אלגברה לינארית סמסטר סתו 2022-23 עבודה עצמית 5

שאלות

 $S = \{(1,2,3), (4,5,6), (11,16,21)\}$ נסמן

- ${}^{2}\mathbb{R}^{3}$ או פורשת את S
- האם יש יותר מדרך אחת כצרוף לינארי של הוקטורים ב- S. האם יש יותר מדרך אחת כל, האם האם כן, הצג אותו כצרוף לינארי של הוקטורים ב- S?

יים: $S\subseteq T$ -שאלה כך ש- S ומתקיים:

- . \mathbb{R}^4 או פורשת את S ו- S לא פורשת את T
- . \mathbb{R}^4 את פורשת את S ו- S לא פורשת את T
 - . \mathbb{R}^4 את פורשת את S -ו \mathbb{R}^4 פורשת את T

שאלה 3. הוכח או הפרך: $X\subseteq Y$ שאלה 3. הוכח או הפרך:

- \mathbb{R}^n אט Y פורשת את \mathbb{R}^n אז Y פורשת את אם
 - \mathbb{R}^n אם X פורשת את $0 \in X$
 - \mathbb{R}^n אם X לא פורשת את X לא X אם לא
- \mathbb{R}^n אם X פורשת את \mathbb{R}^n אז Y פורשת את אם
- \mathbb{R}^n אם מספר הוקטורים ב- X גדול מ- אז X פורשת את ה
 - $\operatorname{sp}(Y) \neq \operatorname{sp}(X)$ אם קיים $v \in Y$ כך ש- $v \notin X$ אם קיים (1)

$$u_1=egin{pmatrix}1\\1\end{pmatrix}$$
 , $u_2=egin{pmatrix}1\\2\\a\end{pmatrix}$, $u_3=egin{pmatrix}2\\a+1\end{pmatrix}$ באלה 4 נתונים הוקטורים $a_1=a_2$

- עבור ערך u_3 את הצג את הצאת, הצא עבור ערך $u_3 \in \operatorname{sp}\{u_1,u_2\}$ מתקיים מצא לאילו ערכי $u_3 \in \operatorname{sp}\{u_1,u_2\}$ מתקיים $u_3 \in \operatorname{sp}\{u_1,u_2\}$
 - \mathbb{R}^3 את פורשת אווו $\{u_1,u_2,u_3\}$ הקבוצה a טבא לאילו ערכי מצא מצא

שאלה 5 הוכח או הפרך. $A\in M_{3 imes n}(\mathbb{R})$ תהי

- . אם למערכת $AX=\begin{pmatrix}7\\4\\3\end{pmatrix}$ אז למערכת $AX=\begin{pmatrix}3\\4\\7\end{pmatrix}$ אם למערכת אם למערכת אם פתרון איז למערכת אם איים פתרון
- . אם למערכת $AX = \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix}$ אז למערכת $AX = \begin{pmatrix} 3 \\ 4 \\ 7 \end{pmatrix}$ קיים פתרון איז אז למערכת אם למערכת פתרון איז אז למערכת אום אינ
- . אם $AX=\begin{pmatrix}7\\4\\3\end{pmatrix}$ אם למערכת $AX=\begin{pmatrix}3\\4\\7\end{pmatrix}$ קיים פתרון יחיד אז למערכת אם n=3 אם n=3
 - . אם למערכת $AX=\begin{pmatrix}7\\4\\3\end{pmatrix}$ איים פתרון אז למערכת $AX=\begin{pmatrix}0\\0\\0\end{pmatrix}$ אם למערכת אם למערכת פתרון אז למערכת פתרון אז למערכת
- למערכת פתרון, אז למערכת אז פתרון ולמערכת אז למערכת אז למערכת אז למערכת אז למערכת היינ AX=c אם למערכת היינ AX=c קיים פתרון. AX=c+d
- $g(x)\in \operatorname{sp}\{p_1(x),p_2(x)\}$ האם g(x)=3x+11 , $p_2(x)=-x+3$, $p_1(x)=x+1$ נסמן g(x)=x+1 נסמן פון ישאלה g(x)=x+1 . כן, הצגו אותו כצ"ל שלהם.

שאלה $g(x)=x^2+6$, $p_3(x)=x^2+x-1$, $p_2(x)=x^2-x+1$, $p_1(x)=x^2+2x+1$ נסמן $p_3(x)=x^2+6$. האם יש יותר מדרך אחת? כצ"ל של $p_3(x)$, $p_2(x)$, $p_2(x)$, $p_3(x)$, $p_2(x)$, $p_3(x)$ סבע"ל של $p_3(x)$, $p_3(x)$

שאלה 8 נסמן $u\in \operatorname{sp}\left\{\begin{pmatrix}1&1\\1&0\end{pmatrix},\begin{pmatrix}2&1\\0&1\end{pmatrix},\begin{pmatrix}0&0\\1&2\end{pmatrix}\right\}$ האם $u=\begin{pmatrix}1&1\\-1&2\end{pmatrix}$ אם כן, הצגו את ע כצ"ל של הוקטורים הנ"ל.

שאלה $oldsymbol{9}$ מתקיים לאילו ערכי

$$? \begin{pmatrix} 2 & -1 \\ 0 & -1 \end{pmatrix} \in \operatorname{sp} \left\{ \begin{pmatrix} 1 & 1 \\ 0 & m \end{pmatrix}, \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} m & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

פתרונות

שאלה 1

א) נבדוק אם S בת"ל:

$$\begin{pmatrix} 1 & 4 & 11 \\ 2 & 5 & 16 \\ 3 & 6 & 21 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 4 & 11 \\ 0 & -3 & -6 \\ 0 & -6 & 12 \end{pmatrix} \xrightarrow{R_3 \to R_3 - 2R_2} \begin{pmatrix} 1 & 4 & 11 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix}$$

יש עמודה לא מובילה, לכן הוקטורים ת"ל.

$$\dim(\operatorname{sp}(S))=2<\dim(\mathbb{R}^3)$$

 \mathbb{R}^3 לכן S לא פורשת את

נסמן u=(6,9,12) , $\mathbf{v}_3=(11,16,21)$, $\mathbf{v}_2=(4,5,6)$, $\mathbf{v}_1=(1,2,3)$ נבדוק אם $u=k_1u_1+k_2u_2+k_3u_3$

$$\begin{pmatrix} 1 & 4 & 11 & 6 \\ 2 & 5 & 16 & 9 \\ 3 & 6 & 21 & 12 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 4 & 11 & 6 \\ 0 & -3 & -6 & -3 \\ 0 & -6 & -12 & -6 \end{pmatrix} \xrightarrow{R_3 \to R_3 - 2R_2} \begin{pmatrix} 1 & 4 & 11 & 6 \\ 0 & -3 & -6 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 \to -\frac{1}{3}R_2} \begin{pmatrix} 1 & 4 & 11 & | & 6 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 - 4R_2} \begin{pmatrix} 1 & 0 & 3 & | & 2 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$-\mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3 = u$$

<u>שאלה 2</u>

אס S $S\subseteq T$, $T=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\0\\0\\1\end{pmatrix}\right\}$, $S=\left\{\begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}\right\}$ אס $S=\left\{\begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}\right\}$ בי $S=\left\{\begin{pmatrix}1\\0\\0\\0\\0\\0\end{pmatrix}\right\}$ בי $S=\left\{\begin{pmatrix}1\\0\\0\\0\\0\\0\end{pmatrix}\right\}$ בי $S=\left\{\begin{pmatrix}1\\0\\0\\0\\0\\0\end{pmatrix}\right\}$ בי $S=\left\{\begin{pmatrix}1\\0\\0\\0\\0\\0\\0\end{pmatrix}\right\}$

$$\mathbb{R}^4$$
 את את את את $S:S\subseteq T$, $T=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix},egin{pmatrix}0\\1\\0\\0\end{pmatrix}
ight\}$, $S=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix}
ight\}$

$$.S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}, T = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

שאלה 3

 \mathbb{R}^n פורשת $X \Leftarrow \mathbb{R}^n$ פורשת Y - 1(N

דוגמה נגדית:

$$Y = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} , \quad X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} ,$$

 \mathbb{R}^2 את פורשת אל X , \mathbb{R}^2 את פורשת אY . $X,Y\in\mathbb{R}^2$

 \mathbb{R}^n פורשת את $X \Leftarrow 0 \in X$ (a

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} \subseteq \mathbb{R}^2$$

 \mathbb{R}^2 לא פורשת את X

 \mathbb{R}^n לא פורשת את $X \Leftarrow 0 \in X$ ()

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

 \mathbb{R}^2 את פורשת X

 \mathbb{R}^n פורשת את $Y \Leftarrow \mathbb{R}^n$ פורשת את X(1

$$\operatorname{sp}(X) = \mathbb{R}^n, X \subseteq Y$$
 :נתון $\operatorname{sp}(Y) = \mathbb{R}^n$ צ"ל:

הוכחה:

נקח $u_1,\dots,u_m\in\mathbb{R}^n$ לכן קיימים .v \in sp(X) אז .v $\in\mathbb{R}^n$ נקח

$$\mathbf{v} = k_1 u_1 + \ldots + k_m u_m \ .$$

$$\mathbf{v} \in \mathrm{sp}(Y) \Leftarrow \mathsf{J}(u_1, \ldots, u_m \in Y)$$
 לכך, $X \subseteq Y$

 \mathbb{R}^n את פורשת אר $X \Leftarrow n$ גדול מ- $X \Leftarrow n$ פורשת את

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix} \right\} .$$

 $.\mathbb{R}^2$ אינה פורשת את X

 $\operatorname{sp}(Y) \neq \operatorname{sp}(X) \Leftarrow \operatorname{v} \notin X$ כך ש- $\operatorname{v} \in Y$ קיים (1)

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \qquad Y = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$
$$\operatorname{sp}(Y) = \operatorname{sp}(X) = \mathbb{R}^2.$$

 $\Leftarrow u_3 \in \operatorname{sp}(u_1,u_2)$ $u_1=egin{pmatrix}1\\1\\1\end{pmatrix}$, $u_2=egin{pmatrix}1\\2\\a\end{pmatrix}$, $u_3=egin{pmatrix}2\\a\\a+1\end{pmatrix}$

 $u_3 = k_1 u_1 + k_2 u_2$

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & a \\ 1 & a & a+1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & a-2 \\ 0 & a-1 & a-1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & a-2 \\ 0 & 0 & -(a-1)(a-3) \end{pmatrix}$$

.a=1,3 יש פתרון אם

a=3 ו a=1 עבור $u_3\in \operatorname{sp}(u_1,u_2)$ לכן

a = 1

$$\left(\begin{array}{c|c|c} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right) \to \left(\begin{array}{c|c|c} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right)$$

 $\Leftarrow k_1 = 3, k_2 = -1$

 $u_3 = 3u_1 - u_2$.

$$\left(\begin{array}{c|c|c} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right) \to \left(\begin{array}{c|c|c} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

 $k_2 = -k_3, k_1 = k_3$

 \mathbb{R}^3 עבור $u_1,u_2,u_3 \Leftarrow \dim(\mathbb{R}^3)=3$ בח"ל, u_1,u_2,u_3 בחים של $u_1,u_2,u_3 \Leftarrow u_1,u_2,u_3$ בחים של $\mathbb{R}^3=\mathrm{sp}(u_1,u_2,u_3)$ לכן

 $u_1,\dots,u_n\in\mathbb{R}^3$ אז u_1,\dots,u_n נסמן את העמודות , $A\in M_{3 imes n}(\mathbb{R})$ שאלה 5

$$v=egin{pmatrix} 3\\4\\7 \end{pmatrix}\in \mathrm{sp}(u_1,\dots,u_n)$$
 טענה: למערכת $AX=egin{pmatrix} 3\\4\\7 \end{pmatrix}$ יש פתרון, ז"א וקטור $AX=egin{pmatrix} 3\\7 \end{pmatrix}$ א $v'=egin{pmatrix} 7\\4\\3 \end{pmatrix}\notin \mathrm{sp}(u_1,u_2)$ וקטור $v\in \mathrm{sp}(u_1,u_2)$. $u_2=egin{pmatrix} 0\\0\\0 \end{pmatrix}$, $u_1=egin{pmatrix} 3\\4\\7 \end{pmatrix}$: דוגמה נגדית:

בת"ל, לכן
$$u_2,u_1$$
 .v = $\begin{pmatrix} 3\\4\\7 \end{pmatrix} = u_1+u_2$ כי $v\in \operatorname{sp}(u_1,u_2)$. $u_1=\begin{pmatrix} 2\\4\\7 \end{pmatrix}$ $u_1=\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ בת"ל, לכן $AX=v$ למערכת $AX=v$ יש פתרון יחיד.

:נבדוק אם למערכת $AX = \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix}$ יש פתרון

$$\left(\begin{array}{cc|c}
1 & 2 & 7 \\
0 & 4 & 4 \\
0 & 7 & 3
\end{array}\right) \to \left(\begin{array}{cc|c}
1 & 2 & 7 \\
0 & 1 & 1 \\
0 & 7 & 3
\end{array}\right) \to \left(\begin{array}{cc|c}
1 & 2 & 7 \\
0 & 1 & 1 \\
0 & 0 & -4
\end{array}\right)$$

אין פתרון למערכת.

עסיס מהווים
$$u_1,u_2,u_3$$
 למערכת $AX={
m v}$ למערכת $AX={
m v}$ למערכת $AX={
m v}$ למערכת $AX={
m v}$ של $AX={
m v}$ למערכת $AX={
m v}$ יש פתרון יחיד.

דוגמה נגדית:

$$u_1=egin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $u_2=egin{pmatrix}0\\1\\0\end{pmatrix}$.
$$AX=egin{pmatrix}7\\4\\3\end{pmatrix}$$
 אין פתרון. למערכת $AX=0$ אין פתרון.

.AX=d נסמם ב \mathbf{v}_1 פתרון של המערכת אX=c המערכת פתרון של המערכת יסמם ב \mathbf{v}_1 פתרון של המערכת יסמם ב \mathbf{v}_1

$$A\mathbf{v}_1 = c$$
, $A\mathbf{v}_2 = d$.

לכן

$$A(\mathbf{v}_1 + \mathbf{v}_2) = A\mathbf{v}_1 + A\mathbf{v}_2 = c + d$$
.

$$g(x)=3x+11$$
 , $p_2(x)=-x+3$, $p_1(x)=x+1$ $g(x)=k_1p_1(x)+k_2p_2(x)$ $g(x)=k_1p_1(x)+k_2(-x+3)=3x+11$ $g(x)=3x+11$ $g(x)$

$$g(x)=x^2+6$$
 , $p_3(x)=x^2+x-1$, $p_2(x)=x^2-x+1$, $p_1(x)=x^2+2x+1$ $x_1p_1(x)+k_2p_2(x)+k_3p_3(x)=g(x)$
$$k_1(x^2+2x+1)+k_2(x^2-x+1)+k_3(x^2+x-1)=x^2+6$$

$$(k_1+k_2+k_3)x^2+(2k_1-k_2+k_3)x+(k_1+k_2-k_3)=x^2+6$$

$$k_1+k_2+k_3=1$$

$$2k_1-k_2+k_3=0$$

$$k_1+k_2-k_3=6$$

$$\begin{cases} 1&1&1&1\\2&-1&1&0\\1&1&-1&6 \end{cases}$$

$$\frac{R_2\to R_2-2R_1}{R_3\to R_3-R_1} \left(\begin{array}{ccc} 1&1&1&1\\0&-3&-1&-2\\0&0&-2&5 \end{array}\right)$$

$$\begin{pmatrix} 2 & 2 & 0 & 7 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & -2 & 5 \end{pmatrix} \qquad \xrightarrow{R_1 \to R_1 + R_3} \qquad \begin{pmatrix} 2 & 0 & 0 & 12 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & -2 & 5 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{cc|cc} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & \frac{3}{2} \\ 0 & 0 & 1 & -\frac{5}{2} \end{array}\right)$$

פתרון יחיד:

$$(k_1, k_2, k_3) = \left(2, \frac{3}{2}, -\frac{5}{2}\right)$$
$$g(x) = 2p_1(x) + \frac{3}{2}p_2(x) - \frac{5}{2}p_3(x)$$

$$u=egin{pmatrix} 1 & 1 \ -1 & 2 \end{pmatrix}$$
 , $u_1=egin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}$, $u_2=egin{pmatrix} 2 & 1 \ 0 & 1 \end{pmatrix}$, $u_3=egin{pmatrix} 0 & 0 \ 1 & 2 \end{pmatrix}$ שאלה $u=\operatorname{sp}(u_1,u_2,u_3)$, $u=egin{pmatrix} 1 & 1 \ -1 & 2 \end{pmatrix}$.

$$\begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 2 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & -2 & 1 & -2 \\ 0 & 1 & 2 & 2 \end{pmatrix}$$

 $u \notin \operatorname{sp}(u_1,u_2,u_3)$ אין פתרון למערכת, לכן

שאלה 9

$$u \in \operatorname{sp}(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3})$$

$$\begin{pmatrix} 2 & -1 \\ 0 & -1 \end{pmatrix} \in \operatorname{sp} \left\{ \begin{pmatrix} 1 & 1 \\ 0 & m \end{pmatrix}, \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} m & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

$$\begin{pmatrix} 1 & 1 & m & 2 \\ 1 & m & 1 & -1 \\ 0 & 0 & 0 & 0 \\ m & 1 & 1 & -1 \end{pmatrix}$$

$$\xrightarrow{R_{2} \to R_{2} - R_{1} \atop R_{4} \to R_{4} - mR_{1}} \begin{pmatrix} 1 & 1 & m & 2 \\ 0 & m - 1 & 1 - m & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 - m^{2} & 1 & -1 - 2m \end{pmatrix}$$

 $u \notin \mathrm{sp}\,(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)$ עבור m=1 למערכת אין פתרון, לכן m=1 עבור $u \in \mathrm{sp}\,(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)$ עבור $m \neq 1$