Kapitel 18

Dualitäten und komplexe Maße

18.1 Der Satz von Radon-Nikodym

Wir beginnen mit einer Folgerung von Proposition 17.4.13.

18.1.1 Satz (Darstellungssatz von Fischer-Riesz). Sei (H, (., .)) ein Hilbertraum über \mathbb{R} bzw. \mathbb{C} . Zu jedem beschränkten linearen Funktional $\phi \in L_b(H, \mathbb{R})$ bzw. $\phi \in L_b(H, \mathbb{C})$ gibt es ein $y \in H$ derart, dass

$$\phi(x) = (x, y)$$
 für alle $x \in H$.

Beweis. Wir können $\phi \neq 0$ annehmen, da sonst y = 0 das gesuchte Element ist. Gemäß Satz 9.2.6 ist ϕ stetig und infolge ker $\phi = \phi^{-1}(\{0\})$ ein abgeschlossener Unterraum von H mit Kodimension eins. Gemäß Proposition 17.4.13 gibt es eine orthogonale Projektion $P: H \to H$ mit $P(H) = \ker \phi$, womit H die direkte Summe von $P(H) = \ker \phi$ und ker $P = P(H)^{\perp} = (\ker \phi)^{\perp}$ ist; siehe Bemerkung 17.4.6. Folglich ist $(\ker \phi)^{\perp}$ eindimensional und daher die lineare Hülle von einem $z \in (\ker \phi)^{\perp}$. Für jedes $x \in H$ gilt $\phi(\phi(x)z - \phi(z)x) = 0$, also $\phi(x)z - \phi(z)x \in \ker \phi$, womit $\phi(x)(z, z) - \phi(z)(x, z) = (\phi(x)z - \phi(z)x, z) = 0$. Wir erhalten

$$\phi(x) = (x, y)$$
 für alle $x \in H$ mit $y = \frac{\overline{\phi(z)}z}{(z, z)}$.

18.1.2 Definition. Ist (Ω, \mathcal{A}) ein Messraum und sind μ , ν zwei Maße darauf, so heißt ν absolut stetig bezüglich μ , in Zeichen $\nu \ll \mu$, wenn für jedes $A \in \mathcal{A}$ aus $\mu(A) = 0$ die Gleichung $\nu(A) = 0$ folgt.

Die Maße μ und ν heißen zueinander singulär, wenn $\mu(B) = 0 = \nu(\Omega \setminus B)$ für ein gewisses $B \in \mathcal{A}$. Wir schreiben $\mu \perp \nu$ für diesen Sachverhalt.

18.1.3 Fakta. Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und ν sowie σ weitere Maße auf (Ω, \mathcal{A}) .

- 1. Aus $\sigma \ll \nu$ und $\nu \ll \mu$, folgt offenbar $\sigma \ll \mu$. Also ist die Relation \ll transitiv. Die Relation \perp ist klarerweise symmetrisch.
- 2. Im Falle $\nu \ll \mu$ und $\nu \perp \mu$ gilt immer $\nu = 0$, da aus $\mu(B) = 0 = \nu(\Omega \setminus B)$ dann auch $\nu(B) = 0$ und somit $\nu(\Omega) = \nu(B) + \nu(\Omega \setminus B) = 0$ folgt.

3. Angenommen, ν ist endlich, so gilt $\nu \ll \mu$ genau dann, wenn es für jedes $\epsilon > 0$ ein $\delta > 0$ derart gibt, dass aus $A \in \mathcal{A}$ mit $\mu(A) < \delta$ immer die Ungleichung $\nu(A) < \epsilon$ folgt.

In der Tat impliziert diese Bedingung offenbar $\nu \ll \mu$. Für die Umkehrung nehmen wir an, dass diese Bedingung nicht zutrifft, womit es ein $\epsilon > 0$ und Mengen $A_n \in \mathcal{A}$, $n \in \mathbb{N}$, so gibt, dass $\nu(A_n) \ge \epsilon$ und $\mu(A_n) < \frac{1}{2^n}$. Mit Fakta 14.3.9, 3 und 5, schließen wir auf

$$\mu(\bigcap_{k\in\mathbb{N}}\bigcup_{\substack{n\in\mathbb{N}\\n\geq k}}A_n)=0$$
 und $\nu(\bigcap_{k\in\mathbb{N}}\bigcup_{\substack{n\in\mathbb{N}\\n\geq k}}A_n)\geq\epsilon$,

wodurch $v \not\ll \mu$.

4. Für eine messbare Funktion $g: \Omega \to [0, +\infty]$ ist das gemäß Lemma 14.7.1 definierte Maß $g \cdot \mu$ absolut stetig bezüglich μ , also $(g \cdot \mu) \ll \mu$; siehe Fakta 14.5.3, 6.

Wir werden in Satz 18.1.5 sehen, dass sich für σ -endliche μ alle ν mit $\nu \ll \mu$ in dieser Form $g \cdot \mu$ schreiben lassen.

5. Falls die Funktion g aus dem vorherigen Punkt Werte in $(0, +\infty)$ μ -fast überall hat, so folgt $\frac{1}{g} \cdot g = 1$ μ -fast überall, wodurch wegen Lemma 14.7.1 und Fakta 14.5.3, 6,

$$\frac{1}{g} \cdot (g \cdot \mu)(A) = \int_A \frac{1}{g} d(g \cdot \mu) = \int_A \frac{1}{g} \cdot g d\mu = \mu(A)$$

für alle $A \in \mathcal{A}$. Insbesondere gilt $\mu \ll (g \cdot \mu)$.

6. Ist μ ein σ -endlich, so gilt $\Omega = \bigcup_{n \in \mathbb{N}} B_n$ für paarweise disjunkte $B_n \in \mathcal{A}$ mit $\mu(B_n) < +\infty$. Die Funktion

$$w := \sum_{n=1}^{\infty} \frac{1}{2^n (\mu(B_n) + 1)} \, \mathbb{1}_{B_n}$$

ist dann integrierbar und bildet Ω nach (0,1) hinein ab, womit $w \cdot \mu$ ein endliches Maß ist. Nach den vorherigen beiden Punkten gilt zudem $w \cdot \mu \ll \mu$ und $\mu \ll w \cdot \mu$.

7. Für messbare $[-\infty, +\infty]$ - bzw. \mathbb{C} -wertige Funktionen f, g auf Ω , folgt aus $v \ll \mu$, dass $f \sim_{\mu} g$ auch $f \sim_{\nu} g$ nach sich zieht, womit $[f]_{\sim_{\mu}} \subseteq [f]_{\sim_{\nu}}$; vgl. Bemerkung 14.6.4 und (16.11).

Wir wollen dem folgenden Resultat vorausschicken, dass die Summe zweier Maße auf demselben Messraum offenbar wieder ein Maß ergibt, wobei das Summenmaß genau dann endlich (σ -endlich) ist, wenn beide Ausgangsmaße endlich (σ -endlich) sind.

18.1.4 Lemma. Seien μ , ν zwei σ -endliche Maße auf dem Messraum (Ω, \mathcal{A}) und bezeichne σ das Summenmaß, also $\sigma(A) = \mu(A) + \nu(A)$, $A \in \mathcal{A}$. Dann existieren messbare Funktionen $g_{\mu}, g_{\nu} : \Omega \rightarrow [0, 1]$ mit $g_{\mu} + g_{\nu} = 1$ derart, dass $\mu = g_{\mu} \cdot \sigma$ und $\nu = g_{\nu} \cdot \sigma$; ν gl. Lemma 14.7.1. Zudem gilt für die durch

$$v_a(A) := v(A \cap \{x \in \Omega : g_u(x) > 0\}) \quad und \quad v_s(A) := v(A \cap \{x \in \Omega : g_u(x) = 0\}), \ A \in \mathcal{A},$$

definierten Maße $v_a, v_s : \mathcal{A} \to [0, +\infty)$, dass $v = v_a + v_s$, dass $v_a = g \cdot \sigma$, wobei hier $g(x) = \frac{g_{\nu}(x)}{g_{\mu}(x)}$ für $g_{\mu}(x) > 0$ und g(x) = 0 für $g_{\mu}(x) = 0$, und dass $\mu(B) = 0 = v_s(\Omega \setminus B)$ für $B = \{x \in \Omega : g_{\mu}(x) = 0\}$, also $v_s \perp \mu$.

Beweis. Wir setzen zunächst $\sigma(\Omega) < +\infty$ oder äquivalent dazu $\mu(\Omega), \nu(\Omega) < +\infty$ voraus. Für $h \in L^2(\Omega, \mathcal{A}, \mu, \mathbb{R})$ und $f \in L^2(\Omega, \mathcal{A}, \sigma, \mathbb{R})$ folgt aus (16.2) und aus Fakta 14.5.3, 8, wegen $\mu \leq \sigma^1$

$$\int |f \cdot h| \, \mathrm{d}\mu \le \left(\int |h|^2 \, \mathrm{d}\mu \right)^{\frac{1}{2}} \left(\int |f|^2 \, \mathrm{d}\mu \right)^{\frac{1}{2}} \le \left(\int |h|^2 \, \mathrm{d}\mu \right)^{\frac{1}{2}} \left(\int |f|^2 \, \mathrm{d}\sigma \right)^{\frac{1}{2}} < +\infty. \tag{18.1}$$

Also ist $\phi(f) := \int f \cdot h \, d\mu$ eine wohldefinierte und offenbar lineare Abbildung von $L^2(\Omega, \mathcal{A}, \sigma, \mathbb{R})$ nach \mathbb{R} . Da $|\phi(f)|$ kleiner oder gleich der linken Seite von (18.1) ist, folgt aus dieser Ungleichung auch die Beschränktheit von ϕ , also $\phi \in L_b(L^2(\Omega, \mathcal{A}, \sigma, \mathbb{R}), \mathbb{R})$. Gemäß Satz 18.1.1 gibt es eine Funktion $g_\mu \in L^2(\Omega, \mathcal{A}, \sigma, \mathbb{R})$ derart, dass

$$\int f \cdot h \, \mathrm{d}\mu = \int f \cdot g_{\mu} \, \mathrm{d}\sigma \quad \text{für alle} \quad f \in L^{2}(\Omega, \mathcal{A}, \sigma, \mathbb{R}) \,. \tag{18.2}$$

Wegen $\mu(\Omega) \leq \sigma(\Omega) < +\infty$ liegt $\mathbbm{1}$ sowohl in $L^2(\Omega, \mathcal{A}, \sigma, \mathbb{R})$ als auch in $L^2(\Omega, \mathcal{A}, \mu, \mathbb{R})$. Aus (16.2) angewendet auf das Maß σ und die Funktionen $f = \mathbbm{1}$ und g_{μ} erhalten wir $g_{\mu} \in L^1(\Omega, \mathcal{A}, \sigma, \mathbb{R})$. Zudem können wir (18.2) auf $h = \mathbbm{1}$ anwenden, um mit $f = \mathbbm{1}_A \in L^2(\Omega, \mathcal{A}, \sigma, \mathbb{R})$ für $A \in \mathcal{A}$ auf

$$\mu(A) = \int \mathbb{1}_A \, \mathrm{d}\mu = \int \mathbb{1}_A \cdot g_\mu \, \mathrm{d}\sigma$$

zu schließen. Mit Hilfe von Proposition 14.7.2 folgern wir aus $0 \le \mu(A) = \int \mathbb{1}_A \cdot g_\mu \, d\sigma$, $A \in \mathcal{A}$, die Ungleichungen $0 \le g_\mu \, \sigma$ -fast überall. Entsprechend finden wir ein integrierbares g_ν mit $0 \le g_\nu \, \sigma$ -fast überall und $\nu = g_\nu \cdot \sigma$. Von

$$\int \mathbb{1}_A \cdot \mathbb{1} d\sigma = \sigma(A) = \mu(A) + \nu(A) = \int \mathbb{1}_A \cdot (g_\mu + g_\nu) d\sigma$$

für alle $A \in \mathcal{A}$ schließen wir wieder mit Proposition 14.7.2 auf $g_{\mu} + g_{\nu} = 1$ σ -fast überall. Infolge können wir g_{μ} und g_{ν} auf einer σ -Nullmenge so abändern, dass $g_{\mu}(x) \ge 0$, $g_{\nu}(x) \ge 0$, $g_{\mu}(x) + g_{\nu}(x) = 1$ für alle $x \in \Omega$ gilt.

Seinen μ , ν , σ ab jetzt σ -endlich. Sind w_{μ} und w_{ν} wie in Fakta 18.1.3, 6, bezüglich der Maße μ und ν , so gilt $(w_{\mu} \cdot w_{\nu}) \cdot \sigma = (w_{\mu} \cdot w_{\nu}) \cdot \mu + (w_{\mu} \cdot w_{\nu}) \cdot \nu$ mit endlichen Maßen $(w_{\mu} \cdot w_{\nu}) \cdot \sigma$, $(w_{\mu} \cdot w_{\nu}) \cdot \mu$, $(w_{\mu} \cdot w_{\nu}) \cdot \nu$, auf die wir obige Schlussweise anwenden können. Wir erhalten messbare und nichtnegative Funktionen g_{μ} , g_{ν} mit $g_{\mu} + g_{\nu} = 1$ und $(w_{\mu} \cdot w_{\nu}) \cdot \mu = g_{\mu} \cdot ((w_{\mu} \cdot w_{\nu}) \cdot \sigma)$ sowie $(w_{\mu} \cdot w_{\nu}) \cdot \nu = g_{\nu} \cdot ((w_{\mu} \cdot w_{\nu}) \cdot \sigma)$. Dividieren wir durch $w_{\mu} \cdot w_{\nu}$, so folgt $\mu = g_{\mu} \cdot \sigma$ und $\nu = g_{\nu} \cdot \sigma$.

Schließlich erkennt man unmittelbar $\nu = \nu_a + \nu_s$ und $\mu(B) = (g_\mu \cdot \sigma)(B) = 0 = \nu_s(\Omega \setminus B)$, womit $\nu_s \perp \mu$. Wegen Lemma 14.7.1 gilt für alle $A \in \mathcal{A}$

$$\nu_a(A) = \int \mathbb{1}_A \cdot \mathbb{1}_{\{x \in \Omega: g_\mu(x) > 0\}} \cdot g_\nu \, \mathrm{d}\sigma = \int \mathbb{1}_A \cdot g \cdot g_\mu \, \mathrm{d}\sigma = \int \mathbb{1}_A \cdot g \, \mathrm{d}\mu = (g \cdot \mu)(A) \,. \qquad \Box$$

18.1.5 Satz (Satz von Radon-Nikodym). Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum mit σ -endlichem μ . Ist v ein weiteres Maß auf (Ω, \mathcal{A}) mit $v \ll \mu$, so existiert eine messbare Funktion $f: \Omega \to [0, +\infty]$ derart, dass $v = f \cdot \mu$. Diese Funktion f ist bis auf μ -Nullmengen eindeutig und wird Dichte von v bezüglich μ genannt.

¹Betrachten wir f als Funktion, so gilt $[f]_{\sim_{\sigma}} \subseteq [f]_{\sim_{\mu}}$, wodurch die Integrale in (18.1), in denen f vorkommt, nur von $[f]_{\sim_{\sigma}}$ und nicht vom konkreten Repräsentanten abhängig sind; siehe Fakta 18.1.3, 7.

Beweis. Die Eindeutigkeit von f folgt sofort aus Proposition 14.7.2, (ii). Es reicht also, die Existenz von f mit $v = f \cdot \mu$ zu zeigen.

Seien μ und ν zunächst beide endlich. Mit der Notation aus Lemma 18.1.4 folgt wegen $\nu_s \perp \mu$ und $\nu_s \ll \nu \ll \mu$ aus Fakta 18.1.3, 2, $\nu_s = 0$ und daher $\nu = \nu_a = g \cdot \mu$ für ein wegen $\nu(\Omega) < +\infty$ integrierbares $g: \Omega \to [0, +\infty)$.

Für endliches μ und beliebiges ν ist $\{\mu(B): B \in \mathcal{A}, \nu(B) < +\infty\}$ offenbar durch $\mu(\Omega)$ nach oben beschränkt, wodurch das Supremum α dieser Menge in $[0, +\infty)$ liegt. Wählen wir B_n , $n \in \mathbb{N}$, derart, dass $\nu(B_n) < +\infty$ und $\mu(B_n) \to \alpha$, so folgt für $A \subseteq \Omega \setminus \bigcup_{n \in \mathbb{N}} B_n$ mit $\nu(A) < +\infty$

$$\mu(A) + \alpha = \mu(A) + \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(A \cup B_n) \le \alpha$$

wodurch $\mu(A) = 0$ und wegen $\nu \ll \mu$ auch $\nu(A) = 0$. Aus $\nu \ll \mu$ erhält man auch $\mu(A) > 0$, wenn $\nu(A) = +\infty$. Daraus folgt

$$\nu(A) = \int \mathbb{1}_A \cdot (+\infty) \, \mathrm{d}\mu \quad \text{für alle} \quad A \in \mathcal{A}_{\Omega \setminus \bigcup_{n \in \mathbb{N}} B_n} \,. \tag{18.3}$$

Da $\mathcal{A} \ni A \mapsto \nu(A \cap B_n \setminus B_{n-1})$ mit $B_0 = \emptyset$ für jedes $n \in \mathbb{N}$ ein endliches Maß abgibt, folgt aus dem schon abgehandelten Fall die Existenz integrierbarer Funktionen $g_n : \Omega \to [0, +\infty)$ mit $\nu(A \cap B_n \setminus B_{n-1}) = \int \mathbb{1}_A \cdot g_n \, d\mu$. Wir erhalten für $A \in \mathcal{A}$ mit Fakta 14.5.3, 3,

$$\mu(A) = \nu(A \setminus \bigcup_{n \in \mathbb{N}} B_n) + \sum_{n=1}^{\infty} \nu(A \cap B_n \setminus B_{n-1})$$

$$= \int \mathbb{1}_{A \setminus \bigcup_{n \in \mathbb{N}} B_n} \cdot (+\infty) d\mu + \sum_{n=1}^{\infty} \int \mathbb{1}_{A \cap B_n \setminus B_{n-1}} \cdot g_n d\mu$$

$$= \int \mathbb{1}_{A} \cdot \left(\mathbb{1}_{\Omega \setminus \bigcup_{n \in \mathbb{N}} B_n} \cdot (+\infty) + \sum_{n=1}^{\infty} g_n \cdot \mathbb{1}_{B_n \setminus B_{n-1}} \right) d\mu.$$

$$= :f$$

Ist schließlich ν beliebig, μ σ -endlich und die Funktion $w:\Omega\to(0,+\infty)$ wie Fakta 18.1.3, 6, so folgt aus $\nu\ll\mu\ll w\cdot\mu$ wegen $(w\cdot\mu)(\Omega)<+\infty$ mit dem bisher Bekannten die Existenz einer Funktion $f_w:\Omega\to[0,+\infty]$, so dass $\nu=f_w\cdot(w\cdot\mu)$. Wir schließen mit Lemma 14.7.1 auf $\nu=f_w\cdot(w\cdot\mu)=(f_w\cdot w)\cdot\mu$, also gilt $f\cdot\mu=\nu$, wobei $f=f_w\cdot w$.

18.1.6 Satz (Zerlegungssatz von Lebesgue). Sind μ und ν zwei σ -endliche Maße auf dem Messraum (Ω, \mathcal{A}) , so gibt es eindeutige Maße ν_a und ν_s auf (Ω, \mathcal{A}) derart, dass $\nu = \nu_a + \nu_s$ mit $\nu_a \ll \mu$ und $\nu_s \perp \mu$.

Beweis. Die Existenz einer Zerlegung $\nu = \nu_a + \nu_s$ mit $\nu_a \ll \mu$ und $\nu_s \perp \mu$ haben wir in Lemma 18.1.4 gesehen. Für die Eindeutigkeit gelte zusätzlich $\nu = \eta_a + \eta_s$ mit $\eta_a \ll \mu$ und $\eta_s \perp \mu$, womit $\mu(B) = 0 = \nu_s(\Omega \setminus B)$ und $\mu(C) = 0 = \eta_s(\Omega \setminus C)$ für gewisse $B, C \in \mathcal{A}$. Aus $\nu_a \ll \mu$ folgt $\nu_a(B \cup C) = 0$, wodurch zusammen mit $\nu_s(A \cap B^c \cap C^c) = 0$

$$\nu_a(A) = \nu_a(A \cap (B \cup C)) + \nu_a(A \cap B^c \cap C^c) = \nu_a(A \cap B^c \cap C^c) = \nu(A \cap B^c \cap C^c), \ A \in \mathcal{A}.$$

Aus Symmetriegründen erhalten wir auch $\eta_a(A) = \nu(A \cap B^c \cap C^c)$ und daher $\nu_a = \eta_a$. Aus $\mu(A \cap B) = 0$ folgt $\nu_a(A \cap B) = 0 = \eta_a(A \cap B)$, wodurch zusammen mit $\nu_s(A \setminus B) = 0$

$$v_s(A) = v_s(A \cap B) = v(A \cap B) = v(A \cap B \cap C)$$
,

denn $\nu(A \cap B \setminus C) = \eta_a(A \cap B \setminus C) + \eta_s(A \cap B \setminus C) = 0$. Wieder aus Symmetriegründen gilt $\eta_s(A) = \nu(A \cap B \cap C)$, womit auch $\nu_s = \eta_s$.

18.2 Die Dualräume der L^p -Räume

18.2.1 Definition. Sei (X, ||.||) ein normierter Raum. Der *topologische Dualraum X'* von (X, ||.||) ist die Menge aller linearen und beschränkten Funktionale von X in den Skalarkörper $\mathbb C$ oder $\mathbb R$ von X.

18.2.2 Bemerkung. Die Elemente $f \in X'$ sind gerade die beschränkten linearen Abbildungen von X nach \mathbb{C} bzw. \mathbb{R} , also $f \in L_b(X, \mathbb{C})$ bzw. $f \in L_b(X, \mathbb{R})$.

Aus Satz 9.2.7 wissen wir, dass $L_b(X, \mathbb{C})$ und $L_b(X, \mathbb{R})$ versehen mit der Abbildungsnorm Banachräume sind. Also trägt X' in natürliche Weise ein Norm.

Klarerweise ist X' ein Untervektorraum aller linearen Abbildungen X^* von X in den Skalarkörper.

Ehe wir darangehen, die Dualräume diverser Funktionenräume zu bestimmen, bringen wir ein allgemeines Resultat über Funktionale auf unter |.| abgeschlossenen Räumen von Funktionen, die eine Seminorm² tragen.

18.2.3 Lemma. Sei \mathcal{F} ein unter |.| abgeschlossener Raum von Funktionen auf einer Menge Ω wie in Definition 14.2.1. Weiters sei ||.|| eine Seminorm auf \mathcal{F} mit der Eigenschaft, dass $||g|| \leq ||f||$ für $f,g \in \mathcal{F}$ mit $|g| \leq |f|$. Zu einem linearen $\psi: \mathcal{F} \to \mathbb{R}$, welches beschränkt bezüglich ||.|| ist, also $|\psi(f)| \leq C \cdot ||f||$ für alle $f \in \mathcal{F}$ und einem von f unabhängigen $C \in [0, +\infty)$ erfüllt, gibt es dann ein lineares $\psi^+: \mathcal{F} \to \mathbb{R}$ mit

$$\psi(f) \le \psi^+(f) \in [0, +\infty)$$
 für alle $f \in \mathcal{F}_+$,

 $und |\psi^+(f)| \le 2C \cdot ||f||$ für alle $f \in \mathcal{F}$.

Beweis. Definieren wir für $f \in \mathcal{F}_+$,

$$\psi^+(f) := \sup \{ \psi(h) : h \in \mathcal{F}_+, \ h \le f \},$$

so folgt mit der zulässigen Wahl h=0 bzw. h=f die Ungleichung $\max(0,\psi(f)) \leq \psi^+(f)$. Offenbar gilt auch $\psi^+(0)=0$. Für jedes $h\in\mathcal{F}_+$ mit $h\leq f$ gilt voraussetzungsgemäß $\psi(h)\leq C\cdot ||h||\leq C\cdot ||f||$ und somit

$$\psi^{+}(f) \le C \cdot ||f|| < +\infty. \tag{18.4}$$

Für $f, g, h \in \mathcal{F}_+$ mit $h \le f + g$ gilt mit $p = \max(h - g, 0)$, $q = \min(h, g)$ sicherlich p + q = h, $p \le f$, $q \le g$ und $p, q \in \mathcal{F}_+$; vgl. Fakta 14.2.2. Wir schließen daher auf

$$\{p+q: p, q \in \mathcal{F}_+, p \le f, q \le g\} = \{h: h \in \mathcal{F}_+, h \le f+g\},\$$

und wegen $\psi(p+q) = \psi(p) + \psi(q)$ in Kombination mit dem Lemma vom iterierten Supremum weiter auf

$$\psi^{+}(f+g) = \sup\{\psi(h) : h \in \mathcal{F}_{+}, \ h \le f+g\} = \sup\{\psi(p+q) : p, q \in \mathcal{F}_{+}, \ p \le f, q \le g\}$$

$$= \sup\{\sup\{\psi(p) + \psi(q) : q \in \mathcal{F}_{+}, \ q \le g\} : p \in \mathcal{F}_{+}, \ p \le f\}$$

$$= \sup\{\psi(p) + \sup\{\psi(q) : q \in \mathcal{F}_{+}, \ q \le g\} : p \in \mathcal{F}_{+}, \ p \le f\}$$

$$= \sup\{\psi(p) : p \in \mathcal{F}_{+}, \ p \le f\} + \sup\{\psi(q) : q \in \mathcal{F}_{+}, \ q \le g\} = \psi^{+}(f) + \psi^{+}(g).$$

Für einen Vektorraum X heißt eine Abbildung $\|.\|: X \to [0, +\infty)$ Seminorm, falls $\|\alpha x\| = |\alpha| \|x\|$ und $\|x + y\| \le \|x\| + \|y\|$ (Dreiecksungleichung) für alle $x, y \in X$ und alle Skalare α aus \mathbb{R} bzw. \mathbb{C} .

Für $\eta > 0$ folgt erhalten wir

$$\psi^+(\eta f) = \sup\{\psi(h): h \in \mathcal{F}_+, \ h \leq \eta f\} = \eta \sup\{\psi(\frac{1}{\eta}h): h \in \mathcal{F}_+, \ \frac{1}{\eta}h \leq f\} = \eta \psi^+(f).$$

Ist nun $f \in \mathcal{F}$ beliebig, so schreiben wir $f = f^+ - f^-$ mit $f^+ := \max(f, 0) \in \mathcal{F}_+$ und $f^- := -\min(f, 0) \in \mathcal{F}_+$ und setzen $\psi^+(f) := \psi^+(f^+) - \psi^+(f^-)$. Falls $f = f_1 - f_2$ mit irgendwelchen $f_1, f_2 \in \mathcal{F}_+$, so folgt $f^+ + f_2 = f_1 + f^-$ und weiter

$$\psi^+(f^+) + \psi^+(f_2) = \psi^+(f^+ + f_2) = \psi^+(f_1 + f^-) = \psi^+(f_1) + \psi^+(f^-)$$

womit $\psi^+(f) = \psi^+(f^+) - \psi^+(f^-) = \psi^+(f_1) - \psi^+(f_2)$. Für $f, g \in \mathcal{F}$ mit Zerlegungen $f = f^+ - f^-$, $g = g^+ - g^-$ gilt $f + g = (f^+ + g^+) - (f^- + g^-)$, wobei $f^+ + g^+$, $f^- + g^- \in \mathcal{F}_+$, und infolge

$$\psi^{+}(f+g) = \psi^{+}(f^{+}+g^{+}) - \psi^{+}(f^{-}+g^{-}) = \psi^{+}(f^{+}) + \psi^{+}(g^{+}) - \psi^{+}(f^{-}) - \psi^{+}(g^{-}) = \psi^{+}(f) + \psi^{+}(g).$$

Aus $(\eta f)^{\pm} = \eta f^{\pm}$ für $\eta \ge 0$ und $(\eta f)^{\pm} = |\eta| f^{\mp}$ für $\eta < 0$ leitet man unschwer $\psi^{+}(\eta f) = \eta \psi^{+}(f)$ für alle $\eta \in \mathbb{R}$ her. Also ist ψ^{+} linear und erfüllt wegen (18.4) und $||f^{\pm}|| \le ||f||$

$$|\psi^+(f)| \le |\psi^+(f^+)| + |\psi^+(f^-)| \le C \cdot (||f^+|| + ||f^+||) \le 2C||f||.$$

18.2.4 Bemerkung. Mit den Voraussetzungen und der Notation von Lemma 18.2.3 ist auch ψ^- : $\mathcal{F} \to \mathbb{R}$ definiert durch $\psi^- = \psi^+ - \psi$ linear mit $|\psi^-(f)| \leq 3C \cdot ||f||$ für $f \in \mathcal{F}$ und erfüllt $\psi^-(f) \in [0, +\infty)$ für alle $f \in \mathcal{F}_+$. Explizit gilt für $f \in \mathcal{F}_+$

$$\psi^{-}(f) = \psi^{+}(f) - \psi(f) = \sup\{-\psi(f-h) : h \in \mathcal{F}_{+}, h \le f\} = -\inf\{\psi(h) : h \in \mathcal{F}_{+}, h \le f\}.$$

Somit lässt sich ψ immer als Differenz $\psi^+ - \psi^-$ zweier, bezüglich der Seminorm ||.|| beschränkter Linearformen mit $\psi^{\pm}(\mathcal{F}_+) \subseteq [0, +\infty)$ schreiben.

18.2.5 Proposition. Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und seien $p, q \in [1, +\infty]$ mit $\frac{1}{p} + \frac{1}{q} = 1$. Für jedes $g \in L^q(\Omega, \mathcal{A}, \mu, \mathbb{R})$ bzw. $g \in L^q(\Omega, \mathcal{A}, \mu, \mathbb{C})$ wird durch

$$\phi_g(f) := \int_{\Omega} fg \, \mathrm{d}\mu$$

ein beschränktes lineares Funktional auf $L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$ bzw. $L^p(\Omega, \mathcal{A}, \mu, \mathbb{C})$ definiert, wobei $\|\phi_g\| \le \|g\|_q$. Die durch $\Phi(g) = \phi_g$ definierte Abbildung $\Phi : L^q(\Omega, \mathcal{A}, \mu, \mathbb{R}) \to L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})'$ bzw. $\Phi : L^q(\Omega, \mathcal{A}, \mu, \mathbb{C}) \to L^p(\Omega, \mathcal{A}, \mu, \mathbb{C})'$ ist linear mit Abbildungsnorm $\|\Phi\| \le 1$.

Für $p \in (1, +\infty]$, $q \in [1, +\infty)$ und, im Fall eines σ -endlichen Maßes μ , auch für p = 1, $q = \infty$ gilt sogar $\|\phi_g\| = \|g\|_q$, womit Φ isometrisch ist.

Beweis. Ist $g \in L^q$, so folgt aus Proposition 16.1.1 für $f \in L^p$, dass $fg \in L^1$ und

$$|\phi_g(f)| = \left| \int fg \, \mathrm{d}\mu \right| \le ||g||_q \cdot ||f||_p \,.$$

Also ist $\phi_g(f) \in \mathbb{C}$ wohldefiniert und hängt augenscheinlich linear von f ab. Die Abbildungsnorm $\|\phi_g\|$ ist nach dieser Ungleichung kleiner oder gleich $\|g\|_q$, womit auch $\phi_g \in (L^p)'$; vgl. Bemerkung 9.2.5. Offenbar ist Φ linear und wegen $\|\phi_g\| \leq \|g\|_q$ gilt $\|\Phi\| \leq 1$.

Für $p \in (1, +\infty]$, $q \in [1, +\infty)$ und $0 \neq g \in L^q$ ist die reel- bzw. komplexwertige Funktion f auf Ω , welche durch

$$f(x) = \begin{cases} |g(x)|^{q-1} \frac{\overline{g(x)}}{|g(x)|} & \text{für } g(x) \neq 0, \\ 0 & \text{für } g(x) = 0, \end{cases}$$

definiert ist, messbar und erfüllt wegen $\left|\frac{\overline{g(x)}}{|g(x)|}\right| = 1$ für $g(x) \neq 0$, dass $||f||_p = 1$ im Falle $p = \infty, q = 1$ und dass³

$$\int_{\Omega} |f|^p d\mu = \int_{\Omega} |g(x)|^{p(q-1)} d\mu = ||g||_q^q,$$

wodurch $f \in L^p$ mit $||f||_p = ||g||_q^{\frac{q}{p}} = ||g||_q^{q-1} > 0$, im Falle $p, q \in (1, +\infty)$. Wegen

$$\phi_g(f) = \int_{\Omega} fg \, d\mu = \int_{\Omega} |g|^q \, d\mu = ||g||_q^q = ||g||_q \cdot ||f||_p$$

kann nicht $\|\phi_g\| < \|g\|_q$ gelten, womit wir $\|\phi_g\| = \|g\|_q$ erhalten. Für $g = 0 \in L^q$ gilt diese Gleichung offenbar auch.

Schließlich sei μ σ -endlich und $p=1, q=\infty$. Gemäß Definition 16.1.2 ist für $0 \neq g \in L^{\infty}$ und beliebiges $0 < \eta < ||g||_{\infty}$ die Menge $\{x: \eta < |f(x)|\}$ keine Nullmenge. Wegen der σ -Endlichkeit gibt es $A \subseteq \{x: \eta < |f(x)|\}$ mit $E \in \mathcal{A}, 0 < \mu(A) < +\infty$. Die Funktion

$$f(x) = \begin{cases} \mathbb{1}_A(x) \frac{\overline{g(x)}}{|g(x)|} & \text{für } g(x) \neq 0, \\ 0 & \text{für } g(x) = 0, \end{cases}$$

erfüllt $||f||_1 = \mu(A) \in (0, +\infty)$ sowie $\phi_g(f) = \int_A |g(x)| d\mu \ge \eta \cdot \mu(A)$, wodurch $||\phi_g|| \ge \eta$. Da $0 < \eta < ||g||_{\infty}$ beliebig war, folgt $||\phi_g|| \ge ||g||_{\infty}$ und somit $||\phi_g|| = ||g||_{\infty}$.

Für p = 2 ist folgender Satz auch eine unmittelbare Konsequenz aus Satz 18.1.1.

18.2.6 Satz. Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und seien $p, q \in [1, +\infty]$ mit $\frac{1}{p} + \frac{1}{q} = 1$. Für $p, q \in (1, +\infty)$ und, im Fall eines σ -endlichen Maßes μ , auch für $p = 1, q = \infty$ ist die durch $\Phi(g) = \phi_g$, wobei

$$\phi_g(f) := \int_{\Omega} fg \,\mathrm{d}\mu$$

definierte Abbildung von $L^q(\Omega, \mathcal{A}, \mu, \mathbb{R})$ nach $L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})'$ bzw. von $L^q(\Omega, \mathcal{A}, \mu, \mathbb{C})$ nach $L^p(\Omega, \mathcal{A}, \mu, \mathbb{C})'$ bijektiv und isometrisch.

Beweis. Gemäß Proposition 18.2.5 reicht es, zu jedem $\phi \in (L^p)'$ ein $g \in L^q$ zu finden mit $\phi_g = \phi$. Der komplexwertige Fall folgt dabei aus dem reellwertigen Fall. Ist nämlich $\phi \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{C})'$, so sind durch $(\operatorname{Re}\phi)(f) := \operatorname{Re}(\phi(f))$ und $(\operatorname{Im}\phi)(f) := \operatorname{Im}(\phi(f))$ mit $f \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$ zwei Funktionale aus $L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})'$ definiert. Wissen wir, dass $\operatorname{Re}\phi = \phi_g$ und $\operatorname{Im}\phi = \phi_h$ mit $g, h \in L^q(\Omega, \mathcal{A}, \mu, \mathbb{R})$, so folgt $\phi(f) = \operatorname{Re}\phi(f) + i\operatorname{Im}\phi(f) = \phi_{g+ih}(f)$ für $f \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$. Wegen $\phi, \phi_{g+ih} \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{C})'$ folgern wir aus der Tatsache, dass die \mathbb{C} -lineare Hülle von $L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$ gerade $L^p(\Omega, \mathcal{A}, \mu, \mathbb{C})$ ist,

$$\phi = \phi_{g+ih}$$
.

³Man beachte, dass p(q-1) = q.

Wir können also $\phi \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})'$ annehmen. Betrachten wir das durch $\psi(f) := \phi([f]_{\sim_{\mu}})$ definierte lineare $\psi : \mathcal{F} \to \mathbb{R}$ mit $\mathcal{F} = \mathcal{L}^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$, wobei $\mathcal{L}^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$ wie in Definition 16.2.1 ist, so sind die Voraussetzungen von Lemma 18.2.3 erfüllt, wenn wir \mathcal{F} mit der Seminorm $\|.\|_p$ aus Definition 16.1.2 versehen. Mit Blick auf Bemerkung 18.2.4 gilt $\psi = \psi^+ - \psi^-$ für beschränkte Funktionale $\psi^\pm : \mathcal{F} \to \mathbb{R}$ derart, dass $\psi^\pm(f) \geq 0$ für $f \in \mathcal{F}_+$. Die Beschränktheit, also $\|\psi^\pm(f)\| \leq C\|f\|_p$ wenn $f \in \mathcal{L}^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$ und einem gewissen $C \geq 0$, impliziert auch, dass $\psi^\pm(f)$ nur von $[f]_{\sim_{\mu}}$ abhängt und somit die Abbildungen $[f]_{\sim_{\mu}} \mapsto \psi^\pm(f)$ in $L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})'$ liegen. Wenn wir $g_+, g_- \in \mathcal{L}^q(\Omega, \mathcal{A}, \mu, \mathbb{R})$ finden können, so dass $\phi_{g_\pm}([f]_{\sim_{\mu}}) = \psi^\pm(f)$ für alle $f \in \mathcal{L}^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$, dann sind wir fertig.

Wir können also zusätzlich annehmen, dass ϕ positiv in dem Sinne ist, dass $\phi(f) \geq 0$ für $f \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$ mit $f \geq 0$ μ -fast überall. Wir unterscheiden nun mehrere Fälle.

Fall $\mu(\Omega) < +\infty$:

Für ein positives $\phi \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})'$ wird wegen $\mathbb{1}_A \in L^p$ für alle $A \in \mathcal{A}$ durch

$$\nu(A) := \phi(\mathbb{1}_A), \quad A \in \mathcal{A},$$

eine $[0, +\infty)$ -wertige Mengenfunktion auf \mathcal{A} definiert. Sind $A, B \in \mathcal{A}$ disjunkt, so gilt $\nu(A \cup B) = \phi(\mathbb{1}_{A \cup B}) = \phi(\mathbb{1}_A) + \phi(\mathbb{1}_B) = \nu(A) + \nu(B)$. Für paarweise disjunkte $A_n \in \mathcal{A}$, $n \in \mathbb{N}$, schließen wir daraus mit dem Satz von der beschränkten Konvergenz, Satz 14.6.5, auf

$$\left|\nu(\mathbb{1}_A) - \sum_{i=1}^n \nu(A_i)\right| = \left|\phi(\mathbb{1}_A) - \phi(\mathbb{1}_{A_1 \dot{\cup} \dots \dot{\cup} A_n})\right| \leq \|\phi\| \cdot \|\mathbb{1}_A - \mathbb{1}_{A_1 \dot{\cup} \dots \dot{\cup} A_n}\|_p \xrightarrow{n \to \infty} 0,$$

und somit auf die σ -Additivität von ν . Wegen $\nu(\emptyset) = \phi(0) = 0$ und $\nu(\Omega) = \phi(\mathbb{1}_{\Omega}) \le \|\phi\| \|\mathbb{1}_{\Omega}\|_p < +\infty$ ist ν ein endliches Maß.

Für $N \in \mathcal{A}$ mit $\mu(N) = 0$ stellt $\mathbb{1}_N$ das Nullelement von L^p dar, womit $\nu(N) = \phi(\mathbb{1}_N) = 0$ und infolge $\nu \ll \mu$. Nach Satz 18.1.5 gibt es eine Dichte $g: \Omega \to [0, +\infty]$ derart, dass $\nu = g \cdot \mu$, wobei $\int_{\Omega} g \, \mathrm{d}\mu = \nu(\Omega) < +\infty$. Insbesondere gilt

$$\phi(f) = \int_{\Omega} fg \, \mathrm{d}\mu = \phi_g(f), \qquad (18.5)$$

für alle Funktionen der Bauart $f=\mathbb{1}_A,\ A\in\mathcal{A}$. Wegen der Linearität gilt (18.5) auch für alle Treppenfunktionen. Sei $(g_n)_{n\in\mathbb{N}}$ eine gemäß Lemma 14.4.10 existierende, monoton wachsende Folge von nichtnegativen Treppenfunktionen mit $\lim_{n\to\infty}g_n=g$. Wir erhalten im Falle $p,q\in(1,+\infty)$ wegen p(q-1)=q

$$\int g_n^q \, \mathrm{d} \mu \leq \int g_n^{q-1} g \, \mathrm{d} \mu = \phi(g_n^{q-1}) \leq \|\phi\| \, \|g_n^{q-1}\|_p = \|\phi\| \, \bigg(\int g_n^q \, \mathrm{d} \mu \bigg)^{\frac{1}{p}} \,,$$

und infolge

$$\left(\int g_n^q \,\mathrm{d}\mu\right)^{\frac{1}{q}} \le \|\phi\|\,,$$

was nach dem Grenzübergang $n \to \infty$ wegen Fakta 14.5.3, 3, $\|g\|_q \le \|\phi\| < +\infty$ ergibt. Im Falle $p=1, q=\infty$ gilt für alle $A \in \mathcal{A}$

$$\int_A g \, \mathrm{d}\mu = \nu(A) = \phi(\mathbb{1}_A) \le ||\phi|| \, ||\mathbb{1}_A||_1 = \int_A ||\phi|| \, \mathrm{d}\mu \,,$$

was nach Proposition 14.7.2 die Ungleichung $g \le ||\phi||$ bis auf eine μ -Nullmenge, also $||g||_{\infty} \le ||\phi||$, nach sich zieht. In jedem Fall liegt g in L^q . Gemäß Lemma 16.6.2 ist die Menge aller Treppenfunktionen dicht in L^p , wodurch (18.5) wegen der Stetigkeit von ϕ und ϕ_g für alle $f \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$ gilt.

Fall eines σ *-endlichen* μ *:*

Mit der Funktion $w: \Omega \to (0, +\infty)$ wie in Fakta 18.1.3, 6, stellt wegen $\int |h|^p d(w \cdot \mu) = \int |h|^p w d\mu$ die Abbildung

$$f \mapsto f \cdot \frac{1}{w_p^{\frac{1}{p}}}$$

eine isometrische Bijektion von $L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$ auf $L^p(\Omega, \mathcal{A}, (w \cdot \mu), \mathbb{R})$ dar, wobei $h \mapsto h \cdot w^{\frac{1}{p}}$ ihre Inverse ist. Im Fall $p = \infty$ stimmt diese Aussage auch, wenn wir $w^{\frac{1}{\infty}} = 1$ setzen. Als Folge gilt

$$\phi \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})'$$
 genau dann, wenn $\phi(\cdot \cdot w^{\frac{1}{p}}) \in L^p(\Omega, \mathcal{A}, (w \cdot \mu), \mathbb{R})'$.

Wegen $(w \cdot \mu)(\Omega) < +\infty$ gibt es nach dem abgehandelten Fall oben für $\phi \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})'$ eine Funktion $u \in L^q(\Omega, \mathcal{A}, (w \cdot \mu), \mathbb{R})$ mit

$$\phi(f) = \phi(f \cdot \frac{1}{w^{\frac{1}{p}}} \cdot w^{\frac{1}{p}}) = \int f \cdot \frac{1}{w^{\frac{1}{p}}} \cdot u \, \mathrm{d}(w \cdot \mu) = \int f u w^{\frac{1}{q}} \, \mathrm{d}\mu$$

für alle $f \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$. Aus $g := uw^{\frac{1}{q}} \in L^q(\Omega, \mathcal{A}, \mu, \mathbb{R})$ folgt schließlich $\phi = \phi_{\varrho}$.

Fall eines beliebigen μ *mit* $p, q \in (1, +\infty)$:

Für $r \in (1, +\infty)$ und eine $B \in \mathcal{A}$ lässt sich die Menge aller Funktionen aus $L^r(\Omega, \mathcal{A}, \mu, \mathbb{R})$, welche außerhalb von B μ -fast überall verschwinden, mit $L^r(B, \mathcal{A}_B, \mu|_{\mathcal{A}_B}, \mathbb{R})$ identifizieren; vgl. (14.17). Also können wir $L^r(B, \mathcal{A}_B, \mu|_{\mathcal{A}_B}, \mathbb{R})$ als Teilraum von $L^r(\Omega, \mathcal{A}, \mu, \mathbb{R})$ betrachten. Sind $B_1, B_2 \in \mathcal{A}$ disjunkt und $C = B_1 \cup B_2$, so ist in diesem Sinne $L^r(C, \mathcal{A}_C, \mu|_{\mathcal{A}_C}, \mathbb{R})$ die direkte Summe der $L^r(A_j, \mathcal{A}_{A_j}, \mu|_{\mathcal{A}_{A_i}}, \mathbb{R})$, j = 1, 2.

Für ein $\phi \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})'$ bezeichne $\phi|_B$ die Einschränkung von ϕ auf diesen Teilraum. Für zwei $C, D \in \mathcal{A}$ mit $C \subseteq D$ gilt im obigen Sinne

$$L^p(C, \mathcal{A}_C, \mu|_{\mathcal{A}_C}, \mathbb{R}) \subseteq L^p(D, \mathcal{A}_D, \mu|_{\mathcal{A}_D}, \mathbb{R}) \subseteq L^p(\Omega, \mathcal{A}, \mu, \mathbb{R}),$$

womit $\phi|_C$ eine Einschränkung von $\phi|_D$ ist und daher

$$\|\phi_C\| \le \|\phi_D\| \le \|\phi\|. \tag{18.6}$$

Setzen wir $\alpha := \sup\{\|\phi_C\| : \mathcal{A} \ni C \sigma - \text{endlich}\}\$, so ist α sogar Maximum dieser Menge, da für σ -endliche $C_n \in \mathcal{A}$, $n \in \mathbb{N}$, mit $\|\phi_{C_n}\| \to \alpha$ für $n \to \infty$ auch $D := \bigcup C_n \sigma$ -endlich ist und wegen (18.6) offenbar $\|\phi_D\| = \alpha$ gilt.

Aus dem schon Bewiesenen folgt für σ -endliches $B \in \mathcal{A}$, dass $\phi_B = \phi_{g_B}$ mit einem $g_B \in L^q(B,\mathcal{A}_B,\mu|_{\mathcal{A}_B},\mathbb{R})$, wobei ϕ_{g_B} als Funktional auf $L^p(B,\mathcal{A}_B,\mu|_{\mathcal{A}_B},\mathbb{R})$ zu betrachten ist. Wegen Proposition 18.2.5 ist g_B eindeutig durch $\phi|_B$ bestimmt. Also muss für disjunkte und σ -endliche $B_1, B_2 \in \mathcal{A}$ gelten, dass $g_{B_1 \cup B_2}|_{B_j} = g_{B_j}$, j = 1, 2, und daher

$$\|\phi_{B_1\cup B_2}\|^q = \|g_{B_1\cup B_2}\|_q^q = \|g_{B_1}\|_q^q + \|g_{B_2}\|_q^q = \|\phi_{B_1}\|^q + \|\phi_{B_2}\|^q.$$

Für σ -endliche $C, D \in \mathcal{A}$ mit $C \subseteq D$ und $||\phi_C|| = \alpha$ erhalten wir

$$\alpha^q \ge \|\phi_D\|^q = \|g_{D\setminus C}\|^q + \|g_C\|^q = \|g_{D\setminus C}\|^q + \alpha^q$$

also $g_{D \setminus C} = 0 \mu$ -fast überall.

Wir halten ein σ -endlich $C \in \mathcal{A}$ mit $\|\phi_C\| = \alpha$ fest. Das entsprechende $g := g_C \in L^q(C, \mathcal{A}_C, \mu|_{\mathcal{A}_C}, \mathbb{R})$ verschwindet außerhalb von C μ -fast überall, wenn wir es als Element von $L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$ betrachten. Für $f \in L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})$ ist $f^{-1}(\mathbb{R} \setminus \{0\})$ nach Fakta 14.5.3, 7, σ -endlich und somit auch $D := C \cup f^{-1}(\mathbb{R} \setminus \{0\})$, weshalb

$$\phi(f) = \phi_D(f) = \int_D f g_D \, \mathrm{d}\mu = \int_C f g_C \, \mathrm{d}\mu + \int_{D \setminus C} f g_{D \setminus C} \, \mathrm{d}\mu = \int_C f g_C \, \mathrm{d}\mu = \int_C f g \, \mathrm{d}\mu.$$

Also gilt $\phi = \phi_g$.

18.3 Signierte und komplexe Maße

18.3.1 Definition. Sei (Ω, \mathcal{A}) ein Messraum und ν eine Funktion auf \mathcal{A} mit Werten in \mathbb{R} , \mathbb{C} , $[-\infty, +\infty)$ oder auch $(-\infty, +\infty]$, welche $\nu(\emptyset) = 0$ und⁴

$$\nu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big) = \sum_{n\in\mathbb{N}}\nu(A_n) \tag{18.7}$$

für alle paarweise disjunkten $A_n \in \mathcal{A}$, $n \in \mathbb{N}$, erfüllt. Hat ν Werte in \mathbb{R} bzw. in \mathbb{C} , so sprechen wir von einem *reellen Ma\beta* bzw. von einem *komplexen Ma\beta*. Hat ν Werte in $[-\infty, +\infty)$ oder in $(-\infty, +\infty]$, dann sprechen wir von einem *signierten Ma\beta*.

Für Funktionen auf \mathcal{A} mit Werten in $[-\infty, +\infty]$ macht die Bedingung (18.7) keinen Sinn, weil der Ausdruck $+\infty + (-\infty)$ nicht definiert ist.

18.3.2 Fakta.

- 1. Reell- bzw. komplexwertige Funktionen ν auf \mathcal{A} , welche nur (18.7) erfüllen, sind schon reelle bzw. komplexe Maße, denn unter diesen Umständen konvergiert der Ausdruck $\sum_{n\in\mathbb{N}} \nu(\emptyset)$ in \mathbb{R} bzw. \mathbb{C} , was nur für $\nu(\emptyset) = 0$ möglich ist.
- 2. Mit derselben Überlegung wie in Fakta 14.3.9, zeigt man, dass signierte, reelle und komplexe Maße endlich additiv sind.
- 3. Die Menge aller reellen bzw. die Menge aller komplexen Maße bildet, versehen mit der punktweisen Addition und punktweisen skalaren Multiplikation, einen Vektorraum über \mathbb{R} bzw. über \mathbb{C} .
- 4. Offenbar ist jedes reelle Maß auch eine signiertes Maß. Zudem lässt sich jedes reelle Maß auch als komplexes Maß interpretieren, wenn man \mathbb{R} als Teilmenge von \mathbb{C} betrachtet.

⁴Gilt $\nu(A_n) = \pm \infty$ für mindestens ein $n \in \mathbb{N}$, so ist $\sum_{n \in \mathbb{N}} \nu(A_n) = \pm \infty$. Anderenfalls ist dieser Ausdruck im Sinne der unbedingten Konvergenz zu interpretieren.

- 5. Für eine komplexes Maß ν sind Re ν und Im ν definiert durch (Re ν)(A) := Re(ν (A)) und (Im ν)(A) := Im(ν (A)) offenbar zwei reelle Maße mit ν = Re ν + i Im ν . Sind umgekehrt ν 1, ν 2 zwei reelle Maße, so ist ν := ν 1 + i ν 2 ein komplexes Maß mit Re ν = ν 1 und Im ν = ν 2.
- 6. Ist ν ein signiertes Maß und $A, B \in \mathcal{A}$ mit $A \subseteq B$ und $|\nu(B)| < +\infty$, so muss wegen $\nu(A) + \nu(B \setminus A) = \nu(B)$ auch $|\nu(B \setminus A)|, |\nu(A)| < +\infty$ und infolge $\nu(B) \nu(A) = \nu(B \setminus A)$ gelten.
- 7. Ist ν ein signiertes Maß, so gilt für jede monoton wachsende Mengenfolge $(A_n)_{n\in\mathbb{N}}$ aus \mathcal{A}

$$\lim_{n\to\infty}\nu(A_n)=\lim_{n\to\infty}\sum_{k=1}^n\nu(A_k\setminus A_{k-1})=\sum_{k\in\mathbb{N}}\nu(A_k\setminus A_{k-1})=\nu(\bigcup_{k\in\mathbb{N}}A_k\setminus A_{k-1})=\nu(\bigcup_{n\in\mathbb{N}}A_n),$$

wobei $A_0 := \emptyset$. Für jede monoton fallende Mengenfolge $(B_n)_{n \in \mathbb{N}}$ aus \mathcal{A} ist die Folge $(B_1 \setminus B_n)_{n \in \mathbb{N}}$ monoton wachsend, womit $\lim_{n \to \infty} \nu(B_1 \setminus B_n) = \nu(B_1 \setminus \bigcap_{n \in \mathbb{N}} B_n)$. Gilt zusätzlich $|\nu(B_1)| < +\infty$, so folgt aus dem vorherigen Punkt

$$\lim_{n\to\infty}\nu(B_1)-\nu(B_n)=\nu(B_1)-\nu(\bigcap_{n\in\mathbb{N}}B_n)$$

und daher $\lim_{n\to\infty} \nu(B_n) = \nu(\bigcap_{n\in\mathbb{N}} B_n)$.

18.3.3 Beispiel. Ist $\mu : \mathcal{A} \to [0, +\infty]$ ein Maß auf einem Messraum (Ω, \mathcal{A}) und $g \in L^1(\Omega, \mathcal{A}, \mu, \mathbb{R})$ bzw. $g \in L^1(\Omega, \mathcal{A}, \mu, \mathbb{C})$, so stellt

$$\nu(A) = \int_A g \, \mathrm{d}\mu, \ A \in \mathcal{A},$$

ein reelles bzw. komplexes Maß dar, wie man unschwer mit Hilfe des Satzes von der beschränkten Konvergenz, Satz 14.6.5, zeigen kann. Für derartige Maße ν schreiben wir wie im nichtnegativen Fall auch $g \cdot \mu$; vgl. Lemma 14.7.1. Offenbar gilt dabei Re $\nu = (\text{Re }g) \cdot \mu$ und $\text{Im }\nu = (\text{Im }g) \cdot \mu$. Falls auch $\nu = h \cdot \mu$ für eine weitere Funktion μ aus μ 0 bzw. μ 1 bzw. μ 1 bzw. μ 2, so folgt zunächst μ 3 cine (Re μ 3) μ 4 (Re μ 4) μ 5 wund dann durch eine zweimalige Anwendung von Proposition 14.7.2, dass Re μ 5 Re μ 6 Re μ 7 und daher μ 7 und daher μ 8 per Hast überall.

18.3.4 Satz (Hahnscher Zerlegungssatz). Ist v ein signiertes $Ma\beta$ auf (Ω, \mathcal{A}) , dann gibt es disjunkte $P, N \in \mathcal{A}$ mit $\Omega = N \cup P$, wobei für jedes $A \in \mathcal{A}$ aus $A \subseteq P$ immer $v(A) \geq 0$ und aus $A \subseteq N$ immer $v(A) \leq 0$ folgt. Insbesondere bilden

$$v_{+}(A) := v(A \cap P)$$
 sowie $v_{-}(A) := -v(A \cap N)$ (18.8)

Maße im Sinne von Definition 14.3.8, wobei $\nu_{+}(\Omega) < +\infty$ $(\nu_{-}(\Omega) < +\infty)$, wenn ν den Wert $+\infty$ $(-\infty)$ nicht annimmt. Zudem gilt $\nu = \nu_{+} - \nu_{-}$ sowie $\nu_{+} \perp \nu_{-}$.

Beweis. Da im Falle $\nu: \mathcal{A} \to (-\infty, +\infty]$ das signierte Maß $-\nu$ nach $[-\infty, +\infty)$ hinein abbildet, können wir ohne Beschränkung der Allgemeinheit annehmen, dass $\nu: \mathcal{A} \to [-\infty, +\infty)$. Wir zeigen zunächst für so ein ν und jedes $A \in \mathcal{A}$ mit $\nu(A) > -\infty$ und jedes $\epsilon > 0$ die Existenz einer Menge $A_{\epsilon} \in \mathcal{A}$ mit

$$A_{\epsilon} \subseteq A, \ \nu(A_{\epsilon}) \ge \nu(A) \text{ und } \nu(B) \ge -\epsilon \text{ für alle } B \in \mathcal{A}, B \subseteq A_{\epsilon}.$$
 (18.9)

Gäbe es kein so ein $A_{\epsilon} \in \mathcal{A}$, dann würde zu allen $C \in \mathcal{A}$ mit $C \subseteq A$ und $\nu(C) \ge \nu(A)$ ein $B \in \mathcal{A}, B \subseteq C$ derart existieren, dass $\nu(B) < -\epsilon$. Zu C = A existiert somit ein $B_1 \in \mathcal{A}, B_1 \subseteq A$ mit $\nu(B_1) < -\epsilon$. Haben wir disjunkte Teilmengen $B_1, \ldots, B_n \in \mathcal{A}$ von A mit $\nu(B_j) < -\epsilon$, $j = 1, \ldots, n$, dann gilt $\nu(A \setminus \bigcup_{j=1}^n B_j) = \nu(A) - \sum_{j=1}^n \nu(B_j) > \nu(A)$, wodurch es nach indirekter Annahme ein $B_{n+1} \subseteq A \setminus \bigcup_{j=1}^n B_j$ aus \mathcal{A} gibt mit $\nu(B_{n+1}) < -\epsilon$. Die sodann konstruierten, paarweise disjunkten Teilmengen B_n , $n \in \mathbb{N}$, von A erfüllen

$$v(\bigcup_{n\in\mathbb{N}} B_n) = \sum_{k\in\mathbb{N}} v(B_n) = -\infty$$

im Widerspruch zu $\bigcup_{n\in\mathbb{N}} B_n \subseteq A$ und $\nu(A) > -\infty$; vgl. Fakta 18.3.2, 6.

Sei $C \in \mathcal{A}$ mit $\nu(C) > -\infty$. Wenden wir (18.9) auf A := C und $\epsilon = 1$ an, so erhalten wir eine Menge $A_{\frac{1}{1}} \subseteq C$ mit $\nu(A_{\frac{1}{1}}) \ge \nu(C) > -\infty$. Nun wenden wir (18.9) rekursiv auf $A := A_{\frac{1}{n}}$ und $\epsilon = \frac{1}{n+1}$ an, um ein $A_{\frac{1}{n+1}} \subseteq A_{\frac{1}{n}}$ mit $\nu(A_{\frac{1}{n+1}}) \ge \nu(A_{\frac{1}{n}}) \ge \cdots \ge \nu(A_{\frac{1}{1}}) \ge \nu(C) > -\infty$ zu bekommen. Die Menge $D := \bigcap_{n \in \mathbb{N}} A_{\frac{1}{n}} \in \mathcal{A}$ erfüllt dann $D \subseteq C$, wegen Fakta 18.3.2, 7, auch $\nu(D) \ge \nu(C)$ sowie aufgrund von (18.9)

$$v(B) \ge 0 \text{ für alle } B \in \mathcal{A}, B \subseteq D.$$
 (18.10)

Wir nennen ein $D \in \mathcal{A}$, welches (18.10) erfüllt, positiv und setzen

$$\alpha := \sup \{ \nu(D) : D \in \mathcal{A} \text{ ist positiv} \} (\in [0, +\infty]).$$

Ist $D_n \in \mathcal{A}$, $n \in \mathbb{N}$, eine Folge positiver Mengen mit $\lim_{n\to\infty} \nu(D_n) = \alpha$, so überzeugt man sich leicht davon, dass auch $P := \bigcup_{n\in\mathbb{N}} D_n$ positiv ist und $\alpha = \nu(P) \in [-\infty, +\infty)$, womit $\alpha < +\infty$. Für jedes $C \in \mathcal{A}$ mit $C \subseteq N := \Omega \setminus P$ und $\nu(C) \ge 0$ folgt nach dem Absatz oberhalb von (18.10) die Existenz eines positiven $D \subseteq C$ mit $\nu(D) \ge \nu(C)$. Die disjunkte Vereinigung $D \cup P$ ist dann auch positiv und erfüllt $\nu(D) + \alpha = \nu(D \cup P) \le \alpha$, was $\nu(C) \le \nu(D) \le 0$ und infolge $\nu(C) = 0$ nach sich zieht. Also gilt $\nu(C) \le 0$ für jedes $C \in \mathcal{A}$, $C \subseteq N$.

18.3.5 Bemerkung. Das Paar P, N von Mengen aus Satz 18.3.4 wird als *Hahnsche Zerlegung* von Ω bezeichnet. Diese Zerlegung ist nicht eindeutig, die Maße ν_+ sind es aber.

Ist nämlich $P', N' \in \mathcal{A}$ ein weiteres Paar disjunkter Mengen mit der Eigenschaft, dass für jedes $A \in \mathcal{A}$ aus $A \subseteq P'$ immer $v(A) \ge 0$ und aus $A \subseteq N'$ immer $v(A) \le 0$ folgt, so ergibt sich für jedes $A \in \mathcal{A}$ mit $A \subseteq P \cap N'$ wegen $A \subseteq P$ die Ungleichung $v(A) \le 0$ und wegen $A \subseteq N'$ die Ungleichung $v(A) \ge 0$. Wir erhalten v(A) = 0 und genauso v(B) = 0 für alle $B \in \mathcal{A}$ mit $B \subseteq P' \cap N$. Somit gilt für $C \in \mathcal{A}$

$$\nu(C \cap P) = \nu(C \cap P) + \nu(C \cap N \cap P') = \nu(C \cap (P \cup (P' \setminus P))) = \nu(C \cap (P \cup P')),$$

und aus Symmetriegründen genauso $\nu(C \cap P') = \nu(C \cap (P \cup P'))$, womit ν_+ nicht von der konkreten Hahnschen Zerlegung abhängt. Von der Unabhängigkeit von ν_- überzeugt man sich auf die gleiche Art und Weise.

Wir wollen nun ausgehend von einem komplexen Maß ν ein endliches nichtnegatives Maß $|\nu|$ konstruieren, das wir als *Variation* von ν bezeichnen. Diese Konstruktion ist verwandt mit jener der Weglänge; siehe Definition 11.1.4.

18.3.6 Proposition. Sei (Ω, \mathcal{A}) ein Messraum und v ein signiertes, reelles oder komplexes Ma β . Setzen wir für $E \in \mathcal{A}$

$$|\nu|(E) := \sup \Big\{ \sum_{j \in \mathbb{N}} |\nu(A_j)| : A_k \in \mathcal{A}, \ k \in \mathbb{N}, \ paarweise \ disjunkt \ mit \ \bigcup_{j \in \mathbb{N}} A_j = E \Big\},$$
 (18.11)

so bildet $\mathcal{A} \ni E \mapsto |\nu|(E) \in [0, +\infty]$ ein nichtnegatives Ma β auf (Ω, \mathcal{A}) , welches als Variation von ν bezeichnet wird. Dabei gilt $|\nu|(E) \ge |\nu(E)|$ für alle $E \in \mathcal{A}$.

Beweis. Aus $\nu(\emptyset) = 0$ folgt unmittelbar $|\nu|(\emptyset) = 0$. Um die σ -Additivität zu zeigen, gelte $E = \bigcup_{n \in \mathbb{N}} E_n$ mit paarweise disjunkten $E_n \in \mathcal{A}$. Nach Definition gibt es für jedes $n \in \mathbb{N}$ zu beliebigem reellen $t_n < |\nu|(E_n)$ ($\in [0, +\infty]$) paarweise disjunkte $A_{n,j} \in \mathcal{A}$, $j \in \mathbb{N}$, mit $E_n = \bigcup_{j \in \mathbb{N}} A_{n,j}$ derart, dass

$$t_n < \sum_{j \in \mathbb{N}} |\nu(A_{n,j})|.$$

Wegen $E = \bigcup_{n \in \mathbb{N}} \bigcup_{j \in \mathbb{N}} A_{n,j}$ mit abzählbar vielen paarweise disjunkten $A_{n,j} \in \mathcal{A}$, $(n, j) \in \mathbb{N} \times \mathbb{N}$, folgt für zunächst festes $N \in \mathbb{N}$

$$\sum_{n=1}^{N} t_n \leq \sum_{n=1}^{N} \sum_{j \in \mathbb{N}} |\nu(A_{n,j})| \leq \sum_{n \in \mathbb{N}} \sum_{j \in \mathbb{N}} |\nu(A_{n,j})| \leq |\nu|(E).$$

Da die $t_n < |\nu|(E_n)$ für n = 1, ..., N beliebig waren, erhalten wir $\sum_{n=1}^{N} |\nu|(E_n) \le |\nu|(E)$ und für $N \to \infty$ schließlich $\sum_{n \in \mathbb{N}} |\nu|(E_n) \le |\nu|(E)$.

Um die umgekehrte Ungleichung nachzuweisen, gelte $\bigcup_{j\in\mathbb{N}}A_j=E$ für paarweise disjunkte $A_j\in\mathcal{A},\ j\in\mathbb{N}$. Für jedes $n\in\mathbb{N}$ gilt dann $E_n=\bigcup_{j\in\mathbb{N}}A_j\cap E_n$ und für jedes $j\in\mathbb{N}$ die Gleichung $A_j=\bigcup_{n\in\mathbb{N}}A_j\cap E_n$ mit jeweils paarweise disjunkten Mengen $A_j\cap E_n\in\mathcal{A}$. Aus (18.7) und der Dreiecksungleichung folgt

$$\sum_{j\in\mathbb{N}} |\nu(A_j)| \leq \sum_{j\in\mathbb{N}} \sum_{n\in\mathbb{N}} |\nu(A_j \cap E_n)| = \sum_{n\in\mathbb{N}} \sum_{j\in\mathbb{N}} |\nu(A_j \cap E_n)| \leq \sum_{n\in\mathbb{N}} |\nu|(E_n).$$

Also gilt auch $|\nu|(E) \leq \sum_{n \in \mathbb{N}} |\nu|(E_n)$.

Hat das signierte, reelle oder komplexes Maß ν aus Proposition 18.3.6 nur Werte in $[0, +\infty]$, so folgt unmittelbar $\nu = |\nu|$.

18.3.7 Satz. Ist (Ω, \mathcal{A}) ein Messraum und v ein reelles bzw. komplexes Ma β darauf, so stellt die Variation |v| ein endliches Ma β dar. Dabei gilt im Falle eines reellen Ma β es mit der Notation aus Satz 18.3.4

$$|\nu|(A) = \nu_{+}(A) + \nu_{-}(A) = \nu(A \cap P) - \nu(A \cap N)$$
 für alle $A \in \mathcal{A}$. (18.12)

Beweis. Ist ν ein reelles Maß, $E \in \mathcal{A}$ und gilt $\bigcup_{j \in \mathbb{N}} A_j = E$ für paarweise disjunkte $A_j \in \mathcal{A}$, $j \in \mathbb{N}$, so erhalten wir aus Satz 18.3.4 wegen $|\nu(A_j)| = |\nu_+(A_j) - \nu_-(A_j)| \le \nu_+(A_j) + \nu_-(A_j)$ durch Aufsummieren $\sum_{j \in \mathbb{N}} |\nu(A_j)| \le \nu_+(E) + \nu_-(E)$. Wählen wir $A_1 = P \cap E$, $A_2 = N \cap E$ und $A_j = \emptyset$ für $j \ge 3$, wobei P, N eine Hahnsche Zerlegung wie in Bemerkung 18.3.5 ist, so folgt

$$\sum_{j\in\mathbb{N}} |\nu(A_j)| = \nu(P\cap E) - \nu(N\cap E) = \nu_+(E) + \nu_-(E)\,,$$

womit insgesamt $|\nu|(E) = \nu_+(E) + \nu_-(E) \le \nu_+(\Omega) + \nu_-(\Omega) < +\infty$.

Für ein komplexes Maß ν gilt $\nu = \text{Re } \nu + \text{i Im } \nu$ mit reellen Maßen Re ν und Im ν ; vgl. Fakta 18.3.2, 5. Ist $E \in \mathcal{A}$ und gilt $\bigcup_{i \in \mathbb{N}} A_i = E$ für paarweise disjunkte $A_i \in \mathcal{A}$, $j \in \mathbb{N}$, so folgt

$$\sum_{j\in\mathbb{N}} |\nu(A_j)| = \sum_{j\in\mathbb{N}} |\operatorname{Re} \nu(A_j) + i \operatorname{Im} \nu(A_j)| \le \sum_{j\in\mathbb{N}} |\operatorname{Re} \nu(A_j)| + |\operatorname{Im} \nu(A_j)| \le |\operatorname{Re} \nu|(E) + |\operatorname{Im} \nu|(E),$$

womit
$$|v|(E) \le |\operatorname{Re} v|(E) + |\operatorname{Im} v|(E) \le |\operatorname{Re} v|(\Omega) + |\operatorname{Im} v|(\Omega) < +\infty$$
.

18.3.8 Definition. Sei (Ω, \mathcal{A}) ein Messraum. Mit $M(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $M(\Omega, \mathcal{A}, \mathbb{C})$ wollen wir den Vektorraum aller reellen bzw. komplexen Maße bezeichnen; vgl. Fakta 18.3.2, 3. Für ein $v \in M(\Omega, \mathcal{A}, \mathbb{R})$ oder $M(\Omega, \mathcal{A}, \mathbb{C})$ nennen wir $||v|| := |v|(\Omega)$ die *totale Variation* des Maßes v.

18.3.9 Satz. Die totale Variation $\|.\|$ bildet eine Norm auf $M(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $M(\Omega, \mathcal{A}, \mathbb{C})$, wobei dieser Raum versehen mit $\|.\|$ sogar ein Banachraum ist.

Aus $v \in M(\Omega, \mathcal{A}, \mathbb{C})$ folgt auch $\overline{v} \in M(\Omega, \mathcal{A}, \mathbb{C})$ mit $||v|| = ||\overline{v}||$, wobei $\overline{v}(A) := \overline{v(A)}$, $A \in \mathcal{A}$.

Beweis. Seien $\nu, \mu \in M(\Omega, \mathcal{A}, \mathbb{R})$, $0 \neq \alpha \in \mathbb{R}$ bzw. $\nu, \mu \in M(\Omega, \mathcal{A}, \mathbb{C})$, $0 \neq \alpha \in \mathbb{C}$. Zunächst gilt $||\nu|| = |\nu|(\Omega) \geq 0$, wobei $||\nu|| = |\nu|(\Omega) = 0$ wegen $|\nu(A)| \leq |\nu|(A) \leq |\nu|(\Omega)$, $A \in \mathcal{A}$, zu $\nu = 0$ äquivalent ist. Somit gilt auch $||0 \cdot \nu|| = |0| \cdot ||\nu||$. Weiters erhalten wir für $E \in \mathcal{A}$ und paarweise disjunkte $A_j \in \mathcal{A}$, $j \in \mathbb{N}$, mit $\bigcup_{j \in \mathbb{N}} A_j = E$

$$\sum_{j \in \mathbb{N}} |(\alpha \cdot \nu)(A_j)| = |\alpha| \cdot \sum_{j \in \mathbb{N}} |\nu(A_j)| \le |\alpha| \cdot |\nu|(E),$$

$$\sum_{j\in\mathbb{N}}|(\nu+\mu)(A_j)|\leq \sum_{j\in\mathbb{N}}|\nu(A)|+|\mu(A_j)|=\left(\sum_{j\in\mathbb{N}}|\nu(A)|\right)+\left(\sum_{j\in\mathbb{N}}|\mu(A)|\right)\leq |\nu|(E)+|\mu|(E)\,.$$

Nehmen wir das Supremum über alle Zerlegungen $A_j \in \mathcal{A}$, $j \in \mathbb{N}$, mit $\bigcup_{j \in \mathbb{N}} A_j = E$, so folgt $|(\alpha \cdot \nu)|(E) \le |\alpha| \cdot |\nu|(E)$ sowie $|\nu + \mu|(E) \le |\nu|(E) + |\mu|(E)$. Wenden wir die erste Ungleichung für $\frac{1}{\alpha}$ und $\alpha \cdot \nu$ an, so erhalten wir auch $|\alpha| \cdot |\nu|(E) \le |(\alpha \cdot \nu)|(E)$. Also gilt

$$|(\alpha \cdot \nu)|(E) = |\alpha| \cdot |\nu|(E) \quad \text{und} \quad |\nu + \mu|(E) \le |\nu|(E) + |\mu|(E) \quad \text{für alle} \quad E \in \mathcal{A}. \tag{18.13}$$

Für $E = \Omega$ folgt die Tatsache, dass ||.|| eine Norm ist.

Sei $(v_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in $M(\Omega,\mathcal{A},\mathbb{R})$ bzw. $M(\Omega,\mathcal{A},\mathbb{C})$. Wegen $|v_n(A)| \leq |v_n|(A) \leq ||v_n||$ und $|v_n(A) - v_m(A)| \leq |v_n - v_m|(A) \leq ||v_n - v_m||$ für alle $A \in \mathcal{A}$ bildet $(v_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge im Raum $\mathcal{B}(\mathcal{A},\mathbb{R})$ bzw. $\mathcal{B}(\mathcal{A},\mathbb{C})$ aller beschränkten reell- bzw. komplexwertigen Funktionen auf \mathcal{A} bezüglich der Supremumsnorm $\|.\|_{\infty}$. Wie wir in Beispiel 9.1.9 gesehen haben, ist dieser ein Banachraum, wodurch $\lim_{n\to\infty} ||v_n - v||_{\infty} = 0$ für ein v aus $\mathcal{B}(\mathcal{A},\mathbb{R})$ bzw. $\mathcal{B}(\mathcal{A},\mathbb{C})$. Da aus der gleichmäßigen die punktweise Konvergenz folgt, gilt $v(A \cup B) = \lim_{n\to\infty} v_n(A \cup B) = \lim_{n\to\infty} (v_n(A) + v_n(B)) = \lim_{n\to\infty} v_n(A) + \lim_{n\to\infty} v_n(B) = v(A) + v(B)$ für disjunkte $A, B \in \mathcal{A}$, womit sich v als endlich additiv herausstellt. Aus Lemma 8.7.1 erhalten wir für paarweise disjunkte $A_j \in \mathcal{A}$, $j \in \mathbb{N}$,

$$\nu(\bigcup_{j\in\mathbb{N}}A_j) = \lim_{n\to\infty}\nu_n(\bigcup_{j\in\mathbb{N}}A_j) = \lim_{n\to\infty}\lim_{M\in\mathcal{E}(\mathbb{N})}\nu_n(\bigcup_{j\in M}A_j) = \lim_{M\in\mathcal{E}(\mathbb{N})}\lim_{n\to\infty}\nu_n(\bigcup_{j\in M}A_j) = \sum_{j\in\mathbb{N}}\nu(A_j)$$

samt Konvergenz des letzten Ausdrucks, weshalb ν in $M(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $M(\Omega, \mathcal{A}, \mathbb{C})$ liegt. Um $\lim_{n \to \infty} \|\nu_n - \nu\| = 0$ zu zeigen, sei $\Omega = \bigcup_{j \in \mathbb{N}} A_j$ eine disjunkte abzählbare Zerlegung von Ω mit $A_j \in \mathcal{A}$. Für $N \in \mathbb{N}$ folgt

$$\sum_{i=1}^{N} |(\nu_n - \nu)(A_j)| = \sum_{i=1}^{N} |\nu_n(A_j) - \lim_{m \to \infty} \nu_m(A_j)| = \lim_{m \to \infty} \sum_{i=1}^{N} |\nu_n(A_j) - \nu_m(A_j)| \le \limsup_{m \to \infty} ||\nu_n - \nu_m||$$

und für $N \to \infty$ sogar $\sum_{j \in \mathbb{N}} |(\nu_n - \nu)(A_j)| \le \limsup_{m \to \infty} ||\nu_n - \nu_m||$. Nehmen wir das Supremum über alle disjunkten abzählbaren Zerlegung von Ω , so erhalten wir $||\nu_n - \nu|| \le \limsup_{m \to \infty} ||\nu_n - \nu_m|| \le \epsilon$ für jedes $n \ge N(\epsilon)$, wobei $N(\epsilon) \in \mathbb{N}$ derart ist, dass $||\nu_n - \nu_m|| < \epsilon$ für $n, m \ge N(\epsilon)$.

Die Tatsache, dass die Konjugation isometrisch auf $\mathbb C$ agiert, impliziert die Behauptung über $\bar{\nu}$.

Wir wollen an den Begriff der absoluten Stetigkeit eines Maßes bezüglich eines anderen Maßes in Definition 18.1.2 erinnern und auf reelle und komplexe Maße ausdehnen.

18.3.10 Definition. Für einen Messraum (Ω, \mathcal{A}) , ein Maß $\mu : \mathcal{A} \to [0, +\infty]$ und ein reelles oder komplexes Maß heißt ν absolut stetig bezüglich μ , in Zeichen $\nu \ll \mu$, falls aus $A \in \mathcal{A}$ mit $\mu(A) = 0$ auch $\nu(A) = 0$ folgt.

Sind μ und ν beide reelle oder komplexe Maße, so heißt ν absolut stetig bezüglich μ , in Zeichen $\nu \ll \mu$, falls $\nu \ll |\mu|$.

18.3.11 Bemerkung. Für ein Maß $\mu : \mathcal{A} \to [0, +\infty]$ und ein komplexes Maß ν ist $\nu \ll \mu$ offenbar äquivalent zu Re $\nu \ll \mu$ und Im $\nu \ll \mu$; siehe Fakta 18.3.2, 5. Zudem ist für reelle oder komplexe Maße ν die Tatsache $\nu \ll \mu$ äquivalent zu $|\nu| \ll \mu$.

In der Tat folgt aus $\nu \ll \mu$ und $A \in \mathcal{A}$ mit $\mu(A) = 0$ für jede disjunkte Zerlegung $A = \bigcup_{j \in \mathbb{N}} A_j$, dass auch $0 \le \mu(A_j) \le \mu(A) = 0$ und somit $\nu(A_j) = 0$ für alle $j \in \mathbb{N}$, also $\sum_{j \in \mathbb{N}} |\nu(A_j)| = 0$. Daraus ergibt sich $|\nu|(A) = 0$. Die Umkehrung gilt wegen $|\nu(A)| \le |\nu|(A)$.

Wir wollen auch den Satz von Radon-Nikodym auf reelle und komplexe Maß ausdehnen.

18.3.12 Satz. Für einen Messraum (Ω, \mathcal{A}) , ein σ -endliches Ma $\beta \mu : \mathcal{A} \to [0, +\infty]$ und ein reelles bzw. komplexes Ma β v auf (Ω, \mathcal{A}) gilt $v \ll \mu$ genau dann, wenn es ein f aus $L^1(\Omega, \mathcal{A}, \mu, \mathbb{R})$ bzw. $L^1(\Omega, \mathcal{A}, \mu, \mathbb{C})$ derart gibt, dass $v = f \cdot \mu$, also dass

$$v(A) = \int_A f \, \mathrm{d}\mu \ \text{ für alle } A \in \mathcal{A}.$$

In dem Fall ist die Funktion f mit dieser Eigenschaft bis auf eine μ -Nullmenge eindeutig und wird wie im nichtnegativen Fall als Dichte von ν bezüglich μ bezeichnet.

Beweis. Dass für integrierbares f die Funktion $f \cdot \mu$ ein reelles bzw. komplexes Maß abgibt, haben wir schon in Beispiel 18.3.3 festgestellt. Ist umgekehrt μ ein reelles Maß mit $\nu \ll \mu$, so gilt auch $|\nu| \ll \mu$; vgl. Bemerkung 18.3.11. Also erhalten wir gemäß Satz 18.1.5 ein messbares $g: \Omega \to [0, +\infty]$ mit $|\nu| = g \cdot \mu$. Wegen $\int_{\Omega} g \, \mathrm{d}\mu = |\nu|(\Omega) < +\infty$ ist g integrierbar. Wählen wir eine Hahnsche Zerlegung P, N für ν wie in Satz 18.3.4, so gilt wegen (18.8) und (18.12) für jedes $A \in \mathcal{A}$

$$\nu(A) = \nu_+(A \cap P) - \nu_-(A \cap N) = |\nu|(A \cap P) - |\nu|(A \cap N) = \int \mathbb{1}_A \cdot g \cdot (\mathbb{1}_P - \mathbb{1}_N) \,\mathrm{d}\mu \,.$$

Somit ist $f := g \cdot (\mathbb{1}_P - \mathbb{1}_N) \in L^1(\Omega, \mathcal{A}, \mu, \mathbb{R})$ eine Dichte von ν bezüglich μ . Ist μ ein komplexes Maß mit $\nu \ll \mu$, so erhalten wir eine Dichte f, indem wir $f := f_r + \mathrm{i} f_i$ setzen, wobei f_r die Dichte von Re ν und f_i jene von Im ν ist; vgl. Bemerkung 18.3.11. Die Eindeutigkeit haben wir schon in Beispiel 18.3.3 festgestellt.

Falls f die Dichte von ν ist, was ist dann die Dichte von $|\nu|$? Die naheliegende Antwort |f| wird im folgenden Lemma gerechtfertigt.

18.3.13 Lemma. *Ist* $(\Omega, \mathcal{A}, \mu)$ *ein Maßraum, f aus* $L^1(\Omega, \mathcal{A}, \mu, \mathbb{R})$ *bzw.* $L^1(\Omega, \mathcal{A}, \mu, \mathbb{C})$ *und* $v = f \cdot \mu$ *das entsprechend Beispiel 18.3.3 gebildete reelle bzw. komplexe Maß, so folgt* $|v| = |f| \cdot \mu$, *womit insbesondere* $||f||_1 = ||v||$.

Beweis. Da jedes reelle Maß auch ein komplexes ist, reicht es, nur den komplexen Fall zu betrachten. Ist $A \in \mathcal{A}$ mit $\mu(A) < +\infty$ und $\bigcup_{j \in \mathbb{N}} A_j = A$ eine Zerlegung mit paarweise disjunkten $A_j \in \mathcal{A}$, $j \in \mathbb{N}$, so folgt

$$\sum_{j\in\mathbb{N}} |\nu(A_j)| = \sum_{j\in\mathbb{N}} \left| \int_{A_j} f \, \mathrm{d}\mu \right| \le \sum_{j\in\mathbb{N}} \int_{A_j} |f| \, \mathrm{d}\mu,$$

und daher $|\nu|(A) \le \int_A |f| d\mu$.

Für die umgekehrte Üngleichung setzen wir zunächst voraus, dass $f = \sum_{i=1}^m \beta_i \cdot \mathbb{1}_{B_i}$ eine integrierbare Treppenfunktion mit $\beta_i \in \mathbb{C} \setminus \{0\}$ und paarweise disjunkten B_i wie in Bemerkung 16.6.1 ist. Setzen wir $A_i := B_i$ für $i = 1, \ldots, m$ und $A_{m+1} := \Omega \setminus (B_1 \cup \cdots \cup B_m)$ sowie $A_i = \emptyset$ für i > m+1, so bildet $\bigcup_{j \in \mathbb{N}} (A \cap A_j)$ eine Zerlegung einer gegebenen Menge $A \in \mathcal{A}$ mit paarweise disjunkten $A \cap A_j$. Wegen $|f| = \sum_{i=1}^m |\beta_i| \cdot \mathbb{1}_{B_i}$ gilt dabei

$$\sum_{j\in\mathbb{N}} |\nu(A\cap A_j)| = \sum_{j\in\mathbb{N}} \left| \int_{A\cap A_j} f \,\mathrm{d}\mu \right| = \sum_{i=1}^m |\beta_i| \cdot \mu(A\cap B_j) = \int_A |f| \,\mathrm{d}\mu \,,$$

we shalb $|\nu|(A) \ge \int_A |f| d\mu$ und folglich $|\nu|(A) = \int_A |f| d\mu$.

Für ein beliebiges $f \in L^1(\Omega, \mathcal{A}, \mu, \mathbb{C})$ und ein $\epsilon > 0$ gibt es nach Lemma 16.6.2 eine integrierbare Treppenfunktion g mit $||g - f||_1 < \epsilon$. Aus (18.13) und dem schon Bewiesenen folgt für $A \in \mathcal{A}$

$$\int_{A} |f| \, \mathrm{d}\mu \ge |\nu|(A) = |f \cdot \mu|(A) = |g \cdot \mu - (g - f) \cdot \mu|(A) \ge |g \cdot \mu|(A) - |(g - f) \cdot \mu|(A)$$

$$\ge \int_{A} |g| \, \mathrm{d}\mu - \int_{A} |g - f| \, \mathrm{d}\mu = \int_{A} |f - (f - g)| \, \mathrm{d}\mu - \int_{A} |g - f| \, \mathrm{d}\mu$$

$$\ge \int_{A} |f| \, \mathrm{d}\mu - \int_{A} |f - g| \, \mathrm{d}\mu - \int_{A} |g - f| \, \mathrm{d}\mu \ge \int_{A} |f| \, \mathrm{d}\mu - 2\epsilon.$$

Da $\epsilon > 0$ beliebig klein gewählt werden kann, erhalten wir $|\nu|(A) = \int_A |f| \, \mathrm{d}\mu$.

18.3.14 Korollar. *Ist* (Ω, \mathcal{A}) *ein Messraum und v ein reelles bzw. komplexes Maß darauf, so gilt* $v = f \cdot |v|$ *mit einer bis auf* |v|-Nullmengen eindeutigen, messbaren, reell- bzw. komplexwertigen Funktion f auf Ω , wobei |f| = 1 |v|-fast überall.

Beweis. Offenbar gilt $\nu \ll |\nu|$, was nach Satz 18.3.12 impliziert, dass $\nu = f \cdot |\nu|$ mit einer bis auf $|\nu|$ -Nullmengen eindeutigen, messbaren, reell- bzw. komplexwertigen Funktion f auf Ω . Gemäß Lemma 18.3.13 ist dann |f| die Dichte von $|\nu|$ bezüglich $|\nu|$. Offenbar ist auch die konstante Einsfunktion eine Dichte von $|\nu|$ bezüglich $|\nu|$. Aus der Eindeutigkeit in Beispiel 18.3.3 erhalten wir |f| = 1 $|\nu|$ -fast überall.

Wir wollen auch die Integration komplexwertiger Funktionen nach komplexen Maßen definieren.

18.3.15 Definition. Sei (Ω, \mathcal{A}) ein Messraum und ν ein reelles oder komplexes Maß darauf. Eine reell- oder komplexwertige messbare Funktion g auf Ω heißt integrierbar bezüglich ν , wenn $\int |g| \, \mathrm{d} |\nu| < +\infty$. In dem Fall setzen wir

$$\int_{\Omega} g \, \mathrm{d} \nu := \int_{\Omega} g \cdot f \, \mathrm{d} |\nu| \,, \tag{18.14}$$

wobei f wie in Korollar 18.3.14 ist.

18.3.16 Fakta.

- 1. Für einen Messraum (Ω, \mathcal{A}) , ein reelles oder komplexes Maß ν darauf und eine bezüglich ν integrierbares g gilt offenbar $|\int_{\Omega} g \, d\nu| \le ||g||_{\infty} ||\nu||$, wobei $||.||_{\infty}$ des wesentliche Supremum bezüglich $|\nu|$ ist; siehe Definition 16.1.2.
- 2. Ist $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $\nu = h \cdot \mu$ mit h aus $L^1(\Omega, \mathcal{A}, \mu, \mathbb{R})$ bzw. $L^1(\Omega, \mathcal{A}, \mu, \mathbb{C})$, so folgt aus Lemma 18.3.13, dass $|\nu| = |h| \cdot \mu$ und mit Lemma 14.7.1 unter Beachtung von Fakta 14.15.2, 9, weiter dass $h \cdot \mu = \nu = f \cdot |h| \cdot \mu$. Die Eindeutigkeitsaussage in Beispiel 18.3.3 zeigt dann $h = f \cdot |h| \mu$ -fast überall, wobei f wie Korollar 18.3.14 ist.
- 3. Sei $(\Omega, \mathcal{A}, \mu)$ wieder ein Maßraum. Haben wir in Definition 18.3.15 zusätzlich $\nu = h \cdot \mu$ mit h aus $L^1(\Omega, \mathcal{A}, \mu, \mathbb{R})$ bzw. $L^1(\Omega, \mathcal{A}, \mu, \mathbb{C})$, so ist die Integrierbarkeit von g bezüglich ν äquivalent zu der von $g \cdot h$ bezüglich μ . In diesem Fall gilt

$$\int_{\Omega} g \, \mathrm{d} \nu = \int_{\Omega} g \cdot h \, \mathrm{d} \mu \,.$$

In der Tat gilt $|\nu| = |h| \cdot \mu$ nach Lemma 18.3.13, was $\int |g| \, d|\nu| = \int |g \cdot h| \, d\mu$ als Element von $[0, +\infty]$ nach sich zieht; siehe Lemma 14.7.1. Ist dieses Integral endlich, so erhalten wir mit Lemma 14.7.1 unter Beachtung von Fakta 14.15.2 sowie mit dem vorherigen Punkt

$$\int_{\Omega} g \, d\nu = \int_{\Omega} g \cdot f \, d|\nu| = \int_{\Omega} g \cdot f \cdot |h| \, d\mu = \int_{\Omega} g \cdot h \, d\mu.$$

4. Aus Definition 18.3.15 erkennt man sofort, dass $\int_{\Omega} g \, d\nu$ linear in g ist, also

$$\int_{\Omega} (\alpha g_1 + \beta g_2) \, \mathrm{d} \nu = \alpha \int_{\Omega} g_1 \, \mathrm{d} \nu + \beta \int_{\Omega} g_2 \, \mathrm{d} \nu \,,$$

wobei g_1, g_2 integrierbar bezüglich ν und α, β aus \mathbb{R} bzw. \mathbb{C} sind.

5. Für $v_1, v_2 \in M(\Omega, \mathcal{A}, \mathbb{R})$, $\alpha, \beta \in \mathbb{R}$, oder $v_1, v_2 \in M(\Omega, \mathcal{A}, \mathbb{C})$, $\alpha, \beta \in \mathbb{C}$, gilt offenbar $v_j \ll (|v_1| + |v_2|)$, j = 1, 2. Bezeichnet h_j , j = 1, 2, die gemäß Satz 18.3.12 existierenden Dichten, so folgt $\alpha v_1 + \beta v_2 = (\alpha h_1 + \beta h_2) \cdot (|v_1| + |v_2|)$. Für ein nach v_1 und v_2 integrierbares g erhalten wir aus 3

$$\int_{\Omega} g \, d(\alpha v_1 + \beta v_2) = \int_{\Omega} g(\alpha h_1 + \beta h_2) \, d(|v_1| + |v_2|)
= \alpha \int_{\Omega} g \cdot h_1 \, d(|v_1| + |v_2|) + \beta \int_{\Omega} g \cdot h_2 \, d(|v_1| + |v_2|)
= \alpha \int_{\Omega} g \, dv_1 + \beta \int_{\Omega} g \, dv_2,$$

womit $\int_{\Omega} g \, d\nu$ auch linear in ν ist.

6. Seien ν und μ beides reelle oder komplexe Maße und gelte $\nu \ll \mu$, also $\nu \ll |\mu|$. Gemäß Satz 18.3.12 gibt es eine Dichte f_1 von ν bezüglich $|\mu|$ und eine Dichte f_2 von μ bezüglich

 $|\mu|$, wobei $|f_2| = 1$ $|\mu|$ -fast überall; siehe Korollar 18.3.14. Nach 3 ist die Funktion $f := \frac{f_1}{f_2}$ integrierbar bezüglich μ , wobei

$$\int_A f \, \mathrm{d}\mu = \int_A \frac{f_1}{f_2} \cdot f_2 \, \mathrm{d}|\mu| = \nu(A) \quad \text{für alle} \quad A \in \mathcal{A}.$$

In Analogie zu Beispiel 18.3.3 schreiben wir $\nu = f \cdot \mu$ für diesen Sachverhalt. Dieses f mit der Eigenschaft $\nu = f \cdot \mu$ ist bis auf $|\mu|$ -Nullmengen eindeutig, da für ein weiteres nach μ integrierbares $h: \Omega \to \mathbb{C}$ mit $\nu = h \cdot \mu$ aus

$$\int_A f_1 \, \mathrm{d}|\mu| = \nu(A) = \int_A h \, \mathrm{d}\mu = \int_A h f_2 \, \mathrm{d}|\mu| \quad \text{für alle} \quad A \in \mathcal{A},$$

nach Beispiel 18.3.3 folgt, dass $hf_2 = f_1$ und infolge $h = f |\mu|$ -fast überall.

7. Mit der selben Notation wie im letzten Punkt gilt nach 3 für ein messbares $g: \Omega \to \mathbb{C}$

$$\int_{\Omega} g \, d\nu = \int_{\Omega} g f_1 \, d|\mu| = \int_{\Omega} g \frac{f_1}{f_2} f_2 \, d|\mu| = \int_{\Omega} g f \, d\mu$$

in dem Sinne, dass g bezüglich ν genau dann integrierbar ist, wenn $g \cdot f$ bezüglich μ integrierbar ist. Somit gilt der in 3 festgestellte Sachverhalt auch für reelle bzw. komplexe Maße μ .

18.3.17 Beispiel. Wir wollen zeigen, dass durch

$$\nu(B) = \int_B \frac{e^{\mathrm{i}2x}}{1+x^2} \, \mathrm{d}\lambda(x) + \sum_{n=1}^\infty \frac{\mathrm{i}^n}{2^n} \delta_n(B), \ B \in \mathcal{A}(\mathcal{T}^1),$$

ein komplexes Maß auf (\mathbb{R} , $\mathcal{A}(\mathcal{T}^1)$) wohldefiniert ist. Hier bezeichnet δ_x das Punktmaß bei $x \in \mathbb{R}$; siehe Beispiel 14.5.4.

Weil $f_1(x) := \frac{e^{i2x}}{1+x^2}$ in $L^1(\mathbb{R}, \mathcal{A}(\mathcal{T}^1), \lambda, \mathbb{C})$ liegt, definiert $\nu_1 := f_1 \cdot \lambda$ ein komplexes Borelmaß auf $(\mathbb{R}, \mathcal{A}(\mathcal{T}^1))$. Für jedes $n \in \mathbb{N}$ ist $\frac{i^n}{2^n} \delta_n$ ein komplexes Maß auf $\mathcal{A}(\mathcal{T}^1)$. Insbesondere liegt es im Banachraum $M(\mathbb{R}, \mathcal{A}(\mathcal{T}^1), \mathbb{C})$; vgl. Satz 18.3.9. Wegen $\|\frac{i}{2^n} \delta_n\| = \frac{1}{2^n} \delta_n(\mathbb{R}) = \frac{1}{2^n}$ konvergiert die $M(\mathbb{R}, \mathcal{A}(\mathcal{T}^1), \mathbb{C})$ -wertige Reihe

$$\nu_2 := \sum_{n=1}^{\infty} \frac{\mathrm{i}^n}{2^n} \delta_n$$

absolut. Somit gilt $\nu = \nu_1 + \nu_2 \in M(\mathbb{R}, \mathcal{A}(\mathcal{T}^1), \mathbb{C})$. Als ebenfalls absolut konvergente Reihe

$$\mu := \sum_{n=1}^{\infty} \frac{1}{2^n} \delta_n$$

liegt auch μ in $M(\mathbb{R}, \mathcal{A}(\mathcal{T}^1), \mathbb{C})$ und hat offenbar Werte in $[0, +\infty)$. Die Funktion $f_2 := \sum_{n=1}^{\infty} i^n \cdot \mathbb{1}_{\{n\}}$ ist nach μ integrierbar, wobei $\nu_2 = f_2 \cdot \mu$. Wir wollen

$$\int_{\mathbb{R}} e^{-\mathrm{i}2x} \,\mathrm{d}\nu(x)$$

berechnen. Als beschränkte Funktion ist e^{-i2x} nach dem endlichen Maß $|\nu|$ integrierbar. Nach Fakta 18.3.16 ist dieses Integral die Summe von $\int e^{-i2x} \, \mathrm{d}\nu_1(x)$ und $\int e^{-i2x} \, \mathrm{d}\nu_2(x)$. Wegen $\nu_1 = f_1 \cdot \lambda$ erkennen wir aus Fakta 18.3.16

$$\int_{\mathbb{R}} e^{-\mathrm{i}2x} \, \mathrm{d}\nu_1(x) = \int_{\mathbb{R}} e^{-\mathrm{i}2x} \cdot \frac{e^{\mathrm{i}2x}}{1+x^2} \, \mathrm{d}\lambda(x) = \int_{\mathbb{R}} \frac{1}{1+x^2} \, \mathrm{d}\lambda(x) = \pi,$$

und wegen $v_2 = f_2 \cdot \mu$

$$\int_{\mathbb{R}} e^{-i2x} d\nu_2(x) = \int_{\mathbb{R}} e^{-i2x} \cdot \sum_{n=1}^{\infty} i^n \cdot \mathbb{1}_{\{n\}} d\mu(x) = \sum_{n=1}^{\infty} (i \cdot e^{-2i})^n \int \mathbb{1}_{\{n\}} d\mu$$
$$= \sum_{n=1}^{\infty} \left(\frac{i \cdot e^{-2i}}{2}\right)^n = i \cdot e^{-2i} \cdot \frac{1}{2 - i \cdot e^{-2i}}.$$

Also

$$\int_{\mathbb{R}} e^{-\mathrm{i}2x} \, \mathrm{d}\nu(x) = \pi + \mathrm{i} \cdot e^{-2\mathrm{i}} \cdot \frac{1}{2 - \mathrm{i} \cdot e^{-2\mathrm{i}}}.$$

18.4 $C_0(\Omega)$ und sein Dualraum*

In diesem Abschnitt sei (Ω, \mathcal{T}) ein lokalkompakter Hausdorff-Raum und $\mathcal{A} := \mathcal{A}(\mathcal{T})$ die σ -Algebra aller Borelteilmengen von Ω ; vgl. Definition 14.10.1. Wir betrachten den Raum $^5C_0(\Omega, \mathbb{R})$ bzw. $C_0(\Omega, \mathbb{C})$ aller reell- bzw. komplexwertigen stetigen Funktionen g auf Ω , die im Unendlichen verschwinden wie in Definition 12.17.6. Bekannterweise ist $C_0(\Omega, \mathbb{R})$ bzw. $C_0(\Omega, \mathbb{C})$ ein abgeschlossener Teilraum von $C_b(\Omega, \mathbb{R})$ bzw. $C_b(\Omega, \mathbb{C})$ und somit selber, versehen mit der Supremumsnorm $\|.\|_{\infty}$, ein Banachraum; siehe Fakta 12.17.7.

18.4.1 Bemerkung. Der Raum $C_{00}(\Omega, \mathbb{R})$ bzw. $C_{00}(\Omega, \mathbb{C})$ aller stetigen, reell- bzw. komplexwertigen Funktionen mit kompaktem Träger ist ein dichter Teilraum von $C_0(\Omega, \mathbb{R})$ bzw. $C_0(\Omega, \mathbb{C})$. Ist nämlich f in $C_0(\Omega, \mathbb{R})$ bzw. in $C_0(\Omega, \mathbb{C})$, so gibt es zu $\epsilon > 0$ eine kompakte Menge $K \subseteq \Omega$ mit $|f|(K^c) \subseteq [0, \epsilon)$. Nach Lemma 12.17.8 existiert ein $h \in C_{00}(\Omega, \mathbb{R})$ mit $\mathbb{1}_K \le h \le 1$. Der Träger von fh ist in dem von h enthalten und daher auch kompakt, also liegt $f \cdot h$ in $C_{00}(\Omega, \mathbb{R})$ bzw. $C_{00}(\Omega, \mathbb{C})$. Dabei gilt |f(x) - f(x)h(x)| = |f(x) - f(x)| = 0, wenn $x \in K$, und

$$|f(x) - f(x)h(x)| \le |f(x)| < \epsilon$$
 für $x \in \Omega \setminus K$,

also $||f - fh||_{\infty} \le \epsilon$.

18.4.2 Definition. Ein ν aus $M(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $M(\Omega, \mathcal{A}, \mathbb{C})$ heißt $regul\ddot{a}r$, wenn seine Variation $|\nu|$ regulär im Sinne von Definition 14.12.1 ist. Die Menge aller solchen Maße wird mit $M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ bezeichnet.

18.4.3 Bemerkung. Da nach Satz 14.12.5 ein endliches, nichtnegatives Borelmaß schon regulär ist, wenn jede offene Menge von innen regulär ist, gilt für ein reelles bzw. komplexes Maß ν auf (Ω, \mathcal{A}) , dass $\nu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $\nu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ genau dann, wenn bezüglich $|\nu|$ alle offenen Mengen von innen regulär sind. Das ist insbesondere der Fall, wenn $|\nu|$ Riesz-regulär ist; vgl. Definition 14.10.5.

Auch gemäß Satz 14.12.5 sind alle ν aus $M(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $M(\Omega, \mathcal{A}, \mathbb{C})$ regulär, wenn unser lokal-kompakter Raum (Ω, \mathcal{T}) eine abzählbare Basis hat, so wie etwa $(\mathbb{R}^p, \mathcal{T}^p)$.

⁵Ist Ω kompakt, so gilt $C(\Omega) = C_b(\Omega) = C_0(\Omega)$.

18.4.4 Lemma. Sei (Ω, \mathcal{T}) ein lokalkompakter Hausdorff-Raum und $\mathcal{A} := \mathcal{A}(\mathcal{T})$.

Ist $\mu : \mathcal{A} \to [0, +\infty]$ ein Borelmaß derart, dass alle $A \in \mathcal{A}$ mit $\mu(A) < +\infty$ von innen regulär sind, so gilt $g \cdot \mu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $g \cdot \mu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ für alle $g \in L^1(\Omega, \mathcal{A}, \mu, \mathbb{R})$ bzw. $g \in L^1(\Omega, \mathcal{A}, \mu, \mathbb{C})$.

Für $\mu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ und $g \in L^1(\Omega, \mathcal{A}, |\mu|, \mathbb{C})$ gilt ebenfalls $g \cdot \mu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$, wobei $g \cdot \mu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$, wenn $\mu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ und $g \in L^1(\Omega, \mathcal{A}, |\mu|, \mathbb{R})$.

Beweis. Nach Lemma 18.3.13 gilt für μ und g wie in der ersten Voraussetzung $|g \cdot \mu| = |g| \cdot \mu$, womit die Behauptung aus Korollar 14.12.9 folgt.

Für $\mu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ und $g \in L^1(\Omega, \mathcal{A}, |\mu|, \mathbb{C})$ sei f die Dichte von μ bezüglich $|\mu|$ wie in Korollar 18.3.14. Es folgt $g \cdot \mu = g \cdot f \cdot |\mu|$ und daher $|g \cdot \mu| = |g \cdot f| \cdot |\mu| = |g| \cdot |\mu|$; siehe Lemma 18.3.13. Die Behauptung folgt wieder aus Korollar 14.12.9, wobei im Falle $\mu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ die Funktion f $|\mu|$ -fast überall reelle Werte annimmt und somit auch $(g \cdot \mu)(A) = (g \cdot f \cdot |\mu|)(A) \in \mathbb{R}$ für $A \in \mathcal{A}$ falls auch $g \mid \mu|$ -fast überall reelle Werte annimmt.

18.4.5 Korollar. *Ist* (Ω, \mathcal{T}) *ein lokalkompakter Hausdorff-Raum und* $\mathcal{A} := \mathcal{A}(\mathcal{T})$ *, so bildet* $M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ *bzw.* $M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ *einen linearen Unterraum von* $M(\Omega, \mathcal{A}, \mathbb{R})$ *bzw.* $M(\Omega, \mathcal{A}, \mathbb{C})$.

Beweis. Seien $v_1, v_2 \in M(\Omega, \mathcal{A}, \mathbb{R})$, $\alpha, \beta \in \mathbb{R}$, bzw. $v_1, v_2 \in M(\Omega, \mathcal{A}, \mathbb{C})$, $\alpha, \beta \in \mathbb{C}$. Wie in Fakta 18.3.16, 5, gesehen gilt dann $\alpha v_1 + \beta v_2 = (\alpha h_1 + \beta h_2) \cdot (|v_1| + |v_2|)$, wobei h_1 und h_2 integrierbar bezüglich $|v_1| + |v_2|$ sind. Um die Regularität von $\alpha v_1 + \beta v_2$ nachzuweisen, reicht es nach Lemma 18.4.4 und Bemerkung 18.4.3 zu zeigen, dass alle offenen $O \subseteq \Omega$ bezüglich $|v_1| + |v_2|$ regulär sind. Dazu sei $\epsilon > 0$. Wegen der Regularität von O bezüglich $|v_1|$ und bezüglich $|v_2|$ gibt es kompakte $K_1, K_2 \subseteq O$ mit $|v_1|(O) < |v_1|(K_1) + \epsilon$ und $|v_2|(O) < |v_2|(K_2) + \epsilon$, womit

$$(|v_1| + |v_2|)(O) - (|v_1| + |v_2|)(K_1 \cup K_2) \le |v_1|(O \setminus K_1) + |v_2|(O \setminus K_2) < 2\epsilon$$
.

18.4.6 Proposition. Sei (Ω, \mathcal{T}) ein lokalkompakter Hausdorff-Raum und $\mathcal{A} := \mathcal{A}(\mathcal{T})$. Für $v \in M(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $v \in M(\Omega, \mathcal{A}, \mathbb{C})$ wird durch

$$\phi_{\nu}(g) := \int_{\Omega} g \, \mathrm{d}\nu \tag{18.15}$$

ein lineares Funktional auf $C_0(\Omega, \mathbb{R})$ bzw. $C_0(\Omega, \mathbb{C})$ definiert, wobei $||\phi_v|| \le ||v||$. Die durch $\Phi(v) = \phi_v$ definierte Abbildung $\Phi: M(\Omega, \mathcal{A}, \mathbb{R}) \to C_0(\Omega, \mathbb{R})'$ bzw. $\Phi: M(\Omega, \mathcal{A}, \mathbb{C}) \to C_0(\Omega, \mathbb{C})'$ ist linear mit Abbildungsnorm $||\Phi|| \le 1$.

Im Falle $v \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $v \in M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ gilt sogar $||\phi_v|| = ||v||$.

Beweis. Da jedes $g \in C_0(\Omega, \mathbb{C})$ messbar bezüglich \mathcal{A} und beschränkt und somit integrierbar bezüglich $|\nu|$ ist, wird für $\nu \in M(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $\nu \in M(\Omega, \mathcal{A}, \mathbb{C})$ durch (18.15) jedem $g \in C_0(\Omega, \mathbb{R})$ bzw. $g \in C_0(\Omega, \mathbb{C})$ eindeutig eine reelle bzw. komplexe Zahl zugeordnet. Gemäß der Definition 18.3.15 von Integralen nach komplexen Maßen gilt

$$|\phi_{\nu}(g)| \le \int_{\Omega} |g \cdot f| \, \mathrm{d}|\nu| \le ||g \cdot f||_{\infty} |\nu|(\Omega) = ||g||_{\infty} ||\nu||,$$
 (18.16)

wobei f wie in Korollar 18.3.14 ist und daher |f|=1 $|\nu|$ -fast überall erfüllt. Da ϕ_{ν} offenbar linear ist, zeigt (18.16), dass $\phi_{\nu} \in C_0(\Omega, \mathbb{R})'$ bzw. $\phi_{\nu} \in C_0(\Omega, \mathbb{C})'$ mit $||\phi_{\nu}|| \le ||\nu||$. Wie in Fakta 18.3.16 festgestellt, sind Integrale nach komplexen Maßen auch linear im Maß. Also ist Φ linear und wegen (18.16) beschränkt mit $||\Phi|| \le 1$.

Für $v \in M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ schreiben wir die Dichte f von v bezüglich |v| in der Form

$$f(x) = \exp(-i\phi(x))$$

mit einer bezüglich \mathcal{A} messbaren Funktion $\phi:\Omega\to[0,2\pi)$; vgl. Korollar 18.3.14 und Fakta 14.15.2. Wegen der verlangten Regularität finden wir gemäß Korollar 16.6.8 zu gegebenem $\epsilon>0$ eine Funktion $h\in C_{00}(\Omega,\mathbb{R})$ mit $||\phi-h||_1<\epsilon$, wobei $||.||_1$ bezüglich $|\nu|$ gebildet wird. Offenbar ist $\exp(ih)$ eine beschränkte und stetige Funktion auf Ω mit Werten in \mathbb{T} , wobei

$$\|\bar{f} - \exp(ih)\|_1 = \|\exp(i\phi) - \exp(ih)\|_1 \le \|\phi - h\|_1 < \epsilon.$$

Diese Ungleichung folgt unmittelbar aus $|e^{ix}-e^{iy}|=|\int_x^y e^{it}\,\mathrm{d}t|\leq |x-y|$. Bemühen wir nochmals die Regularität, so finden wir eine kompakte Teilmenge $K\subseteq\Omega$ mit $|\nu|(\Omega)<|\nu|(K)+\epsilon$. Nach Lemma 12.17.8 gibt es ein $g\in C_{00}(\Omega,\mathbb{R})$ mit $\mathbb{1}_K\leq g\leq 1$. Die Funktion $g\cdot\exp(\mathrm{i}h)$ liegt dann in $C_{00}(\Omega,\mathbb{C})$ mit $\|g\exp(\mathrm{i}h)\|_{\infty}\leq 1$ und

$$\left| \phi_{\nu}(g \exp(\mathrm{i}h)) - \|\nu\| \right| \leq \int |g \exp(\mathrm{i}h)f - 1| \, \mathrm{d}|\nu|$$

$$\leq \int |g \exp(\mathrm{i}h)f - \exp(\mathrm{i}h)f| \, \mathrm{d}|\nu| + \int |\exp(\mathrm{i}h)f - 1| \, \mathrm{d}|\nu|$$

$$= \int |g - 1| \, \mathrm{d}|\nu| + \int |\exp(\mathrm{i}h) - \bar{f}| \, \mathrm{d}|\nu|$$

$$\leq |\nu|(\Omega \setminus K) + \|\bar{f} - \exp(\mathrm{i}h)\|_{1} < 2\epsilon.$$

$$(18.17)$$

Also kommt $\|\phi_{\nu}\| = \sup\{|\phi_{\nu}(h)| : h \in C_0(\Omega, \mathbb{C}), \|h\|_{\infty} \le 1\}$ $(\le \|\nu\|)$ der Zahl $\|\nu\|$ beliebig nahe und muss somit mit ihr übereinstimmen.

Jedes $v \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ liegt auch in $M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$, womit wir die gerade angestellten Überlegungen wiederholen können. Aus (18.17) folgt dann

$$\left|\phi_{\nu}(\operatorname{Re}(g\exp(\mathrm{i}h))) - \|\nu\|\right| = \left|\operatorname{Re}\left(\phi_{\nu}(g\exp(\mathrm{i}h)) - \|\nu\|\right)\right| \le \left|\phi_{\nu}(g\exp(\mathrm{i}h)) - \|\nu\|\right| < 2\epsilon.$$

Somit kommt auch $\|\phi_{\nu}\| = \sup\{|\phi_{\nu}(h)| : h \in C_0(\Omega, \mathbb{R}), \|h\|_{\infty} \le 1\}$ ($\le \|\nu\|$) der Zahl $\|\nu\|$ beliebig nahe.

18.4.7 Satz (Satz von Riesz-Markov). Ist (Ω, \mathcal{T}) ein lokalkompakter Hausdorff-Raum und $\mathcal{A} := \mathcal{A}(\mathcal{T})$, so bilden $M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ versehen mit der Totalvariation Banachräume. Außerdem ist die durch $\Phi(v) = \phi_v$ mit ϕ_v wie in (18.15) definierte Funktion eine lineare, bijektive und isometrische Abbildung von $M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ auf $C_0(\Omega, \mathbb{R})'$ bzw. von $M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ auf $C_0(\Omega, \mathbb{C})'$.

Beweis. Für $\phi \in C_0(\Omega, \mathbb{R})'$ mit $\phi(g) \geq 0$ für alle $g \in C_0(\Omega, \mathbb{R})$, $g \geq 0$, erfüllt $\phi|_{C_{00}(\Omega, \mathbb{R})}$ die Voraussetzungen von Satz 14.10.7. Also gilt $\phi(g) = \int g \, \mathrm{d} \nu$ für alle $g \in C_{00}(\Omega, \mathbb{R})$ mit einem Rieszregulären Borelmaß $\nu : \mathcal{A}(\mathcal{T}) \to [0, +\infty]$. Ist $K \subseteq \Omega$ kompakt, so gibt es nach Lemma 12.17.8 ein $h \in C_{00}(\Omega, \mathbb{R})$ mit $\mathbb{1}_K \leq h \leq 1$ und daher

$$\nu(K) \le \int h \, \mathrm{d}\nu = \phi(h) \le ||\phi|| \cdot ||h||_{\infty} \le ||\phi||.$$

Da Ω bezüglich ν von innen regulär ist, folgt $\nu(\Omega) \leq ||\phi|| < +\infty$, womit $\nu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$; vgl. Bemerkung 18.4.3. Wegen der Dichtheit von $C_{00}(\Omega, \mathbb{R})$ in $C_{0}(\Omega, \mathbb{R})$ und der Stetigkeit von ϕ und ϕ_{ν} erhalten wir $\phi = \phi_{\nu}$.

Ist $\phi \in C_0(\Omega, \mathbb{R})'$ beliebig, so können wir Lemma 18.2.3 anwenden und erhalten $\phi = \phi^+ - \phi^-$ mit $\phi^+, \phi^- \in C_0(\Omega, \mathbb{R})'$ derart, dass $\phi^{\pm}(g) \geq 0$ für alle $g \in C_0(\Omega, \mathbb{R})$, $g \geq 0$, wodurch nach dem eben Gezeigten $\phi^{\pm} = \phi_{\nu^{\pm}}$ mit $\nu^{\pm} \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$. Wegen Korollar 18.4.5 schließen wir auf $\nu := \nu^+ - \nu^- \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$, wobei $\phi = \phi^+ - \phi^- = \phi_{\nu^+} - \phi_{\nu^-} = \phi_{\nu}$.

Im Fall $\phi \in C_0(\Omega, \mathbb{C})'$ betrachten wir die durch $(\text{Re }\phi)(g) := \text{Re}(\phi(g))$ und $(\text{Im }\phi)(g) := \text{Im}(\phi(g))$ für $g \in C_0(\Omega, \mathbb{R})$ definierten Funktionale aus $C_0(\Omega, \mathbb{R})'$. Nach dem schon Gezeigten gilt $\text{Re }\phi = \phi_{\nu^r}$ und $\text{Im }\phi = \phi_{\nu^i}$ mit $\nu^r, \nu^i \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$. Aus Korollar 18.4.5 folgt $\nu := \nu^r + i\nu^i \in M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$, wobei $\phi(g) = \text{Re }\phi(g) + i \text{ Im }\phi(g) = \phi_{\nu}(g)$ für alle $g \in C_0(\Omega, \mathbb{R})$. Wegen $\phi, \phi_{\nu} \in C_0(\Omega, \mathbb{C})'$ folgern wir $\phi = \phi_{\nu}$ aus der Tatsache, dass die \mathbb{C} -lineare Hülle von $C_0(\Omega, \mathbb{R})$ gerade $C_0(\Omega, \mathbb{C})$ ist.

Gemeinsam mit Proposition 18.4.6 haben wir somit nachgewiesen, dass Φ den linearen Raum $M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ linear, isometrisch und surjektiv, und infolge auch bijektiv, auf $C_0(\Omega, \mathbb{R})'$ bzw. $C_0(\Omega, \mathbb{C})'$ abbildet.

18.4.8 Bemerkung. Ist $v \in M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ und gilt $\phi_v(g) \in \mathbb{R}$ für alle $g \in C_0(\Omega, \mathbb{R})$, so folgt für das nach Korollar 18.4.5 in $M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ liegende Maß Im v, dass $\phi_{\text{Im }v}(g) = \text{Im}(\phi_v(g)) = 0$ für alle $g \in C_0(\Omega, \mathbb{R})$, was Im v = 0 und daher $v \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ nach sich zieht; siehe Satz 18.4.7. Offenbar gilt umgekehrt auch, dass $\phi_v(g) \in \mathbb{R}$ für alle $g \in C_0(\Omega, \mathbb{R})$, wenn $v \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$. Gilt für $v \in M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$, dass $\phi_v(g) \geq 0$ für alle $g \in C_0(\Omega, \mathbb{R})$ mit $g \geq 0$, so folgt zunächst $\phi_v(g) = \phi_v(g^+) - \phi_v(g^-) \in \mathbb{R}$ für $g \in C_0(\Omega, \mathbb{R})$, wobei $g^+ := \max(g, 0)$ und $g^- := -\min(g, 0)$ beide in $C_0(\Omega, \mathbb{R})$ liegen und nichtnegative Werte annehmen. Nach obigen Überlegungen gilt daher $v \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$. Im ersten Beweisteil von Satz 18.4.7 haben wir gezeigt, dass $\phi_v = \phi_\mu$ für ein $\mu \in M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ mit Werten in $[0, +\infty)$. Da Φ injektiv auf $M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ agiert, erhalten wir $v = \mu \geq 0$. Umgekehrt folgt aus $v \geq 0$ offenbar $\phi_v(g) \geq 0$ für alle $g \in C_0(\Omega, \mathbb{R})$ mit $g \geq 0$.

18.4.9 Beispiel. Wir betrachten die Fourierkoeffizienten eines komplexen Borelmaßes auf \mathbb{T} , wobei wir \mathbb{T} mit der auf \mathbb{T} von der Euklidischen Topologie \mathcal{T}^2 auf $\mathbb{C} \cong \mathbb{R}^2$ induzierten Spurtopologie $(\mathcal{T}^2)_{\mathbb{T}}$ versehen und $\mathcal{H} := \mathcal{H}((\mathcal{T}^2)_{\mathbb{T}}) = \mathcal{H}(\mathcal{T}^2)_{\mathbb{T}}$ setzen; siehe Fakta 14.10.2, 4. In Bemerkung 18.4.3 haben wir festgestellt, dass $M(\mathbb{T}, \mathcal{H}, \mathbb{C}) = M_{reg}(\mathbb{T}, \mathcal{H}, \mathbb{C})$, da $(\mathbb{T}, (\mathcal{T}^2)_{\mathbb{T}})$ ein kompakter Hausdorff-Raum mit abzählbarer Basis ist. Für $v \in M(\mathbb{T}, \mathcal{H}, \mathbb{C})$ bezeichnet man $\hat{v} : \mathbb{Z} \to \mathbb{C}$, definiert durch

$$\hat{v}(n) := \int_{\mathbb{T}} \zeta^{-n} \, \mathrm{d}v(\zeta), \quad n \in \mathbb{Z},$$

als *Fourierkoeffizienten* von ν . Wegen $|\hat{\nu}(n)| \leq ||\nu||$ liegt $\hat{\nu}$ im Banachraum $\ell^{\infty}(\mathbb{Z}, \mathbb{C})$ aller beschränkten komplexen Doppelfolgen. Somit ist die offenbar lineare Abbildung $\hat{}: M(\mathbb{T}, \mathcal{A}, \mathbb{C}) \to \ell^{\infty}(\mathbb{Z}, \mathbb{C})$ beschränkt mit Abbildungsnorm kleiner oder gleich 1.

Eine wichtige Eigenschaft ist schließlich, dass $\hat{}$ sogar injektiv ist. Um das einzusehen nehmen wir an, dass $\hat{v}(n) = 0$ für alle $n \in \mathbb{Z}$. Aus der Linearität des Integrals folgt

$$\phi_{\nu}(p) = \int_{\mathbb{T}} p(\zeta) \, \mathrm{d}\nu(\zeta) = 0$$

für alle trigonometrische Polynome p, also $p(\zeta) = \sum_{n=-N}^{N} \alpha_n \zeta^n \text{ mit } a_{-N}, \ldots, a_N \in \mathbb{C}$. Der Vektorraum aller trigonometrischen Polynome ist nach dem Satz von Stone-Weierstraß dicht in $C(\mathbb{T}, \mathbb{C})$ bezüglich $\|.\|_{\infty}$; siehe Beispiel 12.18.10. Wegen $\phi_{\nu} \in C(\mathbb{T}, \mathbb{C})'$ erhalten wir $\phi_{\nu} = 0$ und somit $\nu = 0$; siehe Satz 18.4.7.

18.4.10 Bemerkung. Die Fourierkoeffizienten aus Beispiel 18.4.9 stehen folgendermaßen in Zusammenhang mit den in (17.10) definierten Fourierkoeffizienten.

Mit der Notation aus Beispiel 18.4.9 ist die Abbildung $T: (-\pi, \pi] \to \mathbb{T}$ definiert durch $T(s) = \exp(is)$ stetig und infolge $\mathcal{A}((\mathcal{T}^1)_{(-\pi,\pi]})$ - \mathcal{A} -messbar. Nach Satz 14.7.5 bildet $\mu := (\frac{1}{2\pi}\lambda|_{\mathcal{A}(\mathcal{T}^1)_{(-\pi,\pi]}}) \circ T^{-1}$ ein offenbar endliches Maß auf \mathbb{T} ; vgl. Übungsaufgaben 16.12 und 16.13. Für $f \in L^2(\mathbb{T},\mathcal{A},\mu,\mathbb{C})$ liegt $f \circ T$ nach Satz 14.7.5 in $L^2((-\pi,\pi],\mathcal{A}(\mathcal{T}^1)_{(-\pi,\pi]},\frac{1}{2\pi}\lambda|_{\mathcal{A}(\mathcal{T}^1)_{(-\pi,\pi)}},\mathbb{C})$. Weil μ endlich ist, gilt andererseits $f \in L^1(\mathbb{T},\mathcal{A},\mu,\mathbb{C})$, womit $\nu := f \cdot \mu \in M(\mathbb{T},\mathcal{A},\mathbb{C})$. Mit Hilfe vom Satz 14.7.5 unter Beachtung von Fakta 14.15.2 rechnet man leicht nach, dass $(\hat{\nu}(n))_{\in \mathbb{Z}}$ genau die Fourierkoeffizienten von $f \circ T$ aus (17.10) sind.

18.5 Übungsaufgaben

- 18.1 Zeigen Sie, dass das Element $y \in H$ in Satz 18.1.1 mit der Eigenschaft $\phi(x) = (x, y)$ für alle $x \in H$ eindeutig ist.
- 18.2 Zeigen Sie, dass die Abbildung $y \mapsto (x \mapsto (x, y))$ eine konjugiert lineare Bijektion von H auf $L_b(H, \mathbb{C})$ abgibt, wobei zusätzlich ||y|| mit der Abbildungsnorm von $(x \mapsto (x, y))$ übereinstimmt.
- 18.3 Mit der Notation aus Übungsaufgabe 16.11 zeige man, dass für $p \in [1, +\infty), q \in (1, +\infty]$ mit $\frac{1}{p} + \frac{1}{q} = 1$, wobei im Fall p = 1 das Maß als σ -endlich vorauszusetzen ist, der Dualraum $L^p(\Omega, \mathcal{A}, \mu, \mathbb{R}^d)$ isometrisch isomorph zu $L^q(\Omega, \mathcal{A}, \mu, \mathbb{R}^d)$ ist.
- 18.4 Formulieren und beweisen Sie das Analogon zu Satz 18.1.6 für den Fall, dass μ ein σ endliches Maß und ν ein komplexes Maß auf dem Messraum (Ω, \mathcal{A}) ist.
- 18.5 Man zeige zunächst, dass durch

$$\nu(A) := \int_{A} (\ln x) \exp(i\frac{1}{x}) \, d\lambda(x)$$

ein komplexes Maß auf $((0,1),\mathcal{A}(\mathcal{T}^1)_{(0,1)})$ definiert ist. Weiters sei

$$\mu(A) := \int_A x^2 \max(\cos(\frac{1}{x}), 0) \, \mathrm{d}\lambda(x) \,.$$

Man bestimme $|\nu|$, Re ν , Im ν , eine Hahnsche Zerlegung von Re ν und eine von Im ν . Schließlich gebe man die Lebesgue-Zerlegungen von (Re ν)₊, (Re ν)₋, (Im ν)₊, (Im ν)₋ wie in Satz 18.1.6 formuliert an!

Hinweis: Um $|v(A)| < +\infty$ zu zeigen, substituiere man $x = y^{-1}$.

18.6 Sei $v \in M(\mathbb{R}^2, \mathcal{A}(\mathcal{T}^2), \mathbb{C})$ definiert durch

$$\nu(A) = \int_{A \cap \mathbb{D}} (x + iy)^2 d\lambda_2 \begin{pmatrix} x \\ y \end{pmatrix} + \int_{\{t \in [0, 2\pi): e^{it} \in A\}} e^{2it} d\lambda(t).$$

Dabei ist
$$\mathbb{D} = \{ \binom{x}{y} : x^2 + y^2 < 1 \}.$$

Man bestimme die Lebesgue-Zerlegung $v_a + v_s$ von v bezüglich $\mu = \lambda_2$ gemäß Übungsaufgabe 18.4. Weiters bestimme man $|v_a|$ und $|v_s|$.

18.7 Mit der Notation aus Lemma 15.10.4 sei $f: S^{p-1} \to \mathbb{C}$ beschränkt und messbar bezüglich $\mathcal{A}((\mathcal{T}^p)_{S^{p-1}})$ und $v \in M(S^{p-1}, \mathcal{A}((\mathcal{T}^p)_{S^{p-1}}), \mathbb{C})$. Zeigen Sie, dass dann

$$h(x) := \int_{S^{p-1}} \wp(x, y) \cdot f(y) \, d\nu(y)$$

als Funktion von $x \in U_1(0) = \{z \in \mathbb{R}^p : ||z||_2 < 1\}$ harmonisch ist. Zeigen Sie auch, dass $\int_{S^{p-1}} |h(ry)| d\sigma \le ||v||$ für jedes $r \in [0,1)$, wobei σ das Oberflächenmaß μ auf S^{p-1} multipliziert mit dem Faktor $\frac{1}{\mu(S^{p-1})}$ ist.

18.8 Mit der Notation und den Voraussetzungen aus Übungsaufgabe 18.7 zeige man, dass die durch $H_f(x) = \int_{S^{p-1}} \wp(x,y) \cdot f(y) \, \mathrm{d}\sigma(y)$ für $||x||_2 < 1$ und $H_f(x) = f(x)$ für $||x||_2 = 1$ definierte Funktion $H_f: K_1(0) \to \mathbb{C}$ in einem Punkt $z \in S^{p-1}$ stetig ist, falls $f: S^{p-1} \to \mathbb{C}$ dort stetig ist.

Hinweis: Zeigen Sie zunächst $\int_{S^{p-1}} \wp(x,y) \, \mathrm{d}\sigma(y) = 1$ für alle $x \in U_1(0)$ und $\lim_{x \to z} \sup_{y \in S^{p-1} \setminus K_\delta(z)} \wp(x,y) = 0$ für $\delta > 0$. Um $H_f(x) \to f(z)$ für $U_1(0) \ni x \to z$ zu zeigen, schreibe man $H_f(x) - f(z)$ als $\int_{S^{p-1} \setminus K_\delta(z)} g \, \mathrm{d}\sigma + \int_{S^{p-1} \cap K_\delta(z)} g \, \mathrm{d}\sigma$ mit geeigneter Funktion g. Hier wähle man $\delta > 0$ derart, dass $|f(y) - f(z)| < \epsilon$ für $y \in S^{p-1} \cap K_\delta(z)$.

18.9 Mit der Notation aus Übungsaufgabe 18.7 und 18.8 zeige man, dass $v \mapsto h_v(.) = \int_{S^{p-1}} \wp(.,y) \, dv(y)$ eine lineare und injektive Funktion von $M(S^{p-1}, \mathcal{A}((\mathcal{T}^p)_{S^{p-1}}), \mathbb{C})$ in den Vektorraum aller auf $U_1(0)$ harmonischen Funktionen abgibt.

Hinweis: Für $h_v \equiv 0$ zeige man $\int_{S^{p-1}} H_f(ry) dv(y) = 0$ mit Hilfe des Satzes von Fubini und lasse dann r von unten gegen 1 streben, wobei $f \in C(S^{p-1}, \mathbb{C})$ beliebig ist.

- 18.10 Sei $\mu = (\frac{1}{2\pi}\lambda|_{\mathcal{A}(\mathcal{T}^1)_{(-\pi,\pi]}}) \circ T^{-1}$ mit $T: (-\pi,\pi] \to \mathbb{T}$ definiert durch $T(s) = \exp(is)$ und $f \in L^2(\mathbb{T},\mathcal{A},\mu,\mathbb{C})$. Man zeige, dass für $\nu := f \cdot \mu$ die Doppelfolge $(\hat{\nu}(n))_{\in \mathbb{Z}}$ mit den Fourierkoeffizienten von $f \circ T$ aus (17.10) übereinstimmt; siehe Bemerkung 18.4.10.
- 18.11 Sei $\mu = (\frac{1}{2\pi}\lambda|_{\mathcal{A}(\mathcal{T}^1)_{(-\pi,\pi]}}) \circ T^{-1}$ mit $T: (-\pi,\pi] \to \mathbb{T}$ definiert durch $T(s) = \exp(is)$ und $f \in L^1(\mathbb{T},\mathcal{A},\mu,\mathbb{C})$. Man zeige, dass für $\nu := f \cdot \mu$ die Doppelfolge $(\hat{\nu}(n))_{\in \mathbb{Z}}$ in $c_0(\mathbb{Z},\mathbb{C})$ liegt, also $\lim_{|n| \to \infty} \hat{\nu}(n) = 0$ gilt.

Hinweis: Versuchen Sie die Ideen aus dem Beweis von Satz 17.1.2 zu verwenden.

- 18.12 Zeigen Sie direkt, also ohne Zuhilfenahme von Satz 18.4.7, dass $M_{reg}(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $M_{reg}(\Omega, \mathcal{A}, \mathbb{C})$ einen abgeschlossenen linearen Unterraum von $M(\Omega, \mathcal{A}, \mathbb{R})$ bzw. $M(\Omega, \mathcal{A}, \mathbb{C})$ abgibt.
- 18.13 Zeigen Sie, dass für $v \in M(\mathbb{R}, \mathcal{A}(\mathcal{T}^1), \mathbb{C})$ die Abbildung $\hat{v} : \mathbb{R} \to \mathbb{C}$ mit

$$\hat{v}(\zeta) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp(-i\xi\zeta) \, d\nu(\xi)$$

wohldefiniert und stetig ist. Zeigen Sie auch, dass $\|\hat{\nu}\|_{\infty} \leq \frac{1}{\sqrt{2\pi}} \|\nu\|$. Schließlich weise man die Linearität, Beschränktheit und Injektivität der Abbildung ^: $M(\mathbb{R}, \mathcal{A}(\mathcal{T}^1), \mathbb{C}) \to C_b(\mathbb{R})$ nach. Hinweis: Für die Injektivität betrachte man $\int \hat{f} \, d\nu$ für alle $f \in L^1(\mathbb{R}, \mathcal{A}(\mathcal{T}^1), \lambda, \mathbb{C})$.