

Adam Baniuszewicz

nr albumu: 33816 kierunek studiów: Teleinformatyka forma studiów: studia stacjonarne specjalność: Sieci teleinformatyczne i systemy mobilne

ALGORYTMY POLECEŃ MENTALNYCH W INTERFEJSACH MÓZG-KOMPUTER

ALGORITHMS OF MENTAL COMMANDS IN BRAIN-COMPUTER INTERFACES

Praca dyplomowa magisterska napisana pod kierunkiem:

dr. inż. Roberta Krupińskiego

Katedra Przetwarzania Sygnałów i Inżynierii Multimedialnej

Data wydania tematu pracy: 01.11.2018 r.

Data złożenia pracy: TODO r.

OŚWIADCZENIE AUTORA PRACY DYPLOMOWEJ

Oświadczam, że praca magisterska pn.

"Algorytmy poleceń mentalnych w interfejsach mózg-komputer" napisana pod kierunkiem:

dr. inż. Roberta Krupińskiego

jest w całości moim samodzielnym autorskim opracowaniem sporządzonym przy wykorzystaniu wykazanej w pracy literatury przedmiotu i materiałów źródłowych.

Złożona w dziekanacie Wydziału Elektrycznego treść mojej pracy dyplomowej w formie elektronicznej jest zgodna z treścią w formie pisemnej.

Oświadczam ponadto, że złożona w dziekanacie praca dyplomowa ani jej fragmenty nie były wcześniej przedmiotem procedur procesu dyplomowania związanych z uzyskaniem tytułu zawodowego w uczelniach wyższych.

podpis dyplomanta

Szczecin, dn. TODO r.

Streszczenie pracy

TODO

Słowa kluczowe

BCI, Elektroencefalografia

Abstract

TODO

Keywords

BCI, Electroencephalography

Spis treści

W	ykaz v	vażniejs	szych oznaczeń i skrótów	. 6
W	prowa	dzenie		. 7
1.			wiązań BCI	
	1.1.	-	je interfejsów	
			Inwazyjne	
			Nieinwazyjne	
	1.2.	Rodzaj	je rejestrowanych sygnałów	
		1.2.1.	EEG	. 9
		1.2.2.	EMG	. 9
		1.2.3.	ECG	. 9
		1.2.4.	EOG	. 9
	1.3.	Charak	kterystyka wybranych urządzeń komercyjnych	. 9
		1.3.1.	EMOTIV Insight	. 9
		1.3.2.	EMOTIV EPOC+	. 10
		1.3.3.	Muse 2	. 10
		1.3.4.	MindWave Mobile 2	. 10
		1.3.5.	OpenBCI Ultracortex Mark IV	. 10
2.	Przeg	gląd dos	estępnych rozwiązań	. 13
3.	Anali	iza istni	ilejących algorytmów ekstracji cech	. 15
4.	Proje	kt syst	temu	. 17
5.	Bada	ınia opr	racowanego systemu	. 19
Za	kończ	zenie .		. 20
Bi	bliogr	afia		. 21
Sp	is tab	el		. 22
Sp	is rys	unków		. 23
c.	ie kas	lów źró:	idlowych	2/

Wykaz ważniejszych oznaczeń i skrótów

BCI Brain-computer interface — Interfejs mózg-komputer

ECG ElektrokardiografiaEEG Elektroencefalografia

EMG ElektromiografiaEOG Elektrookulografia

Wprowadzenie

TODO

Cel pracy

TODO

Zakres pracy

TODO

Analiza rozwiązań BCI

1.1. Rodzaje interfejsów

- 1.1.1. Inwazyjne
- 1.1.2. Nieinwazyjne

1.2. Rodzaje rejestrowanych sygnałów

- 1.2.1. EEG
- 1.2.2. EMG
- 1.2.3. ECG
- 1.2.4. EOG

1.3. Charakterystyka wybranych urządzeń komercyjnych

1.3.1. EMOTIV Insight

Insight (patrz rysunek 1.1 na następnej stronie) jest produktem wprowadzonym na rynek w roku 2015 przez firmę EMOTIV przy wsparciu crowdfundingu na portalu kickstarter. Jest produktem do użytku codziennego, głównie za sprawą smukłego designu oraz braku konieczności stosowania żelów przewodzących, przeznaczonym do mniej precyzyjnych zastosowań. Jest wyposażony w pięć czujników właściwych oraz dwa referencyjne. Lokalizacja czujników została przedstawiona na rysunku 1.2 na stronie 11. Parametry urządzenia zostały zestawione w tabeli 1.1 na stronie 11.

Rysunek 1.1. Hełm EMOTIV Insight Źródło: www.emotiv.com

1.3.2. EMOTIV EPOC+

pisze dalej

- 1.3.3. Muse 2
- 1.3.4. MindWave Mobile 2
- 1.3.5. OpenBCI Ultracortex Mark IV

Rysunek 1.2. Rozmieszczenie sensorów w hełmie EMOTIV Insight

Źródło: www.emotiv.com

Tabela 1.1. Parametry EMOTIV Insight

Źródło: Na podstawie [1]

г		
	llość kanałów	5 (+2 referencyjne)
	Umiejscowienie elektrod	AF3, AF4, T7, T8, Pz
	Czujniki referencyjne	DMS/DRL
	Rozdzielczość	14 bitów na kanał
	Rozdzielczość LSB	0,51 μV @ 14 bit
	Rodzaj czujników	Semi-dry polymer
	Detekcja ruchu	9-osiowy czujnik (3x żyroskop, 3x akcelerometr, 3x magnetometr)
	Łączność	Bezprzewodowa 2,4GHz/Bluetooth 4.0
	Zasilanie	Li-Pol 480 mAh, do 8 godzin pracy
- 1		

Rysunek 1.3. Hełm EMOTIV EPOC+

Źródło: www.emotiv.com

Rysunek 1.4. Rozmieszczenie sensorów w hełmie EMOTIV EPOC+ Źródło: www.emotiv.com

Przegląd dostępnych rozwiązań

Analiza istniejących algorytmów ekstracji cech

Projekt systemu

Badania opracowanego systemu

Zakończenie

TODO

Bibliografia

 $[1] \quad {\sf EMOTIV:} \ \textit{Headsets comparison chart}, {\sf URL:} \ \textit{https://www.emotiv.com/comparison/}.$

Spis tabel

1 1	Parametry	/ EMOTIV Insight													1	1
⊥.⊥.	raiailleu	/ EIVIOTTY ITISIETIL														

Spis rysunków

1.1.	Hełm EMOTIV Insight	10
1.2.	Rozmieszczenie sensorów w hełmie EMOTIV Insight	11
1.3.	Hełm EMOTIV EPOC+	12
1 4	Rozmieszczenie sensorów w hełmie FMOTIV FPOC+	12

Spis kodów źródłowych