Power Management in Embedded Linux with a Co-Processor

Vaibhav Bedia (vaibhav.bedia@ti.com)

Texas Instruments

AM335x System Block Diagram

PRCM can use some help

IPC Mechanism

Overall flow

PM Feature Split

PM Feature	Traditional Systems	AM335x
Reset Control	\checkmark	\checkmark
Wakeup from sleep state	\checkmark	\checkmark
System Clock Disable	✓	\checkmark
SRAM State Management	\checkmark	\checkmark
Power Domain State Management	\checkmark	√
Clock Management	✓	*
PLL Management	✓	*
PMIC Control	\checkmark	*
Driver Context save and restore	\checkmark	\checkmark
IO Pad Optimization for suspend state	✓	*

Key

✓ - HW

✓- MPU

✓- PM Co-Processor

* – Flexibility to do in

PM Co-Processor

The right way forward

Reduces HW complexity

- Flexibility
 - Overall functionality design and SW stack
 - Develop custom algorithm to optimize power consumption

Helps workaround some HW bugs

- Idle state transition assisted by Co-Processor
 - Want same power savings as suspend state
 - Co-Processor for C-state entry and exit
 - Why?
 - Co-Processor should be ready to take the command at all times

Idle tied to MPU

- Wakeup capability
 - Not all peripherals have it
 - No way to come back from some C-states

- Calls for an additional constraint
 - Wakeup constraint Prevent entry to C-states
 - Driver control over constraint?

- PM layer init dependent on a binary blob
 - Requires Firmware API
 - Co-Processor code is available online...
 - Could be blocked till user-space comes up
 - •Use initramfs?
 - C-states or OPP gets added or removed at runtime
 - Ensure that there's no static dependency

- PMIC driver on Co-Processor?
 - Parts of I2C/GPIO driver on Co-Processor
 - Hooking up the regulator f/w with Co-Processor

Future work

- Standardize the message passing scheme
 - Alignment for making things generic
- Passing configuration data to Co-Processor
 - Extend DT to configure Co-Processor based on boards
 - Current use-cases
 - Optimizing IO pad configuration for the board
 - PMIC info
 - ...

Advantages

- Interfacing the PMIC with the CM3
 - Most generic solution since not tied to a PMIC
 - Control can be from Co-Processor to keep MPU powered down
- Ability to workaround HW and ROM bugs
 - Bugs around "change of mind" (suspend -> don't suspend)
 scenarios
- Test-bed for future PM features
 - Test codes on Co-Processor to experiment
 - Move things to HW in future?

References

- AM335x Technical Information
 - www.ti.com/am335x
- AM335x PM Firmware code
 - http://arago-project.org/git/projects/?p=am33xcm3.git;a=summary

Requirements

- Co-processor aware idle state entry/exit
- Driver constraints for indicating wakeup capability in deeper idle states

Backup

