1. Дать определение линейного (векторного) пространства.

Определение 1.1. Множество \mathcal{L} элементов x, y, z, \ldots любой природы называют *линей-* **ным пространством**, если выполнены три условия:

- 1) задано *сложение элементов* \mathcal{L} , т.е. закон, по которому любым элементам $x, y \in \mathcal{L}$ ставится в соответствие элемент $z \in \mathcal{L}$, называемый *суммой элементов* x и y и обозначаемый z = x + y;
- 2) задано *умножение элемента на число*, т.е. закон, по которому любому элементу $x \in \mathcal{L}$ и любому числу $\lambda \in \mathbb{R}$ ставится в соответствие элемент $z \in \mathcal{L}$, называемый *произведением элемента x на* (действительное) *число* и обозначаемый $z = \lambda x$;
- 3) указанные законы (**линейные операции**) подчиняются следующим **аксиомам линей**ного пространства:
 - a) сложение коммутативно: x + y = y + x;
 - б) сложение ассоциативно: (x + y) + z = x + (y + z);
 - в) существует такой элемент $0 \in \mathcal{L}$, что x + 0 = x для любого $x \in \mathcal{L}$;
- г) для каждого элемента x множества $\mathcal L$ существует такой элемент $(-x)\in\mathcal L$, что x+(-x)=0;
 - д) произведение любого элемента x из \mathcal{L} на единицу равно этому элементу: $1 \cdot x = x$;
 - e) умножение на число ассоциативно: $\lambda(\mu x) = (\lambda \mu)x$;
- ж) умножение на число и сложение связаны законом дистрибутивности по числам: $(\lambda + \mu)x = \lambda x + \mu x$;
- з) умножение на число и сложение связаны законом дистрибутивности по элементам: $\lambda(x+y) = \lambda x + \lambda y$.

2. <u>Дать определение линейно зависимой и линейно независимой системы</u> векторов.

Определение 1.2. Систему векторов x_1, x_2, \ldots, x_k в линейном пространстве \mathcal{L} называют *линейно зависимой*, если существует нетривиальная линейная комбинация этих векторов,

ЛЕКЦИЯ 1. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

равная *нулевому вектору*. Если же линейная комбинация этих векторов равна нулевому вектору только лишь в случае, когда она тривиальна, систему векторов называют *линейно независимой*. Опуская слово «система», часто говорят: векторы x_1, x_2, \ldots, x_k *линейно зависимы* или соответственно *линейно независимы*.

3. Дать определение базиса и размерности линейного пространства

Определение 1.3. *Базисом линейного пространства* \mathcal{L} называют любую упорядоченную систему векторов, для которой выполнены два условия:

- 1) эта система векторов линейно независима;
- 2) каждый вектор в линейном пространстве может быть представлен в виде линейной комбинации векторов этой системы.

Определение 1.5. Максимальное количество *линейно независимых векторов* в данном линейном пространстве называют *размерностью линейного пространства*.

4. Дать определение матрицы перехода от одного базиса к другому.

Пусть в n-мерном линейном пространстве \mathcal{L} заданы два базиса: старый $\boldsymbol{b} = (\boldsymbol{b}_1, \ \boldsymbol{b}_2, \ \dots, \ \boldsymbol{b}_n)$ и новый $\boldsymbol{c} = (\boldsymbol{c}_1, \ \boldsymbol{c}_2, \ \dots, \ \boldsymbol{c}_n)$. Любой вектор можно разложить по базису \boldsymbol{b} . В частности, каждый вектор из базиса \boldsymbol{c} может быть представлен в виде линейной комбинации векторов базиса \boldsymbol{b} :

$$c_i = \alpha_{1i}b_1 + \ldots + \alpha_{ni}b_n, \qquad i = \overline{1, n}.$$

Запишем эти представления в матричной форме:

$$c_i = b \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{ni} \end{pmatrix}, \qquad i = \overline{1, n},$$

или

c = bU.

где

$$U = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix}. \tag{1.5}$$

Определение 1.6. Матрицу (1.5) называют *матрицей перехода* от старого базиса \boldsymbol{b} к новому базису \boldsymbol{c} .

5. Записать формулу преобразования координат вектора при переходе от одного базиса линейного пространства к другому.

Пусть в n-мерном линейном пространстве \mathcal{L} заданы два базиса: старый $\mathbf{b} = (\mathbf{b}_1, \ \mathbf{b}_2, \ \dots, \ \mathbf{b}_n)$ и новый $\mathbf{c} = (\mathbf{c}_1, \ \mathbf{c}_2, \ \dots, \ \mathbf{c}_n)$. Любой вектор можно разложить по базису \mathbf{b} . В частности, каждый вектор из базиса \mathbf{c} может быть представлен в виде *линейной комбинации* векторов базиса \mathbf{b} :

$$c_i = \alpha_{1i}b_1 + \ldots + \alpha_{ni}b_n, \qquad i = \overline{1, n}.$$

Запишем эти представления в матричной форме:

$$c_i = b \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{ni} \end{pmatrix}, \qquad i = \overline{1, n},$$

или

$$c = bU$$

где

$$U = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix}. \tag{1.5}$$

Определение 1.6. Матрицу (1.5) называют **матрицей перехода** от старого базиса \boldsymbol{b} к новому базису \boldsymbol{c} .

6. <u>Дать определение подпространства линейного пространства и линейной оболочки системы векторов.</u>

Определение 2.1. Подмножество \mathcal{H} линейного пространства \mathcal{L} называют *линейным под- пространством*, если выполнены следующие два условия:

- 1) сумма любых двух векторов из \mathcal{H} принадлежит \mathcal{H} : $x,y\in\mathcal{H}\implies x+y\in\mathcal{H}$;
- 2) произведение любого вектора из \mathcal{H} на любое действительное число снова принадлежит \mathcal{H} : $\mathbf{x} \in \mathcal{H}$, $\lambda \in \mathbb{R} \implies \lambda \mathbf{x} \in \mathcal{H}$.

7. Дать определение скалярного произведения и евклидова пространства.

Определение 2.3. Линейное пространство $\mathcal E$ называют евклидовым пространством, если в этом пространстве задано скалярное умножение, т.е. закон или правило, согласно которому каждой паре векторов $x, y \in \mathcal E$ поставлено в соответствие действительное число (x,y), называемое скалярным произведением. При этом выполняются следующие аксиомы скалярного умножения:

- a) (x, y) = (y, x);
- б) (x + y, z) = (x, z) + (y, z);
- B) $(\lambda \boldsymbol{x}, \boldsymbol{y}) = \lambda (\boldsymbol{x}, \boldsymbol{y}), \lambda \in \mathbb{R};$
- г) $(x, x) \ge 0$, причем (x, x) = 0 лишь в случае, когда x = 0.

8. Записать неравенства Коши-Буняковского и треугольника.

Теорема 2.2. Для любых векторов x, y евклидова пространства \mathcal{E} справедливо **неравенство Коши** — **Буняковского**

$$(\boldsymbol{x},\,\boldsymbol{y})^2 \leqslant (\boldsymbol{x},\,\boldsymbol{x})\,(\boldsymbol{y},\,\boldsymbol{y})\,. \tag{2.3}$$

в)
$$\|x+y\| \le \|x\| + \|y\|$$
 (неравенство треугольника).

9. <u>Дать определение ортогональной системы векторов и ортонормированного</u> базиса евклидова пространства.

Определение 2.7. *Систему векторов* евклидова пространства называют *ортогональной*, если любые два вектора из этой системы ортогональны.

Следующее свойство ортогональной системы является самым важным.

Определение 2.8. Ортогональный базис называют *ортонормированным*, если каждый вектор этого базиса имеет норму ($\partial лину$), равную единице.

10. Сформулировать теорему о связи линейной зависимости и ортогональности системы векторов

Теорема 2.5. Любая ортогональная система ненулевых векторов линейно независима.

11. Дать определение линейного оператора и матрицы линейного оператора.

Определение 3.1. Отображение $A: \mathcal{L} \to \mathcal{L}'$ из линейного пространства \mathcal{L} в линейное пространство \mathcal{L}' называют *линейным отображением* или *линейным оператором*, если выполнены следующие условия:

- а) A(x+y) = A(x) + A(y) для любых векторов $x, y \in \mathcal{L}$;
- б) $A(\lambda x) = \lambda A(x)$ для любого вектора $x \in \mathcal{L}$ и любого числа $\lambda \in \mathbb{R}$.

Определение 3.3. Матрицу $A = (a_1 \ldots a_n)$, составленную из координатных столбцов векторов Ab_1, \ldots, Ab_n в базисе $b = (b_1 \ldots b_n)$ называют **матрицей линейного оператора** A в базисе b.

Матрица линейного оператора $A: \mathcal{L} \to \mathcal{L}$ является квадратной, ее порядок совпадает с размерностью линейного пространства \mathcal{L} .

Рассмотрим несколько примеров линейных операторов и их матриц.

12. Записать формулу преобразования матрицы линейного оператора при переходе к новому базису.

Теорема 3.5. Матрицы A_b и A_e линейного оператора $A: \mathcal{L} \to \mathcal{L}$, записанные в базисах b и e линейного пространства \mathcal{L} , связаны друг с другом соотношением

$$A_e = U^{-1} A_b U, (3.3)$$

где $U=U_{{m b} o {m e}}$ — матрица перехода от базиса ${m b}$ к базису ${m e}$.

13. <u>Дать определение характеристического уравнения, собственного числа и собственного вектора линейного оператора</u>

Определение 4.1. Многочлен $\chi_A(\lambda) = \det(A - \lambda E)$ называют *характеристическим многочленом матрицы* A, а уравнение $\chi_A(\lambda) = 0$ — *характеристическим уравнением матрицы* A.

Определение 4.3. Ненулевой вектор x в линейном пространстве $\mathcal L$ называют собственным вектором линейного оператора $A:\mathcal L\to\mathcal L$, если для некоторого действительного числа λ выполняется соотношение $Ax=\lambda x$. При этом число λ называют собственным значением (собственным числом) линейного оператора A.

14. Сформулировать теорему о собственных векторах линейного оператора, отвечающих различным собственным значениям.

Теорема 4.5. Пусть собственные значения $\lambda_1, \ldots, \lambda_r$ линейного оператора A попарно различны. Тогда система соответствующих им собственных векторов e_1, \ldots, e_r линейно независима.

15. <u>Дать определение самосопряжённого линейного оператора на евклидовом пространстве и сформулировать теорему о виде матрицы самосопряжённого оператора в ортонормированном базисе.</u>

Это определение можно сформулировать по-другому. Линейный оператор самосопряженный, если для любых векторов \boldsymbol{x} и \boldsymbol{y} верно равенство

$$(\boldsymbol{A}\boldsymbol{x},\,\boldsymbol{y})=(\boldsymbol{x},\,\boldsymbol{A}\boldsymbol{y})\,.$$

Теорема 5.2. *Матрица самосопряженного оператора* в любом *ортонормированном базисе* является симметрической. Наоборот, если матрица линейного оператора в некотором ортонормированном базисе является симметрической, то этот оператор — самосопряженный.

16. Сформулировать теорему о корнях характеристического уравнения самосопряжённого оператора.

Теорема 5.3. Все корни *характеристического уравнения* самосопряженного оператора действительны.

17. Сформулировать теорему о собственных векторах самосопряжённого оператора, отвечающих различным собственным значениям.

Теорема 5.4. Собственные векторы самосопряженного оператора, отвечающие различным собственным значениям, ортогональны.

18. Сформулировать теорему о существовании для самосопряжённого оператора ортонормированного базиса, в котором его матрица имеет простой вид.

Теорема 5.5. Если собственные значения $\lambda_1, \ldots, \lambda_n$ самосопряженного оператора A, действующего в n-мерном евклидовом пространстве \mathcal{E} , попарно различны, то в \mathcal{E} существует ортонормированный базис, в котором матрица этого линейного оператора A имеет диагональный вид, причем диагональными элементами такой матрицы являются собственные значения $\lambda_1, \ldots, \lambda_n$.

19. <u>Дать определение ортогонального линейного оператора и ортогональной матрицы.</u>

Определение 5.3. Квадратную матрицу O называют *ортогональной*, если она удовлетворяет условию

$$O^{\mathrm{T}}O = E, \tag{5.8}$$

где E — единичная матрица.

Определение 5.4. Линейный оператор $A: \mathcal{E} \to \mathcal{E}$, действующий в евклидовом пространстве \mathcal{E} , называют ортогональным оператором (или ортогональным преобразованием), если он сохраняет скалярное произведение в \mathcal{E} , т.е. для любых векторов $x, y \in \mathcal{E}$ выполняется равенство

$$(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}) = (\mathbf{x}, \mathbf{y}). \tag{5.10}$$

20. <u>Дать определение квадратичной формы, матрицы и канонического вида квадратичной формы.</u>

Определение 6.1. Однородный многочлен второй степени от n переменных с действительными коэффициентами

$$\sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j, \qquad a_{ij} \in \mathbb{R},$$

$$(6.1)$$

называют квадратичной формой.

Определение 6.2. Квадратичную форму

$$\alpha_1 x_1^2 + \ldots + \alpha_n x_n^2, \quad \alpha_i \in \mathbb{R}, \quad i = \overline{1, n},$$
 (6.5)

не имеющую попарных произведений переменных, называют **квадратичной формой кано- нического вида.** Переменные x_1, \ldots, x_n , в которых квадратичная форма имеет канонический вид, называют **каноническими переменными**.

21. Записать формулу преобразования матрицы квадратичной формы при переходе к новому базису

Пусть $T_{e \to e'}$ — матрица перехода от базиса $e = \{e_1, e_2, \dots, e_n\}$ к базису $e' = \{e'_1, e'_2, \dots, e'_n\}$. Пусть A и A' — матрицы квадратичной формы Q в базисах e и e' соответственно. Пусть X — столбец координат вектора \vec{x} в базисе e, а X' — столбец координат вектора \vec{x} в базисе e'. Формула перехода координат:

$$X = T_{e \to e'} X'$$
.

Т.к. для произведения матриц верна формула

$$(BC)^T = C^T B^T,$$

то

$$X^T = X'^T T_{e \to e'}^T.$$

Отсюда мы получаем, что

$$Q(x) = X^T A X = \left(X'^T T_{e \to e'}^T\right) A \left(T_{e \to e'} X'\right) = X'^T \left(T_{e \to e'}^T A T_{e \to e'}\right) X' = X'^T A' X'.$$

Мы получили формулу преобразования матрицы квадратичной формы при переходе к новому базису:

$$A' = T_{e \to e'}^T A T_{e \to e'}. \tag{2}$$

22. <u>Дать определение положительно определённой, отрицательно определённой и неопределённой квадратичной формы.</u>

Определение 6.3. Квадратичную форму $f(x) = x^{\mathrm{T}} A x, \ x = (x_1 \ x_2 \ \dots \ x_n)^{\mathrm{T}}$, будем называть:

- **положительно** (**отрицательно**) **определенной**, если для любого ненулевого столбца x выполняется неравенство f(x) > 0 (f(x) < 0);
- неотрицательно (неположительно) определенной, если $f(x) \ge 0$ ($f(x) \le 0$) для любого столбца x, причем существует ненулевой столбец x, для которого f(x) = 0;
- **знакопеременной** (**неопределенной**), если существуют такие столбцы x и y, что f(x) > 0 и f(y) < 0.
- 23. Сформулировать критерий Сильвестра положительной определённости квадратичной формы и следствия для отрицательно определённых и неопределённых форм.

Пусть матрица квадратичной формы $f(x) = x^{\mathrm{T}} A x$ имеет вид

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix},$$

где $a_{ij} = a_{ji}$, $i, j = \overline{1, n}$. Рассмотрим **угловые миноры** этой матрицы (которые также называют **главными минорами**):

$$\Delta_1 = a_{11}, \quad \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \dots, \quad \Delta_n = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}.$$

Как видим, угловой минор порядка k расположен на пересечении первых k строк и первых k столбцов матрицы. Угловой минор максимального, n-го порядка представляет собой определитель матрицы.

Теорема 6.5 (*критерий Сильвестра*). Для того чтобы квадратичная форма от n переменных была положительно определена, необходимо и достаточно, чтобы выполнялись неравенства $\Delta_1 > 0, \, \Delta_2 > 0, \, \Delta_3 > 0, \, \dots, \, \Delta_n > 0.$

24. Сформулировать закон инерции квадратичных форм.

Теорема 6.4. Для любых двух канонических видов

$$f_1(y_1, \dots, y_m) = \lambda_1 y_1^2 + \dots + \lambda_m y_m^2, \quad \lambda_i \neq 0, \ i = \overline{1, m}, \tag{6.6}$$

$$f_2(z_1, \dots, z_k) = \mu_1 z_1^2 + \dots + \mu_k z_k^2, \quad \mu_j \neq 0, \ j = \overline{1, k},$$
 (6.7)

одной и той же квадратичной формы:

- -m = k и их общее значение равно рангу квадратичной формы;
- количество положительных коэффициентов λ_i совпадает с количеством положительных коэффициентов μ_i ;
- количество отрицательных коэффициентов λ_i совпадает с количеством отрицательных коэффициентов μ_i .

Часть Б

1. <u>Вывести формулу преобразования координат вектора при переходе</u> от одного базиса линейного пространства к другому

Пусть в n-мерном линейном пространстве \mathcal{L} заданы два базиса: старый $\boldsymbol{b} = (\boldsymbol{b}_1, \ \boldsymbol{b}_2, \ \dots, \ \boldsymbol{b}_n)$ и новый $\boldsymbol{c} = (\boldsymbol{c}_1, \ \boldsymbol{c}_2, \ \dots, \ \boldsymbol{c}_n)$. Любой вектор можно разложить по базису \boldsymbol{b} . В частности, каждый вектор из базиса \boldsymbol{c} может быть представлен в виде *линейной комбинации* векторов базиса \boldsymbol{b} :

$$c_i = \alpha_{1i}b_1 + \ldots + \alpha_{ni}b_n, \qquad i = \overline{1, n}.$$

Запишем эти представления в матричной форме:

$$c_i = b \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{ni} \end{pmatrix}, \qquad i = \overline{1, n},$$

или

$$c = bU$$
.

где

$$U = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix}. \tag{1.5}$$

Определение 1.6. Матрицу (1.5) называют **матрицей перехода** от старого базиса \boldsymbol{b} к новому базису \boldsymbol{c} .

2. Доказать неравенства Коши-Буняковского и треугольника.

Теорема 2.2. Для любых векторов x, y евклидова пространства \mathcal{E} справедливо **неравенство Коши** — **Буняковского**

$$(\boldsymbol{x},\,\boldsymbol{y})^2 \leqslant (\boldsymbol{x},\,\boldsymbol{x})\,(\boldsymbol{y},\,\boldsymbol{y})\,. \tag{2.3}$$

$$(\lambda \mathbf{x} - \mathbf{y}, \, \lambda \mathbf{x} - \mathbf{y}) \geqslant 0. \tag{2.4}$$

Преобразуем левую часть неравенства, используя аксиомы и свойства скалярного умножения:

$$(\lambda x - y, \lambda x - y) = \lambda (x, \lambda x - y) - (y, \lambda x - y) = \lambda^{2} (x, x) - 2\lambda (x, y) + (y, y).$$

Мы получили квадратный трехчлен относительно параметра λ (коэффициент (x, x) при λ^2 согласно аксиоме г) ненулевой, так как $x \neq 0$), неотрицательный при всех действительных значениях параметра. Следовательно, его дискриминант равен нулю или отрицательный, т.е.

$$(x, y)^2 - (x, x)(y, y) \le 0.$$

3. Вывести формулу преобразования матрицы линейного оператора при переходе к новому базису.

Теорема 3.5. Матрицы A_b и A_e линейного оператора $A: \mathcal{L} \to \mathcal{L}$, записанные в базисах b и e линейного пространства \mathcal{L} , связаны друг с другом соотношением

$$A_e = U^{-1} A_b U, (3.3)$$

где $U = U_{\boldsymbol{b} \to \boldsymbol{e}}$ — матрица перехода от базиса \boldsymbol{b} к базису \boldsymbol{e} .

◀ Пусть y = Ax. Обозначим координаты векторов x и y в старом базисе b через x_b и y_b , а в новом базисе e — через x_e и y_e . Поскольку действие линейного оператора A в матричной форме в базисе b имеет вид $y_b = A_b x_b$ (см. теорему 3.3), а координаты векторов x и y в новом и старом базисах связаны между собой равенствами (см. 1.8)

$$x_b = Ux_e, \qquad y_b = Uy_e,$$

то получаем

$$y_e = U^{-1}y_b = U^{-1}(A_b x_b) = U^{-1}(A_b U x_e) = (U^{-1}A_b U) x_e.$$

Равенство $y_e = (U^{-1}A_bU) x_e$ является матричной формой записи действия линейного оператора A в базисе e и поэтому, согласно теореме $3.4, U^{-1}A_bU = A_e$.

4. <u>Доказать инвариантность характеристического уравнения линейного оператора и инвариантность следа матрицы.</u>

$$\chi_A(\lambda) = \det(A - \lambda E) = \sum_{k=0}^n (-1)^k d_k \lambda^k, \tag{4.1}$$

где множители $(-1)^k$ введены для удобства.

Определение коррек|тно, так как характеристический многочлен не зависит от выбора базиса. При этом коэффициенты d_k характеристического многочлена, представленного в виде (4.1), также не связаны с используемым базисом, т.е. являются **инвариантами** относительно выбора базиса. Другими словами, коэффициенты d_k отражают свойства самого оператора, а не его матрицы A, являющейся записью оператора в конкретном базисе.

Коэффициенты d_k могут быть выражены в виде многочленов от элементов матрицы оператора. Таким образом, хотя коэффициенты матрицы меняются при замене базиса, некоторые выражения от этих коэффициентов остаются неизменными. Наиболее просто выражается коэффициент

$$d_{n-1} = a_{11} + a_{22} + \ldots + a_{nn},$$

равный сумме диагональных элементов матрицы A. Этот коэффициент называют cnedom nuneŭhoro onepamopa <math>A (cnedom mampuuы A) и обозначают tr A (tr A) или sp A (sp A). Коэффициент d_0 характеристического многочлена совпадает со значением этого многочлена при $\lambda = 0$ и равен определителю линейного оператора A.

5. Доказать теорему о собственных векторах линейного оператора, отвечающих различным собственным значениям.

Теорема 4.5. Пусть собственные значения $\lambda_1, \ldots, \lambda_r$ линейного оператора **A** попарно различны. Тогда система соответствующих им собственных векторов e_1, \ldots, e_r линейно независима.

 \blacksquare Доказательство опирается на метод математической индукции, проводимый по количеству r векторов в системе. При r=1 утверждение теоремы верно, так как линейная независимость системы из одного вектора означает, что этот вектор ненулевой, а собственный вектор, согласно определению 4.3, является ненулевым.

Пусть утверждение верно при r = m, т.е. для произвольной системы из m собственных векторов e_1, \ldots, e_m . Добавим к системе векторов еще один собственный вектор e_{m+1} , отвечающий собственному значению λ_{m+1} , и докажем, что расширенная таким способом система векторов останется линейно независимой. Рассмотрим произвольную линейную комбинацию полученной системы собственных векторов и предположим, что она равна *нулевому вектору*:

$$\alpha_1 \mathbf{e}_1 + \ldots + \alpha_m \mathbf{e}_m + \alpha_{m+1} \mathbf{e}_{m+1} = \mathbf{0}. \tag{4.7}$$

К равенству (4.7) применим линейный оператор \boldsymbol{A} и в результате получим еще одно векторное равенство

$$\alpha_1 \mathbf{A} \mathbf{e}_1 + \ldots + \alpha_m \mathbf{A} \mathbf{e}_m + \alpha_{m+1} \mathbf{A} \mathbf{e}_{m+1} = \mathbf{0}.$$

Учтем, что векторы e_1, \ldots, e_{m+1} являются собственными:

$$\alpha_1 \lambda_1 e_1 + \ldots + \alpha_m \lambda_m e_m + \alpha_{m+1} \lambda_{m+1} e_{m+1} = 0. \tag{4.8}$$

Умножив равенство (4.7) на коэффициент λ_{m+1} и вычтя его из равенства (4.8), получим линейную комбинацию векторов e_1, \ldots, e_m , равную нулевому вектору:

$$\alpha_1(\lambda_1 - \lambda_{m+1})e_1 + \ldots + \alpha_m(\lambda_m - \lambda_{m+1})e_m = \mathbf{0}.$$

Вспоминая, что система векторов e_1, \ldots, e_m , по предположению, линейно независима, делаем вывод, что у полученной линейной комбинации все коэффициенты равны нулю:

$$\alpha_k (\lambda_k - \lambda_{m+1}) = 0, \quad k = \overline{1, m}.$$
 (4.9)

Поскольку все собственные значения λ_i попарно различны, то из равенств (4.9) следует, что $\alpha_1 = \alpha_2 = \ldots = \alpha_m = 0$. Значит соотношение (4.7) можно записать в виде $\alpha_{m+1} \boldsymbol{e}_{m+1} = \boldsymbol{0}$, а так как вектор \boldsymbol{e}_{m+1} ненулевой (как собственный вектор), то $\alpha_{m+1} = 0$. В итоге получаем, что равенство (4.7) выполняется лишь в случае, когда все коэффициенты α_i , $i = \overline{1, m+1}$, равны нулю. Тем самым мы доказали, что система векторов $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_m, \boldsymbol{e}_{m+1}$ линейно независима. \blacktriangleright

6. Вывести формулу преобразования матрицы квадратичной формы при переходе к новому базису

Пусть $T_{e\to e'}$ — матрица перехода от базиса $e=\{e_1,e_2,\ldots,e_n\}$ к базису $e'=\{e'_1,e'_2,\ldots,e'_n\}$. Пусть A и A' — матрицы квадратичной формы Q в базисах e и e' соответственно. Пусть X — столбец координат вектора \vec{x} в базисе e, а X' — столбец координат вектора \vec{x} в базисе e'. Формула перехода координат:

$$X = T_{e \to e'} X'.$$

Т.к. для произведения матриц верна формула

$$(BC)^T = C^T B^T,$$

TO

$$X^T = X'^T T_{e \to e'}^T.$$

Отсюда мы получаем, что

$$Q(x) = X^T A X = \left(X'^T T_{e \to e'}^T\right) A \left(T_{e \to e'} X'\right) = X'^T \left(T_{e \to e'}^T A T_{e \to e'}\right) X' = X'^T A' X'.$$

Мы получили формулу преобразования матрицы квадратичной формы при переходе к новому базису:

$$A' = T_{e \to e'}^T A T_{e \to e'}. \tag{2}$$