Zadanie: grupa symetrii kwadratu względem składania przekształceń "o".

Złożenie symetrii osiowych K i L kwadratu jest obrotem R_2 o kąt π względem środka O. Niech R_1 - oznacza obrót o kąt $\pi/2$, R_3 - obrót o kąt $3\pi/2$, odpowiednio.

Opisz działanie symetrii: M i N oraz R_1 i R_3 , tak jak poniżej dla symetrii K, L, etc.

złożenie symetrii $KoL = R_2$, bo

$$(KoL)(A) = K(L(A)) = K(D) = C = R_2(A)$$

 $(KoL)(B) = K(L(B)) = K(C) = D = R_2(B)$
 $(KoL)(C) = K(L(C)) = K(B) = A = R_2(C)$
 $(KoL)(D) = K(L(D)) = K(A) = B = R_2(D)$

$$K(A) = B$$

$$K(B) = A$$

$$K(C) = D$$

$$K(D) = C$$

 $R_2(D) = B$

$$K(D) = C$$
 $L(D) = A$

$$R_2(A) = C$$

$$R_2(B) = D$$

$$R_2(C) = A$$
 $I(A) = A$

$$I(B) = B$$

$$I(C) = C$$

L(A) = D

L(B) = C

L(C) = B

I(D) = D

$$\leftrightarrow$$

Oblicz R_1 oK, Ko R_1 - jak obok. O czym świadczy porównanie? Czy ta grupa jest abelowa?