

CSCE 771: Computer Processing of Natural Language Lecture 7: Statistical Parsing, Quiz

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 8TH SEPTEMBER, 2022

Carolinian Creed: "I will practice personal and academic integrity."

Acknowledgement: Used materials by Jurafsky & Martin,

Organization of Lecture 7

- Opening Segment
 - Recap of Last Class
 - Announcements
- Main Lecture

- Concluding Segment
 - About Next Lecture Lecture 8

Main Section

- Statistical Parsing
- Quiz 1

Recap of Lecture 6

- We reviewed projects
 - Those without 'T' must choose a topic and get reviewed by next class
- We discussed parsers
 - Shallow parsers
 - Dependency parsers

6	Sep 8 (Th)	Statistical Parsing, QUIZ
7	Sep 13 (Tu)	Review Parsing, Quiz review, Review Project, Introduce Evaluation
8	Sep 15 (Th)	Language Model – Vector embeddings, CNN/ RNN
9	Sep 20 (Tu)	Semantics
10	Sep 22 (Th)	Review: Machine Learning for NLP, Evaluation - Metrics
11	Sep 27 (Tu)	Guest Lecture – Dr. Amitava Das: Glove, Word2Vec, Transformer Review: Reasoning for NLP
12	Sep 29 (Th)	Representation: Ontology, Knowledge Graph, QUIZ
13	Oct 4 (Tu)	Representation: Embeddings, Language Models
14	Oct 6 (Th)	Entity extraction
15	Oct 11 (Tu)	Guest Lecture – Dr. Amitava Das: Using lang models to solve NLP tasks

Announcements

GUEST LECTURES ON LANGUAGE MODELS BY DR. AMITAVA DAS

Main Lecture

Statistical Parsing

Given a sentence X, predict the most probable parse tree Y

Probabilistic CFG

- N a set of **non-terminal symbols** (or **variables**)
- Σ a set of **terminal symbols** (disjoint from N)
- R a set of **rules** or productions, each of the form $A \to \beta[p]$, where A is a non-terminal, β is a string of symbols from the infinite set of strings $(\Sigma \cup N)*$, and p is a number between 0 and 1 expressing $P(\beta|A)$
- S a designated start symbol

p is the probability that non-terminalA will be expanded to the sequence β

$$\sum_{\beta} P(A \to \beta) = 1$$

A PCFG is said to be **consistent** if the sum of the probabilities of all sentences in the language equals 1

Probabilistic CFG Example

Grammar		Lexicon
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$
$S \rightarrow Aux NP VP$	[.15]	$Noun \rightarrow book [.10] \mid flight [.30]$
$S \rightarrow VP$	[.05]	<i>meal</i> [.05] <i>money</i> [.05]
$NP \rightarrow Pronoun$	[.35]	flight [.40] dinner [.10]
$NP \rightarrow Proper-Noun$	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$
$NP \rightarrow Det Nominal$	[.20]	<i>prefer</i> [.40]
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I[.40] \mid she[.05]$
$Nominal \rightarrow Noun$	[.75]	<i>me</i> [.15] <i>you</i> [.40]
$Nominal \rightarrow Nominal Noun$	[.20]	$Proper-Noun \rightarrow Houston [.60]$
$Nominal \rightarrow Nominal PP$	[.05]	<i>NWA</i> [.40]
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [.40]$
$VP \rightarrow Verb NP$	[.20]	$Preposition \rightarrow from [.30] \mid to [.30]$
$VP \rightarrow Verb NP PP$	[.10]	on [.20] near [.15]
$VP \rightarrow Verb PP$	[.15]	<i>through</i> [.05]
$VP \rightarrow Verb NP NP$	[.05]	
$VP \rightarrow VP PP$	[.15]	
$PP \rightarrow Preposition NP$	[1.0]	F

Question: is the *PCFG in example consistent?*

Example

Interpretations of "Book the dinner flight"

	R	ules	P		Rı	ıles	P
S	\rightarrow	VP	.05	S	\rightarrow	VP	.05
VP	\rightarrow	Verb NP	.20	VP	\rightarrow	Verb NP NP	.10
NP	\rightarrow	Det Nominal	.20	NP	\rightarrow	Det Nominal	.20
Nominal	\rightarrow	Nominal Noun	.20	NP	\rightarrow	Nominal	.15
Nominal	\rightarrow	Noun	.75	Nominal	\rightarrow	Noun	.75
				Nominal	\rightarrow	Noun	.75
Verb	\rightarrow	book	.30	Verb	\rightarrow	book	.30
Det	\rightarrow	the	.60	Det	\rightarrow	the	.60
Noun	\rightarrow	dinner	.10	Noun	\rightarrow	dinner	.10
Noun	\rightarrow	flight	.40	Noun	\rightarrow	flight	.40

Decisions with PCFG

Probability of parse tree T, given sentence S, is

$$P(T,S) = \prod_{i=1}^{n} P(RHS_i|LHS_i)$$

Definition:

Yield of a parse tree = String of words allowed by parse tree

Of all parse trees with a yield of S, the disambiguation algorithm for parsing picks the parse tree that is most probable given S:

Interpretations of "Book the dinner flight"

"Book a flight that serves dinner"

"Book a flight on behalf of 'the dinner'

$$\hat{T}(S) = \underset{Ts.t.S=\text{yield}(T)}{\operatorname{argmax}} P(T|S)$$

$$\hat{T}(S) = \underset{Ts.t.S=\text{yield}(T)}{\operatorname{argmax}} P(T)$$

choosing the parse with the highest probability

Example

Interpretations of "Book the dinner flight"

"Book a flight that serves dinner"

$P(T_{left}) =$.05 * .20 * .20 * .20 * .75 * .30 * .60 * .10 * .40 = 2.2 × 10-6	√
$P(T_{right}) =$.05 * .10 * .20 * .15 * .75 * .75 * .30 * .60 * .10 * .40 = 6.1 × 10	7

	Rules		P		Rules		
S	\rightarrow	VP	.05	S	\rightarrow	VP	.05
VP	\rightarrow	Verb NP	.20	VP	\rightarrow	Verb NP NP	.10
NP	\rightarrow	Det Nominal	.20	NP	\rightarrow	Det Nominal	.20
Nominal	\rightarrow	Nominal Noun	.20	NP	\rightarrow	Nominal	.15
Nominal	\rightarrow	Noun	.75	Nominal	\rightarrow	Noun	.75
				Nominal	\rightarrow	Noun	.75
Verb	\rightarrow	book	.30	Verb	\rightarrow	book	.30
Det	\rightarrow	the	.60	Det	\rightarrow	the	.60
Noun	\rightarrow	dinner	.10	Noun	\rightarrow	dinner	.10
Noun	\rightarrow	flight	.40	Noun	\rightarrow	flight	.40

Assumptions/Issues with PCFG - 1

Issue: CFG rules impose an independence assumption on probabilities that miss rule dependencies

- Example:
 - nouns can be subjects as well as objects
 - A pronoun is a noun, but also is a determiner noun. [Example: NP -> DT NN :28, NP -> PRP 0.25]
 - Subjects are more likely to be pronouns than objects. [91% subjects are pronouns, 34% objects are pronouns in Switchboard dataset]
- Same rule's application can be contextual based on where the rule is being applied. Example,
 NP -> PRP
- Not being able to differentiate can cause incorrect parsing

Assumptions/ Issues with PCFG - 2

Issue: Lack of sensitivity to lexical dependencies

Example: worker dumped sacks into a bin

"into a bin" prepositional phrase can be attached to either the VP or NP leading to different meanings

- When attached to VP, sacks are in location "into a bin"
- When attached to NP, "sacks into a bin" are dumped - nonsensical

Improvement: Probabilistic Lexicalized CFGs

- Augment PCFG with a lexical head for each rule.
- The probability of a rule is conditional on the lexical head

```
VP -> VBD NP P is modified to
```

VP(dumped,VBD) -> VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

Calculating Probability from Treebank

$$P(\alpha \to \beta | \alpha) = \frac{\text{Count}(\alpha \to \beta)}{\sum_{\gamma} \text{Count}(\alpha \to \gamma)} = \frac{\text{Count}(\alpha \to \beta)}{\text{Count}(\alpha)}$$

Probability of each expansion of a non-terminal:

- counting the number of times an expansion occurs
- · normalizing for all expansions

Evaluating Parsers - PARSEVAL

Degree to which the constituents in the hypothesis parse tree look like the constituents in a hand-labeled, gold-reference parse like PENN TreeBank

Overall measure is by F1 score

$$F_1 = \frac{2PR}{P + R}$$

labeled recall: = $\frac{\text{# of correct constituents in hypothesis parse of } s}{\text{# of correct constituents in reference parse of } s}$

labeled precision: = $\frac{\text{# of correct constituents in hypothesis parse of } s}{\text{# of total constituents in hypothesis parse of } s}$

Output from a Popular Parser: Stanford Parser

Demonstrations in multiple languages

https://nlp.stanford.edu/software/lex-parser.shtml

Stanford Parser Example - 2

A natural language parser is a program that works out the grammatical structure of sentences, for instance, which group of words go together (as "phrases") and which words are the subject or object of a verb.

Lecture 7: Concluding Comments

- We have completed parsing
- Probabilistic grammars
 - assign a probability to a sentence or string of words
 - In a probabilistic context-free grammar (PCFG), every rule is annotated with the probability of that rule being chosen assuming conditional independence.
 - The probability of a sentence is computed by multiplying the probabilities of each rule in the parse of the sentence.
- Probabilistic lexicalized CFGs:
 - PCFG model is augmented with a lexical head for each rule.

Concluding Segment

QUIZ

• In class

About Next Lecture – Lecture 8

Lecture 8: Reviewing Recent Topics

- Review quiz
- Review parsing
- Review projects
- Introduce evaluation metrics in NLP context