Relatório 3º projeto ASA 2023/2024

Grupo: AL016

Alunos: Lara Faria (106059) e Rita Melo (107294)

Descrição do Problema e da Solução

Dada uma empresa que fabrica brinquedos (inclusive pacotes especiais dos mesmos), o problema consiste em encontrar o lucro máximo que se pode obter diariamente, respeitando as restrições de produção.

Variáveis do problema:

 $-x_1$, ... , x_{num_toys} : representam a quantidade a ser produzida diariamente de cada brinquedo individual i;

 $-x_{num_toys+1}$, ... , x_{num_toys+p} : representam a quantidade a ser produzida

diariamente de cada pacote especial *m* (sendo *p* o número de pacotes) .

Variáveis auxiliares:

- $-l_i$: lucro do brinquedo/pacote especial i;
- $-\ c_{,}$: capacidade máxima de produção do brinquedo i;
- packages[i] : lista de pacotes que contêm o brinquedo i;

A função objetivo consiste em maximizar o lucro diário, que é dado pela soma dos produtos das capacidades máximas dos brinquedos/pacotes pelos lucros dos mesmo, pode ser representada pela seguinte expressão:

$$Maximize \sum_{i=1}^{num_toys + p} x_i \times l_i$$

As restrições do problemas são:

- Restrição da capacidade total, que pode ser dada por:

$$\sum_{i=1}^{num_toys} x_i + \sum_{i=num_toys+1}^{num_toys+p} 3 \times x_i \leq maxCapacity$$

- Restrições das capacidades individuais dos brinquedos, que podem ser dadas por:

$$x_{i} + \sum_{k=1}^{len(packages[i])} x_{packages[i][k]} \leq c_{i} para i em [1, num_toys]$$

Análise Teórica

Convenhamos n o número de brinquedos e p o número de pacotes. Existem n+p variáveis logo a complexidade do número de variáveis do programa linear é O(n+p).

Relatório 3º projeto ASA 2023/2024

Grupo: AL016

Alunos: Lara Faria (106059) e Rita Melo (107294)

Existem três tipos de restrições: a restrição da capacidade total (1), as restrições das capacidades de cada brinquedo (n) e as restrições para incluir os brinquedos que estão nos pacotes (p). Logo o número de restrições do programa linear é O(n + p). Assim, estimamos que a complexidade geral do programa seja O(n + p).

Análise Experimental dos Resultados

Corremos o programa com diferentes ficheiros de input gerados pelo gerador de instâncias e utilizámos o comando time do terminal para obtermos o tempo de cada teste. Desta forma, obtivemos os resultados apresentados na tabela, expondo-os na forma dos gráficos apresentados abaixo. Ambos representam a forma como o tempo vai aumentando linearmente tanto com o aumento do número de variáveis (número de brinquedos + número de pacotes) mais o número de restrições (1 + número de brinquedos), como com o aumento do número de brinquedos mais o número de pacotes. Desta forma, podemos concluir que a nossa estimativa estava correta.

2T+P+1	T+P	Tempo
13	7	0,062
51	30	0,064
101	60	0,07
206	125	0,071
241	150	0,075
271	170	0,08
306	195	0,082
431	270	0,086
2701	1700	0,251
5401	3200	0,504
7501	4500	0.833