

Background

- Food stability is ever important
- Optimizing Agricultural Production
 - Crop yields
 - Control of pests/diseases
 - Reducing operational costs
- Biodiversity protection

Solution/Proof of Concept

 Build a Convolutional Neural Network to classify plant diseases

 ~50,000 images categorized into 38 categories by species and disease

If successful many areas of application

Plant Village Data

- 14 crop species
 - o 12 healthy images
- 26 diseases
 - o 17 fungal
 - 4 bacterial
 - o 2 mold
 - o 2 viral
 - 1 mite caused disease

Tomato__Target_Spot (350range__Haunglongbing_(Citrus_greening) (15Tomato__Late_blight (31)

Apple__healthy (3)

Apple__Cedar_apple_rust (2)

Pepper,_bell___healthy (ኬቄ)ato___Spider_mites Two-spotted_spider_miteTርያተልto___Bacterial_spot (28)

Convolutional Neural Network

Summary

- 4 blocks of layers
- 3 Conv2D layers with Max Pooling at the end per block
- 8,388,672 params in layer before output layer

Accuracy: 0.969
Precision: 0.962,

Recall: 0.946

4 Block CNN

Class: Corn__Cercospora_leaf_spot Gray_leaf_spot (ID: 7) Class: Corn___Northern_Leaf_Blight (ID: 10)

Transfer Learning

- Pretrained model (more generalized)
 - Freeze all the layers
 - Drop classifying layer
- Acts as a generalized pretrained feature detector
- Add trainable layers on top specialized to the task

CNN W/ BatchNorm and Transfer Learning

Summary

- Input in vgg model
- 3 Conv2D layers with Batch Normalization with Max Pooling at the end
- Global Max Pooling before classification
- 32,832 params

Accuracy: 0.932
Precision: 0.927

Recall: 0.907

Conclusions

- 1. Using CNNs to identify plant disease is a viable option
- 2. Features extracted from general images in the vgg model were applicable to this problem

Next Steps

- 1. Generalize to broader images
- 2. Try more specifically targeted transfer learning
- 3. Implementation with hardware

Questions?