

Carrera: Ingeniería Electrónica

Proyecto:

CbA-MoT

Módulo inalámbrico para monitoreo de sensores remotos

Especificación Técnica

ID 1884

Autor Sebastián Allende cballende/TDSTec.git

Fecha: 31/8/2022 Versión 1.0

Especificación Técnica

Fecha	Versión	Descripción	Autor/a
30/08/2022	1.0	Versión inicial	Sebastián Allende cballende/TDSTec.git

Fecha: 31/8/2022 Versión 1.0 Página 2 de 16

Especificación Técnica

Índice

1 Introducción	4
1.1 Propósito del documento	4
1.2 Alcance del proyecto	
1.3 Personal involucrado.	
1.4 Definiciones, acrónimos y abreviaturas	5
1.5 Referencias	
1.6 Resumen	
2 Descripción del dispositivo	
2.1 Buses	
2.2 Diagrama de circuitos	
3 Diseño fuente alimentación	
3.1 Diseño	
3.2 Simulación y Pruebas	
3.3 BOMs	
4 Descripción de Firmware	
4.1 Programa principal	
4.2 Bloque de estados	
4.3 Procesos.	
5 Descripción de variables.	
5.1 Variables Globales	
J.1 Valiables Giodales	10

1 Introducción

Este documento corresponde a la Especificación Técnica para la solución CbA-MoT. Esta especificación se ha estructurado basándose en la información mencionada en el documento de Especificación Funcional (EF) ID 1883.

1.1 Propósito del documento

El presente documento tiene como propósito proveer información detallada de cómo esta compuesto el sistema en sus distintos bloques y como sera la conexión entre ellos, cómo se deberá construir para ello se emplearan diagramas de flujos, descripción de estados y pseudocódigo para la correcta interpretación de la construcción día con base en los requerimientos anteriormente definidos en la EF.

Está dirigido a:

- Diseñador de circuito electrónico.
- Diseñador de circuito impreso.
- Diseñador de sistema embebido.

1.2 Alcance del proyecto

El proyecto involucra el diseño de un dispositivo, un módulo stick que debe ser capaz de procesar señales de sensores asociados, filtrar comportamientos no deseados y detectar eventos, posteriormente enviar datos en un paquete normalizado hacia un recolector o dispositivo maestro remoto.

El instrumento desarrollado en este trabajo final se trata de un prototipo para pruebas en campo de una actividad productiva de un cliente.

El algoritmo de detección de eventos difiere según la aplicación de interés del cliente, lo que obliga a normalizar la interfaz entre el procesamiento de datos del sensor especifico y la aplicación principal del software en la microcomputadora.

El dispositivo debe ser capaz de asociarse a un red, enviar datos, recibir comandos, auspiciar de mediador entre otros dispositivos iguales, poseer modo ahorro energía para ser viable la alimentación mediante baterías o pilas.

El tamaño y la tecnología de fabricación del dispositivo son restringidas, prima utilizar encapsulados comerciales de la menor superficie para los componente identificados según los criterios de funcionales y disipación de energía. Seguido, el diseño de pcb debe ser multicapa y montaje sobre una sola faz.

El diseño debe lograrse con el objetivo de brindar la base para un salto o instancia hacia una versión de producto mínimo viable. Por definición se adicionaran funcionalidades de segunda categoría progresivamente durante su uso por parte del cliente.

Fecha: 31/8/2022 Versión 1.0 Página 4 de 16

1.3 Personal involucrado

Nombre	Sebastián Allende
Rol	Analista Técnico
Categoría Profesional	Diseñador de sistemas embebidos
Responsabilidad	Transladar funcionalidad a características técnicas
Información de contacto	cba.allende@gmail.com

1.4 Definiciones, acrónimos y abreviaturas

Nombre	Descripción
RF	Requisito Funcional
RNF	Requisito No Funcional
RT	Requisito Técnico

1.5 Referencias

Título del Documento	Referencia
Especificación Funcional	ID 1883

1.6 Resumen

El presente documento tiene 5 secciones, la primera es introductoria, la segunda es de carácter global detallando los principales aspectos técnicos y las restantes secciones se entra en mayor detalle sobre la parte física del dispositivo, la aplicación principal del firmware, los procesos principales y las variables particulares.

2 Descripción del dispositivo

El dispositivo a desarrollar es un módulo de monitoreo de sensores remotos inalámbricos, se compone de :

- 1. Microcomputadora principal de 8/16 bits.
- 2. Soporte para Microcomputadora auxiliar de 8 bits.
- 3. Transceptor de radio frecuencia.

Fecha: 31/8/2022 Versión 1.0 Página 5 de 16

- 4. Bus de datos externo.
- 5. Bus de datos interno.
- 6. Bus de control interno y externo.
- 7. Bus de variables analógicas internas.
- 8. Almacenamiento de datos volátil.
- 9. Almacenamiento de datos no volátil.
- 10. Convertidor de tensión.
- 11. Regulador de tensión.
- 12. Indicadores luminosos.

2.1 Buses

Los buses se encuentran agrupados por funcionalidad y ámbito, corresponden a los buses de control, datos internos, datos externos y analógicos.

- El **bus de control** corresponden a lineas **unifilares** sin protocolos de comunicaciones. Asisten a los buses de datos, habilitación de dispositivos e indicadores led.
 - El bus de datos externo se encuentra implementado bajo el protocolo serie I2C.
 - El bus de datos interno se encuentra implementado bajo el protocolo serie ISP.
 - El bus analógico son lineas unifilares.

2.2 Diagrama de circuitos

Parámetros fabricación

Dimensiones			PCB			
Ancho T	Largo T	Alto pro	Alto Max	Espesor	Capas	Montaje
2,5 cm	7 cm	5 mm	7 mm	1,6 mm	2	1 cara

3 Diseño fuente alimentación

3.1 Diseño

El sistema requiere una consumo promedio de corriente menor a 100mA.

	Concepto	Valor
a	Tiempo de transmisión trama	127* 5.10 ⁻⁶ s
b	Cantidad máxima de trasmisiones por segundo	15
с	Consumo MCU modo ON	25 mA
d	Consumo Transceptor ON	19 mA
e	Consumo Transceptor TX ON	23 mA
f	Consumo Sensor máximo	100 mA
g	Consumo periféricos	10 mA
h	Frecuencia encuesta sensor	175 Hz
i	Tiempo de conversión sensor	2,9 ms

Tabla 1 : Consumo corriente estimada.

Consumo promedio Total = $f * i * h + g + (e - d) * b^{-1} * a + d = 79 \text{ mA}$.

Tabla 2 resultado de <u>PI Expert Online</u> para convertidor LN302/LN3202

	INPUT	INFO	OUTPUT	OUTPUT
INPUT VARIABLES				
VACMIN	100			Volts
VACMAX	310			Volts
FL	50			Hertz
VO	5.00			Volts
IO	0.020			Amps
EFFICIENCY (User Estimate)	0.72			
EFFICIENCY (Calculated)			0.38	
CIN			0.22	uF
Input Stage Resistance			0.00	ohms
Ambient Temperature			50	deg C
Switching Topology			Buck	
Input Rectification Type	F		F	
DC INPUT VARIABLES				
VMIN			105.6	Volts
VMAX			438.4	Volts
LinkSwitch-TN	LNK302		LNK302	
ILIMIT			0.136	Amps
ILIMIT_MIN			0.126	Amps
ILIMIT_MAX			0.146	Amps
FSMIN			62000	Hertz
VDS			12.0	Volts
PLOSS_LNK			0.14	Watts
DIODE				

Fecha: 31/8/2022 Versión 1.0 Página 9 de 16

Especificación Técnica

VD		0.70	Volts
VRR		600	Volts
IF		1	Amps
TRR		75	ns
Diode Recommendation		UF4005	
OUTPUT INDUCTOR			
L_TYP		269.8	uН
L	Increase L	680	uH
L_R		2.0	Ohms
OPERATING MODE		MDCM	
KL_TOL		1.15	
K_LOSS		0.813	
ILRMS		0.04	Amps
OUTPUT CAPACITOR			
DELTA_V		0.05	Volts
MAX_ESR		397	m-Ohms
I RIPPLE		0.13	Amps

Tabla 2: Valores por software fabricante.

3.2 Simulación y Pruebas

En la siguiente tabla se detallan las pruebas realizadas sobre la configuración del circuito de la fuente de alimentación para tensión de continua.

Vin	f	Vout	Iout
20 VDCmin	75 KHz	5,2V	0.1 A
180 VDC max (1uF)	60KHz	6V	0.1 A

Tabla 3: Resultado de pruebas fuente alimentación.

3.3 BOMs

Elemento	Valor	Parte	n
C1	100nf	C1608Y5V1H104Z	1
> C2, C4, C5	1uf 100v	C3216JB2A105K160AA C3216X7R2A105M160AA 12061C105K4T2A	3
C3	22u / min 6V	TPSA226K006R0300	1
> C6, C8	100nf	C1608Y5V1H104Z	2
C7	10u	C0805c106 6,3/10	1
C9	22u	C0805c106 6,3/10 montados	1
D1	100mA/450V	RFU01SM4S RFU02VSM6S	1
D2	MB4S	MB4S	1
D6	6v	MM5Z5V1T1G 5.1V 523	1
F1	160mA	PTSA080515V010 femtoSMDC010F	1
L2	680uH	SDR0604-681KL	1
R6	50ohm	56E 5% 0603 1/10W RES.SMD	1
> RV1-RV4	Varistor	VE1206K121R060/DV275K3225R2 / B72650M0271K072 /PV 275 K 3225	4
TH1	20ohm	SL03 20001	1
U1	AP2127N-3.3	AP2138N-3.3TRG1	1
U2	LNK304D	LNK304D	1
U3	FODM217D	VOS617A	1

Tabla 4 : BOM Fuente de alimentación.

Elemento	Valor	Parte	n
C10	0.1u	C_0603_1608Metric	1
C11	0.047u	C1608X7R1H473K	1
C13	СР	C_0603_1608Metric	1
C14	1u	CL21B105KOFNNNE	1
C15	0.1u	CL21B104KBCNNNC	1
> C16, C17	15p	04025A8R2CAT2A	2
D5	DIODE	1N4148W-E3-18	1
D7	LED	LED_0603_1608Metric_Castellated	1
J1	Conn_02x02	PinHeader_1x02_P2.54mm_Vertical	1
Ј3	Conn_01x05	PinHeader_1x05_P1.27mm_Vertical	1
J4	Conn_01x04	PinHeader_1x04_P1.27mm_Vertical	1
R11,R13,R14	10k	RS38441R005	3
R12	100	RS38421R00	1
U2	25AA02E-OT	SOT-23-6	1
U4	PIC18LF26J50	SSOP-28_5.3x10.2mm_P0.65mm	1
U6	MRF20j40-A	SMD	1
Y1	Crystal	Crystal:Crystal_C26-LF_D2.1mm_L6.5mm_Vertical	1

 Tabla 5 : BOM Placa principal.

Fecha: 31/8/2022 Versión 1.0 Página 11 de 16

4 Descripción de Firmware

4.1 Programa principal

La figura 4 denota el flujo y los estados del dispositivo según los eventos.

Bloque de estados es el flujo principal del programa. El esquema previo al ingreso del bucle condicional el es determinado por la AN1066 de MCHP, detalla API_MIWI para el protocolo MIWI.

4.2 Bloque de estados

MedPOR

Estado inicial, su función principal es establecer la comunicación con el administrador de la aplicación distribuida.

FunCom es un proceso de comunicaciones con estados internos, se describe con detalles en el apartado de procesos.

Si el administrador responde el estado MedState se ajusta a MedINIT.

MedINIT

Estado de configuración del **Mote** con los parámetros enviados por el administrador.

FunCom es llamado para verifique la integridad de la comunicación de la aplicación distribuida, en caso negativo busca otra red y nodos o aumenta la potencia del transmisor. Caso afirmativo MedState se ajusta a **MedAWAKE**.

MedAWAKE

Estado permanente del dispositivo en caso de encontrase en modo activo, comparte el transcurso de modo **Normal** y **Continuo.**

Su función es hacer evolucionar el stack MIWI, stack LoRa, procesamiento de datos de sensores y si debe reportar datos al administrador o asistir a subordinados.

Finalizada la ventana **T** o sin proceso pendiente se ajusta MedState a **MedSLEEP**. En caso de falla en la comunicaciones se ajusta MedState a **MedINIT**.

MedSLEEP

Estado del dispositivo en modo ahorro de energía, en modo **Normal** permanecerá en este estado durante un periodo por defecto de 10s. En modo **Continuo** por el periodo de 1s.

Finalizado el periodo se ajusta MedState a MedAWAKE.

4.3 Procesos

FunCom

Proceso compuesto por una maquina de estados, mantiene control de las comunicaciones y de estado de la red.

Fecha: 31/8/2022 Versión 1.0 Página 13 de 16

FunRTCC

Función de callback administra las banderas o semáforos del sistema. Se coordina según el reloj de tiempo real del sistema mediante interrupciones programadas.

5 Descripción de variables

Las variables se dividen en dos tipos las normales de carácter global para APP y las de control que son privadas, solo disponibles para las funciones de ejecución de los pedidos del administrador son de carácter crítico y no serán definidas para el alcance del prototipo de pruebas.

5.1 Variables Globales

Las variables normales se envían en la trama de 127 bytes de 802.15.4 en cada comunicación Normal programada o reportes.