

รายงานโครงงาน

วิชา Computer for Transportation Engineering รหัสวิชา 01203479

เรื่อง

การปรับปรุงระบบจราจรภายในพื้นที่มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน โดยใช้โปรแกรมแบบจำลองการจราจรระดับจุลภาค PTV VISSIM

เสนอ

รศ.ดร. วราเมศวร์ วิเชียรแสน

จัดทำโดย

นายวิวิธชัย ลาภรัตนไตร 6210503004

นายจตุรภัทร เถินหิต 6210504931

ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ภาคการศึกษาตอนปลาย ปีการศึกษา 2565

บทคัดย่อ

มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน นับว่าเป็นพื้นที่สาธารณะขนาดใหญ่ที่เปิดให้มีการนำ ยานพาหนะสามารถเข้า-ออกภายในพื้นที่ของมหาวิทยาลัยได้อย่างค่อนข้างอิสระ ในแต่ละวันจึงมีรถปริมาณไม่ น้อยที่วิ่งอยู่ภายในพื้นที่มหาลัยเกษตรศาสตร์ โดยเฉพาะในช่วงเวลาเร่งด่วนเช้าหรือเร่งด่วนเย็นที่จะมีปริมาณ จราจรที่คับคั่งหนาแน่นเป็นพิเศษในบางจุดของมหาวิทยาลัย ซึ่งทำให้เกิดการติดขัดสะสมและการจราจร ภายในมหาวิทยาลัยนั้นไม่สามารถขับเคลื่อนได้อย่างคล่องตัวนัก นับเป็นปัณหาที่สามารถพบและสังเกตเห็นได้ บ่อยครั้งเมื่อถึงช่วงเวลาเร่งด่วนของแต่ละวัน ซึ่งสาเหตุของปัญหาดังกล่าวนั้นเกิดมาจากหลายสาเหตุปัจจัย รวมกัน หนึ่งในนั้นคือการมีระบบการจัดการด้านจราจรที่ไม่มีประสิทธิภาพ และลักษณะกายภาพของพื้นที่ที่ไม่ เอื้ออำนวยต่อการจราจร ซึ่งนับเป็นปัญหาสำคัญที่เกิดขึ้นกับผู้ใช้ยานพาหนะที่สัญจรบนท้องถนนภายในพื้นที่ ของมหาวิทยาลัยเกษตรศาสตร์ในทุกวันนี้ และเป็นเรื่องสำคัญที่ควรจะให้ความสนใจ โดยโครงงานฉบับนี้จะ ศึกษาเกี่ยวกับสภาพการจราจรปัจจุบันที่เกิดขึ้นบริเวณแยกภายในมหาวิทยาลัยเกษตรศาสตร์ โดยนำข้อมูล อาทิ โครงข่ายของระบบจราจรของพื้นที่ศึกษา, ลักษณะกายภาพพื้นที่และสภาพแวดล้อมโดยรอบ, ข้อมูล ปริมาณการจราจรในช่วงปกติ และสภาพการจราจรที่เกิดขึ้นจริงในสถานการณ์ปกติ มาผนวกรวมกันเพื่อ วิเคราะห์ถึงปัญหาที่เกิดขึ้นในเชิงของการจราจร และนำข้อมูลที่ได้ไปออกแบบมาตรการเพื่อเป็นแนวทางใน การปรับปรุงพื้นที่และจัดการด้านจราจรในอนาคตต่อไป โดยมีเป้าหมายเพื่อทำให้การสัญจรบนท้องถนนใน พื้นที่ของมหาวิทยาลัยเกษตรศาสตร์มีความคล่องตัวและสะดวกปลอดภัยมากยิ่งขึ้น โดยเส้นทางหลักที่ ทำการศึกษา คือ วงเวียนบริเวณโรงเรียนสาธิตแห่งมหาวิทยาลัยเกษตรศาสตร์ โดยมีเส้นทางสายหลักจาก บริเวณสี่แยกอาคารนิเทศ 50 ปี มุ่งหน้าไปยังประตูทางออกฝั่งวิภาวดี และเส้นทางสายรองเริ่มจากสามแยก ้บริเวณวงเวียนหน้าโรงเรียนสาธิตแห่งมหาวิทยาลัยเกษตรศาสตร์มุ่งหน้าไปยังคณะประมง เนื่องจากเป็นพื้นที่ ที่มีปริมาณการจราจรที่ค่อนข้างูงในช่วงเวลาเร่งด่วน อีกทั้งยังเป็นพื้นที่ย่านสถานศึกษาที่มีผู้คนเดินพลุกพล่าน รวมถึงสภาพทางกายภาพพื้นที่ที่มีโอกาสจะสามารถพัฒนาให้ดีขึ้นได้ จึงมีความเหมาะสมในการเลือกเป็นพื้นที่ ศึกษาในการทำโครงงาน

สารบัญ

เรื่อง	หน้า
บทที่ 1 สภาพพื้นที่ปัจจุบัน	1
1.2) การสำรวจและรวบรวมข้อมูล	2
1.2.1) ลักษณะกายภาพของพื้นที่ศึกษา	2
1.2.2) ข้อมูลด้านการจราจร	5
1.2.3) ปัญหาที่พบในเขตพื้นที่ศึกษา	7
บทที่ 2 การพัฒนาแบบจำลอง	8
2.1) การเปรียบเทียบแบบจำลอง	8
2.2) การกำหนดรูปแบบสถานการณ์	10
2.2.1) รูปแบบที่ 1	10
2.2.2) รูปแบบที่ 2	11
2.2.3) รูปแบบที่ 3	12
บทที่ 3 เปรียบเทียบผลลัพธ์จากแต่ละสถานการณ์	13
บทที่ 4 ผลการวิจัยและอภิปรายผล	15

บทที่ 1 สภาพพื้นที่ปัจจุบัน

1.1) การกำหนดขอบเขตพื้นที่ศึกษา

จากการลงพื้นที่ภาคสนามเพื่อสำรวจสภาพจราจรภายในพื้นที่ของมหาวิทยาลัยเกษตรศาสตร์ ทำให้ ได้สังเกตทราบว่าในมหาวิทยาลัยเกษตรศาสตร์นั้นมีพื้นที่ที่มีการจราจรติดขัดอย่างมากบริเวณทางแยกต่างๆ ซึ่งสามารถเห็นได้ชัดเจนในช่วงเวลาเร่งด่วนของวัน ดังนั้นแล้วโครงงานนี้จึงมีเป้าหมายเพื่อมุ่งเน้นการศึกษา การจัดการระบบจราจรบริเวณทางแยกภายในสถานศึกษา โดยพื้นที่ศึกษาที่จะดำเนินการศึกษา คือ วงเวียน บริเวณโรงเรียนสาธิตแห่งมหาวิทยาลัยเกษตรศาสตร์ โดยมีเส้นทางสายหลักจากบริเวณสี่แยกอาคารนิเทศ 50 ปี มุ่งหน้าไปยังประตูทางออกฝั่งวิภาวดี และเส้นทางสายรองเริ่มจากสามแยกบริเวณวงเวียนหน้าโรงเรียน สาธิตแห่งมหาวิทยาลัยเกษตรศาสตร์มุ่งหน้าไปยังคณะประมง

รูปที่ 1.1 รูปภาพเส้นทางการเดินรถบริเวณขอบเขตการศึกษา

1.2) การสำรวจและรวบรวมข้อมูล

การสำรวจและรวบรวมข้อมูลในโครงงานนี้ คณะผู้จัดทำได้การสำรวจข้อมูลที่จำเป็นต่อการพัฒนา แบบจำลองสภาพจราจร ซึ่งประกอบไปด้วย ลักษณะกายภาพของพื้นที่ศึกษา ข้อมูลปริมาณการจราจรขาเข้า และขาออกในช่วงเวลาเร่งด่วน (16.00-17.00 น.) ความเร็วเฉลี่ยในการเดินทาง และเวลาเฉลี่ยในการเดินทาง

1.2.1) ลักษณะกายภาพของพื้นที่ศึกษา

จากการสำรวจลักษณะทางกายภาพของบริเวณพื้นที่ศึกษา จะสามารถทราบถึงลักษณะทาง กายภาพ ประกอบด้วย ความกว้างช่องจราจร จำนวนช่องจราจร ลักษณะภูมิทัศน์ของสภาพแวดล้อมโดยรอบ โดยบริเวณวงเวียนและทางแยกหน้าโรงเรียนสาธิตแห่งมหาวิทยาลัยเกษตรศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ จะประกอบไปด้วย 2 เส้นทาง ได้แก่ เส้นทางสายหลักทั้ง 2 ฝั่ง(ขาเข้า-ขาออกจากสี่แยกอาคารนิเทศ 50 ปี มุ่ง หน้าไปยังประตูทางออกฝั่งวิภาวดี) แต่ละฝั่งมีการเดินรถในทิศทางเดียว มีลักษณะเป็นถนน 2 ช่องจราจร มี ความกว้างช่องจราจรละ 3 เมตร ไม่มีการติดตั้งสัญญาณไฟจราจรบริเวณทางแยก และเส้นทางสายรอง(วง เวียนบริเวณโรงเรียนสาธิตแห่งมหาวิทยาลัยเกษตรศาสตร์ไปยังคณะประมง) มีการเดินรถใน 2 ทิศทาง ลักษณะเป็นถนน 2 ช่องจราจร มีความกว้างช่องจราจรละ 2.8 เมตร และในส่วนของวงเวียน มีการเดินรถใน ทิศทางเดียว เป็นถนน 1 ช่องจราจร ขนาดช่องจราจร 6 เมตร ซึ่งลักษณะกายภาพแวดล้อมโดยรอบของพื้นที่ ศึกษาเป็นเขตโรงเรียนที่มีปริมาณคนเดินเท้ามากในช่วงเวลาเร่งด่วน และมีต้นไม้และพื้นที่รกร้างในบางส่วน ของพื้นที่ นอกจากนั้นจะเป็นอาคารทั่วไปที่ตั้งอยู่ในตลอดเส้นทาง โดยข้อมูลที่ได้จากการสำรวจลักษณะทาง กายภาพจะถูกนำไปใช้ในขั้นตอนการสร้างแบบจำลองต่อไป

ที่มา : Google Earth

รูปที่ 1.2 ภาพมุมสูงแสดงขอบเขตพื้นที่ศึกษาโดยรวม

ที่มา : Google Earth

ร**ูปที่ 1.3** ลักษณะกายภาพโดยรอบของพื้นที่ฝั่งประตูวิภาวดีมุ่งหน้าไปยังคณะสถาปัตยกรรมศาสตร์ (ทิศทางขาเข้า)

ที่มา : Google Earth

รูปที่ 1.4 ลักษณะกายภาพโดยรอบของพื้นที่บริเวณโรงเรียนสาธิตแห่งมหาวิทยาลัยเกษตรศาสตร์มุ่งหน้าไปยัง ประตูวิภาวดี (ทิศทางขาออก)

ที่มา : Google Earth รูปที่ 1.5 ลักษณะกายภาพพื้นที่วงเวียนรถเลี้ยวบริเวณโรงเรียนสาธิตแห่งมหาวิทยาลัย

ที่มา : Google Earth

รูปที่ 1.6 ลักษณะกายภาพพื้นที่ของเส้นทางรองซึ่งเชื่อมต่อจากถนนสายหลัก(ทิศทางขาเข้า)ไปยัง คณะประมง

1.2.2) ข้อมูลด้านการจราจร

ปริมาณการจราจรทิศทางขาเข้าและขาออกในช่วงเวลาเร่งด่วน (16.00-17.00 น.) โดยการรวบรวม ข้อมูลจราจรจะรวบรวมโดยอาศัยข้อมูลปริมาณจราจรรายชั่วโมงและสัดส่วนยานพาหนะที่สัญจรผ่านบริเวณ ขอบเขตพื้นที่ศึกษาซึ่งทางคณะผู้จัดทำได้ลงพื้นที่ไปสำรวจและเก็บข้อมูลมา โดยช่วงเวลาที่เลือกเก็บข้อมูล คือ ช่วงที่มีปริมาณการจราจรสูงสุด (Peak Period) ในช่วงเวลา 16.00-17.00 น. ในวันธรรมดา (วันจันทร์ถึงวัน ศุกร์) พร้อมแยกสัดส่วนตามประเภทของยานพาหนะ โดยข้อมูลเส้นทางการเดินรถและปริมาณการจราจรใน ช่วงเวลาดังกล่าว แสดงดังรูปที่ 1.7 และ ตารางที่ 1.1 ตามลำดับ

รูปที่ 1.7 เส้นทางการเดินของรถในขอบเขตพื้นที่ศึกษา

ข้อมูลปริมาณจราจรรายชั่วโมง (คัน)					
เส้นทาง	รถจักยานยนต์	รถยนต์ 4 ล้อ	รถตะลัย	สามล้อ	รถตู้
A1	50	50	8	3	6
A2	345	334	15	9	18
C1	438	516	3	0	21
B1	117	116	1	1	6
U1	88	8	0	0	3
U2	45	55	0	3	8

ตารางที่ 1.1 ปริมาณการจราจรรายชั่วโมงแยกตามประเภทของยานพาหนะ จากการลงสำรวจเก็บข้อมูล

ความเร็วเฉลี่ยในการเดินทาง

ในการหาอัตราเร็วสามารถคำนวณได้จากอัตราส่วนของระยะทางที่รถเคลื่อนที่จากจุดที่กำหนดไปยัง จุดที่กำหนดส่วน(กิโลเมตร) ส่วนด้วยเวลาที่ใช้ในการเดินทาง(วินาที) ซึ่งจากข้อมูลการสำรวจที่ได้จะได้ ความเร็วเฉลี่ยในการเดินทาง เท่ากับ 9 กิโลเมตรต่อชั่วโมง

เวลาเฉลี่ยในการเดินทาง

จากการรวบรวมข้อมูลใน Google Map ทำให้เราสามารถรู้เวลาเฉลี่ยในการเดินทางคร่าวๆได้ ซึ่งมี เวลาเฉลี่ยประมาณ 1 นาทีในช่วงจากจุดที่กำหนดไปยังอีกจุดหนึ่ง โดยทำการเก็บข้อมูลในช่วงเวลาที่มี การจราจรสูงสุด (ช่วงเร่งด่วนเย็น 16.00-17.00น.)

ที่มา : Google Maps

รูปที่ 1.8 ระยะเวลาเดินทางบนช่วงหนึ่งของเส้นทางการจราจรฝั่งคณะสถาปัตยกรรมศาสตร์(ทิศทางขาเข้า)ในช่วง เวลาเร่งด่วนเย็น(16.00-17.00น.)

ที่มา : Google Maps

รูปที่ 1.9 ระยะเวลาเดินทางบนช่วงหนึ่งของเส้นทางการจราจรฝั่งโรงเรียนสาธิตแห่งมหาวิทยาลัยเกษตรศาสตร์
(ทิศทางขาออก)ในช่วงเวลาเร่งด่วนเย็น(16.00-17.00น.)

ที่มา : Google Maps

ร**ูปที่ 1.10** ระยะเวลาเดินทางบนช่วงหนึ่งของเส้นทางสายย่อยซึ่งมุ่งหน้าไปยังคณะประมง (ซอย) ในช่วงเวลาเร่งด่วนเย็น(16.00-17.00น.)

1.2.3) ปัญหาที่พบในเขตพื้นที่ศึกษา

จากการลงพื้นที่สำรวจนั้น ทำให้ได้พบปัญหาด้านการจราจรอยู่บ้าง อาทิ การขับขี่ย้อนศรบริเวณวงเวียน ทางเลี้ยว การเดินเส้นทางรถของผู้ขับขี่ที่ไม่ถูกต้องตามที่ออกแบบไว้ และการมองเห็นถึงความไม่มี ประสิทธิภาพของวงเวียนทางเลี้ยวเพื่อรองรับรถที่ต้องการจะเลี้ยวกลับรถไปยังจุดหมายอื่น แต่จากปริมาณ จราจรจริงที่ กับสภาพจราจรจริงที่ได้ลงพื้นที่ไปสังเกตการณ์มานั้น พบว่าในสภาพปัจจุบันดังกล่าวนั้นไม่ การจราจรยังมีความคล่องตัวอยู่และอาจจะมองเห็นถึงปัญหาที่อาจจะมีได้อย่างไม่ชัดเจนเพียงพอ ดังนั้นแล้ว ทางคณะผู้จัดทำจึงทำการสมมติเหตุการณ์ในกรณีที่มีปริมาณจราจรมากขึ้นจนทำให้เกิดสถานการณ์การจราจร ติดขัดในพื้นที่ดังกล่าวเพื่อแสดงปัญหาที่มีอยู่ให้ชัดเจนมากขึ้น ตัวอย่างเหตุการณ์ที่อาจเกิดขึ้นเมื่อการจราเพิ่ม สูงขึ้นจนถนนรองรับไม่ไหว อาทิ ปริมาณที่ต้องการเลี้ยวเข้าวงเวียนมีปริมาณมากจนเกินไป ซึ่งจะทำให้เกิดการ ติดขัดบริเวณวงเวียนทางเลี้ยวและกีดขวางการจราจรในเส้นทางหลักจนก่อให้เกิดรถติดขัดเป็นแนวยาว เป็น ต้น

บทที่ 2 การพัฒนาแบบจำลอง

2.1) การเปรียบเทียบแบบจำลอง

ก่อนการนำแบบจำลองการจราจรในพื้นที่ศึกษามาใช้เพื่อวิเคราะห์สภาพจราจรได้นั้น จะต้องทำการ การปรับเทียบแบบจำลองให้มีสภาพการจราจรใกล้เคียงกับสภาพปัจจุบันให้ได้มากที่สุด จึงจะสามารถที่จะนำ แบบจำลองการจราจรท่สร้างมาใช้ในการวิเคราะห์สภาพจราจรและใช้ประเมินประสิทธิภาพสำหรับออกแบบ มาตรการปรับปรุงด้านการจราจรในสถานการณ์อื่นๆต่อไปได้ โดยขั้นตอนในการปรับเทียบมีดังนี้

1) สร้างโครงข่ายถนนในพื้นที่ที่ทำการศึกษา โดยนำข้อมูลลักษณะทางกายภาพของพื้นที่ที่ได้จากการ สำรวจภาคสนาม มาเป็นข้อมูลอ้างอิงเพื่อใช้ในสร้างแบบจำลอง

รูปที่ 2.1 แบบจำลองโครงข่ายถนนของพื้นที่ศึกษาจากโปรแกรม VISSIM

2) การกำหนดตัวแปรสภาพจราจรต่างๆ ที่สำคัญต่อการพัฒนาแบบจำลอง เช่น ข้อมูลปริมาณจราจร ประเภทของยวดยาน และทำการปรับเทียบข้อมูลแบบจำลองโดยผ่านกระบวนการทางสถิติของ Geoffrey E. Havers (GEH) โดยจะพิจารณาจากปริมาณจราจรบนท้องถนนและทางแยกในช่วงเวลาที่กำหนด และเวลา เดินทางเฉลี่ยในช่วงที่กำหนด เป็นต้น

โดยค่าปริมาณการจราจรของสภาจราจรจริงนั้นก่อนจะนำมาใช้เพื่อปรับเทียบแบบจำลอง จะต้องมี การคูณค่าปรับแก้จำนวนของยานพาหนะแต่ละประเภทให้อยู่หน่วยเดียวกันก่อนซึ่งนั้นก็คือ หน่วย PCU (Passenger Car Unit) ซึ่งค่าFactorที่ใช้ปรับแก้นั้นมีค่าแตกต่างขึ้นอยู่กับประเภทของยานพาหนะ โดยใน คณะผู้จัดทำได้เลือกใช้ค่าปรับแก้หน่วยรถยนต์นั่งส่วนบุคคล PCU Factor ของสำนักวิศวกรรมการผังเมือง กรมโยธาธิการและผังเมือง มาใช้ในการอ้างอิงเพื่อปรับแก้ค่าปริมาณจราจร ซึ่งค่า PCU Factor ที่นำมาใช้ แสดงดังตารางที่ 2.1 และตารางที่ 2.2 แสดงค่าปริมาณจราจรที่ปรับแก้ตามประเภทของยานพาหนะอยู่ใน หน่วย PCU แล้ว

ประเภทยานพาหนะ	PCU Factor
รถจักรยานสองล้อ	0.75
รถจักรยานสามล้อ	1.00
รถจักรยานยนต์	0.50
รถสามล้อเครื่อง	1.00
รถยนต์นั่งส่วนบุคคล	1.00
รถโดยสารขนาดเล็ก-กลาง	1.25
รถโดยสารขนาดใหญ่	2.50
รถปิกอัพ	1.00
รถบรรทุก 6 ล้อขึ้นไป	2.50

ตารางที่ 2.1 ค่าปรับแก้หน่วยรถยนต์นั่งส่วนบุคคล PCU Factor

เส้นทาง	รถจักยานยนต์	รถยนต์ 4 ล้อ	รถตะลัย	สามล้อ	รถตู้	Hourly	Volume in 10
						Volume(PCU)	Minutes (PCU)
A1	25	50	9	3	6	93	16
A2	173	334	19	9	18	552	92
C1	219	516	4	0	21	760	127
B1	58	116	1	1	6	182	30
U1	44	8	0	0	3	54	9
U2	23	55	0	3	8	88	15

ตารางที่ 2.2 แสดงค่าปริมาณจราจรที่ปรับแก้ตามประเภทของยานพาหนะอยู่ในหน่วย PCU แล้ว

เนื่องจากข้อจำกัดทางด้านโปรแกรมที่สามารถจำลองสภาพจราจรได้เพียงแค่ 600 วินาทีทำให้ไม่สามารถใช้ ปริมาณจราจรรายชั่วโมงมาเพื่อปรับเทียบแบบจำลองได้ จึงจำเป็นต้องใช้ปริมาณจราจรราย 10 นาทีมาใช้เพื่อ ปรับเทียบแทน

โดยเกณฑ์การเปรียบเทียบค่า GEH เป็นตัวชี้วัดความสอดคล้องระหว่างปริมาณจราจรที่ได้จาก แบบจำลองและจากการสำรวจข้อมูลภาคสนามใน 1 ชั่วโมงให้มีสภาพใกล้เคียงกันมากที่สุด มีข้อกำหนดดังนี้

• GEH < 5 ปริมาณจราจรจากแบบจำลอง มีความสอดคล้องกับปริมาณจราจรจากภาคสนาม ถือ เป็นข้อมูลที่ยอมรับได้

- 5 < GEH < 10 ปริมาณจราจรจากแบบจำลองมีความคลาดเคลื่อนกับปริมาณจราจรจาก ภาคสนาม ดังนั้นต้องปรับเทียบข้อมูลใหม่อีกครั้ง
- GEH > 10 ปริมาณจราจรจากแบบจำลองไม่สอดคล้องกับปริมาณจราจรจากภาคสนาม

2.2)การกำหนดรูปแบบสถานการณ์

จากการประเมินผลด้านสภาพจราจรจากข้อมูลของแบบจำลองนี้ ได้ทำการวิเคราะห์และสรุปผล มาตรการแก้ไขด้านสภาพจราจรซึ่งคาดว่าจะสามารถแก้ไขปัญหาการจราจรติดขัดได้ 3 รูปแบบ ดังนี้

2.2.1) รูปแบบที่ 1

เปลี่ยนรูปแบบเส้นทางการเดินรถบริเวณวงเวียน โดยจากปัจจุบันที่ยานพาหนะต้องวิ่งวนรอบวงเวียน เพื่อเปลี่ยนทิศทางรถ แก้ไขใหม่เป็นเลี้ยวเพื่อกลับรถรูปแบบทางกลับรถ(U-Turn)ธรรมดา และทำการขยาย ช่องจราจรจากเดิม 2 ช่องจราจร เป็น 3 ช่องจราจร ทั้งสองทิศทาง(ขาเข้าและขาออก)

รูปที่ 2.2 มุมมองด้านบนของแบบจำลองในรูปแบบที่ 1

รูปที่ 2.3 มุมมองด้านข้างของแบบจำลองในรูปแบบที่ 1

2.2.2) รูปแบบที่ 2

เปลี่ยนรูปแบบเส้นทางการเดินรถบริเวณวงเวียน โดยจากปัจจุบันที่ยานพาหนะต้องวิ่งวนรอบวงเวียน เพื่อเปลี่ยนทิศทางรถ แก้ไขใหม่เป็นเลี้ยวเพื่อกลับรถเหมือนรูปแบบทางกลับรถ(U-Turn)ธรรมดา

รูปที่ 2.4 มุมมองด้านบนของแบบจำลองในรูปแบบที่ 2

รูปที่ 2.5 มุมมองด้านข้างของแบบจำลองในรูปแบบที่ 2

2.2.3) รูปแบบที่ 3

ขยายช่องจราจรของเส้นทางหลักทั้ง 2 ฝั่งจากเดิม 2 ช่องจราจรกลายเป็น 3 ช่องจราจร พร้อม จัดรูปแบบการจราจรและปรับปรุงพื้นที่ใหม่บริเวณทางสามแยก พร้อมควบคุมด้วยสัญญาณไฟจราจร 3 เฟส (Cycle length 90 seconds) โดยกำหนดให้ช่องทางเดินรถในขาออกบริเวณถัดจากช่องจราจรนอกสุดเข้ามา 2 ช่องจราจร (ช่องซ้ายและช่องกลาง) ของเส้นทางหลักทิศทางขาออกรถสามารถวิ่งได้อย่างอิสระโดยไม่ติด สัญญาณไฟจราจร

รูปที่ 2.6 มุมมองด้านบนของแบบจำลองในรูปแบบที่ 3

รูปที่ 2.7 มุมมองด้านข้างของแบบจำลองในรูปแบบที่ 3

บทที่ 3 เปรียบเทียบผลลัพธ์จากแต่ละสถานการณ์

ในการเปรียบเทียบประสิทธิภาพด้านการจราจรระหว่างสถานการณ์ปกติและผลลัพธ์จากมาตรการแต่ ละรูปแบบที่ได้นำเสนอไป ในทำการเปรียบเทียบวิเคราะห์ในเชิงของความยาวแถวคอย ความล่าช้าการจราจร เวลาเดินทางในทิศทางขาเข้า และเวลาเดินทางในทิศทางขาออก ซึ่งผลลัพธ์จากการจำลองสถานการณ์ การจรารในขอบเขตพื้นที่ซึกษาในแต่ละรูปแบบแสดงดังตารางที่ 3.1 และรูปที่ 3.1

ดัชนี		รูปแบบการควบคุมทางแยก				
ИПи	แบบปกติ	เปลี่ยนรูปแบบการเดินรถ และขยายช่องจราจล	เปลี่ยนรูปแบบการเดินรถ	ขยายช่องจราจร ทำแยก และติดสัญญาณไฟจราจร		
ความยาวแถวคอย (เมตร)	38.02	8.02	14.62	15.79		
ความล่าช้าการจราจร (วินาที)	10.65	4.83	13.32	18.57		
เวลาเดินทางขาเข้า (วินาที)	16.57	16.45	16.48	15.51		
เวลาเดินทางขาออก (วินาที)	22.63	15.28	22.09	15.55		

ตารางที่ 3.1 ตารางเปรียบเทียบผลลัพธ์จากการจำลองสภาพจราจรในรูปแบบต่างๆ

รูปที่ 3.1 กราฟเปรียบเทียบผลลัพธ์จากการจำลองสภาพจราจรในรูปแบบต่างๆ

จากผลการประเมินด้านการจราจร เป็นการวิเคราะห์ในด้านความยาวแถวคอย เวลาที่ใช้ในการ เดินทาง และความล่าช้าในการเดินทางของยานพาหนะทั้งหมดบริเวณวงเวียนและทางแยกหน้าโรงเรียนสาธิต แห่งมหาวิทยาลัยเกษตรศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ เมื่อประเมินผลออกมาในรูปแบบของกราฟความ ยาวแถวคอย (Queue Length) กราฟเวลาการเดินทางขาเข้าและขาออก(Inbound-Outbound Travel Time) และกราฟความล่าช้าในการจราจร (Vehicle Delay) ดังแสดงในตารางที่ 3.1 และรูปที่ 3.1 เพื่อ วิเคราะห์ความสามารถในการเคลื่อนตัวผ่านทางแยกและวงเวียน พบว่าในช่วงที่มีปริมาณการจราจรสูงสุด (Peak Period) แบบจำลองที่ใช้เวลาในการเดินทางทั้งขาเข้าและขาออกน้อยที่สุดเมื่อเปรียบเทียบกับกรณี สถานการณ์ปกติ คือ แบบจำลองรูปแบบที่ 3 รองลงมาคือแบบจำลองที่ 1 และ 2 ตามลำดับ ในส่วนของค่า

ความล่าซ้าของการจราจรและความยาวแถวคอย แบบจำลองรูปแบบที่ 1 สามารถแก้ไขปัญหาและจัดการด้าน การจราจรบริเวณทางแยกและวงเวียนได้ดีที่สุดซึ่งสามารถลดปริมาณความยาวแถวคอยรวมถึงความล่าซ้า การจราจรได้มากเมื่อเทียบกับกรณีสถานการณ์ปกติ รองลงมาคือ แบบจำลองรูปแบบที่ 2 และ 3 ที่สามารถลด ปริมาณแถวคอยลงได้ แต่มีความล่าซ้าของการจราจรที่เพิ่มขึ้นเมื่อเทียบกับกรณีสถานการณ์ปกติ โดยเฉพาะ แบบจำลองรูปแบบที่ 3 ที่แยกถูกควบคุมด้วยสัญญาณไฟจราจรจึงทำให้ค่าความล่าซ้าเพิ่มขึ้นเนื่องจากการที่ รถต้องรอสัญญาณไฟ

บทที่ 4 ผลการวิจัยและอภิปรายผล

จากการสำรวจพื้นที่ในมหาวิทยาลัยเกษตรศาสตร์ ทำให้ได้รู้ว่าในมหาวิทยาลัยเกษตรศาสตร์นั้นมีพื้นที่ที่ มีการจราจรติดขัดอย่างมากบริเวณทางแยกต่างๆ ณ ช่วงเวลาเร่งด่วน และจากผลการประเมินด้านการจราจร ที่ได้ทำให้สรุปได้ว่า แบบจำลองรูปแบบที่ 1 คือ เปลี่ยนรูปแบบเส้นทางการเดินรถบริเวณวงเวียนจากวนรอบ วงเวียนเปลี่ยนเป็นกลับรถบริเวณวงเวียนแทน และทำการขยายช่องจราจรจากเดิม 2 ช่องจราจรเป็น 3 ช่อง จราจรทั้ง 2 ฝั่งนั้น สามารถแก้ไขปัญหาด้านการจราจรได้ดีที่สุด เนื่องจากค่าความยาวแถวคอย ความล่าช้า การจราจร และเวลาเดินทางลดลงอย่างเห็นได้ชัดเมื่อเทียบกับแบบจำลองรูปแบบอื่นๆ รองลงมาคือ แบบจำลองรูปแบบที่ 2 คือ เปลี่ยนรูปแบบเส้นทางการเดินรถบริเวณวงเวียนจากวนรอบวงเวียนเปลี่ยนเป็น กลับรถบริเวณวงเวียนแทน และแบบจำลองรูปแบบที่ 3 คือ ขยายช่องจราจรของเส้นทางหลักทั้ง 2 ฝั่งเป็น 3 ช่องจราจร พร้อมจัดระเบียบแยกเป็นรูปแบบเป็นสามแยกที่ควบคุมด้วยไฟจราจร 3 เฟส(Cycle Lengrh 90 seconds) พร้อมทั้งกำหนดให้ช่องจราจรที่ถัดเข้ามาจากด้านนอกสุด 2 ช่อง(ช่องซ้ายและช่องกลาง) ของ ทิศทางขาออกสามารถวิ่งได้อย่างอิสระโดยไม่ติดสัญญาณไฟจราจร ตามลำดับ

ดัชนี	ตารางเปอร์เซนต์การเปลี่ยนแปลงระกว่างรูปแบบต่างๆเทียบกับรูปแบบปกติ			
мпи	เปลี่ยนรูปแบบการเดินรถ และขยายช่องจราจล	เปลี่ยนรูปแบบการเดินรถ	ขยายช่องจราจร ทำแยก และติดสัญญาณไฟจราจร	
ความยาวแถวคอย (เมตร)	79%	62%	58%	
ความล่าช้าการจราจร (วินาที)	55%	25%	74%	
เวลาเดินทางขาเข้า (วินาที)	1%	1%	6%	
เวลาเดินทางขาออก (วินาที)	32%	2%	31%	

ตารางที่ 4.1 ตารางเปรียบเทียบผลลัพธ์ของสถานการณ์ในแต่ละรูปแบบเป็นเปอร์เซ็นต์ความต่าง
เมื่อเทียบกับสถานการณ์ปกติ

ดังนั้นแล้วการจัดการด้านการจราจรบริเวณวงเวียนและทางแยกหน้าโรงเรียนสาธิตแห่งมหาวิทยาลัย เกษตรศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ จากข้อมูลที่ได้วิเคราะห์ออกมานั้น ได้ข้อสรุปว่าเนื่องจากแยกแห่งนี้ เป็นแยกขนาดเล็กที่เป็นทางผ่านจากสี่แยกใหญ่บริเวณอาคารนิเทศ 50 ปี มุ่งหน้าไปยังประตูทางออกฝั่ง วิภาวดี และเป็นเส้นทางที่ผ่านเข้า-ออกไปยังพื้นที่ของคณะประมง ซึ่งมีปริมาณจราจรที่ค่อนข้างมากที่ผ่าน แยกนี้ในช่วงเวลาเร่งด่วน แต่ด้วยความที่ปริมาณจราจรในช่วงเวลาเร่งด่วนที่เกิดขึ้นในปัจจุบันนั้นยังไม่มากเกิน ความจุของถนนที่รับได้ ทำให้อาจยังไม่เห็นถึงปัญหาที่ชัดเจนนัก ดังนั้นแล้วแบบจำลองที่ทางคณะผู้จัดทำได้ เสนอมานั้นอาจจะยังไม่ตอบสนองต่อสภาพสถานการณ์ปัจจุบันได้อย่างมีประสิทธิภาพและคุ้มค่าต่อการลงทุน แต่ในอนาคตหากมีเหตุการณ์หรือสถานการณ์ที่เกิดขึ้นจนส่งผลให้เกิดปัญหาด้านจราจรในพื้นที่ดังกล่าวที่ คล้ายคลึงกับแบบจำลองที่สร้างขึ้น เช่น ปัญหาปริมาณยานพาหนะที่ต้องการกลับรถบริเวณวงเวียนมีมาก เกินไป และรถขาเข้า-ขาออกก็มีมากเช่นกันจนความจุของถนนรองรับไม่ไหวจนทำให้เกิดการติดขัดของ การจราจร หรือปัญหาการย้อนศรของยานพาหนะบริเวณวงเวียน เป็นต้นนั้น ทางเลือกการพัฒนาพื้นที่และ แก้ไขสภาพจราจรที่ทางคณะผู้จัดทำเสนอมาก็เป็นอีกหนึ่งทางเลือกที่อาจช่วยบรรเทาหรือแก้ไขปัญหาเหล่านั้น ได้