	Page 7, line 13, cancel "wounded" and substitute
	wound;
	after "plunger 15.", addcoil 17 is
0.	energized by a signal from print control 25, shown schematically in
Ω^{2}	FIG. 2, permitting control over the time and sequence of the
U	driving of each wire 11
	Page 8, line 29, after "grooves 12b.", add - When arm 12d
	of ink supply guide 12 is inserted in ink supply port 41, it fills
3	the port 41 as shown in FIG. 2 and the periphery of grooves 12b
(-	adjacent the ink absorbing member 62 actually defines the ink
	supply port.
	Page 10, line 13, change "32" to34
	Page 11, line 18, change "is turned" tomoves;
	line 16, after "energized", add - by the signal
0.4	from print control 25-;
	line 20, change "proejects" toprojects;
	line 26, correct the spelling of "projected".
	Page 12, line 30, after "porous" insertmember
BA	Page 13, after line 23, insert the following:
	FIG. 9 of the accompanying drawings illustrates an
	embodiment of the ink tank construction in accordance
	with the invention with an ink-impregnated member 160
	such as of a porous material being enclosed in tank 140.
	The illustrated ink tank construction is of a simple
$\mathcal{O}(1)$	shape and can supply a suitable amount of ink to a
(`)	printer head body under appropriate capillary attraction
	by the ink-impregnated member. The ink tank can be
	impregnated with a large quantity of ink while preventing
	unwanted ink outflow from an air hole 142 and an ink
	supply port 141.
1	.1

construction, ink in the tank remote from the ink supply port flows toward the ink supply port under a pressure difference developed between ink close to the ink supply port and ink remote therefrom as capillary attraction of the ink-impregnated member in the vicinity of the ink supply port is increased due to ink consumption. However, as can be seen in porous materials, ink-impregnated members are generally subjected to an increased resistance to ink flow and interrupted ink paths preventing a smooth ink flow as the quantity of impregnated ink is reduced. If the ink flow is blocked until a pressure differential sufficient to move ink in the ink tank is produced, then ink remote from the ink supply port remains retained and unused, resulting in a

When ink is supplied from the ink tank of such a

As shown schematically in FIG. 10, the ink tank frequently tends to trap air pockets in the ink-impregnated member. When ambient temperature rises or atmospheric pressure is lowered under such a condition, air communicating directly with the air hole expands and is discharged out of the air hole as indicated by arrows A without applying any pressure on impregnated ink, whereas the completely trapped air is expanded as indicated by the arrows B while moving the ink surrounding it. When such air pocket reaches the ink supply port, an undesired ink outflow occurs. This causes a smear or ink spot on a sheet of print paper, or ink finds its way into a printer head mechanism, resulting in a malfunction —

Page 13, line 23, cancel "foregoing";

short ink supply duration.

Cont.