Note on the paper

Background

This paper is aimed at solving **linear systems**, which can't be solved efficiently on classical computer. In this paper, the author proposed a **variational hybrid quantum-classical algrithm (VHQCA)** to figure out the **quantum linear systems problem (QLSP)**. They call it **Variational Quantum Linear Solver (VQLS)**

Goal

Given matrixd $A_{n \times n}$ and vector $b_{n \times 1}$, find a quantum state $|x\rangle$ such that $A|x\rangle = |b\rangle$.

Outline of ideas

- 1. A can be decomposed as $A = \sum_{l} A_{l}$.
- 2. Condition number κ of A can be used to analyze the problem theoretically, as well as to compare with HHL algorithm that aims at the same problem.
- 3. Define two kinds of cost function $C_G(|\psi\rangle)$ and $C_L(|\psi\rangle)$ that evaluates the distance between $|\psi\rangle$ and the exact solution globally or locally.
- 4. Extimating $C_G(|\psi\rangle)$ and $C_L(|\psi\rangle)$ by classical method is proven to be DQC1-hard by reduce in to an estimation of Hilbert-Schmidt inner-product magnitude.
- 5. The cost function can be seen as expection of H_G and H_L under the state $|0\rangle$, which can be reduced to computing three set of values: $\delta_{ll'}$, $\gamma_{ll'}$, $\beta_{ll'}$ and sum them up.
- 6. $|\psi\rangle$ is produced by $|\psi\rangle=V(\alpha)|0\rangle$, where $V(\alpha)$ is separated into p driver hamiltonion and p mixer hamiltonion alternatively (QAOA ansza) in certain order.

$$V(\boldsymbol{\alpha}) = e^{-iH_{M}\alpha_{2p}}e^{-iH_{D}\alpha_{2p-1}}\dots e^{-iH_{M}\alpha_{2}}e^{-iH_{D}\alpha_{1}}$$

The parameters to be optimized is the time period of each hamiltonion.

- 7. Hadamard test and Hadamard-overlap test are used to calculate the parameters. Hadamard-overlap benefits the experiment, for it avoid using much control gates. We can get the real and imaginary parts of the $\delta_{ll'}$, $\gamma_{ll'}$, $\beta_{ll'}$ by measuring P(0) and P(1) of the ancilla qubit.
- 8. Divide the algorithm into quantum part and classical part. The quantum part calculate the cost

functions and the gradients while the classical parts do control and feedback.

Two ansatz

- 1. Hardware-Efficient Ansatz: A is composed of the gates native to that hard-ware.
- 2.Quantum Alternating Operator Ansatz(QAOA): By alternatively acting driver hamiltonion H_D and mixer hamiltion H_M , one can simulate any unitary gates efficiently.

ALgorithm

Input $A = \sum_{l=1}^{L} c_l A_l$ and U such that $U|0\rangle = |b\rangle$ to VLQS.

Input parameters α to the quantum computer, which prepares $|x(\alpha)\rangle$.

The quantum computer will estimate a cost function $C(\alpha)$.

The value of $C(\alpha)$ from the quantum computer is returned to the classical computer, which adjusts α to reduce the cost.

The loop above will go on until the classical computer fint that $C(\alpha) \leq \gamma$.

VQLS outputs the final parameters $oldsymbol{lpha}_{opt}$.

Using gate sequence $V(\alpha_{opt})$ to obtain the quantum state $|x(\alpha_{opt})\rangle:|x(\alpha_{opt})\rangle=V(\alpha_{opt})|0\rangle$.

Experiments&&Simulation

- 1. Numerically implemented VQLS to solve three different QLSPs of A with different degeneracy g with Hardware-Efficient Ansatz. Plot the dependence of running-per-success with condition number κ .
- 2. Numerically implemented VQLS and plot the Runs-per-success versus 1/ɛ for the QLSPs.
- 3. Implementation the VQLS using Rigetti's quantum chip 16Q Aspen-4.

Something more to explore

- 1. How to consider the impact of noise in the simulation? Why the algorithm is rubost to noise?
- 2. Does the resources we need depends largely on A or not?
- 3. Can the vector be encoded more efficiently?