BEST AVAILABLE COPY

PCT/GB 2004 / 0 0 3 7 1 1

INVESTOR IN PEOPLE

The Patent Office Concept House Cardiff Road Newport South Wales

NP10 8QQ

REC'D 2 3 SEP 2004

WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

14 September 2004

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

THIS PAGE BLANK (USPTO)

Patents Form 1/77 tents Act 1977

(Rul

Request for grant of a patent
(See the notes on the back of this form. You can also get
an explanatory leaflet from the Patent Office to help
you fill in this form)

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

1	. Your reference			
_	·	IP/P7140		
2.	Patent application number (The Patent Office will fill in this part)	0320405.4		
3.	Full name, address and postcode of the or of each applicant (underline all surnames)	QINETIQ LIMITED	·	
Pa	atents ADP number (if you know it)	Registered Office 85 Buckinghan London SW1E 6PD United Kingdom	n Gate	· .
If	the applicant is a corporate body, give the untry/state of its incorporation	8307431001 GB		-
4.	Title of the invention	Micro Electromechanical System	Switch	
5.	Name of your agent (if you have one)	Bowdery Anthony Oliver		
to t	address for service" in the United Kingdom which all correspondence should be sent cluding the postcode)	QINETIQ LIMITED IP Formalities A4 Bldg Cody Technology Park Ively Road Famborough Hants GU14 0LX United Kingdom		
Pate	ents ADP number (if you know it)	8183873005		
•	If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number	Country Priority	application number you know it)	Date of filing (day / month / year)
	If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application	Number or earlier application		Date of filing (day / month / year)
u 1	Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if: a) any applicant named in part 3 is not an inventor, or there is an inventor who is not named as an applicant, or any named applicant is a corporate body. See note (d))	Yes (b)		

Enter the number of sheets for any of the following items you are filing with this form. not count copies of the same document

Continuation sheets of this form

Description 9

Claim(s)- 2

Drawing(s) 2

Abstract 1

If you are also filing any of the following, state how many against each item.

Priority documents 0 ·

Translations of priority documents 0

Statement of inventorship and right 1 + 3 copies to grant of a patent (Patents Form 7/77)

Request for preliminary examination 1 and search (Patents Form 9/77)

Request for substantive examination 0 (Patents Form 10/77)

> Any other documents 0 (please specify)

I / We request the grant of a patent on the basis of this application.

Signature

P Davies.

Date 28.8.2003

Name and daytime telephone number of person to contact in the United Kingdom

Mrs Linda Bruckshaw 01252 392722

er an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You ' be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the ted Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting tten permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the ted Kingdom for a patent of the same invention and either no direction prohibiting publication or communication been given; or any such direction has been revoked.

es If you need help to fill in this form or have any questions, please contact the Patent Office on 0645 500505. Write your answers in capital letters using black ink or you may type them.

If there is not enough space for all the relevant details on any part of this form, please continue on a separate heet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached o this form.

f you have attached 'Yes' Patents Form 7/77 will need to be filed.

Ince you have filled in the form you must remember to sign and date it.

for details of the fee and ways to pay please contact the Patent Office.

Micro electromechanical system switch.

The invention relates to a micro electromechanical system (MEMS) switch.

5

Micro electro mechanical systems (MEMS) are a known class of device typically made by silicon processing techniques in semiconductor materials, and developed as alternatives to conventional electro mechanical devices such as shutters, actuators, relays, valves etc. and thermo mechanical devices such as bimetallic beams.

10

15

Examples of such MEMS are used in switches where an electrical contact needs to be made to e.g. a signal line in a microwave system. Two parts of the microwave system need to be connected and disconnected as required by mechanically moving a switch contact on a moveable arm or armature onto and away from fixed stationary contact pad. Electrostatic actuation is a known technique used in MEMS switches. Such actuation provides a force between two conducting objects proportional to the rate of change of capacitance and the square of the applied voltage difference. The force between two charged conductors varies with the inverse square of their separation.

20

25

30

Sticking contacts are frequently the cause of failure in MEMS switch devices. Such stiction may arise from surface interactions at the contact interface such as Van der Waals forces or can be brought about by high current densities or elevated temperatures at the contact ('hot' contact welding). Switches are typically designed to provide sufficient mechanical stiffness to provide a suitable static restoring force.

а

Careful selection of contact material, and ensuring that the contact has maximum area (for low current densities) goes some way toward minimising the likely stiction force that must be overcome to release the switch, but does not totally eliminate it. The structure could be designed to have a high static mechanical return force under closed conditions, but this tends to lead to a structure which require very high actuation voltages (assuming electrostatic actuation).

Maximum force is obtained from an electrostatic actuator when: the armature contact is in close proximity with the stationary contact, and the armature contact is parallel to the stationary contact.

The need for good isolation characteristics when the switch is in the open position requires that the gap between switch contacts be around 3µm or more. The requirement for minimum switching time places an upper limit on the size of the armature and the requirement for good return force imposes a lower limit on its stiffness.

10

20

Transverse piezoelectric actuation of an armature is another known technique for operating MEMS switches. Such actuation leads to a parabolic curvature of the armature in the region under actuation. The curvature is such that the beam tip deflection varies in direct proportion to the voltage across the piezoelectric layer.

Contact forces resulting from piezoelectric actuation tend to be low. It is desirable that contact forces be high to ensure good electrical contact.

The above problems are reduced, according to this invention, by the use of a dual actuation mechanism; namely electrostatic operation in conjunction with piezoelectric, or electrothermal or electromagnetic operation, together with a curvature of the armature.

According to this invention a MEMS switch includes a fixed contact and a moveable contact on an armature characterised by: -

5 electrodes associated with both the fixed and moveable contacts for providing an electrostatic switch operation;

piezoelectric material-with associated electrodes for bending the armature upon application of an electric voltage and providing a piezoelectric switch operation;

10

the armature being of curved shape which is bent away from the fixed contact when in a switch open condition with zero applied voltage;

the arrangement being such that operation of the piezoelectric material bends the
armature towards the fixed contact and bends the moveable electrode into both close
proximity and substantially parallel alignment with the fixed electrode for clamping of
the fixed and movable contacts under electrostatic force.

The invention will now be described, by way of example only, with reference to the accompanying drawings of which: -

Figure 1 shows a schematic view of a MEMS switch in its open or zero applied voltage state, and its armature curved away from its fixed contact;

Figure 2 shows the switch of Figure 1 in a partly closed state with electrostatic electrodes in a parallel spaced apart position;

10 Figure 3 shows the switch of Figure 1 in its fully closed condition;

Figure 4 shows a cross sectional view of a MEMS switch as fabricated before release as in the partly switched state of Figure 2; and

15 Figure 5 shows a plan view of the switch of Figure 4.

20

As shown in Figures 1-3 a dual electrostatic and piezoelectric actuated MEMS switch 1 comprises a substrate 2 carrying a fixed contact 3 and a lower electrostatic electrode 4 itself coated with a thin insulating layer 5. An armature 6 has one end fixed to the substrate and a free outer end carrying a moveable dimple contact 7. The armature 6 itself is of a sandwich construction, an upper metal layer 8, a piezoelectric layer 9 of PZT, a central metal layer 10, an insulating mechanical layer 11, and a lower metal layer 12 which carries the moveable contact 7.

The switch 1 in its open, voltage off, state is manufactured to have a curved profile as shown in Figure 1. This curvature is obtained by control of manufacturing steps to give different amounts of stress in the component layers 8-12.

Figure 2 shows a partly switched state in which voltages have been applied to the electrodes 8, 10 across the piezoelectric layer 9 causing expansion of the layer's length and a consequential straightening of the armature 6. In this condition the armature 6 is straight and both the lower electrostatic electrode 4 and the lower layer 12 (forming a part of the electrostatic actuator) are parallel to one another with a small separation. At this stage the electrostatic electrodes 4, 12 are energised to draw the armature 6 down into the switch closed condition shown in Figure 3. After closure, Figure 3, the piezoelectric element 9 is switched off by removing its applied voltage, and the switch remains in a clamped, closed, condition by continued application of a voltage to the electrostatic electrodes 4, 12.

In this closed, Figure 3, condition component parts of the armature are in a strained state. Thus on removal of the electrostatic switch voltage, the contacts separate as the armature springs back to its free, Figure 1, condition. If required, a reverse voltage may be applied to the piezoelectric material 9 to assist in bending the armature 6 away from the fixed contact 3.

Typically, MEMS switches operate with measured insertion losses of below 0.2 dB over broadband ranges up to 45 GHz with isolation of >50 dB under 2 GHz.

20

25

15

A sectional schematic of an example MEMS switch according to the invention 20 is shown in Figure 4 as fabricated, before release. It is comprises a silicon substrate 21 capped with an electrical isolating layer 20 of silicon dioxide carrying a patterned metal layer including a coplanar waveguide radio frequency transmission line (or CPW) and outer and inner switch electrodes 25, 26 respectively. The CPW includes two ground planes 22, 23 and a transmission line 24. Ground plane 22 is locally covered with a thin e.g. $0.2\mu m$ layer 27 of insulating silicon nitride and forms a lower electrode for electrostatic actuation.

An armature 30 is spaced apart above the substrate 21 with one end fixed on the switch electrodes 25, 26 and the other end free to move up or down under electrical control. The armature 30 is formed by a $1\mu m$ thick layer of silicon nitride carrying on its lower surface a patterned first metal layer 33. This layer 33 is formed into an 5 electrode 34 providing an upper electrostatic electrode and is electrically connected to the inner switch electrode 26. The first metal layer also forms a moveable electrode 35 with dimples arranged to contact either side of a break 42 in the transmission line 24 when the switch is operated. On top of the silicon nitride layer 38 is a second metal layer which connects through a via 35 to the upper electrostatic electrode 34 and is patterned to form a lower electrode 36 under a 1μ m thick layer 37 of leadzirconate-titanate (or PZT) piezoelectric material. The PZT layer 37 is capped with a dielectric layer 39. Above the piezoelectric layer 37 is an upper piezoelectric actuation electrode 40 which connects to the outer switch electrode 25 through vias 31, 41. The capping layer 39 isolates the lower piezoelectric actuation electrode 36 from the upper piezoelectric actuation electrode 40. Reference number 43 indicates a sacrificial layer, used during processing steps, then removed as described later.

In operation the armature 30 is bent upwards, as in Figure 1, when in a voltage off condition. To close the switch, voltages are applied to the two anchor electrodes 25, 26 causing the PZT layer 37 to expand and bend the armature 30 into the Figure 4 state or even lower. In this condition the electrostatic electrodes 22 and 34 are in substantially parallel close proximity. An applied voltage difference between the CPW ground plane 22 and the upper electrostatic electrode 34 causes attraction between electrodes which supplements the downwards movement of the armature until the moveable switch contacts 35 are in contact with the transmission line 24 and the switch is in its closed state. At this point the voltage can be removed from the PZT layer 37 (by removing the signal to the outer anchor pad 25) and the switch remains firmly clamped by electrostatic forces.

To open the switch, the voltage is removed from the electrostatic electrode 26, 34 30 allowing strain energy stored in the armature 30 to move the moveable contact 35 upwards and out of engagement with the transmission line 24. If necessary, the PZT layer 37 may be reverse biased to contract in length and reinforce the upward movement of the armature 30.

10

15

20

The switch of Figure 4 may be produced by the following production steps:

All layers are fabricated on commercially available virgin silicon wafers. These are typically boron doped (p-type) with a resistivity of <0.1 Ω cm to allow an optional ohmic metal contact to be made to the substrate 21.

An electrical isolation layer of silicon dioxide film is grown/deposited on the wafers. Contact holes may be etched (e.g. by reactive ion etching, RIE) in this layer to enable a bulk substrate contact to be made in subsequent process steps.

10

A metal film (components 22-26) is deposited next (e.g. by sputter deposition), and is then patterned using photolithography. In this process, the wafers are coated with photoresist, the photoresist is exposed with the appropriate mask, and the exposed photoresist is developed to create the desired etch mask for subsequent pattern transfer into the underlying layer. After patterning the photoresist, the underlying layer is etched (e.g. by RIE) and the photoresist removed (e.g. by RIE). This sequence of lithography, deposition and etch is repeated to build up a three dimensional (3D) structure on the surface of the wafer. This fixed metal layer forms electrodes interconnects and bond pads.

20

A thin dielectric layer 27 (such as Silicon Nitride) is deposited (e.g. by Plasma Enhanced Vapour Deposition or PECVD), and patterned using photolithography. This layer protects the fixed metal from unintended electrical contacts and insulates the lower electrostatic electrode 22.

25

30

A sacrificial layer 43 (such as polyamide, amorphous silicon etc) is then deposited (e.g. by resist spinning). This layer may provide a degree of planarisation, and is removed in a release process (such as a RIE release or wet etch release process) at the end of the fabrication process to free the structural moving layers forming the armature 30.

Dimples may be formed in the sacrificial layer by photolithography and a timed etch of the sacrificial layer.

Contact holes (31, 32) are etched in the sacrificial layer, to enable electrical and mechanical connections between the moving mechanical layers and the fixed metal layer.

A conducting metal layer (33) is deposited (e.g. by sputtering) and patterned by photolithography next. This layer forms both the upper, movable, electrode 34 for electrostatic actuation, and the conducting layer 35 for RF switching operations.

A mechanical dielectric layer (such as PECVD silicon nitride) is deposited and patterned next. This layer forms the elastic mechanical layer 38 in the switch armature. In plane stresses and out of plane stress gradients may be controlled in this layer as described in [1,2] to enable some control of curvature in the released switch armature. Varying process parameters in the PECVD deposition process (e.g. RF power) allows such control.

15

20

25

30

10

5

A conducting layer is deposited and patterned. This layer forms the bottom electrode 36 for the piezo-electric material layer 37 in the switch. This layer may comprise a combination of conducting layers including non-metals (such as Lanthanum Nickelate) and must provide a suitable surface for nucleation of the appropriate phase in the piezo-electric material layer 37 (e.g. perovskite).

A piezo-electric layer 37 is deposited (e.g. by Metal Organic Chemical Vapour Deposition) and patterned (e.g. by photolithography and RIE).

A thin capping dielectric layer 39 (e.g. PECVD silicon nitride) is deposited and patterned, to prevent unintended electrical contact between the lower piezoelectric electrode 36 and subsequent conducting layers. The stress in this layer may be controlled to enable further control of curvature in the released switch armature.

A third metal layer is deposited and patterned. This layer forms the top piezoelectric electrode 40 and in conjunction with electrode 36 allows an electrical field to be applied across the piezo-electric layer 37. This layer makes contact with the outer anchor pad 25.

A subsequent dielectric layer may be deposited (with controlled stress) and patterned to further control the regions and extent of curvature in the released switch armature.

5 Following the above process allows for a switch armature to be created with a small sacrificial layer thickness, but which tends to curve upwards over the region of the armature including a piezo-electric layer (but is substantially flat elsewhere). This upward curvature leads to a large gap (>3 microns) between the movable contact 35 switching the RF and the fixed metal layer 24 carrying the RF. This enables good isolation and/or insertion loss to isolation ratio.

References

- [1] R.J. Bozeat, K.M. Brunson; "Stress control in low temperature PECVD silicon
 nitride for highly manufacturable micromechanical devices", Micromechanics Europe,
 Ulvic (Norway), 1998.
 - [2] R.R. Davies, K.M. Brunson, M. McNie, D. J. Combes; "Engineering In- and Out-of-Plane stress in PECVD Silicon Nitride for CMOS-Compatible Surface
- 20 Micromachining", SPIE Microfabrication and Micromachining Oct 2001, California, USA.

Claims.

1. A micro electromechanical system switch including a fixed contact (24, 42) and a moveable contact (35) on an armature (30) characterised by:

5

electrodes (22, 34) associated with both the fixed and moveable contacts for providing an electrostatic switch operation;

piezoelectric material (37) with associated electrodes (36, 40) for bending the armature (30) upon application of electric voltages and providing a piezoelectric switch operation;

the armature being of curved shape which is bent away from the fixed contact (24) when in a switch open condition with zero applied voltage;

15

the arrangement being such that operation of the piezoelectric material (37) bends the armature towards the fixed contact (24) and bends the moveable contact (35) into a substantially parallel alignment with the fixed electrode for clamping of the fixed and movable contacts under electrostatic force from the electrostatic electrode (22, 34).

- 2. The switch of claim 1 wherein the fixed contact are transmission line contacts and the moveable contact is a switch contact for switching parts of a microwave system.
- The switch of claim 2 wherein the moveable contact is a switch contact with at
 least two protuberances for connecting two electrically isolated parts of a signal line together.

4. A method of providing a micro electromechanical system switch having a movable armature (30) mounted on and separated from a substrate (21), the method including the steps of:

5

providing a substrate (21) carrying a fixed metal layer forming a fixed contact (24), electrostatic switch actuation electrodes (22) and electrical interconnects (25, 26);

10

15

providing an armature having a mechanical layer (38) carrying at least one movable switch contact (35) for electrical switching, an electrode (34) electrostatic actuation, and carrying a layer of piezoelectric material (37) between two electrodes (36, 40),

the layers comprising the switch having variable in-plane stress and/or stress gradient across their thickness for causing the armature in its free state to adopt a curved condition bending away from the substrate;

the arrangement being such that operation of the piezoelectric material (37) bends the armature (30) towards the substrate (20) and bends the moveable electrostatic actuation electrode (34) into a substantially parallel alignment with the fixed electrostatic electrode (22) for clamping of the moveable switch contact (35) to the fixed switch contact (24) under electrostatic force.

5. The method of claim 1 wherein the fixed metal layer forms a part of a coplanar waveguide transmission line and the fixed contact is a part of this transmission line.

25

Abstract.

A micro electromechanical system (MEMS) switch includes a fixed contact (24) and a moveable contact (35) on an armature (30). The switch has electrodes (22, 34) associated with both the fixed and moveable contacts for providing an electrostatic switch operation and piezoelectric material with associated electrodes (36, 40) for bending the armature upon application of an electric voltage and providing an initial piezoelectric switch operation followed by electrostatic switching and clamping.

10

The armature is of curved shape which is bent away from the fixed contact when in a switch open condition with zero applied voltage. This gives a large, e.g. 3μ m, switch gap in an OFF state which is reduced by piezoelectric operation suitable for electrostatic switch closing.

15

A curved condition is provided by varying strain across the armature thickness, and is produced during manufacture of the switch.

Figure 4 to accompany the Abstract.

THIS PAGE BLANK (USPTO)

20 F194

PCT/GB2004/003711

 $(\mathfrak{p}')_{\mathfrak{p}}$

Box No. VIII (iv) DECLARATION: INVENTORSHIP (only for the purposes of the designation of the United States of America)

The declaration must conform to the following standardized wording provided for in Section 214; see Notes to Boxes Nos. VIII, VIII (i) to (v) (in general) and the specific Notes to Box No.VIII (iv). If this Box is not used, this sheet should not be included in the request.

Declaration of inventorship (Rules 4.17(iv) and 51bis.1(a)(iv)) for the purposes of the designation of the United States of America:

I hereby declare that I believe I am the original, first and sole (if only one inventor is listed below) or joint (if more than one inventor is listed below) inventor of the subject matter which is claimed and for which a patent is sought. This declaration is directed to the international application of which it forms a part (if filing declaration with application). to Rule 26ter). I hereby declare that my residence, mailing address, and citizenship are as stated next to my name. I hereby state that I have reviewed and understand the contents of the above-identified international application, including the claims of said application. I have identified in the request of said application, in compliance with PCT Rule 4.10, any claim to foreign priority, and I have identified below, under the heading "Prior Applications," by application number, country or Member of the World Trade Organization, day, month and year of filing, any application for a patent or inventor's certificate filed in a country other than the United States of America, including any PCT international application designating at least one country other than the United States of America, having a filing date before that of the application on which foreign priority is claimed. Our Ref: IP/P7140 I hereby acknowledge the duty to disclose information that is known by me to be material to patentability as defined by 37 C.F.R. § 1.56, including for continuation-in-part applications, material information which became available between the filing date of the prior application and the PCT international filing date of the continuation-in-part application. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon. Name: Robert John Tremayne BUNYAN Residence: United Kingdom (city and either US state, if applicable, or country) Mailing Address: . QinetiQ. Limited, Malvern. Technology. Centre, Bldg; E. Room: 9A/07, St. Andrews Road, Malvern, Worcestershire WR14 3PS Citizenship: British Inventor's Signature: (if not contained in the request, or if deckaration is corrected or Date: 20/4/04.

(of signature which is not contained in the request, or of the added under Rule 26ter after the filing of the international declaration that is corrected or added under Rule 26ter after the application. The signature must be that of the inventor, not that of filing of the international application) the agent) Name: David Johnathon COMBES Residence: United Kingdom (city and either US state, if applicable, or country) Mailing Address: QinetiQ Limited, Malvern Technology Centre, Bldg: E Room:9A/01, St Andrews Road, Malvern, Worcestershire WR14 3PS Citizenship: British Inventor's Signature: (if not contained in the request, or if declaration is corrected or (of signature which is not contained in the request, or of the added under Rule 26ter after the filing of the international declaration that is corrected or added under Rule 26ter after the application. The signature must be that of the inventor, not that of filing of the international application) the agent)

This declaration is continued on the following sheet, "Continuation of Box No. VIII (iv)".

Continuation of Box No. VIII (i) to (v) DECLARATION

If the space is insufficient in any of Boxes Nos. VIII (i) to (v) to furnish all the information, including in the case where more than two inventors are to be named in Box No. VIII (iv), in such case, write "Continuation of Box No. VIII ..." (indicate the item number of the Box) and furnish the information in the same manner as required for the purposes of the Box in which the space was insufficient. If additional space is needed in respect of two or more declarations, a separate continuation box must be used for each such declaration. If this Box is not used, this sheet should not be included in the request.

Continuation of Box V111(iv)

Prior Application

GB 0320405.4 Filed 30-Aug-2003 Our ref: IP/P7140

Name: Kevin Michael BRUNSON

Mailing Address: QinetiQ Limited, Malvern Technology Centre, Bldg E Room 9A/08, St

Andrews Road, Malvern, Worcestershire WR14 3PS

Citizenship: British

Inventor's	Signature	Date	
IIIVEIIIUI S		Date	

Box No. VIII (iv) DECLARATION: INVENTORSHIP (only for the purposes of the designation of the United States of America)

The declaration must conform to the following standardized wording provided for in Section 214; see Notes to Boxes Nos. VIII, VIII (i) to (v) (in general) and the specific Notes to Box No. VIII (iv). If this Box is not used, this sheet should not be included in the request.

Declaration of inventorship (Rules 4.17(iv) and 51bis.1(a)(iv)) for the purposes of the designation of the United States of America:

I hereby declare that I believe I am the original, first and sole (if only one inventor is listed below) or joint (if more than one inventor is listed below) inventor of the subject matter which is claimed and for which a patent is sought. This declaration is directed to the international application of which it forms a part (if filing declaration with application). This declaration is directed to international application No. PCT/...... (if furnishing declaration pursuant to Rule 26ter). I hereby declare that my residence, mailing address, and citizenship are as stated next to my name. I hereby state that I have reviewed and understand the contents of the above-identified international application, including the claims of said application. I have identified in the request of said application, in compliance with PCT Rule 4.10, any claim to foreign priority, and I have identified below, under the heading "Prior Applications," by application number, country or Member of the World Trade Organization, day, month and year of filing, any application for a patent or inventor's certificate filed in a country other than the United States of America, including any PCT international application designating at least one country other than the United States of America. having a filing date before that of the application on which foreign priority is claimed. Prior Applications: .GB. 0320405.4. Filed 30-08-2003..... Our Ref: IP/P7140 I hereby acknowledge the duty to disclose information that is known by me to be material to patentability as defined by 37 C.F.R. § 1.56, including for continuation-in-part applications, material information which became available between the filing date of the prior application and the PCT international filing date of the continuation-in-part application. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon. Name: Robert John Tremayne BUNYAN Residence: United Kingdom (city and either US state, if applicable, or country) Mailing Address: . QinetiQ Limited, Malvern Technology Centre, Bldg; E Room:9A/07, St Andrews Road, Malvern, Worcestershire WR14 3PS Citizenship: British Inventor's Signature: (if not contained in the request, or if declaration is corrected or (of signature which is not contained in the request, or of the added under Rule 26ter after the filing of the international declaration that is corrected or added under Rule 26ter after the application. The signature must be that of the inventor, not that of filing of the international application) the agent) Name: David Johnathon COMBES Residence: United Kingdom (city and either US state, if applicable, or country) Mailing Address: QinetiQ Limited, Malvern Technology Centre, Bldg: E Room:9A/01, St Andrews Road, Malvern, Worcestershire WR14 3PS Citizenship: British Inventor's Signature: Date: 01/09/04 (if not contained in the request, or if declaration is corrected or (of signature which is not contained in the request, or of the added under Rule 26ter after the filing of the international declaration that is corrected or added under Rule 26ter after the application. The signature must be that of the inventor, not that of filing of the international application)

This declaration is continued on the following sheet, "Continuation of Box No. VIII (iv)".

the agent)

Continuation of Box No. VIII (i) to (v) DECLARATION

If the space is insufficient in any of Boxes Nos. VIII (i) to (v) to furnish all the information, including in the case where more than two inventors are to be named in Box No. VIII (iv), in such case, write "Continuation of Box No. VIII ..." (indicate the item number of the Box) and furnish the information in the same manner as required for the purposes of the Box in which the space was insufficient. If additional space is needed in respect of two or more declarations, a separate continuation box must be used for each such declaration. If this Box is not used, this sheet should not be included in the request.

Continuation of Box V111(iv)

Prior Application

GB 0320405.4 Filed 30-Aug-2003 Our ref: IP/P7140

Name: Kevin Michael BRUNSON

Mailing Address: QinetiQ Limited, Malvern Technology Centre, Bldg E Room 9A/08, St

Andrews Road, Malvern, Worcestershire WR14 3PS

Citizenship: British

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
☑ BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.