

Markov Chains

Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires

$$\mathbb{P}(X_{n+1} = x \mid X_n = x_n, \dots, X_0 = x_0) = 0$$

On dit que $(X_n)_{n>0}$ vérifie la propriété de Markov si son état futur n+1

ne dépend que du présent n et non pas du passé (n-1...0):

Définition: Chaîne de Markov

 $\mathbb{P}(X_{n+1} = x \mid X_n = x_n)$

Définition

Quel graphe probabiliste permet de visualiser cette suite?

Définition: Chaîne de Markov homogène

On dit que $(X_n)_n$ est homogène si les variables $X_{n+1} \mid X_n$ ont la même loi $\forall n$.

Dans toute la suite, les chaînes de Markov sont supposées homogènes

Définition: Chaîne de Markov

Soit $(X_n)_{n>0}$ une suite de variables aléatoires

On dit que $(X_n)_{n\geq 0}$ vérifie la propriété de Markov si son état futur n+1 ne dépend que du présent n et non pas du passé (n-1...0):

$$\mathbb{P}(X_{n+1} = x \mid X_n = x_n, \dots, X_0 = x_0) = \mathbb{P}(X_{n+1} = x \mid X_n = x_n)$$

Quel graphe probabiliste permet de visualiser cette suite?

$$X_{n+1}$$
 X_n X_{n-1} X_0

Définition: Chaîne de Markov homogène

On dit que $(X_n)_n$ est homogène si les variables $X_{n+1} \mid X_n$ ont la même loi $\forall n$.

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Exemple

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans $\mathcal{S}=\{A,B,C\}$.

