Exemples du cours du chapitre calcul intÃľgral Partie 2 2019/2020

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

18 mars 2020

Table des matières

- Exemple 1
- Exemple 2
- Exemple 3
- Exemple 4
- Exemple 5

Exemple 1 Partie 1

Soit f la fonction définie sur [0;2] par f(x)=2-x. La surface dont l'aire est égale à intégrale $I=\int_1^2 f(x) \ \mathrm{d}x$ est le triangle BCD rectangle isocèle en C dont l'aire est $\frac{1}{2}\times 1\times 1=\frac{1}{2}$.

Exemple 1 Partie 2

Soit f la fonction définie sur [0;2] par f(x) = 2-x. La surface dont l'aire est égale à intégrale $I = \int_0^1 f(x) \, dx$ est le trapèze OABC rectangle isocèle en O dont l'aire est $\frac{1}{2} \times (OA + BC) \times OC = \frac{3}{2}$.

Exemple 2 Question 1

Soit M(t) un point mobile sur un axe tel que à chaque instant $t \in [0; +\infty[$ (en secondes) on connaît sa vitesse instantanée v(t) en mètres par seconde.

A l'instant t = 0, le point mobile est à l'origine de l'axe et pour tout $t \in [0; +\infty[$, on a $v(t) = 3 \text{ m.s}^{-1}$.

• Question 1 La fonction v est constante donc dérivable donc continue sur [0; +∞[. ∫₀⁴ v(t)dt est l'aire du rectangle EFGH c'est-à-dire 4 × 3 = 12. On peut l'interpréter comme la distance parcourue par le mobile en 3 secondes. Notons que la dimension de l'intégrale est celle de v(t)dt : vitesse × temps = distance.

Exemple 2 Question 2

• Question 2 $\int_2^5 v(t) dt$ est égale à $(5-2) \times 3 = 9$. C'est la distance parcourue par le mobile entre les instants t=2 et t=5 à une vitesse de 3 m.s $^{-1}$. $\frac{1}{5-2} \int_2^5 v(t) dt$ est égale à $\frac{\text{distance}}{\text{temps}} = \frac{9}{3}$, c'est la vitesse moyenne du mobile entre les instants t=2 et t=5. Comme sa vitesse est constante, c'est sa vitesse instantanée à tout instant. On a un exemple, d'utilisation de l'intégrale dans un calcul de valeur moyenne. Notons que $\frac{1}{5-2} \int_2^5 v(t) dt$ a la même dimension que v(t), c'est une vitesse.

Exemple 2 Question 3

• Question 3 $g(t) = \int_0^t v(u) du$ est l'aire du rectangle *EFIJ* c'est-à-dire $t \times 3 = 3t$.

On peut l'interpréter comme la distance parcourue par le mobile en *t*3 secondes.

g est une fonction linéaire donc elle est dérivable sur $[0; +\infty[$ et g'(t) = 3. On remarque que g'(t) = v(t). On peut l'expliquer en prenant la limite du taux de variation $\frac{g(t+h)-g(t)}{h} = \frac{3(t+h)-3t}{h} = 3 \text{ quand } h \text{ tend vers } 0.$ $g(t) = \int_0^t v(u) \, \mathrm{d} u$ est une primitive de v.

Exemple 3

Voir Notebook et Corrigé (suivez les liens).

Exemple 4 Question 1

Soit f définie sur $[0; +\infty[$ par $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

• f est dérivable sur $[0; +\infty[$ et $f'(t) = \frac{1}{\sqrt{2\pi}} \times (-t) \mathrm{e}^{-\frac{t'}{2}}$. Pour tout réel t > 0, on a f'(t) > 0 et f'(0) = 0. On en déduit que f est strictement décroissante sur $]0; +\infty[$. Puisque $\lim_{x \to -\infty} \mathrm{e}^x = 0$, on a par composition $\lim_{t \to +\infty} \mathrm{e}^{-\frac{t^2}{2}} = 0$.

Exemple 4 Questions 2 et 3

f est dérivable donc continue sur $[0; +\infty[$. De plus, pour tout $t \ge 0$, on a $f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$ donc $f(t) \ge 0$. On peut appliquer le théorème fondamental, qui nous permet d'affirmer que $F: x \mapsto \int_0^x f(t) dt$ est définie et dérivable sur $[0; +\infty[$ et que pour tout réel $x \ge 0$, F'(x) = f(x). Notez qu'on utilise plutôt x pour F et t pour F' = f mais qu'on pourrait écrire : pour tout réel $t \ge 0$, F'(t) = f(t). Puisque f est strictement positive sur $[0; +\infty[$ et ne s'annule qu'en 0, on en déduit que F est strictement croissante sur $[0; +\infty[$. Page suivante un graphique qui permet de comprendre pourquoi F(x)aire sous la courbe de f entre 0 et x est croissante.

Exemple 4 Questions 2 et 3

Exemple 5 Question 1

Soient les fonctions f et F continues sur $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ définies par :

$$F(x) = \tan x - x$$
 et $f(x) = \tan^2 x$

F est dérivable sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$ et pour tout réel $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[$, on a :

$$F'(x) = \frac{\cos(x) \times \cos(x) - \sin(x) \times (-\sin(x))}{\cos^2(x)} - 1 = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} - 1$$

$$F'x() = \frac{\sin^2(x)}{\cos^2(x)} = \tan^2 x$$

F est donc une primitive de f.

Exemple 5 Question 2 a)

Soient g et G les fonctions définies sur]0; $+\infty[$ par :

$$g(x) = \frac{1 + \ln x}{x}$$
 et $G(x) = \frac{1}{2} (\ln x)^2 + \ln x$

G est dérivable sur]0; $+\infty$ [, et pour tout réel x > 0, on a :

$$G'(x) = \frac{1}{2} \times \frac{1}{x} \times 2\ln(x) + \frac{1}{x} = \frac{1 + \ln x}{x}$$

 $G'(x) = g(x)$

G et donc une primitive de g.

Notons que M définie par M(x) = G(x) + 1, a même dérivée g que G donc c'est une aussi une primitive de g. On peut remplacer 1 par une constante k, toute fonction de la forme G(x) + k est une primitive de g.

Exemple 5 Question 2 b)

$$G(e) = \frac{1}{2} (\ln e)^2 + \ln e = \frac{3}{2}.$$

La fonction H définie par $H(x) = G(x) - G(e) = G(x) - \frac{3}{2}$, s'annule en e et a pour dérivée H' = G' = g donc c'est une primitive de g qui s'annule en e.

Supposons qu'il existe une autre primitive N de g qui s'annule en e, on a (H-N)'=H'-N'=g-g=0 donc H-N est constante. De plus , (H-N)(e)=0 donc H-N=0 donc H=N. H est donc l'unique primitive de g qui s'annule en e.