

V (BR)DSS	(BR)DSS RDS(on)MAX		
	0.028Ω@ 10V		
30V	0.033Ω@4.5V	5.8 A	
	0.052Ω@2.5V		

General FEATURE

- ●TrenchFET Power MOSFET
- ●Lead free product is acquired
- Surface mount package

APPLICATION

- ●Load Switch for Portable Devices
- ●DC/DC Converter

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol	Maximum	Units
Drain-Source Voltage		V_{DS}	30	V
Gate-Source Voltage		V_{GS}	±12	V
Continuous Drain Current A T _A =25°C		I _D	5.8	А
Pulsed Drain Current ^B		I _{DM}	30	
Power Dissipation ^A	T _A =25°C	P _D	1.4	w
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C

Thermal Characteristics						
Parameter	Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	65	90	°C/W	
Maximum Junction-to-Ambient A	Steady-State	Г	85	125	°C/W	
Maximum Junction-to-Lead ^C	Steady-State	$R_{ ext{ hetaJL}}$	43	60	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter Conditions		Min	Тур	Max	Units		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STATIC PARAMETERS								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BV _{DSS}	Drain-Source Breakdown Voltage	Orain-Source Breakdown Voltage $I_D=250\mu A, V_{GS}=0V$				V		
$ \begin{array}{c} V_{\text{CS}(\text{th})} \\ V_{\text{D}(\text{ON})} \\ On \text{ state drain current} \\ V_{\text{CS}} = 4.5 \text{V}, V_{\text{DS}} = 5 \text{V} \\ V_{\text{CS}} = 10 \text{V}, I_{\text{D}} = 5.8 \text{A} \\ V_{\text{CS}} = 10 \text{V}, I_{\text{D}} = 5.8 \text{A} \\ V_{\text{CS}} = 10 \text{V}, I_{\text{D}} = 5.8 \text{A} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 5.0 \text{A} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.0 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 \text{V} \\ V_{\text{CS}} = 2.5 \text{V}, I_{\text{D}} = 2.5 V$	I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =25V, V _{GS} =0V			1	μΑ		
$ \begin{array}{c} I_{D(ON)} & \text{On state drain current} & V_{GS}\!\!=\!\!4.5V, V_{DS}\!\!=\!\!5V & 30 & A \\ \hline \\ R_{DS(ON)} & \text{Static Drain-Source On-Resistance} & V_{GS}\!\!=\!\!10V, I_{D}\!\!=\!\!5.8A & 25 & 28 & m\Omega \\ \hline \\ V_{GS}\!\!=\!\!4.5V, I_{D}\!\!=\!\!5.0A & 30 & 33 & m\Omega \\ \hline \\ V_{GS}\!\!=\!\!2.5V, I_{D}\!\!=\!\!5.0A & 30 & 33 & m\Omega \\ \hline \\ V_{GS}\!\!=\!\!2.5V, I_{D}\!\!=\!\!5.0A & 48 & 52 & m\Omega \\ \hline \\ g_{FS} & \text{Forward Transconductance} & V_{DS}\!\!=\!\!5V, I_{D}\!\!=\!\!5.8A & 10 & 15 & S \\ \hline \\ V_{SD} & \text{Diode Forward Voltage} & I_{S}\!\!=\!\!1A,V_{GS}\!\!=\!\!0V & 0.71 & 1.2 & V \\ \hline I_{S} & \text{Maximum Body-Diode Continuous Current} & 2.5 & A \\ \hline \\ \textbf{DYNAMIC PARAMETERS} & & & & & & & & & \\ \hline C_{ISS} & \text{Input Capacitance} & & & & & & & & & \\ \hline C_{ISS} & \text{Input Capacitance} & & & & & & & & & \\ \hline C_{ISS} & \text{Input Capacitance} & & & & & & & & & \\ \hline C_{ISS} & \text{Input Capacitance} & & & & & & & & \\ \hline C_{ISS} & \text{Output Capacitance} & & & & & & & & \\ \hline C_{ISS} & \text{Output Capacitance} & & & & & & & & \\ \hline C_{ISS} & \text{Gate resistance} & & & & & & & & \\ \hline SWITCHING PARAMETERS & & & & & & & \\ \hline Q_{g} & \text{Gate resistance} & & & & & & & & \\ \hline Q_{g} & \text{Gate Source Charge} & & & & & & & & & \\ \hline Q_{g} & \text{Gate Source Charge} & & & & & & & & & \\ \hline Q_{g} & \text{Gate Source Charge} & & & & & & & & & \\ \hline Q_{g} & \text{Gate Drain Charge} & & & & & & & & & \\ \hline V_{GS}\!\!=\!\!4.5V, V_{DS}\!\!=\!\!15V, I_{D}\!\!=\!\!5.8A & & & & & & \\ \hline Q_{g} & \text{Gate Drain Charge} & & & & & & & & & \\ \hline V_{GS}\!\!=\!\!4.5V, V_{DS}\!\!=\!\!15V, I_{D}\!\!=\!\!5.8A & & & & & & \\ \hline Q_{g} & \text{Gate Drain Charge} & & & & & & & & & \\ \hline V_{GS}\!\!=\!\!4.5V, V_{DS}\!\!=\!\!15V, I_{D}\!\!=\!\!5.8A & & & & & & \\ \hline Q_{G} & & & & & & & & & \\ \hline V_{GS}\!\!=\!\!4.5V, V_{DS}\!\!=\!\!15V, I_{D}\!\!=\!\!5.8A & & & & & \\ \hline Q_{G} & \text{Gate Drain Charge} & & & & & & & & \\ \hline V_{GS}\!\!=\!\!4.5V, V_{DS}\!\!=\!\!15V, I_{D}\!\!=\!\!5.8A & & & & & \\ \hline Q_{G} & & & & & & & & \\ \hline Q_{G} & & & & & & & & & \\ \hline Q_{G} & & & & & & & & \\ \hline Q_{G} & & & & & & & & \\ \hline Q_{G} & & & & & & & & \\ \hline Q_{G} & & & & & & & & \\ \hline Q_{G} & & & & & & & & \\ \hline Q_{G} & & & & & & & \\ \hline Q_{G} & & & & & & & \\ \hline Q_{G} & & & & & & & & \\ $	I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V			100	nA		
$R_{DS(ON)} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_D=250\mu A$	0.6		1.0	V		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{D(ON)}	On state drain current	V _{GS} =4.5V, V _{DS} =5V	30			Α		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0///	V _{GS} =10V, I _D =5.8A		25	28	mΩ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{DS(ON)}$	Static Drain-Source On-Resistance	V _{GS} =4.5V, I _D =5.0A		30	33	mΩ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} =2.5V, I _D =4.0A		48	52	mΩ		
$\begin{array}{ c c c c c } \hline I_S & \text{Maximum Body-Diode Continuous Current} & 2.5 & A \\ \hline \textbf{DYNAMIC PARAMETERS} \\ \hline C_{iss} & \text{Input Capacitance} & 823 & 1030 & pF \\ \hline C_{oss} & \text{Output Capacitance} & V_{GS}=0V, V_{DS}=15V, f=1\text{MHz} & 99 & pF \\ \hline C_{rss} & \text{Reverse Transfer Capacitance} & 77 & pF \\ \hline R_g & \text{Gate resistance} & V_{GS}=0V, V_{DS}=0V, f=1\text{MHz} & 1.2 & 3.6 & \Omega \\ \hline \textbf{SWITCHING PARAMETERS} & 9.7 & 12 & nC \\ \hline \textbf{Q}_g & \text{Total Gate Charge} & 9.7 & 12 & nC \\ \hline \textbf{Q}_{gs} & \text{Gate Source Charge} & V_{GS}=4.5V, V_{DS}=15V, I_{D}=5.8A & 1.6 & nC \\ \hline \textbf{Q}_{gd} & \text{Gate Drain Charge} & 3.1 & nC \\ \hline \textbf{t}_{D(on)} & \text{Turn-On DelayTime} & 3.3 & 5 & ns \\ \hline \textbf{t}_r & \text{Turn-On Rise Time} & V_{GS}=10V, V_{DS}=15V, R_L=2.7\Omega, & 4.8 & 7 & ns \\ \hline \textbf{t}_{D(off)} & \text{Turn-Off DelayTime} & R_{GEN}=3\Omega & 26.3 & 40 & ns \\ \hline \textbf{t}_r & \text{Turn-Off Fall Time} & 4.1 & 6 & ns \\ \hline \textbf{t}_{rr} & \text{Body Diode Reverse Recovery Time} & I_F=5A, dI/dt=100A/\mus & 16 & 20 & ns \\ \hline \end{array}$	g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =5.8A	10	15		S		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.71	1.2	V		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Is	Maximum Body-Diode Continuous Cur	rent			2.5	Α		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DYNAMIC	PARAMETERS					•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{iss}	Input Capacitance	1		823	1030	pF		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{oss}	Output Capacitance	apacitance V _{GS} =0V, V _{DS} =15V, f=1MHz		99		pF		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{rss}	Reverse Transfer Capacitance	L-1/2		77		pF		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.2	3.6	Ω		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHI	NG PARAMETERS							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q_g	Total Gate Charge			9.7	12	nC		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q_{gs}	Gate Source Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =5.8A		1.6		nC		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Gate Drain Charge			3.1		nC		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{D(on)}	Turn-On DelayTime	1/0/		3.3	5	ns		
$t_{\rm f}$ Turn-Off Fall Time 4.1 6 ns $t_{\rm rr}$ Body Diode Reverse Recovery Time $I_{\rm F}$ =5A, dI/dt =100A/ μ s 16 20 ns	t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =2.7 Ω ,		4.8	7	ns		
t _{rr} Body Diode Reverse Recovery Time I _F =5A, dI/dt=100A/μs 16 20 ns	$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		26.3	40	ns		
	t _f	Turn-Off Fall Time			4.1	6	ns		
	t _{rr}	Body Diode Reverse Recovery Time	I _F =5A, dl/dt=100A/μs		16	20	ns		
	Q_{rr}		l _F =5A, dl/dt=100A/μs		8.9	12	nC		

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the \bowtie 10s thermal

Rev 4 : June 2005

resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 6: Body-Diode Characteristics

Figure 5: On-Resistance vs. Gate-Source Voltage

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

SOT-23 Package Outline Dimensions

O b. a. l	Dimensions	In Millimeters	Dimensions In Inches				
Symbol	Min	Min Max		Max			
Α	0.900	1.150	0.035	0.045			
A1	0.000	0.100	0.000	0.004			
A2	0.900	1.050	0.035	0.041			
b	0.300	0.500	0.012	0.020			
С	0.080	0.150	0.003	0.006			
D	2.800	3.000	0.110	0.118			
E	1.200	1.400	0.047	0.055			
E1	2.250	2.550	0.089	0.100			
е	0.95	0.950 TYP		7 TYP			
e1	1.800	2.000	0.071	0.079			
Ĺ	0.550 REF		0.022 REF				
L1	0.300	0.500	0.012	0.020			
θ	0°	8°	0°	8°			

SOT-23 Suggested Pad Layout

- 1.Controlling dimension:in millimeters.
 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

The contract of the contract o

SOT-23-3L Package Outline Dimensions

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E1	1.500	1.700	0.059	0.067	
E	2.650	2.950	0.104	0.116	
е	0.950(BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	UA
	L Suggest	ed Pad La	ayout		C X
1.00	04		Note: 1.Controlling	dimension:in r	nillimeters.

SOT-23-3L Suggested Pad Layout

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.