Blockchain and Digital Currencies

Lecture 6

PHBS 2024 M3

Agenda

- Double Spending Attack
- UTXO
- Bitcoin Network

Transactions Cause Ownership Transfer

Transactions Need Verification

- Transaction verifications are done by miners
- Verifications usually consist of 2 parts for every single input:
 - 1. The user who initiates the transaction (sender) has the money
 - 2. The user who initiates the transaction (sender) can use the money

- The 1st part is done by matching the sender's pubkey to the incoming transaction's destination recipient address
- The 2nd part is done by executing the concatenated signature script (scriptSig) and output script (scriptPubKey)

ScriptSig and ScriptPubKey

More Questions

- 1, what kind of signatures are required for each transaction?
- 2, can transaction TX 3 be booked into the blockchain more than once?
- 3, when verifying a transaction, do we care about its output?
- 4, what if we initiate another transaction very similar to TX 3 with the only difference of output set to P (a brand new address)?

Triple-Entry Bookkeeping (Transaction-To-Transaction Payments) As Used By Bilson @Zaris

Double-Spending

☑ What is this about? What is the usage?

Main design challenge in all digital currencies

Extra Requirement

A valid transaction consumes (and destroys) some coins, and creates new coins of the same total value

Transaction valid if:

- consumed coins valid (address verification),
- not already consumed,
- total value out = total value in (including the tips paid to miners),
- signed by owners of all consumed coins

Coins are Immutable

A valid transaction consumes (and destroys) some coins, and creates new coins of the same total value

Coins are **Immutable**:

They cannot be

- transferred,
- subdivided, or
- combined

Example - Subdivide Coin:

- 1. create new transaction
- 2. consume (destroy) your coin
- 3. pay out two new coins to yourself $A(7) \rightarrow A(2)$, A(5)_signedby(A)

UTXO

- The term UTXO refers to unspent transaction output
- The amount of Bitcoin someone has left remaining after executing a transaction.
- Any coin can be created once and consumed only once. Thus, the Bitcoin blockchain is transaction based ledger, not account based.

How UTXO Gets Updated?

Each node keeps a set of UTXO to its best knowledge

在第一次作业的时候我们看到了 UtxoPool 的结构,可以永远存储

- Each node verifies the blockchain and updates the UTXO on its own
- Will those transactions not included in the Blockchain affect the

只有有效的被识别到的才会有影响,没有装在 Block 里面实际上没有发生 UTXO status?

Real Block Example

• Bitcoin block 778888, https://www.blockchain.com/explorer/blocks/btc/778888

Details			
Hash	00000-e50ed ₾	Depth	122
Capacity	248.39%	Size	2,604,563
Distance	19h 43m 22s	Version	0×20400000
BTC	3,104.4643	Merkle Root	99-24 &
Value	\$73,140,216	Difficulty	43,053,844,193,928.45
Value Today	\$72,671,442	Nonce	2,872,804,365
Average Value	1.3568462865 BTC	Bits	386,304,419
Median Value	0.00580943 BTC	Weight	3,997,973 WU
Input Value	3,104.59 BTC	Minted	6.25 BTC
Output Value	3,110.84 BTC	Reward	6.37367645 BTC
Transactions	2,288	Mined on	Mar 02, 2023, 7:34:46 AM
Witness Tx's	2,093	Height	778,888
Inputs	4,175	Confirmations	122
Outputs	5,866	Fee Range	0-282 sat/vByte
Fees	0.12367645 BTC	Average Fee	0.00005405
Fees Kb	0.0000475 BTC	Median Fee	0.00002736
Fees kWU	0.0000309 BTC	Miner	F2Pool Miner 是匿名的

Real Transaction Example

 Transaction ID d2e48fba0960e476f4f5bc74dcb1f19ef1856f7ae4b85d0beba40523cc507c85, <u>https://www.blockchain.com/explorer/transactions/btc/d2e48fba0960e476f4f5bc74dcb1f19</u> ef1856f7ae4b85d0beba40523cc507c85

Has the money been spent?

Real Transaction ScriptPubKey Examples

Remember to click the JSON button to see the JSON script

Real Transaction ScriptSig Examples

Because a single address can receive many incoming coins, which are immutable, so it is very important to match the exact transaction for each coin received in this address. Try clicking the outgoing arrow.

https://www.blockchain.com/explorer/transactions/btc/7f9d0b629e9c77cd014e65518ce16e22bee8ec76 40571ea7826cb367700351fe

Keep Following the Spent Coins

Because a single address can receive many incoming coins, which are immutable, so it is very important to match the exact transaction for each coin received in this address. Try clicking the outgoing arrow.

https://www.blockchain.com/explorer/transactions/btc/741fb93f5dbd172be933d8650c256999d0ed49c7d405006d2879ca8a88a7033b

Bitcoin Network

How Bitcoin Network Works

- Two layers of network:
 - Application layer: Bitcoin Blockchain 底层载体
 - Network layer: P2P network 载体联结的方式
- Distributed consensus protocol for application layer
- Simple, robust, best-effort, not very efficient

How Bitcoin Network Works

How Transactions Are Handled

- Transactions are generated by nodes, either users and miners
 - Coinbase transactions by miners
 - Transfer transactions by users
- When a transaction is generated by a node, it gets broadcasted into the P2P network

How Transactions Are Handled

How Blocks Are Handled

- Transactions are saved and verified by miner nodes, and packaged by miner nodes into a block
- The block gets broadcasted via the P2P network as soon as possible
- Transactions already packaged into blockchain will be marked by nodes to be excluded when packaging new blocks

How Blocks Are Handled

Bitcoin P2P Network

Global Bitcoin Nodes Distribution – Bitnodes https://bitnodes.io/

Participants can

- publish transactions
- insert transactions into block chain

The network:

- Ad-hoc protocol (runs on TCP port 8333)
- Ad-hoc network with random topology
- All nodes are equal
- New nodes can join at any time
- Forget non-responding nodes after 3 hr

Joining the Bitcoin P2P Network

Transaction Propagation (Flooding)

广播是为了自己, 获取更多信息, 这是博弈论的一个经典应用

Should I relay a proposed Transaction?

Nodes may differ on Transaction Pool

Race Conditions

Transactions or blocks may conflict

- This is called "race condition"
- Default behavior: accept what you hear first
- Tie broken by whoever mines next block
 - picks only one transaction/block
- Network position matters
- Miners may implement other logic!

Orphaned Blocks

Number Of Orphaned Blocks

The total number of blocks mined but ultimately not attached to the main Bitcoin blockchain.

Size of the Bitcoin blockchain from January 2009 to January 16, 2024 (in gigabytes)

Block Propagation

Propagation of blocks is nearly identical:

Relay a new block when you hear it if:

- 1. Block meets the hash target
- 2. Block has all valid transactions
 - Run all scripts, even if you wouldn't relay
- 3. Block builds on current longest chain
 - Avoid forks

Latency of Flooding Algorithm

Size of the Network

Q: How big is the Network?

Impossible to measure exactly

- Estimates-up to 1M IP addresses/month
- Only about 5-10k "full nodes"
 - Permanently connected
 - Fully-validating
- This number may be dropping!

Fully-validating Nodes:

- Permanently connected
- Store entire block chain
- Hear and forward every node/transaction

Storage Costs

Blockchain Size

The total size of all block headers and transactions. Not including database indexes.

Source: blockchain.info

Unspent Transaction Output fits in RAM

Thin/SPV Clients (not fully-validating)

Idea: don't store everything

Store block headers only

Request transactions as needed

To verify incoming payment

Trust fully-validating nodes

1000x cost savings!

Software Diversity

- About 90% of nodes run "Core Bitcoin" (C++)
 - Some are out of date versions
- Other implementations running successfully
 - BitcoinJ (Java)
 - Libbitcoin (C++)
 - btcd (Go)
- "Original Satoshi client"