t-Stochastic Neighbor Embedding

Complete 80-Slide Presentation

Prof.Asc. Endri Raco

Polytechnic University of Tirane

October 2025

What is High-Dimensional Data? An Intuitive View

The Core Idea

Think of data not as a spreadsheet, but as points in a "feature space." Each feature is a dimension.

Simple Example: Housing Prices (2D)

- Dimension 1: Square Footage
- Dimension 2: Price
- Easy to plot and see patterns!

Complex, High-Dimensional Examples:

- An Image (784-D): Each pixel's brightness is one dimension.
- A Customer (100s of D): Dimensions for age, purchase history, clicks...

Key Idea: We often work with data that has far more dimensions than the 2 or 3 we can perceive. This creates unexpected problems.

What is Dimensionality Reduction?

Definition

Transforming high-dimensional data into lower-dimensional representations while preserving meaningful structure

Why We Need It:

- Visualization: Human perception limited to 3D
- Curse of dimensionality: Distance becomes meaningless in high-D
- Computational efficiency: Reduce processing requirements
- Feature extraction: Identify essential patterns

The Central Challenge:

How do we decide what to preserve when we must lose information?

Traditional answer: Preserve distances

t-SNE answer: Preserve neighborhoods

The Fundamental Challenge of Dimensionality Reduction

784 DimensionsMNIST digit

2 Dimensions

Your screen

The Crowding Problem: Why Linear Methods Fail

Definition

Crowding Problem: The geometric impossibility of preserving moderate-range distances when projecting from high to low dimensions, causing distinct distance scales to collapse.

High-D Space (10D)

After Linear Projection to 2D

Ratio: 1 : 1.1 : 1.2

The Paradigm Shift: From Geometry to Information

Traditional Methods

Preserve distances or variance

t-SNE

The Paradigm Shift: Concrete Example

Traditional: Preserve Distances

$$\frac{d=2}{d=4}$$

Problem: All distances treated equally

No context about local density

t-SNE: Preserve Probabilities

Solution: Likelihood encodes context Adapts to local density automatically

 $\textbf{Key Insight:} \ \, \mathsf{Same \ distance} \rightarrow \mathsf{different \ probabilities \ based \ on \ neighborhood \ density}$

Why Probability Distributions for Neighborhoods?

The Fundamental Question:

How do we mathematically represent "neighborliness" between points?

Option 1: Binary (Yes/No)

- Neighbor or not neighbor
- Problem: Too rigid!
- Loses gradual relationships

Option 2: Raw Distances

- Use actual measurements
- Problem: No context!
- 5 units means different things

Option 3: Probabilities ✓

- Continuous values [0,1]
- Context-aware (adapts to density)
- Mathematically tractable
- Information theory foundation

Binary
Distance
Probability

Next: How to convert distances to probabilities mathematically

Building Intuition: From Distances to Neighborhoods

The Problem with Raw Distances:

- Point A: 1 unit from B, 10 units from C
- But what if A is in dense region?
- And C is in sparse region?
- Raw distance loses context!

The Solution - Relative Similarity:

- Convert distances to probabilities
- "How likely is B to be A's neighbor?"
- Adapt to local density automatically
- Use Gaussian decay (smooth, differentiable)

Key Idea: Each point gets its own "neighborhood size" (σ_i) based on local density

From Distances to Probabilities

Key Transformation:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

Insight: σ_i adapts to local density automatic

Why Gaussian? The Natural Choice for Neighborhoods

What We're Building

Our Goal:

- Convert distances to probabilities
- "How likely is j to be i's neighbor?"
- Must adapt to local density

Three Key Requirements:

- Smooth decay no sudden cutoffs
- 2 Local focus neighbors matter most
- Unbiased don't assume patterns

The Winner: Gaussian $p_{i|i} \propto e^{-d_{ij}^2/2\sigma_i^2}$

Visual Comparison

Analogy: Friendship strength strongest nearby, fading smoothly

The Mathematics Behind Gaussian: Maximum Entropy Principle

The Core Principle

The Question:

Which distribution makes the *fewest assumptions* while matching our constraints?

Answer: Maximum Entropy

The distribution with highest uncertainty (entropy) given the constraints

Why This Matters:

- Most "honest" no hidden bias
- Adds no assumptions
- Principled approach

Entropy Comparison

Gaussian = Maximum Entropy

 ${\sf Most\ uncertain} = {\sf Least\ biased}$

The Mathematical Derivation: Problem Setup

Optimization Problem

Maximize Entropy:

$$H(P_i) = -\sum_j p_{j|i} \log p_{j|i}$$

Subject to Constraints:

- **1** Normalization: $\sum_{i} p_{j|i} = 1$
- **2** Fixed Variance: $\sum_{j} p_{j|i} d_{ij}^2 = \sigma_i^2$

The goal is to find the most unbiased probability distribution $(p_{j|i})$ that meets our constraints.

The Mathematical Derivation: Solution

Solution via Lagrange Multipliers

1. The Lagrangian:

$$\mathcal{L} = \mathcal{H}(P_i) + \lambda \left(\sum p_{j|i} - 1 \right) \ + \mu \left(\sum p_{j|i} d_{ij}^2 - \sigma_i^2 \right)$$

- 2. Taking derivatives and solving for $\frac{\partial \mathcal{L}}{\partial p_{\text{BH}}} = 0$ yields the result.
- 3. Result (The Gaussian Distribution):

$$p_{j|i} = rac{e^{-rac{d_{ij}^2}{2\sigma_i^2}}}{\sum_k e^{-rac{d_{ik}^2}{2\sigma_i^2}}}$$

Perplexity: Setting the Neighborhood Size

The Problem We're Solving

Question: How many neighbors should each point consider?

Challenge: Different regions have different densities!

- ullet Dense areas: Small σ needed
- ullet Sparse areas: Large σ needed

Solution: Perplexity - a user parameter that sets "effective" number of neighbors

Adaptive Neighborhoods

Dense: $\sigma = 0.1$ Sparse: $\sigma = 0.5$

Both have same perplexity = 5 Different σ values!

Key Insight: Perplexity is constant across all points, but σ_i adapts to achieve it

Perplexity: The Mathematics and Algorithm

Mathematical Definition

From Shannon Entropy:

$$H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}$$

Perplexity:

$$Perp(P_i) = 2^{H(P_i)}$$

Interpretation:

- ullet Perp = 5 ightarrow "acts like" 5 neighbors
- Perp = $30 \rightarrow$ "acts like" 30 neighbors

Finding σ_i : Binary Search

Why Binary Search?

Perplexity increases with σ monotonically

Algorithm:

- **1** Start with $\sigma = 1$
- 2 Compute current perplexity
- **3** Too high? \rightarrow Decrease σ

Measuring Information Loss: KL Divergence

What is KL Divergence?

$$\mathsf{KL}(P||Q) = \sum_{j} p_{j} \log rac{p_{j}}{q_{j}}$$

Extra bits needed when using Q instead of true P

Critical Asymmetry Example

Consider point B with true probability 0.3:

Missing a true neighbor:

True: p = 0.3, Embedded: q = 0.01Penalty: $0.3 \times \log(30) \approx 1.02$ bits

Creating a false neighbor:

True: p=0.01, Embedded: q=0.3Penalty: $0.01 \times \log(0.033) \approx$ **-0.035 bits**

Visual Example

Original SNE: The Precursor to t-SNE

Prof.Asc. Endri Raco (Polytechnic University of Tirane)

A Brief History of Dimension Reduction

SNE's Innovation SNE's Fatal Flaw • First to use probabilities • Used Gaussian in low-D space • Adaptive neighborhoods (σ_i) • Cannot represent moderate distances • Information-theoretic approach • Led to "crowding problem" • KL divergence for optimization • All points collapse together

t-Stochastic Neighbor Embedding

October 2025

18 / 57

SNE's Mathematics: Where It Went Wrong

The Formulation

• High-D Similarity (*P*):

Gaussian with adaptive variance σ_i

$$p_{j|i} = \frac{\exp(-d_{ij}^2/2\sigma_i^2)}{\sum_k \exp(-d_{ik}^2/2\sigma_i^2)}$$

• Low-D Similarity (Q):
Gaussian with fixed variance

$$q_{j|i} = \frac{\exp(-d_{ij}^2)}{\sum_{k} \exp(-d_{ik}^2)}$$

• Cost Function: $C = \sum_i \mathrm{KL}(P_i||Q_i)$

Why Gaussian Fails in 2D

Problem: Moderate distances in high-D get exponentially tiny similarities in low-D, causing crowding.

The Curse: Why High-D Breaks Our Intuition

The Volume Problem

Question: In a D-dimensional sphere, what fraction of volume is in the outer shell (radius 0.9 to 1.0)?

Your intuition (2D):

$$\frac{\pi \cdot 1^2 - \pi \cdot 0.9^2}{\pi \cdot 1^2} = 19\%$$

Reality in high-D:

• 5D: 41%

• 10D: 65%

• 50D: 99.5%

• 100D: 99.997%

Volume Distribution by Dimension

SNE's Fatal Flaw Visualized

High-D: Room for all

Distinct distances

2D with Gaussian: Crushed!

Cannot represent moderate distances

Solution: Use distribution with heavier tails!

The t-SNE Innovation: Student-t Distribution

The Key Change

SNE (Gaussian in 2D):

$$q_{ij} = rac{e^{-d_{ij}^2}}{\sum_{k
eq I} e^{-d_{kI}^2}}$$

t-SNE (Student-t in 2D):

$$q_{ij} = rac{(1+d_{ij}^2)^{-1}}{\sum_{k
eq l} (1+d_{kl}^2)^{-1}}$$

Mathematical Properties:

- Polynomial decay: $O(d^{-2})$ vs exponential
- Heavy tails preserve moderate distances
- Cauchy distribution (df = 1)

Prof.Asc. Endri Raco (Polytechnic University of Tirane)

Decay Comparison

Quantifying the Solution

Similarity Ratio Analysis

For distances $d_1 = 1$ and $d_2 = 3$:

Gaussian:

$$\frac{q(d_1)}{q(d_2)} = \frac{e^{-1}}{e^{-9}} = e^8 \approx 2981$$

Moderate distance becomes "infinite"

Student-t:

$$\frac{q(d_1)}{q(d_2)} = \frac{1/(1+1)}{1/(1+9)} = 5$$

Moderate distance preserved

600× difference in representation capacity!

From SNE to t-SNE: Three Critical Changes

The Evolution

Modification 1: Symmetrization

SNE: Asymmetric $p_{i|i} \neq p_{i|i}$ **t-SNE:** Symmetric $p_{ii} = p_{ii} = \frac{p_{j|i} + p_{i|j}}{2p}$

- Simplifies gradient (one term instead of two)
- Ensures outliers get fair representation
- More elegant optimization

Modification 2: Student-t in Low-D

SNE:
$$q_{ij} = \frac{\exp(-d_{ij}^2)}{\sum_{k \neq l} \exp(-d_{kl}^2)}$$
 (Gaussian)
t-SNE: $q_{ij} = \frac{(1+d_{ij}^2)^{-1}}{\sum_{k \neq l} (1+d_{kl}^2)^{-1}}$ (Student-t)

t-SNE:
$$q_{ij} = \frac{(1+d_{ij}^2)^{-1}}{\sum_{i} (1+d_{ij}^2)^{-1}}$$
 (Student-t)

Whv?

The Complete t-SNE Algorithm

$\mathsf{Input} \to \mathsf{Probabilities}$

1. Compute pairwise affinities:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_k \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

2. Symmetrize:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

3. Early exaggeration:

$$p_{ij} \leftarrow 4 \cdot p_{ij}$$
 (first 250 iter)

Optimization

- **4.** Initialize: $y_i \sim \mathcal{N}(0, 10^{-4})$
- 5. Compute low-D similarities:

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}}$$

6. Update via gradient:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} (p_{ij} - q_{ij})(y_i - y_j)(1 + d_{ij}^2)^{-1}$$

7. Iterate until convergence

Result: An elegant algorithm that preserves local structure while solving crowding

Understanding the Gradient: Force Interpretation

$$\nabla C = 4 \sum_{j} \underbrace{(p_{ij} - q_{ij})}_{\text{error}} \underbrace{(y_i - y_j)}_{\text{direction}} \underbrace{(1 + d_{ij}^2)^{-1}}_{\text{adaptive weight}}$$

Insight: Weight term prevents distant clusters from merging

Optimization Trick 1: Early Exaggeration

The Technique

What: Multiply *P* by 4 for first 250 iterations

$$p_{ij}^{\mathsf{early}} = 4 \cdot p_{ij}$$

Effect on forces:

- True neighbors pull 4× harder
- Clusters form quickly
- Global structure emerges first

Visual Effect

Random start

After 250 iter

Strong initial forces prevent poor local arrangements

Optimization Trick 2: Momentum

The Technique

Update equation:

$$\Delta y_i^{(t)} = -\eta \nabla_i + \alpha(t) \Delta y_i^{(t-1)}$$

Schedule:

$$\alpha(t) = \begin{cases} 0.5 & t < 250 \\ 0.8 & t \ge 250 \end{cases}$$

Benefits:

- Escapes local minima
- Smooths optimization
- Reduces oscillations

Effect on Optimization

Analogy: Ball rolling downhill - momentum carries it over bumps

Optimization Trick 3: Adaptive Learning Rate

The Technique

Adaptation rule:

• Same direction: $\eta \times 1.2$

• Direction change: $\eta \times 0.8$

• Min: $\eta_{\min} = 0.01$

• Max: $\eta_{\text{max}} = 1000$

Benefits:

- Fast in flat regions
- Careful near minima
- Automatic adjustment

Learning Rate Evolution

Combined: $5 \times$ speedup ($5000 \rightarrow 1000$ iterations)

Barnes-Hut: Scaling to Large Datasets

The Algorithm

Key Idea: Treat distant clusters as single points

Steps:

- Build quadtree (2D) or octree (3D)
- 2 For each point, traverse tree
- **3** Apply criterion: $\frac{r_{\text{cell}}}{d_{\text{to cell}}} < \theta$
- If satisfied, use center of mass

Parameter: $\theta \in [0.5, 0.8]$

(higher = faster but less accurate)

Tree Approximation

Points	Exact	Barnes-Hut
1,000	1 sec	0.1 sec
10,000	100 sec	2 sec
100,000	10,000 sec	50 sec

Debugging t-SNE: Visual Diagnosis Guide

Common Problems and Their Fixes

Golden Rule: Run multiple times with different seeds. Trust what's consistent.

Perplexity: Your Main Control Parameter

How to Choose? Rule of thumb:

Perp = $\sqrt{N}/10$ to $\sqrt{N}/2$ (N = number of points)

Examples:

- 1,000 points: 5-15
- 10,000 points: 20-50
- 100,000 points: 50-150

Strategy:

- 1 Try 3 values (low, mid, high)
- 2 Look for consistency
 - Trust stable structures

Critical: What You CANNOT Interpret

The Three Deadly Sins of t-SNE

Remember: Only local neighborhoods are meaningful. Everything else is artifact.

MNIST Case Study: Complete Pipeline

Data Preparation

1. Dataset:

- 70,000 handwritten digits
- 28×28 pixels = 784 dimensions

2. Preprocessing:

- Scale pixels to [0,1]
- PCA to 50D (95% variance)
- Remove outliers (> 3σ)

3. t-SNE Settings:

- Perplexity = 30
- Learning rate = 200
- Iterations = 1000

Result: Clear Digit Separation

Success indicators:

- Each digit forms cluster
- Similar digits nearby (7 near 1)
- Clear boundaries • • • • • • • •

Quantitative Validation: Understanding the Metrics

1. Neighborhood Preservation

What it measures:

Do neighbors in high-D stay neighbors in 2D? **Formula:**

$$NPr(k) = \frac{\text{overlap of } k \text{ neighbors}}{k}$$

Good values:

- $NPr(10) > 0.7 \checkmark$
- $NPr(30) > 0.6 \checkmark$
- $NPr(50) > 0.5 \checkmark$

2. Trustworthiness

What it measures:

Are 2D neighbors actually close in high-D?

Range: 0 to 1 (higher = better)

Good values:

- T(10) > 0.95 ✓
- T(30) > 0.90 ✓

Continuity: Similar but checks if high-D neighbors preserved

Rule: If NPr \downarrow 0.6 and T \downarrow 0.9, your embedding is trustworthy

October 2025

Stability Analysis: Is Your Embedding Reliable?

Testing Protocol

Steps:

- Run t-SNE 10 times
- Different random seeds
- Same parameters
- Compare results

Measure correlation:

- Between pairwise distances
- Or cluster assignments

Interpreting Results

$$r>0.9$$
 Very stable \checkmark $r=0.7-0.9$ Acceptable $r<0.7$ Unreliable $\ref{eq:condition}$

Example correlation matrix:

Run	1	2	3
1	1.00	0.92	0.89
2	0.92	1.00	0.91
3	0.89	0.91	1.00

Mean $r = 0.91 \rightarrow \text{Very stable!}$

Critical: Data Preprocessing for t-SNE

Essential Steps

1. Scaling (CRITICAL!)

- Standardize: mean=0, std=1
- Or normalize to [0,1]
- Never mix scales!

2. Dimensionality

- If D ¿ 50, use PCA first
- Keep 95% variance
- ullet Speeds computation 10 imes

3. Missing Data

- Impute with median
- Or remove samples

Preprocessing Pipeline

Modern Alternatives: When to Use What

Aspect	t-SNE	UMAP	Choose
Speed	Slower	5-10 $ imes$ faster	UMAP ✓
Local structure	Excellent	Excellent	Tie
Global structure	Weak	Better	UMAP ✓
Scalability	i100K	Millions	UMAP ✓
Reproducibility	Random	More stable	UMAP ✓
New points	No	Yes	UMAP ✓
Interpretability	Intuitive	Complex	t-SNE ✓
Fine detail	Better	Good	t-SNE ✓

t-Stochastic Neighbor Embedding

Use t-SNE when:

- Dataset i 50K points
- Local detail critical
- Publication figures
 - Exploring clusters

Use UMAP when:

- Large datasets
 - Need speed
- Global structure matters

Mathematical Insight 1: Why Symmetrize?

The Problem

Original SNE uses asymmetric probabilities:

$$p_{j|i} \neq p_{i|j}$$

Issue with outliers:

- Outlier → others: very small
- ullet Others o outlier: normal
- Result: Outliers disappear!

The Solution

Symmetrization:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

Outlier stays connected

Takeaway: Symmetrization ensures every point gets fair representation

Mathematical Insight 2: The Elegant Gradient

The t-SNE gradient has beautiful structure:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} \underbrace{(p_{ij} - q_{ij})}_{\text{error}} \cdot \underbrace{(y_i - y_j)}_{\text{direction}} \cdot \underbrace{(1 + d_{ij}^2)^{-1}}_{\text{adaptive weight}}$$

Mathematical Insight 3: Why Exactly df=1?

The Student-t Family

General form with $df=\nu$:

$$q_{ij} \propto (1+d_{ij}^2/
u)^{-(
u+1)/2}$$

Special case $\nu=1$:

$$q_{ij} \propto (1+d_{ij}^2)^{-1}$$

This is the Cauchy distribution!

Why df=1 is Perfect

- Heaviest possible tails
- Simplest gradient formula

Maximum space for moderate distances

Prof.Asc. Endri Raco (Polytechnic University of Tirane)

Tail Thickness Comparison

df=1 has the slowest decay = most room for moderate distances

41 / 57

Practical Math: Computational Complexity

Algorithm	Time	Space	Practical Limit
Exact t-SNE	$O(n^2)$	$O(n^2)$	5,000 points
Barnes-Hut	$O(n \log n)$	O(n)	100,000 points
FFT-accelerated	O(n)	O(n)	10 million points

Where Time Goes	Speed Tips
• Computing P : Once, $O(n^2)$	ullet PCA to 50D first: $10 imes$ speedup
 Computing Q: Every iteration 	 Barnes-Hut: 50× speedup
 Gradient: Every iteration 	• Fewer iterations: $2 \times$ speedup
$ullet$ Total: ~ 1000 iterations	• GPU: 10-200× speedup

Rule of thumb: 10K points = 1 minute, 100K points = 1 hour (CPU)

When Does the Math Actually Matter?

Math You Can Ignore	Math You Should Know
For most users:	For better results:
 Lagrangian derivations 	$ullet$ Perplexity \sim expected neighbors
 Exact gradient formulas 	 Heavy tails prevent crowding
 Entropy calculations 	 Local vs global structure trade-off
Proof details	 Why preprocessing matters
Just use the default implementation!	This helps you debug problems!

The 80/20 Rule:

Understanding 20% of the math gives you 80% of the practical benefit

Real-World Impact: Single-Cell Genomics

The Challenge

Data characteristics:

- 20,000+ genes per cell
- 100,000+ cells per experiment
- 90%+ zeros (sparse data)
- Batch effects between samples

Processing pipeline:

- Log-normalize counts
- Select top 2000 variable genes
- Opening PCA to 50 components
- 4 t-SNE with perplexity 30-100

Computational requirements:

NK 500 cells B-cells

Discovering Cell Types

T-cells

T-cells 3000 cells

Dendritic 300 cells

Monocytes

Each cluster = cell type

Impact: Found 3 new cell subtypes in 2019

NLP Revolution: Word Embeddings Visualization

The Pipeline

Data preparation:

- Word2Vec/BERT embeddings
- 300-768 dimensions
- Vocabulary: 10K-50K words
- Cosine distance metric

t-SNE parameters:

- Perplexity: 20-50
- Learning rate: 500
- Iterations: 5000
- Metric: cosine (not Euclidean!)

Computational cost:

Semantic Clusters Revealed

Key insight: Analogies preserved!

Deep Learning: Understanding Neural Networks

Visualizing CNN Features

What to visualize:

- Layer activations (conv5, fc7)
- 512-4096 dimensional vectors
- Per image or per class

Implementation:

- Extract features: 1 min/1K images
- PCA to 50D: 10 seconds
- 3 t-SNE: 5-15 minutes
- ◆ Total: ¡20 min for 10K images

Hardware requirements:

- GPU for feature extraction
- 16GB RAM minimum

What You Discover

Discoveries made:

- Hierarchy emerges (dogs near wolves)
- Confusion patterns visible
- Dead neurons identified
- Adversarial vulnerabilities found

Beyond Basic t-SNE: Advanced Methods Overview

Choose Your Enhancement Based on Your Need

Your Problem	Solution	Trade-off
Need to embed new data	Parametric t-SNE	10× slower training
Data changes over time	Dynamic t-SNE	Complex parameters
Dataset ¿ 100K points	GPU acceleration	Requires CUDA
Need inverse mapping	Parametric t-SNE	Less flexible
Multiple scales important	Multi-scale t-SNE	More parameters
Want global structure	UMAP instead	Different algorithm

Reality check: 90% of users just need standard t-SNE with good parameters

Parametric t-SNE: Learning a Mapping Function

How It Works

Instead of just finding positions, learn a function $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^2$

Architecture:

- Neural network (3-5 layers)
- Input: high-D data
- Output: 2D coordinates
- Train to minimize t-SNE loss

When to use:

- Streaming data
- Need to embed new points
- Production systems

Practical Details

Advantages:

- Embed new data instantly
- Consistent mapping
- Can learn inverse.

Disadvantages:

- 10× slower to train
- Slightly worse quality
- Needs more tuning

Implementation:

- Library: parametric_tsne
- Time: 2-5 hours for 50K points

GPU Acceleration: Scaling to Millions

Performance Gains

Dataset	CPU	GPU
10K	2 min	10 sec
100K	2 hours	5 min
1M	Days	1 hour

Speedup: 20-200× typical

Requirements

- NVIDIA GPU (≥ 4GB VRAM)
- CUDA toolkit installed

Implementation Tips

Best practices:

- Batch size = 512-1024
- Use mixed precision
- Monitor GPU memoryCode example:

RAPIDS cuML

from cuml import TSNE
tsne = TSNE(n_components=2,

Y = tsne.fit_transform(X)

perplexity=30,
method='fft') # Fast!

Cloud options:

Google Colab (free tier)

Prof.Asc. Endri Raco (Polytechnic University of Tirane)

Dynamic t-SNE: Visualizing Change Over Time

The Approach

Add temporal coherence to cost:

$$C_{\mathsf{total}} = C_{\mathsf{t-SNE}} + \lambda C_{\mathsf{temporal}}$$

Use cases:

- Gene expression over time
- Topic evolution in text
- Learning progression
- Market dynamics

Key parameter:

 $\lambda = \text{stability vs accuracy}$ (0.1-0.5 typical)

Visualization Example

Points move smoothly between frames

Implementation:

- Process all timepoints together
- 2-3× slower than static
- Results: animated visualization

Which Method Should You Actually Use?

Default recipe: Barnes-Hut t-SNE, perplexity=30, iterations=1000

Key Extensions for Specialized Cases

When Standard t-SNE Isn't Enough: Supervised t-SNE (Fisher Kernel):

- Incorporates class labels
- Modifies: $p_{ij} \times (1 + \lambda)$ if same class
- Better class separation
- Use when: Labels available

Alternative Kernels:

- α -SNE: $(1+d^2)^{-\alpha}$
- Controls tail heaviness
- Use for specific distance needs

Method	Best For	Cost
Standard	Exploration	$O(n \log n)$
Fisher	Classification	$O(n \log n)$
lpha-SNE	Custom	$O(n^2)$
Parametric	New data	O(n) + train

Insight: Most users need only standard t-SI

Scaling to Millions of Points

Three Approaches for Large-Scale t-SNE:

- 1. Approximation Methods:
 - Random Walk: Sample neighborhoods stochastically
 - Landmarks: Embed subset, interpolate others
 - **FFT:** For $d \leq 3$, use grid interpolation
- 2. Computational Optimizations:
 - **GPU:** 50-100x speedup (RAPIDS, cuda-tsne)
 - Distributed: Split across machines
 - Progressive: Start with subset, add points
- 3. Out-of-Sample Extension:
 - Train on subset, project new points
 - Use parametric t-SNE or kernel regression

Implementation Libraries:

- openTSNE: All methods
- FIt-SNE: FFT acceleration
- RAPIDS: GPU implementation

Numerical Stability and Validation

Critical Implementation Details: Common Numerical Issues:

- Overflow: Use log-sum-exp trick
- Division by zero: Add $\epsilon = 10^{-12}$
- Gradient explosion: Clip gradients to [-4, 4]
- Poor initialization: Multiple restarts

Validation Best Practices:

- Run minimum 5 times with different seeds
- Report **stability**: std dev of positions
- Check convergence: KL divergence plateau

Quality Checklist:

- ☐ Perplexity tested: 5-50 range
- Multiple runs performed
- ☐ Trustworthiness > 0.9
- No isolated points
- ☐ Convergence achieved
- Parameters documented

Warning: Never trust a single t-SNE run! Reporting Requirements:

- State exact parameters used
- Include convergence plots
- Show multiple perplexities

October 2025

Critical Limitations and Ethical Use

Fundamental Limitations:

- Non-deterministic: Different runs → different layouts
- No absolute positions: Only relative structure matters
- No cluster sizes: Visual size ≠ actual size
- Parameter sensitive: Results change with perplexity

Ethical Responsibilities:

- Report all parameters used
- Show **multiple** runs (minimum 3)
- Never cherry-pick best result
- Acknowledge when patterns unclear

Common Misuses:

- Interpreting distances globally
- Comparing cluster sizes
- Single run as "truth"
- Ignoring failed convergence

Ethics: Always provide: data, code, paramet

Key Takeaways: Test Your Understanding

Five Essential Questions:

Why does SNE fail?

Hint: Think about available area in 2D for different distance scales

4 How does Student-t distribution solve the crowding problem?

Hint: Compare tail behavior to Gaussian

What does perplexity actually control?

Hint: Not just "number of neighbors"

When should you NOT trust a t-SNE visualization?

Hint: Multiple warning signs exist

What's the minimum validation needed?

Hint: Think runs, parameters, metrics

If you can answer these, you understand t-SNE's core concepts!

Resources and Final Guidance

Essential Resources:

- Original paper: van der Maaten & Hinton (2008)
- Interactive guide: distill.pub/2016/misread-tsne
- Python: scikit-learn, openTSNE
- R: Rtsne, tsne
- GPU: rapids-tsne, tsnecuda

Getting Started Checklist:

- Start with perplexity = n/100
- Run at least 3 times
- 3 Try perplexities: 5, 30, 50, 100
- Oheck convergence (1000+ iterations)

Decision Flowchart:

Remember:

t-SNE is a **tool for exploration**, not proof Trust **consistent patterns** across runs Always **validate** findings with other methods

Thank you! Questions welcome

Contact: eraco@polytechnic.cat

