

rítulo: Configuración avanzada de VLANs con enrutamiento entre subredes

o Objetivo del ejercicio:

Practicar la configuración avanzada de **VLANs**, **subnetting** y **enrutamiento entre VLANs**, y comprender cómo segmentar una red de manera eficiente para mejorar la seguridad y la organización del tráfico.

Escenario:

Una empresa tiene la siguiente topología de red:

- 1. **Red principal**: 192.168.1.0/24
 - Desea segmentarla en 4 subredes utilizando subnetting para distintos departamentos:
 - VLAN 10: Administración
 - VLAN 20: Finanzas
 - VLAN 30: Recursos Humanos
 - VLAN 40: IT

2. Requisitos:

- Cada VLAN debe tener al menos 50 dispositivos (IPs) utilizables.
- Configurar el enrutamiento entre VLANs para permitir la comunicación entre los departamentos.

Tu tarea:

Paso 1 – Subnetting y asignación de direcciones IP:

- 1. **Divide la red 192.168.1.0/24** en 4 subredes que soporten al menos 50 dispositivos cada una.
 - Calcula la nueva máscara de subred.
 - o Asigna un rango de IPs para cada subred.
 - o Especifica las direcciones de red y de broadcast.

VLAN	Dirección de red	Primer host	Último host	Dirección de broadcast
10				
20				
30				
40				

Paso 2 – Configuración de VLANs en un switch:

- 1. Crea las **VLANs 10, 20, 30, 40** en el switch y asigna los puertos correspondientes a cada VLAN.
 - Por ejemplo, los puertos 1-10 pertenecen a la VLAN 10, los puertos 11-20 a la VLAN 20, y así sucesivamente.

Paso 3 – Configuración de un router para enrutamiento entre VLANs:

- 1. **Router-on-a-Stick**: Configura un router para permitir la comunicación entre las VLANs. Utiliza **subinterfaces** en el router para cada VLAN y habilita **subnetting**.
- Asigna direcciones IP a las subinterfaces del router correspondientes a cada VLAN. Por ejemplo, la subinterfaz para la VLAN 10 podría tener la dirección 192.168.1.1/26.

Paso 4 – Verificación de la conectividad:

1. Utiliza el comando ping para verificar la conectividad entre dispositivos dentro de la misma VLAN y entre diferentes VLANs.

- Ping entre dispositivos de la misma VLAN: Debería ser exitoso.
- o Ping entre VLANs diferentes: Solo será exitoso si el enrutamiento entre VLANs está correctamente configurado.

Paso 5 – Problemas comunes y soluciones:

- 1. Si no puedes hacer ping entre VLANs, verifica lo siguiente:
 - ¿Están configuradas correctamente las subinterfaces del router?
 - o ¿Están asignados correctamente los puertos del switch a las VLANs correspondientes?
 - ¿Están las VLANs propagadas correctamente entre los switches?

\chi Ejercicio Práctico – Solución

Configuración avanzada de VLANs con enrutamiento entre subredes

Objetivo

Aprender a implementar VLANs con técnicas de subnetting avanzadas, asignar direcciones IP adecuadas a cada segmento y configurar el enrutamiento entre VLANs para permitir la comunicación controlada entre departamentos.

Paso 1 – Subnetting y asignación de direcciones IP

Red principal: 192.168.1.0/24

Requisito mínimo por subred: 50 hosts utilizables

Cálculo:

- Se necesitan al menos 50 hosts por subred → 2⁶ = 64 direcciones
- IPs utilizables = 64 − 2 = 62
- Nueva máscara: /26 → 255.255.255.192

VLAN	Dirección de red	Primer host	Último host	Broadcast
10	192.168.1.0	192.168.1.1	192.168.1.62	192.168.1.63
20	192.168.1.64	192.168.1.65	192.168.1.12 6	192.168.1.12 7
			•	
30	192.168.1.128	192.168.1.12	192.168.1.19	192.168.1.19
		9	0	1
40	192.168.1.192	192.168.1.19	192.168.1.25	192.168.1.25
		3	4	5

Paso 2 – Configuración de VLANs en el switch

Ejemplo con CLI (Cisco):

Switch> enable

Switch# configure terminal

Switch(config)# vlan 10

Switch(config-vlan)# name Administracion

Switch(config-vlan)# exit

Switch(config)# vlan 20

Switch(config-vlan)# name Finanzas

Switch(config-vlan)# exit

Switch(config)# vlan 30

Switch(config-vlan)# name RRHH

Switch(config-vlan)# exit

Switch(config)# vlan 40

Switch(config-vlan)# name IT

Switch(config-vlan)# exit

! Asignación de puertos:

Switch(config)# interface range fa0/1 - 10

Switch(config-if-range)# switchport mode access

Switch(config-if-range)# switchport access vlan 10

Switch(config)# interface range fa0/11 - 20

Switch(config-if-range)# switchport access vlan 20

Switch(config)# interface range fa0/21 - 30

Switch(config-if-range)# switchport access vlan 30

Switch(config)# interface range fa0/31 - 40

Switch(config-if-range)# switchport access vlan 40

Suposición: Router está conectado al puerto trunk fa0/24 del switch.

Router> enable

Router# configure terminal

! VLAN 10

Router(config)# interface g0/0.10

Router(config-subif)# encapsulation dot1Q 10

Router(config-subif)# ip address 192.168.1.1 255.255.255.192

Router(config-subif)# exit

! VLAN 20

Router(config)# interface g0/0.20

Router(config-subif)# encapsulation dot1Q 20

Router(config-subif)# ip address 192.168.1.65 255.255.255.192

Router(config-subif)# exit

! VLAN 30

Router(config)# interface g0/0.30

Router(config-subif)# encapsulation dot1Q 30

Router(config-subif)# ip address 192.168.1.129 255.255.255.192

Router(config-subif)# exit

! VLAN 40

Router(config)# interface g0/0.40

Router(config-subif)# encapsulation dot1Q 40

Router(config-subif)# ip address 192.168.1.193 255.255.255.192

Router(config-subif)# exit

! Activar interfaz física

Router(config)# interface g0/0

Router(config-if)# no shutdown

En el switch – habilitar trunk:

Switch(config)# interface fa0/24

Switch(config-if)# switchport mode trunk

Paso 4 – Verificación de la conectividad

- Ping dentro de la misma VLAN: exitoso entre PCs de la misma subred.
- Ping entre VLANs: exitoso si el Router-on-a-Stick está bien configurado.
- Verifica también con ipconfig y tracert desde los hosts.

Paso 5 – Problemas comunes y soluciones

- Ping entre VLANs no funciona:
 - Verifica que las subinterfaces del router estén activas y tengan IP.
 - Asegúrate de que el puerto del switch hacia el router esté en modo trunk.
 - Verifica que los puertos de acceso estén correctamente asignados a sus VLANs.
 - Si hay varios switches, asegúrate de que las VLANs estén propagadas (VTP o configuración manual).

Conclusión Conclusión

Con esta configuración, cada departamento tiene su propia subred lógica y puede comunicarse con otros gracias al enrutamiento entre VLANs. Este modelo mejora el rendimiento, la seguridad y la organización del tráfico. Aplicar subnetting de forma correcta permite un uso eficiente del espacio IP, y las VLANs garantizan una separación lógica que facilita el control de acceso y la escalabilidad de la red.