PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-038209

(43) Date of publication of application: 12.02.1999

(51)Int.CI.

G02B 5/02 G02B 5/04

G02B -- 6/00

(21)Application number : 09-193650

(71)Applicant: KONICA CORP

(22)Date of filing:

18.07.1997

(72)Inventor: SAITO SHINICHIRO

(54) OPTICAL CONTROL SHEET, SURFACE LIGHT SOURCE DEVICE, AND LIQUID CRYSTAL DISPLAY DEVICE (57) Abstract:

PROBLEM TO BE SOLVED: To provide an optical control sheet relaxed in processing tolerance and applicable to all light transmission plates while maintaining good optical utilization efficiency, a surface light source device and a liquid crystal display device, which use the sheet.

SOLUTION: Plural prism 13a and 13b are formed on both surfaces of an optical control sheet 13 so that generatrices 13g and 13h are made parallel to each other. Then, light beams are made incident on one side of the surfaces of the sheet 13 and the beams are emitted from the other surface. Looking from the direction parallel to the generatrix 13g, the prism 13a, which is formed on one surface, has two boundary surfaces 13c and 13d having the apex of the prism 13a as the boundary. Furthermore, the prism 13a has an unsummetrical shape with respect to the line, which passes the apex of the prism 13a and is normal to the sheet surface, and the surface 13d among the boundary surfaces is formed into a non-flat surface.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-38209

(43)公開日 平成11年(1999)2月12日

(51) Int.Cl. ⁶		識別記号	FI		
G02B	-		G 0 2 B	5/02	С
	5/04			5/04	. A
	6/00	3 3 1		6/00	3 3 1

審査請求 未請求 請求項の数5 OL (全 7 頁)

(21) 出願番号	特願平9-193650	(71) 出願人 000001270
(22) 出願日	平成9年(1997)7月18日	コニカ株式会社 東京都新宿区西新宿1丁目26番2号 (72)発明者 斉藤 真一郎 東京都八王子市石川町2970番地 コニカ株
	•	式会社内 (74)代理人 弁理士 井島 藤治 (外1名)

(54) 【発明の名称】 光制御シート、面光源装置及び液晶表示装置

(57)【要約】

【課題】 光の利用効率を保ちつつ、加工公差の緩く、すべての導光板に対応可能な光制御シート及びこの光制御シートを用いた面光源装置及び液晶表示装置を提供することを課題とする。

【解決手段】 母線13g,13hが互いに平行となるように複数のプリズム13a,13bが両面に形成され、一方の面から入射する光を他方の面から出射する光制御シート13であって、一方の面に形成されるプリズム13aは、母線13gと平行な方向から見て、プリズム13aの頂点を境とする二つの境界面13c,13dを有し、かつ、プリズム13aの頂点を通りシート面に対して垂直な直線に対して非対称な形状であり、境界面のうち少なくとも一つの境界面13dを非平面とする。

【特許請求の範囲】

【請求項1】 母線が互いに平行となるように複数のプリズムが両面に形成され、一方の面から入射する光を他方の面から出射する光制御シートにおいて、

一方の面に形成されるプリズムは、前記母線と平行な方向から見て、前記プリズムの頂点を境とする二つの境界面を有し、かつ、プリズムの頂点を通りシート面に対して垂直な直線に対して非対称な形状であり、前記境界面のうち少なくとも一つの境界面を非平面とすることを特徴とする光制御シート。

【請求項2】 前記光制御シートは射出成形により形成され、光制御シートの材料の流動性が5(g/10min)以上であることを特徴とする請求項1に記載の光制御シート。

【請求項3】 前記他方の面のプリズムの断面形状が曲面形状であり、かつ、偏心光学系であることを特徴とする請求項1または2に記載の光制御シート。

【請求項4】 光源と、

光源からの光を導光して、所定の方向に出射する導光板 と、

母線が互いに平行となるように複数のプリズムが両面に 形成され、一方の面から入射する光を他方の面から出射する光制御シートとを具備する面光源装置において、前記光制御シートの一方の面に形成されるプリズムは、前記母線と平行な方向から見て、前記プリズムの頂点を境とする二つの境界面を有し、かつ、プリズムの頂点を通りシート面に対して垂直な直線に対して非対称な形状であり、前記境界面のうち少なくとも一つの境界面を非平面とすることを特徴とする面光源装置。

【請求項5】 光源と、

光源からの光を導光して、所定の方向に出射する導光板 と、

母線が互いに平行となるように複数のプリズムが両面に 形成され、一方の面から入射する光を他方の面から出射 する光制御シートと、

該光制御シートの他方の面側に設けられた液晶表示装置 とを具備する液晶表示装置において、

前記光制御シートの一方の面に形成されるプリズムは、前記母線と平行な方向から見て、前記プリズムの頂点を境とする二つの境界面を有し、かつ、プリズムの頂点を 40 通りシート面に対して垂直な直線に対して非対称な形状であり、前記境界面のうち少なくとも一つの境界面を非平面とすることを特徴とする液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、母線が互いに平行となるように複数のプリズムが両面に形成され、一方の面から入射する光を他方の面から出射する光制御シート、この光制御シートを用いた面光源装置及び液晶表示装置に関する。

[0002]

【従来の技術】次に、図面を用いて従来例の構成を説明する。図6は従来の光制御シートを用いた液晶表示装置の構成を示す図である。

【0003】図において、1は光源である冷陰極管、2は冷陰極管1の光がその内部で導光する導光板である。 ここで、光制御シート3は図6に示すように、導光板2 側の入射面3aには矩形の台形プリズム3cが形成され、更に入射面3aと対向する出射面3bにはシリンド 10 リカル状の曲面プリズム3dが形成されている。

【0004】導光板2と光制御シート3とは台形プリズム3cを介して光学的に接触しており、導光板2内部を進んできた光は台形プリズム3cから光制御シート3の内部へと進んでいく。

【0005】次に、光制御シート3の動作を説明する。台形プリズム3cに入射した光は、台形プリズム3cの斜面3eで全反射して、出射面3b方向に向かう。ことで、台形プリズム3cに入射する光東が点光源から発せられたものと近似できるならば、個々の曲面プリズム3dの焦点位置3fを個々の点光源の位置と一致させることで、出射面3bから平行光を出射することが出来る。点光源を作る手段としては、導光板内部に粒子を混入する事などがある。

【0006】上記構成によって、光制御シート3は、導 光板2の透過面2aから出射した光をシート面に対し略 垂直方向に出射し、液晶表示素子4を照明する。

[0007]

【発明が解決しようとする課題】しかしながら、上記光制御シート3には次のような問題点がある。曲面プリズム3 dの焦点位置3 f と点光源との位置がずれると、出射面3 b からの出射の方向が垂直方向からずれたり、出射光のコリメーション度合いが弱まってしまい好ましくない。この位置ずれの要因としては、台形プリズム3 c と曲面プリズム3 d との相対位置ずれ(ビッチずれ)、光制御シート3の厚み誤差、また、曲面プリズム3 d の曲率誤差すべてに起因する。即ち、光制御シート3の加工誤差が厳しくなる。

【0008】また液晶表示装置4の仕様から、光制御シート3の薄型化や大型化が望まれており、との場合、より加工的に厳しくなる。具体的には、曲面プリズム3dのピッチオーダーが100μm程度であれば、ピッチ、厚み、曲率の許容誤差範囲は1μm以下の公差となる。【0009】更に、導光板からの出射光束が点光源に近似できるものに限られるので、すべての導光板に対して使用できないといった問題点がある。本発明は、上記問題点に鑑みてなされたもので、その目的は、光の利用効率を保ちつつ、加工公差の綴く、すべての導光板に対応可能な光制御シート及びこの光制御シートを用いた面光源装置及び液晶表示装置を提供することにある。

50 [0010]

【課題を解決するための手段】上記課題を解決する本発明の光制御シートは、母線が互いに平行となるように複数のプリズムが両面に形成され、一方の面から入射する光を他方の面から出射する光制御シートにおいて、一方の面に形成されるプリズムは、前記母線と平行な方向から見て、前記プリズムの頂点を境とする二つの境界面を有し、かつ、プリズムの頂点を通りシート面に対して垂直な直線に対して非対称な形状であり、前記境界面のうち少なくとも一つの境界面を非平面としたものである。

【0011】一方の面のプリズムの二つの境界面のうち 10 少なくとも一つの境界面を非平面としたことにより、光制御シートから出射する光をシート面垂直方向に集めることができる。ここで、光制御シートからの出射特性はシート厚みの影響が少なくてすむ。また、他方の面にプリズムを更に設けたことにより、より光の集光性を高めることができる。

【0012】尚、本明細書において、プリズムとは、断面が矩形(三角形、台形など)、及び曲面(球面、波形など)でも良く、光線の屈折作用を持つ広義の面とする。従来の光制御シートでは、近距離物体からの光束を 20平行光に変換するコリメータレンズに近い。よって物体距離が光制御シートに近づくと出射光は発散光となるし、逆に光制御シートから離れると出射光はある場所で結像後やはり発散光となる。

【0013】それに対して本発明の光制御シートは、無限遠からの光束を平行光に変換するコリメータレンズに近い。従って、物体距離の変動しても、出射光にあたえる影響は少なくない。よって、本発明の光制御シートは、シート両面に設けられたプリズムのピッチずれ、シート厚み、曲率誤差が緩くなる。

【0014】好ましい一例としては、前記光制御シートは射出成形により形成され、光制御シートの材料の流動性が5(g/10min)以上としたものがある。更に好ましい一例としては、前記他方の面のプリズムの断面形状が曲面形状であり、かつ、偏心光学系としたものがある。

【0015】本発明の面光源装置は、光源と、光源からの光を導光して、所定の方向に出射する導光板と、母線が互いに平行となるように複数のプリズムが両面に形成され、一方の面から入射する光を他方の面から出射する 40 光制御シートとを具備する面光源装置において、前記光制御シートの一方の面に形成されるプリズムは、前記母線と平行な方向から見て、前記プリズムの頂点を境とする二つの境界面を有し、かつ、プリズムの頂点を通りシート面に対して垂直な直線に対して非対称な形状であり、前記境界面のうち少なくとも一つの境界面を非平面としたものである。

【0016】一方の面のプリズムの二つの境界面のうち 少なくとも一つの境界面を非平面としたことにより、光 制御シートから出射する光をシート面垂直方向に集める ことができる。ここで、光制御シートからの出射特性はシート厚みの影響が少なくてすむ。また、他方の面にプリズムを更に設けたことにより、より光の集光性を髙めることができる。

【0017】また、本発明の液晶表示装置は、光源と、 光源からの光を導光して、所定の方向に出射する導光板 と、母線が互いに平行となるように複数のプリズムが両 面に形成され、一方の面から入射する光を他方の面から 出射する光制御シートと、該光制御シートの他方の面側 に設けられた液晶表示装置とを具備する液晶表示装置に おいて、前記光制御シートの一方の面に形成されるプリ ズムは、前記母線と平行な方向から見て、前記プリズム の頂点を境とする二つの境界面を有し、かつ、プリズム の頂点を通りシート面に対して垂直な直線に対して非対 称な形状であり、前記境界面のうち少なくとも一つの境 界面を非平面としたものである。

【0018】一方の面のプリズムの二つの境界面のうち少なくとも一つの境界面を非平面としたことにより、光制御シートから出射する光をシート面垂直方向に集めることができる。ここで、光制御シートからの出射特性はシート厚みの影響が少なくてすむ。また、他方の面にプリズムを更に設けたことにより、より光の集光性を高めることができる。

[0019]

【発明の実施の形態】次に図面を用いて本発明の実施の 形態を説明する。図1は本発明の一実施の形態例の液晶 表示装置の構成を示す図、図2は図1に示す光制御シー トの拡大断面図である。

【0020】図において、11は光源である冷陰極管、30 12は冷陰極管11の光が内部を進んでいく導光板である。導光板12の透過面12aには、導光板12内部の光を外部に出射するための突起12bが形成されている。透過面12aの上には、導光板12の透過面12aから出射した光を所定の出射角度で出射する光制御シート13が設けられている。

【0021】そして、これら冷陰極管11と、導光板12と、光制御シート13とで液晶表示素子14を照明する面光源装置となっている。ここで、光制御シート13の一方の面(入射面13e)に、母線13gが互いに平行になるように複数のプリズム13aが形成されている。更に、他方の面(出射面13f)にも、母線13hが互いに平行になるように複数のプリズム13bが形成されている。本実施の形態例の各プリズム13aは、プリズム13aの母線13gと平行な方向から見て、光制御シート13に対して垂直な平面に対して非対称な形状である略三角形である。そして、光源側境界面13cは平面、反光源側境界面13dはプリズム13a外部に対して凸の曲面となっている。

【0022】このような構成の液晶表示装置において、 冷陰極管11から出射した光は、導光板12内に入射

し、導光板12内で導光され、突起12bより外部に出 射する。そして、光制御シート13の反光源側境界面1 3 dで全反射し、出射面13f方向に向かう。その後、 出射面13fのプリズム13bで集光され液晶表示素子 14を照明する。

【0023】上記構成の光制御シート13は、光源側境 界面13 c もしくは反光源側境界面13 d の何れかが非 平面であるの。この面で光制御シート13への入射光の 指向性を強めることが可能であり、かつ、偏向方向を所 望の方向に向けることが可能である。更に、出射面13 fのプリズム13bによりシートの垂直方向への集光性 を高めることができる。

【0024】また、従来の光制御シートと異なり、シー トに入射する光東が点光源に近似できない場合でも対応 可能である。また、シート厚みの許容誤差も大きいので 逆に流動性のよい材料で射出成形で製造すれば(JIS K7210の試験法での値が5(g/10min)以上 の材料) 光制御シートの厚さを薄くすることが可能とな る。具体的な許容誤差範囲は、ピッチずれ、シートの厚 みに関しては概ね100倍、曲率誤差に関しても10倍 20 程度増える設計が得られた。

【0025】尚、本発明は、上記実施の形態例に限定す るものではない。上記実施の形態例の他に、図3のよう にプリズム23bを偏心させることで、出射光の偏向方 向を制御できる。

【0026】また、上記実施の形態例では光源側境界面 13 cを平面、反光源側境界面13 dをプリズム13 a をプリズム13a外部に対して凸の曲面、プリズム13 bをプリズム13b外部に対して凸の曲面としたが、こ れに限定するものではない。

【0027】液晶表示装置の視野角特性が要求される場 合には、図4のように反光源側境界面13dをプリズム 13a外部に対して凹の曲面としたり、プリズム13b を外部に対して凹の曲面としてもよい。

【0028】あるいは、図5のようにプリズム43bを 断面三角形のプリズムとしてもよい。この時、43bの 角度を変更することで出射光のピーク方向を簡単にシー 卜正面方向に向けることが可能となる。

【0029】更に、液晶表示素子の画素とプリズム13. bとのモアレを防止するために、母線13hの方向を、 母線13gと交わる方向にしても、光制御シートからの 所望の出射光が得られる。

【0030】一方の面のプリズムピッチと、他方の面の プリズムビッチとは独立に設定可能であり、それぞれ異 なるピッチにしてもよい。いずれの場合も、光制御シー トの両面に設けられたプリズムのピッチずれ、シートの 厚み誤差に強い光制御シートが得られた。

 $-[003\cdot1]$

【発明の効果】以上述べたように、本発明の光制御シー トによれば、母線が互いに平行となるように複数のブリ 50 【0036】一方の面のプリズムの二つの境界面のうち

ズムが両面に形成され、一方の面から入射する光を他方 の面から出射する光制御シートにおいて、一方の面に形 成されるプリズムは、前記母線と平行な方向から見て、 前記プリズムの頂点を境とする二つの境界面を有し、か つ、プリズムの頂点を通りシート面に対して垂直な直線 に対して非対称な形状であり、前記境界面のうち少なく とも一つの境界面を非平面としている。一方の面のブリ ズムの二つの境界面のうち少なくとも一つの境界面を非 平面としたことにより、光制御シートから出射する光を シート面垂直方向に集めることができる。ここで、光制に 御シートからの出射特性はシート厚みの影響が少なくて ずむ。また、他方の面にプリズムを更に設けたことによ り、より光の集光性を髙めることができる。

【0032】従来の光制御シートでは、近距離物体から の光束を平行光に変換するコリメータレンズに近い。そ れに対して本発明の光制御シートは、無限違からの光束を を平行光に変換するコリメータレンズに近い。よって、 本発明の光制御シートは、シート両面に設けられたプリ ズムのピッチずれ、シート厚み、曲率誤差が緩くなる。 【0033】本発明の面光源装置では、光源と、光源か らの光を導光して、所定の方向に出射する導光板と、母 線が互いに平行となるように複数のプリズムが両面に形 成され、一方の面から入射する光を他方の面から出射す る光制御シートとを具備する面光源装置において、前記 光制御シートの一方の面に形成されるプリズムは、前記 母線と平行な方向から見て、前記プリズムの頂点を境と する二つの境界面を有し、かつ、プリズムの頂点を通り シート面に対して垂直な直線に対して非対称な形状であ り、前記境界面のうち少なくとも一つの境界面を非平面 30 としたものである。

【0034】一方の面のプリズムの二つの境界面のうち 少なくとも一つの境界面を非平面としたことにより、光 制御シートから出射する光をシート面垂直方向に集める ととができる。ととで、光制御シートからの出射特性は シート厚みの影響が少なくてすむ。また、他方の面にプ リズムを更に設けたことにより、より光の集光性を高め ることができる。

【0035】また、本発明の液晶表示装置では、光源 と、光源からの光を導光して、所定の方向に出射する導 40 光板と、母線が互いに平行となるように複数のプリズム が両面に形成され、一方の面から入射する光を他方の面 から出射する光制御シートと、該光制御シートの他方の 面側に設けられた液晶表示装置とを具備する液晶表示装 置において、前記光制御シートの一方の面に形成される プリズムは、前記母線と平行な方向から見て、前記プリ ズムの頂点を境とする二つの境界面を有し、かつ、プリ ズムの頂点を通りシート面に対して垂直な直線に対して 非対称な形状であり、前記境界面のうち少なくとも一つ の境界面を非平面としたものである。

8

少なくとも一つの境界面を非平面としたことにより、光制御シートから出射する光をシート面垂直方向に集めることができる。ここで、光制御シートからの出射特性はシート厚みの影響が少なくてすむ。また、他方の面にプリズムを更に設けたことにより、より光の集光性を高めることができる。

【図面の簡単な説明】

【図:1】本発明の一実施の形態例の液晶表示装置の構成を示す図である。

【図2】図1に示す光制御シートの拡大断面図である。

【図3】プリズムが偏心光学系の光制御シートの拡大断面図である。

【図4】一方の面の反光源側境界面が凹面、他方の面が 外部に対して凹のプリズムである光制御シートの拡大断*

*面図である。

【図5】一方の面の反光源側境界面が凹面、他方の面が 三角形プリズムである光制御シートの拡大断面図であ る。

【図6】従来の光制御シートを用いた液晶表示装置の構成を示す図である。

【符号の説明】

- 11 冷陰極管(光源)
- 12 導光板
- 10 13 光制御シート
 - 13a プリズム
 - 13b プリズム
 - 13c 光源側境界面
 - 13d 反光源側境界面

【図1】

、【図2】

[図3]

【図4】

【図5】

[図6]

