Lecture 7 Further Edge Detection

COMP3204 Computer Vision

What better ways are there to detect edges?

Department of Electronics and Computer Science

Content

- 1. How can we improve first-order edge detection?
- 2. How can we detect edges using second order differentiation/ differencing

Applying Sobel operator

Sobel is a good basic operator

Blurred edges

Noisy edges

Stages in Canny edge detection operator

Canny gives thin edges in the right place, but is more complex

Canny edge detection operator

Formulated with three main objectives:

- optimal detection with no spurious responses;
- good localisation with minimal distance between detected and true edge position; and
- single response to eliminate multiple responses to a single edge.

Approximation

- use Gaussian smoothing;
- 2. use the Sobel operator; combine?
- 3. use non-maximal suppression; and
- 4. threshold with hysteresis to connect edge points.

Interpolation in non-maximum suppression

Need to use points which are not on the image grid

Uses linear interpolation

Hysteresis thresholding transfer function

Lower
threshold =
average noise

Upper threshold = average feature boundary

Action of non-maximum suppression and hysteresis thresholding

Walk along top of ridge

Gives thin edges in the right place

Comparing hysteresis thresholding with uniform thresholding

Hysteresis thresholding gives all points > upper threshold plus any connected points > lower threshold

Comparing Canny with Sobel

The lines are thinner here, making Sobel look better!

Comparing Canny with Sobel

The lines are indeed thinner

Comparing Canny with Sobel

The noise is less

First and second order edge detection

First order = single differentiation with thresholding

Second order = twice differentiation with zero-crossing detection

Edge detection via the Laplacian operator

0	-1	0
-1	4	-1
0	-1	0

0 2 1 3 1 0 4 2 (a) image data							0	0 (b)	0 result	of the	0 Lapla	0 cian or	0 perator	0	
0	2	0	2	2	3	1	1	0	6	-44	-38	-40	-31	-6	0
2	0	39	41	42	40	2	0	0	-45	72	37	45	74	-36	0
1	2	43	44	40	39	3	1	0	-37	47	8	-6	31	-32	0
4	1	40	44	41	42	2	1	0	-42	34	12	1	50	-41	0
3	0	38	39	37	36	3	0	0	-44	70	37	31	60	-28	0
2	2	3	0	1	2	2	1	0	1	-31	-47	-36	-32	0	0
1	2	3	4	1	1	2	1	0	0	0	0	0	0	0	О

Edge detection is about differentiation

Take a Gaussian function

$$g(x, y, \sigma) = e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$

Differentiate once

$$\frac{\partial g(x,y,\sigma)}{\partial x} = -\frac{x}{\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$

And again

$$\frac{\partial^2 g(x,y,\sigma)}{\partial x^2} = \left(\frac{x^2}{\sigma^2} - 1\right) \frac{e^{\frac{-(x^2 + y^2)}{2\sigma^2}}}{\sigma^2}$$

Mathbelts on...

Second order in x and y is

$$\nabla^2 g(x, y, \sigma) = \frac{\partial^2 g(x, y, \sigma)}{\partial x^2} U_x + \frac{\partial^2 g(x, y, \sigma)}{\partial y^2} U_y$$

By substitution

$$= \left(\frac{x^2}{\sigma^2} - 1\right) \frac{e^{\frac{-(x^2 + y^2)}{2\sigma^2}}}{\sigma^2} + \left(\frac{y^2}{\sigma^2} - 1\right) \frac{e^{\frac{-(x^2 + y^2)}{2\sigma^2}}}{\sigma^2}$$

So we get

$$= \frac{1}{\sigma^2} \left(\frac{x^2 + y^2}{\sigma^2} - 2 \right) e^{\frac{-(x^2 + y^2)}{\sigma^2}}$$

Why, oh why, have we done this ???

Top 3 hits Google: "Laplacian of Gaussian"

$$LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$LoG \stackrel{\triangle}{=} \triangle G_{\sigma}(x,y) = \frac{\partial^2}{\partial x^2} G_{\sigma}(x,y) + \frac{\partial^2}{\partial y^2} G_{\sigma}(x,y) = \frac{x^2 + y^2 + 2\sigma^2}{\sigma^4} e^{-(x^2 + y^2)/2\sigma^2}$$

LoG(x,y) =
$$-\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Two wrong, one right. Just one.....why?

(and two of them don't even work!!)

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm; http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html; http://academic.mu.edu/phys/matthysd/web226/Lab02.htm

Shape of Laplacian of Gaussian operator

It's called the 'Mexican hat operator'

Zero crossing detection

Need to find zero-crossings in 2D

Basic – straight comparison

f(x, y)

Advanced

Marr-Hildreth edge detection

Small template, small σ for local features

Large template, large σ for global features

Comparison of edge detection operators

Newer stuff – interest detections

feature points

SIFT (mega famous)
(wait for Jon)

regions

brightness clustering (excellent, but confess its ours)

Lomeli-R. and Nixon and Carter, Mach Vis Apps 2016

Newer stuff – saliency

Takeaway time

- 1 Canny provides thin edges in the right place
- 2 second order (Marr-Hildreth) requires zero-crossing detection
- 3 the results by Marr-Hildreth and Canny are well worth the extra computation
- Now we need to collect the edges to find shape. Coming next...

