3. Difference-in-Differences

LPO 8852: Regression II

Sean P. Corcoran

LPO 8852 (Corcoran)

Lecture

Last update: September 20, 2022

1/91

Matching recap

Matching methods seek to construct a comparison group where the conditional independence assumption is satisfied:

$$Y(0), Y(1) \perp \!\!\!\perp D|X$$

That is, conditional on X (or a one-number summary like the propensity score), potential outcomes are independent of treatment status D. If this holds, we can use mean outcomes of the matched comparison group as a stand-in for the treated group counterfactual.

$$\underbrace{E[Y(0)|D=1,X]}_{\text{unobserved}} = \underbrace{E[Y(0)|D=0,X]}_{\text{matched comparison group}}$$

Matching recap

Challenges:

- The conditional independence assumption (selection on observables) is strong! In most settings we have to be concerned about selection on unobservables
- Constructing matched samples is somewhat of an art, and results may be sensitive to specification of the matching model.
- We are typically comparing outcomes at one point in time (e.g., post treatment).

LPO 8852 (Corcoran)

Lectu

Last update: September 20, 2022

2 / 01

Difference-in-differences

Difference-in-differences (DD) is a research design that most often contrasts *changes over time* for treated and untreated groups. The approach is fruitfully applied to **natural experiments**, settings in which an external force naturally assigns units into treatment and control groups.

Figure: Scott Cunningham's (of Mixtape fame) bumper sticker

DD models are often estimated with *panel* data but can also be used with repeated cross-sections.

Natural experiments

Examples of natural experiments:

- John Snow's cholera study (1855)
- Natural and other disasters (hurricanes, earthquakes, COVID, 9/11)
- Policy implementation (e.g., graduated drivers license laws, EZ Pass)
- Investments (e.g., school construction)
- Idiosyncratic policy rules (e.g., class size maximum)
- Idiosyncratic differences in location (opposite sides of boundaries)
- Date of birth and eligibility rules

Many natural experiments are analyzed using DD, others are better suited to tools we'll see later.

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

5 / 91

Chicago high-stakes testing

Do high-stakes accountability policies improve student academic performance?

A potential "natural experiment": in Chicago, the Illinois State Aptitude Test (ISAT) became "high stakes" in 2002. The test was administered, but was "low stakes" prior to that year. The test is given in grades 3, 5, and 8.

Consider two comparisons:

- "Cross-sectional": the mean scores of 5th graders in 2002 vs. 2001
- "Interrupted time series (ITS)": the mean scores of treated students in 3rd vs. 5th grade

Note a better ITS design would have more data points than two, to establish a trend, but this is just an example!

LDO 9952 (Corcoran)

Lecture 3

Last update: September 20, 2022

7/01

Chicago high-stakes testing

The cross sectional comparison of 5th graders suggests worst outcomes for the 2002 cohort:

$$Y_{5,2002} - Y_{5,2001} = 54 - 56 = -2$$

The **first difference** for the 2002 cohort suggests a very large improvement:

$$Y_{5,2002} - Y_{3,2002} = 54 - 42 = +12$$

Conflicting conclusions!

LPO 8852 (Corcoran)

Lecture :

Last update: September 20, 2022

9/91

Chicago high-stakes testing

Problems:

- The cross sectional comparison fails to recognize that the 5th graders in the 2002 cohort performed worse in 3rd grade than the 2001 cohort (i.e., before treatment).
- The first difference is unable to differentiate between a treatment effect for the 2002 cohort (if any) and improvements between 3rd and 5th grade common to all cohorts.

Under the assumption that trends in the 2001 cohort represent what *would* have happened to the 2002 cohort in the absence of treatment, we can contrast *changes* in the two cohorts, or the **difference-in-differences**:

Chicago high-stakes testing

Under the assumption that trends in the 2001 cohort represent what *would* have happened to the 2002 cohort in the absence of treatment, we can contrast *changes* in the two cohorts, or the **difference-in-differences**:

$$\delta_{DD} = \underbrace{\left(Y_{5,2002} - Y_{3,2002}\right)}_{\text{Change for 2002 cohort}} - \underbrace{\left(Y_{5,2001} - Y_{3,2001}\right)}_{\text{Change for 2001 cohort}}$$

$$\delta_{DD} = (54 - 42) - (56 - 51) = +7$$

The second term in the above expression is the **second difference**. There was a "counterfactual" gain of 5 implied by the 2001 cohort.

An equivalent way to write δ_{DD} :

$$\delta_{DD} = \underbrace{\left(Y_{5,2002} - Y_{5,2001}\right)}_{\text{Difference "post"}} - \underbrace{\left(Y_{3,2002} - Y_{3,2001}\right)}_{\text{Difference "pre"}}$$

Writing δ_{DD} this way makes it clear we are "netting out" pre-existing differences between the two groups.

Note in this example δ_{DD} was calculated using only four numbers (mean scores in the two cohorts, 3rd and 5th grades).

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

13/91

Card & Krueger (1994)

A classic DD study of the impact of the minimum wage on fast food employment (an industry likely to be affected by the minimum wage).

- NJ increased its minimum wage in April 1992, PA did not.
- Card & Krueger collected data on employment at fast food restaurants in NJ and Eastern PA before and after the minimum wage hike.

See next figure: the minimum wage increase had a "first stage." That is, it led to higher starting wages in NJ. (This is important—if the minimum wage were not binding, it wouldn't make for a very interesting study).

LPO 8852 (Corcoran)

Lecture 1

Last update: September 20, 2022

Card & Krueger (1994)

LPO 8852 (Corcoran)

Last update: September 20, 2022 15 / 91

Card & Krueger (1994)

Main result (portion of Table 3 in C&K):

	Stores by State			
	PA	NJ	NJ – PA	
FTE before	23.3	20.44	-2.89	
	(1.35)	(-0.51)	(1.44)	
FTE after	21.15	21.03	-0.14	
	(0.94)	(0.52)	(1.07)	
Change in mean FTE	2.16	0.59	2.76	
	(1.25)	(0.54)	(1.36)	

Standard errors in parentheses. FTE=full time equivalent employees.

Mean employment fell in PA and *rose* in NJ, for $\delta_{DD}=2.76$. A surprising result to many economists who expected to see a reduction in employment following an increase in the minimum wage.

2x2 difference-in-differences

The two examples thus far are the simplest type of a difference-in-difference:

- Two groups: treated and untreated
- Two time periods: pre and post, before and after treatment occurs
- Treated units are all treated at the same time

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

17 / 93

Difference-in-differences estimation

Under what conditions might the difference-in-differences design estimate a causal parameter? What causal parameter is it estimating?

Let's return to the potential outcomes framework, applying it to a 2x2 DD example.

Suppose that—in the absence of treatment—the potential outcome for individual i at time t is given by:

$$Y_{it}(0) = \gamma_i + \lambda_t$$

In the *presence* of treatment, the potential outcome for individual i at time t is:

$$Y_{it}(1) = \gamma_i + \delta + \lambda_t$$

Note: portions of this section were drawn from Jakiela & Ozier's excellent ECON 626 lecture notes from the University of Maryland (2018).

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

10 / 01

Difference-in-differences estimation

$$Y_{it}(0) = \gamma_i + \lambda_t$$

$$Y_{it}(1) = \gamma_i + \delta + \lambda_t$$

A few things to note:

- ullet There are fixed individual differences represented by γ_i
- ullet The time-specific factor λ_t is the same for all individuals
- \bullet The impact of the treatment δ is assumed to be the same for all individuals, and does not vary over time

$$Y_{it}(1) - Y_{it}(0) = \delta \quad \forall i, t$$

In this framework individuals can self-select into treatment, and selection $\underline{{\rm can}}$ be related to $\gamma_i.$

- Define $D_i = 1$ for those who—at any point—are treated
- Define $D_i = 0$ for those who are never treated

Note this indicator is <u>not</u> subscripted with a t. It is important to note that we are grouping i by whether they are *ever* treated, since we observe them in treated/untreated states at different points in time.

Assume for simplicity two time periods, "pre" (t = 0) and "post" (t = 1), where treatment occurs for the $D_i = 1$ group in t = 1.

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

21 / 01

Difference-in-differences estimation

The causal estimand of interest is:

$$ATT = \underbrace{\mathbb{E}[Y_{it}(1)|D_i = 1, t = 1]}_{\text{observed}} - \underbrace{\mathbb{E}[Y_{it}(0)|D_i = 1, t = 1]}_{\text{unobserved}}$$

$$= \mathbb{E}[\gamma_i|D_i = 1] + \delta + \lambda_1 - \mathbb{E}[\gamma_i|D_i = 1] - \lambda_1$$

$$= \delta$$

That is, the mean difference in outcomes in the treated and untreated state—in the "post" period—among those who are treated.

Of course, we can't observe the same i in two different states (0 and 1) in the same period t. Suppose instead we compare the $D_i=1$ and $D_i=0$ groups in time period 1:

$$\underbrace{E[Y_{it}(1)|D_i = 1, t = 1]}_{E[\gamma_i|D_i = 1] + \delta + \lambda_1} - \underbrace{E[Y_{it}(0)|D_i = 0, t = 1]}_{E[\gamma_i|D_i = 0] + \lambda_1}$$

$$= \delta + \underbrace{E[\gamma_i|D_i = 1] - E[\gamma_i|D_i = 0]}_{\text{selection bias}}$$

If treatment were randomly assigned, the $E[\gamma_i]$ would not vary with D_i . However, if there is selection into D related to the fixed characteristics of individuals, then $E[\gamma_i|D_i=1] \neq E[\gamma_i|D_i=0]$. The δ is not identified.

LPO 8852 (Corcoran)

Lecture

Last update: September 20, 2022

23 / 91

Difference-in-differences estimation

Alternatively we might restrict our attention to the $D_i=1$ group and do a pre-post comparison from time 0 to time 1:

$$\underbrace{E[Y_{it}(1)|D_i = 1, t = 1]}_{E[\gamma_{it}|D_i = 1] + \delta + \lambda_1} - \underbrace{E[Y_{it}(0)|D_i = 1, t = 0]}_{E[\gamma_{it}|D_i = 1] + \lambda_0}$$
$$= \delta + \lambda_1 - \lambda_0$$

This is the first difference or simple interrupted time series (ITS). Unfortunately, δ is still not identified, since this difference reflects both the impact of the program and the time trend.

Consider now the pre-post comparison for the $D_i = 0$ group:

$$\underbrace{E[Y_{it}(0)|D_i = 0, t = 1]}_{E[\gamma_i|D_i = 0] + \lambda_1} - \underbrace{E[Y_{it}(0)|D_i = 0, t = 0]}_{E[\gamma_i|D_i = 0] + \lambda_0}$$
$$= \lambda_1 - \lambda_0$$

The comparison group allows us to estimate the time trend.

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

Difference-in-differences estimation

Now subtract the pre-post comparison for the *untreated* group from the pre-post comparison for the *treated* group:

$$\begin{split} \underbrace{E[Y_{it}(1)|D_{i}=1,t=1]}_{E[\gamma_{i}|D_{i}=1]+\delta+\lambda_{1}} - \underbrace{E[Y_{it}(0)|D_{i}=1,t=0]}_{E[\gamma_{i}|D_{i}=1]+\lambda_{0}} - \\ \underbrace{(E[Y_{it}(0)|D_{i}=0,t=1]}_{E[\gamma_{i}|D_{i}=0]+\lambda_{1}} - \underbrace{E[Y_{it}(0)|D_{i}=0,t=0])}_{E[\gamma_{i}|D_{i}=0]+\lambda_{0}} \\ = (\delta+\lambda_{1}-\lambda_{0}) - (\lambda_{1}-\lambda_{0}) \end{split}$$

 $=\delta$

The difference-in-differences estimator recovers the ATT. The **parallel trends assumption** is critical here.

To see this a different way, the ATT again is:

$$ATT = \underbrace{E[Y(1)|D=1,t=1]}_{\text{observed}} - \underbrace{E[Y(0)|D=1,t=1]}_{\text{unobserved}}$$

The DD estimates:

$$\underbrace{E[Y(1)|D=1,t=1]-E[Y(0)|D=1,t=0]}_{\text{change over time for treated group}}$$

$$-\underbrace{\left(E[Y(0)|D=0,t=1]-E[Y(0)|D=0,t=0]\right)}_{\text{change over time for untreated group}}$$

From this, subtract and add the unobserved term from above right:

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

27 / 0

Difference-in-differences estimation

$$E[Y(1)|D=1,t=1] - E[Y(0)|D=1,t=0] - \underbrace{E[Y(0)|D_i=1,t=1]}_{\text{unobserved}}$$

$$-(E[Y(0)|D=0,t=1]-E[Y(0)|D=0,t=0])+\underbrace{E[Y(0)|D_i=1,t=1]}_{\text{unobserved}}$$

Gathering terms, this equals:

$$ATT + \underbrace{\left(E[Y(0)|D=1,t=1] - E[Y(0)|D=1,t=0]\right)}_{\text{pre to post change in Y(0) for D=1 group}} \\ - \underbrace{\left(E[Y(0)|D=0,t=1] - E[Y(0)|D=0,t=0]\right)}_{\text{pre to post change in Y(0) for D=0 group}}$$

The second term is counterfactual (unobserved). However if parallel trends holds, the second and third term cancel each other out.

LPO 8852 (Corcoran)

ecture 3

Last undate: Sentember 20, 2022

To summarize:

- Changes over time in the D=0 group provide the counterfactual
- Selection into treatment related to fixed unobserved differences is OK
- The outcome levels are not important, only the changes

DD is probably the most commonly used quasi-experimental design in the social sciences and education.

- Its use precedes the RCT (see Snow cholera example, 1855)
- The "comparative interrupted time series" (CITS) design is similar, though not the same. See Section 3 of the MDRC paper by Somers et al. (2013) for a good delineation between the two in the context of an educational intervention.

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

29/1

Regression difference-in-differences (2x2)

With only two groups and time periods (pre-post):

$$Y_{it} = \alpha + \beta D_i + \lambda Post_t + \delta (D_i \times Post_t) + u_{it}$$

where $D_i=1$ for units i who are ultimately treated, and $POST_t=1$ for observations in the "post" period.

Very easy to implement in Stata, especially with factor variable notation: $\verb"reg y i.treated##i.post"$

Regression difference-in-differences (2x2)

How does this map onto our earlier notation? There are four expectations estimated in this regression:

$$\begin{split} E[Y_{it}|D_i = 0, t = 0] &= \alpha \\ E[Y_{it}|D_i = 1, t = 0] &= \alpha + \beta \\ E[Y_{it}|D_i = 0, t = 1] &= \alpha + \lambda \\ E[Y_{it}|D_i = 1, t = 1] &= \alpha + \beta + \lambda + \delta \end{split}$$

- α is the pre-period mean for the $D_i = 0$ group
- $\alpha + \beta$ is the pre-period mean for the $D_i = 1$ group
- ullet eta is the baseline mean difference between the $D_i=0$ and $D_i=1$
- $\alpha + \lambda$ is the *post*-period mean for the $D_i = 0$ group
- λ is the change over time for the $D_i = 0$ group
- $\alpha + \beta + \lambda + \delta$ is the *post*-period mean for the $D_i = 1$ group
- $\lambda + \delta$ is the change over time for the $D_i = 1$ group

LPO 8852 (Corcoran)

Lecture

st update: September 20, 2022

1 / 01

Regression difference-in-differences (2x2)

The four expectations being estimated in this regression and their differences:

	Pre (<i>t</i> = 0)	Post $(t=1)$	Diff
Untreated $(D=0)$ Treated $(D=1)$	α $\alpha + \beta$	$\alpha + \lambda \\ \alpha + \beta + \lambda + \delta$	$\begin{vmatrix} \lambda \\ \lambda + \delta \end{vmatrix}$
Diff	β	$\beta + \delta$	δ

Reression (2x2) DD is effectively a comparison of four cell-level means.

Regression difference-in-differences (2x2)

The 2x2 DD regression:

- Is estimating a CEF since the model is fully saturated.
- The CEF is not necessarily causal (depends on parallel trends).
- OLS will always (mechanically) estimate δ as the differential change in the $D_i=1$ vs. $D_i=0$ group.
- ullet Whether that δ can be interpreted as the ATT depends on the parallel trends assumption.

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

22 / 0

Regression difference-in-differences (2x2)

We could also estimate a regression using first differences for each observation i, subtracting Y_{i0} from Y_{i1} (again assuming two periods):

$$Y_{i1} = \alpha + \beta D_i + \lambda + \delta(D_i) + u_{i1}$$

$$Y_{i0} = \alpha + \beta D_i + u_{i0}$$

$$Y_{i1} - Y_{i0} = \lambda + \delta D_i + \epsilon_{it}$$

$$\Delta Y_i = \lambda + \delta D_i + \epsilon_{it}$$

This regression is equivalent to the standard DD regression shown earlier. The intercept here represents the time trend λ , and δ is the DD. The baseline differences wash out in the first difference (Δ)

Regression difference-in-differences (2x2)

The 2x2 regression model can also include covariates:

$$Y_{it} = \alpha + \beta D_i + \lambda Post_t + \delta(D_i \times POST_t) + \mathbf{X_{it}} \eta + u_{it}$$

Thought should be put into the use of covariates (more on this later). Does the parallel trends assumption hold conditional on covariates? Or unconditionally?

LPO 8852 (Corcoran

Lecture 3

Last update: September 20, 2022

.

Example: Dynarski (2003)

Prior to 1982, 18- to 22-year old children of deceased Social Security beneficiaries were eligible for survivor's benefits that could be applied toward college. This practice ended in 1982. Dynarski (2003) used this policy change to estimate the effect of financial aid on college enrollment.

- Table 8.1 from Murnane & Willett on next page begins with the ITS design, focusing only on survivors (a first difference)
- Data: NLSY high school seniors who would be eligible for benefits just before (N=137) and after (N=54) the policy change.

Note: treatment in this case (benefits) occurs *before* 1982, not after (*offer*=1 for the earlier cohort).

Example: Dynarski (2003)

Table 8.1 "First difference" estimate of the causal impact of an offer of \$6,700 in financial aid (in 2000 dollars) on whether high-school seniors whose fathers were deceased attended college by age 23 in the United States

(a) Direct i	Estimate						
Senior	of	Was Student's Father Deceased	Receive an	Avg Value of COLL (standard error)	Group	H_0 : $\mu_{OFFER} = \mu_{NO~OFFER}$	
					Difference in Avg Value of COLL	t-statistic	p-value
1979-81	137	Yes	Yes (Treatment Group)	0.560 (0.053)	0.208*	2.14	0.017+
1982-83 54 Y		Yes	No (Control Group)	0.352 (0.081)			
p <0.10; * j †One-taile		> <0.01; *** p <1	0.001.				
(b) Linear	Probabili	ty Model (OL	S) Estimate	0.4			10.0
Predictor	E	stimate	Standard Error		H_0 : $\beta = 0$;		
				t-	statistic	p-value	
Intercept	0.	352***	0.08	31	4.32	0.000	1 1
OFFER R ²		.208*	0.09	94	2.23	0.013+	

p <0.10; *p <0.05; ** p <0.01; *** p <0.001 *One-tailed test.

100 ---- (0

.

Last update: September 20, 2022

37 / 91

Example: Dynarski (2003)

Table 8.2 from Murnane & Willett reports the DD estimate, incorporating data for high school seniors that were not survivors, before (N=2,745) and after (N=1,050) the policy change—a second difference.

Example: Dynarski (2003)

Table 8.2 Direct "difference-in-differences" estimate of the impact of an offer of \$6,700 in financial aid (in 2000 dollars) on whether high-school seniors whose fathers were

Senior of		Student's	Did H.S. Seniors Receive an Offer of SSSB Aid?	Avg Value of COLL (standard error)	Between- Group Difference in Avg Value of COLL	"Difference in Differences"	
	Students					Estimate (standard error)	<i>p</i> -value
1979-81	137	Yes	Yes (Treatment Group)	0.560 (0.053)	0.208 (First Diff)	0.182*	0.033†
1982-83	54	Yes	No (Control Group)	0.352 (0.081)	(First Dig)		
1979-81	2,745	No	No	(0.012)	0.026	(0.099)	
1982-83	1,050	No	No	0.476 (0.019)	(Second Diff)		

⁻ p <0.10; * p <0.05; ** p <0.01; *** p <0.001. *One-tailed test.

Note: COLL went down even for non-survivors.

LPO 8852 (Corcoran) Lecture 3 Last update: September 20, 2022 39

Parallel trends assumption

The key assumption in DD is parallel trends: that the time trend in the absence of treatment would be the same in both groups.

Parallel trends assumption

Size of baseline difference in treated and untreated groups doesn't matter.

LPO 8852 (Corcoran)

1 ---- 2

Last update: September 20, 2022

41/91

Violation of parallel trends assumption

Parallel trends assumption

We can't verify the parallel trends assumption directly, but researchers typically defend it in a variety of ways:

- A compelling graph: pointing to similar trends prior to the treatment.
 <u>Note</u>: common trends prior to treatment are neither necessary nor sufficient for parallel trends assumption!
- Event study regression and graph
- A placebo / falsification test
- Controlling for time trends directly (leans heavily on functional form)
- Triple-difference model
- Probably most important: understanding the context of your study!
 Ruling out alternative explanations

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

43 / 91

Federal Reserve policy and bank failures

FIGURE 5.2

Trends in bank failures in the Sixth and Eighth Federal

Reserve Districts

Checking the parallel trends assumption (1)

The graph on the right ("normalized") subtracts baseline difference between Treated and Comparison group, to help see the parallel trend.

LPO 8852 (Corcoran) Lecture 3 Last update: September 20, 2022 45/

Checking the parallel trends assumption (2)

The graph on the right ("normalized") makes the lack of a parallel trend more apparent than the graph on the left.

Checking the parallel trends assumption (3)

A variable transformation may help satisfy the parallel trends assumption. The bottom panels use the log:

Note: if trends are parallel in levels they will *not* be parallel in logs, and vice versa!

LPO 8852 (Corcoran)

Lecture 3

act undate: Sentember 20, 2022

. . . .

Event study

An **event study** is like the DD regression shown earlier, except it includes separate time and treated group interactions for pre and post periods.

With 2 groups and observations J periods before treatment (lags) and K periods after treatment (leads). Treatment is assumed to occur at t=0:

$$Y_{it} = \alpha + \beta D_i + \lambda_t + \sum_{j=-J}^{-2} \gamma_j D_i + \sum_{k=0}^K \delta_k D_i + u_{it}$$

Notice lag 1 (j=-1) is the omitted reference category—the last period before treatment.

$$Y_{it} = \alpha + \beta D_i + \lambda_t + \sum_{j=-J}^{-2} \gamma_j D_i + \sum_{k=0}^{K} \delta_k D_i + u_{it}$$

In t = -1 (one year before treatment):

- $E(Y|D=0, t=-1) = \alpha + \lambda_{-1}$
- $E(Y|D=1, t=-1) = \alpha + \lambda_{-1} + \beta$ (the groups differ by β in t_{-1})

In t = -2 (two years before treatment):

- $E(Y|D=0, t=-2) = \alpha + \lambda_{-2}$
- $E(Y|D=1,t=-2)=\alpha+\lambda_{-2}+\beta+\gamma_{-2}$ (γ_{-2} is the additional difference between groups in t_{-2})

LPO 8852 (Corcoran)

Lecture

Last update: September 20, 2022

10 /0

Event study

$$Y_{it} = \alpha + \beta D_i + \lambda_t + \sum_{i=-J}^{-2} \gamma_j D_i + \sum_{k=0}^{K} \delta_k D_i + u_{it}$$

In t = 0 (first year of treatment):

- $E(Y|D=0, t=0) = \lambda_0$
- $E(Y|D=1,t=0)=\lambda_0+\beta+\delta_0$ (δ_0 is the additional difference between groups in t_0)

In t=1 (second year of treatment):

- $E(Y|D=0, t=1) = \lambda_1$
- $E(Y|D=1,t=1) = \lambda_1 + \beta + \delta_1$ (δ_1 is the additional difference between groups in t_1)

Event study

The γ_j and δ_k capture the difference between the treated and untreated groups, compared to their prevailing difference in the omitted base period (the year before treatment, t=-1). Note any year can be the base period, but it is common to use t=-1 as the reference year.

If the coefficients on the pre-treatment (lag) interaction terms are significantly different from zero, this suggests a non-parallel trend.

The event study graph is a plot of these γ_j and δ_k , along with confidence intervals.

Note: consider *practical* differences, not just statistical. With large samples, even small differences can be statistically significant.

LPO 8852 (Corcoran)

Lecture

Last update: September 20, 2022

51 / 91

Event study

If there are two groups (treated and not) and treatment occurs for everyone in D=1 in the same period, this is easy to implement in Stata (assume year is the time period):

reg y i.treated##i.year

A full factorial of treatment group status and time period—includes main effects for *treated* and individual years, and their interaction. You will need to specify the omitted time period. For example, if treatment occurred in 2006 and you wish to use 2005 as the reference year: reg y i.treated##ib2005.year

Event study example

The following figures are from Miller et al. (QJE 2021), via the *Mixtape*. The authors estimate the impact of state expansion of Medicaid under ACA on the annual mortality rates of older persons under 65 in the U.S.

A causal interpretation of DD assumes changes over time in states that did *not* expand Medicaid provide the counterfactual for those that did.

They find a 0.13 percentage-point decline in annual mortality, a 9.3% reduction over the sample mean, as a result of Medicaid expansion.

LPO 8852 (Corcoran)

Lecture

Last update: September 20, 2022

E2 / 01

Event study example

Plotted points are event study coefficients, shown with 95% confidence intervals. (Time zero is the first year of expansion). Outcome: mortality rate

There is no evidence these states were on different trajectories prior to Medicaid expansion.

LPO 8852 (Corcoran)

Event study example

The authors first look for a "first stage": did the expansion of Medicaid actually increase rates of eligibility for Medicaid? Did it increase Medicaid coverage? Did it lower the uninsured rate? Here: eligibility

LPO 8852 (Corcoran)

Lecture

Last undate: Sentember 20, 2022

EE / 01

Event study example

Here: Medicaid coverage rates

Event study example

Here: Medicaid uninsured rates

Taken together, these graphs are compelling: Medicaid expansion increased eligibility and coverage, and reduced the uninsured. One would hope to see these first stage effects before expecting an effect on health outcomes.

LPO 8852 (Corcoran)

1 ---- 2

Last update: September 20, 2022

Event study

Most event studies are not as simple as two groups and one common treatment period. The user-written Stata package eventdd is a flexible solution that automatically generates the needed variables, estimates the regression, and produces a graph. Example syntax:

eventdd y x1 x2 i.year i.state, timevar(timetoevent)

This syntax estimates an OLS model, and the group (state) and time (year) variables are included in the covariates. The key variable here is timetoevent (a name you provide), defined as the relative time to treatment. 0 corresponds to the first year of treatment, -1 refers to the first lag, and so on. This variable should be missing for groups that are never treated.

Parallel trends assumption

When covariates are included in the model, the parallel trends assumption is *conditional* on the covariates. It is possible that the unconditional outcomes do not follow a parallel trend, but the conditional outcomes do.

Put another way, controlling for covariates allows you to account for factors that might produce different time trends.

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

59 / 91

Common violations of parallel trends assumption

Two common scenarios that would violate the parallel trends assumption:

- Targeted treatments: often programs are targeted at subjects who are
 most likely to benefit from it. In many cases, the fact that a subject
 was on a different trajectory is what made them a good candidate
 from the program (e.g., a struggling student).
- Ashenfelter's dip: treated cases may experience a "dip" just prior to treatment that results in a reversion to the mean after treatment (e.g, job training).
- Anticipation: behavior (and outcomes) change prior to treatment due to anticipation effects.

Placebo/falsification tests

The DD design assumes that any change over time beyond that predicted by the untreated group is the ATT, and not some other time-varying factor specific to the treated group.

If there is indeed an unobserved time-varying factor specific to the treated group, one might see its effects show up on *other* outcomes that shouldn't have been affected by the treatment.

- Card & Krueger: employment in higher-wage firms
- Miller et al.: mortality of populations not eligible for Medicaid
- Cheng & Hoekstra (2013): effects of Stand Your Ground laws on other non-homicide crimes (see Mixtape)

Estimate the same DD model for these outcomes. If there is an "effect", this may indicate an unobserved, time-varying confounder specific to the treated group.

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

61/91

Placebo/falsification tests

Another approach is to apply the same treatment assignment to an earlier period, well before the treatment actually occurred, and re-estimate the DD model on this earlier data. If there is an apparent treatment "effect" in these untreated years, there may well be unobserved, group-specific trends driving the result.

There are lots of ways to do this, including picking your own period for the "fake" treatment, or trying lots of alternatives.

The **triple difference** uses an additional untreated group to difference out time trends unique to the treatment group that are also experienced by the added untreated group. For example:

- In C&K, suppose we were concerned that the (treated) state of NJ was on a different time trend from the (untreated) state of PA.
- The lack of parallel trends could make DD invalid.
- The minimum wage treatment should only affect low-wage workers.
- We can contrast higher-wage workers in NJ and PA to identify any differential time trend in NJ.
- The treatment effect of the minimum wage on low wage workers would be any additional change over time experienced by low-wage workers in N I

LPO 8852 (Corcoran) Lecture 3 Last update: September 20, 2022 63/

Triple difference

Last update: September 20, 2022

Triple difference

Triple difference

Last update: September 20, 2022

Triple difference

Let G = 1 be the focal group (e.g., low-wage workers) and G = 0 be the additional untreated group (e.g., higher-wage workers).

The triple difference regression model is:

$$\begin{aligned} Y_{it} &= \alpha + \beta_1 POST_t + \beta_2 G_i + \beta_3 D_i + \beta_4 \big(G_i \times POST_t\big) \\ + \beta_5 \big(D_i \times POST_t\big) + \beta_6 \big(G_i \times D_i\big) + \beta_7 \big(G_i \times D_i \times POST_t\big) + u_{it} \end{aligned}$$

Dummy variables for: original treated group (D), additional untreated group (G), POST, three 2-way interactions, and one 3-way interaction.

First, consider the focal group G = 1 (e.g., low-wage workers)

$$\begin{aligned} Y_{it} &= \alpha + \beta_1 POST_t + \beta_2 G_i + \beta_3 D_i + \beta_4 (G_i \times POST_t) \\ + \beta_5 (D_i \times POST_t) + \beta_6 (G_i \times D_i) + \beta_7 (G_i \times D_i \times POST_t) + u_{it} \end{aligned}$$

$$\begin{array}{lll} D=0 \text{ and } & E[Y|D=0,t=0,G=1] & = \alpha+\beta_2 \\ \text{focal group} & E[Y|D=0,t=1,G=1] & = \alpha+\beta_1+\beta_2+\beta_4 \\ \\ D=1 \text{ and } & E[Y|D=1,t=0,G=1] & = \alpha+\beta_2+\beta_3+\beta_6 \\ \text{focal group} & E[Y|D=1,t=1,G=1] & = \alpha+\beta_1+\beta_2+\beta_3+\beta_4 \\ & +\beta_5+\beta_6+\beta_7 \end{array}$$

The traditional DD here would be $\beta_5+\beta_7$, reflecting the time trend specific to D=1 (β_5) and the ATT (β_7). The latter is not identified.

LPO 8852 (Corcoran)

Lecture

Last update: September 20, 2022

1 /0

Triple difference

Now, consider the non-focal group G = 0 (e.g., higher-wage workers)

$$\begin{aligned} Y_{it} &= \alpha + \beta_1 POST_t + \beta_2 G_i + \beta_3 D_i + \beta_4 (G_i \times POST_t) \\ + \beta_5 (D_i \times POST_t) + \beta_6 (G_i \times D_i) + \beta_7 (G_i \times D_i \times POST_t) + u_{it} \end{aligned}$$

$$\begin{array}{lll} D=0, & E[Y|D=0,t=0,G=0] & = \alpha \\ & \text{non-focal group} & E[Y|D=0,t=1,G=0] & = \alpha+\beta_1 \\ \\ D=1, & E[Y|D=1,t=0,G=0] & = \alpha+\beta_3 \\ & \text{non-focal group} & E[Y|D=1,t=1,G=0] & = \alpha+\beta_1+\beta_3+\beta_5 \end{array}$$

The DD for the non-focal group is β_5 . The difference between this and the focal group DD $(\beta_5+\beta_7)$ is β_7 , the ATT we are looking for.

Put more simply, the β_7 coefficient gives you the triple difference.

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

Generalized difference-in-differences

The examples thus far had 2 groups and 2 time periods. In practice, "treatment" can occur for different groups at different times.

This brings us to the "generalized difference-in-differences" model, or difference-in-difference with variable timing. Usually estimated as a "two-way fixed effects" model with fixed effects for cross-sectional units and time periods. Sometimes written:

$$Y_{it} = \beta_i + \gamma_t + \delta(D_i \times POST_t) + u_{it}$$

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

73 / 01

Generalized difference-in-differences

Mastering 'Metrics: effect of a lower Minimum Legal Drinking Age (MLDA), based on Carpenter & Dobkin (2011).

- Following the 26th Amendment (1971), some states lowered the drinking age to 18
- In 1984, federal legislation pressured states to increase MLDA to 21
- \bullet Was a lower MLDA associated with more traffic fatalities among 18-20 year olds?

The authors used panel data (state \times year) to address this question.

Note: this will be the in-class exercise, later

LPO 8852 (Corcoran)

ecture 3

Last update: September 20, 2022

Generalized difference-in-differences

$$\textit{Y}_{\mathsf{st}} = \alpha + \delta \big(\textit{TREAT}_{\mathsf{s}} \times \textit{POST}_{\mathsf{t}}\big) + \sum_{k=2}^{50} \beta_k \textit{STATE}_{k\mathsf{s}} + \sum_{j=2}^{T} \gamma_t \textit{YEAR}_{jt} + \textit{u}_{\mathsf{st}}$$

- $STATE_{ks} = 1$ if observation is from state k. States indexed from k = 2...50 as a reminder that one state dummy must be omitted.
- $YEAR_{jt} = 1$ if observation is from year j. Years indexed from j = 2...T as a reminder that one time dummy must be omitted.
- β_k is a state effect.
- γ_t is a year effect.
- Covariates X_{st} may be included to control for other time-varying factors associated with Y and treatment

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

75 / 91

Generalized difference-in-differences

- Analogous to the 2x2 model, each group (state) has its own intercept $(\alpha + \beta_k \text{ for } k = 2, ..., 50)$ reflecting baseline differences.
- ullet There need not be a single common post-treatment period. The year effects (γ_t) capture trends in the outcome common to all states.
- ullet The coefficient on the interaction (δ) represents how much, on average, outcomes *differ* in treatment states in the post period from that predicted by the state and year effects.
- In other words, we are contrasting within-state changes over time in the outcome, for treated and untreated states.
- This is a simple example of a panel model, a topic covered more in Lecture 4.

Generalized difference-in-differences

Implementing in Stata: can be done in multiple ways, including xtreg:

xtreg y x i.year i.treat##i.post, i(state) fe

xtreg is a panel data command where *state* is the cross-sectional unit and fe implements the fixed-effects (within) estimator—covered in Lecture 4. Essentially equivalent to separate intercepts for every state.

The fixed effect variable (state here) should be numeric. If it is not, can use encode

Alternative Stata command: reghtfe

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

77 / 01

Generalized difference-in-differences

Using our notation for potential outcomes for a state k:

$$Y_{kt}(0) = \alpha + \beta_k + \gamma_t$$

$$Y_{kt}(1) = \alpha + \beta_k + \gamma_t + \delta$$

Potential outcomes are described by a unique intercept for each state $(\alpha + \beta_k)$ and a yearly deviation from this intercept that is common to every state (γ_t) . The treatment effect is δ .

Intuitively, under the parallel trends assumption that changes within states over time would be the same in the absence of treatment, we can estimate δ as the differential change over time associated with treatment.

An MLDA effect in states with parallel trends

120

Allatsea

Alabaster

LPO 8852 (Corcoran) Lecture 3 Last update: September 20, 2022 79/91

Year

1980

1985

1975

Mastering 'Metrics Fig 5.5

1970

Treatment as "intensity"

Treatment can alternatively be measured as a continuous "intensity" measure. Examples:

$$Y_{it} = \alpha + \delta Intensity_i + \lambda Post_t + \delta (Intensity_i \times Post_t) + u_{it}$$

Or:

$$\textit{Y}_{\textit{st}} = \alpha + \delta \textit{Intensity}_{\textit{st}} + \sum_{k=2}^{50} \beta_k \textit{STATE}_{\textit{ks}} + \sum_{j=2}^{T} \gamma_t \textit{YEAR}_{\textit{jt}} + \textit{u}_{\textit{st}}$$

Example: Duflo (2001) examined the impact of school construction on educational attainment in Indonesia. The "treatment"—number of area schools per school-aged child—varied from one place to the next.

LPO 8852 (Corcoran)

Lecture

Last update: September 20, 2022

91 / 01

In-class exercise

Replicate the findings from the MLDA study reported in *Mastering 'Metrics*

- Generalized DD using two-way fixed effects
- Placebo test using other outcomes, age groups

The treatment in the MLDA study is an "intensity" measure: what proportion of young adults aged 18-20 could legally drink in state s and year t? The measure also accounts for part-year legalization.

Group-specific time trends

With many states and years, we can relax the common trends assumption and allow non-parallel evolution in outcomes (state-specific time trends):

$$\begin{aligned} Y_{st} &= \alpha + \delta(\textit{TREAT}_s \times \textit{POST}_t) + \sum_{k=2}^{50} \beta_k \textit{STATE}_{ks} + \sum_{j=2}^{T} \gamma_t \textit{YEAR}_{jt} \\ &+ \sum_{k=2}^{50} \theta_k (\textit{STATE}_{ks} \times t) + u_{st} \end{aligned}$$

I DO 9952 (Corcoran)

Lecture

Last update: September 20, 2022

02 (01

Group-specific time trends

How does this work? Consider again the evolution of potential outcomes in two conditions:

$$Y_{0kt} = \alpha + \beta_k + \gamma_t + \theta_k t$$

$$Y_{1kt} = \alpha + \beta_k + \gamma_t + \theta_k t + \delta$$

Potential outcomes are described by a unique intercept for each state $(\alpha+\beta_k)$ and a yearly deviation from this intercept common to every state $(\gamma_t).$ Moreover, Y_{kt} deviates from the common year effect according to its own linear trend captured by $\theta_k.$

Intuitively, under the assumption that changes within states over time are accurately described by the common year effect and state-specific time trend, we can estimate δ as the *difference* associated with treatment.

LPO 8852 (Corcoran)

cture 3 Last undate:

Last update: September 20, 2022

Group-specific time trends

A real MLDA effect, visible even though trends are not parallel

LPO 8852 (Corcoran) Lecture 3 Last update: September 20, 2022 85/9

Group-specific time trends

Here, treatment effects are estimated from sharp deviations from trend, even when not common to other states.

Downside: treatment effect estimates using group-specific time trends are likely to be less precise

Difference-in-differences in other contexts

The DD need not be limited to groups observed in different time periods. The two factors can be anything that define a "treatment" group and are useful for "netting out" unobserved differences that may exist between the treated and untreated:

For example: In a rural poverty reduction program there are program and non-program villages (treated and untreated), and then within these villages, targeted and non-targeted groups. Only targeted groups in program villages are treated. Differencing the outcomes of the non-targeted groups across program and non-program villages can be useful in accounting for unobserved differences between villages.

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

97 / 01

Tyler, Murnane, and Willett (2000)

Tyler, Murnane, and Willett (2000): what is the impact of the GED on labor market earnings for high school dropouts?

- "Treated" individuals earned the GED by passing the required exam; "untreated" individuals took the GED but did not pass the exam.
- A cross-sectional comparison of earnings would likely suffer from omitted variables bias.
- TM&W noted that the threshold passing score varied by state.

Note: GED is technically the "General Educational Development Test" but sometimes referred to as a "general equivalency diploma." In Tennessee, the HiSET is used as a high school equivalency test.

Tyler, Murnane, and Willett (2000)

A potential natural experiment? Compare earnings of individuals with low GED scores who passed—or didn't—depending on the state they lived in.

- The "treatment" is having a low score but living in a state with a low passing threshold
- Concern: there may be fixed differences in populations and labor market outcomes across states.
- A second difference: compare earnings of high-scoring GED test takers who passed in both states, to "net out" state differences

LPO 8852 (Corcoran)

Lecture 3

Last update: September 20, 2022

89 / 91

Tyler, Murnane, and Willett (2000)

Cells A-D give mean income in each group:

	States where low scores <u>do</u> earn a GED	States where low scores <u>do</u> <u>not</u> earn a GED	Difference (states)
People with low scores	A = 9,628	B = 7,849	A-B = 1,779
People with high scores	C = 9,981	D = 9,676	C-D = 305
Difference (score groups)	A-C = -353	B-D = -1,827	(A-B)-(C-D) = 1,473

Tyler, Murnane, and Willett (2000)

- Earnings differences in row (1): the effect of the GED, if any, <u>and</u> any unobserved differences between states
- Earnings differences in row (2): no GED effect (all passed), only the effect of unobserved differences between states
- Under the assumption that the second differences is the gap one would observe in column (2) in the absence of treatment, we can interpret the DD as the causal effect of the GED.

LPO 8852 (Corcoran)

1 -----

Last update: September 20, 2022