

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences First Year Semester II Examination - February / March 2019

MAA 1203 – NUMERICAL ANALYSIS I

Time: Two (02) hours

Answer Four Questions including Question 01 A non-programmable calculator is permitted

01. a). Define the absolute error, normalized error and relative error.

(05 marks)

- b). The given numbers are truncated. Suppose that we are using computer with a fixed ward length of five digits. Find the round off error using chopping and symmetric rounding.
 - I. x = 72.32451

П. x = 18.63421 (05 marks)

c). Consider the equation $f(x) = x^2 + 8x + 5$. Find the third order differences using Forward difference method and step size =1.

(05 marks)

d). Approximate the derivative of $f(x) = x^2 + 2x$ at x = 3 using Central difference method and step size =1.

(10 marks)

- 02. a). I. Write down the digits used in the general base β representation.
 - Let $(a_n a_{n-1} \cdots a_0, b_1 b_2 b_3 \cdots)_{\beta}$ be the general form of base β representation. Label the radix point and discuss the use of radix point in the above system.
 - III. Write down the general form mentioned in part II with summates.

(05 marks)

b). Consider the conversion between systems α and β with $\alpha > \beta$. Briefly discuss how the division algorithm and multiplication algorithm apply in this conversion.

(05 marks)

(10 marks)

- c). Let us consider the operator fl(), which is chop any number to 5 digits and $x \oplus y = fl \{ fl(x) + fl(y) \}$
 - Given $x = \frac{1}{3}$, $y = \frac{5}{7}$, find fl(x) and fl(y). Hence evaluate $x \oplus y$. I.
 - Find the exact value of x + y.
 - III. Hence, find the absolute error and the relative error.
 - IV. At certain situations, finding the relative error is more meaningful compared to calculating other types of errors. Give reasons.

(05 marks)

d). Consider the function, $f(x) = e^x$. Find the truncation error at x = 0.2 using the first 3 terms.

Compute $f(x) = \frac{(e^x - 1)}{x}$ for the value x near 0. Explain, why should not you use the given formula for this computation. Suggest a better method for computing f(x)when x is near 0.

(05 marks)

- Let $f(x) = \sqrt{x+1}$. Compute the second order Taylor's polynomial with $x_0 = 0$. Then show that the error in using p_2 to approximate $\sqrt{x+1}$ is $|R_2(x)| = \frac{1}{16}|x|^3|\xi_x + 1|^{-5/2}$, where ξ_x is between x and x_0 . (05 marks)
- Let $f(x) = x^2 + 8x 5$. Show that $\Delta^3 f(x) = 0$. c).
 - Evaluate $\left(\frac{\Delta^2}{E}\right) f(x)$, where $f(x) = x^3$.
 - III. Prove the relation $E\nabla \equiv \nabla E \equiv \Delta$.

(10 marks)

- Which of the following are polynomial, if not explain why it is not?
 - $x^2 + 2x + 5$
 - II. $(6x^2 + 3x) \div (3x)$ III. $3x^{1/2} + 2$

(05 marks)

- Briefly explain how the bisection method can be used for solving the nonlinear 04. a). equation f(x) = 0 in the interval [a, b], where f is continuous.
 - (05 marks)
 - Sketch the Newton's method and derive the Newton's method iterative formula. · b).
 - Sketch the Secant method and briefly discuss how it proceeds.

(10 marks)

- Discuss the cases where Newton's method can fail due to bad starting point. c). I.
 - Suggest a method to overcome the cycling issue that can arise when using the Newton's method.

(10 marks)

Distinguish between interpolation and extrapolation. 05.

(05 marks)

- Find the polynomial that interpolates $f\left(\frac{1}{3}\right) = 2$, $f\left(\frac{1}{4}\right) = -1$, f(1) = 7 using I. b). system of linear equations.
 - Write down the cardinal functions and interpolate the polynomial in Lagranges's II.
 - Find the Newton's form of the above values and interpolate the polynomial in Newton form.
- c). Analyze the efficiency of above three interpolating techniques.

(05 marks)

(15 marks)