Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. There exist a lot of different approaches for each of those tasks. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Code-breaking algorithms have also existed for centuries. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Integrated development environments (IDEs) aim to integrate all such help. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Programs were mostly entered using punched cards or paper tape. Unreadable code often leads to bugs, inefficiencies, and duplicated code. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks.