Notation and Formulas

k treatments; n_i observations on the ith treatment; y_{ij} denotes the jth observation on the ith treatment.

Treatment 1: y_{11} y_{12} y_{13} ... y_{1n_1} Treatment 2: y_{21} y_{22} y_{23} ... y_{2n_2} \vdots \vdots \vdots ... \vdots Treatment k: y_{k1} y_{k2} y_{k3} ... y_{kn_k}

treatment sum: $y_{i.} = \sum_{j=1}^{n_i} y_{ij}$

treatment mean: $\bar{y}_{i.} = y_{i.}/n_i$

overall sum: $y_{\cdot \cdot} = \sum_{i=1}^k \sum_{j=1}^{n_i} y_{ij}$

overall mean: $\bar{y}_{\cdot \cdot} = y_{\cdot \cdot}/N$ where $N = \sum_{i=1}^k n_i$

Sums of Squares:

SSTot =
$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2 = \sum_{all\ obs} (y_{ij} - \bar{y}_{..})^2$$
SSTrt =
$$\sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2$$
SSErr =
$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 = \sum_{i=1}^{k} (n_i - 1) s_i^2$$

degrees of freedom:

$$dfTot = N - 1 \quad dfTrt = k - 1 \quad dfErr = N - k.$$

Example

data:						stem-and-leaf display:					ANOVA table:			
y_{1j} :	14	20	10	14	17	a		•	•	4	Source	$\mathrm{d}\mathrm{f}$	SS	MS
y_{2j} :	13	8	10	16	8	Group: 1	2	3	4	Treatment	3	158.8	52.93	
y_{3j} :	16	14	24	21	19						Error	16	232.0	14.50
y_{4j} :	8	14	19	12	15		.				Total	19	390.8	
						0	*	88	-	18				
						1	. 044	103	14	124				
						1	* 7	16	169	59				
						2	. 0		14	1				

Hypotheses: H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ versus H_A : not $\mu_1 = \mu_2 = \mu_3 = \mu_4$. $F = \frac{\text{MSTrt}}{\text{MSErr}} = \frac{52.93}{14.50} = 3.65$ on (3, 16) df.

The p-value is 0.035 and thus we conclude that there is moderate evidence against the null hypothesis.

Assumptions Underlying ANOVA

- 1. Independence: For each treatment i, we have a random sample of n_i observations, Y_{ij} . Also, observations for each treatment i are independent of observations in all other treatments.
- 2. Normality: $Y_{ij} \sim \mathcal{N}(\mu_i, \sigma_i^2)$.
- 3. Equal Variance: $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2$.

The One-way ANOVA Model

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$
 where $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$ and all ε_{ij} are independent.

Alternatively:

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$
 where $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$, all ε_{ij} are independent, and $\sum \alpha_i = 0$.

Testing for Equal Variances

Use Levene's Test (modified by Brown & Forsythe, 1974):

- 1. For group i, find the median; call it \tilde{y}_i .
- 2. Define $d_{ij} = |y_{ij} \tilde{y}_i|$.
- 3. Perform a one-way ANOVA on the d_{ij} from step 2.
- 4. Reject H_0 : $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2$ if the F-test in step 3 is significant.

A Nonparametric Test

Use a "rank transformation" (Conover and Iman, 1981):

- 1. Place the entire data set in order, from smallest to largest.
- 2. Replace each observation by its rank.
- 3. Analyze the rank values in a standard ANOVA.