

Sumário

- 1. Funções
- 2. Funções Polinomiais
- 3. Equações Lineares

Funções

Definição

Sejam A e B conjuntos de números reais (A, B $\subset \mathbb{R}$). Uma relação f de A em B recebe o nome de **função definida em** A **com imagens em** B se, e somente se, para todo $x \in A$ existe um só $y \in B$ tal que $(x, y) \in f$.

Notação das Funções

- ► Toda função é uma relação binária de *A* em *B*; portanto, toda função é um conjunto de pares ordenados.
- ► Em geral, existe uma sentença aberta y = f(x) que expressa a lei mediante a qual, dado $x \in A$, determina-se $y \in B$ tal que $(x, y) \in f$.
- lsso significa que, dados os conjuntos A e B, a função f tem a lei de correspondência y = f(x).

Notação das Funções

Nas notações da definição 1, $f: A \rightarrow B$:

- 1. O conjunto *A* é chamado de **domínio** da função *f*. O conjunto *B* é chamado **contra-domínio** de *f*.
- 2. Se $x \in A$, o elemento $y = f(a) \in B$ é chamado **imagem de** x pela função f.
- 3. Nenhum elemento de A pode ficar sem imagem e cada $x \in A$ só pode ter uma única imagem.

Valor Numérico de uma Função

Dada uma função definida por y = f(x) em seu domínio A e seja $a \in A$. f(a) representa o valor numérico da função quando se substitui a variável x pelo valor a.

- ► Se $f(x) = \frac{1}{2}x \frac{1}{5}$, então:
 - $f(0) = \frac{1}{2} \cdot 0 \frac{1}{5} = -\frac{1}{5};$
 - $f(2/3) = \frac{1}{2} \cdot \frac{2}{3} \frac{1}{5} = \frac{1}{3} \frac{1}{5} = \frac{5-3}{15} = \frac{2}{15}.$

Valor Numérico de uma Função

Dada uma função definida por y = f(x) em seu domínio A e seja $a \in A$. f(a) representa o valor numérico da função quando se substitui a variável x pelo valor a.

- ► Se $f(x) = \frac{1}{2}x \frac{1}{5}$, então:
 - $f(0) = \frac{1}{2} \cdot 0 \frac{1}{5} = -\frac{1}{5};$
 - $f(2/3) = \frac{1}{2} \cdot \frac{2}{3} \frac{1}{5} = \frac{1}{3} \frac{1}{5} = \frac{5-3}{15} = \frac{2}{15}.$
- ► Se $g(x) = 2 \frac{1}{x-2}$, então:
 - $g(1) = 2 \frac{1}{1-2} = 2 (-1) = 3;$
 - $g(-3) = 2 \frac{1}{-3-2} = 2 \left(-\frac{1}{5}\right) = \frac{10+1}{5} = \frac{11}{5}.$
 - Posso calcular g(2)? Ou seja, 2 está no domínio de g?

Conjunto Imagem

Para uma função $f:A\to B$, o conjunto de todos os elementos do contra-domínio B que corresponde a alguma elemento do domínio A é um subconjunto de B chamado de **imagem** da função f, e é denotado por $Im\ f$. Escrevemos

$$Im f = \{ y \in B | y = f(x), \text{ para algum } x \in A \}$$

Funções Polinomiais

Definição

Função polinomial é a função $f: \mathbb{R} \to \mathbb{R}$, definida por:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

onde $a_n \neq 0, a_0, a_1, ..., a_n$ são números reais denominados coeficientes e n é um número inteiro não negativo que determina o grau da função. Temos como exemplos:

Definição

- A função constante f(x) = k, para algum $k \in \mathbb{R}$. É dita uma função polinomial de grau 0.
- A função f(x) = ax + b, com $a \neq 0$, é uma função polinomial de grau 1. É chamada função afim.
- A função $f(x) = ax^2 + bx + c$, com $a \neq 0$, é uma função polinomial de grau 2. É chamada **função quadrática**.
- A função $f(x) = ax^3 + bx^2 + cx + d$, com $a \neq 0$, é uma função polinomial de grau 3. É chamada **função cúbica**.

A função afim

Uma função de \mathbb{R} em \mathbb{R} recebe o nome de função afim quando a cada $x \in \mathbb{R}$ associa ao elemento $ax + b \in \mathbb{R}$, em que $a \neq 0$ e b são números reais dados.

Definição

$$\Delta y = f(x_2) - f(x_1) = (ax_2 + b) - (ax_1 + b)$$

$$= ax_2 + b - ax_1 - b$$

$$= (ax_2 - ax_1) + (b - b)$$

$$= a(x_2 - x_1) = a\Delta x$$

Assim, sempre que $x_1 \neq x_2$ (ou seja, $x_2 - x_1 \neq 0$), temos

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = a \quad \text{(variação média constante)}$$

Exemplo

São exemplos de função afim:

- a) f(x) = 3x + 2
 - a = 3 e b = 2;
- b) $f(x) = -\sqrt{2}x + 1$
 - $a = -\sqrt{2} e b = 1$;

Exemplo

c)
$$f(x) = \pi x$$

- $a = \pi e b = 0$;

Caso Particular

No caso em que b=0, a função f(x)=ax é denominada **função linear**.

O Gráfico de uma Função

Definição 3

Dada uma função $f: A \to B$, o conjunto de todos os pares ordenados da forma $(x, f(x)) \in A \times B$ é chamado **gráfico** da função f:

$$gr(f) = \{(x, f(x)) | x \in A \text{ e } f(x) \in B\}.$$

Como trabalharemos com $A \subset \mathbb{R}$ e $B = \mathbb{R}$, então podemos representar o gráfico da função f, geometricamente, como um subconjunto do plano cartesiano: $gr(f) \subset \mathbb{R} \times \mathbb{R}$.

O Gráfico de uma Função Afim

Teorema 1

O gráfico cartesiano da função f(x) = ax + b é uma reta.

Demonstração: Teorema 1

- Mostra-se que quaisquer 3 pontos do gráfico estão alinhados.
- Para tanto, usa-se semelhança de triângulos, demonstrada através da proporcionalidade entre as variações Δy e Δx.

Crescimento de Funções

Uma função $f: A \subseteq \mathbb{R} \to \mathbb{R}$ é chamada **crescente** se o valor de f(x) cresce quando x cresce; ou seja, se para $x, x' \in A$, tivermos

$$x < x' \Rightarrow f(x) < f(x')$$
.

Uma função $f: A \subseteq \mathbb{R} \to \mathbb{R}$ é chamada **decrescente** se o valor de f(x) decresce quando x cresce; ou seja, se para $x, x' \in A$, tivermos

$$x < x' \Rightarrow f(x) > f(x').$$

Coeficiente Linear

Como $f(0) = a \cdot 0 + b = b$, o coeficiente b é igual à ordenada do ponto (0, f(0)), onde o gráfico de f intersecta o eixo g. Por essa razão, chamamos g de **coeficiente linear** do gráfico de g.

4

Consideremos, agora, sobre o gr(f), os pontos

$$A = (0, f(0))$$
 e $B = (1, f(1))$.

O ângulo que o gráfico de *f* forma com uma reta horizontal (paralela ao eixo x) é ângulo interno do triângulo retângulo *ABC*, como veremos na figura ao lado.

A tangente desse ângulo é, por definição,

$$tg \, \theta = \frac{\overline{BC}}{\overline{AC}} = \frac{f(1) - f(0)}{1 - 0} = f(1) - f(0) = a + b - b = a.$$

Dessa forma, o coeficiente a é igual à tangente do ângulo que a reta gr(f) forma com a horizontal. Por isso chamamos a de **coeficiente angular** do gráfico de f.

No caso **Afim**, a tangente é dada pela **variação média** de f no intervalo [0, 1], ou em qualquer intervalo [c, d]:

$$tg \theta = \frac{\overline{BC}}{\overline{AC}} = \frac{f(d) - f(c)}{d - c}$$

$$= \frac{ad + b - (ac + b)}{d - c}$$

$$= \frac{ad - ac + b - b}{d - c}$$

$$= \frac{a * (d - c)}{1 * (d - c)}$$

$$= \frac{a}{1} * \left(\frac{d - c}{d - c}\right)$$

$$= a.$$

- Se a>0, então $\theta\in\left(0,\frac{\pi}{2}\right)$ e a inclinação é positiva. Neste caso, a variação média é positiva e a função é crescente.
- Se a < 0, então $\theta \in \left(-\frac{\pi}{2}, 0\right)$ e a inclinação é negativa. Neste caso, a **variação média** é **negativa** e a função é **decrescente**.
- Puando a = 0, a reta gr(f) é paralela ao eixo x. Neste caso, a variação média é nula e a função é constante.

Restrição de Domínio

- No caso em que o domínio de uma função afim é um subconjunto $A \subset \mathbb{R}$, o gráfico de f é um subconjunto da reta que é o gráfico de f, com o domínio estendido a todos os reais.
- lsto é, os pontos do gráfico de $f:A\subseteq\mathbb{R}\to\mathbb{R}$, dada por f(x)=ax+b, estão sobre a reta que representa o gráfico de $F:\mathbb{R}\to\mathbb{R}$, dada pela mesma expressão.

Exemplo

Exemplo 2

O gráfico da função $f:[1,2] \to \mathbb{R}$, dada por f(x)=3x-1 é o segmento de reta que liga os pontos (1,f(1))=(1,2) a (2,f(2))=(2,5).

▶ Isto ocorre pois uma reta (ou um segmento de reta) está completamente determinada por dois de seus pontos (Postulado de Geometria Plana).

Exemplo

Este segmento de reta está contido na reta r = gr(F), onde $F : \mathbb{R} \to \mathbb{R}$, dada por F(x) = 3x - 1, estende o domínio da função f a todos os números reais.

Equações Lineares

Os Zeros da Função Afim

Definição 5

O zero de uma função é todo elemento do domínio cuja imagem é nula:

$$x \in D_f$$
 tal que $f(x) = 0$.

Assim, para determinarmos o zero da função afim, basta resolver a equação de 1 $^\circ$ grau:

$$ax + b = 0, \quad a \neq 0.$$

Resolver uma Equação

- O processo de resolver uma equação consiste em transformá-la em uma equação equivalente cuja solução é óbvia. Operações de transformação de uma equação em uma equação equivalente incluem:
 - 1. Adicionar o mesmo número a ambos os lados. Assim, as equações a=b e a+c=b+c são equivalentes.
 - 2. Multiplicar o mesmo número não nulo de ambos os lados. Logo, as equações a = b e ac = bc, $c \neq 0$, são equivalentes.
 - 3. **Simplificar** expressões em um dos lados de uma equação.

O Zero da Função Afim

Resolvendo a equação de 1º grau:

$$ax + b = 0 \Rightarrow ax + b - b = 0 - b$$

$$\Rightarrow ax = -b$$

$$\Rightarrow \frac{1}{a} * ax = \frac{1}{a} * \frac{(-b)}{1}$$

$$\Rightarrow x = -\frac{b}{a}.$$

O Zero da Função Afim

Exemplo 3

O zero da função
$$f(x) = 3x - 1$$
 é $x = \frac{1}{3}$:

$$3x - 1 = 0 \Rightarrow 3x - 1 - (-1) = 0 - (-1)$$

$$\Rightarrow 3x = 1$$

$$\Rightarrow \frac{1}{3} * 3x = \frac{1}{3} * \frac{1}{1}$$

$$\Rightarrow x = \frac{1}{3}.$$

Ou seja,
$$f\left(\frac{1}{3}\right) = 0$$
.

Exercício

Exercício 1

Encontre os zeros das funções afim a seguir:

- a) f(x) = 3x + 2;
- b) $g(x) = -\sqrt{2}x + 1$;
- c) $h(x) = \pi x$.

Exercício

Uma pequena empresa fabrica bonecas e semanalmente arca com um custo fixo de R\$350, 00. Se o custo para o material é de R\$4, 70 por boneca e seu custo total na semana é uma média de R\$500, 00, quantas bonecas essa pequena empresa produz por semana?

Exercício

Um pequeno avião a jato gasta sete horas a menos do que um avião a hélice para ir de São Paulo até Boa Vista. O avião a jato voa a uma velocidade média de 660 km/h, enquanto o avião a hélice voa em média a 275 km/h. Qual é a distância entre São Paulo e Boa Vista?