Seoul National University

M1522.001400 Introduction to Data Mining

Spring 2016, Kang

Homework 9: Mining Social-Network Graphs (Chapter 10)

Due: June 8, 09:30 AM

Reminders

- The points of this homework add up to 100.
- Like all homeworks, this has to be done individually.
- Lead T.A.: Jinhong Jung (<u>montecast9@gmail.com</u>)
- Please type your answers in English. Illegible handwriting may get no points, at the discretion of the graders.
- If you have a question about assignments, please upload your question in eTL.
- If you want to use slipdays or consider late submission with penalties, please note that you are allowed one week to submit your assignment after the due date.

Remember that:

Whenever you are making an assumption, please state it clearly

For the example graph from Figure 1, use the Girvan-Newman approach to find the fraction of shortest paths from each of the following nodes that pass through each of the edges when we start BFS from the following node. [25 points]

Figure 1. Example graph

- (a) A
- (b) B

Using symmetry, the calculations of Question 1 are all you need to compute the betweenness of each edge. Do the calculation. [25 points]

Solution)

For the graph of Question 1, answer the following questions. [30 points]

- (a) Write down the Laplacian matrix of the graph.
 - Solution : Laplacian matrix, L=D-A where A is the adjacency matrix and D is the degree matrix.

	A	В	C	D	E	F	G	H	I
A	2	-1	-1	0	0	0	0	0	0
В	-1	3	-1			0	0	-1	0
С	-1	-1	3	-1	0	0	0	0	0
D	0	0	-1	3	-1	-1	0	0	0
E	0	0	0	-1	3	-1	-1	0	0
F	0	0	0	-1	-1	2	0	0	0
G	0	0	0	0	-1	0	3	-1	-1
Η	0	-1	0	0	0	0	-1	3	-1
Ι	0	0	0	0	0	0	-1	-1	2

- (b) For the Laplacian matrix constructed in the above, after computing the second-smallest eigenvalue and its eigenvector, draw two partitions of the graph based on the eigenvector. The splitting point is zero. (Hint: use 'eig' function of MATLAB or OCTAVE)
 - There would be multiple second-smallest eigenvalues; thus multiple answers are
 possible. In that case, just select one of them (i.e., select the first appeared one). If
 your partition result is based on the second-smallest eigenvalue, then we will give
 you a full point.
 - Solution: If an answer is based on the second-smallest eigenvalue and its vector, it is correct.

• Second eigenvalue: 0.6972

		PARTITION
NODE	EIGENVECTOR	LABEL(SPLIT AT 0)
Α	-0.2677	RED
В	-0.0691	RED
С	-0.2797	RED
D	-0.3073	RED
E	-0.1087	RED
F	-0.3193	RED
G	0.3764	BLUE
Н	0.3884	BLUE
1	0.5870	BLUE

For the example graph from Figure 2, how many instances of $K_{s,t}$, complete bipartite subgraph, are there for: [20 points]

Figure 2. Example graph

(a)
$$s = 1$$
 and $t = 3$

• 6

(b)
$$s = 2$$
 and $t = 3$

• 0