```
% MODE: BIPOLAR
% pos: e22
% neg: e64
% WAVEFORM:
% SHAPE: SQUARE BIPHASIC pos/neg
% DURATION/PHASE: 100 us ?
% AMPLITUDE/PHASE: 200 uA
% -----
%
% e22: labled ictal events only; interic1 tal events are hidden in the baseline noise.
% e64: labeled ictal events only; possibly, interictal events are hidden in the baseline noise.
\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}
% Author: LilyHeAsamiko
%
data1 = load('20171005 slice01 01 CTRL1 12.mat');
data2 = load('20171005_slice01_01_CTRL1_13.mat');
data3 = load('20171005_slice01_01_CTRL1_14.mat');
                  data4 = load('20171005_slice01_01_CTRL1_22.mat');
datalabel = load('20171005_slice01_01_CTRL1_12_ICTAL_LABELS.mat');
% data1 = load('D:\TUT\Medical\biophysics\NolinearTimeSeriesAnalysis-new\data\20171005\01\20171005_01_mat_files\20171005_slice01_01_tTRL1_
% data2 = load('D:\TUT\Medical\biophysics\NolinearTimeSeriesAnalysis-new\data\20171005\01\20171005_01_mat_files\20171005_slice01_01_CTRL1_
\% \ data3 = load('D:\TUT\Medical\biophysics\NolinearTimeSeriesAnalysis-new\data\20171005\01\20171005\_01\_mat\_files\20171005\_slice01\_01\_\CTRL1\_
% datalabel = load('D:\TUT\Medical\biophysics\NolinearTimeSeriesAnalysis-new\data\20171005\01\20171005_01_LABELS\20171005_slice01_01_CTRL1
fs = data1.fs;
MEA1 = data1.data:
MEA2 = data2.data;
MEA3 = data3.data;
MEA4 = data4.data;
ictals = table2array(datalabel.labels);
N = length(MEA1);%sample number
T = N/fs; \%600s
bin = N/T; %samples per bin(1s)
N_bin = N/bin; % bin number
ch = 1;%12 13 14 22
% % tonic seizure
% % 3min , 1min pre-seizure, 1min seizure, 1min post-seizure
% MEA0 = data0.data0.data;
% MEA1 = data.data.data;
% seizures0 = table2array(data0.data0.labels);
% seizure1 = table2array(data.data.labels);
% fs = data0.data0.fs
% N = length(MEA0);%sample number
% T = N/fs; %180 s
% bin = N/T; %samples per bin(1s)
% N_bin = N/bin; % bin number
% ch = 1;%1 0
MEA_avg = mean([MEA1, MEA2, MEA3, MEA4], 2);
figure
%% onset detection
% average of the multi-channels
plot(MEA1)
hold on
plot(MEA2)
hold on
plot(MEA3)
hold on
plot(MEA4)
hold on
plot(MEA_avg)
```



```
MEA_t = [MEA1 MEA2 MEA3 MEA4 MEA_avg];
for win = 1: N_bin
    MEA_t_avg(win, :) = mean(MEA_t((win-1)*bin+1:(win-1)*bin+bin,:),1);
end
% %%%%%%%
% %another
% figure
% plot(MEA0)
% hold on
% plot(MEA1)
%
% MEA_t = [MEA0 MEA1];
% for win = 1: N_bin
%
      MEA_t_avg(win, :) = mean(MEA_t((win-1)*bin/2+1:(win-1)*bin/2+bin,:),1);
% end
\ensuremath{\text{\%}} onset based on decorrelation time: the first t ensures, local minimum of
% autocorrelation: abs(corr< 1/e), here let e be 2
[rho,pval] = corr(MEA_t_avg');
figure,
%pcolor(rho);
imagesc(rho)
title('correlation between timewindows');
rho_dec = min(find(rho < 0.5));</pre>
t_onset = rho_dec;
colorbar
```



```
%[minr, t_row] = min(abs(rho));
```

```
%[minrho, t_col] = min(minr);
%t_onset = min(t_col,t_row(t_col));
% onset based on ictals label
% onset_lb = floor(ictals(1));
% if t_onset > onset_lb
% t_onset = onset_lb;
% end
onset = (t_onset-1)*fs;
MEA_seizure = MEA_t(onset+1: N,:);
MEA_ch = MEA_seizure(:,1);
% baseline_corrected
MEA_seizure0 = MEA_seizure - repmat(mean(MEA_t_avg(1: t_onset,:), 1),size(MEA_seizure,1), 1);
% Z-score Normalization
MEA_seizure = MEA_seizure0./std(MEA_seizure0, 1);
% GMFP
m = mean(MEA_seizure, 2);
GMF = m;
k = length(MEA_seizure);
%GMF = sqrt(mean((MEA_seizure-repmat(m, 1, size(MEA_seizure, 2))).^2,2));
figure,
subplot(1, 2, 1)
plot(1:onset,MEA_seizure(1:onset,:));
%note wrong: xlim([0 onset+10])
%xticks(int32(1: k/7: onset))
title('baseline');
subplot(1, 2, 2)
plot(onset+1: N, MEA_seizure,'k');
hold on;
plot(onset+1: N, GMF, 'r');
%xlim([onset+1 k+10+onset+1])
%xticks(int32(onset+1: k/5: N))
%xticklabels(num2str(onset+1: k/5: N))
title('Global Mean Field after baseline correction');
```



```
MEAy_ch = MEA_seizure0(:,ch);
Pnts = length(MEAy_ch);
figure,
subplot(2, 1, 1)
plot(MEAy_ch, 'k')
hold on
plot(GMF,'r')
title(['baseline corrected Seizure starting from onset with channel ',num2str(ch)]);
subplot(2, 1, 2)
plot(MEA_avg(onset+1: N))
title(['raw Seizure starting from onset with channel ',num2str(ch)]);
```



```
%% count spikes
threshold = 10;% spike: >10 muV
%threshold = 20;
delta = [0.5, 3];
theta = [4, 7];
alpha = [8, 12];
mu = [7.5, 12.5];
SMR = [12.5, 15.5];
beta = [16, 31];
gamma = [32, 100];
HF = 70;
ripple = [80, 250];
fastripple= 251;
t = -0.5:1/fs:0.5; % Time vector
                     % Signal length
L = length(t)-1;
X = 1/(4*sqrt(2*pi*0.01))*(exp(-t(1:L).^2/(2*0.01)));
figure,
plot(t(1:L),X)
title('Gaussian Pulse in Time Domain')
xlabel('Time (t)')
ylabel('X(t)')
```



```
%single spikes
%Ns = length(MEAy_ch(MEAy_ch > threshold));

N_bin = ceil(Pnts/bin);
chf_bin_d = zeros(N_bin, bin);
chf_bin_th = zeros(N_bin, bin);
```

```
chf_bin_a = zeros(N_bin, bin);
chf_bin_m = zeros(N_bin, bin);
chf_bin_s = zeros(N_bin, bin);
chf_bin_b = zeros(N_bin, bin);
chf_bin_g = zeros(N_bin, bin);
chf_bin_h = zeros(N_bin, bin);
chf_bin_r = zeros(N_bin, bin);
chf_bin_fr = zeros(N_bin, bin);
chn_bin = zeros(N_bin, bin);
chf_bin = zeros(N_bin, bin);
MEAs_chft = zeros(N_bin, 0.5*bin);
MEAs_chsd = zeros(N_bin, 0.5*bin);
Ns_chn_bin = zeros(N_bin,1);
Nsft_chn_bin = zeros(N_bin,1);
Nssd_chn_bin = zeros(N_bin,1);
MEAs_chf = zeros(N_bin, bin);
fn = 0:bin-1;
f = 1.0*double(fn)/double(bin-1);
\label{eq:chfbin_d} \begin{split} \mathsf{Chf\_bin\_d} &= \mathsf{find}(\mathsf{f} \, > \, (\mathsf{delta}(1)/\mathsf{fs}) \, \, \& \, \, \mathsf{f} \, < \, (\mathsf{delta}(2)/\mathsf{fs})); \end{split}
Chf_bin_th = find(f > (theta(1)/fs) & f < (theta(2)/fs));
Chf_bin_a = find(f > (alpha(1)/fs) & f < (alpha(2)/fs));
Chf_bin_m = find(f > (mu(1)/fs) & f < (mu(2)/fs));</pre>
Chf_bin_s = find(f > (SMR(1)/fs) & f < (SMR(2)/fs));
\label{eq:chf_bin_b} \mathsf{Chf\_bin\_b} \, = \, \mathsf{find}(\mathsf{f} \, > \, (\mathsf{beta}(1)/\mathsf{fs}) \, \, \& \, \, \mathsf{f} \, < \, (\mathsf{beta}(2)/\mathsf{fs}));
Chf_bin_g = find(f > (gamma(1)/fs) & f < (gamma(2)/fs));
Chf_bin_h = find(f > HF/fs);
Chf_bin_r = find(f > (ripple(1)/fs) & f < (ripple(2)/fs));</pre>
Chf_bin_fr = find(f > fastripple/fs);
if mod(Pnts, bin) > 0
    N_bin = ceil(Pnts/bin);
else
    N_bin = Pnts/bin;
end
%per second
for n = 1: N_bin
     nn = 2*n-1;
     if n == N_bin
        if length(bin*(n-1)+1:Pnts) < bin</pre>
              MEAs_chn = [MEA_ch(bin*(n-1)+1:Pnts); zeros(bin-length(bin*(n-1)+1:Pnts), 1)];
              MEAs_chn = MEA_ch(bin*(n-1)+1:Pnts);
        end
        MEAs_chft(n,:) = MEAs_chn(1:0.5*bin)'; %
        MEAs_chsd(n,:) = MEAs_chn(0.5*bin+1:bin)';
%
%
            MEAs_testn = MEA_test(bin*(n-1)+1:Pnts);
%
            MEAs_testft = MEA_test(0.5*bin*(nn-1)+1:0.5*bin*nn);
%
            MEAs_testsd = MEA_test(0.5*bin*nn+1:Pnts);
    else
        MEAs_chn = MEA_ch(bin*(n-1)+1:bin*n);
        MEAs_chft(n,:) = MEAs_chn(1:0.5*bin)'; %
        MEAs_chsd(n,:) = MEAs_chn(0.5*bin+1:bin)';
%
           MEAs_chft = MEA_ch(0.5*bin*(n-1)+1:0.5*bin*n);
%
          MEAs\_chsd = MEA\_ch(0.5*bin*n+1:0.5*bin*(n+1));
%
           MEAs_testn = MEA_test(bin*(n-1)+1:bin*n);
%
            MEAs_testft = MEA_test(0.5*bin*(nn-1)+1:0.5*bin*nn);
%
            MEAs_testsd = MEA_test(0.5*bin*nn+1:0.5*bin*(nn+1));
    size(fft(MEAs_chn'));
    if length(fft(MEAs_chn))< length(MEAs_chf(n,:))</pre>
         FFT_MEAs_chn = [fft(MEAs_chn') zeros(1, length(MEAs_chf(n,:))-length(fft(MEAs_chn)))];
         EXT_MEAs = [MEAs_chn' zeros(1, length(MEAs_chf(n,:))-length(MEAs_chn))];
    else
         FFT_MEAs_chn = fft(MEAs_chn');
         EXT_MEAs = MEAs_chn';
     end
    size(X);
    MEAs_chf(n,:) = FFT_MEAs_chn.*X;
%!!
%
       chf_bin_d(n,:) = abs(MEAs_chf(n,:)) > delta(1) & abs(MEAs_chf(n,:)) < delta(2);
       chf_bin_th(n,:) = abs(MEAs_chf(n,:)) > theta(1) & abs(MEAs_chf(n,:)) < theta(2);
```

```
chf_bin_a(n,:) = abs(MEAs_chf(n,:)) > alpha(1) & abs(MEAs_chf(n,:)) < alpha(2);
%
      chf_bin_m(n,:) = abs(MEAs_chf(n,:)) > mu(1) & abs(MEAs_chf(n,:)) < mu(2);
%
      chf_bin_s(n,:) = abs(MEAs_chf(n,:)) > SMR(1) & abs(MEAs_chf(n,:)) < SMR(2);
%
      chf_bin_b(n,:) = abs(MEAs_chf(n,:)) > beta(1) & abs(MEAs_chf(n,:)) < beta(2);
      chf_bin_g(n,:) = abs(MEAs_chf(n,:)) > gamma(1) & abs(MEAs_chf(n,:)) < gamma(2);
    chf_bin_h(n, Chf_bin_h) = abs(MEAs_chf(n, Chf_bin_h));
    chf_bin_r(n, Chf_bin_r) = abs(MEAs_chf(n, Chf_bin_r));
    chf_bin_fr(n, Chf_bin_fr) = abs(MEAs_chf(n, Chf_bin_fr));
    chf_bin_h(n,abs(EXT_MEAs) > threshold) = abs(MEAs_chf(n,abs(EXT_MEAs) > threshold))*(sum(abs(EXT_MEAs) > threshold)>=6);
    chf_bin_r(n,abs(EXT_MEAs) > threshold) = abs(MEAs_chf(n,abs(EXT_MEAs) > threshold))*(sum(abs(EXT_MEAs) > threshold)>=6);
    chf_bin_d(n,Chf_bin_d) = abs(MEAs_chf(n, Chf_bin_d));
    chf_bin_th(n,Chf_bin_th) = abs(MEAs_chf(n, Chf_bin_th));
    chf_bin_a(n,Chf_bin_a) = abs(MEAs_chf(n, Chf_bin_a));
    chf_bin_m(n,Chf_bin_m) = abs(MEAs_chf(n, Chf_bin_m));
    chf_bin_s(n,Chf_bin_s) = abs(MEAs_chf(n, Chf_bin_s));
    chf_bin_b(n,Chf_bin_b) = abs(MEAs_chf(n, Chf_bin_b));
    chf_bin_g(n, Chf_bin_g) = abs(MEAs_chf(n, Chf_bin_g));
    Ns_chn_bin(n) = length(MEAs_chn(abs(MEAs_chn) > threshold));
    Nsft_chn_bin(n) = length(MEAs_chft(abs(MEAs_chft) > threshold));
    Nssd_chn_bin(n) = length(MEAs_chsd(abs(MEAs_chsd) > threshold));
    chn_bin(n,:) = EXT_MEAs.*(abs(EXT_MEAs) > threshold);
    if n == N bin
        break;
    end
end
[normalizedACF, lags]= autocorr(chn_bin(:),'NumLags',573);
chns_rho = normalizedACF;
[normalizedACF, lags]= autocorr(MEAs_chf(:), 'NumLags',573);
chf_rho = normalizedACF;
% [chnsd_rho,chnsd_p] = corr(chf_bin_d);
% [chnsth_rho,chnsth_p] = corr(chf_bin_th);
% [chnsa_rho,chnsa_p] = corr(chf_bin_a);
% [chnsm_rho,chnsm_p] = corr(chf_bin_m);
% [chnss_rho,chnss_p] = corr(chf_bin_s);
% [chnsb_rho,chnsb_p] = corr(chf_bin_b);
% [chnsg_rho,chnsg_p] = corr(chf_bin_g);
Ns = sum(Ns_chn_bin);
[normalizedACF, lags]= autocorr(chf_bin_d(:),'NumLags',573);
chnsd_rho = normalizedACF;
[normalizedACF, lags]= autocorr(chf_bin_th(:),'NumLags',573);
chnsth_rho = normalizedACF;
[normalizedACF, lags]= autocorr(chf_bin_a(:),'NumLags',573);
chnsa_rho = normalizedACF;
[normalizedACF, lags]= autocorr(chf_bin_m(:),'NumLags',573);
chnsm_rho = normalizedACF;
[normalizedACF, lags]= autocorr(chf_bin_s(:),'NumLags',573);
chnss_rho = normalizedACF;
[normalizedACF, lags]= autocorr(chf_bin_b(:),'NumLags',573);
chnsb_rho = normalizedACF;
[normalizedACF, lags]= autocorr(chf_bin_g(:),'NumLags',573);
chnsg_rho = normalizedACF;
[normalizedACF, lags]= autocorr(chf_bin_h(:),'NumLags',573);
chnsh_rho = normalizedACF;
[normalizedACF, lags]= autocorr(chf_bin_r(:),'NumLags',573);
chnsr_rho = normalizedACF;
[normalizedACF, lags]= autocorr(chf_bin_fr(:),'NumLags',573);
chnsfr_rho = normalizedACF;
% [chnsth_rho,chnsth_p] = mscohere(chf_bin_th, chf_bin_th);
% [chnsa_rho,chnsa_p] = mscohere(chf_bin_a, chf_bin_a);
% [chnsm_rho,chnsm_p] = mscohere(chf_bin_m, chf_bin_m);
% [chnss_rho,chnss_p] = mscohere(chf_bin_s, chf_bin_s);
% [chnsb_rho,chnsb_p] = mscohere(chf_bin_b, chf_bin_b);
% [chnsg_rho,chnsg_p] = mscohere(chf_bin_g, chf_bin_g);
% [chnsh_rho,chnsh_p] = mscohere(chf_bin_h, chf_bin_h);
% [chnsr_rho,chnsr_p] = mscohere(chf_bin_r, chf_bin_r);
% [chnsfr_rho,chnsfr_p] = mscohere(chf_bin_fr, chf_bin_fr);
chnsd rho(isnan(chnsd rho)) = 0;
chnsth_rho(isnan(chnsth_rho)) = 0;
chnsa_rho(isnan(chnsa_rho)) = 0;
chnsm_rho(isnan(chnsm_rho)) = 0;
chnss_rho(isnan(chnss_rho)) = 0;
chnsb_rho(isnan(chnsb_rho)) = 0;
chnsg_rho(isnan(chnsg_rho)) = 0;
chnsh_rho(isnan(chnsh_rho)) = 0;
```

```
chnsr_rho(isnan(chnsfr_rho)) = 0;
chnsfr_rho(isnan(chnsfr_rho)) = 0;

%0 black
figure,
subplot(3,1,1)
imshow(chn_bin==0);
title('stim(time) v.s bins(per ms)')
subplot(3,1,2)
imshow(abs(MEAs_chf) == 0);
title('fq band: stim(Hz) v.s bins(per ms)')
subplot(3,1,3)
imshow(abs(chf_bin_h) == 0);
title('High fq band: stim(Hz) v.s bins(per ms)')
```

stim(time) v.s bins(per ms)

fq band: stim(Hz) v.s bins(per ms)


```
figure,
subplot(3,3,1)
imshow(chf_bin_r==0);
title('ripple band: stim(Hz) v.s bins(per ms)')
subplot(3,3,2)
imshow(chf_bin_fr==0);
title('fast ripple band: stim(Hz) v.s bins(per ms)')
subplot(3,3,3)
imshow(chf_bin_d==0);
title('Delta band: stim(Hz) v.s bins(per ms)')
subplot(3,3,4)
imshow(chf_bin_th==0);
title('Theta band: stim(Hz) v.s bins(per ms)')
subplot(3,3,5)
imshow(chf_bin_a==0);
title('Alpha band: stim(Hz) v.s bins(per ms)')
subplot(3,3,6)
imshow(chf_bin_m==0);
title('Mu band: stim(Hz) v.s bins(per ms)')
subplot(3,3,7)
imshow(chf_bin_s==0);
title('SMR band: stim(Hz) v.s bins(per ms)')
subplot(3,3,8)
imshow(chf_bin_b==0);
title('Beta band: stim(Hz) v.s bins(per ms)')
subplot(3,3,9)
imshow(chf_bin_g==0);
title('Gamma band: stim(Hz) v.s bins(per ms)')
```

ipple band: stim(Hzf)astsrbjipbe(pbæmohs\$tim(HzDel\$abbae(opestims)Hz) v.s bins(per m

「heta band: stim(Hz) vAlphians/(pred:nsti)m(Hz) v.s///loi/ohs/(poderstrist)(Hz) v.s bins(per ms

SMR band: stim(Hz) v.Bebias stapped rasti)m(Hz) vGarbina (þændns)tim(Hz) v.s bins(per r

```
figure,
subplot(2,2,1)
hist(Ns_chn_bin);
title('histogram: spikes v.s bins(per ms)')
subplot(2,2,2)
bar([Nsft_chn_bin,Nssd_chn_bin]);
title('PSTH: stim number(first half & second half) v.s time(per ms)')
subplot(2,2,3)
bar(autocorr([Nsft_chn_bin', Nssd_chn_bin']));
title('ACG: autocorelagrm(first half & second half) v.s time(per ms)')
subplot(2,2,4)
bar([autocorr(Nsft_chn_bin), autocorr(Nssd_chn_bin)]);
title('ACG: autocorelagrm(half ms) v.s time(per ms)')
```

histogram: spikes v.BSTHs(stimms)mber(first half & second half) v.s tin

ocorelagrm(first half & second had Gvæutipne(plægma]half ms) v.s time(per ı


```
figure,
subplot(3,1,1)
plot(chns_rho);
title('ACG(time) v.s bins(per ms)')
%colorbar
subplot(3,1,2)
plot(chf_rho);
title('ACG(freq) v.s bins(per ms)')
%colorbar
subplot(3,1,3)
plot(chnsh_rho);
title('ACG(high freq) v.s bins(per ms)')
```



```
%colorbar
figure,
subplot(3,3,1)
plot(chnsr_rho);
title('ripple band: ACG v.s bins(per ms)')
%colorbar
subplot(3,3,2)
plot(chnsfr_rho);
title('fast ripple band: ACG v.s bins(per ms)')
%colorbar
subplot(3,3,3)
plot(chnsd_rho);
title('Delta band: ACG v.s bins(per ms)')
%colorbar
subplot(3,3,4)
plot(chnsth_rho);
title('Theta band: ACG v.s bins(per ms)')
%colorbar
subplot(3,3,5)
plot(chnsa_rho);
title('Alpha band: ACG v.s bins(per ms)')
%colorbar
subplot(3,3,6)
%colorbar
plot(chnsm_rho);
title('Mu band: ACG v.s bins(per ms)')
%colorbar
subplot(3,3,7)
plot(chnss_rho);
title('SMR band: ACG v.s bins(per ms)')
%colorbar
subplot(3,3,8)
plot(chnsb_rho);
title('Beta band: ACG v.s bins(per ms)')
%colorbar
subplot(3,3,9)
plot(chnsg_rho);
title('Gamma band: ACG v.s bins(per ms)')
```



```
%colorbar
%ylabel(Stim)
% spike train: >5 spikes in one interval
% mark (laptop does not take correct v)
interval = bin/10;% interval: 100ms
 if mod(Pnts, interval) > 0
           Nint = floor(Pnts/interval);
           Nint = Pnts/interval;
 end
Nt_int = zeros(Nint, 1);
s_int = zeros(interval,Nint);
Nr_int = zeros(interval,Nint);
for n = 1: Nint
           nn = 2*n - 1;
           if n == Nint
                        \label{eq:mean_mean} \mbox{\tt MEAint\_ch = [MEA\_ch(interval*(n-1)+1:Pnts); zeros(length(interval) - length(interval*(n-1)+1:Pnts), 1)]; } \\ \mbox{\tt MEAint\_ch = [MEA\_ch(interval*(n-1)+1:Pnts); zeros(length(interval) - length(interval*(n-1)+1:Pnts), 1)]; } \\ \mbox{\tt MEAint\_ch = [MEA\_ch(interval*(n-1)+1:Pnts); zeros(length(interval) - length(interval*(n-1)+1:Pnts), 1)]; } \\ \mbox{\tt MEAint\_ch = [MEA\_ch(interval*(n-1)+1:Pnts); zeros(length(interval) - length(interval*(n-1)+1:Pnts), 1)]; } \\ \mbox{\tt MEAint\_ch = [MEA\_ch(interval*(n-1)+1:Pnts); zeros(length(interval) - length(interval*(n-1)+1:Pnts), 1)]; } \\ \mbox{\tt MEAint\_ch = [MEA\_ch(interval*(n-1)+1:Pnts); zeros(length(interval) - length(interval*(n-1)+1:Pnts), 1)]; } \\ \mbox{\tt MEAint\_ch = [MEA\_ch(interval*(n-1)+1:Pnts); zeros(length(interval) - length(interval*(n-1)+1:Pnts), 1)]; } \\ \mbox{\tt MEAint\_ch = [MEA\_ch(interval*(n-1)+1:Pnts); zeros(length(interval) - length(interval*(n-1)+1:Pnts), 1)]; } \\ \mbox{\tt MEAint\_ch = [MEA\_ch(interval*(n-1)+1:Pnts), 2]; } \\ \mbox{\tt MEAC\_ch = [MEA\_ch(interval*(n-1)+1:Pnts), 2]; } \\ \mbox{\tt MEAC\_c
%
                         MEAint_ch = MEA_ch(interval*(n-1)+1:Pnts);
            else
                      MEAint_ch = MEA_ch(interval*(n-1)+1:interval*n);
           end
           Ns_int = length(MEAint_ch(abs(MEAint_ch) > threshold));
           if (Ns_int > 5)
                       Nt_int(n) = Ns_int;
                       s_int(:,n) = Ns_int.*(abs(MEAint_ch) > threshold);
                       Nr_int(:,n) = MEAint_ch.*(abs(MEAint_ch) > threshold);
end
Ntr = sum(Nt_int);
[chni_rho,chni_p] = corr(Nr_int);
figure,
subplot(3,1,1)
imagesc(Nr_int);
title('spike train values v.s. per interval(100ms)')
subplot(3,1,2)
imagesc(s_int==0);
title('spike train distribution(spikes) v.s. per interval(100ms)')
subplot(3,1,3)
 imagesc(chni_rho);
title('Correlation v.s. per interval(100ms)')
 colorbar
```



```
% burst: >30 spikes in one period(500 ms with inter-spike interval less than 20 ms)
interval2 = round(interval/5);
period = 5*interval;
if mod(Pnts, period) > 0
         Nperiod = floor(Pnts/period) + 1;
else
         Nperiod = Pnts/period;
end
Nb_per_int2 = zeros(Nperiod,1);
b_per_int2 = zeros(period, Nperiod);
if mod(period, interval2) > 0
         Nint2 = floor(period/interval2) + 1;
else
         Nint2 = period/interval2;
end
for n = 1: Nperiod
         if n == Nperiod
                 MEAper\_ch = [MEA\_ch(period*(n-1)+1:Pnts); zeros(length(period) - length(period*(n-1)+1:Pnts))];
         else
                 MEAper_ch = MEA_ch(period*(n-1)+1:period*n);
         Nb_per = zeros(Nint2,1);
         b_per = zeros(interval2,Nint2);
         for nn = 1: Nint2
                  if nn == Nint2
                           \label{eq:mean_mean_mean} $$ MEAper_int2_ch = [MEAper_ch(interval2*(nn-1)+1:interval2*nn);zeros(length(interval2) - length(interval2*(nn-1)+1:interval2*nn);zeros(length(interval2) - length(interval2)*(nn-1)+1:interval2*nn); $$ MEAper_int2_ch = [MEAper_ch(interval2*(nn-1)+1:interval2*nn);zeros(length(interval2) - length(interval2)*(nn-1)+1:interval2*nn); $$ MEAper_int2_ch = [MEAper_ch(interval2*(nn-1)+1:interval2*nn);zeros(length(interval2) - length(interval2)*(nn-1)+1:interval2*nn); $$ MEAper_int2_ch = [MEAper_ch(interval2) - length(interval2)*(nn-1)+1:interval2*nn); $$ MEAper_ch(interval2) - length(interval2)*(nn-1)+1:interval2*nn); $$ MEAper_ch(interval2)*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:interval2*(nn-1)+1:inter
                                    MEAper_int2_ch = MEAper_ch(interval2*(nn-1)+1:interval2*nn);
                  Nb_per(nn) = length(MEAper_int2_ch(abs(MEAper_int2_ch) > threshold));
                  if nn > 1
                           if Nb_per(nn-1)*Nb_per(nn) == 0
                                    Nb_per(nn) = 0;
                            elseif nn < Nint2</pre>
                                    b_per(:, nn) = MEAper_int2_ch.*(abs(MEAper_int2_ch) > threshold);
                            else
                                    b_per(1:interval2, nn) = MEAper_int2_ch.*(abs(MEAper_int2_ch) > threshold);
                            end
                  end
%
           MEAper2_int2_ch = MEAper_ch(interval2*Nint2+1:interval2*Nint2+interval2);
         Nb_per_int2(n) = sum(Nb_per);
         temp = b_per.*(b_per \sim= 0);
         b_per_int2(:,n) = temp(:);
end
Nburst = sum(Nb_per_int2);
[chnp_rho,chnp_p] = corr(b_per_int2);
figure,
subplot(3,1,1)
hist(Nb_per_int2);
title('histogram: bursts (>30 spikes in one period(500 ms) with inter-spike interval less than 20 ms)')
subplot(3,1,2)
```

```
imagesc(b_per_int2);
title('bursts intensity per period(500 ms)')
colorbar
subplot(3,1,3)
imagesc(chnp_rho);
title('correlation v.s. per period(500 ms)')
colorbar
```



```
figure,
subplot(3,1,1)
bar(Ns_chn_bin);
title(['raw data on channel ', num2str(ch), 'with', num2str(length(Ns_chn_bin)), 'spikes in each second']);
subplot(3,1,2)
bar(Nt_int);
title(['raw data on channel ', num2str(ch), 'with ', num2str(length(Nt_int)), 'train spikes in each interval: 100 ms']);
subplot(3,1,3)
bar(Nb_per_int2);
title(['raw data on channel ', num2str(ch), 'with ', num2str(length(Nb_per_int2)), 'bursts in each period: 500 ms']);
%display(['raw data on channel ', num2str(ch), ' ', 'has ', num2str(Ns),' single spikes,', num2str(Ntr),' spike trains and ', num2str(Nbur
% preprocess
winlen = bin; %samples per window
b = (1/winlen)*ones(1,winlen);
a = 1;
%filter
MEA_t = filter(b, a, MEAy_ch);
plot(MEAy_ch,'k');
hold on
plot(MEA_t,'r');
```



```
asym = zeros(length(ictals(:)),1);
dur = zeros(length(ictals(:)),1);
starts = ictals(:,1);
ends = ictals(:,2);
gap = cell(length(ictals(:)));
NBIN = zeros(length(ictals(:)),1);
for n = 1:length(ictals(:))
         if mod(n, 2) == 1
                nbin = floor(starts((n+1)/2));
        else
                nbin = floor(ends(n/2));
        NBIN(n) = nbin;
        MEA_ictal_bin = zeros(bin,1);
        n_interv = (nbin-5)*bin: (nbin+5)*bin;
        MEA_ictal_bin = MEA_t(bin*(nbin-1)+1:bin*nbin);
        fire_n_interv(:,n)= MEA_ictal_bin;
        au = chns_rho(1:nbin);
        aud = chnsd_rho(1:nbin);
        auth = chnsth_rho(1:nbin);
        aua = chnsa_rho(1:nbin);
        aum = chnsm_rho(1:nbin);
        aus = chnss_rho(1:nbin);
        aub = chnsb_rho(1:nbin);
        aug = chnsg_rho(1:nbin);
        auhh = chnsh_rho(1:nbin);
        aur = chnsr_rho(1:nbin);
        aufr = chnsfr_rho(1:nbin);
        figure,
        subplot(3,3,1)
        plot(au)
        hold on
        plot(aud)
        hold on
        plot(auth)
        hold on
        plot(aua)
        hold on
        plot(aum)
        hold on
        plot(aus)
        hold on
        plot(aub)
        hold on
        plot(aug)
        hold on
        plot(auhh)
         title(['correlation between bin: ', num2str(nbin), ' and other bins']);
        legend([{'time'},{'delta'},{'theta'},{'alpha'},{'mu'},{'smr'},{'beta'},{'gamma'},{'high freq'}]);
        [auh, Bin] = hist(au);
        subplot(3,3,2)
        hist(au)
        title(['histogram: correlation between bin: ', num2str(nbin), ' and other bins']);
        qa1 = quantile(au, 0);
        qa2 = quantile(au, 0.75);
        gapn = au(au \leftarrow qa2 \& au \rightarrow qa1);
        Bini = find(au <= qa2 & au >= qa1);
        [count, center] = hist(gapn);
         for i = 1:length(center)
                 B(1+(i-1)*length(Bini(abs(gapn - center(i)) < 0.1)): i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - center(i)) < 0.1))) = Bini(abs(gapn - center(i)) < 0.1); i*length(Bini(abs(gapn - 
        gap{n} = hist(B(B > 0));
        subplot(3,3,3)
        hist(gap{n})
        title(['histogram: gap of bin: ', num2str(nbin)]);
        clear B gapn Bini count center
        subplot(3,3,4)
        plot(MEAy_ch(n_interv),'r');
        hold on
```

```
plot(MEA_t(n_interv),'b');
       if mod(n,2) == 1
              title(['raw data v.s filtered data on channel ', num2str(ch), 'around ', num2str(nbin), ' th bin i.e. ', num2str(n), ' th ictal st
              title(['raw data v.s filtered data on channel ', num2str(ch), ' around ', num2str(nbin), ' th bin i.e. ', num2str(n), ' th ictal er
       legend('Input Data','Filtered Data')
       subplot(3,3,5)
       pspectrum(MEA_ictal_bin);
       title(['spectrogram on channel ', num2str(ch),' from ', num2str(nbin), ' th bin : ', num2str(nbin-5),' ms to ', num2str(nbin+5), ' ms'
       [pks, locs] = findpeaks(MEA_ictal_bin);
       [MAX, MAXI] = max(MEA_ictal_bin);
       [MIN, MINI] = min(MEA_ictal_bin);
       a = MAX - MIN;
       b = pks(length(pks)) - MIN;
       asym(n) = (a - b)/(a + b);
       dur(n) = locs(length(pks)) - MINI;
       [phi,w] = phasez(pks);
       A = abs(pks);
      [phi1,w1] = phasez(MEA_ictal_bin);
       A1 = abs(MEA_ictal_bin);
       [phih,wh] = phasez(chf_bin_h(nbin,:));
       Ah = abs(chf_bin_h(nbin,:));
     [phir,wr] = phasez(chf_bin_r(nbin,:));
       Ar = abs(chf_bin_r(nbin,:));
      [phifr,wfr] = phasez(chf_bin_fr(nbin,:));
       Afr = abs(chf_bin_fr(nbin,:));
       subplot(3,3,6)
       polar plot(w(1:min(length(A),length(w))), A(1:min(length(A),length(w))), w1(1:min(length(A1),length(w1))), A1(1:min(length(A1),length(w1))), A1(1:min(length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(A1),length(
       title(['phase after FFT with Gaussian window on channel ', num2str(ch),' around ', num2str(nbin), ' th bin : ', num2str(nbin-5), ' ms',
       legend([{'peaks'},{'normal'},{'HFO'}]);
       subplot(3,3,7)
       plot(aur)
       hold on
       plot(aufr)
       title(['correlation between bin: ', num2str(nbin), ' and other bins']);
       legend([{'ripple'},{'fast ripple'}]);
       subplot(3,3,8)
       plot((chf_bin_r(nbin,:).^2)');
       hold on
       plot((chf_bin_fr(nbin,:).^2)');
       title(['high freuqncy oscilation power spectrum on channel ', num2str(ch),' from ', num2str(nbin), ' th bin : ', num2str(nbin-5), ' ms
       legend([{'ripple'},{'fast ripple'}]);
       subplot(3,3,9)
       polarplot(wr(1:min(length(Ar),length(wr))),Ar(1:min(length(Ar),length(wr))), wfr(1:min(length(Afr),length(wfr))),Afr(1:min(length(Afr),length(wr)))
       title(['phase after FFT with Gaussian window on channel ', num2str(ch),' around ', num2str(nbin), ' th bin : ', num2str(nbin-5), ' ms',
       legend([{'ripple'},{'fast ripple'}]);
end
```


fast ripple

2000

1000

ripple

fast ripple

240276630

fast ripple

100 200

0.0

0.4

500

1000

2000

0.4

ripple

fast ripple

240276630


```
CORRTF= [chns_rho(NBIN);chnsd_rho(NBIN);chnsth_rho(NBIN);chnsa_rho(NBIN);chnsm_rho(NBIN);chnss_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb_rho(NBIN);chnsb
% figure,
% subplot(3,2,1)
% bar(asym);
% title('asymmetry');
% subplot(3,2,2)
% bar(dur);
% title('duration');
for n = 1: length(ictals(:))
        Q3BIN(n) = gap{n}(length(ictals(:)));
        QBINDIST(n) = abs(gap{n}(length(ictals(:)))- gap{n}(1));
        TrSIGMADIST(n) = abs(gap{n}(length(ictals(:))) - NBIN(n));
        MaxIctal(n) = max(abs(fire_n_interv(:, n)),[],1);
        MinIctal(n) = min(abs(fire_n_interv(:, n)),[],1);
        StdIctal(n) = std(abs(fire_n_interv(:, n)),1);
        MeanIctal(n) = mean(abs(fire_n_interv(:, n)),1);
CORRTF= CORRTF(1:10);
%MeanCorr = mean(abs(CORRTF),1);
%StdCorr = std(abs(CORRTF),1);
type = ["broad", "broad", "broad", "narrow", "broad", "broad", "broad", "broad", "broad"];
%X = [NBIN; Q3BIN;QBINDIST; TrSIGMADIST;ictal_n_interv;CORRTF];
X1 = [asym'; dur'; NBIN'; Q3BIN;QBINDIST; TrSIGMADIST;MaxIctal;MinIctal;StdIctal;MeanIctal;[-1,-1,-1,1,-1,1,-1,-1,-1]];
%X(isnan(X)) = 0;
X1(isnan(X1))= 0;
%[asym_test,dur_test,NBIN_test,Q3BIN_test,QBINDIST_test,TrSIGMADIST_test,fire_n_interv_test,CORRTF_test,MaxIctal_test,MinIctal_test,StdIct
%%
y = [-1, -1, -1, 1, -1, 1, -1, -1, -1];
%X = [NBIN; Q3BIN;QBINDIST; TrSIGMADIST;ictal_n_interv;CORRTF];
%X1 = [asym'; dur'; NBIN; Q3BIN;QBINDIST; TrSIGMADIST;MaxIctal;MinIctal;StdIctal;MeanCorr;StdCorr;y];
%X(isnan(X))= 0;
%X1(isnan(X1))= 0;
NNBIN = size(NBIN,1);
NQ3BIN = size(Q3BIN,1);
NQBINDIST = size(QBINDIST,1);
NTrSIGMADIST = size(TrSIGMADIST,1);
Nfire_n_interv = size(fire_n_interv,1);
NCORRTF = size(CORRTF,1);
NMaxIctal = size(MaxIctal,1);
NMinIctal = size(MinIctal ,1);
NStdIctal = size(StdIctal,1);
NMeanIctal = size(MeanIctal ,1);
NStdIctal = size(StdIctal ,1);
%type'
group = [0;0;0;1;0;1;0;0;0;0];
R = corr(X1):
[p,tbl,stats] = anova1(X1)
```

		ANOVA Table				
Source	SS	df	MS	F	Prob>F	
Columns Error Total	867323.9 19739767.4 20607091.3	9 100 109	96369.3 197397.7	0.49	0.8795	

p = 0.8795

tbl = 4×6 cell							
	1	2	3	4	5	6	
1	'Source'	'SS'	'df'	'MS'	'F'	'Prob>F'	
2	'Columns'	8.6732e+05	9	9.6369e+04	0.4882	0.8795	
3	'Error'	1.9740e+07	100	1.9740e+05	[]	[]	
4	'Total'	2 06079+07	100	[1	[1	[1	

stats = struct with fields:

gnames: [10×2 char]

n: [11 11 11 11 11 11 11 11 11 11]
source: 'anova1'
means: [85.7203 187.3282 88.2381 35.3217 218.1385 49.3024 215.1493 252.4356 257.7328 285.1929]

df: 100

s: 444.2946

[results,means] = multcompare(stats,'CType','bonferroni')

No groups have means significantly different from Group 1

results = 45×6

```
1,0000
            2.0000 -737.8030 -101.6079 534.5873
                                                   1,0000
   1.0000
             3.0000 -638.7130 -2.5178 633.6773
                                                    1,0000
   1.0000
             4.0000 -585.7966 50.3986
                                        686.5937
                                                   1.0000
   1.0000
             5.0000 -768.6133 -132.4182 503.7770
                                                    1.0000
   1.0000
             6.0000 -599.7773 36.4179
                                        672.6130
                                                    1.0000
   1.0000
             7.0000 -765.6242 -129.4290
                                        506.7661
                                                    1.0000
   1.0000
             8.0000 -802.9105 -166.7153 469.4798
                                                   1.0000
   1.0000
             9.0000 -808.2077 -172.0126 464.1826
                                                    1.0000
   1.0000 10.0000 -835.6678 -199.4726 436.7225
                                                   1.0000
mean3.0000x2 3.0000 -537.1051 99.0900 735.2852
                                                    1.0000
  85.7203 133.9599
 187.3282 133.9599
  88.2381 133.9599
  35.3217 133.9599
 218.1385 133.9599
  49.3024 133.9599
 215.1493 133.9599
 252.4356 133.9599
 257.7328 133.9599
 285.1929 133.9599
```

stats=gplotmatrix(X1',[],group,[],'*.')


```
stats =
  11×11×2 graphics array.
```

```
Tbtimelm = table(X1(1,:)',X1(2,:)',X1(3,:)',X1(4,:)',X1(5,:)',X1(6,:)',X1(7,:)',X1(8,:)',X1(9,:)',X1(10,:)', group, 'VariableNames', {

lm1_cor1 = fitlm(Tbtimelm, 'TYPE~Asymetry/Duration+MEANICTAL*STDICTAL/DIST_3SIGMA+DIST_Q3')
```

 $lm1_cor1 =$

Linear regression model:

TYPE ~ 1 + Asymetry + DIST_Q3 + Asymetry:Duration + DIST_3SIGMA:STDICTAL + STDICTAL*MEANICTAL + DIST_3SIGMA:STDICTAL:MEANICTAL

Estimated Coefficients:

	Estimate	SE	tStat	pvalue
(Intercept)	0.43276	0.39375	1.0991	0.46997
Asymetry	1.3799	0.28974	4.7628	0.13175
DIST_Q3	-0.015116	0.010761	-1.4047	0.39385
STDICTAL	-2.2958	1.917	-1.1977	0.4429
MEANICTAL	-0.72481	0.61236	-1.1836	0.44659
Asymetry:Duration	-0.00065061	0.00016183	-4.0204	0.1552
DIST_3SIGMA:STDICTAL	0.040735	0.035798	1.1379	0.45899
STDICTAL:MEANICTAL	0.50468	0.60648	0.83213	0.55817
DIST_3SIGMA:STDICTAL:MEAN	NICTAL 0.014092	0.019384	0.727	0.59981

```
Number of observations: 10, Error degrees of freedom: 1
Root Mean Squared Error: 0.0295
```

```
lm1_cor2 = fitlm(Tbtimelm, 'TYPE~Asymetry/Duration+DIST_Q3/DIST_3SIGMA')
```

```
-0.0086619
                                                0.027651
                                                             -0.31326
                                                                              0.76673
     (Intercept)
     Asymetry
                                                 0.03944
                                                                          1.5297e-06
                                   1.0311
                                                               26.145
                               -0.0013648
                                               0.0053492
                                                              -0.25515
                                                                              0.80877
    DIST_Q3
    Asymetry:Duration
                                              4.6281e-05
                                                                           0.00010196
                              -0.00051523
                                                              -11.133
                              1.6852e-05
    DIST_Q3:DIST_3SIGMA
                                              8.1852e-05
                                                               0.20589
                                                                                0.845
Number of observations: 10, Error degrees of freedom: 5
Root Mean Squared Error: 0.0335
Xnew = sort(X1(1:10,:));
ypred = predict(lm1_cor2,Xnew')
ypred = 10×1
    0.1247
   -0.0083
   -0.0154
   -6.1975
   -0.0100
   -0.0116
   -0.0091
   -0.0091
    0.0219
   -0.0091
%ypred = ypred - 1:10;
ypred(ypred> mean(ypred)) = -1;
ypred(ypred<= mean(ypred)) = 1</pre>
ypred = 10×1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
    -1
%y = [-1,1,1,-1,-1,1,-1,-1,-1,-1];
y = 1 \times 10
    -1
         -1
               -1
                     1
                         -1
                                1
                                     -1
                                          -1
                                                -1
                                                     -1
ypred == y';
accuracy = sum(ypred == y')/ length(y)
accuracy = 0.9000
\ensuremath{\text{\%}} % Plot the original responses and the predicted responses to see how they differ.
figure,
plot(1:length(y),y,'o',1:length(y),ypred,'x')
legend('Data','Predictions')
title(['Result of linear regression with accuracy: ',num2str(accuracy)]);
```



```
figure, subplot(2,2,1)
```

```
bar(asym);
  title('asymetry')
subplot(2,2,2)
  bar(dur);
  title('duration')
subplot(2,2,3)
  bar(QBINDIST(1: size(fire_n_interv,2)));
  title('0-Q3 distance');
subplot(2,2,4)
  bar(TrSIGMADIST(1: size(fire_n_interv,2)));
  title('3sigma distance');
```



```
%
     figure,
 % CORRTF= [chns_rho(NBIN,:),chnsd_rho(NBIN,:),chnsth_rho(NBIN,:),chnsa_rho(NBIN,:),chnsm_rho(NBIN,:),chnss_rho(NBIN,:),chnsb_rho(NBIN,:)
%
     imagesc(CORRTF)
     title('ACG of the 10 spikes interval on time and frequency domain')
%
%
     colorbar
    figure,
    for n = 1:size(fire_n_interv, 2)
       wave = fire_n_interv(:, n);
        N = length(wave);
        if mod(N,2)==1
            v = zeros(2*N-1,1);
            v(1:2:2*N-3) = wave(2:length(wave)) - wave(1:length(wave)-1);
            v(2:2:length(v)-1) = 0.5*v(1:2:length(v)-2)+0.5*v(3:2:length(v));
            s = interp(wave, 2);
        else
            v = zeros(2*N,1);
            v(1:2:2*N-2) = wave(2:length(wave)) - wave(1:length(wave)-1);
            v = [v;v(length(v)-2)];
            v(2:2:length(v)-1) = 0.5*v(1:2:length(v)-2)+0.5*v(3:2:length(v));
            s = interp(wave, 2);
        end
        velocity(:,n) = v;
        displacement(:,n) = s;
        subplot(size(fire_n_interv, 2), 2, 2*n-1)
        plot(s)
        title('displacement')
        subplot(size(fire_n_interv, 2), 2, 2*n)
        plot(v)
        title('velocity')
    end
```

displacement								
0	1000	2000	3000	4000				
displacement								
0	1000	2000	3000	4000				
_	dis	placem	ent					
0	1000	2000	3000	4000				
displacement								
0	1000	2000	3000	4000				
	dis	placem	ent					
0	1000	2000	3000	4000				
displacement								
0	1000	2000	3000	4000				
displacement								
0	1000	2000	3000	4000				
displacement								
0	1000	2000	3000	4000				
displacement								
0	1000	2000	3000	4000				
displacement								
0	1000	2000	3000	4000				

```
X 2870
     Y 0.0001562
            2000
                          4000
     1000
          velocity
0
     1000
           2000
                   3000
                          4000
           velocity
0
     1000
            2000
                   3000
                          4000
          velocity
0
     1000
            2000
                   3000
                          4000
          velocity
0
     1000
            2000
                   3000
                          4000
          velocity
0
     1000
           2000
                   3000
                          4000
          velocity
            2000
                   3000
0
     1000
                          4000
          velocity
0
     1000
            2000
                   3000
                          4000
          velocity
0
     1000
            2000
                   3000
                          4000
          velocity
            2000
     1000
                   3000
                          4000
```

```
%manovacluster(ictal n interv)
% legend('Input Data', 'Filtered Data')
% plot(interval,MEAy_ch(bin*(n-1)+1:bin*(n-1)+1+length(interval)-1),'r');
% hold on
% plot(interval,MEA_t(bin*(n-1)+1:bin*(n-1)+1+length(interval)-1),'b');
% title(['raw data v.s filtered data on channel', num2str(ch),' ', num2str(n_interv), 'th ictal interval : ', num2str(n),' s to ', num2str
% legend('Input Data','Filtered Data')
% ictal_n_interv = ictal_n_interv(:, 1:2:size(ictal_n_interv,2));
type = ["interictal","ictal", "ictal", "interictal",
group = [0,1,1,0,0];
y = [-1,1,1,-1,-1];
%[Asym, Dur, ypred, lml_cor3] = ictalclassify(ictal_n_interv, fs, asym, dur, type, group, y, ch)
% ictal, inter-ictal
ictal_n_interv = zeros(60000,5);
for i = 1:size(ictals, 1)
        ictal\_n\_interv(1:length((floor(ictals(i,1))-1)*bin+1: (floor(ictals(i,2))+1)*bin), i) = MEA\_t((floor(ictals(i,1))-1)*bin+1: (floor(ictals(i,2))+1)*bin), i) = MEA\_t((floor(ictals(i,1))-1)*bin+1: (floor(ictals(i,2))+1)*bin+1: (floor(ictals(i,2))+
end
EEG = ictal_n_interv(1:10:size(ictal_n_interv, 1), :);
%L = size(ictal_n_interv, 2);
%seglen = bin;
%M = ceil(size(ictal_n_interv, 1)/bin);
%a = 0.1;
%FF = RD_STFT(EEG, fs, M, L, seglen, a);%overlap 0.5
[yupper,ylower] = envelope(EEG);
[M, N] = size(EEG);
SE = zeros(M, N);
SEH = SE;
for i = 1:N
        %empirical mode decompose
        figure(2*i-1),
        title('IMF')
      [imftemp,residualtemp,info] = emd(EEG(:,i), 'MaxNumIMF',10, 'Display',0)%hide table
      imf(1:size(imftemp,1), 1:size(imftemp,2), i) = imftemp;
      residualtemp(1:size(residualtemp,1), 1:size(residualtemp,2), i) = residualtemp;
       figure, have to plot by mysef somehow
        plot(imf)
        subplot(size(imftemp,2), 1, 1)
        plot(imf(:,1,i))
        ylabel('IMF1')
        subplot(size(imftemp,2), 1, 2)
        plot(imf(:,2,i))
        ylabel('IMF2')
        subplot(size(imftemp,2), 1, 3)
        plot(imf(:,3,i))
        ylabel('IMF3')
        subplot(size(imftemp,2), 1, 4)
        plot(imf(:,4,i))
        ylabel('IMF4')
        subplot(size(imftemp,2), 1, 5)
        plot(imf(:,5,i))
        ylabel('IMF5')
        subplot(size(imftemp,2), 1, 6)
        plot(imf(:,6,i))
```

```
ylabel('IMF6')
   figure(2*i),
   [hs,f,t,imfinsf(1:size(imf,1),1:size(imf,2,i),i),imfinse(1:size(imf,1),1:size(imf,2,i),i)] = hht(imf(:, :, i), fs)
   subplot(1, 2, 1)
   mesh(seconds(t),f,hs,'EdgeColor','none','FaceColor','interp')
   xlabel('Time')
   ylabel('Frequency')
   zlabel('Instantaneous Energy')
   subplot(1, 2, 2)
   mesh(imfinse(1:size(imf,1),1:size(imf,2,i),i),imfinse(1:size(imf,1),1:size(imf,2,i),i))
   xlabel('IMFs')
   ylabel('Instantaneous Frequency')
   zlabel('Instantaneous Energy')
   mdl = fit([1: size(yupper,1)]', 0.5*(yupper(:,i)+ylower(:,i)), 'poly3', 'Normalize','on', 'Robust','Bisquare');
   h(:,i) = EEG(:, i) - mdl(1:M);
   k = 1;
   hk(:,k) = abs(h(:,i) - mean(h(:,i) , 1));
   [~,~,~,Hk,~]= hht(hk(:,k), fs)
   SD = abs(hk(:,k) - abs(hk(:,k) - mean(hk(:,k) , 1))).^2./abs(hk(:,k) - mean(hk(:,k) , 1)).^2;
   while sum(SD > mean(SD))>0.001*i*M & k < size(imf,2) -1
       hk(:,k+1) = abs(hk(:,k) - mean(hk(:,k) , 1));
       dif= imf(:,k)-hk(:,k+1);
       SD = SD + abs(hk(:,k+1) - mean(hk(:,k+1), 1))).^2./abs(hk(:,k+1) - mean(hk(:,k+1), 1)).^2;
       k = k+1;
   end
   if k >1
       SE(:,i) = sum(hk./repmat(sum(hk,2),[1, size(hk,2)]).*log(hk./repmat(sum(hk,2),[1,size(hk,2)])),2);
%
        SEH(:,i) = sum(Hk./repmat(sum(Hk,2),[1, size(Hk,2)]).*log(Hk./repmat(sum(Hk,2),[1,size(Hk,2)])),2);
       SE(:,i) = hk/sum(hk).*log(hk/sum(hk))+(1-hk/sum(hk)).*log(1-hk/sum(hk));
%
        SEH(:,i) = Hk/sum(Hk).*log(Hk/sum(Hk))+(1-Hk/sum(Hk)).*log(1-Hk/sum(Hk));
   end
   clear hk Hk SD mdl hs
end
imftemp = 6000×8
                                               0.0974
                                                        0.0802
   0.0038 0.0599 -0.0690
                            -0.0181
                                       0.1351
                                                               -0.1158
   -0.0041
            0.0667
                    -0.0717
                             -0.0147
                                       0.1355
                                                0.0976
                                                         0.0799
                                                                 -0.1157
   0.0057
            0.0610
                   -0.0741
                             -0.0113
                                       0.1360
                                                0.0978
                                                        0.0795
                                                                -0.1156
   -0.0082
            0.0494
                    -0.0762
                             -0.0079
                                       0.1365
                                                0.0981
                                                        0.0792
                                                                 -0.1155
   0.0010
            0.0399
                    -0.0779
                             -0.0044
                                       0.1370
                                                0.0983
                                                        0.0788
                                                                -0.1154
    0.0087
            0.0319
                    -0.0792
                             -0.0010
                                       0.1375
                                                0.0985
                                                        0.0785
                                                                 -0.1152
                                                0.0988
                                                        0.0782
   0.0126
            0.0226
                    -0.0801
                              0.0025
                                       0.1380
                                                                -0.1151
                              0.0060
                                       0.1386
                                                0.0990
                                                        0.0778
   -0.0123
            0.0102
                    -0.0806
                                                                -0.1150
                              0.0095
                                                0.0992
                                                        0.0775
           -0.0049
                    -0.0806
                                       0.1392
                                                                -0.1149
    0.0033
           -0.0199
                    -0.0802
                             0.0130
                                       0.1398
                                               0.0995
                                                        0.0771 -0.1148
    0.0106
residualtemp = 6000 \times 1
    0.3331
    0.3331
    0.3331
    0.3331
    0.3331
    0.3331
    0.3331
    0.3331
    0.3331
    0.3332
info = struct with fields:
                NumIMF: [8×1 double]
            NumExtrema: [8×1 double]
       NumZerocrossing: [8×1 double]
            NumSifting: [8×1 double]
    MeanEnvelopeEnergy: [8×1 double]
     RelativeTolerance: [8×1 double]
```



```
hs =
   (2,1)
                 1.6437
  (4,1)
(94,1)
                 0.0139
                 0.0630
                55.6337
   (1,2)
                 0.0135
   (2,2)
  (48, 2)
                 0.0126
                54.5122
   (1,3)
                 0.0105
   (2,3)
                42.5356
   (1,4)
                0.0472
83.5280
   (2,4)
   (1,5)
   (1,6)
                69.6910
                35.9780
   (1,7)
   (1,8)
                31.6938
   (1,9)
                60.7349
  = 101×1
    0
    10
    20
    30
    40
    50
    60
    70
    80
    90
t = 6000×1
    0.0005
    0.0010
    0.0015
    0.0020
    0.0025
    0.0030
    0.0035
    0.0040
    0.0045
imfinsf = 6000×8
   -0.2917
             -0.9684
                                935.1286
                                            14.2498
                                                               -12.3376
                                                                          32.3132
                       -5.9542
                                                     -30.1620
   0.0649
              -0.3591
                       -4.2153
                                470.8839
                                            7.1406
                                                     -15.2670
                                                                -5.5912
                                                                          16.6374
                                                                           6.2420
   -0.1154
              0.2363
                       -2.8048
                                 15.1493
                                            3.9299
                                                      -8.1592
                                                                -1.3357
   -0.0979
              0.3427
                       -2.3325
                                 14.2244
                                             3.9394
                                                      -8.1752
                                                                -1.3471
                                                                           6.2049
    0.4418
              0.3601
                       -1.6559
                                  5.2232
                                             3.0437
                                                      -6.2155
                                                                -0.4093
                                                                           4.0721
   0.3231
              0.3762
                       -1.1833
                                  4.8937
                                             3.0542
                                                      -6.2262
                                                                -0.4182
                                                                           4.0496
   -0.6038
              0.5636
                       -0.6111
                                  3.6327
                                             2.6197
                                                      -5.2648
                                                                -0.0026
                                                                           3.1239
   -0.2501
              0.7465
                        -0.1335
                                  3.4795
                                             2.6312
                                                      -5.2728
                                                                 -0.0100
                                                                           3.1078
   0.7018
              0.8907
                        0.4061
                                  3.0638
                                             2.3736
                                                      -4.6881
                                                                 0.2250
                                                                           2.5883
   -0.0375
              0.8447
                        0.8857
                                  2.9756
                                             2.3858
                                                      -4.6944
                                                                 0.2186
                                                                           2.5758
```

imfinse = 6000×8

```
108.3735
             97.5587
                        0.1376
                                  0.0630
                                            1.6437
                                                       0.1599
                                                                 0.0374
                                                                           0.0139
   54.8148
             53.6426
                        0.1232
                                  0.0126
                                            0.8189
                                                       0.0853
                                                                 0.0315
                                                                           0.0135
   54.7164
             53.6753
                        0.1224
                                  0.0105
                                            0.8234
                                                       0.0851
                                                                 0.0317
                                                                           0.0135
   40.8999
             41.9080
                        0.1183
                                  0.0472
                                            0.6142
                                                       0.0659
                                                                 0.0300
                                                                           0.0134
   41.0326
             41.8207
                        0.1185
                                  0.0435
                                            0.6177
                                                       0.0658
                                                                 0.0301
                                                                           0.0133
   33.6675
             35.4267
                        0.1169
                                  0.0755
                                            0.5080
                                                       0.0556
                                                                 0.0292
                                                                           0.0133
   33.4866
             35.3828
                        0.1178
                                  0.0711
                                            0.5109
                                                       0.0555
                                                                 0.0293
                                                                           0.0133
   28.7544
             31.1436
                        0.1172
                                  0.0972
                                            0.4397
                                                       0.0489
                                                                 0.0286
                                                                           0.0132
   28.9746
             31.0653
                        0.1185
                                  0.0924
                                            0.4423
                                                       0.0488
                                                                 0.0288
                                                                           0.0132
   25.3454
             27.8700
                        0.1186
                                  0.1139
                                            0.3910
                                                       0.0440
                                                                 0.0283
                                                                           0.0132
Warni: : Iteration limit reached for robust fitting.
imftemp = 6000 \times 7
   0.0091
            -0.0577
                        0.0516
                                  0.3431
                                           -1.8846
                                                       3.5323
                                                              -31.7043
   0.0079
             -0.0615
                        0.0444
                                  0.3326
                                           -1.8747
                                                       3.5205
                                                               -31.6806
   -0.0065
             -0.0671
                        0.0368
                                  0.3219
                                           -1.8647
                                                       3.5088
                                                               -31.6569
   -0.0042
             -0.0728
                        0.0288
                                  0.3110
                                           -1.8547
                                                       3.4970
                                                               -31.6332
                                           -1.8447
   -0.0011
             -0.0772
                        0.0205
                                  0.3000
                                                       3.4852
                                                              -31.6095
   0.0051
             -0.0789
                        0.0117
                                  0.2889
                                           -1.8348
                                                       3.4734
                                                               -31.5857
   -0.0074
             -0.0769
                        0.0026
                                  0.2775
                                           -1.8248
                                                       3.4616
                                                              -31.5619
   0.0092
             -0.0708
                       -0.0067
                                  0.2661
                                           -1.8148
                                                       3.4498
                                                              -31.5381
             -0.0609
                                  0.2544
                                           -1.8048
                                                       3.4380
    0.0154
                       -0.0163
                                                              -31.5143
                       -0.0261
                                  0.2426
             -0.0484
                                           -1.7948
                                                       3.4261 -31.4905
    0.0068
residualtemp = 6000×1
   29.6575
   29.6401
```

residualtemp = 6000×1
29.6575
29.6401
29.6227
29.6052
29.5878
29.5703
29.5528
29.5353

29.5178 29.5003

info = struct with fields:

NumIMF: [7×1 double]
NumExtrema: [7×1 double]
NumZerocrossing: [7×1 double]
NumSifting: [7×1 double]
MeanEnvelopeEnergy: [7×1 double]
RelativeTolerance: [7×1 double]


```
hs =
   1.0e+05 *
    (1,1)
                  2.0695
    (9,1)
(1,2)
                  0.0001
                  1.6473
                  0.0003
    (5,2)
    (1,3)
                  1.6457
    (1,4)
(1,5)
                  1.0437
                  1.0421
                  1.1966
    (1,6)
                  0.0132
    (1,7)
                  0.0115
    (1,8)
                  0.2985
    (1,9)
    (1,10)
                  0.2724
    (1,11)
                  0.2727
f = 101 \times 1
```

```
0
   10
   20
   30
   40
   50
   60
   70
   80
   90
t = 6000 \times 1
   0.0005
   0.0010
   0.0015
   0.0020
   0.0025
   0.0030
   0.0035
   0.0040
   0.0045
imfinsf =
imfinsf(:,:,1) =
   -0.2917
              -0.9684
                         -5.9542
                                  935.1286
                                              14.2498
                                                        -30.1620
                                                                   -12.3376
                                                                               32.3132
              -0.3591
                         -4.2153
                                               7.1406
                                                                    -5.5912
    0.0649
                                  470.8839
                                                         -15,2670
                                                                               16,6374
                                                                                6.2420
   -0.1154
               0.2363
                         -2.8048
                                    15.1493
                                               3.9299
                                                         -8.1592
                                                                    -1.3357
                                                3.9394
                                                                    -1.3471
                                                                                6.2049
   -0.0979
               0.3427
                         -2.3325
                                    14.2244
                                                          -8.1752
                                                                    -0.4093
                                                                                4.0721
    0.4418
               0.3601
                         -1.6559
                                    5.2232
                                                3.0437
                                                          -6.2155
                                                                    -0.4182
                         -1.1833
    0.3231
               0.3762
                                     4.8937
                                                3.0542
                                                          -6.2262
                                                                                4.0496
   -0.6038
               0.5636
                         -0.6111
                                     3.6327
                                               2.6197
                                                          -5.2648
                                                                    -0.0026
                                                                                3,1239
                                                                    -0.0100
   -0.2501
               0.7465
                                     3.4795
                                                          -5.2728
                                                                                3.1078
                         -0.1335
                                                2.6312
               0.8907
                                     3.0638
    0.7018
                          0.4061
                                               2.3736
                                                          -4.6881
                                                                     0.2250
                                                                                2.5883
   -0.0375
               0.8447
                          0.8857
                                     2.9756
                                               2.3858
                                                          -4.6944
                                                                     0.2186
                                                                                2,5758
   -0.6900
                                                          -4.2952
               0.7425
                          1.4082
                                     2.7866
                                               2.2167
                                                                     0.3697
                                                                                2.2422
   -0.3545
               0.5728
                          1.8870
                                     2.7282
                                               2.2296
                                                          -4.3002
                                                                     0.3640
                                                                                2.2320
    0.3813
               0.3895
                          2.3970
                                     2.6234
                                               2.1119
                                                          -4.0068
                                                                     0.4691
                                                                                1.9991
imfinse =
imfinse(:,:,1) =
  108.3735
              97.5587
                          0.1376
                                     0.0630
                                               1.6437
                                                           0.1599
                                                                     0.0374
                                                                                0.0139
   54.8148
              53.6426
                          0.1232
                                     0.0126
                                               0.8189
                                                           0.0853
                                                                     0.0315
                                                                                0.0135
   54.7164
              53.6753
                          0.1224
                                     0.0105
                                               0.8234
                                                           0.0851
                                                                     0.0317
                                                                                0.0135
   40.8999
              41.9080
                          0.1183
                                     0.0472
                                               0.6142
                                                           0.0659
                                                                     0.0300
                                                                                0.0134
   41.0326
              41.8207
                          0.1185
                                     0.0435
                                                0.6177
                                                           0.0658
                                                                     0.0301
                                                                                0.0133
   33.6675
              35.4267
                                     0.0755
                                                                     0.0292
                          0.1169
                                                0.5080
                                                           0.0556
                                                                                0.0133
   33.4866
              35.3828
                          0.1178
                                     0.0711
                                                0.5109
                                                           0.0555
                                                                     0.0293
                                                                                0.0133
   28.7544
              31.1436
                          0.1172
                                     0.0972
                                                0.4397
                                                           0.0489
                                                                     0.0286
                                                                                0.0132
   28.9746
              31.0653
                          0.1185
                                     0.0924
                                                0.4423
                                                           0.0488
                                                                     0.0288
                                                                                0.0132
   25.3454
              27.8700
                          0.1186
                                     0.1139
                                                0.3910
                                                           0.0440
                                                                     0.0283
                                                                                0.0132
   25.3020
              27.7133
                                     0.1088
                                               0.3933
                                                           0.0440
                                                                     0.0284
                          0.1200
                                                                                0.0132
   22.6906
                          0.1204
                                     0.1267
                                               0.3540
                                                           0.0404
                                                                     0.0280
              25.1595
                                                                                0.0131
   22.8345
              24.9768
                          0.1218
                                     0.1213
                                               0.3561
                                                           0.0403
                                                                     0.0281
                                                                                0.0131
```


Instantaneous Frequency

Warning: Iteration limit reached for robust fitting.

 $imftemp = 6000 \times 8$

```
0.0016
           0.0083
                     0.2023
                               -0.7360
                                          0.1076
                                                     0.3672
                                                              -0.2039
                                                                          0.1368
0.0086
           0.0069
                               -0.7383
                                          0.1080
                                                                          0.1367
                     0.2079
                                                     0.3664
                                                              -0.2041
0.0053
           0.0028
                                                     0.3656
                                                              -0.2042
                                                                          0.1365
                     0.2146
                               -0.7405
                                          0.1084
-0.0052
                                                              -0.2043
                                                                          0.1364
          -0.0033
                     0.2221
                               -0.7425
                                          0.1089
                                                     0.3648
-0.0071
          -0.0100
                     0.2303
                               -0.7444
                                          0.1092
                                                     0.3640
                                                              -0.2044
                                                                          0.1363
0.0065
          -0.0156
                     0.2391
                               -0.7461
                                          0.1096
                                                     0.3632
                                                              -0.2045
                                                                          0.1362
0.0006
          -0.0181
                     0.2482
                               -0.7476
                                          0.1100
                                                     0.3624
                                                              -0.2046
                                                                          0.1361
-0.0055
          -0.0163
                     0.2572
                               -0.7489
                                          0.1103
                                                     0.3615
                                                              -0.2047
                                                                          0.1360
-0.0020
          -0.0091
                     0.2660
                               -0.7499
                                          0.1106
                                                     0.3607
                                                              -0.2048
                                                                          0.1359
0.0065
           0.0016
                     0.2744
                               -0.7507
                                          0.1110
                                                     0.3599
                                                              -0.2049
                                                                          0.1358
```

```
residualtemp = 6000×1

0.0464

0.0464

0.0465

0.0466

0.0466

0.0467

0.0468

0.0468
```

0.0469 0.0470

info = struct with fields:

NumIMF: [8×1 double]
NumExtrema: [8×1 double]
NumZerocrossing: [8×1 double]
NumSifting: [8×1 double]
MeanEnvelopeEnergy: [8×1 double]
RelativeTolerance: [8×1 double]


```
hs =
              196.2203
   (1,1)
                 1.0558
   (3,1)
   (5,1)
               21.3020
               92.7568
   (1,2)
                 0.5029
   (2,2)
                6.0220
   (3,2)
               14.0415
   (1,3)
   (2,3)
                 6.2784
   (1,4)
               12.5105
    (2,4)
                 3.3683
    (1,5)
               66.4167
    (2,5)
                 3.5108
   (1,6)
               53.1234
    (2,6)
                2.2448
   (1,7)
               10.4910
  = 101×1
    0
    10
    20
    30
    40
    50
    60
    70
    80
    90
```

 $t = 6000 \times 1$

```
0
   0.0005
   9.9919
   0.0015
   0.0020
   0.0025
   0.0030
   0.0035
   0.0040
   0.0045
imfinsf =
imfinsf(:,:,1) =
   -0.2917
              -0.9684
                         -5.9542
                                  935.1286
                                              14.2498
                                                        -30.1620
                                                                   -12.3376
                                                                               32.3132
    0.0649
              -0.3591
                         -4.2153
                                   470.8839
                                                7.1406
                                                         -15.2670
                                                                     -5.5912
                                                                               16.6374
   -0.1154
               0.2363
                         -2.8048
                                    15.1493
                                               3.9299
                                                         -8.1592
                                                                    -1.3357
                                                                                6.2420
               0.3427
                         -2.3325
                                    14.2244
                                                3.9394
                                                          -8.1752
                                                                     -1.3471
                                                                                 6.2049
   -0.0979
                                                                     -0.4093
                                                                                 4.0721
    0.4418
               0.3601
                                    5.2232
                                                3.0437
                                                          -6.2155
                         -1.6559
    0.3231
               0.3762
                         -1.1833
                                     4.8937
                                                3.0542
                                                          -6.2262
                                                                     -0.4182
                                                                                 4.0496
                                                                    -0.0026
   -0.6038
               0.5636
                         -0.6111
                                                                                 3.1239
                                     3,6327
                                                2.6197
                                                          -5.2648
                                                                     -0.0100
   -0.2501
               0.7465
                         -0.1335
                                     3.4795
                                                2.6312
                                                          -5.2728
                                                                                 3.1078
    0.7018
               0.8907
                          0.4061
                                     3.0638
                                                2.3736
                                                          -4,6881
                                                                     0.2250
                                                                                 2.5883
               0.8447
                                     2.9756
                                                2.3858
                                                         -4.6944
                                                                                 2.5758
   -0.0375
                          0.8857
                                                                     0.2186
   -0.6900
                                                          -4.2952
               0.7425
                          1.4082
                                     2.7866
                                                2.2167
                                                                     0.3697
                                                                                 2.2422
                                                         -4.3002
   -0.3545
               0.5728
                          1.8870
                                     2.7282
                                                2.2296
                                                                     0.3640
                                                                                 2,2320
                                                          -4.0068
    0.3813
               0.3895
                          2.3970
                                     2.6234
                                               2.1119
                                                                     0.4691
                                                                                1.9991
imfinse =
imfinse(:,:,1) =
                                     0.0630
                                                                     0.0374
                                                                                 0.0139
  108.3735
              97.5587
                          0.1376
                                               1.6437
                                                           0.1599
   54.8148
              53.6426
                          0.1232
                                     0.0126
                                               0.8189
                                                           0.0853
                                                                     0.0315
                                                                                0.0135
   54.7164
              53.6753
                          0.1224
                                     0.0105
                                               0.8234
                                                           0.0851
                                                                     0.0317
                                                                                 0.0135
   40.8999
              41.9080
                          0.1183
                                     0.0472
                                               0.6142
                                                           0.0659
                                                                     0.0300
                                                                                 0.0134
   41.0326
              41.8207
                          0.1185
                                     0.0435
                                                0.6177
                                                           0.0658
                                                                     0.0301
                                                                                 0.0133
   33.6675
              35.4267
                          0.1169
                                     0.0755
                                                0.5080
                                                           0.0556
                                                                     0.0292
                                                                                 0.0133
   33.4866
              35.3828
                          0.1178
                                     0.0711
                                                0.5109
                                                           0.0555
                                                                     0.0293
                                                                                 0.0133
   28.7544
              31.1436
                          0.1172
                                     0.0972
                                                0.4397
                                                           0.0489
                                                                     0.0286
                                                                                 0.0132
   28.9746
              31.0653
                          0.1185
                                     0.0924
                                                0.4423
                                                           0.0488
                                                                     0.0288
                                                                                 0.0132
   25.3454
              27.8700
                          0.1186
                                     0.1139
                                                0.3910
                                                           0.0440
                                                                     0.0283
                                                                                 0.0132
   25.3020
              27.7133
                          0.1200
                                     0.1088
                                                0.3933
                                                           0.0440
                                                                     0.0284
                                                                                 0.0132
   22.6906
              25.1595
                          0.1204
                                     0.1267
                                               0.3540
                                                           0.0404
                                                                     0.0280
                                                                                 0.0131
   22.8345
              24.9768
                          0.1218
                                     0.1213
                                                0.3561
                                                           0.0403
                                                                     0.0281
                                                                                 0.0131
```


Instantaneous Frequency

Warning: Iteration limit reached for robust fitting. $imftemp = 6000 \times 7$ 0.0136 0.0063 0.0179 0.4434 -0.0764 -0.1668 -0.2188 -0.0109 0.0028 0.0043 0.4307 -0.0788 -0.1668 -0.2185 -0.0195 -0.0010 -0.0109 0.4150 -0.0812 -0.1668 -0.2182 -0.0184 -0.0032 -0.0271 0.3966 -0.0835 -0.1667 -0.2179 -0.0080 -0.0034 -0.0435 0.3755 -0.0857 -0.1667 -0.2176 0.0159 -0.0016 -0.0597 0.3521 -0.0878 -0.1666 -0.2173 -0.0006 0.0012 -0.0749 0.3263 -0.0899 -0.1666 -0.2170 -0.0152 0.0025 -0.0889 0.2985 -0.0919 -0.1665 -0.2167 -0.0011 0.0002 -0.1013 0.2686 -0.0939 -0.1664 -0.2163 0.0142 -0.0046 -0.1121 0.2370 -0.0958 -0.1662 -0.2160

 $residualtemp = 6000 \times 1$

Untitled

```
0.2483
0.2484
0.2484
0.2484
0.2484
0.2484
0.2484
0.2484
0.2484
```

info = struct with fields:

```
NumIMF: [7×1 double]
NumExtrema: [7×1 double]
NumZerocrossing: [7×1 double]
NumSifting: [7×1 double]
MeanEnvelopeEnergy: [7×1 double]
RelativeTolerance: [7×1 double]
```



```
hs =
  (1,1)
(14,1)
                 14.3841
                  0.6349
                  5.8398
   (1,2)
                  0.1007
    (2,2)
                  0.2571
   (8,2)
                  5.8794
   (1,3)
                  0.1131
    (2,3)
                  0.2273
   (6,3)
                  6.4098
0.0700
    (1,4)
    (2,4)
                  0.1642
    (6,4)
                  2.6633
    (1,5)
                  0.0766
0.1439
    (3,5)
    (6,5)
                  1.8681
    (1,6)
  = 101×1
    0
    10
    20
    30
    40
    50
    60
    70
    80
    90
t = 6000×1
    0.0005
    0.0010
    0.0015
    0.0020
    0.0025
    0.0030
    0.0035
    0.0040
    0.0045
```

imfinsf =

```
imfinsf(:,:,1) =
   -0.2917
              -0.9684
                        -5.9542
                                 935.1286
                                              14.2498
                                                       -30.1620
                                                                  -12.3376
                                                                              32.3132
                                                                   -5.5912
              -0.3591
                                                       -15.2670
    0.0649
                        -4.2153
                                  470.8839
                                               7,1406
                                                                              16,6374
                                               3.9299
   -0.1154
               0.2363
                        -2.8048
                                   15.1493
                                                        -8.1592
                                                                   -1.3357
                                                                               6,2420
                                                                               6.2049
   -0.0979
               0.3427
                        -2.3325
                                   14.2244
                                               3.9394
                                                        -8.1752
                                                                   -1.3471
                                                                   -0.4093
    0.4418
               0.3601
                                               3.0437
                                                                               4.0721
                        -1.6559
                                    5.2232
                                                        -6.2155
    0.3231
               0.3762
                        -1.1833
                                    4.8937
                                               3.0542
                                                         -6.2262
                                                                   -0.4182
                                                                               4.0496
   -0.6038
               0.5636
                        -0.6111
                                    3.6327
                                               2.6197
                                                         -5.2648
                                                                   -0.0026
                                                                               3.1239
                                                                   -0.0100
   -0.2501
               0.7465
                         -0.1335
                                    3.4795
                                               2.6312
                                                         -5.2728
                                                                               3.1078
               0.8907
    0.7018
                         0.4061
                                    3.0638
                                               2.3736
                                                         -4.6881
                                                                    0.2250
                                                                               2.5883
   -0.0375
               0.8447
                         0.8857
                                    2.9756
                                               2.3858
                                                         -4.6944
                                                                    0.2186
                                                                               2.5758
   -0.6900
               0.7425
                         1.4082
                                    2.7866
                                               2.2167
                                                         -4.2952
                                                                    0.3697
                                                                               2.2422
   -0.3545
               0.5728
                         1.8870
                                    2.7282
                                               2.2296
                                                         -4.3002
                                                                    0.3640
                                                                               2.2320
imfinse =
imfinse(:,:,1) =
  108.3735
              97.5587
                         0.1376
                                    0.0630
                                               1.6437
                                                         0.1599
                                                                    0.0374
                                                                               0.0139
   54.8148
              53.6426
                         0.1232
                                    0.0126
                                               0.8189
                                                         0.0853
                                                                    0.0315
                                                                               0.0135
   54.7164
              53.6753
                         0.1224
                                    0.0105
                                               0.8234
                                                         0.0851
                                                                    0.0317
                                                                               0.0135
   40.8999
              41.9080
                         0.1183
                                    0.0472
                                               0.6142
                                                         0.0659
                                                                    0.0300
                                                                               0.0134
   41.0326
              41.8207
                         0.1185
                                    0.0435
                                               0.6177
                                                         0.0658
                                                                    0.0301
                                                                               0.0133
   33.6675
              35.4267
                                    0.0755
                                               0.5080
                                                         0.0556
                                                                    0.0292
                                                                               0.0133
                         0.1169
   33.4866
              35.3828
                         0.1178
                                    0.0711
                                               0.5109
                                                         0.0555
                                                                    0.0293
                                                                               0.0133
   28.7544
              31.1436
                         0.1172
                                    0.0972
                                               0.4397
                                                         0.0489
                                                                    0.0286
                                                                               0.0132
   28.9746
              31.0653
                         0.1185
                                    0.0924
                                               0.4423
                                                         0.0488
                                                                    0.0288
                                                                               0.0132
   25.3454
              27.8700
                         0.1186
                                    0.1139
                                               0.3910
                                                         0.0440
                                                                    0.0283
                                                                               0.0132
   25.3020
              27.7133
                         0.1200
                                    0.1088
                                               0.3933
                                                         0.0440
                                                                    0.0284
                                                                               0.0132
                         0.1204
   22.6906
                                                         0.0404
                                                                    0.0280
                                    0.1267
                                               0.3540
              25,1595
                                                                               0.0131
   22.8345
              24.9768
                         0.1218
                                    0.1213
                                               0.3561
                                                         0.0403
                                                                    0.0281
                                                                               0.0131
```


Instantaneous Frequency

Warning: Iteration limit reached for robust fitting. $imftemp = 6000 \times 7$ -0.0038 0.0162 0.0078 0.1259 -1.1782 -0.2587 -0.3710 0.0049 0.0118 0.0065 0.1141 -1.1777 -0.2590 -0.3706 0.0081 0.0072 0.0047 0.1015 -1.1772 -0.2593 -0.3702 0.0050 0.0037 0.0025 0.0883 -0.2596 -0.3698 -1.1767 -0.0068 0.0020 0.0001 0.0745 -1.1761 -0.2600 -0.3694 -0.3690 0.0056 0.0020 -0.0023 0.0604 -1.1754 -0.2603 -0.0046 0.0459 -0.2606 -0.3686 0.0031 0.0017 -1.1747 -0.3682 -0.0027 0.0006 -0.0067 0.0312 -1.1740 -0.2609 -0.2612 0.0021 -0.0008 -0.0084 0.0165 -1.1733 -0.3677 -0.0096 -0.0025 0.0003 0.0018 -1.1725 -0.2615 -0.3673

residualtemp = 6000×1
0.0915
0.0915
0.0916
0.0916
0.0916
0.0916
0.0916
0.0916
0.0916
0.0916
0.0917

info = struct with fields:

NumIMF: [7×1 double] NumExtrema: [7×1 double] NumZerocrossing: [7×1 double] NumSifting: [7×1 double] MeanEnvelopeEnergy: [7×1 double] RelativeTolerance: [7×1 double]


```
hs =
   (3,1)
                0.1428
               19.9568
   (6,1)
                0.1395
   (2,2)
                8.1306
   (3,2)
                1.2616
   (1,3)
    (2,3)
                8.2222
               17.9677
   (1,4)
                5.6050
   (2,4)
   (1,5)
                0.8352
   (2,5)
                5.6634
   (1,6)
                0.6201
   (2,6)
                4.4010
    (1,7)
               17.0073
   (2,7)
                4.2330
   (1,8)
               16.6329
  = 101×1
    0
    10
    20
    30
    40
    50
    60
    70
    80
    90
t = 6000 \times 1
        0
    0.0005
    0.0010
    0.0015
    0.0020
    0.0025
    0.0030
    0.0035
    0.0040
    0.0045
imfinsf =
imfinsf(:,:,1) =
   -0.2917
              -0.9684
                         -5.9542
                                  935.1286
                                               14.2498
                                                         -30.1620
                                                                    -12.3376
                                                                                32.3132
    0.0649
              -0.3591
                         -4.2153
                                   470.8839
                                                7.1406
                                                         -15.2670
                                                                     -5.5912
                                                                                16.6374
   -0.1154
               0.2363
                         -2.8048
                                    15.1493
                                                3.9299
                                                          -8.1592
                                                                     -1.3357
                                                                                 6.2420
   -0.0979
               0.3427
                         -2.3325
                                    14.2244
                                                3.9394
                                                          -8.1752
                                                                     -1.3471
                                                                                 6.2049
                                                                     -0.4093
    0.4418
               0.3601
                         -1.6559
                                     5.2232
                                                3.0437
                                                          -6.2155
                                                                                 4.0721
    0.3231
               0.3762
                         -1.1833
                                     4.8937
                                                                     -0.4182
                                                                                 4.0496
                                                3.0542
                                                          -6.2262
               0.5636
                                                2.6197
                                                                     -0.0026
                                                                                 3.1239
   -0.6038
                         -0.6111
                                     3.6327
                                                          -5.2648
   -0.2501
               0.7465
                                     3.4795
                                                          -5.2728
                                                                     -0.0100
                                                                                 3.1078
                         -0.1335
                                                2.6312
    0.7018
               0.8907
                                     3.0638
                                                                      0.2250
                          0.4061
                                                2.3736
                                                          -4.6881
                                                                                 2.5883
                                     2.9756
               0.8447
                          0.8857
                                                                                 2.5758
    -0.0375
                                                2.3858
                                                          -4.6944
                                                                      0.2186
                                                          -4.2952
   -0.6900
               0.7425
                          1.4082
                                     2.7866
                                                2.2167
                                                                      0.3697
                                                                                 2.2422
   -0.3545
                                     2.7282
               0.5728
                          1.8870
                                                          -4.3002
                                                                      0.3640
                                                                                 2.2320
                                                2.2296
                                                2.1119
                                                          -4.0068
                                                                      0.4691
    0.3813
               0.3895
                          2.3970
                                     2.6234
                                                                                 1.9991
imfinse =
imfinse(:,:,1) =
```

108.3735	97.5587	0.1376	0.0630	1.6437	0.1599	0.0374	0.0139
54.8148	53.6426	0.1232	0.0126	0.8189	0.0853	0.0315	0.0135
54.7164	53.6753	0.1224	0.0105	0.8234	0.0851	0.0317	0.0135
40.8999	41.9080	0.1183	0.0472	0.6142	0.0659	0.0300	0.0134
41.0326	41.8207	0.1185	0.0435	0.6177	0.0658	0.0301	0.0133
33.6675	35.4267	0.1169	0.0755	0.5080	0.0556	0.0292	0.0133
33.4866	35.3828	0.1178	0.0711	0.5109	0.0555	0.0293	0.0133
28.7544	31.1436	0.1172	0.0972	0.4397	0.0489	0.0286	0.0132
28.9746	31.0653	0.1185	0.0924	0.4423	0.0488	0.0288	0.0132
25.3454	27.8700	0.1186	0.1139	0.3910	0.0440	0.0283	0.0132
25.3020	27.7133	0.1200	0.1088	0.3933	0.0440	0.0284	0.0132
22.6906	25.1595	0.1204	0.1267	0.3540	0.0404	0.0280	0.0131
22.8345	24.9768	0.1218	0.1213	0.3561	0.0403	0.0281	0.0131

Instantaneous Frequency

Instantaneous Frequency

Warning: Iteration limit reached for robust fitting.

difE = SE-mean(imfinse,2);

```
%hmmm of ictal type
% logistic regression with regulation
eta0 = 0.1;
%threshold1 = 80;
%threshold2 = 120;
%fn = 0:bin-1;
%f = 1.0*double(fn)/double(bin-1);
%t = -0.5:1/bin:0.5; % Time vector
%L = length(t)-1;
                            % Signal length
XX = 1/(4*sqrt(2*pi*0.01))*(exp(-t(1:L).^2/(2*0.01)));
%fX = fft(MEA_ch(1: bin: Pnts)).*X;
%ni = find(MEA_ch > threshold);
 \texttt{LC} = [\mathsf{zeros}(\mathsf{size}(\mathsf{L},1),1), \ \mathsf{ones}(\mathsf{size}(\mathsf{L},1),1), \ \mathsf{ones}(\mathsf{size}(\mathsf{L},1),1), \ \mathsf{zeros}(\mathsf{size}(\mathsf{L},1),1)]; \\ 
ypred = zeros(1, N);
% Mu = ze(length(ctx), 1);
% Eta = zeros(idN, idN);
```

```
% Kse = zeros(idN, idN);
             for k = 1:N
               k = 1;
%
               for k =
               1:length(ctx)
               for k = 1:7
%
               for k = 59:length(ctx)
%for k = 54:length(ctx);
                         SEtemp = SE(:,k);
                            SEtemp = (SEtemp - mean(SEtemp))/std(SEtemp);
                         SEtemp_ = [SEtemp(length(SEtemp)); SEtemp(1:(length(SEtemp)-1))];
                         difSE = SEtemp-SEtemp_;
                         Utemp = -log(SEtemp);
                         EKtemp = mean(imfinse(:,:,k),2);
                         Y = y(k);
                         steps = 50;
                          sl = 100;
                         while steps >0
                                     if steps == 50
                                                  m0 = 2*EKtemp./(difSE+0.0001);
                                     s = 0;
                                     while s < sl
                                                  m = m0((s+1):(s+length(EKtemp)*10/s1));
                                                  [lpdf0,glpdf0] = normalDistGrad(m,mean(m),std(m));
                                                     logpdf = @(X)normalDistGrad(X,mean(X),std(X));
                                                  m = m+eta0/2*glpdf0./lpdf0;
                                                  glpdf = glpdf0 + eta0*m;
                                                  lpdf = lpdf0 + eta0*mean(m);
                                                  M(:, s*sl/length(EKtemp)+1) = m+eta0/2*glpdf./lpdf;
                                                   [ Lpdf(s*sl/length(EKtemp)+1), Glpdf(:, s*sl/length(EKtemp)+1) ] = normalDistGrad(lpdf,mean(lpdf),std(lpdf)); \\ [ Lpdf(s*sl/length(EKtemp)+1), Glpdf(:, s*sl/length(EKtemp)+1) ] = normalDistGrad(lpdf), Glpdf(:, s*sl/length(EKtemp)+1) ] = normalDistGrad(lpdf), Glpdf(:, s*sl/length(EKtemp)+1) ] = normalDistGrad(lpdf), Glpdf(:, s*sl/length(EKtemp)+1) 
                                                   s = s + length(EKtemp)/sl;
                                      end
                                      m_{-} = m0;
                                     difm = M-m_{(1:length(EKtemp)*10/sl)};
                                     lbd = Lpdf - 0.5*difm.*M+log(M) - repmat(lpdf0-glpdf0(1:length(EKtemp)*10/sl) + EKtemp(1:length(EKtemp)*10/sl), 1, size(difm, length(EKtemp)*10/sl), 2, size(difm, length(EKtemp)*10/sl), 3, size(difm, length(EKtemp)*10/sl), 3, size(difm, length(EKtemp)*10/sl), 4, size(
 %configuration: min(exp(real(lbd)), 1) 1,
                                      if sum(sum(min(exp(real(lbd)), 1))< 0.5*length(exp(real(lbd))))~=0</pre>
                                                  m = M(:,sum(min(exp(real(lbd)), 1))< 0.5*length(exp(real(lbd))));</pre>
                                                  glpdf = Glpdf(:, sum(min(exp(real(lbd)), 1))< 0.5*length(exp(real(lbd))));</pre>
                                      end
                                     steps = steps -1;
                          end
                          L(:, k) = glpdf;
                            %according to definition: likelihood r = d/(1-d), (y = 1|x)/(y = 0|x)
                          for i = 1: size(L, 1)
                          %sensitivity, speciticity, precision, miss rate, false discovery rate
                                     TPR(i,k) = sum(abs(L(1:i,k))) \\ mean(abs(L(1:i,k))) & LC(1:i,k) \\ = 1)/(sum(LC(1:i,k) \\ = 1) \\ + 0.00001);
                                      TNR(i,k) = sum(abs(L(1:i,k)) < mean(abs(L(1:i,k))) & LC(1:i,k) = 0) / (sum(LC(1:i,k) = 0) + 0.00001);
                                      FNR(i,k) = sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) \& LC(1:i,k) = 1) / (sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) \& LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < = mean(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) & 
                                      FDR(i,k) = sum(abs(L(1:i,k)) > mean(abs(L(1:i,k))) & LC(1:i,k) = 0) / (sum(abs(L(1:i,k)) > mean(abs(L(1:i,k)))) + 0.00001);
                                      ACC(i,k) = (sum(abs(L(1:i,k)) \times (abs(L(1:i,k))) & LC(1:i,k) = 1) + sum(abs(L(1:i,k)) < mean(abs(L(1:i,k))) & LC(1:i,k) = 0))/i;
                                      STDACC(i,k) = std(ACC(1:i,k));
                                     STDACC(isnan(STDACC)) = 0;
                          end
                         figure,
                          subplot(2, 3, 1)
                          plot(TPR(:,k))
                         title([num2str(k),'th sensitivity'])
                          subplot(2, 3, 2)
                         plot(TNR(:,k))
                          title([num2str(k),'th speciticity'])
                          subplot(2, 3, 3)
                         plot(PPV(:,k))
                          title([num2str(k),'th precision'])
                         subplot(2, 3, 4)
                          plot(FNR(:,k))
                          title([num2str(k), 'th miss rate'])
                          subplot(2, 3, 5)
                          plot(FDR(:,k))
                         title([num2str(k), 'th false discovery rate'])
                          subplot(2, 3, 6)
                         plot([ACC(:,k), ACC(:,k)-STDACC(:,k), ACC(:,k)+STDACC(:,k)])
                         title([num2str(k),'th accuracy'])
                         clear glpdf lbd difm Lpdf Glpdf M m m_ m0
```



```
ypred(mean(abs(L), 1) \leftarrow mean(mean(abs(L), 1))) = -1;
accuracy = (sum(ypred == y))./length(y)
accuracy = 0.8000
 [h, p] = ttest(ypred, y)
h = 0
p = 0.3739
 %discrete U-test
pcd = y/max(y);
yc = ones(1,length(pcd))./(1+exp(-pcd));
yc1 = ones(1,length(pcd))./(1+exp(-pcd-log(1)));
pred = ypred/max(ypred);
ycpred = ones(1,length(pred))./(1+exp(-pred));
ycpred1 = ones(1,length(pred))./(1+exp(-pred-log(1)));
[h, p] = ttest(yc, ycpred)% h = 1, significantly different
h = 0
p = 0.3739
```

plot(1:length(y),y,'o',1:length(y),ypred,'x')

figure,

ypred(mean(abs(L), 1)>mean(mean(abs(L),1))) = 1;

```
legend('Data','Predictions')
title(['Result of linear regression with accuracy: ',num2str(accuracy)]);
```



```
%F0
fa_ac = (yc+pcd).*(ycpred+pred);
%F01
fa_ac1 = (yc1+pcd).*(yc1-pcd*log(1));
%F10
f1a1_ac = (ycpred-pred*log(1)).*(ycpred+pred);
%F1
f1a1_ac1 = (yc-pcd*log(1)).*(ycpred-pred*log(1));

% fk = (gam(1) - pad(1:4).*log(1.1)).*(gam(2) - pacd(1:4).*log(1.1));
F0 = [mean(fa_ac(:)), mean(fa_ac1(:))];
F1 = [mean(f1a1_ac(1)), mean(f1a1_ac1(1))];

nH = sum([ttest(F0(1),F1(1))==0 ,ttest(F0(2),F1(1))==0 ,ttest(F0(1),F1(2))==0 ,ttest(F0(2),F1(2))==0]);
phi = 3/4+0.5*nH/4;
psi = 0.5+0.5*(3/4-1/4);

phi_ = mean(F0(:))-mean(F1(:))+0.5
```

```
phi_ = 1.0897

psi_ = max(F0(:)-F1(:))
```

```
figure,
subplot(4,1,1)
plot(log(fa_ac));
title('00');
subplot(4,1,2)
plot(log(fa_ac1));
title('11');
subplot(4,1,3)
plot(log(f1a1_ac));
title('10');
subplot(4,1,4)
plot(log(f1a1_ac1));
title('11');
```



```
figure,
imagesc([F0;F1])
title('phi,psi')
```



```
%manovacluster(ictal_n_interv)
%% fast ripple and ripple
% legend('Input Data','Filtered Data')
% plot(interval,MEAy_ch(bin*(n-1)+1:bin*(n-1)+1+length(interval)-1),'r');
% hold on
% plot(interval,MEA_t(bin*(n-1)+1:bin*(n-1)+1+length(interval)-1),'b');
% title(['raw data v.s filtered data on channel', num2str(ch),' ', num2str(n_interv), 'th ictal interval : ', num2str(n),' s to ', num2str
% legend('Input Data','Filtered Data')
% ictal_n_interv = ictal_n_interv(:, 1:2:size(ictal_n_interv,2));
type = ["interictal","ictal", "ictal", "interictal", "interictal"];
group = [0,1,1,0,0];
y = [-1,1,1,-1,-1];
%[Asym, Dur, ypred, lml_cor3] = ictalclassify(ictal_n_interv, fs, asym, dur, type, group, y, ch)
% ictal, inter-ictal
ictal_n_interv = chf_bin_h(:);
 for i = 1:size(ictals, 1)
           ictal\_n\_interv(1:length((floor(ictals(i,1))-1)*bin+1: (floor(ictals(i,2))+1)*bin), i) = MEA\_t((floor(ictals(i,1))-1)*bin+1: (floor(ictals(i,2))+1)*bin), i) = MEA\_t((floor(ictals(i,2))-1)*bin+1: (floor(ictals(i,2))+1)*bin), i) = MEA\_t((floor(ictals(i,2))-1)*bin+1: (floor(ictals(i,2))+1)*bin), i) = MEA\_t((floor(ictals(i,2))-1)*bin+1: (floor(ictals(i,2))+1)*bin), i) = MEA\_t((floor(ictals(i,2))-1)*bin+1: (floor(ictals(i,2))-1)*bin+1: (floor(ict
end
EEG = ictal_n_interv(1:10:size(ictal_n_interv, 1), :);
%L = size(ictal_n_interv, 2);
%seglen = bin;
%M = ceil(size(ictal_n_interv, 1)/bin);
%a = 0.1:
%FF = RD_STFT(EEG, fs, M, L, seglen, a);%overlap 0.5
```

```
[yupper,ylower] = envelope(EEG);
[M, N] = size(EEG);
SE = zeros(M, N);
SEH = SE;
for i = 1:N
   mdl = fit([1: size(yupper,1)]', 0.5*(yupper(:,i)+ylower(:,i)), 'poly3', 'Normalize','on', 'Robust','Bisquare');
  h(:,i) = EEG(:, i) - mdl(1:M);
  k = 1;
  hk(:,k) = abs(h(:,i) - mean(h(:,i) , 1));
  Hk(:,k) = real(hilbert(hk(:,k)));
   SD = abs(hk(:,k) - abs(hk(:,k) - mean(hk(:,k) , 1))).^2./abs(hk(:,k) - mean(hk(:,k) , 1)).^2;
   while sum(SD > mean(SD))>0.001*i*M & k < M</pre>
       hk(:,k+1) = abs(hk(:,k) - mean(hk(:,k) , 1));
       Hk(:,k+1) = real(hilbert(hk(:,k)));
       SD = SD + abs(hk(:,k) - abs(hk(:,k+1) - mean(hk(:,k+1) , 1))).^2./abs(hk(:,k+1) - mean(hk(:,k+1) , 1)).^2;
       k = k+1;
   end
  if k >1
       SE(:,i) = sum(hk./repmat(sum(hk,2),[1, size(hk,2)]).*log(hk./repmat(sum(hk,2),[1,size(hk,2)])),2);
       SEH(:,i) = sum(Hk./repmat(sum(Hk,2),[1, size(Hk,2)]).*log(Hk./repmat(sum(Hk,2),[1,size(Hk,2)])),2);
       SE(:,i) = hk/sum(hk).*log(hk/sum(hk))+(1-hk/sum(hk)).*log(1-hk/sum(hk));
       SEH(:,i) = Hk/sum(Hk).*log(Hk/sum(Hk))+(1-Hk/sum(Hk)).*log(1-Hk/sum(Hk));
  end
  clear hk Hk SD mdl
end
```

```
%hmmm of ripple and fast ripple
% logistic regression with regulation
eps0 = 0.01;
w = ones(M, 1)/M;
1md = w;
%threshold1 = 80;
%threshold2 = 120;
Pnts = size(ictal_n_interv, 1);
bin = 2000;
%fn = 0:bin-1;
%f = 1.0*double(fn)/double(bin-1);
%t = -0.5:1/bin:0.5; % Time vector
                                                  % Signal length
%L = length(t)-1;
X = 1/(4*sqrt(2*pi*0.01))*(exp(-t(1:L).^2/(2*0.01)));
%fX = fft(MEA_ch(1: bin: Pnts)).*X;
%ni = find(MEA_ch > threshold);
steps = 50;
L = repmat(-100,[M, 1]);
1 = zeros(M, N);
ypred = zeros(1, N);
W = zeros(M, N);
B = zeros(M, N);
% Mu = ze(length(ctx), 1);
% Eta = zeros(idN, idN);
% Kse = zeros(idN, idN);
         for k = 1:N
%
           k = 1;
          for k =
          1:length(ctx)
           for k = 1:7
%
           for k = 59:length(ctx)
%for k = 54:length(ctx);
                   SEtemp = SE(:,k);
                   SEtemp = (SEtemp - mean(SEtemp))/std(SEtemp);
                   Y = y(k);
                   while steps >0
                            Test = normpdf(SEtemp, mean(SEtemp), std(SEtemp));
                            b = gampdf(SEtemp, 0.2, 2);
%
                               b = ones(length(F_{(:, k)),1})./(1 + exp(-F_{(:, k)} - sigma.*F_hat));
                            w = w/(sum(w)+0.000001);
%
                                 wd = 1+exp(-F_{-});
%
                                 wd(isinf(wd)) = 10000;
%
                                 w = w + mu*F_hat.*wd.^2./(exp(-F_(:, k)).*F_+0.00001);
                                 b = b + mu*F_hat.*wd.^2./(exp(-F_(:, k)-sigma.*F_hat).*F_+0.00001);
                             K = abs(SEtemp);
                            l(1:length(K), k) = log(1 + exp(-Y.* w(1:length(K)).* SEtemp(:))) + lmd(1:length(K)).*w(1:length(K)).^2/2 + 2*K.*b.* SEtemp./(
                              {\sf cond} = \log(1 + \exp(-Y. * w(1: {\sf length(K)}). * {\sf SEtemp})) + \\ {\sf lmd(1: length(K))}. * w(1: {\sf length(K)}). ^2/2 + 2*K. * b. * {\sf SEtemp}./(eps0*(1: {\sf length(K)}). ^2/2 + 2*K. * b. * {\sf SEtemp}./(eps0*(1: {\sf length(K)}). ^2/2 + 2*K. * b. * {\sf SEtemp}./(eps0*(1: {\sf length(K)}). ^2/2 + 2*K. * b. * {\sf SEtemp}./(eps0*(1: {\sf length(K)}). ^2/2 + 2*K. * b. * {\sf SEtemp}./(eps0*(1: {\sf length(K)}). * {\sf SE
                             if sum(isnan(cond))~= length(cond) & sum(cond==0)~= length(cond)
                                      W(1:length(K),k) = -Y.*SEtemp./(1 + exp(-Y.* w(1:length(K)).* SEtemp));
```

```
if (sum(isnan(cond))== length(cond) | sum(cond==0)== length(cond))
                                                   k = k+1;
                                                  steps = 50;
                                                   break;
                                     w = W(:, k);
                                      L = \log(1 + \exp(-Y.* w(1:length(K)).* SEtemp)) + lmd.*w(1:length(K)).^2/2 + 2.*K.*b(1:length(K)).* SEtemp./(eps0*(1:length(K))).* (eps0*(1:length(K))).* (eps0*(1
                                     steps = steps -1;
                                      if steps == 0
                                                  l(isnan(1(:,k)),k) = 0.5*l(isnan(1(:,k)),max(k-1,1))+0.5*l(isnan(1(:,k)),min(k+1,N));
                                                  1(sum(isnan(1(:,k))) = size(1,1),k) = 0.5*1(sum(isnan(1(:,k))) = size(1,1),max(k-1,1)) + 0.5*1(sum(isnan(1(:,k))) = size(1,1),max(k-1,1)) + 0.5*1(sum(isnan(1(:,k))) = size(1,1),k) = 0.5*1(sum(isnan(1(:,k))) = size(1,1),k) = 0.5*1(sum(isnan(1(:,k))) = size(1,1),max(k-1,1)) + 0.5*1(sum(isnan(1(:,k))) = size(1,1),k) = 0.5*1(sum(isnan(1(:,k))) = size(1,1),max(k-1,1)) + 0.5*1(sum(isnan(1(:,k))) + 0.5*1(sum(isnan(1(:,k))) = size(1,1),max(k-1,1)) + 0.5*1(sum(isnan(1(:,k))) +
                                                  ypred(1,k) = mean(1(1(:,k)\sim=0,k));
                                                  k = k+1:
                                                  steps = 50;
                                                  break;
                                      end
%
                                            if k > length(ctx)
%
                                                           break
%
                                            end
                         end
            end
            ypred
   ypred(ypred>mean(ypred)) = 1;
   ypred(ypred<=mean(ypred)) = -1;</pre>
   accuracy = (sum(ypred == y))./length(y)
   [h, p] = ttest(ypred , y)
      %discrete U-test
   pcd = y/max(y);
   yc = ones(1,length(pcd))./(1+exp(-pcd));
   yc1 = ones(1,length(pcd))./(1+exp(-pcd-log(1)));
   pred = ypred/max(ypred);
   ycpred = ones(1,length(pred))./(1+exp(-pred));
   ycpred1 = ones(1,length(pred))./(1+exp(-pred-log(1)));
   [h, p] = ttest(yc, ycpred)% h = 1, significantly different
 plot(1:length(y),y,'o',1:length(y),ypred,'x')
 legend('Data','Predictions')
 title(['Result of linear regression with accuracy: ',num2str(accuracy)]);
%F0
   fa_ac = (yc+pcd).*(ycpred+pred);
   fa_ac1 = (yc1+pcd).*(yc1-pcd*log(1));
   %F10
   f1a1_ac = (ycpred-pred*log(1)).*(ycpred+pred);
   f1a1_ac1 = (yc-pcd*log(1)).*(ycpred-pred*log(1));
      % fk = (gam(1) - pad(1:4).*log(1.1)).*(gam(2) - pacd(1:4).*log(1.1));
 F0 = [mean(fa_ac(:)), mean(fa_ac1(:))];
 F1 = [mean(f1a1_ac(1)), mean(f1a1_ac1(1))];
 \mathsf{nH} = \mathsf{sum}([\mathsf{ttest}(\mathsf{F0}(1),\mathsf{F1}(1)) == \emptyset, \mathsf{ttest}(\mathsf{F0}(2),\mathsf{F1}(1)) == \emptyset, \mathsf{ttest}(\mathsf{F0}(1),\mathsf{F1}(2)) == \emptyset, \mathsf{ttest}(\mathsf{F0}(2),\mathsf{F1}(2)) == \emptyset]);
phi = 3/4+0.5*nH/4;
 psi = 0.5+0.5*(3/4-1/4);
 phi_ = mean(F0(:))-mean(F1(:))+0.5
psi_ = max(F0(:)-F1(:))
figure,
subplot(4,1,1)
 plot(log(fa_ac));
title('00');
subplot(4,1,2)
plot(log(fa_ac1));
title('11');
 subplot(4,1,3)
plot(log(f1a1_ac));
title('10');
subplot(4,1,4)
plot(log(f1a1_ac1));
title('11');
figure,
```

imagesc([F0;F1])
title('phi,psi')

```
eps0 = 0.01;
wt = ones(M, 1)/M;
lmdt = wt;
%threshold1 = 80;
%threshold2 = 120;
%fn = 0:bin-1;
%f = 1.0*double(fn)/double(bin-1);
%t = -0.5:1/bin:0.5; % Time vector
%L = length(t)-1;
                                                                % Signal length
X = 1/(4*sqrt(2*pi*0.01))*(exp(-t(1:L).^2/(2*0.01)));
%fX = fft(MEA_ch(1: bin: Pnts)).*X;
%ni = find(MEA_ch > threshold);
steps = 50;
Lt = repmat(-100,[M, 1]);
ltt = zeros(M, N);
ypredt = zeros(1, N);
Wt = zeros(M, N);
Bt = zeros(M, N);
F_t= zeros(M, N);
Testt = normpdf(SEtemp, mean(SEtemp), std(SEtemp));
 clear SEtemp ;
SEtempt = Testt;
% Mu = ze(length(ctx), 1);
% Eta = zeros(idN, idN);
% Kse = zeros(idN, idN);
           for k = 1:N
             k = 1;
            for k =
%
             1:length(ctx)
              for k = 1:7
%
              for k = 59:length(ctx)
%for k = 54:length(ctx);
                      Yt = y(k);
                       SEtempt = SE(:,k);
                       SEtempt = (SEtemp - mean(SEtemp))/std(SEtemp);
                       while steps >0
                                  b = gampdf(SEtemp, 0.2, 2);
%
                                        b = ones(length(F_{(:, k)),1})./(1 + exp(-F_{(:, k)} - sigma.*F_hat));
                                  w = w/(sum(w)+0.000001);
%
                                        wd = 1+exp(-F_{-});
%
                                        wd(isinf(wd)) = 10000;
%
                                        w = w + mu*F_hat.*wd.^2./(exp(-F_(:, k)).*F_+0.00001);
%
                                        b = b + mu*F_hat.*wd.^2./(exp(-F_(:, k)-sigma.*F_hat).*F_+0.00001);
                                   K = abs(SEtemp);
                                  l(1:length(K), k) = log(1 + exp(-Y.* w(1:length(K)).* SEtemp(:))) + lmd(1:length(K)).*w(1:length(K)).^2/2 + 2*K.*b.* SEtemp./(
                                  cond = log(1 + exp(-Y.* w(1:length(K)).* SEtemp)) + lmd(1:length(K)).* w(1:length(K)).^2/2 + 2*K.*b.* SEtemp./(eps0*(1:length(K)).* w(1:length(K)).* w(1:leng
                                   if sum(isnan(cond))~= length(cond) & sum(cond==0)~= length(cond)
                                              W(1:length(K),k) = -Y.*SEtemp./(1 + exp(-Y.* w(1:length(K)).* SEtemp));
                                   if (sum(isnan(cond))== length(cond) | sum(cond==0)== length(cond))
                                              k = k+1;
                                              steps = 50;
                                              break:
                                  w = W(:, k);
                                  L = \log(1 + \exp(-Y.* w(1:length(K)).* SEtemp)) + lmd.*w(1:length(K)).^2/2 + 2.*K.*b(1:length(K)).* SEtemp./(eps0*(1:length(K)))
                                  steps = steps -1;
                                   if steps == 0
                                             1(isnan(1(:,k)),k) = 0.5*1(isnan(1(:,k)),max(k-1,1))+0.5*1(isnan(1(:,k)),min(k+1,N));
                                              1(sum(isnan(1(:,k))) = size(1,1),k) = 0.5*1(sum(isnan(1(:,k))) = size(1,1), max(k-1,1)) + 0.5*1(sum(isnan(1(:,k))) + 0.
                                              ypred(1,k) = mean(1(1(:,k)\sim=0,k));
                                              k = k+1;
                                              steps = 50;
                                              break;
                                   end
%
                                        if k > length(ctx)
%
                                                      break
%
                                        end
                       end
            end
           ypred
```