

Alina Avanesyan and Theresa Culley

Department of Biological Sciences
University of Cincinnati

Feeding Preferences of Generalist Insects on Native and Exotic Plants

- Less explored than specialists [Ali & Agrawal , 2012]
- Difficult to predict their feeding preferences [Tallamy et al., 2010]
- Can have an impact on the success of invasive plant species [Bossdorf et al. 2004; Joshi & Vrieling 2005; Tallamy et al. 2010; Schaffner et al. 2011]

How can the interaction between generalist insect herbivores and exotic plants affect plant invasion?

(The Enemy Release Hypothesis; modified from Keane & Crawley, 2002)

How can the interaction between generalist insect herbivores and exotic plants affect plant invasion?

(The Biotic Resistance Hypothesis; Parker et al. 2006)

How can the interaction between generalist insect herbivores and exotic plants affect plant invasion?

(The Biotic Resistance Hypothesis; Parker et al. 2006)

Inconsistency of Experimental Results

Ecological Entomology (2004) 29, 66-75

Constraints on the utilisation of the invasive Chinese tallow tree *Sapium sebiferum* by generalist native herbivores in coastal prairies

RICHARD A. LANKAU, 1,2 WILLIAM E. ROGERS 2 and EVAN

SIEMANN² ¹Center for Population Biology, University of Californ Evolutionary Biology, Rice University, U.S.A.

ECOLOGY AND POPULATION BIOLOGY

Feeding Preference for and Impact on an Invasive Weed (*Crepis tectorum*) by a Native, Generalist Insect Herbivore, *Melanoplus borealis* (Orthoptera: Acrididae)

DENNIS J. FIELDING¹ AND JEFFERY S. CONN

USDA-ARS Subarctic Agricultural Research Unit, P. O. Box 757200, Fairbanks, AK 99775

Ann. Entomol. Soc. Am. 104(6): 1303-1308 (2011); DOI: http://dx.doi.org/10.1603/AN10151

- Different experimental conditions (field, greenhouse, intact plants, clipped leaves etc.) [Motheral & Orrock, 2010; Atwood & Meyerson, 2011]
- Different non-standard measurements [e.g. Atwood & Meyerson, 2011]

Experimental Design

Molecular Confirmation of Diet

Study Organisms

Melanoplus femurrubrum Red-legged grasshopper

Andropogon gerardii Big Bluestem

Miscanthus sinensis Chinese Silver Grass

Bouteloua curtipendula Side oats Grama

Bothriochloa ischaemum Yellow Bluestem

Native grasses

Exotic grasses

Research Questions

- **RQ 1.** Do *Melanoplus femurrubrum* grasshoppers incorporate exotic plants in their diet?
- **RQ 2.** If yes, do they prefer to feed more on exotic than on native plants?
- **RQ 3.** Are the results consistent across behavioral experiments and molecular confirmation of diet?

Field Experiments

Study Sites

University of Cincinnati Center for Field Studies (Hamilton, OH)

Western Maryland Research and Education Center (Keedysville, MD)

Grasshopper Herbivory Assays

Measurements

Food consumption:

 Total volume of the grazed portion [length × width × depth of "scars", cm³]

Feeding activity:

- Frequency of "scarring"[number of scars/number of leaves]
- Feeding rate
 [Total volume of the grazed portion/grasshopper weight/day, cm³/g/d]

Grasshopper Feeding in the Field

Grasshopper food consumption and feeding activity were greater on exotic grasses; * p < 0.05</p>

Grasshopper Feeding at Different Field Sites

Grasshopper food consumption and feeding activity did not differ between field sites; p > 0.05

Greenhouse Experiments

University of Cincinnati Greenhouse

Grasshopper Feeding in the Greenhouse

Grasshopper food consumption and feeding activity were greater on exotic grasses; * p < 0.05</p>

Grasshopper Feeding under Field and Greenhouse Conditions

➢ Grasshoppers consumed more exotic plants in the greenhouse than in the field; * p < 0.05</p>

Experiments with Clipped Leaf Segments

After trial

Food consumption:

Before trial

- Feeding rate
 [food intake (Waldbauer, 1968) /grasshopper weight,
 g/g/h]
- Consumption index [Waldbauer, 1968]

Food assimilation:

- Assimilation rate
 [food assimilated/grasshopper weight, g/g/h]
- Approximate digestibility
 [food assimilated/food ingested]

Grasshopper Feeding on Leaf Segments: Food Consumption

 \triangleright Grasshopper food consumption did not differ on the leaves clipped from native and exotic grasses (p > 0.05)

(Avanesyan & Culley, in review)

Grasshopper Feeding on Leaf Segments: Food Assimilation

Grasshopper assimilation rate did not differ on the leaves clipped from native and exotic grasses (p > 0.05), but the approximate digestibility was greater on native plants than on exotics; * p < 0.05

(Avanesyan & Culley, in review)

Creating the Protocol

(Avanesyan 2014, Appl Plant Sci)

Testing the Protocol

Grasshoppers of different sizes

0 2 4 6 8 10 12 -+

Melanoplus spp. nymph

12 h PI: choice, two plants

M. femurrubrum

12 h PI: no choice, single plant

M. differentialis

22 h PI: choice, two plants

Different parts of grasshopper digestive system

(Avanesyan 2014, Appl Plant Sci)

Collecting Plants and Grasshoppers

University of Cincinnati Center for Field Studies (OH)

Western Maryland
Research and Education Center (MD)

August 2013

Host Plant Identification

Proportions of Ingested Plants

➤ Grasshopper gut contents contained greater numbers of exotic plant species at both field sites (p < 0.0001, Binomial test)

Summary

Melanoplus femurrubrum grasshoppers did not avoid feeding on exotic plants and even preferred them to native plants in most experiments

Feeding preferences: behavioral approach

 $E \ge N$

Feeding preferences: molecular approach

E > N

- If exotic grasses invade natural areas, *M. femurrubrum* grasshoppers may pose the biotic resistance to exotic grasses
- a lower level of defenses of exotic grasses (lack of coevolutionary history with M. femurrubrum) – needs to be further examined

 this combined approach can be applied to other plant-insect systems, especially which involve highly invasive species

Future Directions

Does the <u>plant coverage</u> (for both native and exotic plants) affect grasshopper feeding choice?

Does the <u>taxonomic relatedness of plants</u> affects grasshopper feeding choice?

Native vs. exotic plants?

Acknowledgments

University of Cincinnati

Angelo Randaci Roger Ruff

Dr. Joshua Gross

Dr. Stephen Matter

Dr. George Uetz

University of Maryland

Tim Ellis Dr. William Lamp

Funding:

Graduate Research Fellowship for Outstanding Incoming PhD Students 2009 Wieman Wendel Benedict Award 2011, 2012, 2013

Entomological Society of America Award 2013 ESA Eastern Branch Award 2013

radite.

wallpho.com, news.science360.gov, fxdirectory.info, thesun.co.uk, en.wikipedia.org, nps.gov/long/naturescience/insects.htm, pbase.com, commons.wikimedia.org, nwiassoc.com, per.ornl.gov, scenicreflections.com theg2gallery.com, redorbit.com, miriadna.com, cleancutproperty.com, 123rf.com, dev.keepbritaintidy.org, en.wikipedia.org, two.ucdavis.edu, vector.me, sweetclipart.com, astrophotophils.com, bugphoto.net, mrgoutham.blogspot.com, naturalalternativeremedy.com, prepare-and-protect.net, ivingafield.com, weeds.cropsci.illinois.edu, ariseandshineblog.com