		+66/1/50+
	Veillez à bien noircir les cases. Codez votre numéro d'étudiant ci-contre — et écrivez votre nom et prénom ci-dessous : Nom et prénom : BROICCET Vingile Attention à ne pas vous tromper, toute erreur invalide la copie!	0 0
	AMALA A - Deuxième contrôle continu - 28 mars 2023 - Règlement - L'épreuve dure 60 minutes. Les calculatrices sont interdites et les téléphones portables doivent être éteints et rangés. Les documents ne sont pas autorisés.	
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
1/1	A a exactement deux sous-espaces propres et ces sous-espaces sont de dimension 2. A a exactement deux sous-espaces propres et ces sous-espaces sont de dimension 1.	A a quatre sous-espaces propres de dimension 2. A a quatre sous-espaces propres de dimension 1.
0/1	Question 2 Soit $A \in M_5(C)$. On suppose que A	a exactement deux valeurs propres 2 et 3. Alors, $E_3 \cap E_2 \neq \{0\} \text{ et dim } E_2 + \dim E_3 \leq 5.$ $E_2 \cap E_3 = \{0\} \text{ et dim } E_2 + \dim E_3 \leq 5.$
1/1	Question 3 Soit $A \in M_3(\mathbf{R})$ telle que trace $(A) = \Box$ Ker $(A) \neq \{0\}$ et Spec $(A) = \{1, -1\}$. \Box Ker $(A) \neq \{0\}$ et Spec $(A) = \{0, 1\}$.	$= 0$, $det(\mathbf{A}) = 0$ et 1 est valeur propre de \mathbf{A} . $\square \text{ Ker}(\mathbf{A}) = \{0\} \text{ et Spec}(\mathbf{A}) = \{0, 1\}.$ $\bowtie \text{ Ker}(\mathbf{A}) \neq \{0\} \text{ et Spec}(\mathbf{A}) = \{0, 1, -1\}.$
	Question 4 Soit A la matrice de $\mathcal{M}_4(\mathbb{R})$ définie p	$\mathbf{par} \ \mathbf{A} = \begin{bmatrix} 4 & 6 & 6 & 6 \\ 6 & 4 & 6 & 6 \\ 6 & 6 & 4 & 6 \\ 6 & 6 & 6 & 4 \end{bmatrix}.$
0/1	 — 2 est valeur propre de la matrice A de multiplicité géométrique égale à 1. X 22 est valeur propre de la matrice A de multiplicité géométrique égale à 1. 	La matrice A possède exactement trois valeurs propres distinctes. La matrice A n'est pas diagonalisable.
	Question 5 Soit A une matrice de $\mathcal{M}_n(\mathbb{K})$, avec	$n \geq 2$, vérifiant $(\mathbf{A} - 31_n)(\mathbf{A} - 51_n) = 0$.
1/1	La matrice A est inversible et son inverse est $A^{-1} = \frac{-1}{8}(A - 151_n)$.	La matrice A est inversible et son inverse est $A^{-1} = \frac{-1}{15}(A - 81_n)$.
	Le metrice A n'est pas inversible	To matrice A what are 1' 11

