Importing required libraries

```
In [1]: import warnings
import pandas as pd

In [2]: warnings.filterwarnings('ignore')
```

Load data

```
In [3]: data = pd.read_csv('car data.csv')
```

Preprocess Data

```
In [4]: #Display Top 5 Rows of The Dataset
    data.head()
```

Out[4]:	Car_Name Year Selling_Price		Selling_Price	Present_Price Kms_Driven		Fuel_Type	Seller_Type	Transmission	O ¹	
	0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	
	1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	
	2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	
	3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Manual	
	4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	

```
In [5]: #Check Last 5 Rows of The Dataset
    data.tail()
```

Out[5]:		Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission
	296	city	2016	9.50	11.6	33988	Diesel	Dealer	Manual
	297	brio	2015	4.00	5.9	60000	Petrol	Dealer	Manual
	298	city	2009	3.35	11.0	87934	Petrol	Dealer	Manual
	299	city	2017	11.50	12.5	9000	Diesel	Dealer	Manual
	300	brio	2016	5.30	5.9	5464	Petrol	Dealer	Manual

```
In [6]: #Find Shape of Our Dataset (Number of Rows And Number of Columns)
   data.shape
   print("Number of Rows",data.shape[0])
   print("Number of Columns",data.shape[1])
```

Number of Rows 301 Number of Columns 9 In [7]: #Get Information About Our Dataset Like the Total Number of Rows, Total Number of Columbia.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 301 entries, 0 to 300
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Car_Name	301 non-null	object
1	Year	301 non-null	int64
2	Selling_Price	301 non-null	float64
3	Present_Price	301 non-null	float64
4	Kms_Driven	301 non-null	int64
5	Fuel_Type	301 non-null	object
6	Seller_Type	301 non-null	object
7	Transmission	301 non-null	object
8	Owner	301 non-null	int64
<pre>dtypes: float64(2),</pre>		int64(3), object	t(4)

memory usage: 21.3+ KB

In [8]: #Check Null Values In The Dataset
data.isnull().sum()

0 Car_Name Out[8]: 0 Year Selling_Price 0 Present Price 0 Kms_Driven 0 Fuel_Type Seller_Type 0 Transmission 0 Owner 0 dtype: int64

In [9]: #Get Overall Statistics About The Dataset
data.describe()

Out[9]:

	Year	Selling_Price	Present_Price	Kms_Driven	Owner
count	301.000000	301.000000	301.000000	301.000000	301.000000
mean	2013.627907	4.661296	7.628472	36947.205980	0.043189
std	2.891554	5.082812	8.644115	38886.883882	0.247915
min	2003.000000	0.100000	0.320000	500.000000	0.000000
25%	2012.000000	0.900000	1.200000	15000.000000	0.000000
50%	2014.000000	3.600000	6.400000	32000.000000	0.000000
75%	2016.000000	6.000000	9.900000	48767.000000	0.000000
max	2018.000000	35.000000	92.600000	500000.000000	3.000000

In [10]: #Data Preprocessing
 data.head(1)

```
Out[10]:
              Car_Name Year Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission O
           0
                    ritz 2014
                                       3.35
                                                      5.59
                                                                27000
                                                                            Petrol
                                                                                        Dealer
                                                                                                    Manual
In [11]:
           import datetime
           date_time = datetime.datetime.now()
           data['Age']=date time.year - data['Year']
           data.head()
Out[11]:
                               Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission O
           0
                    ritz
                         2014
                                       3.35
                                                      5.59
                                                                 27000
                                                                            Petrol
                                                                                        Dealer
                                                                                                    Manual
           1
                    sx4
                         2013
                                       4.75
                                                      9.54
                                                                 43000
                                                                            Diesel
                                                                                        Dealer
                                                                                                    Manual
                                                                  6900
           2
                    ciaz 2017
                                       7.25
                                                     9.85
                                                                            Petrol
                                                                                        Dealer
                                                                                                    Manual
           3
                wagon r 2011
                                       2.85
                                                      4.15
                                                                  5200
                                                                            Petrol
                                                                                        Dealer
                                                                                                    Manual
           4
                   swift 2014
                                       4.60
                                                     6.87
                                                                 42450
                                                                           Diesel
                                                                                        Dealer
                                                                                                    Manual
In [12]:
           data.drop('Year',axis=1,inplace=True)
           data.head()
Out[12]:
              Car_Name Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission Owner
           0
                                 3.35
                                               5.59
                                                          27000
                                                                     Petrol
                                                                                 Dealer
                                                                                                            0
                    ritz
                                                                                              Manual
           1
                                 4.75
                                               9.54
                                                          43000
                                                                     Diesel
                                                                                 Dealer
                                                                                              Manual
                                                                                                            0
                    sx4
           2
                                 7.25
                                               9.85
                                                           6900
                                                                     Petrol
                                                                                 Dealer
                                                                                              Manual
                                                                                                            0
                    ciaz
           3
                                 2.85
                                               4.15
                                                           5200
                                                                     Petrol
                                                                                 Dealer
                                                                                                            0
                wagon r
                                                                                              Manual
           4
                   swift
                                 4.60
                                               6.87
                                                          42450
                                                                     Diesel
                                                                                 Dealer
                                                                                              Manual
                                                                                                            0
           #Outlier Removal
In [13]:
           import seaborn as sns
           sns.boxplot(data['Selling_Price'])
           <AxesSubplot: >
Out[13]:
```


In [14]: sorted(data['Selling_Price'], reverse=True)

[35.0, Out[14]: 33.0, 23.5, 23.0, 23.0, 23.0, 20.75, 19.99, 19.75, 18.75, 18.0, 17.0, 16.0, 14.9, 14.73, 14.5, 14.25, 12.9, 12.5, 11.75, 11.5, 11.45, 11.25, 11.25, 11.25, 10.9, 10.25, 10.11, 9.7, 9.65, 9.5, 9.25, 9.25, 9.25, 9.15, 9.1, 8.99, 8.75, 8.65, 8.55, 8.5, 8.4, 8.4, 8.35, 8.25, 8.25, 7.9, 7.75, 7.75, 7.75, 7.5, 7.5, 7.5, 7.45, 7.45, 7.45, 7.4, 7.25, 7.25,

7.2,

- 7.05,
- 6.95,
- 6.85,
- 6.75,
- 6.7,
- 6.6,
- 6.5,
- 6.5,
- 6.45,
- 6.4,
- 6.25,
- 6.25,
- 6.15,
- 6.1,
- 6.0,
- 6.0,
- 6.0,
- 6.0,
- 5.95,
- 5.95,
- 5.9,
- 5.85,
- 5.85,
- 5.8,
- 5.75,
- 5.75,
- 5.65,
- 5.5,
- 5.5,
- 5.5,
- 5.5,
- 5.5,
- 5.4,
- 5.4,
- 5.35,
- 5.3, 5.3,
- 5.25,
- 5.25,
- 5.25,
- 5.25,
- 5.25,
- 5.25,
- 5.25,
- 5.2, 5.15,
- 5.11,
- 5.0,
- 4.95,
- 4.95,
- 4.9,
- 4.9,
- 4.85,
- 4.8,
- 4.8,
- 4.75,
- 4.75,
- 4.75, 4.75,
- 4.75,

- 4.75,
- 4.65,
- 4.6,
- 4.5,
- 4.5,
- 4.5,
- 4.5,
- 4.5,
- 4.5,
- 4.5,
- 4.4,
- 4.4,
- 4.4,
- 4.35,
- 4.15,
- 4.1,
- 4.1,
- 4.0,
- 4.0,
- 4.0,
- 4.0,
- 4.0,
- 3.95,
- 3.95,
- 3.9,
- 3.9,
- 3.8,
- 3.75,
- 3.75,
- 3.65,
- 3.6,
- 3.51,
- 3.5,
- 3.5,
- 3.49,
- 3.45, 3.35,
- 3.35,
- 3.25, 3.25,
- 3.25,
- 3.15,
- 3.1, 3.1,
- 3.1,
- 3.1,
- 3.0,
- 3.0,
- 3.0,
- 3.0,
- 2.95,
- 2.95,
- 2.9,
- 2.9,
- 2.9,
- 2.85,
- 2.85,
- 2.85,
- 2.75, 2.75,

localhost:8890/lab/tree/OASIS INFOBYTE/car-price-prediction (1).ipynb

- 2.7,
- 2.65,
- 2.65,
- 2.65,
- 2.55,
- 2.55,
- 2.5,
- 2.5,
- 2.35,
- 2.25,
- 2.25,
- 2.25,
- 2.1,
- 2.0,
- 1.95,
- 1.95,
- 1.75,
- 1.7,
- 1.65,
- 1.5,
- 1.45, 1.35,
- 1.35,
- 1.35,
- 1.25,
- 1.25,
- 1.2,
- 1.2,
- 1.2,
- 1.15,
- 1.15,
- 1.15,
- 1.15, 1.11,
- 1.1,
- 1.1, 1.1,
- 1.05,
- 1.05,
- 1.05,
- 1.05,
- 1.05,
- 1.0,
- 0.95,
- 0.9,
- 0.9,
- 0.8,
- 0.78, 0.75,
- 0.75,
- 0.75,
- 0.75,
- 0.72, 0.65,
- 0.65,
- 0.65,
- 0.65,
- 0.6,
- 0.6,
- 0.6,

- 0.6,
- 0.6,
- 0.6,
- 0.6,
- 0.6,
- 0.55,
- 0.55,
- 0.52,
- 0.51,
- 0.5,
- 0.5,
- 0.5,
- 0.5,
- 0.5,
- 0.48,
- 0.48,
- 0.48,
- 0.48,
- 0.45,
- 0.45,
- 0.45,
- 0.45,
- 0.45,
- 0.45,
- 0.45,
- 0.45,
- 0.42,
- 0.42,
- 0.4,
- 0.4,
- 0.4,
- 0.4,
- 0.4,
- 0.38,
- 0.38,
- 0.35,
- 0.35,
- 0.35,
- 0.35,
- 0.31, 0.3,
- 0.3,
- 0.3, 0.27,
- 0.25,
- 0.25,
- 0.25,
- 0.25,
- 0.25,
- 0.2, 0.2,
- 0.2,
- 0.2,
- 0.2,
- 0.2,
- 0.18,
- 0.17,
- 0.16, 0.15,

```
0.12,
          0.1]
          data = data[~(data['Selling Price']>=33.0) & (data['Selling Price']<=35.0)]</pre>
In [15]:
          data.shape
          (299, 9)
Out[15]:
In [16]:
          #Encoding the Categorical Columns
          data.head(1)
Out[16]:
            Car_Name Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission Owner
          0
                                                                                                 0
                  ritz
                              3.35
                                           5.59
                                                     27000
                                                               Petrol
                                                                         Dealer
                                                                                     Manual
          data['Fuel Type'].unique()
In [17]:
          array(['Petrol', 'Diesel', 'CNG'], dtype=object)
Out[17]:
          data['Fuel_Type'] = data['Fuel_Type'].map({'Petrol':0,'Diesel':1,'CNG':2})
In [18]:
          data['Fuel_Type'].unique()
          array([0, 1, 2], dtype=int64)
Out[18]:
          data['Seller_Type'].unique()
In [19]:
          array(['Dealer', 'Individual'], dtype=object)
Out[19]:
          data['Seller_Type'] = data['Seller_Type'].map({'Dealer':0,'Individual':1})
In [20]:
          data['Seller_Type'].unique()
In [21]:
          array([0, 1], dtype=int64)
Out[21]:
          data['Transmission'].unique()
In [22]:
          array(['Manual', 'Automatic'], dtype=object)
Out[22]:
In [23]:
          data['Transmission'] =data['Transmission'].map({'Manual':0, 'Automatic':1})
          data['Transmission'].unique()
          array([0, 1], dtype=int64)
Out[23]:
          data.head()
In [24]:
```

Out[24]:		Car_Name	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner
	0	ritz	3.35	5.59	27000	0	0	0	0
	1	sx4	4.75	9.54	43000	1	0	0	0
	2	ciaz	7.25	9.85	6900	0	0	0	0
	3	wagon r	2.85	4.15	5200	0	0	0	0
	4	swift	4.60	6.87	42450	1	0	0	0
4									•

Splitting data

```
In [25]: #Store Feature Matrix In X and Response(Target) In Vector y
         X = data.drop(['Car_Name', 'Selling_Price'],axis=1)
         y = data['Selling Price']
                 3.35
Out[25]:
                 4.75
                 7.25
         2
         3
                 2.85
         4
                 4.60
         296
                 9.50
         297
                 4.00
         298
                 3.35
         299
                11.50
                 5.30
         300
         Name: Selling_Price, Length: 299, dtype: float64
In [26]: #Splitting The Dataset Into The Training Set And Test Set
         from sklearn.model_selection import train_test_split
         X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.20,random_state=42)
```

Model Training

```
In [27]: #Import the models
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from xgboost import XGBRegressor

In [28]: #Model Training
Ir = LinearRegression()
Ir.fit(X_train,y_train)

rf = RandomForestRegressor()
rf.fit(X_train,y_train)

xgb = GradientBoostingRegressor()
xgb.fit(X_train,y_train)
```

```
xg = XGBRegressor()
         xg.fit(X train,y train)
Out[28]:
                                            XGBRegressor
         XGBRegressor(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample_bytree=None, device=None, early_stopping_rounds=No
         ne,
                       enable_categorical=False, eval_metric=None, feature_types=No
         ne,
                       gamma=None, grow_policy=None, importance_type=None,
                       interaction constraints=None, learning rate=None, max bin=No
         ne,
                       max_cat_threshold=None, max_cat_to_onehot=None,
                       max delta step=None, max depth=None, max leaves=None,
In [29]: #Prediction on Test Data
         y pred1 = lr.predict(X test)
         y_pred2 = rf.predict(X_test)
         y_pred3 = xgb.predict(X_test)
         y_pred4 = xg.predict(X_test)
In [30]: #Evaluating the Algorithm
         from sklearn import metrics
         score1 = metrics.r2_score(y_test,y_pred1)
         score2 = metrics.r2_score(y_test,y_pred2)
         score3 = metrics.r2_score(y_test,y_pred3)
         score4 = metrics.r2 score(y test,y pred4)
         print(score1,score2,score3,score4)
         0.6790884983129406 0.7274609041329735 0.8835823354571616 0.8887471822279068
In [31]: final_data = pd.DataFrame({'Models':['LR','RF','GBR','XG'],
                      "R2_SCORE":[score1,score2,score3,score4]})
         final data
Out[31]:
            Models R2_SCORE
         0
                LR
                    0.679088
         1
                RF
                    0.727461
         2
               GBR
                    0.883582
         3
               XG
                     0.888747
In [32]:
         #Save The Model
         xg = XGBRegressor()
         xg_final = xg.fit(X,y)
         import joblib
         joblib.dump(xg_final,'car_price_predictor')
         model = joblib.load('car_price_predictor')
In [33]:
         xg_final.save_model('car_price_predictor.json')
```

```
#Prediction on New Data
In [34]:
         import pandas as pd
          data new = pd.DataFrame({
              'Present_Price':5.59,
              'Kms_Driven':27000,
              'Fuel_Type':0,
              'Seller_Type':0,
              'Transmission':0,
              'Owner':0,
              'Age':8
          },index=[0])
         model.predict(data_new)
         array([3.45956], dtype=float32)
Out[34]:
In [ ]:
```