Reverse Graph Learning for Graph Neural Network

IEEE Transactions on Neural Networks and Learning Systems

Liang Peng , Rongyao Hu, Fei Kong , Jiangzhang Gan, Yujie Mo, Xiaoshuang Shi , and Xiaofeng Zhu , Senior Member, IEEE

M2022188 박현석

Index - 1

- 1. 논문 목적 (why)
- 2. Preliminaries
- 3. Method
- 4. Experiment
- 5. Result (+생각)

논문 목적 (why) - 2

Basic GNN Models

논문 목적 (why) - 3

Is the graph properly structured?

논문 목적 (why) - 4

Preliminaries

- 1. GCN
- 2. Graph Learning

Preliminaries -5

1. GCN

$$\mathbf{H}^{l+1} = \sigma \left(\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{\frac{1}{2}} \mathbf{H}^l \mathbf{W}^l \right)$$

Preliminaries -6

Preliminaries

2. Graph Learning

Like GAT

Limitation -> Just reduce edge

Preliminaries -7

Preliminaries

2. Graph Learning (GLCN loss)

$$S_{ij} = g(x_i, x_j) = \frac{\exp(\text{ReLU}(a^T | x_i - x_j |))}{\sum_{j=1}^n \exp(\text{ReLU}(a^T | x_i - x_j |))}$$

$$\mathcal{L}_{GL} = \sum_{i,j=1}^{n} \|x_i - x_j\|_2^2 S_{ij} + \gamma \|S\|_F^2$$

S : new graph(learnable)

L_GL: new loss function

L_GLCN : L_GCN + lamda*L_GL (lamda is parameter)

method

총 3종류의 layer가 존재함

1. Graph learning layers

$$\mathcal{L}_{RGL}: \min_{\mathbf{S}} \sum_{ij}^{n} \|\mathbf{z}_{i}\mathbf{P} - \mathbf{z}_{j}\mathbf{P}\|_{2}^{2} s_{ij} + \|\mathbf{S}\|_{F}^{2}$$

$$\hat{\mathbf{A}} = (1 - \eta)\mathbf{A} + \eta\mathbf{S}$$

method

총 3종류의 layer가 존재함

2. GNN layers

method

총 3종류의 layer가 존재함

3. Reverse learning layer

$$\mathcal{L}_{RGL}: \min_{\mathbf{S}} \sum_{ij}^{n} \|\mathbf{z}_{i}\mathbf{P} - \mathbf{z}_{j}\mathbf{P}\|_{2}^{2} s_{ij} + \|\mathbf{S}\|_{F}^{2}$$

$$\text{s.t., } \sum_{j=1}^{n} s_{ij} = 1, \quad s_{ij} > 0, \quad i, j = 1, \dots, n$$

$$\mathcal{L}_{RL}: \min_{\mathbf{P}, \mathbf{P}^{T}\mathbf{P} = \mathbf{I}} \|\mathbf{X} - \mathbf{Z}\mathbf{P}\|_{F}^{2}$$

$$\mathcal{L} = \mathcal{L}_{GNN} + \beta \mathcal{L}_{RGL} + \gamma \mathcal{L}_{RL}.$$

$$(\mathbf{P}, \mathbf{P}, \mathbf{P},$$

method

method
Out of sample

$$\mathbf{S}_q = \cos(\mathbf{x}_q \mathbf{W}^{(0)}, \mathbf{X}_{\text{train}} \mathbf{W}^{(0)}).$$

We then select the neighborhood by

$$\mathcal{N}_q \leftarrow \text{topk}(\mathbf{S}_q)$$
.

S_q : new data q가 어디에 유사한지

X_q : new data q

W^(0): graph learning layer

Experiment - 14

Experiment

Node classification

CLASSIFICATION ACCURACY OF ALL METHODS ON NINE DATASETS FOR SEMI-SUPERVISED NODE CLASSIFICATION

Methods	Cora	Citeseer	Handwritten	Caltech	AWA	BBC	WebKB	3sources	Flower
GCN	81.06±0.5	71.22±0.6	93.38±0.8	$80.48_{\pm 1.2}$	56.29±0.9	72.56 ± 0.8	$72.28_{\pm 1.1}$	79.61±0.6	45.51±1.2
GLCN	81.80 ± 0.7	70.56 ± 0.9	94.22 ± 0.9	$79.36_{\pm 1.4}$	55.81 ± 0.7	73.36 ± 1.0	75.76 ± 0.9	79.22 ± 0.6	46.65 ± 1.0
DIAL	$82.41_{\pm 0.4}$	71.68 ± 0.7	$93.75_{\pm 1.2}$	$76.79_{\pm 1.2}$	56.57 ± 0.7	$71.39_{\pm 1.2}$	$70.33_{\pm 1.0}$	78.18 ± 0.4	$45.49_{\pm 1.0}$
JLGCN	83.66±0.5	$72.94{\scriptstyle \pm 0.6}$	$94.60{\scriptstyle \pm 0.8}$	82.74 ± 0.8	$58.96{\scriptstyle \pm 0.5}$	76.12±0.6	$75.65{\scriptstyle \pm 0.8}$	$75.46{\scriptstyle \pm 0.8}$	$50.61{\scriptstyle \pm 0.8}$
Proposed	83.89 ±0.7	$73.35{\pm}0.8$	95.89 ±0.9	83.92±0.6	61.60±0.5	80.81±0.5	77.39±0.7	81.43±0.3	50.79 ±0.7

Experiment - 15

Experiment

Out of sample

CLASSIFICATION ACCURACY OF ALL METHODS ON NINE DATASETS FOR OUT-OF-SAMPLE EXTENSION

	Cora	Citeseer	Handwritten	Caltech	AWA	BBC	WebKB	3sources	Flower
Deepwalk	85.23±0.2	61.81±0.1	$96.94_{\pm0.1}$	83.45±0.3	61.88 ± 0.2	$78.91_{\pm 0.2}$	$79.29_{\pm 0.2}$	83.47±0.4	53.12±0.6
GraphSAGE	84.68 ± 0.4	72.97 ± 0.3	96.72 ± 0.1	83.69 ± 0.2	65.21 ± 0.3	79.50 ± 0.3	76.27 ± 0.7	$85.52{\scriptstyle\pm0.5}$	58.52 ± 0.7
SGC	73.43 ± 0.3	68.32 ± 0.5	88.95 ± 0.2	81.14 ± 0.4	62.63 ± 0.4	74.74 ± 0.4	61.83 ± 1.2	70.22 ± 0.4	50.59 ± 0.5
GCN*	78.30 ± 0.5	76.70 ± 0.3	$92.50_{\pm 0.2}$	$82.09_{\pm 0.4}$	64.83 ± 0.5	84.89 ± 0.3	$82.79_{\pm 0.4}$	79.48 ± 0.3	56.54 ± 0.7
GCN**	88.71 ± 0.2	$81.29_{\pm 0.4}$	97.05 ± 0.1	81.61±0.3	64.92 ± 0.5	85.61 ± 0.3	80.93 ± 0.6	$89.47_{\pm 0.1}$	56.03 ± 0.6
QFE	$79.85{\scriptstyle\pm0.2}$	70.12 ± 0.3	$97.00_{\pm0.1}$	$80.27{\scriptstyle\pm0.5}$	$62.11{\scriptstyle\pm0.5}$	$84.31_{\pm 0.1}$	$80.72 \scriptstyle{\pm 0.7}$	$87.37_{\pm0.2}$	$49.93_{\pm 0.9}$
Proposed	89.26±0.2	81.47±0.4	97.90 ±0.1	$83.50_{\pm 0.2}$	70.30±0.5	$92.95_{\pm 0.1}$	89.77 ±0.3	92.63±0.2	62.36 ±0.6

Experiment - 16

Experiment

Random edge attack

Result - 17

Result

- 1. Graph 변형으로 한계 극복
- 2. Model 비교 적음(아쉬움)
- 3. Random attack 실험