UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE ELECTROMECÁNICA

TRANSFORMADAS E INTEGRALES Apuntes de clase

Docente:

Ing. Marco Antonio Vallejo Camacho.

Índice general

1.	Seri	es de <i>Fourier</i>	7
	1.1.	Funciones periódicas	7
	1.2.	Propiedades de la funciones periódicas	7
		1.2.1. Funciones seno y coseno	11
		1.2.2. Propiedades ortogonales del seno y el coseno	12
	1.3.	Series de Fourier	14
		1.3.1. Condiciones de <i>Dirichlet</i>	15
	1.4.	Evaluación de los coeficientes de Fourier	16
	1.5.	Formulas para las series de <i>Fourier</i>	17
2.	Aná	lisis de formas de onda periódica	19
	2.1.	Funciones pares e impares	19
		2.1.1. Propiedades de las funciones pares e impares	20
		2.1.2. Evaluación de coeficientes de Fourier	23
	2.2.	Simetría de media onda (S.M.O.)	24
		2.2.1. Evaluación de coeficientes de <i>Fourier</i>	25
	2.3.	Simetría de cuarto de onda (S.C.O.)	27
		2.3.1. Simetría de cuarto de onda par	27
		2.3.2. Simetría de cuarto de onda impar	28
		2.3.3. Evaluación de coeficientes de <i>Fourier</i>	28
	2.4.	Expansión periódica de funciones definidas en intervalos finitos	30
3.	Seri	e compleja de <i>Fourier</i> y espectros discretos de frecuencia	32
	3.1.	Números complejos	32
		3.1.1. Formas complejas del seno y coseno	33
		3.1.2. Conjugado	33

	3.2.	Serie compleja de <i>Fourier</i>	34
		3.2.1. Evaluación del coeficiente complejo de Fourier	35
		3.2.2. Relación entre el coeficiente complejo y los coeficientes trigonométricos .	35
	3.3.	Ondas senoidales rectificadas	35
		3.3.1. Rectificación de media onda	35
		3.3.2. Rectificación de onda completa	36
	3.4.	Función escalón unitario	36
	3.5.	La función impulso	38
		3.5.1. Propiedades de la función impulso	40
	3.6.	Derivada de la función impulso	42
	3.7.	Derivada de la función escalón unitario	43
	3.8.	Derivada de una función con discontinuidades de salto	44
	3.9.	Series de Fourier por el método de diferenciación	45
	3.10	D.Espectros de frecuencia discreta	45
	3.11	.Teorema de la multiplicación	46
	3.12	2.Teorema de <i>Parseval</i>	46
4.	Tran	nsformada de <i>Fourier</i>	48
4.		nsformada de <i>Fourier</i> Integrales de <i>Fourier</i>	48 48
4.	4.1.		
4.	4.1.	Integrales de <i>Fourier</i>	48
4.	4.1.4.2.4.3.	Integrales de <i>Fourier</i>	48 49
4.	4.1.4.2.4.3.	Integrales de Fourier	48 49 50 51
4.	4.1.4.2.4.3.	Integrales de Fourier	48 49 50 51
4.	4.1.4.2.4.3.	Integrales de Fourier	48 49 50 51 51
4.	4.1.4.2.4.3.	Integrales de Fourier	48 49 50 51 51 51 52
4.	4.1.4.2.4.3.		48 49 50 51 51 51 52 52
4.	4.1.4.2.4.3.		48 49 50 51 51 51 52 52 53
4.	4.1.4.2.4.3.		48 49 50 51 51 51 52 52 53 53
4.	4.1. 4.2. 4.3. 4.4.		48 49 50 51 51 51 52 52 53 53
4.	4.1. 4.2. 4.3. 4.4.	Integrales de Fourier Transformada de Fourier Espectros continuos de frecuencia Propiedades de la transformada de Fourier 4.4.1. Linealidad 4.4.2. Cambio de escala 4.4.3. Desplazamiento en ω 4.4.4. Desplazamiento en t 4.4.5. Simetría 4.4.6. Multiplicación por t 4.4.7. Transformada de Fourier de una derivada	48 49 50 51 51 52 52 53 53 55 55
4.	4.1. 4.2. 4.3. 4.4.		48 49 50 51 51 52 52 53 53 55 55

		4.5.4. $\delta(t-t_0)$	7
		4.5.5. e^{jat}	7
		4.5.6. sen(<i>at</i>)	7
		4.5.7. $\cos(at)$	8
		4.5.8. $u(t)$	8
	4.6.	La función signo	9
		4.6.1. Transformada de <i>Fourier</i> de $ t $	0
		4.6.2. Transformada de Fourier de $1/t$	0
	4.7.	Tabla de transformadas de <i>Fourier</i> conocidas 6	2
5.	Tran	nsformada inversa de <i>Fourier</i> 6	. 3
,		Tabla de transformadas de <i>Fourier</i> inversas	
		Propiedades de la transformada inversa de <i>Fourier</i>	
	0.2.	5.2.1. Linealidad	
		5.2.2. Desplazamiento en <i>t</i>	
		5.2.3. Desplazamiento en ω	4
	5.3.	Convolución	4
	5.4.	Propiedades de la convolución	4
		5.4.1. Conmutatividad	4
		5.4.2. Asociatividad	5
		5.4.3. Distributividad	5
		5.4.4. Función impulso	5
		5.4.5. Función escalón unitario	5
	5.5.	Transformada de <i>Fourier</i> y convolución	5
	5.6.	Transformada inversa de <i>Fourier</i> por convolución 6	6
	5.7.	Ecuaciones diferenciales ordinarias	6
3 .	Tron	nsformada de <i>Laplace</i> 6	7
) .		Transformadas de funciones elementales	
	0.1.	6.1.1. <i>k</i>	
		6.1.2. $t^n \in \mathbb{N}$	
		6.1.2. e^{at}	
		6.1.4. $sen(at)$	
		6.1.5. $\cos(at)$	

		6.1.6. $\operatorname{senh}(at)$	70
		6.1.7. $\cosh(at)$	70
	6.2.	Propiedades de la transformada de <i>Laplace</i>	71
		6.2.1. Linealidad	71
		6.2.2. Desplazamiento en s	71
		6.2.3. Desplazamiento en t	71
		6.2.4. Multiplicación por t	71
		6.2.5. División por t	72
	6.3.	Tabla de transformadas de Laplace	73
	6.4.	Transformada de <i>Laplace</i> de derivadas	73
	6.5.	Transformada de Laplace de integrales	74
	6.6.	La función Gamma	74
		6.6.1. Propiedades de la función <i>Gamma</i>	75
	6.7.	Evaluación de la función Gamma	76
	6.8.	Transformada de Laplace con la función Gamma	78
	6.9.	Teoremas del valor inicial y final	78
		6.9.1. Teorema del valor inicial	78
		6.9.2. Teorema del valor final	79
7.	Tran	nsformada inversa de <i>Laplace</i>	80
	7.1.	Tabla de transformadas de <i>Laplace</i> inversas	81
	7.2.	Propiedades de la transformada inversa de Laplace	81
		7.2.1. Linealidad	81
		7.2.2. Desplazamiento en t	81
		7.2.3. Desplazamiento en s	81
		7.2.4. División por s	82
		7.2.5. Transformada inversa de la derivada	82
	7.3.	Descomposición en fracciones parciales	82
		7.3.1. Factores lineales no repetidos	82
		7.3.2. Factores lineales y repetidos	82
		7.3.3. Factores cuadráticos (con raíces imaginarias o complejas)	83
	7.4.	Convolución	83
	7.5.	Transformada inversa por convolución	83

8.	Aplicaciones de la transformada de <i>Laplace</i>			
	8.1. Ecuaciones diferenciales lineales	84		

Bibliografía recomendada

- [1] Hwei Hsu. Análisis de Fourier.
- [2] Serie Schaum. Transformada de Laplace.
- [3] Eduardo Espinoza. Transformada de Laplace.
- [4] Álvaro Hernando Carrasco Calvo. Transformadas e integrales.

Capítulo 1

Series de Fourier

1.1. Funciones periódicas

Figura 1.1: Función periódica

Una función periódica es aquella cuya gráfica se repite infinitas veces, cada cierto intervalo (**Figura 1.1**).

El menor intervalo de repetición se llama periodo(T).

Matemáticamente una función periódica es aquella que verifica:

$$f(t) = f(t + nT); n \in \mathbb{Z}$$
(1.1)

Donde T es el periodo (la menor constante que verifica la igualdad).

1.2. Propiedades de la funciones periódicas

Si
$$f(t) = f(t + nT)$$
:

Propiedad 1

$$\int_{a}^{b} f(t) dt = \int_{a+nT}^{b+nT} f(t) dt \quad n \in \mathbb{Z}$$
 (1.2)

Prueba:

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(t + nT) dt$$

Cambiando la variable:

$$\tau = t + nT$$

$$d\tau = dt$$

$$\int_{a}^{b} f(t) dt = \int_{a+nT}^{b+nT} f(\tau) d\tau$$

$$= \int_{a+nT}^{b+nT} f(t) dt$$

Puede verse gráficamente en la Figura 1.2.

Figura 1.2: Demostración gráfica

Propiedad 2

$$\int_{a-T/2}^{a+T/2} f(t) dt = \int_{-T/2}^{T/2} f(t) dt$$
 (1.3)

Prueba:

$$\int_{a-T/2}^{a+T/2} f(t) dt = \int_{a-T/2}^{T/2} f(t) dt + \int_{T/2}^{a+T/2} f(t) dt$$

$$= \int_{a-T/2}^{T/2} f(t) dt + \int_{T/2-T}^{a+T/2-T} f(t) dt$$

$$= \int_{a-T/2}^{T/2} f(t) dt + \int_{-T/2}^{a-T/2} f(t) dt$$

$$= \int_{-T/2}^{T/2} f(t) dt$$

Puede verse gráficamente en la Figura 1.3.

Figura 1.3: Demostración gráfica

Propiedad 3

$$\int_0^T f(t) dt = \int_{-T/2}^{T/2} f(t) dt$$
 (1.4)

Prueba:

Si en la ecuación (1.3) a = T/2:

$$\int_{-T/2}^{T/2} f(t) dt = \int_{a-T/2}^{a+T/2} f(t) dt$$
$$= \int_{T/2-T/2}^{T/2+T/2} f(t) dt$$
$$= \int_{0}^{T} f(t) dt$$

Puede verse gráficamente en la Figura 1.4.

Figura 1.4: Demostración gráfica

Propiedad 4

Si
$$b-a=T$$
:
$$\int_0^T f(t) dt = \int_a^b f(t) dt \tag{1.5}$$

Prueba:

$$\int_{a}^{b} f(t) dt = \int_{a}^{a+T} f(t) dt$$

$$= \int_{a}^{T} f(t) dt + \int_{T}^{a+T} f(t) dt$$

$$= \int_{a}^{T} f(t) dt + \int_{T-T}^{a+T-T} f(t) dt$$

$$= \int_{a}^{T} f(t) dt + \int_{0}^{a} f(t) dt$$

$$= \int_{0}^{T} f(t) dt$$

Puede verse gráficamente en la Figura 1.5.

Figura 1.5: Demostración gráfica

1.2.1. Funciones seno y coseno

$$f(t) = A \operatorname{sen}(\omega_0 t)$$
$$f(t) = A \cos(\omega_0 t)$$

Donde:

A: Amplitud.

 ω_0 : Frecuencia angular.

 $T=2\pi/\omega_0$: Periodo.

Ejemplo: Hallar el periodo de la siguiente función:

$$f(t) = sen(4t) + sen(3t/2) + sen(10t)$$

El periodo buscado debe contener un numero entero de veces a los 3 periodos hallados:

$$T = \begin{cases} a T_1; & a \in \mathbb{N} \\ b T_2; & b \in \mathbb{N} \\ c T_3; & c \in \mathbb{N} \end{cases}$$

$$a T_1 = b T_2 = c T_3$$

$$a \frac{2\pi}{4} = b \frac{2\pi}{3/2} = c \frac{2\pi}{10}$$

$$a \frac{\pi}{2} = b \frac{4\pi}{3} = c \frac{\pi}{5}; x30$$

$$15a = 40b = 6c$$

$$M.C.M.(15, 40, 6) = 120$$

$$120 = 15a \to a = 8$$

$$120 = 40b \to b = 3$$

$$120 = 6c \to c = 20$$

$$T = 8 \left(\frac{\pi}{2}\right) = 4\pi$$

Puede verse gráficamente en la Figura 1.6.

Figura 1.6: Periodo de la función

1.2.2. Propiedades ortogonales del seno y el coseno

Propiedad 1

$$\int_{0}^{T} \operatorname{sen}(n\omega_{0} t) dt = 0 \quad n \in \mathbb{Z}$$
(1.6)

Prueba:

$$\int_0^T \operatorname{sen}(n\omega_0 t) dt = -\frac{\cos(n\omega_0 t)}{n\omega_0} \Big|_0^T$$

$$= -\frac{\cos(n\omega_0 T)}{n\omega_0} + \frac{\cos(0)}{n\omega_0}$$

$$= -\frac{\cos(n 2\pi)}{n\omega_0} + \frac{\cos(0)}{n\omega_0}$$

$$= -\frac{1}{n\omega_0} + \frac{1}{n\omega_0}$$

$$= 0$$

$$\int_0^T \cos(n\omega_0 t) dt = 0 \quad n \in \mathbb{Z}$$
(1.7)

Prueba:

$$\int_0^T \cos(n\omega_0 t) dt = \frac{\sin(n\omega_0 t)}{n\omega_0} \Big|_0^T$$

$$= \frac{\sin(n\omega_0 T)}{n\omega_0} - \frac{\sin(0)}{n\omega_0}$$

$$= \frac{\sin(n 2\pi)}{n\omega_0} - \frac{\sin(0)}{n\omega_0}$$

$$= \frac{0}{n\omega_0} - \frac{0}{n\omega_0}$$

$$= 0$$

Propiedad 2

$$\int_0^T \operatorname{sen}(m\omega_0 t) \operatorname{sen}(n\omega_0 t) dt = 0 \quad m, n \in \mathbb{Z} \quad m \neq n$$
(1.8)

Prueba:

$$\int_{0}^{T} \operatorname{sen}(m\omega_{0} t) \operatorname{sen}(n\omega_{0} t) dt = \int_{0}^{T} \frac{1}{2} (\cos((m-n)\omega_{0} t) - \cos((m+n)\omega_{0} t)) dt$$

$$= \frac{1}{2} \left(\int_{0}^{T} \cos((m-n)\omega_{0} t) dt - \int_{0}^{T} \cos((m+n)\omega_{0} t) dt \right)$$

$$= \frac{1}{2} (0-0)$$

$$= 0$$

$$\int_0^T \cos(m\omega_0 t) \cos(n\omega_0 t) dt = 0 \quad m, n \in \mathbb{Z} \quad m \neq n$$
 (1.9)

Prueba:

$$\int_{0}^{T} \cos(m\omega_{0} t) \cos(n\omega_{0} t) dt = \int_{0}^{T} \frac{1}{2} (\cos((m-n)\omega_{0} t) + \cos((m+n)\omega_{0} t)) dt$$

$$= \frac{1}{2} \left(\int_{0}^{T} \cos((m-n)\omega_{0} t) dt + \int_{0}^{T} \cos((m+n)\omega_{0} t) dt \right)$$

$$= \frac{1}{2} (0+0)$$

$$= 0$$

$$\int_{0}^{T} \sin(m\omega_{0} t) \cos(n\omega_{0} t) dt = 0 \quad m, n \in \mathbb{Z}$$
(1.10)

Prueba:

$$\int_0^T \sin(m\omega_0 t) \cos(n\omega_0 t) dt = \int_0^T \frac{1}{2} (\sin((m-n)\omega_0 t) + \sin((m+n)\omega_0 t)) dt$$

$$= \frac{1}{2} \left(\int_0^T \sin((m-n)\omega_0 t) dt + \int_0^T \cos((m+n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} (0+0)$$

$$= 0$$

Propiedad 3

$$\int_0^T \sin^2(n\omega_0 t) dt = \frac{T}{2} \quad n \in \mathbb{Z}$$
 (1.11)

Prueba:

$$\int_{0}^{T} \operatorname{sen}^{2}(n\omega_{0} t) dt = \int_{0}^{T} \operatorname{sen}(n\omega_{0} t) \operatorname{sen}(n\omega_{0} t) dt$$

$$= \frac{1}{2} \left(\int_{0}^{T} \cos((n-n)\omega_{0} t) dt - \int_{0}^{T} \cos((n+n)\omega_{0} t) dt \right)$$

$$= \frac{1}{2} \left(\int_{0}^{T} \cos(0) dt - \int_{0}^{T} \cos((2n)\omega_{0} t) dt \right)$$

$$= \frac{1}{2} \left(\int_{0}^{T} dt - \int_{0}^{T} \cos(2n\omega_{0} t) dt \right)$$

$$= \frac{1}{2} (t \Big|_{0}^{T} - 0)$$

$$= \frac{T}{2}$$

$$\int_{0}^{T} \cos^{2}(n\omega_{0} t) dt = \frac{T}{2} \quad n \in \mathbb{Z} \tag{1.12}$$

Prueba:

$$\int_0^T \cos^2(n\omega_0 t) dt = \int_0^T \cos(n\omega_0 t) \cos(n\omega_0 t) dt$$

$$= \frac{1}{2} \left(\int_0^T \cos((n-n)\omega_0 t) dt + \int_0^T \cos((n+n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} \left(\int_0^T \cos(0) dt + \int_0^T \cos((2n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} \left(\int_0^T dt + \int_0^T \cos(2n\omega_0 t) dt \right)$$

$$= \frac{1}{2} (t \Big|_0^T + 0)$$

$$= \frac{T}{2}$$

1.3. Series de Fourier

Una función periódica que cumple ciertas condiciones puede desarrollarse mediante la serie:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)]$$
 (1.13)

Donde:

 $\omega_0=2\pi/T$: Frecuencia angular de f(t).

T: Periodo de f(t).

 $a_0; a_n; b_n$: Coeficientes de *Fourier*.

 $a_0/2$: Termino constante.

 $a_n\cos(n\omega_0\,t);b_n\sin(n\omega_0\,t)$: Armónicos, términos seno y coseno con frecuencias angulares múltiples de ω_0

```
a_1\cos(\omega_0\,t)+b_1\sin(\omega_0\,t): Primer armónico. a_2\cos(2\omega_0\,t)+b_2\sin(2\omega_0\,t): Segundo armónico. a_3\cos(3\omega_0\,t)+b_3\sin(2\omega_0\,t): Tercer armónico.
```

1.3.1. Condiciones de Dirichlet

Para que una función periódica $f(t)=f(t+nT);\,n\in\mathbb{Z}$, se desarrolle como una serie de Fourier debe cumplir:

• f(t) debe ser continua por tramos en 1 periodo.

- Debe existir un numero finito de discontinuidades (en 1 periodo).
- Debe existir un numero finito de extremos relativos (en 1 periodo).
- \blacksquare La integral $\int_0^T |f(t)|\,dt < \infty$ debe ser finita.

Ejemplo:

$$f(t) = \tan(t); \quad 0 < t < \pi; \quad T = \pi$$

$$\int_0^{\pi} |\tan(t)| dt \to \infty$$
$$t = \frac{\pi}{2} : |\tan(t)| \to \infty$$

: Esta función no tiene serie de Fourier.

1.4. Evaluación de los coeficientes de Fourier

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)]$$

Integrando ambas partes:

$$\int_{0}^{T} f(t) dt = \int_{0}^{T} \frac{a_{0}}{2} dt + \sum_{n=1}^{\infty} \left[\int_{0}^{T} a_{n} \cos(n\omega_{0} t) dt + \int_{0}^{T} b_{n} \sin(n\omega_{0} t) dt \right]$$

$$= \frac{a_{0}}{2} t \Big|_{0}^{T}$$

$$= \frac{a_{0}}{2} T$$

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$
(1.14)

Para calcular " a_n " multiplicamos por $\cos(m\omega_0 t)$; $m \in \mathbb{N}$ e integramos en 1 periodo.

$$\int_0^T f(t)\cos(m\omega_0 t) dt = \int_0^T \frac{a_0}{2}\cos(m\omega_0 t) dt$$

$$+ \sum_{n=1}^\infty \left[\int_0^T a_n \cos(n\omega_0 t) \cos(m\omega_0 t) dt + \int_0^T b_n \sin(n\omega_0 t) \cos(m\omega_0 t) dt \right]$$

$$= 0 + \sum_{n=1}^\infty \left[\int_0^T a_n \cos(n\omega_0 t) \cos(m\omega_0 t) dt + 0 \right]$$

Para $n \neq m$ todos los elementos de la sumatoria serán igual a 0. Por tanto:

$$\int_0^T f(t)\cos(n\omega_0 t) dt = \int_0^T a_n \cos^2(n\omega_0 t) dt$$

$$= a_n \frac{T}{2}$$

$$a_n = \frac{2}{T} \int_0^T f(t)\cos(n\omega_0 t) dt$$
(1.15)

Para calcular " b_n " multiplicamos por $sen(m\omega_0\,t); m\in\mathbb{N}$ e integramos en 1 periodo.

$$\int_0^T f(t) \operatorname{sen}(m\omega_0 t) dt = \int_0^T \frac{a_0}{2} \operatorname{sen}(m\omega_0 t) dt$$

$$+ \sum_{n=1}^\infty \left[\int_0^T a_n \cos(n\omega_0 t) \operatorname{sen}(m\omega_0 t) dt + \int_0^T b_n \operatorname{sen}(n\omega_0 t) \operatorname{sen}(m\omega_0 t) dt \right]$$

$$= 0 + \sum_{n=1}^\infty \left[0 + \int_0^T b_n \operatorname{sen}(n\omega_0 t) \operatorname{sen}(m\omega_0 t) dt \right]$$

Para $n \neq m$ todos los elementos de la sumatoria serán igual a 0. Por tanto:

$$\int_0^T f(t) \operatorname{sen}(n\omega_0 t) dt = \int_0^T b_n \operatorname{sen}^2(n\omega_0 t) dt$$

$$= b_n \frac{T}{2}$$

$$b_n = \frac{2}{T} \int_0^T f(t) \operatorname{sen}(n\omega_0 t) dt$$
(1.16)

1.5. Formulas para las series de Fourier

$$sen(\pi n) = 0; \quad n \in \mathbb{N}$$
$$cos(\pi n) = (-1)^n; \quad n \in \mathbb{N}$$
$$sen(2\pi n) = 0; \quad n \in \mathbb{N}$$

$$\cos(2\pi n) = 1; \quad n \in \mathbb{N}$$

$$\int \operatorname{sen}(at) \, dt = -\frac{\cos(at)}{a}$$

$$\int \cos(at) \, dt = \frac{\operatorname{sen}(at)}{a}$$

$$\int t \operatorname{sen}(at) \, dt = -\frac{t}{a} \cos(at) + \frac{1}{a^2} \operatorname{sen}(at)$$

$$\int t \cos(at) \, dt = \frac{t}{a} \operatorname{sen}(at) + \frac{1}{a^2} \cos(at)$$

$$\int e^{at} \, dt = \frac{1}{a} e^{at}$$

$$\int t e^{at} \, dt = \frac{t}{a} e^{at} - \frac{1}{a^2} e^{at}$$

Capítulo 2

Análisis de formas de onda periódica

2.1. Funciones pares e impares

Una función es par si:

Figura 2.1: La gráfica se refleja respecto al eje central.

Ejemplo 1:

$$f(t) = t^2$$

 $f(-t) = (-t)^2 = t^2 = f(t)$

Ejemplo 2:

$$f(t) = \cos(t)$$

$$f(t) = \cos(-t) = \cos(t) = f(t)$$

Una función es impar si:

$$f(-t) = -f(t) \tag{2.2}$$

(2.1)

Figura 2.2: La gráfica se refleja 1ro respecto al eje central 2do respecto al eje horizontal.

Ejemplo 3:

$$f(t) = t^3$$

 $f(-t) = (-t)^3 = -t^3 = -f(t)$

Ejemplo 4:

$$f(t) = \operatorname{sen}(t)$$

$$f(t) = \operatorname{sen}(-t) = -\operatorname{sen}(t) = -f(t)$$

Ejemplo 5:

$$f(t) = \begin{cases} e^t & t < 0 \\ e^{-t} & t > 0 \end{cases}$$

$$f(-t) = \begin{cases} e^{-t} & -t < 0 \to t > 0 \\ e^t & -t > 0 \to t < 0 \end{cases} = f(t)$$

$$f(t)$$

2.1.1. Propiedades de las funciones pares e impares

Propiedad 1

Si f(t) es par y g(t) es par, entonces h(t) = f(t)g(t) es par.

Prueba:

$$\begin{cases} f(-t) = f(t) \\ g(-t) = g(t) \end{cases}$$
$$h(-t) = f(-t)g(-t)$$
$$= f(t)g(t)$$
$$= h(t)$$

Propiedad 2

Si f(t) es impar y g(t) es impar, entonces h(t) = f(t)g(t) es par.

Prueba:

$$\begin{cases} f(-t) = -f(t) \\ g(-t) = -g(t) \end{cases}$$

Propiedad 3

Si f(t) es par y g(t) es impar, entonces h(t) = f(t)g(t) es impar.

Prueba:

$$\begin{cases} f(-t) = f(t) \\ g(-t) = -g(t) \end{cases}$$

$$h(-t) = f(-t)g(-t)$$

$$= f(t)(-g(t))$$

$$= -f(t)g(t)$$

$$= -h(t)$$

Propiedad 4

Si f(t) es **par**, entonces:

$$\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$$
 (2.3)

Prueba:

$$\int_{-a}^{a} f(t) dt = \int_{-a}^{0} f(t) dt + \int_{0}^{a} f(t) dt$$

$$= \int_{-a}^{0} f(-t) dt + \int_{0}^{a} f(t) dt$$

$$\tau = -t$$

$$d\tau = -dt$$

$$\int_{-a}^{a} f(t) dt = \int_{a}^{0} f(\tau) (-d\tau) + \int_{0}^{a} f(t) dt$$

$$= \int_{0}^{a} f(\tau) d\tau + \int_{0}^{a} f(t) dt$$

$$= 2 \int_{0}^{a} f(t) dt$$

Propiedad 5

Si f(t) es **impar**, entonces:

Prueba:

$$\int_{-a}^{a} f(t) dt = \int_{-a}^{0} f(t) dt + \int_{0}^{a} f(t) dt$$

$$= \int_{-a}^{0} -f(-t) dt + \int_{0}^{a} f(t) dt$$

$$\tau = -t$$

$$d\tau = -dt$$

$$\int_{-a}^{a} f(t) dt = -\int_{a}^{0} f(\tau) (-d\tau) + \int_{0}^{a} f(t) dt$$

$$= -\int_{0}^{a} f(\tau) d\tau + \int_{0}^{a} f(t) dt$$

2.1.2. Evaluación de coeficientes de Fourier

Simetría par

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$

$$= \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt$$

$$= \frac{2}{T} \left(2 \int_{0}^{T/2} f(t) dt \right)$$

$$= \frac{4}{T} \int_{0}^{T/2} f(t) dt$$

$$a_{0} = \frac{4}{T} \int_{0}^{T/2} f(t) dt$$

$$a_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_{0} t) dt$$

$$= \frac{2}{T} \left(2 \int_{0}^{T/2} f(t) \cos(n\omega_{0} t) dt \right)$$

$$= \frac{4}{T} \int_{0}^{T/2} f(t) \cos(n\omega_{0} t) dt$$

$$a_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \cos(n\omega_{0} t) dt$$

$$a_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \cos(n\omega_{0} t) dt$$
(2.6)

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \operatorname{sen}(n\omega_0 t) dt$$

$$= 0$$

$$b_n = 0$$
(2.7)

Simetría impar

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$

$$= \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt$$

$$= 0$$

$$a_{0} = 0 \qquad (2.8)$$

$$a_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_{0} t) dt$$

$$= 0$$

$$a_{n} = 0 \qquad (2.9)$$

$$b_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega_{0} t) dt$$

$$= \frac{2}{T} \left(2 \int_{0}^{T/2} f(t) \sin(n\omega_{0} t) dt \right)$$

$$= \frac{4}{T} \int_{0}^{T/2} f(t) \sin(n\omega_{0} t) dt$$

$$b_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \sin(n\omega_{0} t) dt \qquad (2.10)$$

2.2. Simetría de media onda (S.M.O.)

f(t) tiene simetría de media onda si:

$$f(t) = -f(t \pm \frac{T}{2})$$

Figura 2.3: La gráfica se desplaza 1/2 periodo y se refleja respecto a t.

2.2.1. Evaluación de coeficientes de Fourier

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt + \int_{T/2}^{T} f(t) dt \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt - \int_{t=T/2}^{t=T} f(t - \frac{T}{2}) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$a_{0} = \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt - \int_{\tau=T/2-T/2}^{\tau=T-T/2} f(\tau) d\tau \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt - \int_{0}^{T/2} f(\tau) d\tau \right]$$

$$a_{0} = 0$$

$$a_{0} = 0$$

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) \cos(n\omega_{0} t) dt$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) \cos(n\omega_{0} t) dt - \int_{T/2}^{T} f(t) \cos(n\omega_{0} t) dt \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) \cos(n\omega_{0} t) dt - \int_{T/2}^{T} f(t - \frac{T}{2}) \cos(n\omega_{0} t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$a_n = \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \int_{\tau - T/2 - T/2}^{\tau - T/2} f(\tau) \cos(n\omega_0 (\tau + \frac{T}{2})) d\tau \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \int_0^{T/2} f(\tau) \cos(n\omega_0 (\tau + \frac{T}{2})) d\tau \right]$$

$$n\omega_0 (\tau + T/2) = n\omega_0 \tau + n\omega_0 \frac{T}{2}$$

$$= n\omega_0 \tau + n^2 \frac{T}{T} \frac{T}{2}$$

$$= n\omega_0 \tau + n\pi$$

$$\cos(n\omega_0 \tau + n\pi) = \cos(n\omega_0 \tau) \cos(n\pi) - \sin(n\pi) \sin(n\omega_0 \tau)$$

$$= \cos(n\omega_0 \tau) \cos(n\pi)$$

$$a_n = \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \int_0^{T/2} f(\tau) \cos(n\omega_0 \tau) \cos(n\pi) d\tau \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \cos(n\pi) \int_0^{T/2} f(\tau) \cos(n\omega_0 \tau) d\tau \right]$$

$$= \frac{2}{T} \left[1 - \cos(\pi n) \right] \left(\int_0^{T/2} f(t) \cos(n\omega_0 t) dt \right)$$

$$\cos(\pi n) = \begin{cases} 1 & n : \text{par} \\ -1 & n : \text{impar} \end{cases}$$

$$\begin{cases} n : \text{par} \quad a_n = 0 \\ n : \text{impar} \quad a_n = \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega_0 t) dt \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \sin(n\omega_0 t) dt + \int_{T/2}^T f(t) \sin(n\omega_0 t) dt \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \sin(n\omega_0 t) dt - \int_{T/2}^T f(t - \frac{T}{2}) \sin(n\omega_0 t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$b_n = \frac{2}{T} \left[\int_0^{T/2} f(t) \sin(n\omega_0 t) dt - \int_{\tau - T/2 - T/2}^T f(\tau) \sin(n\omega_0 \tau + \frac{T}{2}) d\tau \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \sin(n\omega_0 t) dt - \int_{\tau - T/2 - T/2}^T f(\tau) \sin(n\omega_0 \tau + \frac{T}{2}) d\tau \right]$$

$$n\omega_{0}(\tau + T/2) = n\omega_{0}\tau + n\omega_{0}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\frac{2\pi}{T}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\pi$$

$$\operatorname{sen}(n\omega_{0}\tau + n\pi) = \operatorname{sen}(n\omega_{0}\tau) \cos(n\pi) + \operatorname{sen}(n\pi) \cos(n\omega_{0}\tau)$$

$$= \operatorname{sen}(n\omega_{0}\tau) \cos(n\pi)$$

$$b_{n} = \frac{2}{T} \left[\int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt - \int_{0}^{T/2} f(\tau) \operatorname{sen}(n\omega_{0}\tau) \cos(n\pi) d\tau \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt - \cos(n\pi) \int_{0}^{T/2} f(\tau) \operatorname{sen}(n\omega_{0}\tau) d\tau \right]$$

$$= \frac{2}{T} (1 - \cos(\pi n)) \left(\int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt \right)$$

$$\cos(\pi n) = \begin{cases} 1 & n : \operatorname{par} \\ -1 & n : \operatorname{impar} \end{cases}$$

$$\begin{cases} n : \operatorname{par} & b_{n} = 0 \\ n : \operatorname{impar} & b_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt \end{cases}$$

$$(2.13)$$

2.3. Simetría de cuarto de onda (S.C.O.)

2.3.1. Simetría de cuarto de onda par

Una función f(t) tiene simetría de cuarto de onda **par** cuando:

- f(t) es par.
- f(t) tiene simetría de media onda.

2.3.2. Simetría de cuarto de onda impar

Una función f(t) tiene simetría de cuarto de onda **impar** cuando:

- f(t) es impar.
- f(t) tiene simetría de media onda.

2.3.3. Evaluación de coeficientes de Fourier

Simetría de cuarto de onda par

Como la función f(t) tiene simetría de media onda:

$$a_0 = 0$$
 (2.14)

Como la función f(t) es una función par:

$$b_n = 0 ag{2.15}$$

Como la función f(t) tiene simetría de media onda: $a_n=0$ cuando n es par.

Para n impar:

$$a_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \cos(n\omega_{0} t) dt$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \cos(n\omega_{0} t) dt + \int_{T/4}^{T/2} f(t) \cos(n\omega_{0} t) dt \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \cos(n\omega_{0} t) dt - \int_{T/4}^{T/2} f(t - \frac{T}{2}) \cos(n\omega_{0} t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$a_n = \frac{4}{T} \left[\int_0^{T/4} f(t) \cos(n\omega_0 t) dt - \int_{\tau=T/4-T/2}^{\tau=T/2-T/2} f(\tau) \cos(n\omega_0(\tau + \frac{T}{2})) d\tau \right]$$

$$= \frac{4}{T} \left[\int_0^{T/4} f(t) \cos(n\omega_0 t) dt - \int_{-T/4}^0 f(\tau) \cos(n\omega_0(\tau + \frac{T}{2})) d\tau \right]$$

$$n\omega_0(\tau + T/2) = n\omega_0 \tau + n\omega_0 \frac{T}{2}$$

$$= n\omega_0 \tau + n\frac{2\pi}{T} \frac{T}{2}$$

$$= n\omega_0 \tau + n\pi$$

$$\cos(n\omega_0 \tau + n\pi) = \cos(n\omega_0 \tau) \cos(n\pi) - \sin(n\pi) \sin(n\omega_0 \tau)$$

$$= \cos(n\omega_0 \tau) \cos(n\pi)$$

$$= -\cos(n\omega_0 \tau)$$

$$a_n = \frac{4}{T} \left[\int_0^{T/4} f(t) \cos(n\omega_0 t) dt + \int_{-T/4}^0 f(\tau) \cos(n\omega_0 \tau) d\tau \right]$$

$$= \frac{4}{T} \left[\int_{-T/4}^{T/4} f(t) \cos(n\omega_0 t) dt \right]$$

$$= \frac{4}{T} \left[2 \int_0^{T/4} f(t) \cos(n\omega_0 t) dt \right]$$

$$= \frac{8}{T} \int_0^{T/4} f(t) \cos(n\omega_0 t) dt$$

$$= \frac{8}{T} \int_0^{T/4} f(t) \cos(n\omega_0 t) dt$$
(2.16)

Simetría de cuarto de onda impar

Como la función f(t) tiene simetría de media onda:

$$a_0 = 0$$
 (2.17)

Como la función f(t) es una función impar:

$$a_n = 0 ag{2.18}$$

Como la función f(t) tiene simetría de media onda: $b_n = 0$ cuando n es par.

Para n impar:

$$b_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0} t) dt$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0} t) dt + \int_{T/4}^{T/2} f(t) \operatorname{sen}(n\omega_{0} t) dt \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0} t) dt - \int_{T/4}^{T/2} f(t - \frac{T}{2}) \operatorname{sen}(n\omega_{0} t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$b_{n} = \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0} t) dt - \int_{\tau = T/4 - T/2}^{\tau = T/2 - T/2} f(\tau) \operatorname{sen}(n\omega_{0}(\tau + \frac{T}{2})) d\tau \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0} t) dt - \int_{-T/4}^{0} f(\tau) \operatorname{sen}(n\omega_{0}(\tau + \frac{T}{2})) d\tau \right]$$

$$n\omega_{0}(\tau + T/2) = n\omega_{0}\tau + n\omega_{0}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\frac{2\pi}{T}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\pi$$

$$\operatorname{sen}(n\omega_{0}\tau + n\pi) = \operatorname{sen}(n\omega_{0}\tau) \cos(n\pi) + \operatorname{sen}(n\pi) \cos(n\omega_{0}\tau)$$

$$= \operatorname{sen}(n\omega_{0}\tau)$$

$$= \operatorname{sen}(n\omega_{0}\tau)$$

$$b_{n} = \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0} t) dt + \int_{-T/4}^{0} f(\tau) \operatorname{sen}(n\omega_{0}\tau) d\tau \right]$$

$$= \frac{4}{T} \left[\int_{-T/4}^{T/4} f(t) \operatorname{sen}(n\omega_{0} t) dt \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0} t) dt \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0} t) dt \right]$$

$$= \frac{8}{T} \int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0} t) dt$$

$$(2.19)$$

2.4. Expansión periódica de funciones definidas en intervalos finitos

Sea f(t) una función no periódica:

f(t) se convierte en periódica al repetirla un intervalo $T \geq M$.

f(t) puede expandirse periódicamente asignando alguna simetría conocida.

Capítulo 3

Serie compleja de *Fourier* y espectros discretos de frecuencia

3.1. Números complejos

Unidad imaginaria: $i=j=\sqrt{-1}$ Forma rectangular: z=a+jbMódulo: $|z|=\sqrt{a^2+b^2}$ Argumento: $\theta=\arctan(\frac{b}{a})$

Forma polar:

$$z = |z|\cos(\theta) + j|z|\sin(\theta) = |z|(\cos(\theta) + j\sin(\theta))$$

Formula de Euler:

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$
 (3.1)

Por tanto:

$$z=|z|e^{j\theta}$$

Forma exponencial o fasorial:

$$z = |z| \angle \theta$$

3.1.1. Formas complejas del seno y coseno

$$e^{j\theta} = \cos(\theta) + j\sin(\theta) \tag{3.2}$$

$$e^{-j\theta} = \cos(\theta) - j\sin(\theta)$$
 (3.3)

Sumando las ecuaciones 3.2 y 3.3:

$$e^{j\theta} + e^{-j\theta} = 2\cos(\theta)$$

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
(3.4)

Restando las ecuaciones 3.2 y 3.3:

$$e^{j\theta} - e^{-j\theta} = 2j \operatorname{sen}(\theta)$$

$$\operatorname{sen}(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$
(3.5)

3.1.2. Conjugado

$$z = a + jb = |z| \angle \theta$$
$$z* = a - jb = |z| \angle - \theta$$
$$(z)(z*) = |z|^{2}$$

3.2. Serie compleja de Fourier

Partiendo de la serie trigonométrica de Fourier:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) + b_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2j} \right) \right]$$

$$\frac{1}{j} = -j$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) - jb_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) \right]$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} + \left(\frac{a_n + jb_n}{2} \right) e^{-jn\omega_0 t} \right]$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} \right] + \sum_{n=1}^{\infty} \left[\left(\frac{a_n + jb_n}{2} \right) e^{-jn\omega_0 t} \right]$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} \right] + \sum_{n=1}^{\infty} \left[\left(\frac{a_n + jb_n}{2} \right) e^{jn\omega_0 t} \right]$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} \right] + \sum_{n=-1}^{\infty} \left[\left(\frac{a_n + jb_n}{2} \right) e^{jn\omega_0 t} \right]$$

Sean los coeficientes complejos de Fourier:

$$c_n = \frac{a_n - jb_n}{2}$$
$$c_0 = \frac{a_0}{2}$$

Entonces:

$$f(t) = c_0 + \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} c_n e^{jn\omega_0 t}$$

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_0 t}$$
(3.6)

3.2.1. Evaluación del coeficiente complejo de Fourier

$$c_n = \frac{a_n - jb_n}{2}$$

$$= \frac{1}{2} \left[\frac{2}{T} \int_0^T f(t) \cos(n\omega_0 t) dt - j \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt \right]$$

$$= \frac{1}{T} \int_0^T f(t) \left[\cos(n\omega_0 t) - j \sin(n\omega_0 t) \right] dt$$

$$= \frac{1}{T} \int_0^T f(t) e^{-jn\omega_0 t} dt$$

$$c_n = \frac{1}{T} \int_0^T f(t) e^{-jn\omega_0 t} dt$$
 (3.7)

En particular:

$$c_0 = \frac{1}{T} \int_0^T f(t) \, dt \tag{3.8}$$

3.2.2. Relación entre el coeficiente complejo y los coeficientes trigonométricos

$$c_{n} = \frac{a_{n} - jbn}{2} = \frac{a_{n}}{2} + j\frac{-b_{n}}{2}$$

$$\frac{a_{n}}{2} = \mathbb{R}e\{c_{n}\}$$

$$a_{n} = 2\mathbb{R}e\{c_{n}\}$$

$$-\frac{b_{n}}{2} = \mathbb{I}m\{c_{n}\}$$

$$b_{n} = -2\mathbb{I}m\{c_{n}\}$$
(3.10)

3.3. Ondas senoidales rectificadas

3.3.1. Rectificación de media onda

$$f(t) = \begin{cases} A \operatorname{sen}(\omega_0 t) & 0 < t < T/2 \\ 0 & T/2 < t < T \end{cases}$$

$$T = \frac{2\pi}{\omega_0}$$

El periodo de la onda rectificada es el mismo que de la onda original.

3.3.2. Rectificación de onda completa

El periodo de la onda rectificada es la mitad del periodo de la onda original.

3.4. Función escalón unitario

Una variante es:

$$u(-t) = \begin{cases} 1 & t < 0 \\ 0 & t > 0 \end{cases}$$

De manera general:

Si: $\phi(t)$ es una función de prueba:

$$\phi(t)u(t-t_0) = \begin{cases} 0 & t < t_0 \\ \phi(t) & t > t_0 \end{cases}$$
 (3.13)

$$\phi(t)(u(t-t_1)-u(t-t_2)) = \begin{cases} 0 & t \notin [t_1, t_2] \\ \phi(t) & t \in [t_1, t_2] \end{cases}$$

3.5. La función impulso

Pulso rectangular de área igual a 1.

Si $\xi \to 0$, entonces $\frac{1}{2\xi} \to \infty$.

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases}$$

Tal que:

$$\int_{-\xi}^{\xi} \delta(t) \, dt = 1$$

Por tanto:

$$k\delta(t) = \begin{cases} 0 & t \neq 0 \\ \pm \infty & t = 0 \end{cases}$$
 (3.14)

Si: $\phi(t)$ es una función de prueba:

$$\phi(t)\delta(t-t_0) = \phi(t_0)\delta(t-t_0) \tag{3.15}$$

Para $t \neq 0$

$$\phi(t)\delta(t-t_0)=0$$

Para t=0

$$\phi(t)\delta(t-t_0) = \phi(t_0)\delta(t-t_0)$$

3.5.1. Propiedades de la función impulso

Propiedad 1

$$\int_{a}^{b} \delta(t - t_0) dt = \begin{cases} 1 & t_0 \in [a, b] \\ 0 & t_0 \notin [a, b] \end{cases}$$

En general:

$$\int_{-\infty}^{\infty} \delta(t - t_0) dt = 1 \tag{3.16}$$

Propiedad 2

$$\int_{a}^{b} \phi(t) \, \delta(t - t_0) \, dt = \begin{cases} \phi(t_0) & t_0 \in [a, b] \\ 0 & t_0 \notin [a, b] \end{cases}$$

En general:

$$\int_{-\infty}^{\infty} \phi(t_0) \, \delta(t - t_0) \, dt = \phi(t_0) \tag{3.17}$$

Prueba:

$$\int_{-\infty}^{\infty} \phi(t)\delta(t - t_0) dt = \int_{-\infty}^{\infty} \phi(t_0)\delta(t - t_0) dt$$
$$= \phi(t_0) \int_{-\infty}^{\infty} \delta(t - t_0) dt$$
$$= \phi(t_0)$$

Propiedad 3

$$\int_{-\infty}^{\infty} \phi(t) \, \delta(at) \, dt = \frac{1}{|a|} \int_{-\infty}^{\infty} \phi\left(\frac{t}{a}\right) \delta(t) \, dt = \frac{\phi(0)}{|a|}; a \neq 0 \tag{3.18}$$

Prueba:

Realizando un cambio de variable:

$$\tau = at$$

$$d\tau = a dt$$

Para a > 0:

$$\int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) \frac{d\tau}{a} = \frac{1}{a} \int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) d\tau$$

Para a < 0:

$$\int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) \, \frac{d\tau}{a} = -\frac{1}{a} \int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) d\tau$$

Como:

$$|a| = \begin{cases} -a & a < 0 \\ a & a > 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \phi(t) \, \delta(at) \, dt = \frac{1}{|a|} \int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) \, d\tau$$

$$= \frac{1}{|a|} \phi\left(\frac{0}{a}\right)$$

$$= \frac{\phi(0)}{|a|}$$

Propiedad 4

$$\delta(at) = \frac{1}{|a|}\delta(t) \tag{3.19}$$

En particular:

$$\delta(-t) = \delta(t) \tag{3.20}$$

Por tanto $\delta(t)$ es una función **par**.

Prueba:

$$\begin{split} \int_{-\infty}^{\infty} \phi(t) \, \delta(at) \, dt &= \frac{1}{|a|} \phi(0) \\ &= \frac{1}{|a|} \int_{-\infty}^{\infty} \phi(t) \, \delta(t) \, dt \\ \phi(t) \, \delta(at) &= \frac{1}{|a|} \phi(t) \, \delta(t) \\ \delta(at) &= \frac{1}{|a|} \, \delta(t) \end{split}$$

Para a = -1:

$$\delta(-t) = \frac{1}{|-1|} \, \delta(t) = \delta(t)$$

Propiedad 5

$$t\,\delta(t)=0$$

$$t^n\,\delta(t)=0; n\in\mathbb{N} \tag{3.21}$$

Prueba:

$$\int_{-\infty}^{\infty} t^n \, \delta(t) \, dt = 0^n = 0$$

Derivando ambos miembros:

$$t^n \, \delta(t) \, dt = 0$$

3.6. Derivada de la función impulso

$$\delta'(t) = \frac{d}{dt}(\delta(t))$$

$$\int_{-\infty}^{\infty} \phi(t)\delta'(t) dt = -\int_{-\infty}^{\infty} \phi'(t)\delta(t) dt = -\phi'(0)$$
(3.22)

Prueba:

Realizando la integración por partes:

$$u = \phi(t)$$

$$du = \phi'(t) dt$$

$$dv = \delta'(t - t_0) dt$$

$$v = \delta(t - t_0)$$

$$\int_{-\infty}^{\infty} \phi(t)\delta'(t - t_0) dt = (\phi(t)\delta(t - t_0)\Big|_{-\infty}^{\infty}) - \int_{-\infty}^{\infty} \delta(t - t_0)\phi'(t) dt$$

$$= 0 - \int_{-\infty}^{\infty} \delta(t - t_0)\phi'(t) dt$$

$$= -\phi'(t_0)$$

Derivadas de orden superior

$$\int_{-\infty}^{\infty} \phi(t)\delta''(t) dt = \int_{-\infty}^{\infty} \phi(t)(\delta'(t))' dt$$
$$= -\int_{-\infty}^{\infty} \phi'(t)\delta'(t) dt$$
$$= \int_{-\infty}^{\infty} \phi''(t)\delta(t) dt$$
$$= \phi''(0)$$

De igual manera:

$$\int_{-\infty}^{\infty} \phi(t)\delta'''(t-t_0) dt = -\phi'''(t_0)$$

En general:

$$\int_{-\infty}^{\infty} \phi(t)\delta^{(n)}(t-t_0) dt = (-1)^n \phi^{(n)}(t_0)$$
(3.23)

3.7. Derivada de la función escalón unitario

$$u'(t - t_0) = \delta(t - t_0) \tag{3.24}$$

Prueba:

$$\int_{-\infty}^{\infty} u'(t)\phi(t)\,dt$$

Realizando la integración por partes:

$$u = \phi(t)$$
$$du = \phi'(t) dt$$
$$dv = u'(t) dt$$

$$v = u(t)$$

$$\int_{-\infty}^{\infty} \phi(t)u'(t) dt = (\phi(t)u(t)\Big|_{-\infty}^{\infty}) - \int_{-\infty}^{\infty} u(t)\phi'(t) dt$$

$$= -\int_{-\infty}^{\infty} u(t)\phi'(t) dt$$

$$= -\int_{0}^{\infty} 1 \phi'(t) dt$$

$$= -\phi(t)\Big|_{0}^{\infty}$$

$$= -\phi(\infty) + \phi(0)$$

Asumiendo que $\phi(\pm \infty) = 0$:

$$\int_{-\infty}^{\infty} \phi(t)u'(t) dt = \phi(0)$$

Sabiendo que:

$$\int_{-\infty}^{\infty} \phi(t)\delta(t) dt = \phi(0)$$

Por tanto:

$$\int_{-\infty}^{\infty} \phi(t)u'(t) dt = \int_{-\infty}^{\infty} \phi(t)\delta(t) dt$$
$$\phi(t)u'(t) = \phi(t)\delta(t)$$
$$u'(t) = \delta(t)$$

3.8. Derivada de una función con discontinuidades de salto

Las derivadas de los saltos de subida y bajada, van a originar impulsos hacia arriba y hacia abajo, respectivamente.

3.9. Series de Fourier por el método de diferenciación

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_0 t}$$

$$c_n = \frac{1}{T} \int_0^T f(t) e^{-jn\omega_0 t} dt$$

$$f'(t) = \sum_{n = -\infty}^{\infty} jn\omega_0 c_n e^{jn\omega_0 t}$$

$$f''(t) = \sum_{n = -\infty}^{\infty} (jn\omega_0)^2 c_n e^{jn\omega_0 t}$$

$$f''(t) = \sum_{n = -\infty}^{\infty} (jn\omega_0)^2 c_n e^{jn\omega_0 t}$$

$$\gamma''_n = \frac{1}{T} \int_0^T f''(t) e^{-jn\omega_0 t} dt$$

$$\gamma''_n = \frac{1}{T} \int_0^T f''(t) e^{-jn\omega_0 t} dt$$

$$\gamma''_n = \frac{1}{T} \int_0^T f''(t) e^{-jn\omega_0 t} dt$$
(3.26)

- Se deriva f(t) hasta anularla y calcular para cada derivada: $\gamma_n^{(k)}$
- lacktriangle Las derivadas de f(t) solo van a tomar en cuenta los impulsos obtenidos de los saltos previos.
- El coeficiente complejo c_n se obtendrá de la forma:

$$c_n = c'_n + c''_n + \dots + c_n^{(k)}$$
 (3.28)

Donde:

$$c_n' = \frac{\gamma_n'}{jn\omega_0} \tag{3.29}$$

$$c_n'' = \frac{\gamma_n''}{(jn\omega_0)^2} \tag{3.30}$$

$$c_n^{(k)} = \frac{\gamma_n^{(k)}}{(jn\omega_0)^k} \tag{3.31}$$

3.10. Espectros de frecuencia discreta

Los espectros de frecuencia serán gráficas discretas de modulo y argumento del coeficiente complejo de *Fourier* en función de múltiplos de la frecuencia: ω_0 .

$$f(t) = \sum_{n=-\infty}^{\infty} c_n \, e^{jn\omega_0 \, t}$$

$$c_n = A_n + jB_n$$

$$|c_n| = \sqrt{A_n^2 + B_n^2}$$

$$\theta_n = \arctan\left(\frac{B_n}{A_n}\right)$$
 funciones discretas de $n\omega_0 \quad n \in \mathbb{Z}$

Espectro de amplitud o módulo

Espectro de fase o argumento

3.11. Teorema de la multiplicación

Dadas dos funciones periódicas con el mismo periodo T: $f_1(t)$ y $f_2(t)$.

Donde: c_1n y c_2n , son los respectivos coeficientes complejos de *Fourier*.

$$\frac{1}{T} \int_0^T f_1(t) f_2(t) dt = \sum_{n = -\infty}^\infty c_1(n) c_2(-n) = \sum_{n = -\infty}^\infty c_1(-n) c_2(n)$$
 (3.32)

Prueba:

$$\frac{1}{T} \int_0^T f_1(t) f_2(t) dt = \frac{1}{T} \int_0^T \left[\sum_{n = -\infty}^\infty c_1(n) e^{jn\omega_0 t} \right] f_2(t) dt$$

$$= \sum_{n = -\infty}^\infty c_1(n) \frac{1}{T} \int_0^T f_2(t) e^{jn\omega_0 t} dt$$

$$= \sum_{n = -\infty}^\infty c_1(n) c_2(-n)$$

3.12. Teorema de Parseval

Sea: $f_1(t) = f_2(t) = f(t)$, con coeficientes de Fourier: $c_1(n) = c_2(n) = c_n$:

Partiendo del teorema de multiplicación:

$$\frac{1}{T} \int_0^T f^2(t) dt = \sum_{n = -\infty}^{\infty} c_{(n)} c_{(-n)}$$

$$= \sum_{n = -\infty}^{\infty} c_{(n)} c_{(n)}^*$$

$$= \sum_{n = -\infty}^{\infty} |c_n|^2$$

$$= c_0^2 + \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} |c_n|^2$$

$$c_n = \frac{a_n - jb_n}{2}$$

$$|c_n|^2 = \frac{a_n^2 + b_n^2}{4}$$

$$\frac{1}{T} \int_0^T f^2(t) dt = c_0^2 + \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} \frac{a_n^2 + b_n^2}{4}$$

$$= c_0^2 + \frac{1}{4} \sum_{n = -\infty}^{\infty} (a_n^2 + b_n^2) + \frac{1}{4} \sum_{n = -\infty}^{-\infty} (a_n^2 + b_n^2)$$

Cambiando n por -n:

$$\frac{1}{T} \int_0^T f^2(t) dt = c_0^2 + \frac{1}{4} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) + \frac{1}{4} \sum_{n=1}^{-\infty} (a_{(-n)}^2 + b_{(-n)}^2)$$

Sabiendo que:

$$a_n^2 = a_{(-n)}^2$$

$$(-b_n)^2 = b_n^2$$

$$\frac{1}{T} \int_0^T f^2(t) dt = c_0^2 + \frac{1}{4} \sum_{n=1}^\infty (a_n^2 + b_n^2) + \frac{1}{4} \sum_{n=1}^\infty (a_n^2 + b_n^2)$$

$$= c_0^2 + \frac{1}{2} \sum_{n=1}^\infty (a_n^2 + b_n^2)$$

$$\frac{1}{T} \int_0^T f^2(t) dt = c_0^2 + \frac{1}{2} \sum_{n=1}^\infty (a_n^2 + b_n^2)$$
(3.33)

Capítulo 4

Transformada de *Fourier*

4.1. Integrales de Fourier

Cuando f(t) es periódica tiene la siguiente representación (forma compleja):

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_0 t}$$

Donde:

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\omega_0 t} dt$$

Si $T \to \infty$, entonces $\omega_0 \to 0$, y la función deja de ser periódica.

$$f(t) = \sum_{n = -\infty}^{\infty} \left[\frac{1}{T} \int_{-T/2}^{T/2} f(\tau) e^{-jn\omega_0 \tau} d\tau \right] e^{jn\omega_0 t}$$
$$\frac{1}{T} = \frac{\omega_0}{2\pi}$$

$$f(t) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[\int_{-T/2}^{T/2} f(\tau) e^{-jn\omega_0 \tau} d\tau \right] e^{jn\omega_0 t} \omega_0$$

$$\omega_0 = d\omega$$

$$n\omega_0 = \omega$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau) e^{-j\omega\tau} d\tau \right] e^{j\omega t} d\omega$$
(4.1)

Se define como transformada de Fourier:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$
 (4.2)

Se define como transformada inversa de Fourier:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$
 (4.3)

4.2. Transformada de Fourier

Dada una función f(t) se define la transformada de *Fourier*:

$$\mathcal{F}\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$
 (4.4)

Donde: f(t) es una función no periódica.

La transformada de *Fourier* convierte una función del dominio del tiempo (t) al dominio de la frecuencia (ω) la cual será una variable continua.

Para $f(t) \in \mathbb{R}$:

$$\begin{split} F(\omega) &= \int_{-\infty}^{\infty} f(t) \, e^{-j\omega \, t} \, dt \\ &= \int_{-\infty}^{\infty} f(t) [\cos(\omega \, t) - j \, \mathrm{sen}(\omega \, t)] \, dt \\ &= \int_{-\infty}^{\infty} f(t) \cos(\omega \, t) \, dt - j \int_{-\infty}^{\infty} f(t) \, \mathrm{sen}(\omega \, t) \, dt \\ &= R(\omega) + j X(\omega) \\ R(\omega) &= \int_{-\infty}^{\infty} f(t) \cos(\omega \, t) \, dt \\ X(\omega) &= -\int_{-\infty}^{\infty} f(t) \, \mathrm{sen}(\omega \, t) \, dt \end{split}$$

La parte real $R(\omega)$ es una función par:

$$R(-\omega) = R(\omega)$$

La parte imaginaria $X(\omega)$ es una función impar:

$$X(-\omega) = -X(\omega)$$

Por tanto:

Si f(t) es par, entonces $X(\omega) = 0$.

Si f(t) es impar, entonces $R(\omega) = 0$.

4.3. Espectros continuos de frecuencia

$$F(\omega) = R(\omega) + jX(\omega)$$

Modulo:

$$|F(\omega)| = \sqrt{R^2(\omega) + X^2(\omega)}$$

Argumento:

$$\theta(\omega) = \arctan\left(\frac{X(\omega)}{R(\omega)}\right)$$

Ejemplo 1: Hallar $F(\omega)$ de la función y graficar los espectros.

$$f(t) = u(t+a) - u(t-a)$$

$$F(\omega) = \int_{-a}^{a} 1 e^{-j\omega t} dt$$

$$= \frac{e^{-j\omega t}}{-j\omega} \Big|_{-a}^{a}$$

$$= \frac{e^{-ja\omega} - e^{ja\omega}}{-j\omega}$$

$$= \frac{-2j \operatorname{sen}(a\omega)}{-j\omega}$$

$$= \frac{2 \operatorname{sen}(a\omega)}{\omega}$$

$$\mathcal{F}\{u(t+a) - u(t-a)\} = \frac{2\operatorname{sen}(a\omega)}{\omega}$$

$$|F(\omega)| = \left|\frac{2\operatorname{sen}(a\omega)}{\omega}\right|$$
(4.5)

Para $\omega = 0$, existe una discontinuidad:

$$\lim_{\omega \to 0} \left(\frac{2 \operatorname{sen}(a\omega)}{\omega} \right) = 2a$$

Transformadas e Integrales

4.4. Propiedades de la transformada de Fourier

4.4.1. Linealidad

$$\mathcal{F}\{a_1f_1(t) + a_2f_2(t)\} = a_1F_1(\omega) + a_2F_2(\omega) \tag{4.6}$$

Donde:

$$F_1(\omega) = \mathcal{F}\{f_1(t)\}$$

$$F_2(\omega) = \mathcal{F}\{f_2(t)\}\$$

4.4.2. Cambio de escala

Si
$$\mathcal{F}\{f(t)\}=F(\omega)$$
:
$$\mathcal{F}\{f(at)\}=\frac{1}{|a|}F\left(\frac{\omega}{a}\right) \tag{4.7}$$

Prueba:

$$\mathcal{F}\{f(at)\} = \int_{-\infty}^{\infty} f(at) e^{-j\omega t} dt$$

Realizando un cambio de variable:

$$\tau = at$$

 $d\tau = a dt$

Para a > 0:

$$\mathcal{F}\{f(at)\} = \int_{-\infty}^{\infty} f(\tau) e^{-j\omega \frac{\tau}{a}} \frac{d\tau}{a}$$
$$= \frac{1}{a} \int_{-\infty}^{\infty} f(\tau) e^{-j\omega \frac{\tau}{a}} d\tau$$
$$= \frac{1}{a} F\left(\frac{\omega}{a}\right)$$

Para a < 0:

$$\mathcal{F}\{f(at)\} = \int_{-\infty}^{\infty} f(\tau) e^{-j\omega\frac{\tau}{a}} \frac{d\tau}{a}$$
$$= -\frac{1}{a} \int_{-\infty}^{\infty} f(\tau) e^{-j\omega\frac{\tau}{a}} d\tau$$
$$= -\frac{1}{a} F\left(\frac{\omega}{a}\right)$$

4.4.3. Desplazamiento en ω

Si
$$\mathcal{F}\{f(t)\} = F(\omega)$$
:
$$\mathcal{F}\{f(t) e^{jat}\} = F(\omega - a) \tag{4.8}$$

Prueba:

$$\mathcal{F}\{f(t) e^{jat}\} = \int_{-\infty}^{\infty} f(t) e^{jat} e^{-j\omega t} dt$$
$$= \int_{-\infty}^{\infty} f(t) e^{-j(\omega - a)t} dt$$
$$= F(\omega - a)$$

4.4.4. Desplazamiento en t

Si
$$\mathcal{F}\{f(t)\}=F(\omega)$$
:
$$\mathcal{F}\{f(t-a)\}=F(\omega)\,e^{-ja\omega} \tag{4.9}$$

Prueba:

$$\mathcal{F}\{f(t-a)\} = \int_{-\infty}^{\infty} f(t-a) e^{-j\omega t} dt$$

Realizando un cambio de variable:

$$\tau = t - a$$
$$d\tau = dt$$

$$\begin{split} \mathcal{F}\{f(t-a)\} &= \int_{-\infty}^{\infty} f(\tau) \, e^{-j\omega(\tau+a)} \, dt \\ &= e^{-ja\omega} \int_{-\infty}^{\infty} f(\tau) \, e^{-j\omega\tau} \, d\tau \\ &= e^{-ja\omega} F(\omega) \end{split}$$

4.4.5. Simetría

Si
$$\mathcal{F}\{f(t)\} = F(\omega)$$
:
$$\mathcal{F}\{F(t)\} = 2\pi f(-\omega) \tag{4.10}$$

Prueba:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Reemplazando:

$$t \to -\omega$$
$$\omega \to t$$

$$f(-\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(t) e^{jt(-\omega)} dt$$
$$= \frac{1}{2\pi} \mathcal{F}\{F(t)\}$$
$$2\pi f(-\omega) = \mathcal{F}\{F(t)\}$$

Ejemplo 2: Hallar $\mathcal{F}\!\left\{ \frac{\mathrm{sen}(at)}{t} \right\}$ Sabiendo que:

$$\mathcal{F}\{u(t+a) - u(t-a)\} = \frac{2\operatorname{sen}(a\omega)}{\omega}$$

$$\mathcal{F}\left\{\frac{2\operatorname{sen}(at)}{t}\right\} = 2\pi(u(t+a) - u(t-a))$$

$$\mathcal{F}\left\{\frac{\operatorname{sen}(at)}{t}\right\} = \pi(u(t+a) - u(t-a))$$
(4.11)

4.4.6. Multiplicación por t

Si $\mathcal{F}{f(t)} = F(\omega)$:

$$\mathcal{F}\{t\,f(t)\} = j\frac{dF(\omega)}{d\omega}$$

En general:

$$\mathcal{F}\{t^n f(t)\} = j^n \frac{d^{(n)} F(\omega)}{d\omega^n}; \quad n \in \mathbb{N}$$
(4.12)

Prueba:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

$$\frac{dF(\omega)}{d\omega} = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} (-jt) dt$$

$$= -j \int_{-\infty}^{\infty} t f(t) e^{-j\omega t} dt$$

$$= -j \mathcal{F}\{t f(t)\}$$

$$j \frac{dF(\omega)}{d\omega} = \mathcal{F}\{t f(t)\}$$

$$\mathcal{F}\{t^2 f(t)\} = \mathcal{F}\{t t f(t)\}$$

$$= j \frac{d}{d\omega} (\mathcal{F}\{t f(t)\})$$

$$= j \frac{d}{d\omega} \left(j \frac{dF(\omega)}{d\omega}\right)$$

$$= j^2 \frac{d^2 F(\omega)}{d\omega^2}$$

$$\mathcal{F}\{t^n f(t)\} = j^n \frac{d^{(n)} F(\omega)}{d\omega^n}$$

Ejemplo 3: Hallar $\mathcal{F}\{t^n e^{-at} u(t)\}; \quad n \in \mathbb{N}$

Para n=1:

$$\mathcal{F}\{t e^{-at} u(t)\} = j \frac{d}{d\omega} \left(\frac{1}{a+j\omega}\right)$$
$$= (j)(-1)(a+j\omega)^{-2}(j)$$
$$= \frac{1}{(a+j\omega)^2}$$

Para n=2:

$$\mathcal{F}\lbrace t^2 e^{-at} u(t) \rbrace = j \frac{d}{d\omega} \left(\frac{1}{(a+j\omega)^2} \right)$$
$$= (j)(-2)(a+j\omega)^{-3}(j)$$
$$= \frac{2}{(a+j\omega)^3}$$

Para n=3:

$$\mathcal{F}\lbrace t^3 e^{-at} u(t) \rbrace = j \frac{d}{d\omega} \left(\frac{2}{(a+j\omega)^3} \right)$$
$$= (j)(2)(-3)(a+j\omega)^{-4}(j)$$
$$= \frac{6}{(a+j\omega)^4}$$

Por tanto:

$$\mathcal{F}\{t^n e^{-at} u(t)\} = \frac{n!}{(a+j\omega)^{n+1}}$$
(4.13)

4.4.7. Transformada de Fourier de una derivada

Si
$$\mathcal{F}{f(t)} = F(\omega)$$
:

$$\mathcal{F}\{f'(t)\} = j\omega F(\omega)$$

En general:

$$\mathcal{F}\{f^{(n)}(t)\} = (j\omega)^n F(\omega) \quad n \in \mathbb{N}$$
(4.14)

Prueba:

$$\mathcal{F}\{f'(t)\} = \int_{\infty}^{\infty} f'(t) e^{-j\omega t} dt$$

Realizando la integración por partes:

$$u = e^{-j\omega t}$$

$$du = -j\omega e^{-j\omega t} dt$$

$$dv = f'(t) dt$$

$$v = f(t)$$

$$\mathcal{F}\{f'(t)\} = \left(f(t) e^{-j\omega t} \Big|_{-\infty}^{\infty}\right) - \int_{-\infty}^{\infty} f(t) \left(-j\omega e^{-j\omega t}\right) dt$$

Asumiendo $f(\pm \infty) = 0$:

$$\mathcal{F}\{f'(t)\} = j\omega \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$
$$= j\omega F(\omega)$$

Para la segunda derivada:

$$\mathcal{F}\{f''(t)\} = \mathcal{F}\{(f'(t))'\}$$
$$= j\omega \,\mathcal{F}\{f'(t)\}$$
$$= j\omega(j\omega \,F(\omega))$$
$$= (j\omega)^2 \,F(\omega)$$

Por tanto:

$$\mathcal{F}\{f^{(n)}(t)\} = (j\omega)^n F(\omega)$$

4.5. Transformadas de Fourier especiales

4.5.1.
$$e^{-at} u(t); \quad a > 0$$

$$\mathcal{F}\{e^{-at}\,u(t)\}; a>0$$

$$\mathcal{F}\lbrace e^{-at} u(t) \rbrace = \int_0^\infty e^{-at} e^{-j\omega t} dt$$

$$= \int_0^\infty e^{-(a+j\omega)t} dt$$

$$= \frac{e^{-(a+j\omega)t}}{-(a+j\omega)} \Big|_0^\infty$$

$$= \frac{0-1}{-(a+j\omega)}$$

$$= \frac{1}{a+j\omega}$$

$$\mathcal{F}\lbrace e^{-at} u(t) \rbrace = \frac{1}{a+j\omega}$$
(4.15)

4.5.2. $e^{at} u(-t); \quad a > 0$

$$\mathcal{F}\lbrace e^{at} u(-t)\rbrace; a > 0$$

$$\mathcal{F}\lbrace e^{at} u(t)\rbrace = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt$$

$$= \int_{-\infty}^{0} e^{(a-j\omega)t} dt$$

$$= \frac{e^{(a-j\omega)t}}{a-j\omega} \bigg|_{-\infty}^{0}$$

$$= \frac{1}{a-j\omega}$$

$$\mathcal{F}\lbrace e^{at} u(-t)\rbrace = \frac{1}{a-j\omega}$$
(4.16)

4.5.3. $e^{-a|t|}$

$$\mathcal{F}\lbrace e^{-a|t|}\rbrace$$

$$\mathcal{F}\lbrace e^{-a|t|}\rbrace = \mathcal{F}\lbrace e^{at}u(-t) + e^{-at}u(t)\rbrace$$

$$= \frac{1}{a - j\omega} + \frac{1}{a + j\omega}$$

$$= \frac{a + j\omega + a - j\omega}{(a - j\omega)(a + j\omega)}$$

$$= \frac{2a}{a^2 + \omega^2}$$

$$\mathcal{F}\lbrace e^{-a|t|}\rbrace = \frac{2a}{a^2 + \omega^2}$$
(4.17)

4.5.4. $\delta(t-t_0)$

$$\mathcal{F}\{\delta(t-t_0)\}$$

$$\mathcal{F}\{\delta(t-t_0)\} = \int_{-\infty}^{0} \delta(t-t_0) e^{-j\omega t} dt$$

$$= e^{-j\omega t_0}$$

$$\mathcal{F}\{\delta(t-t_0)\} = e^{-j\omega t_0}$$
(4.18)

En particular:

$$\mathcal{F}\{\delta(t)\} = 1$$

4.5.5. e^{jat}

Sabiendo:

$$\mathcal{F}\{\delta(t-a)\} = e^{-ja\omega}$$

Aplicando la propiedad de simetría:

$$\mathcal{F}\{e^{-jat}\} = 2\pi\delta(-\omega - a)$$

$$\mathcal{F}\{e^{jat}\} = 2\pi\delta(-\omega + a)$$

$$= 2\pi\delta(-(\omega - a))$$

$$= 2\pi\delta(\omega - a)$$

$$\mathcal{F}\{e^{jat}\} = 2\pi\delta(\omega - a)$$
(4.19)

En particular:

$$\mathcal{F}\{1\} = 2\pi\delta(\omega)$$
$$\mathcal{F}\{k\} = 2\pi k\delta(\omega)$$

4.5.6. sen(at)

$$\mathcal{F}\{\operatorname{sen}(at)\} = \mathcal{F}\left\{\frac{e^{jat} - e^{-jat}}{2j}\right\}$$

$$= \frac{1}{2j} \left(2\pi\delta(\omega - a) - 2\pi\delta(\omega + a)\right)$$

$$= -j\pi(\delta(\omega - a) - \delta(\omega + a))$$

$$\mathcal{F}\{\operatorname{sen}(at)\} = j\pi(\delta(\omega + a) + \delta(\omega - a))$$
(4.20)

4.5.7. $\cos(at)$

$$\mathcal{F}\{\cos(at)\} = \mathcal{F}\left\{\frac{e^{jat} + e^{-jat}}{2}\right\}$$

$$= \frac{1}{2} \left(2\pi\delta(\omega - a) + 2\pi\delta(\omega + a)\right)$$

$$= \pi(\delta(\omega + a) + \delta(\omega - a))$$

$$\mathcal{F}\{\cos(at)\} = \pi(\delta(\omega + a) + \delta(\omega - a))$$
(4.21)

4.5.8. u(t)

$$u(t) + u(-t) = 1$$

$$\mathcal{F}\{u(t) + u(-t)\} = \mathcal{F}\{1\}$$

Considerando:

$$\mathcal{F}\{u(t)\} = F(\omega)$$

$$\mathcal{F}\{u(-t)\} = F(-\omega)$$

Por tanto:

$$F(\omega) + F(-\omega) = 2\pi\delta(\omega)$$

Se asume que la transformada de *Fourier* de la función escalón tendrá un termino impulsivo:

$$F(\omega) = \beta(\omega) + k\delta(\omega)$$
$$F(-\omega) = \beta(-\omega) + k\delta(\omega)$$
$$F(\omega) + F(-\omega) = \beta(\omega) + \beta(-\omega) + 2k\delta(\omega)$$

Reemplazando:

$$\beta(\omega) + \beta(-\omega) + 2k\delta(\omega) = 2\pi\delta(\omega)$$

Por tanto:

$$k = \pi$$

Resultando:

$$F(\omega) = \beta(\omega) + \pi \delta(\omega)$$

Por otro lado, se sabe que:

$$u'(t) = \delta(t)$$

$$\mathcal{F}\{u'(t)\} = \mathcal{F}\{\delta(t)\}$$

$$j\omega\mathcal{F}\{u(t)\} = 1$$

$$j\omega(\beta(\omega) + \pi\delta(\omega)) = 1$$

$$j\omega\beta(\omega) + j\pi\omega\delta(\omega) = 1$$

$$j\omega\beta(\omega) = 1$$

$$\beta(\omega) = \frac{1}{j\omega}$$

$$\mathcal{F}\{u(t)\} = \frac{1}{j\omega} + \pi\delta(\omega)$$
(4.22)

4.6. La función signo

Esta función puede representarse también como:

$$sgn(t) = \frac{|t|}{t}$$
$$sgn(t) = -1 + 2u(t)$$

A partir de la definición de la función de valor absoluto:

$$|t| = \begin{cases} -t & t < 0 \\ t & t > 0 \end{cases}$$

Es posible calcular la derivada del valor absoluto:

$$|t|' = \begin{cases} -1 & t < 0\\ 1 & t > 0 \end{cases}$$

Por tanto:

$$|t|' = \operatorname{sgn}(t) \tag{4.24}$$

Cuya derivada es:

$$\operatorname{sgn}'(t) = 2\delta(t) \tag{4.25}$$

Calculando su transformada de Fourier:

$$\mathcal{F}\{\operatorname{sgn}(t)\} = \mathcal{F}\{-1 + 2u(t)\}$$

$$= -2\pi\delta(\omega) + 2\left(\frac{1}{j\omega} + \pi\delta(\omega)\right)$$

$$= -2\pi\delta(\omega) + 2\left(\frac{1}{j\omega}\right) + 2\pi\delta(\omega)$$

$$= \frac{2}{j\omega}$$

$$\mathcal{F}\{\operatorname{sgn}(t)\} = \frac{2}{j\omega}$$
(4.26)

4.6.1. Transformada de *Fourier* de |t|

$$\mathcal{F}\{|t|'\} = \mathcal{F}\{\operatorname{sgn}(t)\}$$

$$j\omega\mathcal{F}\{|t|\} = \frac{2}{j\omega}$$

$$\mathcal{F}\{|t|\} = -\frac{2}{j\omega^2}$$
(4.27)

4.6.2. Transformada de *Fourier* de 1/t

$$\mathcal{F}\{\operatorname{sgn}(t)\} = \frac{2}{j\omega}$$

Por simetría:

$$\mathcal{F}\left\{\frac{2}{jt}\right\} = 2\pi \operatorname{sgn}(-\omega)$$

$$\mathcal{F}\left\{\frac{1}{t}\right\} = -j\pi \operatorname{sgn}(-\omega)$$
(4.28)

Calculando la segunda derivada:

$$\left(\frac{1}{t}\right)' = -\frac{1}{t^2}$$

$$\mathcal{F}\left\{-\frac{1}{t^2}\right\} = j\omega(-j\pi \operatorname{sgn}(\omega))$$

$$\mathcal{F}\left\{-\frac{1}{t^2}\right\} = j^2\pi\omega \operatorname{sgn}(\omega)$$

Calculando la derivada n-ésima:

$$\left(\frac{1}{t}\right)'' = \frac{2}{t^3}$$

$$\left(\frac{1}{t}\right)^{m} = -\frac{6}{t^{4}}$$

$$\left(\frac{1}{t}\right)^{(n)} = (-1)^{k} \frac{k!}{t^{k+1}}$$

$$\mathcal{F}\{f^{(k)}(t)\} = (-1)^{k} k! \mathcal{F}\left\{\frac{1}{t^{k+1}}\right\}$$

$$(j\omega)^{k}(-j\pi \operatorname{sgn}(\omega)) = (-1)^{k} k! \mathcal{F}\left\{\frac{1}{t^{k+1}}\right\}$$

$$-j^{k+1}\pi\omega^{k} \operatorname{sgn}(\omega) = (-1)^{k} k! \mathcal{F}\left\{\frac{1}{t^{k+1}}\right\}$$

$$-j^{n}\pi\omega^{n-1} \operatorname{sgn}(\omega) = (-1)^{n-1} (n-1)! \mathcal{F}\left\{\frac{1}{t^{n}}\right\}$$

$$-j^{n}\pi\omega^{n-1} \operatorname{sgn}(\omega) = (-1)^{n}(-1)^{-1}(n-1)! \mathcal{F}\left\{\frac{1}{t^{n}}\right\}$$

$$\mathcal{F}\left\{\frac{1}{t^{n}}\right\} = \frac{j^{n}\pi\omega^{n-1} \operatorname{sgn}(\omega)}{(-1)^{n}(n-1)!}$$
(4.29)

4.7. Tabla de transformadas de *Fourier* conocidas

	f(t)	$F(\omega) = \mathcal{F}\{f(t)\}$
1	u(t+a) - u(t-a)	$\frac{2\operatorname{sen}(a\omega)}{\omega}$
2	$\frac{\operatorname{sen}(at)}{t}$	$\pi[u(\omega+a)-u(\omega-a)]$
3	$e^{-at} u(t)$ $a > 0$	$\frac{1}{a+j\omega}$
4	$e^{at} u(-t) a > 0$	$\frac{1}{a-j\omega}$
5	$e^{-a t } a > 0$	$\frac{2a}{a^2 + \omega^2}$
6	$\frac{1}{t^2 + a^2}$	$\frac{\pi}{a}e^{-a \omega }$
7	$\delta(t-a)$	$e^{-ja\omega}$
8	e^{jat}	$2\pi\delta(\omega-a)$
9	k	$2\pi k\delta(\omega)$
10	sen(at)	$j\omega[\delta(\omega+a)-\delta(\omega-a)]$
11	$\cos(at)$	$\pi[\delta(\omega+a)+\delta(\omega-a)]$
12	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}} n \in \mathbb{N}$
13	u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$
14	$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$
15	t	$-\frac{2}{\omega^2}$
16	$\frac{1}{t}$	$-j\pi \operatorname{sgn}(\omega)$
17	$\frac{1}{t^n}$	$\frac{j^n \pi \omega^{n-1} \operatorname{sgn}(\omega)}{(-1)^n (n-1)!}$

Capítulo 5

Transformada inversa de *Fourier*

$$\mathcal{F}\{f(t)\} = F(\omega) \to \mathcal{F}^{-1}\{F(\omega)\} = f(t) \tag{5.1}$$

Con la transformada inversa de Fourier se regresa del dominio de " ω " al dominio de "t".

5.1. Tabla de transformadas de *Fourier* inversas

$$F(\omega) \qquad f(t) = \mathcal{F}^{-1}\{F(\omega)\}$$

$$1 \quad \frac{1}{a+j\omega} \qquad e^{-at} u(t) \quad a > 0$$

$$2 \quad \frac{1}{a-j\omega} \qquad e^{at} u(-t) \quad a > 0$$

$$3 \quad \frac{2a}{a^2+\omega^2} \qquad e^{-a|t|} \quad a > 0$$

$$4 \quad \frac{1}{\omega} \operatorname{sen}(a\omega) \quad \frac{1}{2}[u(t+a) - u(t-a)]$$

$$5 \quad k \qquad k\delta(t)$$

$$6 \quad \frac{1}{\omega} \qquad \frac{1}{2}j \operatorname{sgn}(t)$$

5.2. Propiedades de la transformada inversa de Fourier

5.2.1. Linealidad

$$\mathcal{F}^{-1}\{a_1 F_1(\omega) + a_2 F_2(\omega)\} = a_1 f_1(t) + a_2 f_2(t)$$
(5.2)

5.2.2. Desplazamiento en t

Si
$$\mathcal{F}^{-1}\{F(\omega)\}=f(t)$$
:
$$\mathcal{F}^{-1}\{F(\omega)\,e^{-ja\omega}\}=f(t-a) \tag{5.3}$$

5.2.3. Desplazamiento en ω

Si
$$\mathcal{F}^{-1}{F(\omega)} = f(t)$$
:
$$\mathcal{F}^{-1}{F(\omega - a)} = f(t) e^{jat}$$
 (5.4)

5.3. Convolución

Dadas dos funciones $f_1(t)$ y $f_2(t)$ definimos la convolución mediante la siguiente integral:

$$f(t) = f_1(t) * f_2(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t - \tau) d\tau$$
 (5.5)

- En $f_1(t)$ se reemplaza "t" por " τ ", permanece fija y no cambia.
- En $f_2(t)$ se reemplaza "t" por " $t-\tau$ ".La gráfica se refleja respecto al eje vertical, y luego se desplaza un "t" variable.

El intervalo de integración será el intervalo donde ambas gráficas se superponen.

5.4. Propiedades de la convolución

5.4.1. Conmutatividad

$$f_1(t) * f_2(t) = f_2(t) * f_1(t)$$
 (5.6)

5.4.2. Asociatividad

$$f_1(t) * [f_2(t) * f_3(t)] = [f_1(t) * f_2(t)] * f_3(t)$$
 (5.7)

5.4.3. Distributividad

$$f_1(t) * [f_2(t) + f_3(t)] = f_1(t) * f_2(t) + f_1(t) * f_3(t)$$
(5.8)

5.4.4. Función impulso

$$f_1(t) * \delta(t - t_0) = f_1(t - t_0) \tag{5.9}$$

Prueba:

$$f_1(t) * \delta(t - t_0) = \int_{-\infty}^{\infty} f_1(t - \tau) \, \delta(\tau - t_0) \, d\tau = f_1(t - t_0)$$

5.4.5. Función escalón unitario

Si
$$f_1(t) = f_1(t) u(t)$$
 y $f_2(t) = f_2(t) u(t)$:

$$f_1(t) * f_2(t) = \int_0^t f_1(\tau) f_2(t - \tau) d\tau$$
 (5.10)

5.5. Transformada de Fourier y convolución

$$\mathcal{F}\{f_1(t) * f_2(t)\} = F_1(\omega) F_2(\omega)$$
 (5.11)

Donde:

$$F_1(\omega) = \mathcal{F}\{f_1(t)\}$$

$$F_2(\omega) = \mathcal{F}\{f_2(t)\}\$$

Prueba:

$$\mathcal{F}\{f_1(t) * f_2(t)\} = \int_{-\infty}^{\infty} \left[\int_{\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau \right] e^{-jn\omega_0 t} dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) e^{-jn\omega_0 t} d\tau dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) e^{-jn\omega_0 t} dt d\tau$$

$$= \int_{-\infty}^{\infty} f_1(\tau) d\tau \int_{-\infty}^{\infty} f_2(t-\tau) e^{-jn\omega_0 t} dt$$

$$u = t - \tau \to t = u + \tau$$

$$du = dt$$

$$\mathcal{F}\{f_1(t) * f_2(t)\} = \int_{-\infty}^{\infty} f_1(\tau) d\tau \int_{-\infty}^{\infty} f_2(u) e^{-jn\omega_0(u+\tau)} du$$

$$= \int_{-\infty}^{\infty} f_1(\tau) e^{-jn\omega_0 \tau} d\tau \int_{-\infty}^{\infty} f_2(u) e^{-jn\omega_0 u} du$$

$$= F_1(\omega) F_2(\omega)$$

5.6. Transformada inversa de Fourier por convolución

$$\mathcal{F}^{-1}\{F_1(\omega) F_2(\omega)\} = f_1(t) * f_2(t)$$

$$f_1(t) = \mathcal{F}^{-1}\{F_1(\omega)\}$$

$$f_2(t) = \mathcal{F}^{-1}\{F_2(\omega)\}$$
(5.12)

Donde:

5.7. Ecuaciones diferenciales ordinarias

$$\mathcal{F}\{f'(t)\} = j\omega F(\omega)$$
$$\mathcal{F}\{f''(t)\} = (j\omega)^2 F(\omega)$$
$$\mathcal{F}\{f^{(n)}(t)\} = (j\omega)^n F(\omega)$$

Capítulo 6

Transformada de Laplace

Dada una función f(t) definida para t > 0:

$$\mathcal{L}\lbrace f(t)\rbrace = F(s) = \int_0^\infty f(t) e^{-st} dt$$
 (6.1)

Donde: $s=\sigma+j\omega$ es una frecuencia compleja.

La transformada de Laplace convierte una función del dominio de "t" al dominio de "s".

6.1. Transformadas de funciones elementales

6.1.1. *k*

$$\mathcal{L}\{k\} = \int_0^\infty k \, e^{-st} \, dt$$

$$= \frac{k \, e^{-st}}{-s} \Big|_0^\infty$$

$$= \frac{k}{-s} (0 - 1)$$

$$\mathcal{L}\{k\} = \frac{k}{s}$$
(6.2)

6.1.2. $t^n \in \mathbb{N}$

Para n = 1:

$$\mathcal{L}\{t\} = \int_0^\infty t \, e^{-st} \, dt$$

$$= \left(\frac{t \, e^{-st}}{-s} \Big|_0^\infty \right) - \left(\frac{e^{-st}}{(-s)^2} \Big|_0^\infty \right)$$

$$= \frac{-0 - 1}{(-s)^2}$$

$$= \frac{1}{s^2}$$

Para n=2:

$$\mathcal{L}\{t^2\} = \int_0^\infty t^2 e^{-st} dt$$

$$u = t^2$$

$$du = 2t dt$$

$$dv = e^{-st} dt$$

$$v = \frac{e^{-st}}{-s}$$

$$\mathcal{L}\{t^2\} = \int_0^\infty t^2 e^{-st} dt$$

$$= \left(\frac{t^2 e^{-st}}{-s}\right|_0^\infty\right) - \int_0^\infty \frac{e^{-st}}{-s} 2t dt$$

$$= \frac{2}{s} \int_0^\infty t e^{-st} dt$$

$$= \frac{2}{s} \left(\frac{1}{s^2}\right)$$

$$= \frac{2}{s^3}$$

Para n=3:

$$\mathcal{L}\lbrace t^3 \rbrace = \int_0^\infty t^3 e^{-st} dt$$
$$u = t^3$$
$$du = 3t^2 dt$$
$$dv = e^{-st} dt$$
$$v = \frac{e^{-st}}{-s}$$

$$\mathcal{L}\lbrace t^{3}\rbrace = \int_{0}^{\infty} t^{3} e^{-st} dt$$

$$= \left(\frac{t^{3} e^{-st}}{-s}\Big|_{0}^{\infty}\right) - \int_{0}^{\infty} \frac{e^{-st}}{-s} 3t^{2} dt$$

$$= \frac{3}{s} \int_{0}^{\infty} t^{2} e^{-st} dt$$

$$= \frac{3}{s} \left(\frac{2}{s^{3}}\right)$$

$$= \frac{6}{s^{4}}$$

$$\mathcal{L}\lbrace t^{n}\rbrace = \frac{n!}{s^{n+1}}$$
(6.3)

6.1.3. e^{at}

$$\mathcal{L}\lbrace e^{at}\rbrace = \int_0^\infty e^{at} e^{-st} dt$$

$$= \int_0^\infty e^{-(s-a)t} dt$$

$$= \left(\frac{e^{-(s-a)t}}{-(s-a)}\Big|_0^\infty\right)$$

$$= \frac{0-1}{-(s-a)}$$

$$\mathcal{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}$$
(6.4)

6.1.4. sen(at)

$$\mathcal{L}\{\operatorname{sen}(at)\} = \mathcal{L}\left\{\frac{e^{jat} - e^{-jat}}{2j}\right\}$$

$$= \frac{1}{2j} \left(\frac{1}{s - ja} - \frac{1}{s + ja}\right)$$

$$= \frac{1}{2j} \left(\frac{s + ja - s + ja}{(s - ja)(s + ja)}\right)$$

$$\mathcal{L}\{\operatorname{sen}(at)\} = \frac{a}{s^2 + a^2}$$
(6.5)

6.1.5. $\cos(at)$

$$\mathcal{L}\{\cos(at)\} = \mathcal{L}\left\{\frac{e^{jat} + e^{-jat}}{2}\right\}$$

$$= \frac{1}{2}\left(\frac{1}{s - ja} - \frac{1}{s + ja}\right)$$

$$= \frac{1}{2}\left(\frac{s + ja + s - ja}{(s - ja)(s + ja)}\right)$$

$$\mathcal{L}\{\cos(at)\} = \frac{s}{s^2 + a^2}$$
(6.6)

6.1.6. senh(at)

$$\mathcal{L}\{\operatorname{senh}(at)\} = \mathcal{L}\left\{\frac{e^{at} - e^{-at}}{2}\right\}$$

$$= \frac{1}{2} \left(\frac{1}{s-a} - \frac{1}{s+a}\right)$$

$$= \frac{1}{2} \left(\frac{s+a-s+a}{(s-a)(s+a)}\right)$$

$$\mathcal{L}\{\operatorname{senh}(at)\} = \frac{a}{s^2 - a^2}$$
(6.7)

6.1.7. $\cosh(at)$

$$\mathcal{L}\{\cosh(at)\} = \mathcal{L}\left\{\frac{e^{at} + e^{-at}}{2}\right\}$$

$$= \frac{1}{2}\left(\frac{1}{s-a} - \frac{1}{s+a}\right)$$

$$= \frac{1}{2}\left(\frac{s+a+s-a}{(s-ja)(s+ja)}\right)$$

$$\mathcal{L}\{\cosh(at)\} = \frac{s}{s^2 - a^2}$$
(6.8)

6.2. Propiedades de la transformada de Laplace

6.2.1. Linealidad

$$\mathcal{L}\{a_1f_1(t) + a_2f_2(t)\} = a_1F_1(s) + a_2F_2(s)$$
(6.9)

6.2.2. Desplazamiento en s

Si
$$\mathcal{L}\{f(t)\}=F(s)$$
:
$$\mathcal{L}\{f(t)\,e^{at}\}=F(s-a) \tag{6.10}$$

6.2.3. Desplazamiento en t

Si
$$\mathcal{L}\{f(t)\} = F(s)$$
:
$$\mathcal{L}\{f(t-a) \, u(t-a)\} = F(s) \, e^{-as} \tag{6.11}$$

f(t) esta definida para t > 0, por tanto: f(t) = f(t) u(t).

Segunda forma:

$$\mathcal{L}\{f(t) u(t-a)\} = \int_{a}^{\infty} f(t) e^{-st} dt$$

$$\tau = t - a \to t = \tau + a$$

$$d\tau = dt$$

$$\mathcal{L}\{f(t) u(t-a)\} = \int_{0}^{\infty} f(\tau + a) e^{-s(\tau + a)} dt$$

$$= e^{-as} \int_{0}^{\infty} f(\tau + a) e^{-st} d\tau$$

$$\mathcal{L}\{f(t) u(t-a)\} = e^{-as} \mathcal{L}\{f(t+a)\}$$
(6.12)

6.2.4. Multiplicación por t

Si
$$\mathcal{L}{f(t)} = F(s)$$
:

$$\mathcal{L}\lbrace t f(t)\rbrace = -\frac{dF(s)}{ds} \tag{6.13}$$

$$\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^{(n)} F(s)}{ds^n}$$
(6.14)

6.2.5. División por t

Si
$$\mathcal{L}{f(t)} = F(s)$$
:
$$\mathcal{L}\left\{\frac{1}{t}f(t)\right\} = \int_{s}^{\infty} F(s) \, ds \tag{6.15}$$

Prueba:

$$g(t) = \frac{1}{t}f(t) \to f(t) = t g(t)$$

$$\mathcal{L}\{f(t)\} = \mathcal{L}\{t g(t)\}$$

$$F(s) = -\frac{dG(s)}{ds}$$

$$\int_{s}^{\infty} dG(s) = \int_{s}^{\infty} -dF(s) ds$$

$$G(\infty) - G(s) = -\int_{s}^{\infty} F(s) ds$$

Asumiendo que $G(\infty) = 0$:

$$G(s) = \int_{s}^{\infty} F(s) ds$$
$$\mathcal{L}\left\{\frac{1}{t}f(t)\right\} = \int_{s}^{\infty} F(s) ds$$

Ejemplo:

$$\mathcal{L}\left\{\frac{1}{t}sen(at)\right\}$$

$$\mathcal{L}\left\{\frac{1}{t}sen(at)\right\} = \int_{s}^{\infty} \frac{a}{s^{2} + a^{2}} ds$$

$$= \arctan\left(\frac{s}{a}\right)\Big|_{s}^{\infty}$$

$$= \frac{\pi}{2} - \arctan\left(\frac{s}{a}\right)$$

$$u = \frac{\pi}{2} - \arctan\left(\frac{s}{a}\right) \to \arctan\left(\frac{s}{a}\right) = \frac{\pi}{2} - u \to \tan\left(\frac{\pi}{2} - u\right) = \frac{s}{a}$$

$$\tan(u) = \frac{a}{s} \to u = \arctan\left(\frac{a}{s}\right)$$

$$\mathcal{L}\left\{\frac{1}{t}sen(at)\right\} = \arctan\left(\frac{a}{s}\right)$$

6.3. Tabla de transformadas de Laplace

$$f(t) F(s) = \mathcal{L}\{f(t)\}$$

$$1 k \frac{k}{s}$$

$$2 t^n \frac{n!}{s^{n+1}} n \in \mathbb{N}$$

$$3 e^{at} \frac{1}{s-a}$$

$$4 \sec(at) \frac{a}{s^2+a^2}$$

$$5 \cos(at) \frac{s}{s^2+a^2}$$

$$6 \gcd(at) \frac{a}{s^2-a^2}$$

$$7 \cosh(at) \frac{s}{s^2-a^2}$$

$$8 u(t-a) \frac{1}{s}e^{-as}$$

$$9 \delta(t-a) e^{-at}$$

$$10 \frac{1}{t} \sec(at) \arctan\left(\frac{a}{s}\right)$$

6.4. Transformada de Laplace de derivadas

Si $\mathcal{L}\{f(t)\} = F(s)$, las transformadas de sus derivadas serán:

$$\mathcal{L}\{f'(t)\} = sF(s) - f(0) \tag{6.16}$$

$$\mathcal{L}\{f''(t)\} = s^2 F(s) - f(0)s - f'(0)$$
(6.17)

$$\mathcal{L}\{f'''(t)\} = s^3 F(s) - f(0)s^2 - f'(0)s - f''(0)$$
(6.18)

En general, de una derivada n-ésima:

$$\mathcal{L}\{f^{(n)}(t)\} = s^n F(s) - f(0)s^{n-1} - f'(0)s^{n-2} - f''(0)s^{n-3} - \dots - f^{(n-1)}(0)$$
(6.19)

Donde: $f(0); f'(0); f''(0); \ldots; f^{(n-1)}(0)$ son los valores iniciales en t=0 de la función y de sus derivadas.

$$\mathcal{L}\{f'(t)\} = \int_0^\infty f'(t) e^{-st} dt$$

$$u = e^{-st}$$

$$du = -s e^{-st} dt$$

$$dv = f'(t) dt$$

$$v = f(t)$$

$$\mathcal{L}\{f'(t)\} = (f(t) e^{-st} \Big|_0^{\infty}) - \int_0^{\infty} f(t)(-s e^{-st}) dt$$

$$= s \int_0^{\infty} f(t) e^{-st} dt - f(0)$$

$$= sF(s) - f(0)$$

$$\mathcal{L}\{f''(t)\} = s\mathcal{L}\{f'(t)\} - f'(0)$$

$$= s(sF(s) - f(0)) - f'(0)$$

$$= s^2 F(s) - f(0)s - f'(0)$$

$$\mathcal{L}\{f'''(t)\} = s\mathcal{L}\{f''(t)\} - f''(0)$$

$$= s(s^2 F(s) - f(0)s - f'(0)) - f''(0)$$

$$= s^3 F(s) - f(0)s^2 - f'(0)s - f''(0)$$

6.5. Transformada de Laplace de integrales

Si $\mathcal{L}{f(t)} = F(s)$:

$$\mathcal{L}\left\{\int_0^t f(t) dt\right\} = \frac{1}{s} F(s) \tag{6.20}$$

Prueba:

$$g(t) = \int_0^t f(t) dt \to g'(t) = f(t)$$

$$\mathcal{L}\{g'(t)\} = \mathcal{L}\{f(t)\}$$

$$sG(s) - g(0) = F(s)$$

$$s\mathcal{L}\{\left\{\int_0^t f(t) dt\right\} = F(s)$$

$$\mathcal{L}\left\{\int_0^t f(t) dt\right\} = \frac{1}{s}F(s)$$

6.6. La función Gamma

$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$$
 (6.21)

6.6.1. Propiedades de la función Gamma

Propiedad 1

$$\Gamma(n) = (n-1)\Gamma(n-1) \tag{6.22}$$

En general:

$$\Gamma(n) = (n-1)(n-2)(n-3)\dots(n-r)\Gamma(n-r)$$
(6.23)

Prueba:

$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$$

$$u = x^{n-1}$$

$$du = (n-1) x^{n-2} dx$$

$$dv = e^{-x} dx$$

$$v = -e^{-x}$$

$$\Gamma(n) = (-x^{n-1} e^{-x} \Big|_0^\infty) - \int_0^\infty -e^{-x} (n-1) x^{n-2} dx$$

$$= (n-1) \int_0^\infty x^{(n-1)-1} e^{-x} dx$$

$$= (n-1)\Gamma(n-1)$$

$$\Gamma(n-1) = (n-2)\Gamma(n-2)$$

$$\Gamma(n-2) = (n-3)\Gamma(n-3)$$

$$\Gamma(n) = (n-1)(n-2)(n-3) \dots (n-r)\Gamma(n-r)$$

Propiedad 2

$$\Gamma(n) = \frac{\Gamma(n+1)}{n} \tag{6.24}$$

$$\Gamma(n) = (n-1)\Gamma(n-1)$$

$$\Gamma(n+1) = n\Gamma(n)$$

$$\Gamma(n) = \frac{1}{n}\Gamma(n+1)$$

Propiedad 3

Si $n \in \mathbb{N}$:

$$\Gamma(n) = (n-1)! \tag{6.25}$$

$$\Gamma(n+1) = n! \tag{6.26}$$

Prueba:

$$\Gamma(n) = (n-1)(n-2)(n-3)\dots(3)(2)(1)\Gamma(1)$$

$$\Gamma(1) = \int_0^\infty x^{1-1} e^{-x} dx$$

$$= -e^{-x} \Big|_0^\infty$$

$$= -(0-1)$$

$$= 1$$

En particular n = 1:

$$\Gamma(1) = (1-1)!$$

$$\Gamma(1) = 0!$$

$$1 = 0!$$
(6.27)

6.7. Evaluación de la función Gamma

Dada la integral:

$$I = \int_0^\infty e^{-x^2} dx$$

$$I = \int_0^\infty e^{-y^2} dy$$

$$I^2 = \int_0^\infty e^{-x^2} dx \int_0^\infty e^{-y^2} dy = \int_0^\infty \int_0^\infty e^{-(x^2 + y^2)} dy dx$$

Transformando a coordenadas polares:

$$x^{2} + y^{2} = r^{2}$$
$$dx dy = r dr d\theta$$

Por tanto:

$$I^{2} = \lim_{M \to \infty} \int_{0}^{\frac{\pi}{2}} \int_{0}^{M} e^{-r^{2}} r \, dr \, d\theta$$

$$u = -r^{2}$$

$$du = -2r \, dr$$

$$I^{2} = \lim_{M \to \infty} \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{M} e^{u} \left(\frac{-dt}{2}\right)$$

$$= \lim_{M \to \infty} \int_{0}^{\frac{\pi}{2}} d\theta \left(-\frac{e^{-r^{2}}}{2}\Big|_{0}^{M}\right)$$

$$= -\frac{1}{2} \int_{0}^{\frac{\pi}{2}} d\theta (0 - 1)$$

$$= \frac{1}{2} \frac{\pi}{2}$$

$$= \frac{\pi}{4}$$

$$I = \int_{0}^{\infty} e^{-x^{2}} \, dx = \frac{\sqrt{\pi}}{2}$$

$$\Gamma\left(\frac{1}{2}\right) = \int_{0}^{\infty} x^{-\frac{1}{2}} e^{-x} \, dx$$

$$x = u^{2}$$

$$dx = 2u \, du$$

$$\Gamma\left(\frac{1}{2}\right) = \int_{0}^{\infty} (u^{2})^{-\frac{1}{2}} e^{-u^{2}} \, 2u \, du$$

$$= 2 \int_{0}^{\infty} e^{-u^{2}} \, du$$

$$= 2 \int_{0}^{\infty} e^{-u^{2}} \, du$$

$$= 2 \frac{\sqrt{\pi}}{2}$$

$$= \sqrt{\pi}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\Gamma\left(\frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{2}\right)}{-\frac{1}{2}} = \frac{\sqrt{\pi}}{-\frac{1}{2}} = -2\sqrt{\pi}$$

$$\Gamma\left(-\frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{2}\right)}{-\frac{1}{2}} = -2\sqrt{\pi}$$

$$\Gamma\left(-\frac{1}{2}\right) = -2\sqrt{\pi}$$
(6.29)

6.8. Transformada de Laplace con la función Gamma

$$\mathcal{L}\lbrace t^n \rbrace = \int_0^\infty t^n e^{-st} dt$$

$$u = st \to t = \frac{u}{s}$$

$$du = s dt$$

$$\mathcal{L}\lbrace t^n \rbrace = \int_0^\infty \left(\frac{u}{s}\right)^n e^{-u} \frac{du}{s}$$

$$= \frac{1}{s^{n+1}} \int_0^\infty u^n e^{-u} du$$

$$= \frac{\Gamma(n+1)}{s^{n+1}}$$

$$\mathcal{L}\lbrace t^n\rbrace = \frac{\Gamma(n+1)}{s^{n+1}} \tag{6.30}$$

En particular para $n \in \mathbb{N}$:

$$\mathcal{L}\lbrace t^n\rbrace = \frac{n!}{s^{n+1}} \tag{6.31}$$

6.9. Teoremas del valor inicial y final

6.9.1. Teorema del valor inicial

Si
$$\mathcal{L}{f(t)} = F(s)$$
:

$$f(0) = \lim_{t \to 0} f(t) = \lim_{t \to \infty} sF(s)$$
 (6.32)

$$\mathcal{L}\{f'(t)\} = sF(s) - f(0)$$

$$\int_0^\infty f'(t) e^{-st} dt = sF(s) - f(0)$$

$$\lim_{s \to \infty} \int_0^\infty f'(t) e^{-st} dt = \lim_{s \to \infty} (sF(s) - f(0))$$

$$0 = \lim_{s \to \infty} (sF(s) - f(0))$$

$$f(0) = \lim_{s \to \infty} sF(s)$$

6.9.2. Teorema del valor final

Si
$$\mathcal{L}{f(t)} = F(s)$$
:

$$f(\infty) = \lim_{t \to \infty} f(t) = \lim_{t \to 0} sF(s)$$
(6.33)

$$\mathcal{L}\{f'(t)\} = sF(s) - f(0)$$

$$\int_0^\infty f'(t) e^{-st} dt = sF(s) - f(0)$$

$$\lim_{s \to 0} \int_0^\infty f'(t) e^{-st} dt = \lim_{s \to 0} (sF(s) - f(0))$$

$$f(t) \Big|_0^\infty = \lim_{s \to 0} (sF(s) - f(0))$$

$$f(\infty) - f(0) = \lim_{s \to 0} sF(s) - f(0)$$

$$f(\infty) = \lim_{s \to 0} sF(s)$$

Capítulo 7

Transformada inversa de Laplace

Si
$$\mathcal{L}\{f(t)\}=F(s)$$
:
$$\mathcal{L}^{-1}\{F(s)\}=f(t) \tag{7.1}$$

Definida para t > 0.

La transformada inversa de Laplace regresa del dominio de "s" al dominio de "t".

Ejemplo:

$$\mathcal{L}^{-1}\left\{\frac{1}{s^n}\right\}$$

$$\mathcal{L}\left\{t^n\right\} = \frac{\Gamma(n+1)}{s^{n+1}}$$

$$t^n = \mathcal{L}^{-1}\left\{\frac{\Gamma(n+1)}{s^{n+1}}\right\}$$

$$\frac{t^n}{\Gamma(n+1)} = \mathcal{L}^{-1}\left\{\frac{1}{s^{n+1}}\right\}$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s^n}\right\} = \frac{t^{n-1}}{\Gamma(n)}$$
(7.2)

En particular $n \in \mathbb{N}$:

$$\mathcal{L}^{-1}\left\{\frac{1}{s^n}\right\} = \frac{t^{n-1}}{(n-1)!} \tag{7.3}$$

7.1. Tabla de transformadas de Laplace inversas

$F(s) f(t) = \mathcal{L}^{-1}\{F(s)\}; t > 0$ $\frac{1}{s} \frac{k}{s} k$ $\frac{1}{s^{n}} \frac{t^{n-1}}{\Gamma(n)}; \frac{t^{n-1}}{(n-1)!}, n \in \mathbb{N}$ $\frac{1}{s^{2} + a^{2}} \frac{1}{a} \operatorname{sen}(at)$ $\frac{1}{s^{2} + a^{2}} \frac{1}{a} \operatorname{senh}(at)$ $\frac{1}{s^{2} - a^{2}} \frac{1}{s} \operatorname{senh}(at)$ $\frac{1}{s^{2} - a^{2}} \operatorname{cosh}(at)$			
$ \frac{1}{s} - \frac{k}{s} $ $ \frac{1}{s^n} - \frac{t^{n-1}}{\Gamma(n)}; \frac{t^{n-1}}{(n-1)!} n \in \mathbb{N} $ $ \frac{1}{s-a} - e^{at} $ $ \frac{1}{s^2 + a^2} - \frac{1}{a} \operatorname{sen}(at) $ $ \frac{1}{s^2 + a^2} - \cos(at) $ $ \frac{1}{s^2 - a^2} - \frac{1}{a} \operatorname{senh}(at) $ $ \frac{s}{s^2 - a^2} - \cosh(at) $ $ 8 - \arctan\left(\frac{a}{s}\right) - \frac{1}{t} \operatorname{sen}(at) $ $ 9 - k - k\delta(t) $		F(s)	$f(t) = \mathcal{L}^{-1}{F(s)}; t > 0$
$ \frac{1}{s-a} \qquad e^{at} $ $ \frac{1}{s^2+a^2} \qquad \frac{1}{a}\operatorname{sen}(at) $ $ \frac{s}{s^2+a^2} \qquad \cos(at) $ $ \frac{1}{s^2-a^2} \qquad \frac{1}{a}\operatorname{senh}(at) $ $ \frac{s}{s^2-a^2} \qquad \cosh(at) $ $ 8 \arctan\left(\frac{a}{s}\right) \frac{1}{t}\operatorname{sen}(at) $ $ 9 k \qquad k\delta(t) $	1	_	k
$ \frac{3}{s-a} = e^{at} $ $ \frac{4}{s^2 + a^2} = \frac{1}{a} \operatorname{sen}(at) $ $ \frac{5}{s^2 + a^2} = \cos(at) $ $ \frac{6}{s^2 - a^2} = \frac{1}{a} \operatorname{senh}(at) $ $ \frac{s}{s^2 - a^2} = \cosh(at) $ $ 8 = \arctan\left(\frac{a}{s}\right) = \frac{1}{t} \operatorname{sen}(at) $ $ 9 = k = k\delta(t) $	2	$\frac{1}{s^n}$	$\frac{t^{n-1}}{\Gamma(n)}; \frac{t^{n-1}}{(n-1)!} n \in \mathbb{N}$
$ \frac{1}{s^2 + a^2} \qquad \frac{1}{a} \operatorname{sen}(at) $ $ \frac{5}{s} \frac{s}{s^2 + a^2} \qquad \cos(at) $ $ \frac{1}{s^2 - a^2} \qquad \frac{1}{a} \operatorname{senh}(at) $ $ \frac{s}{s^2 - a^2} \qquad \cosh(at) $ $ 8 \arctan\left(\frac{a}{s}\right) \frac{1}{t} \operatorname{sen}(at) $ $ 9 k \qquad k\delta(t) $	3		e^{at}
$6 \frac{1}{s^2 - a^2} \frac{1}{a} \operatorname{senh}(at)$ $7 \frac{s}{s^2 - a^2} \cosh(at)$ $8 \arctan\left(\frac{a}{s}\right) \frac{1}{t} \operatorname{sen}(at)$ $9 k \qquad k\delta(t)$	4	1	$\frac{1}{a}\operatorname{sen}(at)$
$ \frac{6}{s^{2}-a^{2}} = \frac{1}{a} \operatorname{senh}(at) $ $ 7 = \frac{s}{s^{2}-a^{2}} = \cosh(at) $ $ 8 = \arctan\left(\frac{a}{s}\right) = \frac{1}{t} \operatorname{sen}(at) $ $ 9 = k = k\delta(t) $	5	$\frac{s}{s^2 + a^2}$	$\cos(at)$
8 $\arctan\left(\frac{a}{s}\right) \frac{1}{t}\operatorname{sen}(at)$ 9 $k k\delta(t)$	6	_	$\frac{1}{a}\operatorname{senh}(at)$
9 k $k\delta(t)$	7	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
	8	$\arctan\left(\frac{a}{s}\right)$	$\frac{1}{t}\operatorname{sen}(at)$
$10 e^{-as} \qquad \qquad \delta(t-a)$	9	k	$k\delta(t)$
	10	e^{-as}	$\delta(t-a)$

7.2. Propiedades de la transformada inversa de Laplace

7.2.1. Linealidad

$$\mathcal{L}^{-1}\{a_1 F_1(s) + a_2 F_2(s)\} = a_1 f_1(t) + a_2 f_2(t)$$
(7.4)

7.2.2. Desplazamiento en t

Si
$$\mathcal{L}^{-1}\{F(s)\}=f(t)$$
:
$$\mathcal{L}^{-1}\{F(s)\,e^{-as}\}=f(t-a)u(t-a) \tag{7.5}$$

7.2.3. Desplazamiento en s

Si
$$\mathcal{L}^{-1}\{F(s)\} = f(t)$$
:
$$\mathcal{L}^{-1}\{F(s-a)\} = f(t) e^{at} \tag{7.6}$$

7.2.4. División por s

Si
$$\mathcal{L}^{-1}{F(s)} = f(t)$$
:
$$\mathcal{L}^{-1}\left{\frac{F(s)}{s}\right} = \int_{0}^{t} f(t) dt \tag{7.7}$$

En general:

$$\mathcal{L}^{-1}\left\{\frac{F(s)}{s^n}\right\} = \int_0^t \int_0^t \cdots \int_0^t f(t) dt \dots dt dt \tag{7.8}$$

7.2.5. Transformada inversa de la derivada

Si
$$\mathcal{L}^{-1}{F(s)} = f(t)$$
:
$$\mathcal{L}^{-1}{F'(s)} = -t f(t) \tag{7.9}$$

En general:

$$\mathcal{L}^{-1}\{F^{(n)}(s)\} = (-1)^n t^n f(t) \tag{7.10}$$

7.3. Descomposición en fracciones parciales

En la mayoría de los casos se tienen funciones racionales de la siguiente forma:

$$F(s) = \frac{P(s)}{Q(s)}$$

Donde el grado del numerador debe ser menor al grado del denominador. Para hallar la transformada inversa se debe descomponer en fracciones parciales de acuerdo a los factores del denominador. Se tienen los siguientes casos:

7.3.1. Factores lineales no repetidos

$$\frac{P(s)}{(s-a_1)(s-a_2)\dots(s-a_n)} = \frac{A_1}{s-a_1} + \frac{A_2}{s-a_2} + \dots + \frac{A_n}{s-a_n}$$

7.3.2. Factores lineales y repetidos

$$\frac{P(s)}{(s-a)^m(s-b)^n} = \frac{A_1}{s-a} + \frac{A_2}{(s-a)^2} + \dots + \frac{A_m}{(s-a)^m} + \frac{B_1}{(s-b)} + \frac{B_2}{(s-a)^2} + \dots + \frac{B_n}{(s-b)^n}$$

7.3.3. Factores cuadráticos (con raíces imaginarias o complejas)

$$\frac{P(s)}{(s^2 + a_1s + b_1)(s^2 + a_2s + b_2)} = \frac{A_1s + B_1}{s^2 + a_1s + b_1} + \frac{A_2s + B_2}{s^2 + a_2s + b_2}$$

7.4. Convolución

$$f_{1}(t) * f_{2}(t) = \int_{0}^{t} f_{1}(\tau) f_{2}(t - \tau) d\tau$$

$$\mathcal{L}\{f_{1}(t) * f_{2}(t)\} = \int_{0}^{\infty} \left[\int_{0}^{t} f_{1}(\tau) f_{2}(t - \tau) d\tau \right] e^{-st} dt$$

$$= \int_{t=0}^{t=\infty} \int_{\tau=0}^{\tau=t} f_{1}(\tau) f_{2}(t - \tau) e^{-st} d\tau dt$$

$$= \lim_{M \to \infty} \int_{\tau=0}^{\tau=M} \int_{t=\tau}^{t=M} f_{1}(\tau) f_{2}(t - \tau) e^{-st} dt d\tau$$

$$= \lim_{M \to \infty} \int_{0}^{M} f_{1}(\tau) d\tau \int_{\tau}^{M} f_{2}(t - \tau) e^{-st} dt$$

$$u = t - \tau \to t = u + \tau$$

$$du = dt$$

$$\mathcal{L}\{f_{1}(t) * f_{2}(t)\} = \lim_{M \to \infty} \int_{0}^{M} f_{1}(\tau) d\tau \int_{0}^{M-\tau} f_{2}(u) e^{-s(u+\tau)} du$$

$$= \int_{0}^{\infty} f_{1}(\tau) e^{-st} d\tau \int_{0}^{\infty} f_{2}(u) e^{-su} du$$

$$= F_{1}(s) F_{2}(s)$$

$$\mathcal{L}\{f_{1}(t) * f_{2}(t)\} = F_{1}(s) F_{2}(s)$$

$$(7.11)$$

7.5. Transformada inversa por convolución

$$\mathcal{L}^{-1}\{F_1(s)\,F_2(s)\} = f_1(t) * f_2(t) \tag{7.12}$$

Donde:

$$f_1(t) = \mathcal{L}^{-1}{F_1(s)}$$

 $f_2(t) = \mathcal{L}^{-1}{F_2(s)}$

Capítulo 8

Aplicaciones de la transformada de Laplace

8.1. Ecuaciones diferenciales lineales

Pasos:

- 1. Se tiene Ecuación diferencial en el dominio del tiempo "t".
- 2. Se cuenta con condiciones iniciales.
- 3. Se aplica la transformada de *Laplace* y se convierte en una ecuación algebraica en el dominio de "s".
- 4. Se soluciona la ecuación en el dominio de "s".
- 5. Se aplica la transformada inversa de Laplace y se lleva la solución a el dominio de "t".

$$\mathcal{L}\lbrace f'(t)\rbrace = sF(s) - f(0) \tag{8.1}$$

$$\mathcal{L}\{f''(t)\} = s^2 F(s) - f(0)s - f'(0)$$
(8.2)

$$\mathcal{L}\{f'''(t)\} = s^3 F(s) - f(0)s^2 - f'(0)s - f''(0)$$
(8.3)