Solucionario del Examen Parcial

Matemáticas para Economistas

PUCP - Semestre 2025-2

Problema 1

Sea la relación de preferencias en \mathbb{R}^2_{++} dada por

$$(x_1, y_1) \succeq (x_2, y_2) \iff \frac{1}{3} \ln x_1 + \frac{2}{3} \ln y_1 \ge \frac{1}{3} \ln x_2 + \frac{2}{3} \ln y_2.$$

1.1) Comparación entre A = (2,3) y B = (4,1).

Una función de utilidad conveniente (ver 1.3) es $u(x,y) = x^{1/3}y^{2/3}$. Evaluando:

$$u(A) = 2^{1/3} 3^{2/3} \approx 1.26 \times 2.08 \approx 2.62, \qquad u(B) = 4^{1/3} \cdot 1^{2/3} = 4^{1/3} \approx 1.587.$$

Luego u(A) > u(B), por lo que A > B.

1.2) Monotonía.

Para x, y > 0,

$$\frac{\partial u}{\partial x} = \frac{1}{3}x^{-2/3}y^{2/3} > 0, \qquad \frac{\partial u}{\partial y} = \frac{2}{3}x^{1/3}y^{-1/3} > 0.$$

Por tanto, la relación es *estrictamente monótona*: aumentar cualquiera de los bienes (manteniendo el otro fijo) incrementa la utilidad.

1.3) Representación por $u(x,y) = x^{1/3}y^{2/3}$.

La relación dada por la suma ponderada de logaritmos

$$v(x,y) = \frac{1}{3} \ln x + \frac{2}{3} \ln y$$

se preserva por transformaciones crecientes. Note que

$$u(x,y) = \exp(v(x,y)) = \exp(\frac{1}{3}\ln x + \frac{2}{3}\ln y) = x^{1/3}y^{2/3}.$$

Como $\exp(\cdot)$ es estrictamente creciente, u representa exactamente \succeq .

1.4) Curva de indiferencia para $u_0 = 1$.

Resolver $x^{1/3}y^{2/3} = 1$. Elevando al cubo: $xy^2 = 1$. Entonces

$$y = \frac{1}{\sqrt{x}}, \quad x > 0$$

es la curva de indiferencia de nivel 1 (decreciente y convexa hacia el origen).

1.5) Dos canastas con la misma utilidad que (1,1).

u(1,1) = 1. Cualquier par (x,y) con $xy^2 = 1$ sirve. Por ejemplo,

$$A = (4, \frac{1}{2})$$
 y $B = (\frac{1}{4}, 2)$,

1

pues $4 \cdot (\frac{1}{2})^2 = 1$ y $(\frac{1}{4}) \cdot 2^2 = 1$.

Problema 2

Considere $u(x, y) = x + y - \frac{1}{2}(x^2 + y^2)$.

2.1) No monotonía.

$$\frac{\partial u}{\partial x} = 1 - x, \qquad \frac{\partial u}{\partial y} = 1 - y.$$

Si x > 1 (resp. y > 1), entonces $\frac{\partial u}{\partial x} < 0$ (resp. $\frac{\partial u}{\partial y} < 0$). Es decir, aumentar x (o y) por encima de 1 reduce utilidad. Por tanto, \succeq no es monótona.

2.2) Concavidad.

El Hessiano es $H = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, negativo definido. Luego u es estrictamente cóncava (y por ende cuasicóncava).

2.3) Curvas de indiferencia.

Para un nivel $c \in \mathbb{R}$:

$$x + y - \frac{1}{2}(x^2 + y^2) = c \iff (x - 1)^2 + (y - 1)^2 = 2(1 - c).$$

Son circunferencias centradas en (1,1) con radio $\sqrt{2(1-c)}$, bien definidas para $c \leq 1$. El valor máximo de u es 1 y ocurre en (1,1).

2.4) Por qué P = (1,1) maximiza u en \mathbb{R}^2 .

Como u es estrictamente cóncava, cualquier punto crítico es el *único* máximo global. La condición de primer orden $\nabla u = (1 - x, 1 - y) = (0, 0)$ implica x = 1, y = 1. Así, (1, 1) es el único máximo de u y u(1, 1) = 1.

Problema 3

Misma utilidad $u(x,y)=x+y-\frac{1}{2}(x^2+y^2)$, con precios $p_x=p_y=1$ e ingreso I>0. El conjunto presupuestario es $\{(x,y): x,y\geq 0,\ x+y\leq I\}$ (permitiendo ahorrar).

3.1) Caso $I \ge 2$.

El óptimo no restringido de u es (1,1) (Problema 2). Si $I \geq 2$, entonces (1,1) es factible. Dado que u es estrictamente cóncava, el óptimo con presupuesto es único y coincide con el no restringido:

$$x^* = 1, \quad y^* = 1, \quad \text{gasto} = 2 \le I.$$

Obsérvese que no se agota necesariamente el presupuesto, pues las preferencias no son monótonas.

3.2) Caso I < 2.

El punto (1,1) ya no es factible. Por concavidad estricta, el óptimo sobre el polígono presupuestario es único y ocurre con la restricción x+y=I activa (de lo contrario podríamos aumentar ambos hacia (1,1) y mejorar u mientras haya holgura). Con Lagrange:

$$\mathcal{L} = x + y - \frac{1}{2}(x^2 + y^2) + \lambda (I - x - y).$$

$$\partial_x \mathcal{L} = 1 - x - \lambda = 0, \quad \partial_y \mathcal{L} = 1 - y - \lambda = 0, \quad x + y = I.$$

De las dos primeras, $x=1-\lambda$ y $y=1-\lambda$. Sustituyendo: $2(1-\lambda)=I\Rightarrow \lambda=1-\frac{I}{2}$, y por tanto

$$x^* = \frac{I}{2}, \quad y^* = \frac{I}{2}, \quad (I < 2).$$

2

Aquí el consumidor gasta todo el ingreso $(x^* + y^* = I)$.

Problema 4

Considérese la EDO autónoma x'=G(x), con $G\in C^1$ y equilibrios $x_1^*=0,$ $x_2^*=-3,$ $x_3^*=2.$

4.1) Estabilidad de los equilibrios

Si un equilibrio es simple $(G'(x^*) \neq 0)$, la linealización $x' \approx G'(x^*)(x - x^*)$ determina:

$$G'(x^*) < 0 \implies$$
 estable as
intóticamente, $G'(x^*) > 0 \implies$ inestable.

Sin información adicional sobre los signos de G en los intervalos $(-\infty, -3)$, (-3, 0), (0, 2) y $(2, \infty)$, hay dos configuraciones alternantes posibles (para raíces simples):

- Patrón A (por ejemplo G(x) = (x+3)x(x-2)): -3 inestable, 0 estable, 2 inestable.
- Patrón B (signo opuesto, G(x) = -(x+3)x(x-2)): -3 estable, 0 inestable, 2 estable.

En ambos casos, la estabilidad *alterna* al cruzar raíces simples de una EDO autónoma unidimensional.

4.2) Trayectorias en el plano x-t cerca de cada equilibrio

Denote $\delta(t) = x(t) - x^*$. La linealización da $\delta'(t) \approx G'(x^*) \delta(t)$, con solución local $\delta(t) \approx \delta(0) e^{G'(x^*)t}$.

- a) $x_0 > x_3^* = 2$ cercano a 2: si 2 es *inestable* (Patrón A), G'(2) > 0 y δ crece $\Rightarrow x(t)$ se aleja de 2 hacia valores mayores. Si 2 es *estable* (Patrón B), G'(2) < 0 y $x(t) \to 2^+$.
- b) $x_0 < 2$ cercano a 2: análogo; en Patrón A se aleja hacia la izquierda; en Patrón B converge a 2 por la izquierda.
- c) $x_0 > 0$ cercano a 0: en Patrón A, 0 es estable $\Rightarrow x(t) \to 0^+$; en Patrón B, inestable \Rightarrow se aleja hacia la derecha.
- d) $x_0 < 0$ cercano a 0: en Patrón A, $x(t) \to 0^-$; en Patrón B, se aleja hacia la izquierda.
- e) $x_0 > -3$ cercano a -3: en Patrón A (inestable), se aleja hacia la derecha; en Patrón B (estable), converge a -3 por la derecha.
- f) $x_0 < -3$ cercano a -3: en Patrón A, se aleja hacia la izquierda; en Patrón B, converge a -3 por la izquierda.

Fase unidimensional (ilustrativo).

(El Patrón B invierte las flechas.)