PRANVEER SINGH INSTITUTE OF TECHNOLOGY KANPUR

Odd Semester

Session 2023-24

Pre-University

B. Tech.-3rdSemester

Mathematics-IV (BAS-303)

	Mathematics-1 v (DAS-303)
CO Normhan	Course Outcome
CO Number	Define/State/Find (L1-Remember) various fundamental concepts of partial differential equations (PDE), fourier transform and probability.
CO2	Explain/Discuss/Show (L2-Understand) the process involved various engineering problems to calculate (L2-Understand) various value of dependent variables. Partial differential equations are used in heat equation, wave equation, curve fitting, correlation, regression and other statistical techniques. Apply/use (L3-Apply) the concepts of PDE, Fourier transform, probability and statistics to compute (L3-
CO4	Apply) the engineering problems. Solve/Examine (L4-Analyze) moments, skewness and kurtosis, coefficient of correlation, probability and various dependent variables in PDE. Test (L4-Analyse) the significance of chi-square test, Z-test, t-test as well as control charts.

Time: 3 Hrs.

M. M. 70

Section A

Q1. Attempt all questions:

(2X7 = 14 Marks)

- Find the solution of $(D^2 5DD' + 4D'^2)z = 0$ \mathbf{a}
- Find the solution of $(D 5D' + 4)^3z = 0$. b) Find the Classification of the partial differential equation $u_{xx} + 2u_{xy} + 4u_{yy} = 0$. CO1
- c) CO₁ Define one dimensional wave equation and heat equation.
- The mean of 200 items was 50. Later on it was discovered that two items were misread as 92 and 8 d) CO₁ e) instead of 192 and 88. Find out the correct mean.
- CO1 If the critical value of Z is 1.96, find the significance level of two tailed test. f) CO₁
- Define Null hypothesis and Level of significance. g)

CO₄

CO₁

CO₁

Section B

Q2. Attempt all questions.

(7X3 = 21 Marks)

Solve the partial differential equation a)

$$\frac{\partial^2 z}{\partial x^2} - 3\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial^2 z}{\partial y^2} = \cos(x + 2y) + e^{2x - y} + e^{x + y}$$

CO₂ A string is stretched and fastened to two points / apart. Motion is started by displacing the string in the form $y = a \sin(\pi x/l)$ from which the form $y = a \sin(\pi x/l)$ from which it is released at a time t = 0. Show, the displacement of any point at b i) a distance x from one end at time t is given by

$$y(x, t) = a \sin\left(\frac{\pi x}{l}\right) \cos\left(\frac{\pi ct}{l}\right)$$

CO2 Calculate the variance, third and fourth central moment (moment about mean) for the following data: ii)

CO3 An urn contains 10 white and 3 black balls, while another urn contains 3 white and 5 black balls. Two balls are drawn from the first urn and a second second a ball is drawn from the later. balls are drawn from the first urn and put into the second urn and then a ball is drawn from the later. Compute the probability that it is a white balls?

ii)	Compute the coefficient of r Marks in History: 48 Marks in Economics: 12	rank correlation f 33 40 9 13 29 6	For the follow 18 14 15 4	ing data: 67 24 20 9	19 5	65 19	C	CO3			
Section C											
3. Attempt all questions: (7X5 = 35 Marks)											
a i)	Solve by Charpit's method	px + qy = p		,				CO4			
ii)	Solve the partial differenti	al equation	(OR .				CO4			
	$x^{2} \frac{\partial^{2} z}{\partial x^{2}} - 4xy \frac{\partial^{2} z}{\partial x \partial y} + 4y^{2} \frac{\partial^{2} z}{\partial y^{2}} + 6y \frac{\partial z}{\partial y} = x^{3} y^{4}$										
b i)	A homogeneous rod of con and the temperature initial	ly is					ture	CO2			
ē	$u(x,0) = \begin{cases} x, & 0 \le x \le 50 \\ 100 - x, 50 \le x \le 100 \end{cases}$. Calculate the temperature $u(x, t)$ at any time.										
ii)	The ends A and B of a rod 2 prevails. The temperatures the temperature distribution	of the ends are c	hanged to 4	ures at 30°C ar 0°C and 60	nd at 80°C °C respec	until steady s stively. Calcul	state ate	CO2			
c i)	Use the method of least square to Fit a second degree parabola to the following data by least square method:										
		931 1932 19 57 358 36				1937 359					
***	OR .										
ii)	Two line of regression are $8x - 10y + 70 = 0$ and $20x - 9y - 65 = 0$. Compute the mean of x and y series, standard deviation of y, coefficient of correlation where variance of x is given as 9.										
d i)	Out of 800 families with 4 children each, calculate how many families would be expected to have (i) 2 boys and 2 girls (ii) at least one boy (iii) no girl (iv) at most two girls? Assume equal probabilities for boys and girls. OR										
ii)											
e i)	Test were made at short intervals on spark plugs of two manufactures. The following tabulation gives the numbers of hours of service from plugs from the two sources:										
	_	90 200 210 190	190 200			200 210					
			180 190 Ticant differer		192 park plug	s so far as the	mean				
	Do these results indicate a statistically significant difference between spark plugs so far as the mean length of service is concerned? (For $v = 16$, $t_{0.05} = 2.12$)										
OR ii) Test by χ^2 -test whether there is any association between income level and type of schooling:											
*	Inc	come Public	school	Govt. school	type 0	a schooling:		CO4			
	Lo			400							
		igh 1000		400							
Given at 5% level of significance tabulated value of $\chi^2 = 3.841$, $v = 1$.											