MATH 325 Q1: LINEAR ALGEBRA III, PART 8

Inner product spaces

Definition. Let F be the field of real or complex numbers and denote by $z \mapsto \bar{z}$ complex conjugation, given by

$$a + b \cdot i \rightarrow \overline{a + b \cdot i} = a - b \cdot i.$$

An inner product on the F-vector space V is a map

$$\langle -, - \rangle : V \times V \longrightarrow F, (v, w) \longmapsto \langle v, w \rangle,$$

subject to the following axioms:

- **(P)** $\langle v, v \rangle \geq 0$ and $\langle v, v \rangle = 0$ if and only if v = 0. (Note that this in particular means that $\langle v, v \rangle \in \mathbb{R}$.)
- **(L1)** $\langle \alpha_1 \cdot v_1 + \alpha_2 \cdot v_2, w \rangle = \alpha_1 \cdot \langle v_1, w \rangle + \alpha_2 \cdot \langle v_2, w \rangle$ for all $\alpha_1, \alpha_2 \in F$ and all $v_1, v_2, w \in V$; and
- **(H)** $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for all $v, w \in V$.

Definition. The vector space V together with the inner product $\langle -, - \rangle$ is then called an inner product space. We call also the pair $(V, \langle -, - \rangle)$ an inner product space.

Remark. Note that if $W \subseteq V$ is a subspace then the restriction of the inner product $\langle -, - \rangle$ to W is an inner product on W and so W is also an inner product space.

Before we give examples we mention the following consequences of the axioms. Let $\beta_1, \beta_2 \in F$ and $v, w, w_1, w_2 \in V$. Then:

(i)

$$\langle v, \beta_1 \cdot w_1 + \beta_2 \cdot w_2 \rangle = \overline{\langle \beta_1 \cdot w_1 + \beta_2 \cdot w_2, v \rangle} \quad \text{by (H)}$$

$$= \overline{\beta_1 \cdot \langle w_1, v \rangle + \beta_2 \cdot \langle w_2, v \rangle} \quad \text{by (L1)}$$

$$= \overline{\beta_1} \cdot \overline{\langle w_1, v \rangle} + \overline{\beta_2} \cdot \overline{\langle w_2, v \rangle}$$

$$= \overline{\beta_1} \cdot \langle v, w_1 \rangle + \overline{\beta_2} \cdot \langle v, w_2 \rangle \quad \text{by (H)}.$$

We will call this "axiom" (L2).

(ii) If $F = \mathbb{R}$ then **(H)** melts down to $\langle v, w \rangle = \langle w, v \rangle$.

(iii) We have $\langle 0, w \rangle = 0$ since $\langle 0, w \rangle = \langle 0 + 0, w \rangle = \langle 0, w \rangle + \langle 0, w \rangle$ by **(L1)** and so $\langle 0, w \rangle = 0$. Since $\langle v, 0 \rangle = \overline{\langle 0, v \rangle}$ this implies also $\langle v, 0 \rangle = 0$.

Examples.

(i) Let $F = \mathbb{R}$ and $V = \mathbb{R}^n$. Then the scalar product

$$\left\langle \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right), \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right) \right\rangle := \sum_{i=1}^n x_i \cdot y_i$$

is an inner product on the *n*-dimensional vector space \mathbb{R}^n .

(ii) let $F = \mathbb{C}$. Then the scalar product

$$\left\langle \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right), \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right) \right\rangle := \sum_{i=1}^n x_i \cdot \bar{y}_i$$

is an inner product on the *n*-dimensional vector space \mathbb{C}^n .

Exercise. Verify three axioms (P), (L1) and (H).

Definition. The above two products are called the euclidean (inner) products on \mathbb{R}^n and \mathbb{C}^n , respectively.

Orthogonal vectors

Definition. Let $(V, \langle -, - \rangle)$ be an inner product space, and $v \in V$. We say that the vector $w \in V$ is orthogonal to v if $\langle v, w \rangle = 0$.

Remark. Note that since $\langle v, w \rangle = \overline{\langle w, v \rangle}$ by **(H)** this property is symmetric, i.e. w is orthogonal to v if and only if v is orthogonal to w.

Notation: $v \perp w$.

Notation. Let $S \subseteq V$ be a subset (not necessary a vector subspace). Then we denote by S^{\perp} the set

$$S^{\perp} := \left\{ w \in V \,|\, w \perp s \text{ for all } s \in S \right\}$$

Lemma. The set

$$S^{\perp} := \left\{ w \in V \mid w \perp s \text{ for all } s \in S \right\}$$

is a vector subspace of V.

Proof. Let $w_1, w_2 \in S^{\perp}$. Then

$$\langle s, w_1 + w_2 \rangle = \langle s, w_1 \rangle + \langle s, w_2 \rangle = 0$$

by **(L2)** for all $s \in S$, and this implies $w_1 + w_2 \in S^{\perp}$. Also, for all $\alpha \in F$ one has

$$\langle s, \alpha \cdot w_1 \rangle = \bar{\alpha} \cdot \langle s, w_1 \rangle = 0$$

again by (L2) for all $s \in S$, and this implies $\alpha \cdot w_1 \in S^{\perp}$.

Notation. If $S = \{v\}$ consists of a unique vector we will write instead of S^{\perp} just simply v^{\perp} .

Lemma. Let v_1, \ldots, v_n nonzero vectors in the inner product space $(V, \langle -, - \rangle)$ which are pairwise orthogonal, i.e. $v_i \perp v_j$ for all $1 \leq i \neq j \leq n$. Then v_1, \ldots, v_n are linear independent.

Proof. We prove this by induction on $n \ge 1$. The case n = 1 is clear.

Let $n \geq 2$. Assume we have a linear combination

$$a_1 \cdot v_1 + a_2 \cdot v_2 + \ldots + a_n \cdot v_n = 0.$$

Let $w = \sum_{i=1}^{n-1} a_i \cdot v_i$. Then

$$\langle v_n, w \rangle = \sum_{i=1}^{n-1} \bar{a}_i \cdot \langle v_n, v_i \rangle$$

by (L2), and therefore $\langle v_n, w \rangle = 0$ since $\langle v_n, v_i \rangle = 0$ for all $1 \le i \le n-1$.

By construction, we have $a_n \cdot v_n + w = 0$ and so

$$0 = \langle a_n \cdot v_n + w, w \rangle$$
$$= a_n \cdot \langle v_n, w \rangle + \langle w, w \rangle$$
$$= 0 + \langle w, w \rangle$$
$$= \langle w, w \rangle.$$

This implies w = 0 by (**P**). Hence by induction

$$a_1 = a_2 = \ldots = a_{n-1} = 0$$

and we are done.

The norm

Definition. Let V be an inner product space with an inner product $\langle -, - \rangle$. For $v \in V$ the norm or length of v is then defined as

$$||v|| := \sqrt{\langle v, v \rangle}$$
.

Lemma. Let $v \in V$ and $c \in F$. Then we have

- (a) $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0;
- (b) $||c \cdot v|| = |c| \cdot ||v||$ where |c| is the usual absolute value of the real respectively complex number c.

Proof. This follows from the axioms of the inner product space. \Box

Example. Let $V = \mathbb{R}^3$ be the 3-dimensional real vector space with the usual scalar product

$$\left\langle \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right), \left(\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array} \right) \right\rangle := x_1 \cdot y_1 + x_2 \cdot y_2 + x_3 \cdot y_3.$$

Then we have

$$\left\| \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right\| = \sqrt{x_1^2 + x_2^2 + x_3^2},$$

and so the norm of a vector is the usual euclidean length of it.

We now prove the following important properties of an inner product and its associated norm.

Theorem. Let $(V, \langle -, - \rangle)$ be an inner product space and $\| - \|$ the associated norm. Then:

- (i) (Cauchy-Schwarz inequality) For all $v, w \in V$ one has
 - $|< v, w > | \le ||v|| \cdot ||w||.$
- (ii) (Triangle inequality) $||v+w|| \le ||v|| + ||w||$ for all $v, w \in V$.

Proof. (i) If v = 0 or w = 0 this is obvious. So assume $v \neq 0$. For any scalar α we have then by **(P)**

$$0 \le \|\alpha \cdot v - w\|^2 \, = \, \langle \alpha \cdot v - w, \alpha \cdot v - w \rangle \,,$$

and so by (L1), (L2), and (H) we get

$$0 \leq (\alpha \cdot \bar{\alpha}) \cdot \langle v, v \rangle - \alpha \cdot \langle v, w \rangle - \bar{\alpha} \cdot \langle w, v \rangle + \langle w, w \rangle.$$

This inequality is also true for $\alpha := \frac{\langle w, v \rangle}{\langle v, v \rangle}$, which gives using that

$$|\langle v, w \rangle|^2 = \langle v, w \rangle \cdot \overline{\langle v, w \rangle} = \langle v, w \rangle \cdot \langle w, v \rangle,$$

where the latter equality is a consequence of axiom (H), the inequality

$$0 \le -\frac{|\langle v, w \rangle|^2}{\langle v, v \rangle} + \langle w, w \rangle.$$

Therefore

$$|\langle v, w \rangle|^2 \le ||v||^2 \cdot ||w||^2$$

from which the claimed inequality follows by taking square roots on both sides.

We prove now (ii). We have

$$||v + w||^2 = \langle v + w, v + w \rangle$$

$$= ||v||^2 + \langle v, w \rangle + \langle w, v \rangle + ||w||^2 \quad \text{by (L1) and (L2)}$$

$$= ||v||^2 + ||w||^2 + \langle v, w \rangle + \overline{\langle v, w \rangle} \quad \text{by (H)}.$$

Side Remark. For a complex number z one has $z + \bar{z} \leq 2 \cdot |z|$. Indeed, setting $z = x + i \cdot y$, we have

$$z + \bar{z} = (x + i \cdot y) + (x - i \cdot y) = 2x$$

and
$$|z| = \sqrt{x^2 + y^2} \ge x$$
.

Using this remark we obtain

$$\langle v, w \rangle + \overline{\langle v, w \rangle} \le 2 \cdot |\langle v, w \rangle| \le 2 \cdot ||v|| \cdot ||w||$$

(the latter inequality by Cauchy-Schwarz, *i.e.* the already proven part (i) of the theorem). Inserting this in above equation we get

$$||v + w||^2 \le ||v||^2 + 2 \cdot (||v|| \cdot ||w||) + ||w||^2 = (||v|| + ||w||)^2$$

from which the triangle inequality follows by taking square roots on both sides. $\hfill\Box$

Orthogonal bases

Definition. Let V be a F-vector space with an inner product $\langle -, - \rangle$. A basis $\{v_1, \ldots, v_n\}$ of V is called an orthogonal basis if

(O) The vectors v_1, \ldots, v_n are pairwise orthogonal, i.e. $v_i \perp v_j$ for all $1 \leq i \neq j \leq n$.

If moreover

(N) all v_i have norm 1, i.e. $||v_i|| = \sqrt{\langle v_i, v_i \rangle} = 1$ for all $1 \le i \le n$ then the basis v_1, \ldots, v_n is called an orthonormal basis.

Remark. We observe that if v_1, \ldots, v_n is an orthogonal basis of $(V, \langle -, - \rangle)$ then

$$\frac{1}{\|v_1\|} \cdot v_1, \ldots, \frac{1}{\|v_n\|} \cdot v_n$$

is an orthonormal basis. Indeed, we have $\|\alpha \cdot v\| = |\alpha| \cdot \|v\|$ for all $\alpha \in F$ and $v \in V$.

Given an orthogonal basis v_1, \ldots, v_n of an inner product space $(V, \langle -, - \rangle)$ and $v \in V$ we can write $v = \sum_{i=1}^n a_i \cdot v_i$ for some uniquely determined scalars $a_1, \ldots, a_n \in F$.

Lemma. The above coefficients a_i are given by $a_i = \frac{\langle v_i, v \rangle}{\langle v_i, v_i \rangle}$.

Proof. Using (L1) we get

$$\langle v, v_j \rangle = \langle \sum_{i=1}^n a_i \cdot v_i, v_j \rangle = \sum_{i=1}^n a_i \cdot \langle v_i, v_j \rangle = a_j \langle v_j, v_j \rangle$$

(the last equation since $v_i \perp v_j$ for $i \neq j$), and so

$$a_j = \frac{\langle v, v_j \rangle}{\langle v_j, v_j \rangle}$$

for all $1 \le j \le n$.

Theorem. Let $(V, \langle -, - \rangle)$ be an inner product space, and w_1, \ldots, w_n be a set of linear independent vectors in V. Then there exists vectors v_1, \ldots, v_n which are orthogonal to each other and whose span is equal the span of w_1, \ldots, w_n : Span $\{w_1, \ldots, w_n\}$ = Span $\{v_1, \ldots, v_n\}$. In particular, V has an orthogonal basis.

Proof. We prove this by induction on $n \ge 1$ using the so-called *Gram-Schmidt orthogonalization process*.

If n=1 we set $v_1=w_1$. So let $n\geq 2$. By induction we can assume that there is a system of pairwise orthogonal vectors v_1,\ldots,v_{n-1} which span the subspace generated by the first (n-1) vectors w_1,\ldots,w_{n-1} . We set then

$$v_n := w_n - \sum_{i=1}^{n-1} \frac{\langle w_n, v_i \rangle}{\langle v_i, v_i \rangle} \cdot v_i.$$

Since $w_n = v_n + \sum_{i=1}^{n-1} \frac{\langle w_n, v_i \rangle}{\langle v_i, v_i \rangle} \cdot v_i$ the vector w_n is in the span of v_1, \ldots, v_n and so the vectors $v_1, \ldots, v_{n-1}, v_n$ generate the same subspace as the vectors $w_1, \ldots, w_{n-1}, w_n$.

We are left to show that the vectors v_1, \ldots, v_n are pairwise orthogonal. This is true by induction for the subset v_1, \ldots, v_{n-1} , and so we have only to show $v_n \perp v_i$ for all $i = 1, \ldots, n-1$. But

$$\langle v_n, v_i \rangle = \langle w_n - \sum_{j=1}^{n-1} \frac{\langle w_n, v_j \rangle}{\langle v_j, v_j \rangle} \cdot v_j, v_i \rangle$$

$$= \langle w_n, v_i \rangle - \sum_{j=1}^{n-1} \frac{\langle w_n, v_j \rangle}{\langle v_j, v_j \rangle} \cdot \langle v_j, v_i \rangle$$

$$= \langle w_n, v_i \rangle - \frac{\langle w_n, v_i \rangle}{\langle v_i, v_i \rangle} \cdot \langle v_i, v_i \rangle$$

$$= 0$$

for all $1 \le i \le n-1$. We are done.

Example. We consider the 3-dimensional real vector space \mathbb{R}^3 with the usual scalar product $\langle -, - \rangle$. The vectors

$$w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $w_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, and $w_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$,

form a basis of \mathbb{R}^3 which is however not an orthogonal basis as e.g.

$$\langle w_1, w_2 \rangle = 2.$$

We use the Gram-Schmidt process to construct out of it an orthogonal basis v_1, v_2, v_3 . We set $v_1 := w_1$. Then

$$v_2 := w_2 - \frac{\langle w_2, v_1 \rangle}{\langle v_1, v_1 \rangle} \cdot v_1 = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ -\frac{2}{3} \end{pmatrix},$$

and

$$v_3 := w_3 - \sum_{i=1}^2 \frac{\langle w_3, v_i \rangle}{\langle v_i, v_i \rangle} \cdot v_i = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 0 \end{pmatrix}.$$

Definition. Let $(V, \langle -, - \rangle)$ be an inner product space, and $W \subseteq V$ be a subspace. The subspace

$$W^{\perp} := \left\{ v \in V \mid v \perp w \text{ for all } w \in W \right\}$$

is called the orthogonal complement of W in V.

Remark. We proved before that W^{\perp} is in fact a subspace of V.

Remark. Let $v \in V$. Then it is easy to see that $v^{\perp} = (F \cdot v)^{\perp}$.

The name "orthogonal complement" is justified by the following fact.

Theorem. Let W be a subspace of the inner product space $(V, \langle -, - \rangle)$. Then any $v \in V$ can be uniquely written

$$v = x + y$$

with $x \in W$ and $y \in W^{\perp}$. In particular, we have $\dim W + \dim W^{\perp} = \dim V$.

Proof. Uniqueness: We have seen before that if v, w are nonzero vectors which are orthogonal to each other then v and w are linear independent and so in particular then $v \neq w$. Hence if

$$x + y = v = x' + y'$$

with $x, x' \in W$ and $y, y' \in W^{\perp}$ then x - x' = y' - y. It is easy to see that $\langle x - x', y' - y \rangle = 0$, i.e. the vector z = x - x' = y' - y is orthogonal to itself. This can happen if and only if z = 0 implying x = x' and y = y'. This prove the uniqueness.

We now show the **existence** of this decomposition. Let v_1, \ldots, v_d be an orthogonal basis of W. We can extend this basis to a basis $v_1, \ldots, v_d, w_{d+1}, \ldots, w_n$ of the whole space V. Applying the Gram-Schmidt process to this basis we get an orthogonal basis

$$v_1, \ldots, v_d, v_{d+1}, \ldots, v_n$$

of V. Hence the vectors v_{d+1}, \ldots, v_n are in the orthogonal complement W^{\perp} of W.

Let now $v \in V$. Since v_1, \ldots, v_n is a basis of V we can write

$$v = \sum_{i=1}^{d} a_i \cdot v_i + \sum_{i=d+1}^{n} a_i \cdot v_i$$

for some a_1, \ldots, a_n in F. By construction, the vector $x = \sum_{i=1}^d a_i \cdot v_i$

is in W, and $v_{d+1}, \ldots, v_n \in W^{\perp}$ and so $y = \sum_{i=d+1}^n a_i \cdot v_i$ is in W^{\perp} .

Therefore v = x + y is the claimed decomposition.

Finally we show the formula

$$\dim W + \dim W^{\perp} = \dim V.$$

By construction we have $W = \operatorname{Span}\{v_1, \ldots, v_d\}$ so that $\dim(W) = d$. Let also $W' = \operatorname{Span}\{v_{d+1}, \ldots, v_n\}$. Then $\dim(W') = n - d$ (because v_{d+1}, \ldots, v_n are linearly independent). This implies

$$\dim(V) = \dim(W) + \dim(W').$$

We saw above that $W' \subset W^{\perp}$. Hence it remains to prove that $W^{\perp} = W'$. Let $v \in W^{\perp}$. Write v = x + y where $x = a_1v_1 + \cdots + a_dv_d \in W$ and $y \in W'$. Since v is orthogonal to all vectors in W it is orthogonal to v_1, \ldots, v_d . It follows that for every $1 \leq i \leq d$ one has

$$0 = \langle x + y, v_i \rangle = \langle x, v_i \rangle + \langle y, v_i \rangle = \langle x, v_i \rangle + 0 = \langle \sum a_j v_j, v_i \rangle = a_i \langle v_i, v_i \rangle$$

and this implies a_i . Thus x = 0, i.e $v = y \in W'$ as required.

Corollary. Let $(V, \langle -, - \rangle)$ be an inner product space over F and let $f: V \to F$ an F-linear map. Then there exists a unique vector $y \in V$, such that

$$f(v) = \langle v, y \rangle$$

for all $v \in V$.

Proof. Uniqueness: Let y_1 and y_2 be two vectors such that

$$\langle v, y_1 \rangle = \langle v, y_2 \rangle.$$

Then we have

$$0 = \langle v, y_1 \rangle - \langle v, y_2 \rangle = \langle v, y_1 - y_2 \rangle$$

for all $v \in V$. In particular this is also true for $v = y_1 - y_2$, i.e.

$$0 = \langle y_1 - y_2.y_1 - y_2 \rangle,$$

and so by **(P)** we have $y_1 - y_2 = 0$, i.e. $y_1 = y_2$.

Existence: let $W = \operatorname{Ker} f$. If W = V then f(v) = 0 for all vectors $v \in V$ and we can chose y = 0.

Assume now that $W \neq V$. Recall that

$$\dim V = \dim \operatorname{Ker}(f) + \dim \operatorname{Image}(f)$$

and that the image of f has dimension at most 1 (because it lives in 1-dimensional vector space F). Then automatically $\operatorname{Im}(f) = F$ and hence $\dim(W) = \dim(V) - 1$. Applying the theorem above we get $\dim W^{\perp} = 1$.

Let v be a basis of W^{\perp} , i.e. $F \cdot v = W^{\perp}$. We claim that

$$y = \frac{\overline{f(v)}}{\langle v, v \rangle} \cdot v$$

does the job. (Note that $v \neq 0$ since $W^{\perp} \neq \{0\}$ and so by axiom (P) we have $\langle v, v \rangle > 0$.)

Take any $x \in V$. Write x = w + w' with $w \in W$ and $w' \in W^{\perp}$, say $w' = \lambda \cdot v$ for some $\lambda \in F$. Then

$$\langle x, y \rangle = \langle w + \lambda \cdot v, \frac{\overline{f(v)}}{\langle v, v \rangle} \cdot v \rangle$$

$$= \langle w, \frac{\overline{f(v)}}{\langle v, v \rangle} \cdot v \rangle + \lambda \cdot \langle v, \frac{\overline{f(v)}}{\langle v, v \rangle} \cdot v \rangle \quad \text{by (L1)}$$

$$= \lambda \cdot \langle v, \frac{\overline{f(v)}}{\langle v, v \rangle} \cdot v \rangle \quad \text{since } w \in W \text{ and } \frac{\overline{f(v)}}{\langle v, v \rangle} \cdot v \in W^{\perp}$$

$$= \lambda \cdot \frac{f(v)}{\langle v, v \rangle} \cdot \langle v, v \rangle \quad \text{by (L2), note that } \langle v, v \rangle \in \mathbb{R}$$

$$= \lambda \cdot f(v) = f(\lambda \cdot v) \quad \text{since } f \text{ is linear}$$

$$= f(\lambda \cdot v) + f(w) \quad \text{since } f(w) = 0 \text{ as } w \in W = \text{Ker}(f)$$

$$= f(\lambda \cdot v + w) = f(x) \quad \text{since } f \text{ is linear}.$$