Math 534 HW 8

Morgan Gribbins

- (1) Let $H, K \leq G$ be two subgroups of a given group G. Show that for $a \in G$ the coset $a(H \cap K)$ is equal to $(aH) \cap (aK)$, i.e. is equal to the intersection of the cosets aH and aK.
- (2) Use the Theorem of Lagrange (and its consequences) to show that $|(\mathbb{Z}/n)^{\times}|$ is always even when n > 2.
- (3) Suppose G is a finite abelian group and |G| is odd. Show that the product of all the elements in G is the identity. Is the same true if |G| is even?
 - (4) Let |G| = 8. Prove that G has an element of order 2.
- (5) Let G be a group and let $H, K \leq G$ be subgroups satisfying |H| = 20 and |K| = 28. Prove tha $H \cap K$ is abelian. (Hint: Start by computing the order of $H \cap K$. We've seen that $H \cap K$ is a subgroup of G, but it can also be viewed as a subgroup of...).