1 Number Systems

Decimal

$$\begin{array}{c|cccc} 1 & 5 & 7 \\ \hline 100 & 10 & 1 & \text{weights} \end{array}$$

$$1 \times 100 + 5 \times 10 + 7 \times 1 = 157$$

base-10 number system

Binary

Binary is a base-2 number system.

$$\frac{0}{16} \frac{1}{8} \frac{0}{4} \frac{1}{2} \frac{1}{1}$$
 weights

$$0 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1 = 11 \text{ dec}$$

$$8 + 2 + 1 = 11$$
 decimal.

We call a sequence of eight bits a byte.

To complement a bit means to flip it.

Hexadecimal

Hexadecimal (or hex for short) is the base-16 number system.

16 symbols: 0 to 9 and A, B, C, D, E, and F

$$\frac{2 \quad C \quad 5}{256 \quad 16 \quad 1 \text{ weights (in decimal)}}$$

$$2 \times 256 + C \times 16 + 5 \times 1$$

$$2 \times 256 + 12 \times 16 + 5 \times 1 = 512 + 192 + 5 = 709$$

Decimal	Binary	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A (or a)
11	1011	B (or b)
12	1100	C (or c)
13	1101	D (or d)
14	1110	E (or e)
15	1111	F (or f)

Rule: Adding a 0 on the right side of a positional whole number multiplies its value by its base.

Numbering Bits

most significant bit least significant bit

Adding Positional Numbers

decimal addition:

binary addition:

hex addition:

Representing Negative Numbers

$$0011 = +3$$
 Sign-magnitude
+ $1011 = -3$
 $1110 = -6$

Rule: Adding 1 to a binary number with a fixed number of bits all of which are 1 results in all zeros.

Is 1101 the representation of -3 that we want? Let's add it to +3 to see if it gives zero:

Rule: To negate a binary number in the two's complement system, flip its bits and add 1.

Rule: In the two's complement system, all 1's represents -1.

Signed and Unsigned Numbers

Unsigned	Value	Signed	Value
0000	0	1000	-8
0001	1	1001	-7
0010	2	1010	-6
0011	3	1011	-5
0100	4	1100	-4
0101	5	1101	-3
0110	6	1110	-2
0111	7	1111	-1
1000	8	0000	0
1001	9	0001	1
1010	10	0010	2
1011	11	0011	3
1100	12	0100	4
1101	13	0101	5
1110	14	0110	6
1111	15	0111 †	7
		sign bit	

Range of Numbers

```
n Unsigned Signed
3 0 to 7 -4 to 3
4 0 to 15
             -8 to 7
5 0 to 31
             -16 to 15
6 0 to 63
             -32 to 31
7 0 to 127 -64 to 63
8 0 to 255 -128 to 127
9 0 to 511
             -256 to 255
10 0 to 1023 -512 to 511
12 0 to 4095 -2048 to 2047
16 0 to 65535 -32768 to 32767
k 0 to 2^{k}-1 -2^{k-1} to 2^{k-1}-1
```

Powers of 2

```
n 2<sup>n</sup>
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1,024 (aka 1K)
11 2,048 (aka 2K)
12 4,096 (aka 4K)
15 32,768 (aka 32K)
16 65,536 (aka 64K)
20 1,048,576 (aka 1M)
30 1,073,741,824 (aka 1G)
```

Converting Between Binary and Hex

1	1010	1110	0000	1100
ţ	†	†	†	↓
1	Α	Ε	0	C

Converting Decimal to Binary

Converting Fractions

Converting Binary Fraction

.375 decimal = .011 binary

Infinite Length Equivalents

Zero and Sign Extension

Extend 11111111 to 16 bits

000000011111111

1111111111111111

Rule: Always sign extend signed numbers.

Rule: Always zero extend unsigned numbers.

Exclusive OR Gate

Exclusive OR Gate

X	У	Z
0	0	0
0	1	1
1	0	1
1	1	0

difference detecting gate

Control	Data	Output of exclusive OR
0 0	0 1	$\begin{array}{c} 0 \\ 1 \end{array} \qquad \begin{array}{c} \text{Data unaffected} \\ \text{when control} = 0 \end{array}$
1 1	0 1	$ \begin{array}{c} 1 \\ 0 \\ \end{array} $ Data flipped when control = 1

Rule: If the control line of an exclusive OR is 0, the data passes through gate unchanged. If the control line is 1, the data is complemented.

NOR Gate

Х	У	Z	1 when all
0	0	1 -	
0	1	0	inputs = 0
1	0	0	
1	1	0	

zero detecting gate

Addition and Subtraction

Signed Overflow

Rule: If two signed numbers with different signs are added or two signed numbers with the same sign are subtracted, overflow cannot occur.

Overflow scenarios:

Here are all the possible scenarios for no overflow:

Rule: In an addition or subtraction of signed numbers, overflow has occurred if the carry into the leftmost position does not match the carry out.

Rule: If overflow occurs during the addition of two signed numbers, the sign bit of the computed result is wrong.

Unsigned Overflow

Rule: In an addition of unsigned numbers, a carry out of the leftmost position indicates overflow. In a subtraction, no carry out of the leftmost position (or a borrow in if the borrow technique is used) indicates overflow.

Three-bit Adder/Subtractor Circuit with n, z, c, and v Flags

Floating Point

hidden bit exponent

1.10101 x 2³ (which equals 13.25 decimal)

fractional

part

- One bit: the sign bit (0 for zero or positive, 1 for negative)
- Eight bits: the exponent to which 127 is added
- 23 bits: the fractional part, zero extended on the right

Thus, the 32-bit floating-point representation of 13.25 decimal is

Special Representations

Exponent field	Fractional part	Value
all 0's	all 0's	0.0
all 0's	nonzero	denormal number (exponent = -126 , hidden bit 0)
all 1's	all 0's	infinity
all 1's	nonzero	NaN (Not a Number)

Denormal Numbers

Smallest positive magnitude that can be represented by a regular floating-point number is

which equals

which is just under 2⁻¹²⁶, down to

Floating-point numbers (float and double in C) are *only an approximation of the set of real numbers in mathematics*

```
1 // ex0101.c Finite precision of floating point numbers
2 #include <stdio.h>
3 int main()
4 {
     double sum = 0.0;
5
6
     int i;
7
     for (i = 1; i <= 10; i++)
        sum = sum + 0.1;
8
     printf("%.17f\n", sum);  // sum is not 1.0
9
     return 0;
10
11 }
```

```
1 // ex0102.c Floating-point errors
2 #include <stdio.h>
3 int main()
4 {
5
      double x = 1E70; // 10^{70}
      double y = 1E5; // 10^5
 6
7
      if (x == x + y)
         printf("y must be zero\n"); // displayed but y is not zero
8
 9
      else
         printf("y must be nonzero\n");
10
      return 0;
11
12 }
```

Observation: Numbers can act like zero when added to numbers with significantly larger magnitudes.

```
1 // ex0103.c Lack of associativity in floating-point computations
 2 #include <stdio.h>
3 int main(void)
4 {
      double sum = 0.0;
 5
6
      int i;
      for (i = 1; i \le 100000000; i++)
7
8
         sum = sum + 1.0/i;
      printf("%.17f\n", sum);
 9
10
      sum = 0.0;
11
      for (i = 100000000; i >= 1; i--) // better for loop
12
         sum = sum + 1.0/i;
13
      printf("%.17f\n", sum);
14
      return 0;
15
16 }
```

Observation: Addition of floating-point numbers is not associative (i.e., order of evaluation matters).