3. Exponenciální a logaritmická funkce

3.1. Exponenciální funkce. Exponenciální funkce je funkce daná předpisem:

$$y = a^x, \quad a > 0, \ a \neq 1, \ x \in \mathbf{R}$$

Grafem je exponenciální křivka, viz obr. 3.1 a, b.

Poznámka. Velký význam má funkce $y = e^x$, kde číslo

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2,718281\dots$$

je základ přirozených logaritmů.

Vlastnosti exponenciálních funkcí. Pro a>0, b>0, $a\neq 1$, $b\neq 1$, $x,y\in \mathbf{R}$ platí vztahy:

$$a^{x} \cdot a^{y} = a^{x+y}, \quad \frac{a^{x}}{a^{y}} = a^{x-y}, \quad (a^{x})^{y} = a^{xy}$$
$$\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$$
$$a^{x} = a^{y} \iff x = y, \quad a^{x} = b^{x} \text{ pro } x \neq 0 \iff a = b$$

3.2. Logaritmická funkce. Každá exponenciální funkce a^x je prostá a jejím oborem hodnot je interval $\mathbf{R}^+ = (0, \infty)$. K funkci a^x existuje tedy funkce inverzní. Tuto funkci s definičním oborem \mathbf{R}^+ nazýváme logaritmickou funkcí o základu a a značíme $\log_a x$. Platí tedy:

$$y = \log_a x \iff x = a^y, \text{ kde } a > 0, \ a \neq 1, \ x \in \mathbf{R}^+$$

Grafem je logaritmická křivka (viz obr. 3.2 a,b).

Logaritmy o základu a=10 se nazývají **dekadické** a značí se $\log x$. Logaritmy o základu a=e se nazývají **přirozené** a značí se $\ln x$ nebo též $\lg x$.

Vlastnosti logaritmických funkcí. Pro libovolná čísla $a,r,s\in\mathbf{R}^+$, $a\neq 1$, a libovolná čísla $p, x \in \mathbf{R}$ platí vztahy:

$$\log_a 1 = 0$$
 • \log

•
$$\log_a rs = \log_a r + \log_a s$$

•
$$\log_a a = 1$$

$$\bullet \log_a 1 = 0 \qquad \bullet \log_a rs = \log_a r + \log_a s$$

$$\bullet \log_a a = 1 \qquad \bullet \log_a \frac{r}{s} = \log_a r - \log_a s$$

$$\bullet \log_a a^x = x \qquad \bullet \log_a r^p = p \log_a r$$

$$\bullet a^{\log_a r} = r \qquad \bullet \log_a r = \log_a s \Longleftrightarrow r = s$$

•
$$\log_a a^x = x$$

•
$$\log_a r^p = p \log_a r$$

$$\bullet \ a^{\log_a r} = r$$

•
$$\log_a r = \log_a s \iff r = s$$

Pro logaritmy s různými základy platí vzorec

$$\log_a x = \frac{\log_b x}{\log_b a}, \quad a, b, x \in \mathbf{R}^+, \ a \neq 1, \ b \neq 1$$

Ve speciálním případě $a=10\,,\ b=e\,$ dostáváme vztah

$$\log x = \frac{\ln x}{\ln 10} = \ln x \cdot \log e, \quad x \in \mathbf{R}^+$$

3.3. Řešené příklady.

1. Nakreslete (do jednoho obrázku) grafy funkcí

a)
$$y = 2^x$$
, b) $y = \left(\frac{1}{2}\right)^x$, c) $y = 2^{x+1}$, d) $y = 1 - 2^{-x}$.

Řešení: Graf funkce $y=\left(\frac{1}{2}\right)^x=2^{-x}$ je souměrně sdružený s grafem funkce $y=2^x$ podle osy $y\,;$ graf funkce $\,y=2^{x+1}\,$ dosťaneme z grafu funkce $\,y=2^x\,$ posunutím o 1 doleva ve směru osy x; a graf funkce $y=1-2^{-x}$ dostaneme z grafu funkce $y=-2^{-x}$, který je souměrně sdružený s grafem funkce $y=2^{-x}$ podle osy x, posunutím o 1 nahoru ve směru osy y. Grafy všech čtyř funkcí jsou na obr. 3.3.

30 Kapitola 3

Obr. 3.3

2. Nakreslete grafy funkcí a) $y=\log |x|\,,~$ b) $y=|\log |x||\,.$

Řešení:

a) $y=\log|x|$: Funkce je sudá s $D_f=\mathbf{R}\setminus\{0\}$, takže graf (viz obr. 3.4) je souměrný podle osy y a $y=\log x$ pro x>0.

Obr. 3.4

b) $y=|\log|x||$: Funkce je opět sudá s $D_f=\mathbf{R}\setminus\{0\}$ a graf (viz obr. 3.5) je tedy opět souměrný podle osy y. Protože

$$y = \begin{cases} \log x & \text{pro } x \ge 1 \\ -\log x & \text{pro } 0 < x < 1, \end{cases}$$

graf
 snadno získáme z grafu funkce $\,y = \log x$.

Obr. 3.5

3.4. Neřešené příklady.

Určete definiční obory a nakreslete grafy funkcí, vždy do jednoho obrázku:

1.
$$y = \left(\frac{1}{2}\right)^{x-3}$$
, $y = 2^{x+1}$ [$(-\infty, \infty)$]

2.
$$y = e^x$$
; $y = e^{x-1}$; $y = e^{x+1}$; $y = e^x + 1$ $[(-\infty, \infty)]$

3.
$$y = e^{-|x|}$$
; $y = e^{-|x+3|}$ $[(-\infty, \infty)]$

$$4. \ \ y = \log_2 x \, ; \quad y = 2 \log_2 (x-1) - 3 \, ; \quad y = |\log_2 (x+2)| \qquad \qquad [(0,\infty); \ (1,\infty); \ (-2,\infty)]$$

5.
$$y = \ln x$$
; $y = \ln(x+2)$; $y = \ln(x-2)$ $[(0,\infty); (-2,\infty); (2,\infty)]$

6.
$$y = \ln |x|$$
; $y = |\ln x|$; $y = |\ln |x||$ $[(-\infty, 0) \cup (0, \infty)]$