DATA/EQUATIONS

E = hv

 $E = hc/\lambda$

 $E = R_H (-)$

PV = nRT

[P +][V - nb] = nRT

 $In(\)=\ (\ ^{-}\)$

 $T(K) = T(^{\circ}C) + 273$

 $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$

 $c = 3.00 \times 10^8 \text{ m/s}$

 $R_H = 2.18 \times 10^{-18} J$

 $R = 0.08206 \text{ L} \cdot \text{atm/K} \cdot \text{mol}$

= 8.314 J/K·mol

Avogadro's number = 6.02×10^{23}

Van der Waals Constants, hydrogen gas:

 $a = 0.244 L^2 \cdot atm/mol^2$

b = 0.0266 L/mol

	ΔH _f ° (kJ/mol)	S° (J/K mol)
Cu _(s)	0	33.2
CuO _(s)	-157.3	42.6
H ₂ O _(I)	-285.83	69.95
H ₂ O _(g)	-241.83	188.84
$N_{2(g)}$	0	191.61

CHEMISTRY CHEM 1101
Sample FINAL EXAMINATION

NH _{3 (g)}	-45.9	192.8

PHASE DIAGRAM: I₂

PERIOD IC TABLE

CHEMISTRY CHEM 1101 Sample FINAL EXAMINATION

- 1. The ionization energy of carbon is 1086 kJ/mol. Determine the wavelength of the electromagnetic radiation just energetic enough to ionize carbon.
- 2. For the copper(II) ion, Cu²⁺
 - a) Give the electron configuration.
 - b) Identify the valence shell for Cu²⁺, and give the orbital diagram and quantum numbers for the electrons in it
 - c) Identify the highest energy subshell for Cu²⁺, (and give the orbital diagram and quantum numbers for the electrons in it, if different from b)
- 3. Predict the likely ion or ions for
 - a) Al
- b) In
- c) As
- d) Bi
- 4. For the molecule XeOF₄ (use at least half a page of space for this.)
 - a) Show the Lewis diagram
 - b) Give the bond order for each bond
 - c) draw and name the molecular geometry
 - d) indicate the bond dipoles
 - e) indicate the net dipole
- 5. a) <u>Draw</u> and <u>label</u> a band diagram for sodium (Na) metal
 - b) <u>Draw</u> and <u>label</u> a band diagram for silicon doped with an element which will make it a p-type extrinsic semiconductor. Indicate which element you will add to the silicon. (use at least half a page of space for this.)

- 6. a) Given $\Delta H^{o}_{vap}(H_{2}O)=40.7$ kJ/mol, determine the vapour pressure of water at 31°C.
 - b) If the water is in a bottle with a head space (the space above the liquid) of 0.65L, what mass of water will evaporate at this temperature?
- 7. Using the phase diagram of iodine (given with the data sheets):
 - a) label regions A, B, and C, lines 1, 2, and 3, and points a and b. (Use the letters and numbers given on the diagram and answer in your exam booklet. Don't write it on the question paper; I don't want that handed in!)
 - b) Describe in **POINT FORM** what happens when I_2 is heated from 75°C to 300°C at a pressure of 3 atm. Make reasonable pressure and temperature estimates as needed.
 - c) Describe in **POINT FORM** what happens when the pressure of the I_2 is raised from 0.01 atm to 12 atm at a temperature of 100°C. Make reasonable pressure and temperature estimates as needed.
 - d) Determine the normal boiling point of iodine.
- 8. Given the reaction (one step in the production of steel):

$$CO_{(g)} \ + \ Fe_2O_{3(s)} \ \to \ CO_{2(g)} \ + \ Fe_3O_{4(s)}$$

If 37.3 kg of carbon monoxide is allowed to react with 636.1 kg of Fe_2O_3 , determine the mass of Fe_3O_4 produced, in kilograms. **Show enough work** to justify your answer.

CHEMISTRY CHEM 1101 Sample FINAL EXAMINATION

9. Copper metal can be produced from copper(II) oxide according to the reaction:

$$3 \text{ CuO}_{(s)} + 2 \text{ NH}_{3 (q)} \rightarrow 3 \text{ Cu}_{(s)} + 3 \text{ H}_2 \text{O}_{(l)} + \text{N}_{2 (q)}$$

Using the table of thermodynamic data on page 2:

- a) Calculate the standard state heat of the reaction
- b) Calculate the standard state entropy of the reaction
- c) Calculate the standard state free energy of the reaction at 25°C
- d) Determine the temperature range over which the reaction is spontaneous at standard state
- e) Determine the free energy when you have present in a 2.00 L flask: 8.0 atm pressure of $NH_{3 (q)}$ and 4.0 atm pressure of $N_{2(q)}$.

10. Given the equilibrium reaction:

$$2 \text{ NO}_{(q)} \leftrightarrow \text{N}_{2(q)} + \text{O}_{2(q)} \text{ K}_{eq} \text{ (at } 0^{\circ}\text{C)} = 25$$

If 9.0 moles of $NO_{(g)}$ is placed in a 2.00L container at 0° C, determine the amount in moles of each gas once equilibrium is reached.