#### CSC 2047 - Individual Coursework 2 - James Earls

note: Exceptional circumstances granted an extension for this assignment.

```
1.
```

1a) No- The most complex term in the expression n! + 3n + 6 + 2n + 3 = O(n + 6) is n! Therefore the most dominant case in the equation is O(n!)

```
1b) Yes
```

- 1c) Yes
- 1d) Yes

1e) No- The most complex term in the expression  $3 \cdot 2^n = O(1.5 \text{ n})$  is  $2^n$  Therefore the most dominant case in the equation is  $O(2^n)$ 

```
1f) Yes
```

- 1g) Yes
- 1h) Yes
- 1i) Yes
- 1j) Yes

#### 2.

#### 2a)

```
i. (G_1, 1) \subseteq L - Holds
```

ii.  $(G_2, 2) \subseteq L$  - Doesn't Hold

iii.  $(G_3, 1) \subseteq L$  - Doesn't Hold

iv.  $(G_3, 4) \in L$  - Doesn't Hold

v.  $(G_a, 3) \in L - Holds$ 

vi.  $(G_a, 4) \subseteq L$  - Doesn't Hold

#### 2b)

D = "On input<G,n> where G is an undirected graph with n connected components

- 1. Select the first node of G and mark it.
- 2. Repeat the following stage until all nodes that are connected to the marked node are considered:
- 3. For each node in G, mark it if it is attached by an edge to a node that is already marked.
- 4. when all the nodes that are connected to a marked node have been marked increment the number of components by 1.
- 5. Repeat steps 3 and 4 to ensure all nodes are visited from the next node.
- 6. End the loop
- 7. Accept if n is equal to the number of components, otherwise reject.

Sourced from Decidable languages slide deck

2c)

3.

3a)

i. q<sub>0</sub>#101

ii. #q<sub>1</sub>101

3b)

i. q<sub>0</sub>#

#q<sub>1</sub>

q<sub>2</sub>#

#q<sub>a</sub>

yes

ii. q<sub>0</sub>##

#q<sub>1</sub>#

#q<sub>r</sub>#

no

iii.  $q_0 0$ 

 $q_r 0$ 

no

iv.  $q_0#0$ 

#q<sub>1</sub>0

#0q<sub>1</sub>

#q<sub>20</sub>

q<sub>3</sub>#1

#q<sub>1</sub>1

 $\#1q_1$ 

#q<sub>2</sub>1

q<sub>2</sub>#0

 $\#q_a0$ 

yes

| ٧. | q <sub>o,</sub> #1 |
|----|--------------------|
|    |                    |

 $\#q_11$ 

 $\mathbf{\#1q}_{\scriptscriptstyle 1}$ 

 $\#q_21$ 

q<sub>2</sub>#0

 $\#q_a0$ 

yes

# vi. q<sub>0</sub>#00

#q<sub>1</sub>00

#0q<sub>1</sub>0

#00q<sub>1</sub>

#0q<sub>2</sub>0

#q<sub>3</sub>01

q<sub>3</sub>#01

#q<sub>1</sub>01

#0q<sub>1</sub>1

#01q<sub>1</sub>

#0q<sub>2</sub>1

#q<sub>2</sub>00

q<sub>3</sub>#10

#q<sub>1</sub>10

#1q<sub>1</sub>0

 $\#10\mathsf{q}_{\scriptscriptstyle 1}$ 

#1q<sub>2</sub>0

#q<sub>3</sub>11

q<sub>3</sub>#11

#q<sub>1</sub>11

 $\#1\mathsf{q_{\scriptscriptstyle 1}}1$ 

#11q<sub>1</sub>

 $\#1q_21$ 

 $\#q_{2}10$ 

q<sub>2</sub>#00

 $\#q_a00$ 

Yes

vii. q<sub>0</sub>#01

 $\#q_101$ 

 $\#0q_11$ 

 $\#01q_{_{1}}$ 

 $\#0q_{2}1$ 

 $\#q_200$ 

q<sub>3</sub>#10

#q<sub>1</sub>10

 $\#1q_{1}0$ 

 $\#10q_1$ 

#1q<sub>2</sub>0

#q<sub>3</sub>11

q<sub>3</sub>#11

#q<sub>1</sub>11

 $\#1q_{\scriptscriptstyle 1}1$ 

#11q<sub>1</sub>

#1q<sub>2</sub>1

 $\#q_{2}10$ 

q<sub>2</sub>#00

#q<sub>a</sub>00

Yes

## 40206210

viii. q<sub>0</sub>#10

#q<sub>1</sub>10

#1q<sub>1</sub>0

#10q<sub>1</sub>

#1q<sub>2</sub>0

#q<sub>3</sub>11

q<sub>3</sub>#11

#q<sub>1</sub>11

#1q<sub>1</sub>1

#11q<sub>1</sub>

#1q<sub>2</sub>1

#q<sub>2</sub>10

q<sub>2</sub>#00

 $\#q_a00$ 

yes

ix.  $q_0#11$ 

#q<sub>1</sub>11

#1q<sub>1</sub>1

#11q<sub>1</sub>

#1q<sub>2</sub>1

#q<sub>2</sub>10

q<sub>2</sub>#00

 $\#q_a00$ 

yes

x. q<sub>0</sub>#101

#q<sub>1</sub>101

#1q<sub>1</sub>01

#10q<sub>1</sub>1

### 

|                 | #101q <sub>1</sub>  |
|-----------------|---------------------|
|                 | #10q <sub>2</sub> 1 |
|                 | #1q <sub>2</sub> 00 |
|                 | #q <sub>3</sub> 110 |
|                 | q <sub>3</sub> #110 |
|                 | #q <sub>1</sub> 110 |
|                 | #1q <sub>1</sub> 10 |
|                 | #11q <sub>1</sub> 0 |
|                 | #110q <sub>1</sub>  |
|                 | #11q <sub>2</sub> 0 |
|                 | #1q <sub>3</sub> 11 |
|                 | #q <sub>3</sub> 111 |
|                 | q <sub>3</sub> #111 |
|                 | #q <sub>1</sub> 111 |
|                 | #1q <sub>1</sub> 11 |
|                 | #11q <sub>1</sub> 1 |
|                 | #111q <sub>1</sub>  |
|                 | #11q <sub>2</sub> 1 |
|                 | #1q <sub>2</sub> 10 |
|                 | #q <sub>2</sub> 100 |
|                 | q <sub>2</sub> #000 |
|                 | $\#q_a000$          |
|                 | yes                 |
| 3c)<br>#(0   1) | *                   |
| 3d)<br>#0*      |                     |
| 3e)<br>0(n²)    |                     |
| <b>3f)</b> 0(n) |                     |

3g)

T = (Q, 
$$\Sigma$$
,  $\Gamma$ ,  $\delta$ ,  $q_0$ ,  $q_a$ ,  $q_r$ ):

$$Q = \{q_0, q_1, q_2, q_3, q_r\}$$

$$\Sigma = \{\#, \, 0, \, 1\}$$

$$\Gamma = \{0, 1, \_\}$$

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$$

|                | 0                     | 1                     | #                     | _                     |
|----------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $q_0$          | -                     | -                     | (q <sub>1</sub> ,#,R) | 1                     |
| $q_1$          | (q <sub>1</sub> ,0,R) | (q <sub>1</sub> ,R)   | -                     | (q <sub>2</sub> ,_,L) |
| $q_2$          | (q <sub>3</sub> ,1,L) | (q <sub>2</sub> ,0,L) | (q <sub>a</sub> ,#,R) | -                     |
| $q_3$          | (q <sub>3</sub> ,0,L) | (q <sub>3</sub> ,1,L) | (q <sub>3</sub> ,#,R) | -                     |
| q <sub>a</sub> | -                     | -                     | -                     | -                     |

4.

4a)

i. 
$$q_0, q_0, q_0$$

$$q_7, q_7, q_7$$

$$\boldsymbol{q}_{a,}\boldsymbol{q}_{a,}\boldsymbol{q}_{a}$$

yes

ii.  $q_0 abc, q_0 q_0$ 

q<sub>1</sub>abc,aq<sub>1</sub>,aq<sub>1</sub>

q<sub>2</sub>abc,aaq<sub>2</sub>,aaq<sub>2</sub>

aq<sub>0</sub>bc,aaaq<sub>0</sub>,aaq<sub>0</sub>

aq<sub>3</sub>bc,aaaq<sub>3</sub>,aaq<sub>3</sub>

 $aq_4bc$ ,  $aaq_4a$ ,  $aaq_4$ 

abq<sub>3</sub>c,aaq<sub>3</sub>,aaq<sub>3</sub>

abq<sub>5</sub>c,aaq<sub>5</sub>,aaq<sub>5</sub>

|      | 10 10 10                                                  |
|------|-----------------------------------------------------------|
|      | abcq <sub>s</sub> ,aaq <sub>s</sub> ,aq <sub>s</sub>      |
|      | abcq <sub>7</sub> ,aq <sub>7</sub> a,q <sub>7</sub> a     |
|      | abcq <sub>r</sub> ,aq <sub>r</sub> a,q <sub>r</sub> a     |
|      | no                                                        |
|      |                                                           |
| iii. | q <sub>o</sub> abbbcc,q <sub>o</sub> ,q <sub>o</sub>      |
|      | $q_1$ abbbcc,a $q_{1,}$ a $q_1$                           |
|      | q <sub>2</sub> abbbcc,aaq <sub>2</sub> ,aaq <sub>2</sub>  |
|      | aq <sub>o</sub> bbbcc,aaaq <sub>o</sub> ,aaq <sub>o</sub> |
|      | aq <sub>3</sub> bbbcc,aaaq <sub>3</sub> ,aaq <sub>3</sub> |
|      | aq <sub>4</sub> bbbcc,aaq <sub>4</sub> a,aaq <sub>4</sub> |
|      | abq <sub>3</sub> bbcc,aaq <sub>3</sub> ,aaq <sub>3</sub>  |
|      | abq <sub>4</sub> bbcc,aq <sub>4</sub> a,aaq <sub>4</sub>  |
|      | abbq <sub>3</sub> bcc,aq <sub>3</sub> ,aaq <sub>3</sub>   |
|      | abbq <sub>4</sub> bcc,q <sub>4</sub> a,aaq <sub>4</sub>   |
|      | abbbq <sub>3</sub> cc,q <sub>3</sub> ,aaq <sub>3</sub>    |
|      | abbbq₅cc,q₅,aaq₅                                          |
|      | abbbq <sub>6</sub> cc,q <sub>6</sub> ,aq <sub>6</sub> a   |
|      | abbbcq <sub>5</sub> c,q <sub>5</sub> ,aq <sub>5</sub>     |

 $abq_6c,aaq_6,aaq_6a$ 

 $abbbcq_6c,q_6,q_6a$  $\mathsf{abbbccq}_{\mathsf{5}},\mathsf{q}_{\mathsf{5}},\mathsf{q}_{\mathsf{5}}$  $\mathsf{abbbccq}_{\mathsf{6}}\mathsf{,q}_{\mathsf{6}}\mathsf{,q}_{\mathsf{6}}$ yes iv.  $q_0$ abbb, $q_0$ , $q_0$  $q_1$ abbb,a $q_1$ ,a $q_1$  $q_2$ abbb,aa $q_2$ ,aa $q_2$  $\mathsf{aq_0}\mathsf{bbb}$ , $\mathsf{aaaq_0}$ , $\mathsf{aaq_0}$ aq<sub>3</sub>bbb,aaaq<sub>3</sub>,aaq<sub>3</sub> aq<sub>4</sub>bbb,aaq<sub>4</sub>a,aaq<sub>4</sub>  $\mathsf{abq}_3\mathsf{bb},\mathsf{aaq}_3,\mathsf{aaq}_3$  $\mathsf{abq}_{\scriptscriptstyle{4}}\mathsf{bb},\!\mathsf{aq}_{\scriptscriptstyle{4}}\mathsf{a},\!\mathsf{aaq}_{\scriptscriptstyle{4}}$ abbq<sub>3</sub>b,aq<sub>3</sub>,aaq<sub>3</sub> abbq<sub>4</sub>b,q<sub>4</sub>a,aaq<sub>4</sub>  $abbbq_3,q_3aaq_3$  $abbb_r$ , $q_r$ , $aaq_r$ 

v.  $q_0 bac, q_0, q_0$ 

 $q_3$ bac, $q_3$ , $q_3$ 

 $q_4$ bac, $q_4$ , $q_4$ 

 $q_r$ bac, $q_r$ , $q_r$ 

no

vi.  $q_0$ aabbbbbbbcccc, $q_0$ , $q_0$ 

 $q_1$ aabbbbbbbcccc,a $q_1$ ,a $q_1$ 

q<sub>2</sub>aabbbbbbbcccc,aaq<sub>2</sub>,aaq<sub>2</sub>

 $aq_0abbbbbbbcccc,aaaq_0,aaq_0$ 

 $aq_1abbbbbbcccc, aaaaq_1, aaaq_1$ 

aq<sub>2</sub>abbbbbbcccc,aaaaaq<sub>2</sub>,aaaaq<sub>2</sub>

 $aaq_0bbbbbbcccc$ ,  $aaaaaaq_0$ ,  $aaaaq_0$ 

 $aaq_3bbbbbbcccc$ ,  $aaaaaaaq_3$ ,  $aaaaq_3$ 

aaq<sub>4</sub>bbbbbbcccc,aaaaaq<sub>4</sub>a,aaaaq<sub>4</sub>

aabq<sub>3</sub>bbbbbcccc,aaaaaq<sub>3</sub>,aaaaq<sub>3</sub>

aabq<sub>4</sub>bbbbbcccc,aaaaq<sub>4</sub>a,aaaaq<sub>4</sub>a

aabbq<sub>3</sub>bbbbcccc,aaaaq<sub>3</sub>,aaaaq<sub>3</sub>

aabbq<sub>4</sub>bbbbcccc,aaaq<sub>4</sub>a,aaaaq<sub>4</sub>

aabbbq<sub>3</sub>bbbcccc,aaaq<sub>3</sub>,aaaaq<sub>3</sub>

aabbbq<sub>4</sub>bbbcccc,aaq<sub>4</sub>a,aaaaq<sub>4</sub>

aabbbbq<sub>3</sub>bbcccc,aaq<sub>3</sub>,aaaaq<sub>3</sub>

aabbbbq<sub>4</sub>bbcccc,aq<sub>4</sub>a,aaaaq<sub>4</sub>  $aabbbbbq_3bcccc,aq_3,aaaaq_3$ aabbbbbq<sub>4</sub>bcccc,q<sub>4</sub>a,aaaaq<sub>4</sub>  $\mathsf{aabbbbbbq}_3\mathsf{cccc},\mathsf{q}_3,\mathsf{aaaaq}_3$ aabbbbbbbq<sub>5</sub>cccc,q<sub>5</sub>,aaaaq<sub>5</sub>  $\mathsf{aabbbbbbq}_6\mathsf{cccc},\mathsf{q}_6,\mathsf{aaaq}_6\mathsf{a}$  $aabbbbbbbcq_5ccc,q_5,aaaq_5$  $aabbbbbbcq_6ccc,q_6$ aaq $_6$ a aabbbbbbccq<sub>5</sub>cc,q<sub>5</sub>,aaq<sub>5</sub>  $aabbbbbbccq_6cc,q_6,aq_6a$ aabbbbbbbcccq5c,q5,aq5 aabbbbbbcccq<sub>6</sub>c,q<sub>6</sub>,q<sub>6</sub>a  $aabbbbbbbccccq_{\scriptscriptstyle 5}, q_{\scriptscriptstyle 5}, q_{\scriptscriptstyle 5}$ aabbbbbbbccccq<sub>7</sub>,q<sub>7</sub>,q<sub>7</sub> aabbbbbbccccq<sub>a</sub>,q<sub>a</sub>,q<sub>a</sub> yes

4b)  ${a^xb^{x(x3)}c^{x(x2)}} X \ge 0 \text{ for } X \in N^*$ 

4c)

5.

5a)

i.  $q_0 \varepsilon$ 

 $q_r \varepsilon$ 

No

ii.  $q_0 0$ 

 $0q_0$ 

 $0q_{r}$ 

No

iii.  $q_0 1 \rightarrow 1q_0$ 

 $\downarrow \qquad \mathsf{q_r}$ 

q<sub>1</sub>\_

 $q_r$ 

No

iv.  $q_001$ 

 $0q_01 \rightarrow 0_q_1$ 

 $\downarrow$  q<sub>r</sub>

01q<sub>0</sub>

 $q_r$ 

No

v.  $q_0 10 \rightarrow q_1 0$ 

 $\downarrow$  q<sub>r</sub>

1q<sub>0</sub>0

**10**q<sub>0</sub>

 $\boldsymbol{q}_{\mathrm{r}}$ 

No

vi. 
$$q_0 101 ? \rightarrow q_1 01$$

$$\downarrow \qquad q_r$$

$$1q_0 01$$

$$10q_0 1 \rightarrow 1q_1 0$$

$$\downarrow \qquad 10q_a$$

$$1q_1 0$$

$$10q_a$$

$$Yes$$
vii. 
$$q_0 111000 ? ? ? ? \rightarrow$$

10100q<sub>r</sub>

Yes

## 5b)

(0 ∪ 1)\* 01 (0 ∪ 1)\*

### 5c)

f(n) = n + n - 1 + 1

$$f(n) = 2n$$

### 5d)

g(n) = n + 1

### 5e)

n + 1

### 5f)

1

# 5g)



T = (Q,  $\Sigma$ ,  $\Gamma$ ,  $\delta$ ,  $q_0$ ,  $q_a$ ,  $q_r$ ):

$$Q = \{q_0, q_1, q_2, q_3, q_r\}$$

$$\Sigma = \{\#, \, 0, \, 1\}$$

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$$

|                | 0                       | 1                                              | _ |
|----------------|-------------------------|------------------------------------------------|---|
| $q_0$          | {(q <sub>0</sub> ,0,R)} | {(q <sub>0</sub> ,0,R), (q <sub>1</sub> ,_,L)} | - |
| $q_1$          | {(q <sub>a</sub> ,0,R)} | {(q <sub>1</sub> ,_,L)}                        | - |
| q <sub>a</sub> | -                       | -                                              | - |

- 6.
- 6a)
- 6b)
- 6c)
- 6d)
- 6e)
- 6f)

### 7.

### 7a)

$$f(n) = \begin{cases} 1 & \text{if } n = 0 \\ f(n-1) + 2n & \text{else} \end{cases}$$

$$g(n) = \begin{cases} 1 & \text{if } n = 0 \\ 2g(n-1) + 2n & \text{else} \end{cases}.$$

i. 
$$f(0) = f(n-1) + 2n$$
  
= 1 + 0  
= 1

ii. 
$$g(1) = 2g(n-1) + 2n$$
  
=  $2g(1-1) + 2$   
=  $2g(0) + 2$   
=  $2(1) + 2$   
= 4

iii. 
$$g(2) = 2g(n-1) + 2n$$
  
=  $2(2-1) + 2 \times 2$   
=  $2(1) + 4$   
=  $2(4) + 4$   
=  $8 + 4$   
=  $12$ 

iv. 
$$f(10) = f(n-1) + 2n$$

$$= f(9) + 20$$

$$= f(8) + 18 + 20$$

$$= f(7) + 16 + 18 + 20$$

$$= f(6) + 14 + 16 + 18 + 20$$

$$= f(5) + 12 + 14 + 16 + 18 + 20$$

$$= f(4) + 10 + 12 + 14 + 16 + 18 + 20$$

$$= f(3) + 8 + 10 + 12 + 14 + 16 + 18 + 20$$

$$= f(2) + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20$$

$$= f(1) + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20$$

$$= f(0) + 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20$$

$$= 1 + 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20$$

$$= 111$$

#### 7b)

We have

$$f(n) = f(n-1) + 2n$$

$$f(n) = n^2 + n + 1$$

7c)

It seems like:  $f(n) = n^2 + n + 1$ 

Proof By induction

Base Case: n = 0

$$f(0) = 1$$

$$f(0) = n^2 + n + 1$$
 (by definition)

Induction Hypothesis:

$$f(n-1) = (n-1)^2 + (n-1) + 1$$

Induction step:

$$f(n) = f(n-1) + 2n$$

$$f(n) = (n-1) 2 + (n-1) + 1 + 2n$$

$$f(n) = n2 - 2n + 1 + n - 1 + 1 + 2n$$

$$f(n) = n2 + n + 1$$

By Mathematical induction, f(n) = n2 + n + 1 for all  $n \ge 0$ 

7d)

It seems like:  $g(n) = 5 \cdot 2 n - 2n - 4$ 

Proof by induction:

Base Case: n = 0:

$$g(n) = 1$$

$$g(0) = 5 \cdot 2n-1 - 2(n-1) - 4$$
 (by definition)

Induction Hypothesis:  $g(n-1) = 5 \cdot 2n-1 - 2(n-1) - 4$ 

Induction step:

$$g(n) = 2g(n-1) + 2n$$
 (by definition)

$$g(n) = 2(5 \cdot 2n-1 - 2(n-1) - 4) + 2n$$
 (by induction hypothesis)

$$g(n) = 10 \cdot (2n / 21) - 4n + 4n - 8 + 2n$$

$$g(n) = 10 \cdot (2n / 2) - 2n - 4$$

$$g(n) = 5 \cdot 2n - 2n - 4$$

By Mathematical induction,  $g(n) = 5 \cdot 2n - 2n - 4$