universität freiburg

Measure theory

Winter semester 2025

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2025WS_measure_theory.html

https://www.stochastik.uni-freiburg.de/

Tutorial 2 - Review of metric spaces and topologies II

These exercises are based on Appendix A

Exercise 1 (4 Points).

Let (Ω,r) be a metric space and recall Lemma A.4: the set A' of cluster points of A is a closed set. Furthermore, let B be a subset of Ω .

- (a) Show that $\overline{A} = A \cup A'$.
- (b) Show that if $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$. Moreover, $(\overline{A \cup B}) = \overline{A} \cup \overline{B}$ and $(\overline{A \cap B}) \subseteq \overline{A} \cap \overline{B}$.

Note: x is a cluster point of A if it is a point in the closure of $A \setminus \{x\}$

Exercise 2 (4 Points).

Consider the cofinite topology \mathcal{O} on \mathbb{Z} defined as follows: a subset $O \subset \mathbb{Z}$ is an open set if and only if $O = \emptyset$ or O^c is finite. Show that \mathcal{O} is in fact a topology on \mathbb{Z} .

Exercise 3 (4 Points).

Suppose that there is a continuous, one-to-one mapping from a metric space (Ω, r) to another metric space (Ω', r') where r' is the discrete metric from sheet 1, exercise 2. Show that every subset of Ω is open.

Exercise 4 (4 Points).

Let (X,r) and (Y,r') be metric spaces and $f:X\to Y$. Show that f is continuous on X if and only if one of the following holds:

- 1. for every closed set A in Y, $f^{-1}(A)$ is closed in X.
- 2. for every $x, x_1, x_2, \dots \in X$ with $r(x_n, x) \xrightarrow{n \to \infty} 0$, it is $r'(f(x_n), f(x)) \xrightarrow{n \to \infty} 0$.