Task 1 Classification

Predict whether the student of UCU will go to heaven or hell based on his/her studying characteristics.

Task 2 Regression

The data was generated artificially to show the difference between model with and without L1 and L2 regularization. This dataset consist of 2 files - train_regression.csv and test_regression.csv. Use train_regerssion for training and validation of your models and test_regression for testing=)

General pipeline for both tasks

- 1. Explore data
 - a. Find the hidden patterns and shapes of the data by plotting and printing it which will help to do the next step.
 - b. Perform feature generation and selection
- 2. Train models
 - a. Modify your implementations of the logistic(task 1) and linear(task 2) regressions from the previous homeworks by adding L1 and L2 regularization techniques to loss functions.
 - b. Try them on the datasets
 - c. Use Logistic(in task 1) and Linear(in task 2) regressions from sklearn (compare the results with your implementation).
- 3. Compare results
 - a. Visualize results of the trained models (decision boundary in classification and fitted line in regression problem) with and without regularization and with different lambdas(in range from 0 to 150, integers only).
 - b. Describe which regularization technique fits the best for each dataset and explain why it so.
- 4. Model selection
 - a. Use different validation techniques such as holdout, K-Fold Cross-Validation and Leave-One-Out Cross-Validation (LOOCV) to choose your best model.
- 5. Evaluate the best models using the following metrics
 - a. For classification:
 - i. Classification Accuracy
 - ii. Precision, recall
 - iii. Confusion matrix: TP, TN, FP, FN
 - iv. F1 score
 - v. ROC Curves and AUC
 - b. For regression:
 - i. MSE
 - ii. RMSE
 - iii. MAE
 - iv. R Squared

- v. Adjusted R Squared
- 6. Explain what every metric tells about the performance of your classifier/regressor

Prepare the submission as two separate jupyter notebooks with all necessary code, comments and explanation. Please keep it clean and structured.