Проверка статистических гипотез

Статистической гипотезой называется любое утверждение о виде или свойствах распределения наблюдаемых в эксперименте случайных величин.

Проверка статистических гипотез

Статистической гипотезой называется любое утверждение о виде или свойствах распределения наблюдаемых в эксперименте случайных величин.

Проверка статистической гипотезы состоит в том, чтобы сформулировать такое правило, которое позволило бы по результатам проведенных наблюдений принять или отклонить гипотезу.

Проверка статистических гипотез

Статистической гипотезой называется любое утверждение о виде или свойствах распределения наблюдаемых в эксперименте случайных величин.

Проверка статистической гипотезы состоит в том, чтобы сформулировать такое правило, которое позволило бы по результатам проведенных наблюдений принять или отклонить гипотезу.

Правило, согласно которому гипотеза принимается или отвергается, называется *критерием* проверки статистической гипотезы.

Гипотезу, которую мы проверяем, будем называть основной или нулевой гипотезой, и будем всегда обозначать $H_{\scriptscriptstyle 0}$.

. /

Гипотезу, которую мы проверяем, будем называть основной или *нулевой* гипотезой, и будем всегда обозначать $H_{\scriptscriptstyle 0}$.

Альтернативные или *конкурирующие* гипотезы будем обозначать $H_1,\ H_2,\ ...,\ H_m$.

однородности, если имеется две или более выборок случайных величин;

однородности, если имеется две или более выборок случайных величин;

независимости, если имеется выборка многомерной случайной величины;

однородности, если имеется две или более выборок случайных величин;

независимости, если имеется выборка многомерной случайной величины;

случайности, если есть предположения о независимости и одинаковом распределении наблюдений в выборке;

однородности, если имеется две или более выборок случайных величин;

независимости, если имеется выборка многомерной случайной величины;

случайности, если есть предположения о независимости и одинаковом распределении наблюдений в выборке;

о виде распределения, если есть предположения о законе распределения случайной величины.

Простая гипотеза – предполагает, что случайная величина подчиняется конкретной функции распределения.

.

Простая гипотеза – предполагает, что случайная величина подчиняется конкретной функции распределения.

Сложная гипотеза – предполагает принадлежность функции распределения некоторому множеству функций.

Простая гипотеза – предполагает, что случайная величина подчиняется конкретной функции распределения.

Сложная гипотеза – предполагает принадлежность функции распределения некоторому множеству функций.

Например, $X \sim N(0,1)$ - простая, $X \sim N(0,\sigma)$ - сложная

Простая гипотеза – предполагает, что случайная величина подчиняется конкретной функции распределения.

Сложная гипотеза – предполагает принадлежность функции распределения некоторому множеству функций.

Например, $X \sim N(0,1)$ - простая, $X \sim N(0,\sigma)$ - сложная гипотеза.

Статистические гипотезы

Решение принять или отвергнуть гипотезу $H_{_0}$ (т.е. принять альтернативную гипотезу $H_{_1}$) будем принимать по выборке.

Всё выборочное пространство R^n разбивается на два множества Ω_0 и Ω_1 : $R^n=\Omega_0 \bigcup \Omega_1, \ \Omega_0 \cap \Omega_1=\varnothing$.

При попадании выборочной точки в $\Omega_{_1}$ гипотеза $H_{_0}$ отвергается, при попадании в $\Omega_{_0}$ гипотеза $H_{_0}$ принимается.

Множество $\Omega_{\scriptscriptstyle 1}$ называется критической областью для гипотезы $H_{\scriptscriptstyle 0}$.

Множество $\Omega_{\scriptscriptstyle 0}$ называется доверительной областью для гипотезы $H_{\scriptscriptstyle 0}$.

ошибка первого рода - отвержение верной гипотезы;

ошибка первого рода - отвержение верной гипотезы;

ошибка второго рода - принятие неверной гипотезы.

ошибка первого рода - отвержение верной гипотезы;

ошибка второго рода - принятие неверной гипотезы.

Обычно ошибка 1-го рода – более важна.

ошибка первого рода - отвержение верной гипотезы;

ошибка второго рода - принятие неверной гипотезы.

Обычно ошибка 1-го рода – более важна.

При сужении критической области вероятность ошибки первого рода уменьшается; при этом возрастает вероятность ошибки второго рода, и наоборот.

Гипотеза <i>H</i> ₀	Решение	Обозначение вероятности	Название
Верна	Отвергается	α	Вероятность ошибки первого рода, уровень значимости
	Принимается	1–α	Доверительная вероятность
Неверна	Принимается	β	Вероятность ошибки второго рода
	Отвергается	1–β	Мощность критерия

Будем строить критическую область с помощью функции от выборки $S(\mathbf{X}_n)$ - статистики критерия.

Критерий показывает «непохожесть» наблюдений на гипотетический «эталон».

Гипотеза H_0 отвергается, если наблюдаемая статистика критерия попадает в критическую область W_{α} .

$$\Omega_{\scriptscriptstyle 1} = \left\{ \mathbf{X}_{\scriptscriptstyle n} : S(\mathbf{X}_{\scriptscriptstyle n}) \in W_{\scriptscriptstyle \alpha} \right\}$$

Виды критических областей для статистики критерия:

- правосторонняя критическая область $W_{\!\scriptscriptstyle lpha} \! = \! \left(t_{\!\scriptscriptstyle lpha}, \infty \right)$;
- левосторонняя $W_{\alpha} = (-\infty, t_{\alpha});$
- двусторонняя $W_{\!\scriptscriptstyle lpha} \! = \! \left(-\infty, t_{\!\scriptscriptstyle lpha_{\!\scriptscriptstyle 1}} \right) \cup \left(t_{\!\scriptscriptstyle lpha_{\!\scriptscriptstyle 2}}, \infty \right)\!$, $\alpha_{\!\scriptscriptstyle 1} + \alpha_{\!\scriptscriptstyle 2} = \alpha$.

Зависимость критической области от α означает, что

$$P\left\{S(\mathbf{X}_{_{n}})\in W_{_{lpha}}\left|H_{_{0}}
ight\}=lpha$$
 ,

где α - это вероятность ошибки первого рода.

Вероятность ошибки первого рода α задается исследователем.

Гипотеза H_0 не отвергается, если наблюдаемая статистика критерия попадает в доверительную область $W_{_{1-\alpha}}$.

$$\Omega_0 = \left\{ \mathbf{X}_n : S(\mathbf{X}_n) \in W_{1-lpha}
ight\}, \ W_lpha \bigcup W_{1-lpha} = W$$

Вероятность ошибки второго рода зависит от того, какая альтернативная гипотеза верна

$$P\left\{S(\mathbf{X}_{_{n}})\in W_{_{1-lpha}}\left|H_{_{1}}
ight\}=eta$$
 ,

$$\beta = P\{S(\mathbf{X}_n) \in W_{1-\alpha} \mid H_1\}$$

Проверка гипотезы: способ рассуждения «от противного»:

Предположим, H_0 - верна. Выберем α - малое (например, 0.001) и W_{α} такое, что $P\{S(\mathbf{X}_n) \in W_{\alpha} \mid H_0\}$) = α .

То есть попадание в W_{α} «практически невозможно», если H_0 верна (принцип «практической невозможности» маловероятных событий).

Если все же $S(\mathbf{X}_n) \in W_{\alpha}$, то получили противоречие, значит H_0 следует отвергнуть.

Вычисление достигаемого уровня значимости

Достигаемый уровень значимости (р-значение или p-value) определяется как вероятность попадания статистики критерия:

- ullet в область $\left(S(\mathbf{X}_n),\infty\right)$, если критическая область правосторонняя;
- ullet в область $\left(-\infty,S(\mathbf{X}_n)
 ight)$, если критическая область левосторонняя;
- где $S(\mathbf{X}_n)$ вычисленное значение статистики по реализации выборки.

Если критическая область двусторонняя, то однозначного способа вычисления достигаемого уровня значимости нет. Например, можно вычислять *p*-value как

$$2 \cdot \min(p, 1-p)$$
,

где
$$p=P\left\{S\in\left(S(\mathbf{X}_{_{n}}),\infty\right)\Big|H_{_{0}}
ight\}$$
.

Гипотеза отвергается, если достигаемый уровень значимости оказывается меньше заданной вероятности ошибки первого рода:

$$p$$
- $value < \alpha$

- не нужно заранее фиксировать уровень значимости и определять критическую область для значений статистики критерия.
- p-value характеризует "степень уверенности" в принимаемом решении, т.е. чем меньше p-value, тем больше оснований для отвержения основной гипотезы.
- При верной гипотезе H_0 p-value является случайной величиной, равномерно распределенной на интервале [0,1]
- ullet При ложной гипотезе $H_{\scriptscriptstyle 0}$ p-value стремится к нулю с ростом объема выборки

Принятие гипотезы означает, что она не противоречит имеющимся наблюдениям. При этом могут существовать и другие гипотезы, которые также не противоречат наблюдениям.

Если гипотеза отвергается, то это означает, что она не согласуется с имеющимися наблюдениями, при условии, что справедливы теоретические предположения, которые были использованы при ее проверке.

Выбор критерия проверки статистической гипотезы

- 1. Критерий должен быть состоятельным, т.е. его мощность должна стремиться к единице с ростом объема выборки: $1-\beta_{r}\to 1,\ n\to\infty$
- 2. Критерий должен быть *несмещенным*, т.е. мощность должна быть больше, чем вероятность ошибки первого рода: $1-\beta_n>\alpha$
- 3. Критерий должен обладать *наибольшей мощностью* при заданном объеме выборки и заданном уровне значимости критерия: $1-\beta_n \to \max$

Проверка гипотезы о виде распределения

Простая гипотеза:

$$H_0: F_X(x) = F(x)$$

Сложная гипотеза:

$$H_0: F_X(x) = F(x,\theta)$$

Для проверки гипотезы о виде распределении используются *критерии согласия*.

Критерий Колмогорова

Пусть наблюдается непрерывная случайная величина Расстояние между эмпирическим $F_n\left(x\right)$ и теоретическим $F\left(x,\;\theta\right)$ распределениями

$$D_{n} = \sup_{|x| < \infty} |F_{n}(x) - F(x, \theta)|,$$

Статистика с поправкой Большева:

$$S_{k} = \frac{6nD_{n} + 1}{6\sqrt{n}},$$

где
$$D_n = \max(D_n^+, D_n^-), \qquad D_n^+ = \max_{1 \leq i \leq n} \left\{ rac{i}{n} - F(X_{(i)}, heta)
ight\},$$

$$D_{\scriptscriptstyle n}^- = \max_{1 \leq i \leq n} \bigg\{ F(X_{(i)}, \theta) - \frac{i-1}{n} \bigg\},$$

и $X_{(1)}, X_{(2)}, ..., X_{(n)}$ — вариационный ряд.

Критическая область - правосторонняя

Простая гипотеза

При
$$n\to\infty$$
: $P(S_k>t_\alpha\big|H_0)\to 1-K(t_\alpha)=1-\sum_{k=-\infty}^{+\infty}(-1)^ke^{-2k^2t_\alpha^2}=\alpha$.
$$t_\alpha=K^{-1}(1-\alpha)$$

Проверка H_0 : для заданного α , по таблице распределения Колмогорова, определяется t_{α} .

Если $S_k > t_{\alpha}$, то H_0 отвергается.

Таблица распределения Колмогорова

В таблице показаны квантили $t_{1-\alpha} = K^{-1}(1-\alpha)$ функции распределения Колмогорова.

	$\alpha = 0,1$	$\alpha = 0.05$	$\alpha = 0.01$
t_{1-lpha}	1,2238	1,3581	1,6276

Сложная гипотеза

В случае сложной гипотезы статистика критерия Колмогорова подчиняется различным законам, в зависимости от вида распределения основной гипотезы и оцениваемых параметров.

При
$$n \to \infty$$
: $P(S_k > t_\alpha \big| H_0) \to 1 - G(t_\alpha) = \alpha$.
$$t_\alpha = G^{-1}(1 - \alpha)$$

Проверка H_0 : для заданного α , по таблице распределения Колмогорова при сложной гипотезе определяется t_{α} .

Если $S_k > t_\alpha$, то H_0 отвергается.

Таблица распределения статистики Колмогорова при проверке сложных гипотез

В таблице показаны квантили $t_{1-\alpha} = G^{-1}(1-\alpha)$ функции распределения статистики критерия Колмогорова при проверке сложной гипотезы, когда параметры распределения при верной гипотезе H_0 оцениваются по методу максимального правдоподобия.

Nº	Распределение	$\alpha = 0,1$	$\alpha = 0.05$	$\alpha = 0.01$
1	Экспоненциальное	0,9841	1,0794	1,2838
2	Лапласа	0,8710	0,9497	1,1206
3	Нормальное	0,8333	0,9042	1,0599
4	Логистическое	0,7451	0,8036	0,9261

Критерии типа ω^2

В критериях типа ω^2 расстояние между гипотетическим и истинным распределениями рассматривают в квадратичной метрике.

Статистика критерия

$$\omega_n^2 \left[\psi(F) \right] = \int\limits_{-\infty}^{\infty} \left\{ E \left[F_n(x) \right] - F(x) \right\}^2 \psi(F(x)) dF(x) = \\ = \frac{2}{n} \sum_{i=1}^n \left\{ g \left[F(x_i) \right] - \frac{2i-1}{2n} f \left[F(x_i) \right] \right\} + \int\limits_0^1 (1-t)^2 \psi(t) dt, \\ \text{где } f(t) = \int\limits_0^1 \psi(s) ds, \ g(t) = \int\limits_0^1 s \psi(s) ds \, .$$

При выборе $\psi(t) \equiv 1$ получается статистика критерия Крамера-Мизеса-Смирнова:

$$S_{\omega} = n\omega_{n}^{2} = \frac{1}{12n} + \sum_{i=1}^{n} \left\{ F(X_{(i)}, \theta) - \frac{2i-1}{2n} \right\}^{2}$$

При выборе $\psi(t) \equiv 1 \, / \, t (1-t)$ получается статистика критерия Андерсона-Дарлинга:

$$\begin{split} S_{\Omega} &= n\Omega_{n}^{2} = \\ -n - 2\sum_{i=1}^{n} \left\{ \frac{2i-1}{2n} \ln F(X_{(i)}, \theta) + \left(1 - \frac{2i-1}{2n}\right) \ln(1 - F(X_{(i)}, \theta)) \right\}. \end{split}$$

Критическая область - правосторонняя

Статистики $S_{_{\!\varOmega}}$ и $S_{_{\!\varOmega}}$ при простой гипотезе в пределе подчиняется законам $a_{_{\!1}}(t)$ и $a_{_{\!2}}(t)$, соответственно.

В случае сложной гипотезы – различным законам, в зависимости от вида распределения, числа и типа оцениваемых параметров, значений параметров формы, от метода оценивания.

Критерий согласия Пирсона

Пусть A_1, A_2, \ldots, A_k – полная группа попарно несовместных событий, p_1, p_2, \ldots, p_k – их вероятности, $0 < p_i < 1, i = 1, ..., k$. Обозначим $M_1, M_2, ..., M_k$ - частоты этих событий в nнезависимых испытаниях, $\sum M_i = n$.

Пусть

$$K = \sum_{i=1}^{k} \frac{(M_i - np_i)^2}{np_i}.$$

Теорема Пирсона.
$$K \to \chi^2_{k-1}$$
 при $n \to \infty$.

Применения теоремы:

Пусть Х - дискретная случайная величина со значениями

$$x_1, x_2, \ldots, x_k$$

Гипотеза H_0 : $P(X = x_i) = p_i, i = 1,...,k$. По выборке определены частоты

$$m_1, m_2, ..., m_k$$
.

Можно применить теорему Пирсона, где $A_i = \{X = x_i\}, i = 1,...,k$, m_i - реализация M_i . Тогда критерий:

$$K = \sum_{i=1}^{k} \frac{(M_i - np_i)^2}{np_i} \sim \chi_{k-1}^2.$$

Так как

$$M_i \sim Bin(n, p_i), i = 1,...,k, \text{ M } EM_i = np_i,$$

то $M_i \approx np_i$ (если гипотеза верна) $\Rightarrow (M_i - np_i)^2 \approx 0 \Rightarrow$

K мало (если np_i достаточно большое).

Процедура проверки гипотезы H_0 :

- 1. Задается уровень значимости α.
- 2. По таблицам χ^2 -распределения находится критическое значение $\chi^2_{cr}(\alpha, k-1)$.

3. Вычисляется
$$K_{\text{набл}} = \sum_{i=1}^{k} \frac{(m_i - np_i)^2}{np_i}$$
.

4. Если $K_{\text{набл}} > \chi_{cr}^2$, то H_0 отвергается; если $K_{\text{набл}} \leq \chi_{cr}^2$, то H_0 принимается.

Замечание. Если для некоторого i теоретическая частота np_i мала, то следует объединить значение x_i с некоторым другим (соседним) значением x_i . Обычно требуют: $np_i > 5$.

Пример. Монету подбросили 100 раз; из них 55 раз выпал герб. Проверить гипотезу

$$H_0: P(герб) = P(решка) = 0.5$$

на уровне значимости $\alpha = 0.05$.

 $k=2,\,n=100,\,$ теоретические частоты: $np_1=np_2=50.$

$$K_{\text{набл}} = \frac{(55-50)^2}{50} + \frac{(45-50)^2}{50} = \frac{25}{50} + \frac{25}{50} = 1.$$

$$\chi_{cr}^2(0.05,1) = 3.84.$$

Так как $K_{\text{набл}} < \chi^2_{cr}$, то гипотеза H_0 не противоречит наблюдениям.

Пусть X - непрерывная случайная величина.

Выдвигается гипотеза $X \sim F(x, \theta)$, где θ - задано.

Разобьем ось Ox на интервалы Δ_i такие, чтобы

постулируемые вероятности: $p_i = P(X \in \Delta_i), i = 1,...,k$

были достаточно велики (обычно требуют $np_i > 5$).

Тогда событие $A_i = \{X \in \Delta_i\}$. Гипотеза H_0 :

$$P(X \in \Delta_i) = p_i, i = 1,...,k$$
.

Проверка гипотезы - аналогично предыдущему.

Замечание. Если вероятности зависят от нескольких неизвестных параметров:

$$p_i = p_i(\theta_1, ..., \theta_r), i = 1, ..., k,$$

причем эти параметры оцениваются по той же самой выборке, то статистика Пирсона $K \xrightarrow[n \to \infty]{} \chi^2_{k-1-r}$.

Выборка изображена графически:

Выборка изображена графически:

$$n$$
 = 15, H_0 = $X \sim U(0,10)$ - равномерное распределение; $\Delta_i = 10/3, \, i = 1,2,3;$

Выборка изображена графически:

$$n = 15$$
, $H_0 = X \sim U(0,10)$ - равномерное распределение;

$$\Delta_i = 10/3, i = 1, 2, 3;$$

$$p_1 = p_2 = p_3 = 1/3$$
; $np_i = 15/3 = 5$;

Выборка изображена графически:

n = 15, $H_0 = X \sim U(0,10)$ - равномерное распределение;

$$\Delta_i = 10/3, i = 1, 2, 3;$$

$$p_1 = p_2 = p_3 = 1/3; \ np_i = 15/3 = 5;$$
 $K_{\text{набл}} = \frac{(3-5)^2}{5} + \frac{(8-5)^2}{5} + \frac{(4-5)^2}{5} = \frac{14}{5} = 2.8$

Выборка изображена графически:

n = 15, $H_0 = X \sim U(0,10)$ - равномерное распределение;

$$\Delta_i = 10/3, i = 1, 2, 3;$$

$$p_1 = p_2 = p_3 = 1/3; \ np_i = 15/3 = 5;$$
 $K_{\text{набл}} = \frac{(3-5)^2}{5} + \frac{(8-5)^2}{5} + \frac{(4-5)^2}{5} = \frac{14}{5} = 2.8$

$$\chi_{cr}^2(0.05,2) = 6.$$

Выборка изображена графически:

n = 15, $H_0 = X \sim U(0,10)$ - равномерное распределение;

$$\Delta_i = 10/3, i = 1, 2, 3;$$

$$p_1 = p_2 = p_3 = 1/3; \ np_i = 15/3 = 5;$$

$$K_{\text{HaGD}} = \frac{(3-5)^2}{5} + \frac{(8-5)^2}{5} + \frac{(4-5)^2}{5} = \frac{14}{5} = 2.8$$

$$\chi_{cr}^2(0.05,2) = 6.$$

Так как $K_{\text{набл}} < \chi^2_{cr}$, то гипотеза H_0 не противоречит наблюдениям; т.е. выборка согласуется с равномерным распределением ($\alpha = 0.05$).

Пусть $X \sim N(a, \sigma)$, параметры неизвестны.

Пусть $X \sim N(a,\sigma)$, параметры неизвестны. Гипотеза $H_0 = "a = a_0"$, где a_0 - заданное число.

Пусть $X \sim N(a, \sigma)$, параметры неизвестны. Гипотеза $H_0 = "a = a_0"$, где a_0 - заданное число.

По свойству распределения Стьюдента

$$T = \frac{\overline{X} - a_0}{S} \sqrt{n - 1} \sim t_{n - 1},$$

если H_0 верна. В качестве критерия возьмем T.

Пусть $X \sim N(a, \sigma)$, параметры неизвестны. Гипотеза $H_0 = "a = a_0"$, где a_0 - заданное число.

По свойству распределения Стьюдента

$$T = \frac{\overline{X} - a_0}{S} \sqrt{n - 1} \sim t_{n - 1},$$

если H_0 верна. В качестве критерия возьмем T.

Таким образом, если H_0 верна, то $P(|T|>t_{cr})=\alpha$, где α - уровень значимости.

Пусть $X \sim N(a, \sigma)$, параметры неизвестны. Гипотеза $H_0 = "a = a_0"$, где a_0 - заданное число.

По свойству распределения Стьюдента

$$T = \frac{\overline{X} - a_0}{S} \sqrt{n - 1} \sim t_{n - 1},$$

если H_0 верна. В качестве критерия возьмем T.

Таким образом, если H_0 верна, то $P(|T|>t_{cr})=\alpha$, где α - уровень значимости.

Для заданного малого α по таблице двухсторонних критических значений Стьюдента найдем $t_{cr}(\alpha, n-1)$.

Пусть $X \sim N(a,\sigma)$, параметры неизвестны. Гипотеза $H_0 = "a = a_0 "$, где a_0 - заданное число.

По свойству распределения Стьюдента

$$T = \frac{\overline{X} - a_0}{S} \sqrt{n - 1} \sim t_{n - 1},$$

если H_0 верна. В качестве критерия возьмем T.

Таким образом, если H_0 верна, то $P(|T|>t_{cr})=\alpha$, где α - уровень значимости.

Для заданного малого α по таблице двухсторонних критических значений Стьюдента найдем $t_{cr}(\alpha, n-1)$.

Если $|T_{{\it Ha}\delta\it{n}}|>t_{\it cr}$, то H_0 отвергается, если $|T_{{\it Ha}\delta\it{n}}|\le t_{\it cr}$, то H_0 принимается.

$$T = \frac{\overline{X} - a_0}{\widetilde{S}} \sqrt{n} ,$$

где \tilde{S}^2 - исправленная дисперсия.

$$T = \frac{\overline{X} - a_0}{\widetilde{S}} \sqrt{n} ,$$

где \tilde{S}^2 - исправленная дисперсия.

$$T = \frac{\overline{X} - a_0}{\widetilde{S}} \sqrt{n} ,$$

где \tilde{S}^2 - исправленная дисперсия.

$$\overline{x} = \frac{1}{6}(3+5+2+3+3+2) = 3,$$

$$T = \frac{\overline{X} - a_0}{\widetilde{S}} \sqrt{n} ,$$

где \tilde{S}^2 - исправленная дисперсия.

$$\overline{x} = \frac{1}{6}(3+5+2+3+3+2) = 3,$$

$$S^2 = \frac{1}{6}(3^2+5^2+2^2+3^2+3^2+2^2) - 3^2 = 1,$$

$$T = \frac{\overline{X} - a_0}{\widetilde{S}} \sqrt{n} ,$$

где \tilde{S}^2 - исправленная дисперсия.

$$\overline{x} = \frac{1}{6} (3+5+2+3+3+2) = 3,$$

$$S^2 = \frac{1}{6} (3^2+5^2+2^2+3^2+3^2+2^2) - 3^2 = 1,$$

$$T_{\text{HaGR}} = \frac{3-2}{1} \sqrt{5} \approx 2.23, \quad t_{cr}(0.05,5) = 2.57,$$

$$T = \frac{\overline{X} - a_0}{\widetilde{S}} \sqrt{n} ,$$

где \tilde{S}^2 - исправленная дисперсия.

$$\overline{x}=rac{1}{6}ig(3+5+2+3+3+2ig)=3,$$
 $S^2=rac{1}{6}ig(3^2+5^2+2^2+3^2+3^2+2^2ig)-3^2=1,$ $T_{ ext{Ha}igotimes n}=rac{3-2}{1}\sqrt{5}pprox 2.23, \quad t_{cr}(0.05,5)=2.57,$ $|T_{ ext{Ha}igotimes n}|< t_{cr} \implies H_0$ принимается.