Big Data Project - Yelp Dataset

Data Aggregation and Recommendation System Implementation

Truc Cao Kathia Teran

Problem and Motivation

Yelp dataset has a lot of data but hard to extract useful information

We want to:

- Get statistics on restaurants (cuisines, popularity, ...)
- Recommend restaurants to customers to increase revenue

Using:

- Spark (Big Data Framework) to cleanup, filter and aggregate data
- Research papers about recommendation system
- Spark ML (Machine Learning) to provide useful recommendation

Yelp Dataset

- Yelp is a popular online crowd-sourced local business review platform.
- Sample: https://www.yelp.com/dataset
- The dataset contains:
 - 192,609 businesses
 - 1,637,138 users
 - 6,685,900 reviews
 - o 1,223,094 tips
 - 161,950 check-ins
 - o 36 states
 - 1,307 cities
 - All the data files are in JSON format.

Samples

```
"business_id": "0W27hbZN7Z-PrkhAb0y9Eq",
"name": "B Montréal",
"address": "1207-A Rue Rachel E",
"city": "Montréal",
"state": "QC",
"postal_code": "H2J 2J8",
"latitude": 45.5266477836,
"longitude": -73.5735161233,
"stars": 4.5,
"review_count": 3.
"is_open": 1,
"attributes": {
 "RestaurantsPriceRange2": "1",
 "RestaurantsTableService": "False",
  "RestaurantsTakeOut": "True",
 "OutdoorSeating": "True",
  "RestaurantsReservations": "False",
 "BikeParking": "True",
  "WheelchairAccessible": "True",
 "Caters": "True",
 "HasTV": "False",
 "GoodForMeal": "{'dessert': False, 'latenight': False, 'lunch': False, 'dinner': False, 'brunch': False, 'breakfast': False}",
 "GoodForKids": "True",
 "RestaurantsDelivery": "True",
  "WiFi": "u'free'"
"categories": "Coffee & Tea, Food, Juice Bars & Smoothies, Delis, Restaurants, Sandwiches",
"hours": {
 "Wednesday": "9:0-20:0",
 "Thursday": "9:0-20:0",
 "Friday": "9:0-20:0",
  "Saturday": "8:0-16:0"
```

business.json

```
"business_id": "-Lw8Ve0NLbR0djHGw2fMOA",
   "date": "2014-06-30 22:57:27, 2014-06-30 22:58:28, 2017-05-19 18:24:18"]
```

```
checkin.json
```

```
"yelping_since": "2009-10-16 23:54:29",
"useful": 40.
"cool": 12,
"friends": "_SEBcjCwgneOV1VV_vESfQ, vtNHzdtfsxCCsbc_JUK8Cw, EPyRgySYsR365gAqF2r4Ww, 3mNk60ynkQYRNJGf3YAqiA, NfU0zDaTMEQ4-X9dbQWd9A, X
"average_stars": 4.07.
"compliment_hot": 0.
"compliment_more": 1,
"compliment_profile": 0,
"compliment_list": 0,
"compliment_note": 0,
"compliment_plain": 0,
"compliment_cool": 0.
"compliment_funny": 0,
"compliment_writer": 0,
"compliment_photos": 0
  user.json
  "review_id": "BTDBNxb7m6wuSTy09_Zz4A",
  "user_id": "oV4PUFp402brd3bGhu5cjg",
  "business_id": "m97jaBYRscg-hqDjMVIIWg",
  "stars": 4,
  "useful": 0.
  "funny": 0.
  "cool": 0,
  "text": "This is our go-to place for lunch and just a friendly atmosphere. Very consistent food. A
  "date": "2017-03-03 22:35:42"
  review.json
```

```
{
  "user_id": "ky3DB9i9lDJ70AZdkZyv7g",
  "business_id": "m9ybLDUrbqgsoIIT06bBLA",
  "text": "Excellent price on tires here!",
  "date": "2016-01-07 18:01:31",
  "compliment_count": 0
}
```

tip.json

Dataset: Distribution

Number of Businesses by Category

- Out of 36 states (US/Canada), 11 has more than 1,000 businesses
- Out of 1,307 cities, 28 has more than 1000 businesses
- Restaurant is by far the most represented category

Preparing the data

- Use Jupyter notebook and Spark SQL
- Jupyter notebook:
 - Interactive notebook in the browser
 - Can share easily with other people
- SparkSQL:
 - SQL queries are easier to write (and to read) than dataframe operations
 - Take advantage of Spark to scale to multiple machines to speed up the process

Preparing the data

Steps:

- Only keep restaurants: "Restaurants"
- Break down categories (one row per category):
 - o "Ramen, Sushi" becomes 2 rows for each
- Recategorize using 32 kind of cuisines (American, Korean):
 - Use manually created mapping (114 mappings)
 - In case of multiple cuisine we choose one arbitrarily restaurant_categories_df = spark.sql("""
- Only keep restaurants with a cuisine
- Only keep cities that have over 200 restaurants
- Only keep reviews and users associated to them

category	cuisine	
American (Traditional)	American	0
American (New)	American	1
Steakhouses	American	2
Bagels	American	3
Cajun/Creole	American	4
Cambodian	Asian	109
Korean	Korean	110
Laotian	Asian	111
BurmesePizza	Asian	112
Thai	Thai	113

cuisine.csv (Cuisine mapping)

Initialization

```
spark = SparkSession.builder.appName("yelp").config("spark.driver.memory", "10g").getOrCreate()
businesses = spark.read.json("yelp_academic_dataset_business.json")
businesses.registerTempTable("businesses")
```

name	longitude	latitude	is_open	hours	city	categories	business_id	attributes	address	
The Empanadas House	-88.233073	40.110446	1	(11:30-14:30, 11:30- 14:30, None, None, 11:30-1		Ethnic Food, Food Trucks, Specialty Food, Impo	pQeaRpvuhoEqudo3uymHIQ	(None, None, 'none', None, None, None, None, F	404 E Green St	0
Middle East Deli	-80.767442	35.194894	0	None	Charlotte	Food, Restaurants, Grocery, Middle Eastern		(None, None, None, None, None, None, None, Non	4508 E Independence Blvd	1
Philthy Phillys	-79.448677	44.010962	1	(11:0-22:0, 11:0-22:0, 11:0-22:0, 11:0-22:0, 11:0-21:0,	Aurora	Restaurants, Cheesesteaks,		(None, None, u'none', None, None, None, None,	15480 Bayview Avenue, unit D0110	2

Break down categories:

```
restaurant_categories_df = spark.sql("""

SELECT

business_id,
explode(split(categories, ', ')) as category
FROM businesses
where categories like '%Restaurants%'

restaurant_categories_df.registerTempTable('restaurant_categories')

business_id category
0 AtD6B83S4Mbmq0t7iDnUVA Dim Sum
1 AtD6B83S4Mbmq0t7iDnUVA Ramen
2 AtD6B83S4Mbmq0t7iDnUVA Ramen
```

Map to cuisines:

Final dataset

- 192,609 businesses
- 1,637,138 users
- 6,685,900 reviews
- 1,223,094 tips
- 161,950 check-ins
- 36 states
- 1,307 cities

- 41,029 restaurants (-78%)
- 1,006,767 users (-39%)
- 3,447,322 reviews (-48%)
- 668,619 tips (-45%)
- 39,896 check-ins (-75%)
- 10 states -72%()
- 30 cities (-98%)

Computing different aggregations of the data

- Do all the aggregations using Spark SQL
- Number of restaurants /ratings / cuisine

	stars	num_restaurants
0	3.5	1913
1	4.5	687
2	2.5	662
3	1.0	39
4	4.0	1710

	cuisine	num_restaurants
0	Mexican	204
1	Thai	202
2	Indian	260
3	Chinese	642
4	African	39

Computing different aggregations of the data

Most popular restaurant by city and all based on ratings and number of reviews

	business_id	num_reviews
0	r_BrlgzYcwo1NAuG9dLbpg	2177
1	aLcFhMe6DDJ430zelCpd2A	1467
2	RtUvSWO_UZ8V3Wpj0n077w	1425
3	iGEvDk6hsizigmXhDKs2Vg	1183
4	N93EYZy9R0sdlEvubu94ig	1078

• Number of restaurants that are still active/closed for each city

	is_open	num_restaurants
0	0	2291
1	1	4652

Time series data

Number of checkins / cuisine / city over time

Map tables from file

```
restaurants_df = spark.read.json("final_restaurants_all.json")
restaurants_df.registerTempTable('restaurants')
checkins_raw_df = spark.read.csv("final_restaurant_checkin_all.json")
checkins_raw_df.registerTempTable('checkins_raw')
```

Master aggregation by city/state, cuisine, month

Pivot table for number of checkins for each cuisine in Toronto over time

checkins cuisine toronto df.toPandas()

	date	American	Bars	Chinese	Coffee & Tea	Fast Food	French	Indian	Italian	Japanese	Korean	Mediterranean	Mexican	Pizza	Thai	Vietnamese
0 201	10-01	86	37	8	22	3	4	6	19	8	2	4	14	5	9	4
1 201	10-02	132	50	27	41	4	8	19	32	35	6	5	18	6	17	10
2 201	10-03	212	88	32	81	21	10	14	39	45	10	6	40	3	25	18
3 201	10-04	215	144	35	80	8	20	16	45	47	11	9	36	7	22	13
4 201	10-05	245	113	30	79	18	17	16	60	37	9	12	35	13	27	10

Number of checkins in Toronto by cuisine over time

Number of restaurants In Toronto by cuisine over time

Number of check-ins by cuisine

cuisine no_of_	restaurants no_	of_checkins
American	7355	3405265
Bars	1928	891295
Japanese	1389	516445
Chinese	2402	510902
Fast Food	3493	463586
Mexican	1607	418008
Coffee & Tea	1800	399348
Italian	1558	362969
Pizza	1539	161191
Thai	459	144566
Mediterranean	972	137597
Vietnamese	515	116616
Korean	310	95565
Indian	676	77966
French	389	74545
Vegetarian	286	57786
Asian	94	32229
South American	165	24786
Caribbean	328	22264
Filipino	116	20099

Number of check-ins by cuisine over years

cuisine chec	kin_year nur	n_checkins
Pizza	2012	15594
Mediterranean	2012	9792
Asian	2016	4426
African	2016	2806
Pizza	2017	21134
Indian	2015	11859
Vegetarian	2014	7052
Mexican	2011	24581
Mediterranean	2011	6382
Fast Food	2010	9331
Japanese	2010	5907
African	2012	1050
Coffee & Tea	2011	24989
Bars	2013	108349
Pizza	2010	2090
Thai	2015	21913
Thai	2011	8113
Italian	2018	40307
South American	2018	3374
Ethnic food	2012	900

Number of check-ins by cuisine by month of the year

	cuisine	1	2	3	4	5	6	7	8	9	10	11	12
	Mexican	31451	31145	37865	36765	38972	36205	37733	37834	34336	35191	30963	29548
	Thai	11285	10513	12463	12120	12197	11908	13044	13400	12924	12458	11144	11104
	Indian	6001	5564	6393	6577	6760	6554	7073	7410	6632	6839	6194	5963
	Chinese	41010	37705	41694	41105	42932	43060	45865	47176	43715	43380	40297	42963
	African	1205	1122	1406	1428	1536	1523	1848	1604	1428	1368	1257	1135
aster	n europe	324	335	375	388	390	408	420	489	442	426	385	386
	Japanese	41975	38787	44237	42253	43695	44461	45796	46133	42392	43478	41713	41525
1	Filipino	1464	1386	1654	1625	1850	1918	1977	1909	1630	1695	1563	1428
F	ast Food	35901	34982	40680	38917	40082	40114	41503	41804	39225	39991	35976	34411
	Spanish	1308	1361	1239	1173	1277	1421	1502	1539	1358	1299	1126	1112
Vi	etnamese	9755	8895	9631	9405	9573	9571	9721	10270	10037	10121	10039	9598
P	akistani	66	46	55	66	60	69	69	85	72	67	69	63
	Pizza	12748	11809	14096	13468	13563	14116	15015	14650	13240	13225	12794	12467
Por	rtuguese	284	332	387	400	479	479	522	546	494	442	365	292
Coffe	ee & Tea	29822	29898	34767	33665	34858	34075	36365	37319	34681	34769	30769	28366
	Italian	28482	27539	31527	30067	30757	30685	33293	33283	30091	30375	28528	28342
C	aribbean	1481	1715	2005	1935	2015	1979	2124	2182	1933	1951	1511	1433
Ve	getarian	4298	4409	5127	5221	4990	5077	5321	5626	4990	4945	4175	3601
	Korean	7671	6871	7916	7824	8026	7951	8457	8924	8571	8384	7605	7365
	French	5401	5401	5930	5777	6560	6481	7788	7377	6339	6279	5642	5576

Number of check-ins/restaurants by cuisine in different states

of_checkins	f_restaurants no_c	cuisine n	tate
56904	245	American	WI
13989	56	Coffee & Tea	WI
13127	51	Bars	WI
5884	38	Mexican	WI
5557	45	Chinese	WI
5255	38	Italian	WI
4035	66	Fast Food	WI
2805	7	Asian	WI
2522	17	Japanese	WI
2292	26	Pizza	WI
1672	12	Mediterranean	WI
1663	5	Korean	WI
1510	6	French	WI
1217	11	Indian	WI
823	8	Thai	WI
569	3	Ethnic food	WI
556	3	Vegetarian	WI
527	6	Caribbean	WI
434	4	South American	WI
333	2	Vietnamese	WI

Number of check-ins each hour by cuisine

• Peaks at 7pm in the evening and 1 am at midnight.

	cuisine	0	1	2	3	4	5	6	7	8	 14	15	16	17	18	19	20	21	22	23
0	Mexican	36851	44494	40218	27201	14973	7965	4520	3456	2634.0	 3270	6426	11967	16502	31973	43614	34968	26866	25324	28212
1	Thai	13436	16511	15630	11428	5722	2392	1157	783	532.0	 273	1239	3592	4055	9808	14958	12135	9821	9497	10540
2	Indian	7431	7960	6976	5339	3065	1408	849	684	540.0	 574	1332	3011	3796	5150	6762	5791	4899	4960	5872
3	Chinese	44977	48371	44469	34153	21608	12509	7345	4669	2934.0	 4136	8887	17526	22644	34352	43531	39192	33895	35747	40595
4	African	1381	1522	1415	1170	975	653	497	283	167.0	 80	208	490	694	1078	1324	1230	1131	1156	1208

Influencers: how top reviewers rate businesses

- Using RDD lower level API: (key, value) pairing, mostly using user_id as the key. Joining user, business and review datasets to obtain results.
- Influencers being those users with the highest amount of: friends, fans, useful rating, elite status, and oldest accounts ('yelping since').
 - o In this logic, a user with the highest amount of friends, doesn't necessarily have the highest amount of fans, or review count. But all those factors influence other users.
- Las Vegas has the highest amount of reviews in the dataset, so it is important to consider who are the leading influencers in Las Vegas. Restaurant categories (cuisine) is also important.
 - BASED ON CITY (considering Las Vegas as the most yelped city for restaurants)
 - Restaurant and city with the highest review count:

business_id	name	city	review_count
	lWw <mark>Mon Ami Gabi</mark> R5g Hash House A Go Go d5g Gordon Ramsay BurGR	Las Vegas Las Vegas Las Vegas	5763

Code example - finding the user with the most fans in Las Vegas:

```
from pyspark.sql import SparkSession
path1 = "/Volumes/KATHIA/A.\ SPARK/final_restaurants_all.json"
path2 = "/Volumes/KATHIA/A.\ SPARK/final restaurant reviews all.json"
path3 = "/Volumes/KATHIA/A.\ SPARK/final_restaurant_users_all.json"
# Create a SparkSession
spark = SparkSession.builder.appName("Popular_Reviewer").getOrCreate()
# Json raw data
business_dataFrame = spark.read.json(path1)
reviews_dataFrame = spark.read.json(path2)
users_dataFrame = spark.read.json(path3)
top_business = business_dataFrame.select("business_id", "name", "city", "review_count").orderBy("review_count", ascending=False)
top_reviews = reviews_dataFrame.select("business_id", "user_id").orderBy("user_id", ascending=False)
top_reviewer = users_dataFrame.select("user_id", "name", "fans").orderBy("fans", ascending=False)
top_reviewers = top_business.join(top_reviews, on=['business_id'], how='inner').orderBy("review_count", ascending=False).\
                     join(top_reviewer, on=['user_id'], how='inner').orderBy("fans", ascending=False)
top_reviewers.show(10, False) #False shows full column content
# Print the results
print("\n")
# Stop the session
spark.stop()
```

Most Popular Influencers

TOP

. 'Useful' influencer in Las Vegas (review count is from the business)

user_id	business_id	name	city	review_count	name useful
2vR0DIsmQ6WfcSzKWigw	IB8zLlGra0g9LU7qQVLPyg	Fashion Show	Las Vegas	739	Harald 154202

· 'Oldest (yelping since)' influencer in Las Vegas (business review count)

user_id	business_id	name	city	review_count	name	yelping_since
nkN_do3fJ9xekch	VC-v68A ubz4CaZXagQuGv2N9gFAdw	Botero	Las Vegas	434	Jeremy	2004-10-12 08:46:43

. Influencer with the most 'Fans' in Las Vegas (business review count)

user_id	business_id	name	city	review_count	name fans
37cpUoM8hlkSQfReIEBd-Q	0qet57CmMA5qUm6gPFUTpg	Di Fara Pizza	Las Vegas	150	Mike 9538

· Influencer with the most 'review counts' in Las Vegas

user_id	business_id	name	city	name	review_count
8k3a0-mPeyhbR5HUucA5aA	6Q7-wkCPc1KF75jZL0TcMw	ircus Circus Las Vegas Hotel & Casino	Las Vegas	Victor	13278

II. BASED ON CATEGORY:

Influencer with the most 'Fans'

user_id	business_id	name	city	categories	name fans
37cpUoM8hlkSQfReIEBd-Q	lYCeqldIiOggsbByH3RRhw	Di Fara Pizza	Las Vegas	Restaurants, Italian	Mike 9538

Top influencers:

· The most 'Useful'

user_id	name	useful
2vR0DIsmQ6WfcSzKWigw	Harald	154202
JjXuiru1 ONzDkYVrHN0aw	Richard	99162
W7DHyQlY_kXls2iXt2Ag	Maggie	89792
Hi10sGSZNxQH3NLyWSZ1oA		89418
ax7SnXOTIpatbsmgHLqVow	Rohlin	81003

· The most 'fans'

user_id	+ name	++ fans
	i	ii
37cpUoM8hlkSQfReIEBd-Q hizGc5W1tBHPqhM5YKCAtq		9538 2964
eKUGKQRE-Ywi5dY55 zChq		
iLjMdZi0Tm7DQxX1C1_2dg		2383
j14WgRoU2ZE1aw1dXrJg	Daniel	2132
+	+	++

'Oldest (yelping since)' influencer

user_id	business_id	name	city	categories	name	yelping_since
c6HT44PKCaXqzN_BdgKPCw	u8C8pRvaHXg3PgDrsUHJHQ	Papa Del's Pizza	Champaign	Food Delivery Ser	Russel	2004-10-12 08:40:43

· Influencer with the most 'review counts'

user_id	business_id	name	city	categories	name	review_count
	6Q7-wkCPc1KF75jZL0TcMw oUX2bYbqjqST-urKb0HG6w			Arts & Ent., Restaurants Desserts, Juice Bars, etc.		

· Most 'Useful' influencer in Las Vegas

user_id	business_id	name	city	categories	name useful
2vR0DIsmQ6WfcSzKWigw	uanCi40Gc1mHLGl_AT4JhQ	Treasure Island	Las Vegas	Hair Salons, Arts	Harald 154202

III. Cities reviewed by the strongest influencers

· Las Vegas on top:

user_id	business_id	name	city	name	review_count
	6Q7-wkCPc1KF75jZLOTcMw oUX2bYbgjgST-urKb0HG6w		Las Vegas Las Vegas		

. Las Vegas has the Influencer with the most 'Useful' reviews (business review count)

user_id	business_id	name	city	review_count	name useful
	IB8zLlGra0g9LU7qQVLPyg uanCi40Gc1mHLGl_AT4JhQ	Fashion Show Treasure Island			Harald 154202 Harald 154202

. Champaign has the 'oldest (yelping since)' influencer (business review count)

i	user_id	business_id	name	city	review_count	name	yelping_since
Ĭ	c6HT44PKCaXqzN_BdgKPCw	u8C8pRvaHXg3PgDrsUHJHQ	Papa Del's Pizza	Champaign	402	Russel	2004-10-12 08:40:43

friends	count
None	370441
wd3xoNaDLib8dhQ7B	148
Wc5L6iuvSNF5WGBlq	111
GGTF7hnQi6D5W77_q	98
WeVkkF5L39888IPP1	74
u3ZPMVVEzneq8x856	73
-xDW3gYiYaoeVASXy	57
O_GWZZfQx7qv-n-CN	55
lYp818T-xh8Ss79To	55
6Uup5yoodhI5upHNa	50
PhUqhfyk3jdaS0Xb6	48
Www1XySQN8t2hwqH	43
ptL7YoBv_zDhzRViT	42
ZWD8UH1T7QXQr0Eq	38
Ryxj0u0AW3mRsRypd	38
oUK6Xs5dPPnP4whFe	37
NhgU7RhuYYFmpkb1j	35
WFZIMqctBkMzzBV6I	35
PkeDOqXbgEOkR-aKU	34
NrSURtBigpxbdfL4n	34

· The most 'review counts'

user_id	name	review_count	average_stars
8k3a0-mPeyhbR5HUucA5aA \	Victor	13278	3.28
RtGqdDBvvBCjcu5dUqwfzA	Shila	12390	3.85
hWDybu_KvYLSdEFzGrniTw	Bruce	10022	3.61
P5bUL3Engv-2z6kKohB6qQ	Kim	9821	3.8
8RcEwGrFIgkt9WQ35E6SnQ10	George	17750	13.49

The oldest 'yelping since'

user_id	name	yelping_si	nce
c6HT44PKCaXqzN_BdgKPCw nkN_do3fJ9xekchVC-v68A wqoXYLWmpkEH0YvTmHBsJQ	Jeremy	2004-10-12 2004-10-12 2004-10-12	08:46:43
sE3ge33huDcNJGW3V4obww 5i0Hz6pHmXi9SoB5qomRWQ		2004-10-12 2004-10-12	

Recommendation system

We want to recommend restaurants to users

- 2 main type of recommenders:
 - Content-based recommendations (good to recommend when user has no history)
 - Collaborative filtering (good when user has a history)
- Yelp Dataset:
 - Restaurant data contains very limited information
 - Very few reviews compared to the number of restaurants and user(sparse matrix)
- Chosen approach:
 - We use collaborative filtering through matrix factorization to predict user ratings based on past ratings
 - Use Alternative Least Square (ALS) algorithm in SparkML

ALS Algorithm

- Factorize a ratings matrix R into two latent factor matrices which when multiplied back, will give a approximation of the original ratings matrix. In the approximation matrix, all the cells will be filled by an estimated rating.
- if we want to predict how user K might rate product J we just multiply those two vector together
- Cost function:

$$\min_{x_{\star},y_{\star}} \sum_{r_{u,i} \text{ is known}} (r_{ui} - x_u^T y_i)^2 + \lambda(\|x_u\|^2 + \|y_i\|^2)$$

- It's alternating because the process that generates those matrices U and P is done first by fixing U optimizing for P and then fixing P and optimizing for U and we repeat that process alternately.→ effective performance
- Using ASL-WR to avoid overfitting

ALS Algorithm

Ratings

	Au Bon Pain	Chipotle	Panda Express
John	2	5	?
Mary	?	4	?
Peter	1	?	5

Restaurants x Users^T

	Au Bon Pain	Chipotle	Panda Express
John	1.88	4.15	4.97
Mary	1.68	3.9	3.9
Peter	1.76	3.9	4.69

Restaurants

	feature1	feature2
Au Bon Pain	1.2	0.8
Chipotle	2.5	2
Panda Express	2.8	2.7

Users

	feature1	feature2
John	1.1	0.7
Mary	0.6	1.2
Peter	1	0.7

Preparing the data

- Let's consider Toronto
- 7,000 restaurants x 85,000 restaurants = 595,000,000 cells in the utility matrix!
 LOT OF MEMORY AND PROCESSING
- We need to reduce the dataset:
 - Only keep restaurants with over 40 reviews: 2,200 restaurants
 - Only keep users with over 5 reviews: 13,000 users
- 2,200 * 13,000 users = 28,600,000 MORE MANAGEABLE!
- Reviews: 144,621 => sparse = 0.5%

Split training and testing data

To train and evaluate the recommender system, the dataset will be split by time.

Training set: 80% (before Jun 2017)

Testing set: 20% (after Jun 2017)

Tuning the recommender

```
Model = ALS.train(rank=?, lambda=?, iterations=?, alpha = ?, userCol="user_id", itemCol="product_id", ratingCol="frequenty training parameters").
```

ALS relies on 3 hyperparameters:

- Rank: Number of latent features
- Iterations: Number of iterations
- Lambda: Regularization parameter

Find hyperparameters values that minimize the RMSE cost function

For tuning, we get a smaller sample from our data, we choose restaurants > 100 reviews (base on the pic), then user > 10 reviews. 895 restaurants x 5458 users = 4.8 millions, reviews = $76942 \Rightarrow \text{sparse} = 1.57509555\%$

We run 420 experiments with different hyperparameters for 10 hours. The best set of parameter is 150, 0,015, 10

Experiment result

Best Hyper Parameters:

- Rank=150
- Iterations=10
- Lamba=0.015

We use those parameters to train the full dataset for each city: Take 10 minutes per city

For Toronto, RMSE = 1.40

RMSE for other cities:

City	RMSE
Las Vegas	1.502491158
Toronto	1.408828704
Phoenix	1.479543317
Montreal	1.873554089
Calgary	2.004483722
Charlotte	1.473693724
Pittsburgh	1.591344719
Scottsdale	1.669494006
mississauga	2.015476996
Cleveland	1.873677623
Mesa	2.376086108

Demo

• Front-end:

- React Framework: Popular Javascript Framework
- Styling: Materialize
- Map Library: Leaflet
- Chart Library: e-chart

Backend:

Recommendation

User: Alana

City: Toronto

Previous visits:

+	+
cuisine	number_restaurants
+	+
American	44
Bars	15
Mexican	9
Japanese	8
Italian	7
French	6
Chinese	3
Fast Food	3
Thai	2
Coffee & Tea	2
Vegetarian	2
Indian	1
African	1
Spanish	1
Pakistani	1
Mediterranean	1
4	1

Future works

- Try with larger data using a large cluster of machines
- Influencer: use the pagerank algorithm and other graph algorithms and visualization tools
- For recommendation: Show recommendation to real users and evaluate performance using A/B testing and also try other models: hybrid, neural network (RBM)
- For web application: Use database as backend and putting more features

Questions?

