

planetmath.org

Math for the people, by the people.

examples for Hensel's lemma

Canonical name ExamplesForHenselsLemma

Date of creation 2013-03-22 15:08:36 Last modified on 2013-03-22 15:08:36

Owner alozano (2414) Last modified by alozano (2414)

Numerical id 6

Author alozano (2414)

Entry type Example
Classification msc 12J99
Classification msc 11S99
Classification msc 13H99

Example 1. Let p be a prime number greater than 2. Are there solutions to $x^2 + 7 = 0$ in the field \mathbb{Q}_p (the http://planetmath.org/PAdicIntegersp-adic numbers)? If there are, -7 must be a quadratic residue modulo p. Thus, let p be a prime such that

 $\left(\frac{-7}{p}\right) = 1$

where $(\frac{\cdot}{p})$ is the Legendre symbol. Hence, there exist $\alpha_0 \in \mathbb{Z}$ such that $\alpha_0^2 \equiv -7 \mod p$. We claim that $x^2 + 7 = 0$ has a solution in \mathbb{Q}_p if and only if -7 is a quadratic residue modulo p. Indeed, if we let $f(x) = x^2 + 7$ (so f'(x) = 2x), the element $\alpha_0 \in \mathbb{Z}_p$ satisfies the conditions of the (trivial case of) Hensel's lemma. Therefore there exist a root $\alpha \in \mathbb{Q}_p$ of $x^2 + 7 = 0$.

Example 2. Let p = 2. Are there any solutions to $x^2 + 7 = 0$ in \mathbb{Q}_2 ? Notice that if we let $f(x) = x^2 + 7$, then f'(x) = 2x and for any $\alpha_0 \in \mathbb{Z}_2$, the number $f'(\alpha_0) = 2\alpha_0$ is congruent to 0 modulo 2. Thus, we cannot use the trivial case of Hensel's lemma.

Let $\alpha_0 = 1 \in \mathbb{Z}_2$. Notice that f(1) = 8 and f'(1) = 2. Thus

$$|8|_2 < |2^2|_2$$

and the general case of Hensel's lemma applies. Hence, there exist a 2-adic solution to $x^2+7=0$. The following is the http://planetmath.org/PAdicCanonicalForm2-adic canonical form for one of the solutions:

$$\alpha = 1 + 1 \cdot 2^3 + 1 \cdot 2^4 + \dots = \dots 11001$$