1. Let $\mathbb{Z}_q^{\mathbb{N}}$ denote the collection of infinite sequences $a=a_1a_2a_3\ldots$ with $a_j\in\mathbb{Z}_q=(0,1,\ldots,q-1)$. Define

$$\rho(a,b) = \sum_{j=1}^{\infty} \frac{|a_j - b_j|}{q^j}.$$

- (a.) Show that ρ is a metric on $\mathbb{Z}_q^{\mathbb{N}}$.
- (b.) Show that $(\mathbb{Z}_q^{\mathbb{N}}, \rho)$ is a complete metric space. (Hint: start by showing that a sequence of elements $\{a^n\} \subset \mathbb{Z}_q^{\mathbb{N}}$ is Cauchy if and only if for each j the j-th digit a_j^n is constant for n large.)
- (c.) Show that $(\mathbb{Z}_q^{\mathbb{N}}, \rho)$ is totally bounded (and thus compact).
- **2.** For $n \geq 1$ define the projections $\Pi_n : \mathbb{Z}_q^{\mathbb{N}} \to \mathbb{Z}_q^n$ by the rule

$$\Pi_n(a_1 a_2 a_3 \dots) = (a_1, a_2, a_3, \dots, a_n)$$

- (a.) Show that the collection \mathcal{A} of sets of the form $\Pi_n^{-1}(E)$, for $n \in \mathbb{N}$ and $E \subseteq \mathbb{Z}_q^n$, form an algebra of sets.
- (b.) Show that each set in \mathcal{A} is both open and closed in $\mathbb{Z}_q^{\mathbb{N}}$ (in the above metric topology.)
- (c.) Show that the σ -algebra generated by \mathcal{A} is the Borel σ -algebra on $\mathbb{Z}_q^{\mathbb{N}}$.
- 3. Folland page 24, Problem 1.
- **4.** Folland page 27, Problem 8 (see page 2 for the definition of $\limsup E_j$).
- 5. Folland page 27, Problem 10.