RL Setting

The RL Setting

On a single time step, agent does the following:

- 1. observe some information
- 2. select an action to execute
- 3. take note of any reward

Goal of agent: select actions that maximize cumulative reward in the long run

Markov Decision Process-MDP

Let's turn this into an MDP

On a single time step, agent does the following:

- 1. observe some information
- 2. select an action to execute
- 3. take note of any reward

Goal of agent: select actions that maximize cumulative reward in the long run

Let's turn this into an MDP

On a single time step, agent does the following:

1. observe state

- 2. select an action to execute
- 3. take note of any reward

Goal of agent: select actions that maximize cumulative reward in the long run

Let's turn this into an MDP

Example – Grid World

Example: Grid world

Grid world:

- agent lives on grid
- always occupies a single cell
- can move left, right, up, down
- gets zero reward unless in "+1" or "-1" cells

States and actions

s_1	s_2	s_3	s_4
s_5		s_6	s_7
s_8	s_9	s_{10}	s_{11}

State set: $S=\{s_1,\ldots,s_{11}\}$

Action set: $A = \{left, right, up, down\}$

Reward function

Reward function: $R(s_4,\cdot)=-1$

 $R(s_7,\cdot)=+1$

Otherwise: $R(s,\cdot)=0$

Reward function

Reward function: $R(s_4,\cdot)=-1$

$$R(s_7,\cdot)=+1$$

Otherwise: $R(s,\cdot)=0$

In general: $R(s,a) = \mathbb{E}[r_{t+1}|s_t=s, a_t=a]$

Reward function

Reward function: $R(s_4)$ -1 +1 Otherwise: $R(s_7)$ -1

In general: $R(s,a) = \mathbb{E}[r_{t+1}|s_t=s,a_t=a]$

Transition function

Transition model: $P(s_{t+1} = s' | s_t = s, a_t = a)$

s_1	s_2	s_3	s_4
s_5		s_6	s_7
s_8	s_9	s_{10}	s_{11}

For example:

$$P(s_{t+1} = s_4 | s_t = s_3, a_t = left) = 0.1$$

$$P(s_{t+1} = s_2 | s_t = s_3, a_t = left) = 0.7$$

$$P(s_{t+1} = s_6 | s_t = s_3, a_t = left) = 0.1$$

$$P(s_{t+1} = s_3 | s_t = s_3, a_t = left) = 0.1$$

 This entire probability distribution can be written as a table over state, action, next state.

s_t	a_t	s_{t+1}	probability of this transition

Definition of an MDP

s_1	s_2	s_3	s_4
s_5		s_6	s_7
s_8	s_9	s_{10}	s_{11}

An MDP is a tuple: $\mathcal{M} = \langle S, A, R, P \rangle$

where

State set: $S = \{s_1, \dots, s_{11}\}$

Action set: $A = \{left, right, up, down\}$

Reward function: $R(s,a) = \mathbb{E}[r_{t+1}|s_t=s,a_t=a]$

Transition model: $P(s_{t+1}=s^{\prime}|s_t=s,a_t=a)$

Definition of an MDP

81 82 83 84

Why is it called a Markov decision process?

Because we're making the following assumption:

$$P(s_{t+1}|s_t, a_t) = P(s_{t+1}|s_t, a_t, \dots, s_1, a_1)$$

- this is called the "Markov" assumption

State set: $S = \{s_1, \dots, s_{11}\}$

Action set: $A = \{left, right, up, down\}$

Reward function: $R(s,a) = \mathbb{E}[r_{t+1}|s_t=s, a_t=a]$

Transition model: $P(s_{t+1} = s' | s_t = s, a_t = a)$

The Markov Assumption

s_1	s_2	s_3	s_4
s_5		s_6	s_7
٩	s_9	s_{10}	s_{11}

Suppose agent starts in $\,s_8$ and follows this path: $\,s_8, s_9, s_{10}$

Notice that probability of arriving in s_{11} if agent executes right action does not depend on path taken to get to s_{10} :

$$P(s_{11}|s_{10}, right) = P(s_{11}|s_{10}, right, s_9, right, s_8, right)$$

s_1	s_2	s_3	s_4
s_5		s_6	s_7
s_8		s_{10}	s_{11}

s_1	s_2	s_3	s_4
s_5		s_6	s_7
s_8	s_9	0	s_{11}

Different Models

	No Agents	Single Agent	Multiple Agents
State Known	Markov Chain	Markov Decision Process (MDP)	Markov Game (a.k.a. Stochastic Game)
State Observed Indirectly	Hidden Markov Model (HMM)	Partially-Observable Markov Decision Process (POMDP)	Partially-Observable Stochastic Game (POSG)

MDP/POMDP/Dec-POMDP

Figure: (a) Markov decision process (MDP) (b) Partially observable Markov decision process (POMDP) (c) Decentralized partially observable Markov decision process with two agents (Dec-POMDP)

Definition

The agent is acting in an environment. How the environment reacts to certain actions is defined by a model which we may or may not know. The agent can stay in one of many states $(s \in S)$ of the environment, and choose to take one of many actions $(a \in A)$ to switch from one state to another. Which state the agent will arrive in is decided by the transition probabilities between states P(s'|s,a). Once an action is taken, the environment delivers a reward $(r \in R)$ as a feedback.

Finite Markov Decision Processes (MDP)

At each step t the agent:

- Receives state S_t / observation O_t and reward R_t
- \blacksquare Executes action A_t

The environment:

- Receives action A_t
- Emits state S_{t+1} / observation O_{t+1} and reward R_{t+1}

Markov property:

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, S_2, \dots, S_t]$$

"The future is independent of the past given the present"

Daily life trajectory:

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \ldots, S_T$$

Markov Property