A Handbook of Statistical Analyses Using ${\sf R}$

Brian S. Everitt and Torsten Hothorn

CHAPTER 4

Analysis of Variance: Weight Gain, Foster Feeding in Rats, Water Hardness and Male Egyptian Skulls

- 4.1 Introduction
- 4.2 Analysis of Variance
- 4.3 Analysis Using R
- 4.3.1 Weight Gain in Rats

Before applying analysis of variance to the data in Table ??? we should try to summarise the main features of the data by calculating means and standard deviations and by producing some hopefully informative graphs. The data is available in the data.frame weightgain. The following R code produces the required summary statistics

To apply analysis of variance to the data we can use the aov function in R and then the summary method to give us the usual analysis of variance table. The model *formula* specifies a two-way layout with interaction terms, where the first factor is source, and the second factor is type.

```
R> wg_aov <- aov(weightgain ~ source * type, data = weightgain)</pre>
```

The estimates of the intercept and the main and interaction effects can be extracted from the model fit by

R> coef(wg_aov)

(Intercept)	<i>sourceCereal</i>	typeLow
100.0	-14.1	-20.8

R> plot.design(weightgain)

 ${\bf Figure~4.1} \quad {\bf Plot~of~mean~weight~gain~for~each~level~of~the~two~factors.}$

Note that the model was fitted with the restrictions $\gamma_1 = 0$ (corresponding to Beef) and $\beta_1 = 0$ (corresponding to High) because treatment contrasts were used as default as can be seen from

R> options("contrasts")

```
$contrasts
     unordered ordered
"contr.treatment" "contr.poly"
```

Thus, the coefficient for source of -14.1 can be interpreted as an estimate of the difference $\gamma_2-\gamma_1$. Alternatively, we can use the restriction $\sum_i \gamma_i=0$ by R> coef(aov(weightgain ~ source + type + source:type,

```
+ data = weightgain, contrasts = list(source = contr.sum)))
```

R> summary(wg_aov)

Figure 4.2 R output of the ANOVA fit for the weightgain data.

```
(Intercept) source1 typeLow
92.95 7.05 -11.40
source1:typeLow
-9.40
```

4.3.2 Foster Feeding of Rats of Different Genotype

As in the previous subsection we will begin the analysis of the foster feeding data in Table ?? with a plot of the mean litter weight for the different genotypes of mother and litter (see Figure 4.4). The data are in the *data.frame* foster

```
R> data("foster", package = "HSAUR")
```

We can derive the two analyses of variance tables for the foster feeding example by applying the R code

```
R> summary(aov(weight ~ litgen * motgen, data = foster))
to give
```

```
Sum Sq Mean Sq F value
             Df
                                          Pr(>F)
                  60.16 20.052 0.3697 0.775221
litgen
              3 775.08 258.360 4.7632 0.005736 **
motgen
litgen:motgen 9 824.07
                         91.564
                                 1.6881 0.120053
             45 2440.82 54.240
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
and then the code
R> summary(aov(weight ~ motgen * litgen, data = foster))
to give
                 Sum Sq Mean Sq F value
             Df
                                          Pr (>F)
              3 771.61 257.202 4.7419 0.005869 **
motgen
                  63.63 21.211 0.3911 0.760004
litgen
              3
motgen:litgen 9 824.07 91.564
                                 1.6881 0.120053
Residuals
             45 2440.82 54.240
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 4.3 Interaction plot of type \times source.

There are (small) differences in the sum of squares for the two main effects and, consequently, in the associated F-tests and p-values. This would not be true if in the previous example in Subsection 4.3.1 we had used the code

R> summary(aov(weightgain ~ type * source, data = weightgain)) instead of the code which produced Figure 4.2 (readers should confirm that this is the case).

We can investigate the effect of genotype B on litter weight in more detail by the use of multiple comparison procedures (see Everitt, 1996). Such procedures allow a comparison of all pairs of levels of a factor whilst maintaining the nominal significance level at its selected value and producing adjusted confidence intervals for mean differences. One such procedure is called Tukey honest significant differences suggested by Tukey (1953), see Hochberg and

Figure 4.4 Plot of mean litter weight for each level of the two factors for the foster data.

Tamhane (1987) also. Here, we are interested in simultaneous confidence intervals for the weight differences between all four genotypes of the mother. First, an ANOVA model is fitted

R> foster_aov <- aov(weight ~ litgen * motgen, data = foster) which serves as the basis of the multiple comparisons, here with all pair differences by

```
R> foster_hsd <- TukeyHSD(foster_aov, "motgen")
R> foster_hsd
   Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = weight ~ litgen * motgen, data = foster)
```

R> plot(foster_hsd)

95% family-wise confidence level

 $\begin{tabular}{ll} \textbf{Figure 4.5} & \textbf{Graphical presentation of multiple comparison results for the foster} \\ & \textbf{feeding data}. \\ \end{tabular}$

```
$motgen
         diff
                     1wr
                                upr
B-A 3.330369
              -3.859729 10.5204672 0.6078581
              -8.841869
I-A -1.895574
                          5.0507207 0.8853702
J-A -6.566168 -13.627285
                          0.4949498 0.0767540
I-B -5.225943 -12.416041
                         1.9641552 0.2266493
J-B -9.896537 -17.197624 -2.5954489 0.0040509
J-I -4.670593 -11.731711
                         2.3905240 0.3035490
```

A convenient plot method exists for this object and we can get a graphical representation of the multiple confidence intervals as shown in Figure 4.5. It appears that there is only evidence for a difference in the B and J genotypes.

4.3.3 Water Hardness and Mortality

The water hardness and mortality data for 61 large towns in England and Wales (see Table 2.3) was analysed in Chapter 2 and here we will extend the analysis by an assessment of the differences of both hardness and mortality in the North or South. The hypothesis that the two-dimensional mean-vector of water hardness and mortality is the same for cities in the North and the South can be tested by *Hotelling-Lawley* test in a multivariate analysis of variance framework. The R function manova can be used to fit such a model and the corresponding summary method performs the test specified by the test argument

The cbind statement in the left hand side of the formula indicates that a multivariate response variable is to be modelled. The p-value associated with the Hotelling-Lawley statistic is very small and there is strong evidence that the mean vectors of the two variables are not the same in the two regions. Looking at the sample means

```
R> tapply(water$hardness, water$location, mean)
```

```
North South 30.40000 69.76923
```

R> tapply(water\$mortality, water\$location, mean)

```
North South
1633.600 1376.808
```

we see large differences in the two regions both in water hardness and mortality, where low mortality is associated with hard water in the South and high mortality with soft water in the North (see Figure ??? also).

4.3.4 Male Egyptian Skulls

We can begin by looking at a table of mean values for the four measurements within each of the five epochs. The measurements are available in the data.frame skulls and we can compute the means over all epochs by

```
R> data("skulls", package = "HSAUR")
R> means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")],</pre>
```

list(epoch = skulls\$epoch), mean)

R> means

```
epoch mb bh bl nh
1 c4000BC 131.3667 133.6000 99.16667 50.53333
2 c3300BC 132.3667 132.7000 99.06667 50.23333
3 c1850BC 134.4667 133.8000 96.03333 50.56667
4 c200BC 135.5000 132.3000 94.53333 51.96667
5 cAD150 136.1667 130.3333 93.50000 51.36667
```

It may also be useful to look at these means graphically and this could be done in a variety of ways. Here we construct a scatterplot matrix of the means using the code attached to Figure 4.6.

There appear to be quite large differences between the epoch means, at least on some of the four measurements. We can now test for a difference more formally by using MANOVA with the following R code to apply each of the four possible test criteria mentioned earlier;

```
R> skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch,
                          data = skulls)
R> summary(skulls_manova, test = "Pillai")
           Df Pillai approx F num Df den Df
epoch
           4 0.35331 3.512
                                 16 580 4.675e-06 ***
Residuals 145
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R> summary(skulls_manova, test = "Wilks")
               Wilks approx F num Df den Df
            4 0.66359
                       3.9009
                                  16 434.45 7.01e-07 ***
Residuals 145
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R> summary(skulls_manova, test = "Hotelling-Lawley")
           Df Hotelling-Lawley approx F num Df den Df
epoch
                      0.48182
                                 4.231
                                           16
Residuals 145
            Pr (>F)
epoch
          8.278e-08 ***
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R> summary(skulls_manova, test = "Roy")
           Df
                 Roy approx F num Df den Df
                                               Pr (>F)
            4 0.4251
                       15.41
                                  4
                                       145 1.588e-10 ***
epoch
Residuals 145
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
R> pairs(means[,-1],
+          panel = function(x, y) {
+          text(x, y, abbreviate(levels(skulls$epoch)))
+     })
```


Figure 4.6 Scatterplot matrix of epoch means for Egyptian skulls data.

The p-value associated with each four test criteria is very small and there is strong evidence that the skull measurements differ between the five epochs. We might now move on to investigate which epochs differ and on which variables. We can look at the univariate F-tests for each of the four variables by using the code

R> summary.aov(skulls_manova)

```
Response mb :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 502.83 125.707 5.9546 0.0001826 ***

Residuals 145 3061.07 21.111
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Response bh :
            Df Sum Sq Mean Sq F value Pr(>F)
            4 229.9 57.477 2.4474 0.04897 *
Residuals
           145 3405.3 23.485
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Response bl :
            Df Sum Sq Mean Sq F value
                                        Pr(>F)
            4 803.3 200.823 8.3057 4.636e-06 ***
epoch
Residuals
           145 3506.0 24.179
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Response nh :
            Df Sum Sq Mean Sq F value Pr(>F)
                61.2 15.300
epoch
                               1.507 0.2032
           145 1472.1 10.153
Residuals
```

We see that the results for the maximum breadths (mb) and basialiveolar length (bl) are highly significant, with those for the other two variables, in particular for nasal heights (nh), suggesting little evidence of a difference. To look at the pairwise multivariate tests (any of the four test criteria are equivalent in the case of a one-way layout with two levels only) we can use the summary method and manova function as follows:

```
R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
                 subset = epoch %in% c("c4000BC", "c3300BC")))
              Pillai approx F num Df den Df Pr(>F)
          1 0.027674 0.39135
epoch
                                   4
                                        55 0.8139
Residuals 58
R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
                 subset = epoch %in% c("c4000BC", "c1850BC")))
          Df Pillai approx F num Df den Df Pr(>F)
epoch
          1 0.18757
                     3.1744
                                  4
                                        55 0.02035 *
Residuals 58
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
                 subset = epoch %in% c("c4000BC", "c200BC")))
          Df Pillai approx F num Df den Df
                                               Pr (>F)
          1 0.30297 5.9766
                                  4
                                        55 0.0004564 ***
epoch
Residuals 58
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

To keep the overall significance level for the set of all pairwise multivariate tests under some control (and still maintain a reasonable power), Stevens (2001) recommends setting the nominal level $\alpha=0.15$ and carrying out each test at the α/m level where m s the number of tests performed. The results of the four pairwise tests suggest that as the epochs become further separated in time the four skull measurements become increasingly distinct.

Bibliography

- Everitt, B. S. (1996), Making Sense of Statistics in Psychology: A Second-Level Course, Oxford, UK: Oxford University Press.
- Hochberg, Y. and Tamhane, A.~C. (1987), Multiple Comparison Procedures, New York, USA: John Wiley & Sons.
- Stevens, J. (2001), Applied Multivariate Statistics for the Social Sciences, Mahwah, New Jersey, USA: Lawrence Erlbaum, 4th edition.
- Tukey, J. W. (1953), "The problem of multiple comparisons (unpublished manuscript)," in *The Collected Works of John W. Tukey VIII. Multiple Comparisons:* 1948-1983, New York, USA: Chapman & Hall.