Teoria dei Segnali – Modulazione digitale

Valentino Liberali

Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010 1 / 21

Contenuto

- Modulazione digitale
- 2 Modulazione di ampiezza
- Modulazione di frequenza
- Modulazione di fase
- Simbolo
- 6 Diagrammi dei segnali
- Modulazioni multidimensionali
- Modulazione con memoria

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010 2 / 21

Modulazione digitale (1/2)

Un segnale è modulato in modo digitale quando la modulante è un segnale digitale. In ogni caso, la portante è una sinusoide alla frequenza f_c , quindi il segnale modulato è analogico.

- Modulazione di ampiezza: l'ampiezza (istantanea) è proporzionale al valore digitale della modulante.
- Modulazioni di frequenza e di fase: l'ampiezza del segnale modulato è costante; la frequenza o la fase dipendono dal valore digitale della modulante.
- Modulazioni miste (ampiezza e frequenza o fase): sia l'ampiezza, sia la frequenza o la fase dipendono dal valore digitale della modulante.

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

3 / 21

Modulazione di ampiezza (ASK) (1/3)

modulante: sequenza di bit [1 1 0 1 0 0 1 0];

portante: $p(t) = \cos 2\pi f_c t$

segnale ASK (Amplitude Shift Keying)

Il segnale modulato ASK è nullo quando il bit trasmesso è zero \longrightarrow modulazione a inviluppo non costante

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

Modulazione di ampiezza (ASK) (2/3)

modulante: sequenza di bit [1 1 0 1 0 0 1 0];

portante: $p(t) = \cos 2\pi f_c t$

segnale ASK con inviluppo costante

Il segnale modulato ASK ha polarità invertita quando il bit trasmesso è zero \longrightarrow modulazione a inviluppo costante

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

5 / 21

Modulazione di ampiezza (ASK) (3/3)

modulante: sequenza di bit [1 1 0 1 0 0 1 0];

portante: $p(t) = \cos 2\pi f_c t$

segnale ASK con inviluppo a coseno rialzato

Il segnale modulato ASK viene moltiplicato per una funzione inviluppo $\frac{1}{2}\left(1-\cos\frac{2\pi t}{T_s}\right)$

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

Modulazione di frequenza (FSK)

modulante: sequenza di bit [1 1 0 1 0 0 1 0];

portante: $p(t) = \cos 2\pi f_c t$

segnale FSK (Frequency Shift Keying)

Il segnale modulato FSK ha frequenza f_c quando il bit è uno, e frequenza $\frac{1}{2}f_c$ quando il bit è zero.

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

7 / 21

Modulazione di fase (PSK)

modulante: sequenza di bit [1 1 0 1 0 0 1 0];

portante: $p(t) = \cos 2\pi f_c t$

segnale PSK (Phase Shift Keying)

Il segnale modulato PSK è "capovolto" quando il bit è zero.

FSK e PSK sono immediatamente distinguibili, ma ASK simmetrica e PSK a due livelli sono uguali!

Valentino Liberali (UniMI)

Feoria dei Segnali – Modulazione digitale – 29 novembre 2010

Simbolo

Un simbolo è l'unità minima di informazione digitale che viene trasmessa. Simboli binari:

È possibile utilizzare più simboli diversi, per codificare gruppi di bit anziché bit singoli.

Modulazione di ampiezza (PAM) (1/2)

modulante: sequenza di parole digitali;

portante: $p(t) = \sin 2\pi f_c t$ segnale PAM

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010 10 / 21

Modulazione di ampiezza (PAM) (2/2)

modulante: sequenza di parole digitali portante: $p(t) = \sin 2\pi f_c t$ con forma $(1 - \cos 2\pi (f_c/4)t)$ segnale PAM

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

11 / 21

Diagrammi dei segnali – PAM

PAM (Pulse Amplitude Modulation), detta anche ASK (Amplitude Shift Keying)

L'ampiezza A corrisponde al codice della parola digitale a M bit; il codice Gray minimizza gli effetti dell'errore di decodifica (la distanza di Hamming tra codici adiacenti è 1).

Valentino Liberali (UniMI)

Feoria dei Segnali – Modulazione digitale – 29 novembre 2010

Diagrammi dei segnali - PSK (1/2)

PSK (Phase Shift Keying)

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

 $\pi/4 - QPSK$

13 / 21

Diagrammi dei segnali – PSK (2/2)

Le PSK sono modulazioni ad inviluppo costante, perché l'ampiezza del segnale non dipende dal codice trasmesso. Per questo motivo, sono adatte alle telecomunicazioni mobili anche su lunghe distanze e sono usate per WLAN e UMTS.

Per M=2 si ha la BPSK (Binary PSK), che è come la ASK.

Per M = 4 si ha la QPSK (Quadrature PSK).

La variante $\pi/4$ -QPSK (ottenuta aggiungendo alla QPSK uno sfasamento costante di $\pi/4$) e con gli impulsi filtrati con forma gaussiana è detta anche GMSK (Gaussian Minimum Shift Keying) ed è usata nelle telecomunicazioni wireless (telefonia mobile GSM), perché semplifica la sincronizzazione tra il trasmettitore e il ricevitore.

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

Diagrammi dei segnali – PAM-PSK

È possibile combinare PAM e PSK, ottenendo una modulazione bidimensionale in cui sia l'ampiezza sia la fase dipendono dal codice trasmesso.

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

15 / 21

Diagrammi dei segnali – QAM

QAM (Quadrature Amplitude Modulation)

È una modulazione bidimensionale, che risulta dalla combinazione di due PAM modulate con portanti seno e coseno (ortogonali fra di loro). QAM-64 è usata nell'ADSL.

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

Modulazioni multidimensionali (1/2)

È possibile avere modulazioni con più di due dimensioni: oltre che ampiezza e fase, si usano tempo e frequenza.

Divisione di tempo: L'intervallo di tempo T_1 è diviso in N sottointervalli di durata $T = T_1/N$. In ciascun sottointervallo di durata T viene trasmesso un simbolo. Con una modulazione in quadratura, in ogni intervallo T_1 si trasmettono 2N simboli.

Divisione di frequenza: La banda B viene suddivisa in N sottobande di larghezza $\Delta f = B/N$. Ciascuna sottobanda ha una sua frequenza portante; le portanti devono essere sufficientemente separate per evitare interferenze. Con una modulazione in quadratura, si trasmettono contemporaneamente 2N simboli (due per ogni portante).

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

17 / 21

Modulazioni multidimensionali (2/2)

Valentino Liberali (UniMI

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

Ortogonalità delle frequenze

Le portanti a due frequenze diverse $p_m(t) = \cos\left(2\pi(f_c + m\Delta f)t\right)$ e $p_k(t) = \cos\left(2\pi(f_c + m\Delta f)t\right)$, sono ortogonali rispetto alla durata T del simbolo quando

$$\int_0^T \cos(2\pi(f_c + m\Delta f)t)\cos(2\pi(f_c + k\Delta f)t) dt = 0$$

Questo si verifica se

$$\Delta f = \frac{1}{2T}$$

e $m \neq k$.

Valentino Liberali (UniMI)

Teoria dei Segnali - Modulazione digitale - 29 novembre 2010

19 / 21

Modulazione con memoria (1/2)

Un semplice esempio di modulazione binaria con memoria è il seguente:

- se il bit da trasmettere è 0, trasmetto il simbolo precedente;
- se il bit da trasmettere è 1, trasmetto l'altro simbolo.

Matematicamente, dalla sequenza dei bit da trasmettere $\{a_k\}$ si ottiene la sequenza

$$b_k = a_k \oplus b_{k-1}$$

(dove l'operatore \oplus indica la somma modulo 2).

Valentino Liberali (UniMI)

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010

Modulazione con memoria (2/2)

La modulazione binaria con memoria può essere rappresentata come una macchina a due stati S_0 e S_1 ; allo stato S_0 è associato il livello -A, mentre allo stato S_1 è associato il livello +A (supponendo di avere un segnale PAM). Il bit 0 non fa cambiare stato, mentre il bit 1 fa cambiare stato.

L'andamento temporale del segnale può essere rappresentato con un diagramma a "traliccio" (in inglese, *trellis*).

Valentino Liberali (UniMI

Teoria dei Segnali – Modulazione digitale – 29 novembre 2010