TP3 – Refração da luz, lentes e princípio de funcionamento de um microscópio.

1ª Parte – Medida do ângulo de refração ar/acrílico.

Nesta 1^a parte, com a seguinte montagem experimental:

Registaram-se os seguintes valores de ângulos incidentes e correspondentes ângulos refratados:

$\theta_{incidente}$ (Graus)	$\theta_{refratado}$ (Graus)
10	6,5
20	13
30	19,5
40	25,5
50	31
60	35,5
70	39

A partir da lei de Snell,

$$n_{ar}\sin(\theta_{incidente}) = n_{acrilico}\sin(\theta_{refratado}) \Leftrightarrow$$

$$\iff \frac{\sin(\theta_{incidente})}{\sin(\theta_{refratado})} = \frac{n_{acrilico}}{n_{ar}}$$

como $n_{ar} = 1$:

$$n_{acrilico} = \frac{\sin(\theta_{incidente})}{\sin(\theta_{refratado})}$$

Temos,

$sin(\theta_{incidente})$	$\sin(\theta_{refratado})$
0,17	0,11
0,34	0,22
0,50	0,33
0,64	0,43
0,77	0,52
0,87	0,58
0,94	0,63

podendo traçar um ajuste aos pontos experimentais de modo a obter o valor do $n_{acrilico}$:

Logo,
$$n_{acrilico} = 1,49$$
.

2ª Parte – Medida do ângulo de refração acrílico/ar.

A partir da montagem da $1^{\underline{a}}$ Parte, rodando a lente cilíndrica 180 graus:

Registaram-se os seguintes valores de ângulos incidentes e correspondentes ângulos refratados:

$\theta_{incidente}$ (Graus)	$\theta_{refratado}$ (Graus)	
10	15	
15	22,9	
20	30,5	
25	38,8	
30	48	
35	58,5	
40	72,5	

A partir da lei de Snell,

$$n_{acrilico} \sin(\theta_{incidente}) = n_{ar} \sin(\theta_{refratado}) \Leftrightarrow$$

$$\Leftrightarrow \frac{\sin(\theta_{refratado})}{\sin(\theta_{incidente})} = \frac{n_{acrilico}}{n_{ar}} \Leftrightarrow$$

como $n_{ar} = 1$:

$$n_{acrilico} = \frac{\sin(\theta_{refratado})}{\sin(\theta_{incidente})}$$

Temos,

$\sin(\theta_{incidente})$	$\sin(\theta_{refratado})$
0,17	0,26
0,26	0,39
0,34	0,51
0,42	0,63
0,50	0,74
0,57	0,85
0,64	0,95

podendo traçar um ajuste aos pontos experimentais de modo a obter o valor do $n_{acrilico}$:

Novamente, como esperado tendo em conta o resultado da $1^{\underline{a}}$ parte, $n_{acrilico}=1,49.$

Experimentalmente nesta parte, observou-se a existência de um ângulo critico,

$$\Theta_{critico} = 42,5^{\circ}$$

$$com \, n_{acrilico} = 1,49 \, \mathrm{e},$$

$$n_{acrilico} = \frac{\sin(90^\circ)}{\sin(\theta_{critico})} \iff \Theta_{critico} = 42,3^\circ$$

com desvio percentual de 0,5% entre o valor teórico e experimental. Também nesta parte, antes da reflexão total, é observado o seguinte fenómeno:

Uma dispersão da luz branca, onde ficamos a saber que a velocidade da luz no material depende do comprimento de onda da mesma. Com a imagem acima, verifica-se que $n_{vermelha} < n_{azul}$ por isso quanto maior o comprimento de onda maior a velocidade de propagação da luz no acrílico.

Extra - Reflexão

Com a mesma montagem da 1ª Parte, usado um espelho ao invés de uma lente cilíndrica, estudou-se a reflexão da luz. Como já era esperado o ângulo incidente refletido corresponde ao ângulo refratado.

4ª Parte - Luz refratada por uma lente: distância focal e aberração esférica.

Nesta 4^a parte, com a seguinte montagem experimental:

Observa-se o seguinte padrão:

Onde se registaram os seguintes valores em relação á frente da lente,

Ponto	Distância focal (mm)
Α	36
В	45
С	50

para uma maior precisão nas distâncias focais, por exemplo ao medir a distância A cobriam se os feixes B e C ficando muito mais fácil a leitura da distância focal. Para as outras distâncias focais (B e C) também se usou o mesmo procedimento.

Rodando a lente 180° , observa-se o seguinte padrão:

Registaram-se os seguintes valores:

Ponto	Distância focal (mm)
Α	31
В	34,5
С	34,5

5ª Parte - Princípio de funcionamento do microscópio

Nesta 5^a parte, com a seguinte montagem experimental:

Variando as distâncias d_0 e d_i . Observa-se que com d_0 fixo, quanto maior d_i maior a ampliação. Mantendo fixo d_i , quanto menor d_0 maior a ampliação.

Nota: Também foi observado que quanto maior d_0 menor a distância focal!

Estas relações também poderiam ser verificadas pela seguinte relação,

$$M = \frac{d_i}{d_0} \frac{25 \ cm}{f}$$

onde M e f corresponde á ampliação e distância focal da objetiva respetivamente. Registamos os seguintes d_0 e d_i ,

d_0 (mm)	d_i (mm)	
150	117	
150	150	
200	150	

Mas não foram registados os valores de distâncias focais para os respetivos d_0 . Por isso não é possível obter a ampliação resultante.