Unit 13

——Programmable Logic Devices

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

PAL及其应用

PAL (Programmable Arrays Logic) 可编程阵列逻辑

■ 与阵: 可编程

■ 或阵: fixed

■ 需要化简表达式

PAL及其应用

例:利用PAL设计组合逻辑函数

$$Y_1(A,B,C) = \sum m(2,3,4,6)$$

$$Y_2(A,B,C) = \sum m(1,2,3,4,5,6)$$

↓化简

最简与或式

$$Y_1 = \overline{AB} + A\overline{C}$$

$$Y_2 = A\overline{B} + B\overline{C} + C\overline{A}$$

PROM, PLA and PAL

GAL (General Arrays Logic)

GAL(通用阵列逻辑)

■ 与阵: 可编程

■ 或阵: fixed

■ 输出逻辑宏: 可编程

■ 有上电擦除位

■ 可改写的次数超过100次

■ 具有加密的功能

典型芯片: GAL16V8

OLMC内部结构

GAL应用

用GAL实现基本逻辑门

用GAL实现多种触发器用GAL实现计数器...

GAL应用

GAL器件的优点

- □ 较高的通用性和灵活性:每个逻辑宏单元可任意组态,既可实现组合电路,又可实现时序电路。
- □ 利用率高: 电可擦除, 可反复 使用, 编程数据可保存多年。

GAL器件的缺点

- □ 时钟必须共用;
- □ 或的乘积项最多只有8个;
- □ 器件规模小,无法在单片内集成一个 数字系统;
- □ 随着解密技术的发展,对阵列规模小的PLD器件解密已非难事。

四种PLD的结构特点

类型	阵 列		松山十十	4戸 チロック 米ケ
	与	或	输出方式	│ 编程次数 │
PROM	固定	可编程	固定	一次
PLA	可编程	可编程	固定	一次
PAL	可编程	固定	固定	一次
GAL	可编程	固定	可编程	多次

PLD的基本结构

