Appendix

Descriptive Tables

Table 1: Data Dictionary

Variable	Description
age	The age of the patient (in years)
race	The race of the patient, categorized as Black, White or Other
marital_status	The marital status of the patient, categorized as Divorced, Married, Separated, Single, or
	Widowed
t_stage	Adjusted AJCC 6th T, categorized as T1, T2, T3, or T4
n_stage	Adjusted AJCC 6th N, categorized as N1, N2, or N3
$x6th_stage$	Breast Adjusted AJCC 6th Stage, categorized as IIA, IIB, IIIA, IIIB, or IIIC
differentiate	Tumor differentiation grade, categorized as Well differentiated, Moderately differentiated,
	Poorly differentiated, or Undifferentiated
grade	Tumor differentiation grade, categorized as 1, 2, 3, or anaplastic; Grade IV
a_stage	Categorized as Regional (a neoplasm that has extended) or Distant (a neoplasm that has
	spread to parts of the body remote from)
tumor_size	The size of tumor (in millimeters)
estrogen_status	The status of the patient's estrogen, categorized as Positive or Negative
progesterone_sta	the status of the patient's progesterone, categorized as Positive or Negative
regional_node_e	examined mber of examined regional nodes
regional_node_p	ooditievenumber of positive regional nodes
$survival_month$	The time of a patient with breast cancer is expected to live after their diagnosis (in
	months)
status	The status of the patient, categorized as Alive or Dead

Table 2: Summary Statistics for Numeric Variables

Variable Name	Mean	SD	Median	IQR
Age	53.972167	8.963134	54	14
Tumor Size	30.473658	21.119696	25	22
Regional Nodes Examined	14.357107	8.099675	14	10
Regional Nodes Positive	4.158052	5.109331	2	4
Survival Months	71.297962	22.921429	73	34

Table 3: Summary Statistics for Categorical Variables

Variable Name	Level	Count	Proportion
Race	Black	291	0.0723
Race	White	3413	0.8482
Race	Other	320	0.0795
Marital Status	Divorced	486	0.1208
Marital Status	Married	2643	0.6568
Marital Status	Separated	45	0.0112
Marital Status	Single	615	0.1528
Marital Status	Widowed	235	0.0584
T Stage	Т1	1603	0.3984
T Stage	T2	1786	0.4438
T Stage	Т3	533	0.1325
T Stage	T4	102	0.0253
N Stage	N1	2732	0.6789
N Stage	N2	820	0.2038
N Stage	N3	472	0.1173
6th Stage	IIA	1305	0.3243
6th Stage	IIB	1130	0.2808
6th Stage	IIIA	1050	0.2609
6th Stage	IIIB	67	0.0167

Variable Name	Level	Count	Proportion
6th Stage	IIIC	472	0.1173
Differentiate	Well	543	0.1349
Differentiate	Moderate	2351	0.5842
Differentiate	Poor	1111	0.2761
Differentiate	Undifferentiated	19	0.0047
Grade	1	543	0.1349
Grade	2	2351	0.5842
Grade	3	1111	0.2761
Grade	4	0	0.0000
A Stage	Distant	92	0.0229
A Stage	Regional	3932	0.9771
Estrogen Status	Positive	3755	0.9332
Estrogen Status	Negative	269	0.0668
Progesterone Status	Positive	3326	0.8265
Progesterone Status	Negative	698	0.1735
Status	Alive	3408	0.8469
Status	Dead	616	0.1531

Exploratory Analysis

Distribution of the Continuous Variables

Figure 1: Distribution of the Continuous Variables

Boxplot of Survival Months by Status

Figure 2: Survival Months by Status

Figure 3: Tumor Sizes by T stage

Distribution of Survival Months by A_stage

Figure 4: Survival Months by A stage Based on Status

Figure 5: Tumor Size by Differentiate

Relationship Between Age and Tumor Size

Figure 6: Relationship Between Age and Tumor Size across Status

Distribution of Positive Regional Node and Survival Months by Differen

Figure 7: Positive Regional Node vs Survival Months Across Differentiate

Logistic Regression Model

Model Selection

Table 4: Model Selection

type	AIC	BIC
full	3002.000	3159.500
forward	3002.000	3159.500
backward	2993.771	3119.771
stepwise	2993.771	3119.771

The Akaike information criterion (AIC) is an estimator of prediction error and thereby relative quality of statistical models for a given set of data, and models with lower AIC are generally preferred. Similarly, the Bayesian information criterion (BIC) is also a criterion for model selection among a finite set of models. They both resolve the overfitting problem by introducing a penalty term for the number of parameters in the model.

By comparing AIC and BIC, we can see the model given by backward elimination or stepwise regression works slightly better than the full model or forward selection model. Therefore, we will choose the former to be our "best model".

Odds Ratios

Table 5: Final Model Results with Adjusted-Odds Ratio

	estimate	std_error	z_value	p_value	adjusted_odds_ratio
(Intercept)	-2.2838	0.4385	-5.2085	0.0000	0.1019
age	0.0238	0.0056	4.2426	0.0000	1.0241
raceOther	-0.9346	0.2485	-3.7616	0.0002	0.3928
raceWhite	-0.5148	0.1617	-3.1845	0.0014	0.5976
$marital_statusMarried$	-0.2110	0.1416	-1.4900	0.1362	0.8097
$marital_statusSeparated$	0.6691	0.3881	1.7240	0.0847	1.9526
marital_statusSingle	-0.0646	0.1748	-0.3696	0.7117	0.9374
$marital_statusWidowed$	0.0175	0.2211	0.0791	0.9369	1.0176

	estimate	std_error	z_value	p_value	adjusted_odds_ratio
t_stageT2	0.4111	0.1130	3.6372	0.0003	1.5085
$t_stageT3$	0.5516	0.1488	3.7077	0.0002	1.7360
$t_stageT4$	1.0988	0.2445	4.4934	0.0000	3.0005
$n_stageN2$	0.4363	0.1284	3.3987	0.0007	1.5470
n_stageN3	0.5872	0.2345	2.5034	0.0123	1.7989
${\it differentiate Moderately\ differentiated}$	0.5328	0.1838	2.8990	0.0037	1.7036
differentiatePoorly differentiated	0.9190	0.1924	4.7772	0.0000	2.5069
${\it differentiate Undifferentiated}$	1.8649	0.5538	3.3672	0.0008	6.4551
estrogen_statusPositive	-0.7480	0.1775	-4.2140	0.0000	0.4733
progesterone_statusPositive	-0.5842	0.1275	-4.5811	0.0000	0.5576
regional_node_examined	-0.0359	0.0072	-5.0110	0.0000	0.9647
regional_node_positive	0.0797	0.0153	5.2076	0.0000	1.0829

Model Diagnostics

Table 6: Examination for Multicolinearity

	GVIF	Df	GVIF^(1/(2*Df))
age	1.1072	1	1.0522
race	1.0629	2	1.0154
marital_status	1.1291	4	1.0153
t_stage	1.1019	3	1.0163
n_stage	3.8068	2	1.3968
differentiate	1.1171	3	1.0186
estrogen_status	1.4754	1	1.2147
progesterone_status	1.4275	1	1.1948
regional_node_examined	1.4778	1	1.2157
regional_node_positive	4.2484	1	2.0612

Variance Inflation Factor is a commonly used method for detecting multicollinearity in regression models.

VIF is generally calculated for the continuous variables, and Generalized Variance Inflation Factor (GVIF) is

used for evaluating the multicollinearity for categorical variables.

The adjusted GVIF (i.e. $GVIF^{(1/(2*Df))}$) values are corrected for the degree of freedom and provide a scale similar to VIF. The high adjusted GVIF values (GVIF > 2) indicate the presence of moderate to strong multicollinearity.

The table shows that most variables do not show multicollinearity, with the exception of regional_node_positive. Since its adjusted GVIF is not much different from 2, we will keep this variable for now.

Figure 8: Random Quantile Residual versus Fitted Values Plot

By randomizing the quantile residuals, we resolve the problem that the RVF plot always shows a pattern in logistic regression because of the binary response variable. Since in the randomized quantile residual vs. fitted value plot, the residuals distribute randomly around the 0.5 horizontal line, the residual assumption is met and the model is a good fit.

The residual vs. leverage plot indicates that observations 3527, 1561, and 3074 may be potential outliers, but they are not necessarily influential.

glm(status ~ age + race + marital_status + t_stage + n_stage + differentiat ...

Figure 9: Residual versus Leverage Plot

Cross Validation

Table 7: Results of 10-Fold Cross Validation

log_loss	AUC
0.3681	0.6999
0.3639	0.7463
0.4069	0.7498
0.3773	0.7552
0.3575	0.7792
0.3780	0.7317
0.3679	0.6604
0.3636	0.7951
0.3681	0.7644
0.3718	0.7405

After applying 10-fold cross-validation, we evaluate the goodness of fit by log loss and AUC. The mean of log loss is 0.3723182, and the mean of AUC is 0.7422428.

Evaluation Across Races

Table 8: Race Comparison Before Adding Interaction Terms

race	avg_log_loss	avg_AUC
Black or other	0.4231	0.6997
White	0.3651	0.7502

Low log loss and high AUC indicate better test performance.

To reduce the gap of prediction performance between the majority and minority, we focused on whether there were interactions between the variables. We extracted each variable from the best model and examined how it differed in survival months of survival by race. Most variables did not show significant differences by race, suggesting that there may not be an interaction between these variables and race. However, the variable marital status showed a different pattern.

Figure 10: Survival Months Distribution by Marital Status in Race Groups

From the figure we can see that the distribution of survival months is different between races with different marital status. This indicates the potential interaction between race and marital status, and the interaction term can be added in the model to improve the fairness of the model.

Table 9: Race Comparison After Adding Interaction Terms

race	avg_log_loss	avg_AUC
Black or other	0.4169	0.7251
White	0.3647	0.7501

By adding interaction term marital_status * race, we can observe a decrease in log loss and an increase in AUC, which means an improve in the fairness between group "White" and the minority "Black" + "Other".

Survival Analysis

Kaplan Meier Curve

The Kaplan Meier curve graphically represent the survival rate. Time is plotted on the x-axis and the survival rate is plotted on the y-axis.

Figure 11: Kaplan-Meier Survival Curve

Log Rank Test

The log rank test lets us test whether there is a difference in survival times between groups of patients. For example, we want to find out whether there is a significant difference in survival between patients whose cells have different degrees of differentiation.

Figure 12: Survival Time Across Differentiated Stages

Cox Model

The limitation of KM curves and log-rank tests is that we can only test one variable at a time. To further discuss the risk factors to survival time, we will compute the cox proportional hazard model to adjusts for multiple risk factors simultaneously.

The cox proportional hazard model has a assumption: the survival curves for two different strata of a risk factor must have hazard functions that are proportional over time. This assumption is satisfied when the change in hazard from one category to the next does not depend on time. That is, a person in one stratum has the same instantaneous relative risk compared to a person in a different stratum, irrespective of how much time has passed.

We will test this assumption based on the scaled Schoenfeld residuals. Here is an interpretation of the results: When p-val < 0.05, there is evidence against the proportional hazards assumption, meaning that the HR is not constant over time. Similarly, the larger the chi-square value, the greater the violation of the assumption.

Table 10: Results of Cox Proportional Hazard Model

	chisq	df	р
age	0.1328	1	0.7156
race	0.9335	2	0.6270
marital_status	2.6670	4	0.6150
t_stage	0.2144	3	0.9752
n_stage	1.7178	2	0.4236
x6th_stage	3.8545	3	0.2776
differentiate	1.8899	3	0.5956
a_stage	5.2218	1	0.0223
tumor_size	0.9310	1	0.3346
estrogen_status	28.9294	1	0.0000
progesterone_status	32.1281	1	0.0000
regional_node_examined	0.0187	1	0.8912
regional_node_positive	0.0324	1	0.8571
GLOBAL	57.2155	24	0.0002

We can see from the table that variable a_stage, estrogen_status, progesterone_status are not constant

over time, which means it's not proper to contain these covariates in cox regression. To reduce bias of the model, we can remove these variables and take a closer look at the result.

The hazard ratio is similar to relative risk, but differs in that the HR is the instantaneous risk rather than the cumulative risk over the entire study.

The x-axis of this forest plot represents hazard ratios. Hazard ratio = 1 means no significant difference compared to the reference, and a HR higher than 1 means it increases the hazard ratio of the event, death, and a HR lower than 1 decreases it. The smaller the p-value is the stronger the weight of evidence that the two groups are different.

We can conclude from the plot that for the variable race, blacks have the highest hazard of death, followed by whites, while the lowest mortality rate is for other ethnic groups. In the variable marital status, the hazard of death is significantly higher for separated people, but this may be due to information bias caused by fewer observations. The confidence intervals for the other categories of marital status all contain the null hypothesis, meaning that there is no significant difference.

The hazard of death is highest for patients with N stage N3, followed by N2, and finally N1. Differently, although T stage also shows a similar trend, the confidence intervals of each stage level contain the null hypothesis, meaning that there is no significant difference between levels. For the 6th stage, IIIB has the highest hazard of death, followed by IIB, and then IIA, but there is no significant difference. For stage IIIC, since it contains the same information as N3 of N stage, no comparison is made in this variable.

In the variable differentiated, the hazard of death is significantly highest for undifferentiated, and then decreases in the order of poorly differentiated, moderately differentiated, and well differentiated.

For the variables tumor size, regional node examined, and regional node postive, we did not observe significant differences in the hazard of death.

Figure 13: Forest Plot of Hazard Ratios $^{18}_{18}$