Total No. of Questions: 6

(c) Classes

Total No. of Printed Pages:2

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2022 CS3EA07 / IT3EA07 Machine Learning

Programme: B.Tech. Branch/Specialisation: CS/IT

Duration: 3 Hrs. Maximum Marks: 60

Note of Q.1

		stions are compulsor should be written in f				ers c
Q.1	i.	Which of the follow data point A(1,3) as		uclidean distar	nce between the two	1
		(a) 1		(c) 4	(d) 8	
	ii.	Generally, which o	f the followin	g method(s) is	used for predicting	1
		continuous depende	ent variable?			
		 Linear Regr 	ression			
		2. Logistic Re	gression			
		(a) 1 and 2		(b) Only	1	
		(c) Only 2		(d) None	of these	
	iii.	Regarding bias and	variance, wh	ich of the follo	wing statements are	1
		true? (here 'high' a	and 'low' are i	elative to the i	deal model.)	
		(a) Models which o	overfit have a	high bias.		
		(b) Models which of	overfit have a	low bias.		
		(c) Models which u		•		
		(d) Models which u		•	-	
	iv.	Which of the follow	_		ons of the SVM?	1
		(a) Text and hypert	_	ation		
		(b) Image classification				
		(c) Clustering of ne	ews articles			
		(d) All of these				_
	v.	In k-means clusteri				1
		(a) Cluster centroid	ls	(b) Featur	res	

(d) Outputs

P.T.O.

[2]

	vi.	PCA is a method for-		1
		(a) Dimension reduction	(b) Classification	
		(c) Clustering	(d) Recommendation system	
	vii.	A perceptron is-		1
		(a) A single layer feed-forward neur	al network with pre-processing	
		(b) An auto-associative neural netwo	ork	
		(c) A double layer auto-associative	neural network	
		(d) A neural network that contains f	eedback	
	viii.	What are the general tasks that are pe	erformed with backpropagation	1
		algorithm?		
		(a) Pattern mapping	(b) Function approximation	
		(c) Prediction	(d) All of these	
	ix.	Which of the following algorithm is	s not an example of ensemble	1
		learning algorithm?		
		(a) Random forest	(b) Adaboost	
		(c) Gradient boosting	(d) Decision trees	
	х.	In which of the following application	ons can we use deep learning to	1
		solve the problem?		
		(a) Protein structure prediction		
		(b) Prediction of chemical reactions		
		(c) Detection of exotic particles		
		(d) All of these		
0.2	i.	Differentiate classification and regre	ession.	2
	ii.	Explain any 3 applications of machi	ne learning.	3
	iii.	Derive expression for gradient desce	ent method.	5
R	iv.	Explain with example, how k-neares	st neighbour algorithm works.	5
) .3	i.	Define overfitting with example.		3
	ii.	Explain decision tree algorithm with	•	7
R	iii.	Explain how SVM classifier works	and explain kernel methods.	7
) .4	i.	Why dimension reduction is needed	?	3
_	ii.	How k-means clustering algorithm		7
		2 2	1	

[3]

OR	iii.	What is recommendation system? Explain method of collaborative filtering and matrix factorization.	7
Q.5	i. ii.	Write short note on tensor flow. Draw architecture of perceptron net and write down its learning algorithm.	4
OR	iii.	Explain how back propagation network works? Also draw its architecture.	•
Q.6	i. ii. iii.	Attempt any two: Explain random forest classifiers. Write short note on "deep learning and its application areas". Define semi-supervised and reinforcement.	

Marking Scheme CS3EA07 / IT3EA07 Machine Learning

Q.1	i.	Which of the following will be Euclidean Distance between the two data point A(1,3) and B(2,3)? A) 1	1
	ii.	Generally, which of the following method(s) is used for predicting continuous dependent variable? 1. Linear Regression 2. Logistic Regression B. only 1	1
	iii.	Regarding bias and variance, which of the following statements are true? (Here 'high' and 'low' are relative to the ideal model.) (b) Models which overfit have a low bias.	1
	iv.	Which of the following are real world applications of the SVM? D) All of the above	1
	v.	In k-means clustering, "k" stands for numbers of " a) Cluster centroids	1
	vi.	PCA is a method for A) Dimension Reduction	1
	vii.	A perceptron is: a) a single layer feed-forward neural network with pre-processing	1
	viii.	What are the general tasks that are performed with backpropagation algorithm? D) all of the mentioned	1
	ix.	Which of the following algorithm are not an example of ensemble learning algorithm? D) Decision Trees	1
	х.	In which of the following applications can we use deep learning to solve the problem? D) All of these	1
0.2		134 1 16 2 166	2
Q.2	i. ii.	1 Mark each for 2 differences. 1 Mark each for 3 applications.	3
	iii.	Complete derivation	5
OR	iv.	Working of knn	3
	1 4 .	Example	2
		Dample	
Q.3	i.	Definition	2

		Example	1
	ii.	Definition	2
		Calculation of Entropy,	2
		Information Gain,	2
		Tree	1
OR	iii.	Definition, explanation of working	2, 5
Q.4	i.	1 Mark each for 3 reasons	3
	ii.	Algorithm, example	4,3
OR	iii.	Recommendation system,	2.5
		Collaborative filtering and	2.5
		Matrix factorization.	2
Q.5	i.	Definition and working	2,2
	ii.	Architecture	2
		Algorithm	4
OR	iii.	Architecture	2
		Forward phase of Algorithm	2
		Backward phase of algorithm	2
Q.6		Attempt any two:	
	i.	Classifier	5
	ii.	Definition	3
		Application areas	2
	iii.	Semi Supervised Learning	2.5
		Reinforcement Learning	2.5
