

## **Cambridge Assessment International Education**

Cambridge Ordinary Level

COMPUTER SCIENCE 2210/13

Paper 1

October/November 2019

MARK SCHEME
Maximum Mark: 75

## **Published**

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 14 printed pages.



[Turn over



## **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

## **GENERIC MARKING PRINCIPLE 1:**

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- · the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

## GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope
  of the syllabus and mark scheme, referring to your Team Leader as appropriate
- · marks are awarded when candidates clearly demonstrate what they know and can do
- · marks are not deducted for errors
- · marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2019 Page 2 of 14



Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

## GENERIC MARKING PRINCIPLE 6:

**GENERIC MARKING PRINCIPLE 5:** 

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 3 of 14



| Question  | Answer                                                                                              | Marks |
|-----------|-----------------------------------------------------------------------------------------------------|-------|
| 1(a)(i)   | Two from:  • 2D scanner  • Touchscreen  • Keypad/keyboard  • Card reader  • Mouse  • Digital camera | 2     |
| 1(a)(ii)  | Two from:  HDD  SSD  USB flash memory drive  SD card  Any optical                                   | 2     |
| 1(a)(iii) | Two from:  • Monitor/Touch screen  • Speaker  • Printer  • LED // Light                             | 2     |
| 1(b)(i)   | Increase the length of the key // make key 12-bit, etc.                                             | 1     |
| 1(b)(ii)  | Cypher text                                                                                         | 1     |

© UCLES 2019 Page 4 of 14



| Question  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
| 1(b)(iii) | Six from:  The system could use odd or even parity  A parity bit is added  The data is checked to see if it has incorrect/correct parity // by example  If parity is correct no error is found  An acknowledgement is sent that data is received correctly  The next packet of data is transmitted  If incorrect parity is found an error has occurred  A signal is sent back to request the data is resent  The data is resent until data is received correctly/timeout occurs |       |  |  |  |  |  |
| 1(c)(i)   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6     |  |  |  |  |  |

© UCLES 2019 Page 5 of 14



| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                | Marks |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1(c)(ii) | One mark for identification: Compression                                                                                                                                                                                                                                                                                                                                              | 4     |
|          | Three from e.g.:  Best compression would be lossy  Use compression algorithm  This would remove all the unnecessary data from the file // removes detail/sound that the human eye/ear may not see/hear  Reduce colour palette  so each pixel requires fewer bits  Reduce resolution  Only store what changes between frames // temporal redundancy                                    |       |
| 1(d)     | Five from:  The display is made up of pixels  that are arranged together as a matrix  Each pixel has three filters, red, blue and green  Shades of colour are achieved by mixing red, blue and green  The screen is backlit  Light is shone through the liquid crystals  The liquid crystals can be made to turn solid or transparent/on or off  by changing the shape of the crystal | 5     |

© UCLES 2019 Page 6 of 14



| Question | Answer                                                                            |             |           |  |  |  |  |
|----------|-----------------------------------------------------------------------------------|-------------|-----------|--|--|--|--|
| 2(a)     | One mark for each correct row                                                     |             |           |  |  |  |  |
|          | Statement                                                                         | True<br>(✓) | False (✓) |  |  |  |  |
|          | High-level languages need to be translated into machine code to run on a computer | <b>✓</b>    |           |  |  |  |  |
|          | High-level languages are written using mnemonic codes                             |             | <b>✓</b>  |  |  |  |  |
|          | High-level languages are specific to the computer's hardware                      |             | <b>✓</b>  |  |  |  |  |
|          | High-level languages are portable languages                                       | ✓           |           |  |  |  |  |

© UCLES 2019 Page 7 of 14



| Question |                                                                                                 |             |
|----------|-------------------------------------------------------------------------------------------------|-------------|
| 2(b)     | One mark for the correct tick                                                                   |             |
|          | Example program                                                                                 | Tick<br>(✓) |
|          | 1011100000110000<br>0000011011100010                                                            |             |
|          | INP<br>STA ONE<br>INP<br>STA TWO<br>ADD ONE                                                     |             |
|          | <pre>a = input() b = input() if a == b:     print("Correct") else:     print("Incorrect")</pre> | ✓           |

| Question | Answer                                                                                       | Marks |
|----------|----------------------------------------------------------------------------------------------|-------|
| 3        | One mark for each correct term in the correct order  Serial Parallel Serial Simplex Parallel | 5     |

© UCLES 2019 Page 8 of 14





© UCLES 2019 Page 9 of 14



| Question |                                                                            |                                                                    |                                                                         | Ansv                   | wer |  | Mark |  |
|----------|----------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|-----|--|------|--|
| 4(b)     | Three m                                                                    | marks f<br>ark for                                                 | 8 correct out<br>for 6 or 7 correct<br>4 or 5 correct<br>2 or 3 correct | ect outputs<br>outputs |     |  |      |  |
|          | Α                                                                          | Т                                                                  | Р                                                                       | Working space          | x   |  |      |  |
|          | 0                                                                          | 0                                                                  | 0                                                                       |                        | 0   |  |      |  |
|          | 0                                                                          | 0                                                                  | 1                                                                       |                        | 1   |  |      |  |
|          | 0                                                                          | 1                                                                  | 0                                                                       |                        | 0   |  |      |  |
|          | 0                                                                          | 1                                                                  | 1                                                                       |                        | 0   |  |      |  |
|          | 1                                                                          | 0                                                                  | 0                                                                       |                        | 0   |  |      |  |
|          | 1                                                                          | 0                                                                  | 1                                                                       |                        | 1   |  |      |  |
|          | 1                                                                          | 1                                                                  | 0                                                                       |                        | 1   |  |      |  |
|          | 1                                                                          | 1                                                                  | 1                                                                       |                        | 1   |  |      |  |
| 4(c)     | <ul> <li>Se</li> <li>Siç</li> <li>Re</li> <li>Mic</li> <li>If v</li> </ul> | Six from: Sensor sends a signal/reading/data to the microprocessor |                                                                         |                        |     |  |      |  |

© UCLES 2019 Page 10 of 14



| Question |                   |                                  |   |   |   | Ans | wer |   |   |  |  |
|----------|-------------------|----------------------------------|---|---|---|-----|-----|---|---|--|--|
| 5        | One mark for each | mark for each correct parity bit |   |   |   |     |     |   |   |  |  |
|          |                   | Parity<br>bit                    |   |   |   |     |     |   |   |  |  |
|          | Register A        | 0                                | 0 | 1 | 0 | 0   | 0   | 1 | 1 |  |  |
|          | Register B        | 0                                | 0 | 0 | 0 | 0   | 1   | 1 | 1 |  |  |
|          | Register C        | 0                                | 0 | 0 | 0 | 0   | 0   | 1 | 1 |  |  |

| Question | Answer                                    | Marks |
|----------|-------------------------------------------|-------|
| 6(a)     | Free software                             | 1     |
| 6(b)     | • Freeware                                | 1     |
| 6(c)     | Shareware                                 | 1     |
| 6(d)     | Plagiarism // Intellectual property theft | 1     |
| 6(e)     | Copyright                                 | 1     |

© UCLES 2019 Page 11 of 14



| Question | Answer                                                                                                                                                                                                                                                                                                                                           | Marks |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7(a)(i)  | Three from:  RAM  Primary memory  Volatile memory  Holds currently in use data/instructions  Directly accessed by the CPU                                                                                                                                                                                                                        | 3     |
| 7(a)(ii) | Two from: Arithmetic and logic unit (ALU) Memory address register (MAR) Memory data register (MDR) // Memory buffer register (MBR) Accumulator (ACC) Immediate Access Store (IAS) Control Unit (CU) Program counter (PC) Current instruction register (CIR) Address bus Data bus Control bus Input device Output device Secondary storage device | 2     |

© UCLES 2019 Page 12 of 14



| Question | Answer                                                                 |             |              |
|----------|------------------------------------------------------------------------|-------------|--------------|
| 7(b)     | One mark for each correct row                                          |             |              |
|          | Statement                                                              | True<br>(✓) | False<br>(✓) |
|          | Interrupts can be hardware based or software based                     | ✓           |              |
|          | Interrupts are handled by the operating system                         | ✓           |              |
|          | Interrupts allow a computer to multitask                               | ✓           |              |
|          | Interrupts work out which program to give priority to                  |             | ~            |
|          | Interrupts are vital to a computer and it cannot function without them | ✓           |              |

© UCLES 2019 Page 13 of 14



| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8        | Four from:  A hacker could have hacked the network  Mand downloaded the malware onto the network  Clicking a link/attachment/downloaded a file from an email/on a webpage  mathematical manufacture could have been embedded into the link/attachment/file  Opening an infected software package  mathematical manufacture could have been embedded into the network  Inserting an infected portable storage device  mathematical manufacture could have been embedded into the network | 4     |
|          | <ul> <li>Firewall has been turned off</li> <li> so malware would not be detected/checked for when entering network</li> <li>Anti-malware has been turned off</li> <li> so malware is not detected/checked for when files are downloaded</li> </ul>                                                                                                                                                                                                                                      |       |

© UCLES 2019 Page 14 of 14

