DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

INTRODUCTION TO GEOTECHNICAL ENGINEERING LABORATORY

PART 2

SOIL SAMPLE PROPERTIES FROM MANALAPAN, NJ

Group 2

Scott Chen Jenna Manfredi Gila Rosenzweig Jake Sigman Eliyas Encarnacion

> CE-331 5/3/23

Professor Ng

Contents

Li	st of	Tables	5	2
Li	st of	Figure	es	2
1	Sun	nmary		3
2	Mos	st Eco	nomical Design	4
3	Dat	a and	Calculations	6
4	San	nple C	alculations	15
	4.1	Struct	ure Number	15
	4.2	Dry W	Weight at a Relative Density of 90%	15
	4.3	Aspha	lt Layer	15
		4.3.1	Thickness	15
		4.3.2	Design Structure Number	15
		4.3.3	Cost	16
	4.4	Base I		16
		4.4.1	Thickness	16
		4.4.2	Design Structure Number	16
		4.4.3	Volume of Borrow Area	16
		4.4.4	Hauling Vehicle Volume	16
		4.4.5	Excavation Cost	17
		4.4.6	Total Hauling Cost	17
		4.4.7	Total Number of Trucks	17
	4.5	Subba	se Layer	17
		4.5.1	Thickness	17
		4.5.2	Design Structure Number	18
	4.6		Cost	
	1.0	10001	~~~~	10

List of Tables

Table 1: Final Design Properties	4
Table 2: Subgrade Compaction Control	4
Table 3: Unit Weights of Base and Sub-Base Course Material	4
Table 4: Cost Estimate for Hauling and Compacting Sub-Base and Base Course materials Based	
on 1 yd^3 of Compacted Sub-Base and Base Course	5
Table 5: Soil Properties of Used Asphalt, Base, and Subgrade	6
Table 6: Calculated Thickness Values for Asphalt	6
Table 7: Calculated Thickness Values for Base Soil Number 1 using Each Subbase	7
Table 8: Calculated Thickness Values for Base Soil Number 1a using Each Subbase	7
Table 9: Calculated Thickness Values for Base Soil Number 2 using Each Subbase	8
Table 10: Calculated Thickness Values for Base Soil Number 3 using Each Subbase	8
Table 11: Calculated Thickness Values for Base Soil Number 3a using Each Subbase	9
Table 12: Calculated Thickness Values for Base Soil Number 1 using Each Subbase	9
Table 13: Calculated Thickness Values for Base Soil Number 1a using Each Subbase	10
Table 14: Calculated Thickness Values for Base Soil Number 2 using Each Subbase	10
Table 15: Calculated Thickness Values for Base Soil Number 3 using Each Subbase	11
Table 16: Calculated Thickness Values for Base Soil Number 3a using Each Subbase	11
Table 17: Recalculated Thickness Values for Base Soils Using Subgrade as the Subbase	12
Table 18: Base Course Soil Volume Required (without Geogrid)	12
Table 19: Base Course Soil Volume Required (with Geogrid)	12
Table 20: Calculations of Volume in Borrow Area and Volume in Hauling Vehicle	12
Table 21: Given Parameters	13
Table 22: Necessary Volume and Cost of Asphalt	13
Table 23: Total Costs (without Geogrid)	13
Table 24: Total Costs (with Geogrid)	14

List of Figures

1 Summary

2 Most Economical Design

Base Soil Chosen	-
Subbase Soil Chosen	-
CBR	-
Asphalt Modulus (psi)	-
Base Modulus (psi)	-
Subbase Modulus (psi)	-
Asphalt Flexural Coefficient	-
Asphalt Modifying Structural Layer Coefficient	-
Subbase Flexural Coefficient	-
Subbase Modifying Structural Layer Coefficient	-
Base Flexural Coefficient	-
Base Modifying Structural Layer Coefficient	-
Thickness (in)	-

Table 1: Final Design Properties

Range	of Dry Densities (pcf)	Range of Water Content(%)		
$\gamma_{ m max}$	γ at $D_r=75\%$	Optimum	ω at $D_r=75\%$	
-	-	-	-	

Table 2: Subgrade Compaction Control

```
Maximum Dry Density (pcf) -
Minimum Dry Density (pcf) -
Natural Dry Density in Borrow Area (pcf) -
Bulked Dry Density (pcf) -
```

Table 3: Unit Weights of Base and Sub-Base Course Material

Compacting Cost (\$/yd ³)	-
Hauling Cost (\$/yd ³)	_
Volume of Borrow Area, V_b	_
Volume in Hauling Vehicle, V_{hv}	_
Excavation and Compaction Costs (\$)	_
Total Hauling Volume (yd^3)	_
Number of Trucks	_
Net Hauling Cost (\$/yd)	_

Table 4: Cost Estimate for Hauling and Compacting Sub-Base and Base Course materials Based on 1 yd³ of Compacted Sub-Base and Base Course

3 Data and Calculations

	Soil #	CBR @ 90% D_r	E (ksi)	A_i	M_i	SN_i
Asphalt	N/A	-	-	-	-	-
	1	-	-	-	-	-
	1a	-	-	-	-	-
Base	2	-	-	-	-	-
	3	-	-	-	-	-
	3a	-	-	-	-	-
Subgrade	-	-	-	-	-	-

Table 5: Soil Properties of Used Asphalt, Base, and Subgrade

Base Soil #	Asphalt Thickness D_1 (in)	Base Thickness D_2 (in)	Base Thickness with Geogrid (in)
1	-	-	-
la	-	-	-
2	-	-	-
3	-	-	-
3a	-	-	-

Table 6: Calculated Thickness Values for Asphalt

		Base Soil Number 1							
Subbase Soil #	SN_2	A_2	M_2	Calculated D_2 (in)	Min. D_2 (in)	$D_2 ext{ (in)}$	SN_2^*		
1	-	-	-	-	-	-	-		
1a	_	-	-	-	-	-	-		
2	_	-	-	-	-	-	-		
3	_	-	-	-	-	-	-		
3a	_	-	-	-	-	-	-		
4	_	-	-	-	-	-	-		
5	_	-	-	-	-	-	-		
6	-	-	-	-	-	-	-		
7	-	-	-	-	-	-	-		
9	-	-	-	-	-	-	-		
9a	-	-	-	-	-	-	-		
10	-	-	-	-	-	-	-		

Table 7: Calculated Thickness Values for Base Soil Number 1 using Each Subbase

Base Soil Number 1a									
Subbase Soil #	SN_2	A_2	M_2	Calculated D_2 (in)	Min. D_2 (in)	$D_2 ext{ (in)}$	SN_2^*		
1	-	-	-	-	-	-	-		
1a	_	-	-	-	-	-	-		
2	-	-	-	-	-	-	-		
3	-	-	-	-	-	-	-		
3a	-	-	-	-	-	-	-		
4	-	-	-	-	-	-	-		
5	_	-	-	-	-	-	-		
6	_	-	-	-	-	-	-		
7	_	-	-	-	-	-	-		
9	_	-	-	-	-	-	-		
9a	_	-	-	-	-	-	-		
10	_	-	-	-	-	-	-		

 ${\it Table~8:~Calculated~Thickness~Values~for~Base~Soil~Number~1a~using~Each~Subbase}$

		Base Soil Number 2								
Subbase Soil #	SN_2	A_2	M_2	Calculated D_2 (in)	Min. D_2 (in)	D_2 (in)	SN_2^*			
1	-	-	-	-	-	-	-			
1a	_	-	-	-	-	-	-			
2	_	-	-	-	-	-	-			
3	_	-	-	-	-	-	-			
3a	_	-	-	-	-	-	-			
4	_	-	-	-	-	-	-			
5	_	-	-	-	-	-	-			
6	_	-	-	-	-	-	-			
7	_	-	-	-	-	-	-			
9	_	-	-	-	-	-	-			
9a	_	-	-	-	-	-	-			
10	_	-	-	-	-	-	-			

Table 9: Calculated Thickness Values for Base Soil Number 2 using Each Subbase

	Base Soil Number 3									
Subbase Soil #	SN_2	A_2	M_2	Calculated D_2 (in)	Min. D_2 (in)	$D_2 ext{ (in)}$	SN_2^*			
1	-	-	-	-	-	-	-			
1a	_	-	-	-	-	-	-			
2	_	-	-	-	-	-	-			
3	_	-	-	-	-	-	-			
3a	_	-	-	-	-	-	-			
4	_	-	-	-	-	-	-			
5	_	-	-	-	-	-	-			
6	_	-	-	-	-	-	-			
7	_	-	-	-	-	-	-			
9	-	-	-	-	-	-	-			
9a	-	-	-	-	-	-	-			
10	_	-	-	-	-	-	-			

Table 10: Calculated Thickness Values for Base Soil Number 3 using Each Subbase

Base Soil Number 3a									
Subbase Soil #	SN_2	A_2	M_2	Calculated D_2 (in)	Min. D_2 (in)	D_2 (in)	SN_2^*		
1	-	-	-	-	-	-	-		
1a	_	-	-	-	-	-	-		
2	_	-	-	-	-	-	-		
3	_	-	-	-	-	-	-		
3a	_	-	-	-	-	-	-		
4	_	-	-	-	-	-	-		
5	_	-	-	-	-	-	-		
6	_	-	-	-	-	-	-		
7	_	-	-	-	-	-	-		
9	_	-	-	-	-	-	-		
9a	_	-	-	-	-	-	-		
10	_	-	-	-	-	-	-		

Table 11: Calculated Thickness Values for Base Soil Number 3a using Each Subbase

	Base Soil Number 1								
Subbase Soil #	A_3	M_3	Calculated D_3 (in)	Min. D_3 (in)	$D_3 \; { m (in)}$	SN_3^*			
1	-	-	-	-	-	-			
1a	_	-	-	-	-	-			
2	-	-	-	-	-	-			
3	-	-	-	-	-	-			
3a	-	-	-	-	-	-			
4	-	-	-	-	-	-			
5	-	-	-	-	-	-			
6	-	-	-	-	-	-			
7	-	-	-	-	-	-			
9	-	-	-	-	-	-			
9a	-	-	-	-	-	-			
10	-	-	-	-	-	-			

 ${\it Table~12:~Calculated~Thickness~Values~for~Base~Soil~Number~1~using~Each~Subbase}$

	Base Soil Number 1a								
Subbase Soil #	A_3	M_3	Calculated D_3 (in)	Min. D_3 (in)	$D_3 \; { m (in)}$	SN_3^*			
1	-	-	-	-	-	-			
la 1a	-	-	-	-	-	-			
2	-	-	-	-	-	-			
3	-	-	-	-	-	-			
3a	-	-	-	-	-	-			
4	-	-	-	-	-	-			
5	-	-	-	-	-	-			
6	-	-	-	-	-	-			
7	-	-	-	-	-	-			
9	-	-	-	-	-	-			
9a	-	-	-	-	-	-			
10	-	-	-	-	-	-			

Table 13: Calculated Thickness Values for Base Soil Number 1a using Each Subbase

	Base Soil Number 2								
Subbase Soil #	A_3	M_3	Calculated D_3 (in)	Min. D_3 (in)	$D_3 \; { m (in)}$	SN_3^*			
1	-	-	-	-	-	-			
1a	-	-	-	-	-	-			
2	-	-	-	-	-	-			
3	-	-	-	-	-	-			
3a	-	-	-	-	-	-			
4	-	-	-	-	-	-			
5	-	-	-	-	-	-			
6	-	-	-	-	-	-			
7	-	-	-	-	-	-			
9	-	-	-	-	-	-			
9a	-	-	-	-	-	-			
10		_	-	-					

 ${\it Table~14:~Calculated~Thickness~Values~for~Base~Soil~Number~2~using~Each~Subbase}$

	Base Soil Number 3								
Subbase Soil #	A_3	M_3	Calculated D_3 (in)	Min. D_3 (in)	$D_3 \; { m (in)}$	SN_3^*			
1	-	-	-	-	-	-			
la 1a	-	-	-	-	-	-			
2	-	-	-	-	-	-			
3	-	-	-	-	-	-			
3a	-	-	-	-	-	-			
4	-	-	-	-	-	-			
5	-	-	-	-	-	-			
6	-	-	-	-	-	-			
7	-	-	-	-	-	-			
9	-	-	-	-	-	-			
9a	-	-	-	-	-	-			
10	-	-	-	-	-	-			

Table 15: Calculated Thickness Values for Base Soil Number 3 using Each Subbase

	Base Soil Number 3a								
Subbase Soil #	A_3	M_3	Calculated D_3 (in)	Min. D_3 (in)	$D_3 ext{ (in)}$	SN_3^*			
1	-	-	-	-	-	-			
1a	_	-	-	-	-	-			
2	-	-	-	-	-	-			
3	-	-	-	-	-	-			
3a	-	-	-	-	-	-			
4	-	-	-	-	-	-			
5	-	-	-	-	-	-			
6	-	-	-	-	-	-			
7	-	-	-	-	-	-			
9	-	-	-	-	-	-			
9a	-	-	-	-	-	-			
10	_	-	-	-	-	-			

Table 16: Calculated Thickness Values for Base Soil Number 3a using Each Subbase

Base Soil #	SN_2^{**}	A_2	M_2	Calculated D_2 (in)	Min. D_2 (in)	D_2	SN_2^*
1	-	-	-	-	-	-	-
la 1a	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-
3a	-	-	-	-	-	-	-

Table 17: Recalculated Thickness Values for Base Soils Using Subgrade as the Subbase

Base Soil #	Volume of Base Soil (yd ³)	Volume Hauled (yd ³)	Truck Loads
1	-	-	-
1a	-	-	-
2	-	-	-
3	-	-	-
3a	-	-	-

Table 18: Base Course Soil Volume Required (without Geogrid)

Base Soil #	Volume of Base Soil (yd ³)	Volume Hauled (yd ³)	Truck Loads
1	-	-	-
1a	-	-	-
2	-	-	-
3	-	-	-
3a	-	-	-

Table 19: Base Course Soil Volume Required (with Geogrid)

Soil #	$\gamma_{d \; ext{max}} \ ext{(pcf)}$	$\gamma_{d \; ext{min}} \ ext{(pcf)}$		γ_d bulk (pcf)	$\gamma_{d~90} \ m (pcf)$	V_b	V_{hv}	Compaction Cost $(\$/\mathrm{yd}^3)$
1	-	-	-	-	-	-	-	-
1a	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-
3a	-	-		-	-	-	-	-

Table 20: Calculations of Volume in Borrow Area and Volume in Hauling Vehicle

Highway Length (miles)	10
Highway Width (ft)	50
Standard Deviation, S_0	0.35
Design Servicability Loss, ΔPSI	1.7
Standard Deviate, Z_R	-1.282
18-kip ESAL, W_{18}	31425018
Cost of Asphalt (\$/yd³)	80
Cost of Geogrid (\$/yd²)	1.8

Table 21: Given Parameters

Soil #	Asphalt Thickness (in)	Asphalt Volume (yd³)	Asphalt Cost (\$)
1	-	-	-
1a	-	-	-
2	-	-	-
3	-	-	-
3a	_	-	-

Table 22: Necessary Volume and Cost of Asphalt

Base Soil #	Excavation (\$)	Hauling (\$)	Asphalt (\$)	Total (\$)
1	-	-	-	-
1a	-	-	-	-
2	-	-	-	-
3	-	-	-	-
3a	-	-	-	-

Table 23: Total Costs (without Geogrid)

Base Soil #	Excavation (\$)	Hauling (\$)	Asphalt (\$)	Geogrid (\$)	Total (\$)
1	-	-	-	-	-
1a	_	-	-	-	-
2	-	-	-	-	-
3	-	-	-	-	-
3a	-	-	-	-	-

Table 24: Total Costs (with Geogrid)

4 Sample Calculations

4.1 Structure Number

The structure number is calculated using Equation 1.

$$\log(W_{18}) = Z_R \times S_0 + 9.36 \times \log(SN + 1) - 0.2 + \frac{\log\left(\frac{\Delta PSI}{4.2 - 2.5}\right)}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \times \log(M_R) - 8.07 \tag{1}$$

$$\log(W_{18}) = Z_R \times S_0 + 9.36 \times \log(SN+1) - 0.2 + \frac{\log\left(\frac{\Delta PSI}{4.2-2.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log(M_R) - 8.07$$

4.2 Dry Weight at a Relative Density of 90%

The dry weight at a relative density of 90% is calculated using Equation 2.

$$\gamma_{d\,90} = \frac{\gamma_{d\,\max} \times \gamma_{d\,\min}}{\gamma_{d\,\max} - D_r(\gamma_{d\,\max} - \gamma_{d\,\min})}$$
(2)

$$\gamma_{d\,90} = \frac{\gamma_{d\,\max} \times \gamma_{d\,\min}}{\gamma_{d\,\max} - D_r(\gamma_{d\,\max} - \gamma_{d\,\min})}$$

4.3 Asphalt Layer

4.3.1 Thickness

The thickness of the asphalt layer is calculated using Equation 3.

$$D_1 = \frac{SN_1}{A_1} \tag{3}$$

$$D_1 = \frac{SN_1}{A_1}$$

4.3.2 Design Structure Number

The design structure number of the asphalt layer is calculated using Equation 4.

$$SN_1^* = A_1 \times D_1 \tag{4}$$

$$SN_1^* = A_1 \times D_1$$

4.3.3 Cost

The cost of the asphalt layer (C_{at}) is calculated using Equation 5, where C_a is the asphalt cost.

$$C_{at} = A \times D_1 \times C_a \tag{5}$$

$$C_{at} = A \times D_1 \times C_a$$

4.4 Base Layer

4.4.1 Thickness

The <u>thickness</u> of the base layer is calculated using Equation 6.

$$D_2 = \frac{SN_2 - SN_1^*}{A_2 \times M_2} \tag{6}$$

$$D_2 = \frac{SN_2 - SN_1^*}{A_2 \times M_2}$$

4.4.2 Design Structure Number

The design structure number of the base layer is calculated using Equation 7.

$$SN_2^* = A_2 \times D_2 \times M_2 \tag{7}$$

$$SN_2^* = A_2 \times D_2 \times M_2$$

4.4.3 Volume of Borrow Area

The volume of borrow area is calculated using Equation 8.

$$V_b = \frac{\gamma_{d\,90}}{\gamma_{d\,\text{nat}}} \tag{8}$$

$$V_b = \frac{\gamma_{d\,90}}{\gamma_{d\,\,\mathrm{nat}}}$$

4.4.4 Hauling Vehicle Volume

The hauling vehicle volume is calculated using Equation 9.

$$V_{hv} = \frac{\gamma_{d\,90}}{\gamma_{d\,\text{bulk}}} \tag{9}$$

$$V_{hv} = \frac{\gamma_{d\,90}}{\gamma_{d\,\text{bulk}}}$$

4.4.5 Excavation Cost

The excavation cost (C_e) is calculated using Equation 10, where C_c is the compacting cost.

$$C_e = A \times D_2 \times C_c \tag{10}$$

$$C_e = A \times D_2 \times C_c$$

4.4.6 Total Hauling Cost

The total hauling cost (C_{ht}) is calculated using Equation 11, where C_h is the hauling cost.

$$C_{ht} = A \times D_2 \times V_{hv} \times C_h \tag{11}$$

$$C_{ht} = A \times D_2 \times V_{hv} \times C_h$$

4.4.7 Total Number of Trucks

The total number of trucks (N_t) is calculated using Equation 12.

$$N_t = A \times D_2 \times V_{hv} \times \frac{1}{10} \tag{12}$$

$$N_t = A \times D_2 \times V_{hv} \times \frac{1}{10}$$

4.5 Subbase Layer

4.5.1 Thickness

The <u>thickness</u> of the subbase layer is calculated using *Equation 13*.

$$D_2 = \frac{SN_2 - (SN_2^* + SN_1^*)}{A_3 \times M_3} \tag{13}$$

$$D_2 = \frac{SN_2 - (SN_2^* + SN_1^*)}{A_3 \times M_3}$$

4.5.2 Design Structure Number

The design structure number of the subbase layer is calculated using Equation 14.

$$SN_3^* = A_3 \times D_3 \times M_3 \tag{14}$$

$$SN_3^* = A_3 \times D_3 \times M_3$$

4.6 Total Cost

The <u>total cost</u> (C_t) is calculated using Equation 15.

$$C_t = C_e + C_{ht} + C_{at} \tag{15}$$

$$C_t = C_e + C_{ht} + C_{at}$$