ADC and Sensors

ADC, DAC, Sensor interfacing

- ADC
- DAC
- signal conditioning
- Sensors
- Glossary:
 - http://www.maxim-ic.com/app-notes/ index.mvp/id/641

ADC: Analog-to-digital converter

• Input:

 analog signal with a voltage e.g., pressure, light intensity, temperature, sound

Output

- digital value representing the voltage
- 8-bit, 10-bit, 12-bit, 16-bit, 24-bit etc depends on the specific ADC's precision

Purposes of ADC

- Digitize a signal
 - The world is analog; computer is digital
 bridge the real world & computer
- Benefits
 - no more <u>noise</u> due to processing
 - can be stored/retrieved like any data
 - separate timing handling from processing

Types of ADCs

- Integrating ADC (not very fast)
 - outputs pulses, freq. proportional to V
- Successive Approximation ADC (common)
 - "binary search"
- Flash ADCs aka parallel ADCs
 - parallel comparison; fast but expensive

Bit resolution and sampling rate

- n bits => 2ⁿ levels
 - 8 bits: 256 gives 0.39° res. for 0-100°C
 => "jumping" problem if ±0.5° is needed!
- Sampling rate
 - should be ≥2x higher than signal's highest freq. component (Nyquist freq)
 - otherwise, get aliasing problem

Analog, sinusoidal signals

Alternating current (AC)

Unipolar => either positive or negative, not both

Bipolar => both positive and negative

Decompose into AC and DC components

Amplitude and phase of periodic signals

- Amplitude:
 Amplify, attenuate. Unit: dB = 10 * log₁₀ dif
 - 1x = 0dB, 10x = 10dB, 100x = 20dB, 1000x = 30dB1/10 = -10dB, -1/100 = -20dB
- Phase
 - Degrees

Timing diagram convention

Digital logic

- Interpret a voltage as a binary value
 - above a threshold => '1'
 - below a threshold => '0'
- Threshold is technology dependent!
 - Check data sheet to be sure
 - TTL, CMOS, ...

Voltage Thresholds

Credit: http://www.interfacebus.com/voltage_threshold.html

Sampling rate

Jitter

Example: ADC0804 (National Semicond.)

- input signals
 - single ended Vin(+)
 vs. differential pair
 Vin(+)(-)
- output signal
 - 8-bit value representing voltage

Example: ADC0804 (National Semicond.)

• Input control:

• $V_{ref}/2$ to set the range $\frac{10k}{POT}$ • /CS: chip select /WR: start conversion $\frac{10k}{50 \, pF}$ /RD: read converted value $\frac{10k}{10}$

- Output control:
 - /INTR: interrupt line indicating end-of-conversion

Timing Diagram for ADC transaction

- rising /WR during /CS
- 2. ADC finishes conversion
- 3. assert /RD during /CS

Could also assert /CS the whole time w/out pulsing!

CLK IN and CLK R

- Opt. 1: internal clock
 - Set the R, C value f = 1/(1.1 RC)

- R = $10K\Omega$, C = 150pF $f = 1/(1.1*10^{4*}150*10^{-12})$ = 606060.6 => 606KHz, or 1.65μ s cycle time
- Option 2: external clock

External clocking scheme for ADC0804

 Could use the same crystal as for 8051 MHz XTAL1 P2.6 P1.0 VCC CLK R CLK IN Vret/2 Vin (-) Vin (-) Vin (-) P2.7 INTR GND

Issue: freq too high!

Solution: clock divider

cascaded D-flipflops:
 next one is clocked by the prev's Q, each feeds /Q to its own D

Assembly for ADC0804

ADC0808/0809: multi-(analog)-channel

- 8 analog input lines
 - Selected by 3-bit, internally share 1 ADC
 - Conceptually, analog multiplexor on input
 - ALE latches the address
- 8-bit output port
 - similar to the single-channel ADC

Pin interface on ADC0808/0809

- IN0..IN7: analog input channels
- SC, EOC: (=WR, INTR) start conv, end-of-conv
- OE: (=RD) output enable
- CBA: 3-bit channel select
- ALE: clock for latching CBA
- V_{ref}(+), V_{ref}(-): max and "gnd"

Timing Diagram for the ADC0809

- 1. set ADDR, pulse ALE
- 2. pulse SC, wait for EOC
- 3. read data during OE

ADDR is formed by CBA

Schematic for 8051 connected to ADC0809

Reference voltages

- V_{ref}/2 (*e.g.*, *ADC0804*): half the max voltage e.g., V_{ref}/2=2.5V => max voltage = 5.0V => each step is 5.0V / 2⁸ = 19.53mV
 - Assumes same GND as signal source
- V_{ref}(+), V_{ref}(-) <u>differential pair</u> (e.g., ADC0808/9)
 - V_{ref}(-) serves as GND for signal source possible to tie V_{ref}(-) to same GND
 - voltage step = $(V_{ref}(+)-V_{ref}(-)) / 2^8$

Single-ended vs Differential Pair input

- Single ended: relative to (common) GND
 - Problem: ground noise, ~10mV
- Differential pair: V_{in}(+), V_{in}(-)
 - Advantages: no ground noise, also "common mode noise rejection"
- More info: http://www.eettaiwan.com/ARTICLES/2002MAR/
 PDF/2002MAR01 AMD DSP AN53.PDF

Digital vs Analog Ground

- AGND: analog
- GND: digital

 Digital => noisy due to frequent switching

- Analog: sensitive to noise
- Solution: separate AGND & GND
- Keep analog signal lines short

bad idea to tie them together!

Assembly for ADC0809

Assembly for ADC0809

BACK:	CLR	ADDR_C	
	CLR	ADDR_B	;; sel ch=1
	SETB	ADDR_A	
	ACALL	DELAY	
	SETB	ALE	;; latch addr
	ACALL	DELAY	
	SETB	SC	;; start
	ACALL	DELAY	
	CLR	ALE	
	CLR	SC	

HERE: EOC, HERE JB EOC, HERE1 HERE1: JNB OE **SETB ACALL DELAY** MOV A, MYDATA **CLR** OE **ACALL CONVERSION ACALL** DATA_DISPLAY **BACK** SJMP

ADC0848: 8-channel ADC

- /CS: Chip select
- /RD: Read /WR: Write
- Vref: reference voltage
- DB0-DB7
- MA0 MA4: multiplexed address
- CH1 CH8: analog inputs
- /INTR: end-of-conversion

Channel selection

Mode	Chan	MA4	MA3	MA20
single ended	1	0	1	0
	8			111
differ- ential	CH1(+),CH2(-)	don't care	0	?
	CH7(+), CH8(-)			?

Timing Diagram for ADC0848

Connection of ADC8048 to 8051

8-bit ADC on EdSim

- /CS always asserted
- /INTR interrupts
 MCU
 upon finishing
 conversion
- WR to start conversion
- /RD to output
- D7-D0: digital data

ooks familiar?

MAX 1112: Serial ADC

 COM: analog GND for single-ended

- SCLK: serial clock (input)
- Dout: serial data out
- Din: serial data in
- SSTRB: serial strobe out (EOC)
 SSTRB: serial strobe out (EOC)

AGND DGND **VDD** CH₀ MAX1112 SCLK CH7 DIN REFIN DOUT REFOUT SHDN SSTRB VDD 20 🗖 1 CH0 SCLK 19 🗖 □ 2 CH1 CS 18 🗖 □ 3 CH2 D_{IN} 17 4 CH3 □ 5 CH4 SSTRB 16 □ 6 CH5 D_{OUT} 15 □ 7 CH6 DGND 14 AGND 13 REFOUT 12 | 10 SHDN REFIN 11

http://datasheets.maximintegrated.com/en/ds/MAX1112-MAX1113.pdf

More pins of MAX 1112

- /SHDN: shutdown
- REFIN: reference voltage input
- REFOUT: internal reference voltage output
- VCOM: 0V for unipolar, Vref/2 for bipolar
- AGND, DGND: analog/digital ground
 - Note: AGND is for MAX112, whereas COM is for signal's GND (unrelated to AGND)

Configure MAX 1112: send Control Byte

- unipolar or bipolar
- Single-ended or Differential
- power-down or operational
- external clock or internal clock

Format of Control Byte

1	Start	SEL2	SLE1	SEL0	UN/BIP	SGL/DF	PD1	PD0	
Start	The M	The MSB (D7) must be high to define the beginning of the control byte.							
	It must	t be sent i	in first.						
SEL	2 SEL1	SEL0	CHANNE	EL SELE	CTION (S	INGLE-E	NDED M	ODE)	
0	0	0	CHAN0						
0	0	1	CHAN1						
0	1	0	CHAN2						
0	1	1	CHAN3						
1	0	0	CHAN4						
1	0	1	CHAN5						
1	1	0	CHAN6						
1	1	1	CHAN7						
UNI/BIP 1 = unipolar: Digital data output is binary 00 - FFH.									
	0 = bipolar: Digital data output is in 2's complement.					nent.			
SGL/DIF		1 = single-ended: 8 channels of single-ended with COM as reference							
		0 = diff	erential: T	wo channe	els (eg., CI	H0 - CH1)	are differ	ential.	
PD1		1 = fully operational							
		0 = pov	ver-down:	Power do	wn to save	power usi	ng softwa	ire.	
PD0		1 = external clock mode: The conversion speed is dictated by SCLK.							
0 = internal clock mode: The convers and the SSTRB pin goes high to				6 - 18332 - 1 83					

Connecting MAX 1112 to 8051

essentially SPI port! emulated using GPIO if hardware SPI not available

Read cycle: extra SCLK pulse

MAX1112 Internal Clock Mode Timing Diagram Reading Data ADC Byte From MAX1112

Ex: Max1245 ADC

- SPI, 8 channels
- 12 bits, up to
 100k sps
 (7.5µs conv time)
- track-and-hold type

 (aka sample & hold)
 unipolar or bipolar
 input

Ground sep. betw. input lines

http://datasheets.maxim-ic.com/en/ds/MAX1245.pdf

Detailed Description

- Single-ended: 0 to Vref
- pseudo-differential:
 - -Vref/2 to +Vref/2
- What's pseudo-differential?
 - only IN+ is sampled
 - IN- must remain stable w.r.t. AGND during conv.

Control byte: bit7 = start, bits6..4 = channel, bit3=unipolar or bipolar bit2=single ended or dif bit 1..0=mode

Basic Transaction

- Send control byte, ignore received byte
- Clock in all 0s byte, get higher-order byte
- Clock in all 0s byte, get lower-order byte

Clock options of Max 1245

- Internal clock option
 - 1.5 MHz or 225 KHz
- External clock option
 - mode uses SPI SCLK as conversion clock!
 - SSTRB: data ready (can be an interrupt)
 - Clock can't be too slow or else capacitor loses value (for track-and-hold)

External vs. Internal clk

Built-in ADC on CC254x

- Input pins: A7-0 same as P0.7-0.0
- T = ADC trigger
- SFR: APCFG (analog peripheral configuration)
- Single ended or differential pair

Using Built-in ADC on CC254x

Register Name	SFR Address	Module	Description
ADCCON1	0xB4	ADC	ADC control 1
ADCCON2	0xB5	ADC	ADC control 2
ADCCON3	0xB6	ADC	ADC control 3
ADCL	0xBA	ADC	ADC data low
ADCH	0xBB	ADC	ADC data high
RNDL	0xBC	ADC	Random number generator data low
RNDH	0xBD	ADC	Random number generator data high

Using built-in ADC of CC254x

- Channels 0-7: single-ended
- Channels 8-11: differential inputs
- Channel 12: GND
- Channel 13: Reserved
- Channel 14: on-chip temperature sensor as input
 - Configure TR0.ADCTM and ATEST.ATESTCTRL bits
- Channel 15: AVDD5/3 as input
 - Can implement battery monitor

Using ADC of CC254x

- ADCCON1.EOC
 - '1' when end-of-conversion, '0' when ADCH read
- ADCCON1.ST
 - set to starts conversion, auto cleared when completed.
- ADCCON1.STSEL: selects triggering event for ADC
 - Rising edge of P2.0
 - End of previous sequence
 - Timer 1 ch 0, or
 - ADCCON1.ST = '1'

Sensors

Sensors, transducers, actuators

- Sensor
 - converts physical signal (temperature, etc) to electrical (voltage or current)
- Actuator
 - converts electrical signal to physical signal
- Transducer
 - converts one form of energy to another

Temperature sensor

- AD 22100: -50°C to +150°C
 - 3 pin device: power, gnd, Vout
- AS22100 Vout
 AS22103
 GND

- linear in 5V range
- can add an RC filter to remove noise

Linearity

- Characteristics of transducer over its operating range
- Example: thermistor
 - varies resistance over temperature but not "linear"

• solution: calibration

	``````			
		<b>`</b>	0	0
	25	50	75	100

Temperature (C)	Tf (K ohms)
0	29.490
25	10.000
50	3.893
75	1.700
100	0.817
From William Kleitz. D	igital Electronics

# LM34 & LM35 temperature sensors

Part	<b>Temperature Range</b>	Accuracy	Output
Scale	2031		
LM34A	−50 F to +300 F	+2.0 F	10 mV/F
LM34	−50 F to +300 F	+3.0 F	10 mV/F
LM34CA	-40 F to +230 F	+2.0 F	10 mV/F
LM34C	-40 F to +230 F	+3.0 F	10 mV/F
LM34D	−32 F to +212 F	+4.0 F	10 mV/F

Note: Temperature range is in degrees Fahrenheit.

Part	Temperature Range	Accuracy	Output Scale
LM35A	−55 C to +150 C	+1.0 C	10 mV/C
LM35	−55 C to +150 C	+1.5 C	10 mV/C
LM35CA	−40 C to +110 C	+1.0 C	10 mV/C
LM35C	−40 C to +110 C	+1.5 C	10 mV/C
LM35D	0 C to +100 C	+2.0 C	10 mV/C

Note: Temperature range is in degrees Celsius.

#### Thermistor

- Temperature sensitive resistor
  - cheap, stable
- Problem: non-linear => ~log scale
  - can distinguish low temperature more than high temperature
  - need a table or formula to remap value

# Resistance vs. Temperature plot



Data source taken from <a href="http://rocky.digikey.com/WebLib/BC%20Components/Web%20Data/2322%20640%205%20NTC">http://rocky.digikey.com/WebLib/BC%20Components/Web%20Data/2322%20640%205%20NTC</a> <a href="mailto:seeasy2005components/web%20Data/2322%20640%205%20NTC">%20Thermistors.pdf</a>

## Signal Conditioning

- Step between transducer and ADC
- e.g., keep power clean for reference voltage LM336 Zener diode keeps voltage stable



#### Zener diode

- in reverse voltage
- applications:



Credits: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/zener.html

current

Region of voltage

Forward **Voltage** 

≈-1 mA

Zener voltage

Current limited bu maximum

power dissipation

# Example: QuickFilter QF4A512

- Combo Signal Conditioner + ADC
  - 4-channel 16-bit ADC
  - 4 programmable gain amplifiers
  - Anti-aliasing filter per channel
  - internal Vref
  - Four 512-tap digital FIR filter
  - SPI output
- http://www.quickfiltertech.com/files/QF4A512%20Data %20Sheet.pdf

# QF4A512 block diagram



### Light Sensor TSL250R





- interface Similar to thermometer chip
  - Vcc, GND, Vout
- responds to visible light spectrum



#### Accelerometer

- Technologies: MEMS, Piezoelectric
- Axes: 1, 2, 3
- Output types: analog, digital
- Threshold Detection
- Self Calibration

#### ADXL accelerometers

- ADXL 202E
  - "2" => 2-axes
- Low cost, designed for airbags
- Analog output
- Issue: drift



# Silicon Designs accelerometer

- High accuracy
  - ±2g~±400g,
  - DC to 200Hz
  - Self calibration
  - Expensive!
- SD 1221: Analog
- SD 2420: pulse freq



## Decoding the 2420

- Input: pulses
- Count pulses, calculate ratio of #1's: #all pulses



#### Problem: unfiltered data

- Discretization
- Solution: FIR filter
  - overlapping window
  - smoothes out data







# Hitachi Metals H34C accelerometer

- ±3g triaxial
- analog output
- built-in temperature sensor for self calibration
- small size: 3.4x3.7x0.92mm



## ST LIS331DLH accelerometer

- Range ±2, ±4, ±8 g
- Size 3 x 3 x 1 mm³
- built-in 12-bit ADC, 0.5 Hz to 1 KHz sampling rate
- SPI or I2C output
- Threshold detection (inertial) and Freefall detection
  - User-defined threshold
  - AND/OR of 3 axes
  - separate interrupt output for threshold & freefall

# Block diagram of LIS331DLH



#### Other sensors

- Pressure sensors
- Magnetic sensors
- Displacement
- Bending sensors
- Gyroscope, Inertial Measurement Unit, Compass

- Humidity
- poisonous gas

## Traditional Gyroscope

- Maintains orientation
  - due to angular momentum
- One fixed axis
  - measure tilt, orientation



# MEMS Gyroscope: LISY300 (Parallax)

- Vibrating mass, no rotor
- single axis yaw-rate
- ±300°/s full scale, up to 88 Hz
- SPI (4 MHz max), using built-in 10-bit ADC
- 3.4-6.5V DC (5V typ)@5.25mA
- 19x17x12mm³



http://www.parallax.com/Portals/0/ Downloads/docs/prod/sens/27922-LISY300GyroscopeModuleV1.0.pdf

## LISY300 Gyroscope



- Internally 1.6V when stable
- clockwise => voltage drops
- counterclockwise => voltage rises
- 3.3 mV/degrees/sec, about 88 sps
- internal 10-bit ADC