IT-UNIVERSITETET I KØBENHAVN

EMISSIONS TRACKING: COMPUTE THE EMISSIONS OF YOUR PROJECTS / YOUR TRAINING SESSIONS

ENERGY COST

01	Introduction		
		05	HPC at ITU
02	What are the main consumers of energy in computers?		
		06	Tutorial : Codecarbon
03	Power - energy		

Power - Carbon cost

How to optimize?

Reducing energy costs

INTRODUCTION

According to the IEA, a single Google search takes 0.3 watt-hours of electricity, while a ChatGPT request takes 2.9 watt-hours.

Thus a single ChatGPT prompt <u>is estimated</u> to consume, on average, as much energy as 40 mobile phone charges

POWER USAGE: What are the main consumers of energy in computers?

training.

The energy consumption of RAM is lower than that of GPUs and CPUs but remains significant, especially in systems with large amounts of RAM (32 GB and more). Typical consumption can vary from 5 to 15 watts per module.

It is the brain of the computer. It executes program instructions and manages the computer's main tasks. They have several cores, enabling them to handle several tasks simultaneously.

CPUs can consume between 65 and 150 watts depending on the model and workload.

parallel computations.

They consume a lot of energy, often between 200 and 400 watts per card, and can exceed this range for high-end models used in data centers

POWER - ENERGY

ullet Relation between power and energy : $E=\int_0^t p(t)dt$

• The resulting average power (in Watts) is defined as : $P_{avg} = \frac{E}{T}$

The energy E (in Joules) is defined as the effort to perform a task during a certain period of time T (in seconds)

We have access to power and energy metrics in some areas of electronics (e.g., with powermeters), measuring the energy consumption of any kind of computer program is already a challenging task, since there are many variables involved (e.g. cache hits, cache misses, DRAM accesses).

We can approximate the energy and carbon cost by picking up the metrics of : GPU (Pg), CPU (Pc) and RAM (Pr).

To achieve this, we are using: <u>NVIDIA System Management Interface</u> and the <u>Intel's Running Average Power Limit</u>.

$$P_{avg} = PUE*(nP_g + P_c + P_r)$$

with:

- Power Usage Effectiveness (PUE) coefficient estimates additional energies required to sustain the computing infrastructure (mainly cooling)
 PUE = 1.58 (as it is the 2023 global average for data centers)
- n is the total number of GPUs used

Reminder: 1kWh = 3600 kJ

POWER - CARBON COST

$$P_{avg} = PUE * (gP_g + P_c + P_r)$$

The carbon emission intensity factor (in kgCO2eq/kWh).

This factor is location dependent, but can be captured in real-time : https://app.electricitymaps.com/map

$$CO_2e = 0.954 * P_{avq}$$

FLOPS (Floating point operations per second):

FLOPS are a unit for evaluating the computing power of computers. They are used to compare different processing architectures and assess their ability to handle computationally intensive tasks.

Although there is a correlation between power and FLOPS, FLOPS is not a measure of energy consumption, but of the performance of HPC servers.

$$FLOPS = Cores * Frequency * FLOPS/Cycle$$
 with :

- Cores : number of cores used
- Frequency: clock frequency (Graphics clock) in GHz
- FLOPS/Cycle (see further)

HIGH PERFORMANCE COMPUTING (HPC) AT ITU

Number of CUDA Cores = 5120

```
FLOPS = Cores*Frequency*rac{GPUfrequency}{NumberCUDACores*InstructionsPerCycles}
```


Node	CPU	Cores	Memory	GPU	Interconnect	Tmp space
front	CPU	32	256 GiB	None	100 Gbps IB	400 GiB
cn1	CPU	32	256 GiB	None	100 Gbps IB	3600 GiB
cn2	CPU	32	256 GiB	None	100 Gbps IB	3600 GiB
cn3	CPU	48	192 GiB	2x Tesla V100	100 Gbps IB	3600 GiB
cn4	CPU	48	192 GiB	4x Tesla V100	100 Gbps IB	3600 GiB
cn5	CPU	32	512 GiB	2x Tesla V100	100 Gbps IB	3400 GiB
cn6	CPU	64	384 GiB	6x Tesla V100	100 Gbps IB	3600 GiB
cn8	CPU	256	256 GiB	None	100 Gbps IB	400 GiB
desktop1	CPU	8	32 GiB	1x RTX 2070	1 Gbps Eth	400 GiB
desktop2	CPU	8	32 GiB	1x RTX 2070	1 Gbps Eth	400 GiB
desktop3	CPU	8	32 GiB	1x RTX 2070	1 Gbps Eth	400 GiB
desktop4	CPU	8	32 GiB	1x RTX 2070	1 Gbps Eth	400 GiB
desktop5	CPU	8	32 GiB	1x RTX 2070	1 Gbps Eth	400 GiB
desktop6	CPU	8	32 GiB	1x RTX 2070	1 Gbps Eth	400 GiB
desktop7	CPU	8	32 GiB	1x RTX 2070	1 Gbps Eth	400 GiB
desktop8	CPU	8	32 GiB	1x RTX 2070	1 Gbps Eth	400 GiB
desktop9	CPU	8	32 GiB	1x RTX 2070	1 Gbps Eth	400 GiB
desktop10	CPU	8	32 GiB	1x RTX 2070	1 Gbps Eth	400 GiB
desktop11	CPU	8	32 GiB	None	1 Gbps Eth	400 GiB
desktop12	CPU	8	32 GiB	None	1 Gbps Eth	400 GiB
desktop13	CPU	8	32 GiB	None	1 Gbps Eth	400 GiB
desktop14	CPU	8	32 GiB	None	1 Gbps Eth	400 GiB
desktop15	CPU	8	32 GiB	None	1 Gbps Eth	400 GiB
desktop16	CPU	8	32 GiB	None	1 Gbps Eth	400 GiB
desktop17	CPU	80	394 GiB	2x RTX 8000	1 Gbps Eth	400 GiB
desktop18	CPU	96	256 GiB	4x Nvidia A30 1x Nvidia A100 80GiB	1 Gbps Eth	400 GiB
desktop19	CPU	48	120 GiB	None	1 Gbps Eth	400 GiB
desktop20*	CPU	48	120 GiB	None	1 Gbps Eth	400 GiB
desktop21	CPU	40	256 GiB	2x GTX 1080ti	1 Gbps Eth	400 GiB
desktop22	CPU	96	120 GiB	4x Nvidia A100 40GiB	1 Gbps Eth	400 GiB
desktop23	CPU	40	250 GiB	2x GTX 1080ti	1 Gbps Eth	400 GiB
desktop24	CPU	40	250 GiB	2x GTX 1080ti	1 Gbps Eth	400 GiB
desktop25	CPU	96	250 GiB	2x Nvidia A30	1 Gbps Eth	400 GiB
desktop26	CPU	192	250 GiB	2x Nvidia A30	1 Gbps Eth	400 GiB
desktop27	CPU	48	250 GiB	2x Nvidia RTX 6000	1 Gbps Eth	400 GiB

HPC AT ITU

http://hpc.itu.dk/

TUTORIAL: CODECARBON

Q1 Add this to your code

```
from codecarbon import EmissionsTracker

tracker = EmissionsTracker() # or EmissionsTracker(project_name="...")

tracker.start()

#

# Compute intensive code goes here

#

tracker.stop()
```


More details in my repository:

https://github.com/Ambroise012/EnergyTracker

02 Get your results in the emissions.csv file

```
duration ,emissions ,emissions_rate ,cpu_power ,gpu_power ,cpu_energy ,gpu_energy ,gpu_energy ,cpu_energy ,2.9586103545726807e-05 ,2.786324094490759e-07 ,125.2348312083332 ,232.68873551630367 ,70.27894020080566 ,0.0037253742855748 ,0.0066481503185159 ,0.0020721558207669  
106.30764317512512 ,2.977536686002682e-05 ,2.800867931102243e-07 ,125.75981502958363 ,232.42140223798503 ,70.27894020080566 ,0.0037714373015918 ,0.0066792383989419 ,0.0020746201668334  
55.26943397521973 ,1.4813553105451898e-05 ,2.680243317145896e-07 ,128.49642534932198 ,210.3570493915212 ,70.27894020080566 ,0.0019755201029148 ,0.003177307264066 ,0.0010786369291597  
44.43157124519348 ,1.1654073084097516e-05 ,2.6229261665731055e-07 ,128.46890076822473 ,202.2093859065853 ,70.27894020080566 ,0.0015804946885614 ,0.002454840297204 ,0.0008670635010256  
32.01623201370239 ,8.12943067425307e-06 ,2.539159096165288e-07 ,127.14778303656466 ,192.2612447501428 ,70.27894020080566 ,0.0011355796492963 ,0.001659526605398 ,0.0006246173345041  
21.63544464111328 ,5.102500109674281e-06 ,2.358398541982415e-07 ,125.81523303134588 ,163.95354411120195 ,70.27894020080566 ,0.0007707252501908 ,0.0006809019336099 ,0.0003522838105645  
18.05564785003662 ,3.987396470843711e-06 ,2.2083929106069841e-07 ,129.12095539193473 ,140.4555492020566 ,70.27894020080566 ,0.0006441511219871 ,0.0006809019336099 ,0.0003522838105645
```

O3 Display the total energy used during your project, from the csv file

```
carbonboard --filepath="emissions.csv" --port=3333
```


Infrastructure Hosted at nan, Denmark

Power Consumption Across All Experiments: 47.3 kWh
Carbon Equivalent Across All Experiments: 7.2 kg

household emissions Last Run Carbon Equivalent : 0.0 kg

Last Run Power Consumption: 0.0 kWh

Exemplary Equivalents

HOW TO REDUCE EMISSIONS?

For Machine Learning:

06 Changing the task

07 Prune your model : structured pruning

08 Using adapters instead of fine tuning

O9 Changing the type of architecture: CNN, RNN, MLP...

- **Q1** Reduce the Time and Space <u>Complexity</u>
 - Appropriate Data Structures: Using data
- **02** structures that best meet specific needs (e.g., using dynamic arrays or hash tables)
- O3 Code optimization: Inlining, avoiding redundancies
- Memory management: optimizing allocation and deallocation, using cache
- **05** Parallelization optimization

Figure 2: Average power during training (circles) and test (triangles) in function of FLOP. The architectures are split with MLP/RNN on the left and CNN on the right.