# III° appello – 4 Luglio 2023

### Corso di Studi in Informatica per il Management — Corso di Architettura di Internet

Prof. M. Roccetti, Dott. U. Vagnoni

#### Premessa

Iniziare a scrivere solo nel momento in cui viene comunicato.

## Consegna soluzione

Una volta svolto l'esercizio, si invii una e-mail, tramite il proprio l'account di ateneo, a ENTRAMBI i sottoindicati indirizzi, allegando alla mail copia di un documento di riconoscimento.

| ulderico.vagnoni2@unibo.it | marco.roccetti@unibo.it |
|----------------------------|-------------------------|
|                            |                         |

La mail deve avere come oggetto "APPELLO 04-07-23" e contenere le soluzioni ai punti del problema sottoelencate, riportando solo il numero della risposta e il valore corrispondente (ad esempio: 3) 243.50ms). Se il formato della risposta sarà differente da quello sopra indicato la risposta non verrà presa in considerazione.

Le risposte alle domande valgono 10 punti ciascuna.

Sono disponibili 35 minuti a partire da quando indicato dai docenti.

Gli studenti con certificazione DSA avranno a disposizione 15 minuti in più per svolgere il compito.

#### Risultati

Sulla piattaforma Virtuale sarà reso disponibile un file contenente una soluzione svolta utilizzando variabili fittizie che tuttavia consentirà di comprendere lo svolgimento adatto.

# Risposte da fornire via mail:

- nome, cognome, matricola
- variabile t
- variabili x,y,z,u,v
- $1)D_k$
- $2)D_{k1}$
- $3)D_{k2}$

### • Ricavare le variabili

Si consideri la propria matricola e si assegnino alle cinque variabili (x, y, z, u, v) rispettivamente il primo, il secondo, il terzo, il quarto ed il quinto numero che si incontrano esaminando la matricola da sinistra a destra, **purché diversi da zero.** Si riportino nella tabella sottostante. Se una o più variabili risultassero non assegnate a esse andrà associato il **numero 4**. **La variabile t verrà comunicata all'inizio dell'esame dal docente.** 

| VARIABILI | t | х | у | z | u | v |
|-----------|---|---|---|---|---|---|
| MATRICOLA |   |   |   |   |   |   |

(esempio: con matricola uguale a 0000450678 si ottiene x=4, y=5, z=6, u=7, v=8)

### Testo dell'Esercizio

Dato il seguente grafo (nel caso di arco con peso negativo, assegnare il valore 1):



- 1. Calcolare i cammini minimi da A verso tutti gli altri nodi, usando l'algoritmo di Dijkstra  $(\mathbf{D}_k)$ .
- 2. Calcolare i cammini minimi da A verso tutti gli altri nodi nel caso in cui l'arco AG sia rimosso (Dk1).
- 3. Calcolare i cammini minimi da A verso tutti gli altri nodi nel caso in cui l'arco con peso minore venga aumentato di 7 (**D**<sub>k2</sub>).

**IMPORTANTE**: Restituire il risultato sotto forma della sola **prima colonna** della seguente **tabella canonica risolutiva** prodotta dall'algoritmo di **Dijkstra**; per esempio in un caso di un grafo fittizio, qui non rappresentato, che desse luogo alla seguente tabella risolutiva, la/il candidata/o **deve scrivere** in mail la soluzione come riportata al punto 1 sotto:

| Nodi conosciuti | $D_b$ | $D_c$    | $D_d$     | $D_e$     | $\mathrm{D}_f$ | $D_g$    | $D_h$    | $D_i$     |
|-----------------|-------|----------|-----------|-----------|----------------|----------|----------|-----------|
| A               | 4     | $\infty$ | $\infty$  | $\infty$  | $\infty$       | $\infty$ | 8        | $\infty$  |
| AB              |       | 12       | $\infty$  | $\infty$  | $\infty$       | $\infty$ | <u>5</u> | $\infty$  |
| ABH             |       | 12       | $\infty$  | $\infty$  | $\infty$       | <u>6</u> |          | 12        |
| ABHG            |       | 12       | $\infty$  | $\infty$  | 8              |          |          | 12        |
| ABHGF           |       | 12       | 22        | 18        |                |          |          | 12        |
| ABHGFC          |       |          | 19        | 18        |                |          |          | <u>12</u> |
| ABHGFCI         |       |          | 19        | <u>18</u> |                |          |          |           |
| ABHGFCIE        |       |          | <u>19</u> |           |                |          |          |           |
| ABHGFCIED       |       |          |           |           |                |          |          |           |

1)  $D_k = A$ , AB, ABH, ABHGF, ABHGFCI, ABHGFCIE, ABHGFCIED