$$20 \left(G_1(3) = \frac{5}{8+1}\right)$$

Da = 1

$$\Rightarrow U(8) = \frac{1}{8} \Rightarrow \sqrt{(8)} = \frac{5}{8(8+1)}$$

$$\Rightarrow \sqrt{(8)} = 5 \left[\frac{1}{8} - \frac{1}{8+1} \right]$$

$$=7(8) = \frac{5}{8} - \frac{5}{(8+1)}$$

$$=b / (t) = \int_{0}^{-1} (Y(s)) = 5(1 - e^{-t})$$

Sampling time,
$$\Delta t = 0.5$$

$$8_0 = \gamma(t=0) = 0.$$

$$8_1 = \gamma(t=0.5) = 5(1-e^{-0.5}) = 1.9673$$

$$3_2 = 7(t = 2 \times 0.5) = 7(t = 1) = 3.1606$$

Endex (1)	. Following this procedure, we set:				
2		model parameter	,		
3 3, 3,8843 4 2,3233 5 4.5896 6 26 4.7511 7 27 29 10 310 4.9663 11 4.9876	1	-81	1,9673		
3 4 84 4 · 5896 6 86 4 · 849 4 · 9084 9 89 4 · 9084 10 810 4 · 9663 4 · 9796 12 811 4 · 9876	2	82	3.1606		
5. 25 4.5896. 6 86 4.7511 7 27 4.9084 8 89 4.9084 9 89 4.9444 10 310 4.9663 11 4.9796. 12 312 4.9876	3	83	3.8843		
8	4		4.3233		
$\frac{6}{7}$ $\frac{3}{7}$ $\frac{4.849}{9}$ $\frac{3}{8}$ $\frac{4.9084}{9}$ $\frac{3}{9}$ $\frac{4.9444}{9}$ $\frac{3}{10}$ $\frac{4.9663}{4.9796}$ $\frac{3}{11}$ $\frac{4.9796}{9}$	5 '	, » ₅	4.5896		
37 8 9 39 4.9663 10 310 4.9663 11 311 4.9376	6	86	4.7511		
$\frac{8}{9}$ $\frac{8}{9}$ $\frac{8}{9}$ $\frac{8}{9}$ $\frac{9}{9}$ $\frac{9}$	7	87	4.849.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	88	4.9084		
10 N - 8 ₁₁ 12 8 ₁₂ 4.9376	9	89	4.9444		
12 312 4.9876	10	310	4.9663		
12	M = =	311	4.9796.		
13 4.9925	12	812	4.9876		
	13	813	4.9925		

$$= 5 G(8) = 5e^{-0.153}$$

$$= (8 + 2)$$

We use the property of Laplace transforms:

where
$$\overline{F(8)} = \mathcal{L}(f(t))$$

Using this property >

$$y(t) = 2^{-1}(y(s)) = 2^{-1}\left(\frac{5e^{-0.15s}}{s(s+i)}\right)$$

$$y(t) = 5(1 - e^{-(t - 0.15)}), t 7.0-15$$

$$s_2 = \gamma(t = 2 \times 0.5) = \gamma(t = 1) = 2.8629.$$

$$= 7(t = 4 \times 0.5) = 7(t = 2) = 4.2138$$

$$= 0 \qquad \text{if } nT_8 < 0$$

Following this procedure:				
Index (1)	Step response parameter (3;)	Value		
1	81	1.4765		
2	82	2.8629		
3	83	3.7038		
4	-34	4-2138		
5	85	4.5231		
6	36	4.7108		
7	87	4.8246		
8	$\mathcal{S}_{\mathbf{g}}$	4.8936		
9	-8q	4-9355		
10	-810	4.9608		
11	811	4.9762		
12	312	4.9856		
13	313	4.9913		
14	314	4.9947.		
15	815	4-9968		

=b
$$\gamma(t) = 5(1-e^{-(t-1-5)}), t 71.5$$

$$= \begin{cases} 0 & \text{if } nT_8 \leq 0 \\ \sqrt{(t = nT_8)} & \text{if } nT_8 \neq 0 \end{cases}$$

$$= 7(t = 0.5 \times 4) = 7(t = 2) = 1.9763$$

$$= 7(t = 0.5 \times 5) = 7(t = 2.5) = 3.1606$$

Step response parameter	Value
-84	1.9673
85	3.1606
S _b	3.8843
37	4.3233
Sg	4.5896
89	4.7511
310	4-849.
	(3 ₁) 3 ₄ 3 ₅ 3 ₆ 3 ₇ 8 ₈ 3 ₉

. Problem 2: Impulse Response Model +

$$D G(8) = \frac{5}{(8+1)}, \Delta t = 0.5$$

$$\Rightarrow \sqrt{(8)} = \frac{5}{(8+1)} \cdot \frac{1}{8} (1 - e^{-0.58})$$

$$\frac{1}{3(3+1)} = \frac{5}{3(3+1)} = \frac{5}{3(3+1)} e^{-0.53}$$

$$y(t) = \int_{0}^{1} (y(3)) = 5(1-e^{-t}) - 5(1-e^{-(t-0.5)})$$

=
$$b h_1 = y(t = 0.5) = 5(1-e^{-0.5}) = 1.9673$$

$$h_2 = y(t = 2 \times 0.5) = y(t = 1) = 1.01932$$

$$h_3 = Y(t = 3 \times 0.5) = Y(t = 1.5) = 0.7237.$$

$$h_n = Y(t = n\Delta t)$$

Index (1)	FIR model coefficient (hi)	Value
	h ₁	1.9673
1	h ₂	1.1932
3	h ₃	0.7237
4	hy	0.44
5	h ₅	0.2662
6	h ₆	0.1615
7	hz	0.0979
8	hg	0.0594-
. 9	hq	0.036
10	hio	0.0218
11 :	hii	0.0132
12	h ₁₂	8-04 × 10-3
13	his	4.876×10-3

[·] Relation between step and FIR coefficients

hn = 8n - 8n-1

FIR coefficients

$$\frac{20}{100}$$
 $\frac{h_2}{h_2} = \frac{8_2}{100} - \frac{8_1}{100} = \frac{100}{100} = \frac{100}{100}$

Script @

21 disp(S)

C Reset MATLAB Documentation

```
1 % Transfer functions
2 G11=tf(2,[40,16,1]);
3 G12=tf(0.5,[20,7,1]);
4 G21=tf(1.2,[10,5,1]);
 5 G22=tf(1,[36,12,1]);
 6 G=[G11, G12; G21, G22];
8 % Parameters
9 ts=2; n=25;
11 % --- Start typing your code below this line ---
12 y_11 = step(G11,[0:ts:n*ts]);
13 y 12 = step(G12,[0:ts:n*ts]);
14 y_21 = step(G21,[0:ts:n*ts]);
15 y 22 = step(G22,[0:ts:n*ts]);
16 S = [];
17 for i = 1:n
18
       newmat = [y_11(i+1) y_12(i+1); y_21(i+1) y_22(i+1)];
19
       S = [S; newmat];
20 end
```