

INDEX

01 분석배경 02

데이터 소개

03

데이터 전처리

04 시각화 및 EDA **05** 감성분석

01분석배경

- **분석배경**
- 데이터 소개
- 데이터 전처리
- 시각화 및 EDA
- 감성분석

분석 목표

기존 농산물 가격 예측 모형을 개선할 수 있는 새로운 아이디어와 알고리즘을 개발해보자!

분석의 의의

- 1. 기존 가격예측 서비스는 제공된 지 1년이 조금 넘었기에 모형 개발이 더욱 이루어져야 함
- 2. 농산물 수급 안정 및 가격 지원에 기여할 수 있음
 - 3. 소비자들의 공정한 거래를 도모할 수 있음

02데이터소개

Train & Test set

분석배경

데이터 전처리

시각화 및 EDA

감성분석

<예측할 날짜>

2020 - 09 - 08

~

2020 - 10 - 26

<Train set>

2016 - 01 - 01 ~ 2020 - 08 - 31

03 데이터 전처리

■ 변수 전처리

결측치 처리

분석배경

데이터 전처리

시각화 및 EDA

감성분석

날짜	요일	가격
2016-01-01	금요일	NA
2016-01-02	토요일	723
2016-01-03	일요일	NA
2016-01-04	월요일	794
2016-01-05	화요일	763

가격(Y)의 경우, <mark>공휴일과 일요일</mark>에 결측치 존재

03 데이터 전처리

■ 변수 전처리

결측치 처리

분석배경

시각화 및 EDA

감성분석

2016-01-01	금요일	NA		
2016-01-02 Y	값에 <mark>결측치가</mark>	<mark>존재</mark> 하므로 해당	항행	삭제
2016-01-03	일요일	NA		
2016-01-04	월요일	794		
2016-01-05	화요일	763		

(Y)의 경우 공휴일과

일요일에 결측치 존재

03 데이터 전처리

■ 변수 전처리

결측치 처리

분석배경

👸 데이터 전처리

시각화 및 EDA

감성분석

04시각화및EDA

■ 설명변수들 간의 상관관계 분석

- 데이터 소개
- 데이터 전처리
- 🍏 시각화 및 EDA
- 감성분석

지역별 평균기온 사이의 상관계수가 0.95 이상임을 확인함!

전국 평균기온으로 11개의 변수를 대체

04시각화및EDA

설명변수들 간의 상관관계 분석

- 데이터 소개
- 데이터 전처리
- 🍏 시각화 및 EDA
- 감성분석

04시각화및EDA

■ 설명변수들 간의 상관관계 분석

- 분석배경
- 데이터 소개
- 데이터 전처리
- 🍏 시각화 및 EDA
- 감성분석

시도별	대파 재배면적	시도별	토마토 재배면적	시도별	당근 재배면적
전남	28.1%	강원	16.4%	제주	59%
경기	20%	전남	15.8%		
강원	9.2%	충남	13.2%		
전북	8.4%	경남	11.3%		
충북	7.5%	전북	9%		

재배지역이 고루 분포돼 있거나 한 지역에 치우쳐 있어 지역을 선정하기가 까다로움

지역별 강수량 변수의 차원 축소 방향 논의 예정

05 감성분석

■ 감성분석 FLOW

분석배경

데이터 소개

데이터 전처리

시각화 및 EDA

감성분석

05 감성분석

- 분석배경
- 에이터 소개
- 데이터 전처리
- 시각화 및 EDA
- 감성분석

■ Konlpy (형태소 분리 패키지)

- 분석배경
- 데이터소개
- 데이터 전처리
- 시각화 및 EDA
- 감성분석

앞서 크롤링한 뉴스 기사의 문장을 형태소로 분리해, 추후 사전과 비교하여 분류할 예정

05 감성분석

■ KNU + 수작업 감성사전

감성 변수

분석배경

데이터 소개

데이터 전처리

시각화 및 EDA

감성분석

 Sent4 :
 긍정어 + 부정어

여러 선행 논문을 참고하여 4개의 변수 수식 완성

05 감성분석

■ KNU + 수작업 감성사전

감성 변수

분석배경

데이터 전처리

시각화 및 EDA

감성분석

					0.009804
	이와 같은 감성사전	l은 문맥을 고	L려하지 못한	나는 단점이	<mark>존재</mark> 104478
- 1					0.056338
	2016-01-0 문맥까지	고려한 감성	<mark>분석</mark> 을 진행	해보자! 429	0.040404
	2016-01-08	-0.250000	-0.012658	0.375000	0.018987

■ 문맥 고려 감성분석

SNU 감성사전

분석배경

데이터 소개

데이터 전처리

시각화 및 EDA

감성분석

단어	값
가/JKC	NEG
가/JKS	POS
가/JKC;되/VV	NEG
가/JKC;되/VV;∟/ETM	NEUT
가/JKC;아니/VCN;면/EC	POS

문장 안에서 단어의 위치에 따라 각 단어를 분류한 Lexicon 사전

■ 문맥 고려 감성분석

SNU 감성사전

분석배경

데이터 소개

데이터 전처리

시각화 및 EDA

감성분석

단어	값
가/ <mark>JKC</mark>	NEG
가/ <mark>JKS</mark>	POS
가/ <mark>JKC</mark> ;되/VV	NEG
가/JKC;되/VV;ㄴ/ETM	NEUT
가/ <mark>JKC</mark> ;아니/ <mark>VCN</mark> ;면/EC	POS

해당 형태소 단위들은 Kkma에서 지원하므로

INDEX

01 변수 수집 02

파생변수 생성

03

변수 검증

04

변수 선택

05

모델링

06

결론

01 변수수집

■ 농산물 ETF 변수

- 변수 수집
- 파생변수 생성
- 변수 검증
- 변수 선택
- **1** 모델링
- **)** 결론

김진영 키움증권 연구원은 "올해는 수확 전망치가 하향 조정되고 있고 농작물 공급난 우려기

심화되면서 관련 대체자신 ETF들이 상승세를 보이고 있다"고 설명했다. 최근 밀 주요 생산지

인 미국, 캐나다 등에서 기독적인 목업이 이어지 **TIGER 농산물 선물 ETF 데이터 수집** 이 지배적이다. 이에 따라 및 기적 역사 급격하고 함께 되었다.

산 강맥은 최근 가격이 전년 동기 대비 40% 상승했다.

■ 농산물 소매가격 변수

변수 검증

1 모델링

결론

date 🧖	mean	
2016-01-04	2,460	
2016-01-05	2,460	
2016-01-06	2,447	

date	mean	
2016-01-04	4,285	
2016-01-05	4,344	
2016-01-06	4,365	

date 🅖	mean	
2016-01-04	3,451	
2016-01-05	3,417	
2016-01-06	3,406	

대형마트나 전통시장 등 전국 주요 시장에서 조사된 소매 평균 가격 데이터 수집

02 파생변수생성

■ 장마·폭염 지속시간 변수

변수 수집

- 변수 검증
- 변수 선택
- **5** 모델링
- 결론

가설

장마와 폭염이 일시적인 경우와 장기적으로 이어지는 경우의 영향력은 차이가 있을 것이다.

이동 평균에 착안하여 지속 영향 변수를 생성 **t시점에서 과거 N시점까지 강수량의 평균**을 냄 장마나 폭염이 오랜 기간 지속되었다면 이를 반영할 수 있음

02 파생변수생성

■ 강수량 파생 변수

변수 선택

1 모델링

결론

date	당근 가중강수량	
2016-01-04	0	
2016-01-05	2.54399	
2016-01-06	0	

 $\sum rac{ ext{재배면적(%)} imes imes$

재배면적을 가중치로 하는 강수량 변수

03 변수검증

VARselect

변수 검증

변수 선택

1 모델링

3 결론

그레인저 인과검정의
order에는 일반적으로
VARselect 함수를 통해
order값을 받은 뒤 입력함

VARselect 에서는 VAR 모형 예측에 대한 **최적의 order를 산출** VARselect에서 산출된 order는 우리가 필요한 **7시점 이후 예측에** 대한 최적의 order와 <mark>다름!</mark>

03 변수검증

■ 그레인저 인과검정(Granger Causality Test)

- 변수 수집
- 파생변수 생성
- 변수 검증
- 변수 선택
- **3** 모델링
- 결론

1차 차분을 통해 변수들을 <mark>정상화</mark>한 뒤 그레인저 인과검정 진행

그레인저 인과검정은 시계열 Y변수 예측에 도움이 되는 X변수를 찾아주는 검정 방법 7시점 후 그레인져 인과검정을 시행할 때 6, 5, 4,…시점 후의 변수가 포함되므로 기존 함수를 그대로 사용할 수 없음 ■ 그레인저 인과검정(Granger Causality Test)

- 변수 수집
- 파생변수 생성
- 변수 검증
- 변수 선택
- **3** 모델링
- 결론

```
lag_function <- function(x, k, y, diff_data) {</pre>
 for list <- x:k
 My_list_X = list()
 col_names_x <- c()
 list_index_X = 1
 for (i in for list) {
   My_list_X[list_index_X] <- diff_data[, y] %>% shift(i) %>% list
    col_names_X <- c(col_names_X, paste(y, "lag", as.character(i)))</pre>
   list_index_X = list_index_X + 1
 matrix_lag_x <- as.data.frame(My_list_x) %>% as.matrix
 lagX <- matrix_lag_X[complete.cases(matrix_lag_X), ]</pre>
 if (is.vector(lagX) == TRUE) {
    lagx <- lagx %>% as.matrix
 colnames(lagx) <- col_names_x
                                                                           return(rval)
 col names Y <- c()
 My_list_Y = list()
  list_index_Y = 1
```

```
for (i in for_list) {
    My_list_Y[list_index_Y] <- list(diff_data[, 1] %>% shift(i))
    col_names_Y <- c(col_names_Y, paste("Y : lag", as.character(i)))
    list_index_Y = list_index_Y + 1
} matrix_lag_Y <- as.data.frame(My_list_Y) %>% as.matrix
lagy <- matrix_lag_Y[complete.cases(matrix_lag_Y), ]
    if (is.vector(lagY) == TRUE) {
        lagY <- lagY %>% as.matrix
}

colnames(lagY) <- col_names_Y
y <- diff_data[-(1:k), 1]

lag_data <- cbind(y, lagX, lagY) %>% as.data.frame

fm_full <- lm(y-lagY+lagX)
fm_reduce <- lm(y-lagY)

## compare models with waldtest

rval <- waldtest(fm_full, fm_reduce)
    return(rval)
</pre>
```

원하는 시점 후의 예측에 대한 인과를 확인하기 위해

직접 그레인저 인과검정 함수를 목적에 맞게 직접 코딩

03 변수검증

■ 그레인저 인과검정(Granger Causality Test)

3 모델링

当 결론

새 VARselect 함수에서 optimal order를 받아서 새롭게 만든 그레인저 인과검정 시행 ■ 왈드 검정(Wald Test)

- 변수 수집
- 파생변수 생성
- 변수 검증
- 변수 선택
- **3** 모델링
- **%** 결론

1차 차분을 통해 변수들을 <mark>정상화</mark> 정보가 겹치는 변수들을 포함한 GAM 모델과 포함하지 않은 GAM 모델을 각각 생성

왈드 검정을 통해 최적의 모델을 선정하여 **변수 선택**

■ 모델링 목표

변수 수집

파생변수 생성

변수 검증

변수 선택

모델링

当 결론

Forecasting in R

- 변수 수집
- 파생변수 생성
- 변수 검증
- 변수 선택
- **プ** 모델링
- **월** 결론

ARIMA

auto.arima function으로 모형 적합

VAR

VAR function으로

모형 적합

 \downarrow

predict(model, n.ahead = \bigstar)

R에서 제공하는 함수로 손쉽게 예측 가능

05 모델링

LGBM(Light Gradient Boosting Machine)

- 변수 수집
- 파생변수 생성
- 변수 검증
- 변수 선택
- **プ** 모델링
- 결론

트리 기반의 알고리즘으로 그레디언트 부스팅 기법 중 하나 속도가 매우 빠르다는 장점이 있음

Hyper-parameter

n_iterators : 반복 수행 트리개수

max_depth : 트리의 최대 깊이

XGBoost

- 변수 수집
- 파생변수 생성
- 변수 검증
- 변수 선택
- 📆 모델링
- **当** 결론

트리 기반의 알고리즘으로 그레디언트 부스팅 기법 중 하나 LGBM과 비교해 학습속도가 느리지만 성능이 좋은 편

Hyper-parameter

Gamma: loss의 감소 정도

max_depth : 트리의 최대 깊이

05 모델링

■ 랜덤 포레스트(Random Forest)

) 결론

여러 결정 트리들로 구성되어 의사결정을 하는 **앙상블 머신러닝 기법** 무작위적으로 최적의 변수를 찾아 **과적합을 방지함**

Hyper-parameter

Ntree: 랜덤 포레스트 안의 결정 트리 개수

Mtry: 무작위로 선택할 변수 개수

05 모델링

Prophet

PROPHET

추세, 계절성, 휴일 효과

세 요소로 구성된 가산회귀모델

$$y(t) = g(t) + s(t) + h(t) + \epsilon t$$

Hyper-parameter

Trend : g(t), 비주기적인 트랜드

Seasonality : s(t), 주기적인 패턴

Holiday : h(t), 휴일과 같이 불규칙한 이벤트

06 결론

- 변수 수집
- 파생변수 생성
- 변수 검증
- 변수 선택
- 모델링
- 결론

06 결론

- 변수 수집
- 파생변수 생성
- 변수 검증
- 변수 선택
- 3 모델링
- 결론

06 결론

) 변수 수집

파생변수 생성

변수 검증

변수 선택

7 모델링

道 결론

