

COMP250: Artificial Intelligence

2: Designing AI behaviours

Rule-based Al

Generally implemented as if statements or event-based triggers

Finite state machines

Behaviour trees

Game tree search

Multi-agent approaches (e.g. flocking)

Machine learning

► Can roughly be divided into hand-authored...

- ► Can roughly be divided into hand-authored...
 - Rule-based, FSM, behaviour trees

- Can roughly be divided into hand-authored...
 - Rule-based, FSM, behaviour trees
- ► ... and computational intelligence

- Can roughly be divided into hand-authored...
 - Rule-based, FSM, behaviour trees
- ... and computational intelligence
 - Search, multi-agent, machine learning

- Can roughly be divided into hand-authored...
 - Rule-based, FSM, behaviour trees
- ... and computational intelligence
 - Search, multi-agent, machine learning
- Do you want to design the Al behaviours yourself, or do you want them to emerge from the system?

- ► Can roughly be divided into hand-authored...
 - Rule-based, FSM, behaviour trees
- ... and computational intelligence
 - Search, multi-agent, machine learning
- Do you want to design the Al behaviours yourself, or do you want them to emerge from the system?
- Predictability and authorial control versus unpredictability and novelty

Logic

Logical operations

Python	C family	Mathematics	Behaviour tree
not a	!a	$\neg A$ or \overline{A}	Inverter
a and b	a && b	$A \wedge B$	Sequence
a or b	a b	$A \lor B$	Selector

▶ Let A be a proposition (a statement about the world)

- ▶ Let A be a proposition (a statement about the world)
- ▶ A is a boolean value, either true or false

- ▶ Let A be a **proposition** (a statement about the world)
- ▶ A is a boolean value, either true or false
- ► The law of **identity**: A == A is always true

- ▶ Let A be a proposition (a statement about the world)
- ▶ A is a boolean value, either true or false
- ► The law of identity: A == A is always true
- ► The law of non-contradiction: A && !A is always false

- ▶ Let A be a **proposition** (a statement about the world)
- ▶ A is a boolean value, either true or false
- ► The law of identity: A == A is always true
- ► The law of non-contradiction: A && !A is always false
 - ▶ I.e. A cannot be both true and false

- ▶ Let A be a proposition (a statement about the world)
- ▶ A is a boolean value, either true or false
- ► The law of identity: A == A is always true
- ► The law of non-contradiction: A && !A is always false
 - ▶ I.e. A cannot be both true and false
- ► The law of the excluded middle: A | | !A is always true;

- ▶ Let A be a proposition (a statement about the world)
- ▶ A is a boolean value, either true or false
- ► The law of identity: A == A is always true
- ► The law of non-contradiction: A && !A is always false
 - ▶ I.e. A cannot be both true and false
- ► The law of the excluded middle: A || !A is always true;
 - ▶ I.e. A must be either true or false

Predicates are propositions with parameters

- Predicates are propositions with parameters
- In programming terms, a predicate is a function that returns a boolean

- Predicates are propositions with parameters
- In programming terms, a predicate is a function that returns a boolean
- ► E.g. LivesIn (Bob, Falmouth) could be a predicate for "Bob lives in Falmouth"

ightharpoonup P(x) is a predicate

- \triangleright P(x) is a predicate
- ▶ $\forall x : P(x)$ means that P(x) is true **for all** values of x

- \triangleright P(x) is a predicate
- ▶ $\forall x : P(x)$ means that P(x) is true for all values of x
- → ∃x : P(x) means that there exists at least one value of x such that P(x) is true

Implication

Implication

► "A implies B" means "if A is true then B is true"

Implication

- ► "A implies B" means "if A is true then B is true"
- ightharpoonup Written as $A \implies B$

Implication

- ► "A implies B" means "if A is true then B is true"
- ightharpoonup Written as $A \Longrightarrow B$
- E.g. if someone lives in Falmouth then they live in Cornwall

Implication

- ► "A implies B" means "if A is true then B is true"
- ightharpoonup Written as $A \Longrightarrow B$
- E.g. if someone lives in Falmouth then they live in Cornwall
- $ightharpoonup \forall x : \text{LivesIn}(x, \text{Falmouth}) \implies \text{LivesIn}(x, \text{Cornwall})$

 $ightharpoonup A \implies B$ is equivalent to $\neg B \implies \neg A$

- $ightharpoonup A \implies B$ is equivalent to $\neg B \implies \neg A$
- E.g. if someone does not live in Cornwall then we know they don't live in Falmouth

- $ightharpoonup A \implies B$ is equivalent to $\neg B \implies \neg A$
- E.g. if someone does not live in Cornwall then we know they don't live in Falmouth
- $\blacktriangleright \forall x : \neg \text{LivesIn}(x, \text{Cornwall}) \implies \neg \text{LivesIn}(x, \text{Falmouth})$

▶ If $A \implies B$ and $B \implies A$ then A and B are **logically** equivalent

- ▶ If $A \implies B$ and $B \implies A$ then A and B are **logically** equivalent
- ightharpoonup A is true if and only if B is true

- ▶ If $A \implies B$ and $B \implies A$ then A and B are logically equivalent
- ightharpoonup A is true if and only if B is true
- ightharpoonup Written as $A \iff B$

- ▶ If $A \implies B$ and $B \implies A$ then A and B are logically equivalent
- ► A is true if and only if B is true
- ightharpoonup Written as $A \iff B$
- E.g. "Alice lives in a city in Cornwall" if and only if "Alice lives in Truro"

- ▶ If $A \implies B$ and $B \implies A$ then A and B are logically equivalent
- ightharpoonup A is true if and only if B is true
- ightharpoonup Written as $A \iff B$
- E.g. "Alice lives in a city in Cornwall" if and only if "Alice lives in Truro"
- This relies on an extra piece of domain knowledge: Truro is the only city in Cornwall

- ▶ If $A \implies B$ and $B \implies A$ then A and B are logically equivalent
- ightharpoonup A is true if and only if B is true
- ightharpoonup Written as $A \iff B$
- E.g. "Alice lives in a city in Cornwall" if and only if "Alice lives in Truro"
- This relies on an extra piece of domain knowledge: Truro is the only city in Cornwall
 - ▶ $\forall x : \text{InCornwall}(x) \land \text{IsCity}(x) \implies x = \text{Truro}$

▶ If $A \Longrightarrow B$ and $B \Longrightarrow C$ then $A \Longrightarrow C$

- ▶ If $A \implies B$ and $B \implies C$ then $A \implies C$
- E.g. if someone lives in Falmouth then they live in Cornwall

- ▶ If $A \implies B$ and $B \implies C$ then $A \implies C$
- E.g. if someone lives in Falmouth then they live in Cornwall
- And if someone lives in Cornwall then they live in England

- ▶ If $A \implies B$ and $B \implies C$ then $A \implies C$
- E.g. if someone lives in Falmouth then they live in Cornwall
- And if someone lives in Cornwall then they live in England
- Therefore if someone lives in Falmouth then they live in England

"Everyone who lives in Cornwall likes cider"

- "Everyone who lives in Cornwall likes cider"
- ▶ $\forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider})$

- "Everyone who lives in Cornwall likes cider"
- $ightharpoonup \forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider})$
- ▶ What is the opposite of this statement?

- "Everyone who lives in Cornwall likes cider"
- $ightharpoonup \forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider})$
- What is the opposite of this statement?
- ▶ $\neg(\forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider}))$

- "Everyone who lives in Cornwall likes cider"
- $ightharpoonup \forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider})$
- ▶ What is the opposite of this statement?
- ▶ $\neg(\forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider}))$
- In logical terms, the opposite is **not** "nobody who lives in Cornwall likes cider"

- "Everyone who lives in Cornwall likes cider"
- $ightharpoonup \forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider})$
- ▶ What is the opposite of this statement?
- $ightharpoonup \neg (\forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider}))$
- In logical terms, the opposite is **not** "nobody who lives in Cornwall likes cider"
- It's "Not everyone who lives in Cornwall likes cider"

- "Everyone who lives in Cornwall likes cider"
- $ightharpoonup \forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider})$
- ▶ What is the opposite of this statement?
- ▶ $\neg(\forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider}))$
- In logical terms, the opposite is **not** "nobody who lives in Cornwall likes cider"
- It's "Not everyone who lives in Cornwall likes cider"
- I.e. "There is at least one person living in Cornwall who does not like cider"

- "Everyone who lives in Cornwall likes cider"
- $ightharpoonup \forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider})$
- ▶ What is the opposite of this statement?
- ▶ $\neg(\forall x : \text{LivesIn}(x, \text{Cornwall}) \implies \text{Likes}(x, \text{Cider}))$
- In logical terms, the opposite is **not** "nobody who lives in Cornwall likes cider"
- It's "Not everyone who lives in Cornwall likes cider"
- I.e. "There is at least one person living in Cornwall who does not like cider"
- ▶ $\exists x : \text{LivesIn}(x, \text{Cornwall}) \land \neg \text{Likes}(x, \text{Cider})$

▶ A branch of mathematics studying decision making

- A branch of mathematics studying decision making
- A game is a system where one or more players choose actions; the combination of these choices lead to each agent receiving a payoff

- A branch of mathematics studying decision making
- A game is a system where one or more players choose actions; the combination of these choices lead to each agent receiving a payoff
- Important applications in economics, ecology and social sciences as well as Al

 Two students, Alice and Bob, are suspected of copying from each other

- Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information

- Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information
- Each can choose to betray the other or stay silent but they cannot communicate before deciding what to do

- Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information
- Each can choose to betray the other or stay silent but they cannot communicate before deciding what to do
- ▶ If both stay silent, both receive a C grade

- Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information
- Each can choose to betray the other or stay silent but they cannot communicate before deciding what to do
- ▶ If both stay silent, both receive a C grade
- If Alice betrays Bob, she receives an A whilst he gets expelled

- ► Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information
- Each can choose to betray the other or stay silent but they cannot communicate before deciding what to do
- ▶ If both stay silent, both receive a C grade
- If Alice betrays Bob, she receives an A whilst he gets expelled
- If Bob betrays Alice, he receives an A whilst she gets expelled

- ► Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information
- Each can choose to betray the other or stay silent but they cannot communicate before deciding what to do
- ▶ If both stay silent, both receive a C grade
- If Alice betrays Bob, she receives an A whilst he gets expelled
- If Bob betrays Alice, he receives an A whilst she gets expelled
- ▶ If both betray each other, both get an F

Payoff matrix

Payoff matrix

	A silent	A betray
B silent	A: 50	A: 70
	B: 50	B: -100
B betray	A: -100	A: 0
	B: 70	B: 0

Payoff matrix

	A silent	A betray
B silent	A: 50	A: 70
	B: 50	B: -100
B betray	A: -100	A: 0
	B: 70	B: 0

Socrative FALCOMPED: what would you do?

► The best outcome overall is for both of us to stay silent

- ► The best outcome overall is for both of us to stay silent
- However if Bob stays silent, I can get a better mark by betraying him

- ► The best outcome overall is for both of us to stay silent
- However if Bob stays silent, I can get a better mark by betraying him
- And if Bob betrays me, I should betray him to avoid getting expelled

- ► The best outcome overall is for both of us to stay silent
- However if Bob stays silent, I can get a better mark by betraying him
- And if Bob betrays me, I should betray him to avoid getting expelled
- ► Therefore the rational choice is to betray

- ► The best outcome overall is for both of us to stay silent
- However if Bob stays silent, I can get a better mark by betraying him
- And if Bob betrays me, I should betray him to avoid getting expelled
- ► Therefore the rational choice is to betray
- ... and Bob's thought process is the same!

 Consider the situation where both have chosen to betray

- Consider the situation where both have chosen to betray
- Neither person has anything to gain by switching to silence, assuming the other person doesn't also switch

- Consider the situation where both have chosen to betray
- Neither person has anything to gain by switching to silence, assuming the other person doesn't also switch
- ► Such a situation is called a **Nash equilibrium**

- Consider the situation where both have chosen to betray
- Neither person has anything to gain by switching to silence, assuming the other person doesn't also switch
- ► Such a situation is called a Nash equilibrium
- If all players are rational (in the sense of wanting to maximising payoff), they should converge upon a Nash equilibrium

Does every game have a Nash equilibrium?

Does every game have a Nash equilibrium?

	A rock	A paper	A scissors
B rock	A: 0	A: +1	A: -1
	B: 0	B: -1	B: +1
B paper	A: -1	A: 0	A: +1
	B: +1	B: 0	B: -1
B scissors	A: +1	A: -1	A: 0
	B: -1	B: +1	B: 0

Does every game have a Nash equilibrium?

	A rock	A paper	A scissors
B rock	A: 0	A: +1	A: -1
	B: 0	B: -1	B: +1
B paper	A: -1	A: 0	A: +1
	B: +1	B: 0	B: -1
B scissors	A: +1	A: -1	A: 0
	B: -1	B: +1	B: 0

Socrative FALCOMPED: what would you do?

Committing to any choice of action can be exploited

- Committing to any choice of action can be exploited
- E.g. if you always choose paper, I choose scissors

- Committing to any choice of action can be exploited
- E.g. if you always choose paper, I choose scissors
- If we try to reason naïvely, we get stuck in a loop

- Committing to any choice of action can be exploited
- E.g. if you always choose paper, I choose scissors
- If we try to reason naïvely, we get stuck in a loop
 - ▶ If I choose paper, you'll choose scissors, so I should choose rock, but then you'll choose paper, so I'll choose scissors, so you'll choose rock, so I choose paper...

- Committing to any choice of action can be exploited
- E.g. if you always choose paper, I choose scissors
- If we try to reason naïvely, we get stuck in a loop
 - ▶ If I choose paper, you'll choose scissors, so I should choose rock, but then you'll choose paper, so I'll choose scissors, so you'll choose rock, so I choose paper...
- ► The optimum strategy is to be unpredictable

- Committing to any choice of action can be exploited
- E.g. if you always choose paper, I choose scissors
- If we try to reason naïvely, we get stuck in a loop
 - ▶ If I choose paper, you'll choose scissors, so I should choose rock, but then you'll choose paper, so I'll choose scissors, so you'll choose rock, so I choose paper...
- The optimum strategy is to be unpredictable
- ► Choose rock with probability $\frac{1}{3}$, paper with probability $\frac{1}{3}$, scissors with probability $\frac{1}{3}$

 A mixed strategy assigns probabilities to actions and chooses one at random

- A mixed strategy assigns probabilities to actions and chooses one at random
- In contrast to a pure or deterministic strategy, which always chooses the same action

- A mixed strategy assigns probabilities to actions and chooses one at random
- In contrast to a pure or deterministic strategy, which always chooses the same action
- If we allow mixed strategies, every game has at least one Nash equilibrium

 Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ▶ The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ► The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses
- ► Example:

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ► The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses
- Example:
 - ▶ If the guesses are 30, 40 and 80...

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ► The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses
- Example:
 - ▶ If the guesses are 30, 40 and 80...
 - ... then the mean is $\frac{30+40+80}{3} = 50...$

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ► The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses
- Example:
 - ▶ If the guesses are 30, 40 and 80...
 - ... then the mean is $\frac{30+40+80}{3} = 50...$
 - ... so the winning guess is 30, as this is closest to $\frac{2}{3} \times 50 = 3.333$

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ▶ The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses
- Example:
 - ▶ If the guesses are 30, 40 and 80...
 - ... then the mean is $\frac{30+40+80}{3} = 50...$
 - ... so the winning guess is 30, as this is closest to $\frac{2}{3} \times 50 = 3.333$
- ► Socrative FALCOMPED: make your guesses!

The average can't possibly be greater than 100

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666
- ► So no rational player would guess greater than 44.444

- The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666
- So no rational player would guess greater than 44.444
- Which means the average can't possibly be greater than 44,444

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666
- So no rational player would guess greater than 44.444
- Which means the average can't possibly be greater than 44.444
- ► So no rational player would guess greater than 29.629

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666
- So no rational player would guess greater than 44.444
- Which means the average can't possibly be greater than 44.444
- So no rational player would guess greater than 29.629
- ▶ ... and so on ad infinitum

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666
- So no rational player would guess greater than 44.444
- Which means the average can't possibly be greater than 44.444
- So no rational player would guess greater than 29.629
- ... and so on ad infinitum
- ► So the only **rational** guess is 0, as every rational player should guess 0 and $\frac{2}{3}$ of 0 is 0

Rationality

Rationality

 Rationality is a useful assumption for mathematics and Al programmers

Rationality

- Rationality is a useful assumption for mathematics and Al programmers
- However it's important to remember that humans aren't always rational