EE23BTECH11054 - Sai Krishna Shanigarapu*

Exercise 9.2

13 If the sum of n terms of an A.P. is $3n^2 + 5n$ and its m^{th} term is 164, find the value of m.

Solution: :

$$Y(z) = \sum_{n=0}^{\infty} y(n) z^{-n}$$

$$= \frac{2(4-z^{-1})}{(1-z^{-1})^3}$$

$$\{z \in \mathbb{C} : |z| > 1\}$$

$$(2)$$

$$U(z) = \frac{1}{1-z^{-1}}$$

$$\{z \in \mathbb{C} : |z| > 1\}$$

$$(3)$$

$$X(z) = \frac{Y(z)}{U(z)} \tag{4}$$

$$x(n) = Z_z^{-1} \left[2\left(\frac{1}{1-z^{-1}}\right) + 6\left(\frac{1}{1-z^{-1}}\right)^2 \right]$$
(5)
= $(6n+8)(u(n))$

$$164 = (6m + 8)(u(n)) \tag{7}$$

$$\therefore m = 26$$

			Stem Plo	t of x(n)	= 8 + 6r	1	
175 -							• 1
150 -						,	
125 -					,		
(L) X				.	<u>† </u>		
75 -							
50 -		. 1					
25 -	1						
0 -							
	Ō	5	10	15 n	20	25	5 30

Symbol	Remarks		
$y(n) = (3n^2 + 11n + 8)(u(n))$	Sum of n terms		
x(m-1)	164		
$y\left(n\right)$	x(n) * u(n)		
$Z_z^{-1}\left(\frac{1}{1-z^{-1}}\right)$	$u\left(n\right)$		
$Z_z^{-1} \left(\frac{1}{1-z^{-1}}\right)^2$	(n+1)(u(n))		

TABLE I PARAMETERS

Fig. 1. Plot of x(n) vs n