

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Support Vector Machines

Kernels

Matt Gormley Lecture 27 Apr. 22, 2020

Reminders

- Homework 8: Reinforcement Learning
 - Out: Fri, Apr 10
 - Due: Wed, Apr 22 at 11:59pm
- Homework 9: Learning Paradigms
 - Out: Wed, Apr. 22
 - Due: Wed, Apr. 29 at 11:59pm
 - Can only be submitted up to 3 days late, so we can return grades before final exam

- Today's In-Class Poll
 - http://poll.mlcourse.org

CONSTRAINED OPTIMIZATION

Constrained Optimization

SVM: Optimization Background

Whiteboard

- Constrained Optimization
- Linear programming
- Quadratic programming
- Example: 2D quadratic function with linear constraints

SUPPORT VECTOR MACHINE (SVM)

Example: Building Walls

SVM

Whiteboard

SVM Primal (Linearly Separable Case)

Black B6X QP solver

Support Vector Machines (SVMs)

Hard-margin SVM (Primal)

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_2^2$$
s.t. $y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \ge 1, \quad \forall i = 1, \dots, N$

Hard-margin SVM (Lagrangian Dual)

$$\underbrace{\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}}_{\mathbf{s.t.} \ \alpha_{i} \geq 0, \quad \forall i = 1, \dots, N$$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

- Instead of minimizing the primal, we can maximize the dual problem
- For the SVM, these two problems give the same answer (i.e. the minimum of one is the maximum of the other)
- Definition: support vectors are those points x⁽ⁱ⁾ for which α⁽ⁱ⁾ ≠ ο

METHOD OF LAGRANGE MULTIPLIERS

Method as Lagrange Multipliers (cax w/nequalities)

Goal: min
$$f(\vec{x})$$
 s.t. $g(\vec{x}) \neq c$

() Construct Lagrangian

 $L(\vec{x}, \vec{n}) = f(\vec{x}) - \lambda(g(\vec{x}) - c)$

(2) Solve min $mc \times L(\vec{x}, \vec{n})$
 $\nabla L(\vec{x}, \vec{n}) = 0$ s.t. $\lambda \geq 0$, $g(\vec{x}) \neq c$

Equivalent to solving:

 $\nabla f(\vec{x}) = \lambda \nabla f(\vec{x})$ s.t. $\lambda \geq 0$, $g(\vec{x}) \neq c$

Figure from http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.aspx

SVM DUAL

Whiteboard

- Lagrangian Duality
- Example: SVM Dual

Support Vector Machines (SVMs)

Hard-margin SVM (Primal)

$$egin{aligned} \min_{\mathbf{w},b} & rac{1}{2} \|\mathbf{w}\|_2^2 \ ext{s.t.} & y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)}+b) \geq 1, \quad orall i=1,\dots,N \end{aligned}$$

Hard-margin SVM (Lagrangian Dual)

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}$$

s.t.
$$\alpha_i \geq 0$$
, $\forall i = 1, \dots, N$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

$$\mathbf{w} = \mathbf{w} \cdot \mathbf{y}^{(i)} \mathbf{x}^{(i)}$$

- Instead of minimizing the primal, we can maximize the dual problem
- For the SVM, these two problems give the same answer (i.e. the minimum of one is the maximum of the other)
- Definition: support vectors are those points $x^{(i)}$ for which $\alpha^{(i)} \neq 0$

SVM EXTENSIONS

Soft-Margin SVM

Hard-margin SVM (Primal)

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_2^2$$
s.t. $y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \geq 1$, $\forall i = 1, \dots, N$

Soft-margin SVM (Primal)

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_2^2 + C\left(\sum_{i=1}^N e_i\right)$$

s.t.
$$y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)}+b) \geq 1$$
 e_i , $\forall i=1,\ldots,N$ $e_i \geq 0, \quad \forall i=1,\ldots,N$

- Question: If the dataset is not linearly separable, can we still use an SVM?
- Answer: Not the hardmargin version. It will never find a feasible solution.

In the soft-margin version, we add "slack variables" that allow some points to violate the large-margin constraints.

The constant C dictates how large we should allow the slack variables to be

Soft-Margin SVM

Hard-margin SVM (Primal)

$$egin{aligned} \min_{\mathbf{w},b} & rac{1}{2} \|\mathbf{w}\|_2^2 \ ext{s.t.} & y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)}+b) \geq 1, \quad orall i=1,\dots,N \end{aligned}$$

Soft-margin SVM (Primal)

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_2^2 + C \left(\sum_{i=1}^N e_i\right)$$
s.t. $u^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) > 1$

s.t.
$$y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \ge 1 - e_i, \quad \forall i = 1, \dots, N$$

 $e_i \ge 0, \quad \forall i = 1, \dots, N$

Soft-Margin SVM

Hard-margin SVM (Primal)

$$egin{aligned} \min_{\mathbf{w},b} & rac{1}{2}\|\mathbf{w}\|_2^2 \ ext{s.t.} & y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)}+b) \geq 1, \quad orall i=1,\dots,N \end{aligned}$$

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_2^2 + C \left(\sum_{i=1}^N e_i \right)$$

s.t.
$$y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)}+b) \ge 1-e_i$$
, $\forall i=1,\ldots,N$
 $e_i \ge 0$, $\forall i=1,\ldots,N$

Hard-margin SVM (Lagrangian Dual)

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}$$

s.t.
$$\alpha_i \geq 0$$
, $\forall i = 1, \dots, N$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

Soft-margin SVM (Lagrangian Dual)

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}$$

s.t.
$$0 \le \alpha_i \le C$$
, $\forall i = 1, \dots, N$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

We can also work with the dual of the soft-margin SVM

Multiclass SVMs

The SVM is **inherently** a **binary** classification method, but can be extended to handle K-class classification in many ways.

1. one-vs-rest:

- build K binary classifiers
- train the kth classifier to predict whether an instance has label k or something else
- predict the class with largest score

2. one-vs-one:

- build (K choose 2) binary classifiers
- train one classifier for distinguishing between each pair of labels
- predict the class with the most "votes" from any given classifier

Learning Objectives

Support Vector Machines

You should be able to...

- 1. Motivate the learning of a decision boundary with large margin
- 2. Compare the decision boundary learned by SVM with that of Perceptron
- 3. Distinguish unconstrained and constrained optimization
- 4. Compare linear and quadratic mathematical programs
- 5. Derive the hard-margin SVM primal formulation
- 6. Derive the Lagrangian dual for a hard-margin SVM
- 7. Describe the mathematical properties of support vectors and provide an intuitive explanation of their role
- 8. Draw a picture of the weight vector, bias, decision boundary, training examples, support vectors, and margin of an SVM
- 9. Employ slack variables to obtain the soft-margin SVM
- Implement an SVM learner using a black-box quadratic programming (QP) solver

KERNELS

Kernels: Motivation

Most real-world problems exhibit data that is not linearly separable.

Example: pixel representation for Facial Recognition:

Q: When your data is **not linearly separable**, how can you still use a linear classifier?

A: Preprocess the data to produce **nonlinear features**

Kernels: Motivation

- Motivation #1: Inefficient Features
 - Non-linearly separable data requires high dimensional representation
 - Might be prohibitively expensive to compute or store
- Motivation #2: Memory-based Methods
 - k-Nearest Neighbors (KNN) for facial recognition allows a distance metric between images -- no need to worry about linearity restriction at all

Φ

Kernel Methods

Key idea:

- Rewrite the algorithm so that we only work with dot products x^Tz
 of feature vectors
- 2. Replace the **dot products** x^Tz with a **kernel function** k(x, z)
- The kernel k(x,z) can be **any** legal definition of a dot product:

$$k(x, z) = \varphi(x)^{T}\varphi(z)$$
 for any function $\varphi: X \to \mathbb{R}^{D}$

So we only compute the ϕ dot product **implicitly**

- This "kernel trick" can be applied to many algorithms:
 - classification: perceptron, SVM, ...
 - regression: ridge regression, ...
 - clustering: k-means, ...

SVM: Kernel Trick

Hard-margin SVM (Primal)

$$\min_{\mathbf{w},b} \ \frac{1}{2} \|\mathbf{w}\|_2^2$$

s.t.
$$y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \ge 1$$
,

- Suppose we do some feature engineering
- Our feature function is ϕ
- We apply φ to each input vector x

Hard-margin SVM (Lagrangian Dual)

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}$$

s.t.
$$\alpha_i \geq 0$$
, $\forall i = 1, \dots, N$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \phi\left(\mathbf{x}^{(i)}\right) \cdot \phi\left(\mathbf{x}^{(j)}\right)$$

s.t.
$$\alpha_i \geq 0, \quad \forall i = 1, \dots, N$$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

SVM: Kernel Trick

Hard-margin SVM (Lagrangian Dual)

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \phi\left(\mathbf{x}^{(i)}\right) \cdot \phi\left(\mathbf{x}^{(j)}\right)$$

s.t.
$$\alpha_i \geq 0$$
, $\forall i = 1, \ldots, N$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

We could replace the dot product of the two feature vectors in the transformed space with a function k(x,z)

where
$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{x}^{(j)})$$

SVM: Kernel Trick

Hard-margin SVM (Lagrangian Dual)

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

s.t.
$$\alpha_i \geq 0$$
, $\forall i = 1, \ldots, N$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

We could replace the dot product of the two feature vectors in the transformed space with a function k(x,z)

where
$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi\left(\mathbf{x}^{(i)}\right) \cdot \phi\left(\mathbf{x}^{(j)}\right)$$

Kernel Methods

Key idea:

- 1. Rewrite the algorithm so that we only work with **dot products** x^Tz of feature vectors
- 2. Replace the **dot products** x^Tz with a **kernel function** k(x, z)
- The kernel k(x,z) can be any legal definition of a dot product:

$$k(x, z) = \varphi(x)^{T} \varphi(z)$$
 for any function $\varphi: X \rightarrow \mathbb{R}^{D}$

So we only compute the φ dot product **implicitly**

- This "kernel trick" can be applied to many algorithms:
 - classification: perceptron, SVM, ...
 - regression: ridge regression, ...
 - clustering: k-means, …

Kernel Methods

Q: These are just non-linear features, right?

A: Yes, but...

Q: Can't we just compute the feature transformation φ explicitly?

A: That depends...

Q: So, why all the hype about the kernel trick?

A: Because the explicit features might either be prohibitively expensive to compute or infinite length vectors

Example: Polynomial Kernel

For n=2, d=2, the kernel $K(x,z) = (x \cdot z)^d$ corresponds to

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3, (x_1, x_2) \to \Phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$\underline{\phi(x)} \cdot \underline{\phi(z)} = (x_1^2, x_2^2, \sqrt{2}x_1x_2) \cdot (z_1^2, z_2^2, \sqrt{2}z_1z_2)$$

$$= (x_1 z_1 + x_2 z_2)^2 = (x \cdot z)^2 = K(x, z)$$

Original space

 Φ -space

Slide from Nina Balcan

Kernel Examples

Name	Kernel Function (implicit dot product)	Feature Space (explicit dot product)
Linear	$K(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z}$	Same as original input space
Polynomial (v1)	$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^d$	All polynomials of degree d
Polynomial (v2)	$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + 1)^d$	All polynomials up to degree d
Gaussian	$K(\mathbf{x}, \mathbf{z}) \neq \exp(-\frac{ \mathbf{x} - \mathbf{z} _2^2}{2\sigma^2})$	Infinite dimensional space
Hyperbolic Tangent (Sigmoid) Kernel	$K(\mathbf{x}, \mathbf{z}) = \tanh(\alpha \mathbf{x}^T \mathbf{z} + c)$	(With SVM, this is equivalent to a 2-layer neural network)

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

Classification with SVM (kernel=rbf, gamma=10.000000)

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

Kernel Methods

Key idea:

- 1. Rewrite the algorithm so that we only work with **dot products** x^Tz of feature vectors
- 2. Replace the **dot products** x^Tz with a **kernel function** k(x, z)
- The kernel k(x,z) can be **any** legal definition of a dot product:

$$k(x, z) = \varphi(x)^{T} \varphi(z)$$
 for any function $\varphi: X \rightarrow \mathbb{R}^{D}$

So we only compute the φ dot product **implicitly**

- This "kernel trick" can be applied to many algorithms:
 - classification: perceptron, SVM, ...
 - regression: ridge regression, ...
 - clustering: k-means, …

SVM + Kernels: Takeaways

- Maximizing the margin of a linear separator is a good training criteria
- Support Vector Machines (SVMs) learn a max-margin linear classifier
- The SVM optimization problem can be solved with black-box Quadratic Programming (QP) solvers
- Learned decision boundary is defined by its support vectors
- Kernel methods allow us to work in a transformed feature space without explicitly representing that space
- The kernel-trick can be applied to SVMs, as well as many other algorithms

Learning Objectives

Kernels

You should be able to...

- Employ the kernel trick in common learning algorithms
- Explain why the use of a kernel produces only an implicit representation of the transformed feature space
- Use the "kernel trick" to obtain a computational complexity advantage over explicit feature transformation
- 4. Sketch the decision boundaries of a linear classifier with an RBF kernel