Tutorial 2

Q1. The magnetic moment of an octahedral Co(II) complex is $4.0~\mu_B$. What is its electron configuration?

Answer:

$$\mu = [n(n+2)]^{1/2} \mu_B \Rightarrow 4.0 = [n(n+2)]^{1/2} \Rightarrow n = 3$$

A Co(II) complex is d^7 . The two possible configurations are $t^5_{2g}e^2_g$ (high spin) with three unpaired electron or $t^6_{2g}e^1_g$ (low-spin) with one unpaired electron.

The spin only magnetic moment are 3.87 μ_B and 1.73 μ_B , repectively. Therefore the only consistent assignment is the high-spin configuration $t^5_{2g}e^2_{g}$.

Q2. What is the magnetic moment of $[CoF_6]^{3-}$, assuming that the spin-only formula will apply.

Answer:

 $[CoF_6]^{3-}$ is high spin Co(III). (you should know this). High-spin Co(III) is d^6 with four unpaired electrons, so n = 4.

We have
$$\mu_{eff} = [n(n+2)]^{1/2} = 4.90 \ \mu_{B}$$

Q3. Two different complexes, one red-orange (**A**) and the other green (**B**), can be isolated from an aqueous solution of Co³⁺ containing excess HCl and ethylene diamine (en). The red-orange complex **A** has the empirical formula CoCl₃(en)₃ while the green complex **B** has the empirical formula CoCl₃(en)₂. Addition of excess AgNO₃ (aq) to an aqueous solution of **A** or **B** produces a white precipitate but **A** produces 3 times as much precipitate as **B** on a molar basis. The red-orange complex **A** can be resolved into a pair of enantiomers while the green complex **B** is not chiral. **Assume Co³⁺ has the same coordination number in both complexes**. Propose reasonable structures for both complexes **A** and **B** consistent with these observations and the behaviour of chelate ligands.

Answer: Addition of Ag+ precipitates free Cl- so A has three free Cl- and B only one.en is ethylenediamine and it binds as a bidentate chelate through both amino Nitrogen. For A this gives rise to helical chirality in the tris(chelate) as either the Δ or Λ forms. For B, there must be two bound en and two bound Cl-but since there are no optical isomers, it must mean that this is the trans isomer (cis-has no mirror planes and is chiral).

Complex A is [Co(en)₃]Cl₃ which will exist as a pair of enantiomers.

Complex B will be trans-[Co(en)₂Cl₂]Cl (it cannot be the cis-isomer because cis- will exist as a pair of enantiomers).

Q4. The crystal field splitting energy of a complex is 2.9×10^{-19} J. What wavelength of light (in nm) would be absorbed for a d-d electronic transition corresponding to this splitting?

$$|\Delta E_{electron}| = E_{photon} = hc/\lambda$$

$$2.9 \times 10^{-19} \text{ J} = [(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})]/\lambda$$

$$\lambda = 6.849913103 \times 10^{-7} \text{ m} = 680 \text{ nm}$$

Q5. $[Ni(NH_3)_4]^{+2}$ is paramagnetic while isoelectronic $[Pd(NH_3)_4]^{+2}$ is diamagnetic. Explain in a few words how this could be so.

Answer: Both Ni(II) and Pd(II) have a d^8 configuration. But since Ni(II) complex with a weak field ligand such as NH₃ will be tetrahedral, the electronic configuration will be $e^4t_2^4$ resulting in two unpaired electrons. On the other hand, Pd(II) complex will be square planar with no unpaired electrons.

Q6. The value of Δ_0 in $[Mn(OH_2)_6]^{3+}$ is 15,800 cm⁻¹ while the mean pairing energy (P) in this complex is 28,000 cm⁻¹. Do you expect this ion to be high or low spin?

Answer: This is a d^4 ion. In this case, you should know that when $\Delta_o > P$, a low spin complex will result and when $\Delta_o < P$ a high spin complex will be observed. Since $\Delta_o = 15,800 < P = 28,000$ cm⁻¹, a high spin complex will be observed.

Q7. For the following complexes, give the crystal field stabilization energy (in terms of Dq), the spin-only magnetic moment (in Bohr-Magnetons), and predict if the complex will be Jahn-Teller active. If the complex is Jahn-Teller active, indicate the likely nature of the distortion.

Answer:

a.
$$[CoF_6]^{3-}$$

 Co^{3+} is d^6 in a weak field so the stabilization energy is –4Dq. There are 4 unpaired electrons so $\mu = [4(4+2)]^{\frac{1}{2}} = 4.9 \, \mu_B$. d^6 in a weak field is Jahn-Teller active and should display axial compression.

b.
$$[V(H_2O)_6]^{3+}$$

 V^{3+} is d^2 in a weak field so the stabilization energy is -8Dq. There are 2 unpaired electrons so $\mu = [2(2+2)]^{\frac{1}{2}} = 2.8 \ \mu_B$. d^2 in a weak field is Jahn-Teller active and should display axial elongation.

c.
$$[Mn(CN)_6]^{3-}$$

Mn³⁺ is d⁴ in a strong field so the stabilization energy is -16Dq. There are 2 unpaired electrons so $\mu = [2(2+2)]^{\frac{1}{2}} = 2.8$ μ_B . d⁴ in a strong field is Jahn-Teller active and should display axial compression.

d. $[Cr(H_2O)_3(CN)_3]^-$

 Cr^{2+} is d^4 in a strong field (cyanide is a very strong ligand, water is near the change over from weak to strong, so the stronger ligands dominate) so the stabilization energy is -16Dq. There are 2 unpaired electrons so $\mu = [2(2+2)]^{\frac{1}{2}} = 2.8$ μ_B . d^4 in a strong field is Jahn-Teller active and should display axial compression.