

Course > Week 3... > Compr... > Quiz 3

Quiz 3

Problem 1

1/1 point (graded)

What is the dimension of A^T , where A is the 1 imes n "row vector" $[1,2,3,\ldots,(n-1)\,,n]$?

- \bigcirc 1 × 1
- \bigcirc $1 \times n$
- leften n imes 1
- $\bigcirc n \times n$

Submit

Problem 2

1/1 point (graded)

True or false: $\left(\left(A^T\right)^T\right)^T=A^T$

- True
- False

Submit

Problem 3

1/1 point (graded)

Let
$$M=egin{pmatrix} 1 & 5 \ 2 & 2 \end{pmatrix}$$
 and let $N=egin{pmatrix} 0 & 2 \ 5 & 5 \end{pmatrix}$, what is $M+N$?

$$left M+N=egin{pmatrix} 1 & 7 \ 7 & 7 \end{pmatrix}$$

$$igcirc M+N=egin{pmatrix} 0 & 10\ 10 & 10 \end{pmatrix}$$

$$igcirc M+N=egin{pmatrix} 3 & 10 \ 2 & 7 \end{pmatrix}$$

$$\bigcirc M+N=egin{pmatrix} 3 & 5 \ 6 & 7 \end{pmatrix}$$

Submit

Problem 4

1/1 point (graded)

Give the transpose of
$$M=egin{pmatrix} 3 & 1 & 2 \ 2 & 1 & 8 \ 4 & 4 & 4 \end{pmatrix}$$

$$M^T = egin{pmatrix} 2 & 8 & 4 \ 1 & 1 & 4 \ 3 & 2 & 4 \end{pmatrix}$$

$$M^T = egin{pmatrix} 4 & 4 & 4 \ 2 & 1 & 8 \ 3 & 1 & 2 \end{pmatrix}$$

$$egin{aligned} oldsymbol{\Phi} M^T = egin{pmatrix} 3 & 2 & 4 \ 1 & 1 & 4 \ 2 & 8 & 4 \end{pmatrix} \end{aligned}$$

$$M^T = egin{pmatrix} 4 & 8 & 2 \ 4 & 1 & 1 \ 4 & 2 & 3 \end{pmatrix}$$

~

Submit

Problem 5

1/1 point (graded)

Given
$$\mathbf{x}=\begin{pmatrix}1&4\end{pmatrix}$$
 and $\mathbf{y}=\begin{pmatrix}4\\1\end{pmatrix}$, what is $\mathbf{x}-\mathbf{y^T}$?

$$\mathbf{x} - \mathbf{y}^{\mathbf{T}} = (3 \quad -3)$$

$$\bigcirc \mathbf{x} - \mathbf{y}^{\mathbf{T}} = (0 \quad 0)$$

Cannot subtract these two vectors

Submit

Problem 6

1/1 point (graded)

If the dot product of two vectors, $\mathbf{a} \cdot \mathbf{b}$, is equal to 0, what must be true? Select all that apply.

Submit

Problem 7

1/1 point (graded)

Given a vector, $\mathbf{x} \in \mathbb{R}^{\mathbf{d} \times \mathbf{1}}$, the product $\mathbf{x}\mathbf{x}^{\mathbf{T}}$ is equal to which of the following:

igcup [Math Processing Error] $||\mathbf{x}||^2$

igcup The identity matrix, I_d

Submit

Problem 8

1/1 point (graded)

The following line is given by the equation $\mathbf{w}^{\cdot}\mathbf{x} = c$, where c = 8. What are the vectors \mathbf{x} and \mathbf{w} ?

$$\mathbf{x} = \left(egin{array}{c} x_1 \ x_2 \end{array}
ight)$$
 , $\mathbf{w} = \left(egin{array}{c} 8 & -8 \end{array}
ight)$

$$igcap_{\mathbf{x}} = ig(egin{array}{c} x_1 \ x_2 \ \end{pmatrix}$$
 , $\mathbf{w} = ig(-4 \quad 1\,)$

$$\mathbf{x} = \begin{pmatrix} x_1 \ x_2 \end{pmatrix}$$
 , $\mathbf{w} = \begin{pmatrix} -1 & 8 \end{pmatrix}$

$$led{oldsymbol{\circ}} \mathbf{x} = egin{pmatrix} x_1 \ x_2 \end{pmatrix}$$
 , $\mathbf{w} = egin{pmatrix} 2 & 1 \end{pmatrix}$

Submit

Problem 9

1/1 point (graded)

Indicate which of the following properties apply to matrix multiplication:

lacksquare Associative property (that is, $ABC = (AB)\,C = A\,(BC)$)

7/2019	Quiz 3 Comprehension Quiz 3 DSE220x Courseware edX
	Commutative property (that is, $AB=BA$)
V	Existence of an identity matrix
~	
S	Submit
Pro	oblem 10
	point (graded) en two matrices, $A \in \mathbb{R}^{j imes k}$ and $B \in \mathbb{R}^{k imes l}$, what is $(AB)^T$?
	$)AB^T$
	A^TB^T
	$)BA^T$
	$)\ B^TA^T$
~	
S	Submit
Pro	oblem 11
True	point (graded) e or false: Given two square matrices, $A\in\mathbb{R}^{d imes d}$ and $B\in\mathbb{R}^{d imes d}$, if $AB=BA=I_0$ en $B=A^{-1}$.
	True
	False

Submit

Problem 12

1/1 point (graded)

Which of the following are true about singular matrices?

- Singular matrices cannot also be diagonal matrices
- ightharpoonup Singular matrices have a determinant of 0
- Singular matrices are not invertible
- Singular matrices include the identity matrix

Submit

Problem 13

1/1 point (graded)

Given the 2×2 matrix, $M = \begin{pmatrix} 1 & 5 \\ 1 & 4 \end{pmatrix}$, determine which of the following is the inverse matrix of M.

$$leftondermath{lack}{lack} M^{-1} = \left(egin{matrix} -4 & 5 \ 1 & -1 \end{matrix}
ight)$$

$$M^{-1}=egin{pmatrix}1&rac{1}{5}\1&rac{1}{4}\end{pmatrix}$$

$$\bigcirc M^{-1} = \left(egin{array}{cc} 1 & -1 \ -5 & 4 \end{array}
ight)$$

Does not have an inverse

Submit

Problem 14

1/1 point (graded)

Which of the following matrices are singular?

$$\begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{3} & 1 \\ 1 & 3 \end{pmatrix}$$

Submit

Problem 15

1/1 point (graded)

Given the matrix, $M=\begin{pmatrix}1&3\\2&7\end{pmatrix}$, and the vector $\mathbf{x}=\begin{pmatrix}x_1\\x_2\end{pmatrix}$, what expression below is equivalent to $\mathbf{x^T}M\mathbf{x}$?

 $\bigcirc \ 3x_1 + 10x_2$

Submit

Problem 16

1/1 point (graded)

Suppose a Gaussian distribution has a covariance matrix that is diagonal, with the same value in each position along the diagonal. Which of the following can we conclude? Select all that apply.

▼ The features are uncorrelated

▼ The contour lines for the distribution are axis aligned

The contour lines for the distribution are in concentric spheres

ightharpoonup Any point that is a fixed distance away from the mean μ has the same density

Submit

Problem 17

1/1 point (graded)

True or false: the only two parameters needed to define a multivariate Gaussian distribution are the mean, μ , and the covariance matrix, Σ .

True

False

Submit

Problem 18

1/1 point (graded)

For a spherical Gaussian distribution, defined by $\mu\in\mathbb{R}^d$ and $\Sigma=\sigma^2I_d$, what is the determinant of the covariance matrix, $|\Sigma|$?

Submit

Problem 19

1/1 point (graded)

Given the following 4 data points in \mathbb{R}^3 , computer the mean, $\mu \in \mathbb{R}^3$.

Data points: $x_1=(0,0,1)$, $x_2=(1,4,1)$, $x_3=(2,2,1)$, $x_4=(1,2,5)$.

$$\mu = (1.5, 2.5, 3)$$

$$lacktriangleup \mu = (1, 2, 2)$$

$\bigcirc \mu = ($	1.33, 2.6	6, 2.66)
--------------------	-----------	----------

Submit

Problem 20

1/1 point (graded)

True or false: the covariance matrix of any data set is necessarily symmetric.

Submit

Problem 21

1/1 point (graded)

True or false: In a binary classification setting, where each class is modeled by a multivariate Gaussian, a data point, x, will always be classified as label 1 instead of label 2 if the distance from x to μ_1 is less than the distance from x to μ_2 .

Submit

Problem 22

1/1 point (graded)

If a Gaussian generative model is used for classification, and the decision boundary for the k classes is linear, which of the following statements must be true?

There are exactly two classes,	i e	k =	2
There are exactly two classes,	1.6.	κ —	4

The means,	u. arα	Aquidistant	from th	his da	rision k	nounda	r\/
) The means,	μ_i , are	equiuistant	II OIII U	ilis de	7121011 1	Journa	ıу

Submit

Problem 23

1/1 point (graded)

If a test error is 0%, what does this indicate about the model?

(None	of the	data ir	n the	test	set was	miscl	assified	l
١	NOTIC	OI LITE	uata ii	I LIIC	ıcsı	Set was	1111301	assinca	ı

The data in the test set is not a good representation of all classes

Submit

Problem 24

1/1 point (graded)

Suppose a generative Gaussian model is used for a binary classification problem with two classes, A and B. If the decision boundary is linear and the class probability $\pi_A > \pi_B$, would you expect the boundary to be closer to μ_A or μ_B ?

$igcup$ The boundary will be closer to μ_A
$lacksquare$ The boundary will be closer to μ_B
$igcup$ The boundary will be equidistant to μ_A and μ_B
This cannot be determined without the respective covariance matrices
✓
Submit

Problem 25

1/1 point (graded)

True or false: a Gamma distribution is useful for modeling features which are constrained to a specific interval.

Problem 26

1/1 point (graded)

Using the Naive Bayes classifier, which of the following are necessarily true?

Each coordinate of the data is modeled by the same distribution

Each coordinate of the data is taken to be independent of the others
Provides a very inaccurate model for classification
Each pairwise set of coordinates are modeled together
Submit
Problem 27 1/1 point (graded) Which distribution would be useful for specifying the distribution over first names in a phone book for some random city?
Gamma Distribution
Beta Distribution
Poisson Distribution
Categorical Distribution
✓
Submit

© All Rights Reserved