CÁLCULO NUMÉRICO UERJ

Zeros de funções - Método de Newton-Raphson

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

https://github.com/rodrigolrmadureira/CalculoNumericoUERJ/

Vimos que:

- **①** Condição de convergência: $|\varphi'(x)| \leq M < 1$, $\forall x \in \mathcal{I}$, onde \mathcal{I} é um intervalo centrado na raiz r.
- ② A convergência será mais rápida quanto menor for $|\varphi'(r)|$.

Método de Newton: tenta acelerar a convergência do MPF, escolhendo $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

Vamos achar uma expressão para $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

A forma geral para $\varphi(x)$ é:

$$\varphi(x) = x + A(x)f(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi(r) = r + A(r)f(r)$$

Como f(r) = 0, obtemos

 $\varphi(r) = r + A(r) \cdot 0 \Rightarrow \varphi(r) = r.$

Vimos que:

- **①** Condição de convergência: $|\varphi'(x)| \leq M < 1$, $\forall x \in \mathcal{I}$, onde \mathcal{I} é um intervalo centrado na raiz r.
- ② A convergência será mais rápida quanto menor for $|\varphi'(r)|$.

Método de Newton: tenta acelerar a convergência do MPF, escolhendo $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

Vamos achar uma expressão para $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

A forma geral para $\varphi(x)$ é:

$$\varphi(x) = x + A(x)f(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi(r) = r + A(r)f(r)$$

Vimos que:

- **○** Condição de convergência: $|\varphi'(x)| \le M < 1$, $\forall x \in \mathcal{I}$, onde \mathcal{I} é um intervalo centrado na raiz r.
- ② A convergência será mais rápida quanto menor for $|\varphi'(r)|$.

Método de Newton: tenta acelerar a convergência do MPF, escolhendo $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

Vamos achar uma expressão para $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

A forma geral para $\varphi(x)$ é:

$$\varphi(x) = x + A(x)f(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi(r) = r + A(r)f(r)$$

$$\varphi(r) = r + A(r) \cdot 0 \Rightarrow \varphi(r) = r.$$

Vimos que:

- **○** Condição de convergência: $|\varphi'(x)| \le M < 1$, $\forall x \in \mathcal{I}$, onde \mathcal{I} é um intervalo centrado na raiz r.
- ② A convergência será mais rápida quanto menor for $|\varphi'(r)|$.

Método de Newton: tenta acelerar a convergência do MPF, escolhendo $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

Vamos achar uma expressão para $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

A forma geral para $\varphi(x)$ é:

$$\varphi(x) = x + A(x)f(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi(r) = r + A(r)f(r)$$

$$\varphi(r) = r + A(r) \cdot 0 \Rightarrow \varphi(r) = r.$$

Vimos que:

- **○** Condição de convergência: $|\varphi'(x)| \le M < 1$, $\forall x \in \mathcal{I}$, onde \mathcal{I} é um intervalo centrado na raiz r.
- ② A convergência será mais rápida quanto menor for $|\varphi'(r)|$.

Método de Newton: tenta acelerar a convergência do MPF, escolhendo $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

Vamos achar uma expressão para $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

A forma geral para $\varphi(x)$ é:

$$\varphi(x) = x + A(x)f(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi(r) = r + A(r)f(r).$$

$$\varphi(r) = r + A(r) \cdot 0 \Rightarrow \varphi(r) = r$$

Vimos que:

- **○** Condição de convergência: $|\varphi'(x)| \le M < 1$, $\forall x \in \mathcal{I}$, onde \mathcal{I} é um intervalo centrado na raiz r.
- ② A convergência será mais rápida quanto menor for $|\varphi'(r)|$.

Método de Newton: tenta acelerar a convergência do MPF, escolhendo $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

Vamos achar uma expressão para $\varphi(x)$ tal que $|\varphi'(r)| = 0$.

A forma geral para $\varphi(x)$ é:

$$\varphi(x) = x + A(x)f(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi(r) = r + A(r)f(r).$$

$$\varphi(r) = r + A(r) \cdot 0 \Rightarrow \varphi(r) = r.$$

Derivando $\varphi(x)$, obtemos:

$$\varphi'(x) = 1 + A'(x)f(x) + A(x)f'(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi'(r) = 1 + A'(r)f(r) + A(r)f'(r).$$

Como f(r) = 0, obtemos:

$$\varphi'(r) = 1 + A'(r) \cdot 0 + A(r)f'(r) \Rightarrow \varphi'(r) = 1 + A(r)f'(r)$$

$$0 = 1 + A(r)f'(r) \Rightarrow A(r) = -\frac{1}{f'(r)} \sum_{r=x} A(x) = -\frac{1}{f'(x)}$$

Derivando $\varphi(x)$, obtemos:

$$\varphi'(x) = 1 + A'(x)f(x) + A(x)f'(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi'(r) = 1 + A'(r)f(r) + A(r)f'(r).$$

Como f(r) = 0, obtemos:

$$\varphi'(r) = 1 + A'(r) \cdot 0 + A(r)f'(r) \Rightarrow \varphi'(r) = 1 + A(r)f'(r)$$

$$0 = 1 + A(r)f'(r) \Rightarrow A(r) = -\frac{1}{f'(r)} \underset{r = x}{\Longrightarrow} A(x) = -\frac{1}{f'(x)}$$

Derivando $\varphi(x)$, obtemos:

$$\varphi'(x) = 1 + A'(x)f(x) + A(x)f'(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi'(r) = 1 + A'(r)f(r) + A(r)f'(r).$$

Como f(r) = 0, obtemos:

$$\varphi'(r) = 1 + A'(r) \cdot 0 + A(r)f'(r) \Rightarrow \varphi'(r) = 1 + A(r)f'(r)$$

$$0 = 1 + A(r)f'(r) \Rightarrow A(r) = -\frac{1}{f'(r)} \underset{r=x}{\Longrightarrow} A(x) = -\frac{1}{f'(x)}$$

Derivando $\varphi(x)$, obtemos:

$$\varphi'(x) = 1 + A'(x)f(x) + A(x)f'(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi'(r) = 1 + A'(r)f(r) + A(r)f'(r).$$

Como f(r) = 0, obtemos:

$$\varphi'(r) = 1 + A'(r) \cdot 0 + A(r)f'(r) \Rightarrow \varphi'(r) = 1 + A(r)f'(r)$$

$$0=1+A(r)f'(r)\Rightarrow A(r)=-\frac{1}{f'(r)}\Rightarrow A(x)=-\frac{1}{f'(x)}.$$

Derivando $\varphi(x)$, obtemos:

$$\varphi'(x) = 1 + A'(x)f(x) + A(x)f'(x)$$
, onde $A(r) \neq 0$.

Tomando x = r, temos que:

$$\varphi'(r) = 1 + A'(r)f(r) + A(r)f'(r).$$

Como f(r) = 0, obtemos:

$$\varphi'(r) = 1 + A'(r) \cdot 0 + A(r)f'(r) \Rightarrow \varphi'(r) = 1 + A(r)f'(r)$$

$$0=1+A(r)f'(r)\Rightarrow A(r)=-\frac{1}{f'(r)}\underset{r\to x}{\Longrightarrow}A(x)=-\frac{1}{f'(x)}.$$

Voltando à forma geral para $\varphi(x)$:

$$\varphi(x) = x + A(x)f(x)$$
, onde $A(r) \neq 0$.

Substituindo A(x) = -1/f(x), obtemos:

$$\varphi(x) = x - \left(\frac{1}{f'(x)}\right)f(x) \Rightarrow \varphi(x) = x - \frac{f(x)}{f'(x)}.$$

Método de Newton: é um caso particular do MPF onde:

Dada
$$f(x)$$
, a função de iteração $\varphi(x) = x - \frac{f(x)}{f'(x)}$ será tal que $\varphi'(r) = 0$.

Verificação: Derivando $\varphi(x)$, obtemos:

$$\varphi'(x) = 1 - \frac{d}{dx} \left[\frac{f(x)}{f'(x)} \right] = 1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}.$$

Se f(r) = 0, então $\varphi'(r) = 0$.

Voltando à forma geral para $\varphi(x)$:

$$\varphi(x) = x + A(x)f(x)$$
, onde $A(r) \neq 0$.

Substituindo A(x) = -1/f(x), obtemos:

$$\varphi(x) = x - \left(\frac{1}{f'(x)}\right)f(x) \Rightarrow \varphi(x) = x - \frac{f(x)}{f'(x)}.$$

Método de Newton: é um caso particular do MPF onde:

Dada
$$f(x)$$
, a função de iteração $\varphi(x) = x - \frac{f(x)}{f'(x)}$ será tal que $\varphi'(r) = 0$.

Verificação: Derivando $\varphi(x)$, obtemos

$$\varphi'(x) = 1 - \frac{d}{dx} \left[\frac{f(x)}{f'(x)} \right] = 1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}$$

Se f(r) = 0, então $\varphi'(r) = 0$.

Voltando à forma geral para $\varphi(x)$:

$$\varphi(x) = x + A(x)f(x)$$
, onde $A(r) \neq 0$.

Substituindo A(x) = -1/f(x), obtemos:

$$\varphi(x) = x - \left(\frac{1}{f'(x)}\right)f(x) \Rightarrow \varphi(x) = x - \frac{f(x)}{f'(x)}.$$

Método de Newton: é um caso particular do MPF onde:

Dada
$$f(x)$$
, a função de iteração $\varphi(x) = x - \frac{f(x)}{f'(x)}$ será tal que $\varphi'(r) = 0$.

Verificação: Derivando $\varphi(x)$, obtemos:

$$\varphi'(x) = 1 - \frac{d}{dx} \left[\frac{f(x)}{f'(x)} \right] = 1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}.$$

Se f(r)=0, então arphi'(r)=0.

Voltando à forma geral para $\varphi(x)$:

$$\varphi(x) = x + A(x)f(x)$$
, onde $A(r) \neq 0$.

Substituindo A(x) = -1/f(x), obtemos:

$$\varphi(x) = x - \left(\frac{1}{f'(x)}\right)f(x) \Rightarrow \varphi(x) = x - \frac{f(x)}{f'(x)}.$$

Método de Newton: é um caso particular do MPF onde:

Dada
$$f(x)$$
, a função de iteração $\varphi(x) = x - \frac{f(x)}{f'(x)}$ será tal que $\varphi'(r) = 0$.

Verificação: Derivando $\varphi(x)$, obtemos:

$$\varphi'(x) = 1 - \frac{d}{dx} \left[\frac{f(x)}{f'(x)} \right] = 1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}.$$

Se f(r) = 0, então $\varphi'(r) = 0$.

No ponto
$$(x_0, f(x_0))$$
:

$$f'(x_0) = \frac{f(x_0) - 0}{x_0 - x_1} = \frac{f(x_0)}{x_0 - x_1} \Rightarrow (x_0 - x_1)f'(x_0) = f(x_0)$$

No ponto
$$(x_0, f(x_0))$$
:

$$f'(x_0) = \frac{f(x_0) - 0}{x_0 - x_1} = \frac{f(x_0)}{x_0 - x_1} \Rightarrow (x_0 - x_1)f'(x_0) = f(x_0)$$

As aproximações $x_0, x_1, x_2, x_3, \dots$ cada vez mais se aproximam de r.

No ponto
$$(x_k, f(x_k))$$
: $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, para $k = 0, 1, 2, ...$

As aproximações $x_0, x_1, x_2, x_3, \dots$ cada vez mais se aproximam de r.

No ponto
$$(x_k, f(x_k))$$
: $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, para $k = 0, 1, 2, ...$

O Método de Newton-Raphson também é conhecido como o método das tangentes.

Obtendo o Método de Newton via retas tangentes

Portanto, a fórmula iterativa é:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
, onde $f'(x_k) \neq 0$, para todo $k = 0, 1, 2, ...$

Note que tomando:

$$\varphi(x_k) = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, ...,$$

o Método de Newton é um caso particular do Método do Ponto Fixo:

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, 2, \dots,$$

onde a ordem de convergência **para raízes simples** é quadrática (p = 2).

Obs.: Veremos em breve que **para raízes múltiplas**, a ordem cai para linear (p = 1).

Obtendo o Método de Newton via retas tangentes

Portanto, a fórmula iterativa é:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
, onde $f'(x_k) \neq 0$, para todo $k = 0, 1, 2, ...$

Note que tomando:

$$\varphi(x_k) = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, ...,$$

o Método de Newton é um caso particular do Método do Ponto Fixo:

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, 2, \ldots,$$

onde a ordem de convergência **para raízes simples** é quadrática (p = 2).

Obs.: Veremos em breve que **para raízes múltiplas**, a ordem cai para linear (p = 1).

Dê uma estimativa para a raiz positiva de $f(x) = x^2 + x - 6$ usando o Método de Newton.

$$f(0) = 0^2 + 0 - 6 = -6 < 0$$

 $f(1) = 1^2 + 1 - 6 = -4 < 0$

$$f(1) = 1^2 + 1 - 6 = -4 < 0$$

$$f(3) = 3^2 + 3 - 6 = 6 > 0$$

Dê uma estimativa para a raiz positiva de $f(x) = x^2 + x - 6$ usando o Método de Newton.

Usando Bhaskara ou "olhômetro", obtemos r=2.

$$f(0) = 0^2 + 0 - 6 = -6 < 0$$

$$f(1) = 1^2 + 1 - 6 = -4 < 0$$

$$f(3) = 3^2 + 3 - 6 = 6 > 0$$

Dê uma estimativa para a raiz positiva de $f(x) = x^2 + x - 6$ usando o Método de Newton.

Usando Bhaskara ou "olhômetro", obtemos r = 2.

$$f(0) = 0^2 + 0 - 6 = -6 < 0$$

$$f(1) = 1^2 + 1 - 6 = -4 < 0$$

$$f(3) = 3^2 + 3 - 6 = 6 > 0$$

Dê uma estimativa para a raiz positiva de $f(x) = x^2 + x - 6$ usando o Método de Newton.

Usando Bhaskara ou "olhômetro", obtemos r = 2.

$$f(0) = 0^2 + 0 - 6 = -6 < 0$$

$$f(1) = 1^2 + 1 - 6 = -4 < 0$$

Dê uma estimativa para a raiz positiva de $f(x) = x^2 + x - 6$ usando o Método de Newton.

Usando Bhaskara ou "olhômetro", obtemos r = 2.

$$f(0) = 0^2 + 0 - 6 = -6 < 0$$

$$f(1) = 1^2 + 1 - 6 = -4 < 0$$

$$f(3) = 3^2 + 3 - 6 = 6 > 0$$

Dê uma estimativa para a raiz positiva de $f(x) = x^2 + x - 6$ usando o Método de Newton-Raphson.

Usando Bhaskara ou "olhômetro", obtemos r = 2.

Análise do sinal: usando o TVI, testo f(x) para alguns valores de x:

$$f(0) = 0^2 + 0 - 6 = -6 < 0$$

$$f(1) = 1^2 + 1 - 6 = -4 < 0$$

$$f(3) = 3^2 + 3 - 6 = 6 > 0 \Rightarrow$$
 Existe uma raiz $r \in (1,3)$.

A fórmula iterativa é:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots,$$

onde
$$f(x_k) = x_k^2 + x_k - 6$$
, $f'(x_k) = 2x_k + 1$.

Logo,

$$x_{k+1} = x_k - \frac{x_k^2 + x_k - 6}{2x_k + 1} = \frac{x_k^2 + 6}{2x_k + 1}, \quad k = 0, 1, 2, \dots$$

Dê uma estimativa para a raiz positiva de $f(x) = x^2 + x - 6$ usando o Método de Newton-Raphson.

Usando Bhaskara ou "olhômetro", obtemos r = 2.

Análise do sinal: usando o TVI, testo f(x) para alguns valores de x:

$$f(0) = 0^2 + 0 - 6 = -6 < 0$$

$$f(1) = 1^2 + 1 - 6 = -4 < 0$$

$$f(3) = 3^2 + 3 - 6 = 6 > 0 \Rightarrow$$
 Existe uma raiz $r \in (1,3)$.

A fórmula iterativa é:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots,$$

onde
$$f(x_k) = x_k^2 + x_k - 6$$
, $f'(x_k) = 2x_k + 1$.

Logo,

$$x_{k+1} = x_k - \frac{x_k^2 + x_k - 6}{2x_k + 1} = \frac{x_k^2 + 6}{2x_k + 1}, \quad k = 0, 1, 2, \dots$$

Dê uma estimativa para a raiz positiva de $f(x) = x^2 + x - 6$ usando o Método de Newton-Raphson.

Usando Bhaskara ou "olhômetro", obtemos r = 2.

Análise do sinal: usando o TVI, testo f(x) para alguns valores de x:

$$f(0) = 0^2 + 0 - 6 = -6 < 0$$

$$f(1) = 1^2 + 1 - 6 = -4 < 0$$

$$f(3) = 3^2 + 3 - 6 = 6 > 0 \Rightarrow$$
 Existe uma raiz $r \in (1,3)$.

A fórmula iterativa é:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots,$$

onde
$$f(x_k) = x_k^2 + x_k - 6$$
, $f'(x_k) = 2x_k + 1$.

Logo

$$x_{k+1} = x_k - \frac{x_k^2 + x_k - 6}{2x_k + 1} = \frac{x_k^2 + 6}{2x_k + 1}, \quad k = 0, 1, 2, \dots$$

Dê uma estimativa para a raiz positiva de $f(x) = x^2 + x - 6$ usando o Método de Newton-Raphson.

Usando Bhaskara ou "olhômetro", obtemos r = 2.

Análise do sinal: usando o TVI, testo f(x) para alguns valores de x:

$$f(0) = 0^2 + 0 - 6 = -6 < 0$$

$$f(1) = 1^2 + 1 - 6 = -4 < 0$$

$$f(3) = 3^2 + 3 - 6 = 6 > 0 \Rightarrow$$
 Existe uma raiz $r \in (1,3)$.

A fórmula iterativa é:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots,$$

onde
$$f(x_k) = x_k^2 + x_k - 6$$
, $f'(x_k) = 2x_k + 1$.

Logo,

$$x_{k+1} = x_k - \frac{x_k^2 + x_k - 6}{2x_{k+1}} = \frac{x_k^2 + 6}{2x_{k+1}}, \quad k = 0, 1, 2, \dots$$

Chute inicial: $x_0 = 1.5$.

$$x_1 = 1.5 - \frac{f(1.5)}{f'(1.5)} = \frac{(1.5)^2 + 6}{2(1.5) + 1}$$

$$(x_k^2+6)\div(2x_k+1),$$

Chute inicial: $x_0 = 1.5$.

Usando a calculadora científica: Digite 1.5 e aperte a sequência de botões:

$$x_1 = 1.5 - \frac{f(1.5)}{f'(1.5)} = \frac{(1.5)^2 + 6}{2(1.5) + 1}$$

$$(x_k^2+6)\div(2x_k+1),$$

Chute inicial: $x_0 = 1.5$.

Usando a calculadora científica: Digite 1.5 e aperte a sequência de botões:

Próxima iteração:

$$x_1 = 1.5 - \frac{f(1.5)}{f'(1.5)} = \frac{(1.5)^2 + 6}{2(1.5) + 1}$$

Na calculadora, para escrever a expressão iterativa

$$(x_k^2+6)\div(2x_k+1),$$

o botão Ans faz o papel da variável x_k , para k = 0, 1, 2, ...

Então, aperte a sequência de botões:

No display da calculadora aparece: $(Ans^2 + 6) \div (2Ans + 1)$.

Chute inicial: $x_0 = 1.5$.

Usando a calculadora científica: Digite 1.5 e aperte a sequência de botões:

Próxima iteração:

$$x_1 = 1.5 - \frac{f(1.5)}{f'(1.5)} = \frac{(1.5)^2 + 6}{2(1.5) + 1}$$

Na calculadora, para escrever a expressão iterativa

$$(x_k^2+6)\div(2x_k+1),$$

o botão Ans faz o papel da variável x_k , para k = 0, 1, 2, ...

Então, aperte a sequência de botões:

No display da calculadora aparece: (*Ans*² + 6) ÷ (2*Ans* + 1). O resultado é: x1 = 2.0625.

Chute inicial: $x_0 = 1.5$.

Usando a calculadora científica: Digite 1.5 e aperte a sequência de botões:

Próxima iteração:

$$x_1 = 1.5 - \frac{f(1.5)}{f'(1.5)} = \frac{(1.5)^2 + 6}{2(1.5) + 1}$$

Na calculadora, para escrever a expressão iterativa

$$(x_k^2+6)\div(2x_k+1),$$

o botão Ans faz o papel da variável x_k , para k = 0, 1, 2, ...

Então, aperte a sequência de botões:

No display da calculadora aparece: $(Ans^2 + 6) \div (2Ans + 1)$.

O resultado é: $x_1 = 2.0625$

Chute inicial: $x_0 = 1.5$.

Usando a calculadora científica: Digite 1.5 e aperte a sequência de botões:

Próxima iteração:

$$x_1 = 1.5 - \frac{f(1.5)}{f'(1.5)} = \frac{(1.5)^2 + 6}{2(1.5) + 1}$$

Na calculadora, para escrever a expressão iterativa

$$(x_k^2+6)\div(2x_k+1),$$

o botão Ans faz o papel da variável x_k , para k = 0, 1, 2, ...

Então, aperte a sequência de botões:

No display da calculadora aparece:
$$(Ans^2 + 6) \div (2Ans + 1)$$
.

No display da calculadora aparece: $(Ans^2 + 6) \div (2Ans + 1)$ O resultado é: $x_1 = 2.0625$.

A partir de agora, aperte sempre o botão = para obter os resultados das próximas iterações:

```
Apertando =, a nova aproximação é: x_2 = 2.000762195;
```

Apertando =, a nova aproximação é: $x_3 = 2.000000116$;

Apertando =, a nova aproximação é: $x_4 = 2$, que é a raiz r

Verificando os erros absolutos entre duas iterações consecutivas:

$$x_0 = 1.5$$

 $x_1 = 2.0625 \Rightarrow |x_1 - x_0| = 0.5625.$

 $x_2 = 2.000762195 \Rightarrow |x_2 - x_1| = 0.06137805.$

 $x_3 = 2.000000116 \Rightarrow |x_3 - x_2| = 0.000762079$

 $x_4 = 2 \Rightarrow |x_4 - x_3| = 0.000000116$

Se a tolerância for $\epsilon \le 10^{-4}$, a $r \approx x_4 = 2$, pois $|x_4 - x_3| \le 10^{-4}$ e paro com as iteracões.

A partir de agora, aperte sempre o botão = para obter os resultados das próximas iterações:

Apertando =, a nova aproximação é: $x_2 = 2.000762195$;

Apertando =, a nova aproximação é: $x_3 = 2.000000116$;

Apertando =, a nova aproximação é: $x_4 = 2$, que é a raiz r.

Verificando os erros absolutos entre duas iterações consecutivas

$$x_0 = 1.5$$

 $x_1 = 2.0625 \Rightarrow |x_1 - x_0| = 0.5625.$

 $x_2 = 2.000762195 \Rightarrow |x_2 - x_1| = 0.06137805.$

 $x_3 = 2.000000116 \Rightarrow |x_3 - x_2| = 0.000762079$

 $x_4 = 2 \Rightarrow |x_4 - x_3| = 0.000000116$

Se a tolerância for $\epsilon \le 10^{-4}$, a $r \approx x_4 = 2$, pois $|x_4 - x_3| \le 10^{-4}$ e paro comas iterações.

A partir de agora, aperte sempre o botão = para obter os resultados das próximas iterações:

Apertando =, a nova aproximação é: $x_2 = 2.000762195$;

Apertando =, a nova aproximação é: $x_3 = 2.000000116$;

Apertando = , a nova aproximação e: $x_4 = 2$, que e a raiz r. Verificando os erros absolutos entre duas iterações consecutivas

 $x_0 = 1.5$

 $x_1 = 2.0625 \Rightarrow |x_1 - x_0| = 0.5625.$

 $x_2 = 2.000762195 \Rightarrow |x_2 - x_1| = 0.06137805$

 $x_3 = 2.000000116 \Rightarrow |x_3 - x_2| = 0.000762079$

 $x_4 = 2 \Rightarrow |x_4 - x_3| = 0.000000116.$

Se a tolerância for $\epsilon \le 10^{-4}$, a $r \approx x_4 = 2$, pois $|x_4 - x_3| \le 10^{-4}$ e paro com as iterações.

A partir de agora, aperte sempre o botão = para obter os resultados das próximas iterações:

Apertando =, a nova aproximação é: $x_2 = 2.000762195$;

Apertando = , a nova aproximação é: $x_3 = 2.000000116$;

Apertando =, a nova aproximação é: $x_4 = 2$, que é a raiz r.

Verificando os erros absolutos entre duas iterações consecutivas:

$$x_0 = 1.5$$

 $x_1 = 2.0625 \Rightarrow |x_1 - x_0| = 0.5625.$

 $x_2 = 2.000762195 \Rightarrow |x_2 - x_1| = 0.06137805.$

 $x_3 = 2.000000116 \Rightarrow |x_3 - x_2| = 0.000762079$

 $x_4 = 2 \Rightarrow |x_4 - x_3| = 0.000000116.$

Se a tolerância for $\epsilon \le 10^{-4}$, a $r \approx x_4 = 2$, pois $|x_4 - x_3| \le 10^{-4}$ e paro commas iterações.

A partir de agora, aperte sempre o botão = para obter os resultados das próximas iterações:

Apertando =, a nova aproximação é: $x_2 = 2.000762195$;

Apertando = , a nova aproximação é: $x_3 = 2.000000116$;

Apertando =, a nova aproximação é: $x_4 = 2$, que é a raiz r.

Verificando os erros absolutos entre duas iterações consecutivas:

$$x_0 = 1.5$$

$$x_1 = 2.0625 \Rightarrow |x_1 - x_0| = 0.5625.$$

$$x_2 = 2.000762195 \Rightarrow |x_2 - x_1| = 0.06137805.$$

$$x_3 = 2.000000116 \Rightarrow |x_3 - x_2| = 0.000762079$$

 $x_4 = 2 \Rightarrow |x_4 - x_3| = 0.000000116$

Se a tolerância for $\epsilon \le 10^{-4}$, a $r \approx x_4 = 2$, pois $|x_4 - x_3| \le 10^{-4}$ e paro com as iterações.

A partir de agora, aperte sempre o botão = para obter os resultados das próximas iterações:

Apertando =, a nova aproximação é: $x_2 = 2.000762195$;

Apertando = , a nova aproximação é: $x_3 = 2.000000116$;

Apertando =, a nova aproximação é: $x_4 = 2$, que é a raiz r.

Verificando os erros absolutos entre duas iterações consecutivas:

$$x_0 = 1.5$$

$$x_1 = 2.0625 \Rightarrow |x_1 - x_0| = 0.5625.$$

$$x_2 = 2.000762195 \Rightarrow |x_2 - x_1| = 0.06137805.$$

$$x_3 = 2.000000116 \Rightarrow |x_3 - x_2| = 0.000762079.$$

$$x_4 = 2 \Rightarrow |x_4 - x_3| = 0.000000116$$

Se a tolerância for $\epsilon \le 10^{-4}$, a $r \approx x_4 = 2$, pois $|x_4 - x_3| \le 10^{-4}$ e paro com as iterações.

A partir de agora, aperte sempre o botão = para obter os resultados das próximas iterações:

Apertando =, a nova aproximação é: $x_2 = 2.000762195$;

Apertando = , a nova aproximação é: $x_3 = 2.000000116$;

Apertando =, a nova aproximação é: $x_4 = 2$, que é a raiz r.

Verificando os erros absolutos entre duas iterações consecutivas:

$$x_0 = 1.5$$

$$x_1 = 2.0625 \Rightarrow |x_1 - x_0| = 0.5625.$$

$$x_2 = 2.000762195 \Rightarrow |x_2 - x_1| = 0.06137805.$$

$$x_3 = 2.000000116 \Rightarrow |x_3 - x_2| = 0.000762079.$$

$$x_4 = 2 \Rightarrow |x_4 - x_3| = 0.000000116.$$

Se a tolerância for $\epsilon \le 10^{-4}$, a $r \approx x_4 = 2$, pois $|x_4 - x_3| \le 10^{-4}$ e paro com as iterações.

A partir de agora, aperte sempre o botão = para obter os resultados das próximas iterações:

Apertando =, a nova aproximação é: $x_2 = 2.000762195$;

Apertando = , a nova aproximação é: $x_3 = 2.000000116$;

Apertando =, a nova aproximação é: $x_4 = 2$, que é a raiz r.

Verificando os erros absolutos entre duas iterações consecutivas:

$$x_0 = 1.5$$

$$x_1 = 2.0625 \Rightarrow |x_1 - x_0| = 0.5625.$$

$$x_2 = 2.000762195 \Rightarrow |x_2 - x_1| = 0.06137805.$$

$$x_3 = 2.000000116 \Rightarrow |x_3 - x_2| = 0.000762079.$$

$$x_4 = 2 \Rightarrow |x_4 - x_3| = 0.000000116.$$

Se a tolerância for $\epsilon \leq 10^{-4}$, a $r \approx x_4 = 2$, pois $|x_4 - x_3| \leq 10^{-4}$ e paro com as iterações.

A partir de agora, aperte sempre o botão = para obter os resultados das próximas iterações:

Apertando =, a nova aproximação é: $x_2 = 2.000762195$;

Apertando = , a nova aproximação é: $x_3 = 2.000000116$;

Apertando =, a nova aproximação é: $x_4 = 2$, que é a raiz r.

Verificando os erros absolutos entre duas iterações consecutivas:

$$x_0 = 1.5$$

$$x_1 = 2.0625 \Rightarrow |x_1 - x_0| = 0.5625.$$

$$x_2 = 2.000762195 \Rightarrow |x_2 - x_1| = 0.06137805.$$

$$x_3 = 2.000000116 \Rightarrow |x_3 - x_2| = 0.000762079.$$

$$x_4 = 2 \Rightarrow |x_4 - x_3| = 0.000000116.$$

Se a tolerância for $\epsilon \le 10^{-4}$, a $r \approx x_4 = 2$, pois $|x_4 - x_3| \le 10^{-4}$ e paro com as iterações.

A partir de agora, aperte sempre o botão = para obter os resultados das próximas iterações:

Apertando =, a nova aproximação é: $x_2 = 2.000762195$;

Apertando = , a nova aproximação é: $x_3 = 2.000000116$;

Apertando =, a nova aproximação é: $x_4 = 2$, que é a raiz r.

Verificando os erros absolutos entre duas iterações consecutivas:

$$x_0 = 1.5$$

$$x_1 = 2.0625 \Rightarrow |x_1 - x_0| = 0.5625.$$

$$x_2 = 2.000762195 \Rightarrow |x_2 - x_1| = 0.06137805.$$

$$x_3 = 2.000000116 \Rightarrow |x_3 - x_2| = 0.000762079.$$

$$x_4 = 2 \Rightarrow |x_4 - x_3| = 0.000000116.$$

Se a tolerância for $\epsilon \le 10^{-4}$, a $r \approx x_4 = 2$, pois $|x_4 - x_3| \le 10^{-4}$ e paro com as iterações.

Se a tolerância for $\epsilon \le 10^{-3}$, a $r \approx x_3 = 2.000000116$, pois $|x_3 - x_2| \le 10^{-2}$ e paro com as iterações.

19 de setembro de 2025

Determine, usando o Método de Newton-Raphson, a menor raiz positiva da equação $4\cos(x) - e^x = 0$ com tolerância de erro $\epsilon \le 10^{-4}$.

1. Intervalo para a raiz: abordagem gráfica

$$4\cos(x) - e^x = 0 \Rightarrow 4\cos(x) = e^x \Rightarrow r \in (0, \frac{\pi}{2})$$

Determine, usando o Método de Newton-Raphson, a menor raiz positiva da equação $4\cos(x) - e^x = 0$ com tolerância de erro $\epsilon \le 10^{-4}$.

1. Intervalo para a raiz: abordagem gráfica

$$4\cos(x) - e^x = 0 \Rightarrow 4\cos(x) = e^x \Rightarrow r \in (0, \frac{\pi}{2})$$

1. Intervalo para a raiz: abordagem do TVI

Testando f(x) para alguns valores positivos de x:

$$f(0) = 4\cos(0) - e^0 = 3 > 0;$$

 $f(1) = 4\cos(1) - e^1 \approx -0.5571 < 0 \Rightarrow r \in (0, 1).$

Iterações:

k	X _k	$ x_k-x_{k-1} $
0	1.0000	_
1	0.9084	$0.0916 > \epsilon$
2	0.9048	$0.0036 > \epsilon$
3	0.9048	$0 \le \epsilon$ (OK!)

Logo, a menor raiz positiva com $\epsilon \le 10^{-4}$ é $r \approx 0.9048$.

Ordem de convergência

Ordem de convergência p

Seja $e_k = x_k - r$ o erro cometido ao aproximar x_k da raiz r. Uma sequência $\{x_k\}$ de iterações converge para r com ordem de convergência $p \ge 1$ se

$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^p}=C,$$

para alguma constante C > 0. Sendo 0 < C < 1, diz-se que:

- Se p = 1: convergência *linear*
- Se 1 super-linear
- Se p = 2: convergência quadrática