```
In [1]: |print("Hello World")
         Hello World
 In [2]: name=input("Enter ur name:")
         print("Welcome", name)
         Enter ur name: James
         Welcome James
 In [3]: print(type(5))
         <class 'int'>
 In [4]: print(type(2.5))
         <class 'float'>
 In [5]: print(type("Hello World"))
         <class 'str'>
 In [6]: print(type(False))
         <class 'bool'>
 In [7]: x = 1
         print(x)
         1
 In [8]: name = "James"
         print(name)
         James
 In [9]: print(5+3)
         8
In [10]: print(6.5-2)
         4.5
In [11]: print(2*4)
         8
In [12]: print(5/2)
         2.5
In [13]: print(5//2)
         2
In [14]: print(5%2)
         1
In [15]: print(20>3)
         True
```

```
In [16]: print(100<7)</pre>
          False
In [17]: print((20>3) and (100<7))</pre>
          False
In [18]: |print((20>3) or (100<7))</pre>
          True
In [19]: | x=True
          print(x)
          print(not x)
          True
          False
In [20]: if 5==6:
              print(1)
          elif 6==6:
              print(2)
          else:
              print(3)
          2
In [21]: if 7>3 and 10<5:
              print(1)
          elif 7>3 and 5<10:</pre>
              print(2)
          elif 3>7 and 10<5:</pre>
              print(3)
          elif 3>7 and 5<10:</pre>
              print(4)
          else:
              print(5)
          2
In [22]: #Print all the even numbers from 0 to 20.
          for i in range(0,21,2):
              print(i)
          0
          2
          4
          6
          8
          10
          12
          14
          16
          18
          20
```

```
In [23]: #By default the step value is 1 so if we omi the step value then it will prin
          for i in range(0,21):
              print(i)
          0
          1
          2
          3
          4
          5
          6
          7
          8
          9
          10
          11
          12
          13
          14
          15
          16
          17
          18
          19
          20
In [24]: while True:
              username=input("Enter the username:")
if username == "James":
                   print("Welcome James")
                   break
              else:
                   print("wrong username")
          Enter the username: Anderson
          wrong username
          Enter the username: James
          Welcome James
In [25]: i=1
          while i<=10:
              print(i)
              i=i+1
          1
          2
          3
          4
          5
          6
          7
          8
          9
          10
In [26]: flowersList = ["Rose","Lily","Tulip"]
          firstelement = flowersList[0]
          print(firstelement)
          Rose
In [27]: lasttwoelements= flowersList[1:3]
          print(lasttwoelements)
          ['Lily', 'Tulip']
```

```
In [29]: for i in flowersList:
             print(i)
         Rose
         Lily
         Tulip
In [30]: data = {"Name":"James","Age":27,"Country":"US"}
         name = data["Name"]
         age= data["Age"]
         country = data["Country"]
         print(name)
         print(age)
         print(country)
         James
         27
         US
In [32]: data = {"Name":"James","Age":27,"Country":"US"}
         for key in data:
             print(data[key])
         James
         27
         US
In [34]: flowertuple=("Rose","Lily","Tulip")
         for item in flowertuple:
             print(item)
         Rose
         Lily
         Tulip
In [35]: data = "Rose",
         print(type(data))
         <class 'tuple'>
In [36]: data= 1,2,3,4,5,6,7,8,9,10
         print(type(data))
         <class 'tuple'>
In [37]: data="Rose","Lily","Tulip"
         print(type(data))
         <class 'tuple'>
In [38]: def AddNumbers(x,y):
             sum = x+y
             return sum
         result = AddNumbers(5,10)
         print(result)
         15
```

```
In [39]: | def IncrementByOne(x,y):
             x = x+1;
             y = y + 1;
             return x,y
         num1, num2=IncrementByOne(8,9)
         print(num1)
         print(num2)
         10
 In [1]: |#Creating a 1-D NumPy Array
         import numpy as np
 In [2]: oneDarray=np.array([1,2,3,4,5])
         print(oneDarray)
         [1 2 3 4 5]
 In [3]: |print(oneDarray.ndim)
         1
 In [5]:
         #Creating a 2-D Numpy array
         twoDarray= np.array([[1,2,3],[4,5,6]])
         print(twoDarray)
         [[1 2 3]
          [4 5 6]]
 In [6]: print(twoDarray.ndim)
         2
In [14]: #Creating a 3-D Numpy array
         threeDarray = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
         print(threeDarray)
         [[[ 1 2 3]
           [ 4 5
                   6]]
          [[7 8 9]
           [10 11 12]]]
 In [8]: print(threeDarray.ndim)
         3
 In [9]: #Indexing a Numpy array
         twoDarray= np.array([[1,2,3],[4,5,6]])
         print(twoDarray)
         [[1 2 3]
          [4 5 6]]
In [10]: print(twoDarray[1])
         [4 5 6]
In [12]: |print(twoDarray[1][0])
         4
In [13]: print(twoDarray[1,0])
         4
```

```
In [15]: #Array Shape
         twoDarray= np.array([[1,2,3],[4,5,6]])
         print(twoDarray.shape)
         (2, 3)
In [17]: #Create a Numpy array prefilled with 10 zeros.
         zerosArray= np.zeros(10)
         print(zerosArray)
         [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
In [18]: | zerosArray = zerosArray.astype(int)
         print(zerosArray)
         [0 0 0 0 0 0 0 0 0]
In [19]: #Create a Numpy array prefilled with 10 ones.
         onesArray=np.ones(10)
         print(onesArray)
         [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
In [20]: onesArray= onesArray.astype(int)
         print(onesArray)
         [1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1]
In [16]: | #To create an array prefilled with some specific number we can use the .full
         prefilledarray= np.full(10,5)
         print(prefilledarray)
         [5 5 5 5 5 5 5 5 5 5]
In [21]:
         #Adding a scalar
         matrix= np.array([[1,2,3],[4,5,6]])
         print(matrix)
         [[1 2 3]
          [4 5 6]]
In [22]: print(matrix+2)
         [[3 4 5]
          [6 7 8]]
In [23]: print(matrix-2)
         [[-1 0 1]
          [234]]
In [24]: print(matrix)
         [[1 2 3]
          [4 5 6]]
In [25]: print(matrix*2)
         [[ 2 4 6]
          [ 8 10 12]]
In [26]: print(matrix/2)
         [[0.5 1. 1.5]
          [2. 2.5 3.]]
```

```
In [27]: print(matrix//2)
         [[0 1 1]
          [2 2 3]]
In [29]: print(matrix**2)
         [[ 1 4 9]
          [16 25 36]]
In [30]: print(matrix)
         [[1 2 3]
          [4 5 6]]
In [31]: print(matrix.T)
         [[1 4]
          [2 5]
          [3 6]]
In [32]: | matrix1=np.array([[1,2,3],[4,5,6]])
         print(matrix1)
         [[1 2 3]
          [4 5 6]]
In [33]: matrix2=np.array([[7,8,9],[10,11,12]])
         print(matrix2)
         [[ 7 8 9]
          [10 11 12]]
In [34]: print(matrix1+matrix2)
         [[ 8 10 12]
          [14 16 18]]
In [35]: print(matrix1-matrix2)
         [[-6 -6 -6]
          [-6 -6 -6]]
In [36]: print(matrix1*matrix2)
         [[ 7 16 27]
          [40 55 72]]
In [37]: print(matrix1/matrix2)
         [[0.14285714 0.25
                                  0.333333331
          [0.4
                       0.45454545 0.5
                                            ]]
In [38]: print(matrix1//matrix2)
         [[0 0 0]]
          [0 0 0]]
In [39]: matrix1=np.array([[1,2,3],[4,5,6],[0,0,0]])
         print(matrix1)
         [[1 2 3]
          [4 5 6]
          [0 0 0]]
```

```
In [40]: matrix2=np.array([[-1,-2,-3],[-4,-5,-6],[0,0,0]])
         print(matrix2)
         [[-1 -2 -3]
          [-4 -5 -6]
          [0 0 0]]
In [41]: | np.matmul(matrix1, matrix2)
Out[41]: array([[ -9, -12, -15],
                 [-24, -33, -42],
                  0,
                              0]])
                        0,
In [42]: mat1=np.array([[1,2,3],[4,5,6]])
         print(mat1)
         [[1 2 3]
          [4 5 6]]
In [44]: print(np.min(mat1))
         1
In [45]: print(np.max(mat1))
In [46]: print(np.sum(mat1))
         21
In [47]: print(np.mean(mat1))
         3.5
In [48]: |print(np.std(mat1))
         1.707825127659933
In [49]: |print(np.median(mat1))
         3.5
In [50]: import pandas as pd
         myList=[['Apple','Red'],['Banana','Yellow'],['Litchi','Pink']]
         myDataFrame=pd.DataFrame(myList)
         print(myDataFrame)
                          1
             Apple
                        Red
         1
            Banana
                     Yellow
                       Pink
            Litchi
In [51]: | myList=[['Apple', 'Red'],['Banana', 'Yellow'],['Litchi', 'Pink']]
         myDataFrame=pd.DataFrame(myList,columns=['Fruit','Color'])
         print(myDataFrame)
                      Color
             Fruit
         0
             Apple
                        Red
         1
            Banana
                     Yellow
                       Pink
            Litchi
 In [1]: import pandas as pd
```

In [2]: df = pd.read_csv("Top YouTube Channels Data .csv")
df

Out[2]:

	rank	youtuber	subscribers	video views	video count	category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013
95	96	Markiplier	32600000	18,011,837,263	5129.0	Gaming	2012
96	97	Like Nastya ESP	32600000	15,144,858,210	584.0	Entertainment	2017
97	98	Ryan's World	32400000	51,312,603,726	2155.0	Entertainment	2015
98	99	ABP News	32300000	9,850,740,503	209351.0	People & Blogs	2012
99	100	Desi Music Factory	32200000	9,115,577,588	122.0	Music	2014

100 rows × 7 columns

In [5]: df.set_index('youtuber')

Out[5]:

	rank	subscribers	video views	video count	category	started
youtuber						
T-Series	1	213000000	188,073,919,029	16708.0	Music	2006
YouTube Movies	2	150000000	167,122,746,349	NaN	Film & Animation	2015
Cocomelon - Nursery Rhymes	3	133000000	126,822,520,940	751.0	Education	2006
SET India	4	131000000	101,541,977,714	78334.0	Shows	2006
Music	5	116000000	78,437,871,689	NaN	Music	2013
Markiplier	96	32600000	18,011,837,263	5129.0	Gaming	2012
Like Nastya ESP	97	32600000	15,144,858,210	584.0	Entertainment	2017
Ryan's World	98	32400000	51,312,603,726	2155.0	Entertainment	2015
ABP News	99	32300000	9,850,740,503	209351.0	People & Blogs	2012
Desi Music Factory	100	32200000	9,115,577,588	122.0	Music	2014

100 rows × 6 columns

In [6]: df

Out[6]:

	rank	youtuber	subscribers	video views	video count	category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013
95	96	Markiplier	32600000	18,011,837,263	5129.0	Gaming	2012
96	97	Like Nastya ESP	32600000	15,144,858,210	584.0	Entertainment	2017
97	98	Ryan's World	32400000	51,312,603,726	2155.0	Entertainment	2015
98	99	ABP News	32300000	9,850,740,503	209351.0	People & Blogs	2012
99	100	Desi Music Factory	32200000	9,115,577,588	122.0	Music	2014

100 rows × 7 columns

In [7]: df.head()

Out[7]:

	rank	youtuber	subscribers	video views	video count	category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013

In [8]: df.tail()

Out[8]:

	rank	youtuber	subscribers	video views	video count	category	started
95	96	Markiplier	32600000	18,011,837,263	5129.0	Gaming	2012
96	97	Like Nastya ESP	32600000	15,144,858,210	584.0	Entertainment	2017
97	98	Ryan's World	32400000	51,312,603,726	2155.0	Entertainment	2015
98	99	ABP News	32300000	9,850,740,503	209351.0	People & Blogs	2012
99	100	Desi Music Factory	32200000	9,115,577,588	122.0	Music	2014

In [9]: #Find the statistical summaryn of the dataframe
 df.describe()

Out[9]:

	rank	subscribers	video count	started
count	100.000000	1.000000e+02	95.000000	100.000000
mean	50.500000	5.336300e+07	15847.221053	2010.800000
std	29.011492	2.869713e+07	40955.200388	5.504819
min	1.000000	3.220000e+07	45.000000	1970.000000
25%	25.750000	3.620000e+07	393.500000	2007.750000
50%	50.500000	4.320000e+07	1139.000000	2012.000000
75%	75.250000	5.710000e+07	4986.000000	2014.000000
max	100.000000	2.130000e+08	209351.000000	2018.000000

In [11]: #get the data of the first 4 rows(slicing rows using bracket operators) df[0:4]

Out[11]:

	rank	youtuber	subscribers	video views	video count	category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006

In [16]: #Indexing columns using bracket operators. df[['youtuber']]

Out[16]:

	youtuber
0	T-Series
1	YouTube Movies
2	Cocomelon - Nursery Rhymes
3	SET India
4	Music
95	Markiplier
96	Like Nastya ESP
97	Ryan's World
98	ABP News
99	Desi Music Factory

100 rows × 1 columns

```
In [23]: #filtering rows
         condition= df[df['started']>2007]
         _____
         KeyError
                                                   Traceback (most recent call last)
         File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3621, in Inde
         x.get_loc(self, key, method, tolerance)
            3620 try:
                     return self._engine.get_loc(casted_key)
         -> 3621
            3622 except KeyError as err:
         File ~\anaconda3\lib\site-packages\pandas\_libs\index.pyx:136, in pandas._li
         bs.index.IndexEngine.get_loc()
         File ~\anaconda3\lib\site-packages\pandas\_libs\index.pyx:163, in pandas._li
         bs.index.IndexEngine.get_loc()
         File pandas\_libs\hashtable_class_helper.pxi:5198, in pandas._libs.hashtabl
         e.PyObjectHashTable.get_item()
         File pandas\ libs\hashtable class helper.pxi:5206, in pandas. libs.hashtabl
         e.PyObjectHashTable.get_item()
         KeyError: 'started'
         The above exception was the direct cause of the following exception:
         KeyError
                                                   Traceback (most recent call last)
         Input In [23], in <cell line: 2>()
               1 #filtering rows
         ----> 2 condition= df[df['started']>2007]
         File ~\anaconda3\lib\site-packages\pandas\core\frame.py:3505, in DataFrame._
         _getitem__(self, key)
            3503 if self.columns.nlevels > 1:
                     return self._getitem_multilevel(key)
         -> 3505 indexer = self.columns.get_loc(key)
            3506 if is_integer(indexer):
                     indexer = [indexer]
            3507
         File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3623, in Inde
         x.get_loc(self, key, method, tolerance)
            3621
                     return self._engine.get_loc(casted_key)
            3622 except KeyError as err:
         -> 3623
                    raise KeyError(key) from err
            3624 except TypeError:
            3625
                     # If we have a listlike key, _check_indexing_error will raise
                     # InvalidIndexError. Otherwise we fall through and re-raise
            3626
                     # the TypeError.
            3627
                     self._check_indexing_error(key)
            3628
```

localhost:8888/notebooks/PYTHON---NUMPY---PANDAS---MATPLOTLIB.ipynb#

KeyError: 'started'

In [24]: df

Out[24]:

	rank	youtuber	subscribers	video views	video count	category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013
						•••	
95	96	Markiplier	32600000	18,011,837,263	5129.0	Gaming	2012
96	97	Like Nastya ESP	32600000	15,144,858,210	584.0	Entertainment	2017
97	98	Ryan's World	32400000	51,312,603,726	2155.0	Entertainment	2015
98	99	ABP News	32300000	9,850,740,503	209351.0	People & Blogs	2012
99	100	Desi Music Factory	32200000	9,115,577,588	122.0	Music	2014

100 rows × 7 columns

```
In [25]: df[df['started']>2005]
         ______
                                                  Traceback (most recent call last)
         KeyError
         File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3621, in Inde
         x.get_loc(self, key, method, tolerance)
            3620 try:
         -> 3621
                    return self._engine.get_loc(casted_key)
            3622 except KeyError as err:
         File ~\anaconda3\lib\site-packages\pandas\_libs\index.pyx:136, in pandas._li
         bs.index.IndexEngine.get_loc()
         File ~\anaconda3\lib\site-packages\pandas\_libs\index.pyx:163, in pandas._li
         bs.index.IndexEngine.get_loc()
         File pandas\_libs\hashtable_class_helper.pxi:5198, in pandas._libs.hashtabl
         e.PyObjectHashTable.get_item()
         File pandas\_libs\hashtable_class_helper.pxi:5206, in pandas._libs.hashtabl
         e.PyObjectHashTable.get item()
         KeyError: 'started'
         The above exception was the direct cause of the following exception:
                                                  Traceback (most recent call last)
         KeyError
         Input In [25], in <cell line: 1>()
         ----> 1 df[df['started']>2005]
         File ~\anaconda3\lib\site-packages\pandas\core\frame.py:3505, in DataFrame.
         _getitem__(self, key)
            3503 if self.columns.nlevels > 1:
            3504
                    return self._getitem_multilevel(key)
         -> 3505 indexer = self.columns.get_loc(key)
            3506 if is_integer(indexer):
            3507
                    indexer = [indexer]
         File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3623, in Inde
         x.get_loc(self, key, method, tolerance)
                    return self._engine.get_loc(casted_key)
            3622 except KeyError as err:
         -> 3623
                    raise KeyError(key) from err
            3624 except TypeError:
            3625
                    # If we have a listlike key, _check_indexing_error will raise
                       InvalidIndexError. Otherwise we fall through and re-raise
            3626
            3627
                       the TypeError.
                    self._check_indexing_error(key)
            3628
```

KeyError: 'started'

In [26]: df

Out[26]:

	rank	youtuber	subscribers	video views	video count	category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013
						•••	
95	96	Markiplier	32600000	18,011,837,263	5129.0	Gaming	2012
96	97	Like Nastya ESP	32600000	15,144,858,210	584.0	Entertainment	2017
97	98	Ryan's World	32400000	51,312,603,726	2155.0	Entertainment	2015
98	99	ABP News	32300000	9,850,740,503	209351.0	People & Blogs	2012
99	100	Desi Music Factory	32200000	9,115,577,588	122.0	Music	2014

100 rows × 7 columns

In [27]: df.loc[0,'youtuber']

Out[27]: 'T-Series '

In [28]: df.loc[[0],['youtuber']]

Out[28]: youtuber

0 T-Series

In [32]: #slice first 5 rows and all columns df.loc[0:5,'youtuber':]

Out[32]:

	youtuber	subscribers	video views	video count	category	started
0	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	Music	116000000	78,437,871,689	NaN	Music	2013
5	PewDiePie	111000000	28,260,779,633	4472.0	Gaming	2010

In [34]: #filtering data using iloc df.iloc[3,5]

Out[34]: 'Shows '

In [35]: df.iloc[0:5,0:3]

Out[35]:

rank		youtuber	subscribers
0	1	T-Series	213000000
1	2	YouTube Movies	150000000
2	3	Cocomelon - Nursery Rhymes	133000000
3	4	SET India	131000000
4	5	Music	116000000

In [40]: #Adding and deleting rows and columns
df.loc[7]=[8,'Aman',783678908,120,89939.0,'Music',2022]

In [41]: df.head(8)

Out[41]:

	rank	youtuber	youtuber subscribers video views		video count	category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013
5	6	PewDiePie	111000000	28,260,779,633	4472.0	Gaming	2010
6	7	MrBeast	93900000	15,417,304,461	721.0	Entertainment	2012
7	8	Aman	783678908	120	89939.0	Music	2022

In [42]: df.drop(7,axis=0,inplace=True)
df

Out[42]:

	rank	youtuber	subscribers	video views	video count	category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013
95	96	Markiplier	32600000	18,011,837,263	5129.0	Gaming	2012
96	97	Like Nastya ESP	32600000	15,144,858,210	584.0	Entertainment	2017
97	98	Ryan's World	32400000	51,312,603,726	2155.0	Entertainment	2015
98	99	ABP News	32300000	9,850,740,503	209351.0	People & Blogs	2012
99	100	Desi Music Factory	32200000	9,115,577,588	122.0	Music	2014

99 rows × 7 columns

In [43]: df.head(8)

Out[43]:

	rank	youtuber	subscribers	scribers video views		category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013
5	6	PewDiePie	111000000	28,260,779,633	4472.0	Gaming	2010
6	7	MrBeast	93900000	15,417,304,461	721.0	Entertainment	2012
8	9	Gaming	92100000	71,692,471,446	NaN	Gaming	2013

In [45]: df=df[0:5]

Out[45]:

	rank	youtuber	youtuber subscribers video views		video count	category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013

In [48]: | df['My_column'] =["A","B","C","D","E"]

C:\Users\HP\AppData\Local\Temp\ipykernel_12124\3131067220.py:1: SettingWithC opyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/ stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pand as.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v ersus-a-copy)

df['My_column'] =["A","B","C","D","E"]

Out[48]:

	rank	youtuber	subscribers	video views	video count	category	started	My_column
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006	А
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015	В
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006	С
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006	D
4	5	Music	116000000	78,437,871,689	NaN	Music	2013	Е

In [51]: df.head()

Out[51]:

	rank	youtuber	subscribers	video views	video count	category	started	My_column
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006	Α
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015	В
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006	С
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006	D
4	5	Music	116000000	78,437,871,689	NaN	Music	2013	Е

In [52]: df.drop('My_column', axis=1, inplace=True)
df

C:\Users\HP\AppData\Local\Temp\ipykernel_12124\4161074454.py:1: SettingWithC
opyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.drop('My_column', axis=1, inplace=True)

Out[52]:

	rank	youtuber subscribers video views		video count	category	started	
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013

In [54]: #sorting values

df.sort_values(by='youtuber')

Out[54]:

	rank	youtuber subscribers video view		video views	video count	category	started
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015

In [55]: df.to_csv('myfile.csv',index_label= False)

In [56]: newdf=pd.read_csv('myfile.csv')
newdf

Out[56]:

	rank	youtuber	subscribers	video views	video count	category	started
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015
2	3	Cocomelon - Nursery Rhymes	133000000	126,822,520,940	751.0	Education	2006
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006
4	5	Music	116000000	78,437,871,689	NaN	Music	2013

In [63]: #Concatenating DataFrames
 df1=df[0:2]

df1

Out[63]:

	rank	youtuber	subscribers	video views	video count	ideo count category	
0	1	T-Series	213000000	188,073,919,029	16708.0	Music	2006
1	2	YouTube Movies	150000000	167,122,746,349	NaN	Film & Animation	2015

In [64]: df2=df[3:5]
df2

Out[64]:

	rank	youtuber	subscribers	video views	video count	category	started	
3	4	SET India	131000000	101,541,977,714	78334.0	Shows	2006	
4	5	Music	116000000	78,437,871,689	NaN	Music	2013	

In [65]: pd.concat([df1,df2],axis=1)

Out[65]:

	rank	youtuber	subscribers	video views	video count	category	started	rank	youtuber	sub
0	1	T-Series	213000000.0	188,073,919,029	16708.0	Music	2006.0	NaN	NaN	
1	2	YouTube Movies	150000000.0	167,122,746,349	NaN	Film & Animation	2015.0	NaN	NaN	
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	4	SET India	1310
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	5	Music	1160
4										•

In [66]: data={'Gender':['female','male','female','male'],'Score':[85,88,90,95]}
 df = pd.DataFrame(data)
 df

Out[66]:

	Gender	Score
0	female	85
1	male	88
2	female	90
3	male	95

```
In [68]: df.groupby(df['Gender']).mean()
Out[68]:
                 Score
          Gender
           female
                   87.5
            male
                   91.5
In [70]: #Median based anomaly detection
          import pandas as pd
          import numpy as np
          x = pd.Series([2.1,2.2,4.5,2.2,2.4])
         median = np.median(x)
         threshold = 2
         outliers = []
          for item in x:
              if abs(item-median)>threshold:
                  outliers.append(item)
          print(outliers)
          [4.5]
In [73]: from numpy import NaN
          data1={'Name':["Edward","Edison","James","Aman"],'Age':[28,27,NaN,30]}
         da=pd.DataFrame(data1)
         da
Out[73]:
              Name Age
          0 Edward 28.0
             Edison 27.0
          1
          2
             James NaN
              Aman 30.0
          3
In [74]:
         da.isnull()
Out[74]:
             Name
                    Age
          0 False False
             False False
          2 False
                   True
          3 False False
In [75]: da.isnull().sum()
Out[75]: Name
                  0
                  1
          Age
```

dtype: int64

```
In [76]: | #Replace the missing value with the mean value of Age
         da.fillna(da.mean(),inplace=True)
         C:\Users\HP\AppData\Local\Temp\ipykernel_12124\3870954151.py:2: FutureWarnin
         g: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=
         None') is deprecated; in a future version this will raise TypeError. Select
         only valid columns before calling the reduction.
           da.fillna(da.mean(),inplace=True)
Out[76]:
              Name
                        Age
          0 Edward 28.000000
             Edison 27.000000
          1
             James 28.333333
              Aman 30.000000
          3
In [77]: da.fillna(da.mode())
Out[77]:
              Name
                        Age
          0 Edward 28.000000
             Edison 27.000000
             James 28.333333
          3
              Aman 30.000000
In [78]: #Regular Expressions
         import re
In [79]: | txt = "Python is my programming language. I love Python"
         x = re.findall("Python",txt)
Out[79]: ['Python', 'Python']
In [80]: len(x)
Out[80]: 2
In [84]: | txt= "Python was released in 1991"
         number= re.findall('\d',txt)
Out[84]: ['1', '9', '9', '1']
In [86]: |txt= "Python was released in 1991"
         number= re.findall('\d+',txt)
         number
Out[86]: ['1991']
In [87]:
         import pandas as pd
         import re
         txt= "Hello World"
In [88]:
         match_object = re.search('World',txt)
         match_object
Out[88]: <re.Match object; span=(6, 11), match='World'>
In [89]: match_object.span()
Out[89]: (6, 11)
```

```
In [90]: import pandas as pd
          import re
In [91]: | txt= "C is my favourite programming language"
          re.sub(pattern="C", repl="Python",string=txt)
Out[91]: 'Python is my favourite programming language'
In [92]: df1 = {'Age':[28,27,30,36,27],'Salary':[10000,15000,11000,13000,14000]}
          df=pd.DataFrame(df1)
Out[92]:
             Age Salary
           0
              28 10000
           1
              27 15000
           2
              30 11000
           3
              36 13000
              27 14000
In [93]: |#Formula for Feature Scaling
          df = (df - df.min()) / (df.max() -df.min())
In [94]:
Out[94]:
                 Age Salary
             0.111111
           0
                        0.0
           1 0.000000
                        1.0
           2 0.333333
                        0.2
           3 1.000000
                        0.6
           4 0.000000
                        8.0
In [95]: | df = (df - df.mean()) / df.std()
          df
Out[95]:
                  Age
                         Salary
           0 -0.423109 -1.253831
           1 -0.687552
                      1.157383
             0.105777 -0.771589
             1.692435 0.192897
           4 -0.687552
                      0.675140
In [96]: df.std()
Out[96]: Age
                    1.0
          Salary
                    1.0
          dtype: float64
```

```
In [97]: #Plotting Line Plots using Matplotlib
import matplotlib.pyplot as plt
x_axis=[1,2,3]
y_axis=[4,5,6]
plt.plot(x_axis,y_axis)
```

Out[97]: [<matplotlib.lines.Line2D at 0x1873b623b20>]


```
In [98]: x_axis=[1,2,3]
y_axis=[4,5,6]

plt.title("My First Graph")
plt.plot(x_axis,y_axis)
```

Out[98]: [<matplotlib.lines.Line2D at 0x1873d73e3b0>]


```
In [99]: x_axis=[1,2,3]
y_axis=[4,5,6]

plt.title("My First Graph")
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.plot(x_axis,y_axis,'r')
```

Out[99]: [<matplotlib.lines.Line2D at 0x1873d7af970>]


```
In [100]: x1_axis=[2,4,6,8]
y1_axis=[1,10,100,1000]

x2_axis=[1,3,5,7]
y2_axis=[100,110,120,130]
```

```
In [102]: plt.title('Two plots in one chart')
    plt.xlabel('x-axis')
    plt.ylabel('y-axis')

    plt.plot(x1_axis,y1_axis,'r')
    plt.plot(x2_axis,y2_axis,'g')

    plt.legend(['exponential','linear'])
```

Out[102]: <matplotlib.legend.Legend at 0x1873d847790>


```
In [103]: #Plotting histograms
  values=[10,15,20,10,15]
  plt.hist(values)
```



```
In [104]: values=[10,15,20,10,15]
plt.hist(values,color="red",width=0.5)
```



```
In [105]: #Plotting Bar Charts
values=[10,15,20]
plt.bar(values,[0.5,1,2],width=2)
```

Out[105]: <BarContainer object of 3 artists>


```
In [106]: #Plotting Pie Charts
values=[15,35,40,10]
plt.pie(values)
```



```
In [107]: values=[15,35,40,10]
plt.pie(values,labels=['a','b','c','d'])
```



```
In [108]: values=[15,35,40,10]
plt.pie(values,labels=['a','b','c','d'],explode=[0,0.2,0,0])
```



```
In [109]: values=[15,35,40,10]
plt.pie(values,labels=['a','b','c','d'],colors=['r','g','b','y'])
```



```
In [110]: #Plotting Scatterplot
    x_axis=[1,2,3,4,5,6,7,8,9,10]
    y_axis=[15,12,20,45,67,23,72,80,101,99]

    plt.title("Scatterplot")
    plt.xlabel('x_axis')
    plt.ylabel('y-axis')

    plt.scatter(x_axis,y_axis,cmap='Accent')
```

Out[110]: <matplotlib.collections.PathCollection at 0x1873ebb04f0>


```
In [111]: from matplotlib import cm
            dir(cm)
Out[111]: ['Accent',
             'Accent_r',
             'Blues',
             'Blues_r',
             'BrBG',
             'BrBG_r',
             'BuGn',
             'BuGn_r',
             'BuPu',
             'BuPu_r',
             'CMRmap',
             'CMRmap_r',
             'ColormapRegistry',
             'Dark2',
'Dark2_r',
             'GnBu',
             'GnBu_r'
             'GnBu_r',
'Greens',
             'Greens_r',
```

In [113]: #Plotting polar plot import numpy as np import matplotlib.pyplot as plt theta= np.arange(0,(2*np.pi),0.01) #generating an array of evenly spaced r=2 for radian in theta: plt.polar(radian,r)


```
In [115]: from sklearn.datasets import load_iris
           iris = load_iris()
            iris
Out[115]: {'data': array([[5.1, 3.5, 1.4, 0.2],
                     [4.9, 3., 1.4, 0.2],
                     [4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
                     [5., 3.6, 1.4, 0.2],
                     [5.4, 3.9, 1.7, 0.4],
                     [4.6, 3.4, 1.4, 0.3],
                     [5., 3.4, 1.5, 0.2],
                     [4.4, 2.9, 1.4, 0.2],
                     [4.9, 3.1, 1.5, 0.1],
                     [5.4, 3.7, 1.5, 0.2],
                     [4.8, 3.4, 1.6, 0.2],
                     [4.8, 3., 1.4, 0.1],
                     [4.3, 3., 1.1, 0.1],
                     [5.8, 4., 1.2, 0.2],
                     [5.7, 4.4, 1.5, 0.4],
                     [5.4, 3.9, 1.3, 0.4],
                     [5.1, 3.5, 1.4, 0.3],
                     [5.7, 3.8, 1.7, 0.3],
In [116]: | df=pd.DataFrame(iris.data)
           print(df.head())
                       1
                             2
                                  3
               5.1
                     3.5
                          1.4
                                0.2
               4.9
                     3.0
                          1.4
                                0.2
               4.7
                     3.2
                          1.3
                                0.2
               4.6
                                0.2
           3
                     3.1
                          1.5
               5.0
                     3.6
                          1.4
                                0.2
In [117]: | df.columns=iris.feature_names
           df.head()
Out[117]:
               sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                           5.1
                                          3.5
                                                                        0.2
            1
                           4.9
                                          3.0
                                                         1.4
                                                                        0.2
            2
                           4.7
                                          3.2
                                                         1.3
                                                                        0.2
            3
                           4.6
                                          3.1
                                                         1.5
                                                                        0.2
                           5.0
                                          3.6
                                                                        0.2
                                                         1.4
In [121]: |df['variety']=iris.target
           df.head()
Out[121]:
               sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) variety
            0
                           5.1
                                          3.5
                                                         1.4
                                                                        0.2
                                                                                 0
            1
                           4.9
                                          3.0
                                                         1.4
                                                                        0.2
                                                                                 0
            2
                           4.7
                                          3.2
                                                         1.3
                                                                        0.2
            3
                           4.6
                                          3.1
                                                         1.5
                                                                        0.2
                                                                                 0
                           5.0
                                          3.6
                                                         1.4
                                                                        0.2
                                                                                 0
In [132]: | import pandas as pd
           import seaborn as sns
In [130]: df=pd.read csv("titanic.csv")
```

In [131]: df

Out[131]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875
413	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500
414	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000
415	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500
416	1308	0	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500
417	1309	0	3	Peter, Master.	male	NaN	1	1	2668	22.3583

418 rows × 12 columns

Michael J

Out[135]: Text(0.5, 1.0, 'Bivariate Analysis')


```
In [136]: df[['Fare','Age']].corr()
```

Out[136]:

Fare 1.000000 0.337932
Age 0.337932 1.000000

In [138]: sns.heatmap(df[['Fare','Age']].corr())

Out[138]: <AxesSubplot:>

In [139]: survived_ratio= df[['Pclass','Survived']].groupby('Pclass').sum()
survived_ratio

Out[139]:

Survived

Pclass	
1	50
2	30
3	72

In [141]: sns.barplot(x=survived_ratio.index,y=survived_ratio['Survived'])

Out[141]: <AxesSubplot:xlabel='Pclass', ylabel='Survived'>


```
In [143]: sns.boxplot(x=df['Survived'],y=df['Age'])
```

Out[143]: <AxesSubplot:xlabel='Survived', ylabel='Age'>

Out[144]: <AxesSubplot:xlabel='Sex', ylabel='Age'>


```
In [145]: df[['Sex']]
Out[145]:
                   Sex
                  male
              1 female
              2
                  male
              3
                  male
              4 female
              •••
            413
                  male
            414 female
            415
                  male
            416
                  male
            417
                  male
           418 rows × 1 columns
```

In [146]: df['Sex'].replace({'male':1,'female':0},inplace=True)
 df.head()

•		
Out	11461	
out	1 1 1 0 1	•

:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	E
(0	892	0	3	Kelly, Mr. James	1	34.5	0	0	330911	7.8292	NaN	
,	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	0	47.0	1	0	363272	7.0000	NaN	
;	2	894	0	2	Myles, Mr. Thomas Francis	1	62.0	0	0	240276	9.6875	NaN	
;	3	895	0	3	Wirz, Mr. Albert	1	27.0	0	0	315154	8.6625	NaN	
	4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	0	22.0	1	1	3101298	12.2875	NaN	
4													•

```
PYTHON---NUMPY---PANDAS---MATPLOTLIB - Jupyter Notebook
In [147]: pip install yfinance
          Collecting yfinance
            Downloading yfinance-0.1.74-py2.py3-none-any.whl (27 kB)
          Requirement already satisfied: numpy>=1.15 in c:\users\hp\anaconda3\lib\site
          -packages (from yfinance) (1.22.4)
          Collecting requests>=2.26
            Downloading requests-2.28.1-py3-none-any.whl (62 kB)
          Collecting lxml>=4.5.1
            Downloading lxml-4.9.1-cp310-cp310-win_amd64.whl (3.6 MB)
          Collecting multitasking>=0.0.7
            Downloading multitasking-0.0.11-py3-none-any.whl (8.5 kB)
          Requirement already satisfied: pandas>=0.24.0 in c:\users\hp\anaconda3\lib\s
          ite-packages (from yfinance) (1.4.2)
          Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\hp\anacond
          a3\lib\site-packages (from pandas>=0.24.0->yfinance) (2.8.2)
          Requirement already satisfied: pytz>=2020.1 in c:\users\hp\anaconda3\lib\sit
          e-packages (from pandas>=0.24.0->yfinance) (2022.1)
          Requirement already satisfied: six>=1.5 in c:\users\hp\anaconda3\lib\site-pa
          ckages (from python-dateutil>=2.8.1->pandas>=0.24.0->yfinance) (1.16.0)
          Collecting idna<4,>=2.5
            Downloading idna-3.3-py3-none-any.whl (61 kB)
          Collecting urllib3<1.27,>=1.21.1
            Downloading urllib3-1.26.12-py2.py3-none-any.whl (140 kB)
          Collecting charset-normalizer<3,>=2
            Downloading charset_normalizer-2.1.1-py3-none-any.whl (39 kB)
          Requirement already satisfied: certifi>=2017.4.17 in c:\users\hp\anaconda3\l
          ib\site-packages (from requests>=2.26->yfinance) (2022.5.18.1)
          Installing collected packages: urllib3, idna, charset-normalizer, requests,
          multitasking, lxml, yfinance
          Successfully installed charset-normalizer-2.1.1 idna-3.3 lxml-4.9.1 multitas
          king-0.0.11 requests-2.28.1 urllib3-1.26.12 yfinance-0.1.74
          Note: you may need to restart the kernel to use updated packages.
In [148]: import yfinance as yf
          df=pd.read_csv("AAPL.csv")
          df.head()
Out[148]:
```

	Date	Open	High	Low	Close	Adj Close	Volume
0	1980-12-12	0.128348	0.128906	0.128348	0.128348	0.100323	469033600
1	1980-12-15	0.122210	0.122210	0.121652	0.121652	0.095089	175884800
2	1980-12-16	0.113281	0.113281	0.112723	0.112723	0.088110	105728000
3	1980-12-17	0.115513	0.116071	0.115513	0.115513	0.090291	86441600
4	1980-12-18	0 118862	0 119420	0 118862	0 118862	0.092908	73449600

```
In [152]: |type(df.index[0])
```

Out[152]: pandas._libs.tslibs.timestamps.Timestamp

In []: