CS146 HW3

1

The VC dimension is 3.

If we choose 3 points x_1, x_2, x_3 , for any label y_1, y_2, y_3 assigned to the points. We can just let $ax_i^2 + bx_i + c = 1$ if $y_i = 1$ or = -1 if $y_i = 0$. Then we get 3 equations regard of a,b,c. We can definitely find values of a,b,c that satisfies the requirement. So H can shatter 3 points, $VC(H) \ge 3$.

For any 4 points x_1, x_2, x_3, x_4 , that $x_1 \le x_2 \le x_3 \le x_4$, if the label is $y_1 = 1, y_2 = 0, y_3 = 1, y_4 = 0$. Then there is no a,b,c that can correctly predict those. So VC(H)_i4, which shows that VC(H)=3.

2

Because $\mathbf{x}^*\mathbf{z} = \mathbf{z}^*\mathbf{x}$, $K_{\beta}(x,z) = (1+\beta x*z)^3 = (1+\beta z*x)^3 = K_{\beta}(z,x)$. $K_{\beta}(x,z) = \beta^3(x \cdot z)^3 + 3\beta^2(x \cdot z)^2 + 3\beta x \cdot z + 1 = \beta^3(x_1z_1 + x_2z_2)^3 + 3\beta^2(x_1z_1 + x_2z_2)^2 + 3\beta(x_1z_1 + x_2z_2) + 1 = \beta^3((x_1z_1)^3 + 3(x_1z_1)^2x_2z_2 + 3x_1z_1(x_2z_2)^2 + (x_2z_2)^3) + 3\beta^2((x_1z_1)^2 + 2x_1z_1x_2z_2 + (x_2z_2)^2) + 3\beta(x_1z_1 + x_2z_2) + 1$ $\Theta(x) = (1, \sqrt{3\beta}x_1, \sqrt{3\beta}x_2, \sqrt{3\beta}x_1^2, \sqrt{3\beta}x_2^2, \sqrt{6\beta}x_1x_2, \sqrt{3\beta^3}x_1^2x_2, \sqrt{3\beta^3}x_1x_2^2, \sqrt{\beta^3}x_1^3, \sqrt{\beta^3}x_2^3)$. β is a parameter that can be used to scale the feature map up and down.

3

- (a) The maximum-margin linear classifier should be equally distant from x_1 and x_2 . So the classifier passes the middle point between x_1 and x_2 , which is $(1,0.5)^T$. $\omega^* = (\omega_1, -2 * \omega_1)$. $y_1\omega^T x_1 = -\omega_1 \ge 1$, $y_2\omega^T x_2 = -omega_1 \ge 1$. We get $\omega_1 \le -1$, so the smallest $\|\omega\|$ is when $\omega_1 = -1$, $\omega^* = (-1, 2)$.
- (b) Let the classifier be (ω_1, ω_2) , since the classifier should still pass the middle point (1,0.5), $\omega_1 + 0.5\omega_2 + b^* = 0$. Then we get $\omega_2 = -2b^* 2\omega_1$. Plug this into

 $y_n\omega^Tx_n\geq 1$, we get $\omega_1-2b^*-2\omega_1+b^*=-\omega_1-b\geq 1$, $\omega_1+b\leq -1$. So $b\geq -1-\omega_1$. $\|\omega^*\|^2=\omega_1^2+\omega_2^2=5\omega_1^2+8\omega_1+4b^2$. This is minimized when $\omega_1=0$, so $b\geq -1\rightarrow b=-1$. So $\omega^*=(0,2)$ and $b^*=-1$. Compared with the solution without offset, ω_2 is the same but ω_1 is different.

4

4.1

(d) I have finished the extraction and generated the splits.

4.2

(d)

С	accuracy	F1-score	AUROC
10^{-3}	0.7089	0.8297	0.8105
10^{-2}	0.7107	0.8306	0.8111
10^{-1}	0.8060	0.8755	0.8576
10^{0}	0.8146	0.8749	0.8712
10^{1}	0.8182	0.8766	0.8696
10^{2}	0.8182	0.8766	0.8696
best C	10.0	10.0	1.0

For all three metrics, the score tends to increase when C is small and increasing. But after C reaches a certain value, 10.0 for accuracy and F1-score, 1.0 for AUROC, the score starts decreases or not increase.

4.3

- (a) I choose C=10.0 because this is the setting with overall best score.
- (c) For C=10.0

The performance employed accuracy metric is 0.7428571428571429.

The performance employed f1-score metric is 0.437499999999999999.

The performance employed AUROC metric is 0.7463556851311952.