Chapitre 2: Espaces vectoriels normés

Ivan Lejeune*

28 mars 2024

1 Généralités

On considère E un \mathbb{K} -espace vectoriel. \mathbb{K} sera \mathbb{R} ou \mathbb{C} . La dimension de E sera quelconque, finie ou infinie.

Definition 1.1. Soit E un espace vectoriel et $\|\cdot\|$ de E dans \mathbb{R} une fonction.

1. ava

On dit que $\|\cdot\|$ est une **norme** sur E si :

- (P) $\forall x \in E, ||x|| \ge 0$
- (H) $\forall x \in E, \forall \lambda \in \mathbb{K}, ||\lambda x|| = |\lambda| \cdot ||x||$
- (S) $\forall x \in E, ||x|| = 0 \Leftrightarrow x = 0$
- (T) $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||$

Proposition 1.1 Immédiate. Soit E un espace vectoriel normé. Alors :

$$\forall x, y \in E, ||x - y|| \ge |||x|| - ||y|||$$

Preuve.

$$||x|| = ||(x - y) + y||$$

 $\leq ||x - y|| + ||y||$
 $\Rightarrow ||x|| - ||y|| \leq ||x - y||$

En échangeant x et y, on obtient l'autre inégalité :

$$||y|| - ||x|| \le ||x - y||$$

Si on enlève (S), on obtient une **semi-norme**.

Cette proposition implique que (S) est en fait une équivalence grâce à (H):

$$x = 0 \Rightarrow ||x|| = ||\overrightarrow{0}|| = ||\overrightarrow{0} - \overrightarrow{0}|| \le ||\overrightarrow{0}|| + ||\overrightarrow{0}|| = 0$$

Notation 1.1. On note d(x,y) = ||x-y|| la **distance** sur E associée à la norme $||\cdot||$. (E,d) est un **espace métrique** et \mathcal{T}_d est la topologie associée. Si (E,d) est complet, on dit que E est un **espace de Banach**.

Definition 1.2. Soit n, n' deux normes sur le même espace vectoriel E. Elles sont dites **équivalentes** si :

$$\exists \alpha, \beta > 0, \forall x \in E, \alpha n(x) \le n'(x) \le \beta n(x)$$

^{*}Cours inspiré de M. Charlier et M. Gieu

On note alors $n \sim n'$, $n \sim n' \Rightarrow d \sim d'$ et $\mathcal{T}_d = \mathcal{T}_{d'}$.

Exemple 1.1. 1. $(\mathbb{R}^n, ||\cdot||)$ est un espace de Banach, de même pour $(\mathbb{C}^n, ||\cdot||)$.

- (ℓ[∞](X), ||·||_∞) est un espace de Banach.
 (C⁰(X), ||·||_∞) est un espace topologique compact, de Banach.
 (C⁰([a,b]), ||·||₁) espace vectoriel normé, mais pas de Banach.
- 5. $\ell^1 = \{x: \mathbb{N} \to \mathbb{R} \mid \sum x(n)\}$ est absolument convergent de Banach.