Informatique tronc commun Devoir nº 2 – Partie sur machine

15 décembre 2018

Durée : 60 minutes, documents et internet interdits.

- 1. Lisez attentivement tout l'énoncé avant de commencer.
- 2. Ce devoir est à réaliser seul, en utilisant Python 3.
- 3. Nous vous conseillons de commencer par créer un dossier au nom du DS dans le répertoire dédié à l'informatique de votre compte.
- 4. Nous vous rappelons qu'il est possible d'obtenir de l'aide dans l'interpréteur d'idle en tapant help(nom_fonction).
- 5. Vous inscrirez vos réponses sur la feuille réponse fournie. Attention : lisez attentivement le paragraphe suivant.

Fonctionnement du devoir

Vos réponses dépendent d'un paramètre α , unique pour chaque étudiant, qui vous est donné en haut de votre fiche réponse. On considère la suite u à valeurs dans $[0,64\,007]$, définie comme suit.

$$u_0 = \alpha$$
 et $\forall n \in \mathbb{N}, u_{n+1} = (15\,091 \times u_n)$ [64 007].

Nous vous en proposons l'implémentation suivante.

```
def u(alpha,n):
    """u_n, u_0 = alpha"""
    x = alpha
    for i in range(n):
        x = (15091 * x) % 64007
    return x
```

Pour s'assurer que vous avez bien codé la suite u, en voici quelques valeurs.

```
u(100,0) = 100

u(1515,987) = 37099

u(496,10**4) = 53781
```

Dans ce devoir, on notera a%b le reste de la division euclidienne de a par b.

Lorsque vous donnerez un résultat flottant, vous écrirez juste ses huit premières décimales.

Vous trouverez en annexe les réponses pour le paramètre $\alpha = 1$, utilisez-les pour vérifier la correction de vos algorithmes.

Vous aurez intérêt à calculer une fois pour toute le tableau $[u_0, \dots, u_{3000}] = [u_k, k \in [0, 3000]]$.

Questions de cours.

- **Q1** Donner le reste et le quotient de la division euclidienne de $u_2 \times u_3$ par u_4 .
- **Q2** Donner la première occurence du maximum du tableau $[u_0, \ldots, u_{999}]$ (*i.e.* déterminer le plus petit entier $k \in [0, 1000]$ pour lequel u_k est le maximum de ce tableau).
- **Q3** Donner $\log_{10}(u_2)$.

Exercices.

- **Q4** Donner le plus petit entier naturel n tel que $u_n = 100$.
- Q5 Donner le nombre d'entiers inférieurs ou égaux à $10\,000$ parmi les u_k , pour $k \in [0, 1\,000]$.

On rappelle l'algorithme d'Euclide : si a, b sont des entiers naturels, on considère la suite r définie par :

- $-r_0 = a, r_1 = b;$
- si $r_{n+1} \neq 0$, r_{n+2} est le reste de la division euclidienne de r_n par r_{n+1} .

Alors, si r_n est le premier terme nul de la suite $(r_n)_{n\in\mathbb{N}}$ (avec $n\geq 1$), le pgcd de a et de b est r_{n-1} .

Q6 Donner le PGCD de u_6 et u_7 .

On appelle moyenne élaguée d'un tableau T la moyenne du tableau que l'on obtient quand on a enlevé à T toutes les occurences de son maximum ainsi que de son minimum.

On note x%100 le reste de la division euclidienne de x par 100.

Q7 Donner la moyenne élaguée du tableau constitué des $u_k\%100$, pour $k \in [1000, 2000]$.

On rappelle qu'une tranche d'un tableau est une suite de valeurs consécutives extraites de ce tableau.

Si x est un entier, on note x%3 le reste de la division eudlidienne de x par 3.

- **Q8** Donner la taille de la plus grande tranche constituée uniquement de zéros dans le tableau des $u_k\%3$, pour $k\in [2\,000,3\,000[$.
- **Q9** Donner le plus grand nombre de termes consécutifs formant une suite croissante (au sens large) dans le tableau des $u_k\%5$, pour $k\in \llbracket 1\,000,3\,000 \rrbracket$

$\alpha = 1$

R1 (quotient):	473
R1 (reste):	21769
R2:	107
R3:	3.13830269
R4:	31062
R5:	156
R6:	1
R7:	48.87100103199
R8:	5
R9:	9