ПРОТОКОЛ

ЛАБОРАТОРНЫХ ИСПЫТАНИЙ КУЧНОГО ВЫШЕЛАЧИВАНИЯ В ИЗМЕРИТЕЛЬНЫХ КОЛБАХ И СРАВНЕНИЕ РЕЗУЛЬТАТОВ И ЭФФЕКТИВНОСТИ РАЗЛИЧНЫХ ВЫЩЕЛАЧИВАЮЩИХ РЕАГЕНТОВ

Введение

Для того, чтобы следовать в тренде природоохранной политики государства, «Майнинг Ко., Лтд.» заранее готовит и укрепляет соответствующие технические ресурсы.

В частности и в этот раз провела испытания на предмет исследования эффективности выщелачивающих различных реагентов нового типа. Испытание путем кучного выщелачивания в измерительных цилиндрах началось 10 октября 2018 года и завершилось 13 декабря 2018 года и продолжалось 64 дня.

В ходе испытаний использовались образцы сырой руды, взятые из одной кучи месторождения золота. В испытании кучного выщелачивания в измерительных колбах (цилиндрах) использовано 8 цилиндров (колб с породой для выщелачивания), а именно: «А» - два цилиндра, «В» - два цилиндра, «С» - два цилиндра, а также два цилиндра с цианидом натрия. В каждую колбу загружается 50 кг руды.

Цель испытания: сравнение эффективности различных выщелачивающих реагентов.

Горнодобывающая компания «Майнинг Ко., Лтд.»

1. Алгоритм испытаний

- 1) Обеспечиваем достоверность проб многоточечными отборами и измельчением руды. Доставляем пробы в лабораторию для анализа качества руды золота и для сохранения образцов.
- 2) Образцы руды взвешиваем и загружаем в цилиндры, измеряем и фиксируем показатели: вес, высоту и диаметр выщелачивающей руды в колбе (цилиндре). Раствор готовится из выщелачивающего реагента и гидроксида натрия.

Требования к конфигурации растворов:

- для цианида натрия: $CN \ge 200$ ppm, pH = около 11;
- для других реагентов: ≥ 435 ppm, pH = около 11.

Бедный раствор и выщелоченный насыщенный раствор хранятся в бочках объемом 25 л. В соответствии с условиями испытаний для всех колб (цилиндров) для выщелачивания применяется система отбора проб насыщенного раствора каждые 4 дня.

- 3) Основные данные мониторинга включают:
- Масса раствора в колбах;
- Дозировка раствора в колбы;
- Значение рН бедного раствора в колбах;
- Вес выщелоченного насыщенного раствора;
- Содержание (сортность) золота в насыщенном растворе;
- Концентрация выщелоченного насыщенного раствора;
- Значение рН насыщенного раствора.

Рисунок 1. Лаборатория «Майнинг Ко., Лтд.»: оборудование (колбы) для тестового выщелачивания.

2. Результаты испытаний

Данные, полученные в ходе испытания, были предварительно отсортированы и рассчитаны, свод результатов испытаний представлен в Таблице №1 и №2 (содержание исходной руды и хвостов определяются анализом проб после восстановления).

Таблица №1 данные по руде

Номер выщелачивающей колбы (цилиндра)	Количество выщелачивающей руды в колбе	Содержание золота (сортность) исходной руды		Процент выщелачивания руды
	(kg)	(g/t)	(g/t)	(%)
«A» 1#	50.00	0.498	0.269	45.98
«A» 2#	50.00	0.498	0.269	45.98
«B» 1#	50.00	0.339	0.164	51.62
«B» 2#	50.00	0.362	0.168	53.59
«C» 1#	50.00	0.469	0.210	55.22
«C» 2#	50.00	0.432	0.218	49.54
«Цианид натрия» 1#	50.00	0.492	0.215	56.30
«Цианид натрия» 2#	50.00	0.737	0.362	50.88

Примечание:

Коэффициент извлечения руды рассчитывается на основе пропорции содержания Au (сортности) исходной руды и содержания Au (сортности) хвостов; средняя скорость выщелачивания каждой группы реагентов составляет:

[«]A» 45,98%,

[«]B» 52,61%,

[«]C» 52,38%,

[«]Цианид натрия» 53,59%.

Таблица №2 Свод данных по выщелачиванию

Номер выщелачивающей колбы (цилиндра)	Срок выщелачивания	Коэффициент извлечения руды	Интенсивность распыления	Расход реагента
	(Сутки)	(%)	(L/m2·h)	(kg/t)
«A» 1#	64	46.00	11.92	3.2
«A» 2#	64	44.97	11.92	3.2
«B» 1#	64	51.76	11.92	1.8
«B» 2#	64	53.49	11.92	1.8
«C» 1#	64	55.20	11.92	3.2
«C» 2#	64	49.51	11.92	3.2
«Цианид натрия» 1#	64	56.38	11.92	1.6
«Цианид натрия» 2#	64	50.95	11.92	1.6

Примечание:

Коэффициент извлечения при выщелачивании рассчитывается на основе содержания Au в исходной руде и количества выщелоченного металла (см. Прилагаемую таблицу); средние скорости выщелачивания для каждой группы реагентов составляют:

«A» 45,48%,

«B» 52,62%,

«C» 52,35%,

«Цианид натрия» 53,66%.

В соответствии с результатами испытаний, сведенных в таблицу № 2, в прилагаемой таблице строим графики скорости извлечения и времени выщелачивания для каждой колбы (см. рис. 2, 3, 4, 5, 6, 7, 8 и 9).

«A» 1# График извлечения при выщелачивании в цилиндре 50,00 $y = 13.828 \ln(x) - 13.299$ 45,00 $R^2 = 0.9836$ **§** 40,00 35,00 30,00 →-浸出率% Логарифмическая (浸出率%)

Рисунок №2 (для колбы «А»1#)

- Кривая скорости выщелачивания, (%)
- Логарифм скорости выщелачивания, (%)

«А»2#
График извлечения при выщелачивании в цилиндре

Рисунок №3 (для колбы «А» 2#)

- Кривая скорости выщелачивания, (%)
- Логарифм скорости выщелачивания, (%)

«В» 1# График извлечения при выщелачивании в цилиндре

Рисунок №4 (для колбы «В»1#)

- Кривая скорости выщелачивания, (%)
- Логарифм скорости выщелачивания, (%)

«В» 2# График извлечения при выщелачивании в цилиндре

Рисунок №5 (для колбы «В»2#)

- Кривая скорости выщелачивания, (%)
- Логарифм скорости выщелачивания, (%)

«С» 1#
График извлечения при выщелачивании в цилиндре

Рисунок №6 (для колбы «С»1#)

- Кривая скорости выщелачивания, (%)
- Логарифм скорости выщелачивания, (%)

«С» 2#
График извлечения при выщелачивании в цилиндре

Рисунок №7 (для колбы «С»2#)

- Кривая скорости выщелачивания, (%)
- Логарифм скорости выщелачивания, (%)

«Цианид натрия» 1# График извлечения при выщелачивании в цилиндре

Рисунок №8 (для колбы «Цианид натрия» 1#)

- Кривая скорости выщелачивания, (%)
- Логарифм скорости выщелачивания, (%)

«Цианид натрия» 2#
График извлечения при выщелачивании в цилиндре

Рисунок №9 (для колбы «Цианид натрия» 2#)

- Кривая скорости выщелачивания, (%)
- Логарифм скорости выщелачивания, (%)

Заключительные выводы

по результатам испытаний

Сводная таблица результатов тестирования представлена в таблице № 3.

Номер выщелачивающей колбы (цилиндра)	Содержание золота (сортность) исходной руды	Содержание золота (сортность) хвостов	Коэффициент извлечения руды #1	Коэффициент извлечения руды #2	Расход (потребление) реагента
	(g/t)	(g/t)	(%)	(%)	(kg/t)
«A» 1#	0.498	0.269	45.98	46.00	3.2
«A» 2#	0.498	0.269	45.98	44.97	3.2
«B» 1#	0.339	0.164	51.62	51.76	1.8
«B» 2#	0.362	0.168	53.59	53.49	1.8
«C» 1#	0.469	0.210	55.22	55.20	3.2
«C» 2#	0.432	0.218	49.54	49.51	3.2
«Цианид натрия» 1#	0.492	0.215	56.30	56.38	1.6
«Цианид натрия» 2#	0.737	0.362	50.88	50.95	1.6
Усредненный показатель			51.14	51.03	

Примечание:

Коэффициент извлечения руды рассчитывается на основе средневзвешенного содержания (сортности) в исходной руде и среднего содержания (сортности) в хвостах;

Коэффициент извлечения руды #1 рассчитывается на основе содержания (сортности) в исходной руде и содержания (сортности) в хвостах, по результатам сведенных в $\underline{\text{Таблицу } N \hspace{-1pt} \hspace{-1pt} 21.}$

Коэффициент извлечения руды #2 рассчитывается на основе содержания (сортности) в хвостах и количества выщелоченного металла по данным <u>Таблицы №2.</u>

Из приведенных выше результатов можно сделать следующие выводы:

- 1. Средняя погрешность между коэффициентом извлечения руды #1 и извлечения руды #2 в данном тесте составляет 0,11%;
- 2. В данном эксперименте потребление цианида натрия составило 1,60 кг/т, а потребление других химикатов (реагентов): «А» и «С» 3,20 кг/т («В» 1,80 кг/т);
- 3. Результаты этого теста показывают, что эффективность выщелачивания у цианида натрия является наилучшим и в среднем составляет 53,66% (см. Таблицу №2), а дозировка (расход) цианида натрия вдвое меньше других реагентов, участвующих в тесте;
- 4. Что касается бесцианидных реагентов выщелачивания нового типа (под аббревиатурами в тесте «А», «В» и «С»), коэффициент выщелачивания у «С» наилучший, хотя коэффициент (в среднем 52.35%) чуть ниже, чем у «В» (в среднем 52.62%), эффективность же проникновения значительно лучше, чем у выщелачивающего реагента «В» и за одинаковый период (64 дня), реагент «С» смог завершить более 16 циклов выщелачивания в колбах (цилиндрах), а «В» смог завершить только 9 циклов выщелачивания в цилиндрах. Данные см. в таблице №2 и криволинейный график.
- 5. Приведенные выше результаты испытаний относятся только к минеральным образцам из одной партии (месторождения). Для обеспечения точности результатов испытаний необходимы дополнительная тесты с более достоверной выборкой образцов.

В соответствии с результатами сведенными в таблицу №2 и по аналогии данного испытания по выщелачиванию в колбах, дополнительно провести тесты и заполнить аналогичную таблицу, на этой основе построить скорость извлечения и время выщелачивания для каждой колбы, так же как на рисунках 2–9.

謝場()</

矿业有限公司

Майнинг Ко., Лтд.

2018年12月25日

25 декабря 2018 г.