PlugNet: Degradation Aware Scene Text Recognition Supervised by a Pluggable Super-Resolution Unit

论文理论

研究问题:低分辨率,高模糊,抖动等原因产生的低质量图片,影响文本识别的效果

研究思路:1)在图片层用强校正的方式,通过引入超分辨模块(SR)作为预处理,如19年出的TexSR和ESRGAN-Aster,但增加了大量的计算;2)在特征层用弱监督的方式,将SR和文本识别组成多任务学习,用SR分支辅助"共享的CNN-backbone"对低质量图片的特征表示。

模型设计

PlugNet包括校正模块,**CNN-backbone**,超分辨分支,识别分支四个部分。校正模块采用TPS方法(参考Aster),超分辨分支采用SR网络(查考RCAN),识别分支采用Seq2Seq

• CNN-backbone的设计

- 1)采用大分辨率的特征图。具体做法是去除后三个res-block的下采样层,最终输出的特征图是原图的1/4。
- 2) FEM特征组合模块。将CNN的多层特征图按通道组合在一起
- 3) FSM特征压缩模块。通过1x1卷积降维,再沿高和通道方向"铺平",构造1D向量适配LSTM的输入要求

训练学习:

PlugNet只在训练时加入超分辨单元,推理时不会增加计算量。训练时要求输入高低分辨率的图片样本对,采用的方法是通过对高分辨率图片**加模糊,噪声和下采样**来模拟低分辨率图片(如何得到真实样本是SR的重要问题)

Loss损失=识别损失 + SR损失。识别损失用交叉熵损失, SR损失用像素点的L1损失, 再通过权重系数调整。

$$L = L_{rec} + \lambda L_{sr}$$

由于SR分支只是辅助CNN-backbone更好的提取特征,导致损失的权重系数对结果比较敏感。

核心认知:

- 设计了PSU单元,构建SR分支进行多任务学习,辅助CNN-Backbone更好的提取低质量的图片特征
- 采用大分辨率的特征图,增加空间信息,改善识别效果

论文的实验效果

• 验证特征分辨率:大的特征分辨率在各个数据集上效果都有提升

Resolution	Data	SVT	SVTP	IIIT5K	IC03	IC13	IC15	CUTE80
1×25	90K	85.2	76.1	80.7	91.8	89.3	69.3	66.3
2×25	90K	$87.0_{\uparrow 1.8}$	$78.1_{\uparrow 2.0}$	$82.7_{\uparrow 2.0}$	$92.3_{\uparrow 1.5}$	$89.4_{\uparrow 0.1}$	$69.3_{\uparrow 0}$	$68.4_{\uparrow 2.1}$
4×25	90K	$87.9_{\uparrow 0.9}$	$79.5_{\uparrow 1.4}$	$82.2_{\downarrow 0.5}$	$92.7_{\uparrow 0.4}$	$89.8_{\uparrow 0.4}$	$71.4_{\uparrow 2.1}$	$69.1_{\uparrow 0.7}$
8×25	90K	$89.0_{\textcolor{red}{\uparrow}2.1}$	$82.0_{\textcolor{red}{\uparrow}2.5}$	$85.3_{\uparrow 3.1}$	$94.3_{\textcolor{red}{\uparrow}1.6}$	$91.0_{\uparrow 1.2}$	$\textbf{73.6}_{\uparrow 2.2}$	$69.1_{\uparrow 0}$

• 模块消融实验:PSU单元平均提升2.5个点, FEM单元平均提升1.1个点

Methods	FSM	FEM	Data_Aug	ESRGAN	$_{\mathrm{PSU}}$	SVT	SVTP	IC15	CUTE80
Baseline(R) [33]	X	X	X	X	X	89.5	78.5	76.1	79.5
PlugNet(R)	✓	X	X	X	X	$90.0_{\uparrow 0.5}$	$80.8_{\uparrow 2.3}$	$78.2_{\uparrow 2.1}$	$82.6_{\uparrow 3.1}$
PlugNet(R)	✓	✓	×	×	X	$90.6_{\uparrow 0.6}$	$81.6_{\uparrow 0.8}$	$80.2_{\uparrow 2.0}$	$83.7_{\uparrow 1.1}$
PlugNet	✓	✓	✓	X	X	$89.8_{\downarrow 0.8}$	$82.2_{\uparrow 0.6}$	$79.8_{\downarrow 0.4}$	$81.6_{\downarrow 2.1}$
$SR ext{-}PlugNet$	✓	✓	✓	✓	X	$90.6_{\uparrow 0.8}$	$80.8_{\downarrow 1.4}$	$79.4_{\downarrow 0.4}$	$82.6_{\uparrow 1.0}$
PlugNet	✓	✓	✓	X	✓	$92.3_{\uparrow 1.7}$	$84.3_{\uparrow 3.5}$	$82.2_{\uparrow 2.8}$	$85.0_{\uparrow 2.4}$

Image	20,40,00	arts		THE
Groud Truth	school	arts	for	the
Aster	scrool	ar_	row	till
PlugNet	school	arts	for	the

• 对损失权重系数的实验:0.01效果最好

权重系数的递增,会减少噪声和模糊有利,但也会让CNN更聚焦SR任务而不利于识别。

• 整体模型效果的对比:相比baseline在各类数据集上平均提升4个点左右

Aster(Baseline)[33]	90K, ST	93.4	89.5	94.5	91.8	76.1	78.5	79.5
TextSR(SR-Aster)[39]	90K, ST	92.5	87.2	93.2	91.3	75.6	77.4	78.9
Ours	90K, ST	94.4	92.3	95.7	95.0	82.2	84.3	85.0