Cartographie d'arbres

Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures

Durée de l'épreuve: 3 heures 30 minutes

Juin 2012

ATTENTION!

N'oubliez en aucun cas de recopier votre u_0 à l'emplacement prévu sur votre fiche réponse

Important.

Sur votre table est indiqué un numéro u_0 qui servira d'entrée à vos programmes. Les réponses attendues sont généralement courtes et doivent être données sur la fiche réponse fournie à la fin du sujet. À la fin du sujet, vous trouverez en fait <u>deux</u> fiches réponses. La première est un exemple des réponses attendues pour un $\widetilde{u_0}$ particulier (précisé sur cette même fiche et que nous notons avec un tilde pour éviter toute confusion!). Cette fiche est destinée à vous aider à vérifier le résultat de vos programmes en les testant avec $\widetilde{u_0}$ au lieu de u_0 . Vous indiquerez vos réponses (correspondant à <u>votre</u> u_0) sur la seconde et vous la remettrez à l'examinateur à la fin de l'épreuve.

En ce qui concerne la partie orale de l'examen, lorsque la description d'un algorithme est demandée, vous devez présenter son fonctionnement de façon schématique, courte et précise. <u>Vous ne devez en aucun cas recopier le code de vos procédures!</u>

Quand on demande la complexité en temps ou en mémoire d'un algorithme en fonction d'un paramètre n, on demande l'ordre de grandeur en fonction du paramètre, par exemple: $O(n^2)$, $O(n \log n)$,...

Il est recommandé de commencer par lancer vos programmes sur de petites valeurs des paramètres et de tester vos programmes sur des petits exemples que vous aurez résolus préalablement à la main ou bien à l'aide de la fiche réponse type fournie en annexe. Enfin, il est recommandé de lire l'intégralité du sujet avant de commencer afin d'effectuer les bons choix de structures de données dès le début.

1 Introduction

Dans ce sujet, on va chercher des moyens de se déplacer sur des arbres binaires, et d'optimiser leur stockage sur des supports de taille limitée.

On considère la suite d'entiers (u_k) définie pour $k \ge 0$ par :

$$u_k = \begin{cases} votre \ \mathbf{u_0} \ (\grave{a} \ reporter \ sur \ votre \ fiche) & \text{si} \ k = 0 \\ 15\,091 \times u_{k-1} \mod 64\,007 & \text{si} \ k \geqslant 1 \end{cases}$$

Question 1 Que valent : a) u_{10}

c) u_{1000}

On définit l'arbre binaire A_n de la façon suivante :

- $-A_0$ est l'arbre réduit à un seul nœud, appelé feuille.
- Pour n > 0, A_n est un nœud muni de deux sous-arbres :
 - son fils gauche est l'arbre $A_{u_{2n} \mod n}$,
 - son fils droit est l'arbre $A_{u_{2n+1} \mod n}$.

On appelle père d'un nœud n_i dans l'arbre le nœud n_j tel que n_i est un fils de n_j , et racine de l'arbre le seul nœud qui ne possède pas de père.

Question 2 Donnez le nombre de nœuds et de feuilles des arbres suivants :

a) A_{10}

b) A_{100}

c) A_{1000}

2 Schéma d'adressage des arbres

On veut pouvoir trouver son chemin facilement dans les arbres, c'est-à-dire savoir se déplacer d'un nœud n_i vers un nœud n_i . Pour cela, on munit les nœuds d'une adresse qui permet de savoir facilement comment rejoindre un nœud, ou que l'on soit dans l'arbre. L'adresse d'un nœud n_i est un couple d'entiers (l_i, m_i) tels que :

- $-l_i$ est le numéro de n_i dans un parcours en profondeur préfixe, en supposant que la racine porte le numéro 0.
- $-m_i$ est la plus grande valeur de l_i pour les nœuds n_i du sous-arbre enraciné en n_i . Dans la suite du sujet, on repérera un nœud n_i de l'arbre par son indice l_i .

Question 3 Pour les arbres et les valeurs de l_i suivantes, on donnera les valeurs de m_i telles que (l_i, m_i) est l'adresse d'un nœud n_i de l'arbre :

a) $A_{10}, l_i = 3$

b) $A_{100}, l_i = 9$

c) A_{1000} , $l_i = 30$.

Question à développer pendant l'oral : Expliquez comment trouver son chemin d'un nœud n_i à un nœud n_j dans l'arbre grâce à ces adresses.

Question 4 Donnez la distance parcourue en nombre de nœuds traversés lorsqu'on se déplace sur les arbres suivants du nœud n_i au nœud n_j donnés par leurs valeurs l_i et l_j (si $n_i = n_j$, on considèrera que cette distance vaut zéro):

a) A_{10} , $l_i = 3$ et $l_j = 9$ **b)** A_{100} , $l_i = 5$ et $l_j = 30$ **c)** A_{1000} , $l_i = 30$ et $l_j = 90$

3 Cartographie d'arbres

On veut créer une représentation cartographique de l'arbre sur lequel on se déplace. La taille d'une carte est limitée, il faut donc plusieurs cartes pour couvrir tout l'arbre. On suppose qu'une carte peut contenir jusqu'à p nœuds de l'arbre. Lorsqu'on traverse cet arbre, de la racine jusqu'à une feuille, on a besoin d'emporter toutes les cartes nécessaires, de telle sorte que le chemin de la racine jusqu'à la feuille soit couvert. On appelle cartographie de taille k une partition des nœuds de l'arbre en k sous-ensembles disjoints contenant chacun au plus p nœuds.

On appelle <u>coût</u> d'un nœud pour une cartographie donnée le nombre des cartes qui couvrent le chemin depuis la racine de l'arbre jusqu'à ce nœud. On note $c(n_i)$ le coût d'un nœud n_i . On va surtout s'intéresser ici au coût des feuilles de l'abre. On note F_A l'ensemble des feuilles de l'arbre A. Pour une cartographie donnée, on considère le coût moyen $C^{\text{moy}}(A)$ des feuilles de l'arbre, ainsi que le coût maximum $C^{\text{max}}(A)$ des feuilles de l'arbre :

$$C^{\max}(A) = \max_{f \in F_A} c(A), \qquad C^{\max}(A) = \frac{1}{|F_A|} \sum_{f \in F_A} c(A).$$

Question 5 On propose une méthode de cartographie simple : pour k = 0.. $\lceil n/p \rceil$, la carte k contient les nœuds d'indice l_j avec $p \times k \leqslant l_j . Pour les arbres et les valeurs de <math>p$ suivantes, donnez le coût moyen des feuilles C^{moy} et le coût maximum des feuilles C^{max} :

a)
$$A_{10}, p = 3$$

b)
$$A_{100}, p = 6$$

c)
$$A_{1000}, p = 9$$

Question à développer pendant l'oral : Quelle est la complexité de votre algorithme?

3.1 Minimisation du coût maximum

Pour un arbre A donné, on cherche maintenant à obtenir une cartographie telle que le coût maximum des feuilles $C^{\max}(A)$ est minimal. Dans une telle cartographie, on note p(A) la taille minimale d'une carte contenant la racine de A.

Question à développer pendant l'oral : Donnez une expression de $C^{\max}(A)$ et p(A) en fonction de $C^{\max}(A_g)$, $C^{\max}(A_d)$, $p(A_g)$ et $p(A_d)$ où A_g et A_d sont les sous-arbres gauche et droite de l'arbre.

Question 6 Pour les arbres et valeurs de p suivants, donnez le coût maximum des feuilles $C^{\max}(A)$ ainsi que la taille minimale de la carte contenant la racine dans une cartographie minimisant $C^{\max}(A)$:

a)
$$A_{10}, p = 3$$

b)
$$A_{100}, p = 6$$

c)
$$A_{1000}, p = 9$$

Question à développer pendant l'oral : Comment limiter le nombre de cartes tout en gardant une cartographie qui minimise le coût maximum des feuilles ? On pourra donner une borne par rapport au nombre minimal de cartes possible.

3.2 Minimisation du coût moyen

On cherche ici à minimiser le coût moyen $C^{\text{moy}}(A)$ des feuilles de A dans une cartographie. On suppose ici que dans une cartographie, les cartes sont des parties convexes de l'arbre. Ainsi, si deux nœuds n_i et n_j sont dans une même carte, tous les nœuds sur le chemin de n_i à n_j sont aussi dans cette carte.

Question à développer pendant l'oral : Montrez qu'il existe une cartographie minimisant le coût moyen des feuilles telle que la carte contenant la racine possède exactement p nœuds dès que l'arbre contient plus de p nœuds.

Soit C(i, k) la valeur minimale de la somme des coûts des feuilles du sous-arbre enraciné en n_i lorsque la carte contenant n_i possède au plus k nœuds. Donnez une expression de C(i, k) en fonction des C(j, k') pour les fils n_j de n_i , et $k' = 1, \ldots, p$. On pourra noter $f(n_i)$ le nombre de feuilles du sous-arbre enraciné en n_i

Question 7 Quel est le coût moyen des feuilles $C^{\text{moy}}(A)$ minimal pour les arbres et valeurs de p suivants?

a)
$$A_{10}, p = 3$$

b)
$$A_{100}, p = 6$$

c)
$$A_{1000}, p = 9$$

Question à développer pendant l'oral : Donnez la complexité en temps et en espace de votre algorithme. Peut-on les améliorer?

4 Minimisation du coût maximum et du coût moyen

On cherche désormais à optimiser à la fois le coût maximum des feuilles et leur coût moyen.

Question à développer pendant l'oral : Expliquez comment calculer, pour un arbre et une valeur de p donnés, le plus petit coût moyen des feuilles dans une cartographie quand on impose que le coût maximum des feuilles est inférieur ou égal à une valeur V donnée. Quelle est la complexité en temps et en espace de votre algorithme?

Pour un arbre A est une valeur de p donnés, on note $C^1(A,p)$ le plus petit coût moyen des feuilles dans une cartographie, et $C^2(A,p)$ le plus petit coût moyen des feuilles dans une cartographie où le coût maximum des feuilles est minimal.

Question 8 Pour les arbres suivants, donnez la plus petite valeur de $p \ge 3$ telle que $C^1(A, p) \ne C^2(A, p)$, ainsi que les valeurs de $C^1(A, p)$ et $C^2(A, p)$ correspondantes.

a) A_{500}

b) A_{1000}

c) A_{3000}

Fiche réponse type: Cartographie d'arbres

 $\widetilde{\mathrm{u}_0}:7$

Question 1

- a) 13238
- **b)** 61807
- c) 28695

Question 2

- a) 21, 11
- **b)** 107, 54
- c) 2459, 1230

Question 3

- a) 5
- **b)** 11
- **c)** 40

Question 4

- a) 3
- **b)** 4
- **c)** 8

Question 5

- a) 2.727, 4
- **b)** 3.963, 6
- **c)** 7.293, 15

Question 6

- a) 3, 1
- **b)** 3, 6
- **c)** 5, 3

Question 7

- a) 2.545
- **b)** 2.815
- c) 3.853

Question 8

- a) 8, 3.511, 3.517
- **b)** 24, 2.819, 2.820
- c) 22, 2.895, 2.897

Fiche réponse: Cartographie d'arbres

Nom, prénom, u ₀ :	
Question 1	a)
a)	
b)	b)
с)	c)
	Question 6
Question 2	a)
a)	b)
b)	c)
c)	Question 7
Question 3	
	a)
a)	b)
b)	c)
c)	Question 8
Question 4	a)
a)	b)
b)	
c)	c)
Question 5	