

Model Optimization and Tuning Phase Report

Date	25 June 2025
Team ID	SWTID1750155746
Project Title	Human Resource Management: Predicting Employee Promotions using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	<pre>dt_classifier = DecisionTreeClassifier() param_grid = { 'criterion': ['gini','entropy'], 'splitter': ['best','random'], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_lest': [1,2,4] } # Perform GridSearchCV(gt_classifier, param_grid, cv=5, scoring='accuracy') grid_search = GridSearchCV(dt_classifier, param_grid, cv=5, scoring='accuracy') grid_search.fit(x_train, y_train) # Get the best parameters and best model best_params = grid_search.best_params_ best_dt_model = grid_search.best_params_ best_dt_model = grid_search.best_estimator_</pre>	<pre>c none predictions with the best energy y_mend = best_dB_eneRel_predict(s_test) # calculate encoursy # content of the con</pre>
Random Forest	<pre>rf_classifier = RandomForestClassifier(random_state=42, n_jobs=-1) param_dist = { 'n_estimators': randint(50, 200), 'criterion': ['gini', 'entropy'], 'max_depth': [None, 10, 20, 30], 'min_samples_split': randint(2, 11), 'min_samples_leaf': randint(1, 5), }</pre>	• Non-predictions with the best model system is best_f_model_predict(s_sets) of classical security—accuracy = accuracy

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric				
	print(classif	<pre>print(classification_report(y_test, y_pred))</pre>			
		precision	recall	f1-score	support
	Ø	0.94	0.92	0.93	15065
	1	0.92	0.94	0.93	15019
Decision Tree	accuracy			0.93	30084
	macro avg	0.93	0.93	0.93	30084
	weighted avg	0.93	0.93	0. 93	30084
	print(confusi	ion_matrix(y	_test, y_p	red))	
	[[13818 1247] [921 14098]]				

	<pre>print(classif</pre>	fication_rep	ort(y_test	, y_pred))	
		precision	recall	f1-score	support
	0	0.95	0.94	0.95	15065
	1	0.94	0.95	0.95	15019
Random Forest	accuracy macro avg	0.95	0.95	0.95 0.95	30084 30084
	weighted avg	0.95	0.95	0.95	30084
	<pre>print(confusi</pre>	ion_matrix(y	_test, y_p	red))	
	[[14187 878 [760 14259				
	/ 3		.,	15.5	
	print(classif				
		precision	recall	f1-score	support
	0 1	0.95 0.87	0.86 0.95	0.90 0.91	15065 15019
KNN				0.91	30084
KININ	accuracy macro avg	0.91		0.91	30084
	weighted avg	0.91	0.91	0.91	30084
	print(confusion	on_matrix(y	_test, y_p	red))	
	[[12975 2090] [692 14327]]				
	[032 11327]	11			
	print(classifi	cation repo	ort(v test	. v pred))	
		precision		f1-score	support
	0 1	0.95 0.87	0.86 0.95	0.90 0.91	15065 15019
VC D	accuracy			0.91	30084
XG Boost	macro avg	0.91	0.91	0.91	30084
	weighted avg	0.91	0.91	0.91	30084
	<pre>print(confusion_matrix(y_test, y_pred))</pre>				
	[[12975 2090]				
	[692 14327]				

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest	The Random Forest model was selected for its superior performance, exhibiting the highest accuracy during hyperparameter tuning. Its ability to handle complex feature interactions, reduce overfitting, and deliver reliable predictions aligns with the project objectives, justifying its selection as the final model.