Training perceptrons

Let's start easy

world's smallest perceptron!

y=wx What does this look like?

world's smallest perceptron!

$$y = wx$$

(a.k.a. line equation, linear regression)

Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i, y_i\}$$
$$y = f_{PER}(x; w)$$

Estimate the parameters of the Perceptron

Given training data:

x	y
10	10.1
2	1.9
3.5	3.4
1	1.1

What do you think the weight parameter is?

$$y = wx$$

Given training data:

y
10.1
1.9
3.4
1.1

What do you think the weight parameter is?

$$y = wx$$

not so obvious as the network gets more complicated so we use

. .

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight w such that \hat{y} gets 'closer' to y

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Before diving into gradient descent, we need to understand ...

Loss Function defines what is means to be close to the true solution

YOU get to chose the loss function!

(some are better than others depending on what you want to do)

Squared Error (L2)

(a popular loss function) ((why?))

$$\ell(\hat{y}, y) = |\hat{y} - y|$$

Zero-One Loss

$$\ell(\hat{y}, y) = \mathbf{1}[\hat{y} = y]$$

L2 Loss

$$\ell(\hat{y}, y) = (\hat{y} - y)^2$$

Hinge Loss

$$\ell(\hat{y}, y) = \max(0, 1 - y \cdot \hat{y})$$

back to the...

World's Smallest Perceptron!

$$y = wx$$

(a.k.a. line equation, linear regression)

function of **ONE** parameter!

Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i,y_i\}$$
 $y=f_{ ext{PER}}(x;w)$ what is this activation function?

Estimate the parameter of the Perceptron

Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i,y_i\}$$
 $y=f_{ ext{PER}}(x;w)$ what is this activation function? linear function! $f(x)=wx$

Estimate the parameter of the Perceptron

Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Let's demystify this process first...

Code to train your perceptron:

Let's demystify this process first...

Code to train your perceptron:

for
$$n = 1 \dots N$$

$$w = w + (y_n - \hat{y})x_i;$$

just one line of code!

Gradient descent

(partial) derivatives tell us how much one variable affects another

1. Slope of a function:

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left[\frac{\partial f(\boldsymbol{x})}{\partial x}, \frac{\partial f(\boldsymbol{x})}{\partial y} \right]$$

 $\left[rac{\partial f(x)}{\partial x}, rac{\partial f(x)}{\partial y}
ight]$ describes the slope around a point

Backpropagation

back to the...

World's Smallest Perceptron!

$$y = wx$$

(a.k.a. line equation, linear regression)

function of **ONE** parameter!

Training the world's smallest perceptron

Now where does this come from?

$$rac{d\mathcal{L}}{dw}$$

...is the rate at which this will change...

$$\mathcal{L} = rac{1}{2}(y-\hat{y})^2$$
 the loss function

... per unit change of this

Let's compute the derivative...

Compute the derivative

That means the weight update for **gradient descent** is:

$$w = w -
abla w$$
 move in direction of negative gradient $= w + (y - \hat{y})x$

Gradient Descent (world's smallest perceptron)

For each sample

1. Predict

- a. Forward pass
- b. Compute Loss

2. Update

- a. Back Propagation
- b. Gradient update

$$\{x_i, y_i\}$$

$$\hat{y} = wx_i$$

$$\mathcal{L}_i = \frac{1}{2}(y_i - \hat{y})^2$$

$$\frac{d\mathcal{L}_i}{dw} = -(y_i - \hat{y})x_i = \nabla w$$
$$w = w - \nabla w$$

Training the world's smallest perceptron

for
$$n = 1 ... N$$

$$w = w + (y_n - \hat{y})x_i;$$

world's (second) smallest perceptron!

Gradient Descent

For each sample

 $\{x_i, y_i\}$

- 1. Predict
 - a. Forward pass
 - b. Compute Loss

we just need to compute partial derivatives for this network

- 2. Update
 - a. Back Propagation
 - b. Gradient update

Derivative computation

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial}{\partial w_1} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\} \qquad \frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial}{\partial w_2} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\}
= -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_2}
= -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1}
= -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_2 x_2}{\partial w_2}
= -(y - \hat{y}) x_1 = \nabla w_1 \qquad = -(y - \hat{y}) x_2 = \nabla w_2$$

Why do we have partial derivatives now?

Derivative computation

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial}{\partial w_1} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\} \qquad \frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial}{\partial w_2} \left\{ \frac{1}{2} (y - \hat{y})^2 \right\} \\
= -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w_2} \\
= -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial \sum_i w_i x_i}{\partial w_1} \\
= -(y - \hat{y}) \frac{\partial w_1 x_1}{\partial w_1} \qquad = -(y - \hat{y}) \frac{\partial w_2 x_2}{\partial w_2} \\
= -(y - \hat{y}) x_1 = \nabla w_1 \qquad = -(y - \hat{y}) x_2 = \nabla w_2$$

Gradient Update

$$w_1 = w_1 - \eta \nabla w_1$$
 $w_2 = w_2 - \eta \nabla w_2$ $= w_1 + \eta (y - \hat{y}) x_1$ $= w_2 + \eta (y - \hat{y}) x_2$

Gradient Descent

For each sample

$$\{x_i, y_i\}$$

- 1. Predict
 - a. Forward pass

$$\hat{y} = f_{\text{MLP}}(x_i; \theta)$$

$$\mathcal{L}_i = rac{1}{2}(y_i - \hat{y})$$
 (side computation to track loss. not needed for backprop)

- 2. Update
 - a. Back Propagation
 - b. Gradient update

two lines now

$$\nabla w_{1i} = -(y_i - \hat{y})x_{1i}$$
$$\nabla w_{2i} = -(y_i - \hat{y})x_{2i}$$

$$w_{1i} = w_{1i} + \eta(y - \hat{y})x_{1i}$$

$$w_{2i} = w_{2i} + \eta(y - \hat{y})x_{2i}$$

(adjustable step size)

We haven't seen a lot of 'propagation' yet because our perceptrons only had <u>one</u> layer...