Algorithm 1

Require: A quantum algoritm A such that $\nu(A) \geq 0$, an accuracy $\epsilon < 1/2$. **Ensure:** An estimate of $\mathbb{E}[\nu(A)]$.

- 1: Set $k=\log_2(1/\epsilon),\ t_0=\frac{D\sqrt{\log_2 1/\epsilon}}{\epsilon},$ where D is a universal constant to be chosen later.
- 2: Use algorithm 1 with $t=t_0,~\delta=1/10$ to estimate $\mathbb{E}[\nu(A_{0,1}].$ Let the estimate be $\widetilde{\mu}_0$.
- 3: For $l=1,\ldots,k$: Use algorithm 1 with $t=t_0,\ \delta=1/(10k)$ to estimate $\mathbb{E}[\nu(A_{2^{l-1},2^l}/2^l]$. Let the estimate be $\widetilde{\mu}_l$. 4: Output $\widetilde{\mu}=\widetilde{\mu}_0+\sum_{l=1}^k 2^l\widetilde{\mu}_l$.