Homework 8

- 1. a) $f: (\mathbb{Z}, +) \to (\mathbb{R}, +), f(n) = n.$ $Homomorphism. \ ker \phi = \{0\}. Im \phi = \mathbb{Z} \subseteq \mathbb{R}.$
 - b) $g:(\mathbb{R},+)\to(\mathbb{Z},+), \ f(x)=\text{greatest integer}\leq x.$ Not Homomorphism.
 - c) $\phi: \mathbb{Z}_6 \to \mathbb{Z}_2$, $\phi(n) = n \pmod{2}$ $Homomorphism. \ Im \phi = \mathbb{Z}_2, ker \phi = \{0, 2, 4\}.$
 - d) $f: \mathbb{Z} \to C_4$, $f(n) = \mathbb{R}^{2n} \ \forall \ n \in \mathbb{Z}$. IDK
- 2. Let $\phi: G \to G'$ be a homomorphism.
 - (⇒) Suppose ϕ is 1-1. We know that $e_G \in ker\phi$. If some element $a \in ker\phi$, then $\phi(a) = e_G$. Being 1-1, this implies that $a = e_G$. Thus, e_G is the only element in the kernel.

$$ker\phi = \{e_G\}.$$

 (\Leftarrow) Suppose $\ker \phi = \{e_G\}$. Let $a, b \in G$ and assume $\phi(a) = (b)$.

$$e_{G'} = \phi(a)\phi^{-1}(b) = \phi(a)\phi(b^{-1}) = \phi(ab^{-1}).$$

This implies that $ab^{-1} \in ker\phi$ and thus $ab^{-1} = e_G$ by the hypothesis. Thus, a = b. Since $\phi(a) = \phi(b)$ implies a = b, we have that ϕ is 1 - 1.

- 3. $G = \mathbb{Z}_2 \times \mathbb{Z}_2$.
 - a) $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ isn't isomorphic to \mathbb{Z}_4 . Every element in G has order 2 and Z_4 is cyclic. So no element maps to a generator of \mathbb{Z}_4 .

G	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)	(0,0)	(0,1)	(1,0)	(1,1)
(0,1)	(0,1)	(0,0)	(1,1)	(1,0)
(1,0)	(1,0)	(1,1)	(0,0)	(0,1)
(1,1)	(1,1)	(1,0)	(0,1)	(0,0)

b) $S_3 \times Z_2$ is isomorphic to A_4 judging by the size of the groups. The other groups have 12 elements.

4. Let $H \leq G$. Show $\forall a \in G$,

$$aH = H \iff a \in H.$$

 (\Rightarrow)

Let $a \in H$. $aH = \{ah | h \in H\}$.

Because of closure, $aH \subseteq H$. We need to show that $H \subseteq aH$. To do so, we'll show that every element in H is also in aH.

Let $x \in H$. We know that the element $a^{-1}x$ is also in H since it's' a group. It follows that

$$a(a^{-1}x) = x \in aH.$$

Since $x \in aH$, $H \subseteq aH$. Finally,

$$aH = H$$
.

 (\Leftarrow) Suppose aH = H. Since $e \in H$,

$$ae \in aH = H$$
.

But ae = a, so $a \in H$.

5. $\frac{\mathbb{Z}}{3\mathbb{Z}} = \{H_0, H_1, H_2\}$ defined below. This set forms a group.

$$H_0 = \{2k|k \in \mathbb{Z}\}$$

$$H_1 = \{2k + 1|k \in \mathbb{Z}\}$$

$$H_2 = \{2k + 2 | k \in \mathbb{Z}\}$$

The identity element is H_0 and H_1, H_2 are inverses of each other.

6. a) Let $H = \{I, R^2\}$. The left cosets are

$$H_1 = \{R, R^3\}, H_2 = \{FR, FR^3\}, H_3 = \{F, FR^2\}.$$

This forms a group and looks isomorphic to \mathbb{Z}_4 to me.

b) Let $H = \{I, FR\}$. I'm a bit confused about this problem. The remaining elements in D_4 are

$${R, R^2, R^3, F, FR^2, FR^3}.$$

So the left cosets are

$$H_1 = \{R, F\}$$

$$H_2 = \{R^2, FR\}$$

$$H_3 = \{R^3, FR^2\}$$

$$H_4 = \{FR^3, R^2\}$$

One of the left cosets constructed with the element \mathbb{R}^2 gives

$$\{R^2, FR\}.$$

That intersects with H. So this set does not form a group?

c) $H = \{0, 4, 8\}$. The left cosest are

$$H_1 = \{1, 5, 9\}, H_2 = \{2, 6, 10\}, H_3\{3, 7, 11\}.$$

This is a group isomorphic to rotations of a square. The identity is H and $H_1 \mapsto R$.