MATHEMATICS - TRIAL R	EVISION	BOOKLET 2
1) NORTH SYDNEY BOYS HIGH	2006	
2) CARRINGBAH HIGH	2007	
3) SYDNEY TECH.	2008	
4) KNOX GRAMMAR	2008	
5) CRANBROOK HIGH	2008	
6) FORT ST HIGH	2009	

		# 0	
		1000 1000 1000 1000 1000 1000 1000 100	
		Species of	
		d: 	
		d.	

NSBAS-2006

Que	stion 1 (12 marks)	Marks
(a)	Evaluate $\frac{12.9}{\sqrt{6.7 \times 3.4}}$ correct to 3 significant figures.	2
(b)	Factorise $1-8y^3$.	2
(c)	Find the value of $\frac{\log_3 8}{\log_3 2}$.	2
(d)	Find a primitive of $5 + \sin 2x$	2
(e)	Find the values of x for which $x^2 - 6x + 5 > 0$.	2
(f)	Solve the simultaneous equations: 2x + y = 3 x - 2y = 4	2

Ques	tion 2 (12 marks) Start question on a new page.	Marks
a)	Differentiate with respect to x:	
	(i) $(x+1)^7$.	. 1.
	(ii) $x \tan x$	2
	(iii) $\log_e\left(\frac{x}{x-1}\right)$	2
/ b)	Find:	
	$(i) \qquad \int \frac{x}{x^2 + 6} dx$	2
	(ii) $\int \frac{3}{e^{2x}} dx$	2
(c)	Evaluate $\int_{1}^{x} (\frac{2}{x} + \frac{x}{2}) dx$ leaving your answer in exact form.	3

2

The points A(2,0), B(5,2) and C(7,5) are joined to form a triangle as shown below. D is the midpoint of AC.

Find the length of AC

Find the co-ordinates of D (ii)

Find the slope of DB, and prove that it is perpendicular to AC

BD is extended to E, so that BD = DE. (iv) Find the co-ordinates of the point E.

Find the area of the quadrilateral ABCE

(b)

The diagram shows a garden bed in the shape of a sector. The arc length is 8π metres and the radius is 10 metres

Show that the angle of the sector is $\frac{4\pi}{5}$ radians

Calculate the area of this garden bed. 2

(iii) The garden bed is to be planted with red and yellow tulips. If the tulips 1 can be planted at 15 per square metre, how many tulips can be planted?

Assuming all tulips flower, what is the expected number of red tulips if the probability of producing a red flower is 0.6?

A, B and C are collinear points. BD//AE, AB//ED, BC = BDand $\angle BCD = 72^{\circ}$

Copy this diagram on your answer sheet.

Find the size of $\angle DEA$, giving reasons.

Use Simpson's rule with three function values (i.e. one application) $\int \log_e x \, dx$. to estimate

Solve $4^x - 18(2^x) + 32 = 0$

 $2\cos 2x + \sqrt{3} = 0$ for $0 \le x \le 2\pi$

2

(a) In the diagram X, Y and Z represent the locations of three towns.

The town Y is due east of X and the bearing of Z from Y is 046°.

- (i) Find the size of ∠XYZ.
- (ii) Find the distance XZ to 1 decimal place.
- (iii) What is the bearing of Y from Z?
- (b) The root of the equation $x + \frac{1}{x} = 7$ are α and β Find the value of:

(i)
$$\alpha + \frac{1}{\alpha}$$

(ii) $\alpha + \beta$

Hence:

- (c) (i) Show that $\frac{3x+4}{x+1} = \frac{1}{x+1} + 3$
 - (ii) Sketch the graph of $y = \frac{3x+4}{x+1}$ showing all the important features. (Do not find stationary points).
 - (iii) Find the exact area of the region bounded by the curve $y = \frac{3x+4}{x+1}$, the x and y axes, and the line x = 2.

- (a) Given that $\log_a 3 = 0.68$ and $\log_a 2 = 0.42$, find $\log_a 18$
- Find the limiting sum of the series $\frac{9}{8} + \frac{3}{4} + \frac{1}{2}$

The diagram shows BD_AC and CE_AB

- (i) Copy this diagram into your answer booklet and prove $\triangle ECA \parallel \triangle DBA$
- (ii) If AB = 10 cm, BD = 7cm and AC = 16 cm find the length of CE.
- (d) The rate of water flowing, R litres per hour, into a pond is given by

$$R = 65 + 4t^{\frac{1}{3}}$$

- i) Calculate the initial flow rate.
- (ii) If initially there was 15 litres in the pond, find the volume of the water in the pond when 8 hours have elapsed.

2

3

Question 8 (12 marks) Start question on a new page.

Marks

2

A particle moves in a straight so that its distance x, in metres, from a fixed point O at time t, in seconds, is given by

$$x = 5t + \log_e(1 - 2t), \quad 0 \le t \le \frac{1}{2}.$$

- Find the initial velocity and acceleration of the particle. (i)
- When does the particle come to rest?
- A parabola has the equation $x^2 = -12y$
 - Find the co-ordinates of the vertex of the parabola (i)
 - (ii) Write down the focus of the parabola

 - Find the equation of the tangent of the parabola at the point where x = 6.
 - Find the co-ordinates of Y, the point where the tangent cuts the y-axis

The curve y = f(x) has a stationary point at (2,0). What is the nature of this stationary point?

- Consider the curve $y = \frac{1}{e^{-x}}$:
 - For what values of x is the function defined?

- Describe the behaviour of the function as x:
 - (a) approaches zero
 - (β) increases indefinitely
 - Find any stationary points and determine their nature.

2

- Sketch the curve of this function (iv)
- The diagram below represents a possible sine or cosine curve.

- Give the amplitude (i)
- Give the period
- Write down the possible equation of the curve

(a) Find the volume of the solid formed when the shaded area under the curve $y = \sqrt{x}$, shown below, is rotated around the y-axis.

(b) (i) Sketch the curve
$$y = 3\sin \frac{\pi x}{2}$$
 for $-2 \le x \le 4$.

(ii) Draw on your diagram a line, clearly labelled, which can be used to solve the following equation:

$$\sin\frac{\pi x}{2} - \frac{x}{3} = 0$$

(iii) Determine the number of solutions to the equation $\sin \frac{\pi x}{2} - \frac{x}{3} = 0 \text{ over the domain } -2 \le x \le 4.$

- (i) What is the probability that the game ends in a draw?
- (ii) The two players X and Y play each other in chess competition, each player having the White pieces once.
 In the competition the player who wins the game scores 3 points, the player who loses the game scores 1 point and in a draw each player receives 2 points.

By drawing a tree diagram, or otherwise, find the probability that, as a result of these two games,

- (α) X scores 6 points.
- (β) X scores less than 4 points.

The number N of a certain species is falling according to $N = N_0 e^{-0.03t}$ where t is in days and N_0 is the initial number of species present.

(i) Show that
$$N = N_0 e^{-0.03t}$$
 is a solution to the differential equation
$$\frac{dN}{dt} = -0.03N$$
.

(ii) How long, to the nearest day, will it take for the number of species to halve?

(iii) Find, in terms of N_0 , the rate of change at the time when the number of species has halved.

(iv) Find the number of days, to the nearest whole number, for the number of species to fall to just below 5% of the initial number.

AOB is a sector of a circle with centre at O and radius r such that $\angle GAB = \frac{\pi}{3}$.

CDEF is a rectangle drawn in the sector and $\angle EOF = \alpha$ as shown in the diagram.

(i) Show that
$$CF = r \cos \alpha - \frac{r \sin \alpha}{\sqrt{3}}$$

ii) Given that $\frac{1}{2}\sin 2\alpha = \sin\alpha\cos\alpha$, show that the area of rectangle CDEF

can be expressed as
$$A = r^2 \left(\frac{1}{2} \sin 2\alpha - \frac{\sqrt{3}}{3} \sin^2 \alpha \right)$$

(iii) Find the value for α which will produce the rectangle of maximum area.

1

2

2

i) A(2,0) AC = \ (7-21)2+(5-0) = 150 = 512 $d\eta s$

M₅₆ = D(2, 5)

MAC = 5-0 Mys x mac = -1 .. DB I AC

11) ABCE & OKIE (diag. bisect at 90) E(4,3)

: Area = 1 x ACX EB. EB= 1(4-5)2+ 13-2)2

: Aren = 2 5,2 x 12 = 5 squaits

(i. 0.1 F = U 6229 . O= 415 70 O

· = 401T 7102×41

A MOITSANG

1 CBD = 180°- 72°

4 ABD = 180 - 54° = 1240 (st. line)

LAED = 126°

y 0 1.07 1.69 y=topex

 $\int \log_{e} x \, dx = \frac{2}{3} \left[0 + 4 \times 1.099 + 1.609 \right] \sqrt{}$

14 u= 22

(u-16) (u-2)= W=- 184 + 32= 0

1. 2x=16 or 2x=2 : u=16 ٩

211

 $2\cos 2x + \sqrt{3} = 0$ cos 22 =

2 *511 , 12, 11, 11, 12; 12, 12, 12; 13, 14, 11, 12;

(ii) Na of the = 40TX 15=188

iv) North red = 0.6 x 1884 = 1884 1130

cquiangular Harizantal point of inflexion LAEC = LBDA = 90° (given) - 5 x - 6 = 0 0=(1+x)z-3-1-=2 : = 0.42 +2×0.68 a) loga18 = loga (2 x 3?) 100 . Geen III ADBA 1061 = 1.78 Question & T. 1 雇 Z XZ= 172+312-2x17x31x 2 (1-26)-22 b) 7 = 56+ 10ge (1-24) - 2(1-24)" i) 2xxz = 46°+90° 10 sec : F(0,-3) 2 - to a = -4 m/s -12=4a 1-2E) V = 3 m/5 3-100 XZ = 44.8 و ا 180° + 46° 5(1-26)-8 5 - 2 (0/0)1 7+11 1) 2+4 = 7 When 1:0. PLUESTION 7 1:1 13 ...

P65+463 dt

>

1) t=0, R=654/m

R=65+46^{1/3}

=.656+4x2.64 = 656+364x +C

: V = 656 + 3645

6= 0) ×

Whin t=8)

= 583 lines

```
1624 for max.
                                                                                                                                                                (F = 1 (05 d - 15/12)
                                                                                     ET = 28
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               51.0 + 90.0 + 01.0 =
                                                                                                                                                                                                                    puis 1 = +7 =70
                                                                                                                                                                                                                                                                                                                                                                                                                                                        = 0.2x0.5+0.3x0.2 +0.3x0.5 =
                                                                                                                                                                                                                                        20 확 = 20
                                                                                                   0 = 910
)= 2 = 2 = 2 = 2 = 20)
VIII) Aff = 12( 0052d - 213 sinkto:
 1 ( 2 415 E) - > 2 415 E) 21 =
                                                                                                                                                                                                                    p) !) (t = 0 = - 0c
     ( 2015 - 2012 MSO) 27 =
                                                                                                                                                                                              10 C=100 days
 = ( TCOSA - TSINK ) X ( EV - NEO) =
                                                                                                                                                                      6.66 = 50.04 < 9
                                                                          +3× +) = H (11A)
                                                                                                                                                                       1 7500- 3 ON 6 ON 50.0 ...
                                                                                                                                                                                                                    ON 50.07 N
                                                                                                                                                                                                            ON 510.0-=
                                                                                                                                                                                                    ·N 7 × 50.0 = +70
                                                                                                                                                                                                                                                                                                                                                                                                  2 salutions
                                                                                                                                                                                                 \(\frac{\z\{\gamma\}}{2\lambda\} = \frac{\z\{\gamma\}}{2\lambda\} - \frac{\z\{\gamma\}}{2\lambda\} - = \frac{\z\{\gamma\}}{2\lambda\} - \frac{\z\{\gamma\}}{2\lambda\} - \frac{\z\{\gamma\}}{2\lambda\} - \frac{\z\{\gamma\}}{2\lambda\} - \frac{\z\{\gamma\}}{2\lamb
                                                                                                                                                                                                                                                                                                                                                                                           3 = xII 4168
                                                                                                                                                                                                                 7 20.0 - = (1) nl
                                                                                                                                                                                                  1700 - S ON = ON T ..
                                                                                                                                                                                                                                         ON F = N
                                                                                                                                                                                                                         N E0.0-=
                                                                                                                                                                                               4N = -0.03 N 20.0 - 10
                                                                                                                                                                                                                        N = N° 6-0.03F
```

(77)d+(07)d+(70)d=(77)d(1) 51.0 = E.0 × 5.0 = (mm)d = (9)d (!! 8.0-5.0-1 = (a)d (! dist W = W til trif stim was X soughing 1 (so 17279 = <u>у</u> <u>Перг.</u> - Пере = ्रिक्ती ॥ - महम्ह = hp +h 11 / - 8x26 x11 = 1. lo 2x 11/2 - 42-11 = 1 (10

I MIISTIND

18:0 =

2007

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

MATHEMATICS

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using blue or black pen
- Board approved calculators may be used
- Write your name on each page
- Each question is to be started on a new page.
- This examination paper must NOT be removed from the examination room

 There is a total of ten question: 	•	There is a	ı total	of ten	questions.	
---	---	------------	---------	--------	------------	--

- Each question is worth 12 marks.
- Marks may be deducted for careless or badly arranged work.

Que	stion One		Marks
a)	Evaluate $e^{1.4}$ correct to 3 significant figures.		. 2
b)	Factorise $2x^2 + 7x - 4$		2
c)	Simplify tan 30° cos 60° leaving your answer in surd form.		2
d)	Differentiate $x^2 \ln x$.		2
e)	Evaluate $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$		2
f)	Solve $(x+2)^2 = 9$.	e e e e e e e e e e e e e e e e e e e	2

a) Solve $3x^2 - x - 5 = 0$ leaving your answer in surd form.

2

A (1, -1), B (-3, 1), C (-3, 4) and D (3, 1) are points on the Cartesian Plane.

b) Differentiate $(4x^3-5)^6$

- Find a primitive of $x^2 + \cos 3x$
- d) Evaluate $\int_0^1 e^{2x} dx$

Find the distance CD.

e) Given that $\frac{12}{\sqrt{6}} = \sqrt{a}$, find the value of 'a'.

Find the perpendicular distance of A from CD.

Show that the equation of the line CD is x + 2y - 5 = 0.

- Hence or otherwise find the area of the triangle ACD.

Find the value of 'x' giving a reason for your answer.

- What type of quadrilateral is ABCD? Explain carefully.
- b) Simplify fully $\frac{\sin(180 \theta) \times \cot \theta}{\sec \theta}$

- c) Factorise and simplify $\frac{8x^3 27}{4x 6}$.

a)

In the diagram above AB = 3cm, BC = 5cm and AC = 3.5cm. Find the size of the smallest angle, correct to the nearest degree.

,2

- b) Find the equation of the tangent to the curve $y = e^x + x$ at the point where x = 0.
- c) State the centre and radius of the circle with equation $(x+3)^2 + y^2 = 16$
- d) i) Sketch on the same diagram.
 - y = |x-2| and y = 2x, showing the 'x' and 'y' intercepts.
 - ii) Hence or otherwise solve |x-2| = 2x
- iii) Using (i) or otherwise, find $\int_0^4 |x-2| dx$

B

In the above diagram, ABC is an isosceles triangle in which \angle BAC = 90°. BCD is an equilateral triangle.

Copy the diagram onto your answer sheet and mark in the given information.

- i) Find the size of ∠ ACD giving reasons.
- ii) If BC = 3cm, find the perimeter of ABDC in exact form.
- The quadratic equation $2x^2 3x + 6 = 0$ has roots α and β . Find the value of:

- iii) $a^2 + \beta^2$
- Use Simpson's rule with 3 function values to find an approximation for the value of $\int_0^1 10^x dx$. Give your answer to 3 decimal places.
- d) Evaluate $\int_0^{\frac{\pi}{3}} \sec^2 x \ dx$. Give your answer in exact form.

2

2

Question Seven(Start a new page)

Marks

3

2

2

a

ii)

In the above diagram, ABC and DEC are two triangles in which $\angle ABC = \angle EDC$. Also AB = 5cm, BE = 4cm, EC = 2cm and CD = 3cm.

Copy the diagram onto your answer sheet.

- i) Prove that the two triangles are similar.
 - Hence, giving reasons find the length of DE.
- Farmer Brown has hired a driller to drill a borehole to gain access to the underground water on his property. The cost is \$260 for the first 3 metres drilled, \$280 for the next 2 metres, \$300 for the next 2 metres and so on. The price increases by the same amount for each successive 2 metres drilled.
- i) Show that the cost of drilling the portion from a depth of 25 metres to to 27 metres is \$500.
- ii) Calculate the total cost of drilling to a depth of 27 metres.
- iii) The cost of drilling the borehole to reach water was \$12500. Find the total depth drilled to give access to the water.

 [To gain full marks all working needs to be shown.]
- Solve for x: $\log_a 3 = 2\log_a 6 \log_a x$

)	À fi	function $f(x)$ is defined by $f(x) = x^3 - 3x^2 -$	- 9x.
	i)	Find $f'(x)$ and $f''(x)$.	
			•
	ii)	Find the turning points for the curve and determ	nine their nature.
	iii)	Show that there is one point of inflexion and fi	ind its coordinates.
	iv)	Sketch the graph of $y = f(x)$ showing the t	urning points and
		the point of inflexion.	
	v)	Find the values of 'x' for which the function	f(x) is decreasing.

	_1 .		
h)	For what values of 'k'	does the anadratic equation	r^{2} $(l_{1} + 2)_{1} + 4l_{2} = 0$
٠,	2 Or What Values of K	does the quadratic equation	$x - (\kappa + 3)x + 4\kappa = 0$

í		7	
- 1			
-ih	harre and root agreed to 22		
19	have one root equal to 2?	l I	
3	A		
1		"	,

b)

a) A particle is moving in a straight line and its velocity ν metres/second at time t seconds is given by:

$$v = \frac{dx}{dt} = 1 - 2\sin 2t, \quad t \ge 0$$

Initially the particle is at the origin.

- i) Express the displacement x, as a function of t.
- Find the position of the particle when $t = \frac{\pi}{6}$.
- iii) Find an expression for the acceleration in terms of t.
- iv) Sketch the graph of the acceleration for $0 \le t \le \pi$.
- v) What is the maximum acceleration of the particle?
- b) In the diagram below, the shaded region bounded by the curve $y = \log_e x$, the x and y axes and the line $y = \log_e 4$ is rotated about the y-axis.

Find the exact volume of the solid of revolution formed.

c) The geometric series $1-x+x^2-x^3+...$ has a limiting sum of 4.

Find the value of x.

a) The shaded area in the diagram below is the region bounded by the curve $y = (x-1)^3$, the x and y axes and the line x = 3. Find the shaded area.

The arcs AB and CD are parts of concentric circles with centre O. OA = 2 centimetres and AC = 3 centimetres.

Find an expression for the area of the sector AOB.

ii) Find the ratio of the area of sector AOB: the area of ABDC

Question 9 continued over/

c) i) Given that $\frac{x^2}{4} + y^2 = 1$,

ii) Show that $\frac{dy}{dx} = \frac{-x}{2\sqrt{4-x^2}}$

An industrial plant produces vacuum cleaners. The annual production, P cleaners, at time t years, is given by:

$$P = P_0 e^k$$
 where P_0 and k are constants

Initially the production of the plant was 2500 cleaners per annum. Five years later it had increased to 4000 cleaners per annum.

- i) Find the values of P_n and k.
- ii) What is the predicted production after 10 years?
- Find the rate of increase in production after 5 years.

3

1) The ellipse with equation $\frac{x^2}{4} + y^2 = 1$ is drawn below.

Show that $y = \frac{\sqrt{4-x^2}}{2}$ for $y \ge 0$

Question Ten(Start a new page)

The graph of y = f(x) is drawn below.

On a number plane sketch the graph of the derivative function y = f'(x).

- Let A be the point (-2, 0) and B be the point (6, 0). b) At the point P(x, y), PA meets PB at right angles.
 - i) Show that the gradient of PA is $m_1 = \frac{y}{x+2}$.
 - ii) Hence find an equation for the locus of P.

Question 10 continued over/

END OF EXAM

$$\begin{array}{c|c}
 & x & x \\
\hline
 & y \\
 & y \\
 & y \\$$

A rectangle of length 2x and width 2y is to be constructed inside the ellipse with its vertices on the ellipse as shown.

Using part (c) or otherwise show that an expression for the area of the rectangle is given by $A = 2x\sqrt{4-x^2}$.

Hence find the value of x so that the area of the rectangle is a maximum.

CHS 2007 Mothers & CATO	770. da	7700 000	
CHS 2007 Mathematics (2U)	(K 12	HSC SOLUTIONS	
1.a) 4.05519967 = 4.06 {3 Sig Fig}	ØØ	3.a)i) $CD = \sqrt{6^2 + (-3)^2} = \sqrt{45} = 3\sqrt{5}$	Ø
b) $(2x-1)(x+4)$		ii) $m_{CD} = \frac{-3}{6} = -\frac{1}{2}$	· 🗹
c) $\frac{1}{\sqrt{3}} \times \frac{1}{2} = \frac{1}{2\sqrt{3}}$		$\therefore eq^n CD: y-1 = -\frac{1}{2}(x-3)$	<u>.</u>
d) $x^2 \times \frac{1}{x} + 2x \times \ln x = x + 2x \ln x$		$2y-2=-x+3 \implies x+2y-5=0$	_
e) $\lim_{x \to 3} \frac{(x-3)(x+3)}{x-3} = \lim_{x \to 3} (x+3) = 6$	dd	iii) $a = 1, b = 2, c = -5, x_1 = 1, y_1 = -1$ $1 \times 1 + 2 \times -1 + (-5)$	
f) $x+2=\pm 3 \rightarrow x=1 \text{ and } x=-5$		$\therefore d = \frac{\left \frac{1 \times 1 + 2 \times -1 + \left(-5 \right)}{\sqrt{1^2 + 2^2}} \right = \frac{6}{\sqrt{5}}$	
2.a) $x = \frac{1 \pm \sqrt{1^2 - 4 \times 3 \times -5}}{2 \times 3} = \frac{1 \pm \sqrt{61}}{6}$		iv) $A = \frac{1}{2} \times \frac{6}{\sqrt{5}} \times 3\sqrt{5} = 9u^2$	Ø
2.3	<u> মামা</u>	v) $m_{AB} = \frac{1 - (-1)}{-3 - 1} = -\frac{1}{2}$	
b) $6(4x^3-5)^5 \times 12x^2$ = $72x^2(4x^3-5)^5$		Hence using (ii) AB CD	
		So ABCD is a Trapezium	\square
c) $\frac{x^3}{3} + \frac{1}{3}\sin 3x$	团团	b) $\sin \theta \times \frac{\cos \theta}{\sin \theta} \times \cos \theta = \cos^2 \theta$	
d) $\int_0^1 e^{2x} dx = \frac{1}{2} e^{2x} \Big]_0^1$	Ø	c) $\frac{(2x-3)(4x^2+6x+9)}{2(2x-3)}$	☑
$=\frac{1}{2}(e^2-e^0)=\frac{1}{2}(e^2-1)$	Ø	$=\frac{4x^2+6x+9}{2}$	
$e) = \frac{12}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} = 2\sqrt{6}$	Ø	2	
$=\sqrt{24} \Rightarrow a=24$		4. a) $\cos \theta = \frac{3.5^2 + 5^2 - 3^2}{2 \times 3.5 \times 5} \implies \theta \approx 36^{\circ}$	
f) $(2x-40)+(x+10) = 180$ { Co-interior	∠'s	b) $y' = e^x + 1$	
and line		when $x = 0$, $m = y' = 2$, $y = 1$	
$3x = 210 \implies x = 70^{\circ}$		$y-1=2(x-0) \Rightarrow y=2x+1$	I
	<u> </u>	c) Centre is (-3, 0) and Radius is 4	

CHS 2007 Mathematics (2U) YR 12	TRIAL HSC SOLUTIONS
6.c) $\log_a 3 = \log_a 6^2 - \log_a x$	b) i) Substitute $x = 2$ to obtain: $4 - 2k - 6 + 4k = 0 \implies k = 1$
$\log_a 3 = \log_a \frac{36}{x} \implies x = 12 \qquad \boxed{2}$	ii) For no real roots $\Delta < 0$, where $\Delta = b^2 - 4a$. $\therefore (k+3)^2 - 4 \times 1 \times 4k < 0$
7. i) $f(x) = x^3 - 3x^2 - 9x$	$k^2 - 10k + 9 < 0$
$f'(x) = 3x^2 - 6x - 9$; $f''(x) = 6x - 6$	$(k-9)(k-1) < 0 \implies 1 < k < 9$
ii) For turning points $f'(x) = 0$	$\begin{array}{ccc} 8. \text{ a) i)} & v = 1 - 2\sin 2t \\ & \therefore & x = t + \cos 2t + c \end{array}$
$3(x^2 - 6x - 9) = 0$	When $t = 0$, $x = 0$
3(x-3)(x+1)=0	$0 = 0 + \cos 0 + c$
$\therefore x = -1 \text{ and } x = 3$	$0 = 1 + c \implies c = -1$ $\therefore x = t + \cos 2t - 1$
When $x=3$: $y=-7$, $y''=12>0$	
∴ (3,-27) is a minimum turning point.	ii) $x = \frac{\pi}{6} + \cos \frac{\pi}{3} - 1 = \frac{\pi}{6} - \frac{1}{2}$
When $x=-1$: $y=5$, $y''=-12<0$	$iii) \ a = \ddot{x} - 4\cos 2t$
\therefore (-1,5) is a maximum turning point.	$\lim_{n \to \infty} u = x - 4\cos 2t$
iii) For inflexion points $f''(x) = 0$	iv)
$\therefore 6x - 6 = 0 \implies x = 1 \text{ (Only one point)} \mathbf{\square}$	1
It has coordinates $(1,-11)$.	2
iv)	
10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-4
-4 -2 2 4 X	. □
-10	v) Maximum acceleration is $4m/s^2$
-20	b) $V = \pi \int_0^{\ln 4} x^2 dy \ [y = \ln x \implies x = e^y]$
-30	$V = \pi \int_0^{\ln 4} (e^y)^2 dy = \pi \int_0^{\ln 4} e^{2y} dy$
v) For a decreasing function $f'(x) < 0$ Hence from the graph $-1 < x < 3$	$=\frac{\pi}{2}\left[e^{2y}\right]_0^{\ln 4}=\frac{\pi}{2}\left[e^{2\ln 4}-e^0\right]$
	$\frac{\pi}{2} \left[e^{\ln 16} - 1 \right] = \frac{15\pi}{2} u^3 $

							:
	CHS 2007 Mathematics (2U)	YR 12	T	RIAL H	SC SOL	UTIONS	
	10.c) i) $y^2 = 1 - \frac{x^2}{4} = \frac{4 - x^2}{4}$	☑	Stationary	points wh	en $\frac{dA}{dx}$ =	0	
	$\therefore y = \sqrt{\frac{4-x^2}{4}} = \frac{\sqrt{4-x^2}}{2}$		$\therefore 8-4x$	$\epsilon^2 = 0$,		
		ř	$x^2 = 2$	⇒	$x = \pm \sqrt{2}$		
	ii) $y = \frac{1}{2}(4-x^2)^{\frac{1}{2}}$	**************************************	Since x	> 0, only	need to te	$\operatorname{st} x = +\sqrt{2}$	Ī.
	$\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{2} \times \left(4 - x^2\right)^{-\frac{1}{2}} \times -2x$	Ø		T	 	T -	7
	$=\frac{-x}{2\sqrt{4-x^2}}$		x	1.3	√2	1.5	
	$2\sqrt{4-x^2}$		A'	0.816	0	-0.756	
	d) i) $A = 2x \times 2y$					\	1
	$= 2x \times 2 \frac{\sqrt{4 - x^2}}{2} = 2x\sqrt{4 - x^2}$		∴ A maxi	mum area	occurs wl	then $x = \sqrt{2}$.	
	$ii) A = 2x\sqrt{4 - x^2}$						
-	$\frac{dA}{dx} = \sqrt{4 - x^2 \times 2 + 2x \times \frac{1}{2} (4 - x^2)^{-\frac{1}{2}}} \times$				- · · · · · · · · · · · · · · · · · · ·		
-	$\frac{1}{dx} = \sqrt{4-x} \times 2 + 2x \times \frac{1}{2}(4-x)^{2} \times \frac{1}{2}(4-x)^{2}$	-2x Y					
	$=2\sqrt{4-x^2}-\frac{2x^2}{\sqrt{(4-x^2)}}$						
	•						
,	$=\frac{2(4-x^2)}{\sqrt{(4-x^2)}}-\frac{2x^2}{\sqrt{(4-x^2)}}$						
	$=\frac{8-4x^2}{\sqrt{\left(4-x^2\right)}}$	☑					
					·		_ 1

			1	
			9 9 5	
			\$ 1	
			i i	
			i u	
			ali V	
			d n	
			* 	
	,		d.	
			9 1 1	
			4	
			7° : : : : : : : : : : : : : : : : : : :	
			1 1 1	
			1	
			6 1 1 1 1 1	

SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE

2008

MATHEMATICS

Time Allowed: 3 hours plus 5 minutes reading time

Instructions:

- Write your name and class at the top of this page, and at the top of each answer sheet
- At the end of the examination this examination paper must be attached to the front of your answers
- All questions are of equal value and may be attempted
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.

(for Markers Use Only)

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total
1										

SYDNEY TECH HIGH DODE BY TRIME

Question 1 (12 marks)

a) Find $e^{-0.6}$ correct to 3 decimal places. 1
b) Expand and simplify $(\sqrt{2}-3)^2$

2

c) Given $\frac{1}{P} = \frac{1}{Q} + \frac{1}{R}$ make Q the subject of the formula.

d) (i) Find $\int_1^2 \frac{dx}{x}$

(ii) Evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos\left(\frac{x}{2}\right) dx$. Leave your answer as an exact value.

e) Solve the inequality $|2x - 3| \le 7$

f) Solve the following equations simultaneously

2x + y = 4

5x + 2y = 9

Question 2 (Use a separate sheet of paper) (12 marks)

a) A rhombus is a parallelogram with four sides of equal length.

The figure shown below, with vertices A(-5,9), B(5,4), C(7,-7) and D(-3,-2) is a rhombus.

(i) Find the side length of ABCD. Give your answer in simplified surd form.

Find the gradient of the longer diagonal.

(iii) Show that the diagonals of ABCD are perpendicular.

(iv) Find the coordinates of the midpoint of each diagonal.

(v) What does this result to part (d) say about the diagonals of this rhombus?

, and the same and the diagonals of this monitous:

vi) Find the equation of the line passing through AC.

(b) In the diagram below the lines AB, CD and EF are parallel.

Find the value of x and y. Give reasons for each answer.

Question 3 (12 marks) (Use a separate sheet of paper)

- a) Differentiate
 - (i) $x^2 e^x$
 - $\ln\left(\frac{x-5}{x-2}\right)$
- b) (i) Find $\int \frac{dx}{3x-1}$
 - (ii) Evaluate $\int_0^1 e^{4x} dx$, leaving your answer in exact form
- For what values of m does the equation $4x^2 + (1+m)x + 1 = 0$ have equal roots.
- d) For acute angles A and B it is given that $sinA = \frac{12}{13}$ and $cosB = \frac{15}{17}$ Find the exact value of sec A + tan B.

Question 4 (12 marks) (Use a separate sheet of paper)

a) The sum of the first 4 terms of a geometric progression is 30, and the limiting sum is 32. If the common ratio is negative find the first three terms.

ABCD is a parallelogram.

- (i) Prove that $\triangle EFC$ and $\triangle DFA$ are similar.
- (ii) Find the value of x.

Not to Scale

2

2

- c) Solve $\sin\left(x + \frac{\pi}{3}\right) = 0$ for $0 \le x \le \pi$
- d) \propto and β are the roots of $2x^2 5x + 5 = 0$. Write down the value of
 - (i) $\propto +\beta$
 - (ii) ∝ β
 - (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$

3

Question 5 (12 marks) (Use a separate sheet of paper)

- A function is defined by $f(x) = 3x^2 2x^3$
 - (i) Find the coordinates of any turning points and determine their nature
 - (ii) Sketch the curve, indicating all intercepts and turning points.
 - (iii) State the domain over which both f(x) > 0 and f'(x) > 0
 - (iv) On the same set of axes sketch the line $f(x) = \frac{1}{2}$
 - (v) Hence find the <u>number</u> of solutions to the equation $6x^2 4x^3 = 1$

b)

The diagram shows the graphs of the functions $y = -x^2 + 7x - 6$ and y = x + 2.

- (i) Show that the value of A and B is 2 and 4 respectively
- (ii) Calculate the area of the shaded region.

Question 6 (12 marks) (Use a separate sheet of paper)

- a) Evaluate $\sum_{r=1}^{\infty} 3^{r-r}$
- b) For the arithmetic progression 32, 25, 18,

find the

- i) the 15th term
- (ii) S_{15}
- (iii) the sum of the <u>next</u> 20 terms

4

1

The area under the curve $y = 4^x$ between x = 0 and x = 2 is rotated about the x – axis. Copy and complete the table.

x	0	0.5	1	1.5	2
4 ^{2x}					

Use your results with Simpson's rule to find an approximate value for the volume of revolution. Use 5 function values and answer correct to 1 decimal place.

d)

The circle has a radius of 2cm

- (i) Find arc length AB
- (ii) Find the shaded area

(correct to 1 decimal place)

2

Question 7 (12 marks) (Use a separate sheet of paper)

a) $f'(x) = 3x^2 - 4$.

Find y = f(x) if the function passes through $(\beta, 8)$.

A boat travels 5km on a bearing of 207° T, then travels 8km on a bearing of 200°T.

Find the straight line distance between the start and finish to 3 significant figures.

Copy and complete the given diagram to assist your working.

\$30 000 is borrowed to buy a car. Interest is charged at 12% pa. compounding monthly. c) The loan is repaid in equal monthly repayments over 4 years. Let A_n be the amount owing after n months. If M is the monthly payment write an expression for the amount owing after ∝) 1 month β) 3 months Find M Find the total amount paid over the 4 years. Question 8 (12 marks) (Use a separate sheet of paper) Evaluate $log_5 100 - log_5 4$ b) A particle moves in such a way that its distance, x metres, from the origin after t seconds is given by $x = 2 + 3t - t^3$ for t > 0Find an equation for its velocity after t seconds. (i) (ii) At what time does the particle stop? Where is the particle initially? (iii)

(iv)

Find the velocity after 2 seconds.

How far has the particle travelled in the first 2 seconds.

the x axis between x = 1 and x = 5. (leave the answer in terms of π).

Find the volume of the solid formed when the curve $y = \sqrt{x}$ is rotated about

- Question 9 (12 marks) (Use a separate sheet of paper)
- a) If F(x) = $\begin{bmatrix} x^2 2 & x \le -1 \\ 2^x & -1 < x < 2 \\ log_{10}x & x \ge 2 \end{bmatrix}$

evaluate f(-1) + f(1) + f(10).

- Draw a neat sketch of y = 3sin2x within the domain $0 \le x \le 2\pi$.
 - State the (i) period
 - (ii) amplitude.
- In the diagram, PQRS is a rectangle with PQ=40cm, SP=10cm.

 The shaded portions are cut away, leaving the parallelogram KLMN. QL=SN=x cm and QK=SM=4x cm.

(i) Show that the area of the parallelogram KLMN is given by

$$A = 80x - 8x^2.$$

- Find the allowable values of x
- i) Find the value of x for which A is a maximum 2

Question 10 (12 marks) (Use a separate sheet of paper)

For all values of x in the domain of $0 \le x \le 6$, a function f(x) satisfies f'(x) > 0 and f''(x) > 0.

Sketch a possible graph of y = f(x) in this domain.

- b) (i) Find the points of intersection of the curve $y = 4 \sqrt{2x}$ with the x and y axes. 2
 - (ii) The area enclosed by the curve $y = 4 \sqrt{2x}$, the x axis and the y axis is rotated about the y axis. Find the volume of the solid of revolution so formed (leave your answer in terms of π)
- The line x = m, cuts the curves $y = log_e x$ and $y = log_e 5x$ at R and S respectively.

 Show that the tangents to the curves at R and S are parallel. Also show that the distance

 RS remains constant for all values of M (ie the distance is independent of m).

END OF PAPER

Student's Name/No: Teacher's Name: Mathematics 2008 HSC Trial Exam Question (0.6 = 0.549 (3 ap) b) $(\sqrt{2} - 3)^2 = 2 - 6\sqrt{2} + 9$ = 11-652 = 2[sin (#) -sin(16)] = J2-1 $2x-3 \leq 7$ 2x - 3 = 72x - 3 = -72x = -4 $\chi = 5$ $\chi = -2$ \cdot : $-2 \le x \le 5$ f) 2x+y=4 5x + 2y = 9

eacher's Name:	Student's Name/N°:
(1) x 5 lox + 5y =20. 3
) × 2 10x + Hy = 18 (F)
	9 🕀
	y = 2
	In O 2x +2=4
•••••	2x = 2
	χ=1.
Question	2
a) (i)	Using A and B
	Using A and B Side length = $\sqrt{(-5-5)^2 + (9-4)^2}$
	$=\sqrt{(10)^2+(5)^2}$
	= \(\bar{125} \)
	= 5J5 units
(11)	longer diagonal is AC.
	longer diagonal is AC gradient $AC = \frac{9-7}{-5-7}$
	=
(:.)	= -4/3 = m
Clii	Shorter diagonal is DB gradient DB = -2-4
	gradient DB -3-5
	<u> </u>
	=3/4 = M2
N'	$low m_1 m_2 = -\frac{4}{3} \times \frac{3}{4}$
	3 4
	= -\
,1	Satisfies condition for perpendicular!
	diagonals perpendicular
	7 ,
1 .	

(10) $M = (-5+7 \quad 9+-7)$ M = (-3+5-2+6) M

A 3×6 (75°) SX° a Since CD | HF 75° + 5x° = 180° ie counterior angles supplementary. IBEH = 3x° alternate angler equal) Then 3x + 3y = 180 (straight angle is 180°) But x= 21 · 3y = 180-63

Teacher's Name:	Student's l	Name/N°:		
Question 3			3 _	
$a)$ (i) $y = x^2$	e e	2x (e ^x).	U= x-	J=e
$y' = \chi^2$	ex + 3	2χ (e ^χ)	m,=3x	<u> </u>
= X	ex(x	+2)		
(ii) $y = \ln \left(\frac{x}{x} \right)$	+3)			
= In()	(-s)	IN(XL2)		
y' = 1 x-	<u> </u>	+3		
	· ·			
		(-5)		
		7(+3)		
- (-	8 n-2)(xt	<u> </u>		***************************************
	/C-3/(// (2.)		
b) () (dx	- 41	n(3x-1) + c		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(11) So exx	~ = T	Lehx		
(11) Jo E OI				
	= -	Te4- Te°		
1				
	= 7	Let - 4 =	#(et-1)	
c) 4x2 + (1	+m) >	<u> </u>		
Equal roo	sts wh	en 0=0		
$\Delta = b^{-} +$	ac			
= (1+m)	2-4(1	t)(1)		
= 1+2	im tm	-16		••••••
= M~	+ 2m	-15		
Solve m° t				
		(- 3)=0.		
· · · · · · · · · · · · · · · · · · ·	(= -5	o-1 M=3		

c)
$$\sin(x + \frac{\pi}{3}) = 0$$
 $0 \le x \le \pi$
 $x + \frac{\pi}{3} = 0$, π , 2π , 3π , ...

 $x = -\frac{\pi}{3}$, $2\frac{\pi}{3}$, $3\frac{\pi}{3}$, ...

For given domain:

 $x = 2\frac{\pi}{3}$

d) $2x^2 - 5x + 5 = 0$

(i) $2x + 6 = \frac{5}{2}$

(ii) $2x + 6 = \frac{5}{2}$

(iii) $2x + 6 = \frac{5}{2}$

(iii) $2x + 6 = \frac{5}{2}$

Teacher's Name: Student's Name/No: Question 5 $f(\alpha) = 3\pi^2 - 2\pi^3$ (i) f'(x) = 6x - 6x2 for turning points (stationary) P'(x)=0 : Solve 6x(1-x)=0 X=0 X=1 f"(x) = 6 - 12x $f''(0) = 6 > 0 \implies min$ $f''(1) = 6 - 12 < 0 \implies max$ " Min at (0,0) max at (1,1) (ii) $\int (x) = \frac{1}{2}$ f(x) = 0 when $x^2(3-3x) = 0$. Let x=0 or $x=\frac{3}{2}$ (iii) f(x) >0 above y axis ? Both hold for Pi(x) >0 increasing] 0 <x <1 (|v|) $f(x) = \frac{1}{2}$ (above) (V) $(5x^2 - 4x^3 = 1 \cdot =) 3x^2 - 3x^3 = \frac{1}{2}$ Since $f(x) = 3x^2 - 2x^3$ and $f(x) = \frac{1}{2}$ Intersect 3 times, there will be 3 solutions.

Teacher's Name:	Student's Name/Nº:
	$-x^2 + 7x - 6 \qquad y = x + 2$
	Intersect when
(-,1-)	$-\chi^2 + 7\chi - b = \chi + 2$
	16, X, - Px +8 =0
	$(\chi - 4)(\chi - 2) = 0$
	X= 2 or X=4
Fr	om graph A=2
1	R - 11
(ii) Area	$= \int_{0}^{+} \left(-x^{2} + 7x - 6\right) - (x + a) dx$
I.	2
	$= \int_{2}^{4} \left(-\chi^{2} + 6\chi - 8\right) d\chi$
	F 1 3 1 2 2 pm 7
	$= \left[-\frac{1}{3} \chi^3 + 3 \chi^2 - 8 \chi \right]_2$
	$= -\frac{1}{3}(64) + 3(16) - 32 - (-\frac{8}{3} + 12 - 16)$ $= -\frac{1}{3} + 48 - 32 + \frac{8}{3} - 12 + 16$
	= -64 + 48 - 32 + 8/3 - 12+16
	$= -\frac{56}{120} + \frac{1}{20}$
Duestionb	2
a) <u>S</u>	$3^{1-r} = 3^{\circ} + 3^{-1} + 3^{-2} + 3^{-3}$ $= 1 + 3^{\circ} + 6 + 54^{\circ}$
, -,	
	= [3/2]
1) >	0 2 2 1 - 7
	a = 32, $d = -7$
(1)1	a = a + 14d = 3a + 14x(-7)
	= 32 - 98
	= - 6 6
ai) S	15 = 15 [2a + 14d]
	= 15 [64 + 14(-7)]
	= 15[32 - 49]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 10-10

(iii) Sum next 20 ferms
= S ₃ - S ₁₅
= \frac{2}{2} \begin{bmatrix} 64 + 34 \times(4) \end{bmatrix} - (-322)
= 35[32 + 17 ×(-7)] + 255
= -3045 + 255
=-2790
c)
X O O.5 1 1.5 Z
Vol = Tr J 4 dx
= T 3 (yo +y4 + 4x (y, +y3) +2(y)
= 1 [6 (1+256 + 4 (68) + 2 (16)]
Vol = π[t (561)]
VOI - 11 6 (381)
$= 293.7 u^3 (1dp)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
= 41 cm
(ii) Area = \(\frac{1}{2}\) (\(\sigma^c - \sin \sigma^c\)
= 字(中)[孟一豆]
$= 2\left(\frac{211}{3} - \frac{13}{2}\right) cm^2$
2 3 3 EM

eacher's Name:	Student's Name/Nº:
Questionz	
a) P10	$() = 3x^2 - 4$
- / (($f(x) = x^3 - 4x + c$
(3.8) satisfies
	1.8=33-4(3)+C
	8 = 27-12+ C=> C=-7
	1.4 = x3-4x-7
Ы	Ň
	Angle at A= 63+90 +20
	Start = 173°
٤	d= distance s->F
0 A 1 63	/ By cosine rule
3 A/	2= 52+82-2x 5x8 cos 173°
8//	= 25 + 64 - 80 cos 173°
/	°£F1 200 08 - P8 =
Finish	d2= 168. 4036921
	11d=12.97704482
	=13.0 km (3 sig figs)
c) \$30	2000 12° pa= 1° per month 48 repayments
	48 repayments
(i) d) A, = 30000 (1.01) - M
G	$A_{2} = \frac{30000(1.01) - M}{(1.01) - M}$ $= \frac{30000(1.01)^{2} - M(1.01 + 1)}{(1.01 + 1)}$
	$=30000(1.01)^2 - m(1.01+1)$
	$A_3 = 30000(1.01)^3 - m(1.01^2 + 1.01 + 1.$
(11)	Aus = 0 since fully repaid
0 = A4	8 = 30000 (1.01) -m (1.01 + 1.01 ++
<u>le</u> 300	500 (1.01) = M(1+1.01+-++1.01)
	GP with a=1 r=1.1

Student's Name/No: Teacher's Name: 1. M = 30000(1.01)48 = 30000(1.01)48 (0.01) = \$790.00 (neavest cont) Total repaid = M XH8 (iii) = \$ 37920.72 (nearest cent) Question 8 b) log_ 100 - log_4 = log_5 $x = a + 3t - t^3$ vel = 3-3t2 (ii) Stops when V=0 (t>0) Stops after 1 second t=0 in x = 2+ 3t-t3 : Initially 2 m to the right of O

2
-3(2)2
9
of misec (travelling to
the left)
t=0. t=+
2. 4
1+3-1
4
2+6-8
0
d 2+4=6m
•
Vol = π), x dx
Vol=Tr/x dx
71
$=\pi\left[\frac{1}{2}x^{2}\right]$
10 11
= 11
$= \overline{11} = \overline{2} = \overline{11} = \overline{1}$
3
= 1211 4
= -1.
= 2
0 = 1
1) + f(10) = 2.
$0 \leq x \leq x_{W}$
<u> </u>
<u>/ </u>
317 717

(iii)
$$0 < x < 10$$

(iii) $dA = 80 - 16x$
 $dA = 0$ when $16x = 80$
 $x = 5$
 $d^2A = -16 < 0 \Rightarrow max$
 dx^2

Area max when $x = 5$.

The New York Name (NY)		
Teacher's Name: Student's Name/N°: C $y = \log x$ $y = \log 5 + \log x$		
c) $y = \log_e x$ $y = \log_e 5 + \log_e 2$		
5		
109e3 R		
$\frac{1}{m}\chi$		
2-m		
y=logx y=loges + logex		
y' = y'		e #
$A + R, x = m$ $= \frac{1}{\lambda}$		
grad = to A+ S, xc=m		
i. grad = in		
. "They have the same gradient.		
Tangents are parallel.		
$R = (m, log_e m)$ $S = (m, log_e 5 + log_e m)$		
$0 \leq -\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		
RS = \ (m = m)^2 + (loge m - (loge s + loge m))^2		
= \(\log_5\right)^{\frac{1}{2}}		
= loge 5 : RS remains constant		
END	· · · · · · · · · · · · · · · · · · ·	
	and the second of the second o	

Knox Grammar School

Student Number

2008

Trial Higher School Certificate Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Subject Teachers

Mr A. Johansen

Mr J. Harnwell

Mr I. Mulray

Miss L. Schultz

Miss F. Yamamer

This paper MUST NOT be removed from the examination room

Number of Students in Course: 76

Number of Writing Booklets Per Student (Four Page) 10

Total Marks - 120

- Attempt Questions 1 10
- Answer each question in a separate writing booklet
- All questions are of equal value

This page has been left intentionally blank

Total marks – 120 Attempt Questions 1–10 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Ques	tion 1 (12 marks) Use a SEPARATE writing booklet.	Marks
(a)	Evaluate $\frac{0.1}{\sqrt{e+1}}$ correct to two significant figures.	2
(b)	Factorise $2x^2 - 4x + 2$ completely.	2
(c)	Write down the primitive function of $\frac{3}{x} + 5$.	2
(d)	Solve $\frac{x}{4} = 3 - \frac{x-2}{3}$, leaving your answer as an improper fraction.	2
(e)	If $a + \sqrt{b} = 4(7 + \sqrt{5})$ find a and b if they are both integers.	2
(f)	Sketch the graph of $y = 4 - x $	2

Ques	tion 2 (12 marks) Use a SEPARATE writing booklet	Marks
(a)	Draw a neat sketch of a number plane and plot the points $A(-4, 0)$, $B(4, 0)$ and $C(0, 8)$ on it.	1
(b)	Find the gradient of AC and show that the equation of AC is $2x - y + 8 = 0$.	2
(c)	Find the perpendicular distance of AC from $Z(0, 3)$.	2
(d)	If X is the midpoint of AC , and Y is the midpoint of BC , find the coordinates of X and Y .	1
(e)	Show that XZ is perpendicular to AC .	2
(f)	Show that the lengths $AZ = BZ = CZ = 5$ units.	2
(g)	Find the equation of the circle passing through A , B and C .	2

(a) Differentiate the following with respect to x.

(i)
$$y = \frac{\sin x}{x}$$

1

2

(ii) $y = (x^2 + 3)^2$

(iii) $y = x \ln x$

1

(b) Find an expression for each of the following integrals.

(i)
$$\int \frac{8}{x^2} dx$$

(ii) $\int \sec^2 \pi x \, dx$

c) Evaluate $\int_0^1 e^{2x} - e^{-x} dx$

- (d) The gradient function of a curve is given by $\frac{dy}{dx} = 6x^2 4$. The curve passes through the point (1, 8). Determine the equation of the curve.
- (e) The exterior angle of a regular polygon is $\frac{\pi}{10}$ radians.
 - (i) What is the size of each interior angle in radians?
 - (ii) How many sides does this regular polygon have?

Question 4 (12 marks) Use a SEPARATE writing booklet.

Marks

1.

(a)

- (i) Determine the length of QR, correct to 2 decimal places.
- (ii) What is the area of triangle PQR? Answer correct to 2 decimal places,
- (b) A function f(x) is defined as $f(x) = x^4 8x^2$.
 - (i) Locate all stationary points and any points of inflexion. Distinguish between them.
 - (ii) Determine the coordinates of the points where y = f(x) crosses the x-axis.
 - (iii) On a half-page diagram, sketch the function y = f(x). Clearly label the stationary points, points of inflexion and intercepts with the x-axis.
 - (iv) What is the maximum value of f(x) in the interval $-2 \le x \le 3$?

Question 5 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Simplify $\log_b a^m + \log_{m} a$ as a single expression in a logarithm of base b.

- 2
- (b) The roots of the quadratic equation $2x^2 + kx + D = 0$ are α and β . $\alpha\beta = -5$ and $\alpha + \beta = 3$. Determine the values of k and D.
- (c) The diagram shows the graph of $y = 6x x^2$ and y = 6 x.

- (i) Use simultaneous equations to show that $y = 6x x^2$ and y = 6 x intersect at (1.5) and (6.0).
- (ii) Use calculus to determine the size of the shaded area.

3

(d)

The five blades on a windmill are identical sectors of the same circle. The angle of each blade at the centre of the circle is 0.15^{c} and the radius is 1.2 metres.

- All the edges on each of the blades are to be covered by a protective metal strip. Calculate the total length of metal strip required to protect the edges of all five blades.
- (ii) The front and back surface of each blade is to be painted with a metal protector.
 A 100 mL container of the metal protector covers 400 cm². Calculate the quantity of metal protector required.

Question 6 (12 marks) Use a SEPARATE writing booklet.

(a) Solve $\sin \theta = \frac{-\sqrt{3}}{2}$ for $0 \le \theta \le 2\pi$.

2

Marks

(b)

The diagram shows the gradient function y = f'(x). Copy or trace the diagram into your answer booklet.

The curve y = f(x) passes through the origin. Sketch the function y = f(x) on the same set of axes. Clearly indicate any turning points, points of inflexion, and the behaviour of the graph for very large positive and negative values of x.

(c)

The diagram shows the cross-section of a 12-metre-wide pond. The depths are taken every 3 metres.

- Use Simpson's rule with five function values to find an approximate value for the area of the cross-section.
- (ii) The pond is 25 metres long. Calculate the approximate quantity of water in the pond. Express the volume in cubic metres.

(d)

ABCD is a parallelogram. Line AT bisects $\angle BAD$ and cuts BC at M. Line BK bisects $\angle ABC$. AT and BK intersect at P.

Copy the diagram onto your answer page and prove that

(i) $\angle BPA = 90^{\circ}$.

2

(ii) AB = BM.

2

7

Question 7 (12 marks) Use a SEPARATE writing booklet.

.

Question 8 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Solve the equation $e^{2x} - 28e^x + 27 = 0$. Leave your answer in exact form.

3

1

3

2

2

Mark

(b) An ambulance is delivering a patient to the hospital who is unconscious from a drug overdose. The medical staff don't know how much of the drug the unconscious patient has taken.

The rate of change of the concentration of the drug (C) in the blood is proportional to the concentration, i.e. $\frac{dC}{dt} = kC$.

- (i) Prove that $C = C_0 e^{kt}$ is a solution to $\frac{dC}{dt} = kC$.
- (ii) Three hours after the patient took the overdose, the blood concentration of the drug was 2.45 mg/L. Half an hour later the concentration was 1.84 mg/L. Determine the initial concentration of the drug in the patient's blood. Give your answer correct to two decimal places.
- (iii) If the medical staff don't give the patient any further medication, when will the drug concentration fall below the critical value of 0.5 mg/L?
- (c) Two particles moving in a straight line are initially at the origin. The velocity of one particle is $\frac{2}{\pi}$ m/s and the velocity of the other particle at time t seconds is given by $v = -2 \cos t$ m/s.
 - (i) Determine equations that give the displacements, x_1 and x_2 metres, of the particles from the origin at time t seconds.
 - (ii) Hence, or otherwise, show that the particles will never meet again.

The graph shows the velocity of a particle moving in a straight line for 8 seconds.

(i) When does the particle change direction?

-

(ii) Determine the total distance covered by the particle during the 8 seconds.

2

(iii) What is the particle's position relative to its starting position when t = 8 seconds?

(h)

ABCD is a square with sides 16 cm long. P, Q, R and S are the midpoints of the sides of the square ABCD. P, Q, R and S are joined to make another square.

(i) Show that $PS = 8\sqrt{2}$ and that the area of PQRS is 128 cm².

2

A 'squares within squares' pattern is produced by joining midpoints of the sides of successive squares.

(ii) ABCD is the first square and PQRS is the second square. What is the area of the 10th square?

2

(iii) Which square has a perimeter of $\sqrt{2}$ cm?

2

(iv) Imagine the pattern can be repeated infinitely. What is the relationship between the sum of the areas of all the squares and the original square ABCD? Use a calculation to justify your answer. Question 9 (12 marks) Use a SEPARATE writing booklet.

(a) During a famine in Europe in the 19th century people in a small rural city are an increasing quantity of potatoes each month as other food became increasingly scarce.

The rate at which potatoes were eaten (R) was given by R = 15 + 2t tonnes per month, where t is the time in months after the beginning of the famine.

The diagram shows the graph of R = 15 + 2t. Copy the graph onto your answer page and show on the graph the region representing the total quantity of potatoes eaten in the city in 12 months.

- (ii) Calculate the total amount of potatoes that were eaten in the city during the 12-month famine.
- b) Beth and Cathy are best friends who work in the same office. Each year on January 1, they each receive a cash bonus of \$5000. They received their first bonuses in 1997. Every year Beth invests her \$5000 in superannuation at 9% p.a. compounding interest. Each year Cathy spends her bonus on an overseas trip.
 - (i) Show that the expression 5000(1.09¹⁰ + 1.09⁹ + 1.09⁸ + ... + 1.09) represents the amount in Beth's superannuation account on January 1, 2007, immediately before her 2007 bonus was added to the account.
 - (ii) Show that Beth had almost \$88 000 in her superannuation account on January 1, 2007, after her 2007 bonus was credited to her account.

Cathy decides that on January 1, 2007, she will start saving for her retirement, which will occur in 20 years' time. She would like to have the same amount that Beth will have in 20 years' time from saving her annual \$5000 bonus. Cathy's account also pays 9% p.a. compounding interest.

- (iii) How much will Cathy need to save each year to have the same total amount as Beth will have in 20 years' time (i.e. including the amounts Beth invested in the first 10 years)?
- (iv) How much more will Cathy have to invest over the 20 years than Beth will have invested over the 30 years?

Question 10 (12 marks) Use a SEPARATE writing booklet.

Marks

1

2

- (a) (i) Shade the region bounded by $y \le 4 x^2$, $x \ge 0$ and $y \ge 0$.
 - (ii) Find the volume of the solid of revolution formed when the region defined in part (i) above is rotated about the x-axis.

(b)

I have a rectangular sheet of paper 12 cm high by 20 cm long. I take the vertex labelled P and place it on the side AB, P now lies on top of P_1 .

At the bottom left of the rectangle there is a small triangle AKP_1 . Let the length of KA be x cm.

- (i) Explain why KP_1 is (12-x) cm long.
- (ii) Show that the area of $\triangle AKP_1$ is given by $A = x\sqrt{36-6x}$.
- (iii) Hence show that when x is one-third the length of PA the area of $\triangle AKP_1$ is a maximum.

End of paper

STANDARD INTEGRALS

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \quad \text{if } n < 0$$

$$\int \frac{1}{x} dx = \text{In } x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_e x$, x > 0

Marking guidelines

Question 1

Criteria	Marks
(a) $\frac{0.1}{\sqrt{e+1}} = 0.0518$ $= 0.052 \text{ (correct to 2 significant figures)}$	1 value 1 rounding 2 full answer
(b) $2x^2 - 4x + 2 = 2(x^2 - 2x + 1)$ $= 2(x - 1)^2$	1 common factor 2 full
(c) $\int \left(\frac{3}{x} + 5\right) dx = 3 \ln x + 5x + c$	1 for each part 2 full
(d) $\frac{x}{4} = 3 - \frac{x-2}{3}$ $3x = 36 - 4(x-2)$ $3x = 36 - 4x + 8$ $7x = 44$ $x = \frac{44}{7}$	1 for 2nd line 2 for +8 3 full
(f) y 6 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 for y = 4-x
-2 -4 -4	2 for complete graph

Question 2

		Criteria		Marks
(a)				Marks
(u)	y ↑ C(0	, 8)		
				1
	A(-4, 0)	$\xrightarrow{B(4, 0)}$		
(b)	$m = \frac{8 - 0}{0 - (-4)}$ C is the y-inter $y = 2x + 8$ $2x - y + 8 = 0$			1 for mostly correct 2 full answer
(c)	$d = \frac{ 2x - y }{\sqrt{2^2 + (-1)^2}}$	$\frac{3}{2}$		1 for mostly
	$= \frac{ 2 \times 0 - 3 }{\sqrt{5}}$ $= \frac{5}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$			correct 2 full answer
(d)	$X\left(\frac{-4+0}{2}, \frac{0+2}{2}\right)$ $X(-2, 4) \text{ and }$	$\left(\frac{8}{2}\right)$ and $Y\left(\frac{4+0}{2},\frac{0+8}{2}\right)$ Y(2,4)		1
(e)	$m_{XZ} = \frac{3-4}{0-(-2)}$	$=\frac{-1}{2}$		1 for gradient
	$m_{XZ} \times m_{AC} = 2$	$\times \frac{-1}{2} = -1$, so XZ is perp	pendicular to AC.	1 for test 2 full answer
(f)	$d_{AZ} = \sqrt{(0 - 4)^2}$ $= 5$ $d_{CZ} = \sqrt{(0 - 0)}$ $= 5$	$d_{BZ} = \sqrt{(0-1)^2 + (3-0)^2}$ $d_{BZ} = \sqrt{(0-1)^2 + (3-8)^2}$ $= 5$	$(-4)^2 + (3-0)^2$	1 for mostly correct 2 full answer
(g)	From part (f), Z through A, B and $x^2 + (y-3)^2 = 2$	1 C.	e with radius 5 passing	1 for circle equation 2 full answer

Question 3

	Criteria	Marks
(a) (i)	$\frac{dy}{dx} = \frac{x \cos x - \sin x}{x^2}$	11241113
(4) (1)	$\frac{1}{dx} - \frac{1}{x^2}$	1
(::)	$\frac{dy}{dx} = 12x(x^2 + 6)^5$	
(11)	$\frac{-1}{dx} = 12x(x^2 + 0)$	1
	du	1
(iii)	$\frac{dy}{dx} = 1 + \ln x$	
(b)		
(i)	$\int \frac{8}{x^2} dx = -\frac{8}{x} + C$	1
	$\int x^2 - x$	_
(ii)	$\int \sec^2 \pi x dx = \frac{1}{\pi} \tan \pi x + C$	1
:	\mathbf{J} π	
(c)	$\int_{0}^{1} e^{2x} - e^{-x} dx = \left[\frac{1}{2} e^{2x} + e^{-x} \right]$	1 for each primitive
	2 0 − − − − − − − − − − − − − − − − − −	
	$=\left(\frac{1}{2}e^2+e^{-1}\right)-\left(\frac{1}{2}e^0+e^0\right)$	
	$=\frac{1}{2}e^2+e^{-1}-\frac{3}{2}$	3 for correct
	2 2	answer.
(d)	$y = 2x^3 - 4x + C$	
(a)	$y = 2x^{2} - 4x + C$ at $x = 1, y = 8 : C = 2$	1 for primitive
	$\therefore y = 6x^2 - 4x + 2$	2 marks
		correct equation.
(e)	(i) $\frac{9\pi}{10}$	
	10	1
	(ii) $2\pi \div \frac{\pi}{10} = 20 \text{ sides}$	1
	10	
		<u> </u>

Questio	n 4		
		Sample answer	Syllabus outcomes and marking guide
(a)	(i)	$x^2 = 10^2 + 8^2 - 2 \times 10 \times 8 \cos 75$ $\therefore x = 11.07 \text{ to 2 decimal places}$	P4 • Gives the correct answer
			Makes the correct substitution into the correct formula
	(ii)	area = $\frac{1}{2} \times 10 \times 8 \times \sin 75 = 38.64 \text{ m}^2$	Gives the correct answer
b)	(i)	$f(x) = x^4 - 8x^2$ $f'(x) = 4x^3 - 16x$	H6, H9 • Gives the correct solutions
		stationary points occur when $f'(x) = 0$ i.e. $4x^3 - 16x = 0$	Locates stationary points and determines nature or equivalent progress
		$4x(x^2 - 4) = 0$ ∴ stationary points occur at (0, 0), (2, -16) and (-2, -16)	Locates stationary points or equivalent progress
		Testing $f''(x) = 12x^2 - 16$	Correctly identifies the x-values of a cubic derivative
		At $(0, 0)$, $f''(x) = -16 < 0$. At $x = \pm 2$, $f''(x) = 32 > 0$. An animum turning points. For inflexions, $f''(x) = 0$ and a change in concavity	
		occurs. $\therefore x = \pm \sqrt{\frac{16}{12}} = \pm \frac{2}{6}$	
•		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Therefore, points of inflexion are at $x = \pm \frac{2}{\sqrt{3}}$.	
	(ii)	crosses x-axis at $x^4 - 8x^2 = 0$ $x^2(x^2 - 8) = 0$	P4, H9 • Gives the correct answers
		$x = 0$ or $\pm 2\sqrt{2}$	• Gives one correct answer, or attempts to solve $x^4 - 8x^2 = 0$
(iii)	y /(3, 9)	H6, H9 Gives a correct sketch showing all features (or correct from previous answer (point (3, 9) not required)
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gives any quartic-shaped sketch (or correct from previous answer)
(îv)	maximum value in $-2 \le x \le 3$ is 9	P4, H9 • Gives correct answer (or correct from

Que	stion 5	
	Sample answer	Syllabus outcomes and marking guide
(a)	$\log_b a^m + \log_m a$	H3, H9 • Gives the correct answer
	$= m \log_b a + \frac{\log_b a}{\log_b m}$ $\log_b m$	Uses the change of base law
	$= m \log_b a \times \frac{\log_b m}{\log_b a}$ $= m \log_b m$	
(b)	$\alpha + \beta = -\frac{b}{a} \qquad \alpha \beta = \frac{c}{a}$	P4 • Gives the correct answers
	$3 = -\frac{k}{2} \qquad -5 = \frac{D}{2}$	Gives the correct answer for either D or k. 1
	k = -6 $D = -10$	
(c)	(i) $6-x = 6x - x^2$ $x^2 - 7x + 6 = 0$	P4, H9 • Gives the correct answers
	(x-1)(x-6) = 0 $\therefore x = 1 \text{ or } 6$	
	y = 6 - 1, 6 - 6 Therefore, the points are (1, 5) and (6, 0).	
	(ii) $\int_{1}^{6} [6x - x^{2} - (6 - x)] dx$	H8 • Gives the correct solution
	$= \int_{1}^{6} (7x - x^2 - 6) dx$	Makes significant progress
	$= \left[\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x\right]_1^6$	Gives the correct expression for area or equivalent merit
	$= 7 \times 18 - \frac{1}{3} \times 6 \times 36 - 36 - \left(\frac{7}{2} - \frac{1}{3} - 6\right)$	
	$=20\frac{5}{6}$ square units	
(d)	(i) 1.2 0.15	H4 • Gives the correct answer
	length for 1 blade = $2 \times 1.2 + 1.2 \times 0.15 = 2.58 \text{ m}$ length for 5 blades = 12.9 m	Gives the correct length for one blade OR Gives 0.18 × 5 as the length for the five arcs
	(ii) area = $10 \times \frac{1}{2} \times (120)^2 \times 0.15$	H4 • Gives the correct quantity
	= $10\ 800\ \text{cm}^2$ quantity = $10\ 800 + 400 \times 100\ \text{mL}$	Gives the correct area or equivalent merit 1
	= 2.7 L	

Ouestion	

Ques	stion 7	f.	
	Sample answer		Syllabus outcomes and marking guide
(a)	Let $k = e^x$		H3
	$k^2 - 28k + 27 = 0$	9	Gives the correct solutions
	(k-27)(k-1)=0	# 3	Reduces equation to quadratic, and
	$\therefore k = 27 \text{ or } 1$		correctly factorises and solves for k
	Hence, $e^x = 27$ or $e^x = 1$		Reduces equation to a quadratic or equivalent merit
	$x = \log_e 27 \text{ or } x = 0$		equivalent ment
(b)	(i) $C = C_0 e^{kt}$	ř	H3
	$\frac{dC}{dt} = k \times C_0 e^{kt}$	Ä- V	Gives the correct proof
	=kC as required	- 0 - 3	
	(ii) $t = 3$ $C = 2.45$	Ŷ	H3, H4
	t = 3.5 $C = 1.84$	á j	Gives the correct solution (ignore rounding)
	$2.45 = C_0 e^{3k} \Rightarrow C_0 = \frac{2.45}{e^{3k}}$		Makes significant progress
	$1.84 = C_0 e^{3.5k} \Rightarrow C_0 = \frac{1.84}{e^{3.5k}}$		Establishes two values for C ₀ or
	$\frac{2.45}{e^{3k}} = \frac{1.84}{e^{3k} \times e^{0.5k}}$	Y W B	equivalent merit
	$e^{0.5k} = \frac{1.84}{2.45}$: }: 1:	
	$0.5k = \log_e \frac{1.84}{2.45}$	1 14 1 1 1 1 1	
	$k = 2\log_e \frac{1.84}{2.45}$	**************************************	
	=-0.5726		
	$\therefore C_0 = \frac{2.45}{e^{3 \times -0.2487}}$		
	= 13.65 mg/L		·
	(iii) $t = ?$		H3, H4
	C = 0.5		Gives the correct answer
	$0.5 = 13.65 \times e^{-0.5726t}$		
	$0.03663 = e^{-0.5726t}$	i k	
	$\therefore t = \log_e 0.09677 + -0.5726$	i i	
	= 5.78 hours		
	∴ after 5.78 hours		

Question 7 (Continued) Sample answer Syllabus outcomes and marking guide (i) t = 0, x = 0H4, H5 (c) Gives the correct answers $v_1 = \frac{2}{\pi} \quad v_2 = -2\cos t$ $\therefore x_1 = \frac{2t}{\pi} + C_1 \ x_2 = -2\sin t + C_2$ when t = 0, $x = 0 \Rightarrow C_1 = 0$ when t = 0, $x = 0 \Rightarrow C_2 = 0$ $\therefore x_1 = \frac{2t}{\pi} \quad \therefore x_2 = -2\sin t$ H2, H4, H5 Gives the correct justification and explanation..... Draws graphs, with no justification or explanation..... 1 The graphs don't intersect again. $x = \frac{2t}{\pi}$ has a value greater than 2 for $x > \pi$, and the maximum value of $x = -2 \sin t$ is 2.

Question 8		
	Sample answer	Syllabus outcomes and marking guide
(a) (i)	At $t = 2$, because $v = 0$.	H4, H5 • Gives the correct answer
(ii)	Total distance covered equals the area under the $v-t$ graph.	H4, H5, H8 • Gives the correct distance
	Therefore, the distance covered = $\frac{1}{2} \times 5 \times 2 + \frac{1}{2} \times 6 \times 4$ = 5 + 12	Correctly calculates one area or equivalent merit
	= 17 m	·
(iii)	7 metres on the positive side of the starting position.	H4, H5 • Gives the correct answer
(b) (i)	8	H4, H5 • Gives the correct proof and the correct area
		• Gives one correct proof 1
	$x^2 = 64 + 64$ $= 64 \times 2$	
	$x = 8\sqrt{2}$	
	area of $PQRS = (8\sqrt{2})^2$	
	$= 128 \text{ cm}^2$	
(ii)	The areas are 256, 128,	H5
	This is a geometric sequence: $a = 256$, $r = \frac{1}{2}$.	Gives the correct answer
	$T_{10} = ar^9$	• Identifies the correct $r = \frac{1}{2}$
	$=256\times\left(\frac{1}{2}\right)^9$	
	$=\frac{1}{2}\operatorname{cm}^2$	
(iii)	The perimeters are 64, $32\sqrt{2}$, 32	H5 • Gives the correct answer
	$T_n = \sqrt{2} = 64 \times \left(\frac{1}{\sqrt{2}}\right)^{n-1}$ $(\sqrt{2})^n = 64$	Determines a correct equation, or solves an incorrect, non-trivial exponential
	$2^{\frac{1}{2}''} = 2^6$	equation for n
	n = 12	
(iv)	areas = 256, 128, $r = \frac{1}{2}$	+ Gives the correct answer
	$S_{\infty} = \frac{a}{1 - \frac{1}{2}}$	Uses limiting sum
	=2a The sum of the areas of all the squares is twice the area of the original square.	

Questic	on 9		
		Sample answer	Syllabus outcomes and marking guide
(a)	(i)	R 1 1 1 1 1 1 1 1 1	P4, H4, H9 • Gives the correct answer (12 must be shown)
	(ii)	$\int_0^{12} (15+2t)dt = [15t+t^2]_0^{12} \frac{15+39}{2} \times 12$	H4, H8, H9 • Gives the correct answer
		$=15 \times 12 + 12^2$	Makes significant progress 2
		$= 324 \text{ tonnes}$ OR $area = \frac{15 + 39}{2} \times 12$	Makes limited progress
		= 324 tonnes	·
(b)	(i)	Let a_n = amount in the account at the end of n years immediately before the next addition.	H5, H9 • Gives the correct demonstration 2
		$a_1 = 5000(1.09)$	Makes some progress
		$a_2 = [5000(1.09) + 5000](1.09)$ $= 5000(1.09)^2 + 5000(1.09)$ $= 5000[(1.09)^2 + 1.09]$ $a_3 = [5000\{(1.09)^2 + 1.09\} + 5000](1.09)$ $= 5000[1.09^3 + 1.09^2 + 1.09]$ $a_n = 5000[1.09^n + 1.09^{n-1} \dots 1.09]$ $\therefore a_{10} = 5000[1.09^{10} + 1.09^{10} \dots 1.09]$	
	711	$A_{10} + 5000$	H5, H9
	(ii)	$= 5000 + 5000 \times \frac{1.09(1.09^{10} - 1)}{1.09 - 1}$	Gives the answer \$87 801.46
		= \$87 801.46 Beth has almost \$88 000 in her account.	·
	(iii)	In 20 more years, Beth will have $5000 \times \frac{1.09(1.09^{30} - 1)}{1.00 - 1} = $742.876.09$	H5, H9 • Gives the answer \$13 321.66
		Cathy	Makes significant progress
		$742\ 876.09 = A \times \frac{1.09(1.09^{20} - 1)}{1.09 - 1}$	• Makes some progress (e.g. determines \$742 876.09)
	٠	= $A \times 55.7645$ $\therefore A = 13\ 321.66$ Cathy will need to invest \$13\ 321.66\ each year.	
	(iv)	$13 321.66 \times 20 - 5000 \times 30 = 116 433.19$ Cathy will have to invest \$116 433.19 more than Beth.	Gives the correct answer (accept correct from previous answer)
	,		

Question 10

Sample Answer	Marking Guide
(i)	2 for correct region
y	1 for parabola
6	
2-	
4 6	x
-4*	
(ii) $V = \pi \int_0^2 y^2 dx$ where $y = 4 - x^2$ so $y^2 = 16 - 8x^2 + x^2$	x^4 4 for correct answer
$= \pi \int_0^2 16 - 8x^2 + x^4 dx$	3 for correct primitive prior to evaluation
$= \pi \left[16x - \frac{8}{3}x^3 + \frac{1}{5}x^5 \right]_0^2$	2 for correct integral with integrand in terms of x.
$=\frac{256\pi}{15}$	1 for formula with correct limits of integration.

Term 3, 2008

Year 12 Mathematics

Trial Examination

Wednesday July 23, 2008

Time Allowed: 3 hours, plus 5 minutes reading time

Total Marks: 120

There are 10 questions, all of equal value
Submit your work in twelve 4 Page Booklets.

All necessary working should be shown in every question.

Full marks may not be awarded if work is careless or badly arranged.

Board of Studies approved calculators may be used.

A list of standard integrals is attached to the back of this paper.

Total marks available – 120 Attempt all questions

Quest	tion 1 (12 marks)		Mark
(a)	Evaluate $\frac{2}{8+2\times(8-1)}$ correct to 4 significant figures.		2
(b)	Solve $ x-1 \le 2$ and graph the solution on a number line.	·	2
(c)	Simplify $\frac{2}{x(x-3)} - \frac{1}{x}$.		2
(d)	Solve $x^2 - 3 = 3x + 1$.		2
(e)	Integrate $\frac{-1}{\sqrt{x}}$.		2
(f)	Sketch the graph of $y = -x + 2$ on a set of axes, showing any x and y intercepts.		2

Question 2 (12 marks)

Marks

(a) Differentiate:

(i)
$$\cos(1-x^3)$$

2

(ii)
$$\frac{x+1}{e^x}$$

2

(b) If α and β are the roots of $2x^2 - 3x + 7 = 0$, find the value of $\alpha^2 + \beta^2$

. 2

3

HSC Mathematics Trial Exam

(c)

In the diagram, AC is parallel to DE, BE = 5 cm, DE = 8 cm and $\angle CBE = x^{\circ}$. The area of triangle BDE is 10 square cm. Find the value of x, giving reasons for your answer.

(d) Find the equation of the tangent to the curve $y = 2\sqrt{x}$ at the point (1, 2).

Question 3 (12 marks)

Marks

(a) Find the exact value of $\int_{2}^{4} \frac{2}{x-1} dx$

2

2

(b)

The diagram shows the points A(-3,1) and B(3,5) on the Cartesian plane. Copy or trace this diagram onto your writing page.

- (i) Show that the equation of AB is 2x 3y + 9 = 0.
- (ii) Show that the point C, which is the midpoint of AB 1 is the y-intercept of AB.
- (iii) Calculate the perpendicular distance from the point D(2,0) to the line AB and mark the point D on your diagram.
- (iv) The point E, lies on the line y = -1 and the line E is perpendicular to the line E. Show that E has the coordinates (7,-1) and mark point E on your diagram.
- (v) Show that BCDE is a trapezium.
- (vi) Find the area of BCDE.

Marks

3

1

2

2

Question	4	(12	marks	١
& managed VI		(12	TITEMINO	,

(a)	If $\log_x 128 = \frac{7}{3}$, find x
-----	--

2

3

(b) (i) Sketch the graph of
$$y = 5\cos\frac{x}{2}$$
 for $-360^{\circ} \le x \le 360^{\circ}$.

(ii) Mark clearly on your graph the point or points where $5\cos\frac{x}{2} = -1.$

(iii) Calculate the value(s) of x which satisfy the equation $5\cos\frac{x}{2} = -1$. Express your answer(s) to the nearest minute.

(c)

The graphs of $y = (x-2)^2$ and y = x+4 intersect at the point A and the point B(5,9).

- Show that the point A lies on the y-axis.
- Write down the two inequalities whose intersection describes the shaded area shown in the diagram above.
- (iii) Find the area of the shaded region bounded by the graphs of $y = (x-2)^2$ and y = x + 4.

M	ar	b
LVE	ar	к.

(b) NOT TO

Sketch the graph of the function $y = \frac{1}{x+1}$ and state the

domain and the range of the function.

Ouestion 5 (12 marks)

In the diagram, the line FC bisects AE at F and AD at B. The line AE is parallel to CD. Copy the diagram onto your working page.

- Explain why ED = 2BF.
- Prove that $\triangle ABF \cong \triangle DBC$. 3
- Organizers of a music festival issued 750 tickets in the first year of the festival. The number of tickets issued increased by 150 each year after that.
 - How many tickets were issued in the fifteenth year of the festival?
 - In the first 20 years that the festival ran, what was the total number of tickets issued?
 - (iii) In which year of the festival did the number of tickets issued for that year first exceed 5000?

SCALE

Quest	tion 6 (12 marks)	Marks
(a)	Find the equation of the parabola which has its vertex at $(2,0)$ and its directrix is given by $x = 5$.	2
(b)	The number of subscribers S , to a pay-TV company t years after its launch is given by $S = S_0 e^{kt}$	

where S_0 and k are constants. Initially the pay TV company had 50 000 subscribers and after 3 years it had 200 000.

- (i) Find the value of S_0 .
- (ii) Find the value of k. Express your answer correct to 4 decimal places.
- (iii) After how many years will the number of subscribers first exceed one million? Express your answer correct to 1 decimal place.
- (iv) After 3 years, what is the rate at which the number of subscribers is increasing? Express your answer to the nearest whole number.
- (c) The area of a sector AOB of a circle centre O, radius 8cm, is $56 cm^2$.

- (i) Calculate the length of the minor arc AB
- (ii) The straight edges OA and OB are joined to form a cone. Find the exact value of the base radius of the cone.

2

2

2

Question 7 (12 marks)

Marks

For the function f(x) over the domain $0 \le x \le 5$, it is the case that f'(x) > 0 and f''(x) < 0. Sketch a graph which could be that of y = f(x) over this domain.

(b)

The graph of $y = \frac{1}{\cos x}$ between x = 0 and $x = \frac{\pi}{4}$ is rotated around the x-axis.

Find the volume of the solid of revolution.

(c) A particle moves in a straight line so that its displacement x, in metres from a fixed origin at time t seconds is given by

$$x = \log_e(t+1), \qquad t \ge 0$$

-) Find the initial position of the particle.
- (ii) Explain how many times the particle is at the origin.
- (iii) Find an expression for the velocity and the acceleration of the particle.
- (iv) Explain whether or not the particle is ever at rest.

1

2

Question 8 (12 marks)

Marks

(a) Use Simpson's rule with 3 function values to find an approximate value of

$$\int_{0}^{2} \frac{5}{9-x^2} dx.$$

- (b) Consider the function $y = x \ln x x$, for x > 0.
 - (i) Find the x-intercept of the graph of the function.

1

(ii) Find the coordinates of the turning point of the graph of the function.

3

(c) An ornamental arch window 2 metres wide and 2 metres high is to be made in the shape of either a cosine curve or a parabola as illustrated on the axes below.

- (i) If the arch is made in the shape of the curve $y = 2\cos\frac{\pi x}{2}$, find the exact area of the window.
- (ii) If the arch is made in the shape of a parabola, find the equation of the parabola.
- (iii) Hence find the area of this parabolic window.

Question 9 (12 marks)

Marks

1

1

1

3

3

In the diagram, ABC is a right angled triangle where $AB = \sqrt{15}x$ cm and BC = x cm. The point D lies on AC and CD = BC = x cm, AD = 3x cm and BD = 4 cm. Let $\angle BDC = \theta$.

- (i) Use the cosine rule to show that $\cos \theta = \frac{2}{x}$.
- (ii) Use the sine rule in triangle *BCD* to show that $\sin \theta = \frac{\sqrt{15}x}{16}$.
- ii) Hence show that $15x^4 256x^2 + 1024 = 0$.
- (iv) Explain why one of the solutions to the equation in part (iii), namely x = 2.53 (to 2 decimal places), could not be the value of x indicated in the diagram above.
- (b) Gayle has a superannuation fund, which pays 5% per annum interest compounding annually. Gayle pays \$12 000 into the fund on 1 July each year.
 - (i) What is the value of Gayle's superannuation fund on 30 June one year after she makes her first payment?
 - (ii) What is the value of Gayle's superannuation fund on 30 June ten years after she makes her first payment?
 - (iii) After making her tenth payment, Gayle considers increasing her payment to M dollars per year.

 Show that if Gayle does this, then the value of her superannuation fund twenty years after her first payment of \$12 000 was made, would be approximately given by

$$13 \cdot 2068 (12\ 000 \times 1 \cdot 05^{10} + M).$$

Question 10 (12 marks)

Marks

1

(a) Larry and Jack are each speeding down a straight stretch of freeway and are side by side, when they spot a police car. They each brake. The velocity of Larry's car during this braking phase is given by $v_L = -t + 40$ and the velocity of Jack's car during this phase is given by $v_J = \frac{-t^2}{10} + 40$.

- (i) When are the velocities the same during this braking phase?
- (ii) When are the two cars level with one another during this braking phase?
- (iii) State the times when Larry's car is further ahead of Jack's car during this braking phase?
 Give reasons for your answer.
- (b) Find the values of m for which the equation $x^2 + (m-2)x + 4 = 0$ has real roots.

Question 10 continues on the next page.

(c) In $\triangle ABC$, AB = 20m, BC = 15m and $\angle ABC = 90^{\circ}$. BPQR is a rectangle inscribed in $\triangle ABC$. PQ = x metres. Copy and complete the diagram, showing all information given.

- Using similar triangles, or otherwise, find an expression for the length of AP in terms of x.
- (ii) Show that the area of the rectangle BPQR is given by $A = x \left(20 \frac{4}{3} x \right) \text{ square metres.}$
- (iii) Hence find the minimum possible area of the rectangle BPQR. 3

17 40 ILIM 5008			,
Question 1	(i) $y' = 3x^2 \sin(1-x^3)$	7) 54 2 dx	Egn. H
as 0.09091 VV (live I mark if n (to 4 sig figs) wrent to 4	$y' = e^{x} \cdot 1 - (x+1) \cdot e^{x}$ e^{2x}	= [2 lm (x-1)] +	Ŋ- 9
(to 4 sig figs) wrent to 4	sisfiss) ezn	· -	29-
b) n-1 < 2 -x+1 < 2		= 2ln 3 - 2ln 1	3×+2
n 63 -n 61	$=\frac{1-x-1}{e^{x}}$	= 2 lm 3 /	For Es
x >-1	= -x	5) mAB= 5-1	\\\ 3
11-1 < x < 3 /	$= -\frac{\pi}{e^{\chi}}$	(i) $3+3$	7
-10123	b) x2+ p2 = (d+p)2-2dp/	(i) $m_{AB} = \frac{5-1}{3+3}$ = $\frac{4}{6} = \frac{2}{3}$	
$c) \frac{2}{2} - \frac{3}{1}$	$\frac{2}{2}\left(\frac{2}{3}\right)_{3}-3\left(\frac{5}{3}\right)$	y-1= = (x+3)√	
	= -4.75	35-3=22+6	٠'، و
$= \frac{2 - (n-3)}{}$		1.2n-3y+9=0	(v) BLOG
x(x-3)	c) LBED = x alternate L's are		mBE
= 3-x+3	qual as ACIIDE /	ii) M.P. of AB = $\left(\frac{-3+3}{2}, \frac{1+5}{2}\right)$	
x (n-3)	Aren = 1 absinC	=(o,3) \/	mco
$=\frac{5-x}{x(x-3)}$	10 = 1 x 8 x 5 x sin x	yint of 2x-34+9=0	· · me
7-(x-3)		50) x=0 -3y+9=0	٠, ٥
$x^2 - 3 = 3x + 1$	sin x = 1	35=9	J. B1
-3= 3x+1	x° = 30° /	5=3	
$x^2 - 3x - 4 = 0$	d) y=2/x y=2x ²	line line midpt of AB and girt of	(vi) CD
(x-4)(x+1)=0	y=2x =		
X=4, X=-1	43 = x ⁻² = 1	ii) perp $d = 2n - 3y + 9 $ $\sqrt{2^2 + (-3)^2}$	BE
$\int \frac{1}{\sqrt{n}} dx = \int -x^{-\frac{1}{2}} dx$	of or 1 d	$\sqrt{2^2 + (-3)^2}$	
	at $x = 1$ dy = 1	= [2(2)-3(0)+91	
$= -2x^{\frac{1}{2}} + c$	i'eqn. of tanget is!	$\sqrt{13}$	
=-2\Tr +c/	7-2=1(x-1)	$=\frac{13}{\sqrt{13}}$	CB =
y = -x+2 (+c is not necessary	5=x+1 /	V13	=
neuslan 一 外 y	5)	= 113 1. 14	Arca =
		573	=
2		+ +	. = .
1		C	
n		A 21	
			
L		-3	

1 BE $S = -\frac{3}{2}(\varkappa - 3)$ 10 = -3x+9 27-19=0 Ub 5=-1 3x + 2(-1)-19 = 0 V 3x -21 = 0 3x=21 スミク (7,-1) as required. E is a trapezium it BEllc SC= BCDV 3C 11 CD CDE is a trapezium $=\sqrt{2^2+3^2}$ = 113 $=\sqrt{(7-3)^2+(-1-5)}$ $=\sqrt{16+36}$ = 2513 $\sqrt{3^2+(5-3)^2}$ V13 1h(a+b) £ J13 (J13+2J13) 19.5 40.ts V

(III) $A = \int_{0}^{5} x + 4 - (x-2)^{2} dx$ avestion 4 7 105 128 = 3 = \ \ x + 4 - (x2 - 4x + 4) " 128 = 26.5 = ∫5 5 n - n2 1x x = 3/128 = 23 $= \left[\frac{5x^2}{2} - \frac{x^2}{2}\right]^2 \checkmark$ - = 8 $= 62\frac{1}{2} - \frac{125}{3}$)(i) $y = 5 \cos \frac{x}{2} - 360^{\circ} \le x \le 360^{\circ}$ = 205 units / Period = 2TE = 4TE 1) while period Question 5 1 wine shape y= 1 n+1 D: All x, x =-11 R: all y, y + 0 / Omartino pts 1) $5 \cos \frac{\pi}{2} = -1$ 7 = cos (-15) $\frac{3}{2} = 101°32', -101°32'$ x = 203°4', -203°4' 1 (2-2)2=2+4 パー - 4 x + 4 = x + 4 x - 5x =0/ Bis midet of AD x(x-5)=0 Fis midpt of AE x=0, x=5 ·. BF joins 2 mingto 9=4 9=9 i. BF is parallel to ED and half its A is (0,4) which is my axis : BF = LED IL WORL IS ZERD. : ED = 28 F y < x+4 ~ √ y>(x-2)2 1) for both wrect

(1) In DAGF MY DDRC AB = BD given LFAB = L BDC AH L'S EQUAL AELICO LABF = < CBD vert. opp V " DABF = DDBC by AAS 0 750,900, 1050.... 4=750 A = 150 i) T15 = ? Tn = a+ (n-1)/ TIS = 750+14x 150 = 2850 1. 2850 tichets were issued 11) $S_n = \frac{\Omega}{2} (2\alpha + (n-1)\lambda) \sqrt{2}$ 520 = 10 (1500 + 19 x 150) = 43 500 / 11) Tn>5000 1,750+(1-1)120>5000 750+1500-150 >5000 600 + 150n >5000 1500 >4400 n > 29.3 V in the 30th year Question 6 a = 3 $(y-k)^2 = -4x(x-k)$

y2 = -12x + 24 b) S=Soeht (i) So = 50 000 V (ii) 200 000 = 50 000 3k/ 4 = e 3h 3h= Jm4 h= 3-h+ K = 0.4621 (to 4d.p.) (m) 1000 000 = 50 000 e0.4621 t 20 = e0,4621 t 0.4621t = 1 20 t=6.48289 6=6.5 years ~ ds = 50000ke3h = 92419.6 = 92420 subscribes/year ∀= ţ ι¸ θ 56 = 1 (8)2 0 6 = 1.75 V L=r0 = 8×1.75 = 14 cm / (ii) are light = around base V 14 = 2714 $r = \frac{7}{\pi} \text{ cm} \sqrt{}$

(y-U) = -12(x-2)V

Overthon 1

A)
$$f'(n) > 0$$
 increasing /

 $f''(n) < 0$ workere down

The second way

$$= \pi \int_{0}^{\pi} \int_{0}^{\pi} \left(\frac{1}{\cos n} \right)^{2} dx$$

$$= \pi \int_{0}^{\pi} \int_{0}^{\pi} \left(\frac{1}{\cos n} \right)^{2} dx$$

$$= \pi \int_{0}^{\pi} \int_{0}^{\pi} \left(\frac{1}{\cos n} \right)^{2} dx$$

$$= \pi \left(\frac{1$$

(i)
$$\frac{x}{4y} = x \cdot \frac{1}{2}$$
 $\frac{x}{4y} = \frac{1}{2}$
 $\frac{x}{4y} = \frac$

Sub (1,0)

0 = a + 2

a = -2

...
$$y = -2x^2 + 2$$

= $2\left[-2x^3 + 2x\right]^0$

= $2\left[-\frac{2x}{3} + 2x\right]^0$

Also sin & = JIS d = 75°31' In ADCB: 0+0+2 should be 1800 But 37 "46" + 37 "46"+ 75" 31" = 151°3' 1 x + 2.53 b) A1 = (2000 (1.05) (i) = \$12600 V (ii) A1+ A2+ + A10 = 12000 (1.05 +1.052+-- +1.05" n=10 / 5n = 1.05 (1.05 10 -1) = 12000 x S. 0.05 = \$158 481.45 / (III) A1+ A2+ + A19 + A20 = 12000 (1.0520 + 1.0514 + --+ 1.05") + M (1.0510 + 1.059 + ---+ 1.05) = 15000 (1.02), (1.021, +1.02, +1.01) + M (1.0510+ 1.059+--+1.05) = (12000 (1.05) + M) (1.0510 + ...+1.c r=1.05 S10 = 1.05 (1.05 10-= (12000 (1.05) +M) (13.7065)

∴ + = 37°46′

QUUSTION 10 1(i) -t+40 = - + +40 t2=10+ F2-10f=0 t(t-10)=0 t=0, t=10 locities are same instially and ter lo seconds V 1 The curs are level when their splacements are equal. Let is time be Tseci) -t+40 dt = 5 -t2 +40 dt $-\frac{1}{2}t^2 + 40t \int_0^T = \left[-\frac{t^3}{30} + 40t \right]_0^t$ $LT^{2} + 40T = -\frac{T^{3}}{20} + 40T$ 30T2 = 2T3 T3-15T2=0 T2(T-15) = 0 r=0, T=15 after 15 seconds cars are Cass are at some place fter 15 securds. By looking at e graph we can see there more area under the unrue her Larry's graph after t=15

- Kiry is further ahead after

b) Real (00+3 A≥0 (m-2)2-4(1)(4)30V m2-4m+4-16 >0 m2-4m-1220 $(m-6)(m+2) > 0 \checkmark$ -2 6 "m <-2, m > 6 / $\frac{1}{20} = \frac{2L}{15}$ $AR = \frac{20x}{15} = \frac{4x}{3}$ (ii) Area or rect = PQ. PB = x. (20-4x) (iii) A = 20 x - 4x dA = 20 - 8x maximum when dA = 0 and dn2 < 0 1, 20 - 8x = 0 60-8x=0 8x = 60 / $\frac{d^2A}{dn^2} = -\frac{8}{3} < 0 \text{ if max es } \sqrt{\frac{1}{2}}$

 $\therefore A = 20(7.5) - \frac{4}{3}(7.5)^2$ = 75 m²

Marker's Notes -BMM. 24 HSC TRIAL 2008. Question 1. 1) A lot of variations to answers for this question. Students are reminded that 4 sig fig \$ 4 dp. >) done well. :) Take care in algebraic fractions, particularly when subtracting. Remember to bracket any binomial numerators or denominators as this will make a difference when expanding. !) done well. .) done well.) done well.

Duestion 2.

i) (i) In $\omega s(1-n^3)$ was and $(1-n^3)$ are not a seperate firs! There were too many students that used the product rule here!

(ii) There were too many students who simplified incorrectly!

can you see $\frac{e^{n} - e^{n}(n+1)}{e^{n}} \neq \frac{-e^{n}(n+1)}{e^{n}}$ the entropy here??

Name: _			
	,		
Teacher:	· · ·	 	
Class:		*	
Vidasi_		 	· · · · · · · · · · · · · · · · · · ·

FORT STREET HIGH SCHOOL

2009 HIGHER SCHOOL CERTIFICATE COURSE **ASSESSMENT TASK 4: TRIAL HSC**

Mathematics

TIME ALLOWED: 3 HOURS (PLUS 5 MINUTES READING TIME)

Outcomes Assessed	Questions	Marks
Chooses and applies appropriate mathematical techniques in order to solve problems effectively	1,2,6	
Manipulates algebraic expressions to solve problems from topic areas such as functions, quadratics, trigonometry, probability and logarithms	5,7,	
Demonstrates skills in the processes of differential and integral calculus and applies them appropriately	3,4,10	
Synthesises mathematical solutions to harder problems and communicates them in appropriate form	8,9	

Question	1	2	3	4	5	6	7	8	9	10	Total	%
Marks	/12	/12	/12	/12	/12	/12	/12	/12	/12	/12	/120	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
 All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started in a new booklet

QU	ESTION 1 (12 marks) Start a NEW booklet.	Marks	QUESTION 2 (12 marks) Start a NEW booklet.	Marks
(a)	Factorise $16x^2 - 25$	1	(a) For the points A (3,2) and B (-5,-5),	
(b)	Find the value of 17 ^{-0.5} to two decimal places	2	(i) Find gradient between A and B	1
(c)	Convert $\frac{4\pi}{5}$ radians to degrees	4	(ii) Find midpoint of A and B	1
	5	• • • • • • • • • • • • • • • • • • •	(iii) Find distance between A and B. Answer as a surd.	; · ·1
(d)	Simplify $\frac{x}{2} + \frac{3x-1}{3}$	2	(iv) Show that the equation of the line / through A and B is $7x-8y-5=0$	2
(e)	Evaluate $\int_{1}^{2} 4x + 7 dx$	2	(v) Show that the point C (-3,4) does not lie on the line I	1
 (f)	Firmus 0.00 s. f. d. o.	-	(vi) Find the perpendicular distance from the line / to (-3,4)	2
(f)	Express 0.23 as a fraction. Show working.	2	(b) Find the equation of the line through (2,3) and the point of	
(g)	Solve $5-3x<9$	2	intersection of $x+2y-3=0$ and $2x+3y-7=0$	4
		~		
			QUESTION 3 (12 marks) Start a NEW booklet.	
			(a) Differentiate (i) $(x^2-1)^{11}$ (ii) $\tan(3x)$	1
		•		. 1
			(b) Find the equation of the tangent to the curve $y = xe^x$ at the point (1,e)	4
			(c) Differentiate $y = \frac{\sin x}{1 + \cos x}$	3
			and hence show that $\frac{dy}{dx} = \frac{1}{1 + \cos x}$	
			(d) The curve $y=3x+\frac{a}{x^2}$ has a turning point at $x=3$.	3
			Find the constant a	

QUESTION 4 (12 marks) Start a NEW booklet.

Marks

2

- (a) Find the primitives (i.e. indefinite integrals) of:
 - (i) e^2
 - (ii) $\sin 6x$
- (b) Evaluate

(i)	$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x dx$
-----	--

- (ii) $\int_{9}^{13} \frac{dx}{x-7}$
- (c) The following gives values of $f(x) = x \log x$

X	1	2	3	4	5
f(x)	0	1.39	3.30	5.55	8.05

Use Simpson's rule with these five values to find an approximation to two decimals places of

$$\int_{0}^{3} x \log x dx$$

- (d) Find the area between the curve $y = \frac{1}{(1+3x)^2}$,
 - the x-axis and the ordinates x = 0 and $x = 1\frac{1}{3}$ as

shown in the sketch below.

QUE	STION	N 5 (12 marks) Start a NEW booklet.	Marks
(a)	(i)	The co-ordinates of P are $(2,1)$. Show that P lies on both the parabolas $4y = x^2$ and $4y = (x-4)^2$. Show that P is the only point of intersection of the two curves.	3
	(ii)	Find the equation of the tangent at P to the parabola $4y = (x-4)^2$.	2
	(iii)	Find the co-ordinates of the other point Q at which this tangent intersects the parabola $4y = x^2$	3
(b)	The	roots of $2x^2 - 3x - 7 = 0$ are α and β . Find:-	
	(i) c	α+β	1
	(ii) (αβ	1
	(iii)	$\alpha^2 + \beta^2$	2

The diagram (not to scale) shows a quadrilateral PQRS, in which $PQ \parallel SR$, PS = SR, and PR = RQ. Also, T is a point on RS produced. Draw a neat sketch of this diagram in your answer book.

- (i) Given that $\angle RQP = 35^{\circ}$, and $\angle PRQ = x^{\circ}$, find x, giving reasons.
- (ii) If also $\angle TSP = y^0$, find y, giving reasons

ν°, find y, giving reasons

In the diagram (not to scale), ABCD is a quadrilateral. The diagonals AC, BD interest at right angles, and $\angle DAS = \angle BAS$. Draw a neat sketch of the above diagram in your answer book.

- (i) Explaining the reason for each step, use congruent triangles to prove that DA=AB.
- (ii) Hence prove that DC=CB

•

3

QUESTION 7 (12 marks) Start a NEW booklet	Marks
(a) Two ordinary dice, with the numbers 1 to 6 on their faces are thrown. What is the probability that:-	•
(i) they both show 6?	1
(ii) they show a 1 and a 6?	1
(iii) at least one of them shows a 1?	2
(iv) they show a total of six?	. 1
(b) On a destroyer there are two lines of defence against aircraft attack. These are a surface-to-air missile and a 15mm rapid firing gun. The probability of success in hitting an attacking aircraft with each line of defence is respectively 0.9 and 0.8. Find the probability of hitting an attacking aircraft before it penetrates both defences.	3
(c) Given log ₂ 3 = 1.58496, find, correct to two decimal places:-	
(i) log ₂ 9	2
(ii) log ₂ 12	2

QUESTION 8 (12 marks) Start a NEW booklet	Marks
(a) D A C B	
The diagram shows two concentric circles centre 0 and radii 20 cm and 10 cm respectively. ODA and OCB are straight lines and the angle between OA and OB is 60° .	
Find, correct to 3 significant figures:-	
(i) the perimeter of the shaded region ABCD	2,
(ii) the area of the shaded region ABCD	2
(b) From a point O the point P bears 120° from North and is 12.3 km away. The point Q is 15.2 km South West of O.	
(i) Mark the relative positions of O, P, Q on a sketch.	1
(ii) What is the size of ∠POQ?	1
(iii) Calculate the distance PQ in kilometres (rounded off correct to one decimal place).	2
(c) The area under the curve $y = \sqrt{9-x^2}$, $-3 \le x \le 3$, is rotated about the x - axis. Find the volume of the solid of revolution thus obtained. Name the solid.	4

QUESTION 9 (12 marks) Start a NEW booklet.	Marks
(a) The first three terms of an arithmetic series are 50, 43, 36.	
(i) Write down a formula for the nth term.	1
(ii) If the last term of the series is -27, how many terms are there in the series?	1
(iii) Find the sum of the series.	2
(b) A loan of \$1000 is to be repaid by equal annual instalments, repayments commencing at the end of the first year of the loan. Interest, at the rate of 10 per cent, is calculated each year on the balance before each repayment, and added to that balance.	
If the annual instalment is P dollars, prove that:	
(i) the amount owing at the beginning of the second year of the loan is (1100 - P) dollars.	2
(ii) the amount owing at the beginning of the third year of the loan is (1210 - 2.1P) dollars	2
(iii) if the loan (including interest charges) is exactly repaid at the end of <i>n</i> years, then	4
$P = \frac{100(1.1)^n}{(1.1)^n - 1}$	

QUESTION 10 (12 marks) Start a NEW booklet.

(a) A function f(x) is defined by the rule

$$f(x) = 9x(x-2)^2$$

in the domain $-1 \le x \le 3$.

- (i) Draw a sketch of the graph of y = f(x), showing clearly the turning points, the intercepts with x and y axes, and the values at the end-points of the domain.
- (ii) What is the range of f(x)?
- (b) A cylindrical can is to hold a volume of 600cm³.
 - (i) Show that the can's surface area can be expressed in terms of radius *r* as:-

$$SA = \frac{1200}{r} + 2\pi r^2$$

(ii) Find the radius r and height h for the minimum surface area to hold a volume of 600cm³. (Answer to 2 decimal places.)

(For a cylinder $V = \pi r^2 h$, $SA = 2\pi r h + 2\pi r^2$)

END OF EXAMINATION

Marks

6

•

•

4

.

Usually well done however 990 = 23 some dedents did not know how fo. 0,23 = 0,23 + 0,0023 + 0,00003 proceed

(3)

(b) using "k" method.	Most	students
required line is	ne feu	ed to
0(+2y-3+12(2x+3y-7)=0	Use	the solution
substitute (2,3)	i	Simultan cous
2+6-3+k(4+9-7)=0	equotio	
5 + 6 k = 0	[
$R = -\frac{5}{6}$		
$sabstitule h = -\frac{s}{6}$	·	
$\frac{x + 2y - 3 - \frac{5}{6}(2x + 3y - 7) = 0}{2x + 3y - 7} = 0$		
Gx+12y-18-10x-15y+35=0		
-4x - 3q + 17 = 0		<u>·</u>)
$\frac{4x + 3y - 17 = 0}{2}$		
OR oc + 2g - 3 = 0(1)		
250 + 34 -7=0 (2)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		· ·
Sobstitute y=-1 10 (1)		
Sobstitute $y=-1$ in \bigcirc $x-2-3=0$		······································
x = 5		
gradient from (2,3) to (5,-1)		
= 3 -(-1) = 4		
3-5 3		· · · · · · · · · · · · · · · · · · ·
required egyotion	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
$4 - 3 = -\frac{4}{3}(x - 2)V$		
3q-9=-4x+8		
4 x + 3y - 17 = 0		
		j.
	. ,	

(15)

			*
QUESTION - EIGHT		(a) /	Many students
		3	forgot to
(e) (a) Let r; = OD and r2 = OA	Many students	$y = \sqrt{9 - x^2}$	write down the
Perimeter = AD + BC + 1, 0 + 12 0	did not	-3 (0 3 > x	shope produced
= 10 + (0 + 10# + 20# v			or identified it
3 3	to three	-3	as a hemisphere
= 20 + (0 17	significant figures.	3	or circle
= 51.4 cm (to 3 sq figs)	7 JJ	$V = \pi \left(\frac{g^2}{dx} \right)$	
7 73-/		J_2 J	
(i) Arca = \$ 5,30 - \$ 5,20		$\frac{1}{\sqrt{3}}$	
		$= \pi \left(\frac{3}{\sqrt{q-\alpha^2}} \right)^2 dx$	
$-\frac{\theta}{2}\left(r_2^2-r_1^2\right)$		-3	
= T (+00 -100) V		$= 2\pi \left(\frac{3}{9-x^2}\right) dx$	
6 (100)		- LT J 0 (1-2) d2	
= 300 T = 50 T		$= 2\pi \left[9x - x^{3} \right]_{0}$	
= 157 cm2 (to 3 sig figs)		$\frac{1}{2} = \frac{1}{2} \frac{1}{3} $	
LI CM (to 3 sig figs)		= 2= [(2-27) (2-27)	
(b) (i)	X14 . d 1-1-	$\frac{1}{2\pi} \left[\left(27 - \frac{27}{3} \right) - \left(0 - 6 \right) \right]$	
	* Many students	$\frac{1}{1} = \frac{2\pi \times 18}{36\pi \text{ cm.ts}^3}$	
Wt	hod difficulty	= 36 T units	
15.2 km 450 600 12.3 km	doing diagram.		
		I The shope of the solid is a sphere)
Q	hod o plus		
	sign instead of	OR Since the shape of the volume is	
(iii) LPOQ = 105° (from sketch) V		asphere	
(iii) By the cosine cale in DROP		4 2	
PQ2 = 002 + 0P2 - 2 × 09 × 0P × ces LP	8	$V = \frac{4}{3} \pi r^3 r = 3$	
= (15,2) + (12,3)2 - 2 × 15,2 × 17,3 × cos	105	$=\frac{4}{7}\pi^{3}$	
Pa = 21.9 km to I dec pl		3	
		= 4× 1 × 9	
		= 36 T units	
		The state of the s	

