وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Analog IC Design

Lecture 01 Introduction

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Introduction

Smart phone, 2016
Size → Your pocket
Power consumption < 1W

Electronics All Around Us

Transistor Evolution

First transistor Emitter and Collector contacts separation $\approx 100 \mu m$ Bell Labs, 1947

Modern MOSFET
Effective channel
length ≈ 35nm
Intel, 2006

Integrated Circuit Evolution

First IC
Only one transistor!
Texas Instruments (TI), 1958

Xeon E5 Microprocessor 2.26 billion transistors! Intel, 2012

Sensing Microsystems

First accelerometer
B&K, 1940s
Simple bulky transducer
Acceleration → Voltage

ADXL350
Analog Devices, 2012
Complete system on a tiny chip

- 3-axis MEMS* accelerometer
- Interface electronics
- Analog-to-digital conversion
- Memory
- Control logic
- Power management
- Digital interface

*MEMS = Micro-Electro-Mechanical Systems

Moore's Law

- ☐ Moore's law [1965]: Transistor count doubles every 18 months
- Practically: It doubled every 26 months since the 4004 [1970s]
- At the end of the day: It is exponential!

Technology Minimum Feature Size

- \blacksquare Minimum feature size shrinking 30% ($\approx 1/\sqrt{2}$) every 2-3 years
 - Transistor area (and cost) are reduced by a factor of 2
- Device scaling brings new challenges in analog design

Modern "Moore" Concepts

- **More Moore**
 - Further miniaturization of transistor
 - New materials for performance enhancement (HK, SOI, III-V)
 - High throughput conventional lithographic limitations
- - Adding functionalities **not** associated with transistor scaling to increase device value (sensors, MEMS, bio, passives, etc.)
- **Beyond Moore**
 - Exploring new device architectures (non-planar)
 - 3D Integrated Circuits
 - Gate-All-Around transistors, Nanowires (NW-FET), Nanotubes (CNT), etc.

IC Industry in Egypt

Course Objective

- ☐ To teach the basic knowledge required for
 - Analog IC analysis and design using CMOS technology
 - Moving from specifications (specs) to block design
 - Simulating the analog circuit using professional IC design tools

01: Introduction [M. El-Nozahi, ASU]

Your Learning Journey

01: Introduction [M. El-Nozahi, ASU] **12**

What Are We Going to Learn?

MOSFET operation and models Single stage amplifiers Cascode amplifiers Frequency response of amplifiers Current mirrors Differential amplifiers Gm/ID design methodology Negative feedback systems Stability and frequency compensation Noise analysis and modeling Operational (transconductance) amplifier (op-amp/OTA) Design Practical hands-on labs using professional IC design tools

References

- References for beginners
 - T. Floyd, "Electronics Fundamentals, Circuits, Devices, and Applications," 8th ed., Pearson, 2014
 - B. Razavi, "Fundamentals of microelectronics," 2nd ed., Wiley,
 2014
 - A. Sedra and K. Smith, "Microelectronic circuits," Oxford University Press, 7th ed., 2015
- References for professionals
 - B. Razavi, "Design of analog CMOS integrated circuits,"
 McGraw-Hill Ed., 2nd ed., 2017
 - T. C. Carusone, D. Johns, and K. W. Martin. "Analog integrated circuit design," 2nd ed., Wiley, 2nd ed., 2012
 - P. Gray, P. Hurst, S. Lewis, and R. Meyer, "Analysis and design of analog integrated circuits," Wiley, 5th ed., 2009

- W. Sansen, "Analog design essentials," Springer, 2006

Canvas

- Canvas is a learning management system (LMS) used in many universities in the US and around the world
- We will use Canvas for
 - Posting lectures, notes, etc.
 - Questions and answers
 - Announcements and discussions
 - Quizzes
 - Submitting and grading assignments, reports, etc.

Everyone must register at Canvas today!

What is an Integrated Circuit (IC)?

☐ Various circuit elements: transistors, capacitors, resistors, and even small inductances can be integrated on one chip

Discrete vs. Integrated Electronics

Circuits using discrete components

Integrated circuit

What is an Integrated Circuit (IC)?

- ☐ Transistors:
 - Billions of tiny transistors can be integrated on the same chip
 - Very Large Scale Integration (VLSI): > 10,000 transistors
- Capacitors:
 - Capacitors as large as 100s of pF can be integrated on-chip
 - But they consume a lot of chip area → Use sparingly
- Resistors:
 - Resistors as large as few MOhms can be integrated on-chip
 - But they consume a lot of chip area → Use sparingly
- ☐ Inductors:
 - Small inductors (few nH) can be integrated on-chip
 - But they consume a lot of area with relatively poor performance

Only in RF circuits

IC Technology Generations

- Early integrated circuits primarily used bipolar transistors (BJTs)
- ☐ 1960s: MOS ICs became attractive for their low cost
 - MOS transistor occupied less area
 - The fabrication process was simpler
 - Early commercial processes used only PMOS transistors and suffered from poor performance, yield, and reliability
- ☐ 1970s: Processes using only NMOS transistors became common
- Digital circuits in all the previous technologies have quiescent power
 - Power is dissipated when the circuit is idle, i.e., not switching
 - This limits the maximum number of transistors that can be integrated on one die

IC Technology Generations (Cont'd)

- ☐ 1980s: The VLSI era
 - Power consumption became a major issue
 - CMOS processes were widely adopted and replaced NMOS and bipolar processes for nearly all digital logic applications
 - A key advantage for "digital" CMOS is that it has negligible idle (static) power consumption
- Nowadays:
 - With aggressive scaling and billions of transistors, CMOS idle leakage current is not negligible any more
 - But no better technology is available yet...

How to Design a Billion Transistor Chip?

1. Abstraction

Hiding details until they become necessary

2. Structured design

- Hierarchy: Block, sub-blocks, ... → Tree structure (from root to leaf cells)
- Regularity: Min no. of different blocks

 Block reuse (e.g., standard cells)
- Modularity: Blocks are black boxes that have well-defined interfaces → Combine to build larger system without surprises!

3. CAD Tools

- Automation, automation, automation!
- Analog automation is way behind digital automation

Levels of Abstraction

01: Introduction [Razavi, 2017] **22**

CAD/EDA

- Analog design
 - Design entry (schematic), simulation, layout, and extraction
 - Verification (LVS: layout vs schematic, DRC: layout design rule check)
- Digital design
 - Design entry (e.g., HDL) and simulation
 - Automated synthesis (from HDL to gates)
 - Automated place and route (from gates to transistor layout)
 - Verification
- ☐ System design
 - Behavioral modeling and high level simulation/verification
- EM simulation, process simulation, device simulation, etc.

Analog vs Digital Signals

01: Introduction [Razavi, 2014] **24**

Why Analog?

- All the physical signals in the world around us are analog
 - Voice, light, temperature, pressure, etc.
- We (will) always need an "analog" interface circuit to connect between our physical world and our digital electronics

01: Introduction [Razavi, 2017]

Why Analog?

- ☐ High speed digital design is actually analog design!
- At low speeds, we may directly digitize the signal and perform the signal processing in the digital domain
- At high speeds, signal processing in the analog domain is much more energy efficient
- The boundary between high and low speed has risen over time

01: Introduction [Razavi, 2017] **26**

Signal Processing Chain

01: Introduction [Razavi, 2014] **27**

Signal Processing Chain

Analog Amplifier

The amplifier has finite gain and bandwidth (speed)

Analog Design Challenges

- Device scaling
 - Transistors become faster, but the gain declines
- ☐ Supply voltage scaling
 - From 12V in 1970s to less than 1V
- ☐ Low power consumption
 - Increase battery lifetime, decrease cost and heat emissions
- Complexity
 - Continuous increase in transistor count and system complexity
- PVT variations
 - Tolerate large process, voltage, and temperature variations

Analog IC Design Flow

Tape-Out

- The layout is sent to the fab in a format called GDS II
 - Previously it was sent on a magnetic tape → tape-out
 - Now by email (small design) or FTP (large design)

Tape-Out

- ☐ ICs are fabricated on silicon wafers
 - Turnaround time ~ 3months
- ☐ A fabrication run in 65nm process costs about \$3 million
 - Cost sharing using MPW (multi-project wafer)
 - US: MOSIS
 - Europe and MENA: Europractice
 - Saudi Arabia: WaferCat

Packaging and Testing

- Wafer diced into dies
- ☐ Gold bond wires from die I/O pads to package
- Packaging is now much more advanced than the simple DIP

Thank you!