Regression Vs. ANOVA: Is a main effect really a main effect?

Arthur Capelier-Mourguy

Lancaster University

17th of July 2018

Outline

- Introduction
 - Defining the problem
 - Content of this talk
- 2 Toy Example
 - Using categorical variables only
 - Using continuous variables
- Real Data Example
 - Methods
 - Results
- Conclusion

What you might see

We defined a regression model Score \sim Condition*PrePost.

What you might see We defined a regression model Score \sim Condition + PrePost + Condition: PrePost.

What you might see

We defined a regression model

 ${\tt Score} \sim {\tt Condition} \, + \, {\tt PrePost} \, + \, {\tt Condition:PrePost}.$

We found a significant main effect of Condition, with higher scores in the group A than in the group B.

What you might see

We defined a regression model

Score \sim Condition + PrePost + Condition:PrePost.

We found a significant main effect of Condition, with higher scores in the group A than in the group B.

[Table with parameter estimates and statistics]

What you might see

We defined a regression model

Score \sim Condition + PrePost + Condition:PrePost.

We found a significant main effect of Condition, with higher scores in the group A than in the group B.

[Table with parameter estimates and statistics]

- What does the regression model actually do?
- What do the parameter values in the table mean?
- What does "main effect" mean in the context of a regression?

What you might see

We defined a regression model

 ${\tt Score} \sim {\tt Condition} \, + \, {\tt PrePost} \, + \, {\tt Condition:PrePost}.$

We found a significant main effect of Condition, with higher scores in the group A than in the group B.

[Table with parameter estimates and statistics]

- What does the regression model actually do?
- What do the parameter values in the table mean?
- What does "main effect" mean in the context of a regression?

All stats in R have the same syntax

What to expect from this talk?

What this talk is about

- Demonstrate how ANOVA and regression results differ
- Detail what parameters in a regression model mean and do

What to expect from this talk?

What this talk is about

- Demonstrate how ANOVA and regression results differ
- Detail what parameters in a regression model mean and do

What this talk is not about

- How to use R
- How to build a good mixed-effects model
- The p-value debate

The simulated data with two categorical variables

Assessing stress levels after and before a 30 minutes intervention, "mindfulness meditation" or "video games".

The simulated data with two categorical variables

Assessing stress levels after and before a 30 minutes intervention, "mindfulness meditation" or "video games".

ANOVA results

aov(StressLevel ~	Intervention*PrePost)				
Parameter	Sum Square	F value	Pr(> F)		
Intervention	114381	164.8	< 2e-16		
PrePost	185059	266.7	$< 2\mathrm{e}{-16}$		
Intervention:PrePost	102808	148.2	$< 2\mathrm{e}{-16}$		

ANOVA results

Intervention*PrePost)				
Sum Square	F value	Pr(> F)		
114381	164.8	< 2e - 16		
185059	266.7	$< 2\mathrm{e}{-16}$		
102808	148.2	$<2\mathrm{e}{-16}$		
	Sum Square 114381 185059	Sum Square F value 114381 164.8 185059 266.7		

Regression results

lm(StressLevel ~ Inter	rvention*P	rePost)		
Parameter	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	147.305	3.674	40.099	< 2e-16
Intervention	1.801	5.195	0.347	0.729
PrePost	3.553	5.195	0.684	0.495
Intervention:PrePost	-104.193	7.347	-14.182	$< 2\mathrm{e}{-16}$

ANOVA results

Intervention*PrePost)				
Sum Square	F value	Pr(> F)		
114381	164.8	< 2e - 16		
185059	266.7	$< 2\mathrm{e}{-16}$		
102808	148.2	$<2\mathrm{e}{-16}$		
	Sum Square 114381 185059	Sum Square F value 114381 164.8 185059 266.7		

Regression results

<pre>lm(StressLevel ~ Intervention*PrePost)</pre>					
Parameter	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	147.305	3.674	40.099	< 2e-16	
$Intervention \\ Meditation$	1.801	5.195	0.347	0.729	
PrePostPost Intervention	3.553	5.195	0.684	0.495	
Intervention:PrePost	-104.193	7.347	-14.182	$< 2\mathrm{e}{-16}$	

$$Stress = 147.5 + 2 \times Int + 3.5 \times PrPo - 104 \times Int \times PrPo$$

$$Int = \begin{cases} 0 \text{ if Video Game} \\ 1 \text{ if Meditation} \end{cases}, PrPo = \begin{cases} 0 \text{ if Pre Intervention} \\ 1 \text{ if Post Intervention} \end{cases}$$

$$\begin{aligned} \textit{Stress} &= 147.5 + 2 \times \textit{Int} + 3.5 \times \textit{PrPo} - 104 \times \textit{Int} \times \textit{PrPo} \\ \textit{Int} &= \left\{ \begin{array}{l} 0 \text{ if Video Game} \\ 1 \text{ if Meditation} \end{array}, \ \textit{PrPo} &= \left\{ \begin{array}{l} 0 \text{ if Pre Intervention} \\ 1 \text{ if Post Intervention} \end{array} \right. \end{aligned}$$

For Video Game Pre Int., $Stress = 147.5 + 2 \times 0 + 3.5 \times 0 - 104 \times 0 \times 0$

For Video Game Pre Int., Stress = 147.5

For Meditation Pre Int., $Stress = 147.5 + 2 \times 1 + 3.5 \times 0 - 104 \times 1 \times 0$

For Meditation Pre Int., Stress = 147.5 + 2

$$\begin{aligned} \textit{Stress} &= 147.5 + 2 \times \textit{Int} + 3.5 \times \textit{PrPo} - 104 \times \textit{Int} \times \textit{PrPo} \\ \textit{Int} &= \left\{ \begin{array}{l} 0 \text{ if Video Game} \\ 1 \text{ if Meditation} \end{array}, \ \textit{PrPo} &= \left\{ \begin{array}{l} 0 \text{ if Pre Intervention} \\ 1 \text{ if Post Intervention} \end{array} \right. \end{aligned}$$

For Video Game Post Int., $Stress = 147.5 + 2 \times 0 + 3.5 \times 1 - 104 \times 0 \times 1$

For Video Game Post Int., Stress = 147.5 + 3.5

For Meditation Post Int., $\mathit{Stress} = 147.5 + 2 \times 1 + 3.5 \times 1 - 104 \times 1 \times 1$

For Meditation Post Int., Stress = 147.5 + 2 + 3.5 - 104

For Meditation Post Int., Stress = 147.5 + 2 + 3.5 - 104

For Meditation Post Int., Stress = 147.5 + 2 + 3.5 - 104

Parameter	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	149.106	3.674	40.589	< 2e-16
InterventionVideo Game	-1.801	5.195	-0.347	0.729
PrePostPost Intervention	-100.640	5.195	-19.372	$< 2\mathrm{e}{-16}$
Intervention:PrePost	104.193	7.347	14.182	$< 2e{-16}$

Parameter	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	149.106	3.674	40.589	< 2e-16
InterventionVideo Game	-1.801	5.195	-0.347	0.729
PrePostPost Intervention	-100.640	5.195	-19.372	$< 2\mathrm{e}{-16}$
Intervention:PrePost	104.193	7.347	14.182	$< 2\mathrm{e}{-16}$

Parameter	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	149.106	3.674	40.589	< 2e - 16
InterventionVideo Game	-1.801	5.195	-0.347	0.729
PrePostPost Intervention	-100.640	5.195	-19.372	$< 2\mathrm{e}{-16}$
Intervention:PrePost	104.193	7.347	14.182	$< 2\mathrm{e}{-16}$

Parameter	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	149.106	3.674	40.589	< 2e - 16
InterventionVideo Game	-1.801	5.195	-0.347	0.729
PrePostPost Intervention	-100.640	5.195	-19.372	$< 2\mathrm{e}{-16}$
Intervention:PrePost	104.193	7.347	14.182	$< 2\mathrm{e}{-16}$

Parameter	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	149.106	3.674	40.589	< 2e - 16
InterventionVideo Game	-1.801	5.195	-0.347	0.729
PrePostPost Intervention	-100.640	5.195	-19.372	$< 2\mathrm{e}{-16}$
Intervention:PrePost	104.193	7.347	14.182	$< 2\mathrm{e}{-16}$

Parameter	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	149.106	3.674	40.589	< 2e-16
InterventionVideo Game	-1.801	5.195	-0.347	0.729
PrePostPost Intervention	-100.640	5.195	-19.372	$< 2\mathrm{e}{-16}$
Intervention:PrePost	104.193	7.347	14.182	$< 2\mathrm{e}{-16}$

A slightly less meaningfull example with a continuous variable

Assessing the difference between treatment A and treatment B in reducing stress levels each day over a week.

A slightly less meaningfull example with a continuous variable

Assessing the difference between treatment A and treatment B in reducing stress levels each day over a week.

Regression results

Parameter	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	149.9317	2.5003	59.967	$< 2e{-16}$
TreatmentB	18.1489	3.5359	5.133	$3.71\mathrm{e}{-7}$
Day	-7.4051	0.6934	-10.679	$< 2\mathrm{e}{-16}$
Treatment B: Day	-16.7244	0.9807	-17.054	$< 2\mathrm{e}{-16}$

Categorisation and labelling in 15-month-old infants.

Categorisation and labelling in 15-month-old infants.

Conditions Label and no-label.

Categorisation and labelling in 15-month-old infants.

Conditions Label and no-label.

Familiarisation Snake-like animal with a head and a tail.

Label condition: categories defined by the tail.

Categorisation and labelling in 15-month-old infants.

Conditions Label and no-label.

Familiarisation Snake-like animal with a head and a tail.

Label condition: categories defined by the tail.

Novelty Preference Did they encode the tail? The head?

One old animal against one animal with a new head/tail.

Choosing reference levels

Don't assume you know what your model's parameters mean

- Don't assume you know what your model's parameters mean
- Break down the model formula case-by-case

- Don't assume you know what your model's parameters mean
- Break down the model formula case-by-case
- Plot model predictions

- Don't assume you know what your model's parameters mean
- Break down the model formula case-by-case
- Plot model predictions
- Ask online

- Don't assume you know what your model's parameters mean
- Break down the model formula case-by-case
- Plot model predictions
- Ask online

Thanks for listening!