Міністерство освіти і науки, молоді та спорту України Львівський національний університет імені Івана Франка Факультет прикладної математики та інформатики Кафедра обчислювальної матаматики

Звіт на тему:

"Розв'язування задачі Діріхле-Неймана для рівняння Лапласа"

Виконали: студенти 4-го курсу групи ПМп-41 напрямку підготовки (спеціальності) 113 – "Прикладна математика" Бугрій Б.О.

Середович В.В.

Перевірив: ст. в. Гарасим Я.С.

Зміст

В	Ступ	3
1	Постановка задачі	3
2	Коректність задачі 2.1 Єдиність розв'язку задачі	4
3	Зведення до інтегрального рівняння	5
4	Коректність інтегрального рівняння	5
5	Чисельне розв'язування 5.1 Похибка	5
6	Якийсь приклад	5

Вступ

літературний огляд хто розглядав розв'язування цієї задачі які процеси описує мета - розв'язати якимось методом огляд наступних розділів

1 Постановка задачі

Припускаємо, що деяке двовимірне тіло задається двозв'язною областю $D \subset \mathbb{R}$ з досить гладкою границею що складається з внутрішньої кривої Γ_1 та зовнішньої Γ_2 .

Нехай $D_1 \subset \mathbb{R}$ — обмеженна область з гладкою границею $\Gamma_1 \subset C^2$ та $D_2 \subset \mathbb{R}$ — обмеженна область з гладкою границею $\Gamma_2 \subset C^2$. Тоді двозв'язна область $D = D_2 \setminus \overline{D}_1$ матиме вигляд:

Рис. 1:

Мішана задача Діріхле-Неймана для рівняння Лапласа полягає в знаходженні такої функції $u(x_1,x_2)\in C^2(D)\cup C^1(\overline{D})$ що задовольняє

1. Рівняння Лапласа:

$$\Delta u = 0 \quad \text{B} \quad D \tag{1}$$

2. Граничні умови:

$$u = f_1, \quad (x_1, x_2) \in \Gamma_1, \tag{2}$$

$$\frac{\partial u}{\partial v} = f_2, \quad (x_1, x_2) \in \Gamma_2, \tag{3}$$

де v = v(x) - одиничний вектор зовнішньої нормалі, (2) є умовою Діріхле, а (3) є умовою Неймана.

2 Коректність задачі

...

2.1 Единість розв'язку задачі

Теорема 1. Нехай D - область з межею $\partial D \in C^1$ і $\overrightarrow{\nu}$ — одиничний вектор зовнішньої нормалі до межі ∂D . Тоді для $u \in C^1(\overline{D})$ і $v \in C^2(\overline{D})$ має місце перша формула Гріна

$$\int_{D} (u\Delta v + gradu \cdot gradv) dx = \int_{\partial D} u \frac{\partial v}{\partial \nu} ds$$

і для $u,v\in C^2(\overline{D})$ має місце друга формула Гріна

$$\int_{D} (u\Delta v - v\Delta u) dx = \int_{\partial D} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) ds$$

Доведення. Посилання на Креса.

Теорема 2. Нехай Γ_1 , Γ_2 – гладкі границі, що належать класу C^1 , обмежують двозв'язну (а може ні?) область D. Тоді задача (1) – (3) має на D (може замикання?) не більше одного розв'язку.

Доведення. Від супротивного. Нехай $\exists u_1, u_2 \in C^2(\overline{D}) : u_1 \neq u_2$ – два різні розв'язки задачі (1) – (3). Запишемо цю задачу для функції $u^* = u_1 - u_2$:

$$\Delta u^* = \Delta u_1 - \Delta u_2 = 0$$

$$u^* = u_1 - u_2 = f_1 - f_1 = 0 \quad \text{на} \quad \Gamma_1$$

$$\frac{\partial u^*}{\partial \nu} = \frac{\partial u_1}{\partial \nu} - \frac{\partial u_2}{\partial \nu} = f_2 - f_2 = 0 \quad \text{на} \quad \Gamma_2$$

Застосуємо першу формулу Гріна з теореми 1 при $u = v = u^*$:

$$\int_{D} (\operatorname{grad} u^{*})^{2} dx = \int_{\partial D} u^{*} \frac{\partial u^{*}}{\partial \nu} dS - \int_{D} u^{*} \Delta u^{*} dx$$

Тут $\partial D=\Gamma_1\cup\Gamma_2$. Так як $\Delta u^*=0$ (чи ні?) на D, $u^*=0$ на Γ_1 і $\frac{\partial u^*}{\partial \nu}=0$ на Γ_2 , то отримуємо рівність

$$\int_{D} (\operatorname{grad} u^*)^2 dx = 0,$$

з якої випливає, що $\frac{\partial u^*}{\partial x_1}=0$ і $\frac{\partial u^*}{\partial x_2}=0$ на всій області D, тобто $u^*=\mathrm{const}$. Функція u^* неперервна на \overline{D} і $u^*=0$ на $\Gamma_1\subset\overline{D}$, отже $u^*\equiv 0 \Rightarrow u_1\equiv u_2$, що суперечить початковому припущенню.

- 3 Зведення до інтегрального рівняння
- 4 Коректність інтегрального рівняння
- 5 Чисельне розв'язування
- 5.1 Похибка
- 6 Якийсь приклад