

Sistemas Computacionais

Parte 03 – Álgebra de Boole e Portas Lógicas

Prof. Fancisco Javier

Álgebra de Boole

Origem

Aristóteles (384 A.C – 332 A.C.): filósofo grego da antiguidade.

- Discípulo de Platão
- Mestre de Alexandre, o Grande
- Criou a base do pensamento europeu.

Da obra Analíticos Anteriores, designou a conclusão deduzida de premissas, sendo considerada a argumentação lógica perfeita.

- É um argumento dedutivo constituído de três proposições declarativas (duas premissas e uma conclusão) que se conectam de tal modo que, a partir de duas premissas, é possível deduzir uma conclusão.
- Num silogismo, as premissas são juízos que antecedem a conclusão e dos quais ela decorre.

- Dos juízos prévios (premissas), infere-se a consequência (conclusão).
- Silogismo regular argumento típico dedutivo, composto de três proposições declarativas: premissa maior (P), premissa menor (p) e conclusão (C) e de três termos – menor (t), maior (T) e médio (M) – compostos dois a dois.

termo médio termo maior

"Todos os homens são mortais; Premissa maior

termo menor

termo médio

os gregos são homens;

Premissa menor

logo, os gregos são mortais."

Conclusão

- A premissa maior e a premissa menor são identificadas de acordo com a extensão dos seus termos.
- O conjunto de todos os homens é mais extenso do que o conjunto de todos os gregos.
- Logo, a premissa maior é "Todos os homens são mortais".
- Nas premissas, o termo maior (predicado da conclusão) e o termo menor (sujeito da conclusão) são comparados com o termo médio (comum às duas premissas).

"Todos os he

termo menor

os gregos sã

Para que esse papo todo?????

logo, os gregos são mo

aior e a premissa ificadas de acordo seus termos.

> os homens é conjunto

or é "Todos ortais".

as, o termo maior da conclusão) e o termo menor (sujeito da conclusão) são comparados com o termo médio (comum às duas premissas).

George Boole (1815-1864)

"O matemático é o poeta das ciências exatas"

• Matemático e filósofo britânico

- Estudos de grego e latim
- "Uma Investigação das Leis do Pensamento" (1854)
- Formulação de uma linguagem simbólica do pensamento
- Resolução de uma equação não leva a uma resposta numérica, mas a uma conclusão lógica

Aos 12 anos traduziu as obras de Horácio para o inglês

George Boole (1815-1864)

- Uso de símbolos algébricos, como x, y, z, para denotar palavras, frases ou proposições
- As variáveis podem assumir apenas valores de caráter lógico (0 ou 1, F ou V, S ou N) e os operadores retornam também apenas valores de caráter lógico (0 ou 1, F ou V, S ou N)
- Com a utilização de símbolos, proposições podem ser reduzidas à forma de equações
- Uma conclusão silogística para duas premissas pode ser obtida por meio de regras algébricas comuns, que permitem alcançar a solução da equação

George Boole (1815-1864)

Exemplo:

- X = jovem
- Y = faz o curso de Ciência da Computação
- (1 X) = tudo que NÃO é jovem
- XY = tudo que é jovem E que faz o curso de Ciência da Computação
- X+Y = tudo que é jovem OU que faz o curso de Ciência da Computação
- (1-X)(1-Y) = tudo que NÃO é jovem E que NÃO faz o curso de Ciência da Computação

Claude Shannon (1916-2001)

- Matemático e engenheiro eletricista estadunidense.
- Pai da Teoria da Informação (1948).
- Em 1938, em sua tese de mestrado, "Uma Análise Simbólica de Relés e Circuitos de Chaveamento", no Massachusetts Institute of Tecnology (MIT), aplicou a álgebra de Boole para mostrar que as propriedades de circuitos elétricos de chaveamento podem ser representadas por uma álgebra booleana com dois valores.

Claude Shannon (1916-2001)

- Simplificou o arranjo de relés eletromecânicos utilizados em comutadores para roteamento telefônico.
- Demonstrou que uma aplicação elétrica utilizando álgebra booleana e aritmética binária poderia resolver qualquer problema de lógica.

Great Place To Work Certificada NUCCE23 - NECES222 BRASIL

ENIAC - Electronic Numerical Integrator and Calculator

- Desenvolvido entre 1943 e 1946, a pedido do exército dos Estados Unidos para estudos de balísticas, pela Universidade da Pensilvânia.
- Continha 18 mil válvulas e 70 mil resistores que consumiam 200 KWh de energia, ocupava 180 m² e pesava 30 toneladas

ENIAC - Electronic Numerical Integrator and Calculator

- Utilizava o sistema decimal e sua memória consistia de 20 acumuladores, cada um capaz de manter um número decimal de 10 dígitos.
- Um anel de 10 válvulas representava cada dígito. A qualquer momento, somente uma válvula do anel estava no estado ligado, representando um dos 10 dígitos.

John von Neumann (1903-1957)

A "Arquitetura de Neumann" continua sendo empregada na maioria dos computadores atuais

- Matemático americano, nascido na Hungria.
- Realizou trabalhos em mecânica quântica, teoria dos conjuntos, teoria dos jogos.
- Seus estudos foram base para a construção do IAS, o primeiro computador binário do mundo, na Universidade de Princeton, empregando uma arquitetura onde os dados são processados na memória principal do computador, tornando-o muito mais rápido.

Álgebra de Boole

Constantes e variáveis booleanas

Tabela-verdade

Operações lógicas básicas

Variáveis e constantes booleanas

- Na álgebra convencional as variáveis são descritas por x e y, enquanto na álgebra booleana são A e B.
- A álgebra booleana considera apenas dois valores (0 e 1).

Lógico 0	Lógico 1
Falso	Verdadeiro
Desligado	Ligado
Baixo	Alto
Não	Sim
Aberto	Fechado

Great Place To Work. Certificada RDASER. HONDEZO BRASER.

Tabela-verdade

- É uma técnica para documentar os resultados possíveis de uma função booleana.
- A relação entre a quantidade de entradas (e) e de combinações possíveis (c) é:

$$c = 2^{e}$$

Então:

- se temos duas entradas, teremos 4 combinações possíveis;
- se temos 3 entradas, teremos 8 combinações possíveis;
- E assim por diante.

No caso a comparação entre A e B leva a saídas tais que se são diferentes é verdadeiro (1).

Operação OR ("OU")

• C = A + B

OR			
A B C			
0	0	0	
0	1	1	
1	0	1	
1	1	1	

 "Se A ou B é verdadeiro, então C é verdadeiro"

Porta OR

(padrão 91-1984 da ANSI/IEEE)

Implementando a porta OR

Construindo portas OR

• Exemplo 1:

Universidade Católica de Brasília

H – High -> alta; T = Temperatura; P = Pressão; V = Tensão; TR = Temperatura de Referência; PR = Pressão de Referência

Católica

Exemplo 2:

- Em circuitos digitais, uma porta OR é um circuito que tem duas ou mais entradas e cuja saída é igual à combinação OR das entradas.
- Símbolo e tabela-verdade para uma porta OR de três entradas:

Universidade Católica de Brasília

Α	В	С	x = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Note que a operação **OU** só pode ser definida se houver, pelo menos, duas variáveis envolvidas. Ou seja, não é possível realizar a operação sobre somente uma variável. Devido a isso, o operador "+" (**OU**) é dito **binário**.

Operação AND ("E")

• C = A . B

AND				
A B C				
0	0	0		
0	1	0		
1	0	0		
1	1	1		

 "Se A e B são verdadeiros, então C é verdadeiro"

Porta AND

(padrão 91-1984 da ANSI/IEEE)

Implementando a porta AND

Universidade Católica de Brasília

Construindo portas AND

• Exemplo 1: Detector de cinto afivelado ou não

• Exemplo 2:

• Operação AND (E) com porta AND e 3 entradas

■ Tabela-verdade e símbolo para uma porta AND de três entradas:

Α	В	С	x = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Operação AND (E) com porta AND

Multiplicação Lógica:

A operação E, ou **multiplicação** lógica, pode ser definida da seguinte forma:

"A operação E resulta 0 se pelo menos uma das variáveis de entrada vale 0".

Pela definição dada, pode-se deduzir que o resultado da operação **E** será **1** se, e somente se, todas as entradas valerem **1**.

O símbolo usualmente utilizado na operação **E** é "·", porém outra notação possível é "∧". Podemos, também, listar as possibilidades de combinações entre dois valores Booleanos e os respectivos resultados, para a operação **E**:

$$0 \cdot 0 = 0$$
 $0 \cdot 1 = 0$
 $1 \cdot 0 = 0$
 $1 \cdot 1 = 1$

Operação AND (E) com porta AND

Multiplicação Lógica:

Também para a operação **E** valem as propriedades **associativa** e **comutativa**. Então, a equação A·BC pode ainda ser avaliada tomando-se as variáveis aos pares, em qualquer ordem. Veja a tabela verdade a seguir e compare os resultados.

A B C	$A \cdot B \cdot C$	A⋅B	(A⋅B)⋅C	В∙С	A·(B·C)
0 0 0	0	0	0	0	0
0 0 1	0	0	0	0	0
0 1 0	0	0	0	0	0
0 1 1	0	0	0	1	0
1 0 0	0	0	0	0	0
1 0 1	0	0	0	0	1
1 1 0	0	1	0	0	0
1 1 1	1	1	1	1	1

Operação NOT ("Não" ou "Inversão")

Porta NOT

O círculo diante do símbolo sempre denota uma INVERSÃO

Universidade Católica de Brasília

$$A = \bar{A}$$

NOT			
A B			
0 1			
1 0			

 Se A é verdadeiro, então B é falso.

(padrão 91-1984 da ANSI/IEEE)

Implementando a porta NOT

R2 10K SW1 INPUT Q1 BC547 V LED1 OUTPUT

Construindo portas NOT

Operação NOT

- A operação NOT é diferente das operações OR e AND pelo fato de poder ser realizada sobre uma única variável de entrada.
- Tabela-verdade; símbolo para o INVERSOR (circuito NOT) e amostras de formas de ondas:

Operação NOT

Complementação, negação

A operação **complementação** dispensa uma definição. É a operação cujo resultado é simplesmente o valor complementar ao que a variável apresenta. Também devido ao fato de uma variável Booleana poder assumir um entre somente dois valores, o valor complementar será 1 se a variável vale 0 e será 0 se a variável vale 1.

Os símbolos utilizados para representar a operação complementação sobre uma variável Booleana A são \overline{A} , $\sim A$ e A' (lê-se A negado). Nesta disciplina, adotaremos o primeiro símbolo. O resultado da operação complementação pode ser listado:

$$\frac{\overline{0}}{\overline{1}} = 1$$

E a tabela verdade para \overline{A} é:

A	Ā
0	1
1	0

• Exemplo 1:

Descrição dos circuitos lógicos algebricamente

 Circuito lógico e suas expressões booleanas; circuito lógico com expressão que requer parênteses:

Descrição dos circuitos lógicos algebricamente

Mais exemplos:

Eletrônica Digital e Circuitos Lógicos

Lógica Digital -Funções, Portas Lógicas e Álgebra de Boole

Great Place To Work Certificada Novice21 - Novice22 BRASIL

Portas Lógicas x Equações Boleanas

Função Lógica Básica	Símbolo Gráfico da Porta	Equação Booleana
AND	A	$Y = A \cdot B$
OR	A	Y = A + B
XOR	A	$Y = A \oplus B$
NOT	A — > ~ Y	$Y = \overline{A}$
NAND	A	$Y = \overline{A \cdot B}$
NOR	$B \longrightarrow P$	$Y = \overline{A + B}$
XNOR	A	$Y = \overline{A \oplus B}$

Encontre o valor da saída Y

Porta NOR

Operação NOR ("NÃO-OU")

$$C = \overline{A + B}$$

Católica

Universidade Católica de Brasília

OR NOR					
Α	В	A+B	A + B		
0	0	0	1		
0	1	1	0		
1	0	1	0		
1	1	1	0		

 "Se A ou B é verdadeiro, então C é falso"

(padrão 91-1984 da ANSI/IEEE)

Porta NAND

Operação NAND ("NÃO-E")

$$C = \overline{A.B}$$

Católica

Universidade Católica de Brasília

AND					NAND
Α	В		AB		AB
0	0		0		1
0	1		0		1
1	0		0		1
1	1		1		0

 "Se A e B é verdadeiro, então C é falso"

(padrão 91-1984 da ANSI/IEEE)

Porta NAND

Exemplo:

Álgebra de Boole

Exercício

Questionário

Próxima aula

- Circuitos lógicos
 - Circuitos lógicos descritos algebricamente
 - Postulados / Axiomas
 - Teoremas booleanos

Dúvidas?

