

Water Resources Research

Supporting information for

Geometric models to predict lake depth are sensitive to mis-measurement of in-lake slope

J. Stachelek¹, P. Hanly¹, and P.A. Soranno¹

 $^{1}\mathrm{Department}$ of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd., East Lansing, Michigan 48824 USA

Contents of this file

Figure S1 Map of study lakes

Figure S2 Comparison between reported depth and depth extracted from bathymetry surfaces

Figure S3 Lake characteristics by categorical variables

Figure S4 Hypsography classification by state

Figure S5 Comparison among lake shape and reservoir classes for true and proxy geometry measures

Figure S6 Importance plot for random forest variables showing increase in mean square error

Figure S1: Map of study lakes showing A) lake maximum depth measurements, B) cross-section shape class, and C) reservoir classification.

Figure S2: Comparison between reported depth and depth extracted from bathymetry surfaces by US State where reported depths come from the LAGOSUS-Depth product (citation). For this figure, no reported depth values originated from the same source as its corresponding bathymetry-derived value.

Figure S3: Lake characteristics by categorical variables.

Normalized hypsography for 4992 lakes

Figure S4: Hypsography classification by state. Numbers on panel labels indicate the percentage of lakes in each state with a convex versus a concave cross-section shape.

Figure S5: Comparison among lake shape and reservoir classes for A-B) distance to deepest point versus distance to lake visual center and C-D) nearshore slope versus inlake slope. A dashed 1:1 line is shown for comparison. Cross-section shape and reservoir class plots are not identical because not all lakes had a reservoir classification exceeding a 0.75 probability confidence level.

Figure S6: Importance plot for random forest variables showing increase in mean square error. Higher values indicate greater importance to model predictions. See Equation 1 for a definition of geometric max depth. HUC4 ID is a 'dummy' variable of geographic (hydrologic subbasin) location.