Perpetuities

- uniform series where the payments continue indefinitely
- useful approximation for projects with an estimated life of 50 years or more

$$P = \frac{A}{i}$$

• the present value P is the <u>capitalized value</u> of A

Year 50 Present Value Factors

$$(P|F 5,50) = 0.0872$$

$$(P|F 10,50) = 0.0085$$

$$(P|F 15,50) = 0.0009$$

Track Team Endowment

How much does the alumnus have to donate so that the resulting endowment income will continue to fund the track team competition indefinitely?

Convert each three-year segment into an annuity.

What single sum is equivalent?

How much of a three-year annuity will this fund?

What is the capitalized value of this three-year annuity repeating indefinitely?

$$P = \frac{A}{i} = \frac{8359}{0.05} = \$167\ 174$$

Sports Team Endowment

Year	Beginning	Income	Cost	End
	of Year	(5%)		of Year
0				167 174
1	167 174	8 359	1 000	174 533
2	174 533	8 727	5 000	178 260
3	178 260	8 913	20 000	167 174
4	167 174			

Note that with \$167 174 in the endowment at the beginning of Year 4, the three-year cycle can repeat itself. It will again be \$167 174 at the beginning of Year 7 and so on continuing indefinitely.

Sports Team Endowment

What happens if the expensive trip occurs in Year 1?

Single Sum:

3 Year Annuity:

Capitalized Value:

$$P = \frac{A}{i} = \frac{8977}{0.05} = \$179537$$

Note that the required donation has increased.

Inflation

Two approaches can be used to determine the present value of a project when the revenues and costs of the project are subject to inflationary effects.

- 1. Express all cash flows in terms of "constant worth" \$ and use a "real" interest rate, i.e., an interest rate without an inflation component.
- 2. Express all cash flows in terms of actual dollar amounts and use actual interest rates.

Let j = inflation rate $C_k = "constant worth" value (end of period k)$ $T_k = actual value (end of period k)$

$$T_{k} = C_{k}(1+j)^{k}$$
 $P = \sum_{k=0}^{n} C_{k}(1+i)^{-k}$
 $P = \sum_{k=0}^{n} T_{k}(1+j)^{-k}(1+i)^{-k}$

Inflation

$$= \sum_{k=0}^{n} T_{k} (1+j)^{-k} (1+i)^{-k}$$

$$= \sum_{k=0}^{n} T_{k} (1+j+i+ij)^{-k}$$

$$= \sum_{k=0}^{n} T_{k} (1+d)^{-k}$$

where
$$d = i + j + ij$$

= discount rate to account for inflationary effects

and
$$i = \text{``real-return''}$$
 interest rate $j = \text{anticipated inflation rate}$

Note that d is referred to as the actual, or prevailing, interest rate. For example, bank accounts pay interest at the rate of d percent (not i).

Football Team Endowment

- Cost of the team in 1994 \$250 000 per year
- University's real return on its investment pool 4%
- Estimated average inflation rate 6%

How much is required to fund the team from the 1995 season through 2044?

Constant Dollar Approach

Football Team Endowment Constant \$ Approach

\$5.37 million funds the team for the next 50 years.

How much is required to fund the team in perpetuity?

$$P = \frac{A}{i}$$
= $\frac{250\ 000}{0\ 04} = \6.25 million

Important Points

The endowment fund is actually earning at a rate of <u>inflation plus real</u>. Costs each year are increasing at the rate of inflation. But the funding requirement can be modeled on the above basis using the <u>real rate of return and constant dollar expenses</u>.

The symbol i generally refers to the interest rate in Chapter 3. However, when dealing with inflation questions, i represents the <u>real</u> interest rate. The symbol d represents the actual, or prevailing, rate of interest.

The textbook uses the term "then current" to refer to "actual" costs.

Football Team Endowment Actual \$ Approach

Discount Rate:

Since we are using actual costs and

$$i = 4\%$$

$$j = 6\%$$
then
$$d = i + j + ij$$

$$= 0.04 + 0.06 + (0.04)(0.06)$$

Therefore d = 10.24% (Actual Interest Rate)

Present Value:

The cash flows form a geometric series but must be converted to a standard form to use the $(P|A_1 d,j,n)$ formula.

$$P_{1994} = \sum_{k=1}^{50} T_k (1+d)^{-k}$$

$$= \sum_{k=1}^{50} 250\ 000(1+j)^k (1+d)^{-k}$$

Football Team Endowment Actual \$ Approach

One must state the costs of running the team in actual dollars.

Inflation: j = 6%

$$\begin{split} T_{1994} &= 250\ 000 \\ T_{1995} &= 250\ 000\ (1+j) = \$265\ 000 \\ T_{1994+k} &= 250\ 000\ (1+j)^k \qquad \qquad k = 1,2,...,50 \\ T_{2044} &= 250\ 000\ (1.06)^{50} = \$4.61\ million \end{split}$$

What is the present value of these cash flows? What is the appropriate discount rate?

Geometric Series of Cash Flows

$$A_k = A_1 (1+j)^{k-1}$$
 $k = 1,...,n$

k	Geometric Series	Football Cash Flows	Restated Football Cash Flows
1	A_1	250 000(1+j)	265 000
2	$A_1(1+j)$	$250\ 000(1+j)^2$	265 000(1+j)
3	$A_1(1+j)^2$	$250\ 000(1+j)^3$	$265\ 000(1+j)^2$
k	$A_1(1+j)^{k-1}$	250 000(1+j) ^k	$265\ 000(1+j)^{k-1}$

where 250 $000(1+j)|_{j=6\%} = 265\ 000$

Football Team Endowment Actual \$

$$P_{1994} = \sum_{k=1}^{50} 250\ 000\ (1+j)^{k} (1+d)^{-k}$$

$$= \sum_{k=1}^{50} [250\ 000\ (1+j)](1+j)^{k-1} (1+d)^{-k}$$

$$= \sum_{k=1}^{50} 265\ 000\ (1+j)^{k-1} (1+d)^{-k}$$

$$= 265\ 000\ (P|A_1\ d,j,n)$$

$$= 265\ 000\ (P|A_1\ 10.24\%,\ 6\%,\ 50)$$

$$= 265\ 000\ (20.2662)$$

$$= $5.37\ million$$

U of T Bond Issue

Inaugural Issue

University of Toronto

\$160,000,000

6.78% Senior Unsecured Debentures due 2031

July 2001

For further information contact:

CIBC World Markets Cliff Inskip, Managing Director (416) 956-6322 cliff.inskip@cibc.ca Merrill Lynch David Tory, Managing Director (416) 369-8488 david.tory@ca.ml.com

Bond Valuation

- Bonds are one way of raising capital to finance engineering projects
- The purchase price of a bond is equivalent to the returns from the bond at an appropriate interest rate
- The yield of a bond is analogous to the calculations of the internal rate of return

Example 1: \$5 000 ten year bond – 8% bond rate Interest payment of \$400 at the end of every year. What is this payment stream equivalent to (purchase price) at an interest rate of 8% per annum?

Bond Valuation

Example 2:

In trying to sell the bond, the company has discovered that no one is willing to pay \$5 000 for the bond. Investors are only willing to pay \$4 500.

Prevailing interest rates have changed.

Have they gone up or down?

What is the yield on the bond assuming a price of \$4 500?

Let i equal the bond yield.

$$4\ 500 = 400\ (P|A\ i,10) + 5\ 000\ (P|F\ i,10)$$

$$4 500 = 400 \left[\frac{(1+i)^{10} - 1}{i(1+i)^{10}} \right] + \frac{5 000}{(1+i)^{10}}$$

Bond Valuation

Bond Yield = Internal Rate of Return

What is the yield when the price of the bond is \$4 500?

Annual Rate	PV		
8	\$5 000		
9	\$4 679		
		-	yield = 9.6%
10	\$4 385		
11	\$4 117		

Prevailing interest rates have gone up to 9.6%. Note that 9.6% is k_d in the cost of capital calculation.

Also note that the bond yield of 9.6% is achievable only if the interest payments are reinvested at 9.6%.

Bond Yield Estimation

Trial & Error First Pass Calculation

Linear Interpolation Second Pass Calculation

$$\frac{4679 - 4385}{9 - 10} = \frac{4500 - 4385}{i - 10}$$

$$i - 10 = -\frac{115}{294}$$

$$\Rightarrow i = 10 - \frac{115}{294} = \boxed{9.6\%}$$

"Open Market" Bond Sale

Example 3:

Assume interest rates have gone up to 12% and a bond holder wishes to sell the bond at the beginning of Year 7. What would the market price of the bond be at that time?

How does the investor achieve a 12% rate of return on this investment?

Capital Recovery Cost

- CRC allows for the recovery of the loss of value of an asset plus the interest the funds invested would have earned if invested elsewhere.
- Annualized equivalent cost.

$$CR = P(A|Pi,n) - F(A|Fi,n)$$

e.g. \$60 000 machine with salvage value of \$20 000. Four-year project life. Interest rate of 10%

EOY	Capital Not Recovered by EOY	Interest Due on Unrecovered Capital (10%)	Amount of Capital Recovered	Annual CR Cost
0	\$60 000			
1	\$51 380	6 000	8 620	\$14 620
2	\$41 898	5 138	9 482	\$14 620
3	\$31 468	4 190	10 430	\$14 620
4	\$19 995	3 147	<u>11 473</u>	\$14 620
			<u>40 005</u>	

Changing Interest Rates

$$F = P(1+i_1)(1+i_2) \dots (1+i_{n-1})(1+i_n)$$

Establish intermediate values at points where the interest rates change.

$$V_3 = 1\ 000\ (F|P\ 5,3) + 500\ (F|P\ 5,2)$$

= 1\ 000\ (1.1576) + 500\ (1.1025)
= \$1\ 708.85
 $V_7 = V_3\ (F|P\ 6,4)$
= 1\ 709\ (1.2625)
= \$2\ 157.42
 $F = V_7\ (F|P\ 7,2)$
= 2\ 157\ (1.1449)
= \$2\ 470.03