

MAT1161 – Cálculo de Uma Variável P2 – 24 de outubro de 2017

Nome Legível	:					
Assinatura	:					
Matrícula	:				 Turma : _	
		ſ			7	

Questao	Valor	Grau	Revisao
1^a	1,5		
2^a	1,5		
3^a	2,0		

T2 (2,0)	P2 Maple (3,0)	P2 (5,0)	Total (10,0)	Revisão

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções. Não é permitido destacar folhas da prova.
- A prova é sem consulta a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.
- O aluno não poderá sair de sala enquanto estiver fazendo a prova.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara, rigorosa e de preferência sucinta. Respostas sem justificativas não serão consideradas.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Não é permitido o uso de calculadora ou qualquer dispositivo eletrônico.
- Esta prova possui 3 questões. Confira.

Questão 1

Considere a função $f:[-\pi,2\pi]\to\mathbb{R}$ dada por:

$$f(x) = 2\pi + x - \cos(x)$$

(a) Determine, caso exista(m), o(s) intervalo(s) de crescimento e decrescimento de f. Observe que $f'(x) = 1 + \operatorname{sen}(x)$, cujo gráfico está esboçado abaixo:

Segue então que f'(x) > 0, $\forall x \in [-\pi, 2\pi]$, ou seja, o intervalo de crescimento de f é $[-\pi, 2\pi]$, e o intervalo de decrescimento não existe.

(b) Determine, caso exista(m), o(s) intervalo(s) onde o gráfico de f tem concavidade voltada para cima e onde tem concavidade voltada para baixo.

Observe que $f''(x) = \cos(x)$, cujo gráfico está esboçado abaixo:

Segue então que os intervalos onde gráfico de f tem concavidade voltada para cima $(f''(x) \ge 0)$ são $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \left[\frac{3\pi}{2}, 2\pi\right]$, e os intervalos onde o gráfico de f tem concavidade voltada para baixo $(f''(x) \le 0)$ são $\left[-\pi, -\frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

(c) Faça um esboço do gráfico de f indicando explicitamente o(s) ponto(s) de máximo, de mínimo e de inflexão. Esboce também a(s) reta(s) tangente(s) ao gráfico de f no(s) ponto(s) em que a derivada é zero e no(s) ponto(s) de inflexão.

Questão 2

Considere a função $f(x) = \int_0^{2x+2} t^2 e^t dt$.

(a) Determine a primeira e a segunda derivadas de f.

Observe que
$$f(x) = g(h(x))$$
, onde $g(x) = \int_0^x t^2 e^t dt$ e $h(x) = 2x + 2$. Logo,
$$f'(x) = g'(h(x)) \cdot h'(x) = (2x + 2)^2 e^{2x + 2} \cdot 2$$

$$f''(x) = 2 \left[2(2x + 2) \cdot 2 \cdot e^{2x + 2} + (2x + 2)^2 e^{2x + 2} \cdot 2 \right]$$

$$= 8(2x + 2)e^{2x + 2} + 4(2x + 2)^2 e^{2x + 2}$$

$$= e^{2x + 2} (16x^2 + 48x + 32)$$

(b) Determine as abscissas (coordenadas x) dos pontos de inflexão do gráfico de f. Justifique sua resposta.

$$f''(x) = e^{2x+2}(16x^2 + 48x + 32) = 0 \Leftrightarrow x = -2, -1$$

Estudo de sinal de f''(x):

	$-\infty < x < -2$	-2 < x < -1	$-1 < x < \infty$
e^{2x+2}	+	+	+
$16x^2 + 48x + 32$	+	_	+
f''(x)	+	_	+

Conclui-se que as abscissas dos pontos de inflexão do gráfico de f são x=-2 e x=-1, pois são nestes valores que f''(x) muda de sinal.

(c) Determines as ordenadas (coordenadas y) dos pontos de inflexão do gráfico de f. Ponto de inflexão (-1, f(-1)):

$$f(-1) = \int_0^0 t^2 e^t \ dt = 0$$

Ponto de inflexão (-2, f(-2)):

$$f(-2) = \int_0^{-2} t^2 e^t \ dt$$

Calculando primeiramente a integral indefinida $\int t^2 e^t dt$ por partes:

$$u = t^2 \Rightarrow du = 2t dt$$
$$dv = e^t dt \Rightarrow v = e^t$$

Logo,

$$\int t^2 e^t \ dt = t^2 e^t - \int 2t e^t \ dt = t^2 e^t - 2 \int t e^t \ dt$$

Calcularemos a integral $\int te^t dt$ também por partes:

$$u = t \Rightarrow du = dt$$
$$dv = e^t dt \Rightarrow v = e^t$$

Logo,

$$\int t^2 e^t \ dt = t^2 e^t - 2 \left[t e^t - \int e^t \ dt \right] = t^2 e^t - 2 t e^t + 2 e^t + c$$

Assim,

$$f(-2) = \int_0^{-2} t^2 e^t dt = \left(4e^{-2} + 4e^{-2} + 2e^{-2}\right) - (0 - 0 + 2) = \frac{10}{e^2} - 2$$

Questão 3

Sejam f e g funções dadas por

$$f(x) = 1 + 2^{1-x}$$
 e $g(x) = 1 + 2^{x-1}$

e considere R a região dada por

$$R = \{(x, y) \in \mathbb{R} \mid f(x) \le y \le g(x), \ x \le 3 \text{ e } y \le 3\}.$$

(a) Esboce a região R.

Solução: Note que

$$f(x) = g(x) \Leftrightarrow 2^{1-x} = 2^{x-1} \Leftrightarrow 1 - x = x - 1 \Leftrightarrow x = 1$$
 e $f(1) = g(1) = 2$.

Além disso,

$$f(3) = \frac{5}{4}$$
, e $g(x) = 3 \Leftrightarrow 2^{x-1} = 2 \Leftrightarrow x = 2$.

Logo,

(b) Escreva a área da região R como uma soma de duas integrais na variável x.

Solução: Segue do item (a) que

$$\text{Área}(R) = \int_{1}^{2} g(x) - f(x) dx + \int_{2}^{3} 3 - f(x) dx
= \int_{1}^{2} (1 + 2^{x-1}) - (1 + 2^{1-x}) dx + \int_{2}^{3} 3 - (1 + 2^{1-x}) dx$$

(c) Escreva a área da região R como uma soma de duas integrais na variável y.

Solução: Como

$$y = f(x) \Leftrightarrow y = 1 + 2^{1-x} \Leftrightarrow y - 1 = 2^{1-x} \Leftrightarrow \log_2(y - 1) = 1 - x \Leftrightarrow x = 1 - \log_2(y - 1)$$

e

$$y=g(x) \Leftrightarrow y=1+2^{x-1} \Leftrightarrow y-1=2^{x-1} \Leftrightarrow \log_2(y-1)=x-1 \Leftrightarrow x=1+\log_2(y-1),$$
 segue do item (a) que

$$\operatorname{Área}(R) = \int_{\frac{5}{4}}^{2} 3 - (1 - \log_2(y - 1)) \, dy + \int_{2}^{3} 3 - (1 + \log_2(y - 1)) \, dy$$

(d) Calcule a área da região R.

Solução: Usando o item (b):

E, usando o item (c):

$$\begin{split} \text{Área}(R) &= \int_{\frac{5}{4}}^{2} 3 - (1 - \log_{2}(y - 1)) \, dy + \int_{2}^{3} 3 - (1 + \log_{2}(y - 1)) \, dy \\ &= \int_{\frac{5}{4}}^{2} 2 + \log_{2}(y - 1) \, dy + \int_{2}^{3} 2 - \log_{2}(y - 1) \, dy \\ &= \left(2y + (y - 1) \log_{2}(y - 1) - \frac{y - 1}{\ln(2)} \right) \Big|_{\frac{5}{4}}^{2} + \left(2y - (y - 1) \log_{2}(y - 1) + \frac{y - 1}{\ln(2)} \right) \Big|_{2}^{3} \\ &= \left(4 + 0 - \frac{1}{\ln(2)} \right) - \left(\frac{5}{2} + \frac{1}{4} \log_{2} \left(\frac{1}{4} \right) - \frac{1}{4} \frac{1}{\ln(2)} \right) + \left(6 - 2 \log_{2}(2) + \frac{2}{\ln(2)} \right) - \left(4 - 0 + \frac{1}{\ln(2)} \right) \\ &= \left(4 - \frac{1}{\ln(2)} \right) - \left(\frac{5}{2} - \frac{1}{2} - \frac{1}{4} \frac{1}{\ln(2)} \right) + \left(6 - 2 + \frac{2}{\ln(2)} \right) - \left(4 + \frac{1}{\ln(2)} \right) \\ &= 2 + \frac{1}{4 \ln(2)}, \end{split}$$

já que

$$\frac{1}{4}\log_2\left(\frac{1}{4}\right) = \frac{1}{4}\log_2(2^{-2}) = \frac{1}{4}(-2) = -\frac{1}{2}.$$