Arm Final Round Interviews Take-home exercise on Heat Equation

Fadji Ohoukoh

Francesco Lovascio

Contents

1	Presentation of the heat equation Finite difference approximations		3
2			
	2.0.1	Centered-finite-differences and First order explicit time-stepping	3
	2.0.2	2D Heat map	3
3	Conclusion		5

1 Presentation of the heat equation

Let u_0 be a given function for x belonging to [01], we seek a function u depending on time and space solution of :

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) - \frac{\partial^2 u}{\partial x^2}(t,x) = 0, & x \in]0,1[,\ t > 0,\\ \\ u(t,0) = u(t,1), & t > 0,\\ \\ u(0,x) = \sin(\pi x), & x \in [0,1]. \end{cases}$$

 $u_0(x)$ is the initial condition and the boundary conditions are $u_t(0)$ and $u_t(1)$. The diffusion coefficient $\alpha = 1$.

Figure 1: u_0 is the initial temperature $u_0(x_i)$, with a sequence of points $(x_i)_{0 \le i \le N+1}$.

Figure 2: **Discretization of the interval** [0,1], h = 1/(N+1), with a sequence of points $(x_i)_{0 \le i \le N+1}$.

2 Finite difference approximations

- We will discretize $[0, T] \times [0, 1]$, (T is known).
- We define a uniform mesh of steps $h, h = \frac{1}{N+1}$, of intervals [0,1] as the set of points $(x_i = ih)_{1 \le i \le N}$.
- We define a uniform mesh of steps Δt , $\Delta t = \frac{T}{M}$, of interval [0,T] as the set of points $(t_n = n\Delta t)_{0 \le n \le M}$.

Approximate solution to our problem by calculating the values u_i^n , for $n=1,\ldots,M$ and $i=1,\ldots,N$, which are supposed to approximate the values $u(t_n,x_i)$, for $n=1,\ldots,M$ and $i=1,\ldots,N$.

2.0.1 Centered-finite-differences and First order explicit time-stepping

The second-order spatial derivative $\frac{\partial^2 u}{\partial x^2}(t_n, x_i)$ can be approximated using the centered finite difference formula:

$$\frac{\partial^2 u}{\partial x^2}(t_n, x_i) \approx \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2}$$

where h is the spatial discretization step.

The first-order time derivative $\frac{\partial u}{\partial t}(t_n,x_i)$ can be approximated using the explicit Euler method:

$$\frac{\partial u}{\partial t}(t_n, x_i) \approx \frac{u_i^{n+1} - u_i^n}{\Delta t}$$

where Δt gives the frequency with which the outputs are produced.

2.0.2 2D Heat map

$$R_i^n = \frac{u(t_{n+1}, x_i) - u(t_n, x_i)}{\Delta t} - \frac{u(t_n, x_{i+1}) - 2u(t_n, x_i) + u(t_n, x_{i-1})}{h^2},$$

Figure 3

$$\max_{1 \le i \le N} |R_i^n| \le C(\Delta t + h^2).$$

Figure 4

Figure 5: Explicit Euler scheme consistency error.

$$\frac{u_i^{n+1}-u_i^n}{\Delta t}-\frac{u_{i+1}^{n+1}-2u_i^{n+1}+u_{i-1}^{n+1}}{h^2}=0,\ i=1,\cdots,N,\ n=1,\cdots,M-1,$$

Figure 6: Discretization of the heat equation.

Figure 7: Finite difference discretization of the 1D heat equation.

The stability condition for this problem is for $\alpha=1$: $\frac{\Delta_t}{h^2} \leq \frac{1}{2}$.

3 Conclusion

Figure 8: 2D heatmap for the 1D heat equation.

In Figure 8, u(t,0) = u(t,1) ensures no abrupt temperature discontinuities at the edges .

Heat Diffusion Effect The heat equation works to spread the sinusoidal temperature profile over time. Higher-temperature regions diffuse outward, creating the smooth transition we observe.

Essentially, starting with $u(0,x)=\sin(\pi x)$ aligns perfectly with the periodic boundary condition, making the temperature distribution symmetric and wavelike as it evolves.