SOME TITLE GOES HERE...

SHREYA SHARMA

Contents

1.	Introduction	1
2.	Fano Threefolds with $\rho = 1$	1
3.	Fano Threefolds with $\rho \geq 2$	1
4.	References	1

1. Introduction

Throughout we work over the field of complex numbers \mathbb{C} .

Q.1 Fano varieties/ 3-folds: if former then discuss dim 1,2 situation(necessary?), if latter just discuss 3-folds examples A nonsingular projective variety X is called a Fano Variety if the anticanonical divisor $-K_X$ is ample. In this paper/article, we aim to understand/see the classification of Fano 3-folds.

The following definitions and properties follow Isko-1. For any Cartier divisor D on a variety X, $\mathcal{O}_X(D)$ wll denote the corresponding invertible sheaf, and, in particular, $\mathcal{O}_X(-K_X)$ is the canonical sheaf on X where $-K_X$ is the canonical divisor of X.

Q.2 Complete linear system, $h^i(X)$, Proposition 1.3, build upto Prop 1.6 & as a consequence genus, and the following para- NS(X) =Pic(X) has no torsion, $\rho = b_2$, fundamental divisor H, index. Then Def 1.13 for degree.

Notations, definition(index, ρ , degree, etc.), basic examples, goal(s), other preliminaries about invariants, definitions, etc.

2. Fano Threefolds with $\rho = 1$

 V_d notation, etc that will be used in next section

3. Fano Threefolds with $\rho \geq 2$

Follow goodnotes file: primitive and imprimitive classification separately, basically follow Mori and Mukai Q. Tables???

4. References