SML: Exercise 2

Rinor Cakaj, Patrick Nowak

Summer Term 2020 Sheet 1

Task 1.1: Density Estimation

We are given data C1 and C2, which we suppose to be generated by 2D-Gaussians with parameters μ_1, Σ_1 and μ_2, Σ_2 , respectively.

1.1a)

Assume we are given iid. datapoints x_i , i = 1, ..., n which are generated by a 2D-Gaussian. Following the max-likelihood principle, we maximize the log-likelihood function

$$l(\mu, \Sigma, x_1, ..., x_n) = \ln(\prod_{i=1}^n p(x_i | \mu, \Sigma)) = \sum_{i=1}^n \ln(p(x_i | \mu, \Sigma))$$

for the Gaussian probability density

$$p(x|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma(x-\mu)\right) . \tag{1}$$

We receive

$$l(\mu, \Sigma) := l(\mu, \Sigma, x_1, ..., x_n) = \sum_{i=1}^{n} \left(-\frac{k}{2} \ln(2\pi) - \frac{1}{2} ln(|\Sigma|) - \frac{1}{2} (x_i - \mu)^T \Sigma (x_i - \mu) \right)$$
 (2)

$$= -\frac{nk}{2}\ln(2\pi) - \frac{n}{2}\ln(|\Sigma|) - \frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^T \Sigma(x_i - \mu) .$$
 (3)

We compute the derivatives w.r.t. μ and Σ and set them equal to zero. This yields

$$\frac{d}{d\mu}l(\mu, \Sigma, x_1, ..., x_n) = \frac{d}{d\mu} - \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^T \Sigma (x_i - \mu)$$
$$= -\sum_{i=1}^n \frac{d}{d\mu} \frac{1}{2} (x_i - \mu)^T \Sigma (x_i - \mu) .$$

Using the matrix identity $\frac{d}{dw} \frac{w^T A w}{dw} = 2Aw$ which holds if w does not depend on A and if A is symmetric, we get (with $w = (x - \mu), dw = -d\mu$)

$$0 \stackrel{!}{=} \frac{d}{d\mu} l(\mu, \Sigma, x_1, ..., x_n)$$

$$0 \stackrel{!}{=} -\sum_{i=1}^{n} \Sigma^{-1}(x_i - \mu) .$$

Finally, we use that Σ^{-1} is positive definite, so we can leave it out here and get

$$0 \stackrel{!}{=} n\mu - \sum_{i=1}^{n} x_i ,$$

which is solved for the MLE-estimate

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \ . \tag{4}$$

Secondly, we need to compute the derivative w.r.t Σ . To do that, we will need some results from mathematical classes. The following is used without prove:

• Cyclic permutations of a matrix product do not change the trace of it:

$$tr[ABC] = tr[CAB]$$

• The trace of a scalar is the scalar itself. In particular: the result of a quadratic form $x^T A x$ is a scalar, such that:

$$x^T A x = tr \left[x^T A x \right] = tr \left[x^T x A \right]$$

- $\frac{d}{dA}tr[AB] = B^T$
- $\frac{d}{dA} \ln |A| = A^{-T}$

As a first result of these assumptions, we can show, that

$$\frac{d}{dA}x^TAx = \frac{d}{dA}tr\left[x^TxA\right] = \left[xx^T\right]^T = xx^T \ .$$

We now got the tools to re-write the log-likelihood function in (3) to

$$l(\mu, \Sigma) = -\frac{nk}{2} \ln(2\pi) - \frac{n}{2} ln(|\Sigma|) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^T \Sigma (x_i - \mu)$$
$$= C + \frac{n}{2} ln(|\Sigma^{-1}|) - \frac{1}{2} \sum_{i=1}^{n} tr \left[(x_i - \mu)(x_i - \mu)^T \Sigma^{-1} \right]$$

for a constant C, and taking the derivative w.r.t Σ^{-1} yields

$$\frac{d}{d\Sigma^{-1}}l(\mu,\Sigma) = \frac{n}{2}\Sigma^{T} - \frac{1}{2}\sum_{i=1}^{n}(x_{i} - \mu)(x_{i} - \mu)^{T}$$

and plugging in $\hat{\mu}$ as an estimation of μ and setting equal to zero finally gives us

$$0 \stackrel{!}{=} \frac{d}{d\Sigma^{-1}} l(\hat{\mu}, \Sigma)$$
$$0 \stackrel{!}{=} \frac{n}{2} \Sigma^{T} - \frac{1}{2} \sum_{i=1}^{n} (x_i - \hat{\mu}) (x_i - \hat{\mu})^{T}$$

which is solved for the (biased) MLE estimate

$$\tilde{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T$$
(5)

1.1b)

Calling

We compute the prior probabilities of C1 and C2, using the following python code. We read the number of data points in each class and divide it by the sum of total data points in both classes.

```
import numpy as np
link1="../hw2/dataSets/densEst1.txt"
link2="../hw2/dataSets/densEst2.txt"
def get_lengths():
        11 = 0;
        12 = 0;
        for line in open(link1):
                11=11+1
        for line2 in open(link2):
                12=12+1
        return (11,12)
def get_priors(l1,l2):
        p_C1=11/(11+12)
        p_C2=12/(11+12)
        return(p_C1, p_C2)
lengths=get_lengths()
print(get_priors(lengths[0],lengths[1]))
```

we get the following results for the prior probabilities: p(C1) = 0.239 and p(C2) = 0.761.