KRR - Learning the parameters of a BN

Tudor Berariu, Alexandru Sorici

December 2018

We assume there is a real distribution $P_r(\mathbf{X})$ we do not have access to. Instead we either have a collection of samples from that distribution, or we are able to sample from it. In what follows we are concerned with learning some parametric model $P_{\theta}(\mathbf{X})$ that models as good as possible the real distribution $P_r(\mathbf{X})$.

We also assume the structure of a Bayesian Network that represents $P_{\theta}(\mathbf{X})$ to be known. We are left to learn the CPDs for each variable $X \in \mathbf{X}$. In what follows we will use $\mathbf{Y} \stackrel{not.}{=} Par(X)$ to denote the parents of X.

One way to ensure that we have good representations of the probabilities is learning a set of parameters $\theta_{X|Y=y}$ such that $P(X \mid Y = y) = \sigma(\theta_{X|Y=y})$ where $\sigma(x) = (1 + e^{-x})^{-1}$ is the *sigmoid* function. The sigmoid function is continuous and differentiable in \mathbb{R} and has a nice derivative $\sigma'(x) = \sigma(x)(1 - \sigma(x))$.

Learning the model of a distribution. A common metric between distributions is the KL divergence. We therefore might use it to perform stochastic optimization of the parameters θ in order to increase the cross-entropy between the two distributions.

$$\theta^* = \underset{\theta}{\operatorname{argmin}} KL(P_r \mid\mid P_{\theta}) = \underset{\theta}{\operatorname{argmin}} \mathbb{E}_{\mathbf{x} \sim P_r} \left[\log \left(\frac{P_r(\mathbf{x})}{P_{\theta}(\mathbf{x})} \right) \right] = \underset{\theta}{\operatorname{argmin}} - \mathbb{E}_{\mathbf{x} \sim P_r} \left[\log \left(P_{\theta}(\mathbf{x}) \right) \right]$$
(1)

Stochastic Optimization. We start with some random parameters $\theta^{(0)}$ and for each observed sample $\mathbf{x}^{(t)}$ we move in the direction opposed to the gradient in order to minimize our cost function.

$$KL(P_r \mid\mid P_{\theta}) \approx \sum_{\mathbf{x} \sim P_r} \log P_{\theta}(\mathbf{x}) \approx \log P_{\theta}(\mathbf{x}^{(t)})$$
 (2)

$$\theta_{X|\mathbf{Y}=\mathbf{y}}^{(t+1)} \leftarrow \theta_{X|\mathbf{Y}=\mathbf{y}}^{(t)} + \eta \cdot \nabla_{\theta_{X|\mathbf{Y}=\mathbf{y}}} \log P_{\theta} \left(\mathbf{X} = \mathbf{x}^{(t)} \right)$$
(3)

Since the joint probability $P_{\theta}(\mathbf{X})$ is just a product of all CPDs, its logarithm becomes a sum.

$$\log P_{\theta}\left(\mathbf{X}\right) = \sum_{X \in \mathbf{X}} \log P_{\theta}\left(X \mid Par\left(X\right)\right) \tag{4}$$

For some specific parameter $\theta_{X|\mathbf{Y}=\mathbf{y}}$:

$$\nabla_{\theta_{X|\mathbf{Y}=\mathbf{y}}} \log P_{\theta} \left(\mathbf{X} = \mathbf{x} \right) = \nabla_{\theta_{X|\mathbf{Y}=\mathbf{y}}} \log P_{\theta} \left(X = x \right) = \begin{cases} \frac{\sigma'\left(\theta_{X|\mathbf{Y}=\mathbf{y}}\right)}{\sigma\left(\theta_{X|\mathbf{Y}=\mathbf{y}}\right)} = 1 - \sigma\left(\theta_{X|\mathbf{Y}=\mathbf{y}}\right) & \text{if } x = 1 \\ = x - \sigma\left(\theta_{X|\mathbf{Y}=\mathbf{y}}\right) \\ \frac{-\sigma'\left(\theta_{X|\mathbf{Y}=\mathbf{y}}\right)}{1 - \sigma\left(\theta_{X|\mathbf{Y}=\mathbf{y}}\right)} = -\sigma\left(\theta_{X|\mathbf{Y}=\mathbf{y}}\right) & \text{if } x = 0 \end{cases}$$
(5)