Definition (Correlation coefficient)

Let x_i and y_i be the values of two variables associated to the *i*th element in U ($i=1,2,\cdots,N$). The *correlation coefficient* (or simply, the correlation) between x and y is defined as

$$r_{xy,U} \equiv \frac{\sum_{U} (x_i - \bar{x}_U)(y_i - \bar{y}_U)}{(\sum_{U} (x_i - \bar{x}_U)^2 \sum_{U} (y_i - \bar{y}_U)^2)^{1/2}}.$$

Example

Let U be the population of N=10 students taking a Master course in statistics. Let x_i and y_i be, respectively, the scores in a home assignment and the final exam of the ith student $(i=1,2,\cdots,N)$. Table 1 shows the observed values.

i	1	2	3	4	5	6	7	8	9	10
Xi	0	9	2	24	25	23	4	20	28	5
Уi	8	15	5	36	40	30	9	21	32	5 27

Table: Score of ten students in a home assignment and an exam in statistics

Find the correlation.

X	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	
1	11	3	25	9	-
2	10	7	16	7	10 - 0 80000 - 50000 -
3	9	20	9	6	8 - 4000 - 4000 - 3000 -
4	8	55	4	1	4 - 20000 - 10000 - 10000 -
5	7	148	1	10	2 4 6 8 10 2 4 8 8 10
6	6	403	0	5	28 0 0 10 0
7	5	1097	1	3	20 -
8	4	2981	4	11	5 2
9	3	8103	9	8	2 4 6 8 10 2 4 6 8 10
10	2	22026	16	4	
11	1	59874	25	2	

Definition (Spearman's correlation coefficient)

Let x_i and y_i be the values of two variables associated to the *i*th element in U ($i=1,2,\cdots,N$). Let also $R(x_i)$ and $R(y_i)$ be their corresponding ranks. Spearman's correlation coefficient between x and y is defined as

$$r_{xy,U}^{s} \equiv \frac{\sum_{U} (R(x_{i}) - \bar{R}_{U})(R(y_{i}) - \bar{R}_{U})}{\left(\sum_{U} (R(x_{i}) - \bar{R}_{U})^{2} \sum_{U} (R(y_{i}) - \bar{R}_{U})^{2}\right)^{1/2}}$$

where
$$\bar{R}_U = (N + 1)/2$$
.

Example

Let U be the population of N=10 students taking a Master course in statistics. Let x_i and y_i be, respectively, the scores in a home assignment and the final exam of the ith student $(i=1,2,\cdots,N)$. Table 1 shows the observed values.

i	1	2	3	4	5	6	7	8	9	10
X_i	0	9	2	24	25	23	4	20	28	5
Уi	8	15	5	36	40	30	9	21	32	5 27

Table: Score of ten students in a home assignment and an exam in statistics

Find the Spearman's correlation coefficient.

Definition (Kendall's correlation coefficient)

Let x_i and y_i be the values of two variables associated to the *i*th element in U ($i=1,2,\cdots,N$). Kendall's correlation coefficient between x and y is defined as

$$r_{xy,U}^k \equiv \frac{2}{n(n-1)} \sum_{i < j} \operatorname{sgn}(x_j - x_i) \operatorname{sgn}(y_j - y_i)$$
 (1)

where

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases} \quad \Box$$