The Relational Model (1)

EGCI321: LECTURE04 (WEEK 02)

Review: Network and Hierarchical Models

Structural information is encoded implicitly using pointers.

Consequences:

- Difficult to separate conceptual and physical schemas
- Queries must explicitly navigate the data graph \Rightarrow procedural queries
- Procedural (not semantic) specification of integrity constraints

EGCl321

Relational Model

All information is organized in (flat) relations.

Features:

- Simple and clean data model
- Powerful and declarative query/update languages
- Semantic integrity constraints
- Data independence

Note: Semantic integrity constraints are used to help ensure that a database accurately reflects the real world in structure and content.

EGCI321

Relational Database: Definitions

Relational database: a set of relations

Relation: made up of 2 parts:

Instance : a table, with rows and columns.

```
#Rows = cardinality, #fields = degree / arity.
```

- Schema: specifies name of relation, plus name and type of each column.
 - e.g. Students(sid: string, name: string, login: string, age: integer, gpa: real).

Think of a relation as a set of rows or tuples (i.e., all rows are distinct).

tuple: computing a row of values in a relational database

EGCI321

EGCl321

Relation Model: Formal Definition

- Universe a set of atomic value D with equality (=)
- **Domain** a name D with a set of values $dom(D) \subseteq D$
- Relation schema: $R(A_1:D_1, A_2:D_2, ..., A_k:D_k)$ with
 - name R
 - $A_1, ..., A_k$ a set of distinct attribute names
 - D_1 , ..., D_k a collection of (not necessarily distinct) domain names
 - instance: a finite relation

$$\mathbf{R} \subseteq \text{dom}(D_1) \times ... \times \text{dom}(D_k)$$

Database

- schema: finite set of uniquely-named relation schemas
- instance: a relation R_i for each R_i

Note: Intention of relation: The associated relation schema.

Extension of a relation: The associated set of tuples.

Relation Model: Properties

Note: Relation schema have named and typed attributes

Relational instances are finite

Properties of a relation:

- 1. Based on (finite) set theory
 - Attribute ordering: not strictly necessary
 - Value oriented: tuples identified by attribute values
 - Instance has set semantics:
 - No ordering among tuples
 - No duplicate tuples

- 2. All attribute values are atomic
- 3. Degree = # of attributes in schema
- 4. Cardinality = # of tuples in instance

EGCI321

Tables

- Holds related entities or entity set
- Also called relations
- Comprised of rows and columns

Table Characteristics

- Two-dimensional structure with rows and columns
- Rows (tuples) represent single entity
- Columns represent attributes
- Row/column intersection represents single value
- Tables must have an attribute to uniquely identify each row
- Column values all have same data format
- Each column has range of values called attribute domain
- Order of the rows and columns is immaterial to the **DBMS**

EGCI321

Example Tables

l	STU_NUM	STU_LNAME	STU_FNAME	STU_INIT	STU_DOB	STU_HRS	STU_C
	321452	Bowser	William	С	Saturday, February 12, 1972	42	So
	324257	Smithson	Anne	K	Tuesday, November 15, 1977	81	Jr
	324258	Brewer	Juliette		Tuesday, August 23, 1966	36	So
	324269	Oblonski	Walter	Н	Sunday, September 16, 1973	66	Jr
	324273	Smith	John	D	Friday, December 30, 1955	102	Sr
	324274	Katinga	Raphael	P	Thursday, October 21, 1976	114	Sr
	324291	Robertson	Gerald	T	Wednesday, April 08, 1970	120	Sr
ı	324299	Smith	John	В	Wednesday, November 30, 1983	15	Fr

Simple Relational Database

Table name: PRODUCT Database name: CH2 SALE CO Primary key: PROD CODE Foreign key: VEND CODE PROD_PRICE PROD_ON_HAND PROD_CODE PROD_DESCRIPT VEND_CODE 001278-AB Claw hammer \$12.95 232 ± 123-21UUY Houselite chain saw, 16-in. bar \$189.99 235 + QER-34256 Sledge hammer, 16-lb. head 231 \$18.63 15 SRE-657UG Rat-tail file \$2.99 232 ZZX/3245Q 235 Steel tape, 12-ft. length \$6.79 Table name: VENDOR Primary key: VEND_CODE Foreign key: none link VEND CODE VEND_CONTACT **VEND AREACODE** VEND_PHONE 230 Shelly K. Smithson 608 555-1234 231 James Johnson 615 123-4536 608 232 Annelise Crystall 224-2134 233 Candice Wallace 904 342-6567 234 Arthur Jones 615 123-3324 235 Henry Ortozo 615 899-3425

Example: A Bibliography Database

Database Schema:

- author (aid: int, name: string)
- wrote (author: int, publication: int)
- publication (pubid: int, title: string)
- book (pubid: int, publisher: string, year:int)
- Journal (pubid:int, volume:int, no:int, year:int)
- proceedings (pubid:int, year:int)
- article (pubid:int, crossref:int, startpage:int, endpage:int)

Note: Relational schemas are sometimes abbreviated by omitting the attribute domains.

Example: A Bibliography Database

Sample database instance:

Database Schema:

- author (aid: int, name: string)
- wrote (author: int, publication: int)
- publication (pubid: int, title: string)
- book (pubid: int, publisher: string, year:int)
- journal(pubid:int, volume:int, no:int, year:int)
- proceedings (pubid:int, year:int)
- article (pubid:int, crossref:int, startpage:int, endpage:int)

```
author = \{ (1, John), (2, Sue) \}
       wrote = \{(1,1),(1,4),(2,3)\}
publication = { (1, Mathematical Logic),
                       (3, Trans. Databases),
                       (2, Principles of DB Syst.),
                       (4, Query Languages)
         book = \{ (1, AMS, 1990) \}
     journal = \{ (3, 35, 1, 1990) \}
proceedings = \{ (2,1995) \}
     article = \{ (4, 2, 30, 41) \}
```

Example: A Bibliography Database

Sample database instance (tabular form):

author

aid	name
1	John
2	Sue

wrote

author	publication
1	1
1	4
2	3

publication

pubid	title
1	Mathematical Logic
3	Trans. Databases
2	Principles of DB Syst.
4	Query Languages

Example Instance of Students Relation

Cardinality = 3, degree = 5, all rows distinct

Do all columns in a relation instance have to be distinct?

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

Relations vs. SQL Tables

Discrepancies between Relational Model and SQL

- 1. Semantics of Instances
 - Relations are sets of tuples
 - Tables are multisets (bags) of tuples
- 2. Unknown values

 SQL data model defines a particular value null (intended to mean "unknown") which has some special properties

Relational Query Languages

- A major strength of the relational model: supports simple, powerful querying of data.
- Queries can be written intuitively, and the DBMS is responsible for efficient evaluation.
 - Key: precise semantics for relational queries.
 - Allows the optimizer to extensively re-order operations, and still ensure that the answer does not change.

The SQL Query Language

Developed by IBM (system R) in the 1970s

Need for a standard since it is used by many vendors

Standards:

- SQL-86
- SQL-89 (minor revision)
- SQL-92 (major revision)
- SQL-99 (major extensions, current standard)

Relational Query Operators

Relational algebra determines table manipulations

Key operators

- SELECT
- PROJECT
- JOIN

Other operators

- INTERSECT
- UNION
- DIFFERENCE
- PRODUCT
- DIVIDE

The SQL Query Language

To find all 18 years old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@ee	18	3.2

To find just names and logins, replace the first line:

SELECT S.name, S.login

Querying Multiple Relations

What does the following query compute?

SELECT S.name, E.cid

FROM Students S, Enrolled E

WHERE S.sid=E.sid AND E.grade="A"

Given the following instance of Enrolled (is this possible if the DBMS ensures referential integrity?):

we get:

sid	cid	grade
	Carnatic101	С
1	Reggae203	В
53650	Topology112	Α
53666	History105	В

S.name	E.cid
Smith	Topology112

Integrity Constraints

A relational schema captures only the structure of relations

Idea: Extend relational/database schema with rules called constraints. An instance is only valid if it satisfies all schema constraints.

Reasons to use constraints:

- 1. Ensure data entry/modification respects database design
 - Shift responsibility from applications to DBMS
- 2. Protect data from bugs in applications

EGCI321 21

Types of Integrity Constraints

Tuple-level

- Domain restrictions
- Attribute comparisons

Relation-level

- Key constraints
 - Superkey: a set of attributes for which no pair distinct tuples in the relation will ever agree on the corresponding values
 - Candidate key: a minimal superkey (a minimal set of attributes that uniquely identifies a tuple)
 - Primary key: a designated candidate key
- Functional dependencies, etc.

Key constraints: Example

employee_info:

ID	FName	LName	Parent_Name	Address	Tel.
123456	Bob	Cat	Mike Cat	Main st.	111-1234
234567	Mary	Lamb	Sam Lamb	Lakeshore St.	111-2345
345678	Susan	Cat	Tom Cat	Jane St.	111-3456

Superkey: (1) ID, (2) "FName+LName+ID", (3) "FName+LName+Parent_Name"

Candidate key: (1) and (3)

Primary key: (1)

Types of Integrity Constraints (cont.)

Database-level

- Referential integrity
 - Foreign key: Primary of one relation appearing as attributes of another relation.
 - ▶ Referential integrity: A tuple with a non-null value for a foreign key that does not match the primary key value of a tuple in the referenced relation is not allowed
- Inclusion dependencies

Example: Database Schema Showing ICs

Union

	P_CODE	P_DESCRIPT	PRICE	UNION		P_CODE	P_DESCRIPT	PRICE
D.	123456	Flashlight	5.26		•	345678	Microwave	160
	123457	Lamp	25.15			345679	Dishwasher	500
	123458	Box Fan	10.99					
	213345	9v battery	1.92					
	254467	100VV bulb	1.47					yields
	311452	Powerdrill	34.99					
								<u> </u>
						P_COI	DE P_DESCRIPT	PRICE

ESCRIPT PRICE 123456 Flashlight 5.26 123457 25.15 Lamp 123458 Box Fan 10.99 213345 9v battery 1.92 254467 100W bulb 1.47 311452 Powerdrill 34.99 345678 Microwave 160 345679 Dishwasher 500

EGCI321

Intersect

Difference

Product

PRODUCT

	STORE	AISLE	SHELF
Þ	23	W	5
	24	K	9
	25	Z	6

	P_CODE	P_DESCRIPT	PRICE	STORE	AISLE	SHELF
•	123456	Flashlight	5.26	23	W	5
	123456	Flashlight	5.26	24	K	9
	123456	Flashlight	5.26	25	Z	6
	123457	Lamp	25.15	23	W	5
	123457	Lamp	25.15	24	K	9
	123457	Lamp	25.15	25	Z	6
	123458	Box Fan	10.99	23	W	5
	123458	Box Fan	10.99	24	K	9
	123458	Box Fan	10.99	25	Z	6
	213345	9v battery	1.92	23	W	5
	213345	9v battery	1.92	24	K	9
	213345	9v battery	1.92	25	Z	6
	311452	Powerdrill	34.99	23	W	5
	311452	Powerdrill	34.99	24	K	9
	311452	Powerdrill	34.99	25	Z	6
	254467	100/// bulb	1.47	23	W	5
	254467	100VV bulb	1.47	24	K	9
	254467	100W bulb	1.47	25	Z	6

Select

123458

213345

254467

311452

Box Fan

9v battery

100W bulb

Powerdrill

Original table New table or list P_CODE | P_DESCRIPT | PRICE 123456 5.26 Flashlight SELECT ALL will yield 123457 25.15 Lamp

10.99

1.92

1.47

34.99

P_CODE P_DESCRIPT PRICE 123456 5.26 Flashlight 123457 25.15 Lamp 123458 Box Fan 10.99 213345 9v battery 1.92 254467 100W bulb 1.47 311452 34.99 Powerdrill

1.92

1.47

P DESCRIPT PRICE P_CODE 213345 SELECT only PRICE less than 2.00 will yield 9v battery 254467 100W bulb

P_CODE | P_DESCRIPT PRICE SELECT only P_CODE=311452 will yield Powerdrill 34,99

EGCI321

Project

Reference

1. Ramakrishnan R, Gehrke J., Database management systems, 3rd ed., New York (NY): McGraw-Hill, 2003.