Listing 4: schema de contrat

```
#include inits.h>
     /#@ axiomatic auxmath (
       @ axiom rule1: \forall int n; n > 0 \implies n*n == (n-1)*(n-1)+2*n+1;
       @ ] */
          requires 0 <= x;
ensures \result == x*x;
     /+@
    int power2(int x);
    /*@ requires 0 <= x;
ensures \result == x*x;
11
12
    int p(int x);
13
15
     /#@ ensures \result == ???;
16
17
    int check(int n){
18
19
      r1 = power2(n);
r2 = p(n);
if (r1 == r2)
20
21
22
23
          {r = ???;}
24
25
       else
26
         {r = ???;}
27
28
       return r;
```

Notations pour WP

La définition structurelle des transformateurs de prédicats est rappelée dans le tableau ci-dessous:

S	wp(S)(P)
X:=E(X,D)	P[e(x,d)/x]
SKIP	P
$S_1; S_2$	$wp(S_1)(wp(S_2)(P))$
IF B S ₁ ELSE S ₂ FI	$(B \Rightarrow wp(S_1)(P)) \land (\neg B \Rightarrow wp(S_2)(P))$

Axiomes et règles d'inférence de la Loique de Hoare

- Axiome d'affectation: $\{P(e/x)\}X:=\mathbb{E}(X)\{P\}$.
- Axiome du saut: $\{P\}$ skip $\{P\}$.
- Règle de composition : Si $\{P\}$ S₁ $\{R\}$ et $\{R\}$ S₂ $\{Q\}$, alors $\{P\}$ S₁;S₂ $\{Q\}$.
- Si $\{P \land B\}$ S₁ $\{Q\}$ et $\{P \land \neg B\}$ S₂ $\{Q\}$, alors $\{P\}$ if B then S₁ then S₂ fi $\{Q\}$.
- Si $\{P \land B\}$ S $\{P\}$, alors $\{P\}$ while B do S od $\{P \land \neg B\}$.
- Règle de renforcement/affaiblissement: Si $P' \Rightarrow P$, $\{P\}$ S $\{Q\}$, $Q \Rightarrow Q'$, alors $\{P'\}$ S $\{Q'\}$.

Fin de l'énoncé