& Sarur's leurma.

- (1) let $\beta_1:G\rightarrow GL(V)$ and $\beta_2:G\rightarrow GL(W)$ be irreps of G. Then any G. homomorphism $d:V\rightarrow W$ is either the zero may $(dv)=v \forall v$ or an isomorphism.
- Exampose F & algebraically closed and $\beta: G \rightarrow G(V) & an irrep. Then any G hornomorphism <math>f: V \rightarrow V & a$ scalar multiple of the identity map.

Phoof: O Recall that ker of 4s a G-Subspace of V. Since V is irreducible, ker of = 0 or ker of = V.

Similarly, in 0 & a G-subspace of W, & Since W & irreducible, in 0: W or in 0:0.

Thus, $\theta = 0$ or θ is injective & chargective, so θ an fromorphism.

2) Since F is algebraichung closed, 0 has atleast one eigenvalue $\lambda \in F$.

Thur, $\theta - \lambda Id$ (4s a sningertar Grendonnorphism on V, thurs by O,

9-XId=0

1.e. 9 = XId.

The f-space of all G-homomorphisms $V \to W$ is denoted by $Hom_{G}(V,W)$

We write EndG(V) for HomG(V, V)

Corollary: If I and Ware G-irrept over C, then

duin c Horn G. (V,W) = \frac{1}{0} \frac{4}{9} \frac{2}{9} \text{Wise}

Phoof: If V & W are not too morphic, then by Sum's, the only G - homomorphism $V \to W$ 4s 0. So assume $V \simeq_G W$ and let θ_1 , $\theta_2 \in H$ and $\theta_2 \in H$ and $\theta_3 \in H$.

Then, θ_1 is invertible by Schur's and $\theta_1^{-1}\theta_2$ E Hown (V_1V) so $\theta_1^{-1}\theta_2 = \lambda Id$ for some $\lambda \in C$. i.e. $\theta_1^{-1} = \lambda \theta_2$

Con: If G hous a faithful complex irrep tuen tue center of G ZCG) is cyclic.

Though, let $g: G \rightarrow GL(v)$ be a faithful complex irrep and let $z \in Z(G)$ i.e. zg = gz of $g \in G$.

Convider the map &: v => zv for v EV.

This is a G-endomosphism on V: fz / Jz V -> V In My Surur, $\beta_{\pm}(v) = \lambda_{\pm} v$ where $\lambda_{\pm} \in \mathbb{C}$ 4. Some scalar. Thus the map $4: Z(G) \rightarrow C^{\times} = GL(C)$ $Z \mapsto \lambda_2$ 13 a 1 - duineursonal representation of ZCG). Claim: & & faithful. Consider Ker & = { ZEZ(Gr) | \ \frac{1}{2} = 1 \ \frac{1}{6}.

= { 7 6 7 (G) | p2 (V) = V} = { 7 E 7 (G) | 6 (7) = [d].

= {e'y snice } & faithful.

Thus Z(G) <> CX and Z(G) & finite,
ho it is endic.

Corollary: The complex irreps of a finite abolian group are all 1-dimensional.

Phoof: let V be a compolex irrep. For g EG,

the map $g: V \mapsto gV$ & a G-endomosphism of V and since V & irreducible, $g: \lambda g ld$ for some $\lambda_g \in G$.

example: G= Cy= {1, x, x², x³}.

	1	X	X	x ³	
Vı	1	1	1	1	
V_2	1	-1	* 1	7	
V3	1	ĺ	-1	નં ?	
V 4	1	-1	-1	į	

X has to act as something that yours up to 1, so the options are {± 1, ± i7}

Hw: Show that over 12, C3 has 2 irreps, of dui 1 b 2 respectively.

louma. A finite abelian group a has precisely IGI complex irreps. roof: Recall that each finite abelian group & a product of cyclic groups. Write $G \simeq \langle x, 7 \rangle \times ... \times \langle x_{k} \rangle$ where $o(x_j) = u_j$ and $\pi_i = |G|$. be au irrep, tuen g & 1 -duin. $f: G \rightarrow GL(C) \subset C^{\times}$ lo. $\beta \left(1, \ldots, x_j, \ldots, 1 \right) = \lambda_j \in \mathcal{C}$ where $o(x_1) = u_1 + v_2 + v_3 = 1 + 80$ λη & m noot of mity. If for each 7, we fix a 2, a

jen most of unity. then, $\begin{cases}
\begin{pmatrix} \chi_1^{M_1}, \chi_2^{M_2}, \dots, \chi_k^{M_k} \end{pmatrix}
\end{cases}$ $\beta(\chi_1^{M_1}, 1, ..., 1)$. $\beta(1, \chi_1^{M_2}, 1, ..., 1)$... etc = /M, ~ / Wx. to & be determined by his Crice there are mucilely yn mosts of unity, we have that the it of invers= N = | G1 example: Gn: V4 = C2 x C2:

the 4 irreps are:

	1	14	λz	nnr
31	1	1	ſ	1
J2	ı	1	-	-1
53	١	7	+1	-
Jy	(1	1	1