1}{2} e^{\lambda t} u = e^{\lambda t} (Au) = A(e^{\lambda t} u) = A(e^{\lambda t} u) = A(e^{\lambda t} u)$ Hup => Au = lu The characteristic equation method to find the general solution of X'= AX in the case that A is diagonalizable Step 1. We find him, how R the eigenvalues of A as roots of det (A-AIn)=0 (this is called the characteristic equation). We also find the n linearly indep. eigenvectors un-, un- R" Step 2. We associate n functions: elitui, i=1, n Through the n functions are lin. indep. solutions of X'=AX. Step 3. The general sol: X= C, e ht u, +... + C, e ht un, C, ..., C, ER Example (i) Prove that the matrix $A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$ is diagonalizable. (ii) Using the char. eq. method find the general sol. of x'= Ax. Solution (i) det $(A - \lambda I_2) = 0$ e=3 $\begin{vmatrix} 1-\lambda & 3 \\ 1 & -1-\lambda \end{vmatrix} = 0$ e=3 $(1-\lambda)(-1-\lambda)-3=0$ => /2-1-3=0 => /2-4=0 => /1=-2 and /2=2 Find an eigenvector corresp. to $\lambda_1 = -2$: Au = -2u, u = 1 $u \in \mathbb{R}^2$ $u = \begin{pmatrix} a \\ b \end{pmatrix}$ Then $u_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ an eigenvector corresp. to $\lambda_1 = -2$ Find an eigenvector corresp to $\lambda_z=2$ $Au = \lambda u = 0$ $(A - 2I_2)u =$ We choose b=1 => 0=3

Then $u_2 = {3 \choose 1}$ is an eigenvector corresp. to $\lambda_2 = \lambda$ $\left| \frac{1}{1} \right| = 1 + 3 \neq 1 \neq 0 = 3$ u_1, u_2 are lin. indep. We proved that A is diagonalizable (ii) the general sol. of $\begin{cases} \chi_1' = \chi_1 + 5\chi_2 \\ \chi_2' = \chi_1 - \chi_2 \end{cases}$ is $\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = c_1 e^{-zt} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, c_1, c_2th $= \int \chi_1 = C_1 e^{-2t} + b C_2 e^{2t}$ $= \int \chi_2 = -C_1 e^{-2t} + C_2 e^{2t}$ $= \int \chi_2 = -C_1 e^{-2t} + b C_2 e^{2t}$ $= \int \chi_1 = C_1 e^{-2t} + b C_2 e^{2t}$ $= \int \chi_2 = -C_1 e^{-2t} + b C_2 e^{2t}$ $= \int \chi_2 = -C_1 e^{-2t} + b C_2 e^{2t}$ $= \int \chi_2 = -C_1 e^{-2t} + b C_2 e^{2t}$ $= \int \chi_2 = -C_1 e^{-2t} + b C_2 e^{2t}$ $= \int \chi_2 = -C_1 e^{-2t} + b C_2 e^{2t}$ $= \int \chi_2 = -C_1 e^{-2t} + b C_2 e^{2t}$

Henri Poincaré

The dynamical system associated to a differential equation

We consider the autonomous system in \mathbb{R}^n .

(1) $\dot{x} = f(x)$, where $f: \mathbb{R}^n \to \mathbb{R}^n$ is a C'-functions.

The unknown is X(t) and \dot{x} is just the notation of Mewton for X'used when t is the time.

Keywords: flow, initial state, equilibrium point, orbit, attractor, phase portrait

Theorem (an existence and uniqueness theorem)

Let $\eta \in \mathbb{R}^n$. We have that the IVP $\begin{cases} \chi' = f(\chi) \\ \chi(0) = \eta \end{cases}$ has a unique solution denoted by P(t, n) which is defined on a minimal interval In= (xn, pr) CA if eli, m) is bounded on [O, pm) then By=+00 if T(, n) is bounded on (<n, 0) then <n=-> if e(.,n) is bounded on In then In=R=(-0,+0)

q: RXR > Rn

Def. The map $(t, \eta) \mapsto \mathcal{I}(t, \eta)$ is called the flow of (1) is the initial the state of the system at state time t when it initiated at m

The space IR" is called the state space.