WHAT IS CLAIMED IS:

1. A compound of Formula (I):

wherein

Y is selected from the group consisting of a bond, -C(O)-, -C(O)O-, -C(O)NHand -SO₂-;

R₁ is selected from the group consisting of R₇ and R₈;

R₂, R₃, R₄ and R₅ are independently selected from the group consisting of a bond, hydrogen and C₁₋₈alkyl; wherein C₁₋₈alkyl is optionally substituted with one to three substituents independently selected from R₉, provided that R₂, R₃, R₄ or R₅ can only be a bond when forming a monocyclic ring wherein the following monocyclic rings may be formed from R₂, R₃, R₄ and R₅;

when R_2 and R_3 comprise a bond and C_{1-g} alkyl or optionally when both R_2 and R_3 are C_{1-g} alkyl , R_2 and R_3 together with the atoms to which each is attached will form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N. O and S:

15

10

- when R₃ and R₄ comprise a bond and C_{1.8}alkyl or optionally when both R₃ and R₄ are C_{1.8}alkyl, R₃ and R₄ together with the atoms to which each is attached will form a five to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;
- when R_s and R_s comprise a bond and $C_{1,g}$ alkyl or optionally when both R_s and R_s are $C_{1,g}$ alkyl, R_s and R_s together with the atoms to which each is attached will form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;
- when R₄ and R₅ comprise a bond and C₁₃alkyl, or optionally when both R₄ and R₅ are C₁₃alkyl, R₄ and R₅ together with the atoms to which each is attached will form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;
- $$\begin{split} R_6 \text{ is optionally present and is one to three substituents independently selected} \\ \text{from the group consisting of halogen, $C_{1.8}$ alkoxy, R_{10}, R_{12}, $-N(R_{11})C(O)-R_{10}$, $-N(R_{11})C(O)-R_{12}$, $-N(R_{11})SO_2-R_{10}$, $-N(R_{11})C(O)-N(R_{11},R_{10})$, $-N(R_{11})C(O)-N(R_{11},R_{12})$, $-N(R_{11})C(O)-N(R_{12},R_{17})$, $-C(O)-N(R_{11},R_{10})$, $-C(O)-N(R_{11},R_{12})$, $-C(O)-N(R_{12},R_{17})$, $-OC(O)-N(R_{11},R_{10})$, $-OC(O)-N(R_{11},R_{12})$, $-OC(O)-N(R_{12},R_{17})$, $-OC(O)-R_{12}$, $-O-R_{10}$ and $R_{10}-(C_{1.8})$ alkoxy; $-OC(O)-N(R_{12},R_{17})$, $-OC(O)-R_{12}$, $-O-R_{10}$ and $R_{10}-(C_{1.8})$ alkoxy; $-OC(O)-R_{12}$, $-O-R_{10}$ and $R_{10}-(C_{1.8})$ alkoxy; $-OC(O)-R_{12}$, $-O-R_{10}$ and $R_{10}-(C_{1.8})$ alkoxy; $-OC(O)-R_{12}$, $-O-R_{10}$, $-O-R$$
- R₇, R₉ R₁₀ and R₁₄ are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, C_{1,3}alkyl, C_{2,3}alkenyl, C_{2,3}alkynyl, C_{1,4}alkoxy, C_{1,3}alkylcarbonyl, C_{1,4}alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino, *N*-(C_{1,4}alkyl)amino, *N*-(C_{1,4}dialkyl)amino, -CF₃ and -OCF₃; wherein cycloalkyl and heterocyclyl

30

5

10

- R_8 , R_{12} , R_{13} and R_{17} are independently selected from the group consisting of $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkynyl, and (halo)_{1.3}($C_{1.8}$)alkyl; wherein $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl and $C_{2.8}$ alkynyl are optionally substituted on a terminal carbon with one to three substituents independently selected from R_{14} ;
- R₁₁ is selected from the group consisting of hydrogen and C₁₋₈alkyl;
- A is C₁₋₄alkylene optionally substituted with one to two substituents independently selected from R₁₃;
- when R₃ is C_{1.8}alkyl, optionally A and R₃ together with the atoms to which each is attached may form a five to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;
- when R₄ is C_{1.8}alkyl, optionally A and R₄ together with the atoms which each is attached may form a five to seven membered monocyclic ring optionally containing one additional heteroatom selected from the group consisting of N, O and S;
- when R₅ is C_{1.8}alkyl, optionally A and R₅ together with the atoms which each is attached may form a three to seven membered monocyclic ring optionally containing one to two heteroatoms independently selected from the group consisting of N, O and S; and,
- B₁ and B₂ are independently selected from the group consisting of C_{1.8}alkylene

30

5

10

and $C_{2,3}$ alkenylene optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy($C_{1,3}$)alkyl, hydroxy($C_{1,3}$)alkoxy, $C_{1,3}$ alkoxy, $C_{1,3}$ alkoxy, carboxyl, amino, N-($C_{1,3}$ alkyl)amino, N-($C_{1,4}$ dialkyl)amino, $C_{1,5}$ and -OCF $_{3}$:

and pharmaceutically acceptable salts, racemic mixtures, diastereomers and enantiomers thereof.

- The compound of claim 1 wherein Y is selected from the group consisting of -C(O)- and -SO₂-.
- 3. The compound of claim 1 wherein Y is selected from -SO₂-.
- The compound of claim 1 wherein R₁ is selected from R₇.
- 5. The compound of claim 1 wherein R_2 , R_3 , R_4 and R_5 are independently selected from the group consisting of hydrogen and $C_{1:d}$ alkyl.
- The compound of claim 1 wherein R₂, R₃, R₄ and R₅ are independently selected from the group consisting of hydrogen and methyl.
- The compound of claim 1 wherein R₆ is optionally present and is one to three substituents independently selected from the group consisting of halogen, C_{1.8}alkoxy, R₁₀, R₁₂, -N(R₁₁)C(O)-R₁₀, -N(R₁₁)C(O)-R₁₂, -N(R₁₁)SO₂-R₁₀-,-N(R₁₁)C(O)-N(R₁₁,R₁₂), -N(R₁₁)C(O)-N(R₁₂,R₁₇), -OC(O)-N(R₁₁,R₁₂), -OC(O)-N(R₁₁,R₁₂), -OC(O)-R₁₀ and R₁₀-(C_{1.8})alkoxy.
- The compound of claim 1 wherein R₆ is optionally present and is one to three substituents independently selected from the group consisting of halogen, C₁₋₄alkoxy, R₁₀, R₁₂, -N(R₁₁)C(O)-R₁₀, -N(R₁₁)C(O)-R₁₂, -N(R₁₁)SO₂-R₁₀-, -N(R₁₁)C(O)-N(R₁₁,R₁₂), -N(R₁₁)C(O)-N(R₁₂,R₁₇),

- -OC(O)-N(R₁₁,R₁₂), -OC(O)-N(R₁₂,R₁₇), -OC(O)-R₁₀ and R₁₀-(C₁₋₄)alkoxy.
- The compound of claim 1 wherein R₆ is optionally present and is one to two substituents independently selected from the group consisting of R₁₀, -N(R₁₁)C(O)-R₁₀, -N(R₁₁)C(O)-N(R₁₁,R₁₂), -N(R₁₁)C(O)-N(R₁₂,R₁₇), -OC(O)-N(R₁₁,R₁₂), -OC(O)-N(R₁₂,R₁₇)and R₁₀-methoxy.
- 10. The compound of claim 1 wherein R₇ is selected from the group consisting of aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, C_{1.8}alkyl, C_{2.8}alkenyl, C_{2.8}alkynyl, C_{1.8}alkoxy, C_{1.8}alkylcarbonyl, C_{1.8}alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino, N-(C_{1.8}alkyl)amino, N,N-(C_{1.8}dialkyl)amino, -CF₃ and -OCF₃; and, wherein the aryl and heteroaryl substituents and the aryl portion of the arylcarbonyl substituent are optionally substituted with one to five substituents independently selected from the group consisting of halogen, C_{1.8}alkyl, C_{2.8}alkenyl, C_{2.8}alkynyl, C_{1.8}alkoxy, carboxyl, amino, N-(C_{1.8}alkyl)amino, N,N-(C_{1.8}dialkyl)amino, -CF₃ and -OCF₃.
- 11. The compound of claim 1 wherein R₁₀ is selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, C_{1,8}alkyl, C_{1,8}alkoxy, C_{1,8}alkoxycarbonyl, carboxyl, arylcarbonyl, arylsulfonyl, -CF₃ and -OCF₃; wherein cycloalkyl and heterocyclyl are optionally substituted with one to three oxo substituents; and, wherein the aryl portion of the arylcarbonyl substituent is optionally substituted with one to five substituents independently selected from C_{1,8}alkoxy.
- The compound of claim 1 wherein R₁₀ is selected from the group consisting of cyclopropyl, 1,3-dihydro-2H-isoindolyl, 2azabicyclo[2.2.2]octyl, piperidinyl, morpholinyl, phenyl, naphthalenyl,

5

25

30

thienyl, 1*H*-pyrrolyl and pyridinyl; wherein cyclopropyl, piperidinyl, morpholinyl, phenyl, naphthalenyl, thienyl, 1*H*-pyrrolyl and pyridinyl are optionally substituted with one to four substituents independently selected from the group consisting of chlorine, fluorine, bromine, methyl, isopropyl, *t*-butyl, methoxy, *t*-butoxycarbonyl, carboxyl, phenylcarbonyl, -CF₃ and -OCF₃; wherein 1,3-dihydro-2*H*-isoindolyl is optionally substituted with oxo; wherein 2-azabicyclo[2.2.2]octyl is optionally substituted with phenylsulfonyl, and, wherein the phenyl portion of the phenylcarbonyl substituent is optionally substituted with one to two substituents independently selected from methoxy.

- The compound of claim 1 wherein R₁₂ is selected from the group consisting of C₁₋₈alkyl and C₂₋₈alkynyl optionally substituted on a terminal carbon with R₁₄.
- The compound of claim 1 wherein R₁₂ is selected from the group consisting of C_{1-a}alkyl and C_{2-a}alkynyl optionally substituted on a terminal carbon with R₁₄.
- The compound of claim 1 wherein R₁₂ is selected from the group consisting of t-butyl and ethynyl; wherein ethynyl is optionally substituted on a terminal carbon with a substituent independently selected from R₁₄.
- 16. The compound of claim 1 wherein R₁₄ is selected from the group consisting of aryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, C_{1.6}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{1.6}alkoxy, C_{1.6}alkylcarbonyl, C_{1.5}alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino, N-(C_{1.6}alkyl)amino, N,N-(C_{1.6}dialkyl)amino, -CF₃ and -OCF₃; and, wherein the aryl and heteroaryl substituents and the aryl portion of the arylcarbonyl substituent are optionally substituted with one to five substituents independently selected from the group consisting of halogen, C_{1.6}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{1.6}alkoxy, carboxyl, amino,

30

5

10

N-(C₁₋₈alkyl)amino, N,N-(C₁₋₈dialkyl)amino, -CF₃ and -OCF₃.

- The compound of claim 1 wherein R₁₁ is selected from the group consisting of hydrogen and C_{1.2}alkyl.
- 18. The compound of claim 1 wherein R₁₁ is hydrogen.
- The compound of claim 1 wherein A is selected from the group consisting of methylene and ethylene.
- 20. The compound of claim 1 wherein B₁ and B₂ are independently selected from the group consisting of C_{1,4}alkylene and C_{2,4}alkenylene optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C_{1,4})alkyl, hydroxy(C_{1,4})alkoxy, C_{1,4}alkyl, C_{2,4}alkenyl, C_{2,4}alkynyl, C_{1,4}alkoxy, carboxyl, amino, N-(C_{1,4}alkyl)amino, N,N-(C_{1,4}dialkyl)amino, -CF₃ and -OCF₃.
- 21. The compound of claim 1 wherein B₁ and B₂ are independently selected from the group consisting of -CH₂-, -(CH₂)₂- and -(CH)₂- optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C₁₋₄)alkyl, hydroxy(C₁₋₄)alkoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, carboxyl, amino, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄dialkyl)amino, -CF₃ and -OCF₃.
- 22. The compound of claim 1 wherein B₁ is selected from the group consisting of -CH₂-, -(CH₂)₂- and -(CH)₂- optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C₁₋₄)alkyl, hydroxy(C₁₋₄)alkoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, carboxyl, amino, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄dialkyl)amino, -CF₃ and -OCF₃; and, wherein, B₂ is selected from -(CH₂)₂-.

- The compound of claim 1 wherein B₁ is selected from the group consisting of -CH₂-, -(CH₂)₂- and -(CH)₂-.
- 24. The compound of claim 1 wherein the compound of Formula (I) is selected from a compound of the formula:

$$R_6$$
 R_5
 R_7
 R_8
 R_8
 R_8

wherein $B_{_1},\,R_{_3},\,R_{_6},\,A$ and $R_{_6}$ are dependently selected from the group consisting of:

B ₁	R ₁	R_3	R_5	Α	R_6
(CH ₂) ₂	4-Tol	Н	Н	CH ₂	4-NHC(O)-(2,6-Cl ₂)Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-NHC(O)-(2,4,6-Cl ₃)Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-NHC(O)-[2,6-(OMe) ₂]Ph;
CH ₂	Ph	Н	Н	CH ₂	4-NHC(O)-(2,6-F ₂)Ph;
$(CH_{2})_{2}$	Ph	Н	Н	CH ₂	4-NHC(O)-(2,6-Cl ₂)Ph;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-[2,6-(OMe) ₂]Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-NHC(O)-(2-Me)Ph;
$(CH_{2})_{2}$	4-Tol	Н	Н	CH ₂	4-NHC(O)-(2-CI)Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-NHC(O)-(2,6-F ₂)Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-NHC(O)-(2-CF ₃)Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-NHC(O)-(2-OCF ₃)Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-NHC(O)-(2-Br)Ph;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-NHC(O)-(2,6-F ₂)Ph;
CH ₂	Ph	Н	Н	CH ₂	4-NHC(O)-(2,6-Cl ₂)Ph;

$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-[2,6-(OMe) ₂]Ph;
CH ₂	Ph	Н	Н	CH ₂	4-NHC(O)-[2,6-(OMe) ₂]Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH₂	4-CC-(4-t-butyl)Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-CC-Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-NHC(O)-Ph;
(CH ₂) ₂	4-Tol	Н	Н	CH ₂	4-NHC(O)-[4-C(O)-[2,5-
					(OMe) ₂]Ph]Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-NHC(O)-CH ₂ -(2,6-Cl ₂)Ph;
$(CH_2)_2$	Ph	Н	Н	CH₂	4-NHC(O)-NH-(2,6-Cl₂)Ph;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-OCH ₂ -(2,6-Cl ₂)Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-OCH ₂ -Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-NHC(O)-(2,4,6-isopropyl ₃)Ph;
(CH ₂) ₂	4-Tol	Н	Н	CH ₂	4-(1 <i>H</i> -pyrrol-1-yl);
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	4-Ph;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-NHC(O)-NH-(2,6-F ₂)Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH ₂	3-NHC(O)-(2,6-F ₂)Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH₂	3-NHC(O)-[2,6-(OMe) ₂]Ph;
$(CH_2)_2$	4-Tol	Н	Н	CH₂	3-NHC(O)-(2,6-Cl ₂)Ph;
$(CH_2)_2$	Ph	Н	CH₃	CH ₂	4-OCH ₂ -(2,6-Cl ₂)Ph;
$(CH_2)_2$	Ph	CH ₃	Н	CH ₂	4-NHC(O)-(2,6-Cl ₂)Ph;
(CH) ₂	Ph	Н	Н	CH₂	4-OCH ₂ -(2,6-Cl ₂)Ph;
$(CH_2)_2$	Ph	Н	Н	CH₂	4-OCH ₂ -(2,6-Cl ₂)Ph;
$(CH)_2$	Ph	Н	Н	CH ₂	4-NHC(O)-(2,6-Cl ₂)Ph;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-(2,4,6-F ₃)Ph;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-(2,3,5,6-F ₄)Ph;
(CH ₂) ₂	Ph	Н	Н	CH ₂	4-O-t-butoxy;
$(CH_2)_2$	Ph	Н	Н	$(CH_2)_2$;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-(1,3-dihydro-1,3-dioxo-2 <i>H</i> -isoindol-2-yl);
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-NHC(O)-(2-CO ₂ H)Ph;
(CH ₂) ₂	Ph	Н	Н	CH ₂	4-(2,5-diMe-1 <i>H</i> -pyrrol-1-yl);
(CH ₂) ₂	Ph	Н	Н	CH ₂	4-NHC(O)-4-pyridinyl;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-NHSO ₂ -(2,6-Cl ₂)Ph;
(CH ₂) ₂	Ph	Н	Н	CH ₂	4-OC(O)-N(CH ₃) ₂ ;
(CH ₂) ₂	Ph	Н	Н	CH ₂	4-NHC(O)-(1-t-butoxycarbonyl)4- piperidinyl;
$(CH_{2})_{2}$	4-FPh	Н	Н	CH ₂	4-NHC(O)-(2,6-Cl ₂)Ph;
(CH ₂) ₂	4-FPh	Н	Н	CH ₂	4-NHC(O)-[2,6-(OMe) ₂]Ph;
$(CH_{2})_{2}$	Ph	Н	Н	CH ₂	4-OC(O)-4-morpholinyl;

$(CH_2)_2$	Ph	Н	Н	CH₂	4-OC(O)N(iso-propyl) ₂ ;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-t-butyl;
(CH ₂) ₂	Ph	Н	Н	CH ₂	4-NHC(O)-4-piperidinyl;
$(CH_2)_2$	Ph	Н	Н	CH₂	4-NHC(O)-(3,5-Cl₂)4-pyridinyl;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-NHC(O)-NMe ₂ ;
$(CH_2)_2$	Ph	Н	Н	CH ₂	3-F-4-[OCH ₂ (2,6-Cl ₂)Ph];
$(CH_2)_2$	2-Thi	Н	Н	CH ₂	4-OC(O)-NMe ₂ ;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-NHC(O)-t-butyl;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-NHC(O)-(2-OMe)1-naphthalenyl;
$(CH_2)_2$	2-Thi	Н	Н	CH ₂	4-NHC(O)-(2,6-Cl ₂)Ph;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-NHC(O)-cyclopropyl;
(CH ₂) ₂	Ph	Н	Н	CH ₂	4-NHC(O)-(2,2,3,3- Me₄)cyclopropyl;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-NHC(O)-iso-propyl;
(CH ₂) ₂	Ph	Н	Н	CH ₂	4-NHC(O)-(2-SO₂Ph)-2- azabicyclo[2.2.2]oct-3-yl;
$(CH_2)_2$	2-Thi	Н	Н	CH ₂	4-NHC(O)-(3,5-Cl ₂)4-pyridinyl;
$(CH_{2})_{2}$	Ph	Н	Н	CH ₂	4-NHC(O)-(2-Me)cyclopropyl;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-(2,6-diMe)Ph;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-(2,6-Cl ₂)Ph;
$(CH_2)_2$	2-Thi	Н	Н	CH ₂	4-(2,6-Cl ₂)Ph;
$(CH_2)_2$	2-Thi	Н	Н	CH ₂	4-(2,6-diMe)Ph;
(CH ₂) ₂	2-Thi	Н	Н	CH ₂	4-[2,6-(OMe) ₂]Ph;
(CH ₂) ₂	2-Thi	Н	Н	CH ₂	4-(4-fluoro-1,3-dihydro-1,3-dioxo- 2 <i>H-</i> isoindol-2-yl);
$(CH_2)_2$	2-Thi	Н	Н	CH ₂	4-NHC(O)-NMe ₂ ;
$(CH_2)_2$	2-Thi	Н	Н	CH ₂	4-OC(O)-NMe ₂ ;
$(CH_2)_2$	2-Thi	Н	Н	CH ₂	4-OC(O)-(4-morpholinyl);
$(CH_2)_2$	2-Thi	Н	Н	CH ₂	4-OC(O)-(4-Me-1-piperazinyl);
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-OC(O)-(4-Me-1-piperazinyl);
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-N(Me)C(O)-(2,6-Cl ₂)Ph;
$(CH_{2})_{2}$	Ph	Н	Н	CH ₂	4-N(Me)C(O)-(3,5-Cl ₂)4-pyridinyl;
$(CH_{2})_{2}$	2-Thi	Н	Н	CH ₂	4-N(Me)C(O)-(3,5-Cl ₂)4-pyridinyl;
$(CH_{2})_{2}$	2-Thi	Н	Н	CH ₂	4-N(Me)C(O)-(2,6-Cl ₂)Ph;
$(CH_2)_2$	2-Thi	Н	Н	CH ₂	4-OCH ₂ -(2,6-Cl ₂)Ph;
(CH ₂) ₂	2-Thi	Н	Н	CH ₂	4-(1,3-dihydro-1,3-dioxo-2 <i>H</i> -isoindol-2-yl);
(CH ₂) ₂	Ph	Н	Н	CH ₂	4-(1,3-dihydro-4,7-dimethyl-1,3-dioxo-2 <i>H</i> -isoindol-2-yl);

(CH ₂) ₂	2-Thi	Н	Н	CH ₂	4-(1,3-dihydro-4,7-dimethyl-1,3-dioxo-2 <i>H</i> -isoindol-2-yl);
CH ₂	2-Thi	Н	Н	CH ₂	4-NHC(O)-(3,5-Cl ₂)4-pyridinyl;
CH ₂	2-Thi	Н	Н	CH₂	4-NHC(O)-(2,6-Cl ₂)Ph;
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-(1,1-dioxido-3-oxo-1,2- benzisothiazol-2(3 <i>H</i>)-yl);
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-(4-chloro-1,3-dihydro-1,3-dioxo- 2 <i>H-</i> isoindol-2-yl);
and,					
$(CH_2)_2$	Ph	Н	Н	CH ₂	4-(7,9-dioxo-8-azaspiro[4.5]dec-8-yl);

and pharmaceutically acceptable salts, racemic mixtures, diastereomers and enantiomers thereof.

25. A compound having Formula (II):

$$R_6$$
 R_5
 R_5
 R_5
 R_6
 R_5
 R_6
 R_6
 R_6
 R_6
 R_7
 R_7
 R_7
 R_7
 R_7
 R_8

wherein

Y is selected from the group consisting of -C(O)- and -SO₂-;

 R_1 is selected from the group consisting of R_7 and R_8 ;

R₂, R₃, R₄ and R₅ are independently selected from the group consisting of a bond, hydrogen and C_{1,a}alkyl; wherein C_{1,a}alkyl is optionally substituted with

10

25

- one to three substituents independently selected from R_{s} ; provided that R_{2} , R_{3} , R_{4} and R_{5} can only be a bond when forming a monocylic ring wherein the following monocylic rings may be formed from R_{2} , R_{3} , R_{4} and R_{5} :
- when R_2 and R_3 comprise a bond and $C_{1,a}$ alkyl or optionally when both R_2 and R_3 are $C_{1,a}$ alkyl, R_2 and R_3 together with the atoms to which each are attached form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;
- when R₃ and R₄ comprise a bond and C_{1.8}alkyl or optionally when both R₃ and R₄ are C_{1.8}alkyl, R₃ and R₄ together with the atoms to which each are attached form a five to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;
- when R_3 and R_6 comprise a bond and $C_{1.8}$ alkyl or optionally when both R_3 and R_5 are $C_{1.8}$ alkyl, R_3 and R_6 together with the atoms to which each are attached form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;
- when R_4 and R_5 comprise bond and $C_{1:a}$ alkyl or optionally when both R_4 and R_5 are $C_{1:a}$ alkyl, R_4 and R_5 together with the atoms to which each are attached form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;
- R_6 is optionally present and is one to three substituents independently selected from the group consisting of halogen, $C_{1.6}$ alkoxy, R_{10} , R_{12} , $-N(R_{11})C(O)-R_{10}$, $-N(R_{11})C(O)-R_{12}$, $-N(R_{11})SO_2-R_{10}$, $-N(R_{11})SO_2-R_{12}$, $-N(R_{11})C(O)-N(R_{111},R_{10})$, $-N(R_{11})C(O)-N(R_{111},R_{12})$, $-N(R_{11})C(O)-N(R_{12},R_{12})$, $-C(O)-N(R_{111},R_{10})$, $-C(O)-N(R_{111},R_{12})$, $-C(O)-N(R_{12},R_{12})$, $-O(O)-N(R_{111},R_{10})$, $-O(O)-N(R_{111},R_{12})$, -O(O)

30

5

10

 $-OC(O)-N(R_{12},R_{17})$, $-OC(O)-R_{10}$, $-OC(O)-R_{12}$, $-O-R_{10}$ and $R_{10}-(C_{1.8})$ alkoxy;

- R₇ R₉, R₁₀ and R₁₄ are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, C_{1.8}alkyl, C_{2.8}alkenyl, C_{2.8}alkynyl, C_{1.8}alkoxy, C_{1.8}alkylcarbonyl, C_{1.8}alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino, *N*-(C_{1.8}alkyl)amino, *N*-(C_{1.8}dialkyl)amino, -CF₃ and -OCF₃; wherein cycloalkyl and heterocyclyl are optionally substituted with one to three oxo substituents; and, wherein the aryl and heteroaryl substituents and the aryl portion of the arylcarbonyl substituent are optionally substituted with one to five substituents independently selected from the group consisting of halogen, C_{1.8}alkyl, C_{2.8}alkenyl, C_{2.8}alkynyl, C_{1.8}alkoxy, carboxyl, amino, *N*-(C_{1.8}alkyl)amino, *N*-(C_{1.8}dialkyl)amino, -CF₃ and -OCF₃;
- R_s , R_{12} , R_{13} and R_{17} are independently selected from the group consisting of $C_{1.s}$ alkyl, $C_{2.s}$ alkenyl, $C_{2.s}$ alkenyl, $C_{2.s}$ alkynyl, and (halo)_{1.3}($C_{1.s}$)alkyl; wherein $C_{1.s}$ alkyl, $C_{2.s}$ alkenyl and $C_{2.s}$ alkynyl are optionally substituted on a terminal carbon with one to three substituents independently selected from R_{14} ;

R₁₁ is selected from the group consisting of hydrogen and C_{1.6}alkyl;

- A is C_{1.4}alkylene optionally substituted with one to two substituents independently selected from R₁₃;
- when R₃ is C₁₊₅alkyl, optionally A and R₃ together with the atoms to which each is attached form a five to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;
- when R₄ is C₁₋₃alkyl, optionally A and R₄ together with the atoms to which each is attached form a five to seven membered monocyclic ring optionally

10

containing one additional heteroatom selected from the group consisting of N. O and S:

- when R_s is $C_{1:s}$ alkyl, optionally A and R_s together with the atoms to which each is attached form a three to seven membered monocyclic ring optionally containing one to two heteroatoms independently selected from the group consisting of N, O and S;
- B is selected from the group consisting of C₁₋₈alkylene and C₂₋₈alkenylene optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C₁₋₈)alkyl, hydroxy(C₁₋₈)alkoxy, C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, C₁₋₈alkoxy, carboxyl, amino, N-(C₁₋₈alkyl)amino, N,N-(C₁₋₈dialkyl)amino, -CF₃ and -OCF₃; and,

n is an integer from 1 to 2;

and pharmaceutically acceptable salts, racemic mixtures, diastereomers and enantiomers thereof.

26. A process for preparing a compound of Formula (III):

30

5

10

Formula (III)

wherein

R₁ is selected from the group consisting of R₇ and R₈;

 $\rm R_7$, $\rm R_{10}$, and $\rm R_{14}$ are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, $\rm C_{1.8}$ alkyl, $\rm C_{2.8}$ alkenyl, $\rm C_{2.8}$ alkynyl, $\rm C_{1.8}$ alkoxy, $\rm C_{1.8}$ alkylcarbonyl, $\rm C_{1.8}$ alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino, $\rm N$ -($\rm C_{1.8}$ alkyl)amino, $\rm N$ -($\rm C_{1.8}$ dialkyl)amino, -CF $_3$ and -OCF $_3$; wherein cycloalkyl and heterocyclyl are optionally substituted with one to three oxo substituents ; and, wherein the aryl and heteroaryl substituted with one to five substituents independently selected from the group consisting of halogen, $\rm C_{1.8}$ alkyl, $\rm C_{2.8}$ alkenyl, $\rm C_{2.8}$ alkynyl, $\rm C_{1.8}$ alkoxy, carboxyl, amino, $\rm N$ -($\rm C_{1.8}$ alkyl)amino, -CF $_3$ and -OCF $_3$;

 R_8 , R_{12} and R_{17} are independently selected from the group consisting of $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkynyl, and (halo)_{1.3}($C_{1.8}$)alkyl; wherein $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl and $C_{2.8}$ alkynyl are optionally substituted on a terminal carbon with one to three substituents independently selected from R_{14} ;

 R_{150} is selected from the group consisting of hydroxy, amino, NO_2 and R_6 ;

$$\begin{split} &R_6 \text{ is optionally present and is one to three substituents independently selected from the group consisting of halogen, $C_{1:3}$ alkoxy, R_{10}, R_{12}, $-N(R_{11})C(0)-R_{10}$, $-N(R_{11})C(0)-R_{12}$, $-N(R_{11})SO_2-R_{10}$, $-N(R_{11})SO_2-R_{12}$, $-N(R_{11})C(0)-N(R_{11},R_{10})$, $-N(R_{11})C(0)-N(R_{11},R_{12})$, $-N(R_{11})C(0)-N(R_{12},R_{17})$, $-C(0)-N(R_{11},R_{10})$, $-C(0)-N(R_{12},R_{17})$, $-C(0)-N(R_{11},R_{12})$, $-OC(0)-N(R_{11},R_{10})$, $-OC(0)-N(R_{12},R_{17})$, $-OC(0)-R_{10}$, $-OC(0)-R_{10$$

R₁₁ is selected from the group consisting of hydrogen and C₁₋₈alkyl; and,

10

B₁ and B₂ are independently selected from the group consisting of C_{1.8}alkylene and C_{2.8}alkenylene optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C_{1.8})alkyl, hydroxy(C_{1.8})alkoxy, C_{1.8}alkyl, C_{2.8}alkenyl, C_{2.8}alkynyl, C_{1.8}alkoxy, carboxyl, amino, N-(C_{1.8}alkyl)amino, N,N-(C_{1.8}dialkyl)amino, -CF₃ and -OCF₃;

and pharmaceutically acceptable salts, racemic mixtures, diastereomers and enantiomers thereof;

comprising reacting a compound of Formula (IV)

wherein

 R_{16} is selected from the group consisting of halogen, mixed anhydride and hydroxy:

with a compound of Formula (V)

$$R_{15}$$
OMe
 $H_{2}N$
O • HCI
Formula (V);

in the presence of appropriate coupling agents, bases and solvents to form the compound of Formula (II).

- The process of claim 25 wherein R₁₅ is selected from the group consisting of hydroxy, iodine, bromine and NO₂.
- 28. The compound of claim 1 wherein the compound of Formula (I) is selected from a compound of the formula:

29. The compound of claim 1 wherein the compound of Formula (I) is selected from a compound of the formula:

30. The compound of claim 1 wherein the compound of Formula (I) is selected from a compound of the formula:

31. The compound of claim 1 wherein the compound of Formula (I) is selected from a compound of the formula:

- The compound of claim 1 wherein the compounds are effective antagonists of an integrin receptor.
- The compound of claim 32 wherein the compound is a selective antagonist of an α4 integrin receptor.

30

5

- 34. The compound of claim 33 wherein the α4 integrin receptor is selected from the group consisting of the α481 and α487 integrin receptor.
- 35. The compound of claim 32 wherein the compound is an antagonist of at least two α4 integrin receptors.
- 36. The compound of claim 35 wherein the two $\alpha4$ integrin receptors are selected from the group consisting of the $\alpha4\beta1$ and $\alpha4\beta7$ integrin receptor.
- 37. The compound of claim 1 wherein the compounds are effective agents for the treatment of an integrin mediated disorder ameliorated by selective inhibition of the α4β1 integrin receptor.
- 38. The compound of claim 1 wherein the compounds are effective agents for the treatment of an integrin mediated disorder ameliorated by selective inhibition of the α4β7 integrin receptor.
- 39. The compound of claim 1 wherein the compounds are effective agents for the treatment of an integrin mediated disorder ameliorated by inhibition of the α4β1 and α4β7 integrin receptor.
- 40. The compound of claim 1 wherein the compounds are effective agents for the treatment of integrin mediated disorder selected from the group consisting of inflammatory disorders, autoimmune disorders and cell-proliferative disorders.
- 41. The compound of claim 40 wherein the integrin mediated disorder is selected from the group consisting of inflammation disorders, autoimmunity disorders, asthma, bronchoconstriction, restenosis, atherosclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel

10

disease, irritable bowel disease, irritable bowel syndrome, transplant rejection and multiple sclerosis.

- 42. The compound of claim 40 wherein the integrin mediated disorder is selected from the group consisting of asthma, bronchoconstriction, restenosis, atherosclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, irritable bowel disease, irritable bowel syndrome, transplant rejection and multiple sclerosis.
- 43. The compound of claim 40 wherein the integrin mediated disorder is selected from the group consisting of asthma, bronchoconstriction, restenosis, atherosclerosis, irritable bowel syndrome and multiple sclerosis.
- A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
- A pharmaceutical composition made by mixing a compound of claim 1 and a pharmaceutically acceptable carrier.
- 46. A method for the treatment of an integrin mediated disorder ameliorated by inhibition of an α4 integrin receptor comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.
- 47. The method of claim 46 wherein the compound inhibiting the α4 integrin receptor is selected from the group consisting of a selective antagonist of an α4 integrin receptor and an antagonist of at least two α4 integrin receptors.
- 48. The method of claim 47 wherein the α 4 integrin receptor is selected from the group consisting of the α 4 β 1 and α 4 β 7 integrin receptor.

- 25
- 30

- 49. The method of claim 46 wherein the compound inhibiting the α4 integrin receptor is selected from the group consisting of a selective antagonist of the α4β1 integrin receptor, a selective antagonist of the α4β7 integrin receptor and an antagonist of the α4β1 and α4β7 integrin receptors.
- The method of claim 46 wherein the integrin mediated disorder is selected from the group consisting of inflammatory disorders, autoimmune disorders and cell-proliferative disorders.
- 51. The method of claim 46 wherein the integrin mediated disorder is selected from the group consisting of inflammation disorders, autoimmunity disorders, asthma, bronchoconstriction, restenosis, atherosclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, irritable bowel disease, irritable bowel syndrome, transplant rejection and multiple sclerosis.
- 52. The compound of claim 46 wherein the integrin mediated disorder is selected from the group consisting of asthma, bronchoconstriction, restenosis, atherosclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, irritable bowel disease, irritable bowel syndrome, transplant rejection and multiple sclerosis.
- 53. The compound of claim 46 wherein the integrin mediated disorder is selected from the group consisting of asthma, bronchoconstriction, restenosis, atherosclerosis, irritable bowel syndrome and multiple sclerosis.
- The method of claim 46 wherein the therapeutically effective amount of the compound of claim 1 is from about 0.01 mg/kg/day to about 300 mg/kg/day.
- 55. The method of claim 46 further comprising administering to a subject in need thereof a therapeutically effective amount of the pharmaceutical

10

composition of claim 44.

- The method of claim 55 wherein the therapeutically effective amount of the pharmaceutical composition of claim 44 is from about 0.01 mg/kg/day to about 300 mg/kg/day.
- The compound of claim 1 wherein R₇ is selected from the group consisting tolyl, phenyl and thienyl.