UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DIVISIÓN DE CIENCIAS BÁSICAS

Patch modifications and separation axioms in point-free topology

TESIS QUE PRESENTA Juan Carlos Monter Cortés PARA OBTENER EL GRADO DE Doctor en Ciencias en Matemáticas

DIRECTOR DE TESIS: Dr. Luis Ángel Zaldívar Corichi

Dedicado a:

Agradecimientos

Juan Carlos Monter Cortés Centro Universitario de Ciencias Exactas e Ingenierías Guadalajara, Jalisco, MÉXICO Agosto 2027

Contents

1	Bacl	ekground				
2	Mar	cos arr	reglados			
	2.1	Espaci	ios sobrios			
	2.2	Conju	ntos saturados			
		2.2.1	La topología frontal (topología de Skulla)			
	2.3	El Teo	orema de Hoffman-Mislove			
		2.3.1	Las propiedades de separación de regularidad y ajustado			
	2.4	La cor	nstrucción de parches sensible a puntos			
		2.4.1	Espacios empaquetados			
		2.4.2	El parche sensible a puntos y la sobriedad			
		2.4.3	Propiedades funtoriales de la construcción sensible a puntos			
2.5	2.5	El ens	amble			
		2.5.1	Núcleos espacialmente inducidos			
		2.5.2	Filtros admisibles y núcleos ajustados			
		2.5.3	Núcleos asociados a filtros abiertos			
		2.5.4	Estructura de bloques			
	2.6	Propie	edades del ensamble			
		2.6.1	El funtor $N(\underline{\ })$			
		2.6.2	El triángulo fundamental de un espacio			
		2.6.3	¿Quién es $\operatorname{pt} NA$?			
2.	2.7	El mai	rco de parches			
		2.7.1	$Es P(\underline{\ }) $ un funtor?			
		2.7.2	El diagrama completo del marco de parches			
2.8	2.8	Jerarq	uía de propiedades de separación			
		2.8.1	Marco parche trivial			
		2.8.2	Marcos arreglados			
		2.8.3	La jerarquía de la regularidad			
		2.8.4	Topologías arregladas			
		2.8.5	Espacios apilados			
	2.9	El espa	acio de puntos del marco de parches			
_		2.9.1	Dos spoilers			
		2.9.2	Los puntos "ordinarios" del marco de parches			
		2.9.3	Los puntos salvajes del ensamble de parches			
	2.10		olos			

CONTENTS							
		2.10.1	La topología cofinita y conumerable	61			
3	Axio	xiomas de separación en $\mathcal{O}S$					
	3.1	Los ax	iomas de separación sensibles a puntos	67			
	3.2	Las "tr	raducciones" de las nociones de separación	69			
		3.2.1	$T_0 \sin \text{puntos}$	70			
		3.2.2	$T_1 \sin \text{puntos} \dots \dots$	70			
		3.2.3	Regularidad sin puntos	70			
		3.2.4	Completamente regular sin puntos	71			
		3.2.5	Normalidad sin puntos	72			
		3.2.6	Propiedades de separación para marcos	73			
	3.3	Propie	dades de separación adicionales	73			
	3.4						
		3.4.1	Subajustado	80			
		3.4.2	Ajustado	85			
		3.4.3	Subajustado y ajustado en sublocales	89			
		3.4.4	Ajustado y subajustado en congruencias	91			
	3.5			94			
		3.5.1	Marcos débilmente Hausdorff	94			
		3.5.2	Marcos Hausdorff	95			
		3.5.3	Marcos Hausdorff basados	96			
		3.5.4	Marcos fuertemente Hausdorff	97			
4	Mar	cos arre	eglados vs Axiomas tipo Hausdorff	100			
5	5 Marcos arreglados vs cocientes compactos						

Introduction

Chapter 1

Background

Chapter 2

Marcos arreglados

Si S es un espacio topológico, entonces este puede cumplir distintas propiedades (axiomas de separación, compacidad, sobriedad, entre otras). La construcción del espacio de parches es motivada bajo la siguiente situación: si S es un espacio T_2 , entonces todo conjunto compacto (saturado) es cerrado. La pregunta natural ante esta situación es, ¿qué pasa si el espacio no es T_2 ? El espacio de parches, como veremos más adelante, soluciona este "defecto". En este capítulo veremos como se realiza la construcción de este espacio para el caso clásico y cuales serían sus traducciones en el lenguaje de marcos (la construcción de parches de Sexton y la construcción de parches de Escardó).

En esta parte de las notas abordaremos nociones que son más débiles que T_2 , pero más fuertes que T_1 , en el caso del espacio de parches, o incomparables con T_1 , como es el caso de los espacios sobrios.

2.1 Espacios sobrios

Definición 2.1.1 Un conjunto cerrado A no vacío es irreducible en S si para cada U, V abiertos disjuntos se cumple que

$$U \cap A \neq \emptyset, V \cap A \neq \emptyset \Rightarrow U \cap V \cap A \neq \emptyset.$$

Definición 2.1.2 Para un espacio S decimos que este es sobrio si es T_0 y cada conjunto cerrado irreducible A es un único punto de cierre, es decir,

$$A = \overline{\{x\}}$$

 $con x \in S$.

Se puede verificar que si S es un espacio T_2 , entonces este es sobrio, pero las propiedades de sobriedad y T_1 no son comparables.

Si tenemos un espacio que no es sobrio, entonces existe una manera de "sobrificarlo".

2.1. ESPACIOS SOBRIOS 4

Definición 2.1.3 Sea S un espacio topológico. La reflexión sobria de S, denotada por +S, es el espacio topológico cuyos puntos son los conjuntos cerrados irreducibles de S. Para $U \in \mathcal{O}S$ $sea + U \subseteq S dado por$

$$X \in {}^+U \Leftrightarrow U \cap X \neq \emptyset$$

para cada $X \in {}^+S$ (ver las notas en la tablet para comparar notación)

De esta manera tenemos el espacio topológico (${}^+S$, \mathcal{O}^+S), donde

$$\mathcal{O}^+S = \{^+U \mid U \in \mathcal{O}S\}$$

De esta manera tenemos un morfismo de marcos $_^+$: $\mathcal{O}S \to \mathcal{O}^+S$ dado por la reflexión sobria y la función continua de S a +S dada por la asignación $p \mapsto p^-$.

Lema 2.1.4 Para cada función continua $\Phi \colon S \to T$ de un espacio arbitrario S a un espacio sobrio T, existe una única función continua $^+\Phi: ^+S \to T$ tal que el siguiente diagrama conmuta

Los siguiente resultados involucran al espacio de puntos de un marco y a espacios sobrios.

Lema 2.1.5 Si un espacio S tiene reflexión sobria que es T_1 , entonces S es sobrio y T_1 .

Demostración. Notemos que $S \subseteq {}^+S$, donde S tiene la topología del subespacio. Supongamos que $X \subseteq S$ es un conjunto cerrado irreducible de S y consideremos la clausura X^- de X en ^+S . Para $U \in \mathcal{O}^+S$ tenemos

$$X^- \cap U \Rightarrow X \cap U \Rightarrow X \cap (S \cap U),$$

es decir X^- es cerrado irreducible en ${}^+S$. Ahora, si ${}^+S$ es T_1 y sobrio, entonces $X^- = \{p\}$ para algún $p \in {}^+ S$ y por lo tanto $X = \{p\}$.

Lema 2.1.6 El espacio de puntos ptA de un marco A es sobrio

Lema 2.1.7 Sea S un espacio topológico. El espacio de puntos de OS es la reflexión sobria de S.

Para ver esto, notemos que los subconjuntos cerrados irreducibles de un espacio S son precisamente los complementos de los elementos \(\rightarrow\)-irreducibles. De esta manera encontramos que

$$S \to \operatorname{pt}(\mathcal{O}S)$$

$$p \mapsto \overline{\{p\}}'$$

es el mapeo que da la reflexión.

5

2.2 Conjuntos saturados

Cada espacio topológico tiene un preorden para sus puntos. Este es un orden de especialización y se define de la siguiente manera.

Definición 2.2.1 Sea S un espacio topológico. El orden de especialización en S es la comparación " \sqsubseteq " dado por

$$p \sqsubseteq q \Leftrightarrow p^- \subseteq q^-$$

donde $p, q \in S$. De manera equivalente tenemos que $p \sqsubseteq q \Leftrightarrow p \in q^-$.

La comparación definida es un preorden y este es un orden parcial precisamente cuando el espacio es T_0 . Si el espacio es T_1 , entonces el orden está dado por la igualdad.

Recordemos que si tenemos un marco arbitrario, por lo visto en ??, podemos asignarle a este un espacio topológico por medio de su espacio de puntos.

Lema 2.2.2 Sea A un marco con espacio de puntos ptA. El orden de especialización en S es el orden inverso del orden heredado de A.

Usando este orden parcial en un espacio T_0 , podemos introducir el concepto de saturación.

Definición 2.2.3 Sea (S, \leq) un conjunto parcialmente ordenado. Para cada $E \subseteq S, \downarrow E$ $y \uparrow E$ son, respectivamente, la sección inferior y la sección superior generada por E, es decir,

$$\downarrow E = \{x \mid (\exists e \in E)[x \le e]\} \quad \text{ } y \quad \uparrow E = \{x \mid (\exists e \in E)[x \ge e]\}$$

respectivamente. Decimos que $\uparrow E$ es la saturación de E y E es saturado si $E = \uparrow E$.

Para $p \in S$ escribimos $\downarrow p$ para $\downarrow \{p\}$ y $\uparrow p$ para $\uparrow \{p\}$. Trivialmente $\uparrow \uparrow E = \uparrow E$, por lo que la saturación de E es saturada.

Si S es cualquier espacio topológico y $p \in S$, tenemos que $\downarrow p = p^-$. Sin embargo, esto no es cierto para subconjuntos arbitrarios de S. Usualmente $\downarrow E \neq E^-$ aunque hay una clase de topologías para las cuales $\downarrow (_)$ y $(_)^-$ coinciden (las topologías de Alexandorff).

En un espacio topológico, la saturación de un subconjunto se puede obtener sin referencia al orden de especialización.

Lema 2.2.4 Sea S un espacio topológico. Para cada subconjunto $E \subseteq S$ tenemos que

$$\uparrow E = \bigcap \{ U \in \mathcal{O}S \mid E \subseteq U \}$$

Demostración. Consideremos $x \in \uparrow E$, entonces $\exists e \in E$ tal que $e \sqsubseteq x$, es decir, $e^- \subseteq x^-$. De aquí que para $U \in \mathcal{O}S$, si $e \in U$ entonces $x \in U$. Por lo tanto

$$x \in \bigcap \{U \in \mathcal{O}S \mid e \in U\} \subseteq \bigcap \{U \in \mathcal{O}S \mid E \subseteq U\},\$$

es decir, $\uparrow E \subseteq \bigcap \{U \in \mathcal{O}S \mid E \subseteq U\}$.

Para la otra contención, consideremos $x \in \bigcap \{U \in \mathcal{O}S \mid E \subseteq U\}$. Notemos que si $E \subseteq U$, entonces $x \in U$ para todo $U \in \mathcal{O}S$. De aquí que al menos existe algún $e \in E$ tal que $e^- \subseteq x^-$, es decir, $e \sqsubseteq x$.

De esta manera cada subconjunto abierto es saturado. Sin embargo, el reciproco no necesariamente ocurre, por lo general, hay muchos conjuntos saturados que no son abiertos. Por ejemplo, en un espacio T_1 todos los conjuntos son saturados. En un espacio de Alexandroff ocurre lo contrario, cada saturado es abierto.

En cualquier conjunto parcialmente ordenado, la familia de conjuntos saturados (secciones superiores), es cerrada bajo uniones e intersecciones arbitrarias. En particular, los conjuntos saturados forman la topología de Alexandroff.

Definición 2.2.5 Sea (S, \leq) un orden parcial. La topología de Alexandroff en S es la topología que consta de todos los conjuntos saturados

Definición 2.2.6 Una cubierta abierta para un conjunto A es una colección $\mathcal U$ de conjuntos abiertos tales que

$$A \subseteq \bigcup \mathcal{U}$$

se cumple.

- Una subcubierta de una cubierta abierta \mathcal{U} para A es una subcolección de \mathcal{U} $\mathcal{V}\subseteq\mathcal{U}$ la cual forma una cubierta abierta para A.
- Una cubierta \mathcal{U} es dirigida si esta es \subseteq -dirigida, es decir, para cada $U, V \in \mathcal{U}$, existe algún $W \in \mathcal{U}$ tal que $U \cup V \subseteq W$.
- Un conjunto X de un espacio topológico S es compacto si cada cubierta abierta de X tiene una subcubierta abierta finita.

A veces es conveniente usar una formulación equivalente de compacidad. Reescribimos la definición en términos de cubiertas abiertas dirigidas.

Lema 2.2.7 Sea S un espacio topológico. Un conjunto $X \subseteq S$ es compacto si y solo si para cada cubierta abierta dirigida W existe algún $W \in W$ tal que $X \subseteq W$.

Demostración.

 \Rightarrow) Consideremos un subconjunto compacto X y una cubierta dirigida de abiertos \mathcal{W} , es decir $X\subseteq \bigcup \mathcal{W}$. De aquí que debe existir una cubierta finita, digamos \mathcal{V} . Al ser \mathcal{W} dirigida, tenemos que $\bigcup \mathcal{V} \in \mathcal{W}$ y al ser X compacto se cumple que $X\subseteq \bigcup \mathcal{V}$.

←) Consideremos X ⊆ S tal que para cada cubierta abierta dirigida W existe W ∈ W, con X ⊆ W. Notemos que si U es cualquier cubierta abierta, entonces agregando todas las uniones finitas obtenemos una cubierta abierta dirigida U₀. Por hipótesis, existe U ∈ U₀ tal que X ⊆ U. Luego, al ser U solo uniones finitas de U, esta es una subcubierta finita de X. Por lo tanto X es compacto.

Definición 2.2.8 Para un espacio topológico S, consideramos QS como la colección de conjuntos compactos saturados de S.

El conjunto vacío está en QS. De igual manera para $p \in S$, la saturación $\uparrow p$ está en QS. Esto puede ser generalizado.

Lema 2.2.9 Sea K un subconjunto compacto de un espacio S. La saturación $\uparrow K$ está en QS.

Demostración. Debemos probar que para $K \subseteq S$ un conjunto compacto se cumple que $\uparrow K$ también lo es. Consideremos $\mathcal U$ una cubierta abierta dirigida de $\uparrow K$. De aquí que $\mathcal U$ es también una cubierta abierta dirigida de K. Luego, como K es compacto existe $U \in \mathcal U$ tal que $K \subseteq U$. Se puede verificar que U es un conjunto saturado que contiene a K, de aquí que $\uparrow K \subseteq U$. Por lo tanto $\uparrow K$ es compacto.

De esta manera tenemos tres familias distinguidas de subconjuntos de S, los abiertos $\mathcal{O}S$, los cerrados $\mathcal{C}S$ y los compactos saturados $\mathcal{Q}S$.

Sabemos que la unión de dos conjuntos compactos es compacta. De igual manera, se puede comprobar que la unión de dos conjuntos saturados es saturada. Esto nos da como resultado el siguiente lema.

Lema 2.2.10 La unión de dos conjuntos saturados compactos es saturada compacta.

Por otro lado, la unión de una familia arbitraria de conjuntos compactos saturados no necesita ser compacta saturada. Para ver esto, consideremos la unión de todos los $\uparrow p$ para cada punto p de un espacio S que no es compacto.

Tampoco es el caso que la intersección de cualesquiera dos conjuntos compactos saturados deba ser compacta saturada.

El siguiente resultado es el que nos motiva a estudiar lo que en la Sección 2.4 aparece como construcción del espacio de parches.

Lema 2.2.11 En un espacio T_2 cada conjunto compacto saturado es cerrado.

Demostración. Consideremos un espacio S que es T_2 , en consecuencia S es T_1 y así todo conjunto del espacio es saturado. Consideremos $Q \subseteq S$ un conjunto compacto. veamos que Q es cerrado. Para ello consideremos $p \notin Q$ y veamos que para $\mathcal{U}(p)$ una vecindad abierta de p se cumple que

$$Q\cap \mathcal{U}(p)=\emptyset.$$

Consideremos $q \in Q$ y al ser S un espacio T_2 tenemos que existen $U_q, V_q \in \mathcal{O}S$ tales que

$$p \in U_q, \quad q \in V_q, \quad U_q \cap V_q = \emptyset.$$

De aquí que $\{V_q \mid q \in Q\}$ forma una cubierta abierta para Q y, por la compacidad, podemos extraer una subcubierta finita $\{V_i \mid i \in \mathcal{I}\}$, donde \mathcal{I} es un subconjunto finito de Q. Considerando $\mathcal{U}(p) = \{U_i \mid i \in \mathcal{I}\}$ tenemos la vecindad de p que buscábamos.

El siguiente resultado nos da una caracterización similar a la regularidad definida para espacios topológicos.

Corolario 2.2.12 Sea S un espacio T_2 . Para un punto p y conjunto Q compacto (saturado), que no contiene a p existe conjuntos abiertos U, V tales que

$$p \in U$$
, $Q \subseteq V$, $U \cap V = \emptyset$.

2.2.1 La topología frontal (topología de Skulla)

La topología frontal de un espacio S es la topología más fina que hace a todos los cerrados originales conjuntos clopen (conjuntos que son cerrados y abiertos al mismo tiempo). Esto puede parecer una topología muy poco interesante, pero veremos que tiene alguna relevancia para las construcciones sin puntos que se verán más adelante.

Definición 2.2.13 El espacio frontal, denotado por fS de un espacio topológico S tiene los mismos puntos que S, pero la topología más fina \mathcal{O}^fS generada por

$$\{U \cap X \mid U \in \mathcal{O}S, X \in \mathcal{C}S\}.$$

Se puede verificar que $\{U \cap p^- \mid U \in \mathcal{O}S, p^- \in \mathcal{C}S\}$ es también una base para la topología frontal en S. De hecho los conjuntos $U \cap p^-$ para $U \in \mathcal{O}S$ forman las vecindades abiertas frontales de $p \in S$.

Para $E\subseteq S$, escribimos E^\square y $E^=$ para el interior frontal y la clausura frontal de E, respectivamente. Estos están relacionados por

$$E^{\circ} \subseteq E^{\square} \subseteq E \subseteq E^{=} \subseteq E^{-}$$

y pueden ser distintos.

Notemos que $p \in E^=$ si y solo si para todo $U \in \mathcal{O}S$, si $p \in U$, entonces $E \cap U \cap p^- \neq \emptyset$ se cumple.

Notemos que fS no es el espacio discreto. Para complementar esto tenemos el siguiente resultado.

Lema 2.2.14 Sea S un espacio topológico

- Si S es T_1 , entonces f S es discreto.
- Si fS es discreto, entonces S es T_0 .

9

• Si S es T_0 , entonces ff S es discreto.

En la tercera parte del lema anterior, se usa el segundo espacio frontal ^{ff}S . Hay ejemplos de espacios sobrios S tales que $\mathcal{O}S$, \mathcal{O}^fS , $\mathcal{O}^{ff}S = \mathcal{P}S$ son distintos.

Teorema 2.2.15 Si S es un espacio sobrio, entonces también lo es fS .

Demostración. Observemos que al ser S un espacio sobrio, este es T_0 . De aquí que fS también es T_0 . De está manera debemos probar que cada conjunto cerrado irreducible en fS es la cerradura de un punto.

Consideremos $F\subseteq S$ un conjunto cerrado tal que es irreducible en fS . Entonces para cada $U,V\in\mathcal{O}S$ y $X,Y\in\mathcal{C}S$ se cumple

$$F \cap X \cap U \neq \emptyset, \ F \cap Y \cap V \neq \emptyset \ \Rightarrow \ F \cap X \cap Y \cap U \cap V \neq \emptyset.$$

Veamos ahora que F^- es cerrado irreducible en S. Supongamos que $F^- \cap U \neq \emptyset$ y $F^- \cap V \neq \emptyset$. Por las propiedades de la clausura tenemos que $F \cap U \neq \emptyset$ y $F \cap V \neq \emptyset$ y así, por ser irreducible en F, se cumple que $F \cap U \cap V \neq \emptyset$. Por lo tanto $F^- \cap U \cap V \neq \emptyset$, es decir F^- es cerrado irreducible en F.

Por hipótesis S es sobrio, de aquí que $F^- = p^-$ para algún $p \in S$. Observemos que si $p \in F$ se cumple que $F^= = F$. Supongamos que $p \in U \in \mathcal{O}S$, entonces $F^- \cap U \neq \emptyset$ y por lo tanto $F \cap U \neq \emptyset$. Así cada vecindad abierta del punto p de la forma $U \cap p^-$ también intersecta a F. Luego por la definición de la cerradura frontal tenemos que $p \in F^= = F$.

$$T \longleftrightarrow {}^+T$$

En particular, si tenemos $T \subseteq S$ para algún espacio sobrio S, entonces $T \subseteq^+ T \subseteq S$. Podemos identificar cual es este espacio S que es sobrio.

Teorema 2.2.16 Sean S un espacio sobrio y $T \subseteq S$ un subconjunto arbitrario. Entonces $T = T^{-}$ en S precisamente cuando, como subespacio, T es sobrio.

Demostración.

 \Rightarrow) Primero, supongamos que T es cerrado frontal. Notemos que, como subespacio, los subconjuntos cerrados de T son de la forma $T\cap X$, donde $X\in\mathcal{C}S$. Además dicho conjunto es la clausura de un punto si y solo si $T\cap X=T\cap p^-$ para algún $p\in T$.

Supongamos que $T \cap X$ es cerrado irreducible en T. De esta manera, para $U, V \in \mathcal{O}S$ se cumple que

$$T \cap X \cap U \neq \emptyset$$
, $T \cap X \cap V \neq \emptyset$ \Rightarrow $T \cap X \cap U \cap V \neq \emptyset$

Además, para los mismos U, V se cumple que

$$(T \cap X)^- \cap U \neq \emptyset \Rightarrow T \cap X \cap U \neq \emptyset$$
$$(T \cap X)^- \cap V \neq \emptyset \Rightarrow T \cap X \cap V \neq \emptyset$$

lo cual implica que $(T\cap X)^-$ es cerrado irreducible en S. Por hipótesis S es sobrio, de aquí que $(T\cap X)^-=p^-$ para un único $p\in (T\cap X)^-$. Notemos que $p\in (T\cap X)^-\subseteq X^-=X$, es decir, $p^-\subseteq X$. Luego

$$T \cap p^- \subseteq T \cap X \subseteq T \cap (T \cap X)^- = T \cap p^-,$$

es decir, $T \cap X = T \cap p^-$. Por lo tanto, basta mostrar que $p \in T$.

Para cada $U \in \mathcal{O}S$, como $(T \cap X)^- = p^-$. tenemos

$$p \in U \implies (T \cap X)^- \cap U \neq \emptyset$$
$$\implies T \cap X \cap U \neq \emptyset$$
$$\implies T \cap U \cap p^- \neq \emptyset$$

y así $p \in T^{=} = T$.

 \Leftarrow) Supongamos que, como subespacio, T es sobrio. Demostraremos que $T^- \subseteq T$.

Consideremos cualquier punto $p \in T^=$, entonces $p \in U$ si y solo si $T \cap U \cap p^- \neq \emptyset$ para cada $U \in \mathcal{O}S$. En particular, para U = S tenemos que $T \cap p^- \neq \emptyset$ y así este conjunto es cerrado en T. Veamos que $T \cap p^-$ es iireducible. Consideremos $U, V \in \mathcal{O}S$, entonces

$$T \cap p^- \cap U \neq \emptyset, T \cap p^- \cap V \neq \emptyset \Rightarrow p \in U \cap V,$$

de modo que $T \cap p^- \cap U \cap V \neq \emptyset$. Por hipótesis, T es sobrio, entonces $T \cap p^- = T \cap q^-$ para algún $q \in T \cap p^-$. En particular, $q \in p^-$. Luego para cada $U \in \mathcal{O}S$ tenemos

$$p \in U \Rightarrow T \cap p^- \cap U \neq \emptyset$$
$$T \cap q^- \cap U \neq \emptyset$$
$$q^- \cap U \neq \emptyset$$
$$q \in U,$$

es decir, $p \in q^-$ y por lo tanto, $p^- = q^-$. Como S es T_0 , entonces $p = q \in T$. Luego $T^- \subseteq T$ lo cual implica que $T^- = T$.

Corolario 2.2.17 Consideremos T un espacio T_0 y supongamos que $T \subseteq S$ para algún espacio sobrio S. Entonces la reflexión sobria ^+T de T es la clausura frontal de T en S.

Demostración. Sabemos que $T \subseteq^+ T \subseteq S$. Además, por el Teorema 2.2.16, tenemos que ^+T es cerrado frontal. Así $T^= \subseteq ^+T$. Similarmente, sabemos que $T \subseteq T^= \subseteq S$, por el Teorema 2.2.16, $T^=$ es sobrio. Así $^+T \subseteq T^=$.

2.3 El Teorema de Hoffman-Mislove

Sabemos que distintos dispositivos dados en la teoría de marcos están en correspondencia biyectiva con nociones topológicas. El Teorema de Hoffman-Mislove nos proporciona una más.

Recordemos que, para un espacio S, $\mathcal{Q}S$ es el conjunto de todos los subconjuntos compactos saturados de S. Para cada conjunto $Q \in \mathcal{Q}S$ podremos obtener un filtro abierto $\nabla(Q)$ en A dado por

$$x \in \nabla(Q) \Leftrightarrow Q \subseteq U_A(x)$$

donde U_A es la reflexión espacial presentada en $\ref{eq:lem:prop}$. Veremos que cada filtro abierto surge de esta manera de un único Q compacto saturado.

Lema 2.3.1 Sea F un filtro abierto de A. Consideramos a M como el conjunto de elementos máximos en $A \setminus F$. Entonces para cada $a \in A \setminus F$ existe algún $m \in M$ tal que $a \leq m$.

Demostración. Notemos que como F es un filtro abierto arbitrario, entonces el complemento $A\setminus F$ es cerrado bajo supremos dirigidos. De esta manera, para $A\setminus F$ podemos hacer uso del Lema de Zorn para obtener $m\in M$ tal que $a\leq m$, con $a\in A\setminus F$.

Se puede verificar que para un marco A, cada elemento máximo es un elemento \wedge -irreducible. En otras palabras, para cada $m\in M$ tenemos que $m\in \operatorname{pt} A$, es decir, $m\neq 1$ y si $x\wedge y\leq m$, entonces $x\leq m$ o $y\leq m$ se cumple.

De esta manera, para $S=\operatorname{pt} A$, como $M\subseteq S$, podemos reformular el lema anterior de la siguiente manera.

Corolario 2.3.2 La equivalencia

$$M \subseteq U_A(a) \Leftrightarrow a \in F$$

se cumple para cada $a \in A$.

Demostración. Primero, supongamos que $a \in F$. Si $m \in M$, entonces $m \notin F$, es decir, $a \nleq m$. Por lo tanto $m \in U_A(a)$.

Ahora, supongamos que $a \notin F$. Por el Lema 2.3.1 existe algún $m \in M$ tal que $a \leq m$, de modo que $m \notin U_A(a)$ y por lo tanto $M \nsubseteq U_A(a)$, es decir, $M \subseteq U_A(a)$ implica que $a \in F$. Este resultado tiene otra consecuencia más importante.

Lema 2.3.3 El conjunto M es compacto en $S = \operatorname{pt} A$.

Demostración. Consideremos cualquier cubierta abierta $\{U_A(x) \mid x \in X\}$ de M. De manera usual, supongamos que el conjunto $X \subseteq A$ es dirigido. Sea $a = \bigvee X$, entonces

$$M \subseteq \bigcup \{U_A(x) \mid x \in X\} = U_A(a)$$

y por lo tanto $a \in F$. Pero F es un filtro abierto y X es un conjunto dirigido, de modo que $x \in F$ para algún $x \in X$. Esto nos da $M \subseteq U_A(x)$ para obtener la subcubierta requerida.

Ahora, sea Q la saturación de M. Como cada conjunto abierto es saturado, tenemos que Q y M tienen exactamente los mismos súper conjuntos abiertos. En particular, Q es compacto, y por lo tanto, $Q \in \mathcal{Q}S$.

Notemos también que para cada $x \in A$ tenemos

$$x \in F \Leftrightarrow M \subseteq U_A(x) \Leftrightarrow Q \subseteq U_A(x)$$
 (2.1)

de modo que el filtro abierto F surge del conjunto compacto saturado Q como queríamos. Veamos ahora que Q es el único conjunto compacto saturado asignado a F de esta manera.

Supongamos que existen dos conjuntos P y Q que cumplen lo mencionado antes. Entonces

$$P \subseteq U_A(x) \Leftrightarrow Q \subseteq U_A(x)$$

para cada $x \in A$. Lo anterior puede reformularce como

$$(\exists p \in P)[x \le p] \Leftrightarrow (\exists q \in Q)[x \le q]$$

para cada $x \in A$. Consideremos cualquier $p \in P$ y sea x = p. Entonces existe algún $q \in Q$ con $p \le q$ y por lo tanto $q \sqsubseteq p$. Como Q es saturado, esto da que $p \in P$ y por lo tanto $Q \subseteq P$. Similarmente vemos que $P \subseteq Q$.

Esto muestra que podemos obtener un filtro abierto de un único $Q \in \mathcal{Q}S$ de manera canónica. Resta ver que tenemos un proceso inverso, es decir, dado cualquier filtro abierto, por medio de este obtener un conjunto compacto saturado.

Lema 2.3.4 Si $S = \operatorname{pt} A$, F un filtro abierto y Q la saturación del conjunto M definido antes, entonces $Q = S \setminus F$.

Demostración. Consideremos cualquier $q \in Q$. Como Q es la saturación de M, existe algún $m \in M$ tal que $m \sqsubseteq q$ en el orden de especialización de S. Entonces $q \le m \notin F$ en el orden original del marco A, es decir, $q \notin F$. De esta manera $Q \subseteq (S \setminus F)$.

Recíprocamente, supongamos que $p \in S \setminus F$. Si $p \in S \setminus F$, por el Lema 2.3.1, existe $m \in M$ tal que $p \le m$, es decir, $m \sqsubseteq p$ y por lo tanto $p \in Q$.

La versión corta del Teorema de Hoffman-Mislove que estaremos usando a lo largo de este trabajo es la que se enuncia a continuación.

Teorema 2.3.5 (Hoffmann-Mislove) Sea A un marco con $S = \operatorname{pt}(A)$ su espacio de puntos, entonces existe una biyección entre:

- i) A^{\wedge} = filtros abiertos en A.
- ii) QS = conjuntos compactos saturados.

La prueba de este resultado son las demostraciones del Corolario 2.3.2 y el Lema 2.3.4.

2.3.1 Las propiedades de separación de regularidad y ajustado

Algunas de las cosas que menciona Rosemary en esta sección son probadas por Picado y están en el capítulo anterior. Solo queda considerar los resultados que ahí no aparecen.

Lema 2.3.6 Sea A un marco ajustado. Los puntos (vistos como elementos \land -irreducibles) de A son elementos máximos.

Lema 2.3.7 Si el marco A es ajustado, entonces ptA es T_1 y sobrio.

Lema 2.3.8 En un espacio con topología ajustada, las tres condiciones son equivalentes, T_0 , T_1 y sobrio.

Corolario 2.3.9 *Un espacio* T_0 *con topología ajustada es* T_1 *y sobrio.*

2.4 La construcción de parches sensible a puntos

Como vimos en el Lema 2.2.11, los espacios T_2 cumplen que todo conjunto compacto saturado es cerrado, pero el regreso no se cumple. En esta sección daremos el nombre de *empaquetados* a los espacios que cumplen con esta propiedad. Nuestro objetivo será el encontrar una manera de empaquetar cualquier espacio arbitrario.

2.4.1 Espacios empaquetados

Definición 2.4.1 *Decimos que un espacio topológico S es* empaquetado *si todo conjunto compacto saturado es cerrado.*

Observemos que la propiedad de ser empaquetado es más débil que ser T_2 , la pregunta que surge es ¿qué relación existe entre empaquetado y T_1 ?

Lema 2.4.2 *Un espacio topológico que es* T_0 *y empaquetado es* T_1 .

Demostración. Sabemos que $(\uparrow p)$ es saturado y para ver que $(\uparrow p)$ es compacto notemos que

$$(\uparrow p) = \bigcap \{ U \in \mathcal{O}S \mid (p) \subseteq U \},\$$

además $(\uparrow p) \subseteq \bigcup U$ y se le puede extraer una cubierta finita. Por lo tanto $(\uparrow p)$ es compacto saturado.

Al ser $(\uparrow p)$ compacto saturado, por hipótesis de empaquetado, $(\uparrow p)$ es cerrado. Ahora, consideremos dos puntos distintos p,q tales que $p \sqsubseteq q$ no se cumple. Entonces, por la definición del orden de especialización tenemos que

$$p^- \nsubseteq q^- \Leftrightarrow p \in (q^-)' \text{ y } q \in (\uparrow p)',$$

donde $(q^-)'$, $(\uparrow p)'$ son abiertos y $(q^-)' \cap (\uparrow p)' = \emptyset$. Por lo tanto tenemos una separación T_1 de p y q.

Podemos tener espacios empaquetados que no son T_0 , estos no serán abordados aquí, pues suponemos que todos nuestros espacios son al menos T_0 , pero por lo visto en el Lema 2.4.2, T_0 +empaquetado se encuentra entre T_2 y T_1 .

Algunos espacios tienen una propiedad aún más fuerte que empaquetado. Es útil tener un nombre para esto.

Definición 2.4.3 En espacio S es estrictamente empaquetado si todo conjunto compacto saturado es finito.

De esta manera un espacio no es empaquetado si tiene al menos un conjunto compacto saturado que no es cerrado. En otras palabras, no tiene suficientes conjuntos cerrados, o equivalentemente, suficientes conjuntos abiertos. Podemos corregir este defecto agregando a la topología nuevos conjuntos abiertos para formar un topología más grande.

Para un espacio S consideremos la familia

$$pbase = \{ U \cap Q' \mid U \in \mathcal{O}S, Q \in \mathcal{Q}S \}$$

que por el Lema 2.2.10 es cerrada bajo intersecciones binarias y por lo tanto forman una base para una nueva topología.

Al considerar $Q = \emptyset$ tenemos que la pbase contiene a la topología original y al dejar U = S vemos que la pbase contiene a los complementos de cada conjunto compacto saturado.

Definición 2.4.4 Para un espacio topológico S, consideramos ${}^{P}S$ el espacio con los mismos puntos que S y la topología $\mathcal{O}^{P}S$ generada por la pbase.

En otras palabras, $\mathcal{O}^P S$ es la topología más pequeña que contiene todos los conjuntos abiertos originales y también el complemento de todos los conjuntos compactos saturados de S. Notemos que hacer esto puede crear nuevos conjuntos compactos saturados que no son cerrados en S.

Usando esta construcción tenemos que S es empaquetado si y solo si ${}^{P}S=S$.

Lema 2.4.5 Sea S un espacio topológico. Si $U \in \mathcal{O}^P S$ entonces $U \in \mathcal{O}^f S$.

Demostración. Consideremos un conjunto Q compacto saturado. Notemos que, por la Definición 2.2.13, basta con verificar que $Q' = \bigcup \{q^- \mid q^- \in CS\}$.

Como Q es saturado, entonces $Q=\uparrow Q$, de aquí que $Q'=\downarrow Q$ en el orden de especialización. Luego si $q\in Q'$ entonces $p^-\subseteq Q'$ y por lo tanto

$$Q' = \bigcup \{q^- \mid p \notin Q\} = \bigcup \{q^- \mid q^- \in \mathcal{C}S\}$$

El resultado anterior muestra que la topología de parches es intermedia entre la topología original y la topología frontal. En otras palabra tenemos

$$\mathcal{O}S \hookrightarrow \mathcal{O}^PS \hookrightarrow \mathcal{O}^fS$$

para cada espacio S.

Es momento de saber como se comporta el espacio de parches con las propiedades de separación.

Lema 2.4.6 El espacio de parches de un espacio T_0 es T_1 .

Demostración. Sea S un espacio T_0 y consideremos $p,q\in S$ tales que $p^-\nsubseteq q^-$, es decir, $p\notin q^-$. Como S es T_0 tenemos que $\exists\,U\in\mathcal{O}S$ tal que $q\notin U\ni p$. Observemos que $q\notin\uparrow p$, donde $\uparrow p\in\mathcal{Q}S$. Entonces $(\uparrow p)'\in\mathcal{O}^PS$ y además

$$p \notin (\uparrow p)' \ni q$$
,

es decir, el espacio de parches es T_1 .

Lema 2.4.7 En un espacio T_1 la operación de parches es idempotente, es decir, ${}^{PP}S = {}^{P}S$.

Demostración. Recordemos que en un espacio T_1 todos los conjuntos son saturados. De esta manera, si S es T_1 , entonces todos los subconjuntos de S y S son saturados. Además cada conjunto compacto de S es también compacto de S. Así cada subconjunto compacto saturado de S es también compacto saturado y por lo tanto S como queríamos.

Corolario 2.4.8 Para cada espacio S que es T_0 tenemos que $^{PPP}S = ^{PP}S$.

Demostración. Sea S un espacio T_0 . Por el Lema 2.4.6 tenemos que PS es T_1 y así, al aplicar el Lema 2.4.7 para PS obtenemos ${}^{PP}({}^PS) = {}^P({}^PS)$.

Lema 2.4.9 El espacio de parches de un espacio T_2 es el mismo.

Demostración. Sea S un espacio T_2 . Por el Lema 2.2.11 tenemos que todo conjunto compacto saturado es cerrado, es decir, S es empaquetado. Si S es empaquetado, ${}^PS = S$ que es lo que queríamos probar.

2.4.2 El parche sensible a puntos y la sobriedad

El Teorema 2.2.15 nos dice que si un espacio es sobrio, entonces su espacio frontal también lo es. Para el espacio de parches sensible a puntos no ocurre lo mismo, es decir, si el espacio es sobrio, el parche del espacio no es necesariamente sobrio.

Lema 2.4.10 Sean S un espacio sobrio y F un subconjunto cerrado irreducible de PS (es decir, $F \in C^PS$ y es cerrado irreducible en PS). Entonces F está conformado por un único punto o es infinito.

Demostración. Sea F un conjunto cerrado e irreducible en PS , entonces F^- es cerrado e irreducible en S, pues si $\mathcal{O}S\subseteq\mathcal{O}^PS$ implica que $(\mathcal{O}S'\supseteq(\mathcal{O}^PS)'$. Por hipótesis S es sobrio, y por lo tanto $F^-=p^-$ para un único $p\in S$. Como $p\in F^-$ tenemos que si

$$p \in U \in \mathcal{O}S \Rightarrow F \cap U \cap p^- = F \cap U \neq \emptyset$$

y por lo tanto $p \in F^=$. De esta manera tenemos que $F^- = F^=$ y como F es cerrado frontal $F^- = F$ y en consecuencia $p \in F$.

Supongamos que $F \neq \{p\}$ y, por contradicción, supongamos que F finito. Así $F = \{p, q_0, q_1, \ldots, q_n\}$ para algunos puntos $q_0, \ldots q_n$ distintos de p. Para cada q_i tenemos que $q_i \in F \subseteq p^-$, es decir, $q_i \sqsubseteq p$ en el orden de especialización. Luego $p \in F \cap q_i^-$, pues de lo contrario $p \sqsubseteq q_i$ y eso implicaría que $p = q_i$ lo cual no es posible. De esta manera los conjuntos

$$F \cap (\uparrow p)', F \cap (q_0^-)', \dots, F \cap (q_n^-)' \neq \emptyset.$$

Pero $F \cap (\uparrow p)' \cap (q_0^-)' \cap \cdots \cap (q_n^-)' = \emptyset$ lo cual contradice que F es irreducible en PS . Por lo tanto F es infinito.

Este argumento se puede refinar de diferentes maneras para obtener más información.

Lema 2.4.11 El espacio de parches de un espacio T_1 y sobrio es T_1 y sobrio.

Demostración. Sean S un espacio T_1 y sobrio y F un conjunto cerrado irreducible de PS . Similar al Lema 2.4.10 tenemos $F^- = p^-$ para algún $p \in S$. Por hipótesis, S es T_1 , es decir

$$p \in F \subseteq F^- = p^- = \{p\},\$$

es decir, $F = \{p\}$. Por lo tanto, como F es un conjunto cerrado irreducible en PS , entonces PS es T_1

2.4.3 Propiedades funtoriales de la construcción sensible a puntos

Las preguntas naturales que surgen sobre la funtorialidad de la construcción de parches sensible a puntos son las siguientes:

1. ¿Es posible ver la construcción de parches sensible a puntos

$$S \mapsto {}^PS$$

como la asignación de objetos de un funtor en la categoría de espacios topológicos o en alguna subcategoría adecuada?

2. ¿Es posible ver el mapeo continuo

$${}^{P}S \rightarrow S$$

como natural en la relación con este funtor y el funtor identidad?

Estas dos preguntas se pueden plantear de una forma más concreta.

Supongamos que $\phi \colon T \to S$ es una función continua entre espacios topológicos. Esto da tres lados de un cuadrado

$$\begin{array}{ccc}
T & \stackrel{\phi}{\longrightarrow} S \\
\uparrow & & \uparrow \\
PT & PS
\end{array}$$

donde cada lado es continuo. ¿Bajo que circunstancias existe un mapeo continuo $^P\phi\colon\ ^PT\to\ ^PS$ que hace que el cuadrado conmute?

Como funciones, ambas aplicaciones verticales son funciones identidad. Por lo tanto, si existe un mapeo $^P\phi$, entonces como función es solo ϕ .

Así se puede plantear la siguiente pregunta: ¿Bajo que circunstancias una función continua $\phi\colon T\to S$ es también "parche continua", es decir, es continua en relación con las topologías de parches?

Definición 2.4.12 Decimos que una función continua $\phi: T \to S$ es parche continua si envía conjuntos compactos saturados a conjuntos compactos saturados, es decir, si $\phi^{-1}(Q) \in \mathcal{Q}T$ siempre que $Q \in \mathcal{Q}S$.

Por lo tanto, si ϕ convierte conjuntos compactos saturados, entonces ciertamente es parche continuo. Pero presumiblemente esta condición suficiente para la continuidad del parche no es necesaria.

Sea $f^*: A \to B$ un morfismo de marcos y f_* su adjunto derecho. En general, f_* preserva ínfimos arbitrarios, pero no necesariamente preserva supremos. Nos fijaremos en aquellos morfismos para los que f_* preserva ciertos supremos.

Definición 2.4.13 Para un morfismo de marcos f^* y su adjunto derecho f_* dados como antes, decimos que el adjunto derecho f_* es Scott-continuo si

$$f_*(\bigvee Y) = \bigvee f_*(Y)$$

para cada subconjunto dirigido Y de B.

Sabemos que cada función continua $\phi \colon T \to S$ da un morfismo de marcos

$$\mathcal{O}S \xrightarrow{\phi^*} \mathcal{O}T$$

entre las topologías. Podemos imponer la condición extra de Scott-continuidad en ϕ_* . Donde esta no debe confundirse con la continuidad dada por ϕ .

Lema 2.4.14 Sea ϕ una función continua como la dada antes y supongamos que el espacio T es sobrio. Si ϕ_* es Scott-continua, entonces ϕ convierte conjuntos compactos saturados y por lo tanto ϕ es parche continua.

Teorema 2.4.15 Sea ϕ una función continua como la dada antes y supongamos que ambos espacios, S y T son sobrios. Entonces ϕ_* es Scott-continua si y solo si las siguientes condiciones se cumplen

- ϕ convierte conjuntos compactos saturados.
- Si $Y \in \mathcal{C}T$, entonces $\downarrow \phi(Y) \in \mathcal{C}S$.

2.5 El ensamble

En el Capítulo $\ref{eq:constraint}$ mencionamos toda la información básica sobre la Teoría de marcos. De manera particular hablamos sobre el conjunto de todos los núcleos sobre un marco A fijo, el cual denominamos el ensamble y denotamos por NA.

En este capítulo daremos información adicional sobre este marco y definiremos una clase de núcleos para un marco en especifico.

2.5.1 Núcleos espacialmente inducidos

Para un marco espacial $A = \mathcal{O}S$ existe una clase de núcleos que contiene todos los núcleos u y v descritos en el Capítulo $\ref{eq:continuous}$ y también muchos más. Estos capturan el "contenido espacial" de $\ref{eq:continuous}$ en un sentido que veremos a continuación.

Definición 2.5.1 Sea S un espacio topológico. Para cada $E \in \mathcal{P}S$ definimos

$$[E](U) = (E \cup U)^\circ$$

para cada $U \in \mathcal{O}S$ para obtener una función en $\mathcal{O}S$.

No es complicado verificar que [E] es un núcleo en el marco $\mathcal{O}S$.

Definición 2.5.2 Para un espacio topológico S, un núcleo en $\mathcal{O}S$ es espacialmente inducido si este tiene la forma [E] para algún $E \subseteq S$.

La razón por la cual se denomina a este núcleo espacialmente inducido se debe a que cada función continua entre dos espacios topológicos $\phi \colon T \to S$ produce un morfismo de marcos $\phi^{-1} \colon \mathcal{O}S \to \mathcal{O}T$ entre sus topologías. Este morfismo tiene el kernel $\ker(\phi^{-1})$ caracterizado por

$$V \subseteq \ker(\phi^{-1})(U) \Leftrightarrow \phi^{-1}(V) \subseteq \phi^{-1}(U)$$

para $U, V \in \mathcal{O}S$. Precisamente $\ker(\phi^{-1})$ coincide con nuestro núcleo espacialmente inducido.

Teorema 2.5.3 Sea ϕ una función continua como la de antes. Sea $E = S \setminus \phi(T)$ el complemento del rango de ϕ . Entonces $\ker(\phi^{-1}) = [E]$.

Demostración. Para cada $U, V \in \mathcal{O}S$ tenemos

$$\begin{split} V \subseteq \ker(\phi^{-1})(U) &\Leftrightarrow \phi^{-1}(V) \subseteq \phi^{-1}(U) \\ &\Leftrightarrow (\forall t \in T)[\phi(t) \in V \Rightarrow \phi(t) \in U] \\ &\Leftrightarrow (\forall s \in S)[s \in V \cap \phi(T)^{-1} \Rightarrow s \in U] \\ &\Leftrightarrow (\forall s \in S)[s \in V \Rightarrow s \in E \cup U] \\ &\Leftrightarrow V \subseteq E \cup U. \end{split}$$

y al calcular interior tenemos que $V \subseteq \ker(\phi^{-1})(U) \Leftrightarrow V \subseteq (E \cup U)^{\circ} = [E](U)$. Esto muestra como un morfismo de marcos inducido espacialmente produce un núcleo inducido espacialmente. Recíprocamente, todo núcleo espacialmente inducido surge de esta manera. Para

espacialmente. Recíprocamente, todo núcleo espacialmente inducido surge de esta manera. Para ver esto consideremos cualquier espacio S y subconjunto $E\subseteq S$. Sea $T=S\setminus E$ con la topología de subespacio, así el encaje $\phi\colon T\to S$ es continuo. Entonces $E=S\setminus \phi(T)$ y por lo tanto [E] es el kernel del encaje.

En un marco espacial, es posible determinar explícitamente la operación implicación.

Lema 2.5.4 Sea S un espacio topológico. La implicación en el marco espacial $\mathcal{O}S$ está dada por

$$W \succ M = (W' \cup M)^{\circ}$$

para cada $W, M \in \mathcal{O}S$.

Demostración. Para cualesquier $U, W, M \in \mathcal{O}S$ tenemos

$$U\subseteq (W\succ M)\Leftrightarrow U\cap W\subseteq M\Leftrightarrow U\subseteq (W'\cup M)\Leftrightarrow U\subseteq (W'\cup M)^{\circ}.$$

Cada marco lleva sus núcleos distinguidos u y v, ¿qué son estos para una topología?

Lema 2.5.5 Para un espacio topológico S tenemos que

$$i) u_W = [W] \quad y \quad ii) v_W = [W']$$

para cada $W \in \mathcal{O}S$.

Demostración.

- i) Sean $W, M \in \mathcal{O}S$. Sabemos que $u_W(M) = W \cup M = (W \cup M)^\circ = [W](M)$.
- ii) Consideremos $M \in \mathcal{O}S$. Por el Lema 2.5.4 la implicación en $\mathcal{O}S$ está dada por $(W \succ M) = (W' \cup M)^{\circ}$. De aquí que

$$v_W(M) = (W \succ M) = (W' \cup M)^{\circ} = [W'](M).$$

Cada subconjunto E de un espacio S determina un núcleo [E] en la topología. Sin embargo, los núcleos [E] no necesitan determinar al subconjunto E.

Recordemos que además del interior E° y la clausura E^{-} de E tenemos también el interior frontal E^{\square} y la clausura frontal $E^{=}$.

El siguiente resultado muestra que para cada espacio S existe un encaje

$$\mathcal{O}^f S \to N \mathcal{O} S$$
$$E \mapsto [E]$$

desde la topología frontal al ensamble de la topología principal.

Lema 2.5.6 Sea S un espacio topológico. Para subconjuntos arbitrarios $D, E \subseteq S$, tenemos que [D] = [E] si y solo si D y E tienen el mismo interior frontal. En otras palabras

$$[D] = [E] \Leftrightarrow D^{\square} = E^{\square}$$

para todo $D, E \in \mathcal{P}S$.

Demostración.

 \Rightarrow) Debemos probar que si $[D] \leq [E]$ entonces $D^{\square} \subseteq E^{\square}$. Supongamos que $[D] \leq [E]$. Sabemos que los conjuntos $U \cap p^{-}$, donde $U \in \mathcal{O}S$ y $p \in S$, forman una base para la topología frontal. Por lo tanto

$$\begin{aligned} p \in D^{\square}(\exists U \in \mathcal{O}S)[p \in U \cap p^{-} \subseteq D] \\ \Rightarrow (\exists U \in \mathcal{O}S)[p \in U \subseteq D \cup (p-)'] \\ \Rightarrow p \in [D](p^{-'}) \subseteq [E](p^{-'}) \subseteq E \cup p^{-'} \\ \Rightarrow p \in E. \end{aligned}$$

De aquí que $D^{\square}\subseteq E$ y como D^{\square} es abierto frontal, tenemos que $D^{\square}\subseteq E^{\square}.$

La otra contención se prueba de manera similar.

 $(D) \ \ \text{Veamos que } [D] = [D^\square]. \ \ \text{La designaldad } [D^\square] \leq [D] \ \text{es inmediata de } D^\square \subseteq D.$

Para la otra desigualdad supongamos que $V\subseteq (D\cup U)$ para abiertos $U,V\in \mathcal{O}S$. Mostraremos que $V\subseteq (D^\square\cup U)$. Como $V\subseteq (D\cup U)$ vemos que $V\cap U'\subseteq D$. Luego $V\cap U'$ es un abierto frontal, de aquí que $V\cap U'\subseteq U^\square$ y por lo tanto $V\subseteq D^\square\cup U$.De aquí que $[D]=[D^\square]$.

2.5.2 Filtros admisibles y núcleos ajustados

Para un marco A, si $j \in NA$, entonces j nos permite construir un filtro, pero no necesariamente cualquier filtro nos permite obtener un núcleo.

Definición 2.5.7 1. Sea A un marco. Para un elemento $a \in A$ y núcleo $j \in NA$ decimos que j admite al elemento a si j(a) = 1.

- 2. Sea $\nabla(j)$ el conjunto de elementos admitidos por el núcleo j. $\nabla(j)$ es un filtro en A.
- 3. Para un marco A, un filtro en A es admisible si tiene la forma $\nabla(j)$ para algún $j \in NA$.
- 4. La relación $j \sim k$ si y solo si $\nabla(j) = \nabla(k)$ es una relación de equivalencia. A las clases de equivalencia las llamamos bloques.
- 5. Un núcleo es ajustado si es el menor elemento de su bloque.

Existe una correspondencia uno a uno entre bloques y núcleos ajustados, como se muestra en el siguiente resultado.

Lema 2.5.8 Sea A un marco. Cada bloque de un núcleo tiene un menor elemento.

Demostración. Sea F un filtro admisible en A y consideremos $B = \{j \in NA \mid \nabla(j) = F\}$. De esta manera B es la colección de todos los núcleos que admiten exactamente al conjunto F. Recordemos que los ínfimos en NA se calculan puntualmente. Así, sea $k = \bigwedge B$ y k es el menor elemento de B.

Sea $a \in F$, entonces por definición j(a) = 1 para todo $j \in B$, en particular, k(a) = 1. De modo que $a \in \nabla(k)$. Por lo tanto $F = \nabla(j) \subseteq \nabla(k)$. La otra inclusión se cumple debido a que $k \leq j$. Así $\nabla(k) = F$ y $k \in B$.

Lema 2.5.9 Cada filtro principal es admisible.

Demostración. Consideremos el filtro principal $F = \{x \in A \mid x \geq a\}$ para algún $a \in A$. Notemos que para $j = v_a$, $\nabla(j) = F$, pues si $x \geq a$, $(a \succ x) = 1$.

No todos los filtros son admisibles. Por ejemplo, supongamos que A es booleano. Entonces cada núcleo j tiene la forma u_a para algún $a \in A$, o equivalentemente v_a para algún $a \in A$ (diferente). Entonces cada filtro admisible $\nabla(j)$ es principal y cuando A es infinito no hay filtros principales.

Lema 2.5.10 Sea A un marco. Todo filtro abierto en A es admisible.

Demostración. Sea $F \in A^{\wedge}$ y sea $f = \dot{\nabla}\{v_a \mid a \in F\}$ de modo que para algún ordinal ∞ tenemos $V_F = f^{\infty}$, y este es el menor núcleo que admite a F. Así, $F \subseteq \nabla(f^{\infty})$. Debemos probar que $\nabla(f^{\infty}) \subseteq F$. Comencemos por mostrar que si

$$f(x) \in F \Rightarrow x \in F,\tag{2.2}$$

para cada $x \in A$.

El supremo $f(x) = \bigvee \{v_a(x) \mid a \in F\}$ es dirigido y como $F \in A^{\wedge}$ si $f(x) \in F$, se cumple que $v_a(x) \in F$ para algún $a \in F$. De aquí que si $x \in F$, pues al ser F un filtro, se cumple que

$$x \ge a \land x = a \land (a \land x) \in F$$
.

Ahora probamos por inducción sobre los ordinales que si $f^{\alpha}(x) \in F$, entonces $x \in F$ se cumple para cada ordinal α .

El caso $\alpha=0$ es trivial pues obtenemos $v_a(x)$ y estos corresponden a filtros admisibles. El paso de inducción de α a $\alpha+1$ se sigue de 2.2, pues si suponemos que $f^{\alpha}(x) \in F$, entonces $x \in F$. De aquí que

$$f^{\alpha+1}(x) = f(f^{\alpha}(x)) \in F \Rightarrow f^{\alpha}(x) \in F \Rightarrow x \in F.$$

Resta el caso λ un ordinal limite. Por definición, $f^{\lambda}(x) = \bigvee \{f^{\alpha}(x) \mid \alpha \leq \lambda\}$, el cual es un supremo dirigido y así

$$f^{\lambda}(x) \in F \Rightarrow (\exists \alpha \le \lambda)[f^{\alpha}(x) \in F]$$

pues F es abierto. Luego la hipótesis de inducción implica que $x \in F$. Por lo tanto $f^{\infty}(x) \in F$ si y solo si $x \in F$ para todo $x \in A$. En particular

$$f^{\infty}(x) = 1 \Rightarrow f^{\infty}(x) \in F \Rightarrow x \in F$$

es decir, $\nabla(f^{\infty}) \subseteq F$.

Ejemplo 2.5.11 En el marco $(\mathbb{N}, \leq) \cup \{\infty\}$ consideremos el filtro generado por el conjunto de los números pares. Notemos que este es un filtro principal y por lo tanto es admisible, pero no es un filtro abierto. Ya que

$$\infty = \bigvee \{impares\} \in \{pares\}$$

pero $\{impares\} \cap \{pares\} = \emptyset$, es decir, no existe $y \in \{impares\}$ tal que $y \in \{pares\}$. Por lo tanto $\{pares\}$ no es filtro abierto.

Sabemos que no todos los filtros son admisibles, pero cada filtro genera un menor filtro admisible por arriba de el.

Definición 2.5.12 Sean A un marco y F un filtro en A. Definimos

$$v_F = \bigvee \{ v_a \mid a \in F \},\tag{2.3}$$

donde el supremo es calculado en NA.

Por como construimos a v_F , éste admite cada $a \in F$, y así $F \subseteq \nabla(v_F)$. Se puede verificar que $\nabla(v_F)$ es el menor filtro admisible por encima de F. Además, v_F es ajustado. De hecho, un núcleo es ajustado si tiene la forma de 2.3.

Los núcleos ajustados se comportan de manera similar a los v-núcleos. El siguiente resultado es consecuencia de las propiedades de los v-núcleos.

Lema 2.5.13 Sea A un marco. Los siguientes resultados se cumplen para todos los filtros F, G y familias dirigidas de filtros F en A.

- $i) v_F \wedge v_G = v_{F \cap G}.$
- ii) $v_F \vee v_G = v_{F \cup G}$.
- $iii) \ \forall \{v_F \mid F \in \mathcal{F}\} = v_{\bigcup \mathcal{F}}.$

Además de un elemento mínimo, algunos bloques también tienen un elemento máximo.

Lema 2.5.14 Para cada $a \in A$ el núcleo w_a es el mayor elemento de su bloque.

Demostración. Supongamos que j es un compañero de w_a . Basta con demostrar que j(a) = a, pues esto es equivalente a que $j \le w_a$. Sean x = j(a) y $y = (x \succ a)$, de aquí que

$$w_a(y) = ((y \succ a) \succ a) = (((x \succ a) \succ a) \succ a) = (x \succ a) = y.$$

Además

$$((y \lor x) \succ a) = (y \succ a) \land (x \succ a) = (y \succ a) \land y = y \land a = a$$

Por lo tanto $((y \lor x) \succ a) = a$ y $1 = ((y \lor x) \succ a) \succ a) = w_A(y \lor x)$. Así $y \lor x \in \nabla(w_a)$ y por hipótesis $y \lor x \in \nabla(j)$, es decir, $j(y \lor x) = 1$. Luego

$$j(y \lor a) = j(y \lor j(a)) = j(y \lor x) = 1,$$

de aquí que $w_a(y \vee a) = 1$. Pero $(x \succ a) = y = w_a(y) = w_a(y \vee a) = 1$. Por lo tanto $j(a) = x \le a$, es decir, j(a) = a.

Se puede hacer una comparación con un núcleo ajustado a través de su filtro. La afirmación $j \le k \Rightarrow \nabla(j) \subseteq \nabla(k)$ es trivial. Cuando j es ajustado se puede fortalecer esto.

Lema 2.5.15 Sea A un marco. Supongamos que $j \in NA$ es ajustado. Entonces

$$j \leq k \Leftrightarrow \nabla(j) \subseteq \nabla(k)$$

se cumple para todo $k \in NA$.

Demostración. Consideremos $a \in \nabla(j) \subseteq \nabla(k)$ y $x \in A$. Sea $y = v_a(x)$, entonces $a \wedge y \leq x$. Así,

$$y \le k(y) = k(a) \land k(y) = k(a \land y) \le k(x).$$

Lo cual muestra que $v_a \le k$ y como j es ajustado $j = \bigvee \{v_a \mid a \in \nabla(j)\} \le k$. Existe una relación entre la propiedad de separación ajustado y núcleo ajustado.

Teorema 2.5.16 Para cada marco A las siguientes condiciones son equivalentes.

- *i*) A es ajustado.
- ii) Cada núcleo en A es ajustado.
- iii) Cada u-núcleo en A está solo en su bloque.

iv) Cada u-núcleo en A es mínimo en su bloque.

Demostración.

 $i) \Rightarrow ii)$ Supongamos que A es ajustado y supongamos que existen núcleos no ajustados, es decir, existen $j, k \in NA$ tales que $j \nleq k$. Entonces $j(c) \nleq k(c)$ para algún $c \in A$. Sean a = j(c), b = k(c) y al ser A ajustado, podemos encontrar $x, y \in A$ tales que

$$a \lor x = 1, \quad x \land y \le b, \quad y \nleq b.$$

Definimos $z=(y\succ b)$, de modo que $x\leq z$ y $c\leq b\leq z$. De aquí que $a=j(c)\leq j(z)$ y $x\leq z\leq j(z)$. Por lo tanto $1=a\vee x\leq j(z)$, lo cual implica que k(z)=1, pues j y k son compañeros.

Como $y \land z \le b$ tenemos que $k(y) \le k(b) = k(k(c)) = k(c) = b$, es decir, $y \le b$ lo cual es una contradicción. Por lo tanto cada núcleo en A es ajustado.

 $ii) \Rightarrow iii) \Rightarrow iv)$ Si consideramos un u-núcleo, por ii) este es ajustado. De aquí que u_{\bullet} es el menor elemento de su bloque, es decir, para $j \in NA$, no se cumple que $j \leq u_{\bullet}$, pero para todo $j \in NA$

$$j = \bigvee \{ u_{\bullet} \wedge v_{j(\bullet)} \mid \bullet \in A \},\$$

de aquí que $j=u_{\bullet}$, es decir, u_{\bullet} no tiene compañeros en su bloque. Al no tener compañeros en su bloque, u_{\bullet} es el menor elemento del bloque.

 $iv) \Rightarrow i)$ Supongamos iv) y sean A un marco y $a \nleq b \in A$, de aquí que $u_a \nleq w_b$, pues para $0 \in A$, $u_a(0) = a$ y $w_b(0) = b$. Por hipótesis, u_a es ajustado y por el Lema 2.5.15 se cumple que $\nabla(u_a) \nsubseteq \nabla(w_b)$. Entonces existe $x \in A$ tal que $a \lor x = 1$ y $w_b(x) \ne 1$. Consideremos $y = (x \succ b)$, así $w_b(x) = (y \succ b) \ne 1$ lo que implica que $y \nleq b$ y $x \land y = x \land (x \succ b) = x \land b \le b$.

El resultado anterior nos dice que ajustado es una propiedad que simplifica enormemente la estructura del conjunto.

2.5.3 Núcleos asociados a filtros abiertos

Sabemos que cada filtro admisible en un marco A está asociado con un núcleo

$$v_F = \bigvee \{v_a \mid a \in F\}$$

y que cada núcleo está asociado a su filtro admisible. En el Lema 2.5.10 vimos que todo filtro abierto es admisible.

En esta subsección echamos un vistazo más a fondo a los núcleos asociados con los filtros abiertos. Recordemos también que en un marco espacial existe una correspondencia entre conjuntos saturados y filtros abiertos.

Uno de nuestros objetivos es obtener la construcción de parches para el ensamble de un marco. Para hacer esto necesitamos un dispositivo sin puntos que ocupe el lugar de los conjuntos compactos saturado. Los filtros abiertos son el principal candidato.

Lema 2.5.17 Sea A un marco. Entonces para todos los filtros abiertos F, G y familias dirigidas de filtros abiertos \mathcal{F} tenemos

$$i)$$
 $v_F \wedge v_G = v_{F \cap G}$,

$$ii) \ \forall \{v_F \mid F \in \mathcal{F}\} = v_{\bigcup \mathcal{F}}$$

y $F \cap G$, $\bigcup \mathcal{F}$ son filtros abiertos

Demostración. La prueba se sigue del Lema 2.5.13 y la Proposición ??.

Cada uno de los núcleos ajustados v_F es el supremo sobre un conjunto dirigido. Tomando el supremo puntual

$$f_F = \dot{\bigvee} \{ v_a \mid a \in F \}$$

donde podremos omitir el subíndice F cuando el filtro en cuestión éste claro, e iterando a través de los ordinales obtenemos una sucesión

$$f^0 = id$$
, $f^{\alpha+1} = f(f^{\alpha})$, $f^{\lambda} = \bigvee \{ f^{\alpha} \mid \alpha \le \lambda \}$

para cada ordinal α y ordinal limite λ . Esta sucesión eventualmente se estabiliza en f^{∞} para algún ordinal ∞ .

Nos concentraremos en la sucesión obtenida al aplicar cada derivada f^{α} al menor elemento de nuestro marco. Definimos

$$d(0) = 0, \quad d(\alpha + 1) = f(d(\alpha)), \quad d(\lambda) = \bigvee \{f(\alpha) \mid \alpha \leq \lambda\}$$

para cada ordinal α y ordinal limite λ .

Podemos hacer lo mismo en un contexto sensible a puntos. Sea S un espacio topológico. Para un filtro abierto F en $\mathcal{O}S$ tenemos

$$v_F = \bigvee \{v_a \mid a \in F\} = \bigvee \{[U'] \mid Q \subseteq U\}$$

donde $Q = \cap F$ es el conjunto compacto saturado correspondiente a F.

Esta vez, en lugar de considerar la sucesión de abiertos, es más fácil concentrarse en los conjuntos cerrados complementarios. Para $Q \in \mathcal{Q}S$ usamos la operación \hat{Q} en $\mathcal{C}S$ dada por

$$\hat{Q}(X) = \bigcap \{ (X \cap U)^- \mid Q \subseteq U \}$$

para cada $X \in \mathcal{C}S$. Establecemos

$$Q(0) = S$$
, $Q(\alpha + 1) = \hat{Q}(Q(\alpha))$, $Q(\lambda) = \bigcap \{Q(\alpha) \mid \alpha \le \lambda\}$

para obtener una sucesión descendente de conjuntos cerrados. Por razones de cardinalidad, esta sucesión eventualmente se estabiliza en algún conjunto cerrado $Q(\alpha)$. Sabemos que $Q^\subseteq Q(\infty)$ ya que cada conjunto cerrado $Q(\alpha)$ contiene a Q. Más adelante nos cuestionaremos si podemos encontrar condiciones que hagan que la diferencia entre Q^- y $Q(\infty)$ sea grande o pequeña y las consecuencias que esto tiene para un marco y su ensamble de parches.

2.5.4 Estructura de bloques

Sabemos que para todo marco A podemos construir un nuevo marco formado por todos los núcleos en A (el ensamble de A). Por si mismo, NA puede ser un marco difícil de estudiar. En NA pueden existir bloques bastante complicados.

En esta sección veremos que para el caso donde $A = \mathcal{O}S$, analizar los bloques de NA puede resultar algo mucho más agradable.

Consideremos nuestro marco A y $S=\operatorname{pt}(A)$. Sea F un filtro abierto en A y Q el compacto saturado correspondiente para F. Así

$$a \in F \Leftrightarrow Q \subseteq U(a)$$

para $a \in A$. Por el Lema 2.5.10 tenemos que F es admisible y por lo tanto obtenemos un bloque en NA que tiene un menor elemento (v_F) . Veremos que también tenemos otros elementos especiales.

Consideremos el cociente de A dado por el conjunto de puntos fijos de v_F , de decir, $A_F = A_{v_F}$. Este tiene un espacio de puntos fácil de localizar.

Lema 2.5.18 Consideremos un marco A y los conjuntos F, Q como se mencionan antes. Entonces $Q = \operatorname{pt}(A_F)$.

Demostración.

- \Rightarrow) Recordemos que los puntos de A_F son aquellos $p \in S$ tales que $v_F(p) = p$. Además, si $p \in F$ entonces $v_F(p) = 1$ y por lo tanto $p \notin \operatorname{pt}(A_F)$. De esta manera si $p \in \operatorname{pt}(A_F)$, entonces $p \in S \setminus F = Q$, es decir, $\operatorname{pt}(A_F) \subset Q$.
- \Leftarrow) Consideremos cualquier $p \in Q$. Para cada $x \in F$ sea $y = (x \succ p)$ y así $y \land x \leq p$. Notemos que si $p \notin F$, entonces

$$(x \succ p) \neq 1 \Rightarrow x \nleq p$$

y como $p \in S$ se debe cumplir que $y \leq p$. Como $y = (x \succ p)$ es arbitrario, se debe cumplir que

$$f(p) = \bigvee \{v_x(p) \mid x \in F\} \le p,$$

y además $p \leq f(p)$. De aquí que $f_F(p) = p$, es decir, $V_F(p) = p$. Por lo tanto $p \in \operatorname{pt}(A_F)$.

Lo anterior nos proporciona el siguiente diagrama

$$\begin{array}{ccc}
A & \longrightarrow & \mathcal{O}S \\
\downarrow & & \downarrow \\
A_F & \longrightarrow & \mathcal{O}Q
\end{array}$$

el cual será extendido.

Cada subconjunto $T \subseteq S$, visto como subespacio nos da el siguiente cociente.

$$A \to \mathcal{O}S \to \mathcal{O}T$$

En el cual se puede comprobar que $a \mapsto \bigwedge \{p \in T \mid a \leq p\}$ es el kernel del cociente anterior. En particular, el conjunto $Q \subseteq S$ da un ejemplo de esto.

Por el Lema 2.3.1, el conjunto Q tiene un conjunto de generadores mínimos $M \subseteq Q$, es decir, el conjunto de elementos máximos de $A \setminus F$. Vemos a M como un subespacio de Q para obtener el siguiente cociente

$$A \to A_F \to \mathcal{O}Q \to \mathcal{O}M$$

con kernel dado por $W_F(a) = \bigwedge \{ p \in m \mid a \leq o \}$, donde $a \in A$.

Lema 2.5.19 El núcleo W_F es el núcleo máximo que admite a F.

Demostración. Sea $j \in NA$ tal que $\nabla(j) = F$. Cada punto $m \in M$ es fijado por j ya que m es un punto máximo y no está en F. Sabemos que $j(a) = 1 \Leftrightarrow a \in F$, en otras palabras

$$j(a) = 1 \Leftrightarrow (\forall m \in M)[j(a) \nleq m]$$

(ver Lema 2.3.1). Como $j \sim W_F$, entonces $j(a) = (W_F(a) = 1 \text{ para } a \in F$. Supongamos que $a \notin F$, entonces $a \leq m$ para algún $m \in M$ y $j(a) \leq j(m) = m$, de modo que

$$j(a) \le \bigwedge \{ p \in M \mid a \le p \} = W_F(a).$$

Por lo tanto $j \leq W_F$.

Cada bloque en NA tiene un menor elemento (el núcleo ajustado correspondiente). Tal bloque no necesita tener mayor elemento, o incluso elementos máximos. Sin embargo, para un filtro abierto F el bloque correspondiente $[V_F, W_F]$ es un intervalo acotado en NA. Esto nos da un intervalo acotado $I_F = [V_F(0), W_F(0)]$ de A. La estructura de este bloque está íntimamente relacionada con las propiedades del parche de A (y otras propiedades).

Para cada $a \in I_F$ sea $j_a(V_F \vee u_a)$ para producir un núcleo $V_F \leq j_a \leq W_F$. Además, $a \leq b$ si y solo si $j_a \leq j_b$ para cada $a, b \in I_F$. La implicación $j_a \leq j \Rightarrow a \leq b$ se cumple debido a que $I_F \subseteq A_F$ y por lo tanto $a = j_a(0)$ para cada $a \in I_F$. Esto nos da un encaje de marcos

$$I_F \to [V_F, W_F]$$

 $a \mapsto j_a$

y por lo tanto I_F nos da una indicación de la complejidad del bloque.

Notemos que puede suceder que $V_F = W_F$ en cuyo caso I_F es solo un punto. Sin embargo, se producirá un ejemplo donde I_F es bastante complejo. De hecho se produce un ejemplo espacial.

Supongamos que A es espacial, de modo que $A=\mathcal{O}S$ para algún espacio sobrio S. Para $Q\in\mathcal{Q}S$ tenemos cocientes

$$\mathcal{O}S \to (\mathcal{O}S)_F \to \mathcal{O}Q \to \mathcal{O}M$$

28

que determinan el menor y el mayor elemento del bloque $(V_F \ y \ W_F)$, respectivamente) y un elemento intermedio. En este caso tenemos que $W_F = [M']$ el núcleo espacialmente inducido. De manera similar, [Q'] es el elemento intermedio del bloque. Así tenemos un intervalo $V_F \leq [Q'] \leq W_F$ de $N\mathcal{O}S$ con un elemento espacial [Q']. Parece que, en general, [Q'] puede estar en cualquier extremo o en algún punto intermedio. La observación de que $V_F \leq [Q']$ y que estos dos núcleos son compañeros es una observación importante a lo que se verá más adelante.

Si S es T_1 , entonces Q = M, pero esto no asegura que el intervalo sea simple.

Ejemplo 2.5.20 Hay un espacio S que es T_1 , sobrio y estrechamente empaquetado. Este espacio tiene un punto especial * que controla gran parte de la estructura. El conjunto $\mathbb{S} = S \setminus \{*\}$ es un árbol grande con varios subárboles grandes. Sea F el filtro sobre $\mathcal{O}S$ dado por $Q = \{*\}$, que es un filtro de vecindad abierto del punto. Entonces cada subárbol grande produce un elemento de I_F .

Este ejemplo se tratará más adelante, donde se dará el significado preciso de "grande".

2.6 Propiedades del ensamble

En el Capitulo ?? se introducen la propiedades básicas del marco NA. En esta sección veremos que la asignación $A \to NA$ define un funtor. Esto lo realizamos a través de verificar que la asignación $a \mapsto u_a$ proporciona cierta propiedad universal. Antes de eso mencionamos un par de observaciones.

2.6.1 El funtor $N(_)$

Sabemos que los núcleos u_a y v_a son complementos entre si en NA, es decir, el encaje η_A crea elementos complementados para elementos de A. Además, sabemos que para todo $j \in NA$

$$j = \bigvee \{u_{j(a)} \wedge v_a \mid a \in A\}.$$

Lema 2.6.1 Para cada $A \in \text{Frm } y$ morfismos de marcos $g, h \colon NA \to B$, si $g \circ \eta_A = h \circ \eta_A$, entonces g = h. En otras palabras, η_A es un epimorfismo.

Demostración. Consideremos los morfismos g, h tales que $g \circ \eta_A = h \circ \eta_A$. De esta manera $g(u_a) = h(u_a)$ para todo $a \in A$. Como u_a es complementado por v_a , es decir, $u_a \wedge v_a = \operatorname{id} y$ $u_a \vee v_a = \operatorname{tp}$, se puede verificar que $g(v_a) = h(v_a)$.

Ahora, consideremos $j \in NA$, entonces $j = \bigvee \{u_{j(a)} \land v_a \mid a \in A\}$. Así

$$g(j) = \bigvee \{g(u_{j(a)} \land g(v_a) \mid a \in A\}$$

= $\bigvee \{h(u_{j(a)} \land h(v_a) \mid a \in A\} = h(j).$

Por lo tanto q = h.

Un morfismo $f:A\to B$ resuelve el problema de complementación para A si para $a\in A$, f(a) tiene complemento en B.

Teorema 2.6.2 Para cada marco A, el morfismo $\eta_A \colon A \to NA$ resuelve universalmente el problema de la complementación para A. Es decir, para cada morfismo $f \colon A \to B$ existe un único morfismo $f^{\#}$ tal que el siguiente diagrama conmuta.

Demostración. Por el Lema 2.6.1, η_A es un epimorfismo, de esta manera, de existir el morfismo $f^{\#}$, este debe ser único.

Para cada $j \in NA$, consideremos

$$f^{\#}(j) = \bigvee \{ f(j(x)) \land f(x)' \mid x \in A \},$$

donde f(x)' es el complemento de f(x) es B. Se puede verificar que el morfismo $f^{\#} \colon NA \to B$ es monótono y además es un \land —morfismo.

Para $b \in B$, consideremos la siguiente composición

$$A \to B \to [b, 1_B],$$

donde $[b, 1_B]$ es un intervalo en B. Sea $\langle b \rangle$ el kernel de la composición anterior, de esta manera

$$y \leq \langle b \rangle(x) \Leftrightarrow b \vee f(y) \leq b \vee f(x) \Leftrightarrow f(y) \leq b \vee f(x)$$

para todo $x, y \in A$. Verifiquemos que el morfismo $f_b \colon B \to NA$, dado por la asignación $b \mapsto \langle b \rangle$ es el adjunto derecho de $f^{\#}$, es decir, debemos verificar que $f^{\#}(j) \leq b \Leftrightarrow j \leq \langle b \rangle$ para $j \in NA$ y $b \in B$.

Supongamos que $f^{\#}(j) \leq b$ y sea $x \in A$ tal que y = j(x). De esta manera

$$f(y) \wedge f(x)' \le f^{\#}(j) \le b \Leftrightarrow j(x) = y \le f(y) \le b \vee f(x),$$

es decir $j(x) \le \langle b \rangle(x)$.

De manera reciproca, supongamos que $j \leq \langle b \rangle$ y consideremos $x \in A$. De esta manera $j(x) \leq \langle b \rangle(x)$, de modo que $f(j(x)) \leq b \vee f(x)$. Así $f(j(x)) \wedge f(x)' \leq b$. Como lo anterior se cumple para todo $x \in A$, en particular se cumple para $f^{\#}$, es decir, $f^{\#}(j) \leq b$.

Lo anterior también muestra que $f^{\#}$ es un morfismo de marcos.

Por último, veamos que el diagrama conmuta. Sean $x, a \in A$. Así

$$f(a \lor x) \land f(x)' = (f(a) \lor f(x)) \land f(x)' = f(a) \land f(x)' \le f(a).$$

Además, $f(a \vee 1) \wedge f(1)' = f(a)$. Por lo tanto

$$(f^{\#} \circ \eta_A)(a) = f^{\#}(u_a) = \bigvee \{ f(a \lor x) \land f(x)' \mid x, a \in A \} = f(a)$$

que es lo que queríamos.

La prueba del Teorema 2.6.2, de manera indirecta, proporciona un funtor. En este punto es importante mencionar lo siguiente: **Toda propiedad universal define un funtor**.

Teorema 2.6.3 La asignación $A \mapsto NA$ es la relación entre objetos por el funtor $N(_)$: Frm Y Frm Y el morfismo Y el siguiente diagrama conmuta para un único Y el siguiente diagrama conmuta para un único Y el siguiente diagrama conmuta para un único Y el siguiente diagrama conmuta Y el siguiente diagrama conmuta

$$\begin{array}{ccc}
A & \xrightarrow{\eta_A} & NA \\
f \downarrow & & \downarrow_{Nf} \\
B & \xrightarrow{\eta_B} & NB
\end{array}$$

Demostración. En el diagrama anterior, la imagen de cada elemento de A bajo la composición $\eta_B \circ f$ es complementada en NB, y así, por el Teorema 2.6.2 existe un único morfismo $Nf: NA \to NB$ que hace conmutar el cuadrado.

Resta verificar que este es un funtor, es decir, para

$$A \xrightarrow{f} B \xrightarrow{g} C$$

se cumple que $N(g\circ f)=Ng\circ Nf.$ Notemos que el diagrama

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} B & \stackrel{g}{\longrightarrow} C \\ \eta_A \Big\downarrow & \eta_B \Big\downarrow & \eta_C \Big\downarrow \\ NA & \stackrel{Nf}{\longrightarrow} NB & \stackrel{Ng}{\longrightarrow} NC \end{array}$$

conmuta. De esta manera $Ng \circ Nf$ es la única flecha que hace conmutar el rectángulo. Por lo tanto $N(g \circ f) = Ng \circ Nf$.

De manera adicional, tenemos la siguiente relación entre el funtor N y los núcleos abiertos y cerrados.

Corolario 2.6.4 *Para* $f \in Frm(A, B)$ *y* $a \in A$ *se cumple lo siguiente:*

1.
$$(Nf)u_a = u_{f(a)}$$
.

$$2. (Nf)v_a = v_{f(a)}.$$

Demostración.

- 1. Es la asignación del cuadro en el Teorema 2.6.3.
- 2. Sabemos que los núcleos u_a y v_a son complementos en NA. Además, Nf es un morfismo de marcos. Así

$$u_{f(a)} \wedge (Nf)(v_a) = (Nf)(u_a \wedge v_a) = id$$

$$u_{f(a)} \vee (Nf)(v_a) = (Nf)(u_a \vee v_a) = tp.$$

de esta manera $(Nf)(v_a)$ es el complemento de $u_{f(a)}$ en NA, pero el complemento es único, es decir, $(Nf)(v_a) = v_{f(a)}$.

2.6.2 El triángulo fundamental de un espacio

La inclusión $\iota \colon \mathcal{O}S \to \mathcal{O}^f S$, en cierto modo, es un morfismo de marcos que resuelve el problema de complementación para $\mathcal{O}S$. En esta subsección, usamos la información anterior para encontrar el espacio de puntos del ensamble de un marco A.

Lema 2.6.5 Para cada espacio S existe un único morfismo de marcos σ tal que el siguiente diagrama conmuta.

Demostración. Es un caso particular del Teorema 2.6.2.

El resultado anterior es cierto para cualquier espacio S. En la practica, es más conveniente utilizar $S=\operatorname{pt} A$, donde $A\in\operatorname{Frm}$. Además, para este caso S resulta ser sobrio.

Observemos que el morfismo σ actúa como una transformación natural cuando el espacio S varia. Nuestro objetivo es encontrar una descripción especifica para el morfismo σ .

Definición 2.6.6 Sean $S \in \text{Top } y$ consideremos el morfismo $\sigma \colon N\mathcal{O}S \to \mathcal{O}^fS$ dado por

$$\sigma(j) = \bigcup \{ j(W) \setminus W \mid W \in \mathcal{O}S \}$$

para cada $j \in NOS$.

Para verificar que σ es un morfismo de marcos usaremos una manera equivalente de definirlo.

Lema 2.6.7 *Para* σ *como en la Definición* **2.6.6** *tenemos*

$$p \in \sigma(j) \Leftrightarrow p \in j(\overline{p}')$$

para cada $p \in S$. Además, σ es un \land -morfismo.

Demostración. Consideremos $p \in S$ arbitrario. Si $p \in \sigma(j)$, entonces

$$p \in \bigcup \{j(W) \setminus W \mid W \in \mathcal{O}S\}.$$

Así, $p \in j(W)$ y $p \notin W$ para algún abierto W. De aquí que

$$W \subseteq \overline{p}'$$
 y $p \in j(W) \subseteq j(\overline{p}')$

que es lo que queríamos.

Recíprocamente, supongamos que $p \in j(\overline{p}')$. Estableciendo $W = \overline{p}'$ tenemos que $p \in j(W)$ y $p \notin W$. Por lo tanto $p \in \sigma(j)$.

Por último, de manera general, consideremos $j, k \in NA$. Entonces

$$p \in \sigma(j \land k) \Leftrightarrow p \in (j \land k)(\overline{p}') \Leftrightarrow p \in j(\overline{p}' \cap k(\overline{p}') \Leftrightarrow p \in \sigma(j) \land \sigma(k)$$

para verificar que σ es un \wedge -morfismo.

En la Definición 2.5.1 se introducen los núcleos espacialmente inducidos. El siguiente resultado nos da más información sobre ellos.

Lema 2.6.8 Para σ definido como antes tenemos que $\sigma([E]) = E^{\square}$ para cada $E \in \mathcal{P}S$.

Demostración. Consideremos $E \in \mathcal{P}S$. Para cada $U \in \mathcal{O}S$ tenemos

$$[E](U) \setminus U = (E \cup U)^{\circ} \setminus U \subseteq E^{\square}.$$

Así, $\sigma([E]) = \bigcup \{ [E](W) \setminus W \mid W \in \mathcal{O}S \} \subseteq E^{\square}$ se cumple.

Para la otra contención, supongamos que $p \in E^\square$. Así existe $U \in \mathcal{O}S$ tal que

$$p \in U \cap \overline{p}' \subseteq E \subseteq \Rightarrow p \in U \subseteq E \cup \overline{p}' \Rightarrow p \in [E](\overline{p}').$$

Por lo tanto $p \in [E](\overline{p}') \setminus \overline{p}'$, es decir, $p \in \sigma([E])$.

Hasta este punto hemos mostrado que σ es un \wedge -morfismo. Para verificar que es un morfismo de marcos basta con mostrar quien es su adjunto derecho.

Teorema 2.6.9 Para cada espacio S el par de asignaciones

$$NOS \xrightarrow{\sigma} O^f S$$

forman un par adjunto. Además, σ es un morfismo de marcos.

Demostración. Por la definición de adjunción, debemos verificar que $\sigma(j) \subseteq E \Leftrightarrow j \leq [E]$ se cumple para todo $j \in NOS$ y $E \in O^fS$.

Supongamos que $\sigma(j) \subseteq E$. Así, para cada $U \in \mathcal{O}S$ y $p \in S$ tenemos

$$p \in j(U) \Rightarrow p \in (j(U) \setminus U) \text{ o } p \in U$$

 $\Rightarrow p \in \sigma(J) \text{ o } p \in U$
 $\Rightarrow p \in E \text{ o } p \in U$
 $\Rightarrow p \in E \cup U = (E \cup U)^{\circ}.$

Por lo tanto $j(U) \subseteq [E](U)$, y al ser U arbitrario se cumple que $j \leq [E]$.

Recíprocamente, supongamos que $j \leq [E]$. Entonces $\sigma(J) \subseteq \sigma([E])$. Por el Lema 2.6.8 sabemos que $\sigma([E]) = E^{\square}$ para todo $E \in \mathcal{P}S$. De aquí que $\sigma(j) \subseteq E^{\square} \subseteq E$ que es lo que queríamos.

Por lo tanto $[\]$ es el adjunto derecho de σ .

Para ver que es un morfismo de marcos debemos primero recordar que cualquier función monótona con adjunto derecho respeta supremos arbitrarios. Resta verificar el comportamiento de σ a través de los núcleos id y tp.

$$\sigma(\mathrm{id}) = \bigcup \{ \mathrm{id}(W) \setminus W \mid W \in \mathcal{O}S \} = \bigcup \{ W \setminus W \mid W \in \mathcal{O}S \} = \emptyset$$

$$\sigma(\mathrm{tp}) = \bigcup \{ \mathrm{tp}(W) \setminus W \mid W \in \mathcal{O}S \} = \bigcup \{ S \setminus W \mid W \in \mathcal{O}S \} = S.$$

Para terminar esta subsección retomamos lo dicho en el Lema 2.6.5 y verificamos que, así definido, σ hace conmutar el diagrama de dicho resultado.

Lema 2.6.10 Con los datos anteriores el siguiente diagrama conmuta

Demostración. Consideremos $U \in \mathcal{O}S$, entonces $(\sigma \circ \eta_{\mathcal{O}S})(U) = \sigma(u_U)$. Luego, para $V \in \mathcal{O}S$ se cumple que

$$\sigma(u_U(V)) = \sigma(U \cup V) = \sigma((U \cup V)^\circ) = \sigma([U]) = U^\square = U.$$

2.6.3 ¿Quién es ptNA?

Esta parte de las notas veremos la relación que existe entre el ensamble de la topología de un espacio (NOS y la topología de Skula.

El siguiente Teorema resulta de juntar el Teorema 2.6.3 y el Lema 2.6.5.

34

Teorema 2.6.11 Para $A \in \operatorname{Frm} y S = \operatorname{pt} A \ el \ siguiente \ diagrama \ conmuta.$

$$\begin{array}{ccc}
A & \xrightarrow{U_A} & \mathcal{O}S \\
\eta_A \downarrow & & \eta_{\mathcal{O}S} \downarrow & \downarrow \\
NA & \xrightarrow{NU_A} & N\mathcal{O}S & \xrightarrow{\sigma_{\mathcal{O}S}} & \mathcal{O}^fS
\end{array}$$

A manera de notación, denotamos la composición inferior del diagrama por $\sigma_{OS} \circ NU_A = \Sigma_A$. Se puede verificar que este morfismo le asigna al ensamble su espacio de puntos.

Lema 2.6.12 Para cada $j \in NA$ las tres condiciones son equivalentes:

- 1. j es \land -irreducible (en NA).
- 2. j es 2-valuado (cada valor de j es 0 o 1).
- 3. a = j(0) es \land -irreducible (en A) y $j = w_a$.

Demostración.

1) \Rightarrow 2) Supongamos que j es \land -irreducible. Verificaremos que j es de la forma

$$j(x) = \begin{cases} 1, & \text{si} \quad x \nleq a \\ a, & \text{si} \quad x \le a \end{cases}$$

donde a = j(0). Notemos que la anterior es la única manera posible en la que un núcleo puede tomar dos valores.

Sabemos que $u_x \wedge v_x = id \leq j$ se cumple para todo $x \in A$. Por lo tanto $u_x \leq j$ o $v_x \leq j$. Supongamos lo primero, es decir, para todo $y \in A$ $u_x(y) \leq j(y)$. De manera particular

$$x = u_x(0) \le j(0) = a$$
 y $j(x) = j(a) = a$,

pues $0 \le x$ y $a = j(0) \le j(x)$. Observemos que esto ocurre cuando $x \le a$. Supongamos ahora que $x \nleq a$. Así $v_x \le j$ y $10v_x(x) \le j(x)$, es decir, j(x) = 1. Por lo tanto, j tiene la forma que requeríamos.

2) \Rightarrow 3) Supongamos que j es 2-valuado y consideremos $x \land y \le a$ para algunos $x, y \in A$. Entonces

$$j(x) \land j(y) \le j(x \land y) \le a$$

por la forma de j. Como $j(x), j(y) \in \{a, 1\}$, entonces j(x) = a o j(y) = a y por lo tanto $x \le a$ o $y \le a$, nuevamente por la forma de j. Como a = j(0) se cumple que $a \ne 1$ y así a es \land —irreducible.

Ahora debemos probar que $w_a(x) = j(x)$, con j definido como antes, siempre que a es \land -irreducible. Supongamos que $x \le a$ entonces

$$((x \succ a) \succ a) = (1 \succ a) = a.$$

Si $x \nleq a$ entonces

$$(x \succ a) \land a = (x \succ a) \land ((x \succ a) \succ a)) \le a \quad \text{y} \quad x \le w_a(x)$$

así $w_a(x) = ((x \succ a) \succ a) \nleq a$. Como a es \land -irreducible se debe cumplir que $(x \succ a) \leq a$. Por lo tanto $((x \succ a) \succ a) = 1$, es decir,

$$w_a(x) = \begin{cases} 1, & \text{si} \quad x \nleq a \\ a, & \text{si} \quad x \le a \end{cases}$$

3) \Rightarrow 1) Queremos probar que w_a es \land -irreducible en NA siempre que a es \land -irreducible en A. Ya hemos demostrado que cuando a es \land -irreducible, entonces w_a es 2-valuado. También sabes que si $k \land l \le w_a$ entonces

$$k(a) \wedge l(a) \leq w_a(a) \Rightarrow k(a) \leq a \text{ o } l(a) \leq a \Rightarrow k \leq w_a \text{ o } l \leq w_a$$

es decir, w_a es \land -irreducible en NA.

Considerando S = ptA y T = ptNA, lo anterior nos proporciona un par inverso de biyecciones entre S y T, es decir

$$S \xrightarrow{\phi \atop t} T$$

donde $\phi(p) = w_p$ y $\psi(m) = m(0)$. De esta manera, el espacio de puntos de NA tiene esencialmente los mismos puntos que S, pero en una topología diferente. ¿Cuál es esta topología?

Lema 2.6.13 Sean $A \in \text{Frm}$, S = ptA y T = ptNA. Para $\mathcal{O}T$ se cumple que $\mathcal{O}^f S$ es la topología que provoca que las siguientes funciones sean un par de homeomorfismos.

$$S \xrightarrow{\phi \atop \longleftarrow \psi} T$$

Demostración. Los conjuntos abiertos usuales de S (los elementos de OS) son de la forma

$$U_A(x) = \{ p \in S \mid x \nleq p \}$$

para $x \in A$. Los abiertos de T son de la forma

$$U_{NA} = \{ m \in T \mid j \nleq m \}$$

para $j \in NA$.

También sabemos que si $j \in NA$, entonces $j = \bigvee \{v_x \wedge u_{j(x)} \mid x \in A\}$. Por lo tanto, los conjuntos $U_{NA}(u_x)$ y $U_{NA}(v_x)$ con $x \in A$ forman una sub-base de T, ya que $U(_)$ es un morfismo de marcos.

Luego

$$\phi^{-1}(U_{NA}(u_x)) = \psi(U_{NA}(u_x)) = \{\psi(m) \mid u_x \nleq m \in T\}$$
$$= \{m(0) \mid u_x \nleq m \in T\}$$
$$= \{p \mid x \nleq p \in S\}$$
$$= U_A(x).$$

Sabemos que $v_x \wedge u_x = \operatorname{id} \leq m$ y $v_x \vee u_x = \operatorname{tp}$ se cumple para todo $x \in A$ y $m \in T$. De esta manera se debe cumplir que $v_x \leq m$ o $u_x \leq m$. En otras palabras

$$x \in U_{NA}(v_x) \Leftrightarrow m \notin U_{NA}(u_x)$$

para cada $x \in A$ y $m \in T$. Así

$$\phi^{-1}(U_{NA}(v_x)) = \psi(U_{NA}(v_x)) = \psi(U_{NA}(u_x)') = U_A(x)'$$

pues ψ es un morfismo biyectivo de marcos.

De manera similar tenemos que $\psi^{-1}(U_A(x)) = U_{NA}(u_x)$ y $\psi^{-1}(U_A(x)') = U_{NA}(v_x)$. Por lo tanto los conjuntos $U_A(x)$ y $(U_A(x))'$ forman una sub-base para la topología inducida en S.Además, esta es la topología de Skula, $\mathcal{O}^f S$.

2.7 El marco de parches

En esta sección veremos la construcción libre de puntos del espacio de parches pS . Daremos el análogo de la pbase introducida en la Sección 2.4, pero para $a \in Frm$. A dicha construcción la llamaremos *el marco de parches*. Dicho marco resultará ser un submarco del ensamble NA.

Recordemos que para un espacio S, el espacio se construye a través de los abiertos de S ($\mathcal{O}S$) y los conjuntos compactos saturados de S ($\mathcal{Q}S$). Con estos dimos

$$\mathsf{pbase} = \{U \cap Q' \mid U \in \mathcal{O}S, Q \in \mathcal{Q}S\}$$

para obtener una familia \cap —cerrada de subconjuntos de S. Esta es la base para una nueva topología en S y \mathcal{O}^pS es el conjunto de uniones de todas las subfamilias de la pbase. Una construcción similar es la que nos permite obtener el marco de parches.

Consideremos $A \in \mathrm{Frm}$ un marco arbitrario y NA su ensamble. Sabemos que dentro de NA podemos considerar las familias

$$\{u_a \mid a \in A\}$$
 y $\{v_F \mid F \in A^{\wedge}\}.$

37

La primera es una copia isomorfa de A en NA, lo cual es un análogo de $\mathcal{O}S$. Por el Teorema 2.3.5, la segunda es un análogo de $\mathcal{Q}S$.

Definición 2.7.1 *Para* $A \in \text{Frm } definimos$

$$Pbase = \{u_a \land v_F \mid a \in A, F \in A^{\land}\}$$

la cual es una familia \land -cerrada de elementos en NA.

Notemos que si consideramos F = A y a = 1, podemos probar que la Pbase contiene cada u_a , para cada $a \in A$, y cada v_F para $F \in A^{\wedge}$.

Definición 2.7.2 Para cada $A \in \text{Frm}$, definimos el marco de parches, denotado por PA por el conjunto supremos de todas las subfamilias de la Pbase donde estos supremos son calculados en NA.

No es complicado verificar que, efectivamente, PA es un marco. De esta manera obtenemos lo siguiente.

Teorema 2.7.3 Para $A \in \text{Frm}$, PA es un submarco de NA, el cual incluye la imagen canónica de A.

El resultado anterior nos proporciona el siguiente diagrama

$$A \xrightarrow{\iota} PA \xrightarrow{i} NA$$

donde ι es un encaje e i es una inclusión. Está construcción nos lleva a cuestionarnos lo siguiente:

- P1) Dentro de la relación $A \to NA$, ¿dónde puede ocurrir PA?
- P2) ¿Puede $A \rightarrow PA$ ser un isomorfismo de manera no trivial?
- P3) ¿Puede ocurrir PA = NA de una manera no trivial?
- P4) ¿Cuál es la relación, si la hay, entre la construcción sin puntos y la construcción sensible a puntos?
- P5) ¿Qué es pt(PA)? ¿Coinciden con pptA?

El siguiente resultado da una manera de responder P2). Como veremos más adelante, existen otras manera de obtener $A \cong PA$.

Teorema 2.7.4 Para A un marco regular $y j \in NA$ un núcleo tal que $\nabla(j) \in A^{\wedge}$. Se cumple que $j = u_d$, donde d = j(0).

Demostración. Por hipótesis, A es un marco regular, en consecuencia, A es ajustado. De esta manera, cada bloque de admisibilidad está compuesto por un único elemento. Así, basta con probar que j y u_d tienen el mismo filtro de admisibilidad, y por lo tanto, concluir que $j = u_d$.

Como d = j(0), se cumple que $u_d \leq j$ y así $\nabla(u_d) \subseteq \nabla(j)$.

Para la otra contención debemos probar que para $x \in A$ y j(x) = 1, entonces $u_d(x) = d \lor x = 1$. Por la regularidad se cumple que

$$x = \bigvee \{ y \in A \mid (\exists z)[z \land y = 0 \text{ y } z \lor x = 1] \},$$

además, este es un supremo dirigido. Al ser $\nabla(j)$ un filtro abierto se debe cumplir que $y' \in \nabla(j)$ para algún $y' \in \{y \in A \mid (\exists z)[z \land y = 0 \text{ y } z \lor x = 1]\}$., es decir,

$$j(y') = 1$$
, $z \wedge y' = 0$, $z \vee x = 1$

para algunos $y', z \in A$. De esta manera $d \vee x = j(z) \vee z \geq z \vee x = 1$, es decir $\nabla(j) \subseteq \nabla(u_d)$.

Por lo tanto $\nabla(j) = \nabla(u_d)$.

Sabemos que $A \cong NA$ ocurre cuando A es booleano (lo cual provocaría que $A \cong PA$, lamentablemente que A sea booleano es una condición bastante fuerte). El Teorema 2.7.4, de manera indirecta nos dice que, bajo las hipótesis convenientes, la regularidad implica que $A \cong PA$, pues solo nos restringimos a algunos $j \in NA$.

2.7.1 ¿Es $P(_)$ un funtor?

En la subsección 2.4.3 se discuten las propiedades funtoriales de la construcción de parches sensible a puntos. Allí se menciona que una función continua $\phi\colon T\to S$ es parche continua si la imagen inversa ϕ^{-1} envía conjuntos compactos saturados $Q\in \mathcal{Q}S$ a conjuntos compactos saturados $\phi^{-1}(Q)\in \mathcal{Q}T$ (ver Definición 2.4.12). La restricción de estás imágenes inversas producen un morfismo de marcos ϕ^* entre las topologías y estos tienen adjunto derecho ϕ_* , es decir,

$$\mathcal{O}S \xrightarrow{\phi^*} \mathcal{O}T$$

Por el Lema 2.4.14, al ser ϕ_* una función Scott-continua, tenemos que ϕ^* es parche continua. También, por la funtorialidad de N, tenemos que para cada morfismo de marcos $f: A \to B, Nf$ resulta ser un morfismo entre los ensambles. De esta manera obtenemos el siguiente diagrama.

El objetivo de esta subsección es obtener un morfismo $Pf: PA \to PB$ entre los marcos de parches. Para que esto sea posible, necesitamos imponer algunas condiciones adicionales sobre

f.

Para un filtro F en A, la imagen f(F) no necesariamente es un filtro en B, sino es la clausura de la sección superior $f(F) = \uparrow f(F)$. Sin embargo, cunado $F \in A^{\wedge}$ no necesita serlo.

Ejemplo 2.7.5 Consideremos el intervalo real B = [0,1] como un marco linealmente ordenado y sea 0 < * < 1 (por ejemplo, * = 1/2), tomando $A = \{0, *, 1\}$ como un submarco y $f : A \to B$ la inclusión. Notemos que el filtro $F = \{*, 1\}$ es completamente primo, y por lo tanto, abierto. Además, la imagen f(F) = [*, 1] no es abierto en B, pues

$$f(F) \ni \bigvee [0,*) \quad y \quad [0,*) \cap f(F) = \emptyset.$$

En espacios, una función continua no necesariamente debe respetar conjuntos compactos saturados. Necesitamos imponer una condición para lograr la funtorialidad. El ejemplo anterior nos dice que un morfismo de marcos no necesariamente debe respetar filtros abiertos, de manera similar al caso espacial, necesitamos imponer condiciones adicionales.

Definición 2.7.6 Un morfismo de marcos $f: A \to B$ decimos que convierte filtros abiertos si para cada $F \in A^{\wedge}$, la imagen $f(F) \in B^{\wedge}$.

La definición anterior proporciona la condición que queremos, pues recordemos que

$$N(u_a) = u_{f(a)}, \quad N(v_a) = v_{f(a)}, \quad N(v_F) = N(v_{f(F)})$$

para cada $a \in A$ y $F \in A^{\wedge}$. En particular, si f convierte filtros abiertos se cumple que $F \in A^{\wedge}$ implica $f(F) \in B^{\wedge}$, por definición. En consecuencia, si $j \in \operatorname{Pbase}(A)$ implica que $Nf(j) \in \operatorname{Pbase}B$.

Lema 2.7.7 Sea $f: a \to B$ tal que convierte filtros abiertos. Entonces $j \in PA$ implica que $Nf(j) \in PB$ y por lo tanto, P actúa funtorialmente sobre esta clase de flechas.

En otras palabras, cuando f convierte filtros abierto, podemos definir Pf como la restricción de Nf a PA. Esto nos da el diagrama conmutativo

$$\begin{array}{cccc} A & \longrightarrow & PA & \longrightarrow & NA \\ f \downarrow & & & \downarrow^{Nf_{\mid PA}} & & \downarrow^{Nf} \\ B & \longrightarrow & PB & \longrightarrow & NB \end{array}$$

y así P pasa a través de las composiciones.

Requerimos descubrir cual es la relación que existe entre ambas construcciones de parches. En el siguiente resultado se considera un morfismo de marcos $f \colon A \to B$ y su adjunto derecho f_* . También, consideramos una función continua $\phi \colon T \to S$ y el morfismo de marcos inducido por sus topologías $\phi^* \colon \mathcal{O}S \to \mathcal{O}T$ junto con su adjunto derecho.

Teorema 2.7.8 1. Para un morfimos de marcos como se menciona antes, si el adjunto derecho f_* es Scott-continuo, entonces f^* convierte filtros abiertos.

2. Para una función continua ϕ como se menciona antes, el adjunto derecho ϕ_* es Scott-continuo si y solo si ϕ^* convierte filtros abiertos.

Demostración.

1. Sabemos que $f^*(a) \leq b \Leftrightarrow a \leq f_*(b)$ para $a \in A$ y $b \in B$. Consideremos un filtro abierto $F \in A^{\wedge}$ y sea $Y \subseteq B$ un subconjunto dirigido con $\forall Y \in f^*(F)$. De esta manera $f^*(a) \leq \forall Y$ para algún $a \in F$. Luego $a \leq f_*(\forall Y) = \forall f_*(\forall Y)$, lo anterior se debe a que f_* es Scott-continua.

Por lo tanto, como $f_*(Y)$ es dirigido en A se cumple que $a \leq f_*(y)$ para algún $y \in Y$. De esta manera $f^*(a) \leq y$ y $Y \cap f(F) \neq \emptyset$.

2. Supongamos primero que ϕ_* es Scott-continua, de esta manera, por a) se cumple que ϕ^* convierte filtros abiertos.

Recíprocamente, supongamos que ϕ^* convierte filtros abiertos. Consideremos conjunto dirigido $\mathcal{W} \subseteq \mathcal{O}T$ y sea $V = \phi_*(\bigcup \mathcal{W})$. Debemos mostrar $V \subseteq \bigcup \phi_*(\mathcal{W})$ para obtener la Scott-continuidad.

Consideremos cualquier $s \in V$. El filtros de vecindades F de s está dado por $U \in F \Leftrightarrow s \in U$, donde $U \in \mathcal{O}S$. Este filtro es abierto y así $\phi(F)$ también lo es, pero en $\mathcal{O}T$. Luego

$$W \in \phi(F) \Leftrightarrow \phi_*(W) \in F \Leftrightarrow s \in \phi_*(W)$$

para cada $W \in \mathcal{O}T$. En particular, tenemos $\bigcup \mathcal{W} \in \phi(F)$ y por lo tanto $\exists W \in \mathcal{W}$ con $W \in \phi F$. Así $s \in \phi_*(W) \subseteq \bigcup \phi_l(W)$ como requeríamos.

Consideremos una función continua como antes y supongamos que los espacios S y T son sobrios. Tenemos un morfismo de marcos asociado $\phi^* \mapsto \phi_*$ entre las topologías. Supongamos que el adjunto derecho ϕ_* es Scott-continuo. De esta manera ϕ convierte conjuntos compactos saturados, y por lo tanto es parche continuo. También, por el Teorema 2.7.8 el morfismo ϕ^* convierte filtros abiertos. Con esto se obtiene un par de morfismos de marcos

$$P(\phi^*) \colon P\mathcal{O}S \to P\mathcal{O}T \quad \text{ y } \quad \phi^* \colon \mathcal{O}^PS \to \mathcal{O}^PT$$

relacionando las construcciones libre de puntos y sensible a puntos. Más adelante se verá de manera más amplia esta conexión.

Teorema 2.7.9 Sea $A \in \text{Frm } y \ S = \text{pt} A$. La reflexión espacial $U_A \colon A \to \mathcal{O}S$ convierte filtros abiertos, pero su adjunto derecho $U_A)_*$ no necesariamente es un morfismo continuo.

Demostración. Sea $F \in A^{\wedge}$ y $\nabla U_A(F)$. Mostraremos que $\nabla \in \mathcal{O}S^{\wedge}$. Consideremos cualquier familia dirigida \mathcal{U} en $\mathcal{O}S$ tal que $\bigcup \mathcal{U} \in \nabla$. Debemos verificar que $\mathcal{U} \cap \nabla \neq \emptyset$.

Consideremos $X\subseteq A$ dado por $x\in X\Leftrightarrow U(x)\in \mathcal{U}$ y así, al ser $U(_)$ suprayectivo obtenemos $\mathcal{U}=\{U(x)\mid x\in X\}$ y X indexa a \mathcal{U} (posiblemente con alguna repetición). Vemos que $X\cap F\neq\emptyset$ y por lo tanto $\mathcal{U}\cap\nabla\neq\emptyset$.

Sea sp el kernel de $U(_)$, entonces

$$y \le sp(x) \Leftrightarrow U(y) \subseteq U(x)$$
 y $U(x) = U(sp(x))$

para todo $x,y\in A$. En particular $x\in X\Leftrightarrow sp(x)\in X$ para $x\in A$. Usando esto, verificamos primero que X es dirigido. Sean $x,y\in A$, entonces $U(x),U(y)\in \mathcal{U}$ y por lo tanto, al ser \mathcal{U} dirigida, tenemos que $U(x),U(y)\subseteq U(z)=U(sp(z))$ para algún $z\in X$. Así $sp(z)\in X$ y por la definición de sp tenemos que si $x,y\leq sp(z)$, entonces $x\vee y\leq sp(z)$ produciendo la cota superior en X requerida para concluir que X es dirigido.

Luego, sea $a = \bigvee X$, entonces

$$U(a) = \bigcup \{U(x) \mid x \in X\} = \bigcup \mathcal{U},$$

de modo que $U(a) \in \nabla$, así U(a) = U(b) para algún $b \in F$.

Ahora $sp(a) = s(b) \in F$ y como U(sp(x)) = U(x) tenemos que $sp(x) \in X \Leftrightarrow x \in X$. Así $\forall X = a \in F$ y al ser F un filtro abierto se cumple que $x \in X \cap F$. Por lo tanto $U(x) \in \mathcal{U} \cap \nabla$.

En el siguiente ejemplo se proporcionara un marco A donde el adjunto derecho de U_A no es continuo.

Necesitamos un marco no trivial sin puntos. Existen algunos marcos complicados de este tipo, pero aquí está una manera simple de producir uno.

Lema 2.7.10 Sea S cualquier espacio sobrio, T_1 , sin puntos aislados. Sea $(\mathcal{O}S)_{\neg\neg}$ el álgebra booleana de conjuntos abiertos de S (el cociente del marco $\mathcal{O}S$ bajo los núcleos dados por la doble negación). El marco $(\mathcal{O}S)_{\neg\neg}$ no tiene puntos.

Demostración. Veremos los puntos de $(\mathcal{O}S)_{\neg\neg}$ como caracteres, es decir,

$$(\mathcal{O}S)_{\neg\neg} \stackrel{p}{\longrightarrow} \mathbf{2}$$

y supongamos que existe tal punto (caracter) p. entonces podemos llevarlo de vuelta a un punto de $\mathcal{O}S$ por medio de

$$\mathcal{O}S \xrightarrow{\neg\neg} (\mathcal{O}S)_{\neg\neg} \xrightarrow{p} \mathbf{2}$$

Por lo tanto, para algún $p \in S$ se tiene que $\overline{p}' \in \operatorname{pt}(\mathcal{O}S \text{ y así } \neg \neg(\overline{p}') = \overline{\{(p^\circ)\}}' \text{ es un punto de } (\mathcal{O}S)_{\neg\neg}, \text{ pero } \{p\}^\circ = \emptyset \text{ al no tener } S \text{ puntos aislados y así } \neg \neg(\overline{p}' = S \text{ y } S \text{ no es irreducible en } (\mathcal{O}S)_{\neg\neg}.$

Para el siguiente ejemplo se necesita un marco no trivial sin puntos. Para conseguir esto, aplicamos el lema anterior al espacio $S = \mathbb{R}$ con la topología métrica.

Ejemplo 2.7.11 Sea B un marco no trivial sin puntos. Agregamos una copia de \mathbb{N} debajo de B, así tenemos una cola X que consta de ω elementos. Lo anterior forma un marco que denotamos por A.

Afirmación: Para el marco A definido antes, U_A no tiene adjunto derecho continuo.

Para mostrar esto, sea sp el kernel del morfismo U_A . Notemos que $U(x) \subseteq U(a) \Leftrightarrow x \leq sp(a)$ para $x, a \in A$. El morfismo sp lleva a cada elemento de A al ínfimo (en A) de los puntos por encima de el.

Supongamos, por contradicción, que U tiene adjunto derecho continuo. Entonce, su kernel sp es continuo (ya que sp es la composición de U con su adjunto derecho). En otras palabras $sp(\bigvee X) = \bigvee sp(X)$ para cada subconjunto dirigido X de A. De esta manera, consideremos la cola X de A, entonces $\bigvee X = b$, donde b es el menor elemento de B. Así, $sp(\bigvee X) = sp(b) = 1$, pues no hay puntos en A encima de b. Pero cada elemento de X es un punto de A, por lo tanto $\bigvee sp(X) = \bigvee X = b$ lo cual es una contradicción.

El Teorema 2.7.9 tiene un lado positivo: nos permite llegar a U_A con el funtor P y así obtener un morfismo

$$PA \xrightarrow{P(U_A)} P\mathcal{O}S$$

entre el marco de parches asociado.

2.7.2 El diagrama completo del marco de parches

Con toda la información recopilada hasta este momento podemos construir el siguiente diagrama.

$$\begin{array}{cccc}
A & \longrightarrow & PA & \longrightarrow & NA \\
U_A \downarrow & & \downarrow P(U_A) & & \downarrow N(U_A) \\
\mathcal{O}S & \longrightarrow & P\mathcal{O}S & \longrightarrow & N\mathcal{O}S \\
& & \downarrow \sigma_S & & \downarrow \sigma_S \\
\mathcal{O}^PS & \longleftarrow & \mathcal{O}^fS
\end{array}$$

El rectángulo superior de este diagrama se presenta en el Lema 2.7.7. La sección inferior

$$\mathcal{O}S \hookrightarrow \mathcal{O}^PS \hookrightarrow \mathcal{O}^fS$$

es la relación que tiene una topología con las topologías de parches y Skulla. El morfismo $\sigma_S \colon N\mathcal{O}S \to \wr^f S$ es el morfismo del espacio de puntos del ensamble a la topología de su espacio de puntos (pt $N\mathcal{O}S = \mathcal{O}^f S$.

La pregunta natural que surge es si existe un morfismo entre POS y OPS que haga que las celdas resultantes conmuten. La restricción de σ_S a POS es el morfismo que buscamos.

Lema 2.7.12 Sea S un espacio con topología $\mathcal{O}S$. Para cada filtro F en $\mathcal{O}S$ tenemos Q con $F = \nabla(Q)$ y $\sigma(v_F) = Q'$ donde Q es el correspondiente conjunto compacto saturado.

Demostración. Sabemos que v_F y [Q'] son compañeros bajo la relación de admisibilidad, es decir, admiten los mismos elementos. Al ser v_F el mínimo elemento del bloque, se cumple que $v_F \leq [Q']$ y así $\sigma(v_F) \subseteq \sigma([Q']) = Q'$. pues $Q \in \mathcal{O}^f S$.

Para verificar la otra contención consideremos $p \in Q'$. Notemos que $\overline{p} \subseteq Q'$ se cumple al ser Q saturado, entonces $Q \subseteq \overline{p}'$ y $\overline{p}' \in F$. Por lo tanto $p \in v_F(\overline{p}') = 1$ y así, por el Lema 2.6.7, $p \in \sigma(v_F)$.

Lema 2.7.13 Sea S un espacio con topología $\mathcal{O}S$. La restricción del morfismo de marcos σ a $P\mathcal{O}S$ proporciona un morfismo de marcos $\pi\colon PA\to \mathcal{P}^PS$. Además, el morfismo es suprayectivo.

Demostración. El marco POS es generado por núcleos de la forma $[U] \wedge v_F$ donde $U \in OS$ y $F \in OS^{\wedge}$. Tenemos que $\sigma([U]) = U$, pues U es abierto, y $F = \nabla(Q)$ para algún $Q \in QS$ de modo que $\sigma(v_F) = Q'$ por el Lema 2.7.12. Por lo tanto $\sigma([U] \wedge v_F) = U \cap Q'$ y estos conjuntos forman una base para OPS.

Lo anterior nos proporciona el diagrama completo del marco de parches.

El morfismo de marco π no necesariamente debe ser un isomorfismo aunque parece serlo en la mayoría de ejemplos naturales. Sin embargo, π no es inyectivo para algunos de los ejemplos que se veran más adelante, **de hecho, si** S **es empaquetado, entonces** ${}^pS = P$ **así**

$$\mathcal{O}S \xrightarrow{\longrightarrow} P\mathcal{O}S$$

se componen para dar la identidad en OS. pero π no necesita ser un isomorfismo.

2.8 Jerarquía de propiedades de separación

Como hemos visto en este capítulo, existen dos construcciones que tratan de imitar una propiedad similar a la que cumplen los espacios T_2 , la construcción del espacio de parches y la del marco de parches (una sensible a puntos y la otra libre de puntos). La primera sirve para caracterizar a los espacios empaquetados. La segunda, como mostraremos más adelante, caracteriza a los espacios cuya topología cumple ser "arreglada". De manera similar a los espacios empaquetados, los marcos arreglados produce una propiedad de separación entre los axiomas T_1 y T_2 .

44

2.8.1 Marco parche trivial

Recordemos que el espacio de parches produce una construcción en la cual todo conjunto compacto (en particular, saturado), resulta ser cerrado. Cuando comenzamos a trabajar con un espacio que es empaquetado, dicho construcción no hace nada. El objetivo principal de la construcción del marco de parches es mimetizar el comportamiento de los espacios de empaquetados, pero brindando una variante libre de puntos. La pregunta que podría surgir al plantearnos lo anterior es, ¿el marco de parche cumple con las expectativas?

Sabemos que para $A \in \mathrm{Frm}$ podemos asignar de manera canónica a cada elemento $a \in A$ un elemento $u_a \in PA$. ¿Existe la posibilidad de que este sea un isomorfismo? Para ir avanzando en la respuesta de esto, se da la siguiente definición.

Definición 2.8.1 Para $A \in \text{Frm } decimos \ que \ este \ es$ parche trivial $si \ el \ encaje \ \iota \colon A \to PA \ es$ un isomorfismo.

La teoría de marcos nos dice que un marco A es isomorfo a su ensamble NA siempre que A es booleano. Lo anterior podría darnos una respuesta de cuando ocurre la trivialidad del parche, pero esto se puede mejorar de muy buena manera. Para hacer esto lo ideal sería dar respuesta a la siguiente pregunta: ¿Bajo que circunstancias es un marco A parche trivial?

La prueba del Teorema 2.7.4 da una idea de como con algunas condiciones particulares, algunos $j \in NA$ cumplen que $j = u_d$ donde d = j(0). Para restringirnos únicamente al marco PA debemos observar que para algún $u \in A$ y cualquier $F \in A^{\wedge}$ se cumple que $u_d = v_F$. Lo anterior daría una condición necesaria y suficiente para obtener la trivialidad del parche. Antes de seguir analizando esta caracterización, tratemos de entender un poco sobre el comportamiento de ambas construcciones de parches.

Para un espacio S que es sobrio y empaquetado tenemos que S es T_1 . Además, por la relación

$$\mathcal{O}S \xrightarrow[\pi_S]{\iota} P\mathcal{O}S$$

donde la composición $\pi_S \circ \iota$ da el morfismo identidad en $\mathcal{O}S$. Notemos que si $\iota \circ \pi_S$ resultara ser la identidad en \mathcal{POS} podríamos concluir que $\mathcal{O}S$ es parche trivial.

Ejemplo 2.8.2 Existen espacios S que son sobrios y empaquetados pero donde la topología $\mathcal{O}S$ no es parche trivial. Se verá una colección de estos ejemplos más adelante.

El ejemplo anterior nos menciona parte de la relación que existe entre la noción parche trivial y algunos de los axiomas clásicos de separación. En otras palabras

$$T_1 \Rightarrow \text{Parche trivial} \quad \text{y} \quad T_3 \Rightarrow \text{Parche trivial}.$$

El siguiente lema enriquece aun más la información espacial.

Lema 2.8.3 Consideremos $S \in \text{Top } si$:

- a) S es T_2 o
- b) S es T_0 , ajustado y empaquetado (en otras palabras, T_1 y sobrio), entonces OS es parche trivial.

Demostración.

- a) Se verá más adelante (Una vez escrito el Teorema 8.4.4, referenciarlo.)
- b) Consideremos cualquier v_F para $F \in A^{\wedge}$. Por el Teorema 2.3.5, F está determinado por algún $Q \in QS$. Además, también sabemos que los núcleos v_F y [Q'] producen el mismo filtro de admisibilidad y al ser ajustado, se cumple que $v_F = [Q']$. Luego, al ser T_1 , se cumple que Q = M, es decir $[Q'] = [M'] = w_F$, por lo tanto, el intervalo de admisibilidad colapsa.

Observemos que la parte b) de la prueba anterior nos da un criterio un poco distinto para verificar la trivialidad del parche (cuando el marco en cuestión es la topología de un espacio). En este caso, basto verificar que los intervalos de admisibilidad son solo un punto, siempre que $F \in \mathcal{O}S^{\wedge}$.

Ambos ejemplos proporcionan una condición necesaria, pero no suficiente. Existen espacios T_2 y espacios T_1 +sobrios que no son parche trivial.

Ejemplo 2.8.4 a) La topología subregular sobre los números reales que se discutirá más adelante (Citar ejemplo cuando ya sea escrito) es un espacio T_2 (por lo tanto, empaquetado y sobrio), el cual no es ajustado. En particular, a condición

$$T_0 + Ajustado + empaquetado$$

no es necesaria para lograr una topología parche trivial.

b) La topología máxima compacta es un es un espacio T_0 , empaquetado, ajustado y compacto pero no es T_2 . En particular, T_2 no es necesario para asegurar un topología parche trivial.

2.8.2 Marcos arreglados

Si $F \in A^{\wedge}$, podemos asignarle un núcleo $v_F = \bigvee \{v_a \mid a \in F\}$ y, a manera de notación, consideramos sel supremo puntual $f = \dot{\bigvee} \{v_a \mid a \in F\}$ el cual nos permite construir una sucesión

$$d(0) = id$$
, $d(\alpha + 1) = f(d(\alpha))$, $d(\lambda) = \bigvee \{d(\alpha) \mid \alpha < \lambda\}$

para cada ordinal α y ordinal límite λ . Además, verificamos que esta se estabiliza en algún elemento $d = d(\infty) = v_F(0)$ para algún ordinal ∞ .

Al principio de esta sección mencionamos que una condición que asegura la trivialidad del parche es que $u_d = v_F$ para algún $d \in A$ y $F \in A^{\wedge}$.

En general, se cumple que $u_d \le v_F$. Por lo tanto, solo ocupamos ver la otra desigualdad y esta ocurre siempre que para $x \in F$, $u_d(x) = 1$.

Definición 2.8.5 *Sean* $A \in \text{Frm } y \alpha \text{ un ordinal.}$

1. Un filtro abierto $F \in A^{\wedge}$ es α -arreglado si

$$x \in F \Rightarrow u_{d(\alpha)}(x) = d(\alpha) \lor x = 1$$

donde $d(\alpha) = f^{\alpha}(0)$.

- 2. El marco A es α -arreglado si para todo $F \in A^{\wedge}$, F es α -arreglado.
- 3. El marco A es arreglado si es α -arreglado para algún ordinal α .

Notemos que si el marco A es arreglado, su grado de arreglo es el menor ordinal α para el cual se cumple que A es α -arreglado.

Lema 2.8.6 Un marco es arreglado si y solo si es parche trivial.

Demostración.

- \Rightarrow) Consideremos $A \in \operatorname{Frm}$ y supongamos que A es arreglado. De esta manera para $F \in A^{\wedge}$ se cumple que si $x \in F \Rightarrow d(\alpha) \vee x = 1$, es decir, $F \subseteq \nabla(u_{d(\alpha)})$, en particular, para el núcleo v_F asociado se cumple que $v_F \leq u_d$. Por lo tanto $v_F = u_d$, es decir, A es parche trivial.
- \Leftarrow) Supongamos que $A \cong PA$ y consideremos $F \in A^{\wedge}$ arbitrario. Por la trivialidad del parche se cumple que $v_F = u_d$ para algún $d \in A$. Notemos que lo anterior obliga que para $x \in F$, siempre se debe de cumplir que $d \vee x = 1$, pero esto solo ocurre cuando

$$d = \bigvee \{ \neg x \mid x \in F \} = \bigvee \{ (x \succ 0) \mid x \in F \}$$
$$= \bigvee \{ v_x(0) \mid x \in F \}$$
$$= v_F(0) = d(\infty)$$

para algún ordinal ∞ . Por lo tanto como $F = \nabla(v_F) = \nabla(u_d)$ se debe cumplir que si $x \in F$, entonces $d \vee x = 1$, es decir, A es arreglado (pues F es arbitrario).

Notemos que si $F \in A^{\wedge}$ es α -arreglado, entonces F es β -arreglado para ordinales $\beta \leq \alpha$, pues $\nabla(f(d(\beta))) \subseteq \nabla(f(d(\alpha)))$. De esta manera se obtiene una jerarquía de propiedades

$$\cdots \Rightarrow \alpha\text{-arreglado} \Rightarrow (\alpha-1)\text{-arreglado} \Rightarrow \cdots 1\text{-arreglado} \Rightarrow 0\text{-arreglado}$$

En el Teorema **Referenciar el Teorema 11.3.7 una vez que ya este escrito** se mostrará que cada una de estas es distinta.

De manera sencilla podemos observar que

$$A \text{ es } 0\text{-arreglado } \Leftrightarrow A = \{*\}.$$

Daremos un poco más de información para cuando A es 1-arreglado.

Queremos usar la condición de arreglo para el caso en que $A = \mathcal{O}S$.

47

Lema 2.8.7 Consideremos S un espacio sobrio, $Q \in QS$ y $F = \nabla(Q)$ el filtro abierto correspondiente a Q en OS. Para cada ordinal α , el filtro F es α -arreglado si y solo si $Q(\alpha) = Q$.

Demostración. Por hipótesis $F = \nabla(Q)$ es α -arreglado y por definición esto ocurre si

$$U \in F \Rightarrow (Q(\alpha))' \cup U = S$$

pues $d(\alpha)=(Q(\alpha))'$. Así, si $Q\subseteq U$, entonces $Q(\alpha)\subseteq U$. Por lo tanto $Q(\alpha)\subseteq Q$ y $Q\subseteq Q(\alpha)$, es decir, $Q(\alpha)=Q$ como queríamos.

2.8.3 La jerarquía de la regularidad

La subsección anterior proporciona una jerarquía de propiedades por medio del grado de arreglo. Como veremos ahora, podemos establecer una jerarquía similar, pero en este caso, relacionadas con la regularidad.

Definición 2.8.8 Consideremos $A \in \text{Frm y } \alpha$ un ordinal. Decimos que A es:

a) débilmente α -regular si para cada $a,b \in A$ y $F \in A^{\wedge}$ con $a \nleq b$ y $a \in F$ existen $x,y \in A$ tales que

$$a \lor x = 1, \quad y \le a, \quad y \nleq b \quad y \quad x \land y \le d(\alpha)$$

se cumple.

b) α -regular si para cada $a, b \in A$ existe $y \in A$ tal que para cada $F \in A^{\wedge}$ con $a \in F$ existe un elemento $x \in A$ tal que

$$a \lor x = 1, \quad y \le a, \quad y \nleq b \quad y \quad x \land y \le d(\alpha)$$

se cumple.

Observemos que a) y b) de la definición anterior está en el orden de los cuantificadores. Para el caso de a) tenemos

$$(\forall a) (\forall F) (\exists y) (\exists x)$$

y para b) se cumple que

$$(\forall a) (\exists y) (\forall F) (\exists x).$$

En otras palabras, débilmente α -regular requiere cierta uniformidad en la elección de y.

Al principio, débilmente α -regular parece la más obvia y, de hecho, fue la primera que demostraron. Sin embargo, la segunda se relaciona mejor con algunas de las otras propiedades que implican la regularidad. En particular, podemos dar una versión α -indexada para decir que un elemento a está bastante por debajo de b. Recordemos que podemos caracterizar a los marcos regulares por medio de sus elementos bastante por debajo.

Definición 2.8.9 Para $a, y \in A$, decimos que y está bastante α -por debajo de a (denotado por " $y \leqslant_{\alpha} a$ "), si para cada $F \in A^{\wedge}$ tal que $a \in F$ existe $x \in A$ tal que

$$a \lor x = 1, \quad y \le a, \quad y \quad x \land y \le d(\alpha)$$

se cumple.

Observemos que \leqslant_0 es simplemente la definición de \leqslant . De las definiciones de α -regular y bastante α -por debajo vemos que A es α -regular exactamente cuando para cada $a \nleq b$ existe algún $y \leqslant_{\alpha} a$ y $y \nleq b$ se cumple.

Lema 2.8.10 Un marco A es α -regular si y solo si para todo $a \in A$

$$a = \bigvee \{ b \in A \mid b \leqslant_{\alpha} a \}.$$

Demostración. Supongamos que A es α -regular. Consideremos $a \in A$ y $b = \bigvee \{y \in A \mid y \leqslant_{\alpha} a\}$, entonces $b \leq a$. Si $a \nleq b$, por la definición de la α -regularidad $y \leqslant_{\alpha} a$ y $y \nleq b$ para algún $y \in A$, lo cual es una contradicción (pues $y \leq b$). Por lo tanto $a \leq b$.

Recíprocamente, supongamos que $a = \bigvee \{y \in A \mid y \leqslant_{\alpha} a\}$ para todo $a \in A$. Así, si $a \nleq b$, entonces existe $y \in A$ tal que $y \leqslant_{\alpha} a$ y $y \nleq b$ lo cual implica la α -regularidad. La siguiente propiedad de la α -regularidad surgen directamente de la definición.

Lema 2.8.11 Para cada $A \in \text{Frm } y$ ordinales $\alpha \leq \beta$, las siguiente implicaciones se cumplen:

- 1. α -regular \Rightarrow débilmente α -regular.
- 2. α -regular $\Rightarrow \beta$ -regular.
- 3. débilmente α -regular \Rightarrow débilmente β -regular.
- 4. 0-regular \Leftrightarrow regular.

De esta manera tenemos una jerarquía en tres propiedades. Además, podemos relacionarlas.

Teorema 2.8.12 Para cada $A \in \text{Frm } y$ ordinal α las siguientes implicaciones se cumplen

$$\alpha$$
-arreglado $\Rightarrow \alpha$ -regular \Rightarrow débilmente α -regular $\Rightarrow (\alpha - 1)$ -regular.

Demostración. Supongamos que A es α -arreglado y consideremos $a,b\in A$ con $a\nleq b$. Sea y=a y supongamos que para $F\in A^{\wedge}, a\in F$. Al ser A α -arreglado, se cumple que $d(\alpha)\vee a=1$. Tomemos $x=(a\succ d(\alpha))$, entonces

$$x \wedge y = x \wedge a \leq d(\alpha), \quad a \vee x \geq a \vee d(\alpha) = 1 \quad y \quad y \leq a$$

con $y \nleq b$ y así obtener que A es α -regular.

La segunda implicación se cumple por la definición de ambas propiedades.

Por último, supongamos que A es débilmente α -regular. Sean $F \in A^{\wedge}$ y $a \in F$. Por hipótesis

$$a = \bigvee \{y \in A \mid y \leq a \text{ y } a \vee (y \succ d(\alpha)) = 1\}$$

donde este supremo resulta ser dirigido. Como $a \in F$, se debe cumplir que existe $y \in F$ tal que $y \le a$ y $a \lor (y \succ d(\alpha)) = 1$. Luego

$$(y \succ d(\alpha)) = v_y(d(\alpha)) \le f(d(\alpha)) = d(\alpha + 1).$$

De esta manera $1=a\vee(y\succ d(\alpha))\leq a\vee d(\alpha+1)$. Lo cual implica que $a\vee d(\alpha+1)=1$ y por lo tanto A es $(\alpha+1)$ -arreglado.

La parte c) del Lema 2.8.11 nos proporciona un caso particular del Teorema 2.8.12, pues regular= 0-regular, y este implica 1-arreglado. Notemos que lo anterior es el Teorema 2.7.4.

49

2.8.4 Topologías arregladas

Teniendo en cuenta que la topología de un espacio es un marco, resulta natural el preguntarnos, ¿cuál es el comportamiento del grado de arreglo con respecto a las propiedades clásicas de separación?

Lema 2.8.13 Si el marco A es arreglado, entonces cada punto de A es máximo. Además, ptA es un espacio T_1 .

Demostración. Consideremos $S = \operatorname{pt} A$. Sea $p \in S$ y P el filtro completamente primo correspondiente a p, es decir,

$$y \in P \Leftrightarrow y \nleq p$$

para $y \in A$. Recordemos que si P es completamente primo, entonces este es abierto y primo, de esta manera consideramos v_P el núcleo asociado a P. Luego $d = v_P(0) \le w_p(0) = p$ y, sin perdida de generalidad, tomemos $a \in A$ tal que p < a. Como $a \nleq p$ entonces $a \in P$ y al ser A arreglado, se cumple que

$$a = a \lor p \le a \lor d = 1$$
,

es decir, $a \lor p = 1$ y al ser a arbitrario, se debe cumplir que p es máximo.

El resultado anterior se puede extender a espacios T_0 generales. Cada espacio T_0 es un subespacio de su reflexión sobria ^+S y ambos espacios tienen topologías isomorfas. Si la topología $\mathcal{O}S$ es arreglada, entonces, por el Lema anterior, su espacio de puntos de ^+S es T_1 . Sabemos que si S es un espacio con reflexión sobria que es T_1 , entonces el espacio S es T_1 y sobrio.

Lema 2.8.14 Si un espacio T_0 tiene una topología arreglada, entonces el espacio original es T_1 y sobrio.

Un espacio T_0 es T_3 precisamente cuando este es 0-regular. ¿Qué pasa con el siguiente nivel de la jerarquía que 0-regular implica? Los siguientes resultados responden lo anterior.

Lema 2.8.15 Si un marco A es 1-arreglado entonces su espacio de puntos S es T_2 .

Demostración. Consideremos $p \in S$ y su correspondiente filtro completamente primo P. Notemos que

$$d(1) = \bigvee \{v_x(0) \mid x \in P\} = \bigvee \{\neg x \mid x \nleq p\}$$

y al ser A 1-arreglado, si $a \nleq p$, entonces $a \lor d(1) = 1$ para $a \in A$. Consideremos cualquier punto $q \neq p$, necesitamos encontrar vecindades abiertas disjuntas de p y q. Por el Lema 2.8.13 p y q son máximos, entonces se debe cumplir que $q \nleq p$ en A y así $q \in P$. Si $q \in P$ entonces $q \lor d(1) = 1$ y por la maximalidad de q se debe cumplir que $d(1) \nleq q$. De esta manera, existe $x \nleq p$ con $y = \neg x \nleq q$ y por lo tanto tenemos que

$$p \in U_x$$
, $q \in U_y$, $U_x \cap U_y = U_0 = \emptyset$,

es decir, S es un espacio T_2 , pues obtuvimos una separación de abiertos para p y q.

Teorema 2.8.16 Un espacio S que es T_0 tiene topología 1-arreglada si y solo si S es T_2 .

Demostración. Cada espacio T_0 es un subespacio de su reflexión sobria. Si tal espacio tiene topología 1-arreglada, entonces por el Lema 2.8.15 es un subespacio de un espacio T_2 y por lo tanto, S es T_2 en si mismo.

Recíprocamente, supongamos que S es T_2 y consideremos $F \in \mathcal{O}S^{\wedge}$. Al ser S T_2 este es un espacio sobrio. Sea $F = \nabla(Q)$ para el respectivo $Q \in \mathcal{Q}S$ y así $U \in F \Leftrightarrow Q \subseteq U$ para $U\mathcal{O}S$. Notemos que

$$Q(1) = \hat{Q}(Q(0)) = \hat{Q}(S) = \bigcap \{ \overline{(S \cap U)} \mid Q \subseteq U \} = \bigcap \{ \overline{U} \mid Q \subseteq U \}$$

y $Q \subseteq Q(1)$. Por el Lema 2.8.7, F es 1-arreglado si Q(1) = Q, y al ser F arbitrario, tendríamos que $\mathcal{O}S$ es1-arreglado. Por lo tanto, debemos verificar que $Q(1) \subseteq Q$.

Supongamos que $p \notin Q$, entonces existen $U, V \in \mathcal{O}S$ tales que $p \in U$, $Q \subseteq V$ y $U \cap V = \emptyset$. De esta manera $p \notin \overline{V}$, y además, por la forma de Q(1) se cumple que $p \notin Q(1)$, es decir, $Q(1) \subseteq Q$.

Tenemos dos resultados que relacionan los espacios T_2 con la condición de arreglo. Uno de los objetivos que buscamos con estas notas es explorar de mejor manera la relación que existe entre los marcos arreglados y los diferentes axiomas de separación libre de puntos.

A manera de resumen, si S es al menos un espacio T_0 , se tienen las siguientes caracterizaciones.

- 1. $\mathcal{O}S$ es 0-arreglado $\Leftrightarrow S = \emptyset$.
- 2. $\mathcal{O}S$ es 0-regular $\Leftrightarrow S$ es T_3 .
- 3. $\mathcal{O}S$ es 4-arreglado $\Leftrightarrow S$ es T_2 .
- 4. $\mathcal{O}S$ es 1-regular \Leftrightarrow ??
- 5. OS es arreglado $\Leftrightarrow S$ es empaquetado y *apilado*.

2.8.5 Espacios apilados

Las nociones empaquetado y arreglado, hasta cierto punto, podrían parecer similares. Sin embargo, la caracterización 5) mencionada antes nos da la sospecha de que no es así. Recordemos parte de la información que tenemos sobre estas.

- Un marco A es parche trivial si y solo si este es arreglado. De esta manera, podemos asociar a un marco un grado de arreglo.
- Un espacio S es empaqueta justamente cuando $S = {}^{p}S$.

Lema 2.8.17 Sean $A \in \text{Frm y } S = \text{pt} A$. Si A es arreglado, entonces S es empaquetado.

Demostración. Consideremos $Q \in \mathcal{Q}S$ y sea $F = \nabla(Q)$ el filtro abierto correspondiente. Por el Teorema 2.6.11 tenemos que $\Sigma_A = \sigma_{\mathcal{O}S} \circ NU_A$, donde

$$\Sigma_A \colon NA \to \mathcal{O}^f S, \quad \sigma_{\mathcal{O}S} \colon N\mathcal{O}S \to \mathcal{O}^f S \quad \mathbf{y} \quad NU_A \colon NA \to N\mathcal{O}S.$$

Luego,

$$\Sigma(v_F) = (\sigma_{\mathcal{O}S} \circ NU_A)(v_F) = \sigma_{\mathcal{O}S}(NU_A(v_F)) = \sigma_{\mathcal{O}S}(v_{U(F)}) = \sigma_{\mathcal{O}S}(v_F).$$

Por el Lema 2.7.12 tenemos que $\sigma_{OS}(v_F) = Q'$. Por hipótesis, A es arreglado, así este es parche trivial, es decir, $v_F = u_d$ para algún $d \in A$. De aquí que

$$Q' = \Sigma(v_F) = \Sigma(u_d) = U(d),$$

pues Σ es la reflexión espacial de $\mathcal{O}S$, es decir, $Q' \in \mathcal{O}S$. Por lo tanto, $Q \in \mathcal{C}S$ y al ser Q arbitrario, se cumple que todo conjunto compacto saturado es cerrado, es decir, S es empaquetado.

Como un caso particular de lo anterior, si un espacio sobrio tiene una topología arreglada.

Lema 2.8.18 Si el espacio S es sobrio y empaquetado, entonces el encaje canónico del marco de parches

$$\mathcal{O}S \xrightarrow{\longrightarrow} P\mathcal{O}S$$

se divide, es decir, tiene un inverso unilateral donde la composición en $\mathcal{O}S$ es la identidad.

El Lema 2.8.17 muestra que si la topología de un espacio sobrio S es arreglada, entonces S es empaquetado. Sin embargo, existen ejemplos que muestran que sobriedad y empaquetado no son suficientes para obtener la condición de arreglo. Para que esto suceda necesitamos algo más de información.

Definición 2.8.19 Sean S un espacio $y \in QS$. Decimos que un conjunto cerrado $X \in CS$ es Q-irreducible (denotado por $Q \ltimes X$), si

$$Q \subseteq U \Rightarrow X \subseteq \overline{(X \cap U)}$$

se cumple para cada $U \in \mathcal{O}S$.

¿Qué tiene que ver esta noción de Q-irreductibilidad con la noción estándar de irreductibilidad? Para cada punto x de un espacio, la saturación $\uparrow x$ es compacto. Nos fijamos en $(\uparrow x)$ -irreductibilidad.

Lema 2.8.20 Sean S un espacio y $X \in CS$ con $X \neq \emptyset$. Entonces X es irreducible exactamente cuando $x \in X$ implica $(\uparrow x) \ltimes X$ para cada $x \in S$.

Demostración. Supongamos primero que X es irreducible y consideremos cualesquiera $x \in X$ y $U \in \mathcal{O}S$ tal que $x \in U$. Sea $V = \overline{(X \cap U)}'$, entonces debemos probar que $X \subseteq V'$, es decir, $X \cap V = \emptyset$.

Por contradicción, supongamos que $X \cap V \neq \emptyset$. Sabemos que $X \cap U \neq \emptyset$ y por la irreductibilidad se cumpliría que $X \cap U \cap V \neq \emptyset$, pero $X \cap U \cap V \subseteq V \cap V' = \emptyset$ lo cual es una contradicción.

Recíprocamente, supongamos $x \in X \Rightarrow (\uparrow x) \ltimes X$ para cada $x \in S$. Consideremos que $U, V \in \mathcal{O}S, x \in X \cap U$ y $y \in X \cap V$. Debemos probar que $X \cap U \cap V \neq \emptyset$. Por hipótesis, $(\uparrow x) \ltimes X$, es decir, $X = \overline{(X \cap U)}$ para cada $U \in \mathcal{O}S$. De esta manera

$$\overline{(X \cap U)} = X = \overline{(X \cap V)},$$

y en particular $y \in \overline{(X \cap U)}$. Pero $y \in V \in \mathcal{O}S$ y por lo tanto $X \cap U \cap V \neq \emptyset$ como requeríamos.

Por medio de la relación × podemos dar las siguientes definiciones.

Definición 2.8.21 a) Un espacio S es apilado si $Q \ltimes X \Rightarrow X \subseteq \overline{Q}$ se cumple para cada $Q \in QS$ y $X \in CS$.

b) Un espacio S es fuertemente apilado si $Q \ltimes X \Rightarrow X \subseteq \overline{(X \cap Q)}$ se cumple para cada $Q \in \mathcal{Q}S$ y $X \in \mathcal{C}S$.

Como mencionamos antes, la noción de apilamiento se puede relacionar con el grado de arreglo. Antes de ver eso, observemos la relación con las propiedades espaciales.

Lema 2.8.22 a) Cada espacio T_2 es fuertemente apilado.

- b) Cada espacio fuertemente apilado es apilado.
- c) Cada espacio T_1 y sobrio es apilado.

Demostración.

a) Consideremos un espacio S que es T_2 y supongamos que $Q \ltimes X$ para $Q \in \mathcal{Q}S$ y $X \in \mathcal{C}S$. Es suficiente mostrar que $X \subseteq Q$.

Por contradicción, supongamos que $X \nsubseteq Q$. De esta manera existe $p \in X \setminus Q$ y al ser S un espacio T_2 , existen $U, V \in \mathcal{O}S$ tales que $Q \subseteq U$, $p \in V$ y $U \cap V = \emptyset$. Al cumplirse $Q \ltimes X$, entonces $X \subseteq \overline{(X \cap U)} \subseteq \overline{U} \subseteq V'$ y por lo tanto $p \in V \cap X \subseteq V \cap V' = \emptyset$, lo cual es una contradicción.

- b) Se da por definición.
- c) Consideremos un espacio S tal que es T_1 y apilado. Consideremos cualquier $X \in \mathcal{C}S$ irreducible y $x \in X$. Mostraremos que $X = \{x\}$.

Por el Lema 2.8.20 tenemos que $(\uparrow x) \ltimes X$. Como S es T_1 , entonces $(\uparrow x) = \{x\} = \overline{x}$ y al ser S apilado se cumple $x \in X \subseteq (\uparrow x) = \{x\}$. Por lo tanto, $\{x\} = X$.

El parte a) del Lema 2.8.22 nos abre el panorama con una de las propiedades de separación más importantes, pero la mayoría de los espacios que nos interesan son fuertemente apilados, pero no T_2 . La ventaja es que existen muchos otros espacios fuertemente apilados que cumplen otras condiciones.

Lema 2.8.23 Cada topología de Alexandroff es fuertemente apilada.

Demostración. Sean $Q \in \mathcal{Q}S$ y $X \in \mathcal{C}S$ tales que $Q \ltimes X$. Por definición tenemos que $Q \subseteq U \Rightarrow X \subseteq \overline{(X \cap U)}$, donde $U \in \mathcal{O}S$. Si S es un espacio de Alexandroff, entonces todo conjunto saturado es abierto, es decir, $Q \in \mathcal{O}S$. Por lo tanto si $Q \ltimes X \Rightarrow X \subseteq \overline{(X \cap Q)}$ y es lo que queríamos probar.

Podríamos no tener claro cual es la función de la relación ⋉. El Lema 2.8.22 únicamente menciona un comportamiento sensible a puntos. Su verdadero propósito se vuelve claro cuando vemos la situación en un enfoque sin puntos.

Cada $Q \in \mathcal{Q}S$ produce un $F \in \mathcal{O}S^{\wedge}$ y a su vez, este produce una derivada f y un núcleo $v_F = f^{\infty}$ en $\mathcal{O}S$. De igual manera tenemos un núcleo espacialmente inducido [Q'] en $\mathcal{O}S$. Además, $v_F \leq [Q']$ (pues F es admitido por ambos núcleos).

Sabemos que $f(W)=\bigcup\{(u\succ W)^\circ\mid q\subseteq U\}$ para cada $W\in\mathcal{O}S$. Así, para cada $X\in\mathcal{C}S$ tenemos

$$f(X') = \bigcup \{ (U' \cup X')^{\circ} \mid Q \subseteq U \}$$
$$= \bigcup \{ \overline{(X \cap U)}' \mid Q \subseteq U \}$$
$$= \left(\bigcap \{ \overline{(X \cap U)} \mid Q \subseteq U \} \right)'$$
$$= (\hat{Q}(X))'$$

Lema 2.8.24 Para cada espacio $S y Q \in \mathcal{Q}S$ tenemos

$$Q \ltimes X \Leftrightarrow \hat{Q}(X) = X \Leftrightarrow v_F(X') = X'$$

para cada $X \in \mathcal{C}S$.

Lema 2.8.25 Para cada espacio S y $Q \in QS$ tenemos

$$a) \ \overline{Q} \subseteq Q(\infty), \qquad \qquad b) \ Q \ltimes Q(\infty), \qquad \qquad c) \ Q \ltimes X \Rightarrow X \subseteq Q(\infty)$$

para cada $X \in \mathcal{C}S$.

Demostración.

a) Tenemos que por la construcción de $\hat{Q}(\alpha)$, $Q\subseteq Q(\infty)$. Luego, como $Q(\infty)$ es cerrado, por lo tanto $\overline{Q}\subseteq Q(\infty)$.

- b) Por definición $Q(\infty) = \hat{Q}(Q(\infty)) = \bigcap \{ \overline{(Q(\infty) \cap U)} \mid Q \subseteq U \}$. de esta manera, si $Q \subseteq U$, entonces $Q(\infty) \subseteq \overline{(Q(\infty) \cap U)}$, es decir, $Q \ltimes Q(\infty)$.
- c) Por construcción $Q(\infty)$ es el mayor conjunto Y con $\hat{Q}(Y) = Y$

$$\hat{Q}(Y) = \bigcap \{ \overline{(Y \cap U)} \mid Q \subseteq U \} = Y,$$

si $Q \ltimes X$, entonces por definición, $Q \subseteq U$ implica que $X \subseteq \overline{(X \cap U)} \subseteq \hat{Q}(\infty)$.

De esta manera $Q \subseteq \overline{Q} \subseteq Q(\infty)$ para cada $Q \in \mathcal{Q}S$ Por definición, la inclusión de la izquierda es una igualdad precisamente cuando el espacio S es empaquetado, ¿cuándo es una igualdad la contención de la derecha?

Corolario 2.8.26 Un espacio S es apilado precisamente cuando $\overline{Q}=Q(\infty)$ para cada $Q\in \mathcal{Q}S$.

Demostración. Supongamos que el espacio S es apilado. Por b) del Lema 2.8.25, tenemos que para cada espacio S y $Q \in \mathcal{Q}S$ se cumple que $Q \ltimes Q(\infty)$ y al ser S apilado implica que $Q(\infty) \subseteq \overline{Q}$. La otra contención es la parte a) del Lema 2.8.25, Por lo tanto $\overline{Q} = (\infty)$.

Recíprocamente, si $\overline{Q}=Q(\infty)$, entonces por c) del Lema 2.8.25, se cumple que $Q \ltimes X \Rightarrow X \subseteq Q(\infty)=\overline{Q}$ y esta es la definición de apilado. \blacksquare Los espacios apilados van un paso más allá.

Lema 2.8.27 Para cada espacio S las siguientes afirmaciones son equivalentes.

- 1. S es fuertemente apilado.
- 2. Para cada $F \in \mathcal{O}S^{\wedge}$ tenemos que $v_F = [Q']$ donde F es el filtro de vecindades de $Q \in \mathcal{Q}S$.
- 3. Para cada $F \in \mathcal{O}S^{\wedge}$ el núcleo v_F es espacialmente inducido.

Demostración.

1) \Rightarrow 2) Supongamos que S es fuertemente apilado. Consideremos $Q \in \mathcal{Q}S$ y $F \in \mathcal{Q}S$ el respectivo filtro abierto asociado a Q. Sabemos que $v_F \leq [Q']$, entonces debemos verificar la otra desigualdad. Por el Lema 2.8.24 se cumple que para cada $X \in \mathcal{C}S$

$$v_F(X') = X' \Rightarrow Q \ltimes X \Rightarrow X \subseteq \overline{(X \cap Q)} \Rightarrow \overline{(X \cap Q)}' \subseteq X' \Rightarrow [Q'](X') = X',$$

es decir, cualquier abierto fijado por v_F es fijado por [Q'] y así $[Q'] \leq v_F$.

2) \Rightarrow 3) Si $v_F = [Q']$ en consecuencia v_F es espacialmente inducido.

 $(3) \Rightarrow 1)$ Supongamos que $v_F = [E']$ para algún $E \subseteq S$. Sabemos que

$$v_F = \bigcup \{ [U'] \mid Q \subset U \},\$$

donde Q es el compacto saturado correspondiente a F y $Q=\bigcap F$. De aquí que $Q\subseteq U\Leftrightarrow E\subseteq U$ para $U\in \mathcal{O}S$. Al ser Q saturado

$$Q = \bigcap \{U \mid E \subseteq U\} \quad \text{y} \quad E \subseteq Q \Leftrightarrow Q' \subseteq E' \Leftrightarrow [Q'] \leq [E'] = v_F.$$

Supongamos ahora que $Q \ltimes X$ para $X \in \mathcal{C}S$, entonces $X \subseteq \overline{(X \cap U)}$, pues $Q \subseteq U$. Luego,

$$\begin{split} [Q'](X') \leq [E'](X') &\Leftrightarrow (Q' \cup X')^{\circ} \subseteq (E' \cup X')^{\circ} \\ &\Leftrightarrow \overline{(Q \cap X)}' \subseteq \overline{(E \cap X)}' \subseteq X', \end{split}$$

es decir, $X \subseteq \overline{(Q \cap X)}$. Por lo tanto S de fuertemente apilado.

Con esto podemos juntar varios resultados para obtener una caracterización de arreglo que es sensible a puntos.

Teorema 2.8.28 Un espacio S que es T_0 tiene topología arreglada si y solo si S es empaquetado y apilado.

Demostración.

 \Rightarrow) Supongamos que $\mathcal{O}S$ es arreglado y consideremos $Q \in \mathcal{Q}S$. Sabemos que $Q \subseteq \overline{Q} \subseteq Q(\infty)$ y así, es suficiente demostrar que $Q \supseteq Q(\infty)$, de esta manera obtendríamos que $Q = \overline{Q}$ (todo conjunto compacto saturado es cerrado) y $\overline{Q} = Q(\infty)$ (por el Corolario 2.8.26).

Sea F el filtro en $\mathcal{O}S$ inducido por Q. Como $\mathcal{O}S$ es arreglado, se cumple que $v_F = [D]$ para algún $D \in \mathcal{O}S$. Supongamos que para $X \in \mathcal{C}S$, $Q \ltimes X$. De aquí que $Q(\infty) = \hat{Q}(Q(\infty))$ y por el Lema 2.8.24 $Q(\infty) = D'$, o equivalentemente $D = Q(\infty)'$. Luego

$$U \in F \Leftrightarrow Q \subseteq U \Rightarrow D \cup U = S$$

(por definición de arreglado). Además, si $\mathcal{O}S$ es arreglado, también es parche trivial, es decir, $v_F = u_D$. Entonces $v_F(U) = u_D(U) = D \cup U = S$, y como $D = Q(\infty)'$ tenemos que $Q(\infty) \subseteq U$, es decir, se cumplen las siguientes equivalencias

$$Q \subseteq U \Leftrightarrow v_F(U) = S \Leftrightarrow D \cup U = S \Leftrightarrow Q(\infty) \subseteq U$$
,

como Q es saturado, $Q=\bigcap\{U\mid Q(\infty)\subseteq U\}$, es decir, $Q(\infty)\subseteq Q$, que es lo que queríamos.

 \Leftarrow) Recíprocamente, supongamos que S es empaquetado y apilado y consideremos cualquier $F \in \mathcal{O}S^{\wedge}$. Si S es empaquetado, entonces S es T_1 y así, por el Lema 2.8.22, S es sobrio.

Sabemos que F es inducido por algún $Q \in \mathcal{Q}S$. En general, entonces $[Q(\infty)'] \leq v_F \leq [Q']$, pero en un espacio empaquetado y apilado se cumple que $Q(\infty) = Q \in \mathcal{C}S$, por el Lema 2.8.7. Luego $v_F = [D]$ para algún $D \in \mathcal{O}S$ y así $\mathcal{O}S$ es arreglado.

2.9 El espacio de puntos del marco de parches

Para un marco A con espacio de puntos S podemos construir dos marcos de parches diferentes. Estos son la topología del espacio de puntos del marco de parches ($\mathcal{O}pt(PA)$) y el marco de parches de la topología del espacio de puntos ($P\mathcal{O}S = P(\mathcal{O}ptA)$). Es momento de ver si existe relación entre estos.

Sabemos que la relación que existe entre el marco A, PA y NA nos proporciona el siguiente diagrama conmutativo

$$\begin{array}{cccc}
A & \longrightarrow PA & \longrightarrow NA \\
U_A \downarrow & & \downarrow PU_A & & \downarrow NU_A \\
\mathcal{O}S & \longrightarrow P\mathcal{O}S & \longrightarrow N\mathcal{O}S \\
\downarrow \pi_S & & \downarrow \sigma_S \\
\mathcal{O}^pS & \longrightarrow \mathcal{O}^fS
\end{array}$$

para el cual sabemos que

- Cada flecha horizontal es un encaje y tres de estas son inclusiones.
- La flecha reflexión espacial (U_A) es suprayectiva.
- La propiedades funtoriales de N aseguran que tanto NU_A como PU_A son suprayectivas.
- La flecha σ_S es suprayectiva. Además, el espacio fS es el espacio de puntos tanto de $N\mathcal{O}S$ y NA, donde σ_S y la composición $\Sigma_S = \sigma_S \circ NU_A$ son las respectivas reflexiones espaciales.
- La flecha π_S es suprayectiva, pues para cada $Q \in \mathcal{Q}S$ tenemos que $\pi(v_F) = Q'$ donde F es el filtro abierto en $\mathcal{O}S$ generado por Q.

Esta información genera las siguientes preguntas:

- ¿Qué es el espacio de puntos pt(PA) del marco de parches de A?
- En particular, ¿qué es el espacio de puntos de POS?
- ¿Son diferentes estos espacios de puntos?

2.9.1 Dos spoilers

Para el espacio S el espacio de Skula fS es el espacio de puntos de $N\mathcal{O}S$ y de NA. Nuestra intuición nos podría llevar a pensar que el espacio de parches pS es el espacio de puntos de $P\mathcal{O}S$ o de PA o de ambos.

Ejemplo 2.9.1 El espacio de parches pS de un espacio S que es sobrio no necesariamente es sobrio. Por ejemplo, este es el caso cuando S es la reflexión sobria de la topología cofinita. Citar ejemplos una vez que esten escritos

Existen casos donde pS es el espacio de puntos $P\mathcal{O}S$. Por ejemplo, si S es T_2 , entonces ${}^pS = S$ y $\mathcal{O}S \to P\mathcal{O}S$ es un isomorfismo. Sin embargo, en general tenemos que buscar un poco más para encontrar el espacio de puntos.

Otra pregunta que podríamos hacernos es $\mathcal{E}POS$ es siempre espacial?

Ejemplo 2.9.2 Existe un espacio sobrio S tal que POS no es espacial. Citar ejemplo cuando ya este escrito. En la Sección $\ref{eq:secondo}$ se da una colección de tales ejemplos.

Lema 2.9.3 Sea S un espacio sobrio. Si el encaje $\pi \colon P\mathcal{O}S \to \mathcal{O}^pS$ es un isomorfismo, entonces S es fuertemente apilado

Demostración. Consideremos $Q \in \mathcal{Q}S$. Por el Lema 2.8.27 es suficiente verificar que $v_F = [Q']$ donde $F \in \mathcal{O}S^{\wedge}$ es el filtro correspondiente a Q. Por el Lema 2.7.12 tenemos que $\pi(v_F) = Q' = \pi([Q'])$ y, por hipótesis, π es inyectiva, es decir, $v_F = [Q']$.

El recíproco no es cierto, pues es posible tener un espacio fuertemente apilado donde π no es un isomorfismo. En **Referenciar cuando ya este escrito** se verá esto

2.9.2 Los puntos "ordinarios" del marco de parches

Notemos que la composición $PA \to P\mathcal{O}S \to \mathcal{O}^pS$ proporciona un morfismo de marcos suprayectivo y, a su vez, este indica que existe alguna conexión entre pS y el espacio de puntos $\operatorname{pt}(PA)$. En particular, existe una función continua ${}^pS \to \operatorname{pt}(\mathcal{O}^pS) \to \operatorname{pt}(PA)$, donde el espacio de en medio es la reflexión sobria de pS . Lo que haremos ahora será obtener una descripción explicita de esta función y se mostrará que pS es un subespacio de $\operatorname{pt}(PA)$.

Recordemos que para $p \in A$, $p \in \operatorname{pt} A$ si y solo si p es un elemento \wedge -irreducible. En particular, en PA sus puntos son los núcleos de parches que, como elementos de PA son \wedge -irreducibles. Además, cuando consideramos al ensamble NA, $\operatorname{pt}(NA) = \{w_p \mid p \in \operatorname{pt} A\}$ y al ser pt un funtor contravariante, se cumple que $\operatorname{pt}(NA) \to \operatorname{pt}(PA)$ es una inclusión, es decir, si $w_P \in \operatorname{pt}(NA)$, entonces $w_p \in \operatorname{pt}(PA)$.

Consideremos $p \in ptA$, entonces

$$w_p(x) = \begin{cases} 1 & \text{si} \quad x \nleq p \\ p & \text{si} \quad x \le p \end{cases}$$

para $x \in A$. Sea $P = \nabla(w_p) = \{x \in A \mid x \nleq p\}$ el filtro completamente primo asociado a p y al mismo tiempo, el filtro de admisibilidad de w_p . Al ser este un filtro abierto, w_p es el mayor elemento de su bloque, ¿quién es el menor elemento v_p ? Para responder lo anterior usamos la derivada $f_p = f_P = \dot{\nabla} \{v_y \mid y \in P\}$. Así,

$$f_p(x) = \begin{cases} 1 & \text{si } x \nleq p \\ \\ \leq p & \text{si } x \leq p \end{cases}$$

para $x \in A$. Después veremos que $f_p(0) = 0 \neq p$ puede ocurrir.

Lema 2.9.4 En la situación anterior se cumple que $w_p = u_p \lor v_P = f_p \circ u_p$ y $w_p \in \operatorname{pt}(PA)$.

Demostración. Observemos que $f_p \circ u_p \le v_P \circ u_p = u_p \lor v_P \le w_p$ y así, por la descripción de f_p tenemos

$$(f_p \circ u_p)(x) = f_p(p \lor x) = \begin{cases} 1 & \text{si} \quad x \nleq p \\ & & = w_p(x) \\ p & \text{si} \quad x \leq p \end{cases}$$

para $x \in A$.

Sabemos que u_p y v_P pertenecen a PA, entonces $w_p \in PA$. Además, $w_p \in \operatorname{pt}(NA)$ de aquí que $w_p \in \operatorname{pt}(PA)$.

El resultado anterior proporciona un encaje $\alpha \colon S \to \operatorname{pt}(PA)$, en donde a cada $p \in \operatorname{pt}A$ le corresponde un $w_p \in \operatorname{pt}(PA)$ y así se impone una topología en el conjunto S usando la topología dada en $\operatorname{pt}(PA)$. Para describir la topología impuesta, se usan los conjuntos abiertos subbásicos canónicos $U_{PA}(u_a)$ y $U_{PA}(v_F)$ de $\operatorname{pt}(PA)$.

Aquí a es un elemento arbitrario de A y F es un filtro abierto arbitrario. Recordemos que $Q = S \setminus F$ está en QS y F está determinado por

$$x \in F \Leftrightarrow Q \subseteq U_A(x),$$

donde $x \in A$.

Lema 2.9.5 Para la situación anterior tenemos

$$w_n \in U_{PA}(u_a) \Leftrightarrow p \in U_A(a)$$
 y $w_n \in U_{PA}(v_F) \Leftrightarrow p \in Q'$

para cada $a \in A$, $F \in A^{\wedge} y p \in S$.

Demostración. Por definición tenemos que

$$w_p \in U_{PA}(u_a) \Leftrightarrow u_a \nleq w_p \Leftrightarrow u_a(p) \neq p \Leftrightarrow a \lor p \neq p \Leftrightarrow a \nleq p \Leftrightarrow p \in U_A(a)$$

Para la otra equivalencia, recordemos que v_F es un núcleo ajustado. Así, por definición tenemos

$$w_p \in U_{PA}(v_F) \Leftrightarrow v_F \nleq w_p \Leftrightarrow F \nsubseteq \nabla(w_p) \Leftrightarrow p \in F \Leftrightarrow p \in Q'$$

Este resultado muestra que α es una función continua cuando S lleva la topología de parches.

Teorema 2.9.6 Sea $A \in \text{Frm } y S = \text{pt} A$. El encaje ${}^pS \to \text{pt} PA$ exhibe a pS como un subespacio de pt(PA).

Este resultado localiza la que se espera que sea gran parte de pt(PA).

Definición 2.9.7 Un punto de PA que no es de la forma w_p para algún $p \in ptA$ es un punto salvaje.

Dado que pt(PA) es sobrio, pero pS no necesita serlo, entonces deben existir puntos salvajes para algunos marcos A. Más adelante se muestran como son algunos de estos.

Pregunta: ¿Es pt(PA) solo la reflexión sobria de ${}^{p}S$?

Ciertamente la reflexión sobria de pS debe estar dentro de $\operatorname{pt}(PA)$. Sabemos que ${}^{+p}S$ es solo la clausura frontal de pS en $\operatorname{pt}(PA)$. El problema está en si es todo $\operatorname{pt}(PA)$. No se ha podido responder toda esta pregunta. Por el momento tiende a la opinión de que la respuesta es si.

2.9.3 Los puntos salvajes del ensamble de parches

Comenzamos con un ejemplo de punto salvaje.

Ejemplo 2.9.8 El ensamble de parches de la reflexión sobria de la topología cofinita contiene un punto salvaje. Ver subsección ??.

Cada punto salvaje se adjunta a uno de los puntos w_p de forma canónica.

Lema 2.9.9 Sea $A \in \text{Frm}$, $S = \text{pt}A \ PA$ su marco de parches. Para cada punto $m \in \text{pt}(PA)$, el elemento p = m(0) es un punto de A y es el único elemento tal que $u_p \leq m \leq w_a$.

Demostración. El núcleo $m \in PA$ es \wedge -irreducible en PA. En particular, este no es tp y así $p \neq 1$. Consideremos $x, y \in A$ con $x \wedge y \leq p$. Notemos que $u_x, u_y \in PA$ y $u_x \wedge u_y = u_{x \wedge y} \leq m$ y como $m \in \operatorname{pt}(PA)$, entonces $u_x \leq m$ o $u_y \leq m$. Así tenemos

$$x = u_x(0) < m(0) = p$$
 o $y = u_y(0) < m(0) = p$,

es decir, $p \in S$.

Por construcción tenemos $u_p \leq m \leq w_p$. Consideremos cualquier $a \in A$ con $u_a \leq m \leq w_a$. Evaluando en 0 tenemos

$$a = u_a(0) \le m(0) = p \le w_a(0) = a,$$

es decir, a = p.

Esto muestra que cualquiera que sean los puntos de PA, cada uno tiene un padre p el cual es un punto de A y la imagen de un punto de PA.

¿Qué tiene un punto de un marco que permite asociarlo con puntos salvajes del parche? Recordemos que cada elemento máximo es automáticamente un punto, pero hay puntos que no son máximos.

Lema 2.9.10 Si el punto p del marco A es máximo, entonces $u_p = w_p$ y p no tiene puntos salvajes asociados.

Demostración. Por la maximalidad de p tenemos que para $x \in A$

$$u_p = \begin{cases} 1 & \text{si} \quad x \nleq p \\ & = w_p \\ p & \text{si} \quad x \le p \end{cases}$$

y el intervalo $[u_p, w_p]$ colapsa, es decir, no hay nada entre estos.

Conocemos varias condiciones en un marco que aseguran que todos los puntos sean máximos. Por ejemplo, este es el caso cuando el marco es ajustado o cuando es ∞ -arreglado. Para tal marco, el Lema 2.9.10 nos dice que la situación del parche es simple.

Teorema 2.9.11 Si cada punto del marco A es máximo, entonces A no tiene puntos salvajes y los dos espacios p(ptA) y pt(PA) son esencialmente el mismo.

Por supuesto, el Lema 2.9.10 no dice que un punto no máximo deba tener un punto salvaje asociado. De hecho, como veremos, no esta nada claro que permite o impide la existencia de puntos salvajes.

Sabemos que para un espacio T_1 todo punto es máximo. Así tenemos el siguiente resultado.

Corolario 2.9.12 Si A es un marco con espacio de puntos T_1 , entonces A no tiene puntos salvajes y ${}^p \mathrm{pt} A \simeq \mathrm{pt}(PA)$.

¿Qué podemos decir de los puntos en pt(PA)? Establecemos un poco de notación para ser usada con $m \in pt(PA)$ arbitrario y obtener algunas propiedades. Por supuesto, si m no es salvaje, entonces casi todo lo que hacemos ya se conoce.

Para $m \in \operatorname{pt}(PA)$ sea p = m(0) el punto asociado y sea $M = \nabla(m)$ su filtro de admisibilidad. En general, este no necesita ser abierto. Sea lo que sea, M tiene un mínimo núcleo asociado v_M , el menor compañero de m. No se sabe si $v_M \in PA$.

Consideremos \mathcal{M} el conjunto de todos los filtros abiertos F con $F\subseteq M$. Así \mathcal{M} podría ser vacío. Sea $K=\bigvee \mathcal{M}$ donde este supremo está tomado en el copo de todos los filtros en A. Ya que

$$v_K = \bigvee \{v_F \mid F \in \mathcal{M}\},\$$

entonces $v_K \leq v_M \leq m \leq w_p$ y $v_k \in PA$.

Lema 2.9.13 Usando la notación anterior, para cada marco A y $m \in pt(PA)$ tenemos

$$m = u_p \lor v_M = u_p \lor v_K \quad y \quad G \cap H \subseteq M \Rightarrow G \subseteq M \quad o \quad H \subseteq M,$$

para cualesquiera filtros abiertos G y H.

Demostración. Consideremos $\kappa = u_p \vee v_K$ de modo que $\kappa \leq u_p \vee v_M \leq m$. Así, una comparación $m \leq \kappa$ es suficiente para la primera parte.

Como $m \in PA$ este es un supremo de núcleos $u_a \wedge v_F$ para ciertos $a \in A$ y filtro abierto F. Para tal núcleo tenemos $u_a \wedge v_F \leq m$ y por lo tanto, como $m \in \operatorname{pt}(PA)$ se cumple que $u_a \leq m$ o $v_F \leq m$. Esto da $a \leq p$ o $F \subseteq M$ y por lo tanto

$$u_a \wedge v_F \leq u_a \leq u_p \leq \kappa$$
 o $u_a \wedge v_F \leq v_F \leq v_\kappa \leq \kappa$

se cumple, es decir, siempre se cumple que $u_a \wedge v_F \leq \kappa$. En particular, $m \leq \kappa$ ya que m es el supremo de los núcleos $u_a \leq v_F$ considerados.

Para la segunda parte, consideremos los filtros abiertos G, H con $G \cap H \subseteq M$. Entonces $v_G \wedge v_H = v_{G \wedge H} \leq v_M \leq m$ y por lo tanto se cumple que $v_G \leq m$ o $v_H \leq m$, es decir, $G \subseteq M$ o $H \subseteq M$.

Hay mucho que no se sabe sobre esta situación. Se concluye esta sección con lo que se cree es una pregunta muy importante.

Sea A un marco arbitrario con espacio de puntos S. Consideremos el encaje topológico ${}^pS \to \operatorname{pt}(PA)$ descrito antes. Sabemos que pS no es necesariamente sobrio, pero $\operatorname{pt}(PA)$ es sobrio. La reflexión sobria de pS vive dentro de $\operatorname{pt}(PA)$ y es solo la clausura frontal de pS . Esto lleva a la pregunta crucial

Pregunta: Para un marco A ¿bajo que circunstancias es la reflexión sobria de pS solo el espacio pt(PA)?

Es posible que sea así, pero aun no se ha encontrado una prueba o contraejemplo.

2.10 Ejemplos

En las siguientes secciones se reúnen varios ejemplos que han llevado a comprender de mejor manera las construcciones de parches.

2.10.1 La topología cofinita y conumerable

Como lo anuncia el titulo de la subsección, lo primero que haremos es trabajar con espacios dotados de la topología cofinita y conumerable.

Definición 2.10.1 a) Sea S un conjunto infinito. La topología cofinita en S es la siguiente:

$$\mathcal{O}S = \{\emptyset\} \cup \{U \subseteq S \mid U' \text{ es finito}\}.$$

b) Sea S un conjunto no numerable. La topología conumerable en S es la siguiente:

$$\mathcal{O}S = \{\emptyset\} \cup \{U \subseteq S \mid U' \text{ es numerable}\}.$$

Los espacios topológicos anteriores cumplen que

• Si $U, V \in \mathcal{O}S$, con $U, V \neq \emptyset$, entonces $U \cap V \neq \emptyset$.

• Si $U \subseteq V$, con $U \in \mathcal{O}S$, entonces $V \in \mathcal{O}S$.

En otras palabras, la topología cofinita y conumerable, sin considerar al conjunto vacío, definen un par de filtros en S. De esta manera incluimos la notación

$$\mathcal{O}S = \{\emptyset\} \cup \mathcal{F}S$$

donde $\mathcal{F}S$ es el filtro correspondiente a la topología cofinita y conumerable, respectivamente. Es decir,

a)
$$FS = \mathcal{P}_{con}S$$
 y b) $FS = \mathcal{P}_{con}S$.

Cuando sea necesario, haremos la diferencia entre las distintas construcciones que vayamos haciendo para cada uno de los espacios topológicos. Comenzaremos con las propiedades sensibles a los puntos.

Ambos espacios son T_1 (los conjuntos formados por un punto son cerrados). Además al ser $\mathcal{F}S$ un filtro, se cumple que S es un conjunto cerrado irreducible, pero por definición, S no es unipuntual. En otras palabras, estos espacios no son sobrios.

Lema 2.10.2 Consideremos los espacios dados en la Definición 2.10.1. En cada caso, si $X \subseteq S$, entonces $X = \{x\}$, para $x \in S$.

Demostración. Sea X un subconjunto cerrado irreducible con $X \neq S$, en particular, $X \neq \emptyset$ (por definición de irreducibilidad). Por contradicción, supongamos que X esta conformado por al menos dos elementos, digamos x, y. Como X es cerrado, los conjuntos

$$U_x = X' \cup \{x\}$$
 y $U_y = X' \cup \{y\}$

son abiertos, pues $X' \subseteq U_x, U_y$ y $\mathcal{F}S$ es un filtro.

Notemos que $U_x \cap X \neq \emptyset \neq U_y \cap X$ y al ser X irreducible, $U_x \cap U_y \cap X \neq \emptyset$, pero $U_x \cap U_y = X'$ y esto daría una contradicción. Por lo tanto, X debe estar conformado por un único punto. \blacksquare Con esto, los dos espacios mencionados "casi" son sobrios. Unicamente necesitamos reparar el defecto para el cerrado S. Para ello hacemos lo siguiente.

Definición 2.10.3 Sea S cualquiera de los espacios de la Definición 2.10.1. Consideremos ${}^+S = S \cup \{\omega\}$, donde ω es un nuevo punto. De manera similar, sea ${}^+E = E \cup \{w\}$ para cada $E \subseteq S$. De esta manera

$$^{+}\mathcal{F}S = \{^{+}U \mid U \mid \mathcal{F}S\} \quad y \quad \mathcal{O}^{+}S = \{\emptyset\} \cup {}^{+}\mathcal{F}S$$

producen un filtro y una topología en +S.

Se puede verificar que \mathcal{O}^+S es una topología en ^+S y que S es un subespacio de ^+S . De hecho, se tiene más información.

Lema 2.10.4 En los espacios S de la Definición 2.10.1, la inclusión $\iota \colon S \to {}^+S$ es la reflexión sobria de S.

Demostración. Suponiendo que \mathcal{O}^+S es una topología en ^+S (no es complicado verificarlo), solo debemos probar que ^+S es un espacio sobrio.

Para todo ${}^+U \in \mathcal{O}^+S$, con ${}^+U \neq \emptyset$, se cumple que ${}^+U = U \cup \{\omega\}$. Además,

$$(^+U)' = (U \cup \{\omega\})' = U' \cap \{\omega\}',$$

es decir, el único cerrado que contiene a $\{\omega\}$ es ${}^+S$. De aquí que $\overline{\{\omega\}} = {}^+S$.

Consideremos $X \subsetneq {}^+S$ un cerrado irreducible. Supongamos que $X = \{x, y\}$, entonces

$$^{+}U_{x} = X' \cup \{x\}$$
 y $^{+}U_{y} = X' \cup \{y\}.$

Además, ${}^+U_x \cap X \neq \emptyset \neq {}^+U_y \cap X$, pero ${}^+U_x \cap {}^+U_y \cap X = \emptyset$, lo cual es una contradicción.

Por lo tanto, todos los conjuntos cerrados irreducibles son un único punto, es decir, ${}^+S$ es sobrio.

La topología de un espacio y su reflexión sobria son canónicamente isomorfos. En estos casos vemos que para $W \in \mathcal{F}S$

$$\mathcal{O}S \to \mathcal{O}^+ S$$

$$W \mapsto {}^+ W$$

$$\emptyset \mapsto {}^+ \emptyset$$

es el isomorfismo.

Ahora vamos a construir la topología de Skulla.

Lema 2.10.5 Para cada espacio de la Definición 2.10.1 tenemos

$$\mathcal{O}^{f+}S = \mathcal{P}S \cup {}^{+}\mathcal{F}S,$$

es decir, cada subconjunto abierto de Skulla de +S es un subconjunto de S o de $+\mathcal{F}S$.

Demostración. La topología de Skulla tiene como base a los subconjuntos de la forma $U \cap X$ para $U \in \mathcal{O}S$ y $X \in \mathcal{C}S$. Como cada $s \in S$ es un conjunto cerrado de ${}^+S$. Además, si ${}^+U \in \mathcal{O}^+S$, entonces ${}^+U \in \mathcal{O}^{f+}S$. Por lo tanto

$$\mathcal{P}S \cup \mathcal{F}S \cup \mathcal{O}^{\{+\}}S$$

y así solo resta probar la otra contención.

Consideremos cualquier conjunto abierto básico $U \cap X$ de f^+S . Si $U = \emptyset$, entonces $U \cap X = \emptyset \subseteq S$. De lo contrario, $U = f^+F$ para algún $F \in \mathcal{F}S$.

Si $X' \in \mathcal{F}S$, entonces $U \cap X \subseteq S$, de lo contrario $X = {}^+S$ y entonces $U \cap X = {}^+F \in {}^+\mathcal{F}S$.

Con esto tenemos la forma de dos de las construcciones presentadas en este capitulo (la reflexión sobria y la topología de Skulla). La otra construcción espacial que abordamos en este capítulo fue el espacio de parches.

La principal diferencia entre la topología cofinita y la conumerable (y la razón por la que se encuentra a la topología numerable más útil para nuestros propósitos), radica en los conjuntos compactos saturados. Sabemos que ambos espacios son T_1 , por lo que cada subconjunto es saturado. Sin embargo, los conjuntos compactos son muy diferentes.

Lema 2.10.6 a) Para el espacio cofinito tenemos que QS = PS.

b) Para el espacio conumerable tenemos que $QS = \mathcal{P}_{fin}S$ y esta es la colección de subconjuntos finitos.

Demostración.

- a) Sea Q cualquier subconjunto no vacío y sea \mathcal{U} cualquier cubierta abierta de Q. Como $Q \neq \emptyset$, existe al menos un $U \in \mathcal{U}$ no vacío. Luego $Q \setminus U$ es finito por lo que puede cubrirse por un número finito de elementos de \mathcal{U} . Al ser Q arbitrario podemos decir que $QS = \mathcal{P}S$.
- b) Consideremos cualquier $Q \in \mathcal{Q}S$ y, a manera de contradicción, supongamos que Q es infinito. Sea X cualquier subconjunto infinito numerable de Q. Notemos que X' es abierto. Para cada $y \in Q$, sea $U_y = X' \cup \{y\}$ para obtener un conjunto abierto. Entonces $\mathcal{U} = \{U_y \mid y \in Q\}$ cubre a Q y por la compacidad

$$Q \subseteq U_{y_1} \cup \ldots \cup U_{y_n} = X' \cup \{y_1, \ldots, y_n\}$$

para algunos $y_1, \ldots, y_n \in Q$. Así $X = Q \cap X \subseteq \{y_1, \ldots, y_n\}$, lo cual es una contradicción ya que X es infinito.

Con este resultado podemos describir la topología de parches tanto para S como para S. Para hacer esto introducimos algo de notación.

Definición 2.10.7 Para los espacios de la Definición 2.10.1, sea GS la colección de todos los subconjuntos $U \cap (S \setminus H)$ para $U \in \mathcal{F}S$ y $H \in \mathcal{Q}S$.

La colección GS es un filtro en S. De hecho se tiene que

a)
$$GS = \mathcal{P}S$$
 y b) $GS = \mathcal{P}_{con}S = \mathcal{F}S$,

para ambos casos.

Usando esta notación tenemos lo siguiente.

Teorema 2.10.8 Para cada uno de los espacios S de la Definición 2.10.1, tenemos

$$\mathcal{O}^p S = \{\emptyset\} \cup GS \quad \text{y } \mathcal{O}^{p+} S = \{\emptyset\} \cup {}^+ \mathcal{F} S \cup GS,$$

donde GS es como en la Definición 2.10.7.

Demostración. La topología en pS es generada por los conjuntos $U\cap Q'$ para $U\in \mathcal{O}S$ y $Q\in \mathcal{Q}S$, pero esta familia es generada solo por $\{\emptyset\}\cup GS$, la cual es una topología.

Para la descripción de $\mathcal{O}^{p+}S$ se verifican varias inclusiones. Las inclusiones

$$\{\emptyset\} \cup {}^+\mathcal{F}S \subseteq \mathcal{O}^+S \subseteq \mathcal{O}^{p+}S$$

son inmediatas.

Consideremos cualquier $Q \in \mathcal{Q}^+S$ no vacío. El orden de especialización de ^+S es el conjunto discreto S con el punto ω en la parte superior. Así, $Q = \{\omega\} \cup H$ para algún $H \subseteq S$.

Chapter 3

Axiomas de separación en $\mathcal{O}S$

En este capítulo hablaremos sobre los axiomas de separación clásicos conocidos en topología. Primero veremos las nociones dadas para la topología sensible a puntos y después las "traduciremos" al lenguaje de retículas, que para nuestro caso será la retícula de conjuntos abiertos $\mathcal{O}S$.

Para empezar, recordemos que un espacio topológico S es un conjunto dotado de una topología la cual es una familia de subconjuntos de S que, en la mayoría de los casos, se denota por τ , donde para cada $U\subseteq S$, si $U\in \tau$, entonces decimos que U es un conjunto abierto. Además, τ cumple ciertas condiciones:

- 1. $S, \emptyset \in \tau$.
- 2. Es cerrado bajo intersecciones finitas.
- 3. Es cerrado bajo uniones arbitrarias.

De manera habitual, si consideramos $U \subseteq S$ denotamos por

$$U^-, \qquad U^\circ, \qquad U'$$

la cerradura, el interior y el complemento del subconjunto U, respectivamente.

Si S es un espacio topológico, entonces denotaremos por $\mathcal{O}S$ a la colección de todos los conjuntos abiertos de S. Ahora, si $U \in \mathcal{O}S$, entonces U' es un conjunto cerrado. Además, denotaremos por $\mathcal{C}S$ a la colección de todos los conjuntos cerrados del espacio S. De esta manera tenemos dos familias distinguidas de subconjuntos de S (que conforme vayamos avanzando, agregaremos más).

Se debe advertir que a lo largo de estas notas, cuando mencionemos espacio, no referiremos a espacio topológico y si en algunas partes de este texto hay necesidad de distinguir entre otro tipo de espacio, lo mencionaremos con anticipación. También, en ocasiones podremos usar $\Omega(S)$ en lugar de $\mathcal{O}S$, dependiendo el contexto sobre el cual estemos hablando, pero ambos casos nos referimos al los abiertos de un espacio topológico.

Consideremos S y T dos espacios topológicos, la manera de relacionar estos es por medio de una función continua. En este caso si $f: S \to T$ decimos que f es una función continua si para todo $V \in \mathcal{O}T$, $f^{-1}(V) \in \mathcal{O}S$.

3.1 Los axiomas de separación sensibles a puntos.

Recordemos que los axiomas de separación nos proporcionan condiciones bajo las cuales, en un espacio S, podemos separar puntos diferentes por medio de elementos en $\mathcal{O}S$ y, en el caso de los axiomas T_3 y T_4 , podemos separar también conjuntos cerrados.

Comencemos con el axioma T_0 , este es el primer axioma de separación y el más general. Para un espacio S decimos que este es T_0 si:

$$(\mathbf{T_0}) \ \forall x,y \in S, x \neq y, \ \exists \ U \in \Omega(S) \ \mathrm{tal} \ \mathrm{que} \ x \notin U \ni y \ \mathrm{\acute{o}} \ y \notin U \ni x.$$

Equivalentemente, el espacio S es T_0 si y solo si $\forall x,y\in S$, si $\overline{\{x\}}=\overline{\{y\}}\Rightarrow x=y$.

Observación 3.1.1 Para T un espacio T_0 y $f, g: S \to T$ funciones continuas. Si $f^{-1}(U) = g^{-1}(U)$ para cada abierto U en T, entonces f = g.

Para los espacios T_1 tenemos la siguiente suposición.

$$(\mathbf{T_1}) \ \, \forall x,y \in S, x \neq y, \, \, \exists \, \, U \in \Omega(S) \text{ tal que } y \notin U \ni x.$$

También podemos decir que el espacio S es T_1 si y solo si los conjuntos formados por un punto son cerrados, es decir, $\forall x \in S$, $\{x\} = \overline{\{x\}}$.

Ahora enunciaremos el axioma de separación T_2 (o de Hausdorff). Este axioma es de los más usados en topología y nuestro objetivo dentro de este proyecto doctoral es conocer las distintas nociones que existen de este axioma en la teoría sin puntos, compararlas y, de ser posible, encontrar entre todas ellas cual es la mejor. Diremos que un espacio es Hausdorff, o T_2 , si

$$(\mathbf{T_2}) \ \, \forall x,y \in S, x \neq y, \, \, \exists \, \, U,V \in \Omega(S) \text{ tal que } x \in U,y \in V \text{ y } U \cap V = \emptyset.$$

Este axioma es muy importante para nuestra investigación, pues los cosas que implica nos motiva a seguir estudiándolo. En el siguiente capítulo enunciaremos varios resultados que hacen uso del supuesto de que un espacio sea Hausdorff y de que manera podemos arreglar el espacio cuando este no es T_2 .

Para enunciar el siguiente axioma de separación necesitamos del concepto de espacio regular. Decimos que un espacio *regular* si

(reg)
$$\forall x \in S, A \subseteq S$$
 cerrado tal que $x \notin A, \exists U, V \in \Omega(S)$ tales que

$$x \in U$$
, $A \subseteq V$, $U \cap V = \emptyset$.

Proposición 3.1.2 Si un espacio regular es T_0 , este es T_2 y por lo tanto T_1 .

Demostración. Consideremos S un espacio topológico y $x,y \in S$, con $x \neq y$. Por T_0 existe $W \in \mathcal{O}S$ tal que $y \notin W \ni x$. Así $x \notin \overline{\{y\}}$ y aplicando la regularidad para x y $\overline{\{y\}}$ obtenemos abiertos disjuntos U_1, U_2 tales que $x \in U_1$ y $\overline{\{y\}} \subseteq U_2$. Haciendo lo mismo para y y $\overline{\{x\}}$ obtenemos abiertos disjuntos V_1, V_2 tales que $y \in V_1$ y $\overline{\{x\}} \subseteq V_2$. Por lo tanto, por la forma en la que fueron construidos, tenemos $x \in U_1, y \in V_1$ con U_1 y V_1 disjuntos, es decir, S es S en consecuencia S es S es S es S un espacio topológico y S existe S es S espace S expansion S espace S espace S espace S espace S espace S expansion S espace S espace S expansion S espace S expansion S espace S expansion S expansion S expansion S espace S expansion S expans

Si consideramos la regularidad junto con T_1 obtenemos el axioma T_3 , es decir,

$$T_3 = (reg) + T_1.$$

La siguiente noción que enunciaremos es la de completamente regular. Un espacio es completamente regular si

(**creg**) $\forall x \in S, A \subseteq S$ cerrado tal que $x \notin A, \exists f : S \to \mathbb{I}$ tal que

$$f(x) = 0, \quad f[A] = 1$$

donde \mathbb{I} es el intervalo cerrado $[0,1] \subseteq \mathbb{R}$.

Si un espacio es completamente regular, entonces este también es regular. Además, si a un espacio completamente regular le pedimos que sea T_1 , entonces obtenemos el axioma de separación $T_{3\frac{1}{2}}$, es decir,

$$T_{3\frac{1}{2}} = (\mathbf{reg}) + T_1.$$

Para terminar con los axiomas clásicos de separación necesitamos definir la normalidad. Decimos que un espacio S es normal si

(norm) $\forall A, B \subseteq S$ cerrados tales que $A \cap B = \emptyset$, $\exists U, V \in \Omega(S)$ tales que

$$A\subseteq U,\quad B\subseteq V,\quad U\cap V=\emptyset.$$

Así, obtenemos el axioma de separación T_4 dado por

$$T_4 = (norm) + T_1.$$

De esta manera tenemos la siguiente sucesión de axiomas

$$T_4 \Rightarrow T_{3\frac{1}{2}} \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$$

Ya con estas nociones, lo que sigue es obtener su significado en el lenguaje de retículas de conjuntos abiertos, es decir, modificaremos aquello que sea necesario para que todas esas condiciones dadas para puntos o conjuntos cerrados queden en términos de conjuntos abiertos, pero esa es tarea para siguiente sección.

Podemos definir nociones entre espacios que son T_0 y T_1 y también entre T_1 y T_2 . A estos espacios, en la literatura, se les denotan por R_0 y R_1 .

$$(\mathbf{R_0}) \qquad \forall x, y \in S, x \in \overline{\{y\}} \Leftrightarrow y \in \overline{\{x\}}.$$

En otras palabras, $x \in \overline{\{y\}}$ implica que $\overline{\{x\}} = \overline{\{y\}}$. A los espacios que cumplen con esta propiedad también se les conoce como simétricos.

Ahora definimos a los espacios R_1 .

$$(\mathbf{R_1}) \qquad \forall x, y \in S, \text{ si } \overline{\{x\}} \neq \overline{\{y\}} \Rightarrow \overline{\{x\}} \subseteq U \text{ y } \overline{\{y\}} \subseteq V.$$

para algunos abiertos disjuntos U y V.

El siguientes resultado relaciona a los espacios R_0 y R_1 con los que son T_1 y T_2 respectivamente.

Proposición 3.1.3 *Bajo* T_0 , $R_0 \Leftrightarrow T_1$. *Bajo* T_1 , $R_1 \Leftrightarrow T_2$.

Demostración. Consideremos un espacio S

- i) Supongamos que S cumple R_0 . Consideremos $x \in \overline{\{y\}}$, por R_0 se cumple que $\overline{\{x\}} = \overline{\{y\}}$ y por T_0 x = y. Por otro lado, si S cumple T_1 y consideramos $x \in \overline{\{y\}}$, por T_1 tenemos que $\overline{\{x\}} = \{x\}$ y $\overline{\{y\}} = \{y\}$. De esta manera x = y y así $y \in \overline{\{x\}}$.
- ii) Supongamos que R_1 se cumple. Sean $x \neq y$. Por T_1 $\overline{\{x\}} = \{x\} \neq \{y\} = \overline{\{y\}}$ y por R_1 existen $U, V \in \mathcal{O}S$ tales que $x \in U$ y $y \in V$. Por otro lado, supongamos que se cumple T_2 , entonces para $x \neq y \exists U, V$ abiertos disjuntos tales que $x \in U$ y $y \in V$. Al cumplirse T_1 $\overline{\{x\}} = \{x\}$ y $\overline{\{y\}} = \{y\}$, de aquí que $\overline{\{x\}} = \{x\} \subseteq U$ y $\overline{\{y\}} = \{y\} \subseteq V$.

De esta manera, denotando la regularidad y le regularidad completa por R_2 y R_3 , respectivamente, tenemos la siguiente relación.

3.2 Las "traducciones" de las nociones de separación

Cuando hacemos mención a "traducción" nos referimos a trasladar cada una de las distintas nociones dadas en el lenguaje sensible a puntos a lo que significan cada una de estas en el lenguaje de retículas de abiertos. Recordemos que en $\mathcal{O}S$, los objetos con los que trabajamos son los conjuntos abiertos. De esta manera, nuestro objetivo es trasladar los axiomas de separación en términos de los elementos de $\mathcal{O}S$.

De manera similar a como fueron enunciados en la sección anterior, presentaremos los axiomas de separación en orden ascendente según la "fuerza" de estos. Comenzaremos con T_0 y terminaremos con la noción de normalidad. Aclaramos que en esta parte no se hará mención a la traducción de ser T_2 . Esta recibirá un tratamiento especial más adelante.

3.2.1 T_0 sin puntos

Primero, recordemos que la propiedad de separación T_0 nos menciona que si tenemos cualesquiera dos puntos de un espacio, estos pueden ser separados por un conjunto abierto de tal manera que un punto este en el abierto y el otro no. En el lenguaje de retículas, esta noción no aporta mucha información. Si T_0 no se cumple, entonces para $x,y\in S$ distintos se tiene que para todo abierto $U\in \mathcal{O}S, x\in U$ si y solo si $y\in U$.

De esta manera, en el lenguaje de retículas de abiertos, estos dos puntos son indistinguibles. Por lo tanto, para evitar esta situación supondremos que el axioma T_0 se cumple para los distintos espacios con los que trabajaremos. Además, bajo este supuesto, no se buscará una equivalencia para esta noción.

3.2.2 T_1 sin puntos

Sabemos que en un espacio T_1 , para todo $x \in S$, $\overline{\{x\}} = \{x\}$, es decir, los conjuntos de un punto son cerrados, en consecuencia todos los conjuntos finitos son cerrados. Luego, si $\{x\}$ es cerrado, entonces $S \setminus \{x\}$ es abierto y es un elemento máximo en $\mathcal{O}S$. Además, los elementos de la forma $S \setminus \overline{\{x\}}$ son \wedge -irreducibles. De esta manera tenemos una noción equivalente a ser T_1 .

 $(\mathbf{T_{1_S}})$ Un espacio es $T_1 \Leftrightarrow \text{todo elemento } \wedge -\text{irreducible es máximo.}$

3.2.3 Regularidad sin puntos

Para obtener la noción sin puntos de la regularidad necesitamos dar antes una definición.

Definición 3.2.1 Para $U, V \in \mathcal{O}S$ decimos que V está bastante por debajo de U, y lo denotamos por $V \prec U$, si $\overline{V} \subseteq U$.

Notemos que la definición no está aun en el lenguaje de retículas de abiertos, pero hay una manera de arreglarla pues en $\mathcal{O}S$ tenemos pseudocomplementos, es decir, tenemos un elemento V tal que $U \cap V = \emptyset$. De esta manera, para $V^* = S \setminus \overline{V}$, tenemos

$$V \prec U \Leftrightarrow \overline{V} \subseteq U \Leftrightarrow U \cup V^* = S.$$

Así, la noción de regularidad sin puntos es la siguiente.

$$(\mathbf{reg_S}) \ S \text{ es regular } \Leftrightarrow \forall \ U \in \mathcal{O}S, U = \bigcup \{V \mid V \prec U\}.$$

Demostración.

 \Rightarrow) Supongamos que S es regular y sea $U \in \mathcal{O}S$. Para $x \in U$ consideramos $A = S \setminus U$ y por la regularidad tenemos que existe $V_x, W \in \mathcal{O}S$ tales que $x \in V_x, A \subseteq W$ y $V_x \cap W = \emptyset$. Como $A \subseteq W$, entonces $W \cup U = S$, de aquí que $x \in V_x \succ U$. Por lo tanto

$$U = \bigcup \{V_x \mid x \in S\} \subseteq \bigcup \{V \mid V \succ U\} \subseteq U$$

 \Leftarrow) Supongamos que $U=\bigcup\{V\mid V\succ U\}$ y sea $x\notin A$ donde $A\in\mathcal{C}S$. De aquí que $x\in U=S\setminus A$ y por lo tanto $x\in V$ para algún $V\succ U$. De aquí que, para $W=S\setminus \overline{V}$, $A\subseteq W$ y $V\cap W=\emptyset$, es decir, se cumple la regularidad.

Equivalentemente a lo que hicimos en la sección anterior

$$T_{3_S} = (\mathbf{reg_S}) + T_{1_S}.$$

3.2.4 Completamente regular sin puntos

Recordemos que si S es un espacio completamente regular, entonces S es regular. Con esto en mente podríamos esperar que la traducción de completamente regular tenga relación con la noción bastante por debajo. La manera más natural de realizarlo sería interpolando \prec , es decir, si para U,V abiertos tales que $V \prec U$, existe W abierto para el cual $V \prec W \prec U$, pero eso no es del todo cierto.

Para reparar esto, consideremos el conjunto D de los racionales diádicos en el intervalo unitario cerrado $\mathbb{I} \subseteq \mathbb{R}$, es decir,

$$D = \{ \frac{k}{2^n} \mid n \in \mathbb{N}, k = 0, 1, \dots, 2^n \}.$$

Definición 3.2.2 Para $U, V \in \mathcal{O}S$, decimos que V está completamente por debajo de U, denotado por $V \prec \prec U$, si existen abiertos U_d , con $d \in D$, tales que

$$U_0 = V$$
, $U_1 = U$, $U_d \prec U_e$,

es decir, $\overline{U_d} \subseteq U_e$ para d < e.

Notemos lo siguiente:

- Si $V' \subseteq V \prec \prec U \subseteq U'$, entonces $V' \prec \prec U'$.
- La relación ≺≺ es interpolativa.
- Si W interpola $\prec \prec$, entonces W interpola \prec .

Proposición 3.2.3 Para un espacio topológico S consideremos $U_d \in \mathcal{O}S$, con $d \in D$, tal que $U_0 = V$, $U_1 = U$ y $U_d \succ U_e$, para d < e. Definimos

$$\Phi(x) = \inf\{d \mid x \in U_d\}.$$

Entonces Φ es continua.

Así, usando la Definición 3.2.2, tenemos

(cregs) S es completamente regular $\Leftrightarrow \forall U \in \mathcal{O}S, U = \bigcup \{v \mid V \prec \prec U\}.$

Demostración.

 \Rightarrow) Sea S completamente regular. Consideremos $U \in \mathcal{O}S$ y $x \in U$. Entonces $x \in S \setminus U$ y por lo tanto existe una función continua $f \colon S \to \mathbb{I}$ tal que f(x) = 0 y f(y) = 1 para $y \notin U$. Para $d \in D$ consideramos

$$U_d = f^{-1}([0, \frac{1+d}{2})) \text{ y } B_d = f^{-1}([0, \frac{1+d}{2}]),$$

de aquí que $U_d \in \mathcal{O}S$ y $B_d \in \mathcal{C}S$ y para d < e, $B_d \subseteq U_e$. Así $B_d = \overline{U_d} \subseteq U_e$, es decir, $U_d \succ U_e$. Y por la Definición 3.2.2 tenemos que para $U(x) = U_0 \succ \succ U_1$. Como $x \in U(x)$ y $U_1 \subseteq U$, por la interpolatividad de $\succ \succ$, tenemos que $x \in U(x) \succ \succ U$. Por lo tanto

$$U = \bigcup \{U(x) \mid x \in S\} \subseteq \bigcup \{V \mid V \succ \succ U\} \subseteq U$$

 \Leftarrow) Supongamos que $U = \bigcup \{V \mid V \succ \succ U\}$ se cumple y consideremos $A \in \mathcal{C}S$ tal que $x \notin A$. Para $U = S \setminus A$, entonces $x \in U$ y por hipótesis tenemos $V \succ \succ U$ tal que $x \in V$. Si tomamos un sistema $(U_d)_{d \in D}$ como testigo para $V = U_0 \succ \succ U_1 = U$ y la función continua definida en la Proposición 3.2.3 vemos que $\Phi(x) = 0$, pues $x \in U_d$, para $d \in D$, en particular para U_0 y 0 es el menor de los d. Para $y \in A$,

$$\Phi(y) = \inf\{d \mid y \in U_d\},\$$

pero $y \in A$, es decir, $y \notin U_d$ para $d \in D$, entonces $d \mid y \in U_d \} = \emptyset$, de aquí que $\Phi(y) = 1$ y se cumple la definición de completamente regular.

■ Por lo tanto

$$T_{3\frac{1}{2}_S} = (\mathbf{creg_S}) + T_{1_S}.$$

3.2.5 Normalidad sin puntos

La normalidad es una noción que está enunciada sin el uso de puntos. De esta manera su traducción al lenguaje de retículas de conjuntos abiertos es más sencilla. En la normalidad separamos cualesquiera dos conjuntos cerrados distintos por medio de dos abiertos disjuntos.

Para un espacio S, consideremos $A, B \in \mathcal{C}S$, entonces $X = S \setminus A$ y $Y = S \setminus B$ están en $\mathcal{O}S$. Además, $A \subseteq U$ y $B \subseteq V$, para abiertos U y V, si y solo si $X \cup U = Y \cup V = S$. Por lo tanto, el espacio S es normal si se cumple

 $(\mathbf{norm_S})$ Para $X, Y \in \Omega(S)$, con $X \cup Y = S$, entonces $\exists U, V \in \Omega(S)$ tales que

$$X \cup U = S, \qquad Y \cup V = S, \qquad U \cap V = \emptyset.$$

Y así,

$$T_{4_S} = (\mathbf{norm_S}) + T_{1_S}.$$

3.2.6 Propiedades de separación para marcos

Sabemos que si S es un espacio topológico, $\mathcal{O}S$ es un marco. Todo lo que hemos hecho en esta sección es dar la equivalencia de las propiedades de separación en términos de elementos en $\mathcal{O}S$, es decir, para un marco particular. En este punto debemos preguntarnos lo siguiente, ¿qué pasa para un marco A arbitrario?

Para responder la pregunta anterior lo único que necesitamos hacer es trasladar las nociones presentadas considerando elementos arbitrarios en un marco A en lugar de conjuntos abiertos en $\mathcal{O}S$. La siguiente es la equivalencia de bastante por debajo en la teoría de marcos.

$$a \prec b \equiv_{dm} \exists \ c \in A \text{ tal que } a \land c = 0 \text{ y } b \lor c = 1$$

donde $a, b \in A$.

Con esto en mente, podemos dar la respectiva equivalencia para que un marco sea regular y completamente regular. Usaremos m como subíndice para indicar que las nociones están dadas en el lenguaje de marcos.

$$(\mathbf{reg_m}) \ \forall a \in A, a = \bigvee \{x \in A \mid x \prec a\}.$$

$$(\mathbf{creg_m}) \ \forall a \in A, a = \bigvee \{x \in A \mid x \prec \prec a\}.$$

Ahora damos la noción de normalidad para marcos.

$$(\mathbf{norm_m}) \ \forall a, b \in A$$
, tales que $a \lor b = 1, \exists u, v \in A$ tales que

$$a \lor u = b \lor v = 1$$
 y $u \land v = 0$

3.3 Propiedades de separación adicionales

En la literatura se pueden encontrar algunas propiedades de separación adicionales. La primera que discutiremos es más fuerte que T_0 , pero más débil que T_1 .

$$(\mathbf{T_D}) \ \forall x \in S, \ \exists \ U \in \mathcal{O}S \ \text{tal que } x \notin U \ \text{y} \ U \setminus \{x\} \in \mathcal{O}S.$$

Podemos ver que T_1 implica T_D y que T_D implica T_0 .

Proposición 3.3.1 Un espacio S satisface T_D si y solo si para cada $x \in S$

$$(S \setminus \overline{\{x\}} \cup \{x\} \in \mathcal{O}S.$$

Demostración.

 \Rightarrow) Consideremos un espacio S que satisface T_D y sea $U \in \mathcal{O}S$ como el que aparece en $(\mathbf{T_D})$. Para $x \neq y$ el conjunto $V = (S \setminus \overline{\{x\}}) \cup \{x\}$ es una vecindad de y y una vecindad para x, pues si $x \in U$, entonces $U \setminus \overline{\{x\}} = U \setminus \{x\}$ y por lo tanto $x \in U \subseteq V$. De aquí que V es abierto.

 \Leftarrow) Si $V = (S \setminus \overline{\{x\}}) \cup \{x\}$ es abierto tenemos que si $x \in V$, entonces

$$V \setminus \{x\} = (S \setminus \overline{\{x\}}) \cup \{x\} \setminus \{x\} = S \setminus \overline{\{x\}}$$

y $S \setminus \overline{\{x\}} \in \mathcal{O}S$. Por lo tanto $V \setminus \{x\}$ es abierto, es decir, S es T_D .

Teorema 3.3.2 Sean S y T espacios que satisfacen T_D y sean OS y OT retículas isomorfas. Entonces S y T son homeomorfos.

Demostración. Sea $\varphi \colon \mathcal{O}S \to \mathcal{O}T$ un isomorfismo de retículas. Para cada $x \in S$, $U(x) = S \setminus \overline{\{x\}}$ y $V(x) = U(x) \cup \{x\}$. Notemos que $U(x) \neq V(x)$ y por lo tanto $\varphi(V(x)) \setminus \varphi(U(x)) \neq \emptyset$.

Afirmación: El conjunto $D = \varphi(V(x)) \setminus \varphi(U(x)) \neq \emptyset$ consiste de un solo punto.

Prueba de la afirmación: Supongamos que existen dos puntos $y_1, y_2 \in D$. Como T es T_D , éste es en particular T_0 y así $y_2 \notin \overline{\{y_1\}}$. Como $y_1 \notin \varphi(U(x))$, entonces $\overline{\{y_1\}} \cap \varphi(U(x)) = \emptyset$. Por lo tanto

$$\varphi(U(x)) \subsetneq (V(x)) \setminus \overline{\{y_1\}} \subsetneq \varphi(V(x)).$$

Denotando $W = \varphi(V(x)) \setminus \overline{\{y_1\}}$ y aplicando el inverso del isomorfismo, φ^{-1} , a las contenciones anteriores obtenemos

$$S \setminus \overline{\{x\}} \subsetneq \varphi^{-1}(W) \subsetneq (S \setminus \overline{\{x\}} \cup \{x\}.$$

Lo cual es una contradicción, pues $S \setminus \overline{\{x\}} \subseteq S \setminus \overline{\{x\}} \cup \{x\}$. Por lo tanto, denotando por f(x) al único elemento de D tenemos

$$\{f(x)\} = \varphi(V) \setminus \varphi(U) \Rightarrow \varphi(V(x)) = \varphi(U(x)) \cup \{f(x)\}$$

Sabemos que $\overline{\{y_1\}} \cap \varphi(U(\underline{x})) = \emptyset$ y en consecuencia $\varphi(U(x)) \subseteq T \setminus \overline{\{f(x)\}}$. Notemos que no se cumple $\varphi(U(x)) \subseteq T \setminus \overline{\{f(x)\}}$, pues de ser así tendríamos

$$U(x) \subsetneq \varphi^{-1}(T \setminus \overline{\{f(x)\}}) \Rightarrow V(x) \subseteq \varphi^{-1}(T \setminus \overline{\{f(x)\}}) \Rightarrow \varphi(V(x)) \subseteq T \setminus \overline{\{f(x)\}}$$

contradiciendo que $f(x) \in \varphi(V(x))$. Así $\varphi(S \setminus \overline{\{x\}}) = T \setminus \overline{\{f(x)\}}$.

Similarmente para φ^{-1} , tenemos una función $g\colon T\to S$ tal que

$$\varphi^{-1}(T \setminus \overline{\{y\}}) = S \setminus \overline{\{g(y)\}}.$$

Las funciones $f: S \to T$ y $g: T \to S$ son inversas entre si, de hecho

$$S \setminus \overline{\{x\}} = \varphi^{-1}(\varphi(S \setminus \overline{\{x\}}) = \varphi^{-1}(V \setminus \overline{\{f(x)\}}) = S \setminus \overline{\{g(f(x))\}}$$

y por lo tanto x = gf(x). Similarmente y = fg(y).

Resta ver que son homeomorfismos, para esto basta probar que para cualquier $U \in \mathcal{O}S$, $f(U) = \varphi(U)$. Consideremos $x \notin U$, entonces

$$U\subseteq S\setminus \overline{\{x\}}\Rightarrow \varphi(U)\subseteq \varphi(S\setminus \overline{\{x\}}=T\setminus \overline{\{f(x)\}},$$

es decir, $\varphi(U) \cap \overline{\{f(x)\}}$. Luego $f(x) \notin \varphi(U)$ y así

$$x \notin U \Rightarrow f(x) \notin \varphi(U)$$
.

Similarmente $y \notin \varphi(U) \Rightarrow g(y) \notin \varphi^{-1}(\varphi(U)) = U$. Por lo tanto, considerando y = f(x), $x \notin U \Leftrightarrow f(x) \in \varphi(U)$ y finalmente $F(U) = \varphi(U)$.

Una de las aplicaciones de la propiedad T_D la podemos encontrar en la topología sin puntos. Recordemos que los subespacios están bien representados por su marco de congruencias. Con esto en mente, podemos enunciar el siguiente resultado.

Teorema 3.3.3 Sean X y Y subespacios distintos de S. $E_X \neq E_Y$ si y solo si S es un espacio T_D .

Demostración.

 \Rightarrow) Consideremos $X \neq Y$ tales que $E_X \neq E_Y$, en particular,

$$E_{S\setminus\{x\}}\neq E_S$$
.

Por lo tanto existe un abierto $U \nsubseteq V$ tal que

$$U\cap (S\setminus \{x\})=U\setminus \{x\}=V\cap (S\setminus \{x\})=V\setminus \{x\}.$$

Lo cual solo es posible precisamente si $x \in U$ y $V = U \setminus \{x\}$, es decir, S es T_D .

 \Leftarrow) Sean S un espacio T_D y $a \in X \setminus Y$. Consideremos los abiertos $U \ni a$ y $V = U \setminus \{a\}$. Entonces $U \cap X \neq V \cap X$ mientras $U \cap Y = V \cap Y$. Así $E_X \neq E_Y$.

A lo largo de estas notas encontraremos distintas propiedades de separación. Cada una de estas utilizadas o presentadas para diferentes situaciones. La mayoría de ellas comparables entre si. La que presentamos ahora es la *sobriedad*. La manera en la que la abordamos en esta sección es equivalente a la que presentaremos en el siguiente capítulo.

En la Definición $\ref{eq:continuous}$ mencionamos que un elemento $p \in A$ es \land -irreducible si $p \neq 1$ y si $a \land b \leq p$, entonces $a \leq p$ o $b \leq p$. En ocasiones, la noción anterior es presentada en la literatura como ser primo.

En la Subsección 3.2.2 vimos que para un espacio S y $x \in S$, entonces $S \setminus \overline{\{x\}}$ es un elemento \land —irreducible en $\mathcal{O}S$.

Definición 3.3.4 *Un espacio se dice que es* sobrio (*en la formulación de Grothendieck y Dieudonné*), si este es T_0 y si todos los elementos \land -irreducibles son de la forma $S \setminus \overline{\{x\}}$.

Notemos que bajo el supuesto de que todos los espacio con los que trabajaremos son T_0 , la asignación $x \mapsto S \setminus \overline{\{x\}}$ es inyectiva. De esta manera, los elementos \wedge -irreducibles en los espacios sobrios están determinados de manera única.

Proposición 3.3.5 Cada espacio T_2 es sobrio, pero la sobriedad es incomparable con T_1 .

Demostración.

i) Sean S un espacio T_2 y $P \in \mathcal{O}S$ un elemento \wedge -irreducible. Supongamos que existe $x,y \notin P$, con $x \neq y$. Por T_2 , elegimos $U,V \in \mathcal{O}S$ tales que $x \in U, y \in V$ y $U \cap V = \emptyset$. De aquí que

$$P = (P \cup U) \cap (P \cup V) = P \cup (U \cap V) = P \cup \emptyset.$$

Notemos que ni $P \cup U$ o $P \cup V$ es P. Por lo tanto $P = S \setminus \{x\}$, es decir, S es sobrio.

ii) Consideremos S un espacio infinito dotado de la topología cofinita, es decir,

$$U \in \mathcal{O}S \Leftrightarrow U = \emptyset$$
 o $S \setminus U$ es finito.

Este espacio es T_1 , pero no es sobrio, pues \emptyset es un elemento \wedge -irreducible y $\emptyset \neq S \setminus \overline{\{x\}}$ para todo $x \in S$.

iii) Sea S el espacio de Sierpinski, es decir,

$$S = (S = \{0, 1\}, \mathcal{O}S = \{\emptyset, \{1\}, \{0, 1\}).$$

Los elementos \wedge -irreducibles son $\emptyset = S \setminus \overline{\{1\}}$ y $\{1\} = S \setminus \overline{\{0\}}$, por lo tanto S es sobrio, pero no es T_1 .

Una manera de caracterizar a los espacios sobrios es la siguiente.

Teorema 3.3.6 Un espacio S que es T_0 es sobrio si y solo si los filtros completamente primos en OS son precisamente los filtros de vecindades

$$F(x) = \{ U \in \mathcal{O}S \mid x \in U \}.$$

Demostración.

 \Rightarrow) Consideremos un espacio S sobrio y $\mathcal F$ un filtro completamente primo. Sea

$$U_0 = \bigcup \{ U \mid U \notin \mathcal{F} \}.$$

Al ser \mathcal{F} un filtro completamente primo tenemos que $U_0 \notin \mathcal{F}$ y así U_0 es el elemento más grande de $\mathcal{O}S$ que no está en \mathcal{F} . Como los filtros son secciones superiores vemos que $U \in \mathcal{F}$ si y solo si $U \nsubseteq U_0$

Notemos que U_0 es un elemento \wedge -irreducible, pues si $U \cap V \subseteq U_0$, entonces $U \cap V \notin \mathcal{F}$. Lo cual implica que $U \notin \mathcal{F}$ o $V \notin \mathcal{F}$, es decir, $U \in U_0$ o $V \in U_0$. Además U_0 no es todo S, pues de ser así \mathcal{F} sería el filtro trivial.

Por lo tanto, por la sobriedad de S, tenemos que $U_0 = S \setminus \overline{\{x\}}$ para algún $x \in S$. De aquí que

$$U \in \mathcal{F} \Leftrightarrow U \nsubseteq U_0 \Leftrightarrow U \nsubseteq S \setminus \overline{\{x\}} \Leftrightarrow x \in U,$$

es decir,
$$\mathcal{F}(x) = \{U \in \mathcal{O}S \mid x \in U\}.$$

 \Leftarrow) Supongamos que la afirmación sobre los filtros completamente primos se cumple y consideremos $P \in \mathcal{O}S \land -$ irreducible. Sea

$$\mathcal{F} = \{ u \in \mathcal{O}S \mid U \not\subseteq P \}.$$

Notemos que \mathcal{F} es un filtro. Primero, \mathcal{F} es una sección superior. Además, si $U, V \nsubseteq P$, entonces $U \cap V \nsubseteq P$. Este también es un filtro completamente primo, pues si $U_i \subseteq P$ para todo $i \in \mathcal{J}$, se cumple que

$$\bigcup_{i \in \mathcal{J}} U_i \subseteq P.$$

Por lo tanto $\mathcal{F} = \mathcal{F}(x)$ para algún x, es decir $U \nsubseteq P$ si y solo si $x \in U$. Luego

$$U \subseteq P \Leftrightarrow \{x\} \cap U = \emptyset \Leftrightarrow \overline{\{x\}} \cap U = \emptyset \Leftrightarrow U \subseteq S \setminus \overline{\{x\}}.$$

De aquí que $P = S \setminus \overline{\{x\}}$, es decir, S es sobrio.

Si tenemos un espacio S que no es sobrio, entonces podemos "sobrificarlo" por medio de elementos en $\mathcal{O}S$. A este proceso se le conoce como la construcción de la reflexión sobria. Este será abordado en el siguiente capítulo. Para lo que haremos en esta sección lo llamaremos modificación sobria.

Corolario 3.3.7 *Un espacio sobrio* S *puede ser reconstruido a partir de los elementos de* OS.

Demostración. Para la retícula $L = \mathcal{O}S$ consideremos el conjunto

$$\tilde{S} = \{ \mathcal{F} \mid \mathcal{F} \text{ es un filtro completamente primo en } L \}$$

Por el Teorema 3.3.6 este conjunto está en correspondencia uno a uno $x\mapsto \mathcal{F}(x)$ con S. Así, si definimos para $U\in\mathcal{O}S$ un subconjunto

$$\tilde{U} = \{ \mathcal{F} \mid U \in \mathcal{F} \} \subseteq \tilde{S}.$$

Notemos que \tilde{U} está determinado en términos de la retícula L, sin referencia a los puntos originales de S. De esta manera obtenemos el espacio topológico

$$(\tilde{S}, {\{\tilde{U} \mid U \in \mathcal{O}S\}})$$

el cual es homeomorfo con el espacio original S ya que $\mathcal{F}(x) \in \tilde{U} \Leftrightarrow x \in U$.

Teorema 3.3.8 Sea S un espacio sobrio. Entonces cada homomorfismo de marcos

$$h: \mathcal{O}S \to \mathcal{O}T$$

está dado por $h = \mathcal{O}(f)$, donde $f: T \to S$ es una función continua $\mathcal{O}(f) = f^{-1}$. Por otro lado, si cada homomorfismo $h: \mathcal{O}S \to \mathcal{O}T$ es de la forma $h = \mathcal{O}(f)$, para una función continua $f: T \to S$, entonces S es sobrio.

Demostración.

 \Rightarrow) Consideremos un espacio sobrio S y un homomorfismo $h \colon \mathcal{O}S \to \mathcal{O}T$. Para cada $y \in T$ sea

$$\mathcal{F}_y = \{ U \in \mathcal{O}S \mid y \in h(U) \}.$$

Notemos que \mathcal{F}_y es un filtro completamente primo. Primero \mathcal{F}_y es una sección superior. Además, si $U, V \in \mathcal{F}_y$, entonces

$$y \in h(U) \cap h(V) = h(U \cap V) \Rightarrow U \cap V \in \mathcal{F}_y$$
.

Por último, si $\bigcup_{i \in \mathcal{J}} U_i \in \mathcal{F}$ tenemos que

$$y \in h(\bigcup_{i \in \mathcal{J}} U_i) = \bigcup_{i \in \mathcal{J}} h(U_i).$$

Entonces $y \in h(U_j)$ para algún $j \in \mathcal{J}$. Por el Teorema 3.3.6 $\mathcal{F}_y = \mathcal{F}(x)$ para algún $x \in S$. Si consideramos x = f(y) vemos que

$$y \in f^{-1}[U] \Leftrightarrow x = f(y) \in U \Leftrightarrow U \in \mathcal{F}(x) = \mathcal{F}_y \Leftrightarrow y \in h(U).$$

De aquí que $\mathcal{O}(f)[U]=f^{-1}[U]=h[U].$ Por lo tanto $h=\mathcal{O}(f).$

 \Leftarrow) Sin perdida de generalidad, consideremos el homomorfismo $h \colon \mathcal{O}S \to \mathcal{O}P$, donde $P = \{p\}$ es un espacio de un punto. Se puede verificar que cada h es de la forma $\mathcal{O}(f)$. Si \mathcal{F} es un filtro completamente primo en $\mathcal{O}S$ definimos

$$h(U) = \begin{cases} P & \text{si} \quad U \in \mathcal{F} \\ \emptyset & \text{si} \quad U \notin \mathcal{F} \end{cases}$$

Se puede verificar que el homomorfismo h respeta intersecciones finitas y uniones arbitrarias. De aquí que h es un morfismo de marcos. Por lo tanto $h = \mathcal{O}(f)$, donde $f \colon P \to S$. Sin embargo, existe un único f tal que $p \mapsto x$ con $x \in S$. De aquí que

$$U \in \mathcal{F} \Leftrightarrow h(U) = f^{-1}(U) = P \Leftrightarrow x = f(p) \in U.$$

Es decir, $\mathcal{F} = \mathcal{F}(x)$. Por lo tanto S es sobrio.

Por el Corolario 3.3.7, para un espacio S arbitrario que es T_0 podemos construir un espacio \tilde{S} dado por

 $\tilde{S}=(\{F\mid F\text{ es un filtro completamente primo en }\mathcal{O}S\}, \{\tilde{U}\mid U\in\mathcal{O}S\}),$ donde $\tilde{U}=\{F\mid U\in F\}.$

Como nuestros filtros son no triviales, tenemos $\tilde{s} = \emptyset$ y $\tilde{S} = S$. Además,

$$\widetilde{U} \cap \widetilde{V} = \{F \mid U \in F, V \in F\} = \{F \mid U \cap V \in F\} = \widetilde{U \cap V}$$

$$\widetilde{\bigcup_{i \in J} U_i} = \{F \mid \bigcup_{i \in J} U_i \in F\} = \{F \mid \exists i \in J, U_i \in F\} = \bigcup_{i \in J} \widetilde{U_i}$$

es decir, la modificación sobria es una topología. Finalmente, denotando

$$F(x) = \{U \mid x \in U\},\$$

de esta manera si $U \nsubseteq V$ existe $x \in U \setminus V$ y por lo tanto $F(x) \in \tilde{U} \setminus \tilde{V}$. De está manera obtenemos

Observación 3.3.9 La asignación $U \mapsto \tilde{U}$ establece un isomorfismo entre $\mathcal{O}S$ y $\mathcal{O}\tilde{S}$.

Con todo lo anterior, podemos concluir que la modificación sobria se comporta de manera agradable. Resta verificar que efectivamente hacer esta construcción nos devuelve un espacio sobrio.

Proposición 3.3.10 El espacio \tilde{S} es sobrio.

Demostración. Consideremos un filtro completamente primo \mathcal{F} en $\mathcal{O}\tilde{S}$. Definimos

$$F = \{ U \in \mathcal{O}S \mid \tilde{U} \in \mathcal{F} \}.$$

Veamos que F es un filtro completamente primo que se puede describir como un filtro de vecindades.

Primero, consideremos $U, V \in F$, entonces $\widetilde{U \cap V} = \widetilde{U} \cap \widetilde{V} \in F$. Similarmente, si $U \in F$ y $U \subseteq V$, al ser \mathcal{F} completamente primo, tenemos que $\widetilde{U} \subseteq \widetilde{V} \in \mathcal{F}$. Así $V \in F$. Por último, si

$$\bigcup_{i\in\mathcal{J}} U_i \in F \Rightarrow \widetilde{\bigcup_{i\in\mathcal{J}} U_i} = \bigcup_{i\in\mathcal{J}} \widetilde{U_i} \in \mathcal{F}.$$

Como \mathcal{F} es completamente primo $\exists i \in \mathcal{J}$ tal que $\widetilde{U}_i \in \mathcal{F}$ y así $U_i \in \mathcal{F}$. Por lo tanto F es un filtro completamente primo.

Resta verificar que F es un filtro. Sabemos que

$$\tilde{U} \in \mathcal{F} \Leftrightarrow U \in F \Leftrightarrow F \in \tilde{U}.$$

Así, $\mathcal{F}(F) = \{\tilde{U} \in \mathcal{O}\tilde{S} \mid F \in \tilde{U}\}$ es un filtro de vecindades. Por lo tanto \tilde{S} es sobrio.

Proposición 3.3.11 Un espacio S que es T_0 tiene la propiedad de que $OS \cong OT$ solamente para T homeomorfo a S si y solo si T es sobrio.

Demostración. Si S es sobrio, por el Corolario 3.3.7 tenemos que $\mathcal{O}S \cong \mathcal{O}\tilde{S}$, donde, por la construcción de la modificación sobria, \tilde{S} es sobrio. Si S no es sobrio, consideramos \tilde{S} el cual es un espacio sobrio , pero no homeomorfo a S y por la Observación 3.3.9 se cumple la condición de que $\mathcal{O}S \cong \mathcal{O}\tilde{S}$.

Para terminar esta sección, recordemos que los funtores \mathcal{O} y pt forman una adjunción. Los resultados anteriores proporcionan la información de cuando entre estos dos existe una equivalencia. Si nos restringimos a espacios sobrios y marcos espaciales tenemos

$$\begin{array}{ccc}
\operatorname{Top} & \xrightarrow{(\widehat{_})} & \operatorname{sob} \\
\mathcal{O} \downarrow & \uparrow_{\operatorname{pt}} & \downarrow \cong \uparrow \\
\operatorname{Frm} & \xrightarrow{sp} & \operatorname{Frm}_{sp}
\end{array}$$

3.4 Las nociones de subajustado y ajustado

Estas nociones aparecieron en la literatura como propiedades bajas de separación, ideales para ser tratadas en el contexto sin puntos. Subajustado fue la primera en ser presentada, en 1938 se enunció por Wallman con el nombre de disyuntividad. Años más tarde se formula su noción dual, conocida como conjuntividad y es la manera en la que actualmente se trabaja con la propiedad de que un espacio sea subajustado. Con la intención de resolver algunos defectos categóricos que presentaba esta noción, se introduce la propiedad de espacio ajustado. Como veremos más adelante, esta última implica subajustado.

De manera similar a como presentamos los axiomas de separación, daremos dos versiones diferentes (pero equivalentes entre si), de subajustado y ajustado. A estas las llamaremos nociones de primer orden y segundo orden, según la forma en la que sean enunciada.

3.4.1 Subajustado

Para comenzar a hablar de esta noción consideremos un espacio S y $\mathcal{C}S$ su retícula de conjuntos cerrados. Wallman presenta la propiedad disyuntiva como

Si
$$a \neq b, \exists c \in S$$
 tal que $a \land c \neq 0 = b \land c$

donde $a, b, c \in CS$.

Notemos que para efectos de la teoría que nos interesa desarrollar, necesitamos la noción dual, que como mencionamos al principio de esta sección, fue presentada como propiedad conjuntiva, actualmente subajustado. Diremos que un espacio S es *subajustado* si

$$(\mathbf{saju}) \ \ \mathsf{para} \ a \nleq b \ \exists \ c \in S \ \mathsf{tal} \ \mathsf{que} \ a \lor c = 1 \neq b \lor c, \ \mathsf{donde} \ a, b \in \mathcal{O}S.$$

A la forma en la que está enunciada esta noción la denominaremos como de primer orden.

Teorema 3.4.1 *Un espacio es subajustado, es decir* OS *satisface* (saju), si y solo si para cada $x \in S$ y cada abierto $U \in OS$ existe $y \in S$ tal que $y \in \overline{\{x\}}$ con $\overline{\{y\}} \subseteq U$.

Demostración.

 \Rightarrow) Supongamos que el espacio S es subajustado y sea $U \ni x$ un abierto. Como $U \nsubseteq U \setminus \overline{\{x\}}$, por (\mathbf{saju}) , existe $W \in \mathcal{O}S$ tal que

$$U \cup W = S$$
 y $(U \setminus \overline{\{x\}}) \cup W \neq S$. (3.1)

Tomando $y \notin (U \setminus \overline{\{x\}}) \cup W$. Entonces

$$y \notin U \setminus \overline{\{x\}}, \quad y \notin W, \quad y \in \overline{\{x\}}.$$
 (3.2)

Sea $z \notin U$ para algún $z \in \overline{\{y\}}$, por 3.1, $z \in W$. Al ser W abierto, $y \in W$, lo cual contradice 3.2. Por lo tanto se debe cumplir que $\overline{\{y\}} \subseteq U$.

 \Leftarrow) Consideremos $U \nsubseteq V$. Sean $x \in U \setminus V$ y $y \in S$ tal que $y \in \overline{\{x\}}$ con $\overline{\{y\}} \subseteq U$. Entonces para $W = S \setminus \overline{\{y\}}$ se cumple que $W \cup U = S$ y $y \notin W \cup V$, pues si $y \in V$, entonces $x \in V$, lo cual no ocurre. Por lo tanto $W \cup V \neq S$, es decir S es subajustado.

Subajustado resulta ser más débil que la propiedad T_1 . Por ejemplo, si consideramos el espacio $\omega + 1 = \{0, 1, 2, \dots\} \cup \{\omega\}$ donde $U \in \mathcal{O}\omega + 1$ si $\omega \in U$ o $U = \emptyset$, este es un espacio que cumple (saju), pero no es T_1 .

Proposición 3.4.2 $T_D y$ (saju) coinciden con T_1 .

Demostración. Sabemos que T_1 implica subajustado y T_D . Ahora consideremos un espacio S que es T_D y subajustado. Por T_D elegimos un abierto $U \ni x$ tal que $U \setminus \{x\}$ es abierto. Al ser subajustado tenemos que existe $W \in \mathcal{O}S$ tal que

$$W \cup U = S \neq W \cup (U \setminus \{x\}).$$

Entonces $W \cup (U \setminus \{x\} = (W \cup U) \cap (W \cup S \setminus \{x\} = S \setminus \{x\})$ el cual es un conjunto abierto. Por lo tanto $\{x\}$ es cerrado, es decir, S es T_1 .

Corolario 3.4.3 T_D y (saju) son incomparables.

Notemos que la normalidad más T_0 no implican completamente regular (y en consecuencia no implican regularidad), para solucionar esto lo que hicimos en la Sección 3.1 fue pedir que los espacios fueran T_1 . Con la noción de subajustado podemos pedir menos que esto.

Proposición 3.4.4 *Un espacio subajustado y normal es regular.*

Demostración. Sea S un espacio normal y subajustado y supongamos que no se cumple

$$U \neq \bigcup \{V \in \mathcal{O}S \mid V \succ U\}.$$

Por (\mathbf{saju}) existe $W \in \mathcal{O}S$ tal que

$$W \cup U = S$$
 y $W \cup \bigcup \{V \in \mathcal{O}S \mid V \succ U\} \neq S$.

Por la normalidad existen $U_1, U_2 \in \mathcal{O}S$ tales que

$$U \cup U_1 = W \cup U_2 = S$$
 y $U_1 \cap U_2 = \emptyset$.

De aquí que $\overline{U_2} \subseteq U$ lo cual implica que $U_2 \succ U$.

Así $U_2 \subseteq \bigcup \{V \in \mathcal{O}S \mid V \succ U\}$. Luego $W \cup \bigcup \{V \in \mathcal{O}S \mid V \succ U\} = S$ lo cual es una contradicción. Por lo tanto $U = \bigcup \{V \in \mathcal{O}S \mid V \succ U\}$.

El resultado anterior es válido para la normalidad y la regularidad sin puntos.

Un marco A es espacial si es isomorfo a $\mathcal{O}S$ que se cumple precisamente si cada elemento de A es intersección de elementos \wedge -irreducibles. Una propiedad algo más fuerte es T_1 -espacial, en la cual el marco A es isomorfo a $\mathcal{O}S$, con S un espacio T_1 . Por lo tanto para T_1 -espacial requerimos que cada elemento de A es intersección de elementos máximos.

Definición 3.4.5 Decimos que un marco A es máximo acotado si para cada $1 \neq x \in A$ existe un elemento máximo $p \in A$, con p < 1, tal que $x \leq p$.

Haciendo uso de la definición anterior podemos caracterizar los marcos subajustado y T_1 -espacial.

Teorema 3.4.6 Un marco máximo acotado es T_1 -espacial si y solo si este es subajustado.

Demostración.

- \Rightarrow) Consideremos $a \nleq b$. Elegimos un maximal p tal que $a \nleq p \geq b$. Así $p < a \lor p$ y por la maximalidad de p se cumple que $a \lor p = 1$ y $b \lor p = p \neq 1$.
- \Leftarrow) Consideremos $a \nleq b$ y sea c tal que $a \lor c = 1 \neq b \lor c$. Sea p < 1 un elemento maximal tal que $p \geq b \lor c$. Así $p \ngeq a$. De modo que $a \nleq p \geq b$. Por lo tanto elementos maximales distinguen elementos distintos.

Teorema 3.4.7 *Un marco compacto y subajustado es* T_1 -*espacial*

Demostración. Sea \mathcal{C} una cadena en $L \setminus \{1\}$. Entonces para $X \subseteq \mathcal{C}$, $\bigcup X \neq 1$, pues en caso contrario existiría un elemento $C = 1 \in \mathcal{C}$, lo cual no es posible. Por lo tanto, por el Lema de Zorn, cada elemento en $L \setminus \{1\}$ es acotado por un elemento dentro de L, es decir, L es máximo acotado, y por el Teorema 3.4.6, L es T_1 -espacial

El Teorema 3.4.7 es conocido como Teorema de especialización de Isbell. Como consecuencia de este teorema tenemos que cada marco finito y subajustado es una álgebra booleana.

Para establecer (**saju**) consideramos un elemento $b \neq 0$. Si quitamos esta restricción obtenemos la noción de *débilmente subajustado*.

(**dsaju**) para $a \neq 0 \ \exists c \neq 1 \ \text{tal que } a \lor c = 1.$

Para un espacio S, el marco $\mathcal{O}S$ es débilmente subajustado si y solo si cada conjunto abierto no vacío contiene un conjunto cerrado no vacío, en otras palabras,

$$\forall U \in \mathcal{O}S$$
, con $U \neq \emptyset$, $\exists x \in U$ tal que $\overline{\{x\}} \subseteq U$.

Débilmente subajustado es más débil que subajustado.

Ejemplo 3.4.8 Consideremos $S = \mathbb{N} \cup \{\omega_1, \omega_2\}$ dotado de la topología

$$\{A \mid A \subseteq \mathbb{N}\} \cup \{A \cup \{\omega_1\} \mid A \subseteq \mathbb{N}\} \cup \{A \cup \{\omega_1, \omega_2\} \mid A \subseteq \mathbb{N}\} \cup \{\emptyset\}$$

con $\mathbb{N} \setminus A$ finito. Notemos que $\overline{\{n\}} = \{n\}$ para todo $n \in \mathbb{N}$, $\overline{\{\omega_1\}} = \{\omega_1, \omega_2\}$ y $\overline{\{\omega_2\}} = \{\omega_2\}$. $\mathcal{O}S$ es débilmente subajustado (ya que cada abierto no vacío contiene un conjunto cerrado $\{n\}$ para $n \in \mathbb{N}$), pero no es subajustado pues no satisface la condición del Teorema 3.4.1. Si consideramos $U = \mathbb{N} \cup \{\omega_1\}$ in $\mathcal{O}S$ y $x = \omega_1 \in U$ tenemos $\overline{\{x\}} = \{\omega_1, \omega_2\}$, pero

$$\overline{\{\omega_1\}}, \overline{\{\omega_1\}} \nsubseteq U.$$

Proposición 3.4.9 L es subajustado si y solo si cada sublocal cerrado de L es débilmente subajustado

Demostración. Notemos que si c(b) es un sublocal cerrado, entonces $c(b) = \uparrow b$, pues cada sublocal cerrado está en correspondencia biyectiva con el conjunto de puntos fijos

$$L_{u_b} = [b, 1] = \{a \in L \mid b \le a\}.$$

Los supremos no triviales coinciden con los de L, pues $0 \neq 0_{\uparrow b}$. De está manera basta probar que $\uparrow b$ es subajustado para $c \in L$, con $b \leq c$, tendríamos que $\uparrow b$ es débilmente subajustado (pues $b = 0_{\uparrow b}$).

Para $a \neq b$ en $\uparrow b$ tenemos que $0_{\uparrow b} = b < a \lor b$ y por lo tanto existe $c \neq 1$, con $c \geq b$, tal que $(a \lor b) \lor c = a \lor c = 1$ y $b \lor c = c \neq 1$.

Teorema 3.4.10 Un marco L es débilmente subajustado si y solo si para $a \in L$,, el pseudocomplemento de a (a*), se calcula por la fórmula

$$a^* = \{ \bigwedge \{ x \mid a \lor x = 1 \}.$$

Demostración.

 \Rightarrow) Sea $u = \bigwedge \{x \mid a \lor x = 1\}$. Si $a \lor x = 1$, entonces

$$a^* = a^* \wedge (a \vee x) = (a^* \wedge a) \vee (a^* \wedge x) = a^* \wedge x,$$

de aquí que $a^* \leq u$.

Supongamos que $a \land u \neq 0$, por (dsaju), existe $c \neq 1$ tal que $(a \land u) \lor c = (a \lor c) \land (u \lor c) = 1$. Por lo tanto, $a \lor c = 1$, de modo que $c \leq u$ y en consecuencia $u \lor c = 1$ implica que c = 1, lo cual es una contradicción. Así $a \land u = 0$ y $u \leq a^*$. Luego a = u.

 \Leftarrow) Si L no es débilmente subajustado existe $a \neq 0$ tal que $a \vee x = 1$ solamente si x = 1. Así consideramos $u = \bigwedge \{x \mid a \vee x = 1\} = 1$ y $a \wedge u = a \neq 0$.

Notemos que para un elemento $a \in L$, con la fórmula anterior es como si estuviéramos calculando el suplemento de a (el b más pequeño tal que $a \lor b = 1$), el cual, de manera general, no necesariamente existe, incluso para marcos subajustados generales. En esta situación concreta, a^* no necesariamente cumple que $a \lor a^* = 1$, para ello es necesario la propiedad distributiva de comarcos.

$$a \vee \bigwedge b_i = \bigwedge (a \vee b_i).$$

Pero podemos concluir lo siguiente.

Teorema 3.4.11 Sea L un marco débilmente subajustado que es también un comarco. Entonces L es un álgebra booleana.

En particular, una retícula distributiva finita es booleana si y solo si esta es débilmente subajustada.

Proposición 3.4.12 En un marco subajustado, un elemento es colineal si y solo si este es complementado.

La suposición de subajustado es esencial en un marco finito, todos los elementos son colineales, pero no todos se complementan.

Consideremos un sublocal $S \sqsubseteq L$, el calcular ínfimo e implicación en S coincide con los cálculos en L. En particular, para un sublocal cerrado $c(b) = \uparrow b$, para $a \le b$, los pseudocomplementos son

$$a^{*b} = (a \succ b).$$

Teorema 3.4.13 Un marco L es subajustado si y solo si la implicación se calcula por la fórmula

$$(a \succ b) = \bigwedge \{x \mid a \lor x = 1 \,, b \le x\}$$

Demostración.

 \Rightarrow) Supongamos que L es subajustado. Entonces por el Teorema 3.4.9 $\uparrow b$ es débilmente subajustado. De aquí que

$$(a \succ b) = ((a \succ b) \land (b \succ b) = ((a \lor b) \succ b)$$

y como $a \lor b \ge b$, entonces $((a \lor b) \succ b) = (a \lor b)^{*b}$ y por la fórmula del Teorema 3.4.10

$$(a \succ b) = (a \lor b)^{*b} = \bigwedge \{x \mid a \lor b \lor x = 1, \ x \ge b\} = \bigwedge \{x \mid a \lor x = 1, \ x \ge b\}.$$

 \Leftarrow) Supongamos que L no es subajustado. Por el Teorema 3.4.9 algunos de sus sublocales cerrados, $\uparrow b$, no son débilmente subajustados y por lo tanto, por el Teorema 3.4.10, considerando $b \le a$, tal que

$$a^{*b} \neq \bigwedge \{x \mid a \lor x = 1, x \ge b\}, \text{ es decir }, (a \succ b) \neq \bigwedge \{x \mid a \lor x = 1, x \ge b\}.$$

El siguiente resultado no hace uso de suposiciones extras de distributividad.

Teorema 3.4.14 Sea L un marco subajustado. Entonces todo homomorfismo completo $h: L \to M$ preserva la implicación.

Demostración. Sea $H(u,v)=\{x\mid x\vee u=1,\,x\geq v\}$, entonces en cualquier marco y para cualquier homomorfismo se cumple que

Afirmación:

$$\mathbf{i}) (u \succ v) \le \bigwedge H(u, v) \quad \mathbf{y} \quad \mathbf{ii}) h[H(u, v)] \subseteq H(h(u), h(v)) \tag{3.3}$$

Prueba de la afirmación:

i) Sea $x \in H(u, v)$, entonces

$$(u \succ v) = (x \lor u) \land (u \succ v) = (x \land (u \succ v)) \lor (u \land (u \succ v))$$

$$\leq x \lor (u \land (u \succ v))$$

$$= x \lor v = x$$

Por lo tanto $(u \succ v) \leq x$, en particular $((u \succ v) \leq \bigwedge H(u, v)$.

ii) Para $x \in H(u, v)$ se cumple que $h(x) \lor h(u) = h(x \lor U) = 1$. Además, si $x \le v$, entonces $h(x) \le h(v)$. Por lo tanto $h(x) \in H(h(u), h(v))$.

Luego, por el Teorema 3.4.13, $(a \succ b) = \bigwedge H(a, b)$. Así, por 3.3,

$$h(a \succ b)) = \bigwedge h[H(a,b)] \ge \bigwedge H(h(a),h(b)) \ge (h(a) \succ h(b)).$$

Además, $h(a \succ b) \le (h(a) \succ h(b))$, pues

$$h(a) \wedge h(a \succ b) = h(a \wedge (a \succ b)) \le h(b).$$

Por lo tanto $h(a \succ b) = (h(a) \succ h(b))$.

3.4.2 Ajustado

Es el momento de analizar esta noción que fue dada por Isbell para solucionar los defectos categóricos que presentaba subajustado. Comenzaremos abordando nuevas caracterizaciones de marcos subajustados para después trasladarlas a los marcos ajustados.

Proposición 3.4.15 Sea L subajustado. Entonces para cada sublocal $S \neq L$ existe un sublocal cerrado no vacío c(a) tal que $c(a) \cap S = \mathbf{0}$, donde $\mathbf{0}$ es el sublocal correspondiente al elemento 1.

Demostración. Por contrapositiva, consideremos $S \subseteq L$ disjunto de todo sublocal cerrado no vacío, es decir,

$$c(a) \cap S = \mathbf{0}$$

donde $\mathbf{0} = \{1\}$ es el sublocal correspondiente al elemento 1 y $c(a) \neq \mathbf{0}$. Sea j_s el núcleo asociado a S, es decir,

$$j_S(x) = \bigwedge \{ s \in S \mid x \le s \}.$$

Notemos que si $j_S(a) = 1$, entonces a = 1. Consideremos $x \in L$ arbitrario y sea $c \vee j_S(x) = 1$. Sabemos que $j_S(c \vee x) \leq c \vee j_S(x) = 1$. De aquí que $c \vee x = 1$. Por (\mathbf{saju}) , $c \vee x = 1 = c \vee j_S(x)$, entonces $j_S(x) \leq x$ y por lo tanto $j_S(x) = x$, es decir $x \in S$ y $L \subseteq S$. Por lo tanto S = L.

Teorema 3.4.16 Las siguientes afirmaciones sobre un marco L son equivalentes.

- i) L es subajustado.
- ii) El único sublocal de L que es disjunto de un sublocal cerrado no vacío es el mismo L.
- iii) Cada sublocal abierto en L es supremo de sublocales cerrados.

Demostración.

- $i) \Rightarrow ii$) Es la prueba del Teorema 3.4.15.
- $ii) \Rightarrow iii)$ Consideremos un sublocal abierto o(a) y sea

$$S = \bigvee \{c(b) \mid c(b) \subseteq o(a)\}.$$

Sea c(x) un sublocal cerrado disjunto de $c(a) \vee S$. De aquí que

$$c(x \lor a) = [x \lor a, 1] = [x, 1] \cap [a, 1] = c(x) \cap c(a)$$

Notemos que por la forma en que consideramos a c(x) tenemos que $c(x) \vee c(a) = \mathbf{0}$. Así $c(x) \subseteq o(a)$ y $c(x) \subseteq S$. Además. $c(x) \cap S = \mathbf{0}$, entonces $c(x) = \mathbf{0}$. Luego, por hipótesis, al ser $c(a) \vee S$ un sublocal cerrado y disjunto de un sublocal cerrado no vacío tenemos que $c(a) \vee S = L$. De aquí que $o(a) \subseteq S$ y $S \subseteq o(a)$. Por lo tanto S = o(a).

 $iii) \Rightarrow i)$ Afirmación:

$$c(a) \subseteq o(b) \Leftrightarrow a \lor b = 1 \tag{3.4}$$

Prueba de la afirmación: Supongamos que $c(a) \subseteq o(b)$. Notemos que

$$c(a \vee b) = c(a) \cap c(b) \subseteq o(a) \cap c(b) = \mathbf{0},$$

es decir, $a \lor b = 1$.

Recíprocamente, supongamos $a \lor b = 1$. Notemos que $c(a \lor b) = 0$ y $c(a \lor b) = c(a) \cap c(b) = 0$. Por lo tanto $c(a) \subseteq o(b)$.

Ahora, si $a \nleq b$, entonces $o(a) \nsubseteq o(b)$ y así existe $x \in L$ tal que $c(x) \subseteq o(a)$ y $c(x) \nsubseteq o(b)$, esdecir, $x \lor a = 1$ y $x \lor b \ne 1$. Por lo tanto L es subajustado

La equivalencia $1) \Leftrightarrow 3$) es lo que denominaremos como noción de *segundo orden*. Para abreviarla únicamente nos referiremos a ella como **abierto como supremo**. Esta fue la forma en la que Isbell enuncio subajustado, para la noción de ajustado tenemos

cada sublocal cerrado es ínfimo de sublocales abiertos

y de la misma manera que lo hicimos para subajustado, nos referiremos a ella como **cerrado como ínfimo**. Esta será nuestra noción de segundo orden para ajustado. La noción de primer orden vienen enunciada en el siguiente teorema.

Teorema 3.4.17 Cada sublocal cerrado en L es ínfimo de abiertos si y solo si

(aju)
$$\forall a, b \in L, a \nleq b, \exists c \in L \text{ tal que } a \lor c = 1 \text{ y } c \succ b \neq b.$$

Demostración. Supongamos que $c(a) = \bigcap \{o(x) \mid x \in L\}$, por 3.4, es equivalente a

$$c(a) \subseteq \bigcap \{o(x) \mid x \in L\} \quad \text{y} \quad c(a) \supseteq \bigcap \{o(x) \mid x \in L\},$$

que por 3.4 es equivalente a

$$c(a) \subseteq \bigcap \{o(x) \mid x \lor a = 1\}$$
 y $c(a) \supseteq \bigcap \{o(x) \mid x \lor a = 1\}$,

es decir, si $b \in \bigcap \{o(x) \mid x \vee a = 1\}$, entonces $b \in c(a)$. Todo lo anterior equivale a las afirmaciones

$$a \lor x = 1$$
 y $(x \prec b) = b$ \Rightarrow $a \leq b$

donde $(x \succ b) = b$ se cumple por la correspondencia del sublocal abierto con el núcleo $v_x(b)$. Así, considerando la negación de la implicación anterior obtenemos (aju).

Veamos ahora que ajustado implica subajustado, para probar esto haremos uso de las nociones de primer orden. Supongamos que L es ajustado, entonces considerando el c de la fórmula tenemos que si $c \lor b = 1$, entonces

$$b = (1 \succ b) = ((c \lor b) \succ b) = (c \succ b) \land (b \succ b) = (c \succ b),$$

es decir, $b=(c\succ b)$, lo cual es equivalente a que si $b\neq (c\succ b)$, entonces $c\vee b\neq 1$ y recuperamos la fórmula de primer orden de (saju).

Las afirmaciones abierto como supremo y cerrado como ínfimos podrían parecer duales entre si, pero como vimos antes, ajustado es más fuerte. De hecho, como veremos más adelante, ajustado es equivalente a una afirmación más fuerte sobre sublocales arbitrarios.

Ejemplo 3.4.18 La topología cofinita proporciona el ejemplo de un espacio que es subajustado, pero no es ajustado. Para verificar lo anterior basta calcular la implicación para cualesquiera dos subconjuntos $U, V \in S$, donde S tiene la topología cofinita. Notemos que para este caso, S es T_1 y en consecuencia, S es subajustado. Con la información anterior y realizando los cálculos de la implicación podemos concluir que S no cumple con la fórmula de primer orden de (aju).

Observemos que las nociones de segundo orden están enunciadas para los sublocales de un local, al trasladarlas a los subespacios abiertos y cerrados de un espacio son diferentes a las de ajustado y subajustado.

Proposición 3.4.19 Las siguientes afirmaciones sobre un espacio S son equivalentes.

- i) Cada subconjunto abierto $U \subseteq S$ es la unión de subconjuntos cerrados.
- ii) Cada subconjunto cerrado $A \subseteq S$ es la intersección de subconjuntos abiertos.
- iii) S es un espacio simétrico.

Demostración.

 $i) \Leftrightarrow ii)$ Sean U abierto y A = U' cerrado. Si $U = \bigcup A_i$, con A_i cerrados

$$A = U' = (\bigcup A_i)' = \bigcap A_i'$$

donde A_i son subconjuntos abiertos.

- $(i) \Rightarrow iii)$ Si $x \notin \overline{\{y\}}$, entonces $x \in S \setminus \overline{\{y\}}$ y por (i) $\overline{\{x\}} \subseteq S \setminus \overline{\{y\}}$. Por lo tanto $\overline{\{x\}} \cap \overline{\{y\}}$ y $y \notin \overline{\{x\}}$.
- $iii)\Rightarrow i)$ Sea U abierto tal que $\overline{\{y\}}\subseteq U$, por la simetría $x\in\overline{\{y\}}$ si y solo si $y\in\overline{\{x\}}$. Ahora

$$U = \bigcup \{ \overline{\{x\}} \mid x \in U \}$$

y $\overline{\{x\}}$ es cerrado.

 $\textbf{Proposición 3.4.20} \ \textit{Las siguientes afirmaciones sobre un espacio } S \ \textit{son equivalentes}.$

- i) Cada subconjunto $M \subseteq S$ es la unión de subconjuntos cerrados.
- ii) Cada subconjunto $M\subseteq S$ es la intersección de subconjuntos abiertos.
- iii) S es un espacio T_1 .

Demostración.

- $i) \Leftrightarrow ii)$ De manera similar a la proposición anterior, hacemos uso de las leyes de De Morgan.
- $i) \Rightarrow iii)$ Consideremos $\{x\} \subseteq S$. Por hipótesis, $\{x\}$ es la unión de cerrados. Por lo tanto $\{x\}$ es cerrado.
- $(iii) \Rightarrow i)$ Notemos que si S es T_1 , entonces $\{x\}$ es cerrado. Además

$$M = \bigcup \{ \{x\} \mid x \in M \}.$$

3.4.3 Subajustado y ajustado en sublocales

Es momento de ver como se comportan estas nociones para los sublocales de un local. En esta subsección enunciaremos los resultado necesarios para identificar bajo que circunstancias estas propiedades son hereditarias o no.

Antes de comenzar, mostraremos primero una propiedad que cumple la implicación y el núcleo asociado a un sublocal.

Proposición 3.4.21 Si $s \in S$ entonces para el núcleo asociado j_S y cualquier $a \in L$ se cumple que $a \succ s = j_S(a) \succ s$

Demostración. Por propiedades de la implicación, $a \leq j_S(a)$ si y solo si $(j_S(a) \succ s) \leq (a \succ s)$. Para la otra desigualdad, sabemos que $a \leq ((a \succ s) \succ s)$. Además, $s \leq ((a \succ s) \succ s)$ y por lo tanto

$$j_S(a) \le ((a \succ s) \succ s) \Leftrightarrow (((a \succ s) \succ s) \succ s) \le (j_S(a) \succ s)$$

 $\Leftrightarrow (a \succ s) \le (j_S(a) \succ s).$

Proposición 3.4.22 Cada sublocal de un marco ajustado es ajustado.

Demostración. Sea L un marco ajustado y $S \subseteq L$ un sublocal. Si $a \nleq b$ en S, entonces $a \nleq b$ en L. Como L existe $c \in L$ tal que $c \lor a = 1$ y $(c \succ b) = b$. Consideremos $c' = j_S(c)$, entonces

$$c' \vee^S a \ge c' \vee a \ge c \vee a = 1,$$

es decir, $c' \vee^S a = 1$ y por la Proposición 3.4.21 tenemos que $(c' \succ b) \neq b$. Por lo tanto S es subajustado.

Teorema 3.4.23 Cada marco L es ajustado si y solo si cada uno de sus sublocales es subajustado.

Demostración.

- \Rightarrow) Si L es ajustado, entonces por la Proposición 3.4.22 S es ajustado lo cual implica que S es subajustado.
- \Leftarrow) Por contradicción, supongamos que S es subajustado y que L no es ajustado. Entonces existen $a \nleq b$ tales que para cada $u \in L$ se cumple $a \lor u = 1$ y $(u \succ b) = b$. Consideremos el conjunto

$$S = \{x \mid a \lor u = 1 \Rightarrow (u \succ x) = x\}$$

Afirmación: S es un sublocal.

Prueba de la afirmación:

1. $1 \in S$, pues si $a \vee u = 1$, entonces $(u \succ 1) = 1$.

2. Si x_i y $a \lor u = 1$, entonces $(u \succ x_i) = x_i$ para todo i y por lo tanto

$$(u \succ \bigwedge x_i) = \bigwedge (u \succ x_i) = \bigwedge x_i,$$

de modo que $\wedge x_i \in S$.

3. Consideremos $x \in S$, $y \in L$ y $a \lor u = 1$. Luego

$$(u \succ (y \succ x)) = (y \succ (u \succ x)) = (y \succ x),$$

de aquí que $(y \succ x) \in S$. Por lo tanto S es un sublocal.

Así S es subajustado. Notemos que $a, b \in S$, pues si $a \lor u = 1$ entonces

$$a = ((a \lor u) \succ a) = (a \succ a) \land (u \succ a) = (u \succ a).$$

De está manera, como $a \nleq b$ existe $c \in S$ tal que $a \vee^S c = 1 \neq b \vee^S c$. Recordemos que, en general, el supremo en S puede ser más grande que cuando se toma en L. Sin embargo, por el Teorema 3.4.13, si $a \vee u = 1$ entonces

$$(u \succ (a \lor c)) = \bigwedge \{x \in S \mid u \lor x = 1, \ x \ge a \lor c\} = a \lor c,$$

pues $u \lor a \lor c = 1$. Por lo tanto $a \lor c \in S$ y éste coincide con $a \lor^S c$. De aquí que $a \lor^S c = 1 = a \lor c$ y $1 = (c \succ c) = c$ lo cual es una contradicción. Así L es ajustado.

Corolario 3.4.24 Subajustado no es una propiedad hereditaria.

El Ejemplo 3.4.18 nos proporciona un espacio subajustado que no es ajustado. Para este caso particular, si consideramos el espacio S con la topología cofinita, el marco $\mathcal{O}S$ es subajustado. Además, $\mathcal{O}S$ tiene muchos sublocales que no son subajustados, usando las fórmulas para $U \succ V$, se puede comprobar que las 3-cadenas $S_x = \{\emptyset, S \setminus \{x\}, S\}$, donde x varia en S, no son subajustados. Por lo tanto $\mathcal{O}S$ es subajustado, pero S_x no lo es. Sin embargo, subajustado se hereda en algunos casos importantes.

La prueba del siguiente resultado usa el hecho de que para cualquier $a \in L$ se cumple que

$$o(a) \cap S = O_S(j_S(a))$$
 y $c(a) \cap S = c_S(j_S(a))$.

Por lo tanto, si $a \in S$ tenemos que $o_S(a) = o(a) \cap S$ y $c_S(a) = c(a) \cap S$.

Teorema 3.4.25 Sea S un sublocal complementado de un marco L subajustado. Entonces S es subajustado.

Demostración. Sea $o_S(a)$ un sublocal abierto en S, entonces $o_S(a) = o(a) \cap S$ con o(a) abierto en L. Luego como L es subajustado se cumple que

$$o(a) = \bigcup_{iin\mathcal{J}} c(b_i),$$

donde $c(b_i)$ son sublocales cerrados en L. Como S es complementado, podemos distribuir supremos arbitrarios con intersecciones finitas, es decir,

$$o_S(a) = o(a) \cap S = \bigcup_{i \in \mathcal{J}} c(b_i) \cap S = \bigcup_{i \in \mathcal{J}} (c(b_i) \cap S) = \bigcup_{i \in \mathcal{J}} c_S(j_S(b_i)).$$

Por lo tanto cada sublocal abierto en S se puede ver como supremo de cerrados en S, es decir, S es subajustado.

Ahora analizaremos como se comporta (dsaju) en sublocales. Los siguiente resultado se siguen del Teorema 3.4.23 y la Proposición 3.4.9, respectivamente.

Corolario 3.4.26 Una marco L es subajustado si y solo si cada uno de sus sublocales es débilmente subajustado.

Demostración. Si L es ajustado entonces S es ajustado (Teorema 3.4.23. Luego ajustado implica subajustado y subajustado implica débilmente subajustado.

Proposición 3.4.27 *Un marco L es débilmente subajustado si y solo si cada uno de sus sublocales abiertos es débilmente subajustado.*

Demostración. Supongamos que L es débilmente subajustado y consideremos $b \in o(a)$ tal que $b \neq \mathbf{0}_{o(a)} = a^*$. Entonces $b \wedge a \neq 0$ y, por (dsaju), existe $c \in L$ tal que $(a \wedge b) \vee c = 1$. Luego $1 = b \vee c \leq b \vee (a \succ c)$ y $(a \succ c) \neq 1$, pues en caso contrario tendríamos que si $(a \succ c) = 1$ entonces $a \leq c$ lo cual implicaría que $1 = a \vee c = c$ lo cual sería una contradicción. Sea $c' = (a \succ c) \in o(a)$, es decir, c' = c, y notemos que $b \vee c'$ en o(a) se calcula por $a \succ (b \vee c') = (a \succ 1) = 1 \neq c'$. Por lo tanto $\exists c' \in o(a)$ tal que $b \vee c' = 1$, con $b \neq \mathbf{0}_{o(a)}$ y $c' \neq 1$, es decir, o(a) es débilmente subajustado.

Recopilando toda la información presentada en esta sección tenemos las siguientes implicaciones.

Ajustado ⇔ cada sublocal es débilmente subajustado ↓

Subajustado ⇔ cada sublocal cerrado es débilmente subajustado ↓

...

Débilmente subajustado \iff cada sublocal abierto es dédilmente subajustado donde las equivalencias son las que se muestran en el Corolario 3.4.26 y las Proposiciones 3.4.9 y 3.4.27, respectivamente.

Corolario 3.4.28 *Débilmente subajustado no es una propiedad hereditaria.*

3.4.4 Ajustado y subajustado en congruencias

En la sección anterior analizamos el comportamiento hereditario de estas dos propiedades. Lo que haremos ahora es ver el comportamiento algebraico de ellas a través de las congruencias, esto debido a la correspondencia uno a uno que existe entre estas y los sublocales.

Consideremos un homomorfismo de marcos $h \colon \mathcal{O}S \to \mathcal{O}T$. Una congruencia es una relación, \sim , dada por

$$U \sim V \Leftrightarrow h(U) = h(V),$$

donde $U, V \subseteq S$. Denotamos por $E_h = \{(U, V) \mid h(U) = h(V)\}.$

Para un subespacio $X \subseteq S$, el encaje produce la congruencia

$$E_X = \{(U, V) \mid U \cap X = V \cap X\}.$$

Recordemos que A_j es una congruencia y esta está en relación con los sublocales de un loca (siempre que $j \in NA$).

Los conjuntos \downarrow $(S \setminus \{1\})$ obtenidos de los sublocales S jugaran un papel crucial.

Proposición 3.4.29 Para el núcleo j_S y la congruencia E_S asociados al sublocal S se tiene que

$$\downarrow (S \setminus \{1\}) = \{x \in L \mid j_S(x) \neq 1\} = L \setminus E_S(1), \tag{3.5}$$

donde $E_S(1) = E(1) \cap S$.

Demostración. Se puede verificar de manera sencilla que $\downarrow (S \setminus \{1\}) = L \setminus E_S(1)$. Veamos que $\downarrow (S \setminus \{1\}) = \{x \in L \mid j_S(x) \neq 1\}$.

Sea $x \in \downarrow (S \setminus \{1\})$, entonces $x \neq 1$ y existe $s \in S \setminus \{1\}$ tal que $x \leq s$. Notemos que $x \in L$ y $x \leq s$, en particular, para $\bigwedge \{s \in S \mid x \leq s\}$ y $x \neq 1$, se cumple que $x \in \{j_s(x) \neq 1\}$, es decir, $\downarrow (S \setminus \{1\}) \subseteq \{x \in L \mid j_S(x) \neq 1\}$. La otra contención es similar.

Teorema 3.4.30 Un marco L es subajustado si y solo si cada congruencia E en L es trivial siempre que $E(1) = \{1\}$

Demostración. Si L es subajustado, por la equivalencia $1) \Leftrightarrow 2)$ del Teorema 3.4.16, tenemos que un sublocal cerrado $c(a) = \uparrow a$ es disjunto de un sublocal S si y solo si existe $a \in L$, con $a \neq 1$ tal que $a \notin \downarrow S$. Aplicando esto al correspondiente sublocal asociado con E obtenemos lo que queremos.

Proposición 3.4.31 Un marco L es ajustado si y solo si para cualesquiera dos sublocales $S, T \subseteq L$ se cumple la implicación

$$\downarrow (S \setminus \{1\}) = \downarrow (T \setminus \{1\}) \Rightarrow S = T.$$

Demostración.

 \Rightarrow) Consideremos \downarrow $(S \setminus \{1\}) = \downarrow$ $(T \setminus \{1\})$. Sean $b \in T$ y $a = j_S(b)$. Si $a \lor c = 1$ tenemos que $j(b \lor c) \le a \lor c = 1$, de modo que $j_S(b \lor c) = 1$ y así $b \lor c \notin \downarrow (S \setminus \{1\})$ y por lo tanto $b \lor c \notin \downarrow (T \setminus \{1\})$.

Por propiedades de la implicación tenemos que $b=(c\vee b)\wedge(c\succ b)$, en particular, $(c\vee b)\wedge(c\succ b)\leq b$. Así, $(c\vee b)\leq ((c\succ b)\succ b)$ y $((c\succ b)\succ b)\in T$. Luego, como $b\vee c=1$, tenemos que $((c\succ b)\succ b)=1$, de modo que $(c\succ b)\leq b$ y por lo tanto $b=(c\succ b)$. De aquí que si $a\vee c=1$ implica que $(c\succ b)=b$ y como L es ajustado, se cumple que $a=j_S(b)\leq b$, es decir, $j_S(b)=b$. Así $b\in S$, es decir, $T\subseteq S$.

De manera similar probamos que $S \subseteq T$ y por lo tanto S = T.

 \Leftarrow) Consideremos un sublocal $S \subseteq L$ y sea

$$T = \bigcap \{ o(x) \mid S \subseteq o(x) \}.$$

Si $s \in S$ y $j_S(x) = 1$, entonces x = 1. Luego

$$(j_S(x) \succ s) = (1 \succ s) = s \Rightarrow (j_S(x) \succ s) = (x \succ s) = s,$$

es decir, $s \in o(x)$. Así, si $j_S(x) = 1$, entonces $S \subseteq o(x)$. De aquí que $S \subseteq T$. Por lo tanto para cada $a \in T$, $(x \succ a) = a$ siempre que $j_S(x) = 1$ y si $a \neq 1$, como $(a \succ a) = 1 \neq a$, $j_S(a)$ no puede ser 1, de modo que $a \in (S \setminus \{1\})$. Por lo tanto $T \setminus \{1\} \subseteq \downarrow (S \setminus \{1\})$ y en consecuencia $\downarrow (T \setminus \{1\}) \subseteq \downarrow (S \setminus \{1\})$

Veamos que $\downarrow (S \setminus \{1\}) \subseteq \downarrow (T \setminus \{1\})$. Sea $a \in \downarrow (S \setminus \{1\})$, entonces existe $b \in S \setminus \{1\}$ tal que $a \leq b$. Como $S \subseteq T$, entonces $b \in T$ y así $a \in \downarrow (T \setminus \{1\})$. Por lo tanto $\downarrow (S \setminus \{1\}) = \downarrow (T \setminus \{1\})$ y por hipótesis, S = T. Luego $S = \bigcap \{o(x)\}$ y al ser S un sublocal arbitrario, en particular se cumple también para

$$S = c(x) = \bigcap \emptyset(x)$$

y, por el Teorema 3.4.17, L es ajustado.

Teorema 3.4.32 Un marco L es ajustado si y solo si para cualesquiera dos congruencias E, F en L se cumple la implicación

$$E(1) = F(1) \Rightarrow E = F.$$

Demostración. Por la Proposición 3.4.31, para cualesquiera $S,T\subseteq L$ se cumple que

$$\downarrow (S \setminus \{1\}) = \downarrow (T \setminus \{1\}) \Rightarrow S = T.$$

Consideremos E, F las congruencias correspondientes a S, T, respectivamente, entonces, por $\ref{eq:constraint}$?

$$\downarrow (S \setminus \{1\}) = L \setminus E(1) = L \setminus F(1) = \downarrow (T \setminus \{1\})$$

y
$$S = T$$
. Por lo tanto $E = F$.

Notemos que en la prueba de la implicación " \Leftarrow " en la Proposición 3.4.31 se demostró que $S = \bigcap \{o(x) \mid S \subseteq o(x)\}$ para cualquier sublocal $S \subseteq L$, no solamente para los sublocales cerrados. De esta manera obtenemos el siguiente resultado

Teorema 3.4.33 Un marco es ajustado si y solo si cada sublocal $S \subseteq L$ es intersección de sublocales abiertos.

3.5 Axiomas tipo Hausdorff

Para el análisis sin puntos de los axiomas de separación, la propiedad de que un espacio sea Hausdorff (o T_2), necesita ser tratada con mayor detalle. Esto debido a que no existe solo una manera de que esta propiedad sea abordada, dependiendo el enfoque o el objeto de estudio, puede ser utilizada una "traducción" u otra.

En esta sección presentamos las distintas nociones sin puntos de tipo Hausdorff que existen hasta el momento. Cabe mencionar que estas fueron enunciadas por diferentes matemáticos y algunas de ellas salieron a la luz casi al mismo tiempo. Para conocer un poco sobre la motivación de cada una de estas nociones, se puede consultar [4], donde su Capítulo 3 es de donde se extrae gran parte de la información de esta sección.

La razón por la cual se trabaja con diferentes nociones de que un marco sea Hausdorff se debe al comportamiento de cada una de ellas. Algunas son propiedades conservativas e incluso equivalentes entre si. En otras existe un buen comportamiento espacial. Dependiendo el uso que se les quiera dar podemos encontrar diferentes aplicaciones. Parte de nuestra análisis consiste en decidir (en caso de que se pueda), cual es la mejor de todas ellas y hacer uso de estas para caracterizar un fenómeno que será presentado en el Capítulo 2.

3.5.1 Marcos débilmente Hausdorff

Esta noción fue enunciada por Dowker y Papert Strauss y unas ligeras modificaciones de ella dan origen a cierta jerarquía, que al juntarlas con subajustado, resultan ser una equivalencia. Esta primer noción es conocida como *débilmente Hausdorff* y la denotaremos por **dH**.

(dH) Si $a \lor b = 1$ y $a, b \ne 1$, entonces existen u, v tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.

La siguiente noción es ligeramente más fuerte que (dH).

 $(\mathbf{dH'})$ Si $a \nleq b$ y $b \nleq a$, entonces existen u, v tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.

Esta última es la más fuerte de esta jerarquía

 $(\mathbf{dH''}) \ \ \text{Si} \ a \nleq b \ \text{y} \ b \nleq a \text{, entonces existe} \ u,v \ \text{tales que} \ u \nleq a,v \nleq b,u \leq b,v \leq a \ \text{y} \ u \wedge v = 0.$

De esta manera tenemos lo siguiente

$$(\mathbf{dH''}) \Rightarrow (\mathbf{dH'}) \Rightarrow (\mathbf{dH}).$$

Estas tres condiciones no son conservativas y sin (saju) no son suficientemente Hausdorff. Por ello, Dowker y Papert Strauss sugirieron como un axioma tipo Hausdorff conveniente la combinación (dH) + (saju). De hecho, esta propiedad es conservativa.

Proposición 3.5.1 Para un marco subajustado las condiciones (dH), (dH') y (dH") son equivalentes.

Demostración. Pendiente

3.5.2 Marcos Hausdorff

La noción que ahora veremos es presentada por Paseka y Smarda quienes vieron la propiedad de Hausdorff como una regularidad débil. Con esto en mente, ellos sugieren una modificación de la relación mostrada en la Definición 3.2.1 dada por "≺" y reemplazándola por una un poco más débil, denotada por "⊏"

Definición 3.5.2 Para un espacio topológico S y cualesquiera $U, V \in \mathcal{O}S$ decimos que U se relaciona con V por medio de \square , denotado por $U \square V$, si y solo si

$$U \subseteq V$$
 y $\overline{U} \cup V \neq S$.

Proposición 3.5.3 Un espacio S que es T_0 es Hausdorff (T_2) si y solo si para todo $V \in \mathcal{O}S$, con $V \neq S$, tenemos que

$$V = \bigcup \{U \mid U \sqsubset V\}$$

donde $U \in \mathcal{O}S$.

Demostración. Pendiente

Notemos que en la condición $\overline{U} \cup V \neq S$ se cumple si y solo si $S \setminus \overline{U} \nsubseteq V$. De esta manera, podemos reescribir la Definición 3.5.2 como

$$U \sqsubset V \Leftrightarrow U \subseteq V \quad y \quad U^* \not\subseteq V$$

De esta manera, para un marco L podemos escribir la siguiente noción sin puntos de T_2 .

 $(\mathbf{T_{2s}})$ Si para $a \in L$, con $a \neq 1$, entonces $a = \bigvee \{u \in L \mid u \sqsubset a\}$,

donde $u \sqsubset a$ si y solo si $u \le a$ y $u^* \nleq a$.

Notemos que $\bigvee\{u\in L\mid u\sqsubset a\}\leq a$ de esta manera T_{2_S} es equivalente a afirmar que si $1\neq a\nleq b$ entonces existe un $v\sqsubset a$ tal que $v\nleq b$. Sustituyendo u por v^* obtenemos la siguiente modificación.

 $(\mathbf{T_{2s}})$ Si $1 \neq a \nleq b$, entonces existen $u, v \in L$ tales que $u \nleq a, v \nleq b, v \leq a$ y $u \land v = 0$.

En 1987 Johnstone y Shu-Hao enunciaron la siguiente noción tipo Hausdorff y observaron que es equivalente a T_{2s} .

 $(\mathbf{S_2}) \ \ \mathrm{Si} \ 1 \neq a \nleq b. \ \mathrm{entonces} \ \mathrm{existen} \ u,v \in L \ \mathrm{tales} \ \mathrm{que} \ u \nleq a,v \nleq b \ \mathrm{y} \ u \wedge v = 0.$

Proposición 3.5.4 (S_2) y (T_{2_S}) son equivalentes.

Demostración. Pendiente.

De esta manera tenemos dos nociones que son equivalentes y que fueran motivadas por direcciones muy diferentes. Así, podemos convenir en considerar la noción de Johnstone y Shu-Hao como la conveniente para decir que un marco es Hausdorff.

Definición 3.5.5 Decimos que un marco L es un marco Hausdorff si cumple la siguiente propiedad

(H) Para cualquier $1 \neq a \nleq b \in L$ existen $u, v \in L$ tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.

En otras palabras, tenemos que un marco es Hausdorff si

(H) Para cualquier $1 \neq a \nleq b \in L$ existe $u \in L$ tales que $u \nleq a$ y $u^* \nleq b$.

Se puede verificar que, efectivamente, pedir que un marco sea Hausdorff es algo más fuerte que débilmente Hausdorff.

Observación 3.5.6 Los marcos Hausdorff tienen un buen comportamiento conservativo, es decir, S es un espacio Hausdorff si y solo si $\mathcal{O}S$ es un marco Hausdorff. Además, esta propiedad se hereda para sublocales y productos.

Proposición 3.5.7 1. Un sublocal de un local Hausdorff es Hausdorff.

2. Un producto de locales Hausdorff es Hausdorff

Demostración. Pendiente.

3.5.3 Marcos Hausdorff basados

La motivación de la siguiente noción viene dada por la equivalente noción sin puntos de que un marco sea T_1 . Recordemos que un marco cumple T_{1_S} si todo elemento \wedge -irreducible (o elemento primo), es máximo. Veamos que algo similar pasa para lo que definiremos como marcos Hausdorff basados. Antes de hacer eso necesitamos un poco de información.

Definición 3.5.8 Para un marco L decimos que un elemento $p \in L$ es semiprimo si $a \wedge b = 0$ implica que $a \leq p$ o $b \leq p$.

Obviamente cada elemento ∧-irreducible es semiprimo.

Proposición 3.5.9 *Un espacio* S *que es* T_0 *es Hausdorff si y solo si todos los elementos semiprimos* $P \in \mathcal{O}S$ *son maximales.*

Demostración. Pendiente.

Este análisis fue hecho por Rosicky y Smarda. Ellos introducen la siguiente noción.

Definición 3.5.10 Decimos que un marco L es Hausdorff basado si cumple la siguiente propiedad (Hb) cada elemento semiprimo en L es máximo.

De esta manera, como asumimos que se cumple T_0 , por la Proposición 3.5.9, (Hb) es conservativa.

Proposición 3.5.11 Cada marco Hausdorff es Hausdorff basado.

Los marcos Hausdorff basados tienen un buen comportamiento categórico, lamentablemente no hay mucha información sobre estos marcos en la literatura.

Considerando la siguiente relajación de (Hb) podemos ver que (H) y (T_{1s}) tienen un comportamiento similar que sus variantes sensibles a puntos.

Definición 3.5.12 Decimos que un marco L es débilmente Hausdorff basado si cumple la siguiente propiedad

(dHb) cada elemento semiprimo en L es \land -irreducible.

Por lo tanto, tenemos las siguientes implicaciones

$$(\mathbf{H}) \Rightarrow (\mathbf{Hb}) \Rightarrow (\mathbf{dHb}) \Rightarrow (\mathbf{T_{1s}}).$$

3.5.4 Marcos fuertemente Hausdorff

Los espacios T_2 cumplen lo siguiente: Un espacio S es T_2 si y solo si la diagonal $\Delta = \{(x, x) \in S \times S \mid x \in S\}$ es un subconjunto cerrado en $S \times S$.

Con esto en mente, Isbell da su noción tipo Hausdorff sin puntos, enunciada para el producto binario de sublocales. La desventaja de la variante presentada por Isbell es que esta propiedad no es conservativa, pero esto es compensado por otros méritos.

Para un local L consideramos el coproducto binario $L\oplus L$. En particular, tomemos las inyecciones al coproducto

$$\iota_1 = (a \mapsto a \oplus 1) \colon L \to L \oplus L \quad \text{y} \quad \iota_2 = (b \mapsto 1 \oplus b) \colon L \to L \oplus L.$$

El morfismo codiagonal Δ^* que satisface $\Delta^* \iota_i = id$ está dado por

$$\Delta^*(U) = \bigvee \{a \land b \mid a \oplus b \subseteq U\} = \bigvee \{a \land b \mid (a,b) \in U\}.$$

Consideremos la adjunción

$$L \oplus L \xrightarrow{\Delta^*} L$$

con Δ el morfismo diagonal locálico asociado. Además,

$$\Delta(a) = \{(x, y) \mid x \land y \le a\}.$$

Por lo tanto tenemos $U \subseteq \Delta(\Delta^*(U))$ y $\Delta^*\Delta = id$, donde el sublocal diagonal $\Delta[L]$ corresponde al subespacio diagonal clásico.

Definición 3.5.13 Decimos que un marco es fuertemente Hausdorff si y solo si el sublocal diagonal $\Delta[L]$ es cerrado en $L \oplus L$.

La propiedad enunciada en la Definición 3.5.13 puede ser reescrita de la siguiente manera.

(**fH**)
$$\Delta[L] = \uparrow d_L$$
,

donde d_L es el menor elemento de $\Delta[L]$, es decir,

$$d_L = \Delta(0) = \{(x, y) \mid x \land y \le 0\} = \downarrow \{(x, x^*) \mid x \in L\}.$$

Existen diferentes caracterizaciones para los marcos fuertemente Hausdorff. Por el momento solo haremos mención a sus propiedades más importantes.

Proposición 3.5.14 Cada sublocal de un marco fuertemente Hausdorff es fuertemente Hausdorff.

Demostración. Pendiente.

Proposición 3.5.15 *Un marco fuertemente Hausdorff es Hausdorff.*

Demostración. Pendiente.

Proposición 3.5.16 Sean S un espacio T_0 y $\mathcal{O}S$ un marco fuertemente Hausdorff. Entonces S es Hausdorff.

Demostración. Pendiente.

El marco OS de un espacio S que es Hausdorff no necesariamente es fuertemente Hausdorff. Así, la propiedad (fH) no es conservativa. Lo anterior queda ilustrado en el siguiente diagrama.

$$(\mathbf{fH}) \xrightarrow{3.5.16} T_2$$

$$3.5.15 \qquad \qquad 3.5.6$$

$$(\mathbf{H})$$

Podemos tratar de extender la propiedad de simetría (presentada en el Capítulo 1 como simetría), que por la Proposición 3.1.3, bajo T_0 es equivalente a T_1 . Para este caso, si h_1 y h_2 son dos morfismos de marcos, decimos que $h_1 \leq h_2$ si $h_1(a) \leq h_2(a)$ para todo $a \in A$, donde A es el dominio de los respectivos morfismos. De esta manera diremos que un espacio es T_U si se cumple

$$(\mathbf{T}_{\mathbf{U}}) \quad \forall h_1, h_2 \colon A \to B, \text{ con } h_1, h_2 \in \text{Frm}, \text{ si } h_1 \leq h_2, \text{ tenemos que } h_1 = h_2$$

Haremos uso de esta propiedad más adelante.

Chapter 4

Marcos arreglados vs Axiomas tipo Hausdorff

Chapter 5

Marcos arreglados vs cocientes compactos

Bibliography

Bibliography

- [1] P. T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- [2] J. Monter; A. Zaldívar, *El enfoque locálico de las reflexiones booleanas: un análisis en la categoría de marcos* [tesis de maestría], 2022. Universidad de Guadalajara.
- [3] J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in Mathematics, Springer Basel, 2012.
- [4] J. Picado and A. Pultr, Separation in point-free topology, Springer, 2021.
- [5] Rosemary A Sexton, A point free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.
- [6] Harold Simmons, *The assembly of a frame*, University of Manchester (2006).
- [7] RA Sexton and H. Simmons, *Point-sensitive and point-free patch constructions*, Journal of Pure and Applied Algebra **207** (2006), no. 2, 433-468.
- [8] A. Zaldívar, *Introducción a la teoría de marcos* [notas curso], 2024. Universidad de Guadalajara.