微纳光电子材料与器件工艺原理

Film Deposition Part IV: PVD

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Film Deposition

PVD: Physical Vapor Deposition

CVD: Chemical Vapor Deposition

PVD vs. CVD

Physical process

Chemical reactions

CVD

PVD

Evaporation (蒸发)

Sputter (溅射)

Vacuum Basics

Units

- \Box 1 Pa = 1 N/m²
- **1** 1 atm = 760 torr = 760 mm Hg = $1.013*10^5$ Pa
- **1** bar = 10^5 Pa = 750 torr
- □ 1 torr = 133.3 Pa

Pressure cooker ~ 1.5 atm

outer space < 10⁻¹⁰ Pa

Evaporation < 10⁻⁷ Pa

Sputter ~ 10⁻¹ Pa

Vacuum Systems

vacuum ~ 10⁻¹⁰ Pa

MBE: Molecular Beam Epitaxy

分子束外延

Vacuum Pumpdown

Vacuum Pumpdown

Pumpdown Zones

- 1. air
- 2. water
- 3. hydrogen

Evaporation

Thermal

Electron Beam (Ebeam)

Pulsed Laser Deposition (PLD)

Evaporation

- Reduce the impurities (N₂, O₂, H₂O, ...)
- Prevent oxidation

lacktriangle molecular mean free path λ

$$\lambda = \frac{kT}{\sqrt{2\pi r^2 p}}$$

$$\lambda \text{ (cm)} \approx \frac{0.5}{pressure \text{ (Pa)}}$$

Q: Required pressure?

Mass Transport

Mass Transport

absorption - movement - desorption

Evaporation Rate

Langmuir-Knudsen Theory

$$R_{evap} = 5.83 \times 10^{-2} A_s \sqrt{\frac{m}{T}} P_e$$

 R_{evap} : Evaporation rate (g/s)

 A_s : area of sources (cm²)

m: molecular weight (g/mol)

T: temperature (K)

P_e: vapor pressure of sources (Torr) (*not* chamber pressure)

Evaporation Sources

Location of source which behaves like an ideal point source

Location of source which behaves like an ideal small area surface source

(a) Uniform (isotropic) entission from a point source

 (b) Ideal cosine emission from a small planar surface source.

 $(n = 1 \text{ in } \cos^n \theta)$ distribution)

(c) Non-ideal, more anisotropic emission from a small planar surface source.

 $(n > 1 \text{ in } \cos^n \theta$ distribution)

Deposition rate

Question:

1. R_A : R_B = ?

2. R_A : R_C = ?

Ideal cosine emission from a small planar surface source.

Effects of Substrate Temperature

Higher Temperature

- -> Larger Atom Mobility
- -> Larger Grain Size

MBE: Molecular Beam Epitaxy

Ultrahigh Vacuum
High Substrate Temperature
Lattice Matched Substrate

High Quality, Single Crystal Films

Step Coverage

Substrate rotation and heating improve step coverage

Challenges of Evaporation

- Materials with high melting points / low vapor pressure
 - □ W, Mo, SiO₂, ...
- Compounds and alloys (non-stoichiometry)
 - FeCoB alloy
 - \Box TiO₂ -> TiO_x
- Radiation damage generated by Ebeam
 - electron beam and X-ray radiation
- Poor step coverage
 - via filling

Sputter (溅射)

- Plasma (e.g. Ar) assisted transport
 - high energy
 - high deposition rate

Plasma

Co-Sputter

- Deposit more than one material
 - composition control

Sputter: Pros. & Cons.

Advantages

- Higher pressure than evaporation
- Higher deposition rate
- Better uniformity and step coverage
- Better stoichiometry control
- Work for most materials

Disadvantages

- Plasma induced damages (etching)
- More impurities and defects
- Not good for single crystal epitaxy
- Mostly polycrystalline and amorphous films

Sputter

Process Parameters

- □ Type: DC, RF/AC, Magnetron, ...
- Substrate temperature
- \square Gas type (Ar, O₂, N₂, ...)
- Chamber pressure
- Sputter power
- **-**

Control Parameters

- Deposition rate
- Crystallinity
- Film quality (defects, ...)
- **---**

Sputter

Sputtering Process Trend for typical metals and films

	Base Pressure	Sputtering Pressure	Power	Substrate RF Bias
Deposition Rate	\Leftrightarrow	Below~3mT Above~8mT	1	-
Stress (+ tensile, - compressive)	\Leftrightarrow	1	1	1
Step Coverage/ Sidewall coverage	\Leftrightarrow	***************************************	2 nd order effect depending on geometry	Can cause re-dep onto sidewalls thru collisions
Resistivity	1		2 nd order effect with substrate or target heating on some films	2 nd order effect with some films by changing density or stress

Legend

Thornton's Zone Model

Refined Zone Model

Evaporation vs. Sputter

Evaporation:

- higher temperature
- radiation (Ebeam)
- lower pressure
- poor step coverage

Sputter:

- lower temperature
- plasma damage
- higher pressure
- better step coverage

Step Coverage

surface reaction

ballistic transport

- Al has good adhesion on Si and SiO₂
 - Al has high solubility in Si
 - \square Al + SiO₂ = Al₂O₃ + Si

Q: How about Cu and Au?

solubility of metals in Si

Ellingham diagram

Formation of metal oxides

- Metals like Ag and Au tend to have poor adhesion on Si and SiO₂
- Substrate clean
- Deposit a thin (~5 nm) Ti or Cr layer for adhesion
- Plasma treatment
- Monolayer bonding

Typical Ohmic Contacts for III-V

GaAs

- □ p-GaAs Be/Au, Ti/Pt/Au, ...
- □ n-GaAs Ge/Ni/Au, Pd/Ge, ...

GaN

- □ p-GaN Ni/Au
- □ n-GaN Ti/Al/Au

Thin Film Patterning

Requirements for Liftoff

- Avoid Step Coverage
- PVD instead of CVD
 - avoid high temperature

- Photoresist (PR) process
 - negative PR preferred (Why?)
 - increase PR thickness
 - multilayer PR

Focused Ion Beam (FIB) Deposition

world's smallest toilet

Etch: Ga

Deposition: Pt

Thank you for your attention