COLLECTIONS AND THE CLASSICAL THEORY OF TYPES

A FORMAL PURE TYPE THEORY IN THE LANGUAGE OF OBJECTS.

WRITTEN BY $egin{aligned} & ext{JEAN LUC PICCARD} \ & ext{\it To Data} \end{aligned}$

The precedence used here, in order of extent, and closed under indexing, is:

```
1. \forall, \exists, \exists! QUANTIFIER
```

- **3.** ⇔ 2-BINARY
- 4. \Rightarrow 2-BINARY
- **5.** V 2-BINARY
- **6.** ∧ 2-BINARY
- **7.** ¬ 2-UNARY
- 8. =, \subset ,: 2-BINARY
- 9. \rightarrow 2-BINARY
- 10. \cup , \cap , $\dot{}$, \times , PAR, ORP 2-BINARY, \bigcup , \mathscr{P} , \bigcap , π , SUC 2-UNARY
- 11. IND, REL, WFR, TRAN, ORD 2-UNARY
- 12. ψ, ϕ, θ , FUN, REC 2-NULLARY

 $\mathcal{R}[p \Leftrightarrow q] = \mathcal{R}[p] \text{ iff } \mathcal{R}[q]$

where it is understood that the rest are 1-NULLARY.

To keep to the economy of presentation, we introduce $\exists!$ as part of the object calculus. We introduce obvious inference rules $\exists!$ EXIST, $\exists!$ UNIQUE, and $\exists!$ INTROS. Hereafter, we apply the restoration of parentheses to all strings seeking admissions as an object.

The prosentential semantics of the language is a function \mathcal{R} (from the object language to the natural language) defined recursively as follows:

```
1. for every first order variable x, second order variable \psi, objects x_1, x_2:
\mathcal{R}[\forall xx_1] = \text{``for all (objects) } x, \mathcal{R}[x_1] \text{'`}
\mathcal{R}[\exists x x_1] = " there exists (object) x, \mathcal{R}[x_1]"
\mathcal{R}[\exists!xx_1] = "there exists a unique (object) x, \mathcal{R}[x_1]"
\mathscr{R}[\forall \psi x_1] = \text{``for all (formulas) } \psi, \mathscr{R}[x_1] \text{'`}
\mathscr{R}[\exists \psi x_1] = \text{``there exists (formula) } \psi, \mathscr{R}[x_1] \text{'`}
\mathscr{R}[x_1 \vdash x_2] = " if \mathscr{R}[x_1] then \mathscr{R}[x_2]"
\mathcal{R}[x_1 = x_2] = \mathcal{R}[x_1] \text{ equals } \mathcal{R}[x_2]"
2. for every second order variable \psi free from the signature, and for every
number of objects x_1, x_2, ... x_n:
\mathscr{R}[\psi x_1 x_2 ... x_n] = "\psi \text{ of } \mathscr{R}[x_1], \mathscr{R}[x_2], ... \mathscr{R}[x_n] "
\mathscr{R}[x_1\psi x_2...x_n] = "\psi \text{ of } \mathscr{R}[x_1], \mathscr{R}[x_2], ... \mathscr{R}[x_n] "... \text{ etc.}
\mathscr{R}[x_1x_2...\psi x_n] = "\psi \text{ of } \mathscr{R}[x_1], \mathscr{R}[x_2], ... \mathscr{R}[x_n] "
3. for every first order variable x free from the signature:
\mathscr{R}[x] = "x"
4. for every objects p,q:
\mathcal{R}[\neg p] = \text{``neg. } \mathcal{R}[p]"
\mathcal{R}[\boldsymbol{p} \Rightarrow \boldsymbol{q}] = \mathcal{R}[\boldsymbol{p}] \text{ implies } \mathcal{R}[\boldsymbol{q}]
\mathcal{R}[\mathbf{p} \wedge \mathbf{q}] = \mathcal{R}[\mathbf{p}] \text{ and } \mathcal{R}[\mathbf{q}]
\mathcal{R}[\boldsymbol{p} \vee \boldsymbol{q}] = \mathcal{R}[\boldsymbol{p}] \text{ or } \mathcal{R}[\boldsymbol{q}]
```

```
5. for every objects x, y:
\Re[\mathcal{H}] = \text{``(the collection of)'} (hereditary, well founded) (pure) set(s)''
\mathcal{R}[x:y] = \mathcal{R}[x] is (a type) (an element) of \mathcal{R}[y]"
\mathcal{R}[x \rightarrow y] = \text{``(the collection of) function(s) from } \mathcal{R}[x] \text{ to } \mathcal{R}[y] \text{''}
6. for every objects x, y:
\mathcal{R}[\mathbf{x} \cup \mathbf{y}] = \mathcal{R}[\mathbf{x}] \text{ union } \mathcal{R}[\mathbf{y}]"
\mathscr{R}[\mathbf{x} \cap \mathbf{y}] = \mathscr{R}[\mathbf{x}] \text{ intersect } \mathscr{R}[\mathbf{y}]
\mathcal{R}[\mathbf{x} \setminus \mathbf{y}] = \mathcal{R}[\mathbf{x}] \text{ set minus } \mathcal{R}[\mathbf{y}]
\mathcal{R}[\mathbf{x} \dot{-} \mathbf{y}] = \mathcal{R}[\mathbf{x}] symmetric difference \mathcal{R}[\mathbf{y}]"
\mathcal{R}[x \times y] = \mathcal{R}[x] \text{ cartesian product } \mathcal{R}[y]
\mathcal{R}[\mathbf{x}_{PAR}\mathbf{y}] = \mathcal{R}[\mathbf{x}] pair \mathcal{R}[\mathbf{y}]
\mathcal{R}[\mathbf{x} \text{ ORP } \mathbf{y}] = \text{``the (ordered) Pair of } \mathcal{R}[\mathbf{x}] \text{ with } \mathcal{R}[\mathbf{y}] \text{''}
\mathcal{R}[\bigcup x] = " the (upper) Union of \mathcal{R}[x]"
\mathcal{R}[\mathcal{P}x] = "the power set of \mathcal{R}[x]"
\mathcal{R}[\cap x] = "the (upper) Intersection of \mathcal{R}[x]"
\mathcal{R}[\pi_1 x] = " the first projection of \mathcal{R}[x]"
\mathcal{R}[\pi_2 x] = "the second projection of \mathcal{R}[x]"
\mathcal{R}[\operatorname{suc} x] = " the successor of \mathcal{R}[x]"
7. for every objects x, y:
\mathcal{R}[\mathbf{x} \subset \mathbf{y}] = \mathcal{R}[\mathbf{x}] is a subtype of \mathcal{R}[\mathbf{y}]
\mathcal{R}[IND x] = \mathcal{R}[x] is inductive "
\mathcal{R}[\text{REL} x] = \mathcal{R}[x] \text{ is a relation }
\mathcal{R}[\mathbf{wfr} \mathbf{x}] = \mathcal{R}[\mathbf{x}] is well-formed relation "
\mathcal{R}[TRAN x] = \mathcal{R}[x] is transitive "
\mathcal{R}[\text{ORD} x] = \mathcal{R}[x] \text{ is an ordinal }
8. nullary constants:
\mathcal{R}[0] = " (the) ordinal zero (ie. empty set) "
\mathcal{R}[1] = " (the) ordinal one"
\mathcal{R}[2] = " (the) ordinal two"
\mathcal{R}[\omega] = " (the) (set of) counting ordinal(s)"
```

Items 1. through 3. correspond to the object calculus; 4. corresponds to intuionistic logic; 5. to our set theory; and 6. through 8. to our (mostly natural) deductive extension.

LAWS OF INTUITIONISTIC LOGIC

Logical connectives do not themselves constitute the indivisible elements of nature. They are composed, in manner of speaking, of particular arrangements of fire and water; of the explosive characteristic of universal comprehension \forall , and the ebb and flow of entailment \vdash .

While this theory introduces the second-order binary symbol of *implication* \Rightarrow , it is merely of historical interest; very rarely do we use it. For implication is entailment's impostor. Let it be known who is the master and who is the fool.

$\forall p(\neg p) = (p \vdash \forall xx)$. CANONICAL DEFINITION of Negation	1
¶	
$\Box(\boldsymbol{p} \vdash \forall \boldsymbol{x} \boldsymbol{x}) = (\boldsymbol{p} \vdash \forall \boldsymbol{x} \boldsymbol{x}). $ EQ	1.1
$\Box \forall p(p \vdash \forall xx) = (p \vdash \forall xx). \qquad [.1] \forall_{1} GEN$	1.2
$\Box \exists \psi \forall p \psi p = (p \vdash \forall xx). \qquad [.2] \exists_2 GEN$	1.3
$\Box \forall p (\neg p) = (p \vdash \forall xx). \qquad [.3] \text{ 2NAME}$	1.4
■	
$\forall p \forall q (p \Rightarrow q) = (p \vdash q)$. CANONICAL DEFINITION of Implication	2
¶	_
$\square(p \vdash q) = (p \vdash q)$. EQ	2.1
$\Box \forall q (p \vdash q) = (p \vdash q). $ [.1] $\forall 1$ GEN	2.2
$\Box \forall q (p \mid q) = (p \mid q). $ $\Box \forall p \forall q (p \mid q) = (p \mid q). $ $[.2] \forall_{1} GEN$	2.3
	2.4
$ \exists \psi \forall p \forall q p \psi q = (p \vdash q). $ [3] $\exists_2 \text{GEN} $	
$\Box \forall p \forall q (p \Rightarrow q) = (p \vdash q). \tag{.4} 2 \text{NAME}$	2.5
QED	
$\forall p \forall q (p \land q) = \forall x (p \vdash q \vdash x) \vdash x$. CANONICAL DEFINITION of Conjunction	3
<u>¶</u> DEM	
$\Box(\forall x(p\vdash q\vdash x)\vdash x)=\forall x(p\vdash q\vdash x)\vdash x.$ EQ	3.1
$\square \forall q (\forall x (p \vdash q \vdash x) \vdash x) = \forall x (p \vdash q \vdash x) \vdash x. $ [.1] \forall_1 GEN	3.2
$\square \forall p \forall q (\forall x (p \vdash q \vdash x) \vdash x) = \forall x (p \vdash q \vdash x) \vdash x. $ [.2] $\forall_1 \text{GEN}$	3.3
$\square \exists \psi \forall p \forall q p \psi q = \forall x (p \vdash q \vdash x) \vdash x. \qquad [.3] \exists_2 GEN$	3.4
$\Box \forall p \forall q (p \land q) = \forall x (p \vdash q \vdash x) \vdash x. $ [.4] 2NAME	3.5
QED .	
$\forall p \forall q (p \lor q) = \forall x (p \vdash x) \vdash (q \vdash x) \vdash x$. CANONICAL DEFINITION of Disjunction	4
¶DEM	
$\Box(\forall x(p\vdash x)\vdash (q\vdash x)\vdash x) = \forall x(p\vdash x)\vdash (q\vdash x)\vdash x.$ EQ	4.1
$\Box \forall q (\forall x (p \vdash x) \vdash (q \vdash x) \vdash x) = \forall x (p \vdash x) \vdash (q \vdash x) \vdash x. \qquad [.1] \forall_{1} GEN$	4.2
$\Box \forall p \forall q (\forall x (p \vdash x) \vdash (q \vdash x) \vdash x) = \forall x (p \vdash x) \vdash (q \vdash x) \vdash x. \qquad [.2] \forall_1 GEN$	4.3
$\Box \exists \psi \forall p \forall q p \psi q = \forall x (p \vdash x) \vdash (q \vdash x) \vdash x. \qquad [.3] \exists_2 GEN$	4.4
$\Box \forall p \forall q (p \lor q) = \forall x (p \vdash x) \vdash (q \vdash x) \vdash x. \qquad [.4]_{2} \text{NAME}$	4.5
■	
$\forall p \forall q (p \Leftrightarrow q) = \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x.$ CANONICAL DEFINITION of Logical Equivalence	5
TDEM	•
$\Box(\forall x((p\vdash q)\vdash (q\vdash p)\vdash x)\vdash x) = \forall x((p\vdash q)\vdash (q\vdash p)\vdash x)\vdash x.$ EQ	5.1
$\Box \forall q (\forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x) = \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x. \qquad [.1] \forall 1 \text{ GEN}$	5.2
$\Box \forall q \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x) = \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x. \qquad [.2] \forall 1 \text{ GEN}$ $\Box \forall p \forall q (\forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x) = \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x. \qquad [.2] \forall 1 \text{ GEN}$	5.3
	5.4
$ \exists \psi \forall p \forall q p \psi q = \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x. $	
$\Box \forall p \forall q (p \Leftrightarrow q) = \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x. \qquad [.4]_{2} \text{NAME}$	5.5
■, QED	

LAWS OF CLASSICAL TYPE THEORY

The goals of classical set theory are summarized as follows:

- (1) the theory is *consistent*, ie. it is unable to prove $\forall xx$;
- (2) the theory is *classical*, ie. it is able to prove $\forall pp \lor \neg p$; and
- (3) the sets are *pure*, ie. they are *hereditary* and *well-founded*—they contain only sets which themselves contain only sets, etc, and they arise (hopefully) only from axiomatic construction.

Classical type theory generalizes the notion of sets to the notion of collections, or types. Our theory has two additional goals:

- (4) there is a collection of all sets \mathcal{H} ; and
- (5) there is a function type between any two collections, ie. whenever we may exhibit for every element of one collection a, a unique element of another b, we may infer the existence of a corresponding function f of the function type $a \rightarrow b$. We refer to this principle as ABC, the axiom of bounded creation.

The function so realized is an object. Thus we may define elementary set operations as symbols, within the framework of TOB, and we may naturally adopt their notation without losing syntactic specificity.

As a starting point, we keep our type theory modest. We seek to maximize what we can say of sets but minimize what we may say of types. In this way, we lay the groundwork for set-theoretic thought and leave room for further type-theoretic expansion.

$\forall a \forall b \forall \psi (\forall xx : a \vdash \exists ! yy : b \land \psi xy) \vdash \exists ff : a \rightarrow b \land \forall x \forall yx : a \vdash y : b \vdash \psi xy \Leftrightarrow fx = y.$	6
$\forall a \forall b \forall f f : a \rightarrow b \vdash \forall xx : a \vdash fx : b.$ AXIOM of Application	7
$\forall a \forall b \forall f \forall g f : a \rightarrow b \vdash g : a \rightarrow b \vdash (\forall xx : a \vdash fx = gx) \vdash f = g AXIOM of Extensionality of Functions$	8
$\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y$. AXIOM of Extensionality of Sets	9
$\forall x \forall y x : y \vdash y : \mathcal{H} \vdash x : \mathcal{H}$. AXIOM of Hereditary Sets	10
$\exists xx: \mathcal{H} \land \forall y \neg y:x.$ AXIOM of the Empty Set	11
$\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists zz : \mathcal{H} \land \forall z_1 z_1 : z \Leftrightarrow z_1 = x \lor z_1 = y. $ Axiom of Set Pairing	12
$\forall xx: \mathcal{H} \vdash \exists yy: \mathcal{H} \land \forall y_1y_1: y \Leftrightarrow \exists x_1x_1: x \land y_1: x_1. $ AXIOM of Set Union	13
$\forall x \forall f x : \mathcal{H} \vdash f : \mathcal{H} \rightarrow \mathcal{H} \vdash \exists yy : \mathcal{H} \land x : y \land \forall y_1 y_1 : y \vdash f y_1 : y. $ AXIOM of Set Induction	14
$\forall x \forall \psi x : \mathcal{H} \vdash \exists yy : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : x \land \psi y_1. \dots AXIOM of Set Specification$	15
$\forall x \forall f x : \mathcal{H} \vdash f : x \rightarrow \mathcal{H} \vdash \exists yy : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow \exists x_1 x_1 : x \land f x_1 = y_1 . \dots . \text{AXIOM of Set Replacement}$	16
$\forall xx: \mathcal{H} \vdash \exists yy: \mathcal{H} \land \forall y_1y_1: y \Leftrightarrow y_1: \mathcal{H} \land \forall y_2y_2: y_1 \vdash y_2: x. $ AXIOM of the Power Set	17
$\forall \psi(\forall xx: \mathcal{H} \vdash (\forall x_1x_1: x \vdash \psi x_1) \vdash \psi x) \vdash \forall xx: \mathcal{H} \vdash \psi x. \dots \text{AXIOM of Foundation for Sets}$	18
$\exists ff: \mathcal{H} \rightarrow \mathcal{H} \land \forall xx: \mathcal{H} \vdash (\exists x_1x_1:x) \vdash fx:x.$ AXIOM of Predetermined Choice for Sets	19
$\forall \phi \forall \psi (\forall a \forall b \phi ab \vdash \exists ! c \psi abc) \vdash \exists \theta \forall a \forall b \forall c \phi ab \vdash \psi abc \Leftrightarrow \theta ab = c.$ $AXIOM of Generalized Binary Realization$	20

DEMONSTRATIONS OF THE SELF EVIDENT

The rest of this book is devoted to writing formal proofs. When signature preserving they are theorems, when signature extending, definitions. We attempt to write, with little deviation, a natural extension of the theory; ie. one in which defined objects arise *naturally*— they witness existentially unique statements.

We arrange these proofs tabularly with pointers to assist computer verification. The chief advantage of a computer assisted proof software is the cataloging and utilizing of tactics, ie. the meta-mathematical practice of incorporating algorithms to reduce several lines of a formal theory to a single line in an enriched higher language. In the absence of software, we rely only on three families of rule tactics (two specified now). For each pair of numbers n,m, these tactics, defined as products of elementary rules, are:

$${}_{n} \text{MINT}_{m} = \underbrace{\forall_{1} \text{INST} \cdot \forall_{1} \text{INST} \cdot \dots \cdot \forall_{1} \text{INST}}_{m \ times} \cdot \underbrace{\underbrace{\text{MP} \cdot \text{MP} \cdot \dots \cdot \text{MP}}_{n \ times}}_{n \ times}$$

$$\text{UGEN}_{m} = \underbrace{\forall_{1} \text{GEN} \cdot \forall_{1} \text{GEN} \cdot \dots \cdot \forall_{1} \text{GEN}}_{m \ times}$$

Finally, our proofs are organized into sections of broad and developing material, followed by a circumlocution of exercises.

§1.1 Logic: First-order

21	$\forall m{p}m{p} \vdash \neg m{p} \vdash \forall m{x}m{x}$
	¶DEM
21.1	$\Box p \vdash \neg p \vdash \forall xx.$ LEM
	□¶
21.2	$\Box\Box\neg p \vdash \forall xx.$ LEM
	□ ¶
21.3	$\square\square p$. [.1] ASM
21.4	□□□¬ <i>p</i>
21.5	$\Box\Box\Box\forall p(\neg p) = (p \vdash \forall xx).$ AXM
21.6	$\square\square\square(\neg p) = (p \vdash \forall xx). \qquad [.5] \forall_1 \text{INST}$
21.7	$\Box\Box p \vdash \forall xx.$ [.6] [.4] SUB
21.8	$\square\square\square\forall xx.$ [.7] [.3] MP
	QED
	□ ■. QED
21.9	$\Box \forall pp \vdash \neg p \vdash \forall xx. \qquad [.1] \forall_{1} GEN$
	■
	Uses Axioms: 1

¶	
$\Box p \vdash \neg p \vdash x$. LEM	22.1
□¶	
$\square\square\neg p \vdash x$ LEM	22.2
□ □ ¶	
$\square\square\square p$ [,1] ASM	22.3
$\square\square\square\neg p$ [.2] ASM	22.4
$\square\square\square\forall p(\neg p) = (p \vdash \forall xx).$ AXM	22.5
$\square\square\square(\neg p) = (p \vdash \forall xx). \qquad [.5] \forall_1 \text{INST}$	22.6
$\square\square\square p \vdash \forall xx.$ [.6] [.4] SUB	22.7
$\square\square\square\forall xx.$ [.7] [.3] MP	22.8
$\square\square\square x$ [8] \forall_1 INST	22.9
□□ ■. QED	
□ ■. QED	
$\Box \forall p \forall x p \vdash \neg p \vdash x.$ [.1] UGEN ₂	22.10
Q ED	
Uses Axioms: 1	
$\forall m{p}(m{p} dash m{x}m{x}) dash abla m{p}$	23
¶	
$\Box(p \vdash \forall xx) \vdash \neg p$ LEM	23.1
□¶	
$\Box \Box p \vdash \forall xx.$ [.1] ASM	23.2
$\square\square\forall p(\neg p) = (p \vdash \forall xx).$ AXM	23.3
$\Box\Box(\neg p) = (p \vdash \forall xx). \qquad [.3] \forall_{1} \text{INST}$	23.4
□□¬ p.	23.5
□ ■. QED	
$\Box \forall p(p \vdash \forall xx) \vdash \neg p. \qquad [.1] \forall_{1} GEN$	23.6
I. QED	
Uses Axioms: 1	
$\forall m{p} \forall m{q} m{p} \vdash m{p} \Rightarrow m{q} \vdash m{q}$. Theorem of \Rightarrow Elimination	24
¶	
<u>r</u> <u>r</u> <u>r</u> <u>r</u>	24.1
□¶	
	24.2
□ _¶	
$\square\square p$ [.1] ASM	24.3
$\square\square p \Rightarrow q. \tag{2} ASM$	24.4
$\square\square\square\forall p\forall q(p\Rightarrow q)=(p\vdash q).$ AXM	24.5
$\square\square\square(p\Rightarrow q)=(p\vdash q).$ [.5] $_0$ MINT $_2$	24.6
$\square\square\square p \vdash q$ [.6] [.4] SUB	24.7
$\square\square\square q$	24.8

Q1
Q1
Uses Axioms: 2
$orall m{p} m{\forall} m{q}(m{p} m{\vdash} m{q}) m{\vdash} m{p} \Rightarrow m{q}.$
¶
$\Box(p \vdash q) \vdash p \Rightarrow q$
$\Box\Box p \vdash q$
$\square\square \forall p \forall q (p \Rightarrow q) = (p \vdash q).$
$\square\square(p\Rightarrow q)=(p\vdash q).$ [.3] ₀ MIN
$\square p \Rightarrow q$ [.4] [.2] St
□ ■.
$\Box \forall p \forall q(p \vdash q) \vdash p \Rightarrow q.$ [.1] UGE
I.
Uses Axioms: 2
$orall oldsymbol{p} orall oldsymbol{q} oldsymbol{p} \wedge oldsymbol{q} \vdash oldsymbol{p}.$ Theorem of \wedge Elimination
$orall oldsymbol{p} oldsymbol{q} oldsymbol{p} \wedge oldsymbol{q} oldsymbol{p} \wedge oldsymbol{q} oldsymbol{p} oldsymbol{\wedge} oldsymbol{E} limination$
¶
¶
\P
\P
\P
\P
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

27 $\forall p \forall q p \land q \vdash q$. Theorem of \land Elimination 2

¶	
$\Box p \land q \vdash q$. LEM	27.1
□¶	
$\Box\Box p \wedge q.$ [.1] ASM	
$\Box\Box\forall p\forall q(p\land q) = \forall x(p\vdash q\vdash x)\vdash x.$ AXM	27.3
$\square\square(p \land q) = \forall x(p \vdash q \vdash x) \vdash x. \qquad [.3]_{0} \text{MINT}_{2}$	27.4
$\Box\Box\forall x(p\vdash q\vdash x)\vdash x.$ [.4] [.2] SUB	27.5
$\square\square(p \vdash q \vdash q) \vdash q$. [.5] \forall_1 INST	27.6
$\Box\Box p \vdash q \vdash q$. LEM	27.7
□□¶DEM	
$\square\square \square q \vdash q$. LEM	27.8
□□□¶DEM	
□□□ q. [.8] ASM	27.9
□□ ■. QED	
□□ ■.	
□□ p.	27.10
QED	
$\Box \forall p \forall q p \land q \vdash q. \tag{.1} UGEN_2$	27.11
■	
Uses Axioms: 3	
Manager A. J. J. d.	
$\forall p \forall q p \vdash q \vdash p \land q$.	28
$\forall p \forall q p \vdash q \vdash p \land q.$ THEOREM of \land Introduction	28
¶	
\P	28 28.1
\P . DEM $\Box p \vdash q \vdash p \land q$. LEM $\Box \P$. DEM	28.1
\P DEM $\Box p \vdash q \vdash p \land q$ LEM $\Box \Pi$ DEM $\Box q \vdash p \land q$ LEM	
\P DEM $\Box p \vdash q \vdash p \land q$ LEM $\Box \P$ DEM $\Box q \vdash p \land q$ LEM $\Box q$ DEM $\Box q \vdash p \land q$ DEM	28.1 28.2
\P DEM $\Box p \vdash q \vdash p \land q$ LEM $\Box \P$ DEM $\Box q \vdash p \land q$ LEM $\Box q$ DEM $\Box p$ DEM	28.1 28.2 28.3
\P DEM $\Box p \vdash q \vdash p \land q$ LEM $\Box \P$ DEM $\Box q \vdash p \land q$ LEM $\Box \Box q$ DEM $\Box \Box p$ [.1] ASM $\Box \Box q$.	28.1 28.2 28.3 28.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5 28.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5 28.6 28.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5 28.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5 28.6 28.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 28.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 28.11

29	$\forall p \forall q \forall r (p \vdash r) \vdash (q \vdash r) \vdash p \lor q \vdash r.$ Theorem of \lor Eliminatio
	¶
29.1	$\Box(p \vdash r) \vdash (g \vdash r) \vdash p \lor g \vdash r.$ LE
	□¶
29.2	$\Box\Box(q \vdash r) \vdash p \lor q \vdash r$. LE
29.3	$\square\square p \lor q \vdash r$. LE
29.4	
29.5	$\square\square\square q \vdash r \qquad \qquad [.2] \text{ ASI}$
29.6	
29.7	$\square\square\square \forall p \forall q (p \lor q) = \forall x (p \vdash x) \vdash (q \vdash x) \vdash x. $ AXI
29.8	$\square\square\square(p\vee q) = \forall x(p\vdash x)\vdash (q\vdash x)\vdash x. \qquad [.7]_0 \text{MINT}$
29.9	$\square\square\square \forall x(p\vdash x)\vdash (q\vdash x)\vdash x. \qquad [.8] [.6] \text{ SU}$
9.10	$\square\square\square(p\vdash r)\vdash (q\vdash r)\vdash r. \qquad \qquad [.9] \ \forall_1 \text{INS}$
9.11	□□□□ <i>r</i> . [.10] [.4] [.5] 2MINT
0.11	□□■. QE
	□□ ■. .
	□ ■.
9.12	$\Box \forall p \forall q \forall r (p \vdash r) \vdash (q \vdash r) \vdash p \lor q \vdash r. $ [.1] UGEN
	Uses Axioms: 4
30	$\forall m{p} orall m{q} m{p} dash m{p} \lor m{q}$
30	
	$orall oldsymbol{p} orall oldsymbol{q} oldsymbol{p} dash oldsymbol{q} oldsymbol{p} dash oldsymbol{q}.$
	$orall oldsymbol{p} orall oldsymbol{q} oldsymbol{p} dot oldsymbol{q}.$ Theorem of \lor Introduction
30.1	$orall oldsymbol{p} orall oldsymbol{q} oldsymbol{p} dot oldsymbol{q} oldsymbol{p} dot oldsymbol{p} dot oldsymbol{q}.$ Theorem of \lor Introduction $oldsymbol{\mathbb{Q}}$
30.1 30.2	$orall m{p} abla m{q} m{q} m{p} abla m{q} abla m{$
30.1 30.2 30.3	$\forall p \forall q p \vdash p \lor q$. THEOREM of \lor Introduction ¶
30.1 30.2 30.3 30.4	$\forall p \forall q p \vdash p \lor q. \qquad \text{THEOREM of } \lor Introduction$ $\P \qquad \qquad$
30.1 30.2 30.3 30.4	$\forall p \forall q p \vdash p \lor q. \qquad \text{THEOREM of } \lor Introduction$ $\P. \qquad \qquad \qquad \qquad \text{DE}$ $\Box p \vdash p \lor q. \qquad \qquad \qquad \text{LE}$ $\Box \P. \qquad \qquad \qquad \qquad \qquad \text{DE}$ $\Box p. \qquad \qquad \qquad \qquad \qquad \text{[1] AS}$ $\Box \Box p \forall q (p \lor q) = \forall x (p \vdash x) \vdash (q \vdash x) \vdash x. \qquad \qquad \qquad \text{AX}$ $\Box \Box (p \lor q) = \forall x (p \vdash x) \vdash (q \vdash x) \vdash x. \qquad \qquad \qquad \qquad \text{[.3] }_{0} \text{MINT}$
30.1 30.2 30.3 30.4 30.5	$\forall p \forall q p \vdash p \lor q. \qquad \text{THEOREM of } \lor Introduction$ $\P \qquad \qquad$
30.1 30.2 30.3 30.4 30.5	$\forall p \forall q p \vdash p \lor q. \qquad \text{THEOREM of } \lor Introduction$ $\P \qquad \qquad \qquad \qquad \text{DE}$ $\Box p \vdash p \lor q. \qquad \qquad \qquad \text{LE}$ $\Box \P \qquad \qquad \qquad \qquad \qquad \text{DE}$ $\Box p. \qquad $
30.1 30.2 30.3 30.4 30.5	$\forall p \forall q p \vdash p \lor q. \qquad \text{THEOREM of } \lor Introduction$ $\P \qquad \qquad \qquad \qquad \qquad \text{DE}$ $\Box p \vdash p \lor q. \qquad \qquad \qquad \text{LE}$ $\Box \P \qquad \qquad \qquad \qquad \qquad \qquad \text{DE}$ $\Box p. \qquad $
30.1 30.2 30.3 30.4 30.5 30.6	$\forall p \forall q p \vdash p \lor q. \qquad \qquad \text{THEOREM of } \lor Introduction$ $\P. \qquad \qquad$
30.1 30.2 30.3 30.4 30.5 30.6	$\forall p \forall q p \vdash p \lor q. \qquad \text{THEOREM of } \lor Introduction$ $\P. \qquad \qquad \qquad \qquad \text{DE}$ $\Box p \vdash p \lor q. \qquad \qquad \qquad \text{LE}$ $\Box \P. \qquad \qquad \qquad \qquad \qquad \text{DE}$ $\Box p. \qquad $
30.1 30.2 30.3 30.4 30.5 30.6	$\forall p \forall q p \vdash p \lor q$.THEOREM of \lor Introduction¶DE $\Box p \vdash p \lor q$.LE \Box DE
30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8	$\forall p \forall q p \vdash p \lor q. \qquad \text{THEOREM of } \lor Introduction$ $\P \qquad \qquad$
30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8	$\forall p \forall q p \vdash p \lor q. \qquad \text{THEOREM of } \lor Introduction$ $\P \qquad \qquad$
30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8	$\forall p \forall q p \vdash p \lor q. \qquad \text{THEOREM of } \lor Introduction$ $\P \qquad \qquad$
30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8	$\forall p \forall q p \vdash p \lor q. \qquad \text{THEOREM of } \lor Introduction$ $\P \qquad \qquad$

ses Axioms: 4	
$p \forall q q \vdash p \lor q$	Theorem of \vee Introduction 2
I	DEM
$\Box q \vdash p \lor q$	LEM
□¶	DEM
$\Box\Box q$	[.1] ASM
$\square\square\forall p\forall q(p\vee q)=\forall x(p\vdash x)\vdash (q\vdash x)\vdash x.$	AXM
$\Box\Box(p\vee q)=\forall x(p\vdash x)\vdash(q\vdash x)\vdash x.$	[.3] $_{0}$ MINT $_{2}$
$\Box\Box(p \vdash x) \vdash (q \vdash x) \vdash x$	LEM
□□¶	DEM
$\Box\Box\Box(q\vdash x)\vdash x$	LEM
□□□¶	DEM
$\Box\Box\Box q \vdash x$	[.6] ASM
$\square\square\square x$.	[.7] [.2] MP
□□□ ■.	QED
□□■	QED
$\Box\Box\forall x(p\vdash x)\vdash (q\vdash x)\vdash x.$	[. 5] ∀ ₁ GEN
$\square\square(p\lor q)$	[.4] [.9] SUB
] =.	QED
$\Box \forall p \forall qq \vdash p \lor q$	
_	_
	QED
	QED
Uses Axioms: 4 $ otag p \forall qp \Leftrightarrow q \vdash p \vdash q$.	Theorem of \Leftrightarrow Elimination 1
Uses Axioms: 4 $orall p orall q p \Leftrightarrow q dash p dash q$.	THEOREM of \Leftrightarrow Elimination 1DEM
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q$. $\Box p \Leftrightarrow q \vdash p \vdash q$.	THEOREM of \Leftrightarrow Elimination 1DEM
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q$. $\Box p \Leftrightarrow q \vdash p \vdash q$. $\Box q$	THEOREM of ⇔ Elimination 1DEMLEM
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q$. $\Box p \Leftrightarrow q \vdash p \vdash q$. $\Box \Box \Box p \Leftrightarrow q$.	THEOREM of ⇔ Elimination 1
$Uses Axioms: 4$ $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ $\square p \Leftrightarrow q \vdash p \vdash q.$ $\square \square p \Leftrightarrow q.$ $\square \square p \Leftrightarrow q.$ $\square \square \forall p \forall q (p \Leftrightarrow q) = \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x.$	THEOREM of ⇔ Elimination 1
$Uses Axioms: 4$ $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ \square	THEOREM of ⇔ Elimination 1
$Uses Axioms: 4$ $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ \square \square $\square p \Leftrightarrow q \vdash p \vdash q.$ \square \square $\square p \Leftrightarrow q.$ $\square \square p \Leftrightarrow q.$ $\square \square p \forall q (p \Leftrightarrow q) = \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x.$ $\square \square (p \Leftrightarrow q) = \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x.$ $\square \square \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x.$	THEOREM of ⇔ Elimination 1
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ $\square \qquad \qquad$	THEOREM of ⇔ Elimination 1
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ $\square \qquad \qquad$	THEOREM of ⇔ Elimination 1
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ $\blacksquare \qquad \qquad$	THEOREM of ⇔ Elimination 1
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ $\blacksquare \qquad \qquad$	THEOREM of ⇔ Elimination 1
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ $\parallel \dots \dots$	THEOREM of ⇔ Elimination 1
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ $\blacksquare \qquad \qquad$	THEOREM of ⇔ Elimination 1
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ $\parallel \dots \dots$	THEOREM of ⇔ Elimination 1
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ $\square \qquad \qquad$	THEOREM of ⇔ Elimination 1
Uses Axioms: 4 $\forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ $\uparrow \qquad \qquad$	THEOREM of ⇔ Elimination 1

1	$\Box \forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$	-
	Uses Axioms: 5	QED
3	1 11 1 1 1	
	1	
1	$\Box p \Leftrightarrow q \vdash q \vdash p$	LEM
	□¶	
2	2 2	
3	1 14 1, 1 1,,	
4	$1 \Box \Box (p \Leftrightarrow q) = \forall x ((p \vdash q) \vdash (q \vdash p) \vdash x) \vdash x.$	[.3] ₀ MINT ₂
5		
6	$\Box \Box ((p \vdash q) \vdash (q \vdash p) \vdash (q \vdash p)) \vdash q \vdash p.$	[.5] \forall_1 Inst
7	$A \square \square (p \vdash q) \vdash (q \vdash p) \vdash q \vdash p.$	LEM
	□□¶	DEM
3	$B \square \square \square (q \vdash p) \vdash q \vdash p$	LEM
		DEM
)	$\bigcirc \square \square \square q \vdash p \dots $	[.8] ASM
	□□□■.	QED
	□□■	QED
)) □□ <i>q</i> ⊢ <i>p</i>	[.6] [.7] MP
		QED
	$\Box \forall p \forall q p \Leftrightarrow q \vdash q \vdash p.$	[.1] UGEN ₂
	I	- QED
	Uses Axioms: 5	
Į	1 14 1 1 1 1	
	¶	
2		
	1 1	
	<u> </u>	
	1 14 1,4 1, 11 1,,	
	$\Box\Box\Box(p\Leftrightarrow q)=\forall x((p\vdash q)\vdash (q\vdash p)\vdash x)\vdash x.$	[.5] ₀ MINT ₂
	$\square\square\square((p\vdash q)\vdash (q\vdash p)\vdash x)\vdash x.$	LEM
		DEM
	$\square\square\square(p\vdash q)\vdash (q\vdash p)\vdash x.$	[.7] ASM
		QED
)	$\square\square\square\forall x((p\vdash q)\vdash (q\vdash p)\vdash x)\vdash x.$	[. .7] ∀ ₁ GEN
L	$\square\square\square(p \Leftrightarrow q)$	[.6] [.10] SUB

□□ ■.	
□ ■. QED	
$\square \forall p \forall q (p \vdash q) \vdash (q \vdash p) \vdash p \Leftrightarrow q. \qquad \qquad [.1] \ \text{UGEN}_2$	34.12
■QED	
Uses Axioms: 5	

$\S 1.2 \ Logic: Exercises in First-order$

35	$\forall {\it p}{\it p} {\vdash {\it p}}.$ Theorem of Self Entailment
	¶DEM
35.1	$\Box p \vdash p$.
	□¶
35.2	□ p. [.1] ASM
	QED
35.3	$\Box \forall p p \vdash p$. [.1] $\forall_1 GEN$
	■
	Uses Axioms: None
36	$\forall m{p} \forall m{q} m{p} {\vdash} m{q} {\vdash} m{p}.$ Theorem of Weakening
	¶
36.1	$\Box p \vdash q \vdash p$ LEM
	□¶
36.2	$\Box\Box q \vdash p$. LEM
	□□¶
36.3	□□ p. [,1] ASM
	□□ ■. QED
	□ ■. QED
36.4	$\Box \forall p \forall q p \vdash q \vdash p$. [.1] UGEN ₂
	■
	Uses Axioms: None
37	$orall m{p} orall m{q}(m{p} dash m{q}) dash abla m{p} dash m{q}(m{p} dash m{q}) dash abla m{p} dash m{q} m{m}$
	¶
37.1	$\Box(p \vdash q) \vdash \neg q \vdash \neg p$.
	□¶
37.2	$\Box \neg q \vdash \neg p$. LEM
37.3	
37.4	$\square\square \neg q$. [.2] ASM
37.5	$\square\square p \vdash \forall xx.$ LEM
37.6	$\square\square\square p. \qquad \qquad [.5] \text{ ASM}$
37.7	□□□ <i>q</i> . [.3] [.6] MP
37.8	$\square\square\square\forall pp \vdash \neg p \vdash \forall xx.$ THM
37.9	
01.0	
37.10	$\square\square\square\forall p(p\vdash\forall xx)\vdash\neg p.$ THM
21.10	$\square\square\square \square \forall p \backslash p : \forall ww) \vdash p \bullet \dots \dots$

$\square\square\neg p$. [.10] [.5] $_1$ MINT $_1$ 3	37.1
QED	
□■QED	
	37.1
■QED	
Uses Axioms: 1	
$\forall m{p}m{p}$ $\vdash \neg \neg m{p}$	38
¶	
$\Box p \vdash \neg \neg p$. Lem 3	38.1
□¶	
$\Box \neg p \vdash \forall xx$. LEM 3.	38.2
-	38.3
•	
	38.4
rr r	38.5
$\square\square\square\forall xx.$ [.5] [.3] [.4] ₂ MINT ₁ 3:	38.6
□□ ■. QED	
$\Box\Box\forall p(p\vdash\forall xx)\vdash\neg p$. Thm 3	38.7
$\square\square\neg\neg p$. $[.7]$ [.2] $_1$ MINT $_1$ 3	8.8
□ ■. QED	
$\Box \forall pp \vdash \neg \neg p. \qquad [.1] \forall_{1} \text{GEN } 3$	38.9
■QED	
Uses Axioms: 1	
$\exists xx.$ Theorem of the Existence of the Individual 3:	39
¶	
□p⊢p LEM 3	39.1
□¶	
-	39.2
□■. QED	
·) n n
	39.3
■QED	
Uses Axioms: None	
$\forall x \exists y \neg x = y$. Theorem of Distinguishable Individuals 4	40
¶	
	10.1
	10.1 10.2
	10.3
$\Box x \vdash \forall xx$. LEM 4	10.4

	□□¶
40.5	
40.6	□□¬ <i>x</i> . [.3] [.5] SUB
40.7	$\Box\Box\forall pp\vdash\neg p\vdash\forall xx.$ THM
40.7	• •
40.8	$\square\square \forall xx. \qquad [.7] [.5] [.6]_{2} \text{MINT}_{1}$
	QEDQED
40.9	$\square\square\neg x$. [,1] [,4] $_1$ MINT $_1$
40.10	$\square \square x$. [.2] [.9] SUB
40.11	$\square\square\forall xx.$ [4] [.10] MP
	□ ■. QED
40.12	$\Box \neg x = \neg x. \qquad [.1] [.2]_{1} \text{MINT}_{1}$
40.13	$\square \exists y \neg x = y. $ [.12] $\exists_1 GEN$
40.14	$\Box \forall x \exists y \neg x = y. $ [.13] $\forall_1 GEN$
	■. QED
	Uses Axioms: 1
41	$\forall xx = x$. Theorem of Reflexivity, Equality Identity 1
	¶
41.1	x = x.
41.2	
	■
	Uses Axioms: None
40	Warrange CO The lite of the co
42	$\forall x \forall y x = y \vdash y = x$. Theorem of Symmetry, Equality Identity 2
	¶DEM
42.1	$\Box x = y \vdash y = x$. LEM
	□¶
42.2	$\square \square x = y$ [.1] ASM
42.3	□□ <i>y=x</i> [.2] [.2] SUB
	□■QED
42.4	$\Box \forall x \forall y x = y \vdash y = x. $ [.1] UGEN ₂
	■
	Uses Axioms: None
	USES ALIUMS. INDIC
	
43	THEODEM of Transitivity Fauglity Identity ?
43	$\forall x \forall y \forall z x = y \vdash y = z \vdash x = z$. Theorem of Transitivity, Equality Identity 3
	¶
43.1	$\Box x = y \vdash y = z \vdash x = z.$ LEM
	□¶
43.2	$\Box \Box y = z \vdash x = z$. LEM
	$\square\square\P$
43.3	□ ¶

$\square\square x = z$. [.3] [.4] SUB	43.5
□□ ■. QED	
□ ■. QED	
	43.6
■QED	
Uses Axioms: None	
$\forall p \neg \neg (p \lor \neg p)$ THEOREM of the Translated Law of Excluded Middle	44
¶	
$\Box \forall p p \vdash \neg p \vdash \forall x x.$ THM	44.1
$\Box \forall p(p \vdash \forall xx) \vdash \neg p.$ THM	44.2
$\Box \forall p \forall q p \vdash p \lor q.$ THM	44.3
$\Box \forall p \forall q q \vdash p \lor q. $ THM	44.4
$\Box \neg (p \lor \neg p) \vdash \forall xx.$ LEM	44.5
□¶	
$\Box\Box\neg(p\vee\neg p).$ [.1] ASM	44.6
$\Box\Box p \vdash \forall xx.$ LEM	44.7
□□¶DEM	
$\square\square p$ [.3] ASM	44.8
$\square\square\square p \vee \neg p. \qquad \qquad [.3] \ [.8] \ _1 \text{MINT}_2$	44.9
$\square\square\square\forall xx. \qquad \qquad [.1] [.9] [.6] {}_{2}{}_{\mathrm{MINT}_{1}}$	44.10
□□ ■.	
□□¬ p [.2] [.7] ₁ MINT ₁	44.11
$\square \square p \vee \neg p$	44.12
$\square\square \forall xx$. [.1] [.12] [.6] $_2$ MINT $_1$	44.13
□ ■. QED	
$\Box \neg \neg (p \lor \neg p)$. [.2] [.5] $_1$ MINT ₁	44.14
$\Box \forall p \neg \neg (p \lor \neg p). $ [.5] $\forall_1 GEN$	44.15
■. QED	
Uses Axioms: 1, 4	
If q follows from some instance of LEM, then $\neg \neg q$. PROOF: Suppose $p \lor \neg p \vdash q$. Applying $modus$	
tollens twice gives: $\neg\neg(p \lor \neg p) \vdash \neg\neg q$. $\neg\neg(p \lor \neg p)$; hence $\neg\neg q$. QED.	
This theorem establishes that truths from classical prop. logic are injectable to intuitionstic	
prop. logic.	
$\forall m{p} \forall m{q} (m{p} \lor \neg m{p} \vdash m{q}) \vdash \neg \neg m{q}$ Theorem of Glivenko's Propositional Translation 1	45
¶	
$\Box(p_1 \vee \neg p_1 \vdash q_1) \vdash \neg \neg q_1. $ LEM	45.1
□¶DEM	
$\Box p_1 \lor \neg p_1 \vdash q_1$ [.1] ASM	45.2
$\Box\Box\forall p\forall q(p\vdash q)\vdash\neg q\vdash\neg p.$ THM	45.3
$\square\square\neg q_1 \vdash \neg (p_1 \lor \neg p_1). \qquad \qquad . \\ [.3] \ [.2] \ _1 \text{MINT}_2$	45.4

45.5 $\square\square \forall p \neg \neg (p \lor \neg p)$. Thm

6	$\square\square\neg\neg(p_1\vee\neg p_1).$	
•	$\square\square\neg\neg q_1$	
	□■	Q
;	$\Box \forall p \forall q (p \lor \neg p \vdash q) \vdash \neg \neg q.$	
	Uses Axioms: 1, 4	Q
	$orall p orall q p \wedge (p \vdash q) \vdash q$ Tr	
	$\Box p \wedge (p \vdash q) \vdash q$	
	□ p ∧(p ⊢ q)⊢ q □¶	
2	\Box $\mathbf{p} \land (\mathbf{p} \vdash \mathbf{q})$.	
3	$\Box \Box p \land (p \vdash q).$	
, !	$\Box \lor p \lor q p \land q \vdash p$.	
;		=
	$\Box \forall p \forall q p \land q \vdash q.$ $\Box p \vdash q.$	
	$\Box p \vdash q$.	-
	$\Box \forall n \forall \alpha n \land (n \vdash \alpha) \vdash \alpha$	[1] HOE
	$\Box \forall p \forall q p \land (p \vdash q) \vdash q.$	
1	$\Box \forall p \forall q p \land (p \vdash q) \vdash q.$ \Box Uses Axioms: 3	
	.	OREM of Conjunctive Disassociati
•	Uses Axioms: 3 $\forall p \forall q \forall r p \land q \vdash r \vdash p \land r.$ The contraction of th	OREM of Conjunctive Disassociati
•	Uses Axioms: 3 $\forall p \forall q \forall r p \land q \vdash r \vdash p \land r.$ Theo	OREM of Conjunctive Disassociati
•	Uses Axioms: 3 $\forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo}$ \blacksquare $\square p \land q \vdash r \vdash p \land r. \qquad \square$	OREM of Conjunctive Disassociati Disassociati
	■. Uses Axioms: 3 $\forall p \forall q \forall r p \land q \vdash r \vdash p \land r$. THEO $p \land q \vdash r \vdash p \land r$. $p \land q \vdash r \vdash p \land r$.	OREM of Conjunctive Disassociati
	■. Uses Axioms: 3 $ \forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo} $ $ \blacksquare \qquad \qquad$	OREM of Conjunctive Disassociati
	Uses Axioms: 3 $\forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo}$ \blacksquare $\square p \land q \vdash r \vdash p \land r.$ $\square \blacksquare$ $\square p \land q.$ $\square \neg p \land q.$ $\square \neg r \vdash p \land r.$	OREM of Conjunctive Disassociati
	Uses Axioms: 3 $\forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo}$ $\P. \qquad \qquad$	OREM of Conjunctive Disassociati
	Uses Axioms: 3 $\forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo}$ $\P. \qquad \qquad$	OREM of Conjunctive Disassociati DI LI DI [.1] AS [.3] AS
	■. Uses Axioms: 3 $ \forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo} $ $ \blacksquare \dots \dots$	DREM of Conjunctive Disassociati
7	■. Uses Axioms: 3 $ \forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo} $ $ \Box p \land q \vdash r \vdash p \land r. \qquad \Box $ $ \Box p \land q. \qquad \Box $	OREM of Conjunctive Disassociati
	■. Uses Axioms: 3 $ \forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo} $ $ \blacksquare \qquad \qquad$	OREM of Conjunctive Disassociati
7	Uses Axioms: 3 $\forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo}$ $\P. \qquad \qquad$	OREM of Conjunctive Disassociati
	Uses Axioms: 3 $\forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo}$ $\P. \qquad \qquad$	OREM of Conjunctive Disassociati DI LI DI [.1] As LI DI [.3] As TH [.5] [.2] 1MIN TH [.7] [.6] [.4] 2MIN
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Uses Axioms: 3 $\forall p \forall q \forall r p \land q \vdash r \vdash p \land r. \qquad \text{Theo}$ $\P. \qquad \qquad$	DREM of Conjunctive Disassociati DI LI DI [.1] A: DI [.3] A: TH [.5] [.2] 1 MIN TI [.7] [.6] [.4] 2 MIN Q Q [.1] UGE

¶	
$\Box \forall p \forall q p \land q \vdash p$. THM	48.1
$\Box \forall p \forall q p \land q \vdash q$. THM	48.2
$\Box \forall p \forall q p \vdash q \vdash p \land q.$ THM	48.3
$\Box \forall p \forall q \forall r (p \vdash q) \vdash (q \vdash p) \vdash p \Leftrightarrow q.$ THM	48.4
$\Box(p_1 \vdash q_1 \vdash r_1) \vdash p_1 \land q_1 \vdash r_1.$ Lem	48.5
□¶	
$\square \square p_1 \vdash q_1 \vdash r_1$	48.6
$\square \square p_1 \wedge q_1 \vdash r_1$. LEM	48.7
□□¶	
$\square\square p_1 \wedge q_1$ [.7] ASM	48.8
$\square\square \square p_1$ [.1] [.8] $_1$ MINT $_2$	48.9
$\square\square\square q_1$ [.2] [.8] $_1$ MINT $_2$	48.10
$\square\square\square r_1$	48.11
QED	
□ ■.	
$\Box(p_1 \land q_1 \vdash r_1) \vdash p_1 \vdash q_1 \vdash r_1$. LEM	48.12
□¶	
$\Box \Box p_1 \wedge q_1 \vdash r_1$ [.12] ASM	48.13
$\Box p_1 \vdash q_1 \vdash r_1$. LEM	48.14
$\square\square \square p_1$	48.15
$\square\square q_1 \vdash r_1$. LEM	48.16
	48.17
$\square\square\square\square_{r_1}$	48.18
QED	
QED	
QED	
$\Box(p_1 \vdash q_1 \vdash r_1) \Leftrightarrow (p_1 \land q_1 \vdash r_1). \qquad \qquad [.4] [.5] [.12]_{2} \text{MINT}_3$	48.19
$\Box \forall p \forall q \forall r (p \vdash q \vdash r) \Leftrightarrow (p \land q \vdash r). \qquad [.19] \text{ UGEN}_3$	48.20
■QED	
Uses Axioms: 3, 5	
	49
¶	
$\Box p_1 \vdash q_1 \vdash p_1 \land (q_1 \lor r_1).$ LEM	49.1
□¶	
$\square \square p_1$ [.1] ASM	49.2
$\Box \Box q_1 \vdash p_1 \land (q_1 \lor r_1).$ LEM	49.3
□□¶	
$\square\square\square q_1$ [.3] ASM	49.4
$\Box\Box\Box\forall p \forall q p \vdash p \lor q$. THM	49.5
$\square\square\square q_1 \lor r_1$	49.6

7	$\Box\Box\Box\forall p\forall qp\vdash q\vdash p\land q.$ THM
8	$\square\square p_1 \land (q_1 \lor r_1). \qquad \qquad [.7] \ [.2] \ [.6] \ {}_2 \text{MINT}_2$
	□□ ■.
	□ ■.
	■QED
	Uses Axioms: 3, 4
	$\forall m{p} m{p} \Leftrightarrow m{p}.$ Theorem of \Leftrightarrow Reflexivity
	¶
	$\Box \forall pp \vdash p$ THM
	$\Box p \vdash p$ [.1] \forall_1 INST
	$\Box \forall p \forall q (p \vdash q) \vdash (q \vdash p) \vdash p \Leftrightarrow q.$ THM
	$\Box p \Leftrightarrow p. \qquad \qquad [.3] [.2] [.2] _2 \text{MINT}_3$
	$\Box \forall p p \Leftrightarrow p. \qquad [.4] \ \forall_{1} \text{GEN}$
	■QED
	Uses Axioms: 5
	$\forall p \forall q p \Leftrightarrow q \vdash q \Leftrightarrow p$. Theorem of \Leftrightarrow Symmetry
	¶
	$\Box \forall p \forall q p \Leftrightarrow q \vdash p \vdash q. $ THM
	$\Box \forall p \forall q p \Leftrightarrow q \vdash q \vdash p.$ THM
	$\Box \forall p \forall q (p \vdash q) \vdash (q \vdash p) \vdash p \Leftrightarrow q.$ THM
	$\Box p_1 \Leftrightarrow q_1 \vdash q_1 \Leftrightarrow p_1$ LEM
	□¶
	$\square \square p_1 \Leftrightarrow q_1$
	$\Box\Box q_1 \vdash p_1$ LEM
	□□¶
	$\square\square\square q_1$ [.6] ASM
	$\square\square p_1. \qquad \qquad [.2] [.5] [.7] _2 \text{MINT}_2$
	□□ ■. QED
	$\square \square p_1 \vdash q_1.$ LEM
	□□¶DEM
	$\square\square\square p_1$ [.9] ASM
	$\square\square\square q_1. \qquad \qquad [.1] [.5] [.10] _2 \text{MINT}_2$
	□□ ■. QED
	$\square \square q_1 \Leftrightarrow p_1$
	QED
	$\Box \forall p \forall q p \Leftrightarrow q \vdash p \vdash q. $ [.4] UGEN ₂
	■QED
	Uses Axioms: 5

$\forall p \forall q \forall r p \Leftrightarrow q \vdash q \Leftrightarrow r \vdash p \Leftrightarrow r.$ Theorem of \Leftrightarrow Transitivity 1	52
¶DEM	
$\Box \forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ THM	52.1
$\Box \forall p \forall q p \Leftrightarrow q \vdash q \vdash p. $ THM	52.2
$\Box \forall p \forall q (p \vdash q) \vdash (q \vdash p) \vdash p \Leftrightarrow q. $ THM	52.3
$\Box p_1 \Leftrightarrow q_1 \vdash q_1 \Leftrightarrow r_1 \vdash p_1 \Leftrightarrow r_1.$ LEM	52.4
□¶	
$\Box\Box p_1 \Leftrightarrow q_1$. [.4] ASM	52.5
$\Box\Box q_1 \Leftrightarrow r_1 \vdash p_1 \Leftrightarrow r_1.$ LEM	52.6
□□¶	
$\square\square\square q_1 \Leftrightarrow r_1.$ [.6] ASM	52.7
$\square\square p_1 \vdash r_1$. Lem	52.8
□□□¶	
$\square\square\square p_1$ [.8] ASM	52.9
$\square\square\square q_1. \qquad [.1] [.5] [.9] _{2} \text{MINT}_2$	52.1 0
$\square\square\square r_1. \qquad [.1] [.7] [.10] _{2MINT_2}$	52.11
QED	
$\square\square \square r_1 \vdash p_1$. LEM	52.12
	52.1 3
$\square\square\square q_1. \qquad \qquad [.2] [.7] [.13] _{2MINT_2}$	52.14
$\square\square\square p_1. \qquad \qquad [.2] [.5] [.14] _{2MINT_2}$	52.15
□□■QED	
$\square\square p_1 \Leftrightarrow r_1. \qquad [.3] [.8] [.12] _{2MINT_2}$	52.16
□■	02,110
□■	
$\Box \forall p \forall q \forall r p \Leftrightarrow q \vdash q \Leftrightarrow r \vdash p \Leftrightarrow r. \qquad [.4] \text{ UGEN}_3$	52.17
■	02.11
Uses Axioms: 5	
$\forall p \forall q \forall r p \Leftrightarrow q \vdash r \Leftrightarrow q \vdash p \Leftrightarrow r.$ THEOREM of \Leftrightarrow Transitivity 2	53
¶	
$ \Box p \Leftrightarrow q \vdash r \Leftrightarrow q \vdash p \Leftrightarrow r. $ LEM	53.1
□¶	
$\Box \Box p \Leftrightarrow q. \tag{[.1] ASM}$	53.2
$\Box \Box r \Leftrightarrow q \vdash p \Leftrightarrow r$. LEM	53.3
□□¶	
$\square\square\square r \Leftrightarrow q.$ [.3] ASM	53.4
$\square\square\square\forall p\forall qp\Leftrightarrow q\vdash q\Leftrightarrow p.$ THM	53.5
$\square\square q \Leftrightarrow r.$ [.5] [.4] $_1$ MINT $_2$	53.6
$\square\square\square\forall p\forall q\forall rp \Leftrightarrow q\vdash q \Leftrightarrow r\vdash p \Leftrightarrow r.$ THM	53.7
$\square\square p \Leftrightarrow r. \qquad \qquad [.7] \ [.2] \ [.6] \ {}_{2} \text{MINT}_{3}$	53.8

	□□ ■. QED
	□ ■. QED
53.9	$\square \forall p \forall q \forall r p \Leftrightarrow q \vdash r \Leftrightarrow q \vdash p \Leftrightarrow r. $ [.1] UGEN ₃
	■QED
	Uses Axioms: 5
54	$\forall p \forall q p \Leftrightarrow q \vdash \neg p \vdash \neg q$. Theorem of \Leftrightarrow Negativity 1
	¶
54.1	$\Box p \Leftrightarrow q \vdash \neg p \vdash \neg q$ LEM
	□¶
54.2	$\Box\Box p \Leftrightarrow q$. [.1] ASM
54.3	$\square\square\neg p \vdash \neg q$. Lem
	□□¶DEM
54.4	□□¬ p.
54.5	$\Box\Box q \vdash \forall xx.$ LEM
54.6	□□□ <i>q</i>
54.7	$\square\square\square\forall p\forall qp \Leftrightarrow q\vdash q\vdash p.$ THM
54.8	$\square\square\square p. \qquad \qquad [.7] [.2] [.6] _{2MINT2}$
54.9	$\square\square\square\forall pp \vdash \neg p \vdash \forall xx.$ THM
54.10	$\square\square\square\forall xx$. [.9] [.8] [.4] $_2$ MINT ₁
	QED
54.11	$\Box\Box\forall p(p\vdash \forall xx)\vdash \neg p.$ THM
	$\square\square \neg q. \qquad [.11] [.5]_{1} \text{MINT}_{1}$
	QED
54.13	
0 1,10	■
	Uses Axioms: 1, 5
55	$\forall \boldsymbol{p} \forall \boldsymbol{q} \boldsymbol{p} \Leftrightarrow \boldsymbol{q} \vdash \neg \boldsymbol{q} \vdash \neg \boldsymbol{p}. $ Theorem of \Leftrightarrow Negativity 2
	¶
55.1	$\Box p \Leftrightarrow q \vdash \neg q \vdash \neg p.$ LEM
	□¶
55.2	$\square\square p \diamond q$. [.1] ASM
55. 3	$\square\square\neg q \vdash \neg p$. LEM
	□□¶DEM
55.4	$\square\square\square\neg q$ [.3] ASM
55.5	$\square\square p \vdash \forall xx.$ LEM
	□□□¶
55.6	$\square\square\square p$. [.5] ASM
55.7	$\Box\Box\Box\Box\forall p\forall qp\Leftrightarrow q\vdash p\vdash q.$ THM
55.8	$\square\square\square q$

$\Box\Box\Box\forall pp\vdash\neg p\vdash\forall xx.$	55.9
	55.10
QED	
$\Box\Box\Box\forall p(p\vdash\forall xx)\vdash\neg p.$	55.11
$\square\square\square\neg p$ [.11] [.5] $_1$ MINT $_1$	55.12
	
□ ■. QED	
$\Box \forall p \forall q p \Leftrightarrow q \vdash \neg q \vdash \neg p. $ [.1] UGEN2	55.13
QED	
Uses Axioms: 1, 5	
$\forall pp \lor p \Leftrightarrow p.$ Theorem of \Leftrightarrow Disjunctive Symmetry	56
¶DEM	
$\Box p \lor p \vdash p$ Lem	56.1
□¶	
$\Box \Box p \lor p$. [.1] ASM	56.2
$\square\square \forall pp \vdash p$	56.3
$\Box p \vdash p$. [.3] \forall_1 INST	56.4
$\Box \Box \forall p \forall q \forall r (p \vdash r) \vdash (q \vdash r) \vdash p \lor q \vdash r.$ THM	56.5
□□ <i>p</i>	56.6
□■	
$\Box p \vdash p \lor p$ LEM	56.7
□¶	
□□ <i>p</i>	56.8
$\Box \forall p \forall q p \vdash p \lor q. $ THM	56.9
$\Box p \lor p. \qquad [.9] [.8]_{1} \text{MINT2}$	56.1 0
□■QED	
$\Box \forall p \forall q (p \vdash q) \vdash (q \vdash p) \vdash p \Leftrightarrow q. $ THM	56.11
$\Box p \lor p \Leftrightarrow p. \qquad [.11] [.1] [.7] _{2} \text{MINT}_{2}$	56.12
$\Box \forall pp \lor p \Leftrightarrow p. \qquad [.12] \ \forall_{1} \text{GEN}$	56.13
QED	
Uses Axioms: 4, 5	
$\forall \textbf{\textit{p}} \forall \textbf{\textit{q}} \forall \textbf{\textit{r}} \textbf{\textit{p}} \Leftrightarrow \textbf{\textit{q}} \lor \textbf{\textit{r}} \vdash \textbf{\textit{q}} \vdash \textbf{\textit{p}}. \dots $	57
¶DEM	
$\Box p_1 \Leftrightarrow q_1 \lor r_1 \vdash q_1 \vdash p_1.$ LEM	57.1
□¶	
$\square\square p_1 \Leftrightarrow q_1 \lor r_1$. [.1] ASM	57.2
$\Box\Box q_1 \vdash p_1. \ldots \bot \texttt{LEM}$	57. 3
$\square \square \P$	
$\square\square \square q_1$ [.3] ASM	57.4
$\Box\Box\Box\forall p\forall qp\vdash p\lor q.$	57.5
$\Box\Box q_1 \lor r_1$. [.5] [.4] 1 MINT9	57.6

57.7	$\Box\Box\Box\forall p\forall qp \Leftrightarrow q\vdash q\vdash p.$ THM
57.8	$\square\square\square p_1$
	
	QEI
7.9	$\Box \forall p \forall q \forall r p \Leftrightarrow q \lor r \vdash q \vdash p. $ [.1] UGEN§
	■QEI
	Uses Axioms: 4, 5
58	$\forall p \forall q \forall r p \Leftrightarrow q \lor r \vdash r \vdash p$ THEOREM of \Leftrightarrow Disjunctive Elimination 2
	¶
8.1	$\Box p_1 \Leftrightarrow q_1 \lor r_1 \vdash r_1 \vdash p_1$.
	□¶
8.2	$\Box\Box p_1 \Leftrightarrow q_1 \lor r_1.$ [.1] ASM
8.3	$\Box\Box r_1 \vdash p_1$.
	□□¶
8.4	$\square\square\square r_1$ [.3] ASM
8.5	$\Box\Box\Box\forall p\forall qq\vdash p\lor q.$ This
8.6	$\square\square \square q_1 \lor r_1$. $\qquad \qquad \qquad$
3.7	$\square\square\square\forall p\forall qp \Leftrightarrow q\vdash q\vdash p.$ This
3.8	$\square\square\square p_1$
	□□ ■. QEI
	□ ■. QEI
3.9	$\Box \forall p \forall q \forall r p \Leftrightarrow q \lor r \vdash r \vdash p. $ [.1] UGEN3
	■QEI
	Uses Axioms: 4, 5
59	$\forall m{p} \forall m{q} m{p} = m{q} \vdash m{p} \Leftrightarrow m{q}.$ Theorem of, "To Be Fulfilled Is To Be Satisfied."
	¶
).1	$\Box p = q \vdash p \Leftrightarrow q.$ LEN
	□¶
).2	$\Box \Box p = q.$ [.1] ASM
9.3	$\square\square \forall pp \Leftrightarrow p.$ Thm
).4	$\square \square p \Leftrightarrow p$. [.3] $\forall_1 \text{INS}$
9.5	$\square \square p \Leftrightarrow q.$ [,2] [,4] SUI
	QEIQEI
9.6	$\Box \forall p \forall q p = q \vdash p \Leftrightarrow q. $ [.1] UGEN ₂
	Q EI
	Uses Axioms: 5
60	$\neg \exists xx = \neg x$. Theorem of Unfulfillability, a Russell's Paradox
60.1	\P

□¶	
$\square \exists x x = \neg x. \qquad [.1] \text{ ASM}$	60.2
$\square\square x = \neg x$. [.2] \exists_1 INST	60.3
$\square x \vdash \forall xx.$ LEM	60.4
□ □ ¶	
□□□ x.	60.5
$\square\square\square\neg x$	60.6
$\square\square\square\forall pp\vdash\neg p\vdash\forall xx.$ THM	60.7
$\square\square\square\forall xx.$ [.7] [.5] [.6] $_2$ MINT ₁	60.8
□□ ■.	
$\Box\Box\forall p(p\vdash\forall xx)\vdash\neg p.$ THM	60.9
$\square\square\neg x$. [.9] [.4] $_1$ MINT $_1$	60.10
$\square x$. [.3] [.10] SUB	60.11
$\Box\Box\forall pp\vdash\neg p\vdash\forall xx.$ THM	60.12
$\square\square\forall xx.$ [.12] [.11] [.10] $_2$ MINT $_1$	60.13
□ ■. QED	
$\Box \forall p(p \vdash \forall xx) \vdash \neg p.$ THM	60.14
$\Box \neg \exists x x = \neg x. \qquad [.14] [.1]_{1} \text{MINT}_{1}$	60.15
L QED	
Uses Axioms: 1	
\P	61.1
□¶	
$\square \square \exists p \neg p \Leftrightarrow p. \qquad [.1] \text{ ASM}$	61.2
$\Box\Box \neg p \Leftrightarrow p. \qquad [.2] \exists_1 \text{INST}$	61.3
$\Box p \vdash \forall xx.$ LEM	61.4
□□¶	
□□ p.	61.5
$\square\square\square\forall p\forall qp\Leftrightarrow q\vdash q\vdash p.$ THM	61.6
$\square\square\square\neg p$	61.7
$\Box\Box\Box\forall pp\vdash\neg p\vdash\forall xx.$ THM	61.8
$\square\square\square\forall xx$. [.8] [.5] [.7] $_2$ MINT $_1$	61.9
□□ ■. QED	
$\square\square\forall p(p\vdash\forall xx)\vdash\neg p.$ THM	61.10
$\square\square\neg p$ [.10] [.4] $_1$ MINT $_1$	61.11
$\square\square \forall p \forall q p \Leftrightarrow q \vdash p \vdash q.$ THM	61.12
$\square\square p.$ [.12] [.3] [.11] $_2$ MINT $_2$	61.13
$\Box\Box\forall pp\vdash\neg p\vdash\forall xx.$ THM	
$\square\square\forall xx.$ [.14] [.13] [.11] $_2$ MINT $_1$	61.14
□ ■. QED	61.14 61.15
□■•	
$\Box lacksquare$ $\Box \forall p(p \vdash \forall xx) \vdash \neg p.$ THM	

■......QED
Uses Axioms: 1, 5

Iff there exists an x st. x and $p \land x \vdash q$, does $p \vdash q$. PROOF: Suppose $\exists xx \land (p \land x \vdash q)$ and assume p. We may existentially witness object x so that both x and $p \land x \vdash q$ are true. Conversely suppose $p \vdash q$. Then there does exist an object x st. x and $p \land x \vdash q$ —namely $p \vdash q$. QED.

This is might not have been the original intent of Goldblatt and Kane, on their *enthymematic* conditional, but in our quantification theory (of objects), it is a fact.

62	$\forall p \forall q (\exists xx \land (p \land x \vdash q)) \Leftrightarrow p \vdash q \text{THeorem of Goldblatt's and Kane's Enthymematic Conditional}$
	¶DEM
62.1	$\Box(\exists xx \land (p \land x \vdash q)) \vdash p \vdash q.$ LEM
	□¶
62.2	$\Box \Box \exists xx \land (p \land x \vdash q). \qquad [.1] \text{ ASM}$
62.3	$\Box\Box x \land (p \land x \vdash q)$. [.2] \exists_1 INST
62.4	$\Box\Box p \vdash q$. Lem
	□ ¶ DEM
62.5	$\Box\Box p$ [.4] ASM
62.6	$\square\square\square\forall p\forall qp\land q\vdash p.$ THM
62.7	$\square\square\square x$
62.8	$\Box\Box\Box\forall p \forall q p \land q \vdash q$. THM
62.9	$\Box\Box p \land x \vdash q$. [.8] [.3] $_1$ MINT $_2$
62.10	$\Box\Box\Box\forall p\forall qp\vdash q\vdash p\land q.$ THM
62.11	$\square\square p \land x$
62.12	$\square\square q$ [.9] [.11] MP
	□□ ■. QED
	□ ■. QED
62.13	$\Box(p \vdash q) \vdash \exists xx \land (p \land x \vdash q).$ LEM
	□¶
62.14	$\Box\Box p \vdash q$ [.13] ASM
62.15	$\Box\Box\forall p\forall qp\land (p\vdash q)\vdash q.$ THM
62.16	$\Box\Box p \land (p \vdash q) \vdash q$ [.15] $_0$ MINT $_2$
62.17	$\Box\Box\forall p\forall qp\vdash q\vdash p\land q.$ THM
62.18	$\square\square \forall p_1 \forall q_1 p_1 \vdash q_1 \vdash p_1 \land q_1.$ [.17] QNT
62.19	$\Box \Box p \vdash q \land (p \land (p \vdash q) \vdash q). \qquad \qquad [.18] [.14] [.16] _{2} \text{MINT}_{2}$
62.20	$\Box \Box \exists xx \land (p \land x \vdash q). $ [.19] $\exists_1 GEN$
	□ ■. QED
62.21	$\square \forall p \forall q (p \vdash q) \vdash (q \vdash p) \vdash p \Leftrightarrow q.$ THM
62.22	$\square \forall p_1 \forall q_1 (p_1 \vdash q_1) \vdash (q_1 \vdash p_1) \vdash p_1 \Leftrightarrow q_1. \qquad \qquad [.21] \text{ QNT}$
62.23	$\square(\exists xx \land (p \land x \vdash q)) \Leftrightarrow p \vdash q. \qquad \qquad [.22] [.1] [.13] _{2} \text{MINT}_{2}$
62.24	$\square \forall p \forall q (\exists xx \land (p \land x \vdash q)) \Leftrightarrow p \vdash q. $ [.23] UGEN ₃
	■QED
	Uses Axioms: 3, 5

§1.3 Logic: Exercises in Second-order

If $\forall x \psi x \vdash \exists y \phi x y$ then $\forall x \exists y \psi x \vdash \phi x y$. PROOF: Suppose $\forall x \psi x \vdash \exists y \phi x y$. Take any x. We claim $\psi x \vdash \phi x y$. For from ψx , we know their exists some y st. $\phi x y$. By virtue of defining, it may be so named. Importantly the claim is true for *some* y- not any- and so we can not generalize universally by x before we generalize existentially by y. QED.

This theorem was unprovable in older systems of TOB. It gave rise the notion of *protected variables* and the rule of inference of *naming*. For this reason we present it first.

63	$\forall \psi \forall \phi (\forall x \psi x \vdash \exists y \phi x y) \vdash \forall x \exists y \psi x \vdash \phi x y. \dots$	Theorem of Unprotected Quantification
	¶	DEM
3.1	$\Box(\forall x\psi x \vdash \exists y\phi xy) \vdash \forall x\exists y\psi x \vdash \phi xy.$	LEM
	□¶	DEM
3.2	$\square\square\forall x\psi x \vdash \exists y\phi xy.$	[,1] ASM
3.3	$\Box\Box\psi x\vdash\phi xy.$	LEM
	□□¶	DEM
3.4	$\Box\Box\psi x$	[. 3] ASM
3.5	$\square\square\exists y\phi xy.$	[.2] [.4] ₁ MINT ₁
3.6	$\Box\Box\phi xy$	[. 5] ₁ NAME
		QED
3.7	$\Box\Box\exists y\psi x\vdash\phi xy.$	[. 3] ∃ ₁ GEN
3.8	$\square\square\forall x\exists y\psi x\vdash\phi xy.$	[.7] ∀ ₁ GEN
		QED
3.9	$\Box \forall \phi (\forall x \psi x \vdash \exists y \phi x y) \vdash \forall x \exists y \psi x \vdash \phi x y. \dots$	[.1] ∀2GEN
	$\Box \forall \psi \forall \phi (\forall x \psi x \vdash \exists y \phi x y) \vdash \forall x \exists y \psi x \vdash \phi x y \dots \dots$	
5.IU		
3.10		
5.10	Uses Axioms: None	
		QED
	Uses Axioms: None	QEDQED
	Uses Axioms: None $\forall \psi(\forall x \psi x) \vdash \forall y \psi y.$	QED THEOREM of Symmetry 1 DEM
64	Uses Axioms: None $\forall \psi(\forall x \psi x) \vdash \forall y \psi y.$ \blacksquare	
64	■. Uses Axioms: None $\forall \psi(\forall x \psi x) \vdash \forall y \psi y.$ \blacksquare $\Box(\forall x \psi x) \vdash \forall y \psi y.$ \Box	QEDTHEOREM of Symmetry 1
64 64.1 64.2	Uses Axioms: None $\forall \psi(\forall x \psi x) \vdash \forall y \psi y.$ $\blacksquare \qquad \qquad$	QED
64 64.1 64.2 64.3	Uses Axioms: None $\forall \psi(\forall x \psi x) \vdash \forall y \psi y.$ \P	QED THEOREM of Symmetry 1 DEM LEM DEM [.1] ASM
64 64.1 64.2	Uses Axioms: None $\forall \psi(\forall x \psi x) \vdash \forall y \psi y.$ $\P.$ $\Box(\forall x \psi x) \vdash \forall y \psi y.$ $\Box \P.$ $\Box \forall x \psi x.$ $\Box \psi x.$ $\Box \forall y \psi y.$	QED
64 34.1 34.2 34.3	■. Uses Axioms: None ∀ψ(∀xψx)⊢∀yψy. ¶. □(∀xψx)⊢∀yψy. □¶. □□∀xψx. □□∀xψx.	QED THEOREM of Symmetry 1 DEM LEM DEM [.1] ASM [.2] \forall_1 INST [.3] \forall_1 GEN QED
64 64.1 64.2 64.3	■. Uses Axioms: None ∀ψ(∀xψx)⊢∀yψy. ¶. □(∀xψx)⊢∀yψy. □¶. □∀xψx. □ψx. □∀yψy. ■■. □∀ψ(∀xψx)⊢∀yψy.	QEE THEOREM of Symmetry 1 DEM LEM [.1] ASM [.2] ∀1INST [.3] ∀1GEN QEE [1.] ∀2GEN
64 34.1 34.2 34.3	■. Uses Axioms: None ∀ψ(∀xψx)⊢∀yψy. ¶. □(∀xψx)⊢∀yψy. □¶. □□∀xψx. □□∀xψx.	QED THEOREM of Symmetry 1 DEM LEM DEM [.1] ASM [.2] ∀1INST [.3] ∀1GEN QED [1.] ∀2GEN

65 $\forall \psi(\exists x \psi x) \vdash \exists y \psi y$. Theorem of Symmetry 2

¶	
$\Box(\exists x \psi x) \vdash \exists y \psi y.$ LEM	65.1
□¶	
$\square \exists x \psi x.$ [.1] ASM	65.2
$\square\square\psi x.$ [.2] \exists_1 INST	65.3
$\square\square\exists y\psi y.$ [.3] $\exists_1 \text{GEN}$	65.4
□ ■. QED	
$\Box \forall \psi (\exists x \psi x) \vdash \exists y \psi y.$ [1.] $\forall_2 GEN$	65.5
Q ED	
Uses Axioms: None	
$orall oldsymbol{\psi}(orall oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{\psi}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}$	66
¶	
$\Box(\forall x \forall y \psi x y) \vdash \forall y \forall x \psi x y.$ LEM	66.1
□¶	
	66.2
$\square \cup \psi xy$. [.2] $_0$ MINT2	66.3
$\Box \forall y \forall x \psi x y. $ [.3] UGEN ₂	66.4
□■	0012
$\Box = \Box$ $\Box \forall \psi (\forall x \forall y \psi x y) \vdash \forall y \forall x \psi x y. \qquad [1.] \ \forall_2 GEN$	66.5
■	00.0
Uses Axioms: None	
$orall m{\psi}(\exists m{x}\exists m{y}m{\psi}m{x}m{y}) dash\exists m{y}\exists m{x}m{\psi}m{x}m{y}.$ Theorem of Quantifier Exchange 2	67
¶	
$\Box(\exists x \exists y \psi x y) \vdash \exists y \exists x \psi x y.$ LEM	67.1
□¶	
$\square\square\exists x\exists y\psi xy.$ [.1] ASM	67.2
$\square \exists y \psi x y.$ [.2] $\exists_1 \text{INST}$	67.3
$\square \psi xy$. [.3] \exists_1 INST	67.4
$\square \exists y \psi x y$. [4] $\exists_1 GEN$	67.5
□□∃ <i>x</i> ∃ <i>yψxy</i> . [.5] ∃₁GEN	67.6
□ ■.	
	67.7
■	••••
Uses Axioms: None	
$orall oldsymbol{\psi}(\exists oldsymbol{x}orall oldsymbol{y}oldsymbol{\psi}oldsymbol{x}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{\psi}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi}oldsymbol{x}oldsymbol{\psi$	68
¶	
$\Box(\exists x \forall y \psi x y) \vdash \forall y \exists x \psi x y.$ LEM	68.1
□¶	
□□∃r∀antan [1] asm	68 9

68.3	$\square \square \forall y \psi x y$. [.2] $\exists_1 \text{INST}$
68.4	$\square \psi xy$
68.5	$\Box \exists x \psi x y$. [.4] $\exists_1 GEN$
68.6	$\square \forall y \exists y \psi x y$. [.5] $\forall_1 \text{GEN}$
	□ ■. QED
68.7	
	■QED
	Uses Axioms: None
69	$\forall \psi (\neg \exists x \psi x) \vdash \forall x \neg \psi x.$ Theorem of the Negative Contour 1
00	¶DEM
69.1	$\Box(\neg \exists x \psi x) \vdash \forall x \neg \psi x.$ LEM
00.1	
69.2	$\Box \psi x \vdash \forall xx.$ LEM
00.2	
69.3	$\square\square \neg \exists x \psi x. \qquad [.1] \text{ ASM}$
69.4	,
	□□□ψx. [.2] ASM
69.5	$\Box\Box\exists x\psi x. \qquad [.4] \exists_1 GEN$
69.6	$\square\square \forall pp \vdash \neg p \vdash \forall xx. $ THM
69.7	
	QED
69.8	$\Box \forall p(p \vdash \forall xx) \vdash \neg p. $ THM
69.9	$\square \neg \psi x. \qquad \qquad [.8] [.2]_1 \text{MINT}_1$
69.10	$\square \forall x \neg \psi x. \qquad \qquad [.9] \forall_{1} \text{GEN}$
	□ ■. QED
69.11	$\Box \forall \psi (\neg \exists x \psi x) \vdash \forall x \neg \psi x. \tag{1.} \forall g \in \mathbb{N}$
	■QED
	Uses Axioms: 1
70	$\forall \psi (\forall x \neg \psi x) \vdash \neg \exists x \psi x.$ Theorem of the Negative Contour 2
	¶
70.1	$\Box(\forall x \neg \psi x) \vdash \neg \exists x \psi x.$ LEM
70.2	$\Box \forall x \neg \psi x. $ [.1] ASM
	$\Box \exists x \psi x \vdash \forall x x. \qquad \qquad \bot EM$
10.5	
70.4	$\square\square\exists x\psi x. \qquad \qquad [.3] \text{ ASM}$
70.4	$\Box\Box\psi x$. [.4] \exists_1 INST
70.6	$\square\square \neg \psi x. \qquad \qquad [.2] \forall_{1} \text{INST}$
70.7	$\Box\Box\forall pp \vdash \neg p \vdash \forall xx.$ THM
70.8	$\square\square \forall xx. \qquad [.7] [.5] [.6] _{2} \text{MINT}_{1}$
10.0	□□■
70.0	$\Box \Box \Box \forall p(p \vdash \forall xx) \vdash \neg p. $ THM
10.9	$\Box\Box \lor p(p \vdash \lor xx) \vdash \neg p.$ THM

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Figs Axioms: 1 $\psi(\exists x \psi x) \vdash \neg \forall x \neg \psi x. \qquad \text{Theorem of the Negative Contour}$ $0 \vdash \exists $
$\psi(\exists x \psi x) \vdash \neg \forall x \neg \psi x. \qquad \qquad \text{Theorem of the Negative Contour}$ $\Box(\exists x \psi x) \vdash \neg \forall x \neg \psi x. \qquad \qquad \qquad \bot$ $\Box \Box(\forall x \neg \psi x) \vdash \forall x x. \qquad \qquad \bot$ $\Box \Box \Box x \psi x. \qquad \qquad \bot$ $\Box \Box \exists x \psi x. \qquad \qquad \bot$ $\Box \Box \exists x \psi x. \qquad \qquad \bot$ $\Box \Box \neg \psi x. \qquad \qquad \bot$ $\Box \Box \neg \psi x. \qquad \qquad \bot$ $\Box \Box \neg \psi x. \qquad \qquad \bot$ $\Box \Box \Box \Box \psi x. \qquad \qquad \bot$ $\Box \Box \Box \Box \psi x. \qquad \qquad \bot$ $\Box \Box \Box \Box \psi x. \qquad \qquad \bot$ $\Box \Box \Box \Box \psi x. \qquad \qquad \bot$ $\Box \Box \Box \Box \psi x. \qquad \qquad \bot$ $\Box \Box \Box \Box \Box \psi x. \qquad \qquad \bot$ $\Box \Box \Box$ $\Box \Box $
$ \Box (\exists x \psi x) \vdash \neg \forall x \neg \psi x. \qquad \qquad \bot E $ $ \Box (\forall x \neg \psi x) \vdash \forall x x. \qquad \qquad \bot E $ $ \Box (\forall x \neg \psi x) \vdash \forall x x. \qquad \qquad \bot E $ $ \Box (\exists x \psi x) \qquad \qquad \bot (\exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists x \psi x). \qquad \Box (\exists \exists x \psi x). \qquad \qquad \Box (\exists x \psi x). \qquad \Box (\exists x \psi x). \qquad \Box (\exists x \psi x). \qquad \qquad \Box (\exists x \psi$
$ \Box (\exists x \psi x) \vdash \neg \forall x \neg \psi x. \qquad \qquad \bot E $ $ \Box (\forall x \neg \psi x) \vdash \forall x x. \qquad \qquad \bot E $ $ \Box (\forall x \neg \psi x) \vdash \forall x x. \qquad \qquad \bot E $ $ \Box (\exists x \psi x) \qquad \qquad \bot (\exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists \exists x \psi x). \qquad \qquad \bot (\exists \exists x \psi x). \qquad \qquad \bot (\exists \exists \exists x \psi x). \qquad \qquad \bot (\exists x \psi x). \qquad \bot (\exists x \psi x). \qquad \bot (\exists x \psi x). \qquad \qquad \bot (\exists$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \Box \neg \forall x \neg \psi x. $ $ \Box \blacksquare. $ $ QEI $ $ \exists \psi (\exists x \psi x) \vdash \neg \forall x \neg \psi x. $ $ CEI $ $ QEI $
] \blacksquare
$\exists \forall \psi (\exists x \psi x) \vdash \neg \forall x \neg \psi x.$ [1.] $\forall_2 \text{GEI}$
QEI
•
$\forall \psi \forall x \forall y x = y \vdash \psi x = \psi y$ Theorem of Application, Equality Identity
[
$\Box x = y \vdash \psi x = \psi y$. LEI
]¶
$\square \square x = y. $ [.1] ASI
$\Box \psi x = \psi x. \qquad $
$\Box \psi x = \psi y. \qquad [.2] [.3] \text{ SU}$
□■. QE
$\exists \forall x \forall y x = y \vdash \psi x = \psi y. \tag{1} UGEN$
$\exists \forall \psi \forall x \forall y x = y \vdash \psi x = \psi y.$ [.5] $\forall_2 GE$
L QEI
Uses Axioms: None

	□¶
73.2	$\square \square \forall x \forall y \psi x y$. [.1] ASM
73.3	$\square \forall y \psi x y$. [.2] $\forall_1 \text{INST}$
73.4	$\Box \psi x(\phi x)$. [.3] \forall_1 INST
73.5	$\Box \forall x \psi x (\phi x). \qquad \qquad [.4] \forall_{1} \text{GEN}$
3.6	$\square \square \forall \phi \forall x \psi x (\phi x)$. [.5] $\forall_2 \text{GEN}$
	□■
7	$\Box \forall \psi (\forall x \forall y \psi x y) \vdash \forall \phi \forall x \psi x (\phi x). \qquad [.1] \ \forall_2 \text{GEN}$
	■QED
	Uses Axioms: None
4	$\forall \psi (\forall \phi \forall x \psi x (\phi x)) \vdash \forall x \forall y \psi x y.$ Theorem of Second Order Quantifier Replacement 2
	¶DEM
	$\Box(\forall \phi \forall x \psi x (\phi x)) \vdash \forall x \forall y \psi x y.$ LEM
	$\square\PDem$
	$\square\square\forall\phi\forall x\psi x(\phi x).$ [.1] ASM
	$\square\square\forall x\psi xy.$ [.2] \forall_2 INST
	$\square\square\psi xy.$ [.3] \forall_1 INST
	$\square\square\forall y\psi xy.$ [.4] \forall_1 GEN
	$\square\square \forall x \forall y \psi x y$
	□ ■. QED
	$\Box \forall \psi (\forall \phi \forall x \psi x (\phi x)) \vdash \forall x \forall y \psi x y. $ [.1] $\forall_2 GEN$
	■QED
	Uses Axioms: None
	$\forall \psi \forall p (p \lor \neg p \vdash \psi p) \vdash \neg \neg \psi p.$ Theorem of Glivenko's Propositional Translation 2
	$\Box(\forall x \forall y(x \lor \neg x \vdash y) \vdash \neg \neg y) \vdash \forall \phi \forall x(x \lor \neg x \vdash \phi x) \vdash \neg \neg \phi x. \qquad [.1] \forall_{2} \text{INST}$
	$\Box \forall p \forall q (p \lor \neg p \vdash q) \vdash \neg \neg q.$
	$\Box(p \lor \neg p \vdash q) \vdash \neg \neg q. \qquad [.3]_{0} \text{MINT}_{2}$
	$\Box \forall x \forall y (x \lor \neg x \vdash y) \vdash \neg \neg y. \qquad [.4] \text{ UGEN}_2$
	$\Box \forall \phi \forall x (x \lor \neg x \vdash \phi x) \vdash \neg \neg \phi x. \qquad \qquad [.2] [.5] \text{ MP}$
	$\Box \forall x (x \lor \neg x \vdash \phi x) \vdash \neg \neg \phi x. \qquad [.6] \forall z \text{INST}$
	$\Box(x \lor \neg x \vdash \phi x) \vdash \neg \neg \phi x. \qquad \qquad [.7] \forall_{1} \text{INST}$
	$\Box \forall p(p \lor \neg p \vdash \phi p) \vdash \neg \neg \phi p. \qquad [.8] \forall_{1} GEN$
	$\Box \forall \psi \forall p (p \lor \neg p \vdash \psi p) \vdash \neg \neg \psi p. \qquad [.9] \forall_{2} GEN$
	■QED
	Uses Axioms: 1, 4

If p is provable in classical logic, then $(\forall \psi (\neg \forall x \psi x) \vdash \exists x \neg \psi x) \vdash \neg \neg p$ is provable in intuitionistic logic. PROOF: We can show $\neg \neg (\forall p \lor \neg p)$. For $\forall p \neg \neg (p \lor \neg p)$ entails $\neg \exists p \neg (p \lor \neg p)$; yet from

 $\forall \psi(\neg \forall x \psi x) \vdash \exists x \neg \psi x$ and $\neg(\forall p \lor \neg p)$, it follows $\exists p \neg (p \lor \neg p)$, thus giving a contradiction. Applying *Modus Tollens* twice on $(\forall p \lor \neg p) \vdash p$, gives $\neg \neg p$. QED.

$\forall p((\forall pp \lor \neg p) \vdash p) \vdash (\forall \psi(\neg \forall x \psi x) \vdash \exists x \neg \psi x) \vdash \neg \neg p. \dots $ THEOREM of Predicate Translation	76
\P	
$\Box \forall pp \vdash \neg p \vdash \forall xx.$ THM	76.1
$\Box \forall p(p \vdash \forall xx) \vdash \neg p.$ THM	76.2
$\Box((\forall pp \lor \neg p) \vdash p) \vdash (\forall \psi (\neg \forall x \psi x) \vdash \exists x \neg \psi x) \vdash \neg \neg p \dots \bot$	76.3
□¶DEM	
$\Box\Box(\forall pp\lor\neg p)\vdash p.$ [.3] ASM	76.4
$\Box\Box(\forall\psi(\neg\forall x\psi x)\vdash\exists x\neg\psi x)\vdash\neg\neg p.$ LEM	76.5
□□¶DEM	
$\Box\Box\Box\forall\psi(\neg\forall x\psi x)\vdash\exists x\neg\psi x.$ [.5] ASM	76.6
$\Box\Box\Box(\neg\forall pp\lor\neg p)\vdash\forall xx$ LEM	76.7
□□□¶DEM	
$\square\square\square\neg\forall pp\vee\neg p.$ [.7] ASM	76.8
$\square\square\square\square(\neg\forall xx\vee\neg x)\vdash \exists x\neg(x\vee\neg x).$ [.6] \forall_2 INST	76.9
$\Box\Box\Box(\forall xx \vee \neg x) \vdash \forall xx .$ LEM	76.10
$\square\square\square\square\forall xx\vee\neg x.$ [.10] ASM	76.11
$\square\square\square\square x \vee \neg x. \qquad \qquad [.11] \ \forall_1 \text{inst}$	76.12
$\square\square\square\square\forall pp \lor \neg p. \qquad [.12] \forall_{1} GEN$	76.13
$\square\square\square\square\forall xx. \qquad \qquad [.1] [.13] [.8] _{2} \text{MINT}_{1}$	76.14
□□□□ ■.	
$\square\square\square\exists x\neg(x\vee\neg x).$ [.2] [.10] [.9] $_2$ MINT ₁	76.15
$\square\square\square\square\forall p\neg\neg(p\lor\neg p)$. THM	76.16
$\square\square\square\neg\neg(x\vee\neg x).$ [.16] \forall_1 INST	76.17
$\square\square\square \forall x \neg \neg (x \lor \neg x). \qquad [.17] \forall_{1} GEN$	76.18
$\square\square\square\square\forall\psi(\forall x\neg\psi x)\vdash\neg\exists x\psi x.$ THM	76.19
$\square\square\square(\forall x\neg\neg(x\vee\neg x))\vdash\neg\exists x\neg(x\vee\neg x).$ [.19] \forall_2 INST	76.20
$\square\square\square\neg\exists x\neg(x\vee\neg x).$ [.20] [.18] MP	76.21
$\square\square\square\square\forall xx. \qquad \qquad [.1] \ [.15] \ [.21] \ _2 \text{MINT}_1$	76.22
□□□ ■. QED	
$\square\square\square\neg\neg\forall pp\lor\neg p. \qquad \qquad [.2] [.7]_{1} \text{MINT}_{1}$	76.23
$\square\square\square\forall p\forall q(p\vdash q)\vdash \neg q\vdash \neg p.$ THM	76.24
$\square\square\square\neg p \vdash \neg(\forall pp \lor \neg p).$ [.24] [.4] $_{1}$ MINT ₂	76.25
$\square\square\square\neg\neg(\forall pp\lor\neg p)\vdash\neg\neg p.$ [.24] [.25] $_1$ MINT ₂	76.26
□□□¬¬ p.	76.27
□□ ■. QED	
□ ■. QED	
	76.28
■	
Uses Axioms: 1, 4	

77	7	
	¶	
77.1		
	□¶	
77.2	,	
77. 3	· · · · · · · · · · · · · · · · · · ·	
77.4	$4 \Box \Box \forall x_1 \forall x_2 \psi x_1 \vdash \psi x_2 \vdash x_1 = x_2.$	[.2] ∃!UNIQUE
77.5	$5 \Box \Box \forall p \forall q p \vdash q \vdash p \land q.$	THM
77.6	$6 \Box \Box (\exists x \psi x) \land \forall x_1 \forall x_2 \psi x_1 \vdash \psi x_2 \vdash x_1 = x_2.$	\dots [.5] [.3] [.4] $_2$ MINT $_2$
	□■	QED
77.7	7 $\Box (\exists x \psi x) \land (\forall x_1 \forall x_2 \psi x_1 \vdash \psi x_2 \vdash x_1 = x_2) \vdash \exists! x \psi x.$	LEM
	□¶	DEM
77.8	$8 \Box \Box (\exists x \psi x) \land \forall x_1 \forall x_2 \psi x_1 \vdash \psi x_2 \vdash x_1 = x_2. \ldots$	[.7] ASM
77.9	$ \exists \Box \forall p \forall q p \land q \vdash p. $	THM
77.10	D □□∃ <i>xψx</i>	[.9] [.8] ₁ MINT ₂
77.11	1 $\square\square\forall p\forall qp\land q\vdash q$	THM
77.12	$2 \Box \Box \forall x_1 \forall x_2 \psi x_1 \vdash \psi x_2 \vdash x_1 = x_2.$	[.11] [.8] 1 MINT2
77.13	3 □□∃! <i>xψx</i>	[.10] [.12] ∃!INTROS
	□■	QED
77.14	$1 \Box \forall \boldsymbol{p} \forall \boldsymbol{q} (\boldsymbol{p} \vdash \boldsymbol{q}) \vdash (\boldsymbol{q} \vdash \boldsymbol{p}) \vdash \boldsymbol{p} \Leftrightarrow \boldsymbol{q}.\dots$	THM
77.15	$5 \Box(\exists! x \psi x) \Leftrightarrow (\exists x \psi x) \land \forall x_1 \forall x_2 \psi x_1 \vdash \psi x_2 \vdash x_1 = x_2.$	[.14] [.1] [.7] ₂ MINT ₂
77.16		
		[• 1] V Z G E IV
		
	L	
	Uses Axioms: 3, 5	QED
78	Uses Axioms: 3, 5 $\forall \psi(\exists! x \psi x) \Leftrightarrow \exists x \forall x_1 \psi x_1 \Leftrightarrow x_1 = x.$ Theo	REM of 3! Equivalence 2
	Uses Axioms: 3, 5 $\forall \psi(\exists! x \psi x) \Leftrightarrow \exists x \forall x_1 \psi x_1 \Leftrightarrow x_1 = x. \qquad \text{Theo}$	REM <i>of</i> ∃! <i>Equivalence 2</i>
78 78.1	Uses Axioms: 3, 5 $\forall \psi(\exists!x\psi x) \Leftrightarrow \exists x \forall x_1 \psi x_1 \Leftrightarrow x_1 = x. \qquad \text{Theo}$ $\P. \qquad \qquad$	REM of 3! Equivalence 2
	Uses Axioms: 3, 5 $\forall \psi(\exists! x \psi x) \Leftrightarrow \exists x \forall x_1 \psi x_1 \Leftrightarrow x_1 = x. \qquad \text{Theo}$	REM of 3! Equivalence 2
	Uses Axioms: 3, 5 $\forall \psi(\exists! x \psi x) \Leftrightarrow \exists x \forall x_1 \psi x_1 \Leftrightarrow x_1 = x. \qquad \text{Theo}$ $\blacksquare \qquad \qquad$	REM of 3! Equivalence 2
78.1	Uses Axioms: 3, 5 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	REM of ∃! Equivalence 2
78.1 78.2	Uses Axioms: 3, 5 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	REM of 3! Equivalence 2
78.1 78.2 78.3	Uses Axioms: 3, 5 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	REM of 3! Equivalence 2
78.1 78.2 78.3 78.4	Uses Axioms: 3, 5 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	REM of 3! Equivalence 2 DEM LEM DEM
78.1 78.2 78.3 78.4 78.5	Uses Axioms: 3, 5 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	REM of 3! Equivalence 2
78.1 78.2 78.3 78.4 78.5 78.6	Uses Axioms: 3, 5 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	REM of 3! Equivalence 2
78.1 78.2 78.3 78.4 78.5 78.6	Uses Axioms: 3, 5 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	REM of 3! Equivalence 2 DEM LEM DEM [.1] ASM [.2] 3!EXISTS [.2] 3!UNIQUE [.3] 3 ₁ INST LEM DEM DEM
78.1 78.2 78.3 78.4 78.5 78.6	Uses Axioms: 3, 5 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	QED REM of 3! Equivalence 2 DEM LEM DEM [.1] ASM [.2] 3!EXISTS [.2] 3!UNIQUE [.3] 3_1INST LEM DEM [.6] ASM [.6] ASM
78.1 78.2 78.3 78.4 78.5 78.6	Uses Axioms: 3, 5 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	QED REM of 3! Equivalence 2 DEM LEM DEM [.1] ASM [.2] 3!EXISTS [.2] 3!UNIQUE [.3] 3_1 INST LEM DEM [.6] ASM [.4] [.7] [.5] 2MINT2 QED
78.1 78.2 78.3 78.4 78.5 78.6	Uses Axioms: 3, 5 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	REM of 3! Equivalence 2 DEM LEM DEM [.1] ASM [.2] 3!EXISTS [.2] 3!UNIQUE [.3] 3_1INST LEM DEM [.6] ASM [.4] [.7] [.5] 2MINT2 QED LEM
78.1 78.2 78.3 78.4 78.5 78.6	Uses Axioms: 3, 5 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	REM of 3! Equivalence 2 DEM LEM DEM [.1] ASM [.2] 3!EXISTS [.2] 3!UNIQUE [.3] 3_1INST LEM DEM [.6] ASM [.4] [.7] [.5] 2MINT2 QED LEM DEM

□□■QED	
$\square\square \forall p \forall q (p \vdash q) \vdash (q \vdash p) \vdash p \Leftrightarrow q.$ Thm	78.12
$\square \square \psi x_1 \Leftrightarrow x_1 = x. \qquad [.12] [.6] [.9] _{2} \text{MINT}_2$	78.13
$\square\square\forall x_1\psi x_1 \Leftrightarrow x_1 = x. \qquad [.13] \ \forall_1 \text{GEN}$	78.14
$\square \square \exists x \forall x_1 \psi x_1 \Leftrightarrow x_1 = x. \qquad [.14] \exists_1 \text{GEN}$	78.1
□ ■. QED	
$\Box(\exists x \forall x_1 \psi x_1 \Leftrightarrow x_1 = x) \vdash \exists! x \psi x.$ LEM	78.16
□¶	
$\Box \exists x \forall x_1 \psi x_1 \Leftrightarrow x_1 = x. $ [.16] ASM	78.1
$\square\square\forall x_1\psi x_1\Leftrightarrow x_1=x.$ [.17] \exists_1 INST	78.18
$\Box \psi x \Leftrightarrow x = x. \qquad [.18] \forall_1 \text{INST}$	78.19
	78.20
$\Box\Box\forall p\forall qp \Leftrightarrow q\vdash q\vdash p.$ THM	78.2
$\square \ \psi x$	78.22
$\square \exists x \psi x. \qquad \qquad [.22] \exists_1 GEN$	78.2
$\Box \psi x_1 \vdash \psi x_2 \vdash x_1 = x_2.$ LEM	78.2
,	
$\Box \psi x_1$	78.2
$\square\square\psi x_2 \vdash x_1 = x_2.$ LEM	78.20
DEM	
$\square\square\square\psi x_2$	78.27
$\square\square\square\psi x_1 \Leftrightarrow x_1 = x. \qquad [.18] \ \forall_1 \text{INST}$	78.28
$\square\square\square\psi x_2 \Leftrightarrow x_2 = x. \qquad [.18] \ \forall_1 \text{INST}$	78.29
$\square\square\square\forall p\forall qp \Leftrightarrow q \vdash p \vdash q.$	78.30
$\square\square\square x_1 = x. \qquad [.30] [.28] [.25] _{2} \text{MINT}_2$	78.3
$\square\square\square x_2 = x$. \square	78.32
$\square\square\square x_1 = x_2.$ [.32] [.31] SUB	78.33
QED	
□□■QED	
$\square\square\forall x_1\forall x_2\psi x_1\vdash \psi x_2\vdash x_1=x_2.$ [.24] UGEN ₂	78.34
$\square \exists ! x \psi x.$ [.23] [.34] $\exists ! \text{INTROS}$	78.3
QEDQED	
$\Box \forall p \forall q (p \vdash q) \vdash (q \vdash p) \vdash p \Leftrightarrow q.$ Thm	78.30
$\Box(\exists! x \psi x) \Leftrightarrow \exists x \forall x_1 \psi x_1 \Leftrightarrow x_1 = x. \qquad [.36] [.1] [.16]_{2MINT_2}$	78.3
$\Box \forall \psi (\exists ! x \psi x) \Leftrightarrow \exists x \forall x_1 \psi x_1 \Leftrightarrow x_1 = x. $ [.37] $\forall_2 \text{GEN}$	78.38
Q ED	
Uses Axioms: 3, 5	
$\forall x \forall y x = y \vdash \forall \psi \psi x \Leftrightarrow \psi y$. Theorem of the Indiscernibility of Identicals	79
¶	
$\Box x = y \vdash \forall \psi \psi x \Leftrightarrow \psi y.$ LEM	79.1
□¶	
$\square \square x = y. $ [.1] ASM	79.2
$\square\square\psi x = \psi x$.	79.3

79.4	$\square\square\psi x = \psi y$ [.2] [.3] SUB
79.5	$\square\square \forall pp \Leftrightarrow p.$ THM
79.6	$\square\square\psi x \Leftrightarrow \psi x.$ [.5] \forall_1 INST
79.7	$\square\square\psi x \Leftrightarrow \psi y$. [.4] [.6] SUB
79.8	$\square\square\forall\psi\psi x \diamond \psi y$. [.7] \forall_2 GEN
	□ ■. QED
79.9	
	Q ED
	Uses Axioms: 5
80	$\forall x \forall y (\forall \psi \psi x \Leftrightarrow \psi y) \vdash x = y.$ Theorem of the Identity of Indiscernibles
	¶
80.1	$\Box(\forall \psi \psi x \Leftrightarrow \psi y) \vdash x = y.$ LEM
0011	□¶
80.2	$\Box \forall \psi \psi x \Leftrightarrow \psi y. $ [.1] ASM
80.3	$\Box x = x \Leftrightarrow x = y. $ [2] $\forall_2 \text{INST}$
80.4	$\square x = x. $ EQ
80.5	$\Box \Box \forall p \forall q p \Leftrightarrow q \vdash p \vdash q. $ THM
80.6	$\square x = y. \qquad \qquad [.5] [.3] [.4] 2 \text{MINT2}$
00.0	□■
80.7	•
00	■
	Uses Axioms: 5
	Not all formulas ψ are <i>realizable</i> as objects. PROOF: Suppose all formulas were; $\forall \psi \exists f \forall x \psi x = fx$. Particularly we may choose the formula $\neg xx$. Then $\forall x \neg xx = fx$, for some object f . Instantiating f gives a contradiction. QED.
81	$\neg \forall \pmb{\psi} \exists \pmb{f} \forall \pmb{x} \pmb{\psi} \pmb{x} = \pmb{f} \pmb{x} \pmb{\cdot} \qquad \qquad \text{Theorem of Unrealizability 1, a Russell's Paradox 3}$
	¶
81.1	$\Box(\forall \psi \exists f \forall x \psi x = f x) \vdash \forall x x.$ LEM
	□¶
81.2	, , , , , , , , , , , , , , , , , , , ,
81.3	$\square \square \exists f \forall x \neg x x = f x. $ [.2] $\forall_2 \text{INST}$
	$\square \square \forall x \neg x x = f x. $ [.3] $\exists_1 \text{INST}$
	$\square\square\neg ff = ff.$ [.4] \forall_1 INST
	$\square \exists p \neg p = p. \qquad [.5] \exists_{1} GEN$
81.7	$\square\square\neg\exists p\neg p=p.$ THM
81.8	$\Box\Box\forall pp\vdash\neg p\vdash\forall xx.$ THM
81.9	$\square\square\forall xx.$ [.8] [.6] [.7] $_2$ MINT $_1$
	□ ■. QED
81.10	$\Box \forall p(p \vdash \forall xx) \vdash \neg p.$ THM
~	

■. Uses Axioms: 1	. QED
$ eg orall \psi \exists f orall x \psi x \Leftrightarrow f x.$	
¶	
$\Box(\forall \psi \exists f \forall x \psi x \Leftrightarrow f x) \vdash \forall x x.$	LEM
□¶	DEM
$\Box\Box\forall\psi\exists f\forall x\psi x\Leftrightarrow fx.$ [.1]	ASM
$\square \square \exists f \forall x \neg xx \Leftrightarrow fx. \tag{2} \forall_2$	INST
$\square\square\forall x\neg xx \Leftrightarrow fx.$ [.3] \exists_1	INST
$\square\square\neg ff \diamond ff$ [4] \forall_1	INST
$\square \square \exists p \neg p \Leftrightarrow p$. [.5] $\exists j$	GEN
$\square\square\neg\exists p\lnot p\Leftrightarrow p$.	THM
$\square\square \forall pp \vdash \neg p \vdash \forall xx.$	THM
$\square\square\forall xx.$ [.8] [.6] [.7] $_2$ M	INT ₁
□■	. QED
$\Box \forall p(p \vdash \forall xx) \vdash \neg p$	THM
$\Box \neg \forall \psi \exists f \forall x \psi x \Leftrightarrow f x.$ [.10] [.1] \Box	INT ₁
Uses Axioms: 1, 5 $orall \psi(orall x\psi x) = orall y\psi y$	lity 1
¶	-
$\Box(\forall x \psi x) = \forall x \psi x$.	EQ
$\Box(\forall x \psi x) = \forall y \psi y. $ [.1]	-
$\Box \forall \psi(\forall x \psi x) = \forall y \psi y. \qquad [.2] \forall y$	
I	_
Uses Axioms: None	
$orall oldsymbol{\psi}(\exists oldsymbol{x}oldsymbol{\psi}oldsymbol{x})$ = $\exists oldsymbol{y}oldsymbol{\psi}oldsymbol{y}$	
¶	DEM
$\Box(\exists x \psi x) = \exists x \psi x.$	
$\Box(\exists x \psi x) = \exists y \psi y. \tag{.1}$	QNT
$\Box \forall \psi (\exists x \psi x) = \exists y \psi y. \qquad [.2] \forall y$	gEN
I	. QED
Uses Axioms: None	
$orall oldsymbol{\psi}(\exists ! x \psi x) = \exists ! y \psi y.$ Theorem of Quantifier Equa	litv 3
¶	
$\Box(\exists! x \psi x) = \exists! x \psi x.$	
$\Box(\exists! x \psi x) = \exists! v \psi v. \qquad [.1]$	

3	
	Uses Axioms: None
6	$\forall \psi(\forall x \exists y \psi x y) = \forall x \exists y x \psi y$
1	$\P. \qquad \qquad \square$
2	$\Box(\forall x \exists y \psi x y) = \forall x \exists y \psi x y.$ $\Box(\forall x \exists y \psi x y) = \forall x \exists y x \psi y.$ [.1]
3	
U	□····································
	Uses Axioms: None
7	$\forall \psi (\forall x \exists y \psi x y) = \forall x \exists y \psi x y.$ Theorem of Second Order Variation
	¶
1	$\Box(\forall x\exists y\psi xy) = \forall x\exists y\psi xy.$
2	$\Box(\forall x \exists y \psi x y) = \forall x \exists y \psi x y. $ [,1]
3	$\Box \forall \psi (\forall x \exists y \psi x y) = \forall x \exists y \psi x y. \qquad [.2] \forall_2 (\forall x \exists y \psi x y) = (\exists x \exists x \psi x) = (\exists x \forall x \psi x) = (\exists x \forall x \psi x) = (\exists x \psi x) = (\exists x \forall x \forall x \forall x) = (\exists x \forall x \forall x \forall x) = (\exists x$
	I
3	Uses Axioms: None
	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extens}$ $\blacksquare \qquad \qquad$
1	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extens}$ \blacksquare $\square(\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \square$
1	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extens}$ $\blacksquare \qquad \qquad$
	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extense}$ $\blacksquare \qquad \qquad$
	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extens}$ $\blacksquare \qquad \qquad$
	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extens}$ $\blacksquare \qquad \qquad$
	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extense}$ $\blacksquare \qquad \qquad$
	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extense}$ $\P. \qquad \qquad$
2 3 4 5 5	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extense}$ $\blacksquare \qquad \qquad$
1 2 3 4 5 6	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extens}$ $\blacksquare. \qquad \qquad$
8 1 2 3 4 5 6 7	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extens}$ $\blacksquare \qquad \qquad$
1 2 3 4 5 6	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extens} \\ \blacksquare \qquad \qquad$
1 2 3 4 5 6	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extense} \\ \blacksquare. \qquad $
1 2 3 4 5 6	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extenses}$ $\blacksquare. \qquad \qquad$
1 2 3 4 5 6 7	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extenses}$ $\P. \qquad \qquad$
1 2 3 4 5 6	$\forall \psi (\forall \phi \forall x \psi x \vdash \exists y \phi y) \vdash \forall \theta \forall x \psi x \vdash \exists y \theta x y. \qquad \text{Theorem of Second Order Extens} \\ \blacksquare \qquad \qquad$

$\Box\Box(\neg xx) = \neg xx.$ EQ	89.4
$\Box \exists yy = \neg xx. $ [4] $\exists_1 \in \mathbb{R}$	
$\Box y_1 = \neg xx \vdash y_2 = \neg xx \vdash y_1 = y_2.$ LEM	
1 12 11 12	09.0
	00 =
$\square\square y_2 = \neg xx \vdash y_1 = y_2.$ LEM	89.7
□□ ¶	
$\square\square\square y_1 = \neg xx. \qquad [.6] \text{ ASM}$	89.8
$\square\square\square y_2 = \neg xx. \qquad [.7] \text{ ASM}$	89.9
$\square\square\square y_1 = y_2. \qquad [.8] [.9] \text{ ASM}$	89.10
QED	89.11
QED	
$\square\square\forall y_1\forall y_2y_1=\neg xx\vdash y_2=\neg xx\vdash y_1=y_2.$ [.6] UGEN ₂	89.12
$\square \square \exists !yy = \neg xx. \qquad \qquad [.5] [.12] \exists ! \text{INTROS}$	89.13
$\square\square\forall x\exists!yy=\neg xx.$ [.13] \forall_1 GEN	89.14
$\Box \Box \exists f \forall x \forall yy = \neg xx \Leftrightarrow fx = y.$ [.3] [.14] MP	89.15
$\Box \Box \forall x \forall yy = \neg xx \Leftrightarrow fx = y. $ [.15] \exists_1 INST	89.16
$\Box\Box(\neg ff) = \neg ff \Leftrightarrow ff = \neg ff.$ [.16] 0 MINT ₂	89.17
$\Box\Box(\neg ff)=\neg ff$.	89.18
$\Box\Box\forall p\forall qp \Leftrightarrow q\vdash p\vdash q.$ THM	89.19
$\Box f f = \neg f f$ [.19] [.17] [.18] 2MINT2	89.20
$\Box \exists x x = \neg x. \qquad [.20] \exists_1 \text{ GEN}$	89.21
$\Box \neg \exists xx = \neg x$. THM	89.22
$\Box \Box \forall p p \vdash \neg p \vdash \forall xx. $ THM	89.23
$\square \forall xx$. [.23] [.21] [.22] 2MINT1	89.24
□■	
$\Box \forall p(p \vdash \forall xx) \vdash \neg p. $ THM	89.25
$\Box \forall \psi(\forall x \exists! y \psi x y) \vdash \exists f \forall x \forall y \psi x y \Leftrightarrow f x = y. $ [.25] [.1] \downarrow MINT ₁	89.26
□ · · · · · · · · · · · · · · · · · · ·	30.20
Uses Axioms: 1, 5	
Osca Philotta. 1, U	

Already it is cumbersome to explicitly reference instances of logical theorems. After all, our work is type / set theoretic; we should have greater freedom to manipulate logic. So we introduce the third and final *rule tactic*: TAUT. For each pair of numbers n,m, this tactic is defined as:

$TAUT = THM \cdot_n MINT_m$

Due to unending labor, we do not pass explicit pointer reference to prior theorems. We simply assume, when using TAUT, the correct references are passed, ie. the correct theorems are used. Many times, the intended theorem is not proven. We do this for brevity—to keep to the positive practice of applying one TAUT as opposed to applying multiple successive TAUTS. If needed, we ask the readers to fill in these blanks.

We pledge to only apply TAUT for logical theorems, ie. those which keep to the signature of *Intuitionstic Logic*.

§1.4 Logic: Laws of Spontaneous Choice and the Excluded Middle

Their exists a unique set which contains no elements. PROOF: *Existence*. Axiomatically, their exists such a set. *Uniqueness*. Take any two empty sets x_1, x_2 . For any $t:x_1$, it is vacuously true $t:x_2$. Likewise for any $t:x_2$, $t:x_1$. Thus $\forall tt:x_1 \Leftrightarrow t:x_2$. By extensionality, $x_1=x_2$. QED.

90	$\exists !xx: \mathscr{H} \land \forall y \neg y:x.$ Theorem of the Unique Empty Set
	¶DEM
90.1	$\Box \exists xx: \mathscr{H} \land \forall y \neg y: x. $ AXM
90.2	$\Box(x_1:\mathscr{H} \land \forall y \neg y:x_1) \vdash (x_2:\mathscr{H} \land \forall y \neg y:x_2) \vdash x_1 = x_2.$ LEM
	□¶DEM
90.3	$\Box \Box x_1 : \mathcal{H} \land \forall y \neg y : x_1. $ [.2] ASM
90.4	$\Box \Box (x_2: \mathscr{H} \land \forall y \neg y: x_2) \vdash x_1 = x_2.$ LEM
	□ □ ¶
90.5	$\Box\Box\Box x_2:\mathscr{H} \land \forall y \neg y:x_2. \tag{.4} \text{ ASM}$
90.6	$\square\square\square x_1{:}\mathscr{H}.$ [.3] Taut
90.7	$\square\square\square x_2{:}\mathscr{H}.$ [.5] Taut
90.8	$\square\square\square\forall y\neg y:x_1.$ [.3] TAUT
90.9	$\square\square\square\forall y\neg y:x_2.$ [.5] TAUT
90.10	$\square\square\square\neg t{:}x_1.$ [.8] \forall_1 INST
90.11	$\square\square\square\neg t:x_2.$ [.9] \forall_1 INST
90.12	$\square\square\square t{:}x_1{\vdash}t{:}x_2.$ LEM
	□□□¶
90.13	$\Box\Box\Box t{:}x_1$ [.12] ASM
90.14	$\square\square\square t{:}x_2.$ [.10] [.13] TAUT
	□□□ ■.
90.15	$\square\square\square t{:}x_2{\vdash}t{:}t_1.$ LEM

$\Box\Box\Box\exists t:x_2.$ [.15] ASM	90.16
□□□□ <i>t:x</i> ₁	90.17
QED	
$\Box\Box t: x_1 \Leftrightarrow t: x_2$. [.12] [.15] TAUT	90.18
$\square\square\forall tt: x_1 \Leftrightarrow t: x_2. \qquad \qquad [.18] \ \forall_1 \text{GEN}$	90.19
$\square\square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y. $	90.20
$\square \square x_1 = x_2$	90.21
□■	00.21
□ ■. QED	
	90.22
$\square\exists!xx:\mathcal{H} \land \forall y \neg y:x. \qquad \qquad [.1] [.22] \exists! \text{INTROS}$	90.23
■	00.20
Uses Axioms: 1, 3, 5, 9, 11	
$0 \colon \mathscr{H} \wedge \forall \mathbf{x} \neg \mathbf{x} \colon 0 .$ Natural Definition of the Empty Set	91
¶	
$\Box \exists x x : \mathcal{H} \land \forall y \neg y : x. $ AXM	91.1
$\square 0: \mathcal{H} \wedge \forall y \neg y: 0.$ [.1] INAME	91.2
$\Box \forall y \neg y : 0.$ [.2] TAUT	91.3
□¬ y:0. [.3] ∀ ₁ INST	91.4
$\Box \forall x \neg x$:0. [.4] $\forall_1 GEN$	91.5
•	91.6
$\square 0: \mathcal{H} \wedge \forall x \neg x: 0.$ [.2] [.5] TAUT	91.6
$\Box 0: \mathcal{H} \wedge \forall x \neg x: 0. $ [.2] [.5] TAUT	91.6
	92
	92 92.1
	92 92.1 92.2
	92 92.1 92.2 92.3
	92 92.1 92.2 92.3 92.4
	92 92.1 92.2 92.3 92.4 92.5
	92 92.1 92.2 92.3 92.4 92.5 92.6
	92 92.1 92.2 92.3 92.4 92.5 92.6 92.7
	92 92.1 92.2 92.3 92.4 92.5 92.6 92.7
	92 92.1 92.2 92.3 92.4 92.5 92.6 92.7
	92 92.1 92.2 92.3 92.4 92.5 92.6 92.7
	92 92.1 92.2 92.3 92.4 92.5 92.6 92.7 92.8 92.9
	92 92.1 92.2 92.3 92.4 92.5 92.6 92.7 92.8 92.9 92.10
	92 92.1 92.2 92.3 92.4 92.5 92.6 92.7 92.8 92.9 92.10 92.11
	92 92.1 92.2 92.3 92.4 92.5 92.6 92.7 92.8 92.9 92.10

	□¶
92.15	$\Box \Box x_1 : \mathscr{H} \land \forall yy : x_1 \Leftrightarrow y = 0. $ [.14] ASM
92.16	$\Box\Box(x_2:\mathscr{H} \land \forall yy:x_2 \Leftrightarrow y=0) \vdash x_1=x_2.$ LEM
02.10	$\Box \Box \mathbf{q} \qquad \qquad \Box \mathbf{p} $
92.17	$\square\square \square x_2: \mathscr{H} \land \forall yy: x_2 \Leftrightarrow y = 0. $ [.16] ASM
92.18	$\square\square x_1: \mathscr{H}. \tag{.15} TAUT$
92.19	$\square\square x_2:\mathcal{H}. \tag{.17} TAUT$
92.20	$\square\square \square \forall yy: x_1 \Leftrightarrow y = 0. \tag{.15} TAUT$
92.21	$\Box\Box\Box\forall yy.x_1\ominus y=0. $ [.17] TAUT
92.22	$\Box\Box\exists t y y x_2 \\ \forall y = 0. $ [17] HAUT
92.23	-
	$\square\square \square t : x_2 \Leftrightarrow t = 0. $
92.24	$\square\square\square t: x_1 \Leftrightarrow t: x_2.$ [.22] [.23] TAUT
92.25	$\square\square \forall tt: x_1 \Leftrightarrow t: x_2. \tag{24} \forall_1 \text{GEN}$
92.26	$\square\square\square\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash (\forall tt: x\Leftrightarrow t: y)\vdash x=y.$
92.27	$\square\square x_1 = x_2.$ [.26] [.18] [.19] [.25] 3MINT2
	□□ ■.
	□ ■. QED
92.28	
92.29	$\square \exists !xx : \mathcal{H} \land \forall yy : x \Leftrightarrow y = 0. $ [.13] [.28] $\exists ! \text{INTROS}$
	■.
	Uses Axioms: 1, 3, 4, 5, 9, 11, 12
93	$1:\mathcal{H} \wedge orall x \mathbf{x}: 1 \Leftrightarrow x = 0.$ Natural Definition of Ordinal 1
93	¶
93 93.1	
	¶
93.1	¶
93.1 93.2	¶
93.1 93.2 93.3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
93.1 93.2 93.3 93.4	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
93.1 93.2 93.3 93.4 93.5	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
93.1 93.2 93.3 93.4 93.5 93.6	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
93.1 93.2 93.3 93.4 93.5 93.6	¶DEM□∃!xx: $\mathcal{H} \land \forall yy: x \Leftrightarrow y = 0$.THM□∃xx: $\mathcal{H} \land \forall yy: x \Leftrightarrow y = 0$.[.1] ∃!EXISTS□1: $\mathcal{H} \land \forall yy: 1 \Leftrightarrow y = 0$.[.2] INAME□ $\forall yy: 1 \Leftrightarrow y = 0$.[.3] TAUT□ $\forall xx: 1 \Leftrightarrow x = 0$.[.4] $\forall 1$ INST□ $\forall xx: 1 \Leftrightarrow x = 0$.[.5] $\forall 1$ GEN□1: $\mathcal{H} \land \forall xx: 1 \Leftrightarrow x = 0$.[.3] [.6] TAUT■.QED
93.1 93.2 93.3 93.4 93.5 93.6	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
93.1 93.2 93.3 93.4 93.5 93.6	¶DEM□∃!xx: $\mathcal{H} \land \forall yy: x \Leftrightarrow y = 0$.THM□∃xx: $\mathcal{H} \land \forall yy: x \Leftrightarrow y = 0$.[.1] ∃!EXISTS□1: $\mathcal{H} \land \forall yy: 1 \Leftrightarrow y = 0$.[.2] INAME□ $\forall yy: 1 \Leftrightarrow y = 0$.[.3] TAUT□ $\forall xx: 1 \Leftrightarrow x = 0$.[.4] $\forall 1$ INST□ $\forall xx: 1 \Leftrightarrow x = 0$.[.5] $\forall 1$ GEN□1: $\mathcal{H} \land \forall xx: 1 \Leftrightarrow x = 0$.[.3] [.6] TAUT■.QED
93.1 93.2 93.3 93.4 93.5 93.6 93.7	¶DEM□∃!xx: $\mathcal{H} \land \forall yy: x \Leftrightarrow y = 0$.THM□∃xx: $\mathcal{H} \land \forall yy: x \Leftrightarrow y = 0$.[.1] ∃!EXISTS□1: $\mathcal{H} \land \forall yy: 1 \Leftrightarrow y = 0$.[.2] INAME□ $\forall yy: 1 \Leftrightarrow y = 0$.[.3] TAUT□ $\forall xx: 1 \Leftrightarrow x = 0$.[.4] $\forall 1$ INST□ $\forall xx: 1 \Leftrightarrow x = 0$.[.5] $\forall 1$ GEN□1: $\mathcal{H} \land \forall xx: 1 \Leftrightarrow x = 0$.[.3] [.6] TAUT■.QED
93.1 93.2 93.3 93.4 93.5 93.6 93.7	¶ DEM
93.1 93.2 93.3 93.4 93.5 93.6 93.7	¶
93.1 93.2 93.3 93.4 93.5 93.6 93.7 94 94.1 94.2 94.3 94.4	¶
93.1 93.2 93.3 93.4 93.5 93.6 93.7 94 94.1 94.2 94.3 94.4	¶
93.1 93.2 93.3 93.4 93.5 93.6 93.7 94 94.1 94.2 94.3 94.4	¶

$\Box \forall z_1 z_1 : x \Leftrightarrow z_1 = 0 \lor z_1 = 1. $ [.7] TAU1	94.
$\Box x: \mathcal{H} \land \forall yy: x \Leftrightarrow y = 0 \lor y = 1. $ [.10] TAUT	
$\Box \exists xx : \mathcal{H} \land \forall yy : x \Leftrightarrow y = 0 \lor y = 1. $ [.11] $\exists_1 \in \mathbb{N}$	
$\Box(x_1:\mathcal{H} \land \forall yy:x_1 \Leftrightarrow y=0 \lor y=1) \vdash (x_2:\mathcal{H} \land \forall yy:x_2 \Leftrightarrow y=0 \lor y=1) \vdash x_1=x_2.$ LEM	
□¶	
$\Box \Box x_1 : \mathcal{H} \land \forall yy : x_1 \Leftrightarrow y = 0 \lor y = 1. $ [.13] ASM	
$\Box \exists x_1 : \mathcal{H} \land \forall y y : x_1 \Leftrightarrow y = 0 \lor y = 1.$ $\Box (x_2 : \mathcal{H} \land \forall y y : x_2 \Leftrightarrow y = 0 \lor y = 1) \vdash x_1 = x_2.$ LEM	
$\Box (x_2; \mathscr{D} \land \forall yy; x_2 \ominus y - 0 \forall y - 1) \vdash x_1 - x_2.$ $\Box \P \qquad \qquad \Box \Box \blacksquare$	
$\square\square x_2: \mathscr{H} \land \forall yy: x_2 \Leftrightarrow y=0 \lor y=1. $ [.15] ASM	
$\square\square x_1:\mathcal{H}. \qquad \qquad [.14] \text{ TAUT}$	
$\square\square x_2:\mathcal{H}$. [.16] TAUT	
$\square\square \forall yy: x_1 \Leftrightarrow y = 0 \lor y = 1. $ [.14] TAUT	
$\square\square \forall yy: x_2 \Leftrightarrow y = 0 \lor y = 1. $ [.16] TAUT	
$\square\square t: x_1 \Leftrightarrow t=0 \lor t=1. $ [.19] $\forall_1 \text{INS}$	
$\square\square t: x_2 \Leftrightarrow t=0 \lor t=1. $ [.20] $\forall_1 \text{INS}$	
$\square\square t: x_1 \Leftrightarrow t: x_2.$ [.21] [.22] TAUT	
$\square\square\square\forall tt: x_1 \Leftrightarrow t: x_2. \tag{[.23]} \forall_1 \text{GEN}$	
$\square\square\square\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash (\forall tt: x \Leftrightarrow t: y)\vdash x=y. $ AXM	94.
$\square\square x_1 = x_2$	94.
□□ ■. QEI)
□ ■.)
$\square \forall x_1 \forall x_2 (x_1 : \mathcal{H} \land \forall yy : x_1 \Leftrightarrow y = 0) \vdash (x_2 : \mathcal{H} \land \forall yy : x_2 \Leftrightarrow y = 0) \vdash x_1 = x_2 \dots [.13] \text{ UGEN } x_2 \Rightarrow x_1 \Rightarrow x_2 \Rightarrow x_3 \Rightarrow x_4 \Rightarrow x_2 \Rightarrow x_3 \Rightarrow x_4 $	94.
$\square \exists !xx: \mathcal{H} \land \forall yy: x \Leftrightarrow y = 0 \lor y = 1. $ [.12] [.27] $\exists !$ INTROS	94.
■)
Uses Axioms: 1, 3, 4, 5, 9, 11, 12	_
$2: \mathscr{H} \land \forall xx: 2 \Leftrightarrow x=0 \lor x=1.$ Natural Definition of Ordinal 2	2 95
¶	í
$\Box \exists !xx : \mathcal{H} \land \forall yy : x \Leftrightarrow y = 0 \lor y = 1. $ THM	
$\Box \exists xx : \mathcal{H} \land \forall yy : x \Leftrightarrow y = 0 \lor y = 1. $ [.1] $\exists ! \text{EXISTS}$	
$\square 2: \mathcal{H} \land \forall y y : 2 \Leftrightarrow y = 0 \lor y = 1. $	
$\Box \forall yy: 2 \Leftrightarrow y = 0 \lor y = 1. $ [.3] TAUT	
■QEI Uses Axioms: 1, 3, 4, 5, 9, 11, 12	1
	-
0:1. Theorem of Basic Ordinal Truths	
¶]
\Box 1: $\mathcal{H} \land \forall xx$:1 $\Leftrightarrow x$ =0.	96.

96.2	$\Box \forall xx: 1 \Leftrightarrow x = 0.$	[.1] TAUT
96.3	□0:1⇔0=0	[.2] ∀ ₁ INST
96.4	□0=0	EQ
96.5	□0:1.	[.3] [.4] TAUT
	.	QED
	Uses Axioms: 1, 3, 4, 5, 9, 11, 12	•
97	0:2	FOREM of Rasic Ordinal Truths 2
٠.	¶	•
97.1	$\Box 2: \mathscr{H} \wedge \forall xx: 2 \Leftrightarrow x = 0 \vee x = 1.$	
97.2	$\Box \forall xx : 2 \Leftrightarrow x = 0 \lor x = 1.$	
97.3	$\square 0:2 \Leftrightarrow 0=0 \lor 0=1.$	
97.4		•
	□ 0 = 0 .	•
97.5		
	.	QED
	Uses Axioms: 1, 3, 4, 5, 9, 11, 12	
98	1:2	EOREM of Basic Ordinal Truths 3
	¶	DEM
98.1	$\square 2: \mathcal{H} \land \forall xx: 2 \Leftrightarrow x=0 \lor x=1.$	DEF
98.2	$\Box \forall xx: 2 \Leftrightarrow x = 0 \lor x = 1.$	[,1] TAUT
98.3	□1:2⇔1=0∨1=1	[.2] ∀ ₁ INST
98.4	□1=1	•
98.5	□1:2.	[.3] [.4] TAUT
	.	QED
	Uses Axioms: 1, 3, 4, 5, 9, 11, 12	·
	-	
99	¬1=0TH	EODEM of Pagic Ordinal Twiths 4
ฮฮ	¶	•
99 1	$\Box 1 = 0 \vdash \forall xx$.	
JJ.1	□¶	
99.2		
99.3		
99.4		
99.4		
99.6	$\Box 0: \mathcal{H} \wedge \forall x \neg x: 0.$ $\Box \forall x \neg x: 0.$	
99.6	□□¬1:0.	
99.8	□□∀ <i>xx</i> .	
00.0		·
99.9	□¬1=0. ■	
	=.	QED
	Uses Axioms: 1, 3, 4, 5, 9, 11, 12	

$ eg{2}={f 0}.$ Theorem of Basic Ordinal Truths 4	100
¶DEM	
$\Box 2 = 0 \vdash \forall xx.$ LEM	100.1
□¶	
□□2=0. [.1] ASM	100.2
□□ 0:2.	100.3
□□2:0. [.2] [.3] SUB	100.4
$\Box\Box$ 0: $\mathscr{H} \land \forall x \neg x$:0.	100.5
$\square\square\forall x\neg x$:0. [.5] TAUT	100.6
$\square\square eg2:0.$ [.6] \forall_1 INST	100.7
$\square\square\forall xx.$ [.3] [.7] TAUT	100.8
□ ■. QED	
$\square \neg 2 = 0$. [.1] TAUT	100.9
■QED	
Uses Axioms: 1, 3, 4, 5, 9, 11, 12	
,	101
¶	
\P	101 101.1
\P	101.1
\P LEM \square 2 = 1 $\vdash \forall xx$ LEM \square \P DEM \square \square 2 = 1 [.1] ASM	101.1 101.2
\P . DEM $\Box 2 = 1 \vdash \forall xx$. LEM $\Box \P$. DEM $\Box \Box 2 = 1$. [.1] ASM $\Box \Box 1 : 2$. THM	101.1 101.2 101.3
¶ DEM □2=1 $\vdash \forall xx$. LEM □¶. DEM □1=1. [.1] ASM □1:2. THM □□2:1. [.2] [.3] SUB	101.1 101.2 101.3 101.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101.1 101.2 101.3 101.4 101.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.1 101.2 101.3 101.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.1 101.2 101.3 101.4 101.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.1 101.2 101.3 101.4 101.5 101.6
¶ DEM □2=1 $\vdash \forall xx$. LEM □¶. DEM □1:2=1. [.1] ASM □1:2. THM □2:1. [.2] [.3] SUB □1: $\mathcal{M} \land \forall xx$:1 $\Rightarrow x$ =0. DEF □ $\forall xx$:1 $\Rightarrow x$ =0. [.5] TAUT □2:1 $\Rightarrow 2$ =0. [.6] $\forall 1$ INST □ $\Rightarrow 2$ =0. THM □ $\Rightarrow 2$:1. [.7] [.8] TAUT	101.1 101.2 101.3 101.4 101.5 101.6 101.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.1 101.2 101.3 101.4 101.5 101.6 101.7
¶ DEM □2=1 $\vdash \forall xx$. LEM □¶. DEM □1:2=1. [.1] ASM □1:2. THM □2:1. [.2] [.3] SUB □1: $\mathcal{M} \land \forall xx$:1 $\Rightarrow x$ =0. DEF □ $\forall xx$:1 $\Rightarrow x$ =0. [.5] TAUT □2:1 $\Rightarrow 2$ =0. [.6] $\forall 1$ INST □ $\Rightarrow 2$ =0. THM □ $\Rightarrow 2$:1. [.7] [.8] TAUT	101.1 101.2 101.3 101.4 101.5 101.6 101.7 101.8 101.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101.1 101.2 101.3 101.4 101.5 101.6 101.7 101.8 101.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.1 101.2 101.3 101.4 101.5 101.6 101.7 101.8 101.9

For any set of non-empty sets, x, there is a *choice* function $f:x \to \mathcal{H}$ st. $fx_1:x_1$ for each $x_1:x$. PROOF: Take any set of non-empty sets x and denote the predetermined choice function as g. Since x is a set, by *heredity* each of its elements x_1 are also sets; by *application*, each of its evaluations gx_1 are also sets. Thus, by *creation*, we may define the function $f:x \to \mathcal{H}$ which pointwise evaluates by g. It has precisely the desired property. QED.

In usual ZFC set theories, the $axiom\ of\ predetermined\ choice$ is stronger than the usual forms of choice. So we prove this particular form and uphold it as law.

102	$\forall xx : \mathscr{H} \vdash (\forall x_1x_1 : x \vdash \exists x_2x_2 : x_1) \vdash \exists ff : x \rightarrow \mathscr{H} \land \forall x_1x_1 : x \vdash fx_1 : x_1.$
102.1	$\Box a: \mathscr{H} \vdash (\forall x_1 x_1 : a \vdash \exists x_2 x_2 : x_1) \vdash \exists f f: a \rightarrow \mathscr{H} \land \forall x_1 x_1 : a \vdash f x_1 : x_1 . \dots \bot \text{EM}$
	□ ¶
102.2	$\Box\Box a:\mathscr{H}.$ [.1] ASM
102.3	$\square\square(\forall x_1x_1:a\vdash \exists x_2x_2:x_1)\vdash \exists ff:a\rightarrow \mathscr{H} \land \forall x_1x_1:a\vdash fx_1:x_1.$ LEM
	□ ¶ DEM
102.4	$\square\square\square\forall x_1x_1:a\vdash\exists x_2x_2:x_1.$ [.3] ASM
102.5	$\square\square \exists f f : \mathcal{H} \to \mathcal{H} \land \forall x x : \mathcal{H} \vdash (\exists x_1 x_1 : x) \vdash f x : x. $ AXM
102.6	$\square\square\square g: \mathcal{H} \to \mathcal{H} \land \forall xx: \mathcal{H} \vdash (\exists x_1 x_1 : x) \vdash gx: x. \qquad [.5] \exists_1 \text{INST}$
102.7	$\Box\Box\Box\forall a \forall b \forall \psi(\forall xx: a \vdash \exists! yy: b \land \psi xy) \vdash \exists ff: a \rightarrow b \land \forall x \forall yx: a \vdash y: b \vdash \psi xy \Leftrightarrow fx = y. \dots \land AXM$
102.8	$\square\square\square\forall\psi(\forall xx:a\vdash\exists!yy:\mathcal{H}\land\psi xy)\vdash\exists ff:a\rightarrow\mathcal{H}\land\forall x\forall yx:a\vdash y:\mathcal{H}\vdash\psi xy\Leftrightarrow fx=y.\ldots[.7]_{0}\text{MINT}_{2}$
102.9	$\square\square\square(\forall xx:a\vdash\exists!yy:\mathcal{H}\land gx=y)\vdash\exists ff:a\rightarrow\mathcal{H}\land\forall x\forall yx:a\vdash y:\mathcal{H}\vdash gx=y\Leftrightarrow fx=y.\dots[.8]\ \forall z\text{INST}$
102.10	$\Box\Box x:a \vdash \exists!yy: \mathscr{H} \land gx = y.$ LEM
	□□□¶DEM
102.11	□□□□ <i>x:a.</i> [.10] ASM
102.12	$\square\square\square\square\forall x\forall yx:y\vdash y:\mathcal{H}\vdash x:\mathcal{H}.$
102.13	$\square\square\square x:\mathcal{H}.$
102.14	$\square\square\square \forall a \forall b \forall f f : a \rightarrow b \vdash \forall xx : a \vdash fx : b. $
102.15	$\square\square\square g:\mathcal{H} \to \mathcal{H}$. [.6] TAUT
102.16	$\square\square\square \forall xx: \mathcal{H} \vdash gx: \mathcal{H}. \qquad \qquad [.14] \ [.15] \ _{1} \text{MINT}_{3}$
102.17	$\square\square\square gx:\mathcal{H}. \qquad \qquad [.16] \ [.13] \ _1 \text{MINT}_1$
102.18	$\square\square\square\square gx = gx.$ EQ
102.19	$\square\square\square gx: \mathcal{H} \land gx = gx. $ [.17] [.18] TAUT
102.20	$\square\square\square\exists yy: \mathcal{H} \land gx = y. \qquad [.19] \exists_{1} GEN$
102.21	$\square\square\square\square y_1: \mathscr{H} \land gx = y_1 \vdash y_2: \mathscr{H} \land gx = y_2 \vdash y_1 = y_2. $ LEM
	$\square\square\square\P$
102.22	$\square\square\square\square y_1: \mathcal{H} \land gx = y_1. $ [.21] ASM
102.23	$\square\square\square\square y_2: \mathcal{H} \land gx = y_2 \vdash y_1 = y_2.$ LEM
102.24	$\square\square\square\square\square y_2: \mathscr{H} \land gx = y_2. $ [.23] ASM
102.25	$\square\square\square\square gx = y_1.$ [.22] TAUT
102.26	$\square\square\square\square gx = y_2.$ [.24] TAUT
102.27	$\square\square\square\square y_1 = y_2. \qquad \qquad [.25] [.26] \text{ SUB}$
	QED
	QED
102.28	$\square \square \square \square \forall y_1 \forall y_2 y_1 : \mathcal{H} \land gx = y_1 \vdash y_2 : \mathcal{H} \land gx = y_2 \vdash y_1 = y_2 . \dots [.21] \text{ UGEN}_2$
102.29	$\square\square\square\exists!yy:\mathcal{H} \land gx=y. \qquad \qquad [.20] \ [.28] \ \exists! \text{INTROS}$
	□□■QED
102.30	$\square\square \forall xx: a \vdash \exists! yy: \mathcal{H} \land gx = y. \qquad [.10] \forall_{1} \text{GEN}$
102.31	$\square\square\exists ff: a \to \mathscr{H} \land \forall x \forall y x: a \vdash y: \mathscr{H} \vdash gx = y \Leftrightarrow fx = y. \qquad \qquad [.9] \ [.30] \ \mathrm{MP}$
102.32	$\square\square\square f: a \to \mathscr{H} \land \forall x \forall y x: a \vdash y: \mathscr{H} \vdash g x = y \Leftrightarrow f x = y. $ [.31] $\exists_1 \text{INST}$

$\Box\Box\Box x:a\vdash fx:x.$ LEM	102.33
$\square\square\square x{:}a.$ [.10] ASM	102.34
$\Box\Box\Box\Box\forall x\forall yx:y\vdash y:\mathcal{H}\vdash x:\mathcal{H}.$ AXM	102.35
$\square\square\square x: \mathcal{H}. \qquad \qquad [.35] \ [.34] \ [.2] \ {}_2 \text{MINT}_2$	102.36
$\square\square\square \forall x \forall y x : a \vdash y : \mathcal{H} \vdash g x = y \Leftrightarrow f x = y. $ [.32] TAUT	102.37
$\Box\Box\Box\Box\forall a\forall b\forall ff: a\rightarrow b\vdash\forall xx: a\vdash fx:b.$	102.38
$\square\square\square g : \mathcal{H} \rightarrow \mathcal{H} . \hspace{1.5cm} [.6] \ \text{Taut}$	102.39
$\square\square\square\square\forall xx: \mathcal{H} \vdash gx: \mathcal{H}. \qquad \qquad [.38] \ [.39] \ _1 \text{MINT}_3$	102.40
$\square\square\square gx:\mathcal{H}. \qquad \qquad [.40] [.36] _1 \text{MINT}_1$	102.41
$\square\square\square gx = gx.$ EQ	102.42
$\Box\Box\Box fx = gx.$ [.37] [.34] [.41] [.42] TAUT	102.43
$\square\square\square\square\forall xx: \mathscr{H} \vdash (\exists x_1x_1:x) \vdash gx:x. \qquad \qquad [.6] \text{ TAUT}$	102.44
$\square\square\square\exists x_2x_2{:}x. \qquad \qquad [.4] [.34] {_1} \text{MINT}_1$	102.45
$\square\square\square x_1:x.$ [.45] \exists_1 INST	102.46
$\square\square\square\exists x_1x_1:x. \qquad \qquad [.46]\ \exists_1 \text{Gen}$	102.47
$\square\square\square gx{:}x. \qquad \qquad [.44] \ [.36] \ [.47] \ _2 \text{MINT}_1$	102.48
□□□ <i>fx:x</i>	102.49
□□□ ■.	
$\square\square\square\forall xx{:}a\vdash fx{:}x. \qquad \qquad [.33] \ \forall_1 \text{Gen}$	102.50
$\Box\Box\Box f{:}a{\to} \mathscr{H} \land \forall xx{:}a{\vdash} fx{:}x. \qquad \qquad [.32] \ [.50] \ \text{TAUT}$	102.51
$\square\square \exists ff: a \rightarrow \mathcal{H} \land \forall xx: a \vdash fx: x. \qquad [.51] \exists_{1} \text{GEN}$	102.52
□□ ■. QED	
□ ■. QED	
$\square \forall xx : \mathscr{H} \vdash (\forall x_1x_1 : x \vdash \exists x_2x_2 : x_1) \vdash \exists ff : x \rightarrow \mathscr{H} \land \forall x_1x_1 : x \vdash fx_1 : x_1 . \dots . \dots . [.1] \ \forall_1 \text{GEN}$	102.53
■QED	
Uses Axioms: 3, 5, 6, 7, 10, 19	

 $p \lor \neg p$ for each p. PROOF: Take any object p. We may create sets a,b by specifying over 2 as follows: an element x:2 is in a iff. $x=0\lor p$, and is in b iff. $x=1\lor p$. Obviously a and b are non-empty. So consider the paired set c, whose elements are exactly a and b. By the law of spontaneous choice, their is a function $f:c\to \mathcal{H}$, st. fa:a and fb:b. We work out $p\lor \neg fb=fa$ and with extensionality, it follows $p\lor \neg p$. QED.

The constructivist's bane is the classicist's boon. In order to distinguish uses of *choice* from uses of lem, we uphold this theorem as law.

$\forall pp \lor \neg p.$ LAW of the Excluded Middle [22]	103
\P	
$\Box \forall x \forall \psi x : \mathcal{H} \vdash \exists yy : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : x \land \psi y_1. $ AXM	103.1
$\square \forall \psi 2: \mathcal{H} \vdash \exists yy: \mathcal{H} \land \forall y_1 y_1: y \Leftrightarrow y_1: 2 \land \psi y_1. \qquad \qquad [.1] \ \forall_1 \text{INST}$	103.2
$\square 2: \mathcal{H} \vdash \exists yy: \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : 2 \land (y_1 = 0 \lor p). \qquad [.2] \ \forall_2 \text{INST}$	103.3
$\square 2: \mathcal{H} \vdash \exists yy: \mathcal{H} \land \forall y_1 y_1: y \Leftrightarrow y_1: 2 \land (y_1 = 1 \lor p). \qquad [.2] \ \forall_2 \text{INST}$	103.4
$\Box 2: \mathcal{H} \land \forall xx: 2 \Leftrightarrow x=0 \lor x=1.$ DEF	103.5
$\square 2:\mathcal{H}.$ [.5] TAUT	103.6

109 7	[2][e]yp
	$\square \exists yy: \mathscr{H} \land \forall y_1y_1: y \Leftrightarrow y_1: 2 \land (y_1 = 0 \lor p). $ [.3] [.6] MP
	$\Box a: \mathcal{H} \land \forall y_1 y_1 : a \Leftrightarrow y_1 : 2 \land (y_1 = 0 \lor p). $ [.7] $\exists_1 \text{INST}$
103.9	$\square \exists yy: \mathscr{H} \land \forall y_1y_1: y \Leftrightarrow y_1: 2 \land (y_1 = 1 \lor p). $ [.4] [.6] MP
	$\Box b: \mathcal{H} \land \forall y_1 y_1 : b \Leftrightarrow y_1 : 2 \land (y_1 = 1 \lor p). $ [.9] $\exists_1 \text{INST}$
103.11	□∃x ₂ x ₂ :a
	□¶
	$\square\square\forall y_1y_1:a\Leftrightarrow y_1:2\land(y_1=0\lor p).$ [.8] TAUT
103.13	$\square\square 0:a \Leftrightarrow 0:2 \land (0=0 \lor p). \qquad \qquad [.12] \ \forall_1 \text{INST}$
103.14	□□ 0:2. THM
103.15	□□ 0=0.
103.16	$\square\square 0{:}2 \land (0{=}0 \lor p). \qquad \qquad [.14] [.15] \text{TAUT}$
103.17	$\square\square 0:a.$ [.13] [.16] TAUT
103.18	$\square\square\exists x_2x_2{:}a.$ [.17] $\exists_1\text{GEN}$
	□ ■. QED
103.19	$\square \exists x_2 x_2 : b.$ LEM
	□¶
103.20	$\square\square\forall y_1y_1:b\Leftrightarrow y_1:2\land (y_1=1\lor p).$
	$\Box\Box:b\Leftrightarrow 1:2\land (1=1\lor p).$ $\Box\Box:b\Leftrightarrow 1:2\land (1=1\lor p).$ $[.20] \forall_1 \text{INST}$
	□□1:2. THM
103.23	□□1=1 EQ
103.24	$\Box\Box$ 1:2 \land (1=1 \lor p)
	□□1:b. [.21] [.24] TAUT
	$\square \exists x_2 x_2 : b. \qquad \qquad [.25] \exists_1 \text{ GEN}$
100.20	□■
103.27	$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists z z : \mathcal{H} \land \forall z_1 z_1 : z \Leftrightarrow z_1 = x \lor z_1 = y. $ AXM
100.21	
103 28	
103.28	$\Box a:\mathcal{H}.$ [.8] TAUT
103.29	$\begin{tabular}{lll} $\square a:\mathcal{H}. & & & & & & & & \\ $\square b:\mathcal{H}. & & & & & & & \\ \hline \end{tabular}$
103.29 103.30	
103.29 103.30 103.31	
103.29 103.30	
103.29 103.30 103.31 103.32	
103.29 103.30 103.31 103.32	
103.29 103.30 103.31 103.32 103.33	
103.29 103.30 103.31 103.32 103.33 103.34 103.35	
103.29 103.30 103.31 103.32 103.33 103.34 103.35 103.36	
103.29 103.30 103.31 103.32 103.33 103.34 103.35	
103.29 103.30 103.31 103.32 103.33 103.34 103.35 103.36 103.37	

□□ ■.	
$\Box \exists x_2 x_2 : x$	103.43
QED	
$\square \forall x_1 x_1 : c \vdash \exists x_2 x_2 : x_1. \qquad [.32] \ \forall_1 \text{GEN}$	103.44
$\Box \forall xx: \mathscr{H} \vdash (\forall x_1x_1: x \vdash \exists x_2x_2: x_1) \vdash \exists ff: x \rightarrow \mathscr{H} \land \forall x_1x_1: x \vdash fx_1: x_1. \dots \dots$	103.45
$\square c{:}\mathscr{H}.$ [.31] Taut	103.46
$\square \exists ff: c \rightarrow \mathcal{H} \land \forall x_1 x_1 : c \vdash fx_1 : x_1. \qquad [.45] [.44] \ \underline{2} \text{MINT}_1$	103.47
$\Box f: c \to \mathcal{H} \land \forall x_1 x_1 : c \vdash f x_1 : x_1. $ [.47] $\exists_1 \text{INST}$	103.48
$\square \forall x_1 x_1 : c \vdash f x_1 : x_1. \tag{.48} \text{ TAUT}$	103.49
$\square a:c \vdash fa:a.$ [.49] $\forall_1 \text{INST}$	103.50
$\square b \mathpunct{:}\! c \vdash f b \mathpunct{:}\! b \mathpunct{:}\! b . \dotsc \underbrace{ [.49] \ \forall_1 \mathtt{INST} }$	103.51
$\square \forall z_1 z_1 : c \Leftrightarrow z_1 = a \lor z_1 = b. \tag{31} \text{ TAUT}$	103.52
$\square a : c \Leftrightarrow a = a \lor a = b. $ [.52] $\forall_1 \text{INST}$	103.53
$\Box a = a$ EQ	103.54
$\square a:c.$ [.53] [.54] TAUT	103.55
$\square b : c \Leftrightarrow b = a \lor b = b. $ [.52] $\forall_1 \text{INST}$	103.56
$\Box b = b$.	103.57
$\square b : c.$ [.56] [.57] TAUT	103.58
$\Box fa:a.$ [.50] [.55] MP	103.59
$\Box fb:b.$ [.51] [.58] MP	103.60
$\square \forall y_1 y_1 : a \Leftrightarrow y_1 : 2 \land (y_1 = 0 \lor p). \tag{[.8] TAUT}$	103.61
$\Box fa:a \Leftrightarrow fa:2 \land (fa=0 \lor p). \qquad \qquad [.61] \ \forall_1 \text{INST}$	103.62
$\Box fa$ =0 $\lor p$ [.62] [.59] TAUT	103.63
$\Box p \vdash p \lor \neg p$. LEM	103.64
□¶	
$\square\square p$ [.64] ASM	103.65
$\square\square p \vee \neg p$. [.65] Taut	103.66
□ ■.	
$\Box fa = 0 \vdash p \lor \neg p.$ LEM	103.67
$\square\P $	
$\Box\Box fa$ =0[.64] ASM	103.68
$\square\square\forall y_1y_1:b\Leftrightarrow y_1:2\land (y_1=1\lor p). \qquad \qquad [.10] \text{ TAUT}$	103.69
$\Box\Box fb{:}b \Leftrightarrow fb{:}2 \land (fb{=}1 \lor p). \qquad \qquad [.69] \ \forall_1 \text{INST}$	103.70
$\square \square fb = 1 \lor p$. [.70] [.60] TAUT	103.71
$\Box\Box fb = 1 \vdash p \lor \neg p$ LEM	103.72
$\square \square \P $	
$\square\square\square fb$ = 1	103.73
$\Box\Box p \vdash \forall xx.$ LEM	103.74
$\square\square\square\P\dots$	
$\square\square\square p$ [.74] ASM	103.75
$\square\square\square\square x{:}a \Leftrightarrow x{:}2 \land (x{=}0 \lor p). \qquad \qquad [.61] \ \forall_1 \text{INST}$	103.76
$\square\square\square x:a \Leftrightarrow x:2. \qquad \qquad \qquad [.76] \ [.75] \ \text{TAUT}$	103.77
$\square \square \square \forall tt: a \Leftrightarrow t:2. \qquad \qquad [.77] \ \forall_1 \text{GEN}$	103.78
$\square \square \square \square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y. $ AXM	103.79

103.80		[.79] [.28] [.6] [.78] $_3$ MINT $_2$
103.81	$\square\square\square\square x:b\Leftrightarrow x:2\land (x=1\lor p).$	[.69] \forall_1 INST
103.82	$\Box\Box\Box x:b\Leftrightarrow x:2.$	[. 81] [.75] TAUT
103.83	$\Box\Box\Box\Box\forall tt:b\Leftrightarrow t:2.$	[.82] ∀ ₁ GEN
103.84	□□□ b = 2.	[.79] [.29] [.6] [.83] 3 MINT ₂
103.85	$\Box\Box\Box b = a.$	[.80] [.84] SUB
103.86	$\Box\Box\Box fb = fb.$	
103.87	$\Box\Box\Box fb = fa.$	
103.88	□□□ 1=0.	[.73] [.68] [.87] TAUT
103.89	□□□¬1=0	THM
103.90	□□□□∀ <i>xx</i>	[. 89] [.88] TAUT
		QED
103.91	$\square\square p \lor \neg p$	[.74] TAUT
103.92	□□■	
103.93	$\Box p \lor \neg p$	[.71] [.72] [.64] TAUT
103.94	□■	
103.95	$\Box p \lor \neg p$	[.63] [.67] [.64] TAUT
103.96	$\Box \forall pp \lor \neg p$	
		
	Uses Axioms: 1, 3, 4, 5, 6, 9, 11, 12, 15, 21	

Laws are deductions which we regard as having the same status as axioms. In proofs, when making reference to a law, we use the assigned axiom number; eg. *excluded middle* is **21**.

In this way, we can explore alternative axiomatizations of the theory, and comfortably express the cumulative pedigree of axiomatic entailment. Importantly, we gain the insight of what is constructive and what is classical.

§1.5 Logic: Exercises in Classical Logic

Theorem of Propositional Duality
DEM
LEM
DEM
[.1] ASM
LEM
DEM
[.3] ASM
[.2] [.4] TAUT
[.5] \forall_1 inst
QED
LAW
[.7] \forall_1 INST
[.8] [.8] TAUT
QED
[,1] ∀ ₁ GEN
QED
QED
THEOREM of Material Entailment 1
THEOREM of Material Entailment 1
THEOREM of Material Entailment 1
THEOREM of Material Entailment 1 DEM LEM DEM [.1] ASM LAW [.3] ∀1INST
THEOREM of Material Entailment 1 DEM LEM DEM [.1] ASM LAW [.3] ∀1INST [.4] [.2] TAUT QED
THEOREM of Material Entailment 1 DEM LEM DEM [.1] ASM LAW [.3] ∀1INST [.4] [.2] TAUT
THEOREM of Material Entailment 1 DEM LEM DEM [.1] ASM LAW [.3] ∀1INST [.4] [.2] TAUT QED

 $\forall p \forall q \neg p \lor q \vdash p \vdash q.$ Theorem of Material Entailment 2 106

	¶
106.1	$\Box \neg p \lor q \vdash p \vdash q$ LEM
	□¶
106.2	$\square \square \neg p \lor q$. [.1] ASM
106.3	$\Box \Box p \vdash q$ LEM
	□ _¶
106.4	
106.5	$\square\square q$
	QED
	□ ■.
106.6	$\Box \forall p \forall q \neg p \lor q \vdash p \vdash q$ [.1] UGEN ₂
	■QED
	Uses Axioms: 1, 4
107	$\forall p \forall q \forall r p \land (q \lor r) \Leftrightarrow p \land q \lor p \land r.$ \blacksquare THEOREM of Distributivity 1
107.1	$\Box p \land (q \lor r) \vdash p \land q \lor p \land r.$ LEM
10111	
107.2	$\Box p \land (q \lor r)$. [.1] ASM
	$\Box q \vdash p \land q \lor p \land r.$ LEM
10110	
107.4	□□ q . [.3] ASM
	$\Box\Box p \land q \lor p \land r. $ [.2] [.4] TAUT
	□□■
107.6	$\Box r \vdash p \land q \lor p \land r.$ LEM
	□¶
107.7	□□□ <i>r</i> . [.6] ASM
	$\square\square p \land q \lor p \land r. $ [.2] [.7] TAUT
	QED
107.9	$\Box p \land q \lor p \land r.$ [.2] [.3] [.6] TAUT
	□■QED
107.10	$\Box p \land q \lor p \land r \vdash p \land (q \lor r).$ LEM
	□¶
107.11	$\Box p \land q \lor p \land r. \qquad [.10] \text{ ASM}$
	$\Box p \land q \vdash p \land (q \lor r).$ LEM
	□¶
107.13	$\square \square p \wedge q$
107.14	$\square\square p \wedge (q \vee r)$. [.13] TAUT
	QED
107.15	$\Box \Box p \wedge r \vdash p \wedge (q \vee r)$.
	□¶
107.16	
107.17	$\square\square p \wedge (q \vee r)$. [.16] TAUT

$\square \square p \wedge (q \vee r)$	AUT
□■	QED
$\Box p \wedge (q \vee r) \Leftrightarrow p \wedge q \vee p \wedge r$ [.1] [.10] The state of the state	
$\Box \forall p orall q orall r p \wedge (q ee r) \Leftrightarrow p \wedge q ee p \wedge r.$ [.19] UGI	-
Uses Axioms: 3, 4, 5	
$ otag\ p \ \forall q \ \forall r (p \ \lor q) \land r \Leftrightarrow p \land r \lor q \land r. $ Theorem of Distributivi	ty 2
1 r	ЕМ
$\Box(p\lor q)\land r\vdash p\land r\lor q\land r.$	LEM
□¶ r	EМ
$\Box \Box (p \lor q) \land r.$ [.1]	ASM
$\Box \Box p \wedge r \lor q \wedge r$. [.2] The state of $\Box p \wedge r \lor q \wedge r$.	AUT
□■	QED
$\Box p \wedge r \vee q \wedge r \vdash (p \vee q) \wedge r.$	LEM
□¶	ЕМ
$\Box \Box p \wedge r \vee q \wedge r$. [.4]	ASM
$\Box\Box(p\lor q)\land r.$ [.5] The second control of \Box	AUT
□■.	QED
$\Box (p \lor q) \land r \Leftrightarrow p \land r \lor q \land r.$ [.1] [.4] The second contains th	AUT
$ \exists \forall p \forall q \forall r (p \lor q) \land r \Leftrightarrow p \land r \lor q \land r. $ [.7] UG	EN3
■	QED
Uses Axioms: 3, 4, 5	•
Uses Axioms: ${f 3,4,5}$ $egin{array}{cccccccccccccccccccccccccccccccccccc$	
$orall m{p} orall m{q} orall m{r} m{p} ee (m{q} \wedge m{r}) \Leftrightarrow (m{p} ee m{q}) \wedge (m{p} ee m{r})$	ЭEМ
$orall p orall q orall r p ee (q \wedge r) \Leftrightarrow (p ee q) \wedge (p ee r).$	DEM LEM
$orall p orall q \wedge r ho \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$. Theorem of Distributivi $\Box p \vee (q \wedge r) \vdash (p \vee q) \wedge (p \vee r)$.	DEM LEM DEM
$orall p orall q ightharpoonup r p ee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r).$ Theorem of Distributivi \P	DEM LEM DEM ASM
$orall p orall q \wedge r p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r).$ THEOREM of Distributivi \P	DEM LEM DEM ASM AUT
$\forall p \forall q \forall r p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r).$ THEOREM of Distributivi	DEM DEM ASM AUT QED
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DEM LEM DEM ASM AUT QED LEM
$ \forall p \forall q \forall r p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r). $ THEOREM of Distributivi $ \blacksquare $	DEM LEM ASM AUT QED LEM DEM
$\forall p \forall q \forall r p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r).$ THEOREM of Distributivi $\Box p \lor (q \land r) \vdash (p \lor q) \land (p \lor r).$ $\Box \Box p \lor (q \land r).$ $\Box \Box p \lor (q \land r).$ $\Box \Box p \lor (q \land r).$ $\Box \Box \Box (p \lor q) \land (p \lor r).$ $\Box \Box \Box \Box (p \lor q) \land (p \lor r) \vdash p \lor (q \land r).$ $\Box \Box \Box \Box (p \lor q) \land (p \lor r) \vdash p \lor (q \land r).$ $\Box \Box \Box \Box (p \lor q) \land (p \lor r).$ $\Box \Box \Box \Box \Box (p \lor q) \land (p \lor r).$ $\Box \Box \Box \Box \Box (p \lor q) \land (p \lor r).$ $\Box \Box \Box \Box \Box \Box (p \lor q) \land (p \lor r).$ $\Box \Box \Box \Box \Box \Box (p \lor q) \land (p \lor r).$ $\Box \Box \Box \Box \Box \Box \Box (p \lor q) \land (p \lor r).$ $\Box \Box \Box \Box \Box \Box \Box (p \lor q) \land (p \lor r).$ $\Box \Box \Box \Box \Box \Box \Box \Box \Box (p \lor q) \land (p \lor r).$ $\Box \Box \Box$	DEM DEM ASM AUT QED LEM DEM ASM
$\forall p \forall q \forall r p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r). \qquad \text{THEOREM of Distributivi}$ $\blacksquare \qquad \qquad$	DEM LEM ASM AUT QED LEM DEM ASM AUT
$\forall p \forall q \forall r p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r). \qquad \text{THEOREM of Distributivi}$ $\square \qquad \qquad \qquad \square \qquad$	DEM LEM ASM AUT QED LEM DEM ASM AUT DEM ASM
$orall m{p} orall m{q} orall m{r} m{p} ee (m{q} \wedge m{r}) \Leftrightarrow (m{p} ee m{q}) \wedge (m{p} ee m{r}).$	LEM DEM ASM AUT QED LEM ASM AUT QED ASM
$\forall p \forall q \forall r p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r). \qquad \text{THEOREM of Distributivi}$ $\square \qquad \qquad \qquad \square$ $\square p \lor (q \land r) \vdash (p \lor q) \land (p \lor r). \qquad \qquad \square$ $\square \square p \lor (q \land r). \qquad \qquad \square$ $\square \square (p \lor q) \land (p \lor r). \qquad \qquad \square$ $\square \square $	DEM LEM DEM ASM AUT QED LEM ASM AUT ASM AUT QED AUT EN3

	¶
110.1	$\Box(p \land q) \lor r \vdash (p \lor r) \land (q \lor r).$ LEM
	_¶
110.2	$\square\square(p\land q)\lor r.$ [.1] ASM
110.3	$\Box\Box(p\lor r)\land(q\lor r).$ [.2] TAUT
	□ ■. QED
110.4	$\Box(p\lor r)\land(q\lor r)\vdash(p\land q)\lor r.$ LEM
	□¶
110.5	$\Box\Box(p\lor r)\land(q\lor r).$ [.4] ASM
110.6	$\Box\Box(p\land q)\lor r.$ [.5] TAUT
	□ ■. QED
110.7	$\Box(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r). $ [.1] [.4] TAUT
110.8	$\Box \forall p \forall q \forall r (p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r). $ [.7] UGEN ₃
	
	Uses Axioms: 3, 4, 5
111	$\forall \textbf{\textit{p}} \forall \textbf{\textit{q}} \neg (\textbf{\textit{p}} \lor \textbf{\textit{q}}) \Leftrightarrow \neg \textbf{\textit{p}} \land \neg \textbf{\textit{q}}. $ Theorem of De Morgan 1
	¶
111.1	$\Box \neg (p \lor q) \vdash \neg p \land \neg q.$ LEM
	□¶
111.2	$\Box\Box\neg(p\lor q)$. [.1] ASM
111.3	$\Box\Box p \vdash \forall xx.$ LEM
	$\Box\Box\P$
111.4	$\square\square p$ [.3] ASM
111.5	$\square\square \forall xx$. [.2] [.4] TAUT
	□□ ■.
111.6	$\Box\Box\neg p$ [.3] TAUT
111.7	$\Box\Box q$ \vdash $\forall xx$. LEM
	□□¶
111.8	$\square\square \square q$
111.9	$\square\square \forall xx$. [.2] [.8] TAUT
	□□ ■.
111.10	$\square\square\neg p \wedge \neg q$
	□ ■. QED
111.11	$\Box \neg p \land \neg q \vdash \neg (p \lor q)$ LEM
	□ ¶
111.12	$\square\square\neg p \wedge \neg q$. [.11] ASM
111.13	$\Box\Box p \lor q \vdash \forall xx.$ LEM
	□□¶
111.14	$\square\square\square p \lor q.$ [.13] ASM
111.15	$\square\square\square\forall xx.$ [.12] [.13] TAUT
	□□ ■. QED
111.16	$\Box\Box\neg(p\lor q)$ [.13] TAUT

$\Box \neg (p \lor q) \Leftrightarrow \neg p \land \neg q.$ [.1] [.11] TAUT	111.1
$\Box \forall p \forall q \neg (p \lor q) \Leftrightarrow \neg p \land \neg q. \qquad [.17] \text{ UGEN}_2$	111.18
Uses Axioms: 1, 3, 4, 5	
orall p orall q eg p ee eg p v ee eg p v ee eg p ee eg p ee eg p v v ee eg p v v v v v v v v v v v v v v v v v v	112
¶	
$\Box \neg p \lor \neg q \vdash \neg (p \land q).$ LEM	112.1
□¶	
$\Box \neg p \lor \neg q. $ [.1] ASM	
$\Box \Box p \land q \vdash \forall xx.$ LEM	
□□¶	
$\Box\Box p \land q. \qquad \qquad [.3] \text{ ASM}$	112.4
$\square\square \neg p \vdash \forall xx.$ LEM	
	112.0
□□□¬p. [.5] ASM	112 G
□□□□∀ <i>xx</i> . [.4] [.6] TAUT	
□□□■.	114.1
$\Box\Box\Box\neg q \vdash \forall xx$.	112.8
	112.0
□□□□¬ q. [.8] ASM	112 9
□□□□∀ <i>xx</i> . [.4] [.9] TAUT	
□□□■	112.1
□□□∀xx. [.2] [.5] [.8] TAUT	112.1
	112,1
$\Box\Box\neg(p\land q)$. [.3] TAUT	112.1
$\Box \blacksquare \qquad \qquad \Box $	112.1
$\Box \forall p \forall q \neg p \lor \neg q \vdash \neg (p \land q). $ [.1] UGEN ₂	112.1
□ \(\psi \psi \q \q \q \q \q \psi \q	112,1
Uses Axioms: 1, 3, 4	
$orall p orall q eg (p \wedge q) dash eg p dash q eg (p \wedge q) dash eg p dash q eg q $	113
¶	
$\Box \neg (p \land q) \vdash \neg p \lor \neg q.$ LEM	113.1
□¶	
$\square\square\neg(p\land q)$ [,1] ASM	
$\Box\Box\neg(\neg p \vee \neg q) \vdash \forall xx.$ LEM	113.3
□□¶	
$\square\square\square\neg(\neg p\lor\neg q)$ [.3] ASM	113.4
$\square\square\square\neg\neg p \land \neg\neg q$	113.5
$\square\square\square\forall p\neg\neg p\vdash p.$ THM	113.6
222 (p · p · p · p ·	
$\square\square\forall xx.$ [.6] [.5] [.2] TAUT	113.7

	$\square\square \forall p \neg \neg p \vdash p$	
	$\Box\Box\neg p \lor \neg q$.	[.9] [.8
	$\exists \blacksquare.$ $\exists \forall p \forall q \neg (p \land q) \vdash \neg p \lor \neg q.$	
	_∨p∨q¬(p∧q)⊢¬p∨¬q	
	Jses Axioms: 1, 3, 4, 22	
A	$p orall q p \wedge q ee eg p \wedge q ee p \wedge q ee p \wedge eg q ee q \wedge q ee q \wedge q ee q \wedge q \vee q \wedge q \vee q \wedge q \vee q \wedge q \wedge q \wedge q \dots$ The	COREM of Propositional Vo
	[
	$\exists \forall pp \lor \neg p.$	
	$\exists p \land q \lor \neg (p \land q).$	[.1] \
	$\exists p \land q \lor \neg p \lor \neg q$	[<u>.</u> 2
	$\exists q \lor \neg q$	
	$ \exists p \land q \lor \neg p \land (q \lor \neg q) \lor \neg q. \dots $	[.4]
	$\Box p \lor \neg p$	[.1] \
Ξ	$ \exists p \land q \lor \neg p \land q \lor p \land \neg q \lor \neg p \land \neg q. \dots $	[.6] [. 5
	$\exists \forall p \forall q p \land q \lor \neg p \land q \lor p \land \neg q \lor \neg p \land \neg q. \dots$	
	Ⅰ. Uses Axioms: 1, 3, 4, 22	
	$p orall q orall r p \wedge q \wedge r \vee \neg p \wedge q \wedge r \vee p \wedge \neg q \wedge r \vee p \wedge q \wedge \neg r \vee \neg p \wedge \neg q \wedge r \wedge \neg q \wedge \neg q \wedge \neg r \wedge \neg q \wedge \neg q \wedge \neg r \wedge \neg q $	
^ ¶	$\langle p orall q angle r p \wedge q \wedge r ee \neg p \wedge q \wedge r ee p \wedge \neg q \wedge r ee p \wedge q \wedge \neg r ee \neg p \wedge \neg q \wedge r ee \neg q \wedge \neg r \vee \neg q \wedge \neg r \wedge \neg q \wedge \neg r \vee \neg q \wedge \neg r \wedge \neg q \wedge $	COREM of Propositional Va
^ ¶	$egin{array}{cccccccccccccccccccccccccccccccccccc$	COREM of Propositional Vo
^ ¶ 	$egin{array}{cccccccccccccccccccccccccccccccccccc$	COREM of Propositional Ve
^ ¶ 	$egin{array}{cccccccccccccccccccccccccccccccccccc$	COREM of Propositional Vo
^ ¶ 	$egin{array}{cccccccccccccccccccccccccccccccccccc$	COREM of Propositional Vo
^ ¶	$\langle p orall q angle r p \wedge q \wedge r \lor p \wedge q \vee p \wedge q \lor p \wedge q \vee q \wedge q \vee q \wedge q \wedge q \wedge q \wedge q \wedge q \wedge q$	COREM of Propositional Vo
^ ¶	$egin{array}{cccccccccccccccccccccccccccccccccccc$	COREM of Propositional Vo
^ ¶	$\langle p orall q angle r p \wedge q \wedge r \vee \neg p \wedge q \wedge r \vee p \wedge \neg q \wedge r \vee p \wedge q \wedge \neg r \vee \neg p \wedge \neg q \wedge r \wedge$	
^ ¶	$\langle p orall q angle r p \wedge q \wedge r \vee \neg p \wedge q \wedge r \vee p \wedge \neg q \wedge r \vee p \wedge q \wedge \neg r \vee \neg p \wedge \neg q \wedge r \wedge$	
^ ¶	$\langle p \forall q \forall r p \land q \land r \lor \neg p \land q \land r \lor p \land \neg q \land r \lor p \land q \land \neg r \lor \neg p \land \neg q \land r \lor p \land q \land \neg r \lor \neg p \land \neg q \land r \lor q \land \neg r \lor \neg p \land \neg q \land r \lor q \land \neg r & \Box p \land q \lor \neg p \land q \lor q \land \neg r \lor q \land \neg r & \Box p \land q \land r \lor p \land q \land \neg r & \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box$	
^ ¶	$\langle p \forall q \forall r p \land q \land r \lor p \land q \lor p \land q \lor p \land q \lor q \land q \lor q \land q \lor q \land q \land q \lor q \land q \land$	[.1] (COREM of Propositional Vo
^ ¶	$\langle p \forall q \forall r p \land q \land r \lor p \land q \lor p \lor q \lor p \land q \lor q \lor q \lor q \land q \lor q \land q \lor q \land q \lor q \land q \land$	[.1]
^ ¶	$\langle p \forall q \forall r p \land q \land r \lor \neg p \land q \land r \lor p \land \neg q \land r \lor p \land q \land \neg r \lor \neg p \land \neg q \land r \lor p \land q \land \neg r \lor \neg p \land \neg q \land r \lor p \land \neg r \land \neg $	[.1]
^ ¶	$\langle p \forall q \forall r p \land q \land r \lor \neg p \land q \land r \lor p \land \neg q \land r \lor p \land q \land r \lor \neg p \land \neg q \land r \lor p \land q \land \neg r \lor \neg p \land \neg q \land r \lor \neg p \land \neg q \land r \lor \neg p \land \neg q \land \neg r & \Box p \land q \lor p \land q \lor p \land q \land \neg r & \Box p \land q \lor p \land q \land \neg r & \Box \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box \Box p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q & \Box \Box \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box$	[.5] [.2
^ ¶	$\langle p \forall q \forall r p \land q \land r \lor \neg p \land q \land r \lor p \land \neg q \land r \lor p \land q \land r \lor p \land \neg q \land r \lor p \land \neg q \land r \lor \neg p \land \neg q \land r \lor \neg p \land \neg q \land r \lor \neg p \land \neg q \land \neg r & \Box p \land q \lor p \land q \lor p \land q \land \neg r & \Box p \land q \lor p \land q \land \neg r & \Box \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box \Box p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box \Box p \land q \land r \lor p \land q \land \neg r & \Box \Box \Box p \land q \land r \lor p \land \neg q \land \neg r & \Box \Box \Box p \land \neg q \vdash p \land \neg q \land r \lor p \land \neg q \land \neg r & \Box \Box \Box p \land \neg q \vdash p \land \neg q \land r \lor p \land \neg q \land \neg r & \Box \Box \Box \Box \Box \neg q \vdash p \land \neg q \land r \lor p \land \neg q \land \neg r & \Box \Box$	[.1]
^ ¶	$\langle p \forall q \forall r p \land q \land r \lor \neg p \land q \land r \lor p \land \neg q \land r \lor p \land q \land r \lor \neg p \land \neg q \lor \neg p \land q \lor p \land q \land \neg r \lor \neg q \land \neg r \lor \neg q \land \neg q $	[.1] [.5] [.2
	$\langle p \forall q \forall r p \land q \land r \lor r$ $ \neg q \land \neg r \land \neg q \lor \neg p \land q \lor \neg q \lor \neg q \land \neg q \land \neg q \land \neg q \land q \land r \lor p \land q \land \neg r \land q \land q \land r \lor p \land q \land r \lor q \land q$	[.1] [.5] [.2
\ II	$\langle p \forall q \forall r p \land q \land r \lor \neg p \land q \land r \lor p \land \neg q \land r \lor p \land \neg q \land r \lor \neg p \land \neg q \land \neg r & \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \neg p \land q \vdash \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box \neg p \land q \land r \lor \neg p \land q \land \neg r & \Box \Box \Box p \land \neg q \vdash p \land \neg q \land r \lor p \land \neg q \land \neg r & \Box \Box \Box \neg p \land q \vdash p \land \neg q \land r \lor p \land \neg q \land \neg r & \Box \Box \Box \Box \neg p \land q \vdash p \land \neg q \land r \lor p \land \neg q \land \neg r & \Box \Box$	[.1] [.1] [.1] [.1] [.1] [.1] [.1] [.1]

$\square \P$	
$\Box\Box\neg p \land \neg q$ [.13] ASM	115.14
$\Box\Box\neg p \land \neg q \land r \lor \neg p \land \neg q \land \neg r.$ [.14] [.2] TAUT	115.15
□ ■. QED	
$\Box p \land q \land r \lor \neg p \land q \land r \lor p \land \neg q \land r \lor p \land q \land \neg r \lor \neg p \land \neg q \land r \lor \neg p \land q \land \neg r \lor p \land \neg q \land \neg r \lor \neg p \land \neg q \land \neg $	115.16
$\neg r$ [.3] [.4] [.7] [.10] [.13] TAUT	
$\Box \forall p \forall q \forall r p \land q \land r \lor \neg p \land q \land r \lor p \land \neg q \land r \lor p \land q \land \neg r \lor \neg p \land \neg q \land r \lor \neg p \land \neg q \land \neg r \lor p \land \neg q \land \neg r \lor$	115.17
$\neg p \land \neg r$. [.16] UGEN ₃	
■QED	
Uses Axioms: 1, 3, 4, 22	
$\forall \textbf{\textit{p}} \forall \textbf{\textit{q}} \forall \textbf{\textit{r}} \textbf{\textit{p}} \Leftrightarrow \textbf{\textit{q}} \lor \textbf{\textit{q}} \Leftrightarrow \textbf{\textit{r}} \lor \textbf{\textit{r}} \Leftrightarrow \textbf{\textit{p}}. \qquad \qquad \text{Theorem of Classical Propositional Luck}$	116
¶DEM	
$\Box p \land q \land r \vdash p \Leftrightarrow q.$ LEM	116.1
$\square\PDem$	
$\Box\Box p \land q \land r.$ [.1] ASM	116.2
$\Box\Box p \Leftrightarrow q$ [.2] TAUT	116.3
QED	
$\Box \neg p \land q \land r \vdash q \Leftrightarrow r.$ LEM	116.4
$\square \P$	
$\Box\Box\neg p \land q \land r$ [.4] ASM	116.5
$\Box\Box q \Leftrightarrow r.$ [.5] Taut	116.6
QED	
$\Box p \land \neg q \land r \vdash p \Leftrightarrow r.$ LEM	116.7
□¶DEM	
$\Box\Box p \land \neg q \land r$	116.8
$\square \square p \Leftrightarrow r.$ [.8] Taut	116.9
□ ■. QED	
$\Box p \land q \land \neg r \vdash p \Leftrightarrow q. $ LEM	116.10
$\square \P$	
$\Box \Box p \land q \land \neg r$ [.10] ASM	116.11
$\Box\Box p \Leftrightarrow q.$ [,11] Taut	116.12
□ ■.	
$\Box \neg p \land \neg q \land r \vdash p \Leftrightarrow q.$ LEM	116.13
□¶DEM	
$\Box\Box\neg p \land \neg q \land r$ [.13] ASM	116.14
$\Box\Box p \Leftrightarrow q.$ [,14] Taut	116.15
□ ■.	
$\Box \neg p \land q \land \neg r \vdash p \Leftrightarrow r.$ LEM	116.16
□¶	
$\Box\Box\neg p \land q \land \neg r$ [.16] ASM	116.17
$\Box \Box p \diamond r$ [.17] TAUT	116.18
□ ■. QED	
$\Box p \land \neg q \land \neg r \vdash q \Leftrightarrow r.$ LEM	116.19

	□ (
116 90	OF DEM
116.20	$\Box p \land \neg q \land \neg r. $ [.19] ASM
116.21	$\square q \diamond r$. [.20] TAUT
	□■QED
116.22	$\Box \neg p \land \neg q \land \neg r \vdash p \Leftrightarrow q.$ LEM
116.23	$\square \neg p \wedge \neg q \wedge \neg r. \qquad [.22] \text{ ASM}$
116.24	$\square\square p \diamond q$. [.23] TAUT
	□ ■. QED
116.25	$\square p \Leftrightarrow q \lor q \Leftrightarrow r \lor r \Leftrightarrow p. \qquad \qquad [.1] [.4] [.7] [.10] [.13] [.16] [.19] [.22] \text{TAUT}$
116.26	$\square \forall p \forall q \forall r p \Leftrightarrow q \lor q \Leftrightarrow r \lor r \Leftrightarrow p. $ [.25] UGEN ₂
	■
	Uses Axioms: 1, 3, 4, 5, 22
	The negation of the universal contour of ψx gives the existential contour of the negation of ψx . PROOF: Assume $\neg \forall x \psi x$ and suppose $\neg \exists x \neg \psi x$. But this gives $\forall x \neg \neg \psi x$ which <i>classically</i> implies $\forall x \psi x$, thus giving a contradiction. Hence, by <i>excluded middle</i> , $\exists x \neg \psi x$. QED.
117	$\forall \psi (\neg \forall x \psi x) \vdash \exists x \neg \psi x.$ Theorem of the Negative Contour 4
	¶
117.1	$\Box(\neg\forall x\psi x)\vdash\exists x\neg\psi x.$ LEM
	□¶DEM
117.2	$\square\square\neg\forall x\psi x$. [.1] ASM
117.3	$\Box\Box\neg\exists x\neg\psi x\vdash\forall xx.$ LEM
	¶
117.4	$\square\square\square\neg\exists x\neg\psi x.$ [.3] ASM
117.5	$\square\square \forall \psi (\neg \exists x \psi x) \vdash \forall x \neg \psi x.$ THM
117.6	$\Box\Box(\neg\exists x\neg\psi x)\vdash\forall x\neg\neg\psi x.$ [.5] \forall_2 INST
117.7	$\square\square \forall x \neg \neg \psi x$. [.6] [.4] MP
117.8	$\square\square\psi x$. [.7] TAUT
117.9	$\square\square\forall x\psi x$ [.8] \forall_1 GEN
117.10	$\square\square\forall xx$. [.2] [.9] TAUT
	QEDQED
117.11	$\square \exists x \neg \psi x$ [.3] TAUT
	QED
117.12	$\Box \forall \psi (\neg \forall x \psi x) \vdash \exists x \neg \psi x. \qquad [.1] \forall_2 GEN$
	■
	Uses Axioms: 1, 4, 22
118	orall p orall q((p dash q) dash p) dash p. Theorem of Pierce's Law
118.1	\square ((p \vdash q) \vdash p) \vdash p
	□¶

$\Box\Box(p\vdash q)\vdash p$. [.1] ASM	118.2
$\Box \neg p \lor q \vdash p$. [.2] TAUT	118.3
$\square \forall p p \lor \neg p$.	118.4
$\Box p \lor \neg p$	118.5
□□ p	118.6
QED	
$\Box \forall p \forall q ((p \vdash q) \vdash p) \vdash p$. [.1] UGEN ₂	118.7
■.	
Uses Axioms: 1, 4, 22	
$orall oldsymbol{p} orall oldsymbol{q} (eg oldsymbol{q} \neg oldsymbol{p}) \vdash oldsymbol{p} \vdash oldsymbol{q}$	119
¶	
$\Box(\neg q \vdash \neg p) \vdash p \vdash q$.	119.1
□¶	
$\Box\Box\neg q \vdash \neg p$. [.1] ASM	119.2
$\Box \Box p \vdash q.$ Lem	119.3
□□¶DEM	
□□ p. [.3] ASM	119.4
$\square\square \neg q \vdash \forall xx.$ LEM	119.5
□□¶DEM	
□□□¬ q.	119.6
□□□¬ p.	119.7
$\square\square\square\forall xx$. [.4] [.7] TAUT	119.8
□□ ■. QED	
$\square\square q$ [.5] TAUT	119.9
□□ ■. QED	
□ ■. QED	
$\Box \forall p \forall q (\neg q \vdash \neg p) \vdash p \vdash q. $ [.1] UGEN ₂	119.10
■.	
Uses Axioms: 1, 4, 22	

OPERATIONAL THEORY OF SETS

The chief aim of type theory is to objectify not only sets, but their operations. One approach is to objectify operations as functions of type $\mathcal{H} \to \mathcal{H}$. If we were to stop here, however, we resign ourselves to Polish notation. Eg. $(x \setminus y) \cup (y \setminus x)$ becomes instead $(\cup)((\setminus)(x)(y))((\setminus)(y)(x))$.

We instead introduce second order variables which *realize* such functions. For second order citizens in TOB are precisely suited for notating functions and operations; the rule of inference of *variation* identifies objects such as (x)(y) with (x)(y).

In this chapter, we develop realizers for some fundamental set operations[†] and work out their various properties.

[†] There are some important exceptions to operational realizability, which arise due to TOB's incapability of expressing *third order statements*. Eg. Consider the difficulty of capturing *specification* via some realizer REP. For all sets x and formulas ψ , we would have liked REP (x, ψ) to be the (unique) set y st. $\forall y_1y_1:y \Leftrightarrow y_1:x \land \psi y_1$. Notice that REP (x, ψ) fails to be an object— ψ is a second order variable and therefore cannot be the argument of a realizer.

There are some natural workarounds, however. Supposing there is a notion of *classes*, typed as \mathscr{C} . We imagine adding mirrored axioms for class construction, as well as an additional axiom $\mathscr{H}:\mathscr{C}$. In particular, it is possible to show that for all formulas ψ , their exists a (unique) class A st. $\forall aa:A \Leftrightarrow a:\mathscr{H} \land \psi a$. Formulas of sets can equivalently be seen by their *extension*, i.e. the class which captures it. Thus, second order formulas of sets can be captured by first order objects of classes.

§2.1 Sets and Operations: First Principles

If for all x:a one can exhibit a unique y:b which satisfies ψxy , then their exists a unique (type) function $f:a \rightarrow b$ st. fx=y precisely whenever x:a, y:b, satisfy ψxy . PROOF: Existence. Guaranteed by creation. Uniqueness. Guaranteed by functional extension. QED.

120	$20 \forall a \forall b \forall \psi (\forall xx: a \vdash \exists! yy: b \land \psi xy) \vdash \exists! f f: a \rightarrow b \land \forall x \forall yx: a \vdash y: b \vdash \psi xy \Leftrightarrow fx = y$	
	¶	
120.1	$\Box(\forall xx:a \vdash \exists!yy:b \land \psi xy) \vdash \exists!ff:a \rightarrow b \land \forall x \forall yx:a \vdash y:b \vdash \psi xy \Leftrightarrow fx=y.$ LEM	
	□¶	
120.2	$\Box \Box \forall xx: a \vdash \exists! yy: b \land \psi xy. $ [.1] ASM	
120.3	$\Box\Box\forall a\forall b\forall \psi(\forall xx:a\vdash\exists!yy:b\land\psi xy)\vdash\exists ff:a\rightarrow b\land\forall x\forall yx:a\vdash y:b\vdash\psi xy\Leftrightarrow fx=y.\dots.$	
120.4	$\square\square\forall\psi(\forall xx:a\vdash\exists!yy:b\land\psi xy)\vdash\exists ff:a\rightarrow b\land\forall x\forall yx:a\vdash y:b\vdash\psi xy\Leftrightarrow fx=y.\ldots\ldots[.3]_{0}\text{MINT}_{2}$	
120.5	$\square\square(\forall xx:a\vdash\exists!yy:b\land\psi xy)\vdash\exists ff:a\rightarrow b\land\forall x\forall yx:a\vdash y:b\vdash\psi xy\Leftrightarrow fx=y.\ldots\ldots[.4]\ \forall z\text{INST}$	
120.6	$\Box\Box\exists ff{:}a{\rightarrow}b \land \forall x \forall yx{:}a{\vdash}y{:}b{\vdash}\psi xy \Leftrightarrow fx{=}y.$	
120.7	$ \Box \Box (f_1 : a \rightarrow b \land \forall x \forall y x : a \vdash y : b \vdash \psi x y \Leftrightarrow f_1 x = y) \vdash (f_2 : a \rightarrow b \land \forall x \forall y x : a \vdash y : b \vdash \psi x y \Leftrightarrow f_2 x = y) \vdash $	
	$f_1 = f_2$ LEM	

$ o$ $b \land \forall x \forall y x : a \vdash y : b \vdash \psi x y \Leftrightarrow f_1 x = y$
$t \rightarrow b \land \forall x \forall y x : a \vdash y : b \vdash \psi x y \Leftrightarrow f_2 x = y) \vdash f_1 = f_2.$ LEM
DEN
$a \rightarrow b \land \forall x \forall y x : a \vdash y : b \vdash \psi x y \Leftrightarrow f_2 x = y.$ [.9] ASM
$\forall b \forall f \forall g f : a \rightarrow b \vdash g : a \rightarrow b \vdash (\forall x x : a \vdash f x = g x) \vdash f = g.$ AXM
$a \rightarrow b \vdash f_2: a \rightarrow b \vdash (\forall xx: a \vdash f_1x = f_2x) \vdash f_1 = f_2.$ [.11] ₀ MINT ₄
$\vdash f_1 x = f_2 x.$ Len
DEN
:a
$yy:b \land \psi xy.$ [.2] [.14] MINT ₁
$yy:b \land \psi xy.$ [.15] EXISTS
$:b \land \psi xy.$ [.16] \exists_1 inst
$x \forall y x : a \vdash y : b \vdash \psi x y \Leftrightarrow f_1 x = y.$ [.8] TAU1
$a \vdash y : b \vdash \psi x y \Leftrightarrow f_1 x = y$
1x=y. [.19] [.14] [.17] TAUT
$x \forall y x : a \vdash y : b \vdash \psi x y \Leftrightarrow f_2 x = y.$ [.10] TAUT
$:a \vdash y:b \vdash \psi xy \Leftrightarrow f_2x = y.$ [.21] ₀ MINT ₂
2x = y
$1x = f_2x$
QEI
$x:a \vdash f_1 x = f_2 x.$ [.13] $\forall_1 \text{GEN}$
f_1 2
, QEI
QEI
$(f_1{:}a \rightarrow b \land \forall x \forall y x {:}a \vdash y {:}b \vdash \psi x y \Leftrightarrow f_1 x {=} y) \vdash (f_2{:}a \rightarrow b \land \forall x \forall y x {:}a \vdash y {:}b \vdash \psi x y \Leftrightarrow f_2 x {=}$
$-b \wedge \forall x \forall y x : a \vdash y : b \vdash \psi x y \Leftrightarrow f x = y.$ [.6] [.27] $\exists ! \text{INTROS}$
— ο Λ ν λ ν χ λ . α · γ . ο · φ . γ . ο · γ . ο · ο · ο · ο · ο · ο · ο · ο · ο · ο
$a \vdash \exists ! yy : b \land \psi xy) \vdash \exists ! ff : a \rightarrow b \land \forall x \forall yx : a \vdash y : b \vdash \psi xy \Leftrightarrow fx = y.$ [.1] $\forall_2 GEN$
QEI
es: 3, 5, 6, 8
ss. 49, 49, 6
$\mathscr{C} \vdash \exists ! yy : \mathscr{H} \land \psi xy) \vdash \exists ! f f : \mathscr{H} \rightarrow \mathscr{H} \land \forall x \forall yx : \mathscr{H} \vdash y : \mathscr{H} \vdash \psi xy \Leftrightarrow fx = y$
THEOREM of Unary Operation
$(\forall xx : a \vdash \exists! yy : b \land \psi xy) \vdash \exists! ff : a \rightarrow b \land \forall x \forall yx : a \vdash y : b \vdash \psi xy \Leftrightarrow fx = y. \dots \text{THM}$
$\mathcal{H} \vdash \exists ! yy : \mathcal{H} \land \psi xy) \vdash \exists ! f f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi xy \Leftrightarrow f x = y. [.1] \ _{0} \text{MINT}_{2}$
QEI
ss: 3, 5, 6, 8

	¶
122.1	$\Box(\forall xx: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \psi xy) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash \psi xy \Leftrightarrow \phi x = y. $ LEM
	□¶
122.2	$\Box \forall xx: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \psi xy. $ [.1] ASM
122.3	$\square\square\forall\psi(\forall xx:\mathcal{H}\vdash\exists!yy:\mathcal{H}\land\psi xy)\vdash\exists!ff:\mathcal{H}\rightarrow\mathcal{H}\land\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash\psi xy\Leftrightarrow fx=y.\dots\dots\text{THM}$
122.4	$\square\square(\forall xx:\mathcal{H}\vdash\exists!yy:\mathcal{H}\land\psi xy)\vdash\exists!ff:\mathcal{H}\rightarrow\mathcal{H}\land\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash\psi xy\Leftrightarrow fx=y.\dots[.3]\;\forall 2\text{INST}$
122.5	$\square \square \exists ! f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi x y \Leftrightarrow f x = y. \qquad [.4] [.2] \text{ MP}$
122.6	$\Box\Box\exists f f : \mathcal{H} \to \mathcal{H} \land \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi x y \Leftrightarrow f x = y. $ [.5] $\exists ! \text{EXISTS}$
122.7	$\Box f: \mathcal{H} \to \mathcal{H} \land \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi x y \Leftrightarrow f x = y. $ [.6] $\exists_1 \text{INST}$
122.8	$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi x y \Leftrightarrow f x = y. $ [.7] TAUT
122.9	$\Box\Box\exists\phi\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash\psi xy\Leftrightarrow\phi x=y.$ [.8] \exists_2 GEN
	QED
122.10	$\Box \forall \psi (\forall xx : \mathcal{H} \vdash \exists! yy : \mathcal{H} \land \psi xy) \vdash \exists \phi \forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi xy \Leftrightarrow \phi x = y. $ [.1] $\forall_2 GEN$
	■
	Uses Axioms: 3, 5, 6, 8
123	$\forall \psi(\forall xx: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \psi xy) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx: \mathcal{H} \vdash \phi x: \mathcal{H} \land \psi xy \Leftrightarrow \psi x = y \vdash \forall xx: \mathcal{H} \vdash \phi x \Rightarrow \psi x = y \vdash \forall xx: \mathcal{H} \vdash \phi x \Rightarrow \psi x = y \vdash \forall xx: \mathcal{H} \vdash \phi x \Rightarrow \psi x \Rightarrow \psi$
	$\psi x(\phi x)$. Theorem of Unary Realization Strength
	¶
123.1	$\Box(\forall xx: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \psi xy) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx: \mathcal{H} \vdash \phi x: \mathcal{H} \land \psi x(\phi x).$
	LEM
	□¶
123.2	$\Box \forall xx: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \psi xy. $ [.1] ASM
123.3	$\Box\Box(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \psi xy\Leftrightarrow \phi x=y)\vdash \forall xx:\mathcal{H}\vdash \phi x:\mathcal{H}\land \psi x(\phi x).$ LEM
	DEM DEM
123.4	$\square\square \square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi x y \Leftrightarrow \phi x = y. $ [.3] ASM
123.5	$\square\square\square\forall\psi(\forall xx:\mathcal{H}\vdash\exists!yy:\mathcal{H}\land\psi xy)\vdash\exists!ff:\mathcal{H}\rightarrow\mathcal{H}\land\forall x\forall yx:\mathcal{H}\vdash\psi:\mathcal{H}\vdash\psi xy\Leftrightarrow fx=y.\dots.\text{THM}$
123.6	$\square\square\square(\forall xx:\mathcal{H}\vdash\exists!yy:\mathcal{H}\land\psi xy)\vdash\exists!ff:\mathcal{H}\rightarrow\mathcal{H}\land\forall x\forall yx:\mathcal{H}\vdash\psi xy\Leftrightarrow fx=y.\ [.5]\ \forall \exists!y:\mathcal{H}\vdash\psi xy\Leftrightarrow fx=y.\ [.5]$
123.7	$\square\square\exists ! ff : \mathcal{H} \to \mathcal{H} \land \forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi xy \Leftrightarrow fx = y. \qquad [.6] [.2] \text{ MP}$
123.8	$\square\square \exists f f: \mathcal{H} \to \mathcal{H} \land \forall x \forall y x: \mathcal{H} \vdash y: \mathcal{H} \vdash \psi x y \Leftrightarrow f x = y. \qquad [.7] \exists ! \text{EXISTS}$
123.9	$\Box\Box f: \mathcal{H} \to \mathcal{H} \land \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi x y \Leftrightarrow f x = y. $ [.8] \exists_1 inst
123.10	$\Box\Box x: \mathcal{H} \vdash \phi x: \mathcal{H} \land \psi x(\phi x). $ LEM
	DEM DEM
123.11	□□□ x :ℋ
123.12	$\square\square\square f:\mathcal{H} \to \mathcal{H}$. [.9] TAUT
123.13	$\square\square\square\forall a\forall b\forall ff: a\rightarrow b\vdash \forall xx: a\vdash fx: b. $
	$\square\square\square\forall xx:\mathcal{H}\vdash fx:\mathcal{H}. \qquad \qquad \qquad [.13] \ [.12] \ _1 \text{MINT}_3$
123.15	
123.16	$\square\square\square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi x y \Leftrightarrow f x = y. $ [.9] TAUT
123.17	$\square\square\square\psi x(fx)\Leftrightarrow fx=fx.$ [.16] [.11] [.15] $_2$ MINT $_2$
123.18	$\Box\Box\Box fx = fx.$ EQ
123.19	$\square\square\square\psi x(fx)$. \square [.17] [.18] TAUT
123.20	$\square\square\square\psi x(fx) \Leftrightarrow \phi x = fx. \qquad [.4] [.11] [.15] _{2} \text{MINT}_{2}$
123.21	$\Box\Box\Box\phi x = fx.$ [.20] [.19] TAUT

$\square\square\square\phi x:\mathcal{H}.$ [.21] [.15] SUB	123.22
$\square\square\square\psi x(\phi x)$. [.21] [.19] SUB	123.23
$\square\square\square\phi x:\mathcal{H}\wedge\psi x(\phi x).$ [.22] [.23] TAUT	123.24
□□ ■.	
$\square\square\square\forall xx:\mathcal{H}\vdash\phi x:\mathcal{H}\land\psi x(\phi x).$ [.10] \forall_1 GEN	123.25
QED	
$\Box\Box\forall\phi(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash\psi xy\Leftrightarrow\phi x=y)\vdash\forall xx:\mathcal{H}\vdash\phi x:\mathcal{H}\land\psi x(\phi x).$ [.3] \forall_2 GEN	123.26
□ ■. QED	
$\Box \forall \psi (\forall xx : \mathcal{H} \vdash \exists ! yy : \mathcal{H} \land \psi xy) \vdash \forall \phi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx : \mathcal{H} \vdash \phi x : \mathcal{H} \land \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \forall xx : \mathcal{H} \vdash \psi xy \Leftrightarrow \psi x = y \vdash \psi xy \Leftrightarrow \psi xy = y \vdash \psi xy \Leftrightarrow \psi xy = y \vdash \psi xy \Leftrightarrow \psi xy = y \vdash \psi xy \Rightarrow \psi xy$	123.27
$\psi x(\phi x)$. [.1] \forall_2 GEN	
L. QED	
Uses Axioms: 3, 5, 6, 7, 8	
If for all $x:a$, $y:b$, one can exhibit a unique $z:c$ which satisfies ψxyz , then their exists a unique (type) function $f:a \rightarrow b \rightarrow c$ st. $(fx)y=z$ iff ψxyz for each $x:a$, $y:b$, $z:c$. PROOF: Existence. Take any $x:a$. By unary creation, their must exist a unique function $g_1:b\rightarrow c$ st. $g_1y=z$ iff ψxyz for	
each $y:b$, $z:c$. Creation gives a function $f:a \to b \to c$ which satisfies precisely the desired prop-	
erty. Uniqueness. Suppose f_1 , f_2 , are two such functions. For every $x:a$, functions $f_1x, f_2x:b \to c$	
are equal. For take any $y:b$; since $(f_2x)y:c$ and $(f_2x)y=(f_2x)y$ it follows $\psi xy((f_2x)y)$. Since	
$(f_1x)y=z\Leftrightarrow \psi xyz$, we conclude $(f_1x)y=(f_2x)y$; thus $f_1x=f_2x$. Therefore $f_1=f_2$. QED.	
	194
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx : a \vdash y : b \vdash \exists! zz : c \land \psi xyz) \vdash \exists! ff : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx : a \vdash y : b \vdash z : c \vdash \psi xyz$	124
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx : a \vdash y : b \vdash \exists ! zz : c \land \psi xyz) \vdash \exists ! ff : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx : a \vdash y : b \vdash z : c \vdash \psi xyz$ $\Leftrightarrow (fx)y = z. \qquad \qquad \text{Theorem of Binary Creation}$	124
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx : a \vdash y : b \vdash \exists ! zz : c \land \psi xyz) \vdash \exists ! f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx : a \vdash y : b \vdash z : c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \qquad \text{Theorem of Binary Creation}$	
$ \forall a \forall b \forall c \forall \psi (\forall x \forall yx : a \vdash y : b \vdash \exists! zz : c \land \psi xyz) \vdash \exists! ff : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx : a \vdash y : b \vdash z : c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \qquad \text{THEOREM of Binary Creation} \\ \P. \qquad \qquad \qquad \qquad \text{DEM} \\ \square(\forall x \forall yx : a \vdash y : b \vdash \exists! zz : c \land \psi xyz) \vdash \exists! ff : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx : a \vdash y : b \vdash z : c \vdash \psi xyz \Leftrightarrow (fx)y = z. $	124 124.1
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! ff: a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz$ $\Leftrightarrow (fx)y = z. \qquad \qquad \text{THEOREM of Binary Creation}$ $\P \qquad \qquad \qquad \qquad \text{DEM}$ $\Box (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! ff: a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \Leftrightarrow (fx)y = z.$ LEM	
$ \forall a \forall b \forall c \forall \psi (\forall x \forall yx : a \vdash y : b \vdash \exists! zz : c \land \psi xyz) \vdash \exists! ff : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx : a \vdash y : b \vdash z : c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \qquad \text{THEOREM of Binary Creation} \\ \P. & \qquad \qquad \qquad \text{DEM} \\ \square(\forall x \forall yx : a \vdash y : b \vdash \exists! zz : c \land \psi xyz) \vdash \exists! ff : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx : a \vdash y : b \vdash z : c \vdash \psi xyz \Leftrightarrow (fx)y = z. \\ & \qquad \qquad \qquad \qquad \text{LEM} \\ \square\P. & \qquad \qquad \qquad \text{DEM} $	124.1
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! ff: a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \text{THEOREM of Binary Creation} \\ \blacksquare \qquad \qquad$	124.1 124.2
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! ff: a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \text{THEOREM of Binary Creation} \\ \blacksquare \qquad \qquad$	124.1 124.2 124.3
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f: a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \qquad \text{THEOREM of Binary Creation} \\ \blacksquare \qquad \qquad$	124.1 124.2
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \text{THEOREM of Binary Creation} \\ \blacksquare \\ (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \Leftrightarrow (fx)y = z. \\ \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \Leftrightarrow (fx)y = z. \\ \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : b \rightarrow c \land \forall x \forall yx: b \vdash y: c \vdash \psi xy \Leftrightarrow fx = y. \\ \\ \blacksquare \\ \exists \\ \forall \psi (\forall xx: b \vdash \exists! yy: c \land \psi xy) \vdash \exists! f f : b \rightarrow c \land \forall x \forall yx: b \vdash y: c \vdash \psi xy \Leftrightarrow fx = y. \\ \\ \blacksquare \\ \exists \\ \forall \psi (\forall yy: b \vdash \exists! zz: c \land \psi yz) \vdash \exists! f f : b \rightarrow c \land \forall y \forall zy: b \vdash z: c \vdash \psi yz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists \\$	124.1 124.2 124.3 124.4 124.5
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \text{THEOREM of Binary Creation} \\ \blacksquare \qquad \qquad$	124.1 124.2 124.3 124.4
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f: a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \qquad \text{THEOREM of Binary Creation} \\ \blacksquare \qquad \qquad$	124.1 124.2 124.3 124.4 124.5 124.6
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \text{THEOREM of Binary Creation} \\ \blacksquare \qquad \qquad$	124.1 124.2 124.3 124.4 124.5 124.6
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad $	124.1 124.2 124.3 124.4 124.5 124.6 124.7
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \qquad \text{Theorem of Binary Creation} \\ \blacksquare \qquad \qquad$	124.1 124.2 124.3 124.4 124.5 124.6 124.7
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \qquad \text{THEOREM of Binary Creation} \\ \blacksquare \\ (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \Leftrightarrow (fx)y = z. \\ \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \Leftrightarrow (fx)y = z. \\ \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : b \rightarrow c \land \forall x \forall yx: b \vdash y: c \vdash \psi xy \Leftrightarrow fx = y. \\ \\ \blacksquare \\ \exists b \forall c \forall \psi (\forall xx: b \vdash \exists! yy: c \land \psi xy) \vdash \exists! f f : b \rightarrow c \land \forall x \forall yx: b \vdash y: c \vdash \psi xy \Leftrightarrow fx = y. \\ \\ \blacksquare \\ \exists \psi \psi (\forall xx: b \vdash \exists! xz: c \land \psi xy) \vdash \exists! f f : b \rightarrow c \land \forall x \forall yx: b \vdash y: c \vdash \psi xy \Leftrightarrow fx = y. \\ \\ \blacksquare \\ \exists \psi \psi (\forall yy: b \vdash \exists! zz: c \land \psi yz) \vdash \exists! f f : b \rightarrow c \land \forall y \forall zy: b \vdash z: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (\forall xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f : b \rightarrow c \land \forall y \forall zy: b \vdash z: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! xyz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! xyz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! xyz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \blacksquare \\ \exists (xy: b \vdash \exists! xyz: c \land \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \exists (xy: b \vdash \exists! xyz: c \vdash \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \exists (xy: b \vdash \exists! xyz: c \vdash \psi xyz) \vdash \exists: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \\ \exists (xy: b$	124.1 124.2 124.3 124.4 124.5 124.6 124.7
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \\ \Leftrightarrow (fx)y = z. \qquad \qquad \text{THEOREM of Binary Creation} \\ \blacksquare & \qquad \qquad$	124.1 124.2 124.3 124.4 124.5 124.6 124.7 124.8 124.9
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz} \\ \Leftrightarrow (fx)y = z. & \text{THEOREM of Binary Creation} \\ \blacksquare & & \text{DEM} \\ \square(\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \Leftrightarrow (fx)y = z. \\ \blacksquare & & \text{LEM} \\ \square(\neg x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \\ \square(\neg x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \\ \square(\neg x \forall yx: a \vdash y: b \vdash \exists! xy: c \land \psi xy) \vdash \exists! f : b \rightarrow c \land \forall x \forall yx: b \vdash y: c \vdash \psi xy \Leftrightarrow fx = y. \\ \square(\neg x \forall yx: b \vdash \exists! yy: c \land \psi xy) \vdash \exists! f : b \rightarrow c \land \forall x \forall yx: b \vdash y: c \vdash \psi xy \Leftrightarrow fx = y. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists! f : b \rightarrow c \land \forall y \forall zy: b \vdash z: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists! f : b \rightarrow c \land \forall y \forall xy: b \vdash x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow yy: b \vdash \exists! xz: c \land \psi xyz) \vdash \exists x: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow xy: b \vdash \exists xy: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow xy: b \vdash \exists xy: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow xy: b \vdash \exists xy: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow xy: b \vdash \exists xy: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow xy: b \vdash \exists xy: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow xy: b \vdash \exists xy: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow xy: b \vdash \exists xy: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow xy: b \vdash \exists xy: c \vdash \psi xyz \Leftrightarrow fy = z. \\ \square(\neg x \Rightarrow xy: b \vdash \exists xy: c \vdash \forall xyz \Leftrightarrow fy = z. \\ \square(\neg$	124.1 124.2 124.3 124.4 124.5 124.6 124.7 124.8 124.9
$\forall a \forall b \forall c \forall \psi (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz} \\ \Leftrightarrow (fx)y = z. \qquad \qquad \text{THEOREM of Binary Creation} \\ \blacksquare & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \square (\forall x \forall yx: a \vdash y: b \vdash \exists! zz: c \land \psi xyz) \vdash \exists! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx: a \vdash y: b \vdash z: c \vdash \psi xyz \Leftrightarrow (fx)y = z. \\ \dots & \qquad \qquad$	124.1 124.2 124.3 124.4 124.5 124.6 124.7 124.8 124.9

124.15	$\Box\Box\forall\psi(\forall xx : a \vdash \exists! yy : b \rightarrow c \land \psi xy) \vdash \exists! ff : a \rightarrow b \rightarrow c \land \forall x \forall yx : a \vdash y : b \rightarrow c \vdash \psi xy \Leftrightarrow fx = y. \dots$
194 16	
124.10	
124.17	$\Box\Box(\forall xx:a \vdash \exists! ff:b \rightarrow c \land \forall y \forall zy:b \vdash z:c \vdash \psi xyz \Leftrightarrow fy=z) \vdash \exists! gg:a \rightarrow b \rightarrow c \land \forall x \forall fx:a \vdash f:b \rightarrow c$
121111	$\vdash (\forall y \forall z y : b \vdash z : c \vdash \psi x y z \Leftrightarrow f y = z) \Leftrightarrow gx = f. $ [.26] $\forall z $ INST
124.18	$\Box \exists ! gg : a \rightarrow b \rightarrow c \land \forall x \forall f x : a \vdash f : b \rightarrow c \vdash (\forall y \forall z y : b \vdash z : c \vdash \psi x y z \Leftrightarrow f y = z) \Leftrightarrow gx = f. \dots$
121110	[.17] [.14] MP
124.19	$\Box \Box \exists gg: a \rightarrow b \rightarrow c \land \forall x \forall fx: a \vdash f: b \rightarrow c \vdash (\forall y \forall zy: b \vdash z: c \vdash \psi xyz \Leftrightarrow fy=z) \Leftrightarrow gx=f. \dots \dots$
	[.18] ∃!EXISTS
124.20	$\Box \Box g : a \rightarrow b \rightarrow c \land \forall x \forall f x : a \vdash f : b \rightarrow c \vdash (\forall y \forall z y : b \vdash z : c \vdash \psi x y z \Leftrightarrow f y = z) \Leftrightarrow gx = f . \dots [.19] \exists_1 \text{INST}$
	$\Box x : a \vdash y : b \vdash z : c \vdash \psi x y z \Leftrightarrow (gx)y = z. $ LEM
124.22	$\square\square x$:a. [.21] ASM
124.23	$\Box\Box y : b \vdash z : c \vdash \psi xyz \Leftrightarrow (gx)y = z.$ LEM
	□□ -¶
124.24	
	$\square\square\square z: c \vdash \psi xyz \Leftrightarrow (gx)y = z.$ LEM
124.26	□□□□ <i>z:c.</i> [.25] ASM
124.27	$\square\square\square\square \forall a \forall b \forall f f : a \rightarrow b \vdash \forall x x : a \vdash f x : b.$
124.28	$\square\square\square g : a \to b \to c. \qquad [.20] \text{ TAUT}$
124.29	$\square\square\square\square\forall xx:a\vdash gx:b\rightarrow c.$ [.27] [.28] $_1$ MINT $_3$
124.30	
124.31	$ \Box \Box \Box \Box \forall x \forall f x : a \vdash f : b \rightarrow c \vdash (\forall y \forall z y : b \vdash z : c \vdash \psi x y z \Leftrightarrow f y = z) \Leftrightarrow gx = f. $
124.32	$ \square \square \square \square \square (\forall y \forall zy : b \vdash z : c \vdash \psi xyz \Leftrightarrow (gx)y = z) \Leftrightarrow gx = gx. \dots [.31] [.22] [.30] _{2} \text{MINT}_{2} $
124.33	$\square\square\square\square gx = gx.$ EQ
124.34	$\square\square\square\square \forall y \forall zy : b \vdash z : c \vdash \psi xyz \Leftrightarrow (gx)y = z.$ [.32] [.33] TAUT
124.35	$\square\square\square\square\psi xyz \Leftrightarrow (gx)y=z.$ [.34] [.26] $_2$ MINT $_2$
	QED
	□□ □■.
	□□ ■.
124.36	$\Box\Box\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash\psi xyz\Leftrightarrow (gx)y=z.$ [.21] UGEN ₃
124.37	$\Box \Box g : a \to b \to c \land \forall x \forall y \forall z x : a \vdash y : b \vdash z : c \vdash \psi x y z \Leftrightarrow (gx)y = z. \qquad [.20] [.36] \text{ TAUT}$
124.38	$\square \square \exists f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall z x : a \vdash y : b \vdash z : c \vdash \psi x y z \Leftrightarrow (f x) y = z. \qquad [.37] \exists_{1} GEN$
124.39	$\square\square(f_1{:}a \rightarrow b \rightarrow c \land \forall x \forall y \forall z x {:}a \vdash y {:}b \vdash z {:}c \vdash \psi x y z \Leftrightarrow (f_1 x)y = z) \vdash (f_2{:}a \rightarrow b \rightarrow c \land \forall x \forall y \forall z x {:}a \vdash x \forall x \forall y \forall z x \exists z \exists z$
	$y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_2x)y=z)\vdash f_1=f_2.$ LEM
	□ ¶
	$\Box\Box\Box f_1:a\rightarrow b\rightarrow c \land \forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z.$ $[.39] \text{ ASM}$
124.41	$\Box\Box\Box(f_2:a\rightarrow b\rightarrow c \land \forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_2x)y=z)\vdash f_1=f_2.$ LEM
	□□□¶
	$\Box\Box\Box f_2: a \to b \to c \land \forall x \forall y \forall z x : a \vdash y : b \vdash z : c \vdash \psi x y z \Leftrightarrow (f_2 x) y = z. \qquad [.41] \text{ ASM}$
	$\Box\Box\Box\Box\forall a\forall b\forall f\forall gf: a\rightarrow b\vdash g: a\rightarrow b\vdash (\forall xx: a\vdash fx=gx)\vdash f=g$
124.44	$\Box\Box\Box f_1:a \rightarrow b \rightarrow c.$ [.40] TAUT

$\Box\Box\Box f_2{:}a{ o}b{ o}c.$ [.42] Taut	124.45
$\square\square\square\square x:a\vdash f_1x=f_2x.$ LEM	124.46
□□□□ <i>x:a.</i> [.46] ASM	124.47
$\square \square \square \square \square \forall a \forall b \forall f f : a \rightarrow b \vdash \forall x x : a \vdash f x : b. $ AXM	124.48
$\square\square\square\square\square\forall xx:a\vdash f_1x:b\rightarrow c. \qquad \qquad [.48] \ [.44] \ _1\text{MINT}_3$	124.49
$\square\square\square\square f_1x:b\rightarrow c. \qquad \qquad [.49] \ [.47] \ _1 \text{MINT}_1$	124.50
$\square\square\square\square\square\forall xx:a\vdash f_2x:b\rightarrow c.$ [.48] [.45] $_1$ MINT3	124.51
$\square\square\square\square f_2x:b\rightarrow c. \qquad \qquad [.51] \ [.47] \ _1 \text{MINT}_1$	124.52
$\square\square\square\square y : b \vdash (f_1x)y = (f_2x)y.$ LEM	124.53
□□□□□ y:b. [.53] ASM	124.54
	124.55
	124.56
$\square\square\square\square(f_1x)y:c.$ [.56] [.54] $_1$ MINT $_1$	124.57
$\square\square\square\square\square\forall yy:b\vdash (f_2x)y:c. \qquad \qquad [.55] \ [.52] \ _1 \text{MINT}_3$	124.58
$\square\square\square\square(f_2x)y:c.$ [.58] [.54] $_1$ MINT $_1$	124.59
	124.60
$ \Box \Box \Box \Box \Box \psi xy((f_2x)y) \Leftrightarrow (f_2x)y = (f_2x)y. \qquad [.50] [.47] [.54] [.59] {}_{3} \text{MINT}_{3} $	124.61
$\square\square\square\square(f_2x)y=(f_2x)y.$	124.62
$\square\square\square\square\psi xy((f_2x)y).$ [.62] [.61] TAUT	124.63
	124.64
$ \Box \Box \Box \Box \Box \psi xy((f_2x)y) \Leftrightarrow (f_1x)y = (f_2x)y. \qquad [.64] [.47] [.54] [.59] _{3} \text{MINT}_{3} $	124.65
$\square\square\square\square(f_1x)y=(f_2x)y. \qquad \qquad [.65] \ [.63] \ \text{TAUT}$	124.66
□□□□■	
$\square\square\square\square\forall yy:b\vdash (f_1x)y=(f_2x)y. \qquad \qquad [.53] \ \forall_1 \text{GEN}$	124.67
$\square\square\square\square\square\forall b\forall c\forall f\forall gf:b\rightarrow c\vdash g:b\rightarrow c\vdash (\forall yy:b\vdash fy=gy)\vdash f=g.$ [.43] QNT	124.68
$\Box\Box\Box\Box f_1 x = f_2 x.$ [.68] [.50] [.52] [.67] $_3$ MINT ₄	124.69
□□□■QED	
$\square\square\square\square\forall xx:a\vdash f_1x=f_2x. \qquad \qquad [.46] \ \forall_1\text{GEN}$	124.70
$\Box\Box\Box f_1 = f_2$ [.43] [.44] [.45] [.70] 3 MINT ₄	124.71
□□□ ■. QED	
□□ ■. QED	
$\square\square\forall f_1\forall f_2(f_1:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash \psi xyz\Leftrightarrow (f_1x)y=z)\vdash (f_2:a\rightarrow b\rightarrow c\wedge\forall x\forall y\forall zx:a\vdash y:b\vdash z:c\vdash y:b\vdash z:b\vdash z:c\vdash y:b\vdash z:b\vdash z:b\vdash z:b\vdash z:b\vdash z:b\vdash z:b\vdash z:b\vdash z$	124.72
$x:a \vdash y:b \vdash z:c \vdash \psi xyz \Leftrightarrow (f_2x)y=z) \vdash f_1 = f_2.$ [.39] UGEN ₂	
$\square \square \exists ! ff : a \rightarrow b \rightarrow c \land \forall x \forall y \forall z x : a \vdash y : b \vdash z : c \vdash \psi x y z \Leftrightarrow (fx) y = z. \dots [.38] [.72] \exists ! \text{INTROS}$	124.73
□■QED	
$\Box \forall \psi (\forall x \forall y x : a \vdash y : b \vdash \exists ! zz : c \land \psi x y z) \vdash \exists ! f f : a \rightarrow b \rightarrow c \land \forall x \forall y \forall z x : a \vdash y : b \vdash z : c \vdash \psi x y z \Leftrightarrow (f x) y$	124.74
=z[.1] ∀ ₂ GEN	
	124.75
$\Leftrightarrow (fx)y=z.$ [.74] UGEN ₃	
QED	
Uses Axioms: 3, 5, 6, 7, 8	

125	$\forall \psi(\forall x\forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz) \vdash \exists !ff : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x\forall y\forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz \vdash \exists !ff : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x\forall y\forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz \vdash \exists !ff : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x\forall y\forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz \vdash \exists !ff : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x\forall y\forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz \vdash \exists !ff : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x\forall y\forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz \vdash \exists !ff : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x\forall y\forall x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz \vdash \exists !ff : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x\forall y\forall x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz \vdash \exists !zz : \mathcal{H} \land \forall x \forall y \forall x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \forall x \forall y \forall x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \forall x \forall y \forall x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \forall x \forall x \forall x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \forall x \forall x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal{H} \lor \exists !zz : \mathcal{H} \land \forall x : \mathcal{H} \lor \exists !zz : \mathcal$	$\mathscr{C} \vdash y : \mathscr{H} \vdash z : \mathscr{H} \vdash$
	$\psi xyz \Leftrightarrow (fx)y=z$. Theorem	of Binary Operation
	¶	DEM
125.1	$\Box \forall a \forall b \forall c \forall \psi (\forall x \forall yx : a \vdash y : b \vdash \exists ! zz : c \land \psi xyz) \vdash \exists ! ff : a \rightarrow b \rightarrow c \land \forall x \forall y \forall zx : a \rightarrow b \rightarrow c \land \forall x \forall y \forall xx : a \rightarrow b \rightarrow c \land \forall x \forall y \forall xx : a \rightarrow b \rightarrow c \land \forall x \forall y \forall x : a \rightarrow b \rightarrow c \land \forall x \forall y \forall x : a \rightarrow b \rightarrow c \land \forall x \forall y \forall x : a \rightarrow b \rightarrow c \land \forall x \forall y \forall x : a \rightarrow b \rightarrow c \land \forall x \forall y \forall x : a \rightarrow b \rightarrow c \land \forall x \forall y \forall x : a \rightarrow b \rightarrow c \land \forall x \forall y \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x : a \rightarrow b \rightarrow c \land \forall x \forall x : a \rightarrow b \rightarrow c \land x : a \rightarrow b \rightarrow b \rightarrow b \land x : a \rightarrow b $, ,
	$\Leftrightarrow (fx)y=z.$	
125.2	$\Box \forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz) \vdash \exists !ff : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx :$	-
	$\psi xyz \Leftrightarrow (fx)y=z.$	0
	Uses Axioms: 3, 5, 6, 7, 8	QED
126	$\forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \psi xyz) \vdash \exists \phi \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi$. , .
		=
	¶	
126.1	$\Box(\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi xyz) \vdash \exists \phi \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi x$	
	_¶	
126.2	$\square\square\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash \exists!zz: \mathcal{H}\land \psi xyz.$	
126.3	$\square\square\forall\psi(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land\psi xyz)\vdash\exists!ff:\mathcal{H}\rightarrow\mathcal{H}\rightarrow\mathcal{H}\land\forall x\forall y\forall z:\mathcal{H}\vdash \exists!ff:\mathcal{H}\rightarrow\mathcal{H}\rightarrow\mathcal{H}\rightarrow\mathcal{H}$	•
	$\vdash \psi xyz \Leftrightarrow (fx)y=z.$	
126.4	$\square\square(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land \psi xyz)\vdash \exists!ff:\mathcal{H}\rightarrow\mathcal{H}\rightarrow\mathcal{H}\land \forall x\forall y\forall zx:\mathcal{H}$	$\mathscr{C} \vdash y : \mathscr{H} \vdash z : \mathscr{H} \vdash$
	$\psi xyz \Leftrightarrow (fx)y=z.$	
126.5	$\square\square\exists! ff : \mathscr{H} \to \mathscr{H} \to \mathscr{H} \land \forall x \forall y \forall zx : \mathscr{H} \vdash y : \mathscr{H} \vdash z : \mathscr{H} \vdash \psi xyz \Leftrightarrow (fx)y = z \cdot \dots$	[.4] [.2] MP
126.6	$\square \square \exists f f : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi x y z \Leftrightarrow (f x) y = z \dots$	
126.7	$\Box\Box f: \mathcal{H} \to \mathcal{H} \to \mathcal{H} \land \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi x y z \Leftrightarrow (f x) y = z. \dots$	_
126.8	$\square\square\forall x\forall y\forall zx: \mathcal{H}\vdash y: \mathcal{H}\vdash z: \mathcal{H}\vdash \psi xyz \Leftrightarrow (fx)y=z.$	
126.9	$\Box \Box \exists \phi \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi x y z \Leftrightarrow x \phi y = z.$	-
126.10	$\Box \forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \psi xyz) \vdash \exists \phi \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash$, , , ,
	L	QED
	Uses Axioms: 3, 5, 6, 7, 8	
127	$\forall \psi(\forall x\forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz) \vdash \forall \phi(\forall x\forall y\forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash z)$	$\psi xyz \Leftrightarrow x\phi y=z)\vdash$
	$\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : \mathcal{H} \land \psi xy(x \phi y) \dots$ Theorem of Binary F	Realization Strength
	¶	DEM
127.1	$\Box(\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi xyz) \vdash \forall \phi(\forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi : \mathcal{H} \vdash z : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi : \mathcal{H} \vdash z : \mathcal$	$xyz \Leftrightarrow x\phi y = z) \vdash$
	$\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : \mathcal{H} \land \psi x y (x \phi y).$	LEM
	_1	DEM
127.2	$\square\square\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash \exists!zz: \mathcal{H}\land \psi xyz.$	[.1] ASM
127.3	$\Box\Box(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash \psi xyz\Leftrightarrow x\phi y=z)\vdash \forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash x\phi y$: ℋ∧ψ xy(xφy).
		LEM

```
\square\square\square\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash \psi xyz\Leftrightarrow x\phi y=z. [.3] ASM 127.4
\square \square \square \forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi x y z) \vdash \exists! f f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! f f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! f f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! f f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! f f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! f f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! f f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! f f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x y z \vdash \exists! zz : \mathcal{H} \land \psi x z \vdash \exists! zz : \mathcal{H} \land \psi x z \vdash \exists! zz : \mathcal{H} \land \psi x z \vdash \exists! zz : \mathcal{H} \land \psi x z \vdash \exists! zz : \mathcal{H} \land \psi x z \vdash \exists zz : \mathcal{H} \land \psi x z \exists zz : \mathcal{H} \land \psi x z \vdash \exists zz : \mathcal{H} \land \forall zz : \mathcal{H} \land \forall zz : \exists zz : \exists zz : \mathcal{H} \land \forall zz : \exists zz : 
                                                                                                                                                                                                                                                                           127.5
z:\mathcal{H} \vdash \psi x v z \Leftrightarrow (fx)v = z. THM
\square \square \square (\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! z z : \mathcal{H} \land \psi x y z) \vdash \exists ! f f : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H
                                                                                                                                                                                                                                                                           127.6
 \psi xyz \Leftrightarrow (fx)y=z. [.5] \forall zINST
\square \square \exists ! ff : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi x y z \Leftrightarrow (fx)y = z . . . . . . . [.6] [.2] \text{ MP} \quad 127.7
\square \square \square \exists f f: \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall z x: \mathcal{H} \vdash y: \mathcal{H} \vdash z: \mathcal{H} \vdash \psi x y z \Leftrightarrow (f x) y = z. \qquad [.7] \exists ! \text{EXISTS} \qquad 127.8
\Box\Box\Box f:\mathcal{H} \to \mathcal{H} \to \mathcal{H} \land \forall x \forall y \forall zx:\mathcal{H} \vdash y:\mathcal{H} \vdash z:\mathcal{H} \vdash \psi xyz \Leftrightarrow (fx)y=z. \qquad [.8] \exists_1 \text{INST} \quad 127.9
\Box\Box\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash x\phi y: \mathcal{H} \land \psi xy(x\phi y). LEM 127.10
\square\square\square x:\mathcal{H}. [.10] ASM 127.11
\square \square \square \neg y: \mathcal{H} \vdash x\phi y: \mathcal{H} \land \psi x y (x\phi y). \qquad \qquad \text{LEM } 127.12
□□□□v:ℋ. [.12] ASM 127.13
\square\square\square\square f:\mathcal{H} \to \mathcal{H} \to \mathcal{H}. [.9] TAUT 127.14
\square \square \square \square \forall a \forall b \forall f f : a \rightarrow b \vdash \forall xx : a \vdash f x : b.  AXM 127.15
\square \square \square \square \square \forall xx: \mathcal{H} \vdash fx: \mathcal{H} \rightarrow \mathcal{H}. [.15] [.14] 1MINT3 127.16
\Box\Box\Box\Box(fx)y:\mathcal{H}. [.19] [.13] 1 MINT 1 127.20
\square\square\square\square\psi xy((fx)y). [.22] [.23] TAUT 127.24
\square\square\square\square x\phi y = (fx)y. [.25] [.24] TAUT 127.26
\square\square\square\square x\phi y:\mathcal{H}. [.26] [.20] SUB 127.27
\square\square\square\square\psi xy(x\phi y). [.26] [.24] SUB 127.28
\square\square\square\square x\phi y: \mathcal{H} \wedge \psi xy(x\phi y). [.27] [.28] TAUT 127.29
QED
\Box\Box\forall\phi(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash \psi xyz\Leftrightarrow x\phi y=z)\vdash\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash x\phi y:\mathcal{H}\land \psi xy(x\phi y). \quad 127.31
[.3] ∀<sub>2</sub>GEN
\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : \mathcal{H} \land \psi x y (x \phi y). [.1] \forall_2 \text{GEN}
 QED.
Uses Axioms: 3, 5, 6, 7, 8
```

For any $f,g:a \to b \to c$, if (fx)y = (gx)y for every x:a, y:b, then f = g. PROOF: Consider two such functions $f,g:a \to b \to c$. By application, for every x:a, objects fx, gx, are functions from $b \to c$.

Since for every y:b, (fx)y=(gx)y, it follows by functional extension, fx=gx and f=g. QED.

128			
	¶DEM		
128.1	$\Box f: a \rightarrow b \rightarrow c \vdash g: a \rightarrow b \rightarrow c \vdash (\forall x \forall yx: a \vdash y: b \vdash (fx)y = (gx)y) \vdash f = g$	LEM	
	_1	DEM	
128.2	$\Box\Box f: a \rightarrow b \rightarrow c.$	[.1] ASM	
128.3	$\Box \Box g: a \rightarrow b \rightarrow c \vdash (\forall x \forall yx: a \vdash y: b \vdash (fx)y = (gx)y) \vdash f = g. \dots$	LEM	
		DEM	
128.4	$\Box\Box g: a \rightarrow b \rightarrow c.$	[.3] ASM	
128.5	$\Box\Box(\forall x\forall yx:a\vdash y:b\vdash(fx)y=(gx)y)\vdash f=g.$	LEM	
		DEM	
128.6	$\square\square\square \forall x \forall y x : a \vdash y : b \vdash (fx)y = (gx)y.$	[. 5] ASM	
128.7	$\square \square \square \square \forall a \forall b \forall f \forall g f : a \rightarrow b \vdash g : a \rightarrow b \vdash (\forall xx : a \vdash fx = gx) \vdash f = g \dots \dots$	AXM	
128.8	$\square\square\square(\forall xx:a\vdash fx=gx)\vdash f=g.$	[.7][.2][.4] ₂ MINT ₄	
128.9	$\Box\Box\Box x:a\vdash fx=gx.$	LEM	
		DEM	
128.10	<i>x:a.</i>	[.9] ASM	
128.11	$\square \square \square \square \square \forall b \forall c \forall f \forall g f : b \rightarrow c \vdash g : b \rightarrow c \vdash (\forall yy : b \vdash fy = gy) \vdash f = g. \dots$	[.7] QNT	
128.12	$\square \square \square \square \forall a \forall b \forall f f : a \rightarrow b \vdash \forall xx : a \vdash f x : b.$	AXM	
128.13	$\Box\Box\Box\Box\forall xx:a\vdash fx:b\rightarrow c.$		
128.14	$\Box\Box\Box\Box fx:b\rightarrow c.$	[.13] [.10] 1 MINT ₁	
128.15	$\square\square\square\square\square\forall xx:a\vdash gx:b\rightarrow c.$	[.12] [.4] ₁ MINT ₃	
128.16	$\Box\Box\Box\Box gx:b\rightarrow c.$	[.15] [.10] ₁ MINT ₁	
128.17	$\square\square\square\square(\forall yy:b\vdash (fx)y=(gx)y)\vdash fx=gx.$	[.11] [.14] [.16] $_2$ MINT $_4$	
128.18	$\square\square\square\square y:b\vdash (fx)y=(gx)y.$	LEM	
		DEM	
128.19	□□□□□ y:b.	[.18] ASM	
128.20	$\square\square\square\square(fx)y=(gx)y.$	[.6] [.10] [.19] $_2$ MINT $_2$	
		QED	
128.21	$\square\square\square\square \forall yy:b\vdash (fx)y=(gx)y.$	[.18] ∀ ₁ GEN	
128.22	$\square\square\square\square fx=gx.$	[.17] [.21] MP	
		QED	
128.23	$\square\square\square\forall xx:a\vdash fx=gx.$	[.9] ∀ ₁ GEN	
128.24	$\square\square\square f = g.$	[.8] [.23] MP	
		QED	
		QED	
		QED	
128.25	$\Box \forall a \forall b \forall c \forall f \forall g f : a \rightarrow b \rightarrow c \vdash g : a \rightarrow b \rightarrow c \vdash (\forall x \forall y x : a \vdash y : b \vdash (f x) y = (f x) \lor f \lor $	$(gx)y)\vdash f=g[.1]$ UGEN5	
	.		
	Uses Axioms: 7, 8	•	
	,		

PROOF: Existence. For every x:a, their exists a unique y:c st. g(fx)=y. Creation gives a desired function. Uniqueness. Trivial. QED.

$\forall a \forall b \forall c \forall f \forall g f : a \rightarrow b \vdash g : b \rightarrow c \vdash \exists ! h h : a \rightarrow c \land \forall x x : a \vdash g (f x) = h x.$	129
¶DEM	
$\Box f: a \rightarrow b \vdash g: b \rightarrow c \vdash \exists !hh: a \rightarrow c \land \forall xx: a \vdash g(fx) = hx.$ LEM	129.1
□¶	
$\Box f: a \rightarrow b.$ [.1] ASM	129.2
$\Box \Box g : b \to c \vdash \exists ! hh : a \to c \land \forall xx : a \vdash g(fx) = hx.$ LEM	129.3
□ ¶	
$\Box\Box\Box g{:}b{\rightarrow}c{.}$ [.3] ASM	129.4
$\Box\Box x: a \vdash \exists! yy: c \land g(fx) = y.$ LEM	129.5
□□□ <i>x</i>:a.	129.6
$\Box\Box\Box \forall a \forall b \forall f f : a \rightarrow b \vdash \forall xx : a \vdash f x : b. $ AXM	129.7
	129.8
$\square\square\square fx:b.$ [.8] [.6] $_1$ MINT $_1$	129.9
$\square \square \square \forall b \forall c \forall f f : b \rightarrow c \vdash \forall xx : b \vdash f x : c. \qquad [.7] \text{ QNT}$	129.10
	129.11
$\square\square\square g(fx):c. \qquad \qquad [.11] \ [.9] \ _1 \text{MINT}_1$	129.12
$\Box\Box\Box g(fx)=g(fx)$.	129.13
$\square\square\square g(fx) : c \land g(fx) = g(fx). \qquad \qquad [.12] \ [.13] \ \text{TAUT}$	129.14
$\square\square\square\exists yy:c \land g(fx)=y.$ [.14] $\exists_1 GEN$	129.15
$\square\square\square y_1: c \land g(fx) = y_1 \vdash y_2: c \land g(fx) = y_2 \vdash y_1 = y_2.$ LEM	129.16
$\square\square\square\P $	
$\square\square\square\square y_1:c \land g(fx)=y_1. \qquad [.16] \text{ ASM}$	129.17
$\square\square\square\square y_2: c \land g(fx) = y_2 \vdash y_1 = y_2.$ LEM	129.18
$\square\square\square\square\P \dots \dots \underline{DEM}$	
$\square\square\square\square y_2 : c \land g(fx) = y_2. \qquad [.18] \text{ ASM}$	129.19
$\square\square\square\square g(fx)=y_1.$ [.17] Taut	129.20
$\square\square\square\square g(fx)=y_2.$ [.19] Taut	129.21
$\square\square\square\square y_1 = y_2. \qquad \qquad [.20] \ [.21] \ \text{SUB}$	129.22
□□□□■•	
□□□ ■. QED	
$\square\square\square\square\forall y_1\forall y_2y_1:c \land g(fx)=y_1\vdash y_2:c \land g(fx)=y_2\vdash y_1=y_2.$ [.16] UGEN ₂	129.23
$\square\square\square\exists!yy:c \land g(fx)=y. \qquad \qquad [.15] \ [.23] \ \exists ! \text{INTROS}$	129.24
QED	
$\square\square\square\forall xx{:}a\vdash\exists!yy{:}c\land g(fx)=y.$ [.5] \forall_1 GEN	129.25
$\Box\Box\Box\forall a\forall b\forall \psi(\forall xx:a\vdash\exists!yy:b\land\psi xy)\vdash\exists ff:a\rightarrow b\land\forall x\forall yx:a\vdash y:b\vdash\psi xy\Leftrightarrow fx=y.\dots\dots\land AXM$	129.26
$\square \square \square \forall a \forall b \forall \psi (\forall xx : a \vdash \exists! yy : b \land \psi xy) \vdash \exists hh : a \rightarrow b \land \forall x \forall yx : a \vdash y : b \vdash \psi xy \Leftrightarrow hx = y. \dots [.26] \text{ QNT}$	129.27
$\square \square \square \forall \psi (\forall xx : a \vdash \exists ! yy : c \land \psi xy) \vdash \exists hh : a \rightarrow c \land \forall x \forall yx : a \vdash y : c \vdash \psi xy \Leftrightarrow hx = y. \dots [.27] \ _{0} \text{MINT}_{2}$	129.28
$\square\square\square(\forall xx:a\vdash\exists!yy:c\land g(fx)=y)\vdash\exists hh:a\rightarrow c\land\forall x\forall yx:a\vdash y:c\vdash g(fx)=y\Leftrightarrow hx=y. \ [.28]\ \forall 2\text{INST}$	129.29
$\square \square \exists hh: a \rightarrow c \land \forall x \forall yx: a \vdash y: c \vdash g(fx) = y \Leftrightarrow hx = y. \qquad [.29] [.25] \text{ MP}$	129.30

129.31	$\Box\Box \Box h : a \rightarrow c \land \forall x \forall y x : a \vdash y : c \vdash g(fx) = y \Leftrightarrow hx = y.$	
129.32	$\square\square \square x : a \vdash g(fx) = hx.$	
129.33		
129.34	$\square\square\square \forall a \forall b \forall f f : a \rightarrow b \vdash \forall xx : a \vdash fx : b.$	
129.35	$\square\square\square\forall xx:a\vdash fx:b.$	
129.36		
129.37	$\square\square\square \forall b \forall c \forall f f : b \rightarrow c \vdash \forall xx : b \vdash f x : c.$	
129.38	$\square\square\square \forall xx: b \vdash gx: c.$	
129.39	$\Box\Box\Box g(fx)$:c	
129.40	$\square\square\square\forall x\forall yx:a\vdash y:c\vdash g(fx)=y\Leftrightarrow hx=y.$	
129.41	$\square\square\square g(fx) = g(fx) \Leftrightarrow hx = g(fx).$	
129.42	$\square\square\square g(fx) = g(fx).$	
129.43	$\square\square\square g(fx)=hx.$	
129.44	$\square\square\square\forall xx:a\vdash g(fx)=hx.$	[.32] ∀ ₁ GEN
129.45	$\Box\Box h: a \to c \land \forall xx: a \vdash g(fx) = hx.$	
129.46	$\square\square\square\exists hh: a \rightarrow c \land \forall xx: a \vdash g(fx) = hx.$	
129.47	$\Box\Box\Box(h_1:a\rightarrow c \land \forall xx:a\vdash g(fx)=h_1x)\vdash (h_2:a\rightarrow c \land \forall xx:a\vdash g(fx)=h_1x)$	$(x)=h_2x)\vdash h_1=h_2$
		DEM
129.48	$\Box\Box\Box h_1:a\rightarrow c \land \forall xx:a\vdash g(fx)=h_1x.$	[.47] ASM
129.49	$\Box\Box\Box(h_2:a\rightarrow c \land \forall xx:a\vdash g(fx)=h_2x)\vdash h_1=h_2.$	LEM
		DEM
129.50	$\square\square\square\square h_2: a \rightarrow c \land \forall xx: a \vdash g(fx) = h_2x.$	[.49] ASM
129.51	$\square \square \square \square \square \forall a \forall b \forall f \forall g f : a \rightarrow b \vdash g : a \rightarrow b \vdash (\forall xx : a \vdash fx = gx) \vdash f = g$	AXM
129.52	$\square\square\square\square\square h_1:a\rightarrow c\vdash h_2:a\rightarrow c\vdash (\forall xx:a\vdash h_1x=h_2x)\vdash h_1=h_2.\ldots$	$\dots \dots [.51]_0$ MINT ₄
129.53	$\square\square\square\square\square(\forall xx:a\vdash h_1x=h_2x)\vdash h_1=h_2.$	[.52] [.48] [.50] TAUT
129.54	$\square\square\square\square\square x_1:a\vdash h_1x_1=h_2x_1.$	LEM
		DEM
129.55	$\square\square\square\square\square x_1:a.$	[.54] ASM
129.56	$\square\square\square\square\square\square\forall xx:a\vdash g(fx)=h_1x.$	[. 48] TAUT
129.57	$\square\square\square\square\square g(fx_1)=h_1x_1.$	[.56] [.55] $_1$ MINT $_1$
129.58	$\square\square\square\square\square \forall xx: a \vdash g(fx) = h_2x.$	[.50] TAUT
129.59	$\square\square\square\square\square g(fx_1) = h_2x_1.$	$\dots \dots [.58] [.55]_1 \text{MINT}_1$
129.60	$\square\square\square\square\square h_1x_1 = h_2x_1.$	[.57] [.59] SUB
		QED
129.61	$\square\square\square\square \forall xx: a \vdash h_1x = h_2x.$	
129.62	$\square\square\square\square h_1 = h_2$	[.53] [.61] MP
	□□□□■	QED
		•
129.63	$\square\square\square\forall h_1\forall h_2(h_1:a\rightarrow c\land\forall xx:a\vdash g(fx)=h_1x)\vdash (h_2:a\rightarrow c\land\forall xx$	$c:a\vdash g(fx)=h_2x)\vdash h_1=h_2$
		_
129.64	$\square\square\square\exists!hh:a\rightarrow c \land \forall xx:a\vdash g(fx)=hx.$	
		QED

□ ■. QED	
$ \Box \forall a \forall b \forall c \forall f \forall g f : a \rightarrow b \vdash g : b \rightarrow c \vdash \exists! hh : a \rightarrow c \land \forall xx : a \vdash g(fx) = hx. \dots [.1] \text{ UGEN}_5 $	129.65
■QED Uses Axioms: 3, 5, 6, 7, 8	
The set created by <i>specification</i> is unique. PROOF: Trivial. QED.	
$\forall x \forall \psi x : \mathcal{H} \vdash \exists ! y y : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : x \land \psi y_1.$	130
¶	
$\Box x: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : x \land \psi y_1. $ LEM	130.1
□¶	
$\square x: \mathcal{H}$. [.1] ASM	130.2
$\Box \Box \forall x \forall \psi x : \mathcal{H} \vdash \exists y y : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : x \land \psi y_1. $ AXM	130.3
$\square\square\forall\psi x:\mathcal{H}\vdash\exists yy:\mathcal{H}\land\forall y_1y_1:y\Leftrightarrow y_1:x\land\psi y_1.$ [.3] $\forall_1\text{INST}$	130.4
	130.5
	130.6
$\square\square(z_1:\mathcal{H} \land \forall y_1y_1:z_1 \Leftrightarrow y_1:x \land \psi y_1) \vdash (z_2:\mathcal{H} \land \forall y_1y_1:z_2 \Leftrightarrow y_1:x \land \psi y_1) \vdash z_1=z_2. \ldots \sqcup \text{LEM}$	130.7
□□¶DEM	
$\square\square Z_1: \mathscr{H} \land \forall y_1 y_1: z_1 \Leftrightarrow y_1: x \land \psi y_1. \qquad [.7] \text{ ASM}$	130.8
$\square\square(z_2:\mathcal{H} \land \forall y_1y_1:z_2 \Leftrightarrow y_1:x \land \psi y_1) \vdash z_1 = z_2.$ LEM	130.9
□□□¶	
$\square\square\square z_2: \mathscr{H} \land \forall y_1 y_1 : z_2 \Leftrightarrow y_1 : x \land \psi y_1. \qquad [.9] \text{ ASM}$	130.10
$\square\square\square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y. $ AXM	130.11
$\square\square\square \square z_1: \mathscr{H} \vdash z_2: \mathscr{H} \vdash (\forall tt: z_1 \Leftrightarrow t: z_2) \vdash z_1 = z_2. $ [.11] $_0$ MINT ₂	130.12
$\square\square\square \forall y_1y_1:z_1 \Leftrightarrow y_1:x \land \psi y_1. \qquad \qquad [.8] \text{ TAUT}$	130.13
$\square\square\square\forall y_1y_1:z_2\Leftrightarrow y_1:x\wedge\psi y_1. \qquad \qquad [.10] \text{ TAUT}$	130.14
$\square\square\square t: z_1 \Leftrightarrow t: x \land \psi t. \qquad [.13] \ \forall_1 \text{INST}$	130.15
$\square\square\square t: z_2 \Leftrightarrow t: x \land \psi t. \qquad [.14] \forall_1 \text{INST}$	130.16
$\square\square\square t: z_1 \Leftrightarrow t: z_2.$ [.15] [.16] TAUT	130.17
$\square\square\square \forall tt: z_1 \Leftrightarrow t: z_2. \qquad [.17] \ \forall_1 \text{GEN}$	130.18
$\Box\Box\Box z_1 = z_2$	130.19
QED	
□□ ■.	
$\square\square\forall z_1\forall z_2(z_1:\mathcal{H}\wedge\forall y_1y_1:z_1\Leftrightarrow y_1:x\wedge\psi y_1)\vdash (z_2:\mathcal{H}\wedge\forall y_1y_1:z_2\Leftrightarrow y_1:x\wedge\psi y_1)\vdash z_1=z_2.\ldots\ldots$	130.20
[.7] UGEN2	
$\square \exists ! yy : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : x \land \psi y_1. \qquad [.6] [.20] \exists ! \text{INTROS}$	130.21
QED	
	130.22
	130.23
■	
Uses Axioms: 3, 5, 9, 15	

The set created by replacement is unique. PROOF: Trivial. QED.

131	$\forall x \forall f x : \mathcal{H} \vdash f : x \rightarrow \mathcal{H} \vdash \exists ! y y : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow \exists x_1 x_1 : x \land f x_1 = y_1.$
	Theorem of Unique Replacement
	¶
131.1	$\Box x: \mathcal{H} \vdash f: x \to \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow \exists x_1 x_1 : x \land f x_1 = y_1. $ LEM
	□¶
131.2	$\square \square x: \mathcal{H}$. [.1] ASM
131.3	$\Box \Box f: x \to \mathcal{H} \vdash \exists ! yy : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow \exists x_1 x_1 : x \land f x_1 = y_1. $ LEM
	□□¶
131.4	$\square\square f: x \rightarrow \mathcal{H}$. [.3] ASM
131.5	$\square\square\square\forall x\forall fx: \mathcal{H}\vdash f: x\rightarrow \mathcal{H}\vdash \exists yy: \mathcal{H}\land \forall y_1y_1: y\Leftrightarrow \exists x_1x_1: x\land fx_1=y_1.$
131.6	$\square\square\exists yy: \mathcal{H} \land \forall y_1y_1: y \Leftrightarrow \exists x_1x_1: x \land fx_1 = y_1. \qquad [.5] [.2] [.4]_{2} \text{MINT}_2$
131.7	$\square\square\square(z_1:\mathcal{H} \land \forall y_1y_1:z_1 \Leftrightarrow \exists x_1x_1:x \land fx_1=y_1) \vdash (z_2:\mathcal{H} \land \forall y_1y_1:z_2 \Leftrightarrow \exists x_1x_1:x \land fx_1=y_1) \vdash z_1=x_1 \vdash x_1 \vdash x_1 \vdash x_2 \vdash x_1 \vdash x_2 \vdash x_1 \vdash x_2 \vdash x_1 \vdash x_1 \vdash x_1 \vdash x_2 \vdash x_1 \vdash x_1 \vdash x_2 \vdash x_1 \vdash x_1 \vdash x_2 \vdash x_2 \vdash x_1 \vdash x_2 \vdash x_2 \vdash x_2 \vdash x_1 \vdash x_2 \vdash x$
	z₂ LEM
	$\square\square\square z_1: \mathscr{H} \land \forall y_1 y_1: z_1 \Leftrightarrow \exists x_1 x_1: x \land f x_1 = y_1. $ [.7] ASM
131.9	$\square\square\square(z_2:\mathscr{H} \land \forall y_1y_1:z_2 \Leftrightarrow \exists x_1x_1:x \land fx_1=y_1) \vdash z_1=z_2.$ LEM
	$\square\square\square\square z_2: \mathscr{H} \land \forall y_1 y_1 : z_2 \Leftrightarrow \exists x_1 x_1 : x \land f x_1 = y_1. $ [.9] ASM
131.11	$\square \square \square \square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y. $ AXM
131.12	$\square\square\square\square z_1: \mathcal{H} \vdash z_2: \mathcal{H} \vdash (\forall tt: z_1 \Leftrightarrow t: z_2) \vdash z_1 = z_2. \qquad [.11]_{0} \text{MINT}_2$
131.13	$\square\square\square\square\forall y_1y_1:z_1\Leftrightarrow \exists x_1x_1:x\wedge fx_1=y_1.$
131.14	$\square\square\square\square\forall y_1y_1:z_2 \Leftrightarrow \exists x_1x_1:x \land fx_1=y_1.$ [.10] TAUT
131.15	$\square\square\square \square t : z_1 \Leftrightarrow \exists x_1 x_1 : x \land f x_1 = y_1. \qquad [.13] \ \forall_1 \text{INST}$
131.16	$\square\square\square \square t: z_2 \Leftrightarrow \exists x_1 x_1 : x \land f x_1 = y_1. $ [.14] $\forall 1$ INST
131.17	$\square\square\square \square t : z_1 \Leftrightarrow t : z_2. \qquad \qquad [.15] [.16] \text{ TAUT}$
131.18	
131.19	
	QED QED
191 90	$\square\square\square \forall z_1 \forall z_2(z_1: \mathcal{H} \land \forall y_1 y_1: z_1 \Leftrightarrow \exists x_1 x_1: x \land f x_1 = y_1) \vdash (z_2: \mathcal{H} \land \forall y_1 y_1: z_2 \Leftrightarrow \exists x_1 x_1: x \land f x_1 = y_1)$
101.20	$\vdash z_1 = z_2.$
	[.7] UGEN ₂
131.21	$\square\square\exists!yy:\mathcal{H} \land \forall y_1y_1:y \Leftrightarrow \exists x_1x_1:x \land fx_1 = y_1. \qquad \qquad [.6] [.20] \exists! \text{INTROS}$
101.21	QED
131.22	$\square \forall x \forall f x : \mathcal{H} \vdash f : x \rightarrow \mathcal{H} \vdash \exists ! y y : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow \exists x_1 x_1 : x \land f x_1 = y_1. $ [.1] UGEN ₂
	■
	Uses Axioms: 3, 5, 9, 16

§2.2 Sets and Operations: Pairing and Union

For all sets x,y, one can exhibit a unique set z which satisfies $\forall tt:z \Leftrightarrow t=x \lor t=y$. PROOF: Existence. Immediate by pairing. Uniqueness. Take any two such sets z_1,z_2 . $t:z_1$ iff. $t=x \lor t=y$; $t:z_2$ iff. $t=x \lor t=y$. Thus $t:z_1$ iff. $t:z_2$, for each object t. Hence, by extensionality, they must be equal. QED.

Imagine forming a new box by packing exactly two old ones. We name this realizer PAR.

$\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t = x \lor t = y. \dots $ THEOREM of Implicit Pairing	132
\P	
$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash \exists! zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t = x \lor t = y. $ LEM	132.1
□¶	
$\square \square x: \mathcal{H}.$ [.1] ASM	132.2
$\Box \Box y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t = x \lor t = y. $ LEM	132.3
□ ¶	
$\square\square y:\mathcal{H}.$ [.3] ASM	132.4
$\square\square\square\forall x\forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash \exists zz: \mathcal{H} \land \forall z_1z_1: z \Leftrightarrow z_1 = x \lor z_1 = y. $ AXM	132.5
$\square\square\exists zz: \mathscr{H} \land \forall z_1z_1: z \Leftrightarrow z_1 = x \lor z_1 = y. $ [.5] [.2] [.4] $_2$ MINT ₂	132.6
$\square\square\exists zz: \mathscr{H} \land \forall tt: z \Leftrightarrow t=x \lor t=y. $ [.6] QNT	132.7
$\square\square\square(z_1:\mathscr{H} \land \forall tt:z_1 \Leftrightarrow t=x \lor t=y) \vdash (z_2:\mathscr{H} \land \forall tt:z_2 \Leftrightarrow t=x \lor t=y) \vdash z_1=z_2. \dots \square$ LEM	132.8
□□ ¶	
$\square\square\square z_1: \mathscr{H} \land \forall tt: z_1 \Leftrightarrow t=x \lor t=y. $ [.8] ASM	132.9
$\square\square\square(z_2:\mathscr{H} \land \forall tt:z_2 \Leftrightarrow t=x \lor t=y) \vdash z_1=z_2.$ LEM	132.10
$\square\square\square\square z_2: \mathscr{H} \land \forall tt: z_2 \Leftrightarrow t = x \lor t = y. $ [.10] ASM	132.11
$\square\square\square\square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y. $ AXM	132.12
$\square\square\square\square z_1: \mathcal{H} \vdash z_2: \mathcal{H} \vdash (\forall tt: z_1 \Leftrightarrow t: z_2) \vdash z_1 = z_2. $ [.12] 0 MINT ₂	132.13
$\square\square\square\square\forall tt: z_1 \Leftrightarrow t=x \lor t=y. $	132.14
$\square\square\square t: z_1 \Leftrightarrow t=x \lor t=y. \qquad [.14] \ \forall_1 \text{INST}$	132.15
$\square\square\square\square\forall tt: z_2 \Leftrightarrow t=x \lor t=y. $ [,11] TAUT	132.16
$\square\square\square t: z_2 \Leftrightarrow t = x \lor t = y. $ [.16] \forall_1 INST	132.17
$\square\square\square t: z_1 \Leftrightarrow t: z_2. \qquad \qquad [.15] \ [.17] \ \text{TAUT}$	132.18
$\square\square\square\square\forall tt: z_1 \Leftrightarrow t: z_2. \hspace{1cm} [.18] \ \forall_1 \text{GEN}$	132.19
$\Box \Box \Box z_1 = z_2$. [.13] [.9] [.11] [.19] TAUT	132.20
QED	
QED	
$\square\square\square\forall z_1\forall z_2(z_1:\mathscr{H} \land \forall tt:z_1 \Leftrightarrow t=x \lor t=y) \vdash (z_2:\mathscr{H} \land \forall tt:z_2 \Leftrightarrow t=x \lor t=y) \vdash z_1=z_2[.8] \text{ UGEN}_2$	132.21
$\square\square\exists!zz:\mathcal{H} \land \forall tt:z \Leftrightarrow t=x \lor t=y. $ [.7] [.21] \exists !INTROS	132.22
QED	
□ ■. QED	
$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t = x \lor t = y. $ [.1] UGEN ₂	132.23
U. QED	

Uses Axioms: 3, 5, 9, 12

133	$\exists ! ff : \mathcal{H} \rightarrow \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t = x \lor t = y) \Leftrightarrow (f x) y = z . \dots \dots$
	¶
133.1	$\Box \forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz) \vdash \exists !ff : \mathcal{H} \rightarrow \mathcal{H} \land \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi xyz \Leftrightarrow (fx)y = z.$ THM
133.2	
133.2	
133.3	
	$\Box \exists ! f : \mathcal{H} \to \mathcal{H} \to \mathcal{H} \land \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t = x \lor t = y) \Leftrightarrow (f x) y = z \dots [.2] [.3] \text{ MP}$
100.1	■
	Uses Axioms: 3, 5, 6, 7, 8, 9, 12
134	$\exists \phi \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t = x \lor t = y) \Leftrightarrow x \phi y = z.$
	¶
134.1	$ \Box \forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \psi xyz) \vdash \exists \phi \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi xyz \Leftrightarrow x\phi y = z \dots $ $ $ $ $ $ $ $ $
134.2	$\Box(\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t = x \lor t = y) \vdash \exists \phi \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : z \Leftrightarrow t = x \lor t = y)$
	$=x \lor t=y) \Leftrightarrow x \phi y=z.$ [.1] $\forall z$ INST
134.3	$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t = x \lor t = y. $ THM
134.4	
	■QED
	Uses Axioms: 3, 5, 6, 7, 8, 9, 12
135	$\forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t = x \lor t = y) \Leftrightarrow x \text{ PAR } y = z.$
	¶
135.1	$\square \exists \phi \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t = x \lor t = y) \Leftrightarrow x \phi y = z. $ THM
135.2	
	■QED
	Uses Axioms: 3, 5, 6, 7, 8, 9, 12
136	$\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \text{ PAR } y : \mathcal{H} \land \forall t t : x \text{ PAR } y \Leftrightarrow t = x \lor t = y. \qquad \text{THEOREM of Pairing 1}$
100	¶DEM
136.1	$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash x \text{ PAR } y: \mathcal{H}.$ LEM
136.2	$\square x:\mathcal{H}.$ [.1] ASM
136.3	

$\square\square \square y: \mathcal{H}$. [.3] ASM	136.4
$\square\square\square\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H} \land \forall tt:z\Leftrightarrow t=x\lor t=y.$ THM	136.5
$\square\square\square\forall x\forall y\forall zx: \mathcal{H}\vdash y: \mathcal{H}\vdash z: \mathcal{H}\vdash (\forall tt:z\Leftrightarrow t=x\vee t=y)\Leftrightarrow x\operatorname{PAR} y=z. \qquad \square\operatorname{DEF}$	136.6
$\square \square \square \forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \psi xyz) \vdash \forall \phi (\forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi xyz \Leftrightarrow x\phi y = x\phi y$	136.7
z) $\vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : \mathcal{H} \land \psi x y (x \phi y)$. THM	
$\square \square \square (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t = x \lor t = y) \vdash \forall \phi (\forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : x \forall x \forall y \forall x x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : x \forall x \forall x \forall x \forall x x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : x \forall x \forall x \forall x x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : x \forall x \forall x \forall x x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : x \forall x \forall x x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : x \forall x \forall x x : \mathcal{H} \vdash x x \forall x x x : \mathcal{H} \vdash x x x \forall x x x x x x x x x x x x x x x$	136.8
$z \Leftrightarrow t = x \lor t = y) \Leftrightarrow x\phi y = z) \vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x\phi y : \mathcal{H} \land \forall t t : x\phi y \Leftrightarrow t = x \lor t = y. \dots [.7] \ \forall z \text{INST}$	
$\square \square \square \forall \phi (\forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t = x \lor t = y) \Leftrightarrow x \phi y = z) \vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : $	136.9
$\mathscr{H} \wedge \forall tt: x\phi y \Leftrightarrow t=x \vee t=y.$ [.8] [.5] MP	
$\square\square\square(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash (\forall tt:z\Leftrightarrow t=x\vee t=y)\Leftrightarrow x\operatorname{PAR} y=z)\vdash \forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash$	136.10
$x \text{ PAR } y: \mathcal{H} \land \forall tt: x \text{ PAR } y \Leftrightarrow t = x \lor t = y.$ [.9] $\forall_2 \text{ INST}$	
$\square\square\square\forall x\forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash x \text{ PAR } y: \mathcal{H} \land \forall tt: x \text{ PAR } y \Leftrightarrow t=x \lor t=yfstop \dots [.10] \text{ [.6] MP}$	136.11
$\square\square\square x \operatorname{PAR} y: \mathcal{H} \wedge \forall tt: x \operatorname{PAR} y \Leftrightarrow t = x \vee t = y. \qquad [.11] [.2] [.4] \operatorname{2MINT}_{2}$	136.12
□□ ■.	
□■	
$\Box \forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash x \text{ PAR } y : \mathcal{H} \land \forall tt : x \text{ PAR } y \Leftrightarrow t = x \lor t = y. $ [.1] UGEN ₂	136.13
QED	100110
Uses Axioms: 3, 5, 6, 7, 8, 9, 12	
0000111110011100. 0, 0, 0, 0, 0, 0, 0, 0	
$\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \text{ PAR } y : \mathcal{H}.$ THEOREM of Pairing 2	137
¶DEM	
$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash x \text{ PAR } y: \mathcal{H}. $ LEM	137.1
□¶	
$\Box x: \mathscr{H}$. [.1] ASM	137.2
$\Box \Box y: \mathcal{H} \vdash x \operatorname{PAR} y: \mathcal{H}.$ LEM	137.3
	101.0
$\square\square y:\mathcal{H}. \tag{3} ASM$	137.4
$\Box\Box\Box\forall x\forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash x \text{ PAR } y: \mathcal{H} \land \forall tt: x \text{ PAR } y \Leftrightarrow t=x \lor t=y. $ THM	137.5
$\Box\Box\Box x \text{PAR } y : \mathcal{H} \land \forall tt : x \text{PAR } y \Leftrightarrow t = x \lor t = y. $ $[.5] [.2] [.4] \text{ 2MINT}_2$	137.6
$\Box\Box x PAR y: \mathcal{H} \land \forall t : x PAR y : t - x \lor t - y. \qquad [.6] [.2] [.4] 2^{MIN 12}$ $\Box\Box x PAR y: \mathcal{H} \qquad [.6] TAUT$	
	137.7
□ ■.	
QED	
$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \text{ PAR } y : \mathcal{H}. $ [.1] UGEN ₂	137.8
■. QED	
Uses Axioms: 3, 5, 6, 7, 8, 9, 12	
Manager (D.: 0	100
, ,	138
¶	100 -
$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash \forall tt: x \operatorname{PAR} y \Leftrightarrow t = x \lor t = y. $ LEM	138.1
□¶DEM	
$\square x: \mathcal{H}.$ [.1] ASM	138.2
$\Box \Box y : \mathcal{H} \vdash \forall tt : x \operatorname{PAR} y \Leftrightarrow t = x \lor t = y. $ LEM	138.3
□□¶.	

138.4	□□□ <i>y</i> : ℋ
138.5	$\square\square \square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \text{ PAR } y : \mathcal{H} \land \forall t t : x \text{ PAR } y \Leftrightarrow t = x \lor t = y. $ THM
138.6	$\square\square x \text{PAR } y : \mathcal{H} \land \forall t t : x \text{PAR } y \Leftrightarrow t = x \lor t = y. \qquad [.5] [.2] [.4] \text{ 2MINT}_2$
138.7	$\Box\Box\forall tt: x \operatorname{PAR} y \Leftrightarrow t = x \lor t = y. $ [.6] TAUT
	□□■.
	□ ■. QED
138.8	
100.0	QED
	Uses Axioms: 3, 5, 6, 7, 8, 9, 12
	0,0,0,0,1,0,0,1
139	$\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash x : x \text{ PAR } y \land y : x \text{ PAR } y.$ Theorem of Pairing 4
	\P DEM
139.1	$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash x \text{ PAR } y: \mathcal{H}.$ LEM
	□¶
139.2	$\square \square x : \mathcal{H}.$ [.1] ASM
139.3	$\Box \Box y : \mathcal{H} \vdash x \text{ PAR } y : \mathcal{H}.$ LEM
	□□¶DEM
139.4	□□□ y: ℋ[3] ASM
139.5	$\square\square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \forall t t : x PAR y \Leftrightarrow t = x \lor t = y. $ THM
139.6	$\square\square \forall tt: x \text{ PAR } y \Leftrightarrow t = x \lor t = y. \qquad [.5] [.2] [.4] \text{ 2MINT}_2$
139.7	$\square\square x : x \operatorname{PAR} y \Leftrightarrow x = x \lor x = y. \qquad [.6] \forall_1 \operatorname{INST}$
139.8	
139.9	$\square\square x:x \text{ PAR } y.$ [.7] [.8] TAUT
139.10	$\square\square y : x \operatorname{PAR} y \Leftrightarrow y = x \lor y = y. \qquad [.6] \forall_1 \operatorname{INST}$
139.11	$\square\square y = y$.
139.12	$\square\square x \times PAR y \wedge y \times PAR y. \qquad [.9] [.10] [.11] \text{ TAUT}$
	QED
	□ ■.
139.13	$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x : x PAR y \land y : x PAR y. $ [.1] UGEN ₂
	■
	Uses Axioms: 3, 4, 5, 6, 7, 8, 9, 12
140	$\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash x \text{ PAR } y = y \text{ PAR } x.$ THEOREM of the Commutative Pairing
	\P
140.1	$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash x \text{ PAR } y = y \text{ PAR } x. $ LEM
	□¶DEM
140.2	$\square x: \mathcal{H}$. [.1] ASM
140.3	$\Box \Box y: \mathcal{H} \vdash x \operatorname{PAR} y = y \operatorname{PAR} x. $ LEM
	□ □ ¶
140.4	□□□ y: ℋ[.3] ASM
140.5	$\square\square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y. $ AXM
	$\square\square \forall a \forall ba: \mathcal{H} \vdash b: \mathcal{H} \vdash (\forall tt: a \Leftrightarrow t: b) \vdash a = b. \qquad [.5] \text{ QNT}$
140.7	$\Box\Box\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash x \text{ PAR } y: \mathcal{H}.$ THM

$\Box\Box\Box\forall a\forall ba:\mathcal{H}\vdash b:\mathcal{H}\vdash a$ PAR $b:\mathcal{H}$ [.7] QNT	140.8
$\square\square x \operatorname{PAR} y : \mathscr{H}. \qquad [.8] [.2] [.4] _{2} \operatorname{MINT}_{2}$	140.9
$\square\square y PAR x: \mathcal{H}. \qquad [.8] [.4] [.2] _2 MINT_2$	140.10
$\square\square\square(\forall tt:x \text{PAR } y \Leftrightarrow t:y \text{PAR } x) \vdash x \text{PAR } y = y \text{PAR } x. \qquad [.6] [.9] [.10] \text{ 2MINT}_2$	140.11
$\Box\Box\Box\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash\forall tt: x\operatorname{PAR} y \Leftrightarrow t=x \lor t=y. $ THM	140.12
$\square\square\square \forall a \forall b a : \mathcal{H} \vdash b : \mathcal{H} \vdash \forall tt : a \text{ PAR } b \Leftrightarrow t = a \lor t = b. $	140.13
$\square\square\square\forall tt:x \text{ PAR } y \Leftrightarrow t=x \lor t=y. \qquad \qquad [.13] \ [.2] \ [.4] \ _2 \text{MINT}_2$	140.14
$\Box\Box t : x \operatorname{PAR} y \Leftrightarrow t = x \lor t = y. \qquad [.14] \ \forall_1 \operatorname{INST}$	140.15
$\square\square \forall tt: y \text{ PAR } x \Leftrightarrow t = y \lor t = x. \qquad [.13] [.4] [.2] \text{ 2MINT}_2$	140.16
$\Box\Box t: y \operatorname{PAR} x \Leftrightarrow t = y \lor t = x. \qquad [.16] \ \forall_1 \operatorname{INST}$	140.17
$\square\square t: x \operatorname{PAR} y \Leftrightarrow t: y \operatorname{PAR} x. \qquad [.15] [.17] \operatorname{TAUT}$	140.18
$\Box\Box\Box\forall tt:x \operatorname{PAR} y \Leftrightarrow t=x \lor t=y. \tag{.18} \forall_{1} \operatorname{GEN}$	140.19
$\square\square x \operatorname{PAR} y = y \operatorname{PAR} x. \qquad [.11] [.19] \operatorname{MP}$	140.20
□ ■.	
□ ■. QED	
$ \exists \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \text{ PAR } y = y \text{ PAR } x. $ [.1] UGEN ₂	140.21
Q ED	
Uses Axioms: 3, 4, 5, 6, 7, 8, 9, 12	

For all sets x, one can exhibit a unique set y which satisfies $\forall tt: y \Leftrightarrow \exists x_1 x_1 : x \land t : x_1$. PROOF: Existence. Guaranteed by the union axiom. Uniqueness. Straightforward. QED.

Imagine unpacking all elements of a box, and forming a new box containing all elements of their elements. We name this realizer \cup . Together with *pairing*, we are able to construct all the finite sets of our intuition.

$\forall xx: \mathscr{H} \vdash \exists !yy: \mathscr{H} \land \forall tt: y \Leftrightarrow \exists x_1x_1: x \land t: x_1. \dots $ Theorem of Implicit Upper Union	141
\P	
$\Box x : \mathcal{H} \vdash \exists ! yy : \mathcal{H} \land \forall tt : y \Leftrightarrow \exists x_1 x_1 : x \land t : x_1. $ LEM	141.1
□¶	
$\square \square x : \mathcal{H}$. [.1] ASM	141.2
$\square\square\forall xx: \mathscr{H} \vdash \exists yy: \mathscr{H} \land \forall y_1y_1: y \Leftrightarrow \exists x_1x_1: x \land y_1: x_1. $ AXM	141.3
$\square \square \exists yy: \mathcal{H} \land \forall y_1 y_1: y \Leftrightarrow \exists x_1 x_1: x \land y_1: x_1. $ [.3] [.2] $_1$ MINT ₁	141.4
$\square \square \exists yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \exists x_1x_1: x \land t: x_1. $ [.4] QNT	141.5
$\square\square(y_1:\mathcal{H} \land \forall tt:y_1 \Leftrightarrow \exists x_1x_1:x \land t:x_1) \vdash (y_2:\mathcal{H} \land \forall tt:y_2 \Leftrightarrow \exists x_1x_1:x \land t:x_1) \vdash y_1 = y_2. \dots \dots \text{LEM}$	141.6
□ ¶	
$\square\square\square y_1: \mathscr{H} \land \forall tt: y_1 \Leftrightarrow \exists x_1 x_1: x \land t: x_1. $ [.6] ASM	141.7
$\square\square\square(y_2:\mathcal{H} \land \forall tt: y_2 \Leftrightarrow \exists x_1x_1: x \land t: x_1) \vdash y_1 = y_2.$ LEM	141.8
□□□¶	
$\square\square\square y_2: \mathscr{H} \land \forall tt: y_2 \Leftrightarrow \exists x_1 x_1: x \land t: x_1. $ [.8] ASM	141.9
$\square \square \square \square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y. $ AXM	141.10
$\square\square\square \square y_1: \mathscr{H} \vdash y_2: \mathscr{H} \vdash (\forall tt: y_1 \Leftrightarrow t: y_2) \vdash y_1 = y_2. \qquad [.10]_0 \text{MINT}_2$	141.11
$\square\square\square \forall tt: y_1 \Leftrightarrow \exists x_1 x_1: x \land t: x_1. $ [.7] TAUT	141.12
$\square\square\square t : y_1 \Leftrightarrow \exists x_1 x_1 : x \land t : x_1. $ [.12] $\forall_1 \text{INST}$	141.13
$\square\square\square \forall tt: y_2 \Leftrightarrow \exists x_1x_1: x \land t: x_1. \qquad \qquad [.9] \text{ TAUT}$	141.14

141.15 141.16	
141.17	$\square\square\square \forall tt : y_1 \Leftrightarrow t : y_2. \qquad \qquad [.16] \ \forall_1 \text{Gen}$
141.18	$\square\square\square y_1 = y_2. \qquad \qquad [.11] \ [.7] \ [.9] \ [.17] \ \text{Taut}$
	QED
	□□ ■. QED
141.19	$\square\square\forall y_1\forall y_2(y_1:\mathscr{H}\wedge\forall tt:y_1\Leftrightarrow\exists x_1x_1:x\wedge t:x_1)\vdash(y_2:\mathscr{H}\wedge\forall tt:y_2\Leftrightarrow\exists x_1x_1:x\wedge t:x_1)\vdash y_1=y_2.\ldots$
	[.6] UGEN ₂
141.20	$\square\square\exists!yy:\mathscr{H} \land \forall tt:y \Leftrightarrow \exists x_1x_1:x \land t:x_1. \qquad \qquad [.5] \ [.19] \ \exists! \text{Intros}$
	□ ■. QED
141.21	$\square \forall xx: \mathcal{H} \vdash \exists !yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \exists x_1x_1: x \land t: x_1. $ [.1] $\forall_1 \text{GEN}$
	■QED
	Uses Axioms: 3, 5, 9, 13
142	$\forall xx: \mathcal{H} \vdash x: \mathcal{H} \land \forall tt: x \Leftrightarrow \exists x_1 x_1 : x \land t: x_1.$ DEFINITION of Upper Union
142	¶DEFINITION of Opper Outon
142.1	$\Box x : \mathcal{H} \vdash \bigcup x : \mathcal{H} \land \forall tt : \bigcup x \Leftrightarrow \exists x_1 x_1 : x \land t : x_1 . \qquad \qquad \text{LEM}$
142.1	
142.2	$\square x:\mathcal{H}$. [.1] ASM
142.2	$\Box \forall xx: \mathcal{H} \vdash \exists !yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \exists x_1 x_1 : x \land t: x_1. $ THM
142.4	$\Box \forall \psi(\forall xx: \mathcal{H} \vdash \exists ! yy: \mathcal{H} \land \psi xy) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash \psi xy \Leftrightarrow \phi x = y. $ Thm
142.5	$\Box (\forall xx: \mathcal{H} \vdash \exists ! yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1 : x \land t: x_2) \vdash \exists x_1x_1 : x \land t: x_2 : x \land t: x \land t: x_2 : x \land t: x \lor t: $
142.0	x_1) $\Leftrightarrow \phi x = y$
142.6	$\Box \exists \phi \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : y \Leftrightarrow \exists x_1 x_1 : x \land t : x_1) \Leftrightarrow \phi x = y. $ [.5] [.3] MP
142.7	$\Box \exists \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : y \Leftrightarrow \exists x_1 x_1 : x \land t : x_1) \Leftrightarrow \bigcup x = y. $ [.6] 2NAME
142.8	$\Box \forall \psi (\forall xx: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \psi xy) \vdash \forall \phi (\forall x \forall yx: \mathcal{H} \vdash \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx: \mathcal{H} \vdash \phi x: \mathcal{H} \land $
142.0	$\psi x(\phi x)$
142.9	$\Box \Box (\forall xx: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \exists x_1x_1: x \land t: x_1) \vdash \forall \phi (\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1: x \land t: x_1)) \vdash \forall \phi (\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \exists x_1x_1: x \land t: x_1)))$
112.0	x_1) $\Leftrightarrow \phi x = y$) $\vdash \forall xx : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall tt : \phi x \Leftrightarrow \exists x_1 x_1 : x \land t : x_1$ [.8] $\forall z$ INST
142.10	$\Box \forall \phi (\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall tt : y \Leftrightarrow \exists x_1 x_1 : x \land t : x_1) \Leftrightarrow \phi x = y) \vdash \forall x x : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall tt : \phi x \Leftrightarrow \exists x_1 x_1 : x \land t : x_2 \Leftrightarrow \phi x = y \vdash \forall x x : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall tt : \phi x \Leftrightarrow \exists x_1 x_2 \Leftrightarrow \phi x = y \vdash \forall x x : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall t x : \phi x \Leftrightarrow \exists x_1 x_2 \Leftrightarrow \phi x = y \vdash \forall x x : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall t x : \phi x \Leftrightarrow \exists x_1 x_2 \Leftrightarrow \phi x = y \vdash \forall x x : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall t x : \phi x \Leftrightarrow \exists x_1 x_2 \Leftrightarrow \phi x = y \vdash \forall x x : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall t x : \phi x \Leftrightarrow \exists x_1 x_2 \Leftrightarrow \phi x = y \vdash \forall x x : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall x x : \mathcal{H} \vdash \phi x \Leftrightarrow \forall x x_1 x_2 \Leftrightarrow \phi x = y \vdash \forall x x : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall x x : \mathcal{H} \vdash \phi x \Leftrightarrow \forall x x_1 x_2 \Leftrightarrow \phi x = y \vdash \forall x x : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall x x : \mathcal{H} \vdash \phi x \Leftrightarrow \forall x x_1 x_2 \Leftrightarrow \phi x \Rightarrow x$
	$x_1:x \wedge t:x_1$. [.9] [.3] MP
142.11	$\Box\Box(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash(\forall tt:y\Leftrightarrow \exists x_1x_1:x\wedge t:x_1)\Leftrightarrow \bigcup x=y)\vdash \forall xx:\mathcal{H}\vdash \bigcup x:\mathcal{H}\wedge\forall tt: \bigcup x\Leftrightarrow \exists x_1x_1:x\wedge t:x_1\Rightarrow \bigcup x=y$
	$x \wedge t : x_1$. [.10] $\forall z \text{INST}$
142.12	$\Box \Box \forall xx: \mathcal{H} \vdash \bigcup x: \mathcal{H} \land \forall tt: \bigcup x \Leftrightarrow \exists x_1x_1: x \land t: x_1. \qquad \qquad [.11] [.7] \text{ MP}$
142.13	$\square \square \cup x: \mathscr{H} \wedge \forall tt: \cup x \Leftrightarrow \exists x_1 x_1 : x \wedge t: x_1. \qquad [.12] [.2] {}_1 \text{MINT}_1$
	□■
142.14	
	■QED
	Uses Axioms: 3, 5, 6, 7, 8, 9, 13

For all sets x,y, one can exhibit a unique set z which satisfies $\forall tt:z \Leftrightarrow t:x \lor t:y$. PROOF: *Existence*. The set formed by $\bigcup x PAR y$ has the desired property. *Uniqueness*. Straightforward. QED. Imagine forming a new box by packing all contents of two old ones. We name this realizer \cup .

$\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t : x \lor t : y . \dots$	Theorem of Implicit Lower Union	143
¶	DEM	
$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash \exists! zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t: x \lor t: y. \dots$	LEM	143.1
□¶	DEM	
$\square\square x:\mathcal{H}$.	[.1] ASM	143.2
$\square \square y: \mathcal{H} \vdash \exists! zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t: x \lor t: y. \dots$	LEM	143.3
□□¶	DEM	
□□□ y: ℋ .	[. 3] ASM	143.4
$\square\square\square\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash x\operatorname{PAR}y:\mathcal{H}.$	тнм	143.5
$\Box\Box\Box x \operatorname{PAR} y:\mathcal{H}.$	$\dots \dots [.5] [.2] [.4]_{2}$ MINT ₂	143.6
$\square \square \square \forall xx: \mathcal{H} \vdash \bigcup x: \mathcal{H} \land \forall tt: \bigcup x \Leftrightarrow \exists x_1 x_1: x \land t: x_1. \dots$	DEF	143.7
$\square \square \square \cup x \operatorname{PAR} y : \mathcal{H} \wedge \forall tt : \bigcup x \operatorname{PAR} y \Leftrightarrow \exists x_1 x_1 : x \operatorname{PAR} y \wedge t : x_1.$	$\dots \dots [.7]$ [.6] $_1$ MINT $_1$	143.8
$\square \square \square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \forall t t : x \text{ PAR } y \Leftrightarrow t = x \lor t = y . \dots$	тнм	143.9
$\square \square \square \forall tt: x \text{ PAR } y \Leftrightarrow t = x \lor t = y.$	[.9] [.2] [.4] ₂ MINT ₂	143.10
$\Box\Box t: \bigcup x \operatorname{PAR} y \vdash t: x \lor t: y.$	LEM	143.11
□□□¶	DEM	
$\square\square\square \Box t: \bigcup x \operatorname{PAR} y.$	[.11] ASM	143.12
$\square \square \square \square \forall tt: \bigcup x \operatorname{PAR} y \Leftrightarrow \exists x_1 x_1 : x \operatorname{PAR} y \wedge t : x_1. \ldots$	[.8] TAUT	143.13
$\square \square \square \square t : \bigcup x \operatorname{PAR} y \Leftrightarrow \exists x_1 x_1 : x \operatorname{PAR} y \wedge t : x_1. \ldots$	[.13] \forall_1 INST	143.14
$\square\square\square\square\exists x_1x_1:x \text{ PAR } y \land t:x_1.$	[.14] [.12] TAUT	143.15
$\square\square\square\square x_1:x \operatorname{PAR} y \wedge t:x_1.$	[.15] ∃ ₁ INST	143.16
$\square \square \square \square x_1 : x \text{ PAR } y \Leftrightarrow x_1 = x \lor x_1 = y.$	[.10] \forall_1 INST	143.17
$\square\square\square\square x_1 = x \vee x_1 = y.$	[.17] [.16] TAUT	143.18
$\square\square\square\square x_1 = x \vdash t : x \lor t : y.$	LEM	143.19
□□□□¶	DEM	
$\square\square\square\square x_1 = x$.	[.19] ASM	143.20
$\square\square\square\square t: x_1 \lor t: y.$	[.16] TAUT	143.21
$\Box\Box\Box\Box t:x \lor t:y.$	[.20] [.21] SUB	143.22
	QED	
$\square\square\square\square x_1 = y \vdash t: x \lor t: y.$	LEM	143.23
□□□□¶	DEM	
$\square\square\square\square\square x_1 = y$	[.23] ASM	143.24
$\square\square\square\square t:x \lor t:x_1.$	[.16] TAUT	143.25
$\Box\Box\Box\Box t:x \lor t:y.$	[.24] [.25] SUB	143.26
	QED	
$\Box\Box\Box t:x \lor t:y.$	[.18] [.19] [.23] TAUT	143.27
	QED	
$\Box\Box t : x \lor t : y \vdash t : \bigcup x \operatorname{PAR} y.$	LEM	143.28
□□□¶	DEM	
$\Box\Box\Box t:x \lor t:y.$		143.29
$\square\square\square\square\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash x:x\operatorname{PAR}y\wedge y:x\operatorname{PAR}y.$	тнм	143.30
$\square\square\square\square x : x PAR y \wedge y : x PAR y.$	[.30] [.2] [.4] $_2$ MINT $_2$	143.31
$\Box\Box\Box t:x\vdash t: x $ PAR v .	LEM	143.32

143.33	□□□□ <i>t:x</i> . [.32] ASM
143.34	$\square\square\square\square x : x \operatorname{PAR} y \wedge t : x. \qquad [.31][.33] \operatorname{TAUT}$
143.35	$\square\square\square\square\exists x_1x_1:x \text{ PAR } y \land t:x_1. \qquad \qquad [.34] \exists_1 \text{ GEN}$
143.36	$\square\square\square t: \bigcup x \operatorname{PAR} y. \qquad \qquad [.14] [.35] \operatorname{TAUT}$
	□□□ ■. QED
143.37	$\Box\Box\Box t: y \vdash t: \bigcup x \operatorname{PAR} y.$ LEM
	□□□ ¶
143.38	□□□□ <i>t:y</i> . [.37] ASM
143.39	
143.40	$\square\square\square\exists x_1x_1:x \text{PAR } y \land t:x_1. \qquad \qquad [.39] \exists_1 \text{GEN}$
143.41	$\Box\Box\Box t: \bigcup x \operatorname{PAR} y.$ [.14] [.40] TAUT
	QED
143.42	$\square\square\square t: \cup x \operatorname{PAR} y. \qquad \qquad [.29] \ [.32] \ [.37] \ \operatorname{TAUT}$
	□□ ■. QED
143.43	$\Box\Box t: \bigcup x \operatorname{PAR} y \Leftrightarrow t: x \lor t: y. \qquad \qquad [.11] [.28] \operatorname{TAUT}$
143.44	$\Box\Box\forall tt: \bigcup x \operatorname{PAR} y \Leftrightarrow t: x \lor t: y. \qquad [.43] \ \forall_1 \operatorname{GEN}$
143.45	$\square\square\square \cup x \operatorname{PAR} y : \mathcal{H} \wedge \forall tt : \cup x \operatorname{PAR} y \Leftrightarrow t : x \vee t : y. \qquad [.8] [.44] \operatorname{TAUT}$
143.46	$\square\square\square\exists zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t: x \lor t: y. \qquad [.45] \exists_{1} GEN$
143.47	$\square\square\square(z_1:\mathcal{H} \land \forall tt:z_1 \Leftrightarrow t:x \lor t:y) \vdash (z_2:\mathcal{H} \land \forall tt:z_2 \Leftrightarrow t:x \lor t:y) \vdash z_1 = z_2. \dots \square$
	□□□¶
143.48	$\square\square\square z_1: \mathscr{H} \land \forall tt: z_1 \Leftrightarrow t: x \lor t: y. \qquad [.47] \text{ ASM}$
143.49	$\square\square\square(z_2:\mathcal{H} \land \forall tt:z_2 \Leftrightarrow t:x \lor t:y) \vdash z_1 = z_2.$ LEM
143.50	$\Box\Box\Box\Box z_2: \mathscr{H} \land \forall tt: z_2 \Leftrightarrow t: x \lor t: y. $ [.49] ASM
143.51	$\square\square\square\square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y. $ AXM
143.52	$\square\square\square\square z_1: \mathcal{H} \vdash z_2: \mathcal{H} \vdash (\forall tt: z_1 \Leftrightarrow t: z_2) \vdash z_1 = z_2. $ [.51] $_0$ MINT ₂
143.53	$\square\square\square\square\forall tt: z_1 \Leftrightarrow t: x \lor t: y. \qquad [.48] \text{ TAUT}$
143.54	$\square\square\square\square\forall tt: z_2 \Leftrightarrow t: x \lor t: y. \qquad [.50] \text{ TAUT}$
143.55	$\square\square\square t: z_1 \Leftrightarrow t: x \lor t: y. \qquad [.53] \ \forall_1 \text{INST}$
143.56	$\square\square\square t: z_2 \Leftrightarrow t: x \lor t: y. \qquad [.54] \forall_1 \text{INST}$
143.57	$\square\square\square\square t: z_1 \Leftrightarrow t: z_2.$ [.55] [.56] TAUT
143.58	$\square\square\square\square\forall tt: z_1 \Leftrightarrow t: z_2. \qquad \qquad [.57] \ \forall_1 \text{GEN}$
143.59	$\Box\Box\Box z_1 = z_2.$ [.52] [.48] [.50] [.58] TAUT
	QED
	□□□ ■. QED
143.60	$\square\square\square\forall z_1\forall z_2(z_1:\mathcal{H} \land \forall tt:z_1 \Leftrightarrow t:x \lor t:y) \vdash (z_2:\mathcal{H} \land \forall tt:z_2 \Leftrightarrow t:x \lor t:y) \vdash z_1 = z_2.\dots[.47] \text{ UGEN}_2$
143.61	$\square\square\exists!zz:\mathcal{H} \land \forall tt:z \Leftrightarrow t:x \lor t:y. \qquad \qquad [.46] \ [.60] \ \exists! \text{Intros}$
	□□ ■. QED
	□ ■. QED
143.62	$\square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t : x \lor t : y. \qquad [.1] \text{ UGEN}_2$
	QED
	Uses Axioms: 3, 4, 5, 6, 7, 8, 9, 12, 13

$\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash x \cup y: \mathcal{H} \land \forall tt: x \cup y \Leftrightarrow t: x \lor t: y.$ Definition of Lower Union	144
¶	
$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash x \cup y: \mathcal{H} \land \forall tt: x \cup y \Leftrightarrow t: x \lor t: y. $ LEM	144.1
□¶	
$\square x:\mathcal{H}$. [.1] ASM	144.2
$\Box \Box y : \mathcal{H} \vdash x \cup y : \mathcal{H} \land \forall t t : x \cup y \Leftrightarrow t : x \lor t : y. $ LEM	144.3
$\square\square y : \mathcal{H}$. [.3] ASM	144.4
$\square\square\square\forall x\forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash \exists !zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t: x \lor t: y. $ THM	144.5
$\square \square \square \forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz) \vdash \exists \phi \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi xyz \Leftrightarrow x\phi y = 0$	144.6
z.	
$ \Box \Box \Box (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \lor t : y) \vdash \exists \phi \forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : z \Leftrightarrow t : x \lor t : y)) $	144.7
$t:x \lor t:y) \Leftrightarrow x\phi y=z.$ [.6] \forall_2 INST	
$ \Box \Box \exists \phi \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t : x \lor t : y) \Leftrightarrow x \phi y = z. $	144.8
	144.9
$\square \square \square \forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz) \vdash \forall \phi (\forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi xyz \Leftrightarrow x\phi y = 0)$	144.10
z) $\vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : \mathcal{H} \land \psi x y (x \phi y)$. Thm	
$\square \square \square (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \lor t : y) \vdash \forall \phi (\forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : z \Rightarrow t : x \lor t : y)))$	144.11
$\Leftrightarrow t: x \vee t: y) \Leftrightarrow x \phi y = z) \vdash \forall x \forall y x: \mathcal{H} \vdash y: \mathcal{H} \vdash x \phi y: \mathcal{H} \land \forall t t: x \phi y \Leftrightarrow t: x \vee t: y. \dots [.10] \ \forall_2 \text{INST}$	
$\square \square \square \forall \phi (\forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t : x \lor t : y) \Leftrightarrow x \phi y = z) \vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : x \phi y = z)$	144.12
$\mathscr{H} \wedge \forall tt: x \phi y \Leftrightarrow t: x \vee t: y.$ [.11] [.5] MP	
$\square \square \square (\forall x \forall y \forall zx: \mathcal{H} \vdash y: \mathcal{H} \vdash z: \mathcal{H} \vdash (\forall tt: z \Leftrightarrow t: x \lor t: y) \Leftrightarrow x \cup y = z) \vdash \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash x \cup y: \mathcal{H} \land x \cup y: \mathcal{H} $	144.13
$\forall tt: x \cup y \Leftrightarrow t: x \lor t:y.$ [.12] \forall_2 INST	
$ \Box\Box\Box\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash x\cup y: \mathcal{H}\land\forall tt: x\cup y\Leftrightarrow t: x\lor t: y. \qquad \qquad [.13] \ [.9] \ \mathrm{MP} $	144.14
$\square\square\square x \cup y : \mathcal{H} \land \forall tt : x \cup y \Leftrightarrow t : x \lor t : y. \qquad \qquad [.14] \ [.2] \ [.4] \ _2 \text{MINT}_2$	144.15
□□ ■.	
□ ■. QED	
	144.16
QED .	

§2.3 Sets and Operations: Power Set and Intersection

x = y iff. every inhabitant of x inhabits y. PROOF: There exists, trivially, a formula ψ whose image under x,y is logically equivalent to $\forall tt: x \vdash t:y$. By virtue of naming, it may be so defined. QED.

145	$\forall a \forall ba = b \Leftrightarrow \forall tt: a \vdash t:b.$ Definition of Subtype
	\P DEM
145.1	$\Box(\forall tt:x\vdash t:y) \Leftrightarrow \forall tt:x\vdash t:y.$
145.2	$\Box \exists \psi \psi xy \Leftrightarrow \forall tt: x \vdash t:y. $ [.1] $\exists_2 GEN$
145.3	$\Box x \subset y \Leftrightarrow \forall tt: x \vdash t:y. \qquad \qquad [.2] \text{ 2NAME}$
145.4	$\Box \forall a \forall b a \subset b \Leftrightarrow \forall tt: a \vdash t:b. $ $[.3] UGEN_2$
	I. QED
	Uses Axioms: 5
146	$\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x = y \vdash y = x \vdash x = y.$ Theorem of Subset Equality
	¶DEM
146.1	$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash x \subset y \vdash y \subset x \vdash x = y. $ LEM
	□¶
146.2	$\square x: \mathcal{H}.$ [.1] ASM
146.3	$\Box \Box y: \mathscr{H} \vdash x \subset y \vdash y \subset x \vdash x = y. $ LEM
	□□¶DEM
146.4	□□□ y: ℋ[3] ASM
146.5	$\square\square x - y \vdash y - x \vdash x = y.$ LEM
	□□□¶DEM
146.6	$\square\square\square x \subset y$. [5] ASM
146.7	$\square\square\square y \subset x \vdash x = y.$ LEM
	□□□¶DEM
146.8	$\square\square\square y \in x. \qquad [.7] \text{ ASM}$
146.9	$\square\square\square\square \forall a \forall ba \subset b \Leftrightarrow \forall tt: a \vdash t:b.$
146.10	$\square\square\square\square x \subset y \Leftrightarrow \forall tt: x \vdash t: y. \qquad [.9] \ 0 \text{MINT}_2$
146.11	$\square\square\square \neg y \subset x \Leftrightarrow \forall tt: y \vdash t:x. \qquad [.9] \ 0 \text{MINT}_2$
146.12	□□□□□∀ <i>tt:x</i> ⊢ <i>t:y</i>
146.13	□□□□□∀ <i>tt:y</i> ⊢ <i>t:x</i> [.11] TAUT
146.14	$\square\square\square\square t:x\vdash t:y. \qquad \qquad [.12] \ \forall_1 \text{INST}$
146.15	$\square\square\square\square t{:}y{\vdash}t{:}x{.} \qquad \qquad [.13] \ \forall_1{\tt INST}$
146.16	$\square\square\square\square t: x \Leftrightarrow t: y. \qquad \qquad [.14] \ [.15] \ \text{TAUT}$
146.17	$\square\square\square\square\forall tt:x \Leftrightarrow t:y. \qquad \qquad [.16] \ \forall_1 \text{GEN}$
146.18	$\square \square \square \square \square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y. $ AXM
146.19	$\Box\Box\Box\Box x = y$
	QED
	□□ ■. QED

□□ ■. QED	
□ ■.	
	146.20
Uses Axioms: 5, 9	
$\forall xx: \mathcal{H} \vdash 0 = x.$ Theorem of a Natural Subset Relation 1	147
¶	
$\Box x: \mathscr{H} \vdash 0 \subset x. $ LEM	147.1
□¶DEM	
$\square \square x: \mathcal{H}.$ [.1] ASM	147.2
$\Box \Box \forall a \forall ba \subset b \Leftrightarrow \forall tt: a \vdash t:b.$	147.3
$\Box \Box 0 = x \Leftrightarrow \forall tt: 0 \vdash t:x. \qquad [.3]_{0} \text{MINT}_{2}$	147.4
$\Box\Box$ 0: $\mathscr{H} \land \forall x \neg x$:0.	147.5
$\square\square\forall x\neg x:0.$ [.5] TAUT	147.6
$\square \square \neg t:0.$ [.6] \forall_1 INST	147.7
□□ <i>t</i> :0⊢ <i>t</i> : <i>x</i>	147.8
$\square\square \forall tt: 0 \vdash t:x.$ [.8] \forall_1 GEN	147.9
□□ 0 = x . [.4] [.9] TAUT	147.10
□ ■. QED	
$\Box \forall xx: \mathscr{H} \vdash 0 = x. $ [.1] \forall_1 GEN	147.11
QED	
Uses Axioms: 1, 3, 5, 11	
$orall xx: \mathcal{H} \vdash x \subset x.$ Theorem of a Natural Subset Relation 2	148
¶DEM	
$\Box x: \mathcal{H} \vdash x \subset x. $ LEM	148.1
□¶	
$\square\square x:\mathcal{H}$. [.1] ASM	148.2
$\square\square \forall a \forall ba \in b \Leftrightarrow \forall tt: a \vdash t:b.$ DEF	148.3
$\Box \Box x \in x \Leftrightarrow \forall tt: x \vdash t: x. \qquad [.3]_{0} \text{MINT}_{2}$	148.4
$\Box t : x \vdash t : x$. TAUT	148.5
$\square\square \forall tt:x \vdash t:x.$ [.5] $\forall_1 \text{GEN}$	148.6
$\square x \subset x$. [4] [6] TAUT	148.7
□ ■.	
	148.8
■	
Uses Axioms: 5	

For all sets x, one can exhibit a unique set y which contains precisely all the subsets of x. PROOF: Existence. Guaranteed by the power set axiom. Uniqueness. Straightforward. QED.

Imagine packing all sub-boxes into a new box. We name this realizer ${\mathcal P}$. Together with infinite

application, we are able to construct the elementary cardinals of our intuition.

149	$\forall \textbf{\textit{xx}}: \mathcal{H} \vdash \exists ! \textbf{\textit{yy}}: \mathcal{H} \land \forall \textbf{\textit{tt}}: \textbf{\textit{y}} \Leftrightarrow \textbf{\textit{t}}: \mathcal{H} \land \textbf{\textit{t}} \in \textbf{\textit{x}}. $ Theorem of Implicit Power Set
149.1	$\Box x: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \forall tt: y \Leftrightarrow t \subset x.$ LEM
	□¶
149.2	$\square x : \mathcal{H}$. [.1] ASM
149.3	$\square \square \forall xx : \mathcal{H} \vdash \exists yy : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : \mathcal{H} \land \forall y_2 y_2 : y_1 \vdash y_2 : x. $ AXM
149.4	$\square \exists yy: \mathscr{H} \land \forall y_1y_1: y \Leftrightarrow y_1: \mathscr{H} \land \forall y_2y_2: y_1 \vdash y_2: x. \qquad [.3] [.2] _1 \text{MINT}_1$
149.5	$\Box \exists y: \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : \mathcal{H} \land \forall y_2 y_2 : y_1 \vdash y_2 : x. \qquad \qquad [.4] \exists_1 \text{INST}$
149.6	$\square \square \forall y_1 y_1 : y \Leftrightarrow y_1 : \mathcal{H} \land \forall y_2 y_2 : y_1 \vdash y_2 : x. \qquad [.5] \text{ TAUT}$
149.7	$\Box t : y \Leftrightarrow t : \mathcal{H} \land \forall y_2 y_2 : t \vdash y_2 : x. \qquad [.6] \forall_1 \text{INST}$
149.8	$\Box \forall a \forall ba \subset b \Leftrightarrow \forall tt: a \vdash t:b.$
149.9	$\Box \Box \forall a \forall b a = b \Leftrightarrow \forall y_2 y_2 : a \vdash y_2 : b. $ [.8] QNT
149.10	$\Box t = x \Leftrightarrow \forall y_2 y_2 : t \vdash y_2 : x. \qquad [.9] \text{ 0MINT}_2$
149.11	$\Box t : y \Leftrightarrow t : \mathcal{H} \land t \subset x. $ [.7] [.10] TAUT
149.12	$\Box \forall tt: y \Leftrightarrow t: \mathcal{H} \land t = x. $ [.11] $\forall_1 \in \mathbb{N}$
149.13	$\Box \exists y: \mathcal{H} \land \forall tt: y \Leftrightarrow t: \mathcal{H} \land t \subset x. $ [.5] [.12] TAUT
149.14	$\Box \exists yy: \mathcal{H} \land \forall tt: y \Leftrightarrow t: \mathcal{H} \land t \subset x. $ [.13] $\exists_1 \in \mathbb{N}$
149.15	$\Box\Box(y_1:\mathcal{H} \land \forall tt: y_1 \Leftrightarrow t:\mathcal{H} \land t \in x) \vdash (y_2:\mathcal{H} \land \forall tt: y_2 \Leftrightarrow t:\mathcal{H} \land t \in x) \vdash y_1 = y_2. \dots \text{LEM}$
149.16	$\Box\Box y_1: \mathcal{H} \land \forall t : y_1 \Leftrightarrow t : \mathcal{H} \land t \subset x. $ [.15] ASM
149.17	$\square\square(y_2:\mathcal{H} \land \forall tt: y_2 \Leftrightarrow t:\mathcal{H} \land t \subset x) \vdash y_1 = y_2.$ LEM
149.18	
149.19	$\square\square\square\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash (\forall tt: x\Leftrightarrow t: y)\vdash x=y.$
149.20	$\square\square\square y_1: \mathscr{H} \vdash y_2: \mathscr{H} \vdash (\forall tt: y_1 \Leftrightarrow t: y_2) \vdash y_1 = y_2. \qquad [.19] \ _{0} \text{MINT}_{2}$
149.21	$\square\square\square\forall tt: y_1 \Leftrightarrow t: \mathscr{H} \land t \in x. $ [.16] TAUT
149.22	$\square\square\square t: y_1 \Leftrightarrow t: \mathcal{H} \land t \in x. $ [.21] $\forall_1 \text{INST}$
149.23	$\square\square\square \forall tt: y_2 \Leftrightarrow t: \mathcal{H} \land t \subset x. $ [.18] TAUT
149.24	$\square\square\square t: y_2 \Leftrightarrow t: \mathcal{H} \land t \in x. $ [.23] $\forall_1 \text{INST}$
149.25	$\square\square t : y_1 \Leftrightarrow t : y_2. \qquad \qquad [.22] [.24] \text{ TAUT}$
149.26	$\square\square\square\forall tt: y_1 \Leftrightarrow t: y_2. \qquad \qquad [.25] \forall_1 \text{GEN}$
149.27	$\Box\Box y_1 = y_2$
	QED
	□□ ■. QED
149.28	$\square\square\forall y_1\forall y_2(y_1:\mathcal{H} \land \forall tt:y_1 \Leftrightarrow t:\mathcal{H} \land t = x) \vdash (y_2:\mathcal{H} \land \forall tt:y_2 \Leftrightarrow t:\mathcal{H} \land t = x) \vdash y_1 = y_2[.15] \text{ UGEN}_2$
149.29	$\Box \Box \exists !yy : \mathcal{H} \land \forall tt : y \Leftrightarrow t : \mathcal{H} \land t \in x. $ [.14] [.28] $\exists !$ INTROS
	QED
149.30	$\Box \forall xx: \mathcal{H} \vdash \exists !yy: \mathcal{H} \land \forall tt: y \Leftrightarrow t: \mathcal{H} \land t = x. $ [.1] $\forall_1 GEN$
	QED
	Uses Axioms: 3, 5, 9, 17

150 $\forall xx: \mathcal{H} \vdash \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x.$ Definition of the Power Set

$ \exists x : \mathcal{H} \vdash \mathcal{P}x : \mathcal{H} \land \forall tt : \mathcal{P}x \Leftrightarrow t : \mathcal{H} \land t \subset x. $	
□¶	
$\square x:\mathcal{H}.$ [.1]	
$ \exists \Box \forall xx : \mathcal{H} \vdash \exists ! yy : \mathcal{H} \land \forall tt : y \Leftrightarrow t : \mathcal{H} \land t \subset x. $	гнм
$ \exists \Box \forall \psi (\forall xx: \mathscr{H} \vdash \exists! yy: \mathscr{H} \land \psi xy) \vdash \exists \phi \forall x \forall yx: \mathscr{H} \vdash y: \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y. $	гнм
$ \exists \Box (\forall xx : \mathscr{H} \vdash \exists ! yy : \mathscr{H} \land \forall tt : y \Leftrightarrow t : \mathscr{H} \land t = x) \vdash \exists \phi \forall x \forall yx : \mathscr{H} \vdash y : \mathscr{H} \vdash (\forall tt : y \Leftrightarrow t : \mathscr{H} \land t = x) \Leftrightarrow \phi $	bx
=y[.4] ∀ ₂ I	NST
$ \exists \phi \forall x \forall y x : \mathscr{H} \vdash y : \mathscr{H} \vdash (\forall t t : y \Leftrightarrow t : \mathscr{H} \land t = x) \Leftrightarrow \phi x = y. $ [.5] [.3]	MP
	AME
$ \exists \Box \forall \psi (\forall xx : \mathscr{H} \vdash \exists ! yy : \mathscr{H} \land \psi xy) \vdash \forall \phi (\forall x \forall yx : \mathscr{H} \vdash y : \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx : \mathscr{H} \vdash \phi x : \mathscr{H} \land \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx : \mathscr{H} \vdash \phi x : \mathscr{H} \land \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx : \mathscr{H} \vdash \phi x : \mathscr{H} \land \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx : \mathscr{H} \vdash \phi x : \mathscr{H} \land \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx : \mathscr{H} \vdash \phi x : \mathscr{H} \land \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx : \mathscr{H} \vdash \phi x : \mathscr{H} \land \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx : \mathscr{H} \vdash \phi x : \mathscr{H} \land \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx : \mathscr{H} \vdash \phi x : \mathscr{H} \land \psi xy \Leftrightarrow \phi x = y) \vdash \forall xx : \mathscr{H} \vdash \phi x : \mathscr{H} \land \psi xy \Leftrightarrow \phi x = y : \psi x : \mathscr{H} \vdash \phi x : \mathscr{H} \land \psi xy \Leftrightarrow \phi x = y : \psi x : \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y : \psi x : \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y : \psi x : \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y : \psi x : \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y : \psi x : \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y : \psi x : \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y : \psi x : \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y : \psi x : \psi x : \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y : \psi x : \mathscr{H} \vdash \psi xy \Leftrightarrow \phi x = y : \psi x : \psi x$	\
$\psi x(\phi x)$.	гнм
$\exists \Box (\forall xx : \mathcal{H} \vdash \exists ! yy : \mathcal{H} \land \forall tt : y \Leftrightarrow t : \mathcal{H} \land t = x) \vdash \forall \phi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall tt : y \Leftrightarrow t : \mathcal{H} \land t = x) \Leftrightarrow$	фх
$=y) \vdash \forall xx: \mathscr{H} \vdash \phi x: \mathscr{H} \land \forall tt: \phi x \Leftrightarrow t: \mathscr{H} \land t = x. \qquad [.8] \ \forall_2 \square$	
$ \exists \Box \forall \phi (\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : y \Leftrightarrow t : \mathcal{H} \land t \subset x) \Leftrightarrow \phi x = y) \vdash \forall x x : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall t t : \phi x \Leftrightarrow t : \mathcal{H} \land \forall t \Rightarrow x \Rightarrow t : \mathcal{H} \land \forall t \Rightarrow x \Rightarrow t \Rightarrow$	
=x	
$\Box\Box(\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : y \Leftrightarrow t : \mathcal{H} \land t \subset x) \Leftrightarrow \mathcal{P} x = y) \vdash \forall x x : \mathcal{H} \vdash \mathcal{P} x : \mathcal{H} \land \forall t t : \mathcal{P} x \Leftrightarrow t : \mathcal{H} \land \forall t t : \mathcal{P} x \Leftrightarrow t : \mathcal{H} \land \forall t t : \mathcal{P} x \Leftrightarrow t : \mathcal{H} \land \forall t t \Leftrightarrow t : \mathcal{H} \land \forall t t : \mathcal{P} x \Leftrightarrow t : \mathcal{H} \land \forall t t \Leftrightarrow t : \mathcal{H} \land \forall t t \Leftrightarrow t : \mathcal{H} \land \forall t t : \mathcal{P} x \Leftrightarrow t : \mathcal{H} \land \forall t t \in \mathcal{H}$	-
r	
$\square \square \forall xx : \mathcal{H} \vdash \mathscr{P}x : \mathcal{H} \land \forall tt : \mathscr{P}x \Leftrightarrow t : \mathcal{H} \land t \subset x. \tag{[.11] [.7]}$	
$\Box \mathcal{P}x:\mathcal{H} \land \forall tt:\mathcal{P}x \Leftrightarrow t:\mathcal{H} \land t \subset x. \qquad \qquad [.12] [.2] \ _{1}MI$	
	-
$\exists \forall xx: \mathcal{H} \vdash \mathscr{P}x: \mathcal{H} \land \forall tt: \mathscr{P}x \Leftrightarrow t: \mathcal{H} \land t \in x.$ [.1] \forall_1 (•
1	
I.	$_{ m QED}$
Uses Axioms: 3, 5, 6, 7, 8, 9, 17	
Uses Axioms: ${f 3, 5, 6, 7, 8, 9, 17}$ $orall xx: {\cal H} dash {f 0}: {\cal P} x.$ Theorem of a Natural Powerset Element	nt 1
Uses Axioms: ${f 3, 5, 6, 7, 8, 9, 17}$ $f xx: \mathcal{H} dash 0: \mathcal{P}x.$ Theorem of a Natural Powerset Eleme.	nt 1
Uses Axioms: 3, 5, 6, 7, 8, 9, 17	nt 1
Uses $Axioms$: ${f 3, 5, 6, 7, 8, 9, 17}$ $orall xx: {\cal H} \vdash {f 0}: {\cal P}x.$ Theorem of a Natural Powerset Eleme. If $\Box x: {\cal H} \vdash {f 0}: {\cal P}x.$ 1	nt 1 DEM
Uses Axioms: ${f 3, 5, 6, 7, 8, 9, 17}$ $f xx: \mathcal{H} dash 0: \mathcal{P}x.$ Theorem of a Natural Powerset Eleme.	nt 1 DEM LEM DEM
Uses Axioms: $3, 5, 6, 7, 8, 9, 17$ $\forall \mathbf{x} \mathbf{x} : \mathcal{H} \vdash 0 : \mathcal{P} \mathbf{x}. \qquad \qquad \text{THEOREM of a Natural Powerset Element}$ $\square \mathbf{x} : \mathcal{H} \vdash 0 : \mathcal{P} \mathbf{x}. \qquad \qquad \square$	nt 1 DEM LEM DEM ASM
Uses Axioms: $3, 5, 6, 7, 8, 9, 17$ $\forall xx: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad Theorem of a Natural Powerset Element of a Natural Powerset Eleme$	ent 1 DEM LEM DEM ASM DEF
Uses Axioms: $3, 5, 6, 7, 8, 9, 17$ $ \forall \mathbf{x}\mathbf{x}: \mathcal{H} \vdash 0: \mathcal{P}\mathbf{x}. \qquad \text{Theorem of a Natural Powerset Element} $ $ \Box \mathbf{x}: \mathcal{H} \vdash 0: \mathcal{P}\mathbf{x}. \qquad \Box \mathbf{x}. \qquad \Box$	nt 1 DEM LEM DEM ASM DEF NT1
Uses Axioms: $3, 5, 6, 7, 8, 9, 17$ $ \forall xx: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \text{Theorem of a Natural Powerset Eleme.} $ $ \Box x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \Box \Box \Box x: \mathcal{H}. \qquad \qquad \Box \Box \Box x: \mathcal{H}. \qquad \qquad \Box \Box \Box \forall xx: \mathcal{H} \vdash \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x. \qquad \qquad \Box \Box \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x. \qquad \qquad \Box \Box \Box \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x. \qquad \qquad \Box \Box \Box \Box \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x. \qquad \qquad \Box \Box \Box \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x. \qquad \qquad \Box \Box \Box \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x. \qquad \qquad \Box \Box \Box \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x. \qquad \qquad \Box \Box \Box \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x. \qquad \qquad \Box \Box \Box \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x. \qquad \qquad \Box \Box \Box \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t = x. \qquad \qquad \Box $	ent 1 DEM LEM DEM ASM DEF NT1
Uses Axioms: $3, 5, 6, 7, 8, 9, 17$ $ \forall xx: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \text{THEOREM of a Natural Powerset Eleme.} \\ $	ent 1 DEM LEM DEM ASM DEF NT1 AUT
Uses Axioms: $3, 5, 6, 7, 8, 9, 17$ $ \begin{cases} \forall xx: \mathcal{H} \vdash 0: \mathcal{P}x. & \text{Theorem of a Natural Powerset Element} \\ $	ont 1 DEM LEM DEM ASM DEF NT1 AUT NST
Uses Axioms: $3, 5, 6, 7, 8, 9, 17$ $ \begin{cases} \forall xx: \mathcal{H} \vdash 0: \mathcal{P}x. & \text{Theorem of a Natural Powerset Element} \\ $	nt 1 DEM LEM DEM ASM DEF NT1 AUT NST
Uses Axioms: 3, 5, 6, 7, 8, 9, 17 $ \forall xx: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \text{Theorem of a Natural Powerset Eleme.} $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{H} \vdash$	nt 1 DEM LEM DEM ASM DEF NT1 AUT NST FHM DEF AUT
Uses Axioms: 3, 5, 6, 7, 8, 9, 17 $ \forall xx: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \text{Theorem of a Natural Powerset Eleme.} $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists x \in \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists x \in \mathcal{H} \vdash \mathcal{P}x \in \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t \in x. \qquad \qquad \exists \exists x \in \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t \in x. \qquad \qquad \exists \exists \exists \exists x \in \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t \in x. \qquad \qquad \exists $	nt 1 DEM LEM DEM ASM DEF NT1 AUT NST FHM DEF AUT
Uses Axioms: $3, 5, 6, 7, 8, 9, 17$ $ \forall xx: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \text{Theorem of a Natural Powerset Eleme.} $ $ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{P}x. \qquad \qquad \exists 1 \\ \exists x: \mathcal{H} \vdash 0: \mathcal{H} \vdash $	nt 1 DEM LEM ASM DEF NT1 AUT FHM DEF AUT QED GEN

 $\forall xx: \mathcal{H} \vdash x: \mathcal{P}x.$ Theorem of a Natural Powerset Element 2 152

	_
	¶DEM
152.1	$\square x: \mathcal{H} \vdash x: \mathcal{P} x.$ LEM
	□¶
152.2	$\Box x: \mathcal{H}. $ [,1] ASM
152.3	$\Box\Box\forall xx: \mathcal{H} \vdash \mathcal{P}x: \mathcal{H} \land \forall tt: \mathcal{P}x \Leftrightarrow t: \mathcal{H} \land t \subset x.$ DEF
152.4	$\square \square \mathscr{P}x: \mathscr{H} \wedge \forall tt: \mathscr{P}x \Leftrightarrow t: \mathscr{H} \wedge t \subset x. $ [.3] [.2] $_{1}$ MINT ₁
152.5	$\Box \Box \forall tt: \mathscr{P}x \Leftrightarrow t: \mathscr{H} \land t \subset x. $ [.4] TAUT
152.6	$\square \square x : \mathscr{P} x \Leftrightarrow x : \mathscr{H} \land x \subset x. $ [.5] $\forall_1 \text{INST}$
152.7	$\square \square x \subset x$. THM
152.8	$\square \square x: \mathscr{P}x.$ [.6] [.2] [.7] TAUT
	□ ■. QED
152.9	$\square \forall xx: \mathcal{H} \vdash x: \mathcal{P}x. $ [.1] $\forall_1 \text{GEN}$
	■. QED
	Uses Axioms: 3, 5, 6, 7, 8, 9, 17
	For all sets x , one can exhibit a unique set y which satisfies $\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1$. PROOF:
	<i>Existence.</i> We may specify by admitting only those elements $t: \cup x$ for which $\forall x_1x_1: x \vdash t: x_1$.
	Uniqueness. Straightforward. QED.
	Imagine unpacking all elements of a box, and forming a new one containing all common elements
	of their elements. We name this realizer \cap .
153	$\forall xx: \mathcal{H} \vdash \exists !yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1$ THEOREM of Implicit Upper Intersection
	¶DEM
153.1	$\Box x: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \forall x_1 x_1 : x \vdash t: x_1. $ LEM
	□¶
153.2	$\square x: \mathcal{H}$. [.1] ASM
153.3	$\Box \Box \forall x \forall \psi x : \mathcal{H} \vdash \exists ! y y : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : x \land \psi y_1. $ THM
153.4	$\square\square\forall\psi\cup x:\mathcal{H}\vdash\exists!yy:\mathcal{H}\land\forall y_1y_1:y\Leftrightarrow y_1:\cup x\land\psi y_1.$ [.3] \forall_1 INST
153.5	$\square\square \cup x: \mathscr{H} \vdash \exists! yy: \mathscr{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : \cup x \land \forall x_1 x_1 : x \vdash y_1 : x_1. \qquad \qquad [.4] \ \forall_2 \text{INST}$
153.6	$\Box \forall xx: \mathcal{H} \vdash \bigcup x: \mathcal{H} \land \forall tt: \bigcup x \Leftrightarrow \exists x_1x_1: x \land t: x_1. $ DEF
153.7	$\square \square \cup x: \mathscr{H} \wedge \forall tt: \cup x \Leftrightarrow \exists x_1 x_1 : x \wedge t: x_1. \qquad \qquad [.6] [.2] \text{ 1MINT}_1$
153.8	$\square \square \exists ! yy : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow y_1 : \cup x \land \forall x_1 x_1 : x \vdash y_1 : x_1. $
100.0	□■QED
153.9	$\Box \forall xx: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1x. \qquad [.1] \forall_1 \text{GEN}$
100.0	■
	Uses Axioms: 3, 5, 6, 7, 8, 9, 13, 15
	0.565 AMONIS. 0, 0, 1, 0, 0, 10, 10
154	$\forall xx: \mathcal{H} \vdash \bigcap x: \mathcal{H} \land \forall tt: \bigcap x \Leftrightarrow \forall x_1x_1: x \vdash t: x_1.$ Definition of Upper Intersection
	¶DEM
154.1	$\Box x : \mathcal{H} \vdash \cap x : \mathcal{H} \land \forall tt : \cap x \Leftrightarrow \forall x_1 x_1 : x \vdash t : x_1. $ LEM
	□¶
154.2	$\square x: \mathcal{H}$. [.1] ASM
	$\Box\Box\forall xx: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1. $ THM

$\Box\Box\forall\psi(\forall xx:\mathcal{H}\vdash\exists!yy:\mathcal{H}\land\psi xy)\vdash\exists\phi\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash\psi xy\Leftrightarrow\phi x=y.$ THM	154.4
$\Box\Box(\forall xx: \mathcal{H} \vdash \exists! yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall x \forall x \in \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall x \forall x \in \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall x \in \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall x \in \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \forall x \in \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \exists \phi \forall x \in \mathcal{H} \vdash (\forall x \in \mathcal{H} \vdash x \vdash x \vdash t: x_1) \vdash \exists \phi \forall x \in \mathcal{H} \vdash (\forall x \in \mathcal{H} \vdash x \vdash $	154.5
x_1) $\Leftrightarrow \phi x = y$	
$\Box\Box\exists\phi\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash (\forall tt:y\Leftrightarrow\forall x_1x_1:x\vdash t:x_1)\Leftrightarrow\phi x=y.$ [.5] [.3] MP	154.6
$\square\square\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash (\forall tt: y\Leftrightarrow \forall x_1x_1: x\vdash t: x_1)\Leftrightarrow \cap x=y.$ [.6] 2NAME	154.7
$\Box\Box\forall\psi(\forall xx:\mathcal{H}\vdash\exists!yy:\mathcal{H}\land\psi xy)\vdash\forall\phi(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash\psi xy\Leftrightarrow\phi x=y)\vdash\forall xx:\mathcal{H}\vdash\phi x:\mathcal{H}\land$	154.8
$\psi x(\phi x)$. Thm	
$\Box\Box(\forall xx: \mathcal{H} \vdash \exists !yy: \mathcal{H} \land \forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1)) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1))) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1))) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1))) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1))) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1))) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1))) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1))) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1))) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1))) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: y \Leftrightarrow \forall x_1x_1: x \vdash t: x_1))) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: x \vdash x_1)) \vdash \forall \phi(\forall x \forall yx: \mathcal{H} \vdash y: x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \forall x \in \mathcal{H} \vdash x \vdash x \vdash x_1)) \vdash \forall \phi(\forall x \in \mathcal{H} \vdash x \vdash $	154.9
x_1) $\Leftrightarrow \phi x = y$) $\vdash \forall xx: \mathcal{H} \vdash \phi x: \mathcal{H} \land \forall tt: \phi x \Leftrightarrow \forall x_1x_1: x \vdash t: x_1.$ [.8] $\forall z$ Inst	
$\square \square \forall \phi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall tt : y \Leftrightarrow \forall x_1 x_1 : x \vdash t : x_1) \Leftrightarrow \phi x = y) \vdash \forall xx : \mathcal{H} \vdash \phi x : \mathcal{H} \land \forall tt : \phi x \Leftrightarrow \forall x_1 x_2 : x \vdash t : x_2 \Rightarrow x \vdash x \vdash x \Rightarrow x \vdash x \Rightarrow x \Rightarrow x \Rightarrow x \Rightarrow x \Rightarrow x$	154.10
$x_1{:}x{\vdash}t{:}x_1.$ [.9] [.3] MP	
$\square\square(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash (\forall tt:y\Leftrightarrow \forall x_1x_1:x\vdash t:x_1)\Leftrightarrow \cap x=y)\vdash \forall xx:\mathcal{H}\vdash \cap x:\mathcal{H}\land \forall tt:y\Leftrightarrow \forall x_1x_1:x$	154.11
$\vdash t{:}x_1.$ [.10] $\forall_2 \text{INST}$	
$\square\square\forall xx: \mathcal{H} \vdash \cap x: \mathcal{H} \land \forall tt: \cap x \Leftrightarrow \forall x_1x_1: x \vdash t: x_1. \qquad \qquad [.11] [.7] \text{ MP}$	154.12
$\Box\Box\cap x:\mathcal{H} \land \forall tt: \cap x \Leftrightarrow \forall x_1x_1:x \vdash t:x_1. $ [.12] [.2] $_1$ MINT ₁	154.13
QED	
$\Box \forall xx: \mathcal{H} \vdash \bigcap x: \mathcal{H} \land \forall tt: \bigcap x \Leftrightarrow \forall x_1x_1: x \vdash t: x_1. $ [.1] $\forall_1 GEN$	154.14
■	
Uses Axioms: 3, 5, 6, 7, 8, 9, 13, 15	
For all sets x,y, one can exhibit a unique set z which contains precisely all the common elements PROOF: Existence Specifying over x in the obvious way gives the desired set. Unique.	
For all sets x, y , one can exhibit a unique set z which contains precisely all the common elements. PROOF: <i>Existence</i> . Specifying over x in the obvious way gives the desired set. <i>Uniqueness</i> . Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap .	
ments. PROOF: Existence. Specifying over \boldsymbol{x} in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this real-	155
ments. PROOF: Existence. Specifying over \boldsymbol{x} in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap .	155
ments. PROOF: <i>Existence</i> . Specifying over \boldsymbol{x} in the obvious way gives the desired set. <i>Uniqueness</i> . Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $\forall \boldsymbol{x} \forall \boldsymbol{y} \boldsymbol{x} : \mathcal{H} \vdash \boldsymbol{y} : \mathcal{H} \vdash \exists ! \boldsymbol{z} \boldsymbol{z} : \mathcal{H} \land \forall \boldsymbol{t} \boldsymbol{t} : \boldsymbol{z} \Leftrightarrow \boldsymbol{t} : \boldsymbol{x} \land \boldsymbol{t} : \boldsymbol{y} . \dots Theorem of Implicit Lower Intersection$	155 155.1
ments. PROOF: Existence. Specifying over ${\boldsymbol x}$ in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $\forall {\boldsymbol x} \forall {\boldsymbol y} {\boldsymbol x} : \mathcal{H} \vdash {\boldsymbol y} : \mathcal{H} \vdash \exists ! {\boldsymbol z} {\boldsymbol z} : \mathcal{H} \land \forall {\boldsymbol t} {\boldsymbol t} : {\boldsymbol z} \Leftrightarrow {\boldsymbol t} : {\boldsymbol x} \land {\boldsymbol t} : {\boldsymbol y}.$ THEOREM of Implicit Lower Intersection \P .	
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \land t : y$. Theorem of Implicit Lower Intersection \blacksquare $\blacksquare x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \land t : y$. LEM \blacksquare	
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \land t : y. \qquad \text{THEOREM of Implicit Lower Intersection}$ $\blacksquare \qquad \qquad$	155.1
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \land t : y. \qquad \text{THEOREM of Implicit Lower Intersection}$ $\square x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \land t : y. \qquad \square \text{DEM}$ $\square x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \land t : y. \qquad \square \text{DEM}$ $\square \square x : \mathcal{H}. \qquad \square \text{DEM}$ $\square \square x : \mathcal{H}. \qquad \square \text{DEM}$	155.1 155.2
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t : x \land t : y. \qquad \text{THEOREM of Implicit Lower Intersection}$ $\blacksquare \qquad \qquad$	155.1 155.2 155.3
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \land t : y. \qquad \text{THEOREM of Implicit Lower Intersection}$ $\square \text{ DEM } \square x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \land t : y. \qquad \text{LEM } \square \square x : \mathcal{H}. \qquad \square \text{DEM } \square \square x : \mathcal{H}. \qquad \square \text{DEM } \square \square x : \mathcal{H}. \qquad \square \text{DEM } \square \square \square x : \mathcal{H}. \qquad \square \text{DEM } \square $	155.1 155.2 155.3 155.4
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t : x \land t : y. \qquad \text{THEOREM of Implicit Lower Intersection}$ $\blacksquare \qquad \qquad$	155.1 155.2 155.3 155.4 155.5
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t : x \land t : y. \qquad \text{THEOREM of Implicit Lower Intersection}$ $\blacksquare \qquad \qquad$	155.1 155.2 155.3 155.4 155.5 155.6
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $ \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t : x \land t : y. \qquad \text{THEOREM of Implicit Lower Intersection} \\ 1 \qquad \qquad$	155.1 155.2 155.3 155.4 155.5 155.6
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $ \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t : x \land t : y. \qquad \text{THEOREM of Implicit Lower Intersection} \\ 1 \qquad \qquad$	155.1 155.2 155.3 155.4 155.5 155.6 155.7
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $ \begin{array}{cccccccccccccccccccccccccccccccccc$	155.1 155.2 155.3 155.4 155.5 155.6 155.7 155.8
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $ \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t : x \land t : y. \qquad \text{THEOREM of Implicit Lower Intersection} \\ 1 $	155.1 155.2 155.3 155.4 155.5 155.6 155.7 155.8 155.9
ments. PROOF: Existence. Specifying over x in the obvious way gives the desired set. Uniqueness. Straightforward. QED. Imagine forming a new box by packing all common contents of two old ones. We name this realizer \cap . $ \begin{array}{cccccccccccccccccccccccccccccccccc$	155.1 155.2 155.3 155.4 155.5 155.6 155.7 155.8 155.9

Uses Axioms: **3, 5, 9, 15**

$\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash x \cap y : \mathcal{H} \land \forall tt : x \cap y \Leftrightarrow t : x \land t : y.$ DEFINITION of Lower Intersection
¶Den
$\Box x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \cap y : \mathcal{H} \land \forall t t : x \cap y \Leftrightarrow t : x \land t : y. $ LEM
□¶
$\square \square x: \mathcal{H}.$ [.1] ASM
$\Box \Box y : \mathcal{H} \vdash x \cap y : \mathcal{H} \land \forall tt : x \cap y \Leftrightarrow t : x \land t : y. $ LEM
□□¶
$\square\square \square y: \mathcal{H}.$ [.3] ASM
$\square\square\square\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash \exists!zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t: x \land t: y. $ THM
$\square\square\square\forall\psi(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land\psi xyz)\vdash \exists\phi\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash\psi xyz\Leftrightarrow x\phi y=$
z.
$ \Box \Box \Box (\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t : x \land t : y) \vdash \exists \phi \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t : x \land t : y)) $
$t:x \land t:y) \Leftrightarrow x\phi y=z.$ [.6] \forall_2 INST
$\square \square \square \exists \phi \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t : x \land t : y) \Leftrightarrow x \phi y = z. \qquad [.7] [.5] \text{ MP}$
$\square \square \square \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t : x \land t : y) \Leftrightarrow x \cap y = z. $ $[.8]_{2} \text{NAME}$
$\square \square \square \forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \psi xyz) \vdash \forall \phi (\forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi xyz \Leftrightarrow x\phi y = x\phi y$
z) $\vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : \mathcal{H} \land \psi x y (x \phi y)$. Thm
$\square \square \square (\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \land t : y) \vdash \forall \phi (\forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : z \Rightarrow t : x \land t : y)))$
$\Leftrightarrow t:x \land t:y) \Leftrightarrow x\phi y = z) \vdash \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash x\phi y: \mathcal{H} \land \forall tt: x\phi y \Leftrightarrow t:x \land t:y. \dots [.10] \ \forall z \text{INST}$
$\square \square \square \forall \phi (\forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t : x \land t : y) \Leftrightarrow x \phi y = z) \vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y :$
$\mathscr{H} \wedge \forall tt: x \phi y \Leftrightarrow t: x \wedge t: y.$ [.11] [.5] MP
$\square \square \square (\forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow t : x \land t : y) \Leftrightarrow x \cap y = z) \vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \cap y : \mathcal{H} \land z \Rightarrow z$
$\forall tt: x \cap y \Leftrightarrow t: x \wedge t: y.$ [.12] $\forall_2 \text{INST}$
$\square\square\square\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash x\cap y:\mathcal{H}\land\forall tt:x\cap y\Leftrightarrow t:x\land t:y.$ [.13] [.9] MP
$\square\square\square x \cap y: \mathcal{H} \land \forall tt: x \cap y \Leftrightarrow t: x \land t: y. \qquad [.14] [.2] [.4] _{2} \text{MINT}_{2}$
□□ ■.
□ ■. QED
■QED

§2.4 Sets and Operations: Set Minus and Symmetric Difference

For all sets x,y, we can exhibit a unique set z containing precisely all elements of x which are not in y. PROOF: *Existence*. Straightforward from *specification*. *Uniqueness*. Straightforward. QED.

We name its realizer \.

$\forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash \exists !zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t: x \land \neg t: y.$ Theorem of Implicit Set Minus	157
¶DEM	
$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash \exists! zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t: x \land \neg t: y. $ LEM	157.1
□ ¶	
$\square \square x$: \mathscr{H} . [.1] ASM	157.2
$\Box \Box y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow t : x \land \neg t : y. $ LEM	157.3
□□¶DEM	
$\square\square y:\mathscr{H}.$ [.3] ASM	157.4
$\square\square\square\forall x\forall \psi x: \mathcal{H} \vdash \exists !yy: \mathcal{H} \land \forall y_1y_1: y \Leftrightarrow y_1: x \land \psi y_1. $ THM	157.5
$\Box\Box\Box\forall x\forall \psi x: \mathcal{H} \vdash \exists! zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t: x \land \psi t. $ [.5] QNT	157.6
$\square\square\square\forall \psi x: \mathcal{H} \vdash \exists! zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t: x \land \psi t. \qquad [.6] \forall_{1} \text{INST}$	157.7
$\square\square x: \mathcal{H} \vdash \exists! zz: \mathcal{H} \land \forall tt: z \Leftrightarrow t: x \land \neg t: y. $ [.7] $\forall z $ INST	157.8
$\square\square\exists !zz: \mathscr{H} \land \forall tt: z \Leftrightarrow t: x \land \neg t: y. \qquad \qquad [.8] [.2] \text{ MP}$	157.9
□□ ■.	157.10
□ ■. QED	
$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! z z : \mathcal{H} \land \forall t t : z \Leftrightarrow t : x \land \neg t : y. $ [.1] UGEN ₂	157.11
■.	
Uses Axioms: 3, 5, 9, 15	
Und and will and will and an all an all and an all and an all and an all and an all an al	150
	158
¶DEM	
$\P. $	158 158.1
	158.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	158.1 158.2
$ \begin{array}{lll} \P & & \text{DEM} \\ \square x: \mathcal{H} \vdash y: \mathcal{H} \vdash x \backslash y: \mathcal{H} \land \forall tt: x \backslash y \Leftrightarrow t: x \land \neg t: y. & \text{LEM} \\ \square \P & & \text{DEM} \\ \square \square x: \mathcal{H}. & & \textbf{[.1]} \text{ ASM} \\ \square \square y: \mathcal{H} \vdash x \backslash y: \mathcal{H} \land \forall tt: x \backslash y \Leftrightarrow t: x \land \neg t: y. & \text{LEM} \\ \end{array} $	158.1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	158.1 158.2 158.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	158.1 158.2 158.3
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	158.1 158.2 158.3 158.4 158.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	158.1 158.2 158.3
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	158.1 158.2 158.3 158.4 158.5 158.6
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	158.1 158.2 158.3 158.4 158.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	158.1 158.2 158.3 158.4 158.5 158.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	158.1 158.2 158.3 158.4 158.5 158.6 158.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	158.1 158.2 158.3 158.4 158.5 158.6

	$z) \vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : \mathcal{H} \land \psi x y (x \phi y).$ THM
158.11	$\square\square\square(\forall x\forall yx.\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land\forall tt:z\Leftrightarrow t:x\land\neg t:y)\vdash\forall\phi(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash(\forall tt:z\Leftrightarrow t:x\land\neg t:y))$
100.11	
158.12	$\square \square \forall \phi (\forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall tt : z \Leftrightarrow t : x \land \neg t : y) \Leftrightarrow x \phi y = z) \vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : x \Leftrightarrow t = x \Leftrightarrow $
	$\mathcal{H} \wedge \forall tt: x \phi y \Leftrightarrow t: x \wedge \neg t: y.$ [.11] [.5] MP
158.13	$\square\square\square(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash(\forall tt:z\Leftrightarrow t:x\wedge\neg t:y)\Leftrightarrow x\setminus y=z)\vdash\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash x\setminus y:\mathcal{H}$
	$\land \forall tt: x \backslash y \Rightarrow t: x \land \neg t: y.$ [.12] $\forall z \text{INST}$
158.14	$\square\square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \setminus y : \mathcal{H} \land \forall t t : x \setminus y \Leftrightarrow t : x \land \neg t : y. \qquad [.13] [.9] \text{ MP}$
	$\square\square x \ y: \mathscr{H} \land \forall tt: x \ y \Leftrightarrow t: x \land \neg t: y. \qquad \qquad [.14] \ [.2] \ [.4] \ _2 \text{MINT}_2$
	QED
	□ ■.
158.16	$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \backslash y : \mathcal{H} \land \forall t t : x \backslash y \Leftrightarrow t : x \land \neg t : y. $ [.1] UGEN ₂
	■
	Uses Axioms: 3, 5, 6, 7, 8, 9, 15
	For all sets x, y , we can exhibit a unique set z containing precisely all elements of x which are
	not in y and all elements of y not in x . PROOF: Immediate via the set $(x \setminus y) \cup y \setminus x$. QED.
	We name its realizer $\dot{-}$. Alternatively, we could have <i>specified</i> over $x \cup y$ (with no extra axiomatic
	commitment). The proof, however, would be longer.
150	$\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow (t : x \land \neg t : y) \lor (t : y \land \neg t : x).$
100	
	¶
159.1	$\Box x_1 : \mathcal{H} \vdash y_1 : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow (t : x_1 \land \neg t : y_1) \lor (t : y_1 \land \neg t : x_1). $ LEM
100.1	□¶
159.2	$\square x_1:\mathcal{H}$. [.1] ASM
159.3	$\Box \Box y_1 : \mathcal{H} \vdash \exists! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow (t : x_1 \land \neg t : y_1) \lor (t : y_1 \land \neg t : x_1). $ LEM
100.0	
159.4	$\square\square y_1 : \mathcal{H}. $ [.3] ASM
159.5	$\Box\Box\Box\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash x\backslash y: \mathcal{H} \land \forall tt: x\backslash y \Leftrightarrow t: x\land \neg t: y. $
159.6	$\Box\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \cup y : \mathcal{H} \land \forall t t : x \cup y \Leftrightarrow t : x \lor t : y. $
159.7	$\square\square x_1 \setminus y_1 : \mathcal{H} \land \forall tt : x_1 \setminus y_1 \Leftrightarrow t : x_1 \land \neg t : y_1 . \dots $ $[.5] [.2] [.4]_{2} \text{MINT}_2$
159.8	$\square\square x_1 \setminus y_1 : \mathcal{H}$. [.7] TAUT
159.9	$\square\square \exists y_1 \setminus x_1 : \mathscr{H} \land \forall tt : y_1 \setminus x_1 \Leftrightarrow t : y_1 \land \neg t : x_1 . \dots [.5] [.4] [.2] \underline{\ 2MINT2}$
159.10	$\square\square y_1 \setminus x_1 : \mathcal{H}$. [.9] TAUT
159.11	$\square\square(x_1 \setminus y_1) \cup (y_1 \setminus x_1) : \mathscr{H} \land \forall tt : (x_1 \setminus y_1) \cup (y_1 \setminus x_1) \Leftrightarrow t : x_1 \setminus y_1 \vee t : y_1 \setminus x_1 [.6] [.8] [.10] 2 \text{MINT}_2$
159.12	$\square\square \forall tt: (x_1 \setminus y_1) \cup (y_1 \setminus x_1) \Leftrightarrow t: x_1 \setminus y_1 \vee t: y_1 \setminus x_1. \qquad [.11] \text{ TAUT}$
159.13	$\square\square t: (x_1 \setminus y_1) \cup (y_1 \setminus x_1) \Leftrightarrow t: x_1 \setminus y_1 \vee t: y_1 \setminus x_1. \qquad [.12] \forall_1 \text{INST}$
159.14	$\square\square \forall tt: x_1 \setminus y_1 \Leftrightarrow t: x_1 \wedge \neg t: y_1. \qquad \qquad [.7] \text{ TAUT}$
159.15	$\square\square t: x_1 \setminus y_1 \Leftrightarrow t: x_1 \wedge \neg t: y_1. \qquad [.14] \forall_1 \text{INST}$
159.16	$\square\square \forall tt: y_1 \setminus x_1 \Leftrightarrow t: y_1 \land \neg t: x_1. \qquad \qquad [.9] \text{ TAUT}$
159.17	$\square\square t: y_1 \setminus x_1 \Leftrightarrow t: y_1 \wedge \neg t: x_1. \qquad [.16] \forall_1 \text{INST}$
159.18	$\square\square t: (x_1 \setminus y_1) \cup (y_1 \setminus x_1) \Leftrightarrow (t: x_1 \wedge \neg t: y_1) \vee (t: y_1 \wedge \neg t: x_1). \qquad [.13] [.15] [.17] \text{ TAUT}$
159.19	$\square\square \forall tt: (x_1 \setminus y_1) \cup (y_1 \setminus x_1) \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1). \qquad \qquad [.18] \ \forall_1 \text{GEN}$

$\square\square\square(x_1\setminus y_1)\cup (y_1\setminus x_1): \mathscr{H}\wedge\forall tt: (x_1\setminus y_1)\cup (y_1\setminus x_1)\Leftrightarrow (t:x_1\wedge\neg t:y_1)\vee (t:y_1\wedge\neg t:x_1).$	159.20
$\square \square \exists zz: \mathscr{H} \land \forall tt: z \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1). \qquad [.20] \exists_1 GEN$	159.21
$\square\square\square(z_1:\mathscr{H}\wedge\forall tt:z_1\Leftrightarrow (t:x_1\wedge\neg t:y_1)\vee (t:y_1\wedge\neg t:x_1))\vdash (z_2:\mathscr{H}\wedge\forall tt:z_2\Leftrightarrow (t:x_1\wedge\neg t:y_1)\vee (t:y_1\wedge\neg t:$	159.22
$\neg t:x_1))\vdash z_1=z_2.$ LEM	
¶	
$\square\square\square \exists z_1: \mathscr{H} \land \forall tt: z_1 \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1). \qquad [.22] \text{ ASM}$	159.23
$\square\square\square(z_2:\mathscr{H} \land \forall tt: z_2 \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1)) \vdash z_1 = z_2. $ LEM	159.24
$\square\square\square\square z_2: \mathscr{H} \land \forall tt: z_2 \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1). \qquad [.24] \text{ ASM}$	159.25
$\square\square\square\square\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash (\forall tt:x\Leftrightarrow t:y)\vdash x=y.$	159.26
$\square\square\square\square z_1: \mathscr{H} \vdash z_2: \mathscr{H} \vdash (\forall tt: z_1 \Leftrightarrow t: z_2) \vdash z_1 = z_2. \qquad [.26]_{0} \text{MINT}_2$	159.27
$\square\square\square\square(\forall tt: z_1 \Leftrightarrow t: z_2) \vdash z_1 = z_2. \qquad \qquad [.27] [.23] [.25] \text{ TAUT}$	159.28
$\square\square\square\square \forall tt: z_1 \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1). \qquad \qquad [.23] \text{ TAUT}$	159.29
$\square\square\square\square t: z_1 \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1). \qquad \qquad [.29] \ \forall_1 \text{INST}$	159.30
$\square\square\square\square \forall tt: z_2 \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1). \qquad [.25] \text{ TAUT}$	159.31
$\square\square\square\exists t: z_2 \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1). \qquad \qquad [.25] \text{ hist}$	159.32
$\square\square\square\square t: z_1 \Leftrightarrow t: z_2. \qquad \qquad [.30] [.32] \text{ TAUT}$	159.33
$\square\square\square\square \forall tt: z_1 \Leftrightarrow t: z_2. $ [.33] $\forall_1 \in \mathbb{N}$	159.34
$\square\square\square z_1 = z_2. \qquad [.38] [.34] \text{ MP}$	159.35
□□□□z ₁ -z ₂ . [.26] [.64] MF	199.99
·	
QED	150.00
$\square\square\square\forall z_1\forall z_2(z_1:\mathscr{H} \land \forall tt:z_1 \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1)) \vdash (z_2:\mathscr{H} \land \forall tt:z_2 \Leftrightarrow (t:x_1 \land \neg t:y_1))$	159.36
$\lor(t:y_1 \land \lnot t:x_1)) \vdash z_1 = z_2.$ [.22] UGEN2	
$\square\square\exists ! zz : \mathcal{H} \land \forall tt : z \Leftrightarrow (t : x_1 \land \neg t : y_1) \lor (t : y_1 \land \neg t : x_1). \qquad [.21] [.36] \exists ! \text{INTROS}$	159.37
QED	
QED	
	159.38
QED	
Uses Axioms: 3, 4, 5, 6, 7, 8, 9, 12, 13, 15	
· 	
$\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash x \dot{-}y : \mathcal{H} \land \forall tt : x \dot{-}y \Leftrightarrow (t : x \land \neg t : y) \lor (t : y \land \neg t : x).$	160
	160
¶DEM	1001
$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash x \dot{-} y: \mathcal{H} \land \forall tt: x \dot{-} y \Leftrightarrow (t: x \land \neg t: y) \lor (t: y \land \neg t: x). $ LEM	160.1
□¶DEM	
$\Box x: \mathcal{H}. $ [.1] ASM	
	160.3
□□¶	
$\square\square y:\mathcal{H}.$ [.3] ASM	160.4
$\square\square\square\forall x\forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash \exists! zz: \mathcal{H} \land \forall tt: z \Leftrightarrow (t:x \land \neg t:y) \lor (t:y \land \neg t:x). $ THM	160.5
$\square\square\square\forall\psi(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land\psi xyz)\vdash\exists\phi\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash\psi xyz\Leftrightarrow x\phi y=$	160.6
z. THM	
$\square\square\square(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land\forall tt:z\Leftrightarrow (t:x\land\neg t:y)\lor (t:y\land\neg t:x))\vdash \exists\phi\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}$	160.7

	$\vdash z: \mathscr{H} \vdash (\forall tt: z \Leftrightarrow (t:x \land \neg t:y) \lor (t:y \land \neg t:x)) \Leftrightarrow x\phi y = z.$ [.6] $\forall z \text{INST}$
160.8	$\square \square \square \exists \phi \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash (\forall t t : z \Leftrightarrow (t : x \land \neg t : y) \lor (t : y \land \neg t : x)) \Leftrightarrow x \phi y = z \dots [.7] [.5] \text{ MP}$
160.9	$\square\square\square\forall x\forall y\forall zx: \mathcal{H}\vdash y: \mathcal{H}\vdash z: \mathcal{H}\vdash (\forall tt:z\Leftrightarrow (t:x\wedge\neg t:y)\vee (t:y\wedge\neg t:x))\Leftrightarrow x\dot{-}y=z.\ldots.[.8]_{2}\text{NAME}$
160.10	$\square\square\square\forall\psi(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land\psi xyz)\vdash\forall\phi(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash\psi xyz\Leftrightarrow x\phi y=$
	z) $\vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : \mathcal{H} \land \psi x y (x \phi y)$. Thm
160.11	$\square\square\square(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land\forall tt:z\Leftrightarrow (t:x\land\neg t:y)\lor (t:y\land\neg t:x))\vdash \forall\phi(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H})$
	$\vdash z: \mathscr{H} \vdash (\forall tt: z \Leftrightarrow (t: x \land \neg t: y) \lor (t: y \land \neg t: x)) \Leftrightarrow x\phi y = z) \vdash \forall x \forall y x: \mathscr{H} \vdash y: \mathscr{H} \vdash x\phi y: \mathscr{H} \land \forall tt: x\phi y \Leftrightarrow x\phi y = z$
	$(t:x \land \neg t:y) \lor (t:y \land \neg t:x).$ [.10] \forall_2 INST
160.12	$\square\square\square\forall\phi(\forall x\forall y\forall zx:\mathscr{H}\vdash y:\mathscr{H}\vdash z:\mathscr{H}\vdash(\forall tt:z\Leftrightarrow(t:x\wedge\neg t:y)\vee(t:y\wedge\neg t:x))\Leftrightarrow x\phi y=z)\vdash\forall x\forall yx:\mathscr{H}$
	$\vdash y: \mathscr{H} \vdash x\phi y: \mathscr{H} \land \forall tt: x\phi y \Leftrightarrow (t:x \land \neg t:y) \lor (t:y \land \neg t:x).$ [.11] [.5] MP
160.13	$\square\square\square(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash (\forall tt:z\Leftrightarrow (t:x\wedge\neg t:y)\vee (t:y\wedge\neg t:x))\Leftrightarrow x\dot{-}y=z)\vdash \forall x\forall yx:\mathcal{H}\vdash$
	$y: \mathcal{H} \vdash x \dot{-} y: \mathcal{H} \land \forall tt: x \dot{-} y \Leftrightarrow (t: x \land \neg t: y) \lor (t: y \land \neg t: x).$ [.12] $\forall_2 \text{INST}$
160.14	$\square\square\square\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash x\dot{-}y: \mathcal{H}\land \forall tt: x\dot{-}y\Leftrightarrow (t:x\land \neg t:y)\lor (t:y\land \neg t:x). \qquad \qquad [.13] \ [.9] \ MP$
	$\square\square\square x \dot{-} y : \mathcal{H} \land \forall tt : x \dot{-} y \Leftrightarrow (t : x \land \neg t : y) \lor (t : y \land \neg t : x). \qquad [.14] [.2] [.4] {}_{2} \text{MINT}_{2}$
	□□■QED
	□ ■.
160.16	$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \dot{-} y : \mathcal{H} \land \forall t t : x \dot{-} y \Leftrightarrow (t : x \land \neg t : y) \lor (t : y \land \neg t : x). \qquad [.1] \text{ UGEN}_2$
	■. QED
	Uses Axioms: 3, 4, 5, 6, 7, 8, 9, 12, 13, 15
161	$\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \dot{-} y = (x \setminus y) \cup (y \setminus x)$. THEOREM of Symmetric Difference
	¶DEM
161.1	$\Box x_1 : \mathcal{H} \vdash y_1 : \mathcal{H} \vdash x_1 \dot{\neg} y_1 = (x_1 \setminus y_1) \cup (y_1 \setminus x_1). $ LEM
	□¶
161.2	$\square \square x_1: \mathscr{H}.$ [.1] ASM
161.3	$\Box \Box y_1 : \mathscr{H} \vdash x_1 \dot{-} y_1 = (x_1 \setminus y_1) \cup (y_1 \setminus x_1). $ LEM
	□□ ¶
161.4	$\square\square \cup y_1:\mathcal{H}$ [3] ASM
161.5	$\Box\Box\Box\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash x\backslash y: \mathcal{H}\land\forall tt: x\backslash y\Leftrightarrow t: x\land \neg t: y.$
161.6	$\Box\Box\Box\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash x\cup y: \mathcal{H} \land \forall tt: x\cup y \Leftrightarrow t: x\vee t: y. $
161.7	$\square\square\square x_1 \setminus y_1: \mathscr{H} \land \forall tt: x_1 \setminus y_1 \Leftrightarrow t: x_1 \land \neg t: y_1. \qquad \qquad [.5] [.2] [.4] _{2} \text{MINT}_2$
161.8	$\square\square x_1 \setminus y_1:\mathcal{H}.$ [.7] Taut
161.9	$\square\square\square y_1 \setminus x_1: \mathscr{H} \land \forall tt: y_1 \setminus x_1 \Leftrightarrow t: y_1 \land \neg t: x_1. \qquad \qquad [.5] \ [.4] \ [.2] \ _2 \text{MINT}_2$
161.10	$\square\square \square y_1 \backslash x_1 : \mathscr{H}$. [.9] Taut
161.11	$\square\square(x_1\setminus y_1)\cup(y_1\setminus x_1):\mathcal{H}\wedge\forall tt:(x_1\setminus y_1)\cup(y_1\setminus x_1)\Leftrightarrow t:x_1\setminus y_1\vee t:y_1\setminus x_1.\ [.6]\ [.8]\ [.10]\ _2\text{MINT}_2$
161.12	
	$\square\square\square t : (x_1 \setminus y_1) \cup (y_1 \setminus x_1) \Leftrightarrow t : x_1 \setminus y_1 \vee t : y_1 \setminus x_1. \qquad [.12] \ \forall_1 \text{INST}$
	$\square\square \forall tt: x_1 \setminus y_1 \Leftrightarrow t: x_1 \land \neg t: y_1. \qquad [.7] \text{ TAUT}$
	$\Box\Box t: x_1 \setminus y_1 \Leftrightarrow t: x_1 \land \neg t: y_1. \qquad [.14] \forall_1 \text{INST}$
	$\square\square \forall tt: y_1 \setminus x_1 \Leftrightarrow t: y_1 \land \neg t: x_1. $
	$\square\square t: y_1 \setminus x_1 \Leftrightarrow t: y_1 \land \neg t: x_1. \qquad [.16] \forall_1 \text{INST}$
	$\square\square\square t: (x_1 \setminus y_1) \cup (y_1 \setminus x_1) \Leftrightarrow (t:x_1 \land \neg t:y_1) \lor (t:y_1 \land \neg t:x_1). \qquad [.13] [.15] [.17] \text{ TAUT}$
	$\Box\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \dot{-} y : \mathcal{H} \land \forall t t : x \dot{-} y \Leftrightarrow (t : x \land \neg t : y) \lor (t : y \land \neg t : x). \dots \Box DEF$
	$\square\square\square x_1 \dot{-} y_1 : \mathscr{H} \wedge \forall tt : x_1 \dot{-} y_1 \Leftrightarrow (t : x_1 \wedge \neg t : y_1) \vee (t : y_1) \wedge \neg t : x_1). \dots [.19] [.2] [.4] _{2} \text{MINT}_2$

$\square\square\square\forall tt{:}x_1\dot{-}y_1\Leftrightarrow (t{:}x_1\wedge\neg t{:}y_1)\vee (t{:}y_1)\wedge\neg t{:}x_1).$	161.21
$\square\square\square t{:}x_1\dot{-}y_1\Leftrightarrow (t{:}x_1\wedge\neg t{:}y_1)\vee (t{:}y_1)\wedge\neg t{:}x_1).$	161.22
$\square\square\square t{:}x_1\dot{-}y_1\Leftrightarrow t{:}(x_1\setminus y_1)\cup (y_1\setminus x_1). \qquad \qquad [.22] \ [.18] \ \text{TAUT}$	161.23
$\square\square\square\forall tt: x_1\dot{-}y_1 \Leftrightarrow t: (x_1\backslash y_1) \cup (y_1\backslash x_1). \qquad \qquad [.23] \ \forall_1 \text{GEN}$	161.24
$\square\square\square\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash (\forall tt:x\Leftrightarrow t:y)\vdash x=y.$	161.25
$\square\square\square x_1 \dot{-} y_1 : \mathscr{H} \vdash (x_1 \setminus y_1) \cup (y_1 \setminus x_1) : \mathscr{H} \vdash (\forall tt : x_1 \dot{-} y_1 \Leftrightarrow t : (x_1 \setminus y_1) \cup (y_1 \setminus x_1)) \vdash x_1 \dot{-} y_1 = (x_1 \setminus y_1)$	161.26
$\cup (y_1 \setminus x_1)$	
$\square\square\square x_1\dot{-}y_1=(x_1\setminus y_1)\cup (y_1\setminus x_1).\hspace{1cm} [.26] \hspace{1cm} [.20] \hspace{1cm} [.11] \hspace{1cm} [.24] \hspace{1cm} \text{TAUT}$	161.27
□□ ■. QED	
□ ■. QED	
$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \dot{-} y = (x \setminus y) \cup (y \setminus x). $ [.1] UGEN ₂	161.28
■. QED	
Uses Axioms: 3, 4, 5, 6, 7, 8, 9, 12, 13, 15	

§2.5 Sets and Operations: Ordered Pairing and Cartesian Product

For all sets x, y, we can exhibit a unique set z containing precisely x PAR x and x PAR y. PROOF: Immediate via the set (x PAR x) PAR x PAR y. QED.

We name its realizer **ORP**. While there are other candidates for defining ordered pairs, we select this since it requires little axiomatic purchase to prove x_1 **ORP** $y_1 = x_2$ **ORP** $y_2 \Leftrightarrow x_1 = x_2 \land y_1 = y_2$.

162	$\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land z = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y \dots \operatorname{THEOREM} \text{ of Implicit Ordered Pairing}$
	\P DEM
162.1	$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash \exists! zz: \mathcal{H} \land (x PAR x) = x PAR x PAR y. $ LEM
	□ ¶
162.2	$\square \square x$: \mathscr{H} . [.1] ASM
162.3	$\Box \Box y: \mathcal{H} \vdash \exists ! zz: \mathcal{H} \land z = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y. $ LEM
	□□¶DEM
162.4	$\square\square y:\mathscr{H}.$ [.3] ASM
162.5	$\Box\Box\Box\forall x\forall yx: \mathcal{H}\vdash y: \mathcal{H}\vdash x \text{ PAR } y: \mathcal{H} \land \forall tt: x \text{ PAR } y \Leftrightarrow t=x \lor t=y. $ THM
162.6	$\square\square x PAR x: \mathcal{H} \land \forall tt: x PAR x \Leftrightarrow t=x \lor t=x. $ [.5] [.2] [.2] $_2MINT_2$
162.7	$\square\square x \operatorname{PAR} y : \mathcal{H} \wedge \forall tt : x \operatorname{PAR} y \Leftrightarrow t = x \vee t = y. \qquad [.5] [.2] [.4] _{2} \operatorname{MINT}_{2}$
162.8	$\Box\Box x \operatorname{PAR} x : \mathcal{H} \vdash x \operatorname{PAR} y : \mathcal{H} \vdash (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y : \mathcal{H} \land \forall tt : (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y \Leftrightarrow t = x \operatorname{PAR} $
	$x \lor t = x \text{ PAR } y.$ [.5] $_0 \text{MINT}_2$
162.9	$\Box\Box\Box(x\operatorname{PAR} x)\operatorname{PAR} x\operatorname{PAR} y:\mathcal{H} \wedge \forall tt:(x\operatorname{PAR} x)\operatorname{PAR} x\operatorname{PAR} y \Leftrightarrow t=x\operatorname{PAR} x \vee t=x\operatorname{PAR} y.$
162.10	$\Box\Box\Box(x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y. $ EQ
162.11	$\square\square\square(x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y: \mathcal{H} \wedge (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y. \dots [.9] [.10] \operatorname{TAUT}$
162.12	$\square \square \exists zz: \mathcal{H} \land z = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y. \qquad [.11] \exists_{1} \operatorname{GEN}$
162.13	$\square\square\square z_1: \mathscr{H} \land z_1 = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y \vdash z_2: \mathscr{H} \land z_2 = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y \vdash z_1 = z_2. \dots \square \operatorname{LEM}$
	□□□¶DEM
162.14	$\square\square\square z_1: \mathcal{H} \wedge z_1 = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y. \qquad [.13] \operatorname{ASM}$
162.15	$\square\square\square z_2: \mathscr{H} \wedge z_2 = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y \vdash z_1 = z_2. $ LEM
162.16	$\square\square\square\square z_2: \mathcal{H} \land z_2 = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y. \qquad [.15] \operatorname{ASM}$
162.17	$\square\square\square\square z_1 = z_2.$ [.14] [.16] TAUT
162.18	□□□ ■. QED
	□□ ■.
162.19	$\square\square\square\forall z_1\forall z_2z_1: \mathscr{H} \land z_1 = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y \vdash z_2: \mathscr{H} \land z_2 = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y \vdash z_1 = z_2. \dots$
	[.13] UGEN ₂
162.20	$\square\square\square\exists!zz:\mathcal{H} \land z = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y. \qquad [.12] [.19] \exists! \operatorname{INTROS}$
	□□ ■.
	□ ■. QED
162.21	$\square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! zz : \mathcal{H} \land z = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y. \qquad [.1] \operatorname{UGEN}_2$
	■. QED
	Uses Axioms: 3, 5, 6, 7, 8, 9, 12

$\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash x \text{ ORP } y : \mathcal{H} \land x \text{ ORP } y = (x \text{ PAR } x) \text{ PAR } y \text{.} \text{DEFINITION } of \textit{ Ordered Pairing}$	163
\P DEM	
$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash x \text{ ORP } y: \mathcal{H} \land x \text{ ORP } y = (x \text{ PAR } x) \text{ PAR } x \text{ PAR } y. $ LEM	163.1
□¶	
$\square\square x:\mathcal{H}$. [.1] ASM	163.2
$\Box \Box y: \mathcal{H} \vdash x \text{ ORP } y: \mathcal{H} \land x \text{ ORP } y = (x \text{ PAR } x) \text{ PAR } x \text{ PAR } y. $ LEM	163.3
□□¶	
$\square\square\square y:\mathcal{H}.$ [.3] ASM	163.4
$\Box\Box\Box\forall x\forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash \exists! zz: \mathcal{H} \land z = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y. $ THM	163.5
$\Box\Box\Box\forall\psi(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land\psi xyz)\vdash\exists\phi\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash\psi xyz\Leftrightarrow x\phi y=$	163.6
z.	
$\Box\Box\Box(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land z=(x\operatorname{PAR}x)\operatorname{PAR}x\operatorname{PAR}y)\vdash \exists\phi\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash$	163.7
$(z=(x \text{PAR} x) \text{PAR} x \text{PAR} y) \Leftrightarrow x \phi y = z.$ [.6] $\forall z \text{INST}$	
$\square \square \square \exists \phi \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash z = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y \Leftrightarrow x \phi y = z . \dots [.7] [.5] \operatorname{MP}$	163.8
$\square \square \square \forall x \forall y \forall z x : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash z = (x \operatorname{PAR} x) \operatorname{PAR} y \Leftrightarrow x \operatorname{ORP} y = z \dots [.8] \operatorname{2NAME}$	163.9
$\square \square \square \forall \psi (\forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists !zz : \mathcal{H} \land \psi xyz) \vdash \forall \phi (\forall x \forall y \forall zx : \mathcal{H} \vdash y : \mathcal{H} \vdash z : \mathcal{H} \vdash \psi xyz \Leftrightarrow x\phi y = x\phi y $	163.10
z) $\vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : \mathcal{H} \land \psi x y (x \phi y)$. Thm	
$\Box\Box\Box(\forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash \exists!zz:\mathcal{H}\land z=(x\operatorname{PAR}x)\operatorname{PAR}x)\vdash \forall \phi(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H})$	163.11
$\vdash z = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y \Leftrightarrow x \phi y = z) \vdash \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \phi y : \mathcal{H} \land x \phi y = (x \operatorname{PAR} x) \operatorname{PAR} x \operatorname{PAR} y.$	
$\Box\Box\Box\forall\phi(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash z=(x\operatorname{PAR}x)\operatorname{PAR}y\ominus x\phi y=z)\vdash \forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash$	163.12
$x\phi y: \mathcal{H} \wedge x\phi y = (x \text{ PAR } x) \text{ PAR } x \text{ PAR } y.$ [.11] [.5] MP	
$\Box\Box\Box(\forall x\forall y\forall zx:\mathcal{H}\vdash y:\mathcal{H}\vdash z:\mathcal{H}\vdash z=(x\operatorname{PAR}x)\operatorname{PAR}y\Leftrightarrow x\operatorname{ORP}y=z)\vdash \forall x\forall yx:\mathcal{H}\vdash y:\mathcal{H}\vdash$	163.13
$x \text{ ORP } y: \mathcal{H} \land x \text{ ORP } y = (x \text{ PAR} x) \text{ PAR} x \text{ PAR} y.$ [.12] $\forall z \text{ INST}$	100.10
$\Box\Box\Box\forall x\forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash x \text{ ORP } y: \mathcal{H} \land x \text{ ORP } y = x \text{ PAR } x \text{ PAR } y. \qquad [.13] [.9] \text{ MP}$	163.14
$\square\square \square x \text{ ORP } y : \mathcal{H} \land x \text{ ORP } y = (x \text{ PAR} x) \text{ PAR} x \text{ PAR} y. \qquad [.14] [.2] [.4] \text{ 2MINT}_2$	163.15
QED	100.10
□■QED	
$\Box \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \text{ ORP } y : \mathcal{H} \land x \text{ ORP } y = (x \text{ PAR } x) \text{ PAR } x \text{ PAR } y. \qquad [.1] \text{ UGEN}_2$	100 10
	163.16
■QED Uses Axioms: 3, 5, 6, 7, 8, 9, 12	
Two ordered pairs are equal if(f.) their coordinates are equal. PROOF: We need only consider the nontrivial direction. Let x_1 ORP $y_1 = x_2$ ORP y_2 . By definition $(x_1$ PAR x_1 PAR x_1 PAR $x_1 = (x_2$ PAR x_2) PAR x_2 PAR x_2 . Either x_1 PAR $x_1 = x_2$ PAR x_2 or x_1 PAR $x_1 = x_2$ PAR x_2 . In either case, $x_1 = x_2$. It follows $y_1 = y_2$. QED.	
$\forall x_1 \forall x_2 \forall y_1 \forall y_2 x_1 : \mathcal{H} \vdash x_2 : \mathcal{H} \vdash y_1 : \mathcal{H} \vdash y_2 : \mathcal{H} \vdash x_1 \text{ ORP } y_1 = x_2 \text{ ORP } y_2 \vdash x_1 = x_2 \land y_1 = y_2. \dots \\ \dots $	164
$\square x_1: \mathscr{H} \vdash x_2: \mathscr{H} \vdash y_1: \mathscr{H} \vdash y_2: \mathscr{H} \vdash x_1 \text{ ORP } y_1 = x_2 \text{ ORP } y_2 \vdash x_1 = x_2 \land y_1 = y_2. $ LEM	16/1
$ = x_1 \cdot x_1 + x_2 \cdot x_1 + y_1 \cdot x_1 + y_2 \cdot x_1 + x_1 + y_1 + x_2 + y_1 + y_2 + \dots $	164.1

164.3	164.2	$\square\square x_1:\mathcal{H}.$	[. 1] ASM
164.4			
	101.0		
164.5 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	164.4		
164.6			
164.6 □□□□y₁: ℋ	10110		
164.7 □□□□y₂:ℋ⊢x₁ ORP y₁=x₂ ORP y₂⊢x₁=x₂ ∧ y₁=y₂	164.6		
164.8			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	164.8		
DEM 164.10		-	
	164.10	$\square \square \square \square \square x_1 \text{ ORP } y_1 = x_2 \text{ ORP } y_2. \dots$	[.9] ASM
	164.11	$\square \square \square \square \square \square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \text{ ORP } y : \mathcal{H} \land x \text{ ORP } y = (x \text{ PAR } x) \text{ PAR } x$	PAR y DEF
	164.12	$\square \square \square \square \square \square x_1 \text{ ORP } y_1 : \mathcal{H} \wedge x_1 \text{ ORP } y_1 = (x_1 \text{ PAR } x_1) \text{ PAR } x_1 \text{ PAR } y_1 \dots$	\dots [.11] [.2] [.6] $_{2}$ MINT $_{2}$
	164.13	$\square\square\square\square\square x_2 \text{ ORP } y_2: \mathcal{H} \land x_2 \text{ ORP } y_2 = (x_2 \text{ PAR } x_2) \text{ PAR } x_2 \text{ PAR } y_2 \dots$	[.11] [.4] [.8] $_{2}$ MINT $_{2}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	164.15	$\square \square \square \square \square \square \forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash x : x \operatorname{PAR} y \land y : x \operatorname{PAR} y. \dots$	THM
164.17 $\bigcirc \bigcirc \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash x \operatorname{PaR} y : \mathcal{H}.$	164.16	$\square\square\square\square\square x_1 \operatorname{PAR} x_1 : \mathscr{H} \vdash x_1 \operatorname{PAR} y_1 : \mathscr{H} \vdash x_1 \operatorname{PAR} x_1 : (x_1 \operatorname{PAR} x_1) \operatorname{PAR} x_1$	$x_1 \operatorname{PAR} y_1 \wedge x_1 \operatorname{PAR} y_1$:
164.18 □□□□x₁ PARx₁: ℋ. [.17] [.2] [.2] 2 MINT2 164.19 □□□□x₁ PARx₁: ℋ. [.17] [.2] [.6] 2 MINT2 164.20 □□□□x₁ PARx₁: (x₂ PARx₂) PARx₂ PARy₂. [.16] [.18] [.19] [.14] TAUT 164.21 □□□x₂ PARx₂: ℋ. [.17] [.4] [.4] 2 MINT2 164.22 □□□x₂ PARy₂: ℋ. [.17] [.4] [.8] 2 MINT2 164.23 □□□x₂ PARy₂: ℋ. [.17] [.4] [.8] 2 MINT2 164.24 □□□x₂ PARx₂) PARx₂ PARy: ℋ. THM 164.25 □□□x₂ PARx₂) PARx₂ PARy: ℋ. [.23] [.21] [.22] 2 MINT2 164.26 □□□x₁ PARx₁: (x₂ PARx₂) PARx₂ PARy₂ ⇔ t=x₂ PARx₂ ∨ t=x₂ PARx₂ ∨ t=x₂ PARx₂ ∨ x₁ PARx₁=x₂ PARy₂. [.24] ∀1 INST 164.26 □□x₁ PARx₁=x₂ PARx₂ ∨ x₁ PARx₁=x₂ PARy₂ [.26] [.20] TAUT 164.27 □□x₁ PARx₁=x₂ PARx₂ ∨ x₁ PARx₁=x₂ PARy₂ [.26] [.20] TAUT 164.28 □□x₁ PARx₁=x₂ PARx₂ ∨ x₁ PARx₁=x₂ PARy₂ [.26] [.20] TAUT 164.29 □□x₁ PARx₁=x₂ PARx₂ [.28] ASM 164.30 □□x₁ PARx₁=x₂ PARx₂ [.28] ASM 164.31 □□x₂ PARx₂: ℋ. ∧ ∀tt:x₂ PARx₂ ⇔ t=x₂ ∨t=x₂ [.23] [.2] [.2] 2 MINT₂ 164.31 □□x₂ PARx₂: ℋ. ∧ ∀tt:x₂ PARx₂ ⇔ t=x₂ ∨t=x₂ [.23] [.4] [.4] 2 MINT₂ 164.33 □□x₂ PARx₂: ℋ. ∧ ∀tt:x₂ PA			
	164.17		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
164.22 $\Box \Box \Box x_2 \operatorname{PAR} y_2 : \mathcal{H}$. [.17] [.4] [.8] $_2 \operatorname{MINT2}$ 164.23 $\Box \Box \Box \Box \forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash x \operatorname{PAR} y : \mathcal{H} \land \forall tt : x \operatorname{PAR} x \Rightarrow t = x \lor t = y$. THM 164.24 $\Box \Box \Box \Box (x_2 \operatorname{PAR} x_2) \operatorname{PAR} x_2 \operatorname{PAR} y_2 : \mathcal{H} \land \forall tt : (x_2 \operatorname{PAR} x_2) \operatorname{PAR} x_2 \operatorname{PAR} x_2 \lor t = x_2 \operatorname{PAR} x_2 \lor t$ $= x_2 \operatorname{PAR} y_2$. [.23] [.21] [.22] $_2 \operatorname{MINT2}$ 164.25 $\Box \Box \Box \forall tt : (x_2 \operatorname{PAR} x_2) \operatorname{PAR} x_2 \operatorname{PAR} y_2 \Leftrightarrow t = x_2 \operatorname{PAR} x_2 \lor t = x_2 \operatorname{PAR} y_2$. [.24] $_1 \operatorname{TAUT}$ 164.26 $\Box \Box \Box x_1 \operatorname{PAR} x_1 : (x_2 \operatorname{PAR} x_2) \operatorname{PAR} x_2 \operatorname{PAR} x_2 \Leftrightarrow x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2 \lor x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2$. [.24] $_1 \operatorname{INST}$ 164.27 $\Box \Box x_1 \operatorname{PAR} x_1 : x_2 \operatorname{PAR} x_2 \lor x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2$. [.26] [.20] $_1 \operatorname{TAUT}$ 164.28 $\Box \Box x_1 \operatorname{PAR} x_1 : x_2 \operatorname{PAR} x_2 \lor x_1 = x_2$. [.26] [.20] $_1 \operatorname{TAUT}$ 164.29 $\Box \Box x_1 \operatorname{PAR} x_1 : x_2 \operatorname{PAR} x_2$. [.28] $_1 \operatorname{PAR} x_1 : x_1 \operatorname{PAR} x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \lor t = x_1$. [.23] [.2] [.2] $_1 \operatorname{PAINT2}$ 164.30 $\Box \Box \Box x_1 \operatorname{PAR} x_1 : \mathcal{H} \land \forall tt : x_1 \operatorname{PAR} x_2 \Leftrightarrow t = x_2 \lor t = x_2$. [.23] [.4] [.4] $_2 \operatorname{MINT2}$ 164.31 $\Box \Box \Box x_1 \operatorname{PAR} x_1 : x_1 \Leftrightarrow t = x_2 \lor t = x_2$. [.23] [.4] [.4] $_2 \operatorname{MINT2}$ 164.32 $\Box \Box \Box \Box x_1 \operatorname{PAR} x_1 : x_1 \Leftrightarrow t = x_2 \lor t = x_2$. [.31] [.29] $_1 \operatorname{PAIN} x_1 : x_1 = x_1 : x_1 : x_1 = x_1 : x_1 : x_1 =$			
164.23 $\Box \Box \Box \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash x \text{ PAR } y: \mathcal{H} \land \forall tt: x \text{ PAR } y \Rightarrow t = x \lor t = y.$ THM 164.24 $\Box \Box \Box \Box (x_2 \text{ PAR } x_2) \text{ PAR } x_2 \text{ PAR } y_2: \mathcal{H} \land \forall tt: (x_2 \text{ PAR } x_2) \text{ PAR } x_2 \Rightarrow t = x_2 \text{ PAR } x_2 \lor t$ $[.23] [.21] [.22] 2 \text{ MINT } 2$ 164.25 $\Box \Box \Box \forall tt: (x_2 \text{ PAR } x_2) \text{ PAR } x_2 \text{ PAR } y_2 \Rightarrow t = x_2 \text{ PAR } x_2 \lor t = x_2 \text{ PAR } y_2.$ $[.24] \forall 1 \text{ MUT}$ 164.26 $\Box \Box \Box x_1 \text{ PAR } x_1: (x_2 \text{ PAR } x_2) \text{ PAR } x_2 \text{ PAR } y_2 \Rightarrow x_1 \text{ PAR } x_1 = x_2 \text{ PAR } x_2 \lor x_1 \text{ PAR } x_1 = x_2 \text{ PAR } x_2.$ $[.24] \forall 1 \text{ INST}$ 164.27 $\Box \Box \Box x_1 \text{ PAR } x_1 = x_2 \text{ PAR } x_2 \lor x_1 \text{ PAR } x_1 = x_2 \text{ PAR } x_2.$ $[.26] [.20] \text{ TAUT}$ 164.28 $\Box \Box \Box x_1 \text{ PAR } x_1 = x_2 \text{ PAR } x_2 \lor x_1 = x_2.$ $[.26] [.20] \text{ TAUT}$ 164.29 $\Box \Box \Box x_1 \text{ PAR } x_1 = x_2 \text{ PAR } x_2 \to x_1 \lor x_1 = x_1.$ $[.23] [.2] [.2] 2 \text{ MINT } 2$ 164.30 $\Box \Box \Box x_1 \text{ PAR } x_1 = x_2 \text{ PAR } x_2 \Leftrightarrow t = x_2 \lor t = x_2.$ $[.23] [.2] [.2] 2 \text{ MINT } 2$ 164.31 $\Box \Box \Box x_1 \text{ PAR } x_1 \Leftrightarrow t = x_2 \lor t = x_2.$ $[.31] [.29] \text{ TAUT}$ 164.32 $\Box \Box \Box x_1 \text{ PAR } x_1 \Leftrightarrow t = x_2 \lor t = x_2.$ $[.32] \forall 1 \text{ INST}$ 164.33 $\Box \Box \Box x_1 \text{ PAR } x_1 \Leftrightarrow x_1 \Leftrightarrow t = x_1 \lor t = x_1.$ $[.30] \text{ TAUT}$ 164.35 $\Box \Box \Box \Box x_1 \text{ PAR } x_1 \Leftrightarrow t = x_1 \lor t = x_1.$ $[.30] TA$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
164.25 $\Box \Box \Box \forall tt: (x_2 \operatorname{PAR} x_2) \operatorname{PAR} x_2 \operatorname{PAR} y_2 \Leftrightarrow t = x_2 \operatorname{PAR} x_2 \vee t = x_2 \operatorname{PAR} y_2.$ [.24] TAUT 164.26 $\Box \Box \Box x_1 \operatorname{PAR} x_1: (x_2 \operatorname{PAR} x_2) \operatorname{PAR} x_2 \operatorname{PAR} x_2 \Leftrightarrow x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2 \vee x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2.$ [.24] $\forall_1 \operatorname{INST}$ 164.27 $\Box \Box x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2 \vee x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} y_2.$ [.26] [.20] TAUT 164.28 $\Box \Box x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2 \vee x_1 = x_2.$ LEM $\Box \Box \Box q$ $\Box \Box q$ DEM 164.29 $\Box \Box x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2.$ [.28] ASM 164.30 $\Box \Box x_1 \operatorname{PAR} x_1 : \mathcal{H} \wedge \forall tt: x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1.$ [.23] [.2] [.2] $\operatorname{PAR} \operatorname{PAR} x_1 \otimes t = x_2 \vee t = x_2.$ 164.31 $\Box \Box \Box x_2 \operatorname{PAR} x_2 : \mathcal{H} \wedge \forall tt: x_2 \operatorname{PAR} x_2 \Leftrightarrow t = x_2 \vee t = x_2.$ [.23] [.4] [.4] $\operatorname{PAR} x_1 \otimes t = x_1 \vee t = x_2.$ 164.32 $\Box \Box \Box x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_2 \vee t = x_2.$ [.31] [.29] TAUT 164.33 $\Box \Box \Box x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1.$ [.30] TAUT 164.34 $\Box \Box \Box x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1.$ [.30] TAUT 164.35 $\Box \Box \Box x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1.$ [.30] TAUT 164.36 $\Box \Box \Box x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t_1 = x_1.$ [.30] TAUT	164.24		
164.26 $\Box \Box \Box x_1 \operatorname{PAR} x_1: (x_2 \operatorname{PAR} x_2) \operatorname{PAR} x_2 \operatorname{PAR} y_2 \Leftrightarrow x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2 \lor x_1 = x_1 \lor $	164 95		
164.27 $\Box\Box\Box\Boxx_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2 \vee x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} y_2$. [.26] [.20] TAUT 164.28 $\Box\Box\Boxx_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} x_2 \vdash x_1 = x_2$. LEM $\Box\Box\Box\Box$ $\Box\Box\Box$ DEM 164.29 $\Box\Box\Box$ \Box [.28] ASM 164.30 $\Box\Box\Box$ \Box \Box \Box \Box [.28] [.21]	104.20		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	164.27		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
164.30 $\Box \Box \Box x_1 \operatorname{PAR} x_1 : \mathscr{H} \wedge \forall tt : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1$. [.23] [.2] [.2] \underline{MINT}_2 164.31 $\Box \Box \Box x_2 \operatorname{PAR} x_2 : \mathscr{H} \wedge \forall tt : x_2 \operatorname{PAR} x_2 \Leftrightarrow t = x_2 \vee t = x_2$. [.23] [.4] [.4] \underline{MINT}_2 164.32 $\Box \Box \Box \forall tt : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_2 \vee t = x_2$. [.31] [.29] \underline{TAUT} 164.33 $\Box \Box \Box x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_2 \vee t = x_2$. [.32] $\forall_1 \operatorname{INST}$ 164.34 $\Box \Box \Box \Box \forall tt : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1$. [.30] \underline{TAUT} 164.35 $\Box \Box \Box x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow x_1 = x_1 \vee x_1 = x_1$. [.34] $\forall_1 \operatorname{INST}$ 164.36 $\Box \Box \Box x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1$. $\Box \Box \Box x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1$.	164.29		
164.31 $\square \square \square x_2 \operatorname{PAR} x_2 : \mathcal{H} \wedge \forall tt : x_2 \operatorname{PAR} x_2 \Leftrightarrow t = x_2 \vee t = x_2.$ [.23] [.4] [.4] $_2 \operatorname{MINT}_2$ 164.32 $\square \square \square \square \forall tt : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_2 \vee t = x_2.$ [.31] [.29] TAUT 164.33 $\square \square \square \square x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_2 \vee x_1 = x_2.$ [.32] $\forall_1 \operatorname{INST}$ 164.34 $\square \square \square \square \forall tt : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1.$ [.30] TAUT 164.35 $\square \square \square \square x_1 : x_1 \operatorname{PAR} x_1 \Leftrightarrow x_1 = x_1 \vee x_1 = x_1.$ [.34] $\forall_1 \operatorname{INST}$ 164.36 $\square \square \square \square x_1 = x_1.$ EQ		· · ·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	164.31		
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	164.32		
164.35 \square \square $x_1:x_1$ $x_1=x_1 \lor x_1=x_1$. $(.34)$ \forall_1 \square 164.36 \square	164.33		
164.36 $\square\square\square\square\square x_1 = x_1$.	164.34	$\square\square\square\square\square\square\forall tt: x_1 \operatorname{PAR} x_1 \Leftrightarrow t=x_1 \vee t=x_1.$	[.30] TAUT
1 1	164.35	$\square\square\square\square\square\square x_1: x_1 \operatorname{PAR} x_1 \Leftrightarrow x_1 = x_1 \vee x_1 = x_1. \ldots$	[.34] \forall_1 INST
164.37 $\square\square\square\square\square x_1 = x_2$. $[.35]$ [.36] [.33] TAUT	164.36		
	164.37		[.35] [.36] [.33] TAUT

□□□□□■QED	
$\square\square\square\square\square x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} y_2 \vdash x_1 = x_2. $ LEM	164.38
$\square\square\square\square\square x_1 \operatorname{PAR} x_1 = x_2 \operatorname{PAR} y_2. \qquad [.38] \operatorname{ASM}$	164.39
$\square\square\square\square\square x_1 \operatorname{PAR} x_1 : \mathscr{H} \wedge \forall tt : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1. \dots [.23] [.2] [.2] \operatorname{2MINT}_2$	164.40
$\square\square\square\square\square x_2 \operatorname{PAR} y_2 : \mathcal{H} \wedge \forall tt : x_2 \operatorname{PAR} y_2 \Leftrightarrow t = x_2 \vee t = y_2 . \dots [.23] [.4] [.8] _{2} \operatorname{MINT}_2$	164.41
	164.42
$\square\square\square\square\square x_2: x_1 \operatorname{PAR} x_1 \Leftrightarrow x_2 = x_2 \vee x_1 = y_2. \qquad [.42] \forall_1 \operatorname{INST}$	164.43
$\square\square\square\square\square \forall tt: x_1 \operatorname{par} x_1 \Leftrightarrow t = x_1 \lor t = x_1. \tag{.40} \ \operatorname{taut}$	164.44
$\square\square\square\square\square x_2: x_1 \operatorname{PAR} x_1 \Leftrightarrow x_2 = x_1 \vee x_2 = x_1. \qquad [.44] \ \forall_1 \operatorname{INST}$	164.45
$\square\square\square\square\square x_2 = x_2$.	164.46
$\square\square\square\square\square x_1 = x_2. \qquad \qquad [.46] \ [.43] \ [.45] \ \text{TAUT}$	164.47
QED	
	164.48
\square	164.49
$\square \square \square \square \square (x_1 \operatorname{PAR} x_1) \operatorname{PAR} x_1 \operatorname{PAR} y_2 : \mathscr{H} \wedge \forall tt : (x_1 \operatorname{PAR} x_1) \operatorname{PAR} x_1 \operatorname{PAR} y_2 \Leftrightarrow t = x_1 \operatorname{PAR} x_1 \vee t$	164.50
$=x_1 \text{ PAR } y_2.$ [.23] [.18] [.19] $_2 \text{MINT}_2$	
$\square \square \square \square \square \forall tt: (x_1 \operatorname{PAR} x_1) \operatorname{PAR} x_1 \operatorname{PAR} y_2 \Leftrightarrow t = x_1 \operatorname{PAR} x_1 \lor t = x_1 \operatorname{PAR} y_2. \ldots [.50] \operatorname{TAUT}$	164.51
$\square\square\square\square\square x_1 \operatorname{PAR} y_1 : (x_1 \operatorname{PAR} x_1) \operatorname{PAR} x_1 \operatorname{PAR} y_2 \Leftrightarrow x_1 \operatorname{PAR} y_1 = x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} y_1 = x_1 \operatorname{PAR} y_2.$	164.52
[.51] \forall_1 INST	
$\square\square\square\square\square x_1 \operatorname{PAR} y_1 = x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} y_1 = x_1 \operatorname{PAR} y_2. \qquad [.52] [.49] \operatorname{TAUT}$	164.53
$\square\square\square\square\square x_1 \operatorname{PAR} y_1 = x_1 \operatorname{PAR} x_1 \vdash y_1 = y_2. $ LEM	164.54
$\square\square\square\square\square x_1 \operatorname{PAR} y_1 = x_1 \operatorname{PAR} x_1. \qquad [.54] \operatorname{ASM}$	164.55
$\square\square\square\square\square x_1 \operatorname{PAR} y_1: \mathcal{H} \wedge \forall tt: x_1 \operatorname{PAR} x_1 \Leftrightarrow t=x_1 \vee t=y_1. \ldots [.23] [.2] [.6] \operatorname{2MINT}_2$	164.56
$\square\square\square\square\square x_1 \operatorname{PAR} x_1 : \mathcal{H} \wedge \forall tt : x_1 \operatorname{PAR} x_1 \Leftrightarrow t = x_1 \vee t = x_1. \dots [.23] [.2] [.2] \operatorname{2MINT}_2$	164.57
$\square\square\square\square\square \forall tt: x_1 \text{ PAR } y_1 \Leftrightarrow t=x_1 \lor t=x_1. \qquad \qquad [.57] \text{ [.55] TAUT}$	164.58
$\square\square\square\square\square y_1: x_1 \text{ PAR } y_1 \Leftrightarrow y_1 = x_1 \lor y_1 = x_1. \qquad [.58] \ \forall_1 \text{INST}$	164.59
$\square\square\square\square\square\forall tt: x_1 \operatorname{PAR} y_1 \Leftrightarrow t = x_1 \lor t = y_1. \qquad [.56] \text{ TAUT}$	164.60
$\square\square\square\square y_1: x_1 \text{ PAR } y_1 \Leftrightarrow y_1 = x_1 \lor y_1 = y_1. \qquad [.60] \forall_1 \text{INST}$	164.61
$\square\square\square\square y_1 = y_1. \qquad \qquad \square$	164.62
\square	164.63
$\square\square\square\square\square x_2 \operatorname{PAR} x_2 : (x_2 \operatorname{PAR} x_2) \operatorname{PAR} x_2 \operatorname{PAR} y_2 \wedge x_2 \operatorname{PAR} y_2 : (x_2 \operatorname{PAR} x_2) \operatorname{PAR} x_2 \operatorname{PAR} y_2 . \dots$	164.64
[.15] [.21] [.22] ₂ MINT ₂	
\square	164.65
$\square\square\square\square\square \forall x \forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash \forall tt: x \text{ PAR } y \Leftrightarrow t = x \lor t = y. $ THM	164.66
	164.67
$\square\square\square\square x_1 \operatorname{PAR} y_2 : (x_1 \operatorname{PAR} x_1) \operatorname{PAR} x_1 \operatorname{PAR} x_1 \Leftrightarrow x_1 \operatorname{PAR} y_2 = x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} x_2 = x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} x_2 = x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} x_2 = x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} x_2 = x_1 \operatorname{PAR} x_1 \vee x_1$	164.68
x_1	
$\square\square\square\square\square x_1 \operatorname{PAR} y_2 = x_1 \operatorname{PAR} x_1 \vee x_1 \operatorname{PAR} y_2 = x_1 \operatorname{PAR} x_1. \qquad [.68] [.65] \forall_1 \operatorname{INST}$	164.69
$\square\square\square\square\square x_1 \operatorname{PAR} y_2 = x_1 \operatorname{PAR} x_1. \qquad [.69] \operatorname{TAUT}$	164.70
$\square\square\square\square\square\forall tt: x_1 \operatorname{PAR} y_2 \Leftrightarrow t = x_1 \lor t = y_2. \qquad [.66] [.2] [.8] _{2} \operatorname{MINT}_{2}$	164.71
$\square\square\square\square\square y_2: x_1 \text{ PAR } y_2 \Leftrightarrow y_2 = x_1 \vee y_2 = y_2. \qquad [150]$	164.72

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	164.73		[.66] [.2] [.2] ₂ MINT ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	164.74	$\square\square\square\square\square\square y_2: x_1 \operatorname{PAR} x_1 \Leftrightarrow y_2 = x_1 \vee y_2 = x_1. \dots$	[.73] \forall_1 INST
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	164.75	$\square\square\square\square\square\square y_2 = y_2. \dots$	EQ
164.77 \Box	164.76		[.75] [.72] [.74] [.63] TAUT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		□□□□□□■	QED
164.78 \Box PAR $y_1 = x_1$ PAR y_2 . [.77] ASM 164.79 \Box VXY $yx: H Y: H Y: H Yt: YPAR y \Leftrightarrow t = x \lor t = y. THM 164.80 \Box VXYx: H PAR y_1 \Leftrightarrow t = x_1 \lor t = y_1. [.79] [.2] [.6] 2MINT2 164.81 \Box V2: x_1 PAR y_1 \Leftrightarrow y_2 = x_1 \lor y_2 = y_1. [.80] \forall_1 INST 164.82 \Box V1: x_1 PAR y_2 \Leftrightarrow t = x_1 \lor t = y_2. [.79] [.2] [.8] 2MINT2 164.83 \Box V1: x_1 PAR y_2 \Leftrightarrow t = x_1 \lor t = y_2. [.82] \forall_1 INST 164.84 \Box V2: x_1 PAR y_2 \Leftrightarrow y_2 = x_1 \lor y_2 = y_2. [.82] \forall_1 INST 164.85 \Box V2: x_1 PAR x_2 \Leftrightarrow y_2 = x_1 \lor y_2 = y_2. [.85] [.84] [.78] [.81] TAUT 164.86 \Box V2: x_1 PAR x_1 \Leftrightarrow y_1 = x_1 \lor y_1 = y_1. [.80] \forall_1 INST 164.87 \Box V1: x_1 PAR x_1 \Leftrightarrow y_1 = x_1 \lor y_1 = y_1. [.80] \forall_1 INST 164.88 \Box V1: x_1 PAR x_1 \Leftrightarrow y_1 = x_2. [.88] [.87] [.78] [.83] TAUT 164.90 \Box V1: x_1 Y1: x_2 PAR x_2 PAR x_2 PAR x_3 PAR x_4 PAR$	164.77	$\square \square \square \square \square x_1 \operatorname{PAR} y_1 = x_1 \operatorname{PAR} y_2 \vdash y_1 = y_2. \ldots$	LEM
164.79 $\Box \Box \Box \forall x \forall y x : \mathscr{H} \vdash y : \mathscr{H} \vdash \forall t t t : x \operatorname{PAR} y \Leftrightarrow t = x \lor t = y.$ [.79] [.2] [.6] $_{2} \operatorname{MINT2}$ 164.80 $\Box \Box \Box \Box \forall t t : x_{1} \operatorname{PAR} y_{1} \Leftrightarrow t = x_{1} \lor t = y_{1}.$ [.80] $_{1} \operatorname{MINT2}$ 164.81 $\Box \Box \Box \Box y_{2} : x_{1} \operatorname{PAR} y_{1} \Leftrightarrow y_{2} = x_{1} \lor y_{2} = y_{1}.$ [.80] $_{1} \operatorname{INST}$ 164.82 $\Box \Box \Box \Box \forall t t : x_{1} \operatorname{PAR} y_{2} \Leftrightarrow t = x_{1} \lor t = y_{2}.$ [.79] [.2] [.8] $_{2} \operatorname{MINT2}$ 164.83 $\Box \Box \Box \Box y_{1} : x_{1} \operatorname{PAR} y_{2} \Leftrightarrow y_{1} = x_{1} \lor y_{1} = y_{2}.$ [.82] $_{1} \operatorname{INST}$ 164.84 $\Box \Box \Box \Box y_{2} : x_{1} \operatorname{PAR} y_{2} \Leftrightarrow y_{2} = x_{1} \lor y_{2} = y_{2}.$ [.82] $_{1} \operatorname{INST}$ 164.85 $\Box \Box \Box \Box y_{2} = y_{2}.$ [.83] [.84] [.78] [.81] $_{1} \operatorname{TAUT}$ 164.86 $\Box \Box \Box \Box y_{2} = x_{1} \lor y_{2} = y_{1}.$ [.85] [.84] [.78] [.81] $_{1} \operatorname{TAUT}$ 164.87 $\Box \Box \Box y_{1} : x_{1} \operatorname{PAR} y_{1} \Leftrightarrow y_{1} = x_{1} \lor y_{1} = y_{1}.$ [.80] $_{1} \operatorname{INST}$ 164.88 $\Box \Box \Box \Box y_{1} : x_{1} \lor y_{1} = y_{2}.$ [.86] [.89] $_{1} \operatorname{TAUT}$ 164.90 $\Box \Box \Box y_{1} : y_{2}.$ [.86] [.89] $_{1} \operatorname{TAUT}$ $\Box \Box \Box \Box y_{1} : x_{2} \lor y_{1} = y_{2}.$ [.53] [.54] [.77] $_{1} \operatorname{TAUT}$ $\Box \Box $			DEM
164.80 $\Box \Box \Box \forall tt: x_1 \operatorname{PAR} y_1 \Leftrightarrow t = x_1 \lor t = y_1.$ $[.79] [.2] [.6] _{2} \operatorname{MINT2}$ 164.81 $\Box \Box \Box \Box y_2: x_1 \operatorname{PAR} y_1 \Leftrightarrow y_2 = x_1 \lor y_2 = y_1.$ $[.80] \forall_1 \operatorname{INST}$ 164.82 $\Box \Box \Box \Box \forall tt: x_1 \operatorname{PAR} y_2 \Leftrightarrow t = x_1 \lor t = y_2.$ $[.79] [.2] [.8] _{2} \operatorname{MINT2}$ 164.83 $\Box \Box \Box \Box y_1: x_1 \operatorname{PAR} y_2 \Leftrightarrow y_1 = x_1 \lor y_1 = y_2.$ $[.82] \forall_1 \operatorname{INST}$ 164.84 $\Box \Box \Box \Box y_2: x_1 \operatorname{PAR} y_2 \Leftrightarrow y_2 = x_1 \lor y_2 = y_2.$ $[.82] \forall_1 \operatorname{INST}$ 164.85 $\Box \Box \Box y_2 = x_1 \lor y_2 = y_1.$ $[.85] [.84] [.78] [.81] \operatorname{TAUT}$ 164.86 $\Box \Box \Box y_1 = x_1 \lor y_2 = y_1.$ $[.85] [.84] [.78] [.81] \operatorname{TAUT}$ 164.87 $\Box \Box \Box y_1 = y_1.$ $[.80] \forall_1 \operatorname{INST}$ 164.88 $\Box \Box \Box y_1 = y_1.$ $[.86] [.89] \operatorname{TAUT}$ 164.89 $\Box \Box \Box y_1 = x_1 \lor y_1 = y_2.$ $[.86] [.89] \operatorname{TAUT}$ 164.90 $\Box \Box \Box y_1 = y_2.$ $[.86] [.89] \operatorname{TAUT}$ 164.91 $\Box \Box \Box y_1 = y_2.$ $[.86] [.81] \operatorname{TAUT}$ 164.92 $\Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ 164.92 $\Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ 164.92 $\Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ 164.91 $\Box C x_1 = x_2 \land y_1 = x_1 \lor x_2$	164.78	$\square \square \square \square \square \square x_1 \operatorname{PAR} y_1 = x_1 \operatorname{PAR} y_2. \dots$	[. 77] ASM
164.81 $\bigcirc \bigcirc $	164.79	$\square \square \square \square \square \square \forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash \forall tt : x \text{ PAR } y \Leftrightarrow t = x \lor t = y . \dots$	THM
164.82 $\Box \Box \Box \Box \forall tt: x_1 \text{ PAR } y_2 \Leftrightarrow t = x_1 \lor t = y_2.$ $[.79] [.2] [.8] 2 \text{MINT2}$ 164.83 $\Box \Box \Box y_1 : x_1 \text{ PAR } y_2 \Leftrightarrow y_1 = x_1 \lor y_1 = y_2.$ $[.82] \forall_1 \text{INST}$ 164.84 $\Box \Box \Box y_2 : x_1 \text{ PAR } y_2 \Leftrightarrow y_2 = x_1 \lor y_2 = y_2.$ $[.82] \forall_1 \text{INST}$ 164.85 $\Box \Box \Box y_2 = y_2.$ $[.85] [.84] [.78] [.81] \text{ TAUT}$ 164.86 $\Box \Box \Box y_1 = x_1 \lor y_2 = y_1.$ $[.85] [.84] [.78] [.81] \text{ TAUT}$ 164.87 $\Box \Box \Box y_1 = x_1 \lor y_1 = y_1.$ $[.80] \forall_1 \text{INST}$ 164.88 $\Box \Box \Box y_1 = y_1.$ $[.88] [.87] [.78] [.83] \text{ TAUT}$ 164.90 $\Box \Box \Box y_1 = y_2.$ $[.86] [.89] \text{ TAUT}$ $\Box \Box \Box \Box \Box y_1 = y_2.$ $[.86] [.89] \text{ TAUT}$ $\Box \Box \Box \Box \Box y_1 = y_2.$ $[.53] [.54] [.77] \text{ TAUT}$ $\Box \Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \text{ TAUT}$ $\Box \Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \text{ TAUT}$ $\Box \Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \text{ TAUT}$ $\Box \Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \text{ TAUT}$ $\Box \Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \text{ TAUT}$ $\Box \Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \text{ TAUT}$	164.80	$\square \square \square \square \square \square \forall tt: x_1 \text{ PAR } y_1 \Leftrightarrow t = x_1 \lor t = y_1. \ldots$	[.79] [.2] [.6] $_{2}$ MINT $_{2}$
164.83 $\bigcirc \bigcirc \bigcirc y_1 : x_1 \text{ PAR } y_2 \Leftrightarrow y_1 = x_1 \lor y_1 = y_2.$ [.82] $\forall_1 \text{INST}$ 164.84 $\bigcirc \bigcirc \bigcirc \bigcirc y_2 : x_1 \text{ PAR } y_2 \Leftrightarrow y_2 = x_1 \lor y_2 = y_2.$ [.82] $\forall_1 \text{INST}$ 164.85 $\bigcirc \bigcirc \bigcirc$ EQ 164.86 $\bigcirc \bigcirc \bigcirc$ [.85] [.84] [.78] [.81] TAUT 164.87 $\bigcirc \bigcirc \bigcirc$ [.80] $\forall_1 \text{INST}$ 164.88 $\bigcirc \bigcirc $	164.81	$\square \square \square \square \square y_2: x_1 \operatorname{PAR} y_1 \Leftrightarrow y_2 = x_1 \vee y_2 = y_1. \ldots$	[. 80] ∀ ₁ INST
164.84 $\Box \Box \Box \Box y_2 : x_1 \operatorname{PAR} y_2 \Leftrightarrow y_2 = x_1 \lor y_2 = y_2.$ $[.82] \ \forall_1 \operatorname{INST}$ 164.85 $\Box \Box \Box \Box y_2 = y_2.$ $[.85] [.84] [.78] [.81] \operatorname{TAUT}$ 164.86 $\Box \Box \Box y_1 = x_1 \lor y_2 = y_1.$ $[.85] [.84] [.78] [.81] \operatorname{TAUT}$ 164.87 $\Box \Box \Box y_1 : x_1 \operatorname{PAR} y_1 \Leftrightarrow y_1 = x_1 \lor y_1 = y_1.$ $[.80] \ \forall_1 \operatorname{INST}$ 164.88 $\Box \Box \Box y_1 = y_1.$ $[.88] [.87] [.78] [.83] \operatorname{TAUT}$ 164.90 $\Box \Box \Box y_1 = y_2.$ $[.86] [.89] \operatorname{TAUT}$ 164.91 $\Box \Box \Box y_1 = y_2.$ $[.53] [.54] [.77] \operatorname{TAUT}$ 164.92 $\Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ $\Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ $\Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ $\Box \Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ $\Box \Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ $\Box \Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ $\Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ $\Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ $\Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ $\Box \Box \Box \Box x_1 = x_2 \land y_1 = y_2.$ $[.48] [.91] \operatorname{TAUT}$ $\Box \Box \Box x_1 = x_2 \land y_1 = y_2.$	164.82	\square \square \square \square \square $\forall tt: x_1 \text{ PAR } y_2 \Leftrightarrow t=x_1 \lor t=y_2. \ldots$	[.79] [.2] [.8] $_2$ MINT $_2$
164.85 $\bigcirc \bigcirc \bigcirc y_2 = y_2$. EQ 164.86 $\bigcirc \bigcirc \bigcirc \bigcirc y_2 = x_1 \lor y_2 = y_1$. [.85] [.84] [.78] [.81] TAUT 164.87 $\bigcirc \bigcirc \bigcirc$ [.80] $\forall \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 164.88 $\bigcirc \bigcirc \bigcirc$ [.88] [.87] [.78] [.83] TAUT 164.89 $\bigcirc \bigcirc \bigcirc$ [.86] [.89] TAUT 164.90 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ [.86] [.89] TAUT $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ [.86] [.89] TAUT $\bigcirc \bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc$ [.86] [.89] TAUT $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc$ [.86] [.89] TAUT $\bigcirc \bigcirc$ \bigcirc [.86] [.89] TAUT \bigcirc	164.83	$\square \square \square \square \square \square y_1 : x_1 \operatorname{PAR} y_2 \Leftrightarrow y_1 = x_1 \vee y_1 = y_2 \cdot \dots$	[.82] \(\forall _1 \text{INST}
164.86 $\bigcirc \bigcirc $	164.84	$\square \square \square \square \square y_2 : x_1 \operatorname{PAR} y_2 \Leftrightarrow y_2 = x_1 \vee y_2 = y_2 \cdot \dots$	[.82] \(\forall _1 \text{INST}
164.87 $\bigcirc \bigcirc $	164.85	$\square\square\square\square\square y_2 = y_2.$	EQ
164.88 $\bigcirc \bigcirc \bigcirc y_1 = y_1$. EQ 164.89 $\bigcirc \bigcirc \bigcirc \bigcirc y_1 = x_1 \vee y_1 = y_2$. [.88] [.87] [.78] [.83] TAUT 164.90 $\bigcirc \bigcirc \bigcirc$ [.86] [.89] TAUT $\bigcirc \bigcirc \bigcirc$ [.53] [.54] [.77] TAUT 164.92 $\bigcirc \bigcirc \bigcirc$ [.48] [.91] TAUT $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc$ \bigcirc $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ \bigcirc	164.86	$\square\square\square\square\square y_2 = x_1 \vee y_2 = y_1.$	[.85] [.84] [.78] [.81] TAUT
164.89 $y_1 = x_1 \lor y_1 = y_2$. [.88] [.87] [.78] [.83] TAUT 164.90 $y_1 = y_2$. [.86] [.89] TAUT 0 $y_1 = y_2$. [.53] [.54] [.77] TAUT 164.92 $y_1 = y_2$. [.48] [.91] TAUT 0 $y_1 = y_2$. [.48] [.91] TAUT 0 $y_1 = y_2$. $y_1 = y_2$. 0 $y_1 = y_2$. $y_1 = y_2$. 0 $y_1 = y_2$. $y_1 = y_2$. 0 $y_1 = y_2$. $y_2 = y_2$. 0 $y_1 = y_2$. $y_2 = y_2$. 0 $y_1 = y_2$. $y_2 = y_2$. 0 $y_2 = y_2$. $y_3 = y_2$. 0 $y_1 = y_2$. $y_2 = y_2$. 0 $y_1 = y_2$. $y_2 = y_2$. 0 $y_1 = y_2$. $y_2 = y_2$. 0 $y_1 = y_2$. $y_2 = y_2$. 0 $y_1 = y_2$. $y_1 = y_2$. 0 $y_1 = y_2$. $y_1 = y_2$. 0 $y_1 = y_2$. $y_1 = y_2$. 0 $y_1 = y_2$. $y_1 = y_2$. 0 $y_1 = y_2$. $y_1 = y_2$. 0	164.87	$\square \square \square \square \square y_1: x_1 \text{ PAR } y_1 \Leftrightarrow y_1 = x_1 \vee y_1 = y_1. \dots$	[. 80] ∀ ₁ INST
164.90 $\bigcirc \bigcirc $	164.88	$\square\square\square\square\square y_1 = y_1.$	EQ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	164.89	$\square\square\square\square\square y_1 = x_1 \vee y_1 = y_2.$	[.88] [.87] [.78] [.83] TAUT
164.91	164.90	$\square\square\square\square\square y_1 = y_2.$	[.86] [.89] TAUT
164.92		□□□□□□■	QED
□□□■	164.91	$\square\square\square\square y_1 = y_2.$	
□□□■	164.92	$\square \square \square \square \square x_1 = x_2 \wedge y_1 = y_2. \dots$	[.48] [.91] TAUT
□□■QED □□■QED		□□□□□■	QED
□□■. QED		□□□□■	QED
•			QED
□■ OFD		□□■	QED
C=		□■	QED
164.93 $\square \forall x_1 \forall x_2 \forall y_1 \forall y_2 x_1 : \mathcal{H} \vdash x_2 : \mathcal{H} \vdash y_1 : \mathcal{H} \vdash y_2 : \mathcal{H} \vdash x_1 \text{ ORP } y_1 = x_2 \text{ ORP } y_2 \vdash x_1 = x_2 \land y_1 = y_2 \dots$	164.93	$\square \forall x_1 \forall x_2 \forall y_1 \forall y_2 x_1 : \mathscr{H} \vdash x_2 : \mathscr{H} \vdash y_1 : \mathscr{H} \vdash y_2 : \mathscr{H} \vdash x_1 \text{ ORP } y_1 = x_1 $	$x_2 \text{ ORP } y_2 \vdash x_1 = x_2 \land y_1 = y_2 \dots$
[.1] UGEN ₄			[.1] UGEN ₄
■QED		I.	QED
Uses Axioms: 3, 4, 5, 6, 7, 8, 9, 12		Uses Axioms: 3, 4, 5, 6, 7, 8, 9, 12	

For all sets x, y, we can exhibit a unique set z containing precisely all the ordered pairs $x_1 \text{ ORP } y_1$ for each $x_1:x$, $y_1:y$. PROOF: Fix any $x_1:x$. We may objectify a function $f:y \to \mathcal{H}$ which assigns each $y_1:y$ to $x_1 \text{ ORP } y_1$. By replacement there exists a unique set a st. $\forall a_1 a_1:a \Leftrightarrow \exists y_1 y_1:y \land a_1 = x_1 \text{ ORP } y_1$. Thus we may lift ourselves from x_1 , and objectify a function $g:x \to \mathcal{H}$ which assigns each $x_1:x$ to the unique set a st. $\forall a_1 a_1:a \Leftrightarrow \exists y_1 y_1:y \land a_1 = x_1 \text{ ORP } y_1$. Replacing the elements of x by its evaluation under g, gives the set b. Finally, $\bigcup b$ gives the desired set. QED.

We name its realizer \times . Another proof uses the *power set* axiom, as opposed to *replacement*, by *specifying* over $\mathscr{PP}(x \cup y)$. We prefer ours since *replacement* is pathologically less intrusive.

165	$\forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash \exists ! z z : \mathcal{H} \land \forall z_1 z_1 : z \Leftrightarrow \exists x_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1 . \dots$

¶	
$\Box x: \mathcal{H} \vdash y: \mathcal{H} \vdash \exists ! zz: \mathcal{H} \land \forall z_1 z_1 : z \Leftrightarrow \exists x_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1. $ LEM	165.1
$\square \P$	
$\square \square x: \mathcal{H}.$ [.1] ASM	165.2
$\square\square y: \mathscr{H} \vdash \exists! zz: \mathscr{H} \land \forall z_1 z_1 : z \Leftrightarrow \exists x_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1. \dots \text{ LEM}$	165.3
□□¶	
$\square\square y:\mathcal{H}.$ [.3] ASM	165.4
$\square\square\square x_1:x \vdash \exists! aa: \mathscr{H} \land \forall a_1a_1:a \Leftrightarrow \exists y_1y_1:y \land a_1=x_1 \text{ ORP } y_1.$ LEM	165.5
¶	
$\square\square\square x_1:x$ [.5] ASM	165.6
$\square \square \square \square \forall a \forall b \forall \psi (\forall xx : a \vdash \exists ! yy : b \land \psi xy) \vdash \exists f f : a \rightarrow b \land \forall x \forall yx : a \vdash y : b \vdash \psi xy \Leftrightarrow fx = y \land AXM$	165.7
$\square \square \square \square \forall y \forall b \forall \psi (\forall y_1 y_1 : y \vdash \exists! zz : b \land \psi y_1 z) \vdash \exists f f : y \rightarrow b \land \forall y_1 \forall z y_1 : y \vdash z : b \vdash \psi y_1 z \Leftrightarrow f y_1 = z. \dots$	165.8
[.7] QNT	
$\square\square\square\square\forall\psi(\forall y_1y_1:y\vdash\exists!zz:\mathscr{H}\land\psi y_1z)\vdash\exists ff:y\rightarrow\mathscr{H}\land\forall y_1\forall zy_1:y\vdash z:\mathscr{H}\vdash\psi y_1z\Leftrightarrow fy_1=z.\ldots.$	165.9
[.8] UGEN ₂	
$\square\square\square\square(\forall y_1y_1:y\vdash\exists!zz:\mathscr{H}\land z=x_1\text{ ORP }y_1)\vdash\exists ff:y\to\mathscr{H}\land\forall y_1\forall zy_1:y\vdash z:\mathscr{H}\vdash z=x_1\text{ ORP }y_1\Leftrightarrow$	165.10
$fy_1 = z$ [.9] \forall_2 INST	
$\square\square\square y_1 : y \vdash \exists ! zz : \mathcal{H} \land z = x_1 \text{ ORP } y_1.$ LEM	165.11
[.11] ASM	165.12
$\square \square \square \square \forall x \forall y x : y \vdash y : \mathcal{H} \vdash x : \mathcal{H}.$ AXM	165.13
$\square\square\square x_1:\mathscr{H}. \qquad \qquad [.13] \ [.6] \ [.2] \ _2 \text{MINT}_2$	165.14
$\square\square\square y_1:\mathcal{H}.$ $[.13] [.12] [.4] _2 \text{MINT}_2$	165.15
$\square \square \square \square \square \forall x \forall y x : \mathcal{H} \vdash x \text{ ORP } y : \mathcal{H} \land x \text{ ORP } y = (x \text{ PAR } x) \text{ PAR } x \text{ PAR } y. \dots \square \text{ DEF}$	165.16
$\square\square\square\square x_1 \text{ ORP } y_1: \mathcal{H} \land x_1 \text{ ORP } y_1 = (x_1 \text{ PAR } x_1) \text{ PAR } x_1 \text{ PAR } y_1. \dots [.16] \text{ [.14] } [.15] \text{ 2MINT}_2$	165.17
$\square\square\square\square x_1 \operatorname{ORP} y_1 = x_1 \operatorname{ORP} y_1. \qquad \qquad \square \mathbb{E}\mathbb{Q}$	165.18
$\square\square\square\square \square x_1 \text{ ORP } y_1: \mathcal{H} \land x_1 \text{ ORP } y_1 = x_1 \text{ ORP } y_1. \qquad \qquad [.17] \text{ [.18] TAUT}$	165.19
$\square\square\square\square\exists zz: \mathcal{H} \land z = x_1 \text{ ORP } y_1. \qquad [.19] \exists_1 \text{ GEN}$	165.20
	165.21
$\square\square\square\square z_1: \mathcal{H} \wedge z_1 = x_1 \text{ ORP } y_1. \qquad \qquad [.21] \text{ ASM}$	165.22
$\square\square\square\square z_1:\mathscr{H} \land z_1 - x_1 \text{ ORP } y_1. \qquad \qquad \square \square \square z_2:\mathscr{H} \land z_2 = x_1 \text{ ORP } y_1 \vdash z_1 = z_2. \qquad \qquad \square \square \square \square z_1:\mathscr{H} \land z_1 = x_2 = z_1 \text{ ORP } y_1 \vdash z_1 = z_1 = z_1 \text{ ORP } y_1 \vdash z_1 = z_1 = z_1 \text{ ORP } y_1 \vdash z_1 = z_1 = z_1 \text{ ORP } y_1 \vdash z_1 = z_1 = z_1 \text{ ORP } y_1 \vdash z_1 = z_1 = z_1 \text{ ORP } y_1 \vdash z_1 = z_1 = z_1 \text{ ORP } y_1 \vdash z_1 = z_1 = z_1 = z_1 \text{ ORP } y_1 \vdash z_1 = z_1$	165.23
	100.20
$\square\square\square\square\square z_2: \mathcal{H} \land z_2 = x_1 \text{ ORP } y_1. \qquad [.23] \text{ ASM}$	165.24
$\square\square\square\square\square z_1 = z_2. \qquad \qquad [.22] \ [.24] \ \text{TAUT}$	165.25
QED	100.20
QED	
$\square\square\square\square\square\forall z_1\forall z_2z_1:\mathscr{H}\land z_1=x_1\text{ ORP }y_1\vdash z_2:\mathscr{H}\land z_2=x_1\text{ ORP }y_1\vdash z_1=z_2.\ldots\ldots[.21]\text{ UGEN}_2$	165.26
$\square\square\square\square\exists!zz:\mathscr{H} \land z=x_1 \text{ ORP } y_1. \qquad \qquad [.20] \text{ [.26] } \exists! \text{INTROS}$	165.27
QED	
$\square\square\square \forall y_1 y_1 : y \vdash \exists! zz : \mathscr{H} \land z = x_1 \text{ ORP } y_1. $ $[.11] \forall_1 \text{ GEN}$	165.28
$\square\square\square\square\exists ff: y \rightarrow \mathcal{H} \land \forall y_1 \forall z y_1 : y \vdash z : \mathcal{H} \vdash z = x_1 \text{ ORP } y_1 \Leftrightarrow fy_1 = z. \qquad [.10] [.28] \text{ MP}$	165.29
$\square\square\square f: y \to \mathcal{H} \land \forall y_1 \forall z y_1 : y \vdash z : \mathcal{H} \vdash z = x_1 \text{ ORP } y_1 \Leftrightarrow f y_1 = z. \qquad [.29] \exists_1 \text{ INST}$	165.30
$\square\square\square f: y \rightarrow \mathcal{H}.$	165.31

165.32	$\square \square \square \square \forall x \forall f x : \mathcal{H} \vdash f : x \rightarrow \mathcal{H} \vdash \exists y y : \mathcal{H} \land \forall y_1 y_1 : y \Leftrightarrow \exists x_1 x_1 : x \land f x_1 = y_1 . \dots \dots AXM$
	$\Box\Box\Box\Box\forall x\forall fx: \mathcal{H}\vdash f: x\rightarrow \mathcal{H}\vdash \exists aa: \mathcal{H}\land\forall a_1a_1: a\Leftrightarrow \exists y_1y_1: x\land fy_1=a_1. \ldots [.32] \text{ QNT}$
	$\square\square\square\square\exists aa: \mathcal{H} \land \forall a_1a_1: a \Leftrightarrow \exists y_1y_1: y \land f y_1 = a_1. $
	$\Box\Box\Box a: \mathcal{H} \land \forall a_1 a_1 : a \Leftrightarrow \exists y_1 y_1 : y \land f y_1 = a_1. $ [.34] $\exists_1 \text{INST}$
	$\square\square\square \forall a_1 a_1 : a \Leftrightarrow \exists y_1 y_1 : y \land f y_1 = a_1. $
	$\square\square\square a:\mathcal{H}. \qquad \qquad [.35] \text{ TAUT}$
165.38	$\square\square\square a_1: a \vdash \exists y_1 y_1: y \land a_1 = x_1 \text{ ORP } y_1. $ LEM
100.00	
165.39	□□□□ a ₁ : a . [.38] ASM
	$\square\square\square\square a_1:a \Leftrightarrow \exists y_1y_1:y \land f y_1=a_1. $ [.36] $\forall_1 \text{INST}$
	$\square\square\square\exists y_1y_1: y \land f y_1 = a_1. \qquad [.41] [.39] \text{ TAUT}$
	$\square\square\square\square y_2; y \land f y_2 = a_1. \qquad [.41] \exists_1 \text{INST}$
	$\square\square\square\square \forall y_1 \forall z y_1 : y \vdash z : \mathcal{H} \vdash z = x_1 \text{ ORP } y_1 \Leftrightarrow f y_1 = z. \qquad [.30] \text{ TAUT}$
	$\square\square\square\square y_2: y \vdash f y_2: \mathcal{H} \vdash f y_2 = x_1 \text{ ORP } y_2 \Leftrightarrow f y_2 = f y_2. \qquad [.43]_{0} \text{ MINT}_2$
	$\square\square\square\square\forall xx:y\vdash fy:\mathcal{H}.$ [.45] [.31] 1MINT3
	$\square\square\square y_2: y \vdash f y_2: \mathcal{H}. \qquad [.46] \forall_1 \text{INST}$
	$\square\square\square f y_2 = f y_2. \qquad \qquad \square$
	$\Box\Box\Box\Box a_1 = x_1 \text{ ORP } y_2.$ [.47] [.42] [.44] [.48] TAUT
	$\square\square\square y_2 : y \wedge a_1 = x_1 \text{ ORP } y_2. \qquad [.42] [.49] \text{ TAUT}$
	$\square\square\square\exists y_1y_1:y \land a_1 = x_1 \text{ ORP } y_1. \qquad [.50] \exists_1 \text{ GEN}$
	QED
165.52	$\square\square\square(\exists y_1y_1:y \land a_1 = x_1 \text{ ORP } y_1) \vdash a_1:a.$ LEM
165.53	$\square\square\square\exists y_1y_1:y \land a_1 = x_1 \text{ ORP } y_1. \qquad [.52] \text{ ASM}$
165.54	$\square\square\square \exists y_2 : y \land a_1 = x_1 \text{ ORP } y_2. \qquad [.52] \exists_1 \text{ INST}$
165.55	$\square\square\square\square \forall y_1 \forall z y_1 : y \vdash z : \mathcal{H} \vdash z = x_1 \text{ ORP } y_1 \Leftrightarrow f y_1 = z. \qquad [.30] \text{ TAUT}$
165.56	$\square \square \square \square y_2 : y \vdash x_1 \text{ ORP } y_2 : \mathscr{H} \vdash x_1 \text{ ORP } y_2 = x_1 \text{ ORP } y_2 \Leftrightarrow f y_2 = x_1 \text{ ORP } y_2 \dots \dots \dots [.55]_0 \text{ MINT}_2$
165.57	$\square\square\square\square\forall x\forall yx:y\vdash y:\mathscr{H}\vdash x:\mathscr{H}.$
165.58	$\square\square\square\square x_1:\mathcal{H}.$ [.57] [.6] [.2] $_2$ MINT $_2$
165.59	$\square\square\square y_2 : y$
165.60	$\square\square\square\square y_2:\mathcal{H}.$ [.57] [.59] [.4] $_2$ MINT $_2$
165.61	$\square \square \square \square \square \forall x \forall yx : \mathcal{H} \vdash y : \mathcal{H} \vdash x \text{ ORP } y : \mathcal{H} \land x \text{ ORP } y = (x \text{ PAR } x) \text{ PAR } x \text{ PAR } y. \dots \square \text{ DEF}$
165.62	$\square\square\square\square\square x_1 \text{ ORP } y_2: \mathcal{H} \land x_1 \text{ ORP } y_2 = (x_1 \text{ PAR } x_1) \text{ PAR } x_1 \text{ PAR } y_2. \dots [.61] \text{ [.58] } \text{ [.60] } 2 \text{ MINT}_2$
165.63	$\square\square\square\square x_1 \text{ ORP } y_2 = x_1 \text{ ORP } y_2. $ EQ
165.64	
165.65	$\square\square\square\square\exists y_1y_1:y \land fy_1=a_1. \qquad [.65] \exists_1 GEN$
165.66	$\square\square\square\square a_1:a \Leftrightarrow \exists y_1y_1:y \land f y_1=a_1. \qquad [.36] \forall_1 \text{GEN}$
165.67	$\square\square\square\square a_1$:a. $\qquad \qquad \qquad$
	□□□■QED
165.68	$\square\square\square a_1:a \Leftrightarrow \exists y_1 y_1:y \land a_1 = x_1 \text{ ORP } y_1. \qquad [.38] [.52] \text{ TAUT}$
165.69	$\square\square\square\square\forall a_1a_1:a\Leftrightarrow \exists y_1y_1:y\land a_1=x_1 \text{ ORP } y_1. \qquad \qquad [.68] \forall_1 \text{GEN}$
165.70	$\square\square\square a: \mathscr{H} \land \forall a_1 a_1 : a \Leftrightarrow \exists y_1 y_1 : y \land a_1 = x_1 \text{ ORP } y_1. \qquad [.35] \text{ [.69] TAUT}$
165.71	$\square \square \square \exists aa: \mathcal{H} \land \forall a_1a_1: a \Leftrightarrow \exists y_1y_1: y \land a_1 = x_1 \text{ ORP } y_1. \qquad [.68] \exists_1 \text{GEN}$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\square \square \square \square \square \forall x \forall y x : \mathcal{H} \vdash y : \mathcal{H} \vdash (\forall t t : x \Leftrightarrow t : y) \vdash x = y. $ AXM 165.82
$\square \square \square \square \square \square \alpha_x : \mathcal{H} \vdash \alpha_y : \mathcal{H} \vdash (\forall tt : \alpha_x \Leftrightarrow t : \alpha_y) \vdash \alpha_x = \alpha_y . \dots [.82] \text{ 0 MINT}_3 $ 165.83
$\Box\Box\Box\Box a_x = a_y$
QED
□□□■QED
$\square\square\square\square\forall a_x\forall a_y(a_x:\mathscr{H}\wedge\forall a_1a_1:a_x\Leftrightarrow\exists y_1y_1:y\wedge a_1=x_1\text{ ORP }y_1)\vdash (a_y:\mathscr{H}\wedge\forall a_1a_1:a_y\Leftrightarrow\exists y_1y_1: 165.85$
$y \wedge a_1 = x_1 \text{ ORP } y_1) \vdash a_x = a_y.$ [.72] UGEN ₂
$\square\square\square\exists!aa:\mathcal{H} \land \forall a_1a_1:a \Leftrightarrow \exists y_1y_1:y \land a_1=x_1 \text{ ORP } y_1. \qquad [.71] \text{ [.85] } \exists! \text{INTROS} $ 165.86
□□□■QED
$\square\square\square\forall x_1x_1:x\vdash\exists !aa:\mathcal{H} \land \forall a_1a_1:a \Leftrightarrow \exists y_1y_1:y \land a_1=x_1 \text{ ORP } y_1.$ [.5] $\forall_1 \text{ GEN}$ 165.87
$\Box\Box \forall a \forall b \forall \psi (\forall xx : a \vdash \exists! yy : b \land \psi xy) \vdash \exists f : a \rightarrow b \land \forall x \forall yx : a \vdash y : b \vdash \psi xy \Leftrightarrow fx = y. \dots AXM $ 165.88
$\Box\Box\Box\forall x\forall b\forall \psi(\forall x_1x_1:x\vdash\exists!aa:b\land\psi x_1a)\vdash\exists ff:x\rightarrow b\land\forall x_1\forall ax_1:x\vdash a:b\vdash\psi x_1a\Leftrightarrow fx_1=a.\dots 165.89$
[.88] QNT
$\square\square\square\forall\psi(\forall x_1x_1:x\vdash\exists!aa:\mathscr{H}\wedge\psi x_1a)\vdash\exists ff:x\rightarrow\mathscr{H}\wedge\forall x_1\forall ax_1:x\vdash a:\mathscr{H}\vdash\psi x_1a\Leftrightarrow fx_1=a.\ldots \qquad 165.90$
[.89] UGEN ₂
$\square\square\square(\forall x_1x_1:x\vdash\exists!aa:\mathcal{H}\land\forall a_1a_1:a\Leftrightarrow\exists y_1y_1:y\land a_1=x_1\text{ ORP }y_1)\vdash\exists ff:x\to\mathcal{H}\land\forall x_1\forall ax_1:x\vdash$ 165.91
$a: \mathcal{H} \vdash (\forall a_1 a_1 : a \Leftrightarrow \exists y_1 y_1 : y \land a_1 = x_1 \text{ ORP } y_1) \Leftrightarrow fx_1 = a.$ [.90] $\forall y_1 \in \mathcal{H}$
$\square\square\square\exists ff: x \to \mathscr{H} \land \forall x_1 \forall a x_1 : x \vdash a : \mathscr{H} \vdash (\forall a_1 a_1 : a \Leftrightarrow \exists y_1 y_1 : y \land a_1 = x_1 \text{ ORP } y_1) \Leftrightarrow fx_1 = a. \dots \qquad 165.92$
[.91] [.87] MP
$\Box\Box\Box f:x \to \mathscr{H} \land \forall x_1 \forall ax_1:x \vdash a:\mathscr{H} \vdash (\forall a_1a_1:a \Leftrightarrow \exists y_1y_1:y \land a_1=x_1 \text{ ORP } y_1) \Leftrightarrow fx_1=a. \ldots 165.93$
[.92] \exists_1 INST
$\square\square f: x \to \mathcal{H}$. [.93] TAUT 165.94
$\square\square\square\forall x\forall fx: \mathcal{H}\vdash f: x\rightarrow \mathcal{H}\vdash \exists yy: \mathcal{H}\land\forall y_1y_1: y\Leftrightarrow \exists x_1x_1: x\land fx_1=y_1.$ AXM 165.95
$\square\square\square\forall x\forall fx: \mathcal{H}\vdash f: x\rightarrow \mathcal{H}\vdash \exists bb: \mathcal{H}\land \forall b_1b_1: b\Leftrightarrow \exists x_1x_1: x\land fx_1=b_1[.95] \text{ QNT } 165.96$
$\square \square \exists bb: \mathcal{H} \land \forall b_1b_1: b \Leftrightarrow \exists x_1x_1: x \land fx_1 = b_1. \qquad [.96] [.2] [.94] _{2} \text{MINT}_2 165.97$
$\square\square\square b: \mathscr{H} \land \forall b_1b_1: b \Leftrightarrow \exists x_1x_1: x \land fx_1 = b_1. $ [.97] $\exists_1 \text{INST}$ 165.98
$\square\square \forall xx: \mathcal{H} \vdash \bigcup x: \mathcal{H} \land \forall tt: \bigcup x \Leftrightarrow \exists x_1x_1: x \land t: x_1. $ DEF 165.99
$\Box\Box b: \mathcal{H} \vdash \bigcup b: \mathcal{H} \land \forall tt: \bigcup b \Leftrightarrow \exists x_1 x_1 : b \land t: x_1. $ [.99] $\forall_1 \text{INST}$ 165.100
□□□∪ <i>b</i> :ℋ. [.100] TAUT 165.101
$\square\square \forall tt: \bigcup b \Leftrightarrow \exists x_1 x_1 : b \land t: x_1. \qquad \qquad [.100] \text{ TAUT} 165.102$
$\Box\Box\Box t : \bigcup b \vdash \exists x_1 \exists y_1 x_1 : x \land y_1 : y \land t = x_1 \text{ ORP } y_1. $ Lem 165.103

	□□□¶DEM
165.104	□□□ <i>t</i> :∪ <i>b</i> . [.103] ASM
	$\square\square\square t: \bigcup b \Leftrightarrow \exists x_1 x_1 : b \land t: x_1. \qquad \qquad [.102] \ \forall_1 \text{INST}$
165.106	$\square\square\square\exists x_1x_1:b \land t:x_1. \qquad \qquad \qquad [.105] \ [.104] \ \text{TAUT}$
165.107	$\square\square\square b_1 : b \wedge t : b_1 . \qquad \qquad [.106] \exists_1 \text{INST}$
165.108	$\square\square\square \forall b_1b_1:b \Leftrightarrow \exists x_1x_1:x \land fx_1=b_1. $
165.109	$\square\square\square b_1 : b \Leftrightarrow \exists x_1 x_1 : x \land f x_1 = b_1. \qquad [.108] \forall_1 \text{INST}$
165.110	$\square\square\square\exists x_1x_1:x \land fx_1 = b_1. \qquad [.109] [.107] \text{ TAUT}$
	$\square\square\square x_1:x \wedge f x_1 = b_1. \qquad [.110] \exists_1 \text{INST}$
	$\square\square\square\square\forall x_1\forall ax_1:x\vdash a:\mathscr{H}\vdash (\forall a_1a_1:a\Leftrightarrow \exists y_1y_1:y\land a_1=x_1 \text{ ORP } y_1)\Leftrightarrow fx_1=a[.93] \text{ TAUT}$
	$\square\square\square\square x_1:x\vdash fx_1:\mathscr{H}\vdash (\forall a_1a_1:fx_1\Leftrightarrow \exists y_1y_1:y\land a_1=x_1\ \text{ORP}\ y_1)\Leftrightarrow fx_1=fx_1.\ldots.[.112]\ _0\text{MINT}_2$
	$\square\square\square \forall a \forall b \forall f f : a \rightarrow b \vdash \forall xx : a \vdash f x : b.$
	$\square\square\square \forall a \forall b \forall f f : a \rightarrow b \vdash \forall x_1 x_1 : a \vdash f x_1 : b. \qquad [.114] \text{ QNT}$
	$\square\square\square\forall x_1x_1:x\vdash fx_1:\mathscr{H}.$ $\square\square\square\square\forall x_1x_1:x\vdash fx_1:\mathscr{H}.$ $[.115] [.93]_1 \text{MINT}_3$
	$\square\square\square x_1:x\vdash fx_1:\mathscr{H}.$ $[.116] \forall_1 \text{INST}$
	$\Box\Box\Box fx_1 = fx_1.$
	$\square \square \square \square \forall a_1 a_1 : b_1 \Leftrightarrow \exists y_1 y_1 : y \land a_1 = x_1 \text{ ORP } y_1 . \dots [.117] \text{ [.111] [.113] [.118] TAUT}$
	$\square\square\square t: b_1 \Leftrightarrow \exists y_1 y_1 : y \land t = x_1 \text{ ORP } y_1. \qquad [.119] \forall_1 \text{ INST}$
	$\square\square\square\exists y_1y_1:y\wedge t=x_1 \text{ ORP } y_1. \qquad \qquad [.120] \text{ [.107] TAUT}$
	$\square\square\square y_1 : y \wedge t = x_1 \text{ ORP } y_1. \qquad \qquad [.121] \exists_1 \text{ INST}$
	$\square\square\square x_1:x \wedge y_1:y \wedge t = x_1 \text{ ORP } y_1. \qquad \qquad [.111] \text{ [.122] TAUT}$
	$\square\square\square\exists y_1x_1:x\wedge y_1:y\wedge t=x_1 \text{ ORP } y_1. \qquad [.123] \exists_1 \text{ GEN}$
	$\square\square\square\exists x_1\exists y_1x_1:x \land y_1:y \land t=x_1 \text{ ORP } y_1. \qquad [.123] \exists_1 \text{ GEN}$
	QED
165.126	$\square\square\square(\exists x_1\exists y_1x_1:x\wedge y_1:y\wedge t=x_1 \text{ ORP } y_1)\vdash t:\cup b.$
	□□□¶DEM
165.127	$\square\square\square\exists x_1\exists y_1x_1:x \land y_1:y \land t=x_1 \text{ ORP } y_1. \qquad [.126] \text{ ASM}$
165.128	$\square\square\square\exists y_1x_1:x\wedge y_1:y\wedge t=x_1 \text{ ORP } y_1. \qquad \qquad [.127] \ \exists_1 \text{INST}$
165.129	$\square\square\square x_1:x \land y_1:y \land t=x_1 \text{ ORP } y_1. \qquad [.128] \exists_1 \text{INST}$
165.130	$\square\square\square t: \bigcup b \Leftrightarrow \exists x_1 x_1 : b \land t: x_1. \qquad [.102] \forall_1 \text{INST}$
165.131	$\square\square\square\square\forall x_1\forall ax_1:x\vdash a:\mathscr{H}\vdash (\forall a_1a_1:a\Leftrightarrow \exists y_1y_1:y\land a_1=x_1\text{ ORP }y_1)\Leftrightarrow fx_1=a.\ldots[.93]\text{ TAUT}$
165.132	$\square\square\square\square x_1:x\vdash fx_1:\mathscr{H}\vdash (\forall a_1a_1:fx_1\Leftrightarrow \exists y_1y_1:y\land a_1=x_1 \text{ ORP } y_1)\Leftrightarrow fx_1=fx_1.\ldots.[.131]_0\text{MINT}_2$
165.133	$\square\square\square\square\forall a\forall b\forall ff: a\rightarrow b\vdash \forall xx: a\vdash fx: b.$
165.134	$\square\square\square\square\forall a\forall b\forall ff: a\rightarrow b\vdash \forall x_1x_1: a\vdash fx_1: b. \qquad \qquad [.133] \text{ QNT}$
165.135	$\square\square\square\square\forall x_1x_1:x\vdash fx_1:\mathscr{H}.\qquad \qquad [.134] \ [.93] \ _1 \text{MINT}_3$
165.136	$\square\square\square x_1:x\vdash fx_1:\mathscr{H}.$ [.135] \forall_1 INST
165.137	$\square\square\square\square fx_1 = fx_1.$
165.138	$\square\square\square\square \forall a_1a_1:fx_1 \Leftrightarrow \exists y_1y_1:y \land a_1=x_1 \text{ orp } y_1. \ldots [.132] \text{ [.129] [.136] [.137] TAUT}$
165.139	$\square\square\square\square t: fx_1 \Leftrightarrow \exists y_1y_1: y \land t = x_1 \text{ ORP } y_1. \qquad [.138] \ \forall_1 \text{INST}$
165.140	$\square\square\square y_1: y \wedge t = x_1 \text{ ORP } y_1. \qquad [.129] \text{ TAUT}$
165.141	$\square\square\square\exists y_1y_1:y \land t = x_1 \text{ ORP } y_1. \qquad [.140] \exists_1 \text{GEN}$
165.142	$\square\square\square t:fx_1.$ [.139] [.141] TAUT
	$\square\square\square \forall b_1b_1:b \Leftrightarrow \exists x_1x_1:x \land fx_1=b_1.$ [.98] TAUT

$\square\square\square fx_1:b \Leftrightarrow \exists x_2x_2:x \land fx_2=fx_1. \qquad [.144] \ \forall_1 \text{INST}$	165.145
$\square\square\square x_1:x \land fx_1=fx_1. \qquad \qquad [.129] \ [.137] \ \text{TAUT}$	165.146
$\square\square\square\exists x_2x_2:x \land fx_2=fx_1. \qquad \qquad [.146] \ \exists_1 \text{GEN}$	165.147
$\square\square\square fx_1:b \wedge t:fx_1. \qquad \qquad [.145] \ [.147] \ [.142] \ \text{TAUT}$	165.148
$\square\square\square\exists x_1x_1 : b \land t : x_1. \qquad \qquad [.148] \ \exists_1 \text{GEN}$	165.149
$\square\square\square t{:}\cup b{.}$ [.130] [.149] TAUT	165.150
□□ ■. QED	
$\square\square\square t{:}\cup b \Leftrightarrow \exists x_1\exists y_1x_1{:}x \land y_1{:}y \land t{=}x_1 \text{ orp } y_1. \qquad \qquad [.103] \text{ [.126] Taut}$	165.151
$\square\square\square\forall z_1z_1: \bigcup b \Leftrightarrow \exists x_1 \exists y_1x_1: x \land y_1: y \land z_1 = x_1 \text{ ORP } y_1. \qquad [.151] \forall_1 \text{ GEN}$	165.152
$\square\square\square\cup b: \mathscr{H} \land \forall z_1z_1: \cup b \Leftrightarrow \exists x_1\exists y_1x_1: x \land y_1: y \land z_1=x_1 \text{ orp } y_1. \qquad \qquad [.101] \text{ [.152] TAUT}$	165.153
$\square\square\square\exists zz: \mathscr{H} \land \forall z_1z_1: z \Leftrightarrow \exists x_1 \exists y_1x_1: x \land y_1: y \land z_1 = x_1 \text{ ORP } y_1. \qquad [.153] \exists_1 \text{GEN}$	165.154
$\square\square\square(z_x:\mathscr{H} \land \forall z_1z_1:z_x \Leftrightarrow \exists x_1\exists y_1x_1:x \land y_1:y \land z_1=x_1 \text{ ORP } y_1) \vdash (z_y:\mathscr{H} \land \forall z_1z_1:z_y \Leftrightarrow \exists x_1\exists y_1$	165.155
$x_1:x \land y_1:y \land z_1=x_1 \text{ ORP } y_1) \vdash z_x=z_y.$ LEM	
□□¶	
$\square\square\square Z_x: \mathscr{H} \land \forall z_1 z_1 : z_x \Leftrightarrow \exists x_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1. \qquad [.155] \text{ ASM}$	165.156
$\square\square\square(z_y:\mathcal{H} \land \forall z_1z_1:z_y \Leftrightarrow \exists x_1\exists y_1x_1:x \land y_1:y \land z_1=x_1 \text{ ORP } y_1) \vdash z_x=z_y. $ LEM	165.157
$\square\square\square\square z_{y}: \mathcal{H} \land \forall z_{1}z_{1}: z_{y} \Leftrightarrow \exists x_{1}\exists y_{1}x_{1}: x \land y_{1}: y \land z_{1}=x_{1} \text{ ORP } y_{1}. \qquad [.157] \text{ ASM}$	165.158
$\square\square\square\square\forall x\forall yx: \mathcal{H} \vdash y: \mathcal{H} \vdash (\forall tt: x \Leftrightarrow t: y) \vdash x = y. $ AXM	165.159
$\square\square\square\square z_x: \mathcal{H} \vdash z_y: \mathcal{H} \vdash (\forall tt: z_x \Leftrightarrow t: z_y) \vdash z_x = z_y. \qquad [.159]_{0} \text{MINT}_2$	165.160
$\square\square\square\square \forall z_1 z_1 : z_x \Leftrightarrow \exists x_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1. \qquad [.156] \text{ TAUT}$	165.161
$\square\square\square\square z_1:z_x \Leftrightarrow \exists x_1 \exists y_1x_1:x \land y_1:y \land z_1=x_1 \text{ ORP } y_1. \qquad [.161] \forall_1 \text{ INST}$	165.162
$\square\square\square\square \forall z_1 z_1 : z_y \Leftrightarrow \exists x_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1. \qquad [.158] \text{ TAUT}$	165.163
$\square\square\square\square z_1 : z_y \Leftrightarrow \exists x_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1. \qquad [.163] \ \forall_1 \text{ INST}$	165.164
$\square\square\square z_1 : z_x \Leftrightarrow z_1 : z_y. \qquad [.162] [.164] \text{ TAUT}$	165.165
$\square\square\square\square\forall tt: z_x \Leftrightarrow t: z_y. \tag{.165} \forall_1 \text{GEN}$	165.166
$\Box\Box\Box z_x = z_y$	165.167
QED	
QED	
$\square \square \square \forall z_x \forall z_y (z_x : \mathcal{H} \land \forall z_1 z_1 : z_x \Leftrightarrow \exists x_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Leftrightarrow z_1 = x_1 \text{ ORP } y_1) \vdash (z_y : \mathcal{H} \land \forall z_1 z_1 : z_y \Rightarrow z_1 : z_y \Rightarrow z_1 = x_1 \text{ ORP } y_1) $	165.168
$\exists x_1 \exists y_1 x_1 : x \land y_1 : y \land z_1 = x_1 \text{ ORP } y_1) \vdash z_x = z_y. \tag{[.155] UGEN_2}$	
$\square\square\exists!zz:\mathcal{H} \land \forall z_1z_1:z \Leftrightarrow \exists x_1\exists y_1x_1:x \land y_1:y \land z_1=x_1 \text{ ORP } y_1.\ldots [.154] \text{ [.168] } \exists! \text{INTROS}$	165.169
□□ ■.	
QED	
	165.170
Q ED	
Uses Axioms: 3, 5, 6, 7, 8, 9, 10, 12, 13, 16	