## CPSC 313 — Fall 2018

# Assignment 1 — Finite Automata

Jasmine Roebuck, 30037334

1. (a) Design a DFA with at most 5 states for the language

$$L_1 = \{w \in \{0,1\}^* \mid w \text{ contains at most one 1 and } |w| \text{ is odd } \}.$$

Give a state diagram for your DFA.

### Solution.

My solution contains the following 5 states:

- i.  $q_0$ : Seen zero 1s, |w| is even. start state
- ii.  $q_1$ : Seen zero 1s, |w| is odd. accept state
- iii.  $q_2$ : Seen one 1, |w| is even.
- iv.  $q_3$ : Seen one 1, |w| is odd. accept state
- v.  $q_4$ : Seen two or more 1s.



(b) Prove that your DFA of part (a) accepts the language  $L_1$ , i.e. prove that  $L(M) = L_1$ , where M is your DFA.

#### Solution.

To prove that  $L(M) = L_1$ , we want to show that  $L_1 \subseteq L(M)$ , and that  $L(M) \subseteq L_1$ .

Claim 1:  $L_1 \subseteq L(M)$ .

Let  $w \in L_1$ . Then w contains at most one 1, and |w| is odd. We want to show that  $w \in L_1 \implies w \in L(M)$ .

Case 0: w contains no 1s. Then  $w = 0^k$ , where  $k \ge 1$ , and k is odd, i.e. k = 2j+1 where  $j \ge 0$ . Then M starts in  $q_0$  and transitions to  $q_1$  after reading the first 0. After the first 0 will follow j pairs of 0s. For every pair of 0s (if there are any), M will transition to  $q_0$  after reading the first 0 of the pair, then transition back to  $q_1$  after reading the second 0 of the pair. Thus M will be in  $q_1$  after reading all 0 pairs j of w. Since  $q_1$  is an accept state, M accepts w.

Case 1: w contains exactly one 1. Then  $w = 0^k 10^m$ , where  $k, m \ge 0$ , and k + 1 + m is odd. Since k + 1 + m must be odd, k + m must be even, and therefore k, m are either both even or both odd.

Case 1a: k, m are both even. Then k = 2j and m = 2n, where  $j, n \ge 0$ , and so  $0^k, 0^m$  consists of some number of pairs j, n of 0s. M begins in  $q_0$ , and for each pair of 0s j (if there are any), M transitions to  $q_1$  after reading the first 0 in the pair, then transitions back to  $q_0$  after reading the second 0 in the pair. Thus M remains in  $q_0$  after reading all pairs of the substring  $0^k$ . Then M reads the 1 and transitions to  $q_3$ . Then for each pair of 0s n (if there are any), M transitions to  $q_2$  after reading the first 0 in the pair, then transitions back to  $q_3$  after reading the second 0 in the pair. Thus M remains in  $q_3$  after reading all pairs of the substring  $0^m$ . So M remains in  $q_3$  after reading all elements of w, and since  $q_3$  is an accept state, M accepts w.

Case 1b: k, m are both odd. Then k = 2j + 1 and m = 2n + 1, where  $j, n \ge 0$ . Then  $0^k$ ,  $0^m$  both consist of a single 0 followed by some number of pairs j, n of 0s. M begins in  $q_0$ , and after processing the first 0 of  $0^k$  transitions to  $q_1$ . The for each pair of 0s j in  $0^k$  (if there are any), M transitions to  $q_0$  after reading the first 0 of the pair, then transitions back to  $q_1$  after reading the second 0 of the pair. Thus M remains in  $q_1$  after reading the substring  $0^k$ . Then M reads the 1 and transitions to  $q_2$ . Then after reading the first 0 of  $0^m$ , M transitions to  $q_3$ . Then for each n pairs of 0s in  $0^m$  (if there are any), M transitions to  $q_2$  after reading the first 0 in the pair, then transitions back to  $q_3$  after reading the second 0 in the pair. Thus M remains in  $q_3$  after reading the substring  $0^m$ . So, M remains in  $q_3$  after processing all elements of w.  $q_3$  is an accept state, so M accepts w.

In all cases, M accepts w. Therefore  $w \in L_1 \implies w \in L(M)$ , and  $L_1 \subseteq L(M)$ .

Claim 2:  $L(M) \subseteq L_1$ , or  $w \in L(M) \implies w \in L_1$ . To prove this, I will prove the contrapositive:  $w \notin L_1 \implies w \notin L(M)$ .

Let  $w \notin L_1$ . Then either w has two or more 1s, or |w| is even. We want to show that  $w \notin L_1 \implies w \notin L(M)$ .

Case 1: w contains two or more 1s. Then w takes the form  $0^k 10^m 1x$ , where  $k, m \ge 0$ , and  $x \in \{0,1\}*$ . M starts in  $q_0$ . After processing the substring  $0^k$ , M transitions back and forth between  $q_1$  and  $q_0$  depending on the value of k, so M remains in either  $q_0$  or  $q_1$  after processing the substring  $0^k$ . Then M reads the first 1. if M is in  $q_0$ , M will

transition to  $q_3$ . If M is in  $q_1$ , M will transition to  $q_2$ . So M is in either  $q_2$  or  $q_3$  after reading the first 1. Reading the substring  $0^m$  will cause M to continue to transition between  $q_2$  and  $q_3$  depending on the value of m, so M still remains in either  $q_2$  or  $q_3$  after reading the substring  $0^m$ . After reading the second 1, M then transitions to  $q_4$ , regardless of if M was in  $q_2$  or  $q_3$ . There is no transition exiting  $q_4$ , so M remains in  $q_4$  after reading x, which could be any string constructed from the alphabet  $\{0, 1\}$ , including  $\epsilon$ . Thus, M remains in  $q_4$  after reading all elements of w.  $q_4$  is not an accept state, so  $w \notin L(M)$ .

Case 2: |w| is even. Then w consists of some 2k number of characters from the alphabet, where  $k \geq 0$ . The flow of M will proceed as follows:

- i. M begins in  $q_0$ .
- ii. After processing the first character of w, M will transition to either  $q_1$  or  $q_3$ .
- iii. After processing the second character of w, if M was in  $q_1$  it will transition to  $q_0$  or  $q_2$ . If M was in  $q_3$ , it will transition to  $q_0$ ,  $q_2$ , or  $q_4$ .
- iv. After processing the next (odd) character of w, if M was in  $q_0$ , it will transition to  $q_1$  or  $q_3$ . If M was in  $q_2$ , it will transition to  $q_1$ ,  $q_3$ , or  $q_4$ . If M was in  $q_4$ , it will remain in  $q_4$ .
- v. After processing the next (even) character of w, if M was in  $q_1$ , it will transition to  $q_0$  or  $q_2$ . If M was in  $q_3$ , it will transition to  $q_0$ ,  $q_2$ , or  $q_4$ . If M was in  $q_4$ , it will remain in  $q_4$ .
- vi. Repeat from step iv. for the remaining characters in w.

Once M has finished reading w, since w must have an even number of characters, M will always finish after step i., iii., or v. from above. Therefore, M will always finish in either  $q_0$ ,  $q_2$ , or  $q_4$  after processing all characters of w. None of these states are accept states, so  $w \notin L(M)$ .

In both cases, M does not accept w. Therefore  $w \notin L_1 \implies w \notin L(M)$ . So  $w \in L(M) \implies w \in L_1$  and thus  $L(M) \subseteq L_1$ .

Both Claim 1 and Claim 2 are true, therefore  $L(M) = L_1$ .

2. (a) Design an NFA with at most 5 states for the language

$$L_2 = \{ w \in \{0,1\}^* \mid w \text{ contains the substring } 0101 \}.$$

Give a state diagram for your NFA.

#### Solution.

My solution contains the following 5 states:

- i.  $q_0$ : Seen no elements of the substring 0101. start state
- ii.  $q_1$ : Seen the first 0 of the substring.
- iii.  $q_2$ : Seen the first 1 of the substring.

iv.  $q_3$ : Seen the second 0 of the substring.

v.  $q_4$ : Seen the second 1 of the substring. - accept state



(b) Prove that your NFA of part (a) accepts the language  $L_2$ , i.e. prove that  $L(N) = L_2$ , where N is your NFA.

#### Solution.

To prove that  $L(N) = L_2$ , we want to show that  $L_2 \subseteq L(N)$ , and that  $L(N) \subseteq L_2$ .

Claim 1:  $L_2 \subseteq L(N)$ . We want to show that  $w \in L_2 \implies w \in L(N)$ .

Let  $w \in L_2$ . Then w contains the substring 0101 and takes the form x0101y, where  $x, y \in \{0, 1\}*$ . It is sufficient to show that there exists a sequence of states that N moves through on input w such that N ends up in an accepting state after processing w. Thus N moves through the following sequence of states:

- i. N remains in  $q_0$  after processing x (including the case where  $x = \epsilon$ ).
- ii. N transitions to  $q_1$  after reading the first 0 of the substring 0101.
- iii. N transitions to  $q_2$  after reading the first 1 of the substring 0101.
- iv. N transitions to  $q_3$  after reading the second 0 of the substring 0101.
- v. N transitions to  $q_4$  after reading the second 1 of the substring 0101.
- vi. N remains in  $q_4$  after processing y (including the case where  $y = \epsilon$ ).

So N remains in  $q_4$  after processing all elements of w.  $q_4$  is an accept state, so N accepts w. Therefore  $w \in L_2 \implies w \in L(N)$ , and  $L_2 \subseteq L(N)$ .

Claim 2:  $L(N) \subseteq L_2$ , or  $w \in L(N) \implies w \in L_2$ . To prove this, I will prove the contrapositive:  $w \notin L_2 \implies w \notin L(N)$ .

Let  $w \notin L_2$ . Then w does not contain the substring 0101. To prove by way of contradiction, suppose N accepts w. Then N is in  $q_4$  after processing w, and w takes the form  $w_1w_2...w_n$ , where  $w_i \in \{0,1\}*$  for  $1 \le i \le n$ . All arrows transitioning from  $q_4$  lead back into  $q_4$ , so N can never leave  $q_4$  once it reaches this state.

Let  $w_{p-1}$  be the first symbol effecting a transition from a state different from  $q_4$  into  $q_4$ . Then N moves to, and remains in, state  $q_4$  on input symbols  $w_p, w_{p+1}, ..., w_n$ . The only transition into  $q_4$  from a state q different from  $q_4$  is the transition  $q_3 \xrightarrow{1} q_4$ . So  $w_{p-1} = 1$  and  $q = q_3$ . Furthermore, the only way to reach  $q_3$  is from  $q_2$  on input symbol 0, so  $w_{p-2} = 0$ . The only way to reach  $q_2$  is from  $q_1$  on input symbol 1, so  $w_{p-3} = 1$ . The only way to reach  $q_1$  is from  $q_0$  on input symbol 0, so  $w_{p-4} = 0$ . Thus w contains the substring  $w_{p-4}w_{p-3}w_{p-2}w_{p-1} = 0101$ , and thus  $w \in L_2$ . This contradicts our assumption that  $w \notin L_2$ , thus our assumption that  $w \notin L_2$ , thus our assumption that  $w \notin L_2$  is false and  $w \notin L_2$ . Therefore  $w \notin L(N)$ , and so  $w \notin L_2 \implies w \notin L(N)$ . Then  $w \in L(N) \implies w \in L_2$ , and  $w \in L_2$ .

Both Claim 1 and Claim 2 are true, therefore  $L(N) = L_2$ .