Shannon Ioffe, Carmen Phaison COSC 237 2/22/2023

Assignment 2

Instructions.

- 1. Submit by the date and time indicated on Blackboard.
- 2. This is a team assignment. Work in teams of 2-3 students. Submit on Blackboard one assignment per team, with the names of all students making the team.
- 3. For editing your homework. I recommend that you use Latex and Overleaf, see the template files posted on the Blackboard: assignment-template.tex and assignment-template.pdf.
- 4. If a problem has more questions, write down your answers in the same order as the order of questions. In principle, this should help you.

Exercise 1.

a Find a Θ evaluation for the function $(4n+1)8^{\log(n^2)}$. (Hint: $8^{\log(n^2)}$ can be written in a simpler way.)

Step 1:
$$(4n+1) = n$$

Step 2: $8^{\log(n^2)} = (2^3)^{2\log(n)} = 2^{6\log(n)} = 2^{\log(n^6)} = n^6$

Step 3:
$$n * n^6 = n^7$$

$$(4n+1)8^{\log(n^2)} = \Theta(n^7)$$

b Give an example of two functions $t_1(n)$ and $t_2(n)$ that satisfy the relations: $t_1(n) = \Theta(n^2)$, $t_2(n) = \Theta(n^2)$ and $t_1(n) - t_2(n) = o(n^2)$.

$$t_1(n) = 3n^2 + n$$

$$t_2(n) = 3n^2$$

$$(3n^2 + n) - (3n^2) = n$$

$$n = o(n^2)$$

c Give an example of a function $t_1(n)$ such that $t_1(n) = \Theta(t_1(2n))$.

$$t_1(n) = \log(n)$$

$$t_1(2n) = \log(2n) = \log(n)$$

$$\log(n) = \Theta(\log(2n))$$

d Give an example of a function $t_2(n)$ such that $t_2(n) = o(t_2(2n))$.

$$t_2(n) = n!$$

 $t_2(2n) = 2n!$
 $n! = o(2n!)$

(Note: For (b), (c), (d), seek your examples among polynomials, logarithms, exponentials, factorial.)

Exercise 2. Fill the table from Exercise 3-2, page 61 (3-rd edition) in the textbook (also attached below), except row c, as asked in the exercise. For example the entry on the first cell in the top row is "yes" because $\log^k n = O(n^{\epsilon})$. (Note: in row c all the entries are "no", because $n^{\sin n}$ oscillates.)

3-2 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	$\boldsymbol{\mathit{B}}$	0	o	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}	Yes	Yes	No	No	No
<i>b</i> .	n^k	c^n	Yes	Yes	No	No	No
		ain n					
C.	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$	No	No	Yes	Yes	No
e.	$n^{\lg c}$	$c^{\lg n}$	Yes	No	Yes	No	Yes
f.	lg(n!)	$\lg(n^n)$	Yes	No	Yes	No	Yes

Exercise 3. For each of the following program fragments give a $\Theta(\cdot)$ estimation of the running time as a function of n.

```
(b) sum = 0;
    for (int i = 0; i < n; i++) {
   sum++;}
   for(int j = 0; j < n/2; j++){
          sum++;}
   i(n) = n + j(n)
   j(n) = n
   i(n) = 2n
   =\Theta(n)
(c) sum = 0;
    for (int i = 0; i < n * n; i++) {
          for(int j = 0; j < n * n; j++)
                sum++
   }
   i(n) = n^2 * j(n)
   j(n) = n^2
   i(n) = n^2 * n^2
   =\Theta(n^4)
(d) sum = 0;
    for (int i = 1; i < n; i = 2*i)
                sum++
   =\Theta(2^n)
(e) sum = 0;
    for (int i = 0; i < n; i++) {
          for(int j = 1; j < n * n; j = 2*j)
                sum++
   }
   =\Theta(2^{2n})
```

Exercise 4.

(a) Compute the sum $S_1 = 500 + 501 + 502 + 503 + ... + 999$ (the sum of all integers from 500 to 999). Do not use a program.

$$n(n+1)/2 = 999(1000)/2 = 499,500$$

 $n(n+1)/2 = 499(500)/2 = 124,750$
 $499,500 - 124,750 = 374,750$
 $374,750$

(b) Compute the sum $S_2 = 1 + 3 + 5 + \ldots + 999$ (the sum of all odd integers from 1 to 999). Do not use a program.

$$na + d(n-1)/2 = n(1) + 2(n-1)/2 = n + 2n - 2/2$$

 $n + 2n - 2/2 = 500 + 2(500) - 2/2 = 124,998$

124,998

(c) A group of 30 persons need to form a committee of 3 persons. How many such committees are possible?

$$\binom{30}{3} = 30 * 29 * 28/1 * 2 * 3$$

 $30 * 29 * 28/1 * 2 * 3 = 24360/6 = 4,060$
 4.060

(d) Let C_n be the number of committees of 4 persons selected from a group of n persons. Is the estimation $C_n = o(n^3)$ correct? Justify your answer. (Hint: use the formula that gives the number of committees as a function of n.)

$$\binom{n}{4} = n(n-1)(n-2)(n-3)/1 * 2 * 3 * 4$$

No $C_n = \Theta(n^4)$ so, $C_n > (n^3)$ and the estimation should be $\omega(n^3)$ instead.

Exercise 5. Find a $\Theta(\cdot)$ evaluation for the sum

$$S = 1\sqrt{1} + 2\sqrt{2} + \ldots + n\sqrt{n}.$$

In other words, find a function f such that $S = \Theta(f(n))$.

Show the work for both the upper bound and the lower bound. You can use the technique with integrals, or the method with bounding the terms of the sum.

Ex 5 Find a
$$\Theta$$
 -evaluetton for the sum

$$S_{n}^{*} = 1\sqrt{1} + 2\sqrt{2} + ... + n\sqrt{n} \qquad \geq n\sqrt{n}$$

AKA Find f such that $S = \Theta(f Un)$

show work for uppert lower bound 0 f(u) is inc

$$S_{n} \geq \int_{0}^{n} (n\sqrt{n}) dx \qquad S_{n} \geq \int_{0}^{n} f(x) dx$$

$$= \int_{0}^{n} \int_{0}^{3/2} dx = \begin{cases} S_{n} = \frac{5}{2} \\ S_{n} = \frac{5}{2} \end{cases}$$

$$= \left(\frac{2n^{5/2}}{5}\right)^{n} = \frac{2n^{5/2}}{5} \leq S_{n}$$

$$S_{0} \leq \int_{1}^{n+1} (n\sqrt{n}) = \frac{2n^{5/2}}{5} \int_{1}^{n+1} \left[\frac{2(n+1)^{5/2}}{5} - \frac{2(1)^{5/2}}{5}\right] \geq S_{n}$$

Lower bound:

$$(2/5)n^{5/2} <= S$$

 $S = \Theta(n^{5/2})$

Upper bound:

$$(2/5)(n+1)^{5/2} >= S$$
$$(n+1)^{5/2} >= S$$
$$S = \Theta((n+1)^{5/2})$$