REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main saining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE June 4, 2001	3. REPORT TYPE AND FINAL	DATES COVERED 01 Jun 97 - 30 LOVOO
4. TITLE AND SUBTITLE ALL OPTICAL BINARY FLIP-FLO PARALLEL INTERFACES	5. FUNDING NUMBERS DAAG55-97-1-0161		
6. AUTHOR(S)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	***************************************	
Dr. William W. Clark, III			
7. PERFORMING ORGANIZATION NAME(8. PERFORMING ORGANIZATION REPORT NUMBER		
CREOL UNIVERSITY OF CENTRAL FLOR P.O. BOX 162700 ORLANDO, FL 32816-2700	IDA		•
9. SPONSORING / MONITORING AGENCY U.S. ARMY RESEARCH OFFICE P.O. BOX 12211 RTP, NC 27709-2211	10. SPONSORING / MONITORING AGENCY REPORT NUMBER 37286-EL		
11. SUPPLEMENTARY NOTES THE VIEWS, OPINIONS, FINDING SHOULD NOT BE CONSTRUED A DECISION, UNLESS SO DESIGNA	S A OFFICIAL DEPARTM	IENT OF THE ARM`	E OF THE AUTHOR AND Y POSITION, POLICY OR
12a. DISTRIBUTION / AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEAS	E, DISTRIBUTION UNLI	MITED	
13. ABSTRACT (Maximum 200 words) This project addresses key comprent	tachnologies for anabling th	a fusion of data between	en the transmission lines and the

This project addresses key compnent technologies for enabling the fusion of data between the transmission lines and the receivers in optical communication network systems. This year involved the optimization and testing of an integrated flip-flop device, fabrication of an integrated divide-by-8 optical clock counter/sequencer, and development of a serial to parallel converter.

20010621 074

15	4. SUBJECT TERMS SEMICONDUCTOR OPTOEL SWITCHES, ULTRAFAST OF	15. NUMBER OF PAGES 2 16. PRICE CODE		
ŀ	7. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
1	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL

REPORT DOCUMENTATION PAGE (SF298) (Continuation Sheet)

The aim of this project was to demonstrate the use of optoelectronic feedback to realize hybrid all-optical switching devices which when integrated can form functional circuits. The devices chosen for demonstration were an integrated flip-flop device, an integrated divide-by-8 optical clock counter/sequencer, and a serial to parallel converter. The important results were:

- ♦ Fabrication and optimization of MSM structures at waveguide outputs and integration into a complete flip-flop device. The past years work involved the completion of the optoelectronic feedback for flip-flop operation
- ♦ Fabrication, characterization, and optimization of an ultrafast all-optical demultiplexer. The past years work involved the fabrication of a fully integrated device using an improved mask set and determination of the tolerance of the device operating characteristics to high repetition rate switching.

Publications:

X. dong, P. LiKamWa, J. Loehr, and R. Kaspi, "Current-induced guiding and beam steering in active semiconductor planar waveguide," IEEE Photon. Tech. Lett., V11, PP.809-811, July 1999.

Participating Personnel:

Xuesong Dong Student, UCF

Patrick LiKamWa Professor, UCF

Inventions:

Monolithic Integrated Active Semiconductor Optical Waveguides for 1xN Interconnect Switch