제 2 교시

## 수학 영역

## 5지선다형

1. 
$$\left(\frac{4}{2^{\sqrt{2}}}\right)^{2+\sqrt{2}}$$
의 값은? [2점]

- ①  $\frac{1}{4}$  ②  $\frac{1}{2}$  ③ 1 ④ 2

- $oldsymbol{3}$ . 공비가 양수인 등비수열  $ig\{a_nig\}$ 이

$$a_2 + a_4 = 30 \,, \quad a_4 + a_6 = \frac{15}{2}$$

를 만족시킬 때,  $a_1$ 의 값은? [3점]

- ② 56 ③ 64
- 4) 72
- **⑤** 80

2. 
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 2} + 3x}{x + 5}$$
의 값은? [2점]

- 1
- ② 2
- ③ 3 ④ 4
- **⑤** 5
- 4. 다항함수 f(x)에 대하여 함수 g(x)를

$$g(x) = x^2 f(x)$$

라 하자. f(2) = 1, f'(2) = 3일 때, g'(2)의 값은? [3점]

- ① 12 ② 14 ③ 16 ④ 18

- 5.  $\tan \theta < 0$ 이고  $\cos \left(\frac{\pi}{2} + \theta\right) = \frac{\sqrt{5}}{5}$ 일 때,  $\cos \theta$ 의 값은? [3점]

- 6. 함수  $f(x) = 2x^3 9x^2 + ax + 5$ 는 x = 1에서 극대이고, x = b에서 극소이다. a + b의 값은? (단, a, b는 상수이다.) [3점]
  - ① 12
- 2 14
- ③ 16
- **4** 18
- ⑤ 20

7. 모든 항이 양수이고 첫째항과 공차가 같은 등차수열  $\{a_n\}$ 이

$$\sum_{k=1}^{15} \frac{1}{\sqrt{a_k} + \sqrt{a_{k+1}}} = 2$$

를 만족시킬 때,  $a_4$ 의 값은? [3점]

- ① 6 ② 7 ③ 8
- **4** 9

- **8.** 점 (0,4)에서 곡선  $y=x^3-x+2$ 에 그은 접선의 x 절편은?
  - ①  $-\frac{1}{2}$  ② -1 ③  $-\frac{3}{2}$  ④ -2 ⑤  $-\frac{5}{2}$

9. 함수

$$f(x) = a - \sqrt{3}\tan 2x$$

가 닫힌구간  $\left[-\frac{\pi}{6},b\right]$  에서 최댓값 7, 최솟값 3을 가질 때,  $a \times b$ 의 값은? (단, a, b는 상수이다.) [4점]

- ①  $\frac{\pi}{2}$  ②  $\frac{5\pi}{12}$  ③  $\frac{\pi}{3}$  ④  $\frac{\pi}{4}$  ⑤  $\frac{\pi}{6}$

- 10. 두 곡선  $y = x^3 + x^2$ ,  $y = -x^2 + k$ 와 y축으로 둘러싸인 부분의 넓이를 A, 두 곡선  $y=x^3+x^2$ ,  $y=-x^2+k$ 와 직선 x=2로 둘러싸인 부분의 넓이를 B라 하자. A=B일 때, 상수 k의 값은? (단, 4<k<5) [4점]

- ①  $\frac{25}{6}$  ②  $\frac{13}{3}$  ③  $\frac{9}{2}$  ④  $\frac{14}{3}$  ⑤  $\frac{29}{6}$



11. 그림과 같이 사각형 ABCD가 한 원에 내접하고

 $\overline{AB} = 5$ ,  $\overline{AC} = 3\sqrt{5}$ ,  $\overline{AD} = 7$ ,  $\angle BAC = \angle CAD$ 

일 때, 이 원의 반지름의 길이는? [4점]



- ①  $\frac{5\sqrt{2}}{2}$  ②  $\frac{8\sqrt{5}}{5}$  ③  $\frac{5\sqrt{5}}{3}$

- $4 \frac{8\sqrt{2}}{3}$   $5 \frac{9\sqrt{3}}{4}$

12. 실수 전체의 집합에서 연속인 함수 f(x)가 다음 조건을 만족시킨다.

 $n-1 \le x < n$ 일 때, |f(x)| = |6(x-n+1)(x-n)|이다. (단, n은 자연수이다.)

열린구간 (0,4)에서 정의된 함수

$$g(x) = \int_{0}^{x} f(t) dt - \int_{x}^{4} f(t) dt$$

가 x=2에서 최솟값 0을 가질 때,  $\int_{\frac{1}{2}}^{4} f(x) dx$ 의 값은? [4점]

13. 자연수  $m(m \ge 2)$ 에 대하여  $m^{12}$ 의 n제곱근 중에서 정수가 존재하도록 하는 2 이상의 자연수 n의 개수를 f(m)이라 할 때,

 $\sum_{m=2}^{9} f(m) 의 값은? [4점]$ 

- ① 37
- ② 42
- ③ 47 ④ 52
- **⑤** 57
- 14. 다항함수 f(x)에 대하여 함수 g(x)를 다음과 같이 정의한다.

$$g(x) = \begin{cases} x & (x < -1 \ \text{\pm T} = x > 1) \\ f(x) & (-1 \le x \le 1) \end{cases}$$

함수  $h(x) = \lim_{t \to 0+} g(x+t) \times \lim_{t \to 2+} g(x+t)$ 에 대하여

<보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

- $\neg . h(1) = 3$
- L. 함수 h(x)는 실수 전체의 집합에서 연속이다.
- $\Box$ . 함수 g(x)가 닫힌구간 [-1,1]에서 감소하고 g(-1) = -2이면 함수 h(x)는 실수 전체의 집합에서 최솟값을 갖는다.

15. 모든 항이 자연수이고 다음 조건을 만족시키는 모든 수열  $\{a_n\}$ 에 대하여  $a_9$ 의 최댓값과 최솟값을 각각 M, m이라 할 때, M+m의 값은? [4점]

$$(7)$$
  $a_7 = 40$ 

이다.

(나) 모든 자연수 n에 대하여

$$a_{n+2} = \left\{ \begin{array}{ll} a_{n+1} + a_n & \left( a_{n+1} \circ \right) \ 3 \ \text{의 배수가 아닌 경우} \right. \\ \\ \frac{1}{3} a_{n+1} & \left( a_{n+1} \circ \right) \ 3 \ \text{의 배수인 경우} \right. \end{array} \right.$$

① 216

② 218

3 220

4 222

(5) 224

단답형

16. 방정식

$$\log_2(3x+2) = 2 + \log_2(x-2)$$

를 만족시키는 실수 x의 값을 구하시오. [3점]

17. 함수 f(x)에 대하여  $f'(x) = 4x^3 - 2x$ 이고 f(0) = 3일 때, f(2)의 값을 구하시오. [3점]

18. 두 수열  $\{a_n\}$ ,  $\{b_n\}$ 에 대하여

$$\sum_{k=1}^{5} (3a_k + 5) = 55, \quad \sum_{k=1}^{5} (a_k + b_k) = 32$$

일 때,  $\sum_{k=1}^{5} b_k$ 의 값을 구하시오. [3점]

19. 방정식  $2x^3 - 6x^2 + k = 0$ 의 서로 다른 양의 실근의 개수가 2가 되도록 하는 정수 k의 개수를 구하시오. [3점]

**20.** 수직선 위를 움직이는 점 P의 시각  $t(t \ge 0)$ 에서의 속도 v(t)와 가속도 a(t)가 다음 조건을 만족시킨다.

(7)  $0 \le t \le 2$ 일 때,  $v(t) = 2t^3 - 8t$ 이다.

(나)  $t \ge 2$ 일 때, a(t) = 6t + 4이다.

시각 t=0에서 t=3까지 점 P가 움직인 거리를 구하시오. [4점]

21. 자연수 n에 대하여 함수 f(x)를

$$f(x) = \begin{cases} |3^{x+2} - n| & (x < 0) \\ |\log_2(x+4) - n| & (x \ge 0) \end{cases}$$

이라 하자. 실수 t에 대하여 x에 대한 방정식 f(x)=t의 서로 다른 실근의 개수를 g(t)라 할 때, 함수 g(t)의 최댓값이 4가 되도록 하는 모든 자연수 n의 값의 합을 구하시오. [4점]

- 22. 최고차항의 계수가 1인 삼차함수 f(x)와 실수 전체의 집합에서 연속인 함수 g(x)가 다음 조건을 만족시킬 때, f(4)의 값을 구하시오. [4점]
  - (가) 모든 실수 x에 대하여 f(x) = f(1) + (x-1)f'(g(x))이다.
  - (나) 함수 g(x)의 최솟값은  $\frac{5}{2}$ 이다.
  - (다) f(0) = -3, f(g(1)) = 6

#### \* 확인 사항

- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, **「선택과목(확률과 통계)**」문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

# 수학 영역(기하)

### 5지선다형

**23.** 좌표공간의 점 A(2, 2, -1)을 x축에 대하여 대칭이동한 점을 B라 하자. 점 C(-2, 1, 1)에 대하여 선분 BC의 길이는?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

**24.** 초점이  $F\left(\frac{1}{3},0\right)$ 이고 준선이  $x=-\frac{1}{3}$  인 포물선이 점 (a,2)를 지날 때, a의 값은? [3점]

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

**25.** 타원  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  위의 점 (2, 1)에서의 접선의

기울기가  $-\frac{1}{2}$ 일 때, 이 타원의 두 초점 사이의 거리는? (단, a, b는 양수이다.) [3점]

- ①  $2\sqrt{3}$  ② 4 ③  $2\sqrt{5}$  ④  $2\sqrt{6}$  ⑤  $2\sqrt{7}$

- 26. 좌표평면에서 세 벡터

$$\vec{a} = (2, 4), \quad \vec{b} = (2, 8), \quad \vec{c} = (1, 0)$$

에 대하여 두 벡터  $\overset{
ightarrow}{p},\overset{
ightarrow}{q}$ 가

$$(\overrightarrow{p} - \overrightarrow{a}) \cdot (\overrightarrow{p} - \overrightarrow{b}) = 0, \quad \overrightarrow{q} = \frac{1}{2}\overrightarrow{a} + t\overrightarrow{c} (t 는 실수)$$

를 만족시킬 때,  $\left| \stackrel{\rightarrow}{p} - \stackrel{\rightarrow}{q} \right|$ 의 최솟값은? [3점]

- ①  $\frac{3}{2}$  ② 2 ③  $\frac{5}{2}$  ④ 3 ⑤  $\frac{7}{2}$

**27.** 좌표공간에 직선 AB를 포함하는 평면  $\alpha$ 가 있다. 평면  $\alpha$  위에 있지 않은 점 C에 대하여 직선 AB와 직선 AC가 이루는 예각의 크기를  $\theta_1$ 이라 할 때  $\sin\theta_1=\frac{4}{5}$ 이고, 직선 AC와 평면  $\alpha$ 가 이루는 예각의 크기는  $\frac{\pi}{2}-\theta_1$ 이다. 평면 ABC와 평면  $\alpha$ 가 이루는 예각의 크기를  $\theta_2$ 라 할 때,  $\cos\theta_2$ 의 값은? [3점]

①  $\frac{\sqrt{7}}{4}$  ②  $\frac{\sqrt{7}}{5}$  ③  $\frac{\sqrt{7}}{6}$  ④  $\frac{\sqrt{7}}{7}$  ⑤  $\frac{\sqrt{7}}{8}$ 



**28.** 두 초점이 F(c, 0), F'(-c, 0)(c > 0)인 쌍곡선 C와 y축 위의 점 A가 있다. 쌍곡선 C가 선분 AF와 만나는 점을 P, 선분 AF'과 만나는 점을 P'이라 하자.

직선 AF는 쌍곡선 C의 한 점근선과 평행하고

$$\overline{AP} : \overline{PP'} = 5 : 6, \overline{PF} = 1$$

일 때, 쌍곡선 C의 주축의 길이는? [4점]

① 
$$\frac{13}{6}$$
 ②  $\frac{9}{4}$  ③  $\frac{7}{3}$  ④  $\frac{29}{12}$  ⑤  $\frac{5}{2}$ 

$$2 \frac{9}{4}$$

$$3\frac{7}{3}$$

$$4) \frac{29}{12}$$



단답형

**29.** 평면  $\alpha$  위에  $\overline{AB} = \overline{CD} = \overline{AD} = 2$ ,  $\angle ABC = \angle BCD = \frac{\pi}{3}$  인 사다리꼴 ABCD가 있다. 다음 조건을 만족시키는 평면  $\alpha$  위의 두 점 P, Q에 대하여  $\overrightarrow{CP} \cdot \overrightarrow{DQ}$ 의 값을 구하시오. [4점]

$$(7)$$
  $\overrightarrow{AC} = 2(\overrightarrow{AD} + \overrightarrow{BP})$ 

$$(\downarrow)$$
  $\overrightarrow{AC} \cdot \overrightarrow{PQ} = 6$ 

(다) 
$$2 \times \angle BQA = \angle PBQ < \frac{\pi}{2}$$



30. 좌표공간에 정사면체 ABCD가 있다. 정삼각형 BCD의 외심을 중심으로 하고 점 B를 지나는 구를 S라 하자. 구 S와 선분 AB가 만나는 점 중 B가 아닌 점을 P, 구 S와 선분 AC가 만나는 점 중 C가 아닌 점을 Q, 구 S와 선분 AD가 만나는 점 중 D가 아닌 점을 R라 하고, 점 P에서 구 S에 접하는 평면을 α라 하자. 구 S의 반지름의 길이가 6일 때, 삼각형 PQR의 평면 α 위로의 정사영의 넓이는 k이다. k²의 값을 구하시오. [4점]



- \* 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.