EEE104 – Digital Electronics (I) Lecture 2

Dr. Ming Xu and Dr. Filbert Juwono

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Binary numbers
- Conversion between decimal and binary numbers
- Binary arithmetic

Decimal Numbers

- The decimal numbering system has ten digits: 0-9
- Digits at different positions are assigned different weights which are powers of ten.
- The value of a decimal number is the sum of the weighted digits.

$$47 = (4 \times 10^{1}) + (7 \times 10^{0})$$
$$= (4 \times 10) + (7 \times 1) = 40 + 7$$

Binary Numbers

Decimal Number	Binary Number								
0	0	0	0	0					
1	0	0	0	1					
2	0	0	1	0					
3	0	0	1	1					
4	0	1	0	0					
5	0	1	0	1					
6	0	1	1	0					
7	0	1	1	1					
8	1	0	0	0					
9	1	0	0	1					
10	1	0	1	0					
11	1	0	1	1					
12	1	1	0	0					
13	1	1	0	1					
14	1	1	1	0					
15	1	1	1	1					

Counting in binary

- 1. Begin counting: 0, 1.
- Include another bit position and continue:
 10, 11.
- 3. Include a third bit position and continue: 100, 101, 110, 111.

Binary Numbers

- In decimal numbering system, with n digits you can count up to a number 10ⁿ – 1. e.g.
 - 1 digit for $10^1 1 = 9$
 - 2 digits for $10^2 1 = 99$
- In binary numbering system, with n bits you can count up to a number 2ⁿ – 1. e.g.
 - 2 bits for $2^2 1 = 3$
 - 3 bits for $2^3 1 = 7$
 - 4 bits for $2^4 1 = 15$
 - 5 bits for $2^5 1 = 31$

Binary Numbers

The weighting structure

- Least significant bit (LSB): the right-most bit in a binary number.
- Most significant bit (MSB): the left-most bit in a binary number.

Binary weights.

2 ⁸	Positi 2 ⁷	ve Pov		Two (v		numbe 2 ²	ers) 2 ¹	2 ⁰	2^{-1}	Negativ 2 ⁻²	e Powers o		ctional num 2 ⁻⁵	1ber) 2 ⁻⁶
256	128	64	32	16	8	4	2	1 3.23 1.32	1/2 0.5	1/4 0.25	1/8 0.125	1/16 0.0625	1/32 0.03125	1/64 0.015625

Binary-to Decimal Conversion

Add the weights of all bits that are 1.

Weight:
$$2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$$

Binary number: $1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1$
 $1101101 = 2^6 + 2^5 + 2^3 + 2^2 + 2^0$
 $= 64 + 32 + 8 + 4 + 1 = 109$

Weight:
$$2^{-1} 2^{-2} 2^{-3} 2^{-4}$$

Binary number: 0 . 1 0 1 1
 $0.1011 = 2^{-1} + 2^{-3} + 2^{-4}$
 $= 0.5 + 0.125 + 0.0625 = 0.6875$

Sum-of-weight method

- 1. Find the greatest weight which is less than or equal to the number.
- 2. Subtract the weight from the number, and find the greatest weight which is less than or equal to the remainder.
- 3. Repeat this process until the remainder becomes zero.

$$12 = 8 + 4 = 2^{3} + 2^{2} \longrightarrow 1100$$

$$25 = 16 + 8 + 1 = 2^{4} + 2^{3} + 2^{0} \longrightarrow 11001$$

$$58 = 32 + 16 + 8 + 2 = 2^{5} + 2^{4} + 2^{3} + 2^{1} \longrightarrow 111010$$

$$82 = 64 + 16 + 2 = 2^{6} + 2^{4} + 2^{1} \longrightarrow 1010010$$

Repeated division-by-2 method for whole numbers

- 1. Divide the number by 2.
- Repeat dividing the resultant quotient by 2 until a zero quotient is produced.
- 3. The remainders generated by the divisions form the binary number.
- 4. The first remainder is the least significant bit (LSB).

Repeated division-by-2 method for whole numbers

Repeated multiplication by 2 for fractions

- 1. Multiply the number by 2.
- Repeat multiplying the resultant fractional part of the product by 2 until the fractional product is zero or until the desired number of decimal places is reached..
- 3. The carries generated by the multiplications form the binary number.
- 4. The first carry is the most significant bit (MSB).

Repeated multiplication by 2 for fractions

Continue to the desired number of decimal places or stop when the fractional part is all zeros.

Binary Addition

$$0 + 0 = 0$$
 Sum of 0 with a carry of 0
 $0 + 1 = 1$ Sum of 1 with a carry of 0
 $1 + 0 = 1$ Sum of 1 with a carry of 0
 $1 + 1 = 10$ Sum of 0 with a carry of 1

(a)
$$11$$
 3 (b) 100 4 $\frac{+11}{110}$ $\frac{+3}{6}$ $\frac{+10}{110}$ $\frac{+2}{6}$

Binary Subtraction

$$0 - 0 = 0$$

 $1 - 1 = 0$
 $1 - 0 = 1$
 $10 - 1 = 1$ $0 - 1$ with a borrow of 1

(a)
$$11$$
 3 (b) 101 5 $\frac{-01}{10}$ $\frac{-1}{2}$ $\frac{-011}{010}$ $\frac{-3}{2}$

Binary Multiplication

$$0 \times 0 = 0$$

 $0 \times 1 = 0$
 $1 \times 0 = 0$
 $1 \times 1 = 1$

Binary Division

Follow the same procedure as division in decimal.

(a)
$$11)110$$
 $3)6$ (b) $10)110$ $2)6$ $\frac{11}{000}$ $\frac{6}{0}$ $\frac{10}{10}$ $\frac{6}{0}$ $\frac{10}{00}$