STAT 500

Multiple Linear Regression Models More Examples

Uncorrelated Predictors

Example: Yield of a chemical process (Myers)

```
Y={
m Yield} (%) X_1={
m Temperature} ({}^o{
m F}) X_2={
m Time} (hours)
```

Data:

$oldsymbol{Y}$	$oldsymbol{X_1}$	$oldsymbol{X_2}$
77	160	1
79	160	2
82	165	1
83	165	2
85	170	1
88	170	2
90	175	1
93	175	2

Chemical Process Study

Full Factorial Design

$$r_{x_1,x_2} = rac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)(x_{i2} - \bar{x}_2)}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2 \sum_{i=1}^{n} (x_{i2} - \bar{x}_2)^2}} = 0$$

Estimated Models

Model 1: $\hat{\mathrm{Y}}_i = -64.45 + 0.890 x_{i1}$

$$R^2 = 0.9435$$

Model 2: $\hat{\mathbf{Y}}_i = 81.25 + 2.25 x_{i2}$

$$R^2 = 0.0482$$

Model 12: $\hat{\mathbf{Y}}_i = -67.825 + 0.890x_{i1} + 2.250x_{i2}$

$$R^2 = 0.9918$$

Chemical Process Study

Source of					
variation	d.f.	SS	MS	F	p-val
reg on x_1	1	198.025	198.025	574.0	.0001
reg on x_2 after x_1	1	10.125	10.125	29.3	.0029
error	5	1.725	0.345		
corrected total	7	209.875			
Source of variation	d.f.	SS	MS	F	p-val
reg on x_2	1	10.125	10.125	29.3	.0029
reg on x_1 after x_2	1	198.025	198.025	574.0	.0001
error	5	1.725	0.345		
corrected total	7	209.875			

Complete Confounding

Example: Correlation between X_1 and X_2 is one.

$oldsymbol{Y}$	X_1	X_2
1.95	1	5
6.25	2	10
9.85	3	15

Estimated Models

Model 1:
$$\hat{\mathrm{Y}}_i = -1.8833 + 3.95 x_{i1}$$

$$R^2 = 0.9974$$

Model 2:
$$\hat{\mathbf{Y}}_i = -1.8833 + 0.79x_{i2}$$

$$R^2 = 0.9974$$

Model 12: Many choices for b_1 and b_2 in

$$\hat{\mathbf{Y}}_i = b_0 + b_1 x_{i1} + b_2 x_{i2} = b_0 + b_1 x_{i1} + b_2 (5x_{i1})$$

$$= b_0 + (b_1 + 5b_2) x_{i1}$$

$$R^2 = 0.9974$$

Complete Confounding Example

Source of variation	d.f.	SS	MS	F	p-val
reg on x_1	1	31.205	31.205	382.1	.0325
reg on x_2 after x_1	0	0.000	0.000	NA	NA
error	1	0.08167	0.08167		
corrected total	2	31.28667			
Source of					
variation	d.f.	SS	MS	F	p-val
reg on x_2	1	31.205	31.205	382.1	.0325
reg on x_1 after x_2	0	0.000	0.000	NA	NA
error	1	0.08167	0.08167		
corrected total	2	31.28667			

Partial Confounding

Example: Correlation between X_1 and X_2 is 0.95237

Estimated Models

Model 1:
$$\hat{\mathrm{Y}}_i = -2.328 + 4.142 x_{i1}$$

$$R^2 = 0.978$$

Model 2:
$$\hat{\mathbf{Y}}_i = -2.114 + 0.791x_{i2}$$

$$R^2 = 0.865$$

Model 12:
$$\hat{\mathbf{Y}}_i = -2.247 + 4.655 x_{i1} - 0.109 x_{i2}$$

$$R^2 = 0.980$$

Partial Confounding Example

variation	d.f.	SS	MS	F	p-val
reg on x_1	1	46.215	46.215	146.6	0.0012
reg on x_2 after x_1	1	0.073	0.073	0.23	0.6639
error	3	0.946	0.315		
corrected total	5	47.233			
Source of variation	d.f.	SS	MS	F	p-val
	1	40.859	40.859	129.6	0.0015
reg on x_2	_				
reg on x_1 after x_2	1	5.428	5.428	17.21	0.0254
error	3	0.946	0.315		
corrected total	5	47.233			

Source of

$$Y_i = \beta_o + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i$$

- ullet eta_j is the jth regression coefficient or the jth partial regression coefficient
- ullet eta_j is the change in the mean of Y for a unit change in X_i with all other variables held constant
- Sometimes this is not possible and the values of other explanatory variables change when X_j changes: (e.g., polynomial terms (X_j,X_j^2) or interaction terms (X_i,X_j,X_iX_j) or other highly correlated predictors)

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i$$

- ullet An alternative interpretation: eta_j is the linear effect of X_j on Y after adjusting for the linear effect of the other predictors on Y and the linear effects of the other predictors on X_j
- Let P_{-x_j} represent the projection matrix without variable X_j (delete column j+1 from the model matrix X). Then, $\hat{\beta}_j$ is found from the regression of $(I-P_{-x_j})Y$ on $(I-P_{-x_j})X_j$

- Example: Brain size data (an observational study)
 Question: Do species with longer gestation times have bigger brains?
- \bullet Plots, biology \Rightarrow linear in log variables
- Model 1: $log(brain)_i = \beta_0 + \beta_1 log(gest_i) + \epsilon_i$ $\hat{\beta}_1 = 2.23 \Rightarrow$ Species differing by 1 unit log gestation time (e.g. log(gest) = 2 and log(gest) = 1) differ in log(brain size) by 2.23 units, on average.
- Biology ⇒ body size associated with both

Model 2:

$$log(brain_i) = eta_0 + eta_1 log(gest_i) + eta_2 log(body_i) + \epsilon_i \ \hat{eta}_1 = 0.668$$

Two species with the same body size but differing by 1 unit log gestation time differ in log brain size by 0.668 units, on average.

ullet So, when is eta_j in multiple regression equal to eta_j from simple linear regression?

Answer: When X_j is uncorrelated with the rest of the explanatory variables.

- ullet Consider the regression of one set of residuals $(I-P_{-x_j})Y$ on another set of residuals $(I-P_{-x_j})X_j$
 - Regress log(brain) on log(body): $\operatorname{residual} = e_i = (I P_{-x_i})Y$
 - Regress log(gest) on log(body): $\operatorname{residual} = g_i = (I P_{-x_j}) X_j$
 - $-\beta_2$ is regression coefficient for regression of e_i on g_i :

$$e_i = \beta_2 g_i + \eta_i$$