

Stability of Steady States

Steady states

At steady state, dependent variable does not change with time and remains constant

For the ODE,
$$\frac{dx}{dt} = f(x, t)$$

At steady state,
$$\frac{dx}{dt} = 0$$

To find steady states, set

$$\frac{dx}{dt} = f(x,t) = 0$$
$$\Rightarrow f(x,t) = 0$$

Solve this relation algebraically to find steady state values of *x*

Question of stability

For the ODE,
$$\frac{dx}{dt} = f(x,t)$$
 x is at steady state, when $\frac{dx}{dt} = 0$

Say one steady state value of x is x_{ss}

Question on stability of a steady state: If x is perturbed from its steady state value x_{ss} , with time, will it return to x_{ss} or move away from x_{ss} ?

Stability also defines time evolution of *x* around a steady state

Stability of steady states

Spread of infection model

$$\frac{dx}{dt} = r.x.(1-x)$$

Consider
$$r = 1$$

At steady state,
$$\frac{dx}{dt} = 0$$

$$\therefore r.x.(1-x) = 0$$

$$\therefore$$
 Either $x = 0$ or $(1-x) = 0$

When
$$(1-x) = 0$$
,

$$x = 1$$

So x has two steady states, $x_{ss} = 0$ and 1

Stability of steady states

Analysis of direction field of

$$\frac{dx}{dt} = r.x.(1-x)$$

If x is perturbed from x = 1, with time, it returns back to x = 1.

x = 1 is stable steady state

If x is perturbed from x = 0, with time, it moves away from x = 0.

x = 0 is unstable steady state

Stability of steady states

Analysis of direction field of

$$\frac{dx}{dt} = r.x.(1-x)$$

$$\frac{dx}{dt} = r.x.(1-x)$$
 With $r = 1$

$$\frac{dx}{dt} = r.x.(1-x)$$
 With $r = 1$

X	dx/dt	sign	arrow
0	0		\

$$\frac{dx}{dt} = r.x.(1-x)$$
 With $r = 1$

X	dx/dt	sign	arrow
0.1	0.09	(+)ve	
0	0		\

$$\frac{dx}{dt} = r.x.(1-x)$$
 With $r = 1$

X	dx/dt	sign	arrow
0.1	0.09	(+)ve	
0	0		1
-0.1	-0.11	(-)ve	•

Both the arrows, for higher and lower values of *x*, are moving away from steady state. So this steady state is unstable.

$$\frac{dx}{dt} = r.x.(1-x)$$
 With $r = 1$

X	dx/dt	sign	arrow
1	0		†

$$\frac{dx}{dt} = r.x.(1-x)$$
 With $r = 1$

X	dx/dt	sign	arrow
1.1	-0.11	(-)ve	•
1	0		+

$$\frac{dx}{dt} = r.x.(1-x)$$
 With $r = 1$

X	dx/dt	sign	arrow
1.1	-0.11	(-)ve	•
1	0		
0.9	0.09	(+)ve	

Both the arrows, for higher and lower values of *x*, pointing towards steady state. So this steady state is stable.

Analyzing stability graphically

Plot x vs dx/dt curve.

Steady states: Points of intersection of the curve with axes for x

Calculate the sign of dx/dt near each steady states. Place the arrows on the graph.

Stable steady state: both arrows points to steady state

Unstable steady state: both arrows points away from steady states.

Semi-stable steady state

$$\frac{dx}{dt} = (x+1)^2$$

Steady state of x = -1

X	dx/dt	sign	arrow
-0.9	0.01	(+)ve	
-1	0		†
-1.1	0.01	(+)ve	

This steady state is semi-stable

Semi-stable steady state

$$\frac{dx}{dt} = (x+1)^2$$

Steady state of x = -1

X	dx/dt	sign	arrow
-0.9	0.01	(+)ve	
-1	0		1
-1.1	0.01	(+)ve	4

This steady state is semi-stable

Key points:

- 1. Steady states are of three types: Stable, unstable, semi-stable.
- 2. Stability decides time-evolution of a system around a steady state.
- 3. If perturbed from its stable steady state, with time, the system returns back to the stable steady state.
- 4. Stability can be analyzed using direction filed, numerical method