# Programa DNR metilinimo duomenų tyrimams

Aušrinė Zeleckytė, Ernestas Stulgis, Gabrielė Vilutytė Bioinformatika, III kursas Taikomoji kompiuterija 2024m. gegužė

## **Turinys**

- Programos paskirtis
- Duomenys
- Programos naudojimas
- Programos įgyvendinimas
- Rezultatai

#### Programos paskirtis

- Programa skirta DNR metilinimo duomenų apdorojimui ir analizei.
- Programa geba:
  - skaityti metilinimo duomenis;
  - atlikti duomenų kokybės kontrolę sukurdama grafiką, vaizduojantį metilinimo vidurkius skirtingose genomo vietose;
  - atlikti statistinį T-test pasirinktam vienam ląstelės tipui ir dviem amžių grupėms, atvaizduoja gautų p-reikščių ir vidurkių skirtumų histogramas bei vulkano grafiką;
  - atvaizduoti grafikus "Heatmap" pavidalu, kurie rodo koreliacija tarp duomenų prieš ir po hierarchinio klasterizavimo;
  - o atlikti duomenų normalumo testą pasirinktam ląstelės tipui.

#### Duomenys

Duomenys, kuriuos naudojame savo programoje yra paskelbti šiose publikacijose:

Wang, X., Campbell, M.R., Cho, H.-Y., Pittman, G.S., Martos, S.N. and Bell, D.A. (2023). Epigenomic profiling of isolated blood cell types reveals highly specific B cell smoking signatures and links to disease risk. 15(1).

online: <a href="https://doi.org/10.1186/s13148-023-01507-8">https://doi.org/10.1186/s13148-023-01507-8</a>.

#### Programos naudojimas

- git clone <github\_repo>\*
  - github\_repo https://github.com/gabrielevil/Taikomoji\_kompiuterija
- python main.py <dna\_methylation\_matrix> <genome\_map> <samplekey>
  - o dna\_methylation\_matrix matrica su CpG vietų metilinimo lygiais skirtinguose mėginiuose
  - o genome\_map data frame su informacija apie kiekvieną CpG vietą
  - sample\_key data frame su informaciją apie kiekvieną mėginį

# Rezultatai

#### Duomenų kokybės kontrolė

Programos modulis control.py sugeneruoja grafiką pagal pateiktus
<dna\_methylation\_matrix< ir <genome\_map> duomenis



#### Student T-testas

Programos modelis ttest.py sugeneruoja grafikus pagal pateiktas <dna\_methylation\_matrix>, <sample\_key>, ląstelės tipą ir amžiaus grupių atskyrimo ribą.

Šiuo atveju grafikai generuoti pasirinkus B ląsteles ir amžiaus ribą 43 metai.

# P-reikšmių histogramos python vs R





### Vidurkių skirtumų histogramos python vs R





# Vulkano grafikas python vs R





#### Koreliacija ir hierarchinis klasterizavimas

Programos modelis corrPlot.py sugeneruoja grafikus pagal pateiktą <dna\_methylation\_matrix>.

Gaunami grafikai yra koreliacijos "Heatmap", prieš ir po duomenų hierarchinio klasterizavimo.

# Koreliacija prieš klasterizavimą: R



# Koreliacija prieš klasterizavimą: Python



# Koreliacija po klasterizavimo: R



# Koreliacija po klasterizavimo: Python



#### Normality testas

Programos modelis analysis.py sugeneruoja grafiką pagal pateiktą <a href="mailto:dna\_methylation\_matrix">dna\_methylation\_matrix</a>, <sample\_key</a> ir ląstelės tipą.

Galimi ląstelių tipai: bcell, mono, neu, nk, tcd4 ir tcd8

# Grafikas su tcd4: Python vs R





### GitHub repository

Projektas gali būti pasiekiamas per github: https://github.com/gabrielevil/Taikomoji\_kompiuterija