Internal Adjunctions and Monads

December 2, 2023

Create	tags:
--------	-------

https://www.google.com/search?q=mate+of+an+adjunction
Moreover, by uniqueness of adjoints (Internal Adjunctions and Monads Item 2 of Proposition 1.2.1.4), this implies also that $S = f^{-1}$.
define bicategory $Adj(C)$
walking monad
proposition: 2-functors preserve unitors and associators
$https://ncatlab.org/nlab/show/2-category+of+adjunctions. \ Is there a 3-category too?$
https://ncatlab.org/nlab/show/free+monad
https://ncatlab.org/nlab/show/CatAdj
https://ncatlab.org/nlab/show/Adj
$Adj(Adj(\mathcal{C}))$

Contents

1	1 Internal Adjunctions		2
	1.1	The Walking Adjunction	2
	1.2	Internal Adjunctions	4
	1.3	Internal Adjoint Equivalences	10
	1.4	Mates	12

2	Mo	rphisms of Internal Adjunctions	15
	2.1	Lax Morphisms of Internal Adjunctions	15
	2.2	Oplax Morphisms of Internal Adjunctions	16
	2.3	Strong Morphisms of Internal Adjunctions	17
	2.4	Strict Morphisms of Internal Adjunctions	18
3	2-N	Iorphisms Between Morphisms of Internal Adjunctions.	18
	3.1	2-Morphisms Between Lax Morphisms of Internal Adjunctions.	18
	3.2	2-Morphisms Between Oplax Morphisms of Internal Adjunc-	
tic	ns		19
	3.3	2-Morphisms Between Strong Morphisms of Internal Adjunc-	
tic	ns		20
	3.4	2-Morphisms Between Strict Morphisms of Internal Adjunc-	
tic	ns		20
4	Bic	ategories of Internal Adjunctions in a Bicategory	2 1
A	Oth	ner Chapters	2 1
1		nternal Adjunctions	

The Walking Adjunction

Definition 1.1.1.1. The walking adjunction is the bicategory Adj freely generated by¹

- Objects. A pair of objects A and B;
- Morphisms. A pair of morphisms

$$L: A \to B,$$

 $R: B \to A;$

• 2-Morphisms. A pair of 2-morphisms

$$\eta: \mathrm{id}_A \to L \circ R,$$
 $\epsilon: R \circ L \to \mathrm{id}_B;$

 $^{^1\}mathrm{See}~[\overline{\mathrm{SS86}}]$ for an explicit description of the 2-category (as opposed to a bicategory) version of Adj in terms of finite ordinals, similar to the description of the 2-category version of the walking monad (??) as a subcategory of Δ .

subject to the equalities

of pasting diagrams, which are equivalent to the following conditions:

1. The Left Triangle Identity. The diagram

commutes.

2. The Right Triangle Identity. The diagram

1.2 Internal Adjunctions

Let C be a bicategory.

Definition 1.2.1.1. An internal adjunction in $C^{2,3}$ is a 2-functor $Adj \rightarrow C$.

Remark 1.2.1.2. In detail, an internal adjunction in C consists of

- Objects. A pair of objects A and B of C;
- Morphisms. A pair of morphisms

$$L: A \to B,$$

 $R: B \to A$

of C;

• 2-Morphisms. A pair of 2-morphisms

$$\eta: \mathrm{id}_A \to L \circ R,$$
 $\epsilon: R \circ L \to \mathrm{id}_B$

of C;

subject to the equalities

 $^{^2\}mathit{Further\ Terminology:}$ Also called an adjunction internal to C.

³Further Terminology: In this situation, we also call (g, f) an adjoint pair, f the left adjoint of the pair, g the right adjoint of the pair, η the unit of the adjunction, and ϵ

of pasting diagrams in C, which are equivalent to the following conditions:⁴

1. The Left Triangle Identity. The diagram

commutes.

2. The Right Triangle Identity. The diagram

Example 1.2.1.3. Here are some examples of internal adjunctions.

1. Internal Adjunctions in Cats₂. The internal adjunctions in the 2-category Cats₂ of categories, functors, and natural transformations are precisely the adjunctions of Categories, ??.

 $^{^4}$ When C is a 2-category, these diagrams take the following form:

the **counit** of the adjunction.

- 2. Internal Adjunctions in **Rel**. The internal adjunctions in **Rel** are precisely the relations of the form $Gr(f) \dashv f^{-1}$ with f a function; see Relations, Item 4 of Proposition 2.5.1.1.
- 3. Internal Adjunctions in Span. The internal adjunctions in Span are precisely the spans of the form

with ϕ an isomorphism; see Spans, Item 4 of Proposition 2.5.1.1.

Proposition 1.2.1.4. Let C be a bicategory.

- 1. Duality. Let (f, g, η, ϵ) be an internal adjunction in C.
 - (a) The quadruple (g, f, η, ϵ) is an internal adjunction in C^{op} .
 - (b) The quadruple (g, f, ϵ, η) is an internal adjunction in C^{co} .
 - (c) The quadruple (f, g, η, ϵ) is an internal adjunction in C^{coop} .
- 2. Uniqueness of Adjoints. Let (f, g, η, ϵ) and $(f, g', \eta', \epsilon')$ be internal adjunctions in C. We have a canonical isomorphism⁵

$$g \xrightarrow{(\lambda_g^C)^{-1}} \mathrm{id}_A \circ g \xrightarrow{\eta' \circ \mathrm{id}_g} (g' \circ f) \circ g \xrightarrow{\alpha_{g',f,g}^C} g' \circ (f \circ g) \xrightarrow{\mathrm{id}_{g'} \circ \epsilon} g' \circ \mathrm{id}_B \xrightarrow{(\rho_{g'}^C)^{-1}} g'$$
 with inverse

$$g' \xrightarrow{(\lambda_{g'}^C)^{-1}} \operatorname{id}_B \circ g' \xrightarrow{\eta \circ \operatorname{id}_{g'}} (g \circ f) \circ g' \xrightarrow{\alpha_{g',f,g}^C} g \circ (f \circ g') \xrightarrow{\operatorname{id}_g \circ \epsilon'} g \circ \operatorname{id}_B \xrightarrow{(\lambda_g^C)^{-1}} g.$$

3. Carrying Internal Adjunctions Through Pseudofunctors. Let $F: \mathcal{C} \longrightarrow \mathcal{D}$ be a pseudofunctor and (f, g, η, ϵ) be an internal adjunction in \mathcal{C} . There is an induced internal adjunction⁶

$$(F(f), F(g), \overline{\eta}, \overline{\epsilon})$$

in \mathcal{D} , where:

 $^{^5} Slogan:$ Left adjoints are unique up to canonical isomorphism. Dually, so are right adjoints.

 $^{^6}$ Warning: Lax or oplax functors which are not pseudofunctors need not preserve

(a) The unit

$$\overline{\eta} : \mathrm{id}_{F(A)} \Longrightarrow F(g) \circ F(f)$$

is the composition

$$\operatorname{id}_{F(A)} \xrightarrow{F_A} F(\operatorname{id}_A) \xrightarrow{F(\eta)} F(g \circ f) \xrightarrow{F_{g,f}^{-1}} F(g) \circ F(f).$$

(b) The counit

$$\overline{\epsilon} \colon F(f) \circ F(g) \Longrightarrow \mathrm{id}_{F(B)}$$

is the composition

$$F(f) \circ F(g) \xrightarrow{F_{f,g}} F(f \circ g) \xrightarrow{F(\epsilon)} F(\mathrm{id}_B) \xrightarrow{F_B} \mathrm{id}_{F(B)}.$$

Proof. Item 1, Duality: Omitted.⁷

Item 2, Uniqueness of Adjoints: ⁸Consider the diagram (if you *really* want to consider it I fear you will need to zoom in)

In this diagram:

internal adjunctions.

⁷Reference: [JY21, Exercise 6.6.2].

⁸Reference: [JY21, Lemma 6.1.6].

- 1. The morphisms in green are the composition $g \stackrel{\cong}{\Longrightarrow} g' \stackrel{\cong}{\Longrightarrow} g$;
- 2. The morphisms in red are equal to λ_g^C by the right triangle identity for (f, g, η, ϵ) . Hence the composition of the morphism in blue with the morphisms in red is the identity;
- 3. Subdiagrams (1), (2), (10), (11), (29), (31), and (43) commute by the naturality of the left unitor of C and its inverse;
- 4. Subdiagrams (8), (19), and (21) commute by the naturality of the right unitor of C and its inverse;
- 5. Subdiagrams (6), (13), (17), (18), (20), (22), (32), (33), (36), (38), (40), (41), and (45) commute by the naturality of the associator of C and its inverse;
- 6. Subdiagrams (37), (39), and (42) commute by the pentagon identity for C;
- 7. Subdiagrams (3), (4), (7), (12), (25), (30), and (48) commute by Bicategories, ?? of ??;
- 8. Subdiagrams (5), (14), (23), (24), (34), and (35) commute by middle-four exchange;
- 9. Subdiagrams (9), (15), (16), (27), (28), (44), (46), (49), and (50) commute trivially;
- 10. Subdiagram (26) commutes by Bicategories, ???? of ??;
- 11. Subdiagram (47) commutes by Bicategories, ?? of ?? and the naturality of the left unitor of right unitor of C.

Hence $g \cong g'$.

Item 3, Carrying Internal Adjunctions Through Pseudofunctors: ⁹We claim that the left and right triangle identities for $(F(f), F(q), \overline{\eta}, \overline{\epsilon})$ hold:

1. The left triangle identity for $(F(f), F(g), \overline{\eta}, \overline{\epsilon})$ is the condition that the

⁹Reference: [JY21, Proposition 6.1.7].

boundary diagram of the diagram (you may need to zoom in)

commutes. Since

- (a) Subdiagrams (1) and (7) commute by applying middle-four exchange twice,
- (b) Subdiagrams (2) and (8) commute by the left and right lax unity conditions for F,
- (c) Subdiagrams (3) and (6) commute by the naturality of the lax functoriality constraints of F,
- (d) Subdiagram (4) commutes by the lax associativity condition for F, and
- (e) Subdiagram (5) commutes by the left triangle identity for (f, g, η, ϵ) , so does the boundary diagram.
- 2. The right triangle identity for $(F(f), F(g), \overline{\eta}, \overline{\epsilon})$ is the condition that

the boundary diagram of the diagram (you may need to zoom in)

commutes. Since

- (a) Subdiagrams (1) and (7) commute by applying middle-four exchange twice,
- (b) Subdiagrams (2) and (8) commute by the left and right lax unity conditions for F,
- (c) Subdiagrams (3) and (6) commute by the naturality of the lax functoriality constraints of F,
- (d) Subdiagram (4) commutes by the lax associativity condition for F, and
- (e) Subdiagram (5) commutes by the right triangle identity for (f, g, η, ϵ) , so does the boundary diagram.

This finishes the proof.

1.3 Internal Adjoint Equivalences

Let C be a bicategory.

Definition 1.3.1.1. An internal adjunction (f, g, η, ϵ) in C is an **internal** adjoint equivalence if η and ϵ are isomorphisms in C.

Example 1.3.1.2. Here are some examples of internal adjoint equivalences.

- 1. Internal Adjoint Equivalences in Cats₂. The internal adjoint equivalences in the 2-category Cats₂ of categories, functors, and natural transformations are precisely the adjoint equivalences of Categories, ??.¹⁰
- 2. Internal Adjoint Equivalences in Mod. The internal adjoint equivalences in Mod are precisely the invertible R-modules; see ??.¹¹
- 3. Internal Adjoint Equivalences in PseudoFun(\mathcal{C}, \mathcal{D}). The internal adjoint equivalences in PseudoFun(\mathcal{C}, \mathcal{D}) are precisely the invertible strong transformations; see ??.¹²
- 4. Internal Adjoint Equivalences in **Rel**. The internal adjoint equivalences in **Rel** are precisely the relations of the form $Gr(f) \dashv f^{-1}$ with f an isomorphism; see ??.
- 5. Internal Adjoint Equivalences in Span. The internal adjoint equivalences in Span are precisely the spans of the form $A \stackrel{\phi}{\leftarrow} S \stackrel{\psi}{\rightarrow} B$ with ϕ and ψ isomorphisms; see ??.

Proposition 1.3.1.3. Let C be a bicategory.

1. Carrying Internal Adjoint Equivalences Through Pseudofunctors. Let $F: \mathcal{C} \longrightarrow \mathcal{D}$ be a pseudofunctor and (f, g, η, ϵ) be an internal adjunction in \mathcal{C} . If (f, g, η, ϵ) is an internal adjoint equivalence in \mathcal{C} , then the induced internal adjunction

$$(F(f), F(g), \overline{\eta}, \overline{\epsilon})$$

in \mathcal{D} of Item 3 of Proposition 1.2.1.4 is an internal adjoint equivalence as well.

2. Internal Adjunctions Always Refine to Internal Adjoint Equivalences. Let (f, g, η, ϵ) be an internal adjunction in C. If f is an equivalence,

¹⁰Reference: [JY21, Examples 6.2.5].

¹¹Reference: [JY21, Examples 6.2.6].

¹²Reference: [JY21, Examples 6.2.7].

1.4 Mates 12

then there exist 2-morphisms

$$\overline{\eta} \colon \mathrm{id}_A \Longrightarrow g \circ f$$
 $\overline{\epsilon} \colon f \circ g \Longrightarrow \mathrm{id}_B$

of C such that $(f, g, \overline{\eta}, \overline{\epsilon})$ is an internal adjoint equivalence.

Proof. <u>Item</u> 1, Carrying Internal Adjoint Equivalences Through Pseudofunctors: See [JY21, Proposition 6.2.3].

Item 2, Internal Adjunctions Always Refine to Internal Adjoint Equivalences: See [JY21, Proposition 6.2.4]. □

1.4 Mates

Let C be a bicategory, let (f, g, η, ϵ) and $(f', g', \eta', \epsilon')$ be adjunctions, and let h and k be morphisms of C as in the diagram

$$\begin{array}{c|c}
A & \xrightarrow{f} & B \\
\downarrow h & & \downarrow k \\
C & \xrightarrow{g'} & D.
\end{array}$$

Definition 1.4.1.1. The mates of a pair of 2-morphisms

$$\begin{array}{c|c} A \stackrel{f}{\longrightarrow} B \\ \downarrow & \nearrow & \downarrow k \\ C \stackrel{f}{\longrightarrow} D \end{array} \qquad \begin{array}{c} \omega \colon f' \circ h \Longrightarrow k \circ f, \\ \nu \colon h \circ g \Longrightarrow g' \circ k \end{array} \qquad \begin{array}{c} A \stackrel{g}{\longleftarrow} B \\ \downarrow & \searrow & \downarrow k \\ C \stackrel{f}{\longleftarrow} D \end{array}$$

are the 2-morphisms

$$\begin{array}{c|c} A \xleftarrow{g} B & & A \xrightarrow{f} B \\ \downarrow & \downarrow & \downarrow k & \omega^{\dagger} \colon h \circ g \Longrightarrow g' \circ k, & \downarrow & \nearrow \downarrow k \\ C \xleftarrow{g'} D & & \downarrow c & \downarrow c & \downarrow c & \downarrow c \\ \end{array}$$

1.4 Mates 13

defined as the pastings of the diagrams¹³

Proposition 1.4.1.2. Let $\omega \colon f' \circ h \Longrightarrow k \circ f$ and $\nu \colon h \circ g \Longrightarrow g' \circ k$ be 2-morphisms.

1. The Mate Correspondence. The map

$$(-)^{\dagger} \colon \mathrm{Hom}_{\mathsf{Hom}_{\mathcal{C}}(A,C)}(f' \circ h, k \circ f) \longrightarrow \mathrm{Hom}_{\mathsf{Hom}_{\mathcal{C}}(B,D)}(h \circ g, g' \circ k)$$

$$\omega \longmapsto \omega^{\dagger}$$

is a bijection.

Proof. Item 1, The Mate Correspondence: Here we give a proof for 2-categories (which indirectly proves also the general case by Bicategories, ??). A proof for general bicategories can be found in [JY21, Lemma 6.1.13].

 $^{^{13}}$ If C is a 2-category, these pasting diagrams become the following:

1.4 Mates 14

Let

$$\nu \colon h \circ g \Longrightarrow g' \circ k \qquad A \xleftarrow{g} B$$

$$\downarrow h \qquad \downarrow k$$

$$C \xleftarrow{g'} D$$

be a 2-morphism of C. The mate ν^{\dagger} of ν is then given by

$$\begin{array}{cccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow & \downarrow \\
A & \xrightarrow{\eta} & \downarrow f \\
A & \leftarrow g - B \\
\downarrow & & \downarrow & \downarrow \\
C & \xrightarrow{f'} & D & C & \leftarrow g' - D \\
\downarrow & & \downarrow & \downarrow \\
C & \leftarrow g' - D \\
\downarrow & & \downarrow & \downarrow \\
D, & & \downarrow & \downarrow \\
\end{array}$$

and the mate of ν^{\dagger} is the 2-morphism $(\nu^{\dagger})^{\dagger} \colon f' \circ h \Longrightarrow k \circ f$ given by

Similarly, $(\omega)^{\dagger^{\dagger}} = \omega$.

2 Morphisms of Internal Adjunctions

2.1 Lax Morphisms of Internal Adjunctions

Let C be a bicategory and let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C.

Definition 2.1.1.1. A lax morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is a lax transformation between these viewed as 2-functors from the walking adjunction.

Remark 2.1.1.2. In detail, a lax morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ consists of

• 1-Morphisms. A pair of 1-morphisms

$$\phi \colon A \to A',$$
$$\psi \colon B \to B'$$

of C;

of C;

• 2-Morphisms. A pair of 2-morphisms

$$A \xrightarrow{F} B$$

$$\downarrow \phi \qquad \downarrow \psi \qquad \alpha : F' \circ \phi \Rightarrow \psi \circ F, \qquad \downarrow \phi \qquad \downarrow \psi$$

$$A' \xrightarrow{F'} B' \qquad A' \xleftarrow{G} B$$

$$\downarrow \phi \qquad \downarrow \psi \qquad$$

satisfying the following conditions:

1. Compatibility With Units. We have an equality

of pasting diagrams in C;

2. Compatibility With Counits. We have an equality

of pasting diagrams in C.

2.2 Oplax Morphisms of Internal Adjunctions

Let C be a bicategory and let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C.

Definition 2.2.1.1. An oplax morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is an oplax transformation between these viewed as 2-functors from the walking adjunction.

Remark 2.2.1.2. In detail, an oplax morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ consists of

• 1-Morphisms. A pair of 1-morphisms

$$\phi \colon A \to A',$$

$$\psi \colon B \to B'$$

of C;

• 2-Morphisms. A pair of 2-morphisms

of C;

satisfying the following conditions:

1. Compatibility With Units. We have an equality

of pasting diagrams in C;

2. Compatibility With Counits. We have an equality

of pasting diagrams in C.

2.3 Strong Morphisms of Internal Adjunctions

Let C be a bicategory and let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C.

Definition 2.3.1.1. A strong morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is a strong transformation between these viewed as 2-functors from the walking adjunction.

Remark 2.3.1.2. In detail, a strong morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is equivalently:

- 1. A lax morphism of internal adjunctions as in Remark 2.1.1.2 whose 2-morphisms are invertible.
- 2. An oplax morphism of internal adjunctions as in Remark 2.2.1.2 whose 2-morphisms are invertible.

2.4 Strict Morphisms of Internal Adjunctions

Let C be a bicategory and let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C.

Definition 2.4.1.1. A strict morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is a strict transformation between these viewed as 2-functors from the walking adjunction.

Remark 2.4.1.2. In detail, a strict morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is equivalently:

- 1. A lax morphism of internal adjunctions as in Remark 2.1.1.2 whose 2-morphisms are identities.
- 2. An oplax morphism of internal adjunctions as in Remark 2.2.1.2 whose 2-morphisms are identities.

3 2-Morphisms Between Morphisms of Internal Adjunctions

3.1 2-Morphisms Between Lax Morphisms of Internal Adjunctions

Let C be a bicategory, let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C, and let $(\phi_1, \psi_1, \alpha_1, \beta_1)$ and $(\phi_2, \psi_2, \alpha_2, \beta_2)$ be lax morphisms of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$.

Definition 3.1.1.1. A **2-morphism from** $(\phi_1, \psi_1, \alpha_1, \beta_1)$ **to** $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is a modification between these viewed as lax transformations.

Remark 3.1.1.2. In detail, a 2-morphism from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ consist of 2-morphisms

$$\Gamma \colon \phi_1 \Rightarrow \phi_2$$

$$\Sigma \colon \psi_1 \Rightarrow \psi_2$$

of C such that we have equalities

of pasting diagrams in C.

3.2 2-Morphisms Between Oplax Morphisms of Internal Adjunctions

Let C be a bicategory, let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C, and let $(\phi_1, \psi_1, \alpha_1, \beta_1)$ and $(\phi_2, \psi_2, \alpha_2, \beta_2)$ be oplax morphisms of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$.

Definition 3.2.1.1. A **2-morphism from** $(\phi_1, \psi_1, \alpha_1, \beta_1)$ **to** $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is a modification between these viewed as oplax transformations.

Remark 3.2.1.2. In detail, a 2-morphism from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ consist of 2-morphisms

$$\Gamma \colon \phi_1 \Rightarrow \phi_2$$

$$\Sigma \colon \psi_1 \Rightarrow \psi_2$$

of C such that we have equalities

of pasting diagrams in C.

3.3 2-Morphisms Between Strong Morphisms of Internal Adjunctions

Let C be a bicategory, let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C, and let $(\phi_1, \psi_1, \alpha_1, \beta_1)$ and $(\phi_2, \psi_2, \alpha_2, \beta_2)$ be strong morphisms of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$.

Definition 3.3.1.1. A **2-morphism from** $(\phi_1, \psi_1, \alpha_1, \beta_1)$ **to** $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is a modification between these viewed as strong transformations.

Remark 3.3.1.2. In detail, a 2-morphism from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is equivalently:

- A 2-morphism (Γ, Σ) from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ viewed as lax transformations as in Remark 3.1.1.2.
- A 2-morphism (Γ, Σ) from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ viewed as oplax transformations as in Remark 3.2.1.2.

3.4 2-Morphisms Between Strict Morphisms of Internal Adjunctions

Let C be a bicategory, let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C, and let $(\phi_1, \psi_1, \alpha_1, \beta_1)$ and $(\phi_2, \psi_2, \alpha_2, \beta_2)$ be lax morphisms of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$.

Definition 3.4.1.1. A **2-morphism from** $(\phi_1, \psi_1, \alpha_1, \beta_1)$ **to** $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is a modification between these viewed as strict transformations.

Remark 3.4.1.2. In detail, a 2-morphism from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is equivalently:

- A 2-morphism (Γ, Σ) from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ viewed as lax transformations as in Remark 3.1.1.2.
- A 2-morphism (Γ, Σ) from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ viewed as oplax transformations as in Remark 3.2.1.2.
- A 2-morphism (Γ, Σ) from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ viewed as strong transformations as in Remark 3.3.1.2.

4 Bicategories of Internal Adjunctions in a Bicategory

Appendices

A Other Chapters

Set	Theory
UCU	THEOLA

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Indexed and Fibred Sets
- 6. Relations
- 7. Spans
- 8. Posets

Category Theory

- 1. Categories
- 2. Constructions With Categories
- 3. Kan Extensions

Internal Category Theory

1. Internal Categories

Cyclic Stuff

74. The Cycle Category

Cubical Stuff

76. The Cube Category

Globular Stuff

79. The Globe Category

Cellular Stuff	Real Analysis		
81. The Cell Category	160. Real Analysis in One Variable		
Monoids	161. Real Analysis in Several Vari		
126. Monoids	ables		
127. Constructions With Monoids	Measure Theory		
Monoids With Zero	162. Measurable Spaces		
130. Monoids With Zero	163. Measures and Integration		
131. Constructions With Monoids With Zero	Probability Theory		
Groups	164. Probability Theory		
132. Groups	Stochastic Analysis		
133. Constructions With Groups	165. Stochastic Processes, Martin- gales, and Brownian Motion		
Hyper Algebra	166. Itô Calculus		
134. Hypermonoids			
135. Hypergroups	167. Stochastic Differential Equations		
136. Hypersemirings and Hyperrings	Differential Geometry		
137. Quantales	213. Topological and Smooth Mani		
Near-Rings	folds		
138. Near-Semirings	Schemes		
139. Near-Rings	4. Schemes		