PID Nedir? Nasıl Çalışır?

PID (Proportional-Integral-Derivative) kontrol algoritması, birçok otomasyon sisteminde olduğu gibi drone'larda da dengeyi ve hareketi hassas şekilde kontrol etmek için kullanılır.

Bir PID algoritması; sistemin gerçek çıktısını (örneğin eğim açısı), istenen değere (örneğin düz uçuş: 0°) yaklaştırmak için sürekli olarak **hata hesaplar** ve **üç bileşenden oluşan düzeltici bir çıktı üretir:**

- P (Proportional): Anlık hataya doğrudan tepki verir.
- I (Integral): Geçmişteki hataların toplamına tepki verir.
- **D** (**Derivative**): Hatanın değişim hızına tepki verir.

Bu üç bileşen, motorlara gönderilecek PWM sinyalini belirler. Böylece sistem istenen konuma daha hızlı ve kararlı şekilde ulaşır.

Dronelarda PID Neden Kullanılır?

Dronelar uçuş sırasında sürekli olarak eğilir, döner ve dış etkilere maruz kalır. PID kontrolör, özellikle **Roll, Pitch ve Yaw eksenlerinde** denge sağlamak için kullanılır:

• Roll: Sağ-sol eğim

• Pitch: İleri-geri eğim

• Yaw: Yön/dönme

Her eksene ait birer PID döngüsü kurularak drone, istenen duruşunu (attitude) koruyabilir.

Bu Kod Ne Yapar?

Bu örnek projede, **Arduino ile basitleştirilmiş bir pitch (ileri-geri eğim) PID kontrolü** simüle edilmiştir.

- analogRead(A0) → Simülasyon amacıyla sensör verisi (IMU yerine)
- PID hesaplaması yapılır
- analogWrite(9, output) → Motoru temsil eden çıkış sinyali gönderilir

Bu Kod Yüklendikten Sonra Ne Yapılmalı?

- 1. Arduino IDE'de bu .ino dosyası açılır.
- 2. Gerekirse Kp, Ki, Kd değerleri ayarlanarak deneme yapılır.

- 3. Serial Monitor ile çıktı takip edilir (hata, giriş, çıkış).
- 4. Gerçek bir IMU (örneğin MPU6050) bağlanırsa input kısmı güncellenebilir.
- 5. analogWrite() ile bir ESC'ye PWM sinyali gönderilip motor kontrol edilebilir (gelişmiş sürümde).

Ekstra Öneriler

- Bu kod, bir uçuş denetleyicinin temel mantığını anlamak için idealdir.
- Gerçek uçuş sistemlerinde PID kontrol döngüleri genellikle 200 Hz hızla çalışır ve IMU verisiyle filtrelenmiş olur.