Метод опорных векторов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Найдите коэффициенты λ_i опорных векторов и сдвиг b, для классификации по формуле $class(x) = sign(\sum_i y_i \cdot \lambda_i \cdot k(x,x_i) + b)$, где x — это векторное описание запрашиваемого объекта, а k — функция ядра.

Формат входных данных

В первой строке находится целое число N (1 $\leqslant N \leqslant 100$) — число объектов в обучающем множестве.

Следующие N строк содержат описание объектов по одному объекту на строке. i-й объект описывается N+1 целым числом: первые N из них $K_{i,j}$ ($|K_{i,j}| \le 10^9$) — значение функции ядра между i-м и j-м объектом, последнее Y_i ($Y_i = \pm 1$) — класс i-го объекта.

Далее идёт строка содержащая целое число C $(1\leqslant C\leqslant 10^5)$ — ограничение на коэффициенты λ_i .

Формат выходных данных

Выведите N+1 число с плавающей точкой: первые N чисел — коэффициенты λ_i ($0 \le \lambda_i \le C$, $\sum \lambda_i \cdot Y_i = 0$) соответствующие объектам из тренировочного множества, последнее число b ($|b| \le 10^{12}$) — коэффициент сдвига.

Система оценки

Пусть $Score=100\cdot \frac{F-B}{J-B}$, где $F-F_1$ -мера вашего решения, $J-F_1$ -мера решения эталона с запасом $\approx 1\%,\, B-F_1$ -мера наивного решения с запасом $\approx 2\%.$

Тогда
$$Verdict = \begin{cases} Ok & Score \geqslant 100 \\ PartiallyCorrect & 0 \leqslant Score < 100 \\ WrongAnswer & Score < 0 \end{cases}$$

Пример

стандартный ввод	стандартный вывод
6	0.0
5 4 6 9 11 10 -1	0.0
4 5 6 9 10 11 -1	1.0
6 6 8 12 14 14 -1	1.0
9 9 12 18 21 21 1	0.0
11 10 14 21 25 24 1	0.0
10 11 14 21 24 25 1	-5.0
1	
_	