Microsoft Student Partners

Linear Algebra For Al [P1]

Nathan Bangwa

Sommaire

Dans cette premiere partie nous verrons:

- C'est quoi l'intélligence artificielle.
- Les bases de l'algèbre linéaire & Applications
 - Scalaire (Scalar)
 - Vecteur (Vector)
 - Matrice (Matrix)
 - Tenseur (Tensor)
 - Encodage

Ce à quoi les gens pensent

Ce que les gens oublient

L'intelligence artificielle est « l'ensemble des théories et des techniques mises en œuvre en vue de réaliser des machines capables de simuler l'intelligence ». Elle correspond donc à un ensemble de concepts et de technologies plus qu'à une discipline autonome constituée. Wikipédia

Comment est-ce possible??

Linear Algebra

L'algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires.

Wikipédia

SCALAR

- En algèbre linéaire, les nombres réels qui multiplient les vecteurs dans un espace vectoriel, sont appelés des scalaires. Wikipédia
- Tout reel est un SCALAR

VECTOR

En mathématiques, un vecteur est un objet généralisant plusieurs notions provenant de la géométrie, de l'algèbre, ou de la physique. Rigoureusement axiomatisée, la notion de vecteur est le fondement de la branche des mathématiques appelée algèbre linéaire. Wikipédia

- Ensemble de SCALARS
- Vector = [1.1, 2.4, ..., n]

MATRIX

En mathématiques, les matrices sont des tableaux de nombres qui servent à interpréter en termes calculatoires et donc opérationnels les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Wikipédia

• Ensemble de VECTORS m-by-n matrix

TENSOR

En mathématiques, plus précisément en algèbre multilinéaire et en géométrie différentielle, un tenseur désigne un objet très général, dont la valeur s'exprime dans un espace vectoriel. On peut l'utiliser entre autres pour représenter des applications multilinéaires ou des multivecteurs. Wikipédia

TENSOR

1D : Vecteur

• 2D: MATRIX

• 3D : CUBE

•

VECTOR

Linear Algebra: Applications

IMAGES

 Une image est une représentation visuelle, voire mentale, de quelque chose (objet, être vivant et/ou concept).

IMAGES

« définition » :

le nombre de pixels constituant l'image, c'est-àdire sa «dimension informatique» (le nombre de colonnes de l'image que multiplie son nombre de lignes).

DEFINITION = 400x300px

IMAGES

« résolution » :

terme souvent confondu avec la "définition", détermine par contre le nombre de points ou pixels par unité de surface, exprimé en *points par pouce* (**PPP**, en anglais **DPI** pour *Dots Per Inch*); un pouce représentant 2.54 cm.

RESOLUTION = 72 * 72 = 5184

IMAGES

- Une image couleur peut etre representée comme un Tenseur à 3D constituté de 3tenseurs à 2D (matrices) representant chacun (e) une couleur primaire.
- Chaque pixel est un scalaire variant entre 0 et 255

Les images RGB

OUTILS

Microsoft Student Partners

Application

Traitement de l'image et du Son

Applications

- Images
 - images.ipynb : notebook jupyter qui contient du code d'experimentation [image].
 - Image.jpg : est l'image qui sera traitée.

- Audio
 - audio.ipynb: notebook jupyter qui contient du code d'experimentation [audio].
 - audio.wav : est le fichier audio qui sera traité.

Transpose

MATRIX

- Fondamentalement, transposé une matrice revient à echanger ses lignes et ses colonnes.
- En d'autres termes, faire pivoter la matrice autour de sa diagonale principale.

Application

Transformer une image RVB en image R (ou V ou B) revient à mettre les 2 autres matrices au niveau du noir(matrice Zéro).

C'est-à-dire les scalaires (pixels) de deux autres valent 0.

 On a toujours un tenseur à 3Dimensions avec 2tenseurs 2D zeros pour chaque image.

Application

Transformer une image RVB en matrice R (ou V ou B) revient à extraire chaque matrice individuelement. C'est-à-dire les scalaires (pixels) de chacune d'elles.

 On a alors un tenseur à 2Dimensions pour chaque image.

Transpose

IMAGE

- Transposer une image revient à la faire pivoter vers la gauche.
- À gauche, la transposé d'un tenseur blue à 2D.

SUM and SUB

L'addition (Soustraction) matricielle est une opération mathématique qui consiste à produire une matrice qui est le résultat de l'addition de deux matrices de même type. Wikipédia

SUM and SUB

IMAGE

- Additionner (Soustraire)
 matriciellement
 2tenseurs à 2D (images)
 révient à appliquer un
 filtre.
- À gauche, la somme matriciel d'un tenseur blue à 2D et d'un tenseur Red à 2D.

- Le produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Wikipédia
- Le produit de deux matrices ne peut se définir que si le nombre de colonnes de la première matrice est le même que le nombre de lignes de la deuxième matrice, c'est-à-dire lorsqu'elles sont de type compatible.

SCALAR * MATRIX

- Sur les images, cette operation révient à encore appliqué un filter.
- À gauche, le produit d'un tenseur blue à 2D et d'un Scalar.

MATRIX* MATRIX

- Sur les images, cette operation révient à encore appliqué un filter.
- À gauche, le produit de la transposé d'un tenseur blue à 2D et d'un tenseur red à 2D.
- On a aucune image visible à cause de scalars composants chaque tenseur.

Traitement de l'image

La convolution

En mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « * », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f * g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du ... Wikipédia

On ne fait pas le produit matricielle, mais une simple multiplication 1 à 1

Traitement de l'image

La convolution

- En pratique celà revient à s'imaginer Picasso [ou un quelconque peintre] entrain de faire passer son pinceau de couleur sur son tableau
- Le tableau : c'est la matrice image
- Le pinceau : c'est la matrice de convolution

Convolution Matrix

- 5x5 (rows, cols)
- 3x3 (rows, cols) En générale.

After convolution process

Filtres de convolution

Identity	$ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	
Edge detection	$\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right]$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & 1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Application de la convolution

Application de la convolution

Face recognition

Application de la convolution

Object Detection

Application

LE SON

Le son est une vibration mécanique d'un fluide, qui se propage sous forme d'ondes longitudinales grâce à la déformation élastique de ce fluide. Les êtres humains, comme beaucoup d'animaux, ressentent cette vibration grâce au sens de l'ouïe. Wikipédia

Application

LE SON

Le son est une vibration mécanique d'un fluide, qui se propage sous forme d'ondes longitudinales grâce à la déformation élastique de ce fluide. Les êtres humains, comme beaucoup d'animaux, ressentent cette vibration grâce au sens de l'ouïe. Wikipédia

Codage

Travail

 Lancer chaque bloc (code) contenu dans le fichier audio.ipynb et interpreter les résultats. Transposée

Microsoft Student Partners

