Cost Function

Solving the Problem of Overfitting Regularization

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Size of house

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Suppose we penalize and make θ_3 , θ_4 really small.

Size of house

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Suppose we penalize and make θ_3 , θ_4 really small.

Size of house

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Suppose we penalize and make θ_3 , θ_4 really small.

Size of house

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Suppose we penalize and make θ_3 , θ_4 really small.

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n \leftarrow$

- "Simpler" hypothesis
- Less prone to overfitting

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting <

~ O₃, O₄

Housing:

- Features: $x_1, x_2, \ldots, x_{100}$
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting <

Housing:

- Features: $x_1, x_2, \ldots, x_{100}$
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(heta) = rac{1}{2m} \left[\sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2 + \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2$$

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting <

Housing:

- Features: $x_1, x_2, \ldots, x_{100}$
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \sum_{i$$

 $\min_{\theta} J(\theta)$

regularization
parameter

Exercise

• In regularized linear regression, we choose θ to minimize:

$$J(heta) = rac{1}{2m} \left[\sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^n heta_j^2
ight]$$

- What if λ is set to an extremely large value (perhaps too large for our problem, say $\lambda=10^{10}$)?
 - Algorithm works fine; setting λ to be very large can't hurt it.
 - Algorithm fails to eliminate overfitting
 - Algorithm results in underfitting (fails to fit even the training set)
 - Gradient descent will fail to converge.

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underline{\lambda} \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underline{\lambda} \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underline{\lambda} \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

