Inferencia Estadística Inferencia sobre una población

Edimer David Jaramillo - Bioestadística 1

Marzo de 2019

Prueba de hipótesis para μ

- Comprobar que la variable aleatoria se distribuye de forma normal.
- 2 Definir la hipóteis nula y alternativa:

 H_0 : nula

H₁: alternativa

Calcular el estadístico

$$t = \frac{\bar{X} - \mu_0}{s / \sqrt{n}}$$

- **1** Definir el error tipo I α
- ullet Calcular el valor P en una distribución t-student con n-1 grados de libertad
- **1** Comparar el valor P con α y concluir.

Intervalos de confianza para μ

IC para μ con σ conocida (1/2)

Si \bar{x} es la media de una muestra aleatoria de tamaño n de una población normal con varianza σ^2 conocida, un intervalo de confianza del $(1-\alpha)100\%$ para μ está dado por la siguiente expresión:

$$\bar{x} - Z\alpha_{/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + Z\alpha_{/2} \frac{\sigma}{\sqrt{n}}$$

IC para μ con σ conocida (2/2)

- Nivel de confianza (NC) y α : $Z_{\alpha/2}$:
 - NC = 90%, $y \alpha = 0.10 : Z_{\alpha/2} = 1.645$
 - NC = 95%, $y \alpha = 0.05 : Z_{\alpha/2} = 1.960$
 - NC = 99%, $y \alpha = 0.01 : Z_{\alpha/2} = 2.576$

IC para μ con σ desconocida

Si \bar{x} es la media de una muestra aleatoria de tamaño n de una población normal con varianza σ^2 desconocida, un intervalo de confianza del $(1-\alpha)100\%$ para μ está dado por la siguiente expresión:

$$\bar{x} - t\alpha_{/2,n-1} \frac{s}{\sqrt{n}} < \mu < \bar{x} + t\alpha_{/2,n-1} \frac{s}{\sqrt{n}}$$

Ejemplo con libras de arroz

- **Objetivo:** comprobar a través de inferencia estadística si las libras de arroz en efecto traen 500 gramos.
- Pese las *n* libras colectadas en clase.
- Estructure el vector o base de datos.
- Defina la hipóteis nula y alternativa:

$$H_0$$
: $\mu_{arroz} = 500g$

$$H_A$$
: $\mu_{arroz} \neq 500g$

- Calcular el estadístico.
- Definir el error tipo I α
- Calcular el valor P en una distribución t-student con n-1 grados de libertad
- Comparar el valor P con α y concluir.