Improved Circuit-based PSI via Equality Preserving Compression

Zhang Xiangling

1 Circuit-based PSI

Parameters: A receiver with an input set X of size N and a sender with an input set Y of size N.

Functionality: The functionality sends to the receiver an injective indexing function $\iota: X \to [M]$ for some $M \ge N$ and a vector $s_0 \in \{0,1\}^M$, and to the sender a vector $\mathbf{s}_1 \in \{0,1\}^M$ such that $s_{0,i} \oplus s_{1,i} = \mathbf{1} \left(\iota^{-1}(i) \in X \cap Y\right)$ for $i \in \iota(X)$, and $s_{0,i} \oplus s_{1,i} = 0$ for $i \notin \iota(X)$.

Note that the indexing function ι is determined by the mapping from $x \in X$ to $h_j(x)$ (cuckoo hash mapping).

2 The OPPRF-based Circuit-PSI Framework

The main idea is to apply OPPRF in circuit-PSI protocol, and use EPC to reduce workload of ESG, which occupied the largest part of circuit-PSI. ESG has complexity linear in ℓ , the bit-length of input string. EPC can change the input bit-length of ESG from ℓ to $\ell_c = O(\log \ell)$.

$$\{(y_i,z_i)\} \xrightarrow{OPPRF} \begin{matrix} \longleftarrow & x \\ & \searrow \\ z = \begin{cases} z_i & x=y_i \\ \$ & otherwise \end{cases}$$

Figure 1: Functionality of oblivious programmable PRF

$$v \in \mathbb{Z}_t \longrightarrow EPC \longleftarrow v^* \in \mathbb{Z}_t$$

$$r \in \mathbb{Z}_p \longleftarrow r^* \in \mathbb{Z}_p$$

$$r = r^* \text{ if and only if } v = v^*$$

Figure 2: Functionality of equality preserving compression

$$a \xrightarrow{} ESG \longleftarrow b$$

$$s_0 \longleftarrow s_1$$

$$s_0 \oplus s_1 = 1 \text{ if and only if } a = b$$

Figure 3: Functionality of equality share generation

Figure 4: OPPRF-based circuit PSI+EPC

2.1 A basic protocol for $\mathcal{F}_{\mathrm{EPC}}$ functionalities

The w-base decomposition of $v \in \mathbb{Z}_t$ and $v^* \in \mathbb{Z}_t$. $(t = 2^{\ell}, p = 2^{\ell_c})$

$$v = \sum_{i=0}^{u-1} v_i \cdot w^i, \quad v^* = \sum_{i=0}^{u-1} v_i^* \cdot w^i$$

where $u := \lceil \log_w t \rceil$ and $v_i, v_i^* \in [0, w)$ satisfies

$$v = v^* \Longleftrightarrow D := \sum_{i=0}^{u-1} \left(v_i - v_i^* \right)^2 = 0 \text{ in } \mathbb{Z}_p$$

Requirement:

 $p > u \cdot (w-1)^2$, avoid D is divisible by p

 $p = 1 \mod 2n$, requires by RLWE-HE batching n times

$$\ell = \sigma + 1 + \lceil \log N \rceil$$

		EPC output ℓ_{c}				
		16	18	20	22	28
	p	40961	188417	1032193	4169729	268369921
	$\log q$	84	88	92	96	108
$N = 2^{16}$	w	65	154	385	834	7327
$(\ell = 57)$	u	10	8	7	6	5
$N = 2^{20}$	w	62	145	360	772	7327
$(\ell = 61)$	u	11	9	8	7	5

Table 3. EPC Parameters for input set size N and EPC output length ℓ_c : w is the word-decompose base, and u is the length of decomposition. Note that HE parameters are independent to set size N.

$$D = \sum_{i=0}^{u-1} v_i^2 - 2 \cdot \sum_{i=0}^{u-1} v_i \cdot v_i^* + \sum_{i=0}^{u-1} v_i^{*2}$$

Parameters: A sender with input $v \in \mathbb{Z}_t$ and a receiver with input $v^* \in \mathbb{Z}_t$ and the target size p.

Protocol:

offline phase

Sender generates a HE secret key sk, and decomposes $v \in \mathbb{Z}_t$ to $\{v_i\}_{0 \leq i < u}$. After that sender encrypts each v_i and $\sum_{i=0}^{u-1} v_i^2$ using sk, obtains ciphertext $\{ct_i\}_{0 \le i < u}$ and cts.

online phase

- 1. Sender sends ciphertext $\{ct_i\}_{0 \leq i < u}$ and cts to receiver. 2. Receiver picks a random integer $r \in \mathbb{Z}_p$, and decomposes $v^* \in \mathbb{Z}_t$ to $\{v_i^*\}_{0 \leq i < u}$ Then receiver homomorphically compute $r + (cts - 2 \cdot \sum_{i=0}^{u-1} ct_i \cdot v_i^* + \sum_{i=0}^{u-1} v_i^{*2})$, and sends the resulting ciphertext back to sender.
- 3. Sender decrypts the received ciphertext using sk, to obtain $r^* = r + \sum_{i=0}^{u-1} (v_i v_i)^{-1}$ $(v_i^*)^2 \in \mathbb{Z}_n$.

The HE in EPC protocol requires additive homomorphic. The encryption target message size is much less than 32-bit ($\log w$ in table 3) and decryption ciphertext size is also less than 32-bit(ℓ_c in table 3).