

# Equivalenza tra automi



Vogliamo considerare equivalenti due automi in base al loro comportamento, astraendo quindi da come sono definiti.

Approccio "a scatola nera": l'unico modo per studiare gli automi è facendo esperimenti:

- due automi NON sono equivalenti se riesco a trovare una sequenza di input che nei due automi genera output diversi
- altrimenti sono equivalenti.

**Def.:** due automi (dello stesso tipo) sono *equivalenti* se, per ogni possibile sequenza di input, generano entrambi la stessa sequenza di output.

**Def.:** due automi (di tipo diverso) sono *equivalenti* se, per ogni possibile sequenza di input, generano sequenze di output che differiscono esclusivamente per il primo carattere nell'output dell'automa di Moore.



#### Dimostrazioni per induzione



Problema: per dimostrare un'equivalenza devo considerare *tutte* le possibili sequenze di input

Quante sono? Anche assumendo l'alfabeto di input più piccolo possibile  $(|\Sigma|=1, \text{ per esempio }\Sigma=\{a\}), \text{ ho } infinite \text{ sequenze possibili: } La sequenza$ 

ε**,** *a*, *aa*, *aaa*, *aaaa*, ...

vuota, cioè senza alcun carattere

Un modo per dimostrare una proprietà P(-) su tutte queste stringhe  $\sigma$  è usando il *principio di induzione*:

- Passo base: dimostra P(ε)
- **Passo induttivo:** assumendo vera  $P(\sigma)$  per ogni  $\sigma$  lunga n, dimostra  $P(\sigma')$ , per una generica  $\sigma'$  lunga n+1

(N.B.: *n* è generico!)

Così dimostro  $P(\sigma)$  per ogni  $\sigma!!$ 

- 0.  $P(\sigma)$ , per  $|\sigma| = 0$ , è dimostrata:  $P(\epsilon)$  è dimostrata nel caso base
- 1.  $P(\sigma)$ , per  $|\sigma| = 1$ , si dimostra usando il punto 0 e il passo induttivo
- 2.  $P(\sigma)$ , per  $|\sigma| = 2$ , si dimostra usando il punto 1 e il passo induttivo

### Da Moore a Mealy



**Teor.:** Sia  $M_1=(Q,\Sigma,\Delta,q_0,\delta,\lambda)$  un automa di Moore; allora esiste un automa di Mealy ad esso equivalente.

Dim. Sia  $M_2 = (Q, \Sigma, \Delta, q_0, \delta, \lambda')$ , dove  $\lambda'(q, a) = \lambda(\delta(q, a))$ . Cioè, in  $M_2$  assegno ad ogni transizione l'output associato allo stato di arrivo in M.

Es.(automa che accetta tutte e sole le stringhe con un numero dispari di 1):



Resta da dimostrare che M<sub>1</sub> ed M<sub>2</sub> sono equivalenti.

5

## Da Mealy a Moore



**Teor.:** Sia  $M_1 = (Q, \Sigma, \Delta, q_0, \delta, \lambda)$  un automa di Mealy; allora esiste un automa di Moore ad esso equivalente.

Dim. Sia  $M_2 = (Q \times \Delta, \Sigma, \Delta, (q_0, b), \delta', \lambda')$ , dove

- b é un qualsiasi carattere di Δ
- $\delta'((q,c), a) = (\delta(q,a), \lambda(q,a))$
- $\lambda'((q,c)) = c$

OSS.: le transizioni di M<sub>2</sub> sono determinate solo dal primo elemento della coppia e dal valore dell'input!

Per induzione, si dimostra di nuovo che M<sub>1</sub> ed M<sub>2</sub> sono equivalenti.

### Equivalenza Moore/Mealy

dove  $c_0 = \lambda(q_0)$ .



Sia  $\sigma$  una sequenza di input; dimostriamo, per induzione sulla lunghezza di  $\sigma$  (cioè, sul numero di caratteri in essa presenti), che

$$M_1(\sigma) = c_0 M_2(\sigma)$$

con  $M(\sigma)$  denoto l'output di M con input  $\sigma$ 

**Base**  $(\sigma = \varepsilon)$ : per definizione,  $M_1(\varepsilon) = c_0$  e  $M_2(\varepsilon) = \varepsilon$ . La tesi segue dal fatto che  $c_0 \varepsilon = c_0$ .

**Induzione** (tesi vera per  $\sigma$  lunga n caratteri, da dim. per  $\sigma$  lunga n+1): Se  $\sigma$  è lunga n+1 caratteri, allora  $\sigma = \sigma'a$ , per qualche  $a \in \Sigma$ ; quindi,  $\sigma'$  è lunga n. Per ipotesi induttiva,  $M_1(\sigma') = c_0 M_2(\sigma')$ .

Per come funzionano gli automi,  $M_1(\sigma) = M_1(\sigma') c$ , dove  $c = \lambda(\delta(q, a))$  e q è lo stato in cui si trova  $M_1$  dopo aver letto  $\sigma'$ .

Similmente,  $M_2(\sigma) = M_2(\sigma') c$ , visto che  $M_2$  si trova in q dopo aver letto  $\sigma'$  (la funzione di transizione è la stessa di  $M_1$ ) e, per definizione di  $M_2$ ,  $\lambda'(q,a) = \lambda(\delta(q,a)) = c$ . Quindi,  $M_1(\sigma) = M_1(\sigma') c = c_0 M_2(\sigma') c = c_0 M_2(\sigma)$ .

C.V.D.

#### Equivalenza Mealy/Moore



Sia  $\sigma$  una sequenza di input; per induzione sulla lunghezza di  $\sigma$  dimostriamo che  $M_2(\sigma)=b\,M_1(\sigma)$ 

dove  $(q_0,b)$  è lo stato iniziale in  $M_2$ .

**Base** ( $\sigma = \varepsilon$ ): per definizione,  $M_2(\varepsilon) = b$  e  $M_1(\varepsilon) = \varepsilon$ .

**Induzione** (tesi vera per  $\sigma$  lunga n caratteri, da dim. per  $\sigma$  lunga n+1): Se  $\sigma$  è lunga n+1 caratteri, allora  $\sigma = \sigma'a$ , per qualche  $a \in \Sigma$ ; quindi,  $\sigma'$  è lunga n. Per ipotesi induttiva,  $M_2(\sigma') = b M_1(\sigma')$ .

Per come funzionano gli automi,  $M_1(\sigma) = M_1(\sigma') c$ , dove  $c = \lambda(q,a)$  e q è lo stato in cui si trova  $M_1$  dopo aver letto  $\sigma'$ .

Similmente,  $M_2(\sigma) = M_2(\sigma') c$ , visto che  $M_2$  si trova in q dopo aver letto  $\sigma'$  (per l'osservazione precedente, la funzione di transizione non dipende dai caratteri di output) e, per definizione di  $M_2$ ,  $\lambda'(\delta'(q,a)) = \lambda(q,a) = c$ .

Quindi,  $M_2(\sigma) = M_2(\sigma')$   $c = b M_1(\sigma')$   $c = b M_1(\sigma)$ .

C.V.D.

