Задание: сравните проблемы, возникающие при обеспечении требуемых характеристик PCA авиационного и космического базирования.

Ответ: главной отличительной чертой РСА авиационного и космического базирования является разница в наклонной дальности $R_{\rm H}$. От наклонной дальности зависит задержка τ , а также мощность эхо-сигнала.

При расчете частоты повторения зондирующих импульсов F_{Π} необходимо обеспечить однозначность измерений как в частотной, так и во временной областях.

Для самолетных систем максимальную задержку сигнала следует рассчитывать по максимальной наклонной дальности $R_{\rm H\ max}$ в полосе обзора по дальности ΔL . В этом случае полная однозначность измерений может быть обеспечена при выборе частоты $F_{\rm II}$ из неравенства

$$\frac{2V}{l_{\alpha}} \le F_{\Pi} \le \frac{c}{2R_{H\,max}}$$

Для систем космического базирования величина $R_{\rm H}$ $_{max}$ достигает сотен километров, и полную однозначность измерений можно достичь только при учете задержек в полосе обзора ΔL , а не на максимальной дальности. В этом случае при выборе частоты $F_{\rm H}$ следует пользоваться неравенством

$$\frac{2V}{l_{\alpha}} \le F_{\Pi} \le \frac{c}{2\Delta L \cos \beta}$$

В такой системе эхо-сигналы поступают на прием относительно начала зондирования с начальной задержкой $t_{\rm hav}=2R_{{\rm H}\,min}/{\rm c}.$

При этом необходимо добиваться, что бы время $t_{\text{нач}}$ равнялось целому числу периодов зондирования с тем, чтобы эхо-сигналы от всех полосы обзора по дальности ΔL всегда подпали в паузу приема.

Следующим важнейшим отличием является требуемая мощность в зондирующим импульсе. По основной формуле радиолокации, известно, что мощность передатчика прямо пропорциональна квадрату расстояния \mathbb{R}^2 .

Тогда мощность эхо-сигнала будет пропорциональна R^4 . Таким образом, для РСА космического базирования к мощности передатчика предъявляются более серьезные требования.