a) From Table 29:

b)
$$f(x) = \frac{x^{15}}{g(x)} = \frac{(x_{+1})(x^{4}+x_{+1})(x^{4}+x_{+1}^{3}+x_{+1}^{2})(x^{4}+x_{+1}^{3}+x_{+1}^{2})}{(x^{4}+x^{3}+1)(x^{4}+x_{+1}^{3}+x_{+1}^{2})(x^{4}+x_{+1}^{3}+x_{+1}^{2})}$$

$$= (x_{+1})(x^{4}+x_{+1})(x^{2}+x_{+1}) = x^{7}+x^{3}+x_{+1}$$

$$h(x) = x^{7} f(x^{-1}) = x^{7}+x^{4}+1$$

From (4.6) in Lecture notes 4 (which has a typo: Gshould be H)

We can also obtain a parity check metrix as in Example 6.2 in textbook by replacing elements in the matrix

$$\begin{bmatrix} 1 & \beta & \beta^{3} & \beta^{3} & \beta^{5} & \beta^{5} & \beta^{5} & \beta^{5} & \beta^{5} & \beta^{5} & \beta^{6} & \beta^{11} & \beta^{12} & \beta^{13} & \beta^{14} \\ 1 & \beta^{3} & \beta^{6} & \beta^{9} & \beta^{12} & \beta^{15} & \beta^{18} & \beta^{21} & \beta^{24} & \beta^{27} & \beta^{30} & \beta^{33} & \beta^{6} & \beta^{39} & \beta^{42} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \alpha^{7} & \alpha^{14} & \alpha^{6} & \alpha^{13} & \alpha^{7} & \alpha^{7$$

by its binary vector representation as a column vector of length 4. This gires the parity check metrix

(Actually, by elementary run operations, one can obtain the first parity-check meters from this matrix)

For each i = 1,00,30, we determine the degree of \$\phi_{\sigma}(x), He minimal polynomial of \$\phi'\$. This degree is the number of conjugates of \$\phi'\$.

conjugates	degree of minimal polynomial
a, a, a, a, a, a, a,	5
x3. x6, x12, x24, x17	5
d5, d'0, d20, d9, d18	5
d. a'4, a'8, d, d	5
d", d2, d13, d26, d21	5
d d, d, d, d, d27, d23	5

Ł	g(x) = LCM \\ \phi(x), \phi_3(x),, \(\frac{1}{2} \)	degree of g(x)
- 1	φ,(x)	5
2	LCM pi(x), p3(x)]	10
3	LCM (\$(x), \$(x), \$(x))	15
4	rcw (4, (2), \$1 11, 4, [x]	20
5	TOWN (1) 43 (N' 43 1) 4 (N) 4 (N)	20
6	LCM (\$, (\$), \$, \$(\$), 000, \$, [\$1]	25
7	LUM (DIN, OGIN, OB (N)	25
8	LCM (& (N), & (N), O, O, O (X)	36
9	LCM ((), (x), +3(x),, +17(x)	30
	•	
0		.
15	LCM(\$1,0,43(x),, \$29(x)]	30

Since
$$\phi_{13}(x) = \phi_{1}(x)$$

Since $\phi_{13}(x) = \phi_{11}(x)$
Since $\phi_{17}(x) = \phi_{3}(x)$

Syndrome Computations:

$$S_{1} = r_{1}(\alpha) = \alpha^{7} + \alpha^{30} = \alpha^{19}$$

$$S_{2} = S_{1}^{2} = \alpha^{7}$$

$$S_{3} = r_{1}(\alpha^{3}) = \alpha^{21} + \alpha^{10} = \alpha^{12}$$

$$S_{4} = S_{4}^{2} = \alpha^{14}$$

Berlekamp-Massey Algorithm:

μ	σ (x)	du	g pr	
-1	1	1	0	
0	I.	219	0	
1	1+ x19 X	0	1	(9=-1)
2	1 + 019 X	of 25	1	(-)
3	1+ 29x + 26x2	0	2	(9=0)
4	1 + 019 X + 06 X2	-	-	

Error locator polynomial: $\sigma(x) = x^6 x^2 + \alpha^{19} x + 1$.

By substituting $X = \alpha^1$, i = 0,1,...,30, the voots of $\sigma(x)$ are found to be α and α^{24} .

Error location numbers: $d^{-1} = d^{30}$ and $d^{-24} = d^{7}$ $e(x) = x^{7} + x^{30}$ V(x) = r(x) + e(x) = 0

Syndrome Computations:

$$S_1 = r_2(\alpha) = 1 + \alpha^{17} + \alpha^{28} = \alpha^2$$

 $S_2 = S_1^2 = \alpha^4$
 $S_3 = r_2(\alpha^3) = 1 + \alpha^{51} + \alpha^4 = \alpha^2$
 $S_4 = S_2^2 = \alpha^8$

Berlekamp- Massey Algorithm:

	σ ⁽ⁿ⁾ (x)	dr	l p	· ·
-1	1	T	0	
0	1	d ²	0	
1	1 + 2 X	0	1	(9=-1)
2	1 + x2 X	of 30	1	
3	1+ x x + x 28 x2	0	2	(0=0)
4	1 + x X + x 28 X2	-	-	

Error locator polynomial: $\sigma(X) = \alpha^{28} X^2 + \alpha^2 X + 1$.

By substituting $X = \alpha^2$, i = 0, 1, ..., 30, no roots for $\sigma(X)$ are found. Hence, the decoder fails. The reason is that there are more than 2 errors while the decoder can correct only 2 errors.

Let n = l(2++1). We will show that $V(X) = \frac{X^{n} + 1}{x^{n} + 1} = 1 + X^{n} + X^{2} + \cdots + X^{2+1}$ is a code polynomial. Since & is a primitive element in GF(zm), where n = 2 -1, it follows that din +1=0 and dil+1 +0 for 1=1,2,...,2+ Hince V(x1) = 0 for i=1,2,..., 21. This proves that V(X) is a code polynomial. It represents a codeword of weight 2++1. Hence, dmin & 2++1. Since dmin >, 2++1 for any t-error correcting BCH code, we have down = 2++1.