Dette arket vil gå igjennom 8.-10. trinns algebra. Både oppgaver og forklaringer med modeller.

Innhold:

1.	Ledd	(s. 2)
2.	Pluss og minus	(s. 2)
3.	Ganging og potenser	(s. 3)
4.	Kvadratrot	(s. 3)
5.	Deling	(s. 4)
6.	Distributive lov	(s. 4)
7.	Blandede oppgaver	(s. 5)
8.	Løsningsforslag	(s. 6)

Anbefalte oppgaver:

- 4c til 4h
- 5
- 6a, 6b, 6d-6k

Algebra definisjon:

«Algebra er en del av matematikken som handler om likninger og regning med tall og bokstaver.» (Strømme, 2024)

Ledd

Ledd er separert av pluss og minus. Leddene inkluderer ofte et fortegn. Det kan finnes ledd i ledd. For eksempel:

$$4a + 2a + \frac{5}{3} \cdot (a+b) - b$$

Ledd:

- 1. 4*a*
- 2. +2a
- 3. $+\frac{5}{3} \cdot (a+b)$
- 4. -b

Her kan vi se at det er ledd i ledd hos nummer 3. Altså $+\frac{5}{3}$ · (a+b) er ett ledd og det er flere ledd i leddet. Leddene i leddet er:

- 1. a
- 2. +b

Oppgave 1 —> Løsningsforslag s. x

Identifiser leddene i uttrykkene

a)
$$2a + 3a - 3a$$

b)
$$9b + 2a + (a + b)$$
 c) $2b + a - (b + c)$

c)
$$2b + a - (b + c)$$

d)
$$92 + 5s + 9 \cdot 3$$

e)
$$2a - \sqrt{2a - 3}$$

f)
$$9 + 2 \cdot \sqrt{2 - 2 + 2a \cdot 3}$$

Pluss og minus

Pluss og minus i algebra fungerer nesten helt likt som vanlige tall, men det er en viktig ting å passe på: man kan kun addere eller subtrahere samme variabel. Eksempel:

$$5a + 2b - 3a - a - 2 + b + 9$$

$$= 5a - 3a - a + 2b + b - 2 + 9$$

$$= a + 3b + 7$$

a)
$$3x + (-x) + x$$

b)
$$2a + 5a - a$$

c)
$$2a + 3b - b + a$$

d)
$$5 - 3b + a + b - 1$$

e)
$$9a - b + 4a - 2b + 2 - 5$$
 f) $3a - (-a) + b + a$

f)
$$3a - (-a) + b + a$$

Ganging og potenser

 $\langle 2x \rangle$ og $\langle -x \rangle$ inneholder begge ganging uten at de viser det. 2x er det samme som $2 \cdot x$, og -x er egentlig $-1 \cdot x$.

Når vi ganger samme variabler, pleier vi å bruke potenser. For eksempel er $x \cdot x \cdot x$ det samme som x^3 fordi de representerer det samme. xy^2 er det samme som $x \cdot y \cdot y$ og $(xy)^3$ er det samme som $x \cdot y \cdot x \cdot y \cdot x \cdot y$ altså x^3y^3 .

Oppgave 3

Skriv det i utvidet format (x^3 i utvidet format er $x \cdot x \cdot x$).

- a) a^2
- b) b^{3}
- c) p^2d^3
- d) $u^2 g^3$

- e) $x^3 + y^3$
- f) $e^2 e^3$
- g) $s^5 s^4$
- h) r^2r^3

- i) tt^3
- i) g^2g^2
- k) g^2h^3

Oppgave 4

Skriv så enkelt som mulig (potens).

- a) $a \cdot b \cdot a \cdot b$
- b) $a + a + a^2$
- c) $b 2b 3b^2 + b$

- d) $2 b^2 + 5b^2 + 3b$ e) $9b 2a^2 + a 2a$ f) $2a + a \cdot a^2 \cdot b$

- g) $5b + b b^2 \cdot b^3 3b^5$ h) $a \cdot a \cdot b \cdot b^5 a^2 \cdot b^6 1$

Kvadratrot

Kvadratrot er gitt ved $\sqrt{x^2} = x$ som også kan skrives som $\sqrt{x \cdot x} = x$. Altså hvis man tar kvadratroten av noe, må man finne to like tall, som blir det tallet man tar kvadratroten av. I algebra så er det lettere, fordi vi kan lett se om vi kan ta kvadratroten eller ikke.

En viktig regel er: $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$ (dette gjelder kun om a og b er positive eller null) (man kan også følge regelen motsatt vei oppgave c)

Eksempel bruk av regelen: $\sqrt{9x} = \sqrt{9} \cdot \sqrt{x} = 3 \cdot \sqrt{x}$

Oppgaven 5

Skriv så lett så mulig (mange oppgaver trenger regelen):

a) $\sqrt{x^2x^2}$

b) $\sqrt{x^4}$

c) $\sqrt{x} \cdot \sqrt{x}$

d) $\sqrt{x^6}$

- e) $\sqrt{25x} + \sqrt{4x}$
- f) $3\sqrt{x^2}$

g) $\sqrt{9x^2}$

h) $x^2\sqrt{x^2}$

Deling

Viktig regel: $\frac{a+c}{b} = \frac{a}{b} + \frac{c}{b}$ (denne regelen gjelder kun for å dele opp telleren)

Eksempel:
$$\frac{(3x+1)-5}{3x+1} = \frac{3x+1}{3x+1} - \frac{5}{3x+1} = 1 - \frac{5}{3x+1}$$

En annen ting er at hvis det kun er ett ledd i nevneren og telleren så kan du krysse ut mellom nevneren og telleren og det vil bare bli et 1-tall. For eksempel: $\frac{5 \cdot a}{a}$ her kan vi krysse ut fordi vi ser matchene par oppe og nede og det er bare ett ledd. $\frac{5 \cdot a}{a} = \frac{5 \cdot 1}{1}$ og det blir 5.

Det at alt må være et ledd kan man fikse ved å putte parentes ting som ikke endrer noe.

Oppgave 6

a)
$$\frac{x^4}{x}$$

b)
$$\frac{x^5}{x^2}$$

c)
$$\frac{x^7}{x^3}$$

d)
$$\frac{x^3y^5}{xy}$$

e)
$$\frac{a^7b^5}{a^7b^2}$$

f)
$$\frac{q^3r}{q}$$

Oppgave 7

a)
$$\frac{(2x+1)(3x-2)}{2x+1}$$

b)
$$\frac{4(x+1)}{4}$$

c)
$$\frac{5+a+b}{b}$$

d)
$$\frac{23-3x}{x}$$

e)
$$\frac{x^4}{x^2} - \frac{5(x^2)}{5}$$

f)
$$\frac{3x}{3} - x^2 - \frac{(x-x^2)x}{x}$$

g)
$$\frac{10x}{2}$$

h)
$$\frac{4x^2-2x}{2x}$$

i)
$$\frac{x-2}{(x-2)(5+x)}$$

$$j)\frac{3x}{3x^3} - \frac{3}{3.5}$$

k)
$$\frac{5}{5x}$$

Distributive lov

Den distributive lov sier hvordan vi ganger med parenteser. Et eksempel er: a(b+c). Her kan vi tenke på det som areal og at a er lengden til den ene siden og (b + c) er lengden til side to. Da kan vi legge sammen arealet fra ab og ac, altså er a(b+c) = ab + ac (Figuren₁ til høyre).

Hvis vi ser på det samme bare med to parenteser, altså (a +b)(c+d) så sier vi at (a+b) er en side og den andre siden er (c+d).

Da legger vi bare sammen alle arealene til de forskjellige firkantene (figur₂ høyre).

Da får vi at (a + b)(c + d) = ac + ad + bc + bd

Oppgave 8

Løs disse:

a)
$$3(x + 2y)$$

b)
$$2x(x + 1)$$

c)
$$y(x - 3y)$$

d)
$$(2x-1)(2x+2)$$

e)
$$(3x + y)(y - 3)$$

f)
$$(3x - y)(-x + y)$$

d)
$$(2x-1)(2x+2)$$
 e) $(3x+y)(y-3)$
g) $2(x-y)(x+2y)$ h) $y(x+y)(z-x)$

$$h) y(x+y)(z-x)$$

i)
$$9(2-a)(6-2a)$$

Blandede oppgaver

Oppgave 9

Endre på uttrykkene til å bli enklere:

a)
$$\frac{2(4x-2)}{8x}$$

b)
$$\frac{(x+3)(x-2)}{x^2+x-6}$$

c)
$$\frac{(x+5)^2}{x^2+10x+25}$$
 – 5(x + 1)

d)
$$5a \cdot \frac{1}{a}$$

e)
$$\frac{\frac{8a^2}{2a}}{\frac{4a}{a}} \cdot \frac{3}{a}$$

f)
$$3a \cdot \frac{a-2}{a}$$

g)
$$2(a+2)^2(3a^2+a-3)$$
 h) $3q-3(2q+3)$

h)
$$3q - 3(2q + 3)$$

i)
$$3p(p-2)$$

Løsningsforslag

Oppgave 1

Identifiser leddene i uttrykkene

a)
$$2a + 3a - 3a$$

Ledd:

- 2*a*
- +3*a*
- -3a

b)
$$9b + 2a + (a + b)$$

Ledd:

- 9*b*
- +2*a*
- +(a+b)
 - o a
 - \circ +b

c)
$$2b + a - (b + c)$$

Ledd:

- 2*b*
- *-* +*a*
- -(b+c)

 - o bo +c

d)
$$92 + 5s + 9 \cdot 3$$

Ledd:

- 92
- +5*s*
- +9 · 3

e)
$$2a - \sqrt{2a - 3}$$

Ledd:

- 2*a*
- $-\sqrt{2a-3}$
 - o **2***a*
 - o −3

f)
$$9 + 2 \cdot \sqrt{2 - 2 + 2a \cdot 3}$$

Ledd:
- 9
- $+2 \cdot \sqrt{2 - 2 + 2a \cdot 3}$
 \circ 2
 \circ -2
 \circ +2 $a \cdot 3$

Oppgave 2

a)
$$3x + (-x) + x$$
$$= 3x - x + x$$
$$= 3x$$

c)
$$2a + 3b - b + a$$
$$= 3a + 2b$$

e)
$$9a - b + 4a - 2b + 2 - 5$$

= $13a - 3b - 3$

b)
$$2a + 5a - a$$
$$= 6a$$

d)
$$5-3b+a+b-1$$

= $a-2b+a$

f)
$$3a - (-a) + b + a$$
$$= 3a + a + b + a$$
$$= 5a + b$$

Oppgave 3

Skriv det i utvidet format (x^3 i utvidet format er $x \cdot x \cdot x$).

a)
$$a^2$$

$$= a \cdot a$$

c)
$$p^2 d^3$$

= $p \cdot p \cdot d \cdot d \cdot d$

e)
$$x^3 + y^3$$

= $x \cdot x \cdot x + y \cdot y \cdot y$

g)
$$s^5 - s^4$$

= $s \cdot s \cdot s \cdot s - s \cdot s \cdot s \cdot s$

i)
$$tt^3$$

= $t \cdot t \cdot t \cdot t$

$$g^2 h^3$$

$$= g \cdot g \cdot h \cdot h \cdot h$$

b)
$$b^3$$

$$= b \cdot b \cdot b$$

d)
$$u^2g^3$$

$$= u \cdot u \cdot g \cdot g \cdot g$$

f)
$$e^2 - e^3$$

$$= e \cdot e - e \cdot e \cdot e$$

h)
$$r^2r^3$$

$$= r \cdot r \cdot r \cdot r \cdot r$$

j)
$$g^2g^2$$

$$= g \cdot g \cdot g \cdot g$$

Oppgave 4

Skriv så enkelt som mulig (potens).

a)
$$a \cdot b \cdot a \cdot b$$

= a^2b^2

c)
$$b - 2b - 3b^2 + b$$
$$= -3b^2$$

e)
$$9b - 2a^2 + a - 2a$$

= $9b - 2a^2 - a$

b)
$$a + a + a^2$$

= $2a + a^2$

d)
$$2-b^2+5b^2+3b$$

= $4b^2+3b+2$

f)
$$2a + a \cdot a^2 \cdot b$$
$$= 2a + a^4$$

g)
$$5b + b - b^{2} \cdot b^{3} - 3b^{5}$$
$$= 6b - b^{5} - 3b^{5}$$
$$= 6b - 4b^{5}$$

h)
$$a \cdot a \cdot b \cdot b^5 - a^2 \cdot b^6 - 1$$

= $a^2b^6 - a^2b^6 - 1$
= -1

Oppgave 5

Skriv så lett så mulig (mange oppgaver trenger regelen):

a)
$$\sqrt{x^2 x^2}$$

$$= \sqrt{x^2} \cdot \sqrt{x^2}$$

$$= x \cdot x$$

$$= x^2$$

b)
$$\sqrt{x^4}$$

= $\sqrt{x^2x^2}$
= x^2 (se oppgave 1)

c)
$$\sqrt{x} \cdot \sqrt{x}$$

$$= x$$

d)
$$\sqrt{x^6}$$

$$= \sqrt{x^2 x^2 x^2}$$

$$= x^3$$

e)
$$\sqrt{25x} + \sqrt{4x}$$

$$= \sqrt{25} \cdot \sqrt{x} + \sqrt{4} \cdot \sqrt{x}$$

$$= 5 \cdot \sqrt{x} + 2 \cdot \sqrt{x}$$

$$= 7\sqrt{x}$$

f)
$$3\sqrt{x^2}$$

= $3x$

$$g) \qquad \sqrt{9x^2} \\ = 3x$$

h)
$$x^{2}\sqrt{x^{2}}$$

$$= x^{2} \cdot x$$

$$= x^{3}$$

a)
$$\frac{x^4}{x} = x^3$$

b)
$$\frac{x^5}{x^2}$$
$$x^3$$

c)
$$\frac{x^7}{x^3} = x^4$$

$$d) \qquad \frac{x^3 y^5}{xy}$$

$$= x^2 y$$

e)
$$\frac{a^7b^5}{a^7b^2} = \frac{1 \cdot b^5}{1 \cdot b^2} = \frac{b^5}{b^2} = b^3$$

f)
$$\frac{q^{r}}{q}$$
$$= q^{2}r$$

Oppgave 7

a)
$$\frac{(2x+1)(3x-2)}{2x+1} = 3x - 2$$

c)
$$\frac{\frac{5+a+b}{b}}{\frac{5+a+b}{b}}$$

e)
$$\frac{x^4}{x^2} - \frac{5(x^2)}{5}$$
$$= x^2 - x^2$$
$$= 0$$

$$g) \qquad \frac{10x}{2} \\
= 5x$$

$$i) \qquad \frac{x-2}{(x-2)(5+x)}$$
$$= \frac{1}{5+x}$$

$$k) \qquad \frac{5}{5x} \\ = x$$

b)
$$\frac{4(x+1)}{4}$$
$$= x+1$$

$$d) \qquad \frac{23-3x}{x} \\ = \frac{23-3x}{x}$$

f)
$$\frac{3x}{3} - x^2 - \frac{(x - x^2)x}{x}$$
$$= x - x^2 - (x - x^2)$$
$$= x - x^2 - x + x^2$$
$$= 0$$

h)
$$\frac{4x^2-2x}{2x}$$

$$=\frac{2x(2x-1)}{2x}$$

$$=2x-1$$

Oppgave 8

Løs disse:

a)
$$3(x+2y) = 3x + 6y$$

c)
$$y(x-3y)$$
$$xy-3y^2$$

e)
$$(3x + y)(y - 3)$$

= $3xy - 9x + y^2 - 3y$

g)
$$2(x-y)(x+2y)$$
$$= 2(x^2 + 2xy - xy - 2y^2)$$

i)
$$9(2-a)(6-2a)$$

b)
$$2x(x+1)$$
$$= 2x^2 + 2x$$

d)
$$(2x-1)(2x+2)$$

= $4x^2 + 4x - 2x - 2$
= $4x^2 + 2x - 2$

f)
$$(3x - y)(-x + y)$$
$$= -3x^{2} + 3xy + xy - y^{2}$$
$$= -3x^{2} + 4xy - y^{2}$$

h)
$$y(x+y)(z-x)$$

Oppgave 9