データベース(第5回)

情報工学科 木村昌臣

第二正規形

関数従属性

各タップルについて ある列の値が別の特定の列の値によって一意に決まること

注文

<u>顧客名</u>	商品名	数量	単価
A商店	テレビ	3	198,000
Bマート	テレビ	10	198,000
Bマート	パソコン	5	59,800
C社	ゲーム機	1	29,800

商品名がひとつ決まると単価がひとつ決まる!

(多値従属性の特別な場合)

完全関数従属性(再掲)

関数従属性 X→Yで、X'をXの真部分集合とすると、X'→Y が成立しない場合、YはXに完全関数従属しているという。

発注

<u>顧客名</u>	商品名	数量	金額
A商店	テレビ	3	594,000
Bマート	テレビ	10	1,980,000
Bマート	パソコン	5	299,000
C社	ゲーム機	1	29,800

{顧客名,商品名} → {数量} は成り立つが、 {顧客名} → {数量} {商品名} → {数量} は成り立たない。

第2正規形

■ 更新操作を考えたとき、第1正規形では 更新時異常の発生が防げない

高次の正規化を行う必要あり

第2正規形

リレーションスキーマーRが第2正規形であるとは 以下の二つの条件を満たすときを言う

- 1. **R**は第1正規形である
- 2. Rのすべての非キー属性は Rの各候補キーに完全関数従属している

非キー属性:候補キーに含まれていない属性

第2正規形

注文

<u>顧客名</u>	商品名	数量	単価	金額
A商店	テレビ	3	198,000	594,000
Bマート	テレビ	10	198,000	1,980,000
Bマート	パソコン	5	59,800	299,000
C社	ゲーム機	1	29,800	29,800

{顧客名,商品名} → 数量 {顧客名,商品名} → 金額 単価に関する完全関数従属は

{商品名} → 単価

は完全関数従属しているが、

定義の(2)に反する! ⇒リレーション注文は 第2正規形ではない!!

第2正規形

注文

<u>顧客名</u>	商品名	数量	単価	金額
A商店	テレビ	3	198,000	594,000
Bマート	テレビ	10	198,000	1,980,000
Bマート	パソコン	5	59,800	299,000
C社	ゲーム機	1	29,800	29,800

{顧客名,商品名} → 数量 {顧客名,商品名} → 金額 は完全関数従属している ►

第2正規形

単価に関する 完全関数従属は {商品名} → 単価

<u>顧客名</u>	商品名	数量	金額
A商店	テレビ	3	594,000
Bマート	テレビ	10	1,980,000
Bマート	パソコン	5	299,000
C社	ゲーム機	1	29,800

商品名	単価
テレビ	198,000
パソコン	59,800
ゲーム機	29,800

情報無損失分解される!!

第三正規形

関数従属性の推移律

住所録

氏名	住所	郵便番号	市外局番
浜崎あゆみ	愛知県 名古屋市千種区	464-0852	052
松浦亜弥	和歌山県 和歌山市	640-8322	073
後藤真希	神奈川県 横浜市鶴見区	230-0024	045
藤原紀香	兵庫県 神戸市東灘区	658-0083	078
伊藤美咲	福岡県 久留米市	839-0843	0942

- 1. 氏名 → 住所
- 2. 住所 → 郵便番号 という関数従属性がある。

このことから、

3. 氏名 → 郵便番号 という関数従属性が導き出される。

関数従属性の推移律

住所録

氏名	住所	郵便番号	市外局番
浜崎あゆみ	愛知県 名古屋市千種区	464-0852	052
松浦亜弥	和歌山県 和歌山市	640-8322	073
後藤真希	神奈川県 横浜市鶴見区	230-0024	045
藤原紀香	兵庫県 神戸市東灘区	658-0083	078
伊藤美咲	福岡県 久留米市	839-0843	0942

一般的には、

 $A \rightarrow B$ かつ $B \rightarrow C$ ならば $A \rightarrow C$ (推移律)

関数従属性を二つ組み合わせて、新たな関数従属性が求められた!

実は、第2正規形ではすべての更新時異常を解決できない

	<u>社員番号</u>	社員名	給与	所属	勤務地
	0650	内山理名	30	人事部	幕張
キキ ー	1508	反町隆史	40	営業部	丸の内
<u> </u>	0231	竹内結子	35	営業部	丸の内
	2034	稲川淳二	50	人事部	幕張
	21 00	優香	25	経理部	日本橋

- ●新しい所属と勤務地の情報 (null, null, null, 中部営業部, 静岡) が挿入できない
- ●優香さんが退職したら、経理部が日本橋にあるという情報が消えてしまう。
- ●営業部が丸の内から品川へ移ったとすると反町さん、竹内さんの二つのタップルを 修正しなければならない(営業部全員の勤務地を修正しなければならない)

実は、第2正規形ではすべての更新時異常を解決できない

	<u>社員番号</u>	社員名	給与	所属	勤務地
	0650	内山理名	30	人事部	幕張
キキー	1508	反町隆史	40	営業部	丸の内
<u> </u>	0231	竹内結子	35	営業部	丸の内
	2034	稲川淳二	50	人事部	幕張
	2100	優香	25	経理部	日本橋

理由: {社員番号} → {勤務地} は、

{社員番号} → {所属} かつ {所属} → {勤務地}という関数従属性の

推移律から得られた関数従属性であるから

対策

推移的に関数従属している部分は別リレーションに分ける

第3正規形

リレーションスキーマーRが第3正規形であるとは 以下の二つの条件を満たすときを言う

- 1. **R**は第2正規形である
- 2. Rのすべての非キー属性は Rのどの候補キーにも推移的に関数従属していない

非キー属性:候補キーに含まれていない属性

社員番号	社員名	給与	所属	勤務地
0650	内山理名	30	人事部	幕張
1508	反町隆史	40	営業部	丸の内
0231	竹内結子	35	営業部	丸の内
2034	稲川淳二	50	人事部	幕張
21 00	優香	25	経理部	日本橋

{社員番号}→{所属}

2100

社員番号 给与 社員名 所属 内山理名 人事部 0650 30 反町隆史 営業部 1508 40 竹内結子 営業部 0231 35 人事<u>部</u> 2034 50

25

優香

第3正規形

経理部

{所属}→{勤務地}

所属	勤務地
人事部	幕張
営業部	丸の内
経理部	日本橋

ボイス-コッド正規形

ボイス-コッド正規形

リレーションスキーマーRがボイス-コッド正規形であるとは 以下の条件を満たすときを言う。 X→YをR の関数従属性とすると

: 候補キ―とそれ以外の属性集合の間の関数従属性

- 1. $X \rightarrow Y$ は自明な関数従属性であるか、または
- 2. XはRのスーパーキーである

自明な関数従属性

・ : 候補キ―を含む属性集合

スーパーキー

第4正規形

- 第3正規形までは関数従属性での分解
- 多値従属性での分解が第4正規形

第4正規形

リレーションスキーマーRが第4正規形であるとは以下の条件を満たすときを言う。 $X \rightarrow Y \in R$ の多値従属性とすると

- 1. $X \rightarrow Y$ は自明な多値従属性であるか、または
- 2. XはRのスーパーキーである

第5正規形

- 第4正規形でも実は更新時異常が起こりうる
- 下のリレーションのようにすべての属性が主 キーになる場合
 - 大宮工場が釘を供給開始。でも、タップル (大宮工場,釘, null) は挿入できない

■ タップル(大宮工場,ボルト,××工業)を削除すると、 大宮工場がボルトを作っているという情報が残らな

1)

供給元	部品	供給先
芝浦工場	ネジ	○○電機
芝浦工場	ネジ	××工業
芝浦工場	ボルト	××工業
大宮工場	ボルト	××工業

第5正規形

しかし、多値従属性がないため、今までどおりの方法では情報無損失分解はできない。

供給元	供給先
芝浦工場	○○電機
芝浦工場	××工業
大宮工場	××工業

供給元	部品	供給先
芝浦工場	ネジ	○○電機
芝浦工場	ネジ	××工業
芝浦工場	ボルト	××工業
大宮工場	ボルト	××工業

供給元	部品	供給先	
芝浦工場	ネジ	○○電機	
芝浦工場	ネジ	××工業	
芝浦工場	ボルト	○○電機	
芝浦工場	ボルト	××工業	
大宮工場	ボルト	××工業	

供給元	部品
芝浦工場	ネジ
芝浦工場	ボルト
大宮工場	ボルト

よけいなタップルが できてしまう