The National Institute of Engineering

Scheme of Teaching & Examination - 2022

Effective from the Academic year 2023-24

Department: Computer Science and Engineering

B.E. 2022 Admitted Batch

Semester: IV

	ırse					Teac	hing I	Hrs/W	'eek		Exam	ination		
Sl. No.	Type of Course	Course Code	Course Title	Teaching Department (TD)	Question Paper setting Board (PSB)	L	Т	P	S	Duration in Hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC/BSC	BCS401	Analysis & Design of Algorithms	TD: CS	PSB: CS	3	0	0	0	3	50	50	100	3
2	IPCC	BCS402	Microcontrollers	TD: CS	PSB: CS	3	0	2	0	3	50	50	100	4
3	IPCC	BCS403	Database Management Systems	TD: CS	PSB: CS	3	0	2	0	3	50	50	100	4
4	PCCL	BCSL404	Analysis & Design of Algorithms Lab	TD: CS	PSB: CS	0	0	2	0	2	50	50	100	1
5	ESC	BCS405x	ESC/ETC/PLC	TD: CS	PSB: CS	2	2	0	0	3	50	50	100	3
						If the	he cou			ory	ory		30 30 100	
6	AEC/SEC	BCS456x	Ability Enhancement Course (AEC) - IV	TD: CS	PSB: CS	1	0	0	0	1	50	50	100	1
Ü	1120,520	200.00.1		12.00	122.02	If the	cours	e is a	Labor	atory			100	
						0	0	2	0	2				
7	BSC	BBOK407	Biology for Engineers	TD: Chem	PSB: Chem	2	0	0	0	2	50	50	100	2
8	UHV	BUHK408	Universal Human Values and Professional Ethics	TD: CS	PSB: CS	1	0	0	0	-	50	ı	50	1
		BNSK459	National Service Scheme (NSS)	NSS Coo	rdinator									
9	MC	BPEK459	Physical Education (PE) (Sports & Athletics)	PE	D	0	0	2	0	-	100	-	100	0
		BYOK459	Yoga	Yoga T	eacher									
									,	Total	550	350	850	19

1/30 Dept. of CS&E

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. K: This letter in the course code indicates common to all the stream of engineering. ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course

Engineering S	cience Course (ESC/ETC/PLC)		
BCS405A	Discrete Mathematical Structures	BCS405C	Optimization Technique
BCS405B	Graph Theory	BCS405D	Linear Algebra
Ability Enhan	cement Course - IV		
BCS456A	Green IT and Sustainability	BCS456C	UI/UX (Lab)
BCS456B	Capacity Planning for IT	BCS456D	Technical writing using LATEX (Lab)

2/30 Dept. of CS&E

Code: BCS401 Course: Analysis and Design of Algorithms
Credits: 3 L:T:P - 3:0:0
SEE: 50 Marks
SEE Hours: 03 CIE: 50 Marks
Max. Marks: 100

Prerequisites if any	Recurrence Relations, Data Structures
Learning objectives	 To learn the methods for analyzing algorithms and evaluating their performance. To demonstrate the efficiency of algorithms using asymptotic notations. To solve problems using various algorithm design methods, including brute force, greedy, divide and conquer, decrease and conquer, transform and conquer, dynamic programming, backtracking, and branch and bound. To learn the concepts of P and NP complexity classes

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Apply asymptotic notational method to analyze the performance of the algorithms in terms of time complexity.	Understand, Analyze
CO2	Demonstrate divide & conquer approaches and decrease & conquer approaches to solve computational problems.	Apply
CO3	Make use of transform &conquer, dynamic programming and greedy approaches to solve the given real world or complex computational problems.	Apply
CO4	Illustrate backtracking, branch & bound and P,NP and NP Complete problems	Apply

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	- \	<u> </u>	-//	-	-	1	, - /	-	1	3	2
CO2	3	2	3	-		1-1	1 -	-	-/4		-	1	3	2
CO3	2	2	3	-	- 1	(-)	-	-	-	M.	-	1	3	2
CO4	2	2	3	-	-		6-	-)	-/4	-	-	1	3	2

Mapping Strength: Strong-3 Medium - 2 Low - 1

	ESTD: 1946	No. of Lecture Hours	No. of Tutorial Hours	No. of Practical Hours
	Module – 1			
1	INTRODUCTION:			
1.1	What is an Algorithm?	1	0	0
1.2	Fundamentals of Algorithmic Problem Solving.	2	0	0
	FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM			
	EFFICIENCY:			
1.3	Analysis Framework	1	0	0
1.4	Asymptotic Notations and Basic Efficiency Classes	1	0	0

1.5	Mathematical Analysis of Non recursive Algorithms	1	0	0
1.6	Mathematical Analysis of Recursive Algorithms.	1	0	0
	BRUTE FORCE APPROACHES:		-	
1.7	Selection Sort	1	0	0
1.8	Sequential Search	1	0	0
1.0		1	U	0
	Module – 2	1		
2.1	BRUTE FORCE APPROACHES (contd): Brute Force String Matching	1	0	0
2.1	Exhaustive Search (Travelling Salesman problem)	1 1	0	0
2.3	Exhaustive Search (Travening Salesman problem) Exhaustive Search (Knapsack Problem).	1	0	0
2.3	DECREASE-AND-CONQUER:	1	U	U
2.4	Topological Sorting.	1	0	0
2.4	DIVIDE AND CONQUER:	1	U	U
2.5	Merge Sort	1	0	0
2.6	Quick Sort	1	0	0
2.7	Strassen's Matrix Multiplication.	2	0	0
2.1	Module – 3		0 1	
	TRANSFORM-AND-CONQUER:			
3.1	Balanced Search Trees	2	0	0
3.2	Heaps and Heapsort.	2	0	0
3.2	SPACE-TIME TRADEOFFS:		U	U
3.3	Sorting by Counting: Comparison counting sort	2	0	0
3.4	Input Enhancement in String Matching: Horspool's Algorithm.	2	0	0
	Module – 4:			
4 1	DYNAMIC PROGRAMMING:	1	0	
4.1	The basic examples			0
4.2	The Knapsack Problem and Memory Functions	2 2	0	0
4.3	Warshall's and Floyd's Algorithms. THE GREEDY METHOD:	2	U	U
4.4		1	0	0
4.4	Prim's Algorithm Kruskal's Algorithm	1	0	0
4.5	Dijkstra's Algorithm	1 1	0	0
4.0	Module – 5	1	0 1	<u> </u>
	LIMITATIONS OF ALGORITHMIC POWER:			
5.1	Decision Trees	1	0	0
	P, NP, and NP-Complete Problems.	3	0	0
5.4	COPING WITH LIMITATIONS OF ALGORITHMIC POWER:	-	U	<u> </u>
5.3	Backtracking (n-Queens problem)	1	0	0
5.4	Backtracking (Subset-sum problem)	1	0	0
5.5	Branch-and-Bound (Travelling Salesman Problem),	1	0	0
5.5	Total No. of Lecture Hours	s 40	-	-
	Total No. of Tut		00	
	V	No. of Practi		00

Textbook

1. Introduction to the Design and Analysis of Algorithms, By Anany Levitin, 3rd Edition (Indian),

2017, Pearson.

Module-1:

Chapter 1 (Sections 1.1,1.2)

Chapter 2(Sections 2.1,2.2,2.3 (Example 2 & Example 4 Only) ,2.4 (Example 2 Only))

Chapter 3(Section 3.1(only Selection sort), 3.2(only sequential search)

Module-2:

Chapter 3(Section 3.4),

Chapter 4 (Sections 4.1,4.2)

Chapter 5(Section 5.1,5.2, 5.4(only Strassen's matrix multiplication)

Module-3:

Chapter 6 (Sections 6.3,6.4) Chapter 7 (Sections 7.1,7.2)

Module-4:

Chapter 8(Sections 8.1,8.2,8.4) Chapter 9 (Sections 9.1,9.2,9.3)

Module-5:

Chapter 11 (Section 11.2, 11.3) Chapter 12 (Sections 12.1,12.2(only Travelling Salesman Problem)

Reference books

- 1. Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and Rajasekaran, 2nd Edition, 2014, Universities Press.
- 2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.
- 3. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education)

Online Resources:

• Design and Analysis of Algorithms: https://nptel.ac.in/courses/106/101/106101060/

Code: BCS402 Course: Microcontrollers
Credits: 4 L:T:P - 3:0:2
SEE: 50 Marks
SEE Hours: 3 CIE: 50 Marks
Max. Marks:100

Prerequisites if any	Digital Design and Computer Organization
Learning objectives	1. To provide the knowledge of the fundamentals of ARM-based
	systems and basic architecture of CISC and RISC
	2. To familiarize with ARM programming modules along with registers,
	CPSR and Flags
	3. To develop ALP/C Program using various instructions to program
	the ARM controller
	4. To discuss and demonstrate the Exceptions and Interrupt handling
	mechanism, ARM Firmware packages and Cache memory polices

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Understand the fundamentals of ARM-based systems and basic architecture of CISC	Understanding
CO1	and RISC	
CO2	Familiarize with ARM programming modules along with registers, CPSR and Flags	Apply
CO3	Develop Assembly Language/C Program using various instructions to program the	Apply
COS	ARM controller	
CO4	Demonstrate the Exceptions and Interrupt handling mechanism in Microcontrollers	Apply
CO5	Discuss the ARM Firmware packages and Analyze Cache memory polices	Analyze

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PS02
CO1	3	-	- [1]	-	ı		1	7	3	-	1	// -	į	1
CO2	3	-	2	\ <u>-</u>	-	-	-	1	-	-	- /	/ -	į	-
CO3	3	3	3	1	3	2	2	- 1	-	_	-/47	3	3	-
CO4	3	2	2	2	2	1/2/	-	-	1-7	<u> </u>	A	-	2	-
CO5	3	3	-	-//			-	-		- 1	17	-	i	ı

Mapping Strength:

Strong-3

Medium – 2

Low - 1

		No. of Lecture Hours	No. of Tutorial Hours	No. of Practical Hours
	Module – 1: ARM EMBEDDED SYSTEMS & PROCESSOR FUNDA	MENTAL	.S	
1.1	ARM Embedded Systems: The RISC design philosophy, The ARM Design Philosophy	1	0	0
1.2	Embedded System Hardware, Embedded System Software	2	0	0
1.3	ARM Processor Fundamentals: Registers, Current Program Status Register	2	0	1
1.4	Pipeline	1	0	0
1.5	Exceptions Interrupts, and the Vector Table	2	0	0
	Textbook 1: Chapter 1 - 1.1 to 1.4, Chapter 2 - 2.1 to 2.4			
	Module – 2:ARM INSTRUCTION SET			
2.1	Introduction to the ARM Instruction Set: Data Processing Instructions	3	0	3
2.2	Branch Instructions, Single Register Transfer, Multiple Register Transfer	2	0	2
2.3	Software Interrupt Instructions, Program Status Register Instruction	2	0	-
2.4	Loading Constants	1	0	-
	Textbook 1: Chapter 3 - 3.1 to 3.2,3.3.1,3.3.3,3.4,3.5,3.6			

Module – 3: C COMPILERS AND OPTIMIZATION	ON		
3.1 C Compilers and Optimization: Basic C Data Types	2	0	-
3.2 C Looping Structures	2	0	1
Register Allocation, Function Calls	2	0	1
3.4 Pointer Aliasing	2	0	-
Textbook 1: Chapter 5.1 to 5.6			
Module – 4: EXCEPTION, INTERRUPT HANDLING AND FI	RMWARE		
Exception and Interrupt Handling: Exception handling	1	0	2
ARM processor exceptions and modes, vector table, exception priorities	2	0	-
.3 link register offsets, interrupts, assigning interrupts	1	0	-
.4 interrupt latency, IRQ and FIQ exceptions	1	0	-
Firmware: Firmware and bootloader, ARM firmware suite, Red Hat redboot	3	0	-
Textbook 1: Chapter 9.1 and 9.2, Chapter 10.1			
Module – 5: CACHE MEMORY			
CACHES: The Memory Hierarchy and Cache Memory	2	0	-
Caches and Memory Management Units, CACHE Architecture: Basic Architecture. 2 of a Cache Memory	re 2	0	-
Basic Operation of a Cache Controller, The Relationship between Cache and Mai Memory	n 2	0	-
Write Buffers, Measuring Cache Efficiency, CACHE POLICY: Write Policy—Writeback or Writethrough	_ 2	0	-
Textbook 1: Chapter 12.1 to 12.3			
	100	-	=
Total No. of Le <mark>cture Ho</mark> ur		-	-
Tota <mark>l N</mark> o. of Tuto		00	- 10
Total 1	Vo. of Praction	cal Hours	10

Integra	Integrated Lab Component: Microcontrollers					
Sl No	CO's	Experiments				
1	CO2	Using Keil software, observe the various Registers, Dump, CPSR, with a simple Assembly Language Programs (ALP)				
2	CO3	Develop and simulate ARM ALP for Data Transfer, Arithmetic and Logical operations (Demonstrate with the help of a suitable program)				
3	CO3	Develop an ALP to multiply two 16-bit binary numbers				
4	CO3	Develop an ALP to find the sum of first 10 integer numbers				
5	CO3	Develop an ALP to find the largest/smallest number in an array of 32 numbers				
6	CO3	Develop an ALP to count the number of ones and zeros in two consecutive memory locations				
7	CO3	Simulate a program in C for ARM microcontroller using KEIL to sort the numbers in ascending/desceusing bubble sort				
8	CO3	Simulate a program in C for ARM microcontroller to find factorial of a number				
9	CO4	Demonstrate enabling and disabling of Interrupts in ARM				
10	CO4	Demonstrate the handling of divide by zero, Invalid Operation and Overflow exceptions in ARM				

Textbook:

1. Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developers guide, Elsevier, Morgan, Kaufman publisher,2008

Reference Book:

- 1. Raghunandan.G.H, Microcontroller (ARM) and Embedded System, Cengage learning Publication, 2019.,
- 2. Insider's Guide to the ARM7 based microcontrollers, Hitex Ltd.,1st edition, 2005

Online Resources:

- 1. Online Resource 1: Top Microcontroller Courses Online Updated [April 2024] (udemy.com)
- 2. Online Resource 2: Microprocessors And Microcontrollers Course (nptel.ac.in)

Code: BCS403 Course: Database Management System
Credits: 4 L:T:P - 3:0:2
SEE: 100 Marks CIE: 100 Marks

SEE Hours: 3 Max. Marks: 100

Prerequisites if any	NIL
Learning objectives	1. Understand the fundamental concepts of databases, including database
	languages, architectures, and conceptual data modeling using entities and
	relationships.
	2. Gain proficiency in relational database management systems, including the
	relational model, relational algebra, normalization, SQL, and transaction
	processing.

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Describe fundamental concepts of database management systems, including architecture, languages, and functionalities.	Understand
CO2	Design and implement database schemas using entities, relationships, and normalization techniques.	Apply
CO3	Demonstrate proficiency in SQL for data manipulation, retrieval, and management tasks.	Apply
CO4	Analyze and compare concurrency control mechanisms in relational databases and NoSQL databases, understanding their respective advantages and limitations.	Analyze

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-		ı	Ì	-	_	-		-	69-	-	-
CO2	3	3	2	7/	-	- \	-	-	1-		- //	/ -	2	2
CO3	2	2	2	- 7	3	-4/11	-	-	-	4	-//	2	2	3
CO4	2	-	-	-	3	- \	\	-	- 3	-	1-1	3	2	2

Mapping Strength:

Strong-3

Medium – 2

Low-1

		No. of Lecture Hours	No. of Tutorial Hours	No. of Practical Hours
	Module – 1: Introduction to Databases			
1.1	Introduction to Databases: Introduction, Characteristics of database approach, Advantages of using the DBMS approach, History of database applications.	2	-	0
1.2	Overview of Database Languages and Architectures: Data Models, Schemas, and Instances. Three schema architecture and data independence. Database languages, and interfaces, The Database System environment.	3	-	0
1.3	Conceptual Data Modelling using Entities and Relationships: Entity types, Entity sets and structural constraints, Weak entity types, ER diagrams, Specialization and Generalization	3	-	1
	Module – 2: Relational Databases			
2.1	Relational Model: Relational Model Concepts, Relational Model Constraints and relational database schemas, Update operations, transactions, and dealing with constraint violations.	3	-	0
2.2	Relational Algebra: Unary and Binary relational operations, additional relational operations (aggregate, grouping, etc.) Examples of Queries in relational algebra.	3	-	0
2.3	Mapping Conceptual Design into a Logical Design: Relational Database Design using	2	-	0

	ER-to-Relational mapping					
	Module – 3: Normalization and SQL					
3.1	Normalization: Database Design Theory – Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form.	5	-	1		
3.2	SQL: SQL data definition and data types, Schema change statements in SQL, specifying constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL, Additional features of SQL.	3	-	2		
	Module – 4: SQL and Transactions					
4.1	SQL: Advanced Queries: More complex SQL retrieval queries, Specifying constraints as assertions and action triggers, Views in SQL.	3	-	2		
4.2	Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	5	-	1		
	Module – 5: Concurrency control and NoSQL Databa	ses				
5.1	Concurrency Control in Databases: Two-phase locking techniques for Concurrency control, Concurrency control based on Timestamp ordering, Multiversion Concurrency control techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple Granularity Locking.	4	-	1		
5.2	NoSQL Databases and Big Data Storage Systems: Introduction to NOSQL Systems, The CAP Theorem, Document-Based NOSQL Systems and MongoDB, NOSQL Key-Value Stores, Column-Based or Wide Column NOSQL Systems.	4	-	2		
	Total No. of Lec <mark>ture H</mark> ours	40	-	-		
	Total No. of Tutorial Hours 00					
	Total	No. of Prac	tical Hours	10		

PRACTICAL COMPONENT

Sl. No.	Experiments	COs
1.	Create a table called Employee & execute the following. Employee (EMPNO, ENAME, JOB, MANAGER_NO, SAL, COMMISSION) 1. Create a user and grant all permissions to the user. 2. Insert any three records in the employee table containing attributes. EMPNO, ENAME JOB, MANAGER_NO, SAL, COMMISSION and use rollback. Check the result. 3. Add primary key constraint and not null constraint to the employee table. 4. Insert NULL values to the employee table and verify the result.	CO3
2.	Create a table called Employee that contains attributes EMPNO, ENAME, JOB, MGR, SAL and execute the following. 1. Add a column commission with domain to the Employee table. 2. Insert any five records into the table. 3. Update the column details of job. 4. Rename the column of Employ table using alter command. 5. Delete the employee whose EMPNO is 105.	CO3
3.	Queries using aggregate functions (COUNT, AVG, MIN, MAX, SUM), Group by, Orderby. Employee (E_id, E_name, Age, Salary) 1. Create Employee table containing all Records E_id, E_name, Age, Salary. 2. Count number of employee names from employee table. 3. Find the Maximum age from the employee table. 4. Find the Minimum age from the employee table. 5. Find salaries of employees in Ascending Order.	CO3

	6. Find grouped salaries of employees.	
4.	Create a row level trigger for the customers table that would fire for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the salary difference between the old & new Salary. CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY)	CO4
5.	Create cursor for Employee table and extract the values from the table. Declare the variables, Open the cursor, and extract the values from the cursor. Close the cursor. Employee (E_id, E_name, Age, Salary)	CO4
6.	Install an Open-Source NoSQL Data base MongoDB & perform basic CRUD (Create, Read, Update & Delete) operations. Execute MongoDB basic Queries using CRUD operations.	CO5
7.	Project-based Experiment: The project should use all the database concepts covered in theory and laboratory sessions. Students can integrate other relevant concepts/technologies as required.	CO1, CO2, CO3, CO4.

Textbook:

1. Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition, 2017, Pearson.

Reference Book:

1. Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill.

Online Resources:

- 1. MIT OpenCourseWare Course Link: https://ocw.mit.edu/courses/6-830-database-systems-fall-2010/
- 2. IIT Kharagpur Course Link: https://cse.iitkgp.ac.in/~pabitra/course/dbms/dbms new.html
- 3. NPTEL Course Link: https://onlinecourses.nptel.ac.in/noc22_cs91/preview

ESTD: 1946

Analysi	Semester	4	
Course Code	BCSL404	CIE Marks	50
Teaching Hours/Week (L:T:P)	0:0:2	SEE Marks	50
Credits	01	Exam Hours	2
Examination type (SEE)	Practical		

Course outcomes:

At the end of the course the student will be able to:

- 1. Develop programs to solve computational problems using suitable algorithm design strategy.
- 2. Compare algorithm design strategies by developing equivalent programs and observing running times for analysis (Empirical).
- 3. Make use of suitable integrated development tools to develop programs
- 4. Choose appropriate algorithm design techniques to develop solution to the computational and complex problems.
- 5. Demonstrate and present the development of program, its execution and running time(s) and record the results/inferences.

Sl.N	CO's	Experiments
0		
1	to CO5	Design and implement C/C++ Program to sort a given set of n integer elements using Selection Sort method and compute its time complexity. Run the program for varied values of n> 5000 and record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
2	to CO5	Design and implement C/C++ Program to obtain the Topological ordering of vertices in a given digraph.
3	to CO5	Design and implement C/C++ Program to sort a given set of n integer elements using Merge Sort method and compute its time complexity. Run the program for varied values of n> 5000, and record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
4	to CO5	Design and implement C/C++ Program to sort a given set of n integer elements using Quick Sort method and compute its time complexity. Run the program for varied values of n> 5000 and record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
5	CO1 to CO5	Design and implement C/C++ Program to solve 0/1 Knapsack problem using Dynamic programming method.
6	to CO5	 a. Design and implement C/C++ Program to solve All-Pairs Shortest Paths problem using Floyd's algorithm. b. Design and implement C/C++ Program to find the transitive closure using Warshal's algorithm.

7	CO1 to CO5	Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given connected undirected graph using Prim's algorithm.
8	to CO5	Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given connected undirected graph using Kruskal's algorithm.
9	CO1	Design and implement C/C++ Program to find shortest paths from a given
	to	vertex in a weighted connected graph to other vertices using Dijkstra's algorithm.
	CO5	
10	CO1	Design and implement C/C++ Program for N Queen's problem using
	to	Backtracking.
	CO5	

Suggested Learning Resources:

Textbook

1. Introduction to the Design and Analysis of Algorithms, By Anany Levitin, 3rd Edition (Indian),

2017, Pearson.

2. Virtual Labs (CSE): http://cse01-iiith.vlabs.ac.in/

ESTD: 1946

Code: BCS405A Course: Discrete Mathematical Structures

Credits: 3 L:T:P - 2:2:0
SEE: 100 Marks
SEE Hours: 3 CIE: 50 Marks
Max. Marks: 100

Prerequisites if any	Basics of number system, Mathematics
Learning objectives	1. To solve problems using concepts of Functions.
	2. Solve problems using Relations and its properties.
	3. To introduce Generating Functions and Recurrence Relations
	4. To introduce concepts and properties of Graphs
	5. To introduce the concepts of Trees and its properties.

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Apply the concepts and properties of Functions and Relations in solving problem.	Apply
CO2	Solve problems using Recurrence Relations and Study its applications in computers.	Apply
CO3	Solve problems using concepts of graphs and analyze its real-world applications.	Apply
CO4	Synthesis tree structure paradigm.	Analyze

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	(- ·	-	-	-	2	1	2	2	1	2
CO2	3	3	2	2	-	-	7	5	2	1	2	2	2	3
CO3	3	3	2	2	-		-	7-	2	1	1	2	2	3
CO4	3	3	2	3	- 1	<u> </u>	-	-	2	1	3	2	2	3

Mapping Strength:

Strong-3

Medium - 2 Low - 1

		No. of Lecture Hours	No. of Tutorial Hours	No. of Practical Hours								
	Module – 1: Functions											
1.1	Functions: Cartesian Products and Relations	2	0	0								
1.2	Plain and One-to-One, Onto Functions	1	1	0								
1.3	The Pigeonhole Principle	1	1	0								
1.4	Function Composition and Inverse Functions	1	1	0								
	Module – 2: Relations											
2.1	Relations: Properties of Relations,	1	1	0								
2.2	Computer Recognition – Zero-One Matrices and Directed Graphs	2	1	0								
2.3	Partial Orders – Hasse Diagrams.	2	1	0								
	Module – 3: Recurrence Relations											
3.1	Recurrence Relations: First order linear recurrence relations,	2	0	0								
3.2	The Second order linear homogeneous recurrence relation with constant coefficients	1	1	0								

3.3	Non Homogeneous recurrence relation	2	1	0							
	Module – 4: Graph Theory and Applications										
4.1	Graph Theory and Applications: Definitions and Examples Sub graphs,	1	1	0							
	Complements	1	1	U							
4.2	Graph Isomorphism, Vertex Degree, Euler Trails and Circuits	1	0	0							
4.3	Planar Graphs	1	1	0							
4.4	Hamilton Paths and Cycles	1	1	0							
4.5	Graph Coloring, and Chromatic Polynomials	1	1	0							
		1	1	0							
	Module – 5: Trees										
5.1	Trees: Definitions, Properties, and Examples	2	1	0							
5.2	Rooted Trees	1	1	0							
5.3	Trees and Sorting	1	1	0							
5.4	Weighted Trees and Prefix Codes	1	0	0							
	Total No. of Lecture Hours	25	-	-							
	Total No. of Tutoria	al Hours	15	-							
	Total No.	of Practi	cal Hours	00							

Textbook:

1. **Discrete and Combinatorial Mathematics,** Ralph P. Grimaldi, 5th Edition, PHI/Pearson Education, 2004.

Reference Book:

- 1. Handbook of discrete and combinatorial mathematics, Kenneth H.Rosen, John G.Michels.
- 2. Mathematics of Computer Science, Prof. Albert R.Meyer, MIT Open Course Ware.
- 3. Concrete Mathematics: A foundation for computer science, Ronald L.Graham, Donald Ervin Knuth, Oren Patashnik
- 4. **Graph Theory with Applications to Engineering and Computer Science** by NarsinghDeo, Prentice-Hall, 2004

Code: BCS456C Course: UI/UX Lab
Credits: 01 L:T:P - 0:0:2
SEE: 50 Marks
SEE Hours: 2 CIE: 50 Marks
Max. Marks: 100

Prerequisites if any	NIL
Learning objectives	Understand user experience design requirements, with design goals, metrics
	and targets.
	 Explore different prototyping methods, UX design principles with case
	examples.
	 Understand the role of design thinking concepts and mental models in UX
	design.

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Apply different UI design approaches for creating and designing different use cases	Apply
CO2	Illustrate the importance of user experience through stories.	Apply
CO3	Demonstrate different prototyping in relation to software engineering.	Apply

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	2	-	2	- /	2		3	1	3	3	-	2
CO2	2	-	3	1	2	1	2	V - 7	3	-	3	2	-	2
CO3	2	-	3	-	2	-3	1	-	2	4-	2	2	-	2

Mapping Strength:

Strong-3

 $Medium - 2 \qquad Low - 1$

List of Experiments

Sl. No.	CO's	Experiments	No. of Practical Hours
1.	CO1	Create and Design A Logo For E-Commerce App.	2
2.	CO1	Create and Design A Basic Email Template.	2
3.	CO1	Design A Brochure That Showcases Different Features Of The E-Commerce App.	2
4.	CO2	Create User Personas & User Stories To Define A Problem Statement, Scope And Understand The Problem.	2
5.	CO2	Create Sketches And Low-Fidelity Wireframes Of The Scoped Solution.	2
6.	CO2	Create High-Fidelity Prototypes From The Wireframes.	2
7.	CO3	Create The Basic Responsive Elements Like Buttons, Input Elements To Understand Frames, Groups And Layouts.	2
8.	CO3	Design A Basic Clickable Prototyping Using Figma.	2
9.	CO3	Create A Design System For E Commerce App Using Grid And Spacing, Color System, And Ui Elements Like Icons, Images, Buttons, Etc.	2
		Total number of practical hours	18

Textbook:

1. REX HARTSON and PARDHA S. PYLA, The UX Book-Process and Guidelines for Ensuring a Quality User Experience, Morgan Kaufmann, Elsevier, 2012.

Online Resources:

- **1.** https://www.freecodecamp.org/news/ui-ux-design-tutorial-from-zero-to-hero-withwireframe-prototype-figma/
- 2. https://www.edureka.co/blog/ui-ux-design-tutorial/
- 3. https://www.udemy.com/course/introtoux/

Course Code: BBOK407 Course: Biology for Engineers

 Credits:
 2
 L:T:P:S
 2:0:0:0

 SEE:
 50% Marks
 CIE:
 50% Marks

 SEE Hours:
 2 Hrs
 Max. Marks:
 100 (50+50)

Prerequisites if any	None	
Learning objectives	1.	Review the basics of cell biology and role of biomolecules.
	2.	Elucidate the significance of Biomechanics and Biomaterials

Course Outcomes:

On the successful completion of the course, the student will be able to

Course Outcomes							
Explain the fundamentals of Life, Evolution, Biomolecules, Cell Biology &	Understand						
	Understand						
	Understand						
	Understand						

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO1	PSO2
CO1	1	1	-	1	1	3	2	-	- (_	-	1		-	-
CO2	1	1	-	1	-	3	2		1-	- 4	-	1		-	-
CO3	1	1	-	1	-//	3	2	(42)	-	VA	-	1	Ŋ	-	-
CO4	1	1	-	1	- /	3	2	-	- /	-	1	1	Å	-	-

Strong: 3 Medium: 2 Low: 1

Course Content

	Module - 1	No. of Lecture Hours	No. of Tutorial Hours	Self- Learning Hours
1.1	Cell basic unit of life: Introduction, Or <mark>igin, and evaluation of</mark> life. Structure and functions of a cell. Stem cells and their application.	2	1	-
1.2	Biomolecules: Properties and functions of Carbohydrates, Nucleic acids, proteins, lipids. Importance of special biomolecules: Properties and functions of enzymes, vitamins, and hormones.	3	-	-
	Module - 2			
2.1	Application of biomolecules: Carbohydrates in cellulose-based water filters production, PHA and PLA in bioplastics production, Nucleic acids in vaccines and diagnosis,	2	-	-
2.2	Proteins in food production, lipids in biodiesel and detergents production, Enzymes in biosensors fabrication, food processing, detergent formulation, and textile processing.	3	-	-
	Module - 3			
3.1	Adaptation of anatomical principles for bioengineering design: Brain as a CPU system, Eye as a Camera system, Heart as a pump system.	3	-	-
3.2	Lungs as purification system, Kidney as a filtration system.	2	-	-
	Module - 4			
4.1	Nature-bioinspired materials and mechanisms: Echolocation, Photosynthesis, Bird flying, Lotus leaf effect, Plant burrs, Shark skin, Kingfisher beak.	3	-	-
4.2	Human Blood substitutes - haemoglobin-based oxygen carriers (HBOCs) and perfluorocarbons (PFCs).	2	-	-
	Module - 5			
5.1	Trends in bioengineering: Muscular and Skeletal Systems as scaffolds, and tissue engineering, Bioprinting techniques and materials.	3	-	-
5.2	Electrical tongue and electrical nose in food science, DNA origami and	2	-	-

Biocomputing, Bioimaging and Artificial Intelligence for disease			
diagnosis, Bio concrete, Bioremediation, Biomining.			
Total No. of Lecture Hours	25	-	-
Total No. of T	utorial Hours	-	-
Total N	o. of Self learn	ina Hours	
Total N	o. oj seij tearni	ing mours	_

Detailed Lesson Plan:

	Number		Online I	Mode	ICT	Face-to-fa	ce Mode
Sr No. of Module	of related learning Objectives	Weeks/ Dates	Resource (OER/ URL/ IM/ CP)	Activity (Describe activity in detail)	Tool/ Platform/ LMS	Resource (OER/ URL/ IM/ CP)	Activity
1.1	1	1		-		Α-	S
1.2	1	1	Online	-			ation
2.1	1	1	•	7	odle	-	esent
2.2	1	1	title		Smart Board, Moodle	-	& Pro
3.1	1	2	ction rces'	-	oard,	-	ions
3.2	1	2	ing section	-	art B	-	scnss
4.1	2	1	eedir			- //	d Dis
4.2	2	1	sncc.		PPT,	- //	nt Le
5.1	2	2	Refer succeeding section titled Resources'			-17	Student Led Discussions & Presentations
5.2	2	2			-	//	<i>∞</i>

Assessment Pattern:

Bloom's level	Con	tinuous Inte	End Semester Examination	
	Test 1 Test 2		Assignment/Quiz/AAT	
Remember	1	$\sqrt{}$	$\sqrt{}$	√
Understand	1	1	$\sqrt{}$	V
Apply				
Analyze				
Evaluate				
Create				

Text Books:

 $1. \ \ Biology \ for \ Engineers \ by \ G. \ K. \ Suraishkumar; \ Oxford \ University \ Press, 2019, \ First \ Edition$

Reference Books:

- 1. Introductory Biomechanics: From Cells to Organisms by C. Ross Ethier and Craig A. Simmons; Cambridge University Press, 2012, Online Edition
- 2. Introduction to Biomaterials: Basic Theory with Engineering Applications, J. L. Ong, Mark R. Appleford, Gopinath Mani, Cambridge University Press, 2014, First Edition
- 3. Biology for Engineers, Rajendra Singh C and Rathnakar Rao N, Rajendra Singh C and Rathnakar Rao, N Publishing, Bengaluru, 2023.
- 4. Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022

20/30

5. Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012.

- 6. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 7. Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011.
- 8. Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2014.
- 9. Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, 2012, CRC Press.
- 10. Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008.
- 11. Bioremediation of heavy metals: bacterial participation, by C R Sunilkumar, N Geetha A C Udayashankar Lambert Academic Publishing, 2019.
- 12. 3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016.
- 13. Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic Press, 2016

Online Resources:

- 1. NOC: Biology for engineers and other non-biologists, IIT Madras; Dr. Madhulika Dixit, Prof. G.K. Suraishkumar, https://nptel.ac.in/courses/121106008
- 2. Introduction To Biological Engineering Design, MIT Open Courseware, https://ocw.mit.edu/courses/20-020-introduction-to-biological-engineering-design-spring-2009
- 3. Introduction To Bioengineering, MIT Open Courseware, https://ocw.mit.edu/courses/20-010j-introduction-to-bioengineering-be-010j-spring-2006

Course Code: BUHK408

Credits: 1 SEE: -

Course Name: Universal Human Values and Professional Ethics

L:T:P - 1:0:0 CIE: 50 Marks

Prerequisites if any	Nil
Learning objectives	1. To help the students appreciate the essential complementarily between 'VALUES' and
	'SKILLS' to ensure sustained happiness and prosperity, which are the core aspirations of all
	human beings.
	2. To facilitate the development of a Holistic perspective among students towards life
	and profession as well as towards happiness and prosperity based on a correct understanding
	of the Human reality and the rest of existence.
	3. To highlight plausible implications of such a Holistic understanding in terms of ethical
	human conduct, trustful and mutually fulfilling human behavior and mutually enriching
	interaction with nature

Course Outcomes:

On the successful completion of the course, the student will be able to

COs		Bloom's level
CO1	To understand the core aspirations of all human beings	Understand
CO2	To gain the universal human values and movement towards value-based living in a natural way	Apply
CO3	To fulfilling the human behavior and mutually enriching interaction with nature	Apply

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-		-	(-)	3	1	2	3	3	1	2	-	-
CO2	-	-	1-1	-	_	3	2	2	3	3	1	2	-	-
CO3	-	-	7/3	-	-	3	2	2	3	3	1	2	-	-

S-Strong(3) M-Medium(2) L-Low(1)

	Module – 1: Introduction - Need, Basic Guidelines, Content and Process for Value Education								
1.1	Understanding the need, basic guidelines, content and process for Value Education	1	Nil						
1.2	Self-Exploration—what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self-exploration	1	Nil						
1.3	Right understanding, Relationship and Physical Facilities- the basic requirements for fulfillment of aspirations of every human being with their correct priority	1	Nil						
1.4	Method to fulfill the above human aspirations: understanding and living in harmony at various levels . Practice session	2	Nil						
Module	- 2: Understanding Harmony in Myself, Family, Society and Human R	Relationshi _]	þ						
2.1	Understanding human being as a co-existence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha	1	Nil						
2.2	Understanding Harmony in the family – the basic unit of human interaction. Understanding values in human-human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhaytripti; Trust (Vishwas) and Respect (Samman) as the foundational values of relationship	1	Nil						

2.3	Understanding the meaning of Vishwas and Samman; Difference		Nil				
	between intention and competence; respect and differentiation;						
	Understanding the harmony in the society (society being an extension	1					
	of family): Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive						
	Human Goals						
2.4	Visualizing a universal harmonious order in society- Undivided Society						
	(Akhand Samaj), Universal Order (Sarvabhaum Vyawastha)- from	2	Nil				
	family to world family! Practice session						
Module	2-3:						
Under	standing Harmony in the Nature, Existence and Implications of the all	Holistic on					
Profes	sional Ethics						
3.1	Understanding the harmony in the Nature, Interconnectedness and						
	mutual fulfillment among the four orders of nature recyclability and	1	Nil				
	self-regulation in nature						
3.2	Understanding Existence as Co-existence (Sah-astitva) of mutually	1	Nil				
	interacting units in all-pervasive space.	1	1111				
3.3	Competence in professional ethics:						
	a) Ability to utilize the professional competence for augmenting						
	universal human order	1	Nil				
	b) Ability to identify and develop appropriate technologies and						
	management patterns for above production systems.	. 40					
3.4	Strategy for transition from the present state to Universal Human Order:						
	a) At the level of individual: as socially and ecologically responsible	2	Nil				
	engineers, technologists and managers b) At the level of society: as	2	1111				
	mutually enriching institutions and organizations. Practice session						
	Total No. of Lecture Hours	15					
	Total No. of Tutorial Hours						

Guidelines and Content for Practice Sessions

Practice Session 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your achievements and shortcomings in your life? Observe and analyze them.

Expected outcome: The students start exploring themselves; get comfortable to each other and to the teacher and start finding the need and relevance for the course.

Practice Sessions 2:

- 1. a. Observe that any physical facility you use, follows the given sequence with time: Necessary & tasteful \rightarrow unnecessary & tasteful \rightarrow unnecessary & tasteless \rightarrow intolerable b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If naturally acceptable, you want it continuously and if not acceptable, you do not want it any moment!
- 2. List down all your activities. Observe whether the activity is of 'I' or of Body or with the participation of both 'I' and Body.

Expected outcome:

- 1. The students are able to see that all physical facilities they use are required for a limited time in a limited quantity. Also they are able to see that in case of feelings, they want continuity of the naturally acceptable feelings and they do not want feelings which are not naturally acceptable even for a single moment.
- 2. The students are able to see that activities like understanding, desire, thought and selection are the activities of 'I' only, the activities like breathing, palpitation of different parts of the body are fully the activities of the body with the acceptance of 'I' while the activities they do with their sense organs like hearing through ears, seeing throughody.es, sensing through touch, tasting through tongue and smelling through nose or the activities they do with their work organs like hands, legs etc. are such activities that require the participation of both 'I' and body

Practice Session 3:

Form small groups in the class and in that group initiate dialogue and ask the eight questions related to trust. The eight questions are:

1a. Do I want to make myself happy?

- 2a. Do I want to make others happy?
- 3a. Does the other want to make him happy?
- 4a. Does the other want to make me happy?

What is the answer? Intention (Natural Acceptance)

- 1b. Am I able to make myself always happy?
- 2b. Am I able to make others happy?
- 3b. Is the other able to make him always happy?
- 4b. Is the other able to make me always happy?

What is the answer? Competence

Let each student answer the questions for himself and everyone else. Discuss the difference between intention and competence. Observe whether you evaluate your intention & competence as well as the others' intention & competence.

Expected outcome:

The students are able to see that the first four questions are related to our Natural Acceptance i.e. Intention and the next four to our Competence. They are able to note that the intention is always correct, only competence is lacking! We generally evaluate ourselves on the basis of our intention and others on the basis of their competence! We seldom look at our competence and others' intention as a result we conclude that I am a good person and other is a bad person.

Textbooks:

1. R.R Gaur, R Sangal, G P Bagaria, A foundation course in Human Values and professional Ethics, Excel books, New Delhi, 2010, ISBN 978-8-174-46781-2.

References:

1. IIT Delhi, Modern Technology – the Untold Story

Course Code: BNSK459 Course: National Service Scheme (NSS)

Credits: Zero L:T:P 0:0:2
SEE: NA CIE: 100 Marks
SEE Hours: NA Max. Marks: 100

 Students should have a service oriented mind set and social concern. Students should have dedication to work at any remote place, anytime with available resources and proper time management for the other works. Students should be ready to sacrifice some of the time and wishes to achieve service oriented targets on time
1. Understand the community in which they work 2. Identify the needs and problems of the community and involve them in problem-solving 3. Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems 4. Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes 5. Develop capacity to meet emergencies and natural disasters & practice national integration and social harmony

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes
CO1	Understand the importance of his / her responsibilities towards society.
CO2	Analyse the environmental and societal problems/issues and will be able to design solutions for the same
CO3	Evaluate the existing system and to propose practical solutions for the same for Sustainable development and Implement government or self-driven projects effectively in the field.

Mapping with POs and PSOs:

COs	PO1	PO2	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO						
COS	POI	POZ	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	-	-	3	-	-	1	2	2	-	1	-	1			C' 1 C	
CO2	-	3	1	1	-	1	2	i	1	1	1	1	To be identified for each branch by Course Instructo			
CO3	_	-	-	-	-	2	3	-	-	1	-	-	orane	n by Cot	arse msu	uctor

Mapping Strength: 2 Strong: 3

Medium –2

Low - 1

		No. of Lecture Hours	No. of Tutorial Hours	No. of Practical Hours
	List of Events			
1	Organic farming, Indian Agriculture (Past, Present and Future) Connectivity for marketing.			
2	Waste management-Public, Private and Govt organization, 5 R's.			
3	Setting of the information imparting club for women leading to contribution in social and economic issues.			
4	Water conservation techniques – Role of different stakeholders– Implementation.			
5	Preparing an actionable business proposal for enhancing the village income and approach for implementation.			
6	Helping local schools to achieve good results and enhance their enrolment in Higher/ technical/ vocational education.			
7	Developing Sustainable Water management system for rural areas and implementation approaches.			

Total No. of Practical Hours							
Total No. of Tutorial Hours -							
	Total No. of Lecture Hours -						
	non-farm sector						
19	Issues in rural industrialization and development of agro-based industries, rural						
	development processes.						
18	Role of NGO's in rural development, the role of voluntary organization in India's			·			
17	Livestock economies - fishery and poultry development, forestry and horticulture.						
	policies, achievements and targets.						
16	Rural energy system – conventional and non-conventional, Rural electrification-						
	marketing						
15	Strategies for the development of rural markets and emerging issues in rural						
	agricultural finances.						
14	Rural finance – role of local bodies, need for agricultural finance and sources of						
13	Sustainable agriculture practices - Organic farming, Agroforestry and crop rotation.						
12	Govt. school Rejuvenation and helping them to achieve good infrastructure						
11	Plantation and adoption of plants.						
10	Social connect and responsibilities.						
9	Spreading public awareness under rural outreach programs.(minimum5 programs)						
	Skill development programs etc.						
	Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme,						
8	Contribution to any national level initiative of Government of India. Digital India,						

ONENSS – CAMP @ College /University /State or Central Govt Level /NGO's /General Social Camps

- > Students have to take up anyone activity on the above said topics and have to prepare content for awareness and technical contents for implementation of the projects and have to present strategies for implementation of the same. Compulsorily students have to attend one camp.
- ➤ CIE will be evaluated based on their presentation, approach and implementation strategies.

Suggested Learning Resource:

1. NSS Course Manual, Published by NSS Cell, VTU Belagavi.

Course Code: BPEK459 Course: Physical Education (Sports & Athletics) – II

Credits: Zero L:T:P 0:0:2
SEE: NA CIE: 100 Marks
SEE Hours: NA Max. Marks: 100

Course Outcomes: At the end of the course, the student will be able to

- 1. Understand the ethics and moral values in sports and athletics
- 2. Perform in the selected sports or athletics of student's choice.
- 3. Understand the roles and responsibilities of organisation and administration of sports and games.

Module IV:	Ethics and Moral Values	5
Hours		
_		

- A. Ethics in Sports
- B. Moral Values in Sports and Games

Module V: Specific Games (Any one to be selected by the student)

20 Hours

- A. Volleyball Attack, Block, Service, Upper Hand Pass and Lower hand Pass.
- B. Throwball Service, Receive, Spin attack, Net Drop & Jump throw.
- C. Kabaddi Hand touch, Toe Touch, Thigh Hold, Ankle hold and Bonus.
- D. Kho-Kho Giving Kho, Single Chain, Pole dive, Pole turning, 3-6 Up.
- E. Table Tennis Service (Fore Hand & Back Hand), Receive (Fore Hand & Back Hand), Smash.
- F. Athletics (Track / Field Events) Any event as per availability of Ground.

Module VI: Role of Organisation and administration	5 Hours

Scheme and Assessment for auditing the course and Grades:

Sl. No.	Activity	Marks
1.	Participation of student in all the modules	20
2.	Quizzes - 2, each of 15 marks	30
3.	Assignment	50
	Total	100

Course Code: BYOK459

Course: Yoga L:T:P 0:0:2 Credits: Zero SEE: NA CIE: 100 Marks **SEE Hours: NA** Max. Marks: 100

Prerequisites if any	None
Learning objectives	 To enable the student to have good health and mental hygiene. To possess emotional stability To integrate moral values To attain higher level of consciousness.

Course Outcomes:

On successful completion of the course, the student will be able to:

	Course Outcomes	Bloom's level
CO1	Understand the meaning of Yoga, its origin, history, development and importance.	Understand
CO2	Perform various Surya namaskar and able to Teach its benefits	Apply
CO3	Perform various asanas and able to Teach its benefits	Apply
CO4	Understand Benefits of Yoga on fitness and health	Apply

Course Content

	<u>Course Content</u>		
	Module – 1	No. of Lecture and Practical Hours	No. of Tutorial Sessions
1.1	Role of yoga in controlling diseases	1	-
1.2	Patanjali's Ashtanga Yoga, its need and importance.	1	-
1.3	Yama :Ahimsa, satya, asteya, brahmacarya, aparigraha	1	-
1.4	Niyama :shoucha, santosh, tapa, svaadhyaya, Eshvarapranidhan	1	-
	Module – 2		
2.1	Warmup Exercise	2	-
2.2	Yoga jogging	2	-
2.3	Suryanamaskar12 count- 4 rounds of practice	2	-
2.4	Asana its meaning by name, technique, precautionary measures and benefits of each asana.	2	-
2.5	Sitting: 1.Sukhasana 2. Paschimottanasana 3.Bharadwajasana	2	_
2.6	Standing: 1. Ardhakati Chakrasana 2. Parshva Chakrasana	2	-
2.7	Prone line: 1.Makarasana 2.Dhanurasana	2	
2.8	Supine line 1. Halasana 2. Karna Peedasana	2	
	Module – 3		
3.1	Pranayama – Suryanuloma, Chandranuloma,	2	-
3.2	Suryabhedana, Chandra Bhedana, Nadishodhana	2	-
	Total No. of Lecture and practical Hours	24	-
		torial Sessions	Nil

Detailed Lesson Plan

	Number of		Online Mo			Face-to		
Sl. No. of Module	related learning Objectives	Weeks/ Dates	Resourc e (OER/ URL/ IM/ CP)	Activity (Describe activity in detail)	Tool/ Platf orm/ LMS	Resource (OER/ URL/IM/ CP)	Activity	Duration in Minutes
1.1	1 & 4	W 1					Explanation	60
1.2	1 & 4	W 1			-		Explanation	60
1.3	1 & 4	W 2					Explanation	60
1.4	1 & 4	W 2			-		Explanation	60
1.5	1 & 4	W 3			-		Explanation	60
1.6	1 & 4	W 3			-		Explanation	60
2.1	2 & 4	W 4					Practicing Surya namaskar	60
2.2	2 & 4	W 4			ODLE		Practicing Surya namaskar	60
2.3	2 & 4	W 5			PPT, SMART BOARD, MOODLE		Practicing Surya namaskara	60
2.4	2 & 4	W 5			RT BOA		Practicing Surya namaskar	60
2.5	2 & 4	W 6			T, SMA		Practicing Surya namaskar	60
2.6	2 & 4	W 6			PP		Practicing Asana	60
3.1	3 & 4	W 7					Practicing	60
3.2	3 & 4	W 7			<u>.</u>		Asana Practicing	60
3.3	3 & 4	W 8					Asana Practicing Asana	60
3.4	3 & 4	W 8			-		Practicing Asana	60
3.5	3 & 4	W 9					Practicing Asana	60
3.6	3 & 4	W 9			-		Practicing Asana	60
3.7	3 & 4	W10					Practicing Asana	60
3.8	3 & 4	W10					Practicing	60
3.9	3 & 4	W 11					Asana Practicing Asana	60
3.10	3 & 4	W11					Practicing Asana	60
3.11	3 & 4	W12					Practicing Asana	60
3.12	3 & 4	W 12					Practicing Asana	60

Assessment Pattern:

Bloom's level	Continuous Internal Examination			Semester End Examination
	Test 1	Test 2	Assignment	
Remem	-	-	-	-
ber				
Underst	~	~	~	~
and				
Apply	~	/	~	✓

Suggested Learning Resources:

Text Books:

- 1. Yogapravesha in Kannada by Ajitkumar
- 2. Light on Yoga by BKS Iyengar
- 3. Teaching Methods for Yogic practices by Dr. M L Gharote & Dr. S K Ganguly
- 4. Yoga Instructor Course hand book published by SVYASA University, Bengaluru
- 5. Yoga for Children step by step by Yamini Muthanna

Web links and Video Lectures (e-Resources): Refer links

- 1. https://youtu.be/KB-TYlgd1wE
- 2. https://youtu.be/aa-TG0Wg1Ls