Second Design Review SURFACE VEHICLE NAVIGATION STUDY (SVNS)

September 1979 to September 1980

Sponsored by Frank Weinchel, Vice President General Motors Technical Center Warren, Michigan

Performed by Rockwell-Collins Avionics Advanced Technology Avionics and Missiles Group Cedar Rapids, Iowa

Steve F. Russell, Project Manager

In January of 1979, I transferred from the NAVSTAR GPS (GDM) program to the Advanced Technology Department of the Avionics and Missiles Group. It was a promotion step toward becoming a Principal Engineer. I wanted the freedom to work on a variety of projects instead of just one or two. I still continued my support of the GDM program and was heavily involved in its success.

For a year or more I had been talking to Rockwell leadership about transferring our military technology to the realm of civil applications of GPS. Primarily, I had in mind that we would develop GPS for civil aviation and automobiles. There was understandable resistance to the idea because our business expertise was military, not civil. However, the head of our advanced technology department, Norbert Hemesath, believed in the idea and began looking for an outside sponsor for a design and trade-off study for civil applications of GPS. He found support for the idea from Frank Weinchel, VP at General Motors.

GM funded us at a level of \$840K/yr (2010 dollars) and we launched the SVNS project with a team of 7 engineers with varied expertise to do the trade-off study. This report summarized the majority of our work and was created to inform GM as to the feasability of putting a system in Cadillacs. My colleagues soon nicknamed the project 'CADNAV'.

Although I was the Project Manager, my instincts as a design engineer still drove me to participate in the system and function design as much as I could. I am especially happy to have had the time to develop the system concept represented in the diagram in this report. It was a logical extension of my experience on the GDM program.

There were many memorable moments on this project but none were more memorable than the trip to Warren, Michigan to present the progress report to Frank Weinchel; and the technical meetings with Wes Rogers and Jim Laggan. The minute I

arrived at the GM Tech Center, I was ushered into a room and given instructions on how I was to conduct myself, what I was to say and details on Frank's personality. You don't often encounter these issues in day-to-day engineering! I swear the following is exactly what happened. My Instructions were as follows:

- 1. Frank has an ulcer so we will not be serving alcohol at the meeting.
- 2. Don't mention anything about project problems to Frank.
- 3. Jim Laggan (my technical counterpart) will not be in the meeting because GM has a rule about how many levels of management can be in a room at the same time and Frank ranks too high for Jim to be in the meeting.

It was a whole new world as compared to the very formal engineering environment at Rockwell.

I left Rockwell-Collins for King Radio in August of 1980 and did not get to see
the project to its completion. However, it was put into the very capable hands of my
colleague, Jurgen Bruckner who did a great job of completing it.

Steve F. Russell Project Manager, SVNS

REFERENCE: Memo, SVNS-12, March 21, 1980

Here is a list of the names of people I remember from that project:

Loren DeGroot
Norbert Hemesath
Robert 'Bob' Pool
'Ab' Mayer
Dave Cunningham
Robert 'Bob' Jaycox
John 'Jack' Murphy
Lew Nigra
Jurgen Bruckner
Ken Brown
Eugene 'Gene' Frye
Robert 'Wade' Walstrom
Howard Rooks

Design Review

SVNS DISTRIBUTION

SVNS PROGRAM Review

Date: 21- MARCH- 1980

Memo: SVNS - 12

	X	GROUP	<u>-1</u>		<u></u>	GROUP	-3	
		L. E.	DeGroot	107-142		н. в.	Rooks	106-176
` ~ 2		N. B.	Hemesath	124-222	<u> </u>	J. A.	Martin	106-176
		R. H.	Pool	124-222		J. W.	Donaldson	106-176
		A. F.	Mayer	106-180				
		D. L.	Cunningham	107-142				•
-		R. L.	Jaycox	107-141				
(2)		S. F.	Russell	124-222				
		J. W.	Murphy	107-142				
		•						
		GROUP	<u>-2</u>		·	GROUP	-4	
	×	•		106-180		GROUP	<u>-4</u> Griffith	107-142
	<u>×</u>	GROUP		106-180 124-222		G.		107-142 124-222
	×	GROUP L. M. H. M.	Nigra			G. W. K.	Griffith	
	×	GROUP L. M. H. M. J. M.	Nigra Schweighofer	124-222		G. W. K.	Griffith McCune	124-222
		GROUP L. M. H. M. J. M. M. H.	Nigra Schweighofer Bruckher	124-222		G. W. K.	Griffith McCune	124-222
		GROUP L. M. H. M. J. M. M. H.	Nigra Schweighofer Bruckner Rhodes Brown	124-222 124-222 106-187		G. W. K.	Griffith McCune	124-222
	<u>×</u>	GROUP L. M. H. M. J. M. M. H. K. L. E. O.	Nigra Schweighofer Bruckner Rhodes Brown	124-222 124-222 106-187 106-176		G. W. K.	Griffith McCune	124-222

Internal Letter

Date:

· 21 March 1980

TO:

(Name, Organization, Internal Address)

Distribution

•

FROM: (Name, Organization, Internal Address, Phone)

• S. F. Russell

124-222

X4911

No: .

Subject: • SVNS Program Review

A program review for the SVNS study for GM was held in Warren, Michigan on Friday, March 14. A copy of the view cell handout is enclosed.

The purpose of the meeting was to inform the GM Tech Center VP, Frank Weinchel, of the status of the study. A secondary purpose was to discuss technical details with Wes Rogers and Jim Laggan. The schedule and manning view cells and the cost estimates on page 2,20 were not shown. Also, the Engineering Design Review (Section III) was not presented or discussed. Wes Rogers has informed me that he and Jim Laggan will present a written response to Section III.

The meeting was quite unproductive from a technical standpoint but did produce positive results about our effort and possible future work.

S. F. Russell Project Manager Steve 91. Russell

SFR/ljp Attachment

056-0010-020 Form 131-R (Rev 3-79)

SURFACE VEHICLE NAVIGATION SYSTEM

PROGRAM REVIEW

14 MARCH 1980

ROCKWELL INTERNATIONAL AVIONICS AND MISSILES GROUP

I, NAVSTAR PROGRAM STATUS

AGENDA

- I. NAVSTAR PROGRAM STATUS
- II. EXECUTIVE SUMMARY
- III. ENGINEERING DESIGN REVIEW

II. EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

AGENDA

- INTRODUCTION
- PROGRAM OVERVIEW
- C. MINIMUM-COST DESIGN
- D. MINIMUM-COST DESIGN APPROACH
 - 1) SVNS SYSTEM CONCEPT
- 4) MAJOR HARDWARE COST ELEMENTS
- 2) BASELINE DEFINITION 5) COST AND PERFORMANCE TRADE-OFF STUDIES
- 3) ENGINEERING REVIEW
- RISK AREAS
- E. ALTERNATE FUNCTIONAL DESIGNS
- F, COST PREDICTIONS
- TECHNICAL SUMMARY

INTRODUCTION

PROGRAM OVERVIEW

- PRINCIPLE OBJECTIVE
- STUDY OUTPUT
- STUDY OVERVIEW

PRINCIPLE OBJECTIVE

DEFINE A GPS-BASED SVNS WHICH:

- 1) MEETS ALL OF GM'S OPERATIONAL AND PERFORMANCE REQUIREMENTS FOR VEHICULAR USE AND
- 2) HAS THE POTENTIAL TO ACHIEVE THE STRINGENT COST GOALS
 ATTENDANT TO THE AUTOMOTIVE MARKET.

- A. OPERATIONAL REQUIREMENTS
 - B. PERFORMANCE REQUIREMENTS
 - C. COST GOALS
 - D. AUTOMOTIVE APPLICATION

STUDY OUTPUT

A REPORT WHICH DOCUMENTS IN AS MUCH DETAIL AS NECESSARY:

- OVERALL SYSTEM ARCHITECTURE
- SYSTEM OPERATIONAL PROCEDURES AND CONCEPTS
- PACKAGING CONCEPTS
- DEVICE AND DISPLAY TECHNOLOGIES

- TECHNICAL RISK AREAS
- 6) ESTIMATED MANUFACTURING COST
- COST RISK AREAS
- 8) ESTIMATED DEVELOPMENT COSTS

STUDY OVERVIEW

MINIMUM-COST DESIGN

A HIGHLY ITERATIVE PROCESS INVOLVING MANY COST VS
 PERFORMANCE TRADE-OFF STUDIES

• COMPLETE CHARACTERIZATION OF MOST PROMISING CANDIDATE DESIGNS

• SUMMARY OF DESIGNS

- COST

- SIZE

- PERFORMANCE

- WEIGHT

- RISK

- POWER

CUSTOMER SELECTION OF "BEST" DESIGN

MINIMUM-COST DESIGN APPROACH

- DEFINE SYSTEM CONCEPT
- DEVELOP SEVERAL CANDIDATE FUNCTIONAL DESIGNS
- IDENTIFY COSTLY FUNCTIONS
- CHOOSE A BASELINE DESIGN FOR COMPLETE EVALUATION
 - BASELINE DEFINITION
 - SYSTEM LEVEL ENGINEERING REVIEW
 - LOW-COST DESIGN CYCLE
 - RISK ASSESSMENT
 - FINAL DEFINITION
- REVIEW BASELINE DESIGN FOR PRODUCT FEASIBILITY
- CHOOSE AN ALTERNATE FUNCTIONAL DESIGN FOR COMPLETE EVALUATION
- SUMMARIZE ALL PROMISING DESIGNS
- SELECT "BEST" DESIGN

MINIMUM-COST DESIGN APPROACH

SVNS SYSTEM CONCEPT

BASELINE DEFINITION

BASELINE DESIGN CONSIDERATIONS

MANPACK

- L1 AND L2
 - L1-L2 4x2 switch
 - IONOSPHERIC CORRECTION
 - 10 MHZ CODE GEN
- C/A AND P CODES
 - COMPLEX HARDWARE SLEW CIRCUITS
 - WIDEBAND IF
- HIGH ANTI-JAM
 - PROMPT CHANNEL
 - DELAY-LOCK TRACKING
 - T-CODE PREVENTS JAMMER FEEDTHRU
 - 2 CODE MULTIPLIERS
 - FAST AGC
- HIGH ACCURACY
 - CARRIER PHASE TRACK
 - SLOW SEQUENCE
- HIGH STABILITY FREQ STD
- RADIATION HARDENING

SAHS

- L1 ONLY
 - NO SWITCH
 - NO CORRECTION
 - 1 MHZ CODE GEN
- C/A ONLY
 - NO SLEWING
 - NARROWBAND IF
- NO HOSTILE JAMMING
 - NO PROMPT CHANNEL
 - TAU-DITHER TRACKING
 - NO T-CODE
 - ONE CODE MULTIPLIER
 - NO PULSE JAMMING
- MODERATE ACCURACY
 - CARRIER FREQUENCY TRACK
 - FAST SEQUENCE
- MIN DESIGN FREQ STD
- NO RADIATION HARDENING

BASELINE DEFINITION

BASELINE FUNCTIONAL BLOCK DIAGRAM

2,12

SURFACE VEHICLE NAVIGATION SYSTEM

SYSTEM LEVEL ENGINEERING REVIEW

- VERIFY ADHERENCE TO SYSTEM CONCEPT
- TEST VALIDITY OF BASELINE DESIGN
- PROBE FOR MAJOR DESIGN FLAWS
- RECOMMENDATION OF FUNCTIONAL CHANGES
- "GO AHEAD" FOR LOW-COST DESIGN CYCLE

LOW-COST DESIGN CYCLE

MAJOR HARDWARE COST ELEMENTS

- FREQUENCY STANDARD
- VARIABLE FREQUENCY OSC
- CODE LSI
- RF CIRCUITS
- **POWER SUPPLY**
- **NAVIGATION PROCESSOR**
- **MEMORY**
- **BOARDS & INTERCONNECT**
- CHASSIS
- **ANTENNA**

2,14

SURFACE VEHICLE NAVIGATION SYSTEM

LOW-COST DESIGN CYCLE

EOST AND PERFORMANCE TRADE-OFF STUDIES

PRESENT

- ANTENNA
- FREQUENCY STANDARD
- VARIABLE FREQUENCY OSCILLATORS
- FREQUENCY PLAN
- DATA DEMODULATOR

FUTURE

- CUSTOM LSI
- MEMORY DENSITY, TECHNOLOGY, POWER, SPEED, COST
- NAVIGATION PROCESSOR SELECTION
- SINGLE OR DUAL CHANNEL
- MECHANICAL DESIGN
- POWER SUPPLY

LOW-COST DESIGN CYCLE

FINAL COST DETERMINATION

- COMPLETE TRADE-OFF STUDIES
- COMPLETE BASELINE MECHANICAL DESIGN
- REPLACE LOW-VOLUME ESTIMATES WITH HIGH-VOLUME MANUFACTURING

RISK AREAS

- **MEMORY COST**
- CUSTOM LSI COST & PERFORMANCE
- FREQUENCY STANDARD STABILITY
- **₽P THRUPUT**
- ONE-BIT CODE POSITION DETECTOR
- ANTENNA COST

BASELINE FINAL DEFINITION

- **DEPENDENT UPON:**
 - COMPLETION OF LOW-COST DESIGN CYCLE
 - HIGH VOLUME PARTS AND PRODUCTION COST ESTIMATES
 - RISK ASSESSMENT

BASELINE FINAL REVIEW

- ENGINEERING REVIEW OF FINAL DESIGN
- CUSTOMER REVIEW OF COST AND DESIGN
- DETERMINE ACCEPTABILITY OF COST, PERFORMANCE, AND DESIGN
- SPECIFY NEW COST, PERFORMANCE, AND DESIGN GOALS AS DEVIATIONS FROM BASELINE
- REVIEW ALTERNATE FUNCTIONAL DESIGNS AND ASSESS PROBABILITIES OF MEETING NEW GOALS

ALTERNATE FUNCTIONAL DESIGN CHOICES

- DIGITAL CORRELATOR
- SINGLE CHANNEL SEQUENTIAL
- NONVOLATILE ELECTRONICALLY ERASABLE PROM
- LOW-POWER PROCESSOR
- SAW RESONATOR OSCILLATOR
- DIRECT CONVERSION RECEIVER
- MULTIPLEXED CODE GENERATOR
- **POWER SUPPLY**

COST PREDICTIONS

PRESENT CONFIDENCE LEVEL	CONFIDENCE GOAL	GPS SENSOR COST
99%		\$12 K
95%		5K
80%	99%	3K
50%	95%	2K
30%	80%	1K
5 %	50%	.5K

MOST PROBABLE
COST RANGE
\$1K - 3K

2,20

TECHNICAL SUMMARY

- MINIMUM-COST DESIGN APPROACH YIELDS BEST COST VS
 PERFORMANCE TRADE-OFF
- MOST PROBABLE COST RANGE FOR THE GPS SENSOR IS \$1K - 3K
- BASELINE DESIGN NOW IN LOW-COST DESIGN CYCLE
- ALTERNATE FUNCTIONAL DESIGNS COMPROMISE PERFORMANCE
 FOR LOWER COST
- ACTUAL COST ESTIMATE REQUIRES GM ASSISTANCE IN

 LEARNING HIGH-VOLUME PARTS COSTS AND PRODUCTION

 TECHNIQUES

III, ENGINEERING DESIGN REVIEW

ENGINEERING DESIGN REVIEW

AGENDA

- SVNS SYSTEM CONCEPT
- MINIMUM-COST DESIGN APPROACH
- BASELINE DEFINITION
 - DESIGN CONSIDERATIONS
 - FUNCTIONAL BLOCK DIAGRAM
 - DETAILED RECEIVER BLOCK DIAGRAM
- SYSTEM LEVEL ENGINEERING REVIEW
- MAJOR HARDWARE COST ELEMENTS
- ENVIRONMENTAL REQUIREMENTS
- COST AND PERFORMANCE TRADE-OFF STUDIES
 - PRECISION FREQUENCY STANDARD
 - VCXO AND DIGITAL CARRIER VFO DESIGNS
 - ANTENNA ELEMENT DESIGNS
 - POWER SUPPLY
- COST ANALYSIS
 - COST ESTIMATING
 - HARDWARE DESIGN EXAMPLE

- CUSTOM LSI DESIGN
 - CANDIDATES
 - TRADE-OFFS
 - CODE GENERATOR LOGIC
 - CHIP SIZE COMPARISONS
 - LSI PARTITIONING
 - DIGITAL CARRIER VFO
- PRELIMINARY SIZE AND POWER ESTIMATES
- FINAL COST DETERMINATION
- RISK AREAS
- BASELINE DESIGN COMPLETION
- ALTERNATE FUNCTIONAL DESIGN CHOICES
- TECHNICAL SUMMARY
- FINAL REPORT OUTLINE

MINIMUM-COST DESIGN APPROACH

SVNS SYSTEM CONCEPT

DESIGN-TO-COST APPROACH

- DEVELOP A BASELINE SYSTEM
 - ELECTRICAL, INTERCONNECT, CHASSIS
 - REASONABLE COST AND RISK
 - MEET MOST PERFORMANCE* GOALS
- PERFORM TRADE-OFF STUDIES
 - COST
 - RISK
 - PERFORMANCE*

— FIND THE "KNEE OF THE CURVE"

- CHOOSE MINIMUM COST ALTERNATIVES THAT MEET ACCEPTABLE PERFORMANCE* AND RISK
- UPDATE BASELINE
 - ELECTRICAL, INTERCONNECT, CHASSIS
 - COST AND RISK
 - PERFORMANCE*
- EVALUATE NEW SYSTEM FOR OVERALL FEATURES
- ITERATE UNTIL DESIGN HAS CUSTOMER APPROVAL
 - * IT IS DIFFICULT TO ASSESS COST VS TECHNICAL PERFORMANCE

BASELINE DEFINITION

-BASELINE DESIGN CONSIDERATIONS

MANPACK

- L1 AND L2
 - L1-L2 4x2 SWITCH
 - IONOSPHERIC CORRECTION
 - 10 MHZ CODE GEN
- C/A AND P CODES
 - COMPLEX HARDWARE SLEW CIRCUITS
 - WIDEBAND IF
- HIGH ANTI-JAM
 - PROMPT CHANNEL
 - DELAY-LOCK TRACKING
 - T-CODE PREVENTS JAMMER FEEDTHRU
 - 2 CODE MULTIPLIERS
 - FAST AGC
- HIGH ACCURACY
 - CARRIER PHASE TRACK
 - SLOW SEQUENCE
- HIGH STABILITY FREQ STD
- RADIATION HARDENING

SAHS

- L1 ONLY
 - NO SWITCH
 - NO CORRECTION
 - 1 MHZ CODE GEN
- C/A ONLY
 - NO SLEWING
 - NARROWBAND IF
- NO HOSTILE JAMMING
 - NO PROMPT CHANNEL
 - TAU-DITHER TRACKING
 - NO T-CODE
 - ONE CODE MULTIPLIER
 - NO PULSE JAMMING
- MODERATE ACCURACY
 - CARRIER FREQUENCY TRACK
 - FAST SEQUENCE
- MIN DESIGN FREQ STD
- NO RADIATION HARDENING

BASELINE DEFINITION

BASELINE FUNCTIONAL BLOCK DIAGRAM

SYSTEM LEVEL ENGINEERING REVIEW

- REVIEW IS COMPLETE
- PRESENT BASELINE SATISFIES SYSTEM CONCEPT
- ALL FUNCTIONS IN BASELINE ARE FEASIBLE
 - DATA DEMOD IS A NOVEL DESIGN BUT TECHNICALLY VALID
 - MULTIPLE CODE VCO OBVIATES SEVERE RESET LOGIC PROBLEM
 - DUAL CHANNELS ALLOW CONTINUOUS TRACKING
 - TWO PROCESSOR CONCEPT ALLOWS LOWER SPEEDS
 - FREQUENCY TRACKING SIMPLIFIES HARDWARE
- NO DESIGN FLAWS FOUND
- LOW-COST DESIGN CYCLE EFFORT APPROVED

LOW-COST DESIGN CYCLE

MAJOR HARDWARE COST ELEMENTS

- FREQUENCY STANDARD
- VARIABLE FREQUENCY OSC
- CODE LSI
- RF CIRCUITS
- POWER SUPPLY
- NAVIGATION PROCESSOR
- MEMORY
- BOARDS & INTERCONNECT
- CHASSIS
- ANTENNA

ENVIRONMENTAL CONSIDERATIONS FOR TRUNK MOUNTED

SVNS RECEIVER

ENVIRONMENTAL REQUIREMENT	GM ENVIRONMENTAL SPECIFICATION	REMARKS	
Temperature	3.5, 3.6	$-40^{\rm O}$ C to $+85^{\rm O}$ C extremes, must pass thermal shock test	
Humidity	4.	98% @ 38°C, 80% @ 66°C, frost	
Immersion	N.A.	Standing water on floor possible	
Shock	6.	48" drop test seems quite severe for sophisticated electronics	
Vibration	7.1 - 7.5	Resonance dwells until fatigue failure, 10 ⁶ cycles, or eight hours, whichever occurs first. Seems severe	
Salt Spray	N.A.	A standing saturated salt solution is possible on the floor	
Sand & Dust	N.A.	A heavy build-up of sand and dust is probable	
Oils & Chemicals	N.A.	Spillage of all chemicals listed in SAE J1211, Section 4.4 is possible	

NOTE: All tests are described in GM document "Environmental Specification for Electronic Systems", dated 6-13-73.

COST AND PERFORMANCE TRADE-OFF STUDIES

STUDY

STATUS

1.	FREQUENCY STANDARD	COMPLETE
2.	CARRIER VFO	COMPLETE EXCEPT COST AND RISK
3,	FREQUENCY PLAN	COMPLETE EXCEPT SPURIOUS ANALYSIS
4.	CODE VCO	COMPLETE
5,	CUSTOM LSI	STARTED
6,	ANTENNA	COMPLETE EXCEPT COST
7.	POWER SUPPLY	STARTED
8,	DATA DEMODULATOR	COMPLETE
9,	MEMORY SELECTION	STARTED (NMOS CANDIDATE)
LO,	PROCESSOR SELECTION	STARTED (8086 CANDIDATE)
1.	SINGLE VS DUAL CHANNEL	NOT STARTED
2.	MECHANICAL DESIGN	CANDIDATES AND ALTERNATIVES IDENTIFIED

FREQUENCY STANDARD TRADE-OFFS

- LARGE FREQUENCY VARIATIONS WITH TEMPERATURE CAUSE
 LONG ACQUISITION TIMES.
- TEMPERATURE STABILITY IS DRIVING FACTOR IN COST.
- OVENIZED OSCILLATOR REQUIRES HIGH POWER (3-6W)
 AND LONG WARM-UP TIME (5-10 MIN.).
- TCXO REQUIRES LITTLE POWER (200 MW) AND HAS QUICK
 WARM-UP (10 SEC.).
- CAN SUFFICIENT STABILITY BE OBTAINED AT LOW COST?
- CAN TCXO BE USED?

FREQUENCY STANDARD COST VS. STABILITY

FREQUENCY STANDARD TRADE-OFF RESULTS

- BASELINE TARGET 1 PPM TCXO.
 - LOW COST, PAST "KNEE" OF CURVE
 - ACQUISITION TIME NOT EXCESSIVE
- ONLY RELATIVE COSTS AVAILABLE.
- COST FOR HIGH-VOLUME AUTOMATED PRODUCTION NOT KNOWN.

VCXO AND DIGITAL CARRIER VFO DESIGNS

CARRIER VFO TRADE-OFFS

- CARRIER MUST BE TRACKED BY PLL OR AFC.
- DIGITAL VFO (RATE MULTIPLIER VFO) VS. VCXO.
- WHAT IMPACT DOES EACH HAVE ON FREQUENCY PLAN?
- WHAT IS INVOLVED IN VFO CONTROL CIRCUITRY?
- HOW DOES VCXO "SETABILITY" IMPACT COST?
- WHAT IS COST FOR EACH?

DIGITAL FREQUENCY GENERATION

A. SINGLE RATE MULTIPLIER (ASSUME FAST RATE - R1)

- Value in accumulator increases by R_1 on each cycle of f_0 , generating R_1 carries for every 2^N cycles of f_0 .
- When carry occurs, modulus is changed to m.
- In 2^N cycles of f_0 there will be R_1 counts of m and (2^N-R_1) counts of n, yielding an average count of:

$$\frac{1}{c} = \frac{R_1 m + (2^N - R_1)n}{2^N} = \frac{R_1}{2^N} (m - n) + n$$

• The average count will be between n and m.

B. DUAL RATE MULTIPLIER

- Slow rate multiplier increments once every P cycles of f and generates R carries every 2^Mp cycles of f.
- When slow accumulator generates a carry, fast rate changes to R₂ on a "one-shot" basis.
- As a result, fast rate multiplier will generate slightly more carries if $\rm R_2$ is larger than $\rm R_1$, and less if $\rm R_2$ is smaller than $\rm R_1$.
- The average count for the dual rate multiplier can be shown to be:

$$\overline{c} = n + \frac{R_1}{2^N} (m - n) + \frac{R}{2^M} \frac{(R_2 - R_1) (m - n)}{2^N p}$$

VCXO AND DIGITAL VFO PERFORMANCE CONTRASTS

OS1110HIHO	<u>vcxo</u>	DIGITAL VFO
LINEARITY	DIFFICULT TO OBTAIN	ANALYTICALLY PREDICTABLE NON-LINEARITY
STABILITY	DIFFICULT TO OBTAIN	DETERMINED SOLELY BY REFERENCE
DIGITAL PRESET	REQUIRES HIGH-ACCURACY D/A	DIRECT
ANALOG FILTER INPUT	DIRECT	REQUIRES LOW-ACCURACY A/D
SUPPLY VOLTAGE(S)	MAY REQUIRE + AND - VOLTAGE, OR + VOLTAGE GREATER THAN 10V	SINGLE +5V SUPPLY
POWER	LOW - APPR. 100 MW.	HIGH5 TO 1 WATT
OUTPUT FREQUENCY	CONTINUOUSLY VARIABLE	DISCRETE
SPECTRAL PURITY	SPURIOUS-FREE	MANY SPURIOUS OUTPUTS
CUSTOM LSI	NOT APPLICABLE	YES

FREQUENCY PLAN ALTERNATIVES

DIGITAL VFO VS. VCXO CIRCUITRY

VCXO COST VS. SETABILITY

CARRIER VFO TRADE-OFF RESULTS

- P BOTH APPROACHES ALLOW RELATIVELY SIMPLE FREQUENCY PLANS.
 - DIGITAL VFO IMPACTS SYNTHESIZER (EXTRA DIVIDE-BY-FOUR).
- YCXO SUPPORT CIRCUITRY INEXPENSIVE BUT REQUIRES ADJUSTMENT.
- NON-OVENIZED VCXO CAN PROVIDE ADEQUATE "SETABILITY".
- COST (OFF-THE-SHELF):

-DIGITAL VFO: \$15 + \$6 SUPPORT = \$21

-VCXO: ? + \$3 SUPPORT = ?

FINAL DECISION WILL DEPEND UPON REALISTIC, HIGH QUANTITY
 VCXO COST ESTIMATE.

ANTENNA ELEMENT DESIGNS

REQUIREMENTS: - LOW COST

- AUTOMOTIVE MOUNTING

- OMNI PATTERN

- GAIN 2 -2 DBIC

- NF_{SYS} ≤ 5 DB

DESIGNS:

- VERTICAL STUB
- SINGLE ELEMENT MICROSTRIP
- MICROSTRIP PATCH
- MULTI-ELEMENT MICROSTRIP
- BALL & STEM
- CONICAL SPIRAL
- VERTICAL HELIX

POWER SUPPLY

SERIES REGULATOR

- SIMPLE
- LOW COST
- POOR EFFICIENCY
- SINGLE POLARITY ONLY
- RESTRICTS DESIGN FREEDOM
- LIMITED ISOLATION

SWITCHING REGULATOR

- MORE COMPLEX
- HIGHER COST
- GOOD EFFICIENCY
- DUAL POLARITY
- IMPROVED DESIGN FREEDOM
- IMPROVED ISOLATION
- CHOICE YET TO BE MADE

COST ESTIMATING

- DESIGN HARDWARE WITH STANDARD PARTS WHERE POSSIBLE.
- GENERATE PARTS LIST AND SCHEMATIC.
- ESTIMATE BOARD AREA, POWER CONSUMPTION AND COST.

HARDWARE DESIGN EXAMPLE

SURFACE VEHICLE NAVIGATION SYSTEM

CUSTOM LSI CANDIDATES

- CODE GENERATORS, LATCHES AND CONTROL.
- CODE VFO'S, LATCHES AND CONTROL.
- DIGITAL CARRIER VFO, LATCHES AND PRESET.
- * TIMING GENERATOR.

CUSTOM LSI TRADE-OFFS

- IDENTIFY CANDIDATE FUNCTIONS.
- FUNCTIONAL DEFINITION (LOGIC DIAGRAMS).
- FUNCTIONAL PARTITIONING (INDIVIDUAL CHIP FUNCTIONS).
 - SPEED REQUIREMENTS
 - LOGIC CELL COUNT
 - CHIP SIZE
- EVALUATE PARTITIONING OPTIONS.

CODE GENERATOR LOGIC

CHIP SIZE COMPARISONS

·	LARGE CHIP	SMALL CHIP
• FUNCTIONAL CAPABILITIES	HIGH	LOW
• BOARD AREA REQUIREMENT	LOW	HIGH
• INTERCONNECT REQUIREMENTS	LOW	HIGH
• POWER DISSIPATION	HIGH	LOW
• YIELD (COST)	LOW (HIGH)	HIGH (LOW)

CODE LSI PARTITIONING

DIGITAL CARRIER VFO LSI

PRELIMINARY SIZE AND POWER ESTIMATES

	FUNCTION	BOARD AREA	POWER
1.	RF PREAMP	6	0.2
2.	SYNTHESIZER	9	0.5
3,	FREQ STD*	4	0.2
4.	RF TRANSLATOR	5	0,4
5,	DATA CHANNEL	30	3.0
6,	TRACK CHANNEL	30	3.0
7.	RCVR CONTROLLER	6	2.1
. 8.	NAV PROCESSOR	40	11,6
9,	LOW-POWER TIME SOURCE	2	-
10.	POWER SYSTEM**	<u>~~15~</u>	10,5
		147 in ²	31,5 watts

^{*} _ TCXO, 2" x 2" x 1"

^{** 50%} EFF, 3" x 5" x 1"

FINAL COST DETERMINATION

- ROCKWELL COST ESTIMATE BASED ON AVIONICS PRODUCTION
 - COMPLETE TRADE STUDIES
 - COMPLETE CIRCUIT DIAGRAMS
 - DEVELOP PARTS LISTS
 - DETERMINE PARTS LISTS
 - COMPLETE MECHANICAL DESIGN
 - DETERMINE MECHANICAL COSTS
 - OBTAIN FACTORY LABOR COSTS
- GM HIGH-VOLUME COST ESTIMATE REQUIRES ASSISTANCE IN
 - DETERMINING HIGH-VOLUME DESIGN TRADE-OFFS
 - AUTOMATED TEST AND CIRCUIT ADJUSTMENT
 - DETERMINING HIGH-VOLUME PARTS COST
 - AUTOMATED ASSEMBLY TECHNIQUES

RISK AREAS

- MEMORY COST
- CUSTOM LSI COST & PERFORMANCE
- FREQUENCY STANDARD STABILITY
- µP THRUPUT
- ONE-BIT CODE POSITION DETECTOR
- ANTENNA COST

BASELINE DESIGN COMPLETION

- COMPLETE TRADE-OFF STUDIES
- COMPLETE ELECTRICAL DESIGN AND GENERATE
 LIST-OF-MATERIALS
- CHOOSE CANDIDATE MECHANICAL DESIGN
- WORK WITH COLLINS DESIGN-TO-COST SECTION TO COME
 UP WITH LOW QUANTITY PRODUCTION COSTS
- WORK WITH GM TO DEVELOP HIGH VOLUME COST ANALYSIS
- COMPLETE RISK ASSESSMENT
- CONDUCT FINAL REVIEW
- DEVELOP FINAL DESIGN DEFINITION

ALTERNATE FUNCTIONAL DESIGN CHOICES

- DIGITAL CORRELATOR
- SINGLE CHANNEL SEQUENTIAL
- NONVOLATILE ELECTRONICALLY ERASABLE PROM
- LOW-POWER PROCESSOR
- SAW RESONATOR OSCILLATOR
- DIRECT CONVERSION RECEIVER
- MULTIPLEXED CODE GENERATOR
- POWER SUPPLY

TECHNICAL SUMMARY

- MAJOR EFFORT IS MINIMUM-COST DESIGN APPROACH
- BASELINE DESIGN NOW IN LOW-COST DESIGN CYCLE
- HARDWARE DESIGN NEARING COMPLETION
- MAJOR HARDWARE COST ELEMENTS IDENTIFIED
- ANTENNA SELECTION MADE
- LSI LOOKS FEASIBLE FOR MAJOR PORTIONS OF RECEIVER HARDWARE
- PRELIMINARY SIZE AND POWER ESTIMATES COMPLETED
- FINAL REPORT OUTLINE DEVELOPED
- ENVIRONMENTAL REQUIREMENTS NEED FINALIZATION
- MECHANICAL DESIGN CANDIDATES DEVELOPED AND AWAITING EVALUATION FOR HIGH VOLUME PRODUCTION
- GM HELP NEED FOR HIGH VOLUME FINAL COST DETERMINATION

SURFACE VEHICLE NAVIGATION SYSTEM

FINAL REPORT OUTLINE

- INTRODUCTION
- **EXECUTIVE SUMMARY**
- **GPS SYSTEM OVERVIEW**
- SYSTEM DESIGN REQUIREMENTS
- 5. SYSTEM DESIGN ISSUES
- GPS SIGNALS
- 7. LOW-COST DESIGN APPROACH
- PRELIMINARY SYSTEM DEFINITION
 - ANTENNA
 - RECEIVER
 - PROCESSOR
 - MECHANICAL
- ANTENNA DESIGN
- 10. RECEIVER DESIGN

- 11. PROCESSOR HARDWARE DESIGN
- 12. PROCESSOR SOFTWARE DESIGN
- 13. GPS SET POWER SYSTEM
- 14. MECHANICAL DESIGN
- 15. INTERFACE DEFINITIONS
- 16. COST ANALYSIS
- 17. TECHNOLOGY SUMMARY
- 18. TRADE-OFF STUDY SUMMARY
- 19, SYSTEM SPECIFICATION SUMMARY
- 20. SYSTEM PERFORMANCE SUMMARY
- 21. PHASE II & III PLANNING
- 22. **APPENDIX**

PERSONNEL TASKS AND MANNING LEVELS

NAME	TASKS	% OF REMAINING EFFORT
S.F. RUSSELL	- PROJECT MANAGER - SYSTEM CONCEPT - TECHNOLOGY - COST ANALYSIS - ANTENNA DESIGN - PHASE II & III PLANNING - FINAL REPORT	21
L.M. NIGRA	 HARDWARE DESIGN LOW-COST ANALYSIS TRADE STUDIES TECHNOLOGY RECEIVER DESIGN 	27
R.W. WALSTROM	- PROCESSOR HARDWARE - PROCESSOR SOFTWARE - COST ANALYSIS - TRADE STUDIES	27
P.L. ROBERTS	- MECHANICAL DESIGN - ENVIRONMENT - LOOKING MODEL	20
R.H. POOL	- SYSTEM CONSULTING	<u>5</u> 100%

SCHEDULE AND MANNING

- PROGRAM COMPLETION RATE
- PERSONNEL TASKS AND MANNING LEVELS

PROGRAM COMPLETION RATE

LOW-COST GPS STUPY

internal Letter

Date: • 21 May 1980

TO:

· L. E. DeGroot

. Vime, Organization, Internal Address)

N. B. Hemesath 124-222
 R. H. Pool 124-222

R. H. Pool 124-222

Planning to Complete Bockwell International

No:

FROM: (Name, Organization, Internal Address, Phone)

• S. F. Russell

124-222X4911

Subject: SVNS Planning, Schedule, and Cost for Program Completion.

107-142

Project planning for the remaining SVNS effort has been completed and reviewed as of 9 May. Enclosed are the data sheets that summarize this effort. Attachment I is the cost summary for 39-0548 and actual work order costs through April. The accounting people have not revised the work order for 39-0548 to reflect the increase in G&A and R&D but all of my planning is based on a reduction in hours. Notice that the dollar reduction is only 13% but, due to higher-than-estimated rates, the actual reduction in effort is 29%. Engineering cost charts showing rate-of-expenditure are included in Attachment II. These will be used to monitor spending rates on the EPs. Attachment III summarizes the hourly charges by month and breaks down the hours into individual work tasks per man. Attachment IV is a master schedule-to-complete showing major tasks. Finally, Attachment V is the group of monthly planning charts that show manning levels and major milestones.

Stone &, Russell

S. F. Russell

SFR/mm

Attachment

-56kinineriya Hormoniyasa Məyoliyanı

ATTACHMENT I

COST SUMMARY AND WORK ORDER COSTS (ACTUALS)

COST SUMMARY 39-0548

PRIOR	Hours 4679	\$ 137,538	<u>Rate</u> \$ 29.39	1.25
REVISED	3845	119,126	30,98	1.35
ACTUAL (END OF)	1450.5	51,77 5	35,69	1.23
REMAINING	1877	67,351	35,69	

WORK ORDER COSTS (ACTUALS)

39-0548

BUDGET: \$ 119, 126

FUGR COST Revised)

				B	NOK COS/	4,6	01700
MONTH	i	RENT	TO	DATE	BUDGET	RATE	64
	Hours	Dollars	HOURS	Pollars	BALANCE	per Hr	PACTOR
-							
OCTU	301.2	10,080	301,2	10,080	109,046	33,49	1.15
DEC	108.8	5,013	410.	15,093	104,033	46.08	1.65
JAN	245.5	10,916	655.5	26,009	93, 117	44,46	1,55
FEB	318,7	10,034	974,2	36,044	83,082	31,48	1,02
MAR	476,3	15,731	1450,5	51,775	67,351	33.05	1.12
APRIL	406.3	13,906	1856.8	65,681	54,255	34,23	1.30
MAY				:			
JUNE							
JULY			:				
AUG							
SEPT				ļ			

WORK ORDER COSTS (ACTUALS) 39-7053

BUDGET: \$29,900 ENGR COST

MONTH	CUA	RRENT	70	DATE	BUDGET	RATE	ОН
	Hours	DOLLARS	HOURS	POLLARS	BALANCE		FACTOR
~ا% مير	<i>8</i> 8,5	2,016	88.5	2,016	27,884	22,78	1.15
DEC	105.	3,292	193,5	5,309	24, 591	31.35	1.15
JAN	158.5	3,431	3 <i>5</i> 2,	8,741	21,159	21.65	0,85
FEB	122.	2,992	474,	11,734	18, 166	24,52	1.10
MAR	12 1 ,	3,286	598,	15,021	14, 879	26,50	1.05
APRIL	135.	3,388	733.	18,409	11, 491	25.10	1.15
MAY							
ひりんほ							
JULY							
Auc							
SEPT							
Au G							

ATTACHMENT II

ENGINEERING COST CHARTS

ENGINEERING COST

ATTACHMENT III

HOURLY CHARGES BY MONTH

AND

INDIVIDUAL WORK TASKS

SFR 30 APRIL 1980

HO	Orly	Charg	es by	Month		
	MAY	JUNE	2017	AUG	SEPT	TOTAL
Russell	132	120	54	126	96	528
NIGRA	132	122	100	124	48	526
Walstrom	132	126	50	84	18	410
Roberts	88	83	94	84	60	408
Hemesath	4	10	20	10	8	<i>5</i> 2
Pool	15	60	46	8	24	150
MAYER						

SCHEDULE

5FR 30 APRIL 1980

MAY1 to Sept 26

R. W. Walstrom

Task	HRS
Complete Investigation of Processor Chips	52
LSI Design Assistance	10
Preliminary Cost Estimate	15
Develop Software Concept	50
Determine Memory Size	65
Write Draft Report	60
Prepare Hardwave Diagrams	30
Write Final Report	120
Final Report Corrections	18

Total

420

R.W. Walstrom

Processor

week	DATE	39- 054 8	TASK S
27	4-4	31 Hes	
28	4-11	40 ↓	
29	4-18	40	
30	4-25		· ·
31	5-2	- [12]	PROCESSOR CHIP INVESTIGATION
32	5-9	30	PROCESSOR CHIP TUVESTIGATION
33	5-16	30	PROCESSOR CHIP INVESTIGATION (IN)
34	5-23	30	PRELIM COST EST (15) CONCEPT (5)
35	5-30	30	SOFTWARE CONCEPT (25) MBMORY SIZE (6)
36	6-6	30	MEMORY SIZE
37	6-13	30	MEMORY SIZE
38	6-20	30	PREPARE HARDWARE DIAGRAMS
39	6-27	30	WRITE FIRST PRAFT
40	7-4	30	Write FIRST DRAFT
41	7-11	٥	VACATION
42	7-18	0	VACA+ION
43	7-25	20	WRITE FINAL REPORT
44	8-1	20	WRITE FINAL REPORT
45	8-8	20	WRITE FINAL REPORT
46	8-15	20	WRITE FINAL REPORT
47	8-22	20	WRITE FINAL REPORT
48	8-29	20	WRITE FINAL REPORT
49	9-5	0	
50	9-12	18	FINAL REPORT CORRECTIONS
51	9-19	0	
52	9-26	0	

MAY	132	HRS
JUNE	126	11
JULY	<i>5</i> 0	4.5
2004	84	
SEPT	18	+)

P. L. Roberts

MAY 1 to Sept 26	
TASK	HRS
Cost Estimating	50
Heat Analysis	30
Card Area Estimate	10
Trade Off Analysis of designs	40
Write Draft Report	30
EMI Shield Design for Card (6-23/7-4)	20
Design Looking Model (7-7/8-4)	70
Write Final Report (8-4/8-22)	60
Model Shop coordination (8-11/8-29)	20
Build Looking Model (9-2/9-12)	60
Contingency and other	30

Total 420 HRS

P. L. Roberts Mechanical Design

week	DATE	39-0548	745K5
27	4-4	-	
28	4-11		
29	4-18	-	BOX DESIGN
30	4-15		BOX DESIGN
31	5-2	20 Hzs	COST ESTIMATING (10) CONTINGENCY
32	5-9	20 ↓	COST ESTIMATING (10) & OTHER (30)
33	5-16	20	COST ESTIMATING (10)
34	5- 3 3	20	COST ESTIMATING
35	5-30	20	HEAT ANALYSIS (10) CARD AREA ESTIMATE (10)
36	6-6	20	HEAT ANALYSIS
37	6-13	20	TRADE OFF ANALYSIS
38	6-20	20	TRADE OFF ANALYSIS
39	6-27	22	EMI DHIELD DESIGN (12) WRITE DRAFT REPORT (10)
40	7-4	18	MAITE PRAFT REPORT (10)
41	7-11	20	WRITE DRAFT REPORT (10) DESIGN LOOKING MODEL (10)
42	7-18	20	DESIGN LOOKING MODEL
43	7-25	20	DESIGN LOOKING- MODEL
44	8-1	20	DESIGN LOOKING MODEL
45	8-8	20	FINAL REPORT WRITING
46	8-15	30	FINAL REPORT WRITING (25)
47	8-22	20	FINAL REPORT WRITING (15) MODEL SHOP COORDINATION (5)
48	8-21	10	MODEL SHOP COORDINATION
49	9-5	30	BUILD LOOKING MODEL
50	9-12	30	BUILD FOOKING WODEF
51	9-19	٥	
52	9-26	0	

YAM	88	Hrs
JUNE	82	H
JULY	94	1,
AUL	84	11
SEPT	60	17

L. M. Nigra

MAY 1 TO SEPT 26

Li 1911 TOTAL	
TASIC	HRS
Complete Schematics and Parts Lists for the Baseline Design (5-1/5-9)	42
LSI Design and Cost Estimates (5-12/5-23)	40
Design-to-Cost Analysis (5-19/5-23)	20
Family Tree Input to GM (5-26/6-6)	40
Power Requirements	12
Alternate Designs	60
Write Draft Report	64
(6-23/7-4) TRADE OFF ANALYSIS (7-14/8-1)	70
RISK ANALYSIS (7-24/7-25)	10
Write Final Report	120
Final Report Review	24
Final Corrections (9-8/9-11)	24

Total 526

. L. M. NIGRA

Electrical Design

weck	DATE	39-7053	39-0548	TASK
27	4-4		_	
28	4-11		-	
29	4-18		-	—
30	4-25		-	
31	5-2	- [12]	_	FINAL BASELINE DESIGN COMPLETE PARTS LISTS (10)
32	5-9	30	-	COMPLETE PARTS LISTS
33	5-16	30	-	LSI DESIGN & COST
34	5-23	30	-	DESIGN - TO - COST ANALYSIS (20)
35	5-30	30	-	FAMILY TREE
36	6-6	22	-	FAMILY TREE (10) POWER REQUIREMENTS (12)
37	6-13	30	_	ALTERNATE DESIGNS
38	6-20	30	~	11
39	6-27	34	_	WRITE DRAFT REPORT
40	7-4	25	5	N 10 Ca
41	7-11	0	0	VACATION
42	7-18	25	5	TRADE -OFF ANALYSIS TRADE-OFF ANALYSIS (20)
43	7-25	25	5	RISK ANALYSIS (10)
44	8-1	15	5	TRADE-OFF ANALYSIS
45	8-8	25	5	WRITE FINAL REPORT
46	8-15	25	5	(1))) (t)
47	8-22	25	5	11 11
48	8-29	25	5	11 11 11
49	9-5	20	4	FINAL REPORT REVIEW
50	9-12	24	0	FINAL CORRECTIONS
51	9-19	0	0	
52	9-26	0	٥	

182 44

MAY	132	HRS
JUNE	122	
JULY	100	*•
Au G	124	Ł,
SEPT	48	t,

5. F. Russell

SYSTEM

meck	DATE	39-0548	TASK
27	4-4	6	
28	4-11	0	
29	4-18	22	_
30	4-25	26	
31	5-2	30	SCHEDULE PLANNING PREPARE DRAFF GUTLINE
32	5-9	30	PREPARE DRAFT OUTLINE
33	5-16	30	L-BAND DESIGN PREPARE DRAFT OUTLINE
34	5-23	30	DESIGN-TO-COST ANALYSIS
35	5-30	30	POWER INTERRUPT ANALYSIS REVISE OUTLINE
36	6-6	30	POWER REQUIREMENTS PLTERNATE DESIGNS
37	4-13	30	ALTERNATE DESIGNS
38	6-20	30	WRITE FIRST DRAFT
39	6-27	30	WRITE FIRST DRAFT
40	7-4	0	VACATION
41	フーロ	0	VACATION
42	7-18	0	VACATION
43	7-25	30	RISK ANALYSIS PHASE I & III PLANNING
44	8-1	30	PHASE I \$ III PLANNING
45	8-8	30	WRITE FINAL REPORT
46	8-15	30	WRITE FINAL REPORT
47	8-22	30	WRITE FINAL REPORT
48	8-29	30	WRITE FINAL REPORT
49	9-5	30	FINAL REPORT REVIEW
50	9-12	26	FINAL REPORT CORRECTIONS
51	9-19	10	ASSIST FINAL REPORT TYPING
52	9-26	22	REVIEW AND SUBMIT TO PUBS

MAY	132	Hes
JUNE	120	*1
むしし 人	54	4.1
AU G	126	Li
SEPT	96	1.

SVNS WORK SCHEDULE MAY 1 to SEPT 26

R. H. Pool

Task		Hours
Outline Review (5-19/5-22)		12
Alternate Pesigns		60
Review First Draft (7-14/7-25)		26
Phase II & III Planning		20
GM VISIT		8
FINAL REPORT REVIEW (9-2/9-8)		24
	Total	150 HRS

ATTACHMENT IV

MASTER SCHEDULE-TO-COMPLETE

ATTACHMENT V

MONTHLY PLANNING CHARTS

MAY

Russell	3/4	132 Hrs
Nigra	3/4	132 Hrs
Walstrom	3/4	132 HRS
Roberts	1/2	88 HRS
Pool	- Vz	12 HR5
Mayer		
Hemesath	OUTLINE REVIEW	4 HRS

JUNE

JULY

Russell	3/4	54 Hrs
Nigra	1 3/4 1/2	100 HRS
Walstrom	1	50 HRS
Roberts	3/4 1/2	94 Hrs
Pool	1/2	46 HRS
Mayer		
Hemesath	DRAFT REVIEW PHASE II \$ III. PLANNING-	20 HES

AUG

Russell	3/4-] 126 Hrs
Nigra	1/2 3/4] 124 Hrs
Walstrom	1/2] 84 Hrs
Roberts	1/2 3/4 1/2 1/4] 84 Hrs
Pool	1	8 HR5
Mayer		
Hemesath	GM VISIT	10 HRS

SEPT 168 HRS TYPING FINAL FINAL CORRECTIONS/ REVIEW 9-12 9-2 9-26 LOOKING MODEL FINISHED SECOND PRAFT COMPLETED SUBMIT REPORT BUILD LOOKING MODEL 96 HRS 1/4 Russell Nigra 48 HRS 3/4 Walstrom 18 HRS 3/4 Roberts 60 HRS 3/4 POOL 24 HRS MAYER 24 HRS HEMESATH 8 HRS 278 HRS