Computer Vision

Dr. Nabeel Mohammed

Course Information

Course Code: CSE553/EEE660/CSE468

Course Title: Computer Vision

Credits: 3

Faculty: Dr. Nabeel Mohammed (NbM)

Email: nabeel.mohammed@northsouth.edu

Class Time: Tuesday 7pm - 10pm

Prerequisite knowledge

- Programming (Python, MATLAS, Julia)
- Data Structures Hash, Light Tensors
- Linear Algebra
- Calculus of multiple variables -
- Some machine learning will be useful
 - First three chapters of http://neuralnetworksanddeeplearning.com/
 - Terminologies: <u>Supervised</u>, <u>Unsupervised</u>, <u>Accuracy</u>, <u>Train-Validation-Test slit</u>, <u>Regression</u>,
 Classification, <u>Mini-batch</u>, <u>Ioss/error function</u>, <u>backpropagation etc.</u>.
- Opency (or other image processing libraries)
- PyTorch / Tensorfrow / Kerry

Math

Scalar vo	Noe (Sigle number) IR
Vectors	more than one number [Majnitude, Diradian]
√ =	$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_{41} \end{bmatrix}$ $\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_{41} \end{bmatrix}$
	P = [t] K T Montrix K rows d
Pa	$ \frac{identify}{\left[\begin{array}{c} \\ \\ \\ \\ \end{array}\right]} = \left[\begin{array}{c} \\ \\ \\ \\ \end{array}\right] \leftarrow \left[\begin{array}{c} \\ \\ \\ \end{array}\right] $

Probability

0, 2, 9, 6 8, a, u, 9, 6

15 kg - 2
60 kg - 5
90 kg -3
=
$$\frac{15 * 2 + 60 * 5 + 90 * 3}{10}$$

= $\frac{2}{10}$ 15 + $\frac{5}{10}$ 60 + $\frac{3}{10}$ 90

Computer Scientist

$$K = 2x^{2} + 3x$$
 ($x = 2$)

$$\frac{dk}{dx} = 4x + 3$$
= 2. (4) + 3. (2)
= 8 + 6 = 14.
= 4.2+3

$$t = k^2 + 4 = 14^2 + 4$$

= 196 + 4 = 200

$$\frac{dt}{dx} = 2k = 2.14 = 28.$$

$$= \frac{dt}{dx} \cdot \frac{dk}{dx} = 28 \times 11 = 308$$

Topics for this course (this semester)

Deep Learning

- Classification
 - This is crucial for understanding the rest
- Detection (R(NN → YOLO→
- Segmentation -
- Transfer learning
 Transfer learning
 Transfer learning
 Transfer learning
 Transfer learning
- Adversarial Samples
- Generative Models
 - Generative Adversarial Networks
- · Open Set Problems (Face Recognition)
- Search (CBIR)
- Other interesting topics (if time permits)

This Lecture

- What is computer vision?
 - o How is it separate from image processing?
- History
- Image classification
 - Naive non-parametric approach

What is Computer Vision?

- Image Processing 2
- Cognitive Neuroscience
- Machine Learning
- Robotics
- Information Retrieval
- Graphics
- Algorithms
- Mathematics
- And much more

Image

Denoising

ALqu

Consider this image

Consider this image

Consider this image

Fukushima's Neocognitron (1982)

Viola-Jones 2001

Histogram of Oriented Gradients, Dalal and Triggs (2005)

Histogram of Oriented Gradients

Imagenet, Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

Imagenet, Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

History - Context

Historical perspective

For our purpose we will simplify into two parts

Pre-2012

Hand crafted features used with classifiers/search modules

Post-2012

- Learn features
 - Feature engineering is less of a concern, network engineering seems to be more useful

NN

In this course

- We will mostly concentrate of Deep Learning-based architectures and techniques.
- Initially we will look at a non-parametric approach
- Also, some non-deep learning techniques
 - These are good to know for completeness of knowledge
- We will cover theory in course
- You will need to pick up a Deep Learning framework
- Pick a **suitable** project
 - o 3-4 member teams
 - Paper must be ready by week 10⁻

R. Torse

Project

- Fit your compotational budget (capacity Chock Collable / Kagnyle Kernels - Do not aftempt to collect your data. . . - Where there is scope for improvements. - Follow (initially) your mentor's directions.

Image Classification

Image Classification

Wickel

Image Classification

- Is a core part of Computer Vision
- Extremely Challenging
- Semi formalised version is only slightly less challenging
 - Of Given a finite set of labels $L = \{I_1, I_2, I_3...I_n\}$ and an Image M, ascribe to M one or more labels from L
 - We are not worrying about the "do not know" class

