

Fundamentos de Aprendizado de Máquina.

Como treinar a máquina pra nos ajudar

Fundamentos de Aprendizado de Máquina

O objetivo deste módulo é apresentar alguns conceitos fundamentais que farão parte de toda jornada de projeto ligado a aprendizado de máquina (machine learning).

Através destes conceitos, será possível entender melhor o landscape de algoritmos e técnicas para se lidar com projetos de Machine Learning, bem como estar atento a possíveis desafios que irão emergir e como superá-los, em temas como redução de dimensionalidade, overfitting e underfitting, dentre outros.

Fundamentos de Aprendizado de Máquina

01.	O que é Aprendizado de Máquina?
02.	Tipos de Aprendizado
03.	Tipos de Algoritmos
04.	A Maldição de Dimensionalidade
05.	Engenharia e Seleção de Features
06.	Overfitting e Underfitting
07.	Trade-off entre Viés e Variância
08.	Validação de Modelos
09.	Ensemble de Modelos
10.	Estrutura de Projetos de IA/ML

O que é?

O aprendizado de máquina (machine learning, em inglês) é um campo da Inteligência Artificial que trata do modo como os sistemas utilizam algoritmos e dados para simular a maneira de aprender dos seres humanos, com melhora gradual e contínua por meio da experiência.

Os algoritmos que são construídos aprendem com os erros de forma automatizada, com o mínimo de intervenção humana e após treinados (ou "ensaiados") conseguem identificar padrões, fazer previsões, tomar decisões, tudo isso, com base nos dados coletados.

O que é?

Tipos de Aprendizado

Supervisionado

Modelos são treinados usando um conjunto de dados rotulado, aprendendo a mapear entradas para saídas esperadas

Não Supervisionado

Modelos exploram dados não rotulados para identificar padrões ou estruturas subjacentes, como agrupamentos, associações ou redução de dimensionalidade

Semi Supervisionado

Combina dados rotulados e não rotulados para melhorar o desempenho do modelo, geralmente utilizando a estrutura não rotulada para aprimorar o aprendizado supervisionado

Por Reforço

Agentes aprendem a tomar ações em um ambiente para maximizar algum tipo de recompensa acumulativa, através de tentativa e erro

Aprendizado Supervisionado

Separar dados para treinamento

Treinar um algoritmo

Obter um modelo

Validar modelo com dados não treinados

Calcular métricas

Aprendizado Não Supervisionado

Apresentar todos os dados

Treinar um algoritmo

Obter um modelo

Valida Resultados

Calcular métricas

Aprendizado Semi Supervisionado

Aprendizado por Reforço

Agente executar uma ação no ambiente Ambiente ajustar seu estado com a ação Ambiente vai emitir uma recompensa com base no estado Ambiente vai devolver o estado e a recompensa ao Agente

rocketseat

Tipos de Algoritmos

rocketseat

Tipos de Algoritmos

A maldição da dimensionalidade

A Maldição da Dimensionalidade foi denominada pelo matemático R. Bellman em seu livro "Programação Dinâmica" em 1957. A maldição da dimensionalidade diz que a quantidade de dados de que você precisa, para alcançar o conhecimento desejado, impacta exponencialmente o número de atributos necessários.

Em resumo refere-se a uma série de problemas que surgem ao trabalhar com dados de alta dimensão. A dimensão de um conjunto de dados corresponde ao número de características existentes em um conjunto de dados.

A Maldição da Dimensionalidade

A maldição da dimensionalidade Como lidar?

01.

02.

Seleção de Features

Redução de

Dimensionalidade

Engenharia e Seleção de Features

A engenharia de features é uma etapa fundamental no processo de desenvolvimento de modelos de machine learning. Refere-se ao processo de selecionar, extrair, transformar ou criar novas variáveis (features) a partir dos dados brutos para melhorar o desempenho dos modelos. Uma boa engenharia de features pode tornar um modelo mais preciso, eficiente e interpretável.

A engenharia de features é um processo iterativo.

Os especialistas em IA/ML geralmente começam com um conjunto inicial de features e então testam diferentes combinações de features para determinar a melhor configuração para o modelo.

Engenharia e Seleção de Features

Seleção

Processo de selecionar um subconjunto de features extraídas. A pontuação de importância da feature e a matriz de correlação podem ser fatores na seleção das features mais relevantes para o treinamento do modelo.

Transformação

Pode incluir normalizações, codificação de variáveis categóricas ou transformações matemáticas. Além disso tratar features ausentes ou features que não são válidas.

Criação

Criar novas features a partir dos dados existentes, usando técnicas como combinação de variáveis, decomposições e cálculos matemáticos.

Extração

Reduzir a quantidade de dados a ser processada usando técnicas de redução de dimensionalidade.

Diferente de um processo de transformação, é utilizando um modelo de ML para este processo.

Overfitting e Underfitting

High training error

High test error

Low training error High test error

Underfitting ocorre quando um modelo de aprendizado de máquina é muito simples para aprender a relação entre as variáveis nos dados de treinamento. Isso pode resultar em um modelo que não é capaz de fazer previsões precisas para dados novos.

Overfitting ocorre quando um modelo de aprendizado de máquina aprende a relação entre as variáveis nos dados de treinamento com muito detalhe, incluindo o ruído nos dados. Isso pode resultar em um modelo que é capaz de fazer previsões precisas para os dados de treinamento, mas não é capaz de generalizar para dados novos.

Overfiting e Underfitting Como lidar?

04	B 1 1	~
01	Regulariza	cao
U I .	rtegalariza	yuv

- 02. Ensemble de Modelos
- 03. Seleção de Features
- 04. Redução de
 - **Dimensionalidade**
- 05. Validação Cruzada

Trade-off entre Viés e Variância

O Trade-off entre viés e variância descreve a relação entre a capacidade de um modelo de aprender a partir de dados e sua capacidade de generalizar para dados novos.

Viés é o erro sistemático que um modelo comete ao aprender a partir de dados. Ele ocorre quando o modelo não é capaz de aprender a relação real entre as variáveis.

Variância é a variabilidade dos resultados de um modelo ao ser aplicado a diferentes conjuntos de dados. Ele ocorre quando o modelo é muito complexo ou quando os dados de treinamento são insuficientes.

Trade-off entre Viés e Variância

Baixo Viés e Baixa Variância

É o modelo ideal e o que desejamos obter, com uma boa acurácia e precisão nas previsões.

Baixo Viés e Alta Variância

O modelo está superestimando (overfitting) nos dados de treino e não generaliza bem com dados novos.

Alto Viés e Baixa Variância

O modelo está subestimando (underfitting) nos dados de treino e não captura a relação verdadeira entre as variáveis preditoras e a variável resposta.

Alto Viés e Alta Variância

O modelo está inconsistente e com um acurácia muito baixa nas previsões.

Trade-off entre Viés e Variância

Divisão do Conjunto de Dados (Supervisionado)

Métricas de Desempenho

Métricas de Negócio

Questões não funcionais

Hold-out: Separar, de forma aleatória, uma parcela dos dados para testar o modelo, e utilizar o restante para treinamento. Ou seja, os testes são feitos com dados que o modelo não viu anteriormente. Ideal para conjuntos pequenos e quando há restrição no tempo de treinamento.

rocketseat

Validação de Modelos

K-Fold: Na validação cruzada, o dataset é dividido aleatoriamente em "K" grupos e a cada iteração, um grupo é selecionado como conjunto de teste (validação) e os demais para treinamento. No final, teremos a métrica de cada iteração e quando estamos satisfeitos com a performance, aplicamos no conjunto final de testes. Ideal para grandes conjuntos e necessidade de mais precisão.

Keep the distribution of classes in each fold

Stratified K-Fold: Segue o mesmo conceito do K-Fold, mas aplicado a problemas de classificação, onde queremos manter a distribuição dos dados entre as classes em cada Fold, tanto no treinamento quanto na Validação e Teste. Ideal para datasets desbalanceados.

Regressão

MSE

RMSE

MAE

R2

MAPE

Classificação

Acurácia

Precisão

Recall

F1-score

AUC

Não Supervisionados

Silhouette

Coeficiente de Dunn

Índice de Davies-Bouldin Por Reforço

Retorno

Tempo de Recompensa

Eficiência

Tão importante quanto escolher o modelo para o seu problema, é saber selecionar as métricas que seu modelo está no caminho certo. A escolha da métrica deve levar em conta não apenas o modelo, mas a estrutura dos dados e tipo de problema a ser resolvido.

Recomendação

Classificação

ARR

Ticket Médio

Churn

Taxa de Conversão

Regressão

Custo por Fraude

Redução de Chargeback

Durante a etapa inicial de entendimento do problema, é importante obter quais métricas do negócio serão impactadas pelas decisões geradas pelos modelos de IA, para que estas métricas possam ser validadas após ter estes modelos em produção, avaliando a necessidade de ajustes e ou aplicação de novas abordagens.

Interpretabilidade

Fairness

Eficiência

Segurança

Ensemble de Modelos

Ensemble de modelos é uma técnica de aprendizado de máquina que combina as previsões de vários modelos para melhorar o desempenho geral. Essa técnica é baseada no princípio de que a combinação de modelos pode ajudar a reduzir o viés e a variância, o que pode levar a previsões mais precisas.

Essas técnicas são frequentemente usadas em competições de aprendizado de máquina, onde a combinação de modelos pode dar uma vantagem crítica. No entanto, vale a pena notar que os ensembles podem aumentar a complexidade e o tempo de treinamento, portanto, é sempre bom considerar o trade-off entre performance e complexidade.

Ensemble de Modelos

Bagging (Bootstrap Aggregating)

Treina vários modelos em subconjuntos aleatórios dos dados de treinamento. O modelo final é a combinação das previsões de todos os modelos treinados. Ex: Random Forest

Boosting

Treina modelos sequencialmente, onde cada novo modelo tenta corrigir os erros do modelo anterior. Ex: LightGBM e XGBoost

Stacking

Combina as previsões de vários modelos usando um modelo de meta-aprendizado. O modelo de meta-aprendizado é treinado para aprender como combinar as previsões dos modelos base.

Voting

Combina as previsões de vários modelos usando um processo de votação. O modelo final é o que recebe mais votos.

rocketseat

Ensemble de Modelos

rocketseat

Ensemble de Modelos

A adoção de uma metodologia para projetos de I/ML é essencial para estruturar e padronizar o processo de desenvolvimento, assegurando que cada fase seja abordada de forma sistemática e abrangente. Uma abordagem metódica não só facilita a identificação e correção de falhas, como o overfitting, mas também promove a reprodutibilidade, permitindo que outros cientistas e engenheiros de dados repliquem o trabalho com facilidade.

Além disso, essa estruturação otimiza a iteração e aprimoramento do modelo, e facilita a documentação e a comunicação com as partes interessadas, garantindo transparência, colaboração e eficiência ao longo de todo o projeto

CRISP-DM

Cross Industry Standard Process for Data Mining

Foi criada em 1996 e se tornou a metodologia mais difundida em ciência de dados para uso em projetos de IA/ML.

O CRISP-DM é cíclico, significando que é comum retornar a etapas anteriores conforme avançamos no projeto, permitindo refinamentos contínuos até alcançar o resultado desejado.

Seu uso com métodos Lean geram entregas de valor para o Cliente, no conceito de "Fail Fast, Learn Faster"

ML Canvas

Foi criada em 2016 como uma ferramenta para ajudar equipes e stakeholders a planejar e comunicar os aspectos centrais de um projeto de machine learning de maneira clara e concisa.

O conceito foi inspirado no Business Model Canvas, mas adaptado especificamente para os desafios e componentes únicos dos projetos de machine learning.

O ML Canvas tem sido usado por profissionais da área para estruturar e planejar iniciativas de ML, ajudando a garantir que todos os elementos-chave sejam considerados e entendidos por todas as partes envolvidas.

The AI Canvas

Use it to think through how AI could help with business decisions.

PREDICTION	JUDGMENT	ACTION	OUTCOME
What do you need to know to make the decision?	How do you value different outcomes and errors?	What are you tryi to do?	Mhat are your metrics for task success?
INPUT	TRAINING		FEEDBACK
What data do you need to ru the predictive algorithm?	what data do you the predictive algo		How can you use the outcomes to improve the algorithm?
SOURCE AJAY AGRAWAL ET AL.			© HBR.O

Al Canvas

Foi criado em 2018 por professores da Universidade de Toronto com o objetivo de ajudar as pessoas a tomarem melhores decisões e a estruturarem projetos com a ajuda de IA/ML.

Também usa uma estrutura similar ao Business Model Canvas, mas dá um enfoque maior na questão humana, capturando o julgamento que será feito sobre as predições, as ações que precisam de predições e o feedback para melhoria contínua do modelo.

Boosting People.

rocketseat.com.br