

Circunferência: comprimento, propriedades e potência de um ponto

Resumo

Circunferência

Circunferência é o lugar geométrico dos pontos no plano que estão à mesma distância em relação a um ponto fixo chamado **centro**. Esta distância é chamada de **raio**.

OBS: Circunferência ≠ Círculo!

Círculo é toda a região do plano delimitado por uma circunferência.

Circunferência é apenas a linha que dá forma à figura.

Elementos de uma circunferência

- Centro: ponto equidistante de todos os pontos da circunferência.
- Raio: distância entre o centro e qualquer ponto da circunferência.
- Arco: parte da circunferência delimitado por dois pontos.
- Corda: segmento de reta que une dois pontos da circunferência.

OBS: O diâmetro é a maior corda de uma circunferência!

Lembrando que diâmetro = 2.Raio

- Flecha: segmento de reta que liga o ponto médio da corda ao ponto médio do seu arco correspondente.

Comprimento da circunferência e de arcos

Dado uma circunferência com centro O e raio R, seu comprimento é dado pela seguinte fórmula:

$$C = 2\pi R$$

Para se calcular o comprimento de um arco de circunferência, basta fazer regra de 3 relacionando o comprimento angular do arco (α) e o comprimento angular de toda circunferência (360 graus ou 2π radianos).

$$x = \frac{\pi R\alpha}{180}$$

Relações métricas

a) Duas cordas

$$\overline{PA}.\overline{PB} = \overline{PC}.\overline{PD}$$

b) Duas retas secantes:

$$\overline{PA}.\overline{PB} = \overline{PC}.\overline{PD}$$

c) Uma reta tangente e uma secante

$$\overline{PA}.\overline{PB} = (\overline{PC})^2$$

d) Duas retas tangentes

 $\overline{PA} = \overline{PB}$

Quer ver este material pelo Dex? Clique aqui

Exercícios

No processo inicial de criação de um logotipo para uma empresa, um designer esboçou várias composições de formas geométricas, na tentativa de encontrar algo simples e representativo. Em uma dessas composições, um círculo de raio r = 6 cm foi sobreposto a um triângulo equilátero de lado L = 18cm, de acordo com a figura.

Sabendo-se que as duas figuras têm centros no mesmo ponto, pode-se afirmar que o perímetro do logotipo é, em cm, igual a

- a) $6(6-\pi)$
- **b)** $6(9-\pi)$
- c) $6(6+\pi)$
- d) $9(3+2\pi)$
- e) $9(2-3\pi)$
- 2. A figura é uma representação simplificada do carrossel de um parque de diversões, visto de cima. Nessa representação, os cavalos estão identificados pelos pontos escuros, e ocupam circunferências de raios 3 m e 4 m, respectivamente, ambas centradas no ponto 0. Em cada sessão de funcionamento, o carrossel efetua 10 voltas.

Quantos metros uma criança sentada no cavalo C1 percorrerá a mais do que uma criança no cavalo C2, em uma sessão? Use 3,0 como aproximação para π.

- **a)** 55,5
- **b)** 60,0
- **c)** 175,5
- **d)** 235,5
- **e)** 240,0
- 3. Camile gosta de caminhar em uma calçada em torno de uma praça circular que possui 500 metros de extensão, localizada perto de casa. A praça, bem como alguns locais ao seu redor e o ponto de onde inicia a caminhada, estão representados na figura:

Em uma tarde, Camile caminhou 4 125 metros, no sentido anti-horário, e parou. Qual dos locais indicados na figura é o mais próximo de sua parada?

- a) Centro urbano
- b) Drogaria
- c) Lan house
- d) Ponto de partida
- e) Padaria
- **4.** A figura abaixo representa um círculo de centro O e uma régua retangular, graduada em milímetros. Os pontos A, E e O pertencem à régua e os pontos B, C e D pertencem, simultaneamente, à régua e à circunferência.

Considere os seguintes dados:

SEGMENTOS	MEDIDA (cm)
ĀB	1,6
ED	2,0
EC	4,5

O diâmetro do círculo é, em centímetros, igual a:

- **a)** 3,1
- **b)** 3,3
- **c)** 3,5
- **d)** 3,6
- **5.** Um restaurante utiliza, para servir bebidas, bandejas com bases quadradas. Todos os copos desse restaurante têm o formato representado na figura:

Considere que $\overline{AC} = \frac{7}{5}\overline{BD}$ e que L é a medida de um dos lados da base da bandeja. Qual deve ser o menor valor da razão $\frac{L}{\overline{BD}}$ para que uma bandeja tenha capacidade de portar exatamente quatro copos de uma só vez?

- **a)** 2
- **b)** $\frac{14}{5}$
- c) 4
- **d)** $\frac{24}{5}$
- e) $\frac{28}{5}$

O atletismo é um dos esportes que mais se identificam com o espírito olímpico. A figura ilustra uma pista de atletismo. A pista é composta por oito raias e tem largura de 9,76 m. As raias são numeradas do centro da pista para a extremidade e são construídas do centro da pista para a extremidade e são construídas de segmentos de retas paralelas e arcos de circunferência. Os dois semicírculos da pista são iguais.

Se os atletas partissem do mesmo ponto, dando uma volta completa, em qual das raias o corredor estaria sendo beneficiado?

- **a)** 1
- **b)** 4
- **c)** 5
- **d)** 7
- **e)** 8
- 7. Um arco de circunferência mede 300 graus e seu comprimento é 2km. Qual é o número inteiro mais próximo da medida do raio dessa circunferência em metros?
 - **a)** 157
 - **b)** 284
 - **c)** 382
 - **d)** 628
 - **e)** 764
- **8.** João e Maria costumavam namorar atravessando um caminho reto que passava pelo centro de um canteiro circular, cujo raio mede 5m. Veja a figura 1.

Certo dia, após uma desavença que tiveram no ponto de partida P, partiram emburrados, e, ao mesmo tempo, para o ponto de chegada C. Maria caminhou pelo diâmetro do canteiro João andou ao longo do caminho que margeava o canteiro (sobre o circulo), cuidando para estar, sempre, à "mesma altura" de Maria, isto é, de modo que a reta MJ, formada por Maria e João, ficasse sempre perpendicular ao diâmetro do canteiro. Veja a figura 2.

Quando a medida do segmento PM, percorrido por Maria, for igual a 7,5 = 5 + 5/2 metros, o comprimento do arco de circunferência PJ, percorrido por João, será, em metros, igual a

- $10\frac{\pi}{3}$ a)
- 2π b)
- $5\frac{\pi}{3}$ c)
- 3 d)
- 9. Em um centro de eventos na cidade de Madri, encontra-se um mural de Joan Miró (1893-1983) confeccionado pelo ceramista Artigas. O mural está colocado no alto da parede frontal externa do prédio e tem 60m de comprimento por 10m de altura. A borda inferior do mural está 8m acima do nível do olho de uma pessoa. A que distância da parede deve ficar essa pessoa para ter a melhor visão do mural, no sentido de que o ângulo vertical que subtende o mural, a partir de seu olho, seja o maior possível? O matemático Regiomontanus (1436-1476) propôs um problema semelhante em 1471 e o problema foi resolvido da seguinte maneira:

Imagine uma circunferência passando pelo olho O do observador e por dois pontos P e Q, verticalmente dispostos nas bordas superior e inferior do mural. O ângulo α será máximo quando esta circunferência for tangente à linha do nível do olho, que é perpendicular à parede onde se encontra o mural, como mostra a figura. Com estas informações, calcule a que distância OC da parede deve ficar o observador para ter a melhor visão do mural de Joan.

- **a)** 13
- **b)** 24
- **c)** 12
- **d)** 25
- **e)** 6
- Na figura a seguir, AB = 8 cm, BC = 10 cm, AD = 4 cm e o ponto O é o centro da circunferência. O perímetro do triângulo AOC mede, em cm:

- **a)** 36
- b) 45
- 48 c)
- **d)** 50
- **e)** 54

Gabarito

1. C

Considere a figura.

Como MBNO é losango, segue que o perímetro pedido é dado por

$$6 \cdot \overline{MB} + 3 \cdot \frac{\pi}{3} \cdot \overline{OM} = 6 \cdot (6 + \pi).$$

2. B

A posição dos cavalos não importa, pois ambos completarão as 10 voltas, iniciando e terminando o percurso no mesmo ponto. Assim, sobre a distância percorrida por cada cavalo do carrossel, pode-se escrever:

$$C_1 = 10.2\pi$$
. $R_1 = 10.2.3.4 = 240$

$$C_2 = 10.2\pi$$
. $R_2 = 10.2.3.3 = 180$

Assim a diferença das distâncias percorridas entre os dois cavalos será de 60 metros.

3. E

4125=8.500+125. Portanto dará 500 voltas completas na pista e chegará na padaria.

4. B

Queremos calcular 2.0B

Sabemos que ED=2 e EC=4,5, Logo DC=EC-ED=4,5-2=2,5

Temos que M é o ponto médio do segmento DC, vem que DM=DC/2=2.5/2=1,25

Por outro lado, como EF é paralelo a AB, temos FD=ED-EF=ED-AB=2-1,6=0,4

Portanto: 2.OB=2.(FD+DM)=2.(0,4+1,25)=3,3

5. D

Para que a bandeja tenha capacidade de portar exatamente quatro copos de uma só vez, deve-se ter Da figura e do enunciado podemos fazer:

Temos que: AC = 7/5 . BD e L é a medida do lado da bandeja, assim:

L = 2BD + 2AC

L = 2BD + 2.(7/5)BD

L = 2BD + (14/5)BD

L= (10/5)BD + (14/5)BD

L/BD = 24/5

6. A

na raia 1, o atleta percorreria a menor distância, pois seu comprimento é menor. Observe que o raio da circunferência é menor

7. C

C=2000m

 $a=300.\pi R/180=5\pi/3$

logo 2000=5π.r/3

r=1200/3,14 = 382,16

Logo a medida mais próxima é 382 metros.

8. A

O trajeto percorrido por joão é de 90° (referentes aos 5m) + 30° (refentes aos 5/2 m). Sendo assim, temos que joão percorreu 120° (1/3 da circunferência). Sendo a circunferência $2.\pi.5 = 10\pi$, João percorreu $10\pi/3$ m

9. C

Utilizando uma relação métrica na circunferência, aquela relação entre secante e tangente, temos:

$$CP \cdot CQ = CO^{2}$$

 $18 \cdot 8 = CO^{2}$
 $CO^{2} = 144 \Rightarrow CO = 12$

10. E

Logo o perímetro do AOC é igual a 20 + 16 + 18 = 54 cm.