10.1-6.

Show how to implement a quque using two stacks. Analyze the running time of the queue operations.

Answer.

Using two stacks S_1 and S_2 , we can ENQUEUE an element to the queue Q by PUSHing it into S_1 and DEQUEUE the tail element by POPing it from S_2 . If stack S_2 is empty when a DEQUEUE is requested, or S_1 is full when an ENQUEUE is requested, we transmit as many elements in S_1 to S_2 as possible. A queue is said to be empty if and only if both of its stacks S_1 and S_2 are empty. Likewise, the queue becomes full when S_1 and S_2 are both full.

```
Queue-Empty(Q)
1
   if STACK-EMPTY(S_1) and STACK-EMPTY(S_2)
2
        return TRUE
3
   else return FALSE
Queue-Full(Q)
   if STACK-FULL(S_1) and STACK-FULL(S_2)
2
        return TRUE
3
   else return FALSE
Engueue(Q, x)
   if Queue-Full(Q)
1
2
        error "overflow"
3
   else
4
        if Stack-Full(S_1)
5
             Transmit(S_1, S_2)
6
        PUSH(S_1, x)
Dequeue(Q)
   if Queue-Empty(Q)
2
        error "underflow"
3
   else
4
        if Stack-Empty(S_2)
             Transmit(S_1, S_2)
5
6
        Pop(S_2)
Transmit(S_1, S_2)
   if Stack-Empty(S_2)
1
2
        POUR(S_1, S_2)
3
   else
        T = \text{Creat-Stack}()
4
5
        POUR(S_2, T)
6
        POUR(S_1, T)
        POUR(T, S_2)
POUR(S_1, S_2)
    while not STACK-FULL(S_2)
        PUSH(S_2, POP(S_1))
```

^{*.} Creative Commons © 000 2014, Lawrence X. Amlord (颜世敏, aka 颜序). Email address: informlarry@gmail.com

In the worst case, an ENQUEUE or DEQUEUE operation is performed when stack S_1 is full while stack S_2 is empty. We must transfer at most n elements in S_1 to S_2 and they both take time O(n). However, we could armotize the cost of the transfering over all the ENQUEUE and DEQUEUE operations. So the average-case running time of ENQUEUE and DEQUEUE takes time O(1).