

01-機器學習基本概念簡介

- 1. 機器學習的不同類型
 - 1.1 Regression
 - 1.2 Classification
 - 1.3 Structured Learning
- 2. Case Study:預測頻道流量
 - 2.1 訓練三步驟
 - Step 1: Function with Unknown Parameters
 - Step 2: Define Loss from Training Data
 - Step 3: Optimization
 - 2.2 Linear Model
 - 2.2.1 Model Bias
 - 2.3 Piecewise Linear Curves (Sigmoid)
 - 2.3.1 模型定義
 - 2.3.2 Sigmoid 函數
 - 2.3.3 寫出 Loss 函數
 - 2.3.4 優化過程
 - ▲ Batch training
 - 2.4 ReLU
 - ▲ 模型變型 ⇒ 多加幾層
- 3. 引入 Deep Learning
- 4. Learn More

1. 機器學習的不同類型

機器學習就是讓機器具備找一個函式的能力

Regression: The function outputs a scalar.

<u>Classification</u>: Given options (classes), the function outputs the correct one.

1.1 Regression

要找的函式,其輸出是一個數值

1.2 Classification

函式的輸出,就是從設定好的選項裡選擇一個當作輸出

1.3 Structured Learning

機器產生有結構的東西的問題,學會創造

2. Case Study:預測頻道流量

2.1 訓練三步驟

Step 1: Function with Unknown Parameters

feature

y: no. of views on 2/26, x_1 : no. of views on 2/25

w and b are unknown parameters (learned from data)

weight bias

- y 是要預測的東西
- x_1 **是頻道前一天總觀看人數**,跟 y 一樣都是數值
- b 跟 w 是**未知的參數**,透過準備資料找出最適合的參數

猜測:

未來點閱次數的函式 f ,是前一天的點閱次數乘上 w 再加上 b。猜測往往是對問題本質上的了解,是 domain knowledge

名詞定義:

• **Feature**: function 中已知的訊息 (x_1)

• Weight: 未知參數,與 feature 直接相乘

• Bias:未知參數,直接相加

Step 2: Define Loss from Training Data

loss 也是一個 function,它的輸入是 model 中的參數 (w,b)

物理意義:function 輸出的值代表,如果把這一組未知的參數設定某一個數值時,這筆數值好還是不好

L 越大,代表一組參數越不好,這個大 L 越小,代表現在這一組參數越好

- 計算方法:求取估測的值跟實際的值(label) 之間的差距
 - MAE (mean absolute error)
 - MSE (mean square error)
 - 。 Cross-entropy:計算機率分布之間的差距

2. Define Loss from Training Data > Loss: how good a set of

- > Loss is a function of parameters L(b, w)
 - values is.

 $e = |y - \hat{y}|$ L is mean absolute error (MAE)

 $e = (y - \hat{y})^2$ L is mean square error (MSE)

If y and \hat{y} are both probability distributions \longrightarrow Cross-entropy

Error Surface:

試不同的參數, 然後計算 loss 所畫出來的等高線圖

Step 3: Optimization

找到能讓損失函數值最小的參數

方法:

Gradient Descent (梯度下降)

步驟:

- 1. 隨機選取初始值 w_0
- 2. 計算 $w=w_0$ 時,w 對 loss 的微分是多少
- 3. 根據微分(梯度)的方向,改變參數的值

改變的大小取決於:

- 斜率的大小
- 學習率的大小 (超參數)
- 4. 什麼時候停下來?
 - a. 自己設置上限 (超參數)
 - b. 理想情況:微分值為 0(極小值點),不會再更新 ⇒ **有可能陷入局部最小 值**,不能找到全局最小值

事實上:局部最小值不是真正的問題!!!

推廣到多個參數:

3. Optimization

$$w^*, b^* = arg \min_{w, b} L$$

 \triangleright (Randomly) Pick initial values w^0 , b^0

> Compute

$$\frac{\partial L}{\partial w}|_{w=w^0,b=b^0} \qquad w^1 \leftarrow w^0 - \frac{\partial L}{\partial w}|_{w=w^0,b=b^0}$$

$$\frac{\partial L}{\partial b}|_{w=w^0,b=b^0} \qquad b^1 \leftarrow b^0 - \frac{\partial L}{\partial b}|_{w=w^0,b=b^0}$$

Can be done in one line in most deep learning frameworks

Update w and b interatively

2.2 Linear Model

根據周期性修改模型,考慮**前7天,甚至更多天**的值

$$y = b + wx_1$$

$$L = 0.48k$$

$$y = b + \sum_{j=1}^{7} w_j x_j$$

$$2017 - 2020$$

$$L = 0.38k$$

$$2021$$

$$L = 0.49k$$

$$2021$$

$$L = 0.38k$$

$$L' = 0.49k$$

$$2021$$

$$L = 0.38k$$

$$L' = 0.49k$$

$$2021$$

$$L = 0.38k$$

$$2021$$

$$L = 0.49k$$

$$2021$$

$$L = 0.30$$

$$2021$$

$$L = 0.46k$$

$$2021$$

$$L = 0.32k$$

$$2021$$

$$L' = 0.46k$$

$$2021$$

$$L' = 0.46k$$

Linear models

2.2.1 Model Bias

問題:

模型遇到無法模擬或描述真實情況的狀況

解決:

需要一個更複雜的、更有彈性的、有未知參數的 function

2.3 Piecewise Linear Curves (Sigmoid)

2.3.1 模型定義

定義:

由多段鋸齒狀的線段所組成的線,可以看作是一個常數,再加上若干個藍色的 function (Hard Sigmoid)

$$y = b + \sum_i sigmoid(b_i + w_i x_i)$$

用一條曲線來近似描述這條藍色的曲線:Sigmoid 函數 (S型的 function)

事實上,sigmoid 的個數就是神經網絡中的一層的 neuron 節點數(使用幾個 sigmoid 是超參數)

結論:

- 1. 可以用 Piecewise Linear 的 Curves, 去逼近任何的連續的曲線
- 2. 每一個 Piecewise Linear 的 Curves,都可以用一大堆藍色的 Function 加上 一個常量組合起來得到
- 3. 只要有**足夠的藍色 Function** 把它加起來,就可以變成任何連續的曲線

2.3.2 Sigmoid 函數

$$Sigmoid$$
 : $y = c rac{1}{1 + e^{-(b + wx_1)}}$

- x_1 趨近於正無窮大 \Rightarrow 收斂於高度 c
- x_1 負非常大,分母就會非常大 $\Rightarrow y$ 值趨近於 0

調整 w,b,c ,可以得到各種不同的 sigmiod 來逼近"藍色function",通過求和,最終近似各種不同的 continuous function

• 如果改w,就會改變**斜率**,改變斜坡的坡度

- 如果改 b,就可以把 sigmoid function 左右移動
- 如果改 c,就可以改變它的高度

總結:

利用若干個具有不同 w,b,c 的 Sigmoid 函數與一個常數參數的組合,可以模擬任何一個連續的曲線(非線性函數)

擴展到多個特徵:

New Model: More Features

$$y = b + wx_1$$

$$y = b + \sum_{i} c_i sigmoid(b_i + w_i x_1)$$

$$y = b + \sum_{i} w_j x_j$$

$$y = b + \sum_{i} sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_{i} c_i sigmoid(b_i + \sum_{j} w_{ij} x_j)$$

$$y = b + \sum_$$

- j 等於 1 2 3, x_1 代表前一天的觀看人數, x_2 兩天前觀看人數, x_3 三天前的觀看人數
- 每一個 i **就代表了一個藍色的 function**,現在每一個藍色的 function 都用一個 sigmoid function 來近似它
- w_{ij} 第 i 個 sigmoid 給第 j 個 feature 的權重

轉化為矩陣計算 + 激勵函數形式:

總之:

一般來說,將所有參數統稱為 heta (包含 $W, ec{b}, b$...)

2.3.3 寫出 Loss 函數

因為所有參數統稱為 θ ,loss 表示為 $L(\theta)$

2.3.4 優化過程

仍是梯度下降

- (1) 選定**初始參數值**(向量) θ_0
- (2) 對每個參數求偏微分
- (3) 更新參數,直至設定的次數

Optimization of New Model
$$\theta^* = arg \min_{\boldsymbol{\theta}} L$$

$$\Rightarrow \text{ (Randomly) Pick initial values } \boldsymbol{\theta}^0$$

$$g = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} |_{\boldsymbol{\theta} = \boldsymbol{\theta}^0} \\ \frac{\partial L}{\partial \theta_2} |_{\boldsymbol{\theta} = \boldsymbol{\theta}^0} \end{bmatrix} \quad \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \\ \vdots \end{bmatrix} \leftarrow \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \\ \vdots \end{bmatrix} - \begin{bmatrix} \boldsymbol{\eta} \frac{\partial L}{\partial \theta_1} |_{\boldsymbol{\theta} = \boldsymbol{\theta}^0} \\ \boldsymbol{\eta} \frac{\partial L}{\partial \theta_2} |_{\boldsymbol{\theta} = \boldsymbol{\theta}^0} \end{bmatrix}$$

$$g = \nabla L(\boldsymbol{\theta}^0)$$

$$\boldsymbol{\theta}^1 \leftarrow \boldsymbol{\theta}^0 - \boldsymbol{\eta} \boldsymbol{g}$$

Optimization of New Model

$$\theta^* = arg \min_{\theta} L$$

- ightharpoonup (Randomly) Pick initial values $oldsymbol{ heta}^0$
- ightharpoonup Compute gradient $g = \nabla L(\theta^0)$

$$\theta^1 \leftarrow \theta^0 - \eta g$$

ightharpoonup Compute gradient $g = \nabla L(\theta^1)$

$$\theta^2 \leftarrow \theta^1 - \eta g$$

ightharpoonup Compute gradient $g = \nabla L(\theta^2)$

$$\theta^3 \leftarrow \theta^2 - \eta g$$

▲ Batch training

每次更新參數時,只使用 1個 batch 裡的資料計算 loss,求取梯度,更新參數

batch 大小也是超參數

Update:每次更新一次參數叫做一次 Update

Epoch:把所有 batch 都看過一遍叫做一個 Epoch

2.4 ReLU

把兩個 ReLU 疊起來就等於 hard sigmoid

$$y = b + \sum_i max(0, b_i + w_i x_i)$$

Sigmoid 和 ReLU 都屬於激勵函數 (Activation Function)

▲ 模型變型 ⇒ 多加幾層

3. 引入 Deep Learning

問題:

為什麼要"深",而不"胖"?

Why don't we go deeper?

- Loss for multiple hidden layers
 - 100 ReLU for each layer
 - input features are the no. of views in the past 56 days

	1 layer	2 layer	3 layer	4 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k
2021	0.43k	0.39k	0.38k	0.44k

Better on training data, worse on unseen data

Overfitting:在訓練資料上有變好,但是在沒看過的資料上沒有變好

4. Learn More

To learn more

Basic Introduction

https://youtu.be/Dr-WRIEFefw

Backpropagation

Computing gradients in an efficient way

https://youtu.be/ibJpTrp5mcE