

Die Enigma ist eine Rotor-Schlüsselmaschine, die im Zweiten Weltkrieg zur Verschlüsselung des Nachrichtenverkehrs der Wehrmacht verwendet wurde. Entschuldigung... o Enigma é uma máquina cifradora com rotores que foi usada durante a Segunda Guerra Mundial para cifrar o tráfego de mensagens das Forças Armadas Alemãs. Ela foi uma grande dor de cabeça para os ingleses e gerou muitas estórias românticas. Existiram diversas versões. Basicamente uma para o Exército, outra para Aeronáutica e uma terceira para a Marinha. Durante a guerra, os ingleses criaram em Bletchley Park a GC&CS (*Government Code and Cypher School*) uma escola com grande capacidade de cripto-análise para decifrar as mensagens. Hoje, em Bletchley funciona um museu muito interessante (www.bletchleypark.org.uk) contando esta estória e ainda tem acervo da história da computação.

A intenção deste apêndice é usar a ideia dessa máquina Enigma para motivar diversos exercícios. Faremos uma breve descrição e proporemos algumas versões. Não é nossa intenção fazer um estudo fiel e aprofundado.

E.1. O Cifrador Enigma

O Enigma trabalha apenas com 26 letras maiúsculas: A, B, C, ..., Z. Não tem caracter de espaço, números ou qualquer outro símbolo. Assim, as mensagens são escritas sem espaço algum. Em alguns casos, usa-se a letra x, que é pouco frequente em alemão, para representar o espaço. A cifragem do Enigma faz a troca entre essas 26 letras. O segredo está na grande possibilidade de trocas.

A Figura E.1 apresenta a foto de uma máquina Enigma em uma de suas últimas versões. Devem ser destacados o teclado e o painel de lâmpadas. São 26 teclas e 26 lâmpadas. Cada tecla, ao ser pressionada, faz acender uma lâmpada indicando a letra para a cifragem. Normalmente, era operado em dupla. Um operador acionava a teclas, de acordo

com a mensagem a ser cifrada, enquanto o outro anotava as letras das lâmpadas que acendiam. Depois, a mensagem era enviada por Código Morse.

O Enigma foi projetado para ser uma máquina simétrica, ou seja, servia tanto para cifrar como para decifrar. Por exemplo, se o mecanismo de cifragem resultava na troca da letra A pela letra T, então:

- ao acionar a tecla A, a lâmpada T acendia e
- ao acionar a tecla T, a lâmpada A acendia.

Figura E.1. Máquina Enigma em uma das versões mais sofisticadas. (Fonte: Wikipedia)

Figura E.2. Detalhe do Plugboard da Máquina Enigma. (Fonte: https://hackaday.com)

Ainda na Figura E.1, podem-se ver os 3 Rotores. O painel de *plugs* (*Plugboard*) está mostrado em detalhe na Figura E.2. Vamos iniciar abordando os rotores (*Walzen*). Cada rotor é composto por dois anéis com 26 contatos, um para cada letra. A Figura E.3 apresenta à esquerda um rotor desmontado e à direita o detalhe da fiação do rotor. Essa conexão interna (elétrica) entre os 26 contatos é feita por fios, em uma ordem específica e faz o mapeamento de uma letra em uma outra qualquer.

Figura E.3. Detalhe da montagem dos Rotores e à direita, ampliação mostrando a fiação que faz a troca entre as letras.

(Fontes: https://www.nsa.gov/about/cryptologic-heritage/museum
e www.cryptomuseum.com)

A Figura E.4 apresenta a ilustração de um rotor. Neste caso, a letra A corresponde à letra G, a letra B à letra E e assim por diante. Os contatos externos dos rotores (os anéis com as letras) podiam ser girados, em relação à fiação interna, fazendo então uma nova correspondência.

Figura E.4. Ilustração de um rotor e indicando a permuta (troca) entre as 26 letras realizada por uma série de condutores.

(Fonte: hackaday.com/2017/08/22/the-enigma-enigma-how-the-enigma-machine-worked)

E.2. Um Enigma Simplificado

Não é nosso objetivo um estudo da eficiência criptográfica do Enigma. Nosso único interesse é usá-lo como base para propor exercícios. Os autores avisam que são benvindas mensagens indicando erros neste apêndice).

Para um bom entendimento, vamos propor um Enigma mais simples (*die kleine Enigma*). Será uma máquina com apenas 6 letras: A, B, C, D, E e F. Como essas letras conseguiremos desenhar sem grandes dificuldades os principais esquemas. Iniciamos com os rotores.

E.2.1. Rotores Hipotéticos com 6 Letras (Walzen)

Para simplificar os esquemas, ao invés de desenharmos os rotores na sua forma circular, vamos representá-los por colunas. Entretanto, o leitor deve imaginar essas colunas ligadas de forma circular. A parte inferior está ligada ao topo.

Os rotores fazem permutas entre as letras. A permuta a ser feita é implementada com a conexão por fios entre os anéis internos, um de cada lado do rotor, como mostrado na Figura E.3. A Figura E.5.a apresenta um rotor simplificado, onde a letra A é trocada pela letra C, a letra B é trocada pela letra E, e assim por diante. Para facilitar a descrição, os dois anéis internos estão numerados. Do lado esquerdo, o rotor possui pontos para contato, indicados por pontos pretos. Do lado direito ele possui pequenas barras (com molas) que chamamos de hastes de contato. Esses contatos e essas hastes vão permitir que se usem diversos rotores, lado a lado.

Para simplificar os esquemas, deste ponto em diante, vamos representar o rotor pelo desenho da Figura E.5.b. Temos uma coluna com as letras e depois duas colunas numeradas indicando a troca realizada. Lembramos que o leitor deve imaginar tudo em forma de anéis. Este rotor pode ser descrito pelo **vetor = [3, 5, 2, 6, 4, 1]**.

Figura E.5. Proposta de um rotor com apenas 6 letras. Representação deste rotor na forma do vetor = [3, 5, 2, 6, 4, 1].

O rotor oferecia ainda mais uma flexibilidade. O anel com as letras podia ser girado sobre o padrão de contados interno. Isso era chamado de configuração do rotor (*Ringstellung*). A Figura E.6 apresenta 5 das 6 possíveis configurações para um mesmo padrão de

Ricardo Zelenovsky, Daniel Café e Eduardo Peixoto

contatos (faltou espaço para a sexta configuração). Vamos sempre tomar como referência a letra que corresponde ao contato 1. Temos então as configurações A (A \rightarrow 1), B (B \rightarrow 1) e assim por diante. De acordo com a configuração do rotor, a correspondência entre as letras é alterada. Vejamos os casos da Figura E.6.

•	Configuração A:	$A \rightarrow C$,	$B \rightarrow E$,	C → B,	
•	Configuração B:	$A \rightarrow B$,	$B \rightarrow D$,	C → F,	
•	Configuração C:	$A \rightarrow F$,	$B \rightarrow C$,	C → E,	
•	Configuração D:	$A \rightarrow C$,	$B \rightarrow A$,	C → D,	
•	Configuração E:	$A \rightarrow F$,	$B \rightarrow D$,	C → B,	
•	Configuração F:	$A \rightarrow D$,	$B \rightarrow A$,	C → E, (não desenhada))

Figura E.6. Algumas possibilidades de configuração dos rotores (Ringstellung).

Na sua forma mais típica, o Enigma dispunha de 5 rotores diferentes, numerados em algarismos romanos, cada um com um distinto padrão de contatos. A cada dia, 3 rotores eram selecionados para serem usados no Enigma. A Figura E.7 apresenta 5 rotores que foram aqui inventados. O padrão dos contatos foi criado no momento desta escrita deste texto, sem qualquer cuidado especial. Por isso, é possível que apresente falhas. O ideal é usar um mecanismo aleatório para gerar o padrão de contatos.

Ricardo Zelenovsky, Daniel Café e Eduardo Peixoto

Figura E.7. Sugestão (invenção) de 5 rotores distintos.

Os rotores, ao serem colocados no Enigma, ficam lado a lado. Os vizinhos fazem contato entre os pontos e as hastes, como mostrado na Figura E.8. Temos, então contatos que vão desde o lado esquerdo até o lado direito. Aqui em nosso estudo, para facilitar o raciocínio, estamos organizando os rotores da esquerda para a direita. Temos, então, três permutações em sequência. Abaixo listamos exemplos com as letras A e B.

$A \rightarrow (1,3) \rightarrow C$	$C \rightarrow (3,4) \rightarrow D$	$D \rightarrow (4,3) \rightarrow C$
$B \rightarrow (2,5) \rightarrow E$	$E \rightarrow (5,1) \rightarrow A$	$A \rightarrow (1,5) \rightarrow E$

Figura E.8. Ilustração da justaposição dos rotores I, II e III sugeridos na figura anterior.

Note que agora há três permutações sucessivas.

É importante lembrar da configuração dos rotores (*Ringstellung*), que permite que o anel de letras gire sobre o padrão de contatos. No exemplo da Figura E.8, todos os rotores estão na configuração A. A Figura E.9 apresenta o caso em que os rotores estão na configuração CBE (a referência é a letra ao lado do número 1). Agora as permutações são diferentes. O leitor é convidado a conferi-las.

Ricardo Zelenovsky, Daniel Café e Eduardo Peixoto

Figura E.9. Ilustração da justaposição dos rotores I, II e III da figura anterior, sendo que os rotores agora estão na configuração (Ringstellung) CBE.

É preciso ainda especificar a posição inicial (*Grundstellung*) dos rotores ao serem colocados no Enigma. Isso amarra a posição relativa entre eles. Foram usadas diferentes formas de especificar esta variável. Aqui neste texto vamos usar a forma mais simples que é a de especificar a letras que aparecem numa janela do Enigma, como mostrado na Figura E.10. Nesta figura, os rotores deveriam ser introduzidos de forma que nas janelas aparecesses as letras E, H e S. Existe um acionamento mecânico que facilita o giro do rotor dentro de seu receptáculo.

Figura E.10. Janelas para indicar a posição inicial (Grundstellung) de cada rotor.

Vamos agora definir (inventar) um método para garantir a posição inicial de cada rotor (*Grundstellung*). Por simplicidade, imaginamos que exista uma janela que mostre, de cada rotor, a letra que correspondente ao terceiro contato do corpo do Enigma (na vertical, de cima para baixo). Usando esta suposição, a posição inicial dos rotores na Figura E.9 é "EDA". A Figura E.11 desenhas as janelas em vermelho para indicar a configuração "EDA" e ainda mostra como seria a colocação dos rotores para a posição inicial "DEC".

Figura E.11. Definição das janelas para indicar a posição inicial (Grundstellung) dos rotores I, II e III.

Bem, concluímos que o esquema dos rotores é bem sofisticado. Existe uma falha a ser tratada. Imagine que se descubra que a letra "G" é mapeada na letra "K". Isso aconteceria em todas as mensagens. Uma análise estatística da frequência das letras no idioma alemão facilitaria a quebra do código. Para resolver isso, a cada tecla digitada, o rotor da extremidade gira (executa um passo). Como são 26 letras no caso original, então, a cada 26 acionamentos do teclado, este rotor dá uma volta completa e força um passo no seu vizinho. Assim, esse giro vai sendo transmitido para os três rotores. Isto significa que a cada letra um novo mapeamento é feito.

Em nosso caso simplificado, vamos considerar que o rotor da esquerda seja o primeiro a girar. Como temos apenas 6 letras, após 6 passos, o rotor vizinho à direita dá um passo. A cada 36 teclas, o rotor mais à direita executa um passo. Não temos claro em que exato instante o rotor do Enigma original girava. São duas possibilidades.

- A tecla, ao ser acionada fazia os contatos e acendia a lâmpada da letra cifrada, sendo que o rotor só girava se essa tecla for acionada até o final ou
- A tecla precisava ser acionada até o final para girar os rotores e só depois fazia os contatos para acender a lâmpada correspondente à cifra.

Como estamos propondo uma máquina simples, vamos adotar a seguinte solução. A máquina faz primeiro a cifragem e depois gira os rotores. Ou seja, a primeira letra é cifrada com a posição inicial (*Grundstellung*) dos três rotores. A Figura E.12 ilustra a cifragem das letras F e D, quando digitadas sequência sendo que a posição inicial é "DEC". O resultado (se não erramos) é C e F, como mostrado abaixo. Bem esta não é a cifragem final. Estamos ainda na metade do caminho. A próxima etapa é o Refletor.

$F \rightarrow (4,6) \rightarrow B$	$C \rightarrow (2,6) \rightarrow A$	$E \rightarrow (1,5) \rightarrow C$
$D \rightarrow (2,5) \rightarrow A$	$A \rightarrow (6,5) \rightarrow F$	$D \rightarrow (6,2) \rightarrow F$

Figura E.12. Exemplo da cifragem das letras F e D, agora considerando a giro do rotor após cada letra cifrada.

Assim, finalmente terminamos a abordagem dos rotores. Imagine tudo isso acontecendo com rotores de 26 letras. Em resumo, temos a seguintes variantes:

- a conexão interna dos rotores:
- a seleção de 3 dos 5 rotores disponíveis;
- configuração (Ringstellung) dos 3 rotores selecionados e
- posição inicial (Grundstellung) dos 3 rotores dentro do Enigma.

E.2.2. Painel Refletor (Reflektor)

O painel refletor (*Reflektor*), como o próprio nome diz, reflete de volta para os rotores, o contato recebido. Ele simplesmente faz um cruzamento entre os contatos do rotor mais à direita, em nosso caso. Com isso, se consegue que a máquina cifradora fique simétrica, ou seja, se a letra F é codificada na letra C, então a letra C é codificada na letra F. De forma simples, se no teclado se aciona letra F, a lâmpada C acende. Por outro lado, se a tecla C é acionada, a lâmpada F acende.

A Figura E.13 apresenta um painel Refletor inventado para o caso do nosso Enigma de 6 letras. Este refletor é descrito pelo **vetor** = [**4**, **6**, **5**, **1**, **2**, **3**]. Note que o Refletor devolveu o contato de volta para o rotor mais à direita, e com isso se forma um novo caminho, agora da direita para a esquerda. Nesta figura está ilustrada a cifragem da letra F, que resultou na letra D. Note que no refletor há um caminho ligando as letras F e D. Por esta forma de construção, nunca uma letra pode ser cifrada nela mesma. Esta característica era uma das vulnerabilidades do Enigma. Se a letra cifrada é D, então, tenho a certeza de que a original não é a letra D.

Algumas versões da máquina Enigma permitiam a troca do painel refletor e, como isso, inseriam um maior número de possibilidades.

Figura E.13. Exemplo da cifragem da letra F com o uso do Refletor. Note que existe um caminho ligando as letras F e D. Representação deste refletor na forma do vetor = [4, 6, 5, 1, 2, 3].

Vamos agora a uma parte interessante que envolve o teclado e as lâmpadas. Como no exemplo acima, a letra F foi codificada na letra D, então o inverso deve acontecer, ou seja, a letra D deve ser codificada na letra F. Em temos mais simples:

- Tecla F → acende lâmpada D e
- Tecla D → acende lâmpada F

A Figura E.14 ilustra a conexão entre as lâmpadas e o teclado. As lâmpadas têm um terminal ligado à terra e o outro à sua tecla. Uma determinada tecla, quando solta, ela faz contato com sua lâmpada. Por outro lado, quando acionada, a tecla desfaz o contato com sua lâmpada e faz contato com a tensão da bateria. Assim, a tecla D acende a lâmpada F e vice-versa. É importante notar que os rotores e o refletor apenas construíram um "caminho elétrico" entre as letras F e D.

Por esse esquema, é óbvio que uma tecla numa será cifrada nela mesma. Bem, ainda não acabou a descrição, falta ainda o painel de *plugs*.

E.12 Apêndice E – Enigma

Figura E.14. Esquema para permitir a simetria no Enigma. A tecla F, quando acionada, acende a lâmpada D. Por sua vez, a tecla D acende a lâmpada F.

E.2.3. Painel de Plugs (Steckerbrett)

O painel de plugs é colocado entre o teclado e o primeiro rotor. Seu funcionamento é simples e apenas faz a troca entre duas letras. A Figura E.15 apresenta um exemplo para nosso Enigma simplificado para 6 letras.

Figura E.15. Ilustração de um painel de plugs simplificado, a conexão feita realiza a troca entre as letras A↔C, B↔E e D↔F.

Na Figura E.2 se pode ver uma foto do painel de plugs. Nesta figura, note que existem dois cabos conectados. É um pouco difícil de ver, mas eles fazem a troca das letras $A \leftrightarrow J$ e $S \leftrightarrow O$. Na Figura E.1, observe que na tampa da caixa do Enigma ainda existem dois cabos presos.

Como ilustrado na Figura E.16, esses cabos eram geminados e tinham dois contatos em cada extremidade, com diâmetros diferentes, para evitar conexão trocada. É preciso imaginar essa máquina era usada durante o combate. As informações coletadas indicam que havia o costume de se usar até 10 cabos, ou seja, 10 trocas de letras, o que deixa apenas 6 letras intactas.

Figura E.16. Desenho de um Painel de Plugs e representação de um cabo de conexão. Note os contatos com diâmetros diferentes.

(fonte: https://www.cryptomuseum.com/crypto/enigma/i/sb.htm)

E.2.4. Esquema Completo

Finalmente, a Figura E.17 apresenta o esquema completo de nosso hipotético Enigma com apenas 6 letras. Nesta figura, o teclado e as lâmpadas estão representados de forma muito simplista. A conexão detalhada está na Figura E.14.

De forma simples, quando uma tecla é acionada, forma-se um caminho elétrico que sai da tecla, passa pelo painel de plugs, percorre os três rotores, é devolvido pelo refletor, percorre novamente os três rotores, volta para o painel de plugs e chega até uma das lâmpadas.

Figura E.17. Ilustração do Kleine Enigma que cifra um alfabeto de apenas 6 letras.

Para que o Enigma pudesse ser usado, era preciso combinar antecipadamente toda a configuração. Os alemães trocavam essa configuração a cada 24 horas. Usualmente a troca era feita à meia-noite. Os cadernos com as configurações eram impressos mensalmente. A Figura E.18 apresenta a foto de uma tabela com as configurações usadas pela aeronáutica (Luftwaffe). Essa tabela possui 6 colunas:

- 1) Dia do mês (Monat Tag);
- 2) Ordem dos rotores selecionados (Walzenlage);
- 3) Configuração dos rotores (Ringstellung);
- 4) Refletor (Reflektor)
- 5) Painel de Plugs (Steckerbrett)
- 6) Grupos de teste? (Kennengruppen)

	Acl	Luftwaffe Luftwaffe Schluffelmitteldür						n-17	Maschinen - Schlüssel Nr. 649 icht unversehrt in Zeindeshand fallen. Bei Gefahrrestlos und frühreitig						ig verni	erniditen.								
	Suga	We.	lienle	101	Rin	aftell	one				t e di	e r u	e r		n d t			1				henng	rupper	
	E E							en	der Ur	nkehem	olse	2	,	. 4	5	6	7		9	10				
849	31	1	V	111	14	69	2.	1			S	OT	DV	KU	FO	MY	EW	JN	IX	LQ	wny	dgy	exb	rzg
849	30	IV	111	11	05		02	100			1	EV	MX	RW	DT	UZ	JQ	AO	CH	NY	k t l	acw	251	MSO
	-				12		03	KM	AX	PZ	00 : D	AT	CV	10	ER	QS	LW	PZ	FN	BH	ioc	scu	OAM	waq
849	29	111	11	1	0.51			DI	CN	BR	PV C		AI	DK	ОТ	MO	EU	вх	LP	GJ	116	cld	ude	rzh
849	28	11	111	V	05	90		1 33 3					BV	OR	AM	LO	pp	нт	EX	UW	woj	fbh	vct	uis
649	27	III	1	17	11	03	07	LT	EQ	HS	UW D		1,31933			EI	BJ	DU	FS	HP	xle	gbo	uev	rxm
OAR						22	19				. V	. AL	RT	KO	CO	E L	DJ	DO	7 2					

Figura E.18. Foto de uma tabela de configuração do Enigma usado pela Força Aérea Alemão, a Luftwaffe. (https://hackaday.com)

E.3. Decifrar o Enigma?

Após estudarmos este Enigma simplificado, temos uma boa ideia de seu funcionamento. Os leitores devem estar curiosos sobre a quantidade de combinações possíveis. Esse cálculo é um bom exercício de análise combinacional. Deixamos para uma noite de insônia.

O vídeo da *Numberphile* (https://www.numberphile.com/) disponível no Youtube em (https://www.youtube.com/watch?v=G2 Q9FoD-oQ) é bastante interessante. Está legendado e apresenta com detalhes o cálculo da quantidade de possibilidades. O resultado apresentado é: 158.962.555.217.826.360.000 ou, aproximadamente, **1,5 x 10**²⁰.

<u>Problema</u>: Você tem um computador extremamente rápido, capaz de checar 10⁹ possibilidades por segundo. Quanto tempo você gastaria, no pior caso, para quebrar uma mensagem do Enigma?

Se você resolveu o problema acima, deve ter obtido um número proibitivo. Concluímos então que a força bruta não resolve. Como será que os ingleses quebravam o código das mensagens alemãs. Conta a estória que cada dia, à meia-noite iniciavam a interceptação das mensagens e começavam as tentativas. Depois de 24 horas, tendo conseguido ou não conseguido quebrar o código, tudo começava de novo, pois a configuração era trocada. Aí tem muita estória romanceada e a grande maioria passa por Bletchley. É interessante buscá-las na Internet e temos agora sugestão para uma segunda noite insone.

O Enigma tinha uma vulnerabilidade básica. Uma letra nunca era trocada por ela mesma. Uma das estórias conta que foi interceptada uma mensagem que não continha a letra U (se não me engano). A conclusão foi de que o operador, talvez para fazer um teste, teclou diversas vezes a letra U e depois transmitiu a mensagem cifrada. Essa foi fácil, conheciam a mensagem em claro e a mensagem cifrada. Durante aquele dia, decifraram todas as transmissões.

Também acontecia de capturarem um livro de códigos e, até que os alemães descobrissem, conseguiam decifrar várias mensagens. O trabalho com livros de códigos e mensagens antigas, permitia descobrir a configuração interna dos rotores e os tipos usados.

Uma outra vulnerabilidade estava no operador. Algumas vezes conseguiam identificar da pessoa que estava operando e transmitindo as mensagens. Essas mensagens eram enviadas por Código Morse. Quem trabalha com Código Morse não conta os traços e pontos e sim, acostuma-se a identificar o "som" de cada letra. Todo operador de transmissor, sempre tem um certo cacoete, como se fosse um sotaque em Morse. Assim, depois de algum tempo, os ingleses começaram a identificar determinados operadores e passaram a conhecer suas manias. Alguns sempre começavam suas mensagens por um bom dia (*Gutten Tag*). Conhecendo isso, já tinham as primeiras letras da mensagem e

começavam a tentar descobrir quais rotores foram usados e qual sua posição original. A letra "G", de *Gutten*, é cifrada, talvez, sem o primeiro giro do rotor, o que reduz bastante a quantidade de possibilidades. Depois, a letra U, era cifrada só com um giro.

Foram construídas máquinas automáticas para testar possibilidades de cifragens. As primeiras eram chamadas de Bombs e se chegou até o Colossus que é tido como primeiro computador eletrônico programável, contrariando o que os americanos afirmam sobre o ENIAC. Vide Figura E.19.

Code breaker: Colossus, designed and built by Tommy Flowers CREDIT: NATIONAL ARCHIVE

Figura E.19. Foto do computador Colossus.

(Fonte: https://www.telegraph.co.uk/technology/connecting-britain/colossus-bletchley-computer-broke-hitler-codes/)

E.4. Simuladores do Enigma

Na Internet existe a disponibilidade de vários simuladores. Listamos alguns deles. Ainda não tivemos tempo de testá-los. O leitor que o fizer, por favor envie seus comentários.

- 1) https://www.101computing.net/enigma-machine-emulator/ (on-line)
- 2) https://play.google.com/store/apps/details?id=uk.co.franklinheath.enigmasim&hl=pt BR
- 3) https://www.enigmaworldcodegroup.com/download-enigma-simulator
- 4) http://users.telenet.be/d.rijmenants/en/enigmasim.htm

5) https://cryptii.com/pipes/enigma-machine

E.5. Propostas de Versões do Enigma para Exercícios

Aqui neste tópico vamos inventar algumas versões simplificadas do Enigma, com a intenção de usá-las em exercícios. A listagem mais adiante apresenta o *script* Matlab "**Enigma.m**" usado para gerar as tabelas dos rotores e dos refletores.

Este *script* apenas pergunta pela quantidade de letras e sorteia as conexões para 5 rotores e 3 refletores. Estas quantidades de rotores e refletores podem ser facilmente alteradas no corpo do *script*. Logo no início, o script usa o comando rng(1) para inicializar o gerador aleatório do Matlab e assim sempre gerar os mesmos padrões. O leitor pode alterar essa linha para gerar novas sequências.

Além de imprimir o resultado na área de trabalho do Matlab, o *script* "**Enigma.m**" gera um arquivo de texto para facilitar a declaração dos rotores e refletores em *assembly* e em C. Ao final, ainda apresenta um texto que pode ser usado para criar uma planilha no formato ".csv". Veja um exemplo deste arquivo logo após listagem do *script*. O arquivo é nomeado como "Enigma_xx.txt", onde xx é um número. O *script* sempre procura por um número (xxx) não usado.

E.4.1. Rotores Propostos

Vamos criar 3 tipos de rotores e refletores, cada tipo de rotor tem 5 versões e cada tipo de refletor também tem 5 versões.

```
Tipo 1: com as 6 primeiras letras do alfabeto (A, B, C, D, E, F);
```

Tipo 2: com os 8 dígitos para numeração octal (0, 1, 2, ..., 7);

Tipo 3: com os 10 dígitos para numeração decimal (0, 1, 2, ..., 9);

Tipo 4: com os 16 dígitos para numeração hexadecimal (0, 1, 2, ..., 9, A, ..., F);

Tipo 5: com as 26 letras do alfabeto (A, B, ..., Z).

Tabela E.1. Rotores e refletores do tipo 1 (Enigma_01.txt)

Letres	Ordem		F	Rotore	Refletores				
Letras		I	II	II	IV	٧	I	II	III
Α	01	03	01	02	05	01	04	05	04
В	02	05	05	05	02	04	05	06	03
С	03	01	03	06	06	05	06	04	02
D	04	02	04	01	01	03	01	03	01

Ricardo Zelenovsky, Daniel Café e Eduardo Peixoto

E	05	04	02	03	03	06	02	01	06
F	06	06	06	04	04	02	03	02	05

Tabela E.2. Rotores e refletores do tipo 2 (Enigma_02.txt)

Lotroo	Ordem		F	Rotore	s		Refletores			
Letras	Ordeili	ı	II	II	IV	٧	I	II	III	
0	01	04	08	01	02	07	03	08	02	
1	02	06	03	07	05	06	06	05	01	
2	03	01	06	08	06	80	01	04	04	
3	04	03	01	06	01	05	07	03	03	
4	05	02	02	03	04	03	08	02	07	
5	06	05	04	04	80	04	02	07	80	
6	07	08	05	02	07	01	04	06	05	
7	08	07	07	05	03	02	05	01	06	

Tabela E.3. Rotores e refletores do tipo 3 (Enigma_03.txt)

Letroe	Oudom		F	Rotore	s		R	efleto	res
Letras	Ordem	- 1	Ш	Ш	IV	V	- 1	II	III
0	01	05	04	08	02	07	02	04	02
1	02	08	07	02	10	04	01	06	01
2	03	01	09	05	04	06	08	07	80
3	04	04	01	10	08	09	10	01	10
4	05	02	02	03	09	10	06	10	09
5	06	06	05	01	07	01	05	02	07
6	07	07	10	07	03	02	09	03	06
7	08	03	06	06	05	08	03	09	03
8	09	09	08	09	06	03	07	80	05
9	10	10	03	04	01	05	04	05	04

Tabela E.4. Rotores e refletores do tipo 4 (Enigma_04.txt)

Letras	Ordem		R	otore	Refletores		
		I	II	II	IV	٧	I

0	01	07	03	09	05	03	11	13	80
1	02	12	10	14	02	13	07	11	07
2	03	01	12	02	12	06	16	15	14
3	04	05	02	05	13	16	05	07	05
4	05	03	07	10	15	10	04	08	04
5	06	02	01	16	01	15	08	14	11
6	07	06	09	01	04	14	02	04	02
7	80	09	11	13	10	08	06	05	01
8	09	11	16	04	16	09	15	16	12
9	10	04	15	07	09	05	12	12	15
Α	11	15	13	12	11	01	01	02	06
В	12	13	06	03	07	07	10	10	09
С	13	16	05	08	08	11	14	01	16
D	14	14	08	06	03	12	13	06	03
E	15	08	04	11	14	04	09	03	10
F	16	10	14	15	06	02	03	09	13

Tabela E.5. Rotores e refletores do tipo 5 (Enigma_05.txt)

Letras	Ordem		F	otore	S		Re	efletor	es
Lettas	Ordeni	ı	II	II	IV	V	ı	II	Ш
Α	01	11	20	17	26	14	08	03	23
В	02	19	10	22	05	06	18	14	06
С	03	01	08	05	22	21	06	01	10
D	04	08	24	01	23	08	20	09	13
Е	05	04	12	02	18	01	16	11	15
F	06	03	26	13	15	16	03	20	02
G	07	05	18	16	13	22	10	24	14
Н	80	09	17	15	09	10	01	15	11
I	09	15	03	09	06	20	15	04	24
J	10	18	25	26	16	15	07	23	03
K	11	06	16	10	24	25	19	05	08
L	12	23	11	20	07	19	17	21	22
М	13	21	07	18	03	13	26	26	04

Ricardo Zelenovsky, Daniel Café e Eduardo Peixoto

N	14	26	15	07	19	07	24	02	07
0	15	24	01	06	11	03	09	08	05
Р	16	02	09	21	17	12	05	18	25
Q	17	25	14	14	14	17	12	22	18
R	18	14	05	25	04	09	02	16	17
S	19	22	04	24	20	04	11	25	20
Т	20	20	19	11	21	02	04	06	19
U	21	12	02	04	01	11	23	12	26
V	22	07	23	23	25	24	25	17	12
W	23	13	22	12	12	05	21	10	01
Х	24	16	21	08	08	26	14	07	09
Υ	25	10	06	19	10	23	22	19	16
Z	26	17	13	03	02	18	13	13	21

Tabela E.6. Configuração de rotores usados pela Marinha Alemã (Kriegsmarine). Não foi possível localizar o Painel Refletor.

(https://www.cryptomuseum.com/crypto/enigma/m3/index.htm)

Lotroo	Ordem	Rotores						
Letras		I	II	II	IV	V		
Α	01	05	01	02	05	22		
В	02	11	10	04	19	26		
С	03	13	04	06	15	02		
D	04	06	11	08	22	18		
E	05	12	19	10	16	07		
F	06	07	09	12	26	09		
G	07	04	18	03	10	20		
Н	08	17	21	16	01	25		
I	09	22	24	18	25	21		
J	10	26	02	20	17	16		
K	11	14	12	24	21	19		
L	12	20	08	22	09	04		
М	13	15	23	26	18	14		
N	14	23	20	14	08	08		

0	15	25	13	25	24	12
Р	16	08	03	05	12	24
Q	17	24	17	09	14	01
R	18	21	07	23	06	23
S	19	19	26	07	20	13
Т	20	16	14	01	07	10
U	21	01	16	11	11	17
V	22	09	25	13	04	15
W	23	02	06	21	03	06
Х	24	18	22	19	13	05
Υ	25	03	15	17	23	03
Z	26	10	05	15	02	11

Listagem de um script Matlab para facilitar a criação de Rotores e Refletores.

```
% Enigma
% Gerar cruzamento para e refletores
rng(1); % Inicializar gerador
qtd_rotor=5; %5 Rotores
qtd_reflet=3; %3 Refletores
p=input('Quantidade (par) de posições do rotor ? ');
p = 2*floor(p/2); %Garantir p = par, arredonda para baixo
% Sortear Rotores
rt=zeros(qtd_rotor,p);
for lin=1:qtd_rotor
   base=ones(1,p); %Marcar os sorteados
   for col=1:p
       x=floor(1+p*rand);
       while base(1,x) == 0
           x=floor(1+p*rand);
        end
       base (1, x) = 0;
       rt(lin,col)=x;
```

Ricardo Zelenovsky, Daniel Café e Eduardo Peixoto

```
end
end
% Sortear Refletores
rf=zeros(qtd_reflet,p);
for lin=1:qtd_reflet
    base=ones(1,p); %Marcar os sorteados
    for col=1:p/2
        x1=floor(1+p*rand);
        while base(1,x1) == 0
            x1=floor(1+p*rand);
        end
        base (1, x1) = 0;
        x2=floor(1+p*rand);
        while base(1,x2) == 0
            x2=floor(1+p*rand);
        end
        base (1, x2) = 0;
        rf(lin,x1)=x2;
        rf(lin, x2) = x1;
    end
end
for lin=1:qtd_rotor
   fprintf(1,'\nRotor %d: ',lin);
    for col=1:p
        fprintf(1,'%02d ',rt(lin,col));
    end
end
for lin=1:qtd_reflet
    fprintf(1,'\nRefletor %d: ',lin-1);
    for col=1:p
        fprintf(1,'%02d ',rf(lin,col));
    end
end
% Gerar arquivo txt para facilitar inserir em programas
% Escolher um arquivo ainda não usado
fp=1;
ct=0;
while fp > 0
   ct = ct + 1;
   nome=sprintf('Enigma_%02d.txt',ct);
    fp=fopen(nome,'r');
    if fp>0
        fclose(fp);
```

```
end
end
fp=fopen(nome,'w');
if fp < 0;
    fprintf(1,'\n\nRRO.\n');
    fprintf(1,'Não conseguiu criar o arquivo [%s].', nome);
end
fprintf(1,'\n\nCriado o arquivo [%s].',nome);
fprintf(fp, nome);
fprintf(fp,'\n\n');
% ASM
fprintf(fp,'---- ASM ----\n\n');
fprintf(fp,'RT_QTD:\t.equ\t%02d\t\t;Quantidade de Rotores\n',qtd_rotor);
fprintf(fp,'RF_QTD:\t.equ\t%02d\t\t;Quantidade
                                                                         de
Refletores\n',qtd_reflet);
fprintf(fp,'\n;Rotores com %d posições\n',p);
for lin=1:qtd_rotor
    fprintf(fp,'RT%d:\t.byte\t',lin);
    for col=1:p-1
        fprintf(fp,'%02d, ',rt(lin,col));
    end
    fprintf(fp,'%02d\n',rt(lin,col+1));
end
fprintf(fp,'\n; Refletores com %d posições\n',p);
for lin=1:qtd_reflet
    fprintf(fp,'RF%d:\t.byte\t',lin);
    for col=1:p-1
        fprintf(fp,'%02d, ',rf(lin,col));
    fprintf(fp,'%02d\n',rf(lin,col+1));
end
응 C
fprintf(fp,'\n\n----- C ----\n\n');
fprintf(fp,'#define RT_QTD\t%d\t\//Quantidade de Rotores\n',qtd_rotor);
fprintf(fp,'#define
                                RF_QTD\t%d\t\t//Quantidade
Refletores\n',qtd_reflet);
fprintf(fp,'\n//Rotores com %d posições\n',p);
for lin=1:qtd_rotor
    fprintf(fp,'rt%d[] = {',lin);
    for col=1:p-1
        fprintf(fp,'%d, ',rt(lin,col));
```

```
end
    fprintf(fp,'%d);\n',rt(lin,col+1));
end
fprintf(fp,'\n//Refletores com %d posições\n',p);
for lin=1:qtd_reflet
   fprintf(fp,'rf%d[] = {',lin);
   for col=1:p-1
        fprintf(fp,'%d, ',rf(lin,col));
   end
    fprintf(fp,'%d); \n', rf(lin, col+1));
end
fprintf(fp,'\n//Matriz [%d,%d] com todos os Rotores\n',qtd_rotor,p);
fprintf(fp, 'rt_mat[] = {\n'});
for lin=1:qtd_rotor
   fprintf(fp,'\t\t{',lin);
   for col=1:p-1
        fprintf(fp,'%d, ',rt(lin,col));
    fprintf(fp,'%d}\n',rt(lin,col+1));
end
fprintf(fp,' };\n');
fprintf(fp,'\n//Matriz [%d,%d] com todos os Refletores\n',qtd_reflet,p);
fprintf(fp, 'rf_mat[] = { \n');}
for lin=1:qtd_reflet
   fprintf(fp,'\t\t{',lin);
    for col=1:p-1
        fprintf(fp,'%d, ',rf(lin,col));
    fprintf(fp,'%d}\n',rf(lin,col+1));
end
fprintf(fp,' };\n');
fclose(fp);
fprintf(1,'\nFim.\n');
```

Arquivo texto gerado pelo script "Enigma.m" para o caso de rotores e refletores com 6 letras.

```
Enigma_01.txt
----- ASM -----

RT_QTD: .equ 05 ;Quantidade de Rotores

RF_QTD: .equ 03 ;Quantidade de Refletores
```

```
;Rotores com 6 posições
RT1: .byte 03, 05, 01, 02, 04, 06
RT2: .byte 01, 05, 03, 04, 02, 06
RT3: .byte 02, 05, 06, 01, 03, 04
RT4: .byte 05, 02, 06, 01, 03, 04
RT5: .byte 01, 04, 05, 03, 06, 02
;Refletores com 6 posições
RF1: .byte 04, 05, 06, 01, 02, 03
RF2: .byte 05, 06, 04, 03, 01, 02
RF3: .byte 04, 03, 02, 01, 06, 05
----- C -----
#define RT_QTD 5
#define RF_QTD 3
                             //Quantidade de Rotores
                              //Quantidade de Refletores
//Rotores com 6 posições
rt1[] = {3, 5, 1, 2, 4, 6};
rt2[] = \{1, 5, 3, 4, 2, 6\};
rt3[] = \{2, 5, 6, 1, 3, 4\};
rt4[] = {5, 2, 6, 1, 3, 4};
rt5[] = \{1, 4, 5, 3, 6, 2\};
//Refletores com 6 posições
rf1[] = \{4, 5, 6, 1, 2, 3\};
rf2[] = {5, 6, 4, 3, 1, 2};
rf3[] = \{4, 3, 2, 1, 6, 5\};
//Matriz [5,6] com todos os Rotores
rt_mat[] = {
            {3, 5, 1, 2, 4, 6}
            {1, 5, 3, 4, 2, 6}
            {2, 5, 6, 1, 3, 4}
            {5, 2, 6, 1, 3, 4}
            {1, 4, 5, 3, 6, 2}
};
//Matriz [3,6] com todos os Refletores
rf_mat[] = {
            \{4, 5, 6, 1, 2, 3\}
            {5, 6, 4, 3, 1, 2}
            {4, 3, 2, 1, 6, 5}
};
----- Tabelas .csv -----
```

```
01; 03; 01; 02; 05; 01; 04; 05; 04
02; 05; 05; 05; 02; 04; 05; 06; 03
03; 01; 03; 06; 06; 05; 06; 04; 02
04; 02; 04; 01; 01; 03; 01; 03; 01
05; 04; 02; 03; 03; 06; 02; 01; 06
06; 06; 06; 04; 04; 02; 03; 02; 05
```

E.6. Links Interessantes sobre o Enigma

https://www.cryptomuseum.com/crypto/enigma/working.htm

https://hackaday.com/2017/08/22/the-enigma-enigma-how-the-enigma-machine-worked/

https://www.youtube.com/watch?v=ASfAPOig eQ (Simon Singh)

https://www.youtube.com/watch?v=G2 Q9FoD-oQ (legendado)

https://www.youtube.com/watch?v=G2 Q9FoD-oQ