# Quantifier elimination for counting extensions of Presburger arithmetic

Dmitry Chistikov<sup>1</sup>, Christoph Haase<sup>2</sup>, **Alessio Mansutti**<sup>2</sup>

<sup>1</sup> University of Warwick, UK <sup>2</sup> University of Oxford, UK





# Presburger arithmetic

The first-order theory of  $\langle \mathbb{Z}, 0, 1, +, \leq \rangle$ 

"Every integer is either even or odd"

$$\forall \mathtt{x}\,\exists \mathtt{y}:\mathtt{x}=2\mathtt{y}\vee\mathtt{x}=2\mathtt{y}+1$$



M. Presburger

### Why Presburger arithmetic?

- Number theory is (highly) undecidable
- Presburger arithmetic is decidable [Presburger, '29]
- Wide range of applications in verification, program synthesis, compiler optimisation...
- Starting point of several algorithmic paradigms

Quantifier elimination [Presburger, '29]

$$\exists x: arphi_{\mathrm{QF}}(x,\mathbf{y}) \ \equiv \ \psi_{\mathrm{QF}}(\mathbf{y})$$
 QF: quantifier-free

#### Quantifier elimination [Presburger, '29]

$$\exists x : \varphi_{\mathsf{QF}}(x, \mathbf{y}) \equiv \psi_{\mathsf{QF}}(\mathbf{y})$$

QF: quantifier-free

#### Automata techniques [Büchi, '60]

$$z = x + y \quad \rightsquigarrow \quad \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{bmatrix} : \quad \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}, \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \\ \mathbf{0} \end{bmatrix} \quad \mathbf{0} \quad \mathbf{0} \end{bmatrix} \quad \mathbf{0} \quad$$

#### Quantifier elimination [Presburger, '29]

$$\exists x : \varphi_{\mathsf{QF}}(x, \mathbf{y}) \equiv \psi_{\mathsf{QF}}(\mathbf{y})$$

QF: quantifier-free

#### Automata techniques [Büchi, '60]

$$z = x + y \quad \rightsquigarrow \quad \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{bmatrix} : \quad \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{0}$$

#### Semilinear sets [Ginsburg and Spanier, '66]

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{bmatrix} : \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \mathbb{N} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \cdot \mathbb{N}$$

#### Quantifier elimination [Presburger, '29]

$$\exists x : \varphi_{\mathsf{QF}}(x, \mathbf{y}) \equiv \psi_{\mathsf{QF}}(\mathbf{y})$$

QF: quantifier-free

#### Automata techniques [Büchi, '60]

$$z = x + y \quad \rightsquigarrow \quad \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{bmatrix} \cdot \quad \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\$$

#### Semilinear sets [Ginsburg and Spanier, '66]

 $\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{bmatrix} : \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \mathbb{N} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \cdot \mathbb{N}$ 

#### Quantifier elimination [Presburger, '29]

$$\exists x : \varphi_{\mathsf{QF}}(x, \mathbf{y}) \equiv \psi_{\mathsf{QF}}(\mathbf{y})$$

Automata techniques [Büchi, '60]

$$(\psi, \mathbf{y}) = \psi_{\mathsf{QF}}(\mathbf{y})$$



Semilinear sets [Ginsburg and Spanier, '66]

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{bmatrix} : \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \mathbb{N} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \cdot \mathbb{N}$$

QF: quantifier-free

Büchi arithmetic

Quantifier elimination [Presburger, '29]

$$\exists x: \varphi_{\mathrm{QF}}(x,\mathbf{y}) \ \equiv \ \psi_{\mathrm{QF}}(\mathbf{y})$$

Automata techniques [Büchi, '60]

$$z = x + y \quad \rightsquigarrow \quad \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{bmatrix} : \quad \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \quad \bigcirc \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \quad \bigcirc \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \quad \bigcirc \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \quad \bigcirc \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0}$$

Semilinear sets [Ginsburg and Spanier, '66]

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{bmatrix} : \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \mathbb{N} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \cdot \mathbb{N}$$

Counting quantifiers

QF: quantifier-free

Büchi arithmetic

#### Quantifier elimination [Presburger, '29]

$$\exists x: \varphi_{\mathsf{QF}}(x, \mathbf{y}) \ \equiv \ \psi_{\mathsf{QF}}(\mathbf{y})$$

Automata techniques [Büchi, '60]

$$z = x + y \quad \rightsquigarrow \quad \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{bmatrix} : \quad \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \quad \mathbf{0} \quad \mathbf{0}$$

Semilinear sets [Ginsburg and Spanier, '66]

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{bmatrix} : \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} \cdot \mathbb{N} + \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} \cdot \mathbb{N}$$

#### Counting quantifiers

QF: quantifier-free

Büchi arithmetic

**Applications in compiler optimisation** [Verdoolaege et al., Algorithmica 48, '07]:

"How many times is a loop executed?"  $\rightsquigarrow \varphi(\mathbf{z},x) \equiv x = \#\{\mathbf{y} \in \mathbb{Z}^d \mid A\mathbf{y} \geq B\mathbf{z} + \mathbf{c}\}$ 

**Applications in compiler optimisation** [Verdoolaege et al., Algorithmica 48, '07]:

"How many times is a loop executed?"  $\rightsquigarrow \varphi(\mathbf{z}, x) \equiv x = \#\{\mathbf{y} \in \mathbb{Z}^d \mid A\mathbf{y} \geq B\mathbf{z} + \mathbf{c}\}$ 

#### **Counting quantifiers:**

 $\exists^{=x}\mathbf{y}: \varphi(\mathbf{y},\mathbf{z},x)$  "there are x many distinct vectors  $\mathbf{y}$  that satisfy  $\varphi$ "

**Applications in compiler optimisation** [Verdoolaege et al., Algorithmica 48, '07]:

"How many times is a loop executed?"  $\rightsquigarrow \varphi(\mathbf{z}, x) \equiv x = \#\{\mathbf{y} \in \mathbb{Z}^d \mid A\mathbf{y} \geq B\mathbf{z} + \mathbf{c}\}$ 

#### **Counting quantifiers:**

$$\exists^{=x} \mathbf{y} : \varphi(\mathbf{y}, \mathbf{z}, x)$$
 "there are  $x$  many distinct vectors  $\mathbf{y}$  that satisfy  $\varphi$ "

### Theorem (folklore)

Presburger arithmetic enriched with counting quantifiers is undecidable.

**Applications in compiler optimisation** [Verdoolaege et al., Algorithmica 48, '07]:

"How many times is a loop executed?"  $\rightsquigarrow \varphi(\mathbf{z}, x) \equiv x = \#\{\mathbf{y} \in \mathbb{Z}^d \mid A\mathbf{y} \geq B\mathbf{z} + \mathbf{c}\}$ 

#### **Counting quantifiers:**

$$\exists^{=x}\mathbf{y}: \varphi(\mathbf{y},\mathbf{z},x)$$
 "there are  $x$  many distinct vectors  $\mathbf{y}$  that satisfy  $\varphi$ "

### Theorem (folklore)

Presburger arithmetic enriched with counting quantifiers is undecidable.

#### Proof.

$$\varphi(x,y,z) \stackrel{\text{\tiny def}}{=} \exists^{=x}(a,b): 1 \leq a \leq y \land 1 \leq b \leq z \quad \text{if and only if} \quad x = y \cdot z.$$

**Applications in compiler optimisation** [Verdoolaege et al., Algorithmica 48, '07]:

"How many times is a loop executed?"  $\rightsquigarrow \varphi(\mathbf{z}, x) \equiv x = \#\{\mathbf{y} \in \mathbb{Z}^d \mid A\mathbf{y} \geq B\mathbf{z} + \mathbf{c}\}$ 

#### **Counting quantifiers:**

 $\exists^{=x} \mathbf{y} : \varphi(\mathbf{y}, \mathbf{z}, x)$  "there are x many distinct vectors  $\mathbf{y}$  that satisfy  $\varphi$ "

#### **Unary** counting quantifiers:

 $\exists^{=x}y: \varphi(x,y,\mathbf{z})$  "there are x many distinct integers y that satisfy  $\varphi$ "

Theorem (Apelt, '66; Schweikardt, '05)

Presburger arithmetic enriched with unary counting quantifiers is decidable.

## Examples

"The number of y satisfying  $\varphi$  is congruent to r modulo q"

$$\exists x: (\exists z: x-r=q\cdot z) \wedge \exists^{=x} y: \varphi$$

### **Examples**

"The number of y satisfying  $\varphi$  is congruent to r modulo q"

$$\exists x: (\exists z: x-r=q\cdot z) \land \exists^{=x}y: \varphi$$

"The number of y satisfying  $\varphi$  is the product of all primes in the interval  $[2,2^{2^n}]$ "

$$\exists x: \ell_n(x) \wedge \exists^{=x} y: \varphi$$

 $\left(\ell_n(x): x \text{ is the product of all primes in } [2,2^{2^n}]; \text{ formula polynomial in } n \right)$ 

**Input:** A Presburger formula  $\varphi$  featuring unary counting quantifiers.

**Output:** A solution for  $\varphi$ , or  $\bot$  if no solution exists.

#### **Upper bound:** TOWER [Schweikardt, '05]

- quantifier elimination procedure
- $\bullet \ \exists^{=x} y : \varphi_{\mathsf{QF}} \ \rightsquigarrow \ \psi_{\mathsf{PA}} \ \rightsquigarrow \ \psi_{\mathsf{QF}}$
- each "⋄→" costs one exponential

#### Lower bound: 2AEXP<sub>POLY</sub>

 same as (standard) Presburger [Fischer and Rabin, '74]

**Input:** A Presburger formula  $\varphi$  featuring unary counting quantifiers.

**Output:** A solution for  $\varphi$ , or  $\bot$  if no solution exists.

### **Upper bound:** TOWER [Schweikardt, '05]

- quantifier elimination procedure
- $\bullet \ \exists^{=x} y : \varphi_{\mathsf{QF}} \ \rightsquigarrow \ \psi_{\mathsf{PA}} \ \rightsquigarrow \ \psi_{\mathsf{QF}}$
- each "→" costs one exponential

#### Lower bound: 2AEXPPOIX

same as (standard) Presburger
[Fischer and Rabin, '74]

#### Modulo counting quantifiers:

$$\exists^{(q,r)}y:\varphi \quad \equiv \quad \exists x:x\equiv_q r \land \exists^{=x}y:\varphi$$

"The number of y satisfying  $\varphi$  is congruent to r modulo q"

**Input:** A Presburger formula  $\varphi$  featuring unary counting quantifiers.

**Output:** A solution for  $\varphi$ , or  $\bot$  if no solution exists.

#### **Upper bound:** TOWER [Schweikardt, '05]

- quantifier elimination procedure
- $\bullet \ \exists^{=x} y : \varphi_{\mathsf{QF}} \ \rightsquigarrow \ \psi_{\mathsf{PA}} \ \rightsquigarrow \ \psi_{\mathsf{QF}}$
- each "⋄→" costs one exponential

#### Lower bound: 2AEXP<sub>POLY</sub>

 same as (standard) Presburger [Fischer and Rabin, '74]

#### Theorem 1 (Habermehl and Kuske, FOSSACS'15)

Presburger arithmetic enriched with  $\exists^{(q,r)}$  is decidable in 2ExpSpace.

**Input:** A Presburger formula  $\varphi$  featuring unary counting quantifiers.

**Output:** A solution for  $\varphi$ , or  $\bot$  if no solution exists.

### **Upper bound:** TOWER [Schweikardt, '05]

- quantifier elimination procedure
- $\bullet \ \exists^{=x} y : \varphi_{\mathsf{QF}} \ \rightsquigarrow \ \psi_{\mathsf{PA}} \ \rightsquigarrow \ \psi_{\mathsf{QF}}$
- each "⋄→" costs one exponential

#### Lower bound: 2AEXP<sub>POLY</sub>

same as (standard) Presburger
[Fischer and Rabin, '74]

In this paper: Revised quantifier elimination procedure for PAC (= PA +  $\exists^{=x}$ ):

- elimination of a single  $\exists^{=x}$  costs one exponential
- shows 2ExpSpace membership for a fragment of PAC that generalizes  $\exists^{(q,r)}$ .

**Input:** A set T of linear terms in d variables. **Output:** A tautology  $\bigvee_{i=1}^{o} O_i$  where  $O_i$  is an ordering of terms.

**Ordering:**  $t_1 \leq t_2 \leq \cdots \leq t_n$  with  $T = \{t_1, \dots, t_n\}$ .

**Input:** A set T of linear terms in d variables. **Output:** A tautology  $\bigvee_{i=1}^{o} O_i$  where  $O_i$  is an ordering of terms.

**Ordering:**  $t_1 \leq t_2 \leq \cdots \leq t_n$  with  $T = \{t_1, \dots, t_n\}$ .

#### Lemma

The number of orderings is bounded by  $n^{O(d)}$ .

**Input:** A set T of linear terms in d variables. **Output:** A tautology  $\bigvee_{i=1}^{o} O_i$  where  $O_i$  is an ordering of terms.

**Ordering:**  $t_1 \leq t_2 \leq \cdots \leq t_n$  with  $T = \{t_1, \dots, t_n\}$ .

#### Lemma

The number of orderings is bounded by  $n^{O(d)}$ .

A Boolean combination  $\varphi$  of constraints  $y = r_i \mod m$ . Input:

**Output:** A function f(x,z) that returns  $\#\{y\in[x,z]\mid y$  satisfies  $\varphi\}$ .

**Note:** given residue classes of x and z mod m, f(x,z) is of the form  $q \left| \frac{z-x}{r} \right| + r$ .



The number of orderings is bounded by  $n^{O(d)}$ .

**Input:** A Boolean combination  $\varphi$  of constraints  $y = r_j \mod m$ .

**Output:** A function f(x,z) that returns  $\#\{y\in[x,z]\mid y$  satisfies  $\varphi\}$ .

**Note:** given residue classes of x and  $z \mod m$ , f(x,z) is of the form  $q\lfloor \frac{z-x}{m} \rfloor + r$ .

Our QE procedure translate  $\exists^{=x_1}y:\varphi(y,x_1,\dots,x_d)$  into

ullet Le.g. if there are infinitely many y satisfying arphi), or

- ullet L (e.g. if there are infinitely many y satisfying  $\varphi$ ), or
- a formula of the form

$$\bigvee_{\substack{i \in [1,o] \\ f: \{x_1, \dots, x_d\} \to [0,m-1]}} t_1^{(i)} \leq \dots \leq t_n^{(i)} \wedge \Big(\bigwedge_{j=1}^d x_j \equiv_m f(x_j)\Big) \wedge m \cdot x_1 = \sum_{k=1}^{n-1} q_k^{(i,f)} (t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}$$

- ullet L (e.g. if there are infinitely many y satisfying arphi), or
- a formula of the form

$$\bigvee_{\substack{i \in [1,o] \\ f: \{x_k,\dots,x_k\} \rightarrow [0,m-1]}} \underbrace{t_1^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} \wedge \Big(\bigwedge_{j=1}^d x_j \equiv_m f(x_j)\Big) \wedge m \cdot x_1 = \sum_{k=1}^{n-1} q_k^{(i,f)} (t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}$$

- ullet L (e.g. if there are infinitely many y satisfying  $\varphi$ ), or
- a formula of the form

$$\bigvee_{\substack{i \in [1,o] \\ f: \{x_1,\dots,x_d\} \rightarrow [0,m-1]}} \underbrace{t_1^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} \wedge \Big( \underbrace{\bigwedge_{j=1}^d x_j \equiv_m f(x_j)}_{\text{residue classes}} \Big) \wedge m \cdot x_1 = \sum_{k=1}^{n-1} q_k^{(i,f)} (t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}$$

- ullet L (e.g. if there are infinitely many y satisfying  $\varphi$ ), or
- a formula of the form

$$\bigvee_{\substack{i \in [1,o] \\ f: \{x_1,\dots,x_d\} \rightarrow [0,m-1]}} \underbrace{t_1^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} \wedge \Big( \underbrace{\bigwedge_{j=1}^d x_j \equiv_m f(x_j)}_{\text{ residue classes}} \Big) \wedge \underbrace{m \cdot x_1 = \sum_{k=1}^{n-1} q_k^{(i,f)} (t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting}} + \underbrace{k_1^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} \wedge \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ residue classes}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ counting}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}}$$

Our QE procedure translate  $\exists^{=x_1}y:\varphi(y,x_1,\ldots,x_d)$  into

- ullet L (e.g. if there are infinitely many y satisfying  $\varphi$ ), or
- a formula of the form

$$\bigvee_{\substack{i \in [1,o] \\ f: \{x_1,\dots,x_d\} \rightarrow [0,m-1]}} \underbrace{t_1^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} \wedge \Big( \underbrace{\bigwedge_{j=1}^d x_j \equiv_m f(x_j)}_{\text{ residue classes}} \Big) \wedge \underbrace{m \cdot x_1 = \sum_{k=1}^{n-1} q_k^{(i,f)} (t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting}} + \underbrace{k_1^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} \wedge \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ residue classes}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ counting}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ counting}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}}$$

#### The source of "towerness":

ullet First step of the procedure normalises the coefficients of y to -1 or 1.

Our QE procedure translate  $\exists^{=x_1}y:\varphi(y,x_1,\ldots,x_d)$  into

- ullet L (e.g. if there are infinitely many y satisfying  $\varphi$ ), or
- a formula of the form

$$\bigvee_{\substack{i \in [1,o] \\ f: \{x_1,\dots,x_d\} \rightarrow [0,m-1]}} \underbrace{t_1^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} \wedge \Big( \underbrace{\bigwedge_{j=1}^d x_j \equiv_m f(x_j)}_{\text{ residue classes}} \Big) \wedge \underbrace{m \cdot x_1 = \sum_{k=1}^{n-1} q_k^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting}} + \underbrace{k_1^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} \wedge \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ residue classes}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ counting}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ residue classes}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering}} + \underbrace{k_2^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ orde$$

#### The source of "towerness":

- First step of the procedure normalises the coefficients of y to -1 or 1.
- This adds a constraint  $y \equiv_C 0$  where C is the LCM of all coefficients of y.

Our QE procedure translate  $\exists^{=x_1}y:\varphi(y,x_1,\ldots,x_d)$  into

- ullet L (e.g. if there are infinitely many y satisfying  $\varphi$ ), or
- a formula of the form

$$\bigvee_{\substack{i \in [1,o] \\ f: \{x_1,\dots,x_d\} \rightarrow [0,m-1]}} \underbrace{t_1^{(i)} \leq \dots \leq t_n^{(i)}}_{\text{ ordering }} \wedge \Big( \underbrace{\bigwedge_{j=1}^d x_j \equiv_m f(x_j)}_{\text{ residue classes }} \Big) \wedge \underbrace{m \cdot x_1 = \sum_{k=1}^{n-1} q_k^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^{(i)} - t_k^{(i)}) + r_k^{(i,f)}}_{\text{ counting }} + \underbrace{\sum_{j=1}^{n-1} q_j^{(i,f)}(t_{k+1}^$$

#### The source of "towerness":

- ullet First step of the procedure normalises the coefficients of y to -1 or 1.
- This adds a constraint  $y \equiv_C 0$  where C is the LCM of all coefficients of y.
- A priori, across all orderings and residue classes, there are a lot of distinct coefficients in the counting part of the output formula.

$$\exists x : \psi(x, \mathbf{z}) \land \exists^{=x} y : \varphi(y, \mathbf{z})$$

where  $\psi$  is monadically decomposable on x:

$$\exists x : \psi(x, \mathbf{z}) \land \exists^{=x} y : \varphi(y, \mathbf{z})$$

where  $\psi$  is monadically decomposable on x:

$$\psi(x,\mathbf{z}) \ \equiv \ \bigvee\nolimits_{i \in I} \psi_i(x) \wedge \gamma_i(\mathbf{z}).$$

$$\exists x : \psi(x, \mathbf{z}) \land \exists^{=x} y : \varphi(y, \mathbf{z})$$

where  $\psi$  is monadically decomposable on x:

$$\psi(x,\mathbf{z}) \ \equiv \ \bigvee\nolimits_{i\in I} \psi_i(x) \wedge \gamma_i(\mathbf{z}).$$

#### **Examples:**

"The number of y satisfying  $\varphi$  is congruent to x' modulo q"

$$\exists x: x \equiv_q x' \land \exists^{=x} y: \varphi$$

$$\exists x : \psi(x, \mathbf{z}) \land \exists^{=x} y : \varphi(y, \mathbf{z})$$

where  $\psi$  is monadically decomposable on x:

$$\psi(x, \mathbf{z}) \equiv \bigvee_{i \in I} \psi_i(x) \wedge \gamma_i(\mathbf{z}).$$

#### **Examples:**

"The number of y satisfying  $\varphi$  is congruent to x' modulo q"

$$\exists x: \bigvee\nolimits_{r \in [0,q-1]} x \equiv_q r \land r \equiv_q x' \land \exists^{=x} y: \varphi$$

$$\exists x : \psi(x, \mathbf{z}) \land \exists^{=x} y : \varphi(y, \mathbf{z})$$

where  $\psi$  is monadically decomposable on x:

$$\psi(x,\mathbf{z}) \ \equiv \ \bigvee\nolimits_{i\in I} \psi_i(x) \wedge \gamma_i(\mathbf{z}).$$

#### **Examples:**

"The number of y satisfying  $\varphi$  is congruent to x' modulo q"

$$\exists x : x \equiv_q x' \land \exists^{=x} y : \varphi$$

"The number of y satisfying  $\varphi$  is the product of all primes in  $[2,2^{2^n}]$ "

$$\exists x: \ell_n(x) \land \exists^{=x} y: \varphi$$

$$\exists x : \psi(x, \mathbf{z}) \land \exists^{=x} y : \varphi(y, \mathbf{z})$$

where  $\psi$  is monadically decomposable on x:

$$\psi(x,\mathbf{z}) \ \equiv \ \bigvee\nolimits_{i\in I} \psi_i(x) \wedge \gamma_i(\mathbf{z}).$$

#### Examples:

"The number of y satisfying  $\varphi$  is congruent to x' modulo q"

$$\exists x : x \equiv_q x' \land \exists^{=x} y : \varphi$$

"The number of y satisfying  $\varphi$  is the product of all primes in  $[2,2^{2^n}]$ "

$$\exists x: \ell_n(x) \wedge \exists^{=x} y: \varphi$$

**Note I:** any Presburger formula with one free variable is monadically decomposable.

$$\exists x : \psi(x, \mathbf{z}) \land \exists^{=x} y : \varphi(y, \mathbf{z})$$

where  $\psi$  is monadically decomposable on x:

$$\psi(x,\mathbf{z}) \ \equiv \ \bigvee\nolimits_{i\in I} \psi_i(x) \wedge \gamma_i(\mathbf{z}).$$

#### **Examples:**

"The number of y satisfying  $\varphi$  is congruent to x' modulo q"

$$\exists x: x \equiv_q x' \land \exists^{=x} y: \varphi$$

"The number of y satisfying  $\varphi$  is the product of all primes in  $[2,2^{2^n}]$ "

$$\exists x: \ell_n(x) \land \exists^{=x} y: \varphi$$

**Note II:** monadic decomposability for PA is decidable [Libkin, TOCL'03].

$$\exists x: \psi(x, \mathbf{z}) \land \exists^{=x} y: \varphi(y, \mathbf{z})$$

where  $\psi$  is monadically decomposable on x:

#### Theorem

The monadically-guarded fragment of PAC is in  $2\mathrm{ExpSpace}$ .

$$\exists x : \psi(x, \mathbf{z}) \land \exists^{=x} y : \varphi(y, \mathbf{z})$$

where  $\psi$  is monadically decomposable on x.

#### Theorem

The monadically-guarded fragment of PAC is in 2ExpSpace.

What about 2AExp<sub>Poly</sub>-complete fragments? Yes, as long as each monadic guard  $\psi$  has all solutions of magnitude doubly exponential in  $|\psi|$ .

#### Conclusion

In this paper: New quantifier elimination procedure for PAC:

- $\bullet$  elimination of a single  $\exists^{=x}$  costs one exponential
- ullet shows 2ExpSpace membership for the monadically-guarded fragment.

#### Conclusion

In this paper: New quantifier elimination procedure for PAC:

- elimination of a single  $\exists^{=x}$  costs one exponential
- ullet shows 2ExpSpace membership for the monadically-guarded fragment.

One take-away message: The concept of monadic decomposition brings strong complexity advantages (see also [Libkin, TOCL'03]).

#### Conclusion

In this paper: New quantifier elimination procedure for PAC:

- elimination of a single  $\exists^{=x}$  costs one exponential
- shows 2ExpSpace membership for the monadically-guarded fragment.

One take-away message: The concept of monadic decomposition brings strong complexity advantages (see also [Libkin, TOCL'03]).

Wide open problem: Exact complexity of PAC is still not known.