Aprendizaje Automático y Minería de Datos Support Vector Machines

Cristina Tîrnăucă

Dept. Matesco, Universidad de Cantabria

Fac. Ciencias – Grado en Ing. Informática

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T_x}}}$$

Predecimos "
$$y = 1$$
" si $h_{\theta}(x) \ge 0.5$
" $y = 0$ " si $h_{\theta}(x) < 0.5$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T_x}}}$$

Predecimos "
$$y = 1$$
" si $h_{\theta}(x) \ge 0.5$
" $y = 0$ " si $h_{\theta}(x) < 0.5$

Si
$$y = 1$$
, queremos $h_{\theta}(x) \approx 1$ (o equivalente, $\theta^T x \gg 0$) $y = 0$, queremos $h_{\theta}(x) \approx 0$ (o equivalente, $\theta^T x \ll 0$)

$$-y\log h_{\theta}(x)-(1-y)\log(1-h_{\theta}(x))$$

$$-y \log h_{ heta}(x) - (1-y) \log(1-h_{ heta}(x))$$
 $y(-\log \frac{1}{1+e^{- heta^T x}}) + (1-y)(-\log(1-\frac{1}{1+e^{- heta^T x}}))$

$$-y \log h_{\theta}(x) - (1-y) \log(1-h_{\theta}(x))$$
 $y(-\log \frac{1}{1+e^{-\theta^T x}}) + (1-y)(-\log(1-\frac{1}{1+e^{-\theta^T x}}))$

Si
$$y = 1$$
 (queremos $\theta^T x \gg 0$)

$$-y \log h_{ heta}(x) - (1-y) \log(1-h_{ heta}(x))$$
 $y(-\log rac{1}{1+e^{- heta^T x}}) + (1-y)(-\log(1-rac{1}{1+e^{- heta^T x}}))$

Si
$$y = 1$$
 (queremos $\theta^T x \gg 0$)

$$-y\log h_{\theta}(x)-(1-y)\log(1-h_{\theta}(x))$$

$$y(-\log \frac{1}{1+e^{- heta^T x}}) + (1-y)(-\log (1-\frac{1}{1+e^{- heta^T x}}))$$

Si
$$y = 1$$
 (queremos $\theta^T x \gg 0$)

Si
$$y = 0$$
 (queremos $\theta^T x \ll 0$)

Función de coste para un ejemplo (x,y)

$$-y\log h_{\theta}(x)-(1-y)\log(1-h_{\theta}(x))$$

$$y(-\log \frac{1}{1+e^{-\theta^T x}}) + (1-y)(-\log(1-\frac{1}{1+e^{-\theta^T x}}))$$

Si
$$y = 1$$
 (queremos $\theta^T x \gg 0$)

Si y = 0 (queremos $\theta^T x \ll 0$)

Support Vector Machine

Objetivo: minimizar la función de coste

Regresión logística

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} (-\log h_{\theta}(x^{(i)})) + (1 - y^{(i)}) (-\log(1 - h_{\theta}(x^{(i)}))) \right] + \frac{\lambda}{2m} \sum_{j=1}^{p} \theta_{j}^{2}$$

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log \left(1 - h_{\theta}(x^{(i)}) \right) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{p} \theta_{j}^{2}$$

Support Vector Machine

$$\min_{\theta} \frac{1}{\lambda} \left[\sum_{i=1}^{m} y^{(i)} cost_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) cost_{0}(\theta^{T} x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{p} \theta_{j}^{2}$$

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log \left(1 - h_{\theta}(x^{(i)}) \right) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{p} \theta_{j}^{2}$$

Support Vector Machine

$$\min_{\theta} C[\sum_{i=1}^{m} y^{(i)} cost_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) cost_{0}(\theta^{T} x^{(i)})] + \frac{1}{2} \sum_{i=1}^{p} \theta_{j}^{2}$$

Support Vector Machine

Función de coste

$$\min_{\theta} C[\sum_{i=1}^{m} y^{(i)} cost_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) cost_{0}(\theta^{T} x^{(i)})] + \frac{1}{2} \sum_{j=1}^{p} \theta_{j}^{2}$$

Hipótesis

$$h_{\theta}(x) = \begin{cases} 1 & \text{si } \theta^{T} x \ge 0 \\ 0 & \text{si } \theta^{T} x < 0 \end{cases}$$

SVM es un Large Margin Classifier

Sí, cuando C es muy grande

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{p} \theta_{j}^{2}$$

bajo las condiciones:

$$\theta^T x^{(i)} \ge 1$$
, si $y^{(i)} = 1$
 $\theta^T x^{(i)} \le -1$, si $y^{(i)} = 0$

SVM es un Large Margin Classifier

Sí, cuando C es muy grande

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{p} \theta_j^2$$

bajo las condiciones:

$$\theta^T x^{(i)} \ge 1$$
, si $y^{(i)} = 1$
 $\theta^T x^{(i)} \le -1$, si $y^{(i)} = 0$

El umbral de decisión: caso de puntos linealmente separables

SVM es un Large Margin Classifier

Sí, cuando C es muy grande

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{p} \theta_j^2$$

bajo las condiciones:

$$\theta^T x^{(i)} \ge 1$$
, si $y^{(i)} = 1$
 $\theta^T x^{(i)} \le -1$, si $y^{(i)} = 0$

El umbral de decisión: caso de puntos linealmente separables

SVM en presencia de outliers

Cuando C es muy grande

Cuando C no es muy grande

SVM en presencia de outliers

Cuando C es muy grande

Cuando C no es muy grande

SVM en presencia de outliers

Cuando C es muy grande

Cuando C no es muy grande

Umbral de decisión no lineal

Cuando los datos no son linealmente separables

Umbral de decisión no lineal

Cuando los datos no son linealmente separables

Umbral de decisión no lineal

Cuando los datos no son linealmente separables

Podríamos añadir más atributos ...

$$h_{\theta}(x) = \begin{cases} 1, & \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \dots \ge 0 \\ 0, & \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \dots < 0 \end{cases}$$

Una alternativa mejor: utilizar una función Kernel (Núcleo)

proyectando la información a un espacio de características de mayor dimensión

Comenzaremos con un ejemplo:

Sean $I^{(1)}, I^{(2)}, I^{(3)}$ tres puntos de referencia y x un punto en el plano (todos en R^2)

Predecimos "
$$y = 1$$
" si $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$ (ejemplo con $\theta_0 = -0.5, \theta_1 = 1, \theta_2 = 1, \theta_3 = 0$)

El rol del parámetro σ

$$I^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$f^{(1)} = exp(-\frac{\|x - I^{(1)}\|^2}{2\sigma^2})$$

$$\sigma^2 = 1$$

$$\sigma^2 = 0.5$$

SVM con Kernels

¿Cómo elegimos los puntos de referencia?

Dados
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Elegimos $I^{(1)} = x^{(1)}, I^{(2)} = x^{(2)}, \dots, I^{(m)} = x^{(m)}$

SVM con Kernels

¿Cómo elegimos los puntos de referencia?

```
Dados (x^{(1)}, v^{(1)}), (x^{(2)}, v^{(2)}), \dots, (x^{(m)}, v^{(m)})
Elegimos I^{(1)} = x^{(1)}, I^{(2)} = x^{(2)}, \dots, I^{(m)} = x^{(m)}
Para un ejemplo x^{(i)} en R^{p+1} construimos f^{(i)} en R^{m+1}:
f_{2}^{(i)} = 1
f_1^{(i)} = K(x^{(i)}, I^{(1)}) = K(x^{(i)}, x^{(1)})
f_i^{(i)} = K(x^{(i)}, I^{(i)}) = K(x^{(i)}, x^{(i)})
f_m^{(i)} = K(x^{(i)}, I^{(m)}) = K(x^{(i)}, x^{(m)})
```

Support Vector Machine con Kernels

Cambio de dimensión

Para cada uno de los m datos de entrenamiento $x^{(i)} \in R^p$, calcular $f^{(i)} \in R^m$.

Support Vector Machine con Kernels

Cambio de dimensión

Para cada uno de los m datos de entrenamiento $x^{(i)} \in R^p$, calcular $f^{(i)} \in R^m$.

Fase de entrenamiento

$$\min_{\theta} C[\sum_{i=1}^{m} y^{(i)} cost_{1}(\theta^{T} \mathbf{f}^{(i)}) + (1 - y^{(i)}) cost_{0}(\theta^{T} \mathbf{f}^{(i)})] + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2}$$

Support Vector Machine con Kernels

Cambio de dimensión

Para cada uno de los m datos de entrenamiento $x^{(i)} \in R^p$, calcular $f^{(i)} \in R^m$.

Fase de entrenamiento

$$\min_{\theta} C[\sum_{i=1}^{m} y^{(i)} cost_{1}(\theta^{T} \mathbf{f}^{(i)}) + (1 - y^{(i)}) cost_{0}(\theta^{T} \mathbf{f}^{(i)})] + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2}$$

Fase de predicción

Para cada nuevo ejemplo $x \in R^p$, calcular $f \in R^m$.

Predecir "y = 1" si $\theta^T f \ge 0$

Predecir "y = 0" si $\theta^T f < 0$

Se recomienda utilizar los paquetes existentes (liblinear, libsvm,...) para obtener los parámetros θ . Se deben elejir:

▶ el valor del parámetro *C*

- el valor del parámetro C
- ▶ el kernel:

- ▶ el valor del parámetro C
- el kernel:
 - "No kernel" ("linear kernel"): predecir "y=1" si $\theta^T x \geq 0$

- el valor del parámetro C
- el kernel:
 - "No kernel" ("linear kernel"): predecir "y = 1" si $\theta^T x \ge 0$
 - ► Gaussian kernel: $K(x, l) = \exp\left(-\frac{\|x l\|^2}{2\sigma^2}\right)$ (hay que elegir σ y escalar los variables)

- el valor del parámetro C
- el kernel:
 - "No kernel" ("linear kernel"): predecir "y = 1" si $\theta^T x \ge 0$
 - ► Gaussian kernel: $K(x, l) = \exp\left(-\frac{\|x l\|^2}{2\sigma^2}\right)$ (hay que elegir σ y escalar los variables)
 - Polinomial kernel $K(x, I) = (x^T I + c)^d$ (hay que elegir c y d)

- ▶ el valor del parámetro *C*
- el kernel:
 - "No kernel" ("linear kernel"): predecir "y=1" si $\theta^T x \geq 0$
 - ► Gaussian kernel: $K(x, l) = \exp\left(-\frac{\|x l\|^2}{2\sigma^2}\right)$ (hay que elegir σ y escalar los variables)
 - Polinomial kernel $K(x, I) = (x^T I + c)^d$ (hay que elegir c y d)
 - otros: String kernel, chi-square kernel, histogram intersection kernel,...

Regresión logística versus SVM

Consejos prácticos

p= número de atributos, m= número de datos de entrada Cuando p es mucho más grande que mSe aconseja utilizar regresión logística o SVM sin kernel.

Cuando p es pequeño y m no muy grande Se aconseja utilizar SVM con Gaussian kernel o similar.

Cuando p es pequeño y m es muy grande Se aconseja anadir más atributos y utilizar regresión logística o SVM sin kernel.