CLASSWORK: WEEK OF SEP 16, 2024

XAVIER S. DESOUZA, CISCO J. HADDEN, SETH R. LUPO, ABHI MUMMANENI, EMMANUEL FLORES

Let *X* be a nonempty set and \mathcal{T} be the set of all subset *E* of *T* such that X/E is countable or $E = \emptyset$.

- (1) Prove that (X, \mathcal{T}) is a topological space. (\mathcal{T} is called the countable complement topology on X.)
 - 1. Let's prove that \emptyset , $X \in \mathcal{T}$. Indeed, $\emptyset \in \mathcal{T}$ by definition. On the other hand, $X \in \mathcal{T}$ because $X/X = \emptyset$ which is a member of \mathcal{T} .
 - 2. Let's prove that the finite intersection of open sets is an open set. Indeed, let $U_1, U_2 \in \mathcal{T}$, then, by the definition of \mathcal{T} , we have that U_1 is empty or X/U_1 countable, and the same as well for X/U_2 . So let's assume that both U_1 and U_2 are non-empty, thus, it follows that

$$X/U_1 \& X/U_2$$
,

are both countable, now let's take $U_1 \cap U_2$, we want to prove that $U_1 \cap U_2 \in \mathcal{T}$. Indeed, if $U_1 \cap U_2 = \emptyset$, then $U_1 \cap U_2 \in \mathcal{T}$, now, let's assume that the intersection is non-empty, thus using the Morgan's Laws, we have that

$$X/(U_1 \cap U_2) = (X/U_1) \cup (X/U_2),$$

but we know that the union of countable sets is countable, and by assumption X/U_1 and X/U_2 are countable, thus we have that

$$U_1 \cap U_2 \in \mathcal{T}$$
,

just as we wanted.

3. Now, we want to prove that the arbitrary union of open sets is open. Indeed let U_{α} be an indexed family of open sets, with $\alpha \in \lambda$. Then, let's consider $\bigcup_{\alpha \in \lambda} U_{\alpha}$, and again, we have two options, for each $\alpha \in \lambda$ either U_{α} is the empty set or the complement is countable, so let's assume that the complement is countable. Again, using the Morgan's Laws, we have that

$$X/\left(\bigcup_{\alpha\in\lambda}U_{\alpha}\right)=\bigcap_{\alpha\in\lambda}\left(X/U_{\alpha}\right)$$
,

but each one of X/U_{α} are countable, thus the intersection is at most countable, with means that

$$\bigcup_{\alpha\in\lambda}U_{\alpha}\in\mathcal{T}$$
,

just as we wanted.

XAVIER S. DESOUZA, CISCO J. HADDEN, SETH R. LUPO, ABHI MUMMANENI, EMMANUEL CLASSWORK: WEEK OF SEP 16, 2024 FLORES

(2) For $X = \mathbb{R}$ given an example of a set that is open in both the standard and countable complement topologies.

The standard topology of \mathbb{R} is given by the open intervals, thus if we consider

$$\mathcal{U} = (-\infty, 0) \cup (0, \infty),$$

then, using the definition of countable topology we have that

$$\mathbb{R}/\mathcal{U} = \{0\},\,$$

which is finite, and therefore, countable.

(3) For $X = \mathbb{R}$ given an example of a set that is open in the standard topology but not open in the countable complement topology.

Again, the standard topology of \mathbb{R} is given by the open intervals, thus if we consider the open interval (0,1) and taking complement, we have

$$X/(0,1) = (-\infty,0] \cup [1,\infty)$$
,

which is clearly non countable, thus we found an open set which is open in the standard topology but not in the countable complement topology.

(4) For $X = \mathbb{R}$ given an example of a set that is closed in both the standard and countable complement topologies.

The complement of a closed set is an open set, thus 0 is an closed set in the standard topology because the complement is the union of two open sets, this is

$$X/\{0\} = (-\infty, 0) \cup (0, \infty)$$
,

on the other hand in the countable complement topology the complements of open sets are the empty set of countable, thus $\{0\}$ is closed too in the countable complement topology.