		SCIENCES PHYSIQUES				
		Devoir de contrôle n°1	Classe : 2SC ₁ - Durée : 1heure			
Nom:					n c	
L'usage de la calculatrice est autorisé. Donner les expressions littérales avant l'application numérique.					В-С	
Exercice 1 (4pts)	CHIMIE (8pts)				
13 protons e 1- Déterr	antillon d' aluminium po et 14 neutrons. miner, pour chacun de le nombre de charge		comportant :			
Le nombre	de charge Z= 13			0.5	A_1	
b)	la charge de noyau d	ηn.		1		
q _N = 13*1.6.1	$10^{-19} = 20,8.10^{-19}$ C	A		1	A_1	
c)	le nombre de masse	A				
Le nombre de	masse $A = Z + N = 13$	3+14 = 27		0.5	A_1	
2- Donne	er le symbole de ce no	yau d'aluminium				
	^{A}zX $^{27}13$ X			0.5	A_1	
L'échantillon comporte aussi des noyaux d'aluminium de type X₂ comportant 13 neutrons. 1- Préciser, en le justifiant, le nombre de protons dans ces noyaux.						
Puisque chaque élément chimique est caractérisé par son nombre de charge Z alors le nombre de proton dans ce noyaux égale à 13					A_2	
2- Les noya	aux X₁ et X₂ sont des i	sotopes d'aluminium. Justifier cette a	ffirmation.			
	1 et X2 sont des isotopes ont le nombre du ne	es d'aluminium puisque ils ont le mêr utron différents	ne nombre de	1	A_2	
On donne	: La charge élémentai La masse d'un nuclé		0-			
Exercice 2 (4pts)						
masse de cei 1°) Rappeler un élément d	t atome est A= 31. la définition d'un élém	stance pure constituée d'atomes qui		1	A_2	
	niner le nombre de cha	•				
•	1.10 ⁻¹⁹ /-1.6.10 ⁻¹⁹ = 15			1	A_2	
					1	

b- Calculer la masse approchée de cet atome.

(Sachant que la masse de l'atome est pratiquement égale à celle de son noyau)

$$M_{noyau} = A^* m_p = 31^*1.67. \ 10^{-27} = 51,77. \ 10^{-27} \ Kg$$

3°) Identifier l'atome considéré puis donner le symbole de son noyau.

C'est l'atome de phosphore P, symbole de sonnoyau

On donne: La charge élémentaire $e = 1.6 \times 10^{-19} \text{C}$: La masse d'un nucléon $\mathbf{m}_n = 1,67 \times 10^{-27} \text{ kg}$.

Atome	Nombre d'électrons
Chlore	17
Oxygène	8
Phosphore	15

PHYSIQUE (12pts)

Exercice 1 (5pts)

La plaque d'un appareil électrique porte les indications suivantes : (220V; 4A). 1/ Que signifient ces indications?

Ces indications donnent les caractéristiques électriques nominales de l'appareil :

220 V \rightarrow la tension nominale : c'est la tension que l'appareil

Doit recevoir pour fonctionner correctement. Ici,

il est conçu pour être branché sur un réseau de 220 volts.

4 A → l'intensité nominale : c'est le courant électrique que l'appareil consomme

lorsqu'il fonctionne normalement, soit 4 ampères.

- 2/ Un chauffe-eau électrique a une puissance de 2,2 kW; il est utilisé sous une tension de 220V.
 - a- Calculer l'intensité du courant qui traverse l'appareil en fonctionnement.

b- En déduire la valeur de la résistance du résistor chauffant.

$$U = R*I$$
 $R = U/I$ $R = 220/10 = 22 \Omega$

- 3/ Pour prendre un bain on laisse fonctionner l'appareil (chauffe-eau) une heure trente minute.
 - a- Calculer en joule (J), puis en kilowattheures (KWh), l'énergie électrique consommée.

$$E_e = P^*\Delta t$$
; $\Delta t = 1.5^*$ 3600 = 5400s $\Delta t = 1.5h$; $E_e = P^*\Delta t = 2.2^*$ 1.5 = 3,3 KWh

b- Quel est le prix d'un bain sachant que le prix d'un KWh est de 0.2 dinars.

Prix=E'nergie (kWh)xPrix du kWh

Prix=3,3x0,2=0,66 dinars

 A_2

C

1

1

 A_1

 A_1

 A_2

1

1

C

 A_2

1

Exercice 2 (7pts)

Partie A

La caractéristique intensité tension d'un dipôle récepteur est donnée par la figure ci-contre.

a- Quelle est la nature du dipôle récepteur ? La courbe U = f(t) est une droite qui passe par l'origine Donc ce dipôle récepteur est dipôle passif

 $U = R^*$ Lalors R est la pente de la droite R= (2-0)/(4.10³ – 0)= 500 Ω

 $U = R^*I$; I = U/R = 5/500 = 0.01 A

d- Quelle sera la tension imposée aux bornes de ce dipôle pour qu'il soit traversé par un courant **I = 0,4 mA**?

 $U = 0.4 \cdot 10^{-3} * 500 = 0.2V$

Partie B

Trois résistors de résistances respectives. R_1 = 50 Ω ; R_2 = 100 Ω et R_3 = 100 Ω . Sont montés comme l'indique la figure

1 C

 $0.5 \mid A_1$

 $0.5 | A_2$

 $1 \mid A_2$

1°/ a- Déterminer la résistance R' de l'association parallèle des résistors R_2 et R_3 $1/R' = 1/R_3 + 1/R_2$ $R' = R_3 * R_2 / R_3 + R_2 = 100 * 100/200 = 50$	0.5	A ₂
b- Déterminer la résistance ${f R}$ de l'association des résistors ${f R}_1$, ${f R}_2$ et ${f R}_3$		
R= R' + R1; R = $R_3*R_2/R_3+R_2+R1 = 50+50 = 100\Omega$	0.5	A_2
2º/ Sachant que le générateur impose une tension U = 12 V a- Déterminer l'intensité I indiqué ar l'ampèremètre D'après la loi de maille		
U- U _{R1} – U _{R'} = 0; U = U _{R1} + U _{R'} = R *I I = U/R = 12/100 = 0.12 A		
b- Quelle est l'indication du voltmètre Le voltmètre indique une tension U _{R1} = 50*012= 6V		
	1	A ₂
3°/ Calculer la puissance dissipée par effet Joule au niveau de ces trois résistors P= U*I = 12*0.12 = 1,44J	1	С
	1	
	5	