# Approximate Envy-Freeness in Graphical Cake Cutting

## Sheung Man Yuen

National University of Singapore

# Warut Suksompong National University of Singapore

#### **Graphical Cake Cutting**





- We consider the problem of fairly allocating a divisible resource among agents who may have different values for different parts of the cake.
- The cake is represented by the edges of a connected graph; each edge can be subdivided into segments to be allocated to different agents.
- Appropriate when the resource corresponds to a network, such as a road network, a railway network, or a power cable network, to be divided among different companies for the purpose of construction or maintenance.



#### **Fairness Notions**

- Envy-freeness: agents rather have their own pieces of cake than others'.
- -An envy-free allocation may not exist in graphical cake cutting.
- We consider approximations of envy-freeness.
- \*  $\alpha$ -EF: agents do not envy others by a factor of  $> \alpha$  ( $\alpha \ge 1$ ).
- \*  $\alpha$ -additive-EF: agents do not envy others by an amount  $> \alpha$  ( $\alpha \in [0, 1]$ ).
- Other fairness notions studied are proportionality [Bei & Suksompong '21] and maximin share [Elkind, Segal-Halevi & Suksompong '21].
- -These only consider each agent's piece of cake relative to the whole cake, rather than relative to other agents' pieces of cake.

### **Our Results**

|                             | General graphs       | Star graphs          |
|-----------------------------|----------------------|----------------------|
| Non-identical valuations    | 1/2-additive-EF      | $(3 + \epsilon)$ -EF |
| <b>Identical valuations</b> | $(2 + \epsilon)$ -EF | 2 <b>-EF</b>         |

• All of our results come with algorithms with time polynomial in the number of agents, the size of the graph, and, if applicable,  $1/\epsilon$ .

#### **Non-Identical Valuations**

**Theorem 1.** There exists a 1/2-additive-EF allocation for a general graph.

- Generalize ideas from interval cake cutting [Goldberg, Hollender & Suksompong '20].
- Find a bundle worth less than 1/2 to every agent and at least 1/4 to some agent; allocate it to one such agent who values it at least 1/4.
- We can find such a bundle using the DIVIDE algorithm.
- Remove this agent along with her bundle; repeat the process with the remaining graph and remaining agents until the whole graph is allocated.

**Theorem 2.** There exists a  $(3 + \epsilon)$ -EF allocation for a star graph.

• Generalize ideas from interval cake cutting [Arunachaleswaran, Barman, Kumar & Rathi '19].



- Phase 1. Find a point on each edge close to the center vertex.
- Phase 2. Repeatedly find an unallocated bundle worth slightly more than some agent's current bundle; allow that agent to relinquish her existing bundle for this new one. This new bundle could be a segment of an edge (Phase 2a) or a union of multiple complete edges (Phase 2b).



• Phase 3 & 4. Append the remaining graph to the agents.

#### **Identical Valuations**

**Theorem 3.** There exists a 4-EF allocation for a general graph and agents with identical valuations.

- Generalize ideas from Theorem 1 which had used a threshold of 1/4.
- Use an adaptive threshold of  $\frac{1}{2}\left(\frac{2i}{2n-1}-\sum_{j=1}^{i-1}\mu(A_j)\right)$  for agent i, which takes into account the bundles received by the previous agents.

**Theorem 4.** There exists a  $(2 + \epsilon)$ -EF allocation for a general graph and agents with identical valuations.

- Generalize ideas from partitioning indivisible edges of a graph [Chu, Wu, Wang & Chao '10].
- Starting with a 4-EF allocation, find a minimum-maximum path, and adjust the bundles along this path accordingly.
- Repeat this process until the allocation is  $(2 + \epsilon)$ -EF.

**Theorem 5.** There exists a 2-EF allocation for a star graph and agents with identical valuations.



- Find segments worth 1/n and allocate them to the agents.
- There will be a star of stubs left; group these stubs repeatedly until the number of groups is equal to the number of agents remaining.
- Assign each group to each of the remaining agents.

#### **Beyond One Connected Piece**

• Allow agents to receive a small number of connected pieces using the notion of path similarity number.

