Functional alleles & intermediate phenotypes in alcoholism and dyscontrol disorders

David Goldman davidgoldman@mail.nih.gov

1935-2006

Begleiter, H., and Platz, A. (1969). Evoked potentials: Modifications by conditioning. Science 166:769-771.

Begleiter, H., Porjesz, B., Yerre, C., and Kissin, B. (1973). Evoked potential correlates of expected stimulus intensity. Science 179(4075):814-816.

Begleiter, H., and Porjesz, B. (1975). Evoked brain potentials as indicators of decision-making. Science 187:754-755.

Begleiter, H., and Porjesz, B. (1975). On evoked potentials, cognition, and memory. Science 190:1004-1006.

Begleiter, H., Porjesz, B., and Chou, C.L. (1981). Auditory brainstem potentials in chronic alcoholics. Science 211:1064-1066.

Begleiter, H., Porjesz, B., Bihari, B., and Kissin, B. (1984). Event-related potentials in boys at risk for alcoholism. Science 225:1493-1496.

The heritability of addictive disorders

Alcoholism and other addictions: The intermediate phenotypes

Frontal cortical function/behavioral inhibition

Drug metabolism and response/tolerance

Reward

Anxiety-dysphoria/stress response

Obsession/Craving

.....

Electrophysiology

Imaging: brain structure and function

Neuropsychology

Metabolomics

Gene expression

Gene, stress, & substances in dyscontrol

MAOA rare & common alleles: GxE, fMRI COMT Val158Met: Roles in cognition & resiliency HTTLPR: GxE for depression and suicidality

Genes with alleles proven to modulate human behavior

For risk genes, odds ratios are larger for Intermediate Phenotypes than for Diseases (Wellcome Trust medians)

Brunner syndrome: X-linked dyscontrol due to the MAOA C936T stop-codon

No fibroblast MAOA activity

Abnormal monoamine metabolism:

↓ urinary HIAA, HVA, VMA

† urinary normetanephrine & tyramine

Brunner et al.,

Science, 1993

Expanding the stress connection to behavioral dyscontrol: Predisposition, early exposure, and substance abuse

Child sexual abuse and psychiatric disorders in females

•	ASPD	2.9 [1.4-6.0]
---	------	--------------	---

Addictions: A cause and effect of stress/trauma and dyscontrol

- Key factor in accidents, violence and sexual trauma
- A consequence of trauma
- Consequences of underage drinking
- A cause of allostatic changes
- Genes mediate liability

Alcoholics Tend to Be Anxious

Ducci et al, 2007

Allostasis and Addiction

A functional promoter polymorphism (*MAOA-LPR*) predicts MAOA expression

GxE interaction of *MAOA-LPR* and childhood maltreatment on antisocial behavior, in males

Childhood maltreatment

GxE interaction of *MAOA-LPR* & childhood sexual abuse for ASPD & alcoholism

Ducci et al, Molecular Psychiatry, 2007

Non-additive interaction of *MAOA-LPR* and testosterone predicts antisocial behavior

Testosterone (pg/mL)

$$\beta_a$$
 (SE) = 3.49 (1.01); p=0.001

$$\beta_a$$
 (SE) = -0.94 (1.04); p=0.37

MAOA-LPR predicts differential fMRI activations to angry and fearful faces in limbic and paralimbic regions (n = 142)

Cingulate

Cingulate

Andreas Meyer-Lindenberg (2006) PNAS 103, 6269-6274

Cortex

MAOA-LPR predicts fMRI limbic activations during retrieval of aversive memories (n = 90)

Andreas Meyer-Lindenberg (2006) PNAS 103, 6269-6274

Monoamine Oxidase A Gene Promoter Variation and Rearing Experience Influences Aggressive Behavior in Rhesus Monkeys

Timothy K. Newman, Yana V. Syagailo, Christina S. Barr, Jens R. Wendland, Maribeth Champoux, Markus Graessle, Stephen J. Suomi, J. Dee Higley, and Klaus-Peter Lesch

BIOL PSYCHIATRY 2005;57:167-172 © 2005 Society of Biological Psychiatry

rhMAOA-LPR

COMT Val158Met: Apparent counterbalancing effects in cognition and stress/anxiety

Fear of Uncertainty (HA2) and *COMT* Val158Met in females from two populations

Enoch et al, Psychiatric Genetics, 2003

[11C]-Carfentanil binding in brain

Source:Jon-Kar Zubieta

COMT Met158Val and µ-opioid system activation in response to sustained pain

HTTLPR: Still psychiatric genetics' most popular locus

GxE: Interaction of HTTLPR and stress in depression

Caspi et al, Science 2003

HTT genotypes
Low expressing
High expressing

CTQ Emotional Neglect

CTQ Physical Abuse

Roy et al, In press

Functional Allele to Complex Behavior

Thanks!

Mary-Anne Enoch

Zhifeng Zhou

Ke Xu

Xianzhang Hu

Francesca Ducci

Robert Lipsky

Peihong Shen

Qiaoping Yuan

Colin Hodgkinson

Ahmad Hariri

Deborah Mash

Rajita Sinha

Jon-Kar Zubieta

Mary Heitzig

David Scott

Rob Robin
Bernard Albaugh
Alec Roy

Genetic Complexity

Polygenicity: Multiple genetic variants confer risk in combination.

Heterogeneity: Multiple genetic variants confer risk in different individuals.

Genetic complexity in affected populations

Polygenicity

Heterogeneity

Genetic complexity and twin concordance

Lack of evidence for polygenic inheritance of addictions

Pain/Stress Challenge: Hypertonic saline infusion to masseter muscle

COMT yin/yang haplotypes in five populations & Linkage to Opioid addiction & Alcoholism

Case/Control			p vaiue
477/361	Chinese	0.25 0.24	.003
167/294	African American	0.09 0.08	.03
490/192	German Caucasian	0.24 0.28	.02
178/283	Finnish Caucasian	0.15 0.27	.001
175/175	Plains Indian	0.09 0.22	

COMT Val158Met and Addiction

- Polysubstance abuse: Val158
 - Vandenburgh, Uhl and colleagues
- Late onset alcoholism: Met158
 - [Hallikainen et al, 2000] 62 early onset, 132 late onset,
 267 controls. Odds ratio of 3 for late onset, p=0.017
 - [Tiihonen et al, 1999] 67 & 56 late onset, 3140 blood donors, 267 matched controls. Met/Met vs Val/Val
 Odds ratio 2.5, p =0.006, Attributable risk for Met/Met vs Val/Val 13.3%

COMT Val158Met

Val158

Behavioral Dyscontrol

Met158

High anxiety, Stress reactive

Alcoholism and other substance abuses

Replication of COMT in experimental pain in 202 females prospectively followed for TMJ

(Diatchenko et al, Hum Mol Genetics, 2005)

Chromosome 4

cM from pter

GABRA2 LD and Alcoholism Linkages

Edenberg et al Kranzler et al Enoch et al

Same alleles, Same haplotype

Haplotype Tagging

1121121 2212212 2212211

Addictions Array for 130 Candidate Genes

- 1536 SNPs
- Tagging of haplotypes > 0.6% in frequency
- Avg of >11 SNPs/gene, Range 4 35
- 186 "perfect" genomic control SNPs (AIMs)
 - Balanced set with cross-population Δ >0.7, and >10x
- \$ < 0.05/genotype
- 25,000 individuals genotyped (Yale, Rockefeller, Wash U, Columbia [2], Univ. Colorado, Emory, VCU, NICHD)

Addictions Array 130 Genes Tagged with 1350 SNPs

Signal Transduction

ADCY7 **AVPR1A AVPR1B** CDK5R1 CREB1 CSNK1E **FEV FOS** FOSL₁ FOSL2 GSK3B JUN MAPK1 MAPK3 **MPDZ NGFB** NTRK2 NTSR1 NTSR2 PPP1R1 **BPRKCE**

Y HPA & Stress CRH CRHBP CRHR1 CRHR2 GAL NPY NPY1R NPY2R NPY5R

Adrenergic Other ADRA1A ADRA2A BDNF CCK

ADRA2B

ADRA2C

ADRB2

ARRB2

DBH

SLC6A2

Other BDNF CCK CCKAR CCKBR CLOCK HCRT

NR3C1

TAC₁

CART

SLC29A1

Metabolic

, . H

SLC6A4

TPH2

Serotonin

GABRA2
GABRA4
GABRA6
GABRB1
GABRB2
GABRB3
GABRD
GABRG2
GABRG3
SLC6A11
SLCSA13
GAD1
GAD2
VIAAT
DBI

FAAH

Cholinergic

CHRM1

CHRM2

CHRM3

CHRM4

NMDA Glycine

GRIK1 GRIN1 GRIN2A GRIN2B GRM1

GLRA1 GLRA2 GLRB

GPHN

OPRD1
OPRK1
OPRL1
PDYN
PENK
PNOC
POMC

Opioid

OPRM1

Assignment of ancestry with 186 Ancestry-informative SNPs (Structure2, Four-factor solution)

Finns	Plains Indians	Han Chinese	African American
0.98	0.05	0.01	0.11
0.01	0.92	0.01	0.02
0.01	0.02	0.98	0.02
0.00	0.00	0.00	0.85

Ethnic factor scores of 1051 individuals in 52 CEPH population with 186 AIMs 7-factor solution, Structure 2

Repeats in the 5 Kb region upstream of 5-HTT in Macaca mulatta and Homo sapiens

Sequence Identity

20-22 bp Imperfect repeats rh-HTTLPR has GxE
effects on alcohol
preference &
stress response

Interaction Between Serotonin Transporter Gene Variation and Rearing Condition in Alcohol Preference and Consumption in Female Primates

Christina S. Barr, VMD, PhD; Timothy K. Newman, PhD; Stephen Lindell, BA; Courtney Shannon, BA; Maribeth Champow, PhD; Klaus Peter Lesch, MD; Stephen J. Suomi, PhD; David Goldman, MD; J. Dee Higley, PhD

Rearing Condition and rh5-HTTLPR Interact to Influence Limbic-Hypothalamic-Pituitary-Adrenal Axis Response to Stress in Infant Macaques

Christina S. Barr, Timothy K. Newman, Courtney Shannon, Clarissa Parker, Rachel L. Dvoskin, Michelle L. Becker, Melanie Schwandt, Maribeth Champoux, Klaus Peter Lesch, David Goldman, Stephen J. Suomi, and J. Dee Higley

Biol Psych 55: 733, 2004

Arch Gen Psych 61: 1146, 2004

Alcohol preference

Il Is

Il Is

It

Peerreared Motherreared

Serotonin Transporter Genetic Variation and the Response of the Human Amygdala Science 2002 July 19; 297(5580):400-3

Ahmad R. Hariri,¹ Venkata S. Mattay,¹ Alessandro Tessitore,¹ Bhaskar Kolachana,¹ Francesco Fera,¹ David Goldman,²
Michael F. Egan,¹ Daniel R. Weinberger^{1*}

² Laboratory of Neurogenetics, NIAAA, NIH.

First Cohort (N = 14)

Second Cohort (N = 14)

¹ Clinical Brain Disorders Branch, NIMH, NIH.

Nature Neuroscience **8**, 828 - 834 (2005)

5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression

Lukas Pezawas, Andreas Meyer-Lindenberg, Emily M Drabant, Beth A Verchinski, Karen E Munoz, Bhaskar S Kolachana, Michael F Egan, Venkata S Mattay, Ahmad R Hariri & Daniel R Weinberger

Statistical functional connectivity maps between bilateral amygdala and perigenual anterior cingulate cortex

A common, functional NPY haplotype influencing anxiety and stress response (Zhifeng Zhou et al, submitted)

- The common haplotype predicts reduced brain and lymphoblast mRNA levels and plasma NPY
- The reduction of function haplotype predicts:
 - Trait anxiety
 - Reduced amygdala emotional fMRI activation
 - Reduced amygdala pain/stress induced opioid release
- A functional promoter locus was identified via *in vitro* reporter constructs

A functional human GCH1 haplotype predicts post-diskectomy clinical pain and experimental pain

162 post-diskectomy patients

547 normal controls

Tegeder et al, Nature Medicine, 2006

GCH1 mRNA and protein in rat DRG are upregulated by nerve injury

Biopterin synthesis in rat DRG is upregulated by nerve injury and blocked by a GCH1 inhibitor

Rapid inhibition of pain and DRG neuronal activation by the GTP cyclohydrolase inhibitor, 2,4-diamino-6-hydroxypyrimidine (DAHP)

Tegeder et al, Nature Medicine, 2006

Genotype-predicted NPY expression predicts pain/stress induced opioid activation Zhou et al, submitted

Genotype-predicted NPY expression predicts emotion-induced fMRI activation Zhou et al, submitted

Amygdala

Hippocampus

Genotype-predicted NPY expression predicts anxiety Zhou et al, submitted

Functional Allele to Complex Behavior

HTTLPR and anxiety

[Sen, Burmeister and Ghosh, 2004]

- 26 Studies, 5,629 subjects
- p = 0.087
- Substantial effect of inventory and inter-study heterogeneity
- p < 0.000016, NEO, corrected for heterogeneity
- 0.1 SD increment in TPQ Harm avoidance or NEO Neuroticism per "s" allele

Triallelic Functionality at HTTLPR

- S and L_G are equivalent in expression in lymphoblasts and raphe-derived neurons
- AP2 transcription factor binds to L_G and acts as a repressor of transcription
 - Gel-shift and supershift assays
 - Allele-specific, AP2-specific decoy DNA eliminates the L_A:L_G difference

HTT

Ile425Val

Ozaki et al, Mol Psych, 2003

Replication of HTTLPR-OCD linkage in Parent/child trios Collaboration with James Kennedy, Clarke Centre, Toronto

Transmitted

Untransmitted

S	L_{G}	L_{A}
27	11	48
44	16	26

S, L_G L_A

20 41

41 20

Triallelic

$$p = 0.023$$

Low/High

$$p = 0.010$$

Hu et al, AJHG, 2006

HTTLPR genotype and allele frequencies in 169 OCD patients and 253 controls

Genotypes

Alleles

$$\begin{array}{c|cccc} S & L_A & L_G \\ 0.38 & 0.56 & 0.06 \\ 0.44 & 0.47 & 0.10 \end{array}$$

$$\chi 2 = 19.4$$
 $p = 0.001$

$$\chi 2 = 6.6$$
 $p = 0.036$

$$\chi 2 = 15.0$$
 $p = 0.001$

$$\chi 2 = 1.5$$
 $p = 0.216$

Non-additive interaction of *MAOA-LPR* and testosterone predicts antisocial behavior

Testosterone (pg/mL)

$$\beta_a$$
 (SE) = 3.49 (1.01); p=0.001

$$\beta_a$$
 (SE) = -0.94 (1.04); p=0.37