■■ série livros didáticos informática ufrgs ■■

Linguagens Formais e Autômatos

Paulo Blauth Menezes

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- **6 Linguagens Livres do Contexto**
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes de Linguagens e Conclusões

3 – Linguagens Regulares

- 3.1 Sistema de estados finitos
- 3.2 Composição sequencial, concorrente e não determinista
- 3.3 Autômato finito
- 3.4 Autômato finito não determinístico
- 3.5 Autômato finito com movimentos vazios
- 3.6 Expressão regular
- 3.7 Gramática regular

3 – Linguagens Regulares

3 Linguagens Regulares

Linguagens regulares ou tipo 3 – formalismos

- Autômato finito
 - * formalismo operacional ou reconhecedor
 - basicamente, um sistema de estados finitos
- Expressão regular
 - * formalismo denotacional ou gerador
 - * conjuntos (linguagens) básicos + concatenação e união
- Gramática regular
 - formalismo axiomático ou gerador
 - * gramática com restrições da forma das regras de produção

Hierarquia de Chomsky

- classe de linguagens mais simples
- algoritmos de reconhecimento, geração ou conversão entre formalismos
 - pouca complexidade
 - * grande eficiência
 - * fácil implementação

Fortes limitações de expressividade

- exemplo: duplo balanceamento não é regular
- linguagens de programação em geral: não regulares

Complexidade de algoritmos – autômatos finitos

- classe de algoritmos mais eficientes (tempo de processamento)
 - * supondo determinada condição
- qualquer autômato finito é igualmente eficiente
- qualquer solução é ótima
 - * a menos de eventual redundância de estados
- redundância de estados
 - * (não influi no tempo)
 - * pode ser facilmente eliminada: autômato finito mínimo

Importantes propriedades – podem ser usadas para

- construir novas linguagens regulares
 - * a partir de linguagens regulares conhecidas
 - * definindo uma álgebra
- provar propriedades
- construir algoritmos

Se um problema tiver uma solução regular

- considerar preferencialmente a qualquer outra n\u00e3o regular
 - * propriedades da classe
 - eficiência e simplicidade dos algoritmos

Universo de aplicações das linguagens regulares

- muito grande
- constantemente ampliado

Exemplo típico e simples

• análise léxica

Exemplos mais recentes

- sistemas de animação
- hipertextos
- hipermídias

Capítulos subsequentes

- minimização de autômatos finitos
- propriedades da classe
- algumas importantes aplicações

3 – Linguagens Regulares

- 3.1 Sistema de estados finitos
- 3.2 Composição sequencial, concorrente e não determinista
- 3.3 Autômato finito
- 3.4 Autômato finito não determinístico
- 3.5 Autômato finito com movimentos vazios
- 3.6 Expressão regular
- 3.7 Gramática regular

3.1 Sistema de Estados Finitos

Sistema de estados finitos

- modelo matemático de sistema com entradas e saídas discretas
- número *finito* e *predefinido* de estados
 - podem ser explicitados antes de iniciar o processamento

Estado

- somente informações do passado
- necessárias para determinar as ações para a próxima entrada

Motivacional

associados a diversos tipos de sistemas naturais e construídos

Exp: Elevador

Não memoriza as requisições anteriores

- Estado: sumaria "andar corrente" e "direção de movimento"
- Entrada: requisições pendentes

Exp: Analisador léxico, processador de texto

- Estado: memoriza a estrutura do prefixo da palavra em análise
- Entrada: texto

Restrição

 nem todos os sistemas de estados finitos são adequados para ser estudados por esta abordagem

Exp: Cérebro humano

- Neurônio: número finito de bits
- Cérebro: cerca de 2³⁵ células
 - * abordagem pouco eficiente
 - * explosão de estados

Exp: Computador

- estados dos processadores e memórias
 - * sistema de estados finitos
- entretanto, podem existir memórias adicionais
 - * discos, fitas, memórias auxiliares, etc.
 - * assim, o número de estados não necessariamente é predefinido
 - * não satisfaz aos princípios dos autômatos finitos

- de fato, o estudo da computabilidade
 - * exige uma memória sem limite predefinido
- Máquina de Turing
 - * mais adequado ao estudo da computabilidade
- computabilidade e solucionabilidade de problemas
 - * apenas introduzidos
 - * questões tratadas na teoria da computação

3 – Linguagens Regulares

- 3.1 Sistema de estados finitos
- 3.2 Composição sequencial, concorrente e não determinista
- 3.3 Autômato finito
- 3.4 Autômato finito não determinístico
- 3.5 Autômato finito com movimentos vazios
- 3.6 Expressão regular
- 3.7 Gramática regular

3.2 Composição Sequencial, Concorrente e Não Determinista

Construção composicional de sistema

- construído a partir de sistemas conhecidos
 - e assim sucessivamente até chegar ao nível mais elementar (como uma ação atômica)

Composição

- Sequencial
- Concorrente
- Não determinista

Sequencial

- execução da próxima componente
- depende da terminação da componente anterior

Concorrente

- componentes independentes
 - * ordem em que são executadas não é importante
- portanto, podem ser processadas ao mesmo tempo

Não determinista

- próxima componente: escolha entre diversas alternativas
- em oposição à determinista
 - para as mesmas condições
 - * próxima componente é sempre a mesma
- não determinismo pode ser
 - * interno: sistema escolhe aleatoriamente
 - * externo: escolha externa ao sistema

Sistemas reais

as três formas de composição são comuns

Exp: Banco

Sequencial

- fila: próximo cliente depende do atendimento do anterior
- pagamento de uma conta depende do fornecimento de um valor

Concorrente

- diversos caixas atendem independentemente diversos clientes
- clientes nos caixas: ações independentemente dos clientes na fila

Não determinista

- dois ou mais caixas disponíveis ao mesmo tempo
 - * próximo cliente pode escolher o caixa
- caminhar de um indivíduo: perna esquerda ou direita

Linguagens formais

• sequencial e não determinismo: especialmente importantes

Semântica do não determinismo adotada

- a usual para linguagens formais, teoria da computação...
 - * não determinismo interno
 - * objetivo: determinar a capacidade de reconhecer linguagens e de solucionar problemas
- se pelo menos um caminho alternativo reconhece/soluciona
 - * a máquina como um todo é considerada capaz de reconhecer/solucionar

Semântica do não determinismo adotada

- difere da adotada no estudo dos modelos para concorrência
 - * exemplo: sistemas operacionais
 - * não confundir com a semântica da concorrência

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Sequencial, Concorrente e Não Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.3 Autômato Finito

Autômato finito: sistema de estados finitos

- número finito e predefinido de estados
- modelo computacional comum em diversos estudos teórico-formais
 - * Linguagens formais
 - * Compiladores
 - * Semântica formal
 - * Modelos para concorrência

Formalismo operacional/reconhecedor – pode ser

- determinístico
 - * para o estado corrente e o símbolo lido da entrada
 - * assume um único estado
- não determinístico
 - * para o estado corrente e o símbolo lido da entrada
 - assume um estado pertencente a um conjunto de estados alternativos

- com movimentos vazios
 - * para o estado corrente e, independentemente de ler um símbolo ou não da entrada,
 - assume um estado pertencente a um conjunto de estados alternativos
 - portanto é não determinístico
 - * é dito movimento vazio se muda de estado sem uma leitura de símbolo

Movimento vazio

- pode ser visto como transições encapsuladas
 - * excetuando-se por uma eventual mudança de estado
 - * nada mais pode ser observado
- análogo à encapsulação das linguagens orientadas a objetos

Três tipos de autômatos: equivalentes

• em termos de poder computacional

Autômato finito (determinístico): máquina constituída por

- Fita: dispositivo de entrada
 - * contém informação a ser processada
- Unidade de controle: reflete o estado corrente da máquina
 - possui unidade de leitura (cabeça da fita)
 - * acessa uma célula da fita de cada vez
 - * movimenta-se exclusivamente para a direita
- Programa, função programa ou função de transição
 - * comanda as leituras
 - define o estado da máquina

Fita é finita

- dividida em células
- cada célula armazena um símbolo
- símbolos pertencem a um alfabeto de entrada
- não é possível gravar sobre a fita (não existe memória auxiliar)
- palavra a ser processada ocupa toda a fita

Unidade de controle

- número finito e predefinido de estados
 - * origem do termo controle finito
- leitura
 - * lê um símbolo da fita de cada vez
 - * move a cabeça da fita uma célula para a direita
 - * posição inicial da cabeça célula mais à esquerda da fita

a a b c b a a

Programa: função parcial

- dependendo do estado corrente e do símbolo lido
- determina o novo estado do autômato

Def: Autômato finito (determinístico) ou AFD

$$M = (\Sigma, Q, \delta, q_0, F)$$

- Σ é um alfabeto (de símbolos) de entrada
- Q é um conjunto de estados possíveis do autômato (finito)
- δ é uma (função) programa ou função de transição (função parcial)

$$\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$$

- * transição do autômato: $\delta(p, a) = q$
- q₀ é um elemento distinguido de Q: estado inicial
- F é um subconjunto de Q: conjunto de estados finais

Autômato finito como um diagrama: $\delta(\mathbf{p}, \mathbf{a}) = \mathbf{q}$

novo estado

Estados iniciais e finais

Transições paralelas: $\delta(q, a) = p e \delta(q, b) = p$

Função programa como uma tabela de dupla entrada

$$\delta(p, a) = q$$

δ	а	•••
p	р	• • •
q	• • •	• • •

Computação de um autômato finito

- sucessiva aplicação da função programa
- para cada símbolo da entrada (da esquerda para a direita)
- até ocorrer uma condição de parada

Lembre-se de que um autômato finito

- não possui memória de trabalho
- para armazenar as informações passadas
- deve-se usar o conceito de estado

Exp: Autômato finito: aa ou bb como subpalavra

 $L_1 = \{ w \mid w \text{ possui aa ou bb como subpalavra } \}$

Autômato finito

$$M_1 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_1, q_0, \{q_f\})$$

δ ₁	а	b
q ₀	q ₁	q ₂
q ₁	qf	q ₂
q ₂	q ₁	qf
qf	qf	qf

- q₁: "símbolo anterior é a"
- q₂: "símbolo anterior é b"
- qual a informação memorizada por q₀ e q_f
- após identificar aa ou bb
 - * qf (final): varre o sufixo da entrada terminar o processamento

Obs: Autômato finito sempre para

Como

- qualquer palavra é finita
- novo símbolo é lido a cada aplicação da função programa
- não existe a possibilidade de ciclo (loop) infinito

Parada do processamento

- Aceita a entrada
 - * após processar o último símbolo, assume um estado final
- Rejeita a entrada. Duas possibilidades
 - * após processar o último símbolo, assume um estado não final
 - programa indefinido para argumento (estado e símbolo)

Obs: Autômato finito × grafo finito direto

Qual a diferença entre um autômato finito e um grafo finito direto?

Qualquer autômato finito pode ser visto como um grafo finito direto onde

- podem existir arcos paralelos (mesmos nodos origem e destino)
- dois ou mais arcos podem ser identificados com a mesma etiqueta (símbolo do alfabeto)
- existe um nodo distinguido: estado inicial
- existe um conjunto de nodos distinguidos: estados finais

Usual considerar um autômato finito como grafo finito direto especial

herda resultados da teoria dos grafos

Definição formal do comportamento de um autômato finito

- dar semântica à sintaxe
- necessário estender a função programa
- argumento: estado e palavra

Def: Função programa estendida, computação

 $M = (\Sigma, Q, \delta, q_0, F)$ autômato finito determinístico

$$\delta^*: \mathbb{Q} \times \Sigma^* \to \mathbb{Q}$$

é $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ estendida para palavras - indutivamente definida

- $\delta^*(q, \varepsilon) = q$
- $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$

Observe

- sucessiva aplicação da função programa
 - para cada símbolo da palavra
 - * a partir de um dado estado
- se a entrada for vazia, fica parado
- aceita/rejeita: função programa estendida a partir do estado inicial

Exp: Função programa estendida

- $\delta^*(q_0, abaa) =$
- $\underline{\delta}^*(\delta(q_0, a), baa) =$
- $\delta^*(q_1, baa) =$
- $\delta^*(\delta(q_1, b), aa) =$
- $\delta^*(q_2, aa) =$
- $\delta^*(\delta(q_2, a), a) =$
- $\delta^*(q_1, a) =$
- $\underline{\delta}^*(\delta(q_1, a), \varepsilon) =$

função estendida sobre abaa processa abaa função estendida sobre baa processa baa função estendida sobre aa processa aa

função estendida sobre a processa a

• $\delta^*(q_f, \varepsilon) = q_f$ função estendida sobre ε : fim da indução; ACEITA

Def: Linguagem aceita, linguagem rejeitada

 $M = (\Sigma, Q, \delta, q_0, F)$ autômato finito determinístico.

Linguagem aceita ou linguagem reconhecida por M

$$L(M) = ACEITA(M) = \{ w \mid \delta^*(q_0, w) \in F \}$$

Linguagem rejeitada por M:

REJEITA(M) = { w |
$$\delta^*(q_0, w) \notin F$$
 ou $\delta^*(q_0, w)$ é indefinida }

Supondo que Σ^* é o conjunto universo

- ACEITA(M) ∩ REJEITA(M) = Ø
- ACEITA(M) \cup REJEITA(M) = Σ^*
- ~ACEITA(M) = REJEITA(M)
- ~REJEITA(M) = ACEITA(M)

Cada autômato finito M sobre Σ

- induz uma partição de Σ* em duas classes de equivalência
- e se um dos dois conjuntos for vazio?

Diferentes autômatos finitos podem aceitar uma mesma linguagem

Def: Autômatos finitos equivalentes

M₁ e M₂ são autômatos finitos equivalentes se, e somente se,

$$ACEITA(M_1) = ACEITA(M_2)$$

Def: Linguagem regular, linguagem tipo 3

- L é uma linguagem regular ou linguagem tipo 3
 - existe pelo menos um autômato finito determinístico que aceita L

Exp: ...Autômato finito: vazia, todas as palavras

Linguagens sobre o alfabeto { a, b }

$$L_2 = \emptyset$$
 e $L_3 = \Sigma^*$

Exp: Autômato finito: vazia, todas as palavras

$$L_2 = \emptyset$$
 e $L_3 = \Sigma^*$

- diferença entre δ_2 e δ_3 ?
- o que, exatamente, diferencia M₂ de M₃?

Exp: Autômato finito: número par de cada símbolo

L₄ = { w | w possui um número par de a e um número par de b }

Como seria para aceitar um número ímpar de cada símbolo?

Obs: Função programa × função programa estendida

Objetivando simplificar a notação

- δ e a sua correspondente extensão <u>δ</u>*
- podem ser ambas denotadas por δ

Obs: Computações × caminhos de um grafo

Existe uma forte relação entre as computações de um autômato finito e os caminhos do correspondente grafo finito direto

Dado um autômato, o enriquecimento do correspondente grafo com todos os caminhos (incluindo os de tamanho zero)

- conjunto de todos arcos (caminhos): computações possíveis
- linguagem aceita: subconjunto de arcos
 - * com origem no estado inicial, destino em algum estado final
- linguagem rejeitada: subconjunto de arcos
 - * com origem no estado inicial, destino em algum estado não final

Obs: ...Computações × caminhos de um grafo

Computações(M)
=
{ \varepsilon, a, b, c, d,
ab, bc, abc}

ACEITA (M) = {ε, d, abc}

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Sequencial, Concorrente e Não Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.4 Autômato Finito Não Determinístico

Não determinismo

- importante generalização dos modelos de máquinas
- fundamental no estudo
 - * Modelos para concorrência
 - Teoria da computação
 - * Linguagens formais...

Semântica de não determinismo adotada

- usual no estudo das linguagens formais
- objetiva determinar a capacidade de
 - reconhecer linguagens
 - * solucionar problemas
- não confundir com a semântica da concorrência

Nem sempre não determinismo aumenta o poder

- reconhecimento de linguagens de uma classe de autômatos
 - qualquer autômato finito não determinístico pode ser simulado por um autômato finito determinístico

Não determinismo no programa é uma função parcial

para o estado corrente e o símbolo lido da entrada, determina aleatoriamente um estado de um conjunto de estados alternativos.

Assim, a cada transição não determinista

- novos caminhos alternativos são possíveis
- definindo uma árvore de opções

Entrada aceita

- se pelo menos um dos caminhos alternativos aceita a entrada
- mesmo que os demais não aceitem

Semântica adotada para o não determinismo

- assume um conjunto de estados alternativos
- como uma multiplicação da unidade de controle
 - * uma para cada alternativa
 - * processando independentemente
 - * sem compartilhar recursos com as demais
- como se todos os caminhos alternativos fossem investigados simultaneamente
 - * o processamento de um caminho
 - não influi no estado, símbolo lido e posição da cabeça
 - * dos demais caminhos alternativos

Def: Autômato finito não determinístico (AFN)

$$M = (\Sigma, Q, \delta, q_0, F)$$

- Σ alfabeto (de símbolos) de entrada
- Q conjunto de estados possíveis (finito)
- δ (função total) programa ou função de transição (função total)

$$\delta: \mathbb{Q} \times \Sigma \to 2^{\mathbb{Q}}$$

- * transição: $\delta(p, a) = \{ q_1, q_2, ..., q_n \}$
- q₀ é um elemento distinguido de Q: estado inicial
- F é um subconjunto de Q: conjunto de estados finais

Se $\delta(\mathbf{p}, \mathbf{a}) = \emptyset$

- transição é indefinida para o par (p, a)
- o autômato para, rejeitando a entrada

Autômato como diagrama

$$\delta(p, a) = \{q_1, q_2, ..., q_n\}$$

Computação de um autômato finito não determinístico

- sucessiva aplicação da função programa
- para cada símbolo da entrada (da esquerda para a direita)
- até ocorrer uma condição de parada

Argumentos: computação/função programa estendida

conjunto finito de estados e uma palavra

Def: Função programa estendida, computação

 $M = (\Sigma, Q, \delta, q_0, F)$ autômato finito não determinístico

$$\underline{\delta}^*: 2^{\mathbb{Q}} \times \Sigma^* \to 2^{\mathbb{Q}}$$

indutivamente definida

- $\underline{\delta}^*(P, \varepsilon) = P$
- $\underline{\delta}^*(P, aw) = \underline{\delta}^*(\bigcup_{q \in P} \delta(q, a), w)$

Transição estendida (a um conjunto de estados)

$$\underline{\delta}^*(\{q_1, q_2, ..., q_n\}, a) = \delta(q_1, a) \cup \delta(q_2, a) \cup ... \cup \delta(q_n, a)$$

Parada do processamento

- Aceita a entrada
 - após processar o último símbolo da fita, existe pelo menos um estado final pertencente ao conjunto de estados alternativos atingidos
- Rejeita a entrada. Duas possibilidades
 - após processar o último símbolo da fita, todos os estados alternativos atingidos são não finais
 - * conjunto de estados alternativos atingido é vazio: o autômato para por indefinição

Def: Linguagem aceita, linguagem rejeitada

Seja M = $(\Sigma, Q, \delta, q_0, F)$ um autômato finito não determinístico

Linguagem aceita ou linguagem reconhecida por M

$$L(M) = ACEITA(M) = \{ w \mid \delta^*(\{q_0\}, w) \cap F \neq \emptyset \}$$

Linguagem rejeitada por M

REJEITA(M) = { w |
$$\delta^*(\{q_0\}, w) \cap F = \emptyset \text{ ou } \delta^*(\{q_0\}, w) \text{ \'e indefinida} }$$

Exp: Autômato finito não determinístico: aa ou bb como subpalavra

 $L_5 = \{ w \mid w \text{ possui aa ou bb como subpalavra } \}$

Autômato finito não determinístico:

$$M_5 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_5, q_0, \{q_f\})$$

- o ciclo em q₀ realiza uma varredura em toda a entrada
- o caminho q₀/q₁/q_f garante a ocorrência de aa
- o caminho q₀/q₂/q_f garante a ocorrência de bb

δ5	а	b
q ₀	{ q ₀ ,q ₁	{q ₀ ,q ₂
q ₁	{ q _f }	-
q_2	-	{ q _f }
Qf	{ q _f }	{ q _f }

- $\delta^*(\{q_0\}, abaa) =$
- $\underline{\delta}^*(\delta(q_0, a), baa) =$
- $\underline{\delta}^*(\{q_0, q_1\}, baa) =$
- $\underline{\delta}^*(\delta(q_0, b) \cup \delta(q_1, b), aa) =$
- $\underline{\delta}^*(\{q_0,q_2\}\cup\emptyset,aa) =$
- $\underline{\delta}^*(\{q_0, q_2\}, aa) =$

função estendida sobre abaa processa *a*baa função estendida sobre baa processa *b*aa

função estendida sobre aa

• $\underline{\delta}^*(\delta(q_0, a) \cup \delta(q_2, a), a) =$

processa aa

- $\underline{\delta}^*(\{q_0,q_1\}\cup\emptyset,a)=$
- $\underline{\delta}^*(\{q_0, q_1\}, a) =$

função estendida sobre a

• $\underline{\delta}^*(\delta(q_0, a) \cup \delta(q_1, a), \varepsilon) =$

processa a

- $\underline{\delta}^*(\{q_0,q_1\} \cup \{q_f\},\epsilon) =$
- $\underline{\delta}^*(\{q_0, q_1, q_f\}, \varepsilon) = \{q_0, q_1, q_f\}$ função estendida sobre ε : fim da indução

e, portanto, a palavra é aceita, pois $\{q_0, q_1, q_f\} \cap F = \{q_f\} \neq \emptyset$

Exp: AFN: aaa como sufixo

$$L_6 = \{ w \mid w \text{ possui aaa como sufixo } \}$$

Autômato finito não determinístico:

$$M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_6, q_0, \{q_f\})$$

- $\underline{\delta}^*(\{q_0\}, baa) =$
- $\underline{\delta}^*(\delta(q_0, b), aa) =$
- $\underline{\delta}^*(\{q_0\}, aa) =$
- $\underline{\delta}^*(\delta(q_0, a), a) =$
- $\underline{\delta}^*(\{q_0, q_1\}, a) =$
- $\underline{\delta}^*(\delta(q_0, a) \cup \delta(q_1, a), \varepsilon) =$
- $\underline{\delta}^*(\{q_0,q_1\} \cup \{q_2\}, \varepsilon) =$
- $\underline{\delta}^*(\{q_0, q_1, q_2\}, \epsilon) = \{q_0, q_1, q_2\}$ indução

- função estendida sobre baa processa baa função estendida sobre aa processa aa
 - função estendida sobre a processa a

função estendida sobre ε: fim da

e, portanto, a palavra é rejeitada, pois $\{q_0, q_1, q_2\} \cap F = \emptyset$

Não determinismo

- aparentemente, um significativo acréscimo ao poder computacional autômato finito
- na realidade, *não* aumenta seu poder computacional

Teorema: equivalência entre AFD e AFN

Classe dos autômatos finitos determinísticos é equivalente à

Classe dos autômatos finitos não determinísticos

Prova: (por indução)

Mostrar que

- a partir de um AFN M qualquer
- construir um AFD MD que realize as mesmas computações
- M_D simula M

AFN → AFD

- estados de M_D simulam combinações de estados alternativos de M
- prova da simulação: por indução

AFD → AFN

• não necessita ser mostrado: decorre trivialmente das definições

 $M = (\Sigma, Q, \delta, q_0, F)$ um AFN qualquer. AFD construído

$$M_D = (\Sigma, Q_D, \delta_D, \langle q_0 \rangle, F_D)$$

- Q_D todas as combinações, sem repetições, de estados de Q
 - * notação (q₁q₂...q_n)
 - * ordem não distingue combinações: ⟨q_uq_v⟩ = ⟨q_vq_u⟩
 - imagem de todos os estados alternativos de M
- $\delta_D: Q_D \times \Sigma \rightarrow Q_D$

$$\delta_D(\langle q_1...q_n \rangle, a) = \langle p_1...p_m \rangle$$
 sse $\delta^*(\{q_1, ..., q_n\}, a) = \{p_1, ..., p_m\}$

* em particular:

$$\delta_D(\langle q_1...q_n \rangle, a)$$
 é indefinida sse $\delta^*(\{q_1, ..., q_n\}, a) = \emptyset$

• $\langle q_0 \rangle$ – estado inicial

• F_D - conjunto de estados (q₁q₂...q_n) pertencentes a Q_D

* alguma componente qi pertence a F, para i em { 1, 2, ..., n }

AFD M_D simula as computações do AFN M ???

- indução no tamanho da palavra
- mostrar que

$$\delta_D^*(\langle q_0 \rangle, w) = \langle q_1...q_u \rangle$$
 sse $\delta^*(\{q_0\}, w) = \{q_1, ..., q_u\}$

Base de indução. | w | = 0. Portanto, $w = \varepsilon$:

$$\delta_D^*(\langle q_0 \rangle, \varepsilon) = \langle q_0 \rangle$$
 se, e somente se, $\delta^*(\{q_0\}, \varepsilon) = \{q_0\}$

verdadeiro, por definição de computação

Hipótese de indução. | w | = n e n ≥ 1. Suponha que:

$$\delta_D^*(\langle q_0 \rangle, w) = \langle q_1...q_u \rangle$$
 sse $\delta^*(\{q_0\}, w) = \{q_1, ..., q_u\}$

Passo de Indução. | wa | = n + 1 e n ≥ 1

$$\delta_D^*(\langle q_0 \rangle, wa) = \langle p_1...p_v \rangle$$
 sse $\delta^*(\{q_0\}, wa) = \{p_1, ..., p_v\}$

equivale (hipótese de indução)

$$\delta_D(\langle q_1...q_u \rangle, a) = \langle p_1...p_v \rangle$$
 sse $\delta^*(\{q_1, ..., q_u\}, a) = \{p_1, ..., p_v\}$

verdadeiro, por definição de δ_D

Logo, M_D simula M para qualquer entrada w pertencente a Σ*

Portanto, linguagem aceita por AFN

• é linguagem regular ou Tipo 3

Obs: Determinismo × não determinismo

Muitas vezes é mais fácil desenvolver um AFN do que um AFD

• exemplo

{ w | o quinto símbolo da direita para a esquerda de w é a }

- solução determinista: não é trivial; número grande de estados
- solução não determinista: bem simples; poucos estados

Alternativa para construir um AFD

- desenvolver inicialmente AFN
- aplicar o algoritmo apresentado na prova do teorema

Exp: $AFN \rightarrow AFD$

$$M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_6, q_0, \{q_f\})$$

$$M_{6D} = (\{a, b\}, Q_D, \delta_{6D}, \langle q_0 \rangle, F_D)$$

- $Q_D = \{ \langle q_0 \rangle, \langle q_1 \rangle, \langle q_2 \rangle, \langle q_f \rangle, \langle q_0 q_1 \rangle, \langle q_0 q_2 \rangle, \dots, \langle q_0 q_1 q_2 q_f \rangle \}$
- $F_D = \{\langle q_f \rangle, \langle q_0 q_f \rangle, \langle q_1 q_f \rangle, ..., \langle q_0 q_1 q_2 q_f \rangle \}$

AFN

AFD

$\delta_{6 extsf{D}}$	а	b
<q<sub>0><q<sub>0q₁></q<sub></q<sub>	<q<sub>0q₁>< <q<sub>0q₁q₂></q<sub></q<sub>	⟨q ₀ ⟩ □ □⟨q ₀ ⟩
(q ₀ q ₁ q ₂)	$\Box\langle q_0q_1q_2q_f\rangle$	□ ⟨q₀⟩
$\Box \langle q_0 q_1 q_2 q_f \rangle \Box$	$\Box\langle q_0q_1q_2q_f\rangle$	□ ⟨ q ₀ ⟩

δ_{6D}	а	b
$p_0 = \langle q_0 \rangle$	〈q ₀ q ₁ 〉	⟨q ₀ ⟩
$p_1 = \langle q_0 q_1 \rangle$	(q ₀ q ₁ q ₂)	$\langle q_0 \rangle$
$p_2 = \langle q_0 q_1 q_2 \rangle$	$\langle q_0q_1q_2q_f\rangle$	$\langle q_0 \rangle$
$p_f = \langle q_0 q_1 q_2 q_f \rangle$	$\langle q_0q_1q_2q_f\rangle$	$\langle q_0 \rangle$

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Sequencial, Concorrente e Não Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.5 Autômato Finito com Movimentos Vazios

Movimentos vazios

generalizam os movimentos não determinísticos

Movimento vazio

- transição sem leitura de símbolo algum da fita
- interpretado como um não determinismo interno ao autômato
 - transição encapsulada
 - * excetuando-se por uma eventual mudança de estados
 - nada mais pode ser observado

Algumas vantagens

• facilita algumas construções e demonstrações

Poder computacional para autômatos finitos

- não aumenta o poder de reconhecimento de linguagens
- qualquer AFNε pode ser simulado por um AFD

Def: Autômato finito com movimentos vazios – AFNε

$$M = (\Sigma, Q, \delta, q_0, F)$$

- Σ alfabeto (de símbolos) de entrada
- Q conjunto de estados possíveis
- δ (função total) programa ou função de transição

$$\delta: \mathbb{Q} \times (\Sigma \cup \{ \epsilon \}) \to 2^{\mathbb{Q}}$$

movimento vazio ou transição vazia

$$\delta(p, \varepsilon) = \{ q_1, q_2, ..., q_n \}$$

- q₀ elemento distinguido de Q: estado inicial
- F subconjunto de Q: conjunto de estados finais

Autômato como diagrama

$$\delta(q, \epsilon) = \{p_0\}$$
 $\delta(q, a_1) = \{p_1\}$... $\delta(q, a_n) = \{p_n\}$

Computação de um AFNε

análoga à de um AFN

Processamento de uma transição vazia

- não determinístico
- assume simultaneamente os estados destino e origem
- origem de um movimento vazio: caminho alternativo

Exp: AFNε: a's antecedem b's

$$M_7 = (\{a, b\}, \{q_0, q_f\}, \delta_7, q_0, \{q_f\})$$

δ7	а	b	3
q ₀	{ q ₀	_	{ q _f }
Qf	}	{ q _f }	

Antes de definir computação

- computação de transições vazias a partir de
 - * um estado
 - * um conjunto finito de estados

Def: Computação vazia

$$M = (\Sigma, Q, \delta, q_0, F)$$

Computação vazia ou função fecho vazio (um estado)

$$\delta \epsilon: Q \rightarrow 2^Q$$

indutivamente definida

*
$$\delta \epsilon(q) = \{q\}$$
, se $\delta(q, \epsilon)$ é indefinida

*
$$\delta \epsilon(q) = \{q\} \cup \delta(q, \epsilon) \cup (\bigcup_{p \in \delta(q, \epsilon)} \delta \epsilon(p))$$
, caso contrário

Computação vazia ou função fecho vazio (conjunto de estados)

$$\delta \varepsilon^*: 2^Q \to 2^Q$$

tal que

$$\delta \varepsilon^*(P) = \bigcup_{q \in P} \delta \varepsilon(q)$$

Por simplicidade, $\delta \epsilon$ e $\delta \epsilon^*$

• ambas denotadas por $\delta\epsilon$

Exp: Computação vazia

- $\delta \epsilon(q_0) = \{q_0, q_f\}$
- $\delta \epsilon(q_f) = \{q_f\}$
- $\delta \epsilon (\{q_0, q_f\}) = \{q_0, q_f\}$

Computação de um AFNε para uma entrada w

- sucessiva aplicação da função programa
- para cada símbolo de w (da esquerda para a direita)
- cada passo de aplicação intercalado com computações vazias
- até ocorrer uma condição de parada

Assim, antes de processar a próxima transição

- determinar
 - todos os demais estados atingíveis
 - * exclusivamente por movimentos vazios

Def: Função programa estendida, computação

$$M = (\Sigma, Q, \delta, q_0, F) AFN\varepsilon$$

$$\delta^*: 2^{\mathbb{Q}} \times \Sigma^* \to 2^{\mathbb{Q}}$$

indutivamente definida

- $\delta^*(P, \varepsilon) = \delta \varepsilon(P)$
- $\delta^*(P, wa) = \delta \epsilon(R)$ onde $R = \{ r \mid r \in \delta(s, a) \ e \ s \in \delta^*(P, w) \}$

Parada do processamento, ling. aceita/rejeitada

• análoga à do autômato finito não determinístico

Exp: Computação vazia, computação

 $L_8 = \{ w \mid w \text{ possui como sufixo a ou bb ou ccc} \}$

 $M_8 = (\{a, b, c\}, \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_f\}, \delta_8, q_0, \{q_f\})$

$$\delta^*(\{q_0\}, abb) = \delta \epsilon(\{r \mid r \in \delta(s, b) \ e \ s \in \delta^*(\{q_0\}, ab)\})$$
 (1)

$$\delta^*(\lbrace q_0 \rbrace, ab) = \delta \varepsilon(\lbrace r \mid r \in \delta(s, b) \ e \ s \in \delta^*(\lbrace q_0 \rbrace, a) \rbrace)$$
 (2)

$$\delta^*(\lbrace q_0 \rbrace, a) = \delta \epsilon(\lbrace r \mid r \in \delta(s, a) \ e \ s \in \delta^*(\lbrace q_0 \rbrace, \epsilon) \rbrace) \tag{3}$$

Como:

$$\delta^*(\{q_0\}, \epsilon)\} = \delta\epsilon(\{q_0\}) = \{q_0, q_1, q_2, q_4\}$$
 cons

$$\delta^*(\{q_0\}, a) = \{q_0, q_1, q_2, q_4, q_f\}$$
 cons

$$\delta^*(\{q_0\}, ab) = \{q_0, q_1, q_2, q_3, q_4\}$$
 cons

considerado em (3)

considerado em (2)

considerado em (1)

Resulta na computação: $\delta^*(\{q_0\}, abb) = \{q_0, q_1, q_2, q_3, q_4, q_f\}$

Teorema: equivalência entre AFN e AFNε

Classe dos autômatos finitos com movimentos vazios é equivalente à Classe dos autômatos finitos não determinísticos

Prova: (por indução)

Mostrar que

- a partir de um AFNε M qualquer
- construir um AFN M_N que realize as mesmas computações
- M_N simula M

$AFN\varepsilon \rightarrow AFN$

- construção de uma função programa sem movimentos vazios
- conjunto de estados-destino de cada transição não vazia
 - ampliado com os demais estados possíveis de serem atingidos exclusivamente por transições vazias

 $M = (Σ, Q, δ, q_0, F)$ um AFNε qualquer. AFN construído

$$M_N = (\Sigma, Q, \delta_N, q_0, F_N)$$

• δ_N : $Q \times \Sigma \rightarrow 2^Q$ é tal que

$$\delta_{N}(q, a) = \delta^{*}(\{q\}, a)$$

F_N é o conjunto de todos os estados q pertencentes a Q

$$\delta \varepsilon(q) \cap F \neq \emptyset$$

estados que atingem estados finais via computações vazias

Demonstração que, de fato, o AFN M_N simula o AFNε M

- indução no tamanho da palavra
- exercício

Portanto, linguagem aceita por AFNε

• é linguagem regular ou tipo 3

Exp: Construção de um AFN a partir de um AFNε

AFN ε - M₉ = ({ a, b }, { q₀, q₁, q₂ }, δ ₉, q₀, { q₂ })

δ9	а	b	3
q ₀	{ q ₀	-	{ q ₁ }
q ₁	-	{q ₁ }	{ q ₂ }
q_2	$\{q_2\}$	-	-

 $M_{9N} = (\{a, b\}, \{q_0, q_1, q_2\}, \delta_{9N} q_0, F_N)$

$$F_N = \{q_0, q_1, q_2\}$$

• $\delta \varepsilon(q_0) = \{ q_0, q_1, q_2 \}$

- $\delta \epsilon(q_1) = \{q_1, q_2\}$
- $\delta \varepsilon(q_2) = \{q_2\}$

Na construção de δ_{9N}

- $\underline{\delta}_9^*(\{q_0\}, \epsilon) = \{q_0, q_1, q_2\}$
- $\underline{\delta}_9^*(\{q_1\}, \epsilon) = \{q_1, q_2\}$
- $\underline{\delta}_9^*(\{q_2\}, \varepsilon) = \{q_2\}$

Assim, δ_{9N} é tal que

$$\delta_{9N}(q_0, a) = \delta_9^*(\{q_0\}, a) =$$

$$\delta_{\epsilon}(\{r \mid r \in \delta(s, a) \ e \ s \in \underline{\delta}^*(\{q_0\}, \epsilon)\}) = \{q_0, q_1, q_2\}$$

$$\delta_{9N}(q_0, b) = \delta_9^*(\{q_0\}, b) =$$

$$\delta_{\epsilon}(\{r \mid r \in \delta(s, b) e \mid s \in \underline{\delta}^*(\{q_0\}, \epsilon)\}) = \{q_1, q_2\}$$

$$\delta_{9N}(q_1, a) = \delta_9^*(\{q_1\}, a) =$$

$$\delta_{\epsilon}(\{r \mid r \in \delta(s, a) \in s \in \underline{\delta}^*(\{q_1\}, \epsilon)\}) = \{q_2\}$$

- $\delta_{9N}(q_1, b) = \underline{\delta}_9^*(\{q_1\}, b) = \delta\epsilon(\{r \mid r \in \delta(s, b) e \})$ $s \in \underline{\delta}^*(\{q_1\}, \epsilon)\}) = \{q_1, q_2\}$
- $\delta_{9N}(q_2, a) = \underline{\delta}_9^*(\{q_2\}, a) = \delta\epsilon(\{r \mid r \in \delta(s, a) \in s \in \underline{\delta}^*(\{q_2\}, \epsilon)\}) = \{q_2\}$
- $\delta_{9N}(q_2, b) = \underline{\delta}_9^*(\{q_2\}, b) = \delta\epsilon(\{r \mid r \in \delta(s, b) \text{ e } s \in \underline{\delta}^*(\{q_2\}, \epsilon)\})$ é indefinida

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Sequencial, Concorrente e Não Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.6 Expressão Regular

Toda linguagem regular pode ser descrita por uma

Expressão Regular

Formalismo denotacional (gerador)

Definida a partir de

- conjuntos (linguagens) básicos
- concatenação e união

Adequadas para a comunicação

- humano × humano
- humano × máquina

Def: Expressão regular (ER)

Base de indução

- Ø é ER
 - * denota a linguagem vazia: Ø
- ε é ER
 - * denota a linguagem {ε}
- $x \in ER$ (para qualquer $x \in \Sigma$)
 - * denota a linguagem { x }

Def: Expressão regular (ER)

Passo de indução: se r e s são ER e denotam as ling. R e S, então

- União. (r+s) é ER
 - * denota a linguagem R ∪ S
- Concatenação. (rs) é ER
 - * denota a linguagem RS = { uv | u ∈ R e v ∈ S }
- Concatenação Sucessiva. (r*) é ER
 - * denota a linguagem R*

Def: Linguagem gerada por uma ER

Se r é ER, a correspondente linguagem denotada é dita

Linguagem gerada por r

L(r) ou GERA(r)

Omissão de parênteses em uma ER é usual

- concatenação sucessiva: precedência sobre concatenação e união
- concatenação: precedência sobre união

Exp: Expressão regular

ER	Linguagem gerada ???
aa	
ba*	
(a + b)*	
(a + b)*aa(a + b)*	
a*ba*ba*	
(a + b)*(aa + bb)	
$(a + \varepsilon)(b + ba)^*$	

Exp: Expressão regular

ER	Linguagem gerada
aa	somente a palavra aa
ba*	todas as palavras que iniciam por b, seguido por zero ou mais a
(a + b)*	todas as palavras sobre { a, b }
(a + b)*aa(a + b)*	todas as palavras contendo aa como subpalavra
a*ba*ba*	todas as palavras contendo exatamente dois b
(a + b)*(aa + bb)	todas as palavras que terminam com aa ou bb
$(a + \varepsilon)(b + ba)^*$	todas as palavras que não possuem dois a consecutivos

Exp: Expressão regular

Linguagem gerada pela ER (a + b)*(aa + bb)

- a e b denotam { a } e { b }, respectivamente
- $a + b denota \{a\} \cup \{b\} = \{a, b\}$
- (a + b)* denota { a, b }*
- aa e bb denotam {a}{a} = {aa} e {b}{b} = {bb}, respectivamente
- (aa + bb) denota { aa } ∪ { bb } = { aa, bb }
- (a + b)*(aa + bb) denota { a, b }* { aa, bb }

Portanto, GERA((a + b)*(aa + bb)) é

```
{ aa, bb, aaa, abb, baa, bbb, aaa, aabb, abaa, abbb, baaa, babb, bbaa, bbbb,... }
```

Teorema: expressão regular → linguagem regular

Se r é ER, então GERA(r) é linguagem regular

Prova: (por indução)

Uma linguagem é regular se for possível construir um

AFD, AFN ou AFNε que reconheça a linguagem

É necessário mostrar que

- dada uma ER r qualquer
- é possível construir um autômato finito M tal que

ACEITA(M) = GERA(r)

Demonstração: indução no número de operadores

Base de indução. r ER com zero operadores

- r = Ø
 - * Autômato???
- $\bullet r = \epsilon$
 - * Autômato???
- $r = x (x \in \Sigma)$
 - * Autômato???

Base de indução. r ER com zero operadores

• $r = \emptyset$. Autômato: $M_1 = (\emptyset, \{q_0\}, \delta_1, q_0, \emptyset)$

• $r = \varepsilon$. Autômato: $M_2 = (\emptyset, \{q_f\}, \delta_2, q_f, \{q_f\})$

• r = x ($x \in \Sigma$). Autômato: $M_3 = (\{x\}, \{q_0, q_f\}, \delta_3, q_0, \{q_f\})$

Hipótese de indução. r ER com até n > 0 operadores

suponha que é possível definir um AF que aceita GERA(r)

Passo de indução. r ER com n + 1 operadores

 r pode ser representada por (r₁ e r₂ possuem conjuntamente no máximo n operadores)

```
* r = r_1 + r_2

* r = r_1 r_2

* r = r_1*
```

por hipótese de indução, existem

$$M_1 = (\Sigma_1, Q_1, \delta_1, q_{0_1}, \{q_{f_1}\})$$
 e $M_2 = (\Sigma_2, Q_2, \delta_2, q_{0_2}, \{q_{f_2}\})$

$$ACEITA(M_1) = GERA(r_1)$$
 e $ACEITA(M_2) = GERA(r_2)$

$$r = r_1 + r_2$$

Autômato???

$$r = r_1 r_2$$

Autômato???

$$r = r_1^*$$

• Autômato???

- sem perda de generalidade:
 - * M₁ e M₂ possuem exatamente um estado final (exercícios)
 - * estados dos autômatos: conjuntos disjuntos (se não forem?)

$$r = r_1 + r_2$$
. Autômato M = $(\Sigma_1 \cup \Sigma_2, Q_1 \cup Q_2 \cup \{q_0, q_f\}, \delta, q_0, \{q_f\})$

$r = r_1 r_2$. Autômato M = $(\Sigma_1 \cup \Sigma_2, Q_1 \cup Q_2, \delta, q_{01}, \{q_{f_2}\})$

 $r = r_1^*$. Autômato (suponha $q_0 \notin Q_1$, $q_f \notin Q_1$)

• $M = (\Sigma_1, Q_1 \cup \{q_0, q_f\}, \delta, q_0, \{q_f\})$

Exercício: no caso $r = r_1 + r_2$

- não introduzir os estados q₀ e q_f
- identificar ("unificar") os estados iniciais/finais de M₁/M₂ ???

Exercício: no caso $r = r_1^*$

- não introduzir o estado qf
- manter q_{f1} como o estado final
- transição vazia de q₀ para q_{f1} ???

Exp: AFNε a partir de a*(aa + bb)

Autômato resultante: a*(aa + bb)

Teorema: linguagem regular → expressão regular

Se L é linguagem regular, então existe uma ER r tal que

$$GERA(r) = L$$

O teorema não será provado

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Sequencial, Concorrente e Não Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.7 Gramática Regular

Formalismo gramáticas

permite definir tanto linguagens regulares como n\u00e3o regulares

Gramática regular

- restrições nas regras de produção
- existe mais de uma forma de restringir as regras de produção
 - * gramáticas lineares

Def: Gramáticas lineares

$$G = (V, T, P, S)$$

Gramática linear à direita (GLD)

$$A \rightarrow WB$$
 ou $A \rightarrow W$

Gramática linear à esquerda (GLE)

$$A \rightarrow Bw$$
 ou $A \rightarrow w$

Gramática linear unitária à direita (GLUD)

como na gramática linear à direita. Adicionalmente

$$|w| \leq 1$$

Gramática linear unitária à esquerda (GLUE)

como na gramática linear à esquerda. Adicionalmente

$$|w| \leq 1$$

Lado esquerdo de uma produção

exatamente uma variável

Lado direito de uma produção

- no máximo uma variável
 - * sempre antecede (linear à esquerda)
 - * ou sucede (linear à direita)
 - * qualquer subpalavra (eventualmente vazia) de terminais

Exercício

gramática simultaneamente nas quatro formas lineares?

Teorema: equivalência das gramáticas lineares

Seja L uma linguagem. Então:

- L é gerada por uma GLD sse
- L é gerada por uma GLE sse
- L é gerada por uma GLUD sse
- L é gerada por uma GLUE

Diversas formas das gramáticas lineares

- formalismos equivalentes
- demonstração do teorema: exercício

Def: Gramática regular (GR)

G é uma gramática linear

Def: Linguagem gerada

é tal que

$$L(G) = \{ w \in T^* \mid S \Rightarrow^+ w \}$$

Exp: Gramática regular: a(ba)*

???

Exp: Gramática regular: a(ba)*

Linear à direita. G = ({ S, A }, { a, b }, P, S)

- $S \rightarrow aA$
- A \rightarrow baA ϵ

Linear à esquerda. $G = (\{S\}, \{a, b\}, P, S)$

• S → Sba a

Linear unitária à direita. G = ({ S, A, B }, { a, b }, P, S)

- $S \rightarrow aA$
- A → bB | ε
- $B \rightarrow aA$

Linear unitária à esquerda. G = ({ S, A }, { a, b }, P, S)

- $S \rightarrow Aa$ a
- $A \rightarrow Sb$

Exp: Gramática regular: (a + b)*(aa + bb)

Linear à direita. G = ({S, A}, {a, b}, P, S), e P é tal que

- $S \rightarrow aS \mid bS \mid A$
- A → aa | bb

Linear à esquerda. G = ({S, A}, {a, b}, P, S), e P é tal que

- S → Aaa Abb
- A \rightarrow Aa | Ab | ε

Obs: Gramática linear à esquerda e linear à direita

Suponha | w | ≥ 1

Produções simultaneamente do tipo

- A → wB (direita) e
- A → Bw (esquerda)

correspondente à linguagem gerada

- poderá não ser regular
- não é uma gramática regular

É possível desenvolver uma gramática, com produções lineares à direita e à esquerda, que gera (exercício)

$$\{a^nb^n \mid n \in \mathbb{N}\}$$

Teorema: gramática regular → linguagem regular

Se L é gerada por uma gramática regular, então L é linguagem regular

Prova: (por indução)

Mostrar que

- dado uma GLUD G qualquer
- é possível construir um AFNε M tq

ACEITA(M) = GERA(G)

M simula as derivações de G

- demonstração de que ACEITA(M) = GERA(r)
- indução no número de derivações

Suponha G = (V, T, P, S) uma GLUD. Seja o AFNε

$$M = (\Sigma, Q, \delta, q_0, F)$$

- $\bullet \Sigma = T$
- $Q = V \cup \{q_f\}$
- $F = \{q_f\}$
- $q_0 = S$

Tipo da produção	Transição gerada
A → ε	$\delta(A, \varepsilon) = q_f$
$A \rightarrow a$	$\delta(A, a) = q_f$
$A \rightarrow B$	$\delta(A, \varepsilon) = B$
$A \rightarrow aB$	$\delta(A, a) = B$

(suponha q_f ∉ V)

M simula as derivações de G

Base de indução. $S \Rightarrow^1 \alpha$. Quatro casos

•
$$\alpha = \varepsilon$$
 existe $S \to \varepsilon$ Logo, $\delta(S, \varepsilon) = q_f$

•
$$\alpha$$
 = a existe S \rightarrow a Logo, δ (S, a) = q_f

•
$$\alpha = A$$
 existe $S \rightarrow A$ Logo, $\delta(S, \varepsilon) = A$

•
$$\alpha = aA$$
 existe $S \rightarrow aA$ Logo, $\delta(S, a) = A$

Hipótese de indução. $S \Rightarrow^n \alpha$, n > 1. Dois casos

•
$$\alpha = w$$
 então $\underline{\delta}^*(S, w) = q_f$ (1)

•
$$\alpha = wA$$
 então $\underline{\delta}^*(S, w) = A$ (2)

Passo de Indução. S \Rightarrow ⁿ⁺¹ α. Então (2) é a única hipótese que importa

$$S \Rightarrow^n wA \Rightarrow^1 \alpha$$

Quatro casos:

• $\alpha = w\epsilon = w$. Existe $A \rightarrow \epsilon$. Logo

$$\underline{\delta}^*(S, w\epsilon) = \delta(\underline{\delta}^*(S, w), \epsilon) = \delta(A, \epsilon) = q_f$$

• α = wb. Existe A \rightarrow b. Logo

$$\underline{\delta}^*(S, wb) = \delta(\underline{\delta}^*(S, w), b) = \delta(A, b) = q_f$$

• α = wB. Existe A \rightarrow B. Logo

$$\underline{\delta}^*(S, w\epsilon) = \delta(\underline{\delta}^*(S, w), \epsilon) = \delta(A, \epsilon) = B$$

• α = wbB. Existe A \rightarrow bB. Logo

$$\underline{\delta}^*(S, wb) = \delta(\underline{\delta}^*(S, w), b) = \delta(A, b) = B$$

Exp: Construção de um AFNε a partir de uma GR

$$G = (\{S, A, B\}, \{a, b\}, P, S)$$

- $S \rightarrow aA$
- A \rightarrow bB ϵ
- $B \rightarrow aA$

 $M = (\{a, b\}, \{S, A, B, q_f\}, \delta, S, \{q_f\})$

	Produção	Transição
	$S \rightarrow aA$ $A \rightarrow bB$ $A \rightarrow \epsilon$ $B \rightarrow aA$	$\delta(S, a) = A$ $\delta(A, b) = B$ $\delta(A, \epsilon) = q_f$ $\delta(B, a) = A$
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$		

Teorema: linguagem regular → gramática regular

Se L é linguagem regular, então existe G, gramática regular que gera L

Prova: (por indução)

L é linguagem regular

• existe um AFD M = $(\Sigma, Q, \delta, q_0, F)$ tal que ACEITA(M) = L

Construção de uma GLUD G

$$GERA(G) = ACEITA(M)$$

derivação simula a função programa estendida

Suponha um AFD M = $(\Sigma, Q, \delta, q_0, F)$ tal que ACEITA(M) = L Seja a gramática regular

$$G = (V, T, P, S)$$

• $V = Q \cup \{S\}$

(suponha S ∉ Q)

- $\bullet T = \Sigma$
- suponha $q_i, q_k \in Q, q_f \in F$ e $a \in \Sigma$

Transição	Produção
-	$S \rightarrow q_0$
-	$q_f \rightarrow \epsilon$
$\delta(q_i, a) = q_k$	$q_i \rightarrow aq_k$

GERA(G) = ACEITA(M)? Indução no tamanho da palavra ($w \in \Sigma^*$)

- por definição, S → q₀ é produção
- se ε ∈ ACEITA(M), então
 - * q₀ é estado final
 - * q₀ → ε é produção

$$S \Rightarrow q_0 \Rightarrow \varepsilon$$

Hipótese de indução. $| w | = n \ (n \ge 1) \ e \ \underline{\delta}^*(q_0, w) = q$. Dois casos

- q não é final. Suponha S ⇒ⁿ wq
- (única hipótese que importa)
- q é final. Suponha S ⇒ⁿ wq ⇒ w

Passo de indução. | wa | = n + 1 e $\underline{\delta}^*(q_0, wa)$ = p. Então

$$\delta(\underline{\delta}^*(q_0, w), a) = \delta(q, a) = p$$

- p não é final
 - * $S \Rightarrow^n wq \Rightarrow^1 wap$
- p é final
 - * $S \Rightarrow^n wq \Rightarrow^1 wap \Rightarrow^1 wa$

Exp: Construção de uma GR a partir de um AFD

 $M = (\{a, b, c\}, \{q_0, q_1, q_2\}, \delta, q_0, \{q_0, q_1, q_2\})$

$$G = (\{q_0, q_1, q_2, S\}, \{a, b, c\}, P, S)$$

Transição	Produção
-	$S \rightarrow q_0$
-	$q_0 \rightarrow \epsilon$
-	$q_1 \rightarrow \epsilon$
-	$q_2 \rightarrow \epsilon$
$\delta(q_0, a) = q_0$	$q_0 \rightarrow aq_0$
$\delta(q_0, b) = q_1$	$q_0 \rightarrow bq_1$
$\delta(q_1, b) = q_1$	$q_1 \rightarrow bq_1$
$\delta(q_1, c) = q_2$	$q_1 \rightarrow cq_2$
$\delta(q_2, c) = q_2$	$q_2 \rightarrow cq_2$

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- **6 Linguagens Livres do Contexto**
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes de Linguagens e Conclusões