Paint by seismic

James Beckwith

https://github.com/James-Beckwith/hackathon_ABZ_18

https://github.com/James-Beckwith/SOM

Motivation

- Do we need to use complex image classification to separate characteristics of seismic data?
- Can we use simple clustering algorithms to define changes in the seismic instead?
 - This approach doesn't require large amounts of training data
 - Clustering and feature extraction needed on every application X

outline/workflow

- Feature extraction Derive seismic attributes
- Feature scaling try to create a normal distribution for features
 - Typical Box-Cox or log transforms
- Clustering find what areas look similar
 - K-means
 - Self Organizing Maps (SOM)

seismic

k-means

Fault zone

SOM

Ideally this should be a 2D colourmap as a 2D SOM grid was used. The colours are not necessarily representative of different seismic similarities!!

Conclusions

- Seismic data has been clustered
- Qualitatively similar points are clustered together
- Some features cause correlations that are not interesting
 - Strong reflections being stored in similar clusters

Way forward

- Different clustering? Better parameterization of current clustering algorithms?
- Application of cluster locations to new seismic to avoid need for re-clustering?
- Better/more feature extraction
 - What features should we be using

K-means clustering

Self Organizing maps (SOM)

Distributions - envelope

Distributions — envelope - transformed

Distributions — structure tensor Z

Distributions — structure tensor Z - transformed

Structure tensor X

Structure tensor Y

Structure tensor XY

Centroid frequency

Centroid bandwidth

