

Art of Problem Solving 1997 Balkan MO

Balkan MO 1997

_	April 30th
1	Suppose that O is a point inside a convex quadrilateral $ABCD$ such that
	$OA^2 + OB^2 + OC^2 + OD^2 = 2A[ABCD],$
	where by $\mathcal{A}[ABCD]$ we have denoted the area of $ABCD$. Prove that $ABCD$ is a square and O is its center.
	Yugoslavia
2	Let $S = \{A_1, A_2, \dots, A_k\}$ be a collection of subsets of an <i>n</i> -element set A . If for any two elements $x, y \in A$ there is a subset $A_i \in S$ containing exactly one of the two elements x, y , prove that $2^k \ge n$.
	Yugoslavia
3	The circles C_1 and C_2 touch each other externally at D , and touch a circle ω internally at B and C , respectively. Let A be an intersection point of ω and the common tangent to C_1 and C_2 at D . Lines AB and AC meet C_1 and C_2 again at K and L , respectively, and the line BC meets C_1 again at M and C_2 again at N . Prove that the lines AD , KM , LN are concurrent.
	Greece
4	Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
	$f(xf(x) + f(y)) = f^2(x) + y$
	for all $x, y \in \mathbb{R}$.