ModelKB DB - DeepData

Team Members

Brett Recker - Class ID: 22

Redwan Al Badawi - Class ID: 1

A Database System for Deep Learning

Deep learning experiments provide a rich set of artifacts which include the model's architecture, the weights of the models, a set of hyperparameters, and several other files. We were tasked with building a database system that can handle storing these artifacts, query and retrieve these artifacts in a team manner, and provide the capability to compare two or more versions in the database.

Project Goal

Our objective was to create a user friendly web application for uploading Deep Learning experiments and also provide users with the ability to view existing experiments from all projects. We also tried to implement functionality for comparing artifacts between two or more experiments.

Technologies and Applications

Architecture

Login/Register UI

Below is our Login page UI:

■ ModelKB DB			
	Login		
	Email Address:		
	Password:		
	Login		
	New User? Register Forgot your password? Reset		

111000		DD
Mode	IKB	UB

New User Registration

Email Address:

Password:

Confirm Password:

Existing User? Login

The Upload and Display for model file

ModelKB DB

Upload File

Choose Files

5 files

Upload

LSTM_011019-174336_accuracy.jpg

LSTM_011019-174336_architecture.jpg

LSTM_011019-174336_loss.jpg

LSTM_011019-174336_metadata.txt

LSTM_011019-174336_model.h5

Project *

Also added two drop downs to the page for searching/selecting experiments and displaying their associated artifacts:

```
| Solid Case | Indication | Case | Indication | Case | Indication | Case | Indication | Indicati
```

```
onFileSelected(fileInput: any) {
  this.filesToUpload = fileInput.target.files as Array<File>;
onUpload() {
  const fd = new FormData();
  const files: Array<File> = this.filesToUpload;
  console.log(files);
  for (let i = 0; i < files.length; i++) {
    fd.append( name: 'uploads[]', files[i], files[i].name);
  this.http.post( url: '/api/upload', fd)
    .subscribe( next: res => {
     console.log(res);
projectSelect(event) {
  this.event = event;
  console.log('EVENT -> ' + this.event);
  this.http.get( url: '/api/all')
    .subscribe( next: res => {
      this.files = JSON.parse(JSON.stringify(res));
     console.log(this.files);
experimentSelect(event) {
  this.eventl = event.substring(0, event.lastIndexOf('.'));
  console.log('EVENT 1 -->' + this.event1);
  this.http.get( url: '/api/collection/' + this.eventl)
    .subscribe( next: res => {
      this.files1 = JSON.parse(JSON.stringify(res));
      console.log(this.filesl);
```

ModelKB DB

ModelKB DB **Upload File** Upload No file chosen Choose Files Project * CNN CNN011019-220151 CNN011019-220151_architecture.jpg CNN011019-220151_metadata.txt CNN011019-220151_accuracy.jpg CNN011019-220151_loss.jpg CNN011019-220151 model.h5

This required a new get route to be added to the app.js file for returning all collections in MongoDB:

```
app.get('/api/all', (req, res) => {
  conn.db.listCollections().toArray((err, collInfos) => {
    if(!collInfos) {
      return res.status(404).json({
        err: 'No Collections Exist'
      });
    }
  return res.json(collInfos);
});
```

Clicking these links will open the artifacts in a separate window:

model name: CNN011019-220151

framework:keras 2.2.2 size:9793.952 kilobytes

epochs:2

layersCount:7

InputTensors:(None, 64, 64, 3)

OutputTensor: (None, 1)

Optimizer: Adam

LossFunction:binary_crossentropy

AccuracyValue:0.46875

LossValue:0.7201308608055115 model_name:CNN011019-220151

framework:keras 2.2.2 size:9793.952 kilobytes

epochs:2

layersCount:7

InputTensors:(None, 64, 64, 3)

OutputTensor: (None, 1)

Optimizer: Adam

LossFunction:binary_crossentropy

AccuracyValue:0.46875

LossValue:0.7201308608055115

Clicking the hyperlink for a .h5 file automatically downloads it:

##Search Part


```
<div> This is a visual representation of a line chart</div>
                                                                                                                    9 0 0 0 0
   [view]="view"
   [scheme]="colorScheme"
   [results]="multi"
   [gradient]="gradient"
   [xAxis]="showXAxis"
   [yAxis]="showYAxis"
   [legend]="showLegend"
   [showXAxisLabel]="showXAxisLabel"
   [showYAxisLabel]="showYAxisLabel"
   [xAxisLabel]="xAxisLabel"
   [yAxisLabel]="yAxisLabel"
   [autoScale]="autoScale"
   [timeline]="timeline"
   (select)="onSelect($event)"
```

```
view: any[] = [700, 400];

// options for the chart
showXAxis = true;
showYAxis = true;
gradient = false;
showLegend = true;
showXAxisLabel = true;
xAxisLabel = 'Epoch';
showYAxisLabel = true;
yAxisLabel = true;
colorScheme = {
    domain: ['#5AA454', '#A10A28', '#C7B42C', '#AAAAAA']
};
```

##Chart For Compare part

This is a visual correspondation of a nie short

This is a visual representation of a pie chart

