Homework 3

Chandler Swift

February 7, 2019

Section 1.4

- 12 a True
 - b True
 - c False
 - d True
 - e False
 - f True
 - g False
- 24 Let C(x) be the propositional function "x is in your class".
 - a $\forall x(P(x))$ and $\forall x(C(x) \rightarrow P(x))$, where P(x) is the propositional function that a student has a phone.
 - b $\exists x(F(x))$ and $\exists x(C(x) \land (F(X)))$, where F(x) is the propositional function that a student has seen a foreign movie.
 - c $\exists x(\neg S(x))$ and $\exists x(C(x) \land \neg S(x))$, where S(x) is the propositional function that a student can swim.
 - d $\forall x(Q(x))$ and $\forall x(C(x) \to Q(x))$, where Q(x) is the propositional function that a student can solve a quadratic equation.
 - e $\exists x(\neg R(x))$ and $\exists x(C(x) \land \neg R(x))$, where R(x) is the propositional function that a student wants to be rich.
- 32 a With the domain of dogs, and F(x) representing the propositional function that a dog has fleas, the original is $\forall d(F(d))$. Negation is $\exists d(\neg F(d))$, or "Some dogs do not have fleas".
 - b With the domain of horses, and A(x) representing that x can add, the original is $\exists h(A(h))$. The negation is $\forall h(\neg A(h))$, or, in English, "No horse can add".
 - c With the domain of koalas, and C(x) being the propositional function of climbing ability, the original is $\forall k(C(k))$. The negation is $\exists k(\neg C(k))$, or "Some koalas cannot climb".

- d With the domain of monkeys, and F(x) being ability to speak French, $\forall m(\neg F(m))$. The negation is $\exists m(F(m))$, or "Some monkeys can speak French".
- e With the domain of pigs, and S(x) being ability to swim and F(x) being the ability to catch fish, $\exists p(S(p) \land F(p))$. Negation: $\forall p \neg (S(p) \land F(p))$; that is, "No pig can both swim and catch fish".
- 36 b $\exists x (x < 0 \lor x \ge 5)$
 - c $\forall x(x < -1 \lor x > 1)$
- 54 a False
 - b False
 - c True
 - d False

Section 1.5

- 16 If C(x) represents a student being in the class, and F(x), Sop(x), J(x), Sen(x) represent being a freshman, sophomore, junior, and CS(x), M(x) represent Computer Science and Mathematics majors respectively, with the domain of all people:
 - a $\exists s(C(s) \land J(s))$: True
 - b $\forall s(C(s) \to CS(s))$: False
 - c $\exists s(C(s) \land \neg M(s) \land \neg J(s))$: True
 - d $\forall s(C(s) \rightarrow (Sop(s) \lor CS(s)))$: False
 - e With the domain of majors, students, and year: $\exists m(\forall y(\exists s(y(s) \land m(s))))$: False
- 20 a $\forall x \forall y ((y < 0 \land x < 0) \rightarrow x * y > 0)$
 - b $\forall x \forall y ((x > 0 \land y > 0) \rightarrow \frac{x+y}{2} > 0)$
 - c $\exists x \exists y ((x < 0 \land y < 0) \rightarrow \neg (x y < 0))$
 - d $\forall x \forall y (\neg(|x+y| > |x| + |y|))$
- 28 a True
 - b False
 - c True
 - d False
 - e True
 - f False
 - g True
 - h False

- i False
- j True
- 30 c $\forall y (\neg Q(y) \lor \exists x (R(x,y))$
 - d $\forall y(\forall x \neg R(x,y) \land \exists x \neg S(x,y))$
- 40 a $x \neq 1$
 - b x < -100
 - c x = y = 1 or x = y = 0