WHAT IS CLAIMED IS:

1	1.	An ap	An apparatus, comprising:		
2		a)	a micro machined optical element; and		
3		b)	a magnetic sensor disposed on the micro machined optical element.		
1		2.	The apparatus of claim 1 wherein the magnetic sensor senses a magnetic field		
2			that is used to actuate the micro machined optical element.		
1		3.	The apparatus of claim 1 wherein the micro machined optical element includes		
2			a moveable portion and at least one magnetic sensor disposed on the moveable		
3			portion.		
4		4.	The apparatus of claim 3 wherein the at least one magnetic sensor includes a		
5			sensor selected from the group consisting of, magneto resistive sensors, giant		
6			magnetoresistance sensors, colossal magnetoresistance sensors, anisotropic		
7			magnetoresistance sensors, magnetic tunnel junction devices, Hall effect		
8			sensors, flux sensing coils, magnetostriction sensors and magneto optic		
9			sensors.		
1		5.	The apparatus of claim 3 wherein the micro machined optical element includes		
2			a fixed portion and at least one sensor further includes one or more magnetic		
3			sensors disposed on the fixed portion.		
1		6.	The apparatus of claim 5 wherein the magnetic sensor disposed on the fixed		
2			portion is disposed on a sidewall of the fixed portion.		
1		7.	The method of claim 5 wherein the fixed portion includes a base and the		
2			magnetic sensor that is disposed on the fixed portion is disposed on the base.		
1		8.	The apparatus of claim 5 wherein the fixed portion includes a top chip and the		
2			sensor is disposed on the top chip.		
1		9.	The apparatus of claim 5 wherein the sensor that is disposed on the movable		
2			portion and the sensor that is disposed on the fixed portion are electrically		
3			coupled in a bridge circuit.		

1 2	10.	The apparatus of claim 9 wherein the bridge circuit is a Wheatstone bridge circuit.
1	11.	The apparatus of claim 1 wherein the magnetic sensor senses a sense magnetic
2		field that is separate from a magnetic field that actuates the micro machined
3		optical element.
1	12.	The apparatus of claim 11, wherein a magnetic structure disposed on the micro
2		machined optical element creates or changes the magnitude or direction of the
3		sense magnetic field.
1	13.	The apparatus of claim 12, wherein the at least one magnetic sensor is selected
2		from the group consisting of, magneto resistive sensors, giant
3		magnetoresistance sensors, colossal magnetoresistance sensors, anisotropic
4		magnetoresistance sensors, magnetic tunnel junction devices, Hall effect
5		sensors, flux sensing coils, magnetostriction sensors and magneto optic
6		sensors.
1	14.	The apparatus of claim 12 wherein the at least one magnetic sensor includes
2		two or more magnetic sensors.
1	15.	The apparatus of claim 14 wherein the two or more sensors are coupled
2		together in a bridge circuit.
1	16.	The apparatus of claim 15 wherein the bridge circuit is a Wheatstone bridge
2		circuit.
1	17.	The apparatus of claim 12 wherein the micro machined optical element
2		includes a moveable portion wherein the moveable portion is moveable with
3		respect to an axis.
1	18.	The apparatus of claim 17 wherein the magnetic material is disposed
2		substantially parallel to the axis.
1	19.	The apparatus of claim 18 wherein the at least one sensor includes a
2		magnetoresistive sensor;
3		wherein the magnetoresistive sensor has a "C" shape having a gap;

4		wherein, in at least one position of the moveable element, the magnetic
5		material is disposed within the gap.
6	20.	The apparatus of claim 17 wherein the magnetic material is disposed
7		substantially perpendicular to the axis.
1	21.	The apparatus of claim 20 wherein the at least one sensor includes a
2		magnetoresistive sensor;
3		wherein the magnetoresistive sensor has a "C" shape having a gap;
4	22.	The apparatus of claim 21 wherein, in at least one position of the moveable
5		element, the magnetic material is disposed within the gap.
1	23.	The apparatus of claim 12 wherein the at least one magnetic sensor includes a
2		magnetoresistive sensor characterized by a serpentine shape.
1	24.	The apparatus of claim 1, further comprising:
2		means for measuring a temperature; and
3		means for compensating for a change in the property of the at least one
4		magnetic sensor with temperature.
1	25.	The apparatus of claim 24, wherein the compensating means includes means
2		for determining a relationship between the property of the magnetic sensor and
3		the measured temperature.
1	26.	The apparatus of claim 24, wherein the compensating means includes means
2		for regulating the temperature to maintain the temperature within a desired
3		range.
1		