C3 8. 全加器中向高位的进位 Citi为 B。
(A) Ai Bi Bi Ci (B) AiBi + (Ai Bi) Ci (C) Ait Bit Ci (D) (Ai BCi) Bi
C4 29.在CP作用下,欲使D触发器具有下触发器功能,共D端应接_D。
(A). I (B) O (C) Q^n (D) $\overline{Q_n^n}$
C2_10.如下图的电路中,其实现的逻辑功能F=A
+5V
A H F (A) ABC (B) ABC
C-KJ (C) A+B+C (D) A+B+C
$C_{4.1.1K}$ 触发怒的特性为程是 $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$ 。
Cs 2. 时序逻辑电路在任一时刻的输出不仅与邮站的输入有关,而且还与电路原来的状态关。
G3. 消除组合逻辑电路竞争冒险的方法除331入封锁脉冲和修改逻辑设计外,还有31人_
选通脉冲_和_加速波电容. 两种方式。
C64. 若ROM的地址译码器有+根地址输入线,则最9可存储2"_个字。
C65 半导体标准器有两个主要技术指标: 存储容量和_存取时间。
C16. 二进制数11011.101转换成十进制数为 (27.625)10.
$1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$
$=(27.625)_{10}$
C6 7. 岩肥外容量为 256×16 位RAM、实现容量为1024×16位RAM,采用的方法为_字、扩展;
+需要 4 片266×16位RAM 1024×16 = 4.

CIL用公式法化简丁=A+B+C·D+A+ A·B·D (I)

原式= A+B· C·D·A + A+B+D

= A + A · B · (C+D) + B + D

= A + B + D

C1 2.用卡诺图化简YCA, B, C, D)=Σm C0.7.9,11),约束条件m3+m5+m15=0. (10)

	00	01	11	10
00	1	_	íX.	
01		毯	Tio	
11		g 4	1X	
10		\(\hat{L}\)		

: Y = ABCD + CD +ABD

G, 电路女吐下图所示, 请别该电路的特性方程 (输出Q5输入A,B,C的关系), 并国出在输

入信号的作用下,对应的输出及的政形。(这触发器为边沿触发器,且初忘为0)。(10)

J=BC.

k=1.

Q=JQ+kQ"

CI=A

 $= BC \overline{Q}^n +$

1.1月74L138与与非门实现如下有值表所示逻辑函数。S., Sz, Sz, 选通信号, S, 为高电平有效, S2和S3分纸电平有效、要求, 画连线图, 有分析过程.(10) B Fo F1 F2 F3 F4 F3 F6 F7. 0 0 74138 Sz 53 A. A. A. 0 13 C F = ABC + ABC + ABC + ABC. = ABC · ABC · ABC · ABC 全Az=图A, AI=B Ao=C,得. F= AzAiAo · AzAiAo · AzAiAo $\overline{F_4} \cdot \overline{F_5} \cdot \overline{F_6} \cdot \overline{F_7}$

解 由風。
$$Q_0^{n+1} = D_0 = Q_0^n$$

$$Q_0^{n+1} = D_1 = Q_0^n \oplus Q_0^n$$

F = 00° Q1" 312 WT.

	Q."	0.0	Q:"	Qo"+1	F	- And I was a supplemental of the supplemental
(M) pro-	0	0	0	1	0	-
	0	1		0	0	Continuestra
	1	O	II	I	0	of Season September
	2.1	!	0	0	1	Pale per comme

枝纹	<u> </u>	(00));	(I)	
		1		¥	(0,00
	1	が成为の	进制机	でまけま	文器.