Análisis Multivariado en Ciencias de Datos y Estadística

Instituto Tecnológico Autónomo de México Primavera 2017

Clase 3: PCA, FA, MCA y FAMD

¿De qué es esta clase?

En este tema vamos a aprender a REDUCIR DIMENSIONALIDAD (LINEALMENTE), que es un paso para resumir información

Usaremos Análisis de Componentes Principales (PCA), Análisis de Correspondencias Múltiples (MCA) y Análisis Factorial para Datos Mixtos (FAMD)

Trabajando con Datos Continuos

- El modelo con el que trabajamos con datos continuos será la base para trabajar con todo tipo de datos.
- Queremos entender como funcionan los datos continuos (de escala de intervalo o de razón)
- La forma de estudiar datos continuos es a través de las nubes de puntos (point clouds)

Distancias entre individuos y variables

• Las distancias entre individuos se miden usando una métrica, usualmente la distancia euclidiana de \mathbb{R}^d

$$d(X_{i_1}, X_{i_2}) = \sqrt{\sum_{j=1}^{d} (X_{i_1}^j - X_{i_2}^j)^2} = ||X_{i_1} - X_{i_2}||$$

- Ojo: medir las distancias entre variables como vectores de \mathbb{R}^n no nos va a llevar a nada.
- Las variables son los ejes, lo que necesitamos más bien es el "ángulo" o "correlación" entre ejes

Ángulos

• ¿Cómo medimos ángulos en geometría?

$$\angle(X^{j_1}, X^{j_2}) = \arccos\left(\frac{(X^{j_1})^{\mathsf{T}}(X^{j_2})}{\|X^{j_1}\| \|X^{j_2}\|}\right)$$

• ¿Qué problemas le ven?

Problemas y ventajas de usar el ángulo

- Es insensible a multiplicar una variable por un escalas $\alpha x \to x$
- NO es insensible a transformaciones escalares $x + \beta \rightarrow x$
- Por ejemplo: no es insensible de pasar de Celsius a $Farenheit = 1.8 \times Celsius + 32$
- ¿Solución?

De ángulos a correlaciones

• La solución es usar una **escala centrada** y restar a todas las variable su promedio; sea $\mu_k = \frac{1}{n} \sum_{i=1}^n X_i^{j_k}$ tenemos

$$\angle(X^{j_1} - \mu_1, X^{j_2} - \mu_2) = \arccos\left(\frac{(X^{j_1} - \mu_1)^{\mathsf{T}}(X^{j_2} - \mu_2)}{\|X^{j_1} - \mu_1\| \|X^{j_2} - \mu_2\|}\right)$$

$$= \arccos(\widehat{Corr}(X^{j_1}, X^{j_2}))$$

- $\widehat{Corr}(X^{j_1}, X^{j_2})$ es el **estimador empírico** de las correlación si pensamos a los vectores variables como unas muestras independientes de variables aleatorias
- Normalmente nos olvidamos del arcocoseno (es una transformación monótona)
- Moraleja: Medimos la similitud entre variables con la correlación

Matriz de Covarianzas Empírica

• Matriz de Covarianzas

2 de Covarianzas

Es una matriz Cov(X) = Cov(X', X')Simétrica Cov(X', X') - Cov(X', X') Cov(X', X') - Cov(X', X') Cov(X', X') - Cov(X', X') Var(X', X')

• Estimador en Caso centrado

$$X = \begin{pmatrix} x_1 & \cdots & x_{1d} \\ x_{1d} & \cdots & x_{1d} \end{pmatrix} = \begin{pmatrix} x_1 & \cdots & x_{1d} \\ x_{1d} & \cdots & x_{1d} \end{pmatrix} = \begin{pmatrix} x_1 & \cdots & x_{1d} \\ x_{1d} & \cdots & x_{1d} \end{pmatrix}$$

$$X_{1d} = \begin{pmatrix} x_1 & \cdots & x_{1d} \\ x_{1d} & \cdots & x_{1d} \\ x_{1d} & \cdots & x_{1d} \end{pmatrix} = \begin{pmatrix} x_1 & \cdots & x_{1d} \\ x_{1d} & \cdots & x_{1d} \\ x_{1$$

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1d} \\ x_{1i} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{ii} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id} \end{pmatrix} = \begin{pmatrix} x_{1} & \cdots & x_{id} \\ x_{1} & \cdots & x_{id}$$

Objeturo: Encontrar K tal gue
$$KX = \begin{bmatrix} x' - \overline{x} \end{bmatrix} - \begin{bmatrix} x' - \overline{x} \end{bmatrix}$$
Observación $\overline{x^{1}} = \frac{1}{2} \overline{x}^{2} X^{\frac{1}{2}} = \frac{1}{2} \overline{1}^{2} \overline{x}^{2}$
ora
$$K = (Id - \frac{1}{n} \underline{1} \underline{1}^{\frac{1}{n}})$$

Matriz centradora

• Propiedades: Simetría e Idempotencia
$$(X = (1d - \frac{1}{1})X = X - \frac{1}{1}X$$

$$= X - \frac{1}{1}(\frac{1}{1}X^{1}) - \frac{1}{1}X^{1}$$

Fropredades: Simetria e Idempotentia
$$= \left[\begin{array}{c} x' - \overline{x}' & \dots & 1 \\ x' - \overline{x}' & \dots & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} x' - \overline{x}' & \dots & 1 \\ x' - \overline{x}' & \dots & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} x' - \overline{x}' & \dots & 1 \\ x' - \overline{x}' & \dots & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} x' - \overline{x}' & \dots & 1 \\ x' - \overline{x}' & \dots & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} x' - \overline{x}' & \dots & 1 \\ x' - \overline{x}' & \dots & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} x' - \overline{x}' & \dots & 1 \\ x' - \overline{x}' & \dots & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} x' - \overline{x}' & \dots & 1 \\ x' - \overline{x}' & \dots & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} x' - \overline{x}' & \dots & 1 \\ x' - \overline{x}' & \dots & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} x' - \overline{x}' & \dots & 1 \\ x' - \overline{x}' & \dots & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} x' - \overline{x}' & \dots & 1 \\ x' - \overline{x}' & \dots & 1 \end{array} \right]$$

maniede

• Fórmula matricial general para la varianza

$$Cov(X) = \frac{1}{h} (KX)^{T}(KX) = \frac{1}{h} (KX)^{T}(KX)^{T}$$

$$\frac{1}{h} X^{T}(K^{T}K)X$$

$$\frac{1}{h} X^{T}(K^{T}K)X$$

$$\frac{1}{h} X^{T} K K X$$

$$\frac{1}{h} X^{T} K K X$$

Matriz de covarianzas y transformaciones lineales

- ¿Cuántas formas hay de medir?
- Transformaciones lineales de variables

$$Y^j = c_{11}X^1 + \dots + c_{d1}X^d$$

Matricialmente

Y = XC

Donde $C \in R_{d \times d}$ y X la matriz de datos.

• ¿Cuál es la matriz de covarianzas empírica de $\dot{X}C$?

Cov(XC) =
$$\frac{1}{h}$$
(XC)TK(XC)
Tuntendora
 $\frac{1}{h}$ cTXTKXC= cT(cov(X)C

Medidas de disimilitud

¿Cómo medimos distancias?

La disimilitud generaliza la noción de distancia

Tres propiedades

1.
$$\int (x, y) = 0$$

1.
$$d(x,x) = 0$$

2. $d(x,b) \ge 0 \quad \forall x,y$
3. $d(x,b) = d(x,x)$

3.
$$d(x_i, y) = d(y, x)$$

¿Cuáles falta?

4. (triángulo)

 $d(x,y) \leq d(x,z) + d(z,b)$ $d(x,y) \leq \max \left\{d(y,z),d(y,z)\right\} \times$

relación

Covarianza y disimilitud

disimilitud = $1 - cov \frac{he}{av}$

oms operous

dronnihhed = 1- correlainé

La domntitud de constación souve para distancias entre variables

Centro de gravedad e inercia

- ¿Qué tan dispersa es una nube de datos?
- Necesitamos medir la distancia en CADA DIRECCIÓN al CENTRO DE GRAVEDAD

• El centro de gravedad de una nube es el punto

$$G = (\mu_1, \dots, \mu_d)$$

donde $\mu_j = \frac{1}{n} \sum_{i=1}^n X_i^j$ es el promedio de la j-ésima variable

• La inercia o variación total es
$$\sum_{i=1}^{n} ||X_i - G||^2 = \sum_{j=1}^{d} ||X^j - \mu_j||^2 = \sum_{i=1}^{d} \widehat{Var}(X^j)$$

$$= \text{"traza de matriz de covarianzas"}$$

• De nuevo regresamos a conceptos estadísticos. La inercia es la suma de las varianzas. $((X_c - G))^2 = \sum_{i=1}^{2} (X_i^i - M_i^i)^2$

$$(|X_{c}-g|)^{2}=\sum_{i=1}^{\infty}(|X_{i}^{i}-M_{5})$$

Discusión Sen Y=XC

- ¿Cómo influye C en la nueva varianza?
- ¿Cuándo crece la inercia?
- ¿Cuándo se contrae?
- ¿Cuándo se mantiene?

¿Inercia y cambios de coordenadas?

• ADVERTENCIA: Álgebra lineal...

La inercia no depende de las coordenadas

Matrices similares

A~B <-> A=PBP

• Diagonalización: eigenvectores y eigenvalores

A es digenalizable (-) And and D dragonal A=PDP'=P[]

Propositions [VII...IV"]

Pergenvalors

Propositions

Propos • Diagonalizacion de matrices simétricas (Teorema Espectral)

SI A = PDP / A = AT => PT PT

(P)DP T Mathens
Ortogonales

No correlacionados Rotaeran Reference

 Inercia y eigenvalores La inercia es la suma de los eigenvalores de la matriz de covarianzas

Tarea individual: preguntas de investigación y reflexión

- Interpreta la diagonalización como una factorización de tres transformaciones lineales, ¿cómo son estas transformaciones?
- Interpreta el Teorema Espectral para matrices simétricas usando lo anterior
- ¿Cómo visualizas los eigenvectores y eigenvalores de una matriz simétrica? ¿Qué tiene que ver con las formas cuadráticas?
- ¿Cómo visualizas una matriz de covarianzas en una nube de puntos y cómo visualizas los eigenvectores?
 - Escribir 1 a 2 cuartillas para entregar impreso en clase.

Trazu
$$fr(A) = Zaii$$
 AzRdxd

 $lnoua(X) = fr(Cov(X)) = Zvar(X^i)$
 $Propriedades de la fraza$
 $fr(ARX) = fr(B(A)) = fr(AB)$
 $fr(ARX) = fr(B(A)) = fr(AB)$
 $fr(A) = fr(AB)$

II. PCA: Análisis de Componentes Principales

Motivación

- Datos redundantes
- Duplicación de la información entre variables

Objetivo del PCA

 Proporcionar un conjunto de variables no correlacionadas que contengan casi la misma información que todas las variables redundantes

Varianza como medida de información

• Una analogía de nubes: ¿Qué nube es mas importante? Más varianza es más información

Subespacios y Proyecciones lineales

I. Viviendo en las nubes...

Los datos numéricos se representan como **NUBES DE DATOS**, que son matrices $X \in R_{n \times d}$ con n individuos y d variables donde:

- Cada individuo X_i es un vector en \mathbb{R}^d
- Cada individuo es un punto de la nube

