

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2021-1

[Cod: CM4F1 Curso: Análisis y Modelamiento Numérico I]

Solucionario Sexta Práctica Calificada

- 1. Determine el valor de verdad de las siguientes proposiciones. Justificar, en caso sea verdadero enuncie el resultado realizado en clase o su demostración breve como consecuencia de lo realizado en clase. De otro lado, en caso sea falso dar un *contraejemplo*:
 - (a) [1 pto.] El método de interpolación de Lagrange es convergente, esto es similar a que el error de interpolación tiende a cero a medida que los puntos crecen para todo x dentro del intervalo considerado I.
 - (b) [1 pto.] El método de la potencia inversa es convergente para toda matriz.
 - (c) [1 pto.] El método de la potencia escalado es convergente para toda matriz.
 - (d) [1 pto.] El círculo de Gershgorin es un algoritmo que converge en los valores propios.

Solución:

- (a) (Falso) Esto es falso, realizado en clase.
- (b) (Verdadero) Se enuncia el teorema realizado en clase.
- (c) (Verdadero) Se enuncia el teorema realizado en clase.
- (d) (Falso) No es un algoritmo.
- 2. El producto de las edades actuales de dos amigos es 42 y dentro de 5 años será 132. Ayudale ha saber que edades tienen los amigos.
 - (a) [1 pto.] Modele el problema.
 - (b) [1 pto.] Determine la solución usando el método de Newton con $x_0 = (3 \ 4)^T$ y $tol = 10^{-5}$.
 - (c) [1 pto.] Determine la solución usando el método de Cuasi Newton con $x_0 = (3 \ 4)^T$ y $tol = 10^{-5}$.
 - (d) [1 pto.] Indique que método recomienda.

Solución:

(a) [1 pto.] Sean:

x: Edad del amigo 1.

y: Edad del amigo 2.

Las funciones generadas son:

$$f_1(x,y) = x \cdot y - 42 = 0$$

 $f_2(x,y) = (x+5) \cdot (y+5) - 132 = 0$

(b) [1 pto.] La matiz Jacobiana y su inversa son:

$$JF(x,y) = \left[egin{array}{ccc} y & x \ y+5 & x+5 \end{array}
ight] \ \wedge \ JF(x,y)^{-1} = rac{1}{5(y-x)} \left[egin{array}{ccc} x+5 & -x \ -y-5 & y \end{array}
ight]$$

La tabla de método de Newton es:

k	x_k	y_k	Error
0	3	4	
1	15	-2	8
2	10.76470588235294201	2.23529411764705888	3.76470588235294201
:			
8	7.00000028345050396	5.99999971654949427	0.00000028345050573

(c) [1 pto.] La tabla del método de Cuasi Newton es:

$oldsymbol{k}$	x_k	y_k	Error
0	3	4	3
1	15	-2	9
2	3.38709677419353916	9.61290322580645018	2.61290322580646084
:			
10	5.99980530025116909	7.00019469974883357	0.00019469974883357
11	5.99999900259624930	7.00000099740375514	0.00000099740375514

- (d) [1 pto.] Se recomienda para el problema el método de Newton, porque se logra la solución en menos iteración.
- 3. La población activa de un país se clasifica en 3 categorías profesionales: técnicos superiores, obreros especializados y obreros no especializados. Así, en cada generación k la fuerza de trabajo del país está caracterizada por el número de personas incluidas en las 3 categorías. Supongamos que:
 - (a) Cada trabajador activo sólo tiene un hijo.
 - (b) El 50% de los hijos de los técnicos superiores lo son también, el 25% pasa a ser obrero especializado y el 25% restante es obrero no especializado.
 - (c) Los hijos de los obreros especializados se reparten entre las 3 categorías según los porcentajes 30%, 40% y 30%.

2

- (d) Para los hijos de obreros no especializados las proporciones de reparto entre las categorías son 50%, 25% y 25%.
- (a) [1 pto.] Modele el problema.
- (b) [1 pto.] Determine el polinomio característico, usando el método de Krylov.
- (c) [2 pts.] Determine los valores y vectores propios usando los método dados en clase.

Solución:

(a) [1 *pto.*] Sean

x Trabajadores técnico superior

y Trabajadores obreros especializados

z Trabajadores obreros no especializados

Donde:

$$x^{k+1} = \begin{bmatrix} 0.50 & 0.30 & 0.50 \\ 0.25 & 0.40 & 0.25 \\ 0.25 & 0.30 & 0.25 \end{bmatrix} x^k$$

Con

$$x^{(0)} = \left[egin{array}{c} 1 \ 1 \ 1 \end{array}
ight]$$

(b) [1 pto.] Por el método de Krylon se tiene:

$$p(A) = A^3y + b_1A^2y + b_2Ay + b_3y.$$

Luego:

$$z = Ay = A egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} = egin{bmatrix} 0.5 \ 0.25 \ 0.25 \end{bmatrix} z_1 = Az = egin{bmatrix} 0.45 \ 0.2875 \ 0.2625 \end{bmatrix} Az_1 = egin{bmatrix} 0.4425 \ 0.293125 \ 0.264375 \end{bmatrix}.$$

Entonces, el sistema ha resolver es:

$$\left[egin{array}{ccc} 0.45 & 0.5 & 1 \ 0.2875 & 0.25 & 0 \ 0.2625 & 0.25 & 0 \ \end{array}
ight] \left[egin{array}{c} b_1 \ b_2 \ b_3 \ \end{array}
ight] = \left[egin{array}{c} -0.4425 \ -0.293125 \ -0.264375 \ \end{array}
ight]$$

por el método de Eliminación de Gauss, tenemos:

$$\Rightarrow \left[egin{array}{c} b_1 \ b_2 \ b_3 \end{array}
ight] = \left[egin{array}{c} -0.15 \ 0.15 \ 0 \end{array}
ight].$$

Finalmente, el polinomio característico es:

$$p(\lambda) = \lambda^3 - 1.15\lambda^2 + 0.15\lambda.$$

(c) [2 pts.] Por el método de potencia se tiene, la tabla es:

\boldsymbol{k}	$y1_k$	$y2_k$	$y3_k$	$\lambda_1(k)$	$x1_k$	$x2_k$	$x3_k$	Error
0					1	1	1	
1	1.3	0.9	0.8	1.3	1	0.6923077	0.6153846	0.3846154
2	1.0153846	0.6807692	0.6115385	1.0153846	1	0.6704545	0.6022727	0.0218531
3	1.0022727	0.6687500	0.6017045	1.0022727	1	0.6672336	0.6003401	0.0032210
4	1.0003401	0.6669785	0.6002551	1.0003401	1	0.6667517	0.6000051	0.0004819
5	1.0000510	0.6667134	0.6000383	1.0000510	1	0.6666794	0.6000077	0.0000723
	:							
9	1.0000000	0.6666667	0.6000000	1.0000000	1	0.6666667	0.6000000	0.0000000

La solución del valor y vector propios son $\lambda_1 = 1$ y $x_1 = [1 \ 0.6666667 \ 0.6]^T$.

Por el método de potencia inversa desplazado con $\overline{\lambda}=-0.1,$ se tiene la tabla siguiente:

\boldsymbol{k}	$y1_k$	$y2_k$	$y3_k$	$\lambda_3(k)$	$x1_k$	$x2_k$	$x3_k$	
0					1	1	1	
1	-1.0909091	1.2727273	2.5454545	2.5454545	-0.4285714	0.5000000	1.0000000	1.4
2	-7.1038961	1.0259740	7.0519481	-7.1038961	1.0000000	-0.1444241	-0.9926874	1.9
3	9.7171348	-0.4530497	-9.3887319	9.7171348	1.0000000	-0.0466238	-0.9662037	0.0
4	9.7086394	-0.1748338	-9.5454670	9.7086394	1.0000000	-0.0180081	-0.9831931	0.0
5	9.8635791	-0.0709403	-9.7937307	9.8635791	1.0000000	-0.0071921	-0.9929186	0.0
	:							
13	9.9999053	-0.0000474	-9.9998579	9.9999053	1.0000000	-0.0000047	-0.9999953	0.0

Donde el valor y vector propios son $\lambda_3 = 0.0000009$ y $x_3 = [1 \ -0.0000047 \ -0.9999953]^T$.

Por el método de potencia inversa desplazado con $\overline{\lambda}=0.25,$ se tiene la tabla siguiente:

\boldsymbol{k}	$y1_k$	$y2_k$	$y3_k$	$\lambda_3(k)$	$x1_k$	$x2_k$	$x3_k$	
0					1	1	1	
1	4.0000000	0.00000000	0.0000000	4.0000000	1.00000000	0.0000000	0.0000000	1
2	-4.0000000	3.3333333	-0.5000000	-4.0000000	1.0000000	-0.8333333	-0.5000000	0
3	-10.6666670	7.222222	3.0000000	-10.6666670	1.0000000	-0.6770833	-0.2812500	0
4	-9.4166667	6.9097222	2.5625000	-9.4166667	1.0000000	-0.7337758	-0.2721239	0
5	-9.8702065	7.3180924	2.5442478	-9.8702065	1.0000000	-0.7494793	-0.2505226	0
	:							
13	-9.9998931	7.4998663	2.5000267	-9.9998931	1.0000000	-0.7499947	-0.2500053	0

Donde el valor y vector propios son $\lambda_2 = \frac{1}{-9.9998931} + 0.25 = 0.149998931$ y $x_2 = [1 - 0.7499947 - 0.2500053]^T$.

Siendo la proporción de la población sanos y enfermos de 1 a 2

- 4. Dado un intervalo I acotado y sean $\{x_i\}_{0 \le i \le n}$ los n+1 nodos de interpolación de I que son equidistantes. Sea f una función con derivada continua en I hasta el orden n+1. Enseguida, consideramos el error de interpolación de Lagrange E_n .
 - (a) [3 pts.] Demuestre que:

$$\max_{x \in I} |E_n(x)| \le rac{\max_{x \in I} |f^{(n+1)}(x)|}{4(n+1)} h^{n+1}$$

donde $h = |x_i - x_{i-1}|$ distancia constante entre los puntos.

(b) [1 pt.] Verifique:

$$\lim_{n\to +\infty}\frac{h^{n+1}}{4(n+1)}=0$$

Deduzca si es posible demostrar que

$$\lim_{n \to +\infty} \max_{x \in I} |E_n(x)| = 0$$

Solución:

(a) Sea x_* tal que $|\theta_{n+1}(x)|$ sea máximo. Entonces dicho valor cae en un intervalo $[x_k, x_{k+1}]$ con lo cual $|(x-x_k)(x-x_{k+1})| \leq \frac{h}{4}$, luego la distancia hacia los otros puntos se pueden acotar por 2h, 3h, etc. De esta forma tenemos que:

$$|\theta_{n+1}(x)| \leq \frac{h^{n+1}(n!)}{4}$$

que reemplazando, obtenemos la desigualdad pedida.

- (b) Tenemos que el intervalo es fijo entonces $h = \frac{b-a}{n}$ con lo cual se verifica el límite. Finalmente, no es posible demostrar el útimo límite, de hecho en clase se ha realizado un contraejemplo.
- 5. [4 pts.] Identifique su grupo de exposición y la sección donde esta matriculado.

14 de Julio del 2021