Matrix Theory(EE5609) Assignment 10

Anshum Agrawal Roll No- AI20MTECH11006

Abstract—Given matrix T find matrix T[C] which represents matrix T with respect to basis C.

Download latex-tikz codes from

https://github.com/anshum0302/EE5609/blob/ master/assignment10/assign10.tex

1 PROBLEM STATEMENT

Let $\mathbf{C} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ be a basis for \mathbb{R}^2 and $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{T}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x-2y \end{pmatrix}$. If $\mathbf{T}[\mathbf{C}]$ represents the matrix of T with respect to basis C then which of the following is true

1)
$$\mathbf{T[C]} = \begin{pmatrix} -3 & -2 \\ 3 & 1 \end{pmatrix}$$

2) $\mathbf{T[C]} = \begin{pmatrix} 3 & -2 \\ -3 & 1 \end{pmatrix}$
3) $\mathbf{T[C]} = \begin{pmatrix} 3 & -1 \\ 3 & 2 \end{pmatrix}$
4) $\mathbf{T[C]} = \begin{pmatrix} 3 & -1 \\ -3 & 2 \end{pmatrix}$

2)
$$\mathbf{T}[\mathbf{C}] = \begin{pmatrix} 3 & -2 \\ -3 & 1 \end{pmatrix}$$

3)
$$\mathbf{T}[\mathbf{C}] = \begin{pmatrix} -3 & -1 \\ 3 & 2 \end{pmatrix}$$

4)
$$\mathbf{T}[\mathbf{C}] = \begin{pmatrix} 3 & -1 \\ -3 & 2 \end{pmatrix}$$

Solution:

	n mau
Linear Transfor- mation and change of Basis	Transforstandard B represent with reserved.

If matrix A represents Linear rmation with respect to d ordered basis and matrix esents same transformation spect to basis V,Then

$$\mathbf{B} = \mathbf{V}^{-1} \mathbf{A} \mathbf{V}$$

TABLE 1: Linear Transformation and change of basis

In above question A = T,B = T[C],V = C.

	For linear transformation T we have	
Evaluate T	$\mathbf{T} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + y \\ x - 2y \end{pmatrix}$ $\mathbf{T} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$	
	$\implies \mathbf{T} = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$	
	To find inverse of matrix C we row reduce augmented matrix CI	
Evaluate inverse of basis C	$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \xrightarrow[R_2 = -\frac{1}{3}R_2]{R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$	
	$\stackrel{R_1 = R_1 - 2R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -\frac{1}{3} & \frac{2}{3} \\ 0 & 1 & \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$	
	$\therefore \mathbf{C}^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$	
Evaluate TC	$\mathbf{TC} = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ $= \begin{pmatrix} 3 & 3 \\ -3 & 0 \end{pmatrix}$	
	$T[C] = C^{-1}TC$	
Evaluate $T[C]=C^{-1}TC$	$= \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 3 & 3 \\ -3 & 0 \end{pmatrix}$	
	$\implies \mathbf{T}[\mathbf{C}] = \begin{pmatrix} -3 & -1 \\ 3 & 2 \end{pmatrix}$	
Conclusion	Option 3) is correct.Options 1),2) and 4) are incorrect	

TABLE 2: Calculation of **T**[**C**]