Politechnika Warszawska

Zakład Podstaw Konstrukcji

Wprowadzenie do PTC Creo

mgr inż. Grzegorz Kamiński grzegorz kaminski@pw.edu.pl

14 lipca 2023 Wersja 1.2

Modelowanie Top-Down

Cel:

- * stworzenie bazy do projektowanego układu (mechanizmu),
- określenie wytycznych dla projektowanych części,
- * propagacja zmian.

Cechy szkieletów:

- * pierwszy element w złożeniu,
- * brak właściwości masowych,
- * charakterystyczna kolorystyka.

Porównanie metod modelowania

Warszawska

Tworzenie struktury złożenia

Planowanie złożenia z użyciem:

- * szkieletu,
- * nieumieszczonych detali (ang. Unplaced),
- istniejących detali (ang. Included),
- * częściowo umieszczonych detali (ang. Packaged),
- * detali bez geometrii (ang. Bulk Items).

CHGK-000-00.ASM

CHGK-000-00_SKEL.PRT

CHGK-000-01.PRT

▼ [CHGK-100-00.ASM

CHGK-100-01.PRT

CHGK-100-02.PRT

CHGK-100-03.PRT

(HGK-200-00.ASM

6204.ASM

Politechnika Warszawska

Referencje do umieszczania komponentów

Cel

- * stworzenie więzów pomiędzy detalami,
- określenie istotnych fragmentów geometrii,
- * prop<mark>ag</mark>acja z<mark>mi</mark>an.

Kopiowanie modelu do szkieletu

Zastosowanie:

- * element jest stosowany jako podstawa złożenia np. jako korpus,
- * wykorzystanie szkieletu z innego projektu,
- * łączenie szkieletów w jeden główny (praca zespołowa),
- szybkie tworzenie i składanie wielu szkieletów w jednym złożeniu.

Złożeniu. Politechnika Warszawska

Creation Options	
Creation Method	
Copy from existing	
Locate default datums	
○ Empty	
Create features	
Copy From	
mmns_part_solid.prt	Browse
	OK Can

Praca z wieloma szkieletami

config.pro:

multiple_skeleton_allowed

Wstawianie szkieletów do złożenia tak jak detale (więzy).

Sposoby postępowania:

- * ukła<mark>dy</mark> niezal<mark>eż</mark>ne,
- * układ hierarchiczny.

Publish Geometry

Kontener przekazywanych elementów:

- * powierzchnie,
- * łańcuchy linii i krawędzi,
- * referencje.

Nie dochodz<mark>i</mark> do samego procesu przekazania.

Copy Geometry

Można:

- * zachować zależność lub niezależność od szkieletu,
- * kopiować wyłącznie od jednego elementu,
- kopiować powierzchnie (nie bryły).

Tworzenie Motion skeletons

Etapy

- * złożenie,
- * motion skeleton (*.asm),
 - * szkic,
- * body skeletons (*.prt),
 - * detale (*.prt),
 - * budow<mark>a</mark> geome<mark>tri</mark>i detal<mark>u.</mark>

Szkic w Motion skeletons

Szkic reprezentuje:

- * człon nieruchome,
- * człony ruchome,
- * połącz<mark>en</mark>ia.

Techniki tworzenia:

- * wszyst<mark>ko</mark> na jed<mark>n</mark>ym szk<mark>ic</mark>u,
- * wiele szkiców.

Czę<mark>st</mark>o należ<mark>y</mark> dodać <mark>li</mark>nie by wymusić dany typ więzu.

Tworzenie Body skeletons

- ASM0002.ASM
- ▶ **□** Materials
- ▼ I MOTION SKEL 0001.ASM ▶ ₩ Materials
- DESIGN SKEL 0001.PRT ASM RIGHT
- ASM TOP ☐ ASM FRONT
- ** ASM DEF CSYS
- ▶ I BODY SKEL 0001.PRT
- □ BODY_SKEL_0002.PRT □ □BODY SKEL 0003.PRT
- BODY SKEL 0004.PRT
- ▶ □ BODY SKEL 0005.PRT

Definicja więzów

Lista więzów:

- * usunięcie zbędnych pozycji,
- * wyb<mark>ór</mark> odpo<mark>wie</mark>dniego więzu.

Component Placement Dialog Box

Tworzenie geometrii

- Etapy
 - * połączenie z Body skeleton,
 - automatyczny Merge Feature,
 - * budowa geometrii.

Demonstracja

Demonstracja cd

Bibliografia

T. Kucharski. Mechanika ogólna: rozwiązywanie zagadnień z MATHCAD-em. Wydawnictwa Naukowo-Techniczne, 2015. isbn:

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świetokrzyskiej", 2011. isbn: 9788388906343.

E. Lisowski. Integracja modelowania 3D, kinematyki i wytrzymałości w programie Creo Parametric. Wydawnictwo PK, 2013. isbn:

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne, tom 2. WNT. 2015. isbn: 9788393491360.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.

E. Winter. Using Pro/Weld in Creo 2.0.

