

ECE3700J Introduction to Computer Organization

Homework 8

Assigned: October November 29, 2022

Due: 2:00pm on December 6, 2022

Submit a PDF file on Canvas

1. (20 points) Assume that main memory accesses take 70 ns and that memory accesses are 36% of all instructions. The following table shows parameters for a two-level cache memory.

	Size	Miss Rate	Hit Time
L1	16 KB	7.3%	1.18 ns
L2	1 MB	1.5%	5.34 ns

- (1) What is the AMAT for the computer? (10 points)

 AMAT= L1 hit rate * L1 hit time + L1 miss rate * (L2 hit rate * L2 hit time + L2 miss rate *

 Mem access time)= 92.7%*1.18+7.3%*(98.5%*5.34+1.5%*70)=1.554ns
- (2) Assuming the L1 hit time determines the cycle times and a base CPI is 1.0 without any memory stalls, what is the total CPI? (10 points)

Total CPI=(1.18+36%*7.3%*(98.5%*5.34+1.5%*70))/1.18=1.14

- 2. (30 points) In this exercise, we will examine how replacement policies impact miss rate. Assume a 2-way set associative cache with 4 blocks. Following table gives addresses for memory access.
 - (1) Assuming an LRU replacement policy, how many hits does this address sequence exhibit? (10 points)

Block Address	Hit/Miss	Evicted	Contents of Cache		
of memory		Block	Set 0	Se	et 1
1	M			1	
3	M			1	3
5	M	1		5	3
1	M	3		5	1
3	M	5		3	1
1	Н			3	1
3	Н			3	1
5	M	1		3	5
3	Н			3	5

3 hits

(2) Assuming an MRU (most recently used) replacement policy, how many hits does this address sequence exhibit? (10 points)

Block Address	Hit/Miss	Evicted	Contents of Cache	
of memory		Block	Set 0	Set 1

1	M		1	
3	M		1	3
5	M	3	1	5
1	Н		1	5
3	M	1	3	5
1	M	3	1	5
3	M	1	3	5
5	Н		3	5
3	Н		3	5

3 hits

(3) Simulate a random replacement policy by flipping a coin. For example, "heads" means to evict the first block in a set and "tails" means to evict the second block in a set. How many hits does this address sequence exhibit? Note: you should flip the coin yourself, not by computer. (10 points)

Block Address	Hit/Miss	Evicted	Contents of Cache		
of memory		Block	Set 0	Se	et 1
1	M			1	
3	M			1	3
5	M	1		5	3
1	M	5		1	3
3	Н			1	3
1	Н			1	3
3	Н			1	3
5	M	1		5	3
3	Н			5	3

4 hits

3. (50 points) Virtual memory uses a page table to track the mapping of virtual addresses to physical addresses. The following is a stream of virtual byte addresses used to access memory. Virtual addresses (in decimal): 12648, 45419, 46824, 16975, 40004, 12707, 52236

Assume 4 KB pages, a 4-entry fully associative TLB, and LRU replacement. If pages must be brought in from disk, increment to the next largest page number.

TLB:

Valid	Tag	Physical Page Number
1	11	12
1	7	4
1	3	6
0	4	9

Page Table:

Valid	Physical Page Number
1	5
0	Disk

0	Disk
1	6
1	9
1	11
0	Disk
1	4
0	Disk
0	Disk
1	3
1	12

(1) Given the virtual address stream, and the initial TLB and page table states shown above, show the final state of the system. Also list for each reference if it is a hit in the TLB, a hit in the page table, or a page fault. (15 points)

Addr(d)	Addr(h)	VPN	TLB hit	Page table	TLB change
12648	0x3168	0x3	у		
45419	0xb16b	0xb	У		
46824	0xb6e8	0xb	У		
16975	0x424f	0x4	n	hit	4 th entry valid bit set to 1
40004	0x9c44	0x9	n	Page fault	2 nd entry: <1, 9, 13>
12707	0x31a3	0x3	у		
52236	0xcc0c	0xc	n	Page fault	1 st entry: <1, 12, 14>

The final TLB:

Valid	Tag	Physical Page Number
1	12	14
1	9	13
1	3	6
1	4	9

The final Page Table:

Valid	Physical Page Number
1	5
0	Disk
0	Disk
1	6
1	9
1	11
0	Disk
1	4
0	Disk
1	13
1	3

1	12
1	14

(2) Repeat question (1), but this time use 16 KB pages instead of 4 KB pages. (15 points)

Addr(d)	Addr(h)	VPN	TLB hit	Page table	TLB change
12648	0x3168	0	n	hit	4 th entry: <1, 0, 5>
45419	0xb16b	2	n	Page fault	1 st entry: <1, 2, 13>
46824	0xb6e8	2	У		
16975	0x424f	1	n	Page fault	2 nd entry: <1, 1, 14>
40004	0x9c44	2	у		
12707	0x31a3	0	у		
52236	0xcc0c	3	у		

The final TLB:

Valid	Tag	Physical Page Number
1	2	13
1	1	14
1	3	6
1	0	5

The final Page Table:

Valid	Physical Page Number
1	5
0	14
0	13
1	6
1	9
1	11
0	Disk
1	4
0	Disk
0	Disk
1	3
1	12

(3) What would be some of the advantages and disadvantages of having a larger page size? (5 points)

Larger page size may decrease the page fault rate but increase the page fault penalty, and also reduces the flexibility of pages storage in main memory.

(4) Show the final contents of the TLB if it is 2-way set associative. (15 points)

\ /					•	`	1 /
Addr(d)	Addr(h)	VPN	Index	Tag	TLB hit	Page table	TLB change
12648	0x3168	0x3	1	1	n	hit	4 th entry: <1,1,1,6>
45419	0xb16b	0xb	1	5	n	hit	3 rd entry: <1,1,5,12>
46824	0xb6e8	0xb	1	5	у		
16975	0x424f	0x4	0	2	n	hit	1 st entry: <0,1,2,9>
40004	0x9c44	0x9	1	4	n	Page fault	4 th entry: <1,1,4,13>
12707	0x31a3	0x3	1	1	n	hit	3 rd entry: <1,1,1,6>
52236	0xcc0c	0xc	0	6	n	Page fault	1 st entry: <0,1,6,14>

The final TLB:

The lines 123.						
Index	Valid	Tag	Physical Page Number			
0	1	2	9			
	1	6	14			
1	1	1	6			
	1	4	13			