LESSON 3 DELTA AND DELTA HEDGING

Derivative Pricing - Module 1

Outline

- ► Revisiting the delta concept formally
- ► Delta Hedging
- ▶ Putting it all together under the binomial framework

Delta: What We Already Know

In previous lessons, we showed how to obtain risk-neutral probabilities by constructing a replicating portfolio. We did this by calculating the ratio of the change in option price vs. the change in the price of the underlying asset. That is the concept behind **delta** (Δ) .

Picture the following one-step binomial tree with r=0 for a call option with K=90:

Delta (Δ) measures the change in the price of the option with respect to the change in the price of the underlying asset.

$$\Delta_0 = \frac{c_1^u - c_1^d}{S_u - S_d} = \frac{30 - 0}{120 - 80} = 0.75$$

Delta: Extending the Tree

Things get more complicated as you extend the tree to contain more nodes, but the intuition on Δ remains the same.

Think of a tree similar to the one before but with N=2:

Figure: Binomial tree with stock prices (black), call option prices (red), and delta (green).

Delta and Delta Hedging

Delta is a classic example of a so-called *Greek* in derivatives. These Greeks are essentially variables that measure different sensitivities of option prices to several dimensions. We will dig deeper into these in upcoming modules.

For now, let's review a few features from delta to highlight:

- ightharpoonup Δ measures option price sensitivity to changes in the price of the underlying.
- One important application is to construct replicating portfolios that are risk-free (remember previous lessons).
- ▶ The latter implicitly means that we can use Δ as a measure to **hedge** the exposure of our portfolio to underlying price changes \rightarrow **Delta Hedging**

Let's revisit the example in the previous slide to understand the role of Δ in constructing a hedged position...

Delta Hedging: An Example

- \Rightarrow What would the hedge look like? (Assume that the underlying asset is a stock and that we are the bank selling this call)
 - ightharpoonup At t=0, we need to hold 0.675 shares of the stock.
 - At t = 1, we will need to hold 0.1875 shares if the underlying price goes down (S_d) or 1 share if it moves up (S_u) .

Delta Hedging: An Example

► How would this Delta-hedge work? → Example for seller & path 'du':

	t = 0	t = 1	t = 2	Total
Underlying (stock) price	\$100	\$80	\$96	
Call option	\$16.5	\$ 3	\$ 6	
Δ hedge	0.675	0.1875		
Stock portfolio value	\$67.5	\$28.5	\$18	
Cash account	-\$67.5	+\$39	+\$18 - \$6	-\$16.5

At t = 0, we buy 0.657 shares of the underlying (0.675 \times 100 = \$67.5).

At t=1, we sell 0.4875 shares (= 0.675-0.1875) to achieve the $\Delta=0.1875$. For that, we obtain \$39 (= 0.4875×80). The value of our stock portfolio at t=1 is therefore \$28.5 (= 67.5-39) and we own 0.1875 shares.

At t=2, our 0.1875 shares of the underlying will be worth \$18 (= 0.1875 \times \$96). Since t=2 is the maturity of the option contract, we get that \$18 from selling the stock. But the option buyer will come to collect its payoff, which we, as the seller, will have to pay (\$6).

You can easily see that it is no coincidence that the total cost of the hedge is exactly the price of the call option at t=0!.

▶ But where is the profit for the Bank? → Fees!

Generalization to Any N

Now that we have understood the basics of pricing options through a binomial model and delta-hedging our position, let's check its power by increasing N.

The accompanying Jupyter Notebook contains a testing example of this based on the previous framework:

- \blacktriangleright Seems absurd that the call option price actually converges to S_0 ...Why?
- ▶ Answer: Careful with volatility! We need to adjust variability (i.e. u and d) to N.

Summary of Lesson 3

In this lesson, we have learned how to:

- ▶ Define and develop the concept of delta and delta hedging
- ► Calculate delta in the binomial model framework
- Use the binomial model for constructing delta-hedged portfolios
- Dynamically adjust the hedging in the binomial tree

- \Rightarrow TO-DO NEXT: In the Jupyter Notebook accompanying this lesson, you will find an example of how to construct delta hedging in the binomial tree in Python.
- \Rightarrow In the next lesson, we will go deeper into how to calibrate the binomial model to recognize volatility of the asset and revisit all the features covered in this module under a complete framework.

