Chapter 6 The Basic LAN

Episode The OSI Model

title:

Objective: Overview

Episode ARP Cache Poisoning

title:

Objective: 1.4 Given a scenario, analyze potential indicators

associated with network attacks.

Address Resolution Protocol (ARP)

- Maps IP addresses to MAC addresses
- ARP traffic is local to the LAN

Demo ARP Packet Capture

ARP Cache Poisoning

- A type of man-in-the-middle (MITM)/ on-path attack
- Victim traffic is sent through the attacker station
- Attacker can view victim traffic

ARP Cache Poisoning

Victim

C:\arp -a MAC: 11.22.33.44.55.66 IP: 192.168.1.1

Attacker

MAC: 11.22.33.44.55.66 IP: 192.168.1.1 Default gateway

MAC: 44-44-44-44-44 IP: 192.168.1.1

ARP Cache Poisoning Mitigation

- Use static ARP cache entries
 - Hosts will not accept ARP cache updates
- Limit access to the network
 - Network access control (NAC)
 - MFA
 - Device type

Quick Review

- ARP is a protocol that maps IP addresses to MAC addresses on a LAN
- MAC addresses are easily spoofed (cloned)
- ARP cache poisoning maps the attacker
 MAC with the router IP in ARP cache tables
- Devices with the fake ARP entry send Internet traffic first to attacker station

Episode Other Layer 2 Attacks

title:

Objective: 1.3 Given a scenario, analyze potential indicators associated

with application attacks.

3.3 Given a scenario, implement secure network designs.

Broadcast Storm/Switching Loop

- Excessive amounts of broadcast traffic on a network
- Caused by
 - Failing equipment
 - Redundant network links between switches without Spanning Tree Protocol (STP)

Layer 2 Attack Mitigation

- MAC address filtering for network access
- Static MAC address assignments
- Disable unused switch ports
- Broadcast storms/loops
 - Enable
 - Spanning Tree Protocol (STP)
 - Bridge Protocol Data Unit (BPDU) guard

Quick Review

- MAC address flooding results in switch traffic being forwarded to all ports
- Broadcast storms are normally caused by redundant network switch connections (loops)
- STP and BPDU can prevent network loops

Episode Network Planning

title:

Objective: 2.1 Explain the importance of security concepts in an

enterprise environment.

3.3 Given a scenario, implement secure network designs.

Network Configuration Management

- Zero trust
 - Internal networks should be untrusted
 - Make sure employees can recognize scams
 - Use a network IDS/IPS for internal networks

Network Configuration Management

- Network and data flow diagrams
- Naming conventions
 - Servers, routers, switches, etc.
- IP address ranges
 - Address usage within each range
 - Example: routers are always x.y.z.253

Virtual Local Area Network (VLAN)

- By default, all switch ports are on the same VLAN
- Switches can be virtually configured into separate networks
- VLANs can span multiple switches through trunking

Screened Subnet

- Also called a demilitarized zone (DMZ)
- Public services are placed in the DMZ
- Firewall rules must be configured
 - Example: only allow HTTPS from the Internet to the DMZ Web server

Demilitarized Zone (DMZ)/ Screened Subnet | DNS server | Web server |

Quick Review

- Network designs must account for IP addressing and naming conventions
- Network diagrams increase troubleshooting efficiency
- VLANs break a large network into smaller segments
- Public services should be placed on an isolated screened subnet

Episode Load Balancing

title:

Objective: 2.5 Given a scenario, implement cybersecurity resilience.

3.3 Given a scenario, implement secure network designs.

Load Balancing (LB)

- · Increases service availability
- Improves service performance
- Multiple backend servers provide the same service
 - Horizontally auto-scaled
 - Scaling out: Add servers
 - Scaling in: Remove servers
- Session persistence
 - Clients remain connected to same backend server

Active/Active Scheduling Methods

- Round-robin
 - Each request goes to the next backend server
- Least connections
 - Each request is sent to the least busy backend server
- Weighted value
 - A relative numeric value assigned to each backend server

Active/Passive Load Balancing

- Backend server status
 - Active
 - Standby state (passive)
- A standby server is activated when an active server fails

Quick Review

- Load balancing improves service performance and increases service availability
- Client service request first goes to the load balancer
- The load balancer distributes client requests to backend servers
- Load balancers can be auto-scaled
- Servers can be configured as active/active (all servers active) or active/passive (some servers on standby)

Episode Securing Network Access

title:

Objective: 3.3 Given a scenario, implement secure network

designs.

Network Access Control (NAC)

- Limit endpoint access to a network
 - Device/OS type
 - Device location
 - Host-based firewall
 - Antivirus/update status
- Agent/agentless

IEEE 802.1x

- Port-based network access control
- Centralized RADIUS server authentication
- Wired and wireless network edge devices
 - Ethernet switches
 - VPN devices
 - Wi-Fi routers

DHCP Snooping Mitigation

- Block rogue DHCP servers
 - Untrusted DHCP server responses are blocked
- Enabled on network switches
 - Specify trusted DHCP ports

Quick Review

- Network access control can use IEEE 802.1x devices to restrict network access
- Network switch DHCP snooping mitigates rogue DHCP servers
- Jump servers sit between server admins and target servers

Episode Honeypots

title:

Objective: 2.1 Explain the importance of security concepts in an

enterprise environment.

Decoy Environments

- Attract and track attackers with fake vulnerable items
- Be careful
 - Use only on an isolated network
 - Consider fake attacker-provided telemetry
 - Use centralized logging

Decoy Environments

- Honeyfile
 - Fake file(s) made to look attractive to attackers
 - Example: "Executive_Salaries.xls"
- Honeynet
 - Network of honeypots
- Honeypot
 - Host/device made to look attractive and vulnerable
 - Windows, Linux, macOS, PLC, router, switch, etc.

Quick Review

- Honeyfiles are fake files appearing to contain data attractive to attackers
- Honeypots are intentionally vulnerable hosts/devices made to look attractive to attackers
- Honeynets consist of multiple honeypots

Episode 6.08

Episode Firewalls

title:

Objective: 3.3 Given a scenario, implement secure network

designs.

Firewalls

- Hardware appliance
- VM
- Host-based
- Allow/deny incoming/outgoing traffic
 - Access Control List (ACL) rules
 - IPv4/IPv6

Packet Filtering Firewall

- OSI layer 4 (Transport)
- Stateful firewalls track entire sessions instead of only individual packets
 - UDP doesn't use sessions
 - TCP uses sessions

Packet Filtering Firewall

- Rules can be based on
 - Source/destination port numbers
 - Source/destination IP addresses
 - MAC addresses
 - Protocol type (TCP, UDP, ICMP)

Content/URL Filtering Firewall

- OSI layer 7 (Application)
- Rules can be based on
 - Direction of traffic (incoming or outgoing)
 - Packet filtering firewall conditions
 - Protocol-specific items
 - HTTP method used
 - URL
 - Data in the packet payload

Web Application Firewall (WAF)

- OSI layer 7 (Application)
- Protects against Web app attacks
 - Cross-site scripting (XSS)
 - Cryptographic downgrades
 - Directory traversal
 - SQL injection

Quick Review

- Packet filtering firewalls apply to OSI layer 4
- Content/URL filtering firewalls apply to OSI layer 7
- Web application firewalls protect against common Web app attacks

Episode 6.09

Episode Proxy Servers

title:

Objective: 3.3 Given a scenario, implement secure network

designs.

Forward Proxying - Sits between internal users and the Internet - Fetches Internet content for internal users - Hides IP address of internal client station Proxy server Internal clients

Forward Proxy

- User device uses proxy as default gateway
 - "Transparent proxy", no additional software needed
- Fetched content can be cached
 - Speeds up subsequent requests

Reverse Proxy

- Can support load balancing
- Can support SSL/TLS termination

Quick Review

- Forward proxying fetches internal user requested content from the Internet and internal client IPs are hidden
- Reverse proxying provides external user access to internal services and internal server IPs are hidden

Episode 6.10

Episode Network and Port Address

title: Translation

Objective: 3.3 Given a scenario, implement secure network

designs.

Port Address Translation (PAT)

- Hardware device or software configuration
 - Normally enabled on a router
 - Also called a PAT or NAT gateway
- Multiple internal IPs share a single public IP
 - Requests are tracked by internal IP and unique port number
- Internal IPs are hidden

Network Address Translation (NAT)

- Very similar to a reverse proxy
 - Reverse proxy is OSI layer 7
 - NAT is OSI layer 4
- Internal services are available to external clients through NAT device public IPs
 - Public IPs are mapped to internal service private IPs
- Internal service IPs are hidden

Quick Review

- Port address translation (PAT) enables multiple internal clients to gain Internet access using a single public IP
- Network address translation (NAT) maps public IPs to internal private IPs to allow external client access to servers

Episode 6.11

Episode IP Security (IPsec)

title:

Objective: 3.1 Given a scenario, implement secure protocols.

IPsec

- Suite of network security protocols
- Network traffic encryption and authentication
- · Can secure some or all network traffic
- · Authenticating on two endpoints using
 - Kerberos
 - NTLMv2
 - PKI certificate
 - Pre-shared key (PSK)

IPsec Tunnel Mode

- Normally used for site-to-site VPNs
- Entire original packet is encrypted and placed inside a new IP packet
 - A new IP header is added
 - AKA "packet encapsulation"

IPsec Transport Mode

- Normally used for host-to-host encryption on a LAN or WAN
- Original packet header remains unchanged; new IP header is NOT added
- No packet encapsulation

Authentication Header (AH)

- Integrity and origin authentication
 - Example: HMAC-MD5 or HMAC-SHA
- Entire IP packet is authenticated
 - Not encrypted

Encapsulation Security Payload (ESP)

- Integrity and origin authentication
 - Only the original packet
- Confidentiality through encryption
 - Only packet payload is encrypted
- Original IP headers are not readable

Quick Review

- IPsec can provide data integrity, origin authentication, and encryption services
- Often used for VPN tunnels
- Tunnel mode uses packet encapsulation
- Transport mode leaves the original packet header unchanged (no encapsulation)

Episode 6.12

Episode Virtual Private Networks (VPNs)

title:

Objective: 3.3 Given a scenario, implement secure network

designs.

Virtual Private Network (VPN)

- Point-to-point encrypted tunnel over an untrusted network
- Allows secure access to a remote network
- VPN authentication
 - Username/password, smart card, PKI certificate, hardware/ software token

VPN Tunneling Protocols

- Layer 2 tunneling protocol (L2TP)
 - Normally uses IPsec to provide encryption
- Secure Sockets Layer (SSL)
 - No longer used
- Transport Layer Security (TLS)
 - Firewall-friendly (TCP 443)
 - Resource access via client Web browser
 - May require newer HTML5 browsers

Client-to-Site Remote Access VPN

- Individual client devices securely connect to a remote network
 - Working from home
 - Traveling
 - Corporate network connection
- Client device requires VPN client software or Web browser

VPN Configuration

- Always-on VPN
 - VPN tunnel is established if device is Internet connected
 - Facilitates applying updates
- Split tunnel
 - Requests for remote network resources go through the VPN
 - Other requests use client Internet connection

Site-to-Site VPN

- Securely link sites together over the Internet
- Each site needs a VPN device
 - VPN tunnel is established between the two VPN devices

Quick Review

- VPNs use an encrypted tunnel over an untrusted network to allow secure remote network connectivity
- Client-to-site VPN requires client software
- Always-on VPN tunnel is established when the client is connected to the Internet and enables admins to install updates and patches easier
- Split tunnel means corporate traffic goes through the VPN, all other traffic does not

Episode 6.13

Episode Intrusion Detection

title:

Objective: 3.3 Given a scenario, implement secure network

designs.

Intrusion Detection

- Watches for suspicious activity
- Detect
 - Writes anomalous activity to a log
 - Sends alert
- Prevent
 - Block suspicious activity

Intrusion Detection

- Must detect anomalies in context of the individual network
 - Adjust settings as needed
 - Reduce false positives
- IDS/IPS sensors
 - Individual host
 - On network perimeter

Intrusion Detection

- Often enabled directly on routers
- Network placement is crucial
 - Between firewall and rest of network (inline)
- If encrypted traffic
 - SSL/TLS inspection
 - Decrypt traffic for packet payload inspection
 - Will affect performance
- Signature-based
 - Compare activity to known patterns of attacker traffic

Unified Threat Management (UTM)

- Also called a Secure Web Gateway (SWG)
- Firewall
- Proxy server
- Intrusion detection and prevention
- Web application firewall
- Virus scanning
- Spam filtering
- Data loss prevention

Quick Review

- Intrusion detection can detect and send the alert/log anomalies to an admin
- Intrusion prevention can detect, alert/log, and block anomalies
- Signature-based IDS looks for known patterns of attacker traffic
- Unified threat management (UTM) combines many security functions in a single solution

