Reduction of Dimensions

Accompanying livescript from lec. 36.

Recap SVD Note (MATLAB) $A \in \mathbb{C}^{m \times n}$, m > n (tall rectargle)

SVD: $A = U \Sigma V^*$ hermitian = conjugate transpose · [U,S,V] = Svd (A); (thick) . [U, S, V] = svd (A, O); (thin) I. hermitian: V' Zeno \cdot $V \in \mathbb{C}^{n \times n}$ unitary \longrightarrow columns; right singular vectors J $\sum_{n=0}^{\infty} \begin{bmatrix} \sigma_{1} & \sigma_{2} \\ \sigma_{n} \end{bmatrix} = \begin{bmatrix} \sigma_{1} & \sigma_{2} \\ \sigma_{n} \end{bmatrix} = \begin{bmatrix} \sigma_{1} & \sigma_{2} \\ \sigma_{n} \end{bmatrix} = \begin{bmatrix} \sigma_{2} & \sigma_{3} \\ \sigma_{n} \end{bmatrix} = \begin{bmatrix} \sigma_{1} & \sigma_{2} \\ \sigma_{n} \end{bmatrix} = \begin{bmatrix} \sigma_{1} & \sigma_{2} \\ \sigma_{n} \end{bmatrix} = \begin{bmatrix} \sigma_{2} & \sigma_{3} \\ \sigma_{n} \end{bmatrix} = \begin{bmatrix} \sigma_{1} & \sigma_{2} \\ \sigma_{n} \end{bmatrix} = \begin{bmatrix} \sigma_{1} & \sigma_{1} \\ \sigma_{1} \end{bmatrix} = \begin{bmatrix} \sigma_{1} & \sigma_{1}$

Low-Rank Approximations

 $A = 0 \quad \stackrel{*}{\bigcirc} \quad \stackrel{*}{\bigcirc}$ $M \times N \qquad M \times N \qquad N \times N$

Let $A \in \mathbb{C}^{m \times n}$ with $m \ge n$. Its thin SVD $A = \hat{U} \hat{\Sigma} V^*$ can be written as

- Each outer product $\mathbf{u}_j \mathbf{v}_j^*$ is a rank-1 matrix.
- Since $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$, important contributions to A come from terms with small j.

Low-Rank Approximations (cont')

For $1 \le k \le r$, define

$$A_k = \sum_{j=1}^k \sigma_j \mathbf{u}_j \mathbf{v}_j^* = U_k \Sigma_k V_k^*,$$

where

- U_k is the first k columns of U;
- V_k is the first k columns of V;
- Σ_k is the upper-left $k \times k$ submatrix of Σ . $\mathcal{M} \times \mathbf{k}$

This is a rank-k approximation of A.

Best Rank-k Approximation

Theorem 6 (Eckart-Young)

Let $A \in \mathbb{C}^{m \times n}$. Suppose A has rank r and let $A = U\Sigma V^*$ be an SVD. Then

- $||A A_k||_2 = \sigma_{k+1}$, for $k = 1, \ldots, r-1$.
- For any matrix B with $\operatorname{rank}(B) \leqslant k$, $\|A B\|_2 \geqslant \sigma_{k+1} = \|A A\|_2$

first omitted song. value