CORSO DI LAUREA IN INGEGNERIA-CORSO DI LAUREA IN INFORMATICA

FOGLIO DI ESERCIZI 6- GEOMETRIA E ALGEBRA LINEARE 2016/17

Esercizio 6.1. Calcolare il determinante delle seguenti matrici:

$$A_{1} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \qquad A_{3} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 5 \end{bmatrix} \qquad A_{5} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad A_{6} = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 1 & 2 \\ 2 & 0 & 7 \end{bmatrix}$$

SOLUZIONE:

Cominciamo dalle matrici 2×2 :

$$det(A_1) = 1 \cdot (-1) - 2 \cdot 2 = -5$$
$$det(A_2) = 3 \cdot 1 = 3$$
$$det(A_3) = 1 \cdot 3 - 2 \cdot 1 = 1$$

Consideriamo ora le matrici 3×3 .

Per la matrice A_4 sviluppiamo il determinante rispetto alla prima colonna:

$$\det(A_4) = 1 \cdot \det \begin{bmatrix} 2 & -1 \\ 0 & 5 \end{bmatrix} - 0 \cdot \det \begin{bmatrix} -4 & 2 \\ 0 & 5 \end{bmatrix} + 0 \cdot \det \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} = 1 \cdot (10) = 10$$

Per la matrice A_5 possiamo sviluppare il determinante indifferentemente rispetto alla prima colonna o alla prima riga:

$$\det(A_5) = -2 \cdot \det \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} = -6$$

Per la matrice A_6 ci conviene sviluppare il determinante rispetto alla seconda colonna:

$$\det(A_6) = -(-1) \cdot \det \begin{bmatrix} 1 & 2 \\ 2 & 7 \end{bmatrix} + 1 \cdot \det \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} = 1 \cdot (7 - 4) + 1 \cdot (7 - 6) = 3 + 1 = 4$$

Esercizio 6.2. Calcolare il determinante delle seguenti matrici:

$$A = \begin{bmatrix} 2 & 3 \\ 1 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} -11 & 3 \\ 2 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 3 & -2 \\ 1 & -2 & 0 \\ 0 & -1 & 2 \end{bmatrix} \qquad D = \begin{bmatrix} 2 & -2 & -2 \\ 1 & 1 & 0 \\ -3 & 4 & 0 \end{bmatrix} \qquad F = \begin{bmatrix} 7 & 0 & 0 \\ 1 & 1 & 0 \\ -3 & 4 & -3 \end{bmatrix}$$

SOLUZIONE:

$$det(A) = 2 \cdot (-2) - 1 \cdot 3 = -4 - 3 = -7$$
$$det(B) = 0 - 2 \cdot 3 = -6$$

Per calcolare il determinante di C sviluppiamo secondo la terza colonna:

$$\det(C) = -2 \cdot (-1)^{1+3} \cdot \det \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix} + 2 \cdot (-1)^{3+3} \cdot \det \begin{bmatrix} 2 & 3 \\ 1 & -2 \end{bmatrix}$$
$$= -2 \cdot (-1) + 2 \cdot (-7) = 2 - 14 = -12$$

Analogamente per calcolare il determinante di D sviluppiamo secondo la terza colonna:

$$\det(D) = -2 \cdot (-1)^{1+3} \cdot \det \begin{bmatrix} 1 & 1 \\ -3 & 4 \end{bmatrix} = -2 \cdot (7) = -14$$

Per calcolare il determinante di F sviluppiamo rispetto alla prima riga. Notiamo che il determinante di F risulta il prodotto degli elementi della diagonale:

$$\det(F) = 7 \cdot (-1)^{1+1} \cdot \det \begin{bmatrix} 1 & 0 \\ 4 & -3 \end{bmatrix} = 7 \cdot 1 \cdot (-3) = -21$$

Esercizio 6.3. Calcolare il rango della sequente matrice A, utilizzando il calcolo del determinante.

$$A = \begin{bmatrix} 1 & k+2 & 0 \\ k^2 - 1 & 0 & 4-k \\ 1 & 2k-3 & 0 \end{bmatrix} \qquad k \in \mathbb{R}$$

SOLUZIONE:

Per calcolare il rango di A utilizziamo la seguente proprietà.

Il rango di una matrice A corrisponde al massimo ordine di una sottomatrice quadrata di A con determinante non nullo.

Cominciamo quindi a calcolare il determinante di A per stabilire quando rg(A) = 3. Sviluppiamo rispetto alla terza colonna:

$$\det(A) = -(4-k) \cdot [2k-3-(k+2)] = (k-4)(k-5)$$

Quindi det(A) = 0 se k = 4 o k = 5.

Di conseguenza:

- Se $k \neq 4$, 5, la matrice ha determinante non nullo, quindi rg(A) = 3.
- Se k = 4 la matrice A diventa:

$$A = \begin{bmatrix} 1 & 6 & 0 \\ 15 & 0 & 0 \\ 1 & 5 & 0 \end{bmatrix}$$

Sappiamo già che $rg(A) \le 2$. Per stabilire se ha rango 2 basta trovare una sottomatrice 2×2 con determinante non nullo. In effetti in A troviamo per esempio la sottomatrice:

$$B = \begin{bmatrix} 1 & 6 \\ 15 & 0 \end{bmatrix} \qquad \det(B) = -15 \cdot 6 \neq 0$$

quindi rg(A) = 2.

• Se k = 5 la matrice A diventa:

$$A = \begin{bmatrix} 1 & 7 & 0 \\ 24 & 0 & 1 \\ 1 & 7 & 0 \end{bmatrix}$$

Sappiamo già che $rg(A) \le 2$. Per stabilire se ha rango 2 basta trovare una sottomatrice 2×2 con determinante non nullo. In effetti in A troviamo per esempio la sottomatrice:

$$C = \begin{bmatrix} 7 & 0 \\ 0 & 1 \end{bmatrix} \qquad \det(C) = 7 \neq 0$$

quindi rg(A) = 2.

Esercizio 6.4. Sia A la matrice reale

$$A = \begin{bmatrix} 2 & 2 & k \\ 1 & 2 & 0 \\ 0 & 0 & 3k \end{bmatrix} \quad (k \text{ reale}).$$

- a) Calcolare il rango di A al variare del parametro k.
- b) Si determini il valore di k tale per cui la matrice A abbia determinante uguale a uno. Per tale valore di k, si calcoli la matrice inversa di A.

SOLUZIONE:

a) Ricordiamo che una matrice ha rango massimo, in questo caso 3, se ha determinante diverso da zero.

$$\det(A) = 2 \cdot 6k - 1 \cdot 6k = 6k$$

Quindi se $k \neq 0$ la matrice ha rango 3. Per k = 0 la matrice A diventa:

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow 2II - I \begin{bmatrix} 2 & 2 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

e per k = 0 la matrice ha rango 2.

b) Abbiamo visto che det(A) = 6k, quindi A ha determinante 1 se $k = \frac{1}{6}$.

Calcoliamo l'inversa di A quando $k=\frac{1}{6}$ con il metodo dei complementi algebrici. Notiamo che per $k=\frac{1}{6}$ si ha

$$A = \begin{bmatrix} 2 & 2 & \frac{1}{6} \\ 1 & 2 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \qquad \det(A) = 1$$

Inoltre

$$A'_{11} = 1 A'_{21} = -1 A'_{31} = -\frac{1}{3} A'_{12} = -\frac{1}{2} A'_{22} = 1 A'_{32} = \frac{1}{6} \Rightarrow A^{-1} = \begin{bmatrix} 1 & -1 & -\frac{1}{3} \\ -\frac{1}{2} & 1 & \frac{1}{6} \\ 0 & 0 & 2 \end{bmatrix}$$

Oppure calcoliamo l'inversa con il metodo della riduzione:

$$\begin{bmatrix} 2 & 2 & \frac{1}{6} & | & 1 & 0 & 0 \\ 1 & 2 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} & | & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1/2I & 1 & \frac{1}{12} & | & \frac{1}{2} & 0 & 0 \\ 1 & 2 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 2 \end{bmatrix} \Rightarrow$$

$$II - I \begin{bmatrix} 1 & 1 & \frac{1}{12} & | & \frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{1}{12} & | & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 2 \end{bmatrix} \Rightarrow II + 1/12III \begin{bmatrix} 1 & 1 & 0 & | & \frac{1}{2} & 0 & -\frac{1}{6} \\ 0 & 1 & 0 & | & -\frac{1}{2} & 1 & \frac{1}{6} \\ 0 & 0 & 1 & | & 0 & 0 & 2 \end{bmatrix}$$

$$\Rightarrow II - II \begin{bmatrix} 1 & 0 & 0 & | & 1 & -1 & -\frac{1}{3} \\ 0 & 1 & 0 & | & -\frac{1}{2} & 1 & \frac{1}{6} \\ 0 & 0 & 1 & | & 0 & 0 & 2 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} 1 & -1 & -\frac{1}{3} \\ -\frac{1}{2} & 1 & \frac{1}{6} \\ 0 & 0 & 2 \end{bmatrix}$$

Esercizio 6.5. Si dica per quali valori di k il sistema di equazioni lineari:

$$\begin{cases} x + y = 1 \\ kx + y + z = 1 - k \\ y + (1 - k)z = 1 \end{cases}$$
 (k parametro reale)

ammette un'unica soluzione.

SOLUZIONE:

Dal teorema di Rouchè Capelli sappiamo che il sistema ammette una unica soluzione se rg(A) = rg(A|b) = 3. Riduciamo quindi a gradini la matrice A|b associata a tale sistema per calcolarne il rango:

$$\begin{bmatrix} 1 & 1 & 0 & | & 1 \\ k & 1 & 1 & | & 1-k \\ 0 & 1 & 1-k & | & 1 \end{bmatrix} \Rightarrow II-kI \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1-k & 1 & | & 1-2k \\ 0 & 1 & 1-k & | & 1 \end{bmatrix} \Rightarrow III \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 1-k & | & 1 \end{bmatrix} \Rightarrow III + (k-1)II \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 1-k & | & 1 \\ 0 & 0 & -k^2 + 2k & | & -k \end{bmatrix}$$

Il sistema ammette un'unica soluzione se il rango della matrice dei coefficienti e della matrice completa sono entrambi tre. Dalla matrice ridotta questo avviene per $k \neq 0, 2$.

Anche se non è richiesto dall'esercizio notiamo che per k=2 il sistema non ammette soluzione, mentre per k=0 ne ammette infinite.

In alternativa potevamo calcolare il rango della matrice ragionando sui determinanti:

$$\det(A) = 1 - k - 1 - k(1 - k) = k^2 - 2k$$

Quindi se $k \neq 0, 2$, la matrice A ha determinante non nullo, quindi rg(A) = rg(A|b) = 3 e il sistema ammette una unica soluzione.

Esercizio 6.6. Si consideri lo spazio vettoriale N(A) dato dalle soluzioni del sistema omogeneo Ax=0con

$$A = \begin{bmatrix} 8k+1 & k+4 & 0 & k+8 \\ 2k & 0 & 1 & 2k+2 \\ 0 & 0 & k+4 & 0 \\ k & 0 & k+2 & k+3 \end{bmatrix} \quad k \text{ parametro reale.}$$

- a) Si stabilisca per quali valori di k lo spazio N(A) è nullo: $N(A) = \{(0,0,0,0)\}.$
- b) Per i valori di k esclusi al punto precedente si determini una base di N(A).

SOLUZIONE:

a) N(A) è dato dalle soluzioni del sistema omogeneo Ax = 0. Un sistema omogeneo ammette sempre la soluzione nulla; in particolare, per Rouchè-Capelli, ammette la sola soluzione nulla se rg(A) è massimo. Nel nostro caso quindi $N(A) = \{(0,0,0,0)\}$ se rg(A) = 4. Determiniamo il rango di A calcolandone il determinante:

$$\det(A) = -(k+4) \cdot \det \begin{bmatrix} 2k & 1 & 2k+2 \\ 0 & k+4 & 0 \\ k & k+2 & k+3 \end{bmatrix} = -(k+4)^2 \cdot [2k(k+3) - k(2k+2)] = -4k(k+4)^2$$

Infine rg(A) = 4 se $det(A) \neq 0$, cioé $N(A) = \{(0,0,0,0)\}$ se $k \neq 0, -1$

b) Se k = 0 la matrice A diventa

$$\begin{bmatrix} 1 & 4 & 0 & 8 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 2 & 3 \end{bmatrix} \Rightarrow N(A) : \begin{cases} x + 4y + 8w = 0 \\ z + 2w = 0 \\ 4z = 0 \\ 2z + 3w = 0 \end{cases} \Rightarrow \begin{cases} x = -4t \\ y = t \\ z = 0 \\ w = 0 \end{cases}$$
$$\Rightarrow N(A) = \{ (-4, 1, 0, 0)t \mid \forall t \in \mathbb{R} \}.$$

Se k = 0 quindi $\mathcal{B}(N(A)) = \{(-4, 1, 0, 0)\}$ e dim(N(A)) = 1. Se k = -4 la matrice A diventa

$$N(A): \begin{cases} -4 & 0 & -2 & -1 \end{bmatrix} & 2IV - II \begin{bmatrix} 0 & 0 & -5 & 4 \end{bmatrix} & 31IV + 5II \begin{bmatrix} 0 \\ 0 & 0 & -5 \end{bmatrix} \\ x = 0 \\ y = t \\ z = 0 \\ w = 0 \end{cases} \Rightarrow N(A) = \{(0, 1, 0, 0)t \mid \forall t \in \mathbb{R}\}.$$

Se
$$k = -4$$
 quindi $\mathcal{B}(N(A)) = \{(0, 1, 0, 0)\}$ e dim $(N(A)) = 1$.

Esercizio 6.7. Determinare per quali valori del parametro reale k i sequenti vettori formano una base di \mathbb{R}^3 .

$$v_1 \equiv (1, 2, -2),$$
 $v_2 \equiv (1, 1, -3),$ $v_3 \equiv (3, 7, k - 6)$

SOLUZIONE:

Sappiamo che tre vettori di \mathbb{R}^3 formano una base di \mathbb{R}^3 se e solo se sono linearmente indipendenti, ovvero se la matrice associata ai tre vettori ha rango 3. Riduciamo quindi a gradini la matrice associata:

$$\begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 7 \\ -2 & -3 & k - 6 \end{bmatrix} \Rightarrow II - 2I \begin{bmatrix} 1 & 1 & 3 \\ 0 & -1 & 1 \\ 0 & -2 & k + 1 \end{bmatrix} \Rightarrow III - 2II \begin{bmatrix} 1 & 1 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & k - 1 \end{bmatrix}$$

Ragionando sui ranghi:

- Se $k \neq 1$ la matrice ha 3 pivot, quindi ha rango 3 e v_1 , v_2 e v_3 formano una base di \mathbb{R}^3 .
- Se k=1 la matrice ha 2 pivot, quindi ha rango 2 e v_1 , v_2 e v_3 non formano una base di \mathbb{R}^3 .

In alternativa potevamo calcolare il rango utilizzando il determinante:

$$\det(A) = (k - 6 + 21) - (2k - 12 + 14) + 3(-6 + 2) = -k + 1$$

 v_1 , v_2 e v_3 formano una base di \mathbb{R}^3 se la matrice associata ha rango 3, ovvero se ha determinante non nullo, cioè $k \neq 1$.

Esercizio 6.8. Sia V il sottospazio di \mathbb{R}^4 generato dai vettori:

$$v_1 \equiv (0, k-1, k^2-1, 3k-2),$$
 $v_2 \equiv (1, 3, 0, 3),$ $v_3 \equiv (-1, -2, 1, -1).$

Determinare la dimensione e una base di V al variare del parametro reale k.

SOLUZIONE:

Calcoliamo il rango della matrice A associata a tale insieme di vettori per stabilire se, o quali vettori sono linearmente indipendenti.

$$A = \begin{bmatrix} 0 & 1 & -1 \\ k - 1 & 3 & -2 \\ k^2 - 1 & 0 & 1 \\ 3k - 2 & 3 & -1 \end{bmatrix}$$

Utilizziamo il determinante. Consideriamo la sottomatrice B formata dalle prime 3 righe:

$$B = \begin{bmatrix} 0 & 1 & -1 \\ k - 1 & 3 & -2 \\ k^2 - 1 & 0 & 1 \end{bmatrix} \Rightarrow \det(B) = -(k - 1 + 2k^2 - 2) - (-3k^2 + 3) = k^2 - k$$

il cui determinante si annulla per k = 0, 1. Quindi:

• Se $k \neq 0, 1$ la matrice associata ai tre vettori ha rango 3. Di conseguenza $\dim(V) = 3$ e

$$\mathcal{B}(V) = \{v_1, v_2, v_3\} = \{(0, k-1, k^2 - 1, 3k - 2), (1, 3, 0, 3), (-1, -2, 1, -1)\}.$$

• Se k = 0 la matrice A diventa:

$$\begin{bmatrix} 0 & 1 & -1 \\ -1 & 3 & -2 \\ -1 & 0 & 1 \\ -2 & 3 & -1 \end{bmatrix} \Rightarrow III \begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & -2 \\ 0 & 1 & -1 \\ -2 & 3 & -1 \end{bmatrix} \Rightarrow III - I \begin{bmatrix} -1 & 0 & 1 \\ 0 & 3 & -3 \\ 0 & 1 & -1 \\ 0 & 3 & -3 \end{bmatrix} \Rightarrow \underbrace{3III - II}_{IV - II} \begin{bmatrix} -1 & 0 & 1 \\ 0 & 3 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Quindi rg(A) = dim(V) = 2. Inoltre

$$\mathcal{B}(V) = \{ v_1, v_2 \} = \{ (0, -1, -1, -2), (1, 3, 0, 3) \}$$

• Se k = 1 la matrice A diventa:

$$\begin{bmatrix} 0 & 1 & -1 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$

Notiamo che A contiene la sottomatrice C:

$$C = \begin{bmatrix} 0 & 3 & -2 \\ 0 & 0 & 1 \\ 1 & 3 & -1 \end{bmatrix} \Rightarrow \det(C) = 1 \cdot 3 \neq 0$$

Quindi anche per k = 1, $\dim(V) = \operatorname{rg}(A) = 3$ e

$$\mathcal{B}(V) = \{v_1, v_2, v_3\} = \{(0, 0, 0, 1), (1, 3, 0, 3), (-1, -2, 1, -1)\}.$$

Esercizio 6.9. Sia W il sottospazio di \mathbb{R}^4 generato dai vettori $\{v_1, v_2, v_3, v_4\}$:

$$v_1 = (-1, 1, -1, 1),$$
 $v_2 = (1, k, 3, 4),$ $v_3 = (1, -1, k, 1),$ $v_4 = (0, 0, 1, k)$

Si calcoli la dimensione di W al variare di $k \in \mathbb{R}$.

SOLUZIONE:

Consideriamo la matrice A associata ai 4 vettori:

$$A = \begin{bmatrix} -1 & 1 & 1 & 0 \\ 1 & k & -1 & 0 \\ -1 & 3 & k & 1 \\ 1 & 4 & 1 & k \end{bmatrix} \Rightarrow \begin{matrix} II + I \\ III - I \\ IV + I \end{matrix} \begin{bmatrix} -1 & 1 & 1 & 0 \\ 0 & k + 1 & 0 & 0 \\ 0 & 2 & k - 1 & 1 \\ 0 & 5 & 2 & k \end{matrix}$$

Chiamiamo A' la matrice ridotta così ottenuta. Sappiamo che rg(A') = rg(A). Sappiamo inoltre che il rango di una matrice corrisponde, oltre che al numero di pivot, al massimo ordine di una sottomatrice con determinante non nullo. Senza proseguire ulteriormente nella riduzione possiamo quindi calcolare il determinante della matrice ridotta A' per calcolarne il rango:

$$\det(A') = -1 \cdot (k+1) \cdot [(k-1)k - 2] = -(k+1)(k^2 - k - 2)$$

e det(A') = 0 se k = -1 o k = 2. Di conseguenza

- Se $k \neq -1, 2$, $\det(A') \neq 0$, quindi la matrice A ha rango 4, e $\dim(W) = 4$.
- Se k = -1 la matrice A' ha determinante nullo, quindi rg(A) < 4, e dopo un ulteriore passo di riduzione A diventa

$$A' = \begin{bmatrix} -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & -2 & 1 \\ 0 & 5 & 2 & -1 \end{bmatrix}$$

Questa contiene la sottomatrice

$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 5 & -1 \end{bmatrix}$$

di determinante $-1(-2-5) \neq 0$.

Quindi A ha rango 3 e $\dim(W) = 3$.

• Se k=2 la matrice A' ha determinante nullo, quindi $\operatorname{rg}(A)<4$, e dopo un ulteriore passo di riduzione diventa

$$A' = \begin{bmatrix} -1 & 1 & 1 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 5 & 2 & 2 \end{bmatrix}$$

Questa contiene la sottomatrice

$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

di determinante $-3 \neq 0$.

Quindi anche in questo caso A ha rango 3 e $\dim(W) = 3$.

In alternativa tutto l'esercizio poteva essere svolto completando la riduzione a gradini di A.

Esercizio 6.10. $Sia\ V = \langle\ v_1,\ v_2,\ v_3\ \rangle\ con$

$$v_1 = (k+3, k+3, 0),$$
 $v_2 = (0, 3, k+2),$ $v_3 = (0, 3k, k)$

- a) Si stabilisca per quali valori di $k \in \mathbb{R}$ lo spazio V coincide con \mathbb{R}^3 .
- b) Si determini la dimensione una base di V al variare di $k \in \mathbb{R}$.

SOLUZIONE:

Consideriamo la matrice A associata ai tre vettori

$$A = \begin{bmatrix} k+3 & 0 & 0 \\ k+3 & 3 & 3k \\ 0 & k+2 & k \end{bmatrix}$$

a) Lo spazio V coincide con \mathbb{R}^3 se dim(V) = 3, cioè se $\operatorname{rg}(A) = 3$, ovvero det $(A) \neq 0$. Calcoliamo quindi il determinante di A che è immediato sviluppando rispetto alla prima riga:

$$\det(A) = (k+3)[3k - 3k(k+2)] = 3k(k+3)(-k-1)$$

Quindi se $k \neq 0, -1, -3$, i tre vettori sono linearmente indipendenti e $V = \mathbb{R}^3$.

b) Abbiamo già osservato che se $k \neq 0, -1, -3$, i tre vettori sono linearmente indipendenti, quindi $\mathcal{B}(V) = \{v_1, v_2, v_3\}$. Inoltre:

– Se k = 0 la matrice A diventa:

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 3 & 3 & 0 \\ 0 & 2 & 0 \end{bmatrix} \Rightarrow II - I \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 2 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Quindi $\dim(V) = 2 \in \mathcal{B}(V) = \{v_1, v_2\}.$

- Se k = -1 la matrice A diventa:

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 3 & -3 \\ 0 & 1 & -1 \end{bmatrix} \Rightarrow II - I \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & -3 \\ 0 & 1 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

Quindi $\dim(V) = 2$ e una possibile base è $\mathcal{B}(V) = \{v_1, v_2\}.$

- Se k=-3 la matrice A diventa:

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & -9 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & -9 \\ 0 & 0 & -18 \end{bmatrix}$$

Quindi dim $(V) = 2 e \mathcal{B}(V) = \{v_2, v_3\}.$

Esercizio 6.11. Si consideri l'insieme

$$S = \{ (k+1, k+1, 0, 2k), (0, 2k, 0, 0), (1, 3k, 0, 1), (1, 5k, 1, k) \}.$$

- a) Si stabilisca per quali valori di k l'insieme S è una base di \mathbb{R}^4 .
- b) Posto k = -1 si trovino le coordinate del vettore v = (1, 1, 0, 1) rispetto alla base trovata.

SOLUZIONE:

a) Calcoliamo il determinante della matrice associata ai quattro vettori

$$\det \begin{bmatrix} k+1 & 0 & 1 & 1 \\ k+1 & 2k & 3k & 5k \\ 0 & 0 & 0 & 1 \\ 2k & 0 & 1 & k \end{bmatrix} = 2k \cdot \det \begin{bmatrix} k+1 & 1 & 1 \\ 0 & 0 & 1 \\ 2k & 1 & k \end{bmatrix}$$
$$= 2k \cdot (-1) \cdot \det \begin{bmatrix} k+1 & 1 \\ 2k & 1 \end{bmatrix} = -2k(-k+1)$$

Se $k \neq 0, 1$ la matrice ha determinante diverso da zero, quindi rango 4 e i vettori formano una base di \mathbb{R}^4 .

b) Riduciamo a gradini la matrice associata all'equazione $xv_1 + yv_2 + zv_3 + wv_4 = v$ dove v_1, v_2, v_3, v_4 sono i vettori della base dopo avere posto k = -1:

$$\begin{cases} 0 & 0 & 1 & 1 & | & 1 \\ 0 & -2 & -3 & -5 & | & 1 \\ 0 & 0 & 0 & 1 & | & 0 \\ -2 & 0 & 1 & -1 & | & 1 \end{bmatrix} \Rightarrow \begin{matrix} IV \begin{bmatrix} -2 & 0 & 1 & -1 & | & 1 \\ 0 & -2 & -3 & -5 & | & 1 \\ 0 & 0 & 1 & 1 & | & 1 \\ 0 & 0 & 1 & 1 & | & 1 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix} \Rightarrow$$

$$\begin{cases} -2x + z - w = 1 \\ -2y - 3z - 5w = 1 \\ z + w = 1 \\ w = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = -2 \\ z = 1 \\ w = 0 \end{cases}$$

Infine le coordinate di v rispetto alla base trovata sono

$$v = (0, -2, 1, 0)_{c}$$

Esercizio 6.12. Sia

$$\mathcal{B} = \{ (-2,0,0), (1,k,-1), (1,-1,k) \}$$

- a) Trovare i valori del parametro k per cui \mathcal{B} è una base di \mathbb{R}^3 .
- b) Per il valore k = 3, determinare le coordinate dei vettori v = (-3, 2, 1) e w = (0, 1, 2) rispetto alla base \mathcal{B} .

SOLUZIONE:

a) Pochè si tratta di 3 vettori di \mathbb{R}^3 , l'insieme \mathcal{B} è una base sse i tre vettori che lo costituiscono sono linearmente indipendenti, cioè se la matrice associata ha rango 3. Riduciamo A a gradini:

$$\begin{bmatrix} -2 & 1 & 1 \\ 0 & k & -1 \\ 0 & -1 & k \end{bmatrix} \Rightarrow III \begin{bmatrix} -2 & 1 & 1 \\ 0 & -1 & k \\ 0 & k & -1 \end{bmatrix} \Rightarrow III + kII \begin{bmatrix} -2 & 1 & 1 \\ 0 & -1 & k \\ 0 & 0 & -1 + k^2 \end{bmatrix}$$

La matrice ha rango 3 se $k \neq \pm 1$, quindi \mathcal{B} è una base di \mathbb{R}^3 per $k \neq \pm$

In alternativa potevamo calcolare il determinante della matrice A

$$\det(A) = -2(k^2 - 1)$$

Poichè il determinante di A si annulla per k=1 e per k=-1, la matrice A ha rango 3, cioè \mathcal{B} è una base di \mathbb{R}^3 , per $k \neq \pm 1$.

b) Chiamiamo v_1, v_2 e v_3 i 3 vettori di \mathcal{B} :

$$v_1 = (-2, 0, 0), \quad v_2 = (1, k, -1), \quad v_3 = (1, -1, k)$$

Se $\mathcal{B} = \{v_1, v_3\}$ è una base di \mathbb{R}^3 , le coordinate di un vettore v di \mathbb{R}^3 rispetto a \mathcal{B} corrispondono ai coefficienti della combinazione lineare di v_1, v_2 e v_3 con cui esprimiamo v:

$$xv_1 + yv_2 + zv_3 = v \Rightarrow v = (x, y, z)_{\mathcal{B}}$$

Si tratta quindi di esprimere $v \in w$ come combinazione lineare degli elementi di \mathcal{B} , cioè di risolvere le due equazioni vettoriali

$$xv_1 + yv_2 + zv_3 = v$$
 e $xv_1 + yv_2 + zv_3 = w$

Per comodità riduciamo a gradini la matrice A affiancata dalle due colonne dei termini noti formate dalle componenti di $v \in w$ rispettivamente.

$$\begin{bmatrix} -2 & 1 & 1 & | & -3 & 0 \\ 0 & 3 & -1 & | & 2 & 1 \\ 0 & -1 & 3 & | & 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} -2 & 1 & 1 & | & -3 & 0 \\ 0 & 3 & -1 & | & 2 & 1 \\ 0 & 0 & 8 & | & 5 & 7 \end{bmatrix}$$

Per determinare le coordinate di v rispetto a $\mathcal B$ risolviamo il sistema relativo alla prima delle due colonne dei termini noti:

$$\begin{bmatrix} -2 & 1 & 1 & | & -3 \\ 0 & 3 & -1 & | & 2 \\ 0 & 0 & 8 & | & 5 \end{bmatrix} \Rightarrow \begin{cases} -2x + y + z = -3 \\ 3y - z = 2 \\ 8z = 5 \end{cases} \Rightarrow \begin{cases} x = \frac{9}{4} \\ y = \frac{7}{8} \\ z = \frac{5}{8} \end{cases}$$

Quindi v ha coordinate $\left(\frac{9}{4}, \frac{7}{8}, \frac{5}{8}\right)_{\mathcal{B}}$ rispetto alla base \mathcal{B} . Per determinare le coordinate di w rispetto a \mathcal{B} risolviamo il sistema relativo alla seconda delle

due colonne dei termini noti:

$$\begin{bmatrix} -2 & 1 & 1 & | & 0 \\ 0 & 3 & -1 & | & 1 \\ 0 & 0 & 8 & | & 7 \end{bmatrix} \Rightarrow \begin{cases} -2x + y + z = 0 \\ 3y - z = 1 \\ 8z = 7 \end{cases} \Rightarrow \begin{cases} x = \frac{3}{4} \\ y = \frac{5}{8} \\ z = \frac{7}{8} \end{cases}$$

Quindi w ha coordinate $\left(\frac{3}{4}, \frac{5}{8}, \frac{7}{8}\right)_{R}$ rispetto alla base \mathcal{B} .

Esercizio 6.13. Si consideri il sottoinsieme S di \mathbb{R}^4 costituito dai vettori v della forma

$$v = (a_1 - a_2 + 2a_3 + a_4, a_1, 2a_1 - a_2, a_1 + 3a_2)$$

dove a_1, a_2, a_3 e a_4 sono parametri reali.

- a) $S \stackrel{.}{e} un sottospazio vettoriale di <math>\mathbb{R}^4$?
- b) In caso di risposta affermativa ad a), trovare una base di S.

SOLUZIONE:

Notiamo che

$$v = a_1(1, 1, 2, 1) + a_2(-1, 0, -1, 3) + a_3(2, 0, 0, 0) + a_4(1, 0, 0, 0)$$

Siano

$$v_1 = (1, 1, 2, 1),$$
 $v_2 = (-1, 0, -1, 3),$ $v_3 = (2, 0, 0, 0),$ $v_4 = (1, 0, 0, 0)$

a) S è l'insieme delle combinazioni lineari di v_1, v_2, v_3 e v_4 , quindi

$$S = \langle v_1, v_2, v_3, v_4 \rangle$$

e si tratta di uno spazio vettoriale (sottospazio di \mathbb{R}^4).

b) Consideriamo la matrice associata a v_1, v_2, v_3 e v_4 :

$$A = \begin{bmatrix} 1 & -1 & 2 & 1 \\ 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 1 & 3 & 0 & 0 \end{bmatrix} \Rightarrow \begin{matrix} II - I \\ 0III - 2I \\ IV - I \end{matrix} \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 4 & -2 & -1 \end{bmatrix} \Rightarrow \begin{matrix} III - II \\ 0 & 1 & -2 & -1 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 6 & 3 \end{bmatrix}$$

$$\Rightarrow \begin{matrix} III - II \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 6 & 3 \end{bmatrix}$$

$$\Rightarrow \begin{matrix} IV + 3III \end{matrix} \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

La matrice ha rango 3 e una base di S è data da $\{v_1, v_2, v_3\}$.

Notiamo che potevamo osservare dall'inizio che v_3 e v_4 sono linearmente dipendenti tra loro, quindi una base può contenerne solo uno dei due; di conseguenza nella ricerca della base potevamo considerare dall'inizio solo i vettori v_1 , v_2 e v_3 per verificare se sono linearmente indipendenti.

In alternativa si può utilizzare il determinante. det(A) = 0, quindi i quattro vettori sono linearmente dipendenti e non possono formare una base di S. Osservando che v_3 e v_4 sono linearmente dipendenti consideriamo la matrice formata da v_1, v_2 e v_3 :

$$B = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 0 \\ 2 & -1 & 0 \\ 1 & 3 & 0 \end{bmatrix}$$

Il determinante della matrice quadrata B' formata dalle prime tre righe è

$$\det(B') = -2 \cdot (-1) = 2 \neq 0$$

quindi rg(B') = 3 e v_1, v_2 e v_3 sono linearmente indipendenti. Di conseguenza una base di S è l'insieme $\mathcal{B}(S) = \{v_1, v_2, v_3\}$.