Annaunements: Midterm I. Fri Feb 3rd.

2) HW2 due tonight. HW3 due Sat. Feb-9th.

Locusian: 4000A Time: 12-12:50

Math 170E: Winter 2023

G 50 mms.

→ (autent: leures = 9 Lecture 8, Fri 27th Jan

-> Prantice uploaded over he weekend.

Mathematical expectation

-> Cheat sheet:

Letter sized 1 sheet. Orth sides -> Basic calculator

Last time:

- A discrete random variable is a function $X:\Omega\to S$, where $S\subseteq\mathbb{R}$ where S is finite or countable
- The PMF of a discrete r.v. X is the map $p_X:S \to [0,1]$

$$p_X(x) = \mathbb{P}(X = x)$$

ullet The CDF of a discrete r.v. X is the map $F_X:\mathbb{R} o [0,1]$

$$F_X(x) = \mathbb{P}(X \le x)$$

• $X \sim \text{Uniform}(\{1, 2, ..., m\}) \text{ if } p_X(x) = \frac{1}{m} \text{ for } x \in \{1, 2, ..., m\}$

Today:

We'll discuss today:

- How to compute the expected value of a discrete random variable
- What a Bernoulli random variable is
- Properties of the expectation

Definition 2.7: (Expected value)

If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$, its expected value is defined to be

$$\mathbb{E}[X] = \sum_{x \in S} x \, p_X(x),$$

provided the sum converges.

Notation: we also write $\mu_X = E[X]$.

Example 6: Let $p \in (0,1)$. We say that a discrete random variable X is a Bernoulli random variable and write $X \sim \text{Bernoulli}(p)$ if it has PMF

$$p_X(x) = \begin{cases} p & \text{if } x = 1 \\ 1 - p & \text{if } x = 0 \end{cases}$$

$$\text{Weighted Cornflips}$$

$$\text{Success or a failure}$$

$$p_{=1}b: \text{Fair coin flips}.$$

What is $\mathbb{E}[X]$?

$$\mathbb{E}[X] = \sum_{x \in S} \times P_x(x)$$

$$= \sum_{x \in S} \times P_x(x) - O_x P_x(0)$$

$$= \sum_{x \in [0,1]} x R(x) = 0 - R(0) + 1 - R(1) = P.$$

If E(x) duem't have to

of S

If p=1/2, E(x)=1/2.

P=1/2: Fair coin flip.

Example 7: Uniform random variables

Given $m \ge 1$, let $X \sim \text{Uniform}(\{1, 2, \dots, m\})$.

What is $\mathbb{E}[X]$?

A)
$$\frac{m(m+1)}{2}$$

B)
$$\frac{1}{m}$$

(C)
$$\frac{m+1}{2}$$

D)
$$\frac{m}{2}$$

Recall
$$\sum_{x=1}^{m} x = \frac{m(m+1)}{2}$$

$$F_{X}(x) = \lim_{M} \lim_{M \to \infty} X \in \{1, -7, m\}.$$

$$E_{X}(x) = \sum_{X=1}^{M} x_{X}(x) = \sum_{X=1}^{M} x_{X} \cdot \lim_{X=1}^{M} x_{X}(x) = \sum_{X=1}^{M} x_{X}(x) = \lim_{X \to \infty} x_{X}(x) = \lim_{X \to \infty}$$

Proposition 2.8:

If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$, and $g: S \to \mathbb{R}$ is a function, then the expected value of g(X) is

$$\mathbb{E}[g(X)] = \sum_{x \in S} g(x) p_X(x), \qquad \qquad \text{for } |V| \leq |V|$$

provided the sum converges.

In particular, $\mathbb{E}[a] = a$ for any $a \in \mathbb{R}$

Proof:
$$g: S \to IR$$
, $S = \{x_1, \dots \} = \{x_i\}_{i \in IN}$.
Image of g under $S = \{y_1, y_2, \dots \} = \{y_j\}$.
Confidence: $g: S$ a function so each X_i gets may $y_j \in I$ and $g: Y_i$ for it many X_i (and $g: Y_i$ the same Y_j).
S = $\{x_1, x_2, x_3\}$
 $X \in S$ = $\{x_1, x_2, x_3\}$
 $X \in S$ = $\{x_1, x_2, x_3\}$
 $\{x_$

Joh give Me same
$$y_j$$

 $S = \{X_1, X_2, X_3\}$
 $\{y_1, y_2\}$
 $g(X_1) = g(X_2) = y_1$
 $g(X_3) = y_2$
 $g(X_3) = y_2$
 $g(X_1) = y_1$
 $g(X_1) = y_2$
 $g(X_1) = y_1$
 $g(X_1) = y_2$
 $g(X_1) = y_1$
 $g(X_1) = y_2$
 $g(X_1) = y_2$
 $g(X_1) = y_2$
 $g(X_1) = y_2$

$$= \sum_{j} y_{j} P(g(x) = y_{j}).$$

$$= \sum_{j} y_{j} P_{g(x)}(y_{j}) = \# (g(x)).$$

Example 8: Let $X: \Omega \to \{-1,0,1\}$ be a discrete r.v. such that

$$p_X(-1) = 0.2, \quad p_X(0) = 0.5, \quad p_X(1) = 0.3.$$

What is $\mathbb{E}[X^2]$?

tproach 1: Use a transformation g: {-1,0,13, -> 12, g(x) = x2

Soly Prop 2-8,

 $\#(\chi^2) = \#(g(\chi)) = \sum_{r} g(x) P_{\chi}(x),$

$$= \sum_{x \in \{-1,0,1\}} x^2 P_x(x) = (-1)^2 P_x(-1) + 0^2 P_x(-1) + 1^2 P_x(1),$$

$$= P_x(-1) + P_x(1) = 0.5.$$

 $\varphi(X) = X^{2},$ $\varphi(X(\omega)) = X(\omega)^{2}.$

Approal 2: New r.V.

Define $Y = X^2$. disc.r.v.

Compute PMF for Y: $P_{Y}(0) = P(Y=0) = P(X=0) = 0.5$. $P_{Y}(0) = P(Y=0) = P(X=0) = P(X=1) = P(X=1)$, $P_{Y}(1) = P(Y=1) = P(X=1) + P(X=1)$. $P_{Y}(1) = P(X=1) = P(X=1) + P(X=1)$.

Proposition 2.9: If X is a discrete r.v.taking values in a countable set $S \subseteq \mathbb{R}$. If

$$a,b\in\mathbb{R}$$
 and $g,h:\mathcal{S}\to\mathbb{R}$, then

$$\mathbb{E}[ag(X) + bh(X)] = a\mathbb{E}[g(X)] + b\mathbb{E}[h(X)]$$
Let $f(X) = ag(X) + bh(X)$.

Show $f(X) = ag(X) + bh(X)$,

Proof:

$$\begin{aligned}
&\#[ag(x)+bh(x)] = \#[f(x)], \\
&= \sum_{x \in S} f(x) \beta_{x}(x), \\
&= \sum_{x \in S} (ag(x)+bh(x)) \beta_{x}(x) \\
&= \alpha \sum_{x \in S} g(x) \beta_{x}(x) + \alpha \sum_{x \in S} h(x) \beta_{x}(x) \\
&\#[g(x)], \quad \#[h(x)]
\end{aligned}$$

Example 9: Let X be a discrete random variable. What is $\mathbb{E}[X - \mathbb{E}[X]]$?

With $[E[X]] < + \infty \angle$ Coultait \geq not random $E[X - \mathbb{E}[X]]$ = E[X] + E[X] = E[X] - E[X] = 0.

Proposition 2.10: If X is a discrete r.v.taking values in a countable set $S \subseteq \mathbb{R}$.

Example 10: Let X be a discrete random variable. Show that

$$-1 \leq \mathbb{E}[\sin(X)] \leq 1$$
 We have $-1 \leq \sin(x) \leq 1$ for all $x \in \mathbb{R}$,
$$-(. = \text{H-I}) \leq \mathbb{H}[\sin(x)] \leq \mathbb{H}[1] = 1$$