Glossary of Symbols

Logic

Notation	Meaning	Example
=	equals	x = x
#	is distinct from	$x \neq x + 1$
	end of an example or proof	
$P \wedge Q$	P and Q (both true)	$x \leq x+1 \land x \neq x+1$
$P \vee Q$	P or Q (one or both true)	$x \le y \lor y \le x$
$\neg P$	not <i>P</i> (<i>P</i> is not true)	$\neg 3 \ge 5$
$P \Rightarrow Q$	if P then Q	$x < y \Rightarrow x \le y$
$P \equiv Q$	P if and only if Q	$x < y \equiv y > x$
$\exists x \bullet P$	there exists an <i>x</i> such that <i>P</i>	$\exists x \bullet x > y$
$\forall x \bullet P$	forall x, P	$\forall \ x \bullet x < x+1$
$\exists x : A \bullet P$	there exists an x in set A such that P	
$\forall \ x : A \bullet P$	for all x in set A , P	

Sets

Notation	Meaning	Example
€	is a member of	$Napoleon \in mankind$
∉	is not a member of	Napoleon ∉ Russians
{}	the empty set (with no members)	\neg Napoleon $\in \{\}$

{ <i>a</i> }	the singleton set of <i>a</i> ; <i>a</i> is the only member	$x \in \{a\} \equiv x = a$
$\{a,b,c\}$	the set with members a , b , and c	$c \in \{a, b, c\}$
$\{x \mid P(x)\}$	the set of all x such that $P(x)$	$\{a\} = \{x \mid x = a\}$
$A \cup B$	A union B	$A \cup B = \{ x \mid x \in A \lor x \in B \}$
$A \cap B$	A intersect B	$A \cap B = \{ x \mid x \in A \land x \in B \}$
A - B	A minus B	$A - B = \{ x \mid x \in A \land \neg x \in B \}$
$A \subseteq B$	<i>A</i> is contained in <i>B</i>	$A \subseteq B \equiv \forall \ x : A \bullet x \in B$
$A \supseteq B$	A contains B	$A \supseteq B \equiv B \subseteq A$
$\{x:A\mid P(x)\}$	the set of x in A such that $P(x)$	
N	the set of natural numbers	$\{0, 1, 2, \ldots\}$
$\mathbb{P}A$	the power set of A	$\mathbb{P} A = \{ X \mid X \subseteq A \}$
$\bigcup_{n\geq 0} A_n$	union of a family of sets	$\bigcup_{n\geq 0} A_n = \{ x \mid \exists n \geq 0 \bullet x \in A \}$
$\bigcap_{n\geq 0} A_n$	intersection of a family of sets	$\bigcap_{n\geq 0} A_n = \{ x \mid \forall \ n \geq 0 \bullet x \in A \}$

Functions

Notation	Meaning	Example
$f:A\to B$	f is a function which maps each member of A to a member of B	$square: \mathbb{N} \to \mathbb{N}$
f(x)	that member of B to which f maps x (in A)	
injection	a function f which maps each member of A to a distinct member of B	$x \neq y \Rightarrow f(x) \neq f(y)$
f^{-1}	inverse of an injection f	$x=f(y)\equiv y=f^{-1}(x)$
$\{f(x)\mid P(x)\}$	the set formed by applying f to all x such that $P(x)$	
<i>f</i> (<i>C</i>)	the image of <i>C</i> under <i>f</i>	$\{y \mid \exists x \bullet y = f(x) \land x \in C\}$ $square(\{3, 5\}) = \{9, 15\}$
$f \circ g$	f composed with g	$f\circ g(x)=f(g(x))$
$\lambda x \bullet f(x)$	the function which maps each value of x to $f(x)$	$(\lambda x \bullet f(x))(3) = f(3)$

Traces

Section	Notation	Meaning	Example
1.5	⟨⟩	the empty trace	
1.5	$\langle a \rangle$	the trace containing only <i>a</i> (singleton sequence)	
1.5	$\langle a, b, c \rangle$	the trace with three symbols, a then b , then c	
1.6.1		(between traces) followed by	$\langle a, b, c \rangle = \langle a, b \rangle^{} \langle \rangle^{} \langle c \rangle$
1.6.1	s^n	s repeated n times	$\langle a,b\rangle^2=\langle a,b,a,b\rangle$
1.6.2	$s \restriction A$	s restricted to A	$\langle b, c, d, a \rangle \upharpoonright \{a, c\} = \langle c, a \rangle$
1.6.5	$s \leq t$	s is a prefix of t	$\langle a,b\rangle \leq \langle a,b,c\rangle$
4.2.2	$s \leq^n t$	s is like t with up to n symbols removed	$\langle a,b\rangle \leq^2 \langle a,b,c,d\rangle$
1.6.5	s in t	s is in t	$\langle c, d \rangle$ in $\langle b, c, d, a, b \rangle$
1.6.6	#s	the length of s	$\#\langle b, c, b, a \rangle = 4$
1.6.6	$s \downarrow b$	the count of b in s	$\langle b, c, b, a \rangle \downarrow b = 2$
1.9.6	$s \downarrow c$	the communications on channel c recorded in s	$\langle c.1, a.4, c.3, d.1 \rangle \downarrow c = \langle 1, 3 \rangle$
1.9.2	$^{\sim}/s$	flatten s	$^{\smallfrown}/\langle\langle a,b\rangle,\langle\rangle$
1.9.7	s; t	s successfully followed by t	$(s^{\wedge}\langle\checkmark\rangle)$; $t = s^{\wedge}t$
1.6.4	A^*	set of sequences with elements in A	$A^* = \{ s \mid s \upharpoonright A = s \}$
1.6.3	s_0	the head of s	$\langle a, b, c \rangle_0 = a$
1.6.3	s'	the tail of s	$\langle a, b, c \rangle' = \langle b, c \rangle$
1.9.4	s[i]	the i th element of s	$\langle a, b, c \rangle [1] = b$
1.9.1	$f^*(s)$	f star of s	$square^*(\langle 1, 5, 3 \rangle) = \langle 1, 25, 9 \rangle$
1.9.5	\overline{S}	reverse of s	$\overline{\langle a,b,c,\rangle}=\langle c,b,a\rangle$

Special Events

Section	Notation	Meaning
1.9.7	✓	success (successful termination)
2.6.2	l.a	participation in event a by a process named l

xviii		Glossary of Symbols
4.1	c.v	communication of value ν on channel c
4.5	l.c	channel c of a process named l
4.5	l.c.v	communication of a message ν on channel $l.c$
5.4.1	4	catastrophe (lightning)
5.4.3	\bigcirc	exchange
5.4.4	\bigcirc	checkpoint for later recovery
6.2	acquire	acquisition of a resource
6.2	release	release of a resource

Processes

Section	Notation	Meaning
1.1	αP	the alphabet of process P
4.1	ας	the set of messages communicable on channel c
1.1.1	$a \rightarrow P$	a then P
1.1.3	$(a \to P \mid b \to Q)$	a then P choice b then Q (provided $a \neq b$)
1.1.3	$(x:A\to P(x))$	(choice of) x from A then $P(x)$
1.1.2	$\mu X : A \bullet F(X)$	the process X with alphabet A such that $X = F(X)$
1.8	P / s	P after (engaging in events of trace) s
2.3	$P \parallel Q$	P in parallel with Q
2.6.2	1: P	P with name l
2.6.4	L: P	P with names from set L
3.2	$P \sqcap Q$	P or Q (non-deterministic)
3.3	$P \square Q$	P choice Q
3.5	$P \setminus C$	P without C (hiding)
3.6	$P \parallel \mid Q$	P interleave Q
4.4	$P\gg Q$	P chained to Q
4.5	$P /\!\!/ Q$	P subordinate to Q
6.4	$l :: P /\!/ Q$	remote subordination
5.1	P; Q	P (successfully) followed by Q
5.4	$P \triangle Q$	P interrupted by Q
5.4.1	$P \not\geq Q$	P but on catastrophe Q
5.4.2	\hat{P}	restartable P

5.4.3	$P \otimes Q$	P alternating with Q
5.5	$P \triangleleft b \triangleright Q$	P if b else Q
5.1	*P	repeat P
5.5	b * P	while b repeat P
5.5	x := e	x becomes (value of) e
4.2	b!e	on (channel) b output (value of) e
4.2	b?x	on (channel) b input to x
6.2	l!e?x	call of shared subroutine named l with value parameter e and results to x
1.10.1	P sat S	(process) P satisfies (specification) S
1.10.1	tr	an arbitrary trace of the specified process
3.7	ref	an arbitrary refusal of the specified process
5.5.2	χ^{\checkmark}	the final value of x produced by the specified process
5.5.1	var(P)	set of variables assignable by P
5.5.1	acc(P)	set of variables accessible by P
2.8.2	$P \sqsubseteq Q$	(deterministic) Q can do at least as much as P
3.9	$P \sqsubseteq Q$	(nondeterministic) Q is as good as P or better
5.5.1	$\mathcal{D} e$	expression e is defined

Algebra

Term	Meaning
reflexive	a relation R such that xRx
antisymmetric	a relation <i>R</i> such that $xRy \wedge yRx \Rightarrow x = y$
transitive	a relation <i>R</i> such that $xRy \wedge yRz \Rightarrow xRz$
partial order	a relation \leq that is reflexive, antisymmetric, and transitive
bottom	a least element \bot such that $\bot \le x$
monotonic	a function f that respects a partial order: $x \le y \Rightarrow f(x) \le f(y)$
strict	a function f that preserves bottom: $f(\bot) = \bot$
idempotent	a binary operator f such that $x f x = x$
symmetric	a binary operator f such that $x f y = y f x$
associative	a binary operator f such that $x f(y f z) = (x f y) f z$

distributive f distributes through g if x f (y g z) = (x f y) g (x f z) and

 $(y\,g\,z)\,f\,x=(y\,f\,x)\,g\,(z\,f\,x)$

unit of f is an element 1 such that x f 1 = 1 f x = x zero of f is an element 0 such that x f 0 = 0 f x = 0

Graphs

Term Meaning

graph a relation drawn as a picture

node a circle in a graph representing an element in the domain

or range of a relation

arc a line or arrow in a graph connecting nodes between which

the pictured relation holds

undirected graph of a symmetric relation

graph

directed graph of an asymmetric relation often drawn

graph with arrows

directed a set of nodes connected in a cycle by arrows

cycle all in the same direction

undirected a set of nodes connected in a cycle by arcs or

cycle arrows in either direction