McEliece asymmetric encryption algorithm

Vojtěch Myslivec, Róbert Lórencz

Faculty of information technology Czech Technical University in Prague

November 24, 2020

Introduction

- The McEliece cryptosystem is an asymmetric encryption algorithm (1978 Robert McEliece [1])
- First scheme that used ranomization in the encryption process
- Never was popular in the cryptographic community
- A candidate for post-quantum cryptography because it is resistant against attack using quantum computers (Shor algorithm)
- Uses a linear code for error correction
 - Random error vector as a part of the cipher
 - Decoding a general linear code is an NP-hard problem [2]
- Large key size (hundreds of kilobits to megabits)

McEliece Cryptosystem

Key generation

- Linear code K (n, k) correcting t errors, with $k \times n$ generator matrix G
- 2 Random $k \times k$ non-singular matrix S
- 3 Random $n \times n$ permutation matrix P
- **4** Compute $k \times n$ matrix $\hat{G} = SGP$

Generated keys

Public parameters

Numbers k, n, t

Public key

Matrix \hat{G} ($\hat{G} = SGP$)

Private key

Matrices S, P and code K generated by G

McEliece Cryptosystem

Example

Code Γ with parameters (n, k, t) = (8, 2, 2):

$$G = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Random matrices S and P:

$$SG = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Public key – matrix \hat{G} :

$$\hat{G} = SGP = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

McEliece cryptosystem

Encryption

Algorithm *E*:

Let us have a message m of length k, public key \hat{G} and parameter t

- Generate an error vector z of length n with Hamming weight t
- 2 Ciphertext $c = m\hat{G} + z$

Decryption

Algorithm *D*:

- **1** Compute $\hat{c} = cP^{-1}$
- ② Decode \hat{m} z \hat{c} using the chosen code $Dec(\hat{c}) = \hat{m}$
- **3** Compute the original plaintext $m = \hat{m}S^{-1}$

McEliece cryptosystem

Example encryption

Plaintext m = (11), random error vector z of weight t = 2:

$$c = m\hat{G} + z = (1\ 1) \begin{pmatrix} 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0 \end{pmatrix} + (1\ 1\ 0\ 0\ 0\ 0\ 0)$$
$$c = (1\ 0\ 1\ 0\ 0\ 1\ 1\ 1)$$

McEliece cryptosystem

Example decryption

Multiply c with inverse permutation:

$$\hat{c} = cP^{-1} = (0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0)$$

Decode with the Γ code – error correction:

$$\hat{m} = Dec_{\Gamma}(\hat{c}) = (0\ 1)$$

Multiply by inverse *S*:

$$m = \hat{m}S^{-1} = (0\ 1)\begin{pmatrix} 1\ 0\ 1\ 1 \end{pmatrix} = (1\ 1)$$

McEliece cryptanalysis

Secure parameters

Cryptosystem	Parameters	Security strength	Key size	Complexity	
	1024b modulus	∼ 80 b	1 kb	2 ³⁰	2 ³⁰
RSA	2048b modulus	\sim 112 b	2 kb	2 ³³	2^{33}
	4096b modulus	\sim 145 b	4 kb	2 ³⁶	2^{36}
	(2048, 1608, 40)	\sim 98 b	691 kb	2 ²⁰	2^{23}
McEliece	(2048, 1278, 70)	\sim 110 b	961 kb	2 ²⁰	2^{24}
	(4096, 2056, 170)	\sim 184 b	4096 kb	2 ²²	2^{26}

Table: Comparison of McEliece and RSA according to [4, 6]

- Can correct arbitrary number of errors
- Basis for *code-based* cryptography
- No attacks on the code structure known

Creation of a binary (irreducible) Goppa code

Code Γ with parameters $(n, k) = (2^m, 2^m - tm)$ correcting t errors

- Goppa polynomial gIrreducible of degree t, from the ring of polynomials $GF(2^m)[x]$ \Rightarrow field extension $GF((2^m)^t)$
- Support L
 Random permutation of all elements from the field GF(2^m)
- Parity-check matrix H (over $GF(2^m)$)

$$H = VD$$

Example

Irreducible *Goppa* polynomial $g(x) = (001)x^2 + (100)x + (001)$ over the field $GF(2^3)$ with irreducible polynomial 1011.

Generate the support *L*:

$$L = (100, 001, 111, 011, 010, 000, 101, 110)$$

Vandermond matrix V and diagonal matrix D:

$$V = \begin{pmatrix} 001 & 001 & 001 & \cdots & 001 \\ 100 & 001 & 111 & \cdots & 110 \end{pmatrix} \quad D = \begin{pmatrix} 001 & & & \\ & 111 & & \\ & & \ddots & \\ & & & 011 \end{pmatrix}$$

By multiplying the matrices, we get the *parity-check* matrix H (over $GF(2^m)$):

$$H = VD = \left(\begin{smallmatrix} 001 & 111 & 110 & 110 & 011 & 001 & 111 & 011 \\ 100 & 111 & 100 & 001 & 110 & 000 & 110 & 001 \\ \end{smallmatrix} \right)$$

Decoding

Patterson Algorithm [7]

- Corrects up to t errors
- Computation in the field $GF((2^m)^t)$
- Individual steps:
 - Square root computation
 - Modified EEA Algorithm
 - Error locator polynomial construction
 - Search for roots of the error locator polynomial

Finite field extensions

- Necessary for working with Goppa codes
- Implemented operations
 - Addition
 - Multiplication
 - Exponentiation
 - Inverse
 - . . .

Finite field extensions

Example

Extended Euclidean Algorithm for computing the inverse of polynomial $(101)x^3 + (010)x^2 + (110)x + (111)$ $modulo (001)x^4 + (011)x^3 + (011)x^2 + (001)x + (011)$ (over the field $GF(2^3)$ with irreducible polynomial 1101):

	Quotient	Remainder	Coefficient		
		(001)(011)(011)(001)(011)	(000)		
		(101)(010)(110)(111)	(001)		
	(111)(000)	(110)(011)(011)	(111)(000)		
	(111)(001)	(001)(100)	(010)(111)(001)		
	(110)(001)	(111)	(001)(111)(110)(001)		
$\Rightarrow ((101)(010)(110)(111))^{-1} = (101)(001)(100)(101)$					

- Measurement performed in the GPU lab (T9:350) (2016)
 - 4-core CPU Intel i5-6500, 3.2 GHz
 - 16 GB RAM DDR3
- For several m and t
 - Key generation
 - Encryption
 - Decryption

Figure: Time of key generation depending on t

Figure: Time of message encryption depending on t

Figure: Závislost doby deEncryption zprávy na parametru t

Figure: Ratio of important parts of key generation depending on the parameter t (with m=8)

Figure: Ratio of important parts of message decryption depending on the parameter t (with m=8)

Cryptanalysis of McEliece

Known attacks on McEliece

- Attacks on the public key
 - Attacks on the structure of the code used
 - Support Spliting Algorithm
- Attacks on the ciphertext
 - Information set decoding
 - Finding a low Hamming weight codeword
 - Algorithm Canteaut and Chabaud [?]

Conclusion

- Algorithm description
 - Basic variant and a digital signature scheme
 - Cryptanalysis
 - Methods of key size reduction and moder variants
- Demonstration implementation
 - Reusable packages
- Experimentally confirmed complexity
 - Isolated critical parts of computation

References I

- [1] Robert J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory v *JPL Deep Space Network Progress Report*, strany 114-116. 1978. Dostupné online http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
- [2] Elwyn R. BERLEKAMP, Robert J. McELIECE, Henk C. A. van TILBORG. On the Inherent Intractibility v *IEEE Transactions of Information Theory*, vol. IT-24, No. 3, strany 384-386. IEEE, květen 1978.
- [3] Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen. *Post-Quantum Cryptography.* ISBN 978-3-540-88701-0. Springer Berlin Heidelberg, 2009.

References II

- [4] Daniela ENGELBERT, Raphael OVERBECK, Arthur SCHMIDT.

 A Summary of McEliece-Type Cryptosystems and their Security
 v Journal of Mathematical Cryptology. IACR 2006. Dostupné online
 http://eprint.iacr.org/2006/162
- [5] Valery D. GOPPA. A New Class of Linear Correcting Codes v *Problemy Peredachi Informatsii*, vol. 6, strany 24-30. 1970.
- [6] Christof PAAR, Jan PELZL. Understanding Cryptography: A Textbook for Students and Practitioners. Springer-Verlag Berlin Heidelberg, 2010. Dostupné online: https://www.springer.com/us/book/9783642041006
- [7] Nicholas J. PATTERSON, The algebraic decoding of Goppa codes v *IEEE Transactions on Information Theory*, vol. 21, strany 203-207. IEEE 1975. Dostupné online http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1055350

References III

[8] J. M. Schanck, W. Whyte, Z. Zhang. Criteria for selection of public-key cryptographic algorithms for quantum-safe hybrid cryptography (Internet-draft). IETF, 2016. Dostupné online https://datatracker.ietf.org/doc/draft-whyte-select-pkc-qsh/