|                 |                 | History             |                        |
|-----------------|-----------------|---------------------|------------------------|
| Type            | Author          | Citation            | Literature Cutoff Date |
| Full Evaluation | E. A. Mccutchan | NDS 152, 331 (2018) | 1-Apr-2018             |

 $Q(\beta^-)=-5168 \ 11; \ S(n)=9964 \ 10; \ S(p)=7154 \ 9; \ Q(\alpha)=-498.3 \ 11$  2017Wa10  $S(2n)=17818 \ 20, \ S(2p)=12136.46 \ 29 \ (2017Wa10).$ 

#### <sup>136</sup>Ce Levels

#### Cross Reference (XREF) Flags

```
A ^{136}Pr \varepsilon decay D ^{139}La(p,4n\gamma)
B ^{136}Ce IT decay (1.9 \mus) E (HI,xn\gamma)
C Coulomb excitation
```

```
T_{1/2}(2\beta^+, 0\nu) (g.s.
                                   to g.s.):
    2017Be21: \geq 4.1×10<sup>18</sup>
                                        yr (90% confidence)
                                        yr (90% confidence)
    2014Be37: \geq 6.9×10<sup>17</sup>
    \begin{array}{lll} \textbf{2011Be02:} \geq & 7 \times 10^{16} \\ \textbf{2009Be20:} \geq & 4.2 \times 10^{15} \end{array}
                                     yr (90% confidence)
                                       yr (90% confidence)
    2001Da22: >1.9\times10^{16}
                                     y (90% confidence)
    2001Da22: >3.2\times10^{16}
                                     y (68% confidence)
    1997Be36: >6.9\times10^{17}
                                     y (68% confidence)
T_{1/2}(2\beta^+,2\nu)(g.s.
                                   to g.s.):
    2017Be21: \geq 4.1×10<sup>18</sup>
                                        yr (90% confidence)
    2014Be37: \geq 3.5×10<sup>17</sup>
                                        yr (90% confidence)
    2011Be02: \geq 9×10<sup>15</sup>
                                     yr (90% confidence)
    2009Be20: \geq 4.2×10<sup>15</sup>
                                        yr (90% confidence)
    2001Da22: >1.8\times10^{16}
                                     y (90% confidence)
    2001Da22: >3.8\times10^{16}
                                     y (68% confidence)
T_{1/2} (K-capture+\beta^+, 0\nu) (g.s.
                                               to g.s.):
    2017Be21: \geq 2.6×10<sup>18</sup>
                                        yr (90% confidence)
    2014Be37: \geq 9.6×10<sup>16</sup>
                                        yr (90% confidence)
    2011Be02: \geq 7 \times 10^{16}
                                   yr (90% confidence)
    2009Be20: \geq 2.6×10<sup>15</sup>
                                       yr (90% confidence)
    2001Da22: >3.8\times10^{16}
                                     y (90% confidence)
    2001Da22: >6.0\times10^{16}
                                     y (68% confidence)
T_{1/2} (K-capture+\beta^+, 2\nu) (g.s.
                                               to g.s.):
    2017Be21: \geq 1.0×10<sup>17</sup>
                                        yr (90% confidence)
    2014Be37: \geq 2.7×10<sup>18</sup>
                                        yr (90% confidence)
    2011Be02: \geq 9 \times 10^{15}
                                   yr (90% confidence)
    2009Be20: \geq 2.6×10<sup>15</sup>
                                        yr (90% confidence)
    2001Da22: >1.8\times10^{15}
                                     y (90% confidence)
    2001Da22: >3.0\times10^{15}
                                     y (68% confidence)
T_{1/2} (2K-capture, 0v) (g.s.
                                       to g.s.):
    2017Be21: \geq 2.1×10<sup>18</sup>
                                        yr (90% confidence)
                                        yr (90% confidence)
    2014Be37: \geq 4.6×10<sup>17</sup>
    2011Be02: \geq 3 \times 10^{16}
                                   yr (90% confidence)
    2009Be20: \geq 1.6×10<sup>15</sup>
                                        yr (90% confidence)
    2001Da22: >6.0\times10^{15}
                                     y (90% confidence)
    2001Da22: > 8.0 \times 10^{15}
                                     y (68% confidence)
T_{1/2} (2K-capture, 2\nu) (g.s.
                                       to g.s.):
    2011Be02: \geq 3.2×10<sup>16</sup>
                                        yr (90% confidence)
    2001Da22: > 0.7 \times 10^{14}
                                     y (90% confidence)
```

2001Da22:  $>1.1\times10^{14}$ 

y (68% confidence)

# <sup>136</sup>Ce Levels (continued)

| E(level) <sup>†</sup>                             | $J^{\pi}$                        | $T_{1/2}^{\ddagger}$     | XREF      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------|----------------------------------|--------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0#                                              | 0+                               | stable                   | ABCDE     | %2 $\varepsilon$ =? $T_{1/2}$ : 2 $\varepsilon$ decay is expected based on Q-value arguments. $T_{1/2}$ value should be dominated by fastest 2 $\varepsilon$ decay mode, ground state to ground state 2K-capture with the emission of 2 neutrinos. Most stringent limit for 2K-capture,2 $\nu$ is ≥ 3.2×10 <sup>16</sup> yr (2011Be02) at 90% confidence level. For more details, see the table above. 2017Be21,2014Be37 and 2009Be20 provide $T_{1/2}$ limits to excited states in <sup>136</sup> Ba. $\Delta$ < $r^2$ >( <sup>136</sup> Ce− <sup>140</sup> Ce)=−0.031 9 (1997Is06). |
| 552.05 <sup>#</sup> 13                            | 2+                               | 6.7 ps 8                 | ABCDE     | B(E2) $\uparrow$ =0.81 9 (1989Ga24)<br>T <sub>1/2</sub> : derived by evaluator from B(E2) and Adopted Gamma properties.<br>J <sup><math>\pi</math></sup> : E2 552 $\gamma$ to 0 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                        |
| 1075.9? 4                                         |                                  |                          | A         | E(level): very tentative assignment to $^{136}$ Ce, as depopulating transition could only be assigned to A=136 in $^{136}$ Pr $\varepsilon$ decay and transition with similar energy is also assigned to $^{136}$ Nd $\varepsilon$ decay.                                                                                                                                                                                                                                                                                                                                             |
| 1091.88 <i>15</i>                                 | 2+                               | 4.4 ps 7                 | A CD      | B(E2) $\uparrow$ =0.0114 19<br>J <sup><math>\pi</math></sup> : E2 1092 $\gamma$ to 0 <sup>+</sup> .<br>T <sub>1/2</sub> : weighted average of 4.3 ps 7 and 4.5 ps 7 deduced by evaluator from B(E2)(0 to 1092)=0.0114 19 and B(E2)(552 to 1092)=0.199 29, respectively                                                                                                                                                                                                                                                                                                                |
| 1313.74 <sup>#</sup> 24                           | 4+                               | 0.94 ps <i>17</i>        | ABCDE     | and Adopted Gamma properties.  B(E2)↑: from Coulomb Excitation.  B(E2)↑=0.42 7  B(E2)↑: from Coulomb Excitation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                   |                                  |                          |           | $J^{\pi}$ : E2 762 $\gamma$ to 2 <sup>+</sup> ; band assignment. $T_{1/2}$ : derived by evaluator from B(E2) and Adopted Gamma properties. Other: 6.6 ps 18 from RDDM in (HI,xn $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                           |
| 1552.98 <i>23</i><br>1978.2 <sup>@</sup> <i>5</i> | 3 <sup>+</sup>                   | 406 22                   | A D       | $J^{\pi}$ : 3 from $\gamma\gamma(\theta)$ in <sup>136</sup> Pr $\varepsilon$ decay, $\pi$ =+ from M1+E2 1001 $\gamma$ to 2 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1978.2 3                                          | 5-                               | 496 ps 23                | B DE      | $J^{\pi}$ : E1 664 $\gamma$ to 4 <sup>+</sup> . $T_{1/2}$ : from $\gamma \gamma$ (t) in (HI,xn $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1982.0 6                                          | (3-)                             |                          | С         | <ul> <li>In (π, κπ/γ).</li> <li>B(E3)†=0.19 3</li> <li>J<sup>π</sup>: sizable population in Coulomb excitation and absence of decay to ground state.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2066.72 22                                        | 2+                               | 0.151 ps <i>16</i>       | A C       | B(E2) $\uparrow$ : from Coulomb Excitation.<br>B(E2) $\uparrow$ =0.025 <i>13</i><br>$J^{\pi}$ : 2 from $\gamma\gamma(\theta)$ in <sup>136</sup> Pr $\varepsilon$ decay, population in Coulomb excitation suggests                                                                                                                                                                                                                                                                                                                                                                     |
| 2155 02 10                                        | 2+                               | 0.020 5                  |           | <ul> <li>π=+.</li> <li>T<sub>1/2</sub>: deduced by evaluator from B(E2)(552 to 2067) and Adopted Gamma properties.</li> <li>B(E2)↑: from Coulomb excitation. Others: B(E2)(552 to 2067)=0.00328 16 and B(E2)(1092 to 2067) ≤ 0.037, both from Coulomb excitation.</li> </ul>                                                                                                                                                                                                                                                                                                          |
| 2155.02 18                                        | 2+                               | 0.039 ps <i>5</i>        | A C       | B(E2) $\uparrow$ =0.0116 6<br>J <sup><math>\pi</math></sup> : 2 from $\gamma\gamma(\theta)$ in <sup>136</sup> Pr $\varepsilon$ decay, population in Coulomb excitation suggests $\pi$ =+.                                                                                                                                                                                                                                                                                                                                                                                             |
| 2213.7# 5                                         | C+                               | .50                      | D DE      | T <sub>1/2</sub> : deduced by evaluator from B(E2) and Adopted Gamma properties. B(E2)↑: from Coulomb excitation. Others: B(E2)(552 to 2155)=0.0116 <i>12</i> and B(E2)(1092 to 2155) ≤0.054, both from Coulomb excitation.                                                                                                                                                                                                                                                                                                                                                           |
| 2274.5 7                                          | 6 <sup>+</sup> (2 <sup>+</sup> ) | $\leq 58$ ns 0.305 ps 25 | B DE<br>C | <ul> <li>J<sup>π</sup>: E2 900γ to 4<sup>+</sup>; band assignment.</li> <li>B(E2)↑=0.0118 8</li> <li>B(E2)↑: from Coulomb Excitation. Other: B(E2)(552 to 2275) ≤ 0.0033 from Coulomb Excitation.</li> <li>J<sup>π</sup>: strong population in Coulomb excitation and strong decay to ground state.</li> </ul>                                                                                                                                                                                                                                                                        |
|                                                   |                                  |                          |           | $T_{1/2}$ : deduced by evaluator from B(E2) and Adopted Gamma properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2306.9 <sup>@</sup> 5                             | 7-                               | 270 ps 24                | B DE      | $J^{\pi}$ : E2 329 $\gamma$ to 5 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2366.1 5                                          | 6+                               | ≤5 <sup>g</sup> ns       | B DE      | $T_{1/2}$ : from $\gamma \gamma(t)$ in (HI,xn $\gamma$ ).<br>$J^{\pi}$ : E2 1052.5 $\gamma$ to 4 <sup>+</sup> , E2 623 $\gamma$ from 8 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# 136Ce Levels (continued)

| E(level) <sup>†</sup>                              | $J^{\pi}$                             | $T_{1/2}^{\ddagger}$     | XREF   | Comments                                                                                                                                                                                       |
|----------------------------------------------------|---------------------------------------|--------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2424.7 <mark>&amp;</mark> 5                        | (6-)                                  | $\leq 38$ ns             | E      | $J^{\pi}$ : D+Q 446 $\gamma$ to 5 <sup>-</sup> ; band assignment.                                                                                                                              |
| 2451.08 23                                         | (2+)                                  | 0.17 ps <i>3</i>         | A C    | B(E2)↑=0.0054 6                                                                                                                                                                                |
|                                                    |                                       |                          |        | $T_{1/2}$ : deduced by evaluator from B(E2) and Adopted Gamma properties.                                                                                                                      |
|                                                    |                                       |                          |        | B(E2) $\uparrow$ : from Coulomb excitation. Others: B(E2)(552 to 2451) $\leq$ 0.0046 and B(E2)(1002 to 2451) $\leq$ 0.022, both from Coulomb excitation                                        |
|                                                    |                                       |                          |        | B(E2)(1092 to 2451) $\leq$ 0.033, both from Coulomb excitation.<br>J <sup><math>\pi</math></sup> : strong population in Coulomb excitation, log $ft$ =6.2 from 2 <sup>+</sup> parent.          |
| 2517.1 <i>3</i>                                    | $(2^+,3)$                             |                          | Α      | $J^{\pi}$ : log $ft$ =6.5 from 2 <sup>+</sup> parent, 1204 $\gamma$ to 4 <sup>+</sup> .                                                                                                        |
| 2595.2 <i>3</i>                                    | $(2^{+})$                             |                          | Α      | $J^{\pi}$ : 1282 $\gamma$ to 4 <sup>+</sup> , tentative 2596 $\gamma$ to 0 <sup>+</sup> .                                                                                                      |
| 2682.0 <i>3</i>                                    | $(2^{+})$                             |                          | Α      | $J^{\pi}$ : 1368 $\gamma$ to 4 <sup>+</sup> , tentative 2681 $\gamma$ to 0 <sup>+</sup> .                                                                                                      |
| 2792.7 4                                           | $(1,2^+)$                             |                          | A      | $J^{\pi}$ : 2793 $\gamma$ to 0 <sup>+</sup> .                                                                                                                                                  |
| 2827.8 <i>3</i> 2865.9 <i>3</i>                    | (1,2,3)<br>$(1,2^+)$                  |                          | A<br>A | $J^{\pi}$ : log $ft$ =6.5 from 2 <sup>+</sup> parent.<br>$J^{\pi}$ : log $ft$ =6.4 from 2 <sup>+</sup> parent, tentative 2866 $\gamma$ to 0 <sup>+</sup> .                                     |
| 2904.1 <i>4</i>                                    | (1,2,3)                               |                          | A      | $J^{\pi}$ : log $ft$ =6.8 from 2 <sup>+</sup> parent.                                                                                                                                          |
| 2931.8 <i>4</i>                                    | $(1,2^+)$                             |                          | A      | $J^{\pi}$ : 2931 $\gamma$ to 0 <sup>+</sup> .                                                                                                                                                  |
| 2942.1? 5                                          | $(2^{+})$                             |                          | Α      | $J^{\pi}$ : 1628 $\gamma$ to 4 <sup>+</sup> , 2942 $\gamma$ to 0 <sup>+</sup> .                                                                                                                |
| 2954.6 5                                           | (8+)                                  |                          | E      | $J^{\pi}$ : (E2) 741 $\gamma$ to 6 <sup>+</sup> .                                                                                                                                              |
| 2989.4 <sup>#</sup> 5                              | 8+                                    |                          | B DE   | XREF: D(2994.2).                                                                                                                                                                               |
| 2991.3? 5                                          | $(2^+,3,4^+)$                         |                          | ٨      | $J^{\pi}$ : E2 623 $\gamma$ to 6 <sup>+</sup> ; band assignment. $J^{\pi}$ : 1678 $\gamma$ to 4 <sup>+</sup> , 2439.5 $\gamma$ to 2 <sup>+</sup> .                                             |
| 3011.16? 23                                        | (2 ,3,4 )                             |                          | A<br>A | J . 10/8 y to 4 , 2437.3 y to 2 .                                                                                                                                                              |
| 3095.0 <sup>a</sup> 6                              | 10 <sup>+</sup>                       | 1.9 μs <i>1</i>          | B DE   | %IT=100                                                                                                                                                                                        |
|                                                    |                                       | •                        |        | $\mu$ =-1.80 2 (1981Ba69)                                                                                                                                                                      |
|                                                    |                                       |                          |        | $T_{1/2}$ : from $\gamma(t)$ taking weighted average of $552\gamma(t)$ , $623\gamma(t)$ , $762\gamma(t)$ , and                                                                                 |
|                                                    |                                       |                          |        | $1052\gamma(t)$ in (HI,xny). Other: 2.2 $\mu$ s 2 from $\gamma(t)$ in $^{139}$ La(p,4n $\gamma$ ) (note that 106 $\gamma$ depopulating the level was not observed and isomer was assigned to a |
|                                                    |                                       |                          |        | 2994-keV level.                                                                                                                                                                                |
|                                                    |                                       |                          |        | $J^{\pi}$ : E2 106y to 8 <sup>+</sup> .                                                                                                                                                        |
|                                                    |                                       |                          |        | μ: from TDPAD. Other: 1.80 3 (1982Ri09, TDPAD).                                                                                                                                                |
|                                                    |                                       |                          |        | Q: $Q/Q(10^+, ^{138}Ce)=1.45 4 (1983Da29, TDPAD)$ .                                                                                                                                            |
| 3146.2 <sup>&amp;</sup> 5                          | (8-)                                  | $\leq 3^{8}$ ns          | E      | $J^{\pi}$ : E2 721.5 $\gamma$ to (6 <sup>-</sup> ); band assignment.                                                                                                                           |
| 3174.5 <i>4</i>                                    | $(1,2^+)$                             |                          | A      | $J^{\pi}$ : 3175 $\gamma$ to 0 <sup>+</sup> .                                                                                                                                                  |
| 3201.3? <i>4</i> 3233.0 <i>3</i>                   | $(2^+)$                               |                          | A      | $J^{\pi}$ : 1887 $\gamma$ to 4 <sup>+</sup> , 3201 $\gamma$ to 0 <sup>+</sup> . $J^{\pi}$ : log $ft$ =6.4 from 2 <sup>+</sup> parent.                                                          |
| 3264.1 <i>4</i>                                    | (1,2,3)<br>$(1,2^+)$                  |                          | A<br>A | $J^{\pi}$ : log $ft$ =6.2 from 2 <sup>+</sup> parent, 3265 $\gamma$ to 0 <sup>+</sup> .                                                                                                        |
| 3277.9 <sup>@</sup> 7                              | 9-                                    | $\leq 3^{\mathbf{g}}$ ns | E      | $J^{\pi}$ : E2 971 $\gamma$ to 7 <sup>-</sup> ; band assignment.                                                                                                                               |
| 3280.6 4                                           | $(1,2^+)$                             | <u> </u>                 | A      | $J^{\pi}$ : 3280 $\gamma$ to $0^+$ .                                                                                                                                                           |
| 3361.7 <i>3</i>                                    | $(1,2^+)$                             |                          | Α      | $J^{\pi}$ : 3362 $\gamma$ to 0 <sup>+</sup> .                                                                                                                                                  |
| 3399.7 5                                           | $(10^{+})$                            | $\leq 3^g$ ns            | E      | $J^{\pi}$ : (E2) 410 $\gamma$ to 8 <sup>+</sup> .                                                                                                                                              |
| 3440.9 7                                           | $(9^+)$                               |                          | E<br>E | $J^{\pi}$ : 486 $\gamma$ to (8 <sup>+</sup> ).                                                                                                                                                 |
| 3575.3? <i>9</i><br>3579.4 <i>7</i>                | $(1,2^+)$                             |                          | A      | $J^{\pi}$ : 3580 $\gamma$ to $0^{+}$ .                                                                                                                                                         |
| 3705.3 6                                           | (1,2,3)                               |                          | A      | $J^{\pi}$ : log $ft$ =6.7 from 2 <sup>+</sup> parent.                                                                                                                                          |
| 3760.1 <sup>a</sup> 7                              | 12+                                   |                          | E      | $J^{\pi}$ : E2 665 $\gamma$ to 10 <sup>+</sup> ; band assignment.                                                                                                                              |
| 3865.4 7                                           | $(10^{+})$                            |                          | E      | $J^{\pi}$ : E2 911 $\gamma$ to (8 <sup>+</sup> ).                                                                                                                                              |
| 3986.8 <del>&amp;</del> 6                          | $(10^{-})$                            | $\leq 3^{8}$ ns          | E      | $J^{\pi}$ : Q 840.5 $\gamma$ to (8 <sup>-</sup> ); band assignment.                                                                                                                            |
| 4023.3? 3                                          | (1,2,3)                               |                          | Α      | $J^{\pi}$ : log $ft$ =5.9 from $2^+$ parent.                                                                                                                                                   |
| 4084.3 <sup>@</sup> 7                              | 11-                                   | <3 <sup>g</sup> ns       | E      | $J^{\pi}$ : E2 806 $\gamma$ to 9 <sup>-</sup> .                                                                                                                                                |
| 4240.3 <sup>b</sup> 6                              | $(11^{-})$                            |                          | E      | $J^{\pi}$ : D+Q 253 $\gamma$ to (10 <sup>+</sup> ).                                                                                                                                            |
| 4360.3 <sup>c</sup> 9<br>4596.6 <sup>&amp;</sup> 7 | (11 <sup>+</sup> )                    |                          | E      | $J^{\pi}$ : D 495 $\gamma$ to (10 <sup>+</sup> ).                                                                                                                                              |
| 4596.6 7<br>4786.1 8                               | (12 <sup>-</sup> )<br>14 <sup>+</sup> |                          | E<br>E | $J^{\pi}$ : (E2) 610 $\gamma$ to (10 <sup>-</sup> ), band assignment. $J^{\pi}$ : E2 1026 $\gamma$ to 12 <sup>+</sup> .                                                                        |
| 4832.7 <sup>a</sup> 7                              | $(14^{+})$                            |                          | E      | $J^{\pi}$ : (E2) 1073 $\gamma$ to 12 <sup>+</sup> , band assignment.                                                                                                                           |
| 4872.4 <sup>b</sup> 6                              | (13 <sup>-</sup> )                    |                          | E      | $J^{\pi}$ : E2 632 $\gamma$ to (11 <sup>-</sup> ), band assignment.                                                                                                                            |
| .0,2                                               | (10)                                  |                          | _      |                                                                                                                                                                                                |

## <sup>136</sup>Ce Levels (continued)

| E(level) <sup>†</sup>                           | $\mathrm{J}^\pi$      | T <sub>1/2</sub> ‡   | XREF   | Comments                                                                                                                  |
|-------------------------------------------------|-----------------------|----------------------|--------|---------------------------------------------------------------------------------------------------------------------------|
| 4927.9° 10                                      | $(13^+)$              |                      | E      | $J^{\pi}$ : (E2) 568 $\gamma$ to (11 <sup>+</sup> ), band assignment.                                                     |
| 5097.5? <sup>@</sup> 8                          | $(13^{-})$            |                      | E      | $J^{\pi}$ : 1013 $\gamma$ to 11 <sup>-</sup> , band assignment.                                                           |
| 5304.6 <sup>d</sup> 7                           | 15 <sup>+</sup>       |                      | E      | $J^{\pi}$ : M1 472 $\gamma$ to 14 <sup>+</sup> .                                                                          |
| 5568.0° 11                                      | $(15^{+})$            | 0.69 ps 26           | E      | $J^{\pi}$ : (E2) 640 $\gamma$ to (13 <sup>+</sup> ), band assignment.                                                     |
| 5593.5 <mark>d</mark> 8                         | $(16^{+})$            |                      | E      | $J^{\pi}$ : 761 $\gamma$ to (14 <sup>+</sup> ), band assignment.                                                          |
| 5642.6 <sup>e</sup> 8                           | 16 <sup>+</sup>       | >0.69 ps             | E      | $J^{\pi}$ : E2 857 $\gamma$ to 14 <sup>+</sup> .                                                                          |
| 5645.1 <sup>f</sup> 7                           | 14-                   |                      | E      | $J^{\pi}$ : M1 163 $\gamma$ from 15 <sup>-</sup> ; band assignment.                                                       |
| 5662.4 8                                        | $(14^{-})$            |                      | E      | $J^{\pi}$ : D 146 $\gamma$ from 15 <sup>-</sup> , 790 $\gamma$ to (13 <sup>-</sup> ).                                     |
| 5800.6 <sup>b</sup> 7                           | $(15^{-})$            |                      | E      | $J^{\pi}$ : (E2) 928 $\gamma$ to (13 <sup>-</sup> ); band assignment.                                                     |
| 5808.8 <sup>f</sup> 7                           | 15-                   |                      | E      | $J^{\pi}$ : M1 186 $\gamma$ from 16 <sup>-</sup> ; band assignment.                                                       |
| 5840.6 <i>12</i>                                | (16)                  |                      | E      | $J^{\pi}$ : D 536 $\gamma$ to 15 <sup>+</sup> .                                                                           |
| 5855.6 <i>12</i><br>5876.9 <sup>e</sup> 9       | 17 <sup>+</sup>       | >0.69 ps             | E<br>E | $J^{\pi}$ : M1 234 $\gamma$ to 16 <sup>+</sup> , band assignment.                                                         |
| 5994.8 <sup>f</sup> 7                           | 16-                   | 20.09 ps             | E      | $J^{\pi}$ : E1 690 $\gamma$ to 15 <sup>+</sup> .                                                                          |
| 6098.5 <sup>d</sup> 9                           | $(17^+)$              | 10.56                |        | $J^{\pi}$ : D 505 $\gamma$ to (16 <sup>+</sup> ), band assignment.                                                        |
| 6170.2 <sup>e</sup> 9                           | $(17^{+})$ $(18^{+})$ | <0.56 ps<br>>0.69 ps | E<br>E | $J^{\pi}$ : D 303 $\gamma$ to (10°), band assignment.<br>$J^{\pi}$ : D 293 $\gamma$ to 17 <sup>+</sup> , band assignment. |
| 6273.0° 15                                      | $(17^+)$              | 0.35 ps 9            | E      | $J^{\pi}$ : 705 $\gamma$ to (15 <sup>+</sup> ), band assignment.                                                          |
| $6282.5^{f} 8$                                  | 17-                   | olee ps >            | E      | $J^{\pi}$ : M1 288y to 16 <sup>-</sup> , band assignment.                                                                 |
| 6380.0 <i>15</i>                                | 1,                    |                      | E      | 3. Wil 2007 to 10 , build usorgiment.                                                                                     |
| 6524.2 <i>14</i>                                | (19)                  |                      | E      | $J^{\pi}$ : 354 $\gamma$ to (18 <sup>+</sup> ).                                                                           |
| 6539.1 <sup>e</sup> 11                          | $(19^+)$              | 0.40 ps 15           | E      | $J^{\pi}$ : D 369 $\gamma$ to (18 <sup>+</sup> ); band assignment.                                                        |
| 6642.2 <sup>d</sup> 10                          | $(18^{+})$            |                      | E      | $J^{\pi}$ : D 544 $\gamma$ to (17 <sup>+</sup> ), 1049 $\gamma$ to (16 <sup>+</sup> ), band assignment.                   |
| 6662.9 <sup>f</sup> 9                           | 18-                   | 0.509 ps 15          | E      | $J^{\pi}$ : M1 380.5 $\gamma$ to 17 <sup>-</sup> , 668 $\gamma$ to 16 <sup>-</sup> , band assignment.                     |
| 6831.7 <mark>b</mark> 9                         | $(17^{-})$            |                      | E      | $J^{\pi}$ : 1031 $\gamma$ to (15 <sup>-</sup> ), band assignment.                                                         |
| 6885.5 <i>13</i>                                |                       |                      | E      |                                                                                                                           |
| 6933.2 <sup>e</sup> 12                          | $(20^+)$              | 0.55  ps  +17-18     | E      | $J^{\pi}$ : D 394 $\gamma$ to (19 <sup>+</sup> ), band assignment.                                                        |
| 7086.0 <sup>c</sup> 18<br>7099.0 <sup>f</sup> 9 | $(19^+)$              | 0.215 . 12 . 10      | E      | $J^{\pi}$ : 813 $\gamma$ to (17 <sup>+</sup> ).                                                                           |
|                                                 | 19-                   | 0.315  ps  +12-10    | E      | $J^{\pi}$ : M1 436 $\gamma$ to 18 $^{-}$ , band assignment.                                                               |
| 7238.4? <sup>d</sup> 10<br>7292.7 16            | $(19^+)$              |                      | E<br>E | $J^{\pi}$ : 596 $\gamma$ to (18 <sup>+</sup> ), band assignment.                                                          |
| 7325.5 16                                       |                       |                      | E      |                                                                                                                           |
| 7344.6 <sup>e</sup> 13                          | $(21^+)$              | <0.43 ps             | E      | $J^{\pi}$ : D 411 $\gamma$ to (20 <sup>+</sup> ), band assignment.                                                        |
| 7585.1 <sup>f</sup> 10                          | 20-                   | 0.263 ps +26-31      | E      | $J^{\pi}$ : M1 486 $\gamma$ to 19 <sup>-</sup> , 922 $\gamma$ to 18 <sup>-</sup> , band assignment.                       |
| 7800.6 <sup>e</sup> 16                          | $(22^{+})$            | r                    | E      | $J^{\pi}$ : 456 $\gamma$ to (21 <sup>+</sup> ), band assignment.                                                          |
| 8110.0? <sup>f</sup> 11                         | 21-                   | 0.253 ps +18-28      | E      | $J^{\pi}$ : D 525 $\gamma$ to 20 <sup>-</sup> , 1011 $\gamma$ to 19 <sup>-</sup> , band assignment.                       |
| 8215.4 <i>17</i>                                |                       | •                    | E      |                                                                                                                           |
| 8315.6? <sup>e</sup> 19                         | $(23^{+})$            |                      | E      | $J^{\pi}$ : 515 $\gamma$ to (22 <sup>+</sup> ), band assignment.                                                          |
| 8625.4 <sup>f</sup> 12                          | $22^{-}$              | <0.43 ps             | E      | $J^{\pi}$ : D 515 $\gamma$ to 21 <sup>-</sup> , band assignment.                                                          |
| 9228.0 <sup>f</sup> 15                          | 23-                   |                      | E      | $J^{\pi}$ : 1118 $\gamma$ to 21 <sup>-</sup> , band assignment.                                                           |
|                                                 |                       |                      |        |                                                                                                                           |

 $<sup>^{\</sup>dagger}$  From a least-squares fit to Ey, by evaluator.  $^{\ddagger}$  From Doppler Shift Attenuation Method (DSAM), in (HI,xny), except where noted.

<sup>#</sup> Band(A): g.s. yrast band.

Band(A). g.s. yrast band.

@ Band(B):  $\nu[h_{11/2} \otimes s_{1/2} d_{3/2}], \alpha = 1$ .

& Band(C):  $\nu[h_{11/2} \otimes s_{1/2} d_{3/2}], \alpha = 0$ .

a Band(D): Band based on  $10^+$ . Probable configuration= $\nu h_{11/2}^2$ .

<sup>&</sup>lt;sup>b</sup> Band(E): Band based on 11<sup>-</sup>. Probable configuration= $\pi g_{7/2} h_{11/2}$ .

## <sup>136</sup>Ce Levels (continued)

- <sup>c</sup> Band(F): Highly deformed band based on  $11^{(+)}$ . Possible configuration= $vi_{13/2}^2$ .
- <sup>d</sup> Band(G): Dipole magnetic-rotational band based on 15<sup>+</sup>. Possible configuration= $\pi[g_{7/2}h_{11/2}]\otimes\nu[g_{7/2}h_{11/2}]$ .

  <sup>e</sup> Band(H): Dipole magnetic-rotational band based on 16<sup>+</sup>. Possible configuration= $\pi[h_{11/2}^2]\otimes\nu[h_{11/2}^{-2}]$ .
- f Band(I): Dipole magnetic-rotational band based on 14<sup>-</sup>. Possible configuration= $\pi[g_{7/2}h_{11/2}]\otimes \nu[h_{11/2}^{-2}]$ , oblate.
- <sup>g</sup> From  $\gamma(t)$  in (HI,xn $\gamma$ ).

## $\gamma$ (136Ce)

|              |                      |                                                               |                                                               |                                                                       |                      | <u>y( Ce)</u>           |                       |                                                                                                                                                                                                                                                                                                                                             |
|--------------|----------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|-------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}{}^{\dagger}$                             | ${\rm I}_{\gamma}{}^{\dagger}$                                | $\mathrm{E}_f  \mathrm{J}_f^\pi$                                      | Mult.‡               | $\delta^{\ddagger}$     | $\alpha^f$            | Comments                                                                                                                                                                                                                                                                                                                                    |
| 552.05       | 2+                   | 552.16 <sup>#</sup> 19                                        | 100                                                           | 0.0 0+                                                                | E2 <sup>@</sup>      |                         | 0.00827               | $\alpha(K)$ =0.00693 $10$ ; $\alpha(L)$ =0.001055 $15$ ; $\alpha(M)$ =0.000223 $4$ ; $\alpha(N)$ =4.90×10 <sup>-5</sup> $7$ ; $\alpha(O)$ =7.72×10 <sup>-6</sup> $11$ $\alpha(P)$ =4.91×10 <sup>-7</sup> $7$ B(E2)(W.u.)=39 $5$ Mult.: also E2 from DCO,POL in (HI,xn $\gamma$ ).                                                           |
| 1075.9?      |                      | 523.9 <sup>#</sup> g 5                                        | 100                                                           | 552.05 2+                                                             |                      |                         |                       |                                                                                                                                                                                                                                                                                                                                             |
| 1091.88      | 2+                   | 539.75 <sup>#</sup> 19                                        | 100 <sup>a</sup> 5                                            | 552.05 2+                                                             | E2(+M1) <sup>@</sup> | -4.7 <sup>&amp;</sup> 7 | 0.00895 14            | $\alpha(K)=0.00751 \ 12; \ \alpha(L)=0.001140 \ 17;$<br>$\alpha(M)=0.000241 \ 4; \ \alpha(N)=5.30\times10^{-5} \ 8;$<br>$\alpha(O)=8.35\times10^{-6} \ 13$<br>$\alpha(P)=5.33\times10^{-7} \ 9$<br>B(E2)(W.u.)=47 \ 8; B(M1)(W.u.)=0.0010 \ 4                                                                                               |
|              |                      | 1092.0# 5                                                     | 36.8 <i>a</i> 6                                               | 0.0 0+                                                                | E2 <sup>@</sup>      |                         | $1.67 \times 10^{-3}$ | $\alpha(K)=0.001434\ 2I;\ \alpha(L)=0.000190\ 3;$ $\alpha(M)=3.97\times10^{-5}\ 6;\ \alpha(N)=8.78\times10^{-6}\ 13$ $\alpha(O)=1.414\times10^{-6}\ 20;\ \alpha(P)=1.041\times10^{-7}\ 15$ $\alpha(E)=0.00190\ 3$                                                                                                                           |
| 1313.74      | 4+                   | 762.3 5                                                       | 100                                                           | 552.05 2+                                                             | E2                   |                         | 0.00371               | $\alpha(K)$ =0.00315 5; $\alpha(L)$ =0.000443 7; $\alpha(M)$ =9.29×10 <sup>-5</sup> 13; $\alpha(N)$ =2.05×10 <sup>-5</sup> 3; $\alpha(O)$ =3.27×10 <sup>-6</sup> 5 $\alpha(P)$ =2.27×10 <sup>-7</sup> 4 B(E2)(W.u.)=56 10                                                                                                                   |
| 1552.98      | 3+                   | 460.9 <sup>#</sup> 3                                          | 100# 5                                                        | 1091.88 2+                                                            | E2(+M1) <sup>@</sup> | -4.3 <sup>&amp;</sup> 6 | 0.01379 22            | $\alpha(K)=0.01148\ 19;\ \alpha(L)=0.00182\ 3;\ \alpha(M)=0.000387$ $6;\ \alpha(N)=8.50\times10^{-5}\ 13;\ \alpha(O)=1.329\times10^{-5}\ 20$ $\alpha(P)=8.06\times10^{-7}\ 14$ $\delta$ : other: second solution of $-0.50\ 4$ from $\gamma\gamma(\theta)$ in $^{136}\text{Pr }\varepsilon$ decay is in disagreement with $\alpha(K)\exp$ . |
|              |                      | 1000.8# 3                                                     | 65.8 <sup>#</sup> 34                                          | 552.05 2+                                                             | M1+E2 <sup>@</sup>   | +0.97  28               | 0.00247 15            | $\alpha(K)=0.00212\ 13;\ \alpha(L)=0.000277\ 15;$ $\alpha(M)=5.8\times10^{-5}\ 3;\ \alpha(N)=1.28\times10^{-5}\ 7;$ $\alpha(O)=2.07\times10^{-6}\ 12$ $\alpha(P)=1.57\times10^{-7}\ 11$ E <sub>V</sub> : other: 1002.8 from (p,4n $\gamma$ ) is discrepant.                                                                                 |
| 1978.2       | 5-                   | 664.3 5                                                       | 100                                                           | 1313.74 4+                                                            | E1                   |                         | 0.00192               | $\alpha(K)$ =0.001652 24; $\alpha(L)$ =0.000209 3; $\alpha(M)$ =4.33×10 <sup>-5</sup> 7; $\alpha(N)$ =9.59×10 <sup>-6</sup> 14 $\alpha(O)$ =1.550×10 <sup>-6</sup> 22; $\alpha(P)$ =1.164×10 <sup>-7</sup> 17 B(E1)(W.u.)=1.76×10 <sup>-6</sup> 9                                                                                           |
| 1982.0       | (3-)                 | 890 <sup>a</sup><br>1430 <sup>a</sup><br>(1982 <sup>a</sup> ) | 9.7 <sup>a</sup> 3<br>100 <sup>a</sup> 3<br><0.3 <sup>a</sup> | 1091.88 2 <sup>+</sup><br>552.05 2 <sup>+</sup><br>0.0 0 <sup>+</sup> |                      |                         |                       | $I_{\gamma}$ : transition not observed, upper limit for intensity is estimated in Coulomb excitation from the detection                                                                                                                                                                                                                     |
| 2066.72      | 2+                   | 974.2 <sup>#</sup> 5                                          | 13.9 <sup>a</sup> 5                                           | 1091.88 2+                                                            |                      |                         |                       | limit.                                                                                                                                                                                                                                                                                                                                      |
| 2000.72      | 4                    | 217.4 J                                                       | 13.7 3                                                        | 1071.00 4                                                             |                      |                         |                       |                                                                                                                                                                                                                                                                                                                                             |

|               |                      |                                 |                        |                                     |        | /(                  | ) (***********)         |                                                                                                                                                                                                                                                  |
|---------------|----------------------|---------------------------------|------------------------|-------------------------------------|--------|---------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$ | Mult.‡ | $\delta^{\ddagger}$ | $\alpha^f$              | Comments                                                                                                                                                                                                                                         |
| 2066.72       | 2+                   | 991.0 <sup>#g</sup> 6           | 5.6# 9                 | 1075.9?                             |        |                     |                         | $\alpha(K)$ =0.001758 25; $\alpha(L)$ =0.000236 4; $\alpha(M)$ =4.93×10 <sup>-5</sup> 7; $\alpha(N)$ =1.092×10 <sup>-5</sup> 16 $\alpha(O)$ =1.755×10 <sup>-6</sup> 25; $\alpha(P)$ =1.275×10 <sup>-7</sup> 18                                   |
|               |                      | 1514.8 <sup>#</sup> 4           | 79.7 <sup>a</sup> 14   | 552.05 2+                           | M1+E2  | +0.46 & 8           | 1.17×10 <sup>-3</sup> 2 | $\alpha(K)=0.000934\ 18;\ \alpha(L)=0.0001184\ 22;\ \alpha(M)=2.46\times10^{-5}\ 5;$<br>$\alpha(N)=5.46\times10^{-6}\ 10$<br>$\alpha(O)=8.89\times10^{-7}\ 17;\ \alpha(P)=6.95\times10^{-8}\ 14$                                                 |
|               |                      |                                 |                        |                                     |        |                     |                         | B(E2)(W.u.)=0.9 3; B(M1)(W.u.)=0.0155 21<br>Mult.: D+Q from $\gamma\gamma(\theta)$ in <sup>136</sup> Pr $\varepsilon$ decay, $\Delta\pi$ =no from level scheme.                                                                                  |
|               |                      | 2066.8# 3                       | 100 <sup>a</sup> 3     | 0.0 0+                              | [E2]   |                     | 8.10×10 <sup>-4</sup>   | $\alpha(K)$ =0.000419 6; $\alpha(L)$ =5.25×10 <sup>-5</sup> 8; $\alpha(M)$ =1.089×10 <sup>-5</sup> 16; $\alpha(N)$ =2.42×10 <sup>-6</sup> 4; $\alpha(O)$ =3.93×10 <sup>-7</sup> 6 $\alpha(P)$ =3.04×10 <sup>-8</sup> 5 B(E2)(W.u.)=1.34 17       |
| 2155.02       | 2+                   | 841.3 <sup>#g</sup> 3           | 1.9# 3                 | 1313.74 4+                          | [E2]   |                     | 0.00295                 | $\alpha(K)=0.00251 \ 4; \ \alpha(L)=0.000347 \ 5; \ \alpha(M)=7.27\times10^{-5} \ 11;$<br>$\alpha(N)=1.606\times10^{-5} \ 23; \ \alpha(O)=2.57\times10^{-6} \ 4$<br>$\alpha(P)=1.82\times10^{-7} \ 3$<br>$\alpha(P)=1.82\times10^{-1} \ 3$       |
|               |                      | 1063.2 <sup>#</sup> 7           | 5.3 <sup>#</sup> 6     | 1091.88 2+                          |        |                     |                         | <i>B</i> ( <i>B</i> 2)((((a))) 113                                                                                                                                                                                                               |
|               |                      | 1602.8# 3                       | 100# 8                 | 552.05 2+                           | M1+E2  | -0.41 & 8           | 1.08×10 <sup>-3</sup> 2 | $\alpha(K)=0.000832\ 15;\ \alpha(L)=0.0001053\ 19;\ \alpha(M)=2.19\times10^{-5}\ 4;$<br>$\alpha(N)=4.85\times10^{-6}\ 9$<br>$\alpha(O)=7.91\times10^{-7}\ 15;\ \alpha(P)=6.19\times10^{-8}\ 12$<br>$B(E2)(W.u.)=4.1\ 16;\ B(M1)(W.u.)=0.101\ 18$ |
|               |                      |                                 |                        |                                     |        |                     |                         | Mult.: D+Q from $\gamma\gamma(\theta)$ in <sup>136</sup> Pr $\varepsilon$ decay, $\Delta\pi$ =no from level scheme.                                                                                                                              |
|               |                      | 2154.9# 3                       | 8.7# 10                | 0.0 0+                              | [E2]   |                     | 8.17×10 <sup>-4</sup>   | $\alpha(K)$ =0.000388 6; $\alpha(L)$ =4.86×10 <sup>-5</sup> 7; $\alpha(M)$ =1.008×10 <sup>-5</sup> 15; $\alpha(N)$ =2.24×10 <sup>-6</sup> 4; $\alpha(O)$ =3.64×10 <sup>-7</sup> 5 $\alpha(P)$ =2.82×10 <sup>-8</sup> 4 B(E2)(W.u.)=0.56 11       |
| 2213.7        | 6+                   | 900.1 5                         | 100                    | 1313.74 4+                          | E2     |                     | 0.00254                 | $\alpha(K)$ =0.00216 3; $\alpha(L)$ =0.000295 5; $\alpha(M)$ =6.18×10 <sup>-5</sup> 9; $\alpha(N)$ =1.365×10 <sup>-5</sup> 20; $\alpha(O)$ =2.19×10 <sup>-6</sup> 3 $\alpha(P)$ =1.566×10 <sup>-7</sup> 22 B(E2)(W.u.)>0.0046                    |
| 2274.5        | $(2^{+})$            | 1722                            | 28.7 13                | 552.05 2+                           |        |                     |                         | D(L2)(W.u.)>0.0040                                                                                                                                                                                                                               |
|               |                      | 2275                            | 100 3                  | 0.0 0+                              | [E2]   |                     | 8.33×10 <sup>-4</sup>   | $\alpha(K)$ =0.000352 5; $\alpha(L)$ =4.40×10 <sup>-5</sup> 7; $\alpha(M)$ =9.11×10 <sup>-6</sup> 13; $\alpha(N)$ =2.02×10 <sup>-6</sup> 3; $\alpha(O)$ =3.29×10 <sup>-7</sup> 5 $\alpha(P)$ =2.56×10 <sup>-8</sup> 4 B(E2)(W.u.)=0.57 6         |
| 2306.9        | 7-                   | 328.5 5                         | 100                    | 1978.2 5                            | E2     |                     | 0.0367                  | $\alpha(K)$ =0.0297 5; $\alpha(L)$ =0.00549 9; $\alpha(M)$ =0.001178 18; $\alpha(N)$ =0.000257 4; $\alpha(O)$ =3.93×10 <sup>-5</sup> 6 $\alpha(P)$ =1.99×10 <sup>-6</sup> 3 B(E2)(W.u.)=12.7 12                                                  |

# $\gamma(\frac{136}{\text{Ce}})$ (continued)

|               |                      |                                 |                                            |                                          |        | -                     |                                                                                                                                                                                                                                            |
|---------------|----------------------|---------------------------------|--------------------------------------------|------------------------------------------|--------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ \dagger}$                   | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Mult.‡ | $\alpha^f$            | Comments                                                                                                                                                                                                                                   |
| 2366.1        | 6+                   | 1052.5 5                        | 100                                        | 1313.74 4+                               | E2     | 0.00181               | $\alpha(K)$ =0.001548 22; $\alpha(L)$ =0.000206 3; $\alpha(M)$ =4.30×10 <sup>-5</sup> 6; $\alpha(N)$ =9.53×10 <sup>-6</sup> 14 $\alpha(O)$ =1.534×10 <sup>-6</sup> 22; $\alpha(P)$ =1.123×10 <sup>-7</sup> 16 B(E2)(W.u.)>0.0021           |
| 2424.7        | (6-)                 | 446.4 5                         | 100                                        | 1978.2 5                                 | D+Q    | 0.018 3               | $\alpha(K)$ =0.015 3; $\alpha(L)$ =0.00218 18; $\alpha(M)$ =0.00046 4; $\alpha(N+)$ =0.00012                                                                                                                                               |
| 2451.08       | $(2^{+})$            | 1359.9 <sup>#</sup> 5           | 100 <sup>#</sup> 11                        | 1091.88 2+                               |        |                       | •                                                                                                                                                                                                                                          |
|               |                      | 1899.0 <sup>#</sup> 5           | 95 <sup>#</sup> 21                         | 552.05 2+                                |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 2450.8 <sup>#</sup> 3           | 71 <sup>#</sup> 8                          | 0.0 0+                                   | [E2]   | $8.65 \times 10^{-4}$ | $\alpha(K)$ =0.000308 5; $\alpha(L)$ =3.84×10 <sup>-5</sup> 6; $\alpha(M)$ =7.95×10 <sup>-6</sup> 12; $\alpha(N)$ =1.765×10 <sup>-6</sup> 25; $\alpha(O)$ =2.87×10 <sup>-7</sup> 4 $\alpha(P)$ =2.24×10 <sup>-8</sup> 4 B(E2)(W.u.)=0.24 6 |
| 2517.1        | $(2^+,3)$            | 1203.8 <sup>#</sup> 8           | 22.2 <sup>#</sup> 28                       | 1313.74 4+                               |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 1425.0 <sup>#</sup> 4           | 100 <sup>#</sup> <i>11</i>                 | 1091.88 2+                               |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 1965.2 <sup>#</sup> 5           | 16.7 <sup>#</sup> <i>17</i>                | 552.05 2+                                |        |                       |                                                                                                                                                                                                                                            |
| 2595.2        | $(2^{+})$            | 1041.5 <sup>#g</sup> 6          | 21.4 <sup>#</sup> 22                       | 1552.98 3+                               |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 1282.4 <sup>#</sup> 7           | 17.9 <sup>#</sup> 22                       | 1313.74 4+                               |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 1503.3 <sup>#</sup> 5           | 34 <sup>#</sup> 4                          | 1091.88 2+                               |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 2042.7 <sup>#</sup> 5           | 100 <sup>#</sup> 7                         | 552.05 2+                                |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 2596.0 <sup>#g</sup> 7          | 21.4# 22                                   | $0.0  0^{+}$                             |        |                       |                                                                                                                                                                                                                                            |
| 2682.0        | $(2^{+})$            | 1368.3 <sup>#</sup> 6           | 85 <sup>#</sup> 10                         | 1313.74 4+                               |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 1590.3 <sup>#</sup> 8           | <75 <sup>#</sup>                           | 1091.88 2+                               |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 2131.1# 8                       | 100 <sup>#</sup> 10                        | 552.05 2+                                |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 2681.3 <sup>#g</sup> 5          | 62 <sup>#</sup> 8                          | $0.0 	 0^{+}$                            |        |                       |                                                                                                                                                                                                                                            |
| 2792.7        | $(1,2^+)$            | 2240.7 <sup>#</sup> 4           | 100# 8                                     | 552.05 2+                                |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 2792.6 <sup>#</sup> 7           | 16.2 <sup>#</sup> 16                       | $0.0 	 0^{+}$                            |        |                       |                                                                                                                                                                                                                                            |
| 2827.8        | (1,2,3)              | 672.83 <sup>#g</sup> 24         | 54 <sup>#</sup> 6                          | 2155.02 2+                               |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 1735.7 <sup>#</sup> g 4         | 100# 11                                    | 1091.88 2+                               |        |                       |                                                                                                                                                                                                                                            |
| 2065.0        | (1.0+)               | 2275.0 <sup>#</sup> 10          | 54 <sup>#</sup> 11                         | 552.05 2 <sup>+</sup>                    |        |                       |                                                                                                                                                                                                                                            |
| 2865.9        | $(1,2^+)$            | 1773.8 <sup>#</sup> 5           | 38 <sup>#</sup> 5                          | 1091.88 2+                               |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 1790.2 <sup>#g</sup> 10         | 15.0 <sup>#</sup> 17                       | 1075.9?                                  |        |                       |                                                                                                                                                                                                                                            |
|               |                      | 2313.7# 4                       | 100# 8                                     | 552.05 2+                                |        |                       |                                                                                                                                                                                                                                            |
| 2004 1        | (1.0.0)              | 2866.4 <sup>#g</sup> 7          | 17 <sup>#</sup> 4                          | 0.0 0+                                   |        |                       |                                                                                                                                                                                                                                            |
| 2904.1        | (1,2,3)              | 1812.8 <sup>#g</sup> 10         | <35 <sup>#</sup>                           | 1091.88 2 <sup>+</sup>                   |        |                       |                                                                                                                                                                                                                                            |
| 2021.0        | (1.0+)               | 2351.9 <sup>#</sup> 4           | 100 <sup>#</sup> 11<br>100 <sup>#</sup> 11 | 552.05 2 <sup>+</sup>                    |        |                       |                                                                                                                                                                                                                                            |
| 2931.8        | $(1,2^+)$            | 2379.8 <sup>#</sup> 4           | 100" 11                                    | 552.05 2+                                |        |                       |                                                                                                                                                                                                                                            |

 $\infty$ 

# $\gamma(\frac{136}{\text{Ce}})$ (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$     | $\mathbf{E}_f$      | $\mathbf{J}_f^\pi$ | Mult.‡            | $\alpha^f$ | Comments                                                                                                                                                                                                |
|--------------|----------------------|---------------------------------|----------------------------|---------------------|--------------------|-------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2931.8       | $(1,2^+)$            | 2931.3 <sup>#</sup> 9           | 29 <sup>#</sup> 4          | 0.0                 |                    |                   |            |                                                                                                                                                                                                         |
| 2942.1?      | $(2^{+})$            | 1628.2 <sup>#</sup> <i>g</i> 7  | 100 <sup>#</sup> <i>13</i> | 1313.74             | 4+                 |                   |            |                                                                                                                                                                                                         |
|              |                      | 2389.5 <sup>#g</sup> 10         | 95 <sup>#</sup> 10         | 552.05              |                    |                   |            |                                                                                                                                                                                                         |
|              |                      | 2942.5 <sup>#g</sup> 7          | 48 <sup>#</sup> 10         | 0.0                 |                    |                   |            |                                                                                                                                                                                                         |
| 2954.6       | $(8^{+})$            | 647.8 5                         | <14                        | 2306.9              |                    |                   |            |                                                                                                                                                                                                         |
|              |                      | 741.1 5                         | 100 30                     | 2213.7              | 6+                 | (E2)              | 0.00396    | $\alpha(K)$ =0.00336 5; $\alpha(L)$ =0.000475 7; $\alpha(M)$ =9.98×10 <sup>-5</sup> 14; $\alpha(N)$ =2.20×10 <sup>-5</sup> 4; $\alpha(O)$ =3.51×10 <sup>-6</sup> 5 $\alpha(P)$ =2.42×10 <sup>-7</sup> 4 |
|              |                      |                                 |                            |                     |                    |                   |            | Mult.: stretched Q from R(DCO) and $\gamma(\theta)$ in (HI,xn $\gamma$ ), assumed E2.                                                                                                                   |
| 2989.4       | 8+                   | 623.4 5                         | 95 5                       | 2366.1              | 6+                 | E2                | 0.00605    | $\alpha(K)=0.00510 8$ ; $\alpha(L)=0.000750 11$ ; $\alpha(M)=0.0001581 23$ ;                                                                                                                            |
|              |                      |                                 |                            |                     |                    |                   |            | $\alpha(N)=3.48\times10^{-5} 5; \ \alpha(O)=5.52\times10^{-6} 8$                                                                                                                                        |
|              |                      | 602.1                           | 1.0                        | 2206.0              |                    | FF-13             | 0.00101    | $\alpha(P)=3.64\times10^{-7} 6$                                                                                                                                                                         |
|              |                      | 683.1                           | 1.9                        | 2306.9              | 7                  | [E1]              | 0.00181    | $\alpha(K)$ =0.001557 22; $\alpha(L)$ =0.000197 3; $\alpha(M)$ =4.08×10 <sup>-5</sup> 6; $\alpha(N)$ =9.03×10 <sup>-6</sup> 13                                                                          |
|              |                      |                                 |                            |                     |                    |                   |            | $\alpha(O)=1.460\times10^{-6}\ 21;\ \alpha(P)=1.099\times10^{-7}\ 16$                                                                                                                                   |
|              |                      |                                 |                            |                     | - 1                |                   |            | $E_{\gamma}$ , $I_{\gamma}$ : from <sup>136</sup> Ce IT decay.                                                                                                                                          |
|              |                      | 775.6 5                         | 100 9                      | 2213.7              | 6+                 | E2                | 0.00356    | $\alpha(K)$ =0.00302 5; $\alpha(L)$ =0.000424 6; $\alpha(M)$ =8.89×10 <sup>-5</sup> 13; $\alpha(N)$ =1.96×10 <sup>-5</sup> 3; $\alpha(O)$ =3.13×10 <sup>-6</sup> 5 $\alpha(P)$ =2.18×10 <sup>-7</sup> 3 |
| 2991.3?      | $(2^+,3,4^+)$        | 1677.9 <sup>#g</sup> 7          | 100 <sup>#</sup> 11        | 1313.74             | <u>4</u> +         |                   |            | u(1)-2.16×10 3                                                                                                                                                                                          |
| 2771.5.      | (2 ,5,4 )            | 2439.5 <sup>#g</sup> 10         | 86 <sup>#</sup> 8          | 552.05              |                    |                   |            |                                                                                                                                                                                                         |
| 3011.16?     |                      | 855.92 <sup>#g</sup> 22         | 100# 12                    | 2155.02             |                    |                   |            |                                                                                                                                                                                                         |
| 3011.107     |                      | 1919.2 <sup>#</sup> 8 7         | 78 <sup>#</sup> 12         | 1091.88             |                    |                   |            |                                                                                                                                                                                                         |
|              |                      | 2460.4 <sup>#g</sup> 5          | 93 <sup>#</sup> 12         | 552.05              |                    |                   |            |                                                                                                                                                                                                         |
| 3095.0       | 10 <sup>+</sup>      | 105.7 5                         | 100                        | 552.05<br>2989.4    |                    | E2                | 1.68 4     | $\alpha(K)=1.030\ 21;\ \alpha(L)=0.512\ 13;\ \alpha(M)=0.114\ 3;\ \alpha(N)=0.0245\ 7;$                                                                                                                 |
|              |                      |                                 |                            |                     |                    |                   |            | $\alpha(O)=0.00346 \ 9$<br>$\alpha(P)=5.52\times10^{-5} \ 11$                                                                                                                                           |
|              |                      |                                 |                            |                     |                    |                   |            | $\alpha(P)=3.52\times10^{-2} II$<br>B(E2)(W.u.)=0.203 12                                                                                                                                                |
|              |                      |                                 |                            |                     |                    |                   |            | Mult.: stretched Q from R(DCO) and $\gamma(\theta)$ in (HI,xn $\gamma$ ), assumed E2.                                                                                                                   |
| 3146.2       | (8-)                 | 192                             |                            | 2954.6              | (8+)               | (E1) <sup>C</sup> | 0.0405     | $\alpha(K)$ =0.0347 5; $\alpha(L)$ =0.00462 7; $\alpha(M)$ =0.000961 14; $\alpha(N)$ =0.000211 3; $\alpha(O)$ =3.35×10 <sup>-5</sup> 5                                                                  |
|              |                      | 721.5 2                         | 100 12                     | 2424.7              | (6-)               | E2                | 0.00422    | $\alpha(P)=2.26\times10^{-6} 4$<br>$\alpha(K)=0.00358 5$ ; $\alpha(L)=0.000509 8$ ; $\alpha(M)=0.0001070 15$ ; $\alpha(N)=2.36\times10^{-5}$                                                            |
|              |                      | 121.3 2                         | 100 12                     | Z <del>4</del> Z4.1 | (0 )               | E2                | 0.00422    | $\alpha(K)$ =0.00358 3; $\alpha(L)$ =0.000509 8; $\alpha(M)$ =0.0001070 13; $\alpha(N)$ =2.36×10 4; $\alpha(O)$ =3.76×10 <sup>-6</sup> 6 $\alpha(P)$ =2.57×10 <sup>-7</sup> 4 B(E2)(W.u.)>0.014         |
|              |                      | 839.3 5                         | 65 8                       | 2306.9              | 7-                 |                   |            | D(E2)(W.u.)>U.U14                                                                                                                                                                                       |
|              | $(1,2^+)$            | 2082.4 <sup>#</sup> 5           | 100# 12                    | 1091.88             |                    |                   |            |                                                                                                                                                                                                         |
| 3174.5       | (1 / 1               |                                 |                            |                     | , .                |                   |            |                                                                                                                                                                                                         |

# $\gamma(\frac{136}{\text{Ce}})$ (continued)

|                   |                      | 4                                  | 4                          |                  |                      | 4      |            |                                                                                                                                                                                                                               |
|-------------------|----------------------|------------------------------------|----------------------------|------------------|----------------------|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$      | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$    | $I_{\gamma}^{\dagger}$     | $\mathbf{E}_f$   | $\mathbf{J}_f^{\pi}$ | Mult.‡ | $\alpha^f$ | Comments                                                                                                                                                                                                                      |
| 3174.5            | $(1,2^+)$            | 3174.9 <sup>#</sup> 8              | 34 <sup>#</sup> 6          | 0.0              | $0^{+}$              |        |            |                                                                                                                                                                                                                               |
| 3201.3?           | $(2^{+})$            | 1886.7 <sup>#</sup> <i>g</i> 9     | 96 <sup>#</sup> 12         | 1313.74          | 4+                   |        |            |                                                                                                                                                                                                                               |
|                   |                      | 2110.5 <sup>#g</sup> 5             | 100 <sup>#</sup> <i>12</i> | 1091.88          | 2+                   |        |            |                                                                                                                                                                                                                               |
|                   |                      | 2647.8 <sup>#</sup> <i>g</i> 8     | 40 <sup>#</sup> 8          | 552.05           | 2+                   |        |            |                                                                                                                                                                                                                               |
|                   |                      | 3200.6 <sup>#</sup> g 8            | 56 <sup>#</sup> 8          | 0.0              |                      |        |            |                                                                                                                                                                                                                               |
| 3233.0            | (1,2,3)              | 2140.9 <sup>#</sup> 7              | 44 <sup>#</sup> 5          | 1091.88          | 2+                   |        |            |                                                                                                                                                                                                                               |
|                   |                      | 2681.0 <sup>#g</sup> 3             | 100 <sup>#</sup> <i>13</i> | 552.05           |                      |        |            |                                                                                                                                                                                                                               |
| 3264.1            | $(1,2^+)$            | 2171.0 <mark>#</mark> 6            | 47 <sup>#</sup> 5          | 1091.88          |                      |        |            |                                                                                                                                                                                                                               |
|                   |                      | 2713.3 <sup>#g</sup> 5             | 59 <sup>#</sup> 12         | 552.05           |                      |        |            |                                                                                                                                                                                                                               |
|                   |                      | 3262.0 <sup>#</sup> <i>10</i>      | 100 <b>#</b> <i>11</i>     | 0.0              | $0_{+}$              |        |            |                                                                                                                                                                                                                               |
| 3277.9            | 9-                   | 970.8 5                            | 100                        | 2306.9           | 7-                   | E2     | 0.00215    | $\alpha(K)$ =0.00184 3; $\alpha(L)$ =0.000248 4; $\alpha(M)$ =5.17×10 <sup>-5</sup> 8; $\alpha(N)$ =1.144×10 <sup>-5</sup> 16; $\alpha(O)$ =1.84×10 <sup>-6</sup> 3 $\alpha(P)$ =1.332×10 <sup>-7</sup> 19 B(E2)(W.u.)>0.0052 |
| 3280.6            | $(1,2^+)$            | 2189.0 <sup>#</sup> 7              | 100 <b>#</b> 8             | 1091.88          | 2+                   |        |            |                                                                                                                                                                                                                               |
|                   |                      | 2204.2 <sup>#g</sup> 10            | 38 <sup>#</sup> 5          | 1075.9?          |                      |        |            |                                                                                                                                                                                                                               |
|                   |                      | 2728.7 <sup>#</sup> 7              | 62 <sup>#</sup> 8          | 552.05           | 2+                   |        |            |                                                                                                                                                                                                                               |
|                   |                      | 3280.3 <sup>#</sup> <i>10</i>      | 30 <b>#</b> 5              | 0.0              | $0_{+}$              |        |            |                                                                                                                                                                                                                               |
| 3361.7            | $(1,2^+)$            | 2270.2 <sup>#</sup> 4              | 100 <sup>#</sup> 11        | 1091.88          | 2+                   |        |            |                                                                                                                                                                                                                               |
|                   |                      | 2808.7 <sup>#</sup> 5              | 51 <sup>#</sup> 6          | 552.05           | 2+                   |        |            |                                                                                                                                                                                                                               |
|                   |                      | 3362.4 <sup>#</sup> <i>10</i>      | 16 <sup>#</sup> 3          | 0.0              | 0+                   |        |            |                                                                                                                                                                                                                               |
| 3399.7            | (10+)                | 410.3 5                            | 85 6                       | 2989.4           | 8+                   | (E2)   | 0.0188     | $\alpha(K)$ =0.01552 23; $\alpha(L)$ =0.00261 4; $\alpha(M)$ =0.000555 8; $\alpha(N)$ =0.0001217 18; $\alpha(O)$ =1.89×10 <sup>-5</sup> 3 $\alpha(P)$ =1.069×10 <sup>-6</sup> 16 B(E2)(W.u.)>0.18                             |
|                   |                      |                                    |                            |                  |                      |        |            | Mult.: stretched Q from R(DCO) and $\gamma(\theta)$ in (HI,xn $\gamma$ ), M2 excluded by comparison to RUL.                                                                                                                   |
|                   |                      | 445.2 5                            | 100 12                     | 2954.6           | (8+)                 | (E2)   | 0.01489    | comparison to KCL.<br>$\alpha(K)=0.01234\ 18;\ \alpha(L)=0.00201\ 3;\ \alpha(M)=0.000427\ 7;\ \alpha(N)=9.38\times10^{-5}\ 14;$ $\alpha(O)=1.461\times10^{-5}\ 21$ $\alpha(P)=8.58\times10^{-7}\ 13$ $B(E2)(W.u.)>0.14$       |
|                   |                      |                                    |                            |                  |                      |        |            | Mult.: stretched Q from R(DCO) and $\gamma(\theta)$ in (HI,xn $\gamma$ ), M2 excluded by                                                                                                                                      |
| 2440.0            | (O+)                 | 406 4 5                            | 100                        | 2054.6           | (0±)                 |        |            | comparison to RUL.                                                                                                                                                                                                            |
| 3440.9<br>3575.3? | (9 <sup>+</sup> )    | 486.4 <i>5</i><br>429 <sup>g</sup> | 100<br>100                 | 2954.6<br>3146.2 | $(8^+)$ $(8^-)$      |        |            |                                                                                                                                                                                                                               |
| 3579.4            | $(1,2^+)$            | 3027.0 <sup>#g</sup> 10            | <67 <sup>#</sup>           | 552.05           |                      |        |            |                                                                                                                                                                                                                               |
| 3317.7            | (1,2)                | 3579.6 <sup>#</sup> 10             | 100 <sup>#</sup> 13        | 0.0              |                      |        |            |                                                                                                                                                                                                                               |
| 3705.3            | (1,2,3)              | 2613.1 <sup>#</sup> 8              | 100 13                     | 1091.88          |                      |        |            |                                                                                                                                                                                                                               |
|                   | ,                    |                                    |                            |                  |                      |        |            |                                                                                                                                                                                                                               |

| $E_i(level)$     | $J_i^\pi$                                | $E_{\gamma}^{\dagger}$                                                                                | $I_{\gamma}^{\dagger}$                                                              | $\mathbf{E}_f$                           | $\mathbf{J}_f^{\pi}$                     | Mult.‡                 | $\alpha^f$            | Comments                                                                                                                                                                                                                                                                                                           |
|------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3705.3<br>3760.1 | (1,2,3)<br>12 <sup>+</sup>               | 3153.6 <sup>#</sup> 8<br>665.2 5                                                                      | 50 <sup>#</sup> 5<br>100                                                            | 552.05<br>3095.0                         | 2 <sup>+</sup><br>10 <sup>+</sup>        | E2                     | 0.00514               | $\alpha(K)$ =0.00435 7; $\alpha(L)$ =0.000630 9; $\alpha(M)$ =0.0001325 19; $\alpha(N)$ =2.92×10 <sup>-5</sup> 5; $\alpha(O)$ =4.64×10 <sup>-6</sup> 7 $\alpha(P)$ =3.11×10 <sup>-7</sup> 5                                                                                                                        |
| 3865.4           | (10+)                                    | 425 <sup>g</sup> 1                                                                                    | 23 3                                                                                | 3440.9                                   | (9+)                                     | (M1) <sup>d</sup>      | 0.0234                | $\alpha(K)=0.0201 \ 3; \ \alpha(L)=0.00264 \ 4; \ \alpha(M)=0.000552 \ 9;$<br>$\alpha(N)=0.0001224 \ 19; \ \alpha(O)=1.99\times10^{-5} \ 3$<br>$\alpha(P)=1.528\times10^{-6} \ 24$                                                                                                                                 |
|                  |                                          | 910.6 5                                                                                               | 100 17                                                                              | 2954.6                                   | (8+)                                     | E2                     | 0.00247               | $\alpha(K) = 0.00211 \ 3; \ \alpha(L) = 0.000287 \ 4; \ \alpha(M) = 6.01 \times 10^{-5} \ 9;$<br>$\alpha(N) = 1.328 \times 10^{-5} \ 19; \ \alpha(O) = 2.13 \times 10^{-6} \ 3$<br>$\alpha(P) = 1.528 \times 10^{-7} \ 22$                                                                                         |
| 3986.8           | (10-)                                    | 840.5 5                                                                                               | 100                                                                                 | 3146.2                                   | (8-)                                     | E2                     | 0.00296               | $\alpha(K)$ =0.00252 4; $\alpha(L)$ =0.000348 5; $\alpha(M)$ =7.28×10 <sup>-5</sup> 11; $\alpha(N)$ =1.609×10 <sup>-5</sup> 23; $\alpha(O)$ =2.58×10 <sup>-6</sup> 4 $\alpha(P)$ =1.82×10 <sup>-7</sup> 3 B(E2)(W.u.)>0.011 Mult.: stretched Q from R(DCO) in (HI,xn $\gamma$ ), M2 excluded by comparison to RUL. |
| 4023.3?          | (1,2,3)                                  | 1012.2 <sup>#g</sup> 3<br>1032.4 <sup>#g</sup> 6<br>2469.9 <sup>#g</sup> 5<br>3471.1 <sup>#g</sup> 10 | 100 <sup>#</sup> 10<br>48 <sup>#</sup> 10<br>67 <sup>#</sup> 7<br>52 <sup>#</sup> 5 | 3011.16?<br>2991.3?<br>1552.98<br>552.05 | $(2^+,3,4^+)$                            |                        |                       |                                                                                                                                                                                                                                                                                                                    |
| 4084.3           | 11-                                      | 806.2 5                                                                                               | 100                                                                                 | 3277.9                                   | 9-                                       | E2                     | 0.00325               | $\alpha(K)$ =0.00277 4; $\alpha(L)$ =0.000385 6; $\alpha(M)$ =8.07×10 <sup>-5</sup> 12; $\alpha(N)$ =1.78×10 <sup>-5</sup> 3; $\alpha(O)$ =2.85×10 <sup>-6</sup> 4 $\alpha(P)$ =2.00×10 <sup>-7</sup> 3 B(E2)(W.u.)>0.013 Mult.: stretched Q from R(DCO) in (HI,xn $\gamma$ ), M2 excluded by comparison to RUL.   |
| 4240.3           | (11-)                                    | 253.4 <i>5</i> 665 <sup>8</sup> <i>1</i> 840.7 <i>5</i>                                               | 100 17                                                                              | 3986.8<br>3575.3?<br>3399.7              | $(10^{-})$ $(10^{+})$                    | D+Q                    |                       | comparison to RCL.                                                                                                                                                                                                                                                                                                 |
| 4360.3<br>4596.6 | (11 <sup>+</sup> )<br>(12 <sup>-</sup> ) | 494.9 <i>5</i><br>609.9 <i>5</i>                                                                      | 100<br>100                                                                          | 3865.4<br>3986.8                         | (10 <sup>+</sup> )<br>(10 <sup>-</sup> ) | D<br>(E2) <sup>e</sup> | 0.00639               | $\alpha(K)$ =0.00538 8; $\alpha(L)$ =0.000797 12; $\alpha(M)$ =0.0001680 24; $\alpha(N)$ =3.70×10 <sup>-5</sup> 6; $\alpha(O)$ =5.85×10 <sup>-6</sup> 9 $\alpha(P)$ =3.84×10 <sup>-7</sup> 6                                                                                                                       |
| 4786.1           | 14 <sup>+</sup>                          | 1026.1 5                                                                                              | 100                                                                                 | 3760.1                                   | 12+                                      | E2                     | 0.00191               | $\alpha(K)=0.001633\ 23;\ \alpha(L)=0.000218\ 3;\ \alpha(M)=4.56\times10^{-5}\ 7;$<br>$\alpha(N)=1.009\times10^{-5}\ 15$<br>$\alpha(O)=1.623\times10^{-6}\ 23;\ \alpha(P)=1.185\times10^{-7}\ 17$                                                                                                                  |
| 4832.7           | (14+)                                    | 1072.7 5                                                                                              | 100                                                                                 | 3760.1                                   | 12+                                      | (E2) <sup>e</sup>      | $1.74 \times 10^{-3}$ | $\alpha(K)=0.001488 \ 2I; \ \alpha(L)=0.000198 \ 3; \ \alpha(M)=4.13\times10^{-5} \ 6; \ \alpha(N)=9.13\times10^{-6} \ I3$<br>$\alpha(O)=1.471\times10^{-6} \ 2I; \ \alpha(P)=1.080\times10^{-7} \ I6$                                                                                                             |
| 4872.4           | (13-)                                    | 276.0 <sup>8</sup> 5<br>632.3 5                                                                       | 100                                                                                 | 4596.6<br>4240.3                         | (12 <sup>-</sup> )<br>(11 <sup>-</sup> ) | E2                     | 0.00584               | $\alpha(K)=0.00493$ 7; $\alpha(L)=0.000723$ 11; $\alpha(M)=0.0001522$ 22;                                                                                                                                                                                                                                          |

# $\gamma(^{136}\text{Ce})$ (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}{}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult.‡               | $\alpha^f$            | Comments                                                                                                                                                                                                                          |
|--------------|----------------------|-----------------------------------|------------------------|---------|----------------------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                      |                                   |                        |         |                      |                      |                       | $\alpha(N)=3.35\times10^{-5} 5$ ; $\alpha(O)=5.31\times10^{-6} 8$<br>$\alpha(P)=3.52\times10^{-7} 5$                                                                                                                              |
| 4927.9       | (13+)                | 567.6 5                           | 100                    | 4360.3  | (11+)                | (E2) <sup>e</sup>    | 0.00769               | $\alpha(K)$ =0.00646 10; $\alpha(L)$ =0.000975 14; $\alpha(M)$ =0.000206 3; $\alpha(N)$ =4.53×10 <sup>-5</sup> 7; $\alpha(O)$ =7.14×10 <sup>-6</sup> 11 $\alpha(P)$ =4.58×10 <sup>-7</sup> 7                                      |
| 5097.5?      | $(13^{-})$           | 1013.0 <mark>8</mark> 5           | 100                    | 4084.3  | 11-                  |                      |                       |                                                                                                                                                                                                                                   |
| 5304.6       | 15+                  | 471.7 5                           | 100                    | 4832.7  |                      | M1                   | 0.0180                | $\alpha(K)$ =0.01542 22; $\alpha(L)$ =0.00202 3; $\alpha(M)$ =0.000422 6; $\alpha(N)$ =9.37×10 <sup>-5</sup> 14; $\alpha(O)$ =1.523×10 <sup>-5</sup> 22 $\alpha(P)$ =1.173×10 <sup>-6</sup> 17                                    |
| 5568.0       | (15+)                | 640.1 5                           | 100                    | 4927.9  | (13+)                | E2                   | 0.00566               | $\alpha(P)=1.173\times10^{-5} I7$<br>$\alpha(K)=0.00478 \ 7; \ \alpha(L)=0.000698 \ 10; \ \alpha(M)=0.0001471 \ 21;$<br>$\alpha(N)=3.24\times10^{-5} \ 5; \ \alpha(O)=5.14\times10^{-6} \ 8$<br>$\alpha(P)=3.41\times10^{-7} \ 5$ |
|              |                      |                                   |                        |         |                      |                      |                       | B(E2)(W.u.)=1.8×10 <sup>2</sup> 7 Mult.: stretched Q from R(DCO) in (HI,xnγ), M2 excluded by comparison to RUL.                                                                                                                   |
| 5593.5       | (16+)                | 288.9 5                           |                        | 5304.6  | 15+                  | (M1+E2) <sup>b</sup> | 0.059 5               | $\alpha(K)$ =0.049 6; $\alpha(L)$ =0.0080 7; $\alpha(M)$ =0.00169 18; $\alpha(N)$ =0.00037 4; $\alpha(O)$ =5.8×10 <sup>-5</sup> 4 $\alpha(P)$ =3.5×10 <sup>-6</sup> 7                                                             |
|              |                      | 761 <i>1</i>                      |                        | 4832.7  | (14+)                | (E2)                 | 0.00372               | $\alpha(K)$ =0.00316 5; $\alpha(L)$ =0.000445 7; $\alpha(M)$ =9.33×10 <sup>-5</sup> 14; $\alpha(N)$ =2.06×10 <sup>-5</sup> 3; $\alpha(O)$ =3.29×10 <sup>-6</sup> 5 $\alpha(P)$ =2.28×10 <sup>-7</sup> 4                           |
| 5642.6       | 16 <sup>+</sup>      | 338 <mark>8</mark> 1              |                        | 5304.6  | 15 <sup>+</sup>      |                      |                       | (L) 2.201.10                                                                                                                                                                                                                      |
|              |                      | 810 <sup>8</sup> 1                |                        | 4832.7  | $(14^{+})$           |                      |                       |                                                                                                                                                                                                                                   |
|              |                      | 856.6 <i>5</i>                    | 100                    | 4786.1  | 14+                  | E2                   | 0.00283               | $\alpha(K)$ =0.00242 4; $\alpha(L)$ =0.000332 5; $\alpha(M)$ =6.96×10 <sup>-5</sup> 10; $\alpha(N)$ =1.537×10 <sup>-5</sup> 22; $\alpha(O)$ =2.46×10 <sup>-6</sup> 4 $\alpha(P)$ =1.746×10 <sup>-7</sup> 25 B(E2)(W.u.)<43        |
| 5645.1       | 14-                  | 547.4 5                           | 100                    | 5097.5? | $(13^{-})$           | D                    |                       | 2(22)((114)) (12                                                                                                                                                                                                                  |
| 5662.4       | $(14^{-})$           | 790 <i>1</i>                      | 100                    | 4872.4  | $(13^{-})$           |                      |                       |                                                                                                                                                                                                                                   |
| 5800.6       | (15-)                | 928.1 5                           | 100                    | 4872.4  | (13-)                | (E2)                 | 0.00237               | $\alpha(K)$ =0.00202 3; $\alpha(L)$ =0.000275 4; $\alpha(M)$ =5.75×10 <sup>-5</sup> 8; $\alpha(N)$ =1.270×10 <sup>-5</sup> 18; $\alpha(O)$ =2.04×10 <sup>-6</sup> 3 $\alpha(P)$ =1.466×10 <sup>-7</sup> 21                        |
| 5808.8       | 15-                  | 146.4 5                           | 20 3                   | 5662.4  | $(14^{-})$           | D                    |                       |                                                                                                                                                                                                                                   |
|              |                      | 163.4 5                           | 14 2                   | 5645.1  | 14-                  | M1 <sup>d</sup>      | 0.297                 | $\alpha(K)$ =0.254 5; $\alpha(L)$ =0.0344 6; $\alpha(M)$ =0.00720 12; $\alpha(N)$ =0.00160 3; $\alpha(O)$ =0.000259 5 $\alpha(P)$ =1.96×10 <sup>-5</sup> 4                                                                        |
|              |                      | 936.4 5                           | 100 7                  | 4872.4  | (13-)                | E2                   | 0.00233               | $\alpha(K)=0.00199 \ 3; \ \alpha(L)=0.000269 \ 4; \ \alpha(M)=5.63\times10^{-5} \ 8; $<br>$\alpha(N)=1.244\times10^{-5} \ 18; \ \alpha(O)=2.00\times10^{-6} \ 3$<br>$\alpha(P)=1.438\times10^{-7} \ 21$                           |
|              |                      | 976.1 5                           | 20 7                   | 4832.7  | (14+)                | E1                   | 8.85×10 <sup>-4</sup> | $\alpha(F)=1.438\times10^{-12}$ $\alpha(K)=0.000764$ 11; $\alpha(L)=9.53\times10^{-5}$ 14; $\alpha(M)=1.97\times10^{-5}$ 3; $\alpha(N)=4.37\times10^{-6}$ 7; $\alpha(O)=7.09\times10^{-7}$ 10 $\alpha(P)=5.43\times10^{-8}$ 8     |

## $\gamma$ (136Ce) (continued)

| $E_i(level)$     | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}{}^{\dagger}$      | $\mathrm{I}_{\gamma}{}^{\dagger}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$            | Mult.‡          | $\alpha^f$            | Comments                                                                                                                                                                                                                    |
|------------------|----------------------|-------------------------------|-----------------------------------|-----------------------------------------------------|-----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5840.6<br>5855.6 | (16)                 | 536 <i>I</i> 551 <i>I</i>     | 100<br>100                        | 5304.6 15 <sup>+</sup><br>5304.6 15 <sup>+</sup>    | D               | 0.0112 22             | $\alpha(K)$ =0.0094 19; $\alpha(L)$ =0.00132 17                                                                                                                                                                             |
| 5876.9           | 17+                  | 234.4 5                       | 100                               | 5642.6 16 <sup>+</sup>                              | M1              | 0.1110 <i>17</i>      | $\alpha$ (K)=0.0949 <i>15</i> ; $\alpha$ (L)=0.01275 <i>20</i> ; $\alpha$ (M)=0.00267 <i>4</i> ; $\alpha$ (N)=0.000591 <i>9</i> ; $\alpha$ (O)=9.59×10 <sup>-5</sup> <i>15</i> $\alpha$ (P)=7.30×10 <sup>-6</sup> <i>11</i> |
| 5994.8           | 16-                  | 572 <sup>8</sup> 1<br>185.9 5 | 100 12                            | 5304.6 15 <sup>+</sup><br>5808.8 15 <sup>-</sup>    | M1              | 0.208 4               | $\alpha(K)$ =0.178 3; $\alpha(L)$ =0.0240 4; $\alpha(M)$ =0.00503 8; $\alpha(N)$ =0.001116 18; $\alpha(O)$ =0.000181 3 $\alpha(P)$ =1.372×10 <sup>-5</sup> 22                                                               |
|                  |                      | 194.2 5                       | 32 4                              | 5800.6 (15 <sup>-</sup> )                           | M1 <sup>d</sup> | 0.185                 | $\alpha(K)$ =0.1572×10 22 $\alpha(K)$ =0.1579 25; $\alpha(L)$ =0.0213 4; $\alpha(M)$ =0.00446 7; $\alpha(N)$ =0.000990 16; $\alpha(O)$ =0.000160 3 $\alpha(P)$ =1.217×10 <sup>-5</sup> 19                                   |
|                  |                      | 350 <i>1</i>                  |                                   | 5645.1 14-                                          |                 |                       | $u(r)=1.217\times10^{-1}19$                                                                                                                                                                                                 |
|                  |                      | 690.3 5                       | 35 12                             | 5304.6 15+                                          | E1              | $1.77 \times 10^{-3}$ | $\alpha(K)$ =0.001524 22; $\alpha(L)$ =0.000192 3; $\alpha(M)$ =3.99×10 <sup>-5</sup> 6; $\alpha(N)$ =8.83×10 <sup>-6</sup> 13                                                                                              |
|                  |                      |                               |                                   |                                                     |                 |                       | $\alpha(O)=1.428\times10^{-6} \ 21; \ \alpha(P)=1.075\times10^{-7} \ 16$                                                                                                                                                    |
| 6098.5           | $(17^+)$             | 504.9 5                       |                                   | 5593.5 (16 <sup>+</sup> )                           | D               |                       |                                                                                                                                                                                                                             |
|                  |                      | 794 <i>1</i>                  |                                   | 5304.6 15+                                          |                 |                       |                                                                                                                                                                                                                             |
| 6170.2           | $(18^{+})$           | 293.3 5                       | 100                               | 5876.9 17+                                          | D               |                       |                                                                                                                                                                                                                             |
| 6273.0           | (17+)                | 705 1                         | 100                               | 5568.0 (15 <sup>+</sup> )                           | [E2]            | 0.00446               | $\alpha(K)$ =0.00378 6; $\alpha(L)$ =0.000541 8; $\alpha(M)$ =0.0001136 17; $\alpha(N)$ =2.51×10 <sup>-5</sup> 4; $\alpha(O)$ =3.99×10 <sup>-6</sup> 6 $\alpha(P)$ =2.71×10 <sup>-7</sup> 4                                 |
| 6282.5           | 17-                  | 287.7 5                       | 100 7                             | 5994.8 16                                           | M1              | 0.0643                | B(E2)(W.u.)=2.2×10 <sup>2</sup> 6<br>$\alpha$ (K)=0.0550 9; $\alpha$ (L)=0.00735 11; $\alpha$ (M)=0.001535 23; $\alpha$ (N)=0.000341 5;<br>$\alpha$ (O)=5.53×10 <sup>-5</sup> 9<br>$\alpha$ (P)=4.22×10 <sup>-6</sup> 7     |
|                  |                      | 474 <i>1</i>                  | 2.4 7                             | 5808.8 15-                                          |                 |                       |                                                                                                                                                                                                                             |
| 6380.0           |                      | 812 <i>I</i>                  | 100                               | 5568.0 (15 <sup>+</sup> )                           |                 |                       |                                                                                                                                                                                                                             |
| 6524.2           | (19)                 | 354 <i>1</i>                  | 100                               | 6170.2 (18 <sup>+</sup> )                           |                 |                       |                                                                                                                                                                                                                             |
| 6539.1           | $(19^+)$             | 368.9 <i>5</i>                | 100                               | $6170.2 (18^+)$                                     | D               |                       |                                                                                                                                                                                                                             |
| 6642.2           | $(18^{+})$           | 543.6 5                       |                                   | 6098.5 (17+)                                        | D               |                       |                                                                                                                                                                                                                             |
| 6662.9           | 18-                  | 1049 <i>I</i> 380.5 <i>5</i>  | 100 5                             | 5593.5 (16 <sup>+</sup> )<br>6282.5 17 <sup>-</sup> | M1              | 0.0311                | $\alpha(K)$ =0.0266 4; $\alpha(L)$ =0.00352 5; $\alpha(M)$ =0.000735 11; $\alpha(N)$ =0.0001630 24; $\alpha(O)$ =2.65×10 <sup>-5</sup> 4                                                                                    |
|                  |                      |                               |                                   |                                                     |                 |                       | $\alpha(O)=2.03 \times 10^{-6}  4$<br>$\alpha(P)=2.03 \times 10^{-6}  3$<br>B(M1)(W.u.)=0.72  6                                                                                                                             |
|                  |                      | 668 <i>1</i>                  | 5.5 5                             | 5994.8 16                                           | [E2]            | 0.00509               | $\alpha(K)$ =0.00430 7; $\alpha(L)$ =0.000623 9; $\alpha(M)$ =0.0001310 19; $\alpha(N)$ =2.89×10 <sup>-5</sup> 5; $\alpha(O)$ =4.59×10 <sup>-6</sup> 7 $\alpha(P)$ =3.08×10 <sup>-7</sup> 5 B(E2)(W.u.)=10.2 11             |
| 6831.7           | $(17^{-})$           | 1031.1 5                      | 100                               | 5800.6 (15 <sup>-</sup> )                           |                 |                       | D(DL)(mai) = 10.2 11                                                                                                                                                                                                        |
| 6885.5           | /                    | 603 1                         | 100                               | 6282.5 17                                           |                 |                       |                                                                                                                                                                                                                             |

# $\gamma(^{136}\text{Ce})$ (continued)

| $E_i(level)$     | $\mathtt{J}_{i}^{\pi}$                | $E_{\gamma}^{\dagger}$         | $I_{\gamma}^{\dagger}$       | $\mathbb{E}_f$   | $J_f^\pi$                             | Mult.‡          | $\alpha^f$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|---------------------------------------|--------------------------------|------------------------------|------------------|---------------------------------------|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6933.2           | (20+)                                 | 394.1 5                        | 100                          | 6539.1           | (19+)                                 | D               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7086.0<br>7099.0 | (19 <sup>+</sup> )<br>19 <sup>-</sup> | 813 <sup>8</sup> 1<br>436.3 5  | 100<br>100 <i>6</i>          | 6273.0<br>6662.9 | (17 <sup>+</sup> )<br>18 <sup>-</sup> | M1              | 0.0219     | $\alpha(K)$ =0.0188 3; $\alpha(L)$ =0.00247 4; $\alpha(M)$ =0.000516 8; $\alpha(N)$ =0.0001145 17; $\alpha(O)$ =1.86×10 <sup>-5</sup> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                       | 816 <i>I</i>                   | 4.4 3                        | 6282.5           | 17-                                   | [E2]            | 0.00317    | $\alpha(P)=1.429\times10^{-6}\ 21$<br>B(M1)(W.u.)=0.78 8<br>$\alpha(K)=0.00269\ 4;\ \alpha(L)=0.000374\ 6;\ \alpha(M)=7.83\times10^{-5}\ 12;\ \alpha(N)=1.730\times10^{-5}\ 25;$<br>$\alpha(O)=2.77\times10^{-6}\ 4$<br>$\alpha(P)=1.94\times10^{-7}\ 3$<br>B(E2)(W.u.)=4.9 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7238.4?          | $(19^+)$                              | 596.1 <mark>8</mark> 5         |                              | 6642.2           |                                       |                 |            | B(L2)( \(\frac{\pi}{\pi}\), \(\frac{\pi}{\pi}\), \(\frac{\pi}{\pi}\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7202 7           |                                       | 1140 <sup>8</sup> 1            | 100                          | 6098.5           | $(17^+)$                              | 0               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7292.7<br>7325.5 |                                       | 912.7 <i>5</i><br>440 <i>I</i> | 100<br>100                   | 6380.0<br>6885.5 |                                       | Q<br>D          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7344.6           | $(21^{+})$                            | 411.4 5                        | 100                          | 6933.2           | $(20^+)$                              | D               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7585.1           | 20-                                   | 486.1 5                        | 100 8                        | 7099.0           | 19-                                   | M1              | 0.01667    | $\alpha(K)$ =0.01430 21; $\alpha(L)$ =0.00188 3; $\alpha(M)$ =0.000391 6; $\alpha(N)$ =8.68×10 <sup>-5</sup> 13; $\alpha(O)$ =1.411×10 <sup>-5</sup> 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                       |                                |                              |                  |                                       |                 |            | $\alpha(P)=1.087\times10^{-6} 16$<br>B(M1)(W.u.)=0.60 +10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                       | 922 1                          | 19.0 <i>13</i>               | 6662.9           | 18-                                   | [E2]            | 0.00241    | $\alpha(\text{M})(\text{W.u.}) = 0.00 + 10 - 9$<br>$\alpha(\text{K}) = 0.00205 \ 3; \ \alpha(\text{L}) = 0.000279 \ 4; \ \alpha(\text{M}) = 5.84 \times 10^{-5} \ 9; \ \alpha(\text{N}) = 1.290 \times 10^{-5} \ 19;$<br>$\alpha(\text{O}) = 2.07 \times 10^{-6} \ 3$<br>$\alpha(\text{P}) = 1.487 \times 10^{-7} \ 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                       |                                |                              |                  |                                       |                 |            | B(E2)(W.u.)=12.2 +19-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7800.6           | $(22^{+})$                            | 456 <mark>8</mark> 1           | 100                          | 7344.6           | $(21^{+})$                            |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8110.0?          | 21-                                   | 524.9 <sup>8</sup> 5           | 100 9                        | 7585.1           | 20-                                   | M1 <sup>d</sup> | 0.01376    | $\alpha(K)$ =0.01181 17; $\alpha(L)$ =0.001545 22; $\alpha(M)$ =0.000322 5; $\alpha(N)$ =7.15×10 <sup>-5</sup> 11 $\alpha(O)$ =1.162×10 <sup>-5</sup> 17; $\alpha(P)$ =8.96×10 <sup>-7</sup> 13 B(M1)(W.u.)=0.43 +5-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                       | 1011 <i>I</i>                  | 37 3                         | 7099.0           | 19-                                   | [E2]            | 0.00197    | $\alpha(\text{K})=0.001685\ 24;\ \alpha(\text{L})=0.000226\ 4;\ \alpha(\text{M})=4.71\times10^{-5}\ 7;\ \alpha(\text{N})=1.043\times10^{-5}\ 15$<br>$\alpha(\text{O})=1.678\times10^{-6}\ 24;\ \alpha(\text{P})=1.222\times10^{-7}\ 18$<br>$\alpha(\text{E})=0.000226\ 4;\ \alpha(\text{H})=0.000226\ 4;\ \alpha(\text{H})=0.00026\ 4;\ \alpha(H$ |
| 8215.4           |                                       | 922.7 5                        | 100                          | 7292.7           |                                       | Q               |            | D(L2)(W.u.) = 13.7 + 17 = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8315.6?          | $(23^{+})$                            | 515 <mark>8</mark> 1           | 100                          | 7800.6           | $(22^{+})$                            |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8625.4           | 22-                                   | 515.4 5                        | 100 13                       | 8110.0?          | 21-                                   | M1 <sup>d</sup> | 0.01440    | $\alpha(K)$ =0.01236 $18$ ; $\alpha(L)$ =0.001617 $23$ ; $\alpha(M)$ =0.000337 $5$ ; $\alpha(N)$ =7.49×10 <sup>-5</sup> $11$ $\alpha(O)$ =1.217×10 <sup>-5</sup> $18$ ; $\alpha(P)$ =9.38×10 <sup>-7</sup> $14$ B(M1)(W.u.)>0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |                                       | 1040 <i>I</i>                  | 54 4                         | 7585.1           | 20-                                   | [E2]            |            | B(E2)(W.u.)>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9228.0           | 23-                                   | 620.6 <i>5</i> 1118 <i>I</i>   | 100 <i>10</i><br>45 <i>7</i> | 8110.0?          | 21-                                   |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>&</sup>lt;sup>†</sup> From (HI,xn $\gamma$ ), except where noted.

## $\gamma(^{136}\text{Ce})$ (continued)

- <sup>‡</sup> From R(DCO),  $\gamma(\theta)$ , and  $\gamma(\text{lin pol})$  in (HI,xn $\gamma$ ), except where noted.
- # From  $^{136}$ Pr  $\varepsilon$  decay.
- <sup>@</sup> From ce measurements in  $^{136}$ Pr  $\varepsilon$  decay.
- & From  $\gamma\gamma(\theta)$  in <sup>136</sup>Pr  $\varepsilon$  decay.
- <sup>a</sup> From Coulomb Excitation.
- <sup>b</sup> D+Q from R(DCO) in (HI,xn $\gamma$ ),  $\Delta \pi$ =no from level scheme.
- <sup>c</sup> D from R(DCO) in (HI,xn $\gamma$ ),  $\Delta \pi$ =yes from level scheme.
- <sup>d</sup> D from R(DCO) in (HI,xn $\gamma$ ),  $\Delta \pi$ =no from level scheme.
- <sup>e</sup> Q from R(DCO) in (HI,xny), E2 from assumed band member.
- f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- <sup>g</sup> Placement of transition in the level scheme is uncertain.

Legend

#### Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)



<sup>136</sup><sub>58</sub>Ce<sub>78</sub>

Legend

#### Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)



Legend

#### Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)



Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level

--- ► γDecay (Uncertain)





Band(I): Dipole magnetic-rotational band based on  $14^-$ 



|                 |          | History           |                        |
|-----------------|----------|-------------------|------------------------|
| Type            | Author   | Citation          | Literature Cutoff Date |
| Full Evaluation | Jun Chen | NDS 146, 1 (2017) | 30-Sep-2017            |

 $Q(\beta^{-})=-4437 \ 10$ ;  $S(n)=9724 \ 5$ ;  $S(p)=7719 \ 50$ ;  $Q(\alpha)=-1046 \ 5$ 

S(2n)=17205 5, S(2p)=13262 5 (2017Wa10).

First identification of <sup>138</sup>Ce nuclide by A.J. Dempster: Phys Rev 49, 947 (1936).

Other measurement:

 $^{138}$ Ba( $\pi^+,\pi^-$ ): GDR built on IAS state (1992Od01).

Theoretical calculations:

2016Du04: calculated charge densities, rms charge radii.

2016Pr01: calculated B(E2).

2015El05: calculated two-neutron separation energies.

 $2015 Hu05, 2013 Bo24, 2010 Pa12, 2009 Si32, 2008 Lo05, 2007 Ji05, 2007 Tu03, 2004 Yo04: calculated energy levels, J, \pi, B(E2).$ 

#### <sup>138</sup>Ce Levels

#### Cross Reference (XREF) Flags

|                                         |                    | B 138P<br>C 138P                   | a $β$ <sup>-</sup> decay<br>r $ε$ decay (1.45 m<br>r $ε$ decay (2.03 h)<br>de IT decay (8.73 | G $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ) K Coulomb excitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|-----------------------------------------|--------------------|------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| E(level) <sup>†</sup>                   | $\mathbf{J}^{\pi}$ | T <sub>1/2</sub> ‡                 | XREF                                                                                         | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 0.0 <sup>@</sup> 788.744 <sup>@</sup> 8 | 0 <sup>+</sup>     | >4.4×10 <sup>16</sup> y  1.98 ps 4 | ABCDEFGHIJK  ABCDEFGHIJK                                                                     | %2ε=100  T <sub>1/2</sub> : From 2014Be37 for the 2ν2K decay mode for the decay branch of g.s. to g.s. at 90% confidence level. Limits of T <sub>1/2</sub> values for other 0ν decay modes to g.s. were also derived in 2014Be37 and are: ≥5.5×10 <sup>17</sup> y for 0ν2K mode; ≥4.6×10 <sup>17</sup> y for 0νKL mode; and ≥4.0×10 <sup>17</sup> for 0ν2L mode. Others: 2011Be02, 2009Be20, 2001Da22. $\Delta$ <r<sup>2&gt;(<sup>138</sup>Ce, <sup>140</sup>Ce)=0.056 <i>16</i> (1989Ga24), isotope shift <math>\delta</math>ν(<sup>138</sup>Ce, <sup>140</sup>Ce)=26.0 42 MHz (1999Is02).  Evaluated nuclear charge radius <r<sup>2&gt;<sup>1/2</sup>=4.8737 fm <i>18</i> (2013An02). μ=0.52 <i>16</i> (2014Na15)</r<sup></r<sup> |  |  |  |  |  |  |
|                                         |                    |                                    |                                                                                              | <ul> <li>β<sub>2</sub>=0.126 8; B(E2)↑=0.45 3</li> <li>J<sup>π</sup>: 788.742γ E2 to 0<sup>+</sup>, L(p,t)=2.</li> <li>T<sub>1/2</sub>: weighted average of 2.06 ps 14 from B(E2)↑ in Coulomb Excitation and 1.97 ps 4 from RDDS in Coulomb Excitation.</li> <li>μ: from g-factor=0.26 8 measured using the Time-Dependent Recoil Into Vacuum (TDRIM) technique (2014Na15).</li> </ul>                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 1476.93 9                               | $0^{+}$            |                                    | B GIK                                                                                        | $\beta_2$ and B(E2) from Coulomb Excitation.<br>$J^{\pi}$ : 1476.9 $\gamma$ E0 to 0 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 1510.80 <i>15</i>                       | 2+                 | 0.834 ps <i>20</i>                 | B G IJK                                                                                      | $J^{\pi}$ : 722.2 $\gamma$ M1 to 2 <sup>+</sup> , 1510.5 $\gamma$ E2 to 0 <sup>+</sup> ; systematics of N=80 nuclides. $T_{1/2}$ : from Coulomb excitation by DSAM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 1826.51 <sup>@</sup> 10                 | 4+                 | <40 ps                             | CDEFGHIJK                                                                                    | $J^{\pi}$ : 1037.8 $\gamma$ E2 to 2 <sup>+</sup> . See $J^{\pi}$ comment for 2137 level. $T_{1/2}$ : from $\gamma\gamma(t)$ in $^{130}$ Te( $^{12}$ C,4 $^{12}$ N).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 2129.28 <sup>@</sup> 12                 | 7-                 | 8.73 ms 20                         | CDEFGHI J                                                                                    | %IT=100 $J^{\pi}$ : 302.8 $\gamma$ E3 to 4 <sup>+</sup> ; L(p,t)=7. $T_{1/2}$ : from $\gamma$ (t) in <sup>138</sup> Ce IT decay (1977Go15 and 1960Mo19). Configuration— $\chi$ d <sup>-1</sup> b <sup>-1</sup> (1976Lu05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 2137.00 <i>13</i>                       | 4+                 |                                    | BC EFGHI                                                                                     | Configuration= $vd_{3/2}^{-1}h_{11/2}^{-1}$ (1976Lu05).<br>$J^{\pi}$ : L(p,t)=5,6 for 2217 level; 80.4 $\gamma$ from 2217 to 2137 level, 1348.1 $\gamma$ E2 from 2137 level to 2 <sup>+</sup> ; and 390.9 $\gamma$ E1 from 2217 level to 1826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |

# 138Ce Levels (continued)

| E(level) <sup>†</sup>                            | ${ m J}^{\pi}$                                | T <sub>1/2</sub> ‡ | XREF        | Comments                                                                                                                                                                         |  |  |  |  |  |
|--------------------------------------------------|-----------------------------------------------|--------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                  |                                               |                    |             | level, 1037.8 $\gamma$ E2 from 1826 level to 2 <sup>+</sup> , establish $J^{\pi}(1826)=4^{+}$ ,                                                                                  |  |  |  |  |  |
| 24420 =                                          | (0.1)                                         |                    |             | $J^{\pi}(2137)=4^{+}$ and $J^{\pi}(2217)=5^{-}$ .                                                                                                                                |  |  |  |  |  |
| 2142.9 7                                         | $(2^{+})$                                     | 123 fs 7           | K           | $J^{\pi}$ : 1354 $\gamma$ (M1+E2) to 2 <sup>+</sup> , 2143 $\gamma$ to 0 <sup>+</sup> . $T_{1/2}$ : from Coulomb excitation by DSAM.                                             |  |  |  |  |  |
| 2177.37 16                                       | (3-)                                          |                    | GIK         | $B(E3)\uparrow=0.163\ 9\ (2006Ra08)$                                                                                                                                             |  |  |  |  |  |
| 2177.57 10                                       | (3 )                                          |                    | G I K       | $J^{\pi}$ : suggested by 2006Ra08 in Coulomb excitation based on $\gamma(\theta)$ .                                                                                              |  |  |  |  |  |
|                                                  |                                               |                    |             | $J^{\pi}$ =(3 <sup>+</sup> ) suggested by 1987Lo12 in ( $\alpha$ ,2n $\gamma$ ) but no experimental                                                                              |  |  |  |  |  |
|                                                  |                                               |                    |             | evidence.                                                                                                                                                                        |  |  |  |  |  |
| 2217 41 12                                       | <b>5</b> -                                    | 450 20             | 6 PP6WT 1   | B(E3)↑ from Coulomb excitation (2006Ra08).                                                                                                                                       |  |  |  |  |  |
| 2217.41 <i>12</i>                                | 5-                                            | 450 ps <i>30</i>   | C EFGHIJ    | $J^{\pi}$ : L(p,t)=5,6; 390.9 $\gamma$ E1 to 4 <sup>+</sup> . See $J^{\pi}$ comment for 2137 level.                                                                              |  |  |  |  |  |
|                                                  |                                               |                    |             | $T_{1/2}$ : from $\gamma\gamma(t)$ in <sup>130</sup> Te( <sup>12</sup> C,4n $\gamma$ ). Other: <0.3 ns from $\gamma\gamma(t)$ in <sup>138</sup> Pr $\varepsilon$ decay (2.03 h). |  |  |  |  |  |
| 2236.54 15                                       | 2+                                            | 56.8 fs <i>35</i>  | в к         | $J^{\pi}$ : 2236.5 $\gamma$ E2 to 0 <sup>+</sup> , 1447.8 $\gamma$ M1+E2 to 2 <sup>+</sup> .                                                                                     |  |  |  |  |  |
| 2230.5+ 15                                       | 2                                             | 30.0 13 33         | B R         | $T_{1/2}$ : from Coulomb excitation by DSAM.                                                                                                                                     |  |  |  |  |  |
| 2293.97 <sup>@</sup> 12                          | 6+                                            | 880 ps 19          | FGHI        | $J^{\pi}$ : 467.5 $\gamma$ E2 to 4 <sup>+</sup> , 157.0 $\gamma$ E2 to 4 <sup>+</sup> , 164.7 $\gamma$ (E1) to 7 <sup>-</sup> .                                                  |  |  |  |  |  |
| 22/3.// 12                                       | o .                                           | 000 ps 17          | 1 0111      | $T_{1/2}$ : from $\gamma \gamma(t)$ in $^{130}$ Te( $^{12}$ C,4n $\gamma$ ).                                                                                                     |  |  |  |  |  |
| 2339.85 10                                       | $0^{+}$                                       |                    | в ј         | $J^{\pi}$ : L(p,t)=0; log $f$ t=5.7 from 1 <sup>+</sup> parent in <sup>138</sup> Pr $\varepsilon$ decay (1.45 m).                                                                |  |  |  |  |  |
| 2393.91 23                                       | $(3^{-})$                                     |                    | G IJ        | $J^{\pi}$ : L(p,t)=(2,3); 176.5 $\gamma$ to 5 <sup>-</sup> .                                                                                                                     |  |  |  |  |  |
| 2396.11 22                                       | 6+                                            |                    | GΙ          | $J^{\pi}$ : 569.6 $\gamma$ E2 to 4 <sup>+</sup> , no $\gamma$ to J<4.                                                                                                            |  |  |  |  |  |
| 2443.90 25                                       | 4+                                            |                    | G IJ        | $J^{\pi}$ : 933.1 $\gamma$ Q to 2 <sup>+</sup> , L(p,t)=4 or 5.                                                                                                                  |  |  |  |  |  |
| 2470.99 15                                       | $(1,2^+)$                                     | 109 fs 6           | В К         | $J^{\pi}$ : 1682.1 $\gamma$ to 2 <sup>+</sup> , 2471.1 $\gamma$ to 0 <sup>+</sup> .                                                                                              |  |  |  |  |  |
| 2471.68 <i>18</i><br>2642.4 <i>3</i>             | $(4^+,5^+)$<br>$2^+$                          | 66 fs 32           | G I<br>B JK | $J^{\pi}$ : 334.6 $\gamma$ (M1+E2) to 4 <sup>+</sup> , 177.8 $\gamma$ to 6 <sup>+</sup> . $J^{\pi}$ : L(p,t)=2 or 3, 2642.0 $\gamma$ to 0 <sup>+</sup> .                         |  |  |  |  |  |
| 2042.4 3                                         | 2                                             | 00 18 32           | B JK        | $T_{1/2}$ : from Coulomb excitation by DSAM.                                                                                                                                     |  |  |  |  |  |
| 2719 15                                          | $(4^+,5^-)$                                   |                    | J           | $J^{\pi}$ : L(p,t)=4,5.                                                                                                                                                          |  |  |  |  |  |
| 2733.09 18                                       | 6 <sup>+</sup>                                |                    | FG I        | $J^{\pi}$ : 906.6 $\gamma$ E2 to 4 <sup>+</sup> , 439.1 $\gamma$ M1+E2 to 6 <sup>+</sup> .                                                                                       |  |  |  |  |  |
| 2748.78 18                                       | 5+                                            |                    | GI          | $J^{\pi}$ : 611.7 $\gamma$ M1 to 4 <sup>+</sup> and 454.9 $\gamma$ M1+E2 to 6 <sup>+</sup> .                                                                                     |  |  |  |  |  |
| 2764.94 13                                       | 6-                                            |                    | C FGHI      | $J^{\pi}$ : 547.5 $\gamma$ M1 to 5 <sup>-</sup> , 635.7 $\gamma$ M1 to 7 <sup>-</sup> .                                                                                          |  |  |  |  |  |
| 2885 <i>16</i><br>2899.25 <i>18</i>              | $(2^+,3^-)$ $6^-$                             |                    | C G I       | $J^{\pi}$ : L(p,t)=2,3.<br>$J^{\pi}$ : 770.1γ M1 to 7 <sup>-</sup> , 681.7γ ΔJ=1 to 5 <sup>-</sup> .                                                                             |  |  |  |  |  |
| 2903.21 20                                       | $(1,2^+)$                                     |                    | В           | $J^{\pi}$ : 1426.9 $\gamma$ to 0 <sup>+</sup> , 2114.4 $\gamma$ to 2 <sup>+</sup> .                                                                                              |  |  |  |  |  |
| 2907.22 22                                       | (3,4,5)                                       |                    | GΙ          | $J^{\pi}$ : 1080.7 $\gamma$ D+Q to 4 <sup>+</sup> .                                                                                                                              |  |  |  |  |  |
| 2942 16                                          | $(4^+,5^-)$                                   |                    | J           | $J^{\pi}$ : L(p,t)=4,5.                                                                                                                                                          |  |  |  |  |  |
| 2950.5 <i>3</i>                                  | $(2^-,3^-,4^-)$                               |                    | GΙ          | $J^{\pi}$ : 556.6 $\gamma$ M1 to (3 <sup>-</sup> ).                                                                                                                              |  |  |  |  |  |
| 2995.72 22                                       | 6+                                            |                    | GI          | $J^{\pi}$ : 1169.2 $\gamma$ E2, $\Delta J$ =2 to 4 <sup>+</sup> .                                                                                                                |  |  |  |  |  |
| 3005 <i>16</i><br>3082 <i>19</i>                 | $(4^+,5^-)$<br>$(4^+,5^-)$                    |                    | J<br>J      | $J^{\pi}$ : L(p,t)=4,5.<br>$J^{\pi}$ : L(p,t)=4,5.                                                                                                                               |  |  |  |  |  |
| 3109.02 <sup>@</sup> 13                          | ( <del>+</del> , <i>5</i> )<br>8 <sup>+</sup> |                    | FGHI        | $J^{\pi}$ : 979.7 $\gamma$ E1 to 7 <sup>-</sup> , 815.1 $\gamma$ E2 to 6 <sup>+</sup> .                                                                                          |  |  |  |  |  |
| 3176.27 23                                       | 0                                             |                    | GI          | J . 979.77 E1 to 7 , 613.17 E2 to 0 .                                                                                                                                            |  |  |  |  |  |
| 3177.4? 7                                        |                                               |                    | В           |                                                                                                                                                                                  |  |  |  |  |  |
| 3214.17 23                                       | (5,6,7)                                       |                    | GΙ          | $J^{\pi}$ : 920.2 $\gamma$ to 6 <sup>+</sup> , $\Delta J$ <2 from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ .                                                                      |  |  |  |  |  |
| 3220 16                                          | $(2^+,3^-)$                                   |                    | J           | $J^{\pi}$ : L(p,t)=2,3.                                                                                                                                                          |  |  |  |  |  |
| 3229.8 <i>3</i>                                  | (2-)                                          |                    | GI          | TT T ( 1) (2)                                                                                                                                                                    |  |  |  |  |  |
| 3277 <i>16</i><br>3331.59 <i>20</i>              | (3 <sup>-</sup> )<br>8 <sup>-</sup>           |                    | J<br>F      | $J^{\pi}$ : L(p,t)=(3).<br>$J^{\pi}$ : 1202.3 $\gamma$ M1 to 7 $^{-}$ .                                                                                                          |  |  |  |  |  |
| 3356 18                                          | $(2^+,3^-)$                                   |                    | r           | $J^{\pi}$ : L(p,t)=2,3.                                                                                                                                                          |  |  |  |  |  |
| 3367.8 4                                         | (2 ,5 )                                       |                    | С           | υ . Δ(p,v) 2,3.                                                                                                                                                                  |  |  |  |  |  |
| 3429 <i>16</i>                                   | $(4^+,5^-)$                                   |                    | J           | $J^{\pi}$ : L=4,5 in (p,t) dataset.                                                                                                                                              |  |  |  |  |  |
| 3430.2 <i>3</i>                                  | $(7)^{+}$                                     |                    | FG I        | $J^{\pi}$ : 697.1 $\gamma$ M1(+E2) to 6 <sup>+</sup> ; no $\gamma$ to J<6. 2009Bh04 in ( $^{12}$ C,4n $\gamma$ )                                                                 |  |  |  |  |  |
|                                                  |                                               |                    |             | assigned (8 <sup>+</sup> ) assuming 697.1 $\gamma$ (E2) to 6 <sup>+</sup> but no experimental                                                                                    |  |  |  |  |  |
| h                                                | _                                             |                    |             | support is presented.                                                                                                                                                            |  |  |  |  |  |
| 3507.30 <sup>b</sup> 17                          | 9-                                            |                    | F           | $J^{\pi}$ : 1378.0 $\gamma$ E2 to 7 <sup>-</sup> , 175.7 $\gamma$ to 8 <sup>-</sup> , 398.3 $\gamma$ to 8 <sup>+</sup> .                                                         |  |  |  |  |  |
| 3531 <i>16</i><br>3539.21 <sup>@</sup> <i>15</i> | 10+                                           | 92 2               | J           | (/ IT. 100                                                                                                                                                                       |  |  |  |  |  |
| 5559.21° 15                                      | 10 <sup>+</sup>                               | 82 ns 2            | EFGHI       | %IT=100                                                                                                                                                                          |  |  |  |  |  |

# 138Ce Levels (continued)

| E(level) <sup>†</sup>                | $\mathrm{J}^{\pi}$                 | $T_{1/2}^{\ddagger}$ | XREF      | Comments                                                                                                                                                                          |
|--------------------------------------|------------------------------------|----------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                                    |                      |           | $\mu$ =-1.70 3 (1980Ba68,2014StZZ); Q=0.77 (1983Da29,2016St14)                                                                                                                    |
|                                      |                                    |                      |           | $J^{\pi}$ : 430.2 $\gamma$ E2 to 8 <sup>+</sup> , band structure.                                                                                                                 |
|                                      |                                    |                      |           | $T_{1/2}$ : weighted average of 81 ns 2 from ( $^{12}$ C,4n $\gamma$ ), 81 ns 5 from ( $\alpha$ ,4n $\gamma$ ), 82                                                                |
|                                      |                                    |                      |           | ns 2 from ( $^{18}O,4n\gamma$ ).                                                                                                                                                  |
|                                      |                                    |                      |           | $\mu$ : from g-factor=-0.170 3 in 1980Ba68 in ( $^{18}$ O,4n $\gamma$ ). Other: g-factor=-0.176                                                                                   |
|                                      |                                    |                      |           | 10 from 1980Me11 in ( <sup>12</sup> C,4nγ).<br>MOMM2: estimated by 1983Da29 using an effective charge of 1.87.                                                                    |
|                                      |                                    |                      |           | Configuration= $vh_{11/2}^{-2}$ (1976Lu05).                                                                                                                                       |
| 3545.79 <i>23</i>                    | (9-)                               |                      | F         | E(level): this level is constructed by 2009Bh04 in ( $^{12}$ C,4n $\gamma$ ) from the                                                                                             |
|                                      | (- )                               |                      | _         | placement of the $396.7\gamma-1416.5\gamma$ cascade from the $3942$ , $11^+$ level to the                                                                                         |
|                                      |                                    |                      |           | 2129, 7 <sup>-</sup> level. 1999Zh28 in ( <sup>18</sup> O,4nγ) placed the cascade in opposite order,                                                                              |
|                                      |                                    |                      |           | making a level at E=2526 level instead. A 1416.5 $\gamma$ is also observed but                                                                                                    |
|                                      |                                    |                      |           | unplaced in $^{138}\text{Pr}\ \varepsilon$ decay (2.03 h) from 7 <sup>-</sup> parent decay and it could                                                                           |
|                                      |                                    |                      |           | indicate that the placement of this $\gamma$ from the 3942, 11 <sup>+</sup> level in ( <sup>18</sup> O,4n $\gamma$ )                                                              |
|                                      |                                    |                      |           | is less likely and its placement from the 3546, $(9^-)$ level is favored.                                                                                                         |
| 3646 <i>16</i>                       | $(7^{-})$                          |                      | J         | $J^{\pi}$ : 1416.5 $\gamma$ (E2) to 7 <sup>-</sup> . $J^{\pi}$ : L(p,t)=(7).                                                                                                      |
| 3670.6 <i>3</i>                      | $(6,7^{-})$                        |                      | С         | $J^{\pi}$ : 1453.3 $\gamma$ to 5 <sup>-</sup> , 1540.9 $\gamma$ to 7 <sup>-</sup> , log $ft$ =7.1 from 7 <sup>-</sup> parent.                                                     |
| 3800.6 4                             | $(6,7^{-})$                        |                      | C         | $J^{\pi}$ : 1671.2 $\gamma$ to 7 <sup>-</sup> , 1583.2 $\gamma$ to 5 <sup>-</sup> , log $ft$ =7.2 from 7 <sup>-</sup> parent.                                                     |
| 3926.7 5                             | $(6,7^{-})$                        |                      | C         | $J^{\pi}$ : 1797.5 $\gamma$ to 7 <sup>-</sup> , 1709.2 $\gamma$ to 5 <sup>-</sup> , log $ft$ =7.2 from 7 <sup>-</sup> parent.                                                     |
| 3942.42 <sup>@</sup> 18              | 11+                                | 140 ps 11            | EFGHI     | $J^{\pi}$ : 403.2 $\gamma$ M1+E2 to 10 <sup>+</sup> , 396.7 $\gamma$ (M2) to (9 <sup>-</sup> ), band structure.                                                                   |
|                                      |                                    |                      |           | $T_{1/2}$ : from $\gamma\gamma(t)$ in ( $^{12}C,4n\gamma$ ). Other: <1.5 ns from 1976Lu07.                                                                                        |
| 4050.0? 3                            | (10=)                              |                      | GI        | TT (22.0 (181))                                                                                                                                                                   |
| 4139.3 <i>3</i><br>4157.0 <i>5</i>   | $(10^{-})$ 6,7,8                   |                      | F<br>C    | $J^{\pi}$ : 632.0 $\gamma$ (M1) to 9 <sup>-</sup> . $J^{\pi}$ : 2026.6 $\gamma$ to 7 <sup>-</sup> , 1392.6 $\gamma$ to 6 <sup>-</sup> , log $ft$ =6.7 from 7 <sup>-</sup> parent. |
| 4204.0 3                             | $(10^{-})$                         |                      | F         | $J^{\pi}$ : proposed in ( $^{12}$ C,4 $^{19}$ ).                                                                                                                                  |
| 4248.1 7                             | $(6,7^{-})$                        |                      | c         | $J^{\pi}$ : 2119.3 $\gamma$ to 7 <sup>-</sup> , 2030.2 $\gamma$ to 5 <sup>-</sup> , log $ft$ =7.1 from 7 <sup>-</sup> parent.                                                     |
| 4359.93 <sup>@</sup> 23              | 12+                                |                      | EFGHI     | $J^{\pi}$ : 417.5 $\gamma$ M1 to 11 <sup>+</sup> , band structure.                                                                                                                |
| 4401.9 <sup>b</sup> 3                | 10-                                |                      | F         | $J^{\pi}$ : 894.6 $\gamma$ M1 to 9 <sup>-</sup> , band structure.                                                                                                                 |
| 4781.51 25                           | $(12^{+})$                         |                      | F         | $J^{\pi}$ : 839.1 $\gamma$ (M1+E2) to 11 <sup>+</sup> .                                                                                                                           |
| 4843.0 3                             | 13-                                |                      | F         | $J^{\pi}$ : 483.0 $\gamma$ E1 to 12 <sup>+</sup> .                                                                                                                                |
| 4974.64 <i>25</i><br>5071.3 <i>4</i> | 13 <sup>+</sup> (11 <sup>-</sup> ) |                      | EF H<br>F | $J^{\pi}$ : 614.7 $\gamma$ M1 to 12 <sup>+</sup> ; no $\gamma$ to J<12. $J^{\pi}$ : 932.0 $\gamma$ (M1) to (10 <sup>-</sup> ).                                                    |
| 5089.32 24                           | 12-                                |                      | EF H      | $J^{\pi}$ : 1146.9 $\gamma$ E1 to 11 <sup>+</sup> , 729.3 $\gamma$ to 12 <sup>+</sup> .                                                                                           |
| 5214.30 <sup>@</sup> 24              | 13-                                |                      | EFGHI     | $J^{\pi}$ : 854.4 $\gamma$ E1 to 12 <sup>+</sup> , 124.8 $\gamma$ M1+E2 to 12 <sup>-</sup> , band structure.                                                                      |
| 5312.39 <sup>@</sup> 25              | 14 <sup>+</sup>                    | 80 ps 9              | EF H      | $J^{\pi}$ : 337.7 $\gamma$ M1 to 13 <sup>+</sup> , band structure.                                                                                                                |
|                                      |                                    | 1                    |           | $T_{1/2}$ : from $\gamma \gamma(t)$ in ( $^{12}$ C,4n $\gamma$ ).                                                                                                                 |
| 5387.7 <sup>b</sup> 4                | 11-                                |                      | F         | $J^{\pi}$ : 985.8 $\gamma$ M1 to 10 <sup>-</sup> , band structure.                                                                                                                |
| 5411.5 <sup>&amp;</sup> 3            | 14-                                |                      | F H       | $J^{\pi}$ : 197.9 $\gamma$ M1 to 13 <sup>-</sup> , 568.5 $\gamma$ M1 to 13 <sup>-</sup> , 99.1 $\gamma$ to 14 <sup>+</sup> , band structure.                                      |
| 5566.4 <sup>@</sup> 3                | 15 <sup>+</sup>                    |                      | F H       | $J^{\pi}$ : 254.0 $\gamma$ M1+E2 to 14 <sup>+</sup> , band structure.                                                                                                             |
| 5714.4 3                             | $(14^{-})$                         |                      | F         | $J^{\pi}$ : 500.1 $\gamma$ (M1) to 13 <sup>-</sup> .                                                                                                                              |
| 5726.6 <sup>a</sup> 3                | 14+                                |                      | F         | $J^{\pi}$ : 1366.7 $\gamma$ E2 to 12 <sup>+</sup> , band structure.                                                                                                               |
| 5731.0 <sup>&amp;</sup> 3            | 15-                                |                      | F H       | $J^{\pi}$ : 319.5 $\gamma$ M1 to 14 <sup>-</sup> , band structure.                                                                                                                |
| 5871.2 <sup>a</sup> 3<br>5955.3 4    | 15 <sup>+</sup>                    |                      | F<br>F    | $J^{\pi}$ : 896.6 $\gamma$ E2 to 13 <sup>+</sup> , 144.6 $\gamma$ to 14 <sup>+</sup> , band structure.                                                                            |
| 6014.4 <sup>@</sup> 3                | 16 <sup>+</sup>                    |                      | EF H      | $J^{\pi}$ : 448.0 $\gamma$ M1 to 15 <sup>+</sup> , band structure.                                                                                                                |
| 6134.7 3                             | $(14^{+})$                         |                      | F F       | $J^{\pi}$ : 1291.7 $\gamma$ (E1) to 13 $^{-}$ .                                                                                                                                   |
| 6328.7 <sup>b</sup> 4                | $(12^{-})$                         |                      | F         | $J^{\pi}$ : 941.0 $\gamma$ (M1) to 11 <sup>-</sup> , band structure.                                                                                                              |
| 6363.4 4                             | 16-                                |                      | F         | $J^{\pi}$ : 632.4 $\gamma$ M1 to 15 <sup>-</sup> , band structure.                                                                                                                |
| 6408.6 4                             | $(15^{-})$                         |                      | F         | $J^{\pi}$ : proposed in ( $^{12}$ C,4n $\gamma$ ) assuming 997.1 $\gamma$ (M1) to 14 $^{-}$ .                                                                                     |
| 6451.0 4                             | (10)                               |                      | F         |                                                                                                                                                                                   |
| 6451.2 <i>a</i> 4                    | 16 <sup>+</sup>                    |                      | F         | $J^{\pi}$ : 580.0 $\gamma$ M1 to 15 <sup>+</sup> , band structure.                                                                                                                |
| 6536.4 <sup>#</sup> 3                | $15^{(-)}$                         |                      | F         | $J^{\pi}$ : 1224.0 $\gamma$ (E1+M2), $\Delta J=1$ to 14 <sup>+</sup> , 970.0 $\gamma$ to 15 <sup>+</sup> , 149.1 $\gamma$ $\Delta J=1$ from 16 <sup>-</sup> .                     |
|                                      |                                    |                      | ·         |                                                                                                                                                                                   |

#### <sup>138</sup>Ce Levels (continued)

| E(level) <sup>†</sup>        | $\mathbf{J}^{\pi}$ | XREF | Comments                                                                                                                                                                                                                                                               |
|------------------------------|--------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6597.6 <i>5</i>              |                    | F    |                                                                                                                                                                                                                                                                        |
| 6606.3 <mark>a</mark> 4      | 17+                | F    | $J^{\pi}$ : 155.1 $\gamma$ M1 to 16 <sup>+</sup> , band structure.                                                                                                                                                                                                     |
| 6685.5 <sup>#</sup> 3        | 16-                | EF   | $J^{\pi}$ : 1119.1 $\gamma$ E1 to 15 <sup>+</sup> , band structure. $J^{\pi}$ =16 <sup>+</sup> assigned by 1999Zh28 in ( <sup>18</sup> O,4n $\gamma$ ) is inconsistent with $\gamma$ (DCO) and $\gamma$ (pol) data in ( <sup>12</sup> C,4n $\gamma$ ) and not adopted. |
| 6738.3 <i>4</i>              | $(16^{-})$         | F    | $J^{\pi}$ : proposed in ( $^{12}$ C, $4n\gamma$ ) assuming 1007.3 $\gamma$ (M1) to 15 $^{-}$ .                                                                                                                                                                         |
| 6841.7 <sup>@</sup> 3        | 17+                | EF   | $J^{\pi}$ : 827.3 $\gamma$ M1 to 16 <sup>+</sup> , 1275.3 $\gamma$ $\Delta J$ =2 to 15 <sup>+</sup> , band structure.                                                                                                                                                  |
| 6859.7 <i>5</i>              |                    | F    |                                                                                                                                                                                                                                                                        |
| 6889.0 <sup>#</sup> <i>3</i> | $17^{-}$           | EF   | $J^{\pi}$ : 874.6 $\gamma$ E1 to 16 <sup>+</sup> , 203.5 $\gamma$ M1 to 16 <sup>-</sup> , band structure.                                                                                                                                                              |
| 7074.0 <mark>&amp;</mark> 4  | $(17^{-})$         | F    | $J^{\pi}$ : proposed in ( $^{12}$ C,4n $\gamma$ ) assuming 710.6 $\gamma$ (M1) to 16 <sup>-</sup> and 1343.0 $\gamma$ (E2) to 15 <sup>-</sup> .                                                                                                                        |
| 7104.7 <sup>@</sup> 3        | 18 <sup>+</sup>    | EF   | $J^{\pi}$ : 1090.3 $\gamma$ E2 to 16 <sup>+</sup> , 263.0 $\gamma$ M1 to 17 <sup>+</sup> , band structure.                                                                                                                                                             |
| 7185.3 4                     | $(16^{-})$         | F    | $J^{\pi}$ : proposed in ( $^{12}$ C, $^{4}$ n $\gamma$ ).                                                                                                                                                                                                              |
| 7211.3 <sup>#</sup> <i>3</i> | 18-                | EF   | $J^{\pi}$ : 322.3 $\gamma$ M1 to 17 <sup>-</sup> , band structure.                                                                                                                                                                                                     |
| 7225.2 <i>3</i>              | $(16^{-})$         | F    | $J^{\pi}$ : proposed in ( $^{12}$ C, $4$ n $\gamma$ ).                                                                                                                                                                                                                 |
| 7392.3 <mark>a</mark> 5      | $(18^{+})$         | F    | $J^{\pi}$ : proposed in ( $^{12}$ C, $^{4}$ n $\gamma$ ) assuming 786.0 $\gamma$ (M1) to 17 $^{+}$ .                                                                                                                                                                   |
| 7427.6 <i>4</i>              |                    | F    |                                                                                                                                                                                                                                                                        |
| 7532.4 <i>3</i>              | (17-)              | F    | $J^{\pi}$ : 347.1 $\gamma$ (M1) to (16 <sup>-</sup> ), 1518.0 $\gamma$ (E1) to 16 <sup>+</sup> .                                                                                                                                                                       |
| 7682.9 <i>4</i>              | 19 <sup>+</sup>    | EF   | $J^{\pi}$ : 578.2 $\gamma$ M1 to 18 <sup>+</sup> .                                                                                                                                                                                                                     |
| 7685.8 <sup>#</sup> 4        | 19-                | EF   | $J^{\pi}$ : 474.5 $\gamma$ M1 to 18 <sup>-</sup> , band structure.                                                                                                                                                                                                     |
| 7744.2 4                     | (18 <sup>-</sup> ) | F    | $J^{\pi}$ : 211.8 $\gamma$ (M1+E2) to (17 <sup>-</sup> ).                                                                                                                                                                                                              |
| 7803.2 <sup>@</sup> 4        | 20+                | EF   | $J^{\pi}$ : 120.3 $\gamma$ M1+E2 to 19 <sup>+</sup> , 698.5 $\gamma$ to 18 <sup>+</sup> , band structure.                                                                                                                                                              |
| 8322.3 4                     | $(20^{+})$         | F    | $J^{\pi}$ : 211.8 $\gamma$ (M1) to 19 <sup>+</sup> .                                                                                                                                                                                                                   |
| 8350.3# 4                    | $20^{-}$           | EF   | $J^{\pi}$ : 664.5 $\gamma$ M1 to 19 <sup>-</sup> , 1139.0 $\gamma$ to 18 <sup>-</sup> , band structure.                                                                                                                                                                |
| 8709.6 <sup>#</sup> 4        | 21-                | F    | $J^{\pi}$ : 359.3 $\gamma$ M1 to 20 <sup>-</sup> , band structure.                                                                                                                                                                                                     |
| 8873.5 <sup>@</sup> 4        | 22+                | EF   | $J^{\pi}$ : 1070.3 $\gamma$ E2 to 20 <sup>+</sup> , band structure.                                                                                                                                                                                                    |
| 8921.1 <i>4</i>              |                    | F    |                                                                                                                                                                                                                                                                        |
| 8957.9 <sup>#</sup> <i>5</i> | $22^{(-)}$         | F    | $J^{\pi}$ : 248.3 $\gamma$ (M1), $\Delta J=1$ to 21 <sup>-</sup> , band structure.                                                                                                                                                                                     |
| 8978.3 4                     |                    | F    |                                                                                                                                                                                                                                                                        |
| 9430.9 <sup>@</sup> 5        | $(23^{+})$         | F    | $J^{\pi}$ : 557.4 $\gamma$ (M1) to 22 <sup>+</sup> , band structure.                                                                                                                                                                                                   |
| 9511.4 <i>4</i>              |                    | F    |                                                                                                                                                                                                                                                                        |

<sup>&</sup>lt;sup>†</sup> From least-squares fit to E $\gamma$ , assuming  $\Delta$ E $\gamma$ =1 keV when unknown.

<sup>&</sup>lt;sup>‡</sup> From Coulomb excitation by DSAM and ( $^{12}$ C,4n $\gamma$ ) by  $\gamma\gamma$ (t), unless otherwise noted.

<sup>#</sup> Band(A): Band based on 15<sup>-</sup>. Possible magnetic-rotational band with proposed configuration=  $\pi g_{7/2} \otimes \pi h_{11/2} \otimes \nu h_{11/2}^{-2}$ 

<sup>&</sup>lt;sup>@</sup> Seq.(E): Yrast sequence. Configurations:  $[\pi(g_{7/2}^6 d_{5/2}^2) \otimes \nu h_{11/2}^{-2} + \pi(g_{7/2}^5 d_{5/2}^3) \otimes \nu h_{11/2}^{-2}]$  for positive-parity states and  $[\pi(g_{7/2}^6 d_{5/2}^1 h_{11/2}^1) \otimes \nu h_{11/2}^{-2}] + [\pi(g_{7/2}^5 d_{5/2}^2 h_{11/2}^1) \otimes \nu h_{11/2}^{-2}] + [\pi(g_{7/2}^5 d_{5/2}^3) \otimes \nu (s_{1/2}^{-1} h_{11/2}^{-1})]$  for negative-parity states. Above 6 MeV excitation, configuration=  $\pi h_{11/2}^2 \otimes \nu h_{11/2}^{-2}$ .

 $<sup>^{\&</sup>amp;} \; Band(B) \colon Band \; based \; on \; 14^{-}. \; Possible \; configuration = \pi(g_{7/2}d_{5/2}) \otimes \; \nu(h_{11/2}^{-1}d_{3/2}^{-1}).$ 

 $<sup>^</sup>a$  Band(C): Band based on 14<sup>+</sup>.  $^b$  Band(D): Band based on 9<sup>-</sup>. Possible configuration= $\nu h_{11/2} \otimes \nu d_{3/2}$  or  $\nu h_{11/2} \otimes \nu s_{1/2}$ .

## $\gamma$ (138Ce)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$ | Mult.           | $\alpha^{\dagger}$    | $I_{(\gamma+ce)}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|----------------------|-------------------------|-------------------------|-------------------------------------|-----------------|-----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 788.744      | 2+                   | 788.742 8               | 100                     | 0.0 0+                              | E2 <sup>@</sup> | 0.00342               |                   | $\alpha(K)$ =0.00291 4; $\alpha(L)$ =0.000406 6; $\alpha(M)$ =8.52×10 <sup>-5</sup> 12 $\alpha(N)$ =1.88×10 <sup>-5</sup> 3; $\alpha(O)$ =3.01×10 <sup>-6</sup> 5; $\alpha(P)$ =2.10×10 <sup>-7</sup> 3 B(E2)(W.u.)=21.2 +16-14 E <sub>y</sub> : from <sup>138</sup> La $\beta$ <sup>-</sup> decay.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1476.93      | 0+                   | 688.2 1                 | 100                     | 788.744 2+                          | E2&             | 0.00473               |                   | $\alpha(K)$ =0.00400 $6$ ; $\alpha(L)$ =0.000576 $8$ ; $\alpha(M)$ =0.0001211 $17$<br>$\alpha(N)$ =2.67×10 <sup>-5</sup> $4$ ; $\alpha(O)$ =4.24×10 <sup>-6</sup> $6$ ; $\alpha(P)$ =2.87×10 <sup>-7</sup> $4$<br>$E_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m).                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                      | 1476.9 2                |                         | $0.0 	 0^{+}$                       | E0&             |                       | 3.1 3             | E <sub>y</sub> , $I_{(y+ce)}$ : from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1510.80      | 2+                   | 722.2 2                 | 75.9 9                  | 788.744 2+                          | M1#             | 0.00630               |                   | $\alpha(K)$ =0.00541 8; $\alpha(L)$ =0.000700 10; $\alpha(M)$ =0.0001458 21 $\alpha(N)$ =3.24×10 <sup>-5</sup> 5; $\alpha(O)$ =5.27×10 <sup>-6</sup> 8; $\alpha(P)$ =4.09×10 <sup>-7</sup> 6 B(M1)(W.u.)=0.0301 11 E <sub><math>\gamma</math></sub> : weighted average of 722.3 3 from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m), 722.1 2 from <sup>136</sup> Ba( $\alpha$ ,2n $\gamma$ ), and 722 1 from Coulomb excitation. I <sub><math>\gamma</math></sub> : weighted average of 89 11 from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m), 81 3 from <sup>139</sup> La( $\rho$ ,2n $\gamma$ ), and 75.7 6 Coulomb Excitation. Other: 90 3 from <sup>136</sup> Ba( $\alpha$ ,2n $\gamma$ ). |
|              |                      |                         |                         |                                     |                 |                       |                   | Mult.: Other: M1+E2 from Coulomb Excitation with $\delta$ =-1.97 +32-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                      | 1510.5 3                | 100.0 6                 | 0.0 0+                              | E2              | 9.54×10 <sup>-4</sup> |                   | based on $\gamma(\theta)$ .<br>$\alpha(K)=0.000751$ 11; $\alpha(L)=9.63\times10^{-5}$ 14; $\alpha(M)=2.00\times10^{-5}$ 3<br>$\alpha(N)=4.44\times10^{-6}$ 7; $\alpha(O)=7.19\times10^{-7}$ 10; $\alpha(P)=5.47\times10^{-8}$ 8;<br>$\alpha(IPF)=8.10\times10^{-5}$ 12<br>B(E2)(W.u.)=1.15 4                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |                      |                         |                         |                                     |                 |                       |                   | E <sub><math>\gamma</math></sub> : weighted average of 1510.2 2 from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m), 1510.9 2 from <sup>136</sup> Ba( $\alpha$ ,2n $\gamma$ ), and 1510 $I$ from Coulomb excitation. I <sub><math>\gamma</math></sub> : from Coulomb excitation. Mult.: Q from $\gamma(\theta)$ in <sup>136</sup> Ba( $\alpha$ ,2n $\gamma$ ) and Coulomb excitation; M2 is ruled out by RUL.                                                                                                                                                                                                                                                                                        |
| 1826.51      | 4+                   | 1037.8 <i>I</i>         | 100                     | 788.744 2+                          | E2              | 0.00186               |                   | $\alpha(K)=0.001594\ 23;\ \alpha(L)=0.000213\ 3;\ \alpha(M)=4.44\times10^{-5}\ 7$<br>$\alpha(N)=9.83\times10^{-6}\ 14;\ \alpha(O)=1.583\times10^{-6}\ 23;\ \alpha(P)=1.157\times10^{-7}\ 17$<br>B(E2)(W.u.)>0.28<br>$E_{\gamma}$ : weighted average of 1038.0 $I$ from $^{138}Pr\ \varepsilon$ decay (2.03 h),<br>1037.6 $9$ from $^{138}Ce$ IT decay, 1037.6 $I$ from $^{130}Te(^{12}C,4n\gamma)$ ,<br>1037.7 $I$ from $^{136}Ba(\alpha,2n\gamma)$ , 1037.6 $I$ from $^{138}Ba(\alpha,4n\gamma)$ , and                                                                                                                                                                                              |
| 2129.28      | 7-                   | 302.8 1                 | 100                     | 1826.51 4 <sup>+</sup>              | Е3              | 0.183                 |                   | 1038 <i>I</i> from Coulomb excitation.  Mult.: based on ce data in <sup>138</sup> Pr $\varepsilon$ decay (2.03 h), $\gamma(\theta)$ in <sup>136</sup> Ba( $\alpha$ ,2n $\gamma$ ), <sup>138</sup> Ba( $\alpha$ ,4n $\gamma$ ) and Coulomb excitation, and $\gamma$ (DCO) and $\gamma$ (pol) in <sup>130</sup> Te( <sup>12</sup> C,4n $\gamma$ ). $\alpha$ (K)=0.1236 <i>18</i> ; $\alpha$ (L)=0.0462 <i>7</i> ; $\alpha$ (M)=0.01033 <i>15</i> $\alpha$ (N)=0.00223 <i>4</i> ; $\alpha$ (O)=0.000324 <i>5</i> ; $\alpha$ (P)=8.31×10 <sup>-6</sup> <i>12</i> B(E3)(W.u.)=0.450 <i>12</i>                                                                                                             |

S

## $\gamma(^{138}\text{Ce})$ (continued)

|               |                      |                         |                                |         |                      |         | $\gamma$ <sup>(136</sup> Ce) (co | ontinued)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|----------------------|-------------------------|--------------------------------|---------|----------------------|---------|----------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$ | ${\rm I}_{\gamma}^{ \ddagger}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult.   | δ                                | $lpha^\dagger$        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2137.00       | 4+                   | 1348.1 2                | 100                            | 788.744 | 2+                   | E2      |                                  | 1.12×10 <sup>-3</sup> | E <sub>γ</sub> : weighted average of 302.7 <i>I</i> from <sup>138</sup> Pr $\varepsilon$ decay, 302.9 8 from <sup>138</sup> Ce IT decay, 302.9 <i>I</i> from <sup>130</sup> Te( <sup>12</sup> C,4nγ), 302.7 2 from <sup>136</sup> Ba( $\alpha$ ,2nγ), and 302.7 3 from <sup>138</sup> Ba( $\alpha$ ,4nγ).  Mult.: based on ce data in <sup>138</sup> Pr $\varepsilon$ decay (2.03 h) and <sup>138</sup> Ce IT decay. $\alpha$ (K)=0.000937 <i>14</i> ; $\alpha$ (L)=0.0001213 <i>17</i> ;               |
| 2137.00       | ·                    | 1310.12                 |                                | 700.711 | 2                    |         |                                  | 1.12/10               | $\alpha(M)=2.52\times10^{-5} 4$<br>$\alpha(M)=2.52\times10^{-6} 8$ ; $\alpha(O)=9.05\times10^{-7} 13$ ; $\alpha(P)=6.81\times10^{-8}$<br>$10$ ; $\alpha(IPF)=3.17\times10^{-5} 5$<br>$E_{\gamma}$ : weighted average of 1347.8 $10$ from $^{138}Pr \ \varepsilon$ decay (1.45 m), 1348.0 $3$ from $^{138}Pr \ \varepsilon$ decay (2.03 h), 1348.1 2 from $^{136}Ba(\alpha,2n\gamma)$ .                                                                                                                  |
|               |                      |                         |                                |         |                      |         |                                  |                       | Mult.: based on ce data in (p,2n $\gamma$ ) and ( $\alpha$ ,2n $\gamma$ ), $\gamma(\theta)$ in $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ), $\gamma$ (DCO) and $\gamma$ (pol) in $^{130}$ Te( $^{12}$ C,4n $\gamma$ ).                                                                                                                                                                                                                                                                                         |
| 2142.9        | (2 <sup>+</sup> )    | 1354 <i>I</i>           | 100 <i>I</i>                   | 788.744 | 2+                   | (M1+E2) | -0.83 +6-8                       | 0.00133 3             | $\alpha(K)$ =0.001120 22; $\alpha(L)$ =0.000143 3; $\alpha(M)$ =2.97×10 <sup>-5</sup> 6 $\alpha(N)$ =6.60×10 <sup>-6</sup> 13; $\alpha(O)$ =1.073×10 <sup>-6</sup> 21; $\alpha(P)$ =8.29×10 <sup>-8</sup> 17; $\alpha(IPF)$ =3.33×10 <sup>-5</sup> 6 B(M1)(W.u.)=0.032 +6-4; B(E2)(W.u.)=7.4 +12-13 E <sub><math>\gamma</math></sub> , I <sub><math>\gamma</math></sub> : from Coulomb excitation. Mult., $\delta$ : from Coulomb excitation based on $\gamma(\theta)$ ; bracket is added by evaluator. |
|               |                      | 2143 <i>1</i>           | 32.2 7                         | 0.0     | 0+                   | [E2]    |                                  | 8.16×10 <sup>-4</sup> | $\alpha(K)$ =0.000392 6; $\alpha(L)$ =4.91×10 <sup>-5</sup> 7; $\alpha(M)$ =1.018×10 <sup>-5</sup> 15 $\alpha(N)$ =2.26×10 <sup>-6</sup> 4; $\alpha(O)$ =3.67×10 <sup>-7</sup> 6; $\alpha(P)$ =2.85×10 <sup>-8</sup> 4; $\alpha(IPF)$ =0.000362 5 B(E2)(W.u.)=0.58 +6-5 E <sub>Y</sub> ,I <sub>Y</sub> : from Coulomb excitation.                                                                                                                                                                       |
| 2177.37       | (3-)                 | 666.6 2                 | 48.1 7                         | 1510.80 | 2+                   |         |                                  |                       | E <sub><math>\gamma</math></sub> : from $(\alpha, 2n\gamma)$ .<br>I <sub><math>\gamma</math></sub> : from Coulomb excitation. Other: 30 2 from $(p, 2n\gamma)$ .                                                                                                                                                                                                                                                                                                                                        |
|               |                      | 1388.6 2                | 100.0 7                        | 788.744 | 2+                   | (E1+M2) | -0.025 +12-19                    | 0.00063 3             | $\alpha(K)$ =0.000427 24; $\alpha(L)$ =5.3×10 <sup>-5</sup> 3; $\alpha(M)$ =1.10×10 <sup>-5</sup> 7 $\alpha(N)$ =2.43×10 <sup>-6</sup> 15; $\alpha(O)$ =3.95×10 <sup>-7</sup> 24; $\alpha(P)$ =3.06×10 <sup>-8</sup> 19; $\alpha(IPF)$ =0.0001339 23 E <sub>γ</sub> : from ( $\alpha$ ,2nγ). I <sub>γ</sub> : from Coulomb excitation. Mult.,δ: from Coulomb excitation based on $\gamma(\theta)$ , bracket added by evaluator. Other: $\delta$ =-2.2 2 for Mult=M1+E2 in ( $\alpha$ ,2nγ).             |

# $\gamma(\frac{138}{\text{Ce}})$ (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\ \ddagger}$ | ${\rm I}_{\gamma}{}^{\ddagger}$ | $\mathrm{E}_f$ | $\mathbf{J}_f^{\pi}$ | Mult. | δ         | $lpha^\dagger$        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|----------------------|------------------------------------|---------------------------------|----------------|----------------------|-------|-----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2217.41      | 5-                   | 80.4 2                             | 2.4 10                          | 2137.00        | 4+                   | [E1]  |           | 0.442                 | $\alpha(K)$ =0.375 6; $\alpha(L)$ =0.0536 9; $\alpha(M)$ =0.01117 18<br>$\alpha(N)$ =0.00243 4; $\alpha(O)$ =0.000375 6; $\alpha(P)$ =2.19×10 <sup>-5</sup> 4<br>B(E1)(W.u.)=2.0×10 <sup>-5</sup> +13-10<br>E <sub><math>\gamma</math></sub> : weighted average of 79.4 6 from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h), 80.4<br>2 from <sup>130</sup> Te( <sup>12</sup> C,4n $\gamma$ ), and 80.4 2 from <sup>136</sup> Ba( $\alpha$ ,2n $\gamma$ ).                                                                                                                                                                                                                                                                                                       |
|              |                      | 88.0                               | 5.6 14                          | 2129.28        | 7-                   | [E2]  |           | 3.25                  | I <sub>γ</sub> : from <sup>138</sup> Pr ε decay (2.03 h). Other: ≤5 from (α,4nγ). α(K)=1.756 25; α(L)=1.167 17; α(M)=0.261 4 α(N)=0.0559 8; α(O)=0.00784 11; α(P)=9.11×10 <sup>-5</sup> 13 B(E2)(W.u.)=2.5×10 <sup>2</sup> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                      | 390.9 1                            | 100 4                           | 1826.51        | 4+                   | E1    |           | 0.00642               | E <sub>γ</sub> ,I <sub>γ</sub> : from $(\alpha,4n\gamma)$ only.<br>$\alpha(K)$ =0.00552 8; $\alpha(L)$ =0.000713 10; $\alpha(M)$ =0.0001482 21<br>$\alpha(N)$ =3.27×10 <sup>-5</sup> 5; $\alpha(O)$ =5.25×10 <sup>-6</sup> 8; $\alpha(P)$ =3.81×10 <sup>-7</sup> 6<br>B(E1)(W.u.)=7.4×10 <sup>-6</sup> +11-9<br>E <sub>γ</sub> : weighted average of 390.9 1 from <sup>130</sup> Te( <sup>12</sup> C,4nγ), 390.8 2 from <sup>136</sup> Ba(α,2nγ), 390.7 3 from <sup>138</sup> Ba(α,4nγ), and 390.9 1 from <sup>138</sup> Pr ε decay (2.03 h).<br>I <sub>γ</sub> : from (α,2nγ).<br>Mult.: based on ce data in (α,2nγ) and <sup>138</sup> Pr ε decay (2.03 h), $\gamma(\theta)$ in (α,2nγ) and (α,4nγ), $\gamma(DCO)$ and $\gamma(pol)$ in ( <sup>12</sup> C,4nγ). |
| 2236.54      | 2+                   | 1447.8 2                           | 100.0 7                         | 788.744        | 2+                   | M1+E2 | 0.18 +5-4 | 1.30×10 <sup>-3</sup> | $\alpha(K)=0.001069 \ 16; \ \alpha(L)=0.0001354 \ 20; \ \alpha(M)=2.81\times10^{-5} \ 5$<br>$\alpha(N)=6.25\times10^{-6} \ 10; \ \alpha(O)=1.018\times10^{-6} \ 15; \ \alpha(P)=7.98\times10^{-8} \ 12;$<br>$\alpha(IPF)=6.11\times10^{-5} \ 9$<br>$B(M1)(W.u.)=0.069 \ +7-6; \ B(E2)(W.u.)=0.6 \ +5-3$<br>$E_{\gamma}$ : from $E_{\gamma}$ : from Coulomb excitation.<br>$E_{\gamma}$ : from Coulomb excitation based on $E_{\gamma}$ : from Coulomb excitation.                                                                                                                                                                                                                                                                                                 |
|              |                      | 2236.5 2                           | 80.0 11                         | 0.0            | 0+                   | E2    |           | 8.27×10 <sup>-4</sup> | $\alpha(K)$ =0.000363 5; $\alpha(L)$ =4.54×10 <sup>-5</sup> 7; $\alpha(M)$ =9.41×10 <sup>-6</sup> 14 $\alpha(N)$ =2.09×10 <sup>-6</sup> 3; $\alpha(O)$ =3.39×10 <sup>-7</sup> 5; $\alpha(P)$ =2.64×10 <sup>-8</sup> 4; $\alpha(IPF)$ =0.000407 6 B(E2)(W.u.)=1.87 +15-13 E <sub>γ</sub> : from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m). I <sub>γ</sub> : from Coulomb excitation. Other: 61 9 from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m). Mult.: Q from $\gamma(\theta)$ in Coulomb excitation; M2 is ruled out by                                                                                                                                                                                                                                |
| 2293.97      | 6+                   | 76.6 <i>1</i>                      | 41 5                            | 2217.41        | 5-                   | (E1)  |           | 0.505                 | RUL. $\alpha(K)$ =0.427 7; $\alpha(L)$ =0.0616 9; $\alpha(M)$ =0.01282 19 $\alpha(N)$ =0.00279 4; $\alpha(O)$ =0.000429 7; $\alpha(P)$ =2.48×10 <sup>-5</sup> 4 B(E1)(W.u.)=0.000123 18 E <sub><math>\gamma</math></sub> : weighted average of 76.7 1 from $^{130}$ Te( $^{12}$ C,4n $\gamma$ ), 76.4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# $\gamma(\frac{138}{\text{Ce}})$ (continued)

|                    |                                     |                         |                                        |                    |                                  |       | _                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|-------------------------------------|-------------------------|----------------------------------------|--------------------|----------------------------------|-------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i$ (level)      | $\mathtt{J}_i^{\pi}$                | $E_{\gamma}^{\ddagger}$ | ${\rm I}_{\gamma}{}^{\mathop{\sharp}}$ | $\mathrm{E}_f$     | $\mathbf{J}_f^{\pi}$             | Mult. | $lpha^\dagger$        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2293.97            | 6+                                  | 157.0 2                 | 8.2 4                                  | 2137.00            | 4+                               | E2    | 0.420                 | from $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ), and 76.5 $\beta$ from $^{138}$ Ba( $\alpha$ ,4n $\gamma$ ).<br>I $_{\gamma}$ : weighted average of 43 $\beta$ from $^{130}$ Te( $^{12}$ C,4n $\gamma$ ), 34 $\beta$ from $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ).<br>Mult.: based on $\gamma(\theta)$ in ( $\alpha$ ,2n $\gamma$ ) and ( $\alpha$ ,4n $\gamma$ ).<br>$\alpha$ (K)=0.302 $\beta$ ; $\alpha$ (L)=0.0932 $\beta$ 14; $\alpha$ (M)=0.0205 $\beta$ 16 $\alpha$ (N)=0.00442 $\beta$ 17; $\alpha$ (O)=0.000642 $\beta$ 18; $\alpha$ (P)=1.76×10 <sup>-5</sup> $\beta$ 18 (E2)(W.u.)=6.1 +9-8<br>E $_{\gamma}$ : weighted average of 157.1 $\beta$ 2 from $\beta$ 30 Te( $\beta$ 2 from 156.8 $\beta$ 3 from                                                                                                |
|                    |                                     | 164.7 <i>1</i>          | 100 4                                  | 2129.28            | 7-                               | (E1)  | 0.0616                | <sup>136</sup> Ba(α,2nγ).<br>I <sub>γ</sub> : weighted average of 9.2 10 from <sup>136</sup> Ba(α,2nγ) and 8.0 4 from <sup>139</sup> La(p,2nγ). Other: 27.2 27 from <sup>130</sup> Te( <sup>12</sup> C,4nγ).<br>Mult.: from Coulomb excitation based on γ(DCO) and RUL. $\alpha(K)$ =0.0527 8; $\alpha(L)$ =0.00707 10; $\alpha(M)$ =0.001470 21 $\alpha(N)$ =0.000323 5; $\alpha(O)$ =5.09×10 <sup>-5</sup> 8; $\alpha(P)$ =3.38×10 <sup>-6</sup> 5 B(E1)(W.u.)=3.0×10 <sup>-5</sup> +4-3<br>E <sub>γ</sub> : weighted average of 164.7 1 from <sup>130</sup> Te( <sup>12</sup> C,4nγ), 164.6 2 from                                                                                                                                                                                                       |
|                    |                                     | 467.5 2                 | 33 3                                   | 1826.51            | 4 <sup>+</sup>                   | E2    | 0.01298               | $^{136}$ Ba $(\alpha,2n\gamma)$ and 164.6 3 from $^{138}$ Ba $(\alpha,4n\gamma)$ .<br>$I_{\gamma}$ : from $(p,2n\gamma)$ .<br>Mult.: based on $\gamma(\theta)$ in $(\alpha,4n\gamma)$ and $(\alpha,2n\gamma)$ ; also suggested in Coulomb excitation.<br>$\alpha(K)=0.01079$ 16; $\alpha(L)=0.001729$ 25; $\alpha(M)=0.000367$ 6<br>$\alpha(N)=8.06\times10^{-5}$ 12; $\alpha(O)=1.258\times10^{-5}$ 18; $\alpha(P)=7.53\times10^{-7}$ 11<br>B(E2)(W.u.)=0.105 +18-16<br>E $_{\gamma}$ : weighted average of 467.6 1 from $^{130}$ Te( $^{12}$ C,4n $_{\gamma}$ ), 467.2 2 from $^{136}$ Ba $(\alpha,2n\gamma)$ , and 467.0 3 from $^{138}$ Ba $(\alpha,4n\gamma)$ .                                                                                                                                        |
| 2339.85            | 0+                                  | 1551.1 <i>1</i>         | 100                                    | 788.744            | 2+                               | E2    | 9.25×10 <sup>-4</sup> | I <sub>γ</sub> : unweighted average of 29.6 <i>10</i> from $(\alpha,2n\gamma)$ and 36 2 from $(p,2n\gamma)$ . Other: 56.9 <i>30</i> from $(^{12}\text{C},4n\gamma)$ . Mult.: based on ce data in $(\alpha,2n\gamma)$ and $(p,2n\gamma)$ , $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(\alpha,4n\gamma)$ , $\gamma(\text{DCO})$ and $\gamma(\text{pol})$ in $^{130}\text{Te}(^{12}\text{C},4n\gamma)$ . $\alpha(\text{K})=0.000714$ <i>10</i> ; $\alpha(\text{L})=9.13\times10^{-5}$ <i>13</i> ; $\alpha(\text{M})=1.90\times10^{-5}$ <i>3</i> $\alpha(\text{N})=4.21\times10^{-6}$ <i>6</i> ; $\alpha(\text{O})=6.82\times10^{-7}$ <i>10</i> ; $\alpha(\text{P})=5.20\times10^{-8}$ <i>8</i> ; $\alpha(\text{IPF})=9.56\times10^{-5}$ <i>14</i> E <sub>γ</sub> : from $^{138}\text{Pr}$ ε decay (1.45 m). |
| 2393.91<br>2396.11 | (3 <sup>-</sup> )<br>6 <sup>+</sup> | 176.5 2<br>569.6 2      | 100<br>100                             | 2217.41<br>1826.51 | 5 <sup>-</sup><br>4 <sup>+</sup> | E2    | 0.00762               | Mult.: M1,E2 from ce data in <sup>138</sup> Pr ε decay (1.45 m); M1 is ruled out by level-spin difference.<br>E <sub>γ</sub> : from $(\alpha,2n\gamma)$ .<br>$\alpha(K)=0.00640$ 9; $\alpha(L)=0.000965$ 14; $\alpha(M)=0.000204$ 3<br>$\alpha(N)=4.48\times10^{-5}$ 7; $\alpha(O)=7.07\times10^{-6}$ 10; $\alpha(P)=4.54\times10^{-7}$ 7<br>E <sub>γ</sub> : from $(\alpha,2n\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2443.90            | 4+                                  | 933.1 2                 | 100                                    | 1510.80            | 2+                               | E2    | 0.00234               | Mult.: based on $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and ce data in $(p,2n\gamma)$ . $\alpha(K)=0.00200$ 3; $\alpha(L)=0.000271$ 4; $\alpha(M)=5.67\times10^{-5}$ 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

 $\infty$ 

# $\gamma(\frac{138}{\text{Ce}})$ (continued)

| $E_i(level)$ | $\mathrm{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\ddagger}$ | Г       |                      |         |         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|----------------------|-------------------------|-------------------------|---------|----------------------|---------|---------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                      | ,                       | $1\gamma$ .             | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult.   | δ       | $lpha^\dagger$        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2470.99      | (1,2+)               | 1682.1 2                | 80.8 10                 | 788.744 | 2+                   |         |         |                       | $\alpha(N)=1.254\times10^{-5}\ I8;\ \alpha(O)=2.01\times10^{-6}\ 3;\ \alpha(P)=1.449\times10^{-7}$ 21 $E_{\gamma}:\ \text{from}\ (\alpha,2n\gamma).$ Mult.: Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and M2 is ruled out by no level-parity change. $E_{\gamma}:\ \text{from}\ ^{138}\text{Pr}\ \varepsilon\ \text{decay}\ (1.45\ \text{m}).$                                                                                                                                                                                                  |
|              |                      | 2471.1 2                | 100 <i>3</i>            | 0.0     | 0+                   |         |         |                       | $I_{\gamma}$ : weighted average of 68 <i>14</i> from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m) and 80.9 <i>10</i> from Coulomb excitation.<br>$E_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m).                                                                                                                                                                                                                                                                                                                               |
|              |                      |                         | 100 0                   | 0.0     |                      |         |         |                       | $I_{\gamma}$ : from Coulomb excitation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2471.68      | $(4^+,5^+)$          | 177.8 2                 | 57.3 24                 | 2293.97 | 6+                   |         |         |                       | $E_{\gamma}$ : from $(\alpha,2n\gamma)$ .<br>$I_{\gamma}$ : weighted average of 68 <i>16</i> from <sup>136</sup> Ba $(\alpha,2n\gamma)$ and 57.1 24 from <sup>139</sup> La $(p,2n\gamma)$ .                                                                                                                                                                                                                                                                                                                                                          |
|              |                      | 334.6 2                 | 100 5                   | 2137.00 | 4+                   | (M1+E2) | -0.16 4 | 0.039 5               | $\alpha(K)=0.033\ 5;\ \alpha(L)=0.00504\ 14;\ \alpha(M)=0.00107\ 4$<br>$\alpha(N)=0.000235\ 8;\ \alpha(O)=3.70\times10^{-5}\ 6;\ \alpha(P)=2.4\times10^{-6}\ 5$<br>$E_{\gamma}I_{\gamma}$ : from $(\alpha,2n\gamma)$ .<br>Mult., $\delta$ : from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ . Other: (M1,E2) from ce data                                                                                                                                                                                                                               |
| 2642.4       | 2+                   | 1853.7 <i>3</i>         | 100 4                   | 788.744 | 2+                   |         |         |                       | in (p,2n $\gamma$ ).<br>$E_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m).<br>$I_{\gamma}$ : from Coulomb excitation.                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                      | 2642.0 7                | 35 14                   | 0.0     | 0+                   | [E2]    |         | 9.10×10 <sup>-4</sup> | $\alpha(K)$ =0.000270 4; $\alpha(L)$ =3.35×10 <sup>-5</sup> 5; $\alpha(M)$ =6.94×10 <sup>-6</sup> 10 $\alpha(N)$ =1.541×10 <sup>-6</sup> 22; $\alpha(O)$ =2.51×10 <sup>-7</sup> 4; $\alpha(P)$ =1.96×10 <sup>-8</sup> 3; $\alpha(IPF)$ =0.000598 9 B(E2)(W.u.)=0.41 +63-23 E <sub>y</sub> : from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m). I <sub>y</sub> : from Coulomb excitation.                                                                                                                                                           |
| 2733.09      | 6+                   | 439.1 2                 | 16.9 <i>12</i>          | 2293.97 | 6+                   | M1+E2#  | 1.6 3   | 0.0172 6              | $\alpha(K)$ =0.0144 6; $\alpha(L)$ =0.00219 5; $\alpha(M)$ =0.000464 9 $\alpha(N)$ =0.0001021 20; $\alpha(O)$ =1.61×10 <sup>-5</sup> 4; $\alpha(P)$ =1.03×10 <sup>-6</sup> 5 $E_{\gamma}$ : weighted average of 438.7 2 from $^{130}$ Te( $^{12}$ C,4n $\gamma$ ) and 439.5 2 from $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ). $I_{\gamma}$ : weighted average of 52 8 from $^{130}$ Te( $^{12}$ C,4n $\gamma$ ), 19 3 from $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ), and 16.5 12 from $^{139}$ La(p,2n $\gamma$ ). $\delta$ : from ( $\alpha$ ,2n $\gamma$ ). |
|              |                      | 906.6 2                 | 100 3                   | 1826.51 | 4+                   | E2#     |         | 0.00250               | $\alpha(K)$ =0.00213 3; $\alpha(L)$ =0.000290 4; $\alpha(M)$ =6.07×10 <sup>-5</sup> 9 $\alpha(N)$ =1.342×10 <sup>-5</sup> 19; $\alpha(O)$ =2.15×10 <sup>-6</sup> 3; $\alpha(P)$ =1.542×10 <sup>-7</sup> 22 E <sub><math>\gamma</math></sub> : weighted average of 906.3 2 from $^{130}$ Te( $^{12}$ C,4n $\gamma$ ) and 906.9 2 from $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ). I <sub><math>\gamma</math></sub> : from ( $\alpha$ ,2n $\gamma$ ).                                                                                                        |
| 2748.78      | 5+                   | 454.9 2                 | 70 5                    | 2293.97 | 6+                   | M1+E2#  | 2.5 15  | 0.017 3               | $\alpha(K)$ =0.014 3; $\alpha(L)$ =0.00205 18; $\alpha(M)$ =0.00043 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# $\gamma(^{138}\text{Ce})$ (continued)

| $E_i$ (level) | $\mathtt{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$  | $I_{\gamma}^{\ddagger}$    | $E_f$              | $\mathbf{J}_f^{\boldsymbol{\pi}}$ | Mult.             | δ      | $lpha^\dagger$        | Comments                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|----------------------|--------------------------|----------------------------|--------------------|-----------------------------------|-------------------|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                      |                          | 400.6                      |                    |                                   | #                 |        |                       | $\alpha(N)=9.5\times10^{-5} 8; \ \alpha(O)=1.52\times10^{-5} \ 16; \ \alpha(P)=1.05\times10^{-6} \ 24$ $E_{\gamma},\delta$ : from $(\alpha,2n\gamma)$ . $I_{\gamma}$ : from $(p,2n\gamma)$ .                                                                                                                                                                                                      |
| 2748.78       | 5+                   | 611.7 2                  | 100 6                      | 2137.00            | 4+                                | M1 <sup>#</sup>   |        | 0.00943               | $\alpha(K)$ =0.00810 12; $\alpha(L)$ =0.001054 15; $\alpha(M)$ =0.000220 3 $\alpha(N)$ =4.87×10 <sup>-5</sup> 7; $\alpha(O)$ =7.93×10 <sup>-6</sup> 12; $\alpha(P)$ =6.13×10 <sup>-7</sup> 9 E <sub>y</sub> : from ( $\alpha$ ,2ny). I <sub>y</sub> : from (p,2ny).                                                                                                                               |
| 2764.94       | 6-                   | 547.5 1                  | 100 5                      | 2217.41            | 5-                                | M1 <sup>#</sup> a |        | 0.01239               | $\alpha(K)$ =0.01064 15; $\alpha(L)$ =0.001389 20; $\alpha(M)$ =0.000290 4 $\alpha(N)$ =6.43×10 <sup>-5</sup> 9; $\alpha(O)$ =1.045×10 <sup>-5</sup> 15; $\alpha(P)$ =8.07×10 <sup>-7</sup> 12                                                                                                                                                                                                    |
|               |                      |                          |                            |                    |                                   |                   |        |                       | E <sub>γ</sub> : weighted average of 547.5 $I$ from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h), 547.3 $2$ from <sup>130</sup> Te( <sup>12</sup> C,4nγ), and 547.7 $2$ from <sup>136</sup> Ba( $\alpha$ ,2nγ).<br>I <sub>γ</sub> : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                                                                        |
|               |                      | 635.7 1                  | 35 <i>3</i>                | 2129.28            | 7-                                | M1 <sup>a</sup>   |        | 0.00858               | $\alpha(K)$ =0.00737 11; $\alpha(L)$ =0.000958 14; $\alpha(M)$ =0.000200 3 $\alpha(N)$ =4.43×10 <sup>-5</sup> 7; $\alpha(O)$ =7.21×10 <sup>-6</sup> 10; $\alpha(P)$ =5.58×10 <sup>-7</sup> 8 $E_{\gamma}I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                                                                                        |
| 2899.25       | 6-                   | 681.7 2                  | 43 3                       | 2217.41            | 5-                                | M1+E2             | -2.5 3 | 0.00517 11            | $\alpha(K)=0.00439$ 10; $\alpha(L)=0.000620$ 12; $\alpha(M)=0.0001302$ 24 $\alpha(N)=2.87\times10^{-5}$ 6; $\alpha(O)=4.59\times10^{-6}$ 9; $\alpha(P)=3.18\times10^{-7}$ 8 E <sub>y</sub> : weighted average of 680.8 5 from <sup>138</sup> Pr $\varepsilon$ decay (2.03                                                                                                                         |
|               |                      |                          |                            |                    |                                   | "                 |        |                       | h) and 681.8 2 from $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ).<br>$I_{\gamma}$ : weighted average of 35 7 from $^{138}$ Pr $\varepsilon$ decay (2.03 h), 50 7 from $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ), and 43.5 27 from $^{139}$ La(p,2n $\gamma$ ). Mult., $\delta$ : D+Q from $\gamma(\theta)$ in ( $\alpha$ ,2n $\gamma$ ), $\Delta$ J=1; polarity from level-parity change.                      |
|               |                      | 770.1 2                  | 100 5                      | 2129.28            | 7-                                | M1 <sup>#</sup>   |        | 0.00539               | $\alpha(K)$ =0.00464 7; $\alpha(L)$ =0.000599 9; $\alpha(M)$ =0.0001247 18 $\alpha(N)$ =2.77×10 <sup>-5</sup> 4; $\alpha(O)$ =4.51×10 <sup>-6</sup> 7; $\alpha(P)$ =3.50×10 <sup>-7</sup> 5 E <sub>y</sub> : weighted average of 770.4 4 from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h) and 770.0 2 from <sup>136</sup> Ba( $\alpha$ ,2n $\gamma$ ). I <sub>y</sub> : from (p,2n $\gamma$ ). |
| 2903.21       | (1,2+)               | 1426.9 <i>7</i> 2114.4 2 | 31 <i>16</i> 100 <i>19</i> | 1476.93<br>788.744 | 0 <sup>+</sup>                    |                   |        |                       | Mult.: $\Delta J=1$ from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ .<br>$E_{\gamma},I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m).<br>$E_{\gamma},I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m).                                                                                                                                                            |
| 2907.22       | (3,4,5)              | 1080.7 2                 | 100                        | 1826.51            | 4+                                | D+Q               |        |                       | E <sub><math>\gamma</math></sub> : from $(\alpha, 2n\gamma)$ .<br>Mult.: deduced by evaluator based on $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ .                                                                                                                                                                                                                                                 |
| 2950.5        | (2-,3-,4-)           | 556.6 2                  | 100                        | 2393.91            | (3-)                              | M1 <sup>#</sup>   |        | 0.01189               | $\alpha(K)=0.01021$ 15; $\alpha(L)=0.001333$ 19; $\alpha(M)=0.000278$ 4 $\alpha(N)=6.17\times10^{-5}$ 9; $\alpha(O)=1.003\times10^{-5}$ 14; $\alpha(P)=7.74\times10^{-7}$ 11 $E_{\gamma}$ : from $(\alpha,2n\gamma)$ .                                                                                                                                                                            |
| 2995.72       | 6+                   | 1169.2 2                 | 100                        | 1826.51            | 4+                                | E2#               |        | $1.46 \times 10^{-3}$ | $\alpha(K)$ =0.001246 18; $\alpha(L)$ =0.0001638 23; $\alpha(M)$ =3.41×10 <sup>-5</sup> 5                                                                                                                                                                                                                                                                                                         |
|               |                      |                          |                            |                    |                                   |                   |        |                       |                                                                                                                                                                                                                                                                                                                                                                                                   |

|   |                     |                      |                                    |                                |                                        | <u>/</u>        | ( ( ( ) | (continued)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---|---------------------|----------------------|------------------------------------|--------------------------------|----------------------------------------|-----------------|---------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $E_i$ (level)       | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\ \ddagger}$ | ${\rm I}_{\gamma}^{ \ddagger}$ | $\mathrm{E}_f \qquad \mathrm{J}_f^\pi$ | Mult.           | δ       | $lpha^\dagger$        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 3109.02             | 8+                   | 815.1 <i>I</i>                     | 100 3                          | 2293.97 6+                             | E2              |         | 0.00317               | $\alpha(N)=7.56\times10^{-6}\ 1I;\ \alpha(O)=1.220\times10^{-6}\ I7;\ \alpha(P)=9.05\times10^{-8}\ I3;\ \alpha(IPF)=3.17\times10^{-6}\ 5$<br>Mult.: $\Delta J=2\ \text{from}\ \gamma(\theta)\ \text{in}\ (\alpha,2n\gamma).$<br>$\alpha(K)=0.00270\ 4;\ \alpha(L)=0.000375\ 6;\ \alpha(M)=7.85\times10^{-5}\ I1$<br>$\alpha(N)=1.735\times10^{-5}\ 25;\ \alpha(O)=2.77\times10^{-6}\ 4;\ \alpha(P)=1.95\times10^{-7}\ 3$<br>E <sub>y</sub> : weighted average of 815.0 I from $^{130}\text{Te}(^{12}\text{C},4n\gamma),$ 815.3 2 from $^{136}\text{Ba}(\alpha,2n\gamma),$ and 815.0 3 from |
|   |                     |                      | 979.7 1                            | 47.2 21                        | 2129.28 7                              | E1 <sup>#</sup> |         | 8.78×10 <sup>-4</sup> | <sup>138</sup> Ba(α,4nγ).<br>I <sub>γ</sub> : from (α,2nγ).<br>Mult.: based on ce data in (α,2nγ) and (p,2nγ), $\gamma(\theta)$ in (α,2nγ) and (α,4nγ), $\gamma(DCO)$ and $\gamma(pol)$ in ( <sup>12</sup> C,4nγ).<br>α(K)=0.000759 11; α(L)=9.46×10 <sup>-5</sup> 14; α(M)=1.96×10 <sup>-5</sup> 3 α(N)=4.34×10 <sup>-6</sup> 6; α(O)=7.04×10 <sup>-7</sup> 10; α(P)=5.39×10 <sup>-8</sup> 8 E <sub>γ</sub> : weighted average of 979.7 1 from <sup>130</sup> Te( <sup>12</sup> C,4nγ), 979.8 2 from <sup>136</sup> Ba(α,2nγ), and 979.3 3 from                                           |
|   |                     |                      |                                    |                                |                                        |                 |         |                       | $^{138}$ Ba( $\alpha$ ,4n $\gamma$ ).<br>$I_{\gamma}$ : weighted average of 45.7 $21$ from $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ) and 49.6 $26$ from $^{139}$ La(p,2n $\gamma$ ). Others: 36.9 $19$ from $^{130}$ Te( $^{12}$ C,4n $\gamma$ ), 24 $4$ from $^{138}$ Ba( $\alpha$ ,4n $\gamma$ ).<br>Mult.: based on ce data in ( $\alpha$ ,2n $\gamma$ ) and (p,2n $\gamma$ ), $\gamma$ ( $\theta$ ) in ( $\alpha$ ,2n $\gamma$ ) and ( $\alpha$ ,4n $\gamma$ ), $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}$ C,4n $\gamma$ ).                                                             |
| ı | 3176.27             |                      | 882.3 2                            | 100                            | 2293.97 6+                             |                 |         |                       | $E_{\gamma}$ : from $(\alpha, 2n\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 3177.4?             |                      | 3177.4 7                           | 100                            | $0.0 	 0^{+}$                          |                 |         |                       | $E_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (1.45 m) only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 3214.17             | (5,6,7)              | 920.2 2                            | 100                            | 2293.97 6+                             |                 |         |                       | $E_{\gamma}$ : from $(\alpha, 2n\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 3229.8              |                      | 758.1 2                            | 100                            | 2471.68 (4+,5+                         | ·)              |         |                       | $E_{\gamma}$ : from $(\alpha, 2n\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ı | 2224 #0             | 0-                   |                                    | 100                            |                                        | 3.54            |         | 0.004.04              | Mult.: $\Delta J=1$ from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 3331.59             | 8-                   | 1202.3 2                           | 100                            | 2129.28 7                              | M1              |         | 0.00191               | $\alpha(K)$ =0.001638 23; $\alpha(L)$ =0.000209 3; $\alpha(M)$ =4.34×10 <sup>-5</sup> 6 $\alpha(N)$ =9.63×10 <sup>-6</sup> 14; $\alpha(O)$ =1.569×10 <sup>-6</sup> 22; $\alpha(P)$ =1.227×10 <sup>-7</sup> 18; $\alpha(IPF)$ =6.32×10 <sup>-6</sup> 10                                                                                                                                                                                                                                                                                                                                     |
|   |                     |                      |                                    |                                |                                        |                 |         |                       | E <sub><math>\gamma</math></sub> : from ( $^{12}$ C,4n $\gamma$ ). A 1202.4 $\gamma$ is observed but unplaced in $^{138}$ Pr $\varepsilon$ decay (2.03 h) from 7 <sup>-</sup> parent.<br>Mult.: based on $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}$ C,4n $\gamma$ ).                                                                                                                                                                                                                                                                                                                   |
|   | 3367.8              |                      | 1239.0 6                           | 100 6                          | 2129.28 7-                             |                 |         |                       | E <sub><math>\gamma</math></sub> , I <sub><math>\gamma</math></sub> : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 3301.0              |                      | $1540.9^{b}$ 5                     | <16 <sup>b</sup>               | 1826.51 4 <sup>+</sup>                 |                 |         |                       | $E_{\gamma}I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 3430.2              | (7) <sup>+</sup>     | 697.1 2                            | 100                            | 2733.09 6 <sup>+</sup>                 | M1(+E2)         | ≤1.1    | 0.0062 7              | $\alpha(K)=0.0053$ 6; $\alpha(L)=0.00071$ 6; $\alpha(M)=0.000148$ 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | J <del>1</del> JU.2 | (7)                  | 097.1 4                            | 100                            | 2133.07 U                              | W11(⊤L:∠)       | ≥1.1    | 0.0002 /              | $\alpha(N)=0.0033$ 6, $\alpha(L)=0.00071$ 6, $\alpha(M)=0.000148$ 12 $\alpha(N)=3.3\times10^{-5}$ 3; $\alpha(O)=5.3\times10^{-6}$ 5; $\alpha(P)=4.0\times10^{-7}$ 5                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                     |                      |                                    |                                |                                        |                 |         |                       | $E_{\gamma}$ : from $(\alpha, 2n\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                     |                      |                                    |                                |                                        |                 |         |                       | Mult., $\delta$ : based on ce data in $(\alpha,2n\gamma)$ and $(p,2n\gamma)$ and $\gamma(\theta)$ in $(\alpha,2n\gamma)$ . Mult=(E2) suggested by 2009Bh04 in                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |                     |                      |                                    |                                |                                        |                 |         |                       | $(^{12}\text{C}, 4\text{n}\gamma)$ is inconsistent. Mixing ratio is deduced by evaluator from ce data using the BrIccMixing program; M1 is given in $(\alpha, 2\text{n}\gamma)$ and $(p, 2\text{n}\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                               |

# $\gamma(\frac{138}{\text{Ce}})$ (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Mult. | $lpha^\dagger$        | Comments                                                                                                                                                                                                                                                                                                                                      |
|---------------|----------------------|----------------------------------|-------------------------|------------------------------------------|-------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3507.30       | 9-                   | 175.7 2                          | 61 9                    | 3331.59 8-                               | M1    | 0.243                 | $\alpha(K)=0.208 \ 3; \ \alpha(L)=0.0281 \ 4; \ \alpha(M)=0.00588 \ 9$<br>$\alpha(N)=0.001305 \ 19; \ \alpha(O)=0.000211 \ 3; \ \alpha(P)=1.602\times10^{-5} \ 23$                                                                                                                                                                            |
|               |                      | 398.3 2                          | 17.3 27                 | 3109.02 8 <sup>+</sup>                   | [E1]  | 0.00613               | E <sub>γ</sub> ,I <sub>γ</sub> : from ( $^{12}$ C,4nγ).<br>Mult.: D from γ(DCO) in ( $^{12}$ C,4nγ); polarity from no level-parity change.<br>$\alpha$ (K)=0.00528 8; $\alpha$ (L)=0.000681 10; $\alpha$ (M)=0.0001415 20<br>$\alpha$ (N)=3.12×10 <sup>-5</sup> 5; $\alpha$ (O)=5.02×10 <sup>-6</sup> 7; $\alpha$ (P)=3.64×10 <sup>-7</sup> 6 |
|               |                      | 1378.0 2                         | 100 15                  | 2129.28 7-                               | E2    | $1.08 \times 10^{-3}$ | E <sub>γ</sub> ,I <sub>γ</sub> : from ( $^{12}$ C,4nγ).<br>$\alpha$ (K)=0.000897 <i>13</i> ; $\alpha$ (L)=0.0001159 <i>17</i> ; $\alpha$ (M)=2.41×10 <sup>-5</sup> 4<br>$\alpha$ (N)=5.34×10 <sup>-6</sup> 8; $\alpha$ (O)=8.65×10 <sup>-7</sup> <i>13</i> ; $\alpha$ (P)=6.53×10 <sup>-8</sup> <i>10</i> ;                                   |
|               |                      |                                  |                         |                                          |       |                       | $\alpha$ (IPF)=3.95×10 <sup>-5</sup> 6<br>E <sub><math>\gamma</math></sub> ,I <sub><math>\gamma</math></sub> : from ( $^{12}$ C,4n $\gamma$ ).                                                                                                                                                                                                |
| 3539.21       | 10 <sup>+</sup>      | 31.9 <sup>c</sup> 2              | 0.081 16                | 3507.30 9-                               | (E1)  | 0.934 22              | Mult.: based on $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}$ C,4n $\gamma$ ).<br>$\alpha$ (L)=0.741 17; $\alpha$ (M)=0.155 4<br>$\alpha$ (N)=0.0331 8; $\alpha$ (O)=0.00481 11; $\alpha$ (P)=0.000214 5<br>B(E1)(W.u.)=7.5×10 <sup>-8</sup> +20-18                                                                                          |
|               |                      | 109.0° 2                         | 0.081 16                | 3430.2 (7)+                              |       | 1.510 24              | E <sub>γ</sub> ,I <sub>γ</sub> ,Mult.: from ( $^{12}$ C,4nγ) only.<br>α(K)=0.940 15; α(L)=0.446 8; α(M)=0.0994 17                                                                                                                                                                                                                             |
|               |                      |                                  |                         |                                          |       |                       | $\alpha(N)=0.0213$ 4; $\alpha(O)=0.00302$ 5; $\alpha(P)=5.07\times10^{-5}$ 8<br>$E_{\gamma}I_{\gamma}$ ,Mult.: from ( $^{12}C$ ,4n $\gamma$ ) only.<br>Mult.: (E2) from ( $^{12}C$ ,4n $\gamma$ ) given $J^{\pi}(3430.2)=(8)^{+}$ suggested by                                                                                                |
|               |                      | 430.2 1                          | 100 4                   | 3109.02 8+                               | E2    | 0.01642               | 2009Bh04. $\alpha(K)$ =0.01358 19; $\alpha(L)$ =0.00224 4; $\alpha(M)$ =0.000477 7 $\alpha(N)$ =0.0001045 15; $\alpha(O)$ =1.625×10 <sup>-5</sup> 23; $\alpha(P)$ =9.40×10 <sup>-7</sup> 14 B(E2)(W.u.)=0.0108 3                                                                                                                              |
|               |                      |                                  |                         |                                          |       |                       | $E_{\gamma}$ : weighted average of 430.2 <i>I</i> from <sup>130</sup> Te( <sup>12</sup> C,4n $\gamma$ ), 430.1 2 from <sup>136</sup> Ba( $\alpha$ ,2n $\gamma$ ), and 430.0 <i>3</i> from <sup>138</sup> Ba( $\alpha$ ,4n $\gamma$ ).                                                                                                         |
|               |                      |                                  |                         |                                          |       |                       | I <sub><math>\gamma</math></sub> : from $(\alpha,2n\gamma)$ . Other: 100 5 from $(^{12}C,4n\gamma)$ .<br>Mult.: based on ce data in $(\alpha,2n\gamma)$ and $(p,2n\gamma)$ , $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(\alpha,4n\gamma)$ , $\gamma(DCO)$ and $\gamma(pol)$ in $(^{12}C,4n\gamma)$ .                                       |
|               |                      | 1409.9 2                         | 0.73 8                  | 2129.28 7-                               | (E3)  | 0.00193               | $\alpha(K)$ =0.001628 23; $\alpha(L)$ =0.000226 4; $\alpha(M)$ =4.74×10 <sup>-5</sup> 7 $\alpha(N)$ =1.050×10 <sup>-5</sup> 15; $\alpha(O)$ =1.688×10 <sup>-6</sup> 24; $\alpha(P)$ =1.218×10 <sup>-7</sup> 17; $\alpha(IPF)$ =1.80×10 <sup>-5</sup> 3                                                                                        |
|               |                      |                                  |                         |                                          |       |                       | B(E3)(W.u.)=0.0084 +16-14<br>$E_{\gamma}$ , $I_{\gamma}$ , Mult.: from ( $^{12}$ C, $4n\gamma$ ). Also observed in ( $^{18}$ O, $4n\gamma$ ).                                                                                                                                                                                                 |
| 3545.79       | (9-)                 | 1416.5 2                         | 100                     | 2129.28 7                                | (E2)  | $1.04 \times 10^{-3}$ | $\alpha(K)$ =0.000851 <i>12</i> ; $\alpha(L)$ =0.0001096 <i>16</i> ; $\alpha(M)$ =2.28×10 <sup>-5</sup> <i>4</i> $\alpha(N)$ =5.05×10 <sup>-6</sup> <i>7</i> ; $\alpha(O)$ =8.18×10 <sup>-7</sup> <i>12</i> ; $\alpha(P)$ =6.19×10 <sup>-8</sup> <i>9</i> ; $\alpha(IPF)$ =5.05×10 <sup>-5</sup> <i>7</i>                                     |
|               |                      |                                  |                         |                                          |       |                       | $E_{\gamma}$ : placed by 2009Bh04 in ( $^{12}$ C,4n $\gamma$ ). 1999Zh28 in ( $^{18}$ O,4n $\gamma$ ) placed this transition from the 3942 level, making a level at E=2526. See also the comment for 3546 level.                                                                                                                              |
|               |                      |                                  |                         |                                          |       |                       | Mult.: from ( $^{12}$ C, $^{4}$ n $\gamma$ ) based on $\gamma$ (DCO).                                                                                                                                                                                                                                                                         |

| F (1 1)      | τπ                   | p.#                     | <b>.</b>                | F 177                               | Ma          | $\alpha^{\dagger}$ |                                                                                                                                      |
|--------------|----------------------|-------------------------|-------------------------|-------------------------------------|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$ | Mult.       | $\alpha$           | Comments                                                                                                                             |
| 3670.6       | $(6,7^{-})$          | 1453.3 3                | 100 7                   | 2217.41 5                           |             |                    | $E_{\gamma}I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                        |
|              |                      | 1540.9 <sup>b</sup> 5   | <63 <sup>b</sup>        | $2129.28 7^{-}$                     |             |                    | $E_{\gamma},I_{\gamma}$ : from $^{138}_{139}$ Pr $\varepsilon$ decay (2.03 h).                                                       |
| 3800.6       | $(6,7^{-})$          | 1583.2 5                | 100 <i>10</i>           | $2217.41 \ 5^{-}$                   |             |                    | $E_{\gamma}, I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                      |
|              |                      | 1671.2 5                | 85 8                    | 2129.28 7                           |             |                    | $E_{\gamma}, I_{\gamma}$ : from $^{138}_{128}$ Pr $\varepsilon$ decay (2.03 h).                                                      |
| 3926.7       | $(6,7^{-})$          | 1709.2 7                | 92 12                   | $2217.41 \ 5^{-}$                   |             |                    | $E_{\gamma}, I_{\gamma}$ : from $\frac{138}{128}$ Pr $\varepsilon$ decay (2.03 h).                                                   |
| 20.42.42     | 11+                  | 1797.5 7                | 100 11                  | 2129.28 7                           | 0.50        | 0.1020             | $E_{\gamma}I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                        |
| 3942.42      | 11+                  | 396.7 <sup>c</sup> 2    | 3.0 5                   | 3545.79 (9-)                        | (M2)        | 0.1020             | $\alpha(K) = 0.0854 \ 12; \ \alpha(L) = 0.01309 \ 19; \ \alpha(M) = 0.00278 \ 4$                                                     |
|              |                      |                         |                         |                                     |             |                    | $\alpha$ (N)=0.000618 9; $\alpha$ (O)=9.95×10 <sup>-5</sup> 14; $\alpha$ (P)=7.27×10 <sup>-6</sup> 11 B(M2)(W.u.)=24 +8-6            |
|              |                      |                         |                         |                                     |             |                    | $E_{\gamma}$ , $I_{\gamma}$ : placed by 2009Bh04 in (12C,4n $\gamma$ ). But this placement is still considered                       |
|              |                      |                         |                         |                                     |             |                    | questionable since it wrould require an unreasonable large B(M2) value.                                                              |
|              |                      |                         |                         |                                     |             |                    | 1999Zh28 in ( $^{18}$ O,4n $\gamma$ ) has placed this transition from a level at E=2526 to                                           |
|              |                      |                         |                         |                                     |             |                    | the 2129 level which is however unfavored. See also the comment for 3546 level.                                                      |
|              |                      |                         |                         |                                     |             |                    | Mult.: from ( $^{12}$ C,4n $\gamma$ ) based on $\gamma$ (DCO).                                                                       |
|              |                      | 403.2 1                 | 100 6                   | 3539.21 10 <sup>+</sup>             | M1+E2       | 0.023 4            | $\alpha(K)$ =0.020 4; $\alpha(L)$ =0.00289 14; $\alpha(M)$ =0.000610 24                                                              |
|              |                      | .00.2 1                 | 100 0                   | 2007.21 10                          | 1,111 . 2.2 | 0.020              | $\alpha(N)=0.000135$ 6; $\alpha(O)=2.14\times10^{-5}$ 15; $\alpha(P)=1.4\times10^{-6}$ 4                                             |
|              |                      |                         |                         |                                     |             |                    | $E_{\gamma}$ : weighted average of 403.3 <i>I</i> from <sup>130</sup> Te( <sup>12</sup> C,4n $\gamma$ ), 403.1 2 from                |
|              |                      |                         |                         |                                     |             |                    | $^{136}$ Ba( $\alpha$ ,2ny), and 403.0 3 from $^{138}$ Ba( $\alpha$ ,4ny).                                                           |
|              |                      |                         |                         |                                     |             |                    | $I_{\gamma}$ : from ( $^{12}$ C,4n $\gamma$ ).                                                                                       |
|              |                      |                         |                         |                                     |             |                    | Mult.: from $^{130}\text{Te}(^{12}\text{C},4\text{n}\gamma)$ based on $\gamma(\text{DCO})$ and $\gamma(\text{pol})$ .                |
| 4050.0?      |                      | 941.0 <sup>c</sup> 2    | 100                     | 3109.02 8+                          |             |                    | $E_{\gamma}$ : from $(\alpha, 2n\gamma)$ .                                                                                           |
| 4139.3       | $(10^{-})$           | 632.0 2                 | 100                     | 3507.30 9-                          | (M1)        | 0.00870            | $\alpha(K)=0.00748\ 11;\ \alpha(L)=0.000972\ 14;\ \alpha(M)=0.000202\ 3$                                                             |
|              |                      |                         |                         |                                     |             |                    | $\alpha(N)=4.49\times10^{-5} \ 7; \ \alpha(O)=7.31\times10^{-6} \ 11; \ \alpha(P)=5.66\times10^{-7} \ 8$                             |
|              |                      |                         |                         |                                     |             |                    | $E_{\gamma}$ , Mult.: from ( $^{12}$ C, $4n\gamma$ ). Mult is based on $\gamma$ (DCO) and $\gamma$ (pol).                            |
| 4157.0       | 6,7,8                | 1392.6 5                | 68 8                    | 2764.94 6-                          |             |                    | $E_{\gamma}I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                        |
|              |                      | 2026.6 7                | 100 8                   | 2129.28 7                           |             |                    | $E_{\gamma}, I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                      |
| 4204.0       | $(10^{-})$           | 658.2 2                 | 100                     | 3545.79 (9 <sup>-</sup> )           | (M1)        | 0.00788            | $\alpha(K)=0.00677 \ 10; \ \alpha(L)=0.000879 \ 13; \ \alpha(M)=0.000183 \ 3$                                                        |
|              |                      |                         |                         |                                     |             |                    | $\alpha(N)=4.07\times10^{-5}$ 6; $\alpha(O)=6.61\times10^{-6}$ 10; $\alpha(P)=5.12\times10^{-7}$ 8                                   |
|              |                      |                         |                         |                                     |             |                    | $E_{\gamma}$ ,Mult.: from ( $^{12}$ C,4n $\gamma$ ). No $\gamma$ (DCO) and $\gamma$ (pols) data to support mult.                     |
| 4248.1       | $(6,7^{-})$          | 2030.2 9                | 100 67                  | 2217.41 5                           |             |                    | $E_{\gamma}I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                        |
| 42.50.05     | 4.0-                 | 2119.3 9                | 66 12                   | 2129.28 7                           | 3.64        | 0.0045             | $E_{\gamma}I_{\gamma}$ : from <sup>138</sup> Pr $\varepsilon$ decay (2.03 h).                                                        |
| 4359.93      | 12 <sup>+</sup>      | 417.5 2                 | 100                     | 3942.42 11+                         | M1          | 0.0245             | $\alpha(K) = 0.0210 \ 3; \ \alpha(L) = 0.00277 \ 4; \ \alpha(M) = 0.000578 \ 9$                                                      |
|              |                      |                         |                         |                                     |             |                    | $\alpha(N)=0.0001282 \ 18; \ \alpha(O)=2.08\times10^{-5} \ 3; \ \alpha(P)=1.600\times10^{-6} \ 23$                                   |
|              |                      |                         |                         |                                     |             |                    | E <sub>y</sub> : weighted average of 417.6 <i>I</i> from $^{130}$ Te( $^{12}$ C,4ny), 417.5 2 from                                   |
|              |                      |                         |                         |                                     |             |                    | $^{136}$ Ba( $\alpha$ ,2ny), and 417.4 3 from $^{138}$ Ba( $\alpha$ ,4ny).                                                           |
|              |                      |                         |                         |                                     |             |                    | Mult.: based on ce data in $(\alpha,2n\gamma)$ , $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(\alpha,4n\gamma)$ , $\gamma(DCO)$ and |
| 4401.0       | 1.0-                 | 00463                   | 100                     | 2507.22 2-                          | 3.61        | 0.00270            | $\gamma$ (pol) in ( $^{12}$ C,4n $\gamma$ ).                                                                                         |
| 4401.9       | 10-                  | 894.6 2                 | 100                     | 3507.30 9                           | M1          | 0.00378            | $\alpha(K)=0.00325$ 5; $\alpha(L)=0.000418$ 6; $\alpha(M)=8.69\times10^{-5}$ 13                                                      |
|              |                      |                         |                         |                                     |             |                    | $\alpha(N)=1.93\times10^{-5}$ 3; $\alpha(O)=3.14\times10^{-6}$ 5; $\alpha(P)=2.45\times10^{-7}$ 4                                    |
| 4501.51      | (10+)                | 020.1.5                 | 100                     | 20.42.42.41.1                       | 0.51 EC:    | 0.0025.0           | E <sub>y</sub> ,Mult.: from ( $^{12}$ C,4ny); mult is based on $\gamma$ (DCO) and $\gamma$ (pol).                                    |
| 4781.51      | $(12^{+})$           | 839.1 2                 | 100                     | 3942.42 11+                         | (M1+E2)     | 0.0037 8           | $\alpha(K)=0.0032\ 7;\ \alpha(L)=0.00042\ 7;\ \alpha(M)=8.7\times10^{-5}\ 15$                                                        |

| $E_i$ (level) | $\mathtt{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbb{E}_f$ | $\mathbf{J}_f^{\pi}$ | Mult. | $\alpha^{\dagger}$    | Comments                                                                                                                                                                                                                                                                                                                             |
|---------------|----------------------|-------------------------|-------------------------|----------------|----------------------|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4843.0        | 13-                  | 483.0 2                 | 100                     | 4359.93        | 12+                  | E1    | 0.00388               | $\alpha(N)=1.9\times10^{-5}$ 4; $\alpha(O)=3.1\times10^{-6}$ 6; $\alpha(P)=2.3\times10^{-7}$ 6<br>$E_{\gamma}$ , Mult.: from ( $^{12}C$ , 4n $\gamma$ ); mult is based on $\gamma(DCO)$ .<br>$\alpha(K)=0.00334$ 5; $\alpha(L)=0.000428$ 6; $\alpha(M)=8.89\times10^{-5}$ 13                                                         |
| 4974.64       | 13+                  | 614.7 <i>1</i>          | 100                     | 4359.93        | 12+                  | M1    | 0.00931               | $\alpha(N)=1.97\times10^{-5}$ 3; $\alpha(O)=3.17\times10^{-6}$ 5; $\alpha(P)=2.33\times10^{-7}$ 4<br>E <sub><math>\gamma</math></sub> ,Mult.: from ( $^{12}$ C,4n $\gamma$ ); mult is based on $\gamma(DCO)$ and $\gamma(pol)$ .<br>$\alpha(K)=0.00800$ 12; $\alpha(L)=0.001041$ 15; $\alpha(M)=0.000217$ 3                          |
|               |                      |                         |                         |                |                      |       |                       | $\alpha(N)=4.81\times10^{-5}$ 7; $\alpha(O)=7.83\times10^{-6}$ 11; $\alpha(P)=6.06\times10^{-7}$ 9 $E_{\gamma}$ : from ( $^{12}C$ ,4n $\gamma$ ). Mult.: based on $\gamma(DCO)$ and $\gamma(pol)$ in ( $^{12}C$ ,4n $\gamma$ ) and $\gamma(\theta)$ in ( $\alpha$ ,4n $\gamma$ ).                                                    |
| 5071.3        | (11-)                | 932.0 2                 | 100                     | 4139.3         | (10-)                | (M1)  | 0.00343               | $\alpha(K)=0.00295$ 5; $\alpha(L)=0.000379$ 6; $\alpha(M)=7.88\times10^{-5}$ 11 $\alpha(N)=1.751\times10^{-5}$ 25; $\alpha(O)=2.85\times10^{-6}$ 4; $\alpha(P)=2.22\times10^{-7}$ 4 $E_{\gamma}I_{\gamma}$ : from ( $^{12}C,4n\gamma$ ); mult is based on $\gamma(DCO)$ .                                                            |
| 5089.32       | 12-                  | 729.3 2                 | 1.53 23                 | 4359.93        | 12+                  | E1    | $1.58 \times 10^{-3}$ | $\alpha(K) = 0.001359 \ I9; \ \alpha(L) = 0.0001713 \ 24; \ \alpha(M) = 3.55 \times 10^{-5} \ 5$<br>$\alpha(N) = 7.86 \times 10^{-6} \ II; \ \alpha(O) = 1.272 \times 10^{-6} \ I8; \ \alpha(P) = 9.60 \times 10^{-8} \ I4$                                                                                                          |
|               |                      |                         |                         |                |                      |       | 4                     | $E_{\gamma}I_{\gamma}$ : from ( $^{12}C,4n\gamma$ ) only.<br>Mult.: D from ( $^{12}C,4n\gamma$ ) based on $\gamma$ (DCO); polarity from level-parity change.                                                                                                                                                                         |
|               |                      | 1146.9 2                | 100 10                  | 3942.42        | 11 <sup>+</sup>      | E1    | 6.66×10 <sup>-4</sup> | $\alpha(K)=0.000567 \ 8; \ \alpha(L)=7.03\times10^{-5} \ 10; \ \alpha(M)=1.456\times10^{-5} \ 21$<br>$\alpha(N)=3.23\times10^{-6} \ 5; \ \alpha(O)=5.24\times10^{-7} \ 8; \ \alpha(P)=4.04\times10^{-8} \ 6;$<br>$\alpha(IPF)=9.86\times10^{-6} \ 15$                                                                                |
|               |                      |                         |                         |                |                      |       |                       | $E_{\gamma}I_{\gamma}$ : from ( $^{12}C$ ,4n $\gamma$ ). Other: $E_{\gamma}=1146.9\ 3$ from ( $\alpha$ ,4n $\gamma$ ). Mult.: based on $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}C$ ,4n $\gamma$ ). Mult=(M1+E2) deduced by 1978Mu09 in ( $\alpha$ ,4n $\gamma$ ) based on $\gamma$ ( $\theta$ ) is inconsistent and not adopted. |
| 5214.30       | 13-                  | 124.8 <i>3</i>          | 11.4 18                 | 5089.32        | 12-                  | M1+E2 | 0.78 16               | $\alpha(K) = 0.58 \ 5; \ \alpha(L) = 0.16 \ 9; \ \alpha(M) = 0.035 \ 20$<br>$\alpha(N) = 0.008 \ 5; \ \alpha(O) = 0.0011 \ 6; \ \alpha(P) = 3.8 \times 10^{-5} \ 4$                                                                                                                                                                  |
|               |                      |                         |                         |                |                      |       |                       | E <sub><math>\gamma</math></sub> : weighted average of 125.0 2 from <sup>130</sup> Te( <sup>12</sup> C,4n $\gamma$ ) and 124.4 3 from <sup>138</sup> Ba( $\alpha$ ,4n $\gamma$ ).<br>I <sub><math>\gamma</math></sub> : weighted average of 10.8 16 from <sup>130</sup> Te( <sup>12</sup> C,4n $\gamma$ ) and 17 5 from              |
|               |                      |                         |                         |                |                      |       |                       | $^{138}$ Ba( $\alpha$ ,4n $\gamma$ ).<br>Mult.: based on $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}$ C,4n $\gamma$ ) and $\gamma$ ( $\theta$ ) in ( $\alpha$ ,4n $\gamma$ ).                                                                                                                                                      |
|               |                      | 432.8 2                 | 4.6 7                   | 4781.51        | (12+)                | (E1)  | 0.00502               | with: based on $\gamma$ (DCO) and $\gamma$ (poi) in (C,4iry) and $\gamma$ (b) in ( $\alpha$ ,4iry). $\alpha$ (K)=0.00432 $6$ ; $\alpha$ (L)=0.000556 $8$ ; $\alpha$ (M)=0.0001155 $17$ $\alpha$ (N)=2.55×10 <sup>-5</sup> $4$ ; $\alpha$ (O)=4.10×10 <sup>-6</sup> $6$ ; $\alpha$ (P)=3.00×10 <sup>-7</sup> $5$                      |
|               |                      | 854.4 <i>1</i>          | 100 5                   | 4359.93        | 12+                  | E1    | $1.14 \times 10^{-3}$ | E <sub>γ</sub> ,I <sub>γ</sub> ,Mult.: from ( $^{12}$ C,4nγ) only.<br>α(K)=0.000988 <i>14</i> ; α(L)=0.0001238 <i>18</i> ; α(M)=2.57×10 <sup>-5</sup> <i>4</i>                                                                                                                                                                       |
|               |                      |                         |                         |                |                      |       |                       | $\alpha(N)=5.68\times10^{-6}$ 8; $\alpha(O)=9.21\times10^{-7}$ 13; $\alpha(P)=7.01\times10^{-8}$ 10 E <sub>y</sub> : weighted average of 854.3 1 from <sup>130</sup> Te( <sup>12</sup> C,4ny), 854.6 2 from                                                                                                                          |
|               |                      |                         |                         |                |                      |       |                       | $^{136}$ Ba( $\alpha$ ,2n $\gamma$ ), and 854.2 $\beta$ from $^{138}$ Ba( $\alpha$ ,4n $\gamma$ ).<br>$I_{\gamma}$ : from ( $^{12}$ C,4n $\gamma$ ).                                                                                                                                                                                 |
|               |                      |                         |                         |                |                      |       |                       | Mult.: based on $\gamma(DCO)$ and $\gamma(pol)$ in ( $^{12}C,4n\gamma$ ). Mult=(M1+E2) deduced by 1978Mu09 in ( $\alpha,4n\gamma$ ) based on $\gamma(\theta)$ is inconsistent and not adopted.                                                                                                                                       |

|              |                        | _ +                     | . +                     | -              | -7               |       | +                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|------------------------|-------------------------|-------------------------|----------------|------------------|-------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$ | $\mathbf{J}_{i}^{\pi}$ | $E_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f$ | $\mathbf{J}_f^n$ | Mult. | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5312.39      | 14+                    | 98.1 <i>1</i>           | 100 10                  | 5214.30        | 13-              | (E1)  | 0.256              | $\alpha(K)$ =0.218 4; $\alpha(L)$ =0.0304 5; $\alpha(M)$ =0.00634 9<br>$\alpha(N)$ =0.001384 20; $\alpha(O)$ =0.000215 3; $\alpha(P)$ =1.310×10 <sup>-5</sup> 19<br>B(E1)(W.u.)=0.0014 +4-3<br>E <sub><math>\gamma</math></sub> I <sub><math>\gamma</math></sub> : from ( $^{12}$ C,4n $\gamma$ ). Other: E $\gamma$ =98.3 3 from ( $\alpha$ ,4n $\gamma$ ).<br>Mult.: from ( $^{12}$ C,4n $\gamma$ ) with bracket added by evaluator since no $\gamma$ (DCO) and $\gamma$ (pol) data. This assignment is consistent with $\gamma(\theta)$ in ( $\alpha$ ,4n $\gamma$ ). |
|              |                        | 337.7 2                 | 91 9                    | 4974.64        | 13+              | M1    | 0.0423             | attach. This assignment is consistent with $\gamma(s)$ in $(\alpha, \ln \gamma)$ : $\alpha(K)=0.0362$ 5; $\alpha(L)=0.00481$ 7; $\alpha(M)=0.001004$ 15 $\alpha(N)=0.000223$ 4; $\alpha(O)=3.62\times10^{-5}$ 5; $\alpha(P)=2.77\times10^{-6}$ 4 B(M1)(W.u.)=0.0028 +8-6 E <sub><math>\gamma</math></sub> ,I <sub><math>\gamma</math></sub> : from ( $^{12}$ C,4n $\gamma$ ). Other: E $\gamma$ =337.7 3 from $(\alpha,4$ n $\gamma)$ . Mult.: based on $\gamma(DCO)$ and $\gamma(pol)$ in ( $^{12}$ C,4n $\gamma$ ) and $\gamma(\theta)$ in $(\alpha,4$ n $\gamma)$ .   |
|              |                        | 469.4 2                 | 11.3 19                 | 4843.0         | 13-              | (E1)  | 0.00415            | $\alpha(K)$ =0.00357 5; $\alpha(L)$ =0.000458 7; $\alpha(M)$ =9.51×10 <sup>-5</sup> 14 $\alpha(N)$ =2.10×10 <sup>-5</sup> 3; $\alpha(O)$ =3.38×10 <sup>-6</sup> 5; $\alpha(P)$ =2.49×10 <sup>-7</sup> 4 B(E1)(W.u.)=1.5×10 <sup>-6</sup> +7-5 E <sub>y</sub> ,I <sub>y</sub> : from ( $^{12}$ C,4ny) only. Mult.: from ( $^{12}$ C,4ny) with bracket added by evaluator since no $\gamma(DCO)$ and $\gamma(pol)$ data.                                                                                                                                                   |
| 5387.7       | 11-                    | 985.8 2                 | 100                     | 4401.9         | 10-              | M1    | 0.00301            | $\alpha(K)=0.00259 \ 4; \ \alpha(L)=0.000332 \ 5; \ \alpha(M)=6.90\times10^{-5} \ 10$<br>$\alpha(N)=1.532\times10^{-5} \ 22; \ \alpha(O)=2.50\times10^{-6} \ 4; \ \alpha(P)=1.95\times10^{-7} \ 3$<br>$E_{\gamma}$ , Mult.: from ( $^{12}C$ ,4n $\gamma$ ); mult is based on $\gamma(DCO)$ and $\gamma(pol)$ .                                                                                                                                                                                                                                                           |
| 5411.5       | 14-                    | 99.1 2                  | 2.5 4                   | 5312.39        | 14+              | (E1)  | 0.249              | $\alpha(K)$ =0.212 4; $\alpha(L)$ =0.0296 5; $\alpha(M)$ =0.00616 10 $\alpha(N)$ =0.001345 21; $\alpha(O)$ =0.000209 4; $\alpha(P)$ =1.276×10 <sup>-5</sup> 19 $E_{\gamma}I_{\gamma}$ : from ( $^{12}C$ ,4n $\gamma$ ) only. Mult.: from ( $^{12}C$ ,4n $\gamma$ ) with bracket added by evaluator since no $\gamma(DCO)$ and $\gamma(pol)$ data.                                                                                                                                                                                                                        |
|              |                        | 197.9 7                 | 100 10                  | 5214.30        | 13-              | M1    | 0.176 3            | add: $\alpha(K)=0.150\ 3;\ \alpha(L)=0.0202\ 4;\ \alpha(M)=0.00423\ 8$ $\alpha(N)=0.000939\ 16;\ \alpha(O)=0.000152\ 3;\ \alpha(P)=1.156\times10^{-5}\ 20$ $E_{\gamma}:\ unweighted\ average\ of\ 197.2\ 2\ from\ ^{130}Te(^{12}C,4n\gamma)\ and\ 198.6\ 3\ from\ ^{138}Ba(\alpha,4n\gamma).$ $I_{\gamma}:\ from\ (^{12}C,4n\gamma)\ based\ on\ \gamma(DCO)\ and\ \gamma(pol).$                                                                                                                                                                                          |
|              |                        | 568.5 2                 | 5.1 9                   | 4843.0         | 13-              | M1    | 0.01129            | Mult.: from (**C,4n $\gamma$ ) based on $\gamma$ (DCO) and $\gamma$ (pol).<br>$\alpha$ (K)=0.00969 14; $\alpha$ (L)=0.001264 18; $\alpha$ (M)=0.000264 4<br>$\alpha$ (N)=5.85×10 <sup>-5</sup> 9; $\alpha$ (O)=9.51×10 <sup>-6</sup> 14; $\alpha$ (P)=7.35×10 <sup>-7</sup> 11<br>$E_{\gamma}$ , $I_{\gamma}$ : from (\$^{12}C,4n $\gamma$ \$) only.<br>Mult.: from (\$^{12}C,4n $\gamma$ \$) based on $\gamma$ (DCO) and $\gamma$ (pol).                                                                                                                                |
| 5566.4       | 15 <sup>+</sup>        | 254.0 <i>I</i>          | 100                     | 5312.39        | 14+              | M1+E2 | 0.086 4            | $\alpha(K)$ =0.071 6; $\alpha(L)$ =0.0121 19; $\alpha(M)$ =0.0026 5<br>$\alpha(N)$ =0.00056 9; $\alpha(O)$ =8.8×10 <sup>-5</sup> 11; $\alpha(P)$ =5.0×10 <sup>-6</sup> 9<br>$E_{\gamma}$ : from ( $^{12}C$ ,4n $\gamma$ ). Other: 254.1 3 from ( $\alpha$ ,4n $\gamma$ ).<br>Mult.: from ( $^{12}C$ ,4n $\gamma$ ) based on $\gamma(DCO)$ and $\gamma(pol)$ .                                                                                                                                                                                                            |
| 5714.4       | (14 <sup>-</sup> )     | 500.1 2                 | 100                     | 5214.30        | 13-              | (M1)  | 0.01553            | $\alpha(K)$ =0.01332 19; $\alpha(L)$ =0.001745 25; $\alpha(M)$ =0.000364 6<br>$\alpha(N)$ =8.08×10 <sup>-5</sup> 12; $\alpha(O)$ =1.313×10 <sup>-5</sup> 19; $\alpha(P)$ =1.012×10 <sup>-6</sup> 15<br>$E_{\gamma}$ ,Mult.: from ( $^{12}C$ ,4n $\gamma$ ); mult is based on $\gamma(DCO)$ .                                                                                                                                                                                                                                                                             |

# $\gamma$ (138Ce) (continued)

|                  |                      |                           |                         |                  |                                    |       | 7.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|----------------------|---------------------------|-------------------------|------------------|------------------------------------|-------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i$ (level)    | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$   | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f$   | $\mathbf{J}_f^{\pi}$               | Mult. | $lpha^\dagger$        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5726.6           | 14+                  | 1366.7 2                  | 100                     | 4359.93          | 12+                                | E2    | 1.10×10 <sup>-3</sup> | $\alpha(K)$ =0.000912 13; $\alpha(L)$ =0.0001179 17; $\alpha(M)$ =2.45×10 <sup>-5</sup> 4 $\alpha(N)$ =5.44×10 <sup>-6</sup> 8; $\alpha(O)$ =8.80×10 <sup>-7</sup> 13; $\alpha(P)$ =6.63×10 <sup>-8</sup> 10; $\alpha(PF)$ =3.64×10 <sup>-5</sup> 6                                                                                                                                                                                                                                                           |
| 5731.0           | 15-                  | 319.5 2                   | 100                     | 5411.5           | 14-                                | M1    | 0.0488                | E <sub>γ</sub> : from ( $^{12}$ C,4nγ) only.<br>E <sub>γ</sub> ,Mult.: from ( $^{12}$ C,4nγ); mult is based on γ(DCO).<br>$\alpha$ (K)=0.0418 $\beta$ ; $\alpha$ (L)=0.00556 $\beta$ ; $\alpha$ (M)=0.001162 $\beta$ 7<br>$\alpha$ (N)=0.000258 $\beta$ 4; $\alpha$ (O)=4.19×10 <sup>-5</sup> $\beta$ 5; $\alpha$ (P)=3.20×10 <sup>-6</sup> $\beta$ 5<br>E <sub>γ</sub> : weighted average of 319.6 $\beta$ 2 from $\beta$ 130 Te( $\beta$ 2°C,4nγ) and 319.3 $\beta$ 3 from $\beta$ 138 Ba( $\alpha$ 4,4nγ). |
| 5871.2           | 15 <sup>+</sup>      | 144.6 2                   | 6.2 8                   | 5726.6           | 14+                                | M1    | 0.417                 | Mult.: based on $\gamma(DCO)$ and $\gamma(pol)$ in ( $^{12}C,4n\gamma$ ) and $\gamma(\theta)$ in ( $\alpha,4n\gamma$ ). $\alpha(K)=0.356$ 6; $\alpha(L)=0.0484$ 7; $\alpha(M)=0.01014$ 15 $\alpha(N)=0.00225$ 4; $\alpha(O)=0.000364$ 6; $\alpha(P)=2.75\times10^{-5}$ 4                                                                                                                                                                                                                                      |
|                  |                      | 896.6 2                   | 100 10                  | 4974.64          | 13 <sup>+</sup>                    | E2    | 0.00256               | E <sub>γ</sub> ,I <sub>γ</sub> : from ( $^{12}$ C,4nγ) only.<br>Mult.: D from γ(DCO) in ( $^{12}$ C,4nγ); polarity from no level-parity change.<br>$\alpha$ (K)=0.00218 3; $\alpha$ (L)=0.000298 5; $\alpha$ (M)=6.23×10 <sup>-5</sup> 9<br>$\alpha$ (N)=1.378×10 <sup>-5</sup> 20; $\alpha$ (O)=2.21×10 <sup>-6</sup> 3; $\alpha$ (P)=1.580×10 <sup>-7</sup> 23<br>E <sub>γ</sub> ,I <sub>γ</sub> : from ( $^{12}$ C,4nγ) only.                                                                              |
| 5955.3<br>6014.4 | 16 <sup>+</sup>      | 388.9 2<br>448.0 <i>1</i> | 100<br>100              | 5566.4<br>5566.4 | 15 <sup>+</sup><br>15 <sup>+</sup> | M1    | 0.0205                | Mult.: from ( $^{12}$ C,4n $\gamma$ ) based on $\gamma$ (DCO) and $\gamma$ (DCO).<br>E $_{\gamma}$ : from ( $^{12}$ C,4n $\gamma$ ) only.<br>$\alpha$ (K)=0.01756 25; $\alpha$ (L)=0.00231 4; $\alpha$ (M)=0.000482 7<br>$\alpha$ (N)=0.0001069 15; $\alpha$ (O)=1.737×10 <sup>-5</sup> 25; $\alpha$ (P)=1.336×10 <sup>-6</sup> 19<br>E $_{\gamma}$ : from ( $^{12}$ C,4n $\gamma$ ). Other: 447.5 3 from ( $\alpha$ ,4n $\gamma$ ).                                                                          |
| 6134.7           | (14+)                | 1291.7 2                  | 100                     | 4843.0           | 13-                                | (E1)  | $6.05 \times 10^{-4}$ | Mult.: based on $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}$ C,4n $\gamma$ ) and $\gamma$ ( $\theta$ ) in ( $\alpha$ ,4n $\gamma$ ). $\alpha$ (K)=0.000459 7; $\alpha$ (L)=5.67×10 <sup>-5</sup> 8; $\alpha$ (M)=1.173×10 <sup>-5</sup> 17 $\alpha$ (N)=2.60×10 <sup>-6</sup> 4; $\alpha$ (O)=4.23×10 <sup>-7</sup> 6; $\alpha$ (P)=3.27×10 <sup>-8</sup> 5; $\alpha$ (IPF)=7.43×10 <sup>-5</sup> 11                                                                                                        |
| 6328.7           | (12-)                | 941.0 2                   | 100                     | 5387.7           | 11-                                | (M1)  | 0.00335               | E <sub>y</sub> : from ( $^{12}$ C,4ny) only.<br>Mult.: based on $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}$ C,4ny).<br>$\alpha$ (K)=0.00289 4; $\alpha$ (L)=0.000370 6; $\alpha$ (M)=7.71×10 <sup>-5</sup> 11<br>$\alpha$ (N)=1.711×10 <sup>-5</sup> 24; $\alpha$ (O)=2.79×10 <sup>-6</sup> 4; $\alpha$ (P)=2.17×10 <sup>-7</sup> 3<br>E <sub>y</sub> : from ( $^{12}$ C,4ny) only.                                                                                                                        |
| 6363.4           | 16-                  | 632.4 2                   | 100                     | 5731.0           | 15-                                | M1    | 0.00869               | Mult.: based on $\gamma$ (DCO) and in ( $^{12}$ C,4n $\gamma$ ).<br>$\alpha$ (K)=0.00746 11; $\alpha$ (L)=0.000970 14; $\alpha$ (M)=0.000202 3<br>$\alpha$ (N)=4.49×10 <sup>-5</sup> 7; $\alpha$ (O)=7.30×10 <sup>-6</sup> 11; $\alpha$ (P)=5.65×10 <sup>-7</sup> 8<br>E <sub><math>\gamma</math></sub> : from ( $^{12}$ C,4n $\gamma$ ) only.                                                                                                                                                                |
| 6408.6           | (15 <sup>-</sup> )   | 997.1 2                   | 100                     | 5411.5           | 14-                                | (M1)  | 0.00293               | Mult.: based on $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}$ C,4n $\gamma$ ).<br>$\alpha$ (K)=0.00252 4; $\alpha$ (L)=0.000323 5; $\alpha$ (M)=6.72×10 <sup>-5</sup> 10<br>$\alpha$ (N)=1.492×10 <sup>-5</sup> 21; $\alpha$ (O)=2.43×10 <sup>-6</sup> 4; $\alpha$ (P)=1.89×10 <sup>-7</sup> 3<br>E $_{\gamma}$ ,Mult.: from ( $^{12}$ C,4n $\gamma$ ). No $\gamma$ (DCO) or $\gamma$ (pol) data for mult.                                                                                                   |
| 6451.0<br>6451.2 | 16 <sup>+</sup>      | 495.7 2<br>580.0 2        | 100<br>100              | 5955.3<br>5871.2 | 15 <sup>+</sup>                    | M1    | 0.01074               | $E_{\gamma}$ , Mult.: From ( C,411 $\gamma$ ). No $\gamma$ (DCO) of $\gamma$ (por) data for mult. $E_{\gamma}$ : from ( $^{12}$ C,41 $\gamma$ ) only. $\alpha$ (K)=0.00923 $I3$ ; $\alpha$ (L)=0.001203 $I7$ ; $\alpha$ (M)=0.000251 $I$                                                                                                                                                                                                                                                                      |

16

# $\gamma(\frac{138}{\text{Ce}})$ (continued)

| $E_i$ (level)    | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f$   | $\mathbf{J}_f^{\pi}$ | Mult.   | $lpha^\dagger$        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|----------------------|----------------------------------|-------------------------|------------------|----------------------|---------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6536.4           | 15 <sup>(-)</sup>    | 970.0 2                          | 40 6                    | 5566.4           | 15+                  | (E1)    | 8.95×10 <sup>-4</sup> | $\alpha(N)=5.56\times10^{-5}~8;~\alpha(O)=9.05\times10^{-6}~13;~\alpha(P)=6.99\times10^{-7}~10$ E <sub><math>\gamma</math></sub> : from ( $^{12}$ C,4n $\gamma$ ) only. Mult.: based on $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}$ C,4n $\gamma$ ). $\alpha(K)=0.000774~11;~\alpha(L)=9.65\times10^{-5}~14;~\alpha(M)=2.00\times10^{-5}~3$ $\alpha(N)=4.43\times10^{-6}~7;~\alpha(O)=7.18\times10^{-7}~10;~\alpha(P)=5.49\times10^{-8}~8$ E <sub><math>\gamma</math></sub> ,I $_{\gamma}$ : from ( $^{12}$ C,4n $\gamma$ ) only. Mult.: from ( $^{12}$ C,4n $\gamma$ ) with bracket added by evaluator since no |
|                  |                      | 1224.0 2                         | 100 20                  | 5312.39          | 14 <sup>+</sup>      | (E1+M2) | 0.00066 4             | $\gamma$ (DCO) or $\gamma$ (pol) data.<br>$\alpha$ (K)=0.00054 4; $\alpha$ (L)=6.7×10 <sup>-5</sup> 5; $\alpha$ (M)=1.38×10 <sup>-5</sup> 9<br>$\alpha$ (N)=3.06×10 <sup>-6</sup> 21; $\alpha$ (O)=5.0×10 <sup>-7</sup> 4; $\alpha$ (P)=3.8×10 <sup>-8</sup> 3;<br>$\alpha$ (IPF)=3.95×10 <sup>-5</sup> 7<br>E <sub><math>\gamma</math></sub> I <sub><math>\gamma</math></sub> : from ( $^{12}$ C,4n $\gamma$ ) only.                                                                                                                                                                                               |
| 6597.6<br>6606.3 | 17+                  | 146.6 2<br>155.1 2               | 100<br>100              | 6451.0<br>6451.2 | 16 <sup>+</sup>      | M1      | 0.343                 | Mult.: from ( $^{12}$ C,4n $\gamma$ ) based on $\gamma$ (DCO), with bracket added by evaluator since no $\gamma$ (pol) data.<br>E $_{\gamma}$ : from ( $^{12}$ C,4n $\gamma$ ) only. $\alpha$ (K)=0.293 5; $\alpha$ (L)=0.0398 6; $\alpha$ (M)=0.00833 12 $\alpha$ (N)=0.00185 3; $\alpha$ (O)=0.000299 5; $\alpha$ (P)=2.26×10 <sup>-5</sup> 4 E $_{\gamma}$ : from ( $^{12}$ C,4n $\gamma$ ) only.                                                                                                                                                                                                                |
| 6685.5           | 16-                  | 149.1 2                          | 12.9 22                 | 6536.4           | 15 <sup>(-)</sup>    | (M1)    | 0.383                 | Mult.: based on $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}$ C,4n $\gamma$ ).<br>$\alpha$ (K)=0.327 5; $\alpha$ (L)=0.0444 7; $\alpha$ (M)=0.00930 14<br>$\alpha$ (N)=0.00206 3; $\alpha$ (O)=0.000334 5; $\alpha$ (P)=2.53×10 <sup>-5</sup> 4<br>E $_{\gamma}$ I $_{\gamma}$ : from ( $^{12}$ C,4n $\gamma$ ) only.<br>Mult.: D from $\gamma$ (DCO) in ( $^{12}$ C,4n $\gamma$ ); polarity from no level-parity                                                                                                                                                                                                  |
|                  |                      | 550.8 2                          | 6.5 11                  | 6134.7           | (14+)                | (M2)    | 0.0379                | change. $\alpha(K)=0.0320~5$ ; $\alpha(L)=0.00465~7$ ; $\alpha(M)=0.000982~14$ $\alpha(N)=0.000218~3$ ; $\alpha(O)=3.53\times10^{-5}~5$ ; $\alpha(P)=2.63\times10^{-6}~4$ $E_{\gamma},I_{\gamma},Mult.$ : from ( $^{12}C,4n\gamma$ ) only. No $\gamma(DCO)$ or $\gamma(pol)$ data for mult.                                                                                                                                                                                                                                                                                                                         |
|                  |                      | 671.1 2                          | 4.3 7                   | 6014.4           | 16 <sup>+</sup>      | E1+M2   | 0.00207 20            | $\alpha(K)$ =0.00178 17; $\alpha(L)$ =0.000228 24; $\alpha(M)$ =4.7×10 <sup>-5</sup> 5 $\alpha(N)$ =1.05×10 <sup>-5</sup> 11; $\alpha(O)$ =1.69×10 <sup>-6</sup> 18; $\alpha(P)$ =1.27×10 <sup>-7</sup> 14 $E_{\gamma}I_{\gamma}$ : from ( $^{12}C$ ,4n $\gamma$ ) only. Mult.: from $\gamma(DCO)$ in ( $^{12}C$ ,4n $\gamma$ ); polarity from no level-parity                                                                                                                                                                                                                                                      |
|                  |                      | 1119.1 2                         | 100 15                  | 5566.4           | 15 <sup>+</sup>      | E1      | 6.90×10 <sup>-4</sup> | change. $\alpha(K)=0.000593\ 9;\ \alpha(L)=7.36\times10^{-5}\ 11;\ \alpha(M)=1.524\times10^{-5}\ 22$ $\alpha(N)=3.38\times10^{-6}\ 5;\ \alpha(O)=5.48\times10^{-7}\ 8;\ \alpha(P)=4.22\times10^{-8}\ 6;$ $\alpha(IPF)=4.61\times10^{-6}\ 7$ $E_{\gamma}I_{\gamma}$ : from ( $^{12}C$ ,4n $_{\gamma}$ ).                                                                                                                                                                                                                                                                                                             |
| 6738.3           | (16 <sup>-</sup> )   | 1007.3 2                         | 100                     | 5731.0           | 15-                  | (M1)    | 0.00286               | Mult.: based on $\gamma$ (DCO) and $\gamma$ (pol) in ( $^{12}$ C,4n $\gamma$ ).<br>$\alpha$ (K)=0.00246 4; $\alpha$ (L)=0.000315 5; $\alpha$ (M)=6.56×10 <sup>-5</sup> 10 $\alpha$ (N)=1.456×10 <sup>-5</sup> 21; $\alpha$ (O)=2.37×10 <sup>-6</sup> 4; $\alpha$ (P)=1.85×10 <sup>-7</sup> 3 E $_{\gamma}$ ,Mult.: from ( $^{12}$ C,4n $\gamma$ ). No $\gamma$ (DCO) or $\gamma$ (pol) data for mult.                                                                                                                                                                                                               |

17

 $\gamma$ (138Ce) (continued)

 $\alpha(IPF)=1.688\times10^{-5}$  24  $E_{\gamma}$ ,  $I_{\gamma}$ : from (<sup>12</sup>C, 4n $\gamma$ ).

 $E_{\gamma}$ : from ( $^{12}C,4n\gamma$ ) only.

Comments

 $\alpha(K)=0.00391$  6;  $\alpha(L)=0.000504$  7;  $\alpha(M)=0.0001049$  15  $\alpha(N)=2.33\times10^{-5}$  4;  $\alpha(O)=3.79\times10^{-6}$  6;  $\alpha(P)=2.95\times10^{-7}$  5  $E_{\nu}J_{\nu}$ .Mult.: from (12C,4n $\gamma$ ). Mult is based  $\gamma$ (DCO) and  $\gamma$ (pol).

 $\alpha(K)=0.1390\ 20$ ;  $\alpha(L)=0.0187\ 3$ ;  $\alpha(M)=0.00392\ 6$ 

 $\alpha(K)=0.001046$  15;  $\alpha(L)=0.0001362$  19;  $\alpha(M)=2.84\times10^{-5}$  4

 $\alpha(N)=6.28\times10^{-6}$  9:  $\alpha(O)=1.015\times10^{-6}$  15:  $\alpha(P)=7.60\times10^{-8}$  11:

 $\alpha(N)=0.000870 \ 13; \ \alpha(O)=0.0001410 \ 21; \ \alpha(P)=1.071\times10^{-5} \ 16$  $E_{\gamma}$ ,  $I_{\gamma}$ , Mult.: from ( $^{12}$ C,  $4n\gamma$ ). Mult is based  $\gamma$ (DCO) and  $\gamma$ (pol).  $\alpha(K)=0.000944$  14;  $\alpha(L)=0.0001182$  17;  $\alpha(M)=2.45\times10^{-5}$  4

 $\alpha(N)=5.42\times10^{-6}$  8;  $\alpha(O)=8.79\times10^{-7}$  13;  $\alpha(P)=6.70\times10^{-8}$  10  $E_{\nu}I_{\nu}$ Mult.: from (<sup>12</sup>C.4n $\nu$ ). Mult is based  $\nu$ (DCO) and  $\nu$ (pol).

 $\alpha(K)=0.00563$  8;  $\alpha(L)=0.000729$  11;  $\alpha(M)=0.0001517$  22

 $\alpha(N)=3.37\times10^{-5}$  5;  $\alpha(O)=5.48\times10^{-6}$  8;  $\alpha(P)=4.25\times10^{-7}$  6

 $\alpha(K)=0.000944$  14;  $\alpha(L)=0.0001222$  18;  $\alpha(M)=2.54\times10^{-5}$  4

 $\alpha(K)=0.0698$  10;  $\alpha(L)=0.00934$  14;  $\alpha(M)=0.00195$  3

 $\alpha(N)=0.000433$  7;  $\alpha(O)=7.03\times10^{-5}$  10;  $\alpha(P)=5.36\times10^{-6}$  8  $E_{\gamma}$ ,  $I_{\gamma}$ , Mult.: from (12C, 4n $\gamma$ ). Mult is based  $\gamma$ (DCO) and  $\gamma$ (pol).

 $\alpha(K)=0.001438 \ 21; \ \alpha(L)=0.000191 \ 3; \ \alpha(M)=3.98\times10^{-5} \ 6$ 

 $E_{\gamma}$ , Mult.: from (12C,4n $\gamma$ ). Mult is based  $\gamma$ (DCO) and  $\gamma$ (pol).  $\alpha(K)=0.0409$  6;  $\alpha(L)=0.00544$  8;  $\alpha(M)=0.001135$  16

 $\alpha(N)=0.000252$  4;  $\alpha(O)=4.09\times10^{-5}$  6;  $\alpha(P)=3.13\times10^{-6}$  5  $E_{\gamma}$ ,  $I_{\gamma}$ , Mult.: from (<sup>12</sup>C, 4n $\gamma$ ). Mult is based  $\gamma$ (DCO) and  $\gamma$ (pol).

 $\alpha(K) = 0.00633 \ 9; \ \alpha(L) = 0.000820 \ 12; \ \alpha(M) = 0.0001703 \ 24$ 

 $\alpha(N)=3.76\times10^{-5}$  6;  $\alpha(O)=6.03\times10^{-6}$  9;  $\alpha(P)=4.35\times10^{-7}$  7

 $\alpha(K) = 0.000514 \ 8; \ \alpha(L) = 6.37 \times 10^{-5} \ 9; \ \alpha(M) = 1.318 \times 10^{-5} \ 19$ 

 $E_{\gamma}$ ,  $I_{\gamma}$ , Mult.: from (12C, 4n $\gamma$ ). Mult is based  $\gamma$ (DCO).

 $E_{\nu}J_{\nu}$ , Mult.: from (12C,4n $\gamma$ ) only. No  $\gamma$ (DCO) or  $\gamma$ (pol) data for mult.

 $\alpha(N)=8.81\times10^{-6}\ 13;\ \alpha(O)=1.419\times10^{-6}\ 20;\ \alpha(P)=1.044\times10^{-7}\ 15$  $E_{\gamma}$ ,  $I_{\gamma}$ , Mult.: from (12C, 4n $\gamma$ ). Mult is based  $\gamma$ (DCO) and  $\gamma$ (pol).  $\alpha(K)=0.000546$  8;  $\alpha(L)=6.77\times10^{-5}$  10;  $\alpha(M)=1.402\times10^{-5}$  20

 $E_{\gamma}$ ,  $I_{\gamma}$ , Mult.: from (<sup>12</sup>C, 4n $\gamma$ ) only. No  $\gamma$ (DCO) or  $\gamma$ (pol) data for mult.

 $E_{\gamma}$ ,  $I_{\gamma}$ , Mult.: from (<sup>12</sup>C, 4n $\gamma$ ) only. No  $\gamma$ (DCO) or  $\gamma$ (pol) data for mult.

 $\alpha(N)=5.64\times10^{-6}$  8;  $\alpha(O)=9.12\times10^{-7}$  13;  $\alpha(P)=6.86\times10^{-8}$  10;  $\alpha(IPF)=3.05\times10^{-5}$ 

 $\alpha(N)=3.11\times10^{-6}$  5;  $\alpha(O)=5.04\times10^{-7}$  7;  $\alpha(P)=3.89\times10^{-8}$  6;  $\alpha(IPF)=1.696\times10^{-5}$ 

 $\alpha(N)=2.92\times10^{-6}$  4;  $\alpha(O)=4.75\times10^{-7}$  7;  $\alpha(P)=3.66\times10^{-8}$  6;  $\alpha(IPF)=3.36\times10^{-5}$  5

Mult.: Q from  $\gamma(DCO)$  in ( $^{12}C,4n\gamma$ ); polarity from no level-parity change.

 $\alpha^{\dagger}$ 

0.00455

 $1.23\times10^{-3}$ 

0.1627

 $1.09 \times 10^{-3}$ 

0.00655

 $1.13 \times 10^{-3}$ 

0.0816

 $1.68 \times 10^{-3}$ 

 $6.49 \times 10^{-4}$ 

0.0477

0.00737

 $6.28 \times 10^{-4}$ 

Mult.

M1

E2

M1

E1

(M1)

(E2)

M1

E2

(E1)

M1

(E1)

(E1)

6014.4 16+

5566.4 15<sup>+</sup>

6597.6

6685.5 16-

6014.4 16<sup>+</sup>

6363.4 16-

5731.0 15-

6841.7 17<sup>+</sup>

6014.4 16<sup>+</sup>

6014.4 16+

6889.0 17

6841.7 17<sup>+</sup>

6014.4 16+

100 11

32.5

100

81 12

100 15

54 8

100 10

29 4

100

100 10

100 14

6.2 11

1275.3 2

262.1 2

203.5 2

874.6 2

710.6 2

263.0 2

1090.3 2

1170.9 2

322.3 *1* 

369.6 2

1210.8 2

1343.0 2 100 *15* 

 $E_i(level)$ 

6841.7

6859.7

6889.0

7074.0

7104.7

7185.3

7211.3

7225.2

 $17^{-}$ 

 $(17^{-})$ 

 $18^{+}$ 

 $(16^{-})$ 

 $18^{-}$ 

 $(16^{-})$ 

# $\gamma$ (138Ce) (continued)

| $E_i$ (level)    | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\ \ddagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$            | Mult.   | $lpha^\dagger$        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------|----------------------|------------------------------------|-------------------------|-----------------------------------------------------|---------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7225.2           | (16-)                | 1494.1 2                           | 86 14                   | 5731.0 15-                                          | (M1)    | 1.24×10 <sup>-3</sup> | $\alpha(K)$ =0.001004 <i>14</i> ; $\alpha(L)$ =0.0001271 <i>18</i> ; $\alpha(M)$ =2.64×10 <sup>-5</sup> 4 $\alpha(N)$ =5.86×10 <sup>-6</sup> 9; $\alpha(O)$ =9.55×10 <sup>-7</sup> <i>14</i> ; $\alpha(P)$ =7.50×10 <sup>-8</sup> <i>11</i> ; $\alpha(PF)$ =7.69×10 <sup>-5</sup> <i>11</i>                                                                                                                               |
| 7392.3           | (18+)                | 786.0 2                            | 100                     | 6606.3 17+                                          | (M1)    | 0.00514               | E <sub>γ</sub> ,I <sub>γ</sub> ,Mult.: from ( $^{12}$ C,4n <sub>γ</sub> ) only. No γ(DCO) or γ(pol) data for mult. $\alpha$ (K)=0.00442 7; $\alpha$ (L)=0.000570 8; $\alpha$ (M)=0.0001187 17 $\alpha$ (N)=2.64×10 <sup>-5</sup> 4; $\alpha$ (O)=4.29×10 <sup>-6</sup> 6; $\alpha$ (P)=3.33×10 <sup>-7</sup> 5                                                                                                            |
| 7427.6<br>7532.4 | (17-)                | 585.9 2<br>307.2 2                 | 100<br>40 <i>6</i>      | 6841.7 17 <sup>+</sup><br>7225.2 (16 <sup>-</sup> ) | (M1)    | 0.0541                | E <sub>γ</sub> ,I <sub>γ</sub> ,Mult.: from ( $^{12}$ C,4nγ) only. No γ(DCO) or γ(pol) data for mult.<br>E <sub>γ</sub> : from ( $^{12}$ C,4nγ) only.<br>$\alpha$ (K)=0.0463 7; $\alpha$ (L)=0.00617 9; $\alpha$ (M)=0.001289 19                                                                                                                                                                                          |
|                  |                      | 347.1 2                            | 100 20                  | 7185.3 (16 <sup>-</sup> )                           | (M1)    | 0.0394                | $\alpha(N)=0.000286$ 4; $\alpha(O)=4.64\times10^{-5}$ 7; $\alpha(P)=3.55\times10^{-6}$ 5 E <sub><math>\gamma</math></sub> ,I <sub><math>\gamma</math></sub> ,Mult.: from ( $^{12}$ C,4n $\gamma$ ) only. No $\gamma$ (DCO) or $\gamma$ (pol) data for mult. $\alpha(K)=0.0337$ 5; $\alpha(L)=0.00447$ 7; $\alpha(M)=0.000934$ 14 $\alpha(N)=0.000207$ 3; $\alpha(O)=3.37\times10^{-5}$ 5; $\alpha(P)=2.58\times10^{-6}$ 4 |
|                  |                      | 1518.0 2                           | 80 12                   | 6014.4 16+                                          | (E1)    | 6.31×10 <sup>-4</sup> | E <sub>γ</sub> ,I <sub>γ</sub> ,Mult.: from ( $^{12}$ C,4nγ). Mult is based γ(DCO).<br>α(K)=0.000348 5; α(L)=4.28×10 <sup>-5</sup> 6; α(M)=8.85×10 <sup>-6</sup> 13<br>α(N)=1.96×10 <sup>-6</sup> 3; α(O)=3.19×10 <sup>-7</sup> 5; α(P)=2.48×10 <sup>-8</sup> 4;                                                                                                                                                          |
| 7682.9           | 19 <sup>+</sup>      | 578.2 2                            | 100                     | 7104.7 18+                                          | M1      | 0.01083               | $\alpha$ (IPF)=0.000229 4<br>$E_{\gamma}I_{\gamma}$ ,Mult.: from ( $^{12}C$ ,4n $\gamma$ ). Mult is based $\gamma$ (DCO).<br>$\alpha$ (K)=0.00930 13; $\alpha$ (L)=0.001212 17; $\alpha$ (M)=0.000253 4<br>$\alpha$ (N)=5.61×10 <sup>-5</sup> 8; $\alpha$ (O)=9.12×10 <sup>-6</sup> 13; $\alpha$ (P)=7.04×10 <sup>-7</sup> 10                                                                                             |
| 7685.8           | 19-                  | 474.5 2                            | 100                     | 7211.3 18                                           | M1      | 0.01771               | E <sub>γ</sub> ,Mult.: from ( $^{12}$ C,4nγ). Mult is based γ(DCO) and γ(pol). $\alpha$ (K)=0.01519 22; $\alpha$ (L)=0.00199 3; $\alpha$ (M)=0.000416 6 $\alpha$ (N)=9.23×10 <sup>-5</sup> 13; $\alpha$ (O)=1.500×10 <sup>-5</sup> 21; $\alpha$ (P)=1.155×10 <sup>-6</sup> 17                                                                                                                                             |
| 7744.2           | (18-)                | 211.8 2                            | 100                     | 7532.4 (17 <sup>-</sup> )                           | (M1+E2) | 0.149 4               | E <sub>y</sub> ,Mult.: from ( $^{12}$ C,4ny). Mult is based $\gamma$ (DCO) and $\gamma$ (pol). $\alpha$ (K)=0.120 5; $\alpha$ (L)=0.022 6; $\alpha$ (M)=0.0048 13 $\alpha$ (N)=0.0010 3; $\alpha$ (O)=0.00016 4; $\alpha$ (P)=8.4×10 <sup>-6</sup> 12                                                                                                                                                                     |
| 7803.2           | 20 <sup>+</sup>      | 120.3 2                            | 100 17                  | 7682.9 19 <sup>+</sup>                              | M1+E2   | 0.88 19               | E <sub>y</sub> ,Mult.: from ( $^{12}$ C,4ny). Mult is based $\gamma$ (DCO). $\alpha$ (K)=0.65 5; $\alpha$ (L)=0.19 11; $\alpha$ (M)=0.041 24 $\alpha$ (N)=0.009 5; $\alpha$ (O)=0.0013 7; $\alpha$ (P)=4.2×10 <sup>-5</sup> 4                                                                                                                                                                                             |
|                  |                      | 698.5 2                            | 96 13                   | 7104.7 18+                                          | (E2)    | 0.00457               | E <sub>γ</sub> ,I <sub>γ</sub> ,Mult.: from ( $^{12}$ C,4nγ). Mult is based γ(DCO) and γ(pol). $\alpha$ (K)=0.00387 6; $\alpha$ (L)=0.000554 8; $\alpha$ (M)=0.0001164 17 $\alpha$ (N)=2.57×10 <sup>-5</sup> 4; $\alpha$ (O)=4.08×10 <sup>-6</sup> 6; $\alpha$ (P)=2.77×10 <sup>-7</sup> 4                                                                                                                                |
| 8322.3           | (20+)                | 639.4 2                            | 100                     | 7682.9 19+                                          | (M1)    | 0.00846               | E <sub>γ</sub> ,I <sub>γ</sub> ,Mult.: from ( $^{12}$ C,4nγ) only. No γ(DCO) or γ(pol) data for mult. Bracket is added by evaluator. $\alpha(K)$ =0.00727 11; $\alpha(L)$ =0.000944 14; $\alpha(M)$ =0.000197 3 $\alpha(N)$ =4.37×10 <sup>-5</sup> 7; $\alpha(O)$ =7.10×10 <sup>-6</sup> 10; $\alpha(P)$ =5.50×10 <sup>-7</sup> 8                                                                                         |
| 8350.3           | 20-                  | 664.5 2                            | 100 15                  | 7685.8 19-                                          | M1      | 0.00770               | E <sub>y</sub> ,Mult.: from ( $^{12}$ C,4ny). Mult is based $\gamma$ (DCO). $\alpha$ (K)=0.00662 <i>10</i> ; $\alpha$ (L)=0.000859 <i>12</i> ; $\alpha$ (M)=0.000179 <i>3</i> $\alpha$ (N)=3.97×10 <sup>-5</sup> <i>6</i> ; $\alpha$ (O)=6.46×10 <sup>-6</sup> <i>9</i> ; $\alpha$ (P)=5.00×10 <sup>-7</sup> <i>7</i>                                                                                                     |
|                  |                      | 1139.0 2                           | 12.2 24                 | 7211.3 18-                                          | (E2)    | $1.53 \times 10^{-3}$ | E <sub>γ</sub> ,I <sub>γ</sub> ,Mult.: from ( $^{12}$ C,4nγ). Mult is based γ(DCO) and γ(pol). $\alpha$ (K)=0.001314 <i>19</i> ; $\alpha$ (L)=0.0001733 <i>25</i> ; $\alpha$ (M)=3.61×10 <sup>-5</sup> <i>5</i>                                                                                                                                                                                                           |

19

# $\gamma$ (138Ce) (continued)

Adopted Levels, Gammas (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$ | ${\rm I}_{\gamma}^{ \ddagger}$ | $\mathbf{E}_f$ $\mathbf{J}_f^\pi$ | Mult. | $\alpha^{\dagger}$    | Comments                                                                                                                                                       |
|--------------|----------------------|-------------------------|--------------------------------|-----------------------------------|-------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                      |                         |                                |                                   |       |                       | $\alpha$ (N)=8.00×10 <sup>-6</sup> 12; $\alpha$ (O)=1.290×10 <sup>-6</sup> 18; $\alpha$ (P)=9.55×10 <sup>-8</sup> 14; $\alpha$ (IPF)=1.394×10 <sup>-6</sup> 22 |
|              |                      |                         |                                |                                   |       |                       | $E_{\gamma}$ , $I_{\gamma}$ , Mult.: from ( $^{12}$ C, $4n\gamma$ ) only. No $\gamma$ (DCO) or $\gamma$ (pol) data for mult. Bracket is added by evaluator.    |
| 8709.6       | 21-                  | 359.3 2                 | 100 14                         | 8350.3 20-                        | M1    | 0.0360                | $\alpha(K)=0.0308$ 5; $\alpha(L)=0.00409$ 6; $\alpha(M)=0.000853$ 12                                                                                           |
|              |                      |                         |                                |                                   |       |                       | $\alpha(N)=0.000189 \ 3; \ \alpha(O)=3.07\times10^{-5} \ 5; \ \alpha(P)=2.36\times10^{-6} \ 4$                                                                 |
|              |                      |                         |                                |                                   |       |                       | $E_{\gamma}$ , $I_{\gamma}$ , Mult.: from ( $^{12}$ C, $4n\gamma$ ). Mult is based $\gamma$ (DCO) and $\gamma$ (pol).                                          |
|              |                      | 1023.8 2                | 4.5 9                          | 7685.8 19-                        | (E2)  | 0.00192               | $\alpha(K)=0.001641\ 23;\ \alpha(L)=0.000219\ 3;\ \alpha(M)=4.58\times10^{-5}\ 7$                                                                              |
|              |                      |                         |                                |                                   |       |                       | $\alpha(N)=1.014\times10^{-5}$ 15; $\alpha(O)=1.631\times10^{-6}$ 23; $\alpha(P)=1.190\times10^{-7}$ 17                                                        |
|              |                      |                         |                                |                                   |       |                       | $E_{\gamma}$ , $I_{\gamma}$ , Mult.: from ( $^{12}$ C, $4n\gamma$ ) only. No $\gamma$ (DCO) or $\gamma$ (pol) data for mult. Bracket                           |
|              |                      |                         |                                |                                   |       | 2                     | is added by evaluator.                                                                                                                                         |
| 8873.5       | 22 <sup>+</sup>      | 1070.3 2                | 100                            | 7803.2 20 <sup>+</sup>            | E2    | $1.75 \times 10^{-3}$ | $\alpha(K)=0.001495 \ 21; \ \alpha(L)=0.000199 \ 3; \ \alpha(M)=4.15\times10^{-5} \ 6$                                                                         |
|              |                      |                         |                                |                                   |       |                       | $\alpha(N)=9.18\times10^{-6}$ 13; $\alpha(O)=1.478\times10^{-6}$ 21; $\alpha(P)=1.085\times10^{-7}$ 16                                                         |
|              |                      |                         |                                |                                   |       |                       | $E_{\gamma}$ ,Mult.: from ( $^{12}C$ ,4n $\gamma$ ). Mult is based $\gamma$ (DCO) and $\gamma$ (pol).                                                          |
| 8921.1       |                      | 570.8 2                 | 100                            | 8350.3 20-                        |       |                       | $E_{\gamma}$ : from ( $^{12}$ C, $^{4}$ n $\gamma$ ) only.                                                                                                     |
| 8957.9       | $22^{(-)}$           | 248.3 2                 | 100                            | 8709.6 21                         | (M1)  | 0.0951                | $\alpha(K)=0.0813 \ 12; \ \alpha(L)=0.01091 \ 16; \ \alpha(M)=0.00228 \ 4$                                                                                     |
|              |                      |                         |                                |                                   |       |                       | $\alpha(N)=0.000506 \ 8; \ \alpha(O)=8.21\times10^{-5} \ 12; \ \alpha(P)=6.25\times10^{-6} \ 9$                                                                |
|              |                      |                         |                                |                                   |       |                       | $E_{\gamma}$ ,Mult.: from ( $^{12}$ C,4n $\gamma$ ). Mult is based $\gamma$ (DCO) with bracket added by evaluator.                                             |
| 8978.3       |                      | 628.0 2                 | 100                            | 8350.3 20-                        |       |                       | $E_{\gamma}$ : from ( $^{12}$ C, $^{4}$ n $\gamma$ ) only.                                                                                                     |
| 9430.9       | $(23^{+})$           | 557.4 2                 | 100                            | 8873.5 22+                        | (M1)  | 0.01185               | $\alpha(K)=0.01017$ 15; $\alpha(L)=0.001328$ 19; $\alpha(M)=0.000277$ 4                                                                                        |
|              |                      |                         |                                |                                   |       |                       | $\alpha(N)=6.15\times10^{-5} 9$ ; $\alpha(O)=9.99\times10^{-6} 14$ ; $\alpha(P)=7.72\times10^{-7} 11$                                                          |
|              |                      |                         |                                |                                   |       |                       | $E_{\gamma}$ ,Mult.: from ( $^{12}C$ ,4 $^{\circ}$ ). Mult is based $\gamma$ (DCO).                                                                            |
| 9511.4       |                      | 1161.1 2                | 100                            | 8350.3 20-                        |       |                       | $E_{\gamma}$ : from ( $^{12}$ C,4n $\gamma$ ) only.                                                                                                            |

<sup>†</sup> Additional information 1. ‡ Primarily from ( $^{12}$ C,4n $\gamma$ ),  $^{138}$ Pr  $\varepsilon$  decay and ( $\alpha$ ,2n $\gamma$ ). Weighted average is taken when available. # From (p,2n $\gamma$ ) and ( $\alpha$ ,2n $\gamma$ ) (1987Lo12) based on ce data. @ From ( $\alpha$ ,4n $\gamma$ ) based on  $\gamma(\theta)$ . & From  $^{138}$ Pr  $\varepsilon$  decay (1.45 min) based on ce data. a From  $^{138}$ Pr  $\varepsilon$  decay (2.1 h) based on ce data.

<sup>&</sup>lt;sup>b</sup> Multiply placed with undivided intensity.

<sup>&</sup>lt;sup>c</sup> Placement of transition in the level scheme is uncertain.

### Level Scheme

Intensities: Relative photon branching from each level



### Level Scheme (continued)

Intensities: Relative photon branching from each level



### Legend

### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given



### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given





|                 |         | History           |                        |
|-----------------|---------|-------------------|------------------------|
| Type            | Author  | Citation          | Literature Cutoff Date |
| Full Evaluation | N. Nica | NDS 154, 1 (2018) | 20-Nov-2018            |

 $Q(\beta^-)=-3388~6$ ; S(n)=9200~7; S(p)=8138.8~17;  $Q(\alpha)=-1614.1~16$  2017Wa10 Measured nuclear charge radii and isotopes shifts: 2000Ga58, 1999GaZU, 1999Is02, 1997Is06, 1997IsZY.

 $^{140}$ La β<sup>-</sup> decay  $^{140}$ Pr ε decay  $^{140}$ 

# <sup>140</sup>Ce Levels

# Cross Reference (XREF) Flags

<sup>141</sup>Pr(d,<sup>3</sup>He) <sup>142</sup>Ce(p,t)

 $^{140}$ Ce( $\gamma, \gamma'$ )  $^{140}$ Ce(e,e')

|                          |           | C 144Nd a               | $\alpha$ decay J $^{140}$ Ce(n,n'    | $\gamma$ ) Q $^{142}Nd(^{14}C,^{16}O)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|-----------|-------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |           | D 138Ba(3               | He,n) K 140Ce(p,p'                   | ) R $^{143}$ Nd $(n,\alpha),(n,\alpha\gamma)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          |           | E 138Ba(a               |                                      | S 144Nd(d, 6Li)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |           | F 138Ce(t               | (p) M $^{140}$ Ce( $\alpha, \alpha'$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |           | $G = {}^{139}La({}^{3}$ | He,d) N 140Ce(17O                    | $^{17}O'\gamma$ ) U Coulomb excitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| E(level) <sup>†‡</sup>   | $J^{\pi}$ | T <sub>1/2</sub>        | XREF                                 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $0.0^{f}$                | $0^{+}$   | stable                  | ABCDEFGHIJKLMNOPQRST                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1596.233 <sup>f</sup> 23 | 2+        | 0.0910 ps +48-44        | AB DEFGHIJKL NOPQRST                 | <ul> <li>U μ=+1.9 2 (2014StZZ)         T<sub>1/2</sub>: from 2016Pr01 (weighted average of 12 measured values).         J<sup>π</sup>: L=2 in (p,p').         μ: measured by transient field integral perturbed angular correlation (1991Ba38).     </li> <li>RMS charge radius <r<sup>2&gt;<sup>1/2</sup>=4.8771 fm 18 (2013An02).</r<sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1903.31 6                | $0^{+}$   | 0.40 ns 3               | AB EF JK NOP R                       | $J^{\pi}$ : transition to 0 <sup>+</sup> is E0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |           |                         |                                      | $T_{1/2}$ : from <sup>138</sup> Ba (α,2nγ) (1984Ju01). Others: 0.27 ns 5 (1965Sa03), <0.6 ns (1966Bu19) (from <sup>140</sup> La β <sup>-</sup> decay);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2083.259 <sup>f</sup> 24 | 4+        | 3.45 ns <i>3</i>        | A E G IJKL OPQR T                    | $\mu$ =+4.20 <i>15</i> Q=0.35 <i>7</i> (2013StZZ,2014StZZ) J <sup>π</sup> : $\gamma$ to 0 <sup>+</sup> is E4. T <sub>1/2</sub> : weighted average of 3.45 ns 9 (1971Bo13), 3.44 ns 6 (1962Cu02), 3.46 ns 3 (1963Do16) ( $^{140}$ La $\beta$ <sup>-</sup> decay). Others: 3.40 ns 9 (1989Ka01); 3.3 ns 2 (1993Gr08); 2.0 ns 4 from Γ in (e,e'); 3.7 ns 2 (1985PrZY), 4 ns <i>1</i> (1970Sm05) ( $\alpha$ ,2n $\gamma$ ). $\mu$ : weighted average of values: +4.00 <i>20</i> (2013Oh03), 4.06 <i>15</i> (1965Le16), 3.8 4 (1964Sc16), 4.44 <i>16</i> (1963Ko07) 4.6 <i>3</i> (1963Ka03); all measured by time dependent perturbed angular correlation; 1965Le16 also by integral perturbed angular correlation. Q: measured by time dependent perturbed angular correlation (1973KlZV). |
| 2107.854 <sup>f</sup> 24 | 6+        | 7.3 μs 15               | A E IJ OP T                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |           |                         |                                      | $(1966\text{SuZY})$ , $7 \mu\text{s} \ 2 \ (\gamma,\text{n}) \ (1964\text{Kr02})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2347.881 24              | 2+        | ≤0.2 ns                 | AB E IJ L O R                        | $J^{\pi}$ : $\gamma$ to $0^+$ is E2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |           |                         |                                      | $T_{1/2}$ : from <sup>140</sup> La $\beta^-$ (1993Gr08,1990PeZR); other value: $\geq 0.62$ ps (19933Go23, (n,n' $\gamma$ )).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2349.805 25              | 5+        | ≤12 ps                  | A E IJ L O R                         | $T_{1/2}$ : from <sup>140</sup> La $\beta^-$ (1995Ma75).<br>$J^{\pi}$ : $\gamma$ to 6 <sup>+</sup> is M1(+E2), $\gamma$ to 4 <sup>+</sup> is M1+E2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          |           |                         |                                      | $J: \gamma \bowtie \sigma$ is $WH(\pm EZ)$ , $\gamma \bowtie 4$ is $WH\pm EZ$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| E(level) <sup>†‡</sup>             | $J^{\pi}$         | T <sub>1/2</sub> | X            | REF        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------|-------------------|------------------|--------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2412.013 <i>24</i>                 | 3+                | 1.3 ps 4         | A E G J      | O R        | $T_{1/2}$ : from <sup>140</sup> La $\beta^-$ decay (1995Ma75); other value: $\geq 1.1$ ps (19933Go23, (n,n' $\gamma$ )).                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2464.08 <i>3</i>                   | 3-                | 0.15 ps <i>3</i> | A EFG IJ     | KL N PQR U | $J^{\pi}$ : $\gamma$ to 2 <sup>+</sup> , 2348 is M1, $\gamma$ to 4 <sup>+</sup> is M1+E2.<br>$J^{\pi}$ : L=3 in (p,p'), ( $\alpha$ , $\alpha$ ').<br>$T_{1/2}$ : from $\Gamma$ (0)=6.2×10 <sup>-6</sup> 7 in (e,e') (1970Pi06) and adopted branching=0.0021 3. For $T_{1/2}$ from Coul ex see 1963Ha20. 1965Mc05, however, noticed that B(E3) in 1963Ha20 usually are 3-4 times too high; $T_{1/2}$ ≤0.1 ns in                                                                                                                                                                  |
| 2480.925 24                        | 4+                | 22 ps 7          | A E J        |            | 1993Gr08.<br>$J^{\pi}$ : $\gamma$ to 3 <sup>+</sup> is M1, $\gamma$ to 5 <sup>+</sup> is M1+E2.<br>$T_{1/2}$ : from <sup>140</sup> La $\beta$ <sup>-</sup> decay (1995Ma75).                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2515.76 3                          | 4+                | ≤2.5 ps          | A E G J      | OP R       | $J^{\pi}$ : ΛJ=0 M1+E2 $\gamma$ to 4 <sup>+</sup> and E2 $\gamma$ to 2 <sup>+</sup> in (n,n' $\gamma$ ) (1993Go23). This removes the ambiguous 3 <sup>+</sup> ,4 <sup>+</sup> adopted by 1994Pe19, because M1+E2 $\gamma$ to 4 <sup>+</sup> agreed only with J=3 ( $\beta$ <sup>-</sup> decay, ( $\gamma\gamma(\theta)$ for 432 $\gamma$ (1982Mi03)); and $\gamma(\theta)$ for 919 $\gamma$ in (n,n' $\gamma$ ) agree only with J=4 (1985Di11). $T_{1/2}$ : from <sup>140</sup> La $\beta$ <sup>-</sup> decay (1995Ma75); other value: ≥ 0.62 ps (19933Go23, (n,n' $\gamma$ )). |
| 2521.428 24                        | 2+                | ≤2.4 ps          | AB DE G J    | OP         | T <sub>1/2</sub> : from <sup>140</sup> La β <sup>-</sup> decay (1966Bu19); other value: ≥ 0.62 ps (19933Go23, (n,n'γ)).<br>J <sup>π</sup> : γ to 0 <sup>+</sup> , g.s. is E2.                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2547.23 4                          | 1+                | 0.19 ps +11-5    | AB J         | R          | $J^{\pi}$ : γ to 0 <sup>+</sup> , g.s. is M1.<br>$T_{1/2}$ : from (n,n'γ) (1993Go23); other value: ≤ 4.0 ps from <sup>140</sup> La β <sup>-</sup> decay (1995Ma75).                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2628.81 <i>4</i> 2658.3? <i>10</i> | 6+                |                  | E G J<br>E J |            | $J^{\pi}$ : $\gamma$ to $6^+$ is $\Delta J=0$ , M1+E2 in $(n,n'\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2899.59 4                          | 2+                | 49 fs 9          | AB GHIJ      |            | J <sup>π</sup> : $\gamma$ to 0 <sup>+</sup> is E2.<br>T <sub>1/2</sub> : from 1993Go23 in (n,n' $\gamma$ ); other values: 67 fs 16 (from $\Gamma(0)$ =0.004 eV 9 with branching=0.59 3 in ( $\gamma$ , $\gamma'$ ), 1995He25); 28 fs 2 (from $\Gamma(0)$ =0.0095 eV 4, same branching, in (e,e')).                                                                                                                                                                                                                                                                              |
| 3001.12 <i>14</i>                  | 2+                | 0.16 ps +10-5    | A J          | 0          | $J^{\pi}$ : $\gamma$ to 0 <sup>+</sup> , 1903; $\gamma$ to 2 <sup>+</sup> , 1596 is M1+E2, $\gamma(\theta)$ in $(n,n'\gamma)$ rejects J=1.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3016.9 5                           | 0+                | ≥0.14 ps         | B F J        | P          | $T_{1/2}$ : from 1993Go23 in $(n,n'\gamma)$ .<br>$J^{\pi}$ : $\gamma$ to 0 <sup>+</sup> is E0.<br>$T_{1/2}$ : from 1993Go23 in $(n,n'\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3039.0 4                           | 3-                |                  | J            | L          | Additional information 1. E(level): no suitable $\gamma$ rays to decay this level were found by 1993Go23 in $(n,n'\gamma)$ that conclude that this level is inexsistent. However this might be the level populated by $808\gamma$ .                                                                                                                                                                                                                                                                                                                                             |
| 3118.55 16                         | 2+                | 27.5 fs 85       | AB FGHIJ     | KL NOP     | J <sup>π</sup> : L=3 in $(\alpha, \alpha')$ .<br>J <sup>π</sup> : L=2 in $(\alpha, \alpha')$ .<br>T <sub>1/2</sub> : mean value with unc covering the values of 0.019 ps 3<br>$((n,n'\gamma), 1993Go23)$ and 0.036 ps 3 (from $\Gamma(0)$ =0.0129 eV<br>10 (2006Vo11) in $(\gamma, \gamma')$ ).                                                                                                                                                                                                                                                                                 |
| 3120.34? 20                        | 2+                |                  | J            |            | Extra 2 <sup>+</sup> level found only by 1985Di11 about 2 keV higher in energy than the previous 2 <sup>+</sup> , 3118.5 level found only by 1993Go23, both levels being mainly determined by a $\gamma$ transition to g.s., which suggests that this can be a same level.  J <sup><math>\pi</math></sup> : E2 $\gamma$ to g.s.                                                                                                                                                                                                                                                 |
| 3122.11 <i>5</i> 3168.3? <i>10</i> | 4+                |                  | E J          |            | $J^{\pi}$ : E2 $\gamma$ to 2 <sup>+</sup> and $\gamma$ to 5 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3108.5? 10<br>3219.95 11<br>3226 2 | (0 <sup>+</sup> ) |                  | F F          | P          | $J^{\pi}$ : postulated by 1993Go23 based on expected intensity rules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| E(level) <sup>†‡</sup>               | $J^{\pi}$                   | T <sub>1/2</sub>  |    | XREF          |   | Comments                                                                                                                                                                                                                                                                               |
|--------------------------------------|-----------------------------|-------------------|----|---------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3255.70 5                            | 5-&                         |                   |    | E G JKL       |   |                                                                                                                                                                                                                                                                                        |
| 3319.65 6                            | 2+                          | 58 fs +19-12      | AB | HIJ           |   | J <sup>π</sup> : from analysis of $\sigma(\theta)$ in (e,e') (1970Pi06).<br>T <sub>1/2</sub> : from 1993Go23 in (n,n'γ); other values: 154 fs 38 (from $\Gamma(0)$ =0.0030 eV 3, no branching, in (γ,γ') (1995He25)); 35 fs 7 (from $\Gamma(0)$ =0.019 eV 4, no branching, in (e,e')). |
| 3335.47 <i>11</i> 3360.24 <i>18</i>  | 4+                          |                   |    | FG J L P<br>J |   | $J^{\pi}$ : L=4 in $(\alpha, \alpha')$ .                                                                                                                                                                                                                                               |
| 3391.09 8                            |                             |                   |    | E J           |   | $J^{\pi}$ : $\gamma'$ s to $2^+$ and $4^+$ .                                                                                                                                                                                                                                           |
| 3394.92 7                            | $(4^{-})^{\textcircled{0}}$ | 0.042 ps +49-21   | A  | G JK          |   |                                                                                                                                                                                                                                                                                        |
| 3395.1? <i>10</i>                    | $(4^{+})^{a}$               |                   |    | E             |   |                                                                                                                                                                                                                                                                                        |
| 3408.02 <i>15</i>                    | (2+)                        | ≥0.062 ps         |    | J             |   | $J^{\pi}$ : assigned by 1993Go23 as (1,2 <sup>+</sup> ) from $\gamma$ to 0 <sup>+</sup> g.s.; $\gamma'$ s to 3 <sup>+</sup> and 3 <sup>-</sup> are likely to exclude J=1. $T_{1/2}$ : from 1993Go23 in (n,n' $\gamma$ ).                                                               |
| 3424.6 <i>3</i>                      | 7-                          |                   |    | E G IJ P      | T | $J^{\pi}: \gamma$ to $6^+$ is $\Delta J=1$ , E1.                                                                                                                                                                                                                                       |
| 3432.8 10                            | 7+                          |                   |    | E             |   | $J^{\pi}$ : $\gamma$ to 5 <sup>+</sup> is $\Delta J$ =2, E2; no $\gamma$ to J<5.                                                                                                                                                                                                       |
| 3436.54 7                            | $(2^+,1)$                   | 0.005 54.35       |    | J             |   | $J^{\pi}$ : $\gamma'$ s to $0^+$ and $2^+$ .                                                                                                                                                                                                                                           |
| 3471.21 <i>11</i>                    | $(2^{+})$                   | 0.097 ps +76-35   |    | J             |   | $J^{\pi}$ : (E2) $\gamma$ to $0^{+}$ .                                                                                                                                                                                                                                                 |
| 2472.75.4                            | 3 <sup>-@</sup>             | 0.066 + 21 12     |    | C 117         |   | $T_{1/2}$ : from 1993Go23 in $(n,n'\gamma)$ .                                                                                                                                                                                                                                          |
| 3473.75 <i>4</i><br>3476.3 <i>3</i>  | $8^{-a}$                    | 0.066 ps +21-13   | A  | G JK<br>E     | Т | $T_{1/2}$ : from 1993Go23 in $(n,n'\gamma)$ .                                                                                                                                                                                                                                          |
| 3484.2 10                            | 6+ <i>a</i>                 |                   |    | E             | • |                                                                                                                                                                                                                                                                                        |
| 3491.2? 3                            |                             |                   |    | J             |   | E(level): uncertain level by 1993Go23 in $(n,n'\gamma)$ due to relatively weak population.                                                                                                                                                                                             |
| 3492.23 25                           | 9- <i>a</i>                 | 1.7 ns 2          |    | E             | T | $T_{1/2}$ : from $(\alpha, 2n\gamma)$ (1984En01,1985PrZY).                                                                                                                                                                                                                             |
| $3512.3^f 3$                         | 8+ <i>a</i>                 |                   |    | E             | T |                                                                                                                                                                                                                                                                                        |
| 3520.87 <i>14</i>                    | (4 <sup>+</sup> )           |                   | A  | T 0           |   | $J^{\pi}$ : L=(4) in $(\alpha, \alpha')$ .                                                                                                                                                                                                                                             |
| 3522.2 <i>10</i><br>3534.6 <i>10</i> | $(5)$ $(3,4)^a$             |                   |    | E G<br>E L    |   |                                                                                                                                                                                                                                                                                        |
| 3539.1 <i>3</i>                      | 2+                          | ≥0.21 ps          |    | E L<br>J      |   | $J^{\pi}$ : E2 $\gamma$ to $0^+$ g.s.                                                                                                                                                                                                                                                  |
|                                      |                             | F-                |    |               |   | $T_{1/2}$ : from 1993Go23 in $(n,n'\gamma)$ .                                                                                                                                                                                                                                          |
| 3551 <i>3</i>                        | $2^{+},3^{-\#}$             |                   |    | F K P         |   | 7,-                                                                                                                                                                                                                                                                                    |
| 3567.5 <i>3</i>                      | $(2^{+})$                   |                   |    | J             |   | $J^{\pi}$ : $\gamma'$ s to $0^+$ and $4^+$ .                                                                                                                                                                                                                                           |
| 3602                                 |                             |                   |    | I             |   |                                                                                                                                                                                                                                                                                        |
| 3620.7 6                             | 8 <sup>+</sup> <i>a</i>     | 1 45 6 10         |    | E             |   | I7                                                                                                                                                                                                                                                                                     |
| 3642.8 3                             | 1-                          | 1.45 fs <i>19</i> |    | H J MN        |   | $J^{\pi}$ : $\gamma$ to $0^+$ is E1.<br>$T_{1/2}$ : from $(\gamma, \gamma')$ . Other value: $\leq 1.7$ fs in $(n, n'\gamma)$ (1993Go23).                                                                                                                                               |
| 3646.7 6                             | $(1,2^+)$                   | ≥0.062 ps         |    | J             |   | $J^{\pi}$ : $\gamma$ to $0^+$ .                                                                                                                                                                                                                                                        |
|                                      |                             |                   |    |               |   | $T_{1/2}$ : from 1993Go23 in $(n,n'\gamma)$ .                                                                                                                                                                                                                                          |
| 3648.23 <i>14</i>                    | $(2^+,3,4^+)$               |                   |    | J             |   | $J^{\pi}$ : $\gamma'$ s to $2^+$ and $4^+$ .                                                                                                                                                                                                                                           |
| 3653 3                               | 2+,3-#                      |                   |    | F K P         |   | E(1 1) 11 1000C 001 ( 1) 1                                                                                                                                                                                                                                                             |
| 3657.64? 18                          | $(4^+,5,6^+)$               |                   |    | J             |   | E(level): uncertain level by 1993Go23 in $(n,n'\gamma)$ due to relatively weak population.<br>$J^{\pi}$ : $\gamma'$ s to $6^+$ and $4^+$ .                                                                                                                                             |
| 3661.5 <i>10</i>                     | (7,8)                       |                   |    | E             |   | •                                                                                                                                                                                                                                                                                      |
| 3684.2 6                             | $(1^-,2^+)$                 |                   |    | J             |   | $J^{\pi}$ : $\gamma'$ s to $0^+$ and $3^-$ .                                                                                                                                                                                                                                           |
| 3708.60 <i>13</i>                    | $(2^{+})$                   |                   |    | J             |   | $J^{\pi}$ : $\gamma'$ s to $0^+$ and $4^+$ .                                                                                                                                                                                                                                           |
| 3710 4                               | 5-@                         |                   |    | FG K P        |   |                                                                                                                                                                                                                                                                                        |
| 3714.3 <sup>f</sup> 3                | 10 <sup>+a</sup>            | 23.1 ns 4         |    | E             | T | $\mu$ =+10.3 4 (2014StZZ,1988Ka04)<br>T <sub>1/2</sub> : from 1984En01. Others: 26 ns 2 (1979BiZN), 27 ns 3 (1985PrZY), 22 ns 2 (1970Sm05) (α,2nγ).<br>$\mu$ : measured by time dependent perturbed angular correlation.                                                               |

| E(level)†‡                          | ${f J}^\pi$                                             | T <sub>1/2</sub>      | XREF        | Comments                                                                                                          |
|-------------------------------------|---------------------------------------------------------|-----------------------|-------------|-------------------------------------------------------------------------------------------------------------------|
| 3723.54 17                          | (2+)                                                    | ≥0.097 ps             | J           | $J^{\pi}$ : (E2) $\gamma$ to $0^+$ g.s.                                                                           |
| 3729 <i>2</i><br>3735.3 <i>4</i>    | 2 <sup>+</sup> (1,2 <sup>+</sup> )                      |                       | F P<br>J    | $J^{\pi}$ : L=2 in (t,p).<br>$J^{\pi}$ : $\gamma$ to 0 <sup>+</sup> g.s.                                          |
| 3746 2                              |                                                         |                       | F P         |                                                                                                                   |
| 3767.97 10                          | $(2^+,3^+,4^+)$                                         |                       | J           | $J^{\pi}$ : $\gamma'$ s to 1 <sup>+</sup> , 2 <sup>+</sup> and 4 <sup>+</sup> .                                   |
| 3780<br>3792.72 <i>15</i>           | $(3^+,4^+)$ $3^-$                                       |                       | FG<br>JK P  | $J^{\pi}$ : L=0 component in ( <sup>3</sup> He,d).                                                                |
| 3836.1? 5                           | $(2^+,3,4^+)$                                           |                       | JK F        | $J^{\pi}$ : $\gamma'$ s to $2^+$ and $4^+$ .                                                                      |
| 3847.10 <i>14</i>                   | $(4^+,5,6^+)$                                           |                       | J           | $J^{\pi}$ : $\gamma'$ s to $6^+$ and $4^+$ .                                                                      |
| 3853.2 <i>5</i> 3879.3 <i>8</i>     | $(1,2^+)$<br>$(1,2^+)$                                  |                       | J<br>J      | $J^{\pi}$ : $\gamma$ to $0^+$ g.s. $J^{\pi}$ : $\gamma$ to $0^+$ g.s.                                             |
| 3894.5 <i>6</i>                     | $9^{+a}$                                                |                       | E           | o , , to a gain                                                                                                   |
| 3910.93 <i>23</i><br>3911 <i>10</i> | 5-                                                      |                       | J<br>FG P   | $J^{\pi}$ : 4 <sup>+</sup> ,5 <sup>-</sup> from L in (p,t) (1977Sh06); 4 <sup>+</sup> excluded from               |
| 3911 10                             | 3                                                       |                       | 10 1        | L=5 in <sup>139</sup> La( <sup>3</sup> He,d).                                                                     |
| 3912 4                              | 2-@                                                     |                       | K           |                                                                                                                   |
| 3956 <i>4</i><br>3957.93 <i>18</i>  |                                                         |                       | K<br>J      |                                                                                                                   |
| 3970.8? 10                          |                                                         |                       | E           |                                                                                                                   |
| 3980                                | $3^{-}$ $(2^{+},3,4^{+})$                               |                       | L P<br>J    | $J^{\pi}$ : L=3 from $(\alpha, \alpha')$ .                                                                        |
| 3984.20 <i>16</i><br>4000 <i>4</i>  | (2 <sup>1</sup> ,3,4 <sup>1</sup> )<br>4 <sup>-</sup> @ |                       | K           | $J^{\pi}$ : $\gamma'$ s to 2 <sup>+</sup> and 4 <sup>+</sup> .                                                    |
| 4017 10                             |                                                         |                       | G P         |                                                                                                                   |
| 4053                                | $(1)^{d}$                                               |                       | H_          |                                                                                                                   |
| 4061<br>4125 <i>10</i>              | 2+#                                                     |                       | I<br>d FG P | $J^{\pi}$ : L=2 in ( <sup>3</sup> He,n).                                                                          |
| 4123 10                             | 2 <sup>-</sup> @                                        |                       | d K         | J . L-2 III ( 116,11).                                                                                            |
| 4164.0 <i>3</i>                     | $(1,2^+)$                                               |                       | J           | $J^{\pi}$ : $\gamma$ to $0^+$ g.s.                                                                                |
| 4171.1 7                            | $(2^+,1)$ $1^{(-)}b$                                    | 3.6 <sup>e</sup> fs 7 | FG J        | $J^{\pi}$ : $\gamma'$ s to $0^{+}$ and $2^{+}$ .                                                                  |
| 4173.6 8<br>4182 <i>4</i>           | 1-@                                                     | 3.6° IS /             | H MN<br>K   |                                                                                                                   |
| 4183 <i>10</i>                      | $2^+,(3^-,4^+)$                                         |                       | P           | $J^{\pi}$ : L=2,(3,4) in (p,t).                                                                                   |
| 4208 6                              | 2+                                                      |                       | K           | $J^{\pi}$ : 2 <sup>+</sup> ,1 <sup>-</sup> from L(p,t)=1,2; 1 <sup>-</sup> excluded from L( <sup>3</sup> He,d)=0. |
| 4242 <i>10</i><br>4262.5 <i>7</i>   | 10+ <i>a</i>                                            |                       | FG P<br>E   | $J^*: Z^*, I$ from $L(p,t)=1,2$ ; $I$ excluded from $L(He,d)=0$ .                                                 |
| 4279.9 <i>4</i>                     | $(2^+,3,4^+)$                                           |                       | J           | $J^{\pi}$ : $\gamma'$ s to $2^+$ and $4^+$ .                                                                      |
| 4296 6                              | 3 <sup>-</sup> ,4 <sup>+#</sup>                         |                       | IK P        |                                                                                                                   |
| 4331<br>4340 <i>10</i>              | $(1)^{d}$ $(1^{-})^{@}$                                 |                       | H<br>K P    |                                                                                                                   |
| 4354.9 7                            | $1^{d}$                                                 | 3.7 <sup>e</sup> fs 8 | H N         |                                                                                                                   |
| 4360 10                             | +                                                       | 5.7 15 0              | G P         | $J^{\pi}$ : L=2 in ( <sup>3</sup> He,d).                                                                          |
| 4364 4                              | 1-@                                                     |                       | K           |                                                                                                                   |
| 4371                                | $(1)^{d}$                                               |                       | Н           |                                                                                                                   |
| 4388                                | $(1)^{d}$ $2^{+},3^{-\#}$                               |                       | Н           |                                                                                                                   |
| 4424 <i>4</i><br>4437               | $(1)^{d}$                                               |                       | K P<br>H    |                                                                                                                   |
| 4448.5 11                           | $(9,11)^a$                                              |                       | E           |                                                                                                                   |
| 4450 10                             |                                                         |                       | K<br>K      |                                                                                                                   |
| 4485 <i>10</i><br>4514.9 <i>9</i>   | 1 <sup>(-)</sup> <b>b</b>                               | 2.7 <sup>e</sup> fs 5 | H MN        |                                                                                                                   |
| 4538 4                              | 3-@                                                     | 2., 10 3              | K P         |                                                                                                                   |
|                                     |                                                         |                       |             |                                                                                                                   |

| E(level)†‡                        | $\mathbf{J}^{\pi}$                               | T <sub>1/2</sub>      | XREF        | Comments                  |
|-----------------------------------|--------------------------------------------------|-----------------------|-------------|---------------------------|
| 4571.3? <i>13</i>                 | $(8^+,10^+)$                                     |                       | E           |                           |
| 4580 <i>4</i>                     | 2-@                                              |                       | K           |                           |
| 4640 10                           |                                                  |                       | K           |                           |
| 4655                              | $(1)^{d}$                                        |                       | Н           |                           |
| 4660 15                           |                                                  |                       | K           |                           |
| 4700 <i>10</i>                    |                                                  |                       | I K         |                           |
| 4720 <i>15</i>                    | 2-@                                              |                       | K           |                           |
| 4748 <i>4</i><br>4760 <i>15</i>   | 2                                                |                       | K P<br>K    |                           |
|                                   | 1-@                                              |                       |             |                           |
| 4770 10                           | $\frac{1}{1}(-)b$                                | 2.3 <sup>e</sup> fs 4 | K           |                           |
| 4787.8 <i>9</i><br>4790 <i>15</i> | 100                                              | 2.3 18 4              | H MN<br>K   |                           |
| 4827 10                           | 2 <sup>+</sup> ,3 <sup>-#</sup>                  |                       | P           |                           |
| $4851.1^{f} 4$                    | $12^{+a}$                                        |                       | E           | Т                         |
| 4860 10                           | 12                                               |                       | K           |                           |
| 4875                              | $(1)^{d}$                                        |                       | Н           |                           |
| 4880 15                           | (1)                                              |                       | K           |                           |
| 4883                              | $(1)^{d}$                                        |                       | H           |                           |
| 4904.6 5                          | $11^{-a}$                                        |                       | E           | T                         |
| 4910 <i>15</i>                    | 1                                                |                       | K           |                           |
| 4951                              | $(1)^{\mathbf{d}}$                               |                       | Н           |                           |
| 4958.0 8                          | $(11^+)^a_{\mu}$                                 |                       | E           |                           |
| 4979 10                           | 2+,3-#                                           |                       | N P         |                           |
| 5000 <i>15</i><br>5026 <i>6</i>   | 2-,3-@                                           |                       | K           |                           |
| 5026 6<br>5050 <i>15</i>          | 2 ,3                                             |                       | I K<br>K    |                           |
| 5069.5 11                         | (9,11) <sup>a</sup>                              |                       | E           |                           |
| 5093.4 7                          | $(12^{-})^{a}$                                   |                       | E           | T                         |
| 5101 <i>10</i>                    | ≥5 <sup>#</sup>                                  |                       | K P         | Additional information 2. |
| 5102.1 5                          | $13^{-a}$                                        |                       | E           | T                         |
| 5140 <i>15</i>                    | ( ) <del>L</del>                                 |                       | K           |                           |
| 5157.3 12                         | $1^{(-)}^{b}$                                    | 2.6 <sup>e</sup> fs 5 | Н Мр        | XREF: p(5160).            |
| 5160 <i>15</i>                    | .( )h                                            | 2 1 0 2 1             | Knp         | XREF: n(5170).            |
| 5190.2 10                         | 1 <sup>(-)</sup> <i>b</i>                        | 2.1 <sup>e</sup> fs 4 | H Mn        | XREF: n(5170).            |
| 5196 <i>6</i>                     | $2^{-},3^{-}$                                    |                       | K           |                           |
| 5211.6 <i>14</i>                  | $1^{(-)}$ <i>b</i>                               | 3.6 <sup>e</sup> fs 9 | H MN        | TI I ( ) 224              |
| 5230 <i>15</i>                    | (1) <sup>d</sup>                                 |                       | K P         | $J^{\pi}$ : L(p,t)=2,3,4. |
| 5245                              |                                                  |                       | Н           |                           |
| 5295 <i>10</i>                    | 5 <sup>-</sup> ,6 <sup>+#</sup> (1) <sup>d</sup> |                       | Р           |                           |
| 5330<br>5335.0 <i>9</i>           | $(1)^{a}$ $(12^{-})^{a}$                         |                       | H<br>E      |                           |
| 5337.3 9                          | $(12)$ $1^{(-)}b$                                | 1.8 <sup>e</sup> fs 4 |             |                           |
| 5377.3 9                          | 4+,5-#                                           | 1.0 18 4              | H MN<br>I P |                           |
| 5419.0 <i>4</i>                   | 4 ,5<br>(14 <sup>-</sup> ) <sup>c</sup>          |                       | ı r         | T                         |
| 5424 6                            | 2-,3-@                                           |                       | K           | -                         |
| 5449 10                           | <b>-</b> ,5                                      |                       | P           |                           |
| 5466 <i>6</i>                     | 2-,3-@                                           |                       | K           |                           |
| 5470                              | $(1)^{d}$                                        |                       | Н           |                           |
| 5494                              | $(1)^{d}$                                        |                       | Н           |                           |
|                                   |                                                  |                       |             |                           |

| E(level) <sup>†‡</sup> | $\mathbf{J}^{\pi}$              | T <sub>1/2</sub>        | XI     | REF |   | Comments                                                  |
|------------------------|---------------------------------|-------------------------|--------|-----|---|-----------------------------------------------------------|
| 5548.4 7               | 1 <sup>(-)</sup> <b>b</b>       | 0.97 <sup>e</sup> fs 17 | Н      | Mn  |   | XREF: n(5560).                                            |
| 5573.8 14              | $1^{(-)}b$                      | 1.7 <sup>e</sup> fs 4   | Н      | Mn  |   | XREF: n(5560).                                            |
| 5574 15                | $(0^+)^{\#}$                    | 1.7 15 7                |        |     | P | 11tH1 . II(5500).                                         |
| 5624                   | $(1)^{d}$                       |                         | Н      |     | • |                                                           |
| 5650 15                | 2+,3-#                          |                         |        |     | P |                                                           |
| 5659.9 6               | 1-,5                            | 0.0121 eV 29            | Н      | MN  | • | $T_{1/2}$ : from $(\gamma, \gamma')$ (1974Te01,1972Wo21). |
|                        |                                 |                         |        |     |   | $J^{\pi}$ : $\gamma$ to $0^+$ is E1.                      |
| 5693.3 5               | #                               |                         |        |     | T |                                                           |
| 5703 <i>15</i>         | 1-,2+#                          |                         |        |     | P |                                                           |
| 5721                   | $(1)^{\mathbf{d}}$              |                         | Н      |     |   |                                                           |
| 5759                   | $(1)^{d}$                       |                         | H      |     | Б | IT I ( ) 224                                              |
| 5789 <i>15</i>         | $(1)^{d}$                       |                         | **     |     | P | $J^{\pi}$ : $L(p,t)=2,3,4$ .                              |
| 5809                   | $(1)^{d}$ $(1)^{d}$             |                         | Н      |     |   |                                                           |
| 5823                   |                                 |                         | Н      |     | Б |                                                           |
| 5896 15                | $1^{-},2^{+}$ $1^{(-)}b$        | 1.166 6.24              | **     |     | P |                                                           |
| 5928.6 10              | $(1)^{\mathbf{d}}$              | 1.16 <sup>e</sup> fs 24 | Н      | M   |   |                                                           |
| 5940                   | $(3^-,4^+)^{\#}$                |                         | Н      |     | D |                                                           |
| 5989 15                | $(3^{-},4^{+})^{"}$ $(1)^{d}$   |                         | **     |     | P |                                                           |
| 6029                   | 2 <sup>+</sup> ,3 <sup>-#</sup> |                         | Н      |     | D |                                                           |
| 6078 15                | $1^{-d}$                        | 0.608 5 12              | **     |     | P |                                                           |
| 6119.1 15              | $\frac{1}{1}d$                  | 0.69 <sup>e</sup> fs 12 | H      |     |   |                                                           |
| 6130.6 12              | $1^{a}$ $1^{(-)}b$              | 1.5 <sup>e</sup> fs 3   | H      |     |   |                                                           |
| 6161.7 14              |                                 | 1.08 <sup>e</sup> fs 20 | Н      | MN  | _ |                                                           |
| 6187 15                | $2^+,3^{-\#}$ $(1)^d$           |                         |        |     | P |                                                           |
| 6226<br>6233           | (1)4                            |                         | H<br>I |     |   |                                                           |
| 6245                   | $(1)^{d}$                       |                         | Н      |     |   |                                                           |
| 6255                   | $(1)^{\mathbf{d}}$              |                         | Н      |     |   |                                                           |
| 6268 15                | (1)                             |                         |        |     | P | $J^{\pi}$ : L(p,t)=3,4,5.                                 |
| 6273.6 10              | 1 <sup>d</sup>                  | 1.05 <sup>e</sup> fs 20 | Н      |     |   | 4.7                                                       |
| 6295.3 8               | $1^{-d}$                        | 0.46 <sup>e</sup> fs 8  | Н      |     |   |                                                           |
| 6303.6 <i>3</i>        | $(15^{-})^{c}$                  |                         |        |     | T |                                                           |
| 6327.8 12              | $1^d$                           | 1.3 <sup>e</sup> fs 5   | H      |     |   |                                                           |
| 6343.3 11              | 1 <sup>d</sup>                  | 0.78 <sup>e</sup> fs 15 | H      |     |   |                                                           |
| 6352.7 10              | 1 <sup>d</sup>                  | 0.69 <sup>e</sup> fs 13 | H      |     |   |                                                           |
| 6364 15                | 3-,4+#                          |                         |        |     | P |                                                           |
| 6397.2 8               | $1^{-d}$ .                      | 0.28 <sup>e</sup> fs 5  | H      |     |   |                                                           |
| 6439.9 <i>14</i>       | $1^{(-)}d$                      | 0.53 <sup>e</sup> fs 9  | Н      |     |   |                                                           |
| 6449.9 <i>15</i>       | $1^{(-)}d$                      | 0.90 <sup>e</sup> fs 18 | H      |     |   |                                                           |
| 6458.5 <i>15</i>       | $1^{(-)}d$                      | 1.00 <sup>e</sup> fs 20 | H      |     |   |                                                           |
| 6484.8 10              | $1^d$                           | 1.00 <sup>e</sup> fs 20 | H      |     |   |                                                           |
| 6497.0 7               | $1^{-d}$                        | 0.33 <sup>e</sup> fs 6  | H      |     |   |                                                           |
| 6535.8 <i>6</i>        | $1^{-d}$                        | 0.22 <sup>e</sup> fs 3  | Н      |     |   |                                                           |
| 6549.1 <i>11</i>       | 1 <sup>d</sup>                  | 1.3 <sup>e</sup> fs 3   | Н      |     |   |                                                           |
| 6574.9 <i>15</i>       | $1^d$                           | 1.16 <sup>e</sup> fs 23 | Н      |     |   |                                                           |
| 6605.5 10              | $1^{(-)}d$                      | 0.69 <sup>e</sup> fs 12 | Н      |     |   |                                                           |
|                        |                                 |                         |        |     |   |                                                           |

#### <sup>140</sup>Ce Levels (continued)

| E(level) <sup>†‡</sup> | $\mathbf{J}^{\pi}$              | T <sub>1/2</sub>        | XREF |   | Comments                                 |
|------------------------|---------------------------------|-------------------------|------|---|------------------------------------------|
| 6616.2 10              | 1 <sup>(-)</sup> <b>d</b>       | 0.74 <sup>e</sup> fs 13 | Н    |   |                                          |
| 6678                   |                                 |                         | I    |   |                                          |
| 6771.7 <i>14</i>       | $(2^+)^{d}$                     |                         | H    |   |                                          |
| 6781.9 <i>15</i>       | 1 <sup>d</sup>                  | 0.85 <sup>e</sup> fs 19 | H    |   |                                          |
| 6796.6 <i>5</i>        | $(16^{-})^{c}$                  |                         |      | T |                                          |
| 6841.8 <i>12</i>       | $1^d$                           | 0.79 <sup>e</sup> fs 22 | H    |   |                                          |
| 6862.4 7               | $1^{-d}$                        | 0.24 <sup>e</sup> fs 4  | Н    |   |                                          |
| 6889.2 8               | $(15,16)^{\mathbf{c}}$          |                         |      | T |                                          |
| 6905.9 <i>15</i>       | 1 <sup>d</sup>                  | 0.45 <sup>e</sup> fs 10 | H    |   |                                          |
| 6932.6 <i>14</i>       | $1^d$                           | 0.52 <sup>e</sup> fs 11 | H    |   |                                          |
| 6960.4 12              | 1 <sup>d</sup>                  | 0.47 <sup>e</sup> fs 10 | H    |   |                                          |
| 7038.2 6               | (17 <sup>-</sup> ) <sup>c</sup> |                         |      | T |                                          |
| 7050                   |                                 |                         | I    |   |                                          |
| 7206.0 <i>14</i>       | 1 <sup>d</sup>                  | 0.31 <sup>e</sup> fs 5  | H    |   |                                          |
| 7214.8 <i>15</i>       | 1 <sup>d</sup>                  | 0.34 <sup>e</sup> fs 6  | H    |   |                                          |
| 7341.5 <i>14</i>       | $1^{d}$                         | 0.9 <sup>e</sup> fs 2   | Н    |   |                                          |
| 7370                   | 0+                              |                         | D    |   | $J^{\pi}$ : L=0 in ( <sup>3</sup> He,n). |
| 7673.4 12              | 1 <sup>d</sup>                  | 0.76 <sup>e</sup> fs 18 | H    |   |                                          |

<sup>&</sup>lt;sup>†</sup> From least-squares fit to  $\gamma$  energies.

<sup>&</sup>lt;sup>‡</sup> Additional information 3.

<sup>#</sup> From L in (p,t) (1977Sh06).

<sup>&</sup>lt;sup>®</sup> From analysis of (p,p') via IAR decay (1969He13,1970He05).

<sup>&</sup>amp; From L in (p,p') (1977Sh06).

<sup>&</sup>lt;sup>a</sup> From multipolarities deduced from  $\alpha(K)$ exp and  $\gamma(\theta)$  in  $(\alpha,2n\gamma)$  (1979BiZN).

<sup>&</sup>lt;sup>b</sup> From <sup>140</sup>Ce( $\alpha,\alpha'\gamma$ ) dataset based on measured  $\gamma$ -ray multipolarity ( $\alpha\gamma(\theta)$ ); only natural parities are excited under the kinematic conditions of the experiment.

c From <sup>238</sup>U(<sup>12</sup>C,Fγ) dataset tentatively assigned by 2012As06 based on the following criteria: (i) Spin values increase with excitation energy, (ii) High-energy (low-energy) transitions likely have an E2 (M1) character, and (iii) Measured branching ratios as well as the existence or the absence of cross-over transitions place some conditions on the multipolarities.

<sup>&</sup>lt;sup>d</sup> Based on measured multipolarity and parity of  $\gamma$ -ray that decays to  $0^+$  g.s. in  $^{140}\mathrm{Ce}(\gamma,\gamma')$  dataset.

<sup>&</sup>lt;sup>e</sup> From <sup>140</sup>Ce( $\gamma,\gamma'$ ) dataset, deduced from  $\Gamma_0^2/\Gamma$  values in 2006Vo11, when available, assuming  $\Gamma_0$ = $\Gamma$  based on the observation of only the ground-state transitions. As no transitions other than those to the ground-state were observed, it is a reasonable approximation.

f Band(A): g.s. band.

# $\gamma$ (140Ce)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}{}^{\dagger}$ | ${\rm I}_{\gamma}{}^{\dagger}$ | $\mathrm{E}_f$ | $\mathbf{J}_f^{\pi}$ | Mult.b | $\delta^{cg}$ | $\alpha^f$            | $I_{(\gamma+ce)}^{e}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|----------------------|-----------------------------------|--------------------------------|----------------|----------------------|--------|---------------|-----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1596.233      | 2+                   | 1596.210 35                       | 100                            | 0.0            | 0+                   | E2     |               | 8.98×10 <sup>-4</sup> |                       | B(E2)(W.u.)=13.9 7<br>$\alpha$ (K)=0.000676 10; $\alpha$ (L)=8.63×10 <sup>-5</sup> 12;<br>$\alpha$ (M)=1.79×10 <sup>-5</sup> 3<br>$\alpha$ (N)=3.97×10 <sup>-6</sup> 6; $\alpha$ (O)=6.45×10 <sup>-7</sup> 9;                                                                                                                                                                                                                               |
| 1903.31       | 0+                   | 306.9 2                           | 100                            | 1596.233       | 2+                   | E2     |               | 0.0454                |                       | $\begin{array}{c} \alpha(\mathrm{P}) \! = \! 4.92 \! \times \! 10^{-8} \ 7; \ \alpha(\mathrm{IPF}) \! = \! 0.0001128 \ 16 \\ \alpha(\mathrm{K}) \! = \! 0.0365 \ 6; \ \alpha(\mathrm{L}) \! = \! 0.00697 \ 10; \ \alpha(\mathrm{M}) \! = \! 0.001498 \\ 22 \\ \alpha(\mathrm{N}) \! = \! 0.000327 \ 5; \ \alpha(\mathrm{O}) \! = \! 4.98 \! \times \! 10^{-5} \ 7; \\ \alpha(\mathrm{P}) \! = \! 2.42 \! \times \! 10^{-6} \ 4 \end{array}$ |
|               |                      | 1903.5                            |                                | 0.0            | 0+                   | E0     |               |                       | 57 17                 | B(E2)(W.u.)=7.4 10<br>$\rho^2$ =13.5×10 <sup>-3</sup> 13 (2005Ki02).                                                                                                                                                                                                                                                                                                                                                                        |
|               |                      | 1905.5                            |                                | 0.0            | U                    | EU     |               |                       | 37 17                 | $I_{(\gamma+ce)}$ : ce(K)=1.52 <i>I</i> 5 if ce(K)(1596 $\gamma$ )=6.9 <i>4</i> (140 La $\beta^-$ , 1967Ka12). More recent measurements of ce(K) are reflected in $\rho^2$ , but ce(K) was not given (140 La $\varepsilon$ , 1984Ju01).                                                                                                                                                                                                     |
| 2083.259      | 4+                   | 487.021 12                        | 100.0 13                       | 1596.233       | 2+                   | E2     |               | 0.01159               |                       | B(E2)(W.u.)=0.1370 12<br>$\alpha(K)$ =0.00966 14; $\alpha(L)$ =0.001527 22;<br>$\alpha(M)$ =0.000324 5<br>$\alpha(N)$ =7.11×10 <sup>-5</sup> 10; $\alpha(O)$ =1.113×10 <sup>-5</sup> 16;<br>$\alpha(P)$ =6.77×10 <sup>-7</sup> 10                                                                                                                                                                                                           |
|               |                      | 2083.2 5                          | 0.03 2                         | 0.0            | 0+                   | E4     |               | 1.36×10 <sup>-3</sup> |                       | $\alpha(K)$ =0.001162 17; $\alpha(L)$ =0.0001598 23;<br>$\alpha(M)$ =3.35×10 <sup>-5</sup> 5<br>$\alpha(N)$ =7.43×10 <sup>-6</sup> 11; $\alpha(O)$ =1.198×10 <sup>-6</sup> 17;<br>$\alpha(P)$ =8.83×10 <sup>-8</sup> 13<br>B(E4)(W.u.)=14 10                                                                                                                                                                                                |
| 2107.854      | 6+                   | 24.595 4                          | 100                            | 2083.259       | 4+                   | E2     |               | 697                   |                       | B(E2)(W.u.)=0.29 +8-5<br>$\alpha$ (L)=545 8; $\alpha$ (M)=122.0 18<br>$\alpha$ (N)=25.9 4; $\alpha$ (O)=3.52 5; $\alpha$ (P)=0.000945 14                                                                                                                                                                                                                                                                                                    |
| 2347.881      | 2+                   | 445.5 5                           | 0.07 2                         | 1903.31        | 0+                   | [E2]   |               | 0.01486               |                       | $\alpha(K) = 0.01232 \ 18; \ \alpha(L) = 0.00201 \ 3;$<br>$\alpha(M) = 0.000427 \ 7$<br>$\alpha(N) = 9.36 \times 10^{-5} \ 14; \ \alpha(O) = 1.458 \times 10^{-5} \ 21;$<br>$\alpha(P) = 8.56 \times 10^{-7} \ 13$                                                                                                                                                                                                                          |
|               |                      | 751.637 18                        | 100 <i>I</i>                   | 1596.233       | 2+                   | M1+E2  | +0.38 4       | 0.00548 9             |                       | $\alpha(K) = 0.00471 \ 8; \ \alpha(L) = 0.000613 \ 10;$<br>$\alpha(M) = 0.0001277 \ 20$<br>$\alpha(N) = 2.83 \times 10^{-5} \ 5; \ \alpha(O) = 4.60 \times 10^{-6} \ 8;$<br>$\alpha(P) = 3.54 \times 10^{-7} \ 6$<br>$\delta: +0.31 +34 -14 \ (1985Di11), +1.15 +33 -25$<br>$(1985Di11), +0.5 +6 -2 \ (1993Go23), \ all \ in \ (n,n'\gamma).$                                                                                               |
|               |                      | 2347.88 5                         | 19.6 7                         | 0.0            | $0^+$                | E2     |               | $8.45 \times 10^{-4}$ |                       | $\alpha(K)=0.000333 \ 5; \ \alpha(L)=4.15\times10^{-5} \ 6;$<br>$\alpha(M)=8.60\times10^{-6} \ 12$                                                                                                                                                                                                                                                                                                                                          |

 $\infty$ 

# $\gamma(\frac{140}{\text{Ce}})$ (continued)

| $E_i(level)$           | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$ | $_{\mathrm{I}_{\gamma}}^{\dagger}$ | $\mathbf{E}_f$ $\mathbf{J}^i$ | Mult. b            | $\delta^{cg}$       | $\alpha^f$            | Comments                                                                                                                                                                                                                                                                                                                         |
|------------------------|----------------------|---------------------------------|------------------------------------|-------------------------------|--------------------|---------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L <sub>l</sub> (level) | i                    | Εγ΄                             |                                    |                               | e with.            |                     |                       | $\alpha(N)=1.91\times10^{-6}$ 3; $\alpha(O)=3.11\times10^{-7}$ 5; $\alpha(P)=2.42\times10^{-8}$ 4; $\alpha(IPF)=0.000460$ 7                                                                                                                                                                                                      |
| 2349.805               | 5+                   | 241.933 <i>30</i>               | 88.9 <i>17</i>                     | 2107.854 6                    | <sup>+</sup> M1+E2 | $-0.04^{d} + 3 - 6$ | 0.1020                | $\alpha(K)$ =0.0872 13; $\alpha(L)$ =0.01171 17; $\alpha(M)$ =0.00245 4<br>$\alpha(N)$ =0.000543 8; $\alpha(O)$ =8.81×10 <sup>-5</sup> 13; $\alpha(P)$ =6.70×10 <sup>-6</sup><br>10<br>$\delta$ : -0.19 10 ((n,n' $\gamma$ ), 1993Go23).                                                                                         |
|                        |                      | 266.543 12                      | 100.0 16                           | 2083.259 4                    | <sup>+</sup> M1+E2 | $-0.04^{d}$ 4       | 0.0787                | $\alpha(K)$ =0.0673 10; $\alpha(L)$ =0.00902 13; $\alpha(M)$ =0.00188 3 $\alpha(N)$ =0.000418 6; $\alpha(O)$ =6.78×10 <sup>-5</sup> 10; $\alpha(P)$ =5.17×10 <sup>-6</sup> 8 δ: -0.14 12 in ( <sup>140</sup> La β <sup>-</sup> , 1982Mi03), -0.069 15 ((n,n'γ), 1993Go23).                                                       |
| 2412.013               | 3+                   | 64.135 10                       | 0.06 1                             | 2347.881 2                    | + M1               |                     | 4.26                  | B(M1)(W.u.)=0.020 +14-8<br>$\alpha$ (K)=3.63 5; $\alpha$ (L)=0.499 7; $\alpha$ (M)=0.1046 15<br>$\alpha$ (N)=0.0232 4; $\alpha$ (O)=0.00375 6; $\alpha$ (P)=0.000281 4                                                                                                                                                           |
|                        |                      | 328.762 8                       | 87.3 17                            | 2083.259 4                    | + M1+E2            | -0.049 6            | 0.0453                | $\alpha(K) = 0.0388 \ 6; \ \alpha(L) = 0.00516 \ 8; \ \alpha(M) = 0.001078 \ 15$<br>$\alpha(N) = 0.000239 \ 4; \ \alpha(O) = 3.88 \times 10^{-5} \ 6; \ \alpha(P) = 2.97 \times 10^{-6} \ 5$<br>$B(M1)(W.u.) = 0.22 + 10 - 5; \ B(E2)(W.u.) = 2.9 + 24 - 12$<br>$\delta$ : $+0.19 \ 4, +13 + 11 - 5 \ ((n,n'\gamma), 1993Go23).$ |
|                        |                      | 815.772 19                      | 100.0 9                            | 1596.233 2                    | + M1(+E2)          | -0.03 1             | 0.00470               | $\alpha(K)=0.00404\ 6;\ \alpha(L)=0.000521\ 8;\ \alpha(M)=0.0001085\ 16$<br>$\alpha(N)=2.41\times10^{-5}\ 4;\ \alpha(O)=3.92\times10^{-6}\ 6;\ \alpha(P)=3.05\times10^{-7}\ 5$<br>$B(M1)(W.u.)=0.016\ +8-4;\ B(E2)(W.u.)=0.013\ +21-9$<br>$\delta$ : $-0.06\ +3-2\ (1985Di11),\ -0.056\ 12\ (1993Go23),\ in\ (n,n'\gamma).$      |
| 2464.08                | 3-                   | 867.846 20                      | 100 <i>I</i>                       | 1596.233 2                    | + E1               |                     | 1.11×10 <sup>-3</sup> | B(E1)(W.u.)=0.0026 +6-4<br>α(K)=0.000959 14; α(L)=0.0001200 17; α(M)=2.49×10 <sup>-5</sup><br>4<br>α(N)=5.51×10 <sup>-6</sup> 8; α(O)=8.92×10 <sup>-7</sup> 13; α(P)=6.80×10 <sup>-8</sup><br>10<br>Mult.,δ: E1 in (α,2nγ) and (n,n'γ). Small M2 admixture<br>δ=-0.044 20 (1991Ch05) in β- decay is incompatible                 |
|                        |                      | 2464.1 5                        | 0.21 3                             | 0.0 0                         | + [E3]             |                     | 9.28×10 <sup>-4</sup> | with recommended upper limit (RUL) for B(M2)(W.u.). $\alpha(K)=0.000514~8;~\alpha(L)=6.61\times10^{-5}~10;~\alpha(M)=1.375\times10^{-5}~20$ $\alpha(N)=3.05\times10^{-6}~5;~\alpha(O)=4.95\times10^{-7}~7;~\alpha(P)=3.81\times10^{-8}~6;~\alpha(IPF)=0.000331~5$ B(E3)(W.u.)=26 +12-8                                           |
| 2480.925               | 4+                   | 68.916 <i>6</i>                 | 16.1 5                             | 2412.013 3                    | + M1               |                     | 3.46                  | $\alpha(K)$ =2.95 5; $\alpha(L)$ =0.405 6; $\alpha(M)$ =0.0848 12 $\alpha(N)$ =0.0188 3; $\alpha(O)$ =0.00304 5; $\alpha(P)$ =0.000228 4 B(M1)(W.u.)=0.20 +11-6                                                                                                                                                                  |
|                        |                      | 131.117 8                       | 100 2                              | 2349.805 5                    | + M1+E2            | -0.13 +2-5          | 0.553 9               | $\alpha(K)$ =0.470 7; $\alpha(L)$ =0.0661 22; $\alpha(M)$ =0.0139 5<br>$\alpha(N)$ =0.00307 11; $\alpha(O)$ =0.000495 15; $\alpha(P)$ =3.61×10 <sup>-5</sup> 6<br>$\alpha(M)$ =0.18 +9-5; $\alpha(E)$ =1.1×10 <sup>2</sup> +20-5<br>$\alpha(M)$ =0.71 16, -35 +40-12 ((n,n' $\gamma$ ), 1993Go23).                               |

9

# $\gamma$ (140Ce) (continued)

|              |                      |                                 |                                 |                                                   |         | <i>y</i> ( CC) | (continued)           |                                                                                                                                                                                                                                                                                                                       |
|--------------|----------------------|---------------------------------|---------------------------------|---------------------------------------------------|---------|----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$ | ${\rm I}_{\gamma}{}^{\dagger}$  | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$          | Mult.b  | $\delta^{cg}$  | $\alpha^f$            | Comments                                                                                                                                                                                                                                                                                                              |
| 2480.925     | 4+                   | 397.52 5                        | 15.7 10                         | 2083.259 4+                                       | (E2)    |                | 0.0206                | $\alpha(K)$ =0.01699 24; $\alpha(L)$ =0.00289 4; $\alpha(M)$ =0.000616 9 $\alpha(N)$ =0.0001349 19; $\alpha(O)$ =2.09×10 <sup>-5</sup> 3; $\alpha(P)$ =1.166×10 <sup>-6</sup> 17 B(E2)(W.u.)=3.9 +23-12 Mult., $\delta$ : $\Delta J$ =0 $\gamma$ for which 1993Go23 give (M1+E2) with                                 |
| 2515.76      | 4+                   | 432.493 12                      | 100 <i>I</i>                    | 2083.259 4+                                       | M1+E2   | -0.04 2        | 0.0224                | $ δ = +0.5 +3-4 $ , in $(n,n'\gamma)$ .<br>$ α(K) = 0.0192 3$ ; $α(L) = 0.00253 4$ ; $α(M) = 0.000527 8 $ $ α(N) = 0.0001170 17$ ; $α(O) = 1.90 \times 10^{-5} 3$ ; $ α(P) = 1.461 \times 10^{-6} 21 $ Mult., $δ$ : from $(n,n'\gamma)$ (1993Go23).                                                                   |
|              |                      | 919.550 <i>23</i>               | 92 1                            | 1596.233 2+                                       | E2      |                | 0.00242               | $\alpha(K)=0.00207 \ 3; \ \alpha(L)=0.000281 \ 4; \ \alpha(M)=5.87\times10^{-5} \ 9$<br>$\alpha(N)=1.298\times10^{-5} \ 19; \ \alpha(O)=2.08\times10^{-6} \ 3;$<br>$\alpha(P)=1.496\times10^{-7} \ 21$                                                                                                                |
| 2521.428     | 2+                   | 109.422 11                      | 3.18 6                          | 2412.013 3+                                       | M1+E2   | +0.26 5        | 0.952 20              | $\alpha(K)$ =0.790 12; $\alpha(L)$ =0.128 9; $\alpha(M)$ =0.0271 19 $\alpha(N)$ =0.0060 4; $\alpha(O)$ =0.00094 6; $\alpha(P)$ =5.98×10 <sup>-5</sup> 9 $\delta$ : the original unc of +0.26 2 (1991Ch05, in <sup>140</sup> La $\beta$ <sup>-</sup> decay) was increased by evaluator because of exceeding RUL limit. |
|              |                      | 173.543 9                       | 1.84 6                          | 2347.881 2+                                       | M1      |                | 0.252                 | $\alpha(K)$ =0.215 3; $\alpha(L)$ =0.0291 4; $\alpha(M)$ =0.00609 9<br>$\alpha(N)$ =0.001351 19; $\alpha(O)$ =0.000219 3; $\alpha(P)$ =1.658×10 <sup>-5</sup><br>24                                                                                                                                                   |
|              |                      | 438.5 <i>5</i> 618.12 <i>5</i>  | 0.57 <i>14</i><br>0.54 <i>6</i> | 2083.259 4 <sup>+</sup><br>1903.31 0 <sup>+</sup> |         |                |                       |                                                                                                                                                                                                                                                                                                                       |
|              |                      | 925.189 21                      | 100 <i>I</i>                    | 1596.233 2+                                       | E2+M1   | -0.22 4        | 0.00344 6             | $\alpha(K)$ =0.00296 5; $\alpha(L)$ =0.000381 6; $\alpha(M)$ =7.92×10 <sup>-5</sup> 12 $\alpha(N)$ =1.76×10 <sup>-5</sup> 3; $\alpha(O)$ =2.86×10 <sup>-6</sup> 5; $\alpha(P)$ =2.22×10 <sup>-7</sup> 4 $\delta$ : +5.1 5 (1985Di11), -0.17 2 (1993Go23), in (n,n'g).                                                 |
|              |                      | 2521.40 5                       | 50.2 6                          | 0.0 0+                                            | E2      |                | $8.81 \times 10^{-4}$ | $\alpha(K)=0.000293\ 5;\ \alpha(L)=3.65\times10^{-5}\ 6;\ \alpha(M)=7.55\times10^{-6}\ 11$<br>$\alpha(N)=1.676\times10^{-6}\ 24;\ \alpha(O)=2.73\times10^{-7}\ 4;$<br>$\alpha(P)=2.13\times10^{-8}\ 3;\ \alpha(IPF)=0.000542\ 8$                                                                                      |
| 2547.23      | 1+                   | 950.987 26                      | 100 <i>I</i>                    | 1596.233 2+                                       | M1(+E2) | +0.01 7        | 0.00327               | $\alpha(K)=0.00282 \ 4; \ \alpha(L)=0.000361 \ 5; \ \alpha(M)=7.52\times10^{-5} \ 11$<br>$\alpha(N)=1.669\times10^{-5} \ 24; \ \alpha(O)=2.72\times10^{-6} \ 4;$<br>$\alpha(P)=2.12\times10^{-7} \ 3$<br>$B(M1)(W.u.)=0.112 \ 42$<br>$\delta$ : $-0.10 \ 12 \ ((n,n'g), 1993Go23).$                                   |
|              |                      | 2547.34 11                      | 19.5 6                          | 0.0 0+                                            | M1      |                | 9.62×10 <sup>-4</sup> | $\alpha(K)$ =0.000318 5; $\alpha(L)$ =3.97×10 <sup>-5</sup> 6; $\alpha(M)$ =8.24×10 <sup>-6</sup> 12 $\alpha(N)$ =1.83×10 <sup>-6</sup> 3; $\alpha(O)$ =2.99×10 <sup>-7</sup> 5; $\alpha(P)$ =2.36×10 <sup>-8</sup> 4; $\alpha(IPF)$ =0.000593 9 B(M1)(W.u.)=0.00114 +46-44                                           |
| 2628.81      | 6 <sup>+</sup>       | 278.84 <sup>#</sup> 13          | 12.7 <sup>#</sup> <i>16</i>     | 2349.805 5+                                       | M1,E2   |                | 0.066 5               | $\alpha(K)$ =0.054 6; $\alpha(L)$ =0.0089 10; $\alpha(M)$ =0.00190 23 $\alpha(N)$ =0.00042 5; $\alpha(O)$ =6.5×10 <sup>-5</sup> 5; $\alpha(P)$ =3.9×10 <sup>-6</sup> 7                                                                                                                                                |

10

# $\gamma$ (140Ce) (continued)

|               |                      |                                                |                                         |                     |                                  |         | $\gamma$ <sup>(140</sup> Ce) (cont | inued)                |                       |                                                                                                                                                                                                                                                                                             |
|---------------|----------------------|------------------------------------------------|-----------------------------------------|---------------------|----------------------------------|---------|------------------------------------|-----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}{}^{\dagger}$              | ${\rm I}_{\gamma}{}^{\dagger}$          | $\mathbf{E}_f$      | $\mathbf{J}_f^{\pi}$             | Mult.b  | $\delta^{cg}$                      | $\alpha^f$            | $I_{(\gamma+ce)}^{e}$ | Comments                                                                                                                                                                                                                                                                                    |
| 2628.81       | 6 <sup>+</sup>       | 520.964# 25                                    | 100# 5                                  | 2107.854            | 6+                               | E2+M1   | $-0.19^d 6$                        | 0.01387 22            |                       | $\alpha(K)$ =0.01189 20; $\alpha(L)$ =0.001563 24; $\alpha(M)$ =0.000326 5 $\alpha(N)$ =7.23×10 <sup>-5</sup> 11; $\alpha(O)$ =1.175×10 <sup>-5</sup> 18; $\alpha(P)$ =9.01×10 <sup>-7</sup> 15 $\delta$ : +0.78 15 ((n,n'g), 1985Di11).                                                    |
| 2658.3?       | 2+                   | 575 <sup>h</sup>                               | 100                                     | 2083.259            |                                  |         |                                    |                       |                       |                                                                                                                                                                                                                                                                                             |
| 2899.59       | 2+                   | 996.2 <sup>#</sup> 3<br>1303.38 <sup>#</sup> 5 | 3.2 <sup>#</sup> 8<br>53 <sup>#</sup> 3 | 1903.31<br>1596.233 | 0 <sup>+</sup><br>2 <sup>+</sup> | M1+E2   | $-1.5^{d} + 10-4$                  | 0.00132 <i>21</i>     |                       | $\alpha(K)$ =0.00111 18; $\alpha(L)$ =0.000143 22;<br>$\alpha(M)$ =3.0×10 <sup>-5</sup> 5<br>$\alpha(N)$ =6.6×10 <sup>-6</sup> 10; $\alpha(O)$ =1.07×10 <sup>-6</sup> 17;<br>$\alpha(P)$ =8.2×10 <sup>-8</sup> 15; $\alpha(IPF)$ =2.19×10 <sup>-5</sup>                                     |
|               |                      |                                                |                                         |                     |                                  |         |                                    |                       |                       | B(M1)(W.u.)=0.021 +51-10;<br>B(E2)(W.u.)=17 +8-13                                                                                                                                                                                                                                           |
|               |                      | 2899.55# 4                                     | 100# 5                                  | 0.0                 | 0+                               | E2      |                                    | 9.79×10 <sup>-4</sup> |                       | B(E2)(W.u.)=0.83 +23-16<br>$\alpha$ (K)=0.000230 4; $\alpha$ (L)=2.84×10 <sup>-5</sup> 4;<br>$\alpha$ (M)=5.88×10 <sup>-6</sup> 9<br>$\alpha$ (N)=1.306×10 <sup>-6</sup> 19; $\alpha$ (O)=2.13×10 <sup>-7</sup><br>3; $\alpha$ (P)=1.669×10 <sup>-8</sup> 24;<br>$\alpha$ (IPF)=0.000714 10 |
| 3001.12       | 2+                   | 1097.20 23                                     | 39 8                                    | 1903.31             | $0^{+}$                          |         |                                    |                       |                       | <i>u</i> (II 1 )=0.000714 10                                                                                                                                                                                                                                                                |
|               |                      | 1405.20 <i>17</i>                              | 100 12                                  | 1596.233            | 2+                               | (M1+E2) | +0.7 <sup>d</sup> 3                | 0.00127 7             |                       | $\alpha(K)$ =0.00106 6; $\alpha(L)$ =0.000135 7;<br>$\alpha(M)$ =2.80×10 <sup>-5</sup> 15<br>$\alpha(N)$ =6.2×10 <sup>-6</sup> 4; $\alpha(O)$ =1.01×10 <sup>-6</sup> 6;<br>$\alpha(P)$ =7.8×10 <sup>-8</sup> 5; $\alpha(IPF)$ =4.75×10 <sup>-5</sup>                                        |
|               |                      |                                                |                                         |                     |                                  |         |                                    |                       |                       | B(M1)(W.u.)=0.024 +25-14;<br>B(E2)(W.u.)=3.5 +50-27                                                                                                                                                                                                                                         |
| 3016.9        | 0+                   | 1420.7 <sup>‡</sup> 5                          | 100 <sup>‡</sup> 15                     | 1596.233            | 2+                               | E2      |                                    | 1.03×10 <sup>-3</sup> |                       | $\alpha(K) = 0.000846 \ 12; \ \alpha(L) = 0.0001089 \ 16;$ $\alpha(M) = 2.27 \times 10^{-5} \ 4$ $\alpha(N) = 5.02 \times 10^{-6} \ 7; \ \alpha(O) = 8.13 \times 10^{-7} \ 12;$ $\alpha(P) = 6.15 \times 10^{-8} \ 9; \ \alpha(IPF) = 5.17 \times 10^{-5}$ $8$                              |
|               |                      | 3016.3 <sup>‡</sup> <i>12</i>                  | ‡                                       | 0.0                 | $0^{+}$                          | E0      |                                    |                       | 0.022 32              |                                                                                                                                                                                                                                                                                             |
| 3118.55       | 2+                   | 3118.51 <i>16</i>                              | 100                                     | 0.0                 | 0+                               | (E2)    |                                    | 1.04×10 <sup>-3</sup> |                       | $\alpha(K)=0.000203 \ 3; \ \alpha(L)=2.50\times10^{-5} \ 4; \\ \alpha(M)=5.18\times10^{-6} \ 8 \\ \alpha(N)=1.149\times10^{-6} \ 16; \ \alpha(O)=1.87\times10^{-7} \\ 3; \ \alpha(P)=1.472\times10^{-8} \ 21; \\ \alpha(IPF)=0.000808 \ 12 \\ B(E2)(W.u.)=1.6 \ +7-4$                       |

# $\gamma(\frac{140}{\text{Ce}})$ (continued)

| $E_i$ (level)      | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$                     | $_{\mathrm{I}_{\gamma}}{}^{\dagger}$   | $E_f$                | $\mathbf{J}_f^{\pi}$ | Mult.b | $\alpha^f$            | Comments                                                                                                                                                                                                                                                                  |
|--------------------|----------------------|-----------------------------------------------------|----------------------------------------|----------------------|----------------------|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3120.34?           | 2+                   | 3120.3 <sup>#h</sup> 2                              | 100 <sup>#</sup>                       | 0.0                  | 0+                   | E2     | $1.04 \times 10^{-3}$ | $\alpha(K)$ =0.000203 3; $\alpha(L)$ =2.50×10 <sup>-5</sup> 4; $\alpha(M)$ =5.17×10 <sup>-6</sup> 8 $\alpha(N)$ =1.148×10 <sup>-6</sup> 16; $\alpha(O)$ =1.87×10 <sup>-7</sup> 3; $\alpha(P)$ =1.470×10 <sup>-8</sup> 21; $\alpha(PF)$ =0.000809 12                       |
| 3122.11            | 4+                   | 657.5 <sup>#</sup> 4                                | 2.9 <sup>#</sup> 10                    | 2464.08              | 3-                   |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 772.50 <sup>#</sup> <i>13</i>                       | 23 <sup>#</sup> 2                      | 2349.805             | 5 <sup>+</sup>       |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 1525.85 <sup>#</sup> 4                              | 100 <sup>#</sup> 5                     | 1596.233             | 2+                   | E2     | 9.43×10 <sup>-4</sup> | $\alpha(K)$ =0.000737 11; $\alpha(L)$ =9.44×10 <sup>-5</sup> 14; $\alpha(M)$ =1.96×10 <sup>-5</sup> 3 $\alpha(N)$ =4.35×10 <sup>-6</sup> 6; $\alpha(O)$ =7.05×10 <sup>-7</sup> 10; $\alpha(P)$ =5.36×10 <sup>-8</sup> 8; $\alpha(IPF)$ =8.64×10 <sup>-5</sup> 12          |
| 3168.3?            |                      | 1085 <sup>h</sup>                                   | 100                                    | 2083.259             | 4+                   |        |                       | $E_{\gamma}$ : $\gamma$ peak confounded with first Ge escape of intense 1596 $\gamma$ (1993Go23, (n,n' $\gamma$ )).                                                                                                                                                       |
| 3219.95            | $(0^+)$              | 1623.71 <sup>#</sup> <i>10</i>                      | 100 <sup>#</sup>                       | 1596.233             | 2+                   |        |                       |                                                                                                                                                                                                                                                                           |
| 3255.70            | 5-                   | 739.94 <sup>#</sup> <i>4</i>                        | 100 <sup>#</sup> 6                     | 2515.76              | 4+                   | (E1)   | $1.53 \times 10^{-3}$ | $\alpha(K)$ =0.001319 <i>19</i> ; $\alpha(L)$ =0.0001662 <i>24</i> ; $\alpha(M)$ =3.45×10 <sup>-5</sup> <i>5</i> $\alpha(N)$ =7.63×10 <sup>-6</sup> <i>11</i> ; $\alpha(O)$ =1.234×10 <sup>-6</sup> <i>18</i> ; $\alpha(P)$ =9.33×10 <sup>-8</sup> <i>13</i>              |
|                    |                      | 774.8 <sup>#</sup> 3                                | 22 <b>#</b> 4                          | 2480.925             | 4+                   |        |                       |                                                                                                                                                                                                                                                                           |
| 3319.65            | 2+                   | 772.50 <sup>#</sup> h 13                            | 39 <sup>#</sup> 3                      | 2547.23              | 1+                   |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 1235.8 <sup>#</sup> 6                               | 11 <b>#</b> 4                          | 2083.259             | 4+                   |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 1724.7 <sup>#</sup>                                 | 52 <sup>#</sup> 3                      | 1596.233             | 2+                   |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 3319.61# 6                                          | 100# 6                                 | 0.0                  | 0+                   | E2     | $1.10 \times 10^{-3}$ | $\alpha(K)$ =0.000182 3; $\alpha(L)$ =2.24×10 <sup>-5</sup> 4; $\alpha(M)$ =4.64×10 <sup>-6</sup> 7 $\alpha(N)$ =1.031×10 <sup>-6</sup> 15; $\alpha(O)$ =1.680×10 <sup>-7</sup> 24; $\alpha(P)$ =1.322×10 <sup>-8</sup> 19; $\alpha(IPF)$ =0.000892 13 B(E2)(W.u.)=0.29 9 |
| 3335.47            | 4+                   | 855.1 <sup>#</sup> 4                                | 18 <sup>#</sup> 4                      | 2480.925             |                      |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 985.63 <sup>#</sup> 22                              | 9 <sup>#</sup> 3                       | 2349.805             |                      |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 1227.71 <sup>#</sup> <i>h</i> 16                    | 43 <sup>#</sup> 5                      | 2107.854             |                      |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 1252.12 <sup>#</sup> <i>13</i>                      | 100# 8                                 | 2083.259             |                      |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 1739.4 <sup>#</sup> <i>3</i>                        | 23# 4                                  | 1596.233             |                      |        |                       |                                                                                                                                                                                                                                                                           |
| 3360.24            |                      | 1010.45 <sup>#</sup> <i>19</i>                      | 100# 10                                | 2349.805             |                      |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 1276.9 <sup>#</sup> 4                               | 27 <mark>#</mark> 8                    | 2083.259             |                      |        |                       |                                                                                                                                                                                                                                                                           |
| 3391.09            |                      | 1307.73 <sup>#</sup> 10                             | 100# 8                                 | 2083.259             |                      |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 1794.93 <sup>#</sup> 10                             | 79 <sup>#</sup> 5                      | 1596.233             |                      |        |                       |                                                                                                                                                                                                                                                                           |
| 3394.92            | $(4^{-})$            | 982.89 <sup>#</sup> h                               | 100# 6                                 | 2412.013             |                      |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 1045.11# 7                                          | 74 <sup>#</sup> 5                      | 2349.805             |                      |        |                       |                                                                                                                                                                                                                                                                           |
|                    |                      | 1287.03 <sup>#</sup> 19<br>1311.56 <sup>#h</sup> 19 | 22 <sup>#</sup> 3<br>22 <sup>#</sup> 3 | 2107.854             |                      |        |                       |                                                                                                                                                                                                                                                                           |
| 2205 12            | (4+)                 | 983.1 <sup>h</sup>                                  |                                        | 2083.259             |                      | M1 E2  | 0.0026.5              | (II) 0.0022 5. (II) 0.00020 5. (0.0) (0.010=5.10                                                                                                                                                                                                                          |
| 3395.1?<br>3408.02 | $(4^+)$ $(2^+)$      | 983.1"<br>886.42 22                                 | 100<br>100 <i>11</i>                   | 2412.013<br>2521.428 |                      | M1,E2  | 0.0026 5              | $\alpha(K)=0.0022$ 5; $\alpha(L)=0.00029$ 5; $\alpha(M)=6.0\times10^{-5}$ 10 $\alpha(N)=1.33\times10^{-5}$ 22; $\alpha(O)=2.1\times10^{-6}$ 4; $\alpha(P)=1.6\times10^{-7}$ 4                                                                                             |
| J+00.02            | (2)                  | 000.42 22                                           | 100 11                                 | 2321.428             | 4                    |        |                       |                                                                                                                                                                                                                                                                           |

12

 $\gamma$ (140Ce) (continued)

Comments

 $\alpha(K)=0.000444$  7;  $\alpha(L)=5.48\times10^{-5}$  8;  $\alpha(M)=1.134\times10^{-5}$  16

 $\alpha(N)=2.51\times10^{-6}$  4;  $\alpha(O)=4.08\times10^{-7}$  6;  $\alpha(P)=3.16\times10^{-8}$  5:

 $\alpha(K)=0.001459\ 21;\ \alpha(L)=0.000194\ 3;\ \alpha(M)=4.04\times10^{-5}\ 6$ 

 $\alpha(K)=0.0001690\ 24;\ \alpha(L)=2.08\times10^{-5}\ 3;\ \alpha(M)=4.30\times10^{-6}\ 6$ 

 $\alpha(K)=0.001325$  19;  $\alpha(L)=0.0001749$  25;  $\alpha(M)=3.65\times10^{-5}$  6  $\alpha(N)=8.07\times10^{-6}$  12;  $\alpha(O)=1.302\times10^{-6}$  19;  $\alpha(P)=9.63\times10^{-8}$  14;

 $\alpha(K)=0.000865$  13;  $\alpha(L)=0.0001115$  16;  $\alpha(M)=2.32\times10^{-5}$  4

 $\alpha(N)=5.14\times10^{-6} 8$ ;  $\alpha(O)=8.32\times10^{-7} 12$ ;  $\alpha(P)=6.29\times10^{-8} 9$ ;

 $\alpha(K)=0.0001636\ 23;\ \alpha(L)=2.01\times10^{-5}\ 3;\ \alpha(M)=4.16\times10^{-6}\ 6$ 

 $\alpha(N)=9.23\times10^{-7}$  13:  $\alpha(O)=1.505\times10^{-7}$  21:  $\alpha(P)=1.186\times10^{-8}$  17:

 $\alpha(N) = 9.54 \times 10^{-7} \ 14$ ;  $\alpha(O) = 1.556 \times 10^{-7} \ 22$ ;  $\alpha(P) = 1.226 \times 10^{-8} \ 18$ ;

 $\alpha(N)=8.94\times10^{-6}\ 13;\ \alpha(O)=1.440\times10^{-6}\ 21;\ \alpha(P)=1.059\times10^{-7}\ 15$ 

 $\alpha(IPF) = 8.84 \times 10^{-5} 13$ 

 $\alpha$ (IPF)=0.000951 14 B(E2)(W.u.)=0.23 +15-11

 $\alpha(IPF)=1.211\times10^{-6}\ 17$ 

 $\alpha$ (IPF)=4.69×10<sup>-5</sup> 7

 $\alpha$ (IPF)=0.000978 14

 $\alpha^f$ 

 $6.01 \times 10^{-4}$ 

 $1.70 \times 10^{-3}$ 

 $1.15 \times 10^{-3}$ 

 $1.55 \times 10^{-3}$ 

 $1.05 \times 10^{-3}$ 

 $1.17 \times 10^{-3}$ 

Mult.b

E1

E2

(E2)

 $I_{\gamma}^{\dagger}$ 

41 7

27 7

49 7

57 *7* 

100<sup>@</sup>

100

100<sup>#</sup> 5

6.2<sup>#</sup> 11

5.4<sup>#</sup> 12

16<sup>#</sup> 4

100<sup>#</sup> 6

33 12

22<sup>#</sup> 3

100 10

100<sup>@</sup>

100

100<sup>#</sup> 18

79<sup>#</sup> 18

100<sup>@</sup>

100

100

100

 $E_f$ 

2464.08 3-

2412.013 3+

1596.233 2<sup>+</sup>

2107.854 6+

2349.805 5+

2347.881 2+

1903.31 0<sup>+</sup>

 $0^{+}$ 

 $0^{+}$ 

 $0_{+}$ 

0.0

0.0

2480.925 4+

2347.881 2+

1596.233 2+

3424.6 7-

2628.81 6<sup>+</sup>

2547.23 1+

2107.854 6+

2107.854 6+

1596.233 2+

2480.925 4+

2349.805 5+

0.0

0.0

3476.3

3424.6

2349.805 5<sup>+</sup> E2

 $0^{+}$ 

8-

7-

 $0_{+}$ 

E2

E2

1903.31

 $0.0 0^{+}$ 

 $E_{\gamma}^{\dagger}$ 

944.0 3

996.2 3

1811.0<sup>h</sup> 3

1316.8<sup>@</sup> 3

1088.65<sup>#</sup> 6

1533.2<sup>#h</sup> 4

3436.8<sup>#</sup> 8

1568.1<sup>#</sup> 5

992.9 5

1877.51 *3* 

848.2

1134.4

1125.64# 22

51.7<sup>@</sup> 1

944.0<sup>#</sup> 3

3491.2<sup>#</sup> 7

15.7

69.5

1384.2<sup>@</sup> 3

1404.4<sup>@</sup> 3

1924.62 13

1041.3

1184.8

3539.1 *3* 

3471.15<sup>#</sup> *11* 

3408.1 4

1083.0

 $E_i(level)$ 

3408.02

3424.6

3432.8

3436.54

3471.21

3473.75 3-

3476.3

3484.2

3491.2?

3492.23

3512.3

3520.87

3522.2

3534.6

3539.1

 $(2^{+})$ 

7-

7+

 $(2^+,1)$ 

 $(2^{+})$ 

8-

6+

9-

8+

 $(4^{+})$ 

(5)

2+

(3,4)

# $\gamma(\frac{140}{\text{Ce}})$ (continued)

| $E_i(level)$ | $\mathrm{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$           | $I_{\gamma}^{\dagger}$     | $\mathrm{E}_f$ | $\mathbf{J}_f^{\pi}$ | Mult.b | $\alpha^f$            | Comments                                                                                                                                                                                             |
|--------------|----------------------|----------------------------------|----------------------------|----------------|----------------------|--------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3567.5       | (2 <sup>+</sup> )    | 1484.3 <sup>#</sup> 3            | 100 <sup>#</sup> 13        | 2083.259       | 4+                   |        |                       |                                                                                                                                                                                                      |
|              | ,                    | 3567.0 <sup>#</sup> 10           | 55 <sup>#</sup> 16         | 0.0            | $0^{+}$              |        |                       |                                                                                                                                                                                                      |
| 3620.7       | 8+                   | 992.2                            |                            | 2628.81        | 6+                   |        |                       |                                                                                                                                                                                                      |
|              |                      | 1512.9                           |                            | 2107.854       | 6+                   |        |                       |                                                                                                                                                                                                      |
| 3642.8       | 1-                   | 1739.4 <sup>#</sup> <i>h</i> 3   | 22 <mark>#</mark> 4        | 1903.31        | $0_{+}$              |        |                       |                                                                                                                                                                                                      |
|              |                      | 3642.7 <sup>#</sup> 3            | 100 <sup>#</sup> 7         | 0.0            | $0_{+}$              | E1     | $1.61 \times 10^{-3}$ | $\alpha(K)$ =9.12×10 <sup>-5</sup> 13; $\alpha(L)$ =1.102×10 <sup>-5</sup> 16; $\alpha(M)$ =2.28×10 <sup>-6</sup> 4 B(E1)(W.u.)=0.0030 5                                                             |
|              |                      |                                  |                            |                |                      |        |                       | $\alpha(N)=5.05\times10^{-7}$ 7; $\alpha(O)=8.24\times10^{-8}$ 12; $\alpha(P)=6.50\times10^{-9}$ 10;                                                                                                 |
|              |                      |                                  |                            |                |                      |        |                       | $\alpha(\text{IPF}) = 0.001502 \ 21$                                                                                                                                                                 |
|              |                      |                                  |                            |                |                      |        |                       | Mult.: from $\gamma(\theta)$ and linear pol in $(\gamma, \gamma')$ .                                                                                                                                 |
| 3646.7       | $(1,2^+)$            | 1743.31 <sup>#</sup> <i>h</i> 22 | 75 <sup>#</sup> 11         | 1903.31        | $0_{+}$              |        |                       |                                                                                                                                                                                                      |
|              |                      | 3646.6 <sup>#</sup> 6            | 100 <sup>#</sup> <i>18</i> | 0.0            | $0_{+}$              |        |                       |                                                                                                                                                                                                      |
| 3648.23      | $(2^+,3,4^+)$        | 1564.92 <sup>#</sup> <i>16</i>   | 100 <sup>#</sup> 8         | 2083.259       | 4+                   |        |                       |                                                                                                                                                                                                      |
|              |                      | 2052.07 <sup>#</sup> 22          | 69 <sup>#</sup> 7          | 1596.233       | 2+                   |        |                       |                                                                                                                                                                                                      |
| 3657.64?     | $(4^+,5,6^+)$        | 1307.73 <sup>#</sup> <i>h</i> 10 | 100 <sup>#</sup> 3         | 2349.805       | 5 <sup>+</sup>       |        |                       |                                                                                                                                                                                                      |
|              |                      | 1549.76 <sup>#</sup> <i>19</i>   | 45 <sup>#</sup> 5          | 2107.854       | 6+                   |        |                       |                                                                                                                                                                                                      |
|              |                      | 1574.5 <sup>#</sup> 5            | 12 <b>#</b> 4              | 2083.259       | 4+                   |        |                       |                                                                                                                                                                                                      |
| 3661.5       | (7,8)                | 1032.7                           |                            | 2628.81        | 6+                   |        |                       |                                                                                                                                                                                                      |
| 3684.2       | $(1^-,2^+)$          | 1220.5 <sup>#</sup> <i>h</i> 3   | 100 <sup>#</sup> <i>14</i> | 2464.08        | 3-                   |        |                       |                                                                                                                                                                                                      |
|              |                      | 3684.1 <sup>#</sup> 6            | 76 <sup>#</sup> 12         | 0.0            | $0_{+}$              |        |                       |                                                                                                                                                                                                      |
| 3708.60      | $(2^{+})$            | 1227.71 <sup>#</sup> <i>16</i>   | 81 <sup>#</sup> <i>10</i>  | 2480.925       | 4+                   |        |                       |                                                                                                                                                                                                      |
|              |                      | 2112.30 <sup>#</sup> <i>19</i>   | 100 <sup>#</sup> 8         | 1596.233       | 2+                   |        |                       |                                                                                                                                                                                                      |
|              |                      | 3708.1 <sup>#</sup> <i>11</i>    | 33 <sup>#</sup> 8          | 0.0            | $0_{+}$              |        |                       |                                                                                                                                                                                                      |
| 3714.3       | 10 <sup>+</sup>      | 202.0 <sup>@</sup> 3             | 54 <sup>@</sup> 12         | 3512.3         | 8+                   | E2     | 0.178                 | $\alpha(K)=0.1351\ 20;\ \alpha(L)=0.0335\ 5;\ \alpha(M)=0.00731\ 12$                                                                                                                                 |
|              |                      |                                  |                            |                |                      |        |                       | $\alpha$ (N)=0.001583 24; $\alpha$ (O)=0.000234 4; $\alpha$ (P)=8.31×10 <sup>-6</sup> 13                                                                                                             |
|              |                      | @                                | @                          |                | _                    |        |                       | B(E2)(W.u.)=0.55 14                                                                                                                                                                                  |
|              |                      | 222.0 <sup>@</sup> 3             | 100 <sup>@</sup> 15        | 3492.23        | 9-                   | E1     | 0.0274                | $\alpha(K)=0.0235 \ 4; \ \alpha(L)=0.00311 \ 5; \ \alpha(M)=0.000646 \ 10$<br>$\alpha(N)=0.0001423 \ 21; \ \alpha(O)=2.26\times10^{-5} \ 4; \ \alpha(P)=1.555\times10^{-6} \ 23$                     |
|              |                      |                                  |                            |                |                      |        |                       | $\alpha(N)=0.0001423 \ 21; \ \alpha(O)=2.26\times10^{-9} \ 4; \ \alpha(P)=1.555\times10^{-9} \ 23$<br>B(E1)(W.u.)=6.0×10 <sup>-7</sup> 10                                                            |
| 3723.54      | (2 <sup>+</sup> )    | 1311.56 <sup>#</sup> <i>19</i>   | 45 <sup>#</sup> 7          | 2412.013       | 2+                   |        |                       | D(E1)( w.u.)=0.0X10 10                                                                                                                                                                               |
| 5145.34      | (2)                  | 3723.4 <sup>#</sup> 3            | 100 <sup>#</sup> 7         | 0.0            | 0+                   | (E2)   | $1.23 \times 10^{-3}$ | $\alpha(K)=0.0001502\ 21;\ \alpha(L)=1.84\times10^{-5}\ 3;\ \alpha(M)=3.81\times10^{-6}\ 6$                                                                                                          |
|              |                      | 3123.4" 3                        | 100 /                      | 0.0            | U.                   | (E2)   | 1.23×10               | $\alpha(K)$ =0.0001502 21; $\alpha(L)$ =1.84×10 ° 3; $\alpha(M)$ =5.81×10 ° 6 $\alpha(N)$ =8.46×10 <sup>-7</sup> 12; $\alpha(O)$ =1.381×10 <sup>-7</sup> 20; $\alpha(P)$ =1.089×10 <sup>-8</sup> 16; |
|              |                      |                                  |                            |                |                      |        |                       | $\alpha(\text{IPF})=0.001053 \ 15$                                                                                                                                                                   |
| 3735.3       | $(1,2^+)$            | 3735.2 <sup>#</sup> 4            | 100 <mark>#</mark>         | 0.0            | $0^{+}$              |        |                       |                                                                                                                                                                                                      |
| 3767.97      | $(2^+,3^+,4^+)$      | 1220.5 <sup>#</sup> 3            | 34 <sup>#</sup> 5          | 2547.23        | 1+                   |        |                       |                                                                                                                                                                                                      |
|              | . ,- ,- ,            | 1252.12 <sup>#h</sup> 13         | 98 <sup>#</sup> 8          |                | 4+                   |        |                       |                                                                                                                                                                                                      |
|              |                      | 1287.03 <sup>#</sup> 19          | 36 <sup>#</sup> 5          | 2480.925       |                      |        |                       |                                                                                                                                                                                                      |
|              |                      | 1207.03 17                       | 50 5                       | 2100.723       |                      |        |                       |                                                                                                                                                                                                      |

# $\gamma(^{140}\text{Ce})$ (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$     | $\mathbf{E}_f$   | $\mathbf{J}_f^{\pi}$              | Mult.b | $\alpha^f$ | Comments                                                                                                                                                                                                                                                                                                                                                      |
|---------------|----------------------|---------------------------------|----------------------------|------------------|-----------------------------------|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3767.97       | $(2^+,3^+,4^+)$      | 1684.4 <sup>#</sup> 3           | 23 <sup>#</sup> 3          | 2083.259         | 4+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 2171.82 <sup>#</sup> <i>13</i>  | 100 <b>#</b> 6             | 1596.233         |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 3792.72       | 3-                   | 893.7 <sup>#</sup> <i>3</i>     | 100 <sup>#</sup> <i>13</i> | 2899.59          | 2+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 1276.9 <mark>#</mark> <i>4</i>  | 48 <sup>#</sup> <i>14</i>  | 2515.76          | 4+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 1311.56 <sup>#</sup> <i>19</i>  | 94 <sup>#</sup> <i>14</i>  | 2480.925         | 4+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 2196.6 <sup>#</sup> 6           | 93 <sup>#</sup> <i>10</i>  | 1596.233         | 2+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 3836.1?       | $(2^+,3,4^+)$        | 1753.1 <sup>#</sup> 4           | 32 <sup>#</sup> 10         | 2083.259         | 4+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 2239.8 <sup>#</sup> 5           | 100 <sup>#</sup> <i>17</i> | 1596.233         | 2+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 3847.10       | $(4^+,5,6^+)$        | 808.1 <sup>#</sup> <i>3</i>     | 49 <sup>#</sup> 7          | 3039.0           | 3-                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 1497.31 <sup>#</sup> 22         | 100 <sup>#</sup> 10        | 2349.805         |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 1739.4 <sup>#</sup> <i>3</i>    | 38 <sup>#</sup> 6          | 2107.854         |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 1763.6 <sup>#</sup> <i>3</i>    | 47 <mark>#</mark> 6        | 2083.259         |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 3853.2        | $(1,2^+)$            | 2256.8 <sup>#</sup> 7           | 30 <sup>#</sup> 8          | 1596.233         |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 3853.3 <sup>#</sup> 6           | 100 <sup>#</sup> 11        | 0.0              | $0_{+}$                           |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 3879.3        | $(1,2^+)$            | 3879.2 <sup>#</sup> 8           | 100 <sup>#</sup>           | 0.0              | 0+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 3894.5        | 9+                   | 180.0<br>274.2                  |                            | 3714.3<br>3620.7 | 10 <sup>+</sup><br>8 <sup>+</sup> |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 382.3                           |                            | 3512.3           | 8+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 3910.93       |                      | 2314.68 <sup>#</sup> 22         | 100 <sup>#</sup>           | 1596.233         |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 3957.93       |                      | 1493.6 <sup>#</sup> 3           | 69 <sup>#</sup> 9          | 2464.08          |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 2361.80 <sup>#</sup> 22         | 100 <sup>#</sup> 9         | 1596.233         |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 3970.8?       |                      | 1621.0 <sup>h</sup>             |                            | 2349.805         |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 3984.20       | $(2^+,3,4^+)$        | 1901.4 <sup>#</sup> 5           | 87 <sup>#</sup> 19         | 2083.259         |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               | , , , ,              | 2387.90 <sup>#</sup> <i>16</i>  | 100 <sup>#</sup> 15        | 1596.233         |                                   |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 4053          | (1)                  | 4053 <sup>&amp;</sup>           | 100                        | 0.0              | $0^{+}$                           | (D)    |            |                                                                                                                                                                                                                                                                                                                                                               |
| 4164.0        | $(1,2^+)$            | 2567.8 <sup>#</sup> 3           | 100 <sup>#</sup> <i>16</i> | 1596.233         | 2+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 4163.5 <sup>#</sup> 9           | 53 <sup>#</sup> 18         | 0.0              | $0_{+}$                           |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 4171.1        | $(2^+,1)$            | 2576.1 <sup>#</sup> 6           | 31 <b>#</b> <i>10</i>      | 1596.233         | 2+                                |        |            |                                                                                                                                                                                                                                                                                                                                                               |
|               |                      | 4171.0 <mark>#</mark> 7         | 100 <sup>#</sup> <i>14</i> | 0.0              | $0^{+}$                           |        |            |                                                                                                                                                                                                                                                                                                                                                               |
| 4173.6        | 1 <sup>(-)</sup>     | 4173.5 8                        | 100                        | 0.0              | 0+                                | [E1]   | 0.00180    | $\alpha(K)=7.56\times10^{-5}\ 1I;\ \alpha(L)=9.12\times10^{-6}\ I3;\ \alpha(M)=1.88\times10^{-6}\ 3$<br>$\alpha(N)=4.18\times10^{-7}\ 6;\ \alpha(O)=6.81\times10^{-8}\ I0;\ \alpha(P)=5.39\times10^{-9}\ 8;$<br>$\alpha(IPF)=0.001714\ 24$<br>$B(E1)(W.u.)=9.6\times10^{-4}\ +23-16$<br>$E_{\gamma}$ : from $(\alpha,\alpha'\gamma)$ and $(\gamma,\gamma')$ . |
| 4262.5        | 10 <sup>+</sup>      | 368.1<br>548.3                  |                            | 3894.5<br>3714.3 | 9 <sup>+</sup><br>10 <sup>+</sup> |        |            | Ly. 110111 (a,a 7) and (7,7).                                                                                                                                                                                                                                                                                                                                 |

# $\gamma(\frac{140}{\text{Ce}})$ (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{\dagger}$ | $E_f$    | $J_f^\pi$       | Mult.b      | $\alpha^f$            | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|----------------------|-----------------------------|------------------------|----------|-----------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4279.9       | $(2^+,3,4^+)$        | 2196.6 <sup>#</sup> 4       | 74 <sup>#</sup> 8      | 2083.259 | 4+              |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                      | 2683.6 <sup>#</sup> 7       | 100 <b>#</b> <i>12</i> | 1596.233 |                 |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4331         | (1)                  | 4331 <mark>&amp;</mark>     | 100                    | 0.0      | $0^{+}$         | (D)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4354.9       | 1                    | 4354.8 <mark>&amp;</mark> 7 | 100                    | 0.0      | $0^{+}$         | D           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4371         | (1)                  | 4371 <mark>&amp;</mark>     | 100                    | 0.0      | $0^{+}$         | (D)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4388         | (1)                  | 4388 <mark>&amp;</mark>     | 100                    | 0.0      | 0+              | (D)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4437         | (1)                  | 4437 <mark>&amp;</mark>     | 100                    | 0.0      | 0+              | (D)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4448.5       | (9,11)               | 734.2                       | 100                    | 3714.3   | 10 <sup>+</sup> | (2)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4514.9       | 1(-)                 | 4514.8 <sup>a</sup> 9       | 100                    | 0.0      | 0+              | [E1]        | 0.00192               | $\alpha(K)=6.80\times10^{-5}\ I0;\ \alpha(L)=8.19\times10^{-6}\ I2;\ \alpha(M)=1.691\times10^{-6}\ 24$ $\alpha(N)=3.75\times10^{-7}\ 6;\ \alpha(O)=6.12\times10^{-8}\ 9;\ \alpha(P)=4.84\times10^{-9}\ 7;$ $\alpha(IPF)=0.00184\ 3$ B(E1)(W.u.)=0.00101 +23-16                                                                                                                                                                               |
| 4571.3?      | $(8^+, 10^+)$        | 1058.4 <mark>h</mark>       |                        | 3512.3   | 8+              |             |                       | 2(21)(·······) 0100101 · <b>2</b> 0 10                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4655         | (1)                  | 4655 <mark>&amp;</mark>     | 100                    | 0.0      | 0+              | (D)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4787.8       | 1(-)                 | 4787.7 <sup>a</sup> 9       | 100                    | 0.0      | 0+              | (E)<br>[E1] | 0.00201               | $\begin{array}{l} \alpha(\mathrm{K}) \! = \! 6.28 \times \! 10^{-5} \; 9; \; \alpha(\mathrm{L}) \! = \! 7.57 \times \! 10^{-6} \; 11; \; \alpha(\mathrm{M}) \! = \! 1.562 \times \! 10^{-6} \; 22 \\ \alpha(\mathrm{N}) \! = \! 3.47 \times \! 10^{-7} \; 5; \; \alpha(\mathrm{O}) \! = \! 5.65 \times \! 10^{-8} \; 8; \; \alpha(\mathrm{P}) \! = \! 4.47 \times \! 10^{-9} \; 7; \\ \alpha(\mathrm{IPF}) \! = \! 0.00194 \; 3 \end{array}$ |
| 10.51        | 4.0-1                | <b>*</b> 00 0               |                        | 10.00    | 40+             |             |                       | $B(E1)(W.u.)=9.9\times10^{-4} +2I-15$                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4851.1       | 12+                  | 588.8                       | 400                    | 4262.5   | 10 <sup>+</sup> |             |                       | gr                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                      | 1136.8 <sup>@</sup> 3       | 100 <sup>@</sup>       | 3714.3   | 10+             | E2          | $1.54 \times 10^{-3}$ | $\alpha(K)$ =0.001320 19; $\alpha(L)$ =0.0001741 25; $\alpha(M)$ =3.63×10 <sup>-5</sup> 5 $\alpha(N)$ =8.03×10 <sup>-6</sup> 12; $\alpha(O)$ =1.296×10 <sup>-6</sup> 19; $\alpha(P)$ =9.59×10 <sup>-8</sup> 14; $\alpha(P)$ =1.304×10 <sup>-6</sup> 22                                                                                                                                                                                       |
| 4875         | (1)                  | 4875 <mark>&amp;</mark>     | 100                    | 0.0      | $0_{+}$         | (D)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4883         | (1)                  | 4883 <mark>&amp;</mark>     | 100                    | 0.0      | $0^{+}$         | (D)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4904.6       | 11-                  | 1190.3 <sup>@</sup> 4       | 100 <sup>@</sup>       | 3714.3   | 10 <sup>+</sup> | E1          | 6.38×10 <sup>-4</sup> | $\alpha(K)$ =0.000530 8; $\alpha(L)$ =6.57×10 <sup>-5</sup> 10; $\alpha(M)$ =1.360×10 <sup>-5</sup> 19 $\alpha(N)$ =3.01×10 <sup>-6</sup> 5; $\alpha(O)$ =4.90×10 <sup>-7</sup> 7; $\alpha(P)$ =3.78×10 <sup>-8</sup> 6; $\alpha(IPF)$ =2.44×10 <sup>-5</sup> 4                                                                                                                                                                              |
| 4951         | (1)                  | 4951 <mark>&amp;</mark>     | 100                    | 0.0      | $0_{+}$         | (D)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4958.0       | $(11^{+})$           | 1465.9                      | 100                    | 3492.23  | 9-              | _           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5069.5       | (9,11)               | 1355.2                      | 100                    | 3714.3   | $10^{+}$        | D           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5093.4       | $(12^{-})$           | 135.3                       | 100                    | 4958.0   | $(11^{+})$      |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5100 f       | 12-                  | 188.9 <sup>@</sup> 5        | 100@                   | 4904.6   | 11-             | T-1         | 0.0163                | (IV) 0.01500.05 (IV) 0.00004 (1.050.0000455.5                                                                                                                                                                                                                                                                                                                                                                                                |
| 5102.1       | 13-                  | 250.9 <sup>@</sup> 3        | 100 <sup>@</sup>       | 4851.1   | 12+             | E1          | 0.0198                | $\alpha(K)$ =0.01700 25; $\alpha(L)$ =0.00224 4; $\alpha(M)$ =0.000465 7 $\alpha(N)$ =0.0001024 15; $\alpha(O)$ =1.632×10 <sup>-5</sup> 24; $\alpha(P)$ =1.137×10 <sup>-6</sup> 17                                                                                                                                                                                                                                                           |
| 5157.3       | 1 <sup>(-)</sup>     | 5157.2 <sup>a</sup> 12      | 100                    | 0.0      | 0+              | [E1]        | 0.00211               | $\alpha(K)=5.70\times10^{-5}$ 8; $\alpha(L)=6.85\times10^{-6}$ 10; $\alpha(M)=1.414\times10^{-6}$ 20 $\alpha(N)=3.14\times10^{-7}$ 5; $\alpha(O)=5.12\times10^{-8}$ 8; $\alpha(P)=4.05\times10^{-9}$ 6; $\alpha(IPF)=0.00205$ 3 B(E1)(W.u.)=7.0×10 <sup>-4</sup> +17-11                                                                                                                                                                      |

# $\gamma(^{140}\text{Ce})$ (continued)

| 5190.2 $1^{(-)}$ 5190.1 <sup>a</sup> 10 100 0.0 $0^{+}$ [E1] 0.00212 $\alpha(K)=5.65\times10^{-5}$ 8; $\alpha(L)=6.80\times10^{-6}$ $\alpha(N)=3.11\times10^{-7}$ 5; $\alpha(O)=5.08\times10^{-8}$ $\alpha(IPF)=0.00206$ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |
| 5211.6 $1^{(-)}$ 5211.5 <sup>a</sup> 14 100 0.0 $0^{+}$ [E1] 0.00213 $ \begin{array}{c} B(E1)(W.u.) = 8.5 \times 10^{-4} + 20 - 14 \\ \alpha(K) = 5.62 \times 10^{-5} 8; \ \alpha(L) = 6.76 \times 10^{-6} \\ \alpha(N) = 3.09 \times 10^{-7} 5; \ \alpha(O) = 5.05 \times 10^{-8} \\ \alpha(IPF) = 0.00207 3 \\ B(E1)(W.u.) = 4.9 \times 10^{-4} + 17 - 10 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
| $5245$ (1) $5245$ $^{\&}$ 100 0.0 0 <sup>+</sup> (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| $5330$ (1) $5330^{\&}$ 100 0.0 0 <sup>+</sup> (D) $5335.0$ (12 <sup>-</sup> ) 232.6 $5102.1$ 13 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |
| 5337.3 $1^{(-)}$ 5337.2 <sup>a</sup> 9 100 0.0 0 <sup>+</sup> [E1] 0.00217 $\alpha(K)=5.45\times10^{-5}$ 8; $\alpha(L)=6.55\times10^{-6}$ $\alpha(N)=3.00\times10^{-7}$ 5; $\alpha(O)=4.89\times10^{-8}$ $\alpha(IPF)=0.00210$ 3 $\alpha(IPF)=0.00210$ 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
| 5419.0 (14 <sup>-</sup> ) 318.0 <sup>@</sup> 4 100 <sup>@</sup> 5102.1 13 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
| 5470 (1) $5470$ $(1)$ $00$ $0.0$ $0+$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
| 5494 (1) $5494$ $8$ 100 0.0 0 <sup>+</sup> (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |
| 5548.4 $1^{(-)}$ 5548.3 7 100 0.0 0+ [E1] 0.00223 $\alpha(K)=5.18\times10^{-5}$ 8; $\alpha(L)=6.22\times10^{-6}$ $\alpha(N)=2.85\times10^{-7}$ 4; $\alpha(O)=4.65\times10^{-8}$ $\alpha(IPF)=0.00217$ 3 $\alpha(IPF)=0.00151$ +32-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| 5573.8 $1^{(-)}$ 5573.7 <sup>a</sup> 14 100 0.0 0 <sup>+</sup> [E1] 0.00223 $\alpha(K)=5.15\times10^{-5}$ 8; $\alpha(L)=6.19\times10^{-6}$ $\alpha(N)=2.83\times10^{-7}$ 4; $\alpha(O)=4.62\times10^{-8}$ $\alpha(IPF)=0.00218$ 3 $\alpha(IPF)=0.00218$ 8 $\alpha(IPF)=0.00218$ 8 $\alpha(IPF)=0.00218$ 9 $\alpha($ |                                                                      |
| 5624 (1) $5624$ $0.0$ 0 <sup>+</sup> (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
| 5659.9 1 5659.8 6 100 0.0 0 E1 0.00226 93 5 $\alpha(K)=5.05\times10^{-5}$ 7; $\alpha(L)=6.06\times10^{-6}$ $\alpha(N)=2.78\times10^{-7}$ 4; $\alpha(O)=4.53\times10^{-8}$ $\alpha(IPF)=0.00220$ 3 $\alpha(IPF)=0.00220$ 3 $\alpha(IPF)=0.0020$ 3 $\alpha(IPF)=0.0020$ 3 $\alpha(IPF)=0.0020$ 6 Mult.: from $\alpha(H)=0.0020$ 7 Mult.: from $\alpha(H)=0.0020$ 8 Mult.: from $\alpha(H)=0.0020$ 9 Mult.: from $\alpha(H)=0.00200$ 9 Mult.: from $\alpha(H)=0.002000$ 9 Mult.: from $\alpha(H)=0.00200$ 9 Mult.: from $\alpha(H)=0.002000$ 9 Mult.: from $\alpha(H)=0.0020000$ 9 Mult.: from $\alpha(H)=0.002000000$ 9 Mult.: from $\alpha(H)=0.002000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>8</sup> 7; $\alpha(P)=3.59\times10^{-9}$ 5; $\gamma,\gamma'$ ). |
| 5693.3 592.3 <sup>@</sup> 5 100 <sup>@</sup> 5102.1 13 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |
| $5721$ (1) $5721$ $\stackrel{\&}{\sim}$ 100 0.0 0 <sup>+</sup> (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |
| $5759$ (1) $5759$ $^{\&}$ 100 0.0 0 <sup>+</sup> (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| $5809$ (1) $5809^{\&}$ 100 0.0 0 <sup>+</sup> (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |
| $5823$ (1) $5823$ $^{\&}$ 100 0.0 0 <sup>+</sup> (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |

17

# $\gamma(^{140}\text{Ce})$ (continued)

| $E_i$ (level) | $\mathbf{J}_i^\pi$ | $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\dagger}$ | $E_f$ $J_f^{\pi}$ | Mult.b | $\alpha^f$ | Comments                                                                                                                                                                                                                                                        |
|---------------|--------------------|-------------------------------------|------------------------|-------------------|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5928.6        | 1 <sup>(-)</sup>   | 5928.5 <sup>a</sup> 10              | 100                    | 0.0 0+            | [E1]   | 0.00233    | $\alpha(K)=4.75\times10^{-5}$ 7; $\alpha(L)=5.71\times10^{-6}$ 8; $\alpha(M)=1.178\times10^{-6}$ 17<br>B(E1)(W.u.)=0.00104 +27-18<br>$\alpha(N)=2.61\times10^{-7}$ 4; $\alpha(O)=4.27\times10^{-8}$ 6; $\alpha(P)=3.38\times10^{-9}$ 5; $\alpha(IPF)=0.00227$ 4 |
| 5940          | (1)                | 5940 <mark>&amp;</mark>             | 100                    | $0.0 	 0^{+}$     | (D)    |            | $u(N)=2.01\times10^{-4}$ ; $u(O)=4.27\times10^{-6}$ ; $u(P)=3.38\times10^{-5}$ ; $u(PP)=0.00227$                                                                                                                                                                |
| 6029          | (1)                | 6029 <mark>&amp;</mark>             | 100                    | 0.0 0+            | (D)    |            |                                                                                                                                                                                                                                                                 |
| 6119.1        | 1-                 | 6119.0 <sup>&amp;</sup> 15          | 100                    | 0.0 0+            | E1     |            | B(E1)(W.u.)=0.00159 +34-24                                                                                                                                                                                                                                      |
| 6130.6        | 1                  | 6130.5 2 12                         | 100                    | 0.0 0+            | D      |            | D(L1)(W.u.) = 0.00137 + 37 - 27                                                                                                                                                                                                                                 |
| 6161.7        | 1(-)               | $6161.6^{a}$ 14                     | 100                    | 0.0 0+            | [E1]   |            | $B(E1)(W.u.)=9.9\times10^{-4}+23-16$                                                                                                                                                                                                                            |
| 6226          | (1)                | 6226 &                              | 100                    | 0.0 0+            | (D)    |            | B(B1)(Wal) 7.57(10 125 10                                                                                                                                                                                                                                       |
| 6245          | (1)                | 6245 <mark>&amp;</mark>             | 100                    | 0.0 0+            | (D)    |            |                                                                                                                                                                                                                                                                 |
| 6255          | (1)                | 6255 <mark>&amp;</mark>             | 100                    | 0.0 0+            | (D)    |            |                                                                                                                                                                                                                                                                 |
| 6273.6        | 1                  | 6273.4 <sup>&amp;</sup> 10          | 100                    | 0.0 0+            | D D    |            |                                                                                                                                                                                                                                                                 |
| 6295.3        | 1-                 | 6295.1 8                            | 100                    | 0.0 0+            | E1     |            | B(E1)(W.u.)=0.00219 +46-33                                                                                                                                                                                                                                      |
| 6303.6        | $(15^{-})$         | 1202.6 <sup>@</sup> 3               | 100                    | 5102.1 13         |        |            |                                                                                                                                                                                                                                                                 |
| 6327.8        | 1                  | 6327.6 <sup>&amp;</sup> 12          | 100                    | $0.0 \ 0^{+}$     | D      |            |                                                                                                                                                                                                                                                                 |
| 6343.3        | 1                  | 6343.1                              | 100                    | 0.0 0+            | D      |            |                                                                                                                                                                                                                                                                 |
| 6352.7        | 1                  | 6352.5 <sup>&amp;</sup> 10          | 100                    | 0.0 0+            | D      |            |                                                                                                                                                                                                                                                                 |
| 6397.2        | 1-                 | 6397.0 <mark>&amp;</mark> 8         | 100                    | $0.0 \ 0^{+}$     | E1     |            | B(E1)(W.u.)=0.0034 +8-5                                                                                                                                                                                                                                         |
| 6439.9        | 1(-)               | 6439.7 <sup>&amp;</sup> 14          | 100                    | 0.0 0+            | (E1)   |            | B(E1)(W.u.)=0.00177 +37-26                                                                                                                                                                                                                                      |
| 6449.9        | 1(-)               | 6449.7 <mark>&amp;</mark> <i>15</i> | 100                    | 0.0 0+            | (E1)   |            | B(E1)(W.u.)=0.00104 +26-17                                                                                                                                                                                                                                      |
| 6458.5        | 1(-)               | 6458.3 <sup>&amp;</sup> 15          | 100                    | $0.0 \ 0^{+}$     | (E1)   |            | $B(E1)(W.u.)=9.3\times10^{-4}+23-16$                                                                                                                                                                                                                            |
| 6484.8        | 1                  | 6484.6 <mark>&amp;</mark> 10        | 100                    | $0.0 \ 0^{+}$     | D      |            |                                                                                                                                                                                                                                                                 |
| 6497.0        | 1-                 | 6496.8 <mark>&amp;</mark> 7         | 100                    | $0.0 \ 0^{+}$     | E1     |            | B(E1)(W.u.)=0.0028 +6-4                                                                                                                                                                                                                                         |
| 6535.8        | 1-                 | 6535.6 <mark>&amp;</mark> 6         | 100                    | $0.0 \ 0^{+}$     | E1     |            | B(E1)(W.u.)=0.0041 +7-5                                                                                                                                                                                                                                         |
| 6549.1        | 1                  | 6548.9 <mark>&amp;</mark> 11        | 100                    | $0.0 \ 0^{+}$     | D      |            |                                                                                                                                                                                                                                                                 |
| 6574.9        | 1                  | 6574.7 <mark>&amp;</mark> 15        | 100                    | 0.0 0+            | D      |            |                                                                                                                                                                                                                                                                 |
| 6605.5        | 1 <sup>(-)</sup>   | 6605.3 <sup>&amp;</sup> 10          | 100                    | $0.0 \ 0^{+}$     | (E1)   |            | B(E1)(W.u.)=0.00126 +27-19                                                                                                                                                                                                                                      |
| 6616.2        | 1(-)               | 6616.0 <mark>&amp;</mark> <i>10</i> | 100                    | $0.0 \ 0^{+}$     | (E1)   |            | B(E1)(W.u.)=0.00117 +25-18                                                                                                                                                                                                                                      |
| 6771.7        | $(2^{+})$          | 6771.5 <mark>&amp;</mark> <i>14</i> | 100                    | $0.0 \ 0^{+}$     | (E2)   |            |                                                                                                                                                                                                                                                                 |
| 6781.9        | 1                  | 6781.7 <mark>&amp;</mark> <i>15</i> | 100                    | $0.0 \ 0^{+}$     | D      |            |                                                                                                                                                                                                                                                                 |
| 6796.6        | $(16^{-})$         | 493.0 <sup>@</sup> 4                | 100 <sup>@</sup>       | 6303.6 (15-)      |        |            |                                                                                                                                                                                                                                                                 |
| 6841.8        | 1                  | 6841.6 <mark>&amp;</mark> <i>12</i> | 100                    | 0.0 0+            | D      |            |                                                                                                                                                                                                                                                                 |
| 6862.4        | 1-                 | 6862.2 <mark>&amp;</mark> 7         | 100                    | $0.0 \ 0^{+}$     | E1     |            | B(E1)(W.u.)=0.0032 +7-5                                                                                                                                                                                                                                         |
| 6889.2        | (15,16)            | 1470.2 <sup>@</sup> 7               | 100 <sup>@</sup>       | 5419.0 (14-)      |        |            |                                                                                                                                                                                                                                                                 |
| 6905.9        | 1                  | 6905.7 <mark>&amp;</mark> <i>15</i> | 100                    | 0.0 0+            | D      |            |                                                                                                                                                                                                                                                                 |

# $\gamma$ (140Ce) (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\dagger}$ | $E_f$ $J_f^{\pi}$         | Mult.b | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\dagger}$ | $E_f  J_f^{\pi}$ | Mult.b |
|--------------|----------------------|-------------------------------------|------------------------|---------------------------|--------|---------------|----------------------|-------------------------------------|------------------------|------------------|--------|
| 6932.6       | 1                    | 6932.4 <mark>&amp;</mark> <i>14</i> | 100                    | $0.0 \ 0^{+}$             | D      | 7214.8        | 1                    | 7214.6 <mark>&amp;</mark> <i>15</i> | 100                    | $0.0 	 0^{+}$    | D      |
| 6960.4       | 1                    | 6960.2 <mark>&amp;</mark> <i>12</i> | 100                    | $0.0 	0^{+}$              | D      | 7341.5        | 1                    | 7341.3 <mark>&amp;</mark> <i>14</i> | 100                    | $0.0 	0^{+}$     | D      |
| 7038.2       | $(17^{-})$           | 734.6 <sup>@</sup> 5                | 100 <sup>@</sup>       | 6303.6 (15 <sup>-</sup> ) |        | 7673.4        | 1                    | 7673.2 <mark>&amp;</mark> 12        | 100                    | $0.0 	0^{+}$     | D      |
| 7206.0       | 1                    | 7205.8 <mark>&amp;</mark> <i>14</i> | 100                    | $0.0 	0^{+}$              | D      |               |                      |                                     |                        |                  |        |

<sup>&</sup>lt;sup>†</sup> Unless noted by footnote  $\gamma$ 's with  $\Delta E \gamma$  are from <sup>140</sup>La  $\beta$ <sup>-</sup>, and  $\gamma$ 's with no  $\Delta E \gamma$  are from <sup>138</sup>Ba( $\alpha$ ,2n $\gamma$ ).

<sup>&</sup>lt;sup>‡</sup> From <sup>140</sup>Pr  $\varepsilon$  Decay.

<sup>#</sup> From  $^{140}$ Ce(n,n' $\gamma$ ).

<sup>&</sup>lt;sup>@</sup> From  $^{238}U(^{12}C,F\gamma)$ ).

<sup>&</sup>amp; From  $^{140}$ Ce( $\gamma, \gamma'$ ) dataset.

<sup>&</sup>lt;sup>a</sup> From  $(\alpha, \alpha' \gamma)$  and  $(\gamma, \gamma')$  datasets.

<sup>&</sup>lt;sup>b</sup> From  $\alpha$ (K)exp,  $\gamma$ (θ),  $\gamma$ (θ), linear pol in  $\beta$ <sup>-</sup> and  $\varepsilon$  decay and in different nuclear reactions.

<sup>&</sup>lt;sup>c</sup> From <sup>140</sup>La  $\beta^-$  by  $\gamma\gamma(\theta)$  (1982Mi03), except where noted.

<sup>&</sup>lt;sup>d</sup> From <sup>140</sup>Ce(n,n' $\gamma$ ) by  $\gamma(\theta)$  assuming that D+Q is M1+E2 and Q is E2. In many cases lineal pol measurements determine explicitly the electric or magnetic

<sup>&</sup>lt;sup>e</sup> From <sup>140</sup>Pr  $\varepsilon$  decay, except as noted.

f Additional information 4.

<sup>&</sup>lt;sup>g</sup> If no value given it was assumed  $\delta$ =1.00 for E2/M1,  $\delta$ =1.00 for E3/M2 and  $\delta$ =0.10 for the other multipolarities.

<sup>&</sup>lt;sup>h</sup> Placement of transition in the level scheme is uncertain.

# Level Scheme

Intensities: Relative photon branching from each level



Legend

### Level Scheme (continued)

Intensities: Relative photon branching from each level



Legend

# Level Scheme (continued)

Intensities: Relative photon branching from each level



Legend

### Level Scheme (continued)

Intensities: Relative photon branching from each level



Legend

### Level Scheme (continued)

Intensities: Relative photon branching from each level



Legend

# Level Scheme (continued)

Intensities: Relative photon branching from each level



Band(A): g.s. band



|                    | History                                                    |                     |                        |
|--------------------|------------------------------------------------------------|---------------------|------------------------|
| Туре               | Author                                                     | Citation            | Literature Cutoff Date |
| Full Evaluation    | T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli | NDS 112,1949 (2011) | 1-Jun-2010             |
| )_ 744 5 24; S(n)_ | 7169 0 25: S(p)=9897 5: O(a)=1204 2 2012Wa28               |                     |                        |

 $Q(\beta^{-})=-744.5 \ 24; \ S(n)=7168.0 \ 25; \ S(p)=8887 \ 5; \ Q(\alpha)=1304 \ 3$  2012Wa38

Note: Current evaluation has used the following Q record -744.3 247167.9 248887 5 1305 3 2011AuZZ.

 $Q(\beta^{-}n) = -6588.9 \ 24, \ Q(\varepsilon p) = -12102 \ 9 \ 2011AuZZ.$ 

Values in 2003Au03:  $Q(\beta^-)=745.8\ 24$ ,  $S(n)=7169.7\ 24$ ,  $S(p)=8889\ 5$ ,  $Q(\alpha)=1298\ 3\ Q(\beta^-n)=-6588.9\ 24$ ,  $Q(\epsilon p)=-12102\ 9$ .

Some recent nuclear structure, Theory, Calculations:

2009Lo02, 2006Yu04, 2007Ji05, 1999Za09, 1998Ts05, 1995Zh26, 1992Wo11, 1992Na07, 1992Eg01, 1992Di01, 1992Co25, 1992Co21.

For recommended double beta-decay half-lives see compilation: 2010PrZZ.

See 1995Va25 for suggested configuration of states under various models.

## <sup>142</sup>Ce Levels

## Cross Reference (XREF) Flags

|                                        |                                  | A<br>B<br>C<br>D      | $^{142}$ La $\beta^-$ de $^{142}$ Pr $\varepsilon$ dec Coulomb e $^{140}$ Ce(t,p) | eay $\mathbf{F} = {}^{142}\mathrm{Ce}(\mathbf{e},\mathbf{e}')$                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------|----------------------------------|-----------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E(level)                               | $J^{\pi \#}$                     | $T_{1/2}^{\ddagger}$  | XREF                                                                              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.0 <sup>&amp;</sup>                   | 0+                               | >5×10 <sup>16</sup> y | ABCDEFGH                                                                          | $T_{1/2}$ : Limit for $2\beta^-$ decay from 1961Ma05. Others: >1×10 <sup>16</sup> y (1959Se49), 5.1×10 <sup>15</sup> y +5 <i>I</i> -25 (1957Ri43).<br>1957Ri43 report E( $\alpha$ )=1500 in <sup>142</sup> Ce $\alpha$ decay; however, 1959Se49 and 1961Ma05 did not observe any $\alpha'$ s (Q( $\alpha$ )=1310 5).<br>$\Delta < r^2 > (^{142}\text{Ce}, ^{144}\text{Ce}) = 0.232 \ 20 \ \text{fm}^2$ (1999Is02), $\Delta < r^2 > (^{142}\text{Ce}, ^{140}\text{Ce}) = 0.265 \ 12$ (1999GaZX). |
| 641.282 <sup>&amp;</sup> 9             | 2+                               | 5.56 ps <i>12</i>     | ABCDEFGH                                                                          | $\mu$ =+0.42 10 (1991Ba38)<br>Q: -0.16 5 or -0.37 5 (1988Ve08). Other: -0.12 9 (1970En01).<br>J <sup><math>\pi</math></sup> : L=2 in (t,p).<br>T <sub>1/2</sub> : from Coul ex.                                                                                                                                                                                                                                                                                                                 |
| 1219.37 <sup>&amp;</sup> 3             | 4+                               | 7.5 ps 7              | A CDEF H                                                                          | $J^{\pi}$ : From $\gamma$ linear pol data (1992Al11). $T_{1/2}$ : from Coul ex.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1536.33 4                              | 2+                               | <0.83 ps              | A C EF                                                                            | $J^{\pi}$ : E2 $\gamma$ to g.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1652.91 <i>4</i>                       | 3-†                              | >1.8 ps               | A CDEF                                                                            | $J^{\pi}$ : L=3 in (t,p).                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1742 3                                 | 5-                               |                       | D F                                                                               | $J^{\pi}$ : L=(5) in (t,p), confirmed in (e,e').                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1743.05 6                              | 6+                               |                       | E H                                                                               | $J^{\pi}$ : From $\gamma$ linear pol data (1992Al11).                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2004.89 <i>7</i> 2014.5 <i>3</i>       | 2+                               | 0.045  ps  +5-4       | A CDEF<br>A                                                                       | $J^{\pi}$ : L=2 in (t,p).<br>E(level): level not confirmed in (n,n' $\gamma$ ) (1992Al11).                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2031.01 9                              | 0+†                              | 0.17 ps +15-6         | A E                                                                               | Elever). level not commined in (ii,ii y) (1772/1111).                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2044.51 6                              | 4 <sup>+</sup> †                 | 0.33  ps + 11-7       | A DEF                                                                             | $J^{\pi}$ : from L(e,e').                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2111.87 11                             | 4+†                              | 0.37  ps  +30-12      | DE                                                                                | Tom E(e,e).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2124.91 8                              | 5- <b>†</b>                      | >0.41 ps              | DEF                                                                               | $J^{\pi}$ : from L(e,e').                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2181.95 5                              | 3+                               | 0.26  ps +55-11       | A E                                                                               | (4,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2187.54 <i>12</i>                      | 1-                               | 0.011 ps 2            | A DE G                                                                            | $J^{\pi}$ : E1 $\gamma$ to g.s. $T_{1/2}$ : Others: 7.07 fs 28 from $(\gamma, \gamma')$ .                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2210.60 <sup>a</sup> 6                 | 6+                               |                       | EF H                                                                              | $J^{\pi}$ : from L(e,e'); consistent with $\gamma$ linear pol data (1992A111).                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2278.14 8                              | 4 <sup>+</sup> †                 | 0.083 ps +49-28       | DEF                                                                               | $J^{\pi}$ : from L(e,e').                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2329.88 <i>10</i><br>2364.91 <i>12</i> | 3 <sup>+</sup><br>2 <sup>+</sup> | 0.21  ps  +21-8       | E<br>A DEF                                                                        | $\pi$ . E2 at to $\sigma$ s                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2304.91 12                             | 2                                | 0.016  ps  +3-2       | A DEF                                                                             | $J^{\pi}$ : E2 $\gamma$ to g.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# 142Ce Levels (continued)

| E(level)@                   | $J^{\pi \#}$     | $T_{1/2}^{\ddagger}$ |    | XREF | Comments                                                                                     |
|-----------------------------|------------------|----------------------|----|------|----------------------------------------------------------------------------------------------|
| 2374.96 8                   | +                | >0.69 ps             |    | E    | $J^{\pi}$ : suggested J=6 (1995Va25) is not consistent with D+Q $\gamma$ to 4 <sup>+</sup> . |
| 2384.45 7                   | 4-               | 0.060  ps + 76 - 28  |    | E    | 3. Suggested 3-5 (1773 va23) is not consistent with D t Q f to 1.                            |
| 2398.42 7                   | 1+               | 0.076  ps + 21 - 14  | Α  | E G  | $T_{1/2}$ : Others: 49.9 fs 28 from $(\gamma, \gamma')$ .                                    |
| 2390.42 7                   |                  | 0.070 ps +21-14      | А  | E G  | $J^{\pi}$ : M1 $\gamma$ to g.s.                                                              |
| 2539.72 10                  | 4 <sup>+†</sup>  | 0.041  ps  +18-12    |    | DE   |                                                                                              |
| 2542.65 19                  | 1                | <0.014 ps            |    | E    |                                                                                              |
| 2543.21 8                   | 2+               | 0.21  ps + 25 - 8    | Α  | EF   |                                                                                              |
| 2570.08 11                  | 5 <sup>+</sup>   | 0.12  ps + 18-6      |    | E    |                                                                                              |
| 2576.23 6                   | 3 <sup>+</sup>   | >0.69 ps             |    | Ē    |                                                                                              |
| 2591.0 <i>3</i>             | 3                | > 0.0> ps            | Α  | F    |                                                                                              |
| 2592.5 9                    | $(7^{-})$        |                      | 71 | Н    | $J^{\pi}$ : From systematics of yrast levels of N=84 isotones.                               |
| 2598.27 10                  | 2+†              | > 1.66 mg            |    |      |                                                                                              |
|                             |                  | >1.66 ps             |    | E    | $J^{\pi}$ : E2 $\gamma$ to g.s.                                                              |
| 2602.55 6                   | $(3,2)^+$        | 0.24  ps  +25-8      |    | DEF  |                                                                                              |
| 2606.49 8                   | 4 <sup>+</sup> † | 0.049  ps  +83-28    |    | E    |                                                                                              |
| 2624.4 <mark>&amp;</mark> 9 | 8+               |                      |    | H    |                                                                                              |
| 2667.0 <i>3</i>             | 1+               | 0.054  ps  +24-15    | Α  | E    | $J^{\pi}$ : M1 $\gamma$ to g.s.                                                              |
| 2680.50 <i>20</i>           | $(2,3,4)^+$      | 0.15  ps  +15-6      |    | E    |                                                                                              |
| 2697.03 7                   | 2+               | 0.08  ps  +6-3       | Α  | EF   | $J^{\pi}$ : from L(e,e').                                                                    |
| 2698.58 11                  | 4+†              | 0.076  ps  +21-15    |    | DE   |                                                                                              |
| 2715.14 7                   | 3 <sup>+</sup>   | 0.12  ps + 13 - 5    |    | E    |                                                                                              |
| 2725.78 10                  | 5 <sup>+</sup>   | 0.049  ps  +26-16    |    | E    |                                                                                              |
| 2727.89 7                   | $2^{(-)}$        | 0.27  ps + 29 - 8    | Α  | E    |                                                                                              |
| 2734.77 9                   | $(3,2)^+$        | >0.37 ps             |    | DE   |                                                                                              |
| 2741.97 10                  | $(2,3)^{+}$      | 0.076  ps  +28-14    | Α  | EF   | $J^{\pi}$ : 1 <sup>-</sup> in (e,e').                                                        |
| 2767.86 8                   | $(1,2,3)^+$      | 0.055  ps + 18 - 12  | Α  | EF   |                                                                                              |
| 2773.92 9                   | $(3)^{+}$        | >0.69 ps             |    | DE   |                                                                                              |
| 2784.78 <i>21</i>           | (3,4,5)          | 0.23  ps  +63-10     |    | E    |                                                                                              |
| 2792.9 <i>3</i>             |                  | •                    | Α  |      |                                                                                              |
| 2800.78 9                   | 1(+)             | 0.010 ps 2           | A  | E G  | $J^{\pi}$ : M1 $\gamma$ to g.s.                                                              |
|                             |                  |                      |    |      | $T_{1/2}$ : Others: 12.8 fs 5 from $(\gamma, \gamma')$ .                                     |
| 2806.42 9                   | 3 <sup>+</sup>   | 0.10  ps  +7-3       |    | DE   | ,                                                                                            |
| 2842.56 12                  | $(2,3)^+$        | 0.038  ps + 10 - 8   |    | E    |                                                                                              |
| 2853.34 12                  | 2+               | 0.076  ps  +42-21    |    | E    | $J^{\pi}$ : E2 $\gamma$ to g.s.                                                              |
| 2857.6 <sup>a</sup> 7       | $(8^{+})$        |                      |    | H    | $J^{\pi}$ : Band assignment.                                                                 |
| 2859.75 10                  | 4                | >0.69 ps             |    | DEF  |                                                                                              |
| 2868.97 10                  | $(4)^{+}$        | >0.46 ps             |    | E    |                                                                                              |
| 2887.74 <i>15</i>           | 3 <sup>+</sup>   | 0.041  ps  +12-9     |    | E    |                                                                                              |
| 2922 <i>4</i>               |                  |                      |    | D    |                                                                                              |
| 2935.14 <i>21</i>           | (2,3,4)          | >0.48 ps             |    | E    |                                                                                              |
| 2956.39 <i>15</i>           | 3 <sup>+</sup>   | 0.017  ps  +7-6      |    | E    |                                                                                              |
| 2986 5                      | ( )              |                      |    | D    |                                                                                              |
| 2994.0 <i>10</i>            | 9(-)             |                      |    | H    | $J^{\pi}$ : Stretched dipole to $8^+$ .                                                      |
| 2999.02 <i>15</i>           | 1+               | 0.017  ps  +13-8     | Α  | DEFG | $T_{1/2}$ : Others: 14.6 fs 14 from $(\gamma, \gamma')$ .                                    |
| 3009.90 <i>20</i>           |                  | >0.69 ps             | Α  | E    |                                                                                              |
| 3011.93 <i>20</i>           | 1                | 0.016  ps  +6-4      |    | E G  | $T_{1/2}$ : Others: 20.4 fs 7 from $(\gamma, \gamma')$ .                                     |
| 3042.29 <i>15</i>           |                  | 0.18  ps  +34-8      |    | E    |                                                                                              |
| 3051.79 <i>15</i>           | $(3)^{+}$        | >0.69 ps             |    | E    |                                                                                              |
| 3060.98 9                   | +                | 0.09  ps + 11-4      | Α  | EF   | $J^{\pi}$ : 3 <sup>-</sup> in (e,e').                                                        |
| 3067 4                      | (a. a. 1         | 0.050                |    | D_   |                                                                                              |
| 3089.70 20                  | $(2,3)^+$        | 0.058  ps  +29-17    |    | E    |                                                                                              |
| 3101.87 24                  | 2+               | 0.052                | A  | _    |                                                                                              |
| 3106.04 15                  | 3+               | 0.053 ps +26-15      |    | E    |                                                                                              |
| 3109.79 <i>15</i>           |                  | >0.69 ps             |    | E    |                                                                                              |
| 3122.4 4                    |                  |                      | Α  |      |                                                                                              |

# 142Ce Levels (continued)

| E(level)@                            | $J^{\pi \#}$        | T <sub>1/2</sub> ‡  | XREF   |        | EF_ | Comments                                                       |
|--------------------------------------|---------------------|---------------------|--------|--------|-----|----------------------------------------------------------------|
| 3125.71 20                           | (1,2,3)             | >0.65 ps            |        | Е      |     |                                                                |
| 3144.57 <i>15</i>                    | 3 <sup>+</sup>      | 0.11 15.5           |        | E      |     | 17. 70                                                         |
| 3153.76 14                           | 2+                  | 0.11  ps  +15-5     | Α      | E      |     | $J^{\pi}$ : E2 $\gamma$ to g.s.                                |
| 3155.36 <i>15</i><br>3164.7 <i>5</i> |                     | >0.69 ps            | Α      | E<br>D |     |                                                                |
| 3180.37 <i>15</i>                    | 1                   | >0.69 ps            | A      | E      |     |                                                                |
| 3208.95 <i>15</i>                    | 3 <sup>+</sup>      | 0.043  ps + 41 - 18 |        | E      |     |                                                                |
| 3218.21 20                           |                     | >0.69 ps            |        | E      |     |                                                                |
| 3228.64 10                           | $(5^{-})$           |                     |        | DE     |     | $J^{\pi}$ : (3 <sup>-</sup> ) in (n,n' $\gamma$ ) (1992A111).  |
| 3300.74 21                           | 2+                  | >0.69 ps            |        | E      |     |                                                                |
| 3304.5 <i>6</i><br>3313.78 <i>20</i> | 2 <sup>+</sup><br>1 | 13.3 fs 6           | A<br>A |        | G   | $J^{\pi}$ : From angular distribution in $(\gamma, \gamma')$ . |
| 3313.76 20                           | 1                   | 15.5 18 0           | А      |        | G   | $T_{1/2}$ : From $(\gamma, \gamma')$ .                         |
| 3380.5 <sup>a</sup> 10               | $(9^+)$             |                     |        |        | Н   | $J^{\pi}$ : Band assignment.                                   |
| 3400.9 10                            | 1                   | 13.6 fs 5           |        |        | G   | $J^{\pi}$ : From angular distribution in $(\gamma, \gamma')$ . |
| 3420.15 <i>23</i>                    | $1^{-},2^{-}$       |                     | Α      |        |     | ,,,,                                                           |
| 3423.61 22                           |                     |                     | Α      |        |     |                                                                |
| 3436 <i>4</i>                        |                     |                     |        | D      |     |                                                                |
| 3459.91 <i>21</i> 3470.31 <i>24</i>  |                     |                     | A<br>A |        |     |                                                                |
| 3515.1 7                             | 1                   | 33 fs +6-4          | А      |        | G   | $J^{\pi}$ : From angular distribution in $(\gamma, \gamma')$ . |
| 3536.3 <sup>a</sup> 10               | $(10^{+})$          | 55 15 10 1          |        |        | Н   | $J^{\pi}$ : Band assignment.                                   |
| 3612.5 <i>3</i>                      | 2+                  |                     | Α      | D      |     |                                                                |
| 3633.37 22                           | 1                   | 36.7 fs 21          | Α      |        | G   | $J^{\pi}$ : From angular distribution in $(\gamma, \gamma')$ . |
| 2642.5.10                            |                     | 1506 5              |        |        | _   | $T_{1/2}$ : From $(\gamma, \gamma')$ .                         |
| 3643.5 <i>10</i><br>3648.6 <i>4</i>  | 1                   | 15.2 fs 7           | ٨      |        | G   |                                                                |
| 3675.8 <i>5</i>                      | 1+                  |                     | A<br>A |        |     |                                                                |
| 3688.9 <i>4</i>                      | 1                   |                     | A      |        |     |                                                                |
| 3703.9 <i>3</i>                      |                     |                     | Α      |        |     |                                                                |
| 3717.81 22                           | 1+                  |                     | Α      |        |     |                                                                |
| 3719.6 <i>4</i>                      | 1                   | 40.9 fs 28          | Α      |        | G   | $J^{\pi}$ : From angular distribution in $(\gamma, \gamma')$ . |
| 3732 4                               |                     |                     |        | D      |     | $T_{1/2}$ : From $(\gamma, \gamma')$ .                         |
| 3745.8 <i>10</i>                     | 1                   | 37.4 fs 28          |        | ע      | G   |                                                                |
| 3776.7 10                            | 1                   | 33.3 fs 28          |        |        | Ğ   |                                                                |
| 3832.6 12                            | $11^{(-)}$          |                     |        |        | Н   | $J^{\pi}$ : Stretched E2 to $9^{(-)}$ .                        |
| 3851.1 6                             |                     | 22.2 fs 21          | Α      |        | G   | $J^{\pi}$ : From angular distribution in $(\gamma, \gamma')$ . |
| 20042.7                              |                     |                     |        |        |     | $T_{1/2}$ : From $(\gamma, \gamma')$ .                         |
| 3884.2 5                             | (11+)               |                     | Α      |        |     | I7. Day Jami'r mae 4                                           |
| 3906.3 <sup>a</sup> 11<br>3914.4 5   | $(11^{+})$          |                     | ٨      |        | Н   | $J^{\pi}$ : Band assignment.                                   |
| 3975.94 <i>17</i>                    |                     |                     | A<br>A |        |     |                                                                |
| 4043.5 4                             | 2+                  |                     | A      |        |     |                                                                |
| 4045.6 <i>4</i>                      |                     |                     | Α      |        |     |                                                                |
| 4048.4 14                            |                     |                     |        |        | H   |                                                                |
| 4356.7 <sup>a</sup> 13               | $(12^{+})$          |                     |        |        | H   | $J^{\pi}$ : Band assignment.                                   |
| 4605.2 <sup>b</sup> 13               | $(13^{-})$          |                     |        |        | H   | $J^{\pi}$ : Band assignment.                                   |
| 4717.2 <i>14</i>                     |                     |                     |        |        | H   |                                                                |
| 4896.2 <sup>b</sup> 14               | (14 <sup>-</sup> )  |                     |        |        | H   | $J^{\pi}$ : Band assignment.                                   |
| 5173.4 <sup>b</sup> 14               | $(15^{-})$          |                     |        |        | Н   | $J^{\pi}$ : Band assignment.                                   |
| 5514.6 <sup>b</sup> 15               | $(16^{-})$          |                     |        |        | H   | $J^{\pi}$ : Band assignment.                                   |
| 5877.2 <sup>b</sup> 16               | $(17^{-})$          |                     |        |        | H   | $J^{\pi}$ : Band assignment.                                   |

## <sup>142</sup>Ce Levels (continued)

E(level)@ **XREF** Н 6528.1 *18* 6879.9 19 Н

<sup>&</sup>lt;sup>†</sup> Consistent with  $\gamma$  linear pol data (1992Al11).

<sup>&</sup>lt;sup>‡</sup> From DSA in  $(n,n'\gamma)$ , unless given otherwise.

<sup>#</sup> Unless explicitly given,  $J^{\pi}$  are based on  $\gamma(\theta)$  measurements of 1992Al11, 1995Va25 in  $(n,n'\gamma)$ . Pure quadrupole transitions are taken to be E2 while significantly mixed D+Q transitions are assumed to be M1+E2. See 1992A111 for detailed arguments for many of the assignments.

<sup>&</sup>lt;sup>@</sup> From least-squares fit to  $E\gamma$ .

<sup>&</sup>amp; Band(A): g.s. band.

Band(A). g.s. band.

<sup>a</sup> Band(B): Band based on 6<sup>+</sup> state. Possible configuration= $(\pi g_{7/2}^1)(\pi d_{5/2}^1)\otimes(\nu f_{7/2}^2)$ .

<sup>b</sup> Band(C): ΔJ=1 band based on (13<sup>-</sup>). Possible configuration= $(\pi g_{7/2}^{-1})(\pi h_{11/2}^1)\otimes(\nu f_{7/2}^2)$  or  $(\pi g_{7/2}^{-1})(\pi h_{11/2}^1)\otimes(\nu f_{7/2}^1)$ 

Mostly data are from  $(n,n'\gamma)$ ,  $^{142}$ La  $\beta^-$  decay.

S

|   | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}$                   | $I_{\gamma}$   | $\mathbb{E}_f$     | $J_f^{\pi}$ | Mult.‡          | δ            | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                         |
|---|---------------|----------------------|--------------------------------|----------------|--------------------|-------------|-----------------|--------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 641.282       | 2+                   | 641.285 9                      | 100.0          | 0.0                | 0+          | E2 <sup>@</sup> |              | 0.00563 8          | B(E2)(W.u.)=21.2 5<br>$\alpha$ (K)=0.00475 7; $\alpha$ (L)=0.000695 10; $\alpha$ (M)=0.0001463 21;<br>$\alpha$ (N+)=3.77×10 <sup>-5</sup> 6                                                                                                                                                                                      |
|   | 1219.37       | 4+                   | 578.09 4                       | 2.8 1          | 641.282            | 2+          | E2              |              | 0.00733 11         | $\alpha(N)=3.22\times10^{-5}$ 5; $\alpha(O)=5.11\times10^{-6}$ 8; $\alpha(P)=3.40\times10^{-7}$ 5<br>$E_{\gamma}$ : from 1979Bo26 (cryst).<br>B(E2)(W.u.)=26.4 25<br>$\alpha(K)=0.00616$ 9; $\alpha(L)=0.000925$ 13; $\alpha(M)=0.000195$ 3;<br>$\alpha(N+)=5.02\times10^{-5}$ 7                                                 |
|   | 1536.33       | 2+                   | 895.1 <i>I</i>                 | 100.00         | 641.282            | 2+          | M1+E2           | -1.5 +6-13   | 0.0029 3           | $\alpha(N)=4.30\times10^{-5} 6$ ; $\alpha(O)=6.79\times10^{-6} 10$ ; $\alpha(P)=4.38\times10^{-7} 7$<br>$E_{\gamma}$ : see 1983Wo09.<br>B(M1)(W.u.)>0.0050; $B(E2)(W.u.)>14\alpha(K)=0.0025 3; \alpha(L)=0.00034 3; \alpha(M)=7.0\times10^{-5} 6;\alpha(N+)=1.82\times10^{-5} 16$                                                |
| l |               |                      | 1537.4 2                       | 1.010          | 0.0                | 0+          | E2 <sup>@</sup> |              | 0.000934 13        | $\alpha(N)=1.55\times10^{-5}\ I4;\ \alpha(O)=2.50\times10^{-6}\ 23;\ \alpha(P)=1.85\times10^{-7}\ 22$<br>B(E2)(W.u.)>0.018<br>$\alpha(K)=0.000726\ II;\ \alpha(L)=9.30\times10^{-5}\ I3;\ \alpha(M)=1.93\times10^{-5}\ 3;$<br>$\alpha(N+)=9.56\times10^{-5}\ I4$                                                                 |
|   | 1652.91       | 3-                   | 433.2 <i>I</i>                 | 14.94          | 1219.37            | 4+          | E1 <sup>#</sup> |              | 0.00501 7          | $\alpha(N)=4.28\times10^{-6} 6$ ; $\alpha(O)=6.94\times10^{-7} 10$ ; $\alpha(P)=5.28\times10^{-8} 8$ ; $\alpha(IPF)=9.06\times10^{-5} 13$<br>B(E1)(W.u.)<0.00022<br>$\alpha(K)=0.00431 6$ ; $\alpha(L)=0.000555 8$ ; $\alpha(M)=0.0001153 17$ ; $\alpha(N+)=2.99\times10^{-5} 5$                                                 |
|   |               |                      | 1011.7 <i>I</i>                | 100.0          | 641.282            | 2+          | E1 <sup>#</sup> |              | 0.000827 12        | $\alpha(N)=2.55\times10^{-5} 4$ ; $\alpha(O)=4.09\times10^{-6} 6$ ; $\alpha(P)=2.99\times10^{-7} 5$<br>B(E1)(W.u.)<0.00012<br>$\alpha(K)=0.000715 \ I0$ ; $\alpha(L)=8.90\times10^{-5} \ I3$ ; $\alpha(M)=1.84\times10^{-5} \ 3$ ; $\alpha(N+)=4.80\times10^{-6} \ 7$                                                            |
|   | 1743.05       | 6+                   | 523.5 1                        | 100.0          | 1219.37            | 4+          | E2#             |              | 0.00952 14         | $\alpha(N)=4.08\times10^{-6} 6$ ; $\alpha(O)=6.62\times10^{-7} 10$ ; $\alpha(P)=5.08\times10^{-8} 8$<br>$\alpha(K)=0.00797 12$ ; $\alpha(L)=0.001231 18$ ; $\alpha(M)=0.000260 4$ ;<br>$\alpha(N+)=6.68\times10^{-5} 10$<br>$\alpha(N)=5.73\times10^{-5} 8$ ; $\alpha(O)=9.00\times10^{-6} 13$ ; $\alpha(P)=5.62\times10^{-7} 8$ |
|   | 2004.89       | 2+                   | 352.1 <i>I</i> 1363.6 <i>I</i> | 2.857<br>100.0 | 1652.91<br>641.282 |             | M1+E2           | -0.26 +14-17 | 0.00144 4          | B(M1)(W.u.)=0.127 17; B(E2)(W.u.)=3 3<br>$\alpha$ (K)=0.00121 4; $\alpha$ (L)=0.000154 5; $\alpha$ (M)=3.20×10 <sup>-5</sup> 9;<br>$\alpha$ (N+)=4.42×10 <sup>-5</sup> 7                                                                                                                                                         |

# $\gamma$ (142Ce) (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}$                        | $I_{\gamma}$        | $\mathbb{E}_f$     | $\mathbf{J}_f^{\pi}$             | Mult.‡          | δ            | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                |
|--------------|----------------------|-------------------------------------|---------------------|--------------------|----------------------------------|-----------------|--------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                      |                                     |                     |                    |                                  |                 |              |                    | B(M1)(W.u.)=0.127 17; B(E2)(W.u.)=3 3<br>$\alpha$ (K)=0.00121 4; $\alpha$ (L)=0.000154 5; $\alpha$ (M)=3.20×10 <sup>-5</sup> 9;<br>$\alpha$ (N+)=4.42×10 <sup>-5</sup> 7<br>$\alpha$ (N)=7.10×10 <sup>-6</sup> 19; $\alpha$ (O)=1.16×10 <sup>-6</sup> 4; $\alpha$ (P)=9.0×10 <sup>-8</sup> 3;<br>$\alpha$ (IPF)=3.59×10 <sup>-5</sup> 5 |
| 2004.89      | 2+                   | 2004.9 2                            | 40.00               | 0.0                | 0+                               | E2 <sup>@</sup> |              | 0.000808 12        | B(E2)(W.u.)=2.5 3<br>$\alpha$ (K)=0.000443 7; $\alpha$ (L)=5.56×10 <sup>-5</sup> 8; $\alpha$ (M)=1.154×10 <sup>-5</sup> 17;<br>$\alpha$ (N+)=0.000298 5<br>$\alpha$ (N)=2.56×10 <sup>-6</sup> 4; $\alpha$ (O)=4.16×10 <sup>-7</sup> 6; $\alpha$ (P)=3.22×10 <sup>-8</sup> 5;                                                            |
|              |                      |                                     |                     |                    |                                  |                 |              |                    | $\alpha(\text{IPF}) = 0.000295 \ 5$                                                                                                                                                                                                                                                                                                     |
| 2014.5       |                      | 1372.9 7                            | $5.\times10^{1}\ 5$ | 641.282            |                                  |                 |              |                    |                                                                                                                                                                                                                                                                                                                                         |
| 2031.01      | 0+                   | 2014.1 <i>10</i><br>1389.7 <i>1</i> | 100.0<br>100.0      | 0.0<br>641.282     | 0 <sup>+</sup><br>2 <sup>+</sup> |                 |              |                    |                                                                                                                                                                                                                                                                                                                                         |
| 2044.51      | 4+                   | 825.2 1                             | 3.093               | 1219.37            |                                  | M1(+E2)         | -0.06 +14-23 | 0.00457 13         | B(M1)(W.u.)=0.0036 <i>12</i><br>$\alpha$ (K)=0.00393 <i>12</i> ; $\alpha$ (L)=0.000506 <i>13</i> ; $\alpha$ (M)=0.000105 <i>3</i> ;<br>$\alpha$ (N+)=2.75×10 <sup>-5</sup> <i>7</i><br>$\alpha$ (N)=2.34×10 <sup>-5</sup> <i>6</i> ; $\alpha$ (O)=3.81×10 <sup>-6</sup> <i>10</i> ; $\alpha$ (P)=2.96×10 <sup>-7</sup> <i>9</i>         |
|              |                      | 1403.0 <i>I</i>                     | 100.00              | 641.282            | 2+                               | E2 <sup>@</sup> |              | 0.001054 15        | B(E2)(W.u.)=7.0 24<br>$\alpha$ (K)=0.000867 13; $\alpha$ (L)=0.0001117 16; $\alpha$ (M)=2.32×10 <sup>-5</sup> 4;<br>$\alpha$ (N+)=5.25×10 <sup>-5</sup><br>$\alpha$ (N)=5.15×10 <sup>-6</sup> 8; $\alpha$ (O)=8.34×10 <sup>-7</sup> 12; $\alpha$ (P)=6.30×10 <sup>-8</sup> 9;                                                           |
| 2111.87      | 4+                   | 892.5 1                             | 100.0               | 1219.37            | 4+                               | M1+E2           | -0.43 +4-9   | 0.00361 9          | $\alpha$ (IPF)=4.65×10 <sup>-5</sup> 7<br>B(M1)(W.u.)=0.07 6; B(E2)(W.u.)=10 8<br>$\alpha$ (K)=0.00310 8; $\alpha$ (L)=0.000402 9; $\alpha$ (M)=8.36×10 <sup>-5</sup> 19;<br>$\alpha$ (N+)=2.18×10 <sup>-5</sup> 5                                                                                                                      |
| 2124.91      | 5-                   | 381.8 <i>I</i>                      | 11.25               | 1743.05            | 6 <sup>+</sup>                   |                 |              |                    | $\alpha(N)=1.86\times10^{-5} \ 4; \ \alpha(O)=3.02\times10^{-6} \ 7; \ \alpha(P)=2.32\times10^{-7} \ 6$                                                                                                                                                                                                                                 |
| -1-1.71      | 5                    | 471 <sup>&amp;</sup> 1              | 12.50               | 1652.91            |                                  |                 |              |                    |                                                                                                                                                                                                                                                                                                                                         |
|              |                      | 905.6 1                             | 100.0               | 1219.37            |                                  | E1 <sup>@</sup> |              | 0.001021 <i>15</i> | B(E1)(W.u.)<0.00066<br>$\alpha$ (K)=0.000882 13; $\alpha$ (L)=0.0001103 16; $\alpha$ (M)=2.29×10 <sup>-5</sup> 4;<br>$\alpha$ (N+)=5.95×10 <sup>-6</sup>                                                                                                                                                                                |
| 2181.95      | 3+                   | 528.7 <i>I</i> 645.6 <i>I</i>       | 8.696<br>26.09      | 1652.91<br>1536.33 | 3 <sup>-</sup><br>2 <sup>+</sup> | M1+E2           | -0.40 +8-11  | 0.00789 22         | $\alpha(N)=5.06\times10^{-6} \ 7; \ \alpha(O)=8.20\times10^{-7} \ 12; \ \alpha(P)=6.26\times10^{-8} \ 9$ $B(M1)(W.u.)=0.03 \ +7-3; \ B(E2)(W.u.)=7 \ +16-7$ $\alpha(K)=0.00676 \ 19; \ \alpha(L)=0.000889 \ 21; \ \alpha(M)=0.000185 \ 5;$                                                                                              |
|              |                      | 962.5 <i>1</i>                      | 100.0               | 1219.37            | 4+                               | M1(+E2)         | -0.5 +15-17  | 0.0030 7           | $\alpha$ (N+)=4.83×10 <sup>-5</sup> <i>12</i> $\alpha$ (N)=4.11×10 <sup>-5</sup> <i>10</i> ; $\alpha$ (O)=6.67×10 <sup>-6</sup> <i>16</i> ; $\alpha$ (P)=5.09×10 <sup>-7</sup> <i>16</i> B(M1)(W.u.)=0.03 +9-3                                                                                                                          |

# $\gamma$ (142Ce) (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}$    | ${ m I}_{\gamma}$ | $\mathbf{E}_f$ . | $J_f^{\pi}$ N    | ⁄Iult.‡        | δ           | $lpha^\dagger$     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|----------------------|--------------------------|-------------------|------------------|------------------|----------------|-------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2181.95      | 3+                   | 1540.9 <i>I</i>          | 84.78             | 641.282          | 2+ M             | I1+E2          | +0.09 +4-3  | 0.001180 <i>17</i> | $\alpha(K)=0.0026 \ 6; \ \alpha(L)=0.00033 \ 7; \ \alpha(M)=6.9\times10^{-5} \ 13;$ $\alpha(N+)=1.8\times10^{-5} \ 4$ $\alpha(N)=1.5\times10^{-5} \ 3; \ \alpha(O)=2.5\times10^{-6} \ 5; \ \alpha(P)=1.9\times10^{-7} \ 5$ $B(M1)(W.u.)=0.009 \ +19-9; \ B(E2)(W.u.)=0.02 \ +4-2$ $\alpha(K)=0.000936 \ 14; \ \alpha(L)=0.0001184 \ 17; \ \alpha(M)=2.46\times10^{-5} \ 4;$ $\alpha(N+)=0.000100$ $\alpha(N)=5.46\times10^{-6} \ 8; \ \alpha(O)=8.90\times10^{-7} \ 13; \ \alpha(P)=6.98\times10^{-8} \ 10;$ $\alpha(IPF)=9.42\times10^{-5} \ 14$ |
| 2187.54      | 1-                   | 534 <mark>&amp;</mark> 1 | < 0.5172          | 1652.91          |                  |                |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                      | 1546.3 2                 | 70.69             | 641.282          | 2+ E             | 1              |             | 0.000640 9         | B(E1)(W.u.)=0.0025 5<br>$\alpha$ (K)=0.000337 5; $\alpha$ (L)=4.15×10 <sup>-5</sup> 6; $\alpha$ (M)=8.58×10 <sup>-6</sup> 12;<br>$\alpha$ (N+)=0.000253 4                                                                                                                                                                                                                                                                                                                                                                                         |
|              |                      |                          |                   |                  |                  |                |             |                    | $\alpha(N)=1.90\times10^{-6}$ 3; $\alpha(O)=3.09\times10^{-7}$ 5; $\alpha(P)=2.41\times10^{-8}$ 4; $\alpha(IPF)=0.000250$ 4 $I_{\gamma}$ : 63 2 from $(\gamma,\gamma')$ .                                                                                                                                                                                                                                                                                                                                                                         |
|              |                      | 2187.4 2                 | 100.0             | 0.0              | 0+ E             | 1@             |             | 0.000941 14        | B(E1)(W.u.)=0.00126 23<br>$\alpha$ (K)=0.000193 3; $\alpha$ (L)=2.35×10 <sup>-5</sup> 4; $\alpha$ (M)=4.86×10 <sup>-6</sup> 7;<br>$\alpha$ (N+)=0.000719 10                                                                                                                                                                                                                                                                                                                                                                                       |
| 2210.60      | 6 <sup>+</sup>       | 467.55 2                 | 100               | 1743.05          | c+               |                |             |                    | $\alpha(N)=1.079\times10^{-6}\ 16;\ \alpha(O)=1.757\times10^{-7}\ 25;\ \alpha(P)=1.377\times10^{-8}$ 20; $\alpha(IPF)=0.000718\ 10$                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2210.00      | 0                    | 991.21 6                 | 20                | 1219.37          |                  | 2              |             | 0.00206 3          | $\alpha(K)$ =0.001757 25; $\alpha(L)$ =0.000236 4; $\alpha(M)$ =4.93×10 <sup>-5</sup> 7; $\alpha(N+)$ =1.279×10 <sup>-5</sup> 18                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                      |                          |                   |                  |                  |                |             |                    | $\alpha(N)=1.091\times10^{-5}$ 16; $\alpha(O)=1.754\times10^{-6}$ 25; $\alpha(P)=1.274\times10^{-7}$ 18<br>E <sub>Y</sub> : Not seen in (HI,xY) (2007Ve14). Authors suggest Branching                                                                                                                                                                                                                                                                                                                                                             |
| 2278.14      | 4+                   | 1058.5 <i>I</i>          | 40.85             | 1219.37          | 4 <sup>+</sup> M | I1+E2          | 2.1 +18-3   | 0.00193 10         | $E_{\gamma}$ . Not seen in (11,xy) (2007 Ve14). Authors suggest Branching to be <5%. B(M1)(W.u.)=0.012 +19-12; B(E2)(W.u.)=28 19                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                      |                          |                   |                  |                  |                |             |                    | $\alpha(K)$ =0.00165 9; $\alpha(L)$ =0.000218 10; $\alpha(M)$ =4.54×10 <sup>-5</sup> 21; $\alpha(N+)$ =1.18×10 <sup>-5</sup> 6                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                      | 1636.8 2                 | 100.0             | 641.282          | 2+ E             | 2 <sup>@</sup> |             | 0.000878 13        | $\alpha(N)=1.01\times10^{-5}$ 5; $\alpha(O)=1.62\times10^{-6}$ 8; $\alpha(P)=1.21\times10^{-7}$ 7 B(E2)(W.u.)=9 6                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                      |                          |                   |                  |                  |                |             |                    | $\alpha(K)=0.000645 \ 9; \ \alpha(L)=8.21\times10^{-5} \ 12; \ \alpha(M)=1.706\times10^{-5} \ 24; \ \alpha(N+)=0.0001335 \ \alpha(N)=3.78\times10^{-6} \ 6; \ \alpha(O)=6.14\times10^{-7} \ 9; \ \alpha(P)=4.69\times10^{-8} \ 7;$                                                                                                                                                                                                                                                                                                                |
| 2329.88      | 3+                   | 793.4 <i>1</i>           | 42.86             | 1536.33          | 2 <sup>+</sup> M | I1+E2          | 0.37 +23-18 | 0.00483 25         | $\alpha$ (IPF)=0.0001290 18<br>B(M1)(W.u.)=0.06 6; B(E2)(W.u.)=7 +11-7<br>$\alpha$ (K)=0.00415 22; $\alpha$ (L)=0.000538 24; $\alpha$ (M)=0.000112 5;                                                                                                                                                                                                                                                                                                                                                                                             |

# $\gamma$ (142Ce) (continued)

|               |                      |                                                |                              |                    |                                                                      |         | <u>/( cc)</u> | (continued)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|----------------------|------------------------------------------------|------------------------------|--------------------|----------------------------------------------------------------------|---------|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}$                          | $I_{\gamma}$                 | $\mathrm{E}_f$     | $\mathbf{J}_f^{\pi}$                                                 | Mult.‡  | δ             | $lpha^\dagger$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2329.88       | 3+                   | 1689.2 2                                       | 100.0                        | 641.282            | 2+                                                                   | M1+E2   | -0.16 13      | 0.001040 18    | $\alpha(N+)=2.92\times10^{-5} \ 13$ $\alpha(N)=2.49\times10^{-5} \ 11; \ \alpha(O)=4.04\times10^{-6} \ 19; \ \alpha(P)=3.11\times10^{-7} \ 18$ $B(M1)(W.u.)=0.015 \ 15; \ B(E2)(W.u.)=0.08 \ +15-8$ $\alpha(K)=0.000762 \ 14; \ \alpha(L)=9.61\times10^{-5} \ 17; \ \alpha(M)=2.00\times10^{-5} \ 4;$ $\alpha(N+)=0.0001619$ $\alpha(N)=4.43\times10^{-6} \ 8; \ \alpha(O)=7.22\times10^{-7} \ 13; \ \alpha(P)=5.67\times10^{-8} \ 11;$ $\alpha(PF)=0.0001567 \ 23$ |
| 2364.91       | 2+                   | 350.3 <i>3</i> 1723.6 2                        | <3<br>100.0                  | 2014.5<br>641.282  | 2+                                                                   | M1(+E2) | -0.03 +9-10   | 0.001022 15    | B(M1)(W.u.)=0.20 4<br>$\alpha$ (K)=0.000733 11; $\alpha$ (L)=9.23×10 <sup>-5</sup> 14; $\alpha$ (M)=1.92×10 <sup>-5</sup> 3;<br>$\alpha$ (N+)=0.0001777                                                                                                                                                                                                                                                                                                             |
|               |                      | 2364.8 2                                       | 31.58                        | 0.0                | 0+                                                                   | E2      |               | 0.000848 12    | $\alpha(N)=4.26\times10^{-6}\ 7;\ \alpha(O)=6.94\times10^{-7}\ 10;\ \alpha(P)=5.46\times10^{-8}\ 8;\ \alpha(IPF)=0.0001727\ 25$ B(E2)(W.u.)=2.6 5 $\alpha(K)=0.000329\ 5;\ \alpha(L)=4.10\times10^{-5}\ 6;\ \alpha(M)=8.49\times10^{-6}\ 12;\ \alpha(N+)=0.000470\ 7$                                                                                                                                                                                               |
| 2374.96       | +                    | 631.8 <i>1</i>                                 | 92.3                         | 1743.05            | 6+                                                                   | M1+E2   | <-1.5         | 0.0077 10      | $\alpha(N)=1.88\times10^{-6}$ 3; $\alpha(O)=3.07\times10^{-7}$ 5; $\alpha(P)=2.39\times10^{-8}$ 4; $\alpha(IPF)=0.000468$ 7 B(E2)(W.u.)<62 $\alpha(K)=0.0066$ 9; $\alpha(L)=0.00089$ 9; $\alpha(M)=0.000185$ 18; $\alpha(N+)=4.8\times10^{-5}$ 5                                                                                                                                                                                                                    |
|               |                      | 1155.7 1                                       | 100.0                        | 1219.37            | 4+                                                                   | M1+E2   | -0.09 +6-11   | 0.00208 4      | $\alpha(N)=4.1\times10^{-5} 4$ ; $\alpha(O)=6.6\times10^{-6} 7$ ; $\alpha(P)=4.9\times10^{-7} 8$<br>B(M1)(W.u.)<0.011; B(E2)(W.u.)<0.088<br>$\alpha(K)=0.00179 3$ ; $\alpha(L)=0.000228 4$ ; $\alpha(M)=4.74\times10^{-5} 8$ ; $\alpha(N+)=1.460\times10^{-5} 23$<br>$\alpha(N)=1.053\times10^{-5} 17$ ; $\alpha(O)=1.72\times10^{-6} 3$ ; $\alpha(P)=1.341\times10^{-7} 23$ ;                                                                                      |
| 2384.45       | 4-                   | 202.3 <i>1</i> 731.5 <i>1</i>                  | 6.329<br>100.0               | 2181.95<br>1652.91 | 3 <sup>+</sup><br>3 <sup>-</sup>                                     | M1+E2   | -0.8 +3-4     | 0.0053 5       | $\alpha(N)=1.033 \times 10^{-5} \ 17; \ \alpha(O)=1.72 \times 10^{-5} \ 5; \ \alpha(P)=1.341 \times 10^{-5} \ 23;$<br>$\alpha(IPF)=2.22 \times 10^{-6} \ 4$<br>$B(M1)(W.u.)=0.5 +6-5; \ B(E2)(W.u.)=3.E+2 +5-3$<br>$\alpha(K)=0.0046 \ 4; \ \alpha(L)=0.00061 \ 4; \ \alpha(M)=0.000126 \ 8;$<br>$\alpha(N+)=3.29 \times 10^{-5} \ 21$<br>$\alpha(N)=2.80 \times 10^{-5} \ 18; \ \alpha(O)=4.5 \times 10^{-6} \ 3; \ \alpha(P)=3.4 \times 10^{-7} \ 3$              |
| 2398.42       | 1+                   | 1165.3 <i>1</i> 367.3 2 393.6 2 862.1 <i>1</i> | 20.25<br>1.0<br>1.4<br>10.26 | 2031.01<br>2004.89 | 4 <sup>+</sup><br>0 <sup>+</sup><br>2 <sup>+</sup><br>2 <sup>+</sup> | M1(+E2) | 0.03 5        | 0.00412 6      | B(M1)(W.u.)=0.035 <i>10</i> $\alpha$ (K)=0.00355 <i>5</i> ; $\alpha$ (L)=0.000456 <i>7</i> ; $\alpha$ (M)=9.50×10 <sup>-5</sup> <i>14</i> ;                                                                                                                                                                                                                                                                                                                         |
|               |                      | 1757.1 <i>I</i>                                | 17.95                        | 641.282            | 2+                                                                   | M1+E2   | -1.6 +3-4     | 0.000882 20    | $\alpha(N+)=2.48\times10^{-5} 4$<br>$\alpha(N)=2.11\times10^{-5} 3$ ; $\alpha(O)=3.43\times10^{-6} 5$ ; $\alpha(P)=2.67\times10^{-7} 4$<br>B(M1)(W.u.)=0.0021 8; $B(E2)(W.u.)=1.0 3$                                                                                                                                                                                                                                                                                |

 $\infty$ 

# $\gamma$ (142Ce) (continued)

|   | $E_i$ (level)      | $\mathrm{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}$                                 | $I_{\gamma}$                         | $\mathrm{E}_f$     | $\mathbf{J}_f^{\pi}$                                                                   | Mult.‡          | δ       | $lpha^\dagger$     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|--------------------|----------------------|-------------------------------------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------|-----------------|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 2398.42            | 1+                   | 2398.5 2                                              | 100.0                                | 0.0                | 0+                                                                                     | M1 <sup>@</sup> |         | 0.000934 13        | $\alpha(K)=0.000603 \ 16; \ \alpha(L)=7.63\times10^{-5} \ 19; \ \alpha(M)=1.58\times10^{-5} \ 4; \\ \alpha(N+)=0.000187 \ 3 \\ \alpha(N)=3.51\times10^{-6} \ 9; \ \alpha(O)=5.71\times10^{-7} \ 15; \ \alpha(P)=4.42\times10^{-8} \ 12; \\ \alpha(IPF)=0.000183 \ 3 \\ B(M1)(W.u.)=0.016 \ 5 \\ \alpha(K)=0.000361 \ 5; \ \alpha(L)=4.51\times10^{-5} \ 7; \ \alpha(M)=9.36\times10^{-6} \ 14; \\ \alpha(N+)=0.000519 \ 8 \\ \alpha(N)=2.08\times10^{-6} \ 3; \ \alpha(O)=3.39\times10^{-7} \ 5; \ \alpha(P)=2.67\times10^{-8} \ 4; \\ \alpha(IPF)=0.000516 \ 8 \\ $ |
|   | 2539.72            | 4+                   | 358.7 <sup>&amp;</sup> 1                              | 100.0                                | 2181.95            | 3 <sup>+</sup>                                                                         | (M1+E2)         | -0.5859 | 0.0341             | B(M1)(W.u.)=6 3<br>$\alpha$ (K)=0.0289 4; $\alpha$ (L)=0.00409 6; $\alpha$ (M)=0.000860 12;<br>$\alpha$ (N+)=0.000223 4<br>$\alpha$ (N)=0.000190 3; $\alpha$ (O)=3.05×10 <sup>-5</sup> 5; $\alpha$ (P)=2.16×10 <sup>-6</sup> 3                                                                                                                                                                                                                                                                                                                                       |
| 0 |                    |                      | 1320.3 <i>I</i>                                       | 26.87                                | 1219.37            | 4+                                                                                     | E2#             |         | 0.001162 <i>17</i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                    |                      | 1898.6 2                                              | 20.90                                | 641.282            | 2+                                                                                     | E2 <sup>@</sup> |         | 0.000812 12        | B(E2)(W.u.)=1.8 8<br>$\alpha$ (K)=0.000489 7; $\alpha$ (L)=6.16×10 <sup>-5</sup> 9; $\alpha$ (M)=1.279×10 <sup>-5</sup> 18;<br>$\alpha$ (N+)=0.000248 4<br>$\alpha$ (N)=2.84×10 <sup>-6</sup> 4; $\alpha$ (O)=4.61×10 <sup>-7</sup> 7; $\alpha$ (P)=3.56×10 <sup>-8</sup> 5;<br>$\alpha$ (IPF)=0.000245 4                                                                                                                                                                                                                                                            |
|   | 2542.65<br>2543.21 | 1<br>2 <sup>+</sup>  | 2542.8 2<br>178.3 3<br>355.3 3<br>538.3 5<br>1006.7 2 | 100.0<br>1.9 5<br><0.5<br>0.5<br>2.4 | 2187.54<br>2004.89 | 0 <sup>+</sup><br>2 <sup>+</sup><br>1 <sup>-</sup><br>2 <sup>+</sup><br>2 <sup>+</sup> |                 |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                    |                      | 1323.9 <i>I</i>                                       | 50                                   | 1219.37            | 4+                                                                                     | E2              |         | 0.001156 17        | $\alpha(K)$ =0.000971 14; $\alpha(L)$ =0.0001259 18; $\alpha(M)$ =2.62×10 <sup>-5</sup> 4; $\alpha(N+)$ =3.30×10 <sup>-5</sup> $\alpha(N)$ =5.81×10 <sup>-6</sup> 9; $\alpha(O)$ =9.39×10 <sup>-7</sup> 14; $\alpha(P)$ =7.06×10 <sup>-8</sup> 10; $\alpha(PF)$ =2.61×10 <sup>-5</sup> 4                                                                                                                                                                                                                                                                             |
|   |                    |                      | 1902.1 2                                              | 67.4                                 | 641.282            | 2+                                                                                     | M1+E2           | +0.65 5 | 0.000905 14        | Mult.: from $\gamma\gamma(\theta)$ (1983Wo09,1990La04).<br>B(M1)(W.u.)=0.003 3; B(E2)(W.u.)=0.2 +3-2<br>$\alpha(K)$ =0.000560 9; $\alpha(L)$ =7.05×10 <sup>-5</sup> 11; $\alpha(M)$ =1.463×10 <sup>-5</sup> 23;<br>$\alpha(N+)$ =0.000259<br>$\alpha(N)$ =3.25×10 <sup>-6</sup> 5; $\alpha(O)$ =5.29×10 <sup>-7</sup> 8; $\alpha(P)$ =4.14×10 <sup>-8</sup> 7;                                                                                                                                                                                                       |

# $\gamma$ (142Ce) (continued)

|                   |                      |                                     |                        |                    |                                  | 4.                 |               | 4.                 |                                                                                                                                                                                                                                           |
|-------------------|----------------------|-------------------------------------|------------------------|--------------------|----------------------------------|--------------------|---------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$      | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}$                        | $I_{\gamma}$           | $\mathbf{E}_f$     | $\mathbf{J}_f^{\pi}$             | Mult. <sup>‡</sup> | δ             | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                  |
| 2543.21           | 2+                   | 2543.1 2                            | 100.0                  | 0.0                | 0+                               |                    |               |                    | $\alpha$ (IPF)=0.000255 4 $\delta$ : +0.55 +40-54 (1983Wo09). Other: +0.71 7 (1977CoZO); data of 1982Mi01 and 1975Ba15 are not consistent with J=2, data of 1983Wo09 agree better with J=1 or 30.19 +14-10 in (n,n' $\gamma$ ).           |
| 2570.08           | 5 <sup>+</sup>       | 827.4 <sup>&amp;</sup> 1            | 14.94                  | 1743.05            | -                                | (M1+E2)            | -0.5 + 21 - 3 | 0.0042 8           | B(M1)(W.u.)=0.03 +8-3; $B(E2)(W.u.)=1.E+1 +5-1$                                                                                                                                                                                           |
| 2370.08           | 3                    | 027.4 1                             | 14.54                  | 1743.03            | O                                | (W11+L2)           | -0.5 +21-5    | 0.0042 8           | $\alpha(K)=0.0036 \ 7; \ \alpha(L)=0.00048 \ 8; \ \alpha(M)=9.9\times10^{-5} \ 16; \ \alpha(N+)=2.6\times10^{-5} \ 4; \ \alpha(N)=2.2\times10^{-5} \ 4; \ \alpha(O)=3.6\times10^{-6} \ 6; \ \alpha(P)=2.7\times10^{-7} \ 6$               |
|                   |                      | 1350.7 1                            | 100.0                  | 1219.37            | 4+                               | M1+E2              | -0.6 +16-10   | 0.00139 18         | B(M1)(W.u.)=0.05 +10-5; B(E2)(W.u.)=5 +23-5<br>$\alpha$ (K)=0.00117 15; $\alpha$ (L)=0.000149 18; $\alpha$ (M)=3.1×10 <sup>-5</sup> 4;<br>$\alpha$ (N+)=4.06×10 <sup>-5</sup> 12                                                          |
| 2576.23           | 3 <sup>+</sup>       | 297.8 <i>1</i>                      | 48.39                  | 2278.14            | 4+                               | M1+E2              | 1.1 +6-4      | 0.0539 21          | $\alpha(N)=6.9\times10^{-6} 9$ ; $\alpha(O)=1.12\times10^{-6} 14$ ; $\alpha(P)=8.7\times10^{-8} 12$ ; $\alpha(IPF)=3.25\times10^{-5} 5$<br>B(M1)(W.u.)<0.13; B(E2)(W.u.)<9.7×10 <sup>2</sup>                                              |
| 2370.23           | 3                    | 277.01                              | 10.57                  | 2270.11            | •                                | 1411   122         | 1.1 10 7      | 0.0337 21          | $\alpha(K)$ =0.0446 24; $\alpha(L)$ =0.0073 3; $\alpha(M)$ =0.00155 7; $\alpha(N+)$ =0.000396 14                                                                                                                                          |
|                   |                      | &r -                                |                        |                    | - 1                              |                    |               |                    | $\alpha(N)=0.000340 \ 13; \ \alpha(O)=5.31\times10^{-5} \ 13; \ \alpha(P)=3.2\times10^{-6} \ 3$                                                                                                                                           |
|                   |                      | 394.0 <sup>&amp;</sup> 1            | 61.29                  | 2181.95            | 3 <sup>+</sup>                   | (M1+E2)            | 0.5 +5-4      | 0.0270 22          | B(M1)(W.u.)<0.11; B(E2)(W.u.)<1.9×10 <sup>2</sup><br>$\alpha$ (K)=0.0230 21; $\alpha$ (L)=0.00317 9; $\alpha$ (M)=0.000664 15;<br>$\alpha$ (N+)=0.000172 5                                                                                |
|                   |                      | 531.9 <i>1</i>                      | 100.0                  | 2044.51            | 4+                               | M1(+E2)            | 0.00 +6-9     | 0.01331            | $\alpha(N)=0.000147 \ 4; \ \alpha(O)=2.36\times10^{-5} \ 9; \ \alpha(P)=1.72\times10^{-6} \ 20$<br>B(M1)(W.u.)<0.065                                                                                                                      |
|                   |                      | 331.71                              | 100.0                  | 2011.31            |                                  | 1411(122)          | 0.00 10 9     | 0.01331            | $\alpha(K)$ =0.01143 16; $\alpha(L)$ =0.001494 21; $\alpha(M)$ =0.000311 5; $\alpha(N+)$ =8.12×10 <sup>-5</sup> 12                                                                                                                        |
|                   |                      | 000 4 1                             | 20.71                  | 1652.01            | 2-                               |                    |               |                    | $\alpha(N)=6.91\times10^{-5}\ 10;\ \alpha(O)=1.124\times10^{-5}\ 16;\ \alpha(P)=8.67\times10^{-7}\ 13$                                                                                                                                    |
|                   |                      | 923.4 <i>I</i><br>1039.9 <i>I</i>   | 38.71<br>77.42         | 1652.91<br>1536.33 | 3 <sup>-</sup><br>2 <sup>+</sup> | M1+E2              | -0.8 +4-7     | 0.00234 25         | B(M1)(W.u.)<0.0057; B(E2)(W.u.)<2.3                                                                                                                                                                                                       |
|                   |                      | 1037.7 1                            | 77.12                  | 1330.33            | 2                                | 1411   122         | 0.0 17 7      | 0.00231 23         | $\alpha(K)$ =0.00201 22; $\alpha(L)$ =0.000261 25; $\alpha(M)$ =5.4×10 <sup>-5</sup> 5; $\alpha(N+)$ =1.42×10 <sup>-5</sup> 14                                                                                                            |
|                   |                      |                                     |                        |                    |                                  |                    |               |                    | $\alpha(N)=1.21\times10^{-5} \ 12; \ \alpha(O)=1.96\times10^{-6} \ 19; \ \alpha(P)=1.50\times10^{-7} \ 18$                                                                                                                                |
| 2591.0            | (7=\                 | 1949.4 <i>9</i><br>2590.6 <i>10</i> | 100 <i>13</i><br>37.50 | 641.282<br>0.0     | $0_{+}$                          |                    |               |                    |                                                                                                                                                                                                                                           |
| 2592.5<br>2598.27 | $(7^{-})$ $2^{+}$    | 849.5<br>1062.0 <i>I</i>            | 100.0<br>100.0         | 1743.05<br>1536.33 | 6 <sup>+</sup><br>2 <sup>+</sup> | M1+E2              | -0.26 +11-7   | 0.00248 5          | B(M1)(W.u.)<0.0059; B(E2)(W.u.)<0.35                                                                                                                                                                                                      |
| 2370.21           | <i>-</i>             | 1002.0 1                            | 100.0                  | 1000.00            | 2                                | 1,111112           | 0.20 111 /    | 0.00210 3          | $\alpha(K)=0.00214 \ 4; \ \alpha(L)=0.000274 \ 5; \ \alpha(M)=5.69\times10^{-5} \ 11;$<br>$\alpha(N+)=1.49\times10^{-5} \ 3$<br>$\alpha(N)=1.264\times10^{-5} \ 23; \ \alpha(O)=2.06\times10^{-6} \ 4; \ \alpha(P)=1.60\times10^{-7} \ 4$ |

# $\gamma$ (142Ce) (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}$    | $I_{\gamma}$ | $E_f$    | $\mathbf{J}_f^{\pi}$ | Mult.‡          | δ         | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|----------------------|-----------------|--------------|----------|----------------------|-----------------|-----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2598.27       | 2+                   | 2598.0 2        | 85.19        | 0.0      | 0+                   | E2 <sup>@</sup> |           | 0.000899 13        | B(E2)(W.u.)<0.030<br>$\alpha$ (K)=0.000278 4; $\alpha$ (L)=3.45×10 <sup>-5</sup> 5; $\alpha$ (M)=7.16×10 <sup>-6</sup> 10;<br>$\alpha$ (N+)=0.000579 9<br>$\alpha$ (N)=1.588×10 <sup>-6</sup> 23; $\alpha$ (O)=2.59×10 <sup>-7</sup> 4; $\alpha$ (P)=2.02×10 <sup>-8</sup> 3;<br>$\alpha$ (IPF)=0.000577 8                                                                                                                                                                                    |
| 2602.55       | $(3,2)^+$            | 557.7 1         | 19.12        | 2044.51  | 4+                   |                 |           |                    | u(III) 0.000577 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                      | 1066.1 2        | <5.882       | 1536.33  | 2+                   | (M1+E2)         | 1.2 +23-7 | 0.0021 3           | B(M1)(W.u.)=0.0006 +17-6; B(E2)(W.u.)=0.5 +10-5<br>$\alpha$ (K)=0.0018 3; $\alpha$ (L)=0.00023 3; $\alpha$ (M)=4.8×10 <sup>-5</sup> 7;<br>$\alpha$ (N+)=1.25×10 <sup>-5</sup> 17                                                                                                                                                                                                                                                                                                              |
|               |                      | 1383.3 <i>I</i> | 22.06        | 1219.37  | 4+                   | M1+E2           | 1.1 +6-4  | 0.00123 8          | $\alpha(N)=1.07\times10^{-5}$ 14; $\alpha(O)=1.73\times10^{-6}$ 23; $\alpha(P)=1.31\times10^{-7}$ 21<br>B(M1)(W.u.)=0.002 +3-2; B(E2)(W.u.)=0.9 +11-9<br>$\alpha(K)=0.00103$ 7; $\alpha(L)=0.000131$ 9; $\alpha(M)=2.73\times10^{-5}$ 17;<br>$\alpha(N+)=4.82\times10^{-5}$ 9<br>$\alpha(N)=6.1\times10^{-6}$ 4; $\alpha(O)=9.8\times10^{-7}$ 7; $\alpha(P)=7.6\times10^{-8}$ 6;                                                                                                              |
|               |                      |                 |              |          |                      |                 |           |                    | $\alpha(N)=0.1\times10^{-5} 4$ ; $\alpha(O)=9.8\times10^{-7}$ ; $\alpha(P)=7.0\times10^{-6} 6$ ; $\alpha(IPF)=4.11\times10^{-5} 6$                                                                                                                                                                                                                                                                                                                                                            |
|               |                      | 1961.5 <i>1</i> | 100.0        | 641.282  | 2+                   | M1(+E2)         | 0.03 3    | 0.000930 13        | B(M1)(W.u.)=0.008 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                      |                 |              |          |                      |                 |           |                    | $\alpha(K)$ =0.000553 8; $\alpha(L)$ =6.95×10 <sup>-5</sup> 10; $\alpha(M)$ =1.442×10 <sup>-5</sup> 21; $\alpha(N+)$ =0.000293                                                                                                                                                                                                                                                                                                                                                                |
|               |                      |                 |              |          |                      |                 |           |                    | $\alpha(N)=3.20\times10^{-6}$ 5; $\alpha(O)=5.22\times10^{-7}$ 8; $\alpha(P)=4.11\times10^{-8}$ 6; $\alpha(IPF)=0.000289$ 4                                                                                                                                                                                                                                                                                                                                                                   |
| 2606.49       | 4+                   | 1387.1 <i>I</i> | 100.0        | 1219.37  | 4+                   | M1+E2           | 1.1 +4-4  | 0.00123 8          | B(M1)(W.u.)=0.07 +12-7; B(E2)(W.u.)=2.E+1 +5-2<br>$\alpha$ (K)=0.00102 7; $\alpha$ (L)=0.000131 8; $\alpha$ (M)=2.72×10 <sup>-5</sup> 17;<br>$\alpha$ (N+)=4.92×10 <sup>-5</sup> 9<br>$\alpha$ (N)=6.0×10 <sup>-6</sup> 4; $\alpha$ (O)=9.8×10 <sup>-7</sup> 7; $\alpha$ (P)=7.5×10 <sup>-8</sup> 6;                                                                                                                                                                                          |
|               |                      | 1045.0          | 4 6 00       | < 44.000 | - 1                  |                 |           |                    | $\alpha(IPF) = 4.22 \times 10^{-5} 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2624.4        | o+                   | 1965.2 1        | 16.28        | 641.282  |                      | E2              |           | 0.00266.4          | $\alpha(V) = 0.00227 \text{ d. } \alpha(U) = 0.000210 \text{ 5. } \alpha(M) = 6.40 \times 10^{-5} \text{ 0}$                                                                                                                                                                                                                                                                                                                                                                                  |
| 2624.4        | 8+                   | 881.4           | 100.0        | 1743.05  | ρ.                   | E2              |           | 0.00266 4          | $\alpha(K)=0.00227 \ 4; \ \alpha(L)=0.000310 \ 5; \ \alpha(M)=6.49\times10^{-5} \ 9; \ \alpha(N+)=1.682\times10^{-5} \ 24$                                                                                                                                                                                                                                                                                                                                                                    |
| 2667.0        | 1+                   | 1130.6 5        | 26 <i>3</i>  | 1536.33  | 2+                   | M1(+E2)         | -6 +2-7   | 0.00158 <i>3</i>   | $\alpha$ (N)=1.435×10 <sup>-5</sup> 20; $\alpha$ (O)=2.30×10 <sup>-6</sup> 4; $\alpha$ (P)=1.640×10 <sup>-7</sup> 23 B(M1)(W.u.)=0.0011 9                                                                                                                                                                                                                                                                                                                                                     |
|               |                      |                 |              |          |                      | , ,             |           |                    | $\alpha(K)=0.00135 \ 3; \ \alpha(L)=0.000178 \ 4; \ \alpha(M)=3.71\times10^{-5} \ 7; $<br>$\alpha(N+)=1.071\times10^{-5} \ 19$<br>$\alpha(N)=8.21\times10^{-6} \ 15; \ \alpha(O)=1.325\times10^{-6} \ 25; \ \alpha(P)=9.81\times10^{-8}$                                                                                                                                                                                                                                                      |
|               |                      | 2025.5 10       | 55 3         | 641.282  | 2+                   | M1+(E2)         | +1.3 3    | 0.000850 19        | $\alpha(N)=8.21\times10^{-6} 15$ ; $\alpha(O)=1.325\times10^{-6} 25$ ; $\alpha(P)=9.81\times10^{-6} 20$ ; $\alpha(IPF)=1.073\times10^{-6} 23$<br>$\delta$ : from $\beta^-$ decay; >3.0 or <-2.5 from 1982Mi01.<br>B(M1)(W.u.)=0.006 3; B(E2)(W.u.)=1.3 7<br>$\alpha(K)=0.000465 13$ ; $\alpha(L)=5.84\times10^{-5} 16$ ; $\alpha(M)=1.21\times10^{-5} 4$ ; $\alpha(N+)=0.000314 5$<br>$\alpha(N)=2.69\times10^{-6} 8$ ; $\alpha(O)=4.37\times10^{-7} 12$ ; $\alpha(P)=3.41\times10^{-8} 10$ ; |

|              |                      |                                                                             |                                   |                                                    |                                                                      |         | $\gamma$ <sup>(142</sup> Ce) (co | ontinued)          |                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|----------------------|-----------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|----------------------------------------------------------------------|---------|----------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}$                                                                | $I_{\gamma}$                      | $\mathbf{E}_f$                                     | $\mathbf{J}_f^{\pi}$                                                 | Mult.‡  | δ                                | $lpha^\dagger$     | Comments                                                                                                                                                                                                                                                                                                                                                                         |
| 2667.0       | 1+                   | 2666.8 9                                                                    | 100 6                             | 0.0                                                | 0+                                                                   | M1      |                                  | 0.000989 14        | $\alpha(K)$ =0.000290 4; $\alpha(L)$ =3.61×10 <sup>-5</sup> 5; $\alpha(M)$ =7.49×10 <sup>-6</sup> 11; $\alpha(N+)$ =0.000656 10                                                                                                                                                                                                                                                  |
| 2680.50      | (2,3,4)+             | 2039.2 2                                                                    | 100.0                             | 641.282                                            | 2+                                                                   | M1(+E2) | 0.06 +14-9                       | 0.000918 14        | $\alpha(N)=1.662\times10^{-6}\ 24;\ \alpha(O)=2.71\times10^{-7}\ 4;\ \alpha(P)=2.14\times10^{-8}\ 3;$ $\alpha(IPF)=0.000654\ 10$ $B(M1)(W.u.)=0.017\ 17$ $\alpha(K)=0.000509\ 8;\ \alpha(L)=6.38\times10^{-5}\ 10;\ \alpha(M)=1.325\times10^{-5}\ 20;$ $\alpha(N+)=0.000332$ $\alpha(N)=2.94\times10^{-6}\ 5;\ \alpha(O)=4.80\times10^{-7}\ 8;\ \alpha(P)=3.78\times10^{-8}\ 6;$ |
| 2697.03      | 2+                   | 105.9 <i>3</i> 332.1 <i>4</i> 514.7 <i>4</i> 692.4 <i>6</i> 1044.1 <i>I</i> | 5.3<br>2 2<br>5 2<br>3.5<br>100.0 | 2591.0<br>2364.91<br>2181.95<br>2004.89<br>1652.91 | 2 <sup>+</sup><br>3 <sup>+</sup><br>2 <sup>+</sup><br>3 <sup>-</sup> |         |                                  |                    | $\alpha(IPF)=0.000329\ 5$                                                                                                                                                                                                                                                                                                                                                        |
|              |                      | 1160.8 <i>I</i>                                                             | 65.85                             | 1536.33                                            | 2+                                                                   | M1+E2   | -0.19 <i>17</i>                  | 0.00204 6          | B(M1)(W.u.)=0.04 4; B(E2)(W.u.)=0.7 + $I3-7$<br>$\alpha$ (K)=0.00176 5; $\alpha$ (L)=0.000224 6; $\alpha$ (M)=4.66×10 <sup>-5</sup> $I2$ ;<br>$\alpha$ (N+)=1.47×10 <sup>-5</sup> 4<br>$\alpha$ (N)=1.04×10 <sup>-5</sup> 3; $\alpha$ (O)=1.69×10 <sup>-6</sup> 5; $\alpha$ (P)=1.32×10 <sup>-7</sup> 4;<br>$\alpha$ (IPF)=2.54×10 <sup>-6</sup> 4                               |
|              |                      | 2055.8 2                                                                    | 78.05                             | 641.282                                            | 2+                                                                   | M1+E2   | -1.2 +7-19                       | 0.00085 5          | $\alpha(\text{IPF})=2.54\times10^{-6} 4$ B(M1)(W.u.)=0.004 4; B(E2)(W.u.)=0.8 7 $\alpha(\text{K})=0.00045 \ 3; \ \alpha(\text{L})=5.7\times10^{-5} \ 4; \ \alpha(\text{M})=1.18\times10^{-5} \ 8;$ $\alpha(\text{N}+)=0.000330 \ 9$ $\alpha(\text{N})=2.63\times10^{-6} \ 18; \ \alpha(\text{O})=4.3\times10^{-7} \ 3; \ \alpha(\text{P})=3.3\times10^{-8} \ 3;$                 |
| 2698.58      | 4+                   | 1479.2 <i>1</i>                                                             | 100.0                             | 1219.37                                            | 4+                                                                   | M1+E2   | 1.3 +18-3                        | 0.00108 8          | $\alpha$ (IPF)=0.000327 9<br>B(M1)(W.u.)=0.03 +6-3; B(E2)(W.u.)=15 +16-15<br>$\alpha$ (K)=0.00087 7; $\alpha$ (L)=0.000111 9; $\alpha$ (M)=2.32×10 <sup>-5</sup> 18;<br>$\alpha$ (N+)=7.68×10 <sup>-5</sup> 14<br>$\alpha$ (N)=5.1×10 <sup>-6</sup> 4; $\alpha$ (O)=8.3×10 <sup>-7</sup> 7; $\alpha$ (P)=6.4×10 <sup>-8</sup> 6;                                                 |
| 2715.14      | 3+                   | 1178.8 <i>I</i>                                                             | 40.00                             | 1536.33                                            | 2+                                                                   | M1+E2   | -0.8 +4-4                        | 0.00177 15         | $\alpha$ (IPF)=7.08×10 <sup>-5</sup> 11<br>B(M1)(W.u.)=0.014 +16-14; B(E2)(W.u.)=4 +5-4<br>$\alpha$ (K)=0.00152 13; $\alpha$ (L)=0.000196 15; $\alpha$ (M)=4.1×10 <sup>-5</sup> 3; $\alpha$ (N+)=1.46×10 <sup>-5</sup> 8                                                                                                                                                         |
|              |                      | 1495.8 <i>1</i>                                                             | 100.0                             | 1219.37                                            | 4+                                                                   | M1+E2   | 0.37 7                           | 0.001206 <i>21</i> | $\alpha(N)=9.0\times10^{-6}\ 7;\ \alpha(O)=1.47\times10^{-6}\ 12;\ \alpha(P)=1.13\times10^{-7}\ 10;\\ \alpha(IPF)=3.94\times10^{-6}\ 6\\ B(M1)(W.u.)=0.02\ +3-2;\ B(E2)(W.u.)=0.9\ +10-9\\ \alpha(K)=0.000973\ 17;\ \alpha(L)=0.0001233\ 21;\ \alpha(M)=2.56\times10^{-5}\ 5;$                                                                                                   |

# $\gamma$ (142Ce) (continued)

|    |               |                      |                                 |                |                    |                                  |         | /( 00) (00)  | <u> </u>       |                                                                                                                                                                                                                                                                                                                                                                |
|----|---------------|----------------------|---------------------------------|----------------|--------------------|----------------------------------|---------|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}$           | $I_{\gamma}$   | $\mathrm{E}_f$     | $\mathbf{J}_f^{\pi}$             | Mult.‡  | δ            | $lpha^\dagger$ | Comments                                                                                                                                                                                                                                                                                                                                                       |
|    | 2715.14       | 3+                   | 2073.7 2                        | 60.00          | 641.282            | 2+                               | M1(+E2) | -0.03 6      | 0.000916 13    | $\alpha(N+)=8.40\times10^{-5}$<br>$\alpha(N)=5.69\times10^{-6}\ 10;\ \alpha(O)=9.27\times10^{-7}\ 16;\ \alpha(P)=7.25\times10^{-8}$<br>$13;\ \alpha(IPF)=7.73\times10^{-5}\ 11$<br>$B(M1)(W.u.)=0.006\ 6$<br>$\alpha(K)=0.000491\ 7;\ \alpha(L)=6.16\times10^{-5}\ 9;\ \alpha(M)=1.278\times10^{-5}\ 18;$<br>$\alpha(N+)=0.000350\ 5$                          |
|    | 2725.78       | 5 <sup>+</sup>       | 982.7 1                         | 47.06          | 1743.05            | 6+                               | M1(+E2) | -0.13 +19-14 | 0.00302 7      | $\alpha(N)=2.84\times10^{-6} 4$ ; $\alpha(O)=4.63\times10^{-7} 7$ ; $\alpha(P)=3.65\times10^{-8} 6$ ; $\alpha(PF)=0.000347 5$<br>B(M1)(W.u.)=0.15 8<br>$\alpha(K)=0.00260 6$ ; $\alpha(L)=0.000333 7$ ; $\alpha(M)=6.92\times10^{-5} 14$ ;                                                                                                                     |
|    |               |                      | 1506.4 2                        | 100.0          | 1219.37            | 4+                               | M1+E2   | 0.09 +4-3    | 0.001223 18    | $\alpha(N+)=1.81\times10^{-5} 4$<br>$\alpha(N)=1.54\times10^{-5} 3$ ; $\alpha(O)=2.50\times10^{-6} 6$ ; $\alpha(P)=1.95\times10^{-7} 5$<br>B(M1)(W.u.)=0.09 5; $B(E2)(W.u.)=0.18 18\alpha(K)=0.000984 14; \alpha(L)=0.0001245 18; \alpha(M)=2.59\times10^{-5} 4; \alpha(N+)=8.81\times10^{-5}$                                                                 |
| 12 | 2727.89       | 2 <sup>(-)</sup>     | 1074.9 <i>I</i>                 | 23.40          | 1652.91            | 3-                               | M1+E2   | -2.0 +7-9    | 0.00188 13     | $\alpha(N)=5.74\times10^{-6}$ 9; $\alpha(O)=9.36\times10^{-7}$ 14; $\alpha(P)=7.34\times10^{-8}$ 11; $\alpha(IPF)=8.13\times10^{-5}$ 12<br>B(M1)(W.u.)=0.0014 +18-14; B(E2)(W.u.)=3 +4-3<br>$\alpha(K)=0.00161$ 12; $\alpha(L)=0.000212$ 13; $\alpha(M)=4.4\times10^{-5}$ 3; $\alpha(N+)=1.15\times10^{-5}$ 8                                                  |
|    |               |                      | 1191.6 <i>I</i> 2086.6 <i>I</i> | 100.0<br>89.36 | 1536.33<br>641.282 | 2 <sup>+</sup><br>2 <sup>+</sup> | D+Q     | -0.43 10     |                | $\alpha(N)=9.8\times10^{-6} \ 6; \ \alpha(O)=1.58\times10^{-6} \ 10; \ \alpha(P)=1.18\times10^{-7} \ 9$                                                                                                                                                                                                                                                        |
|    | 2734.77       | $(3,2)^{+}$          | 622.7 <sup>&amp;</sup> 1        | 61.54          | 2111.87            |                                  | (M1+E2) | 0.19 25      | 0.0089 4       | B(M1)(W.u.)<0.062; B(E2)(W.u.)<11<br>$\alpha$ (K)=0.0077 4; $\alpha$ (L)=0.00100 4; $\alpha$ (M)=0.000208 8;<br>$\alpha$ (N+)=5.43×10 <sup>-5</sup> 20                                                                                                                                                                                                         |
|    |               |                      | 1081.9 <i>I</i>                 | 35.90          | 1652.91            | 3-                               | (M1+E2) | -0.09 +12-20 | 0.00242 6      | $\alpha(N)=4.62\times10^{-5}\ 17;\ \alpha(O)=7.5\times10^{-6}\ 3;\ \alpha(P)=5.8\times10^{-7}\ 3$<br>B(M1)(W.u.)<0.0066; B(E2)(W.u.)<0.095<br>$\alpha(K)=0.00208\ 6;\ \alpha(L)=0.000266\ 7;\ \alpha(M)=5.53\times10^{-5}\ 13;$<br>$\alpha(N+)=1.44\times10^{-5}\ 4$                                                                                           |
|    |               |                      | 1515.4 2                        | 100.0          | 1219.37            | 4+                               | M1+E2   | -0.29 +23-18 | 0.00119 4      | $\alpha(N)=1.23\times10^{-5}$ 3; $\alpha(O)=2.00\times10^{-6}$ 5; $\alpha(P)=1.56\times10^{-7}$ 5 B(M1)(W.u.)<0.0068; B(E2)(W.u.)<0.32 $\alpha(K)=0.00096$ 3; $\alpha(L)=0.000121$ 4; $\alpha(M)=2.51\times10^{-5}$ 7;                                                                                                                                         |
|    |               |                      | 2093.3 2                        | 61.54          | 641.282            | 2+                               | M1+E2   | 5.2 +5-22    | 0.000815 14    | $\alpha(N+)=9.10\times10^{-5} \ 14$ $\alpha(N)=5.58\times10^{-6} \ 16; \ \alpha(O)=9.1\times10^{-7} \ 3; \ \alpha(P)=7.12\times10^{-8} \ 22;$ $\alpha(IPF)=8.45\times10^{-5} \ 12$ $B(M1)(W.u.)<6.5\times10^{-5}; \ B(E2)(W.u.)<0.20$ $\alpha(K)=0.000412 \ 8; \ \alpha(L)=5.16\times10^{-5} \ 10; \ \alpha(M)=1.070\times10^{-5} \ 20;$ $\alpha(N+)=0.000341$ |

 $^{142}_{58}\mathrm{Ce}_{84}$ -14

| Adopted Levels, | Gammas | (continued) |
|-----------------|--------|-------------|
|                 |        |             |

| $\gamma$ (142Ce) | (continued) |
|------------------|-------------|
|------------------|-------------|

|               |                      |                                    |                |                                                    |            | $\gamma$ <sup>(142</sup> Ce) (conti | nued)              |                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|----------------------|------------------------------------|----------------|----------------------------------------------------|------------|-------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i$ (level) | $\mathtt{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}$              | $I_{\gamma}$   | $\mathrm{E}_f \qquad \mathrm{J}_f^\pi$             | Mult.‡     | δ                                   | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2741.97       | (2,3)+               | 1089.0 <i>I</i> 1205.7 <i>5</i>    | 28.21<br>4.6   | 1652.91 3 <sup>-</sup><br>1536.33 2 <sup>+</sup>   |            |                                     |                    | $\alpha(N)=2.37\times10^{-6}$ 5; $\alpha(O)=3.86\times10^{-7}$ 7; $\alpha(P)=3.00\times10^{-8}$ 6; $\alpha(IPF)=0.000338$ 5                                                                                                                                                                                                                                                                                               |
|               |                      | 2100.9 2                           | 100.0          | 641.282 2+                                         |            | -0.32 14                            | 0.000905 16        | B(M1)(W.u.)=0.021 8; B(E2)(W.u.)=0.3 3<br>$\alpha$ (K)=0.000471 9; $\alpha$ (L)=5.91×10 <sup>-5</sup> 11; $\alpha$ (M)=1.225×10 <sup>-5</sup> 23; $\alpha$ (N+)=0.000362<br>$\alpha$ (N)=2.72×10 <sup>-6</sup> 6; $\alpha$ (O)=4.44×10 <sup>-7</sup> 9; $\alpha$ (P)=3.49×10 <sup>-8</sup> 7; $\alpha$ (IPF)=0.000359 6                                                                                                   |
| 2767.86       | $(1,2,3)^+$          | 1115.0 <i>I</i><br>1231.5 <i>I</i> | 27.87<br>36.07 | 1652.91 3 <sup>-1</sup><br>1536.33 2 <sup>+1</sup> |            | 0.47 +3-19                          | 0.00172 6          | B(M1)(W.u.)=0.039 <i>13</i> ; B(E2)(W.u.)=3.3 <i>12</i>                                                                                                                                                                                                                                                                                                                                                                   |
|               |                      | 1231.3 1                           | 30.07          | 1330.33 2                                          | 1411   122 | 0.47 13 17                          | 0.00172 0          | $\alpha(K)=0.00147 \ 5; \ \alpha(L)=0.000188 \ 6; \ \alpha(M)=3.91\times10^{-5} \ 13;$<br>$\alpha(N+)=2.03\times10^{-5} \ 4$<br>$\alpha(N)=8.7\times10^{-6} \ 3; \ \alpha(O)=1.41\times10^{-6} \ 5; \ \alpha(P)=1.10\times10^{-7} \ 4;$<br>$\alpha(IPF)=1.008\times10^{-5} \ 15$                                                                                                                                          |
|               |                      | 2126.5 2                           | 100.0          | 641.282 2+                                         | M1+E2      | -0.19 8                             | 0.000910 14        | $\alpha(\text{IPF})=1.008\times10^{-5} I5$<br>$B(\text{M1})(\text{W.u.})=0.025 \ 8; \ B(\text{E2})(\text{W.u.})=0.11 \ 10$<br>$\alpha(\text{K})=0.000463 \ 7; \ \alpha(\text{L})=5.80\times10^{-5} \ 9; \ \alpha(\text{M})=1.204\times10^{-5}$<br>$18; \ \alpha(\text{N+})=0.000377 \ 6$<br>$\alpha(\text{N})=2.67\times10^{-6} \ 4; \ \alpha(\text{O})=4.36\times10^{-7} \ 7; \ \alpha(\text{P})=3.43\times10^{-8} \ 6;$ |
|               |                      |                                    |                |                                                    |            |                                     |                    | $\alpha(\text{IPF})=0.000374 \ 6$<br>Mult.: from $\gamma\gamma(\theta)$ (1982Mi01,1990La04).                                                                                                                                                                                                                                                                                                                              |
| 2773.92       | (3)+                 | 661.5 <sup>&amp;</sup> 1           | 30.77          | 2111.87 4+                                         | (M1+E2)    | 0.19 25                             | 0.0077 4           | B(M1)(W.u.)<0.019; B(E2)(W.u.)<2.9<br>$\alpha$ (K)=0.0066 3; $\alpha$ (L)=0.00086 4; $\alpha$ (M)=0.000179 7;<br>$\alpha$ (N+)=4.68×10 <sup>-5</sup> 18                                                                                                                                                                                                                                                                   |
|               |                      | 1237.6 <i>1</i>                    | 28.85          | 1536.33 2+                                         | M1+E2      | 0.40 +23-18                         | 0.00172 8          | $\alpha(N)=3.98\times10^{-5}$ 15; $\alpha(O)=6.47\times10^{-6}$ 25; $\alpha(P)=5.0\times10^{-7}$ 3 B(M1)(W.u.)<0.0025; B(E2)(W.u.)<0.26 $\alpha(K)=0.00148$ 7; $\alpha(L)=0.000188$ 8; $\alpha(M)=3.91\times10^{-5}$ 16; $\alpha(N+)=2.12\times10^{-5}$ 5 $\alpha(N)=8.7\times10^{-6}$ 4; $\alpha(O)=1.41\times10^{-6}$ 6; $\alpha(P)=1.10\times10^{-7}$ 6;                                                               |
|               |                      | 1553.8 2                           | 32.69          | 1219.37 4+                                         | M1+E2      | -0.9 +5-10                          | 0.00106 9          | $\alpha(N)=8.7\times10^{-5} 4$ ; $\alpha(O)=1.41\times10^{-5} 0$ ; $\alpha(P)=1.10\times10^{-6} 0$ ; $\alpha(P)=1.094\times10^{-5} 16$<br>B(M1)(W.u.)<0.0012; B(E2)(W.u.)<0.25<br>$\alpha(K)=0.00083 7$ ; $\alpha(L)=0.000105 9$ ; $\alpha(M)=2.18\times10^{-5} 18$ ; $\alpha(N+)=0.0001038 20$                                                                                                                           |
|               |                      |                                    |                |                                                    |            |                                     |                    | $\alpha(N)=4.8\times10^{-6} \ 4; \ \alpha(O)=7.9\times10^{-7} \ 7; \ \alpha(P)=6.1\times10^{-8} \ 6; \ \alpha(IPF)=9.81\times10^{-5} \ 17$                                                                                                                                                                                                                                                                                |
|               |                      | 2133.3 2                           | 100.0          | 641.282 2+                                         | M1+E2      | 0.19 +3-7                           | 0.000910 <i>13</i> | B(M1)(W.u.)<0.0017; B(E2)(W.u.)<0.0100<br>$\alpha$ (K)=0.000460 7; $\alpha$ (L)=5.77×10 <sup>-5</sup> 9; $\alpha$ (M)=1.196×10 <sup>-5</sup><br>$18$ ; $\alpha$ (N+)=0.000380 6<br>$\alpha$ (N)=2.66×10 <sup>-6</sup> 4; $\alpha$ (O)=4.33×10 <sup>-7</sup> 7; $\alpha$ (P)=3.41×10 <sup>-8</sup> 5; $\alpha$ (IPF)=0.000377 6                                                                                            |

# $\gamma$ (142Ce) (continued)

|              |                    |                       |              |                  |                      |         | -              |                  |                                                                                                                                                         |
|--------------|--------------------|-----------------------|--------------|------------------|----------------------|---------|----------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$ | $\mathrm{J}_i^\pi$ | $\mathrm{E}_{\gamma}$ | $I_{\gamma}$ | $\mathbf{E}_f$ J | $\mathbf{J}_f^{\pi}$ | Mult.‡  | δ              | $lpha^\dagger$   | Comments                                                                                                                                                |
| 2784.78      | (3,4,5)            | 1565.4 2              | 100.0        | 1219.37          | 4 <sup>+</sup>       |         | ' <u> </u>     |                  |                                                                                                                                                         |
| 2792.9       |                    | 2152.0 8              | 100.0        | 641.282          | 2+                   |         |                |                  |                                                                                                                                                         |
| 2800.78      | 1(+)               | 1264.4 <i>1</i>       | 58.93        | 1536.33          | 2+                   | M1      |                | 0.001710 24      | B(M1)(W.u.)=0.36 8                                                                                                                                      |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(K)$ =0.001461 21; $\alpha(L)$ =0.000186 3; $\alpha(M)$ =3.86×10 <sup>-5</sup> 6; $\alpha(N+)$ =2.51×10 <sup>-5</sup> 4                          |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(N)=8.57\times10^{-6}\ 12;\ \alpha(O)=1.397\times10^{-6}\ 20;\ \alpha(P)=1.093\times10^{-7}$                                                     |
|              |                    |                       |              |                  |                      |         |                |                  | 16; $\alpha$ (IPF)=1.504×10 <sup>-5</sup> 22                                                                                                            |
|              |                    | 2160.0 2              | 19.64        | 641.282          | 2+                   | M1      |                | 0.000913 13      | B(M1)(W.u.)=0.122 25                                                                                                                                    |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(K)$ =0.000450 7; $\alpha(L)$ =5.64×10 <sup>-5</sup> 8; $\alpha(M)$ =1.170×10 <sup>-5</sup> 17; $\alpha(N+)$ =0.000395 6                         |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(N)=2.60\times10^{-6}$ 4; $\alpha(O)=4.24\times10^{-7}$ 6; $\alpha(P)=3.34\times10^{-8}$ 5; $\alpha(IPF)=0.000392$ 6                             |
|              |                    |                       |              |                  |                      |         |                |                  | $I_{\gamma}$ : 19 2 from $(\gamma, \gamma')$ . See comment on this gamma in $(n, n'g)$ dataset.                                                         |
|              |                    | 2800.4 2              | 100          | 0.0              | $0^{+}$              | M1      |                | 0.001023 15      | B(M1)(W.u.)=0.0110 22                                                                                                                                   |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(K)$ =0.000262 4; $\alpha(L)$ =3.26×10 <sup>-5</sup> 5; $\alpha(M)$ =6.76×10 <sup>-6</sup> 10; $\alpha(N+)$ =0.000721 11                         |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(N)=1.502\times10^{-6}\ 21;\ \alpha(O)=2.45\times10^{-7}\ 4;\ \alpha(P)=1.94\times10^{-8}\ 3;$                                                   |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(IPF)=0.000720\ 10$                                                                                                                              |
| 2806.42      | 3+                 | 1270.2 <i>1</i>       | 97.62        | 1536.33          | 2+                   | M1+E2   | -0.16 +8-11    | 0.00168 <i>3</i> | B(M1)(W.u.)=0.04 3; B(E2)(W.u.)=0.4 +5-4                                                                                                                |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(K)$ =0.00144 3; $\alpha(L)$ =0.000183 4; $\alpha(M)$ =3.80×10 <sup>-5</sup> 7; $\alpha(N+)$ =2.59×10 <sup>-5</sup> 4                            |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(N)=8.43\times10^{-6}\ 15;\ \alpha(O)=1.374\times10^{-6}\ 25;\ \alpha(P)=1.074\times10^{-7}$                                                     |
|              |                    |                       |              |                  |                      |         |                |                  | 21; $\alpha$ (IPF)=1.599×10 <sup>-5</sup> 23                                                                                                            |
|              |                    | 1586.9 2              | 40.48        | 1219.37          | 4 <sup>+</sup>       | M1(+E2) | 0.3 + 5 - 3    | 0.00111 8        | B(M1)(W.u.)=0.009 7                                                                                                                                     |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(K)$ =0.00086 7; $\alpha(L)$ =0.000109 8; $\alpha(M)$ =2.27×10 <sup>-5</sup> 16; $\alpha(N+)$ =0.0001181 22                                      |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(N)=5.0\times10^{-6}$ 4; $\alpha(O)=8.2\times10^{-7}$ 6; $\alpha(P)=6.4\times10^{-8}$ 5;                                                         |
|              |                    | 2164.8 2              | 100.0        | 641.282 2        | <b>)</b> +           | M1+E2   | 0.43 +8-4      | 0.000899 14      | α(IPF)=0.0001122 <i>19</i><br>B(M1)(W.u.)=0.008 <i>6</i> ; B(E2)(W.u.)=0.18 <i>14</i>                                                                   |
|              |                    | 2104.8 2              | 100.0        | 041.282 2        | 2.                   | WH+EZ   | 0.45 +6-4      | 0.000899 14      | $\alpha(K)=0.000438 \ 7; \ \alpha(L)=5.49\times10^{-5} \ 9; \ \alpha(M)=1.139\times10^{-5} \ 18;$                                                       |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(\mathbf{N})=0.000438$ 7; $\alpha(\mathbf{L})=3.49\times10^{-5}$ 9; $\alpha(\mathbf{M})=1.139\times10^{-5}$ 18; $\alpha(\mathbf{N}+)=0.000394$ 6 |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(N)=2.53\times10^{-6} \ 4; \ \alpha(O)=4.12\times10^{-7} \ 7; \ \alpha(P)=3.24\times10^{-8} \ 6; \ \alpha(IPF)=0.000391 \ 6$                     |
| 2842.56      | $(2,3)^+$          | 838.0 2               | <1.149       |                  | 2+                   |         |                |                  |                                                                                                                                                         |
|              |                    | 1623.0 2              | 13.79        |                  | 4+                   |         |                |                  |                                                                                                                                                         |
|              |                    | 2201.1 2              | 100.0        | 641.282 2        | 2+                   | M1+E2   | -0.26 + 4 - 15 | 0.000909 15      | B(M1)(W.u.)=0.045 12; B(E2)(W.u.)=0.36 15                                                                                                               |
|              |                    |                       |              |                  |                      |         |                |                  | $\alpha(K)$ =0.000429 8; $\alpha(L)$ =5.37×10 <sup>-5</sup> 10; $\alpha(M)$ =1.114×10 <sup>-5</sup> 20; $\alpha(N+)$ =0.000415                          |
|              |                    |                       |              |                  |                      |         |                |                  |                                                                                                                                                         |

| Adopted | Levels, | Gammas | (continued) |
|---------|---------|--------|-------------|
|         |         |        |             |

| E (I I)      | τπ                   | Б                         | T            | F 177                                            | Mult.‡          | $\gamma$ (112Ce) (conf | $\alpha^{\dagger}$ |                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|----------------------|---------------------------|--------------|--------------------------------------------------|-----------------|------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}$     | $I_{\gamma}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$         | Mult.*          | δ                      | $\alpha$           | Comments                                                                                                                                                                                                                                                                                                                                                                             |
| 2853.34      | 2+                   | 1634.2 2                  | <0.4688      | 1219.37 4+                                       |                 |                        |                    | $\alpha(N)=2.47\times10^{-6}$ 5; $\alpha(O)=4.04\times10^{-7}$ 8; $\alpha(P)=3.18\times10^{-8}$ 6; $\alpha(IPF)=0.000412$ 6                                                                                                                                                                                                                                                          |
| 2633.34      | 2                    | 2212.3 2                  | 100.0        | 641.282 2+                                       | M1+E2           | -0.5 +15-3             | 0.00090 3          | B(M1)(W.u.)=0.014 +18-14; B(E2)(W.u.)=0.4 +20-4<br>$\alpha$ (K)=0.000416 19; $\alpha$ (L)=5.21×10 <sup>-5</sup> 23; $\alpha$ (M)=1.08×10 <sup>-5</sup> 5; $\alpha$ (N+)=0.000417 10<br>$\alpha$ (N)=2.40×10 <sup>-6</sup> 11; $\alpha$ (O)=3.91×10 <sup>-7</sup> 18; $\alpha$ (P)=3.08×10 <sup>-8</sup> 15; $\alpha$ (IPF)=0.000414 10                                               |
|              |                      | 2852.8 2                  | 56.25        | 0.0 0+                                           | E2 <sup>@</sup> |                        | 0.000966 14        | B(E2)(W.u.)=0.32 <i>18</i><br>$\alpha$ (K)=0.000236 <i>4</i> ; $\alpha$ (L)=2.92×10 <sup>-5</sup> <i>4</i> ; $\alpha$ (M)=6.05×10 <sup>-6</sup> <i>9</i> ;<br>$\alpha$ (N+)=0.000695 <i>10</i><br>$\alpha$ (N)=1.344×10 <sup>-6</sup> <i>19</i> ; $\alpha$ (O)=2.19×10 <sup>-7</sup> <i>3</i> ; $\alpha$ (P)=1.717×10 <sup>-8</sup><br><i>24</i> ; $\alpha$ (IPF)=0.000693 <i>10</i> |
| 2857.6       | (8+)                 | 647.0<br>1114.4           |              | 2210.60 6 <sup>+</sup><br>1743.05 6 <sup>+</sup> |                 |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                      |
| 2859.75      | 4                    | 1206.7 <i>1</i>           | 100.0        | 1652.91 3-                                       |                 |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                      | 1640.9 2                  | 28.21        | 1219.37 4+                                       |                 |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                      |
| 2868.97      | $(4)^{+}$            | 1216.1 <i>I</i>           | 100.0        | 1652.91 3-                                       |                 |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                      | 1649.4 2                  | 89.74        | 1219.37 4+                                       | M1+E2           | -0.4 +3-4              | 0.00105 6          | B(M1)(W.u.)<0.0039; B(E2)(W.u.)<0.25<br>$\alpha$ (K)=0.00078 5; $\alpha$ (L)=9.9×10 <sup>-5</sup> 6; $\alpha$ (M)=2.06×10 <sup>-5</sup> 12; $\alpha$ (N+)=0.000144 3<br>$\alpha$ (N)=4.6×10 <sup>-6</sup> 3; $\alpha$ (O)=7.4×10 <sup>-7</sup> 5; $\alpha$ (P)=5.8×10 <sup>-8</sup> 4; $\alpha$ (IPF)=0.0001384 23                                                                   |
|              |                      | 2228.3 <sup>&amp;</sup> 2 | 66.67        | 641.282 2+                                       |                 |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                      |
| 2887.74      | 3+                   | 1668.4 2                  | 28.21        | 1219.37 4+                                       | M1+E2           | 1.1 + <i>17</i> -6     | 0.00095 7          | B(M1)(W.u.)=0.012 +20–12; B(E2)(W.u.)=3 +5–3<br>$\alpha$ (K)=0.00070 6; $\alpha$ (L)=8.8×10 <sup>-5</sup> 8; $\alpha$ (M)=1.83×10 <sup>-5</sup> 15; $\alpha$ (N+)=0.000149 3<br>$\alpha$ (N)=4.1×10 <sup>-6</sup> 4; $\alpha$ (O)=6.6×10 <sup>-7</sup> 6; $\alpha$ (P)=5.1×10 <sup>-8</sup> 5; $\alpha$ (IPF)=0.000145 3                                                             |
|              |                      | 2246.4 2                  | 100.0        | 641.282 2+                                       | M1+E2           | 0.9 +12-3              | 0.00088 4          | B(M1)(W.u.)=0.02 +3-2; B(E2)(W.u.)=2 +3-2<br>$\alpha$ (K)=0.000390 21; $\alpha$ (L)=4.9×10 <sup>-5</sup> 3; $\alpha$ (M)=1.01×10 <sup>-5</sup> 6;<br>$\alpha$ (N+)=0.000428 12<br>$\alpha$ (N)=2.25×10 <sup>-6</sup> 13; $\alpha$ (O)=3.66×10 <sup>-7</sup> 21; $\alpha$ (P)=2.87×10 <sup>-8</sup><br>18; $\alpha$ (IPF)=0.000426 12                                                 |
| 2935.14      | (2,3,4)              | 1398.8 2<br>2292.7 2      | 100.0        | 1536.33 2 <sup>+</sup> 641.282 2 <sup>+</sup>    |                 |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                      |
| 2956.39      | 3+                   | 1737.1 2                  | 51.52        | 1219.37 4 <sup>+</sup>                           | M1(+E2)         | 0.06 +7-9              | 0.001013 <i>15</i> | B(M1)(W.u.)=0.08 4<br>$\alpha(K)$ =0.000720 11; $\alpha(L)$ =9.07×10 <sup>-5</sup> 13; $\alpha(M)$ =1.88×10 <sup>-5</sup> 3; $\alpha(N+)$ =0.000184 3<br>$\alpha(N)$ =4.18×10 <sup>-6</sup> 6; $\alpha(O)$ =6.82×10 <sup>-7</sup> 10; $\alpha(P)$ =5.36×10 <sup>-8</sup> 8; $\alpha(P)$ =0.000179 3                                                                                  |

# $\gamma$ (142Ce) (continued)

Adopted Levels, Gammas (continued)

| $E_i(level)$       | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}$                | $I_{\gamma}$            | $\mathrm{E}_f$        | $\mathbf{J}_f^{\pi}$                               | Mult.‡  | δ            | $lpha^\dagger$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|----------------------|--------------------------------------|-------------------------|-----------------------|----------------------------------------------------|---------|--------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2956.39            | 3+                   | 2315.0 2                             | 100.0                   | 641.282               | 2+                                                 | M1+E2   | -0.6 +23-9   | 0.00090 5      | B(M1)(W.u.)=0.05 +11-5; B(E2)(W.u.)=2 +12-2<br>$\alpha$ (K)=0.000376 24; $\alpha$ (L)=4.7×10 <sup>-5</sup> 3; $\alpha$ (M)=9.8×10 <sup>-6</sup> 7;<br>$\alpha$ (N+)=0.000468 16<br>$\alpha$ (N)=2.17×10 <sup>-6</sup> 14; $\alpha$ (O)=3.53×10 <sup>-7</sup> 23; $\alpha$ (P)=2.78×10 <sup>-8</sup>                                                                                                                                                                   |
| 2994.0             | 9(-)                 | 369.6                                |                         | 2624.4<br>2592.5      | 8+                                                 | D       |              |                | 20; $\alpha$ (IPF)=0.000465 16                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2999.02            | 1+                   | 401.5<br>2358.3 2                    | 100.0                   | 641.282               | (7 <sup>-</sup> )<br>2 <sup>+</sup>                | E2+M1   |              | 0.00089 5      | $\alpha(\text{K}) = 0.000352 \ 23; \ \alpha(\text{L}) = 4.4 \times 10^{-5} \ 3; \ \alpha(\text{M}) = 9.1 \times 10^{-6} \ 6; \\ \alpha(\text{N}+) = 0.000482 \ 17 \\ \alpha(\text{N}) = 2.02 \times 10^{-6} \ 14; \ \alpha(\text{O}) = 3.30 \times 10^{-7} \ 23; \ \alpha(\text{P}) = 2.59 \times 10^{-8} \\ 19; \ \alpha(\text{IPF}) = 0.000480 \ 17$                                                                                                                |
| 3009.90<br>3011.93 | 1                    | 2998.4 2<br>2368.6 2<br>3011.9 2     | 51.52<br>100.0<br>100.0 | 0.0<br>641.282<br>0.0 | 0 <sup>+</sup><br>2 <sup>+</sup><br>0 <sup>+</sup> |         |              |                | Mult.: from $\beta^-$ decay.<br>$I_{\gamma}$ : 60.6 from $(\gamma, \gamma')$ .                                                                                                                                                                                                                                                                                                                                                                                        |
| 3042.29            |                      | 1822.9 2                             | 100.0                   | 1219.37               | 4+                                                 | M1+E2   | -0.37 10     | 0.000953 17    | B(M1)(W.u.)=0.010 +19-10; B(E2)(W.u.)=0.2 +5-2<br>$\alpha$ (K)=0.000634 12; $\alpha$ (L)=7.98×10 <sup>-5</sup> 15; $\alpha$ (M)=1.66×10 <sup>-5</sup> 3; $\alpha$ (N+)=0.000223 4<br>$\alpha$ (N)=3.68×10 <sup>-6</sup> 7; $\alpha$ (O)=6.00×10 <sup>-7</sup> 11; $\alpha$ (P)=4.70×10 <sup>-8</sup> 9; $\alpha$ (IPF)=0.000219 4                                                                                                                                     |
| 3051.79            | (3) <sup>+</sup>     | 2401.0 2<br>864.6 <sup>&amp;</sup> 2 | 85.19                   | 641.282<br>2187.54    |                                                    |         |              |                | u(III)=0.00021) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3031.79            | (3)                  | 1398.8 <sup>&amp;</sup> 1            | 100.0                   |                       | 3-                                                 |         |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                      | 1832.6 2                             | 33.33                   | 1219.37               | -                                                  | M1+E2   | <-0.6        | 0.000948 24    | B(E2)(W.u.)<0.053<br>$\alpha$ (K)=0.000625 18; $\alpha$ (L)=7.87×10 <sup>-5</sup> 23; $\alpha$ (M)=1.63×10 <sup>-5</sup> 5;<br>$\alpha$ (N+)=0.000228 4<br>$\alpha$ (N)=3.63×10 <sup>-6</sup> 11; $\alpha$ (O)=5.91×10 <sup>-7</sup> 18; $\alpha$ (P)=4.64×10 <sup>-8</sup><br>15; $\alpha$ (IPF)=0.000223 4                                                                                                                                                          |
|                    |                      | 2410.3 2                             | 17.39                   | 641.282               | 2+                                                 | M1(+E2) | 0.09 14      | 0.000935 14    | B(M1)(W.u.)<0.000223 7<br>B(M1)(W.u.)<0.00027; B(E2)(W.u.)<0.00087<br>$\alpha$ (K)=0.000357 6; $\alpha$ (L)=4.46×10 <sup>-5</sup> 7; $\alpha$ (M)=9.25×10 <sup>-6</sup> 14;<br>$\alpha$ (N+)=0.000524 8<br>$\alpha$ (N)=2.05×10 <sup>-6</sup> 3; $\alpha$ (O)=3.35×10 <sup>-7</sup> 5; $\alpha$ (P)=2.64×10 <sup>-8</sup> 4;<br>$\alpha$ (IPF)=0.000522 8                                                                                                             |
| 3060.98            | +                    | 1525.5 2                             | 58.73                   | 1536.33               | 2+                                                 | M1(+E2) | -0.09 +15-14 | 0.001198 20    | $\alpha$ (IFF)=0.000322 δ<br>B(M1)(W.u.)=0.019 +24-19<br>$\alpha$ (K)=0.000957 17; $\alpha$ (L)=0.0001211 21; $\alpha$ (M)=2.51×10 <sup>-5</sup> 5;<br>$\alpha$ (N+)=9.49×10 <sup>-5</sup><br>$\alpha$ (N)=5.58×10 <sup>-6</sup> 10; $\alpha$ (O)=9.10×10 <sup>-7</sup> 16; $\alpha$ (P)=7.14×10 <sup>-8</sup><br>13; $\alpha$ (IPF)=8.84×10 <sup>-5</sup> 13<br>$\Gamma_{\gamma}$ : branching ratio in $\beta$ <sup>-</sup> decay and (n,n' $\gamma$ ) do not agree. |
| 1                  |                      | 2419.8 2                             | 100.0                   | 641.282               | 2+                                                 | M1+E2   | -0.26 17     | 0.000932 15    | B(M1)(W.u.)=0.008 + 10-8; $B(E2)(W.u.)=0.05 + 9-5$                                                                                                                                                                                                                                                                                                                                                                                                                    |

# $\gamma$ (142Ce) (continued)

| $E_i$ (level)      | $\mathbf{J}_i^{\pi}$      | $\mathrm{E}_{\gamma}$              | $I_{\gamma}$        | $\mathrm{E}_f$     | ${\rm J}_f^\pi$                  | Mult.‡  | δ            | $lpha^\dagger$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|---------------------------|------------------------------------|---------------------|--------------------|----------------------------------|---------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3060.98            | +                         | 3060.7 1                           | 50                  | 0.0                | 0+                               |         |              |                | $\alpha(K) = 0.000352 \ 7; \ \alpha(L) = 4.40 \times 10^{-5} \ 8; \ \alpha(M) = 9.12 \times 10^{-6} \ 16; \\ \alpha(N+) = 0.000527 \ 8 \\ \alpha(N) = 2.02 \times 10^{-6} \ 4; \ \alpha(O) = 3.30 \times 10^{-7} \ 6; \ \alpha(P) = 2.60 \times 10^{-8} \ 5; \\ \alpha(IPF) = 0.000525 \ 8$                                                                                                                                         |
| 3089.70            | $(2,3)^+$                 | 978.1 <mark>&amp;</mark> 2         | 38.89               |                    | 4+                               |         |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    |                           | 2448.4 2                           | 100.0               | 641.282            | 2+                               | M1+E2   | -0.8 +3-4    | 0.000912 20    | B(M1)(W.u.)=0.011 7; B(E2)(W.u.)=0.7 5<br>$\alpha$ (K)=0.000331 9; $\alpha$ (L)=4.13×10 <sup>-5</sup> 12; $\alpha$ (M)=8.57×10 <sup>-6</sup> 24;<br>$\alpha$ (N+)=0.000531 1<br>$\alpha$ (N)=1.90×10 <sup>-6</sup> 6; $\alpha$ (O)=3.10×10 <sup>-7</sup> 9; $\alpha$ (P)=2.44×10 <sup>-8</sup> 8;                                                                                                                                   |
|                    |                           |                                    |                     |                    |                                  |         |              |                | $\alpha(\text{IPF})=0.000528 \ II$                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3101.87            |                           | 2460.3 <i>10</i> 3101.5 <i>12</i>  | 100 <i>10</i> 30.00 | 641.282<br>0.0     | 2 <sup>+</sup><br>0 <sup>+</sup> |         |              |                | u(III) 0.00020 II                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3106.04            | 3+                        | 1887.5 2                           | 23.46               | 1219.37            | 4+                               | M1+E2   | 2.5 +6-23    | 0.00083 12     | B(M1)(W.u.)=0.0016 $II$ ; B(E2)(W.u.)=1.7 9<br>$\alpha$ (K)=0.00051 9; $\alpha$ (L)=6.4×10 <sup>-5</sup> $II$ ; $\alpha$ (M)=1.33×10 <sup>-5</sup> 23;<br>$\alpha$ (N+)=0.000245 $II$<br>$\alpha$ (N)=3.0×10 <sup>-6</sup> 5; $\alpha$ (O)=4.8×10 <sup>-7</sup> 9; $\alpha$ (P)=3.7×10 <sup>-8</sup> 8;<br>$\alpha$ (IPF)=0.000242 $II$                                                                                             |
|                    |                           | 2463.9 2                           | 100.0               | 641.282            | 2+                               | M1+E2   | -2.0 +5-4    | 0.000884 15    | $\alpha(\text{IFP})=0.000242\ 11$<br>$B(\text{M1})(\text{W.u.})=0.005\ 3;\ B(\text{E2})(\text{W.u.})=1.7\ 9$<br>$\alpha(\text{K})=0.000313\ 6;\ \alpha(\text{L})=3.89\times10^{-5}\ 8;\ \alpha(\text{M})=8.07\times10^{-6}\ 16;$<br>$\alpha(\text{N+})=0.000524\ 9$<br>$\alpha(\text{N})=1.79\times10^{-6}\ 4;\ \alpha(\text{O})=2.92\times10^{-7}\ 6;\ \alpha(\text{P})=2.28\times10^{-8}\ 5;$<br>$\alpha(\text{IPF})=0.000522\ 9$ |
| 3109.79            |                           | 1890.3 2<br>2468.6 2               | 100.0<br>42.86      | 1219.37<br>641.282 | 4 <sup>+</sup><br>2 <sup>+</sup> |         |              |                | $\alpha(1PF) = 0.000522.9$                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3122.4             |                           | 1091.2 <i>8</i><br>1117.7 <i>5</i> | 50.00<br><25.00     | 2004.89            | 0 <sup>+</sup> 2 <sup>+</sup>    |         |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2125 51            | (1.0.0)                   | 3121.9 <i>13</i>                   | 100.0               |                    | 0+                               |         |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3125.71<br>3144.57 | (1,2,3)<br>3 <sup>+</sup> | 2484.4 2<br>1608.4 2               | 100.0<br>100.0      | 641.282<br>1536.33 |                                  | M1+E2   | -2.0 +20-6   | 0.00094 18     | $\alpha(K)=0.00070\ 15;\ \alpha(L)=9.0\times10^{-5}\ 19;\ \alpha(M)=1.9\times10^{-5}\ 4;$<br>$\alpha(N+)=0.000123\ 5$<br>$\alpha(N)=4.1\times10^{-6}\ 9;\ \alpha(O)=6.7\times10^{-7}\ 14;\ \alpha(P)=5.2\times10^{-8}\ 12;$                                                                                                                                                                                                         |
|                    |                           | 2502.1.2                           | 06.00               | 641.000            | 2+                               | ) (1 F2 | 0.0 2 4      | 0.000022.20    | $\alpha(IPF)=0.000118 \ 4$                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                           | 2503.1 2                           | 96.08               | 641.282            | 2+                               | M1+E2   | -0.8 + 3 - 4 | 0.000923 20    | $\alpha(K)=0.000317 \ 8; \ \alpha(L)=3.96\times10^{-5} \ 11; \ \alpha(M)=8.20\times10^{-6} \ 22; \ \alpha(N+)=0.000558 \ 1$                                                                                                                                                                                                                                                                                                         |
|                    |                           |                                    |                     |                    |                                  |         |              |                | $\alpha(N)=1.82\times10^{-6} 5$ ; $\alpha(O)=2.97\times10^{-7} 8$ ; $\alpha(P)=2.33\times10^{-8} 7$ ; $\alpha(IPF)=0.000556 11$                                                                                                                                                                                                                                                                                                     |
| 3153.76            | 2+                        | 361.1 <i>3</i>                     | 33                  | 2792.9             |                                  |         |              |                | $I_{\gamma}$ : branching ratios from $\beta^-$ decay. They do not agree with $(n,n'\gamma)$ .                                                                                                                                                                                                                                                                                                                                       |
|                    |                           | 1618.2 7                           | 100                 | 1536.33            | 2+                               |         |              |                | $I_{\gamma}$ : branching ratios from $\beta^-$ decay. They do not agree with $(n,n'\gamma)$ .                                                                                                                                                                                                                                                                                                                                       |
|                    |                           |                                    |                     |                    |                                  |         |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# $\gamma$ (142Ce) (continued)

| $E_i$ (level)      | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}$                                    | $I_{\gamma}$                                           | $\mathrm{E}_f \qquad \mathrm{J}_f^\pi$                                                                                         | Mult.‡          | δ          | $lpha^\dagger$ | Comments                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|----------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3153.76            | 2+                   | 2512.4 2                                                 | 33                                                     | 641.282 2+                                                                                                                     | M1+E2           | 0.7 +9-5   | 0.00093 4      | B(M1)(W.u.)=0.0012 +20-12; B(E2)(W.u.)=0.05 +12-5<br>α(K)=0.000317 14; α(L)=3.95×10 <sup>-5</sup> 18; α(M)=8.2×10 <sup>-6</sup> 4; α(N+)=0.000565 17<br>α(N)=1.82×10 <sup>-6</sup> 8; α(O)=2.97×10 <sup>-7</sup> 14; α(P)=2.33×10 <sup>-8</sup> 12; α(IPF)=0.000563 17<br>I <sub>γ</sub> : branching ratios from β <sup>-</sup> decay. They do not agree with (n,n'γ). |
|                    |                      | 3153.6 2                                                 | 67                                                     | 0.0 0+                                                                                                                         | E2 <sup>@</sup> |            | 0.001053 15    | B(E2)(W.u.)=0.11 +15-11<br>α(K)=0.000199 3; α(L)=2.45×10 <sup>-5</sup> 4; α(M)=5.08×10 <sup>-6</sup> 8;<br>α(N+)=0.000824 12<br>α(N)=1.127×10 <sup>-6</sup> 16; α(O)=1.84×10 <sup>-7</sup> 3; α(P)=1.444×10 <sup>-8</sup><br>21; α(IPF)=0.000823 12<br>I <sub>γ</sub> : branching ratios from β <sup>-</sup> decay. They do not agree with (n,n'γ).                    |
| 3155.36            |                      | 1619.1 2<br>1935.9 2                                     | 100.0<br>100.0                                         | 1536.33 2 <sup>+</sup><br>1219.37 4 <sup>+</sup>                                                                               |                 |            |                |                                                                                                                                                                                                                                                                                                                                                                        |
| 3164.7             |                      | 1628.5 7<br>2523.3 9<br>3164.7 <i>13</i>                 | <50.00<br><50.00<br>100.0                              | 1536.33 2 <sup>+</sup><br>641.282 2 <sup>+</sup><br>0.0 0 <sup>+</sup>                                                         |                 |            |                |                                                                                                                                                                                                                                                                                                                                                                        |
| 3180.37            | 1                    | 439.0 5<br>453.7 5<br>1644.3 7<br>2539.4 3<br>3180.2 2   | 13<br>25<br>63<br>100<br>75                            | 2741.97 (2,3) <sup>+</sup><br>2725.78 5 <sup>+</sup><br>1536.33 2 <sup>+</sup><br>641.282 2 <sup>+</sup><br>0.0 0 <sup>+</sup> |                 |            |                | $I_{\gamma}$ : branching ratios from $\beta^-$ decay.<br>$I_{\gamma}$ : branching ratios from $\beta^-$ decay.                                                                              |
| 3208.95            | 3+                   | 1990.2 2<br>2567.0 2                                     | 19.05<br>100.0                                         | 1219.37 4+<br>641.282 2+                                                                                                       | M1+E2           | -0.32 +4-8 | 0.000959 14    | B(M1)(W.u.)=0.023 22; B(E2)(W.u.)=0.21 21 $\alpha$ (K)=0.000311 5; $\alpha$ (L)=3.87×10 <sup>-5</sup> 6; $\alpha$ (M)=8.03×10 <sup>-6</sup> 12; $\alpha$ (N+)=0.000602 9 $\alpha$ (N)=1.78×10 <sup>-6</sup> 3; $\alpha$ (O)=2.91×10 <sup>-7</sup> 5; $\alpha$ (P)=2.30×10 <sup>-8</sup> 4; $\alpha$ (IPF)=0.000599 9                                                   |
| 3218.21<br>3228.64 | (5-)                 | 2576.9 2<br>1575.72 9                                    | 100.0                                                  | 641.282 2 <sup>+</sup> 1652.91 3 <sup>-</sup>                                                                                  |                 |            |                | u(HT)=0.0003777                                                                                                                                                                                                                                                                                                                                                        |
| 3300.74<br>3304.5  | 2+                   | 1764.4 2<br>1768.2 7                                     | 100<br>33 7                                            | 1536.33 2 <sup>+</sup><br>1536.33 2 <sup>+</sup>                                                                               |                 |            |                |                                                                                                                                                                                                                                                                                                                                                                        |
| 3313.78            | 1                    | 2663.1 <i>10</i> 546.0 2 646.2 <i>7</i> 2672.6 <i>10</i> | 100 <i>14</i><br><5.000<br>15 <i>10</i><br>21 <i>3</i> | 641.282 2 <sup>+</sup><br>2767.86 (1,2,3) <sup>+</sup><br>2667.0 1 <sup>+</sup><br>641.282 2 <sup>+</sup>                      | Q+(D)           | >+1.1      |                | $I_{\gamma}$ : From $(\gamma, \gamma')$ .                                                                                                                                                                                                                                                                                                                              |
| 3380.5<br>3400.9   | (9 <sup>+</sup> )    | 3313.8 <i>12</i><br>522.9<br>3400.9                      | 100 <i>5</i><br>100.0<br>100                           | 0.0 0 <sup>+</sup><br>2857.6 (8 <sup>+</sup> )<br>0.0 0 <sup>+</sup>                                                           |                 |            |                |                                                                                                                                                                                                                                                                                                                                                                        |

# $\gamma$ (142Ce) (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}$                        | $I_{\gamma}$                   | $E_f$           | $\mathbf{J}_f^{\pi}$             | Mult.‡ | δ      |
|---------------|----------------------|-------------------------------------|--------------------------------|-----------------|----------------------------------|--------|--------|
| 3420.15       | $1^{-},2^{-}$        | 318.0 <i>3</i>                      | 2.5 25                         | 3101.87         |                                  |        |        |
|               |                      | 878.2 <i>4</i>                      | 10.00                          | 2543.21         | 2+                               |        |        |
|               |                      | 1233.1 6                            | 100.0 25                       | 2187.54         | 1-                               | D+Q    |        |
| 3423.61       |                      | 681.2 <i>6</i>                      | 14 15                          | 2741.97         | $(2,3)^+$                        |        |        |
|               |                      | 1058.4 <i>4</i>                     | 28.57                          | 2364.91         | 2+                               |        |        |
|               |                      | 1242.0 <i>4</i>                     | 71.43                          | 2181.95         | 3+                               |        |        |
|               |                      | 1393.0 8                            | 42.86                          | 2031.01         | $0_{+}$                          |        |        |
|               |                      | 1770.8 <i>7</i>                     | 57 <i>15</i>                   | 1652.91         | 3-                               |        |        |
|               |                      | 1887.3 8                            | $4.\times10^{1} \ 3$           | 1536.33         | 2+                               |        |        |
|               |                      | 2782.2 10                           | 100.0                          | 641.282         | 2+                               |        |        |
| 3459.91       |                      | 793.1 <i>4</i>                      | 6 7                            | 2667.0          | 1+                               |        |        |
|               |                      | 1061.5 4                            | 0.000                          | 2398.42         | 1+                               |        |        |
|               |                      | 1455.1 <i>5</i>                     | 12.50                          | 2004.89         | 2+                               |        |        |
|               |                      | 1923.3 7                            | 25 7                           | 1536.33         | 2+                               |        |        |
|               |                      | 2818.5 <i>11</i>                    | 100 7                          | 641.282         | 2+                               |        |        |
|               |                      | 3459.3 <i>13</i>                    | 31.25                          | 0.0             | $0_{+}$                          |        |        |
| 3470.31       |                      | 677.0 <i>6</i>                      | 17 <i>17</i>                   | 2792.9          |                                  |        |        |
|               |                      | 1072.2 8                            | 33 17                          | 2398.42         | 1+                               |        |        |
|               |                      | 1104.8 8                            | 16.67                          | 2364.91         | 2+                               |        |        |
|               |                      | 1283.2 5                            | <16.67                         | 2187.54         | 1-                               |        |        |
|               |                      | 1288.5 <i>4</i>                     | <16.67                         | 2181.95         | 3+                               |        |        |
|               |                      | 1933.6 7                            | 50.00                          | 1536.33         | 2+                               |        |        |
|               |                      | 2828.8 11                           | 100.0                          | 641.282         | 2+                               |        |        |
|               |                      | 3470.0 <i>13</i>                    | 33.33                          | 0.0             | 0+                               |        |        |
| 3515.1        | 1                    | 2873.8                              | 100                            | 641.282         | 2+                               |        |        |
|               |                      | 3515.1                              | 90.9                           | 0.0             | 0+                               |        |        |
| 3536.3        | $(10^{+})$           | 155.8                               |                                | 3380.5          | $(9^+)$                          |        |        |
| 2612.5        | 2+                   | 678.7                               | 1 5 76                         | 2857.6          | (8+)                             |        |        |
| 3612.5        | 2+                   | 915.6 5                             | 1.5 16                         | 2697.03         | 2+                               |        |        |
|               |                      | 1069.4 5                            | 3.0 16                         | 2543.21         | 2+                               |        |        |
|               |                      | 1214.0 5                            | 1.5 16                         | 2398.42         | 1+                               | D . O  | 0.7.2  |
|               |                      | 2076.1 9                            | 26 3                           | 1536.33         | 2 <sup>+</sup>                   | D+Q    | -0.7 3 |
|               |                      | 2971.0 <i>12</i> 3612.1 <i>14</i>   | 100 <i>5</i><br>28.8 <i>16</i> | 641.282         | 2 <sup>+</sup><br>0 <sup>+</sup> |        |        |
| 3633.37       | 1                    | 173.5 3                             | 28.8 10<br>10 5                | 0.0<br>3459.91  | U.                               |        |        |
| 3033.37       | 1                    | 531.6 2                             | 14.29                          | 3439.91         |                                  |        |        |
|               |                      | 1089.9 7                            | 14.29                          | 2543.21         | 2+                               |        |        |
|               |                      | 1089.9 7                            | 14.29                          | 2343.21 2187.54 | 1-                               |        |        |
|               |                      | 2096.6 9                            | 5 <i>5</i>                     | 1536.33         | 2 <sup>+</sup>                   |        |        |
|               |                      | 2090.6 <i>9</i><br>2991.6 <i>11</i> | 9.524                          | 641.282         | 2+<br>2+                         |        |        |
|               |                      | 3632.7 13                           | 100 5                          | 0.0             | 0+                               |        |        |
| 3643.5        | 1                    | 3643.4                              | 100 3                          | 0.0             | 0+                               |        |        |
|               |                      |                                     |                                |                 |                                  |        |        |

# $\gamma$ (142Ce) (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}$     | $I_{\gamma}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult.‡ | δ            | $\alpha^{\dagger}$ | Comments                                                                                                  |
|---------------|----------------------|------------------|--------------|---------|----------------------|--------|--------------|--------------------|-----------------------------------------------------------------------------------------------------------|
| 3648.6        |                      | 1461.2 5         | 100 5        | 2187.54 | 1-                   |        |              |                    |                                                                                                           |
|               |                      | 2111.9 8         | < 5.000      | 1536.33 | 2+                   |        |              |                    |                                                                                                           |
|               |                      | 3006.8 12        | 10.00        | 641.282 | 2+                   |        |              |                    |                                                                                                           |
| 3675.8        | 1+                   | 1494.1 <i>7</i>  | 27.27        | 2181.95 | 3+                   |        |              |                    |                                                                                                           |
|               |                      | 2139.3 8         | 100 19       | 1536.33 | 2+                   | D+Q    | $-0.56\ 10$  |                    |                                                                                                           |
|               |                      | 3034.3 <i>14</i> | 100 9        | 641.282 |                      |        |              |                    |                                                                                                           |
| 3688.9        |                      | 946.9 <i>4</i>   | 22.22        | 2741.97 | $(2,3)^+$            |        |              |                    |                                                                                                           |
|               |                      | 3047.4 <i>14</i> | 100.0        | 641.282 | 2+                   |        |              |                    |                                                                                                           |
| 3703.9        |                      | 1112.9 5         | 10 10        | 2591.0  |                      |        |              |                    |                                                                                                           |
|               |                      | 1516.3 <i>6</i>  | 90 10        | 2187.54 |                      |        |              |                    |                                                                                                           |
|               |                      | 2050.9 8         | 100 20       | 1652.91 |                      |        |              |                    |                                                                                                           |
|               |                      | 3062.4 <i>13</i> | 20.00        | 641.282 |                      |        |              |                    |                                                                                                           |
| 3717.81       | 1+                   | 297.9 <i>3</i>   | 9 9          | 3420.15 | $1^{-},2^{-}$        |        |              |                    |                                                                                                           |
|               |                      | 989.8 <i>5</i>   | 18.18        | 2727.89 | $2^{(-)}$            |        |              |                    |                                                                                                           |
|               |                      | 1020.8 4         | < 9.091      | 2697.03 | 2+                   |        |              |                    |                                                                                                           |
|               |                      | 1352.6 5         | 18.18        | 2364.91 | 2+                   |        |              |                    |                                                                                                           |
|               |                      | 2180.9 9         | 100 19       | 1536.33 | 2+                   | D+Q    | -1.2 + 3 - 5 |                    |                                                                                                           |
|               |                      | 3075.9 12        | 36.36        | 641.282 |                      |        |              |                    |                                                                                                           |
| 3719.6        | 1                    | 1176.4 <i>4</i>  | 50.00        | 2543.21 | 2+                   |        |              |                    |                                                                                                           |
|               |                      | 1688.6 8         | 83.33        | 2031.01 | 0+                   |        |              |                    |                                                                                                           |
|               |                      | 3719.1 <i>13</i> | 100.0        | 0.0     | 0+                   |        |              |                    |                                                                                                           |
| 3745.8        | 1                    | 3745.7           | 100          | 0.0     | 0+                   |        |              |                    |                                                                                                           |
| 3776.7        | 1                    | 3776.6           | 100          | 0.0     | 0+                   |        |              |                    | _                                                                                                         |
| 3832.6        | $11^{(-)}$           | 838.7            | 100          | 2994.0  | 9(-)                 | E2     |              | 0.00297 5          | $\alpha(K)=0.00253 \ 4; \ \alpha(L)=0.000350 \ 5; \ \alpha(M)=7.32\times10^{-5} \ 11;$                    |
|               |                      |                  |              |         |                      |        |              |                    | $\alpha$ (N+)=1.90×10 <sup>-5</sup> 3                                                                     |
|               |                      |                  |              |         |                      |        |              |                    | $\alpha(N)=1.618\times10^{-5} \ 23; \ \alpha(O)=2.59\times10^{-6} \ 4; \ \alpha(P)=1.83\times10^{-7} \ 3$ |
| 3851.1        |                      | 1846.2 8         | 20 20        | 2004.89 | 2+                   |        |              |                    |                                                                                                           |
|               |                      | 3210.2 <i>12</i> | 40.00        | 641.282 |                      |        |              |                    |                                                                                                           |
|               |                      | 3850.4 <i>13</i> | 100.0        | 0.0     | $0_{+}$              |        |              |                    |                                                                                                           |
| 3884.2        |                      | 570.6 <i>5</i>   | 25 25        | 3313.78 | 1                    |        |              |                    |                                                                                                           |
|               |                      | 2347.4 9         | 25 25        | 1536.33 | 2+                   |        |              |                    |                                                                                                           |
|               |                      | 3242.4 12        | 100.0        | 641.282 |                      |        |              |                    |                                                                                                           |
| 3906.3        | $(11^{+})$           | 370.0            |              | 3536.3  | $(10^{+})$           |        |              |                    |                                                                                                           |
|               |                      | 525.8            |              | 3380.5  | $(9^{+})$            |        |              |                    |                                                                                                           |
| 3914.4        |                      | 1121.2 6         | 33.33        | 2792.9  |                      |        |              |                    |                                                                                                           |
|               |                      | 2378.6 9         | 100.0        | 1536.33 | 2+                   |        |              |                    |                                                                                                           |
|               |                      | 3273.2 14        | 100.0        | 641.282 | 2+                   |        |              |                    |                                                                                                           |
| 3975.94       |                      | 1280.1 4         | <33.33       | 2697.03 |                      |        |              |                    |                                                                                                           |
|               |                      | 1793.8 7         | <33.33       | 2181.95 | 3 <sup>+</sup>       |        |              |                    |                                                                                                           |
|               |                      | 1961.5 9         | 100.0        | 2014.5  |                      |        |              |                    |                                                                                                           |
|               |                      | 3334.2 12        | 66.67        | 641.282 | 2+                   |        |              |                    |                                                                                                           |

# $\gamma$ (142Ce) (continued)

Adopted Levels, Gammas (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}$     | $I_{\gamma}$ | $\mathbb{E}_f$ | $\mathbf{J}_f^{\pi}$ | Mult.‡ | δ        |
|--------------|----------------------|------------------|--------------|----------------|----------------------|--------|----------|
| 3975.94      |                      | 3975.6 2         | <33.33       | 0.0            | 0+                   |        |          |
| 4043.5       | 2+                   | 339.5 4          | 10 5         | 3703.9         |                      |        |          |
|              |                      | 1500.3 6         | 10.00        | 2543.21        | 2+                   |        |          |
|              |                      | 2038.7 8         | 100 5        | 2004.89        | 2+                   | D+Q    | -0.99~20 |
|              |                      | 3401.9 <i>12</i> | 35.00        | 641.282        | 2+                   |        |          |
| 4045.6       |                      | 341.7 <i>4</i>   | 100          | 3703.9         |                      |        |          |
|              |                      | 1348.7 5         | <100         | 2697.03        | 2+                   |        |          |
|              |                      | 4045.2           |              | 0.0            | $0_{+}$              |        |          |
| 4048.4       |                      | 216              |              | 3832.6         | $11^{(-)}$           |        |          |
| 4356.7       | $(12^{+})$           | 450.3            | 100.0        | 3906.3         | $(11^{+})$           |        |          |
| 4605.2       | $(13^{-})$           | 248.4            |              | 4356.7         | $(12^{+})$           |        |          |
|              |                      | 557              |              | 4048.4         |                      |        |          |
|              |                      | 772.4            | 100.0        | 3832.6         | $11^{(-)}$           |        |          |
| 4717.2       |                      | 884.6            | 100.0        | 3832.6         | $11^{(-)}$           |        |          |
| 4896.2       | $(14^{-})$           | 178.9            |              | 4717.2         |                      |        |          |
|              |                      | 290.9            |              | 4605.2         | $(13^{-})$           |        |          |
| 5173.4       | $(15^{-})$           | 277.1            |              | 4896.2         | $(14^{-})$           |        |          |
|              |                      | 568.4            |              | 4605.2         | $(13^{-})$           |        |          |
| 5514.6       | $(16^{-})$           | 341              |              | 5173.4         | $(15^{-})$           |        |          |
|              |                      | 618.4            |              | 4896.2         | $(14^{-})$           |        |          |
| 5877.2       | $(17^{-})$           | 362.5            |              | 5514.6         | $(16^{-})$           |        |          |
|              |                      | 703.9            |              | 5173.4         | $(15^{-})$           |        |          |
| 6528.1       |                      | 1013.5           | 100.0        | 5514.6         | $(16^{-})$           |        |          |
| 6879.9       |                      | 1002.7           | 100.0        | 5877.2         | $(17^{-})$           |        |          |

<sup>†</sup> Additional information 1. ‡ From  $\gamma\gamma(\theta)$  in  $^{142}$ La  $\beta^-$  decay or  $\gamma(\theta)$  in  $(n,n'\gamma)$  and assumption that usually M2 cannot compete with E1. Pure quadrupole transitions are taken to be E2 while significantly admixed D+Q transitions are assumed to be M1+E2. # From  $\gamma(\theta)$ , supported by  $\gamma(\text{linear pol})$  results (1992Al11). @ From  $\gamma(\theta)$  (1992Al11).

<sup>&</sup>amp; Placement of transition in the level scheme is uncertain.

## Level Scheme



## Level Scheme (continued)



## Level Scheme (continued)



Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)



Legend

## Level Scheme (continued)



Legend

## Level Scheme (continued)



Legend

# Level Scheme (continued)



Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)







## Band(B): Band based on $6^+$ state



## Band(A): g.s. band



0.0

|                 |                | History           |                        |
|-----------------|----------------|-------------------|------------------------|
| Type            | Author         | Citation          | Literature Cutoff Date |
| Full Evaluation | A. A. Sonzogni | NDS 93,599 (2001) | 1-Dec-2000             |

 $Q(\beta^{-})=318.6 9$ ; S(n)=6897 4; S(p)=9549 8;  $Q(\alpha)=414 9$ 

Note: Current evaluation has used the following Q record 318.7 59539 16 410 9 1995Au04. 86896

Theory: 1992Bh04, 1992Eg01, 1992Na07, 1988So08.

1999Is02: Measured difference in mean-square nuclear charge radius between <sup>143</sup>Ce and <sup>144</sup>Ce using collinear laser-ion-beam spectroscopy,  $\delta < r^2 > =0.232 \text{ fm}^2 20.$ 

# <sup>144</sup>Ce Levels

## Cross Reference (XREF) Flags

- $^{144}$ La β<sup>-</sup> decay  $^{252}$ Cf,  $^{242}$ Pu SF decay

| E(level) <sup>†</sup>                 | $\mathrm{J}^{\pi \ddagger}$ | T <sub>1/2</sub> | XREF   | Comments                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------|-----------------------------|------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0#                                  | $0^{+}$                     | 284.91 d 5       | AB     | $\%\beta^{-}=100$                                                                                                                                                                                                                                                                                                                 |
|                                       |                             |                  |        | T <sub>1/2</sub> : weighted average from 284.5 d <i>10</i> (1956Sc87), 284.3 d <i>3</i> (1957Ke26), 283.8 d <i>6</i> (1965Fl02), 284.8 d <i>10</i> (1968La10), 284.9 d 8 (1968Re04), 285.08 d <i>18</i> (1976WaZH), 285.8 d <i>I</i> (1980Ho17), 284.45 d <i>I4</i> (1983Wa26), 284.893 d 8 (1986Ol01) and 286.14 d 9 (1997Ma75). |
| 397.441 <sup>#</sup> 9                | 2+                          | 35.4 ps 20       | AB     | $T_{1/2}$ : weighted average from 29 ps 7 (1989Ma38) and 36.0 ps 21 (1989Mo06).<br>$J^{\pi}$ : E2 $\gamma$ to 0 <sup>+</sup> g.s.                                                                                                                                                                                                 |
| 938.65 <sup>#</sup> 6                 | 4+                          |                  | AB     | $J^{\pi}$ : E2 $\gamma$ to 2 <sup>+</sup> , $(541\gamma)(397\gamma)(\theta)$ gives J=4.                                                                                                                                                                                                                                           |
| 1242.21 <sup>@</sup> 15               | (3-)                        |                  | AB     | $J^{\pi}$ : $(303\gamma)(541\gamma)\theta$ gives J=3 with 303 $\gamma$ as D(Q), the latter is assumed to be E1. From systematics, member of octupole band.                                                                                                                                                                        |
| 1346.1 7                              | (1)                         |                  | A      | $J^{\pi}$ : decays to $0^+$ g.s. Not fed in $\beta^-$ from $(3^-)$ parent.                                                                                                                                                                                                                                                        |
| 1489.0 <i>3</i>                       | $2^{(+)}$                   |                  | A      | $J^{\pi}$ : decays to $0^+$ g.s., $(1092\gamma)(397\gamma)(\theta)$ consistent with $2(D,Q)2(Q)0$ .                                                                                                                                                                                                                               |
| 1523.67 <sup>@</sup> 10               | (5-)                        |                  | AB     | $J^{\pi}$ : $\gamma\gamma(\theta)$ is consistent with J=3, 5. $J^{\pi}=5^{-}$ is suggested by 1986WaZQ on the basis of decay of higher lying levels. Large $\beta$ feeding to the level shows missing $\gamma$ feeding to the level.                                                                                              |
| 1646.80 <sup>#</sup> <i>17</i>        | $(6^+)$                     |                  | В      |                                                                                                                                                                                                                                                                                                                                   |
| 1673.67 <i>18</i>                     | 4+                          |                  | Α      | $J^{\pi}$ : from $\gamma \gamma(\theta)$ J=4, 1276 $\gamma$ to 2 <sup>+</sup> 397 is Q.                                                                                                                                                                                                                                           |
| 1691.53 22                            | 3 <sup>(+)</sup>            |                  | Α      | $J^{\pi}$ : $(1294\gamma)(397\gamma)(\theta)$ .                                                                                                                                                                                                                                                                                   |
| 1819.0 <i>4</i>                       | 2+                          |                  | Α      | $J^{\pi}$ : $\gamma$ to 0 <sup>+</sup> g.s., $(1421\gamma)(397\gamma)(\theta)$ is consistent only with J=2.                                                                                                                                                                                                                       |
| 1829.01 <i>19</i>                     | 4+                          |                  | A      | $J^{\pi}$ : $(1432\gamma)(397\gamma)(\theta)$ is consistent with $4(Q)2(Q)0$ .                                                                                                                                                                                                                                                    |
| 1864.5 <i>4</i>                       | 1                           |                  | A      | $J^{\pi}$ : $(1467\gamma)(397\gamma)(\theta)$ give J=1 with 1467 $\gamma$ as D,Q.                                                                                                                                                                                                                                                 |
| 1890.92 <i>18</i>                     | 5 <sup>(+)</sup> ,3         |                  | A      | $J^{\pi}$ : $\gamma\gamma(\theta)$ give J=3,5.                                                                                                                                                                                                                                                                                    |
| 1991.55 22<br>1994.34 <sup>@</sup> 19 | 3,5                         |                  | A      | $J^{\pi}$ : $\gamma\gamma(\theta)$ give J=3,5.                                                                                                                                                                                                                                                                                    |
|                                       | $(7^{-})$ $3^{(+)}$         |                  | В      | IT C (0)                                                                                                                                                                                                                                                                                                                          |
| 2021.1 4                              | 1 <sup>(+)</sup>            |                  | A      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                                                                                                                                                                                                                                         |
| 2028.7 <i>4</i><br>2040.7 <i>3</i>    | 3(+)                        |                  | A      | $J^{\pi}$ : $\gamma$ to $0^+$ g.s., $(1631\gamma)(397\gamma)(\theta)$ not consistent with J=2.                                                                                                                                                                                                                                    |
| 2040.7 3<br>2112.10 <i>19</i>         | $2^+,(1^+)$                 |                  | A<br>A | $J^{\pi}$ : from $\gamma \gamma(\theta)$ .<br>$J^{\pi}$ : $\gamma$ to $0^+$ g.s., $\gamma \gamma(\theta)$ .                                                                                                                                                                                                                       |
| 2127.0 3                              | $2^{+},3^{(+)},4$           |                  | A      | $J$ . $\gamma$ to $O$ g.s., $\gamma\gamma(O)$ .                                                                                                                                                                                                                                                                                   |
| 2152.8 4                              | 2+,3**,4                    |                  | A      | $J^{\pi}$ : $\gamma$ to $0^+$ g.s., $(1755\gamma)(397\gamma)(\theta)$ not consistent with J=1.                                                                                                                                                                                                                                    |
| 2220.8 4                              | 4 <sup>(-)</sup>            |                  | A      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                                                                                                                                                                                                                                         |
| 2339.8 4                              | 2(+)                        |                  | A      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                                                                                                                                                                                                                                         |
| 2352.6 4                              | 2 <sup>+</sup>              |                  | A      | $J^{\pi}$ : $\gamma$ to $0^+$ g.s., $(1955\gamma)(397\gamma)(\theta)$ not consistent with J=1.                                                                                                                                                                                                                                    |
| 2368.77 <sup>#</sup> 19               | (8+)                        |                  | В      |                                                                                                                                                                                                                                                                                                                                   |

# <sup>144</sup>Ce Levels (continued)

| E(level) <sup>†</sup>               | Jπ‡                 | XREF   | Comments                                                                                                               |
|-------------------------------------|---------------------|--------|------------------------------------------------------------------------------------------------------------------------|
| 2405.2 <i>4</i><br>2447.5 <i>10</i> | 3,2(+)              | A<br>A | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 2534.3 3                            | 3(+)                | A      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 2536.6 6                            | $2,3^{(+)},4$       | A      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 2623.2 5                            | _,_ , ,             | A      | · · · · · · · · · · · · · · · · · · ·                                                                                  |
| 2636.74 <sup>@</sup> 21             | (9-)                | В      |                                                                                                                        |
| 2642.41 <i>21</i>                   | $4^{(+)},(2^+)$     | A      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 2692.8 5                            | 4 <sup>(+)</sup> ,3 | A      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 2749.9 <i>4</i>                     | 2+                  | A      | $J^{\pi}$ : $\gamma$ to $0^+$ g.s., $(2353\gamma)(397\gamma)(\theta)$ not consistent with J=1.                         |
| 2802.5 9                            |                     | Α      |                                                                                                                        |
| 2881.7 <i>3</i>                     | $3,5^{(-)}$         | Α      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 2882.0 7                            | 2+                  | Α      | $J^{\pi}$ : $\gamma$ to $0^+$ g.s., $(1639\gamma)\gamma(397\gamma)(\theta)$ consistent with J=2.                       |
| 2903.6 4                            | $(3^-,4^+,2)$       | A      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 2937.3?                             |                     | Α      | - (1)                                                                                                                  |
| 2998.7 3                            | 2+                  | Α      | $J^{\pi}$ : $\gamma$ to $0^{+}$ g.s., $\gamma$ to $4^{(+)}$ , 1829 level.                                              |
| 3007.9 9                            | $1^{(-)},2^+$       | Α      | $J^{\pi}$ : $\gamma$ to $0^{+}$ g.s., $\gamma$ to $3^{(-)}$ 1242 level.                                                |
| 3060.1 5                            | 1(-)                | Α      | $J^{\pi}$ : $\gamma$ to $0^+$ g.s., $(2662\gamma)(397\gamma)(\theta)$ not consistent with J=2, $\gamma$ to $3^{(-)}$ . |
| 3173.0 5                            | 2,3                 | Α      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 3197.18 24                          | $4^{(+)},(3^+)$     | A      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 3209.3 6                            | 4(-) (2)            | A      | I7 C (0)                                                                                                               |
| 3238.85 25                          | $4^{(-)},(2)$       | A      | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 3263.0 <i>5</i><br>3278.6 <i>6</i>  | $(2^+,3,4^+)$       | A<br>A | $J^{\pi}$ : from $\gamma\gamma(\theta)$ .                                                                              |
| 3293.5 6                            |                     | A      |                                                                                                                        |
| 3335.74 <sup>@</sup> 23             | $(11^{-})$          |        |                                                                                                                        |
| 3371.9? 6                           | (11 )               | B<br>A |                                                                                                                        |
| 3396.2? 11                          |                     | A      |                                                                                                                        |
| 3408.5 <i>4</i>                     |                     | A      |                                                                                                                        |
| 3424.2?                             |                     | A      |                                                                                                                        |
| 3566.1 5                            |                     | Α      |                                                                                                                        |
| 3597.1 6                            |                     | Α      |                                                                                                                        |
| 3614.2 20                           | ( )                 | A      |                                                                                                                        |
| 3628.9 7                            | $1^{(-)},2^+$       | A      | $J^{\pi}$ : $\gamma$ to $0^{+}$ g.s., $\gamma$ to $3^{(-)}$ , 1242 level.                                              |
| 3635.0 6                            | $1^{(-)},2^+$       | A      | $J^{\pi}$ : $\gamma$ to $0^{+}$ g.s., $\gamma$ to $3^{(-)}$ , 1242 level.                                              |
| 3790.1 5                            |                     | A      |                                                                                                                        |
| 3973.6 12                           |                     | A      |                                                                                                                        |

<sup>&</sup>lt;sup>†</sup> From least squares fit to E $\gamma$ . <sup>‡</sup>  $J^{\pi}$ =1,2<sup>+</sup> for levels decaying directly to 0<sup>+</sup> g.s. Low-spin J assignments are based upon  $\gamma\gamma(\theta)$  results of 1982Mi01. High-spin from fission experiments. # Band(A): Ground-state band. @ Band(B): Octupole band.

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | $\delta^{\dagger}$ | α#              | Comments                                                                                                               |
|--------------|----------------------|------------------------|------------------------|-------------------------------------|--------------------|--------------------|-----------------|------------------------------------------------------------------------------------------------------------------------|
| 397.441      | 2+                   | 397.440 9              | 100.0                  | 0.0 0+                              | E2                 |                    | 0.0207          | $\alpha(K)$ =0.0170 6; $\alpha(L)$ =0.00290 9; $\alpha(M)$ =0.00061 2; $\alpha(N+)$ =0.00016 $I$<br>B(E2)(W.u.)=38 $4$ |
| 938.65       | 4+                   | 541.20 6               | 100.0                  | 397.441 2+                          | E2                 |                    | 0.0088          | $\alpha(K)=0.00731 \ 22; \ \alpha(L)=0.00112 \ 4$                                                                      |
| 1242.21      | $(3^{-})$            | 303.6 <i>3</i>         | 6.6 4                  | 938.65 4+                           | (E1+M2)            | +0.007 8           | 0.0121 <i>1</i> |                                                                                                                        |
|              |                      | 844.8 <i>4</i>         | 100 4                  | 397.441 2 <sup>+</sup>              | (E1+M2)            | -0.1265            | 0.0013          |                                                                                                                        |
| 1346.1       | (1)                  | 948.6                  |                        | 397.441 2 <sup>+</sup>              |                    |                    |                 |                                                                                                                        |
|              |                      | 1346.1                 |                        | $0.0 	 0^{+}$                       |                    |                    |                 |                                                                                                                        |
| 1489.0       | 2 <sup>(+)</sup>     | 1092.1 5               | 71 8                   | 397.441 2 <sup>+</sup>              | (E2+M1)            | +5 +12-3           | 0.0017 2        |                                                                                                                        |
|              |                      | 1489.6 <i>6</i>        | 100 8                  | $0.0 	 0^{+}$                       |                    |                    |                 |                                                                                                                        |
| 1523.67      | $(5^{-})$            | 585.02 9               | 100.0                  | 938.65 4+                           | D+Q                |                    |                 |                                                                                                                        |
| 1646.80      | $(6^{+})$            | 708.6 <sup>‡</sup>     | 100.0 <sup>‡</sup>     | 938.65 4+                           |                    |                    |                 |                                                                                                                        |
| 1673.67      | 4+                   | 431.4 <i>3</i>         | 51.2 22                | 1242.21 (3-)                        | (E1+M2)            | +0.03 6            | 0.0051 6        |                                                                                                                        |
|              |                      | 735.2 <i>3</i>         | 100 <i>3</i>           | 938.65 4+                           | (M1+E2)            | +0.52 4            | 0.0057 1        |                                                                                                                        |
|              |                      | 1276.3 5               | 22.7 16                | 397.441 2 <sup>+</sup>              | (E2)               |                    | 0.00123         | $\alpha(K)=0.00105 \ 4; \ \alpha(L)=0.00014$                                                                           |
| 1691.53      | 3 <sup>(+)</sup>     | 449.5 <i>4</i>         | 20 3                   | $1242.21  (3^{-})$                  |                    |                    |                 |                                                                                                                        |
|              |                      | 1294.2 5               | 100 10                 | 397.441 2 <sup>+</sup>              | (M1+E2)            |                    |                 |                                                                                                                        |
| 1819.0       | 2+                   | 1421.8 6               | 100 10                 | 397.441 2 <sup>+</sup>              | E2+M1              | -3.5 + 14 - 49     | 0.00102 4       | $\alpha(K)=0.00087 \ 4; \ \alpha(L)=0.00011$                                                                           |
|              |                      | 1819.1 9               | 11 <i>11</i>           | $0.0 	 0^{+}$                       |                    |                    |                 |                                                                                                                        |
| 1829.01      | 4+                   | 587.0 <i>3</i>         | 22.6 25                | $1242.21  (3^{-})$                  |                    |                    |                 |                                                                                                                        |
|              |                      | 890.4 4                | 30.2 25                | 938.65 4+                           | (M1+E2)            | +0.68 14           | 0.0035 2        |                                                                                                                        |
|              |                      | 1431.4 4               | 100 4                  | 397.441 2+                          | (E2)               |                    | 0.00098         | $\alpha(K)=0.00083 \ 3; \ \alpha(L)=0.00011$                                                                           |
| 1864.5       | 1                    | 1467.1 6               | 100 16                 | 397.441 2+                          | D(+Q)              | -0.4 4             |                 |                                                                                                                        |
|              | -(1) -               | 1864.2 9               | 47 18                  | 0.0 0+                              |                    |                    |                 |                                                                                                                        |
| 1890.92      | $5^{(+)},3$          | 367.3 3                | 50 4                   | 1523.67 (5-)                        | - ·                |                    |                 |                                                                                                                        |
| 1001.55      | 2.5                  | 952.2 3                | 100 13                 | 938.65 4+                           | D+Q                |                    |                 |                                                                                                                        |
| 1991.55      | 3,5                  | 467.7 4                | 26 5                   | 1523.67 (5-)                        | D . O              |                    |                 |                                                                                                                        |
|              |                      | 1052.7 3               | 100 6                  | 938.65 4+                           | D+Q                |                    |                 |                                                                                                                        |
| 1994.34      | $(7^{-})$            | 347.6 <sup>‡</sup>     | 100‡                   | $1646.80 	 (6^+)$                   |                    |                    |                 |                                                                                                                        |
|              |                      | 471.1 <sup>‡@</sup>    | ‡                      | $1523.67 	 (5^{-})$                 |                    |                    |                 |                                                                                                                        |
| 2021.1       | 3 <sup>(+)</sup>     | 1082.7 6               | 78 <i>14</i>           | 938.65 4+                           | (E2+M1)            | -6 4               | 0.0017 2        |                                                                                                                        |
|              |                      | 1623.8 7               | 100 14                 | 397.441 2 <sup>+</sup>              | (M1+E2)            | 0.13 + 24 - 19     |                 |                                                                                                                        |
| 2028.7       | 1 <sup>(+)</sup>     | 1631.8 7               | 100 10                 | 397.441 2 <sup>+</sup>              | (M1+E2)            | +0.53 + 14 - 11    |                 |                                                                                                                        |
|              |                      | 2028.7 9               | 34 6                   | $0.0 	 0^{+}$                       |                    |                    |                 |                                                                                                                        |
| 2040.7       | 3(+)                 | 798.5 <i>5</i>         | 40 6                   | 1242.21 (3-)                        |                    |                    |                 |                                                                                                                        |
|              |                      | 1102.1 5               | 100 9                  | 938.65 4+                           | (M1+E2)            | -0.63 + 32 - 16    | 0.0021 2        |                                                                                                                        |
|              |                      | 1641.9 9               | 23 12                  | 397.441 2 <sup>+</sup>              |                    |                    |                 |                                                                                                                        |
| 2112.10      | $2^+,(1^+)$          | 1714.6 8               | 100 18                 | 397.441 2 <sup>+</sup>              | (M1+E2)            |                    |                 |                                                                                                                        |
|              |                      | 2112.0 2               | 22 8                   | $0.0 	 0^{+}$                       |                    |                    |                 |                                                                                                                        |
| 2127.0       | $2^{+},3^{(+)},4$    | 453.4 <i>4</i>         | 100.0                  | 1673.67 4 <sup>+</sup>              | (E2+M1)            |                    |                 |                                                                                                                        |

# $\gamma(^{144}\text{Ce})$ (continued)

|              |                      |                        |                                |                |                  | <u> </u>           |                    |          |
|--------------|----------------------|------------------------|--------------------------------|----------------|------------------|--------------------|--------------------|----------|
| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | ${\rm I}_{\gamma}{}^{\dagger}$ | $\mathbb{E}_f$ | $J_f^\pi$        | Mult. <sup>†</sup> | $\delta^{\dagger}$ | α#       |
| 2152.8       | 2+                   | 1214.5 <sup>@</sup> 8  | <46.43                         | 938.65         | 4+               |                    |                    |          |
| 2132.0       | -                    | 1755.5 8               | 100 16                         | 397.441        | 2 <sup>+</sup>   | (M1+E2)            |                    |          |
|              |                      | 2152.8 9               | 27 13                          | 0.0            | $0_{+}$          | ,                  |                    |          |
| 2220.8       | 4 <sup>(-)</sup>     | 978.5 5                | 100 6                          | 1242.21        | $(3^{-})$        | (M1+E2)            | -0.329             | 0.0030 1 |
|              |                      | 1282.1 6               | 17 5                           | 938.65         | 4+               |                    |                    |          |
| 2339.8       | 2(+)                 | 1401.1 6               | 51 7                           | 938.65         | 4+               |                    |                    |          |
|              |                      | 1942.2 9               | 100 9                          | 397.441        | 2+               | (M1+E2)            | +0.07 17           |          |
|              |                      | 2339.5                 | 19.59                          | 0.0            | $0_{+}$          |                    |                    |          |
| 2352.6       | 2+                   | 1413.9 <i>6</i>        | 100 18                         | 938.65         | 4+               |                    |                    |          |
|              |                      | 1955.1 9               | $9.\times10^{1} \ 3$           | 397.441        | 2+               |                    |                    |          |
|              |                      | 2352.4 <sup>@</sup> 10 | 47 18                          | 0.0            | $0_{+}$          |                    |                    |          |
| 2368.77      | $(8^{+})$            | 374.5 <sup>‡</sup>     | 100 <sup>‡</sup>               | 1994.34        | $(7^{-})$        |                    |                    |          |
|              |                      | 721.9 <sup>‡</sup>     | 67 <sup>‡</sup>                | 1646.80        | $(6^{+})$        |                    |                    |          |
| 2405.2       | $3.2^{(+)}$          | 2007.8 9               | 100.00                         | 397.441        | 2+               | D+Q                |                    |          |
| 2447.5       | Ź                    | 2050.0 10              | 100.0                          | 397.441        | 2+               |                    |                    |          |
| 2534.3       | 3 <sup>(+)</sup>     | 643.0 <i>4</i>         | 35.7 25                        | 1890.92        | $5^{(+)},3$      |                    |                    |          |
|              |                      | 705.4 <i>4</i>         | 100 4                          | 1829.01        | 4+               | (M1+E2)            | -0.639             | 0.0061 2 |
|              |                      | 860.8 <i>5</i>         | 13.3 <i>21</i>                 | 1673.67        | 4+               |                    |                    |          |
|              |                      | 2137.4 9               | 6.8 18                         | 397.441        | 2+               |                    |                    |          |
| 2536.6       | $2,3^{(+)},4$        | 1294.4 5               | 100.0                          | 1242.21        | $(3^{-})$        | D+Q                |                    |          |
| 2623.2       |                      | 1683.1 7               | 100.0                          | 938.65         | 4+               |                    |                    |          |
| 2636.74      | (9-)                 | 267.9 <sup>‡@</sup>    | #                              | 2368.77        | $(8^{+})$        |                    |                    |          |
|              |                      | 642.4 <sup>‡</sup>     | 100 <sup>‡</sup>               | 1994.34        | $(7^{-})$        |                    |                    |          |
| 2642.41      | $4^{(+)},(2^+)$      | 751.7 <i>3</i>         | 46 <i>4</i>                    | 1890.92        | 5(+),3           | (M1+E2)            |                    |          |
|              | / /                  | 813.2 4                | 14.8 23                        | 1829.01        | 4+               |                    |                    |          |
|              |                      | 950.9 <i>3</i>         | 57 12                          | 1691.53        | 3(+)             |                    |                    |          |
|              |                      | 968.8 5                | 100 4                          | 1673.67        | 4+               | (E2,M1+E2)         |                    |          |
|              |                      | 1153.0 5               | 13 <i>3</i>                    | 1489.0         | $2^{(+)}$        |                    |                    |          |
| 2692.8       | $4^{(+)},3$          | 340.2 <i>3</i>         | 100 16                         | 2352.6         | 2+               |                    |                    |          |
|              |                      | 1754.7 9               | 88 16                          | 938.65         | 4+               | D+Q                |                    |          |
| 2749.9       | 2+                   | 597.2 4                | 100 17                         | 2152.8         | 2+               |                    |                    |          |
|              |                      | 2352.9 10              | $9.\times10^{1} \ 3$           | 397.441        | 2+               | (M1+E2)            |                    |          |
|              |                      | 2749.9 12              | 24 6                           | 0.0            | $0_{+}$          |                    |                    |          |
| 2802.5       |                      | 1863.8 9               | 100.0                          | 938.65         | 4+               |                    |                    |          |
| 2881.7       | $3,5^{(-)}$          | 853.2 5                | 100 9                          | 2028.7         | 1 <sup>(+)</sup> |                    |                    |          |
|              |                      | 1062.9 <i>6</i>        | 34 9                           | 1819.0         | 2+               |                    |                    |          |
|              |                      | 1190.4 6               | 45 9                           | 1691.53        | 3(+)             |                    |                    |          |
|              |                      | 1357.8 5               | 27 9                           | 1523.67        | (5-)             | (E2+M1)            |                    |          |
|              |                      | 1942.7 9               | 30 7                           | 938.65         | 4+               | (E1+M2)            |                    |          |
|              |                      |                        |                                |                |                  |                    |                    |          |

# $\gamma$ (144Ce) (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$ | ${\rm I}_{\gamma}{}^{\dagger}$ | $E_f$   | $\mathbf{J}^{\pi}_f$ | Mult. <sup>†</sup> | $\delta^{\dagger}$ | $\alpha^{\#}$ | Comments                                      |
|---------------|----------------------|---------------------------------|--------------------------------|---------|----------------------|--------------------|--------------------|---------------|-----------------------------------------------|
| 2882.0        | 2+                   | 1639.8 9                        | 100 15                         | 1242.21 | (3-)                 |                    |                    |               |                                               |
|               |                      | 2881.9 <i>12</i>                | 41 8                           | 0.0     | 0+                   |                    |                    |               |                                               |
| 2903.6        | $(3^-,4^+,2)$        | 1212.0 8                        | <65.82                         | 1691.53 | 3(+)                 |                    |                    |               |                                               |
|               |                      | 1380.1 6                        | 100 14                         | 1523.67 | $(5^{-})$            |                    |                    |               |                                               |
|               |                      | 1661.4 7                        | 89 <i>13</i>                   | 1242.21 | $(3^{-})$            |                    |                    |               |                                               |
|               |                      | 1965.0 9                        | 46 11                          | 938.65  | 4+                   |                    |                    |               |                                               |
| 2937.3?       |                      | 2540.0 <sup>@</sup> 11          | 100.0                          | 397.441 | 2+                   |                    |                    |               |                                               |
| 2998.7        | 2+                   | 871.9 5                         | 100 19                         | 2127.0  | $2^+,3^{(+)},4$      |                    |                    |               |                                               |
|               |                      | 1006.2 5                        | 31 10                          | 1991.55 | 3,5                  |                    |                    |               |                                               |
|               |                      | 1170.2 5                        | 91 <i>19</i>                   | 1829.01 | 4+                   |                    |                    |               |                                               |
|               |                      | 1307.4 6                        | 37 10                          | 1691.53 | 3(+)                 |                    |                    |               |                                               |
|               |                      | 1756.8 8                        | 69 <i>17</i>                   | 1242.21 | $(3^{-})$            |                    |                    |               |                                               |
|               |                      | 2998.9 <sup>@</sup> 15          | 41 10                          | 0.0     | 0+                   |                    |                    |               |                                               |
| 3007.9        | $1^{(-)},2^+$        | 1765.7 8                        | 100 16                         | 1242.21 | (3-)                 |                    |                    |               |                                               |
|               | ,                    | 3007.4 <sup>@</sup> 15          | 32 8                           | 0.0     | 0+                   |                    |                    |               |                                               |
| 3060.1        | 1 <sup>(-)</sup>     | 907.3 5                         | 30 5                           | 2152.8  | 2+                   |                    |                    |               |                                               |
| 3000.1        | 1                    | 1818.0 9                        | 20 4                           | 1242.21 | (3-)                 |                    |                    |               |                                               |
|               |                      | 2662.7 10                       | 100 5                          | 397.441 |                      | (E1+M2)            | -0.09 8            |               |                                               |
|               |                      | 3060.0 15                       | 6.3 15                         | 0.0     | 0+                   | (==::==)           |                    |               |                                               |
| 3173.0        | 2,3                  | 1308.4 6                        | 68 14                          | 1864.5  | 1                    |                    |                    |               |                                               |
|               |                      | 1499.3 7                        | 100 15                         | 1673.67 | 4 <sup>+</sup>       |                    |                    |               |                                               |
|               |                      | 1930.9 8                        | 30 10                          | 1242.21 | $(3^{-})$            |                    |                    |               |                                               |
| 3197.18       | $4^{(+)},(3^+)$      | 1044.5 5                        | 5.4 22                         | 2152.8  | 2+                   |                    |                    |               |                                               |
|               |                      | 1070.2 5                        | 28 <i>3</i>                    | 2127.0  | $2^+,3^{(+)},4$      |                    |                    |               |                                               |
|               |                      | 1084.3 6                        | 22 4                           | 2112.10 | $2^+,(1^+)$          | (E2)               |                    | 0.00172       | $\alpha(K)=0.00146\ 5;\ \alpha(L)=0.00019\ I$ |
|               |                      | 1176.2 5                        | 14 <i>4</i>                    | 2021.1  | 3 <sup>(+)</sup>     |                    |                    |               |                                               |
|               |                      | 1505.7 7                        | 11 <i>3</i>                    | 1691.53 | 3(+)                 |                    |                    |               |                                               |
|               |                      | 1523.5 7                        | 100 5                          | 1673.67 | 4+                   | (M1+E2)            |                    |               |                                               |
|               |                      | 1673.7 <i>6</i>                 | 40 4                           | 1523.67 | $(5^{-})$            | D+Q                |                    |               |                                               |
|               |                      | 1955.2 9                        | 27 4                           | 1242.21 | $(3^{-})$            |                    |                    |               |                                               |
|               |                      | 2258.7 9                        | 18.7 22                        | 938.65  | 4 <sup>+</sup>       |                    |                    |               |                                               |
| 3209.3        |                      | 1217.8 6                        | 100 22                         | 1991.55 | 3,5                  |                    |                    |               |                                               |
|               | ( )                  | 1966.8 9                        | 93 19                          | 1242.21 | (3 <sup>-</sup> )    |                    |                    |               |                                               |
| 3238.85       | $4^{(-)},(2)$        | 357.3 4                         | 9.7 24                         | 2881.7  | $3,5^{(-)}$          |                    |                    |               |                                               |
|               |                      | 833.6 4                         | 31 3                           | 2405.2  | 3,2(+)               |                    |                    |               |                                               |
|               |                      | 1017.8 5                        | 9.3 20                         | 2220.8  | 4(-)                 |                    |                    |               |                                               |
|               |                      | 1247.4 6                        | 13 4                           | 1991.55 | 3,5                  |                    |                    |               |                                               |
|               |                      | 1347.8 6                        | 53 4                           | 1890.92 | 5(+),3               | (E1+M2)            | -0.09 22           | 0.00052 24    | $\alpha(K) = 0.00045 \ 20$                    |
|               |                      | 1715.6 8                        | 31 4                           | 1523.67 | (5 <sup>-</sup> )    | D+Q                |                    |               |                                               |
|               |                      | 1996.4 7                        | 100 5                          | 1242.21 | (3 <sup>-</sup> )    | D+Q                |                    |               |                                               |

### $\gamma$ (144Ce) (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f$ | $\mathbf{J}_f^{\pi}$ | $E_i$ (level) | $J_i^\pi$     | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathrm{E}_f$ | $\mathbf{J}^{\boldsymbol{\pi}}_f$ |
|--------------|----------------------|------------------------|------------------------|----------------|----------------------|---------------|---------------|------------------------|------------------------|----------------|-----------------------------------|
| 3238.85      | $4^{(-)},(2)$        | 2300.0 10              | 11.7 24                | 938.65         | 4+                   | 3424.2?       |               | 3027.4 <sup>@</sup> 15 | 100 20                 | 397.441        | 2+                                |
| 3263.0       | $(2^+,3,4^+)$        | 857.8 <i>5</i>         | 13 12                  | 2405.2         | $3,2^{(+)}$          | 3566.1        |               | 662.5 4                | 100 9                  | 2903.6         | $(3^-,4^+,2)$                     |
|              |                      | 2324.4 9               | 55 9                   | 938.65         | 4+                   |               |               | 763.4 <sup>@</sup> 4   | 34 8                   | 2802.5         |                                   |
|              |                      | 2865.2 12              | 100 9                  | 397.441        | 2+                   |               |               | 2323.7 9               | 32 6                   | 1242.21        | $(3^{-})$                         |
| 3278.6       |                      | 1237.8 <i>6</i>        | 100 <i>16</i>          | 2040.7         | $3^{(+)}$            | 3597.1        |               | 974.2 5                | 100 17                 | 2623.2         |                                   |
|              |                      | 2036.5 9               | 73 15                  | 1242.21        | $(3^{-})$            |               |               | 2353.6 10              | 40 9                   | 1242.21        | $(3^{-})$                         |
|              |                      | 2340.0 <i>15</i>       | 38 10                  | 938.65         | 4+                   | 3614.2        |               | 2372.0 20              | 100.0                  | 1242.21        | (3 <sup>-</sup> )                 |
| 3293.5       |                      | 1804.4 8               | 100 <i>13</i>          | 1489.0         | $2^{(+)}$            | 3628.9        | $1^{(-)},2^+$ | 746.9 <i>4</i>         | 100 12                 | 2882.0         | 2+                                |
|              |                      | 2051.4 10              | 79 13                  | 1242.21        | $(3^{-})$            |               |               | 2386.8 20              | <32.05                 | 1242.21        | (3 <sup>-</sup> )                 |
|              |                      | 2896.2 12              | 45 9                   | 397.441        | 2+                   |               |               | 3628.9 <i>15</i>       | 15 <i>4</i>            | 0.0            | $0_{+}$                           |
| 3335.74      | $(11^{-})$           | 699.0 <sup>‡</sup>     | 100‡                   | 2636.74        | $(9^{-})$            | 3635.0        | $1^{(-)},2^+$ | 1010.8 5               | 100 22                 | 2623.2         |                                   |
| 3371.9?      |                      | 621.8 5                | $1.0 \times 10^2 \ 3$  | 2749.9         | 2+                   |               |               | 2150.8 9               | 43 18                  | 1489.0         | $2^{(+)}$                         |
|              |                      | 2131.0 <i>16</i>       | 20 10                  | 1242.21        | $(3^{-})$            |               |               | 2390.3 20              | <54.35                 | 1242.21        | $(3^{-})$                         |
| 3396.2?      |                      | 2154.0 <i>10</i>       | 100.0                  | 1242.21        | $(3^{-})$            |               |               | 3632.4 <i>15</i>       | 22 7                   | 0.0            | $0_{+}$                           |
| 3408.5       |                      | 1367.6 5               | 68 15                  | 2040.7         | 3 <sup>(+)</sup>     | 3790.1        |               | 1437.8 <i>6</i>        | 34 20                  | 2352.6         | 2+                                |
|              |                      | 1387.5 6               | 100 15                 | 2021.1         | $3^{(+)}$            |               |               | 1450.2 6               | 100 25                 | 2339.8         | $2^{(+)}$                         |
|              |                      | 2166.5 9               | 53 11                  | 1242.21        | $(3^{-})$            |               |               | 2547.6 11              | 29 10                  | 1242.21        | $(3^{-})$                         |
| 3424.2?      |                      | 2182.1 <sup>@</sup> 9  | 46 <i>16</i>           | 1242.21        | $(3^{-})$            | 3973.6        |               | 2731.4 12              | 100.0                  | 1242.21        | (3-)                              |

6

<sup>&</sup>lt;sup>†</sup> From β-decay studies, except as noted. <sup>‡</sup> From 1995Zh34 in SF decay. <sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>&</sup>lt;sup>@</sup> Placement of transition in the level scheme is uncertain.

#### 







 $^{144}_{58}\mathrm{Ce}_{86}$ 











<sup>144</sup><sub>58</sub>Ce<sub>86</sub>

|                 | History                                |                     |                        |
|-----------------|----------------------------------------|---------------------|------------------------|
| Type            | Author                                 | Citation            | Literature Cutoff Date |
| Full Evaluation | Yu. Khazov, A. Rodionov and G. Shulyak | NDS 136, 163 (2016) | 14-Jul-2016            |

 $Q(\beta^-)=1050\ 30$ ;  $S(n)=6640\ 40$ ;  $S(p)=10089\ 20$ ;  $Q(\alpha)=-240\ 17$  2012Wa38 Produced and identified by 1953Ca10; uranium fission.

## <sup>146</sup>Ce Levels

The level scheme of  $^{146}$ Ce is constructed on the basis of data on 6.1 s and 9.8 s  $\beta^-$  decays of  $^{146}$ La, and fragment decay in  $^{252}$ Cf SF.  $^{146}$ Ce produced also in  $^{147}$ La( $\beta^-$ n) decay;  $\%\beta^-$ n=0.035 6 (1986Wa17),  $\%\beta^-$ n=0.033 25 (1984Ma39), no  $\gamma$  rays of  $^{146}$ Ce were observed.

#### Cross Reference (XREF) Flags

- A  $^{146}$ La  $β^-$  decay (6.1 s) B  $^{146}$ La  $β^-$  decay (9.8 s) C  $^{252}$ Cf SF decay
- D  $^{235}$ U(n,F $\gamma$ )

| E(level) <sup>†‡</sup>       | $\mathbf{J}^{\pi}$ | T <sub>1/2</sub>    | XREF   | Comments                                                                                                                                                                                                                                                                                                                |
|------------------------------|--------------------|---------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                          | 0+                 | 13.49 min <i>16</i> | ABCD   | $\%\beta^{-}=100$                                                                                                                                                                                                                                                                                                       |
|                              |                    | 10.17 19            | 1.2 02 | T <sub>1/2</sub> : average with Rajeval technique of 13.16 min 5 (1983Ge11), 13.52 min 13 (1980Ya07), 13.9 min 6 (1953Ca10), 14.6 min 8 (1950Sc85).                                                                                                                                                                     |
| 258.45 <sup>@</sup> 4        | 2+                 | 0.231 ns 26         | ABCD   | <i>μ</i> =+0.92 20 (2009Go09)                                                                                                                                                                                                                                                                                           |
|                              |                    |                     |        | $J^{\pi}$ : 258.4 $\gamma$ E2 to 0 <sup>+</sup> , band assignment.<br>$\mu$ : obtained by IPAC method; sign from systematics, theory. Others: $\mu$ =0.92 68                                                                                                                                                            |
|                              |                    |                     |        | $\mu$ : obtained by IPAC method; sign from systematics, theory. Others: $\mu$ =0.92 08 (IMPAC 1999Sm05), $\mu$ =0.48 10 (IPAC 1986Gi05).                                                                                                                                                                                |
|                              |                    |                     |        | T <sub>1/2</sub> : average with Rajeval technique of 0.26 ns 5 (1974JaYY), 0.24 ns 3 (1980ChZM), 0.189 ns 10 (1989Ma38). Other: 0.29 ns (1970Wi16).                                                                                                                                                                     |
| 668.38 <sup>@</sup> 4        | 4+                 |                     | ABC    | $J^{\pi}$ : 409.8 $\gamma$ E2 to 2 <sup>+</sup> , band assignment.                                                                                                                                                                                                                                                      |
| 924.58 <sup>b</sup> 4        | 1-                 |                     | ABC    | $J^{\pi}$ : 666.1 $\gamma$ E1 to 2 <sup>+</sup> , 924.59 $\gamma$ to 0 <sup>+</sup> , from $\gamma\gamma(\theta)$ , head level of octupole band. This level is not connected by a transition with next member of the band, namely 960.72 keV level. Assignment is based on E(level) considerations (1988Ph02,1999HaZV). |
| 960.72 <sup>b</sup> 5        | 3-                 |                     | ABC    | $J^{\pi}$ : 702.2 $\gamma$ E1 to 2 <sup>+</sup> , from $\gamma\gamma(\theta)$ , octupole band assignment.                                                                                                                                                                                                               |
| 1043.24 <mark>&amp;</mark> 8 | $0_{+}$            |                     | AB     | $J^{\pi}$ : 784.7 $\gamma$ E2 to $2^{+}$ , from $\gamma\gamma(\theta)$ , head level of $\beta$ -band.                                                                                                                                                                                                                   |
| 1171.35 <sup>@</sup> 7       | 6+                 |                     | ABC    | $J^{\pi}$ : 503.0 $\gamma$ E2 to 4 <sup>+</sup> , band assignment.                                                                                                                                                                                                                                                      |
| 1182.98 <sup>b</sup> 6       | 5-                 |                     | ABC    | $J^{\pi}$ : 514.7 $\gamma$ E1 to 4 <sup>+</sup> , from $\gamma\gamma(\theta)$ , octupole band assignment.                                                                                                                                                                                                               |
| 1274.34 <mark>&amp;</mark> 5 | 2+                 |                     | AB     | $J^{\pi}$ : 1015.9 $\gamma$ M1+E2 to 2 <sup>+</sup> , 1274.3 $\gamma$ to 0 <sup>+</sup> , from $\gamma\gamma(\theta)$ , $\beta$ -band assignment.                                                                                                                                                                       |
| 1381.93 <sup>a</sup> 5       | 2+                 |                     | AB     | $J^{\pi}$ : 713.41 $\gamma$ to 4 <sup>+</sup> , 1382.02 $\gamma$ to 0 <sup>+</sup> , head level of $\gamma$ band (2000Ya08).                                                                                                                                                                                            |
| 1551.06 <sup>b</sup> 10      | 7-                 |                     | С      | $J^{\pi}$ : 379.7 $\gamma$ (E1) to 6 <sup>+</sup> , 368.0 $\gamma$ to 5 <sup>-</sup> ; decay pattern and band assignment. E(level): this could be the same as the level 1551.13 keV. There is a discrepancy in their $J^{\pi}$ assignments and their decay patterns.                                                    |
| 1551.13 9                    | 5-                 |                     | В      | $J^{\pi}$ : 379.8 $\gamma$ E1 to 6 <sup>+</sup> , 882.6 $\gamma$ to 4 <sup>+</sup> is confirmed by $\gamma\gamma$ coin in 1993Sh10.                                                                                                                                                                                     |
| 1576.63 <sup>a</sup> 6       | 3 <sup>+</sup>     |                     | AB     | $J^{\pi}$ : 1318.14 $\gamma$ M1+E2 to 2 <sup>+</sup> , from $\gamma\gamma(\theta)$ , band assignment.                                                                                                                                                                                                                   |
| 1627.30 <sup>&amp;</sup> 7   | 4+                 |                     | AB     | $J^{\pi}$ : 959.1 $\gamma$ M1+E2 to 4 <sup>+</sup> , from $\gamma\gamma(\theta)$ , band assignment.                                                                                                                                                                                                                     |
| 1657.77 12                   | 0+                 |                     | AB     | $J^{\pi}$ : 1398.8γ to 2 <sup>+</sup> , from γγ(θ), 0+→2+→0 <sup>+</sup> cascade in 1981WaZL; log $f^{1u}t$ =8 in β- decay of <sup>146</sup> La, $J^{\pi}$ =(2 <sup>-</sup> ).                                                                                                                                          |
| 1711.92 <sup>a</sup> 8       | $(4^{+})$          |                     | В      | $J^{\pi}$ : 1453.5 $\gamma$ to 2 <sup>+</sup> , 528.8 $\gamma$ to 5 <sup>-</sup> , 427.7 $\gamma$ from (5 <sup>+</sup> ); band assignment (2000Ya08).                                                                                                                                                                   |
| 1736.77 <sup>@</sup> 12      | 8 <sup>+#</sup>    |                     | BC     |                                                                                                                                                                                                                                                                                                                         |

#### <sup>146</sup>Ce Levels (continued)

```
E(level)<sup>†‡</sup>
                                J^{\pi}
                                              XREF
                                                                                                                                  Comments
1753.83 7
                          (1^-,2,3^-)
                                                            J^{\pi}: 793.1\gamma to 3<sup>-</sup>, 829.3\gamma to 1<sup>-</sup>.
                                              AB
                                                            J^{\pi}: 713.5\gamma and 1756.8\gamma to 0<sup>+</sup>.
1756.68 6
                          (1,2^+)
                                              AB
                                                            J^{\pi}: 808.6\gamma to 3<sup>-</sup>, 501.3\gamma from (6<sup>+</sup>); from feeding in <sup>146</sup>La, J^{\pi}=6<sup>-</sup> \beta<sup>-</sup> decay.
1769.22 10
                          (4^+,5^-)
                                               В
1797.0 3
                                                В
                          (4^{+})
1802.31 4
                                              AB
                                                            J^{\pi}: 1543.9\gamma to 2<sup>+</sup>, 631.4\gamma to 6<sup>+</sup>.
1808.45 13
                                              AB
1810.41<sup>a</sup> 6
                          5+
                                                В
                                                            J^{\pi}: 183.2\gamma M1+E2 to 4<sup>+</sup>, 638.9\gamma, M1+E2 to 6<sup>+</sup>; band assignment (2000Ya08).
                          (1,2^+)
1831.91 11
                                              AB
                                                            J^{\pi}: 1831.6\gamma to 0<sup>+</sup>.
                          (4,5^{-})
1875.55 17
                                                            J^{\pi}: 915.0\gamma to 3<sup>-</sup>, 692.4\gamma to 5<sup>-</sup>.
                                                В
                                                            J<sup>π</sup>: 523.0γ from (3<sup>-</sup>); feeding in <sup>146</sup>La, J^{\pi}=6^{-}\beta^{-} decay.
                          (3^-,4,5^-)
                                                В
1891.83 9
                                                            J^{\pi}: 955.5\gamma to 3<sup>-</sup>; from feeding in <sup>146</sup>La, J^{\pi}=6<sup>-</sup>\beta<sup>-</sup> decay.
1916.19 11
                          (4,5^{-})
                                                В
                                                            J^{\pi}: 784.8\gamma to 6<sup>+</sup>, 1288.2\gamma to 4<sup>+</sup>; from feeding in <sup>146</sup>La, J^{\pi}=6<sup>-</sup> \beta<sup>-</sup> decay.
1956.26 8
                          (4^+,5,6^+)
                                              AB
1989.16 14
                                              AB
2019.41<sup>b</sup> 14
                          (9^{-})^{\#}
                                                  C
2022.6 3
                                                            J^{\pi}: 1764.2\gamma to 2<sup>+</sup>; from feeding in <sup>146</sup>La, J^{\pi}=6<sup>-</sup>\beta<sup>-</sup> decay.
                          (4^{+})
                                               В
2031.43 9
                                                            J^{\pi}: 1772.7\gamma to 2<sup>+</sup>, 860.7\gamma to 6<sup>+</sup>.
                          (4^{+})
                                              AB
2051.55 10
                                              AB
2071.79 12
                          (2^{+})
                                              AB
                                                            J^{\pi}: 1028.5\gamma to 0<sup>+</sup>, 1404.2\gamma to 4<sup>+</sup>.
                                                            J^{\pi}: 1832.7\gamma to 2<sup>+</sup>, 918.6\gamma to 6<sup>+</sup>.
2090.47 13
                          (4^{+})
                                               В
                          (1^+,2^+)
                                                            J^{\pi}: 1084.3\gamma to 0<sup>+</sup>, 549.8\gamma to 3<sup>+</sup>.
2126.46 11
                                              AB
2128.68 21
                                                В
2139.81 14
                          (4^+,5^+)
                                                В
                                                            J^{\pi}: 969.0\gamma to 6<sup>+</sup>, 563.4\gamma to 3<sup>+</sup>.
                          (1^-,2^+)
2155.99 12
                                              AB
                                                            J^{\pi}: 2155.8\gamma to 0<sup>+</sup>, 1195.4\gamma to 3<sup>-</sup>.
                          (5^-,4^+)
                                                            J^{\pi}: 1216.5\gamma to 3<sup>-</sup>, 1006.1\gamma to 6<sup>+</sup>.
2177.37 7
                                               В
2179.44 18
                          (1,2^+)
                                                            J^{\pi}: 2179.6\gamma to 0<sup>+</sup>.
                                              Α
                                                В
2183.0 5
2194.08 17
                                                В
2209.6 4
                                                В
2222.71 13
                          (3,4^+)
                                                            J^{\pi}: 948.4\gamma to 2<sup>+</sup>, 646.0\gamma to 3<sup>+</sup>, 1262.2\gamma to 3<sup>-</sup>.
                                              AB
                          (1,2^+)
2233.66 16
                                                            J^{\pi}: 2233.9\gamma to 0<sup>+</sup>.
                                              Α
                                                            J^{\pi}: 225.0\gamma to (4<sup>+</sup>); from feeding in <sup>146</sup>La, J^{\pi}=6<sup>-</sup>\beta<sup>-</sup> decay.
2256.53 8
                          (4^+,5,6^+)
                                               В
2261.1 3
                                              Α
2262.14 11
                                                В
2270.30<sup>&</sup> 14
                                                В
                                                            J^{\pi}: 1602.1\gamma to 4<sup>+</sup>; band assignment (1993Sh10).
                          (6^{+})
2274.5 3
                                                B
2311.02 11
                          (1^-,2^+)
                                              AB
                                                            J^{\pi}: 2311.0\gamma to 0<sup>+</sup>, 1350.5\gamma to 3<sup>-</sup>.
2318.57 7
                          (1,2^+)
                                              AB
                                                            J^{\pi}: 2318.6\gamma to 0<sup>+</sup>.
2337.5 6
                                                В
2351.51<sup>@</sup> 16
                         (10^+)^{\#}
                                                  C
2368.08 10
                          (1^-,2^+)
                                              AB
                                                            J^{\pi}: 2367.9\gamma to 0<sup>+</sup>, 1407.6\gamma to 3<sup>-</sup>.
2373.3 3
                                                В
                                              AB
                                                            J^{\pi}: 2397.78\gamma to 0<sup>+</sup>, 366.68\gamma to (4<sup>+</sup>).
2397.85 9
                          (2^{+})
2399.07 19
                                              Α
                                                            J^{\pi}: 2155.9\gamma to 2<sup>+</sup>; from feeding in <sup>146</sup>La, J^{\pi}=6^{-}\beta^{-} decay.
2414.51 10
                          (4^{+})
                                              AB
2442.40 22
                                              Α
2446.89 10
                          (3^{-})
                                              AB
                                                            J^{\pi}: 2188.3\gamma to 2<sup>+</sup>, 572.1\gamma to (4,5<sup>-</sup>), 836.0\gamma from (1<sup>-</sup>,2<sup>+</sup>).
2468.8 3
                                                В
2512.21 21
                                              AB
2519.16 15
                                               В
2543.83 13
                                              AB
2551.86 10
                                              AB
2562.65<sup>b</sup> 16
                          (11^{-})^{\#}
                                                  C
2569.86 13
                                              AB
2587.68 21
                                               В
2639.47 19
                                              Α
```

#### <sup>146</sup>Ce Levels (continued)

```
E(level)<sup>†‡</sup>
                                                                                                                  Comments
                                   XREF
2713.44 15
                                   AB
2779.5 4
                    (1,2^+)
                                                J^{\pi}: 2779.4\gamma to 0<sup>+</sup>.
                                    В
2796.72 25
                                     В
2809.5 3
                                     В
2841.11 11
                                   AB
2861.88 11
                    (1,2^+)
                                   AB
                                                J^{\pi}: 2861.5\gamma to 0<sup>+</sup>.
2868.96 12
                                   AB
2914.23 12
                                    B
                                                J^{\pi}: 2028.8\gamma to 1<sup>-</sup>, 1377.0\gamma to 3<sup>+</sup>, 1992.5\gamma to 3<sup>-</sup>.
2953.46 11
                    (2,3^{-})
                                   ΑB
2996.27 24
                    (1,2^+)
                                   Α
                                                J^{\pi}: 2996.0\gamma to 0<sup>+</sup>.
3064.0 3
                                    В
3163.4<sup>b</sup> 3
                    (13^{-})^{#}
                                      C
3164.6 5
                                                J^{\pi}: 3165.5\gamma to 0<sup>+</sup>.
                    (1,2^+)
                                     В
3166.65 17
                    (1,2^+)
                                   Α
                                                J^{\pi}: 1508.7\gamma to 0<sup>+</sup>.
3243.11 9
                                    В
                                                J^{\pi}: 1129.2\gamma to (1<sup>+</sup>,2<sup>+</sup>), 2293.2\gamma to 3<sup>-</sup>, 1678.7\gamma to 3<sup>+</sup>.
3255.45 17
                    (2,3^+)
                                   ΑB
3273.7 9
                                     В
                    (1^-,2^+)
                                                J^{\pi}: 1625.0\gamma to 0<sup>+</sup>, 2322.38\gamma to 3<sup>-</sup>.
3283.15 10
                                   AB
                                                J^{\pi}: 1673.1\gamma to 0<sup>+</sup>, 1752.9\gamma to 3<sup>+</sup>, 2368.8\gamma to 3<sup>-</sup>.
3329.54 12
                    (2^{+})
                                   AB
3342.03 10
                                   AB
3390.2 6
                                     В
3399.56 11
                    (1,2^+)
                                                J^{\pi}: 1741.5\gamma to 0<sup>+</sup>.
                                   Α
3403.3 4
                                     В
3450.6 4
                                     В
3457.86 10
                                   Α
3494.51 16
                                     В
3502.20 21
                                     В
3532.7 4
                                     В
3535.16 21
                                   AB
3653.7 5
                    (2^{+})
                                     В
                                                J^{\pi}: 3653.7\gamma to 0<sup>+</sup>, 2985.2\gamma to 4<sup>+</sup>.
3729.9 4
                                     В
3826.0<sup>b</sup> 4
                    (15^{-})^{#}
                                      C
3859.1 5
                                     В
3918.0 6
                                     В
3956.66 19
3978.4 5
                                                J^{\pi}: 2427.0\gamma to 5<sup>-</sup>, 3720.3\gamma to 2<sup>+</sup>.
                                     В
4089.70 19
                                   Α
4190.4 6
                                     В
4210.0 5
                                     В
4255.3 4
                                     В
4269.4 4
                                     В
4410.93 19
                                   Α
4497.1 9
                                     В
4521.7 3
                                     В
                    (1,2^+)
                                                J^{\pi}: 4690.2\gamma to 0<sup>+</sup>.
4690.04 21
```

<sup>†</sup> Band assignments are as in 2000Ya08 and 1999HaZV (octupole vibrational band), except as noted.

<sup>&</sup>lt;sup>‡</sup> From a least-squares fit to Ey, normalized  $\chi^2=1.5$ .

<sup>#</sup> From band structure with well established spins and parity of low-lying levels connected by cascade of transitions.

<sup>&</sup>lt;sup>@</sup> Band(A): ground state band,  $\Delta J=2$ .

<sup>&</sup>amp; Band(B): possible  $\beta$  vibrational band,  $\Delta J=2$ .

<sup>&</sup>lt;sup>a</sup> Band(C): possible  $\gamma$  vibrational band,  $\Delta J=1$ .

<sup>&</sup>lt;sup>b</sup> Band(D): octupole vibrational band,  $\Delta J=2$ .

## $\gamma$ (146Ce)

Warning: there is serious discrepancy in  $\gamma$  placement between the  $^{146}$ La (6.1 s) and the  $^{146}$ La (9.8 s) decays. Often the branching ratios differ significantly from each other.

|     | $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$                       | $I_{\gamma}^{\ddagger}$       | $\mathbb{E}_f$   | $\underline{\mathbf{J}_f^{\pi}}$ | Mult.#  | δ@            | $\alpha^f$            | Comments                                                                                                        |
|-----|--------------|----------------------|----------------------------------------------|-------------------------------|------------------|----------------------------------|---------|---------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|
| [ ] | 258.45       | 2+                   | 258.43 5                                     | 100                           | 0.0              | 0+                               | E2      |               | 0.0786                | B(E2)(W.u.)=43 5                                                                                                |
|     | 668.38       | 4+                   | 409.78 5                                     | 100                           | 258.45           | 2+                               | E2      |               | 0.0189                |                                                                                                                 |
|     | 924.58       | 1-                   | 666.09 <sup>ah</sup> 6                       | 80 <sup>hd</sup> 4            | 258.45           | 2+                               | E1+(M2) |               | 0.00191 4             | Very small value of $A_4$ in the cascade $666\gamma$ - $258\gamma$ indicates pure dipole transition (1983Wo03). |
|     |              |                      | 924.59 6                                     | 100 <sup>d</sup> 5            | 0.0              | $0^{+}$                          |         |               |                       |                                                                                                                 |
|     | 960.72       | 3-                   | 36.2 <i>3</i>                                | 1.7 10                        | 924.58           |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 292.32 5                                     | 10.7 <i>7</i>                 | 668.38           |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 702.18 8                                     | 100 5                         | 258.45           | 2+                               | E1      |               | 0.00170 5             | Very small value of $A_4$ in the cascade $666\gamma$ -258 $\gamma$ indicates pure dipole transition (1983Wo03). |
|     | 1043.24      | $0_{+}$              | 118.5 2                                      | 1.7 <mark>d</mark> 4          | 924.58           | 1-                               |         |               |                       |                                                                                                                 |
|     |              |                      | 784.7 <i>6</i>                               | 100 33                        | 258.45           |                                  | E2      |               | 0.00346               |                                                                                                                 |
|     | 1171.35      | 6+                   | 503.0 <i>I</i>                               | 100                           | 668.38           |                                  | E2      |               | 0.01061               |                                                                                                                 |
|     | 1182.98      | 5-                   | 221.60 <sup>b</sup> 25                       |                               | 960.72           |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 514.67 <i>6</i>                              | 100                           | 668.38           |                                  | E1      |               | 0.00336               |                                                                                                                 |
|     | 1274.34      | 2+                   | 231.2 5                                      | 0.73 30                       | 1043.24          |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 314.8 <sup>a</sup> 8<br>349.9 <sup>a</sup> 6 | 11 2                          | 960.72           |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 607.1 <i>4</i>                               | 2.9 <i>12</i><br>1.3 <i>5</i> | 924.58<br>668.38 |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 1015.90 7                                    | 100 12                        | 258.45           |                                  | M1+E2   | 5.4 +31-15    | 0.00198 4             |                                                                                                                 |
|     |              |                      | 1274.29 12                                   | 37 8                          | 0.0              |                                  | 111112  | 5.1 151 15    | 0.00170 7             |                                                                                                                 |
|     | 1381.93      | 2+                   | 107.61 9                                     | 0.56 <sup>d</sup>             | 1274.34          | 2+                               |         |               |                       |                                                                                                                 |
|     |              |                      | 338.8 <i>3</i>                               | 0.48 15                       | 1043.24          |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 421.11 9                                     | 20 13                         | 960.72           |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 457.40 7                                     | 55 15                         | 924.58           |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 713.41 <i>18</i>                             | 40 13                         | 668.38           |                                  |         |               |                       |                                                                                                                 |
|     |              | _                    | 1382.02 8                                    | 100 33                        | 0.0              |                                  |         |               |                       |                                                                                                                 |
|     | 1551.06      | 7-                   | $368.0^{b}$ 1                                | 14 <sup>e</sup>               | 1182.98          |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | $379.70^{b}$ 25                              | 100 <sup>e</sup>              | 1171.35          |                                  | (E1)    |               | 0.00689               |                                                                                                                 |
|     | 1551.13      | 5-                   | $379.80^a$ 7                                 | 100 9                         | 1171.35          |                                  | E1      |               | 0.00689               |                                                                                                                 |
|     |              | - 1                  | 882.6 <sup>a</sup> 3                         | 9.4 15                        | 668.38           |                                  |         |               |                       |                                                                                                                 |
|     | 1576.63      | 3 <sup>+</sup>       | 194.8 <sup>&amp;</sup> 5                     | $2.6^{d}$ 13                  | 1381.93          |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 302.4 <sup>&amp;</sup> 3                     | <5 <sup>d</sup>               | 1274.34          |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 908.15 <i>15</i>                             | 22.5 <sup>d</sup> 15          | 668.38           |                                  |         |               |                       |                                                                                                                 |
|     |              |                      | 1318.14 7                                    | $100^{d} 5$                   | 258.45           |                                  | M1+E2   | 6.5 + 17 - 11 | $1.17 \times 10^{-3}$ |                                                                                                                 |
|     | 1627.30      | 4+                   | 352.9 <sup>a</sup> 3                         | 3.6 5                         | 1274.34          | 2+                               |         |               |                       |                                                                                                                 |

## $\gamma(^{146}\text{Ce})$ (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$                                      | $I_{\gamma}^{\ddagger}$       | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$              | Mult.#  | $\delta^{	extit{@}}$ | $\alpha^f$            | Comments                                                                                        |
|--------------|----------------------|-------------------------------------------------------------|-------------------------------|-------------------------------------------------|---------|----------------------|-----------------------|-------------------------------------------------------------------------------------------------|
| 1627.30      | 4+                   | 444.2 <sup>a</sup> 2<br>666.09 <sup>ach</sup> 8             | 12.6 7<br>24 <sup>h</sup> 3   | 1182.98 5 <sup>-</sup><br>960.72 3 <sup>-</sup> |         |                      |                       | E <sub>y</sub> : poor fit, difference between energies of corresponding levels equals 666.58 7. |
|              |                      | 959.10 <sup>a</sup> 14                                      | 100 10                        | 668.38 4+                                       | M1+E2   | 1.19 +16-14          | 0.00262 8             | corresponding levels equals 666.38 /.                                                           |
|              |                      | 1368.8 <sup>h</sup> 1                                       | $30^{h}_{1}$ 5                | 258.45 2+                                       | E2      |                      | $1.09 \times 10^{-3}$ |                                                                                                 |
| 1657.77      | $0_{+}$              | 275.5 <i>3</i>                                              | 6 <mark>d</mark> 4            | 1381.93 2+                                      |         |                      |                       |                                                                                                 |
|              |                      | 383.21 24                                                   | 13 <sup>d</sup> 5             | 1274.34 2+                                      |         |                      |                       |                                                                                                 |
|              |                      | 1398.87 28                                                  | 100 <sup>d</sup> 50           | 258.45 2+                                       |         |                      |                       |                                                                                                 |
| 1711.92      | $(4^{+})$            | 528.8 <i>a</i> 3                                            | 26 4                          | 1182.98 5-                                      |         |                      |                       |                                                                                                 |
|              |                      | 751.1 <sup>a</sup> 1                                        | 75 8                          | 960.72 3-                                       |         |                      |                       |                                                                                                 |
|              |                      | 1043.6 <sup>a</sup> 1                                       | 100 10                        | 668.38 4+                                       |         |                      |                       |                                                                                                 |
|              |                      | 1453.5 <sup>a</sup> 3                                       | 40 4                          | 258.45 2 <sup>+</sup>                           |         |                      |                       |                                                                                                 |
| 1736.77      | 8+                   | 185.65 <sup>b</sup> 15                                      | 30 <sup>e</sup>               | 1551.06 7                                       |         |                      |                       |                                                                                                 |
| 1752.02      | (1= 0.2=)            | 565.60 16                                                   | 100°                          | 1171.35 6+                                      |         |                      |                       |                                                                                                 |
| 1753.83      | $(1^-,2,3^-)$        | 793.08 <i>14</i> 829.25 <i>7</i>                            | 100 <i>30</i><br>82 <i>17</i> | 960.72 3 <sup>-</sup><br>924.58 1 <sup>-</sup>  |         |                      |                       |                                                                                                 |
|              |                      | 1495.2 3                                                    | $<7^{\frac{d}{d}}$            | 258.45 2 <sup>+</sup>                           |         |                      |                       |                                                                                                 |
| 1756.60      | (1.0+)               | 713.47 <sup>h</sup> 10                                      | $15^{h}$ 7                    |                                                 |         |                      |                       |                                                                                                 |
| 1756.68      | $(1,2^+)$            | 713.47 10<br>831.97 17                                      | 20 5                          | 1043.24 0 <sup>+</sup> 924.58 1 <sup>-</sup>    |         |                      |                       |                                                                                                 |
|              |                      | 1498.15 <i>14</i>                                           | 20 <i>3</i><br>100 <i>17</i>  | 258.45 2 <sup>+</sup>                           |         |                      |                       |                                                                                                 |
|              |                      | 1756.79 9                                                   | 60 12                         | $0.0 	 0^{+}$                                   |         |                      |                       |                                                                                                 |
| 1769.22      | $(4^+,5^-)$          | 585.8 <sup>a</sup> 4                                        | 19 3                          | 1182.98 5                                       |         |                      |                       |                                                                                                 |
|              | ( )- )               | 808.6 <sup>a</sup> 1                                        | 100 10                        | 960.72 3-                                       |         |                      |                       |                                                                                                 |
| 1797.0       |                      | 1538.5 <sup>a</sup> 3                                       | 100                           | 258.45 2 <sup>+</sup>                           |         |                      |                       |                                                                                                 |
| 1802.31      | $(4^{+})$            | 631.4 <sup>a</sup> 7                                        | 34 6                          | 1171.35 6+                                      |         |                      |                       |                                                                                                 |
|              |                      | 1133.92 <i>a</i> 19                                         | 48 9                          | 668.38 4+                                       |         |                      |                       |                                                                                                 |
|              |                      | 1543.86 <sup>a</sup> 17                                     | 100 10                        | 258.45 2+                                       |         |                      |                       |                                                                                                 |
| 1808.45      |                      | 533.7 & 2                                                   | $30^{d}$ 5                    | 1274.34 2+                                      |         |                      |                       |                                                                                                 |
|              |                      | 1140.2 <mark>&amp;</mark> 2                                 | 100 <sup>d</sup> 8            | 668.38 4+                                       |         |                      |                       |                                                                                                 |
|              |                      | 1550.30 <sup>&amp;</sup> 21                                 | 100 <sup>d</sup> 10           | 258.45 2+                                       |         |                      |                       |                                                                                                 |
| 1810.41      | 5+                   | 183.16 <sup>a</sup> 7                                       | 100 9                         | 1627.30 4+                                      | E2+M1   | 2.7 + 9 - 7          | 0.244 5               |                                                                                                 |
|              |                      | 233.6 <sup>a</sup> 4                                        | 6.0 7                         | 1576.63 3+                                      |         |                      |                       |                                                                                                 |
|              |                      | 627.1 <sup>a</sup> 2<br>638.9 <sup>a</sup> 1                | 14.5 15                       | 1182.98 5                                       | M1 . F2 | 0.22.15              | 0.0002 3              |                                                                                                 |
|              |                      | 638.9 <sup>a</sup> <i>I</i><br>1142.1 <sup>a</sup> <i>I</i> | 34 <i>3</i><br>89 <i>7</i>    | 1171.35 6 <sup>+</sup> 668.38 4 <sup>+</sup>    | M1+E2   | 0.33 15              | 0.0082 3              |                                                                                                 |
| 1021 01      | (1.2±)               |                                                             | $100^{\frac{d}{5}}$           | 258.45 2 <sup>+</sup>                           |         |                      |                       |                                                                                                 |
| 1831.91      | $(1,2^+)$            | 1573.60 13                                                  |                               |                                                 |         |                      |                       |                                                                                                 |
| 1075 55      | (4.5-)               | 1831.60 <sup>&amp;</sup> 18                                 | $22.5^{d}$ 25                 | $0.0 	 0^{+}$                                   |         |                      |                       |                                                                                                 |
| 1875.55      | $(4,5^{-})$          | 692.4 <sup>a</sup> 4<br>915.0 <sup>a</sup> 2                | 40 8<br>100 8                 | 1182.98 5 <sup>-</sup><br>960.72 3 <sup>-</sup> |         |                      |                       |                                                                                                 |
|              |                      | 913.U Z                                                     | 100 0                         | 300.12 3                                        |         |                      |                       |                                                                                                 |

S

## $\gamma(\frac{146}{\text{Ce}})$ (continued)

| $E_{\gamma}^{\dagger}$                        | $I_{\gamma}^{\ddagger}$                                                        | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$              | Comments                                                                                                |
|-----------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 81.2 <sup>a</sup> 2                           | 19.5 <i>21</i>                                                                 | 1810.41 5+                                       |                                                                                                         |
| 123.1 <sup>a</sup> 4                          | 15 5                                                                           | 1769.22 (4+,5-)                                  |                                                                                                         |
| 1223.5 <sup>a</sup> 1                         | 100 8                                                                          | 668.38 4+                                        |                                                                                                         |
| 732.4 <sup>a</sup> 5                          | 7.6 18                                                                         | 1182.98 5                                        |                                                                                                         |
| 955.5 <i>a</i> 1                              | 100 9                                                                          | 960.72 3-                                        |                                                                                                         |
| 145.5 <i>a</i> 6                              | 3.9 11                                                                         | 1810.41 5+                                       |                                                                                                         |
| 404.7 <sup>a</sup> 4<br>773.5 <sup>a</sup> 1  | 27.1 21                                                                        | 1551.13 5                                        |                                                                                                         |
| 773.5 <sup>a</sup> 1<br>784.8 <sup>a</sup> 1  | 100 7<br>42 9                                                                  | 1182.98 5 <sup>-</sup><br>1171.35 6 <sup>+</sup> |                                                                                                         |
| 1288.2 <sup>a</sup> 2                         | 38 <i>5</i>                                                                    | 668.38 4+                                        |                                                                                                         |
| 1028.42 <sup>8</sup> 18                       | 48.7 <sup>dg</sup> 17                                                          | 960.72 3                                         |                                                                                                         |
| $1028.428 18$ $1064.6 \frac{\&g}{2}$ 2        | $100^{\frac{dg}{7}}$                                                           |                                                  |                                                                                                         |
|                                               |                                                                                | 924.58 1                                         |                                                                                                         |
| $282.7^{b}$ 1                                 | 100 <sup>e</sup>                                                               | 1736.77 8+                                       |                                                                                                         |
| 468.25 <sup>b</sup> 15                        | 69 <sup>e</sup>                                                                | 1551.06 7-                                       |                                                                                                         |
| 1353.9 <sup>a</sup> 5                         | 87 13                                                                          | 668.38 4 <sup>+</sup>                            |                                                                                                         |
| 1764.2 <sup>a</sup> 3<br>221.5 <sup>a</sup> 2 | 100 <i>15</i><br>97 <i>23</i>                                                  | 258.45 2 <sup>+</sup><br>1810.41 5 <sup>+</sup>  |                                                                                                         |
| 756.89 24                                     | 97 23<br>18 5                                                                  | 1810.41 5*<br>1274.34 2 <sup>+</sup>             |                                                                                                         |
| 860.7 <sup>a</sup> 2                          | 95 26                                                                          | 1171.35 6 <sup>+</sup>                           |                                                                                                         |
| 1362.87 30                                    | 100 23                                                                         | 668.38 4+                                        |                                                                                                         |
| 1772.67 <i>14</i>                             | 95 21                                                                          | 258.45 2 <sup>+</sup>                            |                                                                                                         |
| 294.70 <sup>&amp;</sup> 25                    | <10.3 <sup>d</sup>                                                             | 1756.68 (1,2+)                                   |                                                                                                         |
| 1793.28 <i>18</i>                             | 100 <mark>d</mark> 4                                                           | 258.45 2+                                        |                                                                                                         |
| 797.50 <mark>&amp;</mark> 25                  | <27 <sup>d</sup>                                                               | 1274.34 2+                                       |                                                                                                         |
| $1028.5\frac{\&g}{}$ 2                        | $100^{\frac{27}{100}}$ 11                                                      | 1043.24 0 <sup>+</sup>                           |                                                                                                         |
| 1404.2 6                                      | 16 5                                                                           | 668.38 4+                                        |                                                                                                         |
| 1813.26 22                                    | 19 5                                                                           | 258.45 2 <sup>+</sup>                            |                                                                                                         |
| 908.0 <i>ah</i> 2                             | 14 <sup>h</sup> 3                                                              | 1182.98 5-                                       |                                                                                                         |
| 918.6 <sup>a</sup> 3                          | 38 6                                                                           | 1171.35 6 <sup>+</sup>                           |                                                                                                         |
| 1421.7 <sup>a</sup> 2                         | 100 10                                                                         | 668.38 4+                                        |                                                                                                         |
| 1832.7 <sup>a</sup> 5                         | 15 4                                                                           | 258.45 2 <sup>+</sup>                            |                                                                                                         |
| 549.8 <mark>&amp;</mark> 3                    | 27 <sup>d</sup> 3                                                              | 1576.63 3+                                       |                                                                                                         |
| 744.8 <del>&amp;</del> <i>3</i>               | 25 <b>d</b> 6                                                                  | 1381.93 2+                                       |                                                                                                         |
| 852.17 <i>16</i>                              | 100 <sup>d</sup> 10                                                            | 1274.34 2+                                       |                                                                                                         |
| 1084.31 <sup>c</sup> 14                       | $94^{\frac{1}{6}}5$                                                            | 1043.24 0 <sup>+</sup>                           | $E_{\gamma}$ : poor fit, difference between energies of corresponding levels equals 1083.21 <i>12</i> . |
| 1201.63 17                                    | $41^{\frac{d}{6}}$                                                             | 924.58 1                                         | Ly. poor in, difference between energies of corresponding levels equals 1005.21 12.                     |
|                                               |                                                                                |                                                  |                                                                                                         |
|                                               |                                                                                |                                                  |                                                                                                         |
| 329 4 <sup>a</sup> 2                          |                                                                                |                                                  |                                                                                                         |
|                                               | 1868.3 <i>3</i><br>1460.3 <sup><i>a</i></sup> 2<br>329.4 <sup><i>a</i></sup> 2 | 1460.3 <sup>a</sup> 2 100                        | 1460.3 <sup>a</sup> 2 100 668.38 4 <sup>+</sup>                                                         |

## $\gamma$ (146Ce) (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}{}^{\dagger}$ | $\mathrm{I}_{\gamma}^{\ddagger}$ | $\mathbf{E}_f$ | $\mathbf{J}_f^{\pi}$ |
|--------------|----------------------|-----------------------------------|----------------------------------|----------------|----------------------|
| 2139.81      | $(4^+,5^+)$          | 427.7 <mark>a</mark> 2            | 51 5                             | 1711.92        | (4+)                 |
|              |                      | 563.4 <sup>a</sup> 4              | 34 5                             | 1576.63        | 3+                   |
|              |                      | 969.0 <mark>a</mark> 4            | 30 6                             | 1171.35        | 6+                   |
| 2155.99      | $(1^-,2^+)$          | 881.70 <mark>&amp;</mark> 25      | <20 <sup>d</sup>                 | 1274.34        | 2+                   |
|              |                      | 1195.36 22                        | 33 <sup>d</sup> 6                | 960.72         | 3-                   |
|              |                      | 1897.67 25                        | 63 <sup>d</sup> 4                | 258.45         | 2+                   |
|              |                      | 2155.80 <sup>&amp;g</sup> 18      | 100 <del>dg</del> 6              | 0.0            | $0^{+}$              |
| 2177.37      | $(5^-,4^+)$          | 284.7 <mark>a</mark> 4            | 6.0 10                           | 1891.83        | $(3^-,4,5^-)$        |
|              |                      | 367.00 <sup>a</sup> 7             | 100 9                            | 1810.41        | 5 <sup>+</sup>       |
|              |                      | 465.5 <sup>a</sup> 3              | 15.8 20                          | 1711.92        | $(4^{+})$            |
|              |                      | 550.0 <sup>a</sup> 1              | 86 7                             | 1627.30        | 4 <sup>+</sup>       |
|              |                      | 993.8 <sup>a</sup> 4              | 10.4 20                          | 1182.98        | 5-                   |
|              |                      | 1006.1 <sup>a</sup> 2             | 35 <i>3</i>                      | 1171.35        | 6+                   |
|              |                      | 1216.5 <sup>a</sup> 3             | 18 <i>3</i>                      | 960.72         | 3-                   |
|              |                      | 1509.2 <sup>a</sup> 2             | 54 <i>4</i>                      | 668.38         | 4 <sup>+</sup>       |
| 2179.44      | $(1,2^+)$            | 1920.80 25                        | $73^{d}$ 5                       | 258.45         | 2+                   |
|              |                      | 2179.60 <mark>&amp;</mark> 25     | 100 <sup>d</sup> 8               | 0.0            | $0^{+}$              |
| 2183.0       |                      | 1924.5 <i>a</i> 5                 | 100                              | 258.45         | 2+                   |
| 2194.08      |                      | 383.4 <del>ah</del> 4             | 11 <b>h</b> 3                    | 1810.41        | 5 <sup>+</sup>       |
|              |                      | 1011.2 <sup>a</sup> 2             | 100 <i>15</i>                    | 1182.98        | 5-                   |
|              |                      | 1022.6 <sup>a</sup> 4             | 52 9                             | 1171.35        | 6+                   |
| 2209.6       |                      | 1248.9 <sup>a</sup> 4             | 100                              | 960.72         | 3-                   |
| 2222.71      | $(3,4^+)$            | 646.0 <i>3</i>                    | 61 9                             | 1576.63        | 3+                   |
|              |                      | 948.42 15                         | 100 18                           | 1274.34        | 2+                   |
|              |                      | 1262.2 <i>4</i>                   | 70 12                            | 960.72         | 3-                   |
| 2233.66      | $(1,2^+)$            | 1975.10 <sup>&amp;</sup> 18       | 100 <sup>d</sup> 10              | 258.45         | 2+                   |
|              |                      | 2233.9 <sup>&amp;</sup> 3         | <42 <sup>d</sup>                 | 0.0            | 0+                   |
| 2256.53      | $(4^+,5,6^+)$        | 225.0 <sup>a</sup> 4              | 6.0 8                            | 2031.43        | (4+)                 |
|              |                      | 300.3 <sup>a</sup> 1              | 14.8 12                          | 1956.26        | $(4^+,5,6^+)$        |
|              |                      | 446.05 <sup>a</sup> 7             | 100 9                            | 1810.41        | 5+                   |
|              |                      | 705.8 <sup>a</sup> 7              | 9.9 20                           | 1551.13        | 5 <sup>-</sup>       |
|              |                      | 1074.0 <sup>a</sup> 2             | 13.5 10                          | 1182.98        | 5-                   |
| 2261.1       |                      | 1336.50 <sup>&amp;</sup> 25       | 100 <sup>d</sup>                 | 924.58         | 1-                   |
| 2262.14      |                      | 307.0° 4                          | 11.4 11                          | 1956.26        | $(4^+,5,6^+)$        |
|              |                      | 1079.1 <sup>a</sup> 1             | 100 8                            | 1182.98        | 5-                   |
| 2270.30      | $(6^+)$              | 501.3 <sup>a</sup> 6              | 55 16                            | 1769.22        | $(4^+,5^-)$          |
|              |                      | 642.9 <sup>a</sup> 2              | 100 8                            | 1627.30        | 4 <sup>+</sup>       |
|              |                      | 1087.6 <sup>a</sup> 6             | 17 6                             | 1182.98        | 5-                   |
|              |                      | 1098.0 <sup>a</sup> 5             | 25 6                             | 1171.35        | 6+                   |

## $\gamma(\frac{146}{\text{Ce}})$ (continued)

| $E_i$ (level) | $\mathtt{J}_{i}^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$    | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f$ $\mathbf{J}_f^\pi$         | Comments                                                                                                                                                                                        |
|---------------|------------------------|------------------------------------|-------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2270.30       | (6 <sup>+</sup> )      | 1602.1 <sup>a</sup> 2              | 100 11                  | 668.38 4+                                 |                                                                                                                                                                                                 |
| 2274.5        |                        | 358.5 <sup>a</sup> 8               | 23 7                    | 1916.19 (4,5-)                            |                                                                                                                                                                                                 |
|               |                        | 1091.5 <sup>a</sup> 3              | 100 30                  | 1182.98 5                                 |                                                                                                                                                                                                 |
| 2311.02       | $(1^-,2^+)$            | 1037.65 <sup>c</sup> 15            | 67 <sup>d</sup> 4       | 1274.34 2+                                | $E_{\gamma}$ : poor fit, difference between energies of corresponding levels equals 1036.72 12.                                                                                                 |
|               |                        | 1350.5 <mark>&amp;</mark> <i>3</i> | 19 <sup>d</sup> 3       | 960.72 3-                                 |                                                                                                                                                                                                 |
|               |                        | 1386.37 <i>17</i>                  | 26 <i>3</i>             | 924.58 1                                  |                                                                                                                                                                                                 |
|               |                        | 2052.5 <sup>a</sup> 3              | 100 <sup>d</sup> 6      | 258.45 2+                                 |                                                                                                                                                                                                 |
|               |                        | 2311.00 <sup>&amp;</sup> <i>18</i> | 19 <mark>d</mark> 3     | $0.0  0^{+}$                              |                                                                                                                                                                                                 |
| 2318.57       | $(1,2^+)$              | 2060.10 <sup>h</sup> 6             | 72 <b>dh</b> 16         | 258.45 2+                                 |                                                                                                                                                                                                 |
|               |                        | 2318.60 <sup>&amp;</sup> 18        | 100 <b>d</b> 5          | $0.0 	 0^{+}$                             |                                                                                                                                                                                                 |
| 2337.5        |                        | 1166.9 <sup>a</sup> 7              | 95 24                   | 1171.35 6+                                |                                                                                                                                                                                                 |
|               |                        | 1668.2 <sup>a</sup> 8              | 100 27                  | 668.38 4 <sup>+</sup>                     |                                                                                                                                                                                                 |
| 2351.51       | $(10^{+})$             | 332.3 <sup>b</sup> 2               | 42 <b>e</b>             | 2019.41 (9-)                              |                                                                                                                                                                                                 |
|               |                        | 614.7 <mark>b</mark> 2             | 100 <mark>e</mark>      | 1736.77 8+                                |                                                                                                                                                                                                 |
| 2368.08       | $(1^-,2^+)$            | 316.7 <mark>&amp;</mark> 3         | <23 <sup>d</sup>        | 2051.55                                   |                                                                                                                                                                                                 |
|               |                        | 1324.8 <sup>&amp;</sup> 3          | 27 <mark>d</mark> 9     | 1043.24 0 <sup>+</sup>                    |                                                                                                                                                                                                 |
|               |                        | 1407.60 <sup>&amp;</sup> 25        | 34 <b>d</b> 7           | 960.72 3-                                 |                                                                                                                                                                                                 |
|               |                        | 1443.70 <sup>&amp;</sup> 18        | 100 <sup>d</sup> 9      | 924.58 1                                  |                                                                                                                                                                                                 |
|               |                        | 2109.1 4                           | $18^{d}$ 5              | 258.45 2 <sup>+</sup>                     |                                                                                                                                                                                                 |
|               |                        | 2367.90 <sup>&amp;</sup> 18        | $73^{d}$ 5              | $0.0 	 0^{+}$                             |                                                                                                                                                                                                 |
| 2373.3        |                        | $605.0^{a}$ 5                      | 47 <i>7</i>             | 1769.22 (4 <sup>+</sup> ,5 <sup>-</sup> ) |                                                                                                                                                                                                 |
| 2070.0        |                        | 1190.0 <sup>a</sup> 3              | 100 14                  | 1182.98 5                                 |                                                                                                                                                                                                 |
| 2397.85       | $(2^{+})$              | 346.29 15                          | 77 5                    | 2051.55                                   |                                                                                                                                                                                                 |
|               |                        | 366.68 <sup>&amp;</sup> 17         | 67 <sup>d</sup> 5       | 2031.43 (4+)                              |                                                                                                                                                                                                 |
|               |                        | 1354.40 <sup>&amp;</sup> 17        | 24.6 <sup>d</sup> 18    | 1043.24 0 <sup>+</sup>                    |                                                                                                                                                                                                 |
|               |                        | 1473.3 <sup>a</sup> 4              | 78 <i>44</i>            | 924.58 1                                  |                                                                                                                                                                                                 |
|               |                        | 2397.78 15                         | 100 <b>d</b> 7          | $0.0 	 0^{+}$                             |                                                                                                                                                                                                 |
| 2399.07       |                        | 2140.60 <sup>&amp;</sup> 18        | 100 <b>d</b>            | 258.45 2+                                 |                                                                                                                                                                                                 |
| 2414.51       | $(4^{+})$              | 523.0 <sup>a</sup> 2               | 100 12                  | 1891.83 (3-,4,5-)                         |                                                                                                                                                                                                 |
|               |                        | 1140.20 <del>&amp;</del> 25        | 76 <mark>d</mark> 6     | 1274.34 2+                                |                                                                                                                                                                                                 |
|               |                        | 1231.9 <sup>a</sup> 3              | 70 11                   | 1182.98 5-                                |                                                                                                                                                                                                 |
|               |                        | 1489.50 <sup>&amp;</sup> 25        | 33 <sup>d</sup> 5       | 924.58 1-                                 | $I_{\gamma}$ : doubtful transition from <sup>146</sup> La $\beta$ decay (6 s) (1982ShZV), it should be seen also in 9.8 s $\beta$ decay of <sup>146</sup> La but it is not measured (1993Sh10). |
|               |                        | 2155.88 19                         | 60 7                    | 258.45 2+                                 | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                         |
| 2442.40       |                        | 2183.80 <sup>&amp;</sup> 25        | 100                     | 258.45 2 <sup>+</sup>                     |                                                                                                                                                                                                 |
| 2446.89       | $(3^{-})$              | 572.1 <sup>a</sup> 4               | 56 12                   | 1875.55 (4,5 <sup>-</sup> )               |                                                                                                                                                                                                 |
|               |                        | 693.0 <mark>&amp;</mark> 4         | 27 <sup>d</sup> 16      | 1753.83 (1-,2,3-)                         |                                                                                                                                                                                                 |

## $\gamma(\frac{146}{\text{Ce}})$ (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$                | $I_{\gamma}^{\ddagger}$     | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$        | Comments                                                                                        |
|--------------|----------------------|------------------------------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 2446.89      | (3-)                 | 870.07 16                                      | 22 8                        | 1576.63 3+                                      |                                                                                                 |
|              | . ,                  | 1172.6 7                                       | 50 16                       | 1274.34 2+                                      |                                                                                                 |
|              |                      | 1485.1 <sup>&amp;c</sup> 3                     | 17 <sup>d</sup> 3           | 960.72 3-                                       | $E_{\nu}$ : poor fit, difference between energies of corresponding levels equals 1486.16 9.     |
|              |                      | 2188.33 <i>15</i>                              | 100 12                      | 258.45 2 <sup>+</sup>                           |                                                                                                 |
| 2468.8       |                      | 1297.4 <sup>a</sup> 3                          | 100                         | 1171.35 6 <sup>+</sup>                          |                                                                                                 |
| 2512.21      |                      | 1844.8 <i>a</i> 4                              | 69 25                       | 668.38 4+                                       | $E_{\gamma}$ : poor fit, difference between energies of corresponding levels equals 1842.93 13. |
| •===         |                      | 2253.38 <sup>a</sup> 24                        | 100 34                      | 258.45 2+                                       |                                                                                                 |
| 2519.16      |                      | 708.8 <sup>a</sup> 2                           | 100 10                      | 1810.41 5+                                      |                                                                                                 |
|              |                      | 1336.3 <sup>a</sup> 5<br>1850.7 <sup>a</sup> 2 | 31 <i>9</i><br>98 <i>10</i> | 1182.98 5 <sup>-</sup><br>668.38 4 <sup>+</sup> |                                                                                                 |
| 2543.83      |                      | 787.48 <i>25</i>                               | 98 10<br>100 10             | 1756.68 (1,2 <sup>+</sup> )                     |                                                                                                 |
| 2343.63      |                      | 1582.7 <sup>a</sup> 6                          | 35 13                       | 960.72 3                                        |                                                                                                 |
|              |                      | 1619.15 <i>15</i>                              | 52 10                       | 924.58 1 <sup>-</sup>                           |                                                                                                 |
| 2551.86      |                      | 595.78 16                                      | 100 30                      | 1956.26 (4 <sup>+</sup> ,5,6 <sup>+</sup> )     |                                                                                                 |
|              |                      | 1368.8 <sup>h</sup> 1                          | 38 <mark>h</mark> 10        | 1182.98 5                                       |                                                                                                 |
| 2562.65      | $(11^{-})$           | 211.15 <sup>b</sup> 5                          | 100 <mark>e</mark>          | 2351.51 (10 <sup>+</sup> )                      |                                                                                                 |
|              | ( )                  | 543.2 <sup>b</sup> 1                           | 97 <mark>e</mark>           | 2019.41 (9 <sup>-</sup> )                       |                                                                                                 |
| 2569.86      |                      | 993.00 <mark>&amp;</mark> 25                   | 83 <sup>d</sup> 21          | 1576.63 3+                                      |                                                                                                 |
|              |                      | 1188.70 <sup>&amp;</sup> 25                    | <42 <sup>d</sup>            | 1381.93 2+                                      | $E_{\gamma}$ : poor fit, difference between energies of corresponding levels equals 1187.65 15. |
|              |                      | 2311.06 17                                     | 100 <sup>d</sup> 8          | 258.45 2+                                       | , , , , , , , , , , , , , , , , , , , ,                                                         |
| 2587.68      |                      | 777.0 <sup>a</sup> 4                           | 44 6                        | 1810.41 5 <sup>+</sup>                          |                                                                                                 |
|              |                      | 1416.2 <sup>a</sup> 4                          | 45 11                       | 1171.35 6 <sup>+</sup>                          |                                                                                                 |
|              |                      | 1919.5 <i>a</i> 3                              | 100 16                      | 668.38 4+                                       |                                                                                                 |
| 2639.47      |                      | 2381.00 <sup>&amp;</sup> 18                    | 100 <sup>d</sup>            | 258.45 2 <sup>+</sup>                           |                                                                                                 |
| 2713.44      |                      | 1752.63 23                                     | 100 42                      | 960.72 3                                        |                                                                                                 |
| 2770 5       | (1.0+)               | 2455.01 18                                     | 42 17                       | 258.45 2 <sup>+</sup>                           |                                                                                                 |
| 2779.5       | $(1,2^+)$            | 2521.0 <sup>a</sup> 4<br>2779.4 <sup>a</sup> 5 | 80<br>100                   | 258.45 2 <sup>+</sup><br>0.0 0 <sup>+</sup>     |                                                                                                 |
| 2707 72      |                      | 1625.4 <sup>ah</sup> 4                         | 50 <sup>h</sup> 8           | 1171.35 6 <sup>+</sup>                          |                                                                                                 |
| 2796.72      |                      | 2128.3 <sup>a</sup> 3                          | 100 14                      | 668.38 4+                                       |                                                                                                 |
| 2809.5       |                      | 2141.1 <sup>a</sup> 3                          | 100 14                      | 668.38 4 <sup>+</sup>                           |                                                                                                 |
| 2841.11      |                      | 1916.40 <sup>&amp;</sup> 18                    | 15.2 <sup>d</sup> 16        | 924.58 1                                        |                                                                                                 |
|              |                      | 2582.69 <i>13</i>                              | $100^{\frac{1}{6}}$ 6       | 258.45 2 <sup>+</sup>                           |                                                                                                 |
| 2861.88      | $(1,2^+)$            | 1587.70 <sup>&amp;</sup> 18                    | $14.1^{\frac{d}{l}}$ 13     | 1274.34 2 <sup>+</sup>                          |                                                                                                 |
|              | . , ,                | 1937.20 <sup>&amp;</sup> 18                    | 14.1 <sup>d</sup> 13        | 924.58 1                                        |                                                                                                 |
|              |                      | 2603.46 26                                     | 100 <mark>d</mark> 6        | 258.45 2 <sup>+</sup>                           |                                                                                                 |
|              |                      | 2861.50 <i>21</i>                              | 7.7 <sup>d</sup> 13         | $0.0 	 0^{+}$                                   |                                                                                                 |
| 2868.96      |                      | 1595.1 <mark>&amp;</mark> 4                    | $15^{d}$ 5                  | 1274.34 2+                                      |                                                                                                 |

9

## $\gamma(\frac{146}{\text{Ce}})$ (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$                    | $I_{\gamma}^{\ddagger}$             | $\mathbf{E}_f$     | $\mathbf{J}_f^{\pi}$ | Comments                                                                                        |
|--------------|----------------------|----------------------------------------------------|-------------------------------------|--------------------|----------------------|-------------------------------------------------------------------------------------------------|
| 2868.96      |                      | 1907.5 4                                           | 18 <sup>d</sup> 5                   | 960.72             | 3-                   |                                                                                                 |
|              |                      | 1944.58 <i>15</i>                                  | 82 <sup>d</sup> 8                   | 924.58             |                      |                                                                                                 |
|              |                      | 2610.10 <sup>a</sup> 22                            | 100 <b>d</b> 5                      | 258.45             |                      |                                                                                                 |
| 2914.23      |                      | 652.2 <sup>a</sup> 3                               | 30 4                                | 2262.14            |                      |                                                                                                 |
|              |                      | 957.9 <sup>a</sup> 7                               | 100 24                              | 1956.26            | $(4^+,5,6^+)$        |                                                                                                 |
|              |                      | 1103.7 <sup>a</sup> 2                              | 50 6                                | 1810.41            |                      |                                                                                                 |
|              |                      | 1363.2 <sup>a</sup> 2<br>1731.2 <sup>a</sup> 2     | 15 <i>6</i><br>64 <i>6</i>          | 1551.13<br>1182.98 |                      |                                                                                                 |
| 2052 46      | $(2,3^{-})$          | 881.70 <sup>&amp;</sup> 25                         | <6 <sup>d</sup>                     | 2071.79            |                      |                                                                                                 |
| 2953.46      | (2,3)                | 1377.00 & 25                                       | <6 <sup>d</sup>                     | 1576.63            |                      |                                                                                                 |
|              |                      | 1992.52 16                                         | 21.8 <sup>d</sup> 18                | 960.72             |                      |                                                                                                 |
|              |                      |                                                    | $47\frac{d}{3}$                     |                    |                      |                                                                                                 |
|              |                      | 2028.85 40                                         | $\frac{4}{100}\frac{3}{3}$          | 924.58             |                      |                                                                                                 |
| 2006.27      | (1.0+)               | 2695.11 <i>17</i>                                  |                                     | 258.45             |                      |                                                                                                 |
| 2996.27      | $(1,2^+)$            | 1240.0 4                                           | $<29^{d}$ $100^{d}$ 6               | 1756.68            |                      |                                                                                                 |
| 3064.0       |                      | 2996.0 <sup>&amp;</sup> 3<br>1881.1 <sup>a</sup> 3 | 100 <sup>a</sup> 6<br>100 <i>18</i> | 0.0<br>1182.98     |                      |                                                                                                 |
| 3004.0       |                      | 2394.8 <sup>a</sup> 8                              | 23 9                                | 668.38             |                      |                                                                                                 |
| 3163.4       | $(13^{-})$           | $600.70^{b}$ 25                                    | 100 <sup>e</sup>                    | 2562.65            |                      |                                                                                                 |
| 3164.6       | $(1,2^+)$            | 2905.7 <sup>a</sup> 6                              | 100                                 | 258.45             |                      |                                                                                                 |
|              |                      | 3165.5 <sup>a</sup> 9                              | <38                                 | 0.0                | $0^{+}$              |                                                                                                 |
| 3166.65      | $(1,2^+)$            | 1114.90 <mark>&amp;</mark> 25                      | 100 <sup>d</sup> 23                 | 2051.55            |                      |                                                                                                 |
|              |                      | 1508.7 <del>&amp;</del> <i>3</i>                   | 77 <mark>d</mark> 18                | 1657.77            | $0_{+}$              |                                                                                                 |
|              |                      | 1892.60 <mark>&amp;</mark> 25                      | 82 <mark>d</mark> 9                 | 1274.34            | 2+                   |                                                                                                 |
| 3243.11      |                      | 2060.10 <sup>ah</sup> 7                            | 100 <mark>h</mark> 20               | 1182.98            |                      |                                                                                                 |
|              |                      | 2072.4 <sup>a</sup> 5                              | 65 25                               | 1171.35            | 6+                   |                                                                                                 |
| 3255.45      | $(2,3^+)$            | 1129.2 <sup>&amp;</sup> 9                          | 100 <sup>d</sup> 9                  | 2126.46            |                      |                                                                                                 |
|              |                      | 1678.7 <del>&amp;</del> 3                          | 56 <sup>d</sup> 7                   | 1576.63            |                      |                                                                                                 |
|              |                      | 1981.3 <sup>&amp;</sup> <i>3</i>                   | $22^{d}$ 4                          | 1274.34            | 2+                   |                                                                                                 |
|              |                      | 2293.2 <i>ac</i> 4                                 | 58 <mark>d</mark> 4                 | 960.72             | 3-                   | $E_{\gamma}$ : poor fit, difference between energies of corresponding levels equals 2294.77 17. |
|              |                      | 2996.87 26                                         | 76 <mark>d</mark> 4                 | 258.45             |                      |                                                                                                 |
| 3273.7       |                      | 2102.3 <sup>a</sup> 9                              | 100                                 | 1171.35            |                      |                                                                                                 |
| 3283.15      | $(1^-,2^+)$          | 836.03 <sup>&amp;</sup> 17                         | 6.9 <sup>d</sup> 13                 | 2446.89            |                      |                                                                                                 |
|              |                      | 915.10 25                                          | $4.1\frac{d}{9}$                    | 2368.08            |                      |                                                                                                 |
|              |                      | 1625.0 <sup>&amp;</sup> 3                          | $3.4^{\frac{d}{6}}$ 6               | 1657.77            |                      |                                                                                                 |
|              |                      | 2322.38 19                                         | 17.8 <sup>d</sup> 9                 | 960.72             |                      |                                                                                                 |
|              |                      | 2358.89 19                                         | 100 <b>d</b> 3                      | 924.58             | 1-                   |                                                                                                 |

10

## $\gamma(\frac{146}{\text{Ce}})$ (continued)

| $E_i(level)$      | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$                               | $I_{\gamma}^{\ddagger}$      | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$              | Comments                                                                                        |
|-------------------|----------------------|------------------------------------------------------|------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 3283.15           | $(1^-,2^+)$          | 3024.9 3                                             | 30.3 <sup>d</sup> 19         | 258.45 2+                                        |                                                                                                 |
| 3329.54           | $(2^{+})$            | 466.80 <sup>&amp;c</sup> 25                          | <7.3 <sup>d</sup>            | 2861.88 (1,2+)                                   | $E_{\gamma}$ : poor fit, difference between energies of corresponding levels equals 467.66 16.  |
|                   |                      | 1673.1 <sup>&amp;c</sup> 2                           | 16.8 <sup>d</sup> 15         | 1657.77 O <sup>+</sup>                           | $E_{\gamma}$ : poor fit, difference between energies of corresponding levels equals 1671.75 15. |
|                   |                      | 1752.9 <mark>&amp;</mark> 2                          | <7.3 <sup>d</sup>            | 1576.63 3 <sup>+</sup>                           |                                                                                                 |
|                   |                      | 2368.80 <sup>&amp;</sup> 18                          | 23.4 <sup>d</sup> 15         | 960.72 3-                                        |                                                                                                 |
|                   |                      | 2404.6 3                                             | 39.4 <mark>d</mark> 22       | 924.58 1                                         |                                                                                                 |
|                   |                      | 3071.4 3                                             | 100 <sup>d</sup> 7           | 258.45 2+                                        |                                                                                                 |
| 3342.03           |                      | 927.6 <mark>&amp;</mark> 2                           | 41 <sup>d</sup> 6            | 2414.51 (4+)                                     |                                                                                                 |
|                   |                      | 1585.2 <sup>&amp;</sup> 4                            | 13 <b>d</b> 3                | 1756.68 (1,2+)                                   |                                                                                                 |
|                   |                      | 1960.14 <i>17</i>                                    | 23.4 <sup>d</sup> 16         | 1381.93 2+                                       |                                                                                                 |
|                   |                      | 2381.1 <sup>a</sup> 4                                | 39 <i>13</i>                 | 960.72 3-                                        |                                                                                                 |
|                   |                      | 2417.38 <i>15</i>                                    | $88^{d}$ 5                   | 924.58 1                                         |                                                                                                 |
|                   |                      | 3083.57 22                                           | 100 <sup>d</sup> 6           | 258.45 2+                                        |                                                                                                 |
| 3390.2            |                      | 2721.8 <sup>a</sup> 6                                | 100                          | 668.38 4+                                        |                                                                                                 |
| 3399.56           | $(1,2^+)$            | 1348.4 & 3                                           | <17 <sup>d</sup>             | 2051.55                                          |                                                                                                 |
|                   |                      | 1643.00 18                                           | 34 <sup>d</sup> 4            | 1756.68 (1,2+)                                   |                                                                                                 |
|                   |                      | 1741.5 <sup>&amp;</sup> 2                            | $19^{d} 4$                   | 1657.77 0+                                       |                                                                                                 |
| 3403.3            |                      | 2474.90 <sup>&amp;</sup> 18<br>2734.6 <sup>a</sup> 5 | 100 <sup>d</sup> 7<br>100 22 | 924.58 1 <sup>-</sup><br>668.38 4 <sup>+</sup>   |                                                                                                 |
| 3403.3            |                      | 3145.5 <sup>a</sup> 7                                | 53 19                        | 258.45 2 <sup>+</sup>                            |                                                                                                 |
| 3450.6            |                      | 2267.6 <sup>a</sup> 4                                | 100                          | 1182.98 5 <sup>-</sup>                           |                                                                                                 |
| 3457.86           |                      | 1043.30 <sup>&amp;</sup> 25                          | 36 <sup>d</sup>              | 2414.51 (4 <sup>+</sup> )                        |                                                                                                 |
|                   |                      | 1701.2 <mark>&amp;</mark> <i>1</i>                   | 37 <b>d</b>                  | 1756.68 (1,2+)                                   |                                                                                                 |
|                   |                      | 2533.20 <sup>&amp;</sup> 18                          | 100 <b>d</b>                 | 924.58 1-                                        |                                                                                                 |
| 3494.51           |                      | 924.63 <sup>a</sup> 9                                | 94                           | 2569.86                                          |                                                                                                 |
| 2502.20           |                      | 3236.8 <sup>a</sup> 6                                | 100                          | 258.45 2 <sup>+</sup>                            |                                                                                                 |
| 3502.20<br>3532.7 |                      | 2319.2 <sup>a</sup> 2<br>2349.7 <sup>a</sup> 4       | 100<br>100                   | 1182.98 5 <sup>-</sup><br>1182.98 5 <sup>-</sup> |                                                                                                 |
| 3535.16           |                      | 1167.2 <sup>&amp;</sup> 2                            | $100^{d}$ 12                 | 2368.08 (1 <sup>-</sup> ,2 <sup>+</sup> )        |                                                                                                 |
| 3333.10           |                      | 3275.9 5                                             | $74^{d} 6$                   | 258.45 2 <sup>+</sup>                            |                                                                                                 |
| 3653.7            | $(2^{+})$            | 2985.2 <sup>a</sup> 6                                | 100                          | 668.38 4+                                        |                                                                                                 |
|                   | ` '                  | 3653.7 <sup>a</sup> 6                                | 67                           | $0.0 	 0^{+}$                                    |                                                                                                 |
| 3729.9            |                      | 2547.3 <sup>a</sup> 8                                | 41 15                        | 1182.98 5                                        |                                                                                                 |
|                   |                      | 3061.4 <sup>a</sup> 4                                | 100 15                       | 668.38 4+                                        |                                                                                                 |
| 3826.0            | $(15^{-})$           | $662.60^{b}$ 25                                      | 100 <sup>e</sup>             | 3163.4 (13 <sup>-</sup> )                        |                                                                                                 |
| 3859.1<br>3918.0  |                      | 3600.6 <sup>a</sup> 5<br>3249.6 <sup>a</sup> 6       | 100<br>100                   | 258.45 2 <sup>+</sup><br>668.38 4 <sup>+</sup>   |                                                                                                 |
| 3910.0            |                      | 3449.0 0                                             | 100                          | 000.30 4                                         |                                                                                                 |

12

<sup>&</sup>lt;sup>†</sup> From weighted average of Ey's measured in  $^{146}$ La  $\beta^-$  decays with  $T_{1/2}$ =6.1 s and 9.8 s, and  $^{252}$ Cf SF decay, except as noted.

<sup>&</sup>lt;sup>‡</sup> From <sup>146</sup>La  $\beta$ <sup>-</sup> decay (9.8 s), except as noted.

<sup>&</sup>lt;sup>#</sup> From  $\gamma\gamma(\theta)$ ,  $\alpha(\exp)$ , see 1981GoZN, 1982ShZV, 1983Wo03, 1993Sh10, 2000Ya08.

<sup>&</sup>lt;sup>@</sup> From  $\gamma\gamma(\theta)$  (2000Ya08).

<sup>&</sup>amp; From  $^{146}$ La  $\beta^{-}$  decay (6.1 s).

<sup>&</sup>lt;sup>a</sup> From <sup>146</sup>La  $\beta$ <sup>-</sup> decay (9.8 s).

<sup>&</sup>lt;sup>b</sup> From <sup>252</sup>Cf SF decay.

<sup>&</sup>lt;sup>c</sup> Energy of  $\gamma$  ray is not used in a least-squares fitting.

<sup>&</sup>lt;sup>d</sup> Branching from <sup>146</sup>La  $\beta$ <sup>-</sup> 6.1 s decay.

<sup>&</sup>lt;sup>e</sup> Branching from <sup>252</sup>Cf SF decay.

<sup>&</sup>lt;sup>f</sup> Additional information 1.

<sup>&</sup>lt;sup>g</sup> Multiply placed with undivided intensity.

<sup>&</sup>lt;sup>h</sup> Multiply placed with intensity suitably divided.

#### Level Scheme

Intensities: Relative photon branching from each level



#### Level Scheme (continued)

Intensities: Relative photon branching from each level



#### Level Scheme (continued)

Intensities: Relative photon branching from each level



<sup>146</sup><sub>58</sub>Ce<sub>88</sub>

#### Level Scheme (continued)

Intensities: Relative photon branching from each level



#### Level Scheme (continued)





1423.04<sup>b</sup> 14 1456.88? 25 1486.33<sup>c</sup> 21

1497.07 7

 $(5^{+})$ 

(4<sup>-</sup>) (2<sup>+</sup>,1)<sup>@</sup> C

A C

Α

#### **Adopted Levels, Gammas**

|                                                         |                                        | Ty               | ype                | Author                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | History<br>Citation                                                                                                                                                   | Literature Cutoff Date                                                                                                                                                                            |  |  |  |  |
|---------------------------------------------------------|----------------------------------------|------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                         |                                        |                  | aluation           | N. Nica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NDS 117, 1 (2014)                                                                                                                                                     | 1-Oct-2013                                                                                                                                                                                        |  |  |  |  |
| $Q(\beta^-)=2137 \ 13;$                                 | S(n)=6456                              | 14; S(p)=1100    | 09 <i>15</i> ; Q(a | $\alpha$ )=-1056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13 2012Wa38                                                                                                                                                           |                                                                                                                                                                                                   |  |  |  |  |
|                                                         |                                        |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>148</sup> Ce Levels                                                                                                                                              |                                                                                                                                                                                                   |  |  |  |  |
|                                                         |                                        |                  |                    | Cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference (XREF) Fla                                                                                                                                                  | <u>ags</u>                                                                                                                                                                                        |  |  |  |  |
|                                                         |                                        |                  |                    | B<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>148</sup> La $\beta$ <sup>-</sup> decay<br><sup>149</sup> La $\beta$ <sup>-</sup> n decay (1.05<br><sup>252</sup> Cf SF decay<br><sup>235</sup> U(n,F) E=thermal | s)                                                                                                                                                                                                |  |  |  |  |
| E(level) <sup>†</sup>                                   | $J^{\pi \ddagger}$                     | T <sub>1/2</sub> | XREF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                       | Comments                                                                                                                                                                                          |  |  |  |  |
| 0.0&                                                    | 0+#                                    | 56.8 s <i>3</i>  | A CD               | $\%\beta^-$ =100<br>T <sub>1/2</sub> : weighted average of: 56 s <i>I</i> (1983Ar15) and 56.9 s <i>3</i> (2004Ko05). Others: 48 s <i>I</i> (1974Ar25), 45.1 s <i>5</i> (1986BuZV). measured $\delta < r^2 > =1.089$ fm <sup>2</sup> 2 relative to <sup>144</sup> Ce (2003Ch60); $< r^2 > ^{1/2} = 4.9911$                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                                                                                                   |  |  |  |  |
| 158.467 <sup>&amp;</sup> 5                              | 2+#                                    | 1.01 ns 6        | A CD               | fm 35 (2004An14).<br>$\mu$ =0.74 12 (2005St24,1986Gi05,1999Sm05)<br>g=0.38 5<br>$\mu$ : from $\gamma\gamma(\theta, H)$ in <sup>148</sup> La $\beta^-$ decay (1986Gi05), and time-integral perturbed angular correlation method in <sup>252</sup> Cf SF decay (1999Sm05).<br>g: weighted average of 0.37 6 (1999Sm05) and 0.39 8 (2009Go09) In <sup>252</sup> Cf SF decay.<br>J <sup><math>\pi</math></sup> : $\Delta$ J=2, E2 $\gamma$ to 0 <sup>+</sup> , g.s<br>T <sub>1/2</sub> : weighted average of 0.95 ns 8 (1980ChZM, from <sup>254</sup> Cf SF decay, not included In <sup>148</sup> Ce evaluation) and 1.06 ns 8 (1974JaZN, <sup>252</sup> Cf SF decay dataset). Others (from <sup>252</sup> Cf SF decay dataset): 1.3 ns 2 (1970Wa05), 0.9 ns 3 |                                                                                                                                                                       |                                                                                                                                                                                                   |  |  |  |  |
| 453.45 <sup>&amp;</sup> 5                               | 4+#                                    | <1.2 ns          | A CD               | (2006H $T_{1/2}$ : 0.2 evaluat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns $+10-2$ from $^{252}$ Cf                                                                                                                                           | SF decay (2004Li66) was adopted As a limit by                                                                                                                                                     |  |  |  |  |
| 760.32 4                                                | (1-)                                   |                  | A                  | $J^{\pi}$ : $\gamma'$ s to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       | from (2 <sup>-</sup> ) parent; systematics of 1 <sup>-</sup> levels in                                                                                                                            |  |  |  |  |
| 770.43 <i>6</i><br>839.52 <sup>&amp;</sup> <i>16</i>    | 0 <sup>+</sup><br>6 <sup>+</sup> #     |                  | A<br>CD            | $J^{\pi}$ : from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\gamma\gamma(\theta)$ In <sup>148</sup> La $\beta^-$ deca                                                                                                            |                                                                                                                                                                                                   |  |  |  |  |
| 841.39 <i>5</i> 935.59 <i>5</i>                         | (3 <sup>-</sup> )<br>(2 <sup>+</sup> ) |                  | A<br>A             | J <sup><math>\pi</math></sup> : strong of $\beta$ -vi $\Delta$ E(2 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g $\gamma'$ s to 2 <sup>+</sup> , and 4 <sup>+</sup> and brational band, $\Delta E(2^+)$ to 0 <sup>+</sup> )(g.s.)=158 keV.                                           | systematics of 3 <sup>-</sup> levels.<br>I weak $\gamma$ to 0 <sup>+</sup> g.s. is typical for J=2 <sup>+</sup> member to 0 <sup>+</sup> )( $\beta$ <sup>-</sup> vibr)=165 keV is comparable with |  |  |  |  |
| 989.90 <i>4</i><br>1116.63 <sup><i>b</i></sup> <i>5</i> | $(2^+)$ $(3^+)$                        |                  | A<br>A C           | $J^{\pi}$ : $\gamma'$ s to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       | y; band member In $^{252}$ Cf decay dataset In for $\gamma$ -vibrational bands in $\alpha$ =144-152 nuclei.                                                                                       |  |  |  |  |
| 1223.98 <i>11</i><br>1290.32 <sup>&amp;</sup> 20        | (4 <sup>+</sup> )<br>8 <sup>+</sup> #  |                  | A<br>C             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                       | ibrational bands in $\alpha$ =144-152 nuclei.                                                                                                                                                     |  |  |  |  |
| 1351.40 <sup>a</sup> 23<br>1368.89 5<br>1415.61 7       | (7-)                                   |                  | C<br>A<br>A        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                                                   |  |  |  |  |

#### <sup>148</sup>Ce Levels (continued)

| E(level) <sup>†</sup>              | Jπ‡                         | XREF | E(level) <sup>†</sup>     | Jπ‡                         | XREF | E(level) <sup>†</sup>       | $J^{\pi \ddagger}$ | XREF |
|------------------------------------|-----------------------------|------|---------------------------|-----------------------------|------|-----------------------------|--------------------|------|
| 1554.76 9                          |                             | A    | 1927.69? <i>21</i>        |                             | Α    | 2673.5 <sup>b</sup> 3       | $(11^+)$           | С    |
| 1558.51? <i>16</i>                 |                             | A    | 1954.09 <sup>c</sup> 22   | $(8^{-})$                   | C    | 2751.1 <sup>c</sup> 5       | $(12^{-})$         | C    |
| 1584.11? <i>17</i>                 |                             | A    | 2095.20 <sup>d</sup> 23   | (9)                         | С    | 2751.7 <sup>a</sup> 3       | $(13^{-})$         | С    |
| 1589.91 <i>6</i>                   | $(2^+,1)^{\textcircled{0}}$ | A    | 2144.48 <i>15</i>         |                             | A    | 2887.9 <mark>&amp;</mark> 4 | 14 <sup>+#</sup>   | С    |
| 1622.78? 12                        |                             | A    | 2153.67 <i>14</i>         | $(2^+,1)^{\textcircled{@}}$ | Α    | 2969.2 <sup>d</sup> 3       | (13)               | С    |
| 1625.98? 10                        |                             | A    | 2192.37? 24               |                             | A    | 3287.3 <sup>c</sup> 5       | $(14^{-})$         | C    |
| 1682.00 <sup>c</sup> 19            | (6-)                        | С    | 2198.76 <sup>b</sup> 24   | $(9^+)$                     | C    | 3326.4 <sup>a</sup> 4       | $(15^{-})$         | C    |
| 1728.39 11                         |                             | A    | 2224.7 <mark>a</mark> 3   | $(11^{-})$                  | С    | 3464.1 <sup>&amp;</sup> 4   | 16 <sup>+#</sup>   | С    |
| 1753.58 <sup>a</sup> 23            | (9-)                        | C    | 2252.22 14                |                             | A    | 3898.7 <sup>c</sup> 6       | $(16^{-})$         | C    |
| 1786.67 <mark>b</mark> 18          | $(7^{+})$                   | С    | 2306.9 <sup>c</sup> 4     | $(10^{-})$                  | C    | 3944.2 <mark>a</mark> 4     | $(17^{-})$         | C    |
| 1788.66 <sup>d</sup> 23            | (7)                         | С    | 2327.8 <sup>&amp;</sup> 3 | 12 <sup>+#</sup>            | С    | 4065.8 <sup>&amp;</sup> 4   | 18 <sup>+#</sup>   | C    |
| 1790.7 <mark>&amp;</mark> <i>3</i> | 10 <sup>+#</sup>            | С    | 2486.8 <sup>d</sup> 3     | (11)                        | C    | 4685.4 <sup>&amp;</sup> 5   | 20 <sup>+#</sup>   | C    |
| 1891.20 8                          | $(2^+,1)^{@}$               | A    | 2550.36 <i>21</i>         | $(2^+,1)^{\textcircled{0}}$ | A    | 5311.2 <sup>&amp;</sup> 5   | 22 <sup>+#</sup>   | C    |

 $<sup>^{\</sup>dagger}$  From a least-squares fit to Ey data.

 $\gamma(^{148}\text{Ce})$ 

| $E_i(level)$ | $\mathbf{J}_i^\pi$ | $E_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\#}$ | $E_f$ $J_j'$ | $\frac{\pi}{f}$ Mult. | $lpha^\dagger$ | Comments                                                                                                                                           |
|--------------|--------------------|-------------------------|-------------------|--------------|-----------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 158.467      | 2+                 | 158.468 <i>5</i>        | 100               | 0.0          | + E2                  | 0.407          | $\alpha(K)$ =0.293 5; $\alpha(L)$ =0.0896 13; $\alpha(M)$ =0.0197 3; $\alpha(N+)$ =0.00489 7                                                       |
|              |                    |                         |                   |              |                       |                | $\alpha(N)$ =0.00425 6; $\alpha(O)$ =0.000618 9; $\alpha(P)$ =1.713×10 <sup>-5</sup> 24                                                            |
|              |                    |                         |                   |              |                       |                | B(E2)(W.u.)=86 6                                                                                                                                   |
|              |                    |                         |                   |              |                       |                | Mult.: from K/L in <sup>252</sup> Cf SF decay and RUL.                                                                                             |
| 453.45       | 4+                 | 295.07 9                | 100               | 158.467 2    | + [E2]                | 0.0513         | $\alpha(K)$ =0.0412 6; $\alpha(L)$ =0.00802 12; $\alpha(M)$ =0.001726 25; $\alpha(N+)$ =0.000436 7                                                 |
|              |                    |                         |                   |              |                       |                | $\alpha(N)=0.000376 \ 6; \ \alpha(O)=5.71\times10^{-5} \ 8;$                                                                                       |
|              |                    |                         |                   |              |                       |                | $\alpha(P) = 2.71 \times 10^{-6} 4$                                                                                                                |
| 760.22       | (1-)               | (01.00.6                | 00.1              | 150 467 2    | +                     |                | B(E2)(W.u.)>4.3                                                                                                                                    |
| 760.32       | $(1^{-})$          | 601.88 6                | 89 1              | 158.467 2    |                       |                |                                                                                                                                                    |
| 770.42       | 0+                 | 760.30 6                | 100 5             | 0.0 0        |                       | 0.00624.0      | 0.00(24.0 (II) 0.00524.0 (I) 0.000700.11                                                                                                           |
| 770.43       | 0+                 | 611.81 7                | 100               | 158.467 2    | + E2                  | 0.00634 9      | $\alpha$ =0.00634 9; $\alpha$ (K)=0.00534 8; $\alpha$ (L)=0.000790 11; $\alpha$ (M)=0.0001665 24; $\alpha$ (N+)=4.29×10 <sup>-5</sup> 6            |
|              |                    |                         |                   |              |                       |                | $\alpha(N)=3.67\times10^{-5} 6$ ; $\alpha(O)=5.80\times10^{-6} 9$ ; $\alpha(P)=3.81\times10^{-7} 6$                                                |
|              |                    |                         |                   |              |                       |                | Mult.: from $\gamma\gamma(\theta)$ and syst for $\beta$ -vibrational levels in $A\approx150$ deformed nuclei ( <sup>148</sup> La $\beta^-$ decay). |
| 839.52       | 6+                 | 386.15 20               | 100               | 453.45 4     | +                     |                | ( <b>2</b>                                                                                                                                         |

<sup>‡</sup> From 2006Ch24 based on presumed rotational-band structure and systematics, unless noted otherwise.

 $<sup>^{\#}</sup>$  E2  $\gamma$  to 0 $^{+}$  band member and regular band sequence.

 $<sup>^{\</sup>circ}$  Gammas to  $0^+$  and  $2^+$ .

<sup>&</sup>amp; Band(A):  $K^{\pi}$ =0<sup>+</sup> band, α=+1.

<sup>&</sup>lt;sup>a</sup> Band(B):  $K^{\pi}=7^{-}$  band,  $\alpha=+1$ .

<sup>&</sup>lt;sup>b</sup> Band(C):  $K^{\pi}=3^+$  band,  $\alpha=-1$ .

<sup>&</sup>lt;sup>c</sup> Band(D):  $K^{\pi}=4^{-}$  band,  $\alpha=-1$ .

<sup>&</sup>lt;sup>d</sup> Band(E): Band based on 7.

# $\gamma$ (148Ce) (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$              | $I_{\gamma}^{\#}$   | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$             | Mult. | $lpha^\dagger$ | Comments                                                                                    |
|--------------|----------------------|--------------------------------------|---------------------|------------------------------------------------------|-------|----------------|---------------------------------------------------------------------------------------------|
| 841.39       | (3-)                 | 387.92 10                            | 22 1                | 453.45 4+                                            |       |                |                                                                                             |
|              |                      | 682.97 <i>6</i>                      | 100 8               | 158.467 2+                                           |       |                |                                                                                             |
| 935.59       | $(2^{+})$            | 482.19 7                             | 13 <i>I</i>         | 453.45 4 <sup>+</sup>                                |       |                |                                                                                             |
|              |                      | 777.16 <i>6</i>                      | 100 <i>3</i>        | 158.467 2 <sup>+</sup>                               |       |                |                                                                                             |
| 989.90       | $(2^{+})$            | (54.24)                              |                     | $935.59 	 (2^+)$                                     |       |                |                                                                                             |
|              |                      | 536.38 16                            | 5.3 6               | 453.45 4+                                            |       |                |                                                                                             |
|              |                      | 831.33 6                             | 55 <i>3</i>         | 158.467 2+                                           |       |                |                                                                                             |
| 1116.60      | (2±)                 | 989.85 6                             | 100 3               | $0.0 	 0^{+}$                                        |       |                |                                                                                             |
| 1116.63      | (3 <sup>+</sup> )    | 663.20 7                             | 38 1                | 453.45 4 <sup>+</sup><br>158.467 2 <sup>+</sup>      |       |                |                                                                                             |
| 1223.98      | $(4^{+})$            | 958.23 <i>6</i><br>770.53 <i>10</i>  | 100 <i>I</i><br>100 | 158.467 2 <sup>+</sup><br>453.45 4 <sup>+</sup>      |       |                |                                                                                             |
| 1290.32      | 8 <sup>+</sup>       | 450.75 20                            | 100                 | 839.52 6 <sup>+</sup>                                |       |                |                                                                                             |
| 1351.40      | $(7^{-})$            | 511.9 2                              | 100                 | 839.52 6 <sup>+</sup>                                |       |                |                                                                                             |
| 1368.89      | (, )                 | 252.45 7                             | 42 3                | 1116.63 (3+)                                         |       |                |                                                                                             |
|              |                      | 378.93 4                             | 100 10              | 989.90 (2 <sup>+</sup> )                             |       |                |                                                                                             |
|              |                      | 433.32 8                             | 28.2 14             | 935.59 (2+)                                          |       |                |                                                                                             |
| 1415.61      |                      | 298.81 <i>14</i>                     | 72 6                | 1116.63 (3 <sup>+</sup> )                            |       |                |                                                                                             |
|              |                      | 425.68 8                             | 100 6               | 989.90 (2 <sup>+</sup> )                             |       |                |                                                                                             |
|              |                      | 1257.42 <i>14</i>                    | 61 6                | 158.467 2 <sup>+</sup>                               |       |                |                                                                                             |
| 1423.04      | $(5^{+})$            | 306.3 2                              | 96 5                | 1116.63 (3+)                                         |       |                |                                                                                             |
|              |                      | 583.5 <i>3</i>                       | 58 <i>3</i>         | 839.52 6+                                            |       |                |                                                                                             |
|              |                      | 969.65 25                            | 100 5               | 453.45 4+                                            |       |                |                                                                                             |
| 1456.88?     |                      | 1298.46 <sup>@</sup> 25              | 100                 | 158.467 2 <sup>+</sup>                               |       |                | 252                                                                                         |
| 1486.33      | (4-)                 | 369.7 2                              | 100                 | 1116.63 (3+)                                         |       |                | $E_{\gamma}$ : from <sup>252</sup> Cf SF decay.                                             |
| 1497.07      | $(2^+,1)$            | 1338.64 8                            | 100 6               | 158.467 2+                                           |       |                |                                                                                             |
| 155476       |                      | 1496.97 12                           | 34 3                | $0.0 	 0^{+}$                                        |       |                |                                                                                             |
| 1554.76      |                      | 713.37 <i>12</i><br>794.44 <i>11</i> | 69 8<br>100 8       | 841.39 (3 <sup>-</sup> )<br>760.32 (1 <sup>-</sup> ) |       |                |                                                                                             |
| 1558.51?     |                      | 1105.06 15                           | 100 0               | 453.45 4 <sup>+</sup>                                |       |                |                                                                                             |
| 1584.11?     |                      | 1425.58 <sup>@</sup> 11              | 100                 | 158.467 2 <sup>+</sup>                               |       |                |                                                                                             |
| 1589.91      | $(2^+,1)$            | 654.53 11                            | 58 17               | 935.59 (2 <sup>+</sup> )                             |       |                |                                                                                             |
| 1309.91      | (2,1)                | 819.28 8                             | 100 25              | 770.43 0 <sup>+</sup>                                |       |                |                                                                                             |
|              |                      | 1431.56 10                           | 100 4               | 158.467 2 <sup>+</sup>                               |       |                |                                                                                             |
|              |                      | 1589.93 <i>13</i>                    | 63 4                | $0.0 	 0^{+}$                                        |       |                |                                                                                             |
| 1622.78?     |                      | 1464.36 <sup>@</sup> 11              | 100                 | 158.467 2 <sup>+</sup>                               |       |                |                                                                                             |
| 1625.98?     |                      | 257.09 9                             | 100                 | 1368.89                                              |       |                |                                                                                             |
| 1682.00      | (6-)                 | 195.7 <sup>@</sup>                   |                     | 1486.33 (4-)                                         |       |                |                                                                                             |
| 1002.00      | (0 )                 | 258.85 20                            | 100                 | 1423.04 (5 <sup>+</sup> )                            |       |                |                                                                                             |
| 1728.39      |                      | 887.12 <i>12</i>                     | 100 13              | 841.39 (3-)                                          |       |                |                                                                                             |
|              |                      | 967.4 <i>4</i>                       | 88 25               | 760.32 (1-)                                          |       |                |                                                                                             |
|              |                      | 1569.65 25                           | 88 25               | 158.467 2+                                           |       |                |                                                                                             |
| 1753.58      | (9-)                 | 402.2 2                              | 47 4                | 1351.40 (7-)                                         |       |                |                                                                                             |
|              | ·=+>                 | 463.2 2                              | 100 5               | 1290.32 8+                                           |       |                | (T) 0.400 0 (T) 0.0000 (                                                                    |
| 1786.67      | $(7^{+})$            | 104.8 2                              | 67 4                | 1682.00 (6 <sup>-</sup> )                            | E1    | 0.214 4        | $\alpha(K) = 0.182 \ 3; \ \alpha(L) = 0.0252 \ 4;$                                          |
|              |                      |                                      |                     |                                                      |       |                | $\alpha(M) = 0.00525 \ 8; \ \alpha(N+) = 0.001338 \ 20$                                     |
|              |                      |                                      |                     |                                                      |       |                | $\alpha(N)=0.001148 \ 18; \ \alpha(O)=0.000179 \ 3;$<br>$\alpha(P)=1.103\times10^{-5} \ 17$ |
|              |                      |                                      |                     |                                                      |       |                | Mult.: based on $\alpha(\exp)$ (252Cf SF decay).                                            |
|              |                      | 363.65 20                            | 100 6               | 1423.04 (5 <sup>+</sup> )                            |       |                | with based on $\alpha(\exp)$ ( * Cl Sr decay).                                              |
|              |                      | 947.3 2                              | 81 6                | 839.52 6 <sup>+</sup>                                |       |                |                                                                                             |
| 1788.66      | (7)                  | 949.1 2                              | 100                 | 839.52 6 <sup>+</sup>                                |       |                |                                                                                             |
| 1790.7       | 10+                  | 500.8 5                              | 100                 | 1290.32 8+                                           |       |                |                                                                                             |
| 1891.20      | $(2^+,1)$            | 1130.95 10                           | 86 9                | 760.32 (1-)                                          |       |                |                                                                                             |
|              |                      | 1732.67 <i>16</i>                    | 55 <i>5</i>         | 158.467 2 <sup>+</sup>                               |       |                |                                                                                             |
|              |                      | 1891.02 <i>17</i>                    | 100 5               | $0.0 	 0^{+}$                                        |       |                |                                                                                             |
|              |                      |                                      |                     |                                                      |       |                |                                                                                             |

# $\gamma$ (148Ce) (continued)

| $E_i(level)$        | $\mathbf{J}_i^{\pi}$                  | $\mathrm{E}_{\gamma}^{\ddagger}$                         | $I_{\gamma}^{\#}$                             | $\mathrm{E}_f$                | $\mathbf{J}_f^{\pi}$                                     | Mult. | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                             |
|---------------------|---------------------------------------|----------------------------------------------------------|-----------------------------------------------|-------------------------------|----------------------------------------------------------|-------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1927.69?<br>1954.09 | (8-)                                  | 1769.27 <sup>@</sup> 21<br>166.95 20                     | 100<br>100 <i>5</i>                           | 158.467<br>1786.67            | 2 <sup>+</sup> (7 <sup>+</sup> )                         | E1    | 0.0584             | $\alpha(K)$ =0.0499 8; $\alpha(L)$ =0.00669 10; $\alpha(M)$ =0.001392 20; $\alpha(N+)$ =0.000357 6 $\alpha(N)$ =0.000306 5; $\alpha(O)$ =4.83×10 <sup>-5</sup> 7; $\alpha(P)$ =3.21×10 <sup>-6</sup> 5 Mult.: based on $\alpha(\exp)$ ( <sup>252</sup> Cf SF decay). |
| 2095.20             | (9)                                   | 271.75 <i>20</i><br>306.5 <i>2</i><br>804.9 <i>2</i>     | 49 <i>3</i><br>100 <i>8</i><br>65 <i>5</i>    | 1682.00<br>1788.66<br>1290.32 | (6 <sup>-</sup> )<br>(7)<br>8 <sup>+</sup>               |       |                    | Main cased on a (oxp) ( or or access).                                                                                                                                                                                                                               |
| 2144.48             |                                       | 1303.3 <i>3</i><br>1985.93 <i>17</i>                     | 5 5<br>100 2                                  | 841.39<br>158.467             | $(3^{-})$                                                |       |                    |                                                                                                                                                                                                                                                                      |
| 2153.67             | $(2^+,1)$                             | 1995.23 <i>16</i> 2153.56 <i>23</i>                      | 100 <i>3</i><br>22 <i>3</i>                   | 158.467<br>0.0                | 2 <sup>+</sup><br>0 <sup>+</sup>                         |       |                    |                                                                                                                                                                                                                                                                      |
| 2192.37?<br>2198.76 | (9+)                                  | 2033.95 <sup>@</sup> 24<br>244.95 25<br>411.9 2          | 100 <i>9</i><br>67 <i>6</i>                   | 158.467<br>1954.09<br>1786.67 | 2 <sup>+</sup> (8 <sup>-</sup> ) (7 <sup>+</sup> )       |       |                    |                                                                                                                                                                                                                                                                      |
| 2224.7              | (11-)                                 | 434.1 2<br>471.1 2                                       | 100 <i>6</i><br>42 <i>4</i>                   | 1790.7<br>1753.58             | 10 <sup>+</sup> (9 <sup>-</sup> )                        |       |                    |                                                                                                                                                                                                                                                                      |
| 2252.22<br>2306.9   | (10-)                                 | 1316.69 <i>18</i><br>2093.66 <i>21</i><br>108.0 <i>6</i> | 6.4 8<br>100 2<br>54 3                        | 935.59<br>158.467<br>2198.76  | (2 <sup>+</sup> )<br>2 <sup>+</sup><br>(9 <sup>+</sup> ) | E1    | 0.197 5            | $\alpha(K)=0.167$ 4; $\alpha(L)=0.0232$ 5;                                                                                                                                                                                                                           |
|                     | ( - /                                 |                                                          |                                               |                               | (- /                                                     |       |                    | $\alpha(M)$ =0.00482 <i>II</i> ; $\alpha(N+)$ =0.00123 <i>3</i> $\alpha(N)$ =0.001054 <i>23</i> ; $\alpha(O)$ =0.000164 <i>4</i> ; $\alpha(P)$ =1.020×10 <sup>-5</sup> <i>2I</i>                                                                                     |
|                     |                                       | 352.9 4                                                  | 100 8                                         | 1954.09                       | (8-)                                                     |       |                    | Mult.: based on $\alpha(\exp)$ (252Cf SF decay).                                                                                                                                                                                                                     |
| 2327.8              | 12+                                   | 103.1 2<br>536.95 25                                     | 4.6 <i>7</i><br>100 <i>6</i>                  | 2224.7<br>1790.7              | $(11^{-})$ $10^{+}$                                      |       |                    |                                                                                                                                                                                                                                                                      |
| 2486.8              | (11)                                  | 391.55 <i>20</i> 696.1 <i>2</i>                          | 100 8<br>100 8                                | 2095.20<br>1790.7             | (9)<br>10 <sup>+</sup>                                   |       |                    |                                                                                                                                                                                                                                                                      |
| 2550.36             | $(2^+,1)$                             | 2391.94 22<br>2549.8 <i>6</i>                            | 100 7<br>9 6                                  | 158.467                       |                                                          |       |                    |                                                                                                                                                                                                                                                                      |
| 2673.5              | $(11^{+})$                            | 474.7 2                                                  | 100                                           | 2198.76                       | $(9^{+})$                                                |       |                    |                                                                                                                                                                                                                                                                      |
| 2751.1<br>2751.7    | $(12^{-})$ $(13^{-})$                 | 444.2 2<br>423.9 2                                       | 100<br>100 <i>9</i>                           | 2306.9<br>2327.8              | $(10^{-})$ $12^{+}$                                      |       |                    |                                                                                                                                                                                                                                                                      |
| 2887.9              | 14+                                   | 527.0 2<br>136.3 2                                       | 65 <i>9</i><br>8.2 <i>11</i>                  | 2224.7<br>2751.7              | (11 <sup>-</sup> )<br>(13 <sup>-</sup> )                 |       |                    |                                                                                                                                                                                                                                                                      |
| 2969.2              | (13)                                  | 559.7 <i>5</i><br>482.5 2<br>641.4 2                     | 100 <i>5</i><br>100 <i>12</i><br>71 <i>12</i> | 2327.8<br>2486.8<br>2327.8    | 12 <sup>+</sup><br>(11)<br>12 <sup>+</sup>               |       |                    |                                                                                                                                                                                                                                                                      |
| 3287.3              | (14-)                                 | 536.2 2                                                  | 100                                           | 2751.1                        | $(12^{-})$                                               |       |                    |                                                                                                                                                                                                                                                                      |
| 3326.4              | $(15^{-})$                            | 438.4 2                                                  | 100 <i>14</i><br>64 <i>7</i>                  | 2887.9<br>2751.7              | 14 <sup>+</sup> (13 <sup>-</sup> )                       |       |                    |                                                                                                                                                                                                                                                                      |
| 3464.1              | 16 <sup>+</sup>                       | 574.7 2<br>137.8 2<br>576.15 20                          | 4.1 <i>13</i><br>100 <i>5</i>                 | 3326.4<br>2887.9              | (15 <sup>-</sup> )<br>14 <sup>+</sup>                    |       |                    |                                                                                                                                                                                                                                                                      |
| 3898.7              | (16 <sup>-</sup> )                    | 611.4 2                                                  | 100                                           | 3287.3                        | $(14^{-})$                                               |       |                    |                                                                                                                                                                                                                                                                      |
| 3944.2<br>4065.8    | (17 <sup>-</sup> )<br>18 <sup>+</sup> | 617.8 2<br>601.65 20                                     | 100<br>100                                    | 3326.4<br>3464.1              | (15 <sup>-</sup> )<br>16 <sup>+</sup>                    |       |                    |                                                                                                                                                                                                                                                                      |
| 4685.4              | 20 <sup>+</sup>                       | 619.6 2                                                  | 100                                           | 4065.8                        | 18 <sup>+</sup>                                          |       |                    |                                                                                                                                                                                                                                                                      |
| 5311.2              | 22+                                   | 625.8 2                                                  | 100                                           | 4685.4                        | 20+                                                      |       |                    |                                                                                                                                                                                                                                                                      |

<sup>†</sup> Additional information 1.

## $\gamma$ (148Ce) (continued)

- $^{\ddagger}$  From  $^{148}\text{La}\ \beta^-$  decay for transitions not related to band structures, while for In-band and inter-band transitions Ey's are from  $^{252}\text{Cf}$  SF decay; for levels common to both datasets, Ey's are from  $^{148}\text{La}\ \beta^-$  decay.
- # Relative photon branching from each level.
- <sup>@</sup> Placement of transition in the level scheme is uncertain.

Legend

#### Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

<sup>148</sup><sub>58</sub>Ce<sub>90</sub>-6



Legend

#### Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)



Legend

#### Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)





$$^{148}_{58}\mathrm{Ce}_{90}$$