Pokemon Don't Go

Pokemon Don't Go is a new game. When you walk to a certain pokemon, those closer to you, naturally get further, and those further from you, get closer.

You will receive a **sequence** of **integers**, separated by **spaces** – the distances to the pokemons. Then you will begin **receiving integers**, which will **correspond** to **indexes** in **that sequence**.

When you **receive** an **index**, you must **remove** the **element** at **that index** from the **sequence** (as if you've captured the pokemon).

- You must **INCREASE** the **value** of **all elements** in the sequence which are **LESS** or **EQUAL** to the **removed element**, with the **value** of the **removed element**.
- You must **DECREASE** the **value** of **all elements** in the sequence which are **GREATER** than the **removed element**, with the **value** of the **removed element**.

If the given index is LESS than 0, remove the first element of the sequence, and COPY the last element to its place.

If the **given index** is **GREATER** than the **last index** of the **sequence**, **remove** the **last element** from the sequence, and **COPY** the **first element** to its place.

The **increasing** and **decreasing** of elements should be done in these cases, **also**. The **element**, whose value you should use is the **REMOVED** element.

The program ends when the sequence has no elements (there are no pokemons left for fly to catch).

Input

- On the first line of input you will receive a sequence of integers, separated by spaces.
- On the **next several** lines you will receive **integers** the **indexes**.

Output

 When the program ends, you must print on the console, the summed up value of all REMOVED elements.

Constrains

• The input data will consist **ONLY** of **valid integers** in the **range** [-2.147.483.648, 2.147.483.647].

Examples

Input	Output	Comments
4 5 3 1 1 0	14	The array is {4, 5, 3} . The index is 1 .
		We remove 5, and we increase all lower than it and decrease all higher than it.
		In this case there are no higher than 5 .
		The result is {9, 8}.

		The index is 1. So we remove 8, and decrease all higher than it.
		The result is {1}.
		The index is 0 . So we remove 1 .
		There are no elements left , so we print the sum of all removed elements .
		5 + 8 + 1 = 14.
5 10 6 3 5 2 4 1 1 3 0	51	Step 1: {11, 4, 9, 11} Step 2: {22, 15, 20, 22} Step 3: {7, 5, 7} Step 4: {2, 2} Step 5: {4, 4} Step 6: {8} Step 7: {} (empty).
		Result = $6 + 11 + 15 + 5 + 2 + 4 + 8 = 51$.