

Factory Manipulation with Cooperative Multi-agent Reinforcement Learning

6 June 2024

Nikolas Kirschstein & Kassian Köck (Team 7)

Problem Setting

ТΙΠ

- Gym env based on MuJoCo (Howell et al. 2022)
 - 2 or more robot arms (8 DOF each)
 - basket in reach for each arm
 - conveyor belt with increasing speed
 - cubes transported on conveyor belt
 - score = number cubes in baskets
- episode ends if either:
 - arm hits the env (incl. other arms)
 - cube is missed by all arms
- conventional pre-programming-based approaches too inflexible and tedious
 - → use of MARL (cp. Pérez-Francisco et al. 1998, Bozma and Kalalıoğlu 2012, Yu et al. 2017, Han et al. 2020)

Multiple robot arms cooperating to maximise efficiency in factory manipulation task (PnP along conveyor belt as representative and important special case)

Multiple robot arms cooperating to maximise efficiency in factory manipulation task (PnP along conveyor belt as representative and important special case)

Final boss: Many robot arms, on both sides of the belt and also from the ceiling s.t. communication cost too high to broadcast joint states in real time

- partial observability (only gripper positions available)
- ⇒ true **multi-agent reinforcement learning** (MARL)

Multiple robot arms cooperating to maximise efficiency in factory manipulation task (PnP along conveyor belt as representative and important special case)

Final boss: Many robot arms, on both sides of the belt and also from the ceiling s.t. communication cost too high to broadcast joint states in real time

- ⇒ partial observability (only gripper positions available)
- ⇒ true multi-agent reinforcement learning (MARL)

Roadmap: incremental approach

Multiple robot arms cooperating to maximise efficiency in factory manipulation task (PnP along conveyor belt as representative and important special case)

Final boss: Many robot arms, on both sides of the belt and also from the ceiling s.t. communication cost too high to broadcast joint states in real time

- ⇒ partial observability (only gripper positions available)
- ⇒ true multi-agent reinforcement learning (MARL)

Roadmap: incremental approach

Reward Design

Which reward should we use?

1st intention: reward of 1 if block is thrown in the basket, else 0

- highly sparse reward
 - → learning very hard
- nearly random behaviour overpowers base policy

Reward Design

Which reward should we use?

2nd intention: reward increases monotonically with progress to target

Desirable Incentives:

- \blacksquare I_0 : Reward cubes put into basked
- \blacksquare I_1 : Punish large deviation from base policy
- \blacksquare I_2 : Reward vicinity to closest cube
- \blacksquare I_3 : Punish distance to other robot arms
- \blacksquare I_4 : Reward grasping while very close to cube
- \blacksquare I_5 : Reward vicinity to basket with grasped cube
- \blacksquare I_6 : Reward relaxing grasp over basket

$$r = \sum_{i=0}^{6} \omega_i I_i$$

- goal: $\omega_0 >> \omega_i$ for $i \geq 1$
- ideally most $\omega_i = 0$

First Results

PPO for $\omega_0, \omega_1 > 0$ and $\omega_2, \dots \omega_6 = 0$

learnt RL policy steers IK base policy away from other arm (undesired)

Next Steps

- explore denser reward augmentations
- employ RL for 2nd arm as well
- construct multi-agent env

Discussion time!

