Choose the correct result vector for the matrix multiplication problem.

$$egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix} egin{bmatrix} 5 \ 6 \end{bmatrix} = egin{bmatrix} ? \ ? \end{bmatrix}$$

a.
$$\begin{vmatrix} 8 \\ 13 \end{vmatrix}$$
 b. $\begin{vmatrix} 15 \\ 42 \end{vmatrix}$

$$\begin{bmatrix} 17 \\ 39 \end{bmatrix}$$

 $\mathrm{d.} egin{bmatrix} 10 \ 72 \end{bmatrix}$

Choose the correct result vector for the matrix multiplication problem.

$$egin{bmatrix} 2 & 4 \ 6 & 8 \end{bmatrix} egin{bmatrix} 2 \ 4 \end{bmatrix} = egin{bmatrix} ? \ ? \end{bmatrix}$$

a.
$$\begin{bmatrix} 12 \\ 56 \end{bmatrix}$$
 b. $\begin{bmatrix} 8 \\ 18 \end{bmatrix}$

c.
$$\begin{vmatrix} 16 \\ 192 \end{vmatrix}$$

The NOT operation is applied to an initial vector, $\begin{vmatrix} \mathbf{1} \\ 0 \end{vmatrix}$.

What will the result be in vector notation?

$$a. \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$b.$$
 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$c. \begin{vmatrix} 0 \\ 1 \end{vmatrix}$$

d. Cannot be determined

What will the result be in bra-ket notation?

$$a. |0\rangle$$

$$c. \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

d. Cannot be determined

The NOT operation is applied to an initial vector:

What will the result be in vector notation?

$$a.$$
 $\begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$

$$b.\begin{bmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$C.$$
 $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

d. Cannot be determined

What will the result be in bra-ket notation?

$$a. \frac{\sqrt{3}}{2}|0\rangle + \frac{1}{2}|1\rangle$$

b.
$$\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$$

$$2. \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}}|0\rangle$$

 $a. \frac{\sqrt{3}}{2}|0\rangle + \frac{1}{2}|1\rangle$ $b. \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$ $c. \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ d. Cannot be determined

The H operation is applied to an initial vector:

What will the result be in vector notation?

$$a. \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$b. \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$c.\begin{bmatrix}1\\0\end{bmatrix}$$

$$d. \frac{1}{\sqrt{2}} \begin{vmatrix} -1 \\ 1 \end{vmatrix}$$

What will the result be in bra-ket notation?

a.
$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
 b. $\frac{2}{\sqrt{5}}|0\rangle + \frac{1}{\sqrt{5}}|1\rangle$

$$b. \frac{2}{\sqrt{5}} |0\rangle + \frac{1}{\sqrt{5}} |1\rangle$$

$$C. \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$$

$$C. \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$$
 $d. \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$

The H operation is applied to an initial state: $|0\rangle$

What will the result be in vector notation?

$$a.$$

$$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$b.\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$$

$$c$$
. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$d. \frac{1}{\sqrt{2}} \begin{vmatrix} -1 \\ 1 \end{vmatrix}$$

What will the result be in bra-ket notation?

$$a. \frac{2}{\sqrt{5}}|0\rangle + \frac{1}{\sqrt{5}}|1\rangle$$
 $b. \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

C.
$$\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$
 $d. \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$

$$d. \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$$