هوش معنوعی (جستبو-بنش سوم)

مارق اسکندری - رانشکره علوم ریافنی، گروه علوم کامپیوتر

eskandari@guilan.ac.ir

یار آوری ...

پیچیرگی فضایی	پیچیرکی	بوینکی	کامل بورن	ترتیب کرهها در هف	ترتیب بسط	نوع	استراتژی
	زمانی				ررفت		
<i>O</i> (<i>bm</i>)	$O(b^m)$ مراکثر عمق M	*	تنوا در صورتی که مراکثر عمق ممدود باشد.	گرهها در صف بر اساس عمق به شکل نزولی مرتب هستند. فرزندان بدید به ابتدای صف اضافه می شوند.	שמيق ترين كره ابتدا بسط داده مى شود.	کوکورانه (ناآگاهانه)	عمق اول (DFS)
O (b ^s)	0(b ^s) عمق سطمی ترین پاسخ	در صورتی که هزینه مسیر یک تابع صعوری یکنوافت از عمق باشر،	✓	گرهها در صف بر اساس عمق به شکل صعودی مرتب هستند. فرزندان بدید به انتهای صف اضافه می شوند.	שלסט דתנה אתה וبדתו بשל כאכה הט شوכ.	کوکورانه (ناآگاهانه)	سطح اول (BFS)
$O(b^{\frac{C^*}{\epsilon}})$	$O(oldsymbol{b}^{rac{C^*}{\epsilon}})$ عمق موثر: $rac{C^*}{\epsilon}$	✓	✓	گرهها در صف بر اساس هزینه مسیر به شکل صعودی مرتب هستند.	אקלוט דתנט אקה וידנא יושל כאכה הא יויפכ.	کوکورانه (ناآگاهانه)	هزینه یکنوافت (UCS)
O(bs)	0(b ^s) عمق سطمی ترین پاسخ	در صورتی که هزینه مسیر یک تابع صعوری یکنواخت از عمق باشر،	✓	گرهها _{در} صف بر اساس عمق به شکل نزولی مرتب هستند. فرزندان بدید به ابتدای صف اضافه می شوند.	عمیق ترین کره ابتدا بسط داده می شور (ترکیبی از سطح اول و عمق اول)	کوکورانه (ناآگاهانه)	عمیق سازی تکراری (IDS)
כת אנדתמה פואדי החייום DFS	در برترین مالت مشابه DFS	*	×	فرزندان تولید شده از بسط کرهها، به کونه ای به صف اضافه می شوند که صف از نظر تابع ارزیاب (h) مرتب باشد.	همواره گرهی بسط راره می شور که کمترین فاصله تفمینی را با هرف راشته باشر.	الكھانة	مریصانه

یار آوری ...

یک تابع ابتکاری (Heuristic Function) میزان نزریکی یک عالت به عالت هدف را تفمین می زند.

مثال: تابع ابتکاری برای مسئله مسافرت در رومانی

Arad	366
Bucharest	0
Craiova	1 60
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

า(x)

این استراتژی، ترکیبی از استراتژی های بستبوی هزینه یکنوافت و مریهانه است.

$$\mathfrak{n}$$
 هزينه مسير از ريشه تا کره $g(n)$

h(n) عزینه تفمینی مسیر از کره n تا کره هدف
ر این استراتژی، فرزنران تولیر شره از بسط کرهها،
به کونه ای به صف اضافه می شونر که صف از نظر تابع
ارزیاب زیر مرتب باشر؛

$$f(n) = g(n) + h(n)$$

استراتری های بستبوی آگاهانه: بستبوی مریهانه

مثال: تابع ابتکاری برای مسئله مسافرت در رومانی

Arad

h:366

g:0

f:366

	0.0.010
Arad	366
Bucharest	0
Craiova	1 60
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilc	ea 193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

استراتری های بستبوی آلاهانه: بستبوی مریهانه

مثال: تابع ابتکاری برای مسئله مسافرت در رومانی

توابع ابتكارى تصريق پذير

تابع ابتکاری h را تصریق پزیر (Admissible) می کوییم اکر هیهکاه از مقدار واقعی بزرکتر نباشر.

به عبارت ریکر، با فرض اینکه $h^*(n)$ نشان رهنده هزینه واقعی از کره n به کره هدف باشر، آنکاه تابع h تصریق پزیر است اکر:

$$0 \le h(n) \le h^*(n)$$

مثال: فاهله مستقیع در مسئله مسافرت در رومانی

نکته؛ یافتن یک تابع ابتکاری تصریق پزیر، مهمترین بفش از الکوریتم بستبوی *A است.

توابع ابتكارى تصريق پزير

اگر تابع f(n) = g(n) + h(n) فواهد بور. f(n) = g(n) + h(n) فواهد بور.

بهينكي الكوريتم *A

فرض:

A یک گره هرف بهینه است. B یک گره هرف غیربهینه است. h یک تابع تصریق پزیر است.

ارعا:

کره A قبل از کره B از صف فارج فواهد شد.

بهينكي الكوريتم *A

اثبات:

فرض کنیر B در هف است.

علاوه براین فرض کنیر یکی از اجرار A نیز در صف است. این کره را n می نامیم. (n می تواند خور A باشر)

ارعا:

n قبل از B بسط راره خواهد شر (از صف بیرون خواهد آمد)

 $f(n) \leq f(A)$ با توجه به اینکه تابع f معوری یکنوا است، راریم $f(A) \leq f(B)$ با توجه به اینکه A کره هرف بهینه است، راریم A کره هرف بهینه است، راریم

با توبه به اینکه A بهینه است، هزینه مسیر آن کمتر است. $g(A) \leq g(B)$

زیرا هر دو کره، هرف هستند.
$$h(A) = h(B) = 0$$

$$f(A) = g(A), f(B) = g(B)$$

بهينكي الكوريتم *A

اثبات:

فرض کنیر B در صف است. علاوه براین فرض کنیر یکی از اجرار A نیز در صف است. این کره را n می

عدوه براین فرص سیر یکی از اجرار نامیم. (n می تواند خود A باشد)

ارعا:

n قبل از B بسط راره فواهد شر (از صف بیرون فواهد آمد)

 $f(n) \leq f(A)$ با توجه به اینکه تابع f صعوری یکنوا است، راریم $f(A) \leq f(B)$ ۲) با توجه به اینکه $f(A) \leq f(B)$ کره هرف بهینه است، راریم $f(A) \leq f(B)$ با توجه به اینکه $f(n) \leq f(B)$ و بنابراین کره f(B) بسط راره خواهر شر. f(B)

بنابراین تمامی اجرار A قبل از B بسط راره خواهند شر.

A نیز قبل از B بسط راره فواهر شر.

نتيبه: الكوريتم *A يك الكوريتم بهينه است.

طرامی توابع ابتکاری تصریق پذیر

طرامی توابع ابتکاری تصریق پذیر، مهمترین بفش در استفاده از الکوریتم *A می باشد.

سوال: برای مسئله 8-puzzle په توابع ابتکاری می توان استفاره کرر؟

Start State

Goal State

طرامی توابع ابتکاری تصریق پذیر

طرامی توابع ابتکاری تصریق پذیر، مهمترین بفش در استفاده از الکوریتم *A می باشد.

سوال: برای مسئله 8-puzzle په توابع ابتکاری می توان استفاره کرر؟

ای تعرار خانه هایی که در جای درست خود قرار نگرفته اند. h_1 مجموع فاصله های هر کره تا جایگاه واقعی h_2

$$h_1 = 8$$

$$h_2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$$

و h_2 هر رو تصریق پزیر هستنر. h_2

 $rac{mوال:}{h_1}$ بهتر است یا h_2

طرامی توابع ابتکاری تصریق پزیر

 h_2 بوتر است یا h_1 بوتر است h_2

قاعره کلی: تابع تصریق پزیری بهتر است که بیشترین مقدار را داشته باشد. زیرا به مقدار واقعی نزدیکتر است.

تمرین: برای مسئله 8-puzzle توابع تصریق پذیر بهتری طرامی کنیر.

	Search Cost							
d	IDS	$A^*(h_1)$	$A*(h_2)$					
2	10	6	6					
4	112	13	12					
6	680	20 ,	18					
8	6384	39	25					
10	47127	93	39					
12	364404	227	73					
14	3473941	539	113					
16	_	1301	211					
18	_	3056	363					
20	_	7276	676					
22	_	18094	1219					
24	_	39135	1641					

بلسه آینره: مسائل ارفای ممروریت