

Lab

Task 1

Create a ros2 launch file that publishes static transforms for all carkyo sensors with respect to base_footprint frame.

You should know that:

- 1- base footprint frame is on the ground between the 2 rear wheels.
- 2- <u>aps link</u> is right over the base_footprint frame with height:
 1.77m and same car heading.
- 3- <u>lidar link</u> is 1.92m in front of base_footprint & 36 cm above base_footprint.
- 4- <u>zed2 link</u> is 1.8m in front of base_footprint & 3cm right of base_footprint & 1m above base_footprint and same car heading.
- 5- mynt link is 10 cm behind base_footprint & 88 cm above base_footprint and 180 degree of car heading(sees what's behind the car).
- 6- imu link is 1.8m in front of base_footprint & 50 cm right to base_footprint with height 1m. And its heading is 90 degree clockwise of base_footprint.

Required files:

- 1- launch file named : carkyo_static_tf_launch.py
- 2- Pdf file that is generated of view_frames.py

Task 2:

Create a python node that broadcasts the transform between lidar and servo to describe the motion shown in the right video.

The lidar rotates up and down with maximum 30/-30 degree and there is no translation between the server and the lidar. The output should match the left and right images.

Required file: python file named: brodcast_lidar_transform.py

