

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁴ : C08F 220/28, 246/00 C09D 3/80	A1	(11) Internationale Veröffentlichungsnummer: WO 85/ 04665 (43) Internationales Veröffentlichungsdatum: 24. Oktober 1985 (24.10.85)
(21) Internationales Aktenzeichen: PCT/DE85/00092		(74) Anwalt: BASF FARBEN + FASERN AG; Ressort Lacke und Farben, Patentabteilung, Max-Winkelmann-Strasse 80, Postfach 61 23, D-4400 Münster (DE).
(22) Internationales Anmelde datum: 27. März 1985 (27.03.85)		(81) Bestimmungsstaaten: AU, BR, DK, JP, NO, US.
(31) Prioritätsaktenzeichen: P 34 12 534.5		Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>
(32) Prioritätsdatum: 4. April 1984 (04.04.84)		
(33) Prioritätsland: DE		
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF FARBEN + FASERN AKTIENGESELLSCHAFT [DE/DE]; Am Neumarkt 30, D-2000 Hamburg 70 (DE).		
(72) Erfinder:und		
(75) Erfinder/Anmelder (<i>nur für US</i>): JUNG, Werner [DE/DE]; Uhrwerkerstrasse 65, D-4715 Ascheberg (DE). KLESSE, Christoph [DE/DE]; Eschkopfstrasse 4, D-6703 Limburghof (DE). SIEVERS, Axel [DE/DE]; Tulpenweg 55-57, D-4400 Münster (DE).		

(54) Title: ACRYLIC COPOLYMER CONTAINING HYDROXYL GROUPS, PROCESS FOR THE PREPARATION THEREOF AND COATING BASED ON SAID ACRYLIC COPOLYMER

(54) Bezeichnung: HYDROXYLGRUPPENHALTIGES ACRYLATCOPOLYMERISAT, VERFAHREN ZU SEINER HERSTELLUNG UND ÜBERZUGSMITTEL AUF BASIS DES ACRYLATCOPOLYMERISATS

(57) Abstract

Acrylic copolymer containing hydroxyl groups and comprised partially of monomers having at least two double bonds, and process for the preparation of the acrylic copolymer. Also disclosed are coatings containing acid hardenable binding agents, organic solvents as well as optionally pigments, fillers and other auxiliary substances and additives, coatings which contain as main binding agent the acrylic copolymer with hydroxyl groups and an alkylated melamine formaldehyde resin. Also disclosed are coatings which contain, as main binding agent, the acrylic copolymer with hydroxyl groups and one or a plurality of different polyfunctional isocyanates.

(57) Zusammenfassung

Hydroxylgruppenhaltiges Acrylatcopolymerisat, das einen Anteil an Monomeren mit mindestens 2 Doppelbindungen einpolymerisiert enthält sowie das Verfahren zur Herstellung des Acrylatcopolymerisats. Die Erfindung betrifft auch durch Säure härtbare Bindemittel, organische Lösungsmittel sowie gegebenenfalls Pigmente, Füllstoffe und übliche Hilfsstoffe und Additive enthaltende Überzugsmittel, die als wesentliche Bindemittel das hydroxylgruppenhaltige Acrylatcopolymerisat und ein alkyliertes Melaminformaldehydharz enthalten. Überzugsmittel, die als wesentliche Bindemittel das hydroxylgruppenhaltige Acrylatcopolymerisat und ein oder mehrere verschiedene polyfunktionelle Isocyanate enthalten.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	FR	Frankreich	ML	Mali
AU	Australien	GA	Gabun	MR	Mauritanien
BB	Barbados	GB	Vereinigtes Königreich	MW	Malawi
BE	Belgien	HU	Ungarn	NL	Niederlande
BG	Bulgarien	IT	Italien	NO	Norwegen
BR	Brasilien	JP	Japan	RO	Rumänien
CF	Zentrale Afrikanische Republik	KP	Demokratische Volksrepublik Korea	SD	Sudan
CG	Kongo	KR	Republik Korea	SE	Schweden
CH	Schweiz	LI	Liechtenstein	SN	Senegal
CM	Kamerun	LK	Sri Lanka	SU	Soviet Union
DE	Deutschland, Bundesrepublik	LU	Luxemburg	TD	Tschad
DK	Dänemark	MC	Monaco	TG	Togo
FI	Finnland	MG	Madagaskar	US	Vereinigte Staaten von Amerika

- 1 -

1

5 i

Hydroxylgruppenhaltiges Acrylatcopolymerisat, Verfahren
10 zu seiner Herstellung und Überzugsmittel auf Basis des
Acrylatcopolymerisats

Die Erfindung betrifft ein hydroxylgruppenhaltiges
15 Acrylatcopolymerisat, entstanden durch Copolymerisation
von Acrylaten mit mindestens 2 olefinisch ungesättigten
Doppelbindungen, hydroxylgruppenhaltigen Monomeren und
weiteren olefinisch ungesättigten Monomeren.

20 Aus der EP-A-103 199 ist ein Acrylatcopolymerisat der
eingangs genannten Art bekannt. Weiterhin ist aus der
EP-A-103 199 bekannt, das Copolymer der eingangs genannten
Art mit einem geeigneten Vernetzungsmittel zu einem Über-
zugsmittel zu verarbeiten. Als Vernetzer wird unter ande-
25 rem ein verehertes Aminformaldehydharz genannt.

Weiterhin ist aus der EP-A-64 338 ein säurehärtbares
Überzugsmittel auf der Basis eines Acrylatcopolymerisats
und eines Melaminformaldehydharzes bekannt.

30 Es ist Aufgabe der vorliegenden Erfindung, ein vernetz-
bares Acrylatcopolymerisat sowie Überzugsmittel auf Basis
des vernetzbaren Acrylatcopolymerisats mit verbesserter
Benzinfestigkeit und verbesserte Beständigkeit gegenüber
35 langfristiger Belastung durch Wasser bzw. Wasserdampf
zu schaffen.

- 2 -

1

Die Aufgabe wird durch ein hydroxylgruppenhaltiges Acrylatcopolymerisat der eingangs genannten Art gelöst, das dadurch gekennzeichnet ist, daß es erhalten worden ist aus

a₁) 10 bis 60 Gewichts-%, vorzugsweise 15 bis 60 Gewichts-%, hydroxylgruppenhaltigen Estern der Acrylsäure und/oder Méthacrylsäure mit 2 bis

10 14 Kohlenstoffatomen im Alkylrest,

a₂) 3 bis 25 Gewichts-%, vorzugsweise 5 bis 20 Gewichts-%, Monomeren mit mindestens 2 polymerisierbaren, olefinisch ungesättigten Doppelbindungen und

a₃) 15 bis 82 Gewichts-%, vorzugsweise 40 bis 70 Gewichts-%, weiteren polymerisierbaren Monomeren mit einer olefinisch ungesättigten Doppelbindung, wobei die Summe der Komponenten a₁, a₂ und a₃ 100 Gewichts-% beträgt.

Als Komponente a₂ können vorteilhaft Verbindungen der allgemeinen Formel

25

mit

30

R = H oder CH₃,

X = O, N, S

n = 2 bis 8.

35 verwendet werden.

- 3 -

1

Beispiele für derartige Verbindungen sind Hexandioldiacrylat, Hexandioldimethacrylat, Glykoldiacrylat, Glykoldimethacrylat, Butandioldiacrylat, Butandioldimethacrylat und ähnliche Verbindungen.

Weiterhin kann die Komponente a_2 vorteilhaft ein Umsetzungsprodukt aus einer Carbonsäure mit einer polymerisierbaren, olefinisch ungesättigten Doppelbindung und Glycidylacrylat und/oder Glycidylmethacrylat oder eine mit einem ungesättigten Alkohol veresterte Polycarbonsäure oder ungesättigte Monocarbonsäure sein.

Ferner kann vorteilhaft als Komponente a_2 ein Umsetzungsprodukt eines Polyisocyanats und eines ungesättigten Alkohols oder Amins verwendet werden. Als Beispiel hierfür sei das Reaktionsprodukt aus einem Mol Hexamethylendiisocyanat und 2 Mol Allylalkohol genannt.

Eine weitere vorteilhafte Komponente a_2 ist ein Diester von Polyethylenglykol und/oder Polypropylen-glykol mit einem mittleren Molekulargewicht von weniger als 1500, vorzugsweise von weniger als 1000, und Acrylsäure und/oder Methacrylsäure. Erfindungsgemäß können als Komponente a_2 auch Acrylate mit mehr als 2 ethylenisch ungesättigten Doppelbindungen eingesetzt werden, wie beispielsweise Trimethylolpropantriacylat oder Trimethylolpropantrimethacrylat. Selbstverständlich können auch Kombinationen dieser mehrfach ungesättigten Monomeren verwendet werden.

- 4 -

1 Als Komponente a_1 kommen vor allem Hydroxyalkylester
der Acrylsäure und/oder Methacrylsäure mit einer
primären Hydroxylgruppe in Betracht, z.B. Hydroxy-
ethylacrylat, Hydroxypropylacrylat, Hydroxybutyl-
acrylat, Hydroxyamylacrylat, Hydroxyhexylacrylat,
Hydroxyoctylacrylat und die entsprechenden Methacry-
late.
5

10 Vorteilhaft kann die Komponente a_1 zumindest teil-
weise ein Umsetzungsprodukt aus einem Mol Hydroxy-
ethylacrylat und/oder Hydroxyethylmethacrylat und
durchschnittlich 2 Mol ϵ -Caprolacton sein.

15 Weiterhin kann die Komponente a_1 vorteilhaft bis
zu 75 Gewichts-%, besonders bevorzugt bis zu 50 Ge-
wichts-%, ein hydroxylgruppenhaltiger Ester der
Acrylsäure und/oder Methacrylsäure mit einer sekun-
dären Hydroxylgruppe, insbesondere ein Umsetzungs-
produkt aus Acrylsäure und/oder Methacrylsäure und
20 dem Glycidylester einer Carbonsäure mit einem ter-
tiären α -Kohlenstoffatom, sein. Als Beispiele
seien 2-Hydroxypropylacrylat, 2-Hydroxybutylacrylat,
3-Hydroxybutylacrylat und die entsprechenden
Methacrylate genannt.
25

30 Die Auswahl der weiteren polymerisierbaren Monomeren
der Komponente a_3 ist nicht besonders kritisch. Sie
können ausgewählt sein aus der Gruppe Styrol, Vinyl-
toluol, Acrylsäure, Methacrylsäure, Alkylester der
Acrylsäure und Methacrylsäure, Alkoxyethylacrylate
und Aryloxyethylacrylate und die entsprechenden
Methacrylate sowie Ester der Malein- und Fumarsäure.
Beispiele hierfür sind Methylacrylat, Ethylacrylat,
Propylacrylat, Butylacrylat, Isopropylacrylat,
35 Isobutylacrylat, Pentylacrylat, Isoamylacrylat,
Hexylacrylat, 2-Ethylhexylacrylat, Octylacrylat,
3,5,5-Trimethylhexylacrylat, Decylacrylat, Dodecyl-

- 5 -

1 acrylat, Hexadecylacrylat, Octadecylacrylat, Octadece-
nylacrylat, Pentylmethacrylat, Isoamylmethacrylat,
Hexylmethacrylat, 2-Ethylbutylmethacrylat, Octyl-
methacrylat, 3,5,5-Trimethylhexylmethacrylat, Decyl-
5 methacrylat, Dodecylmethacrylat, Hexadecylmethacrylat,
Octadecylmethacrylat, Alkoxyethylacrylate oder
-methacrylate, wie Butoxyethylacrylat oder Butoxyethyl-
methacrylat, Methylmethacrylat, Ethylmethacrylat, Pro-
10 pylmethacrylat, Isopropylmethacrylat, Butylmethacry-
lat, Cyclohexylacrylat, Cyclohexylmethacrylat, Acryl-
nitril, Methacrylnitril, Vinylacetat, Vinylchlorid und
Phenoxyethylacrylat. Weitere Monomere können einge-
setzt werden, sofern sie nicht zu unerwünschten Eigen-
schaften des Copolymerisats führen.
15

Die Erfindung betrifft auch ein Verfahren zur Herstel-
lung eines Acrylatcopolymerisats nach den Ansprüchen
1 bis 11, das dadurch gekennzeichnet ist, daß zu sei-
ner Herstellung
20

a₁) 10 bis 60 Gewichts-%, vorzugsweise 15 bis 60 Ge-
wichts-%, hydroxylgruppenhaltige Ester der Acrylsäu-
re und/oder Methacrylsäure mit 2 bis 14 Kohlenstoff-
atomen im Alkylrest,
25

a₂) 3 bis 25 Gewichts-%, vorzugsweise 5 bis 20 Gewichts-
%, Monomere mit mindestens 2 polymerisierbaren, ole-
finisch ungesättigten Doppelbindungen und
30

a₃) 15 bis 82 Gewichts-%, vorzugsweise 40 bis 70 Ge-
wichts-%, weitere polymerisierbare Monomere mit ei-
ner olefinisch ungesättigten Doppelbindung in einem
organischen Lösungsmittel unter Zusatz von Polymeri-
sationsinitiatoren und Polymerisationsreglern zu
35 einem vorvernetzten, nicht gelierten Produkt copoly-
merisiert werden, wobei die Summe der Komponenten

- 6 -

1 α_1 , α_2 und α_3 100 Gewichts-% beträgt.

Es ist darauf zu achten, daß ein vorvernetztes, aber nicht
5 geliertes Copolymerisat erhalten wird. Durch geeignete
Polymerisationsbedingungen läßt sich überraschenderweise
eine klare, transparente, nicht gelierte Lösung eines
verzweigten Copolymerisats herstellen. Durch die Verwen-
dung von Monomeren mit mindestens 2 ethylenisch ungesät-
tigten Gruppen wird eine Vorvernetzung der Copolymerisat-
10 moleküle hervorgerufen, die aufgrund der erfindungsge-
mäßen speziellen Reaktionsbedingungen trotzdem nicht zu
gelierten Produkten führt. Diese speziellen Reaktionsbe-
dingungen sind dadurch gekennzeichnet, daß man die Poly-
merisation bei Temperaturen von 80 bis 130°C, vorzugsweise
15 90 bis 120°C, bei relativ niedrigem Polymerisationsfest-
körper von etwa 50 Gewichts-% durchführt. Weiterhin ist es
notwendig, geeignete Initiatoren und, je nach Anteil an
difunktionellem Monomer, mindestens 0,5, vorzugsweise je-
doch mindestens 2,5 Gewichts-% Polymerisationsregler
20 (Kettenabbrerher), wie z.B. Mercaptoverbindungen, zu
verwenden. Die Auswahl des Initiators richtet sich nach
dem Anteil der eingesetzten difunktionellen Monomeren. Bei
niedrigem Anteil kann man die für solche Temperaturen
üblichen Initiatoren, wie z. B. Peroxyester, verwenden.
25 Bei höherem Anteil an difunktionellem Monomer werden vor-
zugsweise Initiatoren, wie z. B. Azoverbindungen, einge-
setzt. Nach der Polymerisation wird die Polymerisatlösung
durch Abdestillieren von Lösungsmittel auf den gewünschten
Festkörpergehalt konzentriert, vorzugsweise auf Festkörper-
30 gehalte von 60 Gewichts-%. Die so erhaltenen klaren Co-
polymerisatlösungen besitzen, auf einen Festkörpergehalt
von 50 Gewichts-% eingestellt, eine Viskosität von 0,4
bis 10 dPas.

35 Überraschenderweise zeigen Messungen der Acrylatcopolyme-
risatlösungen mittels der Photonенkorrelationsspektros-
kopie keinen Gehalt an Mikrogelen an.

- 7 -

1

Die Erfindung betrifft auch ein Bindemittel, organische Lösungsmittel, gegebenenfalls Pigmente, Füllstoffe und übliche Hilfsstoffe und Additive enthaltendes
5 sowie gegebenenfalls durch einen Katalysator härtbares Überzugsmittel, welches als wesentliche Bindemittel das erfindungsgemäße Acrylatcopolymersat nach einem oder nach mehreren der Ansprüche 1 bis 11 und ein zur Vernetzung desselben geeignetes Bindemittel enthält.

10

Die Erfindung betrifft ein Überzugsmittel, das dadurch gekennzeichnet ist, daß es durch Säure härtbar ist und als wesentliche Bindemittel

15

A) 55 bis 90 Gewichts-%, vorzugsweise 70 bis 80 Gewichts-%, des erfindungsgemäßen Acrylatcopolymersats und

20

B) 10 bis 45 Gewichts-%, vorzugsweise 20 bis 30 Gewichts-%, eines Melaminformaldehydharzes mit einem mittleren Molekulargewicht von 250 bis 1000 und einem Methyolierungsgrad von mindestens 0,65, bevorzugt 0,9 bis 1, das mit Monoalkoholen mit 1 bis 4 Kohlenstoffatomen und/oder Monoethern von Diolen mit insgesamt 2 bis 7 Kohlenstoffatomen in einem Umfang von mindestens 80 Mol-%, bevorzugt 90 bis 100 Mol-%, bezogen auf die maximal mögliche Veretherung, verethert ist, enthält, wobei die Summe der Bindemittel A) und B) 100 Gewichts-% beträgt.

25

Vorzugsweise werden 25 bis 40 Gewichts-% der Komponente a_1 , wobei die Summe der Komponenten a_1 , a_2 und a_3 30 100 Gewichts-% beträgt, verwendet.
35

- 8 -

- 1 Das als Bindemittel B) verwendete Melaminformaldehydharz kann zum Beispiel mit Methanol, Ethanol, Propanol und Butanol vererhert sein. Gut geeignet ist das Hexakis(methoxy)methylmelamin. Selbstverständlich kann die
- 5 Komponente B auch aus Harnstoffformaldehyd- und Benzo-guanaminformaldehydharzen bestehen.

Die erfindungsgemäßen Überzugsmittel werden vor ihrer Verwendung mit einem Säurekatalysator vermischt, um

- 10 die Härtungstemperatur herabzusetzen und die Härtung zu beschleunigen. Der Katalysator wird in einer Menge von 1 bis 5 Gewichts-%, vorzugsweise 1,5 bis 3,5 Ge-wichts-%, bezogen auf den Feststoffgehalt an Bindemit-teln A) und B) eingesetzt. Besonders geeignet sind Sul-fonsäureverbindungen, insbesondere p-Toluolsulfon-säure. Es können auch Mischungen von Katalysatoren ein-gesetzt werden.

Zur Verlängerung der Topfzeit auf 6 bis 24 Stunden

- 20 nach Zugabe des Katalysators enthält das Überzugsmitt-tel vorteilhaft eine der Säuremenge äquivalente Menge einer stickstoffhaltigen Verbindung oder je nach ge-wünschter Verlängerung der Topfzeit einen Teil dieser Menge.

25

- Eine Verlängerung der Topfzeit kann vorteilhaft auch durch Zusatz von 5 bis 35 Gewichts-%, bezogen auf den Feststoffgehalt an Bindemittel, eines oder mehrerer Alkohole erreicht werden, wobei Ethanol, Butanol und
- 30 deren Mischungen bevorzugt werden.

Die Erfindung betrifft auch ein Verfahren zur Her-stellung eines durch Säure härtbaren Überzugsmittels,

- das dadurch gekennzeichnet ist, das zur Herstellung
- 35 eines hydroxylgruppenhaltigen Acrylatcopolymerisats

- 9 -

1

A) a₁) 10 bis 60 Gewichts-%, vorzugsweise 15 bis 60 Gewichts-%, hydroxylgruppenhaltige Ester der Acrylsäure und/oder Methacrylsäure mit 2 bis 14 Kohlenstoffatomen im Alkylrest,

5

a₂) 3 bis 25 Gewichts-%, vorzugsweise 5 bis 20 Ge- - wichte-%, Monomere mit mindestens 2 polymeri- sierbaren, olefinisch ungesättigten Doppelbin- dungen und

10

a₃) 15 bis 82 Gewichts-%, vorzugsweise 40 bis 70 Gewichts-%, weitere polymerisierbare Monomere mit einer olefinisch ungesättigten Doppelbin- dung in einem organischen Lösungsmittel unter Zusatz von Polymerisationsinitiatoren und Poly- merisationsreglern zu einem vorvernetzten, nicht gelierten Produkt copolymerisiert werden, wobei die Summe der Komponenten a₁, a₂ und a₃ 100 Gewichts-% beträgt, und dieses Copolymerisat A) in einem Anteil von 55 bis 90 Gewichts-%, vorzugsweise 70 bis 80 Gewichts-%, mit

15

20

25 B) 10 bis 45 Gewichts-%, vorzugsweise 20 bis 30 Gewichts-%, eines Melaminformaldehydharzes mit einem Molekulargewicht von 250 bis 1000 und einem Methylolierungsgrad von mindestens 0,65, bevorzugt 0,9 bis 1, das mit Monoalkoholen von 1 bis 4 Kohlenstoffatomen und/oder Monoethern von Diolen mit insgesamt 2 bis 7 Kohlenstoff- atomen in einem Umfang von mindestens 80 Mol-%, bevorzugt 90 bis 100 Mol-%, bezogen auf die maximal mögliche Veretherung, verethert ist, sowie mit organischen Lösungsmitteln, gegebenen- falls Pigmenten und üblichen Hilfsstoffen und Additiven durch Mischen und gegebenenfalls Dis- pergieren zu einer Überzugsmasse verarbeitet

30

35

- 10 -

1 wird, wobei die Summe der Bindemittel A) und B) 100 Gewichts-% beträgt.

5 Die Erfindung betrifft auch ein Überzugsmittel, das dadurch gekennzeichnet ist, daß es als wesentliche Bindemittel das erfindungsgemäße Acrylatcopolymersat A.) und

10 B) ein oder mehrere verschiedene polyfunktionelle Isocyanate enthält mit der Maßgabe, daß das Verhältnis der Isocyanatgruppen zu den Hydroxylgruppen im Bereich von 0.3 : 1 bis 3.5 : 1 liegt.

15 Beispiele für polyfunktionelle Isocyanate, die zur Vernetzung der Hydroxylgruppen enthaltenden Copolymeren verwendet werden können, sind 2,4-Toluylendiisocyanat, 2,6-Toluylendiisocyanat, 4,4'-Diphenylmethandiisocyanat, Hexamethylendiisocyanat, 3,5,5-Trimethyl-1-isocyanato-3-isocyanatomethylcyclohexan, m-Xylylendiisocyanat, p-Xylylendiisocyanat, Tetramethylendiisocyanat, Cyclohexan-1,4-diisocyanat, 4,4-Diisocyanatdiphenylether, 2,4,6-Triisocyanattoluol und 4,4',4''-Triisocyanattriphenylmethan. Die Polyisocyanate können zu Präpolymeren mit höherer Molmasse verknüpft sein. Zu nennen sind hierbei Addukte aus Toluylendiisocyanat und Trimethylolpropan, ein aus 3 Molekülen Hexamethylendiisocyanat gebildetes Biuret, sowie die Trimeren des Hexamethylendiisocyanats und des 3,5,5-Trimethyl-1-isocyanato-3-isocyanatomethylcyclohexans.

30 Bei den mit Isocyanatgruppen vernetzten Acrylatcopolymeren werden vorzugsweise 15 bis 40 Gewichts-% der Komponente a_1 , wobei die Summe der Komponenten a_1 , a_2 und a_3 100 Gewichts-% beträgt, verwendet.

- 11 -

1

Die Erfindung betrifft auch ein Verfahren zur Herstellung des Überzugmittels, das dadurch gekennzeichnet ist, daß zur Herstellung des Acrylatcopolymersats

5

A) a₁) 10 bis 60 Gewichts-%, vorzugsweise 15 bis 60 Gewichts-%, hydroxylgruppenhaltige Ester der Acrylsäure und/oder Methacrylsäure mit 2 bis 14 Kohlenstoffatomen im Alkylrest,

10

a₂) 3 bis 25 Gewichts-%, vorzugsweise 5 bis 20 Gewichts-%, Monomere mit mindestens 2 polymerisierbaren, olefinisch ungesättigten Doppelbindungen und

15

a₃) 15 bis 82 Gewichts-%, vorzugsweise 40 bis 70 Gewichts-%, weitere polymerisierbare Monomere mit einer olefinisch ungesättigten Doppelbindung in einem organischen Lösungsmittel unter Zusatz von Polymerisationsinitiatoren und Polymerisationsreglern zu einem vorvernetzten, nicht gelierten Produkt copolymerisiert werden, wobei die Summe der Komponenten a₁, a₂ und a₃ 100 Gewichts-% beträgt und dieses Copolymerisat

20

25 A) mit

B) einem oder mit mehreren verschiedenen polyfunktionellen Isocyanaten sowie mit organischen Lösungsmitteln, gegebenenfalls Pigmenten und üblichen Hilfsstoffen und Additiven durch Mischen und gegebenenfalls durch Dispergieren zu einer Überzugsmasse verarbeitet wird mit der Maßgabe, daß das Verhältnis der Isocyanatgruppen zu den Hydroxylgruppen im Bereich von 0.3 : 1 bis 3.5 : 1 liegt.

30

35

1

Gemäß dem erfindungsgemäßen Verfahren kann ein oder können mehrere Katalysatoren in einer Menge von 0,01 bis 1 Gewichts-%, bezogen auf den Festkörpergehalt der reagierenden Komponenten, verwendet werden. Bevorzugt werden als Katalysatoren Amine, beispielsweise Dimethylethanolamin verwendet. Bei Zugabe von Katalysatoren kann die Härtungstemperatur herabgesetzt und die Härtung beschleunigt werden. Die erfindungsgemäße Isocyanathärtung kann bei Temperaturen ab Raumtemperatur durchgeführt werden. Bei sehr hohen Temperaturen erübriggt sich die Zugabe eines Katalysators.

Die erfindungsgemäßen Überzugsmittel können bei niedrigen Temperaturen, z.B. bei Temperaturen von 20 bis 80 °C, gehärtet werden und werden daher insbesondere bei der Reparaturlackierung von Kraftfahrzeugen eingesetzt.

Die Erfindung betrifft auch ein Verfahren zur Herstellung eines Überzugs, bei dem einem Überzugsmittel nach Anspruch 18 oder 19 ein Säurekatalysator in einer Menge von 1 bis 5 Gewichts-%, vorzugsweise 1,5 bis 3,5 Gewichts-%, bezogen auf den Bindemittelfestkörpergehalt an A) und B), zugemischt wird, die erhaltene Mischung durch Spritzen, Fluten, Tauchen, Walzen, Rakeln oder Streichen auf ein Substrat in Form eines Films aufgebracht wird und der Film bei Temperaturen von 20 bis 80 °C zu einem fest haftenden Überzug gehärtet wird.

Die Erfindung betrifft auch ein Verfahren zur Herstellung eines Überzugs, bei dem ein Überzugsmittel nach Anspruch 21 oder 22, wobei dem Überzugsmittel gegebenenfalls ein Katalysator zugemischt werden kann, durch Spritzen, Fluten, Tauchen, Walzen, Rakeln oder Streichen auf ein Substrat in Form eines Films aufgebracht wird und der Film zu einem fest haftenden Über-

- 13 -

1 zug gehärtet wird. Die Erfindung betrifft auch nach den
erfindungsgemäßen Verfahren beschichtete Substrate.

Im folgenden wird die Erfindung an Hand von Ausführungs-
5 beispielen näher erläutert.

A) Herstellung erfindungsgemäßer Copolymerisate
(Bindemittel A)

10 In den folgenden Beispielen beziehen sich, wenn nicht anders angegeben, alle Prozentangaben auf Gewichtsteile. Die Festkörperwerte wurden in einem Umluftofen bestimmt nach 1 Stunde bei 130°C. Die Viskositäten wurden auf einem Kegel-Platte-Viskosimeter bestimmt.

15

1. Herstellung eines Acrylatharzes I

In einem 3 l-Kessel werden vorgelegt

20

360 Teile Butylacetat
180 Teile Methoxipropylacetat

Das Lösemittelgemisch wird auf 110° C aufgeheizt.

25

Innerhalb 3 h werden gleichmäßig zudosiert:

Lösung 1: 300 Teile Methylmethacrylat
 250 Teile Styrol
 150 Teile Hexandioldiacrylat
30 250 Teile Butandiolmonoacrylat
 50 Teile n-Butylacrylat
 45 Teile Mercaptoethanol

30

Lösung 2: 350 Teile Butylacetat
35 30 Teile Azobisisobutyronitril
 175 Teile Methoxipropylacetat

- 14 -

1 Danach wird weitere 3 h bei 110° C nachpolymerisiert.
Es wird ein Festkörper von 50,5 % erreicht. Unter Va-
kuum wurden bei 60 - 70° C etwa 340 Teile Lösemittel
abdestilliert. Die klare, farblose Acrylatharzlösung
5 hat einen Festkörper von 60,6 %, eine Säurezahl von
0,1, eine OH-Zahl von 97 und bei 23° C eine Viskosität
von 2,0 dPas bei einem mit Ethylglykolacetat auf 50 %
eingestellten Festkörpergehalt.

10 2. Herstellung des Acrylatharzes II

In einem 3 l-Kessel werden vorgelegt

360 Teile Butylacetat
15 180 Teile Methoxipropylacetat

Das Lösemittelgemisch wird auf 110° C aufgeheizt.
Innerhalb 3 h werden gleichmäßig zudosiert:

20 Lösung 1: 300 Teile Methylmethacrylat
150 Teile Styrol
150 Teile Hexandioldiacrylat
400 Teile Hydroxiethylmethacrylat
45 Teile Mercaptoethanol

25 Lösung 2: 350 Teile Butylacetat
30 Teile Azobisisobutyronitril
175 Teile Methoxipropylacetat

30 Danach wird weitere 3 h bei 110° C nachpolymeri-
siert. Es wird ein Festkörper von 50,5 % erreicht.
Unter Vakuum wurden bei 60-70° C etwa 340 Teile Lö-
semittel abdestilliert. Die klare, farblose Acrylat-
harzlösung hat einen Festkörper von 61,4 %, eine
35 Säurezahl von 0,4, eine OH-Zahl von 173 und bei
23° C eine Viskosität von 6,6 dPas bei einem mit
Ethylglykolacetat auf 50 % eingestellten Festkör-

- 15 -

1

pergehalt.

3. Herstellung des Acrylatharzes III

5

In einem 3 l-Kessel werden vorgelegt

360 Teile Butylacetat

180 Teile Methoxipropylacetat.

10

Das Lösemittelgemisch wird auf 110° C aufgeheizt.

Innerhalb 3 h werden gleichmäßig zudosiert:

Lösung 1: 300 Teile Methylmethacrylat

15

150 Teile Styrol

150 Teile Hexandioldiacrylat

150 Teile Hydroxiethylmethacrylat

250 Teile Butandiolmonoacrylat

45 Teile Mercaptoethanol

20

Lösung 2: 350 Teile Butylacetat

30 Teile Azobisisobutyronitril

175 Teile Methoxipropylacetat

25

Danach wird weitere 3 h bei 110° C nachpolymerisiert. Es wird ein Festkörper von 49,8 % erreicht.

Unter Vakuum wurden bei 60 - 70° C etwa 340 Teile Lösemittel abdestilliert. Die klare, farblose Acrylatharzlösung hat einen Festkörper von 60,9 %, eine

30

Säurezahl von 0,3, eine OH-Zahl von 162 und bei 23° C eine Viskosität von 3,8 dPas bei einem mit Ethylglykolacetat auf 50 % eingestellten Festkörpergehalt.

- 16 -

1

4. Herstellung des Acrylatharzes IV

5

In einem 3 l-Kessel werden vorgelegt

10

240 Teile Butylacetat

120 Teile Methoxipropylacetat

10 Teile tert.-Butylperoxy-2-ethylhexanoat

15

Das Lösemittelgemisch und ein Teil der benötigten Initiatormenge werden auf 110° C aufgeheizt. Innerhalb 3 h werden gleichmäßig zudosiert:

15

Lösung 1: 300 Teile Methylmethacrylat

250 Teile Styrol

75 Teile Hexandioldiacrylat

75 Teile Hydroxiethylmethacrylat

250 Teile Butandiolmonoacrylat

50 Teile n-Butylacrylat

35 Teile Mercaptoethanol

20

Innerhalb 3,5 h werden gleichmäßig zudosiert:

25

Lösung 2: 240 Teile Butylacetat

35 Teile tert.-Butylperoxy-2-ethylhexanoat

120 Teile Methoxipropylacetat

30

Danach wird weitere 3 h bei 110° C nachpolymerisiert. Die klare, farblose Acrylatharzlösung hat einen Festkörper von 61,5 %, eine Säurezahl von 4,1, eine OH-Zahl von 130 und bei 23° C eine Viskosität von 4,8 dPas bei einem mit Ethylglykolacetat auf 50 % eingestellten Festkörpergehalt.

35

- 17 -

1

5. Herstellung des Acrylatharzes V

In einem 3 l-Kessel werden vorgelegt

5

360 Teile Butylacetat
180 Teile Methoxipropylacetat
10 Teile tert.-Butylperoxy-2-ethylhexanoat

10

Das Lösemittelgemisch wird auf 110° C aufgeheizt.

Innerhalb 3 h werden gleichmäßig zudosiert:-

15

Lösung 1: 300 Teile Methylmethacrylat
 250 Teile Styrol
 75 Teile Hexamethylenbismethacrylamid
 75 Teile Hydroxiethylmethacrylat
 250 Teile Butandiolmonoacrylat
 50 Teile n-Butylacrylat
 35 Teile Mercaptoethanol

20

Innerhalb 3,5 h werden gleichmäßig zudosiert:

25

Lösung 2: 350 Teile Butylacetat
 35 Teile tert.-Butylperoxy-2-ethyl-
 hexanoat
 175 Teile Methoxipropylacetat

30

Danach wird weitere 3 h bei 110° C nachpolymerisiert. Es wird ein Festkörper von 50,9 % erreicht. Unter Vakuum wurden bei 60 - 70° C etwa 340 Teile Lösemittel abdestilliert. Die klare, farblose Acrylatharzlösung hat einen Festkörper von 61,5 %, eine Säurezahl von 3,1, eine OH-Zahl von 130 und bei 23° C eine Viskosität von 3,6 dPas bei einem mit Ethylglykolacetat auf 50 % eingestellten Festkörpergehalt.

- 18 -

1

6. Herstellung eines Acrylatharzes VI

5

In einem 3 l-Kessel werden vorgelegt

361 Teile Butylacetat
181 Teile Ethylglykolacetat

10

Das Lösemittelgemisch wird auf 110° C aufgeheizt.
Innerhalb 3 h werden gleichmäßig zudosiert:

15

Lösung 1: 300 Teile Methylmethacrylat
250 Teile Styrol
150 Teile Ethylenglycoldimethacrylat
250 Teile Butandiolmonoacrylat
50 Teile n-Butylacrylat
45 Teile Mercaptoethanol

20

Lösung 2: 350 Teile Butylacetat
30 Teile Azobisisobutyronitril
175 Teile Ethylglykolacetat

25

Danach wird weitere 3 h bei 110° C nachpolymerisiert. Es wird ein Festkörper von 48,9 % erreicht. Unter Vakuum wurden bei 60 - 70° C etwa 340 Teile Lösemittel abdestilliert. Die klare, farblose Acrylathärzlösung hat einen Festkörper von 59,1 %, eine Säurezahl von 1,6, eine OH-Zahl von 97 und bei 23° C eine Viskosität von 6,5 dPas bei einem mit Ethylglykolacetat auf 50 % eingestellten Festkörpergehalt.

- 19 -

1

7. Herstellung des Acrylatharzes VII

5

In einem 3 l-Kessel werden vorgelegt

361 Teile Butylacetat
181 Teile Ethylglykolacetat

10
15

Das Lösemittelgemisch wird auf 110° C aufgeheizt.

Innerhalb 3 h werden gleichmäßig zudosiert:

20

Lösung 1: 300 Teile Methylmethacrylat
 150 Teile Styrol
 150 Teile Hexandioldiacrylat
 250 Teile Butandiolmonoacrylat
 150 Teile 1 : 2-Umsetzungsprodukt aus
 2-Hydroxiethylacrylat und
 Caprolacton, wie unten be-
 schrieben
 45 Teile Mercaptoethanol

Lösung 2: 350 Teile Butylacetat
 30 Teile Azobisisobutyronitril
 175 Teile Ethylglykolacetat

25
30

Danach wird weitere 3 h bei 110° C nachpolymeri-
siert. Es wird ein Festkörper von 50,3 % erreicht.
Unter Vakuum wurden bei 60 - 70° C etwa 340 Teile
Lösemittel abdestilliert. Die klare, farblose Acry-
latharzlösung hat einen Festkörper von 60,1 %, eine
Säurezahl von 0,7, eine OH-Zahl von 122 und bei
23° C eine Viskosität von 7,4 dPas original und von
2,2 dPas bei einem mit Ethylglykolacetat auf 50 %
eingestellten Festkörpergehalt.

35

Umsetzungsprodukt aus 2-Hydroxiethylacrylat und
Caprolacton:
Es wurde ein handelsübliches Umsetzungsprodukt, her-
gestellt aus 1 Mol Hydroxiethylacrylat und durch-

- 20 -

1 schnittlich 2 Mol ϵ -Caprolacton eingesetzt.

B) Herstellung von Tönpasten für pigmentierte Decklacke

5 Tönpaste weiß P1

	Acrylatharz I	32,0 Teile
	Titandioxid Rutil	53,0 Teile
	Antiabsetzmittel	
10	(Salz einer höhermolekularen Poly-	
	carbonsäure, 52 %ig in höhersiedenden	
	Aromaten)	1,0 Teile
	Xylol	4,3 Teile
	Lösungsmittelgemisch	
15	(Xylol/Butylacetat 6 : 4)	6,7 Teile
	nachbehandelter Montmorillonit	
	(10 %ig in Solventnaphtha/ Propylen-	
	carbonat/Sojalecithin 85 : 4 : 1)	2,0 Teile
20	pyrogenes Siliciumdioxid	1,0 Teile
		<hr/>
		100,0 Teile

Die Positionen werden nacheinander im Dissolver ver-
 rührt und anschließend 20 min auf einer handelsüb-
 lichen Laborsandmühle dispergiert (Feinheit von 10
 / μ m)

Tönpaste gelb P2

30	Acrylatharz I	67,3 Teile
	Anthrapyrimidalingelb (CI Y 108, 68420)	15,0 Teile
	Lösungsmittelgemisch	
	(Xylol/Butylacetat 6 : 4)	15,0 Teile
	Triethylentetramin	0,2 Teile
35	Xylol	<u>2,5 Teile</u>
		<hr/>
		100,0 Teile

- 21 -

1

Die Positionen werden nacheinander im Dissolver ver-
rührt und anschließend 60 min auf einer handelsüb-
lichen Laborsandmühle dispergiert (Feinheit 10 μm).

5

Tönpaste weiß mit Fremdbindemittel P3

10	Lösungsmittelgemisch (Xylol/Butylacetat)	5,4 Teile
15	handelsübliches OH-Mischpolymerisat, OH-Zahl 150 auf Festkörper, 60 %ig in Xylol/Ethylglykolacetat ·2 : 1, Viskosität (50 %ig in Xylol) 450-750 mPas	31,1 Teile
20	Antiabsetzmittel (Salz einer höhermolekularen Polycarbonsäure, 52 %ig in höhersiedenden Aromaten)	1,0 Teile
25	nachbehandelter Montmorillonit (10 %ig in Solventnaphta/Propylen - carbonat/Sojalecithin 85 : 4 : 1)	2,0 Teile
30	pyrogenes Siliciumdioxid	0,5 Teile
	Titandioxid Rutil	60,0 Teile
		100,0 Teile

Die Positionen werden nacheinander im Dissolver ver-
rührt und anschließend 20 min auf einer handelsüb-
lichen Laborsandmühle dispergiert (Feinheit 10 μm).

35

35

- 22 -

1 Tönpaste grün

	Acrylatharz I	38,6	Teile
	Titandioxid Rutil	10,7	Teile
5	Gelbpigment (Y34, C.I. 77603)	4,2	Teile
	Gelbpigment (Y34, C.I. 77600)	10,5	Teile
	Grünpigment (G7, C.I. 74260)	0,5	Teile
	Butanol	23,2	Teile
	Tetralin	4,6	Teile
10	Butylacetat	7,7	Teile
		100,00	Teile

Die Positionen werden nacheinander im Dissolver verrührt
 15 und anschließend 20 min auf einer handelsüblichen Labor-
 sandmühle dispergiert (Feinheit 10 µm).

Tönpaste rot

20	Acrylatharz I	46,3	Teile
	Rotpigment (R 104, C.I. 77605)	44,2	Teile
	Netz- und Dispergieradditiv (Partialamid und Ammoniumsalz	1,0	Teile
25	einer höhermolekularen, ungesättigten Polycarbonsäure, kombiniert mit einem organisch modifizierten Siloxancopolymer)		
	Ethylyglykolacetat	8,5	Teile
30		100,00	Teile

Die Positionen werden nacheinander im Dissolver verrührt
 und anschließend 20 min auf einer handelsüblichen Labor-
 sandmühle dispergiert (Feinheit 10 µm).

- 23 -

1 C) Herstellung von Decklacken

In den folgenden Beispielen wird die Prüfung der Beschichtungen wie folgt durchgeführt:

5 Die Pendelhärte wird nach König bestimmt.

Beständigkeit gegen Superbenzin (FAM-Prüfkraftstoff DIN 51604) und Xylol:

Ein mit dem jeweiligen Lösungsmittel getränktes Zell-
10 stoffplättchen (Durchmesser ca. 35 mm) wird für die angegebene Zeit auf die Beschichtung (in Anfallviskosität auf Glas gerakelt) aufgelegt und abgedeckt. Der Film wird auf Erweichung und Markierung untersucht.

15 Schwitzwasserbeständigkeit:

Ein phosphatiertes Stahlblech mit üblichem Aufbau (kathodische Elektrotauchgrundierung, Epoxifüller, Decklack) wird für den angegebenen Zeitraum einer mit Feuchtigkeit gesättigten Atmosphäre bei 40° C ausgesetzt.

Das Prüfblech wird nach einer Stunde Regenerationszeit auf Blasen und Glanzverlust geprüft.

Abklebetest:

25 Eine Stunde nach forcierter Trocknung der Beschichtung wird ein Streifen Kreppklebeband aufgeklebt und fest angedrückt und eine Stunde darauf belassen. Nach Abreißen des Klebebandes wird die Beschichtung auf Markierungen untersucht.

30 Beispiel 1

Rezeptur eines weißen Decklacks

Acrylatharz I	43,5 Teile
Tönpaste weiß P1	34,3 Teile
35 Hexakis-(methoximethyl)-melamin	7,7 Teile
Xylol	13,8 Teile

- 24 -

1	handelsübliches Siliconöl (5 %ig)	1,0 Teile
	Pyridinsalz der p-Toluolsulfonsäure	
	(20 %ig)	5,7 Teile
5	Einstellverdünnung: Xylol (18 sec DIN 4)	

Beispiel 2

Rezeptur eines gelben Decklacks
10

Acrylatharz I	69,1 Teile
Tönpaste gelb P2	14,0 Teile
Hexakis-(methoximethyl)-melamin	12,0 Teile
Xylol	4,9 Teile
15 handelsübliches Siliconöl (5 %ig)	1,0 Teile
Pyridinsalz der p-Toluolsulfonsäure	
(20 %ig)	8,5 Teile

Einstellverdünnung: Xylol (18 sec DIN 4)
20

Bei forcierter Trocknung (30 min bei 60° C) wird folgendes Eigenschaftsniveau erreicht (wenn nicht anders angegeben, wurden die Belastungstests 1 Std. nach Entnahme aus dem Trocknungsofen durchgeführt).

	WeiBlack	Gelblack
Schichtstärke	35 /um	33 /um
Pendelhärte 1 Std. nach Trocknung	55 sec	50 sec
30 nach 48 Std.	108 sec	97 sec
Beständigkeit gegen Superbenzin und Xylol (jeweils 5 min Be- lastungsdauer)	keine Markierung	nach 24 h keine Markie- rung
35	keine Erweichung	keine Erweichung

- 25 -

1

WeiBlack

Gelblack

Abklebtest (1 Std.
Belastung mit Klebeband) keine
Markierung

5

keine
Markierung

Beispiel 3

Rezeptur eines weißen Decklacks

10	Acrylatharz II	36,8 Teile
	Hexakis-(methoximethyl)-melamin	7,3 Teile
	Tönpaste weiß P3	29,4 Teile
	Butylacetat	7,6 Teile
	Butanol	15,0 Teile
15	handelsübliches Siliconöl (5 %ig)	1,0 Teile
	p-Toluolsulfonsäure (40 %ig)	2,9 Teile

Einstellverdünnung: Methoxipropylacetat (18 sec. DIN 4)

20 Bei forcierter Trocknung (30 min 60° C) wird folgen-
des Eigenschaftsniveau erreicht (wenn nicht anders an-
gegeben, wurden die Belastungstests 1 Std. nach Ent-
nahme aus dem Trocknungsofen durchgeführt)

25	Schichtstärke	32 /um
	Pendelhärte 1 Std. nach Trocknung	95 sec
	nach 48 Std.	111 sec
	Beständigkeit gegen Superbenzin und	
	Xylol (jeweils 5 min Belastungsdauer)	keine Markie- rung, keine Erweichung
30	Abklebetest (1 Std. Belastung mit Klebeband)	keine Markie- rung
35	Bei Trocknung bei 20° C (Raumtemperatur) wird folgen- des Eigenschaftsniveau erreicht:	

- 26 -

1

Beständigkeit gegen Superbenzin
und Xylol nach 3 Tagen
(Belastungsdauer jeweils 5 min)

keine Markie-
rung, keine
Erweichung

5

Schwitzwasserbelastung, 260 h
bei 40° C

keine Blasen,
gute Glanzhal-
tung

10 Beispiel 4

Rezeptur eines weißen Decklackes

	Acrylatharz III	39,4 Teile
15	Hexakis-(methoximethyl)-melamin	7,4 Teile
	Tönpaste weiß P3	29,4 Teile
	Methoxypropylacetat	3,0 Teile
	Butanol	15,0 Teile
	Tetralin	3,0 Teile
20	handelsübliches Siliconöl (5 %ig)	1,0 Teile
	p-Toluolsulfönsäure (40 %ig)	1,8 Teile

Einstellverdünnung: Methoxipropylacetat (18 sec DIN 4)

25 Bei forcierter Trocknung (30 min bei 60° C) wird folgendes Eigenschaftsniveau erreicht (wenn nicht anders angegeben, wurden die Belastungstests 1 Std. nach Entnahme aus dem Trocknungsofen durchgeführt).

30 Schichtstärke 35 /um

Pendelhärte 1 Std. nach Trocknung	91 sec
nach 4 Tagen	126 sec

35 Beständigkeit gegen Superbenzin und
Xylol (jeweils 5 min Belastungs-
dauer)

keine Markie-
rung, keine
Erweichung

- 27 -

1

Bei Trocknung bei 20° C (Raumtemperatur) wird folgendes Eigenschaftsniveau erreicht:

5	Schichtstärke	33 / um
	Pendelhärte nach 48 h	81 sec
	nach 24 Std.:	
	Beständigkeit gegen Superbenzin	keine Markierung, keine Erweichung
10	Beständigkeit gegen Xylol (Belastung jeweils 5 min)	leichte Markierung
	nach 48 h	
	Beständigkeit gegen Superbenzin	keine Markierung, keine Erweichung
15	Beständigkeit gegen Xylol	keine Markierung, keine Erweichung
	Schwitzwasserbelastung, 260 h bei 40° C	keine Blasen, leichte Ver- mattung
20		

Beispiel 5

Rezeptur eines weißen Decklacks

25	Acrylatharz IV	39,7 Teile
	Hexakis-(methoximethyl)-melamin	7,3 Teile
	Tönpaste weiß P3	29,4 Teile
	Butylacetat	4,8 Teile
	Butanol	15,0 Teile
30	handelsübliches Siliconöl (5 %ig)	1,0 Teile
	p-Toluolsulfonsäure (40 %ig)	2,8 Teile

Einstellverdünnung: Xylol (18 sec DIN 4)

35 Bei forcierter Trocknung (30 min bei 60° C) wird folgendes Eigenschaftsniveau erreicht (wenn nicht anders angegeben, wurden die Belastungstests 1 Std. nach Entnahme aus dem Trocknungsofen durchgeführt).

- 28 -

1	Schichtstärke	36 /um
	Pendelhärte 1 Std. nach Trocknung	70 sec
	nach 24 Std.	77 sec
5	Beständigkeit gegen Superbenzin und Xylol (jeweils 5 min Belastungsdauer)	keine Markie- rung, keine Erweichung

Beispiel 6

10 Rezeptur eines weißen Decklacks

	Acrylatharz	38,6 Teile
	Hexakis-(methoximethyl)-melamin	7,3 Teile
15	Tönpaste weiß P3	29,4 Teile
	Butylacetat	5,9 Teile
	Butanol	15,0 Teile
	handelsübliches Siliconöl (5 %ig)	1,0 Teile
	p-Toluolsulfonsäure (40 %ig)	2,8 Teile

20 Einstellverdünnung: Xylol (18 sec DIN 4)

Bei forcierter Trocknung (30 min bei 60° C) wird folgendes Eigenschaftsniveau erreicht (wenn nicht anders angegeben, wurden die Belastungstests 1 Std. nach Entnahme aus dem Trocknungsöfen durchgeführt).

	Schichtstärke	33 /um
	Pendelhärte 1 Std. nach Trocknung	85 sec
30	nach 24 Std.	98 sec
	nach 14 Tagen	155 sec
	Beständigkeit gegen Superbenzin und Xylol (jeweils 5 min Belastungsdauer)	keine Markie- rung, keine Erweichung

- 29 -

1 Beispiel 7

Rezeptur eines Klarlacks

5	Acrylatharz	68,1 Teile
	Hexakis-(methoximethyl)-melamin	10,2 Teile
	Xylol	13,2 Teile
	handelsübliches Siliconöl (5 %ig)	1,0 Teile
10	Pyridinsalz der p-Toluolsulfonsäure (20 %ig)	7,5 Teile

Einstellverdünnung: Xylol (18 sec DIN 4)

Bei forcierter Trocknung (30 min bei 60° C) wird folgendes Eigenschaftsniveau erreicht (wenn nicht anders angegeben, wurden die Belastungstests 1 Std. nach Entnahme aus dem Trocknungsofen durchgeführt).

		Klarlack
20	Schichtstärke	32 /um
	Pendelhärte 1 Std. nach Trocknung	95 sec
	nach 48 Std.	111 sec
	Beständigkeit gegen Superbenzin und Xylol (jeweils 5 min Belastungsdauer)	keine Markie- rung, keine Erweichung
25	Abklebetest (1 Std. Belastung mit Klebeband)	keine Markierung

Beispiel 8

30	Rezeptur eines weißen Decklacks	
	Acrylatharz VII	42,0 Teile
	Hexakis-(methoximethyl)-melamin	7,7 Teile
	Tönpaste weiß P3	30,8 Teile
	Butanol	15,6 Teile
35	handelsübliches Siliconöl (5 %ig)	1,0 Teile
	p-Toluolsulfonsäure (40 %ig)	2,9 Teile

Einstellverdünnung: Xylol (18 sec DIN 4)

30

1

Bei forcierter Trocknung (30 min bei 60°C) wird folgendes Eigenschaftsniveau erreicht (wenn nicht anders angegeben, wurden die Belastungstests 1 Std. nach Entnahme aus dem Trockenofen durchgeführt):

	Schichtstärke	32 µm
	Pendelhärte 1 Std. nach Trocknung	81 sec.
	nach 6 Tagen	87 sec.
10	Beständigkeit gegen Superbenzin und Xylol (jeweils 5 min Belastungsdauer)	leichte Markierung
	nach 48 h	keine Markierung
		keine Erweichung

15

20 Beispiel 9

Rezeptur eines roten Decklackes

	Acrylatharz III	29,7 Teile
25	Polyisocyanat (75 %ig, Triisocyanat aus Trimethylolpropan mit 3 Mol Toluylendi- isocyanat, in Ethylacetat)	26,5 Teile
30	Tönpaste rot	25,0 Teile
	Butylacetat	18,75 Teile
	Ethylendiamin	0,05 Teile
	(10 %ig in Isopropanol)	
		100,00 Teile

35

- 31 -

1 Beispiel 10

Rezeptur eines grünen Decklacks

5	Acrylatharz I	40,9 Teile
	Polyisocyanat (75 %ig, Triisocyanat aus Trimethylolpropan mit 3 Mol Toluylendi-	18,3 Teile
10	isocyanat, in Ethylacetat) Tönpaste grün	31,3 Teile
	Butylacetat	9,4 Teile
	Ethylendiamin (10 %ig in Isopropanol)	0,1 Teile
15		<hr/> 100,0 Teile

Bei forcierter Trocknung (30 min bei 60°C) wird folgen-
des Eigenschaftsniveau erzielt:

		Beispiel 9	Beispiel 10
	Schichtstärke	40 µm	42 µm
	Pendelhärte		
25	6h nach Entnahme aus Trocknungsofen	53 sec.	63 sec.
	24h nach Entnahme aus Trocknungsofen	137 sec.	126 sec.
30	Beständigkeit gegen Superbenzin und Xylol, (jeweils 5 min Bela- stung, 6h nach Entnah- me aus Trocknungsofen)	keine Markie- rung, keine Erweichung	keine Markie- rung, keine Erweichung

- 32 -

1 Beispiel 11

Rezeptur eines grünen Decklacks

5	Acrylatharz I	45,8 Teile
	Polyisocyanat	13,4 Teile
	(Triisocyanat aus	
	3 Mol Hexamethylendi-	
	isocyanat, trimerisiert,	
10	90 %ig in Butylacetat/	
	Solventnaphtha 1 : 1)	
	Tönpaste grün	31,2 Teile
	Butylacetat	9,52 Teile
	Ethylendiamin	0,08 Teile
15	(10 %ig in Isopropanol)	
		100,00 Teile

Bei forcierter Trocknung (20 min bei 120°C) wird folgen-
 20 des Eigenschaftsniveau erreicht:

	Schichtstärke	40 µm
	Pendelhärte	
	6h nach Entnahme	90 sec.
25	aus Trocknungsofen	
	24h nach Entnahme	125 sec.
	aus Trocknungsofen	
	Beständigkeit gegen Super-	
	benzin (5 min Belastung,	keine Markierung
30	6h nach Entnahme aus	keine Erweichung
	Trocknungsofen)	
	Beständigkeit gegen Xylol,	
	jeweils 5 min Belastung	
35	6h nach Entnahme	sehr leichte Markierung, sehr
	aus Trocknungsofen	leichte Erweichung;
	24h nach Entnahme	keine Markierung,
	aus Trocknungsofen	keine Erweichung

- 33 -

1 Topfzeit im DIN 4 Auslaufbecher, Anstieg von 20 sec. auf
52 sec. in 24h

5

Die Acrylatharze I und III werden mittels der Photonenkorrelationsspektroskopie auf einen Gehalt an Mikrogel-Teilchen untersucht. Ergebnis der Untersuchung ist, daß es keinen analytischen Hinweis auf einen Gehalt an Mikrogelen gibt. Die Harzlösungen wurden mit dem Coulter Model N 4 sub-micron particle analyzer der Fa. Curtin Matheson Scientific Inc., Detroit, Michigan, USA, untersucht.

15

20

25

30

35

1

- 34 -

5 Patentansprüche

1. Hydroxylgruppenhaltiges Acrylatcopolymerisat, entstanden durch Copolymerisation von Acrylaten mit mindestens zwei olefinisch ungesättigten Doppelbindungen, hydroxylgruppenhaltigen Monomeren und weiteren olefinisch ungesättigten Monomeren, dadurch gekennzeichnet, daß es erhalten worden ist aus

15 a₁) 10 bis 60 Gewichts-%, vorzugsweise 15 bis 60 Gewichts-%, hydroxylgruppenhaltigen Estern der Acrylsäure und/oder Methacrylsäure mit 2 bis 14 Kohlenstoffatomen im Alkylrest,

20 a₂) 3 bis 25 Gewichts-%, vorzugsweise 5 bis 20 Gewichts-%, Monomeren mit mindestens 2 polymerisierbaren, olefinisch ungesättigten Doppelbindungen und

25 a₃) 15 bis 82 Gewichts-%, vorzugsweise 40 bis 70 Gewichts-%, weiteren polymerisierbaren Monomeren mit einer olefinisch ungesättigten Doppelbindung, wobei die Summe der Komponenten a₁, a₂ und a₃ 100 Gewichts-% beträgt.

30

2. Acrylatcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß die Komponente a₂ der allgemeinen Formel

35

- 35 -

1

5

entspricht, in der bedeuten:

10 R = H oder CH_3 ,
 X = O, N, S
 n = 2 bis 8.

15 3. Acrylatcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß die Komponente a_2 ein Umsetzungsprodukt aus einer Carbonsäure mit einer polymerisierbaren, olefinisch ungesättigten Doppelbindung und Glycidylacrylat und/oder Glycidylmethacrylat ist.

20 4. Acrylatcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß die Komponente a_2 eine mit einem ungesättigten, eine polymerisierbare Doppelbindung enthaltenden Alkohol veresterte Polycarbonsäure oder ungesättigte Monocarbonsäure ist.

25 5. Acrylatcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß die Komponente a_2 durch Umsetzung eines Polyisocyanats mit ungesättigten, polymerisierbaren Doppelbindungen enthaltenden Alkoholen oder Aminen herstellbar ist.

1

6. Acrylatcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß die Komponente a_2 ein Diester von Polyethylenglykol und/oder Polypropylenglykol mit einem mittleren Molekulargewicht von weniger als 1500, bevorzugt weniger als 1000, und Acrylsäure und/oder Methacrylsäure ist.

5

10 7. Acrylatcopolymerisat nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Komponente a_1 ein Hydroxyalkylester der Acrylsäure und/oder Methacrylsäure mit einer primären Hydroxylgruppe ist.

15

20 8. Acrylatcopolymerisat nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß die Komponente a_1 zumindest teilweise ein Umsetzungsprodukt aus einem Mol Hydroxyethylacrylat und/oder Hydroxyethylmethacrylat und durchschnittlich 2 Mol ϵ -Caprolacton ist.

25

9. Acrylatcopolymerisat nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß die Komponente a_1 in einem Anteil von bis zu 75 Gewichts-%, vorzugsweise bis zu 50 Gewichts-%, bezogen auf die Gesamtmenge a_1 , ein hydroxylgruppenhaltiger Ester der Acrylsäure und/oder Methacrylsäure mit einer sekundären Hydroxylgruppe ist.

30

1 10. Acrylatcopolymersat nach Anspruch 9, dadurch
gekennzeichnet, daß der hydroxylgruppenhaltige
Ester ein Umsetzungsprodukt aus Acrylsäure
und/oder Methacrylsäure und dem Glycidylester
5 einer Carbonsäure mit einem tertiären
 α -Kohlenstoffatom ist.

10 11. Acrylatcopolymersat nach Anspruch 1 bis 10,
dadurch gekennzeichnet, daß die weiteren poly-
merisierbaren Monomeren der Komponente a₃
ausgewählt sind aus der Gruppe Styrol, Vinyl-
toluol, Acrylsäure, Methacrylsäure, Alkylester
15 der Acrylsäure und Methacrylsäure, Alkoxyethyl-
acrylate und Aryloxyethylacrylate und die
entsprechenden Methacrylate, Ester der Malein-
und Fumarsäure.

20 12. Verfahren zur Herstellung eines Acrylatcopolymersats nach den Ansprüchen 1 bis 11, dadurch
gekennzeichnet, daß zu seiner Herstellung

25 a₁) 10 bis 60 Gewichts-%, vorzugsweise 15
bis 60 Gewichts-%, hydroxylgruppenhaltige
Ester der Acrylsäure und/oder Methacrylsäure
mit 2 bis 14 Kohlenstoffatomen im Alkyl-
rest,

30 a₂) 3 bis 25 Gewichts-%, vorzugsweise 5 bis
20 Gewichts-%, Monomere mit mindestens
2 polymerisierbaren, olefinisch ungesättig-
ten Doppelbindungen und

1 a₃) 15 bis 82 Gewichts-%, vorzugsweise 40
5 bis 70 Gewichts-%, weitere polymerisier-
 bare Monomere mit einer olefinisch unge-
 sättigten Doppelbindung in einem organi-
 schen Lösungsmittel unter Zusatz von Poly-
 merisationsinitiatoren und Polymerisations-
 reglern zu einem vorvernetzten, nicht
10 gelierten Produkt copolymerisiert werden,
 wobei die Summe der Komponenten a₁, a₂:
 und a₃ 100 Gewichts-% beträgt.

15 13. Verfahren nach Anspruch 12, dadurch gekenn-
 zeichnet, daß die Copolymerisation bei 80
 bis 130 °C, vorzugsweise bei 90 – 120 °C,
 unter Verwendung von mindestens 0,5 Gewichts-%,
 vorzugsweise mindestens 2,5 Gewichts-%, bezogen
 auf das Gesamtgewicht der Monomeren, eines
 Polymerisationsreglers durchgeführt wird.

20

25 14. Verfahren nach Anspruch 12 oder 13, dadurch
 gekennzeichnet, daß als Polymerisationsregler
 Mercaptogruppen enthaltende Verbindungen,
 vorzugsweise Mercaptoethanol, verwendet werden.

30 15. Verfahren nach Anspruch 12 bis 14, dadurch
 gekennzeichnet, daß als Initiatoren Peroxi-
 ester und/oder Azoverbindungen verwendet wer-
 den.

35 16. Verfahren nach Anspruch 12 bis 15, dadurch
 gekennzeichnet, daß die Polymerisation zur
 Herstellung des Acrylatcopolymerisats so durch-
 geführt wird, daß eine Lösung des Polymerisats
 mit einem Festkörpergehalt von 40 bis 65 Ge-
 wichts-% resultiert.

- 39 -

1

17. Bindemittel, organische Lösungsmittel, gegebenenfalls Pigmente, Füllstoffe und übliche Hilfsstoffe und Additive enthaltendes sowie gegebenenfalls durch einen Katalysator härtbares Überzugsmittel, enthaltend als wesentliche Bindemittel das Acrylatcopolymerisat nach einem oder nach mehreren der Ansprüche 1 bis 11 und ein zur Vernetzung desselben geeignetes Bindemittel.

10

18. Überzugsmittel nach Anspruch 17, dadurch gekennzeichnet, daß es durch Säure härtbar ist und als wesentliche Bindemittel

15

A) 55 bis 90 Gewichts-%, vorzugsweise 70 bis 80 Gewichts-%, des Acrylatcopolymerisats und

20

B) 10 bis 45 Gewichts-%, vorzugsweise 20 bis 30 Gewichts-%, eines Melaminformaldehydharzes mit einem mittleren Molekulargewicht von 250 bis 1000 und einem Methyolierungsgrad von mindestens 0,65, bevorzugt 0,9 bis 1, das mit Monoalkoholen mit 1 bis 4 Kohlenstoffatomen und/oder Monoethern von Diolen mit insgesamt 2 bis 7 Kohlenstoffatomen in einem Umfang von mindestens 80 Mol-%, bevorzugt 90 bis 100 Mol-%, bezogen auf die maximal mögliche Veretherung, veretherert ist, enthält, wobei die Summe der Bindemittel A) und B) 100 Gewichts-% beträgt.

25

30

35

- 40 -

1

19. Überzugsmittel nach Anspruch 18, dadurch gekennzeichnet, daß vorzugsweise 25 bis 40 Gewichts-% der Komponente a_1 , wobei die Summe der Komponenten a_1 , a_2 und a_3 100 Gewichts-% beträgt, verwendet werden.

5

20. Verfahren zur Herstellung des durch Säure härtbaren Überzugsmittels nach Anspruch 18 und 19, dadurch gekennzeichnet, daß zur Herstellung des Acrylatcopolymerisats

15

A) a_1) 10 bis 60 Gewichts-%, vorzugsweise 15 bis 60 Gewichts-%, hydroxylgruppenhaltige Ester der Acrylsäure und/oder Methacrylsäure mit 2 bis 14 Kohlenstoffatomen im Alkylrest,

20

a_2) 3 bis 25 Gewichts-%, vorzugsweise 5 bis 20 Gewichts-%, Monomere mit mindestens 2 polymerisierbaren, olefinisch ungesättigten Doppelbindungen und

25

a_3) 15 bis 82 Gewichts-%, vorzugsweise 40 bis 70 Gewichts-%, weitere polymerisierbare Monomere mit einer olefinisch ungesättigten Doppelbindung in einem organischen Lösungsmittel unter Zusatz von Polymerisationsinitiatoren und Polymerisationsreglern zu einem vorvernetzten, nicht gelierten Produkt copolymerisiert werden, wobei die Summe der Komponenten a_1 , a_2 und a_3 100 Gewichts-% beträgt,

30

und dieses Copolymerisat A) in einem Anteil von 55 - 90 Gewicht-%, vorzugsweise 70 bis 80 Ge-

35

1

wichts-%, mit

5 B) 10 bis 45 Gewichts-%, vorzugsweise 20 bis 30 Ge-
wichts-%, eines Melaminformaldehydharzes mit
einem Molekulargewicht von 250 bis 1000 und einem
Methyolierungsgrad von mindestens 0,65, bevor-
zugt 0,9 bis 1, das mit Monoalkoholen von 1 bis 4
10 Kohlenstoffatomen und/oder Monoethern von Diolen
mit insgesamt 2 bis 7 Kohlenstoffatomen in einem
Umfang von mindestens 80 Mol-%, bevorzugt 90 bis
100 Mol-%, bezogen auf die maximal mögliche Ver-
15 etherung, verethert ist, sowie mit organischen
Lösungsmitteln, gegebenenfalls Pigmenten und üb-
lichen Hilfsstoffen und Additiven durch Mischen
und gegebenenfalls Dispergieren zu einer Überzugs-
masse verarbeitet wird, wobei die Summe der Binde-
mittel A und B 100 Gewichts-% beträgt.

20 21. Überzugsmittel nach Anspruch 17, dadurch gekenn-
zeichnet, daß es als wesentliche Bindemittel
25 das Acrylatcopolymerisat A) und
B) ein oder mehrere verschiedene polyfunktionel-
le Isocyanate enthält mit der Maßgabe, daß das
Verhältnis der Isocyanatgruppen zu den Hydroxyl-
gruppen im Bereich von 0.3 : 1 bis 3.5 : 1 liegt.

30

22. Überzugsmittel nach Anspruch 21, dadurch gekenn-
zeichnet, daß vorzugsweise 15 bis 40 Gewichts-%
der Komponente a_1 , wobei die Summe der Kompo-
35 nenten a_1 , a_2 und a_3 100 Gewichts-% beträgt,
verwendet werden.

1 23. Verfahren zur Herstellung des Überzugsmittels
nach Anspruch 21 und 22, dadurch gekennzeichnet,
daß zur Herstellung des Acrylatcopolymersats

5 A) a₁) 10 bis 60 Gewichts-%, vorzugsweise 15
 bis 60 Gewichts-%, hydroxylgruppenhaltige
 Ester der Acrylsäure und/oder Methacryl-
 säure mit 2 bis 14 Kohlenstoffatomen im
 Alkylrest,

10

a₂) 3 bis 25 Gewichts-%, vorzugsweise 5 bis
 20 Gewichts-%, Monomere mit mindestens
 2 polymerisierbaren, olefinisch unge-
 sättigten Doppelbindungen und

15

a₃) 15 bis 82 Gewichts-%, vorzugsweise 40
 bis 70 Gewichts-%, weitere polymerisier-
 bare Monomere mit einer olefinisch unge-
 sättigten Doppelbindung in einem organi-
 schen Lösungsmittel unter Zusatz von Poly-
 merisationsinitiatoren und Polymerisa-
 tionsreglern zu einem vorvernetzten,
 nicht gelierten Produkt copolymerisiert
 werden, wobei die Summe der Komponenten
 a₁, a₂ und a₃ 100 Gewichts-% beträgt,
 und dieses Copolymerisat A) mit

20

25

30

35

B) einem oder mehreren verschiedenen poly-
 funktionellen Isocyanaten sowie mit orga-
 nischen Lösungsmitteln, gegebenenfalls
 Pigmenten und üblichen Hilfsstoffen und
 Additiven durch Mischen und gegebenen-
 falls durch Dispergieren zu einer Über-
 zugsmasse verarbeitet wird mit der Maß-
 gabe, daß das Verhältnis der Isocyanat-
 gruppen zu den Hydroxylgruppen im Bereich

- 43 -

1 von 0,3 : 1 bis 3,5 : 1 liegt.

5 24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß ein oder mehrere Katalysatoren in einer Menge von 0,01 bis 1 Gewichts-%, bezogen auf den Festkörpergehalt der reagierenden Komponenten, verwendet werden.

10 25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß als Katalysatoren Amine verwendet werden.

15 26. Verfahren nach Anspruch 20 oder 23, dadurch gekennzeichnet, daß die Polymerisation zur Herstellung des Copolymerisats A bei 80 bis 130 °C, vorzugsweise bei 90 bis 120 °C, unter Verwendung von mindestens 0,5 Gewichts-%, vorzugsweise mindestens 2,5 Gewichts-%, bezogen auf das Gesamtgewicht der Monomeren, eines Polymerisationsreglers durchgeführt wird.

20 27. Verfahren nach Anspruch 20 oder 23 und 26, dadurch gekennzeichnet, daß als Polymerisationsregler Mercaptogruppen enthaltende Verbindungen, vorzugsweise Mercaptoethanol, verwendet werden.

25 28. Verfahren nach Anspruch 20 oder 23, 26 und 27, dadurch gekennzeichnet, daß als Initiatoren Peroxiester und/oder Azoverbindungen verwendet werden.

30 29. Verfahren nach Anspruch 20 oder 23, 26 bis 28, dadurch gekennzeichnet, daß die Polymerisation zur Herstellung des Bindemittels A so durchgeführt wird, daß eine Lösung des Polymerisats mit einem Festkörpergehalt von 40 bis 65 Ge-

35

- 44 -

1

wichts-% resultiert.

30. Verfahren zur Herstellung eines Überzugs, bei
dem einem Überzugsmittel nach Anspruch 18 oder
5 19 ein Säurekatalysator in einer Menge von 1
bis 5 Gewichts-%, vorzugsweise 1,5 bis 3,5 Ge-
wichts-%, bezogen auf den Bindemittelfestkörper-
gehalt an A und B, zugemischt wird, die erhal-
10 tene Mischung durch Spritzen, Fluten, Tauchen,
Walzen, Rakeln oder Streichen auf ein Substrat
in Form eines Films aufgebracht wird und der
Film zu einem fest haftenden Überzug gehärtet
wird.

10

15

31. Verfahren zur Herstellung eines Überzugs, bei
dem ein Überzugsmittel nach Anspruch 21 oder
20 22, wobei dem Überzugsmittel gegebenenfalls
ein Katalysator zugemischt werden kann, durch
Spritzen, Fluten, Tauchen, Walzen, Rakeln oder
Streichen auf ein Substrat in Form eines Films
aufgebracht wird und der Film zu einem fest
haftenden Überzug gehärtet wird.

20

25

32. Beschichtetes Substrat, erhalten durch das Ver-
fahren nach Anspruch 30 oder 31.

30

35

INTERNATIONAL SEARCH REPORT

International Application No PCT/DE 85/00092

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ¹⁴

According to International Patent Classification (IPC) or to both National Classification and IPC
Int.Cl.⁴ C 08 F 220/28; C 08 F 246/00; C 09 D 3/80

II. FIELDS SEARCHED

Minimum Documentation Searched ⁴

Classification System	Classification Symbols
Int.Cl. ⁴	C 08 F

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁴

III. DOCUMENTS CONSIDERED TO BE RELEVANT ¹⁴

Category ¹⁶	Citation of Document, ¹⁶ with indication, where appropriate, of the relevant passages ¹⁷	Relevant to Claim No. ¹⁸
A	DE, A, 2120137 (HOECHST) 02 November 1972, see claim 1	1-32
A	EP, A, 0028118 (ALBRIGHT & WILSON) 06 May 1981, see claim 2	1-16

- Special categories of cited documents: ¹⁸
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search ¹⁹

26 June 1985 (26.06.85)

Date of Mailing of this International Search Report ¹⁹

16 July 1985 (16.07.85)

International Searching Authority ¹

European Patent Office

Signature of Authorized Officer ²⁰

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON

INTERNATIONAL APPLICATION NO. PCT/DE 85/00092 (SA 9183)

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 09/07/85

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE-A- 2120137	02/11/72	None	
EP-A- 0028118	06/05/81	GB-A, B 2061308 JP-A- 56067356 AU-A- 6359180 CA-A- 1150635	13/05/81 06/06/81 30/04/81 26/07/83

INTERNATIONALER RECHERCHENSRICHT

Internationales Aktenzeichen

PCT/DE 85/00092

I. KLASSEKIFICATION DES ANMELDUNGSGEGENSTANDS (bei mehreren Klassifikationssymbolen sind alle anzugeben)⁶

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC
 Int. Cl. 4 C 08 F 220/28; C 08 F 246/00; C 09 D 3/80

II. RECHERCHIERTE SACHGEBIETE

Recherchierter Mindestprüfstoff⁷

Klassifikationssystem	Klassifikationssymbole
Int. Cl. 4	C 08 F

Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese
 unter die recherchierten Sachgebiete fallen⁸

III. EINSCHLÄGIGE VERÖFFENTLICHUNGEN⁹

Art*	Kennzeichnung der Veröffentlichung ¹¹ , soweit erforderlich unter Angabe der maßgeblichen Teile ¹²	Betr. Anspruch Nr. ¹³
A	DE, A, 2120137 (HOECHST) 2. November 1972, siehe Patentanspruch 1	1-32
A	EP, A, 0028118 (ALBRIGHT & WILSON) 6. Mai 1981, siehe Patentanspruch 2	1-16

* Besondere Kategorien von angegebenen Veröffentlichungen¹⁰:
 "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

IV. BESCHEINIGUNG

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
26. Juni 1985	16 JUL. 1985
Internationale Recherchenbehörde	Unterschrift des bevollmächtigten Bediensteten
Europäisches Patentamt	G. L. M. Krämerberg

ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE

INTERNATIONALE PATENTANMELDUNG NR. PCT/DE 85/00092 (SA 9183)

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 09/07/85

Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE-A- 2120137	02/11/72	Keine	
EP-A- 0028118	06/05/81	GB-A,B 2061308 JP-A- 56067356 AU-A- 6359180 CA-A- 1150635	13/05/81 06/06/81 30/04/81 26/07/83