Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (МФТИ)

КАФЕДРА ВАКУУМНОЙ ЭЛЕКТРОНИКИ

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

МЕТОДЫ ПОЛУЧЕНИЯ ВЫСОКОГО ВАКУУМА

Работу выполнил студент	 Д.А. Смирнов
группы Б04-004	
Работу принял, оценка	

Содержание

1	Цел	вы работы	2
2	Лаб	бораторная установка	2
3	Вы	полнение работы	3
	3.1	Подготовка к экспериментам	3
	3.2	Эксперимент 1. Откачка вакуумной системы с помощью форва-	
		куумного насоса	3
	3.3	Эксперимент 2. Откачка вакуумной системы с газовой нагрузкой.	4
	3.4	Эксперимент 3. Высоковакуумная откачка	6
4	Вы	вод	11
5	Спъ	исок использованной литературы	11

1 Цель работы

- 1. Ознакомиться с принципом работы форвакуумного насоса.
- 2. Ознакомиться с методами вакуумных расчётов, найти зависимость величины газового потока в системе от давления.
- 3. Определить производительность турбомолекулярного насоса.
- 4. Рассчитать объем рабочей камеры.

2 Лабораторная установка

Лабораторная установка предназначена для ознакомления с основными приборами вакуумной техники: насосами, манометрами, измерителями расхода газа. Схема установки представлена на рисунке 1.

Рис. 1: Схема лабораторной установки

На схеме обозначены:

 B_1 - вакуумметр ёмкостной

 B_2 - вакуумметр терморезисторный

 B_3 - вакуумметр ионизационный

 K_1 - кран турбомолекулярного насоса

 K_3 - высоковакуумная заслонка

 K_4 - форвакуумная заслонка

 K_{2},K_{7} - коммутационные краны

Д - диафрагма

FC - регулятор газового потока (flow controller)

ТМН - турбомолекулярный насос ФВН - форвакуумный насос

3 Выполнение работы

3.1 Подготовка к экспериментам

- 1. Включаем компьютер, монитор, контроллер, загружаем операционную систему.
- 2. Открываем все клапаны в вакуумной системе К2, К3, К4, К7.
- 3. Полностью откручиваем, снимаем и затем закручиваем на место до полного уплотнения клапан напуска атмосферы и убеждаемся, что в систему напущен воздух.
- 4. Создаем все необходимые для сохранения графиков папки на компьютере.
- 5. Запускаем C:|vacuum|SCADA_client.exe.
- 6. Включаем в программе вакууметры B1 и B2, регулятор расхода газа FC.
- 7. делаем запись в лабораторном журнале, чтобы впоследствии синхронизировать начало отсчёта для всех графиков.

Начальное состояние системы: все клапаны открыты, давление внутри системы - атмосферное. 16:23 - включены вакууметры B1, B2 и регулятор расхода газа FC.

3.2 Эксперимент 1. Откачка вакуумной системы с помощью форвакуумного насоса.

16:23 - время включения форвакуумного насоса

В течение 10 минут давление в 10^{-2} Торр достигнуто не было, из чего можно сделать вывод, что установка чисто физически не может откачать до такого давления.

16:34 - прекращение эксперимента

Рис. 2: Зависимость давления от времени при откачке форвакуумным насосом

3.3 Эксперимент 2. Откачка вакуумной системы с газовой нагрузкой.

При давлении примерно 0.02 Торр получили $\triangle Q \approx 2.2sccm$, что по нашей оценке равно натеканию газа на нашей установке. Можно предположить, что датчик на регуляторе потока показывает значение потока сразу с учётом натекания. $Q_{leak}+Q_{FC}=Q$

Рис. 3: Зависимость производительности от времени

Поток воздуха

$$Q - P * S(P) = \frac{d(PV)}{dt}$$

При P = const

$$\frac{d(PV)}{dt} = 0$$

Тогда

$$S(P) = \frac{Q}{P}$$

По этой формуле рассчитаем значения S(P) и занесём результаты в таблицу 1. Построим график зависимости Q от P (рисунок 5), тогда по формуле среднее значение S будет равно угловому коэффициенту получившейся прямой, переведённой в m^3/h .

$$S = 63.75sccm = 2.89m^3/h$$

Но рассчитанные значения не совпадают с этой аппроксимацией. Значит, имеется другой характер зависимости. Быстродействие насоса также зависит от давления в установке.

Рис. 4: Зависимость давления от времени

$$Q = \frac{d(PV)}{dt}$$

$$S(P) = \frac{Q}{P} = -V \frac{d(\ln P)}{dt}$$

$$P(t) = P_0 + P(0) * exp(\frac{S_0}{V} * t)$$

$$S(P) = S_0(1 - \frac{P_0}{P})$$

По значениям из таблицы 1 построим график зависимости быстродействия от давления в установке (рисунок 6). Экстраполируем его под полученную зависимость: $S_0 = 2.7m^3/h$, $P_0 = 0.1torr$. Полученное значение на 7% отличается от экстраполированного по прямой.

3.4 Эксперимент 3. Высоковакуумная откачка.

- 1. Закроем K3, включаем турбомолекулярный насос. **16:51 время включения турбомолекулярного насоса**
- 2. Убеждаемся, что турбомолекулярный насос вышел на рабочий режим 42000 об/мин. (зелёный диод горит непрерывно).
- 3. Включаем вакууметр В3. **16:53 время включения вакууметра В3**

Таблица 1: Величина газового потока Q_{FC} , давление в форвакуумной части P_2 и скорость откачки газа S

$Q_{FC}, sccm$	$Q_{FCset}, sccm$	$\triangle Q, sccm$	$P_2, torr$	$S, m^3/h$
0.16	0	0.16	0.1	0.073
5.03	5	0.03	0.214	1.069
10.05	10	0.05	0.298	1.534
15.05	15	0.05	0.375	1.826
20.06	20	0.06	0.449	2.033
25.05	25	0.05	0.52	2.192
30.07	30	0.07	0.59	2.319
35.06	35	0.06	0.66	2.417

- 4. Дожидаемся резкого излома на графике показаний вакууметра В3. 17:01 - появление резкого излома на графике показаний вакууметра В3
- 5. Поднимаем давление в форвакуумной части системы до давления примерно 1 Торр по схеме:
 - (а) устанавливаем поток 5 sccm
 - (b) ждем 10 секунд
 - (с) устанавливаем поток 10 sccm
 - (d) ждем 10 секунд
 - (е) устанавливаем поток 15 sccm
 - (f) ждем 10 секунд
 - (g) устанавливаем поток 20 sccm
 - (h) ждем 10 секунд
 - (i) устанавливаем поток 25 sccm
 - (j) ждем 10 секунд
 - (k) устанавливаем поток 30 sccm
 - (l) ждем 10 секунд
 - (m) устанавливаем поток 35 sccm
 - (n) ждем 10 секунд
 - (о) устанавливаем поток 40 sccm
 - (р) ждем 10 секунд
- 6. Закрываем клапан К2.

Рис. 5: Зависимость производительности от давления в установке

7. Отключаем подачу газа в систему.

17:03 - время закрытия К2. Установлен поток газа, равный нулю.

8. Определим, можно ли считать течение газа через диафрагму молекулярным. Для этого оценим длину свободного пробега молекул:

$$\lambda = \frac{kT}{\sigma P} \approx 7.91m$$

где $k=1,38\cdot 10^{-23}$ Дж/К — постоянная Больцмана $T\approx 293$ К — комнатная температура $\sigma=62,5\cdot 10^{-20}m^2$ — среднее эффективное сечение рассеяния для воздуха $P\approx 2,1\cdot 10^{-5}$ Торр $=2,1\cdot 133\cdot 10^{-5}$ Па — порядок давления в высоковаку-умной части системы

Диаметр отверстия диафрагмы равен d=100 мкм. Видно, что $d\ll\lambda$, поэтому течение газа через диафрагрму можно считать молекулярным. Следовательно, справедлива формула нахождения молекулярного потока через диафргаму (отверстие):

Рис. 6: Зависимость быстродействия от давления и его аппроксимация

$$Q = S\sqrt{\frac{RT}{2\pi\mu}}(P_2 - P_3)$$

где P_2, P_3 - давления на B2 и B3 соответственно $S = \frac{\pi d^2}{4}$ - площадь отверстия в диафрагме μ - молярная масса воздуха

Так как $P_3 \ll P_2$, формула примет вид

$$Q = \frac{\pi d^2}{4} \sqrt{\frac{RT}{2\pi\mu}} P_2$$

9. Рассмортим модель потока через турбомолекулярный насос

$$P_3S(P_3) = Q - \frac{d(P_2V)}{dt}$$
$$Q \gg \frac{d(P_2V)}{dt}$$

Получим:

$$P_3S(P_3) = Q = \frac{\pi d^2}{4} \sqrt{\frac{RT}{2\pi\mu}} P_2$$

- 10. Построим по полученным данным график зависимости давления от времени в высоковакуумной части при включенном турбомолекулярном насосе, а также график зависимости производительности турбомолекулярного насоса от впускного давления. Расчитаем поток через диафрагму (график зависимости потока от времени).
- 11. Сравним это значение с данными производителя: график зависимости производительности от давления при разных газах представлен на рисунке 11

Рис. 7: Зависимость давления в форвакуумной части системы от времени

Здесь значение производительности будет угловым коэффициентом аппроксимирующей прямой $S=15m^3/h$

По документации производительность ТМН, перекачивающего азот (основная часть атмосферы), равна $30~\rm n/c$ при давлениях порядка 10^{-5} Торр и практически постоянна. Турбомолекулярный насос в нашем эксперименте быстро вышел на свои предельные значения при 10^{-5} Торр и рассчитанная производительность практически совпадает с данными производителя.

12. Для определения объёма рабочей камеры необходимо создать условия отсутствия натекания газа через диафрагму. В нашем эксперименте таких условия предоставлено не было, следовательно, нельзя с большой точность определить объём рабочей камеры

Рис. 8: Зависимость давления высоковакуумной части системы от времени

4 Вывод

В ходе работы мы ознакомились с принципами работы вакуумной техники, определили характеристики насосов и вакуумметров, изучили методы получения и измерения вакуума.

- 1. Определены рабочие диапазоны вакуумметров:
 - \bullet ёмкостной:760-1 Торр
 - \bullet терморезисторный: $10 10^{-3}$ Торр
 - \bullet ионизационный: $10^{-3} 10^{-5}$ Торр
- 2. На установке получен высокий вакуум порядка 10^{-5} Торр
- 3. Определены быстродействия вакуумных насосов:
 - \bullet форвакуумный: $2.7m^3/h$
 - турбомолекулярный $15m^3/h$:

5 Список использованной литературы

1. Методы получения высокого вакуума: лабораторная работа по курсу Вакуумая электроника / сост.: А.С. Батурин, И.Н. Ескин, Д.А. Свинцов, П.А. Стариков, Е.П. Шешин – М.: МФТИ, 2010. – 36 с.

Рис. 9: Зависимость потока через ТМН Q от времени

- 2. Шешин Е.П. Основы вакуумной электроники: учеб. пособие. 2-е издание, испр. И доп. М.: МФТИ, 2009. 149 с.
- 3. Шешин Е.П. Вакуумные технологии: учеб. пособие. / Долгопрудный: издательский Дом «Интеллект», 2009. 504 с.

Рис. 10: Зависимость потока через ТМН от давления в системе для определения производительности ТМН

Рис. 11: Данные производителя о зависимости производительности тМН от давления