CS174A: Introduction to Computer Graphics

Royce 190 TT 4-6pm

Scott Friedman, Ph.D UCLA Institute for Digital Research and Education

- Sometimes a single computer is not enough.
- For rendering this manifests itself in at least two ways.
 - Not enough pixels
 - Not enough polygons

- Not enough pixels
 - Even high-res displays are not high enough.
 - » HDTV is about 2 megapixels
 - Tile high-res display together.
 - Common term is a power wall.

- Not enough pixels
 - These tiled displays can reach 150 megapixels or more.
 - SAGE is a library used to manage these types of walls developed by UIC

- Not enough polygons
 - Parallelizing increases throughput
 - How we parallelize depends on the problem
 - All graphics parallelization breaks down into three types.
 - Sort first
 - Sort middle
 - Sort last

- Not enough polygons sort middle
 - How all GPUs work these days.
 - Any number of geometry processors (G)
 - Any number of fragment rasterizers (R)

- Not enough polygons sort middle
 - Each rasterizer is associated with a part of the display
 - Primitives are *sorted* to the rasterizer that corresponds to the projected area of the primitive.

- Not enough polygons sort middle
 - This solution load balances fairly well on a GPU.
 - Difficult at the application level.

- Not enough polygons sort last
 - Geometry and rasterization are handled by a single unit.
 - We can load balance across all units.

- Not enough polygons sort last
 - Even though we have very good load balancing for rendering.
 - We have to composite all the pieces back together.

- Not enough polygons sort last
 - Compositing is a problem.
 - Each rendering system can potentially render to the entire display.
 - To composite the result requires depth information

- Not enough polygons sort last
 - Compositing involves reading the entire color and depth buffer and sending over a bus or network.
 - All these buffers are combined into a final image.
 - A fast network is required.
 - Load balancing is great.
 - Speed can be an issue
 - Readback, network, depth processing, upload

- Not enough polygons sort first
 - Objects are sorted to the renderer that handles the part of the display it will be projected to.
 - Hard to load balance.

- Not enough polygons sort first
 - Load balance is hard but compositing is faster.
 - Trick is to quickly determine where objects will land onscreen.

CS174A - Fall 2014

- Not enough polygons sort first
 - One must also have some estimate of how long it will take to render objects in any scheme.
 - One way around this is to adjust the screen partitions.

CS174A - Fall 2014

- Not enough polygons sort first
 - Videos.