Stratified Analysis

Alvin Sheng

Contents

Effect Size Analysis	2
CHD Stratified Analysis	3
CAR model results, Coronary Heart Disease Stratified on Poverty	3
CAR model results, Coronary Heart Disease Stratified on RPL THEME1	9
CAR model results, Coronary Heart Disease Stratified on RPL THEME2	13
CAR model results, Coronary Heart Disease Stratified on RPL THEME3	17
CAR model results, Coronary Heart Disease Stratified on RPL THEME4	20
CAR model results, Coronary Heart Disease Stratified on RPL_THEMES	24
BPHIGH Stratified Analysis	27
Stratified on Poverty	27
Stratified on RPL_THEME1	31
Stratified on RPL_THEME2	35
Stratified on RPL_THEME3	38
Stratified on RPL_THEME4	42
Stratified on RPL_THEMES	46
CASTHMA Stratified Analysis	49
Stratified on Poverty	
Stratified on RPL_THEME1	53
Stratified on RPL_THEME2	
Stratified on RPL_THEME3	60
Stratified on RPL_THEME4	
Stratified on RPL_THEMES	68
MHLTH Stratified Analysis	71
Stratified on Poverty	71
Stratified on RPL_THEME1	75
Stratified on RPL_THEME2	79
Stratified on RPL_THEME3	82
Stratified on RPL_THEME4	86
Stratified on RPL_THEMES	90

```
library(here)
## Warning in readLines(f, n): line 1 appears to contain an embedded nul
## Warning in readLines(f, n): incomplete final line found on '/Volumes/
## ALVINDRIVE2/flood-risk-health-effects/._flood-risk-health-effects.Rproj'
## here() starts at /Volumes/ALVINDRIVE2/flood-risk-health-effects
library(coda)
library(CARBayes)
## Loading required package: MASS
## Loading required package: Rcpp
## Registered S3 method overwritten by 'GGally':
    method from
##
    +.gg
           ggplot2
library(ggplot2)
library(tidyverse)
## -- Attaching packages -----
                                                 ----- tidyverse 1.3.1 --
## v tibble 3.1.6
                      v dplyr
                              1.0.7
## v tidyr
            1.1.4
                      v stringr 1.4.0
## v readr
            2.1.1
                      v forcats 0.5.1
            0.3.4
## v purrr
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## x dplyr::select() masks MASS::select()
fhs_model_df <- readRDS(here("intermediary_data/fhs_model_df_all_census_tract_pc.rds"))</pre>
```

Effect Size Analysis

Recall that regression coefficient estimates $\hat{\beta}$ can be standardized in the following manner:

$$\hat{\beta}^* = \frac{SD(X)}{SD(Y)}\hat{\beta},$$

where SD(X) is the standard deviation of the covariate that $\hat{\beta}$ corresponds to, and SD(Y) is the standard deviation of the response variable, i.e., one of the health outcomes.

In the present analysis, the covariates have been scaled by their standard deviations, but the response variable has not been scaled. Denote the regression coefficient estimates of this analysis as \hat{b} , such that

$$\hat{\beta}^* = \frac{\hat{b}}{SD(Y)}$$

Acock (2014, p. 272) suggests the following effect size heuristic for standardized beta coefficients $\hat{\beta}^*$:

1. Weak: $|\hat{\beta}^*| < 0.2$

2. Moderate: $0.2 < |\hat{\beta}^*| < 0.5$

3. Strong: $|\hat{\beta}^*| > 0.5$

Citation: Acock, A. C. (2014). A Gentle Introduction to Stata (4th ed.). Texas: Stata Press.

Translating the heuristic for our estimates \hat{b} , we have that

```
1. Weak: |\hat{b}| < 0.2 \times SD(Y)
2. Moderate: 0.2 < |\hat{b}| < 0.5 \times SD(Y)
3. Strong: |\hat{b}| > 0.5 \times SD(Y)
```

In the following ggplots, I include the positive/negative cut-off for the "Weak" effect size as dashed red lines.

```
# standard deviations for the health outcome variables

(sd_CHD <- sd(fhs_model_df$Data_Value_CHD, na.rm = T))

## [1] 2.207308

(sd_BPHIGH <- sd(fhs_model_df$Data_Value_BPHIGH, na.rm = T))

## [1] 7.295828

(sd_CASTHMA <- sd(fhs_model_df$Data_Value_CASTHMA, na.rm = T))

## [1] 1.575484

(sd_MHLTH <- sd(fhs_model_df$Data_Value_MHLTH, na.rm = T))

## [1] 3.408159</pre>
```

CHD Stratified Analysis

CAR model results, Coronary Heart Disease Stratified on Poverty

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_poverty.RData"))
```

Beta samples

```
beta_samples <- mcmc.list(chain1$samples$beta, chain2$samples$beta,
                           chain3$samples$beta)
effectiveSize(beta_samples)
##
         var1
                    var2
                                var3
                                            var4
                                                       var5
                                                                  var6
                                                                              var7
##
  68234.5424 36356.9101 36778.6933 50946.3591 80150.2031 67822.1599 87865.9815
##
         var8
                    var9
                               var10
                                          var11
                                                      var12
                                                                  var13
                                                                             var14
## 41964.3988 60618.7756 50073.0483 60334.8196 75007.3816 89902.3839 35045.8948
##
        var15
                   var16
                               var17
                                          var18
                                                      var19
                                                                  var20
## 63117.7510 62661.4556 69927.4805 73680.7421 32256.2277 88511.0820 57595.3884
##
        var22
                   var23
                               var24
                                          var25
                                                      var26
                                                                  var27
                                                                             var28
                                      4437.2354
##
  10851.9152
               6001.4567
                            317.1082
                                                  2004.1565
                                                             2899.3999
                                                                          995.0713
##
                   var30
                               var31
                                          var32
                                                      var33
                                                                 var34
        var29
                                                                             var35
                722.6596 1183.8573 29119.6798 78352.9703 36653.1752 36139.4806
##
     164.5188
```

```
##
        var36
                  var37
                             var38
                                        var39
                                                   var40
                                                              var41
                                                                          var42
## 50634.0701 77078.3877 70894.4321 76688.9918 56324.0408 50255.7950 49933.1315
                             var45
                                        var46
##
        var43
                   var44
                                                   var47
                                                              var48
                                                                         var49
## 60491.6497 61218.1427 80163.9440 28505.6155 41269.4077 54162.6266 35387.8972
##
        var50
                   var51
                             var52
                                        var53
                                                   var54
                                                              var55
                                                                         var56
## 63127.3506 36669.3947 79892.3252 47047.7399 8712.7153 7042.4165
                                                                      335.2226
                             var59
                                        var60
                                                   var61
                                                              var62
       var57
                  var58
                                                                         var63
  4082.7807 2170.2260 2715.5098 1038.0427
                                                163.2142 745.0809 1222.9936
##
##
        var64
## 27981.7396
```

Examining sigma2, nu2, rho

Examining a sample of the 3108 phi parameters

```
phi_samples <- mcmc.list(chain1$samples$phi, chain2$samples$phi, chain3$samples$phi)</pre>
set.seed(1157, kind = "Mersenne-Twister", normal.kind = "Inversion", sample.kind = "Rejection")
phi_subset_idx <- sample(1:ncol(phi_samples[[1]]), size = 10)</pre>
phi_samples_subset <- phi_samples[, phi_subset_idx]</pre>
effectiveSize(phi samples subset)
##
                             var3
        var1
                  var2
                                        var4
                                                  var5
                                                             var6
                                                                       var7
                                                                                  var8
## 37139.629
              4544.964
                        6814.498 20112.476 93352.202 39125.311 33513.256 40471.322
##
        var9
                 var10
## 70414.953 4815.674
```

Inference

```
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
```

```
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
                                                  97.5%
##
                                  50%
                                          2.5%
## strat0
                              6.43015 6.41643 6.44387
                             -0.01188 -0.02410
## strat0:flood_risk_pc1
                                                0.00042
## strat0:flood_risk_pc2
                              0.01155 -0.00035
                                                0.02350
## strat0:flood_risk_pc3
                             -0.00119 -0.01072 0.00837
## strat0:flood_risk_pc4
                             -0.00696 -0.01549 0.00153
## strat0:flood_risk_pc5
                             0.00965 0.00096 0.01828
## strat0:EP UNEMP
                             0.04977 0.03459 0.06484
## strat0:EP_PCI
                             -0.04939 -0.06330 -0.03546
## strat0:EP NOHSDP
                             0.23419 0.20652 0.26172
## strat0:EP_AGE65
                              1.23085 1.21726 1.24439
## strat0:EP_AGE17
                                       0.14412
                              0.15967
                                                0.17517
## strat0:EP_DISABL
                              0.22490 0.20815 0.24175
## strat0:EP SNGPNT
                              0.01432 -0.00135 0.02996
## strat0:EP_MINRTY
                             -0.17386 -0.19638 -0.15152
## strat0:EP_LIMENG
                             -0.02991 -0.05522 -0.00479
## strat0:EP_MUNIT
                             -0.05969 -0.07259 -0.04675
## strat0:EP_MOBILE
                             0.07831 0.06529 0.09133
## strat0:EP_CROWD
                             0.01423 -0.00632 0.03480
## strat0:EP_NOVEH
                             0.08921 0.06704 0.11136
## strat0:EP GROUPQ
                             -0.09385 -0.10677 -0.08079
## strat0:EP_UNINSUR
                             0.13535 0.11834 0.15229
## strat0:co
                             -0.11682 -0.15582 -0.07736
## strat0:no2
                              0.01065 -0.04115 0.06181
## strat0:o3
                             -0.14154 -0.21424 -0.07171
## strat0:pm10
                             -0.19892 -0.23246 -0.16640
## strat0:pm25
                              0.43580 0.38849 0.48542
## strat0:so2
                              0.05602 0.02265 0.09008
                             0.13325 0.08379 0.18664
## strat0:summer_tmmx
                             -0.32090 -0.48330 -0.19356
## strat0:winter_tmmx
## strat0:summer_rmax
                              0.00287 -0.06516 0.07089
## strat0:winter_rmax
                              0.05328 0.00396
                                               0.10327
## strat0:Data_Value_CSMOKING 0.70846 0.67930
                                               0.73735
                              6.74724 6.73538
## strat1
                                                6.75898
## strat1:flood_risk_pc1
                             -0.00804 -0.01992 0.00387
## strat1:flood_risk_pc2
                              0.01057 -0.00045 0.02167
## strat1:flood_risk_pc3
                             -0.00928 -0.01869 0.00007
## strat1:flood_risk_pc4
                              0.00301 -0.00523 0.01125
## strat1:flood_risk_pc5
                             -0.00935 -0.01839 -0.00029
## strat1:EP_UNEMP
                              0.05273 0.04381 0.06166
## strat1:EP PCI
                             -0.08125 -0.10574 -0.05676
## strat1:EP NOHSDP
                              0.14309 0.12589 0.16024
## strat1:EP_AGE65
                              1.63391 1.61976 1.64814
## strat1:EP AGE17
                              0.30134 0.28738 0.31548
## strat1:EP_DISABL
                              0.22384 0.21196 0.23575
## strat1:EP_SNGPNT
                             -0.05770 -0.06893 -0.04642
## strat1:EP_MINRTY
                              0.01397 -0.00378 0.03174
## strat1:EP_LIMENG
                             -0.04185 -0.05694 -0.02672
## strat1:EP_MUNIT
                             -0.00650 -0.01767 0.00468
## strat1:EP_MOBILE
                             0.05106 0.04145 0.06071
## strat1:EP_CROWD
                             -0.02343 -0.03516 -0.01170
## strat1:EP_NOVEH
                             0.20037 0.18577 0.21505
```

```
## strat1:EP_UNINSUR
                              0.08836 0.07637 0.10022
                              -0.14902 -0.19131 -0.10701
## strat1:co
## strat1:no2
                              -0.02988 -0.08160 0.02114
## strat1:o3
                              -0.15330 -0.22623 -0.08329
## strat1:pm10
                              -0.14935 -0.18423 -0.11588
## strat1:pm25
                              0.44998 0.40284 0.49980
## strat1:so2
                              0.01854 -0.01379 0.05156
## strat1:summer_tmmx
                              0.04619 -0.00401 0.09957
## strat1:winter_tmmx
                              -0.16545 -0.32808 -0.03828
## strat1:summer_rmax
                              -0.07350 -0.14250 -0.00573
                               0.04015 -0.00878 0.09025
## strat1:winter_rmax
## strat1:Data_Value_CSMOKING 1.03706 1.01664 1.05763
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_povert
List of significant beta coefficients:
colnames(beta_samples_matrix)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "strat0"
                                     "strat0:flood_risk_pc5"
## [3] "strat0:EP_UNEMP"
                                     "strat0:EP_PCI"
## [5] "strat0:EP_NOHSDP"
                                     "strat0:EP_AGE65"
## [7] "strat0:EP_AGE17"
                                     "strat0:EP_DISABL"
## [9] "strat0:EP_MINRTY"
                                     "strat0:EP_LIMENG"
## [11] "strat0:EP_MUNIT"
                                     "strat0:EP_MOBILE"
## [13] "strat0:EP_NOVEH"
                                     "strat0:EP_GROUPQ"
## [15] "strat0:EP_UNINSUR"
                                     "strat0:co"
## [17] "strat0:o3"
                                     "strat0:pm10"
## [19] "strat0:pm25"
                                     "strat0:so2"
## [21] "strat0:summer_tmmx"
                                     "strat0:winter_tmmx"
## [23] "strat0:winter_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [25] "strat1"
                                     "strat1:flood_risk_pc5"
                                     "strat1:EP_PCI"
## [27] "strat1:EP_UNEMP"
## [29] "strat1:EP_NOHSDP"
                                     "strat1:EP_AGE65"
## [31] "strat1:EP_AGE17"
                                     "strat1:EP_DISABL"
## [33] "strat1:EP_SNGPNT"
                                     "strat1:EP_LIMENG"
## [35] "strat1:EP_MOBILE"
                                     "strat1:EP_CROWD"
## [37] "strat1:EP_NOVEH"
                                     "strat1:EP_GROUPQ"
## [39] "strat1:EP_UNINSUR"
                                     "strat1:co"
## [41] "strat1:o3"
                                     "strat1:pm10"
## [43] "strat1:pm25"
                                     "strat1:winter_tmmx"
## [45] "strat1:summer_rmax"
                                     "strat1:Data_Value_CSMOKING"
```

-0.05302 -0.06160 -0.04446

Credible Interval plots for the coefficients, in ggplot

strat1:EP_GROUPQ

```
post_2.5 = 2.5\%,
                                                   post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                                                    levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom_point() +
   ylim(c(-1, 2)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
              axis.text=element_text(size=12),
              plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 20.5, 26.5, 30.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 12.5, y = 1.5, label = "Social Vulnerability Index",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 23.5, y = 1.5, label = "Air Pollution",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 28.5, y = 1.5, label = "GRIDMET",
                    col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                       "Unemployed", "Per Capita Income", "No High School",
                                                       "65 or Over", "17 or Under", "Disability",
                                                       "Single-Parent", "Minority", "Poor English",
                                                       "Multi-Unit", "Mobile", "Crowded",
                                                       "No Vehicle", "Group Quarters", "Uninsured",
                                                       "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                       "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity", "Winter
                                                       "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
   geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
   geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
   scale_color_manual(name = "Strata",
                                      values = c("#F8766D", "#00BFC4"),
                                      drop = FALSE) +
   geom_hline(yintercept = 0.2 * sd_CHD, col = "red", linetype = "dashed") +
   geom_hline(yintercept = -0.2 * sd_CHD, col = "red", linetype = "dashed")
```

95% Credible Intervals, Coronary Heart Disease, Stratified on Poverty


```
ggsave(here("figures/final_figures/stratified_analysis/CHD_CI_poverty.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Below is my best attempt to use both color and shape to indicate the strata. The only problem is the legend.

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat, shape = s
  geom_point() +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 20.5, 26.5, 30.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 12.5, y = 1.5, label = "Social Vulnerability Index",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 23.5, y = 1.5, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 28.5, y = 1.5, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "Unemployed", "Per Capita Income", "No High School",
                              "65 or Over", "17 or Under", "Disability",
                              "Single-Parent", "Minority", "Poor English",
                              "Multi-Unit", "Mobile", "Crowded",
                              "No Vehicle", "Group Quarters", "Uninsured",
```

95% Credible Intervals, Coronary Heart Disease, Stratified on Poverty

CAR model results, Coronary Heart Disease Stratified on RPL_THEME1

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl1.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))</pre>
```

```
##
                                          2.5%
                                                  97.5%
## strat0
                              6.45380 6.43844 6.46922
## strat0:flood risk pc1
                             -0.01863 -0.03113 -0.00624
                              0.00613 -0.00590 0.01822
## strat0:flood_risk_pc2
## strat0:flood_risk_pc3
                             -0.00322 -0.01287 0.00643
## strat0:flood risk pc4
                             -0.00882 -0.01743 -0.00015
## strat0:flood_risk_pc5
                              0.00464 -0.00407 0.01323
                              1.25720 1.24416 1.27020
## strat0:EP_AGE65
## strat0:EP_AGE17
                              0.19423 0.17927 0.20925
## strat0:EP_DISABL
                              0.23027 0.21416 0.24639
## strat0:EP_SNGPNT
                              0.00341 -0.01257 0.01945
## strat0:EP_MINRTY
                             -0.13130 -0.15404 -0.10845
## strat0:EP_LIMENG
                              0.05561 0.02896 0.08220
## strat0:EP_MUNIT
                             -0.05139 -0.06357 -0.03922
## strat0:EP_MOBILE
                              0.08374 0.06905 0.09843
## strat0:EP_CROWD
                              0.03814
                                       0.01431
                                                0.06175
## strat0:EP_NOVEH
                              0.10980 0.08833 0.13118
## strat0:EP GROUPQ
                             -0.05579 -0.06645 -0.04519
## strat0:EP_UNINSUR
                              0.15798 0.13989 0.17608
## strat0:co
                             -0.10410 -0.14461 -0.06368
## strat0:no2
                              0.00662 -0.04653 0.05977
## strat0:o3
                             -0.17707 -0.24981 -0.10360
## strat0:pm10
                             -0.22233 -0.25631 -0.18814
## strat0:pm25
                              0.48796 0.43836 0.53740
## strat0:so2
                              0.05779 0.02332 0.09156
## strat0:summer_tmmx
                              0.12288 0.07140 0.17407
## strat0:winter_tmmx
                             -0.31889 -0.44531 -0.18334
## strat0:summer_rmax
                             -0.00018 -0.06803 0.06832
## strat0:winter_rmax
                              0.05717 0.00627
                                                0.10750
## strat0:Data_Value_CSMOKING  0.89868  0.87407
                                                0.92364
## strat1
                              6.68575
                                       6.67434
                                                6.69720
## strat1:flood_risk_pc1
                             -0.00679 -0.01886
                                                0.00525
## strat1:flood_risk_pc2
                              0.01708 0.00584
                                                0.02829
## strat1:flood_risk_pc3
                             -0.00814 -0.01782
                                                0.00154
## strat1:flood_risk_pc4
                             -0.00194 -0.01028
                                                0.00643
## strat1:flood_risk_pc5
                             -0.00331 -0.01249 0.00590
## strat1:EP AGE65
                              1.70400 1.68911 1.71897
## strat1:EP_AGE17
                              0.28849 0.27420 0.30285
## strat1:EP DISABL
                              0.24411 0.23206 0.25620
## strat1:EP_SNGPNT
                             -0.02575 -0.03681 -0.01471
## strat1:EP MINRTY
                              0.06697 0.04994 0.08394
## strat1:EP LIMENG
                              0.02107 0.00814 0.03397
## strat1:EP_MUNIT
                             -0.01385 -0.02564 -0.00203
## strat1:EP_MOBILE
                              0.05549 0.04609 0.06485
## strat1:EP_CROWD
                              0.00273 -0.00870 0.01421
## strat1:EP_NOVEH
                             0.21106 0.19620 0.22593
## strat1:EP_GROUPQ
                             -0.02987 -0.03869 -0.02103
## strat1:EP_UNINSUR
                              0.11249 0.10078 0.12417
## strat1:co
                             -0.15559 -0.19796 -0.11350
## strat1:no2
                             -0.02250 -0.07522 0.02959
## strat1:o3
                             -0.17648 -0.24900 -0.10308
## strat1:pm10
                             -0.14081 -0.17599 -0.10563
## strat1:pm25
                             0.49652 0.44691 0.54573
## strat1:so2
                              0.02737 -0.00555 0.05965
```

```
0.02694 -0.02574 0.07931
## strat1:summer_tmmx
## strat1:winter_tmmx
                              -0.16019 -0.28637 -0.02482
## strat1:summer_rmax
                              -0.08138 -0.14907 -0.01208
## strat1:winter_rmax
                               0.06018 0.00935 0.11045
## strat1:Data_Value_CSMOKING 1.19445 1.17643 1.21239
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_rpl1.R
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "strat0"
                                     "strat0:flood_risk_pc1"
## [3] "strat0:flood_risk_pc4"
                                     "strat0:EP_AGE65"
## [5] "strat0:EP_AGE17"
                                     "strat0:EP_DISABL"
## [7] "strat0:EP_MINRTY"
                                     "strat0:EP_LIMENG"
## [9] "strat0:EP_MUNIT"
                                     "strat0:EP_MOBILE"
## [11] "strat0:EP_CROWD"
                                     "strat0:EP_NOVEH"
## [13] "strat0:EP_GROUPQ"
                                     "strat0:EP_UNINSUR"
## [15] "strat0:co"
                                     "strat0:o3"
## [17] "strat0:pm10"
                                     "strat0:pm25"
## [19] "strat0:so2"
                                     "strat0:summer_tmmx"
## [21] "strat0:winter_tmmx"
                                     "strat0:winter_rmax"
## [23] "strat0:Data_Value_CSMOKING"
                                     "strat1"
## [25] "strat1:flood_risk_pc2"
                                      "strat1:EP_AGE65"
## [27] "strat1:EP_AGE17"
                                     "strat1:EP_DISABL"
## [29] "strat1:EP_SNGPNT"
                                     "strat1:EP_MINRTY"
## [31] "strat1:EP_LIMENG"
                                     "strat1:EP_MUNIT"
## [33] "strat1:EP_MOBILE"
                                     "strat1:EP_NOVEH"
## [35] "strat1:EP_GROUPQ"
                                     "strat1:EP_UNINSUR"
## [37] "strat1:co"
                                     "strat1:o3"
## [39] "strat1:pm10"
                                     "strat1:pm25"
## [41] "strat1:winter_tmmx"
                                     "strat1:summer_rmax"
## [43] "strat1:winter_rmax"
                                     "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
```

Note: The intercept for both strata is not included.

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-1, 2)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
                 axis.text=element_text(size=12),
                 plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 11.5, y = 1.5, label = "Social Vulnerability Index",
                        col = "blue", size = 4.5) +
    annotate(geom = "text", x = 20.5, y = 1.5, label = "Air Pollution",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 25.5, y = 1.5, label = "GRIDMET",
                       col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                "65 or Over", "17 or Under", "Disability",
                                                                 "Single-Parent", "Minority", "Poor English",
                                                                "Multi-Unit", "Mobile", "Crowded",
                                                                "No Vehicle", "Group Quarters", "Uninsured",
                                                                "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                                "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                             values = c("#F8766D", "#00BFC4"),
                                             drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_CHD, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_CHD, col = "red", linetype = "dashed")
p
```



```
ggsave(here("figures/final_figures/stratified_analysis/CHD_CI_rpl1.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

CAR model results, Coronary Heart Disease Stratified on RPL THEME2

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl2.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               6.30362 6.28935 6.31795
                              -0.04670 -0.06533 -0.02814
## strat0:flood_risk_pc1
## strat0:flood_risk_pc2
                               0.04857 0.03056 0.06673
## strat0:flood_risk_pc3
                               0.00889 -0.00563 0.02339
## strat0:flood_risk_pc4
                              -0.01970 -0.03193 -0.00752
## strat0:flood_risk_pc5
                               0.00935 -0.00313 0.02172
## strat0:EP_POV
                              0.17558 0.15115 0.19987
## strat0:EP_UNEMP
                              0.14060 0.12145 0.15962
## strat0:EP PCI
                              0.05966 0.03965 0.07990
## strat0:EP_NOHSDP
                              0.84891 0.81646 0.88188
## strat0:EP_MINRTY
                             -0.69708 -0.72769 -0.66668
```

```
## strat0:EP_LIMENG
                              -0.02529 -0.05308 0.00245
## strat0:EP_MUNIT
                             -0.07858 -0.09427 -0.06287
## strat0:EP MOBILE
                              0.26818 0.24836 0.28799
## strat0:EP_CROWD
                              -0.25310 -0.27412 -0.23198
## strat0:EP_NOVEH
                               0.50564 0.47925 0.53184
## strat0:EP GROUPQ
                              -0.29196 -0.30243 -0.28157
## strat0:EP UNINSUR
                             -0.06960 -0.09105 -0.04806
## strat0:co
                              -0.25086 -0.31421 -0.18763
## strat0:no2
                              -0.00192 -0.08934 0.08356
## strat0:o3
                              0.03725 -0.09935 0.17359
## strat0:pm10
                              -0.51735 -0.57596 -0.45855
                              0.52446 0.43967 0.60912
## strat0:pm25
## strat0:so2
                              -0.05967 -0.11855 -0.00197
## strat0:summer_tmmx
                              -0.00257 -0.09890 0.09035
## strat0:winter_tmmx
                              -0.26954 -0.50080 0.00062
## strat0:summer_rmax
## strat0:winter_rmax
                               -0.00031 -0.12620 0.12415
                               0.01987 -0.07330 0.11384
## strat0:Data_Value_CSMOKING -0.04664 -0.08384 -0.00923
## strat1
                               7.02321 7.00835 7.03822
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
## strat1:flood_risk_pc4
## strat1:flood_risk_pc5
## strat1:flood_risk_pc1
                               -0.00739 -0.02668 0.01187
                               0.05355 0.03530 0.07192
                              -0.02088 -0.03643 -0.00538
                              -0.00205 -0.01585 0.01175
## strat1:flood_risk_pc5
                               0.01961 0.00448 0.03474
## strat1:EP_POV
                               0.65131 0.62501 0.67750
## strat1:EP_UNEMP
                              0.07006 0.05512 0.08501
## strat1:EP_PCI
                              -0.04036 -0.07819 -0.00228
## strat1:EP_NOHSDP
                               0.60867 0.57951 0.63773
## strat1:EP_MINRTY
                              -0.54675 -0.57528 -0.51845
## strat1:EP_LIMENG
                             -0.17480 -0.20220 -0.14759
                              0.07301 0.05077 0.09511
## strat1:EP_MUNIT
## strat1:EP_MOBILE
                              0.20224 0.18760 0.21681
## strat1:EP_CROWD
                             -0.23732 -0.25786 -0.21662
## strat1:EP_NOVEH
                              0.54547 0.51908 0.57191
## strat1:EP_GROUPQ
                               0.12779 0.09953 0.15624
## strat1:EP_UNINSUR
                              -0.04955 -0.06947 -0.02954
## strat1:co
                              -0.30408 -0.37570 -0.23293
## strat1:no2
                             -0.20986 -0.30160 -0.12021
                               0.06972 -0.06667 0.20598
## strat1:o3
## strat1:pm10
                             -0.45542 -0.51381 -0.39747
## strat1:pm25
                              0.60031 0.51631 0.68384
                             -0.03708 -0.09435 0.01999
## strat1:so2
## strat1:summer_tmmx
                               0.01420 -0.08305 0.10792
## strat1:winter_tmmx
                              -0.30295 -0.53571 -0.03361
## strat1:summer_rmax
                               0.02434 -0.10161 0.14916
## strat1:winter_rmax
                               0.03331 -0.05959 0.12658
## strat1:Data_Value_CSMOKING -0.21477 -0.25115 -0.17865
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_rpl2.R
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "strat0"
                                      "strat0:flood_risk_pc1"
```

```
## [3] "strat0:flood_risk_pc2"
                                      "strat0:flood_risk_pc4"
## [5] "strat0:EP_POV"
                                      "strat0:EP_UNEMP"
## [7] "strat0:EP PCI"
                                      "strat0:EP NOHSDP"
## [9] "strat0:EP_MINRTY"
                                     "strat0:EP_MUNIT"
## [11] "strat0:EP_MOBILE"
                                      "strat0:EP_CROWD"
## [13] "strat0:EP NOVEH"
                                     "strat0:EP GROUPQ"
                                     "strat0:co"
## [15] "strat0:EP_UNINSUR"
## [17] "strat0:pm10"
                                      "strat0:pm25"
## [19] "strat0:so2"
                                     "strat0:Data_Value_CSMOKING"
## [21] "strat1"
                                     "strat1:flood_risk_pc2"
## [23] "strat1:flood_risk_pc3"
                                      "strat1:flood_risk_pc5"
## [25] "strat1:EP_POV"
                                      "strat1:EP_UNEMP"
## [27] "strat1:EP_PCI"
                                     "strat1:EP_NOHSDP"
                                     "strat1:EP_LIMENG"
## [29] "strat1:EP_MINRTY"
## [31] "strat1:EP_MUNIT"
                                      "strat1:EP_MOBILE"
## [33] "strat1:EP_CROWD"
                                      "strat1:EP_NOVEH"
## [35] "strat1:EP_GROUPQ"
                                     "strat1:EP_UNINSUR"
## [37] "strat1:co"
                                     "strat1:no2"
## [39] "strat1:pm10"
                                      "strat1:pm25"
## [41] "strat1:winter_tmmx"
                                      "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%,
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                       levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2))),</pre>
                                         rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
  ylim(c(-1, 2)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
```

 $geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +$

annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",

geom_hline(yintercept = 0, col = "red") +

```
col = "blue", size = 4.5) +
     annotate(geom = "text", x = 11.5, y = 1.5, label = "Social Vulnerability Index",
                              col = "blue", size = 4.5) +
     annotate(geom = "text", x = 20.5, y = 1.5, label = "Air Pollution",
                             col = "blue", size = 4.5) +
     annotate(geom = "text", x = 25.5, y = 1.5, label = "GRIDMET",
                              col = "blue", size = 4.5) +
     scale x discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                                 "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                                 "Minority", "Poor English",
                                                                                 "Multi-Unit", "Mobile", "Crowded",
                                                                                 "No Vehicle", "Group Quarters", "Uninsured",
                                                                                 "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                                 "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humid
                                                                                 "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
     geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
     geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
     scale_color_manual(name = "Strata",
                                                        values = c("#F8766D", "#00BFC4"),
                                                        drop = FALSE) +
     geom_hline(yintercept = 0.2 * sd_CHD, col = "red", linetype = "dashed") +
     geom_hline(yintercept = -0.2 * sd_CHD, col = "red", linetype = "dashed")
p
```

95% Credible Intervals, Coronary Heart Disease, Stratified on RPL Theme 2


```
ggsave(here("figures/final_figures/stratified_analysis/CHD_CI_rpl2.pdf"),
    plot = p, device = "pdf",
```

```
width = 8, height = 6, units = "in")
```

CAR model results, Coronary Heart Disease Stratified on RPL THEME3

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl3.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               6.76368 6.74633
                                                6.78100
## strat0:flood risk pc1
                              -0.02286 -0.03570 -0.01002
## strat0:flood_risk_pc2
                               0.00487 -0.00733 0.01704
## strat0:flood_risk_pc3
                              -0.01789 -0.02790 -0.00795
## strat0:flood_risk_pc4
                              -0.01120 -0.02123 -0.00113
## strat0:flood_risk_pc5
                               0.01422
                                        0.00394
                                                 0.02464
## strat0:EP_POV
                               0.31133
                                        0.29359
                                                 0.32901
## strat0:EP_UNEMP
                               0.03742 0.02531
                                                 0.04945
## strat0:EP_PCI
                              -0.02884 -0.04299 -0.01475
## strat0:EP_NOHSDP
                               0.27364
                                        0.24708
                                                 0.30017
## strat0:EP_AGE65
                               1.30320
                                        1.29050
                                                 1.31586
## strat0:EP_AGE17
                               0.29621 0.28138
                                                 0.31094
## strat0:EP_DISABL
                               0.26674 0.25265
                                                 0.28082
## strat0:EP_SNGPNT
                              -0.01703 -0.03145 -0.00260
## strat0:EP_MUNIT
                              -0.05665 -0.07236 -0.04098
## strat0:EP_MOBILE
                               0.06432 0.05327 0.07543
## strat0:EP_CROWD
                              -0.00725 -0.03156
                                                 0.01686
## strat0:EP_NOVEH
                               0.13591 0.11512
                                                 0.15675
## strat0:EP_GROUPQ
                              -0.12837 -0.13855 -0.11831
## strat0:EP_UNINSUR
                               0.10750 0.09100 0.12393
## strat0:co
                              -0.11763 -0.15895 -0.07609
## strat0:no2
                              -0.05594 -0.11066 -0.00118
## strat0:o3
                              -0.15568 -0.22675 -0.07499
## strat0:pm10
                              -0.14745 -0.18174 -0.11336
## strat0:pm25
                               0.38729
                                        0.33628
                                                 0.43730
## strat0:so2
                               0.03923
                                        0.00444
                                                 0.07382
                                        0.02698
## strat0:summer_tmmx
                               0.07925
                                                 0.13080
## strat0:winter_tmmx
                              -0.28467 -0.41590 -0.15917
## strat0:summer_rmax
                              -0.01866 -0.08852
                                                 0.04774
## strat0:winter_rmax
                               0.07162
                                        0.01932
                                                 0.12317
## strat0:Data_Value_CSMOKING   0.69031
                                        0.66264
                                                 0.71785
                                        6.69167
## strat1
                               6.70270
                                                 6.71379
## strat1:flood_risk_pc1
                              -0.01071 -0.02290
                                                 0.00152
## strat1:flood_risk_pc2
                               0.01521
                                        0.00386
                                                 0.02652
## strat1:flood_risk_pc3
                               0.00130 -0.00826
                                                 0.01084
                              -0.00141 -0.00891 0.00599
## strat1:flood_risk_pc4
## strat1:flood_risk_pc5
                              -0.00833 -0.01633 -0.00027
```

```
## strat1:EP_POV
                            0.32609 0.31094 0.34130
## strat1:EP_UNEMP
                            0.02953 0.01974 0.03935
## strat1:EP PCI
                            -0.03719 -0.05413 -0.02023
## strat1:EP_NOHSDP
                            0.12991 0.11492 0.14493
## strat1:EP_AGE65
                            1.55204 1.53748 1.56673
## strat1:EP AGE17
                            0.24300 0.22901 0.25709
## strat1:EP_DISABL
                            0.24636 0.23307 0.25960
## strat1:EP_SNGPNT
                            -0.06429 -0.07555 -0.05303
## strat1:EP_MUNIT
                            -0.06165 -0.07203 -0.05126
## strat1:EP_MOBILE
                            0.09251 0.08196 0.10309
## strat1:EP_CROWD
                            -0.02683 -0.03830 -0.01534
## strat1:EP_NOVEH
                            0.09332 0.07774 0.10891
## strat1:EP_GROUPQ
                            -0.06692 -0.07648 -0.05734
                            0.08781 0.07564 0.09999
## strat1:EP_UNINSUR
## strat1:co
                            -0.11864 -0.16218 -0.07553
## strat1:no2
                            -0.05537 -0.10848 -0.00257
## strat1:o3
                            -0.15690 -0.22825 -0.07547
                           -0.16979 -0.20605 -0.13317
## strat1:pm10
                            0.44143 0.38996 0.49191
## strat1:pm25
## strat1:so2
                            0.02648 -0.01064 0.06287
## strat1:summer_tmmx
                            0.04731 -0.00608 0.10006
## strat1:winter_tmmx
                            -0.21172 -0.34311 -0.08687
## strat1:summer_rmax
                            -0.07724 -0.14746 -0.01054
## strat1:winter_rmax
                             0.03934 -0.01340 0.09143
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_rpl3.R
```

List of significant beta coefficients:

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
```

```
##
   [1] "strat0"
                                      "strat0:flood_risk_pc1"
##
  [3] "strat0:flood_risk_pc3"
                                     "strat0:flood_risk_pc4"
## [5] "strat0:flood_risk_pc5"
                                      "strat0:EP_POV"
## [7] "strat0:EP_UNEMP"
                                      "strat0:EP_PCI"
## [9] "strat0:EP_NOHSDP"
                                     "strat0:EP_AGE65"
## [11] "strat0:EP_AGE17"
                                     "strat0:EP_DISABL"
                                     "strat0:EP_MUNIT"
## [13] "strat0:EP_SNGPNT"
## [15] "strat0:EP_MOBILE"
                                     "strat0:EP_NOVEH"
## [17] "strat0:EP_GROUPQ"
                                     "strat0:EP_UNINSUR"
## [19] "strat0:co"
                                     "strat0:no2"
## [21] "strat0:o3"
                                     "strat0:pm10"
## [23] "strat0:pm25"
                                      "strat0:so2"
## [25] "strat0:summer_tmmx"
                                     "strat0:winter_tmmx"
## [27] "strat0:winter_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [29] "strat1"
                                      "strat1:flood_risk_pc2"
## [31] "strat1:flood_risk_pc5"
                                     "strat1:EP_POV"
## [33] "strat1:EP_UNEMP"
                                     "strat1:EP_PCI"
## [35] "strat1:EP_NOHSDP"
                                      "strat1:EP_AGE65"
## [37] "strat1:EP_AGE17"
                                      "strat1:EP_DISABL"
## [39] "strat1:EP_SNGPNT"
                                     "strat1:EP_MUNIT"
## [41] "strat1:EP_MOBILE"
                                     "strat1:EP_CROWD"
## [43] "strat1:EP_NOVEH"
                                     "strat1:EP_GROUPQ"
## [45] "strat1:EP_UNINSUR"
                                     "strat1:co"
```

```
## [47] "strat1:no2" "strat1:o3"
## [49] "strat1:pm10" "strat1:pm25"
## [51] "strat1:winter_tmmx" "strat1:summer_rmax"
## [53] "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                                                     post_median = `50%`,
                                                     post_2.5 = 2.5\%,
                                                     post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                                                          rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom_point() +
   ylim(c(-1, 2)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
               axis.text=element_text(size=12),
               plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 19.5, 25.5, 29.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 12.5, y = 1.5, label = "Social Vulnerability Index",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 22.5, y = 1.5, label = "Air Pollution",
                     col = "blue", size = 4.5) +
   annotate(geom = "text", x = 27.5, y = 1.5, label = "GRIDMET",
                     col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                         "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                         "65 or Over", "17 or Under", "Disability",
                                                         "Single-Parent",
                                                         "Multi-Unit", "Mobile", "Crowded",
                                                         "No Vehicle", "Group Quarters", "Uninsured",
                                                         "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                         "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity", "Winter
                                                         "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
```

95% Credible Intervals, Coronary Heart Disease, Stratified on RPL Theme 3


```
ggsave(here("figures/final_figures/stratified_analysis/CHD_CI_rpl3.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

CAR model results, Coronary Heart Disease Stratified on RPL_THEME4

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl4.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
```

```
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
                                                  97.5%
##
                                  50%
                                          2.5%
## strat0
                              6.63756 6.62885 6.64618
## strat0:flood_risk_pc1
                             -0.01734 -0.02936 -0.00533
## strat0:flood_risk_pc2
                             -0.00419 -0.01591 0.00754
## strat0:flood_risk_pc3
                             -0.01052 -0.01996 -0.00107
## strat0:flood_risk_pc4
                             -0.00709 -0.01587 0.00176
## strat0:flood_risk_pc5
                              0.00623 -0.00314 0.01564
## strat0:EP POV
                              0.35396 0.33556 0.37248
## strat0:EP UNEMP
                              0.02849 0.01679 0.04025
## strat0:EP PCI
                             0.00119 -0.01263 0.01505
## strat0:EP_NOHSDP
                            0.25514 0.23308 0.27748
## strat0:EP_AGE65
                              1.31750 1.30524
                                               1.32972
## strat0:EP_AGE17
                             0.28548 0.27298 0.29794
## strat0:EP DISABL
                             0.24542 0.23122 0.25960
## strat0:EP_SNGPNT
                             -0.05507 -0.06856 -0.04147
## strat0:EP_MINRTY
                             -0.11454 -0.13357 -0.09549
## strat0:EP_LIMENG
                             -0.10933 -0.13211 -0.08666
## strat0:EP_UNINSUR
                             0.14968 0.13453 0.16487
## strat0:co
                             -0.13752 -0.18084 -0.09447
## strat0:no2
                             -0.01961 -0.07353 0.03417
## strat0:o3
                             -0.18411 -0.25445 -0.11063
## strat0:pm10
                             -0.18376 -0.21745 -0.15027
## strat0:pm25
                              0.39252 0.34464 0.44135
## strat0:so2
                              0.04537 0.01123 0.07893
## strat0:summer tmmx
                              0.11524 0.06181 0.16654
## strat0:winter_tmmx
                             -0.27489 -0.40105 -0.12420
## strat0:summer rmax
                             -0.02991 -0.09386 0.03711
## strat0:winter_rmax
                              0.06157 0.00982 0.11067
## strat0:Data_Value_CSMOKING  0.76798  0.74223  0.79389
## strat1
                              6.69215 6.68390 6.70045
## strat1:flood_risk_pc1
                             -0.00255 -0.01448
                                                0.00929
## strat1:flood_risk_pc2
                              0.01305 0.00192 0.02413
## strat1:flood_risk_pc3
                             -0.00793 -0.01734
                                               0.00147
## strat1:flood_risk_pc4
                             -0.00115 -0.00913
                                                0.00689
## strat1:flood_risk_pc5
                             -0.00505 -0.01349 0.00341
## strat1:EP_POV
                              0.27547 0.26197 0.28894
## strat1:EP UNEMP
                              0.02954 0.01938 0.03966
## strat1:EP PCI
                             -0.02066 -0.03803 -0.00322
## strat1:EP_NOHSDP
                              0.12799 0.11039 0.14557
## strat1:EP_AGE65
                              1.58111 1.56789 1.59437
## strat1:EP AGE17
                              0.36864 0.35658 0.38068
## strat1:EP DISABL
                              0.29334 0.28075 0.30595
## strat1:EP SNGPNT
                             -0.08492 -0.09694 -0.07290
## strat1:EP MINRTY
                             -0.00039 -0.01875 0.01796
## strat1:EP_LIMENG
                             -0.03893 -0.05406 -0.02377
## strat1:EP_UNINSUR
                              0.10886 0.09677 0.12098
## strat1:co
                             -0.13772 -0.17604 -0.09950
                             -0.06922 -0.11931 -0.01939
## strat1:no2
                             -0.20721 -0.27772 -0.13401
## strat1:o3
## strat1:pm10
                             -0.13618 -0.17095 -0.10200
## strat1:pm25
                             0.40016 0.35282 0.44843
## strat1:so2
                             0.04973 0.01651 0.08259
```

```
0.08046 0.02776 0.13048
## strat1:summer_tmmx
## strat1:winter_tmmx
                              -0.20911 -0.33444 -0.05870
## strat1:summer_rmax
                              -0.06329 -0.12683 0.00369
## strat1:winter_rmax
                               0.05038 -0.00059 0.09917
## strat1:Data_Value_CSMOKING 0.92131 0.89879 0.94398
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_rpl4.R
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "strat0"
                                     "strat0:flood_risk_pc1"
## [3] "strat0:flood_risk_pc3"
                                     "strat0:EP_POV"
## [5] "strat0:EP_UNEMP"
                                     "strat0:EP_NOHSDP"
## [7] "strat0:EP_AGE65"
                                     "strat0:EP_AGE17"
## [9] "strat0:EP_DISABL"
                                     "strat0:EP_SNGPNT"
## [11] "strat0:EP_MINRTY"
                                     "strat0:EP_LIMENG"
                                     "strat0:co"
## [13] "strat0:EP_UNINSUR"
## [15] "strat0:o3"
                                     "strat0:pm10"
## [17] "strat0:pm25"
                                     "strat0:so2"
## [19] "strat0:summer_tmmx"
                                     "strat0:winter_tmmx"
## [21] "strat0:winter_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [23] "strat1"
                                     "strat1:flood_risk_pc2"
## [25] "strat1:EP_POV"
                                     "strat1:EP_UNEMP"
## [27] "strat1:EP_PCI"
                                     "strat1:EP_NOHSDP"
## [29] "strat1:EP_AGE65"
                                     "strat1:EP_AGE17"
## [31] "strat1:EP_DISABL"
                                     "strat1:EP_SNGPNT"
## [33] "strat1:EP_LIMENG"
                                     "strat1:EP_UNINSUR"
## [35] "strat1:co"
                                     "strat1:no2"
## [37] "strat1:o3"
                                     "strat1:pm10"
## [39] "strat1:pm25"
                                     "strat1:so2"
## [41] "strat1:summer_tmmx"
                                     "strat1:winter_tmmx"
## [43] "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
```

Note: The intercept for both strata is not included.

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-1, 2)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
                 axis.text=element_text(size=12),
                 plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 16.5, 22.5, 26.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 11, y = 1.5, label = "Social Vulnerability Index",
                        col = "blue", size = 4.5) +
    annotate(geom = "text", x = 19.5, y = 1.5, label = "Air Pollution",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 24.5, y = 1.5, label = "GRIDMET",
                       col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                 "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                 "65 or Over", "17 or Under", "Disability",
                                                                 "Single-Parent",
                                                                 "Minority", "Poor English",
                                                                 "Uninsured",
                                                                 "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                 "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity", "Winter
                                                                 "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                             values = c("#F8766D", "#00BFC4"),
                                             drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_CHD, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_CHD, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CHD_CI_rpl4.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

CAR model results, Coronary Heart Disease Stratified on RPL THEMES

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpls.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               6.22942 6.20980 6.24888
## strat0:flood risk pc1
                              -0.05150 -0.07330 -0.02964
## strat0:flood_risk_pc2
                               0.08437 0.06277 0.10616
## strat0:flood_risk_pc3
                              -0.00013 -0.01721
                                                 0.01706
## strat0:flood_risk_pc4
                              -0.02722 -0.04278 -0.01168
## strat0:flood_risk_pc5
                               0.00861 -0.00718 0.02436
## strat0:EP UNINSUR
                              -0.01060 -0.03904 0.01801
## strat0:co
                              -0.30540 -0.38024 -0.23078
```

```
## strat0:o3
                       -0.40993 -0.57233 -0.26159
## strat0:pm10
                       -0.68930 -0.75704 -0.62223
## strat0:pm25
                        0.80430 0.70770 0.90179
## strat0:so2
                        0.03169 -0.03389 0.10022
## strat0:summer tmmx
                        0.08295 -0.03005 0.20234
## strat0:winter_tmmx
                       -0.48075 -0.82517 -0.14383
## strat1:co
                        -0.49009 -0.56989 -0.41012
## strat1:no2
                        -0.04782 -0.14579 0.05136
## strat1:o3
                        -0.52018 -0.68290 -0.37046
## strat1:pm10
                       -0.62776 -0.69821 -0.55823
## strat1:pm25
                        0.80908 0.71154 0.90626
                        0.03672 -0.02803 0.10379
## strat1:so2
## strat1:summer_tmmx
                        0.00410 -0.10973 0.12446
## strat1:winter_tmmx
                        -0.27054 -0.61260 0.06424
## strat1:summer_rmax
                        -0.08160 -0.22012 0.06233
## strat1:winter_rmax
                         0.10486 0.00054 0.20762
## strat1:Data_Value_CSMOKING 0.86630 0.84256 0.89003
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_rpls.R
```

-0.35681 -0.45306 -0.25791

List of significant beta coefficients:

strat0:no2

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
```

```
## [1] "strat0"
                                     "strat0:flood_risk_pc1"
## [3] "strat0:flood_risk_pc2"
                                     "strat0:flood_risk_pc4"
## [5] "strat0:co"
                                     "strat0:no2"
## [7] "strat0:o3"
                                     "strat0:pm10"
## [9] "strat0:pm25"
                                     "strat0:winter_tmmx"
## [11] "strat0:winter_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [13] "strat1"
                                     "strat1:flood_risk_pc1"
## [15] "strat1:flood_risk_pc2"
                                     "strat1:EP_UNINSUR"
## [17] "strat1:co"
                                     "strat1:o3"
## [19] "strat1:pm10"
                                     "strat1:pm25"
## [21] "strat1:winter_rmax"
                                     "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
post_2.5 = 2.5\%,
                            post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                     levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                       rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
 ylim(c(-1, 2)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 6.5, 12.5, 16.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 9.5, y = 1.5, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 14.5, y = 1.5, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale color manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom_hline(yintercept = 0.2 * sd_CHD, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_CHD, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CHD_CI_rpls.pdf"),
       plot = p, device = "pdf",
       width = 8, height = 6, units = "in")
```

BPHIGH Stratified Analysis

Repeating the stratified analysis in the last section, this time just doing the plots

Stratified on Poverty

```
load(here("modeling_files/stratified_analysis/model_stratif_poverty_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                    97.5%
                              31.80871 31.76607 31.85117
## strat0
## strat0:flood_risk_pc1
                              -0.03591 -0.07487 0.00342
## strat0:flood_risk_pc2
                              -0.03172 -0.07001 0.00680
## strat0:flood_risk_pc3
                              -0.03262 -0.06308 -0.00210
## strat0:flood_risk_pc4
                              -0.01151 -0.03837 0.01529
## strat0:flood_risk_pc5
                               0.01573 -0.01166 0.04303
```

```
## strat0:EP UNEMP
                              0.10382 0.05656 0.15057
## strat0:EP PCI
                              0.11042 0.06585 0.15518
## strat0:EP NOHSDP
                              0.26377 0.17674 0.35016
## strat0:EP_AGE65
                              3.69043 3.64732
                                               3.73345
## strat0:EP_AGE17
                              0.26837
                                       0.21915
                                                0.31748
## strat0:EP DISABL
                              0.64679 0.59469
                                                0.69944
## strat0:EP SNGPNT
                              0.05379 0.00484
                                                0.10265
## strat0:EP MINRTY
                              1.79003 1.71733
                                               1.86212
## strat0:EP_LIMENG
                             -0.84961 -0.92880 -0.77079
## strat0:EP_MUNIT
                             -0.70157 -0.74226 -0.66065
## strat0:EP_MOBILE
                              0.18622 0.14515 0.22695
## strat0:EP_CROWD
                             -0.01388 -0.07799 0.05041
## strat0:EP_NOVEH
                              0.24756 0.17690 0.31785
                             -0.71962 -0.76051 -0.67851
## strat0:EP_GROUPQ
## strat0:EP_UNINSUR
                             0.38136 0.32781 0.43452
## strat0:co
                             -0.51529 -0.64455 -0.38513
## strat0:no2
                             -0.60938 -0.78446 -0.43708
## strat0:o3
                             -0.47146 -0.73369 -0.20997
## strat0:pm10
                             -0.51138 -0.62640 -0.39942
## strat0:pm25
                              1.06420 0.90301 1.23530
## strat0:so2
                              0.16106 0.04559 0.27880
## strat0:summer tmmx
                              0.28738 0.10880 0.48100
## strat0:winter_tmmx
                             -0.91288 -1.50604 -0.44580
## strat0:summer rmax
                             -0.15589 -0.40369 0.09495
## strat0:winter rmax
                              0.24259 0.06259 0.42464
## strat0:Data_Value_CSMOKING 1.83475 1.74142 1.92689
## strat1
                             32.31728 32.28099 32.35335
## strat1:flood_risk_pc1
                             -0.08504 -0.12323 -0.04703
## strat1:flood_risk_pc2
                             -0.01599 -0.05176 0.02002
## strat1:flood_risk_pc3
                             -0.06053 -0.09054 -0.03070
## strat1:flood_risk_pc4
                              0.02305 -0.00306 0.04907
## strat1:flood_risk_pc5
                              0.00090 -0.02744 0.02944
## strat1:EP_UNEMP
                              0.09294 0.06485 0.12118
## strat1:EP_PCI
                              0.43333 0.35579 0.51030
## strat1:EP_NOHSDP
                             -0.14106 -0.19582 -0.08659
## strat1:EP_AGE65
                              4.42935 4.38438 4.47463
## strat1:EP AGE17
                              0.72167 0.67750 0.76639
## strat1:EP_DISABL
                              0.75859 0.72107 0.79636
## strat1:EP SNGPNT
                             -0.10801 -0.14330 -0.07262
## strat1:EP_MINRTY
                              3.08860 3.03034 3.14700
## strat1:EP LIMENG
                             -0.88075 -0.92917 -0.83210
## strat1:EP MUNIT
                             -0.50317 -0.53865 -0.46758
## strat1:EP_MOBILE
                              0.11425 0.08369 0.14468
## strat1:EP_CROWD
                             -0.14399 -0.18107 -0.10684
## strat1:EP_NOVEH
                             0.57384 0.52723 0.62060
## strat1:EP_GROUPQ
                             -0.49433 -0.52126 -0.46738
## strat1:EP_UNINSUR
                              0.19698 0.15888 0.23455
## strat1:co
                             -0.80828 -0.94976 -0.66705
## strat1:no2
                             -0.55664 -0.73282 -0.38381
## strat1:o3
                             -0.54812 -0.81033 -0.28565
                            -0.46687 -0.58642 -0.35211
## strat1:pm10
## strat1:pm25
                             1.30205 1.14052 1.47320
## strat1:so2
                            -0.02254 -0.13590 0.09285
## strat1:summer tmmx
                             0.02235 -0.15906 0.21608
```

```
## strat1:summer_rmax
                              -0.29043 -0.54049 -0.03963
## strat1:winter rmax
                               0.13023 -0.04814 0.31267
## strat1:Data_Value_CSMOKING 2.74856 2.68281 2.81470
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_pov
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
   [1] "strat0"
                                      "strat0:flood_risk_pc3"
   [3] "strat0:EP UNEMP"
                                      "strat0:EP PCI"
##
                                      "strat0:EP_AGE65"
## [5] "strat0:EP_NOHSDP"
## [7] "strat0:EP_AGE17"
                                      "strat0:EP DISABL"
## [9] "strat0:EP_SNGPNT"
                                      "strat0:EP_MINRTY"
## [11] "strat0:EP_LIMENG"
                                      "strat0:EP_MUNIT"
## [13] "strat0:EP_MOBILE"
                                      "strat0:EP_NOVEH"
## [15] "strat0:EP_GROUPQ"
                                      "strat0:EP_UNINSUR"
## [17] "strat0:co"
                                      "strat0:no2"
## [19] "strat0:o3"
                                      "strat0:pm10"
## [21] "strat0:pm25"
                                      "strat0:so2"
## [23] "strat0:summer_tmmx"
                                      "strat0:winter_tmmx"
## [25] "strat0:winter_rmax"
                                      "strat0:Data_Value_CSMOKING"
## [27] "strat1"
                                      "strat1:flood_risk_pc1"
## [29] "strat1:flood_risk_pc3"
                                      "strat1:EP_UNEMP"
## [31] "strat1:EP_PCI"
                                      "strat1:EP_NOHSDP"
## [33] "strat1:EP_AGE65"
                                      "strat1:EP_AGE17"
## [35] "strat1:EP_DISABL"
                                      "strat1:EP_SNGPNT"
## [37] "strat1:EP MINRTY"
                                      "strat1:EP LIMENG"
## [39] "strat1:EP_MUNIT"
                                      "strat1:EP MOBILE"
                                      "strat1:EP_NOVEH"
## [41] "strat1:EP_CROWD"
## [43] "strat1:EP_GROUPQ"
                                      "strat1:EP_UNINSUR"
## [45] "strat1:co"
                                      "strat1:no2"
## [47] "strat1:o3"
                                      "strat1:pm10"
## [49] "strat1:pm25"
                                      "strat1:winter_tmmx"
## [51] "strat1:summer_rmax"
                                      "strat1:Data_Value_CSMOKING"
```

-0.48365 -1.07709 -0.01721

Credible Interval plots for the coefficients, in ggplot

strat1:winter_tmmx

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-3, 5)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
               axis.text=element_text(size=12),
                plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 20.5, 26.5, 30.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
                     col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 4, label = "Social Vulnerability Index",
                     col = "blue", size = 4.5) +
    annotate(geom = "text", x = 23.5, y = 4, label = "Air Pollution",
                      col = "blue", size = 4.5) +
    annotate(geom = "text", x = 28.5, y = 4, label = "GRIDMET",
                      col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                            "Unemployed", "Per Capita Income", "No High School",
                                                            "65 or Over", "17 or Under", "Disability",
                                                            "Single-Parent", "Minority", "Poor English",
                                                            "Multi-Unit", "Mobile", "Crowded",
                                                            "No Vehicle", "Group Quarters", "Uninsured",
                                                            "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                            "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                            "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                          values = c("#F8766D", "#00BFC4"),
                                          drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/BPHIGH_CI_poverty.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME1

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl1_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              31.74997 31.70239 31.79758
                              -0.07208 -0.11177 -0.03243
## strat0:flood_risk_pc1
## strat0:flood_risk_pc2
                              -0.04211 -0.08083 -0.00324
## strat0:flood_risk_pc3
                              -0.04063 -0.07131 -0.00987
## strat0:flood_risk_pc4
                              -0.00555 -0.03252 0.02157
## strat0:flood_risk_pc5
                               0.01098 -0.01644 0.03798
## strat0:EP_AGE65
                               3.78295 3.74186 3.82381
## strat0:EP_AGE17
                              0.47863 0.43175 0.52575
## strat0:EP DISABL
                              0.63146 0.58124 0.68145
## strat0:EP_SNGPNT
                              -0.07405 -0.12366 -0.02440
## strat0:EP_MINRTY
                              1.67273 1.59998 1.74564
```

```
## strat0:EP_MUNIT
                            -0.64973 -0.68813 -0.61135
## strat0:EP MOBILE
                             0.19310 0.14730 0.23882
## strat0:EP_CROWD
                             -0.07807 -0.15150 -0.00472
## strat0:EP_NOVEH
                              0.22217 0.15421 0.28973
## strat0:EP GROUPQ
                             -0.59196 -0.62569 -0.55834
## strat0:EP UNINSUR
                              0.41362 0.35739 0.47023
## strat0:co
                              -0.48608 -0.61854 -0.35385
## strat0:no2
                             -0.57822 -0.75712 -0.40053
## strat0:o3
                             -0.52879 -0.79620 -0.26338
## strat0:pm10
                            -0.51996 -0.63536 -0.40326
                              1.03451 0.86527 1.20344
## strat0:pm25
## strat0:so2
                             0.14376 0.02553 0.25880
                             0.27019 0.08353 0.45247
## strat0:summer_tmmx
## strat0:winter_tmmx
                              -0.88126 -1.33898 -0.36499
## strat0:summer_rmax
## strat0:winter_rmax
                              -0.20568 -0.45121 0.03832
                               0.21393 0.03209 0.39563
## strat0:Data_Value_CSMOKING 2.05267 1.97417 2.13217
## strat1
                              32.04878 32.01368 32.08413
## strat1:flood_risk_pc1
                              -0.07148 -0.10983 -0.03307
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
## strat1:flood_risk_pc4
                              0.01016 -0.02598 0.04633
                              -0.05234 -0.08307 -0.02174
                              -0.00508 -0.03130 0.02113
## strat1:flood_risk_pc5
                             0.01202 -0.01670 0.04086
## strat1:EP_AGE65
                              4.48995 4.44296 4.53712
## strat1:EP_AGE17
                             0.56020 0.51557 0.60524
## strat1:EP_DISABL
                             0.77314 0.73534 0.81107
## strat1:EP_SNGPNT
                             -0.01286 -0.04749 0.02167
## strat1:EP_MINRTY
                             3.06206 3.00632 3.11741
                           -1.01023 -1.05203 -0.96872
## strat1:EP_LIMENG
## strat1:EP_MUNIT
                            -0.42062 -0.45785 -0.38335
## strat1:EP_MOBILE
                             0.12104 0.09133 0.15058
## strat1:EP_CROWD
                             -0.11713 -0.15337 -0.08089
## strat1:EP_NOVEH
                             0.53851 0.49137 0.58553
                             -0.57272 -0.60017 -0.54518
## strat1:EP_GROUPQ
## strat1:EP_UNINSUR
                             0.21109 0.17421 0.24792
## strat1:co
                            -0.81108 -0.95280 -0.67027
## strat1:no2
                            -0.58184 -0.76062 -0.40588
                            -0.57390 -0.84030 -0.30908
## strat1:o3
## strat1:pm10
                            -0.49781 -0.61796 -0.37816
## strat1:pm25
                             1.30861 1.13915 1.47688
## strat1:so2
                              0.04463 -0.06966 0.15661
## strat1:summer_tmmx
                              0.06549 -0.12520 0.25202
## strat1:winter_tmmx
                              -0.50906 -0.96759 0.00540
## strat1:summer_rmax
                              -0.29881 -0.54459 -0.05195
## strat1:winter_rmax
                               0.15811 -0.02392 0.34078
## strat1:Data_Value_CSMOKING 2.68284 2.62535 2.73998
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_rpl
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                     "strat0:flood_risk_pc1"
```

-0.67052 -0.75318 -0.58814

strat0:EP_LIMENG

```
## [3] "strat0:flood_risk_pc2"
                                      "strat0:flood_risk_pc3"
## [5] "strat0:EP_AGE65"
                                     "strat0:EP_AGE17"
## [7] "strat0:EP_DISABL"
                                     "strat0:EP_SNGPNT"
## [9] "strat0:EP_MINRTY"
                                     "strat0:EP_LIMENG"
## [11] "strat0:EP_MUNIT"
                                      "strat0:EP_MOBILE"
## [13] "strat0:EP CROWD"
                                     "strat0:EP NOVEH"
                                     "strat0:EP_UNINSUR"
## [15] "strat0:EP_GROUPQ"
## [17] "strat0:co"
                                      "strat0:no2"
## [19] "strat0:o3"
                                     "strat0:pm10"
## [21] "strat0:pm25"
                                     "strat0:so2"
## [23] "strat0:summer_tmmx"
                                      "strat0:winter_tmmx"
## [25] "strat0:winter_rmax"
                                      "strat0:Data_Value_CSMOKING"
## [27] "strat1"
                                     "strat1:flood_risk_pc1"
## [29] "strat1:flood_risk_pc3"
                                      "strat1:EP_AGE65"
## [31] "strat1:EP_AGE17"
                                      "strat1:EP_DISABL"
## [33] "strat1:EP_MINRTY"
                                      "strat1:EP_LIMENG"
                                     "strat1:EP_MOBILE"
## [35] "strat1:EP_MUNIT"
## [37] "strat1:EP_CROWD"
                                     "strat1:EP_NOVEH"
## [39] "strat1:EP_GROUPQ"
                                      "strat1:EP_UNINSUR"
## [41] "strat1:co"
                                      "strat1:no2"
## [43] "strat1:o3"
                                     "strat1:pm10"
## [45] "strat1:pm25"
                                      "strat1:summer_rmax"
## [47] "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.</pre>
```

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-3, 5)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +</pre>
```

```
geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +
     geom_hline(yintercept = 0, col = "red") +
     annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
                            col = "blue", size = 4.5) +
     annotate(geom = "text", x = 11.5, y = 4, label = "Social Vulnerability Index",
                            col = "blue", size = 4.5) +
     annotate(geom = "text", x = 20.5, y = 4, label = "Air Pollution",
                           col = "blue", size = 4.5) +
     annotate(geom = "text", x = 25.5, y = 4, label = "GRIDMET",
                            col = "blue", size = 4.5) +
     scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                           "65 or Over", "17 or Under", "Disability",
                                                                           "Single-Parent", "Minority", "Poor English",
                                                                           "Multi-Unit", "Mobile", "Crowded",
                                                                           "No Vehicle", "Group Quarters", "Uninsured",
                                                                           "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                           "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter H
                                                                           "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
     geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
     geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
     scale_color_manual(name = "Strata",
                                                    values = c("#F8766D", "#00BFC4"),
                                                    drop = FALSE) +
     geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
     geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
p
```

95% Credible Intervals, High Blood Pressure, Stratified on RPL Theme 1


```
ggsave(here("figures/final_figures/stratified_analysis/BPHIGH_CI_rpl1.pdf"),
      plot = p, device = "pdf",
      width = 8, height = 6, units = "in")
```

Stratified on RPL_THEME2

strat1:EP_PCI

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl2_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                 50%
                                         2.5%
                                                97.5%
## strat0
                            31.45525 31.41293 31.49764
## strat0:flood_risk_pc1
                            -0.12718 -0.18346 -0.07084
## strat0:flood_risk_pc2
                             0.10488 0.05015 0.16022
## strat0:flood_risk_pc3
                            -0.00010 -0.04416 0.04375
## strat0:flood_risk_pc4
                            -0.03831 -0.07505 -0.00149
## strat0:flood_risk_pc5
                            0.02954 -0.00812 0.06695
## strat0:EP_POV
                            -0.31643 -0.39081 -0.24282
## strat0:EP_UNEMP
                             0.47798 0.42028 0.53510
## strat0:EP_PCI
                             0.61211 0.55120 0.67342
## strat0:EP_NOHSDP
                            2.15771 2.05970 2.25775
## strat0:EP_MINRTY
                            0.16936 0.07605 0.26201
## strat0:EP_LIMENG
                            -0.74637 -0.83028 -0.66245
## strat0:EP_MUNIT
                            -0.58215 -0.62968 -0.53449
## strat0:EP_MOBILE
                            0.68601 0.62617 0.74563
## strat0:EP_CROWD
                            -0.75856 -0.82179 -0.69454
## strat0:EP_NOVEH
                            1.67992 1.59997 1.75925
## strat0:EP_GROUPQ
                            -1.13486 -1.16636 -1.10346
## strat0:EP UNINSUR
                            -0.20649 -0.27127 -0.14153
## strat0:co
                            -0.99477 -1.18877 -0.80129
## strat0:no2
                            -0.36204 -0.63528 -0.09751
## strat0:o3
                            0.02476 -0.40652 0.45377
## strat0:pm10
                            -1.52969 -1.71165 -1.34716
                            1.26105 0.99743 1.52442
## strat0:pm25
## strat0:so2
                            -0.17847 -0.36216 0.00156
## strat0:summer_tmmx
                            -0.16244 -0.47397 0.13158
## strat0:winter_tmmx
                            -0.70619 -1.42783 0.18185
## strat0:summer_rmax
                            -0.13586 -0.53755 0.25243
                             0.09389 -0.19982 0.39363
## strat0:winter_rmax
## strat1
                            33.45171 33.40759 33.49616
## strat1:flood_risk_pc1
                            -0.10218 -0.16088 -0.04376
## strat1:flood_risk_pc2
                             0.13443 0.07888 0.19018
                            -0.07294 -0.12016 -0.02592
## strat1:flood_risk_pc3
## strat1:flood_risk_pc4
                            -0.00950 -0.05112 0.03233
                             0.08409 0.03833 0.12994
## strat1:flood_risk_pc5
## strat1:EP_POV
                             1.09657 1.01721 1.17543
## strat1:EP_UNEMP
                            0.23556 0.19045 0.28048
                             0.17832 0.06443 0.29338
```

```
## strat1:EP_MINRTY
                              1.42013 1.33268 1.50677
## strat1:EP LIMENG
                              -1.25805 -1.34105 -1.17566
## strat1:EP_MUNIT
                              -0.22355 -0.29101 -0.15697
## strat1:EP_MOBILE
                               0.51314 0.46887 0.55717
## strat1:EP CROWD
                              -0.75234 -0.81468 -0.69004
## strat1:EP_NOVEH
                              1.77939 1.69945 1.85977
## strat1:EP_GROUPQ
                              0.05197 -0.03273 0.13753
## strat1:EP_UNINSUR
                              -0.24663 -0.30675 -0.18585
## strat1:co
                              -1.17336 -1.39292 -0.95479
## strat1:no2
                              -1.01712 -1.30336 -0.73876
## strat1:o3
                              0.10920 -0.32145 0.53942
                             -1.43551 -1.61767 -1.25563
## strat1:pm10
## strat1:pm25
                              1.73753 1.47547 1.99719
## strat1:so2
                              -0.10198 -0.28111 0.07651
## strat1:summer_tmmx
                              -0.05611 -0.36809 0.24111
## strat1:winter_tmmx
                              -0.94009 -1.66947 -0.05295
                              -0.00819 -0.40911 0.38239
## strat1:summer_rmax
## strat1:winter_rmax
                               0.13643 -0.15713 0.43363
## strat1:Data_Value_CSMOKING -0.71321 -0.82358 -0.60333
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_rpl
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
   [1] "strat0"
##
                                     "strat0:flood_risk_pc1"
                                     "strat0:flood_risk_pc4"
##
   [3] "strat0:flood_risk_pc2"
## [5] "strat0:EP_POV"
                                     "strat0:EP_UNEMP"
## [7] "strat0:EP PCI"
                                     "strat0:EP NOHSDP"
## [9] "strat0:EP_MINRTY"
                                     "strat0:EP_LIMENG"
## [11] "strat0:EP_MUNIT"
                                     "strat0:EP_MOBILE"
## [13] "strat0:EP_CROWD"
                                     "strat0:EP_NOVEH"
## [15] "strat0:EP_GROUPQ"
                                     "strat0:EP_UNINSUR"
## [17] "strat0:co"
                                     "strat0:no2"
## [19] "strat0:pm10"
                                     "strat0:pm25"
## [21] "strat0:Data_Value_CSMOKING" "strat1"
## [23] "strat1:flood_risk_pc1"
                                     "strat1:flood_risk_pc2"
## [25] "strat1:flood_risk_pc3"
                                     "strat1:flood_risk_pc5"
## [27] "strat1:EP_POV"
                                     "strat1:EP_UNEMP"
## [29] "strat1:EP_PCI"
                                     "strat1:EP_NOHSDP"
## [31] "strat1:EP_MINRTY"
                                     "strat1:EP_LIMENG"
## [33] "strat1:EP_MUNIT"
                                     "strat1:EP_MOBILE"
## [35] "strat1:EP_CROWD"
                                     "strat1:EP_NOVEH"
## [37] "strat1:EP_UNINSUR"
                                     "strat1:co"
## [39] "strat1:no2"
                                     "strat1:pm10"
```

1.08901 1.00111 1.17681

Credible Interval plots for the coefficients, in ggplot

[41] "strat1:pm25"

[43] "strat1:Data_Value_CSMOKING"

strat1:EP_NOHSDP

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
```

"strat1:winter tmmx"

```
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                                                  post_median = `50%`,
                                                  post_2.5 = 2.5\%,
                                                  post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                                                   levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                                                      rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom point() +
   ylim(c(-3, 5)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
              axis.text=element_text(size=12),
              plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 11.5, y = 4, label = "Social Vulnerability Index",
                   col = "blue", size = 4.5) +
   annotate(geom = "text", x = 20.5, y = 4, label = "Air Pollution",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 25.5, y = 4, label = "GRIDMET",
                    col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                      "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                      "Minority", "Poor English",
                                                      "Multi-Unit", "Mobile", "Crowded",
                                                      "No Vehicle", "Group Quarters", "Uninsured",
                                                      "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                      "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity", "Winter
                                                      "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
   geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
   geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
   scale_color_manual(name = "Strata",
                                      values = c("#F8766D", "#00BFC4"),
                                      drop = FALSE) +
   geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
   geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
```


width = 8, height = 6, units = "in")

Stratified on RPL THEME3

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl3_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              32.28474 32.22670 32.34255
## strat0:flood risk pc1
                              -0.07378 -0.11801 -0.02934
## strat0:flood_risk_pc2
                              -0.07068 -0.11326 -0.02815
## strat0:flood_risk_pc3
                              -0.05099 -0.08525 -0.01669
## strat0:flood_risk_pc4
                              -0.01749 -0.05142 0.01675
## strat0:flood risk pc5
                               0.04593 0.01078
                                                 0.08153
## strat0:EP POV
                               0.18928 0.12868
                                                 0.24980
## strat0:EP_UNEMP
                               0.28519 0.24478 0.32545
```

```
## strat0:EP PCI
                              0.02796 -0.02053 0.07610
## strat0:EP NOHSDP
                              0.40055 0.31083 0.48988
## strat0:EP AGE65
                              3.74031 3.69710 3.78359
## strat0:EP_AGE17
                             0.72564 0.67577 0.77539
## strat0:EP_DISABL
                             0.61942 0.57188 0.66671
## strat0:EP SNGPNT
                             0.23568 0.18724 0.28415
## strat0:EP MUNIT
                             -0.61607 -0.66897 -0.56313
## strat0:EP MOBILE
                             -0.04739 -0.08501 -0.00995
## strat0:EP_CROWD
                             -0.09644 -0.17802 -0.01556
## strat0:EP_NOVEH
                             0.87848 0.80798 0.94939
## strat0:EP_GROUPQ
                             -0.75849 -0.79273 -0.72459
## strat0:EP_UNINSUR
                             0.22216 0.16708 0.27753
## strat0:co
                             -0.67741 -0.82412 -0.53063
## strat0:no2
                             -0.36440 -0.56547 -0.16394
                             -0.12796 -0.42489 0.21823
## strat0:o3
## strat0:pm10
                             -0.46686 -0.59659 -0.33734
## strat0:pm25
                            0.99644 0.80592 1.18294
## strat0:so2
                            0.00751 -0.12629 0.14084
## strat0:summer_tmmx
                             0.14900 -0.05909 0.35426
## strat0:winter tmmx
                             -0.37498 -0.92441 0.12709
## strat0:summer_rmax
                             -0.21430 -0.49648 0.04769
## strat0:winter_rmax
                             0.16748 -0.04145 0.37575
## strat0:Data_Value_CSMOKING 2.22277 2.12689 2.31753
## strat1
                             32.50683 32.47023 32.54348
## strat1:flood_risk_pc1
                            0.01514 -0.02650 0.05677
## strat1:flood_risk_pc2
                              0.00430 -0.03536 0.04366
## strat1:flood_risk_pc3
                              0.00392 -0.02894 0.03672
## strat1:flood_risk_pc4
                              0.01430 -0.01097 0.03928
## strat1:flood_risk_pc5
                              0.00026 -0.02655 0.02734
## strat1:EP_POV
                              0.06749 0.01629 0.11895
## strat1:EP_UNEMP
                             0.32126 0.28844 0.35404
## strat1:EP_PCI
                             -0.19694 -0.25472 -0.13894
## strat1:EP_NOHSDP
                             -0.14629 -0.19784 -0.09465
## strat1:EP_AGE65
                             4.03198 3.98271 4.08163
## strat1:EP_AGE17
                              0.54658 0.49968 0.59380
## strat1:EP_DISABL
                             0.87794 0.83337 0.92225
## strat1:EP SNGPNT
                            0.24077 0.20322 0.27834
## strat1:EP_MUNIT
                             -0.55358 -0.58899 -0.51809
## strat1:EP MOBILE
                             0.06606 0.03049 0.10165
## strat1:EP_CROWD
                             -0.12232 -0.16125 -0.08337
## strat1:EP NOVEH
                            0.65653 0.60313 0.70974
## strat1:EP_GROUPQ
                            -0.42595 -0.45848 -0.39388
## strat1:EP UNINSUR
                             0.24422 0.20301 0.28527
## strat1:co
                            -0.95238 -1.11255 -0.79435
## strat1:no2
                             0.07135 -0.12732 0.26706
                             -0.21387 -0.51418 0.13403
## strat1:o3
## strat1:pm10
                            -0.65618 -0.79169 -0.51931
## strat1:pm25
                            1.31934 1.12739 1.50890
## strat1:so2
                            0.11095 -0.03073 0.25034
## strat1:summer_tmmx
                             0.04288 -0.16975
                                               0.25381
## strat1:winter_tmmx
                             0.07969 -0.47329 0.57865
## strat1:summer_rmax
                             -0.18200 -0.46597 0.08120
## strat1:winter_rmax
                             -0.13575 -0.34682 0.07569
## strat1:Data Value CSMOKING 2.67267 2.59171 2.75382
```

```
[1] "strat0"
                                       "strat0:flood_risk_pc1"
## [3] "strat0:flood_risk_pc2"
                                       "strat0:flood_risk_pc3"
   [5] "strat0:flood_risk_pc5"
##
                                       "strat0:EP_POV"
## [7] "strat0:EP_UNEMP"
                                       "strat0:EP_NOHSDP"
## [9] "strat0:EP_AGE65"
                                       "strat0:EP_AGE17"
## [11] "strat0:EP_DISABL"
                                       "strat0:EP_SNGPNT"
## [13] "strat0:EP_MUNIT"
                                       "strat0:EP_MOBILE"
## [15] "strat0:EP_CROWD"
                                       "strat0:EP_NOVEH"
## [17] "strat0:EP_GROUPQ"
                                       "strat0:EP_UNINSUR"
## [19] "strat0:co"
                                       "strat0:no2"
## [21] "strat0:pm10"
                                       "strat0:pm25"
## [23] "strat0:Data_Value_CSMOKING" "strat1"
## [25] "strat1:EP_POV"
                                       "strat1:EP_UNEMP"
## [27] "strat1:EP_PCI"
                                       "strat1:EP_NOHSDP"
## [29] "strat1:EP_AGE65"
                                       "strat1:EP_AGE17"
## [31] "strat1:EP_DISABL"
                                       "strat1:EP_SNGPNT"
## [33] "strat1:EP_MUNIT"
                                       "strat1:EP_MOBILE"
## [35] "strat1:EP_CROWD"
                                       "strat1:EP_NOVEH"
## [37] "strat1:EP_GROUPQ"
                                       "strat1:EP_UNINSUR"
## [39] "strat1:co"
                                       "strat1:pm10"
## [41] "strat1:pm25"
                                       "strat1:Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form gaplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))</pre>
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%,
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                       levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                         rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
Note: The intercept for both strata is not included.
p \leftarrow ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
```

saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_rpl.")

row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]

List of significant beta coefficients:

ylim(c(-3, 5)) +

theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi

```
axis.text=element_text(size=12),
                  plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 19.5, 25.5, 29.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 4, label = "Social Vulnerability Index",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 22.5, y = 4, label = "Air Pollution",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 27.5, y = 4, label = "GRIDMET",
                         col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                     "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                     "65 or Over", "17 or Under", "Disability",
                                                                     "Single-Parent",
                                                                     "Multi-Unit", "Mobile", "Crowded",
                                                                     "No Vehicle", "Group Quarters", "Uninsured",
                                                                     "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                     "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                                     "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                                values = c("#F8766D", "#00BFC4"),
                                                drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
p
```


Stratified on RPL THEME4

width = 8, height = 6, units = "in")

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl4_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              32.34478 32.31767 32.37171
## strat0:flood risk pc1
                              -0.02548 -0.06503 0.01409
## strat0:flood_risk_pc2
                              -0.08714 -0.12599 -0.04791
## strat0:flood_risk_pc3
                              -0.03573 -0.06687 -0.00461
## strat0:flood_risk_pc4
                               0.00074 -0.02796 0.02952
## strat0:flood risk pc5
                               0.02096 -0.00960
                                                 0.05166
## strat0:EP POV
                               0.02708 -0.03281 0.08734
## strat0:EP_UNEMP
                               0.13533 0.09740 0.17330
```

```
## strat0:EP PCI
                             0.42518 0.37948 0.47073
## strat0:EP_NOHSDP
                            0.20962 0.13747 0.28187
                            4.16922 4.12922 4.20956
## strat0:EP AGE65
## strat0:EP_AGE17
                            0.94541 0.90480 0.98622
## strat0:EP_DISABL
                             0.70272 0.65685 0.74849
## strat0:EP SNGPNT
                            -0.08997 -0.13350 -0.04617
## strat0:EP MINRTY
                             2.42121 2.35734 2.48512
## strat0:EP_LIMENG
                             -1.23035 -1.30422 -1.15668
## strat0:EP_UNINSUR
                             0.45529 0.40636 0.50440
## strat0:co
                             -0.68864 -0.83661 -0.54127
## strat0:no2
                             -0.83660 -1.02465 -0.64885
## strat0:o3
                            -0.74520 -1.00900 -0.46838
## strat0:pm10
                            -0.66483 -0.78385 -0.54686
## strat0:pm25
                            1.52841 1.35946 1.70009
## strat0:so2
                             0.17627 0.05378 0.29606
                            0.22592 0.02898 0.41754
## strat0:summer_tmmx
## strat0:winter_tmmx
                            -1.10819 -1.59514 -0.54365
## strat0:summer_rmax
## strat0:winter_rmax
                            -0.30440 -0.54196 -0.05576
                             0.27892 0.08603 0.46173
## strat0:Data_Value_CSMOKING 2.55539 2.47067 2.64137
## strat1
                           32.20255 32.17699 32.22820
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
                             -0.03862 -0.07769 0.00034
                             -0.00932 -0.04637 0.02763
                             -0.03624 -0.06712 -0.00544
## strat1:flood_risk_pc4
                             0.00823 -0.01771 0.03429
## strat1:flood_risk_pc5
                             -0.00767 -0.03510 0.01987
## strat1:EP_POV
                             -0.20370 -0.24827 -0.15933
## strat1:EP_UNEMP
                              0.10896 0.07607 0.14162
## strat1:EP_PCI
                              0.35905 0.30175 0.41662
## strat1:EP_NOHSDP
                            -0.23897 -0.29662 -0.18124
                             4.57794 4.53473 4.62111
## strat1:EP_AGE65
## strat1:EP_AGE17
                             1.17457 1.13539 1.21386
## strat1:EP_DISABL
                             0.92098 0.88002 0.96208
## strat1:EP_SNGPNT
                            -0.12422 -0.16320 -0.08538
## strat1:EP_MINRTY
                             2.80775 2.74602 2.86931
## strat1:EP_LIMENG
                            -0.77069 -0.82093 -0.72062
## strat1:EP_UNINSUR
                            0.28821 0.24865 0.32771
## strat1:co
                            -0.78204 -0.91339 -0.65120
## strat1:no2
                            -0.81308 -0.98888 -0.63886
## strat1:o3
                            -0.86144 -1.12502 -0.58533
## strat1:pm10
                            -0.62318 -0.74554 -0.50268
## strat1:pm25
                             1.66427 1.49688 1.83511
## strat1:so2
                             0.12015 0.00070 0.23747
## strat1:summer_tmmx
                              0.07456 -0.12081 0.26149
## strat1:winter_tmmx
                             -0.79995 -1.28248 -0.23843
## strat1:summer_rmax
                             -0.34991 -0.58498 -0.09976
## strat1:winter_rmax
                              0.15902 -0.03114 0.34090
## strat1:Data_Value_CSMOKING 3.01135 2.93642 3.08633
```

saveRDS(beta_inference, file = here("modeling files/stratified_analysis/beta_inference_files/BPHIGH_rpl.")

List of significant beta coefficients:

```
[3] "strat0:flood_risk_pc3"
                                      "strat0:EP_UNEMP"
##
## [5] "strat0:EP_PCI"
                                      "strat0:EP_NOHSDP"
## [7] "strat0:EP_AGE65"
                                      "strat0:EP_AGE17"
## [9] "strat0:EP_DISABL"
                                      "strat0:EP_SNGPNT"
## [11] "strat0:EP_MINRTY"
                                      "strat0:EP_LIMENG"
## [13] "strat0:EP_UNINSUR"
                                      "strat0:co"
## [15] "strat0:no2"
                                      "strat0:o3"
## [17] "strat0:pm10"
                                      "strat0:pm25"
## [19] "strat0:so2"
                                      "strat0:summer_tmmx"
## [21] "strat0:winter_tmmx"
                                      "strat0:summer_rmax"
## [23] "strat0:winter_rmax"
                                      "strat0:Data_Value_CSMOKING"
## [25] "strat1"
                                      "strat1:flood_risk_pc3"
## [27] "strat1:EP_POV"
                                      "strat1:EP_UNEMP"
## [29] "strat1:EP_PCI"
                                      "strat1:EP_NOHSDP"
## [31] "strat1:EP_AGE65"
                                      "strat1:EP_AGE17"
                                      "strat1:EP_SNGPNT"
## [33] "strat1:EP_DISABL"
## [35] "strat1:EP_MINRTY"
                                      "strat1:EP_LIMENG"
## [37] "strat1:EP_UNINSUR"
                                      "strat1:co"
## [39] "strat1:no2"
                                      "strat1:o3"
## [41] "strat1:pm10"
                                      "strat1:pm25"
## [43] "strat1:so2"
                                      "strat1:winter_tmmx"
## [45] "strat1:summer_rmax"
                                      "strat1:Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%,
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),</pre>
                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
 geom_point() +
  ylim(c(-3, 5)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
```

row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]

"strat0:flood_risk_pc2"

[1] "strat0"

axis.text=element_text(size=12),

```
plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 16.5, 22.5, 26.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 11, y = 4, label = "Social Vulnerability Index",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 19.5, y = 4, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 24.5, y = 4, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "Poverty", "Unemployed", "Per Capita Income", "No High School",
                              "65 or Over", "17 or Under", "Disability",
                              "Single-Parent",
                              "Minority", "Poor English",
                              "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale_color_manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
р
```



```
ggsave(here("figures/final_figures/stratified_analysis/BPHIGH_CI_rpl4.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEMES

```
load(here("modeling_files/stratified_analysis/model_stratif_rpls_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              31.01451 30.95665 31.07212
## strat0:flood risk pc1
                              -0.12989 -0.19603 -0.06401
## strat0:flood_risk_pc2
                               0.13839 0.07327 0.20453
## strat0:flood_risk_pc3
                               0.00669 -0.04461 0.05854
## strat0:flood_risk_pc4
                              -0.06391 -0.11066 -0.01732
## strat0:flood_risk_pc5
                               0.00593 -0.04159 0.05316
## strat0:EP_UNINSUR
                              -0.06651 -0.15147 0.01904
## strat0:co
                              -1.39663 -1.62297 -1.17037
```

```
## strat0:no2
                              -1.91299 -2.20900 -1.60730
## strat0:o3
                             -0.62227 -1.13809 -0.16696
## strat0:pm10
                             -1.90951 -2.12404 -1.69953
## strat0:pm25
                              2.87050 2.56620 3.17427
## strat0:so2
                              0.05704 -0.15030 0.27084
## strat0:summer tmmx
                             0.02746 -0.32980 0.42363
## strat0:winter_tmmx
                              -1.10775 -2.26436 -0.06549
                              -0.15491 -0.58848 0.29953
## strat0:summer_rmax
## strat0:winter_rmax
                               0.28536 -0.04097 0.60889
## strat0:Data_Value_CSMOKING 0.58811 0.49190 0.68484
                             32.81474 32.76521 32.86405
## strat1:flood_risk_pc1
                              0.04929 -0.01570 0.11375
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
## strat1:flood_risk_pc4
                               0.07868 0.01701 0.14065
                               0.06164 0.00923 0.11334
## strat1:flood_risk_pc4
                              -0.00152 -0.04523 0.04203
## strat1:flood_risk_pc5
                              0.04279 -0.00503 0.09055
## strat1:EP_UNINSUR
                              -0.48701 -0.54317 -0.43018
## strat1:co
                              -2.53364 -2.78038 -2.28639
## strat1:no2
                              0.15007 -0.15401 0.45795
## strat1:o3
                              -1.09729 -1.61567 -0.64089
## strat1:pm10
                             -2.24653 -2.46874 -2.02844
## strat1:pm25
                             3.23916 2.93134 3.53971
## strat1:so2
                              -0.03065 -0.23540 0.18134
## strat1:summer_tmmx
                              -0.00181 -0.36181 0.39446
## strat1:winter_tmmx
                              -0.31280 -1.47145 0.73425
## strat1:summer_rmax
                              -0.18681 -0.62381 0.26835
## strat1:winter_rmax
                               0.00967 -0.31642 0.33573
## strat1:Data_Value_CSMOKING 2.18814 2.11635 2.26003
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_rpl
```

List of significant beta coefficients:

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
```

```
## [1] "strat0"
                                     "strat0:flood_risk_pc1"
## [3] "strat0:flood_risk_pc2"
                                     "strat0:flood_risk_pc4"
## [5] "strat0:co"
                                     "strat0:no2"
## [7] "strat0:o3"
                                     "strat0:pm10"
## [9] "strat0:pm25"
                                     "strat0:winter_tmmx"
## [11] "strat0:Data_Value_CSMOKING" "strat1"
## [13] "strat1:flood_risk_pc2"
                                     "strat1:flood_risk_pc3"
## [15] "strat1:EP_UNINSUR"
                                     "strat1:co"
## [17] "strat1:o3"
                                     "strat1:pm10"
## [19] "strat1:pm25"
                                     "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                                                         levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),</pre>
                                                                             rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta inference df strat1 <- beta inference df[(nrow(beta inference df)/2 + 1):nrow(beta inference df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-3, 5)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
                axis.text=element_text(size=12),
               plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 6.5, 12.5, 16.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
                      col = "blue", size = 4.5) +
    annotate(geom = "text", x = 9.5, y = 4, label = "Air Pollution",
                      col = "blue", size = 4.5) +
    annotate(geom = "text", x = 14.5, y = 4, label = "GRIDMET",
                      col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                           "Uninsured",
                                                            "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                            "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity 
                                                           "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                         values = c("#F8766D", "#00BFC4"),
                                         drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/BPHIGH_CI_rpls.pdf"),
       plot = p, device = "pdf",
       width = 8, height = 6, units = "in")
```

CASTHMA Stratified Analysis

Repeating the stratified analysis in the last section, this time just doing the plots

Stratified on Poverty

```
load(here("modeling_files/stratified_analysis/model_stratif_poverty_CASTHMA.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                                   97.5%
                                   50%
                                           2.5%
                               9.77571 9.76840
                                                 9.78301
## strat0
## strat0:flood_risk_pc1
                               0.00429 -0.00260
                                                 0.01118
## strat0:flood_risk_pc2
                              -0.00628 -0.01305
                                                 0.00055
                               0.00930 0.00396
## strat0:flood_risk_pc3
                                                 0.01467
## strat0:flood_risk_pc4
                               0.00184 -0.00286 0.00650
## strat0:flood_risk_pc5
                              -0.00263 -0.00739 0.00217
```

```
## strat0:EP UNEMP
                             0.06218 0.05401 0.07027
## strat0:EP_PCI
                             -0.02708 -0.03490 -0.01916
                             0.07652 0.06146 0.09160
## strat0:EP NOHSDP
## strat0:EP_AGE65
                              0.07217 0.06469 0.07965
## strat0:EP_AGE17
                             -0.00755 -0.01614 0.00097
## strat0:EP DISABL
                             -0.00637 -0.01540 0.00272
## strat0:EP SNGPNT
                              0.04500 0.03654 0.05346
## strat0:EP MINRTY
                             0.18576 0.17293 0.19843
## strat0:EP_LIMENG
                             -0.15496 -0.16869 -0.14135
## strat0:EP_MUNIT
                             -0.02440 -0.03155 -0.01729
## strat0:EP_MOBILE
                             -0.01325 -0.02035 -0.00617
## strat0:EP_CROWD
                             -0.02444 -0.03552 -0.01335
## strat0:EP_NOVEH
                              0.11708 0.10474 0.12933
                             -0.04994 -0.05708 -0.04280
## strat0:EP_GROUPQ
## strat0:EP_UNINSUR
                             0.01560 0.00632 0.02488
## strat0:co
                             -0.05621 -0.07943 -0.03300
## strat0:no2
                             -0.06121 -0.09335 -0.02972
## strat0:o3
                             -0.01184 -0.06087 0.04059
## strat0:pm10
                             -0.16158 -0.18281 -0.14094
## strat0:pm25
                              0.27419 0.24481 0.30570
## strat0:so2
                              0.01034 -0.01131 0.03204
## strat0:summer tmmx
                              0.03936 0.00591 0.07661
## strat0:winter_tmmx
                             -0.07030 -0.18635 0.01331
## strat0:summer rmax
                              0.01343 -0.03443 0.06314
## strat0:winter rmax
                             -0.05138 -0.08632 -0.01628
## strat0:Data_Value_CSMOKING 0.97571 0.95944 0.99193
## strat1
                              9.87330 9.86710 9.87945
## strat1:flood_risk_pc1
                             -0.00902 -0.01576 -0.00235
## strat1:flood_risk_pc2
                              0.00491 -0.00143 0.01132
## strat1:flood_risk_pc3
                              0.00806 0.00279 0.01333
## strat1:flood_risk_pc4
                              0.00301 -0.00155 0.00755
## strat1:flood_risk_pc5
                              0.00193 -0.00300 0.00691
## strat1:EP_UNEMP
                              0.09313 0.08822 0.09807
## strat1:EP_PCI
                             -0.27247 -0.28604 -0.25901
## strat1:EP_NOHSDP
                              0.03376 0.02413 0.04332
## strat1:EP_AGE65
                              0.12034 0.11256 0.12818
## strat1:EP AGE17
                             -0.00414 -0.01185 0.00371
## strat1:EP_DISABL
                             -0.09020 -0.09676 -0.08362
## strat1:EP SNGPNT
                              0.05597 0.04984 0.06211
## strat1:EP_MINRTY
                              0.39284 0.38250 0.40323
## strat1:EP LIMENG
                             -0.26990 -0.27847 -0.26132
## strat1:EP MUNIT
                              0.03985 0.03364 0.04607
## strat1:EP_MOBILE
                             -0.02337 -0.02871 -0.01804
## strat1:EP_CROWD
                             -0.00652 -0.01301 -0.00004
## strat1:EP_NOVEH
                             0.19964 0.19147 0.20783
## strat1:EP_GROUPQ
                             -0.04254 -0.04722 -0.03785
## strat1:EP_UNINSUR
                             -0.05315 -0.05981 -0.04659
## strat1:co
                             -0.03889 -0.06464 -0.01330
## strat1:no2
                             -0.18077 -0.21351 -0.14918
## strat1:o3
                              0.00441 -0.04465 0.05708
## strat1:pm10
                            -0.18558 -0.20760 -0.16440
## strat1:pm25
                            0.31577 0.28624 0.34758
## strat1:so2
                             -0.01856 -0.03991 0.00284
## strat1:summer tmmx
                             0.00964 -0.02427 0.04717
```

```
-0.07192 -0.18787 0.01155
## strat1:winter_tmmx
## strat1:summer_rmax
                              -0.01692 -0.06496 0.03282
## strat1:winter_rmax
                              -0.06036 -0.09511 -0.02523
## strat1:Data_Value_CSMOKING 1.00036 0.98886 1.01195
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_po
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                     "strat0:flood_risk_pc3"
## [3] "strat0:EP UNEMP"
                                     "strat0:EP_PCI"
                                     "strat0:EP_AGE65"
## [5] "strat0:EP_NOHSDP"
## [7] "strat0:EP_SNGPNT"
                                     "strat0:EP_MINRTY"
## [9] "strat0:EP_LIMENG"
                                     "strat0:EP_MUNIT"
## [11] "strat0:EP_MOBILE"
                                     "strat0:EP_CROWD"
## [13] "strat0:EP_NOVEH"
                                     "strat0:EP_GROUPQ"
## [15] "strat0:EP_UNINSUR"
                                     "strat0:co"
## [17] "strat0:no2"
                                     "strat0:pm10"
## [19] "strat0:pm25"
                                     "strat0:summer_tmmx"
## [21] "strat0:winter_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [23] "strat1"
                                     "strat1:flood_risk_pc1"
## [25] "strat1:flood_risk_pc3"
                                     "strat1:EP_UNEMP"
```

"strat1:EP_NOHSDP"

"strat1:EP_DISABL"

"strat1:EP_MINRTY"

"strat1:EP_MUNIT"

"strat1:EP_CROWD"

"strat1:EP_GROUPQ"

"strat1:winter_rmax"

"strat1:co"

"strat1:pm10"

Credible Interval plots for the coefficients, in ggplot

[27] "strat1:EP_PCI"

[29] "strat1:EP_AGE65"

[31] "strat1:EP_SNGPNT"

[33] "strat1:EP_LIMENG"

[35] "strat1:EP_MOBILE"

[37] "strat1:EP_NOVEH"

[41] "strat1:no2"

[43] "strat1:pm25"

[39] "strat1:EP_UNINSUR"

[45] "strat1:Data_Value_CSMOKING"

```
Splitting up the beta coefficients for each strata
```

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
```

Note: The intercept for both strata is not included.

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-1, 1.5)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
                 axis.text=element_text(size=12),
                 plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 20.5, 26.5, 30.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 1, label = "Social Vulnerability Index",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 23.5, y = 1, label = "Air Pollution",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 28.5, y = 1, label = "GRIDMET",
                       col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                               "Unemployed", "Per Capita Income", "No High School",
                                                               "65 or Over", "17 or Under", "Disability",
                                                               "Single-Parent", "Minority", "Poor English",
                                                               "Multi-Unit", "Mobile", "Crowded",
                                                               "No Vehicle", "Group Quarters", "Uninsured",
                                                               "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                               "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                               "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on Pove
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                            values = c("#F8766D", "#00BFC4"),
                                            drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_poverty.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME1

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl1_CASTHMA.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               9.75153 9.74309 9.75988
                               0.00190 -0.00525 0.00901
## strat0:flood_risk_pc1
## strat0:flood_risk_pc2
                              -0.00541 -0.01243
                                                0.00166
## strat0:flood_risk_pc3
                              0.01131 0.00576 0.01683
## strat0:flood_risk_pc4
                               0.00133 -0.00349 0.00615
## strat0:flood_risk_pc5
                              -0.00372 -0.00859 0.00110
## strat0:EP_AGE65
                              0.06843 0.06117 0.07570
## strat0:EP_AGE17
                              -0.01268 -0.02100 -0.00431
## strat0:EP DISABL
                             -0.00973 -0.01863 -0.00088
## strat0:EP_SNGPNT
                              0.05297 0.04421 0.06173
## strat0:EP_MINRTY
                              0.17282 0.15974 0.18593
```

```
## strat0:EP_NOVEH
                              0.13289 0.12080 0.14496
## strat0:EP GROUPQ
                             -0.03428 -0.04029 -0.02827
## strat0:EP_UNINSUR
                             0.02138 0.01142 0.03135
## strat0:co
                             -0.05615 -0.08040 -0.03209
## strat0:no2
                             -0.04295 -0.07684 -0.00978
## strat0:o3
                             -0.01668 -0.06922 0.03487
## strat0:pm10
                             -0.17178 -0.19370 -0.14972
## strat0:pm25
                             0.30466 0.27260 0.33667
## strat0:so2
                             0.00890 -0.01341 0.03071
                             0.04392 0.00674 0.07923
## strat0:summer_tmmx
## strat0:winter_tmmx
                             -0.10288 -0.19067 0.00438
## strat0:summer_rmax
## strat0:winter_rmax
                              0.02078 -0.02784 0.06747
                             -0.04603 -0.08145 -0.01005
## strat0:Data_Value_CSMOKING 1.02419 1.01015 1.03846
## strat1
                              9.92462 9.91847 9.93082
## strat1:flood_risk_pc1
                              -0.00378 -0.01070 0.00312
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
                              0.00650 -0.00003 0.01306
                              0.00656 0.00105 0.01204
## strat1:flood_risk_pc4
                              0.00539 0.00073 0.01005
## strat1:flood_risk_pc5
                              0.00192 -0.00320 0.00707
## strat1:EP_AGE65
                              0.13087 0.12255 0.13923
## strat1:EP_AGE17
                             0.00256 -0.00541 0.01056
## strat1:EP_DISABL
                             -0.07697 -0.08372 -0.07019
## strat1:EP_SNGPNT
                              0.06649 0.06035 0.07263
## strat1:EP_MINRTY
                              0.46574 0.45555 0.47586
## strat1:EP_LIMENG
                            -0.26169 -0.26929 -0.25418
## strat1:EP_MUNIT
                             0.04178 0.03510 0.04843
## strat1:EP_MOBILE
                             -0.01505 -0.02036 -0.00978
## strat1:EP_CROWD
                             0.00401 -0.00247 0.01049
## strat1:EP_NOVEH
                             0.22383 0.21533 0.23227
## strat1:EP_GROUPQ
                             -0.00286 -0.00775 0.00200
## strat1:EP_UNINSUR
                            -0.04239 -0.04899 -0.03581
## strat1:co
                            -0.04477 -0.07112 -0.01870
## strat1:no2
                            -0.17643 -0.21077 -0.14345
## strat1:o3
                            -0.01220 -0.06462 0.03939
## strat1:pm10
                            -0.20257 -0.22532 -0.18010
## strat1:pm25
                             0.37741 0.34508 0.40909
                             -0.02936 -0.05112 -0.00802
## strat1:so2
## strat1:summer_tmmx
                              0.00916 -0.02868 0.04543
## strat1:winter_tmmx
                             -0.10165 -0.18994 0.00494
## strat1:summer_rmax
                             -0.04146 -0.09029 0.00558
## strat1:winter_rmax
                              -0.04709 -0.08265 -0.01102
## strat1:Data_Value_CSMOKING 1.13837 1.12806 1.14863
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_rp
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "strat0"
                                     "strat0:flood_risk_pc3"
```

-0.12371 -0.13834 -0.10918

-0.02446 -0.03131 -0.01760

-0.00455 -0.01262 0.00357

-0.01443 -0.02737 -0.00150

strat0:EP_LIMENG

strat0:EP_MUNIT

strat0:EP MOBILE

strat0:EP_CROWD

```
## [3] "strat0:EP_AGE65"
                                      "strat0:EP_AGE17"
## [5] "strat0:EP_DISABL"
                                      "strat0:EP_SNGPNT"
## [7] "strat0:EP_MINRTY"
                                      "strat0:EP_LIMENG"
## [9] "strat0:EP_MUNIT"
                                      "strat0:EP_CROWD"
## [11] "strat0:EP_NOVEH"
                                      "strat0:EP_GROUPQ"
## [13] "strat0:EP UNINSUR"
                                      "strat0:co"
## [15] "strat0:no2"
                                      "strat0:pm10"
## [17] "strat0:pm25"
                                      "strat0:summer_tmmx"
## [19] "strat0:winter_rmax"
                                      "strat0:Data_Value_CSMOKING"
## [21] "strat1"
                                      "strat1:flood_risk_pc3"
## [23] "strat1:flood_risk_pc4"
                                      "strat1:EP_AGE65"
                                      "strat1:EP_SNGPNT"
## [25] "strat1:EP_DISABL"
## [27] "strat1:EP_MINRTY"
                                      "strat1:EP_LIMENG"
## [29] "strat1:EP_MUNIT"
                                      "strat1:EP_MOBILE"
## [31] "strat1:EP_NOVEH"
                                      "strat1:EP_UNINSUR"
## [33] "strat1:co"
                                      "strat1:no2"
## [35] "strat1:pm10"
                                      "strat1:pm25"
## [37] "strat1:so2"
                                      "strat1:winter_rmax"
## [39] "strat1:Data_Value_CSMOKING"
```

first, process the beta inference matrix in a form applot can understand

beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))

Credible Interval plots for the coefficients, in ggplot

beta_inference_df <- as.data.frame(beta_inference)</pre>

beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]

Note: The intercept for both strata is not included.

```
annotate(geom = "text", x = 11.5, y = 1, label = "Social Vulnerability Index",
                        col = "blue", size = 4.5) +
annotate(geom = "text", x = 20.5, y = 1, label = "Air Pollution",
                        col = "blue", size = 4.5) +
annotate(geom = "text", x = 25.5, y = 1, label = "GRIDMET",
                        col = "blue", size = 4.5) +
scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                             "65 or Over", "17 or Under", "Disability",
                                                                             "Single-Parent", "Minority", "Poor English",
                                                                             "Multi-Unit", "Mobile", "Crowded",
                                                                             "No Vehicle", "Group Quarters", "Uninsured",
                                                                             "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                             "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humid
                                                                             "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on RPL
geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
scale_color_manual(name = "Strata",
                                                    values = c("#F8766D", "#00BFC4"),
                                                    drop = FALSE) +
geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
```

95% Credible Intervals, Asthma, Stratified on RPL Theme 1

Stratified on RPL_THEME2

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl2_CASTHMA.RData"))
beta samples matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                 50%
                                         2.5%
                                                 97.5%
## strat0
                             9.83257 9.82778 9.83736
## strat0:flood_risk_pc1
                             0.01216 0.00579 0.01854
## strat0:flood risk pc2
                            -0.00360 -0.00980 0.00265
## strat0:flood_risk_pc3
                             0.01494 0.00995 0.01991
## strat0:flood_risk_pc4
                             0.00213 -0.00203 0.00630
                            -0.00289 -0.00716 0.00134
## strat0:flood_risk_pc5
## strat0:EP_POV
                             0.35195 0.34355 0.36027
## strat0:EP_UNEMP
                             0.09397 0.08745 0.10044
## strat0:EP PCI
                            -0.08317 -0.09006 -0.07623
## strat0:EP_NOHSDP
                             0.09996 0.08889 0.11126
## strat0:EP_MINRTY
                             0.13555 0.12501 0.14601
## strat0:EP_LIMENG
                            -0.19002 -0.19959 -0.18048
## strat0:EP_MUNIT
                            -0.02840 -0.03378 -0.02300
## strat0:EP_MOBILE
                            -0.02239 -0.02916 -0.01564
## strat0:EP CROWD
                            -0.02121 -0.02837 -0.01397
## strat0:EP NOVEH
                            0.10804 0.09900 0.11701
## strat0:EP_GROUPQ
                            -0.03267 -0.03623 -0.02912
## strat0:EP_UNINSUR
                            -0.00316 -0.01049 0.00421
## strat0:co
                            -0.06186 -0.08378 -0.03998
## strat0:no2
                            -0.14100 -0.17181 -0.11107
                            0.03155 -0.01696 0.07995
## strat0:o3
## strat0:pm10
                            -0.17401 -0.19457 -0.15340
## strat0:pm25
                            0.29421 0.26446 0.32395
## strat0:so2
                            -0.00820 -0.02895 0.01209
## strat0:summer_tmmx
                             0.05488 0.02045 0.08789
## strat0:winter_tmmx
                            -0.11266 -0.19355 -0.01417
## strat0:summer_rmax
                             0.03801 -0.00709 0.08177
## strat0:winter_rmax
                            -0.06334 -0.09647 -0.02965
## strat1
                             9.89579 9.89079 9.90083
## strat1:flood_risk_pc1
                            -0.01658 -0.02322 -0.00998
## strat1:flood_risk_pc2
                            -0.00106 -0.00734 0.00525
## strat1:flood risk pc3
                            -0.00103 -0.00637 0.00429
## strat1:flood_risk_pc4
                             0.00214 -0.00258 0.00687
## strat1:flood_risk_pc5
                             0.00519 0.00001 0.01038
## strat1:EP_POV
                             0.19769 0.18870 0.20662
## strat1:EP UNEMP
                             0.04952 0.04442 0.05461
                             0.00868 -0.00422 0.02169
## strat1:EP_PCI
## strat1:EP NOHSDP
                            0.08813 0.07818 0.09807
## strat1:EP_MINRTY
                             0.46133 0.45143 0.47114
## strat1:EP_LIMENG
                            -0.27939 -0.28879 -0.27002
## strat1:EP_MUNIT
                             0.01370 0.00606 0.02125
## strat1:EP_MOBILE
                            -0.01147 -0.01649 -0.00649
```

```
## strat1:EP_CROWD
                              -0.02383 -0.03088 -0.01678
## strat1:EP_NOVEH
                              0.17209 0.16305 0.18120
                              -0.18128 -0.19088 -0.17159
## strat1:EP_GROUPQ
## strat1:EP_UNINSUR
                              -0.04488 -0.05169 -0.03800
## strat1:co
                              -0.09451 -0.11935 -0.06980
## strat1:no2
                              -0.16847 -0.20072 -0.13701
## strat1:03
                              0.03158 -0.01692 0.08005
## strat1:pm10
                              -0.14402 -0.16456 -0.12372
## strat1:pm25
                              0.28369 0.25408 0.31302
## strat1:so2
                              -0.03194 -0.05217 -0.01183
## strat1:summer_tmmx
                              0.00158 -0.03300 0.03492
## strat1:winter_tmmx
                              -0.08912 -0.17079 0.00898
                              -0.02186 -0.06690 0.02214
## strat1:summer_rmax
## strat1:winter_rmax
                              -0.03986 -0.07293 -0.00646
## strat1:Data_Value_CSMOKING 0.92364 0.91115 0.93605
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_rp
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
##
   [1] "strat0"
                                     "strat0:flood_risk_pc1"
   [3] "strat0:flood_risk_pc3"
                                     "strat0:EP_POV"
   [5] "strat0:EP_UNEMP"
                                     "strat0:EP_PCI"
## [7] "strat0:EP_NOHSDP"
                                     "strat0:EP_MINRTY"
## [9] "strat0:EP_LIMENG"
                                     "strat0:EP_MUNIT"
## [11] "strat0:EP_MOBILE"
                                     "strat0:EP_CROWD"
## [13] "strat0:EP_NOVEH"
                                     "strat0:EP_GROUPQ"
## [15] "strat0:co"
                                     "strat0:no2"
```

Credible Interval plots for the coefficients, in ggplot

[17] "strat0:pm10"

[23] "strat1"

[19] "strat0:summer_tmmx"

[21] "strat0:winter_rmax"

[27] "strat1:EP_UNEMP"

[29] "strat1:EP_MINRTY"

[31] "strat1:EP_MUNIT"

[33] "strat1:EP_CROWD"

[35] "strat1:EP_GROUPQ"

[37] "strat1:co"

[39] "strat1:pm10"

[41] "strat1:so2"

[25] "strat1:flood_risk_pc5"

[43] "strat1:Data_Value_CSMOKING"

"strat0:pm25"

"strat1:EP_POV"

"strat1:EP_NOHSDP"

"strat1:EP_LIMENG"

"strat1:EP_MOBILE"

"strat1:EP_NOVEH"

"strat1:no2"

"strat1:pm25"

"strat1:EP_UNINSUR"

"strat1:winter_rmax"

"strat0:winter_tmmx"

"strat1:flood_risk_pc1"

"strat0:Data_Value_CSMOKING"

```
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,
                                                                     levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                                                         rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom_point() +
   ylim(c(-1, 1.5)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
               axis.text=element_text(size=12),
               plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 11.5, y = 1, label = "Social Vulnerability Index",
                     col = "blue", size = 4.5) +
   annotate(geom = "text", x = 20.5, y = 1, label = "Air Pollution",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 25.5, y = 1, label = "GRIDMET",
                    col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                        "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                        "Minority", "Poor English",
                                                        "Multi-Unit", "Mobile", "Crowded",
                                                        "No Vehicle", "Group Quarters", "Uninsured",
                                                        "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                        "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                        "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on RPL
   geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
   geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
   scale_color_manual(name = "Strata",
                                       values = c("#F8766D", "#00BFC4"),
                                       drop = FALSE) +
   geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
   geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_rpl2.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME3

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl3_CASTHMA.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
                               9.99880 9.98925 10.00830
## strat0
## strat0:flood risk pc1
                               0.00804 0.00072 0.01542
## strat0:flood_risk_pc2
                              -0.00302 -0.01010
                                                 0.00407
## strat0:flood_risk_pc3
                               0.01399 0.00828
                                                 0.01968
## strat0:flood_risk_pc4
                              -0.00011 -0.00577
                                                 0.00557
                               0.00221 -0.00361
## strat0:flood risk pc5
                                                 0.00811
## strat0:EP POV
                               0.34683 0.33677
                                                 0.35679
## strat0:EP_UNEMP
                               0.08161 0.07493 0.08823
```

```
## strat0:EP PCI
                            -0.08775 -0.09583 -0.07981
## strat0:EP NOHSDP
                             0.15174 0.13689 0.16643
## strat0:EP AGE65
                            0.04277 0.03565 0.04992
## strat0:EP_AGE17
                             0.00597 -0.00227 0.01419
## strat0:EP_DISABL
                            -0.04494 -0.05278 -0.03714
## strat0:EP SNGPNT
                            0.06454 0.05654 0.07254
## strat0:EP MUNIT
                            -0.03172 -0.04046 -0.02295
## strat0:EP MOBILE
                            -0.02864 -0.03486 -0.02247
## strat0:EP_CROWD
                            0.01575 0.00228 0.02906
## strat0:EP_NOVEH
                            0.13549 0.12383 0.14716
## strat0:EP_GROUPQ
                             0.00895 0.00330 0.01456
## strat0:EP_UNINSUR
                            -0.01731 -0.02637 -0.00820
## strat0:co
                            -0.10621 -0.13081 -0.08192
                            -0.12860 -0.16259 -0.09494
## strat0:no2
## strat0:o3
                            0.05013 -0.00253 0.11236
## strat0:pm10
                            -0.12230 -0.14432 -0.10020
## strat0:pm25
                            0.26680 0.23463 0.29839
## strat0:so2
                            -0.01014 -0.03312 0.01267
## strat0:summer_tmmx
                            0.02615 -0.00986 0.06082
## strat0:winter tmmx
                            -0.01594 -0.10751 0.07156
## strat0:summer_rmax
                             0.02195 -0.02684 0.06650
## strat0:winter_rmax
                            -0.06214 -0.09806 -0.02620
## strat1
                             9.91879 9.91280 9.92478
## strat1:flood_risk_pc1
                            -0.00519 -0.01209 0.00167
## strat1:flood_risk_pc2
                            -0.00566 -0.01226 0.00088
## strat1:flood_risk_pc3
                             0.00566 0.00023 0.01108
## strat1:flood_risk_pc4
                             0.00640 0.00222 0.01051
## strat1:flood_risk_pc5
                             0.00005 -0.00436 0.00451
## strat1:EP_POV
                             0.21791 0.20939 0.22640
## strat1:EP_UNEMP
                             0.10423 0.09880 0.10961
## strat1:EP_PCI
                            -0.11830 -0.12786 -0.10873
## strat1:EP_NOHSDP
                            -0.03555 -0.04413 -0.02695
## strat1:EP_AGE65
                            0.09370 0.08558 0.10184
## strat1:EP_AGE17
                             0.00745 -0.00030 0.01527
## strat1:EP_DISABL
                            -0.04208 -0.04942 -0.03475
## strat1:EP SNGPNT
                            0.08022 0.07402 0.08640
## strat1:EP_MUNIT
                            -0.01105 -0.01691 -0.00517
## strat1:EP MOBILE
                            -0.02861 -0.03448 -0.02279
## strat1:EP_CROWD
                            -0.05010 -0.05651 -0.04366
## strat1:EP NOVEH
                            0.16668 0.15787 0.17548
## strat1:EP GROUPQ
                            -0.09129 -0.09664 -0.08602
## strat1:EP UNINSUR
                            -0.06262 -0.06942 -0.05585
## strat1:co
                            -0.11962 -0.14678 -0.09299
## strat1:no2
                            -0.06301 -0.09678 -0.02997
                            0.07369 0.02062 0.13639
## strat1:o3
## strat1:pm10
                            -0.19649 -0.21951 -0.17328
## strat1:pm25
                            0.30810 0.27569 0.34031
                            -0.05125 -0.07550 -0.02734
## strat1:so2
## strat1:summer_tmmx
                             0.01770 -0.01917 0.05341
## strat1:winter_tmmx
                             0.04960 -0.04257 0.13644
## strat1:summer_rmax
                            -0.00660 -0.05599 0.03819
## strat1:winter_rmax
                            -0.06590 -0.10216 -0.02936
## strat1:Data Value CSMOKING 1.01443 1.00108 1.02788
```

```
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_rp
List of significant beta coefficients:
```

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                      "strat0:flood_risk_pc1"
## [3] "strat0:flood_risk_pc3"
                                      "strat0:EP_POV"
   [5] "strat0:EP_UNEMP"
                                      "strat0:EP_PCI"
## [7] "strat0:EP_NOHSDP"
                                     "strat0:EP_AGE65"
## [9] "strat0:EP_DISABL"
                                     "strat0:EP_SNGPNT"
## [11] "strat0:EP MUNIT"
                                      "strat0:EP_MOBILE"
## [13] "strat0:EP_CROWD"
                                     "strat0:EP_NOVEH"
## [15] "strat0:EP_GROUPQ"
                                     "strat0:EP UNINSUR"
## [17] "strat0:co"
                                     "strat0:no2"
## [19] "strat0:pm10"
                                     "strat0:pm25"
## [21] "strat0:winter_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [23] "strat1"
                                     "strat1:flood_risk_pc3"
## [25] "strat1:flood_risk_pc4"
                                      "strat1:EP_POV"
## [27] "strat1:EP_UNEMP"
                                      "strat1:EP_PCI"
## [29] "strat1:EP_NOHSDP"
                                     "strat1:EP_AGE65"
## [31] "strat1:EP_DISABL"
                                     "strat1:EP_SNGPNT"
## [33] "strat1:EP_MUNIT"
                                     "strat1:EP_MOBILE"
## [35] "strat1:EP_CROWD"
                                      "strat1:EP_NOVEH"
## [37] "strat1:EP_GROUPQ"
                                     "strat1:EP_UNINSUR"
## [39] "strat1:co"
                                      "strat1:no2"
## [41] "strat1:o3"
                                      "strat1:pm10"
## [43] "strat1:pm25"
                                      "strat1:so2"
## [45] "strat1:winter_rmax"
                                     "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
```

Note: The intercept for both strata is not included.

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom_point() +</pre>
```

```
ylim(c(-1, 1.5)) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
             axis.text=element_text(size=12),
             plot.margin = margin(5.5, 5.5, 5.5, 10)) +
geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
geom_vline(xintercept = c(5.5, 19.5, 25.5, 29.5), col = "blue") +
geom_hline(yintercept = 0, col = "red") +
annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
                   col = "blue", size = 4.5) +
annotate(geom = "text", x = 12.5, y = 1, label = "Social Vulnerability Index",
                   col = "blue", size = 4.5) +
annotate(geom = "text", x = 22.5, y = 1, label = "Air Pollution",
                   col = "blue", size = 4.5) +
annotate(geom = "text", x = 27.5, y = 1, label = "GRIDMET",
                   col = "blue", size = 4.5) +
scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                             "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                             "65 or Over", "17 or Under", "Disability",
                                                             "Single-Parent",
                                                             "Multi-Unit", "Mobile", "Crowded",
                                                             "No Vehicle", "Group Quarters", "Uninsured",
                                                             "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                             "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidit
                                                             "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on RPL
geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
scale color manual(name = "Strata",
                                         values = c("#F8766D", "#00BFC4"),
                                         drop = FALSE) +
geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_rpl3.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME4

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl4_CASTHMA.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               9.88550
                                       9.88114 9.88982
## strat0:flood risk pc1
                               0.00788 0.00122 0.01453
## strat0:flood_risk_pc2
                              -0.00497 -0.01152
                                                 0.00167
## strat0:flood_risk_pc3
                               0.00916
                                        0.00394
                                                 0.01439
## strat0:flood_risk_pc4
                               0.00603 0.00123 0.01083
## strat0:flood risk pc5
                              -0.00318 -0.00827
                                                 0.00196
## strat0:EP POV
                               0.25567
                                        0.24570
                                                 0.26572
## strat0:EP_UNEMP
                               0.06554 0.05922 0.07184
```

```
-0.02589 -0.03360 -0.01825
## strat0:EP PCI
                         0.07147 0.05938 0.08358
## strat0:EP_NOHSDP
                         0.11589 0.10928 0.12258
## strat0:EP AGE65
## strat0:EP_AGE17
                         0.03884 0.03207 0.04565
                        -0.01990 -0.02751 -0.01228
## strat0:EP_DISABL
## strat0:EP SNGPNT
                         0.02884 0.02163 0.03610
## strat0:EP MINRTY
                         0.33417 0.32346 0.34487
## strat0:EP_LIMENG
## strat0:EP_UNINSUR
                          -0.24653 -0.25888 -0.23422
                         -0.01269 -0.02081 -0.00449
## strat0:co
                         -0.06428 -0.08965 -0.03909
## strat0:no2
                          -0.11788 -0.15048 -0.08509
                         -0.06789 -0.11509 -0.01713
## strat0:o3
## strat0:pm10
                         -0.16190 -0.18269 -0.14131
                         0.30887 0.27940 0.33877
## strat0:pm25
## strat0:so2
                         0.00596 -0.01558 0.02703
## strat1
                          9.88384 9.87977 9.88794
## strat1:flood_risk_pc5
                         0.00017 -0.00440 0.00476
## strat1:EP_POV
                         0.31737 0.30991 0.32481
## strat1:EP_UNEMP
                          0.07537 0.06988 0.08079
## strat1:EP_PCI
                         -0.08706 -0.09664 -0.07742
## strat1:EP_NOHSDP
                         0.05047 0.04081 0.06015
## strat1:EP_AGE65
                          0.13795 0.13078 0.14508
## strat1:EP_AGE17
                         0.03899 0.03246 0.04554
## strat1:EP_DISABL
                         -0.04465 -0.05147 -0.03781
## strat1:EP_SNGPNT
                         0.04362 0.03714 0.05008
                          0.35976 0.34939 0.37012
## strat1:EP_MINRTY
## strat1:EP_LIMENG
                         -0.25849 -0.26696 -0.25008
## strat1:EP_UNINSUR -0.02646 -0.03307 -0.01987
## strat1:co
                        -0.03124 -0.05368 -0.00898
## strat1:no2
                        -0.16010 -0.19075 -0.12969
## strat1:o3
                        -0.06687 -0.11393 -0.01635
## strat1:pm10
                        -0.16411 -0.18541 -0.14317
## strat1:pm25
                         0.32338 0.29416 0.35315
## strat1:so2
                         0.00239 -0.01863 0.02308
## strat1:summer_tmmx
                         0.02332 -0.01137 0.05728
## strat1:winter_tmmx
                          -0.13017 -0.21830 -0.03152
                          -0.00766 -0.04943 0.03638
## strat1:summer_rmax
## strat1:winter_rmax
                          -0.06760 -0.10210 -0.03514
## strat1:Data_Value_CSMOKING 0.85818 0.84555 0.87082
```

saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_rp

List of significant beta coefficients:

```
[3] "strat0:flood_risk_pc3"
                                      "strat0:flood_risk_pc4"
## [5] "strat0:EP_POV"
                                      "strat0:EP_UNEMP"
## [7] "strat0:EP_PCI"
                                      "strat0:EP_NOHSDP"
## [9] "strat0:EP_AGE65"
                                      "strat0:EP_AGE17"
## [11] "strat0:EP_DISABL"
                                      "strat0:EP_SNGPNT"
## [13] "strat0:EP_MINRTY"
                                      "strat0:EP_LIMENG"
## [15] "strat0:EP UNINSUR"
                                      "strat0:co"
## [17] "strat0:no2"
                                      "strat0:o3"
## [19] "strat0:pm10"
                                      "strat0:pm25"
## [21] "strat0:summer_tmmx"
                                      "strat0:winter_tmmx"
## [23] "strat0:winter_rmax"
                                      "strat0:Data_Value_CSMOKING"
## [25] "strat1"
                                      "strat1:flood_risk_pc3"
## [27] "strat1:EP_POV"
                                      "strat1:EP_UNEMP"
## [29] "strat1:EP_PCI"
                                      "strat1:EP_NOHSDP"
## [31] "strat1:EP_AGE65"
                                      "strat1:EP_AGE17"
## [33] "strat1:EP_DISABL"
                                      "strat1:EP_SNGPNT"
## [35] "strat1:EP_MINRTY"
                                      "strat1:EP_LIMENG"
## [37] "strat1:EP_UNINSUR"
                                      "strat1:co"
## [39] "strat1:no2"
                                      "strat1:o3"
## [41] "strat1:pm10"
                                      "strat1:pm25"
## [43] "strat1:winter_tmmx"
                                      "strat1:winter_rmax"
## [45] "strat1:Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),</pre>
                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
 geom_point() +
  ylim(c(-1, 1.5)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
```

row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]

"strat0:flood_risk_pc1"

##

##

[1] "strat0"

```
plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 16.5, 22.5, 26.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 11, y = 1, label = "Social Vulnerability Index",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 19.5, y = 1, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 24.5, y = 1, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "Poverty", "Unemployed", "Per Capita Income", "No High School",
                              "65 or Over", "17 or Under", "Disability",
                              "Single-Parent",
                              "Minority", "Poor English",
                              "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on RPL
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale_color_manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
р
```



```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_rpl4.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEMES

```
load(here("modeling_files/stratified_analysis/model_stratif_rpls_CASTHMA.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               9.75621 9.74943
                                                9.76297
## strat0:flood risk pc1
                              -0.00657 -0.01439
## strat0:flood_risk_pc2
                              -0.00403 -0.01174
                                                 0.00383
## strat0:flood_risk_pc3
                               0.00792 0.00185
                                                 0.01410
## strat0:flood_risk_pc4
                               0.00286 -0.00267 0.00837
## strat0:flood_risk_pc5
                              -0.00882 -0.01444 -0.00321
## strat0:EP_UNINSUR
                              -0.02305 -0.03310 -0.01293
## strat0:co
                              -0.02414 -0.05093 0.00265
```

```
## strat0:o3
                          -0.02485 -0.08653 0.02890
## strat0:pm10
                          -0.19263 -0.21848 -0.16745
## strat0:pm25
                          0.40863 0.37174 0.44473
## strat0:so2
                           0.02386 -0.00101 0.04944
## strat0:summer tmmx
                          0.02859 -0.01417 0.07686
## strat0:winter_tmmx
                           -0.14216 -0.28390 -0.01601
                           0.00229 -0.04962 0.05686
## strat0:summer_rmax
## strat0:winter_rmax
                           -0.06357 -0.10244 -0.02499
## strat0:Data_Value_CSMOKING 1.10569 1.09428 1.11711
## strat1
                          9.94044 9.93463 9.94622
## strat1:flood_risk_pc1
                           0.02007 0.01237 0.02773
## strat1:EP_UNINSUR
## strat1:co
                          -0.11886 -0.14841 -0.08939
                          0.13086 0.09453 0.16785
## strat1:no2
## strat1:o3
                           -0.06549 -0.12745 -0.01112
## strat1:pm10
                         -0.26962 -0.29636 -0.24331
## strat1:pm25
                          0.46832 0.43110 0.50403
                          -0.00010 -0.02470 0.02542
## strat1:so2
                          0.01951 -0.02368 0.06772
## strat1:summer_tmmx
## strat1:winter_tmmx
                          -0.06222 -0.20370 0.06437
## strat1:summer_rmax
                           -0.04954 -0.10189 0.00494
## strat1:winter_rmax
                           -0.10545 -0.14441 -0.06632
## strat1:Data_Value_CSMOKING 1.32013 1.31162 1.32861
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_rp
```

-0.05539 -0.09060 -0.01885

List of significant beta coefficients:

strat0:no2

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
```

```
## [1] "strat0"
                                     "strat0:flood_risk_pc3"
                                     "strat0:EP_UNINSUR"
## [3] "strat0:flood_risk_pc5"
## [5] "strat0:no2"
                                     "strat0:pm10"
## [7] "strat0:pm25"
                                     "strat0:winter_tmmx"
## [9] "strat0:winter_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [11] "strat1"
                                     "strat1:flood_risk_pc1"
## [13] "strat1:flood_risk_pc3"
                                     "strat1:flood_risk_pc5"
## [15] "strat1:EP_UNINSUR"
                                     "strat1:co"
## [17] "strat1:no2"
                                     "strat1:o3"
## [19] "strat1:pm10"
                                     "strat1:pm25"
## [21] "strat1:winter_rmax"
                                     "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
post_2.5 = 2.5\%,
                            post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                     levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                       rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
 ylim(c(-1, 1.5)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 6.5, 12.5, 16.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 9.5, y = 1, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 14.5, y = 1, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on All
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale color manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_rpls.pdf"),
       plot = p, device = "pdf",
       width = 8, height = 6, units = "in")
```

MHLTH Stratified Analysis

Repeating the stratified analysis in the last section, this time just doing the plots

Stratified on Poverty

```
load(here("modeling_files/stratified_analysis/model_stratif_poverty_MHLTH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                    97.5%
                              14.06011 14.04734 14.07288
## strat0
## strat0:flood_risk_pc1
                              -0.01680 -0.02877 -0.00480
## strat0:flood_risk_pc2
                              -0.00592 -0.01769 0.00598
## strat0:flood_risk_pc3
                               0.00215 -0.00719
                                                 0.01149
                               0.00195 -0.00623 0.01007
## strat0:flood_risk_pc4
## strat0:flood_risk_pc5
                              -0.00413 -0.01243 0.00423
```

```
## strat0:EP UNEMP
                            0.08953 0.07528 0.10368
## strat0:EP_PCI
                             -0.17027 -0.18392 -0.15647
                            0.11607 0.08977 0.14234
## strat0:EP NOHSDP
## strat0:EP_AGE65
                             -0.22732 -0.24036 -0.21430
## strat0:EP_AGE17
                             -0.03214 -0.04711 -0.01729
## strat0:EP DISABL
                             -0.03695 -0.05268 -0.02109
## strat0:EP SNGPNT
                             0.07431 0.05955 0.08909
## strat0:EP MINRTY
                             -0.07849 -0.10083 -0.05647
## strat0:EP_LIMENG
                             0.05970 0.03578 0.08345
## strat0:EP_MUNIT
                             0.08576 0.07332 0.09815
## strat0:EP_MOBILE
                             -0.02326 -0.03567 -0.01091
## strat0:EP_CROWD
                             0.07573 0.05641 0.09510
## strat0:EP_NOVEH
                              0.11870 0.09718 0.14009
## strat0:EP_GROUPQ
                              0.17621 0.16374
                                               0.18862
## strat0:EP_UNINSUR
                              0.03998 0.02377
                                               0.05613
## strat0:co
                              0.09892
                                      0.05861
                                               0.13923
## strat0:no2
                             0.14333 0.08770 0.19792
## strat0:o3
                            -0.02195 -0.10671 0.06813
## strat0:pm10
                            -0.16181 -0.19863 -0.12611
## strat0:pm25
                             0.30435 0.25344 0.35888
## strat0:so2
                             0.04441 0.00708
                                               0.08193
## strat0:summer tmmx
                             0.05412 -0.00398 0.11821
## strat0:winter_tmmx
                             -0.00380 -0.20363
                                               0.14585
## strat0:summer rmax
                              0.03994 -0.04229
                                               0.12515
## strat0:winter rmax
                             -0.05100 -0.11082 0.00950
## strat0:Data_Value_CSMOKING 2.74508 2.71654 2.77339
## strat1
                             14.21993 14.20909 14.23066
## strat1:flood_risk_pc1
                              0.00389 -0.00784 0.01552
## strat1:flood_risk_pc2
                              0.01530 0.00426 0.02643
## strat1:flood_risk_pc3
                              0.02289 0.01371
                                               0.03204
## strat1:flood_risk_pc4
                             -0.00592 -0.01386
                                               0.00200
## strat1:flood_risk_pc5
                              0.00212 -0.00648 0.01079
## strat1:EP_UNEMP
                             0.13905 0.13049 0.14766
## strat1:EP_PCI
                             -0.97738 -1.00118 -0.95377
## strat1:EP_NOHSDP
                             0.18960 0.17285 0.20625
## strat1:EP_AGE65
                             -0.40938 -0.42305 -0.39569
## strat1:EP AGE17
                             -0.17886 -0.19237 -0.16516
## strat1:EP_DISABL
                             -0.24694 -0.25836 -0.23544
## strat1:EP SNGPNT
                             0.14447 0.13379 0.15519
## strat1:EP_MINRTY
                             -0.22892 -0.24685 -0.21084
## strat1:EP LIMENG
                             -0.03337 -0.04822 -0.01846
## strat1:EP MUNIT
                             0.22047 0.20967 0.23131
## strat1:EP_MOBILE
                             -0.04185 -0.05117 -0.03257
## strat1:EP_CROWD
                              0.07330 0.06199 0.08461
## strat1:EP_NOVEH
                             0.25092 0.23668 0.26518
## strat1:EP_GROUPQ
                             0.15215 0.14399 0.16033
## strat1:EP_UNINSUR
                             -0.09036 -0.10194 -0.07891
## strat1:co
                             0.10159 0.05701 0.14599
## strat1:no2
                             -0.02745 -0.08400 0.02736
## strat1:o3
                             0.02519 -0.05947 0.11579
## strat1:pm10
                            -0.21924 -0.25732 -0.18261
## strat1:pm25
                            0.37089 0.31972 0.42596
## strat1:so2
                            0.04638 0.00950 0.08346
## strat1:summer tmmx
                            0.03640 -0.02248 0.10063
```

```
## strat1:winter_tmmx
## strat1:summer_rmax
                              -0.01066 -0.09345 0.07433
## strat1:winter_rmax
                              -0.02255 -0.08213 0.03790
## strat1:Data_Value_CSMOKING 2.51363 2.49348 2.53391
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_pove
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                     "strat0:flood_risk_pc1"
## [3] "strat0:EP UNEMP"
                                     "strat0:EP_PCI"
## [5] "strat0:EP_NOHSDP"
                                     "strat0:EP_AGE65"
## [7] "strat0:EP_AGE17"
                                     "strat0:EP_DISABL"
## [9] "strat0:EP_SNGPNT"
                                     "strat0:EP_MINRTY"
## [11] "strat0:EP_LIMENG"
                                     "strat0:EP_MUNIT"
## [13] "strat0:EP_MOBILE"
                                     "strat0:EP_CROWD"
## [15] "strat0:EP_NOVEH"
                                     "strat0:EP_GROUPQ"
## [17] "strat0:EP_UNINSUR"
                                     "strat0:co"
## [19] "strat0:no2"
                                     "strat0:pm10"
## [21] "strat0:pm25"
                                     "strat0:so2"
## [23] "strat0:Data_Value_CSMOKING"
                                     "strat1"
## [25] "strat1:flood_risk_pc2"
                                      "strat1:flood_risk_pc3"
## [27] "strat1:EP_UNEMP"
                                     "strat1:EP_PCI"
## [29] "strat1:EP_NOHSDP"
                                     "strat1:EP_AGE65"
## [31] "strat1:EP_AGE17"
                                     "strat1:EP_DISABL"
## [33] "strat1:EP_SNGPNT"
                                     "strat1:EP_MINRTY"
## [35] "strat1:EP_LIMENG"
                                     "strat1:EP_MUNIT"
## [37] "strat1:EP_MOBILE"
                                     "strat1:EP_CROWD"
## [39] "strat1:EP_NOVEH"
                                     "strat1:EP GROUPQ"
## [41] "strat1:EP_UNINSUR"
                                     "strat1:co"
## [43] "strat1:pm10"
                                     "strat1:pm25"
```

0.12008 -0.08005 0.26918

Credible Interval plots for the coefficients, in ggplot

[45] "strat1:so2"

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%,
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                        rep("Upper", (nrow(beta_inference_df)/2))))
```

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
```

"strat1:Data_Value_CSMOKING"

Note: The intercept for both strata is not included.

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-1.5, 4)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
                 axis.text=element_text(size=12),
                 plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 20.5, 26.5, 30.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 3.8, label = "Social Vulnerability Index",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 23.5, y = 3.8, label = "Air Pollution",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 28.5, y = 3.8, label = "GRIDMET",
                       col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                               "Unemployed", "Per Capita Income", "No High School",
                                                               "65 or Over", "17 or Under", "Disability",
                                                               "Single-Parent", "Minority", "Poor English",
                                                               "Multi-Unit", "Mobile", "Crowded",
                                                               "No Vehicle", "Group Quarters", "Uninsured",
                                                               "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                               "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                               "Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Strati
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                            values = c("#F8766D", "#00BFC4"),
                                            drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_MHLTH, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_MHLTH, col = "red", linetype = "dashed")
```

95% Credible Intervals, Poor Mental Health, Stratified on Poverty


```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_poverty.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME1

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl1_MHLTH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              14.07655 14.06138 14.09155
                              -0.00919 -0.02205 0.00362
## strat0:flood_risk_pc1
## strat0:flood_risk_pc2
                              -0.00384 -0.01646 0.00891
## strat0:flood_risk_pc3
                              0.00904 -0.00094 0.01898
## strat0:flood_risk_pc4
                              -0.00119 -0.00985 0.00748
## strat0:flood_risk_pc5
                              -0.00778 -0.01652 0.00089
## strat0:EP_AGE65
                              -0.25793 -0.27100 -0.24486
## strat0:EP_AGE17
                             -0.09469 -0.10966 -0.07962
## strat0:EP DISABL
                             -0.03573 -0.05169 -0.01982
## strat0:EP_SNGPNT
                              0.10721 0.09146 0.12296
## strat0:EP_MINRTY
                             -0.03140 -0.05493 -0.00779
```

```
## strat0:EP MOBILE
                            -0.00439 -0.01889 0.01022
## strat0:EP_CROWD
                             0.09500 0.07174 0.11823
## strat0:EP_NOVEH
                              0.19098 0.16927 0.21270
## strat0:EP GROUPQ
                              0.21311 0.20231 0.22389
## strat0:EP_UNINSUR
                              0.05382 0.03594 0.07176
## strat0:co
                              0.09701 0.05335 0.14040
## strat0:no2
                             0.18407 0.12288 0.24395
## strat0:o3
                             -0.05207 -0.14730 0.04099
## strat0:pm10
                             -0.18972 -0.22934 -0.14987
## strat0:pm25
                              0.41809 0.36020 0.47589
## strat0:so2
                              0.03026 -0.01003 0.06955
## strat0:summer_tmmx
                             0.06509 -0.00412 0.12947
                             -0.09728 -0.25818 0.10461
## strat0:winter_tmmx
## strat0:summer_rmax
## strat0:winter_rmax
                              0.05665 -0.03164 0.14134
                             -0.02001 -0.08403 0.04511
## strat0:Data_Value_CSMOKING 2.90293 2.87759 2.92867
## strat1
                           14.45254 14.44149 14.46368
## strat1:flood_risk_pc1
                              0.01420 0.00178 0.02661
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
                              0.01269 0.00094 0.02450
                              0.01887 0.00894 0.02873
## strat1:flood_risk_pc4
                              0.00772 -0.00068 0.01609
## strat1:flood_risk_pc5
                              0.00110 -0.00810 0.01036
## strat1:EP_AGE65
                             -0.41456 -0.42953 -0.39945
## strat1:EP_AGE17
                            -0.11717 -0.13150 -0.10277
## strat1:EP_DISABL
                             -0.21049 -0.22262 -0.19828
## strat1:EP_SNGPNT
                              0.15421 0.14315 0.16522
## strat1:EP_MINRTY
                            -0.04156 -0.05982 -0.02338
## strat1:EP_LIMENG
                             0.06967 0.05605 0.08309
## strat1:EP_MUNIT
                             0.19111 0.17908 0.20307
## strat1:EP_MOBILE
                            -0.01763 -0.02718 -0.00815
## strat1:EP_CROWD
                             0.11268 0.10101 0.12433
## strat1:EP_NOVEH
                             0.31867 0.30341 0.33383
## strat1:EP_GROUPQ
                              0.27662 0.26784 0.28539
## strat1:EP_UNINSUR
                            -0.06457 -0.07645 -0.05273
## strat1:co
                             0.10242 0.05494 0.14945
## strat1:no2
                             -0.00442 -0.06632 0.05520
## strat1:o3
                             -0.02516 -0.12022 0.06785
## strat1:pm10
                            -0.24604 -0.28714 -0.20552
## strat1:pm25
                             0.53906 0.48068 0.59623
                             0.00190 -0.03737 0.04048
## strat1:so2
## strat1:summer_tmmx
                              0.04375 -0.02640 0.10976
## strat1:winter_tmmx
                              0.05536 -0.10604 0.25671
## strat1:summer_rmax
                             -0.06808 -0.15679 0.01723
## strat1:winter_rmax
                              0.02971 -0.03454 0.09509
## strat1:Data_Value_CSMOKING 2.92122 2.90268 2.93970
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_rpl1
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                     "strat0:EP_AGE65"
```

0.05541 0.02918 0.08149

0.08780 0.07550 0.10014

strat0:EP_LIMENG

strat0:EP_MUNIT

```
## [3] "strat0:EP_AGE17"
                                      "strat0:EP_DISABL"
## [5] "strat0:EP_SNGPNT"
                                     "strat0:EP_MINRTY"
## [7] "strat0:EP_LIMENG"
                                     "strat0:EP_MUNIT"
## [9] "strat0:EP_CROWD"
                                     "strat0:EP_NOVEH"
## [11] "strat0:EP_GROUPQ"
                                      "strat0:EP_UNINSUR"
## [13] "strat0:co"
                                     "strat0:no2"
## [15] "strat0:pm10"
                                      "strat0:pm25"
## [17] "strat0:Data_Value_CSMOKING" "strat1"
## [19] "strat1:flood_risk_pc1"
                                      "strat1:flood_risk_pc2"
## [21] "strat1:flood_risk_pc3"
                                      "strat1:EP_AGE65"
## [23] "strat1:EP_AGE17"
                                      "strat1:EP_DISABL"
## [25] "strat1:EP_SNGPNT"
                                      "strat1:EP_MINRTY"
## [27] "strat1:EP_LIMENG"
                                     "strat1:EP_MUNIT"
## [29] "strat1:EP_MOBILE"
                                      "strat1:EP_CROWD"
## [31] "strat1:EP_NOVEH"
                                      "strat1:EP_GROUPQ"
## [33] "strat1:EP_UNINSUR"
                                      "strat1:co"
## [35] "strat1:pm10"
                                      "strat1:pm25"
## [37] "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
```

Note: The intercept for both strata is not included.

```
col = "blue", size = 4.5) +
  annotate(geom = "text", x = 20.5, y = 3.8, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 25.5, y = 3.8, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "65 or Over", "17 or Under", "Disability",
                              "Single-Parent", "Minority", "Poor English",
                              "Multi-Unit", "Mobile", "Crowded",
                              "No Vehicle", "Group Quarters", "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Strati
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale_color_manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom_hline(yintercept = 0.2 * sd_MHLTH, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_MHLTH, col = "red", linetype = "dashed")
p
```

95% Credible Intervals, Poor Mental Health, Stratified on RPL Theme 1


```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_rpl1.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME2

```
load(here("modeling files/stratified analysis/model stratif rp12 MHLTH.RData"))
beta samples matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
                                                 97.5%
##
                                  50%
                                          2.5%
## strat0
                             14.30660 14.29818 14.31510
## strat0:flood_risk_pc1
                             0.01445 0.00339 0.02550
## strat0:flood risk pc2
                             -0.01521 -0.02593 -0.00439
## strat0:flood_risk_pc3
                              0.01567 0.00704 0.02430
## strat0:flood_risk_pc4
                              0.00448 -0.00279 0.01172
## strat0:flood_risk_pc5
                             -0.00655 -0.01397 0.00082
## strat0:EP_POV
                             1.06863 1.05381 1.08338
## strat0:EP_UNEMP
                             0.08689 0.07554 0.09818
## strat0:EP PCI
                             -0.35927 -0.37119 -0.34723
## strat0:EP_NOHSDP
                             -0.00143 -0.02069 0.01814
## strat0:EP_MINRTY
                             -0.08695 -0.10524 -0.06879
## strat0:EP_LIMENG
                            0.01364 -0.00289 0.03019
## strat0:EP_MUNIT
                             0.05464 0.04527 0.06400
## strat0:EP_MOBILE
                             -0.08814 -0.09991 -0.07637
## strat0:EP CROWD
                            0.13236 0.11987 0.14494
## strat0:EP NOVEH
                            -0.09631 -0.11200 -0.08074
## strat0:EP_GROUPQ
                             0.25128 0.24506 0.25747
## strat0:EP_UNINSUR
                             0.05380 0.04103 0.06662
## strat0:co
                             0.12624 0.08841 0.16397
## strat0:no2
                             -0.07471 -0.12718 -0.02358
## strat0:o3
                             -0.01109 -0.09323 0.07077
## strat0:pm10
                             -0.05103 -0.08608 -0.01580
## strat0:pm25
                            0.30769 0.25698 0.35833
## strat0:so2
                            0.05878 0.02347 0.09339
                             0.13503 0.07695 0.19091
## strat0:summer_tmmx
## strat0:winter_tmmx
                             -0.05637 -0.19524 0.10797
## strat0:summer_rmax
                              0.08274 0.00688 0.15743
## strat0:winter_rmax
                             -0.03878 -0.09473 0.01782
## strat0:Data_Value_CSMOKING 2.13376 2.11149 2.15618
## strat1
                             14.12196 14.11317 14.13083
## strat1:flood_risk_pc1
                             -0.00421 -0.01568 0.00725
## strat1:flood_risk_pc2
                             -0.01531 -0.02619 -0.00438
                              0.00323 -0.00603 0.01246
## strat1:flood risk pc3
## strat1:flood_risk_pc4
                              0.00117 -0.00703 0.00939
## strat1:flood_risk_pc5
                             -0.00358 -0.01259 0.00542
## strat1:EP_POV
                             0.44628 0.43061 0.46188
## strat1:EP UNEMP
                             0.02539 0.01649 0.03426
## strat1:EP_PCI
                             -0.29833 -0.32083 -0.27568
## strat1:EP NOHSDP
                             0.17836 0.16097 0.19566
## strat1:EP_MINRTY
                             0.11601 0.09899 0.13288
## strat1:EP_LIMENG
                             0.00390 -0.01241 0.02008
## strat1:EP_MUNIT
                             0.10373 0.09049 0.11686
## strat1:EP_MOBILE
                             -0.05927 -0.06797 -0.05060
```

```
## strat1:EP_CROWD
                             0.09820 0.08596 0.11052
## strat1:EP_NOVEH
                             -0.00134 -0.01704 0.01439
                            -0.11593 -0.13275 -0.09906
## strat1:EP_GROUPQ
## strat1:EP_UNINSUR
                             0.01265 0.00080 0.02457
## strat1:co
                              0.04337 0.00057 0.08587
## strat1:no2
                             0.05024 -0.00478 0.10391
## strat1:03
                             -0.01287 -0.09484 0.06897
## strat1:pm10
                             -0.02983 -0.06477 0.00484
## strat1:pm25
                              0.24513 0.19487 0.29518
## strat1:so2
                              0.01708 -0.01728 0.05128
## strat1:summer_tmmx
                             0.03901 -0.01967 0.09531
## strat1:winter_tmmx
                              0.10362 -0.03633 0.26721
                             -0.03106 -0.10688 0.04393
## strat1:summer_rmax
## strat1:winter_rmax
                              0.00386 -0.05200 0.06000
## strat1:Data_Value_CSMOKING 2.64638 2.62462 2.66793
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_rpl2
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
```

```
##
   [1] "strat0"
                                      "strat0:flood_risk_pc1"
  [3] "strat0:flood_risk_pc2"
                                      "strat0:flood_risk_pc3"
   [5] "strat0:EP_POV"
                                      "strat0:EP_UNEMP"
## [7] "strat0:EP_PCI"
                                     "strat0:EP_MINRTY"
## [9] "strat0:EP_MUNIT"
                                     "strat0:EP_MOBILE"
## [11] "strat0:EP_CROWD"
                                     "strat0:EP_NOVEH"
## [13] "strat0:EP_GROUPQ"
                                     "strat0:EP_UNINSUR"
## [15] "strat0:co"
                                     "strat0:no2"
## [17] "strat0:pm10"
                                     "strat0:pm25"
## [19] "strat0:so2"
                                     "strat0:summer_tmmx"
## [21] "strat0:summer_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [23] "strat1"
                                     "strat1:flood_risk_pc2"
## [25] "strat1:EP_POV"
                                     "strat1:EP_UNEMP"
## [27] "strat1:EP_PCI"
                                      "strat1:EP_NOHSDP"
## [29] "strat1:EP_MINRTY"
                                     "strat1:EP_MUNIT"
## [31] "strat1:EP_MOBILE"
                                     "strat1:EP_CROWD"
## [33] "strat1:EP_GROUPQ"
                                      "strat1:EP_UNINSUR"
## [35] "strat1:co"
                                      "strat1:pm25"
```

Credible Interval plots for the coefficients, in ggplot

[37] "strat1:Data_Value_CSMOKING"

```
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                                                            rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom_point() +
   ylim(c(-1.5, 4)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
               axis.text=element_text(size=12),
               plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
                     col = "blue", size = 4.5) +
   annotate(geom = "text", x = 11.5, y = 3.8, label = "Social Vulnerability Index",
                     col = "blue", size = 4.5) +
   annotate(geom = "text", x = 20.5, y = 3.8, label = "Air Pollution",
                     col = "blue", size = 4.5) +
   annotate(geom = "text", x = 25.5, y = 3.8, label = "GRIDMET",
                     col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                          "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                          "Minority", "Poor English",
                                                          "Multi-Unit", "Mobile", "Crowded",
                                                          "No Vehicle", "Group Quarters", "Uninsured",
                                                          "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                          "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity", "Winter Humidity", "Winter Humidity", "Winter Hum
                                                          "Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Strati
   geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
   geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
   scale color manual(name = "Strata",
                                        values = c("#F8766D", "#00BFC4"),
                                        drop = FALSE) +
   geom_hline(yintercept = 0.2 * sd_MHLTH, col = "red", linetype = "dashed") +
   geom_hline(yintercept = -0.2 * sd_MHLTH, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_rpl2.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME3

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl3_MHLTH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              14.28892 14.27391 14.30387
## strat0:flood risk pc1
                               0.00663 -0.00476 0.01805
## strat0:flood_risk_pc2
                               0.00430 -0.00662 0.01522
## strat0:flood_risk_pc3
                               0.01694 0.00811
                                                 0.02576
## strat0:flood_risk_pc4
                               0.00000 -0.00873 0.00883
## strat0:flood risk pc5
                               0.00067 -0.00838 0.00982
## strat0:EP POV
                               0.89256 0.87678 0.90830
## strat0:EP_UNEMP
                               0.05208 0.04164 0.06248
```

```
## strat0:EP PCI
                             -0.27383 -0.28632 -0.26140
                             0.17851 0.15533 0.20154
## strat0:EP NOHSDP
                             -0.34296 -0.35405 -0.33183
## strat0:EP AGE65
## strat0:EP_AGE17
                             -0.14715 -0.16006 -0.13437
## strat0:EP_DISABL
                            -0.14049 -0.15273 -0.12828
                            0.02256 0.01006 0.03506
## strat0:EP SNGPNT
## strat0:EP MUNIT
                            0.08855 0.07490 0.10220
## strat0:EP MOBILE
                            0.01199 0.00230 0.02161
## strat0:EP_CROWD
                            0.07478 0.05370 0.09566
## strat0:EP_NOVEH
                            0.02396 0.00577 0.04223
## strat0:EP_GROUPQ
                             0.29625 0.28740 0.30499
## strat0:EP_UNINSUR
                             -0.03624 -0.05050 -0.02194
## strat0:co
                             0.01937 -0.01819 0.05705
## strat0:no2
                            -0.13323 -0.18446 -0.08207
## strat0:o3
                            0.01692 -0.05726 0.10313
## strat0:pm10
                           -0.09174 -0.12468 -0.05883
## strat0:pm25
                            0.32518 0.27671 0.37272
## strat0:so2
                            0.01786 -0.01609 0.05162
## strat0:summer_tmmx
                            0.06669 0.01420 0.11861
## strat0:winter tmmx
                              0.02531 -0.11313 0.15203
## strat0:summer_rmax
                              0.05483 -0.01627 0.12126
## strat0:winter_rmax
                             -0.04443 -0.09720 0.00803
## strat0:Data_Value_CSMOKING 2.14241 2.11770 2.16690
## strat1
                             14.19663 14.18717 14.20612
## strat1:flood_risk_pc1
                             -0.00971 -0.02044 0.00102
## strat1:flood_risk_pc2
                             -0.00771 -0.01791 0.00240
## strat1:flood_risk_pc3
                             0.00236 -0.00608 0.01080
## strat1:flood_risk_pc4
                              0.00157 -0.00495 0.00799
                              0.00042 -0.00650 0.00741
## strat1:flood_risk_pc5
## strat1:EP_POV
                             0.71279 0.69947 0.72617
## strat1:EP_UNEMP
                             0.06574 0.05727 0.07421
## strat1:EP_PCI
                             -0.36353 -0.37842 -0.34859
## strat1:EP_NOHSDP
                            0.21781 0.20453 0.23110
## strat1:EP_AGE65
                             -0.32932 -0.34200 -0.31658
## strat1:EP_AGE17
                             -0.08934 -0.10146 -0.07713
                            -0.17419 -0.18568 -0.16274
## strat1:EP_DISABL
## strat1:EP SNGPNT
                            0.07467 0.06496 0.08438
## strat1:EP_MUNIT
                            0.08715 0.07805 0.09629
## strat1:EP MOBILE
                            -0.01929 -0.02846 -0.01010
## strat1:EP_CROWD
                            0.02478 0.01474 0.03481
## strat1:EP NOVEH
                            0.08258 0.06885 0.09628
## strat1:EP GROUPQ
                             0.05083 0.04244 0.05912
## strat1:EP UNINSUR
                            -0.03700 -0.04764 -0.02641
## strat1:co
                             0.06102 0.02017 0.10133
## strat1:no2
                             -0.04246 -0.09302 0.00745
## strat1:o3
                             0.05695 -0.01796 0.14372
## strat1:pm10
                             -0.19691 -0.23145 -0.16208
## strat1:pm25
                            0.33889 0.29001 0.38715
## strat1:so2
                            -0.02935 -0.06536 0.00593
## strat1:summer_tmmx
                             0.06879 0.01527
                                               0.12204
## strat1:winter_tmmx
                             0.10054 -0.03846 0.22683
## strat1:summer_rmax
                             -0.01007 -0.08150 0.05662
## strat1:winter_rmax
                              0.03626 -0.01704 0.08946
## strat1:Data Value CSMOKING 2.24505 2.22419 2.26591
```

```
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_rpl3
```

List of significant beta coefficients:

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                     "strat0:flood_risk_pc3"
## [3] "strat0:EP_POV"
                                      "strat0:EP_UNEMP"
   [5] "strat0:EP_PCI"
##
                                      "strat0:EP_NOHSDP"
## [7] "strat0:EP_AGE65"
                                     "strat0:EP_AGE17"
## [9] "strat0:EP_DISABL"
                                     "strat0:EP_SNGPNT"
## [11] "strat0:EP_MUNIT"
                                      "strat0:EP_MOBILE"
## [13] "strat0:EP_CROWD"
                                      "strat0:EP_NOVEH"
## [15] "strat0:EP_GROUPQ"
                                     "strat0:EP_UNINSUR"
## [17] "strat0:no2"
                                      "strat0:pm10"
## [19] "strat0:pm25"
                                      "strat0:summer_tmmx"
## [21] "strat0:Data_Value_CSMOKING" "strat1"
## [23] "strat1:EP_POV"
                                      "strat1:EP_UNEMP"
## [25] "strat1:EP_PCI"
                                      "strat1:EP_NOHSDP"
## [27] "strat1:EP_AGE65"
                                      "strat1:EP_AGE17"
## [29] "strat1:EP_DISABL"
                                     "strat1:EP_SNGPNT"
## [31] "strat1:EP_MUNIT"
                                     "strat1:EP_MOBILE"
## [33] "strat1:EP_CROWD"
                                      "strat1:EP_NOVEH"
## [35] "strat1:EP_GROUPQ"
                                      "strat1:EP_UNINSUR"
## [37] "strat1:co"
                                     "strat1:pm10"
## [39] "strat1:pm25"
                                      "strat1:summer_tmmx"
## [41] "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
# first, process the beta_inference matrix in a form applot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))</pre>
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                       levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                         rep("Upper", (nrow(beta_inference_df)/2))))
```

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
```

Note: The intercept for both strata is not included.

```
p \leftarrow ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
  ylim(c(-1.5, 4)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
```

```
axis.text=element_text(size=12),
                  plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 19.5, 25.5, 29.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 3.8, label = "Social Vulnerability Index",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 22.5, y = 3.8, label = "Air Pollution",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 27.5, y = 3.8, label = "GRIDMET",
                         col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                     "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                     "65 or Over", "17 or Under", "Disability",
                                                                     "Single-Parent",
                                                                     "Multi-Unit", "Mobile", "Crowded",
                                                                     "No Vehicle", "Group Quarters", "Uninsured",
                                                                     "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                     "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                                     "Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Strati
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                                values = c("#F8766D", "#00BFC4"),
                                                drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_MHLTH, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_MHLTH, col = "red", linetype = "dashed")
p
```


Stratified on RPL THEME4

width = 8, height = 6, units = "in")

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl4_MHLTH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              14.21705 14.20969 14.22435
## strat0:flood risk pc1
                              -0.01832 -0.02924 -0.00741
## strat0:flood_risk_pc2
                               0.00439 -0.00637 0.01525
## strat0:flood_risk_pc3
                              -0.00121 -0.00979
                                                 0.00737
## strat0:flood_risk_pc4
                               0.00896 0.00106 0.01686
## strat0:flood risk pc5
                                                 0.00269
                              -0.00577 -0.01417
## strat0:EP POV
                               0.74552 0.72895
                                                 0.76212
## strat0:EP_UNEMP
                               0.07732 0.06689 0.08773
```

```
## strat0:EP PCI
                          -0.28143 -0.29403 -0.26885
## strat0:EP_NOHSDP
                         0.23421 0.21430 0.25411
## strat0:EP AGE65
                          -0.36442 -0.37537 -0.35340
## strat0:EP_AGE17
                         -0.19201 -0.20319 -0.18077
## strat0:EP_DISABL
                         -0.11452 -0.12712 -0.10196
## strat0:EP SNGPNT
                         0.06401 0.05208 0.07603
## strat0:EP MINRTY
                         -0.07639 -0.09396 -0.05884
## strat0:EP_LIMENG
                         0.03336 0.01304 0.05358
## strat0:EP_UNINSUR
                          -0.04441 -0.05785 -0.03091
## strat0:co
                         0.11632 0.07506 0.15726
## strat0:no2
                          0.00020 -0.05230 0.05279
## strat0:o3
                          0.02574 -0.04899 0.10476
## strat0:pm10
                         -0.07880 -0.11219 -0.04577
## strat0:pm25
                         0.19286 0.14554 0.24085
## strat0:so2
                          -0.00366 -0.03809 0.03002
## strat0:summer_tmmx
                         0.05402 -0.00166 0.10851
## strat0:winter_tmmx
                         0.06059 -0.07893 0.21928
## strat0:Data_Value_CSMOKING 2.27064 2.24713 2.29438
## strat1
                        14.28590 14.27898 14.29285
## strat1:flood_risk_pc4
                          -0.00305 -0.01019 0.00410
## strat1:flood_risk_pc5
                         0.00378 -0.00377 0.01136
## strat1:EP_POV
                          0.93987 0.92746 0.95226
## strat1:EP_UNEMP
                          0.08292 0.07388 0.09187
## strat1:EP_PCI
                          -0.53873 -0.55450 -0.52290
## strat1:EP_NOHSDP
                         0.32059 0.30471 0.33656
## strat1:EP_AGE65
                          -0.43006 -0.44189 -0.41828
## strat1:EP_AGE17
                         -0.23659 -0.24738 -0.22580
## strat1:EP_DISABL
                         -0.21476 -0.22601 -0.20347
## strat1:EP_SNGPNT
                          0.10071 0.09000 0.11140
## strat1:EP_MINRTY
                          -0.22483 -0.24179 -0.20786
## strat1:EP_LIMENG
                         -0.07034 -0.08418 -0.05650
## strat1:EP_UNINSUR
                         -0.06275 -0.07364 -0.05187
## strat1:co
                          0.13750 0.10098 0.17380
## strat1:no2
                          -0.02919 -0.07841 0.01952
## strat1:o3
                         0.05539 -0.01912 0.13422
## strat1:pm10
                         -0.10599 -0.14023 -0.07229
                          0.19613 0.14927 0.24398
## strat1:pm25
## strat1:so2
                          0.03792 0.00430 0.07085
## strat1:summer_tmmx
                          0.07438 0.01909 0.12768
## strat1:winter_tmmx
                          0.07268 -0.06553 0.23060
## strat1:summer_rmax
                          0.05152 -0.01496 0.12219
## strat1:winter_rmax
                          -0.04478 -0.09878 0.00667
```

saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_rpl4

List of significant beta coefficients:

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
##
                                      "strat0:flood_risk_pc1"
## [3] "strat0:flood_risk_pc4"
                                      "strat0:EP_POV"
## [5] "strat0:EP_UNEMP"
                                      "strat0:EP_PCI"
## [7] "strat0:EP_NOHSDP"
                                      "strat0:EP_AGE65"
## [9] "strat0:EP_AGE17"
                                      "strat0:EP_DISABL"
## [11] "strat0:EP_SNGPNT"
                                      "strat0:EP_MINRTY"
## [13] "strat0:EP_LIMENG"
                                      "strat0:EP_UNINSUR"
## [15] "strat0:co"
                                      "strat0:pm10"
## [17] "strat0:pm25"
                                      "strat0:winter_rmax"
## [19] "strat0:Data_Value_CSMOKING" "strat1"
## [21] "strat1:flood_risk_pc3"
                                      "strat1:EP_POV"
## [23] "strat1:EP_UNEMP"
                                      "strat1:EP_PCI"
## [25] "strat1:EP_NOHSDP"
                                      "strat1:EP_AGE65"
## [27] "strat1:EP_AGE17"
                                      "strat1:EP_DISABL"
## [29] "strat1:EP_SNGPNT"
                                      "strat1:EP_MINRTY"
## [31] "strat1:EP_LIMENG"
                                      "strat1:EP_UNINSUR"
## [33] "strat1:co"
                                      "strat1:pm10"
## [35] "strat1:pm25"
                                      "strat1:so2"
## [37] "strat1:summer_tmmx"
                                      "strat1:Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%,
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),</pre>
                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
  ylim(c(-1.5, 4)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 16.5, 22.5, 26.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
```

```
annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 11, y = 3.8, label = "Social Vulnerability Index",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 19.5, y = 3.8, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 24.5, y = 3.8, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "Poverty", "Unemployed", "Per Capita Income", "No High School",
                              "65 or Over", "17 or Under", "Disability",
                              "Single-Parent",
                              "Minority", "Poor English",
                              "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Strati
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale_color_manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom_hline(yintercept = 0.2 * sd_MHLTH, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_MHLTH, col = "red", linetype = "dashed")
p
```

95% Credible Intervals, Poor Mental Health, Stratified on RPL Theme 4


```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_rpl4.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL_THEMES

strat1:winter_rmax

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpls_MHLTH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta samples matrix) <- var names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                                  97.5%
                                   50%
                                          2.5%
## strat0
                             14.15322 14.14057 14.16590
## strat0:flood_risk_pc1
                             -0.02848 -0.04326 -0.01384
## strat0:flood_risk_pc2
                             -0.00562 -0.02020 0.00924
## strat0:flood_risk_pc3
                             -0.00962 -0.02106 0.00208
## strat0:flood risk pc4
                              0.01434 0.00389 0.02473
## strat0:flood_risk_pc5
                             -0.00950 -0.02012 0.00107
## strat0:EP_UNINSUR
                              0.01647 -0.00246 0.03548
## strat0:co
                              0.40496 0.35442 0.45552
## strat0:no2
                              0.46901
                                       0.40236
                                                0.53896
## strat0:o3
                             -0.19039 -0.30594 -0.09071
## strat0:pm10
                             -0.04864 -0.09815 -0.00026
## strat0:pm25
                              0.11860 0.04693 0.18744
## strat0:so2
                              0.08033 0.03301 0.12896
## strat0:summer_tmmx
                              0.10493 0.02523 0.20102
## strat0:winter tmmx
                             -0.11293 -0.39833 0.12251
## strat0:summer_rmax
                             -0.00356 -0.10116 0.09988
## strat0:winter rmax
                             -0.03287 -0.10671 0.04033
## strat0:Data_Value_CSMOKING  3.31755  3.29608  3.33918
## strat1
                             14.34642 14.33555 14.35723
## strat1:flood_risk_pc1
                             -0.00335 -0.01783 0.01113
## strat1:flood_risk_pc2
                              0.01008 -0.00377 0.02406
## strat1:flood_risk_pc3
                              0.02073 0.00897 0.03226
## strat1:flood_risk_pc4
                             -0.00463 -0.01438 0.00511
## strat1:flood_risk_pc5
                              0.00350 -0.00710
                                                0.01421
## strat1:EP_UNINSUR
                              0.04817 0.03559 0.06080
## strat1:co
                              0.43080 0.37442 0.48681
## strat1:no2
                              0.41616 0.34708 0.48702
## strat1:o3
                             -0.19144 -0.30770 -0.09000
## strat1:pm10
                             -0.04408 -0.09537 0.00637
## strat1:pm25
                              0.18795 0.11534
                                                0.25583
## strat1:so2
                              0.08487 0.03808
                                                0.13352
## strat1:summer tmmx
                              0.05060 -0.03003
                                                0.14497
## strat1:winter_tmmx
                             -0.00511 -0.29074 0.22774
                             -0.10435 -0.20333 -0.00050
## strat1:summer_rmax
```

-0.00469 -0.07845 0.06942

```
## strat1:Data_Value_CSMOKING  3.29094  3.27488  3.30692
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_rpls
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
##
  [1] "strat0"
                                      "strat0:flood_risk_pc1"
   [3] "strat0:flood_risk_pc4"
                                      "strat0:co"
                                      "strat0:o3"
## [5] "strat0:no2"
## [7] "strat0:pm10"
                                      "strat0:pm25"
## [9] "strat0:so2"
                                      "strat0:summer_tmmx"
## [11] "strat0:Data_Value_CSMOKING" "strat1"
## [13] "strat1:flood_risk_pc3"
                                      "strat1:EP UNINSUR"
## [15] "strat1:co"
                                      "strat1:no2"
## [17] "strat1:o3"
                                      "strat1:pm25"
## [19] "strat1:so2"
                                      "strat1:summer_rmax"
## [21] "strat1:Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))</pre>
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = ^2.5\%,
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),</pre>
                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
  ylim(c(-1.5, 4)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 6.5, 12.5, 16.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 9.5, y = 3.8, label = "Air Pollution",
           col = "blue", size = 4.5) +
```

95% Credible Intervals, Poor Mental Health, Stratified on All RPL Themes


```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_rpls.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```