CLIPPERS UNIT-2

negative peak or positive base clipper:

Circuit diagram of negative peak clipper is shown in figure.

Case (i): consider for a diode $R_f = 0$, $R_r = \infty$, $V_{\gamma} = 0$ (diode is an idle one)

Now for the given circuit, $V_D = V_i - (-V_R)$

If $V_i >$ -V $_R$, V_D =positive value so diode is in OFF state(replaced with open circuit) Then $V_O = V_i$

If $V_i < -V_R$, V_D =negative value so diode is in ON state(replaced with short circuit) Then $V_O = -V_R$

Here the input waveform below the reference level $(-V_R)$ has been clipped means negative peak(positive base) of the input signal is clipped.

Transfer characteristics:

If $V_i > -V_R$, Then $V_O = V_i$ so slope of transfer characteristics curve is one

 $-V_R$ 0 V_O 0 V_R 0 V_R 0 V_R

If $V_i < -V_R$, Then $V_O = -V_R$ so slope of transfer characteristics curve is zero

Case (ii): consider for a diode $R_f=0$, $R_r=\infty$, $V_\gamma\neq 0$ (by replacing diode with simplified equivalent circuit)

Now for the given circuit, $V_D = V_i - [-(V_R + V_\gamma)]$

If $V_i > -(V_R + V_\gamma)$, $V_D =$ positive value so diode is in OFF state

Then $V_0 = V_i$

If $V_i < -(V_R + V_\gamma)$, V_D =negative value so diode is in ON state

Then $V_O = -(V_R + V_{\gamma})$

Here the input waveform below the level $-(V_R + V_{\gamma})$ has been clipped

Transfer characteristics:

K.Chiranjeevi, Asst. Prof, ECE Dept, GMRIT

CLIPPERS UNIT-2

If $V_i > -(V_R + V_\gamma)$, Then $V_O = V_i$ so slope of transfer characteristics curve is one

If $V_i < -(V_R + V_\gamma)$, Then $V_O = -(V_R + V_\gamma)$ so slope of transfer characteristics curve is zero

Case (iii): consider for a diode $R_f \neq 0$, $R_r = \infty$, $V_\gamma \neq 0$ (by replacing diode with piece wise linear equivalent circuit)

Now for the given circuit, $V_D = V_i - [-(V_R + V_\gamma)]$

If $~V_{i}\!>\!\!-\!(V_{R}\!+V_{\gamma})$, $V_{D}\!=\!$ positive value so diode is in OFF state Then $V_{O}\!=\!Vi$

If $V_i < -(V_R + V_\gamma)$, V_D =negative value so diode is in ON state

$$V_{O} = -[(V_{R} + V_{\gamma}) + i R_{f}]$$

$$V_{O} = -[(V_{R} + V_{\gamma}) + (R_{f}/R + R_{f}) [V_{i} - (V_{R} + V_{\gamma})]]$$

$$V_{O} = -[(V_{R} + V_{\gamma})(R/R + R_{f}) + V_{i}(R_{f}/R + R_{f})]$$

$$V_{O} = -[(V_{R} + V_{\gamma}) + V_{i}(R_{f}/R + R_{f})]$$
 by considering R is large.

Here the input waveform below the level $-(V_R + V_\gamma)$ may not be clipped completely. means negative peak(positive base) of the input signal is not clipped totally.

Transfer characteristics:

If $V_i > -(V_R + V_\gamma)$, Then $V_O = V_i$ Then slope of transfer characteristics curve is one.

If $V_i < -(V_R + V_\gamma)$, then $V_O = -[(V_R + V_\gamma) + V_i(R_f/R + R_f)]$ so slope of transfer characteristics curve is $R_f/R + R_f$