16. Množiny, relace a zobrazení

Množinou rozumíme souhrn objektú, které jsou vymezeny tak, že o každém prvku lze rozhodnout, zda do souhrnu patří nebo nepatří. Objekty, ktoré do souhrnu patří nazývame prvky množiny. Množinu nejčasteji zapisujeme veľkým písmenom např. M a jej prvky malým písmenem např m1. To, že prvek m1 patří do množiny M zapisujeme m1 ∈ M. Nepatří li prvek potom m1 ∉ M.

Množina, která:

- neobsahuje žádný prvek, se nazýva prázdná množina a označujeme ji symbolem ∅
- je zapísaná {⊘} je množina obsahující prázdnou množinu
- obsahuje alespoň jeden prvek, je množina neprázdná
- obsahuje konečný počet prvkú, nazývame konečnými množinami narozdiel od nekonnečných množin které mají nekonečný počet prvkú.

Množinu vymezujeme **výčtem prvkú** nebo predikátem(**charakteristickou vlastností**). Charakteristickou vlastností prvkú dané množiny je vlastnost, kterou mají všechny prvky dané množiny a kterou nemají prvky, jež do množiny nepatří. Množinu M s danou char. vlastností zapisujeme v tvaru $M = \{x \in D : S(x)\}$, kde D je definičný obor, potom $M = \{x \in N : 5 < x < 10\}$ značí množinu $M = \{6,7,8,9\}$. Počet prvkú konečné množiny nazývame **mohutnost** a značíme symbolem |M|. Jestliže S je množina, jejíž prvky jsou množiny nazývame ji **systémem množin**.

Základné operace množin:

- sjednocení množin $X \cup Y = \{x | x \in X \lor x \in Y\}$
- prúnik množin $X \cap Y = \{x | x \in X \land x \in Y\}$
- rozdíl množin $X Y = \{x | x \in X \land x \notin Y\}$
- symetrický rozdíl množin $X \div Y = (X Y) \cup (Y X)$
- rownost množin $X = Y \Leftrightarrow \forall x (x \in X \Leftrightarrow x \in Y)$
- podmnožina $X \subseteq Y \Leftrightarrow \forall x (x \in X \Leftrightarrow x \in Y)$
- vlastní podmnožina $X \subset Y \Leftrightarrow (X \subseteq Y \land X \neq Y)$

Prázdná množina je podmnožinou každé množiny a X je vždy podmnožinou X Je li $Y \subseteq X$, píšeme $\overline{Y} = X - Y$ a nazývame **doplňkem** nebo komplementem množiny Y v množine X Množina obsahuje neuspořádaný soubor prvkú. Preto dvě množiny $X = \{1,2\}$ a $Y = \{2,1,2\}$ jsou stejné. Stejně tak nás nezajímají duplicitní prvky. A preto |X| = |Y| = 2. Pokiaľ $Z = \{1,2,\{3,4\}\}$ potom |Z| = 3. **Potenční množina** je množina všech podmnožin dané množiny. Značí se obvykle P(M) alebo 2^M . Príklad $M = \{1,2,3\}$ potom $P(M) = \{\emptyset, M, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$. Vztahy mezi množinami a operace s množinami znázorňujeme pomocí vénových diagramú, ve kterých množiny představují kruhy...

Pro množinové opera platia pravidlá:

```
1.komutativní zákon Y \cup X = X \cup Y, ....
2.asociativní X \cup (Y \cup Z) = (X \cup Y) \cup Z, ....
3.distributivní X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z), ...
4.de morganova pravidla \overline{X \cup Y} = \overline{X} \cap \overline{Y},....
```

Uspořádanou dvojica (x,y) prvku x,y ∈ X nazývame dvojici, u které záleží na pořadí prvkú x, y pričemž prvek x je první člen a prvek y druhý člen dvojice (x,y), pričom $x \neq y$ a $(x,y) \neq (y,x)$. Obecně mužeme zavíst uspořádanou n-tici prvku x,y,z...a ako n-ticu (x,y,z....a)..

Kartézským súčinom $X \times Y$ neprázdných množin X,Y (v tomto poradi) nazývame množinu všetkých usporiadaných dvojic (x,y) kde $x \in X$, $y \in Y$. Zapisujeme $X \times Y = \{(x,y) : x \in X \land y \in Y\}$. Je li alespoň jedna z množin X, Y prázdna potom $X \times Y = \emptyset$. Je li X = Y, nazveme takýto součin kartézskou mocninou množiny X, označujeme X^2 . Kartézsky součin X × Y není komutativní operací, protože obecně platí $X \times Y \neq Y \times X$ pokiaľ $X \neq Y$. Obecně lze zavést kartézsky součin $X \times Y \times Z$... jako množinu všech uspořádaných n-tic (x,y,...z) kde $x \in X, y \in Y, \dots$ Necht $X = \{x_1, x_2\}, Y = \{y_1, y_2, y_3\}$ potom $X \times Y = \{(x_1, y_1)(x_1, y_2)(x_1, y_3)(x_2, y_1)(x_2, y_2)(x_2, y_3)\}$.

Relace oběcne vyjadruje vztah mezi objekty. Binární relací mezi libovolnými neprázdnymi množinami X,Y nazývame podmnožinu R kartézského součinu teda $R \subseteq X \times Y$ (binární relace z X do Y). Je li $X = Y, R \subseteq X \times Y$ hovoříme o binární relaci na množine X. Vztah $(x, y) \in R$, zapisujeme ve tvaru xRy (infix) nebo R(x, y) (prefix).

Buď $R \subseteq X \times X$ relace na X. Řekneme, **že R je**

• reflexivní, jestliže $(x, x) \in R$ pro každé $x \in X$

teda $xRx \ \forall x \in X$

• symetrická, jestliže platí implikace $(x, y) \in R \Rightarrow (y, x) \in R \forall$

teda $xRy \Rightarrow yRx \ \forall x,y \in X$

• antisymetrická, jestliže platí $[(x,y) \in R \land (y,x) \in R] \Rightarrow x = y$ teda $xRy \land yRx \Rightarrow x = y \ \forall x,y \in X$

• tranzitivní, jestliže platí $[(x,y) \in R \land (y,z) \in R] \Rightarrow (x,z) \in R$

teda $xRy \land yRz \Rightarrow xRz \ \forall x, y, z \in X$

• a ďaľšie ako ireflexivná, suvislá, trichotomická,....

Dále, relaci R nazveme ekvivalencí na množine X, je li současne reflexivní, symetrická i tranzitivní. Podobně, relace R se nazýva částečné uspořádání na množine X, je-li současně reflexivní, antisymetrická a tranzitívní. Nech $R \subseteq X \times Y, S \subseteq YxZ$ sú relace. Složením relací R,S nazývame relaci $S \circ R = \{(x,z) | \exists y \in Y, \ \check{z}e\ (x,y) \in R \land (y,z) \in S\}$, takúto relaci čteme "S po R". Buď X = {1, 2, 3, 4}, Y = {a, b,c} a Z = {t; u; v;w}. Nech R = {(1; a); (1; b); (2; b); (3; c)} a S = $\{(a; u); (a; v); (b; t); (c; t); (c; w)\}$. Pak S \circ R = $\{(1; u); (1; v); (1; t); (2; t); (3; t); (3; w)\}$.

Majme množinu X a uspořádaní δ , říkame že (X, δ) je **uspořádaná množina.**

Uvažujme množinu M a její Δ soubor podmnožin množiny M. Δ obsahuje množiny A,B,C,D v nasledujícím obrázku, potom ({M,A,B,C,D}, ⊂) je uspořádaná množina. Uspořádanú množinu môžeme zobraziť **hasseovým diagramom**(vpravo). Pokiaľ $M = \cup \Delta$ a súbor Δ je po dvou disjunktní(to jest že libovolné dvě množiny z Δ majú prázdny prienik, nazývasa sa Δ rozklad na množine M.

Uspořádaná množina, ve které nejsou nesrovnatelné prvky, se nazývá řetezec resp. lineárne usporádaná množina. Např ($\{1,2,3,4\},\leq$) je řetezec, také (N,\leq) je řetezec. Bud (M,\leq) usporádaná množina, a, b \in M. Rekneme, že b pokrývá a, jestliže platí a ≤ b a neexistuje x ∈ M tak, aby platilo a ≤ x≤ b. Prvek a ∈ M nazveme **suprémem** množiny A, jestliže $\forall x \in A : x \le a$. Infinom je zas $a \le x$.

Zobrazení(funkce):

Zobrazení je v matematice předpis, jak přiřazovat prvkům nějaké množiny jednoznačně prvky obecně jiné množiny. Pojem zobrazení má většinou stejný význam jako pojem funkce. Zobrazení se definuje ako $f: A \to B$, kde A je def. obor alebo dom(f) a B je oborem hodnot.

Nechť $F \subseteq X \times Y$ je relace pro kterou platí $\forall x \in X \exists ! y \in Y : (x,y) \in F$ neboli ke každému $x \in X$ existuje práve jedno $y \in Y$, pro které je $(x,y) \in F$. Potom řekneme, že F je zobrazení z A do B a píšeme $F: X \to Y$, y = F(x), x se nazýva argument funkce F, y funkční hodnota. F1 = {(a1, b1), (a1, b2), (a2, b1), (a3, b2), (a4, b3)} není zobrazení protože (a1, b1), (a1, b2). F2 = {(a1, b3), (a2, b2), (a3, b1), (a4, b2)} zobrazení je.

Zobrazení $F: X \rightarrow Y$:

- se nazývá surjekce jestliže platí $\forall y \in Y \exists x \in X : y = F(x)$.
- se nazývá injekce(prosté) jestliže platí $\forall x1, x2 \in X(x1 \neq x2 \Rightarrow F(x1) \neq F(x2))$
- se nazývá bijekce(jednoznačné) jestliže je současne surjekce a injekce.

Zobrazení $F:X\to Y$ je bijektivní, právě když inverzní relace $F^{-1}\subseteq BxA$ je zobrazení $F^{-1}:B\to A$. Pomocí zobrazení se definují **mohutnosti** nekonečných množin. Množiny celých čísel i čísel racionálních jsou stejně mohutné. Necť N značí množinu přirozených čísel. Řekneme, že množina X je spočetná, jestliže existuje bijekce $F:N\to X$. Nekonečná množina, která není spočetná, se nazýva nespočetná. Množina všech sudých celých čísel $A=\{2,4,..\}=\{y|y=2x,x\in N\}$ je spočetná, hledaná bijekce má tvar $F:N\to A, F(x)=2x$. Zobrazení $F:X\to X$ nazývame identitou na X prípadne diagonální relace.

Jsou li $f: X \to Y$, $g: Y \to Z$ zobrazení, složená relace $g \circ f$ je opět zobrazení a nazýva se složené zobrazení $g \circ f$.

- Na a) je příklad kdy se nejedná o zobrazení.
- ullet Na b) je příklad <u>prostého zobrazení</u> množiny A do množiny B .
- Na c) je vzájemně jednoznačné zobrazení A na B .
- Na d) je zobrazení, které není prosté.

Toto dúfam už nemus íme:

Buď X množina, $\tau \subseteq 2^X$ systém jistých podmnožin množiny X. Prvky systému τ nazývame otevřené množiny, doplňky nazývame uzavřené množiny. Dvojici (X, τ) nazývame topologický prostor..

Vypracoval:Pišta, čerpané z:

http://cs.wikipedia.org/wiki/Mno%C5%BEina

http://www.studopory.vsb.cz/studijnimaterialy/Matematikal/06 MI KAP%201 2.pdf

http://www.matweb.cz/mnoziny

IDA Skripta 1 = ida2004.pdf, IDA Skripta 2 = IDM.pdf (nájdete na fitserver)