Topici speciale în logică și securitate I

Introducere în semantică

Ioana Leuștean

Master anul II, Sem. I, 2019-2020

Cuprins

- 1 Semantica programelor idei generale
- Semantica axiomatică
- 3 Semantica denotațională
- 4 Semantica operațională (small-step)
- 6 Semantica big-step

Semantica programelor - idei generale

Ce definește un limbaj de programare?

Ce definește un limbaj de programare?

 Sintaxa – Simboluri de operație, cuvinte cheie, descriere (formală) a programelor/expresiilor bine formate

Ce definește un limbaj de programare?

- Sintaxa Simboluri de operație, cuvinte cheie, descriere (formală) a programelor/expresiilor bine formate
- Practic Un limbaj e definit de modul cum poate fi folosit
 - Manual de utilizare și exemple de bune practici
 - Implementare (compilator/interpretor)
 - Instrumente ajutătoare (analizor de sintaxă, depanator)

Ce definește un limbaj de programare?

- Sintaxa Simboluri de operație, cuvinte cheie, descriere (formală) a programelor/expresiilor bine formate
- Practic Un limbaj e definit de modul cum poate fi folosit
 - Manual de utilizare și exemple de bune practici
 - Implementare (compilator/interpretor)
 - Instrumente ajutătoare (analizor de sintaxă, depanator)
- Semantica Ce înseamnă/care e comportamentul unei instrucțiuni?
 - De cele mai multe ori se dă din umeri și se spune că Practica e suficientă

Acest material are la bază cursul introductiv:

T. Şerbănuță, Semantica Limbajelor de Programare, master, anul I.

La ce folosește semantica?

- Să înțelegem un limbaj în profunzime
 - Ca programator: pe ce mă pot baza când programez în limbajul dat
 - Ca implementator al limbajului: ce garanții trebuie să ofer

La ce folosește semantica?

- Să înțelegem un limbaj în profunzime
 - Ca programator: pe ce mă pot baza când programez în limbajul dat
 - Ca implementator al limbajului: ce garanții trebuie să ofer
- Ca instrument în proiectarea unui nou limbaj/a unei extensii
 - Înțelegerea componentelor și a relațiilor dintre ele
 - Exprimarea (și motivarea) deciziilor de proiectare
 - Demonstrarea unor proprietăți generice ale limbajului

La ce folosește semantica?

- Să înțelegem un limbaj în profunzime
 - Ca programator: pe ce mă pot baza când programez în limbajul dat
 - Ca implementator al limbajului: ce garanții trebuie să ofer
- Ca instrument în proiectarea unui nou limbaj/a unei extensii
 - Înțelegerea componentelor și a relațiilor dintre ele
 - Exprimarea (și motivarea) deciziilor de proiectare
 - Demonstrarea unor proprietăți generice ale limbajului
- Ca bază pentru demonstrarea corectitudinii programelor

• Limbaj natural – descriere textuală a efectelor

- Limbaj natural descriere textuală a efectelor
- Axiomatică descrierea folosind logică a efectelor unei instrucțiuni
 - $\vdash \{\varphi\} cod\{\psi\}$
 - modelează un program prin formulele logice pe care le satisface
 - utilă pentru demonstrarea corectitunii

- Limbaj natural descriere textuală a efectelor
- Axiomatică descrierea folosind logică a efectelor unei instrucțiuni
 - $\vdash \{\varphi\} cod\{\psi\}$
 - modelează un program prin formulele logice pe care le satisface
 - utilă pentru demonstrarea corectitunii
- Denotaţională asocierea unui obiect matematic (denotaţie)
 - [cod]
 - modelează un program ca obiecte matematice
 - utilă pentru fundamente matematice

- Limbaj natural descriere textuală a efectelor
- Axiomatică descrierea folosind logică a efectelor unei instrucțiuni
 - $\vdash \{\varphi\} cod\{\psi\}$
 - modelează un program prin formulele logice pe care le satisface
 - utilă pentru demonstrarea corectitunii
- Denotaţională asocierea unui obiect matematic (denotaţie)
 - [[cod]]
 - modelează un program ca obiecte matematice
 - utilă pentru fundamente matematice
- Operațională asocierea unei demonstrații pentru execuție
 - $\langle cod, \sigma \rangle \rightarrow \langle cod', \sigma' \rangle$
 - modelează un program prin execuția pe o mașină abstractă
 - utilă pentru implementarea de compilatoare și interpretoare

- Limbaj natural descriere textuală a efectelor
- Axiomatică descrierea folosind logică a efectelor unei instrucțiuni
 - $\vdash \{\varphi\} cod\{\psi\}$
 - modelează un program prin formulele logice pe care le satisface
 - utilă pentru demonstrarea corectitunii
- Denotaţională asocierea unui obiect matematic (denotaţie)
 - [[cod]]
 - modelează un program ca obiecte matematice
 - utilă pentru fundamente matematice
- Operațională asocierea unei demonstrații pentru execuție
 - $\langle cod, \sigma \rangle \rightarrow \langle cod', \sigma' \rangle$
 - modelează un program prin execuția pe o mașină abstractă
 - utilă pentru implementarea de compilatoare și interpretoare
- Statică asocierea unui sistem de tipuri care exclude programe eronate

Limbajul IMP

IMP este un limbaj IMPerativ foarte simplu.

Ce contine:

- Expresii
 - Aritmetice
 - Booleene
- (x > 7)
- Blocuri de instrucțiuni
 - De atribuire
 - Condiţionale
 - De ciclare

x = 5: if (x > 7) {x =5; } else {x = 0;} while $(x > 7) \{x = x - 1:\}$

Ce nu conține:

- Expresii cu efecte laterale
- Proceduri şi funcţii
- Schimbări abrupte de control

Limbajul IMP

```
Exemplu
Un program în limbajul IMP
int x = 10;
int y = 1;
while (0 < x) {
  y = y * x;
  x = x + -1;
}</pre>
```

Sintaxa BNF a limbajului IMP

```
E ::= n \mid x
   |E+E|E*E
B := true \mid false
    \mid E \leq E \mid E \leq E
    | ! B | B & & B
C := \{ C \} | \{ \} \}
C := C \mid C \mid C
   | x = E;
   \mid if (B) Celse C
    | while (B)C
P ::= int x = n ; P \mid C
```

Semantică în limbaj natural

Atribuirea: $x = \exp r$

- Expresia este evaluată în starea curentă a programului
- Variabilei i se atribuie valoarea calculată, înlocuind valoarea precedentă a acelei variabile.

Semantică în limbaj natural

Atribuirea: $x = \exp r$

- Expresia este evaluată în starea curentă a programului
- Variabilei i se atribuie valoarea calculată, înlocuind valoarea precedentă a acelei variabile.

Avantaje și dezavantaje

- + Ușor de prezentat
- Potențial ambiguă
- Imposibil de procesat automat

Semantica axiomatică

Semantica Axiomatică

Logica Floyd-Hoare

- Inventată de 1969 Tony Hoare în 1969 (insiprată de rezultatele lui Robert Floyd).
- Definește triplete (triplete Hoare) de forma

unde:

- *S* este o instrucțiune (Stmt)
- Pre (precondiție), respectiv Post (postcondiție) sunt aserțiuni logice asupra stării sistemului înaintea, respectiv după execuția lui S
- · Limbajul aserțiunilor este un limbaj de ordinul I.
- Tripletul {*Pre*} *S* {*Post*} este (parțial) *corect* dacă:
 - dacă programul se execută dintr-o stare inițială care satisface Pre
 - și execuția se termină
 - atunci se ajunge într-o stare finală care satisface *Post*.

Semantica Axiomatică

Logica Floyd-Hoare

Definește triplete (triplete Hoare) de forma

- Tripletul {*Pre*} *S* {*Post*} este (parțial) *corect* dacă:
 - dacă programul se execută dintr-o stare inițială care satisface Pre
 - și execuția se termină
 - atunci se ajunge într-o stare finală care satisface Post.

Exemplu

- $\{x = 1\} \ x = x+1 \ \{x = 2\}$ este corect
- $\{x = 1\} x = x+1 \{x = 3\}$ **nu** este corect
- $\{\top\}$ if $\{x \le y\}$ z = x; else z = y; $\{z = min(x, y)\}$ este corect

Logica Floyd-Hoare a fost studiată la cursul "Verificarea programelor".

- Introdusă de Christopher Strachey și Dana Scott (1970)
- Semantica operațională, ca un interpretor, descrie cum să evaluăm un program.
- Semantica denotațională, ca un compilator, descrie o traducere a limbajului într-un limbaj diferit cu semantică cunoscută, anume matematica.
- Semantica denotațională definește ce înseamnă un program ca o funcție matematică.

 Definim stările memoriei ca fiind funcții parțiale de la mulțimea identificatorilor la mulțimea valorilor:

$$State = Id \rightarrow \mathbb{Z}$$

- Asociem fiecărei categorii sintactice o categorie semantică.
- Fiecare construcție sintactică va avea o denotație (interpretare) în categoria semantică respectivă.

 Definim stările memoriei ca fiind funcții parțiale de la mulțimea identificatorilor la mulțimea valorilor:

$$State = Id \rightarrow \mathbb{Z}$$

- Asociem fiecărei categorii sintactice o categorie semantică.
- Fiecare construcție sintactică va avea o denotație (interpretare) în categoria semantică respectivă. De exemplu:
 - denotația unei expresii aritmetice este o funcție parțială de la mulțimea stărilor memoriei la mulțimea valorilor (Z):

$$[[\underline{\ }]]: AExp \rightarrow (State \rightarrow \mathbb{Z})$$

 denotația unei instrucțiuni este o funcție parțială de la mulțimea stărilor memoriei la mulțimea stărilor memoriei:

$$[[\underline{\ }]]: Stmt \rightarrow (State \rightarrow State)$$

```
State = Id \rightarrow \mathbb{Z}

[[\_]] : AExp \rightarrow (State \rightarrow \mathbb{Z})

[[\_]] : Stmt \rightarrow (State \rightarrow State)
```

Atribuirea: $x = \exp r$

Asociem expresiilor aritmetice funcții de la starea memoriei la valori:

 Asociem instrucțiunilor funcții de la starea memoriei la starea (următoare) a memoriei.

```
State = Id \rightarrow \mathbb{Z}
[[_]] : AExp \rightarrow (State \rightarrow \mathbb{Z})
[[_]] : Stmt \rightarrow (State \rightarrow State)
```

Atribuirea: $x = \exp r$

- Asociem expresiilor aritmetice funcții de la starea memoriei la valori:
 - Funcția constantă [[1]](s) = 1
 - Funcția care selectează valoarea unui identificator [[x]](s) = s(x)
 - "Morfismul de adunare" [[e1 + e2]](s) = [[e1]](s) + [[e2]](s).
- Asociem instrucțiunilor funcții de la starea memoriei la starea (următoare) a memoriei.

•
$$[[x = e]](s)(y) = \begin{cases} s(y), \text{ dacă } y \neq x \\ [[e]](s), \text{ dacă } y = x \end{cases}$$

$$State = Id \rightarrow \mathbb{Z}$$

Domenii semantice:

$$State = Id \rightarrow \mathbb{Z}$$

Domenii semantice:

- Semantica denotațională este compozițională:
 - semantica expresiilor aritmetice
 [[n]](s) = n
 [[x]](s) = s(x)
 [[e1 + e2]](s) = [[e1]](s) + [[e2]](s)

$$State = Id \rightarrow \mathbb{Z}$$

Domenii semantice:

```
[[\_]]: AExp \rightarrow (State \rightarrow \mathbb{Z})

[[\_]]: BExp \rightarrow (State \rightarrow \{T, F\})

[[\_]]: Stmt \rightarrow (State \rightarrow State)
```

- Semantica denotațională este compozițională:
 - semantica expresiilor aritmetice [[n]](s) = n [[x]](s) = s(x) [[e1 + e2]](s) = [[e1]](s) + [[e2]](s)
 - semantica expresiilor booleene
 [[true]](s) = T, [[false]](s) = F
 [[!b]](s) = ¬b
 [[e1 <= e2]](s) = [[e1]](s) <= [[e2]](s)

$$State = Id \rightarrow \mathbb{Z}$$

Domenii semantice:

 $[[_]]: AExp \rightarrow (State \rightarrow \mathbb{Z})$

 $[[\underline{\ }]]: BExp \rightarrow (State \rightarrow \{T, F\})$

 $[[_]]: Stmt \rightarrow (State \rightarrow State)$

$$State = Id \rightarrow \mathbb{Z}$$

Domenii semantice:

$$[[_]]: AExp \rightarrow (State \rightarrow \mathbb{Z})$$

 $[[_]]: BExp \rightarrow (State \rightarrow \{T, F\})$
 $[[_]]: Stmt \rightarrow (State \rightarrow State)$

• Semantica instrucțiunilor:

$$\begin{aligned} & [[\mathtt{skip}]] = id \\ & [[\mathtt{c1};\mathtt{c2}]] = [[\mathtt{c2}]] \circ [[\mathtt{c1}]] \\ & [[\mathtt{x} = \mathtt{e}]](s)(y) = \left\{ \begin{array}{c} s(y), \ \mathsf{daca} \ y \neq x \\ [[\mathtt{e}]](s), \ \mathsf{daca} \ y = x \end{array} \right. \end{aligned}$$

$$State = Id \rightarrow \mathbb{Z}$$

Domenii semantice:

$$[[_]]: AExp \rightarrow (State \rightarrow \mathbb{Z})$$

 $[[_]]: BExp \rightarrow (State \rightarrow \{T, F\})$
 $[[_]]: Stmt \rightarrow (State \rightarrow State)$

• Semantica instrucțiunilor:

$$\begin{split} & [[\mathtt{skip}]] = id \\ & [[\mathtt{c1};\mathtt{c2}]] = [[\mathtt{c2}]] \circ [[\mathtt{c1}]] \\ & [[\mathtt{x} = \mathtt{e}]](\mathtt{s})(\mathtt{y}) = \left\{ \begin{array}{l} \mathtt{s}(\mathtt{y}), \ \mathtt{daca} \ \mathtt{y} \neq \mathtt{x} \\ & [[\mathtt{e}]](\mathtt{s}), \ \mathtt{daca} \ \mathtt{y} = \mathtt{x} \end{array} \right. \\ & [[\mathtt{if} \ (\mathtt{b}) \ \mathtt{c1} \ \mathtt{else} \ \mathtt{c2}]](\mathtt{s}) = \left\{ \begin{array}{l} [[\mathtt{c1}]](\mathtt{s}), \ \mathtt{daca} \ [[\mathtt{b}]](\mathtt{s}) = T \\ & [[\mathtt{c2}]](\mathtt{s}), \ \mathtt{daca} \ [[\mathtt{b}]](\mathtt{s}) = F \end{array} \right. \end{split}$$

Exemplu

```
if (x<= y) z=x; else z=y;  [[pgm]](s) = \begin{cases} [[z = x;]](s), \text{ dacă} [[x <= y]](s) = T \\ [[z = y;]](s), \text{ dacă} [[x <= y]](s) = F \end{cases}
```

Semantica denotațională a limbajului IMP

Exemplu

if
$$(x \le y)$$
 $z = x$; else $z = y$;

$$[[pgm]](s) = \begin{cases} [[z = x;]](s), \text{ dacă } [[x <= y]](s) = T \\ [[z = y;]](s), \text{ dacă } [[x <= y]](s) = F \end{cases}$$

$$[[pgm]](s)(v) = \begin{cases} s(v), \text{ dacă } s(x) \le s(y), v \ne z \\ s(x), \text{ dacă } s(x) \le s(y), v = z \\ s(y), \text{ dacă } s(x) > s(y), v \ne z \\ s(y), \text{ dacă } s(x) > s(y), v = z \end{cases}$$

Semantica denotațională a limbajului IMP

Exemplu

if (x<= y) z=x; else z=y;

$$[[pgm]](s) = \begin{cases} [[z = x;]](s), \text{ dacă } [[x <= y]](s) = T \\ [[z = y;]](s), \text{ dacă } [[x <= y]](s) = F \end{cases}$$

$$[[pgm]](s)(v) = \begin{cases} s(v), \text{ dacă } s(x) \le s(y), v \ne z \\ s(x), \text{ dacă } s(x) \le s(y), v \ne z \\ s(y), \text{ dacă } s(x) > s(y), v \ne z \\ s(y), \text{ dacă } s(x) > s(y), v = z \end{cases}$$

Cum definim semantica denotațională pentru while?

Mulțimea funcțiilor parțiale

Fie X și Y două mulțimi.

- Pfn(X, Y) mulțimea funcțiilor parțiale de la X la Y, adică $Pfn(X, Y) = X \rightarrow Y$
- Pentru $f \in Pfn(X, Y)$ notăm cu dom(f) mulțimea elementelor din X pentru care funcția este definită.
 - Atunci $dom(f) \subseteq X$ și $f|_{dom(f)} : dom(f) \rightarrow Y$ este funcție.

Mulțimea funcțiilor parțiale

Fie X și Y două mulțimi.

- Pfn(X, Y) mulțimea funcțiilor parțiale de la X la Y, adică $Pfn(X, Y) = X \rightarrow Y$
- Pentru f∈ Pfn(X, Y) notăm cu dom(f) mulţimea elementelor din X pentru care funcţia este definită.
 Atunci dom(f) ⊆ X şi f|_{dom(f)} : dom(f) → Y este funcţie.
- Fie $\bot: X \rightharpoonup Y$ unica funcție cu $dom(\bot) = \emptyset$ (funcția care nu este definită în nici un punct).
- Definim pe Pfn(X, Y) următoarea relație:

```
f \sqsubseteq g dacă și numai dacă dom(f) \subseteq dom(g) și g|_{dom(f)} = f_{dom(f)}
```

Mulțimea funcțiilor parțiale

Fie X și Y două mulțimi.

- Pfn(X, Y) mulțimea funcțiilor parțiale de la X la Y, adică $Pfn(X, Y) = X \rightarrow Y$
- Pentru f∈ Pfn(X, Y) notăm cu dom(f) mulţimea elementelor din X pentru care funcţia este definită.
 Atunci dom(f) ⊆ X şi f|_{dom(f)} : dom(f) → Y este funcţie.
- Fie $\bot : X \rightharpoonup Y$ unica funcție cu $dom(\bot) = \emptyset$ (funcția care nu este definită în nici un punct).
- Definim pe Pfn(X, Y) următoarea relație:

 $f \sqsubseteq g$ dacă și numai dacă $dom(f) \subseteq dom(g)$ și $g|_{dom(f)} = f_{dom(f)}$

$$(Pfn(X, Y), \sqsubseteq, \bot)$$
 este CPO (mulțime parțial ordonată completă în care \bot este cel mai mic element)

$(Pfn(X, Y), \sqsubseteq, \bot)$ este CPO

Exemplu

Definim $\mathbf{F}: Pfn(\mathbb{N}, \mathbb{N}) \to Pfn(\mathbb{N}, \mathbb{N})$ prin

$$\mathbf{F}(g)(k) = \left\{ \begin{array}{ll} 1, & \text{dacă } k = 0, \\ k*g(k-1) & \text{dacă } k > 0 \text{ și } (k-1) \in \textit{dom}(g), \\ \text{nedefinit,} & \text{altfel} \end{array} \right.$$

• **F** este o funcție continuă,

$(Pfn(X, Y), \sqsubseteq, \bot)$ este CPO

Exemplu

Definim $\mathbf{F}: Pfn(\mathbb{N}, \mathbb{N}) \to Pfn(\mathbb{N}, \mathbb{N})$ prin

$$\mathbf{F}(g)(k) = \left\{ \begin{array}{ll} 1, & \text{dacă } k = 0, \\ k*g(k-1) & \text{dacă } k > 0 \text{ și } (k-1) \in \textit{dom}(g), \\ \text{nedefinit,} & \text{altfel} \end{array} \right.$$

- F este o funcție continuă, deci putem aplica
- Teorema Knaster-Tarski Fie $g_n = \mathbf{F}^n(\bot)$ și $f = \bigvee_n g_n$. Știm că f este cel mai mic punct fix al funcției \mathbf{F} , deci $\mathbf{F}(f) = f$.

$(Pfn(X, Y), \sqsubseteq, \bot)$ este CPO

Exemplu

Definim $\mathbf{F}: Pfn(\mathbb{N}, \mathbb{N}) \to Pfn(\mathbb{N}, \mathbb{N})$ prin

$$\mathbf{F}(g)(k) = \left\{ \begin{array}{ll} 1, & \text{dacă } k = 0, \\ k*g(k-1) & \text{dacă } k > 0 \text{ și } (k-1) \in \textit{dom}(g), \\ \text{nedefinit,} & \text{altfel} \end{array} \right.$$

- F este o funcție continuă, deci putem aplica
- Teorema Knaster-Tarski
 Fie g_n = Fⁿ(⊥) şi f = ∨_n g_n.
 Ştim că f este cel mai mic punct fix al funcției F, deci F(f) = f.
- Demonstrăm prin inducție după n că:
 dom(g_n) = {0,...,n} și g_n(k) = k! oricare k ∈ dom(g_n)
- $f: \mathbb{N} \to \mathbb{N}$ este funcția factorial.

Semantica denotațională pentru while

- Definim \mathbf{F} : $Pfn(State, State) \rightarrow Pfn(State, State)$ prin
- F este continuă
- Teorema Knaster-Tarski: $fix(\mathbf{F}) = \bigcup_n \mathbf{F}^n(\bot)$

Semantica denotațională pentru while

• Definim **F** : *Pfn*(*State*, *State*) → *Pfn*(*State*, *State*) prin

- F este continuă
- Teorema Knaster-Tarski: $\mathit{fix}(\mathbf{F}) = \bigcup_n \mathbf{F}^n(\bot)$

Semantica denotațională pentru while

• Definim $\mathbf{F}: Pfn(State, State) \rightarrow Pfn(State, State)$ prin

- F este continuă
- Teorema Knaster-Tarski: $fix(\mathbf{F}) = \bigcup_n \mathbf{F}^n(\bot)$
- Semantica denotaţională:

$$[[_]] : Stmt \rightarrow (State \rightarrow State)$$
$$[[while (b) c]](s) = fix(\mathbf{F})(s)$$

Semantica denotațională

Avantaje și dezavantaje

- + Formală, matematică, foarte precisă
- + Compozițională (morfisme și compuneri de funcții)
- Domeniile devin din ce în ce mai complexe.

Semantica operațională (small-step)

Imagine de ansamblu

 Semantica operațională descrie cum se execută un program pe o mașină abstractă (ideală).

Imagine de ansamblu

- Semantica operaţională descrie cum se execută un program pe o maşină abstractă (ideală).
- Semantica operațională small-step
 - semantica structurală, a pașilor mici
 - descrie cum o execuție a programului avansează în funcție de reduceri succesive.

$$\langle cod, \sigma \rangle \rightarrow \langle cod', \sigma' \rangle$$

Imagine de ansamblu

- Semantica operațională descrie cum se execută un program pe o mașină abstractă (ideală).
- Semantica operațională small-step
 - semantica structurală, a pasilor mici
 - descrie cum o execuție a programului avansează în funcție de reduceri succesive.

$$\langle cod, \sigma \rangle \rightarrow \langle cod', \sigma' \rangle$$

- Semantica operațională big-step
 - semantică naturală, într-un pas mare

Starea execuției

- Starea execuției unui program IMP la un moment dat este dată de valorile deținute în acel moment de variabilele declarate în program.
- Formal, starea executiei unui program IMP la un moment dat este o funcție parțială (cu domeniu finit):

$$\sigma: Var \rightarrow Int$$

Starea execuției

- Starea execuției unui program IMP la un moment dat este dată de valorile deținute în acel moment de variabilele declarate în program.
- Formal, starea executiei unui program IMP la un moment dat este o funcție parțială (cu domeniu finit):

$$\sigma: Var \rightarrow Int$$

- Notaţii:
 - Descrierea funcției prin enumerare: $\sigma = n \mapsto 10$, sum $\mapsto 0$
 - Functia vidă ⊥, nedefinită pentru nicio variabilă
 - Obtinerea valorii unei variabile: $\sigma(x)$
 - Suprascrierea valorii unei variabile:

$$\sigma_{x \leftarrow v}(y) = \begin{cases} \sigma(y), \text{ dacă } y \neq x \\ v, \text{ dacă } y = x \end{cases}$$

- Introdusă de Gordon Plotkin (1981)
- Denumiri alternative:
 - Semantică Operațională Structurală
 - semantică prin tranziții
 - semantică prin reducere
- Definește cel mai mic pas de execuție ca o relație "de tranziție" între configurații:

$$\langle cod, \sigma \rangle \rightarrow \langle cod, \sigma' \rangle$$

- Introdusă de Gordon Plotkin (1981)
- Denumiri alternative:
 - Semantică Operațională Structurală
 - semantică prin tranziții
 - semantică prin reducere
- Definește cel mai mic pas de execuție ca o relație "de tranziție" între configurații:

$$\langle cod, \sigma \rangle \rightarrow \langle cod, \sigma' \rangle$$

Execuția se obține ca o succesiune de astfel de tranziții:

$$\langle \text{int } x = 0 ; x = x + 1 ; , \perp \rangle \rightarrow \langle x = x + 1 ; , x \mapsto 0 \rangle$$

- Introdusă de Gordon Plotkin (1981)
- Denumiri alternative:
 - Semantică Operațională Structurală
 - semantică prin tranziții
 - semantică prin reducere
- Definește cel mai mic pas de execuție ca o relație "de tranziție" între configurații:

$$\langle cod, \sigma \rangle \rightarrow \langle cod, \sigma' \rangle$$

• Execuția se obține ca o succesiune de astfel de tranziții:

$$\langle \text{int } x = 0 \text{ ; } x = x + 1 \text{ ; }, \perp \rangle \rightarrow \langle x = x + 1 \text{ ; }, x \mapsto 0 \rangle$$

 $\rightarrow \langle x = 0 + 1 \text{ ; }, x \mapsto 0 \rangle$

- Introdusă de Gordon Plotkin (1981)
- Denumiri alternative:
 - Semantică Operațională Structurală
 - semantică prin tranziții
 - semantică prin reducere
- Definește cel mai mic pas de execuție ca o relație "de tranziție" între configurații:

$$\langle cod, \sigma \rangle \rightarrow \langle cod, \sigma' \rangle$$

• Execuția se obține ca o succesiune de astfel de tranziții:

$$\begin{array}{lll} \langle \operatorname{int} x=0 \ ; \ x=x+1 \ ; \ , \ \bot \rangle & \rightarrow & \langle x=x+1 \ ; \ , \ x\mapsto 0 \rangle \\ & \rightarrow & \langle x=0+1 \ ; \ , \ x\mapsto 0 \rangle \\ & \rightarrow & \langle x=1 \ ; \ , \ x\mapsto 0 \rangle \end{array}$$

- Introdusă de Gordon Plotkin (1981)
- Denumiri alternative:
 - Semantică Operațională Structurală
 - semantică prin tranziții
 - semantică prin reducere
- Definește cel mai mic pas de execuție ca o relație "de tranziție" între configurații:

$$\langle cod, \sigma \rangle \rightarrow \langle cod, \sigma' \rangle$$

• Execuția se obține ca o succesiune de astfel de tranziții:

$$\begin{array}{lll} \langle \operatorname{int} x=0 \; ; \; x=x+1 \; ; \; , \; \bot \rangle & \rightarrow & \langle x=x+1 \; ; \; , \; x\mapsto 0 \rangle \\ & \rightarrow & \langle x=0+1 \; ; \; , \; x\mapsto 0 \rangle \\ & \rightarrow & \langle x=1 \; ; \; , \; x\mapsto 0 \rangle \\ & \rightarrow & \langle \{\} \; , \; x\mapsto 1 \rangle \end{array}$$

- Introdusă de Gordon Plotkin (1981)
- Denumiri alternative:
 - Semantică Operațională Structurală
 - semantică prin tranziții
 - semantică prin reducere
- Definește cel mai mic pas de execuție ca o relație "de tranziție" între configurații:

$$\langle cod, \sigma \rangle \rightarrow \langle cod, \sigma' \rangle$$

Execuția se obține ca o succesiune de astfel de tranziții:

Cum definim această relație?

- Introdusă de Gordon Plotkin (1981)
- Denumiri alternative:
 - Semantică Operațională Structurală
 - semantică prin tranzitii
 - semantică prin reducere
- Definește cel mai mic pas de execuție ca o relație "de tranziție" între configurații:

$$\langle cod, \sigma \rangle \rightarrow \langle cod, \sigma' \rangle$$

• Execuția se obține ca o succesiune de astfel de tranziții:

$$\begin{array}{lll} \langle \operatorname{int} x=0 \ ; \ x=x+1 \ ; \ , \ \bot \rangle & \rightarrow & \langle x=x+1 \ ; \ , \ x\mapsto 0 \rangle \\ & \rightarrow & \langle x=0+1 \ ; \ , \ x\mapsto 0 \rangle \\ & \rightarrow & \langle x=1 \ ; \ , \ x\mapsto 0 \rangle \\ & \rightarrow & \langle \{\} \ , \ x\mapsto 1 \rangle \end{array}$$

Cum definim această relație? Prin inducție după elementele din sintaxă.

- Expresie reductibilă (redex)
 - Fragmentul de sintaxă care va fi procesat la pasul următor

if
$$(0 \le 5 + 7 * x) \{ r = 1 ; \}$$
 else $\{ r = 0 ; \}$

- Expresie reductibilă (redex)
 - Fragmentul de sintaxă care va fi procesat la pasul următor

if
$$(0 \le 5 + 7 * x) \{ r = 1 ; \}$$
 else $\{ r = 0 ; \}$

- Expresie reductibilă (redex)
 - Fragmentul de sintaxă care va fi procesat la pasul următor

if
$$(0 \le 5 + 7 * x) \{ r = 1 ; \}$$
 else $\{ r = 0 ; \}$

- Reguli structurale
 - Folosesc la identificarea următorului redex
 - Definite recursiv pe structura termenilor

- Expresie reductibilă (redex)
 - Fragmentul de sintaxă care va fi procesat la pasul următor

if
$$(0 \le 5 + 7 * x) \{ r = 1 ; \}$$
 else $\{ r = 0 ; \}$

- Reguli structurale
 - Folosesc la identificarea următorului redex
 - Definite recursiv pe structura termenilor

$$\frac{\langle b\;,\;\sigma\rangle\to\langle b'\;,\;\sigma\rangle}{\langle \text{if (b) }bl_1\;\text{else }bl_2\;,\;\sigma\rangle\to\langle \text{if (b') }bl_1\;\text{else }bl_2\;,\;\sigma\rangle}$$

- Expresie reductibilă (redex)
 - Fragmentul de sintaxă care va fi procesat la pasul următor

if
$$(0 \le 5 + 7 * x) \{ r = 1 ; \}$$
 else $\{ r = 0 ; \}$

- Reguli structurale
 - Folosesc la identificarea următorului redex
 - Definite recursiv pe structura termenilor

$$\frac{\langle b\;,\;\sigma\rangle\to\langle b'\;,\;\sigma\rangle}{\langle \text{if (b) }bl_1\;\text{else }bl_2\;,\;\sigma\rangle\to\langle \text{if (b') }bl_1\;\text{else }bl_2\;,\;\sigma\rangle}$$

- Axiome
 - Realizează pasul computațional

- Expresie reductibilă (redex)
 - Fragmentul de sintaxă care va fi procesat la pasul următor

if
$$(0 \le 5 + 7 * x) \{ r = 1 ; \}$$
 else $\{ r = 0 ; \}$

- Reguli structurale
 - Folosesc la identificarea următorului redex
 - Definite recursiv pe structura termenilor

$$\frac{\langle b , \sigma \rangle \to \langle b' , \sigma \rangle}{\langle \text{if } (b) \ bl_1 \ \text{else} \ bl_2 \ , \ \sigma \rangle \to \langle \text{if } (b') \ bl_1 \ \text{else} \ bl_2 \ , \ \sigma \rangle}$$

- Axiome
 - Realizează pasul computațional

$$\langle \text{if (true) } bl_1 \text{ else } bl_2 , \sigma \rangle \rightarrow \langle bl_1 , \sigma \rangle$$

Sintaxa BNF a limbajului IMP

```
E ::= n \mid x
   |E+E|E*E
B := true \mid false
    \mid E \leq E
    | ! B | B & & B
C := \{ C \} | \{ \} \}
C := C \mid C \mid C
   | x = E;
   \mid if (B) Celse C
    | while (B)C
P ::= int x = n ; P \mid C
```

Semantica expresiilor aritmetice

- Semantica unui întreg este o valoare
 - nu poate fi redex, deci nu avem regulă

Semantica expresiilor aritmetice

- Semantica unui întreg este o valoare
 - nu poate fi redex, deci nu avem regulă
- Semantica unei variabile

(ID)
$$\langle x, \sigma \rangle \rightarrow \langle i, \sigma \rangle$$
 dacă $i = \sigma(x)$

Semantica expresiilor aritmetice

- Semantica unui întreg este o valoare
 - nu poate fi redex, deci nu avem regulă
- Semantica unei variabile

(ID)
$$\langle x, \sigma \rangle \rightarrow \langle i, \sigma \rangle$$
 dacă $i = \sigma(x)$

• Semantica adunării a două expresii aritmetice

(Add)
$$\langle i_1 + i_2 , \sigma \rangle \rightarrow \langle i , \sigma \rangle$$
 dacă $i = i_1 + i_2$
 $\langle a_1 , \sigma \rangle \rightarrow \langle a'_1 , \sigma \rangle$ $\langle a_2 , \sigma \rangle$ -

$$\frac{\langle a_1 , \sigma \rangle \to \langle a'_1 , \sigma \rangle}{\langle a_1 + a_2 , \sigma \rangle \to \langle a'_1 + a_2 , \sigma \rangle} \qquad \frac{\langle a_2 , \sigma \rangle \to \langle a'_2 , \sigma \rangle}{\langle a_1 + a_2 , \sigma \rangle \to \langle a_1 + a'_2 , \sigma \rangle}$$

Semantica expresiilor aritmetice

- Semantica unui întreg este o valoare
 - nu poate fi redex, deci nu avem regulă
- Semantica unei variabile

(ID)
$$\langle x, \sigma \rangle \rightarrow \langle i, \sigma \rangle$$
 dacă $i = \sigma(x)$

• Semantica adunării a două expresii aritmetice

$$\begin{array}{lll} \text{(Add)} & \langle i_1+i_2 \;,\; \sigma \rangle \rightarrow \langle i \;,\; \sigma \rangle & \textit{dac} \ \textit{i} = \textit{i}_1+\textit{i}_2 \\ \\ \frac{\langle a_1 \;,\; \sigma \rangle \rightarrow \langle a'_1 \;,\; \sigma \rangle}{\langle a_1+a_2 \;,\; \sigma \rangle \rightarrow \langle a'_1+a_2 \;,\; \sigma \rangle} & \frac{\langle a_2 \;,\; \sigma \rangle \rightarrow \langle a'_2 \;,\; \sigma \rangle}{\langle a_1+a_2 \;,\; \sigma \rangle \rightarrow \langle a_1+a'_2 \;,\; \sigma \rangle} \\ \end{array}$$

Semantica înmulţirii a două expresii aritmetice – similar

Semantica expresiilor Booleene

- Semantica constantelor Booleene sunt valori
 - nu pot fi redex, deci nu avem reguli

Semantica expresiilor Booleene

- Semantica constantelor Booleene sunt valori
 - nu pot fi redex, deci nu avem reguli
- Semantica operatorului de comparație

$$\begin{split} & \text{(Leq-false)} \quad \langle i_1 \mathrel{<=} i_2 \;,\; \sigma \rangle \rightarrow \langle \text{false} \;,\; \sigma \rangle \quad \textit{dacă} \; i_1 > i_2 \\ & \text{(Leq-true)} \quad \langle i_1 \mathrel{<=} i_2 \;,\; \sigma \rangle \rightarrow \langle \text{true} \;,\; \sigma \rangle \quad \textit{dacă} \; i_1 \leq i_2 \\ & \frac{\langle a_1 \;,\; \sigma \rangle \rightarrow \langle a_1' \;,\; \sigma \rangle}{\langle a_1 \mathrel{<=} a_2 \;,\; \sigma \rangle \rightarrow \langle a_1' \mathrel{<=} a_2 \;,\; \sigma \rangle} \\ & \frac{\langle a_2 \;,\; \sigma \rangle \rightarrow \langle a_2' \;,\; \sigma \rangle}{\langle a_1 \mathrel{<=} a_2 \;,\; \sigma \rangle \rightarrow \langle a_1 \mathrel{<=} a_2' \;,\; \sigma \rangle} \\ \hline \end{aligned}$$

• Semantica negației

• Semantica negației

$$\begin{split} &\text{(!-true)} \quad \langle \text{!true }, \ \sigma \rangle \to \langle \text{false }, \ \sigma \rangle \\ &\text{(!-false)} \quad \langle \text{!false }, \ \sigma \rangle \to \langle \text{true }, \ \sigma \rangle \\ &\frac{\langle a \ , \ \sigma \rangle \to \langle a' \ , \ \sigma \rangle}{\langle \text{! } a \ , \ \sigma \rangle \to \langle \text{! } a' \ , \ \sigma \rangle } \end{aligned}$$

• Semantica negației

(!-TRUE)
$$\langle$$
!true, $\sigma \rangle \rightarrow \langle$ false, $\sigma \rangle$
(!-FALSE) \langle !false, $\sigma \rangle \rightarrow \langle$ true, $\sigma \rangle$

$$\frac{\langle a, \sigma \rangle \rightarrow \langle a', \sigma \rangle}{\langle ! \ a, \sigma \rangle \rightarrow \langle ! \ a', \sigma \rangle}$$

• Semantica și-ului

(&&-false)
$$\langle \text{false \&\& } b_2 \;,\; \sigma \rangle \rightarrow \langle \text{false },\; \sigma \rangle$$

(&&-true) $\langle \text{true \&\& } b_2 \;,\; \sigma \rangle \rightarrow \langle b_2 \;,\; \sigma \rangle$

$$\frac{\langle b_1 \;,\; \sigma \rangle \rightarrow \langle b_1' \;,\; \sigma \rangle}{\langle b_1 \;\&\& \; b_2 \;,\; \sigma \rangle \rightarrow \langle b_1' \;\&\& \; b_2 \;,\; \sigma \rangle}$$

Semantica comenzilor

Semantica blocurilor

(BLOCK-END)
$$\langle \{\{\}\}\}, \sigma \rangle \rightarrow \langle \{\}\}, \sigma \rangle$$

 $\langle s, \sigma \rangle \rightarrow \langle s', \sigma' \rangle$

$$\frac{\langle s\;,\;\sigma\rangle \to \langle s'\;,\;\sigma'\rangle}{\langle \{\;s\;\}\;,\;\sigma\rangle \to \langle \{\;s'\;\}\;,\;\sigma'\rangle}$$

Atenție! O instrucțiune poate modifica starea curentă!

Semantica comenzilor

Semantica blocurilor

(BLOCK-END)
$$\langle \{\{\}\}\}, \sigma \rangle \rightarrow \langle \{\}\}, \sigma \rangle$$

$$\frac{\langle s , \sigma \rangle \to \langle s' , \sigma' \rangle}{\langle \{ s \} , \sigma \rangle \to \langle \{ s' \} , \sigma' \rangle}$$

Atenție! O instrucțiune poate modifica starea curentă!

• Semantica compunerii secvențiale

(Next-stmt)
$$\langle \{\} \ s_2 \ , \ \sigma \rangle \rightarrow \langle s_2 \ , \ \sigma \rangle$$

$$\frac{\langle s_1 , \sigma \rangle \rightarrow \langle s'_1 , \sigma' \rangle}{\langle s_1 s_2 , \sigma \rangle \rightarrow \langle s'_1 s_2 , \sigma' \rangle}$$

Semantica atribuirii

(Asgn)
$$\langle x=i \; ; \; , \; \sigma \rangle \rightarrow \langle \{\} \; , \; \sigma' \rangle$$
 $dac \check{a} \; \sigma' = \sigma_{x \leftarrow i}$
$$\frac{\langle a \; , \; \sigma \rangle \rightarrow \langle a' \; , \; \sigma \rangle}{\langle x=a \; ; \; , \; \sigma \rangle \rightarrow \langle x=a' \; ; \; , \; \sigma \rangle}$$

Semantica atribuirii

(Asgn)
$$\langle x=i \; ; \; , \; \sigma \rangle \rightarrow \langle \{\} \; , \; \sigma' \rangle$$
 dacă $\sigma' = \sigma_{x \leftarrow i}$
$$\frac{\langle a \; , \; \sigma \rangle \rightarrow \langle a' \; , \; \sigma \rangle}{\langle x=a \; ; \; , \; \sigma \rangle \rightarrow \langle x=a' \; ; \; , \; \sigma \rangle}$$

Semantica lui if

(IF-TRUE)
$$\langle \text{if (true)} \ bl_1 \ \text{else} \ bl_2 \ , \ \sigma \rangle \rightarrow \langle bl_1 \ , \ \sigma \rangle$$
(IF-FALSE) $\langle \text{if (false)} \ bl_1 \ \text{else} \ bl_2 \ , \ \sigma \rangle \rightarrow \langle bl_2 \ , \ \sigma \rangle$

$$\frac{\langle b \ , \ \sigma \rangle \rightarrow \langle b' \ , \ \sigma \rangle}{\langle \text{if (b)} \ bl_1 \ \text{else} \ bl_2 \ , \ \sigma \rangle \rightarrow \langle \text{if (b')} \ bl_1 \ \text{else} \ bl_2 \ , \ \sigma \rangle}$$

• Semantica lui while

```
(\text{WHILE}) \quad \langle \text{while } (b) \ bl \ , \ \sigma \rangle \rightarrow \langle \text{if } (b) \ \{ \ bl \ \text{while } (b) \ bl \ \} \text{else} \{ \} \ , \ \sigma \rangle
```

Semantica lui while

$$(\text{WHILE}) \quad \langle \text{while } (b) \; bl \; , \; \sigma \rangle \to \langle \text{if } (b) \; \{ \; bl \; \text{while } (b) \; bl \; \} \\ \text{else} \{ \} \; , \; \sigma \rangle$$

• Semantica inițializărilor

(Init)
$$\langle \text{int } x = i ; p, \sigma \rangle \rightarrow \langle p, \sigma' \rangle$$
 dacă $\sigma' = \sigma_{x \leftarrow i}$

Execuție pas cu pas

$$\langle \text{int } i = 3 \text{ ; while } (0 \le i) \ \{ i = i + -4 \text{ ; } \}, \perp \rangle$$

INIT

$$\langle \text{int } i = 3 \text{ ; while } (0 \le i) \ \{ i = i + -4 \text{ ; } \}, \ \bot \rangle$$
 $\langle \text{while } (0 \le i) \ \{ i = i + -4 \text{ ; } \}, \ i \mapsto 3 \rangle$
While

```
\langle \text{int } i = 3 \text{ ; while } (0 \leq i) \{ i = i + -4 \} \}, \perp \rangle
                                                                                     WHILE
\langle \text{while } (0 \leq i) \ \{ i = i + -4 ; \}, i \mapsto 3 \rangle
                                                       , i \mapsto 3 \rangle
(if (0 \le i) \{\{i = i + -4\}\}
                    while (0 \le i) \{ i = i + -4 \}
                 }else {}
                                                               , i \mapsto 3 \rangle \xrightarrow{\text{Leq-true}}
(if (0 \le 3) \{\{i = i + -4\}\}
                     while (0 \le i) \{ i = i + -4 \}
                  } else {}
                                                         , i \mapsto 3 \rangle
(if (true) \{\{i = i + -4;\}\}
                  while (0 \le i) \{ i = i + -4 : \}
               } else {}
```

```
\langle \text{int } i = 3 \text{ ; while } (0 \leq i) \{ i = i + -4 \} \}, \perp \rangle
                                                                                 WHILE
\langle \text{while } (0 \leq i) \ \{ i = i + -4 ; \}, i \mapsto 3 \rangle
                                                     , i \mapsto 3 \rangle
(if (0 \le i) \{\{i = i + -4\}\}
                    while (0 \le i) \{ i = i + -4 \}
                }else {}
                                                             , i \mapsto 3 \rangle \xrightarrow{\text{Leq-true}}
(if (0 \le 3) \{\{i = i + -4\}\}
                    while (0 \le i) \{ i = i + -4 \}
                 }else{}
(if (true) \{\{i = i + -4;\}\}
                                                , i \mapsto 3 \rangle
                 while (0 \le i) \{ i = i + -4 : \}
              } else {}
                                                                                      ID
\{\{\{i=i+-4\}\}\} while \{0 <= i\} \{i=i+-4\}\}, i \mapsto 3\}
```

$$\{\{\{i=3+-4;\}\}\}$$
 while $\{0 \le i\}$ $\{i=i+-4;\}\}$, $i \mapsto 3\}$

$$\langle \{\{i=3+-4;\} \text{ while } (0 \le i) \mid \{i=i+-4;\}\} , i \mapsto 3 \rangle$$

$$\langle \{\{i=-1;\} \text{ while } (0 \le i) \mid \{i=i+-4;\}\} , i \mapsto 3 \rangle$$

$$\xrightarrow{\text{Add}}$$

```
 \langle \{\{i=3+-4;\} \text{ while } (0 <= i) \mid \{i=i+-4;\} \}, \ i \mapsto 3 \rangle 
 \langle \{\{i=-1;\} \text{ while } (0 <= i) \mid \{i=i+-4;\} \}, \ i \mapsto 3 \rangle 
 \langle \{\{\{\}\} \text{ while } (0 <= i) \mid \{i=i+-4;\} \}, \ i \mapsto -1 \rangle 
 \langle \{\{\} \text{ while } (0 <= i) \mid \{i=i+-4;\} \}, \ i \mapsto -1 \rangle 
 \xrightarrow{\text{Next-stmt}}
```

$$\langle \{\{i=3+-4;\} \text{ while } (0 <= i) \mid \{i=i+-4;\}\} \mid, i \mapsto 3 \rangle$$

$$\langle \{\{i=-1;\} \text{ while } (0 <= i) \mid \{i=i+-4;\}\} \mid, i \mapsto 3 \rangle$$

$$\langle \{\{\{\}\} \text{ while } (0 <= i) \mid \{i=i+-4;\}\} \mid, i \mapsto -1 \rangle$$

$$\langle \{\{\} \text{ while } (0 <= i) \mid \{i=i+-4;\}\} \mid, i \mapsto -1 \rangle$$

$$\langle \{\text{while } (0 <= i) \mid \{i=i+-4;\}\} \mid, i \mapsto -1 \rangle$$

$$\xrightarrow{\text{While } (0 <= i) \mid \{i=i+-4;\}\} \mid, i \mapsto -1 \rangle }$$

```
ADD
\{\{\{i=3+-4\}\}\} while \{0 <= i\} \{i=i+-4\}\}, i \mapsto 3\}
                                                                                         ASGN
\{\{\{i=-1;\}\}\} while \{0 \le i\} \{i=i+-4;\}\}, i \mapsto 3\}
                                                                                   BLOCK-END
\{\{\{\}\}\}\ while \{0 \le i\} \{i = i + -4;\}\}, i \mapsto -1\}
\{\{\{\}\}\}\} while \{0 \le i\} \{i = i + -4;\}\}, i \mapsto -1\}
                                                                                        WHILE
\langle \{\text{while } (0 \le i) \mid \{i = i + -4;\}\}, i \mapsto -1 \rangle
\{\{if(0 \le i)\}\} \{\{i = i + -4\}\}
                                                               , i \mapsto -1 \rangle
                      while (0 \le i) \{ i = i + -4 \}
                   } else {}}
                                                                  i \mapsto -1
\{\{i \in (0 \le -1) \mid \{\{i = i + -4\}\}\}\}
                        while (0 \le i) \{ i = i + -4 \}
                     } else {}}
```

Semantica big-step

Semantica big-step

- Introdusă de Gilles Kahn (1987)
- Denumiri alternative:
 - semantică relaională
 - semantică naturală
- Relaţionează fragmente de program într-o stare cu valoarea corespunzătoare evaluării lor în acea stare
 - Expresiile aritmetice se evaluează la întregi: $\langle a, \sigma \rangle \downarrow \langle i \rangle$
 - Expresiile Booleene se evaluează la true/false: $\langle b, \sigma \rangle \Downarrow \langle t \rangle$
 - Instrucțiunile se evaluează la stări: ⟨ins , σ⟩ ↓ ⟨σ'⟩
 - Blocurile se evaluează la stări: $\langle bl, \sigma \rangle \Downarrow \langle \sigma' \rangle$
 - Programul se evaluează la o stare: $\langle p \rangle \Downarrow \langle \sigma \rangle$ sau $\langle p , \sigma \rangle \Downarrow \langle \sigma' \rangle$
- Reguli structurale, având ca premize secvenți corespunzători subtermenilor.
- Valoarea este obţinută într-un singur pas.

Semantica big-step

Exemplu

- $\langle 3+x, (x\mapsto 5, y\mapsto 7)\rangle \downarrow \langle 8\rangle$
- $\langle x = 3 + y, (x \mapsto 5, y \mapsto 7) \rangle \Downarrow \langle x \mapsto 10, y \mapsto 7 \rangle$

Expresii aritmetice

(Int)
$$\langle i, \sigma \rangle \Downarrow \langle i \rangle$$

(ID)
$$\langle x, \sigma \rangle \Downarrow \langle i \rangle$$
 dacă $i = \sigma(x)$

$$\text{\tiny (ADD)} \quad \frac{\langle a_1 \;,\; \sigma \rangle \Downarrow \langle i_1 \rangle \quad \langle a_2 \;,\; \sigma \rangle \Downarrow \langle i_2 \rangle}{\langle a_1 + a_2 \;,\; \sigma \rangle \Downarrow \langle i \rangle} \quad \textit{dac} \; \textit{i} = \textit{i}_1 + \textit{i}_2$$

$$(\text{Mul}) \quad \frac{\langle a_1 \;,\; \sigma \rangle \Downarrow \langle i_1 \rangle \quad \langle a_2 \;,\; \sigma \rangle \Downarrow \langle i_2 \rangle}{\langle a_1 * a_2 \;,\; \sigma \rangle \Downarrow \langle i \rangle} \quad \textit{dacă} \; i = i_1 * i_2$$

Expresii booleene

(Bool)
$$\langle t , \sigma \rangle \Downarrow \langle t \rangle$$

(CMP) $\frac{\langle a_1 , \sigma \rangle \Downarrow \langle i_1 \rangle \quad \langle a_2 , \sigma \rangle \Downarrow \langle i_2 \rangle}{\langle a_1 \lessdot a_2 , \sigma \rangle \Downarrow \langle t \rangle} \quad dac \breve{a} t = i_1 \leq i_2$

(NOT-True) $\frac{\langle b , \sigma \rangle \Downarrow \langle false \rangle}{\langle ! b , \sigma \rangle \Downarrow \langle true \rangle} \quad \text{(NOT-False)} \quad \frac{\langle b , \sigma \rangle \Downarrow \langle true \rangle}{\langle ! b , \sigma \rangle \Downarrow \langle false \rangle}$

(AND-True) $\frac{\langle b_1 , \sigma \rangle \Downarrow \langle true \rangle \quad \langle b_2 , \sigma \rangle \Downarrow \langle t \rangle}{\langle b_1 \&\& b_2 , \sigma \rangle \Downarrow \langle t \rangle}$

Instrucțiuni simple

$$\begin{array}{ccc} \text{(Secv)} & \frac{\langle s_1 \;,\; \sigma \rangle \Downarrow \langle \sigma' \rangle & \langle s_2 \;,\; \sigma' \rangle \Downarrow \langle \sigma'' \rangle}{\langle s_1 \;\; s_2 \;,\; \sigma \rangle \Downarrow \langle \sigma'' \rangle} \end{array}$$

(Asgn)
$$\frac{\langle a, \sigma \rangle \Downarrow \langle i \rangle}{\langle x = a; \sigma \rangle \Downarrow \langle \sigma' \rangle} dac \check{a} \sigma' = \sigma[i/x]$$

$$(\text{IF-True}) \quad \frac{\langle b \;,\; \sigma \rangle \Downarrow \langle \textit{true} \rangle \quad \langle \textit{bl}_1 \;,\; \sigma \rangle \Downarrow \langle \sigma_1 \rangle }{\langle \text{if } (\textit{b}) \; \textit{bl}_1 \; \text{else} \; \textit{bl}_2 \;,\; \sigma \rangle \Downarrow \langle \sigma_1 \rangle }$$

$$\begin{array}{ll} \text{(IF-FALSE)} & \frac{\langle b\;,\;\sigma\rangle \Downarrow \langle \textit{false}\rangle \quad \langle \textit{bl}_2\;,\;\sigma\rangle \Downarrow \langle \sigma_2\rangle}{\langle \text{if } (b)\; \textit{bl}_1\; \text{else}\; \textit{bl}_2\;,\;\sigma\rangle \Downarrow \langle \sigma_2\rangle} \\ \end{array}$$

Blocuri și instrucțiuni de ciclare

$$(SKIP) \quad \langle \{\} \ , \ \sigma \rangle \Downarrow \langle \sigma \rangle$$

$$(BLOCK) \quad \frac{\langle s \ , \ \sigma \rangle \Downarrow \langle \sigma' \rangle}{\langle \{ \ s \ \} \ , \ \sigma \rangle \Downarrow \langle \sigma' \rangle}$$

$$(WHILE-TRUE) \quad \frac{\langle b \ , \ \sigma \rangle \Downarrow \langle true \rangle \quad \langle bI \ , \ \sigma \rangle \Downarrow \langle \sigma' \rangle \quad \langle while \ (b) \ bI \ , \ \sigma' \rangle \Downarrow \langle \sigma'' \rangle}{\langle while \ (b) \ bI \ , \ \sigma \rangle \Downarrow \langle \sigma'' \rangle}$$

$$(WHILE-FALSE) \quad \frac{\langle b \ , \ \sigma \rangle \Downarrow \langle false \rangle}{\langle while \ (b) \ bI \ , \ \sigma \rangle \Downarrow \langle \sigma \rangle}$$

Inițializări. Semantica programului

(Init)
$$\frac{\langle p, \sigma' \rangle \Downarrow \langle \sigma'' \rangle}{\langle \text{int } x = i \text{ ; } p, \sigma \rangle \Downarrow \langle \sigma'' \rangle} \quad \textit{dacă } \sigma' = \sigma[i/x]$$

$$(PGM) \quad \frac{\langle p , \perp \rangle \Downarrow \langle \sigma \rangle}{\langle p \rangle \Downarrow \langle \sigma \rangle}$$

Arbori de derivare

$$(Init) = (Asgn) = ($$

Proprietăți ale limbajului IMP

- Întuitiv, două instrucțiuni sunt echivalente dacă produc același rezultat în orice stare de execuție a programului.
- Formal, două instrucțiuni c_1 și c_2 sunt echivalente (notat $c_1 \sim c_2$) dacă, pentru orice stări σ și σ'

$$\langle c_1 \;,\; \sigma \rangle \Downarrow \langle \sigma' \rangle \quad \Leftrightarrow \quad \langle c_2 \;,\; \sigma \rangle \Downarrow \langle \sigma' \rangle$$

Proprietăți ale limbajului IMP

- Intuitiv, două instrucțiuni sunt echivalente dacă produc același rezultat în orice stare de execuție a programului.
- Formal, două instrucțiuni c_1 și c_2 sunt echivalente (notat $c_1 \sim c_2$) dacă, pentru orice stări σ și σ'

$$\langle c_1 , \sigma \rangle \Downarrow \langle \sigma' \rangle \Leftrightarrow \langle c_2 , \sigma \rangle \Downarrow \langle \sigma' \rangle$$

De exemplu, putem demonstra următorul rezultat:

Teoremă

while (b)
$$c \sim if(b) c$$
; while (b) $c = \{\}$

Teoremă (Determinism)

Dacă
$$\langle c, \sigma \rangle \Downarrow \langle \sigma' \rangle$$
 și $\langle c, \sigma \rangle \Downarrow \langle \sigma'' \rangle$ atunci $\sigma' = \sigma''$.