Aiwa skriv jeres funktioner ind og om de er \underline{AK} \underline{BK} eller \underline{D} \odot

Hvis i ikke kan edit – så brug det her link: MAT 2.docx

https://discord.gg/KxNaZFX6

HUSK: $\cos(\pi * n) = (-1)^{n+1}$

An	AK/BK/D	Notes
x/n, x kun positive tal	D	Hotellet
$\sum_{n=1}^{\infty} \left(\frac{1}{n^K} \right), k \in [2\infty[$	К	
$\sum_{n=1}^{\infty} \left(8\cos\left(\pi n\right) + 5\sin\left(\pi n\right) \right)$	D	
$\sum_{n=1}^{\infty} \frac{\cos(4n)}{n^2}$	AK	
$\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n}$	ВК	
$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} S = \sum_{n=1}^{\infty} \frac{(-10)^n}{1 + 11^n}$	AK	
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} S = \sum_{n=1}^{\infty} (-1)^n \frac{2}{n+1}.$	ВК	
$\sum_{n=1}^{\infty} \frac{(-1)^n}{a + konstant * \ln(n)} A = \sum_{n=1}^{\infty} (-1)^n \frac{2}{1 + \sqrt{n}},$	ВК	
$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sum_{n=1}^{\infty} \frac{(2x)^n}{\sqrt{n^2+1}} \cdot -\frac{1}{2} \le x < \frac{1}{2}.$	К	
$\sum_{n=1}^{\infty} (-1)^{n+1}$	D	
$\sum_{n=1}^{\infty} (-1)^{n-1} * \frac{1}{n}$	ВК	

$\sum_{n=1}^{\infty} \frac{1}{n}$	D	
$\sum_{n=1}^{\infty} \frac{1}{\ln(n)}$	D	
$\sum_{n=1}^{\infty} n$ $\sum_{n=1}^{\infty} \frac{n^5 + 1}{n^5 + \ln(n)}$	D	
$\sum_{n=1}^{\infty} \frac{n^5 + 1}{n^5 + \ln(n)}$	D	
$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \left(\frac{(-1)^n}{\sqrt{n}} + 1 \right), \frac{\frac{1}{\sqrt{n}}}{\sqrt{n}} = \frac{1}{n^q}, \ q < 1$	D	
$\sum_{n=1}^{\infty} \frac{\cos(n) + \sin(n)}{\cos(n)}$	D	
$B = \sum_{n=1}^{\infty} \cos(n^2 + 1) \frac{2 + n^2}{1 + n!}.$	AK	
$\sum_{n=0}^{\infty} \frac{-n^2 + 3n}{(n+1)^4}$	AK	_
$R = \sum_{n=1}^{\infty} (-1)^n \frac{1+n^3}{4n^3+2n+1} ,$	D	

Differentialligning hvor rekursionsformlen skal bestemmes

- 1) Start med at opskrive alle diff udtryk udfra sætn. 5.17 (lign 5.18)
- 2) Sæt det ind i den oplyste differentialligning og gang de forskellige faktorer ind
- 3) Glem lige sumationsindex og fokuser på at få kun x^n for alle sumationstegnene
- 4) Når alle er x^n, skal sumationsindexet matches ved at bestemme summerne
 - a) F.eks. hvis du går et sumationsindex op skal første sum adderes til sum udtrykket.
- 5) Nu sættes x^n udenfor og ifølge Koraller 5.21, skal konstanterne være ligmed 0 og derfor forsvinder ledene ude foran sumtegnet.
- 6) Der isoleres nu for an+1/an
- 7) Nemt

eksempler: dag7 opgave A, hjem 7 opgave a)

For typer af formen:

$$\sum_{n=1}^{\infty}\frac{1}{x^n}\,.$$
 The sum of the series is: $\frac{1}{x-1}$ ' valid for $\;|x|>1.$

Eks:

>
$$S(a) := \sum_{n=0}^{\infty} (a^{-7 \cdot n})$$

 $S := a \mapsto \sum_{n=0}^{\infty} a^{-7 \cdot n}$ (1.4.1)

Det vides om en geometrisk sum at følgende er gældende: $1 < |a^{-7}|$, da er den konvergent, dette medfører $1 > a^7 \Rightarrow a^7 - 1 > 0$. Dette betyder at den konvergere hvis $a^7 > 1$, det betyder a > 1. Summen af en geometrisk funktion kan findes på følgende. $S = \frac{a_0}{1-r}$: Hvilket giver $\frac{1}{1-a^{-7}}$, som er ækvivalent med:

B.1 Potensrækker

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, |x| < 1$$

$$\frac{x}{(1-x)^2} = \sum_{n=0}^{\infty} nx^n, |x| < 1$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in \mathbb{R}$$

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}, |x| < 1$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, x \in \mathbb{R}$$
(5.11)

218

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, |x| < 1$$

$$\sinh x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}, x \in \mathbb{R}$$

$$\cosh x = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n}, x \in \mathbb{R}$$

B.2 Fourierrækker for 2π -periodiske funktioner

$$f(x) = \begin{cases} -1 \text{ hvis } x \in]-\pi, 0[, \\ 0 \text{ hvis } x = 0, x = \pi, \\ 1 \text{ hvis } x \in]0, \pi[, \end{cases}, \quad f \sim \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin((2n-1)x)$$

$$f(x) = x, \quad x \in]-\pi, \pi[: \quad f \sim \sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} \sin nx$$

$$f(x) = |x|, \quad x \in]-\pi, \pi[: \quad f \sim \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos((2n-1)x)$$

$$f(x) = x^2, \quad x \in]-\pi, \pi[: \quad f \sim \frac{\pi^2}{3} - 4 \sum_{n=1}^{\infty} \frac{1}{n^2} (-1)^{n+1} \cos nx$$

$$f(x) = |\sin x|, \quad x \in]-\pi, \pi[: \quad f \sim \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nx)}{(2n-1)(2n+1)}$$

Hvordan påvirker a0, og b0, for ved forskellige værdier Fourierrækken?

When b_0 is > 0: This would result in a phase shift to the left (delay in phase) of the Fourier series. In the context of Fourier series, the terms "a_0" and "b_0" typically refer to the coefficients associated with the DC (Direct Current) component of the signal being represented. The Fourier series is a mathematical representation of a periodic function as an infinite sum of sines and cosines. The terms "a_0" and "b_0" play a specific role in this representation.

Let's break down how the values of "a_0" and "b_0" for different cases (<0, =0, >0) affect the Fourier series:

a_0 (DC Component):

When a_0 is < 0: This would result in a negative offset or displacement of the Fourier series from the x-axis. The signal would have a downward shift.

When a_0 is = 0: In this case, there is no DC component, and the signal is centered around the x-axis. The Fourier series starts from the origin.

When a_0 is > 0: This would result in a positive offset or displacement of the Fourier series from the x-axis. The signal would have an upward shift.

b_0 (DC Component for Imaginary Part, typically zero for real-valued signals):

When b_0 is < 0: This would lead to a phase shift of the Fourier series, causing it to be shifted to the right (advance in phase).

When b 0 is = 0: There is no imaginary part (phase shift) in the DC component of the Fourier series.

TL;DR:

a_0 (DC Component):

When a_0 is < 0: The entire square wave would be shifted downward.

When a_0 is = 0: The Fourier series starts from the origin, and the square wave is centered around the x-axis.

When a_0 is > 0: The entire square wave would be shifted upward.

b_0 (DC Component for Imaginary Part):

When b_0 is < 0: The square wave would be phase-shifted to the right.

When b_0 is = 0: No phase shift occurs.

When b_0 is > 0: The square wave would be phase-shifted to the left.

SÆTNINGER, LEMMA'ER, DEFINITION mm.

Sætning 1.5

Sætning 1.5 Løsningerne til (1.6) udgør et n-dimensionalt vektorrum. Samtlige løsninger til (1.6) kan altså skrives på formen

$$y = c_1 y_1 + c_2 y_2 + \cdots + c_n y_n$$

hvor c'erne er vilkårlige konstanter og y_1, y_2, \ldots, y_n er n vilkårlige lineært uafhængige løsninger.

Formålet med dette afsnit er at beskrive, hvordan man kan bestemme n lineært uafhængige løsninger til den homogene ligning $D_n(y) = 0$. Til det formål betragtes karakterligningen, der er givet ved

$$a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0.$$
 (1.7)

Lineært Uafhængighed

Sætning 1.14

Sætning 1.14 Antag at λ er rod i karakterligningen med algebraisk multiplicitet p. Så har differentialligningen $D_n(y) = 0$ de lineært uafhængige løsninger

$$y_1(t) = e^{\lambda t}, \ y_2(t) = te^{\lambda t}, \ \cdots, y_p(t) = t^{p-1}e^{\lambda t}.$$
 (1.13)

sætning 1.15

Sætning 1.15 (Fuldstændige løsning til (1.6)) Den fuldstændige løsning til den homogene differentialligning $D_n(y) = 0$ bestemmes på følgende måde:

(i) (komplekse løsninger) For hver rod λ i karakterligningen opskrives løsningen $y(t) = e^{\lambda t}$, samt, hvis λ har algebraisk multiplicitet p > 1, løsningerne

$$y(t) = te^{\lambda t}, \cdots, y(t) = t^{p-1}e^{\lambda t}.$$

Den fuldstændige komplekse løsning fås ved at danne linearkombinationer af disse n løsninger, med komplekse koefficienter.

(ii) (reelle løsninger) For hver reel rod λ i karakterligningen opskrives løsningerne nævnt under (i). For hvert par af komplekst konjugerede rødder $a \pm i\omega$ opskrives endvidere løsningerne

$$y(t) = e^{at} \cos \omega t$$
 og $y(t) = e^{at} \sin \omega t$,

 $samt, \ hvis \ a \pm i\omega \ har \ multiplicitet \ p > 1, \ løsningerne$

$$y(t) = te^{at}\cos\omega t, \cdots, y(t) = t^{p-1}e^{at}\cos\omega t$$

og

$$y(t) = te^{at} \sin \omega t, \dots, y(t) = t^{p-1}e^{at} \sin \omega t.$$

Den fuldstændige reelle løsning fås ved at danne linearkombinationer af disse n løsninger, med reelle koefficienter.

Sætning 1.20

Sætning 1.20 Lad y_0 betegne en løsning til ligningen (1.14), $D_n(y) = u$, og lad y_{HOM} betegne samtlige løsninger til den tilsvarende homogene ligning. Da er

$$y = y_0 + y_{HOM}$$

samtlige løsninger til (1.14).

Definition 4.15

Definition 4.15 (Konvergens af uendelig række) $Lad \sum_{n=1}^{\infty} a_n$ være en uendelig række med afsnitssummer S_N , $N \in \mathbb{N}$. Hvis talfølgen S_N er konvergent, dvs. hvis der findes et tal S således at

$$S_N \to S \text{ for } N \to \infty,$$
 (4.21)

så siges den uendelige række $\sum_{n=1}^{\infty} a_n$ at være konvergent med sum S. Dette skrives kort

$$\sum_{n=1}^{\infty} a_n = S.$$

Hvis talfølgen S_N , $N \in \mathbb{N}$, er divergent, så siges $\sum_{n=1}^{\infty} a_n$ at være divergent. Til en divergent række knyttes ingen sum.

Definition 5.1

Definition 5.1 (Kvotientrække) En kvotientrække er en række på formen

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots, \quad (5.2)$$

hvor $x \in \mathbb{R}$ (eller $x \in \mathbb{C}$). Tallet x kaldes kvotienten.

Vi benytter også navnet kvotientrække for rækker af formen (5.2), hvor summen blot starter med et vilkårligt positivt heltal n=N istedet for n=0; se korollar 5.5. Vi viser nu at en kvotientrække er konvergent hvis og kun hvis |x|<1:

Sætning 5.2

Sætning 5.2 (Kvotientrække) En kvotientrække $\sum_{n=0}^{\infty} x^n$ er konvergent hvis og kun hvis |x| < 1. For |x| < 1 er summen

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$
(5.3)

Definition 5.12

Definition 5.12 (Potensrække) En række på formen

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots$$
(5.13)

kaldes en potensrække. En funktion $f: I \to \mathbb{R}$, der kan skrives på formen

$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$

for passende koefficienter c_n , siges at have en potensrækkefremstilling.

Sætning 5.17

Sætning 5.17 (Differentiation af potensrække) Antag at potensrækken $\sum_{n=0}^{\infty} c_n x^n$ har konvergensradius $\rho > 0$, og definér funktionen f

$$f(x) = \sum_{n=0}^{\infty} c_n x^n, x \in]-\rho, \rho[.$$
 (5.17)

Så er f uendeligt ofte differentiabel. Endvidere er

$$f'(x) = \sum_{n=1}^{\infty} c_n nx^{n-1}, x \in]-\rho, \rho[;$$
 (5.18)

mere generelt gælder for ethvert $k \in \mathbb{N}$ at

$$f^{(k)}(x) = \sum_{n=k}^{\infty} c_n n(n-1) \cdots (n-k+1)x^{n-k}, x \in] - \rho, \rho[.$$
 (5.19)

Bemærk de ændringer i summationsindexet som optræder i sætning 5.17. De forklares nærmere i det følgende eksempel.

Korollar 5.21

Korollar 5.21 (Identitetssætningen for potensrækker) Hvis koefficienterne c_n for et passende $\rho > 0$ opfylder at

$$\sum_{n=0}^{\infty} c_n x^n = 0, \ x \in] - \rho, \rho[,$$

 $s\mathring{a} \ er \ c_n = 0 \ for \ alle \ n.$

Som lovet vil vi nu vise at der findes uendeligt ofte differentiable funktioner $f : \mathbb{R} \to \mathbb{R}$, som ikke har potensrækkefremstillinger.

Lemma 4.10

Lemma 4.10 Antag at talfølgen $\{x_n\}_{n=1}^{\infty}$ er konvergent med grænseværdi x, og at talfølgen $\{y_n\}_{n=1}^{\infty}$ er konvergent med grænseværdi y. Så gælder følgende:

- (i) For vilkårlige tal α, β ∈ C er talfølgen {αx_n + βy_n}[∞]_{n=1} konvergent med grænseværdi αx + βy.
- (ii) Talfølgen {x_ny_n}[∞]_{n=1} er konvergent med grænseværdi xy.
- (iii) Hvis y ≠ 0, så er y_n ≠ 0 for n ≥ N for en tilstrækkelig stor værdi af N. Talfølgen { x_n }_{n=N} er da konvergent med grænseværdi x/y.
- (iv) Hvis talfølgerne {x_n}_{n=1}[∞] og {y_n}_{n=1}[∞] består af reelle tal og x_n ≤ y_n for alle n ∈ N, så er x ≤ y.

Konvergenskriteriet (N'te ledskriteriet) / divergenskriteriet) sætning 4.19

Sætning 4.19 (n'te ledskriteriet) Hvis $a_n \rightarrow 0$ for $n \rightarrow \infty$, så er $\sum_{n=1}^{\infty} a_n$ divergent.

Intergralkriteriet sætning 4.33

Sætning 4.33 (Integralkriteriet) Antag at funktionen

$$f: [1, \infty[\to [0, \infty[$$

er kontinuert og aftagende. Så gælder følgende:

(i) Hvis det uegentlige integral $\int_{1}^{\infty} f(x) dx$ er konvergent, så er rækken $\sum_{n=1}^{\infty} f(n)$ konvergent, og

$$\int_{1}^{\infty} f(x) dx \le \sum_{n=1}^{\infty} f(n) \le \int_{1}^{\infty} f(x) dx + f(1). \quad (4.30)$$

(ii) Hvis $\int_{1}^{\infty} f(x) dx$ er divergent, så er $\sum_{n=1}^{\infty} f(n)$ divergent.

Sætning 4.33 bevises i appendiks A.8. I det følgende eksempel bruges integralkriteriet til at undersøge konvergensforholdende for en vigtig klasse af rækker:

Hjælpesætning 4.27

Sætning 4.27 Hvis $\sum_{n=1}^{\infty} a_n$ er absolut konvergent, så er $\sum_{n=1}^{\infty} a_n$ konvergent; endvidere er

$$\left|\sum_{n=1}^{\infty} a_n\right| \le \sum_{n=1}^{\infty} |a_n|. \tag{4.27}$$

Man kan vise, at hvis $\sum_{n=1}^{\infty} a_n$ er absolut konvergent, så leder enhver omordning af leddene til en konvergent række med den samme sum.

Der findes rækker, som er konvergente, men ikke absolut konvergente: sådanne rækker siges at være betinget konvergente.

Lemma A.3'

Lemma A.3 Lad $\{k_n\}_{n=1}^{\infty}$ være en voksende og begrænset følge af reelle tal, dvs. de følgende to betingelser er opfyldt:

(ii) der findes et tal k således at

$$k_n \le k$$
, $\forall n$.

 $S_{n=1}^{a}$ er talfølgen $\{k_n\}_{n=1}^{\infty}$ konvergent, og

$$\lim_{n\to\infty} k_n = \sup\{k_n : n \in \mathbb{N}\}.$$

Tilsvarende er en aftagende og nedadtil begrænset følge $\{k_n\}_{n=1}^{\infty}$ af reelle tal konvergent, og

$$\lim_{n\to\infty} k_n = \inf\{k_n : n \in \mathbb{N}\}.$$

Sætning 4.20 (Sammenligningskriteriet) Antag at a_n og b_n er reelle tal og at $0 \le a_n \le b_n$ for alle $n \in \mathbb{N}$. Så gælder følgende:

- (i) Hvis $\sum_{n=1}^{\infty} b_n$ er konvergent, så er også $\sum_{n=1}^{\infty} a_n$ konvergent.
- (ii) Hvis $\sum_{n=1}^{\infty} a_n$ er divergent, så er også $\sum_{n=1}^{\infty} b_n$ divergent.

Ækvivalens Kritiseret 4.24

Sætning 4.24 (Ækvivalentskriteriet) Antag at rækkerne $\sum_{n=1}^{\infty} a_n$ og $\sum_{n=1}^{\infty} b_n$ har positive led og er ækvivalente. Så er begge rækker konvergente, eller begge rækker er divergente.

Bevis: Betingelsen (4.26) implicerer at

$$\frac{1}{C}\frac{a_n}{b_n} \to 1 \text{ for } n \to \infty.$$

Vi kan derfor finde et $N \in \mathbb{N}$ således at

$$\frac{1}{2} \le \frac{1}{C} \frac{a_n}{b_n} \le \frac{3}{2}$$
 for alle $n \ge N$,

dvs. så

$$\frac{C}{2}b_n \le a_n \le \frac{3C}{2}b_n$$
 for alle $n \ge N$.

Sammenligningskriteriet viser nu, at hvis $\sum_{n=1}^{\infty} a_n$ er konvergent, så er $\sum_{n=1}^{\infty} b_n$ konvergent; og hvis $\sum_{n=1}^{\infty} a_n$ er divergent, så er $\sum_{n=1}^{\infty} b_n$ divergent.

Kvotientkriteriet 4.30

Sætning 4.30 (Kvotientkriteriet) Antag at $a_n \neq 0$ for alle $n \in \mathbb{N}$ og at der findes et tal $C \geq 0$ således at

$$\left|\frac{a_{n+1}}{a_n}\right| \to C \text{ for } n \to \infty.$$
 (4.29)

Så gælder følgende

- (i) Hvis C < 1, så er $\sum_{n=1}^{\infty} a_n$ absolut konvergent.
- (ii) Hvis C > 1, så er $\sum_{n=1}^{\infty} a_n$ divergent.

Absolutkriteriet 4.26

Definition 4.26 (Absolut konvergens) En uendelig række $\sum_{n=1}^{\infty} a_n$ siges at være absolut konvergent hvis $\sum_{n=1}^{\infty} |a_n|$ er konvergent.

Definition 4.28

Definition 4.28 (Betinget konvergens) En uendelig række $\sum_{n=1}^{\infty} a_n$ siges at være betinget konvergent hvis $\sum_{n=1}^{\infty} a_n$ er konvergent og $\sum_{n=1}^{\infty} |a_n|$ er divergent.

I eksempel 4.39 studeres en række som er konvergent, men ikke absolut konvergent.

Definition 4.37

Definition 4.37 (Alternerende rækker) En alternerende række er en uendelig række, der for en passende følge af positive tal b_n kan skrives på formen

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \dots + (-1)^{n-1} b_n + \dots, \quad (4.40)$$

eller som

$$\sum_{n=1}^{\infty} (-1)^n b_n = -b_1 + b_2 - b_3 + \cdots + (-1)^n b_n + \cdots \qquad (4.41)$$

Leibniz's Kriteriet (4.38)

Sætning 4.38 (Leibniz' kriterium) Betragt en række på formen (4.40) eller (4.41), og antag følgende:

- (i) Tallene b_n er positive, dvs. b_n > 0 for alle n ∈ N;
- (ii) Tallene b_n aftager monotont, dvs.,

$$b_1 \geq b_2 \geq b_3 \geq \cdots$$
.

(iii) Tallene b_n konvergerer mod 0 for n → ∞.

Så er rækkerne (4.40) og (4.41) konvergente. Endvidere gælder for alle $N \in \mathbb{N}$ at

$$\left|\sum_{n=1}^{\infty} (-1)^{n-1}b_n - \sum_{n=1}^{N} (-1)^{n-1}b_n\right| \le b_{N+1} \quad (4.42)$$

og

$$\left|\sum_{n=1}^{\infty} (-1)^n b_n - \sum_{n=1}^{N} (-1)^n b_n\right| \le b_{N+1}.$$
(4.43)

Korollar 4.35

Korollar 4.35 Antag at funktionen $f: [1, \infty[\to [0, \infty[$ er kontinuert og aftagende, ihvertfald for $x \ge N$ for et passende $N \in \mathbb{N}$. Antag endvidere at $\int_{N}^{\infty} f(x) dx$ er konvergent. Så gælder følgende:

(i) For det givne N er

$$\int_{N+1}^{\infty} f(x) \, dx \le \sum_{n=N+1}^{\infty} f(n) \le \int_{N}^{\infty} f(x) \, dx \tag{4.33}$$

(ii) For det givne N er

$$\int_{N+1}^{\infty} f(x) dx \le \sum_{n=N+1}^{\infty} f(n) \le \int_{N+1}^{\infty} f(x) dx + f(N+1). \quad (4.34)$$

Trekantsuligheden

Konvergensradius

Korollar 5.38

Korollar 5.38 (Integration af potensrække) Lad $\sum_{n=0}^{\infty} c_n x^n$ være en potensrække med konvergensradius $\rho > 0$. Så gælder for ethvert $b \in]-\rho, \rho[$ at

$$\int_{0}^{b} \sum_{n=0}^{\infty} c_{n} x^{n} dx = \sum_{n=0}^{\infty} \frac{c_{n}}{n+1} b^{n+1}.$$

Uniform Konvergens

Sætning 5.35

Sætning 5.35 (Kontinuitet af sumfunktion) Antag at

- (i) Funktionerne $f_1, f_2, \ldots, f_n, \ldots$ er definerede og kontinuerte på et interval I;

Så er sumfunktionen

$$f(x) = \sum_{n=1}^{\infty} f_n(x), \ x \in I$$
 (5.32)

kontinuert.

Sætning 5.36 (Ledvis integration af sumfunktion) Under antagelserne i sætning 5.35 gælder for ethvert valg af $a, b \in I$ at

$$\int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx.$$

Sætning 5.37

Sætning 5.37 (Ledvis differentiation af sumfunktion) Antag at

- (i) Funktionerne f₁, f₂,..., f_n,... er definerede og differentiable på intervallet I, med kontinuerte afledede;
- (ii) Funktionen $f(x) = \sum_{n=1}^{\infty} f_n(x)$ er veldefineret på intervallet I;
- (iii) $R x k k e n \sum_{n=1}^{\infty} f'_n(x)$ har en konvergent majorantrx k k e (eller, mere generelt, rx k k e n konvergerer uniformt).

Så er funktionen f differentiabel, og

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x), x \in I.$$

Potensrækkemetoden

Korollar 5.21

Korollar 5.21 (Identitetssætningen for potensrækker) Hvis koefficienterne c_n for et passende $\rho > 0$ opfylder at

$$\sum_{n=0}^{\infty} c_n x^n = 0, \ x \in]-\rho, \rho[,$$

 $s\mathring{a} \ er \ c_n = 0 \ for \ alle \ n.$

Som lovet vil vi nu vise at der findes uendeligt ofte differentiable funktioner $f: \mathbb{R} \to \mathbb{R}$, som ikke har potensrækkefremstillinger.

Sætning 2.12

Sætning 2.12 (Fuldstændige reelle løsning til (2.11)) Den fuldstændige reelle løsning til det homogene differentialligningssystem $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ kan bestemmes på følgende måde:

- (i) For hver reel egenværdi λ opskrives løsningerne i sætning 2.11 (a);
- (ii) For hvert par $a \pm i\omega$ af komplekst konjugerede egenværdier opskrives løsningerne i sætning 2.11 (b).

Den fuldstændige reelle løsning til differentialligningssystemet fås ved at danne linearkombinationer af de fundne n løsninger, med reelle koefficienter.

Sætning 2.20 (**)

Sætning 2.20 (Den generelle løsningsformel) Lad $\Phi(t)$ være en vilkårlig reel fundamentalmatrix hørende til det homogene differentialligningssystem (2.4) med en reel påvirkning \mathbf{u} , og vælg $t_0 \in I$ vilkårligt. Da gælder følgende:

(i) Samtlige reelle løsninger til det lineære, inhomogene differentialligningssystem (2.22) er givet på formen

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{c} + \mathbf{\Phi}(t)\int_{t_0}^t [\mathbf{\Phi}(\tau)]^{-1}\mathbf{u}(\tau)d\tau, \quad t \in I,$$
 (2.28)

 $med \mathbf{c} = (c_1 \ c_2 \ \dots \ c_n)^T \in \mathbb{R}^n.$

(ii) Den partikulære løsning til (2.22) med $\mathbf{x}(t_0) = \mathbf{x}_0$ er givet ved

$$\mathbf{x}(t) = \mathbf{\Phi}(t)[\mathbf{\Phi}(t_0)]^{-1}\mathbf{x}_0 + \mathbf{\Phi}(t)\int_{t_0}^t [\mathbf{\Phi}(\tau)]^{-1}\mathbf{u}(\tau)d\tau, \quad t \in I. \quad (2.29)$$

Sætning 2.17

Sætning 2.17

 (i) Enhver fundamentalmatrix Φ(t) for det homogene differentialligningssystem x = Ax er en differentiabel matrixfunktion, som opfylder matrixligningen

$$\dot{\Phi}(t) = A\Phi(t). \quad (2.19)$$

 (ii) Den fuldstændige reelle løsning til x = Ax kan ved hjælp af en vilkårlig reel fundamentalmatrix Φ(t) skrives som

$$\mathbf{x}(t) = \Phi(t)\mathbf{c}, \ \mathbf{c} = (c_1 \ c_2 \ \dots \ c_n)^T \in \mathbb{R}^n,$$
 (2.20)

og den partikulære løsning, for hvilken $x(t_0) = x_0$, kan skrives som

$$\mathbf{x}(t) = \Phi(t)[\Phi(t_0)]^{-1}\mathbf{x}_0.$$
 (2.21)

Sætning 2.11 (Lineært uafhængige løsninger til $\dot{x} = Ax$)

 (a) Antag, at λ er en reel egenværdi for A med algebraisk multiplicitet p ≥ 2 og geometrisk multiplicitet q < p. Da findes vektorer b_{jk} ∈ Rⁿ således at funktionerne

$$\mathbf{x_1}(t) = \mathbf{b}_{11}e^{\lambda t}$$

$$\mathbf{x_2}(t) = \mathbf{b}_{21}e^{\lambda t} + \mathbf{b}_{22}te^{\lambda t}$$

$$\vdots$$

$$\mathbf{x_p}(t) = \mathbf{b}_{p1}e^{\lambda t} + \mathbf{b}_{p2}te^{\lambda t} + \dots + \mathbf{b}_{pp}t^{p-1}e^{\lambda t}$$

er lineært uafhængige reelle løsninger til systemet $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$.

(b) Antag, at a ± iω er et par komplekst konjugerede egenværdier med algebraisk multiplicitet p ≥ 2 og geometrisk multiplicitet q < p. Lad λ := a + iω. Da findes vektorer b_{jk} ∈ Cⁿ således at funktionerne

$$\mathbf{x_1}(t) = \operatorname{Re}(\mathbf{b}_{11}e^{\lambda t})$$

$$\mathbf{x_2}(t) = \operatorname{Re}(\mathbf{b}_{21}e^{\lambda t} + \mathbf{b}_{22}te^{\lambda t})$$

$$\vdots$$

$$\mathbf{x_p}(t) = \operatorname{Re}(\mathbf{b}_{p1}e^{\lambda t} + \mathbf{b}_{p2}te^{\lambda t} + \dots + \mathbf{b}_{pp}t^{p-1}e^{\lambda t})$$

$$\mathbf{x_{p+1}}(t) = \operatorname{Im}(\mathbf{b}_{11}e^{\lambda t})$$

$$\mathbf{x_{p+2}}(t) = \operatorname{Im}(\mathbf{b}_{21}e^{\lambda t} + \mathbf{b}_{22}te^{\lambda t})$$

$$\vdots$$

$$\vdots$$

$$\mathbf{x_{2p}}(t) = \operatorname{Im}(\mathbf{b}_{p1}e^{\lambda t} + \mathbf{b}_{p2}te^{\lambda t} + \dots + \mathbf{b}_{pp}t^{p-1}e^{\lambda t})$$

er lineært uafhængige reelle løsninger til systemet $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$.

Definition 2.28

Definition 2.28 (Stabilitet og asymptotisk stabilitet)

- (i) Det homogene system (2.44) siges at være stabilt, hvis enhver løsning x(t), t ∈ [t₀, ∞[er begrænset. I litteraturen bruges undertiden betegnelsen "marginalt stabilt".
- Systemet (2.44) siges at være asymptotisk stabilt, hvis der for enhver løsning x(t), t ∈ [t₀, ∞[, gælder at

$$\mathbf{x}(t) \rightarrow \mathbf{0} \text{ for } t \rightarrow \infty.$$

I litteraturen bruges undertiden betegnelsen "internt stabilt".

Hvis et system ikke er stabilt, så siges det at være ustabilt (eller instabilt).

Sætning 2.38

Sætning 2.38 (Asymptotisk stabilitet) Systemet (2.44) er asymptotisk stabilt, hvis og kun hvis alle egenværdier for systemmatricen A har negativ realdel.

Sæting 2.41

Sætning 2.41 (Routh-Hurwitz' kriterium) Betragt et polynomium med reelle koefficienter, på formen

$$P(\lambda) = \lambda^{n} + a_1 \lambda^{n-1} + \cdots + a_{n-1} \lambda + a_n.$$
 (2.50)

Så har alle rødder negativ realdel hvis og kun hvis de følgende to betingelser er opfyldt:

- (i) alle koefficienterne er positive, det vil sige a_k > 0 for k = 1,...,n;
- (ii) alle k × k determinanter, k = 2,..., n − 1, på formen

er positive, det vil sige $D_k > 0$ (i udtrykket for D_k sættes $a_p = 0$ for p > n).

Korollar 2.42

Korollar 2.42 Alle rødderne i et andengradspolynomium

$$P(\lambda) = \lambda^2 + a_1\lambda + a_2$$

med reelle koefficienter har negativ realdel, hvis og kun hvis

$$a_1 > 0$$
, $a_2 > 0$. (2.52)

Korollar 2.43

Korollar 2.43 Alle rødderne i et trediegradspolynomium

$$P(\lambda) = \lambda^3 + a_1\lambda^2 + a_2\lambda + a_3$$

med reelle koefficienter har negativ realdel, hvis og kun hvis

$$a_1 > 0$$
, $a_2 > 0$, $a_3 > 0$, $det\begin{pmatrix} a_1 & a_3 \\ 1 & a_2 \end{pmatrix} > 0$. (2.53)

Korollar 2.44

Korollar 2.44 Alle rødderne i et fjerdegradspolynomium

$$P(\lambda) = \lambda^4 + a_1\lambda^3 + a_2\lambda^2 + a_3\lambda + a_4$$

med reelle koefficienter har negativ realdel, hvis og kun hvis

$$a_1 > 0, \ a_2 > 0, \ a_3 > 0, \ a_4 > 0, \ det \begin{pmatrix} a_1 & a_3 \\ 1 & a_2 \end{pmatrix} > 0, \ det \begin{pmatrix} a_1 & a_3 & 0 \\ 1 & a_2 & a_4 \\ 0 & a_1 & a_3 \end{pmatrix} > 0.$$

Definition 6.1

Definition 6.1 (Fourierrække) Til en 2π -periodisk funktion $f \in L^2(-\pi, \pi)$ knyttes formelt (hvilket skrives " \sim ") rækkefremstillingen

$$f \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)),$$
 (6.2)

hvor koefficienterne a_n og b_n defineres ved

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, \quad n = 0, 1, 2, ...$$
 (6.3)

og

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx, \quad n = 1, 2, ...$$
 (6.4)

Rækken (6.2) kaldes Fourierrækken hørende til f, og tallene a_n, b_n kaldes Fourierkoefficienter.

Fourriersætning 6.16

Sætning 6.16 (Fouriers sætning) Antag at f er en stykkevis differentiabel og 2π -periodisk funktion. Så konvergerer Fourierrækken for f punktvis for alle $x \in \mathbb{R}$. For summen af Fourierrækken gælder følgende:

(i) Hvis x er et punkt hvori f er kontinuert, så er

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = f(x). \quad (6.20)$$

(ii) Hvis x er et punkt hvori f er diskontinuert, så er

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \frac{f(x^+) + f(x^-)}{2}.$$

Definition 6.13

Definition 6.13 (Stykkevis differentiabel funktion) En 2π -periodisk funktion f defineret på \mathbb{R} siges at være stykkevis differentiabel hvis der findes endeligt mange punkter $x_1, x_2, ..., x_n$,

$$-\pi = x_1 < x_2 < \cdots <_{n-1} < x_n = \pi$$

og differentiable funktioner $f_i : [x_i, x_{i+1}] \rightarrow \mathbb{C}$ således at f'_i er kontinuert og

$$f(x) = f_i(x), x \in]x_i, x_{i+1}[.$$

Korollar 6.17

Korollar 6.17 Antag at f er en kontinuert, stykkevis differentiabel, og 2π -periodisk funktion. Så gælder følgende:

(i) For ethvert $x \in \mathbb{R}$ er

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$
 (6.21)

 (ii) Fourierrækken konvergerer uniformt mod f, og den maksimale afvigelse mellem f(x) og afsnitssummen S_N(x) kan vurderes ved

$$|f(x) - S_N(x)| \le \frac{1}{\sqrt{N}} \frac{1}{\sqrt{\pi}} \sqrt{\int_{-\pi}^{\pi} |f'(t)|^2 dt}.$$
 (6.22)

Der findes også funktioner der ikke er kontinuerte, og hvor symbolet "~" alligevel kan erstattes med "=":

Definition 6.2

Definition 6.2 En funktion $f : \mathbb{R} \to \mathbb{C}$ siges at være lige, hvis

$$f(x) = f(-x), x \in \mathbb{R}$$
.

Funktionen siges at være ulige, hvis

$$f(x) = -f(-x), x \in \mathbb{R}.$$

sætning 6.6

Sætning 6.6 (Fourierkoefficienter for lige og ulige funktioner)

(i) Hvis f er en lige funktion, så er $b_n = 0$ for alle n, og

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx, \quad n = 0, 1, 2, ...$$
 (6.9)

(ii) Hvis f er en ulige funktion, så er a_n = 0 for alle n, og

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx, \quad n = 1, 2, ...$$
 (6.10)

Parsevals sætning 6.30

Sætning 6.30 (Parsevals sætning) Antag at funktionen $f \in L^2(-\pi, \pi)$ har Fourierkoefficienterne $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$, eller, på kompleks form, $\{c_n\}_{n=-\infty}^{\infty}$. Så er

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \frac{1}{4} |a_0|^2 + \frac{1}{2} \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2) = \sum_{n=-\infty}^{\infty} |c_n|^2. \quad (6.40)$$

Sætning 1.27

Sætning 1.27 Antag at y_0 er en kompleks løsning til $D_n(y) = u$, hvor u er en funktion med komplekse værdier. Da gælder følgende:

- Funktionen Re y₀ er løsning til ligningen D_n(y) = Re u;
- (ii) Funktionen Im y₀ er løsning til ligningen D_n(y) = Im u.

sætning 1.23

Sætning 1.23 (Superpositionsprincippet) Lad u_1 og u_2 betegne to givne funktioner. Lad y_1 betegne en løsning til ligningen $D_n(y) = u_1$, og lad y_2 betegne en løsning til ligningen $D_n(y) = u_2$. Da er funtionen $y = c_1y_1 + c_2y_2$ løsning til ligningen $D_n(y) = c_1u_1 + c_2u_2$.

Sætning 7.8

Sætning 7.8 (Fourierrækkemetoden) Lad H(s) betegne overføringsfunktionen for det asymptotisk stabile system (7.20). Betragt en 2π periodisk stykkevis differentiabel og kontinuert påvirkning u(t), givet ved Fourierrækken

$$u(t) = \sum_{n=-\infty}^{\infty} c_n e^{int}, \quad t \in \mathbb{R}.$$

Så har (7.20) en løsning givet ved Fourierrækken

$$y(t) = \sum_{n=-\infty}^{\infty} c_n H(in)e^{int}, \quad t \in \mathbb{R}.$$
 (7.27)

Sætning 2.23,

Sætning 2.23 (Stationære svar) Når man i (2.35) sætter $u(t) = e^{st}$, hvor s ikke er rod i det karakteristiske polynomium for A, da har (2.35) en og kun én løsning af formen

$$y(t) = H(s)e^{st}$$
. (2.40)

Denne løsning fås når

$$H(s) = -\mathbf{d}^{\mathsf{T}}(\mathbf{A} - s\mathbf{I})^{-1}\mathbf{b}.$$

Lemma 7.7

Lemma 7.7 Antag at systemet (7.20) er asymptotisk stabilt. For enhver påvirkning på formen

$$S_N(t) = \sum_{n=-N}^{N} c_n e^{int}$$
. (7.21)

fås løsningen

$$y_N(t) = \sum_{n=-N}^{N} c_n H(in)e^{int}.$$
 (7.22)

Sætning 7.8

Sætning 7.8 (Fourierrækkemetoden) Lad H(s) betegne overføringsfunktionen for det asymptotisk stabile system (7.20). Betragt en 2π periodisk stykkevis differentiabel og kontinuert påvirkning u(t), givet ved Fourierrækken

$$u(t) = \sum_{n=-\infty}^{\infty} c_n e^{int}, \quad t \in \mathbb{R}.$$

Så har (7.20) en løsning givet ved Fourierrækken

$$y(t) = \sum_{n=-\infty}^{\infty} c_n H(in)e^{int}, \quad t \in \mathbb{R}.$$
 (7.27)