

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name: MedicPen AB Box 803 SE-30118 Halmstad Date of Testing: 03/16/16 - 04/28/16 Test Site/Location: PCTEST Lab, Columbia, MD, USA

Document Serial No.: 0Y1603150549.2ABTH

FCC ID:

Sweden

2ABTHC200W

APPLICANT:

MEDICPEN AB

DUT Type:

Portable Pill Dispenser

Application Type: FCC Rule Part(s): Model(s):

Certification CFR §2.1093

C200W

Equipment	Band & Mode	Tx Frequency	SAR	
Class	Dana a mode	ixiroqueney	10 gm Extremity (W/kg)	
PCB	Cell. CDMA	824.70 - 848.31 MHz	1.55	
PCB	PCS CDMA	1851.25 - 1908.75 MHz	3.50	

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.6 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT Medicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 4 of 20
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser	Page 1 of 20

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	INTROD	UCTION	5
3	DOSIME	TRIC ASSESSMENT	6
4	TEST C	ONFIGURATION POSITIONS	7
5	RF EXP	OSURE LIMITS	8
6	FCC ME	ASUREMENT PROCEDURES	9
7	RF CON	DUCTED POWERS	11
8	SYSTEM	1 VERIFICATION	12
9	SAR DA	TA SUMMARY	13
10	SAR ME	ASUREMENT VARIABILITY	15
11	EQUIPM	ENT LIST	16
12	MEASU	REMENT UNCERTAINTIES	17
13	CONCLU	JSION	18
14	REFERE	NCES	19
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT Medicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 2 of 20
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser	Page 2 of 20

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
Cell. CDMA	Data	824.70 - 848.31 MHz
PCS CDMA	Data	1851.25 - 1908.75 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Mode / Band	Modulated Average (dBm)	
Call CDAAA	Maximum	25.0
Cell. CDMA	Nominal	24.0
DCC CDMA	Maximum	25.0
PCS CDMA	Nominal	24.0

1.4 DUT Antenna Locations

A diagram showing the location of the device antennas can be found in Appendix F.

Table 1-1
Device Edges/Sides for SAR Testing

Mode	Back	Front	Тор	Bottom	Right	Left
Cell. CDMA	Yes	Yes	Yes	Yes	Yes	Yes
PCS CDMA	Yes	Yes	Yes	Yes	Yes	Yes

1.5 Simultaneous Transmission Capabilities

There are no simultaneous transmission capabilities on this device; therefore no simultaneous transmission was required to be evaluated.

FCC ID: 2ABTHC200W	@\PCTEST	SAR EVALUATION REPORT	medicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -f 00
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser		Page 3 of 20

© 2016 PCTEST Engineering Laboratory, Inc.

1.6 Guidance Applied

- FCC KDB Publication 941225 D01v03r01 (2G)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)

1.7 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Extremity Serial Number
Cell. CDMA	163F2
PCS CDMA	163F2

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT	medicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 4 of 20
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser		Faye 4 01 20

2

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT	medicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 5 of 20
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser		Page 5 of 20

© 2016 PCTEST Engineering Laboratory, Inc.

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan Maximum Zoom Scan Resolution (mm) Resolution (mm)		Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT	medicpen	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dama 6 of 20	
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser		Page 6 of 20	

© 2016 PCTEST Engineering Laboratory, Inc.

4 TEST CONFIGURATION POSITIONS

4.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

4.2 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. This device is intended for hand-held use only per the manufacturer and is not intended to be used within close proximity to the user's body. Therefore, the device was only evaluated for 10g 0mm extremity SAR per KDB 447498 D01v06.

FCC ID: 2ABTHC200W	PCTEST:	SAR EVALUATION REPORT Medicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 7 of 20
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser	Page 7 of 20

5 RF EXPOSURE LIMITS

5.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS						
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)				
Peak Spatial Average SAR _{Head}	1.6	8.0				
Whole Body SAR	0.08	0.4				
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20				

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT Medic	cpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 0 of 20
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser		Page 8 of 20

© 2016 PCTEST Engineering Laboratory, Inc.

6 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

6.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

6.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 3.0 W/kg, 10g SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

6.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

6.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

6.4.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT	medicpen	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Daga 0 of 20	
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser		Page 9 of 20	

© 2016 PCTEST Engineering Laboratory, Inc.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 6-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 6-2 was applied.

Table 6-1
Parameters for Max. Power for RC1

Parameter	Units	Value
Ĭ _{or}	dBm/1.23 MHz	-104
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

Table 6-2
Parameters for Max. Power for RC3

Parameter	Units	Value
Ĭor	dBm/1.23 MHz	-86
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

6.4.2 Body SAR Measurements

SAR for body exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT Medicpen	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 10 of 20	
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser	Page 10 01 20	

7.1 **CDMA Conducted Powers**

Band	Channel	Rule Part	Frequency	TDSO SO32 [dBm]	TDSO SO32 [dBm]
	F-RC		MHz	FCH+SCH	FCH
Cellular	1013	22H	824.7	24.10	24.11
	384	22H	836.52	24.12	24.16
	777	22H	848.31	24.09	24.25
	25	24E	1851.25	23.65	23.75
PCS	600	24E	1880	23.55	23.61
	1175	24E	1908.75	24.11	24.09

Figure 7-1 **Power Measurement Setup**

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT MEDIC	pen	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogo 11 of 20	
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser		Page 11 of 20	

8.1 Tissue Verification

Table 8-1 Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
	835B		820	0.978	53.467	0.969	55.258	0.93%	-3.24%
3/16/2016		22.5	835	0.997	53.330	0.970	55.200	2.78%	-3.39%
			850	1.009	53.112	0.988	55.154	2.13%	-3.70%
		1900B 22.8	1850	1.494	52.285	1.520	53.300	-1.71%	-1.90%
4/28/2016	1900B		1880	1.529	52.192	1.520	53.300	0.59%	-2.08%
			1910	1.563	52.097	1.520	53.300	2.83%	-2.26%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

8.1 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 8-2 System Verification Results

	System Verification TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{10g} (W/kg)	1 W Target SAR _{10 g} (W/kg)	1 W Normalized SAR _{10 g} (W/kg)	Deviation _{10g} (%)
J	835	BODY	03/16/2016	20.2	22.1	0.200	4d133	3318	1.320	6.080	6.600	8.55%
J	1900	BODY	04/28/2016	23.2	22.8	0.100	5d149	3318	2.240	21.800	22.400	2.75%

Figure 8-1
System Verification Setup Diagram

Figure 8-2
System Verification Setup Photo

FCC ID: 2ABTHC200W	PCTEST	SAR EVALUATION REPORT Medicpen		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		, ,
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser	Page 12 of 20	

© 2016 PCTEST Engineering Laboratory, Inc.

9 SAR DATA SUMMARY

9.1 **Standalone SAR Data**

Table 9-1 **CDMA SAR Data**

					MEAS	UREME	NT RES	ULTS						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Duty Cycle	Side	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	Ch.			Power [dBm]	rower [ubin]	Drift [ubj		Number	Cycle		(W/kg)		(W/kg)	
836.52	384	Cell. CDMA	TDSO / SO32	25.0	24.16	-0.10	0 mm	163F2	1:1	back	0.574	1.213	0.696	
836.52	384	Cell. CDMA	TDSO / SO32	25.0	24.16	0.21	0 mm	163F2	1:1	front	0.044	1.213	0.053	
836.52	384	Cell. CDMA	TDSO / SO32	25.0	24.16	-0.11	0 mm	163F2	1:1	top	0.040	1.213	0.049	
836.52	384	Cell. CDMA	TDSO/SO32	25.0	24.16	0.13	0 mm	163F2	1:1	bottom	0.023	1.213	0.028	
836.52	384	Cell. CDMA	TDSO/SO32	25.0	24.16	-0.19	0 mm	163F2	1:1	right	0.496	1.213	0.602	
836.52	384	Cell. CDMA	TDSO/SO32	25.0	24.16	-0.06	0 mm	163F2	1:1	left	1.280	1.213	1.553	A1
1851.25	25	PCS CDMA	TDSO/SO32	25.0	23.75	-0.18	0 mm	163F2	1:1	back	2.250	1.334	3.002	
1880.00	600	PCS CDMA	TDSO/SO32	25.0	23.61	-0.16	0 mm	163F2	1:1	back	1.990	1.377	2.740	
1908.75	1175	PCS CDMA	TDSO/SO32	25.0	24.09	-0.16	0 mm	163F2	1:1	back	1.030	1.233	1.270	
1880.00	600	PCS CDMA	TDSO / SO32	25.0	23.61	0.12	0 mm	163F2	1:1	front	0.011	1.377	0.015	
1880.00	600	PCS CDMA	TDSO/SO32	25.0	23.61	-0.13	0 mm	163F2	1:1	top	0.036	1.377	0.050	
1880.00	600	PCS CDMA	TDSO/SO32	25.0	23.61	-0.08	0 mm	163F2	1:1	bottom	0.021	1.377	0.029	
1880.00	600	PCS CDMA	TDSO / SO32	25.0	23.61	-0.13	0 mm	163F2	1:1	right	0.086	1.377	0.118	
1851.25	25	PCS CDMA	TDSO / SO32	25.0	23.75	0.01	0 mm	163F2	1:1	left	2.300	1.334	3.068	
1880.00	600	PCS CDMA	TDSO / SO32	25.0	23.61	0.09	0 mm	163F2	1:1	left	1.980	1.377	2.726	
1908.75	1175	PCS CDMA	TDSO / SO32	25.0	24.09	0.12	0 mm	163F2	1:1	left	1.540	1.233	1.899	
1851.25	25	PCS CDMA	TDSO / SO32	25.0	23.75	-0.16	0 mm	163F2	1:1	left	2.620	1.334	3.495	A2
		ANSI / IEE	E C95.1 1992 - SA	FETY LIMIT				•		•	Extremity		•	
			Spatial Peak								W/kg (mW/g			
		Uncontrolled	Exposure/Gene	ral Population			L			averag	ed over 10 gra	ims		

Blue entry represents variability measurement

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT MGC	dicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 13 of 20	
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser		Fage 13 01 20

© 2016 PCTEST Engineering Laboratory, Inc.

9.2 SAR Test Notes

General Notes:

- The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements. Normal batteries were used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- This device is intended for hand-held use only per the manufacturer and is not intended to be used within close proximity to the user's body. Therefore, the device was evaluated for extremity SAR per KDB 447498.
- 7. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured 10g SAR results for a frequency band were greater than or equal to 2.0 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 10 for variability analysis.

CDMA Notes:

- Per FCC KDB Publication 447498 D01v06, if the reported (scaled) 10g SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 2.0 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- 2. SAR was tested with 1x RTT with TDSO / SO32 FCH Only. TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT	medicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 14 of 20
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser		Page 14 of 20

10 SAR MEASUREMENT VARIABILITY

10.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured 10g SAR is ≥ 2.0 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 3.625 W/kg (~ 10% from the 10-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 3.75 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured 10g SAR is < 2.0 W/kg

Table 10-1 SAR Measurement Variability Results

			***************************************	oucui ciiici			,						
	EXTREMITY VARIABILITY RESULTS												
Band	FREQUE Band	NCY	Mode	Service S	Side	Spacing	Measured SAR (10g)	1st Repeated SAR (10g)	Ratio	2nd Repeated SAR (10g)	Ratio	3rd Repeated SAR (10g)	Ratio
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1900	1851.25	25	PCS CDMA	TDSO/SO32	left	0 mm	2.300	2.620	1.14	N/A	N/A	N/A	N/A
		ANS	SI / IEEE C95.1 1992 - SAFETY LIMIT			Extremity							
	Spatial Peak				4.0 W/kg (mW/g)								
		Uncon	trolled Exposure/General Populat	ion				ave	eraged ov	er 10 grams			

10.2 Measurement Uncertainty

The measured 10g SAR was <3.75 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT	medicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 45 of 20
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser	Page 15 of 20	

© 2016 PCTEST Engineering Laboratory, Inc.

11 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/2/2016	Annual	3/2/2017	MY45470194
Agilent	8753E	(30kHz-6GHz) Network Analyzer	3/2/2016	Annual	3/2/2017	JP38020182
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	N5182A	MXG Vector Signal Generator	3/5/2016	Annual	3/5/2017	MY47420800
Agilent	8753ES	S-Parameter Network Analyzer	11/4/2015	Annual	11/4/2016	US39170118
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433976
Anritsu	ML2496A	Power Meter	2/28/2016	Annual	2/28/2017	1306009
Anritsu	MA2481A	Power Sensor	3/3/2016	Annual	3/3/2017	5318
Anritsu	MA2481A	Power Sensor	3/3/2016	Annual	3/3/2017	2400
Control Company	4040	Digital Thermometer	3/15/2015	Biennial	3/15/2017	150194897
Control Company	4353	Long Stem Thermometer	1/22/2015	Biennial	1/22/2017	150053169
Control Company	4352	Ultra Long Stem Thermometer	3/8/2016	Biennial	3/8/2018	160261729
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mitutoyo	CD-6"CSX	Digital Caliper	3/2/2016	Biennial	3/2/2018	13264165
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/21/2015	Biennial	5/21/2017	N/A
Rohde & Schwarz	CMW500	Radio Communication tester	5/5/2015	Annual	5/5/2016	140144
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/2/2016	Biennial	3/2/2018	N/A
SPEAG	D1900V2	1900 MHz SAR Dipole	7/14/2015	Annual	7/14/2016	5d149
SPEAG	D835V2	835 MHz SAR Dipole	7/23/2015	Annual	7/23/2016	4d133
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/19/2016	Annual	2/19/2017	665
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2015	Annual	5/12/2016	1070
SPEAG	ES3DV3	SAR Probe	2/19/2016	Annual	2/19/2017	3318

Note:

- 1. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- 2. Each equipment item was used solely within its respective calibration period.

FCC ID: 2ABTHC200W	PCTEST	SAR EVALUATION REPORT	medicpen	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogo 16 of 20	
0Y1603150549.2ABTH	03/15/0549.2ABTH 03/16/16 - 04/28/16 Portable Pill Dispenser			Page 16 of 20	
16 DCTEST Engineering Laboratory Inc.				DEV/ 17 O M	

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	u _i	ui	vi
· ·	(= ,0,					(± %)	(± %)	'
Measurement System			l	I	•	,	,	
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	œ
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	œ
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	œ
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	œ
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	œ
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	× ×
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	× ×
Liquid Conductivity - measurement uncertainty	4.2	Ν	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	œ
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	œ
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	00
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1,7	1.4	œ
Combined Standard Uncertainty (k=1)	3.0	RSS	1., 3	0.00	0.13	11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	- 50
(95% CONFIDENCE LEVEL)		K=2				23.0	22.0	
(33 /0 COINTIDENCE LEVEL)								ı

FCC ID: 2ABTHC200W	PCTEST	SAR EVALUATION REPORT Medicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	, ,
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser	Page 17 of 20
CONTEST Continue view Laboratory Inc	03/10/10 - 04/20/10	1 Ortable 1 III Disperiser	DEV/47.0 M

13 CONCLUSION

13.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT	medicpen	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 19 of 20
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser	Page 18 of 20	

14 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: 2ABTHC200W	@\PCTEST	SAR EVALUATION REPORT	medicpen	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 40 -f 00	
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser		Page 19 of 20	

© 2016 PCTEST Engineering Laboratory, Inc.

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: 2ABTHC200W	PCTEST*	SAR EVALUATION REPORT MEDICOEO	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 20 of 20
0Y1603150549.2ABTH	03/16/16 - 04/28/16	Portable Pill Dispenser	Page 20 of 20

APPENDIX A: SAR TEST DATA

PCTEST ENGINEERING LABORATORY, INC.

DUT: 2ABTHC200W; Type: Portable Pill Dispenser; Serial: 163F2

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.998 \text{ S/m}; \ \epsilon_r = 53.308; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 03-16-2016; Ambient Temp: 20.2°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3318; ConvF(6.11, 6.11, 6.11); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. CDMA Extremity SAR, Left Edge, Mid.ch

Area Scan (23x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.91 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 4.42 W/kg

SAR(10 g) = 1.28 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: 2ABTHC200W; Type: Portable Pill Dispenser; Serial: 163F2

Communication System: UID 0, CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1851.25 \text{ MHz}; \ \sigma = 1.495 \text{ S/m}; \ \epsilon_r = 52.281; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-28-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3318; ConvF(4.81, 4.81, 4.81); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS CDMA, Extremity SAR, Left Edge, Low.ch

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 72.08 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 12.3 W/kg

SAR(10 g) = 2.62 W/kg

APPENDIX B: SYSTEM VERIFICATION

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.997 \text{ S/m}; \ \epsilon_r = 53.33; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 03-16-2016; Ambient Temp: 20.2°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3318; ConvF(6.11, 6.11, 6.11); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.88 W/kg

SAR(10 g) = 1.32 W/kg

Deviation(10 g) = 8.55%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.552 \text{ S/m}; \ \epsilon_r = 52.129; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-28-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3318; ConvF(4.81, 4.81, 4.81); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.59 W/kg

SAR(10 g) = 2.24 W/kg

Deviation(10 g) = 2.75%

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d149_Jul15

CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d149

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

ULV 8/4/15

Calibration date:

July 14, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name Leif Klysner Function Laboratory Technician Sionature

Approved by:

Katja Pokovic

Technical Manager

Issued: July 14, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d149_Jul15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d149_Jul15

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d149_Jul15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω + 5.6 jΩ	
Return Loss	- 24.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω + 6.1 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 11, 2011	

DASY5 Validation Report for Head TSL

Date: 14.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.22 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ S/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.96 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.49 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D835V2-4d133_Jul15

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d133

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 23, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature

Calibrated by:

Michael Weber

Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: July 23, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d133_Jul15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swlss Accreditation Service is one of the signatories to the EA

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Multilateral Agreement for the recognition of calibration certificates

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d133_Jul15 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.4 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.13 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.94 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.25 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.08 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d133_Jul15 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.6 Ω - 1.6 jΩ
Return Loss	- 33.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 3.7 jΩ
Return Loss	- 27.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.395 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Certificate No: D835V2-4d133_Jul15

DASY5 Validation Report for Head TSL

Date: 22.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 42.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.11 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.44 W/kg

SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.5 W/kg

Maximum value of SAR (measured) = 2.70 W/kg

0 dB = 2.70 W/kg = 4.31 dBW/kg

Certificate No: D835V2-4d133_Jul15

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.56 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.50 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Certificate No: D835V2-4d133_Jul15 Page 7 of 8

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3318_Feb16

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3318

Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

February 19, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic **Technical Manager**

Issued: February 20, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

o rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 12

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3318_Feb16

Probe ES3DV3

SN:3318

Manufactured: Calibrated:

January 10, 2012 February 19, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV3-SN:3318

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.16	0.93	1.29	± 10.1 %
DCP (mV) ^B	102.2	104.2	103.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^b (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	199.2	±3.5 %
		Υ	0.0	0.0	1.0		176.5	
		Z	0.0	0.0	1.0		194.6	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	3.19	63.2	12.6	10.00	42.3	±1.4 %
		Υ	19.74	82.9	18.6		35.5	
		Z	4.87	67.6	14.6		43.3	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	2.99	68.6	18.5	1.87	141.3	±0.9 %
		Υ	3.46	71.1	19.6		145.1	
		Z	3.19	70.2	19.5		144.7	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.30	67.0	19.4	5.67	128.2	±1.4 %
		Y	6.32	67.0	19.2		129.9	
		Z	6.36	67.5	19.8		131.3	
10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	11.31	78.0	27.3	9.29	146.7	±3.5 %
		Y	9.35	72.8	24.3		141.3	
		Z	11.02	76.9	26.7		131.7	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.22	66.7	19.4	5.80	126.2	±1.4 %
		Υ	6.20	66.5	19.1		128.1	
		Z	6.27	67.1	19.7		131.1	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	10.46	76.6	26.8	9.28	138.8	±3.3 %
		Υ	8.80	72.0	24.0		134.3	
		Z	10.01	75.0	25.9		122.1	
10154- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.12	67.0	19.6	5.75	146.0	±1.7 %
		Υ	6.15	67.1	19.5		148.7	
		Z	5.95	66.5	19.4		127.4	
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	Х	6.33	66.7	19.4	5.82	127.2	±1.4 %
		Y	6.33	66.6	19.2		128.2	
		Z	6.38	67.1	19.7		133.6	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	5.10	67.2	20.0	5.73	147.9	±1.2 %
		Y	4.85	66.3	19.3		127.1	
10.1=0		Z	4.97	66.7	19.8		133.9	.000
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	8.71	78.3	27.8	9.21	127.5	±3.0 %
		Y	7.52	74.8	25.7		144.7	
10/55		Z	10.09	81.9	29.5	F 70	136.4	1400
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	5.09	67.2	20.0	5.72	146.9	±1.2 %
		Υ	4.97	66.9	19.6		140.9	
		Z	4.95	66.6	19.7		133.1	

ES3DV3-SN:3318 February 19, 2016

10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	5.11	67.3	20.0	5.72	146.8	±1.2 %
		Υ	5.03	67.2	19.8		147.0	
		Z	5.00	66.8	19.8		135.0	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	8.73	78.3	27.8	9.21	126.7	±3.0 %
		Υ	7.60	75.1	25.9		146.1	
		Z	10.76	83.8	30.4		143.4	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	9.61	75.3	26.2	9.24	129.4	±3.3 %
		Υ	8.55	72.3	24.3		143.1	
		Z	11.05	79.1	28.1		146.1	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	10.44	76.5	26.8	9.30	137.7	±3.3 %
		Y	8.62	71.3	23.6		125.8	
		Z	10.24	75.6	26.2		125.3	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.51	67.8	20.0	5.81	148.5	±1.7 %
		Υ	6.42	67.3	19.6		144.3	
		Z	6.31	67.3	19.8		134.7	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.80	67.4	19.9	6.06	128.6	±1.4 %
		Υ	6.69	66.9	19.4		125.3	
		Z	6.91	68.0	20.3		140.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.48	6.48	6.48	0.54	1.35	± 12.0 %
835	41.5	0.90	6.23	6.23	6.23	0.70	1.21	± 12.0 %
1750	40.1	1.37	5.34	5.34	5.34	0.72	1.27	± 12.0 %
1900	40.0	1.40	5.13	5.13	5.13	0.80	1.18	± 12.0 %
2300	39.5	1.67	4.78	4.78	4.78	0.76	1.29	± 12.0 %
2450	39.2	1.80	4.57	4.57	4.57	0.59	1.49	± 12.0 %
2600	39.0	1.96	4.40	4.40	4.40	0.80	1.31	± 12.0 %

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters

The stated SAR values. At frequencies above 3 GHz, the values of itssue parameters (£ and 6) is restricted to £ 5%. The uncertainty is the ROS of the ConvF uncertainty for indicated target tissue parameters.

^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.19	6.19	6.19	0.50	1.51	± 12.0 %
835	55.2	0.97	6.11	6.11	6.11	0.47	1.56	± 12.0 %
1750	53.4	1.49	5.02	5.02	5.02	0.49	1.55	± 12.0 %
1900	53.3	1.52	4.81	4.81	4.81	0.80	1.24	± 12.0 %
2300	52.9	1.81	4.55	4.55	4.55	0.80	1.27	± 12.0 %
2450	52.7	1.95	4.45	4.45	4.45	0.80	1.16	± 12.0 %
2600	52.5	2.16	4.18	4.18	4.18	0.80	1.13	± 12.0 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM

0 MHz,TEM

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	76.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm
	I

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity s can be calculated from the below equation (Pournaropoulos

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

> Table D-I **Composition of the Tissue Equivalent Matter**

Frequency (MHz)	835	1900
Tissue	Body	Body
Ingredients (% by weight)		
Bactericide	0.1	
DGBE		29.44
HEC	1	
NaCl	0.94	0.39
Sucrose	44.9	
Water	53.06	70.17

FCC ID: 2ABTHC200W	<u>@</u> \PCTEST	SAR EVALUATION REPORT	medicpen	Reviewed by:	
	V SHOUNDERS CAROKATURY, INC.		11100100011	Quality Manager	
Test Dates:	DUT Type:			APPENDIX D:	
03/16/16 - 04/28/16	Portable Pill Dispenser			Page 1 of 1	

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table E-I SAR System Validation Summary

SAR	FREQ.	DATE	PROBE	PROBE PROBE		DORE DOORE				i l		PERM.	C	W VALIDATIO	N	M	IOD. VALIDATIO	N				
SYSTEM	[MHz]					PROBE CAL. POINT		(er)	SENSITIVITY	PROBE	PROBE	MOD.	DUTY	PAR								
#	[IVII IZ]		SIN	IIFL											(σ)	(61)	SLINSITIVITI	LINEARITY	ISOTROPY	TYPE	FACTOR	FAIX
J	835	3/9/2016	3318	ES3DV3	835	Body	0.989	52.941	PASS	PASS	PASS	GMSK	PASS	N/A								
J	1900	3/14/2016	3318	ES3DV3	1900	Body	1.561	52.094	PASS	PASS	PASS	GMSK	PASS	N/A								

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: 2ABTHC200W	2ABTHC200W SAR EVALUATION REPORT	medicpen	Reviewed by:	
1 00 151 27 151 11020011			THOOIOPOIT	Quality Manager
Test Dates:	DUT Type:			APPENDIX E:
03/16/16 - 04/28/16	Portable Pill Dispenser			Page 1 of 1