2장 신경망의 수학적 구성 요소

아래 요소들을 직관적으로 살펴본다.

- 텐서(tensor)
- 텐서 연산
- 경사 하강법
- 역전파

2.1 신경망 소개

케라스로 MNIST 데이터셋 불러오기

- 손글씨 숫자 인식 용도 데이터셋: 70,000개의 샘플 포함
- 레이블(타깃): 0부터 9까지 10개의 범주(category, class)
- 훈련 세트
 - 모델 학습 용도
 - 샘플: 28x28 픽셀 크기의 이미지 60,000개
- 테스트 세트
 - 학습된 모델 성능 테스트 용도
 - 샘플: 28x28 픽셀 크기의 이미지 10,000개

THIS NUMBER IS: [7]																											
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0		0,0	0,0		0,0	0,0	0,0					0,0			0,0		0,0	-	0,0			0,0	0,0	0,0	0,0		0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,6	0,7	0,3	0,0	0,0	0,0	0,1	0,3	0,8			0,8	0,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,6				0,4	0,4	0,7	0,7								0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,6										0,2	0,3	0,7			0,1	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,8						0,7	0,5	0,5	0,1	0,0	0,4				0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,4	0,5	0,6	0,4	0,2	0,0	0,0	0,0	0,0	0,1				0,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,6				0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3				0,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,2				0,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,2				0,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,6			0,8	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3				0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,6			0,7	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3			0,8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,7			0,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4			0,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3			0,9	0,2	0,0	0,0	_		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,8		0,9	0,3	0,0	0,0	0,0	_	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0		0,0	0,1			0,9	0,1	0,0		0,0	0,0		0,0	0,0	0,0		0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	_	0,0		0,0	0,0	0,0	0,4				0,0	0,0	0,0	_	0,0	_	_	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	_	0,0		0,0	0,0	0,4			0,5	_	_	0,0	0,0	0,0	0,0	_	_	0,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0		0,0		0,0	_		0,0	0,0	0,0	0,0			0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0 ed by	0,0	,	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Number from Data (0-999):

999

PROBABILITY	NUMBER
0%	[0]
0%	[1]
0%	[2]
1%	[3]
0%	[4]
0%	[5]
0%	[6]
99%	[7]
0%	[8]
0%	[9]

Developed by Mikkel Duif (2019) Source: MNIST Database

그림 출처: towards data science: Mikkel Duif(2019)

신경망 구조 지정

아래 신경망의 구조는 다음과 같다.

- 층(layer): 2개의 Dense 층 사용. 입력 데이터를 새로운 표현으로 변환.
- 층 연결: Sequential 모델 활용. 완전 연결(fully connected).
- 첫째 층
 - 512개의 유닛(unit) 사용. 즉 512개의 특성값으로 이루어진 표현 추출.
 - 활성화 함수(activation function): 렐루(relu) 함수
- 둘째 층
 - 10개의 유닛 사용. 10개의 범주를 대상으로 속할 확률 계산. 합은 1.
 - 활성화 함수: 소프트맥스(softmax) 함수

```
from tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential([
    layers.Dense(512, activation="relu"),
    layers.Dense(10, activation="softmax")
])
```

신경망 컴파일

구조가 지정된 신경망을 훈련이 가능한 모델로 만드는 과정이며 아래 세 가지 사항이 지정되어야 한다.

- **옵티마이저**(optimizer): 모델의 성능을 향상시키는 방향으로 가중치를 업데이트하는 알고리즘
- **손실 함수**(loss function): 훈련 중 성능 측정 기준
- 모니터링 지표: 훈련과 테스트 과정을 모니터링 할 때 사용되는 평가 지표(metric). 손실 함수값을 사용할 수도 있고 아닐 수도 있음. 아래 코드에서는 정확도(accuracy)만 사용.

모델 훈련

컴파일된 객체 모델을 훈련한다.

- fit() 메서드 호출: 훈련 세트와 레이블을 인자로 사용
- epoths : 에포크(전체 훈련 세트 대상 반복 훈련 횟수)
- batch_size : 가중치 업데이트 한 번 실행할 때 사용되는 샘플 수

model.fit(train_images, train_labels, epochs=5, batch_size=128)

모델 활용: 예측하기

훈련에 사용되지 않은 손글씨 숫자 이미지 10장에 대한 모델 예측값을 확인하기 위해 predict() 메서드를 이용한다.

```
test_digits = test_images[0:10]
predictions = model.predict(test_digits)
```

성능 테스트

테스트 세트 전체에 대한 성능 평가는 evaluate() 메서드를 활용한다. 성능평가에 사용되는 지표는 앞서 모델을 컴파일할 때 지정한 정확도(accuracy)가 사용된다.

```
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"test_acc: {test_acc}")
```

2.2 신경망에 사용되는 데이터 표현

텐서와 넘파이 어레이

- **텐서**: 기본적으로 숫자를 담은 컨테이너(container).
- 넘파이 어레이(NumPy array): 대표적 **텐서**(tensor) 예제
- 행렬: 2 개의 차원으로 구성된 텐서로 표현
- 텐서의 차원: 사용된 **축**(axis)의 개수. 임의로 많을 수 있음. **랭크**(rank)라 불리기도 함.
- tensorflow의 텐서(Tensor):
 - NumPy의 어레이 자료형과 매우 비슷.
 - Tensor 는 GPU를 활용한 연산을 지원하지만 넘파이 어레이는 그렇지 않음.
 - 하지만 두 자료형 사이의 형변환을 자동으로 처리.

데이터 텐서 사례

앞으로 다룰 데이터는 크게 아래 네 종류의 텐서들이다.

- 벡터 데이터: (샘플 수, 특성 수) 모양의 2D 텐서
- 시계열 또는 시퀀스 데이터: (샘플 수, 타임 스텝 수, 특성 수) 모양의 3D 텐서
- 이미지 데이터: (샘플 수, 가로, 세로, 채널 수) 또는 (샘플 수, 채널 수, 가로, 세로) 모양의 4D 텐서
- 동영상 데이터: (샘플 수, 프레임 수, 가로, 세로, 채널 수) 모양의 5D 텐서

스칼라(OD 텐서)

- 스칼라(scalar): 숫자 하나로 이루어진 텐서
- 차원이 없다는 의미에서 0D 텐서 부름.
- 예제: 넘파이의 float32, float64 등

벡터 (1D 텐서)

- 각 샘플은 여러 개의 특성값으로 이러워진 벡터
- 데이터 배치는 따라서 2D 텐서, 즉 벡터들의 어레이로 표현됨.
- 0번 축은 샘플 축, 1번 축은 **특성 축**임.
- 예제 1
 - 사람의 나이, 우편 번호, 소득 세 개의 특성으로 구성된 이니구 통계 데이터
 - 10만 명의 통계 데이터를 포함한 데이터셋은 (100000, 3) 모양의 2D 텐서임.
- 예제 2
 - 2만개의 단어 각각이 하나의 문서에서 사용된 빈도수로 구성된 데이터: 길이 2만인 벡터로 표현
 - 500개의 문서를 대상으로 할 경우 (500, 20000) 모양의 2D 텐서로 표현됨.

행렬(2D 텐서)

- 행렬: 동일한 크기의 벡터로 이루어진 어레이
- 행(row)과 열(column) 두 개의 축 사용
- 예제: 넘파이의 2차원 어레이

시계열 또는 시퀀스 데이터(3D 텐서)

- 증시 데이터, 트윗 데이터 등 시간의 흐름 또는 순서가 중요한 데이터를 다룰 때 사용
- 예제 1(시간의 흐름)
 - 분 단위 데이터: (현재 증시가, 지난 1분 동안 최고가, 지난 1분 동안 최저가)
 - 하루 390번 250일 측정한 데이터셋: (250, 390, 3) 모양의 3D 텐서
- 예제 2(순서)
 - 하나의 트윗: 최대 280개의 문자 사용 가능. 문자는 총 128개 중에 하나.
 - (280, 128) 모양의 2D 텐서로 표현.
 - 문자 하나를 0과 1로 구성된 길이가 128인 벡터로 표현.
 - 백만 개의 트윗은 (1000000, 280, 128) 모양의 3D 텐서.

이미지 데이터(4D 텐서)

- 이미지는 보통 3D 텐서로 표현: (가로, 세로, 컬러 채널 수)
 - 컬러 어미지의 컬러 채널 수: 3
 - 흑백 이미지의 컬러 채털 수: 1
- 256x256 크기 흑백이미지 128개를 갖는 배치: (128, 256, 256, 1) 모양 4D 텐서
- 256x256 크기 컬러이미지 128개를 갖는 배치: (128, 256, 256, 3) 모양 4D 텐서

동영상 데이터(5D 텐서)

- 동영상은 프레임(frame)으로 구성된 순차 데이터.
- 프레임은 컬러 이미지. 즉 3D 텐서. 따라서 하나의 동영상은 (프레임 수, 가로, 세로, 컬러 채널 수) 모양의 4D 텐서.
- 여러 개의 동영상으로 이루어진 데이터셋: (동영상 수, 프레임 수, 가로, 세로, 컬러 채널 수) 모양의 5D 텐서.
- 예제: 144x256 크기의 프레임으로 구성된 60초 동영상. 초당 4개의 프레임 구성.
 - 동영상 한 편: (240, 144, 256, 3) 모양의 4D 텐서 (총 240 프레임 사용)
 - 동영상 10 편: (10, 240, 144, 256, 3) 모양의 5D 텐서

텐서의 주요 속성

- 축 개수(랭크, ndim)
 - 텐서에 사용된 축(차원)의 개수
 - 음이 아닌 정수
- 모양(shape)
 - 각각의 축에 사용된 (벡터의) 차원 수
 - 정수로 이루어진 튜플
- 자료형(dtype)
 - 텐서에 사용된 항목들의 자료형
 - float16, float32, float64, int8, string 등이 가장 많이 사용됨.
 - 8, 16, 32, 64 등의 숫자는 해당 숫자를 다루는 데 필요한 메모리의 비트(bit) 크기. 즉, 텐서에 사용되는 항목들을 일괄된 크기의 메모리로 처리.

2.3 텐서 연산

신경망 모델의 훈련은 기본적으로 텐서와 관련된 몇 가지 연산으로 이루어진다. 예를 들어 이전 신경망에 사용된 케라스 레이어를 살펴보자.

```
keras.layers.Dense(512, activation="relu")
keras.layers.Dense(10, activation="softmax")
```

위 두 개의 층이 하는 일은 데이터셋의 변환이며 실제로 이루어지는 연산은 다음과 같다.

- 1층: output1 = relu(dot(input1, W1) + b1)
- 2층: output2 = softmax(dot(input2, W2) + b2)

사용된 세부 연산은 다음과 같다.

- 점곱(dot(input, W)): 입력 텐서와 가중치 텐서의 곱
- 덧셈(dot(input, W) + b): 점곱의 결과 텐서와 벡터 b의 합
- relu 함수: relu(x) = max(x, 0)
- softmax 함수: 10개 범주 각각에 속할 확률 계산

그림 출처: 생활코딩: 한 페이지 머신러닝

브로드캐스팅(Broadcasting)

두 텐서의 모양이 아래와 같을 때 항목별 연산을 위한 브로드캐스팅이 가능하다.

```
(a, b, ... n, n + 1, ... m) 와 (n, n + 1, ... m)
```

- 둘째 텐서에 대해 브로드캐스팅 발생
- a 부터 n-1 까지의 축에 대해 축(axis)이 자동으로 추가됨.

	(4, 3)				(4, 1)			(4, 3)				
0	0	0	+	1	1	1		1	1	1		
1	1	1		2	2	2	=	3	3	3		
2	2	2		3	3	3		5	5	5		
3	3	3		4	4	4		7	7	7		

텐서 연산의 기하학적 의미

이동: 벡터 합

그림 출처: Deep Learning with Python(Manning MEAP)

회전: 점곱

스케일링: 점곱

아핀 변환

아핀 변환과 relu 활성화 함수

히든 레이어의 중간 결과

그림 출처: 생활코딩: 한 페이지 머신러닝

In []:

딥러닝의 기하학적 의미

- 신경망은 기본적으로 앞서 언급된 텐서 연산의 조합에 불과함.
- 고차원 공간에서의 매우 복잡한 기하학적 변환 = 단순한 텐서 연산의 조합
- 예제: 3차원 매니폴드
 - 빨간 종이와 파란 종이 두 장을 겹쳐 뭉친 입력값
 - 연속된 종이 펼치기 과정을 이용하여 명료하게 구분되는 두 장의 종이로 펼 치기
 - 펼치기 과정에 사용된 과정: 손가락으로 조금씩 펼치기. 부분별로 다른 방식의 펼치기 기법 사용.
 - 딥러닝 모델의 많은 층(layer)에서 이루어지는 일과 크게 다르지 않음.

2.4 신경망의 엔진: 그레이디언트 기반 최적화

손실함수

- 모델에 사용되는 모든 가중치(parameters)에 대한 함수
 - 입력값: 데이터 묶음. 묶음 크기는 batch_size 로 지정.
 - 함숫값: 모델의 예측치와 실제 타깃 사이의 오차.
- 미분가능이어야 함.
- 주의사항: 모델 성능 평가(metrics)에 사용되는 정확도 등은 가중치에 대한 미분가능 함수가 아님.

그레이디언트, 경사하강법, 학습(훈련)

- 그레이디언트(gradient): 가중치를 조금 변화시켰을 때 손실값이 어떻게 변하는지 설명
- 백워드 패스(backward pass): 가중치에 대한 손실함수의 그레이디언트 계산
- 경사하강법(gradient descent): 그레이디언트가 주는 정보를 이용하여 손실 함숫값이 낮아지도록 모든 가중치를 동시에 조금씩 업데이트.
- 역전파(backpropagation): 모든 가중치를 계산된 그레이디언트의 반대 방향으로 학습률(learning rate)에 비례하여 업데이트 하는 과정.
- 학습(learning) 또는 훈련(training): 임의로 선택된 지정된 크기의 데이터 묶음을 대상으로 하는 손실 함숫값 계산과 경사하강법 적용을 반복하는 과정.
- 최종적으로 손실 함숫값이 최저가 되도록 하는 가중치를 사용하는 모델 완성.

그림 출처: Deep Learning with Python(Manning MEAP)

배치, 미니 배치, 또는 확률적 경사하강법

묶음(배치)의 크기에 따라 아래 세 종류의 경사하강법이 활용된다.

- 배치 경사하강법: batch_size 가 전체 훈련 세트의 크기
- 미니배치 경사하강법: batch_size 가 몇 십에서 몇 백.
- 확률적 경사하강법(SGD): batch_size = 1

옵티마이저(optimizer)와 역전파(backpropagation)

- 옵티마이저
 - 경사하강법과 역전파를 실행하는 알고리즘
 - Adagrad, RMSprop 보다 빠르고 효율적으로 작동하는 알고리즘 활용
- 역전파(backpropagation) 원리
 - 손실함수의 그레이디언트를 **연쇄 법칙**(chain rule)을 이용하여 계산

그림 출처: Matt Mazur: A Step by Step Backpropagation Example

텐서플로우의 그레이디언트 테이프

- 미분 자동화: 텐서플로우 등이 역전파에 필요한 미분을 자동으로 해결해줌.
- 그레이디언트 테이프(gradient tape): 임의의 텐서 연산에 대해 원하는 변수에 대한 그 레이디언트를 미리 계산해서 기억해두는 독립적인 장치
- 케라스가 지원하는 옵티마이저는 내부에서 텐서플로우의 그레이디언트 테이프를 활용함.