Mathematics 1. Selected proofs Leipzig University, WiSe 2023/24, Dr. Tim Shilkin Derivative. Fermat's and Rolle's theorems

1. Statement of Fermat's theorem:

THEOREM 1. Assume $f:(a,b)\to\mathbb{R}$ has a local extremum (maximum or minimum) on the interval (a,b) at some internal point $c\in(a,b)$, i.e.

$$\exists \ c \in (a,b): \quad \forall \ x \in (a,b) \quad f(x) \le f(c) \qquad \Big(\ \text{or} \quad \forall \ x \in (a,b) \quad f(x) \le f(c) \ \Big)$$

If f is differentiable at c then f'(c) = 0.

PROOF. Assume $\forall x \in (a, b)$ $f(x) \leq f(c)$. The case of minimum is similar.

2. Use the characterization of the limit in terms of one-sided limits:

$$\exists f'(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c - 0} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c + 0} \frac{f(x) - f(c)}{x - c}$$

3. Compute the limit from the left:

$$\forall x \in (a,c), \quad f(x) \le f(c) \quad \Rightarrow \quad \frac{f(x) - f(c)}{x - c} \ge 0 \quad \Rightarrow \quad \lim_{x \to c - 0} \frac{f(x) - f(c)}{x - c} \ge 0 \quad \Rightarrow \quad f'(c) \ge 0$$

Compute the limit from the right:

$$\forall x \in (c,b), \quad f(x) \le f(c) \quad \Rightarrow \quad \frac{f(x) - f(c)}{x - c} \le 0 \quad \Rightarrow \quad \lim_{x \to c + 0} \frac{f(x) - f(c)}{x - c} \le 0 \quad \Rightarrow \quad f'(c) \le 0$$

Compare limits from the left and from the right:

$$f'(c) \ge 0$$
 and $f'(c) \le 0 \implies f'(c) = 0$

4. Statement of Rolle's theorem:

THEOREM 2. Assume $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Assume that f(a) = f(b). Then there exists $c \in (a,b)$ such that f'(c) = 0.

5. Proof. Use the extreme value theorem:

$$\exists c_1, c_2 \in [a, b]:$$
 $f(c_1) = \inf_{x \in [a, b]} f(x),$ $f(c_2) = \sup_{x \in [a, b]} f(x)$

6. Consider the case f(x) = const:

$$f(c_1) = f(c_2) \implies \forall x \in [a, b] \quad f(x) = f(a) = f(b) \implies \forall x \in (a, b) \quad f'(x) = 0$$

1

7. Consider the case $f(x) \neq const$:

 $f(c_1) \neq f(c_2) \implies$ at least one of the points c_1 and c_2 is different from a and b denote by c those of c_1 and c_2 for which $c \neq a$ and $c \neq b \implies c \in (a, b)$

8. Use Fermat's theorem:

Assume
$$c \in (a,b)$$
, $f(c) = \sup_{x \in [a,b]} f(x) \Rightarrow \forall x \in (a,b)$ $f(x) \leq f(c) \stackrel{\text{Fermat}}{\Longrightarrow} f'(c) = 0$
The case $c \in (a,b)$, $f(c) = \inf_{x \in [a,b]} f(x)$ is similar.