Derivation of the perspective transformation

- It is basically a mapping of planes
- Normalized view volume is a left handed system
- However, there is an easier derivation

Divide the vertices by their z and then view with orthographic projection

Think of the centre of projection moving at infinity

Divide the vertices by their z and then view with orthographic projection

Divide the vertices by their z and then view with orthographic projection

Two step derivation

- Start with the Canonical Perspective Projection matrix
- Adjust CPP to scale z so that after the application of CPP z = -near maps to z'=-near and z=-far maps to z'=-far)
- We now have the standard orthographic view volume
- Use the previously derived orthographic projection matrix Mo

First: What are the view volume points in viewing coordinates?

From similar triangles: $\frac{t}{-n} = \frac{t_f}{-f} \to t_f = t \frac{f}{n}$

Similarly y = b, and for x = r and x = l

So for example: black point: $(r, t, -n) \to \text{Red point}$: (rf/n, tf/n, -f)

First step: What does the CPP produce?

VCS

•
$$P'_x = n P_x/P_z$$

•
$$P'_y = n P_y/P_z$$

•
$$P'_z = -n$$

Reminder: CPP implements Canonical equations

The four front(near) corners map as follows:

(left,bottom,-near) --> (left,bottom,-near) (left,top,-near) --> (left,top,-near) (right,bottom,-near) --> (right,bottom,-near) (right,top,-near) --> (right,top,-near)

The four back (far) corners map to the same points

 $(l*f/n,b*f/n, -f) \longrightarrow (l, b,-n)$ instead of (l,b,-f) $(l*f/n,t*f/n,-f) \longrightarrow (l, t, -n)$ instead of (l,t,-f) $(r*f/n,b*f/n, -f) \longrightarrow (r,b,-n)$ instead of (r,b,-f) $(r*f/n,t*f/n,-f) \longrightarrow (r,t,-n)$ instead of (r,t,-f)So we just have to adjust the matrix for z

First step:Adjust the matrix to keep and scale Z

- We want to keep z and
- We want $P'_z = -n$ for $P_z = -n$ and $P'_z = -f$ for $P_z = -f$ after the perspective division
- Where do we do the changes?

$\lceil 1 \rceil$	0	0	0	\overline{n}	0	0	$\begin{bmatrix} 0 \end{bmatrix}$
0	1	0	0	0	n	0	0
$\mathbf{I} = 0$	0	1	0	0	0	n	$0 \mid$
0	0	$\frac{-1}{n}$	0	0	0	-1	0

First step: With some intuition...

Reminder: n,f are positive

$$\mathbf{M}_{P} \begin{bmatrix} P_{x} \\ P_{y} \\ P_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} P_{x} \\ P_{y} \\ P_{z} \frac{n+f}{n} + f \\ -\frac{P_{z}}{n} \end{bmatrix} \xrightarrow{\text{Homogenize with } h = -P_{z}/n} \begin{bmatrix} \frac{-P_{x}n}{P_{z}} \\ \frac{-P_{y}n}{P_{z}} \\ -(n+f) - \frac{fn}{P_{z}} \\ 1 \end{bmatrix}$$

Therefore

$$\mathbf{M}_{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{n+f}{n} & f \\ 0 & 0 & \frac{-1}{n} & 0 \end{bmatrix} \quad \text{or } \mathbf{M}_{P} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & fn \\ 0 & 0 & -1 & 0 \end{bmatrix}.$$

Sanity check

- (I*f/n,b*f/n,-f) --> (I,b,-f)
- (l,b,-n) --> (l,b,-n)

First step: M_P

Creates the previous orthographic view volume

Which can then be transformed to NDCS with Mo

Second Step: Combine with Orthographic Projection Matrix

Now all we need to do is an orthographic transformation

 We can use matrix Mo that transforms an orthographic view volume to a normalized one (NDCS)

$$\mathbf{M}_{O} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Second Step: Combine with Orthographic Projection Matrix

$$\mathbf{M}_{\mathtt{proj}} = \mathbf{M}_O \mathbf{M}_P$$

OpenGL Perspective Matrix

Old form

Still widely used

$$\mathbf{M}_{\mathsf{OpenGL}} = \begin{bmatrix} \frac{2|n|}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2|n|}{t-b} & \frac{b+t}{t-b} & 0\\ 0 & 0 & \frac{|n|+|f|}{|n|-|f|} & \frac{2|f||n|}{|n|-|f|}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Projections in OpenGL (mimicking the old way)

New way

```
Not in our math library but common in others
projMat = frustum(left, right, bottom, top, near, far);
In our math library:
projMat = ortho(left, right, bottom, top, near, far);
projMat = perspective(fov, aspect, near far);
near plane at z = -near
far plane at z = -far
```

Matrix Order

Normally projection has to apply to all objects (i.e. the entire scene) thus it must pre-multiply the modelview matrix of each object

- M = M_{proj}M_{modelview} or
- $M = M_{proj}M_{view}M_{model}$

Important

Projection parameters are given in CAMERA Coordinate system (Viewing).

So if camera is at z = 50, is aligned with the world CS, and you give near = 10 where is the near plane with respect to the world?

Important

Projection parameters are given in CAMERA Coordinate system (Viewing).

So if the camera is at z = 50, is aligned with the world CS, and you give |near| = 10 where is the near plane with respect to the world?

- Transformed by inverse(Mvcs)
- i.e. (0,0,40)

Perspective Division in Pipeline

The perspective division is done automatically

Typically the vertex shaders write CCS in gl_Position.

Perspective Division in Pipeline

However, we can do it ourselves if we want.

The vertex shader has total freedom on how to deal with projections.