

Last time apply SFE
-solve NE in each subgame
-roll back payoffs

Lesson strategic effects matter!

- -investment game
- tax design
- tolls

2 players each period each chooses For Q
game ends as soon as someone Q's

good news if the other player quits first,

You win a prize V=\$1

bad news: each period in which both F

each player pay cost -C = .75

if both quit at once -> 0

examples . wwI

. BSB v. Sky

· bribe contests

Two cases: V>C \leftarrow here in class V<C \leftarrow on homework

Second subgame

•		£(1)	3 9(1)	NE
for (Q(2),f(2)) in stage 2	F(1)	-c+0 -c+V	⊻,0	(Q(1), f(1))
(1) tage Z	$\frac{A}{Q(1)}$	0, V	0,0	

"If we know I'm going to win tomorrow; then I win today."

Open Yale courses

LL Now look for mixed strategy eq >>

If A Fights
$$\longrightarrow$$
 -cp + $v(1-p)$ $V(1-p) = pc$

If A Quits \longrightarrow $O_p + O(1-p)$ $P = \frac{V}{V+c}$

 $I-\rho = \frac{C}{V+C}$ mixed NE has both fight with prob = $\frac{V}{V+C}$ payoffs in this mixed NE = (0,0)

« back to first stage >>

Open Yale courses

< same payoff matrix, so ... >>

Mixed NE in this matrix is: both F with prob $p^* = \frac{V}{V+c}$

Mixed sPE [(p*,p*), (p*,p*)]

E payoff is O

Not pride, craziness » /in V fin C
 Prob of Fights occurring

Infinite period game

