Title

D. Zack Garza

August 17, 2019

1

Contents

1 List of Topics

2	Grou	Groups		
2.1 Definitions		ions		
		2.1.1	Subgroup Generated by a set $A \ldots \ldots \ldots \ldots \ldots$	
		2.1.2	Free Group on a set $X cdots$	
		2.1.3	Centralizer of an element or a subgroup	
		2.1.4	Center of a group	
		2.1.5	Normalizer of a subgroup	
1	List	of T	opics	
Ch	apter	rs 1-9 of	f Dummit and Foote	
	• Left and right cosets			
	• Lagrange's theorem			
	 Isomorphism theorems Group generated by a subset Structure of cyclic groups Composite groups HK is a subgroup iff HK = KH Normalizer 			
		$-HK \leq H \text{ if } H \leq N_G(K)$		
	• Sy	• Symmetric groups		
	- Conjugacy classes are determined by cycle types			
	• Group actions			
		_	ons of G on X are equivalent to homomorphisms from G into Sym(X)	
	• Ca		theorem	
	• Orbits of an action			
	• Orbit stabilizer theorem			
	• Orbits act on left cosets of subgroups			
	• Subgroups of index p , the smallest prime dividing $ G $, are normal			
	• Action of G on itself by conjugation			
		lass equ	• • •	
	<u></u>	- Cqu		

- p-groups
 - Have non trivial center
- p^2 groups are abelian
- Automorphisms, the automorphism group
 - Inner automorphisms
 - $Inn(G) \cong Z/Z(G)$
 - $Aut(S_n) = Inn(S_n)$ unless n = 6
 - Aut(G) for cyclic groups
 - $-G \cong \mathbb{Z}_p^n$, then $Aut(G) \cong GL_n(\mathbb{Z}_p)$
- Proof of Sylow theorems
- A_n is simple for $n \ge 5$
- Recognition of internal direct product
- Recognition of semi-direct product
- Classifications:
 - -pq
- Free group & presentations
- Commutator subgroup
- Solvable groups
 - $-S_n$ is solvable for $n \leq 4$
- Derived series
 - Solvable iff derived series reaches e
- Nilpotent groups
 - Nilpotent iff all sylow-p subgroups are normal
 - Nilpotent iff all maximal subgroups are normal
- Upper central series
 - Nilpotent iff series reaches G
- Lower central series
 - Nilpotent iff series reaches e
- Fratini's argument
- Rings
 - -I maximal iff R/I is a field
 - Zorn's lemma
 - Chinese remainer theorem
 - Localization of a domain
 - Field of fractions
 - Factorization in domains
 - Euclidean algorithm
 - Gaussian integers
 - Primes and irreducibles
 - Domains
 - * Primes are irreducible
 - UFDs
 - * Have GCDs
 - * Sometimes PIDs
 - PIDs
 - * Noetherian
 - * Irreducibles are prime
 - * Are UFDs

- * Have GCDs
- Euclidean domains
 - * Are PIDs
- Factorization in Z[i]
- Polynomial rings
- Gauss' lemma
- Remainder and factor theorem
- Polynomials
- Reducibility
- Rational root test
- Eisenstein's criterion

2 Groups

2.1 Definitions

2.1.1 Subgroup Generated by a set A

- $< A> = \{a_1^{\pm 1}, a_2^{\pm 1}, \cdots a_2^{\pm 1}: a_i \in A, n \in \mathbb{N}\}$ Equivalently, the intersection of all H such that $A \subseteq H \leq G$

2.1.2 Free Group on a set X

• Equivalently, words over the alphabet X made into a group via concatenation

2.1.3 Centralizer of an element or a subgroup

 $C_G(a) = \{g \in G : ga = ag\}$

$$C_G(H) = \{g \in G : \forall h \in H, gh = hg\} = \bigcap_{h \in H} C_G(h)$$

- Note requires the same g on both sides!
- Facts:
 - $-C_G(H) \leq G$
 - $-C_G(H) \leq N_G(H)$
 - $-C_G(G)=Z(G)$
 - $C_H(a) = H \cap C_G(a)$

2.1.4 Center of a group

- $Z(G) = \{g \in G : \forall x \in G, gx = xg\}$
- Facts

 $Z(G) = \bigcap_{a \in G} C_G(a)$

2.1.5 Normalizer of a subgroup

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}$$

- Equivalently, $\bigcup \{K: H \unlhd K \subseteq G\}$ (the largest $K \subseteq G$ for which $H \unlhd K$)
- Equivalently, the stabilizer of H under G acting on its subgroups via conjugation
- Differs from centralizer; can have gh = h'g
- Facts:

$$- C_G(H) \subseteq N_G(H) \le G$$

$$-N_G(H)/C_G(H) \cong A \leq Aut(H)$$

- Given $H \subseteq G$, let

$$S(H) = \bigcup_{g \in G} gHg^{-1}$$

, so |S(H)| is the number of conjugates to H. Then

$$|S(H)| = [G:N_G(H)]$$

* i.e. the number of subgroups conjugate to H equals the index of the normalizer of H.