Exercise 1.1.16:

Proposition: Let $a, b \in \mathbb{Z}$. If $d \mid a$ and $d \mid b$, then $d \mid au + bv$, where $u, v \in \mathbb{Z}$

<u>Proof</u>: Let $a,b \in \mathbb{Z}$. Assume d/a and d/b.] the "if-part" and try to show the "then-part."

Thus, a = x d and b = y d for some $x, y \in \mathbb{Z}$. apply the formal definitions! (Knowing all the definitions well will help you so so much!)

Consider some u, v ∈ Z.] quantifying variables to help as get

Observe that, au = xdu and bv = ydvThus, au + bv = xdu + ydvnote that this was applying = (xu + yv)dIn vererse!

This means dau + bv

Cometimes, people put a box or the acronym
"g.e.d" to show
that they're done

When proving an

Proofs oven t So
Scory ovce you
get used to
them!