Lista de Exercícios

PIPELINING

- 1. Qual a vantagem que a utilização da técnica de pipelining traz em relação a arquitetura MIPS-Multiciclo estudada em aula? Descreva textualmente.
- 2. Embora o desempenho seja superior, há um custo associado a implementação utilizando pipelining. Qual é este custo? Em que ele implica?
- 3. O que é CPI? Forneça uma explicação textual e a forma de cálculo. O CPI de muda se ele implementa ou não a técnica de pipelining?
- 4. Quais são as fórmulas para se calcular desempenho para o processador multiciclo e com pipelining?
- 5. Porque a técnica de pipelining não pode ser facilmente explorada em arquiteturas CISC? Quais são os fatores complicadores?
- 6. Como computadores modernos como os da família x86 implementam a técnica de pipelining? Todas as instruções são pipelinizáveis? Justifique.
- 7. Um programa de computador em assembly roda em dois computadores. Computador A implementa uma organização Multiciclo e computador B uma implementação Multiciclo com Pipelining. O período de clock de ambos os computadores é de 40ηs. Assuma que o programa contendo um total de 420.000 instruções é executado e que do total de instruções 75% são instruções do tipo R, 5% instruções BEQ/BNE/SLT, 10% instruções do tipo LW, 5% do tipo SW, 4% J, e 1% JAL.
 - a) Qual a frequência de clock em que ambos os computadores opera?
 - b) Quanto tempo o computador A levará para executar o programa?
 - c) Assumindo execução sem stalls, quanto tempo o computador B levará para executar o programa?
 - d) Assuma que para a resolução de todos os hazzard de dados, o computador B requerirá 10% mais instruções NOP. Neste contexto quanto tempo B levará para executar o programa? Ele é mais rápido ou lento que A?
- 8. Quais são os quatro princípios de projeto desejáveis para o desenvolvimento de um processador que explore o máximo possível a técnica de pipelining? Cite-os e desenvolva a razão porque eles são desejáveis.
- 9. Explique o que são hazzards no contexto de pipelining listando os três tipos e descrevendo suas características.
- 10. Forneça um exemplo de código em que ocorre um hazzard estrutural.
- 11. Forneça um exemplo de código em que ocorre um hazzard de dados.
- 12. Forneça um exemplo de código em que ocorre um hazzard de controle.
- 13. O que são stalls, porque eles ocorrem?
- 14. Plote o diagrama de alocação de subsistemas para o programa abaixo. Desenvolva o diagrama utilizando stalls quando necessário para os primeiros 50 passos de alocação de subsistemas.

```
#primeiro programa em assembly MIPS32
  3 #
       # DDA 24/11/13
  5 #computa a soma dos numeros no array
   7 #dados do programa
        .data
                         .word 0:19 # "array" of words to contain fib values
  9 arr1:
10 size1: .word 19 #tamani
11 #arr2: .word 1,2,3,5,7,11,13,17,19
12 arr2: .word 1,2,3,4,5,6,7,8,9
13 size2: .word 9
                                                                         #tamanho do array
 14 #codigo do programa
15 .text

16 addi $t0, $zero, 0 #inicializa o contador com 0

17 add $s0, $zero, $zero #inicializa o registrador da soma com 0

18 la $t1, size2 #carrega endereço de size2 em $t1

19 lw $t1, 0($t1) #carrega o tamanho do array arr2 em $t1

10 la $t2, arr2 #carrega o end do la palavra do arr2 em $t2

21 add $t3, $zero,$zero #contador de posição do array

22 LOOP: beq $t0, $t1, END #testa se o contador é igual a size2

23 add $t4, $t2,$t3 #calcula o end. do prox. elemento do array

24 lw $s1, 0,($t4) #carrega o prox. elemento do array em $s1

25 add $s0, $s0, $s1 #soma o prox. elemento ao total

26 addi $t0,$t0,1 #incrementa o contador

27 addi $t3,$t3,4 #incrementa o contador de posição

28 j LOOP

29 END: #apresenta um inteiro
 15 .text
 29 END:
                     #apresenta um inteiro
                        add $a0, $s0,$zero # coloca em $a0 o resultado
                         1i
 31
                                         $v0, 1
                         syscall
                          # Termino do programa
                         li $v0, 10
                                                                               # código de termino
 34
                         syscall
                                                                                     # chamada do sistema
```

DESEMPENHO DE PROCESSADORES

- 15. Defina com suas palavras o que vem a ser desempenho. Como a definição se aplica ao contexto de computadores?
- 16. Como desempenho de computadores é medido? Forneça a fórmula. Quais são os problemas com a abordagem quantitativa?
- 17. Qual a diferença entre largura de banda (throughput) e tempo de resposta? Defina os termos.
- 18. Defina os termos tempo de execução e tempo de CPU. Que fatores adicionais fazem com que o tempo de execução seja superior ao tempo de CPU?
- 19. O que é a lei de Amdahl e como ela impacta o desempenho de computadores multicore? Fornaça a fórmula e a explique.
- 20. Considere um sistema multicore composto por N cores. Construa uma tabela composta pelas seguintes colunas: número de cores (para, 1, 2, 4, 8, 16, 32, 64, 128 e 256), speedup, taxa de speedup por número de processadores. Plote também um gráfico do número de cores para o speedup ganho. para o cálculo considere que a parte não paralelizável do programa seja de 15%.
- 21. Qual a fórmula para o cálculo de CPI em processadores com pipeline? Explique a razão das alterações.

PARALELISMO EM NÍVENS DE INSTRUÇÕES

22. O que é paralelismo em nível de instruções e que técnicas podem ser utilizadas para que tal efeito seja alcançado?

- 23. Como se pode identificar se duas instruções podem ser executadas em paralelo sem implicar em algum tipo de hazzard? Forneça exemplos.
- 24. O que é um bloco básico de código? Porque este conceito é importante.
- 25. Defina o conceito de profundidade de pipeline. Qual a profundidade do pipeline do MIPS?
- 26. Defina o conceito de interlock no contexto de processadores com pipeline.
- **27.** Desenvolva um programa em assembly do MIPS que implemente a seguinte parcela de código:

```
for(i=1; i<=999; i++)
x[i] = x[i] + y[i]
```

A seguir identifique os blocos básicos de código no programa.

- 28. Reescreva o programa do exercício anterior considerando que ele será executado em um processadores com pipeline sem interlock, ou seja, o compilador deverá incluir todos os NOPS necessários.
- 29. Do que trata a técnica de execução de instruções fora de ordem. Seria possível remover alguns dos NOPS do programa resultante no exercício anterior por meio da utilização desta técnica? Se sim, forneça o programa resultante.
- 30. Explique e forneça um exemplo de como endereços de memória podem resultar em dependência de dados. Discuta porque eles são difíceis de se detectar.
- 31. Descreva a ideia geral e a motivação da técnica de desdobramento de loops para a resolução de hazzard de dados.
- 32. Considere a seguinte parcela de código a seguir:

```
LOOP: LW $50, 0($S1)

NOP

NOP

ADDI $S4, $S0, 42

NOP

SW $S4, 0($S1)

ADDI $S1, $S1, -4

NOP

BNE $S1, $zero, LOOP
```

- a) Considere que o registrador S1 inicia com o valor 4000. Quantros NOPS seriam executados?
- b) Execute um desdobramento triplo do código acima.
- c) qual o ganho em número de execuções (quantos NOPS não seriam executados) no programa resultante do item b)?

33.

PARALELISMO EM NÍVEL DE DADOS

- 34. O que é paralelismo em nível de dados e de que formas ele pode ser alcançado?
- 35. Defina os termos MIMD e SIMD e exemplifique algumas arquiteturas que utilizam um ou outro.
- 36. Qual a maior vantagem do modo de instrução SIMD em relação ao modo MIMD?

37. Forneça pseudo código vetorial para o programa a seguir. Anote qualquer suposição quanto a arquitetura que você fizer.

```
L.D
             F0,a
      DADDIU R4, RX, #512
             F2, 0(RX)
LOOP: L.D
      MUL.D F2, F2, F0
      L.D
             F4, 0(RY)
      ADD.D F4, F4, F2
      S.D
             F4, 0(RY)
      DADDIU RX, RX, 8
      DADDIU RY, RY, 8
      DSUBU R20, R4, RX
      BNEZ
             R20, LOOP
```

- 38. Com relação ao tempo de execução vetorial de um programa, quais são os fatores que o impactam?
- 39. Como a banda de transferência de dados de memória pode impactar o desempenho de processadores vetoriais e qual o papel da memória cache no mitigação de impacto deste problema?
- 40. Escreva um programa em assembly MIMD que executa a multiplicação de dois vetores coluna de N posições. A seguir forneça uma versão SIMD (vetorial) que utilize registradores vetoriais de 4 variáveis.

PARALELISMO EM NÍVENS DE THREADS

- 41. Qual seria o ganho real de se utilizar threads em um programa que roda em um uniprocessador?
- 42. Quais são os dois modelos de memória utilizados em multiprocessadores MIMD? Descreva cada um deles e forneça diagramas que os exemplifiquem.
- 43. Descreva uma possível estratégia para a manutenção da coerência de memória nos modelos de memória SMP e DSM.

Principais Opcodes com seus Tempos de Execução por Subsistema

opcode	BI	DI	EXE	MEM	RW	Total
add	40	20	40		20	120ηs
addi	40	20	40		20	120ηs
sub	40	20	40		20	120ηs
and	40	20	40		20	120ηs
andi	40	20	40		20	120ηs
or	40	20	40		20	120ηs
ori	40	20	40		20	120ηs
nor	40	20	40		20	120ηs
xor	40	20	40		20	120ηs
lw	40	20	40	40	20	160ηs
SW	40	20	40	40	_	140ηs
beq	40	20	20		_	80ηs
bne	40	20	20		_	80ηs
slt	40	20	20		20	80ηs
j	40	20			_	60ηs
jr	40	20			_	60ηs
jal	40	20			20	80ηs
lui	40	20			20	80ηs

<u>Formulário</u>

Desempenho	$Desempenho_x = \frac{1}{TempoExec_x}$				
Desempenho Relativo	$n = \frac{Desempenho_x}{Desempenho_y}$				
Desempenho da CPU	tempo de exec da CPU = $\#ciclos$ de $clock \times per$ íodo do $clock$				
CPI _{multi}	$CPI = rac{\sum_{i=1}^{N} \#ciclos\ da\ instrução\ tipo(i)}{N}$				
Tempo _{CPU}	$tempo_{CPU} = rac{\#instruções imes CPI}{período de clock}$				
Lei de Amdahl	$s(n) = \frac{1}{B + \frac{1 - B}{n}}$				