Predicting Breast Cancer

Anders Ward Kaustubh Deshpande Sasha Farzin-Nia

Introduction

- Breast Cancer one of the most common cancers diagnosed among women
- If a mass is discovered in the breasts, a biopsy is performed
- Up to a pathologist to determine the status of mass
- Advancement in technology and statistical methods can help provide support

Our Goal

- Dataset used is the "Breast Cancer Wisconsin (Diagnostic) Data Set"
 - Made publicly available on UCI Machine Learning Repository
 - Features of dataset are computed from the digitized image of the biopsy specimen
- Compare PCA with Lasso and Ridge Logistic Regression and a GLM

Data Structure

- 568 cases
- 30 predictors
- Most predictors were some sort of measure of the geometric shape of the mass
- Response Variable
 - o Benign Free of Cancer
 - o Malignant Cancer

Benign Vs. Malignant

diagnosis 📘 B 📕 M

Correlation Plot

Ranked Cross-Correlations

10 most relevant

Distribution Plots

Logistic GLM Model

- Before we do any of PCA, Ridge, Lasso, we try a logistic GLM model
 - o 80:20 split used same data for all models
 - Removed predictors with 90%+ collinearity
 - Diagnosis ~ remaining predictors

- Accuracy: 94.7%
 - Benchmark model

Principal Component Analysis

- Our dataset had strong hints of multicollinearity so we attempted to use PCA first.
- PCA takes advantage of multicollinearity and combines the highly correlated variables into a set of uncorrelated variables.
- First 10 PCs contain majority of Variation. Specifically:-

•

PC selection

• Graphs below demonstrate that using 9 PCs provides considerable increase in Accuracy, Precision and Recall.

Results on Test Set

Confusion Matrix for Predictions on Test Set (80-20 split) Accuracy: **98.23**%

	В	М
В	69	2
М	0	42

Ridge and Lasso

Good at dealing with multicollinearity

22 6. Linear Model Selection and Regularization

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

Ridge Lambda Value 30 30 30 20 0 Coefficients -20 40 -60 -2

Log Lambda

Lasso Lambda Value

Lasso Coefficients

-7.97
4.09
30.84
10.82
-1.05
84.37
-20.38

symmetry se	
fractal dimension se	-202.33
radius worst	0.31
texture worst	0.28
perimeter worst	0
area worst	0
smoothness worst	22.87
compactness worst	
concavity worst	3.82
concave points worst	19.5
symmetry worst	9.17
fractal dimension worst	

Testing

• Same testing data as before

```
Ridge Accuracy = \frac{100\%}{100\%}
```

Lasso Accuracy = 100%

- More rigorous testing needed
 - o Lasso or Ridge?
- 100% accuracy may have been due to randomness
- Not enough data to prove better than PCA

4 Fold Cross Validation

- Try to understand whether ridge or lasso is preferrable
- 4 "separate" tests
 - More chances to make mistakes
- We keep the same lambda values, they are already our "optimal" choice

Four Fold Cross Validation Results

Overall

Ridge: 97.2% accuracy Lasso: 98.1% accuracy

- Same model, new training/testing splits
- Lambda values used for the models were the same as shown earlier
- The two models appear to have performed nearly identically

Fold Number	Ridge	Lasso
1	96.5% 5 incorrect	97.2% 4 incorrect
2	99.3% 1 incorrect	100% 0 incorrect
3	96.5% 5 incorrect	97.9% 3 incorrect
4	96.5% 5 incorrect	97.2% 4 incorrect

Confusion Matrix

Actual

Ridge	Benign	Malignant
Benign	354	14
Malignant	2	198

Predicted

Actual

Lasso	Benign	Malignant
Benign	352	7
Malignant	4	205

Predicted

Future Work

- Directly compare PCA with Lasso
 - Different packages make this a challenge
- Larger dataset
- Neural net
- Compare link function
- Minimize type 2 error (false negatives)
 - o Don't want to label a cancerous tumor benign
 - Even at the cost of lower accuracy