Convergence of the maximum of a sample from a Uniform distribution

Objective: The primary purpose is to explore the convergence of $X_{(n)}$ for the Uniform distribution as the sample size (n) increases.

Task: Follow the subsequent steps to examine the convergence of $X_{(n)}$:

- 1. Open the Shiny app given in the URL: https://mateo.shinyapps.io/Conv-Prob/
- 2. Using the Shiny app, select the Uniform distribution, the sample size (n), the population maximum (γ) and ϵ based on the information given in Table 1.
- 3. In Table 1, fill the gaps by using the results from the Shiny app in order to infer curves on Figure 1 (convergence quickness of $X_{(n)}$) with their respective colors, which are associated to each distinct value of ϵ .

Table 1. Assessment of the empirical $F_{X_{(n)}}(\gamma - \epsilon)$ as n increases.

			n = 3	n = 44	n = 101	n = 197
	$\epsilon = 0.1$	$F_{X_{(n)}}(\gamma - \epsilon) = P(X_{(n)} - \gamma \ge \epsilon)$	0.96			
y = 8.6	$\epsilon = 0.3$	$F_{X_{(n)}}(\gamma - \epsilon) = P(X_{(n)} - \gamma \ge \epsilon)$				0
	$\epsilon = 0.5$	$F_{X_{(n)}}(\gamma - \epsilon) = P(X_{(n)} - \gamma \ge \epsilon)$		0.07		

Figure 1. Template to illustrate the convergence swiftness of $X_{(n)}$ for each distinct value of ϵ .

What can be inferred with regard to the pattern observed?
It can be affirmed that $X_{(n)}$ is close to $\gamma=8.6$ with high probability (when n is large)?
What can be concluded about the convergence quickness of $X_{(n)}$ as ϵ rises?

4. In accordance with Table 1 and Figure 1:

Convergence of the minimum of a sample from a Shifted Exponential distribution

Objective: The primary purpose is to explore the convergence of $X_{(1)}$ for the Shifted Exponential distribution as the sample size (n) increases.

Task: Follow the subsequent steps to examine the convergence of $X_{(1)}$:

- 1. Open the Shiny app given in the URL: https://mateo.shinyapps.io/Conv-Prob/
- 2. Using the Shiny app, select the Shifted Exponential distribution, the sample size (n), the population minimum (γ) and ϵ based on the information given in Table 2.
- 3. In Table 2, fill the gaps by using the results from the Shiny app in order to infer curves on Figure 2 (convergence quickness of $X_{(1)}$) with their respective colors, which are associated to each distinct value of ϵ .

Table 2. Assessment of the empirical $F_{X_{(1)}}(\gamma+\epsilon)$ as n increases.

			n = 2	n = 25	n = 115	n = 185
	$\epsilon = 0.1$	$F_{X_{(1)}}(\gamma + \epsilon) = P(X_{(1)} - \gamma < \epsilon)$			0.99	
$\gamma = 4.2$	$\epsilon = 0.3$	$F_{X_{(1)}}(\gamma + \epsilon) = P(X_{(1)} - \gamma < \epsilon)$	0.44			
	$\epsilon = 0.5$	$F_{X_{(1)}}(\gamma + \epsilon) = P(X_{(1)} - \gamma < \epsilon)$				0.99

Figure 2. Template to illustrate the convergence swiftness of $X_{(1)}$ for each distinct value of ϵ .

lt 	can be affirmed that $X_{(1)}$ is close to $\gamma=4.2$ with high probability (when n is large)?
V	/hat can be concluded about the convergence quickness of $X_{(1)}$ as ϵ rises?

4. In accordance with Table 2 and Figure 2: