GS. TA VĂN ĐĨNH

PHUONG PHÁP TÍNH

(Dùng cho các trường đại học kí thuật)
(Tái bản lần thứ 5)

NHÀ XUẤT BẢN GIÁO DỤC - 1999

Chương 1 SAI SỐ

§1.1. SAI SỐ TUYỆT ĐỐI VÀ SAI SỐ TƯƠNG ĐỐI

1. Sai số tuyệt đối

Trong tính gần đúng ta làm việc với các giá trị gần đúng của các đại lượng. Cho nên vấn để đầu tiên cần nghiên cứu, là vấn để sai số. Xét đại lượng đúng A có giá trị gần đúng là a. Lúc đó ta nói "a xáp xi A" và viết "a \approx A". Trị tuyệt đối |a-A| gọi là sai số tuyệt đối của a (xem là giá trị gần đúng của A). Vì nói chung ta không biết số đúng A, nên không tính được sai số tuyệt đối của a. Do đó ta tìm cách ước lượng sai số đó bằng số dương Δ_a nào đó lớn hơn hoặc bằng |a-A|:

$$|\mathbf{a} - \mathbf{A}| \leq \Delta_{\mathbf{a}} \tag{1.1}$$

Số dương Δ_a này gọi là sai số tuyệt đối giới hạn của a. Rỗ ràng nếu Δ_a đã là sai số tuyệt đối giới hạn của a thì mọi số $\Delta' > \Delta_a$ đều có thể xem là sai số tuyệt đối giới hạn của a. Vì vậy trong những điều kiện cụ thể người ta chọn Δ_a là số dương bé nhất có thể được thoả mãn (1.1).

Nếu số xấp xỉ a của A có sai số tuyệt đối giới hạn là Δ_a thì ta quy ước viết :

$$A = a \pm \Delta_a \tag{1.2}$$

với nghĩa của (1.1) tức là:

$$a - \Delta_a \le A \le a + \Delta_a \tag{1.3}$$

2. Sai số tương đối

Ti số :

$$\delta_a = \frac{\Delta_a}{|a|} \tag{1.4}$$

zọi là sai số tương đối giới hạn của a.

Ta suy ra :
$$\Delta_a = |a|\delta_a$$
 (1.5)

Các công thức (1.4) và (1.5) cho liên hệ giữa sai số tương lời và sai số tuyệt đối. Biết Δ_a thỉ (1.4) cho phép tính δ_a , biết δ_a thỉ (1.5) cho phép tính Δ_a .

Do (1.5) nên (1.2) cũng có thể viết:

$$A = a(1 \pm \delta_a) \tag{1.6}$$

Trong thực tế người ta xem Δ_a là sai số tuyệt đối và lúc đố a cũng gọi là sai số tương đối.

3. Chú thích

Sai số tuyệt đối không nói lên đầy đủ "chất lượng" của một ố xấp xi, "chất lượng" ấy được phản ánh qua sai số tương đối. ấy thí dụ : đo hai chiều dài A và B được a = 10m với $_{\rm a}=0{,}05{\rm m}$ và b = 2m với $\Delta_{\rm b}=0{,}05{\rm m}$. Rõ ràng phép đo A hực hiện "chất lượng" hơn phép đo B. Điều đó không phản nh qua sai số tuyệt đối vì chúng bằng nhau, mà qua sai số tơng đối :

§1.2. CÁCH VIẾT SỐ XẤP XỈ

1. Chữ số có nghĩa

Một số viết ở dạng thập phân có thể gồm nhiều chữ số, hưng ta chỉ kể các chữ số từ chữ số khác không đầu tiên tính chữ số có nghĩa, số 0,0207 cũng có ba chữ số có nghĩa.

2. Chữ số đáng tin

Mọi số thập phân đều có dạng :

$$a = \pm \sum \alpha_s 10^s \tag{1.7}$$

trong đó : $\alpha_{\rm s}$ là những số nguyên từ 0 đến 9, chẳng hạn số 65,807 viết :

$$65.807 = 6.10^{1} + 5.10^{0} + 8.10^{-1} + 0.10^{-2} + 7.10^{-3}$$

tức là có dạng (1.7) với :

$$\alpha_1 = 6$$
, $\alpha_0 = 5$, $\alpha_{-1} = 8$, $\alpha_{-2} = 0$, $\alpha_{-3} = 7$

Giả sử a là giá trị xấp xỉ của A với sai số tuyệt đối giới hạn Δ_a . Ta chú ý chữ số α_s . Nếu $\Delta_a \leq 0.5.10^s$ thì nói α_s là chữ số dáng tin, nếu $\Delta_a > 0.5.10^s$ thì nói α_s là chữ số dáng nghi.

Thí dụ: Cho a = 65,8274 với Δ_a = 0,0043 thì các chữ số 6, 5, 8, 2 là đáng tin, còn các chữ số 7, 4 là đáng nghi. Nếu Δ_a = 0,0067 thì các chữ số 6, 5, 8 là đáng tin còn các chữ số 2, 7, 4 là đáng nghi.

Rõ ràng nếu α_s là đáng tin thì tất cả những chữ số có nghĩa đứng ở bên trái nó cũng là đáng tin và nếu α_s là đáng nghi thì tất cả những chữ số có nghĩa ở bên phải nó cũng là đáng nghi.

3. Cách viết số xấp xỉ

Cho số a là giá trị xấp xỉ của A với sai số tuyệt đối giới hạn là Δ_a . Có hai cách viết số xấp xỉ a ; Cách thứ nhất là viết kèm theo sai số như ở công thức (1.2) hoặc (1.6). Cách thứ hai là viết theo quy ước : mọi chữ số có nghĩa là dáng tin. Một số viết theo cách thứ hai có nghĩa là nó có sai số tuyệt đối giới hạn không lớn hơn một nửa dơn vị ở hàng cuối cùng. Các bảng số cho sẵn như bảng lôgarit, v.v... thường in các số xấp :i theo quy ước này.

§1.3. SAI SỐ QUY TRÒN

1. Hiện tượng quy tròn số và sai số quy tròn

Trong tính toán khi gặp một số có quá nhiều chữ số dáng ighi người ta bỏ đi một vài chữ số ở cuối cho gọn, việc làm ló gọi là quy tròn số. Mỗi khi quy tròn một số người ta tạo a một sai số mới gọi là sai số quy tròn nó bằng hiệu giữa số tã quy tròn và số chưa quy tròn. Trị tuyệt đối của hiệu đó gọi à sai số quy tròn tuyệt đối. Quy tác quy tròn phải chọn sao cho sai số quy tròn tuyệt đối càng bé càng tốt, ta chọn quy tác sau đây: quy tròn sao cho sai số quy tròn tuyệt đối không lớn hơn một nửa đơn vị ở hàng được giữ lại cuối cùng, tức là 5 đơn vị ở hàng bỏ đi đầu tiên, cụ thể là, nếu chữ số bỏ đi đầu tiên ≥ 5 thì thêm vài chữ số giữ lại cuối cùng một đơn vị, còn nếu chữ số bỏ đi đầu tiên < 5 thì để nguyên chữ số giữ lai cuối cùng.

Thi du: Số 62,8274 quy tròn đến chữ số lẻ thập phân thứ ba (tức là giữ lại các chữ số từ đầu đến chữ số lẻ thập phân thứ ba) sẽ thành số 62,827; cũng số đó quy tròn đến chữ số lẻ thập phân thứ hai sẽ thành số 62,83; và cũng số đó quy tròn đến ba chữ số có nghĩa (tức là chỉ giữ lại ba chữ số có nghĩa) sẽ thành số 62,8.

2. Sai số của số đã quy tròn

Giả sử a là số xấp xỉ của số đúng A với sai số tuyệt đối giới hạn là Δ_a . Giả sử ta quy tròn a thành a' với sai số quy tròn tuyệt đối là θ_a , tức là

$$|\mathbf{a}' - \mathbf{a}| \le \theta_{\mathbf{a}},\tag{1.8}$$

Hãy tính sai số tuyệt đối giới hạn Δ_a , của a'. Ta có :

$$a' - A = a' - a + a - A$$

Do đó:

$$|a' - A| \le |a' - a| + |a - A| \le \theta_a, + \Delta_a$$

Vậy có thể lấy:

với

$$\Delta_{a}' = \Delta_{a} + \theta_{a}, \tag{1.9}$$

Rõ ràng $\Delta_{\rm a}$, > $\Delta_{\rm a}$ tức là việc quy tròn số làm tăng sai số tuyệt đối giới hạn.

3. Ánh hưởng của sai số quy tròn

Xét một thí dụ. Áp dụng công thức nhị thức Niutơn (Newton) ta có công thức đúng :

$$(\sqrt{2} - 1)^{10} = 3363 - 2378\sqrt{2}$$

$$\sqrt{2} = 1.41421356...$$
(1.10)

Bây giờ ta tính hai vế của (1.10) bằng cách thay $\sqrt{2}$ bởi các số quy tròn (xem bảng 1.1) :

Bảng 1.1

$\sqrt{2}$	V é trái	Vế phải		
1.4	0,0001048576	33,8		
1.41	0,00013422659	10,02		
1,414	0,000147912	0,508		
1.41421	0,00014866399	0,00862		
1.414213563	0,00014867678	0,0001472		

Sự khác biệt giữa các giá trị tính ra của hai vế chứng tỏ rằng sai số quy tròn có thể có những tác dụng rất đáng ngại trong các quá trình tính toán.

§1.4. CÁC QUY TẮC TÍNH SAI SỐ

1. Mở đầu

Xét hàm số u của hai biến số x và y:

$$\mathbf{u} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \tag{1.11}$$

Cho biết sai số về x và y, hãy lập công thức tính sai số về u.

Để tránh nhằm lẫn trước hết ta nhắc lại ý nghĩa của cac tý hiệu :

Δx, Δy, Δu chỉ các số gia của x, y, u.

dx, dy, du chỉ các vi phân x, y, u.

 $\Delta_x,~\Delta_y,~\Delta_u$ lại là các sai số tuyệt đối của x, y, u. The right a (1.1) ta luôn có :

$$|\Delta \mathbf{x}| \leq \Delta_{\mathbf{x}}; |\Delta \mathbf{y}| \leq \Delta_{\mathbf{y}}$$
 (1.12)

Ta phải tìm $\Delta_{\mathbf{u}}$ để có $|\Delta \mathbf{u}| \leq \Delta_{\mathbf{u}}$.

2. Sai số của tổng u = x + y

Ta có : $\Delta u = \Delta x + \Delta y$

Ta suy ra $|\Delta \mathbf{u}| \leq |\Delta \mathbf{x}| + |\Delta \mathbf{y}|$

Do đó theo (1.12) ta có:

$$|\Delta \mathbf{u}| \leq \Delta_{\mathbf{x}} + \Delta_{\mathbf{y}}$$

Ta chọn : $\Delta_{x+y} = \Delta_x + \Delta_y$

lể có $|\Delta u| \leq \Delta_u$. Vậy **có quy tắc** : Sai số tuyệt đối (giới hạn) **củ**a một tổng bằng tổng các sai

(1.13)

ố tuyệt đối (giới hạn) của các số hạng.
 Chú thích. Xét trường hợp u = x - y với x và y cùng dấu.
 úc đó :

$$\delta_{\rm u} = \frac{\Delta_{\rm u}}{|{\bf u}|} = \frac{\Delta_{\rm x} + \Delta_{\rm y}}{|{\bf x} - {\bf v}|}$$

Cho nên nếu |x - y| rất bé thì sai số tương đối giới hạn ất lớn. Do đó trong tính toán người ta tìm cách tránh phải rừ các số gần nhau.

3. Sai số của tích u = xy

Ta co : $\Delta u \approx du = ydx + xdy \approx y\Delta x + x\Delta y$

$$|\Delta \mathbf{u}| \le |\mathbf{y}| |\Delta \mathbf{x}| + |\mathbf{x}| |\Delta \mathbf{y}| \le |\mathbf{y}| \Delta_{\mathbf{x}} + |\mathbf{x}| \Delta_{\mathbf{y}}$$

Ta suy ra : $\Delta_u = |y| \Delta_x + |x| \Delta_y$

Do đổ:
$$\delta_{\mathbf{u}} = \frac{\Delta_{\mathbf{u}}}{|\mathbf{u}|} = \frac{|\mathbf{y}|\Delta_{\mathbf{x}} + |\mathbf{x}|\Delta_{\mathbf{y}}}{|\mathbf{x}\mathbf{y}|} = \frac{\Delta_{\mathbf{x}}}{|\mathbf{x}|} + \frac{\Delta_{\mathbf{y}}}{|\mathbf{y}|}$$
 tức là có: $\delta_{\mathbf{x}\mathbf{y}} = \delta_{\mathbf{x}} + \delta_{\mathbf{y}}$ (1.14)

Vậy có quy tắc : Sai số tương đối (giới hạn) của một tích bằng tổng các sai số tương đối (giới hạn) của các số hạng của tích. Đặc biệt ta có :

$$\delta_{\mathbf{v}} \mathbf{n} = \mathbf{n} \delta_{\mathbf{v}}$$
; n nguyên dương. (1.15)

4. Sai số của thương u = x/y, y ≠ 0

Tương tự như trường hợp tích ta có quy tắc:

Sai số tương đối của một thương bằng tổng các sai số tương đối của các số hạng :

$$\delta_{\mathbf{x}/\mathbf{v}} = \delta_{\mathbf{x}} + \delta_{\mathbf{v}} \tag{1.16}$$

5. Công thức tổng quát

Cho: $u = f(x_1, x_2, ..., x_n)$

ta có:
$$\Delta_{u} = \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_{i}} \right| \Delta_{x_{i}}$$
 (1.17)

và từ đó ta suy ra δ_{ij} theo định nghĩa (1.4).

Thi du: Tính sai số tuyệt đối (giới hạn) và sai số tương đối (giới hạn) của thể tích hình cầu:

$$V = \frac{1}{6} \pi d^3$$

nếu cho đường kính d = 3.7 ± 0.05 cm và $\pi = 3.14$.

Giải. Xem π và d là đối số của hàm V, theo (1.14) và (1.15) ta có :

$$\delta_{\rm V} = \delta_{\pi} + 3\delta_{\rm d}$$

$$\delta_{\pi} = 0,0016/3,14 = 0,0005$$

Suy ra : $\delta_{\nabla} = 0.0005 + 3.0.0135 = 0.04$

Mặt khác : $V = \frac{1}{6} \pi d^3 = 26.5 \text{ cm}^3$

Vây có : $\Delta_V = 26,5.0,04 = 1,06 \approx 1,1 \text{cm}^3$

 $V = 26.5 \pm 1.1$ cm³

§1.5. SAI SỐ TÍNH TOÁN VÀ SAI SỐ PHƯƠNG PHÁP

1. Mở đầu

Khi giải gần đúng một bài toán phức tạp ta phải thay bài oán đã cho bằng một bài toán đơn giản hơn có thể giải được hông qua việc thực hiện các phép tính thông thường bằng tay oặc trên máy tính điện tử. Phương pháp thay bài toán phức ựp bằng bài toán đơn giản như thế gọi là phương pháp gần ứng. Sai số do phương pháp gần đúng tạo ra gọi là sai số hương pháp. Để giải bài toán đơn giản ta phải thực hiện các hép tính thông thường, ta luôn luôn phải quy tròn các kết quả rung gian. Sai số tạo ra bởi tất cả các lần quy tròn như vậy ọi là sai số tính toán. Sai số cuối cùng là tổng hợp của hai pai sai số phương pháp và tính toán nói trên.

2. Thí dụ

a) Hãy tính tổng:

$$A = \frac{1}{1^3} - \frac{1}{2^3} + \frac{1}{3^3} - \frac{1}{4^3} + \frac{1}{5^3} - \frac{1}{6^3}$$

Giải. A là tổng của 6 phân số Ta có thể tính trực tiếp A nà không phải thay nó bằng một tổng đơn giản hơn. Vì vậy ở ây không có sai số phương pháp Để tính A ta hãy thực hiện

số quy tròn tương ứng :

$$\frac{1}{1^3} = \frac{1}{1} = 1,000 \text{ với } \theta_1 = 0$$

$$\frac{1}{2^3} = \frac{1}{8} = 0,125 \text{ với } \theta_2 = 0$$

$$\frac{1}{3^3} = \frac{1}{27} = 0,037 \text{ với } \theta_3 = 1.10^{-4}$$

$$\frac{1}{4^3} = \frac{1}{64} = 0,016 \text{ với } \theta_4 = 4.10^{-4}$$

$$\frac{1}{5^3} = \frac{1}{125} = 0,008 \text{ với } \theta_5 = 0$$

$$\frac{1}{6^3} = \frac{1}{216} = 0,005 \text{ với } \theta_6 = 4.10^{-4}$$

$$\text{Vây A} \approx \mathbf{a} = 1,000 - 0,125 + 0,037 - 0,016 + 0,008 - 0,005 = 0,899$$

$$|\mathbf{A} - \mathbf{a}| = \left| \left(\frac{1}{1^3} - 1 \right) - \left(\frac{1}{2^3} - 0,125 \right) + \left(\frac{1}{3^3} - 0,037 \right) - \left(\frac{1}{4^3} - 0,016 \right) + \left(\frac{1}{5^3} - 0,008 \right) - \left(\frac{1}{6^3} - 0,005 \right) \right|$$

$$|\mathbf{A} - \mathbf{a}| \leq \left| \frac{1}{1^3} - 1 \right| + \left| \frac{1}{2^3} - 0,125 \right| +$$

$$+ \left| \frac{1}{3^3} - 0.037 \right| + \left| \frac{1}{4^3} - 0.016 \right| + \left| \frac{1}{5^3} - 0.008 \right| +$$

$$+ \left| \frac{1}{6^3} - 0.005 \right| \le \theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \theta_6 = 9.10^{-4}$$

Do đó

a = 0,899 là giá trị gần đúng của A với sai số tính toán 9.10^{-4} :

Ta viết $A = 0.899 \pm 9.10^{-4}$ (1.18)

b) Hãy tinh đại lượng

$$B = \frac{1}{1^3} - \frac{1}{2^3} + \frac{1}{3^3} - \dots + (-1)^{n-1} \frac{1}{n^3} + \dots$$

 \mathfrak{S} i sai số tuyệt đối không vượt quá 5.10^{-3} .

Giải. Vế phải của B là một chuỗi số đan dấu hội tụ.

Do đó việc tính B là hợp lý. Nhưng vế phải là một "tổng vô ạn số hạng", ta không thể cộng hết số này đến số khác mãi ược. Do đó để tính B ta phải sử dụng một phương pháp gần úng, cụ thể là thay B bằng tổng của n số hạng đầu:

$$B_n = \frac{1}{1^3} - \frac{1}{2^3} + \dots + (-1)^{n-1} \frac{1}{n^3} + \dots$$

Bài toán tính B_n đơn giản hơn bài toán tính B. Lúc đó $B-B_n|$ là sai số phương pháp, và số n phải được chọn sao ho sai số phương pháp ấy cộng với sai số tính toán vẫn còn hỏ hơn 5.10^{-3} . Ta có :

$$|B - B_n| = \left| \frac{1}{(n+1)^3} - \frac{1}{(n+2)^3} + \dots \right| < \frac{1}{(n+1)^3}$$

(theo li thuyết về chuỗi số đan dấu). Với n = 6 ta thấy :

$$|B - B_6| < \frac{1}{7^3} = \frac{1}{343} < 3.10^{-3}$$

Ta chú ý rằng $B_6 = A$ đã tính ở trên (xem 1.18):

$$B_0 = A = 0.899 \pm 9.10^{-4}$$

Vậy có:

$$B - 0.899 = B - B_0 + A - 0.899$$

 $|B - 0.899| \le |B - B_0| + |A - 0.899|$
 $|B - 0.899| \le 3.10^{-3} + 9.10^{-4} < 4.10^{-3}$

Vậy ta đã tính được B $\approx 0{,}899$ với sai số tuyệt đối không vượt quá 4.10^{-3} :

$$B = 0.899 \pm 4.10^{-3}$$

sai số phương pháp và có phần của sai số tính toán, cho nên ta phải khéo phân bổ sao cho sai số cuối cùng nhỏ hơn sai số cho phép.

§1.6. PHŲ LŲC 1 SỰ ỔN ĐỊNH CỦA MỘT QUÁ TRÌNH TÍNH

1. Mở đầu

Xét một quá trình tính vô hạn (tức là gồm vô số bước) để tính ra một đại lượng nào đó. Ta nói quá trình tính là ổn định nếu sai số tính toán tức là các sai số quy tròn tích luỹ lại không tăng vô hạn.

Nếu sai số đó tăng vô hạn thì ta nói quá trình tính là không ổn định.

Rõ ràng nếu quá trình tính không ổn định thì không có hi vọng tính được đại lượng cần tính với sai số nhỏ hơn sai số cho phép. Cho nên trong tính toán kị nhất là các quá trình tính không ổn định.

Để kiểm tra tính ổn định của một quá trình tính thường người ta giả sử sai số chỉ xảy ra tại một bước, sau đó các phép tính đều làm đúng không có sai số, nếu cuối cùng sai số tính toán không tăng vô hạn thì xem như quá trình tính là ổn định.

2. Thí du

Xét quá trình tính

$$\mathbf{y_{i+1}} = \mathbf{q}\mathbf{y_i},\tag{1.19}$$

yo và q cho trước.

Giả sử tại bước i xác định nào đó khi tính y_i ta phạm một sai số δ_i (đây không phải là kí hiệu của sai số tương đối như trước đây), nghĩa là thay cho y_i ta chỉ thu được \tilde{y}_i với :

$$|\tilde{\mathbf{y}}_i - \mathbf{y}_i| = \delta, \ \delta > 0 \tag{1.20}$$

$$\tilde{\mathbf{y}}_{i+1} = \mathbf{q}\tilde{\mathbf{y}}_{i} \tag{1.21}$$

Lấy (1.21) trừ (1.19) vế với vế ta được :

$$\tilde{\mathbf{y}}_{i+1} - \mathbf{y}_{i+1} = \mathbf{q}\tilde{\mathbf{y}}_{i} - \mathbf{q}\mathbf{y}_{i}$$
$$\tilde{\mathbf{y}}_{i+1} - \mathbf{y}_{i+1} = \mathbf{q}(\tilde{\mathbf{y}}_{i} - \mathbf{y}_{i})$$

Tiếp theo ta có:

$$\tilde{y}_{i+2} = q\tilde{y}_{i+1}$$

$$y_{i+2} = qy_{i+1}$$

Bảng phép trừ như trên ta lại có:

$$\widetilde{y}_{i+2} - y_{i+2} = q(\widetilde{y}_{i+1} - y_{i+1})$$

$$= q^2 (\widetilde{y}_i - y_i)$$

Một cách tổng quát ta có:

$$\begin{split} \widetilde{y}_{i+n} - y_{i+n} &= q^{n} (\widetilde{y}_{i} - y_{i}) \\ |\widetilde{y}_{i+n} - y_{i+n}| &= |q|^{n} |\widetilde{y}_{i} - y_{i}| \end{split}$$

Như vậy, nếu ở bước i ta mắc một sai số $|\tilde{y} - y_i| = \delta$ và au đó mọi phép tính đều làm đúng thì ở bước i + n ta sẽ mắc sai số :

$$|\tilde{y}_{i+n} - y_{i+n}| = |q|^n \delta$$

Ta thấy có hai trường hợp cần phân biệt :

1) Trường hợp $|q| \le 1$ - lúc đó $|q|^n \le 1$ nên sai số

$$|\tilde{y}_{i+n} - y_{i+n}| \le \delta \text{ với mọi n}$$

ighĩa là sai số tính toán bị chặn (không tăng vô hạn). Vậy quá rình tính ổn định. $|q|^n \to \infty$ khi $n \to \infty$, nên sai số

$$|\tilde{y}_{i+n} - y_{i+n}| \rightarrow \infty \text{ khi } n \rightarrow \infty$$

Vậy quá trình tính không ổn định.

Trong thực tế, mặc dù quá trình tính là vô hạn, người ta cũng chỉ làm một số hữu hạn bước, nhưng vẫn phải đòi hỏi quá trình tính ổn định mới hi vọng với một số hữu hạn bước có thể đạt được mức độ chính xác mong muốn.

BÀI TẬP

1. Khi đo một số góc ta được các giá trị sau :

$$a = 21^{\circ}37'3''; b = 1^{\circ}10''$$

Hãy tính sai số tương đối của các số xấp xỉ đó biết rằng sai số tuyệt đối trong các phép đo là 1".

2. Hãy xác định sai số tuyệt đối của các số xấp xỉ sau đây cho biết sai số tương đối của chúng:

$$a = 13267$$
; $\delta_a = 0.1\%$ $\delta_b = 2.32$; $\delta_b = 0.7\%$

3. Hãy xác định số các chữ số đáng tin trong các số a với sai số tuyệt đối như sau :

a)
$$a = 0.3941$$
; $\Delta_a = 0.25.10^{-2}$
b) $b = 38.2543$; $\Delta_b = 0.27.10^{-2}$

4. Hãy xác định số những chữ số đáng tin trong các số a với sai số tương đối như sau :

a)
$$a = 1,8921$$
; $\delta_a = 0,1.10^{-2}$
b) $a = 22,351$; $\delta_a = 0,1$

, co nghĩa dang tin và xác định sai số tuyệt đối Δ và sai số tơng đối δ của chúng:

a) 2.1514:

- b) 0,16152;
- c) 0.01204:
- d) -0.0015281.

6. Hãy xác định giá trị của hàm số dưới đây cùng với sai 5 tuyệt đối và sai số tương đối ứng với những giá trị của các ối số cho với mọi chữ số có nghĩa đều đáng tin :

- a) $u = ln(x + y^2)$; x = 0.97; y = 1.132
- b) $u = (x + y^2)/z$; x = 3.28; y = 0.932; z = 1.132.
- 7. Tính tổng S sau đây với ba chữ số lẻ thập phân đáng tin:

$$S = \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \frac{1}{17}$$

8. Tính số e:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!} + ...$$

ới sai số tuyệt đối không quá 10^{-4}

Trá lời

- 1. $\delta_a = 0.13 \cdot 10^{-4}$; $\delta_b = 0.28 \cdot 10^{-3}$ 2. $\Delta_a = 0.13 \cdot 10^2$
- 2. $\Delta_a = 0.13.10^2$; $\Delta_b = 0.16.10^{-1}$
- 3. a) 2; b) 4.
- 4. a) 3; b) 1.
- **5.** a) 2,15; $\Delta = 0.14.10^{-2}$; $\delta = 0.65.10^{-3}$
 - b) $0{,}162$; $\Delta = 0{,}48.10^{-3}$; $\delta = 0{,}3.10^{-2}$
 - c) 0.0120; $\Delta = 0.4.10^{-4}$; $\delta = 0.33.10^{-2}$
 - d) -0.00153; $\Delta = 0.19.10^{-5}$; $\delta = 125.10^{-2}$
- **6.** a) $\mathbf{u} = 0.81$; $\Delta_{\mathbf{u}} = 0.27.10^{-2}$; $\delta_{\mathbf{u}} = 0.33.10^{-2}$
 - b) u = 3,665; $\Delta_{ij} = 0,7.10^{-2}$; $\delta_{ij} = 0,20.10^{-2}$
- 7. S = 0.511.
- 8. $e = 2,7182 \pm 0,0001$.

Chương 2

TÍNH GẦN ĐÚNG NGHIỆM THỰC CỦA MỘT PHƯƠNG TRÌNH

§2.1. NGHIỆM VÀ KHOẢNG PHÂN LI NGHIÊM

1. Nghiệm thực của phương trình một ẩn

Xét phương trình một ẩn:

$$f(\mathbf{x}) = 0 \tag{2.1}$$

trong đó : f là một hàm số cho trước của đối số x.

Nghiệm thực của phương trình (2.1) là số thực α thỏa mãn (2.1) tức là khi thay α vào x ở vế trái ta được :

$$\mathbf{f}(\alpha) = 0 \tag{2.2}$$

2. Ý nghĩa hình học của nghiệm

Ta vẽ đồ thị của hàm số:

$$y = f(x) \tag{2.3}$$

trong một hệ tọa độ vuông góc Oxy (hình 2-1). Giả sử đổ thị cắt trục hoành tại một điểm M thì điểm M này có tung độ y=0 và hoành độ $x=\alpha$. Thay chúng vào (2.3) ta được :

$$0 = f(\alpha) \tag{2.4}$$

Hinh 2-1

Vậy hoành độ α của giao liểm M chính là một nghiệm ủa (2.1)

Trước khi vẽ đồ thị ta cũng số thể thay phương trình (2.1) rằng phương trình tương lương:

$$g(x) = h(x) \tag{2.5}$$

rồi vẽ đồ thị của hai hàm số (hình 2-2)

$$y = g(x),$$

$$y = h(x)$$
 (2.6)

Hình 2-2

Giả sử hai đồ thị ấy cắt nhau tại điểm M có hoành độ $x=\alpha$ thì ta có :

$$g(\alpha) = h(\alpha) \tag{2.7}$$

Vậy hoành độ α của giao điểm M của hai đổ thị (2.6) chính là một nghiệm của (2.5), tức là của (2.1).

3. Sự tồn tại nghiệm thực của phương trình (2.1)

Trước khi tìm cách tính gần đúng nghiệm thực của phương rình (2.1) ta phải tự hỏi xem nghiệm thực ấy có tồn tại hay không. Để trả lời ta có thể dùng phương pháp đổ thị ở mục 2 trên. Ta cũng có thể dùng định lí sau:

Định lí 2.1 – Nếu có hai số thực a và b (a < b) sao cho (a) và f(b) trái dấu tức là

$$f(\mathbf{a}).f(\mathbf{b}) < 0 \tag{2.8}$$

tổng thời f(x) liên tục trên [a, b] thì ở trong khoảng [a, b] có t nhất một nghiệm 'hực của phương trình (2.1).

Điều đó có thể minh họa trên đổ thị (hình 2-3). Đổ thị của hàm số y = f(x) tại $a \le x \le b$ là một đường liên nối hai điểm A và B, A ở dưới, B ở trên trục hoành, nên phải cắt trục hoành tại ít nhất một điểm ở trong khoảng từ a đến b. Vậy phương trình (2.1) có ít nhất một nghiệm ở trong khoảng [a, b].

Hình 2-3

4. Khoảng phân li nghiệm (còn gọi là khoảng tách nghiệm)

Định nghĩa 2.1 - Khoảng [a, b] nào đó gọi là khoảng phân li nghiệm của phương trình (2.1) nếu nó chứa một và chỉ một nghiệm của phương trình đó.

Để tìm khoảng phân li nghiệm ta có định lí:

Định lí 2.2 - Néu [a, b] là một khoảng trong đó hàm số f(x) liên tục và đơn điệu, đồng thời f(a) và f(b) trái dấu, tức là có (2.8) thì [a, b] là một khoảng phân li nghiệm của phương trình (2.1).

Điều này có thể minh họa bằng đồ thị (hình 2-4).

Đổ thị của hàm số y = f(x) cắt trục hoành tại một và chỉ một điểm ở trong [a, b]. Vậy [a, b] chứa một và chỉ một nghiệm của phương trình (2.1).

Nếu f(x) có đạo hàm thì điều kiện đơn điệu có thể thay bằng điều kiện không đổi dấu của đạo hàm vì đạo hàm không đổi dấu thì hàm số đơn điệu. Ta có:

Dinh li 2.3 – Néu [a, b] là một khoảng trong đó hàm f(x) liên tục, đao hàm f'(x) không đối

Hinh 2-4

ấu và f(a), f(b) trái dấu thì [a, b] là một khoảng phân li ghiệm của phương trình (2.1).

Muốn tìm các khoảng phân li nghiệm của phương trình (2.1) nường người ta nghiên cứu sự biến thiên của hàm số y = f(x) 5i áp dụng định lí 2.3.

5. Thí dụ

Cho phương trình

$$f(x) = x^3 - x - 1 = 0 (2.9)$$

Hãy chứng tỏ phương trình này có nghiệm thực và tìm hoảng phân li nghiệm.

Gidi: Trước hết ta xét sự biến thiên của hàm số f(x). Nó ác định và liên tục tại mọi x, đồng thời

$$f'(x) = 3x^2 - 1 = 0 \text{ tai } x = \pm \frac{1}{\sqrt{3}}$$

Ta suy ra bảng biến thiên

	 − ∞		$-1/\sqrt{3}$		1/√3		+ ∞
'(x)		+.	0	-	0	+	
(x)	- & -		. M		• m —		→ +∞
ong	16: M =	$f\left(-\frac{1}{\sqrt{3}}\right)$	·) =	$\frac{1}{8\sqrt{3}} + \frac{1}{8}$	$\frac{1}{\sqrt{3}} - 1 <$	< 0	٠

Vậy đổ thị cắt trục hoành ại một điểm duy nhất (h. 2-5), o đó phương trình (2.9) có nột nghiệm thực duy nhất, kí liệu nó là α .

Ta tính thêm

$$f(1) = 1^3 - 1 - 1 < 0$$

$$f(2) = 2^3 - 2 - 1 > 0$$

Vậy khoảng [1, 2] chứa nghiệm của phương trình (2.9).

Hinh 2-5

Nhưng vi phương trình này chỉ có một nghiệm nên chính nghiệm ấy phân li ở trong [1, 2].

Tóm lại, phương trình (2.9) có một nghiệm, thực duy nhất α , phân li ở trong khoảng [1, 2].

§2.2. PHƯƠNG PHÁP CHIA ĐỔI

1. Mô tả phương pháp

Xét phương trình (2.1) với giả thiết nó có nghiệm thực α đã phân li ở trong khoảng [a, b].

Ta tìm cách thu nhỏ dần khoảng phân li nghiệm bằng cách chia đôi liên tiếp các khoảng phân li nghiệm đã tìm ra. Trước hết ta chia đôi khoảng [a, b], điểm chia là c = (a + b)/2. Rỗ ràng khoảng phân li nghiệm mới sẽ là [a, c] hay [c, b]. Ta tính f(c). Nếu f(c) = 0 thì c chính là nghiệm đúng α . Thường thì $f(c) \neq 0$. Lúc đó ta so sánh dấu của f(c) với dấu của f(a) để suy ra khoảng phân li nghiệm thu nhỏ. Nếu f(c) trái dấu f(a) thì khoảng phân li nghiệm thu nhỏ là [a, c]. Nếu f(c) cùng dấu f(a) thì khoảng phân li nghiệm thu nhỏ là [c, b]. Như vậy sau khi chia đôi khoảng [a, b] ta được khoảng phân li nghiệm thu nhỏ là [a, c] hay [c, b], kí hiệu là $[a_1, b_1]$, nó nằm trong [a, b] và chỉ dài bằng nửa khoảng [a, b] tức là :

$$b_1 - a_1 = \frac{1}{2} (b - a).$$

Tiếp tục chia đôi khoảng $[a_1, b_1]$ và làm như trên ta sẽ được khoảng phân li nghiệm thu nhỏ mới, kí hiệu là $[a_2, b_2]$, nó nằm rong $[a_1, b_1]$ tức là trong [a, b] và chỉ dài bằng nửa khoảng $[a_1, b_1]$:

$$b_2 - a_2 = \frac{1}{2} (b_1 - a_1) = \frac{1}{2^2} (b - a)$$

Lặp lại việc làm trên đến lần thứ n ta được khoảng phân li nghiệm thu nhỏ thứ n, kí hiệu là $[a_n, b_n]$, nó nằm trong [a, b] và chỉ dài bằng $1/2^n$ của [a, b]:

$$a_n \le \alpha \le b_n$$
; $b_n - a_n = \frac{(b-a)}{2^n}$

Vậy có thể lấy $\mathbf{a_n}$ làm giá trị gần đúng của α , lúc đó sai số là :

$$|\alpha - a_n| \le b_n - a_n = \frac{(b-a)}{2^n}$$
 (2.10)

cũng có thể lấy b_n làm giá trị gần đúng của α , lúc đó sai số là :

$$|\alpha - b_n| \le b_n - a_n = \frac{(b-a)}{2^n}$$
 (2.11)

Do đó với n đủ lớn, a_n hay b_n đều đủ gần α .

Khi n $\rightarrow \infty$ thì $a_n \rightarrow \alpha$, $b_n \rightarrow \alpha$. Nên ta nói phương pháp chia đôi *hôi tu*.

Chú thích: Trong quá trình chia đôi liên tiếp rất có thể gặp một điểm chia tại đó giá trị của f bằng không. Lúc đó ta được nghiệm đúng: hoành độ của điểm chia đó.

2. Thí dụ

Xét phương trình (2.9)

Ta đã chứng minh rằng phương trình này chỉ có một nghiệm thực α đã phân li ở trong khoảng [1, 2]. Vậy:

$$\alpha \in [1, 2] \text{ và } f(1) = 1 - 1 - 1 < 0$$

$$f(2) = 2^3 - 2 - 1 > 0$$

Ta chia đôi khoảng [1, 2] điểm chia là 3/2.

$$f\left(\frac{3}{2}\right) = \left(\frac{3}{2}\right)^2 - \frac{3}{2} - 1 > 0$$
 trái dấu f(1). Vậy $\alpha \in [1, 3/2]$.

Ta chia đôi khoảng [1, 3/2], điểm chia là 5/4. Ta có f(5/4) < 0, cùng dấu với f(1). Vậy $\alpha \in [5/4, 3/2]$.

Ta chia đôi khoảng [5/4, 3/2], điểm chia là 11/8. Ta cố f(11/8) > 0, trái dấu f(5/4). Vậy $\alpha \in [5/4, 11/8]$.

Ta chia đôi khoảng [5/4, 11/8], điểm chia là 21/16. Ta có f(21/16) < 0, cùng dấu với f(5/4). Vây $\alpha \in [21/16, 11/8]$.

Ta chia đôi khoảng [21/16, 11/81], điểm chia là 43/32. Ta có f(43/32) > 0, trái dấu f(21/16). Vậy $\alpha \in [21/16, 43/32]$.

Ta dừng quá trình chia đôi tại đây và lấy 21/16 = 1,3125 hay 43/32 = 1,34375 làm giá trị gần đúng của α thì sai số không vượt quá $1/2^5 = 1/32 = 0,03125$.

Vì ta đã chia đôi 5 lần và độ dài khoảng [1, 2] là 2-1=1, (xem công thức (2.10) và (2.11)).

3. Sơ đồ tóm tắt phương pháp chia đôi

- 1) Cho phương trình f(x) = 0.
- 2) Ấn định sai số cho phép ε .
- 3) Xác định khoảng phân li nghiệm [a, b]

§2.3. PHƯƠNG PHÁP LẮP

1. Mô tả phương pháp

Xét phương trình (2.1) với giả thiết nó có nghiệm thực α phân li ở trong khoảng [a, b];

Trước hết ta chuyển phương trình (2.1) về dạng tương đương:

$$\mathbf{x} = \boldsymbol{\varphi}(\mathbf{x}) \tag{2.12}$$

Sau đó ta chọn một số \mathbf{x}_0 nào đó \in [a, b] làm xấp xi đầu rồi tính dần dãy số \mathbf{x}_n theo quy tác :

$$x_n = \varphi(x_{n-1}), \quad n = 1, 2...$$
 (2.13)

$$\mathbf{x}_0$$
 cho trước $\in [\mathbf{a}, \mathbf{b}]$ (2.14)

Quá trình tính này có tính lặp đi lặp lại nên phương pháp $\dot{\sigma}$ đây gọi là phương pháp lặp, hàm φ gọi là hàm $l\ddot{\sigma}p$.

2. Sự hội tụ

Dịnh nghĩa 2.2 – Nếu xây $x_n \rightarrow \alpha$ khi $n \rightarrow \infty$ thì ta nói vhương pháp lặp (2.13) (2.14) hội tụ.

Khi phương pháp lặp hội tụ thì \mathbf{x}_n càng gần α nếu n càng lớn. Cho nên ta có thể xem \mathbf{x}_n với n xác định là giá trị gần đúng của α . Nếu phương pháp lặp không hội tụ thì \mathbf{x}_n có thể rất xa α . Vì vậy chỉ có phương pháp lặp hội tụ mới có giá trị. Để kiểm tra xem một phương pháp lặp có hội tụ hay không ta có định lí sau :

Định li 2.4 - Xét phương pháp lặp (2.13) (2.14) giả sử

- 1) [a, b] là khoảng phân li nghiệm α của phương trình (2.1) tức là của (2.12) ;
 - 2) Mọi x_n tính theo (2.13) (2.14) đều \in [a, b] :
 - 3) Hàm $\varphi(x)$ có đạo hàm thỏa mãn

$$|\varphi'(\mathbf{x})| \le q < 1, a < \mathbf{x} < b$$
 (2.15)

trong đó q là một hàng số.

Thế thi phương pháp lập (2.13) (2.14) hôi tu :

$$\mathbf{x}_{\mathbf{n}} \to \alpha \ khi \ \mathbf{n} \to \infty$$
 (2.16)

Chứng minh : Trước hết vì α là nghiệm của (2.12) nên có $\alpha = \varphi(\alpha)$

Dem đẳng thức này trừ (2.13) vế với vế ta được:

$$\alpha - x_n = \varphi(\alpha) - \varphi(x_{n-1}) \tag{2.17}$$

Ta sẽ áp dụng công thức Lagrangio vào vế phải của đẳng thức trên.

Trước hết ta nhắc lại công thức Lagrangio:

Công thức Lagrangio - Cho hàm số F(x) liên tục trên [a, b], có đạo hàm trong (a, b) thì tồn tại số $c \in (a, b)$, tức $l\dot{a} c = a + \theta(b - a), 0 < \theta < 1 sao cho$

$$F(b) - F(a) = F'(c)(b - a)$$
 (2.18)

Áp dụng công thức Lagrangio vào (2.17) ta được

$$\alpha - \mathbf{x}_{n} = \varphi'(\mathbf{c})(\alpha - \mathbf{x}_{n-1}) \tag{2.19}$$

với $c = a + \theta(\alpha - x_{n-1}) \in (a, b)$

Theo giả thiết (2.15) ta có $|\varphi'(c)| \le q < 1$. Do đó (2.19) cho:

$$|\alpha - \mathbf{x}_n| = |\varphi'(\mathbf{c})| |\alpha - \mathbf{x}_{n-1}| \leq q |\alpha - \mathbf{x}_{n-1}|$$

Vậy có : $|\alpha - \mathbf{x}_n| \le q |\alpha - \mathbf{x}_{n-1}|$

Bất đẳng thức này đúng với mọi n. Do đó có:

$$|\alpha - \mathbf{x}_{n}| \le q |\alpha - \mathbf{x}_{n-1}|$$

 $|\alpha - \mathbf{x}_{n-1}| \le q |\alpha - \mathbf{x}_{n-2}|$

 $|\alpha - \mathbf{x}_2| \leq q |\alpha - \mathbf{x}_1|$ and probabilities $|\alpha - \mathbf{x}_1| \leq \mathbf{q} |\alpha - \mathbf{x}_0|$

and the second second second

----- one saw was since may to tot to la union.

$$|\alpha - \mathbf{x}_{\mathbf{n}}| \leq q^{\mathbf{n}} |\alpha - \mathbf{x}_{\mathbf{o}}| \tag{2.20}$$

Vì \mathbf{x}_0 và α đã xác định, $\mathbf{q}^n \to 0$ khi $\mathbf{n} \to \infty$ do chỗ $0 < \mathbf{q} < 1$, nên vế phải $\to 0$ và ta có :

$$|\alpha - \mathbf{x}_n| \to 0 \text{ khi } n \to \infty$$

Đó chính là kết luận (2.16) của định lí 2.4.

3. Chú thích

Khi hàm φ đã thỏa mãn giả thiết 3) của định lí 2.4 thì sự thỏa mãn giả thiết 2) phụ thuộc việc chọn \mathbf{x}_0 và nó thỏa mãn trong điều kiện sau : Giả sử $|\varphi'(\mathbf{x})| \leq q < 1$.

Néu $\varphi'(x) > 0$ ta có thể chọn $x_0 \in [a, b]$ một cách bất kì, còn néu $\varphi'(x) < 0$ thì phải chọn x_0 theo quy tắc :

$$\mathbf{x}_{o} = \mathbf{a} \quad \mathbf{khi} \quad \mathbf{a} < \alpha < \frac{(\mathbf{a} + \mathbf{b})}{2}$$

$$\mathbf{x}_{o} = \mathbf{b} \quad \mathbf{khi} \quad \frac{(\mathbf{a} + \mathbf{b})}{2} < \alpha < \mathbf{b}$$
(2.21)

Muốn biết α thuộc nửa khoảng nào ta chỉ việc tính $\left(\frac{a+b}{2}\right)$ rồi so sánh dấu của nó với dấu của f(a).

4. Đánh giá sai số

Giả sử ta tính theo (2.13) (2.14) n lần và xem x_n là giá trị gần đúng của α . Khi đó sai số $|\alpha - x_n|$ có thể đánh giá bằng sông thức (2.20) và nhận xét $|\alpha - x_0| < b - a$:

$$|\alpha - \mathbf{x_n}| \leq q^n(b - a) \tag{2.22}$$

Nhưng công thức này thường cho sai số quá lớn so với thực tế.

Sau đây ta chứng minh một công thức đánh giá sai số sát ơn, áp dụng được cho nhiều trường hợp.

Dinh li 2.5. Xét phương trinn

$$F(x) = 0 (2.23)$$

có nghiệm $X\in [c,\ d]$ và \overline{X} là một số $\in [c,\ d]$ được xem là giá trị gần đúng của X. Lúc đó ta có :

$$|\overline{X} - X| \frac{|F(\overline{X})|}{m} \tag{2.24}$$

trong đó m là một số dương thỏa mãn :

$$|F'(x)| \ge m > 0, c < x < d$$
 (2.25)

Chứng minh : Theo giả thiết ta có F(X) = 0 nên có :

$$F(\overline{X}) = F(\overline{X}) = F(X)$$

Ap dung công thức Lagrangio (2.18) vào về phải ta được :

$$F(\overline{X}) = F'(\overline{C})(\overline{X} - X)$$

tron if $\overline{C} = X + \theta(\overline{X} - X) \in (c, d)$. Theo già thiết (2.25) ta có:

$$|F(\overline{X})| = |F'(\overline{C})||\overline{X} - X| = m|\overline{X} - X|$$

Từ đó ta suy ra kết luận (2.24).

Bây giờ ta áp dụng (2.24) để đánh giá sai số của phương pháp lặp (2.13) (2.14).

Với
$$F(x) = x - \varphi(x)$$
, $c = a$, $d = b$
 $X = \alpha$, $\overline{X} = x_n$

ta thu được

$$|\alpha - \mathbf{x}_{\mathsf{n}}| \leq \frac{|\mathbf{x}_{\mathsf{n}} - \varphi(\mathbf{x}_{\mathsf{n}})|}{\mathsf{m}} \tag{2.26}$$

trong đó m là một số dương thỏa mãn :

$$0 < m \le |(x - \varphi(x))'|, a < x < b$$

THEO RIG THIEL (ETTO) CHA MINH IN AT THE CO .

$$|(x - \varphi(x))'| = |1 - \varphi'(x)| \ge 1 - |\varphi'(x)| \ge 1 - q > 0$$

Măt khác:

$$\varphi(\mathbf{x}_n) - \mathbf{x}_n = \varphi(\mathbf{x}_n) - \varphi(\mathbf{x}_{n-1})$$
$$= \varphi'(\mathbf{c})(\mathbf{x}_n - \mathbf{x}_{n-1})$$

trong đó $c = x_{n-1} + \theta(x_n - x_{n-1}) \in (a, b).$

Do đó:

$$|\varphi(x_n) - x_n| = |\varphi'(c)| |x_n - x_{n-1}| \le q |x_n - x_{n-1}|$$

Vậy (2.26) trở thành:

$$|\alpha - x_n| \le \frac{q}{1-q} |x_n - x_{n-1}|$$
 (2.27)

Đây là một công thức đánh giá sai số thông qua những đại lượng vừa tính ra x_{n-1} và x_n .

5. Thí dụ

Xét phương trình 2.9 ở §2.1. Ta đã chứng minh được rằng nó có một nghiệm thực α phân li ở trong khoảng [1, 2]. Bây giờ ta dùng phương pháp lặp để tính gần đúng nghiệm α đó. Muốn thế trước hết ta phải tìm được hàm lặp $\varphi(\mathbf{x})$ thích hợp để phương pháp lặp hội tụ, tức là $\varphi(\mathbf{x})$ phải thỏa mãn những giả thiết của đinh lí 2.4.

Từ (2.9) ta có thể viết

$$\mathbf{x} = \mathbf{x}^3 - 1 \tag{2.28}$$

 $\mathbf{v}\mathbf{\hat{a}}\ \mathbf{d}\mathbf{\tilde{a}}\mathbf{t} \qquad \varphi(\mathbf{x}) = \mathbf{x}^3 - 1$

Nhưng lúc đó

$$\varphi'(x) = 3x^2 \ge 3$$
 tại mọi $x \in [1, 2]$

Với hàm φ chọn như vậy phương pháp lặp không có hi vọng tới tụ.

Bây giờ ta viết
$$(2.9)$$
 ở dạng :
$$x^3 = x + 1$$
$$x = (x + 1)^{1/3}$$
 và đặt
$$\varphi(x) = (x + 1)^{1/3} \qquad (2.29)$$
 Lúc đó $\varphi'(x) = \left(\frac{1}{3}\right)(x + 1)^{-2/3} = \left(\frac{1}{3}\right)\frac{1}{\sqrt[3]{(x + 1)^2}}$ Nên
$$0 < \varphi'(x) \frac{1}{3} \text{ tại mọi } x \in [1, 2]$$

Như vậy hàm $\varphi(\mathbf{x})$ cho bởi (2.29) thỏa mãn giả thiết của định lí 2.4. và chú thích ở công thức (2.21). Do đó để bắt đầu quá trình tính lặp ta chọn \mathbf{x}_0 là một số bất kì \in [1, 2] chẳng hạn $\mathbf{x}_0=1$. Sau đó ta tính \mathbf{x}_n theo công thức lặp (2.13). Dưới đây là một số giá trị \mathbf{x}_n xem là giá trị gần đúng của α cùng

với sai số đánh giá theo công thức (2.27) trong đó q = $\frac{1}{3}$

$$x_0 = 1$$
 $x_1 = 1,25992105$; $|\alpha - x_1| \le 0,13$
 $x_2 = 1,312293837$; $|\alpha - x_2| \le 0,027$
 $x_3 = 1,322353819$; $|\alpha - x_3| \le 0,005$
 $x_4 = 1,324268745$; $|\alpha - x_4| \le 0,00096$
 $x_5 = 1,324632625$; $|\alpha - x_1| \le 0,000182$

Kết quả này có quá nhiều chữ số đáng nghi. Ta quy tròn tó đến bốn chữ số lẻ thập phân bằng cách viết:

$$\alpha - 1,3246 = \alpha - x_5 + x_5 - 1,3246$$

$$|\alpha - 1,3246| \le |\alpha - x_5| + |x_5 - 1,3246|$$

$$|\alpha - 1,3246| \le 0,000182 + 0,00003265$$
Do dó
$$|\alpha - 1,3246| \le 0,00025$$
Vây có
$$\alpha = 1.3246 \pm 0,00025$$

So với phương pháp chia đôi thì phương pháp lặp ở đây hội : ụ nhanh hơn nhiều.

3 - PPT

6. Chú ý

Trong thực tế người ta dựng quá trình tính khi $|\mathbf{x}_n - \mathbf{x}_{n-1}| < \text{sai số cho phép } \epsilon$.

7. Tóm tắt phương pháp lặp

- 1) Cho phương trình f(x) = 0
- 2) Ấn định sai số cho phép E
- 3) Xác định khoảng phân li nghiệm [a, b]
- 4) Tìm hàm lặp hội tụ φ
- 5) Chọn xấp xi đầu x_o
- 6) Tinh

$$\mathbf{x}_{n} = \varphi(\mathbf{x}_{n-1})$$

$$\mathbf{n} = 1, 2, 3, \dots$$

cho tới khi $|x_n - x_{n-1}| < \varepsilon$ thì dùng

7) Kết quả $\alpha \approx x_n$

với sai số $|\alpha - x_n| \le \frac{q}{1-q} \varepsilon$ trong đó q là số dương < 1 thỏa mãn

 $|\varphi'(\mathbf{x})| \leq q < 1$ tai mọi $\mathbf{x} \in (\mathbf{a}, \mathbf{b}).$

§2.4. PHUONG PHÁP NIUTON (tiếp tuyến)

1. Mô tả phương pháp

Ý chủ đạo của phương pháp Niutơn là tìm cách thay phương trình (2.1), phi tuyến đối với x, bằng một phương trình gần đúng, tuyến tính đối với x.

Trước hết ta nhắc lại công thức Taylo : Công thức Taylo . Cho hàm số F(x) xác dịnh và có dạo hàm đến cấp n+1 tại

 \mathbf{x}_0 và ở lân cận \mathbf{x}_0 . Thể thì có công thức sau đây gọi là khai triển Taylo bậc n của $\mathbf{F}(\mathbf{x})$ tại \mathbf{x}_0 :

$$F(\mathbf{x}) = F(\mathbf{x}_{0}) + (\mathbf{x} - \mathbf{x}_{0})F'(\mathbf{x}_{0}) + \frac{(\mathbf{x} - \mathbf{x}_{0})^{2}}{2!}F''(\mathbf{x}_{0}) + \dots + \frac{(\mathbf{x} - \mathbf{x}_{0})^{n}}{n!}F^{(n)}(\mathbf{x}_{0}) + \frac{(\mathbf{x} - \mathbf{x}_{0})^{n+1}}{(n+1)!}\cdot F^{(n+1)}(\mathbf{c}), \quad (2.30)$$

$$\mathbf{c} = \mathbf{x}_{0} + \theta(\mathbf{x} - \mathbf{x}_{0}), \quad 0 < \theta < 1$$

Công thức này có giá trị tại x ở lân cận x_0 . Công thức (2.31) muốn nói rằng c là một số trung gian giữa x_0 và x.

Bây giờ xét phương trình (2.1) với giả thiết nó có nghiệm thực α phân li ở trong khoảng [a, b]. Giả sử hàm f có đạo hàm f'(x) \neq 0 tại x \in [a, b] đạo hàm cấp hai f''(x) tại x \in (a, b). Ta chọn $\mathbf{x_0} \in$ [a, b] rồi viết khai triển Taylo bậc nhất của f tại $\mathbf{x_0}$:

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{1}{2}(x - x_0)f''(c)$$

$$x \in [a, b], c = x_0 + \theta(x - x_0) \in (a, b).$$

Như vậy phương trình (2.1) viết:

$$f(x_0) + (x - x_0)f'(x_0) + \frac{1}{2}(x - x_0)^2 f''(c) = 0$$

Ta bỏ qua số hạng cuối cùng và được phương trình

$$f(x_0) + (x - x_0)f'(x_0) = 0 (2.32)$$

Như vậy, ta đã thay phương trình (2.1) bằng phương trình (2.32) đơn giản hơn nhiều vì (2.32) tuyến tính đối với x.

Đương nhiên việc thay thế đó chỉ là gần đúng. Gọi \mathbf{x}_1 là nghiệm của (2.32) ta có :

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
 (2.33)

Từ x_1 ta tính một cách tương tự ra x_2 , v.v... và một cách ng quát, khi đã biết x_n ta tính x_{n+1} theo công thức :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (2.34)

$$x_0$$
 chọn trước $\in [a, b]$ (2.35)

xem x_n là giá trị gần đúng của nghiệm a.

Phương pháp tính x_n theo (2.34) (2.35) gọi là phương pháp iuton.

Chú ý 1 - Vì phương trình (2.32) dùng để thay cho phương lình (2.1) là tuyến tính đối với x nên phương pháp Niton cũng si là phương pháp tuyến tính hóa.

 $Chú \circ 2$ – Nhìn (2.34) (2.35) ta thấy phương pháp Nitơn uộc loại phương pháp lặp với hàm lặp

$$\varphi(\mathbf{x}) = \mathbf{x} - \frac{\mathbf{f}(\mathbf{x})}{\mathbf{f}'(\mathbf{x})} \tag{2.36}$$

Chú ý 3 – Về mặt hình học thì $f(x_0)$ là hệ số góc của tiếp yến của đồ thị hàm y = f(x) tại x_0 . Xét một trường hợp thể.

Ta vẽ đồ thị trong hình 2-6. Cung đồ thị AB cát trục hoành i M có hoành độ chính là nghiệm α . Để tính gần đúng α ta ay một cách gần đúng cung AB bởi tiếp tuyến tại B, B có xành độ \mathbf{x}_0 , tiếp tuyến này cát

uc hoành tại P, P có hoành x_1 và ta xem x_1 là giá trị in dúng của α .

Để tính x_1 ta viết phương lình tiếp tuyến tại B : với $y_1 = b$ ta có :

$$Y - f(x_0) = f'(x_0) (X - x_0)$$

Tại P ta có $X = x_1, Y = 0,$ En có :

$$-f(x_0) = f'(x_0)(x_1 - x_0)$$

Hình 2-6

Từ đó ta suy ra (2.33). Cho nên phương pháp Niuton còn có tên là phương pháp tiếp tuyến.

2. Sư hội tu và sai số

Mục đích của ta là tính gần đúng α . Điều đó chỉ có thể thực hiện được bằng phương pháp Niutơn nếu $\mathbf{x}_{\mathbf{n}} \to \alpha$. Khi $\mathbf{n} \to \infty$. Ta có kết quả (không chứng minh) sau :

Dịnh lí 2.6. Giả sử [a, b] là khoảng phân li nghiệm α của phương trình (2.1), f có đạo hàm f', f'' với f và f' liên tục trên [a, b], f' và f'' không đổi đấu trong (a, b). Xấp xỉ đầu \mathbf{x}_0 chọn là a hay b sao cho $\mathbf{f}(\mathbf{x}_0)$ cùng dấu với f''. Khi đó \mathbf{x}_n tính bởi (2.34) (2.35) hội tụ về α khi n $\rightarrow \infty$, cụ thể hơn ta có \mathbf{x}_n đơn điệu tăng tới α nếu f'f'' < 0, \mathbf{x}_n đơn điệu giảm tới α nếu f'f'' > 0.

Dừng lại ở bước tính thứ n
 xác định, ta được \mathbf{x}_n và xem \mathbf{x}_n là giá trị gần đúng của α .

Về sai số, áp dụng định lí 2.5, ta có:

$$|\alpha - \mathbf{x}_n| \le \frac{|f(\mathbf{x}_n)|}{m} \tag{2.37}$$

với

$$0 < m \le |f'(x)|, \quad \alpha \le x \le b$$
 (2.38)

Ta không chứng minh định lí 2.6, nhưng minh họa nó bằng bốn hình vẽ (h. 2-7 a, b, c, d).

Hinh 2-7a

Hình 2-7b

Hinh 2-7c

Hình 2-7d

3. Thí du

1) Hãy tính căn bậc hai dương của một số dương a. Muón tế ta xét phương trình

$$f(x) = x^2 - a = 0 (2.39)$$

Rõ ràng nghiệm dương của phương trình (2.39) phân li ở ong khoảng [1, 3] chẳng hạn. Trong khoảng đó f'(x) = 2x > 0, '(x) = 2 > 0. Vậy ta có thể áp dụng định li 2.6. Công thức nh (2.34) viết:

$$\mathbf{x}_{n+1} = \frac{1}{2} \left(\mathbf{x}_n + \frac{\mathbf{a}}{\mathbf{x}_n} \right) \tag{2.40}$$

Với a = 2 ta có

 $f(2) = 2^2 - 2 > 0$ cùng dấu với f' nên ta chọn $x_0 = 2$. Với o ấy công thức tính (2.40) cho

$$x_1 = 1.5$$

 $x_2 = 1.417$
 $x_3 = 1.41421$

Vì $\sqrt{2} = 1,414213562$, nên ta thấy rõ phương pháp Niuton ội tụ rất nhanh.

2) Lại xét phương trình (2.9). Ta đã chúng minh được nó có nghiệm thực α phân li ở trong khoảng [1, 2]. Trong khoảng đó

$$f'(x) = 3x^2 - 1 \ge 3 - 1 = 2 > 0$$

 $f''(x) = 6x \ge 6 > 0$

Vậy có thể áp dụng định lí 2.6. Để chọn x_0 ta tính $f(2) = 2^3 - 2 - 1 = 5 > 0$ cùng dấu với f''.

Vậy chọn $x_0 = 2$. Do đó có công thức tính

$$x_{n+1} = x_n - \frac{x_n^3 - x_n - 1}{3x_n^2 - 1}$$

$$x_0 = 2$$

Sau đây là một số kết quả tính \mathbf{x}_n kèm theo sai số tính theo (2.37) :

Bång 2.1

n	x _n	sai số
0	2	
1	1,5454545	
2	1,359614916	· .
3	1,325801345	
4	1,324719049	0,0000024
5	1,324717950	2.10 ⁻¹⁰

4. Chú ý

Trong thực tế thường người ta dừng quá trình tính khi :

$$|\mathbf{x}_{n} - \mathbf{x}_{n-1}|$$
 < sai số cho phép ε .

- 5. Sơ đồ tóm tắt phương pháp tiếp tuyến
- 1) Cho phương trình f(x) = 0
- 2) Ấn định sai số cho phép ε
- 3) Tìm khoảng phân li nghiệm [a, b] trong đó f' và f" không đổi dấu.

4) Chọn xo để g(16) cũng dâu g'(14)

Sai số:

$$|\alpha - \mathbf{x}_1| \leq \frac{|f(\mathbf{x}_1)|}{m}$$

ong đó :

$$0 < m \le |f'(x)|, x \in (a, b).$$

§2.5. PHƯƠNG PHÁP DÂY CUNG

1. Mô tả phương pháp

Trong phương pháp Niutơn tức là phương pháp tiếp tuyến ở 2.4. Ta đã thay cung đổ thị AB của hàm y = f(x) bởi tiếp lyến vẽ tại A hay B. Bây giờ ta thay cung AB bởi dây cung B rồi lấy hoành độ x_1 của giao điểm P của dây cung với trục bành làm giá trị gần dúng của nghiệm α (hình 2-8).

Phương trình dây cung AB viết:

$$\frac{Y - f(a)}{f(b) - f(a)} = \frac{X - a}{b - a}$$

Tại giao điểm P ta có $Y = 0, X = x_1, \text{ nên có}$:

$$\frac{-f(a)}{f(b)-f(a)} = \frac{x_1-a}{b-a}$$

Từ đớ suy ra:

$$x_1 = a - \frac{(b-a)f(a)}{f(b) - f(a)}$$
 (2.41)

hay

$$x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$$
 (2.42)

Hình 2-8

Phương pháp tính x_1 như vậy gọi là phương pháp đây cung.

Sau khi tính được \mathbf{x}_1 ta có thể xét xem khoảng phân li nghiệm mới là $[\mathbf{a}, \mathbf{x}_1]$ hay $[\mathbf{x}_1, \mathbf{b}]$ rồi tiếp tục áp dụng phương pháp dây cung vào khoảng phân li nghiệm mới, nhỏ hơn khoảng cũ. Và cứ thế tiếp tục ta sẽ được các giá trị $\mathbf{x}_2, \mathbf{x}_3, ..., \mathbf{x}_4, ...$ ngày càng gần α . Sai số có thể tính bằng công thức (2.24).

2. Thí dụ

Lại xét phương trình (2.9). Khoảng phân li nghiệm đã biết là [1, 2].

Ta có:

$$a = 1$$
; $f(a) = f(1) = 1^3 - 1 - 1 = -1 < 0$
 $b = 2$; $f(b) = f(2) = 2^3 - 2 - 1 = 5 > 0$

Vây (2.42) cho:

$$x_1 = \frac{1.5 - 2.(-1)}{5 - (-1)} = 1,167$$

Tiếp tục ta có:

$$f(x_1) = -0.58 < 0$$

Vậy khoảng phân li nghiệm mới là [1,167; 2] Bây giờ áp dụng (2.42) với a=1,167 và b=2 Ta được:

$$x_2 = 1,253.$$

Sai số tính theo (2.24) là 0,15.

Ta thấy rằng phương pháp dây cung hội tụ chậm hơn phương pháp Niuton.

3. Sơ đồ tóm tắt phương pháp dây cung

- 1) Cho phương trình f(x) = 0
- 2) Ấn định sai số cho phép ϵ
- 3) Tìm khoảng phân li nghiệm [a, b]

4)

Sai số $|\alpha - x_1| < \frac{|f(x_1)|}{m}$ trong đó $0 < m < |f'(x)|, x \in (a, b)$

BÀI TẬP

1. Giải gần đúng phương trình :

$$x - \sin x = 0.25$$

bằng phương pháp lặp với kết quả có hai chữ số lẻ thập phân đáng tin.

Dùng phương pháp Niuton tính nghiệm dương của phương trình:

$$1.8x^2 - \sin 10x = 0$$

với sai số tuyệt đối không quá 10^{-5} .

- 3. Dùng phương pháp Niutơn tính gần đúng nghiệm của các phương trình sau với sai số tuyệt đối không quá 10⁻⁵
 - a) $x^2 \sin \pi x = 0$
- b) $x^2 \cos \pi x = 0$
- c) $2\log x \frac{x}{2} + 1 = 0$ d) $\log x \frac{1}{x^2} = 0$
- e) $x \log x 1.2 = 0$
- 4. Dùng phương pháp lặp hãy tính gần đúng nghiệm dương lớn nhất của phương trình :

$$x^3 - x - 1000 = 0$$

với sai số tuyệt đối không quá 10^{-5}

Trá lời

- 1. 1,17
- 2. $\alpha = 0.29810 \pm 0.00001$
- **3.** a) 0.0; 0.78724. b) -0.43843; 0.43843. c) 0.39754.

- d) 1,89665.
- e) 2,74065
- **4.** 10,03333.

Churong 3

TÍNH GẦN ĐÚNG NGHIỆM CỦA MỘT HỆ ĐẠI SỐ TUYỂN TÍNH

§3.1. MỞ ĐẦU

1. Dạng tổng quát của một hệ đại số tuyến tính

Một hệ đại số tuyến tính có thể có m phương trình n ẩn. Ở đây ta chỉ xét những hệ có n phương trình n ẩn:

trong đó : a_{ij} là hệ số của ẩn \mathbf{x}_j ở phương trình thứ i, \mathbf{f}_i là vế phải của phương trình thứ i. Giả sử đã biết \mathbf{a}_{ij} và \mathbf{f}_i ta phải tìm các ẩn \mathbf{x}_j .

Ma trận

$$A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$
(3.2)

gọi là ma trận hệ số của hệ (3.1). Các vectơ:

$$\mathbf{f} = \begin{vmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \dots \\ \mathbf{f}_n \end{vmatrix} \qquad \mathbf{x} = \begin{vmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_n \end{vmatrix}$$
 (3.3)

được gọi là vectơ về phải và vectơ ẩn của hệ. Sau này để tiết kiệm giấy, thay cho cách viết trên ta có thể viết.

$$f = (f_1, f_2, ..., f_n)^T, x = (x_1, x_2, ..., x_n)^T.$$

Biết rằng tích của ma trận A với vectơ x, viết là Ax, là một vectơ có tọa độ thứ i là :

$$(\mathbf{A}\mathbf{x})\mathbf{i} = \sum_{j=1}^{n} \mathbf{a}_{ij}\mathbf{x}_{j} ,$$

Đó chính là vế trái của phương trình thứ i của hệ (3.1).

Vậy hệ (3.1), có thể viết ở dạng vecto như sau:

$$Ax = f (3.4)$$

2. Sự tồn tại và duy nhất nghiệm của hệ

Gọi định thức của ma trận A là định thức của hệ, viết là Δ : $\Delta = \det$ (A). Nếu $\Delta = 0$ ta nói ma trận A suy biến và hệ (3.1), tức là (3.4) là suy biến.

Gọi Δ_i là định thức suy từ Δ bằng cách thay cột thứ i bởi cột vế phải. Ta có định lí sau :

Định li 3.1. (Crame) : Nếu $\Delta \neq 0$ tức là nếu hệ không suy biến thì hệ (3.1) có nghiệm duy nhất cho bởi công thức

$$\mathbf{x}_1 = \frac{\Delta_i}{\Delta}$$
, $i = 1, 2, ..., n$ (3.5)

3. Chú thích

Kết quả này rất gọn và rất đẹp về mặt lí thuyết nhưng tính nghiệm bằng công thức (3.5) rất đắt nghĩa là mất rất nhiều công, số các phép tính sơ cấp $(+,-,\times,:)$ cần thiết là vào cỡ (n+1) !n. Kí hiệu số đó là $N_C(n)$ ta có :

$$N_C(n) \approx (n+1)!n$$

Với n = 15 ta có $N_C(15) \approx 3.10^{14}$. Đây là một số *rất lớn*. Sau đây ta trình bầy một phương pháp khác *tiết kiệm* được công tính rất nhiều. Đó là phương pháp Gaoxo.

83.2. PHUONG PHÁP GAOXO (GAUSS)

1. Phương pháp Gaoxơ

Phương pháp Gaoxơ dùng cách khủ dần các ẩn để đưa hệ tã cho về một hệ có dạng tam giác trên rồi giải hệ tam giác trèn từ dưới lên trên, không phải tính một dịnh thức nào.

Lấy một thí dụ đơn giản : xét hệ

$$2x_1 + x_2 = 1$$
$$4x_1 + 6x_2 = 3$$

Khử x₁ khỏi phương trình thứ hai ta được

$$2x_1 + x_2 = 1$$
$$4x_2 = 1$$

Hệ này có dạng tam giác. Giải nó từ dưới lên ta được

$$x_2 = 0.25$$

 $x_1 = (1 - x_2)/2 = 0.375$

Ta thấy rằng bài toán cũng khá đơn giản. Nhưng nếu hệ có thiều phương trình nhiều ẩn thì vấn để trở nên phức tạp họn thiều.

Để trình bày phương pháp Gaoxơ cho dễ hiểu ta chỉ xét hệ sốm 3 phương trình 3 ẩn để suy ra các công thức tính, các công thức này suy rộng được cho trường hợp n phương trình nẩn.

Xét hệ:

$$\mathbf{a}_{11}\mathbf{x}_1 + \mathbf{a}_{12}\mathbf{x}_2 + \mathbf{a}_{13}\mathbf{x}_3 = \mathbf{a}_{14} \tag{3.6a}$$

$$\mathbf{a}_{21}\mathbf{x}_1 + \mathbf{a}_{22}\mathbf{x}_2 + \mathbf{a}_{23}\mathbf{x}_3 = \mathbf{a}_{24} \tag{3.6b}$$

$$\mathbf{a_{31}x_1} + \mathbf{a_{32}x_2} + \mathbf{a_{33}x_3} = \mathbf{a_{34}} \tag{3.6c}$$

Hệ tam giác mà ta mong muốn có dạng:

Các số hạng ở vế phải ta viết là a_{i4} và b_{i4} là cốt để viết ac công thức sau này tiện lợi.

Quá trình khử để đưa hệ (3.6) về dạng (3.7) gọi là quá trình uôi ; quá trình giải hệ (3.7) gọi là quá trình ngược.

2. Quá trình xuôi

Bước 1 : Khử x_1 . Giả sử a_{11} ở (3.6a) \neq 0 ta gọi nó là tru hứ nhất và chia phương trình (3.6a) cho a_{11} , ta được.

$$x_1 + a_{12}^{(1)} x_2 + a_{13}^{(1)} x_3 = a_{14}^{(1)}$$
 (3.8)

$$a_{lj}^{(1)} = \frac{a_{lj}}{a_{11}}, j = 2, 3, 4$$
 (3.9)

Ta dùng (3.8) để khử \mathbf{x}_1 khỏi các phương trình (3.6b) và 3.6c). Để khử \mathbf{x}_1 khỏi (3.6b), ta nhân (3.8) với \mathbf{a}_{21} (hệ số của \mathbf{a}_{31} \mathbf{a}_{32} \mathbf{a}_{33} \mathbf{a}_{34} \mathbf{a}_{34} \mathbf{a}_{34} \mathbf{a}_{34}

$$\mathbf{a}_{21}\mathbf{x}_1 + \mathbf{a}_{21}\mathbf{a}_{12}^{(1)}\mathbf{x}_2 + \mathbf{a}_{21}\mathbf{a}_{13}^{(1)}\mathbf{x}_3 = \mathbf{a}_{21}\mathbf{a}_{14}^{(1)}$$

Rối lấy phương trình (3.6b) trừ phương trình này ta được :

$$\mathbf{a}_{22}^{(1)}\mathbf{x}_2 + \mathbf{a}_{23}^{(1)}\mathbf{x}_3 = \mathbf{a}_{24}^{(1)}$$
 (3.10)

$$a_{2i}^{(1)} = a_{2j} - a_{2l}a_{ij}^{(1)}, j = 2, 3, 4$$
 (3.11)

Để khử x_1 khỏi (3.6c) ta cũng làm tương tự :

Nhân (3.8) với a_{31} (hệ số của x_1 ở (3.6c))

$$a_{31}x_1 + a_{31}a_{12}^{(1)}x_2 + a_{31}a_{13}^{(1)}x_3 = a_{31}a_{14}^{(1)}$$

lối lấy (3.6c) trừ phương trình này:

$$a_{32}^{(1)}x_2 + a_{33}^{(1)}x_3 = a_{34}^{(1)}$$
 (3.12)

$$a_{3j}^{(1)} = a_{3j} - a_{31}a_{1j}^{(1)}, j = 2, 3, 4$$
 (3.13)

Đến đây hai phương trình (3.10) và (3.12) không chứa x_1 nữa.

$$a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 = a_{24}^{(1)}$$

 $a_{23}^{(1)}x_2 + a_{23}^{(1)}x_3 = a_{24}^{(1)}$

Chúng tạo thành một hệ gồm hai phương trình hai ẩn \mathbf{x}_2 và , tức là có số ẩn ít đi một so với ẩn số của hệ ban đầu. Ta p lại việc làm trên để khử \mathbf{x}_2 khỏi (3.12).

Bước 2 : Khử \mathbf{x}_2 . Giả sử $\mathbf{a}_{22}^{(1)}$ ở $(3.10) \neq 0$, ta gọi nó là : \mathbf{u} hai và chia (3.10) cho $\mathbf{a}_{22}^{(1)}$

$$\mathbf{x}_2 + \mathbf{a}_{23}^{(2)} \mathbf{x}_3 = \mathbf{a}_{24}^{(2)}$$
 (3.14)

$$a_{2j}^{(2)} = a_{2j}^{(1)}/a_{22}^{(1)}, \quad j = 3,4$$
 (3.15)

Nhân (3.14) với $a_{32}^{(1)}$ ở (3.12) (hệ số của x_2 ở (3.12))

$$a_{32}^{(1)}x_2 + a_{32}^{(1)}a_{23}^{(2)}x_3 = a_{32}^{(1)}a_{24}^{(2)}$$

Lấy (3.12) trừ phương trình này:

$$\mathbf{a}_{33}^{(2)}\mathbf{x}_{3} = \mathbf{a}_{34}^{(2)} \tag{3.16}$$

$$a_{3i}^{(2)} = a_{3i}^{(1)} - a_{32}^{(1)} a_{2i}^{(2)}, \quad j = 3,4$$
 (3.17)

Phương trình (3.16) không có x₂ nữa.

Bước 3 (bước cuối cùng đối với hệ 3 ẩn)

Giả sử $a_{33}^{(2)}$ ở $(3.16) \neq 0$. Ta chia (3.16) cho $a_{33}^{(2)}$:

$$x_3 = a_{34}^{(3)} (3.18)$$

$$\mathbf{a}_{34}^{(3)} = \mathbf{a}_{34}^{(2)}/\mathbf{a}_{33}^{(2)} \tag{3.19}$$

Bây giờ ta ghép các phương trình (3.8) (3.14) và (3.18) lại ta sẽ được hệ tam giác dạng (3.7):

$$x_1 + a_{12}^{(1)}x_2 + a_{13}^{(1)}x_3 = a_{14}^{(1)}$$
 (3.20a)

$$x_2 + a_{23}^{(2)}x_3 = a_{24}^{(2)}$$
 (3.20b)

$$x_3 = a_{34}^{(3)} (3.20c)$$

3. Quá trình ngược

Giải hệ tam giác.

Từ (3.20c) ta có x_3 , thay x_3 ấy vào (3.20b) ta cổ x_2 , rồi thay x_3 , x_2 ấy vào (3.20a) ta có x_1 :

$$\begin{cases} \mathbf{x}_{3} = \mathbf{a}_{34}^{(3)} \\ \mathbf{x}_{2} = \mathbf{a}_{24}^{(2)} - \mathbf{a}_{23}^{(2)} \mathbf{x}_{3} \\ \mathbf{x}_{1} = \mathbf{a}_{14}^{(1)} - \mathbf{a}_{12}^{(1)} \mathbf{x}_{2} - \mathbf{a}_{13}^{(1)} \mathbf{x}_{3} \end{cases}$$
(3.21)

Vậy là hệ (3.6) đã giải xong.

4. Thí du

$$X\acute{e}t \ h\rlap{.}\acute{e} \ 2x_1 + 4x_2 + 3x_3 = 4 \tag{3.22a}$$

$$3x_1 + x_2 - 2x_3 = -2 (3.22b)$$

$$4x_1 + 11x_2 + 7x_3 = 7 (3.22c)$$

a) Quá trình xuối

 $Buδc 1 : Khử x_1.$ Chia (3.22a) cho $a_{11} = 2$ (hệ số $\neq 0$ của x_1 ở (3.22a)) :

$$\mathbf{x}_1 + 2\mathbf{x}_2 + 1,5\mathbf{x}_3 = 2 \tag{3.23}$$

Nhân (3.23) với 3 (hệ số của x_1 ở (3.22b)) rồi trừ khỏi (3.22b).

$$-5x_2 - 6,5x_3 = -8 \tag{3.24}$$

Nhân (3.23) với 4 (hệ số của x_1 ở (3.22c)) rối trừ khỏi (3.22c)

$$3x_2 + x_3 = 1 \tag{3.25}$$

Ta được hệ 2 phương trình 2 ẩn x_2 , x_3 : (3.24) (3.25).

Buόc 2 : Khử x_2 khỏi (3.25). Chia (3.24) cho -5 (hệ số \neq 0 κὐα x_2 ở 3.24) :

$$x_2 + 1,3x_3 = 1,6 \tag{3.26}$$

Nhân (3.26) với 3 (hệ số của x_2 ở (3.25)) rồi trừ khỏi (3.25) :

$$-2.9x_3 = -5.8 \tag{3.27}$$

Bước 3 (bước cuối cùng của quá trình xuối):

Chia (3.27) cho (-2,9) (hệ số \neq của x_3 ở đó) :

$$\mathbf{x_3} = \mathbf{2} \tag{3.5}$$

Ghép các phương trình (3.23) (3.26) (3.28) lại :

$$x_1 + 2x_2 + 1.5x_3 = 2$$

 $x_2 + 1.3x_3 = 1.6$
 $x_3 = 2$

Vây xong quá trình xuôi.

b) Quá trình ngược : Giải hệ tam giác (3.23) (3.26) (3.28) ừ dưới :

$$\mathbf{x}_3 = 2$$

$$\mathbf{x}_2 = 1,6 - 1,3\mathbf{x}_3 = -1$$

$$\mathbf{x}_1 = 2 - 2\mathbf{x}_2 - 1,5\mathbf{x}_3 = 1$$

Vậy nghiệm của hệ là

$$x_1 = 1$$
; $x_2 = -1$; $x_3 = 2$

Quá trình tính toán ở trên có thể ghi tóm tất vào bảng 3.1

Bảng 3.1

Hệ số của x ₁	Hệ số của x ₂	Hệ số của x ₃	Vế phải	Phương trình
2	4	3	4	(3.22a)
3	1	-2	-2	(3.22b)
4	11	7	7	(3.22c)
1	2	1,5	2	(3.23)
	-5	-6,5	-8	(3.24)
	3	1	1	(3.25)
		1,3	1,6	(3.26)
		-2,9	-5,8	(3.27)
		1	2	(3.28)
	1		-1	
1			1	

5. Chọn trụ tối đại

Trong quá trình xuôi của phương pháp Gaoxơ ta đã phải giả thiết $a_{11} \neq 0$, $a_{22}^{(1)} \neq 0$, $a_{33}^{(2)} \neq 0$. Nếu một trong các hệ số đó bằng không thì quá trình tính không tiếp tục được. Lúc đó ta phải thay đổi cách tính. Giả sử khi khử \mathbf{x}_1 ta gặp $\mathbf{a}_{11} = 0$ thì ta nhìn các hệ số \mathbf{a}_{21} , \mathbf{a}_{31} của \mathbf{x}_1 ở các phương trình ở dưới, nếu có cái nào khác không ta có thể lấy nó thay cho vai trò của \mathbf{a}_{11} bằng cách hoán vị hai phương trình. Nếu cả ba hệ số \mathbf{a}_{11} , \mathbf{a}_{21} , \mathbf{a}_{31} đều bằng không thì hệ đã cho suy biến. Ta chú ý thêm rằng khi chia cho một số thì sai số tính toán càng bế khi số chia có trị tuyệt đối càng lớn. Vì vậy để hạn chế bớt sai số tính toán ta chọn trong các số \mathbf{a}_{11} , \mathbf{a}_{21} , \mathbf{a}_{31} số có trị tuyệt đối lớn nhất làm trụ thứ nhất gọi là trụ tối đại thứ nhất để khử \mathbf{x}_1 . Khi khử \mathbf{x}_2 và \mathbf{x}_3 ta cũng làm tương tự. Sau đây ta tính theo cách làm đó trên thí dụ đã xét ở trên (xem bằng 3.2).

Hệ số của x₁	Hệ số của x ₂	Hệ số của x ₃	Vế phải
2	4	3	4
3	1	-2	-2
4	11	7	7
4	11	7 .	. 7
3	1	-2	-2
2	4	3	4
1	2,75	1,75	1,75
	-7,25	-7,25	-7,2 5
	- 1,5	-0,5	0,5
	1	1	1
		1	2
	1		- 1
1		1	1

Chú ý là khi khử x_1 vì $4 = \max\{|2|, |3|, |4|\}$ nên ta fã hoán vị dòng thứ nhất với dòng thứ ba ở bảng trên trước thi làm các động tác để khử x_1 .

6. Chú ý

Cách nhớ các công thức tính $a_{ij}^{(k)}$. Xét các công thức (3.11) và (3.9). Chúng cho phép tính $a_{2j}^{(1)}$ theo a_{ij} . Đặt $a_{ij}=a_{ij}^{(0)}$ các công thức đó cho :

$$a_{2j}^{(1)} = a_{2j}^{(0)} - \frac{a_{21}^{(0)} a_{1j}^{(0)}}{a_{1j}^{(0)}}, j = 2, 3, 4$$

Một cách tương tự, các công thức (3.13) và (3.9) cho:

$$a_{3j}^{(1)} = a_{3j}^{(0)} - \frac{a_{31}^{(0)} a_{1j}^{(0)}}{a_{11}^{(0)}}, j = 2, 3, 4$$

Hai công thức này có thể viết chung thành một :

$$a_{ij}^{(1)} = a_{ij}^{(0)} - \frac{a_{i1}^{(0)} a_{ij}^{(0)}}{a_{i1}^{(0)}}, \qquad i = 2,3$$
 $j = 2, 3, 4$

 V_i trí của các phần tử ở vế trái sắp xếp thành một hình chữ nhật :

$$\begin{array}{ll} a_{11}^{(0)} & a_{1j}^{(0)} \\ \\ a_{i1}^{(0)} & a_{ij}^{(0)} \end{array}$$

Hình chữ nhật này có đỉnh trên bên trái là $\mathbf{a}_{11}^{(0)}$ (trụ thứ nhất) đỉnh dưới bên phải là $\mathbf{a}_{ij}^{(0)}$ (đó là phần tử cần biến đổi thành $\mathbf{a}_{ij}^{(1)}$).

Sau khi đã xác định được hình chữ nhật trên thì công thức tính $a_{ij}^{(1)}$ đã viết ở trên phát biểu thành lời như sau :

 $a_{ij}\ (m \acute{o}i)$ bằng $a_{ij}\ (c \~u)$, trừ tích của $a_{i1}\ (c \~u)$ nhân với $a_{1j}\ (c \~u)$ chia cho $a_{11}\ (c \~u)$; hay là phần tử (mới) nằm ở góc dưới bên phải bằng phân tử (c \~u) nằm ở góc dưới bên phải trừ tích của phần tử (c \~u) nằm ở góc dưới bên trái nhân với phần tử (c \~u) nằm ở góc trên bên phải chia cho phần tử (c \~u) nằm ở góc trên bên trái (tức là phần tử trụ c $\~u$).

Quy tắc này gọi là quy tắc hình chữ nhật. Nó giúp ta dễ nhớ cách tính $a_{ii}^{(1)}$.

Cách tính $a_{3j}^{(2)}$ dựa vào (3.17) và (3.15) thông qua $a_{ij}^{(1)}$ cũng có thể nhớ theo quy tắc tương tự :

$$\mathbf{a}_{22}^{(1)} \qquad \mathbf{a}_{2j}^{(1)}$$

$$\mathbf{a}_{32}^{(1)} \qquad \mathbf{a}_{3j}^{(1)}$$

$$\mathbf{a}_{3j}^{(2)} = \mathbf{a}_{3j}^{(1)} - \frac{\mathbf{a}_{32}^{(1)} \mathbf{a}_{2j}^{(1)}}{\mathbf{a}_{22}^{(1)}}, \qquad j = 3,4$$

Quy tắc hình chữ nhật có thể giúp ta dễ nhớ cách tính $a_{ij}^{(k)}$ theo $a_{ij}^{(k-1)}$ như sau :

$$\begin{aligned} &a_{kk}^{(k-1)} & a_{kj}^{(k-1)} \\ &a_{ik}^{(k-1)} & a_{ij}^{(k-1)} \\ &a_{ij}^{(k)} &= a_{ij}^{(k-1)} - \frac{a_{ik}^{(k-1)} a_{kj}^{(k-1)}}{a_{kk}^{(k-1)}} \end{aligned}$$

7. Khối lượng tính và công thức tính đối với một hệ n ẩn

Phương pháp Gaoxơ có thể áp dụng cho một hệ đại số tuyến ính gồm n phương trình n ẩn.

Số các phép tính +, -, x, : phải làm để giải một hệ n phương rình n ẩn là

$$N_{G}(n) = \frac{4n^3 + 9n^2 - 7n}{6}$$

ới n = 15 thì $N_G(15)$ = 2570. Số này ít hơn rất nhiều so với $I_C(15)$ (xem mục 3 §3.1).

Các công thức tính cho một hệ n phương trình n ẩn phức ạp, ta chỉ nhác rằng chúng vẫn có dạng (3.8) (3.10) (3.12) .v... nhưng giá trị cuối cùng của j ở (3.9) (3.11) (3.13) v.v... hải là n+1.

8. Sơ đổ tóm tắt phương pháp Gaoxơ

Xét hệ n phương trình n ẩn

Khi áp dụng thường người ta sử dụng phương pháp Gaoxơ có chọn trụ tối đại. Cho nên sau đây sẽ trình bầy sơ đổ tóm tắt phương pháp Gaoxơ có chọn trụ tối đại.

Quá trình xuôi :

Với k lần lượt là 1, 2, ..., n-1 tìm r để

$$|a_{rk}^{(k-1)}| \ = \ \max \{ \ |a_{kk}^{(k-1)}| \ , \ |a_{k+1,\,k}^{(k-1)}| \ , \ ..., \ |a_{nk}^{(k-1)}| \}.$$

Nếu $\mathbf{a}_{rk}^{(k-1)}=0$ thỉ dừng quá trình tính và thông báo : hệ suy biến nếu $\mathbf{a}_{rk}^{(k-1)}\neq0$ thỉ đổi chỗ $\mathbf{a}_{kj}^{(k-1)}$ với \mathbf{a}_{rj}^{k-1} , $\mathbf{j}=\mathbf{k},$..., n

$$b_k^{(k-1)}\ v\acute{\sigma}i\ b_r^{(k-1)}$$

Tinh

$$a_{ij}^{(k)} \ = \ a_{ij}^{(k-1)} \ - \ \frac{a_{ik}^{(k-1)} \, a_{kj}^{(k-1)}}{a_{kk}^{(k-1)}}$$

$$i = k + 1, k + 2, ..., n$$

$$j = k + 1, k + 2, ..., n$$

Sau quá trình xuôi ta được hệ tam giác trên

$$\begin{aligned} a_{11}^{(n-1)}x_1 \ + \ a_{12}^{(n-1)}x_2 \ + \ \dots \ + \ a_{1n}^{(n-1)}x_n \ = \ b_1^{(n-1)} \\ a_{22}^{(n-1)}x_2 \ + \ \dots \ + \ a_{2n}^{(n-1)}x_n \ = \ b_2^{(n-1)} \\ & \cdots \\ a_{nn}^{(n-1)}x_n \ = \ b_n^{(n-1)} \end{aligned}$$

mà ta viết lại gọn hơn bằng cách bỏ các chỉ số trên thành :

$$\begin{aligned} l_{11}x_1 + l_{12}x_2 + \dots + l_{1n}x_n &= c_1 \\ l_{22}x_2 + \dots + l_{2n}x_n &= c_2 \\ \vdots &\vdots &\vdots &\vdots \\ l_{n-1} & n-1x_{n-1} &+ l_{n-1n}x_n &= c_{n-1} \\ l_{nn}x_n &= c_n \end{aligned}$$

$$di$$
 $l_{ij} = a_{ij}^{(n-1)}, c_i = b_i^{(n-1)}$

Do đó ta có

Quá trình ngược:

Nếu $l_{nn}=0$ thỉ dừng quá trình tính và thông báo : hệ uy biến

eu
$$l_{nn} \neq 0$$
 thì tính
 $x_n = c_n/l_{nn}$
 $x_{n-1} = (c_{n-1} - l_{n-1} n x_n)/l_{n-1} n-1$
...
 $x_1 = (c_1 - l_{12}x_2 - ... - l_{1n-1}x_{n-1})/l_{11}$

9. Chú thích

Phương pháp Gaoxơ cũng cho phép tính định thư an, với định thức cấp 3, ta có theo mục 2 §3.2:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}^{(1)}a_{33}^{(2)}$$

cụ thể, theo thí dụ ở 4 §3.2

$$\begin{vmatrix} 2 & 4 & 3 \\ 3 & 1 & -2 \\ 4 & 11 & 7 \end{vmatrix} = 2.(-5) \cdot (-2,9) = 29.$$

Phương pháp Gaoxo cũng cho phép tính ma trận nghịch đảo, nưng chúng ta không trình bẩy ở đấy.

§3.3. PHƯƠNG PHÁP LẮP ĐƠN

1. Mô tả phương pháp

Phương pháp Gaoxơ thuộc loại phương pháp dúng, tức là su các phép tính sơ cấp làm dúng hoàn toàn thì cuối cùng

ta được nghiệm đúng của hệ. Người ta còn nói nó thuộc loại phương pháp trực tiếp. Ngoài ra còn một loại phương pháp khác gọi là phương pháp lặp. Ở đây ta chỉ nói sơ về phương pháp lặp đơn.

Xét hệ (3.1) đã viết ở dạng vectơ (xem công thức 3.4) :

$$Ax = f (3.29)$$

Ta chuyển hệ này về một hệ tương đương có dạng

$$x = Bx + g \tag{3.30}$$

trong đó ma trận B suy từ A còn vectơ g suy từ f cách nào đó, giả sử:

$$\mathbf{B} \; = \; \begin{vmatrix} \mathbf{b_{11}} & \mathbf{b_{12}} & \dots & \mathbf{b_{1n}} \\ \mathbf{b_{21}} & \mathbf{b_{22}} & \dots & \mathbf{b_{2n}} \\ \dots & \dots & \dots & \dots \\ \mathbf{b_{n1}} & \mathbf{b_{n2}} & \dots & \mathbf{b_{nn}} \end{vmatrix}$$

Sau đó ta xây dựng công thức tính lặp

$$\mathbf{x}^{(m)} = \mathbf{B}\mathbf{x}^{(m-1)} + \mathbf{g} \tag{3.31}$$

$$\mathbf{x}^{(0)}$$
 cho trước (3.32)

trong đó:

$$(B\mathbf{x})_i = \sum_{j=1}^n b_{ij}\mathbf{x}_j$$
 (3.33)

Phương pháp tính $x^{(m)}$ theo (3.31) (3.32) gọi là phương pháp lặp dơn. Ma trận B gọi là ma trận lặp.

2. Sự hội tụ

Định nghĩa 3.1. Giả sử $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)^T$ là nghiệm của hệ (3.30) (tức là của hệ (3.29)). Nếu

 $x_i^{(m)} \rightarrow \alpha_i$ khi $m \rightarrow \infty$, i = 1, 2, ..., n thì ta nói phương pháp lập (3.31) (3.32) hội tụ.

Dinh nghia 3.2 - Cho vector
$$Z = (Z_1, Z_2, ..., Z_n)^{T}$$

hì mỗi đại lượng sau

$$\begin{split} \|Z\|_{o} &:= \max\{|Z_{i}|\} \\ \|Z\|_{1} &:= |Z_{1}| + |Z_{2}| + \dots + |Z_{n}| \\ \|Z\|_{2} &:= (Z_{1}^{2} + Z_{2}^{2} + \dots + Z_{n}^{2})^{1/2} \end{split}$$

gọi là một độ dài mở rộng của vectơ Z, người ta còn gọi nó là chuẩn của Z.

Chúng có tính chất giống như độ dài thông thường của một đoạn thẳng, hay trị tuyệt đối của một số thực:

Với p = 0 hay 1 hay 2 ta đều có

- 1) $\|z\|_{p} \ge 0$, $\|z\|_{p} = 0 \iff z = \text{vecto khong}$
- 2) $\|\lambda z\|_{p} = \|\lambda\| \|z\|_{p}$, λ là một số thực
- 3) $\|\mathbf{u} + \mathbf{v}\|_{p} \le \|\mathbf{u}\|_{p} + \|\mathbf{v}\|_{p}$

Hệ quả - Nếu phương pháp lặp (3.31) (3.32) hội tụ khi và chỉ khi :

$$\|\mathbf{x}^{(m)} - \alpha\|_{\mathbf{p}} \to 0 \text{ khi m } \to \infty$$
 (3.34)

Đối với ma trận vuông $B=(b_{ij})$ ta định nghĩa chuẩn của na trận B :

$$\|B\|_{o} := \max_{ij=1}^{n} |b_{ij}|$$

 $\|B\|_{1} := \max_{ij=1}^{n} |b_{ij}|$

Chuẩn $\|B\|_p$; p=0,1, thỏa mãn ba tính chất giống ba tính thất chuẩn của vecto :

- 1) $\|B\|_p \ge 0$, $\|B\|_p = 0 \Leftrightarrow B$ là ma trận không;
- 2) $\|kB\|_{p} = \|k\| \|B\|_{p}$, k là một số thực;
- 3) $\|\mathbf{B} + \mathbf{C}\|_{\mathbf{p}} \le \|\mathbf{B}\|_{\mathbf{p}} + \|\mathbf{C}\|_{\mathbf{p}}$, C là ma trận cùng cấp với B.

ngoai ra con tinn chat thu tu:

4) $\|BZ\|_p \le \|B\|_p \|Z\|_p$, Z là vectơ có số chiều bằng cấp của B.

Định li 3.2 - Nếu

$$\|B\|_{p} < 1$$
 (3.35)

thì phương pháp lặp (3.31) (3.32) hội tụ với bất kì xấp xỉ đầu $\mathbf{x}^{(0)}$ nào, đồng thời sai số có đánh giá

$$\|\mathbf{x}^{(m)} - \alpha\|_{\mathbf{p}} \le \frac{\|\mathbf{B}\|_{\mathbf{p}}}{1 - \|\mathbf{B}\|_{\mathbf{p}}} \|\mathbf{x}^{(m)} - \mathbf{x}^{(m-1)}\|_{\mathbf{p}}$$
 (3.36)

$$\|\mathbf{x}^{(m)} - \alpha\|_{\mathbf{p}} \le \frac{\|\mathbf{B}\|_{\mathbf{p}}^{m}}{1 - \|\mathbf{B}\|_{\mathbf{p}}} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{\mathbf{p}}$$
 (3.37)

trong đó:

$$p = 0 \text{ neu } ||B||_0 < 1$$

 $p = 1 \text{ neu } ||B||_1 < 1$

Chứng minh: Vì α là nghiệm của hệ (3.29) tức là hệ (3.30) nên:

$$\alpha = B\alpha + g$$

Lấy (3.31) trừ đẳng thức này vế với vế ta được:

$$\mathbf{x}^{(m)} - \alpha = \mathbf{B}(\mathbf{x}^{(m-1)} - \alpha)$$

Do đó:

$$\|\mathbf{x}^{(m)} - \alpha\|_{p} = \|\mathbf{B}(\mathbf{x}^{(m-1)} - \alpha)\|_{p} \le \|\mathbf{B}\|_{p} \|\mathbf{x}^{(m-1)} - \alpha\|_{p}$$

Vậy có:

$$\|\mathbf{x}^{(m)} - \alpha\|_{p} \le \|\mathbf{B}\|_{p} \|\mathbf{x}^{(m-1)} - \alpha\|_{p}$$

$$\|\mathbf{x}^{(m-1)} - \alpha\|_{p} \le \|\mathbf{B}\|_{p} \|\mathbf{x}^{(m-2)} - \alpha\|_{p}$$
(*)

•••

$$\|\mathbf{x}^{(2)} - \alpha\|_{p} \le \|\mathbf{B}\|_{p} \|\mathbf{x}^{(1)} - \alpha\|_{p}$$
$$\|\mathbf{x}^{(1)} - \alpha\|_{p} \le \|\mathbf{B}\|_{p} \|\mathbf{x}^{(0)} - \alpha\|_{p}$$

Nhân các bất đẳng thức này về với về và giản ước các thành hân giống nhau ở hai bên ta được:

$$\|\mathbf{x}^{(m)} - \alpha\|_{\mathbf{p}} \le \|\mathbf{B}\|_{\mathbf{p}}^{m} \|\mathbf{x}^{(0)} - \alpha\|_{\mathbf{p}}$$

Cho m $\rightarrow \infty$ thì vì $0 \le ||B||_p < 1$ theo giả thiết nên $||B||_p^m \rightarrow 0$. lo đó:

$$\|\mathbf{x}^{(\mathbf{m})} - \alpha\|_{\mathbf{p}} \to 0 \text{ khi } \mathbf{m} \to \infty$$

Đó chính là (3.34). Vậy phương pháp lặp (3.31) và (3.32) hội tụ.

Bây giờ xét các đánh giá sai số. Ta có:

$$\mathbf{x}^{(m-1)} - \alpha = (\mathbf{x}^{(m-1)} - \mathbf{x}^{(m)}) + (\mathbf{x}^{(m)} - \alpha)$$

Ta suy ra:

$$\|\mathbf{x}^{(m-1)} - \alpha\|_{p} \le \|\mathbf{x}^{(m)} - \mathbf{x}^{(m-1)}\|_{p} + \|\mathbf{x}^{(m)} - \alpha\|_{p}$$

Do đó bất đẳng thức (*) cho:

eat dang thúc (*) cho :
$$\|\mathbf{x^{(m)}} - \alpha\|_{p} \le \|\mathbf{B}\|_{p} \{ \|\mathbf{x^{(m)}} - \mathbf{x^{(m-1)}}\|_{p} + \|\mathbf{x^{(m)}} - \alpha\|_{p} \}$$
 :

Vây có:

$$(1-\left\|\mathbf{B}\right\|_{p})\left\|\mathbf{x}^{(m)}-\alpha\right\|_{p}\leq\left\|\mathbf{B}\right\|_{p}\left\|\mathbf{x}^{(m)}-\mathbf{x}^{(m-1)}\right\|_{p}$$

Vì theo giả thiết của định lí $\|B\|_p < 1$, nên 1 - $\|B\|_p > 0$. a suy ra:

$$\|\mathbf{x}^{(m)} - \alpha\|_{p} \le \frac{\|\mathbf{B}\|_{p}}{1 - \|\mathbf{B}\|_{p}} \|\mathbf{x}^{(m)} - \mathbf{x}^{(m-1)}\|_{p}$$

Đơ là đánh giá (3.36)

Bây giờ từ (3.31) ta có

$$t\mathring{u}$$
 (3.31) ta có
 $x^{(m)} = Bx^{(m-1)} + g$
 $x^{(m-1)} = Bx^{(m-2)} + g$

Trừ hai đẳng thức này vế với vế ta được:

$$\mathbf{x}^{(m)} - \mathbf{x}^{(m-1)} = \mathbf{B}(\mathbf{x}^{(m-1)} - \mathbf{x}^{(m-2)})$$

Do đó:

$$\|\mathbf{x}^{(m)} - \mathbf{x}^{(m-1)}\|_{p} = \|\mathbf{B}(\mathbf{x}^{(m-1)} - \mathbf{x}^{(m-2)}\|_{p})$$

Vây:

$$\|\mathbf{x}^{(m)} - \mathbf{x}^{(m-1)}\|_p \leqslant \|\mathbf{B}\|_p \|\mathbf{x}^{(m-1)} - \mathbf{x}^{(m-2)}\|_p$$

Ta suy dân ra:

$$\|\mathbf{x}^{(m)} - \mathbf{x}^{(m-1)}\|_{p} \le \|\mathbf{B}\|_{p}^{m-1} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{p}$$

Thay vào vế trái của (3.36) ta được (3.37).

3. Thí dụ

Xét hệ

$$4x_1 + 0.24x_2 - 0.08x_3 = 8$$

$$0.09x_1 + 3x_2 - 0.15x_3 = 9$$

$$0.04x_1 - 0.08x_2 + 4x_3 = 20$$
(3.38)

Giải. Hệ này có dạng (3.29). Ta phải đưa nó về dạng (3.30) sao cho điều kiện hội tụ (3.35) được thỏa mãn. Từ ba phương trình của hệ (3.38) ta rút ra

$$\mathbf{x}_1 = -0.06\mathbf{x}_2 + 0.02\mathbf{x}_3 + 2$$

$$\mathbf{x}_2 = -0.03\mathbf{x}_1 + 0.05\mathbf{x}_3 + 3$$

$$\mathbf{x}_3 = -0.01\mathbf{x}_1 + 0.02\mathbf{x}_2 + 5$$

Vây có x = Bx + gVới

$$B = \begin{vmatrix} 0 & -0.06 & 0.02 \\ -0.03 & 0 & 0.05 \\ -0.01 & 0.02 & 0 \end{vmatrix} \qquad g = \begin{vmatrix} 2 \\ 3 \\ 5 \end{vmatrix}$$

Để kiểm tra điều kiện (3.35) ta tính :

$$\sum_{j=1}^{3} |b_{1j}| = 0 + 0.06 + 0.02 = 0.08$$

$$\sum_{j=1}^{3} |b_{2j}| = 0.03 + 0 + 0.05 = 0.08$$

$$\sum_{j=1}^{3} |b_{3j}| = 0.01 + 0.02 + 0 = 0.03$$

Do đó
$$||B||_0 = \max \{0.08 ; 0.08 ; 0.03\} = 0.08 < 1$$

Vậy theo định lí 3.2 phương pháp lặp đơn

$$\mathbf{x}^{(m)} = \mathbf{B}\mathbf{x}^{(m-1)} + \mathbf{g}$$

ội tụ với mọi $\mathbf{x}^{(0)}$ chọn trước. Ta chọn $\mathbf{x}^{(0)} = (0,0,0)^T$. Kết quả inh ghi thành bảng 3.3

Bảng 3.3

m	0	1	2	3	
x(m)	0	2	1,92	1.9094	
$x_{(m)}^{j}$	0	5	3,19 5,04	3.1944 5.0446	5.04485
_ x ₃ ′					

Để đánh giá sai số ta tính :

$$\|\mathbf{x}^{(4)} - \mathbf{x}^{(3)}\|_{0} = \max\{|\mathbf{x}_{i}^{(4)} - \mathbf{x}_{i}^{(3)}|\}, i = 1, 2, 3.$$

= $\max\{0.00017 : 0.00055 : 0.00025\}$

$$= \max \{0,00017; 0,00055; 0,00025\}$$

$$= 0,00055$$

Áp dụng công thức (3.36) với p = 0 ta thu được :

$$\|\mathbf{x}^{(4)} - \alpha\|_o \le \frac{0.08}{1 - 0.08}$$
. $0.00055 \le 0.00005$

Vậy có
$$\alpha_1 = 1,90923 \pm 0,00005$$

$$\alpha_2 = 3,19495 \pm 0,00005$$

$$a_3 = 5,04485 \pm 0,00005$$

4. Sơ đồ tóm tắt phương pháp lặp đơn

- 1) Cho hệ phương trình tuyến tính Ax = b.
- 2) Ấn định sai số cho phép ε , $\varepsilon > 0$.
- 3) Đưa hệ Ax = b về hệ tương đương x = Bx + g

Sao cho điều kiện (3.35) thỏa mãn.

- 4) Chọn $x^{(0)}$ (tùy ý).
- 5) Tính

$$x^{(m+1)} = Bx^{(m)} + g$$

 $m = 0, 1, 2, ...$

Cho tới khi

$$\|\mathbf{x}^{(m)} - \mathbf{x}^{(m-1)}\|_{\mathbf{p}} < \varepsilon$$

hì dừng quá trình tính.

Kết quả:

$$x^{(m)} \simeq \alpha$$

Với sai số:

$$\|\mathbf{x}^{(\mathrm{m})} - \alpha\|_{\pi} \leq \frac{\|\mathbf{B}\|_{\mathrm{p}}}{1 - \|\mathbf{B}\|_{\mathrm{p}}} \varepsilon$$

§3.4. PHỤ LỤC 2 VỀ MỘT HỆ ĐẠI SỐ TUYẾN TÍNH KHÔNG ỔN ĐỊNH

Bây giờ ta nêu một hiện tượng đặc biệt đáng chú ý khi giải ần đúng một hệ phương trình đại số tuyến tính.

Xét hai hệ cụ thể:

$$x + 2y = 2$$

 $2x + 3.9y = 2$ (3.39)

$$x + 2y = 2$$
$$2x + 4.1y = 2$$

(3.40)

Nghiệm của hệ (3.39) là x = -38, y = 20

Nghiệm của hệ (3.40) là $\bar{x} = 42$. $\bar{y} = -20$

Ta thấy rằng hai hệ (3.39) và (3.40) chỉ khác nhau ở một hệ số 3,9 và 4,1 với |4,1-3,9|=0,2, nhưng nghiệm của chúng khác nhau khá xa :

$$|\overline{x} - x| = |42 - (-38)| = |80|$$

 $|\overline{x} - y| = |-20 - 20| = 40$

Hiện tượng "sai một li đi một dặm" này gọi là hiện tượng không ổn định trong tính toán. Người làm tính cần phải biết để đề phòng

BÀI TẬP

1. Dùng phương pháp Gaoxo giải hệ

$$2,75x_1 + 1,78x_2 + 1,11x_3 = 13,62$$

$$3,28x_1 + 0,71x_2 + 1,15x_3 = 17,98$$

$$1,15x_1 + 2,70x_2 + 3,58x_3 = 39,72$$

tính tới ba chữ số lẻ thập phân.

2. Dùng phương pháp Gauxơ giải các hệ

a)
$$3.2x_1 - 1.5x_2 + 0.5x_3 = 0.90$$

 $1.6x_1 + 2.5x_2 - 1.0x_3 = 1.55$

$$1.0x_1 + 4.1x_2 - 1.5x_3 = 2.08$$

b)
$$1.5x_1 - 0.2x_2 + 0.1x_3 = 0.4$$
$$-0.1x_1 + 1.5x_2 - 0.1x_3 = 0.8$$
$$-0.3x_1 + 0.2x_2 - 0.5x_3 = 0.2$$

Các phép tính lấy đến 5 chữ số lẻ thập phân.

3. Giải hệ sau đây bằng phương pháp lặp đơn, tính lặp ba lần và cho biết sai số:

$$1,02x_1 - 0,05x_2 - 0,10x_3 = 0,795$$
$$-0,11x_1 + 1,03x_2 - 0,05x_3 = 0,849$$
$$-0,11x_1 - 0,12x_2 + 1,04x_3 = 1.398$$

4. Giải hệ

$$24,21x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

 $2,31x_1 + 31,49x_2 + 1,52x_3 = 40,95$
 $3,49x_1 + 4,85x_2 + 28,72x_3 = 42,81$

bằng phương pháp lặp đơn cho tới khi

$$\|x^{(m)} - x^{(m-1)}\|_{0} \le 10^{-4}$$

và đánh giá sai số

Trá lời

1.
$$x_1 = 1,642$$
; $x_2 = -2,789$; $x_3 = 12,672$

2. a)
$$x_1 = 0.5$$
; $x_2 = 1.3$; $x_3 = 2.5$

b)
$$x_1 = 0.36540$$
; $x_2 = 0.53053$; $x_3 = -0.40649$

3.
$$x_1 = 0.980$$
; $x_2 = 1.004$; $x_3 = 1.563$

với sai số tuyệt đối nhỏ hơn $1,1.10^{-3}$ nếu chọn xấp xỉ đầu $\mathbf{x}^{(0)}=(0.80~;~0.85~;~1.40)$

4.
$$x_1 = 0.9444$$
; $x_2 = 1.1743$; $x_3 = 1.1775$

với sai số theo chuẩn $\|.\|_0$ bé hơn $0.5 \cdot 10^{-4}$.

Chương 4

NÔI SUY VÀ PHƯƠNG PHÁP BÌNH PHƯƠNG BÉ NHẤT

§4.1. NỘI SUY ĐA THỰC : ĐA THỰC LAGRANGIO VÀ ĐA THỰC NIUTON

1. Vấn để nội suy

Trong thực tế nhiều khi phải phục hồi một hàm số franci nọi giá trị của x trên đoạn $a \le x \le b$ mà chỉ biết một số tữu hạn giá trị của hàm số tại một số hữu hạn các điểm rời ạc của đoạn đó. Các giá trị đó được cung cấp qua thực nghiệm lay tính toán. Vậy nẩy sinh một vấn để toán học sau:

Trên đoạn a \leq x \leq b cho một lưới các điểm chia (điểm tút) x_i , i = 0, 1, 2, ..., n :

$$a \le x_0, x_1, x_2, ..., x_n \le b$$

à tại các nút x_i cho giá trị của hàm số y = f(x) là $y_i = f(x_i)$, = 0, 1, 2, ..., n viết thành bảng 4-1 :

Bảng 4.1

x	x _o	$\mathbf{x_1}$	\mathbf{x}_2	 ,	x_{n-1}	$\mathbf{x}_{\mathbf{n}}$
у	y _o	y ₁	y ₂		y_{n-1}	y _n

Hãy xây dựng một đa thức bậc n:

$$p_n(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$$

Sao cho $p_n(x)$ trùng với f(x) tại các nút x_i , nghĩa là:

$$p_n(x_i) = y_i, i = 0, 1, ..., n$$
 (4.1)

Đa thức $p_n(x)$ gọi là đa thức nội suy của hàm f(x). Ta chọn đa thức để nội suy hàm f(x) vì đa thức là loại hàm đơn giản, luôn có đạo hàm, và nguyên hàm, việc tính giá trị cũng đơn giản : Ta có

$$p_n(x) = (...(a_0x + a_1)x + a_2)...)x + a_n$$

Do đó có sơ đờ Hoocne tính giá trị pn(c):

$$b_0 = a_0, b_1 = b_0c + a_1, b_2 = b_1c + a_2, ...$$

 $b_n = b_{n-1}c + a_n = p_n(c)$ (4.2)

2. Sự duy nhất của đa thức nội suy

Định li 4.1 Đa thức nội suy $p_n(x)$ của hàm số f(x) định nghĩa ở trên nếu có thì chỉ có một mà thời.

Chúng minh. Giả sử có hai đa thức $p_n(x)$ và $q_n(x)$ cùng nội suy một hàm số f(x). Lúc đó :

$$p_n(x_i) = y_i, q_n(x_i) = y_i$$

Vậy hiệu $p_n(x) - q_n(x)$ là một đa thức có bậc \leq n lại triệt tiêu tại n+1 giá trị khác nhau x_i , $i=0,1,\ldots,n$ (vì $p_n(x_i) - q_n(x_i) = y_i - y_i = 0$).

Do đó $p_n(x) - q_n(x)$ phải đồng nhất không, nghĩa là $p_n(x) = q_n(x)$.

Đa thức nội suy có thể xây dựng nhiều cách, nhưng vì nó có tính duy nhất, nên tất cả các dạng của nó đều có thể quy về nhau được.

3. Đa thức nội suy Lagrangiơ (Lagrage)

Sau đây ta xây dựng đa thức nội suy theo kiểu Lagrangio. Gọi $l_i(x)$ là :

$$l_{i}(\mathbf{x}) = \frac{(\mathbf{x} - \mathbf{x}_{o}) \dots (\mathbf{x} - \mathbf{x}_{i-1})(\mathbf{x} - \mathbf{x}_{i+1}) \dots (\mathbf{x} - \mathbf{x}_{n})}{(\mathbf{x}_{i} - \mathbf{x}_{o}) \dots (\mathbf{x}_{i} - \mathbf{x}_{i-1})(\mathbf{x}_{i} - \mathbf{x}_{i+1}) \dots (\mathbf{x}_{i} - \mathbf{x}_{n})}$$

Rõ ràng $l_i(x)$ là một đa thức bậc n và :

$$l_{i}(\mathbf{x}_{j}) = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$
 (4.3)

Ta gọi nó là đa thức Lagrangio cơ bản.

Bây giờ xét biểu thức

$$p_{n}(x) = \sum_{i=0}^{n} y_{i} l_{i}(x)$$
 (4.4)

Ta thấy $p_n(x)$ vừa là một đa thúc n (vì các $l_i(x)$ đều la die bậc n) vừa thỏa mãn (4.1) :

$$p_n(x_j) = y_j$$

(vì các $l_i(x)$ thỏa mãn (4.3)). Vậy $p_n(x)$ xác định theo một đa thức nội suy. Ta gọi nó là da thức nội suy L_{agra}

4. Nội suy bậc nhất (hay nội suy tuyến tính)

Với n = 1 ta có bảng

x x_o x₁ y y_o y₁

Bàng 4.2

va^{re} é

Đa thức nội suy (4.4) sẽ là :

$$p_1(x) = y_0 l_0(x) + y_1 l_1(x)$$
 (4.5)

$$l_{o}(x) = \frac{x - x_{1}}{x_{o} - x_{1}}, \ l_{1}(x) = \frac{x - x_{o}}{x_{1} - x_{o}}$$

Do
$$do : p_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

Da thức $p_1(x)$ là bậc nhất đối với x có dạng : Ax + B

5. Nội suy bậc hai

Với n = 2 ta có bảng

Bảng 4.3

Đa thức nội suy (4.4) sẽ là

$$p_{2}(\mathbf{x}) = y_{0}l_{0}(\mathbf{x}) + y_{1}l_{1}(\mathbf{x}) + y_{2}l_{2}(\mathbf{x})$$

$$l_{0}(\mathbf{x}) = \frac{(\mathbf{x} - \mathbf{x}_{1})(\mathbf{x} - \mathbf{x}_{2})}{(\mathbf{x}_{0} - \mathbf{x}_{1})(\mathbf{x}_{0} - \mathbf{x}_{2})}$$

$$l_{1}(\mathbf{x}) = \frac{(\mathbf{x} - \mathbf{x}_{0})(\mathbf{x} - \mathbf{x}_{2})}{(\mathbf{x}_{1} - \mathbf{x}_{0})(\mathbf{x}_{1} - \mathbf{x}_{2})}$$

$$l_{2}(\mathbf{x}) = \frac{(\mathbf{x} - \mathbf{x}_{0})(\mathbf{x} - \mathbf{x}_{1})}{(\mathbf{x}_{2} - \mathbf{x}_{0})(\mathbf{x}_{2} - \mathbf{x}_{1})}$$
(4.6)

Đa thức $p_2(x)$ là một đa thức bậc 2 đối với x có dạng $Ax^2 + Bx + C$

6. Thí dụ

Cho bảng số:

Bảng 4.4

Hãy lập đa thức nội suy tương ứng.

 $Gi\dot{a}i$: \dot{O} đây n = 3 nên đa thức nội suy là một đa thức bậc 3. Theo (4.4) ta có :

$$p_3(x) = 17 \cdot \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} + 27.5 \cdot \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)} +$$

$$+76 \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)} +$$

$$+210,5 \cdot \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)}$$

$$p_3(x) = 8x^3 - 29x^2 + 41,5x - 3,5.$$

7. Sai số nội suy và vấn để chọn nút nội suy

Dinh li 4.2. Néu hàm f(x) liên tục trên [a, b] và có trong, b) đạo hàm liên tục đến cấp n + 1 thì sai số nói suy $f(x) = f(x) - p_n(x)$ có biểu thức:

$$r_n(x) = f^{(n+1)}(c) \frac{\pi(x)}{(n+1)!}, c \in [a, b]$$
 (4)

ng đó:

$$\pi(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_0)(\mathbf{x} - \mathbf{x}_1) \dots (\mathbf{x} - \mathbf{x}_n)$$
 (4

Định lí này có nghĩa là nếu tại một giá trị xác định $x \in [a, b]$, thay f(x) bởi $p_0(x)$ cho đơn giản thì ta phạm một sai số tính ing (4.7)

Chú thích. Như vậy sai số nội suy $r_n(x)$ phụ thuộc đa thức (x) tức là phụ thuộc sự phân bố của các nút x_i trên đoạn

Hinh 4-1

 $_{\rm L} {\bf x}_{\rm O}, \ {\bf x}_{\rm n}$]. Trong trường hợp các nút cách đều (hình 4-1 với n = 4) ta thấy $|\pi({\bf x})|$, nhỏ khi x ở khoảng giữa của ${\bf x}_{\rm O}, \ {\bf x}_{\rm n}$ lớn dần khi x ra gần hai mút và càng lớn khi x vọt ra ngoài khoảng đó. Ta tự hỏi liệu có thể chọn các nút ${\bf x}_{\rm i},$ không cách đều sao cho $|\pi({\bf x})|$ "bé nhất" được không ? Câu trả lời là khảng định, cụ thể là với a = -1, b = 1 thì các nút "tới uu" đó là :

$$x_{i} = \cos \frac{2i+1}{n+1} \frac{\pi}{2} \tag{4.9}$$

i = 0, 1, ..., n

Đó là các nghiệm của đa thức Trêbưsép.

$$T_{n+1}(x) = \frac{1}{2^n} \cos[(n+1)ar\cos x]$$

Lúc đó ta có $\pi(x) = T_{n+1}(x)$ và

$$|\pi(\mathbf{x})| = |T_{n+1}(\mathbf{x})| \le \frac{1}{2^n}$$

Các nút (4.9) thưa ở khoảng giữa đoạn [-1, 1] và mau dần ở gần hai mút -1, +1 (hình 4-2).

Khi a ≠ - 1 hoặc b ≠ 1 ta dùng phép đối biến

$$t = \frac{(2x - a - b)}{(b - a)}$$

để đưa khoảng a \leq x \leq b về khoảng - 1 \leq t \leq 1 rồi chọn các nút t_i theo (4.9).

Hình 4-2

8. Đa thức Niutơn

Bây giờ ta xét một cách khác để xây dựng đa thức nội suy : ch của Niuton. Trước hết ta đưa vào khái niệm ti hiệu.

Giả sử hàm y = y(x) có giá trị là bảng 4-1 ở mục 1. hiệu *cấp một* của y tại x_i , x_i là :

$$y[x_i, x_j] = \frac{(y_i - y_j)}{(x_i - x_i)}$$

Tỉ hiệu cap hai của y tại x_i , x_i , x_k là :

$$y[x_i, x_j, x_k] = \frac{(y[x_i, x_j] - y[x_j, x_k])}{(x_i - x_k)}$$

• • •

Với $y(x) = P_n(x)$ là một đa thức bậc n thì tỉ hiệu cấp mi lx, x_0 là :

$$P_n[x, x_o] = \frac{[P_n(x) - P_n(x_o)]}{(x - x_o)}$$

một đa thức bậc n-1, tỉ hiệu cấp hai tại x, x_0 , x_i là:

$$P_n[x, x_o, x_1] = \frac{(P_n(x, x_o] - P_n[x_o, x_1])}{(x - x_1)}$$

một đa thức bậc n - 2, ... và tới tỉ hiệu cấp n + 1 thi.

$$P_n[x, x_0, ..., x_n] = 0$$

Từ dịnh nghĩa của các tỉ hiệu ta suy ra :

$$P_n(x) = P_n(x_0) + (x - x_0)P_n[x,x_0]$$

$$P_n[x, x_0] = P_n[x_0, x_1] + (x - x_1)P_n[x, x_0, x_1]$$

$$P_n[x, x_0, x_1] = P_n[x_0, x_1, x_2] + (x - x_2)P_n[x, x_0, x_1, x_2]$$

$$P_n[x, x_0, ..., x_{n-1}] = P_n[x_0, ..., x_n] + (x - x_n)P_n[x, x_0, ..., x_n]$$

Vì $P_n[x, x_0, ..., x_n] = 0$, từ đó ta có

$$P_{n}(\mathbf{x}) = P_{n}(\mathbf{x}_{o}) + (\mathbf{x} - \mathbf{x}_{o})P_{n}[\mathbf{x}_{o}, \mathbf{x}_{1}] + \\ + (\mathbf{x} - \mathbf{x}_{o})(\mathbf{x} - \mathbf{x}_{1})P_{n}[\mathbf{x}_{o}, \mathbf{x}_{1}, \mathbf{x}_{2}] + ... \\ + (\mathbf{x} - \mathbf{x}_{o}) ... (\mathbf{x} - \mathbf{x}_{n-1})P_{n}[\mathbf{x}_{o}, ..., \mathbf{x}_{n}]$$
(4.10)

Nếu $P_n(x)=p_n(x)$ là đa thức nôi suy của hàm y=f(x) thì : $P_n(x_i)=p_n(x_i)=f(x_i)=y_i,\ i=0,\ 1,\ ...\ n.$

Do đó các tỉ hiệu từ cấp một đến cấp n của P_n và của y ở 4.10) là trùng nhau. Vì vậy thay cho (4.10) ta có :

$$p_n(x) = y_0 + (x - x_0)y[x_0, x_1] + (x - x_0)(x - x_1)$$

 $[\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2] + \dots + (\mathbf{x} - \mathbf{x}_0)(\mathbf{x} - \mathbf{x}_1)\dots$

...
$$(x - x_{n-1})y[x_0, ..., x_n]$$
 (4.11)

Đa thức này gọi là đa thức Niuton tiến xuất phát từ nút x_0 ủa hàm y = f(x).

Đa thức sau đây là đa thức Niuton lùi xuất phát từ nút x_n ủa hàm y = f(x):

$$P_{n}(\mathbf{x}) = y_{n} + (\mathbf{x} - \mathbf{x}_{n})y[\mathbf{x}_{n}, \mathbf{x}_{n-1}] + \\ + (\mathbf{x} - \mathbf{x}_{n})(\mathbf{x} - \mathbf{x}_{n-1})y[\mathbf{x}_{n}, \mathbf{x}_{n-1}, \mathbf{x}_{n-2}] + ... + \\ + (\mathbf{x} - \mathbf{x}_{n})(\mathbf{x} - \mathbf{x}_{n-1}) ... (\mathbf{x} - \mathbf{x}_{1})y[\mathbf{x}_{n}, ..., \mathbf{x}_{0}]$$
(4.12)

Chú ý rằng, theo định nghĩa, các tỉ hiệu có tính đối xứng:

$$y[x_i, x_j] = y[x_j, x_i]$$

 $y[x_i, x_j, x_k] = y[x_k, x_i, x_i]$

v.v...

Chú thích. Đa thức Niuton (4.11) trùng với đa thức agrangio, nhưng bố trí cách khác. Theo cách của Niuton khi

hêm một nút x_{n+1} vào lưới nội suy ta chỉ phải thêm vào $p_n(x)$ nột số hạng

$$p_{n+1}(x) = p_n(x) +$$
+ $(x - x_0) \dots (x - x_n)(x - x_{n+1}) y[x_0, \dots, x_n, x_{n+1}]$

mà không phải xây dựng lại tất cả các đa thức cơ sở như cách làm của Lagrange.

9. Trường hợp các nút cách đều

Giả sử các nút x; cách đều

$$x_i = x_0 + ih, i = 0, 1, ..., n.$$

a) Trước hết ta đưa vào khái niệm sai phân tiến:

Sai phân tiến cấp một tại i:

$$\Delta y_i = y_{i+1} - y_i$$

Sai phân tiến cấp hai tại i :

$$\Delta^2 y_i = \Delta(\Delta y_i) = y_{i+2} - 2y_{i+1} + y_i$$

......

Sai phận tiến cấp n tại i là:

$$\Delta_{v_i}^n = \Delta(\Delta^{n-1}y_i)$$

Khi đó ta có:

$$y[x_0, x_1] = \frac{\Delta y_0}{h}$$

 $y[x_0, x_1, x_2] = \frac{\Delta^2 y_0}{2h^2}$

$$y[x_0, ..., x_n] = \frac{\Delta^n y_0}{(n! h^n)}$$

Bây giờ đặt $x = x_0 + ht$ trong đa thức Niuton tiến (4.11) ta được

$$p_{n}(x) \Big|_{x = x_{o} + ht} = y_{o} + t\Delta y_{o} + \frac{t(t-1)}{2!} \Delta^{2} y_{o} + \dots + \frac{t(t-1) \dots (t-n+1)}{n!} \Delta^{n} y_{o}$$
(4.13)

gọi là đa thức Niuton tiến xuất phát từ x_o trong trường hợp nút cách đều.

Với n = 1 ta có : $p_1(x) \Big|_{x=x_0 + ht} = y_0 + t\Delta y_0$ (4.14)

 $V \acute{\sigma} i n = 2 ta c\acute{\sigma}$

$$p_2(x) \Big|_{x = x_0 + ht} = y_0 + t\Delta y_0 + \frac{t(t-1)}{2t} \Delta^2 y_0$$
 (4.15)

b) Một cách tương tự, với khái niệm sai phân lùi tại i :

$$\begin{split} &\nabla \mathbf{y}_i \ = \ \mathbf{y}_i \ - \ \mathbf{y}_{i-1} \\ &\nabla^2 \mathbf{y}_i \ = \ \nabla (\nabla \mathbf{y}_i) \ = \ \mathbf{y}_i \ - \ 2 \mathbf{y}_{i-1} \ + \ \mathbf{y}_{i-2} \\ & \dots \\ &\nabla^n \mathbf{y}_i \ = \ \nabla (\nabla^{n-1} \mathbf{y}_i) \end{split}$$

ta có da thúc nội suy Niuton lùi xuất phát từ x_n trong trường hợp nút cách đều :

$$p_{n}(\mathbf{x}) \Big|_{\mathbf{x} = \mathbf{x}_{n} + \mathbf{h}t} = \mathbf{y}_{n} + \mathbf{t} \nabla \mathbf{y}_{n} + \frac{\mathbf{t}(\mathbf{t} + 1)}{2!} \nabla^{2} \mathbf{y}_{n} + \dots + \frac{\mathbf{t}(\mathbf{t} + 1) \dots (\mathbf{t} + \mathbf{n} - 1)}{n!} + \nabla^{n} \mathbf{y}_{n}$$
(4.16)

10. Thí dụ

Cho một số giá trị của hàm sin x :

Bảng 4.5

x	0,1	0,2	0,3	0.4
sin x	0,09983	0,19867	0,29552	0,38942

Hãy tính gần đúng sin (0,14) và sin (0,46)

Gidi. Dựa vào bảng các giá trị đã cho của sinx, ta thay hàm sinx bằng một đa thức nội suy. Vì các nút x_i ở đây cách đều với h=0,1, nên ta sẽ áp dụng đa thức Niutơn. Trước hết ta lập bảng các sai phân :

Bảng 4.6

ı	x	sin x	Δy	Δ²y	Δ ³ y
0 1 2 3	0,1 0,2 0,3 0,4	0,09983 0,19867 0,29552 0,38942	9884 9685 9390	-199 -295	- <u>96</u>
i	x	sin x	∇у	∇²y	V ³ y

a) Tinh: $\sin(0.14)$. Vì 0.1 < 0.14 < 0.2 nên ta dùng de trưc Niuton tiến (4.13) xuất phát từ $x_0 = 0.1$ với h = 0.1 dựa vào các sai phân tiến đi xuống ở bảng 4 - 6 (gạch dưới một gạch):

$$p(\mathbf{x}) \Big|_{\mathbf{x} = 0.1 + 0.1t} = 0,09983 + t.0,09884 + \frac{t(t-1)}{2!} \cdot 0,00199 + \frac{(t(t-1)(t-2)}{3!} \cdot 0,00096$$

Úng với x = 0.14 ta có 0.14 = 0.1 + 0.1t, ta suy ra t Thay t = 0.4 vào vế phải ở trên ta tính được:

$$\sin(0.14) \approx p(0.1 + 0.1.0.4) = 0.13954336$$

Sai số tính theo công thức (4.7). Ở đây n = 3, ta có:

$$|\sin^{n+1}(x)| = |\sin^{(4)}(x)| = |\sin x| \le 1$$

$$\pi(x) = (x - 0.1)(x - 0.2)(x - 0.3)(x - 0.4)$$

$$|\pi(0.14)| = |(0.14 - 1)(0.14 - 0.2)(0.14 - 0.3) \times (0.14 - 0.4)| \le 10^{-4}$$

Vậy (4.7) cho:

$$|\sin(0.14) - 0.13954336| \le \frac{10^{-4}}{4!} \le 4.2.10^{-6}$$

Ta thấy rằng số 0,13954336 có nhiều chữ số đáng nghi, ta juy tròn nó đến 5 chữ số lẻ thập phân:

$$\sin(0.14) = 0.13954 \pm 10^{-5}$$

b) Tinh: $\sin(0.46)$. vì 0.46 > 0.4 và ở gần 0.4 nên ta dùng la thức Niutơn lùi (4.16) xuất phát từ $x_3 = 0.4$ dựa vào các ai phân lùi đi lên (gạch dưới hai gạch ở bảng 4-6):

$$P(x)|_{x=0,4+0,1t} = 0.38942 + t.0.09390 +$$

$$+\frac{t(t+1)}{2!} \cdot 0,00295 - \frac{t(t+1)(t+2)}{3!} \cdot 0,00096$$

Ứng với x = 0.46 ta có 0.46 = 0.4 + 0.1t ta suy ra t = 0.6. Yhay t = 0.6 vào về trái ở trên ta tính được:

$$\sin(0.46) \approx p(0.4 + 0.1.0.6) = 0.4439446$$

Sai số tính theo công thức (4.7) như ở trên:

$$|\sin(0.46) - 0.4439446| \le 3.8.10^{-5}$$

Ta quy tròn số 0,4439446 đến 5 chữ số lẻ thập phân:

$$\sin(0.46) = 0.44394 \pm 5.10^{-5}$$

Chú thích: Ta nhận thấy rằng sai số khi tính sin(0,46) gấp lần sai số khi tính sin(0,14). Lí do là 0,46 ở ngoài khoảng 0,1; 0,4) còn 0,14 ở trong khoảng đó, cho nên khi tính sin 0,46) ta phải "ngoại suy" còn khi tính sin(0,14) ta chỉ "nội suy". a có thể xem lại mục 7, hình 4-1 thấy rằng sai số ngoại suy uyệt đối) lớn vọt rất nhanh.

§4.2. PHƯƠNG PHÁP BÌNH PHƯƠNG BÉ NHẤT

1. Mở đầu

3

Giả sử có hai đại lượng (vật lí, hóa học, kĩ thuật...) x và y có liên hệ phụ thuộc nhau theo một dạng đã biết như:

$$1. y = a + bx$$

$$2. y = a + bx + cx^2$$

3.
$$y = a + b \cos x + c \sin x$$

4.
$$y = ae^{bx}$$

5.
$$y = ax^b$$

nhưng chưa biết các giá trị cụ thể của các tham số a, b, c. Muốn xác định chúng người ta tìm cách có được – bằng thí nghiệm, đo đạc v.v..., một số cặp giá trị tương ứng $(x_i,\ y_i)$, $i=1,\ 2,\ ...,\ n$:

Bàng 4.7

x	x ₁	x ₂	 X _n
у	y ₁	y ₂	 y _n

rồi áp dụng phương pháp bình phương bé nhất để xác định các tham số

2. Trường hợp y = a + bx

$$y = a + bx.$$

Giả sử y phụ thuộc x dạng y = a + bx khi đó

$$y_i - a - bx_i = \varepsilon_i$$
, $i = 1, 2, ..., n$

là các sai số tại xi, do đó:

$$S = \sum (y_i - a - bx_i)^2$$
 (4.17)

là tổng các bình phương của các sai số 3 phụ thuộc a và b, còn x_i, y_i đã biết.

Mục dích của phương pháp bình phương bé nhất là xác dịnh và b sao cho S bé nhất. Như vậy a và b là nghiệm của hệ phương trình

$$\frac{\partial S}{\partial a} = 0, \frac{\partial S}{\partial b} = 0 \tag{4.18}$$

ức là:

$$na + b\sum x_i = \sum y_i$$

$$a\sum x_i + b\sum x_i^2 = \sum x_i y_i$$
(4.19)

Từ bảng 4-7 ta tính ra các tổng $\sum x_i$, $\sum y_i$, $\sum x_i^2$, $\sum x_iy_i$, thay ào hệ (4.19) rồi giải hệ đó ta được a và b.

3. Thí dụ

Cho biết sự phụ thuộc giữa hai đại lượng x và y có dạng = a + bx và cho bảng số liệu:

Bảng 4.8

x	-1,1	2,1	3,2	4.4	5,2
у	0,78	7.3	9,2	11.9	13,3

Hãy xác định a và b bằng phương pháp bình phương bé nhất. Giải. Trước hết ta lập bằng số:

Bảng 4.9

	x _i	\mathbf{y}_{i}	\mathbf{x}_{i}^{2}	\mathbf{x}_i \mathbf{y}_i
	- 1,1	0,78	1,21	- 0,858
	2,1	7,3	4,41	15,33
n = 5	3,2	9,2	10,24	29,44
	4,4	11,9	19,36	52,36
	5,2	13,3	27,04	69,16
Σ	13,8	42,48	62,26	165,43

Sau đó hệ phương trình (4.19) viết:

$$5a + 13.8b = 42.48$$

$$13,8a + 62,26b = 165,432$$

Giải hệ này ta được:

$$a = 2,9939036 \approx 3$$
; $b = 1,9935131 \approx 2$

Vậy có quan hệ:

$$y = 3 + 2x$$
 (4.20)

Bây giờ ta thử tính các giá trị mới của y tại các x_i theo (4.20) và so sánh chúng với các giá trị y_i đã cho bởi bảng 4-8 (xem bảng 4-10).

Bång 4.10

x	-1,1	2,1	3,2	4,4	5.2
y cũ	0,78	7,3	9,2	11,9	13,3
y mới	0,8	7,2	9,4	11,8	13,4

Như vậy quan hệ (4.20) xấp xỉ khá tốt bảng số liệu 4.8.

4. Các dạng quan hệ khác

Các dạng phụ thuộc 2, 3 nêu ở mục 1 là những quan hệ tuyến tính đối với các tham số a, b, c nên cũng có thể giải quyết một cách tương tự. Chẳng hạn, nếu:

$$y = a + bx + cx^2$$

thì a, b, c là nghiệm của hệ:

$$n\mathbf{a} + \mathbf{b} \sum \mathbf{x}_i + \mathbf{c} \sum \mathbf{x}_i^2 = \sum \mathbf{y}_i$$

$$\mathbf{a} \sum \mathbf{x}_i + \mathbf{b} \sum \mathbf{x}_i^2 + \mathbf{c} \sum \mathbf{x}_i^3 = \sum \mathbf{x}_i \mathbf{y}_i$$

$$\mathbf{a} \sum \mathbf{x}_i^2 + \mathbf{b} \sum \mathbf{x}_i^3 + \mathbf{c} \sum \mathbf{x}_i^4 = \sum \mathbf{x}_i^2 \mathbf{y}_i$$

piến đổi đôi chút vì đó là những quan hệ phi tuyến đối với các tham số a và b.

Giả sử:

$$y = ae^{bx}, a > 0$$

Lấy lôgarit thập phân hai vế ta được :

$$logy = loga + bxloge$$

$$D$$
ăt : $logy = Y$, $loga = A$, $bloge = B$, $x = X$

$$\mathbf{a} \cdot \mathbf{co} : \mathbf{Y} = \mathbf{A} + \mathbf{B} \mathbf{X}$$

Đây là quan hệ dạng y = a + bx.

Từ bảng số liệu về x, y ta suy ra bảng số liệu về X, Y với hú \circ :

$$X = x$$
, $Y = logy$

Sau đó áp dụng cách làm ở mục 2 ta thu được A, B rỗi từ ố suy a và b. Bây giờ giả sử:

$$y = ax^b, a > 0, x > 0$$

Lấy logarit hai vế ta được:

$$logy = loga + blogx$$

$$Dat : logy = Y, loga = A, b = B, logx = X$$

$$\mathbf{a} \cdot \mathbf{co} : \mathbf{Y} = \mathbf{A} + \mathbf{B} \mathbf{X}$$

Đó là quan hệ dạng y = a + bx.

Ta lại làm như ở mục 2.

5. Sơ đồ tóm tắt phương pháp bình phương bé nhất

Ở đây chỉ trình bày hai trường hợp: Khi cho biết giữa x và có liên hệ:

y = a + bx và khi cho biết giữa x và y có liên hệ $y = ae^{bx}$. Các trường hợp khác bạn đọc tự làm

a) Trường hợp cho biết giữa x và y có liên hệ y = a + bx và bảng số:

Sơ đồ tóm tắt của phương pháp như sau:

1) Tính các tổng:

$$\sum x_i$$
, $\sum y_i$, $\sum x_i^2$, $\sum x_i y_i$

2) Giải hệ:

$$na + b\sum x_i = \sum y_i$$
$$a\sum x_i + b\sum x_i^2 = \sum x_i y_i$$

để tìm ra a và b.

3) Kết luận:

$$y = a + bx$$

với a, b tính ra cụ thể ở 2).

b) Trường hợp cho biết giữa x và y có liên hệ:

$$y = ae^{bx}, a > 0$$

và bảng số trên.

Sơ đổ tóm tắt của phương pháp như sau:

 Lay logarit hai vé của y = ae^{tx} logy = loga + xbloge

Đặt

$$y = logy, X = x$$

 $A = loga, B = bloge$

ta đến liên hệ giữa X và Y

$$Y = A + BX$$

2) Chuyển bảng số giữa x và y thành bảng số giữa X và Y

3) Tính các tổng:

$$\sum X_i$$
, $\sum Y_i$, $\sum X_i^2$, $\sum X_i Y_i$

4) Giải hê:

$$nA + B\sum X_i = \sum Y_i$$

 $A\sum X_i + B\sum X_i^2 = \sum X_i Y_i$ de tim ra A và B

5) Tinh:

$$a = e^A$$
, $b = B/loge$

6) Kết luận:

$$y = a.e^{bx}$$

với a và b tính ra cụ thể ở 5).

BÀI TẬP

- 1. Cho hàm số $y=2^x$ với các giá trị tại x=3,50; 3,65; 3,60; 3,65; 3,70 tuần tự là 33,115; 34,813; 36,598; 38,475; 40,477. Hãy lập đa thức nội suy Niuton tiến xuất phát từ nút 3,50.
 - 2. Tích phân sác xuất;

$$\phi(\mathbf{x}) = \frac{2}{\sqrt{\pi}} \int_{0}^{\mathbf{x}} e^{-t^{2}} dt$$

hông tính được bằng nguyên hàm. Người ta đã tinh gan dung ó tại $\mathbf{x}=1.0,\ 1.1\ ;\ 1.2\ ;\ 1.3\ ;\ 1.4\ ;\ 1.5\ ;\ 1.6\ ;\ 1.7\ ;\ 1.8\ ;$,9 ; 2,0 được các giá trị xấp xỉ tuần tự là 0,8427 ; 0,8802 ;

,9; 2,0 được các giả trị xấp xi tuần tự là 0,8427; 0,8802; ,9103; 0,9340; 0,9523; 0,9661; 0,9763; 0,9838; 0,9891; ,9928; 0,9953;

Hãy tính $\phi(1,43)$.

3. Cho hàm số $y = e^x tai x = 0.65 (0.1) 1.15 tuần tự là .91554 ; 2.11700 ; 2.33965 ; 2.58571 ; 2.85765 ; 3.15819 Hay inh ln2.$

4. Biết rằng đại lượng y là một tam thức bậc hai của x và ại x = 0.78; 1.56; 2.34; 3.12; 3.81 các giá trị của y tuấn ự là 2.5; 1.20; 1.12; 2.25; 4.28. Hãy lập công thức y biểu liễn qua x.

Trả lời

- 1. $p_3(x) \Big|_{x = 3.50 + 0.05t} = 33,115 + 1,698t + 0,0435 t (t 1) + 0,00083t(t 1)(t 2)$
- 2. $\phi(1,43) \approx 0.95686$.
- 3. $\ln 2 \approx 0.693148$.
- 4. $y = 5,045 4,043x + 1,009x^2$.

Chwong 5

and the company of t

providence of the particular of the providence of the particular o

Sand Sand

TÍNH GẦN ĐÚNG ĐẠO HÀM VÀ TÍCH PHÂN XÁC ĐỊNH

§5.1 TÍNH GẦN ĐÚNG ĐAO HÀM

1. Áp dụng đa thức nội suy

Để tính gần đúng đạo hàm của hàm f(x) tại x tức là f'(x) ta có thể thay hàm f(x) bằng đa thức nội suy p(x) rồi tính đạo hàm của đa thức nội suy : p'(x), lấy p'(x) làm giá trị gần đúng của f'(x).

Thi du: Xét hàm số cho bởi bảng 4-4 ở mục 6 §4.1. Ta đã tìm ra đa thức nội suy của nó là :

$$p_3(x) = 8x^3 - 29x^2 + 41.5x - 3.5$$
Vây
$$f'(x) \approx p'_3(x) = 24x^2 - 58x + 41.5.$$

2. Áp dụng công thức Taylo

Theo công thức Taylo (xem công thức 2-30), ta có :

$$f(x'+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(c)$$

 $c = x + \theta h, 0 < \theta < 1.$

Khi |h| bé thì số hạng cuối ở về phải rất bé, ta có thể bỏ qua và có :

$$f(x + h) - f(x) \approx hf'(x)$$
 (5.1)

Vây có:
$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
 (5.2)

·... :

Thi $d\mu$: Xét hàm sinx cho bởi bảng 4.5 ở mục 10 §4.1. Áp ng công thức (5.2) ta có tại x = 0.2

$$(\sin x)'|_{x=0,2} \approx \frac{0.29552 - 0.19867}{0.1} = 0.09685$$

§5.2. TÍNH GẦN ĐÚNG TÍCH PHÂN XÁC ĐỊNH

1. Mở đầu

Xét tích phân xác định:

$$I = \int_{a}^{b} f(x) dx$$

Nếu f(x) liên tục trên [a, b] và có nguyên hàm là F(x) thi ng thức Niuton - Lépnit cho :

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Nhưng nếu không tìm được nguyên hàm của f(x) ở dạng sơ lợp thì tích phân I phải tính gần đúng. Sau đây ta sẽ trình ày hai công thức tính gần đúng tích phân I dựa trên tư tưởng tay hàm f(x) bằng một đa thức nội suy.

2. Công thức hình thang

Ta chia [a, b] thành n đoạn con bằng nhau bởi các điểm hia x_i :

$$a = x_0 < x_1 < ... < x_{n-1} < x_n = b$$
 $x_i = a + ih, h = \frac{(b-a)}{n}$
 $i = 0, 1, 2, ..., n$

Đặt
$$y_i = f(x_i)$$
.

Ta co :
$$\int_{a}^{b} f dx = \int_{x_{0}}^{x_{1}} f dx + \int_{x_{1}}^{x_{2}} f dx + ... + \int_{x_{n-1}}^{x_{n}} f dx$$
 (5.3)

Để tính mỗi tích phân ở vế phải ta thay hàm f(x) bằng một đa thức nội suy bậc nhất $p_1(x)$, (xem các công thức 4.5 và 4.14). Với tích phân thứ nhất ta có :

$$\int_{x_{1}}^{x_{1}} f(x)dx \approx \int_{x_{2}}^{x_{1}} p_{1}(x)dx$$

Đổi biến $x = x_0 + ht$ thì dx = hdt, ứng x_0 là t = 0, ứng x_1 là t = 1, nên có :

$$\int_{x_{o}}^{x_{1}} p_{1}(x)dx = h \int_{0}^{1} (y_{o} + t\Delta y_{o})dt = h \left(y_{o}t + \frac{t^{2}}{2} \Delta y_{o} \right) \Big|_{t=0}^{t=1}$$

$$= h \left[y_{o} + \frac{1}{2} \Delta y_{o} \right] = h \frac{y_{o} + y_{1}}{2}$$

Vay co :
$$\int_{x}^{x_1} f(x) dx \approx h \frac{y_0 + y_1}{2}$$

Về mặt hình học điều đó có nghĩa là : thay diện tích hình thang cong $x_0M_0M_1x_1$ bởi diện tích hình thang thường $x_0M_0M_1x_1$ (hình 5-1).

Hinh 5-1

Đối với tích phân thứ i + 1 ta có:

$$\int_{x_i}^{x_{i+1}} f(x) dx \approx h \frac{y_i + y_{i+1}}{2}$$

Vây công thức (5-3) cho:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} [(y_0 + y_1) + (y_1 + y_2) + ... + (y_{n-1} + y_n)]$$

ghĩa là:

$$I = \int_{a}^{b} f(x)dx \approx I_{T} \text{ v\'oi}$$

$$I_{T} = h \left[\frac{y_{0} + y_{n}}{2} + y_{1} + y_{2} + \dots + y_{n-1} \right]$$

$$h = \frac{(b-a)}{n}$$
(5.1)

Công thức này gọi là công thức hình thang

3. Đánh giá sai số

Người ta chứng minh được

$$|I - I_T| \leq \frac{M}{12} h^2 (b - a),$$

$$M = \max |f''(x)|, a \leq x \leq b$$
(5.5)

4. Thí dụ

Hãy tính gần đúng:

$$I = \int_{0}^{1} \frac{dx}{1 + x^{2}}$$
 (5.6)

Giải. Ta đã biết giá trị đúng của tích phân này là $\pi/4$. Do 5 nếu biết số π thì có :

$$I = 0,78539816...$$

Bây giờ ta tính gần đúng I bằng công thức hình thang rồi so sánh kết quả.

Chia đoạn $\{0, 1\}$ thành n = 10 đoạn con bằng nhau, h = 0,1; ta tính ra bảng 5.1

Bảng 5.1

x	$f(x) = 1/(1 + x^2)$
0.0	$1,0000000 = y_0$
0,1	$0.9900990 = y_1$
0.2	$0.9615385 = y_2$
0,3	$0.9174312 = y_3$
0.4	$0.8620690 = y_4$
0.5	$0.8000000 = y_5$
0,6	$0.7352941 = y_0$
0,7	$0.6711409 = y_7$
0,8	$0,6097561 = y_8$
0.9	$0.5524862 = y_9$
1,0	$0.5000000 = y_{10}$

Áp dụng công thức hình thang (5.4) ta được : I ≈ 0.7849815 với sai số tương đối 0.054%.

5. Sơ đổ tóm tắt công thức hình thang

Phương án 1: Cho trước số khoảng chia n

1) Xét tích phân
$$I = \int_{a}^{b} f(x)dx;$$

- 2) Ấn định số khoảng chia n;
- 3) Chia [a, b] thành n phần bằng nhau: Tính:

$$h = \frac{b-a}{n};$$

$$x_i = a + ih, i = 0, 1, ..., n;$$

$$y_i = f(x_i), i = 0, 1, ..., n.$$

4) Tinh:

$$I_T = h \left[\frac{y_0 + y_n}{2} + y_1 + ... + y_{n-1} \right]$$

5) Kết quả:

$$I \approx I_T$$

với sai số tính bởi (5.5)

Phương án 2: cho trước sai số

- 1) Xét tích phân $I = \int_{0}^{D} f(x)dx$
- 2) Ấn định sai số cho phép ε
- 3) Dùng công thức (5.5) để xác định số khoảng chia n sao 10 sai số bé thua sai số cho phép.

- 4) Tính như 3) của phương án 1
- 5) Tính I_T như 4) ở phương án 1
- 6) Kết quả:

$$I \approx I_T$$

ới sai số $|I - I_T| < \varepsilon$

6. Công thức Simxon (Simpson)

Ta chia [a, b] thành 2n đoạn con bằng nhau bởi các điểm hia \mathbf{x}_i :

$$a = x_0 < x_1 \quad x_2 < ... < x_{2n} = b$$

$$x_i = a + ih, h = \frac{(b-a)}{2n}, i = 0, 1, ..., 2n$$

Giả sử $y_i = f(x_i)$. Ta có:

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{2}} fdx + \int_{x_{2}}^{x_{4}} fdx + \dots + \int_{x_{2n-2}}^{x_{2n}} fdx$$
 (5.7)

Để tính mỗi tích phân ở vế phải ta thay f(x), bằng đa thức nội suy bậc hai $p_2(x)$, xem công thức (4.6) và (4.15). Với tích phân thứ nhất ta có :

$$\int_{x_0}^{x_2} f(x) dx \approx \int_{x_0}^{x_2} p_2(x) dx$$

Đổi biến $x = x_0 + ht$ thì dx = hdt, ứng x_0 là t = 0, ứng x_2 là t = 2. Do đó :

$$\begin{split} \int_{x_0}^{x_2} p_2(\mathbf{x}) d\mathbf{x} &= h \int_{0}^{2} (y_0 + t\Delta y_0 + \frac{1(t-1)}{2} \Delta^2 y_0) dt \\ &= h \left[y_0 t + \frac{t^2}{2} \Delta y_0 + \frac{1}{2} \left(\frac{t^3}{3} - \frac{t^2}{2} \right) \Delta^2 y_0 \right] \Big|_{t=0}^{t=2} \\ &= h \left[2y_0 + 2\Delta y_0 + \frac{1}{2} \left(\frac{8}{3} - \frac{4}{2} \right) \Delta^2 y_0 \right] \\ &= \frac{h}{3} (y_0 + 4y_1 + y_2). \end{split}$$

Vây cổ :
$$\int_{x_0}^{x_2} f(x) dx \approx \frac{h}{3} (y_0 + 4y_1 + y_2)$$

Đối với các tích phân sau ta cũng có một cách tương tự:

$$\int_{\mathbf{x}_{2i}}^{\mathbf{x}_{2i}+2} = \frac{\mathbf{h}}{3} (\mathbf{y}_{2i} + 4\mathbf{y}_{2i+1} + \mathbf{y}_{2i+2})$$

Cộng lại, công thúc (5.7) cho:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} [(y_0 + 4y_1 + y_2) + (y_2 + 4y_3 + y_4) + ...$$
$$+ (y_{2n-2} + 4y_{2n-1} + y_{2n})]$$

$$V_{Ay} co' : I = \int_{a}^{b} f(x)dx \approx I_{S} vo'$$

$$I_{S} = \frac{h}{3} [(y_{o} + y_{2n}) + 4(y_{1} + y_{3} + ... + y_{2n-1}) + 2(y_{2} + y_{4} + ... + y_{2n-2})]$$

$$h = \frac{(b-a)}{2n}$$
 (5.8)

Công thức này gọi là công thức Simxon.

7. Đánh giá sai số

Người ta chúng minh được:

$$|I - I_S| \leq M \frac{h^4}{180} (b - a)$$

$$M = \max |f^{IV}(x)|, a \leq x \leq b$$
(5.9)

8. Thí dụ

Xét tích phân (5.6) ở mục 4. Với bảng 5-1 đã tính, ở đó ta ớ thể áp dụng công thức Simxon vì 10 = 2.5. Ta được :

 $I \approx 0.78539815$ với sai số tương đối 0.000002 %

Đối chiếu với kết quả cho bởi công thức hình thang ta thấy tết quả này chính xác hơn nhiều

9. Sơ đồ tóm tắt công thức Simxơn

Phương án 1: cho trước số khoảng chia 2n

- 1) Xét tích phân $I = \int_{a}^{b} f(x)dx$
- 2) Ấn định số khoảng chia 2n
- 3) Chia [a, b] thành 2n phần bằng nhau.

Tinh:
$$h = \frac{b-a}{2n}$$

 $x_i = a + ih, i = 0, 1, ..., 2n$
 $y_i = f(x_i), i = 0, 1, ..., 2n$

4) Tinh:

$$I_{S} = \frac{h}{3} [(y_{0} + y_{2n}) + 4(y_{2} + ... + y_{2n-1}) + + 2(y_{2} + ... + y_{2n-2})$$

5) Kết quả:

$$I \approx I_S$$

Với sai số tính bởi công thức (5.9)

Phương án 2 : cho trước sai số

- 1) Xét tích phân $I = \int_{a}^{b} f(x)dx$
- 2) Ấn định sai số cho phép ε
- 3) Dùng công thức (5.9) để xác định số khoảng chia 2n sao cho sai số bé thua sai số cho phép
 - 4) Làm như ở 3) của phương án 1
 - 5) Tính ${
 m I_S}$ như ở 4) của phương án 1
 - 6) Kết quả:

$$I \approx I_S$$

với sai số $|I - I_S| < \varepsilon$.

BÀI TẬP

1. Cho hàm số $y = \log x$ với số các giá trị tại x = 50; 55; 60; 65 tuần tự là 1,6990; 1,7404; 1,7782; 1,8129. Hãy tính đao hàm của y tại x = 50 và so sánh với kết quả tính trực tiếp.

2. Cho tích phân:

$$I = \int_{0}^{1} \frac{dx}{1+x}$$

Hãy chia đoạn [0, 1] thành n = 10 đoạn con bằng nhau rối nh gần đúng I và cho đánh giá sai số bằng :

- a) Công thức hình thang; b) bằng công thức Simxon.
- 3. Cho tích phân:

$$I = \int_{0}^{1} \frac{\sin x}{x} dx$$

- 1) Hỏi phải chia đoạn $\{0,1\}$ thành mấy (n=?) đoạn con ảng nhau để khi tính I bằng công thức hình thang bảo đảm lược sai số (tuyệt đối) $< 3.10^{-4}$.
- 2) Với n ấy khi tính theo công thức Simxơn thì sai số là pao nhiều?
- 3) Hãy tính I với n đã chọn ở trên bằng công thức hình hang và công thức Simxơn đến 6 chữ số lẻ thập phân.

Trá lời

1. Dùng nội suy : y'(50) = 0,0087

Tinh trực tiếp :
$$y'(50) = \frac{0.43429}{x} \Big|_{x=50} = 0.0087$$

- 2. $I = 0.69315 \pm 0.00002$
- **3.** $n \ge 10$

Với n = 10 thì sai số $< 1,2.10^{-7}$

Theo công thức hình thang: I = 0,9458

Theo công thức Simxon ta có : I = 0.946082.

(a) The second of the contribution of the second of the contribution of the second of the second

Chuong 6

Commence of the second of the

The second of th

ing no the property of the state of the stat

TÍNH GẦN ĐÚNG NGHIỆM CỦA BÀI TOÁN CÔSI ĐỐI VỚI PHƯƠNG TRÌNH VI PHÂN THƯỜNG

§6.1. PHÁT BIỂU BÀI TOÁN

1. Nhân xét mở đầu

Xét chẳng hạn phương trình vi phân thường cấp một :

$$y' = 2x + 1$$
 (6.1)

Rõ ràng nghiệm tổng quát của nó là

$$y = x^2 + x + C \tag{6.2}$$

phụ thuộc một hằng số tùy ý C, mỗi giá trị cụ thể của C cho một nghiêm cụ thể. Để có một nghiệm xác định (phản ánh một tình hướng cụ thể) ta phải xác định được giá trị tương ứng của C. Muốn thế ngoài phương trình (6.1) ta phải thêm một điều kiện phụ, chẳng hạn

$$y(1) = 2 \tag{6.3}$$

Hàm số (6.2) phải thỏa mãn điều kiện (6.3) ta suy ra

$$2 = 1^2 + 1 + C$$

do đó C=0. Vây hàm số y(x) vừa thỏa mãn phương trình (6.1) vừa thỏa mãn điều kiện (6.3) là $y=x^2+x$.

Điều kiện (6.3) gọi là điều kiện Cosi (nay queu kiện \dots , \dots) của bài toán và bài toán (6.1) (6.3) tức là bài toán tìm n số y(x) vừa thỏa mãn phương trình vi phân (6.1) vừa thỏa n điều kiện (6.3) gọi là bài toán Côsi (hay bài toán trị ban u) đối với phương trình vi phân (6.1)

2. Phát biểu bài toán Côsi đối với một phương trình vi iân cấp một

Cho khoảng $[x_o, X]$. Tìm hàm số y = y(x) xác định trên o, X] và thỏa mãn

$$y' = f(x, y), x_0 \le x \le X$$
 (6.4)

$$y(x_0) = \eta ag{6.5}$$

ong đó f(x, y) là một hàm số đã biết của hai đối số x, y, còn là một số thực cho trước. Điều kiện (6.5) gọi là điều kiện $\sin x$ hay điều kiện $\sin x$ dầu.

Thí dụ 1: Bài toán (6.1) (6.3)

Thí dụ 2: Bài toán

$$y' = y - \frac{2x}{y}$$
 (6.6)

$$y(0) = 1$$
 (6.7)

3. Vấn để tính gần đúng nghiệm

Việc tìm nghiệm của bài toán Côsi thường rất phức tạp, hông phải lúc nào cũng đơn giản như thí dụ ở mục 1. ho nên người ta phải nghiên cứu các phương pháp tính ân đúng. Sau đây ta sẽ trình bày một số phương pháp với giả hiết là:

"Bài toán đặt ra có nghiệm duy nhất và nghiệm đó đủ tron, ghia là nó có đạo hàm đến cấp đủ cao" (6.8)

§6.2. PHƯƠNG PHÁP CHUỐI TAYLO

1. Mô tả phương pháp

- Xét bài toán Côsi (6.4) (6,5) viết lại là

$$y' = f(x, y), \qquad x_0 \le x \le X \tag{6.9}$$

$$y(x_0) = \eta ag{6.10}$$

Ta tìm nghiệm y(x) khai triển thành chuỗi Taylo tại $x = x_0$ xem chuỗi Tylo ở sách giáo khoa về giải tích):

$$y(\mathbf{x}) = y(\mathbf{x}_{o}) + \frac{y'(\mathbf{x}_{o})}{1!} (\mathbf{x} - \mathbf{x}_{o}) + \frac{y''(\mathbf{x}_{o})}{2!} (\mathbf{x} - \mathbf{x}_{o})^{2} + \dots$$
$$+ \frac{y^{(k)}(\mathbf{x}_{o})}{k!} (\mathbf{x} - \mathbf{x}_{o})^{k} + \dots$$
(6.11)

Bây giờ ta tính các đạo hàm $y^{(k)}(x_0)$ của y tại x_0 . Theo (6.10) a có $y(x_0) = \eta$. Sau đó theo (6.9) :

$$y'(x_0) = f(x_0, y(x_0)) = d(x_0, \eta)$$
 (6.12)

Muốn tính các đạo hàm tiếp theo ta phải lấy đạo hàm liên ếp (6.9). Với y'' ta có :

$$y'' = (y')' = (f(x), y(x))'$$

$$= \frac{\partial f}{\partial x}(x, y(x)) + \frac{\partial f}{\partial y}(x, y(x)) \cdot y'(x) \qquad (6.13)$$

Thay $x = x_0$ vào (6.13) và chú ý đến (6.12) và (6.10) ta tọc :

$$\mathbf{y}''(\mathbf{x}_{o}) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}_{o}, \eta) + \frac{\partial \mathbf{f}}{\partial \mathbf{y}}(\mathbf{x}_{o}, \eta) \cdot \mathbf{f}(\mathbf{x}_{o}, \eta)$$

Một cách tương tự, để tính $y'''(x_0)$ trước hết ta phải lấy đạo im (6.13), sau đó thay $x = x_0$. Và cứ thế tiếp tục.

Về nguyên tắc, nếu f có đạo hàm riêng cấp bát ki thi co thể tính được tất cả các đạo hàm $y^{(k)}(\mathbf{x}_0)$ và do đó ta xây dựng được chuỗi (6.11).

Với x khá gần x_o tức là $|x-x_o|$ đủ bé người ta chúng minh được rằng chuối (6.11) hội tụ về nghiệm của bài toán (6.9) (6.10). Lúc đó tổng của n số hạng đầu của (6.11) tức là tổng riêng thứ n, $S_n(\mathbf{x})$ của chuỗi (6.11), là nghiệm xấp xỉ của bài toán (6.9) (6.10), mức độ chính xác phụ thuộc n, nó càng cao nếu n càng lớn

2. Thí dụ

Xét bài toán

$$y' = \frac{y}{x + y}$$

$$y(1) = 2$$

$$(6.14)$$

Giải: Ta tìm nghiệm có dạng chuỗi Taylo (6.11). Theo (6.15) ta có $x_0 = 1$, $y(x_0) = y(1) = 2$.

Ta suy ra:

$$y'(1) = \frac{2}{1+2} = \frac{2}{3}$$

Sau đó lấy đạo hàm (6.14):

y" =
$$\left(\frac{y}{x+y}\right)' = \frac{(x+y)y' - y(x+y)'}{(x+y)^2} = \frac{xy' - y}{(x+y)^2}$$

Ta suy ra:

$$y''(1) = \frac{1 \cdot (2/3) - 2}{(1+2)^2} = \frac{-4}{27}$$

Một cách tương tự ta tính được $y'''(1) = \frac{4}{27}$ v.v... Thay các kết quả đó vào (6.11) ta được.

$$y(x) = 2 + \frac{2}{3}(x-1) - \frac{2}{27}(x-1)^2 + \frac{2}{81}(x-1)^3 + ...$$

Bây giờ ta có thể dùng công thức này để tính gần đúng y(x) tại x = 1,1 chẳng hạn, vì |1,1-1| = 0,1 bé nên ta bỏ qua các số hạng... ở cuối và thu được :

$$y(1,1) \approx 2 + \frac{2}{3} \cdot 0.1 - \frac{2}{27} (0,1)^2 + \frac{2}{81} \cdot (0,1)^3 \approx 2,06584$$

§6.3. PHƯƠNG PHÁP OLE

1. Mở đầu

Phương pháp chuỗi Taylo thuộc loại phương pháp giải tích tức là tìm nghiệm dưới dạng một chuỗi. Còn phương pháp Ole thuộc loại phương pháp số tức là tìm nghiệm dưới dạng bảng số.

Trước hết ta chia đoạn $[x_o, X]$ thành n đoạn nhỏ bằng nhau bởi các điểm x_i :

$$x_i = x_0 + ih, i = 0, 1, ..., n$$
 (6.16)

$$h = \frac{(X - x_0)}{n} \tag{6.17}$$

Ta gọi tập các điểm $\{\mathbf{x}_i\}$ là một *lưới sai phân* trên $[\mathbf{x}_o, X]$, gọi các điểm \mathbf{x}_i là các *nút* của lưới và gọi h là *bước đi* của lưới. Ở đây h = const nên ta có một *lưới đều*

Giả sử y(x) là nghiệm đúng của bài toán (6.9) (6.10). Mục tích của phương pháp Ole là tìm cách tính gần đúng giá trị :ủa y(x) chỉ tại các nút x_i mà thôi, chứ không phải tại mọi $t \in [x_0, X]$. Vì x_i là nút của một lưới sai phân nên phương pháp Ole cũng gọi là phương pháp sai phân.

2. Xây dựng công thức tính

Gọi y(x) là nghiệm của bài toán (6.9) (6.10) $y(x_i)$ là giá trị của $y(x_i)$ tại $x = x_i$ \mathbf{x}_i in the six gain using that $\mathbf{y}_i \mathbf{x}_i$ in a talinuon tinn. Sau usy ta \mathbf{x}_i dying công thức tính \mathbf{u}_i .

Giả sử đã biết u_i tại nút x_i và muốn tính u_{i+1} tại nút x_{i+1} . Ta khai triển Taylo hàm y(x) tại x_i (xem công thức (2-30)) và

$$y(x) = y(x_i) + y'(x_i)(x - x_i) + \frac{y''(c_i)}{2!}(x - x_i)^2$$

$$c_i = x_i + \theta(x - x_i), \ 0 < \theta < 1$$

Thay $x = x_{i+1} = x_i + h$, $y'(x_i) = f(x_i, y(x_i))$

(theo 6.9) vào đẳng thức trên ta được:

$$y(x_{i+1}) = y(x_i) + hf(x_i, y(x_i)) + \frac{h^2}{2}y''(c_i)$$
 (6.18)

Khi h bé, số hạng cuối ở vế phải có thể xem là bé, không đáng kể, ta bỏ qua, sau đó thay $y(x_i)$ bằng u_i ta được công thức:

$$\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{h}_i f(\mathbf{x}_i, \mathbf{u}_i)$$
 (6.19)

Công thức này cho phép tính u_{i+1} khi đã biết u_i . Điều kiện Côsi (6.10), $y(x_0) = \eta$, gợi ý ta đặt

$$\mathbf{u_o} = \boldsymbol{\eta} \tag{6.20}$$

Bây giờ dùng (6.19) cho i = 0 ta tính ra u_1 , sau đó cho i = 1 ta tính ra u_2 , v.v..., cuối cùng ta tính ra tất cả các u_i , i = 1, 2, ..., n.

Phương pháp tính u_i theo các công thức (6.19) (6.20) gọi là phương pháp Ole.

Ta thấy rằng, với phương pháp Ole việc tính ra u_{i+1} khi đã biết u_i rất đơn giản, không phải giải một phương trình nào dù hàm f(x, y) là tuyến tính hay phi tuyến đối yới y. Với ý đó ta nói phương pháp Ole là phương pháp hi

3. Sự hội tụ và sai số

$$Ta goi e_i = u_i - y(x_i)$$
 (6.21)

là sai số của phương pháp Ole tại x;.

Dinh nghĩa 6.1. Nếu tại x_i xác định, $e_i \rightarrow 0$ khi $h \rightarrow 0$ tức là $u_i \rightarrow y(x_i)$ khi $h \rightarrow 0$ thì ta nói phương pháp Ole hội tụ.

Khi phương pháp Ole hội tụ thì tại $x_i u_i$ sẽ đủ gần $y(x_i)$ nếu i đủ bé, nên u_i là giá trị gần đúng của $y(x_i)$.

Để xét sự hội tụ đó ta có định lí 6.1 ở dưới.

Định lí 6.1. Giả sử:

$$\left| \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \right| \le L$$
 (6.22)

$$|y''| \leq K \tag{6.23}$$

rong đó L, K là những hàng số. Khi đó phương pháp Ole hội u và sai số $e_i = u_i - y(x_i)$ có đánh giá:

$$|\mathbf{e}_i| = |\mathbf{u}_i - \mathbf{y}(\mathbf{x}_i)| \leq \mathbf{M}(|\mathbf{e}_o| + \alpha \mathbf{h})$$

$$\mathbf{M} = e^{\mathbf{L}(\mathbf{x}_{1} - \mathbf{x}_{0})}, \alpha = \frac{\mathbf{K}}{2}$$
 (6.24)

Như vậy, sai số \mathbf{e}_i tại \mathbf{x}_i phụ thuộc cả sai số ban đầu \mathbf{e}_o . Chứng minh. Lấy (6.19) trừ (6.18) vế với vế ta được

$$e_{i+1} = e_i + h[f(x_i, u_i) - f(x_i, y(x_i))] - \frac{h^2}{2}y''(c_i)$$

Áp dụng công thức Lagrangio (xem công thức 2.18) vào hiệu rong dấu ngoặc vuông;

$$f(\mathbf{x}_i, \mathbf{u}_i) - f(\mathbf{x}_i, \mathbf{y}(\mathbf{x}_i)) = \frac{\partial f}{\partial \mathbf{y}} (\mathbf{x}_i, \overline{\mathbf{y}}_i(\mathbf{u}_i - \mathbf{y}(\mathbf{x}_i)))$$

$$\vec{y}_i = y(x_i) + \theta(u_i - y(x_i)), \ 0 < \theta < 1$$

ii lấy trị tuyệt đối của hai vế ta thu được:

$$|\mathbf{e}_{i+1}| \leq |\mathbf{e}_i| + h \left| \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \right| |\mathbf{e}_i| + \frac{h^2}{2} |\mathbf{y}''|.$$

Từ đó với giả thiết (6.22) (6.23) ta suy ra:

$$|e_{i+1}| \le (1 + Ah)|e_i| + B$$
 (6.25)

$$A = L, B = (K/2)h^2$$
 (6.26)

Bất đẳng thức này đúng với mọi i, nó cho quan hệ giữa e_i và e_{i+1} . Do đó ta có thể suy ra đánh giá của $|e_i|$ nhờ bổ để sau :

Bổ đề 6.1. Giả sử e_i là những đại lượng phụ thuộc i và thỏa mãn (6.25) trong đó A và B là các hằng số không phụ thuộc i. Thế thì có:

$$|\mathbf{e}_{i}| \le \mathbf{M} \left(|\mathbf{e}_{o}| + \frac{\mathbf{B}}{\mathbf{A}\mathbf{h}} \right)$$
 (6.27)

$$M = e^{A(x_i - x_o)} (6.28)$$

Ta sẽ chứng minh bổ để 6.1 sau. Bây giờ áp dụng bổ để này vào (6.25) (6.26) ta được ngay đánh giá (6.24).

$$\mathring{O}$$
 đây : $e_0 = u_0 - y(x_0) = \eta - \eta = 0$

Vây (6.24) cho

$$|\mathbf{e}_i| = |\mathbf{u}_i - \mathbf{y}(\mathbf{x}_i)| \le \mathbf{M}\alpha\mathbf{h} \tag{6.29}$$

Do đó $e_i = u_i - y(x_i) \rightarrow 0$ khi $h \rightarrow 0$.

Và định lí 6.1 chứng minh xong

Chúng minh bố đề 6.1. Bất đẳng thúc (6.25) đúng với mọi i, ta suy ra:

$$|\mathbf{e}_{i}| \le (1 + \mathbf{A}\mathbf{h}) |\mathbf{e}_{i-1}|$$
 $|\mathbf{e}_{i-1}| \le (1 + \mathbf{A}\mathbf{h}) |\mathbf{e}_{i-2}|$
 $|\mathbf{e}_{i-2}| \le (1 + \mathbf{A}\mathbf{h}) |\mathbf{e}_{i-3}|$

$$|e_1| \leq (i + Ah)|e_0|$$

Nhân bất đẳng thức thứ nhất với (1 + Ah), bất đẳng thức thứ hai với $(1 + Ah)^2$, v.v..., bất đẳng thức cuối cùng với $(1 + Ah)^{i-1}$, rồi cộng lại ta được :

$$|e_i| \le (1 + Ah)^i |e_o| + B[1 + (1 + Ah) + (1 + Ah)^2 + ... + (1 + Ah)^{i-1}]$$

Trong dấu ngoặc vuông là một cấp số nhân công bội (1 + Ah), nên có :

$$|e_i| \le (1 + Ah)^i |e_o| + B \frac{(1 + Ah)^i - 1}{(1 + Ah) - 1}$$
 (6.30)

Vì $(1 + Ah) \le e^{Ah}$ nên $(1 + Ah)^i \le e^{Aih}$, nhưng ih = $x_i - x_0$, do đó :

$$(1 + Ah)^i \le e^{A(x_i - x_o)} = M.$$

Tại x_i xác định, vế phải này là một hàng số. Vậy từ (6.30) ta suy ra kết luận của bổ để.

4. Quy ước viết 0(hk)

Chúng ta rất hay gặp những đại lượng $\varphi(h)$ phụ thuộc h và $\rightarrow 0$ khi h $\rightarrow 0$. Nếu tồn tại một hằng số dương M_i không phụ thuộc h sao cho

$$|\varphi(\mathbf{h})| \leq \mathbf{M}_1 \mathbf{h}^k \; ; \; \mathbf{k} > 0 \tag{6.31}$$

thì ta viết
$$\varphi(h) = 0(h^k)$$
 (6.32)

Ta cũng nói $\varphi(h)$ là một vô cùng bé có cỡ $O(h^k)$.

Áp dụng quy ước đó ta có thể viết sai số \mathbf{e}_i của phương pháp Ole (xem 6.29) như sau:

$$e_i = u_i - y(x_i) = 0(h)$$

5. Thí dụ

Xét bài toán cụ thể:

$$y' = y - \frac{2x}{y}$$
 $0 < x \le 1$ (6.33)

$$y(0) = 1 (6.34)$$

$$\mathring{O}$$
 dây $f(x, y) = y - \frac{2x}{y}$;

$$x_0 = 0 ; X = 1 ; \eta = 1$$

Bài toán này có nghiệm đúng tính được là $y = \sqrt{2x+1}$ Xét lưới:

$$x_i = ih$$
; $h = 1/n$

Các công thức tính sẽ là:

$$u_{i+1} = u_i + h \left(u_i - \frac{2x_i}{u_i} \right).$$

 $u_0 = 1$

Kết quả tính với n = 10 ghi thành bảng 6.1.

Bång 6.1

4

i	\mathbf{x}_{i}	Nghiệm gần u _i	Nghiệm đúng $y(x_i)$
0	0,0	1,	1.
1	0,1	1,1	1.095445
2	0,2	1,191818	1,183216
3	0.3	1.277438	1.264911
4	0,4	1,358213	1.341641
5	0.5	1,435133	1,414214
6	0.6	1,508966	1.483240
7	0.7	1,580338	1,549193
8	0,8	1.649783	1,612452
9	0,9	1,717779	1.673320
10	1,0	1,784771	1.732051

6. Một cách đánh giá sai số thiết thực

Công thức (6.24) cho một cách đánh giá sai số nhưng lại hông qua những đại lượng L, K chỉ biết là tồn tại mà không tiết được giá trị cụ thể, nên đánh giá đó không thiết thực. Bây giờ ta xét một cách đánh giá sai số thiết thực hơn. Theo (6.29) hì sai số có cỡ 0(h). Người ta chúng minh được một công thức âu sắc hơn: Với những giả thiết nhất định. Chẳng hạn khi

f(x,y) khả vi liên tục và y(x) có đạo hàm đến cấp ba bị chặn thì tồn tại một hàm số liên tục w(x) không phụ thuộc h sao cho

$$u_i - y(x_i) = hw((x_i) + 0(h^2)$$
 (6.35)

Công thức này gọi là công thức triển khai tiệm cận của sai số của phương pháp Óle.

Bây giờ giả sử cùng một bài toán ta tính theo phương pháp Ole hai lần, lần thứ nhất với bước đi h ta được giá trị gần đúng tại \mathbf{x}_i là $\mathbf{u}(\mathbf{x}_i$; h), (ta viết thế cho rõ sự phụ thuộc vào h, trước đây ta chỉ viết đơn giản là \mathbf{u}_i , lần thứ hai với bước đi $\frac{\mathbf{h}}{2}$ ta được giá trị gần đúng cũng tại \mathbf{x}_i là $\mathbf{u}(\mathbf{x}_i$; $\frac{\mathbf{h}}{2}$). Theo công thức (6.35) ta có :

$$u(x_i;h) - y(x_i) = hw(x_i) + O(h^2)$$
 (6.36)

$$u\left(x_i; \frac{h}{2}\right) - y(x_i) = \frac{h}{2}w(x_i) + 0(h^2)$$
 (6.37)

Bằng phép trừ hai đẳng thúc ta được:

$$\frac{h}{2} w(x_i) = u(x_i; h) - u(x_i; \frac{h}{2}) + O(h^2)$$

Do đó (6.37) cho:

$$u(x_i; \frac{h}{2}) - y(x_i) = u(x_i; h) - u(x_i; \frac{h}{2}) + 0(h^2)$$

Vì số hạng $O(h^2)$ quá bé so với h khi h bé nên ta bỏ qua và thu được hệ thực $(gan \ dúng)$:

$$u(x_i; \frac{h}{2}) - y(x_i) \approx u(x_i; h) - u(x_i; \frac{h}{2})$$
 (6.38)

Vậy nếu xem $u\left(x_i;\frac{h}{2}\right)$ là giá trị gần đúng của $y(x_i)$, thì có đánh giá sai số (6.28)

Ta thử áp dụng kết quả đó vào bài toán (6.33) (6.34).

Kết quả tính với h = 0,1 tại một số nút ghi thành bảng 6.2

x _i	u(x; h)	$u\left(x_i:\frac{h}{2}\right)$	Sai số theo (6.38)	Sai số đúng $u\left(x_i: \frac{h}{2}\right) = y(x_i)$
0,5	1,435133	1.424991	0,010142	0,010777
1,0	.1,784771	1,760038	0,024773	0,027987

Sai số đúng tính với $y(x) = \sqrt{2x+1}$. Ta thấy sai số tính so (6.38) khá gần sai số đúng.

7. Sơ đồ tóm tắt phương pháp Cle

Cho bài toán:

$$y' = f(x, y),$$
 $x_0 \le x \le X$
 $\dot{y}(x_0) = \eta$

Phương án 1 (không tính sai số)

- 1) Ấn định số khoảng chia N
- 2) Tinh h = $(X x_0)/N$
- 3) Tinh $x_i = x_0 + ih$
- 4) Đặt $u_0 = \eta$
- 5) Tính

$$u_{i+1} = u_i + hf(x_i, u_i)$$

 $i = 0, 1, 2, ..., N - 1$

6) Kết quả được:

$$u_i \approx y(x_i), i = 0, 1, ..., N$$

Phương án 2 (có tính sai số)

- 1) Ấn định sai số khoảng chia N
- 2) Làm các bước 2, 3, 4, 5 của phương án 1.

3) Đặt $\mathbf{u}(\mathbf{x}_i, \mathbf{h}) = \mathbf{u}_i$ Thay \mathbf{h} bởi $\mathbf{h}/2$, làm lai bước 2

$$dat \qquad u\left(x_i; \frac{h}{2}\right) = u_i$$

Kết quả được : $u\left(x_i, \frac{h}{2}\right) \approx y(x_i)$ với sai số

$$\left| u\left(x_i, \frac{h}{2} \right) - y(x_i) \right| \simeq \left| u(x_i, h) - u\left(x_i, \frac{h}{2} \right) \right|.$$

§ 6.4. PHŲ LỤC 3 SAI SỐ THỰC SỰ

1. Mở đấu

Trong khi tính, ngoài sai số phương pháp xác định bởi công thức (6.24) còn một loại sai số nữa phải kể đến, đó là sai số tinh toán (xem đoạn §1.5) do sai số quy tròn khi thực hiện các phép tính số học tích luỹ lại. Sai số này phụ thuộc số các chữ số có nghĩa của máy tính dùng để tính, số các chữ số có nghĩa này càng lớn thì sai số tính toán càng nhỏ.

Như vậy khi muốn tính đại lượng A ta không được A mà chỉ được một giá trị gần đúng tính ra thực sự của A, ta kí hiệu nó là A*, lúc đó A* - A là sai số tính toán khi tính A, còn gọi là sai số thực sự.

2. Áp dụng vào phương pháp Ole

Giả sử đã có \mathbf{u}_i^* là giá trị tính ra thực sự của \mathbf{u}_i . Để tính \mathbf{u}_{i+1} ta có (6.19) :

$$u_{i+1} = u_i + hf(x_i, u_i)$$

trong đó phải thay u_i trong vế phải bằng u_i^{\star} và giá trị tính ra thực sự cho u_{i+1} sẽ là

$$u_{i+1}^* = (u_i^* + hf(x_i, u_i^*))^*$$

$$\varepsilon_i = (u_i^* + hf(x_i, u_i^*)) - (u_i^* + hf(x_i, u_i^*))$$

$$u_{i+1}^* = u_i^* + hf(x_i, u_i^*) + \varepsilon_i$$
 (6.39)

ây giờ ta đánh giá sai số tính toán tổng hợp tại \mathbf{x}_i :

$$e_i^* = u_i^* - u_i ag{6.40}$$

riả thiết về các sai số tính toán địa phương ε_i thỏa mãn

$$\leq \varepsilon$$
, ε xác định bởi máy tính sử dụng. (6.41)

ấy (6.39) trừ (6.19) vế với vế ta được

$$e_{i+1}^* = e_i^* + h[f(x_i, u_i^*) + f(x_i, u_i)] + \varepsilon_i$$

p dụng công thức Lagrangio (xem công thức 2.18) vào ở trong dấu ngoặc ta được :

$$\mathbf{e}_{i+1}^* = \mathbf{e}_{i}^* + \mathbf{h} \frac{\partial \mathbf{f}}{\partial \mathbf{v}} (\mathbf{x}_i, \overline{\mathbf{u}}_i) (\mathbf{u}_i^* - \mathbf{u}_i) + \varepsilon_i$$

$$\overline{\mathbf{u}}_{i} = \mathbf{u}_{i} + \theta(\mathbf{u}_{i}^{\bullet} - \mathbf{u}_{i}), \ 0 < \theta < 1$$

76i giả thiết (6.22) (6.23) và (6.41) ta thu được :

$$|e_{i+1}^*| \le (1 + Lh)|e_i^*| + \varepsilon$$
 (6.42)

lất đẳng thức này có dạng (6.25). Ta áp dụng bổ để 6.1 và ra:

$$|\mathbf{e}_{i}^{*}| = |\mathbf{u}_{i}^{*} - \mathbf{u}_{i}| \leq \mathbf{M} \left(|\mathbf{e}_{o}^{*}| + \frac{\varepsilon}{h} \right)$$
 (6.43)

$$\mathbf{M} = \mathbf{e}^{\mathbf{L}(\mathbf{x}_i - \mathbf{x}_o)} \tag{6.44}$$

say giờ ta xét sai số thực sự $\mathbf{u}_i^* - \mathbf{y}(\mathbf{x}_i)$. Ta có :

$$u_i^* - y(x_i) = u_i^* - u_i + u_i - y(x_i)$$

'a suy ra $|u_i^* - y(x_i)| \le |u_i^* - u_i| + |(u_i - y(x_i))|$

Tư đó với các đánh giá (6.24) và (6.43), ta thủ được:

$$|u_i^* - y(x_i)| \le M \{ |e_O| + |e_O^*| + \alpha h + \frac{\varepsilon}{h} \}$$
 (6.45)

Đổ là đánh giá của sai số thực sự tại x_i khi ta xem u_i^* là giá trị gần đúng của $y(x_i)$. Trong (6.45) thì:

$$e_{o} = u_{o} - y(x_{o}) = \eta - \eta = 0$$

 $e_{o}^{*} = u_{o}^{*} - u_{o} = \eta^{*} - \eta$

là sai số tính toán khi xác định η . Trong điều kiện lí tưởng ta giả sử η^* - η = 0, tức là \mathbf{e}_0^* = 0 thì vẫn còn

$$\mathbf{u}_{i}^{*} - \mathbf{y}(\mathbf{x}_{i}) = \mathbf{M} \left(\alpha \mathbf{h} + \frac{\varepsilon}{\mathbf{h}} \right)$$
 (6.46)

trong đó Mah đặc trung cho sai số phương pháp, còn M.E/h đặc trung cho sai số tính toán. Ta thấy khi h càng nhỏ thì sai số phương pháp nhỏ dần nhưng sai số tính toán lại lớn dần. Hai thành phần ấy diễn biến trái ngược nhau. Đổ thị của hàm

$$e(h) = M\left(\alpha h + \frac{\varepsilon}{h}\right) \tag{6.47}$$

có dạng ở hình 6.1. Hàm e(h) này có cực tiểu tại $h = h_o$, h_o là một giá trị xác định phụ thuộc α và ϵ $h_o = \sqrt{\nu_\alpha}$ (6.48)

còn

Như vậy khi tính toán với phương pháp Ole, muốn tăng độ chính xác thường người ta giảm bước đi h, nhưng nếu giảm h quá h $_{\rm O}$ (h < h $_{\rm O}$) thì sai số tổng hợp lại tăng. Từ lúc đó việc giảm bước đi h không có tác dụng tích cực nữa. Cho nên có thể nói h $_{\rm O}$ là bước đi tới ưu cho phương pháp Ole.

Hình 6-1

5 7 3 S

₹6.5. CAC PHUONG PHAP CHINH XAC CAO

. Mở đầu

)ối với mỗi phương pháp gần đúng để giải bài toán vi phân
) (6.10) ta đã kí hiệu ${\bf u}_i$ là giá trị gần đúng thu được cho

$$|\tilde{u}_i - y(x_i)| = 0(h^k), k > 0$$

ta nói phương pháp có độ chính xác cấp k, hay gọn hơn là một phương pháp cấp k.

Như vậy phương pháp Ole là phương pháp có độ chính xác một hay phương pháp cấp một. Khi $k \ge 2$ ta nói phương p có độ chính xác cao, hay là phương pháp chính xác cao.

Như vậy phương pháp Ole không phải là phương pháp chính cao

Vếu phương pháp có độ chính xác cao thì khi tính toán ta ng phải chia lưới có bước đi quá bé cũng có thể thu được quả đạt độ chính xác mong muốn. Với h không quá bé, số x_i sẽ không quá lớn, và do đó tiết kiệm được công tính. Vì việc tìm ra những phương pháp chính xác cao là cần thiết.

Phương pháp 1 : áp dụng công thức khai triển tiệm cận sai số.

$$\left(2\mathbf{u}\left(\mathbf{x}_{i};\frac{\mathbf{h}}{2}\right)-\mathbf{u}(\mathbf{x}_{i};\mathbf{h})\right)-\mathbf{y}(\mathbf{x}_{i})=0(\mathbf{h}^{2})$$

Vậy

)

$$v_i(h) = 2u \left(x_i; \frac{h}{2}\right) - u(x_i; h)$$
 (6.49)

giá trị gần đúng của $y(x_i)$ với sai số cỡ $\theta(h^2)$; Như vậy ta to một phương pháp có độ chính xác cấp hai một cách khá θ giản.

Thí dụ: Xét bài toán (6.33) (6.34).

Kết quả tính với h = 0,2 tập trung thành bảng 6.3

Bảng 6.3

\mathbf{x}_{i}	$\mathbf{u}(\mathbf{x}_{i}, \mathbf{h})$	u(x _i , h/2)	$\mathbf{v}_{i}(\mathbf{h})$	Nghiệm đúng $y(x_i)$
0,0	1,	1,	1,	1,
0,2	1,2	1,191818	1,183636	1,183216
0,4	1.373333	1.358213	1,343093	1,341641
0,6	1,531495	1,508966	1,486437	1,483240
0.8	1,681084	1.649783	1,618482	1.622452
1,0	1.826947	1,784771	1.742595	1,732051

Bạn đọc có thể xem các giá trị $\mathbf{u}(\mathbf{x_i} ; \mathbf{h})$ ở bảng 6.1. Ta thấy rằng $\mathbf{v_i}(\mathbf{h})$ chính xác hơn $\mathbf{u}\left(\mathbf{x_i}; \frac{\mathbf{h}}{2}\right)$ rất nhiều .

3. Phương pháp 2: Phương pháp hình thang Phương pháp này có công thức tính

$$u_{i+1} = u_i + \frac{h}{2} [f(x_i, u_i) + f(x_{i+1}, u_{i+1})]$$
 (6.50)
 $u_0 = \eta$ (6.51)

phân thấy điều đó ta giả sử nghiệm y(x) của bài toán vi phân (6.9) (6.10) có đạo hàm đến cấp ba và áp dụng công thức Taylo (công thức 2-30) tại $\mathbf{x}_{i+1/2} = \mathbf{x}_i + \mathbf{h}/2$

$$y(x_{i+1}) = y(x_{i+1/2}) + \frac{h}{2}y'(x_{i+1/2}) + \frac{1}{2}(\frac{h}{2})^2y''(x_{i+1/2}) + o(h^3)$$

$$y(x_i) = y(x_{i+1/2}) - \frac{h}{2}y'(x_{i+1/2}) + \frac{1}{2}(\frac{h}{2})^2y''(x_{i+1/2}) + o(h^3)$$

Ta suy ra

$$y(x_{i+1}) - y(x_i) = hy'(x_{i+1/2}) + o(h^3)$$
 (6.52)

Ta lai có

$$y'(x_{i+1}) = y'(x_{i+1/2}) + \frac{h}{2} y''(x_{i+1/2}) + o(h^2)$$

$$y'(x_i) = y'(x_{i+1/2}) - \frac{h}{2} y''(x_{i+1/2}) + o(h^2)$$

$$y'(x_i) + y'(x_{i+1}) = 2y'(x_{i+1/2}) + o(h^2)$$
 (6.53)

Khử $y'(x_{j+1/2})$ khỏi (6.52) và (6.53) ta được

$$y(x_{i+1}) - y(x_i) = \frac{h}{2} [y'(x_i) + y'(x_{i+1})] + o(h^3)$$

Nhưng vì y(x) là nghiệm phương trình vi phân nên

$$y'(x_i) = f(x_i, y(x_i)), y'(x_{i+1}) = f(x_{i+1}, y(x_{i+1}))$$

Bây giờ bỏ qua số hạng o(h3) ta được

$$y(x_{i+1}) - y(x_i) \approx \frac{h}{2} [f(x_i, y(x_i)) + f(x_{i+1}, y(x_{i+1}))]$$

Thay $y(x_i)$ bởi u_i , $y(x_{i+1})$ bởi u_{i+1} ta được

$$u_{i+1} - u_i = \frac{h}{2} [f(x_i, u_i) + f(x_{i+1}, u_{i+1})]$$

Đó chính là công thức (6.50)

Chú ý rằng đối với phương pháp Ole, ở công thức (6.18) ta qua số hạng $\frac{1}{2}$ h^2y , đó là số hạng vô cùng bế bậc hai đối h và đã chứng minh được sai số $|\mathbf{u}_i - \mathbf{y}(\mathbf{x}_i)| = o(h)$. Ở đây bỏ qua số hạng $o(h^3)$ là một vô cùng bế bậc ba đối với h và 1g có thể chứng minh được sai số

$$|\mathbf{u}_i - \mathbf{y}(\mathbf{x}_i)| = o(h^2)$$

Vậy phương pháp hình thang có độ chính xác cấp hai, nó là t phương pháp chính xác cao.

Nhưng khi đã biết u_i tại x_i ta muốn có u_{i+1} tại x_{i+1} ta phải phương trình (6.50) đối với u_{i+1} . Nếu f(x, y) phi tuyến đối y thì phương trình đó là một phương trình phi tuyến. Điều khác với ở phương pháp Óle, ta có ngay công thức tính min u_i mà không cần phải giải một phương trình nào. Với ý

子连

đó người ta nói phương pháp hình thang là phương pháp ẩn, còn phương pháp Óle là phương pháp hiện.

Để giải phương trình (6.50) người ta có thể dùng $cách\ lặp$, xấp xỉ đầu $u_{i+1}^{(0)}$ thì bằng phương pháp Óle với bước đi h :

$$u_{i+1}^{(0)} = u_i + hf(x_i, u_i)$$
 (6.54)

$$u_{i+1}^{m+1} = u_i + h/2[f(x_i, u_i) + f(x_{i+1}, u_{i+1}^{(m)})]$$
 (6.55)

m = 0, 1, 2, ...

Quá trình lặp dừng khi:

$$|u_{i+1}^{(m)} - u_{i+1}^{(m-1)}| \le \varepsilon$$
 (6.56)

ε cho trước.

Thi du: Xét bài toán (6.33) (6.34). Kết quả tính toán tập trung thành bảng 6.4. Ta chú ý rằng số lần lặp cần thiết để đạt (6.56) càng bé thì khi h càng bé.

Bảng 6.4

ε trong (6.56) là 0,00025	x _i	Số lần lặp	Nghiệm gần đúng u _i	Nghiệm đúng y(x _i)	Sai số u _i - y(x _i)
	0,2	3	1,1847	1,1832	0,0015
	0,4	3	1,3444	1,3416	0,0028
h = 0.2	0,6	3	1,4874	1,4832	0,0042
	0,8	3	1,6185	1,6125	0,0060
	1,0	3	1,7407	1,7321	0,0086
	0,1	2	1,0957	1,095	0,0003
	0,2	2	1,1837	1,1832	0,0005
	0,3	2	1,2656	1,2649	0,0007
	0,4	2	1,3425	1,3416	0,0009
	0,5	2	1,4143	1,4142	0,0011
h=0,1	0,6	2	1,4846	1,4832	0,0014
	0,7	2	1,5508	1,5492	0,0016
	0,8	2	1,6144	1,6125	0,0019
	0.9	2	1,6756	1,6733	0,0023
	1,0	2	1,7348	1,7321	0,0027

Chú ý Từ i = 1, nghĩa là i + 1 = 2, trở đi ta có thể tính ấp xi đầu bởi $\mathbf{u}_{i+1}^{(0)} = \mathbf{u}_{i-1} + 2\mathbf{hf}(\mathbf{x}_i, \ \mathbf{u}_i)$

Khi đó sự hội tụ sẽ nhanh hơn.

4. Phương pháp 3 : Phương pháp hiện ẩn (còn gọi là phương háp dự báo và điều chính).

Trong thí dụ trên ta chú ý rằng. Khi h còn tương đối lớn hì số lần lặp > 1, khi h bé dần thì số lần lặp giảm và khi h ủ bé người ta nghiệm thấy chỉ cần lặp một lần. Lúc đó phương háp hình thang (6.54) (6.55) viết:

$$u_{0} = \eta$$

$$\overline{u}_{i+1} = u_{i} + hf(x_{i}, u_{i})$$

$$u_{i+1} = u_{i} + \frac{h}{2} [f(x_{i}, u_{i}) + f(x_{i+1} + \overline{u}_{i+1})$$
(6.59)

Nó thuộc loại phương pháp hiện ẩn hay phương pháp dự báo à điều chỉnh theo nghĩa sau : trước hết dùng công thức hiện 6.58) tính ra \overline{u}_{i+1} chỉ xem là giá trị dự báo, sau đó dùng nó ể điều chỉnh công thức ẩn (6.59) và tính ra u_{i+1} .

Như vậy không cần giải phương trình nào mà vấn đạt độ hính xác cấp hai khi h tương đối bé, đó là độ chính xác của ông thức hình thang

Ta có thể gọi phương pháp (6.57) - (6.59) là phương pháp iện ẩn hình thang.

Sau đây là một phương pháp hiện ẩn khác cũng có $d\phi$ chinh ic cấp hai (khi h tương đối bé) :

$$u_{o} = \eta$$
 (6.60)
 $\overline{u}u_{i+1} = u_{i} + \frac{h}{2} f(\mathbf{x}_{i}, \mathbf{u}_{i})$ (6.61)

$$u_{i+1} = u_i + hf(x_i + \frac{h}{2}, \overline{u}_{i+1})$$
 (6.62)

Phương pháp này còn có tên là phương pháp hiện ẩn trung điểm.

5. Phương pháp 4: Phương pháp Runge - kutta (R-K) sp 4. Phương pháp này có công thức tính

$$u_o = \eta$$

Khi đã biết u; thì tính u;+1 như sau :

$$k_1 = hf(\mathbf{x}_i, \mathbf{u}_i)$$

$$k_2 = hf(\mathbf{x}_i + 0.5h, \mathbf{u}_i + 0.5k_1)$$

$$k_3 = hf(\mathbf{x}_i + 0.5h, \mathbf{u}_i + 0.5k_2)$$

$$k_4 = hf(\mathbf{x}_i + h, \mathbf{u}_i + k_3)$$

$$\mathbf{u}_{i+1} = \mathbf{u}_i + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

Vậy ta không phải giải một phương trình nào, đây là một phương pháp hiện hoàn toàn.

Người ta chứng minh được:

$$\mathbf{u}_{i} - \mathbf{y}(\mathbf{x}_{i}) = \mathbf{0}(\mathbf{h}^{4})$$

Ta thấy rằng phương pháp R - K có độ chính xác cấp 4

6. Thí du

Để có thể đối chiếu các phương pháp vừa trình bày ta xét bài toán (6.33) (6.34) trên cùng một lưới với bước đi h=0,2. Kết quả tính ghi thành bằng 6.5.

Bang 6.5

\mathbf{x}_{i}	Phương pháp Ole (6.19)	P.P hiện ần hình thang	P.P hiện ần trung điềm
0,0	1,	1,	1,
0,2	1,2	1,18667	1,18364
0,4	1,37333	1,34832	1,34266
0,6	1,53150	1,49372	1,48502
0,8	1,68108	1,62888	1,61523
1,0	1,82695	1 ,75438	1,73619
. x _i	Phương pháp R-K (6.62) (6.65)		n đúng 2x + 1
0,0	1,	1,	
0,2	1,1832292	: 1,183	32160
0,4	1,3416668	1,341	16407
0,6	1,4832847	1,483	32397
0,8	1,6124665	1,612	24516
1,0	1,7320713	1,732	20508

7. Chú ý

Các phương pháp chính xác cao nói trên là các phương pháp ột bước, nghĩa là cách tính \mathbf{u}_{i+1} tại \mathbf{x}_{i+1} chỉ cần dựa vào \mathbf{u}_i i một điểm chia \mathbf{x}_i là điểm chia ngay trước \mathbf{x}_{i+1} . Ngoài ra m có những phương pháp chính xác cao nhiều bước, đối với túng, muốn tính \mathbf{u}_{i+1} tại \mathbf{x}_{i+1} phải dựa vào các giá trị \mathbf{u}_i , \mathbf{u}_{i-1} , , \mathbf{u}_{i-p+1} tại p điểm chia \mathbf{x}_i , \mathbf{x}_{i-1} , ..., \mathbf{x}_{i-p+1} . Các phương pháp lày có vẻ như cồng kênh nhưng lại rất có hiệu quả

§6.6. HÊ PHƯƠNG TRÌNH

1. Hê phương trình

Đối với một phương trình vi phân cấp một ta đã phát biểu toán Côsi như sau :

Cho khoảng $[x_0, X]$. Tìm hàm số y = y(x) trên $[x_0, X]$, thỏa man:

$$y' = f(x, y) \tag{6.9}$$

$$y(x_0) = \eta (6.10)$$

ong đó : f(x, y) là hàm số cho trước của x, y còn η là một thực cho trước

Bây giờ đối với một hệ phương trình, xét hai phương trình 10 đơn giản, ta phát biểu bài toán Côsi như sau:

Cho khoảng $[x_0, X]$. Tìm hai hàm số y = y(x) và z = z(x) ác định trên $[x_0, X]$, và thỏa mãn

$$y' = f(x, y, z), z' = g(x, y, z)$$
 (6.63)

$$y(x_0) = \eta_1, z(x_0) = \eta_2$$
 (6.64)

ong đó f(x, y, z), g(x, y, z) là hai hàm số cho trước của x, z còn η_1 , η_2 là hai số thực cho trước.

2. Phương pháp chuỗi Taylo

Các phương pháp giải gần đúng bài toán (6.9) (6.10) đã trình ly ở trên đều có thể mở rộng để áp dụng cho bài toán hệ .63) (6.64).

Chẳng hạn phương pháp chuỗi Taylo viết:

$$y(\mathbf{x}) = y(\mathbf{x}_{0}) + (\mathbf{x} - \mathbf{x}_{0})y'(\mathbf{x}_{0}) + \frac{(\mathbf{x} - \mathbf{x}_{0})^{2}}{2}y''(\mathbf{x}_{0}) + \dots$$

$$z(\mathbf{x}) = z(\mathbf{x}_{0}) + (\mathbf{x} - \mathbf{x}_{0})z'(\mathbf{x}_{0}) + \frac{(\mathbf{x} - \mathbf{x}_{0})^{2}}{2}z''(\mathbf{x}_{0}) + \dots$$

$$y(\mathbf{x}_{0}) = \eta_{1}, \ z(\mathbf{x}_{0}) = \eta_{2}$$

$$y'(\mathbf{x}_{0}) = f(\mathbf{x}_{0}, \ y(\mathbf{x}_{0}), \ z(\mathbf{x}_{0})) = f(\mathbf{x}_{0}, \ \eta_{1}, \ \eta_{2})$$

 $z'(x_0) = g(x_0, y(x_0), z(x_0)) = g(x_0, \eta_1, \eta_2) v.v...$

với

3. Phương pháp Ole

Trước hết ta chia đoạn $[x_0, X]$ thành n đoạn con, giả thiết bằng nhau cho đơn giản, bởi các điểm:

$$x_i = x_0 + ih$$
, $h = 1/n$

Phương pháp Öle viết:

$$u_{i+1} = u_i + hf(x_i, u_i, v_i)$$

 $v_{i+1} = v_i + hg(x_i, u_i, v_i)$
 $u_o = \eta_1, v_o = \eta_2$

trong đó u_i kí hiệu giá trị gần đúng của $y(x_i)$, v_i kí hiệu giá trị gần đúng của $z(x_i)$.

Như vậy khi biết u_i , v_i ta tính ra ngay u_{i+1} và v_{i+1} .

4. Phương pháp hình thang

$$\begin{aligned} \mathbf{u}_{o} &= \eta_{1} & \mathbf{v}_{o} &= \eta_{2} \\ \\ \mathbf{u}_{i+1} &= \mathbf{u}_{i} + \frac{h}{2} \left[\mathbf{f}(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}) + \mathbf{f}(\mathbf{x}_{i+1}, \mathbf{u}_{i+1}, \mathbf{v}_{i+1}) \right. \\ \\ \mathbf{v}_{i+1} &= \mathbf{v}_{i} + \frac{h}{2} \left[\mathbf{g}(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}) + \mathbf{g}(\mathbf{x}_{i+1}, \mathbf{u}_{i+1}, \mathbf{v}_{i+1}) \right] \end{aligned}$$

Khi đã biet \mathbf{u}_i , \mathbf{v}_i tại \mathbf{e}_i ... the hap

$$\begin{aligned} u_{i+1}^{(0)} &= u_i + hf(x_i, u_i, v_i), \ v_{i+1}^{(0)} &= v_i + hg(\mathbf{x}_i, u_i, v_i) \\ u_{i+1}^{(m+1)} &= u_i + \frac{h}{2} \left[f(x_i, u_i, v_i) + f(\mathbf{x}_{i+1}, u_{i+1}^{(m)}, v_{i+1}^{(m)}) \right] \\ v_{i+1}^{(m+1)} &= v_i + \frac{h}{2} \left[g(x_i, u_i, v_i) + g(\mathbf{x}_{i+1}, u_{i+1}^{(m)}, v_{i+1}^{(m)}) \right] \end{aligned}$$

 $= 0, 1, 2, \dots$

$$|\mathbf{u}_{i+1}^{(m)} - \mathbf{u}_{i+1}^{(m-1)}| < \epsilon, \quad |\mathbf{v}_{i+1}^{(m)} - \mathbf{v}_{i+1}^{(m-1)}| < \epsilon$$

> 0 cho trước

5. Phương pháp hiện ẩn hình thang

$$\begin{aligned} \mathbf{u}_{o} &= \eta \quad \mathbf{v}_{o} = \eta_{2} \\ \overline{\mathbf{u}}_{i+1} &= \mathbf{u}_{i} + \mathbf{h} f(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}) \ \overline{\mathbf{v}}_{i+1} = \mathbf{v}_{i} + \mathbf{h} g(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}) \\ \mathbf{u}_{i+1} &= \mathbf{u}_{i} + \frac{\mathbf{h}}{2} \left[f(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}) + f(\mathbf{x}_{i+1}, \mathbf{u}_{i+1}, \overline{\mathbf{v}}_{i+1}) \right] \\ \mathbf{v}_{i+1} &= \mathbf{v}_{i} + \frac{\mathbf{h}}{2} \left[g(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}) + g(\mathbf{x}_{i+1}, \overline{\mathbf{u}}_{i+1}, \overline{\mathbf{v}}_{i+1}) \right] \end{aligned}$$

6. Phương pháp hiện ẩn trung điểm

$$\begin{aligned} \mathbf{u}_{o} &= \eta_{1} & \mathbf{v}_{o} &= \eta_{2} \\ \\ \overline{\mathbf{u}}_{i+1} &= \mathbf{u}_{i} + \frac{\mathbf{h}}{2} \mathbf{f}(\mathbf{x}_{i}, \mathbf{u}_{i}) \overline{\mathbf{v}}_{i+1} &= \mathbf{v}_{i} + \frac{\mathbf{h}}{2} \mathbf{g}(\mathbf{x}_{i}, \mathbf{u}_{i}) \\ \\ \mathbf{u}_{i+1} &= \mathbf{u}_{i} + \mathbf{h} \mathbf{f}(\mathbf{x}_{i} + \frac{\mathbf{h}}{2}, \overline{\mathbf{u}}_{i+1}, \overline{\mathbf{v}}_{i+1}), \\ \\ \mathbf{v}_{i+1} &= \mathbf{v}_{i} + \mathbf{h} \mathbf{g}(\mathbf{x}_{i} + \frac{\mathbf{h}}{2}, \overline{\mathbf{u}}_{i+1}, \overline{\mathbf{v}}_{i+1}), \end{aligned}$$

7. Phương pháp Runge-Kutta (R-K)

$$u_{0} = \eta_{1}$$

$$k_{1} = hf(x_{i}, u_{i}, v_{i})$$

$$k_{2} = hf(x_{i} + 0.5h, u_{i} + 0.5k_{1}, v_{i} + 0.5l_{1})$$

$$k_{3} = hf(x_{i} + 0.5h, u_{i} + 0.5k_{2}, v_{i} + 0.5l_{2})$$

$$k_{4} = hf(x_{i} + h, u_{i} + k_{3}, v_{i} + l_{3})$$

$$u_{i+1} = u_{i} + \frac{1}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

$$v_{0} = \eta_{2}$$

$$l_{1} = hg(x_{i}, u_{i}, v_{i})$$

$$l_{2} = hg(x_{i} + 0.5h, u_{i} + 0.5k_{1}, v_{i} + 0.5l_{1})$$

$$l_{3} = hg(x_{i} + 0.5h, u_{i} + 0.5k_{2}, v_{i} + 0.5l_{2})$$

$$l_{4} = hg(x_{i} + h, u_{i} + k_{3}, v_{i} + l_{3})$$

$$v_{i+1} = v_{i} + \frac{1}{6}(l_{1} + 2l_{2} + 2l_{3} + l_{4})$$

§6.7. PHƯƠNG TRÌNH CẤP CAO

Để cho đơn giản ta xét phương trình cấp hai. Bài toán Côsi phát biểu như sau :

Cho khoảng $[x_0, X]$. Tìm hàm số y = y(x). Xác định trên $[x_0, X]$, thỏa mãn :

$$y'' = f(x, y, y')$$

 $y(x_0) = \eta_0, \quad y'(x_0) = \eta_1$

Bài toán này có thể đưa về bài toán đối với một hệ bằng cách đặt:

$$y' = z$$

Thật vậy, lúc đó ta có:

$$z' = y'' = f(x, y, y') = f(x, y, z)$$

Do đó ta có hệ:

$$z' = f(x, y, z)$$

 $y' = z$
 $z(x_0) = \eta_1, \quad y(x_0) = \eta_0$

Đó chính là bài toán Côsi đối với một hệ với g(x, y, z) = z. có thể áp dụng các phương pháp đối với một hệ nói ở mục .6.

BÀI TẬP

1. Dùng phương pháp chuỗi Taylo giải bài toán

$$y' = x^2 + y^2, y(0) = 0$$

2. Dùng phương pháp Ole giải bài toán

$$y' = \frac{xy}{2} ; \quad 0 \le x \le 1$$

$$y(0) = 1$$

bước đi h = 0,1.

3. Dùng phương pháp Ole giải bài toán

$$y' = x^2 + y^2, 0 \le x \le 1$$

 $y(0) = 0$

bước đi h = 0,2.

- 4. Dùng phương pháp trung điểm giải bài toán số 3 ở trên.
- 5. Dùng phương pháp chuỗi Taylo giải bài toán

$$y' = x + yz$$

 $z' = x^2 - y^2$
 $y(0) = 1, z(0) = 0$

1.
$$y = \frac{1}{3}x^3 + \frac{1}{63}x^7 + ...$$

2.
$$\mathbf{u}_0 = 1$$
; $\mathbf{u}_1 = 1$; $\mathbf{u}_2 = 1,005$; $\mathbf{u}_3 = 1,0151$; $\mathbf{u}_4 = 1,0303$; $\mathbf{u}_5 = 1,0509$; $\mathbf{u}_6 = 1,0772$; $\mathbf{u}_7 = 1,1095$; $\mathbf{u}_8 = 1,1483$; $\mathbf{u}_9 = 1,1942$; $\mathbf{u}_{10} = 1,2479$.

3.
$$u_0 = 0$$
 ; $u_1 = 0$; $u_2 = 0.008$; $u_3 = 0.04$ $u_4 = 0.1123$; $u_5 = 0.2428$

4.
$$\mathbf{u}_0 = 0$$
 ; $\mathbf{u}_1 = 0.002$; $\mathbf{u}_2 = 0.0200072$ $\mathbf{u}_3 = 0.070267089$; $\mathbf{u}_4 = 0.170546656$ $\mathbf{u}_5 = 0.343823657$

 $Chú \ \acute{y} : Không phải tất cả các chữ số viết ở đây là đáng tin.$

5.
$$y(x) = 1 - \frac{x^4}{24} + ...$$

$$z(x) = -x - \frac{x^5}{5} + ...$$

MŲC LŲC

	. I rung
ời nói đầu	
hương 1. SAI SỐ	
§1.1. Sai số tuyệt đối và sai số tương đối	7
§1.2. Cách viết số xấp xi	8
§1.3. Sai số quy tròn	10
§1.4. Các quy tắc tính sai số	11
§1.5. Sai số tính toán và sai số phương pháp	14
§1.6. Phụ lục 1 : Sự ổn định của một quá trình tính	17
Bài tập	19
uong 2. TÍNH GẦN ĐÚNG NGHIỆM THỰC CỦA MỘT PHƯƠNG TRÌNH	21
§2.1. Nghiệm và khoảng phân li nghiệm	21
§2.2. Phương pháp chia đôi	25
§2.3. Phương pháp lặp	28
§2.4. Phương pháp Niuton (tiếp tuyến)	34
§2.5. Phương pháp dây cung	40
Bài tập	43
hương 3. TÍNH GẦN ĐÚNG NGHIỆM CỦA MỘT HỆ ĐẠI SỐ TUYẾN TÍNH	44
§3.1. Mở đầu	44
§3.2. Phương pháp Gaoxơ (Gauss)	46
§3.3. Phương pháp lặp đơn	56
§3.4. Phụ lục 2 Về một hệ đại số tuyến tính không ổn định	63
Bài tập	64

Chương 4. NỘI SUY VÀ PHƯƠNG PHÁP BÌNH PHƯƠNG BÉ NHẤT	66
§4.1. Nội suy đa thức : đa thức Lagrangiơ và đa thức Niutơn	66
§4.2. Phương pháp bình phương bé nhất	78
Bài tệp	83
Chương 5. TÍNH GẦN ĐÚNG ĐẠO H À M VÀ . TÍCH PHÂN XÁC ĐỊNH	85
§5.1. Tính gần đúng đạo hàm	85
§5.2. Tính gần đúng tích phân xác định	86
Bài tập	93
Chương 6. TÍNH GẦN ĐÚNG NGHIỆM CỦA BÀI TOÁN CÔSI ĐỐI VỚI PHƯƠNG TRÌNH VI PHÂN THƯỜNG	95
§6.1. Phát biểu bài toán	95
	97
§6.2. Phương pháp chuỗi Taylo	99
§6.3. Phương pháp Ole	
§6.4. Phụ lục 3 : Sai số thực sự	107
§6.5. Các phương pháp chính xác cao	110
§6.6. Hệ phương trình	116
§6.7. Phương trình cấp cao	119
Bài tập	120
Mục lục	122