The CBAM

Economic Analysis of Architectures

主讲教师: 王灿

Email: wcan@zju.edu.cn

TA: 李奇平 <u>liqiping1991@gmail.com</u>

Course FTP: ftp://sa:sa@10.214.51.13

ATAM

- A risk-mitigation process used early in the software development life cycle
 - A means of evaluating technical tradeoffs
 - Architectural tradeoffs occur when a decision affects multiple attributes at once
 - How well the architecture has been designed with respect to quality attributes

Conceptual Flow of the ATAM

What is CBAM?

- Cost Benefit Analysis Method
- Provides assessments of the technical and economic issues and architectural decisions

Starts where ATAM ends

Motivations

 The biggest tradeoffs in large systems usually have to do with economics

- We need a process that helps us choose among architectural options, given that the resources for building and maintaining a system are limited
 - Maximize gains and minimize risks (financially)

Decision-Making Context (1)

 Goal: to maximize the difference between the benefit derived and the cost of implementation

Decision-Making Context (2)

- The budget for a project is always limited.
 - Every architectural choice is competing with every other one for inclusion
 - CBAM allows the stakeholders to judge whether the costs for different decisions are worthwhile or not
- CBAM elicits the costs and benefits associated with the architectural decisions

Decision-Making Context (3)

- Architectural strategies (collections of architectural tactics) affect the quality attributes of the system, which in turn provides the stakeholders with some benefit (utility)
 - E.g. to improve system performance, one can choose to add more servers or have developing team to come up with better algorithms
- These strategies also have cost and take time to implement
 - Cost in purchasing and deploying new servers, or in design, implement, test and deploy new modules.
- VFC (Value of Cost, previously known as ROI, Return on Investment) - the ratio of benefit to cost

The Basis for CBAM----Utility

- We consider how scenarios differ in the values of their projected responses and then assign utility to those values
 - Side effects of strategies must also be taken into account (other quality attributes that are affected other than the one intended)
 - Calculating all of these utilities together is necessary for the VFC

Utility: Variations of Scenarios

- The CBAM uses scenarios, similar to ATAM, to represent specific quality attributes
- To create a utility-response curve, the CBAM uses a set of scenarios that vary the values of the responses (scenario = stimulus, environment, and response)

Variations of Scenarios---an example

You submit an order in an ecommerce website by clicking on "Proceed to checkout" button, and the response page is displayed in:

0.5 second

2 seconds

5 seconds

10 seconds

15 seconds

30 seconds

Utility: Utility-Response Curves (1)

- Utility is shown as a function of response value
- Determine the following points for a UR curve
 - Best case: e.g. value 100
 - Worst case: e.g. value 0
 - Current case
 - Value proposed by stakeholders
 - Desired case
 - Value proposed by stakeholders

Utility: Utility-Response Curves (2)

UR curves may take various forms.

Utility: Priorities of Scenarios

- Two-step voting process to establish relative importance of a scenario
 - Stakeholders vote to establish an order to scenarios
 - Stakeholders then assign a weight of 1 to the highest-rated and a fraction to each additional one
- For the additional scenarios added in the future, the stakeholders make sure the weights are correct through consensus.

Utility: Architectural Strategies (1)

- One responsibility of the architect is to move from current to expected (or best-case) on the curve
- This is done with architectural strategies, for each strategy we can derive:
 - The expected value of the response in each scenario (utility found on curve)
 - The effect of the architectural strategy on other attributes of interest
 - A cost estimate for implementing the strategy

Utility: Architectural Strategies (2)

- Also need to determine utility of tradeoffs/side effects
 - The expected utility for a particular attribute may be negative
 - At worst case, we need to develop a whole new curve for this side effect
- Calculate the overall utility of an architectural strategy across scenarios
 - Summing the utility associated with each one, weighted by the importance of the scenario

$$B_i = \sum_{j} (b_{i,j} \times w_j)$$

Calculating VFC

- The VFC value for each architectural strategy is the ratio of the total benefit, B_i , to the cost, C_i , of implementing it. (C_i can be derived from the cost models) $V F_i \in \frac{B_i}{C_i}$
 - VFC VS. slope of the utility-responsive curve
- Using VFC score, architectural strategies can be rank ordered to determine optimal order for implementation

CBAM Steps (1)

- Step 1: Collate scenarios
 - Prioritize these scenarios based on satisfying the business goals of the system and choose the top one-third for further study
- Step 2: Refine scenarios
 - Elicit the worst-case, current, desired, and best-case quality attribute response level for each scenario

Scenario	Worst Case	Current	Desired	Best Case
Scenario #17: Response to user input	12 seconds	1.5 seconds	0.5 seconds	0.1 seconds

- Step 3: Prioritize scenarios
 - Prioritize scenarios using the two-step voting process; eliminate half of the scenarios

CBAM Steps (2)

- Step 4: Assign utility
 - Determine the utility for each quality attribute response level (worst-case, current, desired, best-case) for the scenarios from step 3

Scenario	Worst Case	Current	Desired	Best Case
Scenario #17:	12 seconds	1.5 seconds	0.5 seconds	0.1 seconds
Response to user input	Utility 5	Utility 50	Utility 80	Utility 85

- Step 5: Map architectural strategies to scenarios and determine their expected quality attribute response levels
- Step 6: Determine the utility of the "expected" quality attribute response levels by interpolation

$$y = y_a + (y_b - y_a) \frac{(x - x_a)}{(x_b - x_a)}$$

CBAM Steps (3)

Step 7: Calculate the total benefit obtained from an architectural strategy

$$\sum ((expected - current) \times votes)$$

- Step 8: Choose architectural strategies based on VFC subject to cost and schedule constraints
 - Determine the cost and schedule implications of each architectural strategy; choose the top ones until the budget or schedule is exhausted
- Step 9: Confirm results with intuition
 - Check whether the architectural strategies satisfy the organization's business goals

Case Study: The NASA ECS Project

- The Earth Observing System is a constellation of NASA satellites that gathers data for the U.S. Global Change Research Program and other scientific communities worldwide
- The Earth Observing System Data Information System (EOSDIS) Core System (ECS) collects data from various satellite downlink stations for further processing
 - ECS's mission is to process the data into higher-form information and make it available to scientists in searchable form
 - Performance
 - Availability
 - Modifiability
- The ECS project manager had a limited annual budget to maintain and enhance his current system

Step 1: Collate Scenarios

Scenario	Scenario Description
1	Reduce data distribution failures that result in hung distribution requests requiring manual intervention.
2	Reduce data distribution failures that result in lost distribution requests.
3	Reduce the number of orders that fail on the order submission process.
4	Reduce order failures that result in hung orders that require manual intervention.
5	Reduce order failures that result in lost orders.
6	There is no good method of tracking ECS Guest failed/canceled orders without much manual intervention (e.g., spreadsheets).
7	Users need more information on why their orders for data failed.
8	Because of limitations, there is a need to artificially limit the size and number of orders.
9	Small orders result in too many notifications to users.
10	The system should process a 50-GB user request in one day, and a 1-TB user request in one week.

Step 2: Refine Scenarios

Scenario	Worst	Current	Desired	Best
1	10% hung	5% hung	1% hung	0% hung
2	> 5% lost	< 1% lost	0% lost	0% lost
3	10% fail	5% fail	1% fail	0% fail
4	10% hung	5% hung	1% hung	0% hung
5	10% lost	< 1% lost	0% lost	0% lost
6	50% need help	25% need help	0% need help	0% need help
7	10% get information	50% get information	100% get information	100% get information
8	50% limited	30% limited	0% limited	0% limited
9	1/granule	1/granule	1/100 granules	1/1,000 granules
10	< 50% meet goal	60% meet goal	80% meet goal	> 90% meet goal

Step 3: Prioritize Scenarios

		Response Goals				
Scenario	Votes	Worst	Current	Desired	Best	
1	10	10% hung	5% hung	1% hung	0% hung	
2	15	> 5% lost	< 1% lost	0% lost	0% lost	
3	15	10% fail	5% fail	1% fail	0% fail	
4	10	10% hung	5% hung	1% hung	0% hung	
5	15	10% lost	< 1% lost	0% lost	0% lost	
6	10	50% need help	25% need help	0% need help	0% need help	
7	5	10% get information	50% get information	100% get information	100% get informatio n	
8	5	50% limited	30% limited	0% limited	0% limited	
9	10	1/granule	1/granule	1/100 granules	1/1,000 granules	
10	5	< 50% meet goal	60% meet goal	80% meet goal	> 90% meet goal	

Step 4: Assign Utility

		Utility Scores			
Scenario	Votes	Worst	Current	Desired	Best
1	10	10	80	95	100
2	15	0	70	100	100
3	15	25	70	100	100
4	10	10	80	95	100
5	15	0	70	100	100
6	10	0	80	100	100
7	5	10	70	100	100
8	5	0	20	100	100
9	10	50	50	80	90
10	5	0	70	90	100

Step 5: Map Architectural Strategies to Scenarios & Determine Their Expected Quality Attribute Response Levels

Strategy	Name	Description	Scenarios Affected	Current Response	Expected Response
1	Order persistence	Store an order as soon as it arrives	3 5	5% fail <1% lost	2% Fail 0% lost
	on submission	in the system.	6	25% need help	0% need help
2					
3	Order bundling	Combine multiple small orders into	9	1 per granul	1 per 100
		one large order.	10	60% meet goal	55% meet goal

..... totally 10 scenarios, see P320 Table 12.5 for more details

Step 6: Determine the Utility of the "Expected" Quality Attribute Response Levels by Interpolation

Strategy	Strategy	Scenarios Affected	Current Utility	Expected Utility
1	Order persistence on submission	3 5 6	70 70 80	90 100 100
2	Order chunking	8	20	60
3	Order bundling	9 10	50 70	80 65
4	Order segmentation	4	80	90

.

Step 7: Calculate the Total Benefit Obtained From an Architectural Strategy

Strategy	Scenario Affected	Scenario Weight	Raw Architectural Strategy Benefit	Normalized Architectural Strategy Benefit	Total Architectural Strategy Benefit
1	3	15	20	300	
1	5	15	30	450	
1	6	10	20	200	950
2	8	5	40	200	200
3	9	10	30	300	
3	10	5	-5	-25	275

Step 8: Choose Architectural Strategies Based on VFC Value Subject to Cost Constraints

Strategy	Cost	Total Strategy Benefit	Strategy VFC	Strategy Rank
1	1200	950	0.79	1
2	400	200	0.5	3
3	400	275	0.69	2
4	200	100	0.5	3
5	400	120	0.3	7
6	200	50	0.25	8
7	200	70	0.35	6
8	300	150	0.5	3
9	1000	225	0.22	10
10	100	25	0.25	8