Simulating light propagation

Table of Contents

Simulating data collection for one PPG pulse	1
Simulation of the airgap at different frequencies	
Plotting the normalized absorbed power and normalized fluence rate of collected light	
Effects of air gap to the ratio of ratios	

Copyright (C) 2022 Miodrag Bolic

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details https://www.gnu.org/licenses/.

This code was developed by Miodrag Bolic for the book PERVASIVE CARDIAC AND RESPIRATORY MONITORING DEVICES: https://github.com/Health-Devices/CARDIAC-RESPIRATORY-MONITORING

Acknoledgement: the author would like to thank the developers of MCMatlab software.

Simulating data collection for one PPG pulse

```
% Fig 7.10 Simulation
% The air gap of 0.01 mm
clear_all_but('SAVE_FLAG')
global zsurf;
zsurf=0.01;
Example4_BloodVessel_Pulse
```



```
for i=1:38;
    model = runMonteCarlo(model);
    %plotMCmatlab(model);
    if model.MC.LC.res > 1
        detFraction = 100*mean(mean(sum(model.MC.LC.image,3)))*model.MC.LC.fieldSize^2.
    else
        detFraction = 100*sum(model.MC.LC.image,3);
    end
    S(i)=detFraction;
end
save('SPulse_660_001_1.mat','S')
% Increasing the air gap to 0.2 mm
clear all
global zsurf;
zsurf=0.2;
Example4_BloodVessel_Pulse
for i=1:38;
    model = runMonteCarlo(model);
    %plotMCmatlab(model);
    if model.MC.LC.res > 1
        detFraction = 100*mean(mean(sum(model.MC.LC.image,3)))*model.MC.LC.fieldSize^2.
    else
        detFraction = 100*sum(model.MC.LC.image,3);
    S(i)=detFraction;
save('SPulse_660_02_1.mat','S')
T=1/38;
t=T:T:length(S)*T;
```

```
figure
plot(t,S)
ylabel('Ilumination fraction (%)', 'FontSize', 10)
legend("660nm");
xlabel('Time (sec)', 'FontSize', 10)
```

```
% Fig 7.10 Plotting
%load("SPulse_660_02_1.mat")
load("SPulse_660_001_1.mat")
T=1/38;
t=T:T:length(S)*T;
[xData, yData] = prepareCurveData( t, S );
% Set up fittype and options.
ft = fittype( 'poly4' );
% Fit model to data.
[fitresult, gof] = fit( xData, yData, ft );
figure
plot(t,S,'o')
hold on
plot(t, fitresult(t) );
legend('MCMatlab simulation at discrete points','4th order polynomial fit')
ylabel('Ilumination fraction (%)', 'FontSize', 10)
xlabel('Time (s)', 'FontSize', 10)
title('Simulated and fitted pulse during a cardiac cycle')
annonation_save('', "Fig6.10.jpg", SAVE_FLAG);
```



```
disp('Percentage of the AC component is:')

Percentage of the AC component is:

100*(max(fitresult(t))-min(fitresult(t)))/max(fitresult(t))
ans = 1.3402
```

Simulation of the airgap at different frequencies

```
% Fig 7.7 simulation
clear all
global zsurf;
global wave_1;
global B Cutaneous;
B=[0.2037, 0.2454];
wavelen=[660, 940];
depth=[0.001, 0.01, 0.2, 0.3]; % 0.4 is too much
for j=1:2
for k=1:2
    for i=1:4;
    zsurf=depth(i);
    wave_l=wavelen(j);
    B_Cutaneous=B(k);
    clear_all_but('zsurf','wave_l','B_Cutaneous', 'i', 'j', 'k', 'S','depth','wavelen',
    Example4_BloodVessel_changeS_barrier1
    model = runMonteCarlo(model);
    plotMCmatlab(model);
    if model.MC.LC.res > 1
        detFraction = 100*mean(mean(sum(model.MC.LC.image,3)))*model.MC.LC.fieldSize^2.
    else
        detFraction = 100*sum(model.MC.LC.image,3);
    end
    S(j,k,i) = detFraction;
end
end
end
```


------Simulation duration = 1.000 min

Calculating... 100% done

Simulated 2.04e+06 photons at a rate of 2.04e+06 photons per minute -----plotMCmatlab-----

55.1% of incident light hits the cuboid boundaries.

44.9% of incident light was absorbed within the cuboid.

0.449% of incident light ends up on the detector.


```
save('SBarrier1.mat','S')
```

```
% Fig 7.7 plotting
load('SBarrier1.mat')
depth=[0.001, 0.01, 0.2, 0.3]; % 0.4 is too much
figure
N=3;
Dia660=reshape(S(1,1,:),[4,1]);
Sys660=reshape(S(1,2,:),[4,1]);
Dia940=reshape(S(2,1,:),[4,1]);
Sys940=reshape(S(2,2,:),[4,1]);
plot(depth(1:N),Dia660(1:N))
hold on
plot(depth(1:N), Sys660(1:N))
plot(depth(1:N), Dia940(1:N))
plot(depth(1:N), Sys940(1:N))
legend('660 nm diastolic point','660 nm systolic point','940 nm diastolic point','940 n
ylabel('Ilumination fraction (%)', 'FontSize', 10)
xlabel('Barrier depth (mm)', 'FontSize', 10)
figure
plot(depth(1:N),((Dia660(1:N)-Sys660(1:N))./Dia660(1:N))./((Dia940(1:N)-Sys940(1:N))./I
ylabel('Ratio of ratios', 'FontSize', 10)
xlabel('Air gap depth (mm)', 'FontSize', 10)
title('Ratio of ratios vs. the air gap depth')
annonation_save('b)', "Fig6.7b.jpg", SAVE_FLAG);
```



```
figure plot(depth(1:N),100*((Dia660(1:N)-Sys660(1:N))./Dia660(1:N)),'o-')
```

```
hold on plot(depth(1:N),100*((Dia940(1:N)-Sys940(1:N))./Dia940(1:N)),'*-') legend('660 nm','940 nm') ylabel('Ratio AC over DC (%)', 'FontSize', 10) xlabel('Air gap depth (mm)', 'FontSize', 10) title('AC over DC ratios for red and infrared light') annonation_save('a)',"Fig6.7a.jpg", SAVE_FLAG);
```


Plotting the normalized absorbed power and normalized fluence rate of collected light

```
%Fig 7.3 and 7.8
clear_all_but('SAVE_FLAG')
global zsurf;
zsurf=0.01;
Example4_BloodVessel_Pulse
```


model = runMonteCarlo(model);

-----Monte Carlo Simulation-----

Simulation duration = 5.000 min

Calculating... 100% done

Simulated 1.04e+07 photons at a rate of 2.09e+06 photons per minute

plotMCmatlab(model);

-----plotMCmatlab-----

86.9% of incident light hits the cuboid boundaries.

13.1% of incident light was absorbed within the cuboid.

0.974% of incident light ends up on the detector.

Normalized fluence rate in the image plane

if model.MC.LC.res > 1

```
detFraction = 100*mean(mean(sum(model.MC.LC.image,3)))*model.MC.LC.fieldSize^2
else
    detFraction = 100*sum(model.MC.LC.image,3);
end
S(i)=detFraction;
```

Array indices must be positive integers or logical values.

Effects of air gap to the ratio of ratios

```
% Fig 7.9 simulation
    clear all
global ii;
global wave_1;
global B_Cutaneous;
B=[0.2037, 0.2454];
wavelen=[660, 940];
for j=1:2
    for k=1:2
        clear_all_but('wave_l','B_Cutaneous', 'i1', 'j', 'k', 'S','B','wavelen','ii');
        wave_l=wavelen(j);
        B_Cutaneous=B(k);
        ii=0.45;
        Example4_BloodVessel_changeS_new1
        for i1=1:11;
            ii=0.45+0.05*i1;
            model = runMonteCarlo(model);
            %plotMCmatlab(model);
            if model.MC.LC.res > 1
                detFraction = 100*mean(mean(sum(model.MC.LC.image,3)))*model.MC.LC.fiel
                detFraction = 100*sum(model.MC.LC.image,3);
            end
            S(j,k,i1)=detFraction;
        end
    end
end
```

```
Simulated 2.46e+07 photons at a rate of 2.46e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.36e+07 photons at a rate of 2.36e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.35e+07 photons at a rate of 2.35e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.39e+07 photons at a rate of 2.39e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.59e+07 photons at a rate of 2.59e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 76% done
100% done
Simulated 2.48e+07 photons at a rate of 2.48e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 \text{ min}
Calculating... 100% done
Simulated 2.34e+07 photons at a rate of 2.34e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.32e+07 photons at a rate of 2.32e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.37e+07 photons at a rate of 2.37e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.77e+07 photons at a rate of 2.77e+06 photons per minute
-------Monte Carlo Simulation------
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.71e+07 photons at a rate of 2.71e+06 photons per minute
------Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.66e+07 photons at a rate of 2.66e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.77e+07 photons at a rate of 2.77e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.67e+07 photons at a rate of 2.67e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.66e+07 photons at a rate of 2.66e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.78e+07 photons at a rate of 2.78e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
```

```
Simulated 2.70e+07 photons at a rate of 2.70e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.65e+07 photons at a rate of 2.65e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.77e+07 photons at a rate of 2.77e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.68e+07 photons at a rate of 2.68e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.19e+07 photons at a rate of 3.19e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.37e+07 photons at a rate of 3.37e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 91% done
92% done
100% done
Simulated 3.22e+07 photons at a rate of 3.22e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.09e+07 photons at a rate of 3.08e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.05e+07 photons at a rate of 3.05e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 2.97e+07 photons at a rate of 2.97e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.29e+07 photons at a rate of 3.29e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.36e+07 photons at a rate of 3.36e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.26e+07 photons at a rate of 3.26e+06 photons per minute
------Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.46e+07 photons at a rate of 3.46e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.35e+07 photons at a rate of 3.35e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.18e+07 photons at a rate of 3.18e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
```

```
Calculating... 100% done
Simulated 3.44e+07 photons at a rate of 3.44e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.33e+07 photons at a rate of 3.33e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.25e+07 photons at a rate of 3.25e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.43e+07 photons at a rate of 3.43e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.33e+07 photons at a rate of 3.33e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.24e+07 photons at a rate of 3.24e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.44e+07 photons at a rate of 3.44e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.33e+07 photons at a rate of 3.33e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.05e+07 photons at a rate of 3.05e+06 photons per minute
-----Monte Carlo Simulation-----
Simulation duration = 10.000 min
Calculating... 100% done
Simulated 3.42e+07 photons at a rate of 3.42e+06 photons per minute
save('SChange.mat','S')
test=1;
```

```
% Fig 7.9 plotting
load('SChange.mat')
SpO2=50:5:100;
RatioOfRatios=((reshape(S(1,2,:),[11,1])-reshape(S(1,1,:),[11,1]))./reshape(S(1,2,:),[11,1])
%% Fit: 'untitled fit 1'.
p = polyfit(RatioOfRatios',SpO2,1);
y1 = polyval(p,RatioOfRatios');
figure
plot(RatioOfRatios, SpO2, 'o')
hold on
plot(RatioOfRatios,y1,'-')
xlabel('Ratio of ratios', 'FontSize', 10)
ylabel('Saturation (%)', 'FontSize', 10)
legend('SpO_2 estimate','SpO_2=C_B*R+C_A')
ylim([50,100])
title('Estimated and fitted SpO_2 vs. the ratio of ratios')
annonation_save('b)', "Fig6.9b.jpg", SAVE_FLAG);
```



```
figure
plot(Sp02,reshape(S(1,1,:),[11,1]),'o-')
hold on
plot(Sp02,reshape(S(1,2,:),[11,1]),'*-')
plot(Sp02,reshape(S(2,1,:),[11,1]),'o-')
plot(Sp02,reshape(S(2,2,:),[11,1]),'*-')
legend('660 nm diastolic','660 nm systolic','940 nm diastolic','940 nm systolic',"Locat
ylabel('Ilumination fraction (%)', 'FontSize', 10)
xlabel('Saturation (%)', 'FontSize', 10)
title('Illumination vs Sp0_2 for systolic and diastolic points')
annonation_save('a)',"Fig6.9a.jpg", SAVE_FLAG);
```

