Bases de Dados

Módulo 18a: Subconsultas em Instruções SELECT

Prof. André Bruno de Oliveira

14/05/24 09:32

- Este módulo usa microdados da POF 2017-2018 para estudar subconsultas SQL.
- A Pesquisa de Orçamentos Familiares POF avalia as estruturas de consumo, de gastos, de rendimentos e parte da variação patrimonial das **famílias**, oferecendo um perfil das condições de vida da população a partir da análise dos orçamentos domésticos.
- O desenho atual da amostra da POF propicia a publicação de resultados nos seguintes níveis: Brasil, Grandes Regiões, por situações urbana e rural, por Unidades da Federação, Regiões Metropolitanas e nos Municípios das Capitais.
- Os dados utilizados neste módulo são do questionário de Morador do domicílio.

- Este BD SQLite (POF.db) inclui uma versão simplificada da POF com 15 variáveis na tabela *Quest_Morador*. A versão original do questionário do morador está em *Questionario* com 56 variáveis e 178.431 ocorrências.
- O banco de dados está disponível na pasta do professor.
- Os dados foram importados para o SQLite com uso do SQLite Studio (houve uma etapa anterior de importação para SAS e depois exportação para o formato CSV que o SQLite studio reconhece).
- A fonte de dados original juntamente com a documentação está disponível em https://www.ibge.gov.br/estatisticas/sociais/populacao/24786-pesquisa-

de-orcamentos-familiares-2.html?edicao=37681&t=downloads.

- O BD POF.bd inclui 178.431 linhas com 8 tabelas apresentadas no diagrama da figura 1. A tabela central Quest_Questionario possui 4 FK com 1 FK para cada tabela auxiliar:
 - T_regiao (cod_região, regiao),
 - T_uf(cod_uf, UF);
 - Tipo_situação(tipo_situação_reg, categoria);
 - PlanoSaude (<u>V0406</u>, categoria);
 - Raca (<u>V0405</u>, categoria);
 - Sexo (<u>V0404</u>, categoria)
 - Faixa_renda_familiar (classe, limite_inferior, limite_superior)
- As tabelas auxiliares foram criadas e populadas primeiro, pois cada tabela inclui um atributo que faz parte da regra de integridade referencial (FK) da tabela principal Quest_Questionario, com excessão da *Faixa_renda_familiar*. A tabela Faixa_renda_familiar foi criada a partir das informações do SIDRA.

Figura 1 – Diagrama do BD da POF 2017-2018

Curiosidade

O que SAS?

"O SAS, no mercado desde 1976, é um dos mais reputados sistemas de análises de dados em microcomputadores, utilizado por cerca de 5.000 empresas no mundo inteiro. Trata-se de um sistema integrado de aplicações para o processamento e análise estatística de dados, consistindo em módulos de Acesso e Recuperação de Dados, Gerenciamento de Arquivos, rotinas de Geração de Gráficos e Geração de Relatórios."

Fonte: https://www2.ufjf.br/estatistica/eventos-e-projetos/projeto-sas/o-que-e-o-sas/

Curiosidade

O que é SIDRA?

Sistema IBGE de Recuperação Automática — SIDRA permite a consulta livres aos dados armazenados no Banco de Tabelas Estatísticas.

O objetivo do Banco de Tabelas Estatísticas é armazenar tabelas contendo os dados agregados das pesquisas que o IBGE realiza. Um dado agregado pode ser obtido, por exemplo, através do somatório dos valores de quesitos contidos em um questionário respondido pelos informantes da pesquisa.

Fonte: https://sidra.ibge.gov.br/ajuda

A partir da documentação da POF 2017-2018 criou-se as tabelas auxiliares da figura 1 para ajudar na avaliação da base de dados. Cada tabela auxiliar possui um atributo PK e um atributo categoria que descreve a variável PK. A figura 2 abaixo exemplifica como é o dicionário de variáveis da pesquisa: código da variável (ou nome do atributo); descrição; código (valor numérico inteiro categórico); categoria no formato alfanumérico.

Figura 2 - Exemplo do dicionário da POF

DICIONÁRIO DAS VARIÁVEIS - POF 2017-2018	3
REGISTRO – MORADOR	

Posição Inicial	cial Codigo da variavei		Código da variável	Descrição	Categorias		
3	4		ESTRATO_POF	rural. A estratificação estatística foi realizada a partir das definições implementadas na Amostra Mestra, que utiliza informações da variável renda total do domicílio, obtida a partir dos dados do Censo 2010.	Ver arquivo em anexo "Estratos POF 2017-2018"		
7	1		TIPO SITUAÇÃO REG	Situação do Domicílio	1 – Urbano		
,	'		TIFO_SITOACAO_REG	Situação do Domicilo	2 – Rural		
8	9		COD_UPA	Código da Unidade Primária de Amostragem: UF (2) + Número Sequencial (6) + DV (1). As 2 primeiras posições representam o código da Unidade da Federação			
17	2		NUM_DOM	Número do Domicílio. Corresponde a um código atribuído sequencialmente a cada domicílio selecionado em cada UPA.			
-				117 1 11 1 1 1 1 1 1 1			

Descrição das variáveis

Variável	CHAVE	Descrição das variável de Quest_morador
UF	PK; FK	Código da UF
ESTARTO_POF	PK	Identifica os estratos do plano amostral da pesquisa
TIPO_SITUACAO_RE G	PK; FK	Situação do Domicílio URBANO RURAL
		Código da Unidade Primária de Amostragem: UF (2) + Número Sequencial (6) + DV (1). As 2 primeiras posições representam o código da Unidade da Federação
NUM_DOM	PK	Número do Domicílio. Corresponde a um código atribuído sequencialmente a cada domicílio selecionado em cada UPA.
NUM_UC	PK	Número da unidade de consumo (UC) pertencente ao domicílio pesquisado. Este número varia de 1 até o número total de unidades de consumo do domicílio. (Família)
COD_INFORMANTE	PK	Número de ordem atribuído ao informante, que é utilizado para identificálo em todos questionários. (morador)
V0403		Idade em anos
V0404	FK	Sexo
V0405	FK	Cor ou raça (1 – Branca; 2 – Preta; 3 – Amarela; 4 – Parda; 5 – Indígena; 9 – Sem declaração)
V0406	FK	tem plano ou seguro-saúde?
ANOS_ESTUDO		Anos de estudo da pessoa. Variável derivada, construída a partir dos quesitos referentes a educação.
RENDA_TOTAL		Valor em reais (R\$), considerando os centavos, do rendimento bruto total mensal da Unidade de Consumo (renda da Família)
TAMANHO_FAMÍLIA		Variável derivada criada para usar na aula de base de dados.

Subconsultas

Uma subconsulta (subquery) consiste em um comando SELECT que existe dentro de um outro comando SQL. O comando externo é chamado de comando "pai" da subconsulta. Conforme já mnecionado em aulas anteriores.

Esta aula apresenta exemplos práticos de utilização de diferentes tipos de subconsulta com a utilização da base de dados da POF 2017-2018.

Subconsultas

O uso mais comum para as subconsultas é dentro de outra instrução SELECT, com o objetivo de retornar resultados que, de alguma forma, serão utilizados pela consulta pai. No entanto, as subqueries também são aceitas em comandos INSERT, UPDATE, DELETE e no CREATE TABLE. Esta aula aborda apenas o uso de subconsultas no SELECT, o chamado "SELECT dentro de SELECT".

Subconsultas

As subconsultas com SELECT podem ser de diferentes tipos:

• Subconsulta de única linha (*single-row*): retornará sempre uma única linha em seu resultado (independente do número de colunas).

```
SELECT UF, AVG(RENDA_TOTAL) FROM Quest_morador

Where (uf, tipo_situacao_reg) IN

(SELECT MIN(uf), MAXT(tipo_situacao_reg)

FROM Quest_morador WHERE renda_total > 0);
```

```
UF AVG(RENDA_TOTAL)
1 11 3709.863576233172
```

Subconsultas

• <u>Subconsulta de múltiplas linhas</u> (*multiple-row*): pode retornar zero, uma ou mais linhas em seu resultado (independente do número de colunas). Não é garantido que muitas linhas serão retornadas, mas como isto pode acontecer, a consulta pai deverá estar estruturada para receber muitas linhas.

SELECT UF, AVG(RENDA TOTAL) RENDA MEDIA

FROM Quest_morador Where UF IN (SELECT COD_UF FROM T_UF)

GROUP BY UF

HAVING RENDA_TOTAL > RENDA_MEDIA;

	UF		RENDA_MEDIA
1		17	3368.815431154388
2		24	4228.366577123091
3		32	4939.553044699301
4		35	7039.474957737322
5		43	6549.507053582458
6		52	5109.4952391203815

Subconsultas

• <u>Subconsulta de única coluna (single-column)</u>: retornará sempre uma única coluna no resultado (independente do número de linhas).

```
SELECT UF, AVG(RENDA_TOTAL) FROM Quest_morador

Where uf = (SELECT MIN(uf)

FROM Quest_morador WHERE renda_total > 0);
```

UF AVG(RENDA_TOTAL)
1 11 4206.323168867279

Subconsultas

• <u>Subconsulta de múltiplas colunas</u> (*multiple-column*): pode retornar uma ou mais colunas em seu resultado (independente do número de linhas).

```
SELECT count(UF) as total FROM Quest_morador

WHERE (UF,renda_total) IN

(SELECT uf,max(renda_total) FROM Quest_morador group by uf);
```


Subconsultas em Instruções SELECT – tipos diferentes

Subconsultas

• <u>Subconsulta escalar</u>: retornará sempre um resultado contendo uma linha e uma única coluna (ou seja, um único valor). Desta forma, uma subconsulta escalar corresponde a uma subconsulta single-row, single-column.

```
SELECT avg(renda_media_familiar) FROM T_UF
WHERE T_UF.cod_regiao =
(SELECT R.cod_regiao FROM T_REGIAO R
WHERE Regiao='Sul');
```

avg(renda_media_familiar) 1 5739.676415328969

Subconsultas em Instruções SELECT – tipos diferentes

Subconsultas

• <u>Subconsulta correlacionada</u> (correlated subquery): este tipo de subconsulta contém uma referência para uma ou mais colunas da tabela pai dentro de sua própria definição. Normalmente, uma condição especificada no WHERE da subconsulta envolverá a comparação de uma coluna da consulta pai com uma coluna da subconsulta, permitindo assim, a efetivação de associações entre uma linha da tabela pai com uma linha

UF

AVG(RENDA_TOTAL) 4206.323168867271

4590.190494989356 3621.8991138338833 4489.387786589763

2872.6019484765498 4671.565116511324

3368.815431154388

gerada pela subconsulta.

SELECT UF, AVG(RENDA_TOTAL)

FROM Quest_morador QM

Where EXISTS

(SELECT NULL FROM T_UF WHERE T_UF.cod_uf=QM.uf AND cod_regiao=1)

GROUP BY UF

- EXEMPLO (1) 2 SELECT
- Suponha que você deseja obter uma relação todas as UF cuja renda média esta superior à média de todas as UF. Neste caso você pode pensar a princípio que seja necessário dois SELECT para resolver este problema, conforme mostra o exemplo a seguir:

SELECT AVG(RENDA_MEDIA_FAMILIA) FROM T_UF;

AVG(renda_media_familiar)
4560.5521197975995

SELECT UF, RENDA_MEDIA_FAMILIA FROM T_UF

WHERE RENDA_MEDIA_FAMILIA > (4560.552);

- EXEMPLO (1) 2 SELECT
- Vejamos como resolver:

 SELECT AVG(renda media familiar) FROM T UF;

 AVG(renda_media_familiar)
 4560.5521197975995

Este primeiro SELECT serve para descobrir a o valor médio da renda familiar nacional 4.560, um valor escalar. No passo seguinte usa-se este valor escalar na cláusula WHERE para selecionar as UF com renda média acima deste valor, mais especificamente renda_media_fam<u>iliar</u> > 4560.552.

	UF	renda_media_familiar
1	Minas Gerais	4890.362424977962
2	Espirito Santo	4643.3496664443
3	Rio de Janeiro	5350.7800125352505
4	São Paulo	6762.966904536868
5	Paraná	5206.860550964191
6	Santa Catarina	5785.853017515916
7	Rio Grande do Sul	6226.315677506797
8	Mato Grosso do Sul	5464.784925883692
9	Mato Grosso	5238.526224707133
10	Goiás	4741.3998074339515
11	Distrito Federal	10342.211659159171

- EXEMPLO (1) 1 SELECT
- A SQL nos permite combinar esses dois SELECTs em um único comando, bastando para isso transformar o primeiro SELECT em uma subconsulta que retornará um valor escalar para o primeiro SELECT:

SELECT UF, RENDA_MEDIA_FAMILIA FROM T_UF

WHERE RENDA_MEDIA_FAMILIA > (SELECT AVG(RENDA_MEDIA_FAMILIA) FROM T_UF);

	UF	renda_media_familiar
1	Minas Gerais	4890.362424977962
2	Espirito Santo	4643.3496664443
3	Rio de Janeiro	5350.7800125352505
4	São Paulo	6762.966904536868
5	Paraná	5206.860550964191
6	Santa Catarina	5785.853017515916
7	Rio Grande do Sul	6226.315677506797
8	Mato Grosso do Sul	5464.784925883692
9	Mato Grosso	5238.526224707133
10	Goiás	4741.3998074339515
11	Distrito Federal	10342.211659159171

- EXEMPLO (1) 1 SELECT (Explicação)
- A consulta interna (subconsulta) é executada primeiro pelo SGBD (por isso mesmo, ela é está especificada entre parênteses). O resultado de sua execução corresponde a uma relação contendo uma linha e uma coluna (valor escalar), que armazena o valor médio. Tendo sido determinado, este valor médio é então utilizado no WHERE da consulta externa.

```
SELECT UF, RENDA_MEDIA_FAMILIA FROM T_UF
```

WHERE RENDA_MEDIA_FAMILIA > (SELECT AVG(RENDA_MEDIA_FAMILIA) FROM T UF);

EXEMPLO (1) – 1 SELECT (Explicação)

- Pode-se ver que o valor retornado pela subconsulta foi utilizado em um teste do tipo "maior que" (operador ">"). Este tipo de teste pode ser utilizado apenas para avaliar um valor escalar. Caso a subquery não fosse do tipo escalar (retornasse mais de uma linha ou mais de uma coluna), o teste com ">" ficaria sem sentido e ocorreria um erro de execução do comando SQL!.
- Apenas as subqueries do tipo escalar podem ser utilizadas em testes que envolvam os operadores =, <>, <, >, >= e <=.

SELECT UF, RENDA_MEDIA_FAMILIA FROM T_UF

WHERE RENDA_MEDIA_FAMILIA > (SELECT AVG(RENDA_MEDIA_FAMILIA) FROM T UF);

Subconsultas em Instruções SELECT Single-row

EXEMPLO (2) – Retorno de uma linha

• A query a seguir apresenta uma subconsulta que identifica a maior renda familiar, sua UF de residência e calcula a razão entre sua renda e a renda média da UF que reside, segundo dados da POF 2017-2018. Como o teste da consulta externa é feito com "=", a subconsulta precisa ser escalar).

```
SELECT DISTINCT A.RENDA_TOTAL as 'Renda Familiar'

,T_UF.UF

,A.RENDA_TOTAL /T_UF.renda_media_familiar as 'Razão de renda'

FROM Quest_morador A

INNER JOIN T_UF ON T_UF.cod_uf=A.uf

WHERE RENDA_TOTAL = (SELECT MAX (RENDA_TOTAL) FROM Quest_morador)
```

L		1		I
		Renda Familiar	UF	Razão de renda
	1	675212.2	Minas Gerais	138.06997136884854

EXEMPLO (3) – Retorno de uma linha

- As subconsultas podem ser utilizadas normalmente em qualquer tipo de SELECT, incluindo os que possuem **GROUP BY,** DISTINCT, etc., como a query a seguir.
- A query a seguir lista um tipo de família que se caracteriza com menor renda familiar acima de zero, com UF de residência no Pará e sua renda está 338 vezes abaixo da média do Pará.

```
SELECT A.RENDA_TOTAL as 'Renda Familiar'
,T_UF.UF
,T_UF.renda_media_familiar/A.RENDA_TOTAL as 'Razão de renda'
FROM Quest_morador A
INNER JOIN T_UF ON T_UF.cod_uf=A.uf
WHERE RENDA_TOTAL = (SELECT MIN(RENDA_TOTAL) FROM Quest_morador WHERE RENDA_TOTAL>0)
```

GROUP BY 'Renda Familiar',T_UF.UF,'Razão de renda'

	1		1 1
	Renda Familiar	UF	Razão de renda
1	8.38	Para	338.7402203253732

EXEMPLO (4) – Retorno de uma linha

- A consulta a seguir inclui duas condições como subconsulta no WHERE: i) a primeira seleciona a família que tem maior número de membros e que haja ao menos um membro com plano de saúde e seja do sexo feminino; ii) a segunda condição verifica se a renda da família está menor do que a menor média de renda nacional entre as UF.
- Veja que a query principal encontra três tipos de famílias nesta condição.

```
SELECT DISTINCT A.RENDA_TOTAL as 'Renda Familiar'

"T_UF.UF

"T_UF.renda_media_familiar/ A.RENDA_TOTAL as 'Razão de renda'

"tamanho_familia

FROM Quest_morador A

INNER JOIN T_UF ON T_UF.cod_uf=A.uf

WHERE A.tamanho_familia = (SELECT MAX(tamanho_familia) FROM Quest_morador WHERE V0406=1

AND V0404=1)

and A.RENDA_TOTAL < (SELECT AVG(RENDA_MEDIA_FAMILIAR) FROM T_UF)

GROUP BY 'Renda Familiar',T_UF.UF,'Razão de renda',tamanho_familia;
```

		Renda Familiar	UF	Razão de renda	tamanho_familia	
	1	4090.56	Acre	1.08948506906576	13	
	2	3184.56	Ceará	1.03406586705893	13	
	3	692.64	Para	4.09829499642906	13	
- 11						

Subconsultas em Instruções SELECT mult-row

EXEMPLO (5) – Retorno de mais de uma linha

• Uma subconsulta multi-row é aquela que retorna mais de uma linha. O operador IN é um dos poucos operadores que podem ser utilizados com este tipo de subconsulta na cláusula WHERE, pois ele é aplicado sobre listas de valores.

EXEMPLO (5) – Retorno de mais de uma linha

• No exemplo a seguir, produzimos um relatório com classe de renda das regiões que tem ao menos uma UF com renda média abaixo da nacional. Neste caso, **utilizamos uma subconsulta com 16 linhas**. Vamos analisar está *query* por etapas.

EXEMPLO (5) – Retorno de mais de uma linha

Resultado referente a *query* anterior exibe as regiões Nordeste e Norte e suas respectivas totalizações por classes de renda. A "Classe 1 – E" tem os maiores totais em ambas as regiões brasileiras.

	Regiao	LIMITE_INFERIOR	LIMITE_SUPERIOR	CLASSE	TOTAL_FAMILIAS
1	Nordeste	0	1908	CALASE 1 - E	7180512
2	Nordeste	1908	2862	CALSSE 2 - D	4012648
3	Nordeste	2862	5724	CLASSE 3 - C	4280488
4	Nordeste	5724	9540	CLASSE 4 - B	1330126
5	Nordeste	14310	23850	CLASSE 5 - A	347198
6	Nordeste	23850	NULL	CLASSE 6	177941
7	Norte	0	1908	CALASE 1 - E	1981821
8	Norte	1908	2862	CALSSE 2 - D	1037374
9	Norte	2862	5724	CLASSE 3 - C	1262716
10	Norte	5724	9540	CLASSE 4 - B	433521
11	Norte	14310	23850	CLASSE 5 - A	98609
12	Norte	23850	NULL	CLASSE 6	47230

(veja resultado semelhante no *SIDRA, endereço: https://sidra.ibge.gov.br/tabela/6977).

EXEMPLO (5) – Retorno de mais de uma linha

• (Etapa 1) A query retorna as regiões que têm ao menos uma UF com renda média familiar abaixo da renda nacional. A subconsulta que retorna 16 linhas faz uso de uma query mais interna para comparar os casos em que o atributo renda_media_familiar está menor do que o valor escalar restornado pela subconsulta mais interna. A subconsulta mais interterna retorna a renda média nacional das famílias. Vejamos a seguir mais detalhes:

```
SELECT
RG.Regiao, F.LIMITE INFERIOR, F.LIMITE SUPERIOR, F.CLASSE
,SUM(PESO FINAL/TAMANHO FAMILIA) as TOTAL FAMILIAS
FROM Quest morador A
INNER JOIN Faixa renda familiar F
 ON (RENDA TOTAL BETWEEN F.LIMITE INFERIOR
   AND F.LIMITE SUPERIOR)
   OR (RENDA TOTAL>=F.LIMITE INFERIOR AND CLASSE='CLASSE 6')
INNER JOIN T UF ON T UF.COD UF=A.UF
INNER JOIN T REGIAO RG ON RG.cod regiao=T UF.cod regiao
WHERE A.UF IN
  (SELECT COD_UF FROM T_UF WHERE RENDA_MEDIA_FAMILIAR <
         (SELECT AVG(RENDA_MEDIA_FAMILIAR) FROM T_UF))
GROUP BY RG.Regiao, F.LIMITE INFERIOR, F.LIMITE SUPERIOR, F.CLASSE
ORDER BY RG.Regiao, F.LIMITE INFERIOR, F.LIMITE SUPERIOR, F.CLASSE;
```

EXEMPLO (5) – Retorno de mais de uma linha

- (Etapa 2) São feitos dois INNER JOIN para recuperar a identificação do nome da Região:
 - i) Primeiro é feito um INNER JOIN entre Quest_morador e T_uf; e
 - ii) depois outro entre T_uf e T_regiao.

```
SELECT
RG.Regiao, F.LIMITE INFERIOR, F.LIMITE SUPERIOR, F.CLASSE
,SUM(PESO_FINAL/TAMANHO_FAMILIA) as TOTAL_FAMILIAS
FROM Quest_morador A
INNER JOIN Faixa_renda_familiar F
  ON (RENDA TOTAL BETWEEN F.LIMITE INFERIOR
   AND F.LIMITE_SUPERIOR)
    OR (RENDA TOTAL>=F.LIMITE INFERIOR AND CLASSE='CLASSE 6')
INNER JOIN T_UF ON T_UF.COD_UF=A.UF
INNER JOIN T_REGIAO RG ON RG.cod_regiao=T_UF.cod_regiao
WHERE A.UF IN
  (SELECT COD_UF FROM T_UF WHERE RENDA_MEDIA_FAMILIAR <
        (SELECT AVG(RENDA MEDIA FAMILIAR) FROM T UF ) )
GROUP BY RG.Regiao, F.LIMITE_INFERIOR, F.LIMITE_SUPERIOR, F.CLASSE
ORDER BY RG.Regiao, F.LIMITE_INFERIOR, F.LIMITE_SUPERIOR, F.CLASSE;
```

EXEMPLO (5) – Retorno de mais de uma linha

- (**Etapa 3**) Para encontrar a classe de renda fez-se um INNER JOIN entre a renda_total (renda total familiar) da tabela Quest_morador e da tabela Faixa_renda_familiar.
 - São usados dois testes neste JOIN:
 - i) o primeiro verifica em qual faixa (de E a A) a renda_total pertence com o uso da cláusula *Between*; e

• ii) o segundo, como não há limite superior, é feito um teste que verifica se renda_total é maior ou igual ao limite inferior e caso a seja, a classe mais alta de renda (classe 6 acima de A) inclui a família.

CLASSE

1 CALASE 1 - E

SELECT

RG.Regiao,F.LIMITE_INFERIOR,F.LIMITE_SUPERIOR,F.CLASSE ,SUM(PESO_FINAL/TAMANHO_FAMILIA) as TOTAL_FAMILIAS

FROM Quest_morador A

INNER JOIN Faixa_renda_familiar F

ON (RENDA_TOTAL BETWEEN F.LIMITE_INFERIOR

AND F.LIMITE_SUPERIOR)

OR (RENDA_TOTAL>=F.LIMITE_INFERIOR AND CLASSE='CLASSE 6')

INNER JOIN T_UF ON T_UF.COD_UF=A.UF
INNER JOIN T_REGIAO RG ON RG.cod_regiao=T_UF.cod_regiao
WHERE A.UF IN

(SELECT COD_UF FROM T_UF WHERE RENDA_MEDIA_FAMILIAR < (SELECT AVG(RENDA_MEDIA_FAMILIAR) FROM T_UF))

GROUP BY RG.Regiao, F.LIMITE_INFERIOR, F.LIMITE_SUPERIOR, F.CLASSE ORDER BY RG.Regiao, F.LIMITE INFERIOR, F.LIMITE SUPERIOR, F.CLASSE;

LIMITE INFERIOR

LIMITE SUPERIOR

1908

EXEMPLO (5) – Retorno de mais de uma linha

• (Etapa 4) Para encontrar o total de famílias usa-se o atributo peso_final (que representa o fator de expansão da unidade de consumo [família]). Por exemplo se houver 1 família com 3 pessoas esta família representa um número de família que corresponde ao peso_final. Como no SQL soma-se o peso_final para cada pessoa da família, então divide-se esta soma pelo número de membros para encontra uma família ((PESO_FINAL + PESO_FINAL + PESO_FINAL)/3). O somatório final exibe o total de famílias. Vejamos um exemplo na próximo *slide*.

EXEMPLO (5) – Retorno de mais de uma linha

- (**Etapa 4**)
- SUM(PESO_FINAL/TAMANHO_FAMILIA) as TOTAL_FAMILIAS

	UF	ESTRATO_POF	TIPO_SITUACAO_REG	COD_UPA	NUM_DOM	NUM_UC	COD_INFORMANTE	PESO_FINAL	TAMANHO_FAMILIA
1	11	1101	1	110000016	2	1	1	690.88373818	3
2	11	1101	1	110000016	2	1	2	690.88373818	/3
3	11	1101	1	110000016	2	1	1	690.88373818	3
١.		1101	,	110000010	2	4		COO 00033040	

As variáveis UF,

ESTRATO_POF,

TIPO_SITUACAO_REG,

COD_UPA,

NUM_DOM,

NUM_UC,

COD_INFORMANTE

(690.88373818 + 690.88373818) / 3 = 690.88373818

definem um membro da família ou unidade de consumo.

EXEMPLO (5) – Retorno de mais de uma linha

• (Etapa 5) O GROUP BY é usado para agrupar o resultado por região e classes de renda, incluindo as mesmas variáveis selecionadas para exibição.

SELECT

```
RG.Regiao, F.LIMITE INFERIOR, F.LIMITE SUPERIOR, F.CLASSE
,SUM(PESO_FINAL/TAMANHO_FAMILIA) as TOTAL_FAMILIAS
FROM Quest_morador A
INNER JOIN Faixa_renda_familiar F
  ON (RENDA TOTAL BETWEEN F.LIMITE INFERIOR
   AND F.LIMITE_SUPERIOR)
    OR (RENDA_TOTAL>=F.LIMITE_INFERIOR AND CLASSE='CLASSE 6')
INNER JOIN T_UF ON T_UF.COD_UF=A.UF
INNER JOIN T_REGIAO RG ON RG.cod_regiao=T_UF.cod_regiao
WHERE A.UF IN
  (SELECT COD_UF FROM T_UF WHERE RENDA_MEDIA_FAMILIAR <
        (SELECT AVG(RENDA_MEDIA_FAMILIAR) FROM T_UF))
GROUP BY RG.Regiao, F.LIMITE_INFERIOR, F.LIMITE_SUPERIOR, F.CLASSE
ORDER BY RG.Regiao, F.LIMITE_INFERIOR, F.LIMITE_SUPERIOR, F.CLASSE;
```

Resultado exemplo 5

	Regiao	LIMITE_INFERIOR	LIMITE_SUPERIOR	CLASSE	TOTAL_FAMILIAS
1	Nordeste	0	1908	CALASE 1 - E	7180512
2	Nordeste	1908	2862	CALSSE 2 - D	4012648
3	Nordeste	2862	5724	CLASSE 3 - C	4280488
4	Nordeste	5724	9540	CLASSE 4 - B	1330126
5	Nordeste	14310	23850	CLASSE 5 - A	347198
6	Nordeste	23850	NULL	CLASSE 6	177941
7	Norte	0	1908	CALASE 1 - E	1981821
8	Norte	1908	2862	CALSSE 2 - D	1037374
9	Norte	2862	5724	CLASSE 3 - C	1262716
10	Norte	5724	9540	CLASSE 4 - B	433521
11	Norte	14310	23850	CLASSE 5 - A	98609
12	Norte	23850	NULL	CLASSE 6	47230

Subconsultas em Instruções SELECT - COM WHERE

EXEMPLO (5) – Retorno de mais de uma linha

• (Etapa 6) O ORDER BY é usado para organizar o resultado por região e classes de renda.

```
SELECT
RG.Regiao, F.LIMITE INFERIOR, F.LIMITE SUPERIOR, F.CLASSE
,SUM(PESO FINAL/TAMANHO FAMILIA) as TOTAL FAMILIAS
FROM Quest_morador A
INNER JOIN Faixa renda familiar F
  ON (RENDA TOTAL BETWEEN F.LIMITE INFERIOR
   AND F.LIMITE_SUPERIOR)
    OR (RENDA TOTAL>=F.LIMITE INFERIOR AND CLASSE='CLASSE 6')
INNER JOIN T UF ON T UF.COD UF=A.UF
INNER JOIN T REGIAO RG ON RG.cod regiao=T UF.cod regiao
WHERE A.UF IN
  (SELECT COD UF FROM T UF WHERE RENDA MEDIA FAMILIAR <
        (SELECT AVG(RENDA_MEDIA_FAMILIAR) FROM T_UF ) )
GROUP BY RG.Regiao, F.LIMITE_INFERIOR, F.LIMITE_SUPERIOR, F.CLASSE
ORDER BY RG.Regiao, F.LIMITE_INFERIOR, F.LIMITE_SUPERIOR, F.CLASSE;
```

Subconsultas em Instruções SELECT - COM WHERE

Além da cláusula IN, é também possível utilizar operadores ANY, SOME e ALL para lidar com subconsultas multi-row no WHERE. Porém esses operadores não são tão utilizados na prática e não são suportados pelo SQLite (maiores informações em: https://www.w3schools.com/sql/sql_any_all.asp).

Subconsultas multi-column na Cláusula WHERE

Subconsultas em Instruções SELECT - COM WHERE

EXEMPLO (6) – Retorno de mais de uma linha

- As subconsultas apresentadas até agora, retornavam apenas uma coluna. Mas a SQL permite com que você monte um teste no WHERE comparando várias colunas de uma vez.
- Um exemplo envolvendo uma subquery do tipo multi-row, multi-column é apresentado a seguir. Observe que a consulta externa utiliza um par de colunas entre parênteses (A.UF, V0403, V0405, 1, RENDA_TOTAL) que são utilizados na comparação com cada par de resultados retornados pela subconsulta.

```
SELECT RG.Regiao,V0403,SUM(1) AS TOTAL
FROM Quest_morador A
INNER JOIN T_UF ON T_UF.COD_UF=A.UF
INNER JOIN T_REGIAO RG ON RG.cod_regiao=T_UF.cod_regiao
WHERE (A.UF, V0403, V0405, 1, RENDA_TOTAL)
IN (SELECT UF, V0403, V0405, V0406, RENDA_TOTAL
FROM Quest_morador WHERE RENDA_TOTAL
GROUP BY RG.cod_regiao,V0403;
```

Subconsultas em Instruções SELECT - COM WHERE

EXEMPLO (6) – Retorno de mais de uma linha

- A consulta retorna a região, idade do morador e total de moradores que possuem plano de saúde para uma renda inferior a 1000 reais. A query demonstra o uso de 4 colunas e a coluna com valor 1 corresponde ao atributo V0406 (1= Sim) possui plano de saúde.
- Esta consulta não precisa ser resolvida com uso de subconsulta, está elaborada assim apenas para efeito de demonstração.

```
SELECT RG.Regiao,V0403,SUM(1) AS TOTAL
FROM Quest_morador A
INNER JOIN T_UF ON T_UF.COD_UF=A.UF
INNER JOIN T_REGIAO RG ON RG.cod_regiao=T_UF.cod_regiao
WHERE (A.UF, V0403, V0405, 1, RENDA_TOTAL)
IN (SELECT UF, V0403, V0405, V0406, RENDA_TOTAL
FROM Quest_morador WHERE RENDA_TOTAL
GROUP BY RG.cod_regiao,V0403;
```

• Subconsultas podem ser utilizadas na cláusula FROM, com o intuito de gerar resultados que poderão ser utilizados como se fossem uma tabela real (por este motivo uma subconsulta é normalmente chamada de "tabela virtual"). Esta forma de utilização de subconsultas é muito comum.

- Exemplo (7) Subconsultas na Cláusula FROM
- No exemplo a seguir, uma subconsulta é utilizada no FROM para permitir o uso da região como atributo de condição no where, uma vez que quest_morador não tem essa informação.

```
SELECT SX.categoria SEXO
,F.CLASSE, F.LIMITE INFERIOR, F.LIMITE SUPERIOR
, ROUND(SUM(PESO_FINAL/TAMANHO_FAMILIA)) Famalias
FROM Quest_morador A
INNER JOIN SEXO SX ON SX.V0404=A.V0404
INNER JOIN Faixa_renda_familiar F
  ON (A.RENDA TOTAL BETWEEN F.LIMITE INFERIOR
   AND F.LIMITE SUPERIOR)
    OR (A.RENDA TOTAL>=F.LIMITE INFERIOR AND CLASSE='CLASSE 6')
INNER JOIN (SELECT REGIAO, cod_uf
     FROM T UF
    INNER JOINT REGIAO R ON T UF.cod regiao=R.cod regiao)
        V ON A.UF=V.COD UF
WHERE V0403 = 60 AND REGIAO='Norte'
GROUP BY V0403, SEXO, F.CLASSE, F.LIMITE INFERIOR, F.LIMITE SUPERIOR
```

SELECT SX.categoria SEXO ,F.CLASSE, F.LIMITE_INFERIOR, F.LIMITE_SUPERIOR , ROUND(SUM(PESO_FINAL/TAMANHO_FAMILIA)) Famalias FROM Quest morador A INNER JOIN SEXO SX ON SX.V0404=A.V0404 INNER JOIN Faixa renda familiar F ON (A.RENDA_TOTAL BETWEEN F.LIMITE_INFERIOR AND F.LIMITE SUPERIOR) OR (A.RENDA TOTAL>=F.LIMITE_INFERIOR AND CLASSE='CLASSE 6') INNER JOIN (SELECT REGIAO, cod uf

FROM T UF

INNER JOIN T_REGIAO R ON T_UF.cod_regiao=R.cod_regiao) V ON A.UF=V.COD UF

WHERE V0403 = 60 AND REGIAO='Norte'

GROUP BY V0403, SEXO, F. CLASSE, F. LIMITE INFERIOR, F. LIMITE SUPERIOR

		· · · · · · · · · · · · · · · · · · ·			
	SEXO	CLASSE	LIMITE_INFERIOR	LIMITE_SUPERIOR	Famalias
1	Homem	CALASE 1 - E	0	1908	9555
2	Homem	CALSSE 2 - D	1908	2862	7015
3	Homem	CLASSE 3 - C	2862	5724	2470
4	Homem	CLASSE 4 - B	5724	9540	398
5	Homem	CLASSE 5 - A	14310	23850	682
6	Homem	CLASSE 6	23850	NULL	428
7	Mulher	CALASE 1 - E	0	1908	5789
8	Mulher	CALSSE 2 - D	1908	2862	4563
9	Mulher	CLASSE 3 - C	2862	5724	9324
10	Mulher	CLASSE 4 - B	5724	9540	2666
11	Mulher	CLASSE 5 - A	14310	23850	516

Retorna classes de renda das famílias com pessoas acima de 60 anos residentes na região Norte.

- Exemplo (7)
- Como essa consulta é resolvida? Como acontece com todo SQL, o processamento começa no FROM, onde existes 3 INNER JOIN:

• i) O primeiro JOIN é entre a tabela Quest_morador (apelidada de "A") com uma subconsulta (apelidada de de "V"). Esta subconsulta retorna dois campos: regiao e cod_uf. Se você pegar esta subconsulta e executá-la isoladamente, verá que ela produz o resultado

abaixo:

A subconsulta é utilizada normalmente como se fosse uma view ou tabela virtual.

_	_	
	REGIAO	cod_uf
1	Norte	11
2	Norte	12
3	Norte	13
4	Norte	14
5	Norte	15
6	Norte	16
7	Norte	17
8	Nordeste	21
9	Nordeste	22
10	Nordeste	23
11	Nordeste	24
12	Nordeste	25
13	Nordeste	26
14	Nordeste	27
15	Nordeste	28
16	Nordeste	29
17	Sudeste	31
18	Sudeste	32
19	Sudeste	33
20	Sudeste	35
21	Sul	41
22	Sul	42
23	Sul	43
24	Centro-Oeste	50
25	Centro-Oeste	51
26	Centro-Oeste	52
27	Centro-Oeste	53

Subconsulta Correlacionada

Subconsultas na cláusula WHERE

• Todos os exemplos apresentados até agora envolveram o uso de subconsultas autônomas, isto é subconsultas que executariam de forma bemsucedida caso fosse separadas da consulta pai.

Subconsultas na cláusula WHERE

- De maneira oposta, as subconsultas correlacionadas incluem referências para elementos da consulta pai e, por isso, não podem ser executadas de forma independente.
- Suponha, por exemplo, que você deseja listar, por situação Rural ou Urbana o tamanho médio das famílias, mínimo e máximo quando a renda da família for 50 vezes superior a renda média familiar da sua UF de residência.
- Existem algumas formas diferentes para resolver esse problema e uma é exatamente com o uso de uma subconsulta correlacionada.

- **Exemplo** (8)
- Veja o SQL desta consulta resolvido abaixo. Como ela funciona?

```
SELECT T.categoria, AVG(TAMANHO_FAMILIA)

Tamanho_Medio_Familia, min(TAMANHO_FAMILIA)

Mínimo,max(TAMANHO_FAMILIA) Maximo

FROM Quest_morador A

INNER JOIN Tipo_situacao T ON

T.tipo_situacao_reg=A.tipo_situacao_reg

WHERE A.RENDA_TOTAL > (SELECT 50*renda_media_familiar FROM T_UF WHERE T_UF.COD_UF=A.UF)

GROUP BY T.categoria;
```

- **Exemplo** (8)
- Primeiro veja com a tenção a *subquery*:

```
(SELECT 50*renda_media_familiar FROM T_UF WHERE T_UF.COD_UF=A.UF)
```

•Veja o WHERE... Você percebeu o uso do apelido "a." no lado direito? Isto corresponde a uma referência para uma coluna da consulta pai (e não da *subquery*). Se você observar a consulta pai, verá que ela realmente foi apelidada de "a". Isto é o que chamamos de "correlação" da subconsulta correlacionada! Esta subconsulta não pode ser executada isoladamente, uma única vez, retornando um conjunto de resultados para a consulta externa.

- **Exemplo** (8)
- Primeiro veja com a tenção a *subquery*:

```
(SELECT 50*renda_media_familiar FROM T_UF WHERE T_UF.COD_UF=A.UF)
```

•Veja o WHERE... Você percebeu o uso do apelido "a." no lado direito? Isto corresponde a uma referência para uma coluna da consulta pai (e não da *subquery*). Se você observar a consulta pai, verá que ela realmente foi apelidada de "a". Isto é o que chamamos de "correlação" da subconsulta correlacionada! Esta subconsulta não pode ser executada isoladamente, uma única vez, retornando um conjunto de resultados para a consulta externa. Ao invés disso, a subconsulta correlacionada é sempre reexecutada para cada linha gerada pela consulta pai (melhor explicando: se a consulta pai retornar n linhas, a subconsulta será executada n vezes, uma para cada linha).

- **Exemplo** (8)
- Em nosso exemplo, a cada iteração (cada linha da consulta pai), a subconsulta receberá o valor da "UF" da consulta pai e utilizará esse valor no teste do seu WHERE (WHERE T_UF.COD_UF=A.UF). Com isto, será computada o valor máximo da renda média familiar referente à UF da linha que está sendo correntemente processada na consulta pai.
- Uma vez computado, este resultado poderá ser normalmente utilizado no teste da consulta externa (WHERE A.RENDA_TOTAL > ...) permitindo com que seja possível identificar se a renda total da família é maior do que a média da UF correspondente. Veja que a consulta externa e a subconsulta correlacionada "conversam" e trabalham de forma colaborativa para obter os resultados.

....

WHERE A.RENDA_TOTAL > (SELECT 50*renda_media_familiar FROM T_UF WHERE T UF.COD UF=A.UF)

- Exemplo (9) com Operadores EXISTS e NOT EXISTS
- O operador EXISTS testa a existência de uma linha em uma subconsulta correlacionada. Se nenhuma linha é encontrada, o resultado é FALSE. Caso contrário, TRUE. O NOT EXISTS reverte os resultados (caso seja FALSO retorna VERDADE).
- Utilizando o operador EXISTS para identificar de há famílias com renda 50 vezes superior a média de sua respectiva UF.

```
SELECT T.categoria, P.categoria TemPlanodeSaude

, AVG(TAMANHO_FAMILIA) Tamanho_Medio_Familia

, min(TAMANHO_FAMILIA) Mínimo

, max(TAMANHO_FAMILIA) Maximo

FROM Quest_morador A

INNER JOIN Tipo_situacao T ON T.tipo_situacao_reg=A.tipo_situacao_reg

INNER JOIN PlanoSaude P ON P.VO406 = A.VO406

WHERE EXISTS (SELECT NULL FROM T_UF

WHERE T_UF.COD_UF=A.UF AND A.RENDA_TOTAL> 50*renda_media_familiar)
```

GROUP BY T.categoria, P.categoria;

- Exemplo (9) com Operadores EXISTS e NOT EXISTS
- A subconsulta pode retornar qualquer coisa no SELECT, mas ajudar a reduzir o custo de processamento pode-se usar um valor constante, neste caso usamos NULL. Logo isso não importa no EXISTS.

```
SELECT T.categoria, P.categoria TemPlanodeSaude

, AVG(TAMANHO_FAMILIA) Tamanho_Medio_Familia

, min(TAMANHO_FAMILIA) Mínimo

, max(TAMANHO_FAMILIA) Maximo

FROM Quest_morador A

INNER JOIN Tipo_situacao T ON T.tipo_situacao_reg=A.tipo_situacao_reg

INNER JOIN PlanoSaude P ON P.V0406 = A.V0406

WHERE EXISTS (SELECT NULL FROM T_UF

WHERE T_UF.COD_UF=A.UF AND A.RENDA_TOTAL> 50*renda_media_familiar)

GROUP BY T.categoria, P.categoria;
```

	categoria	TemPlanodeSaude	Tamanho_Medio_Familia	Mínimo	Maximo
-	Rural	Não	4	4	4
	Rural	Sim	2.4	2	4
	3 Urbana	Sim	3.4	1	4

- Exemplo (9) com Operadores EXISTS e NOT EXISTS
- Para fazer o oposto, ou seja, listar os casos que não estejam entre as famílias com renda acima da média da sua UF.

```
SELECT T.categoria, P.categoria TemPlanodeSaude

, AVG(TAMANHO_FAMILIA) Tamanho_Medio_Familia

, min(TAMANHO_FAMILIA) Mínimo

, max(TAMANHO_FAMILIA) Maximo

FROM Quest_morador A

INNER JOIN Tipo_situacao T ON T.tipo_situacao_reg=A.tipo_situacao_reg

INNER JOIN PlanoSaude P ON P.V0406 = A.V0406

WHERE NOT EXISTS (SELECT NULL FROM T_UF

WHERE T_UF.COD_UF=A.UF AND A.RENDA_TOTAL> 50*renda_media_familiar)

GROUP BY T.categoria, P.categoria;
```

		categoria	TemPlanodeSaude	Tamanho_Medio_Familia	Mínimo	Maximo	
2	1	Rural	Não	4.06344899556483	1	17	
	2	Rural	Sim	3.41972409744643	1	11	
	3	Urbana	Não	3.91492695603986	1	16	
	4	Urbana	Sim	3.43210069335999	1	14	

Obrigado