

Maximale s-t-Flüsse in Planaren Graphen

Vorlesung "Algorithmen für planare Graphen" · June 1, 2015 Ignaz Rutter

Institut für Theoretische Informatik · Prof. Dr. Dorothea Wagner

Maximales Flussproblem

Gegeben:

- Gerichteter Graph G = (V, E), $rev(u \rightarrow v) := (v \rightarrow u)$
- $c: E \to \mathbb{R},$

 $(OE rev(e) \in E \quad \forall e \in E)$

 $s, t \in V$

Gesucht:

Zulässiger Fluss ϕ mit maximalem $\sum_{s\to v\in E} \phi(s\to v)$.

Maximales Flussproblem

Gegeben:

- Gerichteter Graph G = (V, E), $rev(u \rightarrow v) := (v \rightarrow u)$
- $c: E \to \mathbb{R}$

$$(OE rev(e) \in E \quad \forall e \in E)$$

 \bullet $s, t \in V$

Gesucht:

Zulässiger Fluss ϕ mit maximalem $\sum_{s\to v\in E} \phi(s\to v)$.

 $\phi \colon E \to \mathbb{R} \text{ st-Fluß}$:

 ϕ zulässig: $\phi(e) \leq c(e)$ für alle $e \in E$

Parametrische Kürzeste Wege

Parametrisches Kürzeste-Wege-Problem:

Gegeben: Gerichteter Graph $G = (V, E), E' \subseteq E, c \colon E \to \mathbb{R}$

 $c(\lambda, e) = c(e) - \lambda$ für $e \in E'$, $c(\lambda, e) = c(e)$ für $e \notin E'$

Gesucht: Größtes λ mit G enthält bzgl. $c(\lambda, \cdot)$ keine negativen Kreise.

Lösbar in Zeit $O(nm \log n)$ [Karp, Orlin] bzw. $O(n^2 \log n)$ [Young et al.]

Parametrische Kürzeste Wege

Parametrisches Kürzeste-Wege-Problem:

Gegeben: Gerichteter Graph $G = (V, E), E' \subseteq E, c : E \to \mathbb{R}$ $c(\lambda, e) = c(e) - \lambda$ für $e \in E', c(\lambda, e) = c(e)$ für $e \notin E'$ Gesucht: Größtes λ mit G enthält bzgl. $c(\lambda, \cdot)$ keine negativen Kreise.

Lösbar in Zeit $O(nm \log n)$ [Karp, Orlin] bzw. $O(n^2 \log n)$ [Young et al.]

Idee:

- Betrachte kürzeste-Wege-Baum bzgl. $c(\lambda, \cdot)$ bei bel. Startknoten s.
- lacksquare Erhöhe λ schrittweise.
- $\operatorname{dist}(\lambda, v) \leq \operatorname{dist}(\lambda, u) + c(\lambda, u \rightarrow v)$
- Kritische Stelle bei Gleichheit, $u \to v$ kommt in den Baum, ersetzt $u' \to v$.
- Jeder Pivot-Schritt erhöht Anzahl Kanten in E' auf einem s-v-Pfad $\rightsquigarrow O(n^2)$ Pivot-Schritte

Dual-Graphen, gerichtet(!)

G = (V, E) gerichtet

Dualgraph: Wie gehabt, $(u \to v)^*$ kreuzt $u \to v$ von links nach rechts!

[Erickson'10]

Gerichteter Dual-Graph und Gerichtete Schnitte

Gerichteter (s, t)-Schnitt:

Kantenmenge C, sodass jeder gerichtete st-Pfad Kante aus C enthält.

Gerichteter Dual-Graph und Gerichtete Schnitte

Gerichteter (s, t)-Schnitt:

Kantenmenge C, sodass jeder gerichtete st-Pfad Kante aus C enthält.

Gerichteter (s, t)-Schnitt in G

gerichteter Kreis in G^* , der s^* und t^* trennt.

Gerichteter Dual-Graph und Gerichtete Schnitte

Gerichteter (s, t)-Schnitt:

Kantenmenge C, sodass jeder gerichtete st-Pfad Kante aus C enthält.

Gerichteter (s, t)-Schnitt in G

=

gerichteter Kreis in G^* , der s^* und t^* trennt.

Kantenmenge $C \subseteq E$ Kozykel

 \Rightarrow

 C^{\star} einfacher gerichter Kreis

Kozykel und st-Schnitte

P beliebiger gerichteter Pfad von s nach t.

Definiere $\pi \colon E \to \mathbb{R}$, Einheitsfluß auf P

$$\pi(e) \coloneqq \begin{cases} 1 & e \in P \\ -1 & \text{rev}(e) \in P \\ 0 & \text{sonst} \end{cases}$$

Für
$$E' \subseteq E$$
 definiere: $\pi(E') := \sum_{e \in E'} \pi(e)$

Kozykel und st-Schnitte

P beliebiger gerichteter Pfad von s nach t.

Definiere $\pi \colon E \to \mathbb{R}$, Einheitsfluß auf P

$$\pi(e) \coloneqq \begin{cases} 1 & e \in P \\ -1 & \text{rev}(e) \in P \\ 0 & \text{sonst} \end{cases}$$

Für
$$E' \subseteq E$$
 definiere: $\pi(E') := \sum_{e \in E'} \pi(e)$

Lemma

Für jeden Kozykel C gilt: $\pi(C) \in \{-1, 0, 1\}$

$$\pi(C) = 1 \Leftrightarrow C \text{ ist } (s, t)\text{-Schnitt.}$$

Betrachte Fluß von λ auf P

Setze $\phi := \lambda \cdot \pi$

Betrachte Residual-Netzwerk $G_{\lambda} := G_{\lambda \cdot \phi}$

Das ist G mit residualer Kapazitätsfunktion $c(\lambda, e) := c(e) - \lambda \cdot \pi(e)$

 G_{λ}^{\star} : Dual-Graph mit e^{\star} hat Kosten $c(\lambda, e^{\star}) := c(\lambda, e)$.

Betrachte Fluß von λ auf P

Setze $\phi := \lambda \cdot \pi$

Betrachte Residual-Netzwerk $G_{\lambda} := G_{\lambda \cdot \phi}$

Das ist G mit residualer Kapazitätsfunktion $c(\lambda, e) := c(e) - \lambda \cdot \pi(e)$

 G_{λ}^{\star} : Dual-Graph mit e^{\star} hat Kosten $c(\lambda, e^{\star}) := c(\lambda, e)$.

Lemma

G besitzt gültigen s-t-Fluß mit Wert λ

 \Leftrightarrow

 G_{λ}^{\star} enthält keinen negativen Kreis

Betrachte Fluß von λ auf P

Setze $\phi := \lambda \cdot \pi$

Betrachte Residual-Netzwerk $G_{\lambda} := G_{\lambda \cdot \phi}$

Das ist G mit residualer Kapazitätsfunktion $c(\lambda, e) := c(e) - \lambda \cdot \pi(e)$

 G_{λ}^{\star} : Dual-Graph mit e^{\star} hat Kosten $c(\lambda, e^{\star}) := c(\lambda, e)$.

Lemma

G besitzt gültigen s-t-Fluß mit Wert λ

 \Leftrightarrow

 G_{λ}^{\star} enthält keinen negativen Kreis

 \rightsquigarrow parametrisches Kürzeste-Wege-Problem mit Koeffizienten -1, 0, 1

Algorithmus für st-planare Graphen

Graph G st-planar wenn G sich so einbetten lässt, dass s und t an gemeinsamer Facette.

Satz

Ein maximaler st-Fluss in einem st-planaren Graphen kann in $O(n \log n)$ Zeit berechnet werden.

Algorithmus für st-planare Graphen

Graph G st-planar wenn G sich so einbetten lässt, dass s und t an gemeinsamer Facette.

Satz

Ein maximaler st-Fluss in einem st-planaren Graphen kann in $O(n \log n)$ Zeit berechnet werden.

In planaren Graphen können kürzeste Wege in O(n) Zeit berechnet werden. [Henzinger et al. '97]

 \Rightarrow Laufzeit lässt sich auf O(n) verbessern.

Der Allgemeine Fall

Lemma

G besitzt gültigen s-t-Fluß mit Wert λ

 \Leftrightarrow

 G_{λ}^{\star} enthält keinen negativen Kreis

Löse also spezielles parametrisches Kürzeste-Wege-Problem Koeffizienten -1, 0, 1

Der Allgemeine Fall

Lemma

G besitzt gültigen s-t-Fluß mit Wert λ

 \Leftrightarrow

 G_{λ}^{\star} enthält keinen negativen Kreis

Löse also spezielles parametrisches Kürzeste-Wege-Problem Koeffizienten -1, 0, 1

Verwalte Kürzeste-Wege-Baum T_{λ} in G_{λ}^{\star} mit Wurzel o. PlanarMaxFlow(G,c,s,t)

- Berechnet T_0
- Verwalte T_{λ} , während λ kontinuierlich von 0 bis λ_{\max} läuft.
- Berechne $\phi(\lambda_{\mathsf{max}},\cdot)$ aus $T_{\lambda_{\mathsf{max}}}$.

Speichere Baum mittels Vorgängerfunktion $\operatorname{pred}(\mathbf{p}, \lambda)$. Duale Kante e^* straff bei λ : \Leftrightarrow slack(λ, e^*) = 0.

Speichere Baum mittels Vorgängerfunktion $pred(\mathbf{p}, \lambda)$.

Duale Kante e^* straff bei λ : \Leftrightarrow slack(λ, e^*) = 0.

Außer bei kritischen λ -Werten: e^* straff $\Leftrightarrow e^*$ in T_{λ}

Bei kritischen Werten:

Duale Nichtbaumkante $p \rightarrow q$ wird straff.

 $\leadsto p \to q \text{ ersetzt pred}(\lambda, q) \to q$

Speichere Baum mittels Vorgängerfunktion $pred(\mathbf{p}, \lambda)$.

Duale Kante e^* straff bei λ : \Leftrightarrow slack(λ, e^*) = 0.

Außer bei kritischen λ -Werten: e^* straff $\Leftrightarrow e^*$ in T_{λ}

Bei kritischen Werten:

Duale Nichtbaumkante $p \rightarrow q$ wird straff.

Pivotschritt

 $\leadsto p \to q \text{ ersetzt pred}(\lambda, q) \to q$

Speichere Baum mittels Vorgängerfunktion $pred(\mathbf{p}, \lambda)$.

Duale Kante e^* straff bei λ : \Leftrightarrow slack(λ, e^*) = 0.

Außer bei kritischen λ -Werten: e^* straff $\Leftrightarrow e^*$ in T_{λ}

Bei kritischen Werten:

Duale Nichtbaumkante $p \rightarrow q$ wird straff.

Pivotschritt

 $\leadsto p \to q \text{ ersetzt pred}(\lambda, q) \to q$

Lemma

 λ_{\max} ist erster kritischer Wert von λ , dessen Pivot einen gerichteten Kreis in T_{λ} erzeugt.

Speichere Baum mittels Vorgängerfunktion $pred(\mathbf{p}, \lambda)$.

Duale Kante e^* straff bei λ : \Leftrightarrow slack(λ, e^*) = 0.

Außer bei kritischen λ -Werten: e^* straff $\Leftrightarrow e^*$ in T_{λ}

Bei kritischen Werten:

Duale Nichtbaumkante $p \rightarrow q$ wird straff.

Pivotschritt

 $\leadsto p \to q \text{ ersetzt pred}(\lambda, q) \to q$

Lemma

 λ_{\max} ist erster kritischer Wert von λ , dessen Pivot einen gerichteten Kreis in T_{λ} erzeugt.

Primale Kante e ist locker wenn weder e^* noch rev (e^*) straff.

 L_{λ} : lockere Kanten

Außer bei kritischen Werten: L_{λ} Spannbaum von G.

Speichere Baum mittels Vorgängerfunktion $pred(\mathbf{p}, \lambda)$.

Duale Kante e^* straff bei λ : \Leftrightarrow slack(λ, e^*) = 0.

Außer bei kritischen λ -Werten: e^* straff $\Leftrightarrow e^*$ in T_{λ}

Bei kritischen Werten:

Duale Nichtbaumkante $p \rightarrow q$ wird straff.

Pivotschritt

 $\leadsto p \to q \text{ ersetzt pred}(\lambda, q) \to q$

Lemma

 λ_{\max} ist erster kritischer Wert von λ , dessen Pivot einen gerichteten Kreis in T_{λ} erzeugt.

Primale Kante e ist locker wenn weder e^* noch rev (e^*) straff.

 L_{λ} : lockere Kanten

Außer bei kritischen Werten: L_{λ} Spannbaum von G.

Lemma

 λ_{\max} ist erster kritischer Wert von λ , dessen Pivot L_{λ} unzusammenhängend macht.

Duale Kante aktiv wenn slack mit λ abnimmt.

 L_{λ} enthält eindeutigen st-Pfad LP_{λ} .

Lemma

Duale Kante e^* aktiv \Leftrightarrow e Kante von LP_{λ} .

PlanarMaxFlow(G,c,s,t)

while s,t in selber Komponente von L do

$$LP \leftarrow$$
 st-Pfad in L
 $p \rightarrow q \leftarrow$ Kante in LP^* mit minimalem Schlupf $\delta \leftarrow$ slack $(p \rightarrow q)$
for jede Kante e in LP do
 $|$ slack $(e^*) \leftarrow$ slack $(e^*) - \delta$
 $|$ slack $(rev(e^*)) \leftarrow$ slack $(rev(e^*)) + \delta$
end
Entferne $(p \rightarrow q)^*$ aus L
if $q \neq o$ then
 $|$ Füge $(\operatorname{pred}(q) \rightarrow q)^*$ in L ein
end
 $\operatorname{pred}(q) \leftarrow p$
d
 $\operatorname{pred}(q) \leftarrow p$

end

for jede Kante e do

$$\blacksquare(e) \leftarrow c(e) - \operatorname{slack}(e^*)$$

end

PlanarMaxFlow(G,c,s,t)

Initialisiere Spannbaum L, Vorgänger und Schlupfvariablen.

Karlsruher Institut für Technologie

while s,t in selber Komponente von L do

$$LP \leftarrow \text{st-Pfad in } L$$

 $p \rightarrow q \leftarrow \text{Kante in } LP^* \text{ mit minimalem Schlupf}$

Datenstruktur Top-Tree verwaltet dynamischen Wald L_{λ} . Erlaubt folgende Operationen mit $O(\log n)$ Zeit:

- Löschen und Einfügen von Kanten
- Anfragen ob zwei Knoten in selber Zusammenhangskomponente
- Finden des kleinsten Gewichts auf einem Pfad
- Modifizieren aller Gewichte auf einem Pfad um denselben Wert

$$pred(q) \leftarrow p$$

end

for jede Kante e do

$$\mathbf{w}(e) \leftarrow c(e) - \operatorname{slack}(e^{\star})$$

end

PlanarMaxFlow(G,c,s,t)

while s,t in selber Komponente von L do

 $O(\log n)$

 $LP \leftarrow \mathsf{st}\text{-}\mathsf{Pfad} \;\mathsf{in}\; L$

 $p \rightarrow q \leftarrow$ Kante in LP^* mit minimalem Schlupf

 $O(\log n)$

 $\delta \leftarrow \operatorname{slack}(p \rightarrow q)$

for jede Kante e in LP do

 $\operatorname{slack}(e^*) \leftarrow \operatorname{slack}(e^*) - \delta$

 $O(\log n)$

 $\operatorname{slack}(\operatorname{rev}(e^*)) \leftarrow \operatorname{slack}(\operatorname{rev}(e^*)) + \delta$

end

Entferne $(p \rightarrow q)^*$ aus L

 $O(\log n)$

if $q \neq o$ then

Füge $(\operatorname{pred}(q) \to q)^*$ in L ein

 $O(\log n)$

end

 $pred(q) \leftarrow p$

end

for jede Kante e do

 $\blacksquare(e) \leftarrow c(e) - \operatorname{slack}(e^*)$

O(n)

end

Laufzeit

- Iteration lässt sich in $O(\log n)$ Zeit implementieren mittels top-trees
- Spezielle Struktur $\Rightarrow O(n)$ Pivot-Schritte, (ohne Beweis) d.h. O(n) Durchläufe der while-Schleife
- \rightsquigarrow Gesamtlaufzeit $O(n \log n)$

Laufzeit

- Iteration lässt sich in $O(\log n)$ Zeit implementieren mittels top-trees
- Spezielle Struktur $\Rightarrow O(n)$ Pivot-Schritte, (ohne Beweis) d.h. O(n) Durchläufe der while-Schleife
- \rightsquigarrow Gesamtlaufzeit $O(n \log n)$

siehe

"Maximum Flows and Parametric Shortest Paths in Planar Graphs", Jeff Erickson, SODA'10

Algorithmus kann als iterative Augmentierung entlang links-liegendster Pfade aufgefasst werden.