DÃĽTERMINANT D'UNE MATRICE DÃĽPENDANT D'UN PARAMÂĹTRE

Soit $n \in \mathbb{N}^*$. Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$ définie par

$$\begin{cases}
a_{ij} = -1 & \text{si} \quad j < i \\
a_{ij} = 0 & \text{si} \quad j = i \text{ c'est-à-dire } A_n = \begin{pmatrix}
0 & 1 & \cdots & 1 \\
-1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
-1 & \cdots & -1 & 0
\end{pmatrix}$$

Notation:

- On note I_n la matrice identité d'ordre n.
- Pour tout α de \mathbb{C} , on pose $M_n(\alpha) = A_n + \alpha I_n$ et $D_n(\alpha) = \det(M_n(\alpha))$.
- On note f_{α} l'endomorphisme de \mathbb{C}^n de matrice $M_n(\alpha)$ dans la base canonique.

Les parties I et II sont totalement indépendantes, et devront être traitées comme telles.

On note $u = (x_1, \dots, x_n)$ un vecteur quelconque de \mathbb{C}^n .

Pour tout k de $\{1, \dots, n\}$, on pose $\theta_k = \frac{(2k-1)\pi}{2n}$, $\omega_k = e^{2i\theta_k}$ et $\alpha_k = -i\cot \theta_k$

- 1. Montrer que l'égalité $f_{\alpha}(u) = 0$ équivaut au système $\begin{cases} (\alpha 1)x_k = (\alpha + 1)x_{k-1} \\ x_1 + \dots + x_{n-1} = \alpha x_n \end{cases}$ si $2 \leqslant k \leqslant n$ Vérifier que f_1 est un automorphisme de \mathbb{C}^n Vérifier que f_1 est un automorphisme de \mathbb{C}^n .
- 2. Pour tout α distinct de 1, on pose $q_{\alpha} = \frac{\alpha + 1}{\alpha 1}$
 - (a) Montrer que si $q_{\alpha}^n \neq -1$, alors f_{α} est un automorphisme de \mathbb{C}^n .
 - (b) Vérifier que $q_{\alpha}^n = -1 \iff \alpha \in \{\alpha_1, \dots, \alpha_n\}$
 - (c) Dans cette question, on suppose que $\alpha = \alpha_k$, avec $1 \le k \le n$. Montrer que Ker f_{α_k} est la droite engendrée par $u_k = (1, \omega_k, \omega_k^2, \cdots, \omega_k^{n-1})$.
 - (d) Préciser le rang de l'application f_{α} , suivant les valeurs de α .
- 3. On reprend ici les notations de la question précédente, et α est quelconque dans \mathbb{C} .
 - (a) Montrer que les vecteurs u_1, u_2, \cdots, u_n forment une base de \mathbb{C}^n .
 - (b) Préciser la matrice de f_{α} dans cette base.
 - (c) En déduire que le déterminant de f_{α} est égal à $\frac{(\alpha-1)^n+(\alpha+1)^n}{2}$

Partie II

Dans cette partie, on voit deux méthodes distinctes de calcul de $D_n(\alpha)$.

- 1. (a) Calculer $D_1(\alpha)$ et $D_2(\alpha)$. Montrer que si $n \ge 3$, alors $D_n(\alpha) - 2\alpha D_{n-1}(\alpha) + (\alpha^2 - 1)D_{n-2}(\alpha) = 0$.
 - (b) En déduire l'expression de $D_n(\alpha)$ pour tout n de \mathbb{N} et tout α de \mathbb{C} .
- 2. Pour tout $n \ge 1$, on note J_n la matrice de $\mathcal{M}_n(\mathbb{C})$ dont tous les coefficients valent 1. Pour tous complexes α et x, on pose $\Delta_n(\alpha, x) = \det(M_n(\alpha) + xJ_n)$.
 - (a) Montrer que $x \mapsto \det(M_n(\alpha) + xJ_n)$ est une fonction affine de la variable x.
 - (b) Retrouver l'expression de $D_n(\alpha)$ pour tout n de \mathbb{N} et tout α de \mathbb{C} .
- 3. (a) Montrer que si $D_n(\alpha) = 0$ alors $D_{n-1}(\alpha) \neq 0$.
 - (b) En déduire le rang de la matrice $M_n(\alpha)$ quand elle n'est pas inversible.
- 4. Dans cette question, on fixe $n \ge 1$, et on définit les θ_k et les α_k comme au début de la partie I. Montrer que les solutions de $D_n(\alpha) = 0$ sont les $\alpha_k = -i\cot n\theta_k$, avec $1 \le k \le n$.

DÃLTERMINANT D'UNE MATRICE DÃLPENDANT D'UN PARAMÃLTRE

Partie I

1. Soit U le vecteur-colonne représentant le vecteur u dans la base canonique de \mathbb{C}^n . Il s'agit de résoudre la système $M_n(\alpha)U=0$.

On applique les opérations $L_i \leftarrow L_i - L_{i+1}$, de i = 1 à i = n - 1

$$M_{n}(\alpha)U = 0 \iff \begin{cases} \alpha x_{1} + x_{2} + \dots + x_{n} &= 0 \\ -x_{1} + \alpha x_{2} + \dots + x_{n} &= 0 \end{cases}$$

$$\vdots$$

$$-x_{1} - x_{2} - \dots - x_{n-1} + \alpha x_{n} &= 0$$

$$(\alpha + 1)x_{1} + (1 - \alpha)x_{2} = 0$$

$$(\alpha + 1)x_{2} + (1 - \alpha)x_{3} = 0$$

$$\vdots$$

$$(\alpha + 1)x_{n-1} + (1 - \alpha)x_{n} = 0$$

$$-x_{1} - x_{2} - \dots - x_{n-1} + \alpha x_{n} = 0$$

On a donc l'équivalence $f_{\alpha}(u) = 0 \iff \begin{cases} (\alpha - 1)x_k = (\alpha + 1)x_{k-1} & \text{si} \quad 2 \leqslant k \leqslant n \\ x_1 + \dots + x_{n-1} = \alpha x_n \end{cases}$ Si $\alpha = 1$, le système précédent donne $\begin{cases} 2x_{k-1} = 0 & \text{si} \quad 2 \leqslant k \leqslant n \\ x_1 + \dots + x_{n-1} = x_n \end{cases}$ donc u = 0.

Autrement dit, l'endomorphisme f_1 est un automorphisme de \mathbb{C}^n .

2. (a) On sait que si $\alpha = 1$ alors $\operatorname{Ker} f_{\alpha} = \{0\}$.

Pour trouver les α tels que $\operatorname{Ker} f_{\alpha} \neq \{0\}$, on peut donc supposer $\alpha \neq 1$.

Les égalités $(\alpha - 1)x_k = (\alpha + 1)x_{k-1}$ $(2 \le k \le n)$ s'écrivent alors $x_k = q_\alpha x_{k-1}$.

Ces égalités donnent immédiatement : $\forall k \in [1, n], \ x_k = q_{\alpha}^{k-1} x_1$.

L'équation $x_1 + x_2 + \dots + x_{n-1} = \alpha x_n$ s'écrit alors $x_1 (1 + q_\alpha + \dots + q_\alpha^{n-2}) = \alpha q_\alpha^{n-1} x_n$. On note que $q_\alpha = \frac{\alpha + 1}{\alpha - 1} \neq 1$ et que réciproquement $\alpha = \frac{q_\alpha + 1}{q_\alpha - 1}$. Dans ces conditions :

ions:
$$x_1(1+q_\alpha+\dots+q_\alpha^{n-2}) = \alpha q_\alpha^{n-1} x_1 \iff x_1 \frac{q_\alpha^{n-1}-1}{q_\alpha-1} = \frac{(q_\alpha+1)q_\alpha^{n-1}}{q_\alpha-1} x_1$$

$$\iff (q_\alpha^n+1)x_1 = 0$$

En résumé, $f_{\alpha}(u) = 0 \iff u = x_1(1, q_{\alpha}, ..., q_{\alpha}^{n-1})$ avec $(q_{\alpha}^n + 1)x_1 = 0$.

On constate que si $q_{\alpha}^n \neq -1$, alors $x_1 = 0$, puis $x_2 = \dots = x_n = 0$ et donc f_{α} est un automorphisme de \mathbb{C}^n .

(b) Les racines n-ièmes de -1 sont les $e^{i\frac{(2k-1)\pi}{n}}=e^{2i\theta_k}=\omega_k$, avec $1\leqslant k\leqslant n$.

Ainsi $q_{\alpha}^n = -1 \iff \exists k \in \llbracket 1, n \rrbracket, q_{\alpha} = \omega_k.$ Mais $q_{\alpha} = \omega_k \iff \alpha = \frac{q_{\alpha} + 1}{q_{\alpha} - 1} = \frac{\omega_k + 1}{\omega_k - 1} = \frac{e^{2i\theta_k} + 1}{e^{2i\theta_k} - 1} = \frac{2\cos\theta_k}{2i\sin\theta_k} = -i\cot \theta_k.$ On obtient ainsi les $\alpha_k = -i\cot \theta_k$ pour $1 \leqslant k \leqslant n$. Ces solutions sont distinctes deux à deux car $0 < \theta_1 < \dots < \theta_n < \pi.$

- (c) On suppose $\alpha = \alpha_k$, avec $1 \leq k \leq n$. On a donc $q_{\alpha} = \omega_k$ et $q_{\alpha}^n = -1$. La question (a) donne alors : $f_{\alpha}(u) = -\omega_0 \iff u = x_1(1, \omega_k, ..., \omega_k^{n-1})$ avec $x_1 \in \mathbb{C}$. Ainsi Ker $f_{\alpha_k} = \mathbb{C}u_k$, où $u_k = (1, \omega_k, \omega_k^2, ..., \omega_k^{n-1})$.
- (d) Si α n'est pas dans l'ensemble $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ alors f_{α} est un automorphisme de \mathbb{C}^n et est donc une application de rang n.

Si $\alpha \in \{\alpha_1, ..., \alpha_n\}$, on sait que dim Ker $f_\alpha = 1$: le théorème de la dimension permet donc d'affirmer que f_α est de rang n-1.

3. (a) La matrice de $u_1, ..., u_n$ dans la base canonique est $P = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \omega_1 & \omega_2 & \cdots & \omega_n \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\$

Mais $\det P$ est un déterminant de Van der Monde.

DÃLTERMINANT D'UNE MATRICE DÃLPENDANT D'UN PARAMÃLTRE

Plus précisément, $\det P = \prod_{1 \leqslant j < k \leqslant n} (\omega_k - \omega_j)$. Mais $\omega_1, \omega_2, \cdots, \omega_n$ sont distincts deux à deux (ce sont les racines n-ièmes de -1.)

On en déduit det $P \neq 0$: les vecteurs u_1, \dots, u_n forment donc une base de \mathbb{C}^n .

(b) Pour tout k de $\{1, \dots, n\}$, on sait que $f_{\alpha_k}(u_k) = 0$.

Pour tout α de \mathbb{C} , on peut écrire : $f_{\alpha} = f_{\alpha_k} + (\alpha - \alpha_k) \mathrm{Id}$.

On en déduit $f\alpha(u_k)=(\alpha-\alpha_k)u_k$. Il en résulte que la matrice de f_α dans la base u_1,u_2,\cdots,u_n est une matrice diagonale, de coefficients diagonaux successifs $\alpha - \alpha_1, \ \alpha - \alpha_2, \cdots, \alpha - \alpha_n$.

(c) Le déterminant de l'endomorphisme f_{α} est le déterminant de la matrice de f_{α} dans n'importe quelle base

de
$$\mathbb{C}^n$$
. Il est bien sûr avantageux d'utiliser la base u_1, \dots, u_n dans laquelle la matrice de f_α est diagonale. On en déduit det $f_\alpha = \prod_{k=1}^n (\alpha - \alpha_k) = \prod_{k=1}^n \left(\alpha - \frac{\omega_k + 1}{\omega_k - 1}\right) = \prod_{k=1}^n \frac{\alpha + 1 - (\alpha - 1)\omega_k}{1 - \omega_k}$.

Les ω_k sont les racines n-èmes de -1, donc $x^n + 1 = \prod (x - \omega_k)$.

On en déduit d'abord $\prod_{k=1}^{n} (x - \omega_k) = 2$. De même, pour tout α distinct de 1, on trouve, toujours avec

$$q_{\alpha} = \frac{\alpha + 1}{\alpha - 1}$$

$$\prod_{k=1}^{n} (\alpha + 1 - (\alpha - 1)\omega_k) = (\alpha - 1)^n \prod_{k=1}^{n} (q_{\alpha} - \omega_k)$$
$$= (\alpha - 1)^n (q_{\alpha}^n + 1) = (\alpha + 1)^n + (\alpha - 1)^n$$

Remarquons que ce résultat est encore vrai si $\alpha=1$ car $\prod (\alpha+1)=2^n$

Ainsi pour tout α de \mathbb{C} , det $f_{\alpha} = \prod_{k=1}^{n} \frac{\alpha + 1 - (\alpha - 1)\omega_{k}}{1 - \omega_{k}} = \frac{(\alpha + 1)^{n} + (\alpha - 1)^{n}}{2}$

On se donne maintenant un indice $n \ge 3$. Dans le déterminant $D_n(\alpha)$, on retranche la deuxième ligne à la première puis la deuxième colonne à la première. On obtient :

$$D_{n}(\alpha) = \begin{vmatrix} \alpha & 1 & 1 & \cdots & \cdots & 1 \\ -1 & \alpha & 1 & \cdots & \cdots & 1 \\ -1 & -1 & \alpha & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \alpha & 1 \\ -1 & -1 & \cdots & \cdots & -1 & \alpha \end{vmatrix} = \begin{vmatrix} 2\alpha & 1 - \alpha & 0 & \cdots & \cdots & 0 \\ -1 & \alpha & 1 & \cdots & \cdots & 1 \\ -1 & \alpha & 1 & \cdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \alpha & 1 \\ -1 & -1 & \cdots & \cdots & -1 & \alpha \end{vmatrix}$$

$$= \begin{vmatrix} \alpha + 1 & 1 - \alpha & 0 & \cdots & \cdots & 0 \\ -1 - \alpha & \alpha & 1 & \cdots & \cdots & 1 \\ 0 & -1 & \alpha & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \alpha & 1 \\ 0 & -1 & \cdots & \cdots & -1 & \alpha \end{vmatrix}$$

DÃĽTERMINANT D'UNE MATRICE DÃĽPENDANT D'UN PARAMÂĹTRE

On développe maintenant par rapport à la première ligne. On obtient :

$$D_n(\alpha) = 2\alpha D_{n-1}(\alpha) + (\alpha - 1) \begin{vmatrix} -\alpha - 1 & 1 & \cdots & \cdots & 1 \\ 0 & \alpha & 1 & \cdots & 1 \\ 0 & -1 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \alpha & 1 \\ 0 & -1 & \cdots & -1 & \alpha \end{vmatrix}$$

Il reste à développer le dernier déterminant par rapport à la première colonne.

On trouve finalement : $D_n(\alpha) = 2\alpha D_{n-1}(\alpha) - (\alpha^2 - 1)D_{n-2}(\alpha)$.

En conclusion : $\forall n \geq 3, \ \forall \alpha \in \mathbb{C}, \quad D_n(\alpha) - 2\alpha D_{n-1}(\alpha) + (\alpha^2 - 1)D_{n-2}(\alpha) = 0.$

(b) Fixons α dans \mathbb{C} , et notons $u_n = D_n(\alpha)$, pour tout n de \mathbb{N}^n . La suite $(u_n)_{n \geqslant 1}$ vérifie la récurrence linéaire : $\forall n \ge 3, u_n - 2\alpha u_{n-1} + (\alpha^2 - 1)u_n = 0.$

On peut donner un sens à u_0 en écrivant $u_2\alpha u_1 + (\alpha^2 - 1)u_0 = 0$.

Il en résulte $\alpha^2 + 1 - 2\alpha^2 + (\alpha^2 - 1)u_0 = 0$ et on voit que $u_0 = 1$ convient. L'équation caractéristique est $t^2-2\alpha t+\alpha^2-1=0$ admet deux solutions distinctes $\alpha+1$ et $\alpha-1$. Il existe donc λ et μ dans $\mathbb C$ tels que : $\forall n \geqslant 0, \quad u_n = \lambda(\alpha + 1)^n + \mu(\alpha - 1)^n.$

Enfin

Enfin
$$\begin{cases} u_0 = 1 \\ u_1 = \alpha \end{cases} \iff \begin{cases} \lambda + \mu = 1 \\ \lambda(\alpha - 1) + \mu(\alpha + 1) = \alpha \end{cases} \iff \begin{cases} \lambda + \mu = 1 \\ -\lambda + \mu = 0 \end{cases} \iff \lambda = \mu = \frac{1}{2}$$
 Ainsi, pour tout $n \geqslant 1$ et tout α de \mathbb{C} : $D_n(\alpha) = \frac{(\alpha + 1)^n + (\alpha - 1)^n}{2}$.

2. (a) Notons $C_1, C_2, ..., C_n$ les colonnes de $M_n(\alpha)$, considérées comme vecteurs de C_n .

Notons U le vecteur de C_n de composantes toutes égales à 1.

Avec ces notations, $\Delta_n(\alpha, x) = \det C_1 + xU, C_2 + xU, ..., C_n + xU$. On sait que l'application déterminant (ici dans la base canonique de C_n) est multilinéaire alternée. On peut donc développer cette expression de $\Delta_n(\alpha, x)$, en ne conservant que les déterminants où le vecteur U apparaît au plus une fois (tous les autres déterminants obtenus dans le développement étant nuls.) On trouve

$$\Delta_n(\alpha, x) = \det(C_1, C_2, ..., C_n) + x \sum_{j=1}^n \det(C_1, ..., C_{j-1}, U, C_{j+1}, ..., C_n)$$

La fonction $x \mapsto \Delta_n(\alpha, x)$ s'écrit donc $\overline{\Delta_n(\alpha, x)} = \lambda x + \mu$, avec (λ, μ)

C'est effectivement une fonction affine. On remarque bien sûr que $\mu = \Delta_n(\alpha, 0) = D_n(\alpha)$.

(b) Avec x = -1 la matrice $M_n(\alpha)$ est triangulaire inférieure, et ses coefficients diagonaux sont tous égaux à $\alpha - 1$. Il en résulte $\Delta_n(\alpha, -1) = (\alpha - 1)^n$.

De même, avec x=1 on trouve $\Delta_n(\alpha,1)=(\alpha+1)^n$. En ayant posé $\Delta_n(\alpha,x)=\lambda x+\mu$ cela donne les égalités $\begin{cases} \mu-\lambda=(\alpha-1)^n\\ \mu+\lambda=(\alpha+1)^n \end{cases}$

égalités
$$\begin{cases} \mu - \lambda = (\alpha - 1)^n \\ \mu + \lambda = (\alpha + 1)^n \end{cases}$$

Il en résulte $D_n(\alpha) = \mu \frac{(\alpha+1)^n + (\alpha-1)^n}{2}$

3. (a) En utilisant l'expression déjà obtenue pour $D_n(\alpha)$, on trouve $\begin{cases} D_n(1) = 2^{n-1} \\ D_n(-1) = (-1)^n 2^{n-1} \end{cases}$. Supposons par l'absurde que $D_n(\alpha) = D_{n-1}(\alpha) = 0$. Nécessairement $\alpha \neq \pm 1$. La relation $D_n(\alpha) = 0$.

$$2\alpha D_{n-1}(\alpha) - (\alpha^2 - 1)D_{n-2}(\alpha)$$
 donne alors $D_{n-2}(\alpha) = 0$. De proche en proche,
$$\begin{cases} D_1(\alpha) = 0 \\ D_2(\alpha) = 0 \end{cases}$$
 donc

$$\begin{cases} \alpha = 0 \\ \alpha^2 + 1 = 0 \end{cases}$$
 ce qui est absurde.

On en déduit que si $D_n(\alpha) = 0$, alors $D_{n-1}(\alpha) \neq 0$.

(b) On suppose que $M_n(\alpha)$ n'est pas inversible, c'est-à-dire que $D_n(\alpha)$ est nul. On sait qu'alors le déterminant $D_{n-1}(\alpha)$ est non nul. Mais $D_{n-1}(\alpha)$ n'est autre que le déterminant extrait de la matrice $M_n(\alpha)$ formé

DÃĽTERMINANT D'UNE MATRICE DÃĽPENDANT D'UN PARAMÃĹTRE

par l'intersection des n-1 premières lignes et des n-1 premières colonnes. Cela implique que les n-1premières colonnes de $M_n(\alpha)$ sont indépendantes. Il en résulte que si $M_n(\alpha)$ n'est pas de rang n, alors elle est de rang n-1.

4. Les racines *n*-ièmes de -1 sont les $e^{i\frac{(2k-1)\pi}{n}} = e^{2i\theta_k} = \omega_k$, avec $1 \leqslant k \leqslant n$.

Ainsi $q_{\alpha}^{n} = -1 \iff \exists k \in \llbracket 1, n \rrbracket, q_{\alpha} = \omega_{k}.$ Mais $q_{\alpha} = \omega_{k} \iff \alpha = \frac{q_{\alpha} + 1}{q_{\alpha} - 1} = \frac{\omega_{k} + 1}{\omega_{k} - 1} = \frac{e^{2i\theta_{k}} + 1}{e^{2i\theta_{k}} - 1} = \frac{2\cos\theta_{k}}{2i\sin\theta_{k}} = -i\cot\theta_{k}.$ On obtient ainsi les $\alpha_{k} = -i\cot\theta_{k}$ pour $1 \leqslant k \leqslant n$.

