EE 574 Detection and Estimation Theory

Lecture Presentation 4

Aykut HOCANIN

Dept. of Electrical and Electronic Engineering Eastern Mediterranean University

Chapter 2: Classical Detection and Estimation Theory

Estimation Theory

A model of a general estimation problem is shown in Fig. 1. The model has the following components.

> Parameter Space.

The output of the source is a parameter in a parameter space. For the single parameter space, this corresponds to the line $-\infty < A < \infty$.

- The parameter is a random variable.
- The parameter is an unknown quantity but not a random variable.
- \triangleright Probabilistic Mapping from Parameter Space to Observation Space. This is the probability law that governs the effect of a on the observation.

➤ Observation Space.

In the classical problem, this is a finite-dimensional space. It is denoted by the vector \mathbf{R} .

Estimation Rule.

After observing **R** an estimate of the value of a is made and this estimate is denoted by $\hat{a}(\mathbf{R})$. This mapping of the observation space into an estimate is called the estimation rule.

Figure 1: Estimation Model.

Random Parameters: Bayes Estimation

All pairs $[a, \hat{a}(\mathbf{R})]$ are assigned costs over the range of interest. This function of two variables is denoted as $C(a, \hat{a})$. Usually, the cost depends only on the error of the estimate which is given by

$$a_{\epsilon}(\mathbf{R}) = \hat{a}(\mathbf{R}) - a$$

Figure 2: Mean-square error cost function.

Figure 3: Absolute error and uniform error cost functions

The cost function $C(a_{\epsilon})$ is a function of the error hence it is a function of a single variable. Some typical cost functions are shown Figs. 2 and 3.

> Squared error function.

$$C(a_{\epsilon}) = a_{\epsilon}^2$$

> Absolute value of the error function

$$C(a_{\epsilon}) = |a_{\epsilon}|$$

> Uniform error cost function

$$C(a_{\epsilon}) = \begin{cases} 0, |a_{\epsilon}| \leq \frac{\Delta}{2} \\ 1, |a_{\epsilon}| > \frac{\Delta}{2} \end{cases}$$

Just like the detection problem, it is assumed that the a priori probability density $p_a(A)$ in the random parameter estimation problem is known. If it is unknown, a procedure similar to the minimax test may be used.

The expression for the risk becomes:

$$\mathcal{R} = E\{C[A, \hat{a}(\mathbf{R})]\} = \int_{\infty}^{\infty} C[a, \hat{a}(\mathbf{R})] p_{a,\mathbf{r}}(A, \mathbf{R}) \ dA \ d\mathbf{R}. \tag{1}$$

The expectation is over the random variable a and the observed variables r. For costs which are defined on the error only Eq.(1) becomes

$$\mathcal{R} = \int_{\infty}^{\infty} C[A - \hat{a}(\mathbf{R})] p_{a,\mathbf{r}}(A,\mathbf{R}) \ dA \ d\mathbf{R}. \tag{2}$$

Bayes estimate is the estimate that minimizes the risk. We write the joint density as:

$$p_{a,\mathbf{r}}(A,\mathbf{R}) = p_{\mathbf{r}}(\mathbf{R})p_{a|\mathbf{r}}(A|\mathbf{R})$$

We then take the derivatives with respect to \hat{a} to obtain the estimates. The Bayes estimates for the cost functions defined above are as follows:

➤ Bayes estimate for the square error cost function: (Mean Square Estimate)

$$\hat{a}_{\rm ms} = \int_{-\infty}^{\infty} A p_{a|\mathbf{r}}(A|\mathbf{R}) \ dA \tag{3}$$

The term on the right hand side of Eq. (3) is the mean of the 'a posteriori density' (conditional mean).

> Bayes estimate for the absolute value criterion

$$\int_{-\infty}^{\hat{a}_{abs}(\mathbf{R})} p_{a|\mathbf{r}}(A|\mathbf{R}) \ dA = \int_{\hat{a}_{abs}(\mathbf{R})}^{\infty} p_{a|\mathbf{r}}(A|\mathbf{R}) \ dA \tag{4}$$

This is given by the median of the 'a posteriori' density.

Bayes estimate for the uniform cost function: (Maximum a Posteriori (MAP) Estimate)

This is obtained when $\lim \Delta \to 0$ for the uniform cost function. In order to find $\hat{a}_{map}(\mathbf{R})$ we must have the location of the maximum of the 'a posteriori' density.

Figure 4: Maximum of the 'a posteriori' density.

Properties for the invariance of the cost functions for the estimators

1. We assume that the cost function $C(a_{\epsilon})$ is a symmetric, convex upward function and that the a posteriori density $p_{a|\mathbf{r}}(A|\mathbf{R})$ is symmetric about its conditional mean: that is,

$$C(a_{\epsilon}) = C(-a_{\epsilon})$$
 Symmetry

$$C(bx_1 + (1-b)x_2) \le bC(x_1) + (1-b)C(x_2)$$
 Convexity

For non-convex functions, we have property 2,

2. We assume that the cost function is a symmetric, nondecreasing function and that the a posteriori density $p_{a|\mathbf{r}}(A|\mathbf{R})$ is a symmetric function about its conditional mean. It is a unimodal function that satisfies the condition

$$\lim_{x \to \infty} C(x) p_{a|\mathbf{r}}(A|\mathbf{R}) = 0$$

The estimate \hat{a} that minimizes any cost function in this class (satisfying the properties) is identical to \hat{a}_{ms} .