Teoria do Risco Aula 19

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

➤ Notas de aula da disciplina Teoria do Risco oferecida pelo curso de Bacharelado em Ciências Atuariais da Universidade federal de Alfenas, Campus Varginha.

PIRES,M.D. Processo de ruína. (Notas de aula). Universidade Federal de Alfenas, Curso de Ciências Atuariais, Alfenas, 2025. Disponível em: https://atuaria.github.io/portalhalley/notas_TR.html. Acessado em: 28 jun. 2025.

- A teoria da ruína está relacionada com o estudo do nível de reserva de uma seguradora ao longo do tempo.
- O termo "ruína", no contexto atuarial está associado ao risco de uma instituição financeira ficar com **reservas** insuficientes ...
- A probabilidade com que a ruína ocorre em determinado cenário também é uma medida de risco.
- Fatores quantitativos, relacionados a ruína
 - i) Duração do processo;
 - ii) Carregamento de segurança (compensação dos eventuais desvios aleatórios do risco);
 - iii) Distribuição do valor total dos sinistros retidos S;
 - iv) Limite técnico de indenização;
 - v) Fundo inicial que a seguradora aloca para assumir o risco de ruína U_0 .

Pode-se descrever o processo de reserva através do modelo clássico, chamado de modelo de Cramér-Lundberg:

$$U(t) = u + \Pi_t - S_t$$

u = U(0) representa a reserva inicial da seguradora.

U(t) é o processo estocástico associado ao montante da seguradora no instante t.

U(t) < 0, é dito então que ocorreu ruína.

 Π_t prêmio recebido no intervalo de tempo (0,t] (Incremento a U(t)).

 $S_t = \sum_{i=1}^{N_t} X_i$ Sinistro agregado, sendo N_t o número de indenizações ocorridas no mesmo período de tempo (processo estocástico).

De maneira simplificada, serão adotados modelos de ruína que envolva os prêmios recebidos a uma taxa constante, isto é.

$$U(t) = u + \Pi_t - S_t$$

$$\triangleright \Pi_t = ct$$

$$\succ c > E(S)$$

Na prática utilizam-se percentuais que variam de 25% a 50% patrimônio líquido,

A utilização de um percentual do patrimônio líquido, como reserva de risco, se justifica pelo fato que a perda de uma porcentagem pode levar a falta de liquidez.

Demonstração: Considere $N_t \sim Po(\lambda t)$

$$E[U(t)] = E(u + \Pi_t - S_t) = E(u + ct - S_t)$$

$$E[U(t)] = u + ct - E(S_t) = u + ct - tE(S)$$

$$E[U(t)] = u + t[c - E(S)]$$

Para que E[U(t)] > 0 quando $t \to \infty$, precisamos c - E(S) > 0. Assim

$$c - E(S) > 0$$

Exemplo 1: Um segurador tem uma reserva de risco inicial de 100 e recebe prêmios a uma taxa constante de c=40 por unidade de tempo. O segurador deverá ter uma experiência de sinistros S relativa ao tempo t, com a distribuição expressa pela tabela a seguir.

\overline{t}	0,8	1,4	2,3	3	4
S	30	40	70	60	S_4

Determine o valor de s_4 para que o segurador não entre em ruína no intervalo de tempo [0,4].

De acordo com o modelo de Cramér-Lundberg $U(t)=u+ct-S_t$ temos que:

$$U(0) = 100 = u$$

$$U(0,8) = 100 + 40(0,8) - 30 = 102$$

$$U(1) = 102 + 40(1 - 0,8) - 0 = 110$$

$$U(1,4) = 110 + 40(1,4 - 1) - 40 = 86$$

$$U(2) = 86 + 40(2 - 1,4) - 0 = 110$$

$$U(2,3) = 110 + 40(2,3 - 2) - 70 = 52$$

$$U(3) = 52 + 40(3 - 2,3) - 60 = 20$$

Para que no tempo t = 4, tem-se:

$$U(4) = 20 + 40(4 - 3) - s_4 = 60 - s_4$$

Haverá solvência relativa aos ganhos proporcionados por c, estando o segurador limitado a honrar sinistros inferiores a 60,00 (em s_4).

Universidade Federal de Alfenas

Evolução da reserva ao longo do tempo.

Comportamento do U(t) para diferentes valores de s_4 .

Processo Clássico de Ruína (Modelo de Cramér-Lundberg)

➤Tipos de Reserva.

> Processo em tempo contínuo,

No processo em tempo contínuo, o interesse está no processo de reserva $\{U(t): t \geq 0\}$, em que U(t) representa a reserva da seguradora até o instante t.

> Processo em tempo discreto,

No processo em tempo discreto, o tempo t assume valores inteiros (geralmente anos) e o interesse está no processo de reserva $\{U(n): n=0,1,\dots\}$.

Processo Clássico de Ruína

RUÍNA EM TEMPO DISCRETO: A ruína não é percebida, pois somente é avaliada em $n=0,1,2,3,\dots$

RUÍNA EM TEMPO CONTÍNUO: A ruína é percebida no intervalo [3:4]

PROBABILIDADE DE RUÍNA

 \triangleright Uma ruína acontece em t se U(t) < 0, ou seja, quando a reserva da seguradora ficar negativa em algum instante, sendo que:

$$T_t = \begin{cases} \min\{t | t \ge 0 \ e \ U(t) < 0\} \\ \infty \ \text{se} \ U(t) \ge 0 \ \text{para todo} \ t \end{cases}$$

Variável aleatória contínua, "tempo para primeira ruína".

Dessa maneira, pode-se definir a probabilidade de ruína de uma seguradora.

PROBABILIDADE DE RUÍNA-TAMBÉM É UMA MEDIDA DE RISCO

A probabilidade de ruína no horizonte infinito em tempo contínuo é definido por:

$$\psi(u) = P(T_t < \infty) = P(U(t) < 0, \forall t \ 0 \le t < \infty)$$

A probabilidade de ruína no horizonte finito em tempo contínuo é definido por:

$$\psi(u,\tau) = P(T_t < \tau) = P(U(t) < 0, \forall t, 0 \le t < \tau)$$

$$\psi(u,\tau) \le \psi(u)$$

PROBABILIDADE DE RUÍNA

$$\widetilde{T_n} = min\{n : U(n) < 0\}.$$

A probabilidade de ruína no horizonte infinito em tempo discreto é definida por:

$$\tilde{\psi}(u) = P(\widetilde{T_n} < \infty | U(0) = u) = P(U(n) < 0, \forall n, 0 \le n < \infty)$$

A probabilidade de ruína no horizonte finito em tempo discreto é definido por:

$$\widetilde{\psi}(u,\tau) = P(\widetilde{T_n} < \tau) = P(U(n) < 0, \forall n, 0 \le n < \tau)$$

$$\tilde{\psi}(u,\tau) \le \psi(u)$$

PROBABILIDADE DE RUÍNA

A probabilidade de ruína em 1 ano pode ser expressa por:

$$\psi(u,1) = P(T_t < 1)$$

ou

$$\psi(u,1) = P(U(1) < 0) = P(S_1 > u + \Pi_1)$$

É importante notar que não necessariamente

$$P(T_t < 1) = P(U(1) < 0)$$

- $> P(T_t < 1)$ estabelece a probabilidade de ruína a qualquer momento menor que 1 ano.
- > P(U(1) < 0) estabelece a probabilidade ruína ao final de 1 ano.

Universidade Federal de Alfenas

PROBABILIDADE DE SOBREVIVÊNCIA DA SEGURADORA

Probabilidade de sobrevivência no horizonte em tempo infinito discreto:

$$\tilde{\varphi}(u) = P(U(n) \ge 0 \text{ para todo } n = 0,1,2,\dots | u = U(0)) = 1 - \tilde{\psi}(u)$$

> A probabilidade de sobrevivência no horizonte infinito contínuo:

$$\varphi(u) = P(U(t) \ge 0 \text{ para todo } t \ge 0 | u = U(0)) = 1 - \psi(u)$$

- Probabilidade de sobrevivência no horizonte finito em tempo contínuo: $\varphi(u,\tau) = P(U(t) \ge 0 \ para \ todo \ 0 \le t \le \tau | u = U(0)) = 1 \psi(u,\tau)$
- > Probabilidade de sobrevivência no horizonte finito em tempo discreto:

$$\tilde{\varphi}(u,\tau) = P(U(n) \ge 0 \ para \ todo \ n = 0,1,2,...,\tau | u = U(0)) = 1 - \tilde{\psi}(u,\tau)$$

EXEMPLO 2: A carteira de um segurador tem distribuição de sinistros dada pela tabela a seguir:

S	\$1500,00	\$3000,00	
P(s)	0,6	0,4	

O excedente do segurador é dado pela expressão:

$$U(t) = 900 + 150t - S_t.$$

Determine os possíveis intervalos que irão ocorrer ruína com o primeiro sinistro.

Como, por hipótese, as únicas indenizações possíveis são no valor de \$1500,00 e \$3000,00 então a primeira ruína ocorrerá como resultado da menor indenização se:

$$900 + 150t - 1500 < 0$$

 $150t < 600$
 $t < 4$.

Caso ocorra sinistro no intervalo (0,4] este ocasionará em um caso de ruína, pois para qualquer sinistro que venha acontecer nesse intervalo não haverá solvência.

Após esse período, a seguradora não estará vulnerável ao evento de custo \$1500,00 porém a seguradora ainda tem um risco de solvência caso a indenização seja igual a \$3000,00. Nesse caso:

$$900 + 150t - 3000 < 0$$

 $150t < 2100$
 $t < 14$

Caso o primeiro sinistro ocorra em $t>14\,$ a seguradora não se tornará insolvente. No entanto, se o sinistro ocorrer entre 4 e 14, a seguradora não terá recursos disponíveis para fazer frente à indenização caso o valor do sinistro seja igual a \$3000,00.

Ainda para os dados do exemplo anterior. Considere que o tempo entre sinistros possa ser modelado pela distribuição exponencial $T \sim Exp(0,1)$. Calcule a probabilidade de ocorrer ruína com o primeiro sinistro.

$$P(U(t) < 0) = P(T < 4, S \neq 0) + P(4 \le T < 14, S = 3000)$$

$$= P(T < 4)P(S \neq 0|T < 4) + P(4 \le T < 14)P(S = 3000|4 \le T < 14)$$

$$= [1 - (e^{-0.1 \times 4})](0.6 + 0.4) + \{[1 - (e^{-0.1 \times 14})]0.4 - [1 - (e^{-0.1 \times 4})]0.4\}$$

$$P(U(t) < 0) = 0,49928$$

P(U(t) < 0) = (0.3298) + 0.16948

EXEMPLO 3: Considere que a variável aleatória S esteja associada aos gastos com indenização no período de 1 ano, em uma carteira de seguros. Considere também que essa carteira tenha sido modelada segundo o modelo de risco coletivo com $N_t \sim Po(200t)$ e $X \sim Exp(0,002)$.

Utilizando a aproximação pela distribuição normal determine o valor do prêmio, Π , ao longo desse ano de forma que a probabilidade de que essa seguradora entre em ruína não exceda 5%, considere a reserva inicial igual a U(0)=5000.

Solução

$$P(U(1) < 0) = 0.05$$

 $P(5000 + \Pi - S_{col} < 0) = 0.05$
 $P(S_{col} > 5000 + \Pi) = 0.05$
 $E(S_{col}) = \lambda E(X) = 100000$
 $\sqrt{var(S_{col})} = \sqrt{\lambda E(X^2)} = 100000$

Lembrando que
$$Z = \frac{S_{col} - E(S_{col})}{\sqrt{var(S_{col})}} \sim N(0,1)$$
, tem-se

$$P\left(Z > \frac{(5000 + \Pi) - 100000}{10000}\right) = 0.05$$

$$\Pi = 100000 - 5000 + 10000(1,645) = 111450$$

Ainda com os dados do exemplo anterior determine o valor do prêmio Π considerando um limite técnico para os valores de indenização por apólice de Li=550.

SOLUÇÃO

$$E(S_{col}) = \lambda E(X; Li)$$

$$E(S_{col}) = 200 \left(\int_{0}^{550} x \, 0,002e^{-0,002x} dx + 550S_X(550) \right)$$

$$E(S_{col}) = 66712,8$$

$$var(S_{col}) = \lambda E(X^2, Li)$$

$$var(S_{col}) = 200 \left(\int_{0}^{550} x^2 \, 0.002 e^{-0.002x} dx + 550^2 S_X(550) \right)$$

$$var(S_{col}) = 30097000$$

Solução

$$E(S_{col}) = \lambda E(X; Li) = 66712,8$$

 $var(S_{col}) = \lambda E(X^2, Li) = 30097000$

Lembrando que
$$Z = \frac{S_{col} - E(S_{col})}{\sqrt{var(S_{col})}} \sim N(0,1)$$
, tem-se

$$\frac{(5000 + \Pi) - 66712,8}{\sqrt{30097000}} = z_{95\%}$$

$$\Pi = 66712,8 - 5000 + 5486,073(1,645) = 70737,39$$

Ao limitar o valor das indenizações, mantida as mesmas condições o valor do prêmio diminui, isso demonstra a influência no prêmio ao se alterar o limite técnico.

Bibliografia

- FERREIRA, P. P. Modelos de precificação e ruína para seguros de curto prazo. Rio de Janeiro: Funenseg, 2002.
- CENTENO, M. L. Teoria do risco na actividade seguradora. Deiras: Celta, 2003.
- PACHECO, R. Matemática Atuarial de Seguros de Danos. Editora Atlas, 2014.
- RODRIGUES, J. A. Gestão de risco atuarial. São Paulo: Saraiva, 2008.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. **Teoria do risco atuarial: Fundamentos e conceitos.** Curitiba: CRV 2020.

