DIALOG(R)File 351:Derwent WPI (c) 2005 Thomson Derwent. All rts. reserv.

008645927 **Image available** WPI Acc No: 1991-149956/199121 XRPX Acc No: N91-115151

Fuel injection IC engine - has baffle element sized w.r.t. injection opening in housing

Patent Assignee: AISAN KOGYO KK (AISA)

Inventor: AOKI T; TOSHIRO I; IMAMURA K; MAKIMURA T

Number of Countries: 002 Number of Patents: 003

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

DE 4036294 A 19910516 DE 4036294 A 19901114 199121 B US 5085369 A 19920204 US 90606904 A 19901031 199208 DE 4036294 C2 20010322 DE 4036294 A 19901114 200116

Priority Applications (No Type Date): JP 89296382 A 19891115

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 4036294 C2 F02M-069/04

Abstract (Basic): DE 4036294 A

The fuel injector has a valve housing (3) with front injection opening (6); a valve body (5) to open/close it, a nozzle (21), and a fuel baffle (34C), located in the nozzle in front of the injector inlet and aligned with it.

The size of the baffle measured in a profile at right angles to the axis of the injector is smaller than that of the injection opening. The element has a circular plate.

ADVANTAGE - Improved atomisation of fuel. (11pp Dwg.No.1C/6)

Abstract (Equivalent): US 5085369 A

A fuel injector includes a valve housing having a fuel injection hole formed at a front end of the valve housing. A valve is movably provided in the valve housing so as to open and close the fuel injection hole. A nozzle is fixedly mounted to a front end of the valve housing. A fuel colliding member is provided in the nozzle and positioned in alignment with the fuel injection hole in front of it.

A size of the fuel colliding member is smaller in cross section perpendicular to an axis of the fuel injector than that of the fuel injection hole.

ADVANTAGE - A radially inside part of a columnar fuel after collision with the fuel colliding member further collides with a radially outside part of the columnar fuel passing outside the fuel colliding member to accelerte atomisation of the fuel without reducing a velocity of flow of the fuel. (10pp)

Title Terms: FUEL; INJECTION; IC; ENGINE; BAFFLE; ELEMENT; SIZE; INJECTION;

OPEN; HOUSING Derwent Class: P42; Q53

International Patent Class (Main): F02M-069/04

International Patent Class (Additional): B05B-001/26; F02M-029/00;

F02M-051/06; F02M-069/52

File Segment: EngPI

BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

Patentschrift _m DE 40 36 294 C 2

(7) Aktenzeichen:

P 40 36 294.9-13

(2) Anmeldetag: 14. 11. 1990

(3) Offenlegungstag: 16. 5. 1991 Veröffentlichungstag

der Patenterteilung: 22. 3. 2001

(f) Int. Cl.⁷: F 02 M 69/04

> F 02 M 29/00 F 02 M 69/52

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

③ Unionspriorität:

296382/89

15. 11. 1989 JP

(73) Patentinhaber:

Aisan Kogyo K.K., Obu, Aichi, JP

(74) Vertreter:

Blumbach, Kramer & Partner GbR, 81245 München

(72) Erfinder:

JP

Aoki, Tsuneaki, Obu, Aichi, JP; Makimura, Toshiro, Obu, Aichi, JP; Imamura, Kaneo, Obu, Aichi, JP

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 62-1 01 065 U JP 57-1 52 458 U JP 58-90 365 U

> > 60-1 13 065

(54) Kraftstoffeinspritzeinrichtung

Kraftstoffeinspritzeinrichtung mit einem Ventilgehäuse (3) mit einer an dem vorderen Ende ausgebildeten Kraftstoffeinspritzöffnung (6), einem in dem Ventilgehäuse (3) zum Öffnen und Schließen der Kraftstoffeinspritzöffnung (6) angeordneten Ven-

tilkörper (5), einer mit dem vorderen Ende des Ventilgehäuses (3) fest verbundenen Düse (21) und

einem Kraftstoff-Prallelement (34B, 34C, 34D), das in der Düse (21) vor der Kraftstoffeinspritzeinrichtung (6) und fluchtend dazu angeordnet ist,

dadurch gekennzeichnet, daß

das Kraftstoff-Prallelementes (34B, 34C, 34D) senkrecht zu einer Achse der Kraftstoffeinspritzeinrichtung einen insgesamt kreisförmigen Querschnitt aufweist und das Verhältnis des äußeren Durchmessers (Φa) des Kraftstoff-Prallelements zu dem Durchmesser (Φd) der Kraftstoffeinspritzöffnung im Bereich von 0,1 ≤ zu Φa/Φd ≤ 0,9 liegt.

Beschreibung

Die vorliegende Erfindung bezieht sich auf eine Kraftstoffeinspritzeinrichtung um zerstäubten Kraftstoff einem Verbrennungsmotor mit innerer Verbrennung zuzuführen. 5 Sie ist insbesondere auf eine Kraftstoffeinspritzvorrichtung mit Verbesserter Kraftstoffzerstäubung gerichtet.

Um den Wirkungsgrad der Verbrennung, und damit den Kraftstoffverbrauch und die Abgaskontrolle zu verbessern wird im allgemeinen eine feine Verteilung oder Zerstäubung 10 des dem Motor zugeführten Kraftstoffes angestrebt.

Es ist bekannt zum Zerstäuben einer Kraftstoff-Flüssigkeitssäule, die über eine Kraftstoffeinspritzöffnung der Kraftstoffeinspritzvorrichtung eingespritzt wird ein Aufprallelement, im folgenden Prallelement bezeichnet, zuzuordnen, das zu der davor liegenden Einspritzöffnung fluchtend ausgerichtet ist. Durch Aufprallen der über die Kraftstoffeinspritzöffnung eingespritzten Kraftstoff-Flüssigkeitssäule, im folgenden Kraftstoffsäule genannt, auf der angesprochenen Prallplatte ergibt sich eine feine Auflösung in 20 Kraftstoffteilchen bzw. eine Zerstäubung des Kraftstoffs.

Das Kraftstoff-Prallelement kann verschiedenartig geformt sein und beispielsweise eine runde, sphärische und konische Gestalt aufweisen (vergleiche beispielsweise die Japanischen Gebrauchsmuster-Offenlegungsschriften Nr. 25 57-152458 und 58-90365). Bei den herkömmlichen Prallelementen ist unabhängig von der Form eine Abmessung in einem Querschnitt senkrecht zu einer Achse der Kraftstoffeinspritzeinrichtung größer als diejenige der Kraftstoffeinspritzöffnung. Dies führt dazu, daß alle Teile einer von der 30 Einspritzöffnung eingespritzten Kraftstoffsäule auf dem Prallelement auftreffen, um zerstäubt zu werden.

In Fig. 1A ist ein Beispiel für eine bekannte Einspritzeinrichtung dargestellt. Es ist ersichtlich, daß eine über eine dig auf einem Prallelement 34A auftrifft, um zerstäubt zu werden.

Durch die Erfinder konnte festgestellt werden, daß sich dann, wenn ein Außendurchmesser Da des Prallelementes 34A größer ist als ein Durchmesser Ød der Kraftstoffein- 40 spritzöffnung 6, die gesamte Kraftstoffsäule in ausreichendem Maße durch das Auftreffen auf dem Prallelement 34A zerstäubt wird. Der zerstäubte Kraftstoff verbreitet sich jedoch in radial auswärtiger Richtung und kann somit an einer Innenwandfläche 22 einer Düse 21 niederschlagen, was 45 nis Φa/Φd kleiner als 0,1 ist dazu führt, daß der von der Düse 21 ausgesprühte Kraftstoff unzureichend zerstäubt ist. Es wurde weiter festgestellt, daß sich für den aus der Düse 21 ausgesprühten, zerstäubten Kraftstoff eine Geschwindigkeitsminderung ergibt; damit vergrößert sich die Zeitdauer innerhalb der der zerstäubte 50 Kraftstoff den Motor erreicht.

Aus der JP-60-113065 ist ein insgesamt keilförmiges bzw. sich zur Kraftstoffeinspritzvorrichtung hin verjüngendes Verzweigungsteil bekannt, das den aus der Kraftstoffeinspritzöffnung abgezweigten Kraftstoff in zwei Zweige 55 teilt, die zu den Einlaßventilen eines Motors führen. Zur Kraftstoffeinspritzöffnung hin ist eine scharfe Schneidkante gerichtet, die für die effiziente Aufteilung des Kraftstoffstrahls in die beiden Zweige sorgt, wie sie bei einem Motor mit zwei Einlaßventilen je Zylinder und einer in beiden Ein- 60 laßventilen gemeinsamen Einspritzeinrichtung zweckmäßig

Aus der JP-U 62-101 065 ist ähnlich wie aus der vorgenannten Druckschrift ein insgesamt keilförmiges Bauteil mit unterschiedlichen Formen der der Kraftstoffeinspritzöff- 65 nung gegenüber liegenden Oberfläche bekannt.

Der Erfindung liegt die Aufgabe zugrunde, eine Kraftstoffeinspritzvorrichtung derart weiterzubilden, daß sich 2

eine verbesserte Zerstäubung des Kraftstoffes ergibt. Eine weitere Aufgabe der Erfindung besteht darin, eine Kraftstoffeinspritzvorrichtung zu schaffen, bei der eine hohe Geschwindigkeit des zerstäubten Kraftstoffes gewährleistet ist.

Die der Erfindung zugrundeliegende Aufgabe wird mit einer Kraftstoffeinspritzvorrichtung gemäß dem Anspruch 1

Während des Betriebs trifft der radial innere Teil einer über eine Einspritzöffnung eingespritzten Kraftstoffsäule auf dem Prallelement auf, um in einer ersten Stufe zerstäubt zu werden. Der zerstäubte Kraftstoff breitet sich in radial auswärtiger Richtung aus, um weiter auf einem radial äußeren Teil der Kraftstoffsäule aufzutreffen, der über die Einspritzöffnung eingespritzt wird und außerhalb des Prallelementes liegt. Dies führt dazu, daß der radial äußere Teil der Kraftstoffsäule in einer zweiten Stufe über den zerstäubten Kraftstoff, der sich nach dem Aufprall auf dem Prallelement ausbreitet, zerstäubt wird. Es werden somit sämtliche Teile der über die Einspritzöffnung eingespritzten Kraftstoffsäule in ausreichendem Maße zerstäubt. In der genannten zweiten Stufe kann die hohe Strömungsgeschwindigkeit des radial äußeren Teils nach dem Zusammentreffen mit dem in der ersten Stufe zerstäubten Kraftstoff nahezu aufrechterhalten werden. Damit ist eine hohe Einspritzgeschwindigkeit des über die Düse eingespritzten zerstäubten Kraftstoffs gewährleistet.

Die Unteransprüche sind auf vorteilhafte Weiterbildungen der erfindungsgemäßen Kraftstoffeinspritzeinrichtung gerichtet.

Ein Ausführungsbeispiel einer erfindungsgemäßen Kraftstoffeinspritzeinrichtung wird mit Modifikationen anhand der Zeichnung erläutert.

Es zeigen

Fig. 1A einen unvollständigen, vergrößerten Längsschnitt Einspritzöffnung 6 eingespritzte Kraftstoffsäule F vollstän- 35 eines vorderen Endabschnitts einer bekannten Kraftstoffeinspritzeinrichtung mit zerstäubten Kraftstoff,

Fig. 1B eine der Fig. 1A entsprechende Ansicht einer Einspritzeinrichtung, bei der erfindungsgemäß das Verhältnis Φa/Φd größer als 0,9 ist,

Fig. 1C eine der Fig. 1A entsprechende Ansicht für eine Einspritzeinrichtung, bei der das Verhältnis Φa/Φd erfindungsgemäß im Bereich von 0,1 bis 0,9 liegt,

Fig. 1D eine der Fig. 1A entsprechende Ansicht einer Einspritzeinrichtung, bei der erfindungsgemäß das Verhält-

Fig. 2 einen Längsschnitt einer bevorzugten Ausführungsform einer erfindungsgemäßen Einspritzeinrichtung, Fig. 3 eine Vorderansicht eines Prallelementes gemäß

Fig. 2 zum Zerstäuben des Kraftstoffes,

Fig. 4 einen unvollständigen Längsschnitt, der an einem Verbrennungsmotor mit innerer Verbrennung befestigten Kraftstoffeinspritzeinrichtung mit zerstäubten Kraftstoff,

Fig. 5 ein Diagramm für den Zusammenhang zwischen dem Verhältnis Фа/Фd und einer mittleren Partikelgröße des zerstäubten Kraftstoffs und

Fig. 6 eine der Fig. 3 entsprechende Ansicht eines modifizierten Prallelementes zum Zerstäuben von Kraftstoff.

In Fig. 2 ist der allgemeine Aufbau einer erfindungsgemä-Ben Kraftstoffeinspritzeinrichtung dargestellt, bei der ein Ventilgehäuse 3 über ein Anschlagelement 2 in einem vorderen Bereich eines Gehäuses 1 befestigt ist. Das Ventilgehäuse 3 weist an dem vorderen Ende eine Kraftstoffeinspritzöffnung 6 und einen Ventilsitz 7 auf, der eine sich kegelförmig verjüngende Obersläche hat, die sich zu der Einspritzöffnung 6 fortsetzt.

Ein Ventilkörper 5 ist in dem Ventilgehäuse 3 axial bewegbar angeordnet. Der Ventilkörper 5 weist an seinem vorderen Ende eine im wesentlichen kegelförmige Fläche 4 auf,

die durch Anlage mit dem kegelförmigen Ventilsitz 7 zusammenwirken kann. Der Ventilkörper 5 weist in seinem hinteren Bereich einen Flansch 8 auf, der durch Anlage mit dem Anschlag 2 zusammenwirken kann. Der Bewegungshub des Ventilkörpers 5 ist somit durch den Ventilsitz 7 und den Anschlag 2 begrenzt. Wenn der Ventilkörper 5 so betätigt wird, daß er in Richtung zu der Einspritzöffnung 6 bewegt wird, bis die vordere kegelförmige Fläche 4 des Ventilkörpers 5 an dem Ventilsitz 7 anliegt, dann ist das Ventil kann kein Kraftstoff über die Einspritzöffnung 6 eingespritzt werden. Wenn auf der anderen Seite der Ventilkörper 5 so betätigt wird, daß er von der Einspritzöffnung 6 zurückgezogen wird, bis der Flansch 8 an dem Anschlag 2 anliegt, dann ist das Ventil geöffnet und es kann über die Einspritzöffnung 6 Kraftstoff eingespritzt werden. Der Ventilkörper 5 ist mit einem mittigen axialen Kraftstoffkanal 10 und einer Vielzahl radialer Kraftstoffkanäle 11 versehen, die mit der Einspritzöffnung 6 in Verbindung stehen können.

In dem hinteren Bereich des Gehäuses 1 ist über eine O- 20 ringförmige Dichtung 16 eine Magnetspule 14 befestigt. Ein feststehender Kern 15 aus ferromagnetischem Material ist über eine O-ringförmige Dichtung 13 in die Magnetspule 14 eingesetzt. Der feststehende Kern 15 hat eine als Kraftstoffversorgungskanal ausgebildete zentrale Bohrung. Die Magnetspule 14 ist über einen Kontakt 20 eines Anschlusses 12 mit einem nicht dargestellten externen Schaltkreis verbind-

Ein Anker 17 ist fest mit dem hinteren Ende des Ventilkörpers 5 so verbunden, daß er durch Erregung der Magnet- 30 spule 14 von dem feststehenden Kern 15 magnetisch angezogen werden kann.

Ein Kraftstoffversorgungsrohr 18 ist in die zentrale Bohrung des feststehenden Kerns 15 fest eingesetzt und darin positioniert. Eine Druckfeder 19 ist zwischen einem vorde- 35 ren Ende des Kraftstoffversorgungsrohres 18 und einem mit einer Schulter versehenen hinteren Endabschnitt des Ventilkörpers 5 angeordnet. Durch die Druckfeder 19 wird das Ventil 5 mit dem Anker 17 normalerweise vorgespannt, um den Anker 17 von dem feststehenden Kern 15 zu bewegen 40 und die vordere kegelförmige Fläche 4 des Ventilkörpers 5 gegen den Ventilsitz 7 zu drücken. Integral mit dem Kern 15 ist an dessen hinterem Ende ein Anschlußstück 28 ausgebildet, über das ein Anschluß an eine Kraftstoffzufuhrleitung (nicht dargestellt) hergestellt werden kann. In dem An- 45 schlußstück 28 ist ein Kraftstoffsieb 29 angeordnet.

Gemäß Fig. 1C, in der in Verbindung mit Fig. 2 ein wesentlicher Teil eines bevorzugten Ausführungsbeispiels dargestellt ist, ist eine Düse 21 fest mit einem vorderen Endabschnitt des Ventilgehäuses 3 am vorderen Ende des Gehäuses 1 verbunden. Die Düse 21 ist in ihrem vorderen Endabschnitt mit einer sich kegelförmig erweiternden Düsenöffnung 22 versehen, die zu der Einspritzöffnung 6 fluchtend angeordnet ist. Die Düsenöffnung 22 hat einen vorgegebenen Kegelwinkel Θ, so daß innerhalb der Düse 21 zerstäub- 55 ter Kraftstoff einem kreisförmigem Bereich, der in einer vorgegebener Entfernung liegt (Fig. 4), zugeführt werden kann. Der Kegelwinkel Θ der Düsenöffnung 22 kann in geeigneter Weise so festgelegt werden, daß sich ein angestrebter Sprühwinkel des zerstäubten Kraftstoffes ergibt.

Ein zylindrischer Abstandshalter 25 und eine kreisförmige, als Prallelement ausgebildete Zerstäubungsplatte 31 sind zwischen einer vorderen Endsläche 3a des Ventilgehäuses 3 und einer Schulterfläche 21a der Düse 21 angeordnet. Der Abstandshalter 25 weist eine Verbindungsöffnung 27 auf, über die sich eine Verbindung zwischen der Einspritzöffnung 6 und der Düsenöffnung 22 ergibt. Die Verbindungsöffnung 27 hat einen Durchmesser, der im wesentlichen demjenigen des hinteren Endabschnittes der Düsenöffnung 22 entspricht. Die Zerstäuberplatte 31 wird sandwichartig zwischen einem vorderen Ende des Abstandhalters 25 und der Schulterfläche 21a der Düse 21 gehalten.

Ein Zusammenbau der Düse 21 mit dem Abstandshalter 25 und der Zerstäubungsplatte 31 erfolgt dadurch, daß die Zerstäubungsplatte 31 von deren hinterem offenen Ende in die Düse 21 eingesetzt wird, bis sie gegen die Schulterfläche 21a der Düse 21 anschlägt. Es wird dann der Abstandshalter über den Ventilkörper 5 geschlossen. In diesem Zustand 10 25 mit Preßsitz in der Düse 21 so angeordnet, daß er an der Zerstäubungsplatte 31 anliegt. Die zusammengebaute Anordnung wird dann mit dem Gehäuse 1 verbunden, in dem ein hinterer Endabschnitt der Düse 21 eingesetzt wird und in dem das vordere Ende des Gehäuses 1 mit dem Außenumfang der Düse 21 verstemmt wird.

Gemäß Fig. 3 weist die Zerstäubungsplatte 31 in ihrem mittigen Bereich drei im wesentlichen kreisförmige Zerstäubungsöffnungen 32 auf, die in Umfangsrichtung in gleichmäßigem Abstand voneinander angeordnet sind und die voneinander durch drei sich in radialer Richtung erstrekkende Verbindungsabschnitte 33, die jeweils um 120° gegeneinander versetzt sind, getrennt sind. Die drei Verbindungsabschnitte 33 sind in der Mitte der Zerstäubungsplatte 31 vereinigt, um ein kreisförmiges Kraftstoff-Prallelement 34C zu bilden. Die Zerstäubungsplatte 31 ist beispielsweise durch Pressen oder Stanzen von aus Stahl hergestellten Rohlingen herstellbar.

Wie aus Fig. 1C ersichtlich, ist das Prallelement bzw. der Prallabschnitt 34C gegenüber der Einspritzöffnung 6 fluchtend ausgerichtet, so daß säulenartig über die Einspritzöffnung eingespritzter Kraftstoff, im folgenden Kraftstoffsäule genannt, auf dem Aufprallabschnitt 34C auftrifft, um dadurch die nach Art einer Flüssigkeitssäule vorliegende Kraftstoffsäule zu zerstäuben. Bei diesem bevorzugten Ausführungsbeispiel ist das Verhältnis eines Augendurchmessers Φa des Aufprallabschnittes 34C zu einem Durchmesser Φd der Einspritzöffnung 6 auf einen Wert innerhalb des Bereiches $0,1 \le \Phi a/\Phi d \le 0,9$ eingestellt.

Wie aus Fig. 4 ersichtlich, ist die Kraftstoffeinspritzeinrichtung INJ an einem Saugkanal 41 eines Einlaßanschlusses 45 vorgesehen, der mit einem Verbrennungsmotor mit innerer Verbrennung mit einem Zylinderblock 42 und einem Zylinderkopf 43 verbunden ist. Der Zylinderkopf 43 weist einen Einlaßkanal 43a auf, der an seinem stromaufwärts gelegenen Ende mit dem Saugkanal 41 des Einlaßanschlusses 45 und an seinem stromabwärtigen Ende mit einer Einlaßöffnung 46 in Verbindung steht.

Während des Betriebs ist, bei nicht erregter Magnetspule 14, das Ventil geschlossen, indem der Ventilkörper 5 über die Vorspannkraft der Druckfeder 19 in seine Schließstellung gedrückt wird. Somit erfolgt, obwohl Kraftstoff über das Kraftstoffzufuhrrohr in den feststehenden Kern 15 und den Ventilkörper 5 gefördert wird, keine Einspritzung über die Einspritzöffnung 6.

Wenn die Magnetspule 14 erregt wird, dann wird der Anker 17 aufgrund der Magnetkräfte zu dem Kern 15, entgegen der Vorspannkraft der Druckfeder 19, angezogen, um über den Ventilkörper 5 das Ventil zu öffnen. Dadurch wird der in dem Ventilkörper 5 befindliche Kraftstoff nach Art einer 60 Flüssigkeitssäule in dosierter Weise von der Einspritzöffnung 6 durch die Verbindungsöffnung 27 des Abstandhalters 25 zu dem Prallabschnitt 34C der Zerstäubungsplatte 31 eingespritzt. Beim Aufprall des Kraftstoffs auf dem Prallabschnitt 34C wird der Kraftstoff zerstäubt und wie aus Fig. 4 ersichtlich, wird derart erhaltener zerstäubter Kraftstoff von der Düsenöffnung 22 der Düse 21 durch den Saugkanal 41 und den Einlaßkanal 43a in die Einlaßöffnung 46 einge-

5

Das Ausmaß bzw. der Grad der Zerstäubung des Kraftstoffes innerhalb der Düse 21 hängt ab von dem Verhältnis des Außendurchmessers Фа des Prallabschnittes 34C zu dem Durchmesser Ød der Einspritzöffnung 6. Erfindungsgemäß wurde ein besonders vorteilhafter Bereich für das Verhältnis Φa/Φd ermittelt, für den sich eine zufriedenstellende Zerstäubung ergibt. Es wurden Versuche mit verändertem Verhältnis Pa/Pd durchgeführt, bei denen der äußere Durchmesser Da des Prallabschnittes 34C gegenüber dem gleichbleibenden Durchmesser Ød der Einspritzöffnung 6 10 von 0,46 mm variiert wurde. Für jedes Verhältnis wurde eine durchschnittliche Partikelgröße des zerstäubten Kraftstoffs gemessen. Die Messung der durchschnittlichen Partikelgröße an einer gegenüber dem vorderen Ende der Düse 21 entfernt gelegenen Stelle wurde mittels einer bekannten 15 Meßeinrichtung zum Erfassen der Verteilung von Partikelgrößen anhand einer Laserstrahldiffraktionsmethode erfaßt. Der Abstand zwischen der Einspritzöffnung 6 und dem Prallabschnitt 34C war dabei auf 2,8 mm eingestellt.

Die Versuchsergebnisse sind in Fig. 5 dargestellt. Danach 20 ist die durchschnittliche Partikelgröße des zerstäubten Kraftstoffs klein (kleiner etwa 350 Mikron) in dem Bereich für das Verhältnis Φa/Φd von 0,1 bis 0,9 im Vergleich zu den anderen Bereichen mit einem Verhältnis kleiner als 0,1 bzw. größer als 0,9.

Der Grad der Kraftstoffzerstäubung in den Φa/Φd Bereichen kleiner als 0,1 und größer 0,9 wurde aus folgenden Gründen als nicht vollständig zufriedenstellend erachtet. In dem Bereich mit Werten kleiner als 0,1 ist, wie aus Fig. 1D ersichtlich, die Kraftstoffsäule, die außerhalb des Prallabschnittes 34D verläuft relativ groß im Hinblick auf den senkrecht zur Achse der Einspritzeinrichtung stehenden Querschnitt. Eine Ausbreitung der durch das Auftreffen auf dem Prallabschnitt 34D gebildeten Teilchen wird dabei durch den säulenförmigen Kraftstoff hoher Geschwindigkeit unterdrückt. Wenn auf der anderen Seite das Verhältnis einen Wert größer als 0,9 aufweist, besteht, wie aus Fig. 1B ersichtlich, die Möglichkeit, daß Kraftstoffteilchen nach dem Auftreffen auf den Prallbereich 34B sich auf der Innenwandfläche 22 der Düse 21 niederschlagen.

Die Entfernung zwischen der Einspritzöffnung 6 und dem Prallabschnitt 34C kann in geeigneter Weise auf einen Wert innerhalb eines vorbestimmten Bereichs (beispielsweise von 0,5 bis 3,0 mm) festgelegt werden.

Die Anzahl der Verbindungsabschnitte 33 der Zerstäu- 45 bungsplatte 31 kann in geeigneter Weise modifiziert werden.

In Fig. 6 ist eine derartige Modifikation für die Zerstäubungsplatte 31 dargestellt, gemäß der zwei Verbindungsabschnitte 32 im Abstand von 180° einander gegenüberliegend ausgebildet sind. Damit ergeben sich zwei halbkreisförmige 50 Zerstäubungsöffnungen 32 und in dem Verbindungsbereich der Verbindungsabschnitte 33 ist ein Prallelement bzw. Prallabschnitt 34C ausgebildet.

Es ist vorteilhaft, daß die Breite jedes Verbindungsabschnittes 33 so klein wie möglich (beispielsweise 0,15 mm) 55 ausgebildet wird, damit eine glatte, ungestörte Ausbreitung des zerstäubten Kraftstoffs möglich ist.

Es kann weiterhin die Anordnung bestehend aus der Düse 21, dem Abstandshalter 25 und der Zerstäubungsplatte 31 einstückig aus einem Kunstharz hergestellt werden.

Über die beschriebenen bevorzugten Ausführungsbeispiele und die beschriebenen Modifikationen hinaus sind weitere, im Rahmen der Erfindung liegende Anpassungen und Modifikationen möglich.

Patentansprüche

65

1. Kraftstoffeinspritzeinrichtung mit

6

einem Ventilgehäuse (3) mit einer an dem vorderen Ende ausgebildeten Kraftstoffeinspritzöffnung (6), einem in dem Ventilgehäuse (3) zum Öffnen und Schließen der Kraftstoffeinspritzöffnung (6) angeordneten Ventilkörper (5),

einer mit dem vorderen Ende des Ventilgehäuses (3) fest verbundenen Düse (21) und

einem Kraftstoff-Prallelement (34B, 34C, 34D), das in der Düse (21) vor der Kraftstoffeinspritzeinrichtung (6) und fluchtend dazu angeordnet ist,

dadurch gekennzeichnet, daß

das Kraftstoff-Prallelementes (34B, 34C, 34D) senkrecht zu einer Achse der Kraftstoffeinspritzeinrichtung einen insgesamt kreisförmigen Querschnitt aufweist und das Verhältnis des äußeren Durchmessers (Φ a) des Kraftstoff-Prallelements zu dem Durchmesser (Φ d) der Kraftstoffeinspritzöffnung im Bereich von $0,1 \le zu$ Φ a/ Φ d $\le 0,9$ liegt.

2. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Kraftstoff-Prallelement (34B, 34C, 34D) eine kreisförmige Platte aufweist.

3. Kraftstoffeinspritzeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Kraftstoff-Prallelement (34B, 34C, 34D) an einer kreisförmigen Zerstäubungsplatte (31) mit drei Zerstäubungsöffnungen (32) ausgebildet ist, die in Umfangsrichtung mit gleichem Abstand von 120° über drei Verbindungsabschnitte (33) voneinander getrennt sind, wobei sich die Verbindungsabschnitte (33) in radialer Richtung erstrecken und das Kraftstoff-Prallelement als kreisförmiger Kraftstoff-Prallabschnitt (34B, 34C, 34D) an einem mittigen Verbindungsbereich der drei Verbindungsabschnitte (33) ausgebildet ist.

4. Kraftstoffeinspritzeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Kraftstoff-Prallelement (34B, 34C, 34D) an einer kreisförmigen Kraftstoffzerstäubungsplatte (31) mit zwei Zerstäubungsöffnungen (32) ausgebildet ist, die in Umfangsrichtung über zwei um 180° versetzte Verbindungsabschnitte (33) getrennt sind, die sich in radialer Richtung erstrecken, wobei das Kraftstoff-Prallelement als kreisförmiger Kraftstoff-Prallabschnitt (34B, 34C, 34D) an einem mittleren Verbindungsbereich der beiden Verbindungsabschnitte (33) ausgebildet ist.

Hierzu 6 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷: DE 40 36 294 C2 F 02 M 69/04 22. März 2001

Veröffentlichungstag: 2

FIG.1C

FIG.1D

F1G.2

FIG. 3

FIG. 4

F1G.5

Nummer: Int. Cl.⁷:

Veröffentlichungstag: 22.

FIG. 6