Category Theory

Swayam Chube

May 19, 2023

Contents

1	Introduction and Elementary Definitions			
	1.1 Preliminary Definitions			
		1.1.1	Categories	2
		1.1.2	Functors	3
		1.1.3	Natural Transformations	4
		1.1.4	The Category of Functors	ļ
2	2 Limits and Colimits 2.1 Limits			
3 Adjoints		8		
4	Representables			
	4.1	Repres	sentable Functors	•
			la's Lemma	

Introduction and Elementary Definitions

1.1 Preliminary Definitions

1.1.1 Categories

Definition 1.1 (Category). A category $\mathscr A$ consists of

- 1. a collection $ob(\mathscr{A})$ of objects
- 2. for each $A, B \in ob(\mathscr{A})$ a collection $\mathscr{A}(A, B)$ of morphisms from A to B
- 3. for each A, B, $C \in ob(\mathscr{A})$, a composition function

$$\circ: \mathscr{A}(B,C) \times \mathscr{A}(A,B) \to \mathscr{A}(A,C)$$

mapping $(g, f) \mapsto g \circ f$.

4. for each $A \in ob(\mathscr{A})$, an element id_A of $\mathscr{A}(A,A)$ called the identity on A.

satisfying the following:

associativity: for each $f \in \mathcal{A}(A, B)$, $g \in \mathcal{A}(B, C)$ and $h \in \mathcal{A}(C, D)$, we have $(h \circ g) \circ f = h \circ (g \circ f)$

identity: for each $f \in \mathcal{A}(A, B)$, we have $f \circ id_A = f = id_B \circ f$

Every category \mathscr{A} also has the associated *opposite category* \mathscr{A}^{op} where $ob(\mathscr{A}) = ob(\mathscr{A}^{op})$ and for each $A, B \in ob(\mathscr{A})$, $\mathscr{A}^{op}(A, B) = \mathscr{A}(B, A)$.

For example, **Set** is the category of sets with morphisms as set maps.

Definition 1.2 (Product Category). For every pair of categories \mathscr{A} and \mathscr{B} , there is the product category $\mathscr{A} \times \mathscr{B}$ where

- (a) $ob(\mathscr{A} \times \mathscr{B}) = ob(\mathscr{A}) \times ob(\mathscr{B})$
- (b) $(\mathscr{A} \times \mathscr{B})((A_1, B_1), (A_2, B_2)) = \mathscr{A}(A_1, A_2) \times \mathscr{B}(B_1, B_2)$ for all $A_1, A_2 \in \mathscr{A}$ and $B_1, B_2 \in \mathscr{B}$
- (c) For $(f_1,g_1) \in (\mathscr{A} \times \mathscr{B})((A_1,B_1),(A_2,B_2))$ and $(f_2,g_2) \in (\mathscr{A} \times \mathscr{B})((A_2,B_2),(A_3,B_3)),(f_2,g_2) \circ (f_1,g_1) = (f_2 \circ f_1,g_2 \circ g_1)$
- (d) $id_{(A,B)} = (id_A, id_B)$ for all $(A, B) \in \mathscr{A} \times \mathscr{B}$

Definition 1.3 (Isomorphism). A morphism $f \in \mathcal{A}(A, B)$ is said to be an *isomorphism* if there is $g \in \mathcal{A}(B, A)$ such that $g \circ f = \mathbf{id}_A$ and $f \circ g = \mathbf{id}_B$.

An isomorphism in **Set** is simply a bijection while an isomorphism in **Top** is a homeomorphism.

Definition 1.4 (Small, Locally Small). A category \mathscr{A} is said to be *small* ob(\mathscr{A}) is a set and $\mathscr{A}(A,B)$ is a set for all $A,B \in \mathscr{A}$. Similarly, \mathscr{A} is said to be locally small if $\mathscr{A}(A,B)$ is a set for all $A,B \in \mathscr{A}$.

Definition 1.5 (Mono, Epi). In a category \mathscr{A} , an arrow $f:A\to B$ is called a/an: **mono** if for any $C\in\mathscr{A}$ given any $g,h:C\to A$, $f\circ g=f\circ h$ implies g=h **epi** if for any $C\in\mathscr{A}$ given any $g,h:B\to C$, $g\circ f=h\circ f$ implies g=h

It is important to note that mono + epi \neq iso. For example, let **P** be a poset category. Then, every arrow $p \leq q$ is a mono and an epi but not all arrows are isos. Similarly, in **CRing**, the inclusion $\iota : \mathbb{Z} \hookrightarrow \mathbb{Q}$ is a mono and an epi but not an iso.

Proposition 1.6. Epis in **Grp** are precisely surjective group homomorphisms.

Proof.

Definition 1.7 (Initial, Terminal). In a category \mathscr{A} , an object $\mathbf{0}$ is said to be *initial* if for each $A \in \mathscr{A}$, $\mathscr{A}(\mathbf{0},A)$ is a singleton. Similarly, an object $\mathbf{1}$ is said to be *terminal* if for each $A \in \mathscr{A}$, $\mathscr{A}(A,\mathbf{1})$ is a singleton.

In **Set**, the empty set is the initial object while every singleton is a terminal object. In **CRing**, \mathbb{Z} is an initial object while the zero ring is a terminal object.

Proposition 1.8. *Initial (terminal) objects are unique upto a unique isomorphism.*

Proof. Let $\mathbf{0}$ and $\mathbf{0}'$ be initial objects in \mathscr{A} . Then, there are unique morphisms $f: \mathbf{0} \to \mathbf{0}'$ and $g: \mathbf{0} \to \mathbf{0}'$. Since $g \circ f \in \mathscr{A}(\mathbf{0}, \mathbf{0}')$, we must have $g \circ f = \mathbf{id_0}$ and similarly, $f \circ g = \mathbf{id_0}'$. Hence f and g are isomorphisms. Uniqueness follows from the definition of initial objects.

An analogous proof works for terminal objects.

1.1.2 Functors

Definition 1.9 (Functor). Let \mathscr{A} and \mathscr{B} be categories. A functor $F: \mathscr{A} \to \mathscr{B}$ consists of

- a function $ob(\mathscr{A}) \to ob(B)$ written as $A \mapsto F(A)$
- for each $A, A' \in \mathcal{A}$, a function $\mathcal{A}(A, A') \to \mathcal{B}(F(A), F(A'))$, written as $f \mapsto F(f)$

satisfying the following axioms

covariancy: $F(f' \circ f) = F(f') \circ F(f)$ whenever $A \xrightarrow{f} A' \xrightarrow{f'} A''$ in \mathscr{A}

identity consistency: $F(id_A) = id_{F(A)}$ whenever $A \in \mathscr{A}$

Such a functor is sometimes also called a **covariant functor**.

Let Top_* denote the category of topological spaces equipped with a basepoint. Let π be the map that maps a pointed topological space (X,x_0) to its fundamental group $\pi(X,x_0)$. We claim that this is a covariant functor. Let $\phi:(X,x_0)\to (Y,y_0)$ be a continuous function. One knows from algebraic topology that the above continuous map induces a homomorphism $\phi_*:\pi(X,x_0)\to\pi(Y,y_0)$ given by $[f]\mapsto [\phi\circ f]$. It is not hard to see that this is a covariant functor.

Definition 1.10 (Contravariant Functor). Let \mathscr{A} and \mathscr{B} be categories. A contravariant functor from \mathscr{A} to \mathscr{B} is a functor $F : \mathscr{A}^{\mathrm{op}} \to \mathscr{B}$.

Let **Top** be the category of topological spaces. For a topological space X, let C(X) denote the ring of continuous functions $X \to \mathbb{R}$. That is, $C(X) \in \mathbf{Ring}$. We claim that C(X) is a contravariant functor from **Top** to **Ring**. Indeed, let $f: X \to Y$ be a continuous function. Then, we have the following commutative diagram:

$$X \xrightarrow{f} Y$$

$$\downarrow^{g}$$

$$\mathbb{R}$$

The continuous function f induces a map $f_*: C(Y) \to C(X)$ given by $g \mapsto g \circ f$. It is not hard to see now that the functor C is a contravariant functor from **Top** to **Ring** which maps a morphism f to a morphism f_* .

Definition 1.11 (Presheaf). A presheaf is a contravariant functor from \mathscr{A} to **Set**. That is, a functor $F: \mathscr{A}^{\mathrm{op}} \to \mathbf{Set}$.

Let X be a topological space and let $\mathcal{O}(X)$ denote the category of open subsets of X with inclusion morphisms. This gives $\mathcal{O}(X)$ the structure of a poset. Consider now the map $F : \mathcal{O}(X)^{\operatorname{op}} \to \operatorname{\mathbf{Set}}$ given by

$$F(U) = \{\text{continuous functions } U \to \mathbb{R}\}$$

That this is a functor follows from the fact that if $U \subseteq V$, then the restriction of a continuous function $f: V \to \mathbb{R}$ to U is continuous.

Definition 1.12. A functor $F: \mathscr{A} \to \mathscr{B}$ is *faithful* if for each $A, A' \in \mathscr{A}$, the map $\mathscr{A}(A, A') \to \mathscr{B}(F(A), F(A'))$ given by $f \mapsto F(f)$ is injective. Similarly, it is said to be *full* if the map is surjective.

1.1.3 Natural Transformations

Definition 1.13 (Natural Transformation). Let \mathscr{A} and \mathscr{B} be categories and let $F,G:\mathscr{A}\longrightarrow\mathscr{B}$ be functors. A *natural transformation* $\alpha:F\to G$ is a family $\left(F(A)\xrightarrow{\eta_A}G(A)\right)_{A\in\mathscr{A}}$ of maps in \mathscr{B} such that for every map $A\xrightarrow{f}A'$ in \mathscr{A} , the following diagram commutes

$$F(A) \xrightarrow{F(f)} F(A')$$

$$\eta_A \downarrow \qquad \qquad \downarrow \eta_{A'}$$

$$G(A) \xrightarrow{G(f)} G(A')$$

The maps η_A are called the *components* of η . When η_A is an isomorphism for all $A \in \mathscr{A}$, then η is said to be a natural isomorphism.

Consider **CRing**, the category of commutative rings and **Mon**, the category of monoids. Consider the covariant functor M_n : **CRing** \rightarrow **Mon** that maps a commutative ring R to the monoid $M_n(R)$ of $n \times n$ matrices with entries from R.

Consider now the forgetful functor U: **CRing** \rightarrow **Mon** that maps a ring R to its multiplicative monoid. It is not hard to see that \det_n is a natural transformation from $M_n \rightarrow U$.

1.1.4 The Category of Functors

Let \mathscr{A} and \mathscr{B} be categories. Denote by $[\mathscr{A},\mathscr{B}]$, the category with objects as functors from \mathscr{A} to \mathscr{B} and morphisms as natural transformations between functors. That this is a category follows from the fact that the composition of two natural transformations is a natural transformation.

In particular, the category $[\mathscr{A}^{op}, \mathbf{Set}]$ is called the *presheaf category* on \mathscr{A} .

Limits and Colimits

Definition 2.1 (Diagram). A *diagram* is a functor $D : \mathscr{I} \to \mathscr{A}$ where \mathscr{I} is some indexing category. The category \mathscr{I} is sometimes called the *shape category*.

For example, \mathcal{I} could be given by

The corresponding diagram is called a *pullback diagram*. The dual to this is the *pushout diagram* given by the indexing category:

Definition 2.2 (Cone). Let $D: \mathscr{I} \to \mathscr{A}$ be a diagram. A *cone* on D is an object $A \in \mathscr{A}$, the *vertex* of the cone, together with a family

$$\left(A \xrightarrow{f_I} D(I)\right)_{I \in \mathscr{I}}$$

of maps in $\mathscr A$ such that for each $I,J\in \mathrm{ob}(\mathscr I)$, and $u\in \mathscr I(I,J)$, the following diagram commutes.

We shall denote such a cone by the shorthand $(A, \{f_I\}_{I \in \mathscr{J}})$.

For example, a cone over the a pullback diagram is

$$\begin{array}{ccc}
A - - \to X \\
\downarrow & & \downarrow \\
Y \longrightarrow Z
\end{array}$$

2.1 Limits

Definition 2.3 (Limit). Let $D: \mathscr{I} \to \mathscr{A}$ be a diagram. A *limit* of D is a cone $(L, \{p_I\}_{I \in \mathscr{I}})$ such that for any other cone $(A, \{f_I\}_{I \in \mathscr{I}})$, there is a unique map $\widetilde{f}: A \to L$ such that for all $I \in \mathscr{I}$, $p_I \circ \widetilde{f} = f_I$. The maps p_I are called the *projections* of the limit.

For example, a limit over a pullback diagram is

Definition 2.4 (Product). Let \mathscr{I} be a shape category with no morphisms other than the identity morphisms. Then, a *product* in a category \mathscr{A} is a limit over a diagram $D: \mathscr{I} \to \mathscr{A}$.

In particular if \mathscr{I} is empty, then a limit over a diagram $D: \mathscr{I} \to \mathscr{A}$ is simply the *final object*.

Adjoints

Definition 3.1. Let \mathscr{A} and \mathscr{B} be locally small categories and $F : \mathscr{A} \to \mathscr{B}$ and $G : \mathscr{B} \to \mathscr{A}$ be functors. We say that F is *left adjoint* to G and G is *right adjoint* to G if there is a natural isomorphism between (bi)functors $\mathscr{A}^{op} \times \mathscr{B} \to \mathbf{Set}$.

$$\operatorname{Hom}_{\mathscr{B}}(F-,-)\cong \operatorname{Hom}_{\mathscr{A}}(-,G-)$$

We denote this adjunction by $F \dashv G$.

Upon unraveling the definition, we see that for every morphism $(f,g):(A,B)\to (A',B')$ in $\mathscr{A}\times\mathscr{B}$, the following diagram commutes:

$$\operatorname{Hom}_{\mathscr{B}}(FA,B) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(FA',B')$$

$$\downarrow^{\eta_{(A,B)}} \qquad \qquad \downarrow^{\eta_{(A',B')}}$$

$$\operatorname{Hom}_{\mathscr{A}}(A,GB) \longrightarrow \operatorname{Hom}_{\mathscr{A}}(A',GB')$$

In particular, we require that for each $A \in \mathcal{A}$ and $B \in \mathcal{B}$, there is a set bijection

$$\operatorname{Hom}_{\mathscr{B}}(FA,B) \longleftrightarrow \operatorname{Hom}_{\mathscr{A}}(A,GB)$$

Representables

4.1 Representable Functors

Definition 4.1. Let \mathscr{A} be a locally small category. Then, for each $A \in \mathscr{A}$, define the functor $H_A : \mathscr{A}^{\mathrm{op}} \to \mathbf{Set}$ given by $H_A(B) = \mathscr{A}(B,A)$. Similarly, define $H^A : \mathscr{A} \to \mathbf{Set}$ by $H^A(B) = \mathscr{A}(A,B)$.

Notice that $H_{\bullet}: \mathscr{A}^{\mathrm{op}} \to [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}]$ is a functor. This is known as the *Yoneda Embedding* of \mathscr{A} .

4.2 Yoneda's Lemma

Theorem 4.2. *Let* \mathscr{A} *be a locally small category and* $X \in ob([\mathscr{A}^{op}, \mathbf{Set}])$ *. Then,*

$$[\mathscr{A}^{op}, \mathbf{Set}](H_A, X) \cong X(A)$$

naturally in $A \in \mathcal{A}$ and $X \in [\mathcal{A}^{op}, \mathbf{Set}]$.

In particular, we are looking at the functors

$$[\mathscr{A}^{\mathrm{op}}, \mathbf{Set}](H_{\bullet_1}, \bullet_2) : \mathscr{A}^{\mathrm{op}} \times [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}] \to \mathbf{Set}$$

 $\bullet_2(\bullet_1) : \mathscr{A}^{\mathrm{op}} \times [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}] \to \mathbf{Set}$

and would like to show that they are naturally isomorphic.

Proof. In other words, for each pair $(A, X) \in \mathscr{A}^{op} \times [\mathscr{A}^{op}, \mathbf{Set}]$, we must define a map

$$\theta_{A,X}: [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}](H_A, X) \to X(A)$$

and show that this is a natural bijection. The most natural way to define this map is

$$\theta_{A,X}(\alpha) = \alpha_A(\mathbf{id}_A)$$
 $\alpha \in [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}](H_A, X)$

In order to show that $\theta_{A,X}$ is a bijection, we must construct its inverse. Let

$$\phi_{A,X}: X(A) \to [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}](H_A, X)$$

be defined by constructing a natural transformation $\widetilde{x} \in [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}](H_A, X)$ for each $x \in X(A)$. In particular, we must define, for each $B \in \mathscr{A}$, a map $\widetilde{x}_B : H_A(B) = \mathscr{A}(B, A) \to X(B)$. We do this by simply choosing $\widetilde{x}_B(f) = (X(f))(x) \in X(B)$ for each $f \in \mathscr{A}(B, A) = \mathscr{A}^{\mathrm{op}}(A, B)$. Because X(f) is a map from X(A) to X(B) in \mathbf{Set} .

We shall now show that \widetilde{x} is a natural transformation. To do so, we must show that the following square commutes for each $B, B' \in ob(\mathscr{A})$ and $g \in \mathscr{A}^{op}(B, B') = \mathscr{A}(B', B)$

$$H_{A}(B) = \mathscr{A}(B,A) \xrightarrow{H_{A}(g)} H_{A}(B') = \mathscr{A}(B',A)$$

$$\downarrow \widetilde{x}_{B'}$$

$$X(B) \xrightarrow{X(g)} X(B')$$

For any $h \in \mathscr{A}(B,A)$, we have $(H_A(g))(f) = f \circ g \in \mathscr{A}(B',A)$. Then, $\widetilde{x}_{B'}(f \circ g) = (X(f \circ g))(x)$. On the other hand, we have

$$(X(g))(\widetilde{x}_B(f)) = (X(g))((X(f))(x))$$

But by (contravariant) functoriality of X, we see that $X(f \circ g) = X(g) \circ X(f)$ and therefore, the square commutes.

Next, we must show that $\theta_{A,X}$ and $\phi_{A,X}$ are inverses to one another, which would establish that they are bijections. Pick some $x \in X(A)$. We must show that $\theta_{A,X}(\phi_{A,X}(x)) = x$. Let us, for the ease of notation, denote $\theta_{A,X} = (\widehat{\cdot})$ and we already have the notation $\phi_{A,X}(x) = \widehat{x}$.

Pick any $\alpha \in [\mathscr{A}^{op}, \mathbf{Set}](H_A, X)$. Then, $\widetilde{\alpha}$ is an element of $[\mathscr{A}^{op}, \mathbf{Set}](H_A, X)$, therefore, it suffices to show, for all $B \in ob(\mathscr{A})$ that $(\widetilde{\alpha}) = \alpha_B$. Indeed, let $f \in H_A(B) = \mathscr{A}^{op}(A, B) = \mathscr{A}(B, A)$

$$(\widetilde{\alpha}_B)(f) = (X(f))(\widehat{\alpha}) = (X(f))(\alpha_A(\mathbf{id}_A))$$

Now, since α is a natural transformation between the functors H_A and X, we have the following commutative diagram:

$$H_{A}(A) \xrightarrow{H_{A}(f)} H_{A}(B)$$

$$\downarrow^{\alpha_{B}}$$

$$X(A) \xrightarrow{X(f)} X(B)$$

Therefore, for $id_A \in H_A(A)$, we have

$$(X(f))(\alpha_A(\mathbf{id}_A)) = \alpha_B(\mathbf{id}_A \circ f) = \alpha_B(f)$$

and the conclusion follows.

We have now shown that $\theta_{A,X}$ and $\phi_{A,X}$ are bijections. Lastly, we must show that they are natural. TODO: Add in later