#### Data-driven Intelligent Systems

## Lecture 4 Preprocessing Methods



http://www.informatik.uni-hamburg.de/WTM/

## **Data Preprocessing**

- Data Cleaning
- Data Integration
- Values Reduction
  - Chi-Square Statistical Test (nominal data)
  - ChiMerge Discretization
  - Binning

#### Major Tasks in Data Preprocessing

#### Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

#### Data integration

Integration of multiple databases, data cubes, or files

#### Data reduction

- Data compression, e.g. values reduction, discretization
- Dimensionality reduction, i.e. features reduction

#### Data transformation

- Normalization
- PCA

## Why We should Clean Dirty Data



#### Why preprocess the Data?

Measures for data quality: A multidimensional view

- Completeness: is the data fully available? What to do if not?
- Consistency: differences in data units or name conventions?
- Timeliness: measurements from different epochs? Old measure devices?
- Believability: is the data source reliable?
- Interpretability: how easily can the data be understood?

#### **Noisy Data**

- Data in the real world is "noisy" or incorrect
- "Noisy" attribute values may be due to:
  - technology limitation
  - faulty data collection instruments
  - data entry problems; human error
  - data transmission problems
  - inconsistency in naming convention
  - duplicate records
- Noise: random error or variance in a measured variable

#### **Data Cleaning**

#### Types of error

- Incomplete: lacking attribute values, lacking certain attributes of interest, or only aggregate data available
  - e.g., Occupation=" " (missing data)
- Noisy: containing noise, errors, or outliers
  - e.g., Salary="-10" (an error)
- Inconsistent: containing discrepancies in codes or names, e.g.,
  - Age="42", Birthday="03/07/2012"
  - Was rating "1, 2, 3", now rating "A, B, C"
  - discrepancy between duplicate records
- Intentionally imprecise
  - Jan. 1 as everyone's birthday?
  - → disguised missing data

#### Incomplete (Missing) Data

- Data is not always available
  - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
  - equipment malfunction
  - inconsistent with other recorded data and thus deleted
  - data not entered due to misunderstanding
  - certain data not considered important at time of entry
  - did not register history or changes of the data
- Missing data may need to be inferred

#### How to handle missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification) — not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill it in automatically with
  - a global constant: e.g., "unknown", a new class?!
  - the attribute mean
  - the attribute mean for all samples belonging to the same class: smarter
  - the most probable value using inference such as Bayesian formula or decision tree based on other attributes

## Missing Data

One possible interpretation of missing values –
 "don't care" values:

```
X = {1,?,3}
  → for the second feature the domain is [0,1,2,3,4],
  then extend to:

X1 = {1,0,3}, X2 = {1,1,3}, X3 = {1,2,3},
  X4 = {1,3,3}, X5 = {1,4,3}
```

- Data miner can generate model of correlation between features.
  - Different techniques possible: regression, Bayesian formalism, clustering, or decision tree induction.

# Missing Data Replacement with Regression Analysis



- In general, replacement of missing values using a simple, artificial schema of data preparation is speculative and often misleading.
- It is best to generate multiple solutions of data mining algorithms with and without features that have missing values. Then compare, analyse, interpret.

## Refresher on Regression Analysis

 A linear regression describes a linear relationship





## Regression: Least Squares Criterion

A good fit minimizes the residual error E

data estimated value 
$$E = \sum_{data} (y - (\beta_0 + \beta_1 \cdot x))^2$$

• Obtain  $\beta_0$  and  $\beta_1$  by minimizing E

## Regression: Least Squares Equation

• Minimizing E leads to the following values:

$$\beta_1 = \frac{\sum_{data} (x - \overline{x}) \cdot (y - \overline{y})}{\sum_{data} (x - \overline{x})^2}$$

slope: estimated change of *y* as a result of a one-unit change of *x* 

$$\beta_0 = \overline{y} - \beta_1 \cdot \overline{x}$$

intercept: estimated average value of *y* when *x* is zero

 $\overline{x}$  and  $\overline{y}$  are the mean values of x and y

#### How to handle noisy Data?

- Data visualization
  - Boxplot ✓ to detect outliers
- Regression √
  - smooth by fitting the data into regression model
  - non-linear regression: careful to not overfit the model
  - note: data does not get more rich in information
- Data Discretization
  - Binning (→ later today)
  - Clustering (→ later Lecture)
    - detect and remove outliers when forming data clusters

#### **Data Preprocessing**

- Data Cleaning
- Data Integration
  - Values Reduction
    - Chi-Square Statistical Test (nominal data)
    - ChiMerge Discretization
    - Binning

## Data Quality: Why Preprocess the Data?



#### **Data Integration**

Data integration combines data from multiple sources into a coherent store



- Integrate metadata from different sources
- Entity identification problem:
  - Identify real world entities from multiple data sources, e.g.,
     BER = TXL = Berlin-Tegel
- Detecting and resolving data value conflicts
  - For the same real world entity, attribute values from different sources are different
  - Possible reasons: different representations, different scales, e.g., metric vs. British units

## Handling Redundancy in Data Integration

- Redundant data occur often when integrating multiple databases
  - Object identification: The same attribute or object may have different names in different databases
  - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Careful integration can
  - reduce/avoid redundancies and inconsistencies and
  - improve mining speed and quality
- Redundant attributes may be possible to detect by correlation analysis
   (→ next Lecture)

## **Data Preprocessing**

- Data Cleaning
- Data Integration
- Values Reduction
  - Chi-Square Statistical Test (nominal data)
    - ChiMerge Discretization
    - Binning

#### Correlation Analysis for Nominal Data

- Nominal Data: labels for variables, e.g. hair color
- Labels can be counted, e.g. how often we observe blond, brown, ginger hair
- Task: Compare the counts to expected counts
- X² (Chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- Tells whether two data distributions are statistically different
- Used also to identify correlations between variables → Example

## Chi-Square Calculation: an Example

• Questionnaire among N=1500 participants:

|                          | Play chess | Not play chess | Sum (row) |
|--------------------------|------------|----------------|-----------|
| Like science fiction     | 250        | 250            | 500       |
| Not like science fiction | 50         | 950            | 1000      |
| Sum (column)             | 300        | 1200           | N=1500    |

• Expected results  $e_{ij}$  from the null hypothesis stating that "preferred reading" and "game favour" are uncorrelated:

|                          | Play chess | Not play chess | Sum (row) |
|--------------------------|------------|----------------|-----------|
| Like science fiction     |            |                | 500       |
| Not like science fiction |            |                | 1000      |
| Sum (column)             | 300        | 1200           | N=1500    |

$$e_{ij} = sum(col\ i) \cdot sum(row\ j) / N$$

#### **Chi-Square Calculation**

Plug in the values into the equation:

$$\chi^2 = \frac{(250 - 100)^2}{100} + \frac{(50 - 200)^2}{200} + \frac{(250 - 400)^2}{400} + \frac{(950 - 800)^2}{800} = \underline{421.9}$$

- Ok, we now have a number... but what does it tell us?
  - We need the Chi-Square Distribution →

#### **Chi-Square Distribution**

Small deviations are more expected than large deviations:



- If a random variable Y has a normal distribution (Gaussian)
  - → Y<sup>2</sup> has a Chi-square distribution (with k=1 degree of freedom)

## **Chi-Square Test**

Some percentage of expected deviations is over a

threshold



- E.g.: 10% of all  $\chi^2$  values are larger than critical value 2.7
- Values can be looked up in a chi-square distribution table

#### Chi-Square Distribution Table

#### probability level

| $\alpha$ | 0.5   | 0.1   | 0.05  | 0.02  | 0.01  | 0.001  |
|----------|-------|-------|-------|-------|-------|--------|
|          | 0.455 | 2.706 | 3.841 | 5.412 | 6.635 | 10.827 |

- α: significance level
- α=0.1: 90% of values are below critical value 2.706
- α=0.05: 95% of values are below critical value 3.841
- Earlier, we have found a value of 421.9
- → Our data are extremely unlikely given the null hypothesis

This means, that our result speaks in favor of rejecting the null hypothesis  $H_o$  under the selected  $\alpha$ -level and accepting the alternative hypothesis  $H_1$ 

#### Chi-Square Calculation: an Example

•  $X^2$  (chi-square) calculation:

$$\chi^2 = \frac{(250 - 100)^2}{100} + \frac{(50 - 200)^2}{200} + \frac{(250 - 400)^2}{400} + \frac{(950 - 800)^2}{800} = \underline{421.9}$$

- It shows that "preferred reading" and "likes chess" are correlated in the group (since X² larger than 3.481, from X² table – a statistical measure for significance of 2x2 table)
- What if all numbers were 10x smaller (N=150 participants)?

$$\rightarrow \chi^2 = ... = 42.19$$

What if all numbers were 50x smaller (N=30 participants)?

$$\chi^2 = \frac{(5-2)^2}{2} + \frac{(1-4)^2}{4} + \frac{(5-8)^2}{8} + \frac{(19-16)^2}{16} = 8.4375$$

## Chi-Square Calculation: Degrees of Freedom

|                      |    |    | Category 1 Levels |  |    | Sum   |
|----------------------|----|----|-------------------|--|----|-------|
|                      |    | L1 | L2                |  | LJ | (row) |
| Category 2<br>Levels | L1 |    |                   |  |    |       |
|                      |    |    |                   |  |    |       |
|                      | LI |    |                   |  |    |       |
| Sum (col.)           |    |    |                   |  |    | N     |

- If the two categories have several levels (J levels for category 1 and I levels for category 2), then there are more degrees of freedom in which the entries can differ
- I x J contingency table
- Number of degrees of freedom: (I-1) x (J-1)

#### Degrees of Freedom

"The number of degrees of freedom in a problem, distribution, etc., is the number of parameters which may be independently varied."

(from Wolfram MathWorld)

## Chi-Square Calculation: an Example

|                          | Play chess | Not play chess | Sum (row) |
|--------------------------|------------|----------------|-----------|
| Like science fiction     | 250        | 250            | 500       |
| Not like science fiction | 50         | 950            | 1000      |
| Sum (column)             | 300        | 1200           | N=1500    |

If one entry is changed ...

|                          | Play chess       | Not play chess | Sum (row) |
|--------------------------|------------------|----------------|-----------|
| Like science fiction     | <sup>2</sup> 200 | 300            | 500       |
| Not like science fiction | 100              | 900            | 1000      |
| Sum (column)             | 300              | 1200           | N=1500    |

- ... this fixes all other entries
- → 1 degree of freedom

## Chi-Square Calculation: Degrees of Freedom

More degrees of freedom make larger deviations probable:



- Sum of k independ. random variables Y<sub>i</sub> with normal distrib.
  - $\rightarrow \Sigma_i Y_i^2$  has a  $\chi^2$  distribution with k degrees of freedom

#### Chi-square Distribution Table

#### probability level

| DF | 0.5   | 0.1   | 0.05   | 0.02   | 0.01   | 0.001  |
|----|-------|-------|--------|--------|--------|--------|
| 1  | 0.455 | 2.706 | 3.841  | 5.412  | 6.635  | 10.827 |
| 2  | 1.386 | 4.605 | 5.991  | 7.824  | 9.210  | 13.815 |
| 3  | 2.366 | 6.251 | 7.815  | 9.837  | 11.345 | 16.268 |
| 4  | 3.357 | 7.779 | 9.488  | 11.668 | 13.277 | 18.465 |
| 5  | 4.351 | 9.236 | 11.070 | 13.388 | 15.086 | 20.517 |



degrees of freedom

## **Data Preprocessing**

- Data Cleaning
- Data Integration
- Values Reduction
  - Chi-Square Statistical Test (nominal data)
  - ChiMerge Discretization
    - Binning

#### Dimensions Reduction of Large Data Sets

Many dimension reduction techniques rely on data transformations. Main dimensions are:



#### Values Reduction – Our Aim

Data often have continuous features



Some classification algorithms prefer data with discrete attributes (e.g. Decision Trees, later Lecture)

## Values Reduction – ChiMerge Technique

Apply the Chi-square calculations for feature discretization

- 1. Sort the data for the given feature in ascending order
- 2. Define initial intervals so that every value of the feature is in a separate interval

#### 3. Repeat.

- 3.1 Compute  $X^2$  tests for each pair of adjacent intervals
- 3.2 Merge two adjacent intervals with the lowest  $X^2$  value, if calculated  $X^2$  is less than threshold

**Until** no  $X^2$  test of any two adjacent intervals is less than threshold value

## Values Reduction – Contingency Table

ChiMerge makes  $X^2$  test for the 2x2 table of categorical data:

|            | Class 1         | Class 2         | Σ              |
|------------|-----------------|-----------------|----------------|
| Interval-1 | A <sub>11</sub> | A <sub>12</sub> | R <sub>1</sub> |
| Interval-2 | A <sub>21</sub> | A <sub>22</sub> | R <sub>2</sub> |
| Σ          | C <sub>1</sub>  | C <sub>2</sub>  | N              |

$$\chi^2$$
 test is: 
$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^k \frac{\left(A_{ij} - E_{ij}\right)^2}{E_{ij}}$$

```
where: k = \text{number of classes}, A_{ij} = \text{number of instances in the i-th interval, j-th class}, E_{ij} = \textbf{expected frequency} \text{ of } A_{ij}, \text{ which is computed as } (R_i \cdot C_j) / N, R_i = \text{number of instances in the i-th interval} = \sum A_{ij}, j = 1,...k, C_j = \text{number of instances in the j-th class} = \sum A_{ij}, i = 1,2, N = \text{total number of instances} = \sum R_i, i = 1,2.
```

Test whether interval assignment and class label are correlated!

(→ merge intervals if uncorrelated)



•  $X^2$  was minimum for intervals: [7.5,8.5] and [8.5,10]

| Sample:     | F  | K   |
|-------------|----|-----|
| 1           | 1  | 1   |
| 2           | 3  | 2   |
| 2<br>3      | 7  | 1   |
| 4           | 8  | 1   |
| 5<br>6<br>7 | 9  | 1   |
| 6           | 11 | 2 2 |
| 7           | 23 | 2   |
| 8           | 37 | 1   |
| 9           | 39 | 2   |
| 10          | 45 | 1   |
| 11          | 46 | 1   |
| 12          | 59 | 1   |
|             |    |     |

|                    | Class 1            | Class 2            | Σ                 |
|--------------------|--------------------|--------------------|-------------------|
| Interval [7.5,8.5] | A <sub>11</sub> =1 | A <sub>12</sub> =0 | R <sub>1</sub> =1 |
| Interval [8.5,10 ] | A <sub>21</sub> =1 | A <sub>22</sub> =0 | R <sub>2</sub> =1 |
| Σ                  | C <sub>1</sub> =2  | C <sub>2</sub> =0  | N=2               |

Based on the table's values, we can calculate expected values:

E11 = 
$$1*2/2 = 1$$
, E12 =  $1*0/2 = 0$ , E21 =  $1*2/2 = 1$ , & E22 =  $1*0/2 = 0$ 

and corresponding  $X^2$  test:

$$X^2 = (1-1)^2/1 + (0-0)^2/0 + (1-1)^2/1 + (0-0)^2/0 = \mathbf{0}$$

For d=1 degree of freedom:  $X^2 = 0 < 2.706 \rightarrow \text{merge}$ ! (a=0.1)

... one of the following iterations:

| Sample: | F  | K |
|---------|----|---|
| 1       | 1  | 1 |
| 2       | 3  | 2 |
| 2 3     | 7  | 1 |
| 4       | 8  | 1 |
| 4<br>5  | 9  | 1 |
| 6       | 11 | 2 |
| 7       | 23 | 2 |
| 8       | 37 | 1 |
| 9       | 39 | 2 |
| 10      | 45 | 1 |
| 11      | 46 | 1 |
| 12      | 59 | 1 |
|         |    |   |

|                    | Class 1            | Class 2            | Σ                 |
|--------------------|--------------------|--------------------|-------------------|
| Interval [0.0,7.5] | A <sub>11</sub> =2 | A <sub>12</sub> =1 | $R_1=3$           |
| Interval [7.5,10 ] | A <sub>21</sub> =2 | A <sub>22</sub> =0 | R <sub>2</sub> =2 |
| Σ                  | C <sub>1</sub> =4  | C <sub>2</sub> =1  | N=5               |

E11 = 
$$3*4/5$$
 = 2.4, E12 =  $3*1/5$  = 0.6,  
E21 =  $2*4/5$  = 1.6, E22 =  $2*1/5$  = 0.4  
 $X^2 = (2-2.4)^2/2.4 + (1-0.6)^2/0.6 + (2-1.6)^2/1.6 + (0-0.4)^2/0.4 = 0.834$ 

We check the statistical table for the  $X^2$  distribution and use d=1 (degree of freedom) and significance level  $\alpha$ =0.1. We obtain:

$$X^2 = 0.834 < 2.706 \rightarrow merge!$$

#### ... one of the further iterations:

| Sample: | F  | K   |
|---------|----|-----|
| 1       | 1  | 1   |
| 2       | 3  | 2   |
| 3       | 7  | 1   |
| 4       | 8  | 1   |
| 5       | 9  | 1   |
| 6       | 11 | 2 2 |
| 7       | 23 | 2   |
| 8       | 37 | 1   |
| 9       | 39 | 2   |
| 10      | 45 | 1   |
| 11      | 46 | 1   |
| 12      | 59 | 1   |
|         |    |     |

|                   | Class 1            | Class 2            | Σ                 |
|-------------------|--------------------|--------------------|-------------------|
| Interval [0.0,10] | A <sub>11</sub> =4 | A <sub>12</sub> =1 | R <sub>1</sub> =5 |
| Interval [10 ,42] | A <sub>21</sub> =1 | A <sub>22</sub> =3 | R <sub>2</sub> =4 |
| Σ                 | C <sub>1</sub> =5  | C <sub>2</sub> =4  | N=9               |

$$E11 = 2.78$$
,  $E12 = 2.22$ ,  $E21 = 2.22$ ,  $E22 = 1.78$ 

$$X^2 = 2.72 > 2.706 \longrightarrow NO merge!$$

Final discretization:

Interval representatives: 5 (low) 26 (medium) 51 (high)

| Sample | e: F | K | :                | Sampl | e: F | K |
|--------|------|---|------------------|-------|------|---|
| 1      | 1    | 1 | =                | 1     | 5    | 1 |
| 2      | 3    | 2 | with reduced     | 2     | 5    | 2 |
| 3      | 7    | 1 | set of values F: | 3     | 5    | 1 |
| 4      | 8    | 1 |                  | 4     | 5    | 1 |
| 5      | 9    | 1 |                  | 5     | 5    | 1 |
| 6      | 11   | 2 | _                | 6     | 26   | 2 |
| 7      | 23   | 2 |                  | 7     | 26   | 2 |
| 8      | 37   | 1 | K                | 8     | 26   | 1 |
| 9      | 39   | 2 | Original cot     | 9     | 26   | 2 |
| 10     | 45   | 1 | Original set     | 10    | 51   | 1 |
| 11     | 46   | 1 |                  | 11    | 51   | 1 |
| 12     | 59   | 1 |                  | 12    | 51   | 1 |

#### **Data Preprocessing**

- Data Cleaning
- Data Integration
- Values Reduction
  - Chi-Square Statistical Test (nominal data)
  - ChiMerge Discretization
  - Binning

#### **Data Discretization Methods**

- Reduce number of values for given continuous attribute by dividing into intervals
  - Correlation analysis (e.g., χ²)
     (bottom-up merge) ✓
  - Clustering analysis (unsupervised, top-down split or bottom-up merge) → later Lecture
  - Decision-tree analysis (supervised, top-down split)
     → later Lecture
  - Binning: e.g. equal width binning and replacing bin by mean
    - Top-down split, unsupervised, no class information used

# Simple Discretization: Binning

- Equal-width (distance) partitioning
  - Divides the range into N intervals of equal size: uniform grid
  - If A and B are the min and max values of the attribute, the width of intervals will be: w = (B A)/N.
  - Boundaries: min+w, min+2w, ..., min+(N-1)w
  - Simple method, but outliers may dominate partitioning
  - Skewed data is not handled well

Example: Data: 0, 4, 12, 16, 16, 18, 24, 26, 28



$$N=3 \rightarrow w = (28-0)/3$$

Bin 1: 0, 4

Bin 2: 12, 16, 16, 18

Bin 3: 24, 26, 28

# Simple Discretization: Binning

- Equal-depth (frequency) partitioning
  - Divides the range into N intervals, each containing approximately same number of samples
  - Good data scaling
  - Example with the same data, and N = 3:

Bin 1: 0, 4, 12

Bin 2: 16, 16, 18

Bin 3: 24, 26, 28

## Binning Methods for Data Smoothing

Sorted data for price (in \$): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

Partition into equal-frequency (equal-depth) bins:

- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34

#### Smoothing by **bin means**:

- Bin 1: 9, 9, 9, 9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29

#### Smoothing by **bin boundaries**:

- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 21, 25
- Bin 3: 26, 26, 26, 34

# Example: Data Resampling and Smoothing in Point Cloud Application



#### Clustering

- Partition data set into clusters based on similarity (metrics), and store cluster representation (e.g., centroid and diameter) only
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering algorithms
  - → later Lecture



#### **Automatic Concept Hierarchy Generation**

- Some hierarchies can be automatically generated based on the number of distinct values per attribute in the data set
  - The attribute with the most distinct values is placed at the lowest level of the hierarchy



Exceptions, e.g., weekday, month, quarter, year

#### Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
  - Regression to fill in missing values
- Data integration from multiple sources:
  - Entity identification problem; Remove redundancies; Detect inconsistencies
  - Chi-square for correlation analysis
- Data discretization
  - ChiMerge, Binning, Clustering, Concept hierarchy generation