

Modeling with Graphs

Graph based models are widely used in software engineering

Testing, benchmarking or design space exploration scenarios

Generating (consistent | realistic | diverse | scalable) models

Hands-on demo

- Code examples available at https://refinery.tools/learn/tutorials/dlt/
- Watch out for numbered code examples!

 \rightarrow Example 1

Graph Structure: Hyperledger Architectures

Typical modeling workflow: metamodel → instance model

→ Example 2

• Example: Organizations, nodes, and channels

Models and Partial Models

Model generation: exploration process that gradually reduces uncertainty

Overview of the tutorial

Domain specification (metamodel)

• Define classes (nodes) and relations (edges)

4-valued partial model specification

Seed partial model to extend (with reasoning)

Constraint specification

Graph query language (inspired by Datalog / VIATRA Query)

Reasoning with propagation rules

Derive new facts from the state of the knowledge base with custom rules

Case study

Architecture design for consortial Distributed Ledger Technology

One Network, Multiple Ledgers – Consortial DLT

A Fabric network is a set of independently maintained ledgers.

Engineered Privacy/Confidentiality in Fabric

Engineered Privacy/Confidentiality in Fabric

Infrastructure

- Channel-based isolation
- Network-level access control

Platform

- Chaincode-level endorsement policy
- Private data collections
- Role-based API access control

Chaince

Applica

Suitability of partial modeling

- Mix platform-independent (stakeholders, confidentiality requirements) and platform-specific (existing infrastructure) specifications in a single artifact seamlessly
- Execute validation rules of partial solutions
- Generate candidate architectures

Domain-specific partial models

4-valued logic for reasoning about graph models

Graph Structure: Hyperledger Architectures

Typical modeling workflow: metamodel → instance model

→ Example 2

• Example: Organizations, nodes, and channels

Partial Modeling with 4-valued Logic

- Represent all potential extensions with uncertainty
- Logic abstraction:

■TRUE | False |
□Unknown | ⊗Error

- 4-valued exists:added or removed
- 4-valued **equals**: merging or splitting
- Refinement:
 reduces uncertainty
 → concrete models

→ Example 3

Partial Modeling with 4-valued Logic

- Represent all potential extensions with uncertainty
- Logic abstraction:

■TRUE | False |
□Unknown | ⊗Error

- 4-valued exists:added or removed
- 4-valued equals:
 merging or splitting

→ Example 4

Refinement:
 reduces uncertainty
 → concrete models

Refinement: 4-valued Logic

Model generation is executed with respect to model refinement


```
E.g.: person(\_,\_):unknown \xrightarrow{+true} person(\_,\_):true
person(\_,\_):true \xrightarrow{+false} person(\_,\_):error
```

Constraint specification

Using graph queries

Graph Constraint Evaluation

\rightarrow Examples 5-7

```
error multipleTransitionFromEntry(Entry e, Transition t1, Transition t2) ←→
   outgoingTransition(e, t1),
   outgoingTransition(e, t2),
   t1 ≠ t2.
```


Each match of the query is a certain constraint violation (an error)

Partial Graph Constraint Evaluation

```
outgoingTransition(e, t1),
outgoingTransition(e, t2),
t1 \neq t2.
```


A may-match of a query is a *potential* error (which may disappear)

Predicates vs Constraints

→ Example 8

```
pred entryInRegion(Region r, Entry e) ←→
    vertices(r, e).
```

Predicates

- A graph query / predicate
- <u>Composable</u>: Reusable in other predicates or constraints
- Positive condition

```
verror multipleEntryInRegion(Region r) ↔

entryInRegion(r, e1),
 entryInRegion(r, e2),
 e1 ≠ e2.
```

Negative condition

```
error noEntryInRegion(Region r) ←→
!entryInRegion(r, _).
```

```
error incomingToEntry(Transition t, Entry e) \longleftrightarrow target(t, e).
```

Constraints (Error patterns)

- Capture the violating cases of a domain constraint
- Each match is an error (inconsistency)
- Constraints vs. Types
 - 1-parameter constraint: special *node* type
 - 2-parameter constraint: special *edge* type

Capturing functional requirements as Partial Models

Requirements = assertions about the architecture

"C must communicate with A and B, but A and B cannot communicate"

- Encode families of requirements by graph predicates
 - Requirements that should hold everywhere (characteristics of the DLT platform):
 error patterns
 - Requirements for specific model elements
 (functional requirements raised by stakeholders):
 logical assertions about predicates

Consistent Graph Generation

Architecture of a generator:

- Input: Problem Specification

 Defines the structure of the models

 Defines the consistency constraints

 Defines an initial model fragment
- Input: Search Parameters

 Configures the generation process
- Output: Models
 Sequence of consistent models
- Output: Inconsistency
 Proving that there are no such consistent model

Search Parameters for Model Generation

- Constraints are continuously reevaluated
- Automatically searching for valid models by applying refinements
- Search is parametrized
 - Number of different solutions
 - Difference between the solutions (non-isomorphic)
 - Random seed
- Scope: "size of the models"

→ Example 10

```
# scope node = 15..60, Node = 8..30, FabricNetwork = 1, Channel += 3..*.
# of nodes # nodes by type # of new objects
```

Solution

Start

Propagation rules

Reasoning with partial models

Propagation rules

- Deduce new facts from the existing knowledge base
- Preserves all possible consistent refinements
- Fired until fixed point
- Firing a single activation disables it

Decision rules

- Branching points in the search for consistent refinements
- Reduces uncertainty by excluding some refinements
- Single decision activation is fired before executing propagation
- Not always self-disabling

```
propagation rule collaboratesWithSymmetric(Organization o1, Organization o2) ↔
collaboratesWith(o1, o2)

⇒ collaboratesWith(o2, o1).

Whenever the precondition surely holds in the partial model

And the postcondition is not yet part of the partial model

Add the postcondition to the partial model
```

- Only valid if the precondition is logically implied by the postcondition
- Add implications not automatically discovered by Refinery as propagation rules to improve reasoning power

Advanced propagation

 Shadow predicates: lightweight graph patterns with "forward-only" reasoning

```
shadow pred endorsesChaincode(EndorsingNode n, Channel c, ChaincodeInstance i) ←→
    chaincodes(c, i), endorses(n, i).

shadow pred endorsesMultipleChaincodes(EndorsingNode n, Channel c) ←→
    endorsesChaincode(n, c, i1), endorsesChaincode(n, c, i2), i1 ≠ i2.
```

Modal operators in preconditions and shadow predicates

The Refinery framework

• Management: store/compare multiple versions of (abstract) models

• Exploration: transformation and optimization of models

• Reasoning: logic reasoning and abstract model concretization

Refinery elsewhere

Applications & appearances

Graph analysis and synthesis

- Powerful mathematical analysis techniques for models
- Novel graph-based logic solver for the automated synthesis of design alternatives
- Precision + Scalability
- Goal: solve problems with complex structure

Recent Results

• Research project VERIFIABLE AI/ML TECHNIQUES FOR PNT APPLICATIONS

eesa

Verification/Testing of AI/ML Applications

- Al applications are data-oriented systems
- Complex, dynamic environment
- Novel generation + Advanced simulators
 - → Diverse tests
- Systematic testing of Al applications

Recent Results

R&D project
 with Knorr-Bremse

Research project with USA Navy
Office of Naval Research Global

Advancing DLT applications

Hungarian Blockchain Coalition

- Prof. Pataricza member of the board
- I. Kocsis: Education WG lead, L. Gönczy: FinTech WG

Supporting the EMAP project (PM/NAV)

- "Even-based Data-sharing Platform" pilot
- Employer data provisions: event-based, single-channel
- Blockchain-based implementation in preparation

CBDC research cooperation with MNB

- Mapping out: blockchain ↔ Central Bank Digital Currency
- Payment, car leasing, energy support, industrial cooperation
- Currently: "ecosystem" research

EDGE-Skills: data veracity in EU data spaces

Blockchain-backed Verifiable Credentials

Recent results

Energy price support CBDC prototype: BIS Rosalind finalist

Fabric ↔ Ethereum

CBDC bridge in

Hyperledger Cacti

Smart gas meters and readings – in production

Refinery@MODELS2024

- Friday 14:30 (FAME) Refinery hands-on session
- Sunday 16:00 (Super Mario Bros)

 T9: Refinery: Logic-based partial modeling
- Wednesday 15:24 (HS7 Applications 1)
 Ulf Kargén, Dániel Varró. Towards Automated Test Scenario Generation for Assuring COLREGs Compliance of Autonomous Surface Vehicles
 - Find inconsistencies in maritime traffic rules with partial modeling
- Thursday 15:45 (HS1 MDE&AI)
 José Antonio Hernández López, Máté Földiák, Dániel Varró. Text2VQL: Teaching a
 Model Query Language to Open-Source Language Models with ChatGPT
 - Generate graph models to verify graph queries generated by Large Language Models
- Thursday 15:45 (HS7 Applications 2) Noor Al-Gburi, András Földvári, Kristóf Marussy, Oszkár Semeráth, Imre Kocsis. Requirement-Driven Generation of Distributed Ledger Architectures
 - Generate architectures for consortial blockchain systems

Further Information

Specification language

• K. Marussy, O. Semeráth, A. Babikian, D. Varró: A Specification Language for Consistent Model Generation based on Partial Models. J. Object Technol. 19(3): 3:1-22 (2020)

Consistent graph generation techniques

- O. Semeráth, A. Nagy, D. Varró: A graph solver for the automated generation of consistent domain-specific models. ICSE 2018: 969-980
- K. Marussy, O. Semeráth, D. Varró: Automated Generation of Consistent Graph Models With Multiplicity Reasoning. IEEE Trans. Software Eng. 48(5): 1610-1629 (2022)
- A.. Babikian, O. Semeráth, A. Li, K. Marussy, D. Varró: Automated generation of consistent models using qualitative abstractions and exploration strategies. Softw. Syst. Model. 21(5): 1763-1787 (2022)

Diverse and realistic graph generation

- O. Semeráth, R. Farkas, G. Bergmann, D. Varró: Diversity of graph models and graph generators in mutation testing. Int. J. Softw. Tools Technol. Transf. 22(1): 57-78 (2020)
- O. Semeráth, A. Babikian, B. Chen, C. Li, K. Marussy, G. Szárnyas, D. Varró: Automated generation of consistent, diverse and structurally realistic graph models. Softw. Syst. Model. 20(5): 1713-1734 (2021)

Correctness proofs

• D. Varró, O. Semeráth, G. Szárnyas, Á. Horváth: Towards the Automated Generation of Consistent, Diverse, Scalable and Realistic Graph Models. Graph Transformation, Specifications, and Nets 2018: 285-312

Summary

- Logic reasoning and model generation over graphs
- Web-based editor:
 - Live editing and feedback
 - Support for partial models and graph constraints
- Containerized execution:
 - Continuously deployed at https://refinery.services
 - Available as Docker image: https://refinery.tools/learn/docker/
- Open-source project: https://refinery.tools

