SBML Model Report

Model name: "Rehm2006_Caspase"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Lukas Endler¹ at July 30th 2010 at 3:23 p. m. and last time modified at April eighth 2016 at 4:16 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	27
events	1	constraints	0
reactions	56	function definitions	0
global parameters	99	unit definitions	7
rules	18	initial assignments	6

Model Notes

This is the standard model described in the article:

Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein.

Rehm M, Huber HJ, Dussmann H, Prehn JH. <u>EMBO J.</u> 2006 Sep 20;25(18):4338-49. Epub 2006 Aug 24. PMID:16932741, doi:10.1038/sj.emboj.7601295;

Abstract:

Activation of effector caspases is a final step during apoptosis. Single-cell imaging studies have

¹EMBL-EBI, lukas@ebi.ac.uk

demonstrated that this process may occur as a rapid, all-or-none response, triggering a complete substrate cleavage within 15 min. Based on biochemical data from HeLa cells, we have developed a computational model of apoptosome-dependent caspase activation that was sufficient to remodel the rapid kinetics of effector caspase activation observed in vivo. Sensitivity analyses predicted a critical role for caspase-3-dependent feedback signalling and the X-linked-inhibitor-of-apoptosis-protein (XIAP), but a less prominent role for the XIAP antagonist Smac. Single-cell experiments employing a caspase fluorescence resonance energy transfer substrate verified these model predictions qualitatively and quantitatively. XIAP was predicted to control this all-or-none response, with concentrations as high as 0.15 microM enabling, but concentrations >0.30 microM significantly blocking substrate cleavage. Overexpression of XIAP within these threshold concentrations produced cells showing slow effector caspase activation and submaximal substrate cleavage. Our study supports the hypothesis that high levels of XIAP control caspase activation and substrate cleavage, and may promote apoptosis resistance and sublethal caspase activation in vivo.

This model is slightly altered from the description in the article. Cytochrome C and SMAC release from the mitochondrion is modelled as simple first order kinetics, giving the same form as the (integrated) equations in the supplement of the article. The apoptosome formation is modelled equally - and independent of the Cytochrome C release. The speed is either limited by the Apaf1 or ProCaspase9 concentration, whichever is higher, symbolised via the parameter with the ID apolim.

Also, once the substrate concentration falls below 1 percent, the event <u>Production_Breakdown</u> is triggered, leading to a breakdown of XIAP and procaspase3 production and turning off of the enhanced/proteosomal degradation (degradation rate for reactions 38,39,40,43,44,46,48,50,51 changes from 0.0347 to 0.0058).

Originally created by libAntimony v1.3 (using libSBML 3.4.1)

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2012 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of ten unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name min

Definition 60 s

2.2 Unit substance

Name micromole

Definition µmol

2.3 Unit uM

Name microM

Definition $\mu mol \cdot l^{-1}$

2.4 Unit uM_per_min

Name uM/min

Definition $\mu mol \cdot l^{-1} \cdot (60 \text{ s})^{-1}$

2.5 Unit per_uM_per_min

Name 1/(uM*min)

Definition $\mu mol^{-1} \cdot l \cdot (60 \text{ s})^{-1}$

2.6 Unit per_uM2_per_min

Name 1/(uM2*min)

Definition $\mu mol^{-2} \cdot l^2 \cdot (60 \text{ s})^{-1}$

2.7 Unit per_min

Name 1/min

Definition $(60 \text{ s})^{-1}$

2.8 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.9 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.10 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
cell		0000290	3	1	litre		
mito	mitochondrium	0000290	3	1	litre		

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

3.2 Compartment mito

This is a three dimensional compartment with a constant size of one litre.

Name mitochondrium

SBO:0000290 physical compartment

4 Species

This model contains 27 species. Section 10 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
PC3	ProCasp3	cell	μ mol·l ⁻¹	\Box	\Box
XIAP	_	cell	$\mu mol \cdot l^{-1}$		\Box
C9	Casp9(p35-p12)	cell	$\mu \text{mol} \cdot 1^{-1}$		\Box
PC9	ProCasp9	cell	μ mol·l ⁻¹		\Box
C3	-	cell	μ mol·l ⁻¹		\Box
C9P	Casp9(p35-p10)	cell	μ mol·l ⁻¹		\Box
XIAP_C3	XIAP-Casp3	cell	$\mu mol \cdot l^{-1}$		\Box
XIAP_C9	XIAP-Casp9	cell	$\mu mol \cdot l^{-1}$		\Box
XIAP_C9_C3	XIAP-Casp9-Casp3	cell	$\mu mol \cdot l^{-1}$		\Box
XIAP_p2frag	XIAP-p2 fragment	cell	$\mu mol \cdot l^{-1}$		
XIAP_p2frag_C3	XIAP-p2frag-Casp3	cell	$\mu mol \cdot l^{-1}$		\Box
BIR12		cell	$\mu mol \cdot l^{-1}$		\Box
BIR12_C3	BIR12-Casp3	cell	$\mu mol \cdot l^{-1}$		\Box
BIR3R		cell	$\mu mol \cdot l^{-1}$		\Box
BIR3R_C9	BIR3R-Casp9	cell	$\mu mol \cdot l^{-1}$		\Box
BIR3R_p2frag	BIR3R-p2frag	cell	$\mu mol \cdot l^{-1}$		\Box
XIAP_2SMAC	XIAP-2*SMAC	cell	$\mu mol \cdot l^{-1}$		\Box
BIR12_SMAC	BIR12-SMAC	cell	$\mu mol \cdot l^{-1}$		\Box
BIR3R_SMAC	BIR3R-SMAC	cell	μ mol· 1^{-1}		\Box
SMAC		cell	μ mol· 1^{-1}		\Box
APAF1		cell	μ mol· 1^{-1}		\Box
XIAP_p2frag_2SMAC	XIAP-p2frag-2*SMAC	cell	$\mu mol \cdot l^{-1}$		\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Substrate	Casp3 Substrate	cell	$\mu mol \cdot l^{-1}$		\Box
ClvgPrds	Clevage Products	cell	μ mol·l ⁻¹		
SMAC_mito	SMAC in mitochondrium	mito	$\mu \text{mol} \cdot l^{-1}$		
${\tt CytC_mit}$	Cytochrome C in mitochondrium	mito	$\mu \text{mol} \cdot l^{-1}$		
${ t CytC_cell}$	cytosolic Cytochrome C	cell	$\mu mol \cdot l^{-1}$		

5 Parameters

This model contains 99 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$4.68 \cdot 10^{-4}$	$\mu \text{mol} \cdot 1^{-1} \cdot (60 \text{ s})^{-1}$	\Box
k1r			0.004	$(60 \text{ s})^{-1}$	\Box
k2			$7.308 \cdot 10^{-4}$	$\mu \text{mol} \cdot l^{-1} \cdot (60 \text{ s})^{-1}$	\Box
k2r			0.012	$(60 \text{ s})^{-1}$	\Box
k3			6.000	$\mu \text{mol}^{-1} \cdot l \cdot (60 \text{ s})^{-1}$	
k4			12.000	$\mu \text{mol}^{-1} \cdot l \cdot (60 \text{ s})^{-1}$	
k5			48.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k6			2.400	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k7			156.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k7r			0.144	$(60 \text{ s})^{-1}$	
k8			156.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k8r			0.144	$(60 \text{ s})^{-1}$	
k9			156.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k9r			0.144	$(60 \text{ s})^{-1}$	
k10			156.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k10r			0.144	$(60 \text{ s})^{-1}$	
k11			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k12			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k13			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k14			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k15			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k16			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k17			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k18			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k19			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k20			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k21			156.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k21r			0.144	$(60 \text{ s})^{-1}$	
k22			156.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	\square
k22r			0.144	$(60 \text{ s})^{-1}$	
k23			156.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	\square
k23r			0.144	$(60 \text{ s})^{-1}$	$\mathbf{Z}_{\underline{\cdot}}$
k24			0.000		Z
k25			0.000		

Id	Name	SBO	Value	Unit	Constant
k26			420.000	μmol^{-2} · l^2 ·	
				$(60 \text{ s})^{-1}$	
k26r			0.133	$(60 \text{ s})^{-1}$	
k27			420.000	$\mu \text{mol}^{-2} \cdot l^2 \cdot$	
				$(60 \text{ s})^{-1}$	
k27r			156.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k28			420.000	$\mu \text{mol}^{-2} \cdot l^2 \cdot$	
				$(60 \text{ s})^{-1}$	_
k28r			156.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	\mathbf{Z}
k29			420.000	$\mu \text{mol}^{-2} \cdot l^2 \cdot$	\square
1.00			156,000	$(60 \text{ s})^{-1}$	
k29r			156.000	$\mu \text{mol}^{-2} \cdot l^2 \cdot l^2$	\square
1-20			4.450	$(60 \text{ s})^{-1}$	-
k30			4.450	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$ $(60 \text{ s})^{-1}$	
k30r			31.900		
k31			0.330 14.200	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$ $(60 \text{ s})^{-1}$	$ \mathbf{Z} $
k31r				$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k32			4.450		
k32r			156.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	$ \mathbf{Z} $
k33			0.330	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
k33r			156.000	$\mu \text{mol}^{-1} \cdot l \cdot (60 \text{ s})^{-1}$ $\mu \text{mol}^{-2} \cdot l^2 \cdot$	
k34			420.000	$(60 \text{ s})^{-1}$	\square
k34r			156.000	$(60 \text{ s})^{-1}$	\square
k35			0.006	$(60 \text{ s})^{-1}$	Z
k36			0.006	$(60 \text{ s})^{-1}$	Z
k37			0.006	$(60 \text{ s})^{-1}$	∠ ∠
k38			0.035	$(60 \text{ s})^{-1}$	
k39			0.035	$(60 \text{ s})^{-1}$	
k40			0.035	$(60 \text{ s})^{-1}$	
k41			0.006	$(60 \text{ s})^{-1}$	\mathbf{Z}
k42			0.035	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $
k43			0.035	$(60 \text{ s})^{-1}$	
k44			0.035	$(60 \text{ s})^{-1}$	
k45			0.006	$(60 \text{ s})^{-1}$	\square
k46			0.035	$(60 \text{ s})^{-1}$	
k47			0.006	$(60 \text{ s})^{-1}$	\mathbf{Z}
k48			0.035	$(60 \text{ s})^{-1}$	
k49			0.006	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $
k50			0.006	$(60 \text{ s})^{-1}$	
1100			0.000	(00 3)	

Id	Name	SBO	Value	Unit	Constant
k51			0.035	$(60 \text{ s})^{-1}$	
k52			0.006	$(60 \text{ s})^{-1}$	<u></u>
k53			12.000	$\mu \text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	
${ t th_SMAC}$	t_SMAC_0.5		7.000	60 s	7
apo_lim	limiting factor for		0.000	$\mu mol \cdot l^{-1}$	✓ ✓ ⊟
	apoptosome formation				
${ t th_Apop}$	t_Apop_0.5		2.300	60 s	
${ t th_CytC}$			1.500	60 s	
SMAC_norm	free SMAC per XIAP		0.000	dimensionless	
${\tt XIAP_ini}$	initial XIAP conc		0.000	μ mol·l ⁻¹	\Box
XIAP_2SMAC-	XIAP2*SMAC per		0.000	dimensionless	\Box
_norm	XIAP				
C9norm	normalised Casp-9		0.000	dimensionless	
C9_tot	Caspase9 tot		0.000	μ mol·l ⁻¹	
C9Pnorm	normalised Casp9-P		0.000	dimensionless	
C3norm	normalised Casp-3		0.000	dimensionless	
$C3_{-}tot$	Caspase3 tot		0.000	μ mol·l ⁻¹	
PC3norm	normalised		0.000	dimensionless	\Box
	Procasp-3				
SMAC_rel	percent SMAC re- lease		0.000	dimensionless	
${\tt SMAC_tot}$	total SMAC		0.000	μ mol·l ⁻¹	\Box
Apoform	percent Apopto- some formation		0.000	dimensionless	
${\tt XIAP_norm}$			0.000	dimensionless	
XIAP_C3_norm			0.000	dimensionless	\Box
XIAP_C9_norm			0.000	dimensionless	\Box
XIAP_p2frag-			0.000	dimensionless	
_norm			0.000		_
BIR12_norm			0.000	dimensionless	
BIR3R_norm			0.000	dimensionless	
BIR12_C3-			0.000	dimensionless	
_norm BIR3R_C9-			0.000	dimensionless	
_norm			0.000	Gifficing College	
BIR3R-			0.000	dimensionless	
$_{\mathtt{p}}\mathtt{2frag_norm}$					
S_{-} breakdown			0.010	μ mol·l ⁻¹	

Id	Name	SBO	Value	Unit	Constant
CytC_tot APAF1_tot			0.000	$\mu mol \cdot l^{-1}$ $\mu mol \cdot l^{-1}$	

6 Initialassignments

This is an overview of six initial assignments.

6.1 Initialassignment XIAP_ini

Derived unit $\mu mol \cdot l^{-1}$

Math [XIAP]

6.2 Initialassignment C9_tot

Derived unit $\mu mol \cdot l^{-1}$

Math [PC9]

6.3 Initialassignment C3_tot

Derived unit $\mu mol \cdot l^{-1}$

Math [PC3]

6.4 Initialassignment SMAC_tot

Derived unit $\mu mol \cdot l^{-1}$

Math [SMAC_mito]

6.5 Initialassignment CytC_tot

Derived unit $\mu mol \cdot l^{-1}$

Math [CytC_mit]

6.6 Initialassignment APAF1_tot

Derived unit $\mu mol \cdot l^{-1}$

Math [APAF1]

7 Rules

This is an overview of 18 rules.

7.1 Rule apo_lim

Rule apo_lim is an assignment rule for parameter apo_lim:

$$apo_lim = \begin{cases} [PC9] & \text{if } [PC9] < [APAF1] \\ [APAF1] & \text{otherwise} \end{cases}$$
 (1)

Derived unit $\mu mol \cdot l^{-1}$

7.2 Rule SMAC_norm

Rule SMAC_norm is an assignment rule for parameter SMAC_norm:

$$SMAC_norm = \frac{[SMAC]}{XIAP_ini}$$
 (2)

Derived unit dimensionless

7.3 Rule XIAP_2SMAC_norm

Rule XIAP_2SMAC_norm is an assignment rule for parameter XIAP_2SMAC_norm:

$$XIAP_2SMAC_norm = \frac{[XIAP_2SMAC]}{XIAP_ini}$$
 (3)

Derived unit dimensionless

7.4 Rule C9norm

Rule C9norm is an assignment rule for parameter C9norm:

$$C9norm = \frac{[C9]}{C9_tot}$$
 (4)

Derived unit dimensionless

7.5 Rule C9Pnorm

Rule C9Pnorm is an assignment rule for parameter C9Pnorm:

$$C9Pnorm = \frac{[C9P]}{C9 \text{ tot}}$$
 (5)

Derived unit dimensionless

7.6 Rule C3norm

Rule C3norm is an assignment rule for parameter C3norm:

$$C3norm = \frac{[C3]}{C3_tot}$$
 (6)

Derived unit dimensionless

7.7 Rule PC3norm

Rule PC3norm is an assignment rule for parameter PC3norm:

$$PC3norm = \frac{[PC3]}{C3_tot}$$
 (7)

Derived unit dimensionless

7.8 Rule SMAC_rel

Rule SMAC_rel is an assignment rule for parameter SMAC_rel:

$$SMAC_rel = 1 - \frac{[SMAC_mito]}{SMAC_tot}$$
 (8)

7.9 Rule Apoform

Rule Apoform is an assignment rule for parameter Apoform:

$$Apoform = 1 - \frac{[PC9]}{C9_tot}$$
 (9)

7.10 Rule XIAP_norm

Rule XIAP_norm is an assignment rule for parameter XIAP_norm:

$$XIAP_norm = \frac{[XIAP]}{XIAP_ini}$$
 (10)

Derived unit dimensionless

7.11 Rule XIAP_C3_norm

Rule XIAP_C3_norm is an assignment rule for parameter XIAP_C3_norm:

$$XIAP_C3_norm = \frac{[XIAP_C3] + [XIAP_C9_C3]}{XIAP_ini}$$
 (11)

Derived unit dimensionless

7.12 Rule XIAP_C9_norm

Rule XIAP_C9_norm is an assignment rule for parameter XIAP_C9_norm:

$$XIAP_C9_norm = \frac{[XIAP_C9] + [XIAP_C9_C3]}{XIAP_ini}$$
 (12)

Derived unit dimensionless

7.13 Rule XIAP_p2frag_norm

Rule XIAP_p2frag_norm is an assignment rule for parameter XIAP_p2frag_norm:

$$XIAP_p2frag_norm = \frac{[XIAP_p2frag] + [XIAP_p2frag_C3]}{XIAP_ini}$$
(13)

Derived unit dimensionless

7.14 Rule BIR12_norm

Rule BIR12_norm is an assignment rule for parameter BIR12_norm:

$$BIR12_norm = \frac{[BIR12]}{XIAP_ini}$$
 (14)

Derived unit dimensionless

7.15 Rule BIR3R_norm

Rule BIR3R_norm is an assignment rule for parameter BIR3R_norm:

$$BIR3R_norm = \frac{[BIR3R]}{XIAP_ini}$$
 (15)

Derived unit dimensionless

7.16 Rule BIR12_C3_norm

Rule BIR12_C3_norm is an assignment rule for parameter BIR12_C3_norm:

$$BIR12_C3_norm = \frac{[BIR12_C3]}{XIAP_ini}$$
 (16)

Derived unit dimensionless

7.17 Rule BIR3R_C9_norm

Rule BIR3R_C9_norm is an assignment rule for parameter BIR3R_C9_norm:

$$BIR3R_C9_norm = \frac{[BIR3R_C9]}{XIAP_ini}$$
 (17)

Derived unit dimensionless

7.18 Rule BIR3R_p2frag_norm

Rule BIR3R_p2frag_norm is an assignment rule for parameter BIR3R_p2frag_norm:

$$BIR3R_p2frag_norm = \frac{[BIR3R_p2frag]}{XIAP_ini}$$
 (18)

Derived unit dimensionless

8 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

8.1 Event Production_Breakdown

Trigger condition

$$[Substrate] < S_breakdown$$
 (19)

Assignments

k51 = 0.0058	(20)
k50 = 0.0058	(21)
k48 = 0.0058	(22)
k46 = 0.0058	(23)
k44 = 0.0058	(24)
k43 = 0.0058	(25)
k40 = 0.0058	(26)
k39 = 0.0058	(27)
k38 = 0.0058	(28)
k2r = 0	(29)
k2 = 0	(30)
k1r = 0	(31)
k1 = 0	(32)

9 Reactions

This model contains 56 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	reaction1	ProCaspase3 Production	Ø	0000393
2	reaction2	XIAP Production	$\emptyset \rightleftharpoons XIAP$	0000393
3	reaction3		$C9 + PC3 \rightleftharpoons C3 + C9$	0000297
4	reaction4		$C9 + C3 \rightleftharpoons C9P + C3$	0000231
5	reaction5		$C9P + PC3 \Longrightarrow C9P + C3$	0000231
6	reaction6		$PC3 + C3 \Longrightarrow 2C3$	0000344
7	reaction7		$C3 + XIAP \Longrightarrow XIAP_C3$	0000526
8	reaction8		$C3 + XIAP_C9 \Longrightarrow XIAP_C9_C3$	0000526
9	reaction9		$C3 + XIAP_p2frag \Longrightarrow XIAP_p2frag_C3$	0000526
10	reaction10		$C3 + BIR12 \Longrightarrow BIR12_C3$	0000526
11	reaction11		$C3 + XIAP \Longrightarrow BIR12 + BIR3R + C3$	0000526
12	reaction12		$C3 + XIAP_C9 \Longrightarrow BIR12 + BIR3R_C9 + C3$	0000344
13	reaction13		$C3 + XIAP_C3 \Longrightarrow C3 + BIR12_C3 + BIR3R$	0000344
14	reaction14		$C3 + XIAP_p2frag \rightleftharpoons C3 + BIR12 +$	0000344
			BIR3R_p2frag	
15	reaction15		$C3 + XIAP_p2frag_C3 \rightleftharpoons C3 + BIR12_C3 +$	0000344
			BIR3R_p2frag	
16	reaction16		$C3 + XIAP_C9_C3 \rightleftharpoons C3 + BIR12_C3 +$	0000344
			BIR3R_C9	
17	reaction17		$C3 + XIAP_2SMAC \Longrightarrow C3 + BIR12_SMAC +$	0000344
			BIR3R_SMAC	
18	reaction18		$C3 + XIAP_C9_C3 \rightleftharpoons C3 + C9P +$	0000344
			XIAP_p2frag_C3	

16	N⁰	Id	Name	Reaction Equation	SBO
	19	reaction19		$C3 + XIAP_C9 \rightleftharpoons C3 + C9P + XIAP_p2frag$	0000344
	20	reaction20		$C3 + BIR3R_C9 \Longrightarrow C3 + BIR3R_p2frag + C9P$	0000344
	21	reaction21		$C9 + XIAP \Longrightarrow XIAP_C9$	0000344
	22	reaction22		$C9 + XIAP_C3 \Longrightarrow XIAP_C9_C3$	0000344
	23	reaction23		$C9 + BIR3R \Longrightarrow BIR3R_C9$	0000344
	24	reaction24		$BIR3R_p2frag \Longrightarrow BIR3R$	0000180
	25	reaction25		XIAP_p2frag ← XIAP	0000180
	26	reaction26		$XIAP + 2 SMAC \Longrightarrow XIAP - 2SMAC$	0000526
	27	reaction27		$XIAP_C9 + 2 SMAC \Longrightarrow XIAP_2SMAC + C9$	0000526
H	28	reaction28		$XIAP_C3 + 2SMAC \Longrightarrow XIAP_2SMAC + C3$	0000526
γ_{ro}	29	reaction29		$XIAP_C9_C3 + 2SMAC \Longrightarrow XIAP_2SMAC +$	0000526
Produced by SBML2l ST EX				C3+C9	
ed	30	reaction30		$BIR12 + SMAC \Longrightarrow BIR12_SMAC$	0000526
by	31	reaction31		$BIR3R + SMAC \Longrightarrow BIR3R_SMAC$	0000526
<u>8</u>	32	reaction32		$BIR12_C3 + SMAC \Longrightarrow BIR12_SMAC + C3$	0000526
<u>\$</u>	33	reaction33		$BIR3R_C9 + SMAC \Longrightarrow BIR3R_SMAC + C9$	0000526
Ä	34	reaction34		$XIAP_p2frag + 2SMAC \Longrightarrow XIAP_p2frag_2SMAC$	0000526
×	35	reaction35		$C9P \rightleftharpoons \emptyset$	0000179
	36	reaction36		C9 <u>←</u> ∅	0000179
	37	reaction37		$C3 \rightleftharpoons \emptyset$	0000179
	38	reaction38		$XIAP_C3 \rightleftharpoons \emptyset$	0000179
	39	reaction39		$XIAP_C9_C3 \rightleftharpoons \emptyset$	0000179
	40	reaction40		$XIAP_C9 \Longrightarrow \emptyset$	0000179
	41	reaction41		$XIAP_p2frag \rightleftharpoons \emptyset$	0000179
	42	reaction42		$XIAP_p2frag_C3 \Longrightarrow \emptyset$	0000179
	43	reaction43		$XIAP_p2frag_2SMAC \rightleftharpoons \emptyset$	0000179
	44	reaction44		$XIAP_2SMAC \rightleftharpoons \emptyset$	0000179
	45	reaction45		BIR12 $\rightleftharpoons \emptyset$	0000179
	46	reaction46		$BIR3R \rightleftharpoons \emptyset$	0000179

N₀	Id	Name	Reaction Equation	SBO
47	reaction47		BIR12_SMAC $\Longrightarrow \emptyset$	0000179
48	reaction48		$BIR3R_SMAC \Longrightarrow \emptyset$	0000179
49	reaction49		BIR12_C3 $\rightleftharpoons \emptyset$	0000179
50	reaction50		$BIR3R_C9 \Longrightarrow \emptyset$	0000179
51	reaction51		$BIR3R_p2frag \Longrightarrow \emptyset$	0000179
52	reaction52		$SMAC \Longrightarrow \emptyset$	0000179
53	reaction53		$C3 + Substrate \rightleftharpoons C3 + ClvgPrds$	0000344
54	${\tt SMAC_release}$		SMAC_mito ← SMAC	0000185
55	${ t Apo_formation}$		$PC9 + APAF1 \Longrightarrow C9$	0000526
56	$CytC_release$		$CytC_mit \rightleftharpoons CytC_cell$	0000185

9.1 Reaction reaction1

This is a reversible reaction of no reactant forming one product.

Name ProCaspase3 Production

SBO:0000393 production

Reaction equation

$$\emptyset \rightleftharpoons PC3$$
 (33)

Product

Table 6: Properties of each product.

Id	Name	SBO
PC3	ProCasp3	

Kinetic Law

Derived unit $\mu mol \cdot (60 \text{ s})^{-1}$

$$v_1 = \text{vol}(\text{cell}) \cdot (\text{k1} - \text{k1r} \cdot [\text{PC3}]) \tag{34}$$

9.2 Reaction reaction2

This is a reversible reaction of no reactant forming one product.

Name XIAP Production

SBO:0000393 production

Reaction equation

$$\emptyset \Longrightarrow XIAP$$
 (35)

Product

Table 7: Properties of each product.

Id	Name	SBO
XIAP		

Kinetic Law

Derived unit $\mu mol \cdot (60 \text{ s})^{-1}$

$$v_2 = \text{vol}(\text{cell}) \cdot (\text{k2} - \text{k2r} \cdot [\text{XIAP}])$$
 (36)

9.3 Reaction reaction3

This is a reversible reaction of two reactants forming two products.

SBO:0000297 protein complex

Reaction equation

$$C9 + PC3 \Longrightarrow C3 + C9 \tag{37}$$

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
C9	Casp9(p35-p12)	
PC3	ProCasp3	

Products

Table 9: Properties of each product.

СЗ		
C9 C	Casp9(p35-p12)	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_3 = \text{vol}(\text{cell}) \cdot \text{k3} \cdot [\text{C9}] \cdot [\text{PC3}]$$
(38)

9.4 Reaction reaction4

This is a reversible reaction of two reactants forming two products.

SBO:0000231 occurring entity representation

Reaction equation

$$C9 + C3 \Longrightarrow C9P + C3 \tag{39}$$

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
C9	Casp9(p35-p12)	_
СЗ		

Products

Table 11: Properties of each product.

Id	Name	SBO
C9P	Casp9(p35-p10)	
C3		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_4 = \text{vol}(\text{cell}) \cdot \text{k4} \cdot [\text{C9}] \cdot [\text{C3}]$$
 (40)

9.5 Reaction reaction5

This is a reversible reaction of two reactants forming two products.

SBO:0000231 occurring entity representation

Reaction equation

$$C9P + PC3 \Longrightarrow C9P + C3 \tag{41}$$

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
C9P	Casp9(p35-p10)	
PC3	ProCasp3	

Products

Table 13: Properties of each product.

Id	Name	SBO
C9P	Casp9(p35-p10)	
C3		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_5 = \text{vol}(\text{cell}) \cdot \text{k5} \cdot [\text{C9P}] \cdot [\text{PC3}]$$
 (42)

9.6 Reaction reaction6

This is a reversible reaction of two reactants forming one product.

SBO:0000344 molecular interaction

Reaction equation

$$PC3 + C3 \Longrightarrow 2C3 \tag{43}$$

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
<u> </u>	Taile	500
PC3	ProCasp3	
C3		

Product

Table 15: Properties of each product.

Id	Name	SBO
СЗ		

Kinetic Law

Derived unit $\left(60\,\mathrm{s}\right)^{-1}\cdot\mu\mathrm{mol}$

$$v_6 = \text{vol}(\text{cell}) \cdot \text{k6} \cdot [\text{PC3}] \cdot [\text{C3}] \tag{44}$$

9.7 Reaction reaction7

This is a reversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$C3 + XIAP \Longrightarrow XIAP_C3$$
 (45)

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
C3		
XIAP		

Product

Table 17: Properties of each product.

Id	Name	SBO
XIAP_C3	XIAP-Casp3	

Kinetic Law

Derived unit $\left(60\,s\right)^{-1} \cdot \mu mol$

$$v_7 = \text{vol}(\text{cell}) \cdot (\text{k7} \cdot [\text{C3}] \cdot [\text{XIAP}] - \text{k7r} \cdot [\text{XIAP_C3}]) \tag{46}$$

9.8 Reaction reaction8

This is a reversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$C3 + XIAP_C9 \Longrightarrow XIAP_C9_C3 \tag{47}$$

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
C3		
XIAP_C9	XIAP-Casp9	

Product

Table 19: Properties of each product.

Id	Name	SBO
XIAP_C9_C3	XIAP-Casp9-Casp3	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_8 = \text{vol}(\text{cell}) \cdot (\text{k8} \cdot [\text{C3}] \cdot [\text{XIAP_C9}] - \text{k8r} \cdot [\text{XIAP_C9_C3}]) \tag{48}$$

9.9 Reaction reaction9

This is a reversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$C3 + XIAP_p2frag \Longrightarrow XIAP_p2frag_C3$$
 (49)

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
C3		
XIAP_p2frag	XIAP-p2 fragment	

Product

Table 21: Properties of each product.

Id	Name	SBO
XIAP_p2frag_C3	XIAP-p2frag-Casp3	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_9 = \text{vol}\left(\text{cell}\right) \cdot \left(\text{k9} \cdot [\text{C3}] \cdot [\text{XIAP_p2frag}] - \text{k9r} \cdot [\text{XIAP_p2frag_C3}]\right) \tag{50}$$

9.10 Reaction reaction10

This is a reversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$C3 + BIR12 \Longrightarrow BIR12_C3$$
 (51)

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
C3		
BIR12		

Product

Table 23: Properties of each product.

Id	Name	SBO
BIR12_C3	BIR12-Casp3	

Kinetic Law

 $\textbf{Derived unit} \ \left(60 \ s\right)^{-1} \cdot \mu mol$

$$v_{10} = \text{vol}(\text{cell}) \cdot (\text{k}10 \cdot [\text{C3}] \cdot [\text{BIR}12] - \text{k}10\text{r} \cdot [\text{BIR}12_\text{C3}])$$
 (52)

9.11 Reaction reaction11

This is a reversible reaction of two reactants forming three products.

SBO:0000526 protein complex formation

Reaction equation

$$C3 + XIAP \Longrightarrow BIR12 + BIR3R + C3 \tag{53}$$

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
C3		
XIAP		

Products

Table 25: Properties of each product.

Id	Name	SBO
BIR12		
BIR3R		
C3		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{11} = \text{vol}(\text{cell}) \cdot \text{k11} \cdot [\text{C3}] \cdot [\text{XIAP}]$$
 (54)

9.12 Reaction reaction12

This is a reversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$C3 + XIAP_C9 \Longrightarrow BIR12 + BIR3R_C9 + C3$$
 (55)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
C3		
$XIAP_C9$	XIAP-Casp9	

Products

Table 27: Properties of each product.

Id	Name	SBO
BIR12 BIR3R_C9 C3	BIR3R-Casp9	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{12} = \text{vol}(\text{cell}) \cdot \text{k12} \cdot [\text{C3}] \cdot [\text{XIAP}_{-}\text{C9}]$$
(56)

9.13 Reaction reaction13

This is a reversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$C3 + XIAP_C3 \Longrightarrow C3 + BIR12_C3 + BIR3R$$
 (57)

Reactants

Table 28: Properties of each reactant.

Id	Name	SBO
C3		
XIAP_C3	XIAP-Casp3	

Products

Table 29: Properties of each product.

Id	Name	SBO
C3 BIR12_C3 BIR3R	BIR12-Casp3	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{13} = \text{vol}(\text{cell}) \cdot \text{k13} \cdot [\text{C3}] \cdot [\text{XIAP}_{-}\text{C3}]$$
(58)

9.14 Reaction reaction14

This is a reversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$C3 + XIAP_p2frag \Longrightarrow C3 + BIR12 + BIR3R_p2frag$$
 (59)

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
C3		
${\tt XIAP_p2frag}$	XIAP-p2 fragment	

Products

Table 31: Properties of each product.

Id	Name	SBO
C3		
BIR12		
BIR3R_p2frag	BIR3R-p2frag	

Kinetic Law

Derived unit $\left(60\,s\right)^{-1} \cdot \mu mol$

$$v_{14} = \text{vol}(\text{cell}) \cdot \text{k14} \cdot [\text{C3}] \cdot [\text{XIAP}_{\text{p2frag}}]$$
(60)

9.15 Reaction reaction15

This is a reversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$C3 + XIAP_p2frag_C3 \rightleftharpoons C3 + BIR12_C3 + BIR3R_p2frag$$
 (61)

Reactants

Table 32: Properties of each reactant.

Id	Name	SBO
C3		
XIAP_p2frag_C3	XIAP-p2frag-Casp3	

Products

Table 33: Properties of each product.

Id	Name	SBO
C3		
BIR12_C3	BIR12-Casp3	
$BIR3R_p2frag$	BIR3R-p2frag	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{15} = \text{vol}(\text{cell}) \cdot \text{k15} \cdot [\text{C3}] \cdot [\text{XIAP_p2frag_C3}]$$
 (62)

9.16 Reaction reaction16

This is a reversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$C3 + XIAP_C9_C3 \Longrightarrow C3 + BIR12_C3 + BIR3R_C9$$
 (63)

Reactants

Table 34: Properties of each reactant.

Id	Name	SBO
C3		
XIAP_C9_C3	XIAP-Casp9-Casp3	

Products

Table 35: Properties of each product.

Id	Name	SBO
C3		
BIR12_C3	BIR12-Casp3	
BIR3R_C9	BIR3R-Casp9	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{16} = \text{vol}(\text{cell}) \cdot \text{k16} \cdot [\text{C3}] \cdot [\text{XIAP_C9_C3}]$$
(64)

9.17 Reaction reaction17

This is a reversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$C3 + XIAP_2SMAC \Longrightarrow C3 + BIR12_SMAC + BIR3R_SMAC$$
 (65)

Reactants

Table 36: Properties of each reactant.

Table 50. I Toperties of each reactain.		
Id	Name	SBO
C3		_
XIAP_2SMAC	XIAP-2*SMAC	

Products

Table 37: Properties of each product.

Id	Name	SBO
C3		
BIR12_SMAC	BIR12-SMAC	
BIR3R_SMAC	BIR3R-SMAC	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{17} = \text{vol}(\text{cell}) \cdot \text{k17} \cdot [\text{C3}] \cdot [\text{XIAP}_2\text{SMAC}]$$
 (66)

9.18 Reaction reaction18

This is a reversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$C3 + XIAP_C9_C3 \rightleftharpoons C3 + C9P + XIAP_p2frag_C3$$
 (67)

Reactants

Table 38: Properties of each reactant.

Id	Name	SBO
C3		
XIAP_C9_C3	XIAP-Casp9-Casp3	

Products

Table 39: Properties of each product.

	I	
Id	Name	SBO
C3		
C9P	Casp9(p35-p10)	
XIAP_p2frag_C3	XIAP-p2frag-Casp3	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{18} = \text{vol}(\text{cell}) \cdot \text{k18} \cdot [\text{C3}] \cdot [\text{XIAP_C9_C3}]$$
(68)

9.19 Reaction reaction19

This is a reversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$C3 + XIAP_{-}C9 \Longrightarrow C3 + C9P + XIAP_{-}p2frag$$
 (69)

Reactants

Table 40: Properties of each reactant.

Id	Name	SBO
C3		
$XIAP_C9$	XIAP-Casp9	

Products

Table 41: Properties of each product.

Id	Name	SBO
C3		_
C9P	Casp9(p35-p10)	
${\tt XIAP_p2frag}$	XIAP-p2 fragment	

Kinetic Law

Derived unit $\left(60\,s\right)^{-1} \cdot \mu mol$

$$v_{19} = \text{vol}(\text{cell}) \cdot \text{k19} \cdot [\text{C3}] \cdot [\text{XIAP}_{-}\text{C9}]$$
(70)

9.20 Reaction reaction 20

This is a reversible reaction of two reactants forming three products.

SBO:0000344 molecular interaction

Reaction equation

$$C3 + BIR3R_C9 \Longrightarrow C3 + BIR3R_p2frag + C9P$$
 (71)

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
C3		
BIR3R_C9	BIR3R-Casp9	

Products

Table 43: Properties of each product.

Id	Name	SBO
C3		
$BIR3R_p2frag$	BIR3R-p2frag	
C9P	Casp9(p35-p10)	

Kinetic Law

Derived unit $\left(60\,\mathrm{s}\right)^{-1}\cdot\mu\mathrm{mol}$

$$v_{20} = \text{vol}(\text{cell}) \cdot \text{k20} \cdot [\text{C3}] \cdot [\text{BIR3R_C9}] \tag{72}$$

9.21 Reaction reaction21

This is a reversible reaction of two reactants forming one product.

SBO:0000344 molecular interaction

Reaction equation

$$C9 + XIAP \Longrightarrow XIAP_C9 \tag{73}$$

Reactants

Table 44: Properties of each reactant.

Id	Name	SBO
C9	Casp9(p35-p12)	
XIAP		

Product

Table 45: Properties of each product.

Id	Name	SBO
XIAP_C9	XIAP-Casp9	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{21} = \text{vol}(\text{cell}) \cdot (\text{k21} \cdot [\text{C9}] \cdot [\text{XIAP}] - \text{k21r} \cdot [\text{XIAP_C9}]) \tag{74}$$

9.22 Reaction reaction22

This is a reversible reaction of two reactants forming one product.

SBO:0000344 molecular interaction

Reaction equation

$$C9 + XIAP_C3 \Longrightarrow XIAP_C9_C3 \tag{75}$$

Reactants

Table 46: Properties of each reactant.

Id	Name	SBO
C9	Casp9(p35-p12)	
XIAP_C3	XIAP-Casp3	

Product

Table 47: Properties of each product.

Id	Name	SBO
XIAP_C9_C3	XIAP-Casp9-Casp3	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{22} = \text{vol}(\text{cell}) \cdot (\text{k22} \cdot [\text{C9}] \cdot [\text{XIAP_C3}] - \text{k22r} \cdot [\text{XIAP_C9_C3}])$$

$$(76)$$

9.23 Reaction reaction23

This is a reversible reaction of two reactants forming one product.

SBO:0000344 molecular interaction

Reaction equation

$$C9 + BIR3R \Longrightarrow BIR3R_C9 \tag{77}$$

Reactants

Table 48: Properties of each reactant.

Id	Name	SBO
C9	Casp9(p35-p12)	
BIR3R		

Product

Table 49: Properties of each product.

Id	Name	SBO
BIR3R_C9	BIR3R-Casp9	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{23} = \text{vol}(\text{cell}) \cdot (\text{k23} \cdot [\text{C9}] \cdot [\text{BIR3R}] - \text{k23r} \cdot [\text{BIR3R_C9}]) \tag{78}$$

9.24 Reaction reaction 24

This is a reversible reaction of one reactant forming one product.

SBO:0000180 dissociation

Reaction equation

$$BIR3R_p2frag \rightleftharpoons BIR3R \tag{79}$$

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
BIR3R_p2frag	BIR3R-p2frag	

Product

Table 51: Properties of each product.

Id	Name	SBO
BIR3R		

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}(\text{cell}) \cdot \text{k24} \cdot [\text{BIR3R_p2frag}]$$
 (80)

9.25 Reaction reaction 25

This is a reversible reaction of one reactant forming one product.

SBO:0000180 dissociation

Reaction equation

$$XIAP_p2frag \Longrightarrow XIAP$$
 (81)

Reactant

Table 52: Properties of each reactant.

Id	Name	SBO
XIAP_p2frag	XIAP-p2 fragment	

Product

Table 53: Properties of each product.

Id	Name	SBO
XIAP		

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}(\text{cell}) \cdot \text{k25} \cdot [\text{XIAP}_{-}\text{p2frag}]$$
 (82)

9.26 Reaction reaction 26

This is a reversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$XIAP + 2SMAC \Longrightarrow XIAP - 2SMAC$$
 (83)

Reactants

Table 54: Properties of each reactant.

Id	Name	SBO
XIAP		
SMAC		

Product

Table 55: Properties of each product.

Id	Name	SBO
XIAP_2SMAC	XIAP-2*SMAC	

Id	Name	SBO

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{26} = \text{vol}(\text{cell}) \cdot (\text{k26} \cdot [\text{XIAP}] \cdot [\text{SMAC}] \cdot [\text{SMAC}] - \text{k26r} \cdot [\text{XIAP}_2\text{SMAC}])$$
 (84)

9.27 Reaction reaction27

This is a reversible reaction of two reactants forming two products.

SBO:0000526 protein complex formation

Reaction equation

$$XIAP_{-}C9 + 2SMAC \Longrightarrow XIAP_{-}2SMAC + C9$$
 (85)

Reactants

Table 56: Properties of each reactant.

Id	Name	SBO
XIAP_C9	XIAP-Casp9	
SMAC		

Products

Table 57: Properties of each product.

Id	Name	SBO
XIAP_2SMAC C9	XIAP-2*SMAC Casp9(p35-p12)	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{27} = \text{vol}(\text{cell}) \cdot (\text{k27} \cdot [\text{XIAP_C9}] \cdot [\text{SMAC}] \cdot [\text{SMAC}] - \text{k27r} \cdot [\text{XIAP_2SMAC}] \cdot [\text{C9}]) \quad (86)$$

9.28 Reaction reaction 28

This is a reversible reaction of two reactants forming two products.

SBO:0000526 protein complex formation

Reaction equation

$$XIAP_C3 + 2SMAC \Longrightarrow XIAP_2SMAC + C3$$
 (87)

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
XIAP_C3	XIAP-Casp3	
SMAC		

Products

Table 59: Properties of each product.

Id	Name	SBO
XIAP_2SMAC C3	XIAP-2*SMAC	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{28} = \text{vol}(\text{cell}) \cdot (\text{k28} \cdot [\text{XIAP_C3}] \cdot [\text{SMAC}] \cdot [\text{SMAC}] - \text{k28r} \cdot [\text{XIAP_2SMAC}] \cdot [\text{C3}])$$
 (88)

9.29 Reaction reaction 29

This is a reversible reaction of two reactants forming three products.

SBO:0000526 protein complex formation

Reaction equation

$$XIAP_C9_C3 + 2SMAC \Longrightarrow XIAP_2SMAC + C3 + C9$$
 (89)

Reactants

Table 60: Properties of each reactant.

Id	Name	SBO
XIAP_C9_C3 SMAC	XIAP-Casp9-Casp3	

Products

Table 61: Properties of each product.

Id	Name	SBO
XIAP_2SMAC	XIAP-2*SMAC	
C3		
C9	Casp9(p35-p12)	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{29} = vol\left(cell\right) \cdot \left(k29 \cdot [XIAP_C9_C3] \cdot [SMAC] \cdot [SMAC] - k29r \cdot [XIAP_2SMAC] \cdot [C3] \cdot [C9]\right) \tag{90}$$

9.30 Reaction reaction30

This is a reversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$BIR12 + SMAC \Longrightarrow BIR12_SMAC \tag{91}$$

Reactants

Table 62: Properties of each reactant.

Id	Name	SBO
BIR12		
SMAC		

Product

Table 63: Properties of each product

Id	Name	SBO
BIR12_SMAC BIR12-SMAC		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{30} = \text{vol}(\text{cell}) \cdot (\text{k30} \cdot [\text{BIR12}] \cdot [\text{SMAC}] - \text{k30r} \cdot [\text{BIR12_SMAC}])$$
(92)

9.31 Reaction reaction31

This is a reversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$BIR3R + SMAC \Longrightarrow BIR3R_SMAC$$
 (93)

Reactants

Table 64: Properties of each reactant.

Id	Name	SBO
BIR3R		
SMAC		

Product

Table 65: Properties of each product.

Id	Name	SBO
BIR3R_SMAC	BIR3R-SMAC	

Kinetic Law

 $\textbf{Derived unit} \ \left(60 \ s\right)^{-1} \cdot \mu mol$

$$v_{31} = \text{vol}(\text{cell}) \cdot (\text{k31} \cdot [\text{BIR3R}] \cdot [\text{SMAC}] - \text{k31r} \cdot [\text{BIR3R_SMAC}]) \tag{94}$$

9.32 Reaction reaction32

This is a reversible reaction of two reactants forming two products.

SBO:0000526 protein complex formation

Reaction equation

$$BIR12_C3 + SMAC \Longrightarrow BIR12_SMAC + C3 \tag{95}$$

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
BIR12_C3	BIR12-Casp3	
SMAC		

Products

Table 67: Properties of each product.

Id	Name	SBO
BIR12_SMAC C3	BIR12-SMAC	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{32} = \text{vol}(\text{cell}) \cdot (\text{k32} \cdot [\text{BIR12_C3}] \cdot [\text{SMAC}] - \text{k32r} \cdot [\text{BIR12_SMAC}] \cdot [\text{C3}])$$
 (96)

9.33 Reaction reaction33

This is a reversible reaction of two reactants forming two products.

SBO:0000526 protein complex formation

Reaction equation

$$BIR3R_C9 + SMAC \Longrightarrow BIR3R_SMAC + C9$$
 (97)

Reactants

Table 68: Properties of each reactant.

Id	Name	SBO
BIR3R_C9 SMAC	BIR3R-Casp9	

Products

Table 69: Properties of each product.

Id	Name	SBO
BIR3R_SMAC	BIR3R-SMAC	
C9	Casp9(p35-p12)	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{33} = \text{vol}(\text{cell}) \cdot (\text{k33} \cdot [\text{BIR3R_C9}] \cdot [\text{SMAC}] - \text{k33r} \cdot [\text{BIR3R_SMAC}] \cdot [\text{C9}])$$
 (98)

9.34 Reaction reaction34

This is a reversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$XIAP_p2frag + 2SMAC \Longrightarrow XIAP_p2frag_2SMAC$$
 (99)

Reactants

Table 70: Properties of each reactant.

Id	Name	SBO
XIAP_p2frag SMAC	XIAP-p2 fragment	

Product

Table 71: Properties of each product.

Id	Name	SBO	
XIAP_p2frag_2SMAC	XIAP-p2frag-2*SMAC		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{34} = vol(cell) \cdot (k34 \cdot [XIAP_p2frag] \cdot [SMAC] \cdot [SMAC] - k34r \cdot [XIAP_p2frag_2SMAC])$$

$$(100)$$

9.35 Reaction reaction35

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$C9P \rightleftharpoons \emptyset \tag{101}$$

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
C9P	Casp9(p35-p10)	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{35} = \text{vol}(\text{cell}) \cdot \text{k35} \cdot [\text{C9P}] \tag{102}$$

9.36 Reaction reaction36

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$C9 \rightleftharpoons \emptyset \tag{103}$$

Reactant

Table 73: Properties of each reactant.

Id	Name	SBO
C9	Casp9(p35-p12)	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{36} = \text{vol}(\text{cell}) \cdot \text{k36} \cdot [\text{C9}] \tag{104}$$

9.37 Reaction reaction37

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$C3 \rightleftharpoons \emptyset$$
 (105)

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
СЗ		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{37} = \text{vol}(\text{cell}) \cdot \text{k37} \cdot [\text{C3}] \tag{106}$$

9.38 Reaction reaction38

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$XIAP_C3 \rightleftharpoons \emptyset$$
 (107)

Reactant

Table 75: Properties of each reactant.

Id	Name	SBO
XIAP_C3	XIAP-Casp3	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{38} = \text{vol}(\text{cell}) \cdot \text{k38} \cdot [\text{XIAP}_{-}\text{C3}] \tag{108}$$

9.39 Reaction reaction 39

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$XIAP_C9_C3 \rightleftharpoons \emptyset$$
 (109)

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
XIAP_C9_C3	XIAP-Casp9-Casp3	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{39} = \text{vol}(\text{cell}) \cdot \text{k39} \cdot [\text{XIAP_C9_C3}]$$
 (110)

9.40 Reaction reaction 40

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$XIAP_{-}C9 \rightleftharpoons \emptyset$$
 (111)

Reactant

Table 77: Properties of each reactant.

Id	Name	SBO
XIAP_C9	XIAP-Casp9	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{40} = \text{vol}(\text{cell}) \cdot \text{k40} \cdot [\text{XIAP}_{-}\text{C9}]$$
 (112)

9.41 Reaction reaction41

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$XIAP_p2frag \rightleftharpoons \emptyset$$
 (113)

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
XIAP_p2frag	XIAP-p2 fragment	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{41} = \text{vol}(\text{cell}) \cdot \text{k41} \cdot [\text{XIAP}_{\text{p}}\text{2frag}]$$
 (114)

9.42 Reaction reaction 42

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$XIAP_p2frag_C3 \Longrightarrow \emptyset$$
 (115)

Reactant

Table 79: Properties of each reactant.

Id Name		SBO
XIAP_p2frag_C3	XIAP-p2frag-Casp3	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{42} = \text{vol}(\text{cell}) \cdot \text{k42} \cdot [\text{XIAP_p2frag_C3}]$$
 (116)

9.43 Reaction reaction43

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$XIAP_p2frag_2SMAC \Longrightarrow \emptyset$$
 (117)

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
XIAP_p2frag_2SMAC	XIAP-p2frag-2*SMAC	

Kinetic Law

Derived unit $\left(60\,s\right)^{-1} \cdot \mu mol$

$$v_{43} = \text{vol}(\text{cell}) \cdot \text{k43} \cdot [\text{XIAP_p2frag_2SMAC}]$$
 (118)

9.44 Reaction reaction44

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$XIAP_2SMAC \rightleftharpoons \emptyset$$
 (119)

Reactant

Table 81: Properties of each reactant.

Id Name		SBO
XIAP_2SMAC	XIAP-2*SMAC	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{44} = \text{vol}(\text{cell}) \cdot \text{k44} \cdot [\text{XIAP}_2\text{SMAC}] \tag{120}$$

9.45 Reaction reaction 45

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$BIR12 \rightleftharpoons \emptyset \tag{121}$$

Reactant

Table 82: Properties of each reactant.

Id	Name	SBO
BIR12		

Kinetic Law

Derived unit $\left(60\,s\right)^{-1} \cdot \mu mol$

$$v_{45} = \text{vol}(\text{cell}) \cdot \text{k45} \cdot [\text{BIR}12] \tag{122}$$

9.46 Reaction reaction 46

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$BIR3R \rightleftharpoons \emptyset \tag{123}$$

Reactant

Table 83: Properties of each reactant.

Id	Name	SBO
BIR3R		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{46} = vol(cell) \cdot k46 \cdot [BIR3R] \tag{124}$$

9.47 Reaction reaction47

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

BIR12_SMAC
$$\rightleftharpoons \emptyset$$
 (125)

Reactant

Table 84: Properties of each reactant.

Id	Name	SBO
BIR12_SMAC	BIR12-SMAC	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{47} = \text{vol}(\text{cell}) \cdot \text{k47} \cdot [\text{BIR}12_\text{SMAC}] \tag{126}$$

9.48 Reaction reaction 48

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$BIR3R_SMAC \rightleftharpoons \emptyset$$
 (127)

Reactant

Table 85: Properties of each reactant.

Id	Name	SBO
BIR3R_SMAC	BIR3R-SMAC	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{48} = \text{vol}(\text{cell}) \cdot \text{k48} \cdot [\text{BIR3R_SMAC}]$$
 (128)

9.49 Reaction reaction49

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$BIR12_C3 \Longrightarrow \emptyset \tag{129}$$

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
BIR12_C3	BIR12-Casp3	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{49} = \text{vol}(\text{cell}) \cdot \text{k49} \cdot [\text{BIR}12_\text{C3}] \tag{130}$$

9.50 Reaction reaction 50

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$BIR3R_C9 \rightleftharpoons \emptyset \tag{131}$$

Reactant

Table 87: Properties of each reactant.

Tuble of: I toperties of each reactant.		
Id	Name	SBO
BIR3R_C9	BIR3R-Casp9	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{50} = \text{vol}(\text{cell}) \cdot \text{k50} \cdot [\text{BIR3R}_{-}\text{C9}] \tag{132}$$

9.51 Reaction reaction51

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$BIR3R_p2frag \Longrightarrow \emptyset$$
 (133)

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
BIR3R_p2frag	BIR3R-p2frag	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{51} = \text{vol}(\text{cell}) \cdot \text{k51} \cdot [\text{BIR3R_p2frag}] \tag{134}$$

9.52 Reaction reaction 52

This is a reversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$SMAC \Longrightarrow \emptyset \tag{135}$$

Reactant

Table 89: Properties of each reactant.

Id	Name	SBO
SMAC		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{52} = \text{vol}(\text{cell}) \cdot \text{k52} \cdot [\text{SMAC}] \tag{136}$$

9.53 Reaction reaction53

This is a reversible reaction of two reactants forming two products.

SBO:0000344 molecular interaction

Reaction equation

$$C3 + Substrate \rightleftharpoons C3 + ClvgPrds$$
 (137)

Reactants

Table 90: Properties of each reactant.

	- F	
Id	Name	SBO
C3		
Substrate	Casp3 Substrate	

Products

Table 91: Properties of each product.

Id	Name	SBO
C3		
ClvgPrds	Clevage Products	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \mu \text{mol}$

$$v_{53} = \text{vol}(\text{cell}) \cdot \text{k53} \cdot [\text{C3}] \cdot [\text{Substrate}]$$
 (138)

9.54 Reaction SMAC_release

This is a reversible reaction of one reactant forming one product.

SBO:0000185 transport reaction

Reaction equation

$$SMAC_mito \rightleftharpoons SMAC$$
 (139)

Reactant

Table 92: Properties of each reactant.

Id	Name	SBO
SMAC_mito	SMAC in mitochondrium	

Product

Table 93: Properties of each product.

Id	Name	SBO
SMAC		

Kinetic Law

Derived unit $\mu mol \cdot (60 \text{ s})^{-1}$

$$v_{54} = \frac{\text{vol} (\text{cell}) \cdot [\text{SMAC_mito}] \cdot \ln 2}{\text{th_SMAC}}$$
 (140)

9.55 Reaction Apo_formation

This is a reversible reaction of two reactants forming one product.

SBO:0000526 protein complex formation

Reaction equation

$$PC9 + APAF1 \rightleftharpoons C9$$
 (141)

Reactants

Table 94: Properties of each reactant.

Id	Name	SBO
PC9	ProCasp9	
APAF1		

Product

Table 95: Properties of each product.

Id	Name	SBO
C9	Casp9(p35-p12)	

Kinetic Law

Derived unit $\mu mol \cdot (60 \text{ s})^{-1}$

$$v_{55} = \frac{\text{vol}(\text{cell}) \cdot \text{apo_lim} \cdot \ln 2}{\text{th_Apop}}$$
 (142)

9.56 Reaction CytC_release

This is a reversible reaction of one reactant forming one product.

SBO:0000185 transport reaction

Reaction equation

$$CytC_mit \rightleftharpoons CytC_cell$$
 (143)

Reactant

Table 96: Properties of each reactant.

Id	Name	SBO
CytC_mit	Cytochrome C in mitochondrium	

Product

Table 97: Properties of each product.

Id	Name	SBO
CytC_cell	cytosolic Cytochrome C	

Kinetic Law

Derived unit $\mu mol \cdot (60 \text{ s})^{-1}$

$$v_{56} = \frac{\text{vol}(\text{cell}) \cdot [\text{CytC_mit}] \cdot \ln 2}{\text{th_CytC}}$$
(144)

10 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

• parameters without an unit definition are involved or

• volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

10.1 Species PC3

Name ProCasp3

SBO:0000245 macromolecule

Initial concentration $0.12 \ \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction3, reaction5, reaction6 and as a product in reaction1).

$$\frac{\mathrm{d}}{\mathrm{d}t}PC3 = v_1 - v_3 - v_5 - v_6 \tag{145}$$

10.2 Species XIAP

SBO:0000245 macromolecule

Initial concentration $0.063~\mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction7, reaction11, reaction21, reaction26 and as a product in reaction2, reaction25).

$$\frac{\mathrm{d}}{\mathrm{d}t}XIAP = v_2 + |v_{25}| - v_7 - v_{11} - v_{21} - v_{26}$$
(146)

10.3 Species C9

Name Casp9(p35-p12)

SBO:0000245 macromolecule

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in eleven reactions (as a reactant in reaction3, reaction4, reaction21, reaction22, reaction23, reaction36 and as a product in reaction3, reaction27, reaction29, reaction33, Apo_formation).

$$\frac{\mathrm{d}}{\mathrm{d}t}C9 = v_3 + v_{27} + v_{29} + v_{33} + v_{55} - v_3 - v_4 - v_{21} - v_{22} - v_{23} - v_{36}$$
(147)

10.4 Species PC9

Name ProCasp9

SBO:0000245 macromolecule

Initial concentration $0.03 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in Apo_formation).

$$\frac{\mathrm{d}}{\mathrm{d}t}PC9 = -v_{55} \tag{148}$$

10.5 Species C3

SBO:0000245 macromolecule

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in 36 reactions (as a reactant in reaction4, reaction6, reaction7, reaction8, reaction9, reaction10, reaction11, reaction12, reaction13, reaction14, reaction15, reaction16, reaction17, reaction18, reaction19, reaction20, reaction37, reaction53 and as a product in reaction3, reaction4, reaction5, reaction6, reaction11, reaction12, reaction13, reaction14, reaction15, reaction16, reaction17, reaction18, reaction19, reaction20, reaction28, reaction29, reaction32, reaction53).

$$\frac{d}{dt}C3 = v_3 + v_4 + v_5 + 2v_6 + v_{11} + v_{12} + v_{13} + v_{14} + v_{15} + v_{16} + v_{17} + v_{18}
+ v_{19} + v_{20} + v_{28} + v_{29} + v_{32} + v_{53} - v_4 - v_6 - v_7 - v_8 - v_9 - v_{10}
- v_{11} - v_{12} - v_{13} - v_{14} - v_{15} - v_{16} - v_{17} - v_{18} - v_{19} - v_{20} - v_{37} - v_{53}$$
(149)

10.6 Species C9P

Name Casp9(p35-p10)

SBO:0000245 macromolecule

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in reaction5, reaction35 and as a product in reaction4, reaction5, reaction18, reaction19, reaction20).

$$\frac{\mathrm{d}}{\mathrm{d}t}C9P = v_4 + v_5 + v_{18} + v_{19} + v_{20} - v_5 - v_{35}$$
(150)

10.7 Species XIAP_C3

Name XIAP-Casp3

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in reaction13, reaction22, reaction28, reaction38 and as a product in reaction7).

$$\frac{d}{dt}XIAP_{-}C3 = v_7 - v_{13} - v_{22} - v_{28} - v_{38}$$
(151)

10.8 Species XIAP_C9

Name XIAP-Casp9

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction8, reaction12, reaction19, reaction27, reaction40 and as a product in reaction21).

$$\frac{\mathrm{d}}{\mathrm{d}t}XIAP_{-}C9 = v_{21} - v_8 - v_{12} - v_{19} - v_{27} - v_{40}$$
(152)

10.9 Species XIAP_C9_C3

Name XIAP-Casp9-Casp3

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction16, reaction18, reaction29, reaction39 and as a product in reaction8, reaction22).

$$\frac{d}{dt}XIAP_{-}C9_{-}C3 = v_8 + v_{22} - v_{16} - v_{18} - v_{29} - v_{39}$$
(153)

10.10 Species XIAP_p2frag

Name XIAP-p2 fragment

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction9, reaction14, reaction25, reaction34, reaction41 and as a product in reaction19).

$$\frac{d}{dt}XIAP_p2frag = v_{19} - v_9 - v_{14} - v_{25} - v_{34} - v_{41}$$
(154)

10.11 Species XIAP_p2frag_C3

Name XIAP-p2frag-Casp3

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction15, reaction42 and as a product in reaction9, reaction18).

$$\frac{d}{dt}XIAP_p2frag_C3 = v_9 + v_{18} - v_{15} - v_{42}$$
 (155)

10.12 Species BIR12

SBO:0000245 macromolecule

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction10, reaction30, reaction45 and as a product in reaction11, reaction12, reaction14).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{BIR}12 = v_{11} + v_{12} + v_{14} - v_{10} - v_{30} - v_{45} \tag{156}$$

10.13 Species BIR12_C3

Name BIR12-Casp3

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction32, reaction49 and as a product in reaction10, reaction13, reaction15, reaction16).

$$\frac{d}{dt}BIR12_{-}C3 = v_{10} + v_{13} + v_{15} + v_{16} - v_{32} - v_{49}$$
(157)

10.14 Species BIR3R

SBO:0000245 macromolecule

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction23, reaction31, reaction46 and as a product in reaction11, reaction13, reaction24).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{BIR3R} = v_{11} + v_{13} + v_{24} - v_{23} - v_{31} - v_{46} \tag{158}$$

10.15 Species BIR3R_C9

Name BIR3R-Casp9

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction20, reaction33, reaction50 and as a product in reaction12, reaction16, reaction23).

$$\frac{\mathrm{d}}{\mathrm{d}t} BIR3R \cdot C9 = v_{12} + v_{16} + v_{23} - v_{20} - v_{33} - v_{50}$$
(159)

10.16 Species BIR3R_p2frag

Name BIR3R-p2frag

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in reaction24, reaction51 and as a product in reaction14, reaction15, reaction20).

$$\frac{d}{dt}BIR3R_p2frag = v_{14} + v_{15} + v_{20} - v_{24} - v_{51}$$
(160)

10.17 Species XIAP_2SMAC

Name XIAP-2*SMAC

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction17, reaction44 and as a product in reaction26, reaction27, reaction28, reaction29).

$$\frac{d}{dt}XIAP_2SMAC = v_{26} + v_{27} + v_{28} + v_{29} - v_{17} - v_{44}$$
(161)

10.18 Species BIR12_SMAC

Name BIR12-SMAC

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction47 and as a product in reaction17, reaction30, reaction32).

$$\frac{d}{dt}BIR12_SMAC = v_{17} + v_{30} + v_{32} - v_{47}$$
 (162)

10.19 Species BIR3R_SMAC

Name BIR3R-SMAC

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction48 and as a product in reaction17, reaction31, reaction33).

$$\frac{d}{dt}BIR3R_SMAC = v_{17} + v_{31} + v_{33} - v_{48}$$
 (163)

10.20 Species SMAC

SBO:0000245 macromolecule

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in eleven reactions (as a reactant in reaction26, reaction27, reaction28, reaction29, reaction30, reaction31, reaction32, reaction33, reaction34, reaction52 and as a product in SMAC_release).

$$\frac{\mathrm{d}}{\mathrm{d}t}SMAC = v_{54} - 2v_{26} - 2v_{27} - 2v_{28} - 2v_{29} - v_{30} - v_{31} - v_{32} - v_{33} - 2v_{34} - v_{52}$$
 (164)

10.21 Species APAF1

SBO:0000245 macromolecule

Initial concentration $3.372 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in Apo_formation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{APAF1} = -v_{55} \tag{165}$$

10.22 Species XIAP_p2frag_2SMAC

Name XIAP-p2frag-2*SMAC

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction43 and as a product in reaction34).

$$\frac{\mathrm{d}}{\mathrm{d}t} XIAP_{-}p2frag_{-}2SMAC = v_{34} - v_{43}$$
 (166)

10.23 Species Substrate

Name Casp3 Substrate

SBO:0000252 polypeptide chain

Initial concentration $1 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in reaction53).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Substrate} = -v_{53} \tag{167}$$

10.24 Species ClvgPrds

Name Clevage Products

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in reaction53).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ClvgPrds} = v_{53} \tag{168}$$

10.25 Species SMAC_mito

Name SMAC in mitochondrium

SBO:0000245 macromolecule

Initial concentration $0.126 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in SMAC_release).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SMAC_mito} = -v_{54} \tag{169}$$

10.26 Species CytC_mit

Name Cytochrome C in mitochondrium

SBO:0000245 macromolecule

Initial concentration $10 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in CytC_release).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CytC_mit} = -v_{56} \tag{170}$$

10.27 Species CytC_cell

Name cytosolic Cytochrome C

SBO:0000245 macromolecule

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in CytC_release).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CytC_cell} = v_{56} \tag{171}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000179 degradation: Complete disappearance of a physical entity

SBO:0000180 dissociation: Transformation of a non-covalent complex that results in the formation of several independent biochemical entitie

SBO:0000185 transport reaction: Movement of a physical entity without modification of the structure of the entity

SBO:0000231 occurring entity representation: Representation of an entity that manifests, unfolds or develops through time, such as a discrete event, or a mutual or reciprocal action or influence that happens between participating physical entities, and/or other occurring entities.

SBO:0000245 macromolecule: Molecular entity mainly built-up by the repetition of pseudo-identical units. CHEBI:3383

SBO:0000252 polypeptide chain: Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SBO:0000296 macromolecular complex: Non-covalent complex of one or more macromolecules and zero or more simple chemicals

SBO:0000297 protein complex: Macromolecular complex containing one or more polypeptide chains possibly associated with simple chemicals. CHEBI:3608

SBO:0000344 molecular interaction: Relationship between molecular entities, based on contacts, direct or indirect.

SBO:0000393 production: Generation of a material or conceptual entity.

SBO:0000526 protein complex formation: The process by which two or more proteins interact non-covalently to form a protein complex (SBO:0000297)

BML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

 $[^]c\mathrm{European}$ Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany