Algorytmy mrowiskowe (ang. ACO)

Adam Lewiński

21 marca 2023

Wstęp

Pierwszy algorytm mrowiskowy został zaproponowany przez Marco Dorigo w 1992 roku, zaś jego celem było rozwiązanie problemu komiwojażera (ang. TSP) tj. znalezienia trasy o najmniejszym koszcie, która przechodzi przez wszystkie miasta i kończy się w punkcie początkowym.

Rysunek: Przykład rozwiązania TSP.

Inspiracja naturą

Cechy mrówek użyte w algorytmach mrówkowych:

- Każda mrówka zostawia za sobą ślad feromonowy.
- Ślad feromonowy paruje wraz z upływem czasu.
- Każdy osobnik przy podejmowaniu decyzji kieruje się śladem feromonowym.
- Mrówki są w stanie znaleźć najkrótszą drogę do pożywienia.
- W przypadku pojawienia się przeszkody, mrówki na początku obierają różne drogi, a finalnie wszystkie maszerują najkrótszą.

Postępowanie mrówek

Fig.1. (A) Real ants follow a path between nest and food source. (B) An obstacle appears on the path: Ants choose whether to turn left or right with equal probability. (C) Pheromone is deposited more quickly on the shorter path. (D) All ants have chosen the shorter path.

Rysunek: Postępowanie mrówek.

Działanie algorytmu - TSP

Działanie algorytmu dla TSP:

- Rozstaw m mrówek w losowych miastach.
- Każda mrówka k wykonuje krok do miasta w którym jeszcze nie była.
- 3 Zaktualizuj ślad feromonowy.
- Jeżeli istnieją nieodwiedzone miasta przejdź do kroku drugiego.
- Oblicz długości tras mrówek. Zapisz najlepszą trasę.
- Jeżeli został spełniony warunek stopu (wszystkie mrówki poszły tą samą trasą albo wykonano zadaną ilość cykli) to zakończ działanie, w przeciwnym wypadku przejdź do kroku 1.

Wybór miasta

Wybór miasta odbywa się na podstawie prawdopodobieństwa, które wyliczane jest na podstawie wzoru (1):

$$p_{ij}^{k} = \frac{[\tau_{ij}(t)]^{\alpha} * [\eta_{ij}]^{\beta}}{\sum_{j \in J_{i}^{k}[\tau_{ij}(t)]^{\alpha} * [\eta_{ij}]^{\beta}}}$$
(1)

gdzie:

 τ_{ii} - feromon między miastem i i j,

 η_{ij} - widoczność miasta j z miasta i, $\eta_{ij} = \frac{1}{d_{ii}}$,

 d_{ij} - odległość między miastem i i j,

 $J_i^k = \{j: j \notin tabu_k\}$ - zbiór nieodwiedzonych do tej pory miast przez mrówkę k,

 α,β - parametry pozwalające użytkownikowi sterować względną ważnością intensywności śladu i widocznością miast.

Aktualizacja feromonu - stały i średni

Możemy rozróżnić kilka sposobów aktualizowania śladu feromonowego. Dwa z nich - feromon stały i feromon średni - charakteryzuje następujący wzór (2):

$$\tau_{ij}(t+1) = (1-\rho) * \tau_{ij}(t) + \Delta \tau_{ij}(t,t+1)$$
 (2)

gdzie:

 τ_{ij} - feromon między miastem i i j,

ho - współczynnik wyparowania feromonu.

$$\Delta au_{ij}(t,t+1) = \sum_{k=1}^m \Delta au_{ij}^k(t,t+1)$$

Feromon stały

Dla feromonu stałego:

$$\Delta au_{ij}^k(t,t+1) = egin{cases} Q & ext{jeżeli mrówka } k ext{ przechodzi z } i ext{ do } j \ 0 & ext{w przeciwnym wypadku} \end{cases}$$

gdzie:

Q - pewna stała wartość.

Feromon średni

Dla feromonu średniego:

$$\Delta au^k_{ij}(t,t+1) = egin{cases} rac{Q}{d_{ij}} & ext{jeżeli mrówka } k ext{ przechodzi z } i ext{ do } j \ 0 & ext{w przeciwnym wypadku} \end{cases}$$

gdzie:

Q - pewna stała wartość, d_{ij} - odległość pomiędzy miastem i i j.

Feromon cykliczny

Trzecim sposobem jest feromon cykliczny (3). Istotne jest to, że aktualizujemy go dopiero, kiedy każda mrówka pokona całą trasę.

$$\tau_{ij}(t+n) = (1-\rho) * \tau_{ij}(t) + \Delta \tau_{ij}(t,t+n)$$
(3)

gdzie:

$$\Delta au_{ij}(t, t+n) = \sum_{k=1}^{m} \Delta au_{ij}^{k}(t, t+n)$$

$$\Delta au_{ij}^k(t,t+n) = egin{cases} rac{Q}{L_k} & ext{jeżeli mrówka } k ext{ wybierze krawędź } (i,j) \ 0 & ext{w przeciwnym wypadku} \end{cases}$$

gdzie:

Q - pewna stała wartość, L_k - długość trasy mrówki k.

Parametry

Na podstawie przedstawionych informacji wyłaniają się następujące parametry algorytmu, którymi możemy sterować:

- m liczba mrówek,
- ullet α waga śladu feromonowego,
- β waga heurystyki,
- ullet ho współczynnik wyparowania,
- au_0 feromon startowy,
- Q stała użyta do nakładania feromonu.

Parametr alfa i beta

Zgodnie z zaleceniami autora:

- \bullet $\alpha = 1$,
- $\beta = \text{liczba z zakresu } [2;4].$

Z racji tego, że zarówno τ_{ij} i η_{ij} są mniejsze od 1, zwiększanie tych parametrów powoduje zmniejszenie znaczenia odpowiedniego czynnika przy wyborze miasta. Jeżeli $\alpha=0$, to wtedy mamy do czynienia z przpyadkiem, gdy wartość feromonu jest ignorowana (algorytm zachłanny).

Pozostałe parametry

- $\rho = 0.5$ (koniecznie $0 < \rho < 1$, aby nie kumulować zanadto feromonu),
- m = liczba miast,
- $\tau_0 = \frac{m}{C}$, gdzie C to szacowana długość trasy,
- Q dobieramy odpowiednio mając na uwadzę, że feromon będzie dążył do $\frac{m*Q}{\rho}$ jeśli $0<\rho<1$.

Możemy dobrać Q tak, aby prawdopodobieństwo pomiędzy 'najlepszą' drogą, a 'najgorszą' miało stosunek 100:1 - pewien odpowiednik mutacji w GA.

ACS

ACS - ant colony system - jedna z wielu modyfikacji ACO, która lepiej sprawdza się dla problemu TSP w przypadku dużej ilości miast.

- Feromon lokalny oraz globalny (każdy nakładany inaczej niż wcześniej zaprezentowano).
- Nie ma parametru Q.
- Nowy parametr q₀, który determinuje proporcje pomiędzy wzmacnianiem feromonu na najlepszej trasie, a eksploracją nowych tras.
- Wprowadzono listę miast kandytujących.

Moja implementacja

Moja implementacja:

- dystans pomiędzy miastami przedstawiony za pomocą macierzy dystansów,
- feromon jest reprezentowany w macierzy o takich samych wymiarach jak macierz dystansów, tylko zamiast odległości między punktami, znajduje się tam wartość feromonu pomiędzy nimi,
- dla problemów asymetrycznych wykorzystana jest cała macierz, dla symetrycznych tylko górna część,
- wykorzystanie własnej klasy Ant jako struktury danych, zawierającej miasto docelowe oraz listę tabu,
- implementacja w języku python, z pakietem numba i dekoratorem @jit(nopython=True, parallel=True) w celu przyśpieszenia kodu (ponad 30 razy szybciej).

Rezultaty z pracy Marco Dorigo

- GA algorytm genetyczny
- EP expectation propagation
- SA symulowane wyżarzanie

Problem name	ACS	GA	EP	SA	AG	Optimum
Oliver30	420	421	420	424	420	420
(30-city problem)	(423.74)	(N/A)	(423.74)	(N/A)	(N/A)	(423.74)
	[830]	[3200]	[40 000]	[24 617]	[12 620]	
Eil50	425	428	426	443	436	425
(50-city problem)	(427.96)	(N/A)	(427.86)	(N/A)	(N/A)	(N/A)
	[1830]	[25 000]	[100 000]	[68 512]	[28 111]	
Eil75	535	545	542	580	561	535
(75-city problem)	(542.31)	(N/A)	(549.18)	(N/A)	(N/A)	(N/A)
	[3480]	[80 000]	[325 000]	[173 250]	[95 506]	
KroA100	21 282	21 761	N/A	N/A	N/A	21 282
(100-city problem)	(21 285.44)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
	[4820]	[103 000]	[N/A]	[N/A]	[N/A]	

Rysunek: Ant colonies for the travelling salesman problem, Marco Dorigo.

Rezultat mojej implementacji

Czas znalezienia 'optymalnego' (753.6) rozwiązania - 30 sekund, ponad 30 iteracji.

Czas wykonania wszystkich iteracji - 11.5 minuty.

Parametry: $\alpha = 1$, $\beta = 2$, $\rho = 0.2$, $q_0 = 0.4$, $\tau_0 = 1e - 3$, m = 1000

Rysunek: Przebieg szukania rozwiązania i jego prezentacja - 50 miast.

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha=0$)

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha=0$)

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha=0$)

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha=0$)

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha=0$)

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha = 0$)

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha = 0$)

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha=0$)

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha=0$)

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha=0$)

Kilka rezultatów z pracy algorytmu (inne parametry, niż w poprzednim przykładzie, $\alpha=0$)

Losowe Permutacje

W wyniku losowania miliarda permuatcji najlepszy wynik jaki udało mi się uzyskać to 1824.16. Wszystkich kombinacji jest 3e62.

Badanie parametru β

Rysunek: β 0-10, zielone-fioletowe.

Badanie parametru β

Rysunek: β 2-6, zielone-fioletowe.

Zalety i wady algorytmu

Zalety:

- Problem marszrutyzacji (ang. VRP) i jemu podobne (np. TSP) są rozwiązywane szybciej niż przez algorytmy genetyczne (ang. GA).
- Bez problemu odnajdzie się w środowisku, które ulega zmianom w czasie (np. zdarzenia drogowe, które wymuszają zmianę trasy).
- Poradzi sobie z optymalizacją wielokryterialną.

Wady:

- Trudność implementacji dla niektórych problemów optymalizacyjnych (głównie nadaje się dla zagadnień, które dają się przedstawić w postaci grafów).
- Mniej jasny wpływ parametrów na działanie algorytmu niż przy GA.