SRN								
		 _		_	_	_	_	

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE19EC201

Dec 2021: END SEMESTER ASSESSMENT (ESA) B TECH 3rd SEMESTER UE19EC201 – Mathematics for Electronics Engineers

I	ime:	3 Hrs Answer All Questions Max Marks: 100				
1	a)	Obtain analytic function as a function of z given $u-v=(x-y)(x^2+4xy+y^2).$				
	b)	Expand $f(z) = e^z$ about the point $z = a$ using Taylor series.				
	c)	If C is the circle $ z =2$, evaluate $\int_C \frac{ze^z}{(z^2-1)}dz$ using residue theorem.	8			
2	a)	An sub attempts to sink an aircraft carrier. It will be successful only if two or more torpedoes hit the carrier. If the sub fires three torpedoes and the probability of a hit is 0.4 for each torpedo, what is the probability that the carrier will be sunk?	7			
	b)	Draw the CDF and PMF of Rolling a die with $\Omega = \{1,2,3,4,5,6\}$, and $X = \{1,2,3,4,5,6\}$. What is the probability of X>4.	7			
	c)	List down any three properties of CDF and PMF.	6			
3	a)	Write a note on exponential and Uniform R.V with their expression of CDF, PDF with examples/applications.	8			
	b)	Find the Moment Generating function of Binomial RV and hence find the expectation.	6			

_	,	SRN SRN						
	c)	Given that a RV X has a CDF $F_X(x)$, calculate the CDF of the random variable $Y=X^2$.	6					
	_							
4	a)	Given two independent R.V X and Y with pdfs $f_X(x)$ and $f_Y(y)$, respectively, show that the PDF of $Z=X+Y$ is $f_Z(z)=f_X(x)*f_Y(z)$.	8					
	b)	Show that X and Y are independent if $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.	4					
	c)	List down any four properties of covariance matrix of Gaussian random vectors.	8					
_								
5	a)	Show that the random process $X(t) = Acos(\omega_0 t + \theta)$ is WSS if it is assumed that A and ω_0 are constants and θ is uniformly distributed random variable on the interval $(0,2\pi)$.	8					
	b)	Mention any four properties of power spectral density.	4					
-	c)	Find the mean and mean square value of system response of a LTI system.	8					

Т