

行人重识别——基于GAN的方法

罗浩 浙江大学

行人重识别

企业ReID产品研发中的痛点

Generative adversarial networks (GAN)

Generative adversarial networks (GAN)

Randomly generated persons

Randomly generated birds

• 早期GAN生成的图像是无法控制的、质量很差的样本

CycleGAN (A→B)

• 判别损失

 $L_{GAN}(G_{AB},D_B,A,B) = \mathbb{E}_{b\sim B}[\log D_B(b)] + \mathbb{E}_{a\sim A}[\log \left(1-D_B(G_{AB}(a))
ight)]$

• 生成损失

$$L(G_{AB}, G_{BA}, A, B) = \mathbb{E}_{a \sim A}[||G_{BA}(G_{AB}(a)) - a||_{1}]$$

CycleGAN (A→B)

CycleGAN

常用的GAN方法

• GAN: 无法控制, 随机生成样本图像

• CGAN:可以给GAN进行条件约束生成图像

• Pix2pix:可以将A域和B域的成对图像进行转换

• CycleGAN:可以将A域和B域的任意图像进行转换

代表算法

- GAN
- CamStyle (CycleGAN)
- PTGAN
- SPGAN
- PNGAN

GAN+LSRO(第一篇)

Generated Image

LSRO

$$q_{LSR}(k) = \begin{cases} \frac{\varepsilon}{K} & k \neq y \\ 1 - \varepsilon + \frac{\varepsilon}{K} & k = y \end{cases},$$

$$l_{LSR} = -(1 - \varepsilon) \log (p(y)) - \frac{\varepsilon}{K} \sum_{k=1}^{K} \log (p(k)).$$

照片随机生成,ID信息不可靠

利用GAN网络随机生成行人图片,利用LSRO技术平滑ID标签,训练交叉熵损失

Z. Zheng et al., Unlabeled samples generated by GAN improve the person re-identification baseline in vitro, ICCV 2017.

CamStyle

利用CycleGAN来实现任意两个相机之间的风格转换

Zhong Z, Zheng L, Zheng Z, et al. Camera style adaptation for person re-identication. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). SALT LAKE CITY, UTAH, USA: IEEE, 2018. 5155-5166.

CamStyle

Label Smoothing Regularization Loss

Transferred Image

Label Distribution

利用LSRO技术对标签进行平滑,如 (0.01,0.01,0.9..., 0.01)

CamStyle

原始样本计算ID损失, 生成样本利用平滑标签计算交叉熵损失

PTGAN

PRID-cam

不同场景下采集的数据存在明显的偏差

Wei L, Zhang S, Gao W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 79-88.

PTGAN

通过将A场景的图像生成B场景的风格,提升A数据集训练的模型在B场景的性能,A数据集需要标注信息,B数据集无需标注信息

- · 利用PSPNet分割行人前景mask
- · 利用CycleGAN的思想进行图像风格转换

$$\mathcal{L}_{Style} = \mathcal{L}_{GAN}(G, D_B, A, B) + \mathcal{L}_{GAN}(\overline{G}, D_A, B, A) + \lambda_2 \mathcal{L}_{cyc}(G, \overline{G}),$$

• 计算mask区域生成损失,保持行人前景尽可能不变 $\mathcal{L}_{ID} = \mathbb{E}_{a \sim p_{data}(a)}[||(G(a) - a) \odot M(a)||_2] + \mathbb{E}_{b \sim p_{data}(b)}[||(\overline{G}(b) - b) \odot M(b)||_2],$

• 联合风格损失与生成损失

$$\mathcal{L}_{PTGAN} = \mathcal{L}_{Style} + \lambda_1 \mathcal{L}_{ID},$$

SPGAN

- 与PTGAN类似,利用source domain的数据生成target domain
- 解决不同场景下采集的数据间的明显偏差

Deng W, Zheng L, et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person reidentification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018, 1(2): 6.

SPGAN

PNGAN

利用GAN来生成固定姿态样本

Qian X, Fu Y, Xiang T, et al. Pose-Normalized Image Generation for Person Re-identification[J]. arXiv preprint arXiv:1712.02225, 2017.

PNGAN

- 利用GAN生成目标姿态的样本
- 原图和生成图分别进入两个ReID网络
- ·融合原图和生成图的特征作为最终特征,融合方式使用max池化

PNGAN

- (a) Eight canonical poses on Market-1501 (b) t-SNE visualization of different poses.
 - Inference阶段会生成8个标注姿态数据,加上原图共9个特征,之后融合9个特征。
 - ・ 涨2~3%

总结对比

						/9	
		<u>-</u>				CycleGAN	
算法	GAN	CycleGAN	PTGAN	SPGAN	PNGAN	7	
基础	GAN	CycleGAN	CycleGAN	CycleGAN	InfoGAN	PTGAN	
额外	标签平滑	标签平滑	前景分割	孪生网络	姿态估计	PT(
目标	数据增广	相机偏差	数据域偏差	数据域偏差	姿态偏差		
						SPGAN	
						PNGAN	

课后思考

1. GAN在ReID的产品研发中可以发挥哪些作用?

2. GAN生成的图像包含的ID信息是否是可靠的?

欢迎关注AI300学院

