

OFFICE FOR INTERNATIONAL STUDY PROGRAMS

REPORT ASSIGNMENT NUMERICAL METHODS

Lecturer: Mr. Lê Thái Thanh

No.	Name	Student ID			
1	Nguyễn Duy Thành	1952456			
2	Võ Duy Thành	2050019			
3	Lê Ngọc Thành	2052257			
4	Nguyễn Đô Trưởng	1752586			
Assignment – Group 8					

Consider the problem of the linear differential equation of second order

$$\begin{cases} y''(x) + \frac{2x^3 + 1}{2x + 3}y'(x) - (7x + 15)\ln(2x + 5)y(x) = -\frac{6x^3 + 5x + 7}{3x + 2}e^x, & 1 \le x \le 2\\ y(1) = 1; & y(2) = 0 \end{cases}$$

- 1. Use the Finite Difference Method to approximate the function y(x) in the closed interval [1,2] with the step size $h=\frac{1}{20}$ (n=20). Sketch the graph of y(x).
- Use the results in Question 1 and the Simpson Formula to approximate the integral

$$I = \int\limits_{1}^{2} \ y(x) \ dx$$

with the number of subintervals n is as in Question 1.

- 3. Use the results in Question 1 at the nodes $x_k = 1 + kh$, k = 0, 1, ..., n to construct a natural cubic spline $g(x) \approx y(x)$ in [1,2]. Sketch the graph of g(x).
- 4. Use the natural cubic spline in Question 3 to calculate the integrals

$$I_k = \int_{x_k}^{x_{k+1}} g_k(x) \ dx, \ k = 0, 1, \dots, n-1$$

Then calculate the sum $J = \sum_{k=0}^{n-1} I_k$ and compare with the result in Question 2. State your comment.

Name	Workload		
Nguyễn Duy Thành	Report + Formatting		
Võ Duy Thành	Matlab Code		
Lê Ngọc Thành	Report + Formatting		
Nguyễn Đô Trưởng	Formula + Report		

- + In order to solve functions and sketch graphs, we use Matlab (version may vary depends on each individual personal computer). The following code entries will show the detailed functions of each assignments that are executed in Matlab (complete program will be put in the end of report). The solving method involved many formulas and methods, which includes:
 - 1) Finite difference method
 - 2) Simpson formula
 - 3) Natural cubic spline construction
 - **Question 1**: Finite Difference Method

```
%test 1
x = 1:1/20:2;
%Functions settings and work environment
%Rearrange functions and equations
X = X;
B = (6*x.^3 + 5*x + 7)./(3*x + 2).*exp(x);
U = (2*x.^3 + 1)./(2*x + 3);
L = -(7*x + 15).*log(2*x + 5);
h = 1/20; %dentax
A = zeros(length(x));
A(1,1) = 1;
A(end,end) = 1;
          = 1;
B(1)
B(end) = 0;
 for i = 2: length(x) - 1
    A(i,i) = -2/h^2 + U(i)/h + L(i);
    A(i,i-1) = 1/h^2 - U(i)/h;
    A(i,i+1) = 1/h^2;
 end
 Y = inv(A)*B';
```

```
plot(x,Y,'.')
disp('TEST 1')
Y
```


Output:

Test 1:

N	1	2	3	4	5	6	7
X	1	1.05	1.1	1.15	1.2	1.25	1.3
Y	1	0.6128	0.3319	0.1271	-0.0236	-0.1362	-0.2222

N	8	9	10	11	12	13	14
X	1.35	1.4	1.45	1.5	1.55	1.6	1.65
Y	-0.2897	-0.3444	-0.3900	-0.4290	-0.4625	-0.4905	-0.5119

N	15	16	17	18	19	20	21
X	1.7	1.75	1.8	1.85	1.9	1.95	2
Y	-0.5245	-0.5244	-0.5057	-0.4596	-0.3735	-0.2291	0

- **Question 2**: Simpson Formula

```
%Apply Simpson formula for problem 2%
disp('Test 2')
I =
  (h/3)*( ( Y(1) + Y(end))
        + 4*( Y(2) + Y(4) + Y(6) + Y(8) + Y(12) +
        Y(14) + Y(16) + Y(18) + Y(20) )
        + 2*(Y(3) + Y(5) + Y(7) + Y(9) + Y(11) +
        Y(13) + Y(15) + Y(17) + Y(19)))
```

Test 2:

$$I = -0.1943$$

- **Question 3**: Natural Cubic Spline Construction

```
%Construct a natural cubic spline
 disp('Test 3')
 f = Spline bac 3 tu nhien(x, Y)
 %Graph sketch for y(x) in problem 1
 function f = Spline bac 3_tu_nhien(x,y)
plot(x, y, '.')
hold on
% x = input('nhap x:')
% y = input('nhap y:');
h = diff(x); % h (j) = x(j+1) -x(j)
a = y; % a(j) = y(j);
% d = diff(c)/(3*h); % d(j) = (c(j+1)-
c(j))/(3h(j))
% b = diff(a)/h - h(c+2*c)/3
%Natural Cubic Spline graph sketch for g(x)
based on calculated y(x) nodes
   = length(x);
n
    = zeros(n);
Α
A(1,1) = 1;
A(n,n) = 1;
j = 1;
for i = 2 : n-1
    A(i,i) = 2*(h(j) + h(j+1));
   A(i,i-1) = h(i);
    A(i,i+1) = h(j+1);
    j = j+1;
end
% B
v = diff(a);
B = zeros(n, 1);
for i = 2: length(B) - 1
```

```
B(i) = 3/h(i) * v(i) - 3/h(i-1) * v(i-1);
end
c = inv(A) * B;
m = diff(c);
for i = 1 : length(c) - 1
d(i) = m(i) / (3*h(i));
end
for j = 1: length(a)-1
    b(j) =
(a(j+1)-a(j))/h(j)-h(j) *(c(j+1) + 2*c(j))/3;
end
X = X;
syms x
a = double(a);
b = double(b);
c = double(c);
d = double(d);
for i = 1 : length(d)
    f(i) = a(i) + b(i)*(x - X(i)) + c(i) *(x -
X(i))^2 + d(i)*(x - X(i))^3;
    ezplot(f(i), [X(i) X(i+1)])
end
plot(X, y, '*')
axis([min(X) max(X) min(y) max(y)])
f = f.';
```

Test 3:

$$y(x) \approx g(x) =$$

-
$$k = 0$$
;[1, 1.05]

$$g(x) = \frac{3363757302804821*\left(c - \frac{21}{20}\right)^3}{17592186044416\\ + \frac{5191571870165177}{562949953421312}} - \frac{4628621916743865*x}{562949953421312}$$

-
$$k = 1$$
; [1.05, 1.1]

$$g(x) = \frac{4036508763365789 * \left(c - \frac{21}{20}\right)^2}{140737488355328} - \frac{1910660082035353 * x}{281474976710656} - \frac{7418221893101037 * \left(x - \frac{21}{20}\right)^3}{70368744177664} + \frac{348588804725565529}{45035996273704960}$$

-
$$k = 2$$
; [1.1, 1.15]

$$g(x) = \frac{452760548858869 * \left(c - \frac{11}{10}\right)^2}{35184372088832} - \frac{662952493077613 * x}{140737488355328} - \frac{6367276398399323 * \left(x - \frac{11}{10}\right)^3}{562949953421312} + \frac{62076914277476929}{11258999068426240}$$

-
$$k = 3$$
; [1.15, 1.2]

$$g(x) = \frac{6289077321982009 * \left(c - \frac{23}{20}\right)^2}{562949953421312} - \frac{7900590668497035 * x}{2251799813685248} - \frac{903001352379943 * \left(x - \frac{23}{20}\right)^3}{35184372088832} + \frac{74975954410056941}{18014398509481984}$$

-
$$k = 4$$
;[1.2, 1.25]

$$g(x) = \frac{64404282441721 * \left(c - \frac{6}{5}\right)^2}{8796093022208} - \frac{2909200194423301 * x}{1125899906842624} \\ - \frac{969406063922435 * \left(x - \frac{6}{5}\right)^3}{70368744177664} + \frac{4434580945969522131}{1441151880758558720}$$

-
$$k = 5$$
; [1.25, 1.3]

$$g(x) = \frac{2958586799563221 * \left(c - \frac{5}{4}\right)^{2}}{562949953421312} - \frac{550288526709991 * x}{281474976710656} - \frac{6198518062068221 * \left(x - \frac{5}{4}\right)^{3}}{562949953421312} + \frac{41570069005008379}{18014398509481984}$$

-
$$k = 6$$
;[1.3, 1.35]

$$g(x) = \frac{2028809090252987 * \left(c - \frac{13}{10}\right)^2}{562949953421312} - \frac{3404829035716685 * x}{2251799813685248} - \frac{8255244024345293 * \left(x - \frac{13}{10}\right)^3}{1125899906842624} + \frac{62816356851814871}{36028797018963968}$$

-
$$k = 7$$
; [1.35, 1.4]

$$g(x) = \frac{2819331576854179*\left(c - \frac{27}{20}\right)^2}{1125899906842624} - \frac{54342681199661339*x}{4503599627370496} \\ - \frac{1406151638568075*\left(x - \frac{27}{20}\right)^3}{281474976710656} + \frac{60317167317825039}{45035996273704960}$$

-
$$k = 8$$
; [1.4, 1.45]

$$g(x) = \frac{1975640593713337 * \left(c - \frac{7}{5}\right)^{2}}{1125899906842624} - \frac{8950547371695677 * x}{9007199254740992} - \frac{6881005407523147 * \left(x - \frac{7}{5}\right)^{3}}{2251799813685248} + \frac{94290110730300193}{90071992547409920}$$

-
$$k = 9$$
; [1.45, 1.5]

$$g(x) = \frac{2919130376298201 * \left(c - \frac{29}{20}\right)^2}{2251799813685248} - \frac{7576465058950701 * x}{9007199254740992} - \frac{3355973497816367 * \left(x - \frac{29}{20}\right)^3}{2251799813685248} + \frac{149453280574406179}{180143985094819840}$$

- k = 10; [1.5, 1.55]

$$g(x) = \frac{4831468703251491 * \left(c - \frac{3}{2}\right)^{2}}{4503599627370496} - \frac{6509492113365911 * x}{9007199254740992} - \frac{2399763083349491 * \left(x - \frac{3}{2}\right)^{3}}{36028797018963968} + \frac{11799435854714395}{18014398509481984}$$

- k = 11; [1.55, 1.6]

$$g(x) = \frac{149577285794959 * \left(c - \frac{31}{20}\right)^2}{140737488355328} - \frac{1386924482124223 * x}{2251799813685248} - \frac{6130795431567375 * \left(x - \frac{31}{20}\right)^3}{45035996273704960} + \frac{22165096458650603}{45035996273704960}$$

- k = 12; [1.6, 1.65]

$$g(x) = \frac{5706092460173795*\left(c - \frac{8}{5}\right)^2}{4503599627370496} - \frac{8996882735871285*x}{18014398509481984} \\ + \frac{3395640622128107*\left(x - \frac{8}{5}\right)^3}{1125899906842624} + \frac{5559347718834413}{18014398509481984}$$

-
$$k = 13$$
; [1.65, 1.7]

$$g(x) = \frac{1935869208362663*\left(c - \frac{33}{20}\right)^2}{1125899906842624} - \frac{6306968877146407*x}{18014398509481984} \\ + \frac{5573433713062965*\left(x - \frac{33}{20}\right)^3}{1125899906842624} + \frac{23696841155687191}{360287970189639680}$$

-
$$k = 14$$
; [1.7, 1.75]

$$g(x) = \frac{5543768530644217*\left(c - \frac{17}{10}\right)^2}{2251799813685248} - \frac{5081532196397171*x}{36028797018963968} \\ + \frac{4499971422083701*\left(x - \frac{17}{10}\right)^3}{562949953421312} + \frac{102582420613326093}{360287970189639680}$$

-
$$k = 15$$
; [1.75, 1.8]

$$g(x) = \frac{1030468922986805 * \left(c - \frac{7}{4}\right)^{2}}{281474976710656} + \frac{5948483735233765 * x}{36028797018963968} + \frac{5835585718105145 * \left(x - \frac{7}{4}\right)^{3}}{562949953421312} - \frac{117212077716337235}{144115188075855872}$$

-
$$k = 16$$
; [1.8, 1.85]

$$g(x) = \frac{5872551407378765 * \left(c - \frac{9}{5}\right)^{2}}{1125899906842624} + \frac{685611471692355 * x}{1125899906842624} + \frac{5762831159655167 * \left(x - \frac{9}{5}\right)^{3}}{281474976710656} - \frac{901727105219415}{562949953421312}$$

- k = 17; [1.85, 1.9]

$$g(x) = \frac{2332562525792967 * \left(c - \frac{37}{20}\right)^2}{281474976710656} + \frac{2891503094439775 * x}{2251799813685248} \\ + \frac{5280994985121585 * \left(x - \frac{37}{20}\right)^3}{562949953421312} - \frac{51074408897063849}{18014398509481984}$$

- k = 18; [1.9, 1.95]

$$g(x) = \frac{5457274299354169 * \left(c - \frac{19}{10}\right)^{2}}{562949953421312} + \frac{1228995741156947 * x}{562949953421312} + \frac{6227297107634299 * \left(x - \frac{19}{10}\right)^{3}}{70368744177664} - \frac{407260844699271463}{90071992547409920}$$

- k = 19; [1.95, 2]

$$g(x) = \frac{6465015414257667 * \left(c - \frac{39}{20}\right)^2}{281474976710656} + \frac{8593443990201691 * x}{2251799813685248} - \frac{2693756422607359 * \left(x - \frac{39}{20}\right)^3}{17592186044416} - \frac{1381847054874145451}{180143985094819840}$$

Question 4: Comparison

```
%Calculate the intergral and sum J (noted by S
  in this project)
   disp('Test 4')
   syms x
   S = 0;
   for i = 1: length(f)
       S = S + int(f(i), x, X(i), X(i+1));
   end
  %Comparision format between S and I in problem
  2
   S = double(S)
   if S > I
       disp('S>I')
   elseif S == I
       disp('S==I')
   else
       disp('S<I')</pre>
  end
 Test 4:
  S = -0.2200
  S<I at the difference of: -0.1943 - (-0.2200)
  = 0.0257
 - Source code
clc
clear all
%test 1
x = 1:1/20:2;
%Functions settings and work environment
```

%Rearrange functions and equations

X = x;

```
B = (6*x.^3 + 5*x+7)./(3*x+2).*exp(x);
U = (2*x.^3+1)./(2*x+3);
L = -(7*x+15).*log(2*x+5);
h=1/20; %dentax
A = zeros(length(x));
A(1,1) = 1;
A(end, end) = 1;
B(1) = 1;
B(end) = 0;
 for i = 2: length(x) - 1
     A(i,i) = -2/h^2 + U(i)/h + L(i);
     A(i,i-1) = 1/h^2 - U(i)/h;
     A(i,i+1) = 1/h^2;
 end
 Y = inv(A) *B';
 plot(x,Y,'.')
 disp('TEST 1')
 Υ
%Apply Simpson formula for problem 2%
 disp('Test 2')
I = (h/3) * ((Y(1) + Y(end)) + 4* (Y(2) + Y(4) + Y(6) + Y(8) + Y(12) + Y(1
4) + Y(16) + Y(18) + Y(20) + 2*(Y(3) + Y(5) + Y(7) + Y(9) + Y(11) + Y(13)
+Y(15)+Y(17)+Y(19))
%Construct a natural cubic spline
 disp('Test 3')
 f = Spline bac 3 tu nhien(x, Y)
%Calculate the intergral and sum J (noted by S in this
project)
 disp('Test 4')
 syms x
 S = 0;
 for i = 1: length(f)
     S = S + int(f(i), x, X(i), X(i+1));
 end
%Comparision format between S and I in problem 2
 S = double(S)
```

```
if S > I
     disp('S>I')
 elseif S == I
     disp('S==I')
 else
     disp('S<I')</pre>
 end
 응응
 %Graph sketch for y(x) in problem 1
 function f = Spline bac 3 tu nhien(x, y)
plot(x, y, '.')
hold on
% x = input('nhap x:')
% y = input('nhap y:');
h = diff(x) ; % h (j) = x(j+1) -x(j)
a = y; % a(j) = y(j);
% d = diff(c)/(3*h); % d(j) = (c(j+1)-c(j))/(3h(j))
% b = diff(a)/h - h(c+2*c)/3
%Natural Cubic Spline graph sketch for g(x) based on
calculated y(x) nodes
n = length(x);
A = zeros(n);
A(1,1) = 1;
A(n,n) = 1;
j = 1;
for i = 2 : n-1
    A(i,i) = 2*(h(j) +h(j+1));
    A(i,i-1) = h(j);
    A(i,i+1) = h(j+1);
    j = j + 1;
end
% B
v = diff(a);
B = zeros(n, 1);
for i = 2 : length(B) - 1
    B(i) = 3/h(i)*v(i) -3/h(i-1)*v(i-1);
end
c = inv(A) *B;
m = diff(c);
```

```
for i = 1 : length(c) - 1
d(i) = m(i) / (3*h(i));
end
for j = 1 : length(a)-1
    b(j) = (a(j+1) - a(j))/h(j) - h(j) *(c(j+1)+2*c(j))/3;
end
X = X;
syms x
a = double(a);
b = double(b);
c = double(c);
d = double(d);
for i =1 : length(d)
    f(i) = a(i) + b(i) * (x-X(i)) + c(i) * (x-X(i))
X(i))^2+d(i)*(x-X(i))^3;
    ezplot(f(i), [X(i) X(i+1)])
end
plot(X, y, '*')
axis([min(X) max(X) min(y) max(y)])
f =f.';
end
```