Методы алгебраической геометрии в защите информации

А. Э. Маевский

1 Элементы теории Галуа

Определение 1. Алгебраическое расширение L/K называется *нормальным*, если каждый неприводимый над K многочлен, имеющий в L корень, разлагается над L на линейные множители.

Определение 2. Группой автоморфизмов поля K называется множество

$$\operatorname{Aut}(K) \stackrel{\text{\tiny def}}{=} \{ \varphi \colon K \to K \}$$

с операцией композиции.

Упражнение 1. Доказать, что Aut(K) группа.

Упражнение 2. Пусть G — подгруппа в Aut(K). Доказать, что

$$K^G \stackrel{\text{def}}{=} \{ x \in K \mid \forall g \in G \colon g(x) = x \}$$

подполе в K.

ЮФУ, Мехмат

Определение 3. Группа автоморфизмов L над K определяется так:

$$\operatorname{Aut}(L/K) = \operatorname{Aut}_K(L) = \{ \varphi \in \operatorname{Aut}(L) \mid \varphi|_K = \operatorname{id}_K \}.$$

Теорема 1. Пусть L/K — нормальное алгебраическое. Тогда

$$\forall g \in \operatorname{Aut}(\overline{L}/K) \colon g|_L \in \operatorname{Aut}(L/K).$$

Доказательство. Т.к. L — алгебраическое, то

$$\forall \alpha \in L \; \exists m_{\alpha}(x) \in K[x]$$
 — минимальный многочлен для α .

Пусть $\alpha \in L$. Все корни $m_{\alpha}(x)$ принадлежат \overline{L} и, более того, L (нормальность). Пусть $g \in \operatorname{Aut}(\overline{L}/K)$.

$$0 = g(\alpha) = g(m_{\alpha}(\alpha)) = \ldots = m_{\alpha}(g(\alpha)).$$

Следовательно, $g(\alpha)$ — корень $m_{\alpha}(x)$, а значит, принадлежит \overline{L} и L.

Теорема 2. Пусть L/K — произвольное алгебраическое расширение. Тогда

$$\forall g \in \operatorname{Aut}(L/K) \colon \exists \tilde{g} \in \operatorname{Aut}(\overline{L}/K) \colon \tilde{g}|_{L} = g.$$

Доказательство. По Т. о вложении алг. расширений $g \in \operatorname{Aut}(L/K)$ рассмотрим как вложение $g \colon L \hookrightarrow \overline{L}$, причём $g|_K = \sigma \colon K \hookrightarrow \overline{L}$. Разным g соответствуют различные вложения.

Теорема 3 (о мощности Aut(L/K)). Пусть L/K — конечное алгебраическое расширение, тогда

$$|\operatorname{Aut}(L/K)| \leq [L:K].$$

Доказательство. Пусть $\alpha \in \overline{K}$, существует минимальный над K многочлен α .

$$K(\alpha) \cong K[x]/(m_{\alpha}(x)).$$

Пусть $d = \deg m_{\alpha}(x)$. Пусть $\alpha = \alpha_1, \alpha_2, \dots, \alpha_s$ — различные корни $m_{\alpha}(x)$ в \overline{K} (sd). Для каждого $i \in [1, s]_{\mathbb{N}}$ существует единственный $\sigma_i \colon K(\alpha) \hookrightarrow \overline{K}$ и других вложений $\hat{\sigma} \colon K(\alpha) \hookrightarrow \overline{K}$, $\hat{\sigma}|_K = \sigma$ нет.

Это рассуждение продолжается по индукции для любого конечного алгебраического расширения (которое, как известно, можно рассматривать как последовательность простых расширений).

Определение 4. Число s различных вложений $K(\alpha)$ в \overline{K} называется cmeneнью cenapa- $bear}$ обозначение: $\deg_s(K(\alpha)/K) = [K(\alpha):K]_s$

Замечание. Степень сепарабельности $\alpha \in K$ совпадает с количеством корней минимального многочлена α в \overline{K} .

ЮФУ, Мехмат

Упражнение 3. L/K — алгебраическое расширение. $\varphi \colon L \to L$ — гомоморфизм полей над K. Тогда φ — изоморфизм.

Решение. Гомоморфизм φ переводит каждый элемент $\alpha \in L$ в сопряжённый с ним. Так как сопряжённых — конечное число, получается инъективный гомоморфизм *конечномерного* векторного пространства $K(\alpha)$, который (факт лин. алгебры) является изоморфизмом.

Замечание. В случае трансцендентных расширений предыдущее утверждение, вообще говоря, не верно.

Распространим понятие сепарабельности на произвольные алгебраические расширения.

Определение 5. L/K — конечное алг. расширение, $\sigma \colon K \to \overline{K}$. Ствень сепарабельности L над K это количество различных вложений $\hat{\sigma} \colon L \to \overline{K}$, таких что $\hat{\sigma}|_K = \sigma$. Расширение L/K называется сепарабельным, если $[L \colon K]_s = [L \colon K]$.

Утверждение 1.

$$|\operatorname{Aut}(L/K)| \leqslant [L:K]_s \leqslant [L:K]. \tag{1}$$

Первое неравенство: два различных вложения $L \to \overline{K}$ могут не давать два различных автоморфизма L, если образы вложений не совпадают.

В двойном неравенстве (1) равенство слева — признак нормальности расширения, справа — сепарабельности.

Теорема 4.

$$[M:K]_s = [M:L]_s \cdot [L:K]_s$$

Доказательство. $\sigma: K \hookrightarrow \overline{K}$. $\sigma_i: L \hookrightarrow \overline{K}$, $\sigma_i|_K = \sigma$. $m = [L:K]_s$, $n = [M:K]_s$, $t = [M:L]_s$. $\tau_{ij}: M \hookrightarrow \overline{K}$, $\tau_{ij}|_L = \sigma_i$ (Здесь мы используем $\overline{L} = \overline{K}$, иначе, в соответствии с опр. сепарабельности, следовало бы писать $\tau_{ij}: M \hookrightarrow \overline{L}$.)

Надо показать, что

$$au_{ij} \neq au_{lk}$$
 при $i \neq l, j \neq k$.

Если $au_{ij}= au_{lk}$, то $\sigma_i= au_{ij}|_L= au_{lk}|_L=\sigma_l$, а значит, i=l. Но тогда j=k.

Имеем $[M:K]_s\geqslant t\cdot m$. Осталось показать обратное нестрогое неравенство. Пусть $\rho\colon M\hookrightarrow \overline{K},\ \rho|_K=\sigma.$ Но $\rho|_L=\sigma_i$ для некоторого $i\in[1,m]_{\mathbb{N}}.$ Следовательно $\rho=\tau_{ij}$ для некоторого j.

Определение 6. Многочлен $f(x) \in K[x]$ называется *сепарабельным*, если все его корни в \overline{K} различны.

Лемма 1. Любой неприводимый многочлен над полем характеристики 0 сепарабелен.

Доказательство. Производная имеет конечную степень (не равна 0) и потому взаимно проста с неприводимым многочленом. ■

Лемма 2. Пусть $f(x) \in K[x]$ неприводимый. $f(x) \in K[x]$ не сепарабелен тогда и только тогда, когда char K = p > 0, $f(x) = g(x^{p^n})$ и g(x) неприводим и сепарабелен над K.

Утверждение 2. Несепарабельные неприводимые многочлены могут существовать только в полях K, таких что char K = p > 0 и $K^p \neq K$ ($K^p \stackrel{\text{def}}{=} \{a^p \mid a \in K\}$).

Доказательство. Несепарабельный неприводимый многочлен $f(x) \in K[x]$ имеет вид $f(x) = g(x^{p^n})$, но в поле K, таком что $K^p = K$, можно извлекать корни p-ой степени, а значит $f(x) = (h(x))^{p^n}$ что противоречит неприводимости.

Пример 1. Пусть $K = \mathbb{F}_p(t), f(x) = x^p + t$ — неприводимый несепарабельный многочлен.

Лемма 3. $K \subset L \subset M$ — произвольные алгебраические расширения. Если M/K сепарабельно, то M/L и L/K сепарабельны.

Доказательство. $[M:L]_s[L:K]_s=[M:K]_s=[M:K]=[M:L][L:K]$, но $[\cdot]_s\leqslant [\cdot]$, следовательно, степени и степени сепарабельности промежуточных расширений равны.

Рассмотрим подробнее несепрабельные элементы (алгебраические элементы, минимальные многочлены которых несепарабельны).

Теорема 5. Пусть α — алгебраический и несепарабельный элемент над полем K характеристики $p, m_{\alpha}(x) = g(x^{p^{\mu}})$. Тогда $\alpha^{p^{\mu}}$ сепарабельный и

$$[K(\alpha) : K]_s = \deg g(x), \quad [K(\alpha) : K] = p^{\mu}[K(\alpha) : K]_s.$$

Доказательство. . . .

$$f(x) = g(x^{p^{\mu}}) = \prod_{i=1}^{m} (x^{p^{\mu}} - \alpha^{p^{\mu}}) = \prod_{i=1}^{m} (x - \alpha)^{p^{\mu}}.$$

Определение 7. L/K — конечное алгебраическое расширение. Индекс несепарабельности:

$$[L:K]_i = \frac{[L:K]}{[L:K]_s}.$$

Если $[L:K]_i$ максимально, то расширение называется *чисто несепарабельным*. Если $[K(\alpha):K]_i$ максимально, то α называется *чисто несепарабельным*.

Определение 8. Элемент $\alpha \in L$ называется *чисто несепарабельным*, если

Лемма 4. Элемент $\alpha \in L$ чисто несепарабелен тогда и только тогда, когда

$$m_{\alpha}(x) = x^{p^{\mu}} - a, \quad a \in K.$$

ЮФУ, Мехмат

Определение 9. Пусть L/K — произвольное (необязательно конечное) алгебраическое расширение. Оно называется *чисто несепарабельным*, если для любого $\alpha \in L$:

$$m_{\alpha}(x) = x^{p^{\mu}} - a_{\alpha} \in K[x].$$

Упражнение 4. Пусть $K \subset L \subset M$ — башня алгебраических расширений. Показать, что M/K чисто несепарабельно тогда и только тогда, когда чисто несепарабельны M/L и L/K.

Утверждение 3. Пусть L/K — алгебраическое расширение. Обозначим L^s — множество всех сепарабельных элементов L. Тогда L^s — поле.

Утверждение 4. L^s/K — сепарабельно, а L/L^s — чисто несепарабельно.

Доказательство. Пусть $\alpha \in L$ — несепарабельный. $m_{\alpha}(x) = g(x^{p^{\mu}}), g(x) \in K[x]$ — неприводимый и сепарабельный. $\alpha^{p^{\mu}} \in L^{s}. x^{p^{\mu}} - \alpha^{p^{\mu}} \in L^{s}[x]$. По лемме (4) α — чисто несепарабельным.

Определение 10. Алгебраическое расширение L/K называется расширением Галуа, если оно нормально и сепарабельно. Группой Галуа Gal(L/K) расширения Галуа L/K называется его группа автоморфизмов.

Теорема 6. Пусть L/K — конечное расширение Галуа. Существует взаимно однозначное соответствие между подгруппами Gal(L/K) и подполями между L и K:

$$H \leftrightarrow L^H (= \{ x \in L \mid Hx = x \}),$$

npu этом нормальным nodгруппам coombeтствуют нормальные расширения K.

Определение 11. Поле K называется совершенным, если любое его алгебраическое расширение сепарабельно.

Определение 12. Абсолютной группой Галуа поля K называется группа $\operatorname{Aut}\left((\overline{K})^s/K\right)$.

Упражнение 5. $(\overline{K})^s/K$ — нормально.