Robot Training - Projeto Ararajuba

Breno Pinheiro de Meneses Gabriel Henrique Vasconcelos da Silva Marina Oliveira Batista

Universidade Federal de Campina Grande - UFCG Centro de Engenharia Elétrica e Informática - CEEI Departamento de Engenharia Elétrica - DEE

30 de Junho de 2022

Objetivos

- Utilizar e configurar dos sensores fisícos
 - Câmera: Calibrar a câmera RGB e Depth por meio do software do fabricante.
 - Testes para medir distância real de um objeto detectado
 - IMU: Aplicar o filtro de Magdwick, fixar na base e realizar a calibração de Soft-Iron
- Incluir o restante dos sensores na plataforma
- Aplicar um algoritmo de localização

Intel RealSense D415

• Depth resolution: 1280 × 720

Depth frame rate: 90 fps

• Depth (FOV): $65^{\circ} \times 40^{\circ}$

 \bullet RGB resolution: 1920×1080

• RGB (FOV): 69° × 42°

RGB frame rate: 30 fps

Figura 1: Intel RealSense D415

Intel RealSense Self-Calibration

Software realsense-viewer

Figura 2: realsense-viewer

Figura 3: realsense-viewer

Pyrealsense

Utilizando a câmera de profundidade para detectar distâncias

OpenCV e ROS

 Detecção de um objeto na imagem e publicação em um nó ROS da posição em pixels

Localização de Marcadores

- Localizar o marcador na imagem (câmera RGB)
- Calcular a distância do marcador em relação ao referencial da câmera (Depth)
- Tendo a posição do marcador definido, estimar a posição da câmera e por fim a da plataforma.

Sensor Tag - CC2650

- Conexão: Bluetooth low energy (BLE)
- 10 sensores inclusos
- IMU unidades:
 - Accel: G
 - Gyor: °/s
 - Mag: μT

Figura 4: Sensor Tag - CC2650

Filtro de Madgwick

- Estimativa do erro da taxa de variação da orientação
- Inicialmente é criada uma função do erro entre o frame global e as medições feitas pelo o sensor
- Com isso a orientações são calculadas quando essa função atingir seu valor mínimo

Função de erro - Acelerômetro

$$f\left(_{W}^{I}\mathbf{\hat{q}},{}^{W}\mathbf{\hat{g}},{}^{I}\mathbf{\hat{a}}\right)={}_{W}^{I}\mathbf{\hat{q}^{*}}\otimes{}^{W}\mathbf{\hat{g}}\otimes{}_{W}^{I}\mathbf{\hat{q}}-{}^{I}\mathbf{\hat{a}}$$

Link: Filtro de Madgwick

- Para isso é usado um algoritmo de gradiente descendente.
- O resultado disso é usado para compensar as leituras da taxa de variação angular obtido do giroscópio

Cálculo usando o acelerômetro

$$\begin{array}{rcl} \mathbf{q}_t & = & \mathbf{q}_{t-1} + \dot{\mathbf{q}}_t \Delta t \\ & = & \mathbf{q}_{t-1} + \left(\dot{\mathbf{q}}_{\omega,t} - \beta \dot{\mathbf{q}}_{\epsilon,t}\right) \Delta t \\ & = & \mathbf{q}_{t-1} + \left(\dot{\mathbf{q}}_{\omega,t} - \beta \frac{\nabla f}{\|\nabla f\|}\right) \Delta t \end{array}$$

Link: Filtro de Madgwick

Aplicação - Filtro de Madgwick

- Utilização do pacote imu₋tools
- Parâmetro de ganho = 0.02

Inclusão dos Sensores na plataforma física

- Construção de uma pequena base para a RealSense
- Fixação do IMU no centro do robô

Figura 5: Protótipo

Próximos Passos

- Aplicação de um algoritmo de localização
- Observar o funcionamento interno do pacote robot_ekf_pose e realizar uma comparação dos resultados obtidos por ele e uma variação, o pacote robot_localizaton
- Observar o funcionamento interno da fusão de sensores feita pelo o pacote laser_scan_matcher

Cronograma

- Início da Semana 1: 12 de maio de 2022
- Final da Semana 9: 14 de julho de 2022

	Semanas								
Etapas	1	2	3	4	5	6	7	8	9
1	Х								
2		Х	Х						
3			Х	Х	X				
4					Х	Х			
5						Х	Х		
6							Х	Х	Х

Obrigado!

Breno Pinheiro de Meneses Gabriel Henrique Vasconcelos da Silva Marina Oliveira Batista

Universidade Federal de Campina Grande - UFCG Centro de Engenharia Elétrica e Informática - CEEI Departamento de Engenharia Elétrica - DEE

30 de Junho de 2022

breno.meneses@ee.ufcg.edu.br
gabriel.vasconcelos@ee.ufcg.edu.br
marina.batista@ee.ufcg.edu.br

