CS & IT

ENGINEERING

DISCRETE MATHS
SET THEORY

Lecture No. 11

$$\{q|b(a,b)=a \ ob \in lub.$$

 $\{ub(a,b)=\ oa \in alb.$

(A,R) poset

Someon alb& lub exist for all pairs:

(A,R) lattice

Sheck(a)
$$(heck(b), ab \le a)$$
 $ab \le a$
 $ab \le b$
 $ab \le b(F)$
 $b \le a(f)$

$$ab \leq b$$
 $a \leq b(F)$

4b((,b) = NA

$$(Dn,1)$$
 alb \rightarrow acd $|ub \rightarrow |cm|$

Ø 0

* Every Toset is lattice.

(chain)

1)
$$a \vee a = a$$
 $a \wedge a = a$
 $|ub(a,a) = a$ $a \wedge a = a$

2)
$$avb = bva$$
 $anb = bna$.
 $|ub(a,b) = |ub(b,a)| q|b(a,b) = q|b(b,a)$

4)
$$av(anb)=a$$
 $an(avb)=a$

$$lub(a, lub(b,c)) =$$

$$lub(lub(a,b), c)$$

3) av(bvc) = (avb)vc

av(bvc) = (avb)vc. |ub(b,c)| |ub(a,b)|

lub(a,b)
lub(b,c)

an(bnc)=(anb)nc

$$(avb)=a$$
 $(avb)=a$
 $(avb)=a$
 $(avb)=a$
 $(avb)=a$
 $(avb)=a$

$$av(anb)=a$$
.
$$(av)a(a,b)$$

$$(av)a(a)=a$$

(zt, s) to set > lattice.

SG.E -> NA.

Every finite lattice will be bounded lattice.

bounded lattice.

(Z, <) > Toset > lattice.

> GE:NA

> LE-NA.

a, b are complement to each.

Somplement lattice

bounded lattice, atleast 1 complement exist for all elements

$$|ub(b,x)=d$$
 $q_{1b}(b,x)=a$
 $|ub(b,x)=a$
 $|ub(b,x)=a$
 $|ub(b,x)=a$
 $|ub(b,x)=a$
 $|ub(b,x)=a$

$$|ub(b,c)=d(1)$$
 $b=c$.

 $q|b(b,c)=a(0)$

$$|ub(a,d)=d(1) a+d=1.$$
 $a|b(a,d)=a(0) a\cdot d=0.$

$$3 = ?$$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$
 $3 + = ?$

$$6. = 1.$$
 $qcd(6,12)=1.$

(D12,1) complement lattice?
$$4^{1}=3$$

put 3

$$1cm(2,3) \neq 12$$

put 4
 $1cm(2,4) \neq 12$

put 3

$$lcm(2,3) \neq 12$$

put 4
 $lcm(2,6) \neq 12$
 $put + 12$
 $lcm(2,4) \neq 12$
 $lcm(2,12) = 12$

$$A = \{1.2.3\}$$
 $(P(A), \subseteq \{1.2.3\})$
 $(A) = \{1.2.3\}$
 $(A) = \{1.2$

$$a+b=1. \quad aub=GE.$$

$$aub=\{123\}$$

$$anb=\emptyset$$

$$\{1\} \cup \{23\} = \{123\}$$

$$\{1\} \cap \{23\} = \emptyset$$

$$\{1\} \cap \{23\} = \{23\}$$

$$\{2\} \cup [13] = \{123\}$$

$$\{2\} \cap \{13\} = \emptyset$$

lattice?

({2,3,6,12,24,36,72])
lattice?

complement?

