AUTOMATED TELLER MACHINE (ATM) CONTROLLER

Group:51

INTRODUCTION

- This project focuses on building an ATM Controller using a hardware-first approach.
- It implements the ATM controller with pure digital logic.
- •The system is implemented using a Finite State Machine (FSM).
- •The goal is to create a secure, modular, and efficient ATM design using Verilog HDL.

PROJECT GOALS

- Finite State Machine (FSM) Design
- 1. Broke down ATM operations into distinct states.
- 2. Designed transitions based on user inputs and system conditions.
- RTL Code in Verilog
- 1. Implemented the FSM at the Register Transfer Level (RTL).
- 2. Defined logic for state transitions and control behavior.
- Physical Layout Generation using Qflow
- 1. Used Qflow toolchain to process Verilog code.
- 2. Completed synthesis, placement, and routing to generate chip layout.

FINITE STATE MACHINE (FSM)

1) IDLE

- The ATM is inactive, waiting for userinput.
- No transactions are processed during thistime.

2) AUTHENTICATE (PIN Verification)

- The user enters their PIN for verification.
- If PIN is correct, transition to the Main Menu and if PIN is incorrect, transition to the IDLE State.

3) MAIN MENU

Based on the Action input, the system branches into specific functional paths.

4) BALANCE INQUIRY

- User checks the account balance.
- After showing the balance, it returns to the Main Menu.

5) WITHDRAW

- Waits for user to enter the amount.
- If sufficient balance, withdraw is successful; otherwise, failure is reported and returns to the Main Menu.

6) DEPOSIT

- Waits for user to enter the amount.
- User deposits money into the account.
- After the transaction, the system returns to the Main Menu.

7) TRANSFER

- •Waits for required inputs and Checks if destination account exists and if sufficient balance is available.
- User transfers money to another account. The system then returns to the Main Menu.

8) PIN CHANGE

- Waits for user to enter new PIN.
- After successful change, return to Main Menu

RTL CODE IN VERILOG & SIMULATION RESULTS

Verilog Code and Testbench code: LINK

QFLOW IMPLEMENTATION

- **Preparation**: Sets up environment and checks necessary files.
- Synthesis: Converts RTL to gate-level netlist.
- Placement: Arranges gates on chip without wiring.
- Static Timing Analysis: Verifies signal timing meets constraints.
- Routing: Connects placed gates using metal layers.
- Post-Route STA: Checks timing after routing.
- Migration: Prepares layout for fabrication format.
- DRC: Ensures layout follows design rules.
- LVS: Matches layout with original netlist.
- GDS: Exports final layout for fabrication.
- Cleanup: Deletes temporary files and finalizes project.

QFLOW RESULTS

Final Physical Layout of ATM Controller

Logic-Level Layout of ATM Controller

TEAM MEMBERS

202201084 : Manavadariya Sujal

202201048 : Sneh Joshi

THANK YOU