Исследование и модификация некоторых эвристических алгоритмов решения трехиндекскной аксиальной задачи

выполнил Н.С. Козловский.

научный руководитель к.ф.-м.н., доцент С. Н. Медведев.

ВГУ, факультет ПММ кафедра Вычислительной Математики и Прикладных Информационных Технологий

июль, 2018

Задача о назначениях часто встречается в реальном мире

B качестве A и J могут выступать

- Работники и работы
- Транспорт и маршруты
- многое другое

расширение задачи о назначениях

Естественное расширение задачи о наздачениях – переход к трехиндексной постановке.

Сложность

В 1971 Карп установил, что данная задача относится к классу \mathcal{NP} полных. Задача не может быть решена за полиномиальное время

Рис.: Ричард Мэннинг Карп(03.01.1935)

Приближенные алоритмы

Зачастую, достаточно получить решение с определенной точностью. Тогда возможно построение полиномиальных алгоритмов.

Они не идеальны.

Цель работы

- Исследовать
- Модифицировать

эвристический (приближенный) алгоритм решения 3-3OH, основанного на сведении задачи к двухиндексной с использованием перестановок.

Задачи

- Изучить математическую модель 3-АЗОН
- Изучить и проанализировать метод метод, сводящий задачу к двухиндексной
- Разработать модификации данного алгоритма
- Программно реализовать данный алгоритм и провести вычислительный эксперимент

Постановка 3-АЗОН

$$\min \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n c_{ijk} x_{ijk}$$
 ограничения $\sum_{i=1}^n \sum_{k=1}^n x_{ijk} = 1$ $(j=1,\ldots,n)$ $\sum_{j=1}^n \sum_{k=1}^n x_{ijk} = 1$ $(i=1,\ldots,n)$ $\sum_{i=1}^n \sum_{j=1}^n x_{ijk} = 1$ $(k=1,\ldots,n)$ $x_{ijk} \in \{0,1\}$ $(i,j,k=1,\ldots,n)$

 $c_{ijk} \in C$, где C – матрица весовых коэфициентов, $x_{ijk} \in X$, где X – матрица назначений

<ロ > < 回 > < 回 > < 巨 > く 巨 > 巨 り < (で

Постановка 3-АЗОН

3-АЗОН состоит в том, чтобы выбрать среди элементов трехмерной матрицы $C=c_{ijk}$ такие n элементов, что сумма в каждом выбраном сечении (для каждой фиксированной переменной i, или j, или k) минимальной.

Назначение

Введем понятие назначения. Мы можем представлять назначение как некое биективное отображение φ , которое ставит элементы конечного множества U в соотвествие элементам конечного множества V. В тоже время назначение является перестановкой, которая записывается в виде

$$\left(\begin{array}{cccc} 1 & 2 & \dots & \mathsf{n} \\ \varphi(1) & \varphi(2) & \dots & \varphi(n) \end{array}\right)$$

Назначение

Каждой перестановке множества $\{1,2,\ldots,n\}$ соответсвует единственная матрица перестановок $X_{\varphi}\in \mathrm{Matrix}_{n\times n}$

Исходный алгоритм

Достоинства

Пусть весовые коэфициенты $c_{ijk} \in C$ лежат в отрезке $[a_n, b_n]$, $a_n > 0$, M_n – множество всех возможных C. Тогда

Теорема

При $b_n/a_n = o(n/\ln n)$ алгоритм является ассимптотически оптимальным для 3-АЗН на классе матриц M_n и его временная сложность $O(n^2)$.

Теорема

При $b_n/a_n=o(\ln n)$ алгоритм является ассимптотически оптимальным для 3-АЗН на классе матриц M_n и его временная сложность $O(n \ln n)$.

Недостатки

- Зависит от начальной перестановки.
- Асимптотическая сходимость при $n \to \infty$ не имеет практического смысла.

Модификации

Алгоритм A запускается итеративно. После выполнения выбирается лучший прогон

Модификации

- 1. Запускаем алгоритм итеративно
- 2. Запоминаем перестановку после первого цикла
- 3. Выбираем случайным образом 2 элемента перестановки и меняем их местами 4. Если решение улучшилось, идем на 2, иначе на 1.

Вычислительный эксперимент