Data structure note

Thursday, May 30, 2024 2:42 PM

1. Data Structure => is a way of organizing data different ways of storing data on your computer

EX: is like preparing for cooking you slice up vegetables

2. Algorithm => the process that does something to data to produce the output operations on different data structure

data structure + algorithm = programming

Steps to learn:

- a.. Big O notation => is the language of analyzing algorithms and data structures.
- b. Data structures list:
 - 1.Arrays
 - 2. Linked Lists
 - 3.Queues and Stacks
 - 4. Trees
 - 5. Graphs
 - 6. Hash Maps
 - 7. pointers
 - 8. Memory => 1 byte = 8 bits
- c. Algorithms:
 - 1. recursion
 - 2. sorting algorithms
 - 3. Graph search algorithms
 - 4. Dynamic programming
 - 5. common problem solving patterns

3. Memory (RAM) vs. Storage

After turning off the computer, Storage is permanent, and memory will disappear.

```
int a =1; => 32 bits for int
4 bytes = 32 bits = 1 integer
```

a. **Pointer**

- 1. Int x = 4
- 2. Int * pX = &x => "English: integer pointer named pX is set to address of x
- 3. Int y = *pX => integer named y is set to the thing is pointed to by pX
- 4. * = pointer
- 5. & = address of
- **b.** Count

```
std::unordered_map<int, int> myMap = {{1, 10}, {2, 20}, {3, 30}};
int key = 2;
int count = myMap.count(key);
// Returns 1, because the key 2 exists in the map; return 0 is not exist
```

4. classes and objects

```
//class
class Robot {
    string name;
    string color;
    int weight;
//constructors
    Robot(String n, String c, int w){
        this.name = n;
        this.color = c;
        this.weight = w;
//function
   void introduceSelf(){
        system.out.println("My name is " + this.name);
}
//to use contructors and functions
Robot r1 = new robot("Leo", "Red", "37");
r1.introduceSelf();
-----
5. Linked List
6 -> 3 -> 4 -> 2 -> 1 -> null
class Node{
    int data;
    Node next;
    Node prev;
    //contructor
    Node(int data){
        this.data = data;
}
Node head = new Node(6);
Node nodeB = new Node(3);
Node nodec = new Node(4);
. . .
head.next = nodeB
nodeB.next = nodeC
. . .
//count how many nodes we have
int countNodes(Node head){
    //assuming head != null
    int count = 1;
    Node current = head;
    while(current.next != null){
    current = current.next;
    count += 1;
    }
}
```

```
#include <iostream>
struct Node {
    int data;
    Node* next;
};
Node* head;
void Insert(int x) {
    Node* temp = new Node();
    temp->data = x;
    temp->next = head;
    head = temp;
}
void Print() {
    Node* temp = head;
    std::cout << "List is: ";</pre>
    while (temp != NULL) {
        std::cout << " " << temp->data;
        temp = temp->next;
    std::cout << "\n";</pre>
int main() {
    head = NULL;
    std::cout << "How many numbers?\n";</pre>
    int n, x;
    std::cin >> n;
    for (int i = 0; i < n; i++) {
        std::cout << "Enter the number\n";</pre>
        std::cin >> x;
        Insert(x);
        Print();
   return 0;
}
```


Array

Fixed size

Memory may not be available as one large blocks

Linked list

No unused memory

extra memory for pointer variable

Memory may be available as multiple small blocks

6. Recursion

```
//factorial
```

// Fibonacci sequence

Ex: 1, 1, 2, 3, 5, 8

```
int fib(int n){
   if (n >= 3){
      return fib(n-1) * fib(n-2);
   } else {
      return 1;
}
```

google interview problem

Recursive staircase problem

```
num_way(N) = num_ways(N-1) + num_ways(N-2)
num_way(0) = 1
```

```
num_way(1) = 1
//python
//this won't work if n =2
def num ways(n):
    if n == 0 or n == 1:
         return 1
    else:
         return num ways(n-1) + num ways(n-2)
//fixed
def num_ways_bottom_up(n):
    if n == 0 or n == 1:
       return 1
    nums = [0] * (n + 1)
    nums[0] = 1
    nums[1] = 1
    for i in range(2, n + 1):
        nums[i] = nums[i - 1] + nums[i - 2]
    return nums[n]
# Example usage
total_feet = 11
print(f"Number of ways to jump {total_feet} feet:
{num ways bottom up(total feet)}")
//variation problems
X = \{1,3,5\}
//wrong
def num_ways_X(n):
    if n == 0
       <mark>return 1</mark>
    total = 0;
    for each i in {1,3,5}:
        if n -i >= 0:
        total += num_ways_X(n-i)
    return total
//fixed
def num_ways_bottom_up_X(n):
    if n == 0:
        return 1
    nums = [0] * (n + 1)
    nums[0] = 1
    for i in range(1, n + 1):
        total = 0
        for j in {1, 3, 5}:
             if i - j >= 0:
                 total += nums[i - j]
        nums[i] = total
    return nums[n]
```

7. Big O notation

runtime = time to takes to execute a piece of code

```
linear time = O(n)
constant time = O(1)
quadratic time = O(n^2)
Sorting = O(n log n)
```

1. find the fastest growing term

2. take out the coefficient

```
T = an + b = O(n)
```

Hsah Table = O(n)

 $T = cn^{2} + dn + e = O(n^{2})$ given_array = [1, 4, 3, 2, ..., 10] $def \text{ stupid_function(aiven array):} \qquad T = O(1) + O(1) = c_{1} + c_{2}$ $= c_{3} = c_{3} \times 1 = O(1)$ O(1) + O(1) = O(1) $def \text{ find_sum(given_array):}$ $= \text{ ctotal } = 0 -> 0(1) \circ$ = condition(aiven array): $= c_{3} = c_{3} \times 1 = O(1)$ O(1) + O(1) = O(1) $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$ $C(1) = c_{1} + c_{2} = c_{3} \times 1 = O(1)$

```
\begin{array}{ll} \operatorname{array\_2d} = & [[1,\ 4,\ 3], & [[1,\ 4,\ 3,\ 1], \\ & [3,\ 1,\ 9], & [3,\ 1,\ 9,\ 4], \\ & [0,\ 5,\ 2]] & [0,\ 5,\ 2,\ 6], \\ & [4,\ 5,\ 7,\ 8]] \\ \\ T_3 = & O(1) + n^2 \times O(1) + O(1) \\ = & c_6 + n^2 \times c_7 = \underbrace{O(n^2)}_{\text{o}} & \{ \operatorname{def} \text{ find\_sum\_2d(array\_2d):} \\ & \operatorname{total} = & 0 \to 0(1) \\ & \operatorname{for\ each\ row\ in\ array\_2d:} \\ & \operatorname{for\ each\ in\ row:} \\ & \operatorname{total} + = & i \to 0(1) \\ & \operatorname{T_4} = & 2n^2 \times c + \ldots = 2n^2 \times c + c_2 n + c_3 \\ & = & (2c) \times n^2 + c_2 n + c_3 = O(n^2) \\ \end{array}
```

8. Tree =>

Class Node{
 Int data
 Node left
 Node right

Binary Tree =>

is a data structure in which each node has at most two children, referred to as the left child and the right child.

9. Sorting

a.Linear search = **O(n)** = **O(n/2)** = It works by checking each element in the list, one by one, until the desired element is found or the end of the list is reached

```
def linear_search(arr, target):
                for i in range(len(arr)):
                     if arr[i] == target:
                          return i # Return the index of the target
element
               return -1 # Return -1 if the target is not found
          # Example usage
          arr = [34, 17, 23, 35, 45, 9, 1]
          target = 23
          result = linear search(arr, target)
          if result != -1:
               print(f"Element found at index {result}")
          else:
     print("Element not found")
b. Binary search:
     Arr[-50 ~ 50]
     Target = 20
     40 -> 20 -> 10 -> ... -> 1
     \begin{aligned} & \mathsf{N} \Rightarrow \frac{\frac{n}{2}}{2} \to \frac{\frac{n}{4}}{4} \to \frac{\frac{n}{8}}{3} \to \cdots \to 1 \\ & n \to \frac{n}{2} \to \frac{n}{2^2} \to \frac{n}{2^3} \to \cdots \to \frac{n}{2^x} \ \approx 1 \end{aligned}
     \frac{n}{2^x} \approx 1 \Rightarrow n = 2^x \Rightarrow log_2(n) = x = O(\log(n))
     def search(arr, target):
          left = 0
          right = len(arr) - 1
          while left <= right:
                mid = (left + right) // 2 # make sure to round it
     down
                if arr[mid] == target:
                    return mid
                elif target < arr[mid]:</pre>
                    right = mid - 1
                else:
                    left = mid + 1
          return -1
     arr1 = [-2, 3, 4, 7, 8, 9, 11, 13]
     assert search(arr1, 11) == 6
     assert search(arr1, 13) == 7
     assert search(arr1, -2) == 0
     assert search(arr1, 8) == 4
     assert search(arr1, 6) == -1
```

```
assert search(arr1, 14) == -1
assert search(arr1, -4) == -1
arr2 = [3]
assert search(arr2, 6) == -1
assert search(arr2, 2) == -1
assert search(arr2, 3) == 0
print("If you didn't get an assertion error, this program
has run successfully.")
```

c. Quicksort:

is typically the fastest for large datasets due to its low overhead and excellent average-case performance.

Implement details:

- Choosing pivot
 Random element
 Median of three
- Dealing with duplicates3-way quicksort

```
Def qs(arr, I, r):

If I >= r:

Return

P = partition(arr,I,r)

Qs(arr, I, p-1)

Qs(arr, p +1, r)
```

Time Complexity:

Best case:

Worst case:

d. other sorting:

- 1. **Mergesort:** is a good choice when stability is required and for data that doesn't fit in memory (external sorting).
- 2. **Heapsort:** provides reliable O(nlogn) performance with in-place sorting but is generally outperformed by quicksort and mergesort.
- 3. **Timsort:** is highly efficient for real-world data and is used in many standard libraries due to its adaptive nature and stability.

10. Stacks and queues

Stacks = last in, first out.

1. Operations:

Push: Add an element to the top of the stack.

Pop: Remove the top element from the stack.

Peek/Top: Look at the top element without removing it.

2. Usage:

Undo mechanisms in text editors.

Function call management in programming languages (call stack).

Depth-first search (DFS) algorithms.

```
# Implementing a stack using a list
stack = []
# Push operation
stack.append(1)
stack.append(2)
stack.append(3)
# Pop operation
print(stack.pop()) # Output: 3
print(stack.pop()) # Output: 2
# Peek operation
print(stack[-1]) # Output: 1
```

Queues = first in, first out

1. Operations:

Enqueue: Add an element to the end of the queue.

Dequeue: Remove the element from the front of the queue.

Front/Peek: Look at the front element without removing it

2. Usages

Order processing systems.

Breadth-first search (BFS) algorithms.

Print job management.

```
from collections import deque
# Implementing a queue using deque from collections
queue = deque()
```

```
# Enqueue operation
queue.append(1)
queue.append(2)
queue.append(3)
# Dequeue operation
print(queue.popleft()) # Output: 1
print(queue.popleft()) # Output: 2
# Peek operation
print(queue[0]) # Output: 3
```

11. Hash Tables and Dictionaries

is a data structure that implements an associative array abstract data type, a structure that can map keys to values. It uses a hash function to compute an index into an array of buckets or slots, from which the desired value can be found. Fast to compute

Avoid collision

Double hashing is an advanced technique used to handle collisions in hash tables

Suppose we want to insert the keys 10, 22, 31, 44, 59 into the hash table:

- 1. Insert 10:h1(10)=10mod11=10h1(10)=10mod11=10 No collision, so 10 is placed at index 10.
- 2. Insert 22:h1(22)=22mod11=0h1(22)=22mod11=0

No collision, so 22 is placed at index 0.

- 3. Insert 31:h1(31)=31mod11=9h1(31)=31mod11=9 No collision, so 31 is placed at index 9.
- 4. Insert 44:*h*1(44)=44mod11=0h1(44)=44mod11=0

Collision occurs at index 0.

Calculate the step size using $h2(44)=1+(44 \mod 10)=5h2(44)=1+(44 \mod 10)=5h2(44)=5h2$

Probe sequence: (0+1.5) mod 11=5(0+1.5) mod 11=5.

No collision at index 5, so 44 is placed at index 5.

5. Insert 59:*h*1(59)=59mod11=4h1(59)=59mod11=4 No collision, so 59 is placed at index 4.

Advantages of Double Hashing

- 1. Reduced Clustering: It minimizes both primary and secondary clustering compared to linear and quadratic probing.
- 2. Efficiency: Provides good performance in terms of average search, insert, and delete operations.

Ditionary

- Create a dictionary by using empty brackets {}.
- dictionary_name[key] = value adds items to a dictionary.

- len(dictionary_name) returns the number of keys in a dictionary.
- o print(dictionary_name[key]) prints the value associated with the key.
- Keys in a dictionary are unique. When a key is added multiple times, the old value is overwritten by the new one.

12. Unordered Map

NOTES:

- 0. std::unordered map is an associative container that contains key-value pairs with unique keys.
- 1. Search, insertion, and removal have average constant-time complexity.
- 2. Internally, the elements are organized into buckets.
- 3. It uses hashing to insert elements into buckets.
- 4. This allows fast access to individual elements, because after computing the hash of the value it refers to the exact bucket the element is placed into.

WHY UNORDERED MAP

maintain a collection of unique {key:value) pairs with fast insertion and removal.

```
15 #include <iostream>
16 #include <unordered_map>
17 using namespace std;
19 int main()
        std::unordered_map<int,char> umap = {{1,'a'},{2,'b'}};
        // Access
        cout << umap[1] << endl;
        cout << umap[2] << endl;</pre>
        // Update 🤛
        umap[1] = 'c';
        for(auto& elm: umap) {
                                                elm.second << " ";
        cout << endl;</pre>
        auto result = umap.find(2);
        if (result != umap.end()) {
            std::cout << "Found " << result->first << " " << result->second << '\n';
        } else {
            std::cout << "Not found\n";
        return 0;
```

Resources: Resources for Learning Data Structures and Algorithms (Data Structures & Algorithms # 8)