Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VİTMO

ЛАБОРАТОРНАЯ РАБОТА №4 ПРЕДМЕТ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ» ТЕМА «СЛЕЖЕНИЕ И КОМПЕНСАЦИЯ: ВИРТУАЛЬНЫЙ ВЫХОД»

Вариант №2

Преподаватель: Пашенко А. В.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ТАУ R22 бак 1.1.1

Содержание

1	Зад	цание 1. Компенсирующий регулятор по состоянию	2
	1.1	Характер внешнего возмущения	2
	1.2	Схема моделирования системы, замкнутой компенсирующим регулято-	
		ром	2
	1.3	Исследование системы перед синтезом регулятора	3
	1.4	Синтез компоненты обратной связи компенсирующего регулятора	3
	1.5	Синтез компоненты прямой связи компенсирующего регулятора	3
	1.6	Компьютерное моделирование	3
	1.7	Вывод	6
2	Задание 2. Следящий регулятор по состоянию		7
	2.1	Характер внешнего возмущения	7
	2.2	Схема моделирования системы, замкнутой следящим регулятором	7
	2.3	Исследование системы перед синтезом регулятора	7
	2.4	Синтез компоненты обратной связи следящего регулятора	8
	2.5	Синтез компоненты прямой связи следящего регулятора	8
	2.6	Компьютерное моделирование	8
	2.7	Вывод	10
3	Обі	ций вывод по работе	11
4	Приложения		11
	4.1	Приложение 1	11
	4.2	Приложение 2	12

Задание 1. Компенсирующий регулятор по состоянию

Рассмотрим систему

$$\dot{x} = Ax + Bu + B_f \omega_f,$$

$$A = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}, B_f = \begin{bmatrix} -4 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}, x(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

генератор внешнего возмущения

$$\dot{\omega}_f = \Gamma \omega_f, \ \Gamma = \begin{bmatrix} 25 & 6 & -20 & 11 \\ 14 & 3 & -10 & 4 \\ 40 & 11 & -31 & 17 \\ 6 & 4 & -4 & 3 \end{bmatrix}, \ \omega_f(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

и виртуальный выход вида

$$z = C_Z x$$
, $C_Z = \begin{bmatrix} -2 & 1 & -1 \end{bmatrix}$;

Характер внешнего возмущения

Для определения характера внешнего возмущения найдем собственные числа матрицы Г. Программа в MATLAB находится на листинге 1 в приложении 1

$$\sigma\left(\Gamma\right) = \{\pm i, \pm 3i\}$$

Так как спектр состоит только из мнимых собственных чисел, то характер возмущения – гармоники без затухания и роста амплитуды с течением времени.

Схема моделирования системы, замкнутой компенсирующим регулятором

Построим схему моделирования системы, замкнутой компенсирующим регулятором

$$u = K_1 x + K_2 \omega_f$$

обеспечивающим выполнение целевого условия

$$\lim_{t \to \infty} z(t) = 0$$

при внешнем воздействии, задаваемом генератором. Снимаем осциллограммы u(t), $w_f(t),\,x(t),\,z(t)$

Рис. 1: Схема моделирования системы, замкнутой компенсирующим регулятором

Исследование системы перед синтезом регулятора

Определим управляемость и стабилизируемость системы. Найдем собственные числа матрицы A

$$\sigma(A) = \{-2, 2 \pm i\}$$

Собственное число $\lambda_1 = -2$ асимптотически устойчивое, остальные неустойчивые. Выполним жорданово разложение матрицы A в вещественной форме. Найдем вектор B в базисе собственных векторов матрицы A. Получаем

$$A_{J_{re}} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}, \ B_{J_{re}} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix};$$

Собственное число $\lambda_1 = -2$ неуправляемое, остальные управляемые. Система не полностью управляема, стабилизируема. Максимальная степень устойчивости $\alpha = |\min(\operatorname{Re}(\tilde{\sigma}(A):\lambda_i\in\mathbb{C}_-))|=2.$

Синтез компоненты обратной связи компенсирующего регулятора

Синтезируем K_1 с помощью матричного уравнения типа Риккати. Зададим $Q=0,\ \nu=2,\ R=1.$ Решаем при $\alpha=2.$ Получаем матрицу регулятора

$$K_1 = \begin{bmatrix} 1.6000 & -11.2000 & 1.6000 \end{bmatrix}$$

Проверим собственные числа замкнутой системы $A+BK_1$

$$\sigma(A + BK_1) = \{-2, -2.0000 \pm 4.1231i\}$$

Желаемая степень устойчивости достигнута, регулятор синтезирован корректно.

Синтез компоненты прямой связи компенсирующего регулятора

Чтобы синтезировать K_2 , нужно найти K_1 (уже нашли), найти P,Y как решение системы уравнений

$$\begin{cases} P\Gamma - AP = BY + B_f \\ C_Z P + D = 0 \end{cases}$$

и вычислить K_2 по формуле

$$K_2 = Y - K_1 P$$

Предоставим вычисления пакету сух в МАТLAB. Получаем

$$K_2 = \begin{bmatrix} -48.3631 & -13.0092 & 35.7538 & -23.4769 \end{bmatrix}$$

Компьютерное моделирование

Выполним компьютерное моделирование разомкнутой системы (u=0); системы, замкнутой регулятором только с K_1 компонентой; системы, замкнутой компенсирующим регулятором. Построим графики вектора состояния генератора внешнего возмущения $\omega_f(t)$, формируемого регулятором управления u(t), вектора состояния объекта управления x(t) и виртуального выхода z(t). Результаты представлены на рис. 2–9

Рис. 2: График возмущений $\omega_f(t)$

Рис. 3: График управления u(t)=0

Рис. 4: График сравнения управлений $u(t)=K_1x$ и $u(t)=K_1x+K_2\omega_f$

Рис. 5: График поведения системы x(t) при u(t)=0

Рис. 6: График поведения системы x(t) при $u(t) = K_1 x$

Рис. 7: График поведения системы x(t) при $u(t) = K_1 x + K_2 \omega_f$

Рис. 8: График виртуального выхода z(t) при u(t)=0

Рис. 9: График сравн. виртуальных выходов z(t) при $u(t) = K_1 x$ и $u(t) = K_1 x + K_2 \omega_f$

Траектория z(t) при компенсирующем регуляторе стремится к нулю – регулятор выполнил свою задачу. При отсутствии K_2 компоненты z(t) не стабилизируется, но и не расходится (см. рис. 9). При разомкнутой системе виртуальный выход расходится (см. рис. 8). При отсутствии управления вектор состояния объекта управления расходится, при наличии — нет, но и не стабилизируется (см. рис. 5, 6, 7). При наличии K_2 компоненты регулятор сразу начинает действовать на объект управления, при наличии только K_1 компоненты регулятор постепенно управляет системой (см. рис. 4).

Вывод

В данном задании был исследован компенсирующий регулятор по состоянию. Был синтезирован компенсирующий регулятор. Было проведено компьютерное моделирование при различных конфигурациях регулятора. Результаты были сравнены. Компенсирующий регулятор был синтезирован корректно.

Задание 2. Следящий регулятор по состоянию

Рассмотрим систему (матрицы A, B, C_Z, Γ такие же, как в задании 1)

$$\dot{x} = Ax + Bu, \ x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T,$$

генератор задающего сигнала

$$\dot{\omega}_g = \Gamma \omega_g, \ \omega_g(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$

и виртуальный выход вида

$$z = C_Z x + D_Z \omega_g, \ D_Z = \begin{bmatrix} -20 & -6 & 16 & -9 \end{bmatrix};$$

Характер внешнего возмущения

Матрица Γ такая же, как в первом задании. Ее спектр имеет вид

$$\sigma(\Gamma) = \{\pm i, \pm 3i\}$$

Характер возмущений – гармоники без затухания и роста амплитуды с течением времени.

Схема моделирования системы, замкнутой следящим регулятором

Построим схему моделирования системы, замкнутой следящим регулятором

$$u = K_1 x + K_2 \omega_q,$$

обеспечивающим выполнение целевого условия

$$\lim_{t \to \infty} z(t) = 0$$

при внешнем воздействии, задаваемом генератором. Снимаем осциллограммы u(t), $w_g(t),\, x(t),\, z(t)$

Рис. 10: Схема моделирования системы, замкнутой следящим регулятором

Исследование системы перед синтезом регулятора

Матрицы A, B такие же, как в первом задании. Имеем

$$\sigma(A) = \{-2, 2 \pm i\}, \ A_{J_{re}} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}, \ B_{J_{re}} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix};$$

Система не полностью управляема, стабилизируема. Максимальная степень устойчивости $\alpha=2$.

Синтез компоненты обратной связи следящего регулятора

Синтезируем K_1 так же, как в задании 1 – с помощью матричного уравнения Риккати. Матрицы, участвующие в расчетах, не изменились. Таким образом, имеем

$$K_1 = \begin{bmatrix} 1.6000 & -11.2000 & 1.6000 \end{bmatrix}, \ \sigma(A + BK_1) = \{-2, -2.0000 \pm 4.1231i\};$$

В первом задании уже выяснили, что регулятор синтезирован корректно.

Синтез компоненты прямой связи следящего регулятора

Синтезируем K_2 аналогично заданию 1. Из системы уравнений пропадет B_f , взамен появится D_Z . Программа представлена на листинге 2 в приложении 2. Получаем

$$K_2 = \begin{bmatrix} 7.2 & 3.2 & -8.0 & 4.0 \end{bmatrix}$$

Компьютерное моделирование

Выполним компьютерное моделирование систем аналогично заданию 1

Рис. 11: График возмущений $\omega_g(t)$

Рис. 12: График сравнения управлений $u(t)=K_1x$ и $u(t)=K_1x+K_2\omega_q$

Рис. 13: График поведения системы x(t) при u(t)=0

Рис. 14: График поведения системы x(t) при $u(t) = K_1 x$

Рис. 15: График поведения системы x(t) при $u(t)=K_1x+K_2\omega_g$

Рис. 16: График виртуального выхода z(t) при u(t) = 0

Рис. 17: График сравн. виртуальных выходов z(t) при $u(t)=K_1x$ и $u(t)=K_1x+K_2\omega_a$

Следящий регулятор выполнил свою задачу — на рис. 17 z(t) стремится к нулю с увеличением времени. Виртуальный выход для регулятора только с компонентой K_1 не расходится, но и не стабилизируется. При отсутствии управления z(t) расходится (см. рис. 16). Вектор состояния объекта управления под действием регулятора только с K_1 компонентой стабилизируется к нулю, но виртуальный выход продолжает движение под действием внешних возмущений ($C_Z x \to 0$, $D_Z \omega_g \to 0$). При наличии компонент K_1 , K_2 график x(t) не стабилизируется к нулю, но и не расходится (см. рис. 15), при этом z(t) достигает целевого состояния. Без управления x(t) расходится (см. рис. 13). При наличии только компоненты K_1 управление со временем стабилизируется к нулю, при наличии обеих компонент — нет (см. рис. 12).

Вывод

В данном задании был исследован следящий регулятор по состоянию. Его синтез был проведен аналогично синтезу компенсирующего регулятора в задании 1. Было выполнено компьютерное моделирование систем со сравнением результатов.

Общий вывод по работе

. . .

Приложения

Приложение 1

```
% plant parameters
A = [5 \ 2 \ 7;
     2 1 2;
    -2 -3 -4];
B = [3; 1; -1];
Bf = [-4 \ 0 \ 0 \ -1;
      0 0 0 0;
      4 0 0 0];
G = [25 6 -20 11;
     14 3 -10 4;
     40 11 -31 17;
     6 4 -4 3];
Cz = [-2 \ 1 \ -1];
D = 0;
% G eigenvalues
G_{eig} = eig(G)
% A eigenvalues
A_{eig} = eig(A)
% Jordan matrix
[Aj, J] = jordan(A);
Pjre(:,1) = Aj(:,1);
Pjre(:,2) = imag(Aj(:,2));
Pjre(:,3) = real(Aj(:,3))
Pjre_inv = Pjre^-1
Aj_re = Pjre_inv * A * Pjre
B_jre = Pjre_inv * B
% solving Riccati
Q = 0;
v = 2;
R = 1;
a = 2;
Aa = A + eye(3) * a;
[Pk,K,e]=icare(Aa, sqrt(2)*B,Q,R);
K1 = -inv(R)*B*Pk
eK1 = eig(A+B*K1)
% K2 regulator synthesis
cvx_begin sdp
variable P(3,4)
variable Y(1,4)
P*G-A*P == B*Y+Bf;
```

```
Cz*P + D == 0;
cvx_end
K2 = Y-K1*P
```

Листинг 1: Программа для задания 1

Приложение 2

```
% plant parameters
A = [5 \ 2 \ 7;
     2 1 2;
    -2 -3 -4;
B = [3; 1; -1];
Bg = 0;
G = [25 6 -20 11;
     14 3 -10 4;
     40 11 -31 17;
     6 4 -4 3];
Cz = [-2 \ 1 \ -1];
Dz = [-20 -6 16 -9];
% solving Riccati
Q = 0;
v = 2;
R = 1;
a = 2;
Aa = A + eye(3) * a;
[Pk,K,e]=icare(Aa, sqrt(2)*B,Q,R);
K1 = -inv(R)*B**Pk
eK1 = eig(A+B*K1)
% K2 regulator synthesis
cvx_begin sdp
variable P(3,4)
variable Y(1,4)
P*G-A*P == B*Y+Bg;
Cz*P + Dz == 0;
cvx_end
K2 = Y - K1 * P
```

Листинг 2: Программа для задания 2