Attorney Docket No. 033035M088

Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Takashi NAKABAYASHI et al.

Serial No.:

10/079,817

Examiner:

UNASSIGNED

Filed:

February 22, 2002

Group Art Unit: UNASSIGNED

For:

LIGHT GENERATING MODULE

CLAIM FOR FOREIGN PRIORITY

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Relating to the above-identified United States patent application, and under the provisions of Section 119 of 35 U.S.C., Applicants hereby claim the benefit of Japanese Application No. 2001-048904, filed in Japan on February 23, 2001.

In support of Applicants' claim for priority, a certified copy of said Japanese application is attached hereto.

> Respectfully submitted, SMITH, GAMBRELL & RUSSELL, LLP

By:_

Michael A. Makuch, Reg. No. 32,263 1850 M Street, N.W., Suite 800 Washington, D.C. 20036

Telephone: (202) 263-4300

Fax: (202) 263-4329

August 14, 2002

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2001年 2月23日

出願番号 Application Number:

特願2001-048904

[ST.10/C]:

[JP2001-048904]

出 願 人 Applicant(s):

住友電気工業株式会社

RECEIVED
AUG 23 2002
TECHNOLOGY CENTER 2800

2002年 4月 2日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

100Y0400

【提出日】

平成13年 2月23日

【あて先】

特許庁長官殿

【国際特許分類】

G02B 6/42

H01S 3/00

【発明者】

【住所又は居所】

神奈川県横浜市栄区田谷町1番地 住友電気工業株式会

社 横浜製作所内

【氏名】

中林 隆志

【発明者】

【住所又は居所】

神奈川県横浜市栄区田谷町1番地 住友電気工業株式会

社 横浜製作所内

【氏名】

▲浜▼川 篤志

【特許出願人】

【識別番号】

000002130

【氏名又は名称】

住友電気工業株式会社

【代理人】

【識別番号】

100088155

【弁理士】

【氏名又は名称】

長谷川 芳樹

【選任した代理人】

【識別番号】

100089978

【弁理士】

【氏名又は名称】 塩田 辰也

【選任した代理人】

【識別番号】

100092657

【弁理士】

【氏名又は名称】 寺崎 史朗

【選任した代理人】

【識別番号】 100110582

【弁理士】

【氏名又は名称】 柴田 昌聰

【選任した代理人】

【識別番号】 100108257

【弁理士】

【氏名又は名称】 近藤 伊知良

【手数料の表示】

【予納台帳番号】 014708

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0001754

【プルーフの要否】

2

【書類名】 明細書

【発明の名称】 発光モジュール

【特許請求の範囲】

【請求項1】 半導体発光素子と、

前記半導体発光素子に光学的に結合されたモニタ用受光素子と、

前記半導体発光素子とモニタ用受光素子との間に配置され前記半導体発光素子 を駆動するための駆動素子と、

所定の軸に沿って順に配置された前記半導体発光素子、前記駆動素子、および 前記モニタ用受光素子を収容するハウジングと

を備える発光モジュール。

【請求項2】 所定の軸に沿って順に配置された第1、第2および第3の領域を有する第1の搭載部材と、

前記搭載部材の第3の領域上に配置され支持面を有する第2の搭載部材と を更に備え、

前記モニタ用受光素子は、前記支持面上に配置され、

前記モニタ用受光素子は、光を検出するための光検知領域を有し、

前記駆動素子は、前記第1の搭載部材の第2の領域上に配置され、

前記半導体発光素子は前記第1の搭載部材の第1の領域上に配置され、

前記半導体発光素子は、一対の端面と、該一対の端面の一方から他方に伸びる 活性層とを有し、

前記ハウジング内の領域は、前記活性層に含まれる平面によって第1の領域および第2の領域に分割され、

前記モニタ用受光素子の光検知領域は前記第1の領域に位置し、

前記駆動素子は前記第2の領域に位置する、請求項1に記載の発光モジュール

【請求項3】 所定の軸に沿って順に配置された第1、第2および第3の領域を有する第1の搭載部材と、

前記搭載部材の第3の領域上に配置され支持面を有する第2の搭載部材と を更に備え、 前記モニタ用受光素子は前記支持面上に配置され、

前記モニタ用受光素子は、光を検出するための第1および第2の部分からなる 光検知領域を有し、

前記駆動素子は、前記第1の搭載部材の第2の領域上に配置され、

前記半導体発光素子は前記第1の搭載部材の第1の領域上に配置され、

前記半導体発光素子は、一対の端面と、該一対の端面の一方から他方に伸びる 活性層とを有し、

前記ハウジング内の領域は、前記活性層に含まれる平面によって第1の領域および第2の領域に分割され、

前記光検知領域の第1の部分は前記第1の領域に位置すると共に、前記光検知 領域の第2の部分は前記第2の領域に位置し、

前記駆動素子は前記第2の領域に位置する、請求項1に記載の発光モジュール

【請求項4】 前記ハウジングは複数の側壁を有し、

前記半導体受光素子は、前記複数の側壁のうちの一側壁と前記駆動素子との間 に配置され、

前記ハウジングの一側壁と前記駆動素子との間に配置された基板を更に備え、 前記基板は前記駆動素子に変調信号を伝送するための伝送路を有しており、 前記伝送路は前記駆動素子と電気的に接続されている、請求項1に記載の発光モ ジュール。

【請求項5】 前記伝送路はA1N系材料で形成された面上に設けられている、請求項4に記載の発光モジュール。

【請求項6】 前記伝送路はマイクロストリップラインを含む、請求項4に 記載の発光モジュール。

【請求項7】 前記伝送路はコプレーナ型ラインを含む、請求項4に記載の 発光モジュール。

【請求項8】 前記第2の搭載部材は、前記基板上に設けられており、

前記第2の搭載部材は、前記伝送路と隔置されている、請求項4に記載の発光 モジュール。 【請求項9】 前記半導体発光素子に光学的に結合された一端を有し前記所定の軸に沿って配置された光ファイバを更に備える、請求項1に記載の発光モジュール。

【請求項10】 前記光ファイバは、前記一端から所定の距離に設けられた 回折格子を有し、

前記半導体発光素子は半導体光増幅器を含む、請求項9に記載の発光モジュール。

【請求項11】 前記半導体発光素子は半導体レーザ素子を含む、請求項9 に記載の発光モジュール。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、発光モジュールに関する。

[0002]

【従来の技術】

半導体光モジュールは、半導体レーザ素子と、モニタ用フォトダイオードと、バタフライ型パッケージとを備える。このパッケージ内には、半導体レーザ素子及びモニタ用フォトダイオードが収容されている。モニタ用フォトダイオードは、半導体レーザ素子からの光を受ける。バタフライ型パッケージは、複数のリード端子を備え、半導体レーザ素子はこれらのリード端子を介して駆動信号を受けている。

[0003]

【発明が解決しようとする課題】

発明者は、10Gbps以上の伝送速度を達成できる発光モジュールを研究している。発明者は、10Gbps程度の伝送速度を達成するためには、駆動素子それ自身の動作速度が重要であることを理解している。発明者がこれまでに行った検討によれば、駆動素子だけでなく、駆動信号を駆動素子に伝えると共に駆動素子からの信号を半導体発光素子に伝えることもまた重要であることを見出した

[0004]

高速な変調信号を劣化させることなく半導体発光素子に供給するためには、駆動素子を半導体発光素子に近接して配置することが重要である。伝送速度2.5 Gbpsを達成するためには、駆動素子と半導体発光素子との間の距離が1.5 cm以下であるという条件が必要である。この条件を緩和するために、伝送速度2.5 Gbpsで動作する発光モジュールでは、駆動素子を半導体発光素子に50 Ωインピーダンスの伝送線で接続すると共に、半導体発光素子に隣接してインピーダンス整合用の抵抗を配置している。

[0005]

伝送速度10Gbpsを達成するためには、駆動素子と半導体発光素子との間の距離が2~3mm以下であるという条件が必要である。このため、50Ωインピーダンスの伝送線とインピーダンス整合用の抵抗とを用いる形態を採用しても、伝送速度10Gbpsを達成できる程度に広帯域でインピーダンス整合を取ることは難しい。

[0006]

上記の形態とは別に、駆動素子と半導体発光素子との間の距離を1 mm以下にする形態が考えられる。インピーダンス整合用の抵抗を用いない場合には、駆動素子と半導体発光素子との間の距離が短いほど高速伝送に適する。つまり、駆動素子と半導体発光素子とを近接配置することが伝送速度を向上させるために重要である。しかしながら、半導体発光素子にはモニタ用フォトダイオードが隣接して配置されている。このため、発明者は、半導体発光素子とモニタ用保護ダイオードとの光学的結合を妨げることなく、発光モジュールが伝送速度10Gbpsを達成できるように駆動素子を半導体発光素子に近接して配置できる構造を検討した。

[0007]

そこで、本発明の目的は、駆動素子を半導体発光素子に隣接して配置できる構造を有する発光モジュールを提供することとした。

[0008]

【課題を解決するための手段】

本発明に係わる発光モジュールは、半導体発光素子と、モニタ用受光素子と、 駆動素子と、ハウジングとを備える。モニタ用受光素子は、半導体発光素子に光 学的に結合されている。駆動素子は、半導体発光素子とモニタ用受光素子との間 に配置されており、半導体発光素子を駆動する。ハウジングは、半導体発光素子 、駆動素子、およびモニタ用受光素子を収容する。これらの素子は、所定の軸に 沿って順に配置されている。

[0009]

駆動素子は、半導体発光素子とモニタ用受光素子との間に配置されている。この配置では、半導体発光素子に隣接して駆動素子を配置できる。

[0010]

本発明に係わる発光モジュールは、第1の搭載部材と、第2の搭載部材とを更に備えるようにしてもよい。第1の搭載部材は、所定の軸に沿って順に配置された第1、第2および第3の領域を有する。第2の搭載部材は、モニタ用受光素子が配置された支持面を有する。モニタ用受光素子は光を検出する光検知領域を有している。半導体発光素子は第1の搭載部材の第1の領域上に配置されている。駆動素子は第1の搭載部材の第2の領域上に配置されている。第2の搭載部材は第1の搭載部材の第3の領域上に配置されている。半導体発光素子は一対の端面と、一対の端面の一方から他方に伸びる活性層とを有する。ハウジング内の領域は、活性層に含まれる平面によって第1の領域および第2の領域に分割されている。駆動素子は、第2の領域に配置されている。

[0011]

このような発光モジュールにおいて、モニタ用受光素子の光検知領域は第1の 領域に配置されている。この形態によれば、第1の領域に位置する光検知領域の 全体が、半導体発光素子に光学的に結合可能となる。

[0012]

このような発光モジュールにおいて、モニタ用受光素子の光検知領域は、第1 および第2の部分を有すると共に、光検知領域の第1の部分が第1の領域に位置 し、光検知領域の第2の部分が第2の領域に位置する。この形態によれば、光検 知領域の第1の部分が半導体発光素子に光学的に結合可能となり、光検知領域の 第2の部分も光の検知に寄与し得る。

[0013]

本発明に係わる発光モジュールでは、ハウジングは複数の側壁を有している。 半導体受光素子は、複数の側壁のうちの一側壁と駆動素子との間に配置されている。この発光モジュールは、ハウジングの一側壁と駆動素子との間に配置された 基板を更に備えるようにしてもよい。基板は、駆動素子に変調信号を伝送するための伝送路を有している。伝送路は、駆動素子と電気的に接続されている。

[0014]

一側壁と駆動素子との間に基板を設ければ、ハウジング内に半導体受光素子が 配置されていても、伝送線を介して駆動素子に信号が提供される。

[0015]

本発明に係わる発光モジュールでは、伝送路はA1N系材料で形成された面上に設けられている。このため、この伝送路は優れた高周波伝送特性に有することになる。伝送路はマイクロストリップラインを含むことができる。また、伝送路はコプレーナ型ラインを含むことができる。

[0016]

本発明に係わる発光モジュールでは、第2の搭載部材は基板上に設けられており、第2の搭載部材は伝送路と隔置されている。伝送路が第2の搭載部材から離れているので、伝送路を伝搬する信号が第2の搭載部材により攪乱されにくい。

[0017]

本発明に係わる発光モジュールは、所定の軸に沿って配置された光ファイバを 更に備えるようにしてもよい。光ファイバは、半導体発光素子に光学的に結合さ れた一端を有する。半導体発光素子によって発生された光は、光ファイバを介し て発光モジュールから取り出される。これにより、光ファイバ、半導体発光素子 、駆動素子、およびモニタ用受光素子を順に所定の軸に沿って配置された形態が 提供される。

[0018]

また、本発明に係わる発光モジュールでは、光ファイバは、前記一端から所定 の距離に設けられた回折格子を有するようにしてもよく、また半導体発光素子は 半導体光増幅器を含むようにしてもよい。これにより、半導体光増幅器を駆動するための駆動素子を内蔵可能な構造を有するファイバグレーティング半導体発光 モジュールが提供される。

[0019]

さらに、本発明に係わる発光モジュールは、半導体発光素子は半導体レーザ素子を含むようにしてもよい。これにより、半導体レーザ素子を駆動するための駆動素子を内蔵可能な構造を有する半導体レーザモジュールが提供される。

[0020]

【発明の実施の形態】

本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。本発明の実施の形態を図面を参照しながら説明する。可能な場合には、同一の部分には同一の符号を付する。

[0021]

(第1の実施の形態)

図1は、本実施の形態に係わる発光モジュールを示す。発光モジュール1は、ハウジング2と、半導体発光素子4と、半導体駆動素子6と、半導体受光素子8とを備える。ハウジング2は、所定の軸に沿って伸びる一対の側壁部と、所定の軸に交差する後壁部および前壁部とを有する。側壁部の各々には複数のリード端子2aが設けられ、および後壁部には複数のリード端子2bが設けられている。ハウジング2は、半導体発光素子4、半導体駆動素子6、半導体受光素子8を収容している。半導体発光素子4は、変調信号に基づいて変調された光を発生する。半導体発光素子4は、例えば半導体レーザ素子であることができる。半導体受光素子8は、光を電流に変換することができ、例えばフォトダイオードであることができる。半導体駆動素子6は、リード端子2bを介して受けた変調信号を受ける。変調信号は、半導体発光素子4を変調するための信号である。半導体駆動素子6は、変調信号を増幅して駆動信号を生成する。駆動信号は、半導体発光素子4へ提供される。

[0022]

ハウジング2の底面2c上には、第1の搭載部材10が設けられている。第1の搭載部材10は、金属といった導電性の材料からなる。第1の搭載部材10は、支持部材12によって支持される。第1の搭載部材10は、搭載面10aと、レンズ支持部10bとを有する。レンズ支持部10bは、第1のレンズ支持部材14を支持している。第1のレンズ支持部材14は、第1のレンズ(図2の42)を保持している。

[0023]

搭載面10a上には、半導体発光素子4、半導体駆動素子6、半導体受光素子8が搭載され、これらの素子は所定の軸に沿って配置されている。半導体駆動素子6は、半導体発光素子4と半導体受光素子8との間に配置されている。半導体発光素子4は、サブマウントといった第2の搭載部材16上に搭載されており、第2の搭載部材16は、搭載面10a上に配置されている。サブマウントは、例えば熱導電性に優れた材料からなる。半導体駆動素子6は、搭載面10a上に直接に搭載されている。半導体受光素子8は、第3の搭載部材26の支持面26a上に配置されている。これにより、半導体受光素子8の受光面は、半導体発光素子4と光学的に結合可能なように配置される。第3の搭載部材26は、例えばアルミナといった誘電体材料からなる。第3の搭載部材26は、一対の支持部材を含み、その支持面26aを含む平面が所定の軸に交差するように搭載部材26の本体は一対の支持部材18によって支持されている。一対の支持部材18の各々は、配線基板20上に配置されている。支持部材18は、例えばA1Nといった絶縁材料、またはコバールといった金属からなる。配線基板20は、A1Nいった絶縁材料からなる。

[0024]

ハウジング2の前壁部は、第1の搭載部材10のレンズ支持部10bと対面している。前壁部には、半導体発光素子4からの光が通過する孔2dが設けられている。孔2dには保持部材24が配置されており、保持部材24はハーメチックガラス22を保持している。ハウジング2の前壁部の外面には、保持部材24に合わせて第2のレンズ保持部材28の一端が配置されている。第2のレンズ保持部材28は、集光レンズといったレンズ30を保持している。第2のレンズ保持

部材28の他端は、フェルールホルダ32が配置されている。フェルールホルダ32はフェルール34を収容するために孔を有する。フェルール34には、光ファイバ36の一端部を保護するように、光ファイバ36が挿入されている。光ファイバ36は、フェルール34およびフェルールホルダ32を介してレンズ30に位置合わせされている。これにより、光ファイバ36の一端部に半導体発光素子4からの光が入力される。保護部材38は、第2のレンズ保持部材28、フェルールホルダ32およびフェルール34を覆っている。保護部材38は、ゴム製キャップであることができる。光ファイバ36は、保護部材38を通してハウジングの外へ取り出される。光ファイバ36の他端部には、光コネクタといった光学的結合デバイス40が設けられている。光学的結合デバイス40は、光ファイバ34を伝搬してきた半導体発光素子4からの光を提供する。本実施の形態では、光学的結合デバイス40は、光ファイバ36の他端部に設けられたフェルールを含むことができる。

[0025]

図2(a)は、発光モジュール1に含まれる電子素子および光学素子の電気的および光学的の結合を示す平面図であり、図2(b)は、発光モジュール1に含まれる電子素子および光学素子の電気的および光学的の結合を示す側面図である。

[0026]

図2(a)を参照すると、所定の軸44に沿って、光ファイバ36、レンズ30、レンズ42、半導体発光素子4、半導体駆動素子6、および半導体受光素子8が配列されている。半導体発光素子4は、レンズ30およびレンズ42によって光ファイバ36に光学的に結合される。半導体発光素子4は、光放出面4aおよび光反射面4bな、発光モジュール1の光共振器を構成する。光反射面4bは、半導体発光素子8の受光面8aに対面している。光Aは、半導体発光素子4の光反射面4bから受光面8aに到達して、受光領域8bにおいてキャリアを生成する。また、光Bは、半導体発光素子4の光放出面4aから提供され、レンズ保持部10bに設けられた孔10cを通過してコリメートレンズといったレンズ42に到達する。レンズ42は、光Bの進行方向を変え所定に軸44に沿った方向に向ける。光Cは、集光レンズといっ

たレンズ30に到達する。レンズ30は、光Cの進行方向を変えて光ファイバ36の一端36aに向かう光Dにする。光Dは、光ファイバ36に導入されると、クラッド部36dにその側面を覆われたコア部36cを伝搬する光Eになる。光Eは、光ファイバ36の他端36bに到達して、光結合デバイス40を介して、別の光結合デバイス(図示せず)に光Eを提供される。

[0027]

第1の搭載部材10の搭載面10a上には、第2の搭載部材16を介して半導 体発光素子4が搭載されている。半導体発光素子4の一電極は、ボンディングワ イヤ48を介して電源電位線と電気的に接続されている。半導体発光素子4の他 電極は、ボンディングワイヤ46を介して半導体駆動素子6と電気的に接続され ている。ボンディングワイヤ46は、半導体発光素子4から半導体受光素子8へ 向かう光の経路を避けて配置されている。発明者の実験によれば、10Gbps といった高速伝送を達成するためには、半導体駆動素子6と第2の搭載部材16 との距離が1mm以下であることが必要である。半導体駆動素子6は、一対の辺 を有し、一対の辺の一方は、半導体発光素子4に対面しており、他方は、基板2 0に対面している。基板20は配線面20fを有する。配線面20f上には、一 対の辺の一方から他方まで伸びる一対の伝送路20a、20bが設けられている 。これらの伝送路20a、20bの間には、導電層20c、20d、20eが設 けられている。導電層20c、20d、20eは、接地電位線に接続されている 。伝送路20a、20bの一端は、半導体駆動素子6とボンディングワイヤ50 を介して電気的に接続されている。伝送路20a、20bの他端は、ハウジング 2のリード端子2bとボンディングワイヤ52を介して電気的に接続されている 。伝送路20a、20bの一端は、半導体駆動素子6の一辺に対面する位置に配 置され、伝送路20a、20bの他端は、リード端子2bに対面する位置に配置 されている。伝送路20a、20bは、所定の軸44に沿って伸びるように設け られており、これら両端を直線で結ぶように設けられていてよい。伝送路20a 、20bは、また、電気的に対称なように形成されている。

[0028]

図2(b)を参照すると、所定の軸44に合わせて、光ファイバ36、レンズ3

0、レンズ42、半導体発光素子4が配列されている。半導体発光素子4は、キャリアが注入されると光を発生する活性層4cを有する。活性層4cは、基準平面を含み、基準平面に沿って伸びるように設けられている。基準平面は、軸44を含むように規定されている。図2(b)においては、基準平面は軸44と全く重なっている。この基準平面は、ハウジング2内の領域を2つに分割する。一方の領域には、半導体駆動素子6が配置されている。他方の領域には、受光領域8bが配置されており、好ましく半導体受光素子8が配置される。この配置によれば、半導体発光素子4の活性層4cの発光領域と、受光領域8bとを結ぶ直線は、半導体駆動素子6の素子面6aと交差しない。このため、半導体受光素子8は、半導体発光素子4と確実に光学的に結合される。この配置によれば、また、半導体駆動素子6は半導体発光素子4に隣接して配置可能になる。

[0029]

図3(a)は、半導体駆動素子6、半導体受光素子8および基板20の配置を示す図面である。第3の搭載部材26の本体は、一対の支持部材18によって支持されている。支持部材18は、第3の搭載部材26の下方を伝送路20a、20bが通過する領域を提供する。伝送路20a、20bは、例えば、配線面20f上に設けられたマイクロストリップラインであることができる。マイクロストリップラインであると、一対のラインの間隔を狭くできこれにより半導体駆動素子6の入力パッドへの接続ワイヤ長を短くできるという有利が効果がある。また、伝送路20a、20bは、例えば、配線面20f上に設けられたコプレーナ型ラインであることができる。コプレーナ型ラインにおいても、一対のラインの間隔を狭くできこれにより半導体駆動素子6の入力パッドへの接続ワイヤ長を短くできるという有利な効果があり、発明者の知見によれば、本実施の形態に係わる発光モジュールでは、コプレーナ型ラインがマイクロストリップラインより好適である。これらの伝送路は特性インピーダンス50Ωを有することが好適である。

[0030]

図3(b)は、図3(a)のI-I断面における断面図である。第3の搭載部材26 と伝送路20a、20bとの距離 d_1 、 d_2 は、100 μ m以上であることが好ま しい。発明者の実験によれば、この程度の距離をとれば、第3の搭載部材26に よる伝送路 20a、20bへの電磁気的な影響を実用的なレベルまで低減できる。支持部材 18と伝送路 20a、20bとの距離 d_3 、 d_4 は、 100μ m以上であることが好ましい。発明者の実験によれば、この程度の距離をとれば、支持部材 18による伝送路 20a、20bへの電磁気的な影響を実用的なレベルまで低減できる。

[0031]

図4は、発光モジュール1に含まれる電子素子の等価回路を示す図面である。 半導体駆動素子6には、10Gbpsの伝送速度の変調信号54がリード端子2 bを介して発光モジュール1に与えられる。相補変調信号54は、リード端子2 bからインピーダンス52、20a、20b、50を介して半導体駆動素子6の 入力端子に提供される。半導体駆動素子6は相補変調信号54を処理するための 増幅回路6bおよび駆動回路6cを有し、相補変調信号54は増幅回路6bおよび び駆動回路6cを介して差動対トランジスタ6dに与えられる。

[0032]

差動対トランジスタ6dは、共通ノードを有する一対のトランジスタを備える。 差動対トランジスタ6dの共通ノードと基準電位線56との間には、電流源部6eが接続されている。 差動対トランジスタ6dの一方のノードには、インピーダンス46を介して半導体発光素子4の一端子(例えば半導体レーザ素子のカソード)に接続されている。 半導体発光素子4の他端子(例えば半導体レーザ素子のアノード)は、インピーダンス48を介して発光素子用の電源電位線57に接続されている。 差動対トランジスタ6dの他方は、電源電位線57に接続されている。 これらの接続によって、半導体発光素子4は変調信号に従って動作し、光信号を発生する。光信号Bは、光ファイバ36に提供される。

[0033]

また、半導体発光素子4の一端子と基準電位線56との間には、バイアス電流 回路6fが接続されている。バイアス電流回路6fは、半導体発光素子4の動作 点を規定するためのバイアス電流を半導体発光素子4の一端子に提供する。なお 、半導体駆動素子6は、リード端子2aを介していくつかの制御信号(図示せず) を受けるけれども、詳細な説明は省略する。 [0034]

半導体発光素子4にはモニタ用の半導体受光素子8が光学的に結合されている。半導体受光素子8は、半導体発光素子4からモニタ用光Aを受ける。半導体受光素子8の一端子(例えばフォトダイオードのカソード)は、受光素子用の電源電位線58に接続されている。半導体受光素子8の他端子(例えばフォトダイオードのアノード)は、リード端子1aに接続されている。

[0035]

これまでの説明から理解されるように、半導体駆動素子6は半導体発光素子4 に数百 μ m程度まで隣接して配置できるので、高速伝送を達成可能な発光モジュール1が提供される。

[0036]

(第2の実施の形態)

図5は、別の実施の形態に係わる発光モジュールを示す。発光モジュール60は、ハウジング2と、半導体発光素子62と、半導体駆動素子6と、半導体受光素子8とを備える。ハウジング2、半導体駆動素子6、半導体受光素子8は、図1に示された実施の形態と同じであるので、詳細な説明を省略する。しかしながら、第1の実施の形態に限定されるものではない。第2の実施の形態では、半導体発光素子62は、例えば半導体光増幅器であることができる。

[0037]

第1の搭載部材10は、搭載面10aと、レンズ支持部10bとを有する。搭載面10a上には、所定の軸に沿って配置された半導体発光素子62、半導体駆動素子6、半導体受光素子8が搭載されている。半導体駆動素子6は、半導体発光素子62と半導体受光素子8との間に配置されている。半導体発光素子62は、第2の搭載部材16上に搭載されている。レンズ支持部10bの側面には、位置合わせ部64が配置されている。位置合わせ部64は、光ファイバ70が半導体光増幅器62に光学的に結合するために用いられている。フェルール66には、光ファイバ70の一端部を保護するように、光ファイバ70が挿入されている。位置合わせ部64は、フェルール66を保持している。

[0038]

ハウジング2の前壁部は、第1の搭載部材10のレンズ支持部10bと対面している。前壁部には、半導体発光素子4からの光が通過する孔2dが設けられている。孔2dの位置に合わせて、筒状の光導入部2eが配置されている。保護部材72が、光導入部2eを覆っている。保護部材72は、ゴム製キャップであることができる。光ファイバ70は、保護部材72を通してハウジング2の外へ取り出される。光ファイバ70の他端70bには、光コネクタといった光学的結合デバイス74が設けられている。光学的結合デバイス74は、光ファイバ70を伝搬してきた半導体発光素子62からの光を提供する。この実施の形態では、光学的結合デバイス74は、光ファイバ70の他端70bに設けられたフェルール74aを含むことができる。

[0039]

図6(a)は、発光モジュール60に含まれる電子素子および光学素子の電気的および光学的の結合を示す平面図であり、図6(b)は、発光モジュール60に含まれる電子素子および光学素子の電気的および光学的の結合を示す側面図である

[0040]

図6(a)を参照すると、所定の軸44に沿って、光ファイバ70、半導体発光素子62、半導体駆動素子6、および半導体受光素子8が配列されている。半導体発光素子62は、光ファイバ70のレンズ化端部70aに光学的に結合される。光ファイバ70は、レンズ化端部70aから所定の距離の位置にグレーティング70eを有する。グレーティング70eは、光ファイバ7のコア部70cに設けられ、コア部70cの側面はクラッド部70dに覆われている。

[0041]

半導体発光素子62は、光放出面62aおよび光反射面62bを有する。グレーティング70eおよび光反射面4bは、発光モジュール60の光共振器を構成する。光反射面4bの反射率は、光放出面4aの反射率より大きい。光放出面4aの反射率は十分に小さい。光反射面4bは、半導体発光素子8の受光面8aに対面している。

[0042]

図6(a)および図6(b)を参照しながら、光学的な動作を説明する。光Fは、 半導体発光素子62の光反射面62bから受光面8aに到達して、受光領域8b においてキャリアを生成する。また、光Gは、半導体発光素子62の光放出面6 2aから提供され、レンズ化端部70aから光ファイバ70に導入される。光G の一部は、グレーティング70eを透過して光Iになる。光Iは、光ファイバ7 0の他端70bに到達して、光学的結合デバイス74を介して、別のデバイス(図示せず)に提供される。残りの光は、グレーティング70eによって反射され 光Hになる。光Hは、レンズ化端部70a光放出面62aを通して光反射面62 bに到達する。光Hは、光反射面62bによって反射され、再びグレーティング70eに向かう。

[0043]

第1の搭載部材10の搭載面10a上には、第2の搭載部材16を介して半導体発光素子62が搭載されている。半導体発光素子62の一電極は、ボンディングワイヤ48を介して電源電位線と電気的に接続されている。半導体発光素子62の他電極は、ボンディングワイヤ46を介して半導体駆動素子6と電気的に接続されている。

[0044]

図6(b)を参照すると、所定の軸44に合わせて、光ファイバ70、半導体発光素子62が配列されている。半導体発光素子62は、キャリアが注入される光を発生する活性層62cを有する。活性層62cは、所定の基準平面を含むように設けられている。基準平面は、第1の実施の形態と同様に、軸44を含むように規定される。図6(b)においては、基準平面は、軸44と全く重なっている。この基準平面は、ハウジング2内の領域を2つに分割する。一方の領域には、半導体駆動素子6が配置されている。他方の領域には、受光領域8bが配置されており、好ましく半導体受光素子8が配置される。この配置によれば、半導体発素子62の活性層62cの発光領域と、受光領域8bとを結ぶ直線は、半導体聚動素子6の素子面6aと交差しない。このため、半導体受光素子8は、半導体発光素子4と確実に光学的に結合される。この配置によれば、また、半導体駆動素子6は半導体発光素子62に隣接して配置可能になる。故に、高速伝送を達成可

能な発光モジュール1が提供された。

[0045]

(第3の実施の形態)

図7(a)は、図1に示された発光モジュールの変形例を示す。本実施の形態に係わる発光モジュールでは、発光モジュール1の第1の搭載部材10に代えて、第1の搭載部材11を用いている。搭載部材11以外の部材は、第1の実施の形態の発光モジュールと同じである。半導体発光素子4、半導体駆動素子6、および半導体受光素子8が搭載面11a上に搭載されている。第1のレンズ保持部材14は、レンズ支持部11bによって支持されている。

[0046]

図7(a)に示されるように、発光モジュールでは、光ファイバ36、レンズ30、レンズ42、半導体発光素子4、半導体受光素子8が、所定の軸44上に配列されている。このため、半導体発光素子4の光反射面から出射された光Bは、所定の軸44に沿って進み、半導体受光素子8に到達する。半導体発光素子4は活性層4cを有する。活性層4cは、基準平面を含み、基準平面に沿って伸びるように設けられている。基準平面は、軸44を含むように規定されている。図7(a)においては、基準平面は軸44と全く重なっている。この基準平面は、ハウジング2内の領域を第1および第2の領域に分割する。第1の領域には、半導体駆動素子6が配置されている。

[0047]

図7(b)を参照すると、光検知領域8bは、基準平面と交差しており、基準平面により、第1の部分8dおよび第2の部分8cに分割されている。第1の部分8dは、第1の領域に位置しており、また第2の部分8cは第2の領域に位置している。この配置においても、半導体発光素子4の活性層4cの発光領域と、光検知領域8bとを結ぶ直線は、半導体駆動素子6の素子面6aと交差しない。このため、半導体受光素子8は、半導体発光素子4と確実に光学的に結合される。この配置によれば、半導体駆動素子6は半導体発光素子4に隣接して配置可能になる。

[0048]

好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、 そのような原理から逸脱することなく配置および詳細において変更されることが できることは、当業者によって認識される。例えば、本実施の形態では、ハウジ ングとして、mini-DIL型パッケージを使用できる。

[0049]

また、ハウジング内の空間は基準平面によって2つの別個の空間に分割されており、別個の空間の一方に半導体駆動素子が配置されると共に、他方に半導体受光素子の受光領域が配置されている。しかしながら、半導体発光素子の活性層の光反射面が、半導体受光素子の受光領域と光学的に結合可能な範囲で、半導体駆動素子の高さを変更し得る。例えば、半導体発光素子4の活性層の発光領域と、光検知領域とを結ぶ直線群に含まれる少なくとも一部の直線が半導体駆動素子の素子面と交差しないように、半導体発光素子、半導体駆動素子、および半導体受光素子を配置してもよい。この配置により、活性層4の光反射面から出射された光の一部は光検知領域に到達できる。

[0050]

さらに、第1の搭載部材は、支持部材の代わりに、ペルチェ素子といったサーモエレクトリッククーラ上に支持されていてもよい。サーモエレクトリッククーラは、リード端子に接続されており、第1の搭載部材上に搭載された電子素子、例えば半導体受光素子、半導体発光素子、および半導体駆動素子の温度を制御するようにしてもよい。

[0051]

半導体駆動素子は、第1の自動電力制御回路(APC)および第2の自動電力制御回路(APC)を備えていてもよい。第1の自動電力制御回路は、電流源部に接続されている。第2の自動電力制御回路は、バイアス電流回路に接続されている。第1の自動電力制御回路および第2の自動電力制御回路の入力には、モニタ信号用の増幅回路の出力が接続されている。この増幅回路の入力には、半導体受光素子の他端子(例えばフォトダイオードのアノード)が接続されている。

[0052]

したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および

変更に権利を請求する。

[0053]

【発明の効果】

以上詳細に説明したように、本発明に係わる発光モジュールでは、駆動素子は、半導体発光素子とモニタ用受光素子との間に配置されている。この配置では、伝送速度10Gbpsを達成できる程度にまで半導体発光素子に隣接して駆動素子を配置できる。したがって、駆動素子を半導体発光素子に隣接して配置できる構造を有する発光モジュールが提供された。

【図面の簡単な説明】

【図1】

図1は、本実施の形態に係わる発光モジュールを示す図面である。

【図2】

図2(a)は、図1に示された発光モジュールに含まれる電子素子および光学素子の電気的および光学的の結合を示す平面図であり、図2(b)は、図1に示された発光モジュールに含まれる電子素子および光学素子の電気的および光学的の結合を示す側面図である。

【図3】

図3(a)は、半導体駆動素子、半導体受光素子および基板の配置を示す図面である。図3(b)は、図3(a)のI-I断面における断面図である。

【図4】

図4は、発光モジュールの等価回路を示す図面である。

【図5】

図5は、別の実施の形態に係わる発光モジュールを示す図面である。

【図6】

図6(a)は、図5に示された発光モジュールに含まれる電子素子および光学素子の電気的および光学的の結合を示す平面図であり、図6(b)は、図5に示された発光モジュールに含まれる電子素子および光学素子の電気的および光学的の結合を示す側面図である。

【図7】

図7(a)は、さらに別の実施の形態に係わる発光モジュールに含まれる電子素子および光学素子の電気的および光学的の結合を示す側面図である。図7(b)は、基準平面と半導体受光素子との配置を示す図面である。

【符号の説明】

1 …発光モジュール、2 …ハウジング、4、62 …半導体発光素子、4 c、62 c …活性層、6 …半導体駆動素子、8 …半導体受光素子、10 …第1の搭載部材、12 …支持部材、14 …第1のレンズ支持部材、16 …第2の搭載部材、18 …支持部材、20 …配線基板、20 a、20 b …伝送路、20 c、20 d、20 e …導電層、22 …ハーメチックガラス、24 …保持部材、26 …第3の搭載部材、28 …第2のレンズ保持部材、30 …レンズ、32 …フェルールホルダ、34 …フェルール、36 …光ファイバ、38 …保護部材、40 …光学的結合デバイス、42 …レンズ、

【書類名】

図面

【図1】

【図2】

3

【図4】

【図6】

【要約】

【課題】 駆動素子を半導体発光素子に隣接して配置できる構造を有する発光モジュールを提供する。

【解決手段】 発光モジュール1は、ハウジング2と、半導体発光素子4と、駆動素子6と、モニタ用受光素子8とを備える。モニタ用受光素子8は、半導体発光素子4に光学的に結合されている。駆動素子6は、半導体発光素子4を駆動する。ハウジング2は、半導体発光素子4、駆動素子6、およびモニタ用受光素子8を収容する。これらの素子4、6、8は、所定の軸に沿って順に配置されている。駆動素子6は、半導体発光素子4とモニタ用受光素子8との間に配置されている。この配置では、半導体受光素子8と半導体発光素子4との光学的な結合を害することなく、伝送速度10Gbpsを達成できる程度にまで半導体発光素子4に隣接して駆動素子6を配置できる。

【選択図】 図1

出 願 人 履 歴 情 報

識別番号

[000002130]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

大阪府大阪市中央区北浜四丁目5番33号

氏 名

住友電気工業株式会社