Calcul matriciel

Produits et puissances de matrices

▶ 1 Des produits, tout simplement

Calculer les produits AB et BA lorsque c'est possible :

1)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$;

2)
$$A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & -1 \\ 0 & 2 \\ -1 & 1 \end{pmatrix}$;

3)
$$A = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$
 et $B = (-1 \ 0 \ 3 \ 1)$.

▶ 2 Calcul efficace de puissances

Soit
$$A = \begin{pmatrix} 0 & 0 & 4 \\ 1 & 2 & 1 \\ 2 & 4 & -2 \end{pmatrix}$$
.

- 1) Exprimer A^3 en fonction de A.
- 2) Calculer A^9 et A^{81} .

⊳ 3

Soit $U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $V = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.

- 1) Calculer U^2 , V^2 , UV et VU.
- **2)** Déterminer U^n et V^n pour tout $n \in \mathbb{N}^*$.
- 3) Soit a et b deux réels et $M = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix}$. Calculer M^n pour tout $n \in \mathbb{N}^*$.

Puissances de matrices

- 1) Soit $A = \begin{pmatrix} 9 & 1 \\ -1 & -8 \end{pmatrix}$ et $B = \begin{pmatrix} -6 & 5 \\ -2 & 7 \end{pmatrix}$. A-t-on $(A+B)^2 = A^2 + 2AB + B^2$? Pourquoi?
- 2) Soit $N=\left(\begin{smallmatrix}0&1&1\\0&0&0\\0&1&0\end{smallmatrix}\right)$ et $A=-2\operatorname{I}_3+N$. Vérifier que $N^3=0$ puis calculer A^n pour tout $n\in\mathbb{N}$.
- **3)** Soit $M = \begin{pmatrix} -2 & 1 & 3 \\ 0 & -2 & -1 \\ 0 & 0 & -2 \end{pmatrix}$. Calculer M^n pour tout $n \in \mathbb{N}$.
- 4) Soit $A = -\frac{1}{9} \begin{pmatrix} \frac{7}{4} & -\frac{4}{8} & -\frac{1}{1} \\ -\frac{4}{4} & -\frac{1}{8} & -\frac{1}{8} \end{pmatrix}$. Calculer A^2 puis $(I_3 + A)^n$ pour tout $n \in \mathbb{N}$.
- **5)** Soit $n \in \mathbb{N}^*$, $x \in \mathbb{C}$. Soit $J = (1)_{1 \le i, j \le n}$ et $A = x \operatorname{I}_n + J$. Calculer J^p pour tout $p \in \mathbb{N}$ puis A^p .

⊳ 5

Soit $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$. Considérons

$$\mathscr{E} = \left\{ x \, I + y \, J, \, (x, y) \in \mathbb{R}^2 \right\}.$$

1) Montrer que & est stable par addition et produit de matrices, c'est-à-dire que :

$$\forall (A, B) \in \mathcal{E}^2, \quad A + B \in \mathcal{E} \text{ et } AB \in \mathcal{E}.$$

2) Résoudre les équations d'inconnue $X \in \mathcal{E}$:

$$X^2 = I$$
, $X^2 = 0$, $X^2 = X$.

Matrices inversibles

▶ 6 Des matrices à inverser

Dire si les matrices suivantes sont inversibles et, le cas échéant, calculer leur inverse.

1)
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 5 & -7 \\ 3 & -5 \end{pmatrix}$, $D = \begin{pmatrix} -1 & 3 \\ 6 & -8 \end{pmatrix}$;

2) $M_t = \begin{pmatrix} t & 2t \\ -1 & t \end{pmatrix}$ où $t \in \mathbb{R}$ est fixé;

▶ 7

Soit $M = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 3 & 3 \end{pmatrix}$.

- 1) Calculer M^2 et M^3 .
- 2) Montrer qu'il existe trois réels a, b, c tels que

$$M^3 = a M^2 + b M + c I_3$$
.

(on pourra raisonner par analyse-synthèse, et dans la phase d'analyse, identifier seulement les coefficients de la première ligne des matrices)

3) En déduire que M est une matrice inversible. Exprimer M^{-1} en fonction de M^2 , M et ${\rm I}_3$ puis la calculer explicitement.

8 ⊲

Soit $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$.

- 1) Calculer $(A + I_3)^3$.
- Pour n ∈ IN, calculez Aⁿ à l'aide de la formule du binôme de Newton.
- 3) Justifier que A est inversible et exprimer son inverse en fonction de I_3 , A et A^2 .

▶ 9

Soit N une matrice nilpotente de $\mathcal{M}_n(\mathbb{K})$: cela signifie qu'il existe un entier $k \in \mathbb{N}^*$ tel que $N^k = 0$.

- 1) Factorisez $I_n N^k$.
- 2) En déduire que $I_n N$ est inversible et donner une expression de son inverse en fontion de I_n et des puissances de N

▶ 10 Un ensemble de matrices isomorphe à €

Soit
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
 et $B = A^{T}$.

Soit $\mathcal{K} = \{ sA + tB, (s, t) \in \mathbb{R}^2 \}.$

- **1) a.** Calculer AB et BA. Que remarque-t-on? Exprimer ces deux matrices comme combinaison linéaire de A et B.
 - **b.** Montrer que $\mathscr K$ est stable par multiplication de matrices et que les matrices de $\mathscr K$ commutent entre elles

2) a. Montrer le théorème d'identification suivant : si s, t, s' et t' sont quatre réels, alors

$$sA + tB = s'A + t'B \iff \begin{cases} s = s' \\ t = t' \end{cases}$$

b. Montrer qu'il existe $E \in \mathcal{K}$ tel que

$$AE = EA = A$$
 et $BE = EB = B$.

c. Montrer ensuite que pour toute matrice $M \in \mathcal{K}$,

$$ME = EM = M$$
.

- 3) a. Soit $(s,t) \in \mathbb{R}^2$ quelconque. Exprimer le produit (sA+tB)(tA+sB) en fonction de E.
 - **b.** En déduire que, pour toute matrice $M\in\mathcal{K}$ non nulle, il existe une matrice $N\in\mathcal{K}$ telle que MN=NM=E.
 - c. Cette matrice est-elle unique?
- **4) a.** Déterminer une matrice $J \in \mathcal{K}$ telle que $J^2 = -E$.
 - **b.** Montrer que $\mathcal{K} = \{x E + y J, (x, y) \in \mathbb{R}^2\}.$
- 5) À toute matrice M=xE+yJ de \mathcal{K} , on associe le nombre complexe z=x+iy que l'on note f(M).
 - **a.** Montrer que pour tout couple $(M,N) \in \mathcal{K}^2$,

$$f(M+N) = f(M) + f(N)$$
 et $f(MN) = f(M)f(N)$.

b. Calculer f(A). En déduire les coefficients de A^n pour tout $n \in \mathbb{N}$.

Calcul sur les coefficients

▶ 11 Trace d'une matrice carrée

Pour toute matrice carrée M, on appelle **trace de** M et on note tr(M) la somme des coefficients diagonaux de M.

- 1) Lorsque $M=(m_{i,j})_{1\leqslant i,j\leqslant n}$, exprimer ${\rm tr}(M)$ à l'aide d'un signe somme.
- 2) Soit $A=(a_{i,j})$ et $B=(b_{i,j})$ deux matrices de $\mathcal{M}_n(\mathbb{K})$. Démontrer que

$$tr(A+B) = tr(A) + tr(B)$$
 et $\forall \lambda \in \mathbb{K}$, $tr(\lambda A) = \lambda tr(A)$.

- 3) Montrer qu'on a également tr(AB) = tr(BA).
- **4)** Montrer que, si P est inversible et que $B = P^{-1}AP$, alors tr(B) = tr(A).
- **5)** Soit $A = \begin{pmatrix} 1 & 1 & 2 \\ -2 & 3 & -1 \\ -1 & -2 & -2 \end{pmatrix}$ et $B = \begin{pmatrix} -4 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 3 & -2 \end{pmatrix}$. Existe-t-il une matrice P inversible telle que $B = P^{-1}AP$?
- **6)** Peut-on trouver des matrices A et B dans $\mathcal{M}_n(\mathbb{K})$ telles que $AB BA = I_n$? Si oui, les préciser.

▶ 12 Base canonique et centre de $\mathcal{M}_2(\mathbb{K})$

On introduit les quatre matrices de $\mathcal{M}_2(\mathbb{K})$ suivantes :

$$E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- 1) a. Montrer que la matrice $M = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$ est une combinaison linéaire des matrices $E_{i,j}$.
 - **b.** Soit $A = (a_{i,j}) \in \mathcal{M}_2(\mathbb{K})$. Montrer que A est combinaison linéaire des matrices $E_{i,j}$.
- **2)** Calculer $E_{i,j} E_{k,\ell}$ pour tous les couples (i,j) et (k,ℓ) possibles
- 3) Soit $(k,\ell) \in [1,2]^2$ fixé. Que contiennent les matrices $AE_{k,\ell}$ et $E_{k,\ell}A$? Écrire ces matrices en fonction des matrices $E_{i,j}$.

On considère maintenant que A est fixée de taille 2 et qu'elle vérifie :

$$\forall M \in \mathcal{M}_2(\mathbb{K}), \quad AM = MA.$$

- **4)** En utilisant la question précédente, montrer que les coefficients de *A* hors de la diagonale sont nuls et que les termes de la diagonale sont tous égaux.
- 5) Démontrer la réciproque, puis conclure : quelles sont les matrices de $\mathcal{M}_2(\mathbb{K})$ qui commutent avec toutes les autres ?