

Knowledge And Practice

GUJARAT ENERGY TRANSMISSION CORPORATION LTD TRANSMISSION DIVISION VIRAMGAM S'NAGAR CIRCLE

HAND BOOK

66KV SUB-STATION

M.G. PRAJAPATI PO-I 220KV BALA S/S

Email:mprajapati116@gmail.com

-: Message :-

66kv सजर्र्टेशनमां ओपर्टेशन अने मेहन्टेनसनुं डाम डरता मारा रहाइमित्रोने आ जुड "Hand book of 66kv sub-station" अर्पण डरतां हुं आनंहनी वागणी अनुलवुं छुं. तेनो छपयोग डरीने "Knowledge and practice" सूत्रनो छपयोग थशे तो ओपर्टेशन अने मेहन्टेनसमां सुधारो आवे तेवी એडसीडन्ट न थाय तेवी हुं आशा राणुं छुं. ज्ञान अने प्रेडरीस वगर सवामती જળवाती नथी अने तेनो लोग आपण्णने, आपणी इंभीवीने अने GETCO ने लोगववी पडे छे. तो आ "Knowledge and practice" जुड वांयवाथी ओपर्टेशन डे मेहन्टेनस वजते એडसीडन्ट न थाय तो मारी महेनतनुं इल मने मणशे.

આ जुङनो ઉપયોગ કરી ફિડબેક આપશો તો મને આનંદ થશે.

आपनो साथी

Mahendra G.Prajapati Po-I 220kv Bala s/s TR.Dn.GETCO Viramgam mprajapati@gmail.com

INDEX

WHAT IS 66 KV SUB-STATION

SR NO	DISCRIPTION	PAGE NO.
01	SINGAL LINE DIAGRAM 66KV SUB-STATION	A,B
02	INTERNATIONAL CODE	01
03	SHORT NAME	03
04	66KV LA (Lightning Arrestor)	06
05	66KV CT (Current transformer)	08
06	66KV ISOLATOR	016
07	66KV PT (Potential Transformer)	017
08	66KV CB (Circuit Breaker)	021
09	66/11KV 10/15MVA TRANSFORMER	024
10	66KV CONTROL PANEL	034
11	1 PH. BATTERY CHARGER & BATTERY SET(100AH)	053
12	11KV PANEL	060
13	11KV CAPACITOR BENK & 11KV CONTROL PANEL	073
14	EARTHING	079
15	FAULT	080

CONTROL WIRING SYSTEM

USE IN ENGLISH WORD USE IN SYSTEM

> J MAIN DC

➤ **H** AC SUPPLY

A DIFFERNTIAL RELAY CT CIRCUITC PROTECTION CORE CT CIRCUIT

▶ D METERING CT CIRCUIT

▶ E PT CIRCUIT METERING & PROTECTION

➤ **K** CONTROL,TRIPPING, CLOSING,DR & INTERLOCK CIRCUIT

> L1 to L99 INDICATION CIRCUIT

> L101 to Above ANNUNCIATION CIRCUIT

> U,X SPARE CONTACT

➤ N TAP CHANGER CONTROL CIRCUIT

> P BUSBAR PROTECTION CONTROL CIRCUIT

> G SYNCRONISING CIRCUIT

> M AC MOTOR CIRCUIT

2. International code for equipment / relays

		Thational code for equipment 7 foldys
Sr.	International	Description of Equipment/relays
No.	code	Description of Equipment/relays
1	2	Time delay- Start/Stop relay
2	3	Checking of interlock relay
3	21	Distance protection relay
4	21XR	High speed tripping relay for distance relay-R Ph
5	21XY	High speed tripping relay for distance relay-Y Ph
6	21XB	High speed tripping relay for distance relay-B Ph
7	25	Check synchronizing relay
8	27	Under voltage relay
9	29	Isolator switch
10	29A/89A	Bus A isolator
11	29AX/89AX	Contact multiplier relay for Bus A isolator-Open
12	29AY/89AY	Contact multiplier relay for Bus A isolator-Close
13	29B/89B	Bus B isolator
14	29BX/89BX	Contact multiplier relay for Bus B isolator-Open
15	29BY/89BY	Contact multiplier relay for Bus B isolator-Close
16	29C/89C	Isolator
17	29CX/89CX	Contact multiplier relay for Breaker/Bypass isolator-Open
18	29CY/89CY	Contact multiplier relay for Breaker/Bypass isolator-Close
19	29D/89D	Transformer/Line isolator
20	29DX/89DX	Contact multiplier relay for Transformer/Line isolator-Open
21	29DY/89DY	Contact multiplier relay for Transformer/Line isolator-Close
22	29E/89E	Earth switch isolator
23	29T/89T	Transfer Bus isolator
24	29TX/89TX	Contact multiplier relay for Transfer Bus isolator-Open
25	29TY/89TY	Contact multiplier relay for Transfer Bus isolator-Close
26	30	Annunciation relay
27	32	Directional power (Rev power) relay
28	46	Negative phase sequence relay
29	49	Transformer thermal relay
30	50	O/C relay with Inst. Feature
31	50Z	Local breaker backup relay
32	51(51 R,51Y,51B)	O/C relay with time delay (with IDMT Chara.)
33	52	Circuit breaker
34	52a	Circuit breaker aux. Switch-Open
35	52b	Circuit breaker aux. Switch-Close
36	52X	Contact multiplier relay for Circuit breaker-Open
37	52Y	Contact multiplier relay for Circuit breaker-Close
38	55	Lead power factor relay
39	56	Field application relay
40	59	Over voltage relay
41	60	Voltage or current balance relay
42	63AX	Pressure switch for air pressure in Circuit breaker
43	63GX	Pressure switch for gas pressure in Circuit breaker
44	63AGX	Pressure switch for combined air & gas pressure in Circuit breaker
45	63AR	Pressure switch for air pressure for A/R operation of Circuit breaker
46	64 64 P	E/F relay
47 48	64 R	Restricted earth fault relay Directional O/C relay with time delay(with IDMT Chara)
49	67(67R,67Y,67B) 67N	Directional O/C relay with time delay(with IDMT Chara.) Directional E/F relay with time delay(with IDMT Chara.)
50	74	Alarm relay
	14	Alailli IGlay

51	75	PT selection relay
52	75A	PT selection relay for Bus A
53	75B	PT selection relay for Bus B
54	76	DC Over current relay
55	79	Auto re close relay
56	A08	DC supervision relay for DC source-1
57	80B	DC supervision relay for DC source-2
58	80D	AC supervision relay
59	81U	Under Frequency relay
60	810	Over Frequency relay
61	85	Carrier relay
62	85X1	Carrier send relay
63	85X2	Carrier receive relay
64	COX	Carrier healthy relay
65	86	Tripping relay with inter trip (Master trip)
66	87	Transformer differential relay
67	89	CT switching relay
68	89A	CT switching relay for Bus A
69	89B	CT switching relay for Bus B
70	89T	CT switching relay for Transfer Bus
71	95	Trip circuit supervision relay
72	95A	Trip circuit supervision relay for trip coil-1 for gang operated CB
73	95B	Trip circuit supervision relay for trip coil-2 for gang operated CB
74	96	Bus bar trip relay
75	99	Over flux relay
76	162	Pole discrepancy relay
77	186A	Auto-re close lockout relay (3-Ph trip)
78	186B	Auto-re close lockout relay (3-Ph trip)
79	195A,195B,195C	Trip circuit supervision relay for trip coil-1 for single pole operated CB
80	295A,295B,295C	Trip circuit supervision relay for trip coil-2 for single pole operated CB

3. Expanded Forms of Short Name

Sr. No.	Short name	Expanded name
1	TNC	Trip-Neutral-Close switch
2	LBB	Local breaker backup
3	O/C	Over current
4	EF	Earth fault
5	NIT	Normal-Intermediate-transfer switch
6	SOTF	Switch on to fault
7	VT	Voltage transformer
8	СТ	Current transformer
9	СВ	Circuit breaker
10	OLTC	On load tap changer
11	OFTC	Off load tap changer
12	REF	Restricted earth fault
13	NCT	Neutral current transformer
14	PSB	Power swing blocking
15	CS	Carrier send
16	CR	Carrier receive
17	IDMT	Inverse definite minimum time characteristic
18	NI	Normal inverse characteristic
19	VI	Very inverse characteristic
20	EI	Extreme inverse characteristic
21	CVT	Capacitive voltage transformer
22	PT	Potential transformer
23	UF	Under frequency
24	HS	High set
25	AAAC	All aluminum alloy conductor
26	ACSR	Aluminum conductor steel reinforced conductor
27	OSR	Oil surge relay
28	PRV	Pressure relief valve
29	OTI	Oil temp. indicator
30	WTI	Winding temp. indicator
31	VSS	Voltage selector switch
32	CSS	Current selector switch
33	VB	Bus voltage meter
34	VL	Line voltage meter
35	SSS	Synchronizing selector switch
36	TTS	Trip transfer switch
37	SSO	Synchronizing socket
38	TTB	Test terminal block
39	FS	Fuse
40	LK	Link
41	СР	Control panel
42	RP	Relay panel
43	HS	Heater switch
44	PS	Power socket

45	TH	Thermostat
46	CFL	Compact fluorescent lamp
47	DCSS	DC selector switch
48	ТВ	Terminal block
49	IVT	Intermediate voltage transformer
50	ICT	Intermediate current transformer
51	ICT	Interconnecting transformer
52	MK	Main kiosk box
53	MB	Marshalling box
54	CC	Coupling capacitor
55	LA	Lightening Arrestor
56	SA	Surge arrestor
57	TC	Trip coil
58	PLCC	Power line carrier communication
59	ES	Earth switch
60	CSS	Carrier selector switch
61	XLPE	Cross linked polyethelene
62	PILC	Paper insulated lead coated
63	PIR	Pre insertion resistor
64	DCRM	Dynamic contact resistance measurement
65	IR	Insulation resistance
66	PI	Polarization index
67	PD	Partial discharge
68	SFRA	Sweep frequency response analyzer
69	BDV	Break down voltage
70	DGA	Dissolve gas analysis
71	NDR	Neutral displacement relay
72	PPM	Particles per million
73	DPS	Distance protection scheme
74	OV	Over voltage
75	UV	Under voltage
76	DCDB	DC distribution board
77	DM water	Distilled mineral water
78	UST	Ungrounded specimen under test
79	GST	Grounded specimen under test
80	GST-g	Grounded specimen under test with guard
81	RVM	Recovery voltage measurement
82	MCI	Mechanical closing interlock
83	AR	Auto re close
84	THRC	Third harmonic resistive current
85	GIS	Gas insulated station
86	GPS	Global positioning system
87	AIS	Air insulated station
88	UHF	Ultra high frequency
89	DF	Dissipation factor
90	EMI	Electro magnetic interference
91	EMC	Electro magnetic compatibility
92	LED	Light emitting diode

93	LCD	Liquid crystal display
94	SCADA	Supervisory control and data acquisition
95	GC	Gas chromatograph
96	CRGO	Cold rolled grain oriented
97	ONAN	Oil natural air natural
98	ONAF	Oil natural air forced
99	OFAF	Oil forced air forced
100	MOG	Magnetic oil level gauge

4. -: LA (Lighting Arrester) :-

- આકાશી વીજળીથી સબસ્ટેશનના ઈકવીપમેન્ટના રક્ષણ માટે
- વધારે પડતા વોલ્ટેજ સર્ચ થી ઈકવીપમેન્ટના રક્ષણ માટે
- हवे गेपलेस LA नो ઉपयोग थाय छे.
- તેના નીચેના ભાગે સર્ચ કાઉન્ટર લગાવવામાં આવે છે.
- सर्च डाઉन्टर ઉपर Green, yellow, Red डबरना स्डेब होय છે. श्रे पोઇन्टर Green पर होय तो LA नी डंडीशन सारी छे. श्रे Yellow पर होय तो वीडेश छे. श्रे Red पर होय तो LA जहववुं पडे छे. ते वीडेश डरंट हर्शावे छे. तेनुं डाઉन्टर पए होय छे.
- LA नुं LCM (बीडे॰ डरंट भे॰रभेन्ट) सप्ताय चातुं होय त्यारे सावधानी थी भापी शडाय छे.
- LA नी IR वेल्यु (ઇन्स्युतेशन रेशुस्टन्स) 500v भेगर थी तेवी लोઇએ. वधारे kv थी तेवी लोઇએ नहीं કारण हे भेगरमां DC सप्ताय होय छे. आथी LA मां चार्ष रहीं लाय छे. ले LA DC थी चार्ष रही लाय तो घणी वजत डीस्चार्ष थर्घ शक्तुं नथी. तो तार्धन चार्लु करती वजते तार्धन ट्रीप थर्घ लाय छे.
-)प वेस LA ज्वास्ट थता नथी अने जीপ ઈકવीपभेन्ट नुङशान ङरता नथी. वधारे सर्थ वोव्हेथ डे आङाशी वीष्ट्रजीथी LA ઉपर नोर्भव होव थ पडे छे.

500V MEGGER VOLT

5. -: CT (Current Transformer) :-

- CT એક સ્ટેપડાઉન ટ્રાન્સફોર્મર છે. કરંટ ટ્રાન્સફોર્મર વગર પ્રોટેકશન સીસ્ટમ શકય નથી એટલે કે CT વગર સબસ્ટેશની રચના શકય નથી. પ્રાયમરી કરંટની વધારે કિંમતને સેકન્ડરીમાં 1A કે 5A માં રૂપાંતર કરે છે.
- કરંટ હંમેશાં કલોઝ (બંધ) સરકીટમાંથી જ વહે છે. આથી CT સરકીટ હંમેશા કલોઝ હોવી જોઈએ તેને ઓપન રાખી શકાય નહીં કારણ કે સેકન્ડરી થી પ્રાયમરી બેલેન્સ થાય છે. જો ઓપન સરકીટ હોય તો 1KV થી 2KV પેદા થાય છે. આથી CT ફાયર થાય છે.
- CT 66kv **કે** 11kv **હોય છે.**

66kv CT *માં ત્રણ કોર હોય છે. રેશિયો* 300-600/1-1-1A *અને* 100-150/1-1-1A *હોય છે.*

Core-1-0.5 ક્લાસનું હોય છે. જે મીટરીંગ માટે ઉપયોગ થાય છે.

Core-2- 5P10 ઓવરકરેટ રીલેમાં ઉપયોગ થાય છે.

Core-3 PS કલાસ જે ન્યુમરીકલ રીલેમાં ઉપયોગ થાય છે.

- CT ઉપર \mathbf{P}_1 અને \mathbf{P}_2 માર્ક કરેલા હોય છે. સામાન્ય રીતે \mathbf{P}_1 બસબાજુ રાખવામાં આવે છે.
- CT नुं टेस्टींग
- ૧) પોલારીટી ટેસ્ટ
- ર) રેશિયો ટેસ્ટ
- 3) नी पोर्धनट वोस्टे॰ टेस्ट
- אר Ten Delta ציב (א
- प) IR (धन्स्युतेशन रेजुस्टन्स) टेस्ट
- ξ) वायन्डींग रेजुस्टन्स લीड टेस्ट

જયારે CT નવી મુકવામાં આવે ત્યારે બધા જ ટેસ્ટ કરવા જરૂરી છે.

(૧) પોલારીટી ટેસ્ટ :-

પોલારીટી ટેસ્ટ એટલા માટે લેવો જોઈએ કે P_1 ની સાપેક્ષમાં S_1 મળવો જોઈએ એટલે પ્રાયમરી P_1 થી સેકન્ડરીમાં S_1 મળવો જોઈએ. તેને પોલારીટી ટેસ્ટ કહે છે. તેનો ટેસ્ટ કરવા માટે 1.5v નો સેલ એટલે કે DC સપ્લાયની જરૂર પડે છે. એક ગેલ્વેનો મીટર જે mA કે માઈકો AMP દર્શાવી શકે છે. ટેસ્ટ માટે Fig. માં દર્શાવેલ છે. દર્શાવ્યા પ્રમાણે 1.5V નો સેલ +Ve P_1 ને અને -Ve P_2 ને આપવામાં આવે ત્યારે S_1 અને S_2 ઉપર ગેલ્વેનોમીટર જોડવામાં આવે ત્યારે ગેલ્વેનોમીટર કલોકવાઈઝ દિશામાં મુવમેન્ટ થાય તો પોલારીટી બરાબર છે.

नोंध :- 1.5 V नो सेलने सामान्य रीते ट्य કरीने रीडींग लेवामां आवे छे. કारण के तेमां mA होय छे. शेथी ते श्वहीथी डीस्थार्थ थर्ध श्वय छे.

(२) रेशियो टेस्ट :-

सजस्टेशनमां वपराती CT नो रेशियो.

- 66kv **ะมย์ร** 300-600 / 1-1-1A, 100-150 / 1-1-1A,
- 11 kv **ะมเปร** 150-300/ 5 Amp , 600-900/ 5 Amp

रेशियो टेस्ट Fig. मां हर्शावेल छे. धारो डे लाईनमां वपराती CT नो रेशियो टेस्ट लेवो होय तो तेना माटे डरंट छंश्रेडशन डीट 100Amp होवी श्रेधंसे. सने mA मापी शडाय तेवुं A मीटर होवुं श्रेधंसे.

CT ना P_1 अने P_2 ઉपर वायर इनेङ्शन इरी $30~\mathrm{Amp}$ आपवामां आवेतो $1\mathrm{S}_1$ अने $1\mathrm{S}_2$ वच्छे એટલे हे $300~\mathrm{el}$ रेशियो टेस्टइरवो होय तो $30\mathrm{Amp}$ आपवाथी सेङ्इरीमां $1\mathrm{S}_1$ अने $1\mathrm{S}_2$ वच्छे $100\mathrm{mA}$ मणे छे. तो रेशियो जराजर छे. आवी रीते हरेङ CT नो रेशियो टेस्ट वर्ध शङाय छे.

E1.a. 300 Amp 1 Amp $= 1 \times 30 \times 300$ = 0.100 mA

(3) Knee (ની) પોઇન્ટ વોલ્ટેજ ટેસ્ટ :-

આ ટેસ્ટમાં ની પોઇન્ટ વોલ્ટેજ ટેસ્ટ કીટ હોવી જોઇએ તેમાં 0 થી 2000v અને 0 થી 100MA માપી શકાય તેવું મીટર હોવું જોઇએ. Fig. દર્શાવી છે. તે પ્રમાણે આ ટેસ્ટ Ps ક્લાસમાં લેવામાં આવે છે. Fig માં દર્શાવ્યા પ્રમાણે કનેક્શન કરી પહેલાં 100v થી mA માપવામાં આવે, પછી 500v થી mA માપવામાં આવે ત્યારબાદ CT ઉપર દર્શાવેલ 1000v કે 1400v આપી 25mA કે 30mA હોય તે પ્રમાણે મળવા જોઈએ.

(8) Ten Delta test:

આ ટેસ્ટમાં પ્રાયમરી રોડ ઉપર જે ઇન્સ્ચુલેશન પેપર વીંટાળવામાં આવે છે. જેટલા લેચર હોય તે લેચરને ભેગા કરીને ટેનડેલ્ટા કેપને આપવામાં આવે છે. આ લેચર વચ્ચે કેપસીટન્સ બને છે. તેનો ટેસ્ટ લેવો જરૂરી છે. એક ઇન્સ્ચુલેશન પેપરની વેલ્યું 5 ky હોય છે. આ ટેસ્ટ C_1 અને C_2 થી માપવામાં આવે છે. ટેનડેલ્ટા કેપ ખોલીને કીટના વાયર કનેક્શન કરી ટેસ્ટ કરી શકાય છે તેની C_1 ની વેલ્યું C_2 ની વેલ્યું માપવામાં આવે છે.

ओछ। टेनडेस्टा वाणी जहतवी ९३२ी छे. ङारणङे तेना छन्स्युतेशननो ङेपेसीटन्स योग्य भणतो न होवाथी ईर्धत थवानी शङ्यता छे.

(4) IR **\(\frac{2}{2}\)** (Insulation Resistance test) :-

मेगरथी छन्स्युतेशन रेजुस्टन्स तेवामां आवे छे. 5kv मेगरथी छन्स्युतेशन रेजुस्टन्स टेस्ट तेवामां आवे छे.

- **प्राथमरीथी** Earth -
- ਮਾਪਮਦੀથੀ core-1 :-
- **ਮਾਹਮ**ਦੀ**ਈ** core-2 :-
- **ਮਾ**ଥਮਦੀથੀ core-3 :-

500V थी

core-1 **a** core-2:-

core-2 **a** core-3:-

core-3 **al** core-1:-

core-1 all Earth:

core-2 all Earth:

core-3 and Earth:

આ રીડીંગ એક રજીસ્ટરમાં લખવામાં આવે છે.જયારે બીજી વખત રીડીંગ લીધા પછી તેની સાથે સરખામણી કરવામાં આવે છે. આને કંડીશનીંગ મોનીટરીંગ કહે છે.

(६) Core वायन्डींग रेजुस्टन्स बीड टेस्ट :-था टेस्टमां CT जोडसथी थे वायरथी डनेडशन CT नी डोर सुधी डरेब होय तेनो अने डोर रेजुस्टन्स मापवामां आवे छे. तेने Fig मां हर्शाव्या प्रमाणे मस्टीमीटरमां ओहमनी रेन्थ सीवेडट डरी मापीने राजुस्टरमां बाजवामां आवे छे.

Fig no: CT-01 POLARITY TEST

Fig no: CT-03 KNEE POINT VOLTAGE TEST

Fig no: CT-04 TEN DELTA TEST

5KV MEGGER
PRIMARY TO

PRIMARY TO EARTH:
PRIMARY TO CORE-1:
PRIMARY TO CORE-2:

PRIMARY TO CORE-3:

500V MEGGER

CORE-1 TO EARTH:

CORE-3 TO EARTH:

CORE-1 TO CORE-2 : CORE-2 TO CORE-3 :

CORE-3 TO CORE-1:

Fig no: CT-05 IR TEST

014

6. <u>-:: Isolator ::-</u>

सजस्टेशनमां आर्धसोवेटर ऽजल ज्रेड प्रडारना होय छे. सोवीऽडोर र्एन्स्युवेटर पर रवीय होय छे. आर्धसोवेटर वीय E/B सने वीधाઉट E/B ना होय छे. वीधाउट E/B आर्धसोवेटर जस सार्गडे लगाववामां आवे छे. वीथ E/B आर्धसोवेटर सर्थस्वीय लार्धन सार्गड रहे ते प्रमाणे गोठववामां आवे छे. आर्धसोवेटर ने लोड यातुं होय त्यारे फोली शडाती नथी सने जो भोववामां आवे तो लयंडर स्पार्डींग थाय छे. सने ओपरेटरने सेडसीऽन्ट थवानी शड्यता छे. ज्रेडर जंध डर्या पछी सेटले डे ओइ लोडमां भोववी जोर्धसे. तेनी Amp रेन्ज 630A नी होय छे. डजल ज्रेड होवाथी जंने डोन्टेडट थी स्वीय डपाती होवाथी स्पार्डींग ओछुं थाय छे. सेटले डे जंने जाजू वहेंगार्ग जाथ छे. आथी डोन्टेडट फराज थता नथी. आ सेड मीडेनीडल हेन्डल ओपरेटींग स्वीय छे. प्रणेय इंप्रनी ज्वेड गेंग ओपरेटर जोडसथी ओपन डलोग्र डरी शडाय छे.

નવી ટેકનોલોજીમાં આઈસોલેટર ઈલેક્ટ્રીક્લ ઓપરેટીંગ મીકેનીઝમનો ઉપયોગ થાય છે. તેને બ્રેકર ઓપન થાય તોજ ઈલેક્ટ્રીક્લ ઓપન ક્લોઝ કરી શકાય તેવા ઈન્ટરલોક્નો ઉપયોગ કરવો જોઈએ. જેથી લોડમાં સ્વીચ ખુલી શકે નહીં.

આઈसोલेટरना टेस्टींगमां CRM (डोन्टेंडट रेजुस्टन्स मेक्टमेन्ट) लेवामां आवे छे. के 100-मार्गडो ओहमथी वधारे होवुं कोઈसे नही.

આઈસોલેટરનું ઓપરેશન અને તેનું સેટીંગ યોગ્ય અને કાર્યક્ષમ રાખવું જોઈએ. કારણ કે બસ આઈસોલેટરમાં એક સાઈડ બસનો પાવર ચાલું હોય છે. કોન્ટકટ બરાબર બેસે તેવું સેટીંગ કરવું જોઈએ. નહીંતર બ્લેડ ખુલી રહી જાય તો સ્પાર્કીંગ ને કારણે કરંટ પસાર થતાં અવરોધ થાય છે. આથી કોન્ટેકટ અથવા બ્લેડ બળી જાય છે.

અર્થ સ્વીચનો બ્રેકર ક્લોઝીંગ સરકીટમાં ઉપયોગ કરવાથી જો અર્થ સ્વીચ આપેલી હોય તો બ્રેકર ક્લોઝ થઇ શકતું નથી. બધા ઇન્ટરલોકનો ઉપયોગ થાય તે પ્રમાણે ઓપેરેશન કરવું જોઇએ. ઇન્ટરલોક બાયપાસ કરવા જોઇએ નહી.

7. -: PT (Petenatial transformer) :-

આ પણ એક સ્ટેપડાઉન ટ્રાન્સફોર્મર છે. જે 66 kv / 1.73 ના વોલ્ટેજને 110 / 1.73 માં આપે છે. એક ફેઝ પીટીના સેકન્ડરી વોલ્ટેઝ 65 V જેટલા હોય છે. તેમાં બે કોર હોય છે. core-1 મીટરીંગ માટે અને core-2 પ્રોટેક્શન માટે વપરાય છે.પીટી ને 66 kv એક ફેઝ આપવામાં આવે છે અને બીજો છેડો અર્થ કરેલ હોય છે.

-: १९डिस्ड Tप

- (१) रेशियो टेस्ट :-
- (૨) IR ટેસ્ટ :-
- (3) Ten Delta 22:-
- (१) रेशियो टेस्ट :-

આ ટેસ્ટમાં kv ટેસ્ટ કીટમાંથી 2 kv PT પર આપવામાં આવે છે. જેની Fig માં દર્શાવેલ છે. સેકન્ડરી ટર્મીનલ 1a-1n અને 2a-2n ઉપર વોલ્ટેજ માપવામાં આવે છે.

तो रेशियो जराजर छे. आ रीते हरेङ डोरनो येङ डरी शङाय छे.

(2) IR 222 :-

આ टेस्टमां पीटीनो એક છેડો અર્થ કરેલ હોય છે. तेने ડीस કનેકટ કરીને 5 kv भेગરથી લેવામાં આવે છે. જો અર્થ पોઈન્ટ ડીસકનેકટ કરવામાં ન આવે તો IR વેલ્યુ નું રીડીંગ '0' આવશે.

(3) Ten Delta 222 :-

Fig no: PT-03 TEN DELTA TEST

8. -:: C.B.(સરકીટ બ્રેકર) ::-

सरडीट ज़ेडर से सेड प्रडारनी जंध स्वीय છે. જे इोस्ट डंडीसनमां सोपन डतोज डरी शडाय तेवा मीडेनीजम होय छे. मीडेनीजमने सोपरेट डरवा माटे ट्रीपींग डोईव सने डलोजींग डोईवनो ઉपयोग थाय छे. ट्रीपींग डोईव जे होय छे को सेड ट्रीपींग डोईव इंडिय थई क्या तो जीलु ट्रीपींग डोईव थी इोस्ट डंडीशनमां ज़ेडर सोपन थाय छे. डलोजींग डोईवथी जेडर डलोज थाय छे. मीडेनीजमने स्त्रींगथी सथवा सेरडोम्प्रेसरनी सेरनो ઉपयोग डरवामां सावे छे.

બ્રેકર એક બંધ (કલોઝ) પ્રકારની સ્વીય છે. એટલે કે ઓપન કલોઝ જોઈ શકાતું નથી. ઈન્ડીકેશનથી જોઈ શકાય કે બ્રેકર કલોઝ છે, કે ઓપન છે. ફોલ્ટ કંડીશનમાં બ્રેકર ઓપન થાય ત્યારે તેમાં આર્ક ઉત્પન્ન થાય છે તેને બંધ કરવા માટે SF6 ગેસનો ઉપયોગ કરવામાં આવે છે. ગેસ પ્રેશર 6.5kgcm² હોવું જોઈએ અથવા કંપનીના સૂચન પ્રમાણેનું હોવું જોઈએ. તેનું મોનીટરીંગ કરવું જરૂરી છે. તેના માટે ગેસ ડેન્સીટી મોનીટર જોડેલું હોય છે. તેમાં ગેસપ્રેશર લો, C.B લોકઆઉટ વગેરે કંટ્રોલ સરકીટ માટે ઉપયોગ કરવામાં આવે છે. અથવા ગેસ લો હોય તો એનાઉન્સીયેશન મળે છે. એટલે કે ગેસ પ્રેશરનું મોનીટરીંગ કરે છે.

भीडेनी जभने ओपरेट डरवा माटे तेनी असेसरीज TC-1, TC-2, CC अन्टीपंग्पींग, ओडजीबरी स्वीय, गेस प्रेशर डेन्सीटी मोनीटर, स्त्रींग डे એरटेन्ड वगेरे होय छे.

66kv બ્રેકરનું રેટીંગ, 72.5kv, 31.5KA, 1600/2000 Amp 2500MVA હોય છે. તેનો ટ્રીપીંગ ટાઇમ < 35 mS જેટલો હોવો જોઇએ. ક્લોઝીંગ ટાઇમ < 50 mS થી વધારે હોવો જોઇએ નહી.

– કલોઝીંગ સરકીટમાં ઘણા ઇન્ટર લોકનો ઉપયોગ થાય છે જે Fig માં દર્શાવેલ છે. જે બાયપાસ કરવા જોઈએ નહીં.

- द्रीपींग डोईस जे होय छे. °रेना रक्षण माटे ओड़जीसरी स्वीयनो ઉपयोग डरवामां आवे छे. छेटसे डे ट्रीपींग डोईपण संनेगोमां थवुं नोईसे तेना सुपरवीजन माटे प्रीडसोज सुपरवीजन सने पोस्ट इसोज सुपरवीजन राजवामां आवे छे.
- C.B. लोडगाઉट એટલે કે બ્રેકર ક્લોઝ કે ટ્રીપ થઇ શક્તું નથી. જો ગેસ પ્રેસર ઘણું ઓછું થઇ જાય તો તેના માટે ક્લોઝીંગ અને ટ્રીપીંગ માટે એક કોન્ટેક્ટર હોય છે. જો ગેસ ઘણો ઓછો હોય તો કોન્ટેક્ટર ઓપન થઇ જાય છે. આવી બ્રેકર ક્લોઝ કે ટ્રીપ થઇ શક્તું નથી.
- બ્રેકરને ફરીથી કલોઝીંગ કમાન્ડ ન મળે એટલે કે બ્રેકર કલોઝ હોય અને કલોઝ કમાન્ડ આપવામાં આવે તો એન્ટી પમ્પીંગ રીલે ઓપરેટ થાય છે અને કલોઝીંગ કોઈલને કમાન્ડ મળતો નથી.
- Air डोम्प्रेसर डे स्पींग यार्ष थवी ४३री छे. श्रे ते योग्य नही होय तो प्रेडर डवोज डे ट्रीप थर्घ शडतुं नथी. साथी तेनुं भेर्घन्टेनस तथा तेनी संભाળ राजवी पडे छे.
- स्थींग चार्ष ज़ेडर होय तो स्थींग चार्ष माटेनी मोटर योग्य रीते चासवी शेर्घमे शे ते न चासे तो स्पींग हेन्डसथी चार्ष डरी शडाय तो तेना माटे डसोज डे सन्टीडसोज डे तेनी षण्या शेर्घ सेवी शेथी मोटरथी चार्ष न थाय तो हेन्डसथी स्पींग चार्ष डरी शडाय.
- स्पींग चार्ष ज़ेडरने क्यारे डलोज डरवामां आवे त्यारे स्पींग चार्षमां मोटर ओन थाय छे. केनुं ध्यान राजवुं स्पींग चार्ष थर्छ तेनुं छन्डीडेशन मणे छे. स्पींग चार्ष ज़ेडरनो इायहो से छे डे ज़ेडर डलोज थया पछी सेड ट्रीपींग त्यारजाह डलोजींग सने ट्रीपींग मणे छे.

- सरडीट ज़ेडरना भेछन्टेन्स भाटे જयारे डाम डरता होय त्यारे तेना भीडेनीज्ञभने लोड डरवा भाटेना पंचरोड होय छे. तेनी लगावीने भेछन्टेनसङरवुं नहींतर भीडेनीज्ञभ औपरेट थर्छ काय तो એકसीडन्ट थर्छ शडे छे.
- દરેક કંટ્રોલ સરકીટ એટલે કે સ્પીંગ ચાર્જ, ટ્રીપીંગ, ક્લોઝીંગ,લોકઆઉટ, CB ON-OFF વગેરેની જાણકારી મેળવવી ખુબજ જરૂરી છે.

C.B. ટેસ્ટીંગ :-

- (9) IR 22:-
- (2) DCRM 222 :-
- (૧) IR ટેસ્ટ :- આ ઇન્યુલેશન રેજીસ્ટન્સ ટેસ્ટ Top થી Middle અને Top થી અર્થ Middle થી અર્થ લઇ રજીસ્ટરમાં એન્ટ્રીકરવી.
- (२) DCRM हेस्ट :- (डायनेभीङ ङान्हेङ्ट रेजुस्टन्स भे°रभेन्ट) आ हेस्टमां બ्रेडर ड्लोज अने ओपन टाईम लेवामां आवे छे. तेनो मेल अने इीमील डोन्हेड्ट वच्येनो रेजुस्टन्स पण लेवामां आवे छे. तेने ग्राइथी शोई शङाय छे डे ड्लोजींग वफते डे ट्रीपींग वफते वधारे वाईज्रेशन डे टाईममां ईरइार शोई शङाय छे.

9. <u>-:: Tronsformer :-</u>

66kv सजस्टेशनमां 66/11 kv स्टेपडाઉन ट्रान्सङ्गेर्भर होय छे. सजस्टेशनमां अगत्यनुं ઈडवीपमेन्ट ट्रान्सङ्गेर्भर छे. शेना प्रोटेडशन माटे घणी सेसेसरीअ होय छे. 10 थी 15 MVA ट्रान्सङ्गेर्भर होय छे.

10 MVA Transformer

HV Voltage - 66000V

LV Voltage - 11550V

HV Ampeare - 87.47A

LV Ampeare - 499.8 A

Impedance Volt % at 75° c = 9.5 %

ટાન્સકોર્મરની એસેસરીઝ :-

- 1. Main tant & core
- 2. Bushing
- 3. Conservater tank
- 4. Radiater
- 5. Tap changer
- 6. Buchholz relay
- 7. OSR (Oil Surge Relay)
- 8. PRV (Pressure ReliseValve
- 9. MOG
- 10. WTI / OTI
- 11. Sampling Valve
- 12. RTCC Panel

ટ્રાન્સફોર્મર HV સાઇડના કરંટ અને વોલ્ટેઝ નોજ ફેરફાર કરે છે. એટલે કરંટ અને વોલ્ટેજ નો ગુણાકાર HV સાઇડે જે થાય તેજ LV સાઇડ પર થાય એટલે HV ના I x V = LV ના I x V થાય છે.

- 1.) Main tant & core :- મેઇનરેન્ક તેમાં Core-winding oil સમાઇ શકે તેવી હેવી પ્લેટની ફેબ્રીકેટ કરેલ હોય છે. તેમાં બુશીંગ તથા બીજી એસેસરીઝ લગાવી શકાય તેવી રચના હોય છે. ટેન્કમાં સીલીકોન સ્ટીલની બનેલી કોર હોય છે જે 3mm સાઇઝના પતરાને વાર્નિસ થી ઇન્સ્યુલે કરી બનાવેલી હોય છે. તેથા પર LV વાયન્ડીંગ કરેલ હોય છે. તેનો રેટીંગ 11 kv હોય છે. તેના ઉપર HV વાઇન્ડીંગ હોય છે. જે 66 kv રેટીંગ હોય છે. LV વાયન્ડીંગ સ્ટારમાં જોડેલું હોય છે. જયારે HV વાયન્ડીંગ ડેલ્ટામાં જોડેલું હોય છે. HV વાયન્ડીંગ થી LV વાયન્ડીંગ થોડું 30 નમેલું રાખવામાં આવે છે. જેને Dy 11 કે Dy1 તરીકે વેક્ટર ડાયાગ્રામ હોય છે. વેક્ટર ડાયાગ્રામ કલેકના સાથ પ્રમાણે એટલે કે 1 વાગ્યા ના સમયે હોય 30 આગળ છે. 11 ના સમય પ્રમાણે હોય તો 30 પાછળ છે. Dy11 માં Dy 66kv વાયન્ડીંગ ડેલ્ટામાં જોડેલું છે. નાનો y 11kv વાયન્ડીંગ સ્ટારમાં જોડેલું છે. 11 તે ક્લોકના સમય પ્રમાણે 30 LV વાયન્ડીંગ થી HV વાઇન્ડીંગ પાછળ છે.
- 2.) Bushing :- जुशींग HV जुशींग अने LV जुशींग होय છे. HV जुशींग 66kv वार्धन्डींग माटे लागे छे तेने लीड द्वारा जुशींगने भोडवामां आवे छे. तेने लंजार्ध L2 अने L1 तरीझे होय छे. L2 ओ टेन्डनी अंहर भाय छे. L1 ओ टेन्डनी ઉपर रहे छे. तेने भंपरथी 66kv वोल्टेश आपवामां आवे छे. LV जुशींग भाडो रोड लागी शझे तेवा होय छे झरण झे ते स्टेपडाउन द्रान्सझोर्मर होवाथी झरंट झेपेसीटी प्रमाणेना रोड होय छे. आर्धल भरती वजते એर झढी शझाय तेवी सगवड होय छे. 66kv सार्धडनुं जुशींग इन्डेसर टाईपनुं होय छे. तेने એક

रेनडेल्टानी हेप होय छे. ९ हंमेशा दार्गेदी होवी श्रेर्धसे. LV जुर्शींग होतोटार्घपना होय छे. सने ते जुर्शींग पोर्सोदीनना होय छे.

3.) ड्रन्जरवेटर टेन्ड:— आ सेड नानी टेन्ड छे. पे ट्रान्सइर्गिश्मां सोईव लखामां सावे छे. ते गरमीथी थती वधघट ने पहाँची वजवा माटे सामां थोडुं सोईव समाई शड़े तेवी रचना होय छे. तेमां डेटबुं सोईव छे ते MOG वागवी पोई शड़ाय तेवी सगवड होय छे. तेने ट्रान्सइर्गिर टेन्डथी थोडुं ઉपर वगाववामां सावे छे. तेमां जे लाग होय छे. सेड लाग मेईनटेन्ड माटे सने जीपो लाग टेपसेन्परना सोईवना वधघटने पहाँची वजवा माटे होय छे. तेमांथी ઉपरथी सेड पाईप ट्रान्सइर्गिर टेन्डनी जापुमां नीचे सुधी वाववामां सावे छे. तेना पर जीधर वगाववामां सावे छे. सोईवनी वधघटथी सेर संहर पई शड़े तेवी व्यवस्था माटे जीधर वगावेव होय छे. जीधरमां सीवीडापेव लरवामां सावे छे. पे सेरने लेप मुडत डरी डन्जरवेटर टेन्डमां पवा हे छे.

અत्यारे नवी टेडनोलोशु प्रमाणे तेमां એક એર सेत होय छे. षे એरने ट्रान्स्झोर्मर ओर्डल साथे लावा हेतुं नथी. એटलेंडे એर એरसेलमां षाय छे. એरसेल ट्रान्स्झोर्मरनुं टेम्परेचर वही त्यारे ओर्डलमां वहारो थाय छे. ते डन्जरवेरमां आवे छे. आथी એरसेल पर प्रेसर वही छे. तेथी हवा जहार षाय छे. हंडुं ओर्डल थाय त्यारे डन्जरवेटरमांथी ओर्डल मेर्डनटेन्डमां षाय छे. आथी એर सेल એકस्पान थाय छे अने એर जहारथी ले छे.ज्रीहर ट्रान्स्झोर्मरना नाड तरीडे डाम डरे छे.

4.) रेडीथेटर :- रेडीथेटर भेर्घनटेन्ड पर होय अने जोटम जंने सार्घड पर वाद्य द्यावीने द्यावेद्या होय छे. ते नानी नानी स्ट्रीप शेमांथी ओर्घद प्रसार थर्घ शड़े तेवा जनाववामां आवे छे. वस्ये એर प्रसार थर्घ शड़े तेवी रचना होयछे. ट्रान्स्झोर्भरमां ओर्घद गरम थाय ते (गरमीना नियम प्रमाणे ઉपर शय छे.) ते प्रमाणे ओर्घद ઉपरथी नीये तरइ आवे त्यारे

એરના સંપર્કથી ઓઇલ ઠંડું થાય છે તેનો પ્રકાર ONAN હોય છે. Oil Natural Air Nutural હોય છે. ઠંડું ઓઇલ મેઇનટેન્કમાં જાય છે.

5.) *ਟੇਪચੇન્જર :-*

66Kv ट्रान्सइरमां टेपयेन्क इरी शडाय तेवुं टेप येन्कर होय छे. तेनी टेप 1 थी 17 नंजर सुधीनी होय छे. 1 थी 4 नंजरनी टेप वोव्हेक्मां घटाडो इरे छे. 5 नंजरनी टेप नोर्मल होय छे. 6 थी 17 नंजरनी टेप 1.25 % वोव्हेक्मां वधारो इरे छे. टेपयेन्कर वोव्हेक्मां सुधारो इरे छे. इरंटमां नहीं 5 नंजरनी टेप 66kv नी सामे 11.5kv मणे छे. के नोर्मल टेप गणाय छे. टेप येन्कर HV साईडे होय छे. तेनी टेन्ड मेईन टेन्डथी अलग पाडी शडाय तेवुं जेरीयर जोर्ड लगावेवुं होय छे. जेरीयर जोर्ड उप येन्कर इरी शडे छे. छोन लोडमां येन्कर इरी वजते सरडीट ओपन न थई क्रय तेवुं भीडेनीजम अने रेक्टरर होय छे. तेथी तेमां ओईल अलग राजी शडाय तेवी रथना होय छे. तेथी टेप येन्कर नुं ओईल सेम्पल इरिक्यात लेवुं कोईओ अने तेनुं ओवरहोलींग पण समय प्रमाणे थवुं कोईओ. टेपयेन्कर पर OSR लगाववामां आवे छे. को ओईलमां वधारे सर्क आवे तो OSR ओपरेट थाय छे.

देप येन्करना डारणे ट्रान्सङ्गर्भर इंग्रंस थर्घ शड़े छे. आथी तेनुं मेर्गन्देन्स थतुं क्र्ररी छे. तेनुं लोडल ओपरेशन थर्घ शड़ेते माटे मोटर ओपरेटींग सीस्टम होय छे. जे ट्रान्सङ्गर्भर पेरेलल क्षेडेला होय तो टेप એક नी येन्क डरोतो जीकानी पण तेनी साथ येन्क थर्ग क्षर क्षय छे. टेप रेग्रंग सने लोसर डरी शड़ाय ते माटे प्राजटन होय छे.

6.) जुड़ोळ रीते :- ट्रान्सङ्गेर्मरमां हेवी इनित्र थाय त्यारे पहेतां सेटते डे शरूसात थाय त्यारे जाणी डरी शड़े तेवो डोई रीते होय तो ते जुड़ोळ रीते छे. जुड़ोळारीतेमां जे पोर्ट होय छे. सेड पोर्ट जुड़ोळा सेतार्म सने जीजो पोर्ट जुड़ोळा ट्रीप माटे होय छे. तेना डन्जवेटर टेन्ड

सने मेछन हेन्ड पर 0 थी 15° सेंगल ઉपर वस्त्रे लगाववामां सावे छे. तेनी रचना सेवी होय छे डे गेस मेछनहेन्डमांथी इन्जरवेटर हेन्डमां જतां पहेलां जुड़ोल्ज रीतेमांथी पसार थाय त्यारे गेस प्रमाण सोछुं होय तो जुड़ोल्ज सेलार्म पोर्ट सोपेरट थाय सने को ट्रान्सड़ोर्मरमां वधारे सार्डींग थयुं होय तो गेस पण वधारे थाय छे. त्यारे जीको पोर्ट सोपरेट थर्छ जुड़ोल्ज ट्रीप सोपरेट थाय छे. गेस परथी काणी शड़ाय छे डे इोल्ट डेवा प्रडारनो थयो छे.

7.) OSR *રીલે (ઓઇલ સર્જ રીલે):-*

आ रीते देपरोन्षर देन्ड सने इन्जरवेटर देन्डनी वस्ये तगाडेत होय छे. सा रीते जुडोट्ज रीते इरतां सिध्धांत सत्या छे. त्रो ट्रान्स्झोर्भरमां हेवी झोल्ट थाय सथवा डोर्घ डारणसर सोर्धतमां वधारे सर्व सावे तो OSR सोपरेट थाय छे.

आ रीले ओपरेट थया पछी रीसेट એर डे गेस निडળवाथी थर्घ शड़तो नथी ते એક भीड़ेनीडल स्वीय ढोय छे. तेने रीसेट डरवा भाटे रीलेमां पुशजटन ढोय छे ९ तेनुं डवर फोलीने टेस्ट सने रीसेट पुशजटन हजाववाथी ओपरेट डे रीसेट डरी शड़ाय छे.

- 8.) PRV (प्रेशन रीक्षित्र वाक्व):- आ प्रेशन थी ओपनेट थाय तेवो वाक्व छे. वाक्व 0.75 थी 5 Kg प्रेशन थाय એटले ओपनेट थाय. ओपनेट थाय त्याने नोड छपन्नी तन्ड काय छे. ते वफते मार्छड़ो स्वीय ओपनेट थाय अने प्रेडन ट्रीप थाय. ट्रान्सड़ोर्मनमां हेवी ड्रोस्ट थाय त्याने अथवा इिस्टर मशीनथी ओर्छल इिस्ट इन्ता होय त्याने वाक्व जंध होय त्याने PRV ओपनेट थाय छे. ट्रान्सड़ोर्मन टेन्डमां PRV अने टेपरोन्कर टेन्डमां पण PRV होय छे.
- 9.) MOG:- (भेक्सीमम ओઇલ ગેઇઝ):— कन्जरवेटर टेन्डमां केटलुं ओઇલ છે ते माटे MOG होय छे. MOG ना संहरनी साई इसोट सगाडेलुं होय छे. पे कन्जरवेटर टेन्डमां ओईसमां डूजेलुं होय छे. पेटलुं ओईस होय तेटलो इसोट ઉंचो होय छे. तेना छेडापर भेग्नेटीक सीस्टम होय छे. पे MOG ना मीटरना पोईन्टर साथे भेग्नेट सीस्टमथी ओपरेट थाय छे.

अने रीडींग हर्शांवे छे. MOG 2/3, 1/2, 3/4 डापाओ होय छे. अथवा तो 30°, 1/2, Full थेवुं होय छे. ओर्धत 30° अथवा 2/3 थेटबुं राजवामां आवे छे. पोर्धन्टरनी नीये એड मार्धडोस्वीय होय छे. थे ओर्धत प्रमाणमां घणुं ओछुं એटते डन्जरवेटरमां ओर्धत न होय तो मार्धडोस्वीय ओपेरट थाय छे अने तेनुं सेनािडन्सीयेशन भणे छे.

10.) WTI / OTI (વાયન્ડીંગ ટેમ્પરેચર અને ઓઈલ ટેમ્પરેચર):-

ट्रान्सहोर्भर टेन्ड ઉपर એક એક पोडेट राजेला होय छे. तेमां ओर्धल लरेलुं होवुं लोर्छ. वायन्डींग पोडेट वायन्डींग पासे तथा ओर्धल पोडेट टेन्डनी ઉपर होय छे. तेमां डेपेलरी मूडवामां आवे छे. टेम्परेयर वधे तेम डेपेसीटी मीलीवोल्ट आपे छे. ले WTI अने OTI मीटरने आपवामां आवे छे. तेना प्रमाणे पोर्धन्टर रीडींग हर्शावे छे. पोर्धन्ट साथे मीडेनीजम होय छे. तेनी साथे मरड्युरी स्वीयो लगावेली होय छे. लेनुं सेटींग डरी शडाय छे. WTI मीटरमां 4 मरड्युरी स्वीयो होय छे. अने ते हरेड इंज वार्ध्र WTI मीटर होय छे. 1 मरड्युरी स्वीय-એलार्म माटे, 2 मरड्युरी स्वीय ट्रीपींग माटे, त्रण नंजरनी मरड्युरी स्वीय इंन माटे अने यार नंजरनी मरड्युरी स्वीय पम्प माटे होय छे. तेवील रीते OTI मीटरमां पण जे मरड्युरी स्वीय होय छे. लेमां सेड नंजरनी मरड्युरी स्वीय सेलार्म माटे स्वीय होय छे. लेशि मरड्युरी स्वीय होय छे.

OTI μi 80° એ એલાર્મ , 90° એ ट्रीपींग

WTI માં 100° એ એલાર્મ, 110° એ દ્રીપીંગ

દરેક એરિયા પ્રમાણે સેટીંગ અલગ–અલગ હોય છે.

11.) सेम्प्लींग वात्व :- सेम्प्लींग वात्वथी ओईल लई BDV के DGA माटे लेवामां आवे छे. सेम्प्रलींग वात्व जोटम, मीडल, टोप એ मेईन टेन्क्मां होथ छे. टेपचेन्ज्रन्मां पण सेम्प्रलींग वात्व होथ छे. जीना क्लिटन माटेना वात्व होथ छे.

12.) RTCC पेनल (रीभोट टेप येन्श्र इंट्रोल):-

द्रान्सक्तोर्भरनी हैपयेन्कर रीमोह ઉपर ओपरेह करवा माहे RTCC पेनलमां रेएँ अने लोसर ना पुशजहन होय छे. हेप पोजीशन एन्डीक्रेशन हेम्परेयर मीहर, पावर ओन ओक्र मास्टर क्रीलोसर स्वीय RTCC पेनलमां होय छे. के कंट्रोल इममांथी हेप येन्करनुं ओपरेशन लए शक्ताय छे. हेप येन्कर सािट ओक्र स्हेपनुं हाएम डीले रीले 3 Second to 30 seconds होय छे. सेहले के को हेपयेन्कर पूरी ओपरेह न थए होय तो सा सेनाएन्सीसेशन सावे छे.

ट्रान्सङोर्भर टेस्टींग :-

- 1) पोस्टेक रेशियो टेस्ट :-
- 2) भेग्नेटार्घजींग जेलेन्स टेस्ट :-
- 3) TTR ਟੇ•ਟ :-
- 4) IR वेत्यु टेस्ट :-
- 5) BDV ਟੇਵਟ :-
- 6) Ten Delta test:-
- 7) SFRA test:-
- 8) Furan test:-
- 9) સ્ટેબીલીટી ટેસ્ટ :-
- 10) DGA ਟੇਵਟ :-

1.) वोस्टेष रेशियो टेस्ट :-

આ ટેસ્ટમાં ટ્રાન્સફોર્મરના પ્રાયમરી સાઈડના વોલ્ટેજથી સેકન્ડરી સાઈડ કેટલા વોલ્ટેજ મળશે તે માપવા માટે વોલ્ટેજ રેશિયો ટેસ્ટ લેવામાં આવે છે. આ ટેસ્ટમાં ટ્રાન્સફોર્મરને પ્રાયમરી સાઇટ 440 V Ac આપી સેકન્ડરી ઉપર દરેક ટેપ ઉપર વોલ્ટેજ માપવામાં આવે છે. જે રજીસ્ટરમાં લખવામાં આવે છે.

2.) भेग्नेटार्धजींग जेलेन्स टेस्ट :-

ट्रान्सक्तोर्भरमां क्रोर होय तेना ઉपर वायन्डींग होय छे. तेथी प्रायमरीमां सेक क्रेज ઉपर सींगल क्रेज सप्ताय सापी जीला जे इंग्रजमां मापवामां सावे छे. तेनाथी क्रेटलो इलक्स थशे ते लोग्र शक्ताय छे. तेना वोल्टेलमां लो वधारे इर्रकार होय तो जेलेन्समां वोल्टेल मजता नथी. तो वायन्डींगमां क्रोर्ड फराजी थर्ड होय तो मेग्नेटार्डजींग जेलेन्स टेस्ट मजी शक्ते छे.

3.) TTR हेस्ट :- (टन हेप रेशियो)

आ हेस्टमां हेप येन्य इस्ती वापते ओपन थर्ध यतुं नथी ते येङ इस्वामां आवे छे. ते TTR डीटथी 12 वोल्ट पर हेप येन्यनी मुवभेन्ट वापतनी इन्हीन्युटी येङ इसी शङाय छे.

4.) IR वेल्य टेस्ट :-

આ ટેસ્ટમાં ટ્રાન્સફોર્મરના વાયન્ડીંગનું ઇન્સ્યુલેશન રેજીસ્ટન્સ વેલ્યુ લેવામાં આવે છે. જે મેગાઓહમ હોવી જોઈએ.

HV all Earth:

LV all Earth:

HV all LV :-

पोलेराधजेशन धन्डेक्ष टेस्ट = 1 भीनीटनुं वेल्यु

10 भीनीटनुं वेल्युं

% >1.3 थी वधारे आववी शेर्धे तो र्घन्स्युवेशन साइ छे.

5.) BDV हेस्ट :- (ज़ेड डाઉन वोव्हें ४ हेस्ट)

આ ટેસ્ટ ઓઇલ માટે હોય છે. આ BDV ટેસ્ટ ક્રિટમાં 2.5mm ગેસ રાખી BDV ટેસ્ટ લેવામાં આવે છે. જે 66kv થી વધારે આવવો જોઈએ અને PPM ટેસ્ટ (પાર્ટ પર મીલીયન) 10 થી ઓછા આવવા જોઈએ.

6.) Ten Delta test:-

આ ટેસ્ટ ટ્રાન્સફોર્મર વાયન્ડીંગ અને जુશીંગનો ઇન્સ્યુલેશન કેપેસીટન્સ માપવા માટે કરવામાં આવે છે.

બુશીંગ માટે < 0.007~% અને વાયન્ડીંગ માટે > 2.0~%

ખુશીંગ માટે < 0.007 % થી ઓછું આવવું જોઈએ. જો વધારે આવે તો ખુશીંગ બદલવું પડે છે.વાયન્ડીંગ માટે 2.0 % થી વધારે આવેતો ઓઈલ ના BDV ઓઈલ ફિલ્ટરેશન ઓવરરોલીંગ કરવું જોઈએ.

7.) SFRA test :- (स्वीप इिडवन्सी रीस्पोन्स એनादीसीस)

सा देस्ट ट्रान्स्झोर्भरना डोर माटे लेवामां सावे छे. જयारे ट्रान्स्झोर्भरने डंपनीमांथी ट्रान्सपोटेशन डरवामां सावे त्यारे सने ट्रान्स्झोर्भरमां हेवी झोल्ट थाय त्यारे SFRA टेस्ट लेवामां सावे छे. जो पहेला डंपनीसे SFRA लीधेल होय तो ट्रान्सपोटेशन सने हेवी झोल्ट वफ्तना SFRA नो ग्राइ मेय डरी ने डोरनी परिस्थिति जाणी शडाय छे. SFRA टेस्टथी टर्न शोट थया होय, सोपन सरडीट थर्छ होय, रेसीडयुल मेग्नेटाईजींग सने डोर मुवमेन्ट जाणी शडाय छे.

8.) Furan test:-

આ टेस्ट 132 kv थी वधारे KV ना ट्रान्स्झोर्भर भाटे लेवामां आवे छे. आ टेस्ट रप वर्षथी शुना ट्रान्स्झोर्भरमां र्घन्स्युलेशननी स्थिति श्वाया भाटे थाय छे. ते એક सारी रीत छे. એક કાચना जीङरमां जोटम सेम्पल थी ओर्डल लर्ड लेवामां आवे छे अने तेमां पाणीना टीपां नाजवामां आवे छे. श्रे पाणीना टीपां ओर्घसमां डूजी श्रय तो छन्स्युसेशन जराज छे ङारण ङे ओर्घसमां भेश्रनुं प्रमाण वधारे होय तो पाणीनां टीपां ओर्घसमां डूजी श्रय छे. तेथी तेनुं ओवरहोसींग ङरवुं इरिश्यात छे.

9.) સ્ટેબીલીટી ટેસ્ટ :-

आ देस्ट HV CT थी LV CT सुधी 440V AC आपी HV કરંટ आपवामां आवे છે. LV CT 11KV जस ना संपर्कमां न आवे ते रीते शोर्ट हरवामां आवे छे. ट्रान्स्रङ्गेर्भरमांथी पावर पसार थाय छे. HV साईडे अने LV साईडे हरंट ते प्रमाणे मजे तो CT Circuit जराजर छे. आ रीते को ट्रान्स्रङ्गेर्भरमां झोल्ट थयो होय त्यारे अने नोर्भस इन्डीशनमां पण आ देस्ट सेवाथी CT सरझीटना इनेझ्शन थी झोल्ट काणी शझाय छे.

10.) DGA रेस्ट :- (डिस्जोब्प गेस भेनावीसीस)

आ हेस्ट वर्षमां એક वजत अने इोस्ट थयो होय त्थारे तेवामां आवे छे अने तेना रीजस्ट रजुरुटरमां એन्ट्री हरवामां आवे छे. ते ट्रान्सिइमेर्रमां इोस्ट थाय त्थारे DGA हेस्ट माहे ओईत सेम्पत वर्ध ERADA मां मोडतवामां आवे छे तेना रीजस्ट ઉपरथी हेवा प्रहारनो होस्ट थयो छे ते ताथी शहाय छे.

10. <u>-:: 66KV Panel ::-</u>

- 66kV *ફીડ૨ (લાઈન) પેનલ*
- 66kv द्रान्सङ्गोर्भर पेनल वीथ डिङ्ररन्शीयल रीले

આ પેનલોમાં સેમાફોર્ન, ઇન્ડીકેશન, TC - સૂપરવીઝન મીટર સરખા હોય છે.

सेभाङोर्न :-

- जस आर्धसोतेंट रना ओपरेशन वजते ओङ्गीतटी स्वीय ओपरेट थाय र्षेना ओपन अने इत्रोग्र डोन्टेडट तर्र सेमाङ्गोर्न ने आपवामां आवे छे.
- લાઈન આઈસોલેટરમાં અર્થસ્વીય પણ હોય છે. તેની ઓક્ઝીલરી સ્વીયના ઓપન ક્લોઝ કોન્ટેક્ટ લઈ સેમાફોર્ન સરક્રિટને આપવામાં આવે છે.
- ज्रेडरमां पण ओपरेशन वजते ओडजीवरी स्वीयना ओपन इत्रोज डोन्टेडर वर्ध सेमाङ्गोनने आपवामां आवे छे.

> AC Supply :-

કંટ્રોલ પેનલમાં Ac Supply H1 અને H2 ફેરૂલ લાગેલા હોય છે. જે AC મેઈન સપ્લાય તરીકે હોય છે. જે હીટર , લેમ્પ, રીલેમાં AC સપ્લાય તરીકે ઉપયોગ થાય છે.

> DC Supply :-

કંટ્રોલ ਪੇનલમાં Dc Supply J1 અને J2 ફેરૂલ લાગેલા હોય છે. જે કંટ્રોલ સરકીટ, સુપરવીઝન સરકીટ, ઇન્ડીકેશન એનાઉન્સીએશન રીલેને આપવામાં આવે છે. જે 110/220 V DC હોય છે.

AC Supply Fail : DC સપ્લાયથી ઓપરેટ થાય છે.

DC Supply Fail : AC સપ્લાયથી ઓપરેટ થાય છે.

> DC Distribution :-

Dc Supply J1 अने J2 इंट्रोल पेनलमांथी डिस्ट्रीण्युट इरवामां आवे छे. 🗞 जसमांथी इलोजींग अने TC-1 सरडीट, TC-2 सरडीट ईन्डीडेशन सरडीट, सेनाईन्सीयेशन सरडीट, रीलेनी सरडीट तेमां इयुज भुडी रेटींगना इयुज लगावीने डिस्ट्रीण्युट इरवामां आवे छे.

KWH भीटर :- इंट्रोव पेनवमां KWH भीटरने CT अने PT, TTB मांथी आपेवा होय છે. CT तेना रेशियो प्रभाणे એटवे हे 300/1, 600/1, 100/1, A होय છે. જયારે PT जस पीटीमांथी आपवामां आवे

છે. PT चालुं होय त्यारे मीटरनी डिस्पते चालु थाय छे. CT ना डनेडशन सेर्नेश्व मीटरमांथी जील मीटरमां लय छे सने छेल्ते शोर्ट इरवामां साव छे सेटते हे इतोज सरहीटमांथी इरंट पसार थाय छे. KWH मीटर डीजीटल टाईपना होय छे. लेथी छुवंत सेम्पियर लोई शहाय छे. सने ते डास होम्प्युटर साथे इनेइट इरी होम्प्युटरमां हर इलाई रीडींग मणी शहे छे. सेइसपोर्ट सने ईम्पोर्टनो सीम्जोल हर्शावे छे. ले छिल्टुं होय तो इनेइशन ईरववाथी सुधारी शहाय छे. इनेइशन ईरविती वर्णते TTB मां CT शोर्ट इरीने इनेइशन ईरविवा लोईसे. लेथी CT नी सेइन्डरी सरहीट सोपन थाय नहीं.

MW भीटर :-

આ મીટરમાં પણ CT અને PT આપેલા હોય છે. આ ટ્રાન્સફોર્મર કે લાઈન પર કેટલા મેગાવોટ લોક છે તે દર્શાવે છે. આ મીટરમાં CT R અને y ફેઝ આપેલા હોય છે. અને PT ના ત્રણેય ફેઝ આપેલા હોય છે.

A મીટર :-

પેનલમાં ત્રણેય ફેઝના A મીટર હોય છે. રેશિયો પ્રમાણે સ્કેલ હોય છે. જે તેના પર પોઈન્ટર રીડીંગ દર્શાવે છે.

V મીટર :-

66kv બસ PT નો સેકન્ડરી 110/1.73 સીલેક્ટર સ્વીચ બ્રાચા વોલ્ટમીટરને આપેલ હોય છે. જે R,Y,B સીલેક્ટર સ્વીચ ફેરવીને દરેક ફેઝના વોલ્ટેજ માપી શકાય છે.

MVAR ਮੀਟਦ :-

આ મીટર ટ્રાન્સફોર્મર પેનલમાં હોય છે. રીએક્ટીવ પાવર માપવા માટે હોય છે. તેમાં CT અને PT આપેલા હોય છે.

Indication

CB close अने CB Open :-

આ સરકીટ બ્રેકરની ઓક્સીઝરી સ્વીચથી ઓન અને ઓફ કોન્ટેકટ લેમ્પને આપવામાં આવે છે. નેગેટીવ લેમ્પ પર આપેલો હોય છે. તેમાં $\mathbf L$ માર્કવાળા ફેરૂલ હોય છે.

Spring Change Lamp :-

स्पींग यार्ष क्षेम्प ज्रेडरमां स्प्रींग यार्ष थाय त्यारे तेना NC डोन्टेडट थी सप्ताय मणे छे. षेथी क्षेम्प हर्शावे छे. षो स्पींग यार्ष थती न होय तो क्षेम्प हर्शावशे नही. तो तेनी सरडीट येड डरवी षोर्घसे.

Air Pressure Normal :-

જો બ્રેકરટ ન્યુમેટીક ડ્રાઇવવાળું હોય તો તેમાં કોમ્પ્રેસર થી મોટી ટેન્કમાં એર ભરવામાં આવે છે. તેના માટે એક એર પ્રેશર સ્વીચ હોય છે તેના થી લેમ્પને સપ્લાય મળે છે.

Gas Pressure Normal :-

બ્રેકરમાં SF6 ગેસમાટે ડેનસીટી મોનીટર લગાવેલ હોય છે. જેના પરથી લોકઆઉટ કોન્ટેક્ટર ઓપરેટ થાય છે તેના પરથી ગેસ પ્રેશર નોર્મલ લેમ્પને સપ્લાય મળે છે. આથી SF6 ગેસની પરિસ્થિતિ જાણી શકાય છે.

Auto trip lamp :-

આ લેમ્પનું મહત્વ વધારે છે. જો બ્રેકરને Control Panel થી TNC સ્વીય કલોઝ કરવામાં આવે ત્યારે બ્રેકર કલોઝ ન થાય તો Auto trip લેમ્પ આવે છે.

- सरडीट બ्रेडरना ઇन्टरबोड को ओपरेट न थया होय तो
- CB नी स्त्रींग रार्ष न होय
- 86 भास्टर रीले ओपरेट होय
- *બ્રેકરની સ્વીચ* Local *પર હોય*.
- जे़डरमां Gas प्रेशर लोडगाઉट रीले ओपरेट न होय

TC-1 ਅਜੇ TC-2 Healthy :-

TC-1 अने TC-2 हेल्थी छे डे नहीं ते माटे ट्रीप सर्न्डीट सुपरवीअन रीलेना डोन्टेड्टथी TC-1 अने TC-2 Healthy ना Lamp ने आपेला होय छे. ट्रीप सर्न्डीट हेल्थीनो लेम्प पुशलटन प्रेश डरवाथी थतो न होय तो TC-1 डे TC-2 सुपरवीअन रीले ओपरेट थयो नथी.

-:: 95 Trip Circuit Supervision Relay::-

બ્રેક્ટમાં ટ્રીપ કોઇલ બે હોય છે. તેના સુપરવીઝન માટે બે રીલે હોય છે. ફોલ્ટી કંડીશન કે નોર્મલ કંડીશનમાં બ્રેક્ટ ટ્રીપ થવું જરૂરી છે તેના માટે એક કોઇલથી ટ્રીપ ન થાય તો તેના સાથે બીજી ટ્રીપ કોઇલ હોય છે. માટે ટ્રીપ સરકીટ હેલ્થી છે કે નહી તે માટે ટ્રીપ સરકીટ સુપરવીઝન રીલે હોય છે. સુપરવીઝન રીલે માં ત્રણ કોઇલ હોય છે. A_B અને C A એ કોઇલ પ્રીક્લોઝ સુપરવીઝન માટે, B કોઇલ પોસ્ટ ક્લોઝ સુપરવીઝન માટે, C કોઇલ A અથવા B કોઇલ ઓપરેટ હોય તે માટે , C કોઇલ ઓપરેટ થાય તેમાંથી TC હેલ્થી માટેનો લેમ્પ, TC ફોલ્ટીના એનાઉન્સીયેશ માટે થાય છે.

- પ્રી કલોઝ સુપરવીઝન બ્રેકર ઓપન હોય ત્યારે મળે છે.
- પોસ્ટ કલોઝ સુપરવીઝન બ્રેકર કલોઝ હોય ત્યારે મળે છે.

को ट्रीप सरडीट ફોલ્ટીનું એનાઉન્સીયેશન भળે तो.

- બ્રેકરની ટ્રીપ કોઇને -ve भળેતો ન હોય.
- प्रेडरनी ओडजीवरी स्वीय इरी न होय.

- ज़ेडरथी पेनत सुधीनो वायर ओपन होय TC मारेनो.

જો સુપરવીઝન રીલે ABB કંપનીનો હોય તેમાં એકજ કોઇલ જેવું ફંકશન હોય છે. તેમાં ડાયોડ થી કરંટ બ્લોક કરીને પ્રીક્લોઝ અને પોસ્ટ ક્લોઝ સુપરવીઝન મળે છે.

-:: 86 Master Relay::-

મેઇન પ્રોટેકશન રીલે ઓપરેટ થાય ત્યારે 86 માસ્ટર રીલે ઓપરેટ થાય. માસ્ટર રીલે ઓપરેટ થાય તો બ્રેકરની TC-1 અને TC-2 કોઇલને ડી.સી.સપ્લાય મળે છે અને બ્રેકર ટ્રીપ થાય છે. માસ્ટર રીલેને ઓપરેટ થવા માટે +Ve ટેસ્ટ બ્લોકમાંથી મળે છે. માસ્ટર રીલેથી ક્લોઝીંગ ઇન્ટરલોક, ન્યૂમરીકલ રીલેને DR માટે LBB ઇનીસચેશન માટે થાય છે.

-:: Annunciation ::-Feeder panel and Transformer panel

O/C प्रोटेडशन ओपेरेट :-

મેઈન પ્રોટેક્શન રીલે ઓપરેટ થાય ત્યારે એનાઉસીયેશન મળે છે.

E/F ਪ੍ਰੀਟੇકશ੍ਰ ઓਪਵੇਟ :-

અર્થ ફોલ્ટ પ્રોટેક્શન ઓપરેટ થાય ત્યારે E/F પ્રોટેક્શન ઓપરેટ એનાઉન્સીયેશન મળે છે.

86 ਮਾਦਟਦ ਦੀਕੇ ઓਪਦੇਟ :-

डोई એક અથવા વધારે પ્રોટેક્શન ઓપરેટ થાય त्यारे 86मास्टर रीलेने ઓપરેટ કરે છે.त्यारे मास्टर ઓપરેટ એનાઉન્સીયેશન મળે છે.

TC-1 अने TC-2 डोस्टी :-

ट्रीप सरडीट सुपरवीञ्चन रीले ओपरेट न थयो होय त्यारे TC-1 अने TC-2 इोव्हीनुं ओनाઉन्सीयेशन भजे छे.

रीवे ઇन्टर्नલ ફोस्टी :-

જयारे भेर्धन प्रोटेક्शन रीलेने डी.सी.सप्लाय भणतो न होय अथवा रीलेमां ખराजी होय तो रीले र्धन्टरनल इोल्टीनुं सेनाઉन्सीयेशन भणे छे.

C.B. ગેસ પ્રેશર લો :-

સરકીટ બ્રેકરમાં SF6 ગેસ પ્રેશર હોય છે. તેનું મોનીટરીંગ માટે ડેન્સીટી મોનીટર હોય છે. જો ગેસ પ્રેશર ઓછું થાય તો ગેસ પ્રેશર લો નું એનાઉન્સીયેશન મળે છે.

C.B.લોકઆઉટ :-

LBB ઓਪਏਟ :-

न्यूमरीडल रीलेमां LBB रीले पण होय छे. तो जेडर 86 ओपरेट थाय त्यारे तो जेडर ट्रीप न थाय तो 200 मीलीसेडन्ड पछी इोस्ट डरंट यातुं होय तो LBB रीले ओपरेट थाय छे. तेनुं सेनाઉन्सीयेशन भजे छे.

DC Fail :-

इंद्रोत पेनतनो डी.सी.सप्ताय भजतो न होय इयुऊ ६डी गयो होय त्यारे AC सप्तायथी DC इंधतनुं सेना६न्सीयेशन भजे छे.

AC Fail :-

કંટ્રોલપેનલમાં મળતો એસી.સપ્લાય મળતો ન હોય ત્યારે ડીસી સપ્લાયથી એસ.સી.ફેઈલનું એનાઉન્સીયેશન મળે છે.

– ડિફરન્સીયલ રીલે ઓપરેટ :-

– બુકો@ઇ એલાર્મ :–

जुड़ोल रीक्षेमां એलार्म अने ट्रीपींग माटेना इतोट होय छे. श्रे ट्रान्स्स्डोर्मर झेल्ट ने डार्स्ट गेस ઉत्पन्न थाय छे ते जुड़ोल रीक्षेन ओपरेट डरे छे तेथी એलार्म भणे छे.

– બુકોછા ટ્રીપ :-

ट्रान्सङोर्मरमां इोल्टने डारणे जुङोळ रीतेनो ट्रीपींग इतोट ओपरेट थाय त्यारे जुडोळ ट्रीपनुं એनाઉसीयेशन भणे छे.

Main PRV Trip :-

PRV ओपरेट थवाथी तेनुं એनाઉन्सीयेशन भणे छे.

WTI/OTI Trip :-

WTI/ OTI भीटरमा ट्रीपींग मरङयुरी स्वीय ओपरेट थाय त्यारे એनाઉन्सीयेशन मળे છે.

Low Oil Level Alarm :-

डन्जरवेटर टेन्डमां ओઇલ न होय त्यारे Mog नो इतोट ओपरेट थाय छे सने सेनाઉन्सीयेशन भजे छे.

OSR स्रोपरेट :-

OLTC मां सर्व रीते होय छे. ओपरेट थाय त्यारे એनाઉन्सीयेशन मणे छे.

OTI/ WTI એલાર્મ :-

આ ટ્રાન્સફોર્મર પર રાખેલ મીટરથી જયારે ટેમ્પરેચર વધે ત્યારે એનાઉન્સીયેશન આપે છે.

-:: Protection Relay ::-

- १. नोन ડायरेङ्शन ओवर ङरंट सर्थ इोस्ट रीवे.
- ર. ડાયરેક્શન ઓવર કરંટ અર્થ ફોલ્ટ રીલે.
- 3. ડિકરન્સીયલ રીલે.

(१) नोन ડાયરેક્શન ઓવર કરંટ અર્થ ફોલ્ટ રીલે :-

आ रीले िइंडर पेनल अने ट्रान्स्झोर्मर पेनलमां ઉपयोग थाय છે. 66 kv CT नी प्रोटेड्शन डोरने \$2 नो स्टार जनावी C11, C31,C51 अने C71 प्रोटेड्शन रीलेने आपवामां आवे छे. तेमां ओवर डरंट अने अर्थझोल्टना सेटींग डरवामां आवे छे. तेनाथी वधारे डरंट इलो थाय त्थारे रीले ओपरेट थाय छे. ते 86 मास्टर रीलेने ओपरेट डरे छे. જાણ थाय ते माटे सेनािंडन्सीयेशन आपे छे.

આ रीलेमांथी इोस्ट કरंટ पसार थाय त्यारे ते ओपरेट थाय छे. श्रे इोस्टनी हिशा पर आधारित नथी पोतानी लाईन सिवाय जीशु लाईनमां इोस्ट थाय त्यारे पण ओपरेट थाय छे. नोन डायरेडशन होवाथी तेनी हिशा नड्डी डरतुं नथी. आ रीलेमां अर्थहोस्ट प्रोटेडशन छे. श्रे इंज टुं अर्थनो झोस्ट सेन्स थाय तो ओपरेट थाय छे. ओवर डरंट माटे सेटींग डरतां वधारे डरंट इलो थाय तो रीले ओपरेट थाय छे. तेमां पण अलग-अलग ईनप्ट थी DR सेव थाय छे.

(૨) ડાયરેક્શન ઓવર કરંટ અર્થ ફોલ્ટ રીલે.

67N આ રીલે ને CT અને PT બંને આપવા પડે છે. જે PT આપેલ હોવાથી તે રીતે ડાયરેક્શન નક્કી કરી શકાય છે. તેમાં ટાઈમ સેટીંગ પણ કરી શકાય છે. દાારોકે લાઈન સાઈડનું પ્રોટેક્શન કરવાનું હોય તો તે રીતે લાઈનમાં ફોલ્ટ થશે તોજ સેન્સ કરી ઓપરેટ થશે. બીજી લાઈનનો ફોલ્ટ ટાઈમ સેટીંગ ને કારણે સેન્સ કરી શકશે નહીં અને ઓપરેટ થશે નહીં. ન્યૂમરીકલ રીલે હોવાથી ફોલ્ટ કરંટ DR ને કારણે જાણી શકાય છે. DR માટે અલગ-અલગ ઈનપુટ આપી સેવ કરી શકે છે જો લાઈન પર ફેઝ ટું અર્થ ફોલ્ટ થાય તો E/F રીલે ઓપરેટ થાય છે. ન્યૂમરીકલ રીલેમાં LBB પણ સાથે હોય છે. તેને 200 mS ટાઈમ ડીલે હોય છે. જે 86 માસ્ટર પરથી +Ve મેળવે છે. ડાયરેક્શન રીલેમાં પણ O/C રીલેનું સેટીંગ કરેલ હોય છે.

तेनाथी वधारे डरंट पसार थाय तो आरीले ओपरेट थाय छे अने 86 मास्टर रीलेने ओपरेट डरे छे. अने प्रेडर ट्रीप थाय छे.

(3) ડિફરન્સીયલ રીલે.

द्रान्सङ्गेर्मर मांथी पसार थतो धनपुट ङरंट अने आઉटपुट ङरंटमां भे डिङ्ग्नर आवे तो आ रीवे ओपरेट थाथ छे. 66KV CT नी Core-3 नी प्रोटेङ्शन ङोर अने 11KV धनङ्मर पेनवनी CT नी प्रोटेङ्शन Core नी CT डिङ्ग्निथव रीवेने आपवामां आवे छे. भे न्यूमरीङव रीवे होय तो ICT भेडवामां आवती नथी. भे स्टेटीङ रीवे होय तो HV अने LV नो ङरंट नो भेवेन्स मेजववा माटे ICT नो छिपयोग ङ्ग्वामांआवे छे. आथी HV अने LV नो सरवाजो 0 थवो भोधंसे. भे आमां डिङ्ग्न आवे तो डिङ्ग्लिथव ओपरेट थाय छे.

ડિફરન્સીયલ રીલે આવે તો ટ્રાન્સફોર્મરને ટેસ્ટીંગ કર્યા સિવાય ચાલુ કરી શકાય નહીં કારણ કે ડિફરન્સીયલ રીલે HV કે LV વાયન્ડીંગમાં ફોલ્ટ થાય તો રીલે ઓપરેટ થયો હોય છે. આથી ટ્રાન્સફોર્મર ટેસ્ટીંગ કરી ફોલ્ટ શોધીને પછી જ ચાલુ કરી શકાય.

ડિફરન્સીયલ ઓપરેટ થાય તો ટ્રાન્સફોર્મર કદાપી ટેસ્ટીંગ કર્યા સિવાય ચાલું કરી શકાય નહીં.

LINE BAY

TRANSFORMER BAY

Fig no: CP-01 SEMAPHORNE

Fig no: CP-02 BUS ISOLATOR SEMAPHORNE CIRCUIT

Fig no: CP-02 52CB SEMAPHORNE CIRCUIT

Fig no: CP-02 LINE ISOLATOR SEMAPHORNE CIRCUIT

Fig no: CP-02 LINE ISOLATOR SEMAPHORNE CIRCUIT

Fig no: CP-03 DC DISTRIBUTION

Fig no: CP-04 CT METER CIRCUIT

Fig no: CP-05 INDICATION CIRCUIT

Fig no: CP-06 TRIPCKT-1 &-2 CIRCUIT

66KV CONTROL PANEL

CLOSING & TRIP OPERATION CKT

52 CIRCUIT BREAKER

52Y : ANTIPUMPPING RELAY

63GLX: SF6 GAS PRESS. LOCKOUT CONTACTOR

88M-2 : SPRING CHARGE CONTACTOR 88M-1 : SPRING CHARGE CONTACT L/R : LOCAL REMOTE SWITCH : 52CB AUX.NC CONTACT 52b

52a : 52CB AUX. NO CONTACT

: MASTER TRIP RELAY

TNC : TRIP NUTRAL CLOSE SWITCH

52C : CLOSING COIL TC1 : TRIP COIL-1 TC2 : TRIP COIL-2

SPAJ140C .. NON. DIR R PH. CT Y PH. CT B PH. CT 25 26 61 K1 POWER SUPPLY 62 70 71 L101 +VE ANNUNTITON IRF 72 L115 RELAY INTERNAL FAIL 74 START1 PICKUP O/C 75 77 START2 PICKUP E/F 78 80 L111 SINGNAL1 ANNUNTITION O/C TRIP 81 L101 68 L113 SINGNAL2 ANNUNTITION E/F TRIP 69 L101 TRIP COMMAND. 65 TRIP 66 TO 86 TRIP COIL (MASTER) +VE

LED LABEL :

TRIP

- 1) OVER CURRENY "R" PH.
- 2) OVER CURRENT "Y" PH.
- 3) OVER CURRENT "B" PH.
- 4) EARTH FAULT

* 5 OUTPUT

ABB MAKE TYPE :- SPAJ:140C

NON DIR. O/C& E/F PROTN. RELAY

ER-ARGUS-1

Micom P122

LED LABEL :

TRIP

- 1) OVER CURRENY "R" PH.
- 2) OVER CURRENT "Y" PH.
- 3) OVER CURRENT "B" PH.
- 4) EARTH FAULT

11. -:: બેટરી ચાર્જર : બેટરી સેટ ::-

સબસ્ટેશનમાં પેનલને અને બેટરીસેટને DC સપ્લાય મળી રહે માટે AC સપ્લાયમાંથી DC સપ્લાય કરવા માટે બેટરી ચાર્જરનો ઉપયોગ થાય છે. તેમાં ફ્લોટ ચાર્જીંગ અને બુસ્ટ ચાર્જીંગ હોય છે. 1 to 42 સેલ અને 42 થી 55 નંબર સેલથી ટેપીંગ લઈને ચાર્જર ને આપવામાં આવે છે. 1 નંબરના સેલને -Ve થી ટેપ લેવો જોઈએ. 42 નંબર થી +Ve અને 55 નંબર થી +Ve લઈને ચાર્જરને આપવામાં આવે છે. ચાર્જરમાં DC કોન્ટેક્ટર હોય છે.

Float Charger:-

જયારે ચાર્જરને ફ્લોટ પર ચલાવવામાં આવે છે ત્યારે પેનલોને મળતો ડીસી અને બેટરી ને ટ્રીકલ ચાર્જુગ મળી રહે તે માટે ફ્લોટ ચાર્જર પર કરંટનું સેટીંગ થવું જોઈએ. ફ્લોટ થી પેનલોને DC મળે છે. તેનું વોલ્ટેજ સેટીંગ 115V હોવું જોઈએ. ફ્લોટ હોય ત્યારે DC કોન્ટેક્ટર ઓન હોવું જોઈએ.

Positive to Earth Volt = 57 V

Negative to Earth Volt = 57 V

Positive to Negative Volt = 115 V

ફલોટ ચાર્જર ઓન હોય त्यारे जूस्ट चार्જर स्वीय ओફ હોવી જોઈએ.

Boost Charger:-

બુસ્ટ ચાર્જર ઓન કરતાં પહેલાં ફલોટ બંધ કરવું જોઈએ. બુસ્ટ ચાર્જરથી વધારે કરંટ લઈ બેટરીને આપી શકાય છે. બુસ્ટ ચાર્જર વખતે DC મેઈન કોન્ટેક્ટર ઓન થઈ શકતું નથી.

જયારે બુસ્ટર ચાર્જર મોન હોય ત્યારે DC Bus uz + Ve બેટરી સેટમાંથી 55 નંબર સેલથી 42 નંબર સેલ થી પાસ થઇ DCDB ને મળે છે. -Ve ફલોટ અનેબુસ્ટમાં કોમન હોય છે. જે 1 નંબર સેલથી DCDB ને મળે છે. બેટરીને જયારે મેન્ટેનન્સ વખતે જે ડીસ્ચાર્જ થઇ હોય ત્યારે ફલોટ પર ચાલું કરતાં વધારે કરંટ લેતી હોય ત્યારે Boost પર ચાલું કરી વધારે કરંટ આપી ચાર્જ કરી શકાય છે. બુસ્ટ ચાર્જર વખતે તેનું વોલ્ટેજ સેટીંગ 120 V DC રાખી શકાય છે.

FLOAT & BOOST CHARGER :-

ફલોટ અને બુસ્ટ ચાર્જર સાથે ચલાવી શકાય છે. ફલોટ અને બુસ્ટ સાથે ચાલુ કરો ત્યારે ફલોટ અને બુસ્ટ DC સ્વીય ઓન કરવી તેથી બુસ્ટનો કરંટ +Ve 55 થી +Ve 42 પર થી જયાં ફલોટનો કરંટ મળતો હોય ત્યાં મળે છે. નેગેટીવ બનેનો એક જ હોય છે. એટલે કે કરંટમાં વધારો ફલોટ અને બુસ્ટ સાથે

ચલાવીને કરી શકાય છે. તેથી ફલોટનો કરંટ બુસ્ટમાં પસાર ન થાય તેમાટે બુસ્ટમાંથી 55 નંબર સેલ +Ve થી 42 નંબર સેલ +Veને મળે છે. ત્યાં ડાયોડ રાખવામાં આવે છે જેથી ફલોટનો કરંટ બુસ્ટ તરફ જઈ શકતો નથી. DC કોન્ટેકટર ઓફ હોય છે. જે બંને સાથે ઓપરેશન હોય ત્યારે જોઈ લેવું જરૂરી છે. આ રીતથી બેટરીને ટ્રીકલ યાર્જીંગ અને પેનલોને ડીસી આપી શકાય છે.

DC A મીટર -Ve પર હોવાથી મીટર ઓન હોય છે. DC લીકેજ મીટર પણ હોય છે. બેટરી ચાર્જુગ ડીસચાર્જુગ મીટર હોય છે

Voltage: - V1 = Float output volt, V2 = Boost output volt

V3 = Battery output volt, V4 = Load terminal volt

Current: A1 = Float Current, A2 = Boost Current

A3 = Charge and Discharge current

Float / Boost on Voltage V1 = V4 and V2 = V3

Boost Section on : Voltage V2 = V3 and V4 = 85 % Ct V3

Float on Condition Voltage: V1 = V3 = V4

-:: Batttery Set ::-

બેટરી સેટ 100AH અને 110V नो होय છે. 100AH એટલે કે 10AMP 10 કલાક સુધી બેટરી આપી શકે છે. 110V માટે 55 સેલ ર વોલ્ટના સીરીઝમાં જોડાણ કરીને મેળવાય છે. બેટરી ઉપરથી ત્રણ ટેપીંગ ચાર્જરને આપેલ હોય છે. જેમાં 1 નંબર સેલને -Ve થી ચાલું કરી 42 નંબર સેલથી +Ve અને 55 નંબર સેલથી +Ve લેવામાં આવે છે એટલે કે બે +Ve અને એક -Ve હોય છે. એક સેલના વોલ્ટેજ 2.05V હોય છે. તેની ગ્રેવીટી 1230 હોવી જોઇએ. 1180 થી ઓછી ગ્રેવીટી હોય તો સેલ ચાર્જ થઇ શક્તો નથી. અથવા તો ચાર્જ નથી એટલેકે ગ્રેવીટી 1180 થી 1230 સુધી હોવી જોઇએ જેથી બેટરી સેટ સારી એફિસીચન્સીથી વર્ક કરી શકે છે.

બેટરીનું મેઇટેનન્સ દર અઠવાડિયે મેઇન્ટેનન્સ કરવું જોઇએ. મેઇન્ટેન્સ પછી બેટરીને યોખ્ખા પાણીથી સાફ કરી કોટનથી સાફ કરવી જોઇએ નહીંતર બેટરીની બોડીથી લીકેજ થઇ બેટરી ડીસ્ચાર્જ થઇ શકે છે.

- પ્રોગ્રેસીવ વોલ્ટેજ મહિનામાં એક વખત લેવા જોઈએ.
- બેટરીનો ઈન્પીડન્સ માપવો જોઈએ જે મીટરથી માપી શકાય છે.
- બેટરીનો રનડાઉન ટેસ્ટ પણ કરવો જોઈએ. જેથી તેની એફીશીયન્સી જાણી શકાય છે.

બેટરીને સબસ્ટેશનનું હાર્ડ કહેવામાં આવે છે. પણ તેની જાળવણી હાર્ડ જેવી કરવામાં આવતી નથી. જે કરવી જોઈએ તોજ જરૂરિયાત પ્રમાણે આપણને ડી.સી.આપી શકશે.

BLOCK DIAGRAM OF BATTERY CHARGER

V1: FLOAT OUTPUT VOLTAGE

V2: BOOST OUTPUT VOLTAGE

V3: BATTERY OUTPUT VOLTAGE

V4: LOAD TERMINAL VOLTAGE

A1: FLOAT CURRENT

A2: BOOST CHARGER CURRENT

A3: CHARGE & DISCHARGE CURRENT

BLOCK DIAGRAM OF FLOAT CHARGER ON

V1: FLOAT OUTPUT VOLTAGE

A1: FLOAT CURRENT

V2: BOOST OUTPUT VOLTAGE

A2: BOOST CHARGER CURRENT

V3: BATTERY OUTPUT VOLTAGE

A3: CHARGE & DISCHARGE CURRENT

V4: LOAD TERMINAL VOLTAGE

FLOAT DC VOLTAGE 120V

NOTE:- FLOAT CHARGER ON IN CONDITION V1,V2,V3 & V4 ALL ARE SAME VOLTAGE

MOST IMPORTANT FLOAT CHARGER ON DC CONTACTOR MUST BE CLOSE

BLOCK DIAGRAM OF BOOST CHARGER ON

BOOST ON

V1: FLOAT OUTPUT VOLTAGE

A1: FLOAT CURRENT

V2: BOOST OUTPUT VOLTAGE

A2: BOOST CHARGER CURRENT

V3: BATTERY OUTPUT VOLTAGE

A3: CHARGE & DISCHARGE CURRENT

V4: LOAD TERMINAL VOLTAGE

BOOST VOLTAGE 140V

NOTE:- BOOST CHARGER ON IN CONDITION V2,V3 ARE SAME VOLTAGE

BOOST CHARGER ON CONDITION V4,85% OF BATTERY VOLTAGE (V3)

 $\hbox{MOST IMPORTANT BOOST CHARGER ON DC CONTACTOR MUST BE IN OPEN CONDITION}\\$

BOOST SECTION ON VOLTAGE V2=V3 & V4=85% OF V3

BLOCK DIAGRAM OF FLOAT & BOOST CHARGER ON

V1: FLOAT OUTPUT VOLTAGE

+Ve

A1: FLOAT CURRENT

V2: BOOST OUTPUT VOLTAGE

A2: BOOST CHARGER CURRENT

V3: BATTERY OUTPUT VOLTAGE

A3: CHARGE & DISCHARGE CURRENT

-Ve

V4: LOAD TERMINAL VOLTAGE

NOTE:- BOOST CHARGER ON IN CONDITION V2,V3 ARE SAME VOLTAGE

FLOAT & BOOST CHARGER ON CONDITION V1& V4 ARE SAME VOLTAGE
MOST IMPORTANT BOOST CHARGER ON DC CONTACTOR MUST BE IN OPEN CONDITION

FLOAT FEADING TO LOAD & BOOST FEADING BATTERY

FLOAT & BOOST ON VOLTAGE V1=V4 & V2=V3

DC DB

LOAD VOLTAGE

12. -:: 11KV Control Panel ::-

66/11 kv સ્ટેપડાઉન ટ્રાન્સફોર્મર માંથી 11kv સાઈડે XLPE (X Link Pliythiline Cable) 240mm^2 , 300mm^2 ના બે અથવા ત્રણ કેબલ દ્વારા ઈનકમર પેનલ ને આપવામાં આવે છે. ઈનકમર બ્રેકર પછી 11Kv બસ હોય છે. ત્યાંથી ફિડર પેનલ બ્રેકર દ્વારા આઉટગોઇંગ 11Kv ફિડર કાઢવામાં આવે છે. બસકપ્લર પણ હોય છે. જયાં બે ટ્રાન્સફોર્મર હોય ત્યાં તેને પેરેલલ જોડાણ કર્યું ત્યાં વચ્ચે બસકપ્લરથી બે બસ બનાવી શકાય છે.

11Kv ઇਕકમ૨ ਪੈਕਰ :-

ઇનકમર પેનલમાં ટ્રાન્સફોર્મર ઓન હોય તયારે 11Kv કેબલ થી પાછળની સાઇડે 11Kv सप्ताय यातुं होय છे. तेना पर 11Kv PT होय છे. 11Kv બ્રેકર VCB (Vacum Circuit Breaker) नो ઉપયોગ થાય છે. 11Kv PT માંથી એટલે કે 11Kv / 1.73 અને 110/1.73 65v हरेક ફેઝમાંથી મળે છે. જે KWH મીટર ને આપવામાં આવે છે. ડીઝીટલ મીટર PT સપ્લાયથી ડિસ્પ્લે ઓન થાય છે. 11kv ઇનકલર પેનલમાં Ac Supply, Dc Supply, PT, એનાઉન્સીયેશન, એલાર્મ વગેરેના કનેકશન હોય છે. ત્યાંથી કંટ્રોલ વાયરીંગ બસ બીજા ફિડર પેનલમાં જોડવામાં આવે છે. ઇનકલર પેનલમાં બે VDI (Voltage Detecter Indiator) હોય છે. જેમાં એક કેબલ ચાર્જ હોય તેના પર હોય છે અને બીજું બ્રેકર ઓન કર્યા પછી 11kv બસ પર હોય છે. VDI માં એક પુશબટન હોય છે તેને પ્રેસ કરવાથી ત્રણેય ફેઝના લેમ્પ ઇડીકેટ થાય છે. કોઇપણ ફિડર પેનલનો રીલે ઓપરેટ થાય તો ઇનકલર પેનલમાં એલાર્મ વાગે છે.જેને Accept પૂશબટનથી બંધ કરી શકાય છે.

11KV ਲਿਤਦ ਪ੍ਰੇਗਰ :-

11 KV जस थी VCB ज़ेडर थी 11KV इिडरने पावर आपवामां आवे છે. तेमां એક नोनडायरेडशन रीते प्रोटेडशन माटे होय छे. अत्यारे तगलगओवर डरंट अने अर्थ इोस्ट न्यूमरीडत होय छे. न्यूमरीडत रीतेमां इोस्ट डेटा मणी शड़े छे. VDI नो ઉपयोग इरिश्यात डरवो. ले ज़ेडर ओन होय त्यारे प्रेस डरवाथी ઈन्डीडेट थाय छे. तेथी लागी शड़ाय छे डे ज़ेडरना अ्रेशय पोत ओन छे.

11KV जसङ्खर पेनव :-

जे ट्रान्सइ)र्भर होय त्यां जसङ्खर जे $11 \mathrm{KV}$ जस हे डनेडर सने संदग डरवा मारे थाय छे. तेमां पण जे VDI होय छे. हे जंने जस पर होय छे. डयो जस चातुं छे. ते VDI थी लाणी शडाय छे. VCB ज़ेडरनी जंने जाहू सप्ताय होय छे.

દરેક પેનલમાં એક રીલે હોય છે. જેને $11 \mathrm{KV} \ \mathrm{CT}$ આપવી પડે છે. જો CT આપવામાં ન આવે તો રીલેથી કોઈ કામ થઈ શકતું નથી. તેથી $11 \mathrm{KV} \ \mathrm{CT}$ નો ડાયાગ્રામ Fig .માં બતાવેલ છે.

-:: 11KV VCB Breaker ::-

11KV VCB બ્રેકર रेક ઇન અને રેક આઉટ થઇ શકે તેવા હોય છે. બ્રેકરમાં વેક્યુમ સીસ્ટમ હોય છે. મીકેનીઝમ સીસ્ટમ સ્ત્રીંગ થી ઓપરેટ થાય છે. એટલે કે સ્ત્રીંગને ચાર્જ કરવા માટે લીમીટ સ્વીચો અને AC માટરને રેક્ટીફાયર મૂકી ડી.સી.સીરીઝ મોટર હોય છે. બ્રેકરમાં સ્ત્રીંગ ચાર્જ થાય ત્યારે લીમીટ સ્વીચ ઓપરેટ થાય તે કોન્ટેક્ટને ક્લોઝીંગ સરકીટમાં ઇન્ટરલોક તરીકે ઉપયોગ કરેલ હોય છે. ટ્રીપીંગ કોઇલ, ક્લોઝીંગ કોઇલ, ઇન્ડીકેશન ઓક્ઝીલરી કોન્ટેક્ટના સ્પેર કોન્ટેક્ટ વગેરે પ્લગ પર લાગેલા હોય છે. તે પ્લગ સોકેટ સીસ્ટમથી પેનલની કંટ્રોલ સીસ્ટમને મળે છે.

पेनलनुं पाछणना इवर थी इंट्रोलींग ઇन्टरलोइ होय छे. सेटले हे इवर जंध इर्था पछी जेडर इसोज थर्घ शहे छे. तेवीथ रीते इवरने थे जेडर जंध इर्था पहेला फोलवामां सावे तो जेडरने ट्रीप इरे तेवी लीभीट स्वीय होय छे. सने हवे नवा जेडरमां जेडर सर्विसमां होय सोन होय तो थे जेडरने रेडसाઉट इरवानी शरूसात इरवामां सावे तो लीभीट स्वीय सोपन थवाथी जेडर ट्रीप थर्घ थर्घ थर्य तेवी रीते गोठवेल होय छे सेटले हे जेडर तेनी योग्य पोजीशनमां रेडर्गन इरती वफते थे एन न थाय तो तेना भीडेनीइल लोड येड इरवा परंतु भूलथी डोर्ग एन्टरलोइ जायपास इरवा नहीं.

11KV INCOMER PANEL

ILB : MICROSWITCH FOR BKR TRUCK INTERLOCK

IV : BREAKER OPERATED SWITCHY : AUX.RELAY FOR ANTI PUMPING

 ${\tt LS} \ : \ {\tt MICROSWITCH} \ \ {\tt FOR} \ \ {\tt SPRING} \ \ {\tt DC/AC} \ \ {\tt POSITION}$

80 : DC FAIL CONTACTOR

: PLUG SOCKET FOR VCB

AC SUPPLY, SPRING CHARGE MOTOR CIRCUIT

BR : BRIDGE RECTIFIER

BO : AUX.RELAY FOR DC FAILURE
BOA : AUX.RELAY FOR AC FAILURE

SW4 : MOTOR AC SUPPLY

 \bullet

: PLUG SOCKET FOR VCB

ALARM CANCELLATION CIRCUIT & AC FAILURE CIRCUIT

DC FAILURE CIRCUIT

74,74A : AUX.RELAY FOR ALARM CANCELLATION
74B,74C : AUX. RELAY FOR HOOTER CANCELLATION
74D,74E : AUX. RELAY FOR BUZZER CANCELLATION

PB1 : ALARM CANCELLATION PUSH BUTTON
PB2 : BUZZER CANCELLATION PUSH BUTTON
PB3 : HOOTER CANCELLATION PUSH BUTTON

11KV FEEDER PANEL TB.

INTER PANEL WIRING

INCOMING PANEL TO OUTGOING PANEL

VCB BREAKER WIRING

- .		
3-4	16	
	15	i
	4	OUTGOING
33-5	13	FEEDER I
3-5	12	PANEL
3-1	10 11 12 13 14 15	i i
3-2	0	FOR VCB
<u>F5-2</u>	6	BREAKER - WIRING I
	<u>∞</u>	WIKING
<u>3-3</u>	<u> </u>	-
<u>F4-2</u>	9	
_3A-2	2	·
F11-2	4	
<u>33–11</u>	~	
<u>F8-2</u>	7	
<u>F7-2</u>	 	

13. -:: 11KV કેપેસીટર બેન્ક ::-

11KV िફડર જો ઇન્ડસ્ટ્રીયલ માટે ઉપયોગ થતો હોય તો કેપેસીટર બેન્કની જરૂરિયાત ઓછી રહે છે. જયારે 11KV ફિડર ખેતીવાડીમાં આપવામાં આવે તો રીએક્ટીવ પાવરની જરૂરિયાત રહે છે. આથી કેપેસીટર બેન્કની જરૂર પડે છે. કારણ કે ખેતીવાડીમાં કેપેસીટરનો ઉપયોગ કરતા નથી. આથી સબસ્ટેશનમાં કેપેસીટર બેન્ક હોય છે.

डेपेसीटर जेन्डमां रीએકटर, डेपेसीटर सेव, RVT, LA અને आઇसोवेटर होय छे. जे हरेड सजस्टेशनमां विगावेदा होय छे. तेनी साथे डेजब द्वारा इंट्रोवइममां सेड डेपेसीटर जेन्ड पेनव होय छे. तेमां 11KV जसथी डेजब द्वारा पेनवमां डिनेड्शन डरेदा होय छे. पेनवमां ओवरडरंट रीवे, न्युट्रव डीस्प्लेसमेन्ट रीवे (NDR), ओवर वोव्हेज, संन्डर वोव्हेज, पावर इंडटर मीटर, 86 मास्टर रीवे सने PT होय छे.

हेपेसीटर सेवने पेरेववमां षोडाण हरवामां आवे छे. आथी षो हेपेसीटरने पेरेवव षोडाण हरवुं होय तो हेपेसीटरना KVAR नी गणतरीमां षेटवा KVAR होय तेनो सरवाणी हरवामां आवे छे.

દા.ત.એક ફેઝમાં 200 KVAR ના 4 સેલ હોય તો

ਦੀક ਝੇਖ਼ਗ ਟੀਟਰ KVAR = 200 + 200 + 200 + 200 = 800 KVAR

થાય અને ત્રણે ફેઝના ટોટલ KVAR= $800 \times 3 = 2400 \text{ KVAR}$

તેના MVAR = 2400 / 1000 = 2.4 MVAR થાય.

पहेला ओर्घल झुट्ड रीએક्टरनो ઉपयोग थतो हतो हवे એर्झुट्ड नाना रीએક्टरनो ઉपयोग थाय छे. ते એક જાतनी ઇन्डस्टन्स होर्घल होय छे. જे हेपेसीटर जेन्हना रीએક्टीव पावरने जेलेन्स हरवा माटे थाय छे. तेने हरेड झेंजनी सीरीजमां कोडवामां आवे छे.

RVT, डेपेसेल पहेलां अथवा डेपेसेल पछी षोडवामां आवे छे. तेमां V1 अने V2 छेडाओ होय छे. थे RVT ना सेडन्डरीने डेल्टामां षोडीने भे छेडा होय छे. थे डेपेसीटर भेन्डनो डोईपण એड सेलनी इयुअलीन्ड ज्लोओइ थाय तो RVT नी सेडन्डरीमां 5 थी 15 वोल्ट मणे छे अने तेना डनेडशन NDR (न्युट्रल डिस्प्लेसमेन्ट रीले) ने मणे छे अने ते ओपरेट थई छेडरने ट्रीप डरे छे. थे भेन्डनी डेपेसीटी वधारे होयतो भे RVT होय छे.

भे डेपे जेन्ड ओछी रेन्पनी होय तो तेमां आईसोदेटर એક ए होय छे तेने $11 \mathrm{KV}$ डेजद्मथी डिनेड्शन आपवामां आवे छे. वच्चे $11 \mathrm{KV}$ LA होय छे. प्यारे डेपे.जेन्डमां डाम डरवानुं होय त्यारे जेडर जंध डरी 15 थी 20 मिनिट सुधी राह भोया पछी એटदे डे डेपे.सेद डिस्चार्प थर्छ भाईसोदेटर ओपन डरी सर्थींग रोडथी डिस्चार्प डर्था पछी डाम डरी शड़ाय छे.

हेपेसीटर जेन्डमां એક सेल जराज थर्छ लाय तो तेटला KVAR नो सेल लर्छ तेमां लोडता पहेला तेना MFD मापवामां आवे छे अने तेने लोडीने हरेड इंजना टोटल MFD मापी तेने जेलेन्स MFD मेजववामां आवे छे. तेन् टेस्टींग डरवा माटे એકरीत नीचे हर्शावी छे.

એક થ્રી ફેઝ સ્વીચ જે ઓન ઓફ કરી શકાય તેવી અને એક કલીપઓન મીટર અને કેબલથી આઈસોલેટર ઓપન રાખી RVT થ્રી 440 V AC સપ્લાય આપવામાં આવે છે. અને કરંટ આપવામાં આવે છે. જે દરેક ફેઝનો કરંટ સરખો મળવો જોઈએ. તો કેપેસીટર બેન્ક બેલેન્સ છે.

नीचे हर्शावेल डेपे जेन्डना सेल 200 KVAR नो छे.

- डेपेसीटर सेલना वोल्टे॰ 7.3 KV होय छे.

KVAR = 200 KVAR

In siz = 27.40 Amp

Cn (ਡੇਪੇસੀਟਕ੍ਸ) = 11.40 MFD

RVT = Residual Voltage Transformer

Ratio = 11kv / 110v-190v

VA/Phase = 100VA

Class = 5/5P

RVT નું ડ્રોઇંગ Fig.માં બતાવેલ છે.

-:: 11KV કેપેસીટર પેનલ ::-

O/C =ઓવરકરંટ અર્થ ફોલ્ટ રીલે

NDR = न्युद्रव डिस्पवेसभेन्ट रीवे

 $O/V = \omega$ બાવર વોલ્ટેજ

U/V = અન્ડર વોલ્ટેજ

PF = પાવર ફેક્ટર મીટર

86 = भास्टर रीवे

आ जधा रीतेमां डेपेजेन्डना प्रमाणे सेटींग डरवामां आवे छे. જयारे पण तेना सेटींगथी वधारे डरंट पसार थाय त्यारे वधारे वोव्हेष होय तो, वोव्हेष तेना सेटींगथी ओछा थया होय त्यारे डेपेसेवनी इयुप्र वीन्ड ६डी गई होय पावर इंडटर वधारे वीडींग होय त्यारे मास्टर रीतेने ओपरेट डरे छे अने डेपे.जेन्डनुं जेडर ट्रीप थाय छे. 11KV पेनवमां એક PT होय छे. को PT न होयतो डेपे जेन्ड यावुं थई शड़ती नथी એटवे डे PT ना वोव्हेष मजता न होय तो डेपेजेन्डनुं जेडर ओन न थाय तेवुं ईन्टरवोड होय छे.

જयारे लेगींग पावरहें डटर होय अने हेपे जेन्ड तेना रेटींगथी याले तोआपणने झायहो थाय अने षो पावरहें डटर वधारे लीडींग होय अने यलाववामां आवे तो हेपेसीटर जेन्ड पोते डरंट ले छे अने आपणने नुકशान थशे. डारएां डेपेजेन्ड यावुं डरवाथी आपएाने डरंटमां घटाडो डरे छे सने भे ते होय तेना डरतां डरंट वधारे दे तो समभवुं डे डेपेजेन्ड पोते डरंट दे छे.

કેપેબેન્કની પેનલનું બ્રેકર બીજી પેનલમાં લગભગ ઉપયોગ કરવો નહી કારણ કે તે રીએકટીવ પાવર માટે ઉપયોગ થયેલું હોવાથી તેનો ઉપયોગ કરવો જોઈએ નહી.

TABLE FOR CALCULATION OF REQUIRED MVAR/AMP CAPACITY OF CAPACITOR BANK

SR	11 KV BUS	POWER	CAP. BANK REQ. FOR UNITY P.F.	
NO	AMP	FACTOR	AMP	MVAR
1	300	0.85	158.0	3.16
2	300	0.86	153.1	3.06
3	300	0.87	147.9	2.96
4	300	0.95	93.7	1.87
5	300	0.96	84.0	1.68
6	300	0.97	72.9	1.46
7	400	0.85	210.7	4.21
8	400	0.86	204.1	4.08
9	400	0.87	197.2	3.94
10	400	0.95	124.9	2.50
11	400	0.96	112.0	2.24
12	400	0.97	97.2	1.94
13	500	0.85	263.4	5.27
14	500	0.86	255.1	5.10
15	500	0.87	246.5	4.93
16	500	0.95	156.1	3.12
17	500	0.96	140.0	2.80
18	500	0.97	121.6	2.43
19	600	0.85	316.1	6.32
20	600	0.86	306.2	6.12
21	600	0.87	295.8	5.92
22	600	0.95	187.3	3.75
23	600	0.96	168.0	3.36
24	600	0.97	145.9	2.92

NOTE: PUT THE VALUES OF 11 KV BUS LOAD & P.F OF PARTICULAR TIME FROM DA SYSTEM DATA IN COLUMN C & D YOU WILL GET THE MVAR/AMP CAPACITY OF CAP BANK REQUIRED FOR UNITY PF AT THAT PARTICULAR TIME.

Residual Voltage Transformer RVT

RATIO : 11KV / 110V-190V VA / PHASE : 100VA / 3PH.

CLASS : 5 / 5P

CAPACITOR CELL FUSE LINK FAIL GENRATE TERMINAL V1-V2 5 TO 15 VOLT USE IN NDR RELAY SO OPERATE

11KV CAPACITOR BANK

11KV CELL:-

200 KVAR

IN: 24.40Amp

CN: 11.40 MFD

UN: 7.3KV

11KV RVT:-3PH,11KV//3 110V//3

11KV REACTOR:-0.2MH

11KV CT:-400/5 Amp

NDR-1 RELAY:-0 TO 20 VOLT

NDR-2 RELAY:-0 TO 20 VOLT

UNDER VOLTAGE RELAY:- <10.5KV

OVER VOLTAGE RELAY:- >12.2KV

OVER CURRENT RELAY:-

14. -:: અર્થીંગ ::-

દરેક સબસ્ટેશનમાં G.L કે MS અર્થીંગ પટ્ટીથી સ્ટક્ચર કે ઇક્વીપમેન્ટને અર્થીંગ જોડવામાં આવે છે. દરેક CT, PT બોક્સને પણ અર્થીંગ કરવામાં દરેક CT કે PT ના સ્ટાર કરેલા પોઇન્ટને અર્થીંગ ફરજીયાત કરવો પડે છે. સબસ્ટેશનમાં અર્થીંગ ગ્રીડ પ્રકારનો હોય છે. તેમાં દરેક સ્ટક્ચર પાસેથી અર્થીંગ પટ્ટી હોય છે. દરેક સ્ટક્ચરને બે અર્થીંગ કરવા પડે છે. દરેક ઇક્વીપમેન્ટને બે અર્થીંગ કરવા જોઈએ. દ્રાન્સફોર્મરના ન્યુદ્રલ માટે બે અર્થીંગપીટ ગ્રીડ સાથે મેચન થાય તે રીતે રાખવામાં આવે છે. LA ના અર્થીંગને બધા અર્થીંગથી અલગ રાખવામાં આવે છે. અર્થીંગ પીટની વેલ્યુ લેવી જોઈએ. અને સ્ટક્ચર ની પણ અર્થીંગ જોડેલા હોય તે પ્રમાણેની અર્થીંગ વેલ્યુ લેવી જોઈએ. સબસ્ટેશનમાં ઘણા અર્થીંગ પીટ હોય છે. બધા પેરેલલ જોડેલા હોય છે. જેથી તેનો અર્થીંગ 1 થી નીચે થવો જોઈએ. 11KV પેનલનો પણ બંને સાઈડ અને સોલીડ અર્થીંગ કરવો જોઈએ.

हरेड सजरटेशनना ड्रोस्ट लेवड प्रमाणे अर्थींग पीट सने सर्थींग पट्टीनी सार्घत्र नड्डी डरवामां सावे छे. ट्रान्सड्रोर्मर माटे पण को सर्थींग पीटनी वेल्यु वधारे सापती होय तो मेश सर्थींग डरवो कोर्घसे. सर्थींग टेस्ट पीट पण होवा कोर्घसे. जधा सर्थींग पेरेलल डनेड्शन डरवामां सावे छे तेथी तेनो रेजुस्टन्शनमां घटाडो थाय छे.

15. -:: ફોલ્ટ ::-

- ⇒ 11KV VCB બ્રેકર એક ટ્રોલી પર હોય છે. तेने रेકઇન અને રેકઆઉટ કરી શકાય तेવી सीस्टम होय છે.
- □ 11KV ઇनडलर पेनलमां 11KV PT होय छे. ऄ PT 110V AC हरेड इंअ इिंडर पेनलमां आवेल होय छे. ओ PT मणती न होय तो KWA भीटरमां डे डिस्पले रीडींग जतावशे नहीं अने भीटरना रीडींग इरशे नहीं.
- ⇒ जे र्रामङ्गर पेनल होय तो डोर्डपए। એક PT मजदी श्रीरंभ. जे PT ना सप्लायने पेरेलल डरी शडाय नहीं. ते भारे डंट्रोल सरडीट Fig. मां जतावेल छे.
- □ 11KV (ईडर पेनलोमां वधारे पडता इोल्ट थाय छे. पेमां वोडयुम जेडरनी जोटल पो लीडेळ थयुं होय तो ट्रीपींग वफते ज्लास्ट थाय छे. वेडयुम नथी ते प्राणी शडाय ते माटेनी व्यवस्था होती नथी. ट्रीप थती वफते जोटल इायर थाय छे.
- ⇒ 11KV VCB ने 11KV जस सने िइंडर डेजबने श्रेडवा मार्टना डोन्टेंडर ढोय छे. ते सेपोडसी रेजीन डवरमां िइंटींग डरेबा ढोय छे तो मेंछन्टेन्स वर्णते तेमां लेश संग्रह थतो नथी तेवुं रोड डरवुं श्रुरी छे.नढींतर लेश थी डबेसींग थर्छ शड़े छे.
- ⇒ नवी सीस्टममां VDI छपर पुशजरन आवतुं नथी भे तमे छेङरने रेङ्ग् के रेङ्गािष्ठर ङरतां पहेलां तेना पर भेग लेवुं तेनुं वधारे ध्यान राजवुं भेग्गे. भेथी डोग्ग पोल ओन होय तो VDI ग्रन्डीङेर ङरतुं हशे.
- □ 11KV पेनलमां िहटर होय छे लेवनी सीस्टममां यातुं राजवामां आवे छे. तेथी तेनो लेव प्रेडरनी योपोडसी रेजीन जोड्स होय छे. येटले डे वेमां वेडयुम जोटल होय छे. तेमां लेव वमा थाय छे याने डोईपण डारण वगर प्रेडरमां इलेसींग थाय छे तो प्रेडरमां लेव नथी ते ध्यान राजवुं वर्री छे.
- ⇒ 11KV पेनतमां वर्मींग प्रुङ्गींग जास होवुं श्रेष्टिंभ नहींतर तेमां नानी छवात हाजल थाय छे सने तेने जावा माटे गरोडी श्रय छे सने झेल्ट थाय छे.

- □ 11KV जस ड्लोज होय छे એटले डे ते हरेड क्रथाओथी जंध होय छे. 11KV जस 11KV डे 12KV ઇन्स्युलेटर पर राजेल होय छे. 11KV पेनलमां हिटर होवाथी जस डन्डेस थयेली हवा जसमां लराई क्रथ छे. वधारे पडतो लेक थाय त्यारे जस झोल्ट थाय छे. को शड्य होय तो એड नानो ओडजोस ईन मुडी शडायतो आ जामीनूं निवारण डरी शडाय छे.
- □ 11KV जसनी IR नुं वेल्युं लेवामां आवे छे भे IR वेल्यु ओछी आवती होय तो समभवुं डे एन्स्युलेशनमां लेभ छे. भेपोडसीरेजीन एन्स्युलेटर भे विड थयुं होय तो ते लेभनुं शोषण डरे छे. भेथी भर्यारे जसनुं मेएटेनस डरता होय त्यारे मएन्टेनस डरतां पहेलां IR वेल्यु लेवी सने त्यारजाह मेएनटनस डे साइसूइ डर्या पछी IR वेल्यु लेवी भोएंसे भेथी तेनी इंडीशन भोए शडाय छे. तो डोए एन्स्युलेशन डे जधा जसना जंध डवरमां लेभ छे डे नहीं ते भाणी शडाय छे.
- ⇒ योभासामां िहट यदावा शेर्धे नहींतर संहर भेष वधशे. सामतो योभासामां वधारे इोस्ट थाय छे सेटले सापणे प्रीमोन्सुन मर्छन्टेनस इरीसे छीसे सने त्यारजाह पोस्ट मोन्सुन मेर्छन्टेनस इरीसे छीसे. तेना रीअस्ट सेइ र्शुस्टरमां द्यापे सने तेनो सन्यास इरो पेथी सीस्टम हेव्ही रहे सने सेइसीऽन्ट जयावी शडाय छे.
- ⇒ 11KV VCB मां Hipot test वेवामां आवे छे. तेनुं रशुस्टरमां तेना mA वजवा शोधो अने वर्षमां प्री मोन्सन सने पोस्ट मोन्सनमां 11kv जसनो Hipot test वेवो शोधो.
- □ 11kv पेनलमां એક Auto trip लेम्प होय छे. थे खेडर इलोज इरतां थे खेडर इलोज था थाय तो लेम्प आवतो नथी अने थे खेडर इलोज न थाय तो ते Auto trip लेम्प आवे छे. तो पए मित्रो वारंवार इलोज इरे छे. ओटो ट्रीप लेम्प त्थारे आवे छे ई इलोजींग माटेना थे एन्टरलोइ होय ते योग्य न थया होय तो तमे गमेतेटला इलोजींग इमान्ड आपशो ते इलोज थशे नही त्थारे मित्रो लोइल सीस्टमथी ओपरे इरे छे. ते योग्य नथी इलोजींग एन्टरलोइ Fig. मां जतावेल छे. थे चेड इरवा थइरी छे.
- स्थींग चार्ष थर्घ होय परंतु तेनी तीभीट स्वीच इतोज थर्घ न होय.
- 86 रीवे रीसेट न होय.
- ઓક્ઝીલરી સ્વીચ પુરી ઓપરેટ થઈ ન હોય.
- કલોઝીંગ કમાન્ડનો +Ve ન મળતો હોય.
- DC नो इयुज GSी गयो होय

- પ્લગ સોકેટ બરાબર ન લાગ્યા હોય
- કલોઝીંગ કોઈને -Ve મળતો ન હોય
- કલોઝીંગ કોઇલ પર વાયર નીકળી ગયો હોય.
 આટલી સરકીટ બરાબર હોય ત્યારે બ્રેકર કલોઝ થાય.
- □ 11kv ઇनडमर पेनलमां એક सुविधा होय छे डे पाछणनुं डवर ખोलवामां आवे त्यारे
 66kv બ્રેકर ट्रीप थर्घ જાય. એટલે डे 11kv ઇनडमर पेनलमां 11kv जस अने ट्रान्सइोर्मर
 परथी आवतो डेजलमां सप्ताय होय छे. 11kv जस पर जीशु ઇनडमर पेनल यातुं होवाथी
 पेनलमां जस यातुं होर्घ छे. जो 66kv બ्रेडर जंध डर्या सिवाय पाछणनुं डवर ખोलवामां आवे तो ओडसीऽन्ट थर्घ शडे छे.
- 11kv जस रुप्तर पेनवमां डाम रुरवुं होय तो तेमां ध्यान राजवुं शेंधसे, डारण हे तेनी जंने जाशु सप्ताय होय छे. तेमां जे VDI होय छे. तेनाथी येड रुरवुं ९३री छे सने पछी भेंधन्टेनस रुरवुं तेथी सवामती वधे छे.
- 11kv भ्रेडरमां स्त्रींग यार्ष मोटरनी फराजी थर्घ होय त्यारे मीडेनीडल हेन्डलथी स्त्रींग यार्ष डरवानी होय तो मोटरनी स्वीय जंध डरी हेन्डल थी स्त्रींग यार्ष डरवी. डारण डे को लीमीट स्वीयमां वायर नो प्रोजलेम होय सने हेन्डलथी यार्ष डरतां डनेडशन थर्घ काय तो मोटर स्वीयरेट थाय तो सोपरेटरने नुडशान थर्घ शडे छे.
- डोर्डपण 66kv दार्डन हे $11 \mathrm{kv}$ दार्डनमां इोस्ट थाय त्यारे 8 पण इोस्ट डरंट पसार थाय छे ते सेन्डींग એन्ड जालू आ डरंट पाछो भजे छे 8 CT नो स्टार पोर्डन्ट होय तेमां भजे छे अने रीदे ओपरेट थाय छे अने क्षेडरने टीप डरे छे.
- 11KV लाईनमां सींगलङ्के पावर आपवा मारे LSTC ट्रान्सङ्गर्मरनो ઉपयोग ङरवामां आवे छे. के हरेड डिडरने એडक इेम्र आपवामां आवे छे सने जीको ईम्र के 6.3KV थी आशरे 2 KV आसपास नो होय छे. केने सर्थ इरवामां आवे छे सने वस्थे CT मुडी पेनल ઉपर रीले लगावेलो होय छे. आधी हरेडमां એडक इेम्र कवाथी अर्थय इेम्र सन्जेलेन्स थवाथी के रोटल इरंट पसार थाय तेटलो ट्रान्सङ्गेर्मरना न्युट्रल इरंटमां पसार थाय छे. को 11KV लाईन पर कोडेला LSTC ट्रान्सङ्गेर्मर मारेनो सर्थींग योग्य न होय तो 66KV ट्रान्सङ्गेर्मरनुं मेईन्टेनस इरती वजते हरेड LSTC ट्रान्सङ्गेर्मर जंध इरवा कोईसे से सलामती करेलुं छे.

 $-11 \mathrm{KV}$ ઈનકમરમાં જૂની ડિઝાઈનમાં સ્કોટપીટીનો ઉપયોગ થાય છે. જેમાં V ટાઈપ વાઈન્ડીંગથી ત્રણ ફેઝ બનાવવામાં આવે છે.

