

is a positive integer.

1.

MATHEMATICS SPECIALIST 3CD

SEMESTER 1 2010

EPW 1

MATHEMATICAL INDUCTION

VALIDATION

Name:	
Time: 45 minutes	Date: 25 th March 2010
	Total Marks 20
(3 marks)	
Explain briefly why the product	t (n - 1). n .(n + 1) is always divisible by 6 where n

For questions 2 and 3 the proofs should have the four steps mentioned below.

Step 1 Show it is true for n = 1

Step 2 Assume it is true for n = k
Step 3 Prove it is true for n = k + 1
Step 4 Concluding statement

2. (8 marks)

Use the principles of Mathematical Induction to prove that these results are true for all positive integers n.

1 + 4 + 7 + ... + (3n - 2) =
$$\frac{n(3n-1)}{2}$$

3. (9 marks)

Use Proof by Induction to verify de Moivre's theorem

 $(|z| {\rm cis} \theta)^n = |z|^n \, {\rm cis}(n\theta)$ for all positive integers n.