#### About Titanic Dataset

The Titanic dataset is a famous dataset that contains information about passengers aboard the Titanic ship, which sank in 1912 after colliding with an iceberg. The dataset is often used in data science and machine learning education and competitions as a starting point for exploring data analysis and predictive modeling techniques.

The Titanic dataset contains information about **1309** passengers, including their age, gender, ticket class, cabin, port of embarkation, and whether they survived or not. The goal of many analyses and models built on the Titanic dataset is to predict whether a given passenger would have survived the disaster.

The variables in the Titanic dataset are as follows: PassengerId: Unique identifier for each passenger Survived: Whether the passenger survived (0 = No, 1 = Yes) Pclass: Ticket class (1 = 1st, 2 = 2nd, 3 = 3rd) Name: Passenger name Sex: Passenger gender Age: Passenger age SibSp: Number of siblings/spouses aboard the Titanic Parch: Number of parents/children aboard the Titanic Ticket: Ticket number Fare: Passenger fare Cabin: Cabin number Embarked: Port of embarkation (C = Cherbourg, Q = Queenstown, S = Southampton) As mentioned earlier, the main objective of many analyses and models built on the Titanic dataset is to predict whether a given passenger would have survived the disaster, based on their demographic and travel information. This is a binary classification problem, where the target variable is Survived and the predictors are the other variables in the dataset.

## Importing Libraries

```
import pandas as pd
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
```

#### Data Loading

data=pd.read\_csv('/content/titanic.csv')
data.head(5)

|   | PassengerId | Survived | Pclass | Name                                                          | Sex    | Age  | SibSp | Parch | Ticket              | Far    |
|---|-------------|----------|--------|---------------------------------------------------------------|--------|------|-------|-------|---------------------|--------|
| 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | male   | 22.0 | 1     | 0     | A/5 21171           | 7.250  |
| 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | female | 38.0 | 1     | 0     | PC 17599            | 71.283 |
| 2 | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.925  |
|   |             |          |        | Futrelle,                                                     |        |      |       |       |                     |        |
| 4 |             |          |        |                                                               |        |      |       |       |                     | •      |

## Data shuffling

```
data = data.sample(frac=1, random_state=42)
data.tail(5)
```

|      | PassengerId | Survived | Pclass | Name                                                       | Sex    | Age  | SibSp | Parch | Ticket        | Far     |
|------|-------------|----------|--------|------------------------------------------------------------|--------|------|-------|-------|---------------|---------|
| 1095 | 1096        | 0        | 2      | Andrew,<br>Mr.<br>Frank<br>Thomas                          | male   | 25.0 | 0     | 0     | C.A.<br>34050 | 10.500  |
| 1130 | 1131        | 1        | 1      | Douglas,<br>Mrs.<br>Walter<br>Donald<br>(Mahala<br>Dutton) | female | 48.0 | 1     | 0     | PC<br>17761   | 106.425 |

#### → Data Dimention:- No. of Rows and Columns

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 1148 to 1126
Data columns (total 12 columns):

| # | Column      | Non-Null Count | Dtype   |
|---|-------------|----------------|---------|
|   |             |                |         |
| 0 | PassengerId | 1309 non-null  | int64   |
| 1 | Survived    | 1309 non-null  | int64   |
| 2 | Pclass      | 1309 non-null  | int64   |
| 3 | Name        | 1309 non-null  | object  |
| 4 | Sex         | 1309 non-null  | object  |
| 5 | Age         | 1046 non-null  | float64 |
| 6 | SibSp       | 1309 non-null  | int64   |
| 7 | Parch       | 1309 non-null  | int64   |
| 8 | Ticket      | 1309 non-null  | object  |
| 9 | Fare        | 1308 non-null  | float64 |

10 Cabin 295 non-null object 11 Embarked 1307 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 132.9+ KB

#### Get Overall Statistics About The Dataframe

data.describe(include='all')

|        | PassengerId | Survived    | Pclass      | Name                   | Sex  | Age         | SibSp       |     |
|--------|-------------|-------------|-------------|------------------------|------|-------------|-------------|-----|
| count  | 1309.000000 | 1309.000000 | 1309.000000 | 1309                   | 1309 | 1046.000000 | 1309.000000 | 13( |
| unique | NaN         | NaN         | NaN         | 1307                   | 2    | NaN         | NaN         |     |
| top    | NaN         | NaN         | NaN         | Kelly,<br>Mr.<br>James | male | NaN         | NaN         |     |
| freq   | NaN         | NaN         | NaN         | 2                      | 843  | NaN         | NaN         |     |
| mean   | 655.000000  | 0.377387    | 2.294882    | NaN                    | NaN  | 29.881138   | 0.498854    |     |
| std    | 378.020061  | 0.484918    | 0.837836    | NaN                    | NaN  | 14.413493   | 1.041658    |     |
| min    | 1.000000    | 0.000000    | 1.000000    | NaN                    | NaN  | 0.170000    | 0.000000    |     |
| 25%    | 328.000000  | 0.000000    | 2.000000    | NaN                    | NaN  | 21.000000   | 0.000000    |     |
| 50%    | 655.000000  | 0.000000    | 3.000000    | NaN                    | NaN  | 28.000000   | 0.000000    |     |
| 75%    | 982.000000  | 1.000000    | 3.000000    | NaN                    | NaN  | 39.000000   | 1.000000    |     |
| max    | 1309.000000 | 1.000000    | 3.000000    | NaN                    | NaN  | 80.000000   | 8.000000    |     |
| 4      |             |             |             |                        |      |             |             | •   |

#### Data Preprocessing & Data Cleaning

#### Data Filtering

data.columns

data[['Name','Age']]

|      | Name                                        | Age  |
|------|---------------------------------------------|------|
| 1148 | Niklasson, Mr. Samuel                       | 28.0 |
| 1049 | Borebank, Mr. John James                    | 42.0 |
| 982  | Pedersen, Mr. Olaf                          | NaN  |
| 808  | Meyer, Mr. August                           | 39.0 |
| 1195 | McCarthy, Miss. Catherine Katie""           | NaN  |
|      |                                             |      |
| 1095 | Andrew, Mr. Frank Thomas                    | 25.0 |
| 1130 | Douglas, Mrs. Walter Donald (Mahala Dutton) | 48.0 |
| 1294 | Carrau, Mr. Jose Pedro                      | 17.0 |
| 860  | Hansen, Mr. Claus Peter                     | 41.0 |
| 1126 | Vendel, Mr. Olof Edvin                      | 20.0 |

1309 rows × 2 columns

843

|      | PassengerId | Survived | Pclass | Name                           | Sex  | Age  | SibSp | Parch | Ticket | Fare    |
|------|-------------|----------|--------|--------------------------------|------|------|-------|-------|--------|---------|
| 1148 | 1149        | 0        | 3      | Niklasson,<br>Mr.<br>Samuel    | male | 28.0 | 0     | 0     | 363611 | 8.0500  |
| 1049 | 1050        | 0        | 1      | Borebank,<br>Mr. John<br>James | male | 42.0 | 0     | 0     | 110489 | 26.5500 |
| 982  | 983         | 0        | 3      | Pedersen,<br>Mr. Olaf          | male | NaN  | 0     | 0     | 345498 | 7.7750  |
| 4    |             |          |        | N 4 N 4                        |      |      |       |       |        | •       |

```
sum(data['Survived']==1)
```

## → Check Missing (Null) Values In The Dataset

data.isnull().sum()

494

| PassengerId | 0    |
|-------------|------|
| Survived    | 0    |
| Pclass      | 0    |
| Name        | 0    |
| Sex         | 0    |
| Age         | 263  |
| SibSp       | 0    |
| Parch       | 0    |
| Ticket      | 0    |
| Fare        | 1    |
| Cabin       | 1014 |
| Embarked    | 2    |
|             |      |

dtype: int64

import seaborn as sns
import matplotlib.pyplot as plt
sns.heatmap(data.isnull())



#### ▼ Drop the Column



| PassengerId  | 0   |
|--------------|-----|
| Survived     | 0   |
| Pclass       | 0   |
| Name         | 0   |
| Sex          | 0   |
| Age          | 263 |
| SibSp        | 0   |
| Parch        | 0   |
| Ticket       | 0   |
| Fare         | 1   |
| Embarked     | 2   |
| dtype: int64 |     |

#### → Handle Missing Values

```
data['Embarked'].mode()

0    S
    Name: Embarked, dtype: object

data['Embarked'].fillna('S',inplace=True)
```

data.isnull().sum()

```
PassengerId
                  0
Survived
                  0
                  0
Pclass
                  0
Name
                  0
Sex
Age
                263
SibSp
                  0
Parch
                  0
                  0
Ticket
Fare
                  1
                  0
Embarked
dtype: int64
```

#### data['Age']

```
1148
        28.0
1049
        42.0
982
         NaN
808
        39.0
1195
         NaN
         . . .
1095
        25.0
1130
        48.0
1294
        17.0
        41.0
860
        20.0
1126
```

Name: Age, Length: 1309, dtype: float64

data['Age'].fillna(data['Age'].mean(), inplace = True)

data.isnull().sum()

```
PassengerId
                0
Survived
                0
Pclass
                0
Name
                0
Sex
                0
Age
                0
SibSp
                0
Parch
                0
Ticket
                0
Fare
                 1
Embarked
                0
dtype: int64
```

data.isnull().sum()

| _ |
|---|
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 1 |
| 0 |
|   |
|   |

data['Fare'].fillna(data['Fare'].mean(), inplace = True)

data.head()

|      | PassengerId | Survived | Pclass | Name                           | Sex  | Age       | SibSp | Parch | Ticket |
|------|-------------|----------|--------|--------------------------------|------|-----------|-------|-------|--------|
| 1148 | 1149        | 0        | 3      | Niklasson,<br>Mr.<br>Samuel    | male | 28.000000 | 0     | 0     | 363611 |
| 1049 | 1050        | 0        | 1      | Borebank,<br>Mr. John<br>James | male | 42.000000 | 0     | 0     | 110489 |
| 982  | 983         | 0        | 3      | Pedersen,<br>Mr. Olaf          | male | 29.881138 | 0     | 0     | 345498 |
| 4    |             |          |        | N 4                            |      |           |       |       | •      |

data.head(5)

|      | PassengerId | Survived | Pclass | Name                           | Sex    | Age       | SibSp | Parch | Ticket |   |
|------|-------------|----------|--------|--------------------------------|--------|-----------|-------|-------|--------|---|
| 1148 | 1149        | 0        | 3      | Niklasson,<br>Mr.<br>Samuel    | male   | 28.000000 | 0     | 0     | 363611 |   |
| 1049 | 1050        | 0        | 1      | Borebank,<br>Mr. John<br>James | male   | 42.000000 | 0     | 0     | 110489 | 1 |
| 982  | 983         | 0        | 3      | Pedersen,<br>Mr. Olaf          | male   | 29.881138 | 0     | 0     | 345498 |   |
| 808  | 809         | 0        | 2      | Meyer,<br>Mr.<br>August        | male   | 39.000000 | 0     | 0     | 248723 |   |
| 1195 | 1196        | 1        | 3      | McCarthy,<br>Miss.             | female | 29.881138 | 0     | 0     | 383123 | • |

## Data Encoding

```
x=data['Sex'].map({'male':1, 'female':0})

data['Embarked'].unique()

array(['S', 'Q', 'C'], dtype=object)

pd.get_dummies(data,columns=['Embarked'])
```

|      | PassengerId | Survived | Pclass | Name                                                       | Sex    | Age       | SibSp | Parch | Ticket        |
|------|-------------|----------|--------|------------------------------------------------------------|--------|-----------|-------|-------|---------------|
| 1148 | 1149        | 0        | 3      | Niklasson,<br>Mr.<br>Samuel                                | male   | 28.000000 | 0     | 0     | 363611        |
| 1049 | 1050        | 0        | 1      | Borebank,<br>Mr. John<br>James                             | male   | 42.000000 | 0     | 0     | 110489        |
| 982  | 983         | 0        | 3      | Pedersen,<br>Mr. Olaf                                      | male   | 29.881138 | 0     | 0     | 345498        |
| 808  | 809         | 0        | 2      | Meyer,<br>Mr.<br>August                                    | male   | 39.000000 | 0     | 0     | 248723        |
| 1195 | 1196        | 1        | 3      | McCarthy,<br>Miss.<br>Catherine<br>Katie""                 | female | 29.881138 | 0     | 0     | 383123        |
|      |             |          |        |                                                            |        |           |       |       |               |
| 1095 | 1096        | 0        | 2      | Andrew,<br>Mr. Frank<br>Thomas                             | male   | 25.000000 | 0     | 0     | C.A.<br>34050 |
| 1130 | 1131        | 1        | 1      | Douglas,<br>Mrs.<br>Walter<br>Donald<br>(Mahala<br>Dutton) | female | 48.000000 | 1     | 0     | PC<br>17761   |
| 1294 | 1295        | 0        | 1      | Carrau,<br>Mr. Jose<br>Pedro                               | male   | 17.000000 | 0     | 0     | 113059        |
| 860  | 861         | 0        | 3      | Hansen,<br>Mr. Claus                                       | male   | 41.000000 | 2     | 0     | 350026        |

data1=pd.get\_dummies(data,columns=['Embarked'],drop\_first=True)

Edvin

data1.head(1)

|      | PassengerId | Survived | Pclass | Name                        | Sex  | Age  | SibSp | Parch | Ticket | Fare | G        |
|------|-------------|----------|--------|-----------------------------|------|------|-------|-------|--------|------|----------|
| 1148 | 1149        | 0        | 3      | Niklasson,<br>Mr.<br>Samuel | male | 28.0 | 0     | 0     | 363611 | 8.05 |          |
| 4    |             |          |        |                             |      |      |       |       |        |      | <b>•</b> |

## → Visual Analysis

#### → How Many People Survived And How Many Died?

<Axes: xlabel='Survived', ylabel='count'>



# How Many Passengers Were In First Class, Second Class, and Third Class?

```
data['Pclass'].value_counts()

3    709
1    323
2    277
Name: Pclass, dtype: int64
```

sns.countplot(x='Pclass', data=data)

<Axes: xlabel='Pclass', ylabel='count'>



#### Number of Male And Female Passengers

data['Sex'].value\_counts()

male 843 female 466

Name: Sex, dtype: int64

sns.countplot(x ='Sex', data = data)

<Axes: xlabel='Sex', ylabel='count'>



plt.hist(data['Age'])

(array([ 72., 62., 274., 513., 161., 108., 65., 41., 10., array([ 0.17 , 8.153, 16.136, 24.119, 32.102, 40.085, 48.068, 56.051, 64.034, 72.017, 80.

<BarContainer object of 10 artists>)



## **→ 12. Bivariate Analysis**

→ How Has Better Chance of Survival Male or Female?

sns.barplot(x='Sex',y='Survived',data=data)



# Which Passenger Class Has Better Chance of Surviva(First, Second, Or Third Class)?

sns.barplot(x="Pclass", y="Survived",data=data)





# Convert categorical variables to numeric
data = pd.get\_dummies(data, columns=['Sex', 'Embarked'])
data.head(5)

|      | PassengerId | Survived | Pclass | Name                           | Age       | SibSp | Parch | Ticket | Fare   |
|------|-------------|----------|--------|--------------------------------|-----------|-------|-------|--------|--------|
| 1148 | 1149        | 0        | 3      | Niklasson,<br>Mr.<br>Samuel    | 28.000000 | 0     | 0     | 363611 | 8.050  |
| 1049 | 1050        | 0        | 1      | Borebank,<br>Mr. John<br>James | 42.000000 | 0     | 0     | 110489 | 26.550 |
| 982  | 983         | 0        | 3      | Pedersen,<br>Mr. Olaf          | 29.881138 | 0     | 0     | 345498 | 7.775  |

data=data.drop(['PassengerId', 'Name', 'Ticket'], axis=1)

#### Dataset Splitting into test and train

Nanc

```
# Split the data into training and testing sets
X = data.drop('Survived', axis=1)
y = data['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

#### Data Scaling

```
# Scale the numeric features
scaler = StandardScaler()
X_train[['Age', 'Fare']] = scaler.fit_transform(X_train[['Age', 'Fare']])
X_test[['Age', 'Fare']] = scaler.transform(X_test[['Age', 'Fare']])
```

### Model 1: Logistic regression using ANN

```
# Define the model
model = Sequential()
model.add(Dense(1, input_shape=(X_train.shape[1],), activation='sigmoid'))
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```

# Model Fitting with 100 epochs and 32 batch\_size
model.fit(X train, y train, epochs=100, batch size=32, verbose=1)

```
Epoch 1/100
33/33 [==========================] - 1s 2ms/step - loss: 0.6077 - accuracy: 0.70
Epoch 2/100
33/33 [========================= ] - 0s 2ms/step - loss: 0.5873 - accuracy: 0.72
Epoch 3/100
33/33 [========================= ] - 0s 2ms/step - loss: 0.5688 - accuracy: 0.72
Epoch 4/100
33/33 [========================= ] - 0s 2ms/step - loss: 0.5522 - accuracy: 0.73
Epoch 5/100
33/33 [======================== ] - 0s 2ms/step - loss: 0.5369 - accuracy: 0.74
Epoch 6/100
33/33 [=========================== ] - 0s 2ms/step - loss: 0.5232 - accuracy: 0.75
Epoch 7/100
33/33 [========================= ] - 0s 2ms/step - loss: 0.5104 - accuracy: 0.76
Epoch 8/100
33/33 [========================== ] - 0s 2ms/step - loss: 0.4988 - accuracy: 0.77
Epoch 9/100
Epoch 10/100
33/33 [======================== ] - 0s 2ms/step - loss: 0.4787 - accuracy: 0.78
Epoch 11/100
33/33 [======================== ] - 0s 2ms/step - loss: 0.4700 - accuracy: 0.79
Epoch 12/100
33/33 [========================= ] - 0s 2ms/step - loss: 0.4625 - accuracy: 0.80
Epoch 13/100
Epoch 14/100
Epoch 15/100
33/33 [======================== ] - 0s 2ms/step - loss: 0.4426 - accuracy: 0.83
Epoch 16/100
Epoch 17/100
33/33 [======================= ] - 0s 2ms/step - loss: 0.4322 - accuracy: 0.83
Epoch 18/100
33/33 [======================== ] - 0s 2ms/step - loss: 0.4277 - accuracy: 0.83
Epoch 19/100
33/33 [======================== ] - 0s 2ms/step - loss: 0.4236 - accuracy: 0.84
Epoch 20/100
Epoch 21/100
33/33 [======================== ] - 0s 2ms/step - loss: 0.4166 - accuracy: 0.85
Epoch 22/100
33/33 [======================== ] - 0s 2ms/step - loss: 0.4136 - accuracy: 0.85
Epoch 23/100
33/33 [======================== ] - 0s 2ms/step - loss: 0.4108 - accuracy: 0.85
Epoch 24/100
Epoch 25/100
33/33 [======================== ] - 0s 2ms/step - loss: 0.4059 - accuracy: 0.85
Epoch 26/100
33/33 [========================= ] - 0s 2ms/step - loss: 0.4038 - accuracy: 0.85
```

```
Epoch 27/100
33/33 [=============] - 0s 2ms/step - loss: 0.4017 - accuracy: 0.85
Epoch 28/100

# Evaluate the model on the test data
loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
print('Logistics regressionn Accuracy: %.2f' % (accuracy*100))
Logistics regressionn Accuracy: 85.11
```

## → Model 2: 64-32-16-8-1 using ANN

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# Define a more complex model with more layers and neurons
model1 = Sequential()
model1.add(Dense(64, input_dim=X_train.shape[1], activation='relu'))
model1.add(Dense(32, activation='relu'))
model1.add(Dense(16, activation='relu'))
model1.add(Dense(8, activation='relu'))
model1.add(Dense(1, activation='sigmoid'))
# Compile the model
model1.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model for a large number of epochs
history = model1.fit(X train, y train, epochs=100, batch size=32, validation data=(X test, y
import matplotlib.pyplot as plt
# Plot the training and validation loss and accuracy
train_loss = history.history['loss']
val_loss = history.history['val_loss']
train acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.plot(train loss, label='train')
plt.plot(val_loss, label='val')
plt.legend()
plt.title('Loss')
plt.subplot(1, 2, 2)
```

```
plt.plot(train_acc, label='train')
plt.plot(val_acc, label='val')
plt.legend()
plt.title('Accuracy')
plt.show()
```



```
# Evaluate the model on the test data
loss, accuracy = model1.evaluate(X_test, y_test, verbose=0)
print('Model 2 Accuracy: %.2f' % (accuracy*100))
```

#### Model 2 Accuracy: 83.21

## → Model 3: (32-16-8-1) ANN

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

# Define a more complex model with more layers and neurons
model_3 = Sequential()
model_3.add(Dense(32, input_dim=X_train.shape[1], activation='relu'))
model_3.add(Dense(16, activation='relu'))
model_3.add(Dense(8, activation='relu'))
model_3.add(Dense(1, activation='sigmoid'))
```

```
# Compile the model
model_3.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model for a large number of epochs
history = model 3.fit(X train, y train, epochs=100, batch size=32, validation data=(X test, y
import matplotlib.pyplot as plt
# Plot the training and validation loss and accuracy
train loss = history.history['loss']
val loss = history.history['val loss']
train_acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.plot(train_loss, label='train')
plt.plot(val_loss, label='val')
plt.legend()
plt.title('Loss')
plt.subplot(1, 2, 2)
plt.plot(train_acc, label='train')
plt.plot(val acc, label='val')
plt.legend()
plt.title('Accuracy')
plt.show()
```



```
# Evaluate the model on the test data
loss, accuracy = model_3.evaluate(X_test, y_test, verbose=0)
print('Model 3 Accuracy: %.2f' % (accuracy*100))

Model 3 Accuracy: 84.73
```

#### Model 4:(16-8-1) ANN

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# Define a more complex model with more layers and neurons
model 4 = Sequential()
model_4.add(Dense(16, input_dim=X_train.shape[1], activation='relu'))
model 4.add(Dense(8, activation='relu'))
model 4.add(Dense(1, activation='sigmoid'))
# Compile the model
model_4.compile(optimizer='SGD', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model for a large number of epochs
history = model_4.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y
import matplotlib.pyplot as plt
# Plot the training and validation loss and accuracy
train loss = history.history['loss']
val_loss = history.history['val_loss']
train acc = history.history['accuracy']
val acc = history.history['val accuracy']
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.plot(train loss, label='train')
plt.plot(val_loss, label='val')
plt.legend()
plt.title('Loss')
plt.subplot(1, 2, 2)
plt.plot(train acc, label='train')
plt.plot(val acc, label='val')
plt.legend()
plt.title('Accuracy')
plt.show()
```



# Evaluate the model on the test data
loss, accuracy = model\_4.evaluate(X\_test, y\_test, verbose=0)
print('Model 4 Accuracy: %.2f' % (accuracy\*100))

Model 4 Accuracy: 85.88

#### - Model 5: 8-1 ANN

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

# Define a more complex model with more layers and neurons
model_5 = Sequential()
model_5.add(Dense(8, input_dim=X_train.shape[1], activation='relu'))
model_5.add(Dense(1, activation='sigmoid'))

# Compile the model
model_5.compile(optimizer='SGD', loss='binary_crossentropy', metrics=['accuracy'])

# Train the model for a large number of epochs
history = model_5.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, )

import matplotlib.pyplot as plt

# Plot the training and validation loss and accuracy
train_loss = history.history['loss']
val_loss = history.history['val_loss']
train_acc = history.history['accuracy']
```

```
val_acc = history.history['val_accuracy']
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.plot(train_loss, label='train')
plt.plot(val_loss, label='val')
plt.legend()
plt.title('Loss')

plt.subplot(1, 2, 2)
plt.plot(train_acc, label='train')
plt.plot(val_acc, label='val')
plt.legend()
plt.title('Accuracy')
plt.show()
```



```
# Evaluate the model on the test data
loss, accuracy = model_5.evaluate(X_test, y_test, verbose=0)
print('Model 5 Accuracy: %.2f' % (accuracy*100))
```

Model 5 Accuracy: 85.11

## → Model 6: (4-1) ANN

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
```

```
# Define a more complex model with more layers and neurons
model 6 = Sequential()
model 6.add(Dense(4, input dim=X train.shape[1], activation='relu'))
model_6.add(Dense(1, activation='sigmoid'))
# Compile the model
model_6.compile(optimizer='SGD', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model for a large number of epochs
history = model 6.fit(X train, y train, epochs=100, batch size=32, validation data=(X test, y
    Epoch 1/100
    33/33 [========================= ] - 1s 8ms/step - loss: 0.8714 - accuracy: 0.40
    Epoch 2/100
    33/33 [========================= ] - 0s 4ms/step - loss: 0.6894 - accuracy: 0.47
    Epoch 3/100
    Epoch 4/100
    Epoch 5/100
    33/33 [======================== ] - 0s 4ms/step - loss: 0.6111 - accuracy: 0.82
    Epoch 6/100
    33/33 [======================== ] - 0s 3ms/step - loss: 0.5961 - accuracy: 0.82
    Epoch 7/100
    33/33 [========================= ] - 0s 3ms/step - loss: 0.5824 - accuracy: 0.82
    Epoch 8/100
    33/33 [========================= ] - 0s 4ms/step - loss: 0.5688 - accuracy: 0.82
    Epoch 9/100
    33/33 [======================== ] - 0s 4ms/step - loss: 0.5551 - accuracy: 0.83
    Epoch 10/100
    33/33 [======================== ] - 0s 3ms/step - loss: 0.5417 - accuracy: 0.82
    Epoch 11/100
    33/33 [======================== ] - 0s 3ms/step - loss: 0.5285 - accuracy: 0.83
    Epoch 12/100
    33/33 [======================== ] - 0s 3ms/step - loss: 0.5153 - accuracy: 0.84
    Epoch 13/100
    33/33 [======================== ] - 0s 3ms/step - loss: 0.5025 - accuracy: 0.84
    Epoch 14/100
    33/33 [======================== ] - 0s 3ms/step - loss: 0.4898 - accuracy: 0.84
    Epoch 15/100
    33/33 [======================== ] - 0s 3ms/step - loss: 0.4774 - accuracy: 0.85
    Epoch 16/100
    33/33 [======================== ] - 0s 4ms/step - loss: 0.4655 - accuracy: 0.85
    Epoch 17/100
    33/33 [======================== ] - 0s 3ms/step - loss: 0.4543 - accuracy: 0.85
    Epoch 18/100
    33/33 [======================== ] - 0s 3ms/step - loss: 0.4438 - accuracy: 0.85
    Epoch 19/100
    Epoch 20/100
    Epoch 21/100
    33/33 [======================== ] - 0s 4ms/step - loss: 0.4176 - accuracy: 0.85
    Epoch 22/100
```

#### import matplotlib.pyplot as plt

```
# Plot the training and validation loss and accuracy
train_loss = history.history['loss']
val loss = history.history['val loss']
train acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.plot(train loss, label='train')
plt.plot(val_loss, label='val')
plt.legend()
plt.title('Loss')
plt.subplot(1, 2, 2)
plt.plot(train_acc, label='train')
plt.plot(val acc, label='val')
plt.legend()
plt.title('Accuracy')
plt.show()
```

```
Loss
                                                                 Accuracy
                                        train
                                         val
  # Evaluate the model on the test data
  loss, accuracy = model_6.evaluate(X_test, y_test, verbose=0)
  print('Model 6 Accuracy: %.2f' % (accuracy*100))
       Model 6 Accuracy: 85.11
                                              I
                                                     1 1
→ Model 7:2-1 ANN
                                                                                  train ||
                                                     11
        0.4
  from tensorflow.keras.models import Sequential
  from tensorflow.keras.layers import Dense
  # Define a more complex model with more layers and neurons
  model 7 = Sequential()
  model 7.add(Dense(2, input dim=X train.shape[1], activation='relu'))
  model 7.add(Dense(1, activation='sigmoid'))
  # Compile the model
  model_7.compile(optimizer='SGD', loss='binary_crossentropy', metrics=['accuracy'])
  # Train the model for a large number of epochs
  history = model_7.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y
       Epoch 1/100
       33/33 [==========================] - 1s 9ms/step - loss: 0.7519 - accuracy: 0.62
       Epoch 2/100
       33/33 [======================== ] - 0s 3ms/step - loss: 0.7185 - accuracy: 0.62
       Epoch 3/100
       33/33 [======================== ] - 0s 4ms/step - loss: 0.7023 - accuracy: 0.62
       Epoch 4/100
       33/33 [======================== ] - 0s 4ms/step - loss: 0.6934 - accuracy: 0.62
       Epoch 5/100
       33/33 [===========================] - 0s 3ms/step - loss: 0.6873 - accuracy: 0.62
       Epoch 6/100
       33/33 [======================== ] - 0s 4ms/step - loss: 0.6826 - accuracy: 0.62
       Epoch 7/100
       33/33 [======================== ] - 0s 3ms/step - loss: 0.6791 - accuracy: 0.62
       Epoch 8/100
       33/33 [========================= ] - 0s 4ms/step - loss: 0.6763 - accuracy: 0.62
       Epoch 9/100
       Epoch 10/100
       33/33 [======================== ] - 0s 4ms/step - loss: 0.6719 - accuracy: 0.62
       Epoch 11/100
       33/33 [======================== ] - 0s 4ms/step - loss: 0.6702 - accuracy: 0.62
```

```
Epoch 12/100
Epoch 13/100
33/33 [========================= ] - 0s 3ms/step - loss: 0.6676 - accuracy: 0.62
Epoch 14/100
33/33 [======================== ] - 0s 3ms/step - loss: 0.6667 - accuracy: 0.62
Epoch 15/100
33/33 [===========================] - 0s 3ms/step - loss: 0.6658 - accuracy: 0.62
Epoch 16/100
33/33 [========================== ] - 0s 3ms/step - loss: 0.6650 - accuracy: 0.62
Epoch 17/100
33/33 [======================== ] - 0s 4ms/step - loss: 0.6644 - accuracy: 0.62
Epoch 18/100
33/33 [======================== ] - 0s 4ms/step - loss: 0.6638 - accuracy: 0.62
Epoch 19/100
33/33 [========================= ] - 0s 4ms/step - loss: 0.6633 - accuracy: 0.62
Epoch 20/100
33/33 [======================== ] - 0s 4ms/step - loss: 0.6628 - accuracy: 0.62
Epoch 21/100
33/33 [======================== ] - 0s 3ms/step - loss: 0.6624 - accuracy: 0.62
Epoch 22/100
33/33 [======================== ] - 0s 4ms/step - loss: 0.6620 - accuracy: 0.62
Epoch 23/100
33/33 [======================== ] - 0s 5ms/step - loss: 0.6617 - accuracy: 0.62
Epoch 24/100
33/33 [======================== ] - 0s 5ms/step - loss: 0.6614 - accuracy: 0.62
Epoch 25/100
33/33 [======================== ] - 0s 5ms/step - loss: 0.6612 - accuracy: 0.62
Epoch 26/100
Epoch 27/100
33/33 [======================== ] - 0s 5ms/step - loss: 0.6608 - accuracy: 0.62
Epoch 28/100
4
```

import matplotlib.pyplot as plt

```
# Plot the training and validation loss and accuracy
train_loss = history.history['loss']
val_loss = history.history['val_loss']
train_acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.plot(train_loss, label='train')
plt.plot(val_loss, label='val')
plt.legend()
plt.title('Loss')

plt.subplot(1, 2, 2)
plt.plot(train_acc, label='train')
plt.plot(val_acc, label='val')
plt.legend()
```

plt.title('Accuracy')
plt.show()



```
# Evaluate the model on the test data
loss, accuracy = model_7.evaluate(X_test, y_test, verbose=0)
print('Model 7 Accuracy: %.2f' % (accuracy*100))
```

Model 7 Accuracy: 61.45

## Model 8: Logistic regression using SKLEARN

```
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
import pandas as pd

# Create a logistic regression model
model_8 = LogisticRegression()

# Fit the model to the training data
model_8.fit(X_train, y_train)

# Predict the target variable for the test data
y_pred = model_8.predict(X_test)
```

```
# Evaluate the accuracy of the model
accuracy = accuracy_score(y_test, y_pred)
print('Logistic Regression Accuracy:%.2f'% (accuracy*100))
```

Logistic Regression Accuracy:85.11

#### Model 9: Random Forest

Random forest Accuracy:85.50

```
from sklearn.ensemble import RandomForestClassifier
# Create a random forest classifier
model_9 = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=42)
# Fit the model to the training data
model_9.fit(X_train, y_train)

# Predict the target variable for the test data
y_pred = model_9.predict(X_test)

# Evaluate the accuracy of the model
accuracy = accuracy_score(y_test, y_pred)
print('Random forest Accuracy:%.2f'% (accuracy*100))
```

Colab paid products - Cancel contracts here