Information Technology

FIT3143 - LECTURE WEEK 8

Assignment Project Exam Help

PARALLEL ALGORITHM DESIGN PARTITIONING BASED OF MATRIX OPERATIONS

algorithm distributed pystems database systems computation knowledge madesign e-business model data mining inteributed systems database software computation knowledge management and computation kn

Topic Overview

ANANTH GRAMA • ANSHUL GUPTA GEORGE KARYPIS • VIPIN KUMAR

Introduction to

Parallel Computing

- Matrix Algorithms Assistante Project Exam Help **Second Edition**
- Decomposition
- Decomposition Fox's method

https://powcoder.com

A portion of the content in the following slides were created by:

Add WeChat powcoder

- a) Gergel V.P., Nizhni Novgorod, Introduction to Parallel Programming: Matrix Multiplication, 2005.
- b) Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, "Introduction to Parallel Computing", Addison Wesley, 2003.

Matrix Algorithms: Introduction

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decompositionent Project Exam Help
- Typical algorithms rely on input, output, or intermediate data decompositions://powcoder.com
- Most algorithms use one and two-dimensional block, cyclic, and block-cyclic partitionings.

Problem Statement

Matrix multiplication:

$$C = A \cdot B$$

or

$$\begin{pmatrix} c_{0,0}, & c_{0,1}, & \text{Assignment Project Exam}^{b_0} & \text{Help}, & \dots, & a_{0,l-1} \\ & & & & & & & & \\ c_{m-1,0}, & c_{m-1,1}, & \dots, & c_{m-1} & \text{https://powcoder-com}^{b_{m-1,0}}, & b_{n-1,1}, & \dots, & b_{n-1,l-1} \end{pmatrix}$$

The matrix multiplication problem can be reduced to the execution of m·l independent operations of matrix A rows and matrix B columns inner product calculation

$$c_{ij} = (a_i, b_j^T) = \sum_{k=0}^{n-1} a_{ik} \cdot b_{kj}, \ 0 \le i < m, \ 0 \le j < l$$

Data parallelism can be exploited to design parallel computations

Sequential Algorithm

```
// Sequential algorithm of matrix multiplication
double MatrixA[Size][Size];
double MatrixB[Size][Size];
double MatrixC[Size][Size];
int i,j,k;
               Assignment Project Exam Help
for (i=0; i<Size; i++) {
  for (j=0; j<Size; https://powcoder.com
    MatrixC[i][i] = 0;
    for (k=0; k<SizeAdd WeChat powcoder

MatrixC[i][j] = MatrixC[i][j]p+ MatrixA[i][k]*MatrixB[k][j];
```

Sequential Algorithm

- Algorithm performs the matrix C rows calculation sequentially
- At every iteration of the outer loop on i variable a single row of matrix A and all columns of matrix B are processed
 - A Assignment Project Exam Help

- m·l inner products are calculated to perform the matrix multiplication
- The complexity of the matrix multiplication is O(mnl).

 A fine-grained approach – the basic subtask is calculation of one element of matrix C

$$c_{ij} = \left(a_i, b_j^{TA}\right) \text{ sign}\left(\underbrace{\text{ment Project}}_{i0, u_{i1}}, \underbrace{\text{Project}}_{in-1}\right) \text{ For a many } \left(\underbrace{\text{Help}}_{0j}, ..., b_{n-1j}\right)^T$$

- https://powcoder.com
 Number of basic subtasks is equal to n².
- As a rule, the downbehod pavailable processors is less then n² (p<n²), so it will be necessary to perform the subtask scaling

- The aggregated subtask the calculation of one row of matrix C (the number of subtasks is n)
- Data distribution rowwise block-striped decomposition for matrix B https://powcoder.com

Analysis of Information Dependencies

Each subtask hold one row of matrix **A** and one column of matrix **B**,

- At every iteration each subtask performs the inner product calculation of its row and column, as a result the corresponding element of matrix **C** is obtained
- Then every subtackWestrat, transmits its column of matrix **B** for the subtack with the number (i+1) mod n.

After all algorithm iterations all the columns of matrix **B** were come within each subtask one after another

Aggregating and Distributing the Subtasks among the Processors:

- In case when the number of processors **p** is less than the number of basic subtasks **n**, calculations can be aggregated in such a way that each processor would execute several inner products of matrix **A** rows and matrix **B** columns. In this case after the completion of https://www.cach-caggregated basic subtask determines several rows of the result matrix **C**.
- Under such conditions the initial matrix A is decomposed into p
 horizontal stripes and matrix B is decomposed into p vertical
 stripes.
- Subtasks distribution among the processors have to meet the requirements of effective representation of the ring structure of subtask information dependencies.

Efficiency Analysis...

Speed-up and Efficiency generalized estimates

Assignment Project Exam Help
$$S_{p} = \frac{n^{3}}{(n^{3}/p)} \overline{h} tps://powcode \overline{r.com}/p) = 1$$

Add WeChat powcoder
Developed method of parallel computations allows to achieve ideal speed-up and efficiency characteristics

 Another possible approach for the data distribution is the rowwise block-striped decomposition for matrices A and B Assignment Project Exam Help

Analysis of Information Dependencies

- Each subtask hold one row of matrix **A** and one row of matrix **B**,
- At every iteration the subtasks perform the element-toelement multiplications of the rows: as a result the row of partial results for matrix **C** is obtained,
- Then every states Ni,e0≤hiatnptransmites its row of matrix B for the subtask with the number (i+1) mod n.

After all algorithm iterations all rows of matrix **B** were come within every subtask one after another

Data distribution – checkerboard scheme

Basic subtask is adpine education that control all elements of one block of matrix C

$$\begin{pmatrix} A_{00}A_{01}...A_{0q-1} \\ ... \\ A_{q-10}A_{q-11}...A_{q-1q-1} \end{pmatrix} \times \begin{pmatrix} B_{00}B_{01}...B_{0q-1} \\ ... \\ B_{q-10}B_{q-11}...B_{q-1q-1} \end{pmatrix} = \begin{pmatrix} C_{00}C_{01}...C_{0q-1} \\ ... \\ c_{q-10}C_{q-11}...C_{q-1q-1} \end{pmatrix}, \quad C_{ij} = \sum_{s=0}^{q-1}A_{is}B_{sj}$$

Analysis of Information Dependencies

- Subtask with (i,j) number calculates the block C_{ij}, of the result matrix C. As a result, the subtasks form the qxq two-dimensional grignment Project Exam Help
- Each subtask holds 4 matrix blocks: powcoder.com
 - block C_{ii} of the result matrix C, which is calculated in the subtask,
 - block A_{ij} of makid A, Which was polar equility in subtask before the calculation starts,
 - blocks A_{ij}' and B_{ij}' of matrix A and matrix B, that are received by the subtask during calculations.

Analysis of Information Dependencies – during iteration *I,* 0≤ *I*<*q,* algorithm performs:

The subtask (i,j) transmits its block A_{ij} of matrix A to all subtasks of the same horizontal row i of the grid; the j index, which determines the position of the subtask on the position of the subtask on the position.

$$j = (i+1) \mod q$$
,

where mod openations is the procedure of original the remainder of integer-valued division,

- Every subtask performs the multiplication of received blocks \mathbf{A}_{ij} and \mathbf{B}_{ij} and adds the result to the block \mathbf{C}_{ij}

$$C_{ij} = C_{ij} + A'_{ij} \times B'_{ij}$$

– Every subtask (i,j) transmits its block \mathbf{B}_{ij} ' to the neighbor, which is previous in the same vertical line (the blocks of subtasks of the first row are transmitted to the subtasks of the last row of the grid).

Scheme of Information Dependences

Scaling and Distributing the Subtasks among the Processors

- The sizes of the matrices blocks can be selected so that the number of selected with Espherical Them of available processors **p**,
- The most efficient execution of the parallel the Fox's algorithm can be provided when the campunication network topology is a two-dimensional grid,
- In this case the subtasks can be distributed among the processors in a natural way: the subtask (i,j) has to be placed to the p_{i,i} processor

Scaling and Distributing the Subtasks among the Processors

- The sizes of the matrices blocks can be selected so that the humber of subtacks will coincides the number of available processors p, https://powcoder.com
 The most efficient execution of the parallel the Fox's
- The most efficient execution of the parallel the Fox's algorithm can be provided when the communication network topology is a two-dimensional grid,
- In this case the subtasks can be distributed among the processors in a natural way: the subtask (i,j) has to be placed to the $\mathbf{p}_{i,j}$ processor

In depth discussion & example

- Please refer to the enclosed report attached with these slides, "Design and Implementation of Parallel Matrix Multiplication Algorithms using Message Passing Interface" by Chin-Kit Ng for further in-depth discussion and code examples://powcoder.com
 - Serial matrix multiplication example
 - Bernstein analysis for Vata betten en en sy le l'altre de la company d
 - Parallel matrix multiplication examples using POSIX and MPI