Uczenie maszynowe z użyciem Scikit-Learn, Keras i TensorFlow

Tytuł oryginału: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd Edition

Tłumaczenie: Krzysztof Sawka

ISBN: 978-83-8322-423-7

© 2023 Helion S.A.

Authorized Polish translation of the English edition of *Hands-On Machine Learning* with Scikit-Learn, Keras, and TensorFlow, 3E ISBN 9781098125974 © 2023 Aurélien Géron.

This translation is published and sold by permission of O'Reilly Media, Inc., which owns or controls all rights to publish and sell the same.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage retrieval system, without permission from the Publisher.

Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną, a także kopiowanie książki na nośniku filmowym, magnetycznym lub innym powoduje naruszenie praw autorskich niniejszej publikacji.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.

Autor oraz wydawca dołożyli wszelkich starań, by zawarte w tej książce informacje były kompletne i rzetelne. Nie biorą jednak żadnej odpowiedzialności ani za ich wykorzystanie, ani za związane z tym ewentualne naruszenie praw patentowych lub autorskich. Autor wydawca nie ponoszą również żadnej odpowiedzialności za ewentualne szkody wynikłe z wykorzystania informacji zawartych w książce.

Helion S.A.

ul. Kościuszki 1c, 44-100 Gliwice

tel. 32 230 98 63

e-mail: helion@helion.pl

WWW: https://helion.pl (ksiegarnia internetowa, katalog książek)

Drogi Czytelniku!

Jeżeli chcesz ocenić tę książkę, zajrzyj pod adres

https://helion.pl/user/opinie/uczem3

Możesz tam wpisać swoje uwagi, spostrzeżenia, recenzję.

Printed in Poland.

- Kup książkę
- Poleć książkę
- Oceń książkę

- · Księgarnia internetowa
- Lubię to! » Nasza społeczność

Spis treści

	Przedmowa	15
Częś	ć I. Podstawy uczenia maszynowego	25
1.	Krajobraz uczenia maszynowego	27
	Czym jest uczenie maszynowe?	28
	Dlaczego warto korzystać z uczenia maszynowego?	28
	Przykładowe zastosowania	31
	Rodzaje systemów uczenia maszynowego	33
	Nadzorowanie uczenia	33
	Uczenie wsadowe i uczenie przyrostowe	40
	Uczenie z przykładów i uczenie z modelu	44
	Główne problemy uczenia maszynowego	49
	Niedobór danych uczących	50
	Niereprezentatywne dane uczące	50
	Dane kiepskiej jakości	52
	Nieistotne cechy	52
	Przetrenowanie danych uczących	53
	Niedotrenowanie danych uczących	55
	Podsumowanie	55
	Testowanie i ocenianie	56
	Strojenie hiperparametrów i dobór modelu	56
	Niezgodność danych	57
	Ćwiczenia	59
2.	Nasz pierwszy projekt uczenia maszynowego	61
	Praca z rzeczywistymi danymi	61
	Przeanalizuj całokształt projektu	63
	Określ zakres problemu	63
	Wybierz wskaźnik wydajności	65
	Sprawdź założenia	67
	-	

Zdobądź dane	67
Uruchom przykładowy kod w serwisie Google Colab	68
Zapisz zmiany w kodzie i w danych	70
Zalety i wady interaktywności	71
Kod w książce a kod w notatnikach Jupyter	72
Pobierz dane	72
Rzut oka na strukturę danych	73
Stwórz zbiór testowy	77
Odkrywaj i wizualizuj dane, aby zdobywać nowe informacje	81
Zwizualizuj dane geograficzne	81
Poszukaj korelacji	84
Eksperymentuj z kombinacjami atrybutów	86
Przygotuj dane pod algorytmy uczenia maszynowego	87
Oczyść dane	88
Obsługa tekstu i atrybutów kategorialnych	90
Skalowanie i przekształcanie cech	94
Niestandardowe transformatory	97
Potoki transformujące	101
Wybierz i wytrenuj model	105
Trenuj i oceń model za pomocą zbioru uczącego	106
Dokładniejsze ocenianie za pomocą sprawdzianu krzyżowego	107
Wyreguluj swój model	109
Metoda przeszukiwania siatki	109
Metoda losowego przeszukiwania	111
Metody zespołowe	112
Analizowanie najlepszych modeli i ich błędów	112
Oceń system za pomocą zbioru testowego	113
Uruchom, monitoruj i utrzymuj swój system	114
Teraz Twoja kolej!	117
Ćwiczenia	117
Klasyfikacja	119
Zbiór danych MNIST	119
Uczenie klasyfikatora binarnego	122
Miary wydajności	122
Pomiar dokładności za pomocą sprawdzianu krzyżowego	123
	124
Precyzja i pełność	125
· · ·	127
Wykres krzywej ROC	130
Miary wydajności Pomiar dokładności za pomocą sprawdzianu krzyżowego Macierz pomyłek	123 124
Kompromis pomiędzy precyzją a pełnością	127
Wykres krzywej ROC	130

4 | Spis treści

3.

	Klasyfikacja wieloklasowa	134
	Analiza błędów	136
	Klasyfikacja wieloetykietowa	140
	Klasyfikacja wielowyjściowa	141
	Ćwiczenia	143
4.	Uczenie modeli	145
	Regresja liniowa	146
	Równanie normalne	148
	Złożoność obliczeniowa	151
	Gradient prosty	151
	Wsadowy gradient prosty	154
	Stochastyczny spadek wzdłuż gradientu	157
	Schodzenie po gradiencie z minigrupami	160
	Regresja wielomianowa	161
	Krzywe uczenia	163
	Regularyzowane modele liniowe	167
	Regresja grzbietowa	167
	Regresja metodą LASSO	170
	Regresja metodą elastycznej siatki	172
	Wczesne zatrzymywanie	173
	Regresja logistyczna	174
	Szacowanie prawdopodobieństwa	175
	Funkcje ucząca i kosztu	176
	Granice decyzyjne	177
	Regresja softmax	180
	Ćwiczenia	183
5.	Maszyny wektorów nośnych	185
	Liniowa klasyfikacja SVM	185
	Klasyfikacja miękkiego marginesu	186
	Nieliniowa klasyfikacja SVM	188
	Jądro wielomianowe	189
	Cechy podobieństwa	190
	Gaussowskie jądro RBF	191
	Klasy SVM i złożoność obliczeniowa	192
	Regresja SVM	193
	Mechanizm działania liniowych klasyfikatorów SVM	195
	Problem dualny	198
	Kernelizowane maszyny SVM	199
	Ćwiczenia	202

Spis treści | 5

6.	przewa decyzyjne	203
	Uczenie i wizualizowanie drzewa decyzyjnego	203
	Wyliczanie prognoz	204
	Szacowanie prawdopodobieństw przynależności do klas	206
	Algorytm uczący CART	207
	Złożoność obliczeniowa	208
	Wskaźnik Giniego czy entropia?	208
	Hiperparametry regularyzacyjne	209
	Regresja	211
	Wrażliwość na orientację osi	213
	Drzewa decyzyjne mają znaczną wariancję	214
	Ćwiczenia	215
7.	Uczenie zespołowe i losowe lasy	217
	Klasyfikatory głosujące	217
	Agregacja i wklejanie	221
	Agregacja i wklejanie w module Scikit-Learn	222
	Ocena OOB	223
	Rejony losowe i podprzestrzenie losowe	224
	Losowe lasy	225
	Zespół Extra-Trees	225
	Istotność cech	226
	Wzmacnianie	227
	AdaBoost	227
	Wzmacnianie gradientowe	231
	Wzmacnianie gradientu w oparciu o histogram	234
	Kontaminacja	235
	Ćwiczenia	238
8.	Redukcja wymiarowości	240
	Klątwa wymiarowości	241
	Główne strategie redukcji wymiarowości	242
	Rzutowanie	242
	Uczenie rozmaitościowe	244
	Analiza PCA	245
	Zachowanie wariancji	246
	Główne składowe	247
	Rzutowanie na d wymiarów	248
	Implementacja w module Scikit-Learn	249
	Współczynnik wariancji wyjaśnionej	249
	Wybór właściwej liczby wymiarów	249

	Algorytm PCA w zastosowaniach kompresji	251
	Losowa analiza PCA	252
	Przyrostowa analiza PCA	252
	Rzutowanie losowe	254
	Algorytm LLE	256
	Inne techniki redukowania wymiarowości	258
	Ćwiczenia	259
9.	Techniki uczenia nienadzorowanego	261
	Analiza skupień: algorytm centroidów i DBSCAN	262
	Algorytm centroidów	264
	Granice algorytmu centroidów	273
	Analiza skupień w segmentacji obrazu	274
	Analiza skupień w uczeniu półnadzorowanym	276
	Algorytm DBSCAN	279
	Inne algorytmy analizy skupień	282
	Mieszaniny gaussowskie	283
	Wykrywanie anomalii za pomocą mieszanin gaussowskich	287
	Wyznaczanie liczby skupień	289
	Bayesowskie modele mieszane	291
	Inne algorytmy służące do wykrywania anomalii i nowości	292
	Ćwiczenia	293
Częś	ć II. Sieci neuronowe i uczenie głębokie	295
10.	Wprowadzenie do sztucznych sieci neuronowych i ich implementacji	
	z użyciem interfejsu Keras	297
	Od biologicznych do sztucznych neuronów	298
	Neurony biologiczne	299
	Operacje logiczne przy użyciu neuronów	300
	Perceptron	301
	Perceptron wielowarstwowy i propagacja wsteczna	306
	Regresyjne perceptrony wielowarstwowe	309
	Klasyfikacyjne perceptrony wielowarstwowe	311
	Implementowanie perceptronów wielowarstwowych za pomocą interfejsu Keras	313
	Tworzenie klasyfikatora obrazów za pomocą interfejsu sekwencyjnego	314
	Tworzenie regresyjnego perceptronu wielowarstwowego	
	za pomocą interfejsu sekwencyjnego	323
	Tworzenie złożonych modeli za pomocą interfejsu funkcyjnego	324
	Tworzenie modeli dynamicznych za pomocą interfejsu podklasowego	329
	Zapisywanie i odczytywanie modelu	221
	Zapisy waine i odczyty waine modeid	331

Spis treści

	Stosowanie wywołań zwrotnych	332
	Wizualizacja danych za pomocą narzędzia TensorBoard	333
	Dostrajanie hiperparametrów sieci neuronowej	337
	Liczba warstw ukrytych	341
	Liczba neuronów w poszczególnych warstwach ukrytych	342
	Współczynnik uczenia, rozmiar grupy i pozostałe hiperparametry	343
	Ćwiczenia	345
11.	Uczenie głębokich sieci neuronowych	348
	Problemy zanikających/eksplodujących gradientów	348
	Inicjalizacje wag Glorota i He	349
	Lepsze funkcje aktywacji	351
	Normalizacja wsadowa	358
	Obcinanie gradientu	363
	Wielokrotne stosowanie gotowych warstw	363
	Uczenie transferowe w interfejsie Keras	365
	Nienadzorowane uczenie wstępne	366
	Uczenie wstępne za pomocą dodatkowego zadania	367
	Szybsze optymalizatory	368
	Optymalizacja momentum	369
	Przyspieszony spadek wzdłuż gradientu (algorytm Nesterova)	370
	AdaGrad	371
	RMSProp	373
	Optymalizator Adam	373
	AdaMax	374
	Nadam	375
	AdamW	375
	Harmonogramowanie współczynnika uczenia	377
	Regularyzacja jako sposób zapobiegania przetrenowaniu	381
	Regularyzacja ℓ1 i ℓ2	381
	Porzucanie	382
	Regularyzacja typu Monte Carlo (MC)	385
	Regularyzacja typu max-norm	387
	Podsumowanie i praktyczne wskazówki	388
	Ćwiczenia	390
12.	Modele niestandardowe i uczenie za pomocą modułu TensorFlow	391
	Krótkie omówienie modułu TensorFlow	391
	Korzystanie z modułu TensorFlow jak z biblioteki NumPy	394
	Tensory i operacje	395
	Tensory a biblioteka NumPy	396

8 | Spis treści

	Konwersje typów	397
	Zmienne	397
	Inne struktury danych	398
	Dostosowywanie modeli i algorytmów uczenia	399
	Niestandardowe funkcje straty	399
	Zapisywanie i wczytywanie modeli zawierających elementy niestandardowe	400
	Niestandardowe funkcje aktywacji, inicjalizatory, regularyzatory i ograniczenia	402
	Niestandardowe wskaźniki	403
	Niestandardowe warstwy	405
	Niestandardowe modele	408
	Funkcje straty i wskaźniki oparte na elementach wewnętrznych modelu	410
	Obliczanie gradientów za pomocą różniczkowania automatycznego	411
	Niestandardowe pętle uczenia	415
	Funkcje i grafy modułu TensorFlow	417
	AutoGraph i kreślenie	419
	Reguły związane z funkcją TF	421
	Ćwiczenia	422
13.	Wczytywanie i wstępne przetwarzanie danych za pomocą modułu TensorFlow	424
15.	Interfejs tf.data	425
	Łączenie przekształceń	426
	Tasowanie danych	428
	Przeplatanie wierszy z różnych plików	429
	Wstępne przetwarzanie danych	430
	Składanie wszystkiego w całość	431
	Pobieranie wstępne	432
	Stosowanie zestawu danych z interfejsem Keras	434
	Format TFRecord	435
	Skompresowane pliki TFRecord	436
	Wprowadzenie do buforów protokołów	436
	Bufory protokołów w module TensorFlow	438
	Wczytywanie i analizowanie składni obiektów Example	439
	Obsługa list list za pomocą bufora protokołów SequenceExample	440
	Warstwy przetwarzania wstępnego Keras	441
	Warstwa Normalization	441
	Warstwa Discretization	444
	Warstwa CategoryEncoding	444
	Warstwa StringLookup	446
	Warstwa Hashing	447
	Kodowanie cech kategorialnych za pomocą wektorów właściwościowych	447
	Wstępne przetwarzanie tekstu	451

Spis treści | 9

	Korzystanie z wytrenowanych składników modelu językowego	453
	Warstwy wstępnego przetwarzania obrazów	454
	Projekt TensorFlow Datasets (TFDS)	455
	Ćwiczenia	456
14.	Głębokie widzenie komputerowe za pomocą splotowych sieci neuronowych .	458
	Struktura kory wzrokowej	459
	Warstwy splotowe	460
	Filtry	462
	Stosy map cech	463
	Implementacja warstw splotowych w interfejsie Keras	465
	Zużycie pamięci operacyjnej	468
	Warstwa łącząca	469
	Implementacja warstw łączących w interfejsie Keras	471
	Architektury splotowych sieci neuronowych	473
	LeNet-5	475
	AlexNet	476
	GoogLeNet	479
	VGGNet	482
	ResNet	482
	Xception	486
	SENet	487
	Inne interesujące struktury	489
	Wybór właściwej struktury CNN	491
	Implementacja sieci ResNet-34 za pomocą interfejsu Keras	492
	Korzystanie z gotowych modeli w interfejsie Keras	493
	Gotowe modele w uczeniu transferowym	494
	Klasyfikowanie i lokalizowanie	497
	Wykrywanie obiektów	499
	W pełni połączone sieci splotowe	501
	Sieć YOLO	503
	Śledzenie obiektów	506
	Segmentacja semantyczna	507
	Ćwiczenia	510
15.	Przetwarzanie sekwencji za pomocą sieci rekurencyjnych i splotowych	512
	Neurony i warstwy rekurencyjne	513
	Komórki pamięci	515
	Sekwencje wejść i wyjść	515
	Uczenie sieci rekurencyjnych	517

10 | Spis treści

	Prognozowanie szeregów czasowych	517
	Rodzina modeli ARMA	522
	Przygotowywanie danych dla modeli uczenia maszynowego	525
	Prognozowanie za pomocą modelu liniowego	528
	Prognozowanie za pomocą prostej sieci rekurencyjnej	529
	Prognozowanie za pomocą głębokich sieci rekurencyjnych	530
	Prognozowanie wielowymiarowych szeregów czasowych	531
	Prognozowanie kilka taktów w przód	532
	Prognozowanie za pomocą modelu sekwencyjnego	534
	Obsługa długich sekwencji	537
	Zwalczanie problemu niestabilnych gradientów	537
	Zwalczanie problemu pamięci krótkotrwałej	540
	Ćwiczenia	547
16.	Przetwarzanie języka naturalnego	
	za pomocą sieci rekurencyjnych i mechanizmów uwagi	549
	Generowanie tekstów szekspirowskich za pomocą znakowej sieci rekurencyjnej	550
	Tworzenie zestawu danych uczących	551
	Budowanie i uczenie modelu char-RNN	553
	Generowanie sztucznego tekstu szekspirowskiego	554
	Stanowe sieci rekurencyjne	555
	Analiza opinii	558
	Maskowanie	560
	Korzystanie z gotowych reprezentacji właściwościowych i modeli językowych	563
	Sieć typu koder – dekoder służąca do neuronowego tłumaczenia maszynowego	565
	Dwukierunkowe sieci rekurencyjne	571
	Przeszukiwanie wiązkowe	572
	Mechanizmy uwagi	574
	Liczy się tylko uwaga: pierwotna architektura transformatora	578
	Zatrzęsienie modeli transformatorów	587
	Transformatory wizualne	592
	Biblioteka Transformers firmy Hugging Face	596
	Ćwiczenia	599
17.	Autokodery, generatywne sieci przeciwstawne i modele rozpraszające	601
	Efektywne reprezentacje danych	602
	Analiza PCA za pomocą niedopełnionego autokodera liniowego	604
	Autokodery stosowe	605
	Implementacja autokodera stosowego za pomocą interfejsu Keras	606
	Wizualizowanie rekonstrukcji	607
	Wizualizowanie zestawu danych Fashion MNIST	608

Spis treści

	Nienadzorowane uczenie wstępne za pomocą autokoderów stosowych	609
	Wiązanie wag	610
	Uczenie autokoderów pojedynczo	611
	Autokodery splotowe	613
	Autokodery odszumiające	614
	Autokodery rzadkie	615
	Autokodery wariacyjne	618
	Generowanie obrazów Fashion MNIST	622
	Generatywne sieci przeciwstawne	623
	Problemy związane z uczeniem sieci GAN	627
	Głębokie splotowe sieci GAN	628
	Rozrost progresywny sieci GAN	631
	Sieci StyleGAN	634
	Modele rozpraszające	636
	Ćwiczenia	642
18.	Uczenie przez wzmacnianie	. 644
	Uczenie się optymalizowania nagród	645
	Wyszukiwanie strategii	646
	Wprowadzenie do narzędzia OpenAI Gym	648
	Sieci neuronowe jako strategie	652
	Ocenianie czynności: problem przypisania zasługi	654
	Gradienty strategii	655
	Procesy decyzyjne Markowa	659
	Uczenie metodą różnic czasowych	663
	Q-uczenie	664
	Strategie poszukiwania	665
	Przybliżający algorytm Q-uczenia i Q-uczenie głębokie	666
	Implementacja modelu Q-uczenia głębokiego	667
	Odmiany Q-uczenia głębokiego	671
	Ustalone Q-wartości docelowe	671
	Podwójna sieć DQN	672
	Odtwarzanie priorytetowych doświadczeń	672
	Walcząca sieć DQN	673
	Przegląd popularnych algorytmów RN	674
	Ćwiczenia	678
19.		679
	Eksploatacja modelu TensorFlow	680
	Korzystanie z systemu TensorFlow Serving	680
	Tworzenie usługi predykcyjnej na platformie Vertex AI	688
	Wykonywanie zadań predykcji wsadowych w usłudze Vertex AI	695

12 | Spis treści

	Wdrażanie modelu na urządzeniu mobilnym lub wbudowanym	697
	Przetwarzanie modelu na stronie internetowej	699
	Przyspieszanie obliczeń za pomocą procesorów graficznych	701
	Zakup własnej karty graficznej	702
	Zarządzanie pamięcią operacyjną karty graficznej	704
	Umieszczanie operacji i zmiennych na urządzeniach	706
	Przetwarzanie równoległe na wielu urządzeniach	708
	Uczenie modeli za pomocą wielu urządzeń	710
	Zrównoleglanie modelu	710
	Zrównoleglanie danych	712
	Uczenie wielkoskalowe za pomocą interfejsu strategii rozpraszania	718
	Uczenie modelu za pomocą klastra TensorFlow	720
	Realizowanie dużych grup zadań uczenia za pomocą usługi Vertex AI	723
	Strojenie hiperparametrów w usłudze Vertex AI	725
	Ćwiczenia	728
	Dziękuję!	729
A	Lista kontrolna projektu uczenia maszynowego	731
В	Różniczkowanie automatyczne	736
C	Specjalne struktury danych	744
D	Grafy TensorFlow	750
	Chorouida	757

Spis treści | 13

14 | Spis treści

Drzewa decyzyjne

Drzewa decyzyjne (ang. *decision trees*) stanowią wszechstronne algorytmy uczenia maszynowego, służące zarówno do zadań klasyfikacji, jak i regresji, a nawet do operacji wielowyjściowych. Uzyskujemy za ich pomocą potężne modele zdolne do uczenia się wobec złożonych zbiorów danych. Na przykład w rozdziale 2. wyuczyliśmy model DecisionTreeRegressor wobec zbioru danych *California Housing* i uzyskaliśmy doskonałe wyniki (w rzeczywistości wręcz przetrenowaliśmy ten model).

Drzewa decyzyjne są również elementami składowymi losowych lasów (zob. rozdział 7.), czyli obecnie jednych z najlepszych algorytmów uczenia maszynowego.

W tym rozdziale zaczniemy od omówienia procesu uczenia drzew decyzyjnych, wyliczania prognoz i wizualizowania wyników. Następnie zajmiemy się algorytmem uczącym CART dostępnym w module Scikit-Learn, a także nauczymy się regularyzować drzewa i wykorzystywać je w zadaniach regresji. Na koniec przyjrzymy się niektórym ograniczeniom drzew decyzyjnych.

Uczenie i wizualizowanie drzewa decyzyjnego

Aby zrozumieć koncepcję drzew decyzyjnych, stwórzmy jedno i zobaczmy, w jaki sposób wylicza prognozy. Za pomocą poniższego kodu wyuczymy model DecisionTreeClassifier wobec zbioru danych *Iris* (zob. rozdział 4.):

```
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris(as_frame=True)
X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values
y_iris = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X_iris, y_iris)
```

Możemy zwizualizować wyuczone drzewo decyzyjne, używając najpierw funkcji export_graphviz(), aby stworzyć plik definicji grafu, nazwany *iris_tree.dot*:

```
from sklearn.tree import export_graphviz
export_graphviz(
   tree_clf,
   out_file="iris_tree.dot",
   feature names=["petal length (cm)", "petal width (cm)"],
```

Kup ksi k Pole ksi k

```
class_names=iris.target_names,
rounded=True,
filled=True
)
```

Możesz następnie użyć metody graphviz. Source. from_file(), aby załadować i wyświetlić plik w notatniku Jupyter:

```
from graphviz import Source
Source.from file("iris tree.dot")
```

Graphviz (https://graphviz.org/) to objęty licencją otwartego oprogramowania pakiet do wizualizacji grafów. Zawiera on również narzędzie wiersza polecenia dot służące do konwertowania plików .dot na różne formaty, takie jak .pdf lub .png.

Twoje pierwsze drzewo decyzyjne zostało pokazane na rysunku 6.1.

Rysunek 6.1. Drzewo decyzyjne wyuczone na zbiorze danych Iris

Wyliczanie prognoz

Zastanówmy się, w jaki sposób drzewo widoczne na rysunku 6.1 przewiduje wyniki. Załóżmy, że znaleźliśmy kwiat kosaćca i chcemy go sklasyfikować na podstawie jego płatków. Zaczynamy od **węzła głównego** (ang. *root node*; wysokość 0 — węzeł na samej górze grafu): zadajemy w tym węźle pytanie, czy długość płatka jest mniejsza niż 2,45 cm. Jeśli jest, przechodzimy do lewego węzła potomnego (wysokość 1, po lewej). W takim przypadku docieramy do **liścia** (ang. *leaf node*; nie wychodzą z niego kolejne węzły potomne), zatem nie zadajemy tu już więcej pytań. Wystarczy teraz spojrzeć na przewidywaną klasę w tym węźle — drzewo decyzyjne przewiduje, że mamy do czynienia z gatunkiem *Iris setosa* (class=setosa).

Kup ksi k

204

Załóżmy teraz, że znajdujemy kolejny kwiat kosaćca, którego długość płatka przekracza teraz 2,45 cm. Ponownie zaczynasz od węzła głównego, ale tym razem kierujesz się ku prawemu węzłowi potomnemu (wysokość 1, po prawej). Nie jest to węzeł liścia, lecz **węzeł podziału** (ang. *split node*), dlatego zostaje postawione kolejne pytanie: czy szerokość płatka jest mniejsza niż 1,75 cm? Jeśli tak, to prawdopodobnie znaleziony kwiat należy do gatunku *Iris versicolor* (wysokość 2, po lewej). W przeciwnym razie możemy mieć do czynienia z gatunkiem *Iris virginica* (wysokość 2, po prawej). To naprawdę jest takie proste.

Jedną z licznych zalet drzew decyzyjnych jest fakt, że prawie nie wymagają one przygotowywania danych. W istocie nie jest potrzebne skalowanie ani środkowanie cech.

Atrybut sample węzła zlicza liczbę wyznaczonych do niego próbek uczących. Na przykład 100 próbek ma długość płatka przekraczającą 2,45 cm (wysokość 1, po prawej), spośród których 54 mają szerokość płatka nieprzekraczającą 1,75 cm (wysokość 2, po lewej). Dzięki atrybutowi value dowiadujemy się, jak wiele przykładów uczących z każdej klasy przynależy do danego węzła: na przykład węzeł znajdujący się na dole po prawej stronie zawiera 0 próbek *Iris setosa*, 1 *Iris versicolor* i 45 *Iris virginica*. Z kolei atrybut gini stanowi miarę **zanieczyszczenia Giniego** (ang. *Gini impurity*) węzła: węzeł jest "czysty" (gini=0), jeżeli wszystkie znajdujące się w nim próbki uczące należą do tej samej klasy. Przykładem jest węzeł na wysokości 1 po lewej stronie, ponieważ zawiera on tylko przykłady uczące *Iris setosa*; jego zanieczyszczenie Giniego jest równe 0. Równanie 6.1 pokazuje, w jaki sposób algorytm wylicza zanieczyszczenie Giniego G_i dla i-tego węzła. Węzeł znajdujący się na wysokości 2 po lewej stronie ma zanieczyszczenie Giniego o wartości $1-(0.54)^2-(49.54)^2-(5.54)^2\approx 0,168$.

Równanie 6.1. Zanieczyszczenie Giniego

$$G_i = 1 - \sum_{k=1}^{n} p_{i,k}^2$$

W tym równaniu:

- G_i zanieczyszczenie Giniego w i-tym węźle.
- $p_{i,k}$ współczynnik występowania klas k wśród próbek uczących w i-tym węźle.

Moduł Scikit-Learn wykorzystuje algorytm CART generujący wyłącznie **drzewa binarne** (ang. *binary trees*), czyli drzewa, których węzły podziału mają zawsze dokładnie dwoje potomków (tj. odpowiedziami na pytania są "tak" albo "nie"). Jednak inne algorytmy, takie jak ID3, mogą tworzyć drzewa decyzyjne, w których węzły mogą mieć większą liczbę potomków.

Na rysunku 6.2 widzimy granice decyzyjne drzewa decyzyjnego. Pogrubiona linia pionowa przedstawia granicę decyzyjną węzła głównego (wysokość 0): długość płatka = 2,45 cm. Obszar po lewej stronie jest czysty (występuje tu wyłącznie klasa Iris setosa), dlatego nie da się go bardziej podzielić. Jednakże obszar po prawej stronie pozostaje zanieczyszczony, zatem prawy węzeł na wysokości 1 rozdziela się na węzły potomne przy szerokości płatka = 1,75 cm (linia kreskowana). Wartość parametru max_depth wynosi 2, dlatego na takiej wysokości zatrzymuje się drzewo decyzyjne. Jeśli wyznaczymy wartość 3 parametru max_depth, to dwa węzły na wysokości 2 wprowadziłyby kolejną granicę decyzyjną (reprezentowaną przez dwie linie kropkowane).

Kup ksi k

Rysunek 6.2. Granice decyzyjne drzewa decyzyjnego

Struktura drzewa, zawierająca wszystkie informacje ukazane na rysunku 6.1, jest dostępna za pomocą atrybutu tree_klasyfikatora. Aby uzyskać więcej szczegółów, wpisz help(tree_clf.tree_), natomiast w towarzyszącym książce notatniku Jupyter (znajdziesz przykład pod adresem https://homl.info/colab3 lub https://ftp.helion.pl/przyklady/uczem3.zip).

Interpretacja modelu: "czarne skrzynki" i "białe skrzynki"

Algorytm drzew decyzyjnych jest bardzo intuicyjny i możemy go z łatwością interpretować. Tego typu modele są często nazywane **modelami "białej skrzynki"** (ang. *white box models*). Jak się przekonasz, algorytmy losowego lasu i sieci neuronowe należą do zgoła odmiennej kategorii, **modeli "czarnej skrzynki"** (ang. *black box models*). Ich przewidywania są znakomite i bez trudu możemy sprawdzić, jakie zostały przeprowadzone obliczenia do ich uzyskania; nie zmienia to faktu, że nieraz trudno wytłumaczyć prostymi słowami, skąd się te predykcje wzięły. Na przykład jeśli sieć neuronowa stwierdzi, że na danym zdjęciu znajduje się taka to a taka osoba, ciężko stwierdzić, jakie czynniki wpłynęły na ten rezultat: czy model rozpoznał daną osobę po oczach? Po ustach? Nosie? Butach? A może po kanapie, na której ta osoba siedzi? Z drugiej strony drzewo decyzyjne zawiera szereg przejrzystych i dobrze zdefiniowanych reguł klasyfikacji, za pomocą których w razie potrzeby można nawet ręcznie wyliczać prognozy (np. w przypadku klasyfikowania kwiatów). Dziedzina **wytłumaczalnego uczenia maszynowego** (ang. *interpretable ML*) dąży do tworzenia systemów uczenia maszynowego zdolnych do tłumaczenia podejmowanych decyzji w sposób zrozumiały dla człowieka. Jest to ważne w wielu domenach, może na przykład sprawiać, że system nie będzie podejmował niesprawiedliwych decyzji.

Szacowanie prawdopodobieństw przynależności do klas

Drzewo decyzyjne może również szacować prawdopodobieństwo przynależności danej próbki do określonej klasy k. Najpierw jest wyszukiwany liść, w którym dana próbka się znajduje, po czym zostaje zwrócony odsetek przykładów uczących w tym węźle należących do klasy k. Załóżmy na przykład, że znaleźliśmy kwiat, którego płatki mają 5 cm długości i 1,5 cm szerokości. Próbka symbolizująca

Kup ksi k

206

ten kwiat znajduje się w lewym liściu na wysokości 2 drzewa, zatem algorytm wyliczy następujące prawdopodobieństwa: 0% przynależności do gatunku *Iris setosa* (0/54), 90,7% dla *Iris versicolor* (49/54) i 9,3% dla *Iris virginica* (5/54). Zostanie dla tego kwiatu przewidziana klasa Iris versicolor (klasa 1.), ponieważ uzyskała ona największe prawdopodobieństwo. Sprawdźmy:

```
>>> tree_clf.predict_proba([[5, 1.5]]).round(3)
array([[0., 0.907, 0.093]])
>>> tree_clf.predict([[5, 1.5]])
array([1])
```

Doskonale! Zwróć uwagę, że szacowane prawdopodobieństwa będą identyczne w dowolnym obszarze prawego dolnego prostokąta widocznym na rysunku 6.2 — na przykład dla płatków o długości 6 cm i szerokości 1,5 cm (nawet jeśli jest dla nas oczywiste, że w tym przypadku płatki te należałyby najprawdopodobniej do gatunku *Iris virginica*).

Algorytm uczący CART

Moduł Scikit-Learn wykorzystuje algorytm **drzew klasyfikacyjnych i regresyjnych** (ang. *classification and regression tree* — CART) do uczenia drzew decyzyjnych (ich "wzrostu"). Algorytm rozdziela najpierw dane uczące na dwa podzbiory przy użyciu pojedynczej cechy k i progu t_k (np. "długość płatka \leq 2,45 cm"). W jaki sposób są dobierane wartości k i t_k ? Wyszukiwana jest para parametrów (k, t_k) generująca najczystsze podzbiory, ważone pod względem rozmiaru. Funkcja kosztu, jaką algorytm stara się minimalizować, została przedstawiona w równaniu 6.2.

Równanie 6.2. Funkcja kosztu algorytmu CART używana w zadaniach klasyfikacji

$$J(k,t_k) = \frac{m_{lewy}}{m}G_{lewy} + \frac{m_{prawy}}{m}G_{prawy}$$

$$(G_{\underline{lewy}})$$
 mierzy zanieczyszczenie lewego/prawe

 $\text{gdzie} \begin{cases} \frac{G_{lewy}}{prawy} & \text{mierzy zanieczyszczenie lewego/prawego podzbioru} \\ m_{lewy/prawy} & \text{stanowi liczbę próbek w lewym/prawym podzbiorze} \end{cases}$

Gdy algorytm CART rozdzieli zestaw danych uczących na dwa podzbiory, są one dalej dzielone na tej samej zasadzie aż do osiągnięcia maksymalnej wysokości (zdefiniowanej za pomocą hiperparametru max_depth) lub jeśli nie uda się określić takiego podziału, który zmniejszałby zanieczyszczenie. Kilka innych hiperparametrów (omówimy je niebawem) określa dodatkowe warunki zatrzymania budowy drzewa: min samples split, min samples leaf, min weight fraction leaf imax leaf nodes.

Jak widać, CART jest **algorytmem zachłannym** (ang. *greedy algorithm*): zachłannie poszukuje optymalnego podziału na najniższym poziomie, a następnie na każdym kolejnym powtarza tę czynność. Nie sprawdza on, czy dany podział będzie prowadził kilka poziomów wyżej do najmniejszego możliwego zanieczyszczenia. Algorytmy zachłanne często dają dobre wyniki, nie muszą być one jednak optymalne.

Kup ksi k

Niestety szukanie optymalnego drzewa jest klasyfikowane jako **problem NP-zupełny**¹. Należy poświęcić $O(\exp(m))$ czasu na jego rozwiązanie, przez co problem staje się trudny nawet dla małych zbiorów uczących. Dlatego musi nam wystarczyć poszukiwanie "w miarę dobrego" rozwiązania podczas trenowania drzew decyzyjnych.

Złożoność obliczeniowa

Wyliczanie prognoz wymaga poruszania się po drzewie decyzyjnym od węzła głównego aż do liścia. Generalnie drzewa decyzyjne są w miarę zrównoważone, zatem poruszanie się po drzewie decyzyjnym wymaga jedynie odwiedzenia mniej więcej $O(log_2(m))$ węzłów, gdzie zapis log_2 oznacza logarytm binarny (dwójkowy) (ang. binary logarithm) z m, równy $log_2(m) = log(m)/log(2)$. W każdym węźle wymagane jest jedynie sprawdzenie wartości jednej cechy, tak więc całkowita złożoność prognoz to $O(log_2(m))$, niezależnie od liczby cech. Wyliczanie przewidywań jest zatem bardzo szybkie nawet w przypadku bardzo dużych zbiorów uczących.

Algorytm uczący porównuje wszystkie cechy (mniej, jeśli wyznaczymy wartość parametru max_features) ze wszystkimi próbkami znajdującymi się w danym węźle. Porównanie wszystkich cech we wszystkich przykładach w każdym węźle skutkuje złożonością uczenia na poziomie $O(n \times m \log_2(m))$.

Wskaźnik Giniego czy entropia?

Domyślnie klasa DecisionTreeClassifier wykorzystuje wskaźnik zanieczyszczenia Giniego, ale możemy wybrać również **entropię** jako miarę zanieczyszczenia, wprowadzając wartość entropy dla hiperparametru criterion. Pojęcie entropii wywodzi się z termodynamiki, gdzie służy do opisu miary nieuporządkowania cząsteczek: gdy cząsteczki są nieruchome i uporządkowane w przestrzeni, to wartość entropii wynosi 0. Koncepcja entropii wkradła się również w różne inne dziedziny naukowe, w tym również do **teorii informacji** Shannona, gdzie służy do pomiaru średniej zawartości informacji w wiadomości, o czym przekonaliśmy się w rozdziale 4. Entropia wynosi 0, gdy wszystkie wiadomości są takie same. W świecie uczenia maszynowego za pomocą entropii często mierzy się zanieczyszczenie: entropia zbioru jest równa zeru, gdy mieszczą się w nim wyłącznie próbki należące do jednej klasy. Równanie 6.3 ukazuje definicję entropii *i*-tego węzła. Przykładowo entropia lewego węzła na wysokości 2 (rysunek 6.1) wynosi: $-\frac{49}{100} \log_2\left(\frac{49}{100}\right) - \frac{5}{100} \log_2\left(\frac{5}{100}\right) \approx 0,445$.

Kup ksi k

1

208

Rozdział 6. Drzewa decyzyjne

węzła na wysokości 2 (rysunek 6.1) wynosi: $-\frac{49}{54}\log_2\left(\frac{49}{54}\right) - \frac{5}{54}\log_2\left(\frac{5}{54}\right) \approx 0,445$.

¹ P stanowi zbiór problemów, jakie mogą zostać rozwiązane w wielomianowym czasie (tj. wielomianowym od rozmiaru zestawu danych). Zbiór NP zawiera problemy, których rozwiązania mogą zostać zweryfikowane w wielomianowym czasie. Problem NP-trudny to każdy problem, do którego problem NP może zostać zredukowany w czasie wielomianowym. Do problemu NP-zupełnego zaliczają się problemy NP i NP-trudne. Jednym z głównych pytań natury matematycznej, niemających do tej pory odpowiedzi, pozostaje, czy P = NP. Jeżeli P ≠ NP (co jest bardzo prawdopodobne), to nigdy nie zostanie odkryty wielomianowy algorytm dla dowolnego problemu NP-zupełnego (może zmieni się to w przypadku komputerów kwantowych).

Równanie 6.3. Entropia

$$H_{i} = -\sum_{\substack{k=1 \ p_{i,k} \neq 0}}^{n} p_{i,k} \log_{2}(p_{i,k})$$

Powinniśmy zatem korzystać ze wskaźnika Giniego czy z entropii? Prawdę mówiąc, w większości przypadków nie ma to większego znaczenia, gdyż uzyskujemy za ich pomocą podobne drzewa. Wskaźnik Giniego jest obliczany nieco szybciej, więc stanowi dobrą wartość domyślną. Jednak w sytuacjach, w których obydwa wskaźniki się różnią, wskaźnikowi Giniego zdarza się izolować najczęściej występującą klasę w osobnej gałęzi, natomiast entropia generuje nieco bardziej zrównoważone drzewa².

Hiperparametry regularyzacyjne

Algorytm drzew decyzyjnych nie przyjmuje niemal żadnych założeń dotyczących danych uczących (w przeciwieństwie na przykład do modeli liniowych, które zakładają, że operują na danych liniowych). Jeżeli nie nałożymy żadnych ograniczeń, struktura drzewa samoistnie dostosuje się do danych uczących i zrobi to prawie idealnie, niemal z pewnością ulegając przetrenowaniu. Jest to tak zwany model nieparametryczny (ang. nonparametric model) — nie dlatego, że nie zawiera parametrów (często ma ich znaczną liczbę), lecz dlatego, że liczba tych parametrów nie jest ustalana przed rozpoczęciem trenowania, zatem struktura modelu jest w stanie ściśle dopasować się do danych. Z drugiej strony mamy do czynienia z modelami parametrycznymi (ang. parametric models; reprezentowanymi m.in. przez model liniowy), w których występuje ustalona liczba parametrów, cechuje je więc ograniczenie stopni swobody, dzięki czemu zmniejszamy ryzyko przetrenowania (ale jednocześnie zwiększamy możliwość niedotrenowania).

Aby uniknąć przetrenowania modelu, musimy ograniczyć swobodę algorytmu drzewa decyzyjnego podczas uczenia. Wiemy już, że ten proces nosi nazwę regularyzacji. Hiperparametry regularyzacyjne zależą od stosowanego algorytmu, zazwyczaj jednak możemy ograniczyć przynajmniej maksymalną wysokość drzewa. W module Scikit-Learn odpowiada za to hiperparametr max_depth. Jego wartość domyślna, None, powoduje tworzenie drzew o nieograniczonej wysokości. Podanie wartości liczbowej w hiperparametrze max_depth spowoduje regularyzację modelu i zmniejszenie ryzyka przetrenowania.

Klasa DecisionTreeClassifier zawiera także kilka innych parametrów ograniczających kształt drzewa decyzyjnego:

max features

Maksymalna liczba cech używanych do dzielenia w każdym węźle.

max leaf nodes

Maksymalna liczba liści.

min samples split

Minimalna liczba próbek, jakie muszą się znajdować w węźle, aby został podzielony.

Kup ksi k

209

```
min samples leaf
```

Minimalna liczba próbek, jakie muszą się znajdować w liściu.

```
min weight fraction leaf
```

Taki sam jak parametr min_samples_leaf, tu jednak wartością jest ułamek całkowitej liczby ważonych próbek.

Zwiększanie wartości hiperparametrów min_* lub zmniejszanie max_* powoduje regularyzację modelu.

Inne algorytmy najpierw trenują model drzewa decyzyjnego bez żadnych ograniczeń, a następnie **przycinają** (ang. *prune*; usuwają) niepotrzebne liście. Węzeł zawierający same liście jest uznawany za niepotrzebny, jeśli zapewniana przez niego redukcja zanieczyszczenia okazuje się **nieistotna statystycznie**. Standardowe testy statystyczne, takie jak test chi kwadrat (test χ^2), służą do oszacowania prawdopodobieństwa, że zmniejszenie zanieczyszczenia stanowi wyłącznie wynik przypadku (jest to tzw. **hipoteza zerowa**). Jeżeli to prawdopodobieństwo, zwane **p-wartością**, przekroczy pewien określony próg (zazwyczaj 5% — definiujemy go za pomocą hiperparametru), to węzeł jest uznawany za niepotrzebny, a jego liście zostają usunięte. Proces przycinania trwa, dopóki nie zostaną usunięte wszystkie niepotrzebne węzły.

Przetestujmy regularyzację na zestawie danych sierpowatych, znanym nam już z rozdziału 5. Wytrenujemy jedno drzewo decyzyjne bez regularyzacji, a drugie z parametrem min_samples_leaf=5. Kod znajduje się poniżej; rysunek 6.3 ukazuje granice decyzyjne każdego drzewa:

```
from sklearn.datasets import make_moons

X_moons, y_moons = make_moons(n_samples=150, noise=0.2, random_state=42)

tree_clf1 = DecisionTreeClassifier(random_state=42)

tree_clf2 = DecisionTreeClassifier(min_samples_leaf=5, random_state=42)

tree_clf1.fit(X_moons, y_moons)

tree_clf2.fit(X_moons, y_moons)
```


Rysunek 6.3. Granice decyzyjne nieregularyzowanego (po lewej) i regularyzowanego (po prawej) drzewa

Rozdział 6. Drzewa decyzyjne

Widoczny po lewej stronie nieregularyzowany model jest wyraźnie przetrenowany, regularyzowany model z prawego wykresu prawdopodobnie będzie sobie lepiej radził z uogólnianiem. Możemy to sprawdzić, oceniając obydwa drzewa na zbiorze testowym wygenerowanym za pomocą innego ziarna losowości:

Rzeczywiście, drugie drzewo uzyskuje większą dokładność na zbiorze testowym.

Regresja

Drzewa decyzyjne mogą również wykonywać zadania regresyjne. Stwórzmy takie drzewo regresyjne za pomocą klasy DecisionTreeRegressor; wyuczymy je wobec zaszumionego, kwadratowego zbioru danych, a jego maksymalną wysokość ustalmy na poziomie max depth=2:

```
import numpy as np
from sklearn.tree import DecisionTreeRegressor

np.random.seed(42)
X_quad = np.random.rand(200, 1) - 0.5 # pojedyncza losowa cecha wejściowa
y_quad = X_quad ** 2 + 0.025 * np.random.randn(200, 1)

tree_reg = DecisionTreeRegressor(max_depth=2, random_state=42)
tree reg.fit(X quad, y quad)
```

Rysunek 6.4 przedstawia wygenerowane drzewo decyzyjne.

Rysunek 6.4. Regresyjne drzewo decyzyjne

Model ten bardzo przypomina stworzone przez nas wcześniej drzewo klasyfikacyjne. Główna różnica polega na tym, że w każdym węźle jest prognozowana nie klasa, lecz wartość. Załóżmy przykładowo, że chcemy wyliczyć prognozę dla nowej próbki $x_1 = 0,2$. Węzeł główny pyta, czy $x_1 \le 0,197$.

Kup ksi k

Otrzymaliśmy inną wartość, więc algorytm przechodzi do prawego węzła potomnego, gdzie jest sprawdzane, czy $x_1 \le 0,772$. Tak jest w istocie, zostaje zatem wybrany lewy węzeł potomny. Jest to liść przewidujący value=0.111. Predykcja ta stanowi średnią wartość docelową 110 próbek uczących powiązanych z tym liściem, a w wyniku tej prognozy otrzymujemy wartość błędu MSE wynoszącą 0,015 dla tych 110 próbek.

Przewidywania tego modelu zostały zaprezentowane po lewej stronie na rysunku 6.5. Jeżeli wyznaczymy hiperparametr max_depth=3, prognozy będą wyglądały tak jak na prawym wykresie. Zwróć uwagę, że prognozowana wartość dla każdego obszaru stanowi zawsze średnią wartość docelową próbek znajdujących się na tym obszarze. Algorytm rozdziela każdy obszar w taki sposób, żeby jak najwięcej próbek uczących znajdowało się możliwie blisko tej przewidywanej wartości.

Rysunek 6.5. Prognozy dwóch modeli regresyjnych drzew decyzyjnych

Algorytm CART działa niemal identycznie jak we wcześniejszym opisie, teraz jednak stara się rozdzielać zbiór danych uczących w sposób minimalizujący błąd MSE (a nie zanieczyszczenie). Równanie 6.4 zawiera funkcję kosztu minimalizowaną przez ten algorytm.

Równanie 6.4. Funkcja kosztu CART stosowana w regresji

$$J\left(k, t_{k}\right) = \frac{m_{lewy}}{m} MSE_{lewy} + \frac{m_{prawy}}{m} MSE_{prawy}$$

$$gdzie \begin{cases} MSE_{wezel} = \sum_{i \in wezel} (\hat{y}_{wezel} - y^{(i)})^{2} \\ \hat{y}_{wezel} = \frac{1}{m_{wezel}} \sum_{i \in wezel} y^{(i)} \end{cases}$$

Podobnie jak w przypadku zadań klasyfikacji, drzewa decyzyjne są podatne na przetrenowanie w modelach regresji. Jeśli nie będziemy stosować żadnej formy regularyzacji (np. korzystając wyłącznie z domyślnych wartości hiperparametrów), uzyskamy prognozy widoczne na lewym wykresie rysunku 6.6. Jak widać, model jest znacznie przetrenowany. Wystarczy jednak, że wyznaczymy hiperparametr min_samples_leaf=10, aby uzyskać znacznie lepszy model, widoczny na prawym wykresie.

Kup ksi k

212

Rysunek 6.6. Przewidywania nieregularyzowanego (po lewej) i regularyzowanego (po prawej) drzewa regresyjnego

Wrażliwość na orientację osi

Mam nadzieję, że dostrzegasz już olbrzymi potencjał drzew decyzyjnych: są względnie łatwe do zrozumienia i interpretacji, przystępne, wszechstronne i wydajne. Mają jednak kilka ograniczeń. Przede wszystkim, jak pewnie zdążyłeś zauważyć, algorytm drzewa decyzyjnego uwielbia ortogonalne granice decyzyjne (wszystkie podziały są przeprowadzane prostopadle do osi odciętych), przez co model ten jest wrażliwy na orientację danych. Na przykład rysunek 6.7 przedstawia prosty, liniowo rozdzielny zestaw danych: na lewym wykresie próbki są z łatwością rozdzielane, natomiast na prawym wykresie te same dane zostały obrócone o 45° i granica decyzyjna jest tu niepotrzebnie skomplikowana. Pomimo że drzewo decyzyjne zostało perfekcyjnie dopasowane do danych, istnieje duże ryzyko, że model ten nie będzie zbyt dobrze przeprowadzał uogólniania.

Rysunek 6.7. Wrażliwość na rotację zbioru uczącego

Jednym ze sposobów ograniczenia tego problemu jest skalowanie danych, a następnie wprowadzenie algorytmu analizy głównych składowych (PCA). W rozdziale 8. zajmiemy się PCA, na razie jednak musisz tylko wiedzieć, że rozwiązanie to obraca dane w sposób zmniejszający korelację między cechami, co często (nie zawsze) jest korzystne dla drzew decyzyjnych.

Kup ksi k

Stwórzmy mały potok skalujący dane i obracający je za pomocą PCA, a następnie wytrenujmy na nich model DecisionTreeClassifier. Rysunek 6.8 prezentuje granice decyzyjne tego drzewa: jak widać, dzięki rotacji możliwe jest całkiem skuteczne dopasowanie zestawu danych wyłącznie za pomocą jednej cechy, z₁, stanowiącej funkcję liniową pierwotnej długości i szerokości płatka. Kod znajduje się poniżej:

```
from sklearn.decomposition import PCA
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import StandardScaler
pca pipeline = make pipeline(StandardScaler(), PCA())
X iris rotated = pca pipeline.fit transform(X iris)
tree clf pca = DecisionTreeClassifier(max depth=2, random state=42)
tree clf pca.fit(X iris rotated, y iris)
```


Rysunek 6.8. Granice decyzyjne drzewa na przeskalowanym i obróconym metodą PCA zestawie danych Iris

Drzewa decyzyjne mają znaczną wariancję

W bardziej ogólnym ujęciu główny problem drzew decyzyjnych polega na ich całkiem dużej wariancji: małe zmiany w hiperparametrach lub danych mogą generować bardzo różne modele. W istocie skoro algorytm uczący używany przez moduł Scikit-Learn jest stochastyczny³ (losowo dobiera zestaw cech do oceniania każdego węzła), to nawet powtórne wytrenowanie identycznego drzewa decyzyjnego na dokładnie takich samych danych może wygenerować całkiem odmienny model, co widać na rysunku 6.9 (chyba że ustawisz hiperparametr random state). Jak widać, różni się on znacznie od poprzedniego drzewa decyzyjnego (z rysunku 6.2).

Na szczęście dzięki uśrednianiu prognoz uzyskiwanych z wielu drzew jest możliwe znaczne redukowanie wariancji. Taki zespół drzew nazywany jest lasem losowym i stanowi on jeden z najpotężniejszych współczesnych rodzajów modeli, o czym przekonasz się w następnym rozdziale.

³ Losowo dobiera zestaw cech do oceniania każdego węzła.

Rysunek 6.9. Powtórne uczenie tego samego modelu na tych samych danych może prowadzić do zupełnie odmiennego modelu

Ćwiczenia

- 1. Jaką przybliżoną wysokość osiągnie drzewo decyzyjne uczone (bez ograniczeń) wobec zestawu danych składającego się z miliona próbek?
- **2.** Czy zanieczyszczenie Giniego węzła podrzędnego jest zazwyczaj większe, czy mniejsze od tego wskaźnika w węźle nadrzędnym? Czy jest on *zazwyczaj*, czy też *zawsze* mniejszy/większy?
- **3.** Czy jeżeli drzewo decyzyjne ulega przetrenowaniu, warto próbować zmniejszyć wartość hiperparametru max depth?
- **4.** Czy dobrym pomysłem jest próba skalowania cech wejściowych, jeżeli drzewo decyzyjne wykazuje oznaki niedotrenowania?
- 5. Jeżeli wyuczenie drzewa decyzyjnego wobec zbioru danych składającego się z miliona próbek zajmuje godzinę, w przybliżeniu jak wiele czasu należy poświęcić na wytrenowanie drzewa przy użyciu zestawu składającego się z 10 milionów przykładów? Podpowiedź: weź pod uwagę złożoność obliczeniową algorytmów z rodziny CART.
- **6.** Jeżeli wytrenowanie drzewa decyzyjnego na określonym zestawie danych zajmuje jedną godzinę, to jak długo w przybliżeniu zajmie ten proces po podwojeniu liczby cech?
- 7. Wytrenuj i dostrój model drzewa decyzyjnego wobec danych sierpowatych, korzystając z następujących kroków:
 - a. Stwórz zbiór danych za pomocą funkcji make_moons(n_samples=10000, noise=0.4).
 - Rozdziel uzyskany zestaw danych na podzbiory uczący i testowy przy użyciu metody train_test_split().
 - c. Wykorzystaj przeszukiwanie siatki wraz ze sprawdzianem krzyżowym (przyda się klasa GridSearchCV), aby znaleźć dobre wartości hiperparametrów dla klasy DecisionTreeClassifier. Podpowiedź: wypróbuj różne wartości hiperparametru max_leaf_nodes.

Kup ksi k

- **d.** Wytrenuj ten model wobec pełnego zbioru uczącego, korzystając z uzyskanych wartości hiperparametrów, a następnie sprawdź wydajność modelu wobec zestawu testowego. Powinieneś uzyskać wyniki rzędu 85 87%.
- 8. Posadź las za pomocą następujących kroków:
 - a. Korzystając z poprzedniego ćwiczenia, wygeneruj 1000 podzbiorów zestawu uczącego, każdy zawierający 100 losowo dobranych próbek. Podpowiedź: możesz w tym celu skorzystać z klasy ShuffleSplit.
 - b. Wytrenuj po jednym drzewie decyzyjnym dla każdego podzbioru, korzystając z najlepszych wartości hiperparametrów odkrytych w poprzednim ćwiczeniu. Oceń wydajność tego tysiąca drzew decyzyjnych na zestawie testowym. Drzewa te zostały wyuczone przy użyciu mniejszych zbiorów danych, dlatego prawdopodobnie będą miały gorszą dokładność od pierwotnego drzewa decyzyjnego, oscylującą w granicach 80%.
 - c. Czas na odrobinę magii. Dla każdej próbki zbioru testowego wygeneruj prognozy wyliczane przez wszystkie 1000 drzew i zachowaj jedynie najczęściej powtarzający się wynik (możesz użyć do tego metody mode(), stanowiącej część modułu SciPy). Uzyskujesz w ten sposób prognozy metodą głosowania większościowego dla zbioru testowego.
 - d. Oceń te przewidywania wobec zbioru testowego: powinieneś uzyskać nieco większą dokładność niż w przypadku pierwotnego modelu (wyższą o 0,5% – 1,5%). Gratulacje, właśnie wytrenowałeś swój pierwszy klasyfikator losowego lasu!

Rozwiązania tych ćwiczeń znajdziesz na końcu notatnika Jupyter zawierającego kod tego rozdziału, dostępnego pod adresem https://ftp.helion.pl/przyklady/uczem3.zip (po polsku) lub https://homl.info/colab3 (po angielsku).

Kup ksi k

216

Skorowidz

Α	iteracji Q-wartości, 665
A2C, Advantage Actor-Critic, 675	k-najbliższych sąsiadów, k-nearest neighbors 48
A3C, Asynchrous Advantage Actor-Critic, 675	
ACF, autocorrelation function, 525	k-średnich, 264
agregacja, bagging, 221, 222	LLE, 256, 257
aktualizacje	Mean-shift, 282
asynchroniczne, asynchronous updates, 715	Nadam, 375
synchroniczne, synchronous updates, 714	NEAT, 648
aktualizowanie wag, 304	Nesterova, 370
algebra liniowa przyspieszona, XLA, 418	oczekiwania – maksymalizacji, 284
	optymalizacji momentum, 369
algorytm A2C, 675	PCA, 251
	POET, 677
A3C, 675	PPO, 676
AdaBoost, 227	przeszukiwania drzewa metodą Monte Carlo
AdaGrad, 371	674
Adam, 373	Q-uczenia, 664–666
AdaMax, 374	regresji, 48
AdamW, 375	RMSProp, 373
aktor – krytyk, 658, 675	SAC, 676
AllReduce, 713	stochastycznego spadku wzdłuż gradientu, 159
AlphaGo, 674	uczenia metodą różnic czasowych, 663
BIRCH, 282	walczącej sieci DQN, 673
CART, 205, 207	węgierski, 506
centroidów, 262, 264	zachłanny, greedy algorithm, 207
granice, 273	algorytmy
granice decyzyjne, 266	bez strategii, 665
mechanizm działania, 267	genetyczne, genetic algorithms, 647
metody inicjalizowania centroidów, 268	przyrostowe PCA, 252
optymalna liczba skupień, 271	REINFORCE, 655
przyspieszony, 269	•
z minigrupami, 269	RN, 674
DBSCAN, 279	uczące model regresji liniowej, 161
DQN, 670	uczenia maszynowego, 87
Fast-MCD, 292	wizualizujące, 36
Isomap, 258	ze strategią, 665

Kup ksi k

analiza	AUC, area under the curve, 131
błędów, 136	AutoGraph, 419, 754
dyskryminacyjna liniowa, LDA, 258	autokodery, 601
funkcji autokorelacji, ACF, 525	generatywne, 618
głównych składowych, PCA, 245, 604	liniowe niedopełnione, 604
losowa, 252	probabilistyczne, probabilistic autoencoders,
przyrostowa, 252	618
grafów, 751	przepełnione, overcomplete autoencoders,
najlepszych modeli, 112	614
opinii, 558	rzadkie, 615
przepływu sterowania, 754	sieć generatywna, generative network, 603
składni obiektów, 439	sieć rozpoznawania, recognition error, 603
skupień, 35	splotowe, convolutional autoencoders, 613
aglomeracyjna, 282	stosowe, stacked autoencoders, 605
algorytm BIRCH, 282	implementacja, 606
algorytm centroidów, 262	odszumiające, stacked denoising
algorytm DBSCAN, 279	autoencoders, 614
algorytm Mean-shift, 282	uczenie wstępne nienadzorowane, 609
grupowanie, 261	uczenie pojedynczo, 611
hierarchiczna, 35	wariacyjne, variational autoencoders, 618, 622
propagacja podobieństwa, 283	autoregresywny zintegrowany model średniej
w segmentacji obrazu, 274	kroczącej, 523
w uczeniu półnadzorowanym, 276	Modelect, 525
widmowa, 283	D
zastosowania, 263	В
ANN, Artificial Neural Networks, 297	badanie, study, 725
anomalia, anomaly, 261	bayesowskie modele mieszane, 291
AP, Average Precision, 505	biblioteka
aplikacja internetowa progresywna, PWA, 700	CUDA, 703
architektura	Keras Tuner, 337
sieci	NCCL, 719
AlexNet, 476	NumPy, 394, 396
GoogLeNet, 479, 481	TensorFlow.js, 700
LeNet-5, 475	Transformers, 596
ResNet, 484	blender, 235
SENet, 487	blob, 693
Xception, 486	blok
YOLO, 503	rezydualny, residual block, 408
StyleGAN, 634	SE, 487, 488
sieć mapująca, mapping network, 634	błąd
sieć syntetyzująca, synthesis network, 635	braku odpowiedzi, nonresponse bias, 52
transformatora, 578, 579	nieredukowalny, irreducible error, 167
architektury sieci splotowych, 473, 489	rekonstrukcji, reconstruction error, 251
ARMA, autoregressive moving average, 523	uogólniania, 56
asymetria uczenia/eksploatacji, training/serving	błędy
skew, 425	analizowanie, 136
atrybuty, attributes, 35	BPE, byte pair encoding, 559
kategorialne, 90	BPTT, backpropagation through time, 517
sztuczne, dummy attributes, 91 tekstowe, 90	22 11, ouchpropugation unough time, 517

760

Skorowidz

bramka	dokładność, accuracy, 28
wejściowa, input gate, 541	dominanta, 222
wyjściowa, output gate, 541	dostrajanie hiperparametrów, 337
zapominająca, 542	DQN, deep Q-network, 666
bramkowane jednostki aktywacji, 546	dryf danych, data drift, 41
bufor odtwarzania, replay buffer, 667	drzewa
bufory protokołów, buffer protocol, 436	binarne, binary trees, 205
obsługa list, 440	decyzyjne, decision trees, 203
w module TensorFlow, 438	uczenie, 203
	wariancja, 214
C	wizualizowanie, 203
	klasyfikacyjne, 207
CART, classification and regression tree, 207	regresyjne, 207, 211
cechy, 35	decyzyjne, 211
kategorialne, 447	
podobieństwa, 190	wzmacniane gradientowo, GBRT, 231
przekształcanie, 94	dylemat poszukiwania/wykorzystywania, 652
skalowanie, 94	Dysk Google, 70
CGAN, conditional GAN, 631	dyskryminator, discriminator, 602, 623
charakterystyka robocza odbiornika, ROC, 130	dywergencja Kullbacka-Leiblera, 182, 616
CLI, command-line interface, 690	
CNN, convolutional neural networks, 458	E
CSV, comma-separated values, 72	
CUDA, 703	efektywność parametryczna, parameter
człon wygładzający, smoothing term, 359	efficiency, 342
czion wygradzający, smoothing term, 557	eksperyment A/B, 679
	eksploracja danych, data mining, 30
D	ekwiwariancja, equivariance, 470
dane	ELMo, 563
geograficzne, 81	entropia, 208
nominalne, inlier, 262	krzyżowa, cross enthropy, 181, 182
oczyszczanie, 88	epoka, epoch, 156, 158, 173
pobieranie, 72	estymatory Scikit-Learn, 99
=	etykiety, labels, 34
rzeczywiste, 61	
uczące, 28	· ·
DBSCAN, 279	F
DCGAN, deep convolutional GAN, 628	faza rozgrzewki, warmup phase, 715
DDQN, Dueling DQN, 673	FCN, Fully Convolutional Network, 501
dekoder, decoder, 516, 603	filtr, 462
dekodowanie zachłanne, greedy decoding, 554	
destylacja, distillation, 590	rozcieńczony, diluted filter, 509 Kalmana, 506
diagram Woronoja, 266	
DNN, Deep Neural Network, 306	FNN, Feedforward Neural Network, 306
dobór	format
cechy, feature selection, 52	SavedModel, 680, 686
modelu, 46, 56	TFRecord, 435
Docker	funkcja, 751
uruchamianie TF Serving, 683	aktywacji, 308-310, 345, 350
dogenerowanie danych, data augmentation, 140,	ELU, 354
477	GELU, 356

Skorowidz | 761

funkcja	generator, 602, 623
przeciekająca ReLU, 352	generowanie
ReLU, 309	grafów, 420
SELU, 354	obrazów, 622, 626, 630, 642
sigmoidalna, 175, 308, 350	tekstów, 550, 554
tangens hiperboliczny, 308	głęboki proces gaussowski, deep gaussian
autokorelacji cząstkowej, PACF, 525	process, 385
decyzyjna, 127	głosowanie miękkie, soft voting, 220
dopasowania, 47	GMM, Gaussian Mixture Model, 283
gęstości prawdopodobieństwa, 262, 286	Google Cloud
konkretna, concrete function, 750	konsola platformy, 689
logarytmiczna wiarygodności, 290	Shell, 690
logistyczna, 175	Storage, 692
podobieństwa, similarity function, 190	Google Colab, 68
poszukiwania, exploration function, 666	gotowe
radialna bazowa, RBF, 96	modele, 493, 494
sigmoidalna, 175, 308	
inicjalizacja Xaviera, 350	reprezentacje właściwościowe, 563
nasycenie, 350	gradient, 411 niestabilny, 537
skokowa, 301	•
softmax, 569	prosty, gradient descent, 151, 154
softplus, 310	prosty wsadowy, batch gradient descent, 154,
straty, 410	155
Hubera, 311	gradienty
logarytmiczna, 176	przedawnione, stale gradients, 715, 716
rekonstrukcji, reconstruction loss, 410	strategii, policy gradients, 644, 648, 655
rzadkości, sparsity loss, 616	zanikające/eksplodujące, 348
ukrytej, latent loss, 620	grafy, 420
zawiasowa, 197	modułu TensorFlow, 417, 708, 750
ucząca, 176	obliczeniowe, 752
użyteczności, 47	granica decyzyjna, 177, 179, 183
wiarygodności, 289, 290	liniowa, 180
funkcje	gRPC, 685
aktywacji, 308-310, 345, 350	GRU, Gated Recurrent Unit, 543
parametry inicjalizujące, 351	grupa zadań, job, 720
niestandardowe, 402	
kosztu, 47, 66, 155, 176	Н
entropia krzyżowa, 181	
straty, 410	harmonogram uczenia, learning schedule, 158
straty niestandardowe, 399	377
TF, 417, 421, 750, 755, 756	harmonogramowanie
typu softmax, 180	1cycle, 1cycle scheduling, 378
71	potęgowe, power scheduling, 378
G	stałoprzedziałowe, piecewise constant
U	scheduling, 378
GAN, generative adversarial networks, 601, 623	wydajnościowe, performance scheduling,
GBRT, gradient boosted regression trees, 231	378
GCP, Google Cloud Platform, 688	wykładnicze, exponential scheduling, 378
autoryzacja, 691	haszowanie wrażliwe na lokalizację, 256
uwierzytelnianie, 691	HGB, histogram-based gradient boosting, 234

762 |

Skorowidz

hiperparametry, hyperparameters, 54, 344, 478 regularyzacyjne, 209 strojenie, 725, 727	splotowe, convolution kernel, 462 wielomianowe, 189, 190 wielomianowe drugiego stopnia, 200
hipoteza, 66	jednoklasowa maszyna wektorów nośnych, 293
rozmaitości, manifold hypothesis, 245	jednostka SE-ResNet, 488
zerowa, 210	jednostki rezydualne, residual units, 483
200 Wa, 210	Jupyter, 68, 71
I I	K
iloczyn skalarny, 576	K
implementacja	kanał
autokodera stosowego, 606	alfa, 275
normalizacji wsadowej, 360	barw, color channel, 463
perceptronów wielowarstwowych, 313	karta graficzna, 702
Q-uczenia głębokiego, 667	pamięć operacyjna, 704
sieci ResNet-34, 492	katastrofalne zapominanie, catastrophic
warstw łączących, 471	forgetting, 670
warstw splotowych, 465	Keras
imputacja, imputation, 88	funkcje TF, 756
inicjacja losowa, random initialization, 151	gotowe modele, 493
inicjalizacja Xaviera, 350	implementacja
inicjalizatory, 402	autokodera stosowego, 606
interfejs	normalizacji wsadowej, 360
funkcyjny	perceptronów wielowarstwowych, 313
złożone modele, 324	sieci ResNet-34, 492
gRPC, 685	warstw łączących, 471
Keras, 313, 434	warstw splotowych, 465
wczytywanie danych, 314	odczytywanie modelu, 331
podklasowy, subclassing API, 330	stosowanie
potokowy, 598	wywołań zwrotnych, 332
REST, 684	zestawu danych, 434
sekwencyjny, 314	uczenie transferowe, 365
regresyjny perceptron wielowarstwowy, 323	warstwy
tworzenie modelu, 315	przetwarzania wstępnego, 441
strategii rozpraszania, 718	splotowe, 508
tf.data, 424, 425	wczytywanie danych, 314
wiersza poleceń, CLI, 690	zapisywanie modelu, 331
interpolacja semantyczna, semantic	Keras Tuner
interpolation, 622, 623	strojenie hiperparametrów, 727
istotność	kernelizowane maszyny SVM, 199
cech, 226	klasa, 34
statystyczna, 210	klaster TensorFlow, TensorFlow cluster, 720, 721
iteracja Q-wartości, Q-Value iteration, 661	klasy SVM, 192
	klasyfikacja, classification, 34, 497
J	liniowa SVM, 185
	maksymalnego marginesu, 185
jądro, kernel, 70	miękkiego marginesu, soft margin
łączące, pooling kernel, 469	classification, 187
RBF, 191	nieliniowa SVM, 188

Skorowidz | 763

klasyfikacja, classification	kroswalidacja, cross-validation, 57
twardego marginesu, hard margin	kryterium
classification, 186	informacji teoretycznej, 289
wieloetykietowa, multilabel classification, 140	informacyjne Akaikego, 289
wieloklasowa, 134	informacyjne bayesowskie, 289
wielowyjściowa, multioutput classification,	krzywa
141	PR, 132, 133
wielozadaniowa, 328	ROC, 130, 131
klasyfikator	krzywe uczenia, learning curves, 163-166, 336
binarny, binary classifier, 122	kubełkowanie, bucketizing, 95
Extra-Trees, 226	kwadrat zawiasowej funkcji straty, 198
głosujący, voting classifier, 217	kwantyzacja potreningowa, post-training
głosujący większościowo, hard voting	quantization, 698
classifier, 218	kwartyl, 75
obiektów, 503	7,7
obrazów, 314	L
SGD, 122	L .
silny, strong learner, 218	las
słaby, weak learner, 218	izolacyjny, 217, 225, 292
SVM	losowy, 214, 217, 225, 292
liniowy, 189, 195	LDA, linear discriminant analysis, 258
wykorzystujący jądro RBF, 192	liczba
wykorzystujący jądro wielomianowe, 190	iteracji, 345
wieloklasowy, 134	skupień, 289
klątwa wymiarowości, curse of dimensionality,	liczby dualne, 739
240	liniowa jednostka progowa, LTU, 301
koder, encoder, 516, 603	lista dwukierunkowa, deque, 668
kodowanie	liść, 204
cech kategorialnych, 447	LLE, locally linear embedding, 256
gorącojedynkowe, one-hot encoding, 91	logarytm
par bajtów, BPE, 559	binarny, binary logarithm, 208
pozycyjne, Positional Encodings, 580, 581	szans, log odds, 175
kolejki, 399, 748	lokalizowanie, 497
kolizja haszowania, hashing collision, 447	lokalne pola recepcyjne, 459
komórki	lokalnie liniowe zanurzanie, LLE, 256
	losowa analiza PCA, 252
GRU, 543 LSTM, 540, 541	losowanie warstwowe, stratified sampling, 79,
pamięci, memory cells, 515	81
	losowe
podstawowe, basic cells, 515	lasy, random forest, 214, 217, 225, 292
kompromis	podprzestrzenie, 224
pomiędzy obciążeniem a wariancją, 167	próbkowanie, 81
pomiędzy precyzją a pełnością, 127	przeszukiwanie, 111
koneksjonizm, 298	rejony, 224
kontaminacja, stacking, 217, 235	LRN, local response normalization, 478
kontrolery bramek, gate controllers, 542	LSH, locality sensitive hashing, 256
konwersje typów, 397	LSTM, Long Short-Term Memory, 540
korelacja, 84	LTU, Linear Threshold Unit, 301
kreślenie, 419	LTO, Linear Threshold Ulit, 301
krok, stride, 461	

764 | Skorowidz

Ł	mediana, 85
łańcuchy	metagraf, 681
Markowa, 659	metaportale, 62
znaków, 744	metauczeń, meta-learner, 235
łączenie przekształceń, 426	metoda
iączenie przekształecni, 420	elastycznej siatki, 172
M	gradientu prostego, 154
M	LASSO, 170
macierz	losowego przeszukiwania, 111
jednostkowa, 169	przeszukiwania siatki, 109
kodowań pozycyjnych, 582	różnic czasowych, TD, 663
korelacji, 87	różnic skończonych, 737
kowariancji, 284	wczesnego zatrzymywania, 173
ortogonalna, 569	metody zespołowe, 112, 219
osadzeń, embedding matrix, 449	miara
parametrów Θ, 180	podobieństwa, 44
pomyłek, 124, 138, 139	wydajności, 122
rzadka, sparse matrix, 92	mieszanie stylów, style mixing, 635
MAE, Mean Absolute Error, 66	mieszaniny gaussowskie, 283
mała wydolność próbkowania, sample	dla skupień
inefficient, 658	powiązanych, 287
mapa	sferycznych, 287
cech, feature map, 463	nieeliptycznych, 292
prawdopodobieństw, 504	wykrywanie anomalii, 287
MAPE, mean absolute percentage error, 521	minimum
maskowanie, 560	globalne, 152
maskowany model językowy, MDM, 588	lokalne, 152
maszyna	minipaczki, mini-batches, 160
ograniczona Boltzmanna, 612	minipakiet/minigrupa, mini-batches, 42
wektorów nośnych, SVM, 185	MLP, Multi-Layer Perceptron, 297, 305
MDM, Masked Language Model, 588	mod, 95
MDS, multidimensional scaling, 258	model
mechanizm	ARIMA, 523
dopasowywania, Matching Engine, 688	ARIMA sezonowy, 524
uwagi, attention mechanisms, 550, 573	ARMA, 523
addytywny, additive attention, 575	BERT
konkatenacyjny, concatenative attention,	uczenie i strojenie, 589
575	DDPM, 602
Luonga, Luong attention, 576	DeiT, 594
maskowany wieloblokowy,	mieszaniny gaussowskiej, GMM, 283
masked multi-head attention, 580	odszumiający probabilistyczny rozpraszający
multiplikatywny, multiplicative attention,	DDPM, 636
576	Q-uczenia głębokiego, 667
skalowany, 583	SARIMA, 524
wieloblokowy, multi-head attention, 580,	StyleGAN, 634
583, 584	tłumaczenia maszynowego, 566
wykorzystujący iloczyn skalarny, 583	uwagi Bahdanau, Bahdanau attention, 575
wzrokowej visual attention 592	WaveNet, 546

Skorowidz | 765

modele	neuron, 298
"białej skrzynki", white box models, 206	biologiczny, 299, 459
"czarnej skrzynki", black box models, 206	operacje logiczne, 300
analizowanie, 112	opiniotwórczy, sentiment neuron, 557
dynamiczne, 330	rekurencyjny, 513
generatywne, generative models, 285, 601	rozwijany w czasie, 513
językowe, language models, 453, 550, 563	sztuczny, artificial neuron, 300
liniowe, 46, 47	neuronowe tłumaczenie maszynowe, NMT, 550,
prognozowanie, 528	565
nieparametryczne, nonparametric models, 209	niedobór danych uczących, 50
niestandardowe, 391, 408	niedorzeczna efektywność danych, 49
o największej wiarygodności, 176	niedotrenowanie, underfitting, 55
parametryczne, parametric models, 209	niereprezentatywne dane uczące, 50
przyczynowe, causal models, 536	niezgodność danych, 57
rozpraszające, diffusion models, 601	NLDR, nonlinear dimensionality reduction, 256
rozpraszające niejawne, latent diffusion	NLP, Natural Language Processing, 368, 549
models, 641	NLU, Natural Language Understanding, 591
regresji	NMT, Neural Machine Translation, 550
liniowej, 47	norma euklidesowa, 67
wielomianowej, 163	normalizacja, 94
rzadkie, 170, 376	odpowiedzi lokalnej, LRN, 478
sekwencyjne	warstwowa, layer normalization, 538
prognozowanie, 534	wsadowa, batch normalization, 358
strojenie, 109	implementacja, 360
•	
transformatorów, 587	notatnik Jupyter, 68, 71
uczenia maszynowego, 525	NumPy, 394, 396
uczenia maszynowego, 525 wdrożone, 115	NumPy, 394, 396
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575	± •
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400	NumPy, 394, 396
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400	NumPy, 394, 396 O obciążenie, bias, 167
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324	NumPy, 394, 396 O obciążenie, bias, 167 próbkowania, sampling bias, 51
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł	NumPy, 394, 396 0 obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480	NumPy, 394, 396 O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89	NumPy, 394, 396 O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488	NumPy, 394, 396 O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27 odchylenie standardowe, standard deviation, 75,
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391 N nadmierne dopasowanie, overfitting, 53	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27 odchylenie standardowe, standard deviation, 75, 619
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391 N nadmierne dopasowanie, overfitting, 53 naruszanie marginesu, margin violation, 187	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27 odchylenie standardowe, standard deviation, 75, 619 odkładanie wag, weight stashing, 717
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391 N nadmierne dopasowanie, overfitting, 53 naruszanie marginesu, margin violation, 187 narzędzie	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27 odchylenie standardowe, standard deviation, 75, 619 odkładanie wag, weight stashing, 717 odkrywanie cechy, feature extraction, 52
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391 N nadmierne dopasowanie, overfitting, 53 naruszanie marginesu, margin violation, 187 narzędzie AutoGraph, 419, 754	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27 odchylenie standardowe, standard deviation, 75, 619 odkładanie wag, weight stashing, 717 odkrywanie cechy, feature extraction, 52 odtwarzanie
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391 N nadmierne dopasowanie, overfitting, 53 naruszanie marginesu, margin violation, 187 narzędzie AutoGraph, 419, 754 OpenAI Gym, 648	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27 odchylenie standardowe, standard deviation, 75, 619 odkładanie wag, weight stashing, 717 odkrywanie cechy, feature extraction, 52 odtwarzanie doświadczenia, experience replay, 628
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391 N nadmierne dopasowanie, overfitting, 53 naruszanie marginesu, margin violation, 187 narzędzie AutoGraph, 419, 754 OpenAI Gym, 648 TensorBoard, 333	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27 odchylenie standardowe, standard deviation, 75, 619 odkładanie wag, weight stashing, 717 odkrywanie cechy, feature extraction, 52 odtwarzanie doświadczenia, experience replay, 628 priorytetowych doświadczeń, PER, 672
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391 N nadmierne dopasowanie, overfitting, 53 naruszanie marginesu, margin violation, 187 narzędzie AutoGraph, 419, 754 OpenAI Gym, 648 TensorBoard, 333 nasycenie przepustowości, 716	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27 odchylenie standardowe, standard deviation, 75, 619 odkładanie wag, weight stashing, 717 odkrywanie cechy, feature extraction, 52 odtwarzanie doświadczenia, experience replay, 628 priorytetowych doświadczeń, PER, 672 odwrotne różniczkowanie automatyczne, 307
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391 N nadmierne dopasowanie, overfitting, 53 naruszanie marginesu, margin violation, 187 narzędzie AutoGraph, 419, 754 OpenAI Gym, 648 TensorBoard, 333 nasycenie przepustowości, 716 nauczanie według schematu, 677	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27 odchylenie standardowe, standard deviation, 75, 619 odkładanie wag, weight stashing, 717 odkrywanie cechy, feature extraction, 52 odtwarzanie doświadczenia, experience replay, 628 priorytetowych doświadczeń, PER, 672 odwrotne różniczkowanie automatyczne, 307 OEL, Open-Ended Learning, 677
uczenia maszynowego, 525 wdrożone, 115 wyrównania, alignment models, 575 zapisywanie i wczytywanie, 400 zawierające elementy niestandardowe, 400 złożone, 324 moduł incepcyjny, inception module, 479, 480 Scikit-Learn, 89 SE-Inception, 488 TensorFlow, 391 N nadmierne dopasowanie, overfitting, 53 naruszanie marginesu, margin violation, 187 narzędzie AutoGraph, 419, 754 OpenAI Gym, 648 TensorBoard, 333 nasycenie przepustowości, 716	O obciążenie, bias, 167 próbkowania, sampling bias, 51 związane z podglądaniem danych, 77 obcinanie gradientu, gradient clipping, 363 obliczanie gradientów, 411 obsługa zmiennych, 755 obszar pod krzywą, AUC, 131 ocena OOB, 223 OCR, Optical Character Recognition, 27 odchylenie standardowe, standard deviation, 75, 619 odkładanie wag, weight stashing, 717 odkrywanie cechy, feature extraction, 52 odtwarzanie doświadczenia, experience replay, 628 priorytetowych doświadczeń, PER, 672 odwrotne różniczkowanie automatyczne, 307

766

Skorowidz

OOB, out-of-bag instances, 223	podsumowanie, summary, 334
OpenAI Gym, 648	połączenia
operacje, 395, 706	pomijające, skip connections, 482, 485
optymalizacja	skrótowe, shortcut connections, 482
momentum, momentum optimization, 369	pomiar dokładności, 123
momentum Nesterova, 370	porzucanie, dropout, 382
warstwy wyjściowej, 569	poszukiwanie oparte na ciekawości, 676
optymalizator, 344, 368	potok, pipeline, 64
optymalna wartość stanu, 660	Scikit-Learn, 99
oszacowanie	transformujący, 101
maksymalne a posteriori, 290	uczenia maszynowego, 30, 64
maksymalnej wiarygodności, 290	PPO, Proximal Policy Optimization, 676
, , ,	PR, precision/recall curve, 131
Р	prawdopodobieństwo, 175, 206
	utrzymywania, keep probability, 384
PACF, partial autocorrelation function, 525	warunkowe, 572
pakiet sklearn.utils.validation, 99	prawo wielkich liczb, 219
pamięć	prawoskośność, skewed right, 76
krótkotrwała, 540	-
odtwarzania, replay memory, 667	precyzja, 125, 127
operacyjna, 468, 704	predyktor, predictor, 35
parametry strategii, policy parameters, 647	problem
PCA, Principal Component Analysis, 245	dualny, dual problem, 198
PDF, Probability Density Function, 286	NP-zupełny, 208
pełność, 125, 127	pierwotny, primal problem, 198
percentyl, 75	przypisania zasługi, credit assignment
perceptron, 301, 302	problem, 654
reguła uczenia, 304	proces
twierdzenie o zbieżności, 304	decyzyjny Markowa, 659, 660
wielowarstwowy, MLP, 297, 305, 306, 311,	gaussowski, 341
312	przedni, 638
implementowanie, 313	rozpraszania, 641
klasyfikacyjny, 311	rozpraszania w przód, 638
regresyjny, 309, 323	w przód, forward process, 637
pętle uczenia niestandardowe, 415	wsteczny, reverse process, 637, 638
PG, policy gradients, 648	procesory graficzne, 701
pieńki decyzyjne, decision stump, 230	prognozowanie, forecasting, 45, 519
pierwiastek błędu średniokwadratowego, RMSE,	kilku taktów w przód, 533
65	naiwne, naive forecasting, 519
pierwszy projekt, 61	szeregów czasowych, 518, 531
pliki	za pomocą
CSV, 72, 432	głębokich sieci rekurencyjnych, 530
TFRecord, 436	modelu liniowego, 528
zdarzeń, event files, 334	modelu sekwencyjnego, 534
pobieranie wstępne, 432	sieci rekurencyjnej, 529
pochodna cząstkowa, 154	prognozy, predictions
funkcji kosztu, 155	algorytmu AdaBoost, 230
podobieństwo, 101	modelu regresji wielomianowej, 163
podpróbkowanie, subsample, 469	progowa jednostka logiczna, TLU, 301

Skorowidz | 767

programowanie	punkt
dynamiczne, 661	charakterystyczny, landmark, 190
kwadratowe, quadratic programming, 197	końcowy, endpoint, 693
projekt	obciążenia, bias term, 146
TensorFlow Datasets, 455	przecięcia, intercept term, 146
uczenia maszynowego, 731	PWA, progressive web app, 700
propagacja	p-wartość, 210
etykiet, label propagation, 277	
podobieństwa, 283	Q
wsteczna, backpropagation, 306, 307	Ų
wsteczna w czasie, BPTT, 517	Q-uczenie, 664
protokół OAuth 2.0, 691	Q-uczenie głębokie, 666
próba, trial, 725	implementacja modelu, 667
próbka ucząca, 28	podwójna sieć DQN, 672
próbkowanie	ustalone Q-wartości, 671
jądra, nucleus sampling, 555	walcząca sieć DQN, 673
niepewności, uncertainty sampling, 279	watergea siec D Q11, 673
ważone, importance sampling, 672	D.
próg decyzyjny, 127	R
przedział ufności, confidence interval, 113	rachunek zdań, propositional logic, 298
przeglądarka	radialna funkcja bazowa, RBF, 96, 190
przetwarzanie modelu, 699	realizacja pospieszna, eager execution, 420
przekształcenia afiniczne, affine transformations,	redukowanie wymiarowości, dimensionality
634	reduction, 37, 462
przeplatanie wierszy, 429	
przepustowość pamięci, memory bandwidth, 433	główne składowe, 247
przestrzeń	liniowa analiza dyskryminacyjna, 258
strategii, policy space, 647	nieliniowe, NLDR, 256
ukryta, latent space, 619	rzutowanie, 242
	losowe, 254
przeszukiwanie siatki, 109	na d wymiarów, 248
	skalowanie wielowymiarowe, 258
wiązkowe, beam search, 572, 573	stochastyczne zanurzanie sąsiadów, 258
przetrenowanie, 53, 381	uczenie rozmaitościowe, 244
przetwarzanie	wybór liczby wymiarów, 249
brzegowe, edge computing, 697	zachowanie wariancji, 246
grafu TensorFlow, 702	regresja, 34, 211
języka naturalnego, NLP, 368, 549	do średniej, 34
obrazów, 454	grzbietowa, ridge regression, 167, 169
równoległe, 708	jednoczynnikowa, univariate regression, 65
sekwencji, 544	k-najbliższych sąsiadów, 48
tekstu, 451	liniowa, 146, 150
wstępne, 441	logistyczna, logistic regression, 35, 174
przewaga czynności, action advantage, 655	logitowa, logit regression, 174
przewidywanie następnego zdania, 589	metodą
przygotowywanie danych, 525	elastycznej siatki, 172
przykład uczący, 28	LASSO, 170
przykłady pozatreningowe, OOB, 223	
pula wątków	softmax, 180
międzyoperacyjna, 708	SVM, 193, 195
wewnątrzoperacyjna, 708	wieloczynnikowa, multivariate regression, 65

768 | Skorowidz

wielomianowa, polynomial regression, 161	rozumienie języka naturalnego, NLU, 591
wielomianowa wysokiego stopnia, 164	równanie
wieloraka, multiple regression, 65	kwadratowe, 162
regresyjne drzewo decyzyjne, 211	normalne, 148
regularyzacja, regularization, 54	optymalności Bellmana, 660
l1 i l2, 381	równowaga Nasha, Nash equilibrium, 627
metodą wczesnego zatrzymywania, 173	różniczkowanie
mieszająca, mixing regularization, 635	automatyczne, 411, 738
podsłów, subword tokenization, 559	automatyczne odwrotne, 741
regresji	ręczne, 736
grzbietowej, 171	symboliczne, symbolic differentiation, 739
metodą LASSO, 171	RPN, Region Proposal Network, 506
Tichonowa, Tikhonov regularization, 167	rzadkość, sparsity, 615
typu max-norm, 387	rzutowanie, 242, 247
typu Monte Carlo, 385	losowe, random projection, 254
regularyzatory, 402	na d wymiarów, 248
reguła	
aktualizowania wag, 229	S
Hebba, 303	
łańcuchowa, chain rule, 308, 742	SAC, Soft Actor-Critic, 676
rekonstrukcje, reconstructions, 603	samodestylacja, self-distillation, 594
repliki zapasowe, 715	samonormalizacja, self-normalize, 355
repozytoria danych, 61	schemat macierzy pomyłek, 126
reprezentacje	schodzenie po gradiencie z minigrupami, 160
danych, 602	Scikit-Learn, 89
ukryte, latent representations, 594, 601	segmentacja
właściwościowe słów, 448	instancji, instance segmentation, 509
ResNet-34	obrazu, image segmentation, 274
implementacja sieci, 492	semantyczna, semantic segmentation, 507
REST, 684	serwer
retuszowanie, outpainting, 642	główny, 720
RL, Reinforcement Learning, 644	parametrów, parameter server, 714, 720
RMSE, Root Mean Square Error, 65, 173	roboczy, worker, 714, 720
RNN, Recurrent Neural Networks, 512	sezonowość, seasonality, 519
ROC, receiver operating characteristic, 130	SGD, Stochastic Gradient Descent, 122, 157
rotacja zbioru uczącego, 213	sieci neuronowe
rozgrzewanie modelu, model warmup, 687	dostrajanie hiperparametrów, 337
rozkład	jako strategie, 652, 653 typu koder – dekoder, 516, 565
gruboogonowy, heavy tail, 95	· -
modelu, model rot, 41	sieć neuronowa głęboka, DNN, 306, 348, 388, 484
normalny, 75	
potęgowy, power law distribution, 95	DQN podwójna, Double DQN, 672 DQN walcząca, Dueling DQN, 673
prawdopodobieństwa, 637	Q-sieć, Deep Q-networks, DQN, 644, 666
według wartości osobliwych, SVD, 150, 248	jednokierunkowa, FNN, 306
rozmaitość, manifold, 245	generatywna przeciwstawna, GAN, 601, 623
rozmiar grupy danych, 344	sieć neuronowa
rozpraszanie stabilne, Stable Diffusion, 642	uczenie, 627
rozróżnianie miniwsadami, mini-batch	rozrost progresywny, 631
discrimination, 628	10210st progress willy, 031

Skorowidz | 769

sieć neuronowa	stopień
splotowa głęboka, DCGAN, 628	niezmienniczości, 470
StyleGAN, 634	zintegrowania, order of integration, 523
warunkowa, CGAN, 631	stopnie swobody, 54
rekurencyjna, RNN, 512	stosy map cech, 463
bezstanowa, stateless RNN, 549	strata rekonstrukcji, reconstruction loss, 603
prognozowanie, 529	strategia, policy, 646
dwukierunkowa, 571	duplikowania, mirrored strategy, 713
głęboka, 530	poszukiwania, 665
sekwencyjna, sequence-to-sequence	stochastyczna, stochastic policy, 647
network, 516	ε-zachłanna, ε-greedy policy, 665
sekwencyjno-wektorowa, sequence-to-	strojenie, 109
vector network, 516	hiperparametrów, 56, 725, 727
stanowa, stateful RNN, 550	modelu BERT, 589
wektorowo-sekwencyjna, vector-to-	struktura
sequence network, 516	Mask R-CNN, 509
znakowa, char-RNN, 549, 553, 555	CNN, 491
splotowa, CNN, 458, 460	struktury danych, 73, 398, 744
AlexNet, 476	superrozdzielczość, super-resolution, 509
GoogLeNet, 479, 481	superzbieżność, super-convergence, 378
LeNet-5, 460, 475	SVD, singular value decomposition, 248
ResNet, Residual Network, 482, 484	SVM, support vector machine, 185
SENet, 487	działanie liniowych klasyfikatorów, 195
VGGNet, 482	klasyfikacja liniowa, 185
w pełni połączona, FCN, 501	klasyfikacja nieliniowa, 188
wybór struktury, 491	maszyny kernelizowane, 199
Xception, 486	regresja, 193
sztuczna, SSN, ANN, 297	symulowane wyżarzanie, simulated annealing,
Wide & Deep, 325	158
YOLO, 503	syntetyczne nadpróbkowanie mniejszości, 477
sieć proponowania rejonów, RPN, 506	system
sigmoidalna jednostka liniowa, 356	Pathways, 718
silnik Dockera, Docker engine, 682	PipeDream, 717
skalowanie	systemy uczenia maszynowego, 33
cech, feature scaling, 94, 154	szacowanie
min. – max., min-max scaling, 94	gęstości, 262
wielowymiarowe, MDS, 258	prawdopodobieństwa, 175, 178, 206
składnia obiektów, 439	szereg czasowy, time series, 512, 518, 519
spadek wzdłuż gradientu, 157, 370	jednowymiarowy, univariate time series, 519
specyficzność, 130	prognozowanie, 531
SPMD, single program, multiple data, 713	wielowymiarowy, multivariate time series, 519
sprawdzian krzyżowy, 57, 107, 123	szeregowanie, scheduling, 718
implementacja, 123	zespołów, gang scheduling, 718
stan końcowy, terminal state, 659	szerokość wiązki, beam width, 572
standaryzacja, standarization, 94	sztuczka
stochastyczne zanurzanie sąsiadów, 258	z funkcją jądra, kernel trick, 189
stochastyczny spadek wzdłuż gradientu, SGD,	z haszowaniem, hashing trick, 447
157	szybkość uzyskania zbieżności, 157
stopa dyskontowa discount factor, 654	, ,

Pole ksi k

770 | Skorowidz

Ś	uruchamianie serwera, 682 wdrażanie modelu, 686
ścieżki algorytmów gradientu prostego, 161	wysyłanie zapytań, 684, 685
śledzenie, tracing, 753	TensorFlow.js, 394
obiektów, 506	teoria
średni	informacji Shannona, 208
absolutny błąd, MAE, 66	sterowania, 649
bezwzględny błąd procentowy, MAPE, 521	
średnia	TLU, Threshold Logic Unit, 301
harmoniczna, 126	transformator, transformer, 550, 578
krocząca autoregresywna, ARMA, 523	niestandardowy, 97
środowisko	wizualny, 592
CartPole, 650	transpozycja macierzy, 147
symulowane, simulated environment, 648	trenowanie, 105
•	tryb
wykonawcze, runtime, 69	grafowy, graph mode, 420
_	pospieszny, eager mode, 420
T	t-SNE, t-Distributed stochastic neighbor
tablice tensorów, 398, 746	embedding, 258
	twierdzenie
tasowanie danych, 428	Mercera, 200
TD, temporal difference, 663	o nieistnieniu darmowych obiadów, 59
tensor, 395, 396	o zbieżności perceptronu, 304
maski, mask tensor, 561	tworzenie
nierówny, 398, 745	zbioru testowego, 77
rzadki, 398, 746	zestawu danych uczących, 551
symboliczny, symbolic tensor, 420	
znakowy, 398	U
TensorBoard, 333	
TensorFlow, 391	uczenie
architektura modułu, 393	"jednostrzałowe", single-shot learning, 510
bufory protokołów, 438	aktywne, active learning, 279
CUDA, 703	autokoderów pojedynczo, 611
cuDNN, 703	drzewa decyzyjnego, 203
eksploatacja modelu, 680	federacyjne, federated learning, 701
funkcje, 417	głębokich sieci neuronowych, 348
generowanie grafów, 420	hebbowskie, 303
grafy, 417	klasyfikatora binarnego, 122
klaster, 720, 721	maszynowe, 28
przetwarzanie równoległe grafu, 708	maszynowe wytłumaczalne, interpretable MI
uczenie modelu, 720	206
wdrażanie modeli, 679	metodą różnic czasowych, 663
wstępne przetwarzanie danych, 424	miksera, 236
TensorFlow Hub, 394	modeli, 145
TensorFlow Lite, 394	modeli rzadkich, 376
TensorFlow Playground, 313	modelu BERT, 589
TensorFlow Serving, 680	modelu char-RNN, 553
eksportowanie obiektów SavedModel, 680	
instalowanie serwera, 682	nadzorowane, supervised learning, 34
skalowanie systemu, 688	nienadzorowane, unsupervised learning, 35,
	261

Skorowidz | 771

uczenie	V
nieustanne, Open-Ended Learning, 677	
od strzału, ZSL, 590	VAE, variational autoencoders, 618
perceptronu, 304	Vertex AI
pozakorowe, out-of-core learning, 43	grupy zadań uczenia, 723
półnadzorowane, semisupervised learning,	strojenie hiperparametrów, 725, 727
38, 276	usługi predykcyjne, 688
przeciwstawne, adversarial learning, 510, 602	zadania predykcji wsadowych, 695
przez wzmacnianie, reinforcement learning,	
RL, 40, 644, 646	W
przy użyciu reguł asocjacyjnych, association	1.1. 220
rule learning, 37	waga predyktora, 229
przyrostowe, online learning, 42, 122	wagi Glorota i He, 349
rezydualne, residual learning, 483	wariancja, variance, 167, 214, 246, 250
rozmaitościowe, manifold learning, 244, 245	sygnału, 639
samonadzorowane, self-supervised learning,	szumu, 639
368	warstwa
sieci GAN, 627	AdaIN, 635
sieci rekurencyjnych, 517	CategoryEncoding, 444 Discretization, 444
się optymalizowania nagród, 645	
się reprezentacji, representation learning, 93	Hashing, 447
transferowe, transfer learning, 40, 342, 363, 494	Normalization, 441
w kontekście kwantyzacji, 699	StringLookup, 446
wielkoskalowe, 679, 718	warstwy
wsadowe, batch learning, 40	dekonwolucyjne, deconvolution layers, 508 ekspansji, upsampling layers, 507
wstępne	1 , 1 1 0 .
za pomocą dodatkowego zadania, 367	łączące, pooling layers, 460, 469
nienadzorowane, unsupervised pretraining,	globalne uśredniające, global average pooling layers, 472
367, 609	implementacja, 472
z modelu, model-based learning, 45	maksymalizujące, max pooling layers, 469
z przykładów, instance-based learning, 44	uśredniające, average pooling layers, 471
zespołowe, 217	w głąb, depth concatenation layers, 479
ukierunkowania indukcyjne, inductive bias, 593	neuronów
urządzenia	rekurencyjnych, 514
logiczne, logical devices, 705, 706	rozwijane w czasie, 514
mobilne	niestandardowe, 405
wdrażanie modelu, 697	normalizacji piksel po pikselu, 633
przetwarzanie równoległe, 708	odchylenia standardowego miniwsadów, 632
uczenie modeli, 710	ograniczające, bottleneck layers, 479
umieszczanie operacji i zmiennych, 706	przetwarzania wstępnego, 441
usługa robocza, service worker, 700	rekurencyjne, 513
usuwanie niemaksymalnych pikseli, 500	splotowe, 460, 464
uśrednione kodowanie μ, 619	implementacja, 465
utrzymywanie systemu, 114	jednowymiarowe, 544
uwaga krzyżowa, cross-attention, 580	rozdzielne po głębokości, 486
uzupełnianie, inpainting, 642	rozszerzone, à trous convolutional layers,
zerami, zero padding, 461, 466	509
	w interfejsie Keras, 508

772 |

Skorowidz

ukryte, 342	profilu, silhouette coefficient, 272
liczba neuronów, 343	rozszerzalności, dilution rate, 509
wstępnego przetwarzania obrazów, 454	uczenia, learning rate, 43, 151, 156, 344, 377
wyjściowe	uczenia wyrównany, 633
optymalizacja, 569	wariancji wyjaśnionej, 249
wartości stanu – czynności, state-action values,	ważony błędu, 229
661	wsparcia, support, 141
wartość docelowa, 35	wstępne przetwarzanie
ważenie częstości termów, 452	danych, 430, 432
wczesne zatrzymywanie, early stopping, 173	obrazów, 454
wcześniejsze zakotwiczenia, anchor prior, 504	tekstu, 451
wdrażanie modeli TensorFlow, 679	wydobywanie
wektor	cech, feature extraction, 37
gradientów funkcji kosztu, 155	danych, data mining, 30
kolumnowy, 147	wyjaśnialność, explainability, 510, 593
momentu, 369	wykres
nośny, support vector, 185	funkcji logistycznej, 175
podgradientów, 172	krzywej ROC, 130
wierszowy, 147	mediany, 85
właściwościowy, embedding, 93, 447, 448, 563	precyzji i pełności, 129
segmentowy, segment embedding, 589	profilu, silhouette diagram, 272
węzeł	punktowy danych, 82
główny, root node, 204	wykrywanie
podziału, split node, 205	anomalii, anomaly detection, 37, 261, 287
wiązanie wag, tying weights, 610	algorytm Fast-MCD, 292
wielomianowa/wieloraka regresja logistyczna,	jednoklasowa maszyna wektorów nośnych
multinomial logistic regression, 180	293
wielowarstwowy stos kontaminujący, 237	las izolacyjny, 292
wizualizacja, 81	współczynnik LOF, 292
danych, 81, 333	nowości, novelty detection, 37
drzewa decyzyjnego, 203	obiektów, 499, 500
rekonstrukcji, 607	wyliczanie prognoz, 204
zestawu danych, 608	wymuszanie nauczyciela, teacher forcing, 565
wklejanie, pasting, 221, 222	wynik
wnioskowanie, 49	obiektowości, objectness score, 499
Workbench, 688	profilu, silhouette score, 272
wskaźnik	wynikanie, entailment, 588
Giniego, 208	wyostrzenie, sharpening, 595
mAP, 505	wyrocznia, oracle, 339
niestandardowy, 403	wyszukiwanie strategii, policy search, 646, 647
oparty na elementach wewnętrznych, 410	wyznaczanie liczby skupień, 289
stanowy, stateful metric, 404	wzmacnianie, boosting, 217, 227
strumieniowy, streaming metric, 404	adaptacyjne, 227
wartości przeciętnej precyzji, AP, 505	gradientowe, gradient boosting, 231, 232,
wydajności, 65	227
współczynnik	wzmacnianie, boosting
korelacji liniowej, 84, 86	drzew, 231
lokalny elementów odstających, LOF, 292	w oparciu o histogram, HGB, 234
porzucenia, dropout rate, 383	hipotezy, hypothesis boosting, 227

Skorowidz | 773

wzór regresji grzbietowej, 169 wzrost gradientu, gradient ascent, 648

7

zadanie, task, 720 załamanie modu, mode collapse, 594, 627 zanieczyszczenie Giniego, Gini impurity, 205 zasobnik, bucket, 692 zasoby, resources, 755 zastosowania uczenia maszynowego, 31 zaszumienie próbkowania, sampling noise, 51 zbieżność algorytmu, 151, 157 zbiór, 398, 747 testowy, test set, 56, 113 tworzenie, 77 uczący, training set, 28, 56, 106 zespoły agregujące, bagging, 217 kontaminujące, 236 wklejające, pasting, 217 zespół, ensemble, 108 Extra-Trees, 225 **GBRT**, 233

```
zestaw danych
   Fashion MNIST, 315, 608, 622
   MNIST, 119
   płaski, flat dataset, 527
   Swiss roll, 244, 257
   ucząco-rozwojowy, train-dev-set, 58
   uczących
     tworzenie, 551
   zagnieżdżony, nested dataset, 526
złożoność obliczeniowa, 151, 192, 208
zmienne, 397, 706
znormalizowana funkcja wykładnicza, 180
zrównoleglanie
   danych, data parallelism, 710, 713
     za pomoca scentralizowanych parametrów,
       714
     za pomocą strategii duplikowania, 713
   modelu, model parallelism, 710
   potokowe, pipeline parallelism, 717
ZSL, Zero-Shot Learning, 590
```

774 | Skorowidz

Kup ksi k

PROGRAM PARTNERSKI — GRUPY HELION

- 1. ZAREJESTRUJ SIĘ 2. PREZENTUJ KSIĄŻKI

Zmień swoją stronę WWW w działający bankomat!

Dowiedz się więcej i dołącz już dzisiaj!

http://program-partnerski.helion.pl

Twórz i trenuj nowoczesne sieci neuronowe!

Znajdziesz tu rozsądne, intuicyjne objaśnienia, a także mnóstwo praktycznych porad!

François Chollet, twórca interfejsu Keras

Głębokie sieci neuronowe mają niesamowity potencjał. Osiągnięcia ostatnich lat nadały procesom uczenia głębokiego zupełnie nową jakość. Obecnie nawet programiści niezaznajomieni z tą technologią mogą korzystać z prostych i niezwykle skutecznych narzędzi, pozwalających na sprawne implementowanie programów uczących się z danych.

To trzecie wydanie bestsellerowego przewodnika po uczeniu maszynowym. Książka jest adresowana do osób, które chcą wejść w świat uczenia maszynowego — przy czym wystarczą do tego minimalne umiejętności programistyczne. Zawarto tu minimum teorii, a proces nauki ułatwiają liczne przykłady i ćwiczenia. Dzięki temu przyswoisz niezbędne pojęcia i nauczysz się korzystać z gotowych platform produkcyjnych Pythona: Scikit-Learn, Keras i TensorFlow. W tym wydaniu pokazano różnorodne techniki, od prostej regresji liniowej aż po głębokie sieci neuronowe. Szybko nauczysz się tworzyć działające systemy inteligentne!

W książce między innymi:

- korzystanie ze Scikit-Learn, z TensorFlow i Keras
- modele: maszyny wektorów nośnych, drzewa decyzyjne, lasy losowe i metody zespołowe
- uczenie nienadzorowane: redukcja wymiarowości, analiza skupień, wykrywanie anomalii
- sieci neuronowe: sieci splotowe, rekurencyjne, modele dyfuzyjne i transformatory
- trenowanie i implementacje sieci neuronowych

Aurélien Géron jest konsultantem i wykładowcą. Studiował mikrobiologię i genetykę ewolucyjną, pracował w Google, JP Morgan i Société Générale, a także w Ministerstwie Obrony Kanady. Napisał kilka książek o programowaniu w języku C++, sieciach Wi-Fi i architekturze sieci internetowych. Uczył też informatyki na francuskiej politechnice.

To znakomite wprowadzenie do teoretycznych i praktycznych rozważań na temat rozwiązywania problemów za pomocą sieci neuronowych!

Pete Warden, mobile lead projektu TensorFlow

