Conjugate Implementation of the Jern & Kemp (2013) Model

Category members $(x_A \text{ or } x_B; \text{ more generally written as } x_C)$ are assumed to have been generated using an underlying category distribution (specifically, multivariate normal):

$$x_C \sim Normal(\mu_C, \Sigma_C)$$
 (1)

 $p(y|x_C)$ is proportional to the candidate's density under the target category's distribution. Thus, obtaining the category distribution parameters (μ_C, Σ_C) is key for generation. This document describes how we compute these variables in a conjugate model.

Computing μ_C

Assuming (μ_C, Σ_C) are Normal-Inverse-Wishart distributed (unknown mean, unknown variance):

$$\mu_C = \frac{\kappa \mu_0 + n_C \bar{x_C}}{\kappa + n_C} \tag{2}$$

where:

- μ_0 is the prior mean along p dimensions. Here we set it to the middle of the space.
- κ is a scalar hyper-parameter, roughly weighting the importance of μ_0 . κ must be greater than zero.
- n_C is the number of observations in x_C
- $\bar{x_C}$ is the sample mean along p dimensions

In the case of a populated class, μ_C ends up lying somewhere between μ_0 and $\bar{x_C}$, depending on κ_0 and n_C . In the case of an empty class, $n_C = 0$, Equation 2 reduces to $\mu_C = \mu_0$. Because we set μ_0 to the center of the space, this outcome is the same as if we had integrated over all possible μ_C .

In practice, if $n_C = 0$, the model picks a stimulus at random from all candidates (uniform probabilities).

Computing Σ_D

Unlike μ_C , Σ_C cannot be computed considering only the members of category y. Instead, Σ_C is influenced both by the distribution of x_C and by members of other categories through Σ_D .

 Σ_D is inferred based on the observed (empirical) category covariances C_y . We assume these covariances to be Wishart-distributed, and so Σ_D can be computed as:

$$\Sigma_D = \Sigma_0 + \sum_C C_C \tag{3}$$

 Σ_0 is a d-by-d prior covariance matrix. We use a d-dimensional identity matrix I_d multiplied element-wise against a free parameter, λ , controlling the amount of variance assumed by the prior:

$$\Sigma_0 = \lambda I_d \tag{4}$$

Thus, categories are assumed to have some degree of variance along each feature (specified by λ), but not are assumed to possess feature-feature correlations. Differences in the assumed variance among the features, similarly to weighting in an exemplar model, can be implemented through a small change to the equation. Specifically, the variance assumed of dimension k is given by:

$$\Sigma_{0k} = \lambda w_k d \tag{5}$$

where d is the number of dimensions, and w_k ($0 \le w_k \ge 1$, $\sum_k w_k = 1$) indicates the dimension's relative share of the total assumed variability. Under this system, evenly distributed weights result in uniformly assumed variances, equal to λ .

Computing Σ_C

Assuming (μ_C, Σ_C) are Normal-Inverse-Wishart distributed, Σ_C can be computed as:

$$\Sigma_C = \left[\Sigma_D \nu + C_C + \frac{\kappa n_C}{\kappa + n_C} (\bar{x_C} - \mu_C) (\bar{x_C} - \mu_C)^T\right] (\nu + n_C)^{-1}$$
 (6)

 κ , $\bar{x_C}$, C_C , n_C , μ_0 , are the same values as described above. ν is an additional free parameter, weighting the importance of Σ_D . ν must be greater than d-1. When x_b is empty, Equation 6 reduces to $\Sigma_C = \Sigma_D$.

Computing response probabilities $p(y|x_C)$

x are assumed to be drawn from a the distribution given by $Normal(\mu_C, \Sigma_C)$. Thus,

$$p(y) \propto Normal(y; \mu_C, \Sigma_C)$$
 (7)

In practice, p(y) is computed by first obtaining the relative density of every possible generation candidate y_i under the category distribution. The end probability is a normalization of these values:

$$p(x) = \frac{exp(\theta Normal(y; \mu_C, \Sigma_C))}{\sum_{i} exp(\theta Normal(y_i; \mu_C, \Sigma_C))}$$
(8)

where θ is a response determinism parameter.

Description of free parameters

- κ . Scalar, $\kappa > 0$. Weights the importance of μ_0 in inferring category μ_C .
- λ . Scalar, $\lambda > 0$. Sets the assumed variance in the domain prior, Σ_0 .
- ν . Scalar, $\nu > d-1$. Weights the importance of Σ_D in inferring the domain Σ_C .
- θ . Scalar, $\theta > 0$. Response determinism parameter.