People rarely learn unless they have fun in what they are doing

Dale Carnegie

About me

- Lecturer: Lela (Theodora) Koulouri
 - lela.koulouri@kcl.ac.uk
 - -Office hours: Friday, 2-4pm
 - Room: \$6.06
 - https://lela.youcanbook.me/
- Email me for any personal/individual issue...

The Discussion Board on KEATS

- For any question, use the Discussion Board first.
- Give opportunity for peers to think about, and to provide a answer
- Everyone can read and benefit from the discussion
- We always respond within 48 hours

APPLICATIONS 4CCS 1 ELA ELEMENTARY LOGIC WITH

LECTURE 8:PROPOSITIONAL DEFINITE CLAUSE

PROGRAMMING

Previously in ELA and what's next

- So far you have studied:
 - Propositional and first order logic
 - Truth tables and natural deduction

In next three lectures:

Transform propositional and first order logic formulas into **programs**!

The 'Programming with Logic' Lectures

- The material in these three lectures is taken from a number of different sources.
- If you study the material in the lecture slides and tutorials, this will be sufficient for the exams!
- You will revisit and build on these lectures next year in 5CCS2PLD.

 For those interested, I can also recommend more advanced reading material.

Objectives for the day

- Remember Conjunctive Normal Form
- Learn about and work on Propositional Horn and Definite Clause Rules
- Learn about and work on Programming with Definite Clause Rules

Feel free to ask questions any time!

Conjunctive Normal Form(CNF)

Conjunctive Normal Form (CNF)

- CNF is a conjunction of one or more formulas, each of which is a disjunction of one or more literals
- Simply, CNF is an AND of ORs (remember: a **literal** is a propositional **variable** or the negation of a propositional variable)
- The only connectives permitted are: A V ¬
- Note: The ¬ operator can only be used as part of a literal.

Example

Which formula is in CNF and which one is not?

- $(P \lor \neg Q) \land (\neg P \lor Q)$
- $(P \rightarrow R) \land (\neg P \lor Q)$
- $\neg (P \lor Q) \land T$

Example

Which formula is in CNF and which one is not?

- $(P \lor \neg Q) \land (\neg P \lor Q)$ is in CNF
- $(P \rightarrow R) \land (\neg P \lor Q)$ is **not** in CNF
- $\neg (P \lor Q) \land T \text{ is not in CNF}$

Conjunctive Normal Form (CNF)

- CNF is a conjunction of one or more formulas, each of which is a disjunction of one or more literals
 - Simply, CNF is an AND of ORs(A V B) \(\Lambda \) C
- A conjunction of literals is in CNF
 - Because it is like a conjunction of one-literal formulas
 - $-\mathbf{A} \wedge \mathbf{B}$
 - The example is a conjunction of two formulas with one literal each.
- A disjunction of literals is in CNF
 - Because it is like a conjunction of a single formula
 - $-A \vee B$
 - The example is a conjunction of just one disjunction.

Which of the following formulae are in CNF, and why?

- 1. $\neg Q \lor (S \land P)$
- $2. P \lor Q$
- 3. $(\neg Q \lor S) \land (\neg Q \lor P)$
- $4. P \wedge Q$
- 5. P

Which of the following formulae are in CNF, and why?

- 1. $\neg Q \lor (S \land P)$
- 2. $P \lor Q$
- 3. $(\neg Q \lor S) \land (\neg Q \lor P)$
- 4. $P \wedge Q$
- 5. P

Transform a formula in CNF

- Use equivalence rules
- Apply them until you get to CNF
- 1) $F \rightarrow G \equiv \neg F \lor G$
- 2) $F \leftrightarrow G \equiv (F \rightarrow G) \land (G \rightarrow F)$
- 3) $\neg (F \lor G) \equiv \neg F \land \neg G$
- $(F \land G) \equiv \neg F \lor \neg G$
- $\neg \neg F \equiv F$
- 6) $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$
- 7) $(F \land G) \lor H \equiv (F \lor H) \land (G \lor H)$

(F,G and H are propositional formulas and not literals)

Example

Transform this formula into CNF:

$$\neg Q \lor (S \land P)$$

We apply Rule 6) and we get:

$$(\neg Q \lor S) \land (\neg Q \lor P)$$

 Transform the following formulas into CNF:

- 1. P
- 2. $P \rightarrow Q \land R$
- 3. $Q \rightarrow S$
- $4. \neg (S \land R) \lor T$

Transform the following formulas into CNF:

1. P (already in CNF)

- 1. $P \rightarrow Q \land R$
- 2. $Q \rightarrow S$
- $3. \neg (S \land R) \lor T$

Transform the following formula into CNF:

1.
$$P \rightarrow Q \land R$$

$$\equiv \neg P \lor (Q \land R)$$
 (we applied 1))
$$\equiv (\neg P \lor Q) \land (\neg P \lor R)$$
 (we applied 6))

Now it is in CNF!

Transform the following formula into CNF:

2.
$$Q \rightarrow S$$

$$\equiv \neg Q \vee S$$

(we applied 1))

In CNF!

Transform the following formula into CNF:

$$3. \neg (S \land R) \lor T$$

$$\equiv (\neg S \lor \neg R) \lor T$$

(we applied 4))

In CNF!

Associativity

- Remember the law of associativity:
- $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
- So:

$$(\neg S \lor \neg R) \lor T \equiv \neg S \lor (\neg R \lor T)$$

- It doesn't matter where we put the brackets
- So we can simply drop the brackets

$$(\neg S \lor \neg R) \lor T \equiv \neg S \lor (\neg R \lor T) \equiv \neg S \lor \neg R \lor T$$

Back to the exercise

- We started with these formulas:
- 1. P
- 2. $P \rightarrow Q \land R$
- $3. \quad Q \rightarrow S$
- $4. \neg (S \land R) \lor T$
- We transformed them into CNF. This is our 'Knowledge Base' now:

KB1

- 1. P
- 2. $(\neg P \lor Q) \land (\neg P \lor R)$
- $3. \neg Q \lor S$
- 4. $\neg S \lor \neg R \lor T$

Propositional Horn and Definite Clauses

Clause

 A clause is a disjunction of one or more literals.

- So let's rephrase the CNF definition:
 - CNF is a conjunction of one or more formulas, each of which is a disjunction of one or more literals. Or:
- CNF is a conjunction of one or more clauses!

Let's count the clauses in our KB

CNF is a **conjunction** of one or more **clauses** (disjunctions of 1 or more literals)

```
1. P
2. (\neg P \lor Q) \land (\neg P \lor R)
3. \neg Q \lor S
4. \neg S \lor \neg R \lor T
```

- CNF 1., 3., and 4. have one clause
- CNF 2. has 2 clauses: $(\neg P \lor Q)$ and $(\neg P \lor R)$

- 1. P2. $(\neg P \lor Q) \land (\neg P \lor R)$ 3. $\neg Q \lor S$ 4. $\neg S \lor \neg R \lor T$ 1 clause 1 clause 1 clause 1 clause
- How many positive literals do you see in each clause?
 - Just one positive literal!
- A Horn clause is a clause with no more than one positive literal

- Any propositional formula can be transformed into CNF
- But not all CNF formulas are made up only of Horn clauses...

Is this formula in CNF? If not, transform it! $\neg (S \land R) \land (P \rightarrow (Q \lor R))$

Not in CNF

Is this formula in CNF? If not, transform it! $\neg (S \land R) \land (P \rightarrow (Q \lor R))$

$$\equiv (\neg S \lor \neg R) \land (P \to (Q \lor R)) \quad \text{(rule 4)}$$

$$\equiv (\neg S \lor \neg R) \land (\neg P \lor (Q \lor R)) \quad \text{(rule 1)}$$

$$(\neg S \lor \neg R) \land (\neg P \lor Q \lor R) \quad \text{(rule 8) In CNF!}$$

How many clauses does

$$(\neg S \lor \neg R) \land (\neg P \lor Q \lor R)$$
 contain?

- Two clauses

- Are they Horn clauses?
 - $-(\neg P \lor Q \lor R)$ is not a Horn clause (count the positive literals there are two!)

Definite clauses

- 1. P2. $(\neg P \lor Q) \land (\neg P \lor R)$ 3. $\neg Q \lor S$ 4. $\neg S \lor \neg R \lor T$
- We saw that each Horn clause in the above CNF formulas has exactly one positive literal.

 A definite clause is a Horn clause with exactly one positive literal.

Definite clauses

Back to the previous example:

$$(\neg S \lor \neg R) \land (\neg P \lor Q \lor R)$$

- We said that $(\neg P \lor Q \lor R)$ is **not** a Horn clause but $(\neg S \lor \neg R)$ is a Horn clause.
- Is $(\neg S \lor \neg R)$ also a definite clause?
- No! it has 0 positive literals!

In the following CNF formula which clauses are **Horn clauses** and which are **definite clauses**?

$$(\neg Q \lor \neg S) \land (\neg Q \lor P) \land (\neg Q \lor P \lor R)$$

In the following CNF formula which clauses are **Horn clauses** and which are **definite clauses?**

Definite clauses: formal procedure

- 1.Take any propositional well formed formula (wff) α (from now on greek letters α (alpha), β (beta), γ (gamma) will denote any wff i.e. α stands for $\neg P, P \land Q, P \rightarrow Q ...$)
- **2.Transform** α **to CNF.** Let's write ' $cnf(\alpha)$ ' to denote the transformation of α to CNF

3. $cnf(\alpha)$ is a formula of the form:

 $\beta_1 \wedge ... \wedge \beta_n$

where $n \ge 1$, and each β_i is a clause (a disjunction of literals: positive or negative propositional variables)

4. If β_i is of the form

 $\neg X_1 \lor ... \lor \neg X_m \lor X, m \ge 0,$

(exactly one positive and 0 or more negative literals) then β_i is **definite clause**

From definite clauses to **DEFINITE RULES**

A definite clause of the form

$$\neg X_1 \lor ... \lor \neg X_m \lor X$$

can be represented as the equivalent:

$$X_1 \land ... \land X_m \rightarrow X$$

- Can you see why?
- $\neg (F \land G) \equiv \neg F \lor \neg G$
- $F \rightarrow G \equiv \neg F \lor G$

From definite clauses to **DEFINITE RULES**

$$\neg X_{1} \lor ... \lor \neg X_{m} \lor X$$

$$\equiv (\neg X_{1} \lor ... \lor \neg X_{m}) \lor X$$

$$\equiv \neg (X_{1} \land ... \land X_{m}) \lor X$$

$$\equiv X_{1} \land ... \land X_{m} \rightarrow X$$

Example

- 1. P2. $(\neg P \lor Q) \land (\neg P \lor R)$ 3. $\neg Q \lor S$ 4. $\neg S \lor \neg R \lor T$
- First, list all definite clauses of these CNF formulas
- Then, represent the definite clauses as rules

$$\begin{array}{c|cccc} P & & & \rightarrow P \\ (\neg P \lor Q) & & P \to Q \\ (\neg P \lor R) & & & P \to R \\ \neg Q \lor S & & Q \to S \\ \neg S \lor \neg R \lor T & & (S \land R) \to T \end{array}$$

Formulas-CNF-Definite Clauses-Definite Rules... Why all this hassle?

We program with definite rules!

 Definite clause programming is the basis of logic programming

Logic programming

Logic Programming

- In a procedural style of programming, the program explicitly describes the individual steps of computation.
 - Examples: Imperative programming (C), objectoriented programming (Java)
- In contrast, Logic programming is a declarative style of programming.
 - The programmer says what they want to compute, but does not explicitly specify how to compute it.
 - It is up to the interpreter (compiler/implementation) to figure out how to perform the computation requested.
 - Examples: Logic programming (Prolog), database query languages (SQL), functional programming (Haskell)

Logic programming

- A logic program is given as a set of assumed properties (stated as logical formulas) about the world (or rather about the world of the program)
 - What we just called a knowledge base!
- The user supplies a logical formula stating a property that might or might not hold in the world as a query
- The system determines whether the queried property is a consequence of the assumed properties in the program.

Consequence

• We say that a formula G is a **logical** consequence of formulas F_1, \ldots, F_n (or, G logically follows from F_1, \ldots, F_n), if in every interpretation where each and every of F_1, \ldots, F_n evaluates to 1, G also evaluates to 1.

Notation:

$$F_1, \ldots, F_n \models G$$

Examples:

$$p, q V \neg p, \neg p V \neg q \models q$$

Example

- 1. If I am in the office, then you can pop in if I am not too busy.
- 2. If I am in the office, then I am not too busy.
- 3. Therefore, if I am in the office, then you can pop in.

Let

L stand for 'I am in the office',

P stand for 'you can pop in'

B stand for 'I am too busy'

Write the premises and conclusion using formal language

Example

- 1. If I am in the office, then you can pop in if I am not too busy.
- 2. If I am in the office, then I am not too busy.
- 3. Therefore, if I am in the office, then you can pop in.

Let

L stand for 'I am in the office',
P stand for 'you can pop in'
B stand for 'I am too busy'

$$L \to (\neg B \to P)$$

$$L \to \neg B$$

$$\therefore L \to P$$

Does the conclusion logically follows (is a consequence of) the premises?

Deciding consequence using a Truth-table

	L	P	В	¬B	¬B → P	$L \rightarrow (\neg B \rightarrow P)$	L → ¬B	L → P
1	1	1	1	0	1	1	0	1
2	1	1	0	1	1	1	1	1
3	1	0	1	0	1	1	0	0
4	1	0	0	1	0	0	1	0
5	0	1	1	0	1	1	1	1
6	0	1	0	1	0	1	1	1
7	0	0	1	0	1	1	1	1
8	0	0	0	1	0	1	1	1

Deciding consequence using a Truth-table

	L	P	В	¬B	¬B → P	$L \rightarrow (\neg B \rightarrow P)$	L → ¬B	L → P	
1	1	1	1	0	1	1	0	1	
2	1	1	0	1	1	1	1	1	
3	1	0	1	0	1	1	0	0	
4	1	0	0	1	0	0	1	0	A
5	0	1	1	0	1	1	1	1	
6	0	1	0	1	0	1	1	1	
7	0	0	1	0	1	1	1	1	
8	0	0	0	1	0	1	1	1	\Rightarrow

In every interpretation in which both premises are true, the conclusion is also true, so: $L \rightarrow P$ is a logical consequence of $L \rightarrow (\neg B \rightarrow P)$ and $L \rightarrow \neg B$)

Deciding consequence

- You can use truth-tables and natural deduction to decide whether G is a logical consequence of F_1, \ldots, F_n
- But truth-tables can get very large very quickly
 - A truth table with 10 variables has 1024 rows
 - A truth table with 80 variables would take 38 billion years to make (if 1 millionth of a second is needed to make one row)
- Natural deduction is unsuitable for automation it requires ingenuity in deciding which rule to apply.
- So we need an algorithm an efficient one!

Definite Clause Propositional Programming

Going back to our example

- 1. P2. $(\neg P \lor Q) \land (\neg P \lor R)$ 3. $\neg Q \lor S$ 4. $\neg S \lor \neg R \lor T$
- First, list all definite clauses of these CNF formulas
- Then, represent the definite clauses as rules

• Is T a logical consequence of \mathscr{I} ?

$$\mathcal{I} \models T$$
?

- ? *T* Query
- Look for a rule with head T and replace query ? T with body of rule (expand T)
- Select any literal in the new query and repeat

Replace the Λ with,

Success

Although choice doesn't matter, you must be consistent in query literal selection strategy (e.g. always leftmost literal, or always rightmost)

Success

This choice **can** determine whether proof succeeds or fails (there may be more than one such rule)

Derivation tree

Query

SUCCEEDS

leftmost query selection always applied 59

Definite clause programming: formal procedure

- Let P be a definite clause program containing definite rules of the form $X_1, \dots, X_n \to Y$
- Let Q_1, \ldots, Q_m be a query on P
- Choose a literal Q;
- 2. If there is **no rule** $X_1, ..., X_n \rightarrow Q_i$ in P then **exit** and **fail**, else **choose** a rule $X_1, ..., X_n \rightarrow Q_i$ in P
- 3. In the query term
 - $\{Q_1, \ldots, Q_{i-1}, Q_i, Q_{i+1}, \ldots, Q_m\}$ replace Q_i by X_1, \ldots, X_n :
- 4. If the query term is empty then **exit** and **success**, else go to step 1 and repeat 1 4.

Exercise

- P
- $P \lor Q \rightarrow S$

- 1. Transform the formulas to CNF
- 2. then to definite clause program
- 3. Then draw two derivation trees for the query ?S one that fails and one that succeeds.

1. Transform to CNF

PAlready in CNF

•
$$P \lor Q \rightarrow S$$

 $\neg (P \lor Q) \lor S$
 $(\neg P \land \neg Q) \lor S$
 $(\neg P \lor S) \land (\neg Q \lor S)$
Now in CNF

2. Transform to definite clause program

$$P$$
 $(\neg P \lor S) \land (\neg Q \lor S)$

- First, list all definite clauses of these CNF formulas
- Then, represent the definite clauses as rules

$$\begin{array}{c|c} P & & \longrightarrow P & \mathcal{I} \\ (\neg P \lor S) & & & P \to S \\ (\neg Q \lor S) & & \longrightarrow & Q \to S \end{array}$$

3. draw derivation trees for ? S

Tutorials and Next Lecture

Large Group Tutorial:

- Repeats lecture exercises in today's slides
 - make sure you can do them yourself!
- Tutorial questions 3 and 4 not in slides

Small Group Tutorials:

- This week: Work on Questions 1 and 2 only

Next Lecture:

- Prenex Normal Form
- First order definite clause programs