Assignment 2

Amarnath Patel

June 5, 2024

- 1. (a) $h \wedge w \wedge \sim s$
 - (b) $\sim w \wedge h \wedge s$
 - (c) $\sim h \land \sim w \land \sim s$
 - (d) $\sim w \land \sim s \land h$
 - (e) $w \wedge \sim (h \wedge s)$
- $2. \quad \text{(a)} \begin{array}{|c|c|c|c|} \hline p & q & \sim (p \wedge q) \vee (p \vee q) \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & T \\ \hline \end{array}$

	p	q	r	$p \wedge (\sim q \vee r)$
	Т	Т	Т	Т
	Т	Τ	F	F
	T	\mathbf{F}	Τ	T
(b)	T	\mathbf{F}	F	T
	F	${\rm T}$	\mathbf{T}	F
	F	${\rm T}$	F	F
	F	\mathbf{F}	Τ	F
	F	\mathbf{F}	\mathbf{F}	F

- 3. (a) $p \lor (p \land q)$ and q are not logically equivalent because their truth tables are not the same.
 - (b) $\sim (p \wedge q)$ and $\sim p \wedge \sim q$ are logically equivalent because their truth tables are the same.
 - (c) $p \wedge (q \vee r)$ and $(p \wedge q) \vee (p \wedge r)$ are logically equivalent because their truth tables are the same.
- 4. (a) $\sim (-2 < x < 6) \rightarrow x \le -2 \lor x \ge 6$
 - (b) $\sim (-9 < x < 2) \to x \le -9 \lor x \ge 2$
 - (c) $\sim (x < 2 \lor x > 6) \rightarrow x \ge 2 \land x \le 6$
 - (d) $\sim (x \le -1 \lor x > 1) \to x > -1 \land x \le 1$

- (e) $\sim (0 > x \ge -4) \to x \le 0 \land x < -4$
- 5. (a) $(p \wedge q) \vee (\sim p \vee (p \wedge \sim q))$ is a tautology.
 - (b) $(p \land \sim q) \land (\sim p \lor q)$ is a contradiction.
 - (c) $((\sim p \land q) \land (q \land r)) \lor \sim q$ is neither a tautology nor a contradiction.
- 6. (a) Let b represent "Bob is a double math and computer science major" and a represent "Ann is a math major". Then the statement is $b \wedge a \wedge \sim a$.
 - (b) The statement is $\sim (b \wedge a) \wedge a \wedge b$. The two statements are not logically equivalent.
- 7. $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$ by the associative law of exclusive or.
- 8. (a) $(p \land \sim q) \lor (p \land q) \equiv p \land (\sim q \lor q)$ by distributive law.
 - (b) $p \wedge (\sim q \vee q) \equiv p \wedge t$ by law of excluded middle.
 - (c) $p \wedge t \equiv p$ by identity law.
- 9. $(p \land \sim q) \lor p \equiv p$ by absorption law.
- 10. $\sim ((\sim p \land q) \lor (\sim p \land \sim q)) \lor (p \land q) \equiv p$ by De Morgan's law and law of excluded middle.