# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/31, C07K 14/315, 16/12, C12Q 1/68

(11) International Publication Number:

WO 98/18931

(43) International Publication Date:

7 May 1998 (07.05.98)

(21) International Application Number:

PCT/US97/19588

**A2** 

(22) International Filing Date:

30 October 1997 (30.10.97)

(30) Priority Data:

60/029,960

31 October 1996 (31.10.96)

US

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUNSCH, Charles, A. [US/US]; 2398B Dunwoody Crossing, Atlanta, GA 30338 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). BARASH, Steven, C. [US/US]; 582 College Parkway #303, Rockville, MD 20850 (US). FAN-NON, Michael [US/US]; 13501 Rippling Brook Drive, Silver Spring, MD 20850 (US). DOUGHERTY, Brian, A. [US/US]; 708 Meadow Field Court, Mount Airy, MD 21771 (US).

(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

#### Published

Without international search report and to be republished upon receipt of that report.

(54) Title: STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES



### (57) Abstract

The present invention provides polynucleotide sequences of the genome of Streptococcus pneumoniae, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES | Spain               | LS | Lesotho               | SI  | Slovenia                 |
|----|--------------------------|----|---------------------|----|-----------------------|-----|--------------------------|
| M  | Armenia                  | FI | Finland             | LT | Lithuania             | SK  | Slovakia                 |
| ΑT | Austria                  | FR | France              | LU | Luxembourg            | SN  | Senegal                  |
| ΑU | Australia                | GA | Gabon               | LV | Latvia                | SZ  | Swaziland                |
| ΑZ | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD  | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG  | Togo                     |
| BB | Barbados                 | GH | Ghana               | MG | Madagascar            | ТJ  | Tajikistan               |
| BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM  | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR  | Turkey                   |
| BG | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT  | Trinidad and Tobago      |
| ВЈ | Benin                    | IE | Ireland             | MN | Mongolia              | UA. | Ukraine                  |
| BR | Brazil                   | IL | Israel              | MR | Mauritania            | UG  | Uganda                   |
| BY | Belarus                  | IS | Iceland             | MW | Malawi                | US  | United States of America |
| CA | Canada                   | ſΤ | Italy               | MX | Mexico                | UZ  | Uzbekistan               |
| CF | Central African Republic | JP | Japan               | NE | Niger                 | VN  | Viet Nam                 |
| CG | Congo                    | KE | Kenya               | NL | Netherlands           | YU  | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | ZW  | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           |     |                          |
| CM | Cameroon                 |    | Republic of Korea   | PL | Poland                |     |                          |
| CN | China                    | KR | Republic of Korea   | PT | Portugal              |     |                          |
| CU | Cuba                     | ΚZ | Kazakstan           | RO | Romania               |     |                          |
| CZ | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |     |                          |
| DE | Germany                  | LJ | Liechtenstein       | SD | Sudan                 |     |                          |
| DK | Denmark                  | LK | Sri Lanka           | SE | Sweden                |     |                          |
| EE | Estonia                  | LR | Liberia             | SG | Singapore             |     |                          |

## Streptococcus pneumoniae Polynucleotides and Sequences

#### FIELD OF THE INVENTION

5

15

20

25

30

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Streptococcus pneumoniae*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

#### **BACKGROUND OF THE INVENTION**

Streptococcus pneumoniae has been one of the most extensively studied microorganisms since its first isolation in 1881. It was the object of many investigations that led to important scientific discoveries. In 1928, Griffith observed that when heat-killed encapsulated pneumococci and live strains constitutively lacking any capsule were concomitantly injected into mice, the nonencapsulated could be converted into encapsulated pneumococci with the same capsular type as the heat-killed strain. Years later, the nature of this "transforming principle," or carrier of genetic information, was shown to be DNA. (Avery, O.T., et al., J. Exp. Med., 79:137-157 (1944)).

In spite of the vast number of publications on *S. pneumoniae* many questions about its virulence are still unanswered, and this pathogen remains a major causative agent of serious human disease, especially community-acquired pneumonia. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991)). In addition, in developing countries, the pneumococcus is responsible for the death of a large number of children under the age of 5 years from pneumococcal pneumonia. The incidence of pneumococcal disease is highest in infants under 2 years of age and in people over 60 years of age. Pneumococci are the second most frequent cause (after *Haemophilus influenzae* type b) of bacterial meningitis and otitis media in children. With the recent introduction of conjugate vaccines for *H. influenzae* type b, pneumococcal meningitis is likely to become increasingly prominent. *S. pneumoniae* is the most important etiologic agent of community-

25

30

35

acquired pneumonia in adults and is the second most common cause of bacterial meningitis behind *Neisseria meningitidis*.

The antibiotic generally prescribed to treat *S. pneumoniae* is benzylpenicillin, although resistance to this and to other antibiotics is found occasionally. Pneumococcal resistance to penicillin results from mutations in its penicillin-binding proteins. In uncomplicated pneumococcal pneumonia caused by a sensitive strain, treatment with penicillin is usually successful unless started too late. Erythromycin or clindamycin can be used to treat pneumonia in patients hypersensitive to penicillin, but resistant strains to these drugs exist. Broad spectrum antibiotics (e.g., the tetracyclines) may also be effective, although tetracycline-resistant strains are not rare. In spite of the availability of antibiotics, the mortality of pneumococcal bacteremia in the last four decades has remained stable between 25 and 29%. (Gillespie, S.H., *et al.*, *J. Med. Microbiol.* 28:237-248 (1989).

S. pneumoniae is carried in the upper respiratory tract by many healthy individuals. It has been suggested that attachment of pneumococci is mediated by a disaccharide receptor on fibronectin, present on human pharyngeal epithelial cells. (Anderson, B.J., et al., J. Immunol. 142:2464-2468 (1989). The mechanisms by which pneumococci translocate from the nasopharynx to the lung, thereby causing pneumonia, or migrate to the blood, giving rise to bacteremia or septicemia, are poorly understood. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991).

Various proteins have been suggested to be involved in the pathogenicity of S. pneumoniae, however, only a few of them have actually been confirmed as virulence factors. Pneumococci produce an IgA1 protease that might interfere with host defense at mucosal surfaces. (Kornfield, S.J., et al., Rev. Inf. Dis. 3:521-534 (1981). S. pneumoniae also produces neuraminidase, an enzyme that may facilitate attachment to epithelial cells by cleaving sialic acid from the host glycolipids and gangliosides. Partially purified neuraminidase was observed to induce meningitis-like symptoms in mice; however, the reliability of this finding has been questioned because the neuraminidase preparations used were probably contaminated with cell wall products. Other pneumococcal proteins besides neuraminidase are involved in the adhesion of pneumococci to epithelial and endothelial cells. These pneumococcal proteins have as yet not been identified. Recently, Cundell et. al., reported that peptide permeases can modulate

20

25

pneumococcal adherence to epithelial and endothelial cells. It was, however, unclear whether these permeases function directly as adhesions or whether they enhance adherence by modulating the expression of pneumococcal adhesions. (DeVelasco, E.A., et al., Micro. Rev. 59:591-603 (1995). A better understanding of the virulence factors determining its pathogenicity will need to be developed to cope with the devastating effects of pneumococcal disease in humans.

Ironically, despite the prominent role of *S. pneumoniae* in the discovery of DNA, little is known about the molecular genetics of the organism. The *S. pneumoniae* genome consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory elements, such as prophages, plasmids, transposons and the like. Most physical characteristics and almost all of the genes of *S. pneumoniae* are unknown. Among the few that have been identified, most have not been physically mapped or characterized in detail. Only a few genes of this organism have been sequenced. (See, for instance current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. pneumoniae* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by S. pneumoniae, infection involves the programmed expression of S. pneumoniae genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of S. pneumoniae genes and genomic organization would improve our understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of S. pneumoniae would provide reagents for, among other things, detecting, characterizing and controlling S. pneumoniae infections. There is a need to characterize the genome of S. pneumoniae and for polynucleotides of this organism.

#### SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-391.

The present invention provides the nucleotide sequence of several hundred contigs of the *Streptococcus pneumoniae* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-391.

10

15

20

25

30

35

The present invention further provides nucleotide sequences which are at least 95% identical to the nucleotide sequences of SEQ ID NOS:1-391.

The nucleotide sequence of SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NOS:1-391 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computerbased systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Streptococcus pneumoniae* genome.

Another embodiment of the present invention is directed to fragments of the Streptococcus pneumoniae genome having particular structural or functional attributes. Such fragments of the Streptococcus pneumoniae genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs, and fragments which can be used to diagnose the

presence of *Streptococcus pneumoniae* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORFs in fragments of the *Streptococcus pneumoniae* genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

5

10

15

20

25

30

The present invention further includes recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Streptococcus pneumoniae* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as

10

15

20

25

30

a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the abovedescribed antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b) determining whether the agent binds to said protein.

The present genomic sequences of *Streptococcus pneumoniae* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Streptococcus pneumoniae* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Streptococcus pneumoniae* researchers

and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

5

10

15

20

25

30

35

## **DESCRIPTION OF THE FIGURES**

**FIGURE 1** is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Streptococcus pneumoniae genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Streptococcus pneumoniae relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq\_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading

frames (ORFs) is accomplished by processing contigs with zorf or GenMark. The ORFs are searched against *S. pneumoniae* sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul *et al.*, *J. Mol. Biol. 215*: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

# DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

10

15

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-391. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Streptococcus pneumoniae* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-391, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

20

25

35

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-391" refers to any portion of the SEQ ID NOS:1-391 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Streptococcus pneumoniae* open reading frames ( ORFs ), expression modulating fragment ( EMFs ) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in sample ( DFs ). A non-limiting identification of preferred representative fragments is provided in Tables 1-3. As discussed in detail below, the information provided in SEQ ID NOS:1-391 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Streptococcus pneumoniae* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-391 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a

15

20

25

30

35

nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-391. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS:1-391 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-391 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-391 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of Streptococcus pneumoniae strains that can be used to prepare S. pneumoniae genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the S. pneumoniae strain that provided the DNA of the present Sequence Listing, Strain 7/87 14.8.91, has been deposited in the ATCC, as a convenience to those of skill in the art. As a further convenience, a library of S. pneumoniae genomic DNA, derived from the same strain, also has been deposited in the ATCC. The S. pneumoniae strain was deposited on October 10, 1996, and was given Deposit No. 55840, and the cDNA library was deposited on October 11, 1996 and was given Deposit No. 97755. The genomic fragments in the library are 15 to 20 kb

10

15

20

25

30

35

fragments generated by partial Sau3A1 digestion and they are inserted into the BamHI site in the well-known lambda-derived vector lambda DASH II (Stratagene, La Jolla, CA). The provision of the deposits is not a waiver of any rights of the inventors or their assignees in the present subject matter.

The nucleotide sequences of the genomes from different strains of *Streptococcus pneumoniae* differ somewhat. However, the nucleotide sequences of the genomes of all *Streptococcus pneumoniae* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-391. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA 85:* 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

#### COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-391 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-391. Such a manufacture provides a large portion of the *Streptococcus pneumoniae* genome and parts thereof (*e.g.*, a *Streptococcus pneumoniae* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using

10

15

20

25

30

35

means not directly applicable to examining the *Streptococcus pneumoniae* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present A variety of data storage structures are available to a skilled artisan invention. for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-

10

15

20

25

30

35

391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-391 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

PCT/US97/19588

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Streptococcus pneumoniae genome which contain homology to ORFs or proteins from both Streptococcus pneumoniae and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Streptococcus pneumoniae genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computerbased systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Streptococcus pneumoniae* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage

15

20

25

30

35

means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Streptococcus pneumoniae* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the

Streptococcus pneumoniae genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990), is used to identify open reading frames within the Streptococcus pneumoniae genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

10

15

20

25

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

10

15

20

25

30

35

#### **BIOCHEMICAL EMBODIMENTS**

Other embodiments of the present invention are directed to isolated fragments of the *Streptococcus pneumoniae* genome. The fragments of the *Streptococcus pneumoniae* genome of the present invention include, but are not limited to fragments which encode peptides and polypeptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Streptococcus pneumoniae* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-391, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, *Streptococcus pneumoniae* DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a *Streptococcus pneumoniae* library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS:1-391. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or *Streptococcus pneumoniae* genomic DNA. Thus, given the availability of SEQ ID NOS:1-391, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-391 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

15

20

25

30

35

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2, and 3 list ORFs in the *Streptococcus pneumoniae* genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

Table 1 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in October, 1997.

Table 2 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in October, 1997.

Table 3 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in October, 1997.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the first nucleotide of the ORF (actually the first nucleotide of the stop codon immediately preceding the ORF), counting from the 5' end of the contig strand; and the fourth column, "stop (nt)" indicates the last nucleotide of the stop codon defining the 3'end of the ORF.

In Tables 1 and 2, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column six in Tables 1 and 2 provides the gene name of the matching sequence; column seven provides the BLAST identity score and column eight the BLAST similarity score from the

comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

5

10

15

20

25

30

Each ORF described in the tables is defined by "start (nt)" (5') and "stop (nt)" (3') nucleotide position numbers. These position numbers refer to the boundaries of each ORF and provide orientation with respect to whether the forward or reverse strand is the coding strand and which reading frame the coding sequence is contained. The "start" position is the first nucleotide of the triplet encoding a stop codon just 5' to the ORF and the "stop" position is the last nucleotide of the triplet encoding the next in-frame stop codon (i.e., the stop codon at the 3' end of the ORF). Those of ordinary skill in the art appreciate that preferred fragments within each ORF described in the table include fragments of each ORF which include the entire sequence from the delineated "start" and "stop" positions excepting the first and last three nucleotides since these encode stop codons. Thus, polynucleotides set out as ORFs in the tables but lacking the three (3) 5' nucleotides and the three (3) 3' nucleotides are encompassed by the present invention. Those of skill also appreciate that particularly preferred are fragments within each ORF that are polynucleotide fragments comprising polypeptide coding sequence. As defined herein, "coding sequence" includes the fragment within an ORF beginning at the first in-frame ATG (triplet encoding methionine) and ending with the last nucleotide prior to the triplet encoding the 3' stop codon. Preferred are fragments comprising the entire coding sequence and fragments comprising the entire coding sequence, excepting the coding sequence for the N-terminal methionine. Those of skill appreciate that the N-terminal methionine is often removed during post-translational processing and that polynucleotides lacking the ATG can be used to facilitate production of N-termainal fusion proteins which may be benefical in the production or use of genetically engineered proteins. Of course. due to the degeneracy of the genetic code many polynucleotides can encode a given polypeptide. Thus, the invention further includes polynucleotides comprising a nucleotide sequence encoding a polypeptide sequence itself encoded by the coding sequence within an ORF described in Tables 1-3 herein. Further, polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence to the foregoing polynucleotides, are contemplated by the present invention.

Polypeptides encoded by polynucleotides described above and elsewhere herein are also provided by the present invention as are polypeptide comprising a an amino acid sequence at least about 95%, preferably at least 97% and even more preferably 99% identical to the amino acid sequence of a polypeptide encoded by an ORF shown in Tables 1-3. These polypeptides may or may not comprise an N-terminal methionine.

5

10

15

20

25

30

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the percent identity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Streptococcus pneumoniae* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

5

10

15

20

25

30

EMF sequences can be identified within the contigs of the *Streptococcus* pneumoniae genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Streptococcus pneumoniae* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Streptococcus pneumoniae* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Streptococcus pneumoniae* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers

consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferrably at least 99% and most at least preferably 99.9% identical to SEQ ID NOS:1-391, with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated. Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of Streptococcus pneumoniae origin isolated by using part or all of the fragments in question as a probe or primer.

15

20

25

30

35

Preferred DFs of the present invention comprise at least about 17, preferrably at least about 20, and more preferrably at least about 50 contiguous nucleotides within an ORF set out in Tables 1-3. Most highly preferred DFs specifically hybridize to a polynucleotide containing the sequence of the ORF from which they are derived. Specific hybridization occurs even under stringent conditions defined elsewhere herein.

Each of the ORFs of the Streptococcus pneumoniae genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly Streptococcus pneumoniae. Especially preferred in this regard are ORFs such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Streptococcus pneumoniae. Also particularly preferred are ORFs that can be used to distinguish between strains of Streptococcus pneumoniae, particularly those that distinguish medically important strain, such as drug-resistant strains.

15

20

25

30

35

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG

(available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

10

15

20

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the Streptococcus pneumoniae genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF. The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs and subfragments thereof depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

5

10

15

20

25

30

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Streptococcus pneumoniae* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

10

15

20

25

30

35

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express

10

20

25

30

35

heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *E. coli*, *B. subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas* and *Streptomyces*. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication

derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

5

15

20

25

30

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell 23:*175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

5

10

15

20

25

30

35

The invention further provides methods of obtaining homologs from other strains of Streptococcus pneumoniae, of the fragments of the Streptococcus pneumoniae genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Streptococcus pneumoniae is defined as a homolog of a fragment of the Streptococcus pneumoniae fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Streptococcus pneumoniae genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-391 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEO

10

15

20

25

30

35

ID NOS:1-391 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis *et al.*, *PCR Protocols*, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-391 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-391, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Streptococcus pneumoniae*.

# ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the

polypeptide. Such identifications permit one skilled in the art to use the Streptococcus pneumoniae ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper et al., Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

#### 1. Biosynthetic Enzymes

10

15

20

25

30

35

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Streptococcus pneumoniae* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-391.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al.,

Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Streptococcus pneumoniae*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>, Rhine *et al.*, Eds., Verlag Press, Weinheim, Germany (1984).

10

15

20

25

30

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

15

25

30

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman *et al.*, Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey *et al.*, Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner *et al.*, Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other

hand, has been described in detail by Bud et al., Chemistry in Britain (1987), p. 127.

PCT/US97/19588

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, Methods of Enzymology 136:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

#### 2. Generation of Antibodies

5

10

15

20

25

30

35

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques In Biochemistry And Molecular Biology, Elsevier Science Publishers. Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983), pgs. 77-96 of Cole et al., in Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc. (1985)). Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods

20

25

(1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W., J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Streptococcus pneumoniae* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

### 3. Diagnostic Assays and Kits

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and assaying for binding of the DFs or antibodies to components within the test sample.

Conditions for incubating a DF or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and

15

20

Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Trisbuffers, etc.), and containers which contain the reagents used to detect the bound 25

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the antibody or DF. enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

30

PCT/US97/19588 36 WO 98/18931

5

10

15

20

30

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the Streptococcus pneumoniae fragment and contigs herein

(a) contacting an agent with an isolated protein encoded by one of the In general, such methods comprise steps of: described. ORFs of the present invention, or an isolated fragment of the Streptococcus

(b) determining whether the agent binds to said protein or said fragment. The agents screened in the above assay can be, but are not limited to, pneumoniae genome; and peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed

For random screening, agents such as peptides, carbohydrates, using protein modeling techniques. pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., "Application of Synthetic Peptides: Antisense Peptides," in Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or 25

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one the like. of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

10

15

20

25

30

35

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the 56:560 (1991); mRNA itself (antisense - Okano, J. Neurochem. Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides, and other DNA binding agents.

### 5. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of Streptococcus pneumoniae, or another related organism, in vivo or in vitro. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known As used herein, the techniques to provide a pharmaceutical compositions. "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of Streptococcus pneumoniae or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer

10

15

20

25

30

35

surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a protein. The development and use of a vaccine based on outer membrane vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The intraperitoneal compositions are administered in an amount which is effective for pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases administered in an amount not in excess of about 1 g/kg body weight they will be administered in an amount not in excess of about 10 g/kg body per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may

WO 98/18931

20

25

30

be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s)

15

20

25

30

35

serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatinemicrocapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES

The invention further provides a pharmaceutical pack or kit comprising one (1980).or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

# 6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

### ILLUSTRATIVE EXAMPLES

5

10

15

20

25

30

35

### LIBRARIES AND SEQUENCING

## 1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random

15

20

25

30

35

sequence has been determined can be calculated by the equation  $P = e^{-m}$ , where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point,  $P = e^{-1} = 0.37$ . The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation  $G = Le^{-m}$ , and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, *Genomics* 2: 231 (1988).

#### 2. Random Library Construction

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Streptococcus pneumoniae DNA is prepared by phenol extraction. A mixture containing 200 µg DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 µl TE buffer.

To create blunt-ends, a 100  $\mu$ l aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200  $\mu$ l BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100  $\mu$ l TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the

15

20

25

30

35

DNA. DNA is ethanol precipitated and redissolved in 20  $\mu$ l of TE buffer for ligation to vector.

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 µg of DNA fragments, 2 µg pUC18 DNA (Pharmacia) cut with SmaI and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is dissolved in 20 µl TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20  $\mu$ l TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) containing the v+I linears, 500  $\mu M$  each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 µl TE. The final ligation to produce circles is carried out in a 50  $\mu$ l reaction containing 5  $\mu$ l of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C.

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100  $\mu$ l aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7  $\mu$ l aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1  $\mu$ l aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and

15

20

25

30

35

placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl (1 M), and 1 ml MgSO /100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot of transformation.

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

#### 3. Random DNA Sequencing

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams et al., Science 252:1651 (1991); Adams et al., Nature 355:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two *Streptococcus pneumoniae* lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, *Streptococcus pneumoniae* DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 μg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One μl of fragments is used with 1 μl of DASHII vector (Stratagene) in the recommended ligation reaction. One μl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage

are plated directly without amplification from the packaging mixture (after dilution with 500  $\mu$ l of recommended SM buffer and chloroform treatment). Yield is about 2.5x10<sup>3</sup> pfu/ul. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5x10<sup>4</sup> pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x10<sup>9</sup> pfu/ml.

5

10

15

20

25

30

35

Liquid lysates (100  $\mu$ l) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards et al., Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of both-end sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are

done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

5

10

15

20

25

30

35

#### 4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing

10

sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

#### **INFORMATICS**

#### 1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

25

30

35

20

#### 2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 10<sup>4</sup> fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching

15

20

25

30

fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library).

The process resulted in 391 contigs as represented by SEQ ID NOs:1-391.

#### 3. Identifying Genes

The predicted coding regions of the *Streptococcus pneumoniae* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (October, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

10

15

20

25

#### ILLUSTRATIVE APPLICATIONS

### 1. Production of an Antibody to a Streptococcus pneumoniae Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

#### 2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al., Basic Methods in Molecular Biology, Elsevier, New York. Section 21-2 (1989).

15

20

25

30

#### 3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

#### 4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the Streptococcus pneumoniae genome, such as those of Tables 1-3 and SEQ ID NOS:1-391 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

10

15

20

5

#### 5. Gene expression from DNA Sequences Corresponding to **ORFs**

A fragment of the Streptococcus pneumoniae genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U. S. Patent No. 5,082,767, incorporated herein by this reference.

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Streptococcus pneumoniae genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using BgII and SaII restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Streptococcus pneumoniae DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Streptococcus pneumoniae DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BglII at the 5' end of the corresponding Streptococcus pneumoniae DNA 3' primer, taking care to ensure that the Streptococcus pneumoniae DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BgIII, purified and ligated to pXT1, now containing a poly A addition sequence and digested BglII.

10

20

25

30

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Streptococcus pneumoniae* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Streptococcus pneumoniae* DNA.

15

20

Alternatively and if antibody production is not possible, the Streptococcus pneumoniae DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the Streptococcus pneumoniae DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al., cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using in vitro translation systems such as in vitro ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

pneumoniae - Coding regions containing known sequences

| Contig | ORF  | Start (nt) | Stop<br>(nt) | natch               | match gene name                                                                                                                 | percent | HSP nt<br>length | ORF nt<br>length |
|--------|------|------------|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|---------|------------------|------------------|
| -      | -    | 437        | 1003         | gb U41735           | Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds | 92      | 200              | 567              |
| 2      | - 2  | 6919       | 5720         | 125 U04047          | Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds              | 96      | 450              | 450              |
| 2      | 9    | 2659       | 6167         | emb 283335 SPZ8     | S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-thamnose<br>biosynthesis genes and aliA gene                         | 86      | 426              | 426              |
|        | ==   | 9770       | 9147         | emb z83335 SPZ8     | S.pneumonise dexB, capilA,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose blosynthesis genes and aliA gene                            | 96      | 624              | 624              |
|        | 112  | 10489      | 9671         | emb[283335 SP28     | S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose<br>blosynthesis genes and aliA gene                         | 91      | 819              | 819              |
| F      | ===  | 11546      | 112019       | <br> gb U43526 <br> | Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds                  | 66      | 474              | 474              |
|        | =-   | 12017      | 13375        | gb U43526           | Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds                  | 66      | 1359             | 1359             |
|        | 112  | 13421      | 14338        | <br>  95 043526     | Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds                  | 66      | 918              | 918              |
| 3      | 116  | 14329      | 15171        | [gb]U43526]         | Streptococcus pneumoniae neuraminidase B (manB) gene, complete cds, and neuraminidase (nanA) gene, partial cds                  | 66      | 843              | 843              |
| 9      | 117  | 15132      | 17282        | gb U43526           | Streptococcus pneumoniae neuraminidase B (manB) gene, complete cds, and neuraminidase (nanA) gene, partial cds                  | - 66    | 2151             | 2151             |
| m      | 118  | 17267      | 118397       | gb U43526           | Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds                  | 66      | 1069             | 1131             |
| 4      | -    | 46         | 1188         | emb Y11463 SPDN     | Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5                                                               | 66      | 1143             | 1143             |
| 4      | 7    | 1198       | 2529         | emb Y11463 SPDN     | Streptococtus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5                                                               | 66      | 876              | 1332             |
|        |      | 111297     | 111473       | gb U41735           | Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds | 82      | 175              | 177              |
| 9      | 7    | 1 7125     | 1 7364       | emb[277726 SPIS     | S.pneumoniae DNA for insertion sequence IS.1318 (1372 bp)                                                                       | 66      | 238              | 240              |
| 9      | 8    | 7322       | 0727         | emb 277725 SPIS     | S.pneumoniae DNA for insertion sequence IS1381 (966 bp)                                                                         | 96      | 160              | 249              |
| 9      | 6    | 7533       | 7985         | emb 277725 SPIS     | S.pneumoniae DNA for insertion sequence IS1381 (966 bp)                                                                         | 66      | 453              | 453              |
| 9      | - 52 | 120197     | 119733       | emb 283335 SP28     | S. pneumoniae dexB. cap1(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and aliA gene                 | 96      | 465              | 465              |
| 7      | 100  | 8305       | 7682         | emb   283335   SP28 | S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose<br>biosynthesis genes and aliA gene                         | 95      | 624              | 624              |

S. pneumoniae ~ Coding regions containing known sequences

| ae dexb, cap1(A,B,C,D,E,F,G,H,I,J,K  genes, dTDP-rhamn cus pneumoniae methyl transferase (mtr) gene cluster, cus pneumoniae methyl transferase (mtr) gene cluster, de yorf[A,B,C,D,E], ftsL, pbpX and regR genes ae yorf[A,B,C,D,E], ftsL, pbpX and regR genes are abla and all A gene cus pneumoniae transposase, (com and comB) and SAICAR as bNA for insertion sequence ISIJ18 (1372 bp) ae DNA for insertion sequence ISIJ18 (1372 bp) ae bNA for insertion sequence ISIJ18 (1372 bp) ae bNA for insertion sequence ISIJ18 (1372 bp) ae iga gene cus pneumoniae attachment site (attB), DNA sequence cus pneumoniae attachment site (attB), DNA sequence cus pneumoniae attachment site (attB), DNA sequence cus pneumoniae orfL gene, partial cds, competence stimu recursor (comC), histidine protein kinase (comD) and recursor (comC), histidine protein kinase (complement d) and r | Contig | ORF<br>ID | Start<br>(nt) | Stop<br>(nt) | match             | match gene name                                                                                                  | percent ident | HSP nt<br>length | ORF nt |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|---------------|--------------|-------------------|------------------------------------------------------------------------------------------------------------------|---------------|------------------|--------|
| 13   9104   8078   90     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25   |        |           | 9024          | 8206         | emb[283335]SP28   | dexB, capl(A, B, C, D, E, F, G, H, I, J, K) genes, genes and aliA gene                                           | 96            | 619              | 819    |
| 1   892   1980   emb [279631 SOOR   S. pneumoniae yorf[A.B.C.D.E]. (fai. pdpx and regR genes     1   892   1980   emb [279631 SOOR   S. pneumoniae yorf[A.B.C.D.E]. (fai. pdpx and regR genes     1   140   1247   emb [279631 SOOR   S. pneumoniae yorf[A.B.C.D.E]. (fai. pdpx and regR genes     1   150   1455   emb [279631 SOOR   S. pneumoniae yorf[A.B.C.D.E]. (fai. pdpx and regR genes     1   150   1456   emb [279631 SOOR   S. pneumoniae yorf[A.B.C.D.E]. (fai. pdpx and regR genes     1   151   1126   gb H3126  S. pneumoniae porf[A.B.C.D.E]. (fai. pdpx and regR genes     1   151   1126   gb H3126  S. pneumoniae recF gene. Complete cds     1   152   1126   gb H3126  S. pneumoniae recF gene. Complete cds     2   1248   emb [233135 SP28   S. pneumoniae recF gene. Complete cds     3   1877   2448   emb [233135 SP28   S. pneumoniae recF gene. complete cds     4   2518   2708   gb H3126  S. pneumoniae recF gene. complete cds     5   1870   3458   emb [233135 SP28   S. pneumoniae recF gene. complete cds     6   1884   1885   gb U09339  Streptococcus pneumoniae type 19F capaular polysaccharide biosym     6   1887   gb U09339  Streptococcus pneumoniae type 19F capaular polysaccharide biosym     7   1910   1358   emb [237175 SP18   S. pneumoniae Demoniae Pype 19F capaular polysaccharide biosym     8   4304   3873   gb U07725  Streptococcus pneumoniae type 19F capaular polysaccharide biosym     9   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10     | 13        | 9304          | 8078         | ab L29323         | gene                                                                                                             | 93            | 513              | 1221   |
| 1   892   1980   emb [279631 500R   S. pneumoniae yorf(A.B.C.D.E). (fest. pdpx and regR genes   1980   1347   emb [279631 500R   S. pneumoniae yorf(A.B.C.D.E). (fest. pdpx and regR genes   1980   1347   emb [279631 500R   S. pneumoniae yorf(A.B.C.D.E). (fest. pdpx and regR genes   1980   1347   emb [279631 500R   S. pneumoniae yorf(A.B.C.D.E). (fest. pdpx and regR genes   1980   14506   4866   emb [279631 500R   S. pneumoniae yorf(A.B.C.D.E). (fest. pdpx and regR genes   1980   14506   4866   emb [279631 500R   S. pneumoniae yorf(A.B.C.D.E). (fest. pdpx and regR genes   1980   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   1981   | -      | 7         | 548           | 919          |                   | yorf(A, B, C, D, E), ftsL, pbpX and regR                                                                         | 66            | 316              | 372    |
| 5   1040   1477   emb 279691 SOOR   S. pneumonlae yorf(A.B.C.D.E). Itsi, pbpX and regR genes     1   1860   4557   emb 279691 SOOR   S. pneumonlae yorf(A.B.C.D.E). Itsi, pbpX and regR genes     2   4864   7142   emb 279591 SOOR   S. pneumonlae yorf(A.B.C.D.E). Itsi, pbpX and regR genes     3   4864   7142   emb 279591 SOOR   S. pneumonlae yorf(A.B.C.D.E). Itsi, pbpX and regR genes     4   100   7112   81124   emb X15657 SFPB   Streptococcus pneumonlae pbpX gene for punicillin binding protein     5   1126   gbh 911266   S. pneumonlae recP gene, complete cds     6   1817   2148   emb 278135 SF28   S. pneumonlae recP gene, complete cds     7   1817   2148   emb 2813135 SF28   S. pneumonlae recP gene, complete cds     8   9942   8511   gbh 910329    Streptococcus pneumonlae transposase, (cremA and comB) and SAICAR     9   9942   8511   gbh 910329    Streptococcus pneumonlae transposase, (cremA and comB) and sAICAR     1   53   1126   gbh 911261   S. pneumonlae DNA for insertion sequence IS1118 (1312 bp)     2   554   757   gbh 107725    Sr.pneumonlae DNA for insertion sequence IS1118 (1312 bp)     1   41   529   emb 277722  SFIS   S. pneumonlae DNA for insertion sequence IS118 (1312 bp)     2   554   757   gbh 107722    Streptococcus pneumonlae attachment site (attB). DNA sequence     1   937   182   gbh 107323    Streptococcus pneumonlae attachment site (attB). DNA sequence     1   937   182   gbh 107325    Streptococcus pneumonlae offL gene, partial cds, competence stimm     1   937   182   gbh 107325    Streptococcus pneumonlae offL gene, partial cds, competence stimm     2   2271   931   gbh 107325    Streptococcus pneumonlae offL gene, partial cds, tRNA-Ag and tRNA-Gln gene     2   2271   931   gbh 107325    Streptococcus pneumonlae offL gene, partial competence stimm     8   7   7   7   7   7   7   7   7   7                                                                                                                                                                                                              | 17     |           | 892           | 1980         |                   | pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR                                                                  | 66            | 1089             | 1089   |
| 6   1480   1247   emb 219601 5008   S.pneumoniae yorf(A.B.C.D.E), fitsi, pbpX and regR genes   8   4506   4886   emb 279691 5008   S.pneumoniae yorf(A.B.C.D.E), fitsic, pbpX and regR genes   9   4884   7142   emb 71637 5PPB   Streptococcus pneumoniae pbpX gene for punicillin binding protein   1   53   1126   gb H11396   S.pneumoniae recP gene, complete cds   1126   gb H11396   S.pneumoniae daxB, complete cds   1126   gb H11396   Streptococcus pneumoniae transposase, (crah and comB) and SAICAR   12318   gb U09319   Streptococcus pneumoniae type 197 capsular polysaccharide biosyn   1228   8311   gb U09319   Streptococcus pneumoniae type 197 capsular polysaccharide biosyn   1228   gb U09319   Streptococcus pneumoniae type 197 capsular polysaccharide biosyn   1228   emb 277724   SPIS   S.pneumoniae DNA for insertion sequence 18118 (1372 bp)   1229   emb 794909   SPIG   S.pneumoniae attachment site (attB). DNA sequence   1   41   529   emb 794909   SPIG   S.pneumoniae attachment site (attB). DNA sequence   1   41   529   emb 794909   SPIG   S.pneumoniae attachment site (attB). DNA sequence   1   937   182   gb U03732   Streptococcus pneumoniae attachment site (attB). DNA sequence   1   937   182   gb U33315   Streptococcus pneumoniae orfit gene, partial rada, competence stimu   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11     | - 2       | 3040          | 3477         | emb 279691 SOOR   | , ftst, pbpx and regR                                                                                            | 66            | 259              | 438    |
| 1   1601   4557   emb 279631 SOOR   S.pneumoniae yorf(A.B.C.D.E]. Itsi, pbbX and regR genes   8   4506   4886   emb 279631 SOOR   S.pneumoniae yorf(A.B.C.D.E]. Itsi, pbbX and regR genes   9   4884   7142   emb X16367 SPPB   Streeptococcus pneumoniae pbbX gene for punicillin binding protein   10   7132   8124   emb 283335 SPPB   Streeptococcus pneumoniae pbbX gene for punicillin binding protein   1   53   1126   gb M31296    S.pneumoniae recP gene. complete cds   Diosynthasis genes and aliA gene   Comb. And Comb) and SAICAR   Physical   Streeptococcus pneumoniae type 19F capsular polysaccharide biosynthasis   Streeptococcus pneumoniae type 19F capsular polysaccharide biosynthasis   Physical   Physical   Streeptococcus pneumoniae ppA for insertion sequence 15118 (1312 bp)   Physical   Physical   Physical   Streeptococcus pneumoniae attachment site (attB). DNA sequence   S. Spello   Streeptococcus pneumoniae attachment site (attB). DNA sequence   S. Spello   Streeptococcus pneumoniae of   Streeptococcus pneu   | -      | 9         | 3480          | 3247         | emb[279691 SOOR   | yorf(A,B,C,D,E), ftsL, pbpX and regR                                                                             | 66            | 234              | 234    |
| 9   4866   4886   emb 279691 SOOR   S. pneumoniae yorf(A,B,C,D,E ), ffst, pbpx and regR genes     10   7132   emb X16367 SPPB   Streptococcus pneumoniae pbpx gene for punicillin binding protein     11   53   1126   gbh H31296   S. pneumoniae reef gene, complete cds     1   53   1126   gbh H31296   S. pneumoniae reef gene, complete cds     1   53   1126   gbh H31296   S. pneumoniae reef gene, complete cds     1   1937   2148   emb 283335 SP28   S. pneumoniae transposase, (ccmA and comB) and SAICAR     2   2188   gbh H31806   Streptococcus pneumoniae transposase, (ccmA and comB) and SAICAR     3   8942   8511   gbh H31806   Streptococcus pneumoniae type IPF capsular polysaccharide biosynthesis genes     4   2518   2108   gbh H31806   Streptococcus pneumoniae type IPF capsular polysaccharide biosynthesis genes     5   8942   8511   gbh H31806   Streptococcus pneumoniae type IPF capsular polysaccharide biosynthesis     6   4304   3833   emb 277726 SPIS   S. pneumoniae bWA for insertion sequence ISI318 (1332 bp)     7   539   emb 277726 SPIS   S. pneumoniae DWA for insertion sequence ISI318 (1332 bp)     8   4304   3833   emb 277726 SPIS   S. pneumoniae attachment site (attB). DWA sequence     1   529   emb X9499 SPIG   S. pneumoniae attachment site (attB). DWA sequence     2   554   757   gbh L07752   Streptococcus pneumoniae attachment site (attB). DWA sequence     1   937   182   gbh L07752   Streptococcus pneumoniae attachment site (attB). DWA sequence     1   937   182   gbh L07752   Streptococcus pneumoniae attachment site (attB) and respective regulator (comE) genes complete cds, tRNA-Arg and tRNA-Gln genes     8   727   99   99   99   99   90   90   90   9                                                                                                                                                                                                                                                                                                                                                                        | 11     |           | 3601          | 4557         |                   | , ftsL, pbpX and regR                                                                                            | 86            | 957              | 957    |
| 9   4884   7142   emb X16367 SPPB   Streptococcus pneumoniae pbpX gene for penicillin binding protein   1   53   1126   gb H31296    S. pneumoniae recP gene, complete cds   1126   gb H31296    S. pneumoniae recP gene, complete cds   2518   2108   gb H35180    Streptococcus pneumoniae transposase, (ccmA and comB) and SAICAR   (purC) genes, complete cds   2518   2108   gb H35180    Streptococcus pneumoniae transposase, (ccmA and comB) and SAICAR   (purC) genes, complete cds   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   2518   | -      | 8         | 4506          | 4886         | emb 279691   SOOR | . ftsL, pbpX and regR                                                                                            | 66            | 381              | 381    |
| 10   7132   8124   emb X16367 SPPB   Streptococcus pneumoniae pbbX gene for punicillin binding protein   1   53   1126   gp M11266   S. pneumoniae dexB. cap1[A,B,C,D.E.F,G,H,J,J,K] genes, dTOP-rhamnon   2518   2108   gp M316180   Streptococcus pneumoniae transposase, (ccmA and ccmB) and SAICAR (purC) genes, complete cds and aliA genes and aliA genes, complete cds and aliA genes, complete cds and aliA genes, complete cds, complete cds, and aliA genes, complete cds, complete cds, completence stimm, streptococcus pneumoniae orfL gene, partial cds, competence stimm, peptide precursor (comC), histidine protein kinase (comD) and repetited precursor (comC), histidine protein kinase, and and repetited precursor (comC), histidine and complete cds, and aliA genes, complete cds,   | 11     | 6         | 4884          | 7142         |                   | gene for penicillin binding protein                                                                              | 66            | 2259             | 2259   |
| 1   53   1126   gb H31296   S.pneumoniae recP gene, complete cds   1837   2148   emb Z83335 SPZ8   S.pneumoniae dewB. cap1(A.B.C.D.E.F.G.H.I.J.KI) genes, dTDP-rhammon   2518   2108   gb H36180   Streptococcus pneumoniae transposase, (ccmA and comB) and SAICAR   (purC) genes, complete cds   2518   2108   gb H36180   Streptococcus pneumoniae type 19F capsular polysaccharide biosynn operon, (cps19fABCDEFGHIJKLANO) genes, complete cds, and aliA general partial cds   2104   3873   emb Z77726 SPIS   S.pneumoniae DNA for insertion sequence ISI318 (1372 bp)   141   529   emb X94909 SPIG   S.pneumoniae DNA for insertion sequence ISI318 (1372 bp)   141   529   emb X94909 SPIG   S.pneumoniae iga general partial cds, competence stimu peptide precursor (comC), histidiae protein kinase (comD) and representation is and the partial cds, competence stimu peptide precursor (comC), histidiae protein kinase (comD) and representation is competence stimu peptide precursor (comC), histidiae protein kinase (comD) and representation is competence stimu peptide precursor (comC), histidiae protein kinase (comD) and representation is competence stimu peptide precursor (comC), histidiae protein kinase (comD) and representation is competence stimu peptide precursor (comC), histidiae protein kinase (comD) and representation is competence stimu peptide precursor (comC), histidiae protein kinase (comD) and representation is competence stimu peptide precursor (comC), histidiae protein kinase (comD) and representation is competence stimu peptide precursor (comC), histidiae protein kinase (comD) and representation is competence stimu pentide precursor (comC), histidiae protein kinase (comD) and representation is competence stimu pentide precursor (comC), histidiae protein kinase (comD) and representation is competence stimu pentide protein kinase (comD) and representation is competence stimu pentide protein kinase (competence stimu pentide protein kinase (comD) and representation stimu pentide protein kinase (comD) and representation pentide pe   | -      | 01        | 7132          | 8124         |                   | gene for penicillin binding                                                                                      | 86            | 70               | 993    |
| 1837   2148   emb 283335 5P28   S.pneumoniae dexB. capilA,B,C,D.E.F,G,H,J,J,K  genes, dTDP-rhamner and aliA genes and aliA genes and aliA genes and aliA genes, dToP-rhamner genes and aliA genes, complete cds and comB) and SAICAR (purC) genes, complete cds complete cds, and aliA genes, complete cds, and aliA generon, cps19fABCDEFGHIJKLWNO) genes, complete cds, and aliA generon, and aliA generon, and aliA generon, complete cds, and aliA generon, and and aliA generon, and aliA generon, and aliA generon, and and aliA generon and aliA   | 13     | _         | 53            | 1126         | gb M31296         |                                                                                                                  | - 66          | 437              | 1074   |
| 4   2518   2108   gb HJ6180    Streptococcus pneumoniae transposase, (ccmA and comB) and SAICAR (purC) genes, complete cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P.     |           | 1837          | 2148         | emb 283335 SP28   | cap1(A,B,C,D,E,F,G,H,I,J,K) genes, s and aliA gene                                                               |               | 96               | 312    |
| 9   8942   8511   gb    009219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4      | 4         | 2518          | 2108         | gb M36180 <br>    | (comA and comB)                                                                                                  | 86            | 411              | 411    |
| 7   3910   3458   emb 277726 SPIS   S.pneumoniae DNA for insertion sequence 151318 (6   4304   3873   emb Z77727 SPIS   S.pneumoniae DNA for insertion sequence 151318 (6   1   41   529   emb X94909 SPIG   S.pneumoniae iga gene   2   554   757   gb L07752   Streptococcus pneumoniae attachment site (attB),   3   946   1827   gb L07752   Streptococcus pneumoniae orfL gene, partial cds,   1   937   182   gb U33315   Streptococcus pneumoniae orfL gene, partial cds, peptide precursor (comC), histidine protein kina   2   2271   931   gb U33315   Streptococcus pneumoniae orfL gene, partial cds, peptide precursor (comC), histidine protein kina   2   2271   931   gb U33315   Streptococcus pneumoniae orfL gene, partial cds, peptide precursor (comC), histidine protein kina   peptide precursor (comC), peptide precursor (comC)   peptide precursor (comC)   peptide precursor   | 15     | 6         | 8942          | 8511         |                   |                                                                                                                  | 668           | 340              | 432    |
| 4   4304   3873   emb x37727 SPIS   S. pneumoniae DNA for insertion sequence ISI318 (6   529   emb x94909 SPIG   S. pneumoniae iga gene   2   554   757   gb L07752    Streptococcus pneumoniae attachment site (attB),   3   946   1827   gb L07752    Streptococcus pneumoniae attachment site (attB),   1   937   182   gb U33315    Streptococcus pneumoniae orfL gene, partial cds, peptide precursor (comC), histidine protein kina   xegulator (comE) genes, complete cds, tRNA-Arg a peptide precursor (comC), histidine protein kina   peptide precursor (comC), peptide precursor (comC)   peptide precursor (comC)   peptide precursor (comC)   peptide precursor (comC)   pepti   | 17     | _         | 3910          | 3458         | emb 277726 SPIS   |                                                                                                                  | 86            | 453              | 453    |
| 1   41   529   emb X94909 SPIG   S.pneumoniae iga gene   2   554   757   gb L07752    Streptococcus pneumoniae attachment site (attB),   3   946   1827   gb L07752    Streptococcus pneumoniae attachment site (attB),   1   937   182   gb U33315    Streptococcus pneumoniae orfL gene, partial cds, peptide precursor (comC), histidine protein kina   regulator (comE) genes, complete cds, thNA-Arg a peptide precursor (comC), histidine protein kina   peptide precursor (comC)   peptide precursor (comC)   peptide precursor (comC)   peptide precursor (comC)   peptide pr   | 17     | 8         | 4304          | 3873         |                   |                                                                                                                  | 96            | 382              | 432    |
| 2   554   757   gb L07752    Streptococcus pneumoniae attachment site (attB),   3   946   1827   gb L07752    Streptococcus pneumoniae attachment site (attB),   1   937   182   gb U33315    Streptococcus pneumoniae orfL gene, partial cds, peptide precursor (comC), histidine protein kina regulator (comE) genes, complete cds, tRNA-Arg a peptide precursor (comC), histidine protein kina peptide precursor (comC), histidine peptide precursor (comC)   | 19     | -         | 41            | 529          |                   | S.pneumoniae iga gene                                                                                            | 75            | 368              | 489    |
| 3   946   1827   gb L07752    Streptococcus pneumoniae attachment site (attB),   182   gb U33315    Streptococcus pneumoniae orfL gene, partial cds, peptide precursor (comC), histidine protein kina   regulator (comE) genes, complete cds, tRMA-Arg a   streptococcus pneumoniae orfL gene, partial cds, publication protein kina   peptide precursor (comC), histidine precursor (comC), histidine precursor (comC), histidine precursor (comC)   peptide precursor (comC), histidine precursor (comC)   peptide precursor (co   | 19     | 2         | 554           | 757          | gb L07752         | site (attB),                                                                                                     | 66            | 167              | 204    |
| 1   937   182   gb UJJJ15   Streptococcus pneumoniae orfL gene, partial cds, peptide precursor (comC), histidine protein kina regulator (comE) genes, complete cds, tRNA-Arg a peptide precursor (comE) gene, partial cds, Streptococcus pneumoniae orfL gene, partial cds, peptide precursor (comC), histidine protein kina peptide precursor (comC), histidine protein kina peptide precursor (comC), histidine protein kina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19     | E         | 946           | 1827         | gb L07752         | attachment site (attB), DNA                                                                                      | 94            | 1001             | 882    |
| 2   2271   931   9b U33315    Streptococcus pneumoniae orfL gene, partial cds, peptide precursor (comC), histidine protein kins regulator (comE) genes. Complete cds, publa and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50     |           | 937           | 182          | - 1               |                                                                                                                  | 66            | 756              | 756    |
| Comes weres, comptend too, the party and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50     | 2         | 2271          | 931          |                   | pneumoniae orfi gene, partial cds,<br>rsor (comC), histidine protein kina<br>mE) genes, complete cds, fNNA-Arg a | 80            | 1341             | 1341   |

S. pneumoniae - Coding regions containing known sequences

| percent HSP nt ORF nt ident length | 492                                                                                                                                                                                | 99 1206 1206                                                                                                                              |                                                                                                                                    | 771                                    | 1386                                                                                   | 1386                                                                                                                                                                                                                                                                    | 1386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1386<br>1218<br>258<br>258<br>226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1386<br>1218<br>258<br>134<br>226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1386<br>1386<br>258<br>258<br>226<br>353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1386<br>1386<br>1218<br>258<br>226<br>226<br>504<br>463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1386<br>1218<br>258<br>258<br>226<br>226<br>504<br>663<br>463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1386<br>1218<br>226<br>226<br>353<br>353<br>463<br>443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1386<br>1218<br>226<br>226<br>504<br>663<br>463<br>443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1386<br>1218<br>228<br>226<br>226<br>504<br>663<br>463<br>463<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1386<br>1318<br>228<br>226<br>226<br>504<br>663<br>663<br>463<br>1422<br>1422<br>1422<br>1422<br>1437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ;                                  | <b></b>                                                                                                                                                                            |                                                                                                                                           | utative 99                                                                                                                         | _                                      |                                                                                        |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | treptococcus pneumoniae competence stimulating peptide precursor ComC (comC), histidine kinase homolog ComD (comD), and response regulator homolog ComE (comE) genes, complete cds | sequence, and putative<br>or protein (spdnas) and<br>complete cds                                                                         | and puta<br>(spdnaa)                                                                                                               |                                        | partial sequence, and putative<br>nitiator protein (spdnaa) and<br>genes, complete cds | sequence, and putal<br>protein (spdnas) in<br>complete cds<br>sequence, and putal<br>protein (spdnas) in<br>complete cds                                                                                                                                                | sequence, and putative reprotein (spdnaa) and complete cds sequence, and putative reprotein (spdnaa) and complete cds and putative reprotein (spdnaa) and complete cds complete cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sequence, and putative complete cds complete cds complete cds requence, and putative requence, and putative requence, and putative reprotein (spdnas) and complete cds and putative respective requence, and putative respective requence, and putative respective requence, and putative respective requence, and putative requence, and putative complete cds                                                                                                                                                                                                                                                                              | quence, and putal<br>plete cds<br>quence, and putal<br>quence, and putal<br>plete cds<br>quence, and putal<br>rotein (spdna) i<br>plete cds<br>quence, and putal<br>plete cds<br>quence, and putal                                                                                                                                                                                                                                                                                                                                                                                             | quence, and putal<br>rotein (spdnaa) a<br>plete cds<br>quence, and putal<br>rotein (spdnaa) a<br>plete cds<br>quence, and putal<br>rotein (spdnaa) a<br>plete cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | quence, and putal<br>rotein (spdnaa) a<br>quence, and putal<br>rotein (spdnaa) a<br>quence, and putal<br>rotein (spdnaa) a<br>plete cds<br>quence, and putal<br>rotein (spdnaa) a<br>plete cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quence, and putationers, and transposase and transp | 11 tRNA-Arg gene, partial sequence, and putal sepol (spspol), initiator protein (spdnaa) tase III (spdnan) genes, complete cds  12 tRNA-Arg gene, partial sequence, and putal sepol (spspol), initiator protein (spdnaa) tase III (spdnan) genes, complete cds  13 tRNA-Arg gene, partial sequence, and putal sepol (spspol), initiator protein (spdnaa) tase III (spdnan) genes, complete cds  14 tRNA-Arg gene, partial sequence, and putal sepol (spspol), initiator protein (spdnaa) tase III (spdnan) genes, complete cds  15 tRNA-Arg gene, partial sequence, and putal sequence IIII (spdnan) genes, complete cds  16 complete cds  17 tRNA-Arg gene, partial sequence, and putal sequence IIII (spdnan) genes, complete cds  18 complete cds  18 complete cds  19 sequence IIII (spdnan) genes, complete cds  10 sequence IIII (spdnan) genes, complete cds  10 sequence IIII (spdnan) genes, complete cds  11 sequence IIII (spdnan) genes, complete cds  12 sequence IIII (spdnan) genes, complete cds  13 sequence IIII (spdnan) genes, complete cds  19 sequence IIII (spdnan) genes, complete cds  10 sequence IIII (spdnan) genes, complete cds  11 sequence IIII (spdnan) genes, complete cds  12 sequence IIII (spdnan) genes, complete cds  13 sequence IIII (spdnan) genes, complete cds  14 sequence IIII (spdnan) genes, complete cds  15 sequence IIII (spdnan) genes, complete cds  16 sequence IIII (spdnan) genes, complete cds  17 sequence IIII (spdnan) genes, complete cds  18 sequence IIII (spdnan) genes, complete cds  18 sequence IIII (spdnan) genes, complete cds  18 sequence III (spdnan) genes, complete cds  19 sequence III (spdnan) genes, complete cds  10 sequence III (spdnan) genes, complete cds  11 sequence III (spdnan) genes, complete cds  11 sequence III (spdnan) genes, complete cds  12 sequence III (spdnan) genes, complete cds  13 sequence III (spdnan) genes, complete cds  11 sequence III (spdnan) genes, complete cds  12 sequence III (spdnan) genes, complete cds  13 sequence III (spdnan) genes, complete cds  14 sequence III (spdnan) genes, complete cds | quence, and putal rotein (spdnaa) a quence, and putal rotein (spdnaa) a plete cds quence, and putal rotein (spdnaa) a plete cds quence, and putal rotein (spdnaa) a plete cds quence, and putal rotein (spdnaa) a and transposase a and transposase a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | quence, and putal plete cds quence, and putal rotein (spdnaa) plete cds quence, and putal rotein (spdnaa) plete cds quence, and putal plete cds quence, and putal plete cds quence, and putal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | quence, and putal plete cds quence, and putal quence, and putal plete cds quence, and putal rotein (spdnaa) plete cds quence, and putal rotein (spdnaa) plete cds quence, and putal rotein (spdnaa) plete cds quence, and putal plete cds quence, and putal rotein (spdnaa) quence, and putal plete cds quence, and putal plete cds quence, and putal plete cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | quence, and putat<br>rotein (spdnaa) a<br>quence, and putat<br>rotein (spdnaa) a<br>plete cds<br>quence, and putat<br>rotein (spdnaa) a<br>plete cds<br>quence, and putat<br>rotein (spdnaa) a<br>plete cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                    | ting peptide p<br>D), and respor                                                                                                                                                   | partial<br>initiato<br>genes,                                                                                                             | partial                                                                                                                            | genes, complete                        |                                                                                        |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | partial sequinitiator pro pro partial sequinitiator pro partial sequinitiator pro partial sequinitiator pro genes, compl genes, compl genes, compl genes, compl genes, compl sequinitiator pro  | 1) tRNA-Arg gene, partial sequents produced special sequenced spec | partial sequinitator pro pro partial sequinitator pro partial sequinitator pro genes, compligency complicator pro genes, complicator pro genes, compligency complicator pro genes, co | partial sequinitiator pro<br>initiator pro<br>partial sequinitiator pro<br>genes, compl<br>partial sequinitiator pro<br>genes, compl<br>partial sequinitiator pro<br>genes, compl<br>partial sequinitiator pro<br>genes, compl<br>genes, compl<br>gene | partial sequinitiator pro pro partial sequinitiator pro partial sequinitiator pro genes, compi g                                                                                                                                                                                                                                                                                                                                                                                                                                                       | partial sequinitiator pro<br>initiator pro<br>genes, compli-<br>partial sequinitiator pro<br>genes, compli-<br>partial sequinitiator pro<br>genes, compli-<br>partial sequinitiator pro<br>genes, compli-<br>genes, c                     | partial sequencial prompts of partial sequencial |
|                                    | mpetence stimulat<br>omolog Comb (comf<br>complete cds                                                                                                                             | umoniae R801 tRNA-Arg gene,<br>(sphtra), SPSpoJ (spspoJ),<br>DNA polymerase III (spdnan)                                                  | RNA-Arg gene,<br>oJ (spspoJ),                                                                                                      | owe polymerase iii (sponan)            | umoniae R801 tRNA-Arg gene, (sphtra), SPSpoJ (spspoJ), DNA polymerase III (spdnan)     | umoniae R801 tRNA-Arg gene, (sphta), SPSpoJ (spspoJ), DNA polymerase III (spdnan) umoniae R801 tRNA-Arg gene, (sphtra), SPSpoJ (spspoJ), DNA polymerase III (spdnan)                                                                                                    | RNA-Arg gene, old (spstan),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | umoniae R801 LRNA-Arg gene, (sphta), SPSpOJ (spspoJ), DNA polymerase III (spdnan) umoniae R801 KNA-Arg gene, (sphta), SPSpOJ (spspoJ), DNA polymerase III (spdnan) umoniae R801 KNA-Arg gene, (sphta), SPSpOJ (spspoJ), DNA polymerase III (spdnan) umoniae R801 tRNA-Arg gene, (sphta), SPSpOJ (spspoJ), DNA polymerase III (spdnan)                                                                                                                                                                                                                                                                                                        | umoniae R801 tRNA-Arg gene, partial (sphtra). SSP,001 (spspol), initiato DNA polymerase III (spdnan) genes, umoniae R801 tRNA-Arg gene, partial (sphtra), SSP,003 (spspol), initiato DNA polymerase III (spdnan) genes, umoniae R801 tRNA-Arg gene, partial (sphtra), SPS,003 (spspol), initiato DNA polymerase III (spdnan) genes, umoniae R801 tRNA-Arg gene, partial (sphtra), SPS,003 (spspol), initiato DNA polymerase III (spdnan) genes, umoniae R801 tRNA-Arg gene, partial (sphtra), SPS,003 (spspol), initiato DNA polymerase III (spdnan) genes, dorinsertion sequence ISI318 (1372 | RNA-Arg gene, pool (spansa) grappol), included a lill (spansa) grappol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RNA-Arg gene, od (spspod), od ( | RNA-Arg gene, oJ (spspan), oJ (spspan), oJ (spspan), oJ (spspaJ), oJ ( | RNA-Arg gene, ol (spspol), ol ( | RNA-Arg gene, ol (spspol), ol (                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RNA-Arg gene, old (spenar) (sp                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RNA-Arg gene, ol (spepol), olysin olysin complete cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RNA-Arg gene, ol (spepol), olysin complete cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                    | noniae compet<br>kinase homol                                                                                                                                                      | oniae R801 ti<br>phtra), SPSp<br>NA polymerase                                                                                            | noniae R801 tl                                                                                                                     | יי ביייייייייייייייייייייייייייייייייי | umoniae R801 tRNA (sphtra), SPSpoJ                                                     | umoniae R601 FRNA-Arg gene, (sphtra), (sphtra), organiae R601 FRNA-Arg gene, umoniae R601 FRNA-Arg gene, (sphtra), SPSpoJ (spspoJ), DNA polymerase III (spdnaniae)                                                                                                      | umoniae R801 tRNA-Arg gene (sphtra), SPSpoJ, bNA polymerase III (spdnanumoniae R801 tRNA-Arg gene (sphtra), SPSpoJ (spspoJ), bNA polymerase III (spdnanumoniae R801 tRNA-Arg gene umoniae R801 tRNA-Arg gene (sphtra), SPSpoJ (spspoJ), bNA polymerase III (spdnanian)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | umoniae R801 tRNA-Arg gene. (sphtra), SPspoal), DNA polymerase III (spdnan.umoniae R801 tRNA-Arg gene. (sphtra), SPspoal (spspoal), DNA polymerase III (spdnan.umoniae R801 tRNA-Arg gene. (sphtra), SPspoal (spspoal), Umoniae R801 tRNA-Arg gene. (sphtra), SPspoal (spspoal), Umoniae R801 tRNA-Arg gene. (sphtra), SPspoal (spspoal), DNA polymerase III (spdnan)                                                                                                                                                                                                                                                                        | oniae R801 ti<br>h polymerase<br>h polymerase<br>ioniae R801 ti<br>phtra), SPSp<br>h polymerase<br>oniae R801 ti<br>phra), SPSp<br>h polymerase<br>oniae R801 ti<br>phra), SPSp<br>h polymerase<br>oniae R801 ti                                                                                                                                                                                                                                                                                                                                                                               | oniae R801 ti<br>h polymerase<br>coniae R801 ti<br>phtra). PSS pt<br>phra). PSS pt<br>h polymerase<br>oniae R801 ti<br>phra). PSS pt<br>n phra). PSS pt<br>n phra). PSS pt<br>n phra). PSS pt<br>r insertion tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oniae R801 ti<br>phtra), SPSp<br>oniae R801 ti<br>phtra), SPSp<br>oniae R801 ti<br>phtra), SPSp<br>A polymerase<br>oniae R801 ti<br>phtra), SPSp<br>A polymerase<br>r insertion i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onlae R801 ti<br>phira). SPSp<br>in polymerase<br>onlae R801 ti<br>phira in SPSp<br>A polymerase<br>onlae R801 ti<br>phira in SPSp<br>A polymerase<br>onlae R801 ti<br>phira in SPSp<br>A polymerase<br>on a polymerase<br>on a polymerase<br>tr insertion tr<br>insertion tr<br>insertion tr<br>insertion tr<br>insertion tr<br>insertion tr<br>insertion tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onlae R801 ti<br>h polymerase<br>ionlae R801 ti<br>phira). SPSp<br>onlae R801 ti<br>r insertion tr<br>insertion tr<br>insertion s<br>r insertion s<br>r insertion s<br>r insertion s<br>encoding galtering selection s<br>r insertion s<br>encoding galtering selection s<br>r insertion s<br>r insertion s<br>r insertion s<br>r insertion s<br>r insertion s<br>r insertion s<br>encoding galtering saltering selection s<br>r insertion s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oniae R801 tRNA-Ar<br>phtra), SPSpoJ (sp<br>doniae R801 tRNA-Ar<br>phtra), SPSpoJ (sp<br>A polymerase III (<br>coniae R801 tRNA-Ar<br>phtra), SPSpoJ (sp<br>A polymerase III (<br>oniae R801 tRNA-Ar<br>phtra), SPSpoJ (sp<br>A polymerase III (<br>rinsertion sequen<br>rinsertion sequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onlae R801 ti<br>phira), SPSp<br>inniae R801 ti<br>phira), SPSp<br>inn | oniae R801 ti<br>oniae R801 ti<br>phirta). SSSp<br>oniae R801 ti<br>phirta). SSSp<br>A polymerase<br>oniae R801 ti<br>phira). SSSp<br>A polymerase<br>oniae R801 ti<br>phira). SSSp<br>(A polymerase<br>oniae R801 ti<br>phirae | oniae R801 ti<br>oniae R801 ti<br>phirta), SPSp<br>oniae R801 ti<br>phirta), SPSp<br>oniae R801 ti<br>phira), SPSp<br>oniae timunog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                    | Streptococcus pneumoniae competence stimulating peptide precursor (comC), histidine kinase homolog ComD (comD), and response regula homolog ComE (comE) genes, complete cds        | Streptococcus pneumoniae R801 tRNA-Arg gene,<br>serine protease (sphtra), SPSpoJ (spspoJ),<br>beta subunit of DNA polymerase III (spdnan) | Streptococcus pneumoniae R801 tRNA-Arg gene, serine protease (sphtra), SPSpoJ (spspoJ) beta subunit of DNA polymerase III (spdnan) |                                        | occus pne<br>protease<br>ibunit of                                                     | Streptococcus pneumoniae R801 tRNA-Arg gene, serine protease (sphtra), SPSpoJ (spspoJ), beta subunit of DNA polymerase III (spdnan) Streptococcus pneumoniae R801 tRNA-Arg gene, serine protease (sphtra), SPSpoJ (spspoJ), beta subunit of DNA polymerase III (spdnan) | Streptococcus pneumoniae R801 tRNA-Arg gene, serine protease (sphtra), SPSpoJ (spspoJ) beta subunit of DNA polymerase III (spdnan) Streptococcus pneumoniae R801 tRNA-Arg gene, serine protease (sphtra), SPSpoJ (spspoJ) beta subunit of DNA polymerase III (spdnan) Streptococcus pneumoniae R801 tRNA-Arg gene, serine protease (sphtra), SPSpoJ (spspoJ) beta subunit of DNA polymerase III (spdnan) beta subunit of DNA polymerase III (spdnan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Streptococcus pneumoniae R801 tRNA-Arg gene, serine protease (sphtra), SPSpoJ (spspoJ), beta subunit of DNA polymerase III (spdnan) Streptococcus pneumoniae R801 tRNA-Arg gene, serine protease (sphtra), SPSpoJ (spspoJ), beta subunit of DNA polymerase III (spdnan) Streptococcus pneumoniae R801 tRNA-Arg gene, serine protease (sphtra), SPSpoJ (spspoJ), beta subunit of DNA polymerase III (spdnan) Streptococcus pneumoniae R801 tRNA-Arg gene. | Streptococcus pneur<br>serine protesse (<br>beta subunit of DN<br>Streptococcus pneur<br>serine protesse (s<br>beta subunit of DN<br>Streptococcus pneur                                                                                                                                                                                                                              | Para Se por control of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Streptococcus pneumoniae R serine procease (sphtra), beta subunit of DNA polym.  Streptococcus pneumoniae R serine procease (sphtra), beta subunit of DNA polym.  Streptococcus pneumoniae R serine procease (sphtra), beta subunit of DNA polym.  Streptococcus pneumoniae R serine procease (sphtra), beta subunit of DNA polym.  Streptococcus pneumoniae R serine procease (sphtra), beta subunit of DNA polym.  S.pneumoniae DNA for inser S.pneumoniae DNA for inser S.pneumoniae DNA for inser S.pneumoniae GNA for inser S.pneumoniae GNA for inser S.pneumoniae genes encodin insertion sequence ISISIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Streptococcus pneumoniae R serine protease (sphtra), beta subunit of DNA polymbet a subunit of DNA for inserserine procease (sphtra), beta subunit of DNA for inserserine procease (sphtra).  S. pneumoniae DNA for insersers.  S. pneumoniae DNA for insersers.  S. pneumoniae genes encoding insertion sequence 151515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Streptococcus pneumons serine protease (sph beta subunit of DNA peraptococcus pneumons serine protease (sph beta subunit of DNA peraptococcus pneumons serine protease (sph beta subunit of DNA peraptococcus pneumons serine protease (sph beta subunit of DNA peraptococcus pneumons serine protease (sph beta subunit of DNA peraptococcus pneumoniae DNA for S. pneumoniae DNA for insertion sequence IS. S. pneumoniae genes encinsertion sequence IS. S. pneumoniae genes encinsertion sequence IS. S. pneumoniae genes encinsertion sequence IS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Streptococcus pneumoniae serine procease (sphtra beta subunit of DNA pol. Streptococcus pneumoniae serine procease (sphtra beta subunit of DNA pol. Streptococcus pneumoniae serine procease (sphtra beta subunit of DNA pol.) Streptococcus pneumoniae serine procease (sphtra beta subunit of DNA pol.) Streptococcus pneumoniae serine procease (sphtra beta subunit of DNA for inst. S. pneumoniae DNA for inst. S. pneumoniae genes encodinsertion sequence ISIS) insertion sequence ISIS S. pneumoniae genes encodinsertion sequence ISIS S. pneumoniae genes encodinsertion sequence ISIS S. pneumoniae ply gene fo. S. pneumoniae ply gene fo. S. pneumoniae ply gene fo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Streptococcus pneumon serine protease (sph beta subunit of DNA Streptococcus pneumon serine protease (sph beta subunit of DNA Streptococcus pneumon serine protease (sph beta subunit of DNA Streptococcus pneumon serine protease (sph beta subunit of DNA Streptococcus pneumon serine protease (sph beta subunit of DNA Streptococcus pneumon serine protease (sph beta subunit of DNA S. pneumoniae genes en insertion sequence I S. pneumoniae genes en insertion sequence I S. pneumoniae ply gene S. pneumoniae ply gene S. pneumoniae ply gene S. pneumoniae ja gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Streptococcus pneumoniae R801 tRNA-Arg gen serine protease (sphtra), SPSpoJ (spspoJ) beta subunit of DNA polymerase III (spdna serine protease (sphtra), SPSpoJ (spspoJ) beta subunit of DNA polymerase III (spdna serine protease (sphtra), SPSpoJ (spspoJ) beta subunit of DNA polymerase III (spdna serine protease (sphtra), SPSpoJ (spspoJ) beta subunit of DNA polymerase III (spdna Streptococcus pneumoniae R801 tRNA-Arg gen serine protease (sphtra), SPSpoJ (spspoJ) beta subunit of DNA polymerase III (spdna Streptococcus pneumoniae R801 tRNA-Arg gen serine protease (sphtra), SPSpoJ (spspoJ) beta subunit of DNA polymerase III (spdna Streptococcus pneumoniae R801 trnsertion sequence ISS). S. pneumoniae genes encoding galacturonosyl insertion sequence ISISIS S. pneumoniae ply gene for pneumolysin Streptococcus pneumoniae immunoglobulin A. Streptococcus pneumoniae immunoglobulin A. Streptococcus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | Strep<br>(com                                                                                                                                                                      | Strep<br>seri<br>beta                                                                                                                     | Strep                                                                                                                              | Strep                                  | serine<br>  beta su                                                                    | Seri<br>beta<br>Strep<br>seri<br>beta                                                                                                                                                                                                                                   | Strept St | Strep<br>Strep<br>Strep<br>Strep<br>Strep<br>Strep<br>Strep<br>Strep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Series Strep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Series Strep | Series Strep | Series of the se | Series of the se | Sereption of the control of the cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Series Street St                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Serepta Street and Str                                                                                                                                                                                                                                                                                                                                                                                                                                    | Serepter S. S. D. D. D. C. C. S. D. D. C. C. C. S. D. D. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| acession                           | gb U76218                                                                                                                                                                          | gb AF000658                                                                                                                               | gb[AF000658]                                                                                                                       | gb AF000658                            |                                                                                        | 9b AF000658                                                                                                                                                                                                                                                             | 9b AF000658 <br>gb AF000658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9b AF000658 <br>gb AF000658 <br>gb AF000658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9b AF000658 <br>gb AF000658 <br>gb AF000658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9b AF000658  gb AF000658  gb AF000658  emb 277726 SPIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9b AF000658  9b AF000658  9b AF000658  emb 277726 SPIS emb 277727 SPIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9b AF000658   9b AF000658   9b AF000658   emb Z77727 SPIS  emb Z77727 SPIS  emb Z77727 SPIS  emb Z77727 SPIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9b AF000658   9b AF000658   9b AF000658   emb 277726 SPIS  emb 277727 SPIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9b AF000658   9b AF000658   9b AF000658   emb 277726 SPIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9b AF000658   9b AF000658   9b AF000658   emb 277726 SPIS  emb 277776 SPIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9b AF000658   9b AF000658   9b AF000658   emb 277726 SPIS  emb 277726 SPIS  emb 277726 SPIS  emb 277726 SPIS  emb 77774 SPIS  emb 77774 SPIS  emb 77776 SPIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9b AF000658   9b AF000658   9b AF000658   emb Z77726 SPIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (nt)                               | 2684                                                                                                                                                                               | 4527                                                                                                                                      | 5343                                                                                                                               | 6917                                   | _                                                                                      | 8212                                                                                                                                                                                                                                                                    | _ ; ; ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ ; ; ; ; ; ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _;;;;;;;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (36)                               | 3175                                                                                                                                                                               | 3322                                                                                                                                      | 4573                                                                                                                               | 5532                                   | - 1                                                                                    | 5669                                                                                                                                                                                                                                                                    | 6995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8214<br>8534<br>8534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                  |                                                                                                                                                                                    | 7                                                                                                                                         | ر<br>د<br>د                                                                                                                        | 9                                      | -                                                                                      | 7                                                                                                                                                                                                                                                                       | r &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r & 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O.                                 | 50                                                                                                                                                                                 | 02                                                                                                                                        | 20                                                                                                                                 | 20                                     |                                                                                        | 20                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 20 20 20 20 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 20 20 20 22 22 22 22 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 20 20 20 20 20 22 22 22 22 22 22 22 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22 22 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 22 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

S. pneumoniae - Coding regions containing known sequences

| Contig   | g lore<br>11D | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                                                                                        | percent Ident | HSP nt | ORF nt |
|----------|---------------|---------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|--------|
| 26       |               | 114498        | 14854        | emb[283335 SP28     | S.pneumoniae daxB, capilA, B, C, D, E, F, G, H, I, J, K] genes, dTDP-rhamnose blosynthesis genes and aliA gene                                         | 66            | 338    | 357    |
| 26       | 6             | 14763         | 14924        | emb   283335   SP28 | S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and allA gene                                                   | 100           | 94     | 162    |
| 26       | 2 - 2         | 14922         | 15173        | 95 004047           | Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds                                     | 97            | 242    | 252    |
| 28       |               | 80            | 505          | emb   283335   SP28 | S.pneumoniae dexB. capilA.B.C.D.E.F.G.H.I.J.Kl genes, dTDP-rhamnose biosynthesis genes and aliA gene                                                   | 66            | 426    | 426    |
| 28       | ~             | 503           | 952          | ab u04047 <br>      | Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 151202 transposase gene, complete cds                                     | 97            | 450    | 450    |
| - 58<br> | <u>~_</u>     | .780          | 1298         | gb U04047 <br>      | Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence ISI202 transposase gene, complete cds                                     | 96            | 181    | 519    |
| ~        |               | 207           | 1523         | 35 08611            | Streptococcus pneumoniae maltose/maltodaxtrin uptake (malx) and two maltodextrin permease (malC and malD) genes, complete cds                          | 66            | 1317   | 1317   |
| Ā        | ~_            | 1477          | 2367         | gb L08611 <br>      | Streptococcus pneumoniae maltose/maltodextrin uptake (malx) and two maltodextrin permease (malC and malD) genes, complete cds                          | 96            | 795    | 891    |
| 34       | 2             | 2593          | 3420         | gb L21856           | Streptococcus pneumoniae malA gene, complete cds; malR gene, complete cds                                                                              | 96            | 446    | 828    |
| 34       | -             | 2790          | 1 2647       | gb L21856           | Streptococcus pneumoniae malA gene, complete cds; malR gene, complete cds                                                                              | 96            | 137    | 144    |
| 34       | 5             | 3418          | 4416         | gb L21856           | Streptococcus pneumoniae malA gene, complete cds; malR gene, complete cds                                                                              | 96            | 1 666  | 666    |
| 34       |               | 7764          | 7507         | gb U41735           | Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds                        | 93            | 201    | 258    |
| 34       | 116           | 10562         | 10257        | emb[x63602 SPBO     | S. pneumoniae mmsA-Box                                                                                                                                 | 92            | 238    | 1 906  |
| 35       |               | 1176          | 1439         | emb 283335 SP28     | S.pneumoniae dexb, capilk, B.C.D.E.F.G.H.I.J.K] genes, dTDP-rhamnose biosynthesis genes and aliA gene                                                  | 87            | 248    | 264    |
| 35       | 5             | 1458          | 1961         | 68   100   13       | Streptococcus pneumoniae type 19F capsular polysaccharide blosynthesis operon, (cps19fABCDEFGHIJKLWNO) genes, complete cds, and allA gene, partial cds | 86            | 264    | 504    |
| 35       | 112           | 16172         | 15477        | emb(x85787 SPCP     | S.pneumoniae dexB, cps14A, cps14B, cps14C, cps14E, cps14E, cps14G, cps14H, cps14I, cps14J, cps14K, cps14L, tasA genes                                  | - 6           | 969    | 969    |
| 35       | 18            | 19691         | 16170        | emb Z83335 SPZ8     | S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose<br>biosynthesis genes and aliA gene                                                | 98            | 792    | 792    |
| 35       | 6             | 17620         | 16871        | 95   1009239        | Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (pps19fABCDEFGHIJKLMNO) genes, complete cds, and aliA gene, partial cds | 8             | 750    | 750    |
|          | •             |               |              | *                   |                                                                                                                                                        |               | -      |        |

S. pneumoniae - Coding regions containing known sequences

| 1 1 1 1 1 1 |       |               |              |                     |                                                                                                                                        |         |                  |               |
|-------------|-------|---------------|--------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|---------------|
| Contig      | g ORF | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                                                                        | percent | HSP nt<br>length | ORF nt langth |
| 35          | 50    | 19061         | 17604        | emb x85787 SPCP     | S.pneumoniae dexB, cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps14J, cps14K, cps14L, tasA genes                  | 94      | 1458             | 1458          |
| 36          | -13   | 18960         | 18352        | gb U40786 <br>      | Streptococcus pneumoniae surface antigen A variant precursor (psaA) and 18 kDa protein genes, complete cds, and ORFI gene, partial cds | 66      | 609              | 609           |
| 36          | 50    | 19934         | 18966        | dp n23209           | Streptococcus pneumoniae surface adhesin A precursor (psaA) gene, complete                                                             | 66      | 696              | 696           |
| 37          | -     | 2743          | 179          | emb   267739   SPPA | S. pneumoniae parC, parE and transposase genes and unknown orf                                                                         | 1 66 1  | 2565             | 2565          |
| 37          | - 5   | 2985          | 2824         | emb   267739   SPPA | S. pneumoniae parC, parE and transposase genes and unknown orf                                                                         | 1 100   | 162              | 162           |
| 37          | _     | 5034          | 3070         | emb 267739 SPPA     | S.pneumoniae parC, parE and transposase genes and unknown orf                                                                          | 66      | 1965             | 1965          |
| 37          | -     | 1.5134        | 5790         | emb   267739   SPPA | S.pneumoniae parC, parE and transposase genes and unknown orf                                                                          | 66      | 657              | 657           |
| 37          | 5     | 6171          | 5833         | emb   267739   SPPA | S.pneumoniae parC, parE and transposase genes and unknown orf                                                                          | 96      | 339              | 339           |
| 38          | 119   | 12969         | 13268        | gb H28679           | S. pneumoniae promoter region DNA                                                                                                      | 1000    | 64               | 300           |
| 39          | ~     | 1256          | 2137         | gb U41735 <br>      | Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds        | 66      | 882              | 882           |
| 39          | E .   | 2405          | 3370         | gb U41735           | Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, (omplete cds        | 66      | 996              | 996           |
| 40          | 6     | 5253          | 7208         | gb M29686           | S.pneumoniae mismatch repair (hexB) gene, complete cds                                                                                 | 66      | 1956             | 1956          |
| 41          | -     | 3             | 1037         | emb Z17307 SPRE     | S. pneumoniae reck gene encoding Reck                                                                                                  | 66      | 1027             | 1035          |
| 4           | 7     | 1328          | 2713         | emb 234303 SPCI     | Streptococcus pneumoniae cin operon encoding the cinA, recA, dinF, lytA genes, and downstream sequences                                | 66      | 1386             | 1386          |
| 41          | _     | 3083          | 4045         | gb{H13812           | S. pneumonise autolysin (lytA) gene, complete cds                                                                                      | 66      | 963              | 963           |
| 41          | -     | 3272          | 3096         | gb[M13812]          | S.pneumoniae autolysin (lytA) gene, complete cds                                                                                       | 1000    | 1771             | 177           |
| 41          | - 5   | 1 3603        | 3860         | [gb[M13812]         | S.pneumoniae autolysin (lytA) gene, complete cds                                                                                       | 1000    | 258              | 258           |
| 41          | 9     | 4755          | 5162         | gb t36660           | Streptococcus pneumoniae ORF, complete cds                                                                                             | 86      | 408              | 408           |
| 41          |       | 5270          | 5716         | dp r36660           | Streptococcus pneumoniae ORF, complete cds                                                                                             | 1 86    | 447              | 447           |
| 41          | 8     | 6112          | 6918         | dp r36660           | Streptococcus pneumoniae ORF, complete cds                                                                                             | - B6    | 431              | 807           |
| 4           | 6     | 6916          | 7119         | gb L36660           | Streptococcus pneumoniae ORF, complete cds                                                                                             | 1000    | 204              | 204           |
| 5           | 01    | 7082          | 7660         |                     | Streptococcus pneumoniae ORF, complete cds                                                                                             | 97      | 552              | 579           |
| \$          | =     | 7680          | į            | -:                  | Streptococcus pneumoniae ORF, complete cds                                                                                             | 1 B6    | 81               | 300           |
| 41          | 112   | 9169          | 8717         | emb Z77777 SPIS     | S.pneumoniae DNA for insertion sequence IS.318 (823 bp)                                                                                | 97      | 353              | 453           |
|             |       |               |              |                     |                                                                                                                                        |         | +                | +             |

S. pneumoniae - Coding regions containing known sequences

| 13   1933   1912   deal-[17712][FPTS] St pronumenties DNA for insertion sequence 151318 [1966 bp)   199   189   180   189   180   189   180   189   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180                        | Contig<br>ID | ORF | Start   (nt) | Stop<br>(nt) | match<br>acession | match gene name                                                               | percent   ident | HSP nt<br>length | ORF nt<br>length |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|--------------|--------------|-------------------|-------------------------------------------------------------------------------|-----------------|------------------|------------------|
| 14   9465   9475   seek  230001   ST28   S. Portumoniae Drph Serie and open reading frames   99   346     5   7190   7355   seek  230001   ST28   S. Portumoniae Drph Serie and open reading frames   99   346     6   8059   7607   seek  277755   S. Portumoniae Drph Ref. insertion sequence 151318   1372 ppi   97   673     8   8559   2605   seek  277755   S. Portumoniae Drh Ref. insertion sequence 151318   1454 ppi   97   673     9   6480   6487   pi  120041   Streetcoccous premandiae Ray gene and open reading frames   99   7794     1   2560   pi  120051   ST. S. Portumoniae Drh Ref. insertion sequence 15131   1464 ppi   97   774     1   2561   pi  120041   Streetcoccous premandiae Ray gene and intertion   97   725     1   2562   2407   2156   pi  120041   Streetcoccous premandiae Ray gene and intertion   97   725     2   231   2415   seek  253333   Straet S. Portumoniae Carlo                      | 41           | 12  | 9533         | 9132         |                   | S.pneumoniae DNA for insertion sequence IS1381 (966 bp)                       | 1 95 1          | 160              | 402              |
| 15         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7150         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1            | 14  | 6996         | 9475         |                   | pcpA gene                                                                     | 100             | 189              | 195              |
| 9 8 623   700   ceb] [27773] [STP S]         Spreamoniae DNA for insertion sequence [5138] (966 bp)         95   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   10                                                            | 44           | 2   | 1 7190       | 7555         |                   | pcpA gene and open reading                                                    | 66              | 366              | 366              |
| 1   14.21   10.22   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25   10.25                        | 4            | 9   | 6508         | 1 7607       |                   | DNA for insertion sequence IS1318                                             | 1 97            | 453              | 453              |
| 1   18.9   615.5   615.5   615.1   20   215.0   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.5   215.                     | 4            | _   | 8423         | 8022         |                   | for insertion sequence IS1381                                                 | 95              | 160              | 402              |
| 9         6660         6687         6687         6687         6687         6687         6687         6687         6691         6691         1356         991 23051         Strept coccoccus pneumoniae Exp7 gene, partial cds         100         216         216           1         23         2407         2156         991 23051         Strept coccccus pneumoniae dexB, capi N.B.C. D.E. F. G.H.I.J.Kl genes, dTDP-rhamose         100         94           1         2566         2405         ceb [283335]\$FP2B         Spronumoniae dexB, capi N.B.C. D.E. F. G.H.I.J.Kl genes, dTDP-rhamose         99         318           1         1340         11105         ceb [2833335]\$FP3B         Spronumoniae dexB, capi N.B.C. D.E. F. G.H.I.J.Kl genes, dTDP-rhamose         99         318           1         1340         11105         ceb [2833335]\$FP3B         Spronumoniae dexB, capi N.B.C. D.E. F. G.H.I.J.Kl genes, dTDP-rhamose         99         318           1         1240         11105         ceb [2833335]\$FP3B         Spronumoniae dexB, capi N.B.C. D.E. F. G.H.I.J.Kl genes, dTDP-rhamose         99         318           1         1240         22048         11105         ceb [283335]\$FP3B         Spronumoniae dexB, capi N.B.C. D.E. F. G.H.I.J.Kl genes, dTDP-rhamose         99         318           1         12048         12048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4            |     | 6558         | 8365         | _                 | S. pneumoniae pcpA gene and open reading frames                               | 100             | 189              | 195              |
| 1   136   2407   2156   pb  120355    Streptococcus presentable SSG dexten gines and insertion   37   242   242   2156   pb  104041   Streptococcus presentable SSG dexten gines and insertion   37   242   242   2456   2456   pb  104041   Streptococcus presentable SSG dexten gines and interest described SSG personal as death, capilA.B.C.D.E.F.G.H.I.J.K! genes, dTDP-rhamose   39   318   242   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   243   2                     |              | 6   | 6480         | 4687         | gb L39074         | gene, complete                                                                | 66              | 1794             | 1794             |
| 6         2407         2136         Gpl[004047]         Streptococcuse precumentals Streptococcus precumentals of Streptococcus of Streptococcus precumentals of Streptococcus of Streptococc                                                                              | 6            | - 5 | 231          | 2603         | ap r50201         | partial                                                                       | 100             | 216              | 2373             |
| 7   2566   2405   mmb 283313 5P28   Spreumoniae dexb. capilA.B.C.D.E.F.G.H.I.J.Kl genes. dTDP-Thamnose   99   318     8   2831   2475   mmb 283313 5P28   Spreumoniae dexb. capilA.B.C.D.E.P.G.H.I.J.Kl genes. dTDP-Thamnose   99   318     9   1105   mmb 283313 5P28   Spreumoniae dexb. capilA.B.C.D.E.P.G.H.I.J.Kl genes. dTDP-Thamnose   67   591     11   11409   11105   mmb 283313 5P28   Spreumoniae dexb. capilA.B.C.D.E.P.G.H.I.J.Kl genes. dTDP-Thamnose   67   591     11   11864   9900   mmb 283313 5P28   Spreumoniae dexb. capilA.B.C.D.E.P.G.H.I.J.Kl genes. dTDP-Thamnose   67   591     11   11864   9900   mmb 283313 5P28   Spreumoniae dexb. capilA.B.C.D.E.P.G.H.I.J.Kl genes. dTDP-Thamnose   99   340     1   1   3   3257   3821   gb H18729   Spreumoniae mismatch repair protein (hexA) gene. complete cds   99   2356     1   1   10   10   gb H18729   Spreumoniae mismatch repair protein (hexA) gene. complete cds   99   2938     2   2557   2822   gb H18729   Spreumoniae mismatch repair protein (hexA) gene. complete cds   99   2938     3   2557   2823   gb H18729   Spreumoniae mismatch repair protein (hexA) gene. complete cds   99   2938     4   2558   4664   gb H18729   Spreumoniae mismatch repair protein (hexA) gene. complete cds   99   3938     5   1160   gb H14140   Spreumoniae DmII gene region encoding dpm. complete cds   99   3938     6   1160   gb H14140   Spreumoniae DmII gene region encoding dpm. complete cds   99   462     7   7420   7424   gb J04234   Spreumoniae excdeoxyribonuclease (exoA) gene. complete cds   99   117     8   5197   4116   gb J04234   Spreumoniae excdeoxyribonuclease (exoA) gene. complete cds   99   117     9   9   9   9   9   9   9   9   9                                                                                                                                                                                                                                                                                                                                                                                           |              | 9   | 2407         | 2156         | gb 004047         | pneumoniae SSZ dextran glucosidase gene<br>102 transposase gene, complete cds | 97              | 242              | 252              |
| 1   12409   11105   emb 2831315 8728   S. Dineumoniae daxBi. CapilAh, B.C.D.E.P.C.H.I.J.Ki genes. dTDP-rhamnose   99   318   11   12409   11105   emb 2831315 8728   S. Dineumoniae daxG. CapilAh, B.C.D.E.P.C.H.I.J.Ki genes. dTDP-rhamnose   67   591   122   12448   119549   emb 283135 8728   S. Dineumoniae daxG. CapilAh, B.C.D.E.P.C.H.I.J.Ki genes. Complete cds   99   540   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   1                     | g            | -   | 2566         | 2405         |                   | capl(A, B, C, D, E, F, G, H, I, J, K) genes, s and aliA gene                  | 100             | 96               | 162              |
| 13   12409   11105   emb 283335  SF28   S. pneumonilee der genes and aliA gene   67   11.0 Ki genes   67   11.0                      | 5            | 8   | 2831         | 2475         |                   | capl A, B, C, D, E, F, G, H, I, J, Kl genes, s and aliA gene                  | 66              | 338              | 357              |
| 12   1364   9900   emb 284379 HS28   S. pneumoniae aliB gene   11864   9900   emb 216082 PWAL   Streeptococcus pneumoniae aliB gene   11864   9900   emb 216082 PWAL   Streeptococcus pneumoniae aliB gene   11864   9900   emb 216082 PWAL   Streeptococcus pneumoniae aliB gene   11864   9900   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029   118029                      |              | :   | :            | 11105        |                   | dexB, cap1(A, B, C, D, E, F, G, H, I, J, K) genes, genes and aliA gene        | 67              | 591              | 1305             |
| 11   11864   9900   emb 216082 PNAL   Streptococcus pneumoniae al18 gene   11864   9900   emb 216082 PNAL   Streptococcus pneumoniae mismatch repair protein (hexA) gene, complete cds   100   237   233   2557   2823   gb H18729    S.pneumoniae mismatch repair protein (hexA) gene, complete cds   99   266   372   2831   gb H18729    S.pneumoniae mismatch repair protein (hexA) gene, complete cds   99   266   372   370   3799   gb L20670    Streptococcus pneumoniae hyaluronidase gene, complete cds   96   372   2938   4654   gb H14130    S.pneumoniae Dpn1 gene region encoding dpn7 and dpnD, complete cds   100   693   2938   1160   gb H14130    S.pneumoniae Dpn1 gene region encoding dpn7, and dpnD, complete cds   99   147   1420   1210   gb H14139    S.pneumoniae Dpn1 gene region encoding dpn4, dpn6, dpn8, complete cds   99   147   1420   4424   gb J04234    S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds   99   147   1420   1416   gb J04234    S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds   99   147   1420   1416   gb J04234    S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds   99   147   1420   1416   gb J04234    S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds   99   147   1420   1416   gb J04234    S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds   99   147   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420   1420                        | :            | -   | 20488        | 119949       |                   | dfr gene                                                                      | 66              | 540              | 540              |
| 1   3   239   gb  M18729    S. pneumoniae mismatch repair protein (hexA) gene, complete cds   100   237   231   251   251   261   gb  M18729    S. pneumoniae mismatch repair protein (hexA) gene, complete cds   99   2310   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252   252                      |              | -   | 11864        | 0066         | emb 216082 PNAL   | aliB                                                                          | 86              | 1965             | 1965             |
| 2   233   2611   gb H18729    S.pneumoniae mismatch repair protein (hexA) gene, complete cds   99   2310   2357   2823   gb H18729    S.pneumoniae mismatch repair protein (hexA) gene, complete cds   95   69   266   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   2370   23                     |              | -   | 6            | 239          | gb M18729         | gene, complete                                                                | 100             | 237              | 237              |
| 3   2557   2823   gb  M18729    S. pneumoniae mismatch repair protein (hexA) gene, complete cds   99   266   98   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 7   | 233          | 2611         | gb M18729         | gene, complete                                                                | - 66            | 2330             | 2379             |
| 4   2958   4664   gb H18729            S. pneumoniae mismatch repair protein (hexA) gene, complete cds         95   69             6   3770   3399   gb L20670            Streptococcus pneumoniae hyaluronidase gene, complete cds         96   372             7   7161   4171   gb L20670            Streptococcus pneumoniae hyaluronidase gene, complete cds         99   2938             1   1   702   gb H14140            S. pneumoniae DpnI gene region encoding dpn? and dpnD, complete cds         100   483             2   678   1160   gb H14139            S. pneumoniae DpnI gene region encoding dpnH, dpnA, dpnB, complete cds         98   462             3   2490   1210   gb H14139            S. pneumoniae exodeoxyribonuclease (exoA) gene, complete cds         99   147             6   710   gb J04234            S. pneumoniae exodeoxyribonuclease (exoA) gene, complete cds         99   881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3            | 3   | 2557         | 2823         | gb M18729         | gene, complete                                                                | 66              | 266              | 267              |
| 6   3770   3399   gb L20670    Streptococcus pneumoniae hyaluronidase gene, complete cds   96   372   2938   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 7   | 2958         | 4664         | gb M18729         | mismatch repair protein (hexA) gene, complete                                 | 95              | 69               | 1707             |
| 7         7161         4171         gb L20670          Streptococcus pneumoniae hyaluronidase gene, complete cds         99         2938           1         1         702         gb H14440          S. pneumoniae DpnI gene region encoding dpn2 and dpnD, complete cds         100         693           3         2490         1210         gb H14140          S. pneumoniae DpnI gene region encoding dpnH, dpnA, dpnB, complete cds         98         462           7         4230         4424         gb J04234          S. pneumoniae exodeoxyribonuclease (exoA) gine, complete cds         99         147           8         5197         4316         gb J04234          S. pneumoniae exodeoxyribonuclease (exoA) gine, complete cds         99         881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7            | 9   | 07.6         | 3399         | gb 120670         | gene,                                                                         | 96              | 372              | 372              |
| 1   1   102   gb H14140    S.pneumoniae DpnI gene region encoding dpn <sup>2</sup> and dpnD, complete cds   100   633   1210   gb H141319    S.pneumoniae DpnII gene region encoding dpn <sup>3</sup> dpnB, complete cds   98   462   1210   gb H141319    S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds   99   147   14210   gb J04234    S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds   99   147   14710   118   gb J04234    S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds   99   147   14710   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   11 | 7            | - 1 | 7161         | 4171         | gb 1,20670{       | gene,                                                                         | 66              | 2938             | 2991             |
| 2   678   1160   gb M143140     S.pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds   100   463   1   1   12190   1210   gb M14339   S.pneumoniae DpnII gene region encoding dpnM, dpnB, complete cds   98   462   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0            | -   | 1            | 702          | gb H14340         | DpnI gene region encoding dpnC and dpnD, complete                             | 100             | 693              | 102              |
| 3   2490   1210   gb M14339   S.pneumoniae DpnII gene region encoding dpnM, dpnB, complete cds   98   462   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0            | 7   | 678          | 1160         | gb M14340         | gene region encoding dpm? and dpnD, complete                                  | 100             | 483              | 483              |
| 7 4210 4424  gb J04214   S.pneumoniae exodeoxyribonuclease (exoA) gime, complete cds 99 · 147   18   5197   4116  gb J04214   S.pneumoniae exodeoxyribonuclease (exoA) gime, complete cds 99   881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0            | _   | 2490         | 1210         | gb M14339         | dpnA, dpnB, complete                                                          | 86              | 462              | 1281             |
| 8   5197   4316  gb 304234   S.pneumoniae exodeoxyribonuclease (exoA) gune, complete cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | _   | 4230         | 4424         | [gb[J04234]       | exodeoxyribonuclease (exoA) gene,                                             | 66              | . 147            | 195              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0            | 8   | 5197         | 4316         | gb J04234         | pneumoniae exodeoxyribonuclease (exoA) gune, complete                         | - 66            | 881              | 882              |

S. pneumoniae - Coding regions containing known sequences

| Contig | ORF      | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                                                | percent | HSP nt<br>length | ORF nt<br>length |
|--------|----------|---------------|--------------|---------------------|----------------------------------------------------------------------------------------------------------------|---------|------------------|------------------|
| 7.0    | 113      | 8108          | 9874         | gb L20562           | Streptococcus pneumoniae Exp8 gene, partial cds                                                                | 93      | 234              | 1767             |
| 11     | 22       | 27964         | 28341        | emb   x63602   SPBO | S.pneumoniae mush-Box                                                                                          | 93      | 233              | 378              |
| 21     | <u>د</u> | 4607          | 1552         | emb 226850 SPAT     | S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit                          | 97      | 102              | 1056             |
| 1 73   | <u>-</u> | 471           | 133          | emb   x63602   SPBO | S. pneumoniae mmsA-Box                                                                                         | 91      | 193              | 339              |
| 7.3    |          | 3658          | 7.6          | gb J04479           | S.pneumoniae DNA polymerase I (polA) gene, complete cds                                                        | 66      | 2682             | 2682             |
| 7.3    | 6        | 4864          | 5379         | [gb[M36180]         | Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds         | 86      | 318              | 516              |
| 11     |          | 2622          | 6661         | emb 283335 SPZ8     | S.pneumoniae dexB, cap1(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and aliA gene | 26      | 624              | 624              |
| 7.7    | <b>-</b> | 3341          | 2523         | emb 283335 SP28     | S.pneumoniae dexB, cap1{A,B,C,D,E,F,G,H,I,J,K} genes, dTDP-rhamnose biosynthesis genes and aliA gene           | 91      | 819              | 819              |
| 78     | -        | 341           |              | emb   X77249   SPR6 | S.pneumoniae (R6) ciaR/ciaH genes                                                                              | 66      | 139              | 139              |
| 78     | 7        | 1095          | 325          | emb X77249 SPR6     | S.pneumoniae (R6) ciaR/ciaH genes                                                                              | 66      | 177              | 1111             |
| 82     | 100      | 111436        | 110816       | 95 090721           | Streptococcus pneumoniae signal peptidase I (spi) gene, complete cds                                           | 97      | 621              | 621              |
| 82     | =        | 12402         | 111434       | gb U93576           | Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds                                            | 98      | 953              | 696              |
| 82     | 12       | 12381         | 112704       | gb U93576           | Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds                                            | 100     | 51               | 324              |
| 83     | 8        | 3212          | 3550         | emb 277727 SPIS     | S.pneumoniae DNA for insertion sequence IS:3318 (823 bp)                                                       | 97      | 290              | 339              |
| 83     | 10       | 4662          | 6851         | gb M36180           | Streptococcus pneumoniae transposase, (com) and comb) and SAICAR synthetase (purc) genes, complete cds         | 66      | 2190             | 2190             |
| 8      | =        | 6849          | 8213         | gb H36180           | Streptococcus pneumoniae transposase, (com/ and comB) and SAICAR synthetase (purc) genes, complete cds         | 66      | 1365             | 1365             |
| 8      | 7        | 8236          | 0606         | gb H36180           | Streptococcus pneumoniae transposase, (com/, and comB) and SAICAR synthetase (purC) genes, complete cds        | 66      | 855              | 855              |
| 83     | 13       | 9283          | 13017        | [gb[L15190]         | Streptococcus pneumoniae SAICAR synthetase (purc) gene, complete cds                                           | 100     | 107              | 35.75            |
| 83     | 23       | 22147         | 23313        | gb L36923           | Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds                                 | 96      | 218              | 1167             |
| 83     | 24       | 23268         | 23450        | gb L36923 <br>      | Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds                                 | 86      | 172              | 183              |
| 83     | 25       | 27527         | 23505        | gb L36923           | Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds                                 | 66      | 3826             | 4023             |
|        | •        |               |              |                     | **************************************                                                                         |         |                  |                  |

S. pneumoniae - Coding regions containing known sequences

| Contig<br>ID | ORF        | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                                                                 | percent<br>ident | HSP nt<br>length | ORF nt<br>length |
|--------------|------------|---------------|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|
| 83           | 56         | 28472         | 27771        | <br> gb L36923 <br> | Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds                                                  | 66               | 416              | 702              |
| 80           | 7          | 4554          | 6173         | emb   283335   SP28 | S.pneumoniae dexB, capl(A,B,C,D,B,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene                            | 86               | 697              | 1620             |
| 87           | 9          | 5951          | 5316         | emb 277725 SPIS     | S.pneumoniae DNA for insertion sequence IS1381 (966 bp)                                                                         | 96               | 439              | 636              |
| 888          | ·          | 2957          | 3511         | gb M36180           | Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds                          | 94               | 555              | 555              |
| 88           | 9          | 3466          | 4269         | gb H36180           | Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds                          | 94               | 804              | 804              |
| 89           | 11         | 9878          | 10093        | gb M36180           | Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetese   (purC) genes, complete cds                        | 97               | 211              | 216              |
| 89           | <u>-</u> - | 10062         | 10412        | emb   283335   SP28 | S.pneumoniae dexB, capi(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene                            | 97               | 335              | 351              |
| 93           | <u>.</u>   | 5303          | 4941         | emb x63602 SPBO     | S.pneumoniae mmsA-Box                                                                                                           | 89               | 237              | 363              |
| 97           |            | 1708          | 1520         | gb U41735           | Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds | 91               | 140              | 189              |
| 66           |            | 89            | 700          | emb 283335 SPZB     | S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene                            | 93               | 592              | 612              |
| 66           | 7          | 1773          | 275          | emb X17337 SPAM     | Streptococcus pneumoniae ami locus conferring aminopterin resistance                                                            | 66               | 966              | 666              |
| 66           | 3          | 2794          | 1712         | emb x17337 SPAM     | Streptococcus pneumoniae ami locus conferring aminopterin resistance                                                            | 66               | 1083             | 1083             |
| 66           | 7          | 3732          | 2788         | emb x17337{SPAM     | Streptococcus pneumoniae ami locus conferring aminopterin resistance                                                            | 100              | 945              | 945              |
| 66           | - 2        | 5249          | 3714         | emb x17337 SPAM     | Streptococcus pneumoniae ami locus conferring aminopterin resistance                                                            | 1 100            | 1536             | 1536             |
| 66           | 9          | 1 7262        | 15277        | emb x17337 SPAM     | Streptococcus pneumoniae ami locus conferring aminopterin resistance                                                            | 66               | 1986             | 1986             |
| 101          | -          | 216           | 1538         | emb x54225 SPEN     | S.pneumoniae epuA and endA genes for 7 $k D_{\rm a}$ protein and membrane endonuclease                                          | 66               | 146              | 1323             |
| 101          | ~_         | 1492          | 9171         | emb X54225 SPEN     | S.pneumoniae epuk and enda genes for 7 kDa protein and membrane endonuclease                                                    | 66               | 228              | 228              |
| 101          | m          | 1694          | 1855         | emb x54225 SPEN     | S.pneumoniae epuA and endA genes for 7 kDa protein and membrane endonuclease                                                    | 100              | 162              | 162              |
| 101          | 4          | 1701          | 2582         | emb X54225 SPEN     | S.pneumoniae epuk and endk genes for 7 kDa protein and membrane endonuclease                                                    | 100              | 882              | 882              |
| 103          | 7          | 5556          | 5041         | emb 295914 SP29     | Streptococcus pneumoniae sodà gene                                                                                              | 1001             | 396              | 516              |
| 104          | 2          | 1347          | 1556         | emb 277727 SPIS     | S pneumoniae DNA for insertion sequence IS1318 (823 bp)                                                                         | 83               | 206              | 210              |
|              |            |               |              | •                   | • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                         | +                | +                |                  |

S. pneumoniae - Coding regions containing known sequences

| Contig   OF    | +-        | <del>-</del> ; | Stop  | match           | match gene name                                                                                                       | percent<br>ident | HSP nt<br>length | ORF nt  <br>length |
|----------------|-----------|----------------|-------|-----------------|-----------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------------|
| <u> </u>       | - † -     | - † -          | - !   | - ; -           | e prosumentiae part. and transposase genes and unknown orf                                                            | 86               | 353              | 354                |
| _ ;            | -         | - † -          | - i - | - : -           | party part and transposase denes                                                                                      | 86               | 84               | 1111               |
| _ ;            | - † ·     | - † -          | -;-   | - + -           | o con                                                                                                                 | 98               | 72               | 906                |
| -              | - † ·     | - † -          | - ; - | emb X16022 SPPE |                                                                                                                       | 1 66             | 1692             | 2076               |
|                | 6 4981    | -              | 5595  | - †             | pne.                                                                                                                  | 91               | 107              | 615                |
|                | 9 1 9068  | -              | 8718  | emb 267739 SPPA | Specumoniae parC, parE and transposase genes and unknown orf                                                          | 95               | 342              | 351                |
| 1 2            | - † =     | 1-             | † -   | 39 SPPA         | S.pneumoniae parC, parE and transposase genes and unknown orf                                                         | 66               | 199              | 387                |
|                | ; –       | Ϊ-             | !-    | 7               | S.pneumoniae DNA for insertion sequence IS1381 (966 bp)                                                               | 96               | 61               | 528                |
| +-             | 4   2688  | <u> </u>       | 2855  | emb 277726 SP1S | S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)                                                              | 96               | 148              | 168                |
| +-             | 5   2862  | <del>-</del>   | 3269  | emb 277727 SPIS | S.pneumoniae DNA for insertion sequence IS1318 (823 bp)                                                               | 97               | 353              | 408                |
| +-             | 6   5320  | <del>-</del> + | 3584  | gb[M18729       | S.pneumoniae mismatch repair protein (hexA) gene, complete cds                                                        | 100              | 371              | 1737               |
| <del>-</del>   | 1 431     |                | -     | 95 н36180       | Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds                | 96               | 429              | 429                |
| 101            | 0   9788  | ÷-             | 8532  | emb x99400 SPDA | S.pneumonise dacA gene and ORF                                                                                        | 66               | 1257             | 1257               |
| =              | 1   9870  | į              | 10985 | emb x99400 SPDA | S. pneumoniae dacA gene and ORF                                                                                       | 66               | 1116             | 1116               |
| <del></del>    | 3   2530  | <del></del>    | 2030  | gb M36180       | Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds                | 95               | 481              | 501                |
| <del> </del>   | 11 (11303 | 1              | 10932 | 9b[u04047]      | Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion<br>sequence 181202 transposase gene, complete cds | 97               | 372              | 372                |
| <del>-</del>   | 1   897   | -              | 3302  | emb x72967 SPNA | S.pneumoniae nank gene                                                                                                | 66               | 2402             | 2406               |
| <del> </del> - | 7,726   2 | -              | 3831  | emb x72967 SPNA | S pneumoniae nank gene                                                                                                | 66               | 237              | 555                |
| <del> </del>   | 3   4327  | <del> </del>   | 3899  | gb M36180       | Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds                | 98               | 429              | 429                |
|                | 2   1369  | <del> </del>   | 1941  | 95[072720]      | Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds            | 66               | 202              | 573                |
| <del></del>    | 3 2412    | <del> </del>   | 4253  | gb U72720       | Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds            | 66               | 1842             | 1842               |
| <del> </del>   | 9 0 2066  | <del>-</del>   | 5587  | gb 004047       | Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 181202 transposase gene, complete cds    | 64               | 451              | 522                |
| +++            |           |                | +     |                 |                                                                                                                       |                  |                  |                    |

S. pneumoniae - Coding regions containing known sequencus

| Contig | ORF    | Start<br>(nt) | Stop<br>(nt) | match            | match gene name                                                                                                                                               | percent | HSP nt<br>length | ORF nt<br>length |
|--------|--------|---------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|------------------|
| 125    |        | 1811          | 189          | gb M36180 <br>   | Streptococcus pneumoniae transposase, (ccmA and comB) and SAICAR synthetase (purC) genes, complete cds                                                        | 92      | 66               | 1623             |
| 128    | 21     | 12496         | 11204        | emb[z83335 SPz8  | S.pneumoniae dexB, capilA,B,C,D,E,F,G,H,I,J,Kl genes, dTDP-rhamnose biosynthesis genes and alia gene                                                          | 91      | 705              | 1293             |
| 134    | -      |               | 492          | emb  Y10818 SPY1 | S. pneumoniae spsA gene                                                                                                                                       | 66      | 203              | 492              |
| 134    | 7      | 556           | 2652         | gb AF019904      | Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds                                                                                   | 98      | 685              | 2097             |
| 134    | -<br>- | 1160          | 837          | emb Y10818 SPY1  | S.pneumoniae spsA gene                                                                                                                                        | 86      | 324              | 324              |
| 134    | 7      | 3952          | 2882         | gb AF019904      | reptococcus pneumoniae choline binding protein A (c                                                                                                           | 96      | 215              | 1071             |
| 134    | œ      | 7992          | 9848         | gb U12567 <br>   | Streptococcus pneumoniae Pl3 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds | 66      | 285              | 1857             |
| 134    | 6      | 9846          | 10622        | gb U12567        | Streptococcus pneumoniae Pl3 glycerol3-phosphate dehydrogenase (glpb) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds  | 66      | 570              | 17.6             |
| 134    | 01     | 10805         | 11122        | gb U12567        | Streptococcus pneumoniae Pl3 glycerol-3-phosphate dehydrogenase (glpb) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds | 100     | 318              | 318              |
| 137    | ===    | 0767          | 8443         | gb U09239        | Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLANO) genes, complete cds, and aliA gene, partial cds        | 06      | 420              | P C P            |
| 137    | 4      | 8590          | 8775         | emb z83335 sP28  | S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene                                                          | 94      | 174              | 186              |
| 137    |        | 8773          | 8967         | emb 283335 SPZ8  | S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene                                                          | 86      | 195              | 195              |
| 137    | 116    | 9223          | 9687         | emb 277726 srs   | S.pneumoniae DNA for insertion sequence IS11318 (1372 bp)                                                                                                     | 96      | 446              | 465              |
| 137    | - 11   | 9641          | 10051        | emb z77727 spis  | S.pneumoniae DNA for insertion sequence IS1318 (823 bp)                                                                                                       | 96      | 293              | 411              |
| 139    | 000    | 12998         | 12702        | emb x63602 SPBO  | S.pneumoniae mmsA-Box                                                                                                                                         | 90      | 234              | 297              |
| 141    | 8      | 7805          | 8938         | emb 249988 SPMM  | Streptococcus pneumoniae mmsA gene                                                                                                                            | 66      | 338              | 1134             |
| 141    | 6      | 8936          | 10972        | emb 249988 SPMM  | Streptococcus pneumoniae mmsA gene                                                                                                                            | - 66    | 2037             | 2037             |
| 141    | 110    | 11472         | 12467        | emb 249988 SPMM  | Streptococcus pneumoniae mmsA gene                                                                                                                            | 100     | 76               | 966              |
| 142    |        | 257           | 814          | gb H80215        | Streptococcus pneumoniae uvs402 protein gene, complete cds                                                                                                    | - 86    | 174              | 558              |
| 142    | -      | 787           | 957          | др н80215        | Streptococcus pneumoniae uvs402 protein gene, complete cds                                                                                                    | 100     | 142              | 171              |
| 142    | -      | 980           | 3022         | gb M80215        | Streptococcus pneumoniae uvs402 protein gene, complete cds                                                                                                    | 95      | 1997             | 2043             |

S. pneumoniae - Coding regions containing known sequences

| 1.5   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contig C | ORF   Start<br>ID   (nt) | Start   Stop<br>(nt)   (nt) | acession            | match gene name                                                                   | percent | HSP nt<br>length | ORF nt<br>length |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|-----------------------------|---------------------|-----------------------------------------------------------------------------------|---------|------------------|------------------|
| 1   11   11   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   11 | 142      | -                        | -                           | _                   | pneumoniae uvs402 protein gene, complete                                          | 100     | 153              | 576              |
| 1   135   137   1354   6b 120556    Street Cocccus presumentae plak gene, partial cide   99   99   99   137   1359   6eb 1207210 5000   Spreadmoniae dark, capla and capic genea and orfs   99   99   99   99   99   99   99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 145      | 1 - 1                    | 219                         |                     | alia gene for amia-like gene                                                      | 97      | 185              | 219              |
| 4   9914   7766   9b  [27712] [Streptcoccus pneumoniae death, capill, capill and cupiC genes and ords   9914   7766   9b  [990571]   Streptcoccus pneumoniae penicillin-binding protein (ponA) gene, complete   99   91048   9924   9924   992571   Streptcoccus pneumoniae penicillin-binding protein (ponA) gene, complete   99   9925   9924   992572   Streptcoccus pneumoniae penicillin-binding protein (ponA) gene, complete   99   9925   9925   992572   Streammoniae penicillin-binding protein (ponA) gene, complete   99   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   992572   9925 | 145      | -                        | -                           |                     | pneumoniae plpA gene, partial                                                     | 66      | 1811             | 1824             |
| 4   9934   7766   9b    190227    Streptococcus pneumoniae penicillin-binding protein (ponh) gene, complete   99   20   10488   9922   99   99   99   99   99   99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 145      | -                        | -                           |                     | capla, caplb and caplC genes and                                                  | 66      | 1052             | 5313             |
| 1   159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 145      |                          |                             |                     | gene,                                                                             | 66      | 2169             | 2169             |
| 1   159   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>_</b> |                          |                             |                     | pneumoniae penicillin-binding protein (pdnA) gene.                                | 66      | 512              | 567              |
| 1   10678   10030   emb 283002 SP28   S. pneumoniae pcp8 and pcpC genes   11   10678   10030   emb 283002 SP28   S. pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- 98   2000   emb 221702 SPUN   S. pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- 98   2000   emb 221702 SPUN   S. pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- 99   2000   emb 221702 SPUN   S. pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- 99   2000   emb 2202 SPUN   S. pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- 99   2000   emb 2202 SPUN   S. pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- 99   2000   emb 2202 SPUN   S. pneumoniae trainsposase (conA and comB) and SAICAR synthetase   29   2000   emb 220651 SPAT   S. pneumoniae (M6) genes for ATPase a subunit, ATPase b subunit and ATPase   29   2000   emb 220652 SPAT   S. pneumoniae (M6) genes for ATPase a subunit, ATPase b subunit and ATPase   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   | -        | -                        | -                           | emb   282002   SP28 | pcpB and pcpC                                                                     | 86      | 156              | 156              |
| 11   10678   10202   cmb 223002 SP28   S. pneumoniae pcp8 and pcpc genes   cmcding utacil-DNA glycosylase and 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        | -                        | -                           | emp 282002 288      | pcpB and pcpC                                                                     | 86      | 255              | 255              |
| 11   10678   10202   cmb Z21702 SPUM   S.pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                          | i                           | _                   | pcpB and pcpC                                                                     | 85      | 276              | 1002             |
| 12   11318   10676   emb 221702   SPUN   S. preumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- 99     12   9009   8815   gb U41735    Streptococcues preumoniae peptide methonine sulidxide reductase (msrA) and 90     13   9048   8521   gb H361802   SPBO   S. preumoniae transposase, (comA and comB) and SAICAR synthetase 98     1   1   147   emb 226831   SPAT   S. preumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase   99     1   1   147   emb 226831   SPAT   S. preumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase   95     1   1   1   984   emb 226850   SPAT   S. preumoniae (R322) genes for ATPase a subunit, ATPase b subunit and ATPase   95     1   1   984   emb 226850   SPAT   S. preumoniae (R322) genes for ATPase a subunit, ATPase b subunit and ATPase   95     1   1   984   emb 226850   SPAT   S. preumoniae (R322) genes for ATPase a subunit, ATPase b subunit and ATPase   95     1   1   984   emb 226850   SPAT   S. preumoniae (R322) genes for ATPase a subunit, ATPase b subunit and ATPase   95     1   1   386   emb 226850   SPAT   S. preumoniae (R322) genes for ATPase a subunit, ATPase b subunit and ATPase   95     1   1   386   emb 226850   SPAT   S. preumoniae (R322) genes for ATPase a subunit, ATPase b subunit and ATPase   95     1   1   2   386   emb 226850   SPAT   S. preumoniae orflayrB and gyrB gene encoding DNA gyrase B subunit   98     1441   3386   emb 226850   SPAT   S. preumoniae orflayrB and gyrB gene encoding DNA gyrase B subunit   98     1451   2   2155   Gb 220559   Streptococcus preumoniae Draft gene, partial cds   98   98   98   98   98     1451   2   2155   Gb 220559   Streptococcus preumoniae Draft gene   98   98   98   98   98   98   98   9                                                                                                                                                                                                                                                                                                           |          |                          |                             | emb 221702 SPUN     | ung gene and mutX genes encoding uracil-DNA glycosylase and eoside triphosphatase | 86      | 477              | 477              |
| 1   144   1402   eab X61502 SPBO   Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and 90     1   144   1402   eab X61502 SPBO   S. pneumoniae mmsA-Box   113   9048   8321   gb H36180    Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase   98   Streptococcus pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase C   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   |          |                          |                             | emb   221702   SPUN | ung gene and mutX genes encoding uracil-DNA glycosylase and                       | 66      | 663              | 663              |
| 1   154   1402   emb X63602 SPBO   S.pneumoniae mnsA-Box   13   9048   8521   gb H36180    Streptococcus pneumoniae transposase, (conA and comB) and SAICAR synthetase   98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                          |                             |                     | reductase                                                                         | 06      | 180              | 195              |
| 13   9048   8521   9b H36180    Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase   98     1   147   emb Z26831 SPAT   S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c   100     2   179   898   emb Z26851 SPAT   S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c   99     3   906   1406   emb Z26850 SPAT   S.pneumoniae (M22) genes for ATPase a subunit, ATPase b subunit and ATPase   95     4   1373   1942   emb Z26850 SPAT   S.pneumoniae (M22) genes for ATPase a subunit, ATPase b subunit and ATPase   87     5   6910   7497   emb X72249 SPAF   S.pneumoniae (R6) ciaR/ciaH gene encoding DNA gyrase B subunit   98   116     8   7443   9386   emb X83917 SPGY   S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   116     8   7443   9386   emb X83917 SPGY   S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   116     9   14   1   2   2155   9b L20559   Streptococcus pneumoniae ExpS gene, partial cds   98   116     9   14   1   2   2155   9b L20559   Streptococcus pneumoniae ExpS gene, partial cds   99   116     9   14   1   2   1155   9b L20559   Streptococcus pneumoniae ExpS gene, partial cds   99   116     9   14   14   14   14   14   14   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        | -                        |                             |                     | S.pneumoniae mmsA-Box                                                             | 1 94    | 185              | 249              |
| 1   1   147   emb 226851 SPAT   S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c   100     2   179   898   emb 226851 SPAT   S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c   99     3   906   1406   emb 226850 SPAT   S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase   95     4   1373   1942   emb 226850 SPAT   S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase   87     1   1   984   emb X77249 SPR6   S.pneumoniae (R6) ciaR/CiaH genes   67   6910   7497   emb X83917 SPGY   S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   14     8   7443   9386   emb X83917 SPGY   S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   14     1   2   2155   99 L20559    Streptococcus pneumoniae Exp5 gene, partial cds   98   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                          |                             |                     | (con'A and comB)                                                                  | 86      | 929              | 528              |
| 2   179   898   emb 226851 SPAT   S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase C   99     3   906   1406   emb 226850 SPAT   S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase   95     4   1373   1942   emb 226850 SPAT   S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase   87     1   1   984   emb X77249 SPR6   S.pneumoniae (R6) ciaR/claH genes   67   6910   7497   emb X83917 SPGY   S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   144   9386   emb X83917 SPGY   S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   144   12   12   12   12   12   12   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160      |                          | 147                         | emb[226851 SPAT     | (R6) genes for ATPase a suburit, ATPase b subunit and ATPase                      | 100     | 142              | 147              |
| 3   906   1406   emb 226850   SPAT   S. pneumoniae (M222) genes for ATPase a sutunit, ATPase b subunit and ATPase   95     4   1373   1942   emb 226850   SPAT   S. pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase   87     1   1   984   emb X77249   S. pneumoniae (R6) ciaR/ciaH genes   99     2   6910   7497   emb X83917   SPGY   S. pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   99     3   8   7443   9386   emb X83917   SPGY   S. pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   14     3   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                          |                             | emb 226851 SPAT     | genes for ATPase a subunit, ATPase b subunit and ATPase                           | 66      | 720              | 720              |
| 4   1373   1942   emb 226850   SPAT   S. pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase   87     1   1   984   emb X77249   SPR6   S. pneumoniae (R6) claR/claH gene encoding DNA gyrase B subunit   99     7   6910   7487   emb X89917   SPGY   S. pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   1     8   7443   9386   emb X89917   SPGY   S. pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   1     1   2   2155   gb L20559     Streptococcus pneumoniae Exp5 gene, partial cds   98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                          |                             | emb   22685         | (M222) genes for ATPase a sutunit, ATPase b                                       | 95      | 201              | 501              |
| 1   1   984   emb X77249 SPR6  S.pneumoniae (R6) ciaR/ciaH genes   99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                          |                             | emb 22685           | (M222) genes for ATPase                                                           | 87      | 306              | 570              |
| 7   6910   7497   emb X83917 SPGY  S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   99   1   8   7443   9386   emb X83917 SPGY  S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   1   1   2   2155  gb L20559   Streptococcus pneumoniae ExpS gene, partial cds   98   98   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 161      | -                        | 984                         | emb   X77249   SPR6 | (R6)                                                                              | 66      | 984              | 984              |
| 8   7443   9386  emb X8J917 SPGY  S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit   98   1   1   2   2155  gb L20559   Streptococcus pneumoniae Exp5 gene, partial cds   98   98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -        | -                        | - ;                         | emb x83917 SPGY     | orflgyrB and gyrB gene encoding DNA gyrase B                                      | 1 66 1  | 437 [            | 588              |
| 1 1 2   2155  gb L20559   Streptococcus pneumoniae Exp5 gene, partial cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        | -                        | -                           | emb x83917          | orflgyrB and gyrB gene encoding DNA gyrase B                                      | 86      | 1912             | 1944             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 163      | 1   2                    | 2155                        |                     | gene, partial                                                                     | 86      | 327              | 2154             |

pneumoniae - Coding regions containing known sequences

| Contig | ORF | Start (nt) | Stop<br>(nt) | match               | match gene name                                                                                                                 | percent dent | HSP nt<br>length | ORF nt<br>length |
|--------|-----|------------|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|------------------|
| 165    |     | 32         | 1618         | gb J01796 <br>      | S.pneumoniae malX and malH genes encoding membrane protein and amylomaltase, complete cds, and malP gene encoding phosphorylase | 66           | 1587             | 1587             |
| 165    | ~   | 1608       | 3902         | 96 301796           | S.pneumoniae malX and malM genes encoding membrane protein and amylomaltase, complete cds, and malP gene encoding phosphorylase | 700          | 280              | 2295             |
| 166    | 7   | 378        | 7            | emb   Y11463   SPDN | Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5                                                               | 1001         | 375              | 375              |
| 166    | 7   | 1507       | 320          | emb Y11463 SPDN     | Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5                                                               | 1 66         | 1188             | 1188             |
| 166    |     | 3240       | 1432         | emb[Y11463 SPDN     | Streptococcus pneumoniae dnaG, rpoD, cpoil genes and ORP3 and ORF5                                                              | 1 66         | 563              | 1809             |
| 167    | -   | 1077       | 328          | emb 271552 SPAD     | Streptococcus pneumoniae adcCBA operon                                                                                          | 94           | 155              | 750              |
| 167    | ~   | 1844       | 666          | emb 271552   SPAD   | Streptococcus pneumonlae adcCBA operon                                                                                          | 1 86         | 405              | 846              |
| 167    |     | 2714       | 1842         | emb   271552   SPAD | Streptococcus pneumoniae adcCBA operon                                                                                          | 97           | 604              | 873              |
| 167    | 7   | 3399       | 2641         | emb[271552[SPAD     | Streptococcus pneumoniae adcCBA operon                                                                                          | 1 66         | 703              | 1 657            |
| 1 168  | -   | 1          | 2259         | gb L20558           | Streptococcus pneumoniae Exp4 gene, partial cds                                                                                 | 1 66         | 282              | 2259             |
| 170    | 110 | 1 338      | 7685         | emb 277726   SPIS   | S.pneumoniae DNA for insertion sequence 1S1318 (1372 bp)                                                                        | 95           | 315              | 348              |
| 172    | 9   | 2462       | 4981         | gb U47625 <br>      | Streptococcus pneumoniae formate acetyltransferase (exp72) gene, partial cds                                                    | 97           | 365              | 2520             |
| 175    |     | 373        | 20           | gb M36180 <br>      | Streptococcus pneumoniae transposase, IcomA and comB) and SAICAR synthetase (purC) genes, complete cds                          | 68           | 353              | 354              |
| 175    | -   | 1843       | 3621         | emb   247210   SPDE | S. pneumoniae dex8, caplA, caplB and caplC genes and orfs                                                                       | 95           | 89               | 96771            |
| 176    | 5   | 3984       | 2980         | emb   267739   SPPA | S. pneumoniae parC, parE and transposase genes and unknown orf                                                                  | 1001         | 573              | 1005             |
| 178    | -   | 3          | 425          | emb 267739 SPPA     | S.pneumoniae parC, parE and transposase genes and unknown orf                                                                   | 95           | 423              | 423              |
| 179    | -   | 426        | 0,0          | emb z83335 SPZ8     | S.pneumoniae dexB. capilA.B.C.D.E.F.G.H.I.J.K] genes, dTDP-rhamnose biosynthesis genes and alia gene                            | 66           | 338              | 357              |
| 180    |     | 3084       | 1855         | emb   x95718   SPGY | S.pneumoniae gyrA gene                                                                                                          | 1 66         | 381              | 1230             |
| 186    | -   | 714        | 7            | emb   279691   SOOR | S.pneumoniae yorfla, B.C.D.El, ftsL, pbpX and regR genes                                                                        | 98           | 59               | 1117             |
| 186    | ~   | 2254       | 809          | emb 279691   SOOR   | S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes                                                                         | 86           | 315              | 1647             |
| 186    |     | 707        | 880          | emb[279691 500R     | S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes                                                                         | 98           | 174              | 174              |
| 189    | -   | 2          | 259          | gb[U72720]          | Streptococcus pneumonise heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds                      | 66           | 258              | 258              |
| 189    | 7   | 009        | 385          | 95 072720           | Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds                      | 98           | 204              | 216              |
|        |     | •          |              |                     | → → → → → → → → → → → → → → → → → → →                                                                                           | -+           | -                |                  |

S. pneumoniae - Coding regions containing known sequences

| Contig | ORF | Start | Stop | match               | match gene name                                                                                                | percent | HSP nt | ORF nt |
|--------|-----|-------|------|---------------------|----------------------------------------------------------------------------------------------------------------|---------|--------|--------|
|        |     | ()    |      | TOT RESULT          |                                                                                                                | ident   | length | length |
| 189    |     | 1018  | 851  | gb U72720           | Streptococcus pneumoniae heat shock protein 10 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds     | 66      | 168    | 168    |
| 189    |     | 1012  | 2154 | 95/072720           | Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds     | 66      | 1062   | 1143   |
| 191    | 6   | 7829  | 7524 | emb   x63602   SPBO | S.pneumoniae mmsA-Box                                                                                          | 95      | 234    | 306    |
| 194    | -   | -     | 729  | gb M36180           | Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds         | 16      | 728    | 729    |
| 199    | 2   | 1117  | 881  | emb 283335 SPZ8     | S.pneumoniae dexB. capi (A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and aliA gene          | 96      | 211    | 237    |
| 199    | 7   | 1499  | 1762 | emb 283335 SP28     | S.pneumoniae dexB. cap1(A,B.C.D.E,F.G.H.I.J.K] genes, dTDP-rhamnose biosynthesis genes and aliA gene           | 89      | 248    | 264    |
| 199    | 5   | 1781  | 2284 | emb 283335 SP28     | S.pneumoniae daxB, cap1(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and alia gene | 86      | 504    | 504    |
| 203    | -   | 1977  | 337  | gb L20563           | Streptococcus pneumoniae Exp9 gene, partial cds                                                                | 1 66    | 342    | 1641   |
| 204    | -   | 1145  | 7    | gb L36131           | Streptococcus pneumoniae expl0 gene, complete cds, recA gene, 5' end                                           | 1 66    | 1143   | 1143   |
| 208    |     | 83    | 2296 | 95 089711           | Streptococcus pneumoniae pneumococcal surface protein A PspA (pspA) gene, complete cds                         | 06      | 471    | 2238   |
| 213    |     | 2455  | 2123 | emb 283335 SPZ8     | S.pneumoniae dexB. cap1(A, B, C, D, E, F, G, H, J, J, K) genes, dTDP-rhamnose biosynthesis genes and alla gene | 96      | 332    | 333    |
| 216    |     | 368   | 12   | emb   283335   SP28 | S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,1,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene           | 66      | 338    | 357    |
| 216    |     | 2650  | 2327 | gb M28678           | S. pneumoniae promoter sequence DNA                                                                            | 98      | 98     | 324    |
| 222    |     | 417   | 4    | emb 283335 SPZ8     | S.pneumoniae dexB, capi(A,B,C,D,E,F,G,H,I,J,K) genes, dTDF-rhamnose biosynthesis genes and alia gene           | 94      | 414    | 414    |
| 227    |     | 5266  | 4238 | emb AJ000336 SP     | Streptococcus pneumoniae 1dh gene                                                                              | 1 66    | 1029   | 1029   |
| 239    |     | -     | 804  | gb M31296           | S.pneumoniae recP gene, complete cds                                                                           | 95      | 484    | 804    |
| 247    |     | 1625  | 1807 | gb M36180           | Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds         | 96      | 178    | 183    |
| 249    |     | 921   | 1364 | emb 283335 SP28     | S.pneumoniae dexB, capllA,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and allA gene           | 94      | 443    | 444    |
| 253    |     | 362   | e    | gb H36180           | Streptococcus pneumoniae transposase, (conA and comB) and SAICAR synthetase [purC] genes, complete cds         | - 66    | 360    | 360    |
| 253    |     | 1238  | 2050 | emb[283335 SP28     | S.pneumoniae daxB, capi(A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and aliA gene           | 95      | 420    | 813    |
|        | •   |       |      |                     | · • • • • • • • • • • • • • • • • • • •                                                                        |         | - 4    |        |

S. pneumoniae - Coding regions containing known sequences

| Contig | ORF | Start<br>  (nt) | Stop<br>(nt) | match               | match gene name                                                                                                                                                                                | percent | HSP nt | ORF nt |
|--------|-----|-----------------|--------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|
| 253    | 9   | 2069            | 2572         | emb 283335 SP28     | S.pneumoniae dexB, capi(A,B,C,D,E,P,G,H,I,J,K  genes, dTDP-rhamnose biosynthesis genes and aliA gene                                                                                           | -66     | 504    | 504    |
| 255    | -   |                 | 800          | emb   282002   SP28 | S.pneumoniae pcpB and pcpC genes                                                                                                                                                               | - 66    | 531    | 198    |
| 255    | 7   | 798             | 1841         | emb   282002   SP28 | S. pneumoniae pcp8 and pcpC genes                                                                                                                                                              | - 6     | 672    | 1044   |
| 255    |     | 2493            | 1969         | emb   267739   SPPA | S.pneumoniae parC, parE and transposase genes and unknown orf                                                                                                                                  | 92      | 435    | 525    |
| 257    | 2   | 985             | 077          | emb[X17337 SPAH     | Streptococcus pneumoniae ami locus conferring aminopterin resistance                                                                                                                           | 96      | 117    | 216    |
| 257    | 3   | 1245            | 907          | gb N36180           | Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds                                                                                         | 6       | 339    | 339    |
| 267    | 2   | 495             | 1208         | 95 016156           | Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetese (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds | 95      | 4      | 714    |
| 267    | m ! | 1291            | 7722         | 95 016156           | Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds | 97      | 755    | 987    |
| 267    |     | 2261            | 3601         | 95 016156           | Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthetase (sulb), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds | 86      | 1341   | 1341   |
| 267    | 5   | 3561            | 4136         | 95 016156           | Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthatase (sulb), quanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds | 66      | 576    | 576    |
| 267    | 9   | 4164            | 4949         | gb U16156           | Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), quanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds | 66      | 748    | 786    |
| 267    |     | 5544            | 5140         | gb U16156           | Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthetase (sulb), ananosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds | 100     | 186    | 405    |
| 268    | -   | 1793            | 1990         | emb x63602 SPBO     | S.pneumoniae mmsA-Box                                                                                                                                                                          | 89      | 194    | 198    |
| 271    | -   | 562             | 104          | gb M29686           | S.pneumoniae mismatch repair (hexB) gene, complete cds                                                                                                                                         | 93      | 160    | 1 659  |
| 291    |     | 75              | 524          | 95 004047           | Streptococcus pneumoniae SSZ daxtran gluccsidase gene and insertion sequence IS1202 transposase gene, complete cds                                                                             | 96      | 450    | 450    |
| 291    | 7   | 1001            | 525          | emb 283335 SP28     | S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, drDP-rhamnose<br>biosynthesis genes and allA gene                                                                                        | 87      | 205    | 477    |
| 291    |     | 807             | 559          | emb[283335 SP28     | S. pneumoniae dexB. capl(A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose<br>biosynthesis genes and alia gene                                                                                       | - 06    | 170    | 249    |
| 291    |     | 1374            | 1099         | 9b н36180           | Streptococcus pneumoniae transposase, (comh and comB) and SAICAR synthetase [purC] genes, complete cds                                                                                         | 85      | 264    | 276    |

S. pneumoniae - Coding regions containing known sequences

| Contig ORF<br>ID ID | ORF<br>TD | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                                                                 | percent | HSP nt | ORF nt |
|---------------------|-----------|---------------|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|
| 293                 | -         | 3             | 1673         | emb   267740   SPGY | emb 267740 SPGY  S.pneumoniae gyr8 gene and unknown orf                                                                         | 86      | 25.5   | 1 1276 |
| 296                 | -         | 1634          | 151          | emb[247210 SPDE     | S.pneumoniae dexB, cap3A, cap3B and cap3C genes and orfs                                                                        |         | 0.4    | 7000   |
| 317                 | -         | 157           | 015          | emb 267739 SPPA     | S.pneumoniae parC, parE and transposase genes and unknown orf                                                                   | 000     |        |        |
| 325                 | 7         | 1237          | 485          | emb 283335   SP28   | S.pneumoniae dexB. capi(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene                            | 16      | 299    | 753    |
| 326                 | _         | -             | 462          | emb 282001 SPZ8     | S. pneumoniae pcpA gene and open reading frames                                                                                 | 100     | 233    | 462    |
| 327                 |           | 603           | 64           | emb[z83335 SPZB     | S.pneumoniae dexB. capilA, B.C.D, E, F.G, H, I, J, Kl genes, dTDP-rhamnose biosynthesis genes and aliA gene                     | 96      | 68     | 540    |
| 334                 |           | 153           | 545          | gb U41735           | Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds | - 68    | 91     | 393    |
| 336                 |           | 308           | 93           | emb 226850 SPAT     | S. pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase C subunit                                          | - 16    | 102    | 216    |
| 360                 | -         | -             | 519          | emb   267739   SPPA | S.pneumoniae parC, parE and transposase genes and unknown orf                                                                   |         | 435    | - 013  |
| 360                 | 4         | 1598          | 1960         | emb 283335 SP28     | S.pneumoniae dexB. cap1[A.B.C.D.E.F.G.H.1.J.K] genes, dTDP-rhamnose biosynthesis genes and alla gene                            | 76      | 353    | 363    |
| 362                 |           | 673           | 7            | emb[283335 SP28     | S. proeumoniae dexB. cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and alia gene                          | 95      | 63     | 672    |
| 362                 | ~_        | 1168          | 728          | [gb]U04047]         | Streptococcus pneumoniae SS dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds               | 96      | 441    | 441    |
| 384                 |           | 347           | 111          | emb x85787 SPCP     | S.pneumoniae dexB. cps14A, cps14B. cps14C, cps14E, cps14E, cps14G, cps14H, cps14I, cps14J, cps14K, cps14L, tasA genes           | 94      | .54    | 237    |
|                     |           |               |              |                     |                                                                                                                                 | _       | _      |        |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig<br>ID | ORF | Start (nt) | Stop<br>(nt) | match           | match gene name                                                                                             | mis * | • ident | length<br>(nt) |
|--------------|-----|------------|--------------|-----------------|-------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| 228          | 7   | 1760       | 1 1942       | pir F60663 F606 | translation elongation factor Tv - Streptococcus oralis                                                     | 100   | 100     | 183            |
| 319          | -   | 2          | 205          | 91 984927       | neomycin phosphotransferase (Cloning vector pBSL99)                                                         | 100   | 100     | 204            |
| 260          | -   | 2          | 1138         | pir F60663 F606 | translation elongation factor Tu - Streptococcus oralis                                                     | 66    | 86      | 1137           |
| 25           | 7   | 486        | 1394         | gi 1574495      | hypothetical (Haemophilus influenzae)                                                                       | 9.8   | 96      | 606            |
| 94           |     | 685        | 1002         | 91 310627       | phosphoenolpyruvate:sugar phosphotransferase system HPr (Streptococcus mutans)                              | 86    | 93      | 318            |
| 312          |     | 190        | 2            | gi 347999       | ATP-dependent protease proteclytic subunit [Streptococous salivarius]                                       | 98    | 95      | 189            |
| 329          | -   | 1          | 1 807        | 91   924848     | inosine monophosphate dehydrogenase (Streptococcus pyogenes)                                                | 96    | 94      | 807            |
| 336          | -   | 062.       | 589          | 91 987050       | lac2 gene product (unidentifled cloning vector)                                                             | 96    | 96      | 300            |
| 181          | - 6 | 5948       | 1 7366       | gi 153755       | phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]                                    | 97    | 94      | 1419           |
| 312          | - 2 | 1044       | 361          | gi 347998       | uracil phosphoribosyltransferase (Streptococcus salivarius)                                                 | 97    | 88      | 684            |
| 32           | 8   | 1 6575     | 7486         | sp P37214 ERA_S | GTP-BINDING PROTEIN ERA HOHOLOG.                                                                            | 96    | 91      | 912            |
| 94           | -   | 951        | 2741         | gi 153615       | phosphoenolpyruvate:sugar phosphotransferase system enzyme I (Streptococcus salivarius)                     | 96    | 92      | 1791           |
| 127          | -   | 1 1        | 168          | gi 581299       | Initiation factor IF-1 [Lactococcus lactis]                                                                 | 96    | 89      | 168            |
| 128          | 114 | 10438      | 11154        | gi 1276873      | DeoD (Streptococcus thermophilus)                                                                           | 96    | 93      | 717            |
| 181          | -   | 1362       | 1598         | gi 46606        | lacD polypeptide (AA 1-326) [Staphylococcus aureus]                                                         | 96    | 80      | 237            |
| 218          | -   | -          | 834          | 91 1743856      | Intrageneric coaggregation-relevant adhesin [Streptococcus gordonii]                                        | 96    | 93      | 834            |
| 319          |     | 115        | 441          | <br> gi 208225  | heat-shock protein 82/neomcyn phosphotransferase fusion protein (hsp82-neo)   [unidentified cloning vector] | 96    | 96      | 327            |
| 54           | 112 | 8622       | 10967        |                 | Pyruvate formate-lyase  Streptococcus mutans                                                                | 95    | 89      | 2346           |
| 181          | 1 2 | 909        | 1289         | gi 149396       | lacb [Lactococcus lactis]                                                                                   | 98    | 89      | 684            |
| 46           | -   | 3410       | 3045         | gi 1850606      | YIXM (Streptococcus mutans)                                                                                 | 94    | 86      | 366            |
| 89           | 01  | 1 7972     | 1337         | gi 703442       | thymidine kinase (Streptococcus gordonii)                                                                   | 94    | 98      | 636            |
| 148          | 6-  | 6431       | 1 7354       | gi 995767       | UDP-glucose pyrophosphorylase  Streptococcus pyogenes                                                       | 94    | 85      | 924            |
| 160          |     | 4430       | 5848         | 91(153573       | H+ ATPase  Enterococcus faecalis                                                                            | 96    | 87      | 1419           |
| 2            | -   | 4598       | 3513         | gi 153763       | plasmin receptor [Streptococcus pyogenes]                                                                   | 93    | 86      | 1086           |
| 12           | -   | 7.87       | 6204         | gi 1103865      | [formy]-tetrahydrofolate synthetase [Streptococcus mutans]                                                  | 93    | 84      | 1674           |
| 111111       |     |            |              |                 |                                                                                                             |       |         |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF      | Start<br>(nt) | Stop<br>(nt) | match                | match gene name                                                     | e sia | * ident | length<br>(nt) |
|--------|----------|---------------|--------------|----------------------|---------------------------------------------------------------------|-------|---------|----------------|
| 9      | =        | 4734          | 5120         | gi 40150             | [L14 protein (AA 1-122) [Bacillus subtilis]                         | 93    | 87      | 387            |
| 89     | <u>-</u> | 53            | 1297         | [91   47341          | antitumor protein (Streptococcus pyogenes)                          | 93    | 87      | 1245           |
| 80     | -        | 6             | 299          | gn1 PID d101166      | ribosomal protein S7 [Bacillus subtilis]                            | 93    | 84      | 297            |
| 127    |          | 695           | 1093         | 91   142462          | ribosomal protein S11 (Bacillus subtilis)                           | 93    | 98      | 399            |
| 160    | - 2      | 1924          | 3462         | gi 1773264           | ATPase, alpha subunit [Streptococcus mutans]                        | 93    | 85      | 1539           |
| 211    | - 2      | 13757         | 3047         | gi 535273            | aminopeptidase C (Streptococcus thermophilus)                       | 93    | 92      | 1117           |
| 262    | -        | 16            | 564          | gi 149394            | lacB [Lactococcus lactis]                                           | 93    | 1 06    | 549            |
| 366    | -        | 197           | -            | gi 295259            | tryptophan symthase beta subunit (Symechorystis sp.)                | 93    | 91      | 195            |
| 25     | -        | 1 1392        | 1976         | gi 1574496           | hypothetical [Haemophilus influenzae]                               | 92    | 80      | 585            |
| 36     | 121      | 120781        | 119927       | 91 310632            | hydrophobic membrane protein (Streptococcus gordonii)               | 92    | 98      | 855            |
| 181    | -        | 1265          | 1534         | 91 149396            | lacD (Lactococcus lactis)                                           | 92    | 83      | 270            |
| 181    | -        | 3662          | 4060         | 91 149410            | enzyme III [Lactococcus lactis]                                     | 92    | 83      | 399            |
| 32     | -        | 5631          | 1 3937       | gn1 PID e294090      | fibronectin-binding protein-like protein A (Streptococcus gordonii) | 91    | 85      | 1695           |
| 46     | 7        | 3054          | 1462         | gi 1850607           | signal recognition particle Ffh [Streptococcus mutans]              | 91    | 84      | 1593           |
| \$9    | 10       | 4442          | 4726         | pir S17865 S178      | ribosomal protein S17 - Bacillus stearothermophilus                 | 91    | 80      | 285            |
| 11     | ~        | 260           | 1900         | 191   287871         | groEL gene product (Lactococcus lactis)                             | 91    | 82      | 1641           |
| 84     | _        | 2             | 2056         | 91   871784          | [Clp-like ATP-dependent protease binding subunit [Bos taurus]       | 91    | 79      | 2055           |
| 66     | 8        | 110750        | 9272         | [gi 153740           | sucrose phosphorylase [Streptococcus mutans]                        | 91    | 84      | 1479           |
| 66     | 6        | 111947        | 111072       | gi 153739            | membrane protein (Streptococcus mutans)                             | 91    | 78      | 876            |
| 127    | s<br>-   | 2065          | 2469         | pir S07223 R5BS      | ribosomal protein L17 - Bacillus stearothermophilus                 | 91    | 18      | 405            |
| 1 132  | 9        | 9539          | 9390         | gi 143065            | hubst (Bacillus steerothermophilus)                                 | 91    | 68      | 150            |
| 137    | 8        | 4765          | 6153         | [gn1   PID   d100347 | Na+ -ATPase beta subunit (Enterococcus hirae)                       | 91    | - 61    | 1389           |
| 151    | ,        | 111119        | 9734         | gi 1815634           | glutamine synthetase type 1 (Streptococcus agalactiae)              | 91    | 82      | 1386           |
| 102    | 7        | 1798          | 278          | 91 2208998           | dextran glucosidase DexS  Streptococcus suis                        | 91    | l 67    | 1521           |
| 222    | 2        | 673           | 1839         | 91 153741            | ATP-binding protein (Streptococcus mutans)                          | 91    | 95      | 1167           |
| 293    | 2        | 4113          | 4400         | gi 1196921           | unknown protein (Insertion sequence 18861)                          | 91    | 1.1     | 288            |
| 32     | 7        | 6166          | 6570         | pir   A36933   A369  | diacylglycerol kinase homolog - Streptococcus mutans                | 90    | 1 11    | 405            |
|        |          |               |              |                      |                                                                     |       |         |                |

pneumoniae - Putative coding regions of novel proteins similar to known proteins

|               | 1 1                   |        |        | Total I                               | match dene name                                                                | sta    | 1 ident | length<br>(nt) |
|---------------|-----------------------|--------|--------|---------------------------------------|--------------------------------------------------------------------------------|--------|---------|----------------|
| Cont 19<br>ID | <u> </u>              | (nt)   | (ut)   | acession                              |                                                                                |        |         |                |
|               | -                     | 1 841  | 1 527  | qi 1196921                            | unknown protein (Insertion sequence IS861)                                     | 06     | 0.      | 213            |
|               | •                     |        |        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | lartate oxidase (Streptococcus iniae)                                          | 06     | 80      | 1152           |
| 48            | 127                   | 120908 | 10,61  |                                       |                                                                                | 06     | 75      | 1263           |
| 55            | (21                   | 19777  | 18515  | fant   Projection                     |                                                                                | - 06 - | 50      | 261            |
| 98            | 7                     | 711    | 1 977  | gi 1710133                            | [flagellar filament cap [Borrella burgdorter.]                                 |        | 35      | 909            |
|               | -                     | -      | 909    | gi 1165303                            | L3 (Bacillus subtilis)                                                         | 1 06   | 2       |                |
| 114           |                       | 2      | 888    | gi   153562                           | aspartate beta-semialdehyde dehydrogenase (EC 1.2.1.11) (Streptococcus mulans) | 06     | 08      | 987            |
| 1             | - ;                   |        |        | 10:1407880                            | lost   Streptococcus equisimilis                                               | 06     | 75      | 519            |
| 120           | ~  <br>- <del> </del> | 6861   | , 70   |                                       | Inno suntherage [Bacillus subtilis]                                            | 06     | 88      | 609            |
| 159           | 4   2                 | 1 4076 | 3282   | gi 14501£<br> gi 1661179              | high affinity branched chain amino acid transport protein (Streptococcus       | 06     | 78      | 795            |
|               |                       |        | _      |                                       | mutans)                                                                        | 06     | 76      | 1368           |
| 183           | _                     | 1 28   | 1395   | gi 308858                             |                                                                                | 6      | 78      | 1230           |
| 191           | m<br>—                | 1 2891 | 1 1662 | 91   149521                           | tryptophan synthase beta subunit (Lactocockus lactis)                          | 2   3  |         | 911            |
| 198           | - 7                   | 1551   | 436    | gi 2323342                            | (AF014460) CcpA (Streptococcus mutans)                                         | 06     |         |                |
| 305           | -                     | 37     | 1 783  | gi 1573551                            | asparagine synthetase A (asnA) [Haemophilus influenzae]                        | 06     | 80      | 747            |
| - C           | -                     | 1 2285 | 1 3343 | gi 149434                             | putative [Lactococcus lactis]                                                  | 89     | 78      | 1059           |
| 46            | 6                     | 757    | 1 7362 | pir A45434 A454                       | ribosomal protein L19 - Bacillus stearothe:mophilus                            | 89     | 92      | 216            |
|               |                       | 1 8363 | 110342 | qi 153792                             | recP peptide (Streptococcus pneumonlae)                                        | 68     | 83      | 1980           |
|               |                       | 01781  | 119447 | 1011308857                            | ATP:D-fructose 6-phosphate 1-phosphotransferase [Lactoccccus lactis]           | 89     | 18      | 1038           |
| 5   5         | = = =                 | 7876   | 110669 | lani Pibidi00932                      | H20-forming NADH Oxidase (Streptococcus mutans)                                | 89     | 77      | 984            |
| 88            |                       | 2418   | 2786   |                                       | S19  Bacillus subtilis                                                         | 1 89   | 81      | 369            |
| 65            |                       | 1 3806 | 1 4225 | sp P14577 RL16_                       | 50S RIBOSOMAL PROTEIN L16.                                                     | 88     | 82      | 420            |
| 65            | 118                   | 8219   | 8719   | 91 143417                             | ribosomal protein S5 [Bacillus stearothermophilus]                             | 88     | 9/      | 105            |
| 73            |                       | 6337   | 5315   | •                                     | prs (Listeria monocytogenes)                                                   | 89     | 70      | 1023           |
| 76            | -                     | 1 3360 | 1465   | gn1   P1D   e200671                   | lepA gene product (Bacillus subtilis)                                          | - 89   | 9/      | 1896           |
| 66            | 9                     | 12818  | 111919 | gi 153738                             | membrane protein (Streptococcus mutans)                                        | 68     | 5       | 006            |
| 120           | -                     | 3552   | 1300   | 91 407881                             | stringent response-like protein (Streptoco:cus equisimilis)                    | 89     | 62      | 2253           |
| 122           | - 2                   | 1 4512 | 2791   | [gn1 P1D e280490                      | unknown (Streptococcus pneumoniae)                                             | 68     | 81      | 1722           |
|               | - !                   |        | •      | Ĭ                                     |                                                                                |        |         |                |

2 S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

|        | *****                                   | *             | +            | *                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Sim  | * ident | length |
|--------|-----------------------------------------|---------------|--------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------|
| Contig | ORF                                     | Start<br>(nt) | Stop<br>(nt) | acession                                | matcn gene name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | - • -   | (DE)   |
| 176    | -                                       | 699           | 4            | 91 47394                                | 5-oxoprolyl-peptidase (Streptococcus pyogenes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69     | 186     | 999    |
|        |                                         |               | ï            |                                         | with the Lactococcus lactis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68     | 7.1     | 885    |
| 771    | 9                                       | 3050          | 3934         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89     | 80      | 1719   |
| 181    | -                                       | 4033          | 5751         | gi 149411                               | enzyme III [Lactoroccus lactual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 - 40 |         | 357    |
| 211    | 7                                       | 3149          | 2793         | gi  535273                              | aminopeptidase C (Streptococcus thermophilus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60     |         |        |
|        | -                                       | 164           | 838          | di   1196922                            | unknown protein (Insertion sequence 15861)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68     | 20      | 808    |
| 195    | ī                                       | Ī             | 1            | 5 HAS                                   | HISTIDYL-TRNA SYNTHETASE (EC 6.1.1.21) (HISTIDINETRNA LIGASE) (HISRS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88     | 78      | 1305   |
| 34     | - ī                                     | - i           | - Ţ ·        | -                                       | Asc researcher subunit Conth (Streptococcus gordonil)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88     | 78      | 978    |
| 38     |                                         | 1646          | 2623         | gi 2058544                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88     | 99      | 225    |
| 54     | <u>-</u>                                |               | 1227         | gu1   PID   d101320                     | YogU (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 0    | 36      | +      |
| 1 57   | - 2                                     | 611           | 1468         | gn1   PID   e134943                     | putative reductase 1 (Saccharomyces cerevisiae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 36      |        |
| 1 65   | ======================================= | 5497          | 6909         | pir A29102 R5BS                         | ribosomal protein L5 - Bacillus stearothermophilus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      |         |        |
| ***    | 200                                     | 9030          | 9500         | 91 2078381                              | ribosomal protein L15 (Staphylococcus aureus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88     | 83      | 471    |
|        | 2 -                                     | 3636          | į            |                                         | lysyl-aminopeptidase [Lactococcus lactis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88     | 80      | 2529   |
|        |                                         | 110000        | 13054        | 1912407215                              | [AF017421) putative heat shock protein Htp? (Streptococcus gordonii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88     | 72      | 912    |
| 901    | - [                                     |               |              | 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88     | 75      | 744    |
| 107    | 7                                       |               | 705          | - ' '                                   | form any moreone here-subunit (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88     | 74      | 3654   |
| 111    | 8 -                                     | 114073        | 10420        | 191   402303                            | ٠.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88     | 74      | 1035   |
| 126    | 6                                       | 13096         | 12062        | gn1 PID e311468                         | unknown {Bacillus subtilis}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 61      | 270    |
| 140    | 12                                      | 119143        | 118874       | 91 1573659                              | H. influenzae predicted coding region HIO659 (Haemophilus intluenzae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |         |        |
| 144    | -                                       | 394           | 555          | gn1 PID e274705                         | lactate oxidase (Streptococcus iniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98     | 5       |        |
| 148    | -                                       | 2723          | 3493         | gi 1591672                              | phosphate transport system ATP-binding profein [Methanococcus januaschii]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88     | 68      | 171    |
| 9      |                                         | 5853          | 6278         |                                         | ATPase, apsilon subunit (Streptococcus mutuns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88     | 1 65    | 426    |
| 127    |                                         | 1770          | 1 2885       | qi 149426                               | putative (Lactococcus lactis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88     | 72      | 1116   |
|        |                                         | 8140          | 3613         | 1911535273                              | aminopeptidase C (Streptococcus thermophilus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88     | 74      | 528    |
|        | -   -                                   | 9             | 957          | lai 140186                              | homologous to E.coli ribosomal protein L27 [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88     | 78      | 378    |
| 167    | -                                       |               |              |                                         | Inchase protein [Insertion sequence IS861]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88     | 69      | 612    |
| 260    | s                                       | 2387          | 2998         |                                         | Constitution of the second sec | 88     | 27      | 1359   |
| 1 291  | 9                                       | 1 2017        | 3375         | gn  PID d100571                         | adenylosuccinare synthetiae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 88   | 88      | 342    |
| 1 319  | <del>-</del>                            | 658           | 716          | gi 603578                               | serine/threonine kinase (Phytophthora Caps.cl.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6      | 95      | 162    |
| 9      | s –                                     | 1 4353        | 1 4514       | 91   153672                             | lactose repressor (Streptococcus mutans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3      | - •     |        |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig   | ORF            | Start  | Stop        | match               | match gene name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E is | f ident | length<br>(nt) |
|----------|----------------|--------|-------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| <u>a</u> | <u>a</u>   :   | (ac)   | 110000      | 1196921             | unknown protein (Insertion sequence IS861)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87   | 72      | 270            |
| 6        | 2   1          | 00001  | 110363      | 40121165309         | IS3 [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87   | 13      | 699            |
| 65       | - <del> </del> | 3140   |             | 0,000,000,000,000   | عبا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87   | 73      | 417            |
| 65       | 112            | 6623   | 1039        | o casor 161         | the state of the s | 87   | 78      | 1215           |
| 75       | 8 1            | 5411   | 6625        | 91   1877 422       | galactorinase terreprint as the contract of th | 87   | 9,6     | 2103           |
| 80       | ~              | 703    | 2805        | gn1 PID d101166     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87   | 69      | 294            |
| 82       | -              | 541    | 1 248       | gi 1196921          | unknown protein (Insertion sequence 15801)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 6  | 24      | 1137           |
| 140      | [23            | 25033  | 23897       | gn1   PID   e254999 | phenylalany-tRNA synthetase beta subunit (Nacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 75      | 1926           |
| 214      | 114            | 10441  | 8516        | 91 2281305          | glucose inhibited division protein homolog GidA (Lactococcus lactis cremoris)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |         |                |
|          | - +            | -      |             | SEACTO TOTAL TOTAL  | or product highly similar to elongation factor. EF-G (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97   | 73      | 1869           |
| 220      |                | 2742   | <b>8</b> /8 |                     | Institute of Transfer of Sequence 18861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87   | 72      | 294            |
| 260      | -              | 2096   | 2389        | 150611   16         | uninion: process (Pediococcus acidilactici)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87   | 7.3     | 624            |
| 323      | <del>-</del>   | 1 27   | 650         | 91 897795           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87   | 73      | 417            |
| 357      | -              | 154    | 1 570       | gi 1044978          | ribosomal protein S8 (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70   |         | 519            |
| 49       | ==             | 110927 | 111445      | gi 1196922          | unknown protein (Insertion sequence 18861)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |         | 4364           |
| 9        | - 12           | 1 7461 | 9224        | gi 951051           | relaxase (Streptococcus pneumoniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98   | 000     |                |
| 3   3    |                |        | 2401        |                     | ribosomal protein L2 - Bacillus stearothermophilus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98   | ۳۲      | 849            |
| 2        | -              |        |             |                     | Laboratory Pinaco (Lathococcus lactis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98   | 9/      | 654            |
| 65       | [23            | 110957 | 11610       | - 7                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98   | 72      | 483            |
| 82       | 7              | 4374   | 4856        | gi 153745           | mannitol-specific entyme III  Streptococcus mutens)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98   | 76      | 711            |
| 102      | -              | 4270   | 4986        | gn1   P1D   e264705 | OMP decarboxylase [Lactococcus lactis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |         | 240            |
| 106      | 9              | 1 7824 | 1 6880      |                     | aspartate transcarbamylase (Lactobacillus leichmannii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98   | 89      |                |
|          |                |        | 1 273       | Ţ-                  | putative acylneuraminate lyase (Clostridium tertium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86   | 71      | 273            |
|          | -   -          | 25801  | 1 6710      |                     | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98   | 80      | 3723           |
|          | -              |        | 6007        | 1011161193          | polipoprotein diacylglycerol transferase [Streptococcus mutans]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98   | 71      | 813            |
| 131      | -              | 5/0    | - † -       | 900000              | Injurerol kinase (Enterococcus faccalis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98   | 33      | 1551           |
| 134      | -              | 200    | - ‡ -       | - Ţ -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98   | 72      | 1 891          |
| 146      | =              | 7473   | 5859        | - ī                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98   | 7.8     | 1416           |
| 153      | 7              | 1 595  | 2010        |                     | dipeptidase   barcoccas series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98   | 74      | 1434           |
| 154      | _              | 2      | 1435        | gi 1857246          | 6-phosphogluconate denydrogenase (Laccococus Accord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |         | •              |
|          | 1 + 1 4        |        |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |         |                |

pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF   | Start<br>(nt) | Stop<br>(nt) | match                     | match gene name                                                                                                       | sim . | * ident | length<br>(nt) |
|--------|-------|---------------|--------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| 191    | 5     | 5025          | 6284         | gi  47529                 | Unknown [Streptococcus salivarius]                                                                                    | 98    | 99      | 1260           |
| 184    |       | 7             | 1483         | gi   642667               | NADP-dependent glyceraldehyde-1-phosphate dehydrogenase (Streptococcus mutans)                                        | 98    | 23      | 1482           |
|        |       | 3659          | 6571         | lai 1153661               | translational initiation factor IF2 (Enterococcus faecium)                                                            | 98    | 196     | 2913           |
|        |       | ,             | 187          | lai   1573531             | asparagine synthetase A (asnA) [Haemophilus influenzae]                                                               | 98    | 89      | 186            |
| 92     |       | 2644          | 3909         | gi 2149909                | cell division protein (Enterococcus faecalis)                                                                         | 95    | 73      | 1266           |
|        |       | 2475          | 3587         | 91 2058545                | putative ABC transporter subunit ComYB (Streptococcus gordonii)                                                       | 85    | 12      | 1113           |
| 9      | .     | 13577         | 3915         | gi   2058546              | ComYC (Streptococcus gordonii)                                                                                        | 85    | 80      | 339            |
| 2      |       | . 2797        | 3789         | gn1   P1D   d101316       | yqfJ (Bacillus subtilis)                                                                                              | 85    | 72      | 993            |
|        |       | 4915          | 1 6054       | lai   153746              | mannitol-phosphate dehydrogenase (Streptococcus mutans)                                                               | 85    | 89      | 1140           |
|        | 115   | 14690         | 15793        | gi 143371                 | phosphoribosyl aminoimidazole synthetase (PUR-M) [Bacillus subtilis]                                                  | 85    | 69      | 1104           |
| 8.7    |       | 1417          | 1 2388       | di   1184967              | Scr (Streptococcus mutana)                                                                                            | 85    | 69      | 972            |
| 801    | -     | 2666          | 3154         | gi   153566               | ORF (19K protein) (Enterococcus faecalis)                                                                             | 85    | 67      | 489            |
| 123    | -   - | 312           | 692          | gi 1044989                | ribosomal protein S13 (Bacillus subtills)                                                                             | 85    | 72      | 381            |
| 128    |       | 1534          | 2409         | 91 1685110                | tetrahydrofolate dehydrogenase/cyclohydrolase (Streptococcus thermophilus)                                            | 85    | 1,1     | 876            |
| 781    |       | 1 2962        | 4767         | gn1  P1D d100347          | Na+ -ATPase alpha subunit (Enterococcus hirae)                                                                        | 85    | 74      | 1806           |
| 170    |       | 2622          | 709          | <br>  gn1   P1D   d102006 | (ABGO1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND NEISSERIA MENINGITIDIS. [Bacillus subtilis] | 85    | 70      | 1914           |
| 187    |       | 3760          | 4386         | 191 727436                | putative 20-kDa protein [Lactococcus lactis]                                                                          | 85    | 9       | 627            |
| 233    | - 7   | 728           | 1873         | gi 1163116                | ORF-5  Streptococcus pneumoniae                                                                                       | 85    | 67      | 1146           |
| 234    | -     | 1 962         | 1255         | 91   2293155              | (AF008220) YtiA (Bacillus subtilis                                                                                    | 85    | 61      | 294            |
| 1 240  | -     | 309           | 11931        | gi 143597                 | CTP synthetase [Bacillus subtilis]                                                                                    | 85    | 70      | 1623           |
| 9      | -     | 199           | 1521         | 91   508979               | GPP-binding protein (Bacillus subtilis)                                                                               | 84    | 12      | 1323           |
| 10     | -     | 4375          | 3443         | gn1 PID e339862           | putative acylneuraminate lyase (Clostridium tertium)                                                                  | 84    | 07      | 616            |
| 14     | -     | 63            | 2093         | gi 520753                 | DNA topoisomerase I (Bacillus subtilis)                                                                               | 84    | 69      | 2031           |
| 19     | -     | 1793          | 2593         | gi 2352484                | (AF005098) RWASEH II (Lactococcus lactis)                                                                             | 84    | 89      | 801            |
| 20     | 12    | 117720        | 119687       | gn1 PID d100584           | cell division protein (Bacillus subtilis                                                                              | 84    | 11      | 1968           |
| 1 22   | 128   | 121723        | 20884        | gi 299163                 | alanine dehydrogenase (Bacillus subtilis)                                                                             | 84    | 89      | 840            |
|        |       |               |              |                           |                                                                                                                       |       |         |                |

S. pneumoniae ~ Putative coding regions of novel proteins similar to known proteins

| Contig | ORF      | Start<br>(nt) | Stop<br>(nt) | match           | match gene name                                                                                                                                     | * sim | * ident | length<br>(nt) |
|--------|----------|---------------|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| 30     | 2        | 7730          | 6792         | gn1 PID d100296 | gnl PID d100296  fructokinase (Streptococcus mutans)                                                                                                | 84    | 75      | 939            |
| 33     | .6       | 5650          | 5300         | gi 147194       | phnA protein [Escherichia coli]                                                                                                                     | 84    | 71      | 351            |
| 36     | 122      | 121551        | 20772        | 91   310631     | ATP binding protein (Streptococcus gordonii)                                                                                                        | 84    | 72      | 780            |
| 48     | -        | 2837          | 2505         | 91   882 609    | 6-phospho-beta-glucosidase (Escherichia voli)                                                                                                       | 84    | 69      | 333            |
| 88     | -        | 4             | 1516         | gi   450849     | amylase (Streptococcus bovis)                                                                                                                       | 88    | 73      | 1476           |
| - 29   | 10       | 6715          | 7116         | gi 951053       | ORF10, putative (Streptococcus pneumoniae)                                                                                                          | 84    | 74      | 402            |
| 62     | -        | 21            | 644          | gi 806487       | ORF211; putative (Lactococcus lactis)                                                                                                               | - 49  | 99      | 624            |
| 65     | 117      | 6777          | 8207         | 91 1044980      | ribosomal protein 118 [Bacillus subtilis]                                                                                                           | 84    | 13      | 429            |
| 1 65   | 72       | 19507         | 110397       | gi 44073        | SecY protein [Lactococcus lactis]                                                                                                                   | 84    | 1 89    | 891            |
| 106    | 4        | 5474          | 2262         | gn1 PID e199387 | carbamoyl-phosphate synthase [Lactobacillus plantarum                                                                                               | - P   | 73      | 3213           |
| 159    | -        | 147           | ₽            | gi   806487     | ORF211; putative [Lactococcus lactis]                                                                                                               | 84    | 63      | 144            |
| 163    | ~        | 4690          | 5910         | gi [2293164     | (AF008220) SAM synthase (Bacillus subtilis)                                                                                                         | 84    | 69      | 1221           |
| 192    | -        | 46            | 1308         | gi   495046     | tripeptidase [Lactococcus lactis]                                                                                                                   | 84    | 1 67    | 1263           |
| 348    |          | 671           | ٥            | 91 1787753      | (AE000245) f346; 79 pct identical to 336 amino acids of ADH1_ZYMMO SW:<br>P20368 but has 10 additional N-ter residues [Escherichia col1]            | \$    | 71      | 999            |
| e -    | -        | 1572          | 3575         | gi 143766       | (thrSv) (EC 6.1.1.3) [Bacillus subtilis]                                                                                                            | 63    | 65      | 2004           |
| 6      | 9        | 3893          | 3417         | gn1 PID d100576 | single strand DNA binding protein (Bacillus subtilis)                                                                                               | 83    | 89      | 477            |
| 1,1    | 115      | 7426          | 8457         | gi 520738       | comA protein (Streptococcus pneumoniae)                                                                                                             | 83    | 99      | 1032           |
| 20     | 112      | 13860         | 14144        | gn1 PID d100583 | unknown (Bacillus subtilis)                                                                                                                         | 83    | 61      | 285            |
| 23     | <b>~</b> | 3358          | 2606         | gi   1788294    | (AE000299) o238; This 238 aa orf is 40 pct identical (5 gaps) to 231 residues of an approx. 248 aa protein YE3C_ECOLI SW: P24237 (Escherichia coli) | E6    | 74      | 753            |
| 28     | 9        | 3304          | 3005         | gi 1573659      | H. influenzae predicted coding region HI0559 (Haemophilus influenzae)                                                                               | 83    | 57      | 300            |
| 35     | _        | 5108          | 3867         | 91 311707       | hypothetical nucleotide binding protein (Acholeplasma laidlawii)                                                                                    | 83    | 63      | 1242           |
| 55     | 19       | 117932        | 17528        | gi 537085       | ORF_f141 [Escherichia coli]                                                                                                                         | 68    | 65      | 405            |
| 55     | 120      | 18539         | 17919        | gi 496558       | orfX [Bacillus subtilis]                                                                                                                            | 83    | 69      | 621            |
| 65     | 9        | 2795          | 3142         | gi 1165308      | [122 (Bacillus subtilis]                                                                                                                            | 83    | 99      | 348            |
| 89     | 9        | 7,189         | 6683         | 91 1213494      | immunoglobulin Al protease (Streptococcus pneumoniae)                                                                                               | 93    | 54      | 195            |
|        |          |               | 111111       |                 |                                                                                                                                                     |       |         |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| 15   15112   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14771<br>263<br>4347<br>440<br>4366<br>2020<br>1049<br>1931<br>1931<br>1931<br>1930<br>96                        | gn     PID   e323522     g1   47394       g1   1183885     g1   1500567     g1   1773265     g1   63279     g1   63279     g1   40046     g1   28282     g1   28282     g1   233282     g1   633147     g1   g1   g1   g1   g1   g1   g1 | yl-peptidase (Streptoco-binding subunit (Bacillus Iloprotesse (Streptocochi predicted coding and subunit (Streptocococus Pamma subunit (Streptocococus pneum (Streptococcus pneum |                   | 52 22 23 25 23 25 25 25 25 25 25 25 25 25 25 25 25 25                                                          | 342<br>669<br>261<br>1350<br>1350<br>1350<br>687<br>687<br>687<br>777<br>777 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 12   8963     1   3     4   7170     1   3     1466     4   2278     1   1   155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 263<br>263<br>2523<br>4347<br>440<br>4356<br>2964<br>2020<br>2020<br>2020<br>2020<br>2030<br>2030<br>2030<br>203 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S-oxoprolyl-peptidase   Streptococcus pyogenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 25 22 22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25                                                    | 669<br>1938<br>1938<br>1350<br>891<br>687<br>777<br>777<br>777               |
| 4 7170<br>4 7170<br>6 3466<br>6 3466<br>1 3 2367<br>1 1 299<br>1 1 299<br>7 4213<br>6 4688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 263<br>4347<br>4460<br>4356<br>4356<br>436<br>4318<br>4318<br>4318                                               | 8 0 2 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | glutamine-binding subunit (Bacillus subtliis)  rinc metalloprotease (Streptococcus gordnii)  H. jannaschii predicted coding region MJ1665 [Methanococcus jannaschii]  Y-type Na-APPase [Enterococcus hirae]  ATPase, gamma subunit (Streptococcus mutans)  transposase (Streptococcus pneumoniae)  thioredoxin (Synechococcus PCC6301)  phosphoglucose isomerase A (AA 1-449) (Bacillus stearothermophilus)  glutamyl-tRNA synthetase (Bacillus subtliis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 55 C                                                                                                           | 1938<br>1350<br>1350<br>438<br>891<br>687<br>777<br>7777                     |
| 4 7170<br>1 3 2998<br>4 2278<br>4 2278<br>1 1 3 2367<br>1 1 299<br>1 1 299<br>1 1 4213<br>6 4688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 440<br>440<br>440<br>2020<br>2020<br>1049<br>1931<br>96<br>96                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | zinc metalloprotease (Streptococcus gordonii)  H. Jannaschii predicted coding region MJ1665 (Methanococcus jannaschii)  v-type Na-ATPase (Enterococcus hirae)  ATPase, gamma subunit (Streptococcus mutans)  transposase (Streptococcus premmoniae)  thioredoxin (Synachococcus PCC6301)  phosphoglucose isomerase A (AA 1-449) (Bacillus stearothermophilus)  glutamyl-tRNA synthetase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 3 3 3 3 3 3 5 5 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                        | 1938<br>438<br>438<br>891<br>1047<br>777<br>777                              |
| 7   2998   6   3466   4   2278   1   3   2367   1   1   15370   1   1   299   1   7   4213   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6   4688   6 | 440<br>440<br>440<br>4356<br>4356<br>1049<br>11931<br>1931<br>1931<br>1930<br>1090                               | 2 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H. Jannaschil predicted coding region MJ1665 (Methanococcus jannaschii) v-type Na-ATPase [Enterococcus hirae] ATPase, gamma subunit (Streptococcus mutans) transposase [Streptococcus predionale] thioredoxin [Synechococcus PCC6301] phosphoglucose isomerase A (AA 1-449) (Bacillus stearothermophilus) glutamyl-tRNA synthetase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 72<br>60<br>67<br>72<br>73<br>74<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | 1350<br>438<br>891<br>687<br>687<br>777<br>777                               |
| 6 1466<br>1 3 2367<br>1 1 3 2367<br>1 1 15370<br>1 1 299<br>7 4 4 213<br>6 4 6 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2002<br>2002<br>2002<br>2002<br>2003<br>2003<br>2003<br>2003                                                     | N 0 7 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit (Streptococcus mutans)  sptococcus pneumoniae)  echococcus PCC63011  comerase A (AA 1-449) (Bacillus  thetase (Bacillus subtilis)  pyrophosphokinase (Bacillus cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 2 2 2 2 2 2     | 09 72 72 75 79 79 79 79 79 79 79 79 79 79 79 79 79                                                             | 8                                                                            |
| 6 3466<br>1 2 2278<br>1 1 3 2367<br>1 1 299<br>1 1 299<br>7 4213<br>6 4688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4356<br>2020<br>2020<br>1049<br>14318<br>96                                                                      | 59 60 77 60 60 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ounit (Streptococcus mutans)  splococcus pneumoniae]  schococcus PCC63011  somerase A (AA 1-449) (Bacillus  thetase (Bacillus subtilis)  pyrophosphokinase [Bacillus cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 2 2 2 2 2       | 58 58 67 67 64 64 64 64 64 64 64 64 64 64 64 64 64                                                             | 891<br>348<br>1047<br>177<br>1053                                            |
| 4   2278<br>  1   3<br>  2   1155<br>  1   15370   1<br>  1   299<br>  3   1479<br>  7   4213<br>  6   4688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2964<br>2020<br>1049<br>1931<br>1930<br>1090                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | schococcus pneumoniae] schococcus PCC6301] somerase A (AA 1-449) (Bacillus thecase (Bacillus subtilis) pyrophosphokinase (Bacillus cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 2 2 2 2         | 58 67 67 64                                                                                                    | 587<br>348<br>1047<br>777<br>1053                                            |
| 1 2367<br>2 1155<br>17 15370<br>1 299<br>7 4213<br>6 4688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2020<br>1049<br>1931<br>96<br>1090                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | schococcus PCC6301) comerase A (AA 1-449) (Bacillus thetase (Bacillus subtilis) pyrophosphokinase (Bacillus cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2 2 2           | 67   64                                                                                                        | 348<br>1047<br>777<br>1053                                                   |
| 1 3<br>1155<br>117 115370<br>1 1 299<br>7 4213<br>6 4688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1931                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | thetase (Bacillus subtilis) pyrophosphokinase (Bacillus cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83 83             | 67                                                                                                             | 1047                                                                         |
| 2   1155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | thetase (Bacillus subtilis)<br>pyrophosphokinase (Bacillus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83                | 64                                                                                                             | 1053                                                                         |
| 17 15370<br>1 299<br>1 4213<br>6 4688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96 1090                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pyrophosphokinase [Bacillus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                | 64                                                                                                             | 1053                                                                         |
| 1 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1090                                                                                                             | 91 143648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                |                                                                              |
| 7 4213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1090                                                                                                             | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ribosomal protein L28 (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82                | <del> </del> 69                                                                                                | 204                                                                          |
| 6   4688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000                                                                                                              | 91 385178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | unknown [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                | 46                                                                                                             | 390                                                                          |
| 6   4688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                          | gul   PID   d100576                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ribosomal protein S6 (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82                | - 09                                                                                                           | 315                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3942                                                                                                             | gn1 PID d100571                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | unknown (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                | - 89                                                                                                           | 747                                                                          |
| 22  17  13422  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114837                                                                                                           | gi 520754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | putative (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82                | 69                                                                                                             | 1416                                                                         |
| 22   18   14897   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15658                                                                                                            | gn1   P1D   d101929                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uridine monophosphate kinase (Symechocystis sp.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82                | 62                                                                                                             | 762                                                                          |
| 33   16   11471   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10641                                                                                                            | gn1   PID   d101190                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ORF4 (Streptococcus mutans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                | 89                                                                                                             | 831                                                                          |
| 35   9   7400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6255                                                                                                             | gi 1881543                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UDP-N-acetylglucosamine-2-epimerase (Strep:ococcus pneumoniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82                | 1 89                                                                                                           | 1146                                                                         |
| 40   10   8003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7533                                                                                                             | 91 1173519                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | riboflavin synthase beta subunit (Actinobacillus pleuropneumoniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82                | 68                                                                                                             | 471                                                                          |
| 48   32   23159   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23437                                                                                                            | 91 1930092                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | outer membrane protein [Campylobacter jejuni]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82                | 61                                                                                                             | 279                                                                          |
| 52  14  13833  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14765                                                                                                            | gi 142521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | deoxyribodipyrimidine photolyase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82                | 61                                                                                                             | 933                                                                          |
| 60   4   4737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1849                                                                                                             | gn1 PID d102221                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (AB001610) uvrA (Deinococcus radiodurans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82                | 1 99                                                                                                           | 2889                                                                         |
| 62   4   2131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1457                                                                                                             | 91   2246749                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (AF009622) thioredoxin reductase [Listeria monocytogenes]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82                | 63                                                                                                             | 675                                                                          |
| 111   16586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 117518                                                                                                           | gn1 P1D e322063                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ss-1,4-galactosyltransferase (Streptococcus pneumoniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82                | 09                                                                                                             | 933                                                                          |
| 73   13   9222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7837                                                                                                             | 985001b ara fub                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | unknown (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                | - 65                                                                                                           | 1386                                                                         |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

|        | 1                                       | -              |              |                     | earth done name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mis . | • ident | length<br>(nt) |
|--------|-----------------------------------------|----------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| Contig | ORF<br>T                                | Start<br>(nt.) | Stop<br>(nt) | acession            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 8.9     | 1771           |
| 2      | 1                                       |                | :            | 1 991101            | alkaline amylopullulanase (Bacillus sp.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.5   | 00      |                |
| 74     | -                                       |                | 1//5         | - 🕇 -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82    | 52      | 288            |
| 83     | 6                                       | 3696           | 3983         | 305362              | unnamed protein product totale avaithase (Lactococcus lactis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82    | 67      | 1383           |
| 86     | =                                       | 110776         | 9394         | -                   | vylshikimaces-Phiosphoto district                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82    | 99      | 1458           |
| 89     | 112                                     | 1 8295         | 9752         | 191140025           | ន                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82    | 74      | 1536           |
| 115    | 6-                                      | 110347         | 8812         | gn1   P1D   d102090 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82    | 71      | 1332           |
| 138    | -                                       | 1              | 1332         | 675001b a19   1ng   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 99      | 1590           |
| 151    |                                         | 4657           | 6246         | pir S06097 S060     | type I site-specific deoxyribonuclease (EC 3.1.21.3) CfrA chain S -<br>Cirobacter freundii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3     |         |                |
|        | -                                       |                |              |                     | by b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82    | 89      | 681            |
| 173    | 9                                       | 4183           | 3503         |                     | (AEOUUS84) CONSEIVED STREETER STREETERS STREET | 82    | 95      | 1962           |
| 177    | 71                                      | 5481           | 7442         |                     | Norm   Escherichte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82    | 102     | 1 399          |
| 193    | ~                                       | 178            | 976          | pir S08564 R3BS     | ribosomal protein 59   Datilitus statement   Protein   Parherichia Colii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82    | 89      | 288            |
| 245    | 7                                       | 1 258          | 845          | gi 146402           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 99      | 1 255          |
|        | -                                       | 1400           | 1 3146       | qn1 PID d100576     | ribosomal protein S18 (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | 9.0            |
|        |                                         |                |              | 1-11100074          | tryotophany]-tRNA synthetase [Clostridium longisporum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81    | 0/      |                |
| 16     | -                                       | 1 7484         | 61.5         |                     | yearsorintion-repair coupling factor (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81    | 63      | 3513           |
| 20     | =                                       | 10308          | 113820       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81    | 63      | 375            |
| 38     | -                                       | 1232           | 1 1606       | gi 2058543          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81    | 69      | 1311           |
| 45     | - 2                                     | 1 3061         | 1271         | gi   460259         | enolase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8     | 19      | 1266           |
| 1      |                                         | 2              | 1267         | gi 431231           | uracil permease (Bacillus caldolyticus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - +   |         |                |
|        | -   -                                   | 3453           | 1840         | lan1   PID  d100453 | Mannosephosphate Isomerase (Streptococcus mutans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61    | 70      | 1014           |
| 2      | -   -                                   | 56.5           | -            |                     | transport protein (Agrobacterium tumefaciens)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81    | - 64    | 177            |
| 54     | 7                                       | 11100          | - !          |                     | the state of the s | 18    | 99      | 516            |
| 65     | 22                                      | 10306          | 10821        | gi 44073            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 69      | 1272           |
| 89     | -                                       | 3874           | 1 2603       | 191   556886        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         | 861            |
| 99     | 119                                     | 119126         | 118929       | gi 2313526          | (AE000557) H. pylori predicted coding region HP0411 [Helicobacter pylori]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18    |         | 255            |
| 106    | -                                       | 8373           | 1 7822       | gn1 PID e199384     | pyrR [Lactobacillus plantarum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |         |                |
| 108    | 9                                       | 5054           | 1 6877       | gi 1469939          | group B oligopeptidase PepB (Streptococcus agalactiae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |         | 7 7 7 7        |
| 111    | ======================================= | 115899         | 118283       | pir S09411 S094     | spoiling protein - Bacillus subtilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18    | C0      |                |
|        | - }                                     |                |              | Ţ                   | orf1091  Streptococcus thermophilus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81    | 69      | 276            |
| 128    | <u>- i</u>                              | 3359           | P. 0         | . !                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                |
|        |                                         |                |              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF      | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                           | erico<br>Erico | * ident | length<br>(nt) |
|--------|----------|---------------|--------------|---------------------|---------------------------------------------------------------------------|----------------|---------|----------------|
| 151    | -        | 830           | 13211        | 91 304896           | EcoE type I restriction-modification enzyme R subunit [Escherichia coll]  | 81             | 59      | 2382           |
| 159    | =        | 6722          | 7837         | 91   2239288        | GMP synthetase (Bacillus subtilis)                                        | 81             | 69      | 1116           |
| 071    | -        | 739           | 458          | gn1 P1D d102006     | (AB001488) FUNCTION UNKNOWN. (Bacillus subtilis)                          | 91             | 55      | 282            |
| 191    | 2        | 1759          | 1 893        | gi 149522           | tryptophan symthase alpha subunit (Lactococcus lactis)                    | 81             | 65      | 867            |
| 214    | -        | 2290          | 1994         | 91 157587           | reverse transcriptase endonuclease (Drosuphila virilis)                   | 81             | 43      | 297            |
| 1 217  | -        | 4415          | 4008         | 91 466473           | cellobiose phosphotransferase enzyme II' (Bacillus stearothermophilus)    | 81             | 59      | 408            |
| 262    | 7        | 1 569         | 898          | 91 153675           | tagatose 6-P kinase (Streptococcus mutans)                                | 81             | 68      | 300            |
| 1 299  | -        | 1.663         | 7            | gn1   Pro   e301154 | StySKI methylase (Salmonella enterica)                                    | 81             | 60      | 999            |
| 366    | 7        | 376           | £            | gi 149521           | tryptophan synthase beta subunit (Lactococcus lactis)                     | 18             | 65      | 294            |
| 12     | 01       | 8766          | 9242         | 91 1216490          | DNA/pantothenate metabolism flavoprotein [Streptococcus mutans]           | 90             | 64      | 477            |
| 17     | =        | 1 6050        | 5748         | gn1 PID e305362     | unnamed protein product (Streptococcus thermophilus)                      | 80             | 67      | 303            |
| 1, 1,  | 116      | 8455          | 9906         | 91   703126         | Leucocin A translocator [Leuconostoc gelidum]                             | 80             | 65      | 612            |
| 18     | -        | 2440          | 1 1613       | 91 1591672          | phosphate transport system ATP-binding protein (Methanococcus jannaschli) | 80             | 58      | 828            |
| 1 27   | -        | 4248          | 1579         | 91 452309           | valy1-tRNA symthetase [Bacillus subtilis]                                 | 80             | 69      | 2670           |
| 28     | -        | 1 3671        | 3288         | 91 1573660          | H. influenzae predicted coding region H10660 [Haemophilus influenzae]     | 80             | 63      | 384            |
| 32     | 2        | 902           | 1933         | gn1   PID   e264499 | dihydroorotate dehydrogenase B [Lactococcus lactis]                       | 80             | 99      | 1032           |
| 39     | -        | -             | 1266         | gn1 PID e234078     | hom [Lactococcus lactis]                                                  | 80             | 63      | 1266           |
| 52     | 2        | 4363          | 3593         | 91   1183884        | ATP-binding subunit (Bacillus subtills)                                   | 80             | 57      | 177            |
| 54     | 2        | 4550          | 4744         | 91 2198820          | [AF004225] Cux/CDP(1B1); Cux/CDP homeoprotein [Mus musculus]              | 80             | 9       | 195            |
| 65     | Ξ.       | 1 7109        | 7486         | gi 951052           | ORF9, putative (Streptococcus pneumoniae)                                 | 80             | 68      | 378            |
| 65     | <u> </u> | 1230          | 1550         | pir   A02815   R5BS | ribosomal protein L23 - Bacillus stearothermophilus                       | 80             | 69      | 321            |
| 65     | 112      | 5174          | 5503         | pir A02819 R5BS     | ribosomal protein L24 - Bacillus stearothermophilus                       | 80             | 1.07    | 330            |
| 99     | 6        | 9884          | 10687        | gi 2313836          | (AE000584) conserved hypothetical protein (Helicobacter pylori)           | 80             | 99      | 804            |
| 83     | 7        | 648           | 2438         | gi 622991           | mannitol transport protein (Bacillus stearothermophilus)                  | 80             | 9       | 1791           |
| - BS   | -        | 950           | 630          | 91   528995         | polyketide synthase (Bacillus subtilis)                                   | 80             | 46      | 321            |
| 68     | 8        | 6870          | 6775         | gi 853776           | peptide chain release factor 1 (Bacillus nubtilis)                        | 90             | 63      | 1092           |
| 93     | 112      | 8718          | 7438         | gn1 PID d101959     | hypothetical protein (Synechocystis sp.)                                  | 80             | 09      | 1281           |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| 5   6854   5751   gn.  PID  e   2   2160   1450   g1  40056   9   4246   3953   gn.  PID  e   6428   g1  228130   9   4246   3953   gn.  PID  e   6428   g1  159109   19659   19457   g1  159109   19699   19457   g1  149195   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contig | ORF                                     | Start | Stop  | match               | match gene name                                   | mis *  | * ident | length<br>(nt) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|-------|-------|---------------------|---------------------------------------------------|--------|---------|----------------|
| 1         2         2160         1450         1916 10056           Debt gene product [Bacillus subtilis]         60           1         2         2166         1450         1916 10056           Debt gene product [Bacillus subtilis]         60           1         2         5148         6422           pil 129100           Debt production test contents and content                                                                                                                                                                                                                                   | 901    | 5                                       | 6854  | 5751  |                     | 7                                                 | 80     | 9       | 1104           |
| 1   17   17   17   17   17   17   17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000    |                                         | 2160  | 1450  |                     | gene product (Bacillus                            | 08     | 65      | 711            |
| 1   12   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11.15   11. | 124    |                                         | 4246  | 3953  |                     | 30S ribosomal protein S16 [Bacillus subtilis]     | 80     | 65      | 294            |
| 15   12655   11375   915157100   Purcative transposase [Streeptococcus mitans]   80   80   80   80   80   80   80   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128    | 8                                       | 5148  | 6428  | gi 2281308          | lactis                                            | 80     | 99      | 1281           |
| 19   15659   15957   911517210   Dividice transposses [Streptococcus mutans]   80   80   80   80   80   80   80   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 137    | Ĭ                                       | 12665 | 11376 | gi   159109         | glutamate dehydrogenase (Glardia                  | 08     | 89      | 1290           |
| 1   2   6174   994   911 877423   galactose-1-P-uridyl transferase (Streptococcus material)   60   60   60   60   60   60   60   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140    | Ī                                       | i -   | 19457 | 91   517210         |                                                   | 80     | 70      | 243            |
| 1   2   619   91 141352   Incc (Loctococcus lattis)   60   60   60   60   60   60   60   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 158    | 7                                       | 2474  | 984   | gi 1877423          | 1 2                                               | 80     | 65      | 1491           |
| 1   2   619   911113155   Incc (Lacrococcus lactis)   80   80   80   80   80   80   80   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 171    | 01                                      | 7474  | 1728  | gi 397800           | cyclophilin C-associated protein (Mus musculus)   | 80     | 09      | 255            |
| 1   27   5159   519   51111467   Fitbosomal procein St Racillus subtilie]   80   80   80   80   80   80   80   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 181    | -                                       | 7     | 619   | gi 149395           | lacC (Lactococcus lactis)                         | 80     | 99      | 618            |
| 1 2         1552         858   91 533080         RecF protein [Streptococcus pyogenes]         80           1 1         2         958   91 442360         [CIPC adenosine triphosphatase [Bacillus subtilis]         80           1 7         4312   5580   9i 149435         [Ditative [Lactococcus lacts]         79           1 1         1175   1135   9i 149435         [Ditative [Lactococcus lacts]         79           1 1         1175   1136   9i 149435         [Ditative [Lactococcus lacts]         79           1 2         244   8201   9i 1910[e2338]         [Companies electricis subtilis]         79           1 3         1222   2433   9i [1010[e3348]         [Companies electricis subtilis]         79           1 3         1222   2434   9i 405134         [Companies electricis subtilis]         79           1 3         1222   341146234         [Companies electricis subtilis]         79           1 4 3678   2328   9i 1010[e31340   hypochetical protein [Staphylococcus aureus]         79           1 5 788   7229   9i 1110[e31340   hypochetical protein [Staphylococcus aureus]         79           1 6 788   7229   9i 1110[e31503   hypochetical protein [Staphylococcus aureus]         79           1 7 10 8491   9738   9i 110[e31503   hypochetical protein [Staphylococcus aureus]         79           1 7 10 8491   914   9i 1537286   protein [Staphylococcus aureus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 313  | -                                       | 27    | 539   | gi 143467           | protein S4 (Bacillus                              | 80     | 70      | 513            |
| 1   2   958   9i1 44336   CIDC adenosine triphosphatase [Bacillus subtilis]   19   19   19   19   19   19   19   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 329    | 2                                       | 1652  | 828   | 91 533080           | RecF protein (Streptococcus pyogenes)             | 80     | 63      | 262            |
| 7   4312   5580   9i 149435   putative [Lactococcus lactis]   79   79   79   79   79   79   79   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 175    | -                                       | 2     | 956   | 91 442360           | adenosine triphosphatase (Bacillus                | 80     | 58      | 957            |
| 1   1175   135   9244   8201   9m1 PID e253891   UDP-glucose 4-epimerase [Bacillus subtilis]   79   79   79   79   79   79   79   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8      |                                         | 4312  | 5580  | gi 149435           | putative [Lectococcus lactis]                     | 61     | .64     | 1269           |
| 14   9244   8201   gni PID e223891   UDP-glucose 4 epimerase   Bacillus subtilis    79   79   79   79   79   79   79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23     | 7                                       | 1175  | 135   | gi 1542975          | AbcB (Thermoanaerobacterium thermosulfurigenes)   | 64     | 61      | 1041           |
| 3   1242   2833   gml   PID  e314218   ftesh   Enterococcus hisee    79   79   7155   8378   gi   405134   dictate kinase   Becillus subtilis    79   79   79   7155   8378   gi   405134   dictate kinase   Becillus subtilis    79   79   79   79   79   79   79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33     | 14                                      | 9244  | 8201  | gn1 PID e253891     | UDP-glucose 4-epimerase [Bacillus subtilis]       | 62     | 62      | 1044           |
| 13   7155   8378   91 405134   acetate kinase [Bacillus subtilis]   79   79   79   79   79   79   79   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36     | - 3                                     | 1242  | 2633  | gn1   PID   e324218 | [fsA {Enterococcus hirae]                         | 61     | 5.8     | 1392           |
| 7   9011   8229   gi  1146234   dihydrodipicolinate_reductase (Bacillus subtilis]   79     8   8661   8915   gi  2078380   ribosomal protein LiO (Staphylococcus aureus]   79     4   3678   2128   gin  PID  e311452   unknown (Bacillus subtilis]   79     5   7881   7279   gi  677850   hypothetical protein (Staphylococcus aureus)   79     6   4021   9783   gin  PID  e311452   polymerase III (Bacillus subtilis]   79     7   8491   9783   gin  PID  e315093   hypothetical protein (Bacillus subtilis)   79     8   11326   15689   gin  PID  e355093   hypothetical protein (Bacillus subtilis)   79     8   940   1734   gi  537286   triosephosphate isomerase (Lactococcus lactis)   79     9   9   9   9   9   9   9   9     9   9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 38   | 13                                      | 7155  | 8378  | 91 405134           | acetate kinase (Bacillus subtilis)                | 1 61   | 88      | 1224           |
| 19   8661   8915   gil 2078380   Independent Life   Staphylococcus aureus    79   79   79   79   79   79   79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55     | -                                       | 9011  | 8229  | 91 1146234          | dihydrodipicolinate reductase (Bacillus subtilis) | 64     | 98      | 183            |
| 4   3678   2128   gnl PID e311452   unknown [Bacillus subtilis]   79   79   7279   gi 677850   hypothetical protein [Staphylococcus aureus]   79   79   79   7279   gi 677850   hypothetical protein [Symechocystis sp.]   79   79   79   79   79   79   79   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69     | 119                                     | 8661  | 8915  | gi 2078380          | [Staphy]ococcus                                   | 1 61   | 89      | 255            |
| 9   7881   7279   gi[677850   hypothetical protein [Staphylococcus aurnus]   79   79   710   8491   9783   gnl   PID  din01091   hypothetical protein [Synechocystis sp.]   79   79   79   79   79   79   79   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69     | -                                       | 3678  | 2128  | gn1   PID   e311452 | unknown (Bacillus subtilis)                       | 1 64 1 | 64      | 1551           |
| 10   8491   9783   gnl  PID   d101091   hypothetical protein [Symechocystis sp.]   79   79   79   79   79   79   79   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69     | 6                                       | 7881  | 1279  | gi 677850           | hypothetical protein (Staphylococcus aureus)      | 1 62   | 59      | 603            |
| 3   2906   7300   gi 143342   polymerase III (Bacillus subtilis)   79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 72   | 100                                     | 8491  | 9783  | gn1   PID   d101091 | hypothetical protein [Synechocystis sp.]          | 66     | 62      | 1293           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 08     | -                                       | 2906  | 7300  | 91   143342         | polymerase III (Bacillus subtilis)                | 19     | 65      | 4395           |
| 13   12233   11118   gi   683562   prephenate dehydrogenase (Lactococcus lactis)   79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82     | 11-                                     | !     | 15689 | gn1 P10 e255093     | protein [Bacillus                                 | 1 62   | 65      | . 2364         |
| 3   940   1734   91   537286   triosephosphate isomerase [Lactococcus lactis]   79     6   4023   4742   971   9100262   LivG protein [Salmonella typhimurium]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98     | ======================================= | 1     | 11118 | 91   683582         | prephenate dehydrogenase [Lactococcus lactis]     | 62     | 88      | 1116           |
| 6   4023   4742  gn1 PID d100262  LivG protein (Salmonella typhimurium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 92   | 1                                       | 940   | 1734  | 911537286           | triosephosphate isomerase [Lactococcus luctis]    | 1 29   | 65      | 795            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86     | 9                                       | 4023  | 4742  |                     | [LivG protein [Salmonella typhimurium]            | 67     | 63      | 720            |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contig ORF<br>ID ID | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                       | E is | * ident | length<br>(nt) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|--------------|---------------------|-----------------------------------------------------------------------|------|---------|----------------|
| 7   5664   6406   gi 466882   D-alanine:   9   6858   8303   gi 466882   pps1; B149     10   13424   12213   gi 450686   3-phosphog     2   1158   3017   gi 506700   CapD   Staphog     3   2876   3052   gi 912423   putative     4   198   4563   gi 149429   putative     5   4249   3449   gi 149429   putative     6   4249   3449   gi 149519   indoleglyce     7   3589   4350   gn1   PID 6102002   (AB001488)     8   4196   4551   gn1   PID 6102002   (AB001488)     9   7   715   gi 149719   indoleglyce     1   987   715   gi 149719   indoleglyce     1   598   715   gi 143128   putative     1   50   786   gi 143128   phop prote     1   50   1786   gi 143128   phop prote     1   351   124   gi 897793   y98 gene protection     1   1351   124   gi 897793   y98 gene protection     1   17165   17713   gi 49105   hypoxanthin     10   9738   10310   gn1 PID 4100583   stage V sprinterender     11   1715   17713   gi 49105   hypoxanthin     12   1707   7105   gi 41015   aspartate-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | 116315        | 14150        | 91 153736           | a-galactosidase (Streptococcus mutans)                                | 1 62 | 64      | 2166           |
| 9   6658   8303   gi 466882   pps1; Bl49   10   13424   12213   gi 450886   3-phosphog   2   1158   3017   gi 506700   CapD   Stapl   8   4198   4563   gi 149429   putative       1   2728   2907   gn1 PID e183449   putative       2   230   781   gi 147404   mannose pe    3   1805   2737   gi 147404   mannose pe    3   1805   2737   gi 147404   mannose pe    4   4   3   3621   gn1 PID e209004   glutaredox       1   594   2   gi 14328   phosphorece    3   2820   781   gi 897795   305 riboso   4   5   785   gi 14338   phosphorece    4   5   784   gi    937793   y98 gene pe    5   1784   8114   gn1 PID d100585   cysteine s    6   7364   8114   gn1 PID d100585   cysteine s    7   1358   18416   gn1 PID d100583   stage V sp    7   20971   20612   gi 299163   alanine de    8   7407   7105   gi 4105   alanine de    8   7407   7105   gi 4105   alanine de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>-</b>            | 5684          | 6406         | 911460080           | D-alanine:D-alanine ligase-related protein (Enterococcus faecalis)    | 61   | 88      | 723            |
| 10   13424   12213   91   450686   3-phosphog   2   1158   3017   91   506700   CapD   Stap    5   2876   3052   91   912423   putative   1   1   2728   2907   911   P1D   6102002   (AB001489)   1   2728   2907   911   P1D   6102002   (AB001489)   1   1805   2737   91   149559   putative   1   1805   2737   91   149559   polymucleopectory   1   1805   2737   91   149422   putative   1   1805   2339   91   149422   putative   1   1805   2330   91   149432   putative   1   1805   1707   91   91   91   91   91   91   91   9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | 6858          | 8303         | 91 466882           | pps1; B1496_C2_189 [Mycobacterium leprae]                             | 97   | 64      | 1446           |
| 2   1158   3017   91   506700   CapD   Stap    5   2876   3052   91   912423   putative   1   1   2728   2907   911   149429   putative   1   1   2728   2907   911   149519   putative   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | 13424         | 112213       | gi 450686           | [3-phosphoglycerate kinase [Thermotoga maritima]                      | 79   | 60      | 1212           |
| 5   2876   3052   9i   912433   putative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | 1158          | 13017        | 91   506700         | CapD  Staphylococcus aureus                                           | 79   | 1.9     | 1860           |
| 8   4198   4563   gi    49429   putative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | 1 2876        | 3052         |                     | putative [Lactococcus lactis]                                         | 19   | 61      | 177            |
| 3   2728   2907   gn1 PID d102002   (AB001488)   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del> </del>        | 4198          | 4563         | gi 149429           | putative [Lactococcus lactis]                                         | 79   | 61      | 366            |
| 7   1589   4150   gni  PiD e188449   putative A   1805   2737   gi 147404   mannose per   1   1863   3621   gni  PID e209004   glutaredox   1   1863   3621   gni  PID e209004   glutaredox   1   694   2   gi 184680   polymucleo   1   694   2   gi 1184680   polymucleo   1   694   2   gi 1184680   polymucleo   1   50   1786   gi 149412   putative   1   151   124   gi 897793   y98 gene prote   1   151   124   gni  PID d100585   cysteine state   10   9738   10310   gni  PID d100585   cysteine state   10   17165   17713   gi 49105   hypoxanthii   12   1705   gi 49105   gasparetere   12   1707   1705   gi 41015   alanine delectrical   12   1707   1705   gi 41015   gasparetere   12   1707   1705   gi 41015   gasparetere   1707   1705   gasparetere   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707   1707  | -                   | 1,2728        | 1 2907       | gn1 P1D d102002     | (AB001488) FUNCTION UNKNOWN. [Bacillus subtilis]                      | 19   | 53      | 180            |
| 5   4249   3449   gi 149519   indoleglyce   3   1863   3621   gi 147404   mannose per   3   3863   3621   gi 147404   mannose per   3   3863   3621   gi 2293242   (AF008220)   2   530   781   gi 897795   305 riboso   2   530   781   gi 897795   305 riboso   3   5820   4091   gi 143128   phop prote   3   2820   4091   gi 143128   phop prote   3   2820   4091   gi 897793   y98 gene prote   4   351   124   gi 897793   y98 gene prote   5   1786   gi 149105   putative   5   1786   gi 149105   putative   5   1713   gi 49105   hypoxanthii   5   17713   gi 49105   hypoxanthii   5   17713   gi 49105   hypoxanthii   5   17713   gi 49105   gil299163   alanine del   5   5   5   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | 1 3589        | 4350         | gn1   P10   e183449 | putative ATP-binding protein of ABC-type (Bacillus subtilis)          | 96   | 61      | 762            |
| 3   1805   2737   gill47404   mannose per   3   3863   3621   gn1   PID   e209004   glutaredox   1   987   715   gil   2293242   (AF008220)   2   530   781   gil   897795   30S ribosou   1   694   2   gil   1184680   polymucleous   2   655   239   gil   143328   phop prote   1   50   1786   gil   143328   phop prote   1   50   1786   gil   149432   putative   1   1   124   gil   897793   y98 gene prote   1   1   124   gil   897793   y98 gene prote   1   1   151   124   gil   81793   y98 gene prote   10   9738   10310   gn1   PID   d100585   Cysteine state   1   17165   17713   gil   49105   hypoxanthin   12   17713   gil   49105   hypoxanthin   12   17713   gil   49105   hypoxanthin   12   17051   gil   1 | <del> </del>        | 4249          | 3449         | 91   149519         | indoleglycerol phosphate synthase (Lactococcus lactis)                | 19   | 99      | 801            |
| 3   3863   3621   gn   PID e209004   glutaredox   1   987   715   g1 2291242   (AF008220)   2   530   781   g1 897795   30S riboso   1   694   2   g1 118680   polymucleo   3   2820   4091   g1 853767   UDP-N-acet   1   50   1786   g1 149432   putative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                   | 1 1805        | 7572         | gi   147404         | nannose permease subunit II-M-Man [Escherichia colii                  | 79   | 57      | 933            |
| 1   987   715   91 2293242   (AF008220)   2   530   781   91 186880   polymucleoson   2   655   239   91 143128   phop prote   3   2820   4091   91 853767   UDP-N-acet.   1   550   1786   91 149432   putative     1   351   124   91 897793   198 gene p   8   7364   8314   91 PID d100585   Cysteine s;   10   9738   10310   91 PID d100585   Cysteine s;   10   9738   10310   91 PID d100583   stage V sp   16   17165   17713   91 49105   hypoxanthii   22   17738   18416   91 PID d101315   YqfE   Bacileos   27   20971   20612   91 41015   aspartate-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | 1 3863        | 3621         | gn1 PID e209004     | glutaredoxin-like protein (Lactococcus lactis)                        | 1 67 | 58      | 243            |
| 2   530   781   91   897795   1   694   2   91   1184680   2   655   239   91   143128   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                   | 1 987         | 7.15         | gi   2293242        | (AF008220) arginine succinate synthase (Bacillus subtilis)            | 6L   | 64      | 273            |
| 1   694   2   gi   1184680   2   655   239   gi   143128   3   2820   4091   gi   853767   3   2820   4091   gi   853767   3   3   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                   | 530           | 1 781        | gi 897795           | 130S ribosomal protein [Pediococcus acidilactici]                     | - 62 | 67      | 252            |
| 2   655   239   gi   143328   3   2820   4091   gi   853767   1   50   1786   gi   149432   1   351   124   gi   897793   1   354   8314   gii   PID   d100585   10   9738   10310   gii   PID   d100583   16   17715   17713   gi   49105   127   20971   20612   gi   299163   8   7407   7105   gi   41015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                   | 694           | 2            |                     | polymucleotide phosphorylase [Bacillus subtilis]                      | 19   | 64      | 693            |
| 3   2820   4091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>-</u>            | 655           | 239          | gi 143328           | phoP protein (put.); putative [Bacillus subtilis]                     | 1 61 | 59      | 417            |
| 1   50   1786   91   149432   putative [Lactocc   1   351   124   91   897793   1998 gene product   8   7364   8314   911   P1D   4100585   Cysteine synthete   10   9738   10310   911   P1D   4100583   stage V sporulation   17165   17713   91   49105   hypoxanthine phose   17188   18416   911   P1D   410115   YqfE   Bacillus succession   120971   120612   91   1299163   alanine dehydroge   1707   7105   91   41015   aspartate-tRNA   1705   91   41015   1858   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888   1888  |                     | 1 2820        | 4091         | 191   853767        | UDP-N-acetylglucosamine 1-carboxyvinyltransferase (Bacillus subtilis) | 78   | 62      | 1272           |
| 1   351   124   gi   897793   1998 gene product   8   7364   8314   gn1 PID d100585   cysteine synthett   10   9738   10310   gn1 PID d100583   stage V sporulati   16   17155   17713   gi   49105   hypoxanthine phos   12   17388   18416   gn1 PID d101315   YqfE   Bacillus su   127   20971   20612   gi   299163   alanine dehydroge   8   7407   7105   gi   41015   aspartate-tRNA   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                   | - 50          | 1786         | gi 149432           | putative [Lactococcus lactis]                                         | 78   | 63      | 1737           |
| 8   7364   8314   gn1 PID d100585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | 351           | 124          |                     | 1998 gene product (Pediococcus acidilactici)                          | 78   | 59      | 228            |
| 10   9738   10310   gnl PID d100583   stage V sporulation [B.   17715   17713   gi 49105   hypoxanthine phosphoril                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                   | 7364          | 8314         | gn1 P10 d100585     | cysteine synthetase A [Bacillus subtilis]                             | 78   | 63      | 951            |
| 10   17165   17713   91   49105   hypoxanthine phosphorian   122   17388   18416   911   PID  4101315   YqfE   Bacillus subtilian   127   120971   120612   91   1299163   alanine dehydrogenase   8   7407   7105   91   44015   aspartate-than ligase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                   | 9738          | 10310        | gn1 PID d100583     | stage V sporulation (Bacillus subtilis)                               | 78   | 28      | 573            |
| 22   17388   18416   gnl PID d101315   YqfE   Bacillus subtilii<br>  27   20971   20612   gi 299163   alanine dehydrogenase<br>  8   7407   7105   gl 41015   aspartate-tRNA ligase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | 117165        | 117713       | gi 49105            | hypoxanthine phosphoribosyltransferase (Lactococcus lactis)           | 78   | 1 65    | 549            |
| 27   20971   20612   gi 299163   alanine dehydrogenase   8   7407   7105   gi 41015   aspartate-tRNA ligase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | 117388        | 118416       |                     | YqfE (Bacillus subtilis)                                              | 78   | 9       | 1029           |
| 8   7407   7105   91   41015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                   | 120971        | 20612        | gi 299163           | alanine dehydrogenase [Bacillus subtilis]                             | 78   | 59      | 360            |
| 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                   | 1 7407        | 7105         | [g1   41015         | aspartate-tRNA ligase (Escherichia coli)                              | 78   | 55      | 303            |
| 052)   073)   0730   071   102   044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35   8              | 6257          | 5196         | 91 1657644          | Cap8E (Staphylococcus aureus)                                         | 78   | 09      | 1062           |

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

| 1   1727   1011   1727   1011   11713119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contig | ORF | Start<br>(nt) | Stop<br>(nt) | match           | match gene name                                                | # Sim | 4 ident | length<br>(nt) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|---------------|--------------|-----------------|----------------------------------------------------------------|-------|---------|----------------|
| 11   12422   13183   9 1314330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,     | =   | 9287          | 8001         | 91)1173518      | II/<br>pleu                                                    | 78    | 58      | 1287           |
| 12   2101   1410   451 183887   Integral membrane protein [Bacillus abbtilla]   78   78   78   78   78   78   78   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48     | === | 122422        | 123183       | 91   2314330    | glutamine ABC transporter, ATP-binding protein<br>cter pyloril | 86    | 58      | 762            |
| 14   11665   112712   gin  PID[d1002056   (Ambo21309) Tabbe   Bacillus subtilis]   78   78   78   78   78   78   78   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52     | - 2 | 2101          | 1430         | 91 1183887      | membrane protein (Bacillus                                     | 78    | 54      | 672            |
| 17   16673   15512   911   970   911   970   911   970   911   970   911   970   911   970   911   970   911   970   911   970   911   970   911   970   911   970   911   970   911   970   911   970   911   970   911   910   911   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   9 |        |     | 13605         | 12712        | gn1 PID d102026 | YbbP (Bacillus                                                 | 78    | 88      | 894            |
| 14   19756   19596   91 179764   Calicium Channel alpha-1D subunit (Nemo sapiems)   78   78   79   79   79   79   79   79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55     | 1   | 116637        | 15612        |                 | protein [Bacillus                                              | 78    | 51      | 1026           |
| 11   15011   14018   gill1971279   Holliday junction DMA helicase (truvb) (Hasmophilus influence)   78   78   79   6623   7972   gill197140   Galactoce-I-Puridy) (transferase (Stroptococcus mutans)   78   78   78   79   79   79   79   79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12     | !   | 19756         | 119598       | gi 179764       | alpha-1D subunit (Homo                                         | 78    | 57      | 159            |
| 9   6423   7972   Gill877423   galactose—1-Puridyl transferase (Streptococcus mutans)   78   78   78   78   78   78   78   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74     | 1   | 115031        | 14018        | gi 1573279      | (ruvB) (Haemophilus                                            | 78    | 57      | 1014           |
| 12   12125   13906   91 153744   ORF X; puttive [Streptococcus mutans]   78   78   78   78   78   78   78   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75     | 6   | 6623          | 1 7972       | 91 1877423      | galactose-1-P-uridyl transferase (Streptococcus mutans)        | 78    | 62      | 1350           |
| 1   1872   1850   91 153744   ORF X: Putative [Streptococcus mutans]   79   79   79   79   79   79   79   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81     | 112 | 12125         | 113906       | gi 1573607      | L-fucose isomerase (fuci) (Haemophilus influentae)             | 82    | 99      | 1782           |
| 18   16926   18500   91 143373   Phosphoribosyl aminoimidazole carboxy formyl formyltransferase/inosine   78   120   120712   20775   91 143164   Phosphoribosyl aminoimidazole carboxylase   FPRH-ED   IBacillus subtilis    78   12   165   676   971   PID 4101190   ORF2   Streptococcus mutans    78   18   18   18   18   18   18   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82     | -   | 2423          | 4417         | . 4             | Streptococcus                                                  | 78    | 99      | 1995           |
| 120   165   878   gml   PID d101190   ORR2 (Streptococcus mutans)   78   78   78   78   78   78   78   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83     | 118 | 16926         | 118500       | gi 143373       | aminoimidazole<br>cyclohydrolase                               | 78    | 63      | 1575           |
| 2   165   878   971   PIDIDIDIDIO   ORPZ (Streptococcus mutans)   78   78   78   78   78   78   78   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83     | 120 | 20212         | 120775       | gi 143364       | aminoimidazole carboxylase I (PUR-E) (Bacillus                 | 78    | 64      | 564            |
| 8   5863   6009   Grill   Gr | 1 92   | 1 2 | 165           | 878          | gn1 PID d101190 | ORF2 (Streptococcus mutans)                                    | 78    | 62      | 714            |
| 3   1071   2741   gi 580914   dnazX [Bacillus subtilis]   78   78   78   78   78   78   78   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86     | -   | 5863          | 6069         | 91 2331287      | release factor 2 [Bacillus                                     | 78    | 63      | 1047           |
| 4   1133   2071   gi    142463           RNA polymerase alpha-core-subunit [Bacillus subtilis]         78             1   2782   497   gi    17860163           Pullulanase   Bacteroides   thetafotaomicron           78             4   2698   3537   gi    1788016           (AE000269) NH3-dependent NAD synthetase [Eicherichia colli)           78             124   26853   25423   gi    1790077           phospho-beta-glucosidase   Clostridium long:sporum           78             5   4690   4514   gi    149464           amino peptidase   Lactococcus   lactis           78             6   4697   4110   gin   PID    e323528   putative YhaP protein   Bacillus subtilis           78             10   8651   7947   gi    149402   lactose repressor (lacR; alt.) (Lactococcus   lactis           78             4   3627   4958   gin   PID    d100172   invertase   Cymomonas mobilis           78             3   3230   3015   gi     1174237   CycK (Pseudomonas fluorescens)         78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1113   | - 3 | 1 1071        | 2741         | gi 580914       | [Bacillus                                                      | 78    | 64      | 1671           |
| 1   2762   497   gi  1561763   pullulanase [Bacteroides thetalotaomicron]   78   1   2685   3537   gi  1788036   (AE000269) NH3-dependent NAD synthetase [Escherichia coli]   78   1   2685   25423   gi  149464   amino peptidase [Clostridium long.sporum]   78   78   1   1   795   gi  639915   NADM dehydrogenase subunit (Thunbergia alata)   78   1   1   795   gi  639915   Putative Yhap protein [Bacillus subtilis]   78   78   1   1   794   gi  149402   lactose repressor (lacR; alt.) (Lactococcus lactis)   78   1   1   795   gi  149402   lactose repressor (lacR; alt.) (Lactococcus lactis)   78   1   1   795   gi  149402   lactose repressor (lacR; alt.) (Lactococcus lactis)   78   1   1   795   gi  149402   lactose repressor (lacR; alt.) (Lactococcus lactis)   78   1   1   1   795   gi  174237   Cyck (Pseudomonas fluorescens)   78   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 127    | 4   | 1133          | 2071         | gi 142463       | RNA polymerase alpha-core-subunit [Bacillus subtilis]          | 78    | 65      | 939            |
| 4   2688   3537   gil 1788036       (AE000269) NH3-dependent NAD synthetase (Escherichia coll)       78           24   26853   25423   gil 1100077       phospho-beta-glucosidase (Clostridium long:sporum)       78           5   4690   4514   gil 149464       lamino peptidase (Lactococcus lactis)       78           1   1   795   gil 639915       NADM dehydrogenase subunit (Thunbergia alaca)       78           4   4997   4110   gnl PID e323528   putative YhaP protein (Bacillus subillis)       78           10   8651   7947   gil 149402   lactose repressor (lacR; alt.) (Lactococcus lactis)       78           4   3627   4958   gnl PID d100172   invertase (Zymomonas mobilis)       78           3   3230   3015   gil 1174237   Cyck (Pseudomonas fluorescens)       78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 132    | -   | 2782          | 1 497        | 91 1561763      | pullulanase (Bacteroides thetaiotaomicron)                     | 18    | 28      | 2286           |
| 24   26853   25423   gi  1100077   phospho-beta-Glucosidase [Clostridium longisporum]   78   78   78   78   78   78   795   gi  639915   NADM dehydrogenase subunit [Thunbergia alata]   78   78   78   797   4110   gnl  PID  e323528   putative Yhap protein   Bacillus subtilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135    | 7   | 1 2698        | 1 3537       | 91/1788036      | (AE000269) NH3-dependent NAD synthetase (Escherichia coli)     | 7.8   | 99      | 840            |
| 5   4690   4514   gi   149464   amino peptidase [Lactococcus lactis]   78   78   795   gi   639915   NADM dehydrogenase subunit (Thumbergia alata)   78   78   78   797   4110   gn1   PTD   e323528   putative YhaP protein   Bacillus subtilis   797   gi   149402   lactose repressor (lack; alt.) (Lactococcus lactis   78   78   7877   4958   gn1   PTD   400072   invertase [Zymomonas mobilis   78   78   78   78   78   78   78   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140    | 124 | 26853         | 25423        | 91 1100077      |                                                                | 78    | 64      | 1431           |
| 1   1   795   91   639915   NADM dehydrogenase subunit (Thunbergia alata)   78   4997   4110   gn1   PID e323528   putative YhaP protein   Bacillus subtliis    1947   91   19402   lactose repressor (lacR; alt.) (Lactococcus lactis)   78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 150    | - 5 | 4690          | 4514         | 91 149464       | amino peptidase [Lactococcus lactis]                           | 78    | 42      | 177            |
| 4   4997   4110   gnl PID e323528   putative YhaP procein   Bacillus subilis    10   8651   7947   gi 149402   lactose repressor (lacR; alt.) (Lactococcus lactis)   78     4   3627   4958   gnl PID d100172   invertase (Zymomonas mobilis)   3   3230   3015   gi 1174237   CycK (Pseudomonas fluorescens)   78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 152    | -   | 1             | 795          | gi 639915       |                                                                | 78    | 43      | 795            |
| 10   8651   7947   gi 149402   lactose repressor (lack; alt.) (Lactococcus lactis)   78     4   3627   4958   gnl PID d100172  invertase (Zymomonas mobilis)   3   3230   3015   gi l174237   Cyck (Pseudomonas fluorescens)   78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 162    | -   | 4997          | 4110         |                 | YhaP protein [Bacillus                                         | 78    | 64      | 888            |
| 4   3627   4958   gnl PID d100172   invertase (Zymomonas mobilis)<br>  3   3230   3015   gi l174237   CycK (Pseudomonas fluorescens)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 181    | 10  | 8651          | 7947         | gi 149402       | (lack; alt.) (Lactococcus                                      | 78    | 48      | 705            |
| 3   3230   3015  91 1174237  Cyck [Pseudomonas fluorescens]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200    | -   | 3627          | 4958         |                 | invertase (Zymomonas mobilis)                                  | 7.8   | 61      | 1332           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 203    | -   | 1 3230        | 3015         | 91 1174237      | Cyck (Pseudomonas fluorescens)                                 | 18    | 57      | 216            |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig        | ORF      | Start<br>(nt) | Stop<br>(nt) | match           | match gene name                                                                                     | s sim | * ident | length<br>(nt) |
|---------------|----------|---------------|--------------|-----------------|-----------------------------------------------------------------------------------------------------|-------|---------|----------------|
| 210           | - 6      | 6869          | 7172         | 91   580902     | ORF6 gene product (Becillus subtilis)                                                               | 78    | 42      | 384            |
| 214           | 9        | 3810          | 2797         | gn1 P1D d102049 | P. haemolytica o-sialoglycoprotein endopertidase; P36175 (660)<br>transmembrane [Bacillus subtilis] | 78    | 09      | 1014           |
| 214           | =        | 6322          | 8163         | gi 1377831      | unknown (Bacillus subtilis)                                                                         | 78    | 62      | 1842           |
| 217           | -        | 6             | 7175         | gi 488430       | alcohol dehydrogenase 2 [Entamoeba histolytica]                                                     | 78    | 64      | 2709           |
| 222           | <u> </u> | 2316          | 3098         | 91 1573047      | spore germination and vegetative growth protein (gerC2) [Haemophilus influenzae]                    | 78    | 9       | 783            |
| 1 268         | -        | 742           | 8 -          | 91   517210     | putative transposase (Streptococcus pyogenes)                                                       | 78    | 65      | 735            |
| 1 276         | 17       | 1 223         | 753          | gn1 PID d100306 | ribosomal protein Li [Bacillus subtilis]                                                            | 78    | 9       | 531            |
| 312           | -        | 1567          | 1079         | 91 289261       | comE ORF2 [Bacillus subtilis]                                                                       | 78    | 54      | 489            |
| 1339          | -        | 111           | 794          | 91 1916729      | CadD (Staphylococcus aureus)                                                                        | 78    | 53      | 678            |
| 342           | 7        | 1 762         | 1 265        | 91 1842439      | phosphatidyiglycerophosphate synthase (Bacillus subtilis)                                           | 78    | 65      | 498            |
| 1 383         | -        | 137           | -            | gi 1184680      | polymucleotide phosphorylaso [Bacillus subtilis]                                                    | 78    | 64      | 735            |
|               | 115      | 111923        | 111018       | gi 1399855      | carboxyltransferase beta subunit (Symechococcus PCC7942)                                            | 7.1   | 63      | 906            |
| 8             | 7        | 1698          | 2255         | 91   149433     | putative (Lactococcus lactis)                                                                       | 7.7   | 65      | 558            |
| 17            | 1 2      | 1 6948        | 7550         | gi 520738       | comA protein  Streptococcus pneumoniae                                                              | ττ    | 60      | 603            |
| 30            | 112      | 19761         | 1 8967       | 91   1000451    | Trep (Bacillus subtilis)                                                                            | 77    | 43      | 195            |
| 36            | ==       | 111421        | 12131        | 91   1573766    | phosphoglyceromutase (gpmA) (Haemophilus influenzae)                                                | 11    | 64      | 711            |
| 55            | -        | 1 3836        | 4096         | 91 1708640      | YeaB (Bacillus subtilis)                                                                            | 77    | 55      | 261            |
| 19            | 8        | 1 8377        | 8054         | 91 1890649      | multidrug resistance protein Lark (Lactococcus lactis)                                              | 11    | 51      | 324            |
| 59            |          | 1 607         | 1254         | 91   40103      | ribosomal protein L4 (Bacillus stearothermophilus)                                                  | 77    | 63      | 648            |
| 89            | -        | 1 7509        | 7240         | 91 47551        | MRP (Streptococcus suis)                                                                            | 77    | 99      | 270            |
| 69            | -        | 1083          | 118          | gn1 PID e311493 | unknown (Bacillus subtilis)                                                                         | 77    | 57      | 996            |
| ۲۲            | 2        | 4583          | 4026         | gn1 PID e281578 | hypothetical 12.2 kd protein (Bacillus subtilis)                                                    | 11    | 09      | 558            |
| 83            | -        | 113104        | 14552        | gi 1590947      | amidophosphoribosyltransferase [Methanococcus jannaschii]                                           | 11    | 96      | 1449           |
| 94            | -        | 3006          | 5444         | gn1 P1D e329895 | (AJ000496) cyclic nucleotide-gated channel beta subunit [Rattus norvegicus]                         | 77    | 99      | 2439           |
| 96            | ===      | 8518          | 1 8880       | gi 551879       | ORF 1 [Lactococcus lactis]                                                                          | 11    | 62      | 363            |
| 66            | =        | 114082        | 112799       | 191   153737    | sugar-binding protein (Streptococcus mutans)                                                        | 77    | 19      | 1284           |
| 1 1 4 4 4 4 4 |          |               |              |                 |                                                                                                     |       |         |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

|        |           |               |              |                     | +==\F4525260==>>PP+=@PF=================================                                        | +     | *          | +1111111111    |
|--------|-----------|---------------|--------------|---------------------|-------------------------------------------------------------------------------------------------|-------|------------|----------------|
| Contig | ORF<br>1D | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                                 | mis * | * ident    | length<br>(nt) |
| 106    | - 5       | 361           | 1176         | gi 148921           | LicD protein (Haemophilus influenzae)                                                           | 1 77  | 51         | 816            |
| 108    | -         | 3152          | 4030         | gi 1574730          | tellurite resistance protein (tehB) [Haemophilus influenzae]                                    | 1.1   | 58         | 879            |
| 118    | -         | 3520          | 3131         | gi   1573900        | D-alanine permease (dagA) [Haemophilus influenzae]                                              | 7.    | 57         | 390            |
| 124    | -         | 1796          | 101          | 91   1573162        | tRNA (guanine-N1)-methyltransferase (trmD) (Haemophilus influenzae)                             | 1.7   | 88         | 726            |
| 126    |           | 6065          | 4614         | (gn1   PID  d101163 | Srb (Bacillus subtilis)                                                                         | 1.77  | 62         | 1296           |
| 128    | - 5       | 630           | 1373         | gn1   P1D   d101328 | Yqiz (Bacillus subtilis)                                                                        | 1.4   | 88         | 744            |
| 130    | -         | -             | 1287         | gn1 PID e325013     | hypothetical protein (Bacillus subtilis)                                                        | 1.1   | 61         | 1287           |
| 139    | 2         | 4388          | 3639         | 91 2293302          | (AF008220) YtqA (Bacillus subtilis)                                                             | 1,1   | 65         | 750            |
| 140    | 11        | 10601         | 9582         | 91 289284           | cysteinyl-tRNA synthetase [Bacillus subtilis]                                                   | - 1.  | 64         | 1350           |
| 140    | 81        | 19451         | 19263        | [gi 517210          | putative transposase (Streptococcus pyogenes)                                                   | 11    | 99         | 189            |
| 141    |           | 976           | 1683         | gn1 PID e157887     | URF5 (aa 1-573) (Drosophila yakuba)                                                             | 7.    | 20         | 708            |
| 141    | 4         | 2735          | 5293         | 91   556258         | secA [Listeria monocytogenes]                                                                   | 11    | 59         | 2559           |
| 144    | - 7       | 671           | 6712         |                     | lysyl-tRNA thynthetase [Bacillus subtilis]                                                      | 1.4   | 61         | 1503           |
| 1 163  | 5         | 6412          | 7398         | 191   511015        | dihydroorotate dehydrogenase A (Lactococius lactis)                                             | 1.1   | 62         | 987            |
| 164    | 0.7       | 7841          | 1074         | gn1 P1D d100964     | homologue of iron dicitrate transport ATP-binding protein FecE of E. coli<br> Racillus subtilis | ۲۲    | 52         | 768            |
| 191    | 8         | 1257          | 5791         | 91   149516         | anthranilate synthase alpha subunit [Lactococcus lactis]                                        | 1.4   | 57         | 1467           |
| 198    | 8         | 5377          | 7215         | gi 1573856          | hypothetical (Haemophilus influenzae)                                                           | 1     | 99         | 201            |
| 213    | -         | 1 202         | 462          | 91 1743860          | Brca2 [Mus'musculus]                                                                            | 1.1   | 20         | 261            |
| 250    | 7         | 231           | 509          | gn1   PID   e334776 | YlbH protein [Bacillus subtilis]                                                                | 7.7   | 9          | 279            |
| 289    | ~         | 1737          | 1276         | gn1 P1D d100947     | Ribosomal Protein L10 (Bacillus subtilis)                                                       | 1 11  | 62         | 462            |
| 1 292  | 7         | 1399          | 899          | gi 143004           | transfer RNA-Gln synthetase (Bacillus stearothermophilus)                                       | 1.11  | 58         | 732            |
| ۲ ا    | e -       | 2734          | 1166         | gn1   PID   d101824 | peptide-chain-release factor 3 [Symechocystis sp.]                                              | 196   | 53         | 1569           |
| ,      | 23        | 18474         | 18235        | gi 455157           | acyl carrier protein [Cryptomonas phi]                                                          | 16    | 57         | 240            |
| 6      | 8         | 5706          | 4342         | gi 1146247          | asparaginyl-tRNA synthetase (Bacillus suttilis)                                                 | 16    | 61         | 1365           |
| 10     | 2         | 4531          | 4385         | gn1 PID e314495     | hypothetical protein (Clostridium perfringens)                                                  | 16    | 53         | 147            |
| 18     | 7         | 1615          | 842          | gi 1591672          | phosphate transport system ATP-binding protein (Methanococcus jannaschil)                       | 1 9/  | 95         | 774            |
|        |           |               |              |                     | **************************************                                                          |       | ********** | *              |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| 13   1375   2882   Gill77316   CapSG (Stephy)coccus aureus  76   1882   2882   Gill77316   CapSG (Stephy)coccus aureus  76   1882   2882   Gill77316   CapSG (Stephy)coccus aureus  76   2882   Gill77316   CapSG (Stephy)coccus aureus  78   2882   Gill77316   CapSG (Stephy)coccus aureus  79   2882   CapSG (Stephy)coccus aureus  2882   CapSG (Stephy)coccus | Contig | ORF                                     | Start  | Stop     | match             | match gene name                                                            | E is | * ident | length<br>(nt) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|--------|----------|-------------------|----------------------------------------------------------------------------|------|---------|----------------|
| 1368   1313   12167   91 1713146   Cap56   Steaphylococcus aveces    16   1113   12167   91 1713146   Cap56   Steaphylococcus aveces    16   1113   12167   91 1714138   1410000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ;      |                                         | 75776  | 128173   | [an] [PID] e13389 | translation initiation factor IF3 (AA 1-172) (Bacillus stearothermophilus) | 96   | 64      | 378            |
| 11   11   11   11   11   11   11   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   1  | -                                       | 1869   | 2682     | qi 1773346        | Cap5G (Staphylococcus aureus)                                              | 96   | 61      | 1188           |
| 12   1281   1378   91 142531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8      | 128                                     | 21113  | 21787    | 91 2314328        |                                                                            | 76   | 52      | 675            |
| 11531   10573   gni PID c201110   GnaB   Excherichia colii   76   76   784   6559   gil1200661   10188   Excherichia colii   76   78   78   78   78   78   78   78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55     | 112                                     | 12881  | 113786   | gi 142521         |                                                                            | 76   | 58      | 906            |
| 18   1824   6555   gil 200561   Ol88   Excherichia colii     16   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :   5  | 1 2                                     | 111521 | 110571   | 283110            |                                                                            | 16   | 61      | 951            |
| 1   13.2   2.006   20.95   gani   propenditional hypothetical procein (RA 1-66) [Bacillus subtilis]   76   76   76   76   76   76   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77   77 | 57     | 6                                       | 7824   | 6559     | 91 290561         | ols8 [Escherichia coll]                                                    | 76   | 47      | 1266           |
| 1,   1,   1,   1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62     |                                         | 2406   | 2095     |                   | hypothetical protein (Bacillus subtilis)                                   | 76   | 59      | 312            |
| 1   1328   1331   gnn    Prop e280233   anabolic confithing cacbabopytransferase [Lactobacillus plantarum]   76     1   1339   1326   gnn    Prop e280239   unknown [Mycobacterium tuberculosis]   76     2   1339   1327   gnn    Prop e240629   unknown [Mycobacterium tuberculosis]   76     3   1343   1327   gnn    Prop e240639   c. thermocallum beta-glucosidase; PA6208 [1885] [Bacillus subtilis]   76     4   1369   gnn    Prop e240639   c. thermocallum beta-glucosidase; PA6208 [1885] [Bacillus subtilis]   76     5   1441   13409   gnn    prop e240639   c. thermocallum beta-glucosidase; PA6208 [1885] [Bacillus subtilis]   76     6   1341   gnn    gnn    prop e240639   gnn    | 65     | 6                                       | 1 4223 | 4441     | 91 40148          | [Bacillus                                                                  | 76   | 58      | 219            |
| 12   1339   7267   gni  PiD diot420   Pyrimidine nucleoside phosphorylase (Bacillus stearothermophilus)   76     12   7339   7267   gni  PiD cio14629   unknown (Mycobacterium tuberculosis)   76     13   7039   gni  PiD cio248   C. thermocollum beta-glucosidase; PS208 (985)   Bacillus subtilis)   76     15   16019   16996   gii  1314000   (Accobacterium tuberculosis)   76     15   16019   16996   gii  1314000   (Accobacterium tuberculosis)   76     16   15019   16996   gii  131300   D-alanine permease (dagh)   Hamophilus influenzael   76     16   15019   16996   gii  13100   pubplisis   AroF   Bacillus subtilis    76     16   15744   15110   gril piD cio2500   putative Gak protein [Bacillus subtilis]   76     16   15754   15110   gril piD cio2500   putative Gak protein [Bacillus subtilis]   76     1   151   1518   gii  151401   preumococcal surface protein A   Streptococcus pneumoniael   76     1   151   1518   gii  15141   preumococcal surface protein A   Streptococcus pneumoniael   76     1   151   1518   gii  15141   preumococcal surface protein A   Streptococcus pneumoniael   76     1   151   1519   gii  15141   preumococcal surface protein A   Streptococcus pneumoniael   76     1   151   1518   gii  15141   preumococcal surface protein A   Streptococcus pneumoniael   76     1   151   1518   gii  15141   preumococcal surface protein A   Streptococcus pneumoniael   76     1   151   1518   gii  151414   purine nucleoside phosphorylase   Bacillus subtilis   76     10   1511   1512   gii  15141   purine nucleoside phosphorylase   Bacillus subtilis   76     11   11   11   71   71   71   71                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.8    |                                         | 1328   | 1 2371   |                   | anabolic ornithine carbamoyltransferase [Lactobacillus plantarum]          | 76   | 61      | 1044           |
| 12   1819   1267   gni FirD e413529   unknown [Mycobacterium tuberculosis]   76   18   18   18   18   18   18   18   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69     | 60                                      | 7297   | 9009     |                   |                                                                            | 76   | 61      | 1293           |
| 5   9433   7039   gni PID 4102048   C. thermocellum beta-glucosidase; P26208 [985] [Bacillus subtilis]   76     5   7641   7936   gi 2314030   (AE000599) conserved hypothatical protein [Helicobacter pylori]   76     15   16019   16596   gi 1531900   D-alanine permease (dagA) [Haemophilus influenzee]   76     16   13409   12231   gi 143374   phosphorbosyl glycinamide synthetase (PUR-D; gtg start codon) [Bacillus   76     1   3   1442   gi 153804   Arof [Bacillus subtilis]   76     1   3   1442   gi 153804   aucrose-6-phosphate bydrolase [Streptococcus mutans]   76     1   51   155   gi 153804   aucrose-6-phosphate bydrolase [Streptococcus mutans]   76     2   2151   1678   gi 153841   pneumococcal surface protein A [Streptococcus pneumoniae]   76     2   2154   5895   gi 1314397   CipC ArPase [Listeria monocytogenes]   76     3   7797   gi 941944   purine nucleoside phosphorylase [Bacillus subtilis]   76     4   786   5912   gi  674100   [Wycoplasma pneumoniae]   76     5   86   86   86   86   86   86   86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12     | 12                                      | 7839   | 1 7267   |                   |                                                                            | 76   | 53      | 573            |
| 15   16019   16396   91 2134000   (ARDD00599) conserved hypothetical protein [Helicobacter pylori)   76     15   16019   16396   91 1573900   D-alanine permease (dagA) [Haemophilus influenzed]   76     19   18616   19884   91 143374   phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) [Bacillus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74     | .   -                                   | 1 8433 | 7039     | d102048           | (c. thermocellum beta-glucosidase; P26208 (985) [Bacillus subtilis]        | 76   | 09      | 1395           |
| 15   16019   16936   gi    153390   D-alanine permease (dagA)   Haemophilus influenzael   76   18616   19884   gi    143374   phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) [Bacillus 76   14   13409   12231   gi    143806   Arof (Bacillus subtilis)   76   14   13409   12231   gi    153804   aucrose-6-phosphate hydrolase (Streptococcus mutans)   76   15   1554   15110   gnl   PID  e323500   putative Gmk protein (Bacillus subtilis)   76   15   1559   gi    1534820   1.4-alpha-glucan branching enzyme (glgB) (Haemophilus influenzael   76   15   15   15   15   16   gnl     144313   6.0 kd ORF (Plasmid ColEl)   76   14   1759   gnl     153841   pneumococcal surface protein A (Streptococcus pneumoniael   76   14   17   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80     | -                                       | 7643   | 7936     | 91 2314030        | conserved hypothetical protein (Hellcobacter                               | 76   | 61      | 294            |
| 19   18616   19884   gi  43374   phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) [Bacillus aubtilis]   11409   12231   gi  43806   ArcF (Bacillus subtilis]   1   3   1442   gi  53804   sucrose-6-phosphate hydrolase [Streptococcus mutans]   1   4   1769   1539   gi  574820   1,4-alpha-glucan branching enzyme (glgB) [Haemophilus influenzae]   1   51   1658   gi  1574820   1,4-alpha-glucan branching enzyme (glgB) [Haemophilus influenzae]   2   2151   1678   gi  1314297   ClpC ATPase [Listerla monocytogenes]   2   2151   2156   2932   gii  2101328   Yqiz (Bacillus subtilis)   10   6933   7797   gi  94494   purine nucleoside phosphorylase (Bacillus subtilis)   11   6186   5812   gi  674310   (AE000058) Mycoplasma pneumoniae, MG085 hymolog, from M. genitalium   11   6186   5812   gi  674310   (AE000058) Mycoplasma pneumoniae, MG085 hymolog, from M. genitalium   11   12   12   12   12   12   12   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82     | 115                                     | 116019 | 16996    | gi 1573900        |                                                                            | 9,6  | 95      | 876            |
| 14   13409   12231   gi 143806   AroF (Bacillus subtilis)   1442   gi 153804   aucrose-6-phosphate hydrolase (Streptococcus mutans)   1554   15110   gnl PID e323500   putative Gmk protein (Bacillus subtilis)   1569   gi 1574820   1.4-alpha-glucan branching enzyme (glgB) (Haemophilus influenzael   1   51   1678   gi 1574820   1.4-alpha-glucan branching enzyme (glgB) (Haemophilus influenzael   2   2151   1678   gi 153841   pneumococcal surface protein A [Streptococcus pneumoniae]   2   2154   5895   gi 1314297   ClpC ATPase (Listeria monocytogenes)   2   2156   2932   gn  PID d101328   Yqiz (Bacillus subtilis)   10   6973   7797   gi 944944   purine nucleoside phosphorylase (Bacillus subtilis)   11   6186   5812   gi 1674310   (AE000058) Mycoplasma pneumoniae, MG085 hamolog, from M. genitalium   11   6186   5812   gi 1674310   (AE000058) Mycoplasma pneumoniae, MG085 hamolog, from M. genitalium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83     | -119                                    | 18616  | 19884    |                   | glycinamide synthetase (PUR-D; gtg                                         | 96   | 09      | 1269           |
| 1   3   1442   91 153804   sucrose-6-phosphate hydrolase [Streptococcus mutans]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86     | ======================================= | 113409 | 112231   | gi 143806         |                                                                            | 76   | 58      | 1179           |
| 16   15754   15110   gn1 PID e323500   putative Omk protein (Bacillus subtilis)     4   1769   1539   gi 1574820   1.4-alpha-glucan branching enzyme (glgB) [Haemophilus influenzae]     1   51   365   gi 144113   6.0 kd ORF   Plasmid ColE1]     2   2151   1678   gi 153441   pneumococcal surface protein A [Streptococcus pneumoniae]     6   3442   5895   gi 1314297   Cipc ArPase [Listerla monocytogenes]     7   2156   2932   gn1 PID d101328   Yqiz (Bacillus subtilis)     8   119   6973   7797   gi 944944   purine nucleoside phosphorylase (Bacillus subtilis)     9   616   5812   gi 1674310   (AE000058) Mycoplasma pneumoniae, MGO85 hamolog, from M. genitalium     10   6873   7797   gi 1674310   (AE000058) Mycoplasma pneumoniae, MGO85 hamolog, from M. genitalium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87     | -                                       | - m    | 1442     | 191115380         | sucrose-6-phosphate hydrolase (Streptococcus mutans)                       | 76   | 65      | 1440           |
| 4   1769   1539   gi 1574820   1.4-alpha-glucan branching enzyme (glgB) [Haemophilus influenzael]   1   51   365   gi 144113   6.0 kd ORP [Plasmid ColE1]   2   2151   1678   gi 153841   pneumococcal surface protein A [Streptococcus pneumoniae]   6   1342   5895   gi 1314297   ClDC ATPase [Listeria monocytogenes]   2   2156   2332   gn  PiD  d101328   YqiZ (Bacillus subtilis)   10   6973   7797   gi 944944   purine nucleoside phosphorylase [Bacillus subtilis]   11   6186   5812   gi 1674310   [AE000058] Mycoplasma pneumoniae, MGO85 hamolog, from M. genitalium   Hycoplasma pneumoniae]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87     | 91                                      | 115754 | 115110   |                   | putative Omk protein (Bacillus subtills)                                   | 76   | 98      | 645            |
| 1   51   1658   gi   1443113   6.0 kd ORF   Plassmid ColEL]   1678   gi   153841   pneumococcal surface protein A   Streptococcus pneumoniae]   6   1342   5895   gi   1314297   Cipc ATPase   Listerla monocytogenes    2   2156   2932   gn1   PID   d101328   Yqiz   (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93     | -                                       | 1769   | 1539     | gi 1574820        | enzyme (glgB)                                                              | 96   | 46      | 231            |
| 2   2151   1678   gi 153841   pneumococcal surface protein A [Streptococcus pneumoniae]   6   1442   5895   gi 1314297   ClpC ATPase [Listeria monocytogenes]   2   2156   2932   gn  PID d101328   Yqiz [Bacillus subtilis]   10   6973   7797   gi 944944   purine nucleoside phosphorylase [Bacillus subtilis]   11   6186   5812   gi 1674310   [ARC00058] Mycoplasma pneumoniae, Mc085 hamolog, from M. genitalium   Mycoplasma pneumoniae]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94     | -                                       | 121    | 365      |                   | 6.0 kd ORF [Plasmid ColE1]                                                 | 9/   | 73      | 315            |
| 6   1442   5895   gi 1314297   CipC ATPase (Listeria monocytogenes)   2   2156   2292   gn PID d101328   Yqiz (Bacillus subtilis)   10   6973   7797   gi 944944   purine nucleoside phosphorylase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116    | 7                                       | 2151   | 1678     | gi 153841         | surface                                                                    | 76   | 59      | 474            |
| 2   2156   2932  gn1 PID d101328  Yqiz (Bacillus subtilis)<br> 10   6973   7797  gi 944944   purine nucleoside phosphorylase (Bacillus subtilis)<br> 11   6186   5812  gi 1674310   (AE000058) Mycoplasma pneumoniae, Mc085 hamolog, from M. genitalium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123    | 9                                       | 3442   | 5685     | gi 1314297        | [CipC ATPase [Listeria monocytogenes]                                      | 76   | 65      | 2454           |
| 10   6973   7797   gi  944944   purine nucleoside phosphorylase (Bacillus subtilis)<br>  11   6186   5812   gi   1674310   (AE000058) Mycoplasma pneumoniae, MG085 homolog, from M. genitalium   Mycoplasma pneumoniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126    | 2                                       | 2156   | <u> </u> |                   | -                                                                          | 76   | 19      | 777            |
| 6186   5812   gi   1674310   (AE000058) Mycoplasma pneumoniae, MG085 hamolog, from M. genitalium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128    | 100                                     | 1 6973 | 1 7797   | i                 | purine nucleoside phosphorylase (Bacillus subtilis)                        | 76   | 09      | 825            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 131    | =-                                      | 6186   | 5812     | gi 1674           | Mycoplasma pneumoniae, MG085 homolog, from M. a pneumoniae]                | 92   | 47      | 375            |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF | Start  | Stop   | match               | match gene name                                                                                    | e sia | * ident | length (nt) |
|--------|-----|--------|--------|---------------------|----------------------------------------------------------------------------------------------------|-------|---------|-------------|
| 139    | 4   | 3641   | 3192   | 91 2293302          | (AF008220) YtqA (Bacillus subtilis)                                                                | 76    | 53      | 450         |
| 140    | Ĭ   | 14872  | 12536  | 91 1184680          | polymucleotide phosphorylase (Bacillus subtilis)                                                   | 76    | 62      | 2337        |
| 143    | - 2 | 2583   | 3905   | gi 143795           | transfer RNA-Tyr synthetase (Bacillus subtllis)                                                    | 76    | 61      | 1323        |
| 170    | 9   | 5605   | 6114   |                     | yog0 (Bacillus subtilis)                                                                           | 9/    | 44      | 1020        |
| 180    | - 5 | 1927   | 1 557  |                     | ORF 821 (aa 1-821) (Bacillus subtilis)                                                             | 96    | 53      | 1371        |
| 191    | 7   | 1 5815 | 5228   | gi 551880           | anthranilate synthase beta subunit [Lactococcus lactis]                                            | 9,    | 61      | 588         |
| 195    |     | 3829   | 2444   | gi 2149905          | D-glutamic acid adding enzyme [Enterococcus faecalis]                                              | 76    | 09      | 1386        |
| 200    | -   | 1914   | 3629   | gi 431272           | lysis protein (Bacillus subtilis)                                                                  | 16    | 58      | 1716        |
| 201    | -   | 431    | 1 207  | gi 2208998          | dextran glucosidase DexS  Streptococcus :uis                                                       | 16    | 57      | 225         |
| 214    | 2   | 1283   | 2380   | gi 663278           | transposase (Streptococcus pneumoniae)                                                             | 16    | 55      | 1 8601      |
| 1 225  | E - | 2338   | 3411   | 91 1552775          | ATP-binding protein (Escherichia coli)                                                             | 26    | 96      | 1074        |
| 233    | -   | 7      | 1 724  | gi 1163115          | neuraminidase B (Streptococcus pneumoniau)                                                         | 92    | 9       | 723         |
| 347    | -   | 523    | 38     | gi 537033           | ORF_E356 [Escherichia coli)                                                                        | 94    | 09      | 486         |
| 356    | 2   | 842    | 165    | gi 2149905          | D-glutamic acid adding enzyme [Enterococcus faecalis]                                              | 76    | 19      | 678         |
| 366    | -   | 1 734  | 348    | 91   149520         | phosphoribosyl anthranilate isomerase (Luctococcus lactis)                                         | 76    | 69      | 387         |
| 5      | 8   | 112599 | 111484 | 91 1574293          | [fimbrial transcription regulation repressor (pilB) [Haemophilus influenzae]                       | 75    | 61      | 1116        |
| 9      | 113 | 112553 | 111894 | gn1 P1D d102050     | ydlH (Bacillus subtilis)                                                                           | 75    | 51      | 099         |
| 6      | -10 | 1 7282 | 1 6062 | gi 142538           | aspartate aminotransferase (Bacillus sp.)                                                          | 75    | 55      | 1221        |
| 100    | 112 | 1 8080 | 1 7940 | gi 149493           | SCRFI methylase (Lactococcus lactis)                                                               | 75    | 95      | 141         |
| 18     | - 5 | 4266   | 3301   |                     | YqgH (Bacillus subtilis)                                                                           | 75    | 52      | 996         |
| 22     |     | 1838   | 2728   | 91(1373157          | orf-X; hypothetical protein, Method: conceptual translation supplied by author [Bacillus subtills] | 75    | 62      | 891         |
| 30     | =   | 1 9015 | 1 7828 | 91 153801           | enzyme scr-II (Streptococcus mutans)                                                               | 75    | 64      | 1188        |
| 31     | - 5 | 1 2362 | 1 2030 | gi 2293211          | (AF008220) putative thioredoxin (Bacillus subtilis)                                                | 75    | 53      | 333         |
| 32     | 6   | 7484   | 8329   | gn1   Pro   d100560 | [formamidopyrimidine-DNA glycosylase [Streptococcus mutans]                                        | 75    | 61      | 876         |
| 33     | -   | 2671   | 1448   | gi 413976           | ipa-52r gene product (Bacillus subtilis)                                                           | 75    | 53      | 288         |
| 33     | 100 | 6470   | 1 5769 | gi 533105           | unknown (Bacillus subtills)                                                                        | 75    | 95      | 702         |
|        |     |        |        |                     |                                                                                                    |       |         |             |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig<br>ID | ORF | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                                                                      | eis * | * ident | length<br>(nt) |
|--------------|-----|---------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| 33           | 112 | 6878          | 7183         | pir   A00205   FECL | ferredoxin [4Fe-4S] - Clostridium thermaceticum                                                                                      | 75    | 95      | 306            |
| 36           | -   | 181           | 7            | 91   2088739        | (AF003141) strong similarity to the FABF/P2/CRBP/CRABP family of transporters (Caenorhabditis elegans)                               | 75    | £       | 180            |
| 38           | 22  | 14510         | (15379       | 91 1574058          | hypothetical [Haemophilus influenzae]                                                                                                | 75    | 96      | 870            |
| 48           | 3   | 23398         | 24066        | gi 1930092          | outer membrane protein (Campylobacter jejuni)                                                                                        | 7.5   | 95      | 699            |
| 51           | -   | ~             | 319          | gi   43985          | nifS-like gene (Lactobacillus delbrueckii]                                                                                           | 75    | 55      | 318            |
| 5.1          | 9   | 8318          | 11683        | 91   537192         | CG Site No. 620; alternate gene names hs, hsp. hsr, rmx apparent frameshift<br>in GenBank Accession Number X06545 [Escherichia coli] | 25    | 20      | 3366           |
| 54           | 81  | 19566         | 20759        | 191   666069        | orf2 gene product (Lactobacillus leichmannii)                                                                                        | 75    | 88      | 1194           |
| 57           | 6   | 8448          | 7822         | 91 290561           | o188 [Escherichia coli]                                                                                                              | 75    | 20      | 627            |
| 65           | =   | 1 6072        | 6356         | 91 606241           | 10S ribosomal subunit protein S14 [Escherichia coli]                                                                                 | 75    | 64      | 285            |
| 7.0          | -   | 1706          | 2472         | 91/125617           | adenine phosphoribosyltransferase (Bacillus subtilis)                                                                                | 75    | 57      | 009            |
| 11           | 24  | 130399        | 29404        | 91 1574390          | [C4-dicarboxylate transport protein [Haemophilus influenzae]                                                                         | 75    | 1 25    | 966            |
| 7.3          | 7   | 910           | 455          | gn1 P1D e249656     | YneT (Bacillus subtilis)                                                                                                             | 75    | 57      | 456            |
| 79           |     | 1810          | 491          | 91   1146219        | [28.2% of identity to the Escherichia coli GTP-binding protein Era; putative                                                         | 75    | 59      | 1320           |
| 82           | 9   | 6360          | 6536         | 91   1655715        | BztD [Rhodobacter capsulatus]                                                                                                        | 75    | 55      | 177            |
| 83           | 9   | 1938          | 2975         | gn1 PID e323529     | putative PlsX protein (Bacillus subtilis]                                                                                            | 75    | 26      | 1038           |
| 93           | =   | 7368          | 5317         | gi 39989            | methionyl-tRNA synthetase [Bacillus stearothermophilus]                                                                              | 1.57  | 88      | 2022           |
| 93           | Ξ   | 9409          | 8699         | gi 1591493          | glutamine transport ATP-binding protein () [Methanococcus jannaschii]                                                                | 75    | 54      | 111            |
| 95           | -   | 1795          | 47           | gn1 PID e323510     | YloV protein (Bacillus subtilis)                                                                                                     | 27    | 57      | 1749           |
| 103          | 7   | 362           | 1186         | gn1 PID e266928     | unknown [Mycobacterium tuberculosis]                                                                                                 | 75    | 64      | 825            |
| 104          | -   | 691           | 915          | 91 460026           | repressor protein (Streptococcus pneumoniae)                                                                                         | 75    | 54      | 225            |
| 113          | 5   | 2951          | 3883         | gn1 P1D d101119     | ABC transporter subunit [Symechocystis sp.]                                                                                          | 75    | 55      | 933            |
| 121          | -   | 320           | 1390         | gi 2145131          | repressor of class I heat shock gene expression HrcA [Streptococcus mutans]                                                          | 75    | 58      | 1071           |
| 127          | 9   | 2614          | 3000         | gi 1500451          | H. Jannaschii predicted coding region MJ1558 [Methanococcus jannaschii]                                                              | 75    | 44      | 387            |
| 137          | 118 | 10082         | 10687        | 91   191116         | P-glycoprotein 5 (Entamoeba histolytica)                                                                                             | 75    | 52      | 909            |
| 149          | =   | 8499          | 9338         | gn1 Pr0 d100582     | [unknown [Bacillus subtilis]                                                                                                         | 75    | 55      | 840            |
| 1            |     | į             | : ! !        |                     | →                                                                                                                                    | +     | *       |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| 151   6   9100   158   1   986   172   9   5653   172   9   7139   173   1   261   174   174   174   174   174   174   174   175   174   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175 | 7673     |                  |                                                                                     | -   | -    | (nt)   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-------------------------------------------------------------------------------------|-----|------|--------|
| 70 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 91 40467         | HadS polypeptide, part of Cfra family [Citrobacter freundii]                        | 75  | 57   | 1428   |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>۔</u> | [gn1 PID e253891 | UDP-glucose 4-epimerase (Bacillus subtilis)                                         | 75  | 63   | 984    |
| 0 7 7 7 7 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6774     | gi 142978        | glycerol dehydrogenase [Bacillus stearothermophilus]                                | 75  | 56   | 1122   |
| 70 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9730     | gn1 P1D e268456  | unknown (Mycobacterium tuberculosis                                                 | 75  | 58   | 2592   |
| 0 0 7 F F F F C 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96       | gn1 PID e236469  | [C10C5.6 [Caenorhabditis elegans]                                                   | 75  | 50   | 183    |
| 0 0 7 7 7 7 8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2014     | 91 1574806       | spermidine/putrescine transport ATP-binding protein (potA) [Haemophilus influenzae] | 25  | 95   | 1053   |
| 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4213     | 91 149518        | phosphoribosyl anthranilate transferase (Lactococcus lactis)                        | 75  | 61   | 1023 [ |
| 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1181     | gi 231458B       | (AE000642) conserved hypothetical protein [Helicobacter pylori]                     | 75  | 9    | 594    |
| 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 153      | gi 40173         | homolog of E.coli ribosomal protein L21 (Bacillus subtilis)                         | 75  | 57   | 153    |
| 20 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 418      | gi 2293259       | (AF008220) Ytq1 (Bacillus subtilis)                                                 | 75  | 59   | 417    |
| 2   20   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 151      | 96161119198      | unknown protein (Bacillus subtilis)                                                 | 75  | 50   | 402    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 3827   | 91 40011         | ORF17 (AA 1-161) [Bacillus subtilis]                                                | 75  | - 89 | 270    |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 628      | gi 410137        | ORFXI] [Bacillus subtilis]                                                          | 75  | 58   | 492    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117560   | 91   2293323     | (AF008220) YtdI (Bacillus subtilis)                                                 | 74  | 53   | 840    |
| 1 7   6   4682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6052     | 91 1354211       | PET112-like protein (Bacillus subtilis)                                             | 74  | - 09 | 1371   |
| 18   4   3341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2427     |                  | Yqg1 (Bacillus subtilis)                                                            | 74  | 54   | 915    |
| 21   6   5885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4800     | gi 1072381       | glutamyl-aminopeptidase (Lactococcus lactis)                                        | 74  | 59   | 1086   |
| 24   2   739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 548      | gi 2314762       | (AE000655) ABC transporter, permease protein (yaeE) (Helicobacter pylori)           | 74  | 46   | 192    |
| 25   1   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 367      | gn1 PID d100932  | H20-forming NADH Oxidase  Streptococcus mutans                                      | 74  | 63   | 366    |
| 38   18   11432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12964    | gi 537034        | ORF_0488 (Escherichia coli)                                                         | 74  | 57   | 1533   |
| 48  10   8924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6999     | gi 1513069       | P-type adenosine triphosphatase [Listeria monocytogenes]                            | 74  | 53   | 2256   |
| 55   11   11964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11401    | gn1 PID e283110  | [femD [Staphylococcus aureus]                                                       | 74  | . 64 | 564    |
| 61 2 1782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 427      | gi 2293216       | (AF008220) putative UDP-N-acetylmuramate-alanine ligase (Bacillus subtilis)         | 74  | 55   | 1356   |
| 76   10   9414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8065     | gn1 PID d101325  | YqiB (Bacillus subtilis)                                                            | 74  | 54   | 1350   |
| 83   2   666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 926      | pir C33496 C334  | hisC homolog - Bacillus subtilis                                                    | 74  | 55   | 261    |
| 86   9   8985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8080     | gi 683585        | prephenate dehydratase [Lactococcus lactis]                                         | 7.4 | 55   | 906    |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

|        |        |               | 14141        |                     |                                                                                                                         |       |         |             |
|--------|--------|---------------|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|-------|---------|-------------|
| Contig | g ORF  | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                                                         | E SIE | * ident | length (nt) |
| 1 102  | ·s     | 5005          | 5652         | 91 143394           | OMP-PRPP transferase (Bacillus subtilis)                                                                                | 74    | 25      | 648         |
| 103    | -      | 4364          | 13267        | gn1 PID e323524     | [Ylow protein (Bacillus subtilis]                                                                                       | 74    | 62      | 1098        |
| 108    | -      | 6864          | 1592         | gn1 PID e257631     | methyltransferase (Lactococcus lactis)                                                                                  | 74    | 95      | 129         |
| 131    | - 2    | 478           | 146          | gn1 PID d101320     | Yggz [Bacillus subtilis]                                                                                                | 74    | - 45    | 333         |
| 133    | 2      | 1380          | 919          | gn1 PID e313025     | hypothetical protein [Bacillus subtilis]                                                                                | 74    | 7 09 1  | 462         |
| 137    | 6      | 6167          | 1 6787       | gn1 PID d100479     | Na+ -ATPase subunit D (Enterococcus hirae)                                                                              | 74    | 53      | 621         |
| 149    | 4      | 1 3008        | 1 3883       | gn1 PtD d100581     | high level kasgamycin resistance (Bacillus subtilis)                                                                    | 74    | 1 88 1  | 876         |
| 157    | 7      | 243           | 824          | gi   1573373        | methylated-DNAprotein-cysteine methyltransferase (dat1) [Haemophilus influenzae]                                        | 74    | 88      | 582         |
| 164    | 9      | 13515         | 4249         | gi 410131           | ORFX7 (Bacillus subtilis)                                                                                               | 74    | 48      | 735         |
| 167    | -      | 5446          | 5201         | 91 413927           | ipa-3r gene product [Bacillus subtilis]                                                                                 | 7.    | 55      | 246         |
| 171    | -<br>- | -             | 1818         | gn1  P1D d102251    | beta-galactosidase (Bacillus circulans)                                                                                 | 74    | 62      | 1818        |
| 172    | -      | 1064          | 2392         | 91 466474           | cellobiose phosphotransferase enzyme II'' [Bacillus stearothermophilus]                                                 | 74    | - 05    | 1329        |
| 185    |        | 326           | m            | gi   1573646        | Mg(2+) transport ATPase protein C (mgtC) (SP:P22037) [Haemophilus influenzae]                                           | 74    | 89      | 324         |
| 188    | 7      | 1089          | 2018         | gi 1573008          | ATP dependent translocator homolog (msbA) [Haemophilus influenzae]                                                      | 74    | - **    | 930         |
| 189    | Ξ      | 6491          | 7174         | gi 1661199          | sakacin A production response regulator (Streptococcus mutans)                                                          | 74    | 1 09    | 684         |
| 210    | 2      | 520           | 1287         | gi 2293207          | (AF008220) YtmQ [Bacillus subtilis]                                                                                     | 74    | 1 09    | 1 891       |
| 261    | -      | 836           | 192          | 91 666983           | putative ATP binding subunit (Bacillus subtilis)                                                                        | 74    | 55      | 645         |
| 263    |        | 1619          | 3655         | 91 663232           | Similarity with S. cerevisiae hypothetical 137.7 kD protein in subtelomeric Y' repeat region [Saccharomyces cerevisiae] | 74    | 42      | 2037        |
| 265    | 7      | 844           | 1227         | 91 49272            | Asparaginase (Bacillus licheniformis]                                                                                   | 74    | 64      | 384         |
| 368    | -      | 7             | 942          | gi 603998           | unknown (Saccharomyces cerevisiae)                                                                                      | 74    | 39      | 942         |
| 7      | 116    | 13357         | 11921        | gn1 PID d101324     | Yqhx (Bacillus subtilis)                                                                                                | 13    | 57      | 1437        |
| 17     | 01     | 5706          | 5449         | gn1 PrD e305362     | unnamed protein product (Streptococcus thermophilus)                                                                    | 13    | 47      | 258         |
| =      | ~      | 525           | 244          |                     | single strand DNA binding protein [Bacillus subtilis]                                                                   | 73    |         | 279         |
| 32     | 9      | 5667          | 6194         |                     | YqfG (Bacillus subtilis)                                                                                                | - 67  | 58      | 528         |
| 34     | 51     | 110281        | 9790         | gn1   PID   d102151 | (AB001684) ORF42c [Chlorella vulgaris]                                                                                  | 73    | 46      | 492         |
|        |        |               |              |                     |                                                                                                                         | +     | -+      | +           |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig   | ORF          | Start  | Stop   | match                                   | match yene name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Eis   | • ident | length (nt) |
|----------|--------------|--------|--------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------------|
| <u>a</u> | <u>a   ;</u> | (100)  | (100)  |                                         | ribo[lavin synthase alpha subunit [Actinohacillus pleuropneumonlae]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73    | 55      | 651         |
| 40       | 2            | 0/86   | 226    | 110000000000000000000000000000000000000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73    | 09      | 2754        |
| 95       | - 1          | 3592   | 839    | corornioral rubi                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 67  | 52      | 606         |
| 55       | 118          | 17494  | 16586  | lgni Prujezosogo                        | unkitoni introductioni de la contra del la contra de la contra del la contra del la contra de la contra de la contra de la contra del la contra del la contra de la contra del la contra | 73    | 1 09    | 555         |
| 9        | 116          | 1 7213 | 1 7767 | gi 143419                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 62  | 52      | 360         |
| 99       | -            | 1 3300 | 1 3659 | gn1   PID   e269883                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2   1 |         | 1 2 2 2     |
| 0,4      | 01           | 1 5557 | 5733   | gi 857631                               | envelope protein (Human immunodeficiency virus type 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13    | 0       |             |
| 1,1      | -            | 6133   | 8262   | gn1 PID e322063                         | ss-1,4-galactosyltransferase (Streptococcus pneumoniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73    | 45      | 2130        |
| 12       | -            | - 3    | 951    | gi 2293177                              | (AF008220) transporter (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73    | 20      | 849         |
| 1 76     |              | 1 7019 | 6195   | gn1  P10   d101325                      | YqiF (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5     | 99      | 825         |
| 92       |              | 110009 | 9533   | 91 1573086                              | uridine kinase (uridine monophosphokinase; (udk) (Haemophilus influenzae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | £ .   | 54      | 477         |
| 0        | -            | 8113   | 9372   | 91 1377823                              | aminopeptidase [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73    | 09      | 1260        |
| 5        |              | 3389   | 1668   | gn1   P1D   d101954                     | dihydroxyacid dehydratase (Synechocystls "p.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13    | 54      | 1722        |
|          |              | 6912   | 7619   | [gn1   PID   e314991                    | FirsE (Mycobacterium tuberculosis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13    | 54      | 1 802       |
| 900      | 1 =          | 110928 | 110440 | fail388109                              | regulatory protein [Enterococcus faecalis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23    | 54      | 489         |
|          | 4            | 2191   | 4222   | -+                                      | orf1091 [Streptococcus thermophilus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73    | 63      | 591         |
|          |              | 1626   | 495    | 1011147326                              | transport protein (Escherichia coli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22    | 09      | 1182        |
| 007      |              | 96361  | 11903  | 15(1) E53402 [E534                      | serine O-acetyltransferase (EC 2.3.1.30) " Bacillus stearothermophilus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13    | 55      | 969         |
| 162      | 3   5        | 5701   | 4991   |                                         | putative that protein (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73    | 08      | 711         |
| 164      | -            | 2323   | 2790   | gi 1592076                              | hypothetical protein (SP:P2576B) (Methano:occus jannaschii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73    | 52      | 468         |
| 164      |              | 4815   | 5546   | gi 410137                               | ORFX13 (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13    | 26      | 132         |
| 071      | -            | 4394   | 1 5302 | gn1   PID   d100959                     | homologue of unidentified protein of E. coli (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13    | 46      | 606         |
| 178      | 7            | 3893   | 4855   | gi 46242                                | nodulation protein B, S'end (Rhizobium lo::1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23    | 56      | 1 863       |
| 204      | 9            | 9605   | 4278   | gn1 PtD e214719                         | PicR protein (Sacillus thuringiensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.3   | 41      | 819         |
| 213      | ~            | 832    | 2037   | 91   1565296                            | ribosomal protein S1 homolog; sequence spacific DNA-binding protein<br> Leuconostoc lactis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73    | 55      | 1206        |
| 231      | ~            | 1 84   | 1 287  | gi 40173                                | homolog of E.coli ribosomal protein L21 [3acillus subtills]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.3   | 61      | 204         |
| 237      | -            | 2      | 505    | gi 1773151                              | adenine phosphoribosyltransferase [Escherichia coli]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.3   | 51      | 504         |
|          |              |        |        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |             |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF | Start<br>(nt) | Stop<br>(nt) | match<br>acession   | match gene name                                                                              | s in | * ident | length (nt) |
|--------|-----|---------------|--------------|---------------------|----------------------------------------------------------------------------------------------|------|---------|-------------|
| 569    | -   | 2             | 691          | gn1 PID d101328     | Yqix (Bacillus subtilis)                                                                     | 73   | 36      | 069         |
| 289    | 7   | 2721          | 832          | pir A02771 R7MC     | ribosomal protein L7/L12 - Micrococcus luteus                                                | 73   | 99      | 441         |
| 343    |     | 41            | 484          | 91 1788125          | (AE000276) hypothetical 30.4 kD protein in man2-cspC intergenic region<br>[Escherichia coli] | 7.3  | 47      | 471         |
| 356    | -   | 222           | 4            | gi 2149905          | D-glutamic acid adding enzyme (Enterococcus faecalis)                                        | 73   | 80      | 219         |
| ,      | 2   | 3165          | 4691         | gn1 PtD d101833     | amidase (Symechocystis sp.)                                                                  | 72   | 52      | 1527        |
| 2      | 6   | 1195          | 7647         | gi 146976           | nusB (Escherichia coli)                                                                      | 72   | 54      | 453         |
| 7      | 17  | 13743         | 13300        | gn1   PID   e289141 | similar to hydroxymyristoyl-(acyl carrier protein) dehydratase (Bacillus   subtilis)         | 27   | 89      | 444         |
| 22     | 119 | 115637        | 116224       | gn1 PID d101929     | ribosome releasing factor (Synechocystis sp.)                                                | 72   | 51      | 588         |
| 33     | 117 | 112111        | 111425       | gn1   PID   d101190 | ORF3 (Streptococcus mutans)                                                                  | 27   | 55      | 687         |
| 34     | -   | 1 7147        | 1 5627       | 91 396501           | aspartyl-tRNA synthetase [Thermus thermophilus]                                              | 72   | 52      | 1521        |
| 38     | 53  | 15372         | 16085        | pir H64108 H641     | L-ribulose-phosphate 4-epimerase (araD) homolog - Haemophilus influenzae (strain Rd KW20)    | 72   | 54      | 714         |
| 39     | 5   | 5094          | 5069         | gn1 PID e254877     | unknown [Mycobacterium tuberculosis]                                                         | 72   | 3.6     | 1812        |
| 40     | 9   | 4469          | 4636         | [gi   153672        | lactose repressor (Streptococcus mutans)                                                     | 72   | 58      | 168         |
| 48     | 2   | 1459          | 1 1253       | 91   310380         | Inhibin beta-A-subunit (Ovis aries)                                                          | 72   | 33      | 207         |
| 8      | 29  | 21729         | 22424        | 91   2314329        | (AE000623) glutamine ABC transporter, permease protein (glnP) (Helicobacter                  | 72   | 49      | 969         |
| 20     | 2   | 4529          | 3288         | 911750108           | YnbA (Bacillus subtilis)                                                                     | 72   | 54      | 1242        |
| 1 51   | E - | 1044          | 2282         | 91   2293230        | (AF008220) YtbJ (Bacillus subtilis)                                                          | 72   | 54      | 1239        |
| 52     | [13 | 13681         | 113938       | [gi   142521        | deoxyribodipyrimidine photolyase [Bacillus subtilis]                                         | 72   | 45      | 258         |
| 55     | 1   | 841           | 35           | 91   882518         | ORF_0304; GTG start (Escherichia coli)                                                       | 72   | 1 65    | 807         |
| 75     | 2   | 2832          | 3191         | gn1   PID   e209886 | mercuric resistance operon regulatory protein [Bacillus subtilis]                            | 72   | 44      | 360         |
| 1 76   | 9   | 6229          | 1775         | 91 142450           | ahrC protein (Bacillus subtilis)                                                             | 72   | 53      | 459         |
| 79     | 5   | 5905          | 4592         | gi  2293279         | (AF008220) YtcG (Bacillus subtilis)                                                          | 72   | 46      | 474         |
| 87     | =   | 14726         | 12309        | gn1 PID e323502     | putative PriA protein (Bacillus subtilis)                                                    | 1 27 | 52      | 2418        |
| 91     | -   | 444           | 662          | gi 500691           | HYO1 gene product (Saccharomyces cerevisiae)                                                 | 72   | 05      | 219         |
| 91     | -   | 4516          | 4764         | gi  829615          | skeletal muscle sodium channel alpha-subunit [Equus caballus]                                | 72   | 38      | 249         |
|        |     |               |              | !                   | <pre></pre>                                                                                  | +    | · +     | +           |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| 1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0  | Contig | JORF | Start<br>(nt) | Stop<br>(nt) | match       | match gene name                                                                                                                                 | e sin | * ident  | length<br>(nt) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|---------------|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|----------------|
| 1   1.5   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0    | 95     | 2    | 2004          | 1111         | e323527     | putative Asp23 protein (Bacillus subtilis)                                                                                                      | 72    | 40       | 289            |
| 1   13   13   13   13   13   13   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109    |      | 1452          | 118          | gi 143331   | protein (Bacillus                                                                                                                               | 72    | 52       | 1335           |
| 1   1715   2476   41 1413346   140 141335   carboxypopticidase [Bacillias subtilia]   72   46   46   47   47   47   47   47   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 126    | 1    |               | 2192         |             | glutamine-binding periplasmic protein (Synechocystis sp.)                                                                                       | 7.2   | 46       | 2190           |
| 10   1950   1923   19147234   Unit 4 (Synchococous B.)   192   1924   19179234   Unit 5 (Synchococous B.)   1928   1928   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924   1924 | 1 130  |      | 1735          | 2478         | gi 2415396  | carboxypeptidase (Bacillus                                                                                                                      | 72    | 53       | 744            |
| 10   1950   1970   1911/9724   Otto 1 Symboletical protein (Bacillus aubtilis)   72   45   45   45   45   45   45   45   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 137    | -    | 2585          | 2929         | gi 472922   | v-type Na-ATPase  Enterococcus hirae                                                                                                            | 72    | 46       | 345            |
| 5   1966   1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140    | 110  | 1096          | 9203         | gi 49224    | URF 4 (Symechococcus sp.)                                                                                                                       | 72    | 48       | 399            |
| 2   2084   1083   9nt Propleaizons   hyperhetical procein (Bacillus aubtilis)   25   5154   51470   5147037   Tryp-dependent acetoin dehydrogenase bata-subunit (Cloarcidlus magnum)   72   556   5158   5146   5147037   Tryp-dependent dehydrogenase bata-subunit (Cloarcidlus magnum)   72   54   54   5147037   Null Proplement acetoin dehydrogenase bata-subunit (Cloarcidlus magnum)   72   54   54   5147037   Null Proplement dehydrogenase bata-subunit (Cloarcidlus magnum)   72   54   54   54   54   54   54   54   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 146    | 5    | 1906          | 1247         | -           | hypothetical protein (Bacillus subtilis)                                                                                                        | 72    | 45       | 999            |
| S   6156   5146   6131   613172277   TPP-dependent acetoin dehydrogenase beta-subbult [Cloatcidium magnuma]   72   54     R   5381   6131   6131   613172277   MDDPH-dependent dihydroxyacetome-phosphate reductase [Bacillus subtilis]   72   54     R   10256   9653   Gall Publication   Yegar   Bacillus subtilis]   72   72   73     R   4005   4005   4015   61178370   Muhroom   Sacchaercoyces cerevisiaea   72   72   73     R   4005   10620   61178370   Muhroom   Sacchaercoyces cerevisiaea   72   72   73     R   516   516   51178370   Muhroom   Muhroom   Sacchaercoyces cerevisiaea   72   72   73     R   516   516   51178370   Muhroom   Muhroo | 147    | 2    | 2084          | 1083         |             | hypothetical protein (Bacillus subtilis)                                                                                                        | 72    | 95       | 1002           |
| 8   5381   6433   941974332   NABD[P]R-dependent dihydroxyacetome-phosphate reductase [Bacillus subtilis]   72   59   50   10256   5673   9519   9511788770   NABD[P]R-dependent dihydroxyacetome-phosphate reductase [Bacillus subtilis]   72   59   50   10256   9573   9511788770   NABD[P]R-dependent dihydroxyacetome-phosphate reductase [Bacillus subtilis]   72   72   55   75   75   75   75   75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 147  | - 2  | 6156          | 5146         | gi  472327  | dehydrogenase beta-subunit                                                                                                                      | 72    | 95       | 1011           |
| 14   10256   4947   541788770   (AEDOO1319) of63; 24 pct identical (144 gaps) to 318 residues from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148    |      | 5381          | 6433         |             |                                                                                                                                                 | 72    | 54       | 1053           |
| 8   4005   694   gill788770   punicililin-binding procein 4', Perp_ancou Sir P33959 (431 aal Escherichia coli coli coli coli coli coli coli coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 148    |      | 10256         | 9675         |             | YqgN (Bacillus subtilis)                                                                                                                        | 72    | 20       | 582            |
| 10   9907   10620   94  173387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 159    | 6    | 4005          | 4949         | 91 1788770  | (44 gaps) to 318 residue:<br>BPE_BACSU SW: P32959 (451                                                                                          | 72    | <b>.</b> | 945            |
| 3   2862   3602   91 1574175   hypothetical [Haemophilus influenzee]   7   26   48   1   3   449   149   149   1400133   [470 [Escherichia coli]   72   45   48   1   1   1018   14   149   141   1400134   homologue of aspartokinase 2 alpha and bata subunits LysC of B. subtille   72   45   45   1   1018   14   91   14195   This ORF is homologus to a 40.0 kd hypothetical protein in the htrB 3'   72   54   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1      | 91   | :             | 110620       | 91   763387 | unknown (Saccharomyces cerevisiae)                                                                                                              | 72    | 55       | 714            |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 220    |      | 2862          | 3602         | 91 1574175  | hypothetical (Maemophilus influenzae)                                                                                                           | 72    | 20       | 741            |
| 2   899   540   gnl PID d100964   homologue of aspartokinase 2 alpha and bata subunits LysC of B. subtilis   72   45     1   1018   14   gi 474195   This ORF is homologous to a 40.0 kd hypochetical protein in the htrB 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 267  | -    | -             | 449          | gi 290513   | [470 [Escherichia coli]                                                                                                                         | 72    | 48       | 447            |
| 1   1018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 281    | 7    | 668           | 540          |             | 2 alpha and beta subunits LysC of B.                                                                                                            | 72    | 45       | 360            |
| 1   63   587   gi 746399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 290    |      | 1018          | 14           |             | This ORF is homologous to a 40.0 kd hypo:hetical protein in the htrB 3' region from E. coli, Accession Number X61000 [Mycoplasma-like organism] | 72    | 9.54<br> | 1005           |
| 1   1326   4   gi 158127   protein kinase C (Drosophila melanogaster; )   1   1227   3   gnl PID d101164   unknown (Bacillus subtilis)   72   54       1   1005   gnl PID d102048   C. thermocellum beta-glucosidase; P26208 (985) [Bacillus subtilis)   72   52           1005   gnl PID e264229   unknown [Mycobacterlum tuberculosis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300    | -    | 63            | 587          | 91 746399   | (Escherichia                                                                                                                                    | 72    | 20       | 525            |
| 1   227   3   gni PID d101164  unknown (Bacillus subtilis)   72   54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 316    | -    | 1326          | 7            | gi 158127   |                                                                                                                                                 | 72    | 40       | 1323           |
| 1   1   1005   gnl PID d102048  C. thermocellum beta-glucosidase; P26208 (985) [Bacillus subtilis]   72   52     10   8114   10467   gnl PID e264229   unknown  Mycobacterium tuberculosis]     20   16211   15464   gi 18046   1-oxoacyl-[acyl-carrier protein] reductaire (Cuphea lanceolata)   71   52     1   1297   2   gnl PID d100571   replicative DNA helicase [Bacillus subtilis]   71   51     4   4415   1865   gi 499384   orf189   Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 342    | -    | 227           |              |             |                                                                                                                                                 | 72    | 54       | 225            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 354    | -    | -             | 1005         |             | (985) (Bacillus                                                                                                                                 | 72    | 52       | 1005           |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9      | 10   | :             | 10467        |             | unknown [Mycobacterium tuberculosis]                                                                                                            | 11    | 57       | 2334           |
| 1   1297   2     gnl PID d100571   replicative DNA helicase [Bacillus subtilis]<br>  4   4415   1869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7      | _    | į.            | 15464        | gi 18046    | ]-oxoacyl-[acyl-carrier protein] reductane (Cuphea lanceolata)                                                                                  | 7.1   | 52       | 768            |
| 4   4435   3869   gi 499384   orf189 (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15     | -    | 1297          | 7            |             | replicative DNA helicase [Bacillus subtilis]                                                                                                    | 7.1   | 51       | 1296           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15     | 7    | 4435          | 13869        | 91 499384   | orf189 (Bacillus subtilis)                                                                                                                      | 11    | 47       | 567            |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF     | Start  | Stop<br>(nt) | match               | match gene name                                                                                                                                                  | e sim | * ident | length<br>(nt) |
|--------|---------|--------|--------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| 18     | 9       | 5120   | 4218         | gn1 PID d101318     | YqgG (Bacillus subtilis)                                                                                                                                         | 7.1   | 51      | 903            |
| 29     |         |        | 540          | 91   1773142        | similar to the 20.2kd protein in TETB-EXOA region of B. subtilis [Escherichia coli]                                                                              | 11    | 26      | 540            |
| 38     | 120     | 13327  | 13830        | gi 537036           | ORF_0158 (Escherichia coli)                                                                                                                                      | 71    | 48      | 504            |
| 51     | 717     | 115015 | 12676        | gi 149528           | dipeptidy  peptidase IV (Lactococcus lactis                                                                                                                      | 7.1   | 55      | 2340           |
| 55     | - 53    | 121040 | 20585        | gi 2343285          | (AF015451) surface located protein [Lactobacillus rhamnosus]                                                                                                     | 11    | 58      | 456            |
| 09     | ~       | 1 705  | 265          | gn1   PID   d101320 | d101320  Yqg2 (Bacillus subtilis)                                                                                                                                | 7.1   | 44      | 441            |
| 17     | 118     | [24679 | 26226        | gi 580920           | rodD (gtaA) polypeptide (AA 1-673) [Bacillus subtilis]                                                                                                           | 71    | 79      | 1548           |
| 17     | 52      | 30587  | 30360        | 91   606028         | ORF_o414; Geneplot suggests frameshift near start but none found<br>[Escherichia coli]                                                                           | 17    | 20      | 228            |
| 72     | 9       | 5239   | 6729         | gi 580835           | lysine decarboxylase [Bacillus subtilis]                                                                                                                         | 11,   | 48      | 1491           |
| 22     |         | 11991  | 12878        | 91   624085         | similar to rat beta-alanine synthetase encoded by GenBank Accession Number<br>\$27881; contains ATP/GTP binding motif [Paramecium bursaria Chlorella<br>virus 1] | 1,    | 54      | 80 80          |
| 7.3    | =       | 1 7269 | 1 7033       | gi 1906594          | PN1 [Rattus norvegicus]                                                                                                                                          | 71    | 42      | 237            |
| 74     | 9       | 110385 | 8517         | gi 1573733          | prolyl-tRNA synthetase (proS) (Haemophilus influenzae)                                                                                                           | 11    | 52      | 1869           |
| 81     | 6       | 1 5772 | 6578         | gi   147404         | mannose permease subunit II-M-Man [Escherichia coli]                                                                                                             | 11    | 45      | 807            |
| 98     | - 5     | 4602   | 3604         | gn1 PID e322063     | ss-1,4-galactosyltransferase [Streptococcus pneumoniae]                                                                                                          | 11,   | 53      | 666            |
| 1 105  | 4       | 1 3619 | 4707         | gi [2323341         | (AF014460) PepQ (Streptococcus mutans)                                                                                                                           | 11.   | 28      | 1089           |
| 106    | 13      | 113557 | 12955        | gi 1519287          | LemA  Listeria monocytogenes                                                                                                                                     | 1.7   | 48      | 603            |
| 114    | 7       | 1029   | 1979         | 91 310303           | mosA [Rhizobium melllot1]                                                                                                                                        | 11    | 55      | 951            |
| 122    | - 5     | 564    | 1205         | 91   1649037        | glutamine transport ATP-binding protein GLNQ (Salmonella typhimurium)                                                                                            | 1.17  | 20      | 642            |
| 132    | 2       | 9018   | 7063         | gn1 PID d102049     | H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis]                                                                                     | 11    | 51      | 1956           |
| 140    |         | 1141   | 227          | 91   1673788        | (AE000015) Mycoplasma pneumoniae, fructosse-bisphosphate aldolase; similar<br>to Swiss-Prot Accession Number P13243, from B. subtilis [Mycoplasma<br>pneumoniae] | 12    | 49      | 915            |
| 140    | <u></u> | 5635   | 4973         | gn1   P1D   d100964 | homologue of hypothetical protein in a rapamycin synthesis gene cluster of<br>Streptomyces hygroscopicus (Bacillus subtilis)                                     | 17    | 8       | 663            |
| 141    |         | 7369   | 7845         | gn1 PID d102005     |                                                                                                                                                                  | 11    | 51      | 477            |
|        |         |        |              |                     |                                                                                                                                                                  | •     |         | +              |

S. pneumonfae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                              | e sim    | * ident | length (nt) |
|--------|-----|---------------|--------------|---------------------|----------------------------------------------------------------------------------------------|----------|---------|-------------|
| 193    | -   | -             | 165          | 91   46912          | ribosomal protein L13 (Staphylococcus carnosus)                                              | 11       | 59      | 165         |
| 194    | -   | 2205          | 1594         | gi 535351           | CodY [Bacillus subtilis                                                                      | 1,7      | 52      | 612         |
| 199    | - 1 | 1510          | 1319         | 91 2182574          | (AE000090) Y4pE [Rhizobium sp. NGR234]                                                       | 12       | 45      | 192         |
| 208    | 7   | 2616          | 3752         | gi 1787378          | (AE000213) hypothetical protein in purB 5' region [Escherichia coll]                         | 17       | 57      | 1137        |
| 209    |     | 2022          | 1111         | 91 41432            | fepC gene product (Escherichia coli)                                                         | 112      | 46      | 882         |
| 210    | - 2 | 1161          | 3071         | gi 49316            | ORF2 gene product (Bacillus subtilis)                                                        | 112      | 45      | 1161        |
| 210    | 9   | 3069          | 3386         | 91   580900         | ORF3 gene product (Bacillus subtilis)                                                        | 11,      | 48      | 318         |
| 212    | 7   | 3561          | 1381         | gi 557567           |                                                                                              | 12       | 53      | 2181        |
| 233    | £   | 2003          | 2920         | gn1 PID d101320     | YqgR [Bacillus subtilis]                                                                     | 112      | 20      | 918         |
| 244    |     | 13            | 1053         | gn1   P10   d100964 | homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtilis [Bacillus subtilis] | 1,1      | 55      | 1041        |
| 251    | ~   | 1008          | 1874         | 91 755601           | unknown (Bacillus subtilis                                                                   | 112      | 46      | 867         |
| 282    | 2   | 906           | 112          | 91 1353874          | unknown (Rhodobacter capsulatus)                                                             | 1 12     | 46      | 195         |
| 1 312  | - I | 72137         | 1565         | gn1 P1D d102245     | (AB005554) yxbF (Bacillus subtilis)                                                          | 112      | 34      | 573         |
| 338    | -   | 3             | 683          | 91 1591045          | hypothetical protein (SP:P31466) (Methanococcus jannaschii)                                  | 111      | 48      | 681         |
| 346    | - [ | 3             | 164          | 91 1591234          | hypothetical protein (SP:P42297) [Methanococcus januaschii]                                  | 111      | 36      | 162         |
| 374    | _   | 619           | 2            | gi 397526           | clumping factor (Staphylococcus aureus)                                                      | 111      | 23      | 618         |
| 778    | -   | 688           | 7            | gi 397526           | clumping factor [Staphylococcus aureus]                                                      | 11.      | 23      | 687         |
| -      | 8   | 7419          | 6958         | gn1 PID e269486     | Unknown (Bacillus subtilis)                                                                  | 1 00 1   | 42      | 462         |
| -      | 2   | 8395          | 9075         | gn1 P1D e255543     | putative iron dependant repressor [Staphylococcus epidermidis]                               | 70       | 46 1    | 691         |
| -      | 7-  | 11024         | 10254        | gn1   PID   d100290 | undefined open reading frame (Bacillus stearothermophilus)                                   | 1 00 1   | 55      | 1111        |
|        | 138 | 14213         | 13719        | gn1   PID   d101090 | biotin carboxyl carrier protein of acetyl-CoA carboxylase [Synechocystis Sp.]                | 0,       | 995     | 495         |
| 6      | 2   | 1057          | 287          | gn1 PID d100581     | unknown (Bacillus subtilis)                                                                  | 70       | 52      | 177         |
| 112    | ~   | 2610          | 1789         | gn1   PID   d101195 | YycJ (Bacillus subtilis)                                                                     | 70       | 52      | 822         |
| 21     | ~   | 2586          | 1846         | 91/2293447          | (AF008930) ATPase (Bacillus subtilis)                                                        | 70       | 54      | 741         |
| 22     | 13  | 10955         | 11512        | [gi   1165295       | Ydr540cp (Saccharomyces cerevisiae)                                                          | 70       | - 05    | 558         |
| 30     | 9   | 4315          | 3980         | gi 39478            | ATP binding protein of transport ATPases (Bacillus firmus)                                   | 1 04     | 51      | 336         |
|        |     |               |              |                     |                                                                                              | ******** |         | +           |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF      | Start<br>(nt) | Stop<br>(nt) | match                | match gene name                                                            | a sin | * ident | length<br>(nt) |
|--------|----------|---------------|--------------|----------------------|----------------------------------------------------------------------------|-------|---------|----------------|
| 31     | -        | 370           | 113          | gi 662792            | single-stranded DNA binding protein (unidentified eubacterium)             | 70    | 36      | 258            |
| 33     | 115      | 10639         | 1256         | 91   1161219         | homolgous to D-amino acid dehydrogenase enzyme (Pseudomonas aeruginosa)    | 70    | 20      | 1119           |
| 38     | 9        | 3812          | 4312         | 91 2058547           | ComyD  Streptococcus gordon11                                              | 70    | 48      | 105            |
| 38     | 25       | 117986        | 118477       | 91   537033          | ORF_£356 (Escherichia coli)                                                | 70    | 88      | 492            |
| 40     | 1 =      | 11054         | 9846         | 91 1173516           | riboflavin-specific deaminase [Actinobacillus pleuropneumoniae]            | 70    | 52      | 1209           |
| 42     | - 2      | 722           | 1954         | 91 1146183           | putative [Bacillus subtilis]                                               | 0,    | 5.1     | 1233           |
| 2      | <u> </u> | 2373          | 1612         | gi 1591493           | glutamine transport ATP-binding protein Q [Methanococcus jannaschii]       | 70    | 8.8     | 762            |
| 1 45   |          | 1 9197        | 8049         | gn1   PID   d102036  | subunit of ADP-glucose pyrophosphorylase (Bacillus stearothermophilus)     | 70    | 54      | 1149           |
| 65     | 7        | 1 567         | 956          | gn1 P1D d100302      | neopullulanase  Bacillus sp.                                               | 70    | 42      | 390            |
| 09     | _        | 1874          | 795          | gn1 PID e276466      | aminopeptidase P (Lactococcus lactis)                                      | 70    | 48      | 1080           |
| 19     | 4        | 5553          | 2437         | [gn]   PID   e275074 | SNF [Bacillus cereus]                                                      | 70    | 5.1     | 3117           |
| 19     | - 1      | 7914          | 6802         | gi 1573037           | cystathionine gamma-synthase (metB) [Haemophilus influenzae]               | 70    | 52      | 1113           |
| 63     | -        | 5372          | 7222         | gn1 PID d100974      | unknown (Bacillus subtilis)                                                | 70    | 54      | 1851           |
| 89     | _        | 1126          | 6962         | gi 1263014           | emm18.1 gene product (Streptococcus pyogenes)                              | 70    | 37      | 165            |
| 27     | 112      | 10001         | 11001        | gi 2313093           | (AE000524) carboxymorspermidine decarboxylase (nspC) (Helicobacter pylori) | 70    | 95      | 831            |
| 75     | 2        | 7888          | 8124         | gi 1877423           | galactose-1-P-uridyl transferase (Streptococcus mutans)                    | 70    | 59      | 237            |
| 62     | <u> </u> | 3424          | 2525         | gi 39881             | ORF 311 (AA 1-311) [Bacillus subtilis]                                     | 70    | 47      | 006            |
| 87     | 01       | 9369          | 7324         | gn1 PID e323506      | putative Pkn2 protein (Bacillus subtilis)                                  | 70    | 52      | 2046           |
| 96     | 7        | 10640         | 11788        | gi 1573209           | [tRNA-guanine transglycosylase (tgt) [Haemophilus influenzae]              | 0,    | 52      | 1149           |
| 113    | 7        | 574           | 1086         | lgi   433630         | A180 (Saccharomyces cerevisiae)                                            | 0,    | - 65    | 513            |
| 123    | 5        | 2901          | 3461         | gn1 PID d100585      | unknown [Bacillus subtilis]                                                | 7.0   | 45      | 561            |
| 125    | 2        | 4593          | 4282         | gn1 PID e276474      | capacitative calcium entry channel 1 [Bos taurus]                          | 7.0   | 35      | 312            |
| 129    | 5        | 4500          | 3454         | gn1   PID   d101314  | YqeT (Bacillus subtilis)                                                   | 70    | 47      | 1047           |
| 133    | n        | 2608          | 1394         | 91   2293312         | (AF008220) YtfP (Bacillus subtilis)                                        | 100   | 20      | 1215           |
| 135    | -        | 420           | 662          | gn1 PID e265530      | yorfE (Streptococcus pneumoniae)                                           | 70    | 47      | 243            |
| 137    | <u>~</u> | 438           | 932          | [gi   472919         | v-type Na-ATPase [Enterococcus hirae]                                      | 70    | 57      | 495            |
| 138    | -        | 440           | m            | [gi 147336           | transmembrane protein (Escherichia coli)                                   | 70    | 42      | 438            |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | 9 ORF   | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                              | sin  | 1 Ident    | length (nt) |
|--------|---------|---------------|--------------|---------------------|----------------------------------------------------------------------------------------------|------|------------|-------------|
| 140    | 110     | 18796         | 16364        | 91 976441           | N5-methyltetrahydrofolate homocysteine methyltransferase (Saccharomyces   cerevisiae)        | 70   | 53         | 2433        |
| 167    | 2       | 8263          | 5699         | gi 149535           | D-alanine activating enzyme (Lactobacillus casei)                                            | 0,   | 52         | 1569        |
| 204    | -       | 3226          | 2747         | gn1   PID   d102049 | E. coli hypothetical protein; P31805 (267) [Bacillus subtilis]                               | 70   | 51         | 480         |
| 207    |         | 2627          | 2869         | gn1 PID e309213     | [racGAP [Dictyostelium discoideum]                                                           | 70   | 45         | 243         |
| 282    | ~       | 1136          | 882          | gi [1353874         | unknown (Rhodobacter capsulatus)                                                             | 70   | 1 05 1     | 255         |
| 9      | 121     | 117554        | 18453        | gn1 PID e233879     | hypothetical protein (Bacillus subtilis)                                                     | 69   | 44         | 900         |
| 9      | 22      | 18482         | 119471       | gi 580883           | [pa-88d gene product (Bacillus subtills]                                                     | 69   | 53         | 066         |
| 22     | 9       | 1. 4682       | 5824         | 91 2209379          | (AF006720) ProJ [Bacillus subtilis]                                                          | 69   | 48         | 1143        |
| 1 22   | 6       | 7992          | 8651         | gn1   PID   d100580 | unknown (Bacillus subtills)                                                                  | 69   | 51         | 1 099       |
| 22     | 112     | 1 9871        | 110767       | gn1 PID d100581     | unknown [Bacillus subtilis]                                                                  | 69   | 51         | 897         |
| 27     | -       | 5857          | 5348         | ara                 | (ABOO1488) FUNCTION UNKNOWN. (Bacillus subtilis)                                             | 69   | 28         | 510         |
| 36     | 01      | 7294          | 110116       | 3791                | [isoleucyl-tRNA synthetase (Staphylococcus aureus)                                           | 69   | 53         | 2823        |
| 38     | -       | 2             | 1090         | gi 141900           | alcohol dehydrogenase (EC 1.1.1.1) [Alcaligenes eutrophus]                                   | 69   | 84         | 1089        |
| 40     | 14      | 11333         | 11944        | 91 1573280          | Holliday junction DNA helicase (ruvA) [Heemophilus influenzae]                               | 69   | 44         | 612         |
| 40     | 115     | 11942         | 12517        | gi 1573653          | DNA-3-methyladenine glycosidase I (tagl) [Haemophilus influenzae]                            | 69   | 20         | 576         |
| 45     | 9       | 6947          | 5490         | 1911580887          | starch (bacterial glycogen) synthase (Bacillus subtilis)                                     | 1 69 | 47         | 1458        |
| 48     | 134     | 24932         | 24153        | gn1 P1D e233870     | hypothetical protein (Bacillus subtilis)                                                     | 1 69 | 36         | 780         |
| 49     | 9       | 6183          | 6521         | gi 396297           | similar to phosphotransferase system enzyme II (Escherichia coli)                            | 1 69 | - 05       | 339         |
| 49     | 60      | 7586          | 8338         | gi 396420<br>       | similar to Alcaligenes eutrophus pHGl D-ribulose-5-phosphate 3 epimerase   Escherichia coli! | 69   | 49         | 753         |
| 55     | 9       | 8262          | 7033         | 91 1146238          | poly(A) polymerase (Bacillus subtilis)                                                       | 69   | 80         | 1230        |
| - 59   | <u></u> | 954           | 2333         | gn1 PID e313038     | hypothetical protein (Bacillus subtilis)                                                     | 69   | 54         | 1380        |
| 62     |         | 1170          | 1418         | gn1 P1D d101915     | hypothetical protein (Synechocystis sp.)                                                     | 69   | 49         | 249         |
| - 63   | 8       | 7298          | 17762        | 91 293017           | ORF3 (put.); putative [Lactococcus lactis]                                                   | 69   | 42         | 465         |
| 99     | 7       | 3657          | 5081         | 91   153755         | phospho-beta-D-galactosidase (EC 3.2.1.85  [Lactococcus lactis cremoris]                     | 69   | - 63       | 1425        |
| 99     | 1 5     | 5126          | 6829         | 91 433809           | enzyme II (Streptococcus mutans)                                                             | 69   | 46         | 1704        |
| 1,     | 9 :     | 110017        | 110664       | gn1 PID e322063     | ss-1,4-galactosyltransferase (Streptococcus pneumoniae)                                      | 69   | 39         | 648         |
|        |         |               |              |                     | •                                                                                            |      | ********** | +           |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig<br>ID | ORF | Start<br>(nt) | Stop<br>(nt) | match                | match gene name                                                                                               | # sim   | * ident | length<br>(nt) |
|--------------|-----|---------------|--------------|----------------------|---------------------------------------------------------------------------------------------------------------|---------|---------|----------------|
| 71           | 121 | 27730         | 127966       | gn1 PID d100649      | DE-cadherin (Drosophila melanogaster)                                                                         | 69      | 30      | 237            |
| ιι           | -   | ~             | 237          | gi 287870            | groES gene product (Lactococcus lactis)                                                                       | 69      | 44      | 237            |
| 18           | 2   | 3622          | 4101         | 91 1573605           | fucose operon protein (fucU) (Haemophilus influentae)                                                         | 69      | 52      | 480            |
| 83           |     | 40            | 714          | pir   C33496   C334  | hisC homolog - Bacillus subtilis                                                                              | 69      | 46      | 675            |
| 83           | 116 | 115742        | 16335        | 91 143372            | phosphoribosyl glycinamide formyltransferase (PUR-N) [Bacillus subtilis]                                      | 69      | 46      | 594            |
| 85           | 7   | 1212          | 916          | gi 194097            | IFN-response element binding factor 1 [Mus musculus]                                                          | 69      | 48      | 297            |
| 91           | ر.  | 3678          | 4274         | gi   1574712         | annerobic ribonuleoside-triphosphate reductase activating protein (nrdG)   [Haemophilus influenzae]           | 69      | 44      | 597            |
| 98           | S   | 3247          | 4032         | gn1   PID  d100262   | Live protein (Salmonella typhimurium)                                                                         | 69      | 51      | 786            |
| 108          | S   | 4085          | 9505         | gn1 PID e257629      | transcription factor (Lactococcus lactis)                                                                     | 69      | 49      | 972            |
| 126          | ~   | 3078          | 4568         | [gn1   PID   d101329 | YqjJ (Bacillus subtilis)                                                                                      | 69      | 49      | 1491           |
| 131          | 9   | 4121          | 2889         | gn1 P1D d101314      | YqeR (Bacillus subtilis)                                                                                      | 69      | 47      | 1233           |
| 136          | ~   | 1505          | 2299         | gn1 P1D d100581      | unknown (Bacillus subtilis)                                                                                   | 69      | 47      | 795            |
| 149          | 2   | 3852          | 4763         | gn1 PID e323525      | YloQ protein (Bacillus subtilis                                                                               | 69      | 20      | 912            |
| 149          | 112 | 9336          | 10655        | gi 151571<br>        | Homology with E.coli and P.aeruginosa lysk gene; product of unknown function; putative [Pseudomonas syringse] | 69      | 52      | 1320           |
| 153          | 4   | 3191          | 3829         | [gi   1710373        | BrnQ (Bacillus subtilis)                                                                                      | 69      | 44      | 639            |
| 169          | 6   | 849           | 2324         | gn1   PID   d100582  | temperature sensitive cell division (Bacillus subtilis)                                                       | 69      | 49      | 1476           |
| 180          | -   | 995           | _            | gi 488339            | alpha-amylase (unidentified cloning vector)                                                                   | 69      | 20      | 564            |
| 212          | -   | 1196          | 231          | gi 1395209           | ribonucleotide reductase R2-2 small subunit (Mycobacterium tuberculosis)                                      | 69      | 53      | 996            |
| 226          | -   | 2             | 661          | pir J02285 J022      | nodulin-26 - soybean                                                                                          | 69      | 41      | 099            |
| 233          | 5   | 3249          | 4766         | 91 472918            | v-type Na-ATPase (Enterococcus hirae)                                                                         | 69      | 1 95    | 1518           |
| 235          | 2   | 099           | 1766         | 91   148945          | methylase [Haemophilus influenzae]                                                                            | 69      | 43      | 1107           |
| 243          | 7   | 865           | 2361         | gn1   PID   d100225  | ORFS (Barley yellow dwarf virus)                                                                              | 69      | 1 69    | 1497           |
| 251          | -   | 2899          | 1967         | 91   2289231         | macrolide-efflux protein [Streptococcus agalactiae]                                                           | 1 69    | 51      | 933            |
| 310          | -   | -             | 282          | gn1 P1D e322442      |                                                                                                               | 69      | 1 88    | 282            |
| 369          |     | 868           | 2            | gi 397526            | clumping factor (Staphylococcus aureus)                                                                       | 1 69    | 22      | 1 298          |
| 370          | -   | 749           | 3            | 91 397526            | clumping factor  Staphylococcus aureus                                                                        | 1 69    | 21      | 747            |
|              |     |               |              |                      |                                                                                                               | ******* |         |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins TABLE 2

|        | ï                                       |               |              |                 | **************************************                                                                                                               | *     | +       |                    |
|--------|-----------------------------------------|---------------|--------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|--------------------|
| Contig | 9 ORF                                   | Start<br>(nt) | Stop<br>(nt) | acession        | match gene name                                                                                                                                      | eis . | * ident | length  <br>(nt) - |
| 379    | -                                       | 44            | 280          | gn1 PID d100649 | DE-cadherin (Drosophila melanogaster)                                                                                                                | 69    | 30      | 237                |
| 388    |                                         | 260           | 72           | gi 1787524      | (AE000225) hypothetical 32.7 kD protein in trpL-btuR intergenic region [Escherichia coli]                                                            | 69    | 44      | 189                |
| -      | -                                       | 5006          | 3040         | gn1 PID d101809 | ABC transporter (Symechocystis sp.)                                                                                                                  | 1 89  | 43      | 1035               |
| 12     | -                                       | 3958          | 2600         | gi 2182992      | histidine kinase (Lactococcus lactis cremoris)                                                                                                       | 1 89  | 45      | 1359               |
| 15     | - 2                                     | 1790          | 1311         | pir S16974 R58S | ribosomal protein L9 - Bacillus stearothermophilus                                                                                                   | 1 89  | 56      | 480                |
| 16     | •                                       | 7353          | 5701         | 91 1787041      | (AE000184) o530; This 530 aa orf is 33 prt identical (14 gaps) to 525 residues of an approx. 640 aa protein YHES_HAEIN SW: P4480B (Escherichia coll) | 89    | 45      | 1653               |
| 17     | 112                                     | . 6479        | 6805         | 91   553165     | acetylcholinesterase (Homo sapiens)                                                                                                                  | 68    | 68      | 327                |
| 50     | 13                                      | 114128        | 14505        | gi 142700       | P competence protein (ttg start codon) (put.); putative (Bacillus subtilis)                                                                          | 1 89  | 07      | 378                |
| 22     | 132                                     | 24612         | 25397        | gi 289262       | ComE ORF3 (Bacillus subtilis)                                                                                                                        |       | 36      | 786                |
| 30     | 7                                       | 4548          | 4288         | 91   311388     | ORF1 (Azorhizobium caulinodans)                                                                                                                      | 68    | 1 90    | 261                |
| 36     | - 2                                     | 3911          | 4585         | 91 1573041      | hypothetical (Haemophilus influenzae)                                                                                                                | 89    | 54      | 675                |
| 46     | <b>9</b>                                | 5219          | 6040         | gi   1790131    | (AE000446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region [Escherichia coli]                                                            | 89    | 42      | 822                |
| 54     | 01                                      | 6235          | 7086         | gi 882579       | CG Site No. 29739 [Escherichia coli]                                                                                                                 | 1 89  | 55      | 852                |
| 55     | - 5                                     | 1 7069        | 5165         | gn1 PID d101914 | ABC transporter (Synechocystis sp.)                                                                                                                  | 68    | 45      | 1905               |
| 1,1    | -                                       | 6134          | 5613         | 91 1573353      | outer membrane integrity protein (tolA) [Haemophilus influenzae]                                                                                     | 89    | 50      | 522                |
| 11     | 110                                     | 15342         | 16613        | gi 580866       | ipa-12d gene product [Bacillus subtilis]                                                                                                             | 68    | 31 -    | 1272               |
| 12     | 112                                     | 117560        | 18792        | gi 44073        | SecY protein [Lactococcus lactis]                                                                                                                    | - 89  | 35      | 1233               |
| 12     | ======================================= | 22295         | 24703        | 91 1762349      | involved in protein export (Bacillus subtilis)                                                                                                       | 1 89  | 50      | 2409               |
| 23     | 116                                     | 10208         | 9729         | gi 1353537      | dUTPase (Bacteriophage rlt)                                                                                                                          | - 89  | 51      | 480                |
| 86     | 118                                     | - †           | 116011       |                 | ipa-19d gene product (Bacillus subtilis)                                                                                                             | 1 89  | 53      | 1188               |
| 87     | 12                                      | 17491         | 15866        | gi 150209       | ORF 1 (Mycoplasma mycoides)                                                                                                                          | - 89  | 43      | 1626               |
| 89     | 9                                       | 5139          | 4354         | _               | M. jannaschii predicted coding region MJ0062 [Methanococcus jannaschil]                                                                              | 68    | 40 1    | 786                |
| 89     | =                                       | 8021          | 8242         | _               | 4-oxalocrotonate tautomerase [Pseudomonas putida]                                                                                                    | - 89  | 43      | 222                |
| 97     | 80                                      | 6755          | 5394         | 91 2367358      | (AE000491) hypothetical 52.9 kD protein in aidB-rpsF intergenic region [Escherichia coli)                                                            | 89    | 7       | 1362               |
|        |                                         |               |              |                 | •                                                                                                                                                    | +     |         |                    |

 S. pneumoniae - Putative coding regions of novel proteins' similar to known proteins TABLE 2

| Contig | ORF<br>ID      | Start<br>(nt) | Stop   | match                                  | match gene name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * sim | 1 ident | length |
|--------|----------------|---------------|--------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|--------|
| 86     | 3              | 1418          | 1 2308 | [gn] [PID d100261                      | LivA protein (Salmonella typhimurium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     |         | (nt)   |
| 66     | =              | 16414         | 117280 | 91   455363                            | reculatory protain   cerement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99    | 40      | 891    |
| 1115   | 1              | 5054          | 1 3693 | gi 466474                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89    | 50      | 867    |
| 124    | 12             | 3394          | 3221   | gn1   P1D   d100702                    | Cut14 profess (Chinoses)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69    | 44      | 1362   |
| 125    | - 7            | 2923          | 1922   | lai1450566                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89    | 95      | 174    |
| 132    |                | 4858          | 1 2888 | lant lerolations                       | - ; -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89    | - 20    | 1002   |
| 140    | 7              | 7765          | 7880   | ************************************** | -::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 68  | 52      | 1971   |
| 150    | -              | 519           |        | 191 1109 711                           | unknown  Saccharomyces cerevisiae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 68  | 1 47    | 186    |
| 164    | -              | 85            |        |                                        | - ; .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 68  | 65      | 537    |
| 164    | 7              | 819           | 183    | gat   Fib e255114                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89    | 49      | 810    |
| 169    | -              | 3946          | 4104   |                                        | Inypochetical protein (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69    | 05      | 1017   |
| 170    | -              | 4247          | 4396   | lai(304)46                             | - : -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89    | 40      | 159    |
| 171    | -              | 6002          | 7054   | lai (38722                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99    | 52      | 150    |
| 198    | -              | 2473          | 1871   | 1000 1000 1000                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89    | 54      | 1053   |
| 211    | 7              | 696           | 1802   |                                        | - + -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68    | 99      | 603    |
| 214    | · <del> </del> | 4926          | 4231   |                                        | Elic-man   Lactobaciilus curvatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89    | 45      | 834    |
|        | - † :          |               |        | 1907019107049                          | H. influenzae hypothetical protein; P439!0 (182) (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89    | 1 05    | 1 707  |
| 217    | <del></del> -  | 4955          | 5170   | gn1 P1D e326966                        | similar to B.vulgaris CHS-associated mitochondrial (reverse transcriptese) (Arabidopsis thaliana)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89    | 36      | 216    |
| 218    |                | 3930          | 4745   | 91   2293198                           | (AF008120) YtgP (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - • • | - +     | -      |
| 220    | -              | 4628          | 4338   | gn1   PID   e325791                    | (AJ000005) orfl (Bacillus megaterium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89    | 38      | 816    |
| 236    |                | 746           | 108    | gi  410137                             | ONFX13 [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99    | 51 -    | 291    |
| 237    | 7              | 675           | 1451   | gi 396348                              | and the state of t | 68    | 46      | 639    |
| 250    | -              | 1 177         | 1229   | 91   310859                            | ORF2 (Synechococous en 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68    | 49      | 777    |
| 254    | -              | 517           | 155    | di   1287105                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89    | 20      | 459    |
|        |                |               | !      |                                        | (AEUULLB9) 0648 was 0669; This 669 aa orf is 40 pct identical (1 gaps) to 217 residues of an approx. 232 aa protein YBBA_HAEIN SW: P45247 [Escherichia coll]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89    | 3       | 363    |
| 337    | -              |               | 774    | gn1   PID   e261990                    | putative orf (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |         | -      |
| 345    | _              | <br>m         | 653    | gi 149513                              | thymidylate synthase (EC 2 1 1 45) (1.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89    | 47      | 774    |
|        |                | -             |        | •                                      | Instruction      | 89    | 61      | 651    |
|        |                |               |        |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |         |        |

S. pneumoniae - Putative coding regions of novel proteing similar to known proteins

| Contig | ORF | Start<br>(nt) | Stop<br>(nt) | acession            | match gene name                                                                       | e sia | * ident | length (nt) |
|--------|-----|---------------|--------------|---------------------|---------------------------------------------------------------------------------------|-------|---------|-------------|
| 386    | 2   | 417           |              | 91 11573353         | outer membrane integrity protein (tolA) [Haemophilus influenzae]                      | 68    | 51      | 414         |
| 2      | -   | 5722          | 4697         | 91 1592141          | M. jannaschii predicted coding region MJ1507 [Methanococcus jannaschii]               | 67    | 26      | 1026        |
| E      | 9   | 5397          | 4591         | 91   2293175        | (AF008220) signal transduction regulator [Bacillus subtilis]                          | 67    | 44      | 807         |
| 5      |     | 2301          | 574          | 91 2313385          | [AE000547] para-aminobenzoate synthetase (pabB) [Helicobacter pylori]                 | 67    | 48      | 1728        |
| 9      | 119 | 16063         | 16758        | gi 413931           | ipa-7d gene product (Bacillus subtilis)                                               | 67    | 41      | 969         |
| 1 22   | 8   | 7094          | 7897         | 91 1928962          | pyrroline-5-carboxylate reductase [Actinidia deliciosa]                               | 67    | 51      | 804         |
| 62     | 120 | 8335          | 9072         | gi 468745           | gtcR gene product (Bacillus brevis)                                                   | 67    | 41      | 738         |
| 18     |     | 1379          | 585          | 91 2425123          | [AF019986] PksB [Dictyostellum discoideun]                                            | 67    | 49      | 795         |
| 32     | Ξ   | 8849          | 10150        | 91   42029          | ORF1 gene product [Escherichia coli]                                                  | 67    | 47      | 1302        |
| 36     | 116 | 114830        | 15546        | gi 1592142          | ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)              | 67    | 43      | 1717        |
| 1 38   | 6   | 4958          | 5392         | gn1 PID e214803     | [T22B3.3 [Caenorhabditis elegans]                                                     | 67    | 4.7     | 435         |
| 1 38   | ł   | 113775        | 14512        | 91   537037         | ORF_0216 [Escherichia coli]                                                           | 67    | 52      | 738         |
| 45     | 6   | 10428         | 9181         | 91   551710         | branching enzyme (glgB) (EC 2.4.1.18) (Bacillus stearothermophilus)                   | 67    | 51      | 1248        |
| 48     | 1   | 18344         | 17514        | 91 413949           | lpa-25d gene product (Bacillus subtilis)                                              | 67    | 80      | 831         |
| 05 1   | 2   | 5771          | 1 952        | gn1   PID   d101330 | YqjQ (Bacillus subtilis)                                                              | 67    | 55      | 822         |
| 53     | -   | 431           |              | 91 1574291          | fimbrial transcription regulation repressor (pilB) [Haemophilus influentae]           | 67    | 0.4     | 429         |
| 55     | -   | 12740         | 111946       | gn1 PID e252990     | ORF YDL037c [Saccharomyces cerevisiae]                                                | 67    | 51      | 795         |
| 61     | 6   | 9210          | 8329         | gn1 PID e264711     | ATP-binding cassette transporter A (Staphylococcus aureus)                            | 67    | 20      | 882         |
| 1.7    | - 5 | 5614          | 6117         | 91 1197667          | vitellogenin [Anolis pulchellus]                                                      | 67    | 36      | 504         |
| 81     | _   | 4489          | 4983         | 91 1142714          | phosphoenolpyruvate:mannose phosphotransferase element IIB [Lactobacillus   curvatus] | 19    | 42      | 495         |
| 83     | _   | 2957          | 3214         | gi 1276746          | Acyl carrier protein (Porphyra purpurea)                                              | 67    | 37      | 258         |
| 98     | 80  | 8140          | 6089         | 91 1147744          | PSR  Enterococcus hirae                                                               | 67    | 45      | 1332        |
| 97     | ~   | 986           | 1366         | gn1 PID d102235     | (AB000631) unnamed protein product (Streptococcus mutans)                             | 67    | 43      | 381         |
| 102    | -   | 601           | 1413         | gi 682765           | mccB gene product [Escherichia coli]                                                  | 67    | 36      | 813 {       |
| 106    |     | 1109          | 1987         | gi 148921           | LicD protein [Haemophilus influenzae]                                                 | 67    | £\$.    | 879         |
| 115    | -   | 5982          | 9696         | 91   895750         | putative cellobiose phosphotransferase enzyme III [Bacillus subtilis]                 | 67    | 44      | 327         |
|        |     |               |              |                     |                                                                                       |       |         |             |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF      | Start<br>(nt) | Stop<br>(nt) | match               | матсћ деле паме                                                                                                                                                                                                                                     | * sim | * ident | length<br>(nt) |
|--------|----------|---------------|--------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| 511    | 17       | 8421          | 1 8077       | gi 466473           | cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus]                                                                                                                                                                              | 67    | 51      | 345            |
| 127    | 13       | 8127          | 7021         | 91   147326         | transport protein [Escherichia coli]                                                                                                                                                                                                                | 67    | 45      | 1107           |
| 136    | 2        | 2215          | 2859         | gn1 PID d100581     | unknown (Bacillus subtilis)                                                                                                                                                                                                                         | 67    | 6\$     | 645            |
| 140    | 21       | 23317         | 120906       | gn1   P10   d101912 | phenylalanyl-tRNA synthetase [Synechocystis sp.]                                                                                                                                                                                                    | 67    | 43      | 2412           |
| 146    | 1 9 1    | 2894          | 1893         | gi 2182994          | histidine kinase (Lactococcus lactis cremoris)                                                                                                                                                                                                      | 67    | 44      | 1002           |
| 151    | 8        | 111476        | 71111        | gn1 PID d100085     | ORF129 [Bacillus cereus]                                                                                                                                                                                                                            | 67    | 88      | 360            |
| 160    | 0        | 7453          | 8646         | 91   2281317        | OrfB: similar to a Streptococcus pneumoniae putative membrane protein encoded by GenBank Accession Number X99400; inactivation of the OrfB gene leads to UV-sensitivity and to decrease of homologous recombination (plasmidic test) [Lactococcus 1 | 69    | 46      | 1194           |
| 163    | 1 2      | 3099          | 4505         |                     | YqfR  Bacillus subtilis                                                                                                                                                                                                                             | 67    | 47      | 1407           |
| 167    | 8        | 6704          | 5454         | 91 1161933          | DitB [Lactobacillus casei]                                                                                                                                                                                                                          | 67    | 45      | 1251           |
| 691    | -        | 2322          | 1 2879       | gn1   Pr0   d101331 | YqkG (Bacillus subtilis)                                                                                                                                                                                                                            | 67    | 41      | 558            |
| 171    | =        | 7656          | 8384         | 91   153841         | pneumococcal surface protein A (Streptocccus pneumoniae)                                                                                                                                                                                            | 67    | 20      | 729            |
| 188    |          | 1930          | 3723         | 91 1542975          | AbcB (Thermoanaerobacterium thermosulfurigenes)                                                                                                                                                                                                     | 67    | 46      | 1794           |
| 189    | 9        | 3599          | 3141         | gn1 PID e325178     | Hypothetical protein (Bacillus subtilis)                                                                                                                                                                                                            | 67    | 52      | 459            |
| 205    | -        | 1663          | 2211         | gi 606073           | ORF_0169 (Escherichia coli)                                                                                                                                                                                                                         | 67    | 47      | 549            |
| 1 207  | -        | 2896          | 3456         | gi   2276374        | DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)                                                                                                                                                                             | 67    | 69      | 561            |
| 712    | 2        | 4086          | 3703         | gi 895750           | putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)                                                                                                                                                                               | 67    | 42      | 384            |
| 246    | 2        | 291           | 1 662        | gi 1842438          | unknown (Bacillus subtilis)                                                                                                                                                                                                                         | 67    | 43      | 372            |
| 252    | -        | 7             | 745          | 91 2351768          | PspA (Streptococcus pneumoniae)                                                                                                                                                                                                                     | 67    | 41      | 744            |
| 265    |          | 1134          | 1 1811       | gi 2313847          | (AE000585) L-asparaginase II (ansB) [Helicobacter pylori]                                                                                                                                                                                           | 67    | 42      | 678            |
| 295    | -        | 1             | 375          | gi 2276374          | DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)                                                                                                                                                                             | 67    | 43      | 375            |
| -      | _        | 4898          | 5146         | gn1   PID   e255179 | unknown (Mycobacterium tuberculosis)                                                                                                                                                                                                                | 99    | 98      | 249            |
| _      | -        | 389           | e -          | gn1 PID e269548     | Unknown (Bacillus subtilis)                                                                                                                                                                                                                         | 99    | 48      | 387            |
| 6      | 130      | 19267         | 20805        | gi 39956            | [IIGlc [Bacillus subtilis]                                                                                                                                                                                                                          | 99    | 20      | 1539           |
| 4      | <u> </u> | 2545          | 2718         | 91   1787564        | (AE000228) phage shock protein C (Escherichia coli)                                                                                                                                                                                                 | 99    | 36      | 174            |
| 2      | 6        | 13197         | 12592        | gi 1574291          | (fimbrial transcription regulation repressor (pilB) (Haemophilus influenzae)                                                                                                                                                                        | 99    | 46      | 909            |

. S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| - 7    |        |               | 4040     | - march             | match gene name                                                                                                                                                                                                                                                                                                                                                              | 170    |      | (nt)   |
|--------|--------|---------------|----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|--------|
| Contig | ID CRF | Start<br>(nt) | (ut)     | Ę                   |                                                                                                                                                                                                                                                                                                                                                                              | 99     | 43   | 1422   |
|        |        | 2872          | 1 1451   | gn1 PID e266928     | unknown [Mycobacterium tuberculosis]                                                                                                                                                                                                                                                                                                                                         | 1 99   | 42   | 270    |
|        |        |               |          |                     | orf2; GTG start codon [Bacillus thuringiensis]                                                                                                                                                                                                                                                                                                                               |        |      | 1083   |
| 12     | 7      | 1469          | 1500     |                     | Astronossi translation elongation factor EF-Ts (tsf) [Helicobacter pylori]                                                                                                                                                                                                                                                                                                   | 1 99   | 6    |        |
| 15     | 72     | 10979         | 9897     | 19112314738         |                                                                                                                                                                                                                                                                                                                                                                              | 99     | 35   | 6/6    |
| 16     | 7      | 1312          | 734      | gn1 PID d102245     | (AB005554) yxbf (bacitius suction)                                                                                                                                                                                                                                                                                                                                           | 99     | 38   | 480    |
| 35     |        | 1 1372        | 1851     | gi 1480916          | signal peptidase type II [Lactococcus tactis]                                                                                                                                                                                                                                                                                                                                | 99     | 51   | 1269   |
|        | 7      | 5828          | 7096     |                     | gamma-glutamyl phosphate reductase (Streptococcus thermophilus)                                                                                                                                                                                                                                                                                                              | 99     | 50   | 945    |
| ;      | 120    | 116194        | 17138    | gn1   PID   e281914 | Yith (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                     | 99     | 40   | 447    |
| 2      | 7      | 530           | 976      | 91 2314379          | [AE000627] ABC transporter, ATP-binding protein (ynco) instructional pylori]                                                                                                                                                                                                                                                                                                 |        |      | 786    |
|        |        | 001           | 1 984    | qi 31244            | ONF2 (Bacillus caldolyticus)                                                                                                                                                                                                                                                                                                                                                 | 99     | 44   | 1119   |
| 33     | 1 = -  | 8352          | 7234     | gi 1387979          | 44% identity over 302 residues with hypothetical protein from Synechocystis 44% identity over 302 residues with hypothetical protein from some 8p. accession D64006_CD; expression induced by environmental stress; some 5p, accession D64006_CD; expression induced by environmental membrane-spanning similarity to glycosyl transferases; two potential membrane-spanning |        |      |        |
|        |        |               |          |                     | helices (Bacillus subtil                                                                                                                                                                                                                                                                                                                                                     | 99     | 1 39 | 951    |
| 34     | 9 -    | 1 5658        | 4708     | gn1 PID e250724     |                                                                                                                                                                                                                                                                                                                                                                              | 99     | 48   | 1 219  |
| 34     | 1 2    | 9792          | 1 9574   | gi 1590997          | M. jannaschii predicted coding region HJ0111 Inclusive code                                                                                                                                                                                                                                                                                                                  | 99     | 1 46 | 1 663  |
| 35     | 116    | 15163         | 114501   | 91 1773352          | Cap5M (Staphylococcus aureus)                                                                                                                                                                                                                                                                                                                                                | 99     | 35   | 1 804  |
| 36     | 6      | 6173          | 9769     | 91 1518680          | minicell-associated protein DivIVA (Bacillus subtitus)                                                                                                                                                                                                                                                                                                                       | 99     | 43   | 1 429  |
| 36     | . =    | 110396        | 10824    | bbs 155344          | insulin activator factor, INSAF (human, Pancreatic insulinoma, representational payria) 744 aaj (Homo sapiens)                                                                                                                                                                                                                                                               |        |      | _      |
|        |        | _             | <u> </u> |                     |                                                                                                                                                                                                                                                                                                                                                                              | 99     | 1 50 | 1 1392 |
| 48     | -      | 28            | 1419     | gn1 PID e325204     | hypothetical                                                                                                                                                                                                                                                                                                                                                                 | 99     | 40   | 303    |
| 8      | -      | 1 3810        | 1 4112   | gi   2182574        | (AE000099) Y4pE (Rnizonium sp. novice)                                                                                                                                                                                                                                                                                                                                       | 99     | 1 52 | 1 807  |
| 52     | 4      | 3595          | 1 2789   | 91   388565         |                                                                                                                                                                                                                                                                                                                                                                              | 1 66   | 1 43 | 1587   |
| 54     |        | 2662          | 1 1076   |                     | glutamine-binding periplasmic protein (Symechocystis sp.)                                                                                                                                                                                                                                                                                                                    | 99     | 44   | 855    |
| 1 5    | 9      | †-            | 1 9183   | gn1 PID e154144     | mdr gene product [Staphylococcus aureu                                                                                                                                                                                                                                                                                                                                       | 79     | 1 44 | 1101   |
| 1      | 1 =    | + -           | 111993   | gi 2313129          | (AE000526) H. pylori predicted coding region HP0049 [Helicobacter pytori]                                                                                                                                                                                                                                                                                                    | 2      | 43   | 1 792  |
| 1 42   |        | ì             | 112476   | gi [1573941         | ypothetical (Haemophilus influenzael                                                                                                                                                                                                                                                                                                                                         | 2 4    | 88   | 1 867  |
| 75     |        | - 2           | 898      | gi 1574631          | nicotinamide mononucleotide transporter (pnuC) (Haemophilus intluentation                                                                                                                                                                                                                                                                                                    | 99     | 9    | 1029   |
|        | -      |               |          |                     | recharge records (Facherichia coli)                                                                                                                                                                                                                                                                                                                                          | ;<br>- | -    |        |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

|        | ***** |            |           |                     | match dene name                                                                                                                                                                                    | E 1 to | a 1dent | (nt)  |
|--------|-------|------------|-----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-------|
| Contig | ORF   | Start (nt) | Stop (nt) | acession            |                                                                                                                                                                                                    | 99     | 53      | 1311  |
| a l    | 2     |            | 1         | 255128              | trigger factor (Bacillus subtilis)                                                                                                                                                                 | 3      | ***     | 215   |
| 82     | - 1   | 1190       | . !       | 70007               | territory bomolog - Bacillus subtills                                                                                                                                                              | 00     | 7       |       |
| 83     | _ 3   | 905        | 1219      | 6 (5334             | 1                                                                                                                                                                                                  | 99     | 41      | 683   |
| 96     | 120   | 9407       | 8925      | gi 683584           | shikimate kinase [Lactococcus access]                                                                                                                                                              | 99     | 52      | 942   |
| 88     | 100   | 7001       | 0909      | gi   2098719        | ed protein (Actionates                                                                                                                                                                             | 99     | 41      | 948   |
| 3 1 3  |       | 06.1       | 4         | di 410118           |                                                                                                                                                                                                    |        | 69      | 951   |
| 89     |       | 3661       | 2711      | 91 1787936          | (AECOO260) f298, This 298 as orf is 51 pct identical (5 gaps) to 297 (AECOO260) f298, This 298 as orf is 51 pct identical residues of an approx. 304 as protein YCSN_BACSU SW: R42972 (Escherichia |        |         |       |
|        |       |            |           |                     |                                                                                                                                                                                                    | 99     | 48      | 1245  |
| 104    | -     | 1 1805     | 3049      | gi 1469784          | n process to                                                                                                                                                                                       | 99     | 52      | 819   |
| 1 106  | -114  | 113576     | 114253    | 91 40027            | homologous to E.coli gidB (Bacilius succision)                                                                                                                                                     | 99     | 69      | 006   |
| 107    |       | 596        | 1 1864    | gi 144858           | ORF A (Clostridium perfringens)                                                                                                                                                                    | 99     | - 63    | 9.48  |
| 112    | 7     | 5718       | 6893      | 91 609332           | DprA (Haemophilus influenzae)                                                                                                                                                                      | 99     | 95      | 300   |
| 115    | -     | - s        | 302       | 1911727367          | Hyrlp (Saccharomyces cerevisiae)                                                                                                                                                                   | 99     | 36      | 1 564 |
| 122    | -     | -          | 995       | gn1   P10   d101328 | Yqiv (Bacillus subtilis]                                                                                                                                                                           | 99     | 48      | 114   |
| 96.    |       | 111759     | 111046    |                     | ORF3 (Bacillus subtilis)                                                                                                                                                                           | 99     | 41      | 162   |
|        |       | 1008       | 1 8431    | qi 726288           | growth associated protein GAP-43 (Xenopus lievis)                                                                                                                                                  | 99     | 39      | 387   |
| 871    | =     |            | 8000      | lai 1486661         | THIND related protein (Saccharomyces cerevisiae)                                                                                                                                                   |        | 4       | 1 663 |
| 131    | B     | 4874       | 2007      |                     | The name product (Bacillus subtilis)                                                                                                                                                               | 9      |         |       |
| 1 140  | -     | 3236       | 2574      | gi 40056            | pnor gene product                                                                                                                                                                                  | 99     | 48      | 882   |
| 1 140  | 115   | 116318     | 115434    | gi 1658189          | are 1                                                                                                                                                                                              | 99     | 42      | 291   |
| 146    | 112   | 1 7926     | 1 7636    | gn1 PID d101140     | transposase (Synechocystis sp.)                                                                                                                                                                    | 99     | 48      | 1 984 |
| 147    | 9     | 1137       | 6154      | gi 472326           | 4                                                                                                                                                                                                  | 99     | 46      | 966   |
| 149    | 9     | 4435       | 5430      | garl   Pro  d101887 | pentose-5-phosphate-1-epimerase (Synechocysti                                                                                                                                                      | 99     | 42      | 822   |
| 149    | 13    | 10754      | 111575    | 191   42371         | sting enzyme (AA 1-240)                                                                                                                                                                            | 99     | 41      | 906   |
| 186    | -     | 1 2578     | 1 2270    | 911010 01106        | ORF11 (Er                                                                                                                                                                                          | 99     | 99      | 1 258 |
| 1 207  | - 5   | 1 2340     | 1 2597    | gn1 PID e321893     | envelope glycoprotein gpl60                                                                                                                                                                        | 99     | 99      | 321   |
| 210    | -     | 1 3358     | 3678      | gi 49318            | ORF4 gene product (Bacillus subtilis)                                                                                                                                                              | 99     | 38      | 213   |
| 1 217  | 8     | 5143       | 5355      | 91 49538            | thrombin receptor (Cricefulus longicaucaca)                                                                                                                                                        | 99     | 33      | 234   |
| 220    | 7     | 3875       | 3642      | 91 466648           | alternate name ORFD of Lizoss (security)                                                                                                                                                           | +      | <br>    |       |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

|        | •        |        |        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mis . | # ident | length |
|--------|----------|--------|--------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|--------|
| Contig | -        | Start  | Stop   | match                                   | match gene name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - • • |         | 6.00   |
| _      | _ :<br>e | (nt)   | - 1    | - 7                                     | and the state of t | 99    | 45      | 256    |
| 223    | -        | 1070   | 138    | gn1 P1D e247187                         | zinc finger protein (bacteriophys)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99    | 41      | 777    |
| 224    | 7        | 1864   | 2640   | gi   1176399                            | putative ABC transporter subunit (Stephysocial)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99    | 45      | 870    |
| 243    | -        | -      | 872    | dbj  AB000617_2                         | (AB000617) YcdH (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99    | 09      | 324    |
| 268    | - 2      | 891    | 568    | gi 517210                               | putative transposase (Streptococcus pyogenes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99    | 40      | 642    |
|        | -        | ~      | 643    | gi 1499836                              | 2n protease (Methanococcus jannaschiil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 69  | 34      | 732    |
| -      |          | 10     | 13178  | q1 1574292                              | hypothetical (Haemophilus influenzae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55    | 48      | 726    |
| n   u  | ì        | !      | i      | gi 142854                               | Induction   I would be could raid gene product and to unidentified protein from   Induction   I would be continued by the country of the co   | 3     |         |        |
| 1      | i        | 1      |        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9     | 42      | 243    |
| ,      | 2        | 647    | 405    | pir C64146 C641                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65    | 20      | 576    |
| 7      | 1 -      | 6246   | 6821   | gn1 PID d101323                         | YqhU (Bacilius subtities)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9     | 54      | 477    |
| 10     | - 2      | 1873   | 1 1397 | gi 1163111                              | ORF-1 (Streptococcus pneumoniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 65  | 45      | 195    |
| 16     | 3        | 1428   | 1 2222 | gn1 PID e325010                         | hypothetical protein (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59    | 07      | 459    |
|        | 7        | 3815   | 13357  | gn1   PID   e314910                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 65  | 42      | 609    |
|        |          | 9000   | 126384 | 1ai11123030                             | CpxA (Actinobacillus pleuropneumoniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - + - |         | 1359   |
| 22     | - 1      |        |        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59    | 00      |        |
| ţ      | 2        | 1 1648 | 290    | v 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 65  | 45      | 795    |
| 48     | 12       | 10062  | 10856  | gi 1573390                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9     | 7.6     | 639    |
| 48     | 122      | 17521  | 16883  | [91 [1573391                            | hypothetical (Haemophilus intluditae:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59    | 38      | 495    |
| 48     | 125      | 119027 | 118533 | gn1 PID e264484                         | YCR020c, len:215 (Saccharomyces cerevisiae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 32      | 1479   |
| 1      | -        | 1 3856 | 1 5334 | 91   1480429                            | putative transcriptional regulator (Bacillus stearothermopurius)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |         | 819    |
| -      | ·        |        | 4519   | lai   171963                            | LRNA isopentenyl transferase (Saccharomyces cerevisiae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60    |         |        |
| 20     | -        | 1666   |        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 65  | 9       | 700    |
| 52     | 115      | 114728 | 15588  | 91   1499 / 45                          | in January and Articles and Art | 9     | 1 42    | 783    |
| 65     | 1 7      | 3963   | 4745   | gi 496514                               | orf zeta latreprocess grass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 1 46    | 984    |
| 89     | -        | 1 2500 | 3483   | gi 887824                               | ORF 0310 [Escherichia coll]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 65  | 42      | 1095   |
| 69     | -        | 1712   | 101    | gn1 PID e311453                         | unknown (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 65  | 55      | 1 705  |
| 69     | -        | 6209   | 5325   | gi 809660                               | deoxyribose-phosphate aldolase (Bacillus subtills)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1 42    | 1248   |
| 11,    | 5 -      | 8536   | 9783   | gi 1573224                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 96      | 964    |
| 72     | 8        | 1 7664 | 1 8527 | gn1 PID e267589                         | g [Unknown, highly similar to several spermidine synthases located                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |         |        |
|        |          |        |        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |        |

pneumoniae - Putative coding regions of novel proteins similar to known proteins

| ORF   Start   Stop   Accession   10   (nt)   (nt) |       | •          |               |              | 4               | match gene name                                                                                               | e sin | * ident | length<br>(nt) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|---------------|--------------|-----------------|---------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| 5   5773   4097   gnl  plD[d101723   DNA     9   8099   7875   gi  1574276   exocolor     1   14495   13407   gnl  plD[d101880   3-d     1   14495   13407   gnl  plD[d101880   3-d     1   2425   2736   gi  151259   HHG     1   2   1627   1007   gnl  plD[d101020   [AB     1   69   389   gi  498839   ONE     1   69   389   gi  498839   ONE     1   69   389   gi  498839   ONE     1   6922   7818   gi  2182577   DNA     1   6922   7818   gi  2182577   DNA     1   6522   7818   gi  498839   ONE     1   6   6635   6487   gi  410132   ONE     2   730   437   gi  410132   ONE     3   1952   3914   gi  1552737   Si     4   4556   3900   gi  1552737   Si     5   1   160   1572   gnl  plD[d102004   [IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ORF -      | Start<br>(nt) | Stop<br>(nt) |                 | Recharichia coli                                                                                              | 1 69  | 44      | 1677           |
| 9   8099   7875   91   1574276   exocolor   2   2870   2352   91   2313188   1 ABE   13407   911   910   410   13-45   13407   911   910   410   13-45   13407   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   911   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   | 9,    | 5          | 5773          | 4097         | 01723           | NA REPAIR PROTEIN RECN (RECOMBINATION FROILS NO. 1                                                            | 65    | 38      | 225            |
| 2   2870   2352   91 2113188     (ABE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76    |            | 6608          | 7875         | -               | • •                                                                                                           | 65    | 41      | 519            |
| 15   14455   13407   gn1   PtD   d101880   3-d   3   3706   2423   gi   151259   HMG   3   2425   2736   gi   1598510   unk   4   6635   6186   gn1   PtD   e246063   NM2   1   69   189   gi   49839   QNE   7   6522   7190   gi   1755577   DN3   7   6522   7190   gi   1755577   DN3   8015   7818   gi   218574   GM2   9   4   5021   3885   gi   472329   di   1   2   3212   4687   gi   3104897   EC   1   2   3212   4687   gi   3104897   EC   2   730   437   gi   310893   me   4   2951   2220   gn1   PtD   e139500   O1   6   1   160   1572   gn1   PtD   d102004   U1   7   4256   3900   gi   1592142   M3   9   6   1160   1572   gn1   PtD   d102004   U1   1   160   1572   gn1   H10135   M3   1   160   1572   gn1   H10136   M3   1   160   1572   gn1   H10156   M3   1   160   1572   gn1   H105004   U1   1   160   15004   U1   1   160   15004   U1   150 | 84    | 2          | 2870          | 2352         | _               | AE000512) conserved hypothetical process                                                                      | 65    | 44      | 1 6801         |
| 3   3706   2423   gi 1531259   HHG   3   2425   2736   gi 1098510   lunk   2   1627   1007   gn1 PID C246063   lNR5   6   6635   6186   gn1 PID C246063   lNR5   1   3   1016   gn1 PID C11125   que   1   3   1016   gn1 PID C11125   que   1   3   1016   gn1 PID C11125   que   1   69   189   gi 49839   lnR5   1   69   189   gi 192577   lnR7   1   69   1895   gn1 PID C11139   lnR5   1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 986   | <b>:</b> – | 14495         | 13407        | 01880           | layner                                                                                                        | 65    | 51      | 1284           |
| 3   2425   2736   gil 1098510   lunk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87    | -          | 3706          | 2423         | _               | (EC 1.1.3.88)                                                                                                 | 9     | 30      | 312            |
| 2   1627   1007   gn1 PID d102008   (AB   6   6615   6186   gn1 PID e246063   NN4   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88    | 1          | 2425          | 2736         | ;               | inknown [Lactococcus lactis]                                                                                  | 59    | 41      | 621            |
| 6   6635   6186   gn1   P10   e246063   MN2     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89    | 2          | 1627          | 1007         |                 | (Bacillus subtilis)                                                                                           | 65    | 05      | 450            |
| 1   3   1016   gn1   P10   d101125   que   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111   | 9          | 6635          | 6186         | - +             | (Xenopus laevis                                                                                               | 65    | 44      | 1014           |
| 1   69   389   91   498839   ORE   1   6522   7190   91   1575577   DBW   12   8015   7818   91   1710   257609   Sugara   12   8015   7818   91   1710   257609   Sugara   1053   1931   91   91   91   91   91   91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116   | -          | - n           | 1016         | - 7             |                                                                                                               | 9     | 36      | 321            |
| 7   6522   7190   94   1575577   DNA   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   1 | 123   | 1          | 69            | 1 389        | gi 498839       | ORF2 (Clostridium perfringens)                                                                                | 59    | 39      | 699            |
| 3   3821   2859   gm   PID  e257609   sugnession   sugn | 123   | 1          | 6522          | 1 7190       |                 | DNA-binding response regulator (Intermotoga markets)                                                          | 99    | 1 47    | 1 963          |
| 12   8015   7818   91 2182574   (A)   (A | 125   | - m        | 3821          | 1 2859       | gn  PID e257609 | sugar-binding transport protein (Anaerocetium timener                                                         | 59    | 1 41    | 198            |
| 4   5021   1985   91 472129   041   1053   1911   91 412129   041   1053   1912   91 4101319   Yq   12   13212   6687   91 304897   EC   12   1322   4817   91 410132   08   14   1392   13914   91 1552737   93   4   4556   1390   91 1552737   93   4   4556   1390   91 1552737   93   1   160   1572   91  P1D 0102004   03   1   160   1572   91  P1D 0102004   03   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 137   | 112        | 8015          | 1 7818       | gi 218257       | Y4pE                                                                                                          | 65    | 47      | 1137           |
| 2   1053   1931   gn1 P1D d101319   Yq   2   21212   4687   gi 304897   EC   2   1322   4837   gi 310893   me   2   1392   3914   gi 1552737   si   4   4556   3900   gi 1592142   Na   4556   3900   gi 1592142   Na   2   2246   1215   gn1 P1D d102004   U   2   2246   1215   gi 143156   m   2   2246   1215   gi 143156   m   2   2246   1225   gi 1787540   U   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 147   | -          | 1 5021        | 3885         | ! _             |                                                                                                               |       | 42      | 678            |
| 2   3212   4687   91 304897   FE   2312   4837   91 310893   me   2425   4837   91 410132   91   91 52737   93   94   93 152737   93   94   93 152737   93   94   93 152737   93   94   95   95   95   95   95   95   95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 148   | 7          | 1 1053        | 11931        | gur   PID       | subtilis)                                                                                                     | 1 65  | 05      | 1476           |
| 2   730   437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 151   | - 2        | 1 3212        | 1 4687       | -               | enzyme n                                                                                                      | 69    | 47      | 1 294          |
| 7   4256   4837   91 410132   99   6   3192   3914   91 1552737   91   91   92   92   92   92   92   92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 756   | -          | 1 730         | 437          | 191(310893      | membrane protein (Theileria parvai                                                                            | 1 65  | 48      | 582            |
| 6   3192   3914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 277   |            | 1 4256        | 1 4837       | ;-              |                                                                                                               |       | 41      | 123            |
| 4   2951   2220   gnl PID e339500   oi<br>4   4556   3900   gil 592142   Ai<br>1   160   1572   gnl PID d102004   Ui<br>2   2246   1215   gi  443156   m<br>4   1544   1891   gi  49315   Oi<br>2   1625   723   gi  1787540   Ui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 169   | -   -      | 3192          | 1, 3914      | 191 15527       | similar to purine nucleoside phosphorylase (deoD) [Escherichia coll)                                          | 59    | 43      | 132            |
| 4   4556   3900   gi  592142   Ai   160   1572   gii  PID d102004   U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 176   | -          | 1 2951        | 1 2220       | au   ub         | oligopeptide binding lipoprotein (Streptoconcus pheumonic)                                                    | 9     | 40      | 1 657          |
| 1   160   1572   gn1 P1D d102004   Line    | 195   | -          | 4556          | -            | 191 115921      | -D-GLUTAMYL-2,                                                                                                | 59    | 15      | 1413           |
| 2 2246 1215  gi 143156  m<br>4 1544 1891  gi 49315  O<br>2 1625   723  gi 1787540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 196   |            | 160           | 1572         | gu]  ub         | (ABOO1488) PROBABLE UDF-N-A-Ellenovations of property of the praminoLigase (EC 6.3.2.15). (Bacillus subtilis) |       | 37      | 1 1032         |
| 4   1544   1891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 204 |            | 1 2246        | <b>:-</b>    | <u> </u>        | membrane bound protein (Bacillus subtilis)                                                                    | 59    | 48      | 348            |
| 2   1625   723     gi 1787540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210   | -          | 1544          | +-           | Ţ -             | gene product (Bacillus subtilis)                                                                              | 59    | 42      | 1 903          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 242   |            | <del>-</del>  | <del> </del> | gi 1787         | pot identical la gaps) AGAR_ECOLI SW: P42902                                                                  |       |         |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

|          |                                              |        |        | •                                       | • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sin                                      | 1 ident | length                                  |
|----------|----------------------------------------------|--------|--------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|-----------------------------------------|
| Contig   | IORF                                         | Start  | Stop   | match                                   | match gene name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                        | - + -   | (nt)                                    |
| QI .     | 0                                            | (nt)   | (nt)   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65                                       | 36      | 006                                     |
| 284      | -                                            | -      | 006    | 91 559861  0                            | ClyM (Plasmid PAUL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65                                       | 52      | 573                                     |
| 304      | 1-                                           | 7      | 574    | gn1 PxD e290934  u                      | unknown (Mycobacterium tubercutosis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65                                       | 57      | 1482                                    |
| 1 315    | -                                            | 2      | 1 1483 | 91   790694                             | mannuronan C-5-epimerasa (Azotobacter Vinetania)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99                                       | 46      | 567                                     |
| 320      | -                                            | 3      | 695    | gn1 PID d102048                         | K. aerogenes, histidine utilization repressor; rivan riville (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |         | 309                                     |
| _        |                                              |        | 80%    |                                         | YloS protein (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60                                       | 1 24    | 876                                     |
| 358      |                                              | •      |        | :-                                      | nicotinate-nucleotide pyrophosphorylase [Rhodospirillum rubrum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |         | 0.00                                    |
| <b>~</b> | 1 7                                          | 1571   | 9699   |                                         | Sylectocytical Sylectics Sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64                                       | 52      | 4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |
| 9        | 9                                            | 5924   | 6802   | 11116                                   | Bethlohine aginopertrees of the second secon | 64                                       | 58      | 270                                     |
| 8        | 7                                            | 3417   | 3686   | - :                                     | DNA helicase II (hycopiasma 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 64 1                                   | 46      | 561                                     |
| 11       | -                                            | 3249   | 1 2689 | gn1 PID e265529                         | OrfB [Streptococcus pneumoniae]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64                                       | 45      | 642                                     |
| 15       |                                              | 6504   | 7145   | gi 1762328                              | Ycr59c/Yigz homolog [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 64                                     | 38      | 348                                     |
| 22       | =======================================      | 9548   | 5686   |                                         | unknown [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 64                                     | 9.7     | 672                                     |
|          |                                              | F02661 | 123174 | gi 289260                               | ComE ORF1 (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7. | 30      | 177                                     |
| 77       |                                              |        |        | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | hmru (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                        |         |                                         |
| 56       | -                                            | 14375  | 14199  | 191   402   403   101                   | (namiliary (namiliary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99                                       | 51      |                                         |
| 1 27     | -                                            | 1510   | 1334   | gi 40795                                | Ddel Betnylase   Destroyment   | 1 64                                     | 05      | 318                                     |
| 1 29     |                                              | 614    | 297    | 191   2326168                           | type VII collagen (Mus musculus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99                                       | 05      | 354                                     |
| 35       |                                              | 368    | 721    | pir JC1151 JC11                         | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |         | 447                                     |
| _ •      | - +                                          | - +    |        |                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b0                                       |         |                                         |
| 40       | -                                            | _      | 649    | 91   469 70                             | TOTAL STATE OF THE PROPERTY OF | 64                                       | 45      | 294                                     |
| 40       | -                                            | 4683   | 4976   | gn1 PID e325792                         | (AJ000005) glucose Kinase (Battitus Magarathermobilus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | 40      | 1 1149                                  |
| 45       | -                                            | 8908   | 1 6920 | gn1 PID d102036                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 64                                     | 54      | 1 654                                   |
|          | - 7                                          | 1 301  | 1059   | gi 43985                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99                                       | 46      | 3147                                    |
|          | - =                                          | 115251 | 118397 | 191 2293260                             | (AF008220) DNA-polymerase III alpha-chain (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | 47      | 603                                     |
|          | -                                            | 1      |        | Lai 11574292                            | hypothetical (Haemophilus influenzae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | -       |                                         |
| - 53     | <u>-                                    </u> | 1115/  | - †    | - [                                     | the same conthetase (alas) (Haemophilus influenzae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64                                       | 51      | 2631                                    |
| 88       | - 5                                          | 4236   | 1606   | gi i5                                   | datainy the control of the control o | 99                                       | 42      | 1257                                    |
| 99       | <del>-</del>                                 | _      | 1259   | 191   895749                            | putative cellouise prosperiorism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 64                                     | 1 47    | 1344                                    |
| 89       | -                                            | 5213   | 1 6556 | gi 43                                   | [mala] gene products [bacillus stearotterm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 64                                     | 52      | 1 408                                   |
| 69       | 9                                            | 5356   | 4949   | gn1   F                                 | ID d101316  Cdd  Bacillus subtilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | •       |                                         |

| TABLE 2                     | S. pneumoniae -       | Putative coding regions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e is           | -+-  | (nt)   |       |
|-----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|--------|-------|
| 1                           |                       | James Dame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 64           | 20   | 1914   | - + - |
| Start   Stop<br>(nt)   (nt) | +-                    | L-glutamine-D-fructose-6-phosphate amidotransferase [Bacillus subtitue-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99             | 52   | 183    |       |
| 6948   5038                 | 191 726480            | TLS-CHOP-fusion protein (Chop-c/Ebr transcense cells, Peptide TTS-CHOP-fusion protein) thuman, myxold liposarcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64             | 35   | 216    | -+    |
| 1465                        | 100                   | binding V- appiens  as] [Homo sapiens]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 99           | 44   | 240    | -+    |
| -                           |                       | methanol dehydrogenase alpha-i-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64             | 43   | 147    | -+    |
| 114016  14231               | - 1                   | 1vgfx (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 38   | 1 675  | _ ·   |
| 121851 122090               |                       | Instative Ptcl protein (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 45   | 1275   |       |
| 10046   9300                | - ;                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 905  | 1 1275 |       |
| 5032   5706                 | - 1                   | initiat to S. aureus mercury(II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***            |      | 1296   | 9     |
| 2   1276                    | - 1                   | Symechocystis sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 64           |      | 1032   | 32    |
| 6136   6410                 |                       | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 64           |      |        | 562   |
| 1                           | 1                     | (hypothetical processing and process | 64             | 20   | -      | *     |
| 2   129 /                   | - 1                   | 4 ONF YDL244W (Saccharomyces Control of One of the Control of the  | 1 64           | 1 52 | -      | 759   |
| 1125   2156                 | . !                   | A hypothetical protein (Symecholyster)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43             | 1 42 | -      | 150   |
| 2331   1780                 |                       | in the state of th |                | -    | 20     | 354   |
| 3467   2709                 |                       | Hace Back                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>-</del> - |      |        | -     |
| 152   3                     |                       | unkiloni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 64           | -    | 44     | 576   |
| -                           | 7549  pir JC1151 JC11 | hypotherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49             | -    | 45     | 1083  |
| -                           | •                     | (AP008220) Ytq6 [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 199            |      | 46 1   | 1017  |
| 3226   2                    | 2651  91 229330       | decarboxytest   decarboxytes   | -+             |      | 28     | 354   |
| 6730 1 5                    | 564B  gi 1322245      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80 -           |      |        | 702   |
| <del>-</del>                | 1018  gn1 PID e137    | 7033 Junknown 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _              | 64   |        | 410   |
| - + -                       | oras  qi 2130630      | (AF000430) Oyuman subtilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -              | 64   | 43     | 210   |
| -†·                         | orblard Land          | 2050 transmembrane (Bacillus avstem permease proteins avstem permease p | -              | 64 1 | 58 -   | 483   |
| - † -                       | 1                     | 10892 [homologous to Gin trainstorman and progenes]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of             | 64   | 40     | 939   |
| 1299                        | - 1                   | ORFI, putative 42 Kba Front State Dermerase protein form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | -+-  |        | 169   |
| 2880                        | 6362  91 51160        | - thomologue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -              | - 49 | 39     | 200   |
| 1 2006                      | 19169   Bulleroldi    | 00964 Inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -              | 64 1 | 33     | 354   |
|                             | 1534045               | antiterminator (Bacilius Suring Diantarum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |      | 46     | 657   |
| 3906                        | •                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - +            | -    |        | ļ     |
| 110   6154                  | 6507 [91130220        | phosphoribosyl anthranilate isomera-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |      |        |       |

S. pneumoniae - Putative coding regions of novel proteins 光伽llar to known proteins

| ORF   Start   (Int)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |               |              | +                   | and the contract of the contra | # sim | * 1dent   | (nt)  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|-------|
| 1   75   110   50   101   50   50   50   50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contig<br>ID | 98 G         | Start<br>(nt) | Stop<br>(nt) | acession            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |       |
| 1   234   1971   gi  573393   collaquamae (prtC)   Idamophilus influenced   544   44   45   45   45   45   45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | 36            | 1140         | Jan 1 Prole293806   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64    | 47        | 1065  |
| 1   234   131   647   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648   648    | 707          |              |               |              |                     | frollanguase (prtC) [Haemophilus influenzae]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 64  | 42        | 1338  |
| 1   191   647   gild0174   Underdicional ditrain Po22) plasmid Ti   Gild   Gild   Control   Co | 224          |              | 234           | 15/1         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 64  | 43        | 357   |
| 1   820   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 231          | -            | 1 291         | 647          | 191   40174         | on an another (insertion sequence IS1131) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64    | 20        | 381   |
| 1   820   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 253          | <u>~</u>     | 904           | 1089         | pir JC1151 JC11<br> | (strain PO22) plasmid Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           |       |
| 1   123   21   640   94 1530971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 366          |              | 820           | 2            |                     | [Bacillus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64    | 31        | 818   |
| 1   233   21   9193651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 262          |              |               | 1 660        | gi 1590871          | collagenase  Methanococcus jannaschii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 64  | 48        | 099   |
| 4         9730         609B         gil556885         [Unknown Bacillus subtilis]         63           6         5778         4431         Gil556885         [Unknown Bacillus subtilis]         63           10         9724         9922         gil1972010         [Nypothetical Heacophilus Influenzael]         63           10         9724         9922         gil1972039         [Unknown Paccear Pac                                                                                                                                                                                                                                                                               | 336          | -            | 263           | 21           | qi 992651           | Gin4p (Saccharomyces cerevisiae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 64  | 41        | 243   |
| 6   5178   4483   91 573101   hypothetical [Haemophillus infiltenzae]   63   64   65   65   65   65   65   65   65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | -            | 0000          |              | tail 556885         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63    | 48        | 633   |
| 6   5178   4483   99102   1911573101   Payporter   Payorter   Pa | ٠            |              | 25.0          |              |                     | Lh.b. (wasmanh) lug lnf [uenzae]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63    | 9         | 969   |
| 10   9124   9902   94   806536   membrane protein   180511Uss scientifical   63   64   64   65   65   65   65   65   65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01           | 9 !          | 1 5178        | 4483         | 9i 1573101          | hypothetical thermonistic and the second sec |       | 42        | 675   |
| 10   8897   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9187   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   9188   91 | 12           | Ξ            | 9324          | 9902         | gi 806536           | membrane protein   Bacillus acidoputrus/cicans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 1 40      | 1 291 |
| 2         1031         109         gnilpio[a217602 Pind iLactobacillus pubtilis]         63           8         7778         6975         [si[1377843   unknown [Bacillus subtilis]         63           5         3488         4192         [gi] 142440   ATP-dependent nuclease [Bacillus subtilis]         63           11         8830         7988   Gil 1972319   unknown [Bacillus subtilis]         63           11         1880         7988   gil 1972319   unknown [Acetobacter xylinum]         63           11         1870         876   gil 1722319   unknown [Acetobacter xylinum]         63           11         1871         876   gil 1722319   unknown [Acetobacter xylinum]         63           11         1871         1879   gil 1222319   unknown [Acetobacter xylinum]         63           11         1871         1870   gil 1222319   unknown [Acetobacter xylinum]         63           11         1871         1871         gil 1222319   unknown [Acetobacter xylinum]         63           11         1871         5022   gil 122450   hrc protein [Bacillus subtilis]         63           12         1872         5022   gil 120640   yeal [Bacillus subtilis]         63           10         9242   8918   spl 7666   yil X         11c-1 operon protein [11cD]   Haemophilus influenzel         63 <t< td=""><td>15</td><td>2</td><td>8897</td><td>1 9187</td><td>91   722339</td><td> unknown (Acetobacter xylinum)</td><td>3</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15           | 2            | 8897          | 1 9187       | 91   722339         | unknown (Acetobacter xylinum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3     |           |       |
| 8   7778   6975   Gill377843   Unknown [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17           | -            | 1031          | 1 309        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 32        |       |
| 4   9780   7078   gi 142440   ATP-dependent nuclease [Bacillus subtilis]   63   63   64   64   64   64   64   64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |              | 8777          | 1 6975       | di 1377843          | unknown (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63    | 45        | 804   |
| 1   8830   7988   9m    PTD    40101198   GRF8   Enterococcus feecalis    63   63   63   64   64   64   64   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              | 0380          | 7078         | qi 142440           | (Bacillus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63    | 46        | 2703  |
| 11   8830   7988   gni PrD d101198   ORF8   Enterococcus faecalis    63   63   64   64   64   64   64   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9   9        | , <u> </u> . |               | 4192         | loi 11377829        | unknown (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63    | 35        | 105   |
| 11   8830   7988   gni Ptu diulity   Outcolean   Macatobacter xylinum    63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67           |              | 2025          |              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63    | <b>\$</b> | 843   |
| 3   1187   876   gi 722339   unknown (Acetobacter Xylinum)     15   12509   11691   gi 1573389   hypothetical (Haemophilus Influenzae]   63     11   12719   12189   gi 142450   ahrC protein (Bacillus subtilis)   63     14   3979   5022   gi 1708640   YeaB (Bacillus subtilis)   63     15   13669   14670   gn  PID e311502   thioredoxine reductase   Bacillus subtilis   63     10   9242   8919   sp P37686 Y1AY   HYPOTHETICAL 40.2 KD PROTEIN IN AVTA-SELB INTERGENIC REGION (F382)   63     17   6554   5865   gi 1574382   11c-1 operon protein (licD) (Haemophilus influenzae]   63     18   6085   5180   gi 2098719   putative fimbrial-associated protein (Actinomyces naes)undii)   63     18   5858   6484   gi 1052803   Orfleyb gene product (Streptococcus pneumoniae)   63     18   5858   6484   gi 1052803   Orfleyb gene product (Streptococcus pneumoniae)   63     19   540   1940   Gi 7771   (fucosidase (Dictyostelium discoideum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34           | Ξ            | 8830          | 1 7988       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69    | 39        | 312   |
| 15   12509   11691   gi 1573389   hypothetical (Haemophilus influenzee  63   63   64   64   64   64   64   64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35           | -            | 11187         | 876          | gi 722339           | unknown (Acetobacter xylinum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 41        | 818   |
| 11   12719   12189   gi 142450   ahrC protein [Bacillus subtilis]   63   63   63   64   65   65   65   65   65   65   65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48           | 115          | 112509        | 111691       | 91 1573389          | hypothetical (Haemophilus influenzael                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |           |       |
| 4   1979   5022   gi  1708640   YeaB [Bacillus subtilis]   63     15   13669   14670   gi  PID  e311502   thioredoxine reductase [Bacillus subtilis]   63     10   9242   8919   Sp  PID  e311502   thioredoxine reductase [Bacillus subtilis]   63     7   6554   5685   gi  1574382   11c-1 operon protein (licD) [Haemophilus influenzae]   63     8   6085   5180   gi  2098719   putative fimbrial-associated protein [Actinomyces naeslundii]   63     8   5858   6484   gi  1052803   orflgyrb gene product [Streptococcus pneumonlae]   63     9   5858   6484   gi  1052803   orflgyrb gene product [Streptococcus pneumonlae]   63     1   240   1940   gi  7)71   [fucosidase [Dictyostelium discoideum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51           | 17           | 112719        | 12189        | gi 142450           | ahrC protein (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63    | er :      | 166   |
| 15   13669   14670   gnl   PID  e 311502   thioredoxine reductase   Bacillus subtilis    63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55           | -            | 1 3979        | 5022         | gi 1708640          | YeaB (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63    | 41        | 1044  |
| 10   9242   8919   Sp P37686 YIAY_   HYPOTHETICAL 40.2 KD PROTEIN IN AVTA-SELB INTERGENIC REGION (F382)   63   63   63   63   63   63   63   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 115          | 13669         | 114670       |                     | <del>+</del> —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63    | 44        | 7001  |
| 7   6554   5685   gi 1574182   1ic-1 operon protein (licD) [Haemophilus influenzae]   63   63   63   6484   gi 2098719   putative fimbrial-associated protein [Actinomyces naeslundii]   63   63   6484   gi 1052803   orflgyrb gene product [Streptococcus pneumoniae]   63   63   6484   gi 1052803   putative fimbrial discoideum   6484   gi 1052803   putative fimbrial discoideum   65   65   65   65   65   65   65   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68           | 120          | 9242          | 8919         |                     | HYPOTHETICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63    | 40        | 324   |
| 8   6085   5180   gi 2098719   putative fimbrial-associated protein (Actinomyces naeslundii)   63     8   6085   6484   gi 1052803   orflgytb gene product (Streptococcus pneumoniae)   63     8   5858   6484   gi 1052803   orflgytb gene product in discoideum)   63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98           | -            | 6554          | 1 5685       | gi 1574382          | [lic-l operon protein (licD) [Haemophilus influenzae]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63    | 41        | 870   |
| 8   5858   6484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88           | -            | 6085          | 5180         | ì                   | putative fimbrial-associated protein (Actinomyces naeslundii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63    | 43        | 906   |
| 1 1 240   1940   Gil7171   [fucosidase [Dictyostellum discoideum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96           | -            | 1 5858        | 6484         | gi 1052803          | orflgyrb gene product (Streptococcus pneumoniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63    | 38        | /79   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2            | -            | 1 240         | 1940         | di 7171             | [fucosidase [Dictyostellum discoideum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 63  | 36        | 1071  |

pneumoniae - Putative coding regions of novel proteins símilar to known proteins

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Contig | ORF   | Start  | Stop   | match               | match gene name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # sim | t ident | length<br>(nt) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|--------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| 1   100   2755   1911   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912 | 91     | 8     | (nt)   | (at)   | acession            | Corvebacterium dlutamicum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63    | 46      | 2703           |
| 1   19   19   19   19   19   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104    | -     | 3063   | 5965   | gi 144985           | phosphoenoipyruvare carboxyrase foot freeze the football for the football f |       | 1 57    | 919            |
| 1   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   191 | 106    | 8     | 9189   | 8554   | [g1 533099          | endonuclease III (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50    |         |                |
| 1   15   1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122    | 9     | 4704   | 4886   | gn1   P1D   d101139 | transposase (Synechocystis sp.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2     | 66      |                |
| 1   10   15.7   11.70   1.5   1.5   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7  | 128    |       | 4517   | 5203   | i                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63    | 20      | 189            |
| 1   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177    |        |       | 196    | 1 1547 | 1911472920          | v-type Na-ATPase (Enterococcus hirae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63    | 27      | 585            |
| 1741   2371   gil 1787043   (AERODIES) (2711; This 2711 as orf is 24 pet identical life gaps) to 245   48   172   174   175   174   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175  |        |       | 4100   | 4585   | lan   PID   e313025 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63    | 99      | 486            |
| 12   880   14406   901   Propertical 14.86 process sanguist   63   48   48   48   48   48   48   48   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 159    | -   w | 1741   | 2571   | gi   1787043        | (AEG00184) £271; This 271 as orf is 24 pct identical [16 gaps] to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 [Escherichia coli]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G     | 39      | 831            |
| 1   3   347   gill391352   Inthnorm   Macrobacter syllnus    63   41   61   61   61   61   61   61   61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 171    | 112   | 8803   | 14406  | e324918             | IgAl protease (Streptococcus sanguis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63    | 48      | 5604           |
| 2   423   917   91723139   Iunfnorm TAcetcbacter xyllnum  613   36   13   13   13   13   13   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 177    | -     | E .    | 347    |                     | hypothetical 14.8kd protein (Escherichia coli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63    | 34      | 345            |
| 1   137   135   gal   1501582   Cobalamin blosynthesis protein N Hethanococcus Jannaschill   63   35   33   137   135   gal   gal   1252   gal   1591682   Cobalamin blosynthesis protein N Hethanococcus Jannaschill   63   36   41   41   42   42   42   42   43   44   44   44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 178    | - 7   | 423    | 716    | gi 722339           | unknown (Acetobacter xylinum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63    | 41      | 495            |
| 1   1377   175   911   P1D e1343177   ftsQ   Entercoccucus hixee    63   34   41   41   41   42   42   42   42   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 178    |       | 1 794  | 1012   | 91 159 1582         | cobalamin biosynthesis protein N (Methanococcus jannaschii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63    | 36      | 219            |
| 1   127   1917   1917   191   1917   191   1917   191   1917   191   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1917   1 | 195    |       | 1377   | 175    | gn1 PID e324217     | fts@ (Enterococcus hirae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63    | 33      | 1203           |
| 1   127   1347   95    95    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    96    | 234    |       | 1739   | 1527   | gi 1591582          | Methanococcus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63    | 36      | 213            |
| 1   127   1347   9ji 95686   ORFB [Bacillus subtilis]   63   44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 249    | -     | 81     | 1 257  | gi 1000453          | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63    | 41      | 771            |
| 3   2804   3466   941722339   Unknown [Acetobacter xylinum]   63   46   64   65   65   64   65   65   65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 283    | -     | 127    | 1 1347 | 91 396486           | [Bacillus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63    | 44      | 1221           |
| 1   905   486   gi 1877424   UDP-galactose 4-epimerase (Streptococcus mutans)   63   46   46   46   46   47774   UDP-galactose 4-epimerase (Streptococcus mutans)   63   34   35   40   40   40   40   40   40   40   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 293    | -     | 2804   | 3466   | 91 722339           | unknown (Acetobacter xylinum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63    | 37      | 663            |
| 1   2   556   gi 1477741   histidine periplasmic binding protein P29 [Campylobacter Jejuni]   63   36   1   1   2   1   3   3   4   1   2   1   3   3   4   1   3   3   4   1   3   3   4   4   4   4   4   4   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 311    | -     | 1 905  | 486    | gi 1877424          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69    | 46      | 420            |
| 1   219   13   gi 2252843   (AF013293) No definition line found (Arabidopsis thaliana)   63   40   40   40   40   40   40   40   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 324    | -     | - 3    | 556    | 91 1477741          | histidine periplasmic binding protein P29 [Campylobacter jejuni]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63    | 36      | 555            |
| 1   88   378   gi 722339   unknown (Acetobacter xylinum)   63   40   40   40   418   gi 2252843   (AF013293) No definition line found (Arabidopsis thaliana)   63   42   42   42   42   42   42   42   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 365    | -     | 1 219  | 13     | gi 2252843          | (AF013291) No definition line found (Arabidopsis thaliana)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63    | 33      | 207            |
| 3   364   158   gil 2252843   (AF013293) No definition line found (Arabidopsis thaliana)   63   33   42   42   42   42   42   42   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 382    | -     |        | 378    | gi 722339           | unknown (Acetobacter xylinum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63    | 40      | 291            |
| 1   2495   288   gnl PID e325007   penicillin-binding protein [Bacillus subtilis]   62   42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 385    | -     | 364    | 158    | gi 2252843          | (AF013293) No definition line found (Arabidopsis thaliana)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63    | 33      | 207            |
| 23   23374   24231   gnl  PID  e254993   hypothetical protein (Bacillus subtilis)   62   35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7      | -     | 2495   | 1 288  |                     | penicillin-binding protein [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62    | 42      | 2208           |
| 16   14320   13193   gnl  PID e349614   nif6-like protein (Mycobacterium leprae)   62   37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 123   | 23374  | 24231  |                     | hypothetical protein (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62    | 35      | 858            |
| 8   6819   7232  gnl PID d101324  YqhY (Bacillus subtilis <br>  19   15466   14207  gnl PID d101804   beta ketoacyl-acyl carrier protein synthas? [Synechocystis sp.]   62   43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9      | 116   | 114320 | 113193 |                     | nits-like protein (Mycobacterium leprae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62    | 37      | 1128           |
| 19   15466   14207   Gnl   PID   4101804   beta ketoacyl-acyl carrier protein synthasa (Synechocystis sp. )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 1    | -     | 6819   | 1 7232 |                     | (Bacillus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62    | 32      | 414            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7      | 119   | 115466 | 114207 | gn1   P10           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62    | 43      | 1260           |

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |      | (nt)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------|------|-------|
| 17155   16229   gni PtD e323514   putative Pabb procein   Bacillus subtil   19526   18519   gi 1276434   beta-ketoacyl-ACP synthase III (Cupher   5904   4702   gi 1571768     A/G-specific adenine glycosylase (mut)   8022   8793   gi 1571768     A/G-specific adenine glycosylase (mut)   2609   2442   gi 1591081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                | 62   | 46   | 927   |
| 19526   18519   9i 127644   beta-ketoacyl-ACP synthase III (Cupher   5904   4702   9i 1571768   JA/G-specific adenine glycosylase (mut)   5904   4702   9i 1571768   JA/G-specific adenine glycosylase (mut)   6028   6728   9128   pir JC1151 JC11   hypotherical Zix protein (insertion   2609   2442   9i 1591081   H. Jannaschii predicted coding region   2609   2442   9i 1591081   H. Jannaschii predicted coding region   2609   2442   9i 149570   509-1   H. Jannaschii predicted coding region   2235   1636   9i 149570   509-1   H. Jannaschii predicted coding region   2235   1636   9i 148231   0251   Escherichia coli   2589   6123   9i 148231   0251   Escherichia coli   2589   6123   9i 148231   0251   Escherichia coli   2235   1636   9i 148231   0251   Escherichia coli   2235   1636   9i 148231   0251   Escherichia coli   2235   1636   9i 148231   0251   Escherichia coli   2235   1328   9i 148231   0251   Escherichia coli   2235   1328   9i 148332   14662920   14600627) ABC teansporter. ATP-bindi   2291   2099   9i 1183886   10000627   10000   1000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  | 62   | 37   | 1008  |
| S904   4702   91 1591587   pantothenate metabolism flavoprotein   8032   8793   91 1591587   pantothenate metabolism flavoprotein   8032   8793   91 1591587   pantothenate metabolism flavoprotein   2609   2442   91 1591081   H. Janaschii predicted coding region   2609   2442   91 1591081   H. Janaschii predicted coding region   2609   2442   91 1591081   H. Janaschii predicted coding region   2609   2442   91 140100580   similar to B. subtilis DnaH   Bacillus self   14500   9518   91 1910 4100580   similar to B. subtilis DnaH   Bacillus self   14500   91 140101904   hypothetical protein   Synechocystis similar   1257   13328   91 1910 4101904   hypothetical protein   Synechocystis similar   1367   9104   91 66220   repressor protein   Engment YBCB   1767   19104   91 1910 6101153   StySKI methylase   Salmonella enteric   1760   91 1181886   integral membrane protein   Bacillus subtilis   1790   14104   91 1910 610103   hypothetical protein   Bacillus subtilis   1910   91 11910 610103   hypothetical protein   Bacillus subtilis   1910   1910   91 11910 610103   hypothetical protein   Bacillus subtilis   1910   91 11910 610103   hypothetical protein   Bacillus subtilis   1910   91 11910 610103   hypothetical protein   Bacillus subtilis   1910   91 11910 610103   hypothetical protein   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910   1910     |                                                                  | 62   | 43   | 1203  |
| 96.28   93.28   pir JC1151 JC11   hypothetical 20.3% protein (Insertion 16.26.9)   passid Ti tumefaciens (strain p022) plasmid Ti 105.3   pi 149570   pi 149571   pi 1   | a introduction                                                   | 62   | 33   | 762   |
| 9678   9326   pir  JC1151 JC11   hypothetical 20.3% protein (Insertion 12609   2442   gi 1591081   H. Jannaschii predicted coding region   2609   2442   gi 149570   role in the expression of lactacin F. 3053   2835   gi 149570   role in the expression of lactacin F. 3p.]   REGIONOSEO   similar to B. subtilis DnaH (Bacillus Subtilis   2235   1636   gi 148231   0251 (Escherichia coli)   pylori)   pylori   pylori   pylori   pylori   pylori   poctation   subtilis   1267   4005   gi 146182   putative (Bacillus subtilis   1367   4005   gi 146182   putative (Bacillus subtilis   1366   7181   gi 146182   putative (Bacillus subtilis   1267   4005   gi 118386   integral membrane protein (Enterococcus hira   12791   2099   gi 118386   integral membrane protein (Bacillus subtilis   1384   gi 2055483   unknown (Lactococcus lactis lactis   1267   4809   gi 149771   pillin gene inverting protein (PivML)   18790   20382   gi 1280135   coded for by C. elegans CDNA ca21e6   Gaenorhabditis elegans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - Anrobacterium                                                  | 62   | 43   | 351   |
| 2609   2442   gi 1591081   W. Jannaschii predicted coding region   3053   2835   gi 149570   role in the expression of lactacin F. sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |      | _ ;  | 07.   |
| 1053   2835   91   149570   role in the expression of lactacin P.     865   2043   91   2141379   (AE000627) ABC transporter. ATP-bindle     2235   1636   91   91   91   91   91   91   91   9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | coccus jannaschiil                                               | 62   | 63   | 219   |
| 865   2043   91 2114379   AE000627) ABC transporter. ATP-binding protein (yhcd)     865   2043   91 2314379   AE000627) ABC transporter. ATP-binding protein (yhcd)     2235   1636   91 413976   1pa-52r gene product [Bacillus subtilis]     1472   13328   91 140231   0251 [Escherichia coli]     1472   13328   91 140231   0251 [Escherichia coli]     1267   4005   91 1786952   (AE000176) 0877; 100 pct identical to the first 86 rea     1267   4005   91 1786952   (AE000176) 0877; 100 pct identical to the first 86 rea     1267   4005   91 1786952   (AE000176) 0877; 100 pct identical to the first 86 rea     1267   4005   91 1781928   Phypothetical protein [Enterococcus hirael     1268   14704   91  PID e130133   StySKI methylase [Salmonella enterical     1269   91 183886   integral membrane protein [Bacillus subtilis]     12702   14704   91  PID e1313028   Phypothetical protein [Bacillus subtilis]     1289   91 19302977   PDIG gene product [Bordetella pertussis]     18790   20382   91 1280135   Coded for by C. elegans CDNA cm2le6; coded for by C. elegans]     18790   20382   91 1280135   Coded for by C. elegans]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | operon (Lactobacillus                                            |      |      |       |
| 865   2043   91214379   (AE000627) ABC transporter. ATP-binding protein (yhcd)     2235   1636   91 413976   1pa-52r gene product (Bacillus subtilis)     2235   1636   91 418931   0251 (Escherichia coli)     2689   6123   91 418931   0251 (Escherichia coli)     14272   13328   91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  | 62   | 43   | 912   |
| 1257   1636   91 413976   19a-52r gene product [Bacillus subtilis]     5689   6123   91 148231   0251 [Escherichla coli]     14272   13328   931 PID 0101904   hypothetical protein [Symechocystis sp.]     1267   4005   91 136952   Putative [Bacillus subtilis]     1267   4005   91 136952   Putative [Bacillus subtilis]     1564   7181   931 PID 010151   SrySKI methylase [Salmonella enterica]     1564   7181   931 PID 010153   SrySKI methylase [Salmonella enterica]     15702   14704   931 PID 010153   SrySKI methylase [Salmonella enterica]     15702   14704   931 PID 010153   Protein [Bacillus subtilis]     15702   14704   931 PID 0101028   hypothetical protein [Bacillus subtilis]     15702   14704   931 PID 0101028   hypothetical protein [Bacillus subtilis]     15702   14704   931 PID 0101038   hypothetical protein [Bacillus subtilis]     18790   10739   93  1280135   PublC gene product [Bordetella pertussis]     18790   20382   93  1280135   Coded for by C. elegans CDNA cm21e6; coded for by C. elegans     18790   20382   93  1280135   Salmilar to melibiose carrier protein (thiomethylgala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) (Helicobacter                                                  |      | 43   | 1179  |
| 2235   1636   gi    413976   ipa-52r gene product   ioculiano     5689   6123   gi    413976   io251   Escherichia coliano     1267   13328   gil   PID    4101904   hypothetical protein   Synechocystis sp.     1267   4005   gi    1146182   putative   Bacillus subtilis     1267   4005   gi    1786952   (AE000176) o877; 100 pct identical to the first 86 resident     1267   4005   gi    166220   repressor protein   Enterococcus hirse     1267   4005   gi    1910    1910    1530    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1910    1   |                                                                  | 62   | 44   | 009   |
| 5689   6123   91 148231    0251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | 62   | 34   | 435   |
| 1267   13328   gri    PID    d101904   hypothetical protein [Symechocystis sp.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | 62   | 43   | 945   |
| 3   311   91   1146182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  | - 69 | 41   | 309   |
| 1267   4005   gi   1786952   (AE000116) 0877; 100 pct identical to the first 86 real fired   4005   gi   1786952   hypothetical protein fragment YBGB_ECOLI 5N: P54746   5016   gi   662920   repressor protein [Enterococcus hize]   5664   7181   gn1   PTD  e301153   StySKI methylase [Salmonella enterica]   2791   2099   gi   1183886   integral membrane protein [Bacillus subtilis]   15702   14704   gn1   PTD  e313028   hypothetical protein [Bacillus subtilis]   1418   3984   gi   2055483   unknown [Lactococcus lactis lactis]   10002   10739   gi   149771   pilin gene inverting protein (PivHL) [Moraxalla lacun   4997   4809   gi   149771   pilin gene inverting protein (PivHL) [Moraxalla lacun   6997   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691   691     |                                                                  | , ,  |      | 91.76 |
| 9732   9304   gi 662920   repressor protein [Enterococcus hirae]     5664   7181   gn1 PID e301153   StySKI methylase [Salmonella enterica]     2791   2099   gi 1183886   integral membrane protein [Bacillus subtilis]     15702   14704   gn1 PID e313028   hypothetical protein [Bacillus subtilis]     14804   gi 2065483   unknown [Lactococcus lacis lacits]     14807   4809   gi 149771   pllin gene inverting protein (PivML) [Moraxella lacun     10002   10739   gi 92977   bplG gene product [Bordetella pertussis]     18790   20382   gi 1280135   coded for by C. elegans CDNA cm2le6; coded for by C.     Coded for by C. elegans carrier protein (thiomethylgala     Coded for by C. elegans   Coded for by C. elegans     Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elegans   Coded for by C. elega   | first 86 residues of the 100 aa<br>Sw: PS4746 (Escherichia coli) | 62   | 4.3  | 6517  |
| 9732   9304   gi   662920   repressor protein   seed   1181   gan  PrD  e301153   StySKI methylase   Salmonella enterica    2564   7181   gan  PrD  e301153   StySKI methylase   Salmonella enterica    17702   14704   gan  PrD  e313028   hypothetical protein   Bacillus subtilis    15702   14704   gan  PrD  e313028   hypothetical protein   Bacillus subtilis    14870   14809   gi   148771   pllin gene inverting protein   PivHL)   (Moraxella lacum   4997   4809   gi   148771   pllin gene inverting protein   PivHL)   (Moraxella lacum   10002   10739   gi   1280135   coded for by C. elegans cDNA cm2le6; coded for by C.   18790   20382   gi   1280135   coded for by C. elegans carrier protein   (thiomethylgala   Classochabditis elegans)   coded for by C.   Coded fo   |                                                                  | 62   | 32   | 429   |
| 5664   7181   gn1 PID e301153   StySKI methylase   Salmonetia enteriors   2791   2099   gi 1183886   integral membrane protein [Bacillus subtilis]   15702   14704   gn1 PID e313028   hypothetical protein [Bacillus subtilis]   1418   3984   gi 2065483   unknown [Lactococcus lactis lactis]   16707   16809   gi 149771   pilin gene inverting protein (PivHL) [Moraxalla lacun   18790   gi 1280135   coded for by C.   coded for    |                                                                  | 62   | 44   | 1518  |
| 2791   2099   gl  1183886   integral membrane protein   Bacillus Subtilis    15702   14704   gn  PID =313028   hypothetical protein   Bacillus subtilis    1418   3984   gi 2065483   unknown   [Lactococcus lactis lactis]   1418   4809   gi  149771   pillin gene inverting protein   PivHL)   (Moraxella lacun   4997   4809   gi  149771   pillin gene product   Bordetella pertussis    18790   20382   gi  1280135   coded for by C. elegans CDNA cm2le6; coded for by C.   coded for b   |                                                                  | 62   | 41   | 693   |
| 15702   14704   gn  PID e313028   hypothetical protein (Bacillus subtilis)     1418   3984   gi 2065483   unknown (Lactococcus lactis lactis)     14097   14809   gi 149771   pilin gene inverting protein (PivHL) (Moraxella lacun lacococcus lacis lacis)     16002   10739   gi 992977   bplG gene product (Bordetella pertussis)     18790   20382   gi 1280135   coded for by C. elegans CDNA cm21e6; coded for by C.     18790   20382   gi 1280135   coded for by C. elegans carrier protein (thiomethylgala (Caenorhabditis elegans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  | 62   | 40   | 666   |
| 3418   3984   gi 2065483   unknown [Lactococcus lactis lactis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |      | - :: | 295   |
| 4997 (4809   gi 149771   pilin gene inverting protein (PivHL) (Moraxella lacun 10002   10739   gi 992977   bplG gene product [Bordetella pertussis]   coded for by C. elegans CDNA cm21e6; coded for by C. similar to melibiose carrier protein (thiomethylgala (Saminar to melibiose carrier protein (thiomethylgala (Saminar to melibiose carrier protein (thiomethylgala (Saminar to melibiose))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  | 29   | 3.5  |       |
| 10002   10739   gi 992977   bplG gene product  Bordetella pertussis    10002   10739   gi 1280135   coded for by C. elegans cDNA cm2le6; coded for by C. similar to melibiose carrier protein (thiomethylgala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inatal                                                           | 62   | 28   | 189   |
| 18790 120382   gi   1280135   Coded for by C. elegans CDNA cm21e6; coded for by C.   similar to melibiose carrier protein (thiomethylgala (Caenorhabditis elegans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  | 62   | 45   | 738   |
| Caenor and a contract of the c | elegans cDNA cm01e2;<br>lactoside permease II)                   | 62   | 62   | 1593  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                          | 62   | 35   | 552   |
| 28  32217  32768  gn1 P1D d101312  YqeG  BBC111UB SUULLIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | 62 1 | 86   | 1284  |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | IORF  | Start  | dojs - |                     |                                                                                   |    | _    |        |
|--------|-------|--------|--------|---------------------|-----------------------------------------------------------------------------------|----|------|--------|
| 1      |       | (ut)   | (ut)   | acession            |                                                                                   |    | 1 97 | 240    |
| 80     | 8     | 9370   | 6096   | gn1   P1D   d102002 | (ABOO1488) FUNCTION UNKNOWN. [Bacillus subtilis]                                  | 29 | 07   |        |
| 97     | 100   | 8906   | 1 7041 | gi 882463           | protein-N(pi)-phosphohistidine-sugar phosphotransferase (Escherichia coli)        | 62 | 42   | 2028   |
|        | 3     | 2306   | 1 3268 | 101496              | BraE (integral membrane protein) [Pseudomonas aeruginosa]                         | 62 | 42   | 963    |
|        | ,   , | 1000   | 95.35  | 13010               | hypothetical protein (Bacillus subtilis)                                          | 62 | 24   | 717    |
| 103    |       | 2795   | 1242   | 02049               | H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis]      | 62 | 41   | 1554   |
|        |       |        |        | 1211291297          | Nisp [Lactococcus lactis]                                                         | 62 | 44   | 1428   |
|        | 7     | 4025   | 20807  | 1011354379          | [11c-1 operon protein (licA) (Haemophilus influenzae)                             | 62 | 39   | 927    |
| 112    |       | 4939   | 5649   | gi 1574381          | lic-1 operon protein (licc) (Haemophilus influenzae)                              | 62 | 39   | 111    |
| 124    |       | 1137   | 127    | 91 1573024          | anaerobic ribonucleoside-triphosphate reductase (nrdD) (Haemophilus<br>influenze) | 62 | 45   | 417    |
| 124    |       | 1 3162 | 1 2329 | gi 609076           | leucyl aminopeptidase [Lactobacillus delbrueckii]                                 | 62 | 40   | 834    |
| 126    | -     | 111073 | 1 7516 | [gn1 PID d101163    | ORF4 (Bacillus subtilis)                                                          | 62 | 38   | 3558   |
| 129    |       | 4983   | 4540   | pir S41509 S415     | zinc finger protein EF6 - Chilo iridescent virus                                  | 62 | 48   | 444    |
|        |       | 4510   | 1 4103 | gi 1857245          | unknown [Lactococcus lactis]                                                      | 62 | 42   | 408    |
| 149    |       | 1923   | 1 2579 | gi   1592142        | ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)          | 62 | 41   | 657    |
| 149    | 7     | 1 5360 | 6055   | gn1   PID   e323508 | YIOS protein (Bacillus subtilis                                                   | 62 | 40   | 969    |
| 156    |       | 1 450  | 1 238  | gn1   PID   e254644 | membrane protein [Streptococcus pneumoniae]                                       | 62 | 40   | 213    |
| 156    | .   9 | 3606   | 1 2935 | PID                 | transmembrane (Bacillus subtilis)                                                 | 62 | 37   | 672    |
| 17.1   |       | 1 1779 | 1 2291 | gi 43941            | EIII-B Sor PTS  Klebsiella pneumoniae                                             | 62 | 35   | 1 513  |
| 172    | 7     | 385    | 723    | 91   895750         | putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)             | 62 | 39   | 339    |
| 173    | - n   | 2599   | 1 893  | 91   1591732        | cobalt transport ATP-binding protein O [Methanococcus jannaschil]                 | 62 | 1 42 | 7071   |
| 179    | 7     | 1 492  | 1754   | gi 1574071          | H. influenzae predicted coding region HI1038 (Haemophilus influenzae)             | 62 | 38   | 1263   |
| 181    | 9     | 2856   | 1 3707 | gi 1777435          | LacT [Lactobacillus casei]                                                        | 62 | 42   | 852    |
| 185    | 7     | 2074   | 311    | gi 2182397          | (AE000073) Y4 [N (Rhizobium sp. NGR234)                                           | 62 | 41   | 1 1764 |
| 700    | - 2   | 1001   | 1984   | gi 450566           | transmembrane protein (Bacillus subtilis)                                         | 62 | 1 37 | 924    |
| 202    |       | 1 2583 | 3473   | g1 42219            | P35 gene product (AA 1 - 314) [Escherichia coli]                                  | 62 | 41   | 891    |
|        |       |        |        |                     |                                                                                   | 62 | 45   | 192    |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

|        |                                         | 1 4    | 00.00  | match               | match gene name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * sim | 1 ident | length (nt) |
|--------|-----------------------------------------|--------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------------|
| Contig | 2 2                                     | (nt)   | (nt)   | acession            | 1) Co ald backers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62    | 43      | 696         |
| 211    |                                         | 2      | 176    | gi 147402           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62    | 41      | 462         |
| 223    | 1 2                                     | 1495   | 1034   | 061101b a14 1ng     | ORF2 (Streptococcus mutans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62    | 44      | 876         |
| 228    | -                                       | 34     | 606    | gi 530063           | glycerol uptake facilitator (Streptococcus pneumoniaes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62    | 38      | 828         |
| 234    | 7                                       | 06     | 917    | gi 2293259          | (AF008220) YtqI (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62    | 33      | 279         |
| 1 282  | 10                                      | 1765   | 1487   | gn1 PID a276475     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.3   | 40      | 159         |
| 375    | -                                       | -      | 159    | 91   1674231        | (AEGOGO52) Mycoplasma pneumoniae, hypothetical protein homolog; similar co<br>Swiss-Prot Accassion Number P35155, from B. subtilis (Mycoplasma<br>pneumoniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |         |             |
|        |                                         | 788    | 357    | lai 11573353        | outer membrane integrity protein (tola) (Haemcphilus influenzae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62    | 47      | 228         |
| 505    | - + :                                   |        | 03601  | 1211606162          | ORF [229 [Escherichia coll]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6     | 7       |             |
|        | 4   4                                   | 118550 | 3225   |                     | similar to Synechocystis sp. hypotherical protein, encoded by GenBank agreesion Number D64006 [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61    | 42      | 501         |
| -      |                                         |        |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61    | 43      | 273         |
| 17     | 9 -                                     | 3326   | 3054   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61    | 38      | 1 692       |
| 4      | -                                       | 4061   | 4957   | gn1 F1D d101068     | xylose repressor (symecmocystus sp.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19    | 42      | 1155        |
| 54     | 111                                     | 8388   | 7234   | gn1   P1D   d101329 | YqjH [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19    | 1 42    | 2064        |
|        | 9                                       | 1 3974 | 1 6037 |                     | YqfK (Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ;     | 77      | 792         |
| d d    |                                         | 1 7356 | 6565   | sp P45169 POTC_     | SPERHIDINE/PUTRESCINE TRANSPORT SYSTEM PERHEASE PROTEIN POTC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10    | , ,     | 069         |
|        |                                         |        | 1 692  | qi 537108           | ORF_f254 (Escherichia coli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7     |         |             |
| 0      |                                         |        | 1000   | 19501               | pplc12 gene product (AA 1-184) [Lupinus polyphyllus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 61  | 41      | 176         |
| 89     | -                                       | 9198   | 10601  |                     | the second of the second secon | 19    | 44      | 2721        |
| 1 70   | 115                                     | 110737 | 12008  | gi 992976           | Upit game   Description   De   | 1 61  | 36      | 444         |
| 1 72   | Ξ.                                      | 9759   | 10202  | gn1 P1D d101833     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19    | 45      | l 879       |
| 1 76   | 8                                       | 1 7881 | 1 7003 | gn1 P1D d100305     | -:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19    | 42      | 1218        |
| 87     | -                                       | 4914   | 1 3697 | [91[528991          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19    | 44      | 951         |
| 1 87   | ======================================= | 112311 | 111361 | gi 1789683          | (AE000407) methlonyl-tRNA formyltransferase [Escherichia Coll)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5     | 45      | 2259        |
| 16     |                                         | 1 731  | 1 2989 | gi 537080           | ribonucleoside triphosphate reductase (Escherichia coli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 44      | 789         |
| 105    | -                                       | 1172   | 3499   |                     | hypothetical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 36      | 1491        |
| 115    | 9                                       | 1 7968 | 6478   | gi 895747           | putative cel operon regulator (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ; ; ; |         | 9261        |
| 123    | - 8                                     | 7181   | 8518   | gi 1209527          | protein histidine kinase (Enterococcus faecalis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10    | -+      | - *         |
| -      |                                         |        |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |             |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF     | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                                                                                       | e in | * ident | length<br>(nt) |
|--------|---------|---------------|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| 126    | 9       | 7525          | 6725         | gi 1787043          | (AECOCO184) f271; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 [Escherichia coli] | 61   | 38      | 801            |
| 128    | -       | -             | 639          | PID    d101328      | Yqir (Bacillus subtilis)                                                                                                                              | 61   | 41      | 639            |
| 139    | 1 2     | 4794          | 5054         | gi 1022726          | unknown [Staphy]ococcus haemolyticus]                                                                                                                 | 61   | 41      | 261            |
| 139    | - 6     | 12632         | 5913         | gn1 P1D e270014     | e270014 [beta-galactosidase [Thermoanaerobacter ethanolicus]                                                                                          | 61   | 41      | 6720           |
| 143    | -       | 2552          | 42           | gi 520541           | penicillin-binding proteins 1A and 1B (Bacillus subtilis)                                                                                             | 61   | 42      | 2511           |
| 148    | 116     | 12125         | 111424       | gi 1552743          | tetrahydrodipicolinate N-succinyltransferas» [Escharichia coli]                                                                                       | 61   | 42      | 702            |
| 162    | 1       | 4112          | 3456         |                     | phosphoglycolate phosphatase [Symechocystis sp.]                                                                                                      | 61   | 30      | 657            |
| 172    | <u></u> | 727           | 1077         | gn1   P1D   d102048 | B. subtilis, cellobiose phosphotransferase Hystem, celA; P46318 (220)                                                                                 | 61   | 44      | 351            |
| 7,1    | 3       | 1101          | 1,172        | gn1 PID d100574     | unknown (Bacillus subtilis)                                                                                                                           | 61   | 43      | 672            |
| 202    | 2       | 1278          | 1 2585       | 91 1045831          | hypothetical protein (GB:L18965_6) (Mycoplasma genitalium)                                                                                            | 61   | 36      | 1308           |
| 1 224  | 3       | 2782          | 3144         | 91 1591144          | M. jannaschii predicted coding region MJ0440 [Methanococcus jannaschii]                                                                               | 61   | 30      | 363            |
| 225    | -       | 3395          | 3766         | 91 1552774          | hypothetical [Escherichia coli]                                                                                                                       | 61   | 40      | 372            |
| 249    | 1 2     | 212           | 802          | gi 1000453          | TreR (Bacillus subtilis)                                                                                                                              | 61   | 42      | 591            |
| 254    | 2       | 843           | 484          | gn1 PID d100417     | ORF120 (Escherichia coli)                                                                                                                             | 61   | 36      | 360            |
| 1 257  | 1       |               | 350          | gn1 PID e255315     | unknown (Mycobacterium tuberculosis)                                                                                                                  | 19   | 42      | 348            |
| 293    |         | 3971          | 3657         | pir JC1151 JC11     | hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium<br>tumefaciens (strain PO22) plasmid Ti                                        | 61   | 45      | 315            |
| 301    | -       | 949           | 17           | gi 2291209          | (AF016424) contains similarity to acyltransferases (Caenorhabditis elegans)                                                                           | 61   | 33      | 933            |
| 373    | -       | 1066          | 287          | gi 393396           | Tb-292 membrane associated protein [Trypanosoma brucei subgroup]                                                                                      | 61   | 38      | 780            |
|        | 24      | 24473         | [24955       | gi 537093           | ORF_0153b [Escherichia coli]                                                                                                                          | 9    | 27      | 483            |
| 9      | 2       | 4636          | 5739         | gi 2293258          | (AF008220) YtoI (Bacillus subtilis)                                                                                                                   | 09   | 35      | 1104           |
| 9      | Ι       | 11936         | 11187        | 91 293017           | ORF3 (put.); putative [Lactococcus lactis]                                                                                                            | 9    | 44      | 750            |
| 17     | 1       | 6708          | 6484         | 91 149569           | lactacin F (Lactobacillus sp.)                                                                                                                        | 09   | 32      | 225            |
| 18     |         | 6977          | 5670         | gi   1788140        | (AE000278) o481; This 481 as orf is 35 pct identical (19 gaps) to 309 residues of an approx. 856 as protein NOLL_HUMAN SW: P46087 (Escherichia coli!  | 09   | 43      | 1308           |
| 20     | 115     | 15878         | 17167        | gn1 PID d100584     | unknown (Bacillus subtilis)                                                                                                                           | 09   | 44      | 1290           |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Cont.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                | • • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a mis | ident   1 | length { |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|----------|
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORF            | <del> </del>   | match                                   | match gene name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - }   | -         | (nt)     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>       | - ;            | - :                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09    | 36        | 243      |
| 10   8296   8964   91 2293275   (AF008220) Y   15   8837   9697   91 40023   B. subbilis g   15   1269   91 171787   Drotein kina   1   1   1   1269   91 171787   Drotein kina   10   11138   10368   91 1970 e233823   unknown   Sch   110   11138   10368   91 1970 e205373   Orfi   Lactob   12   16727   16951   91 1970 e205373   Orfi   Lactob   12   16727   16951   91 1970 e206317   Orrive   Drotein   Baccillus   11   2   898   91    PID e100041   (AB001468)   11   2   898   91    PID e100041   (AB001468)   11   12   91    91    PID e100041   (AB001468)   11   12   91    91    PID e1001832   Phosphetica   12   940   155   91    1786420   (AE000131)   (AE000131)   (AE000131)   (AE000131)   (AE000131)   (AE000297)   (AE000297)   (AE000297)   (AE000297)   (AE000297)   (AE0000297)   (AE00000297)   (AE0000297)   (AE00000297)   (AE0000297)   (AE00000297)   (AE00002 | 1 1 1          | 1 243          | -:                                      | transmembrane (Bacilius subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 09  | 37        | 699      |
| 15   8817   9697   91   40023   B. Subtille 9   6   8610   5944   91   171787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del>   | -              | 2                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 09  | 35        | 861      |
| 6   8610   5944   gil 171787   protein kina   6   8610   5944   gil 171787   protein kina   1   1269   gin  pro  e235823   unknown   Sch   10   11138   10368   gil 397488   1.4-alpha-gil   15766   14378   gin  pro  e2465173   orfi   Lactob   121   16727   16951   gin  pro  e246537   orfi   Lactob   121   638   gin  pro  e246537   orfi   catob   122   gil   gin  pro  e246537   orfi   catob   122   gil   gil   pro  e146537   orfi   catob   122   gil   gil   pro  e146537   orfi   catob   122   gil   gil   pro  e146537   orfi   catob   122   gil   gil   pro  e124970   hypothetica   122   gil   gil   pro  e124970   hypothetica   122   gil   gil   pro  e124970   hypothetica   122   gil   gil | 115            | <del> </del>   | 91 40023                                | genes rpmH, rnpA, 50kd, gidA and glab lbacking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 09  | 36        | 2667     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 9            | -              | 191111187                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 09  | 44        | 1269     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | †-             | 1 1269         | e235823                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 09  | 43        | 1177     |
| 19   15766   14378   gnl   PID  e205173   orfl   Lactob     15766   14378   gnl   PID  e205173   orfl   Lactob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110            | !              | 91   397488                             | branching enzyme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 39        | 1389     |
| 1   2   898   gni PiD d102041   (AB002668) u   2   898   gni PiD d102041   (AB002668) u   3590   5203   gi 1573583   H. influenza   4   3590   5203   gi 1573583   H. influenza   11   5781   6182   gni PiD d102014   (AB001488)   112   6343   8133   gni PiD d101832   hypothetica   8   12509   11664   gni PiD d101832   phosphatida   8   12509   11664   gni PiD d101832   phosphatida   4   7372   7665   gi 1786420   (AE000131)   Escherich   6   4073   4522   gi 147402   mannose per   6   1   940   155   gi 143177   putative   E   6   1   1   192   gi 29548   homoserine   6   1   1   192   gi 196348   homoserine   6   1   1   192   gi 196348   homoserine   6   1   1   192   gi 196348   homoserine   6   1   1   1   192   gi 196348   homoserine   6   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119            | ŀ              | e205173                                 | orf1 (Lactobacillus helveticus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 09  | 32        | 225      |
| 1   2   898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121            | !              |                                         | (AB002668) unnamed protein product (Haemophilus actinomycetemcomitans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 09  | 31        | 897      |
| 2   638   1177   gn1 PID d100587   unknown   Bac   1359   5203   gi 1573583   H. influenza   11   5781   6182   gn1 PID d102014   (AB001488)   H. influenza   12   6343   8133   gn1 PID d101812   phosphatica   12   6343   8133   gn1 PID d101812   phosphatida   12   4   7172   7665   gi 1786420   (AE000131)   Escherich   6   4073   4522   gi 147402   mannose per   6   1   940   155   gi 147402   mannose per   6   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -              | <del>-</del>   |                                         | [Pseudomonas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 09  | 42        | 540      |
| 4   3590   5203   gill573583   H. influenzz   11   5781   6182   gnl PrD d102014   (AB001088)   12   6343   8133   gnl PrD d324970   hypothetical   12   6343   8133   gnl PrD d324970   hypothetical   12   12   12   gnl PrD d324970   hypothetical   12   12   12   12   12   12   12   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 -            | <del> </del> - |                                         | unknown (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 09  | 36        | 1614     |
| 11   5781   6182   gnl PID G102014   (AB001488)     12   6343   8133   gnl PID G324970   hypothetical     8   11701   14157   gi 580866   ipa-12d gen     8   12509   11664   gnl PID G101832   phosphatida     4   4116   3367   gi 2352096   orf; simila     4   7372   7665   gi 1786420   (AE000131)     5   6   4073   4522   gi 147402   mannose par     1   940   155   gi 147402   mannose par     1   1   192   gi 396348   homoserine     1   1   192   gi 396348   homoserine     1   1   192   gi 1788389   (AE000297)     1   1   192   gi 1788389   (AE000297)     1   1   192   gi 1591366   transketolatical     2   2081   2833   gi 1591396   hypothetical     2   2081   2833   gnl PID e320929   hypothetical     3   2081   2833   gnl PID e320929   hypothetical     4   10619   gnl PID e320929   hypothetical     5   5548   gnl PID e320929   hypothetical     7   5396   4533   gnl PID e320929   hypothetical     8   11701   1813   gnl PID e320929   hypothetical     9   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -              | <u> </u>       | gi 1573583                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 09  | 33        | 402      |
| 12   6343   8133   gn  PID e324870   hypothetical   8   11701   14157   gi 580866   ipa-12d genvelope   12509   11664   gn  PID d101832   phosphatida   4   116   3367   gi 2352096   orf; simila   4   7372   7665   gi 1786420   (AE000131)   Escherich   6   4073   4522   gi 147402   mannose per   1   1   192   gi 1396348   homoserine   1   1   192   gi 1396348   homoserine   1   1   192   gi 1396349   (AE000297)   residues   1   1   1   1   2   1   3   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11             | -              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -     | - •       | - • -    |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |                                         | Parties property (Bacillus Subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 09  | 38        | 1791     |
| 8   11701   14157   gi 580866   ipa-12d general color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 112            | -              | gn1 PID e324970                         | hypothetical processing and the subtilis!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60    | 33        | 2457     |
| 8   12509   11664   gnl   PID d101832   phosphatida   4   4116   3367   gi 2352096   orf; simila   4   7372   7665   gi 1786420   (AE000131)   (Escherich   1   940   155   gi 147402   mannose per   1   1   192   gi 13377   putative   E   1   1   192   gi 133177   putative   E   1   1   192   gi 1388389   (AE000297)   residues   Coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8              |                | gi 580866                               | gene product (battitus con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 09  | 45        | 846      |
| 4   4116   3367   9i   2352096   orf; simila   4   7372   7665   9i   1786420   (AE000131)   (Escherich   1   940   155   9i   147402   mannose per   1   940   155   9i   143177   putative (BE   1   1   192   9i   1396348   homoserine   1   1   192   9i   1396348   (AE000297)   residues coli   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 8 1          | :              |                                         | 6 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 09    | 39        | 1 051    |
| 4   7372   7665   gi 1786420   (AE000131)     6   4073   4522   gi 147402   mannose par     1   940   155   gi 143177   putative (B     1   1   192   gi 396348   homoserine     1   1   192   gi 1788389   residues     1   1   192   gi 1788389   residues     2   5548   8121   gn1 PID e329895   (AJ000496)     3   5396   4533   gi 1591396   transketol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4              |                | 91   23520                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | - • ·     |          |
| 1   940   155   91   147402   mannose per   1   940   155   92   143177   putative   B   1   1   1   192   91   1396348   homoserine   14   10619   9384   91   1788389   residues   coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                | 91/1786                                 | (AEGOGIAL) f86; 100 pct identical to GB: ECODINJ 6 ACCESSION: D38582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9     | 30        | 767      |
| 6   4073   4522   91 147402   maniflose properties   1   940   155   91 143177   putative (B   1   1   192   91 396348   homoserine   1   1   192   91 1788389   (AE00297)   residues of coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | - ‡            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60    | 35        | 450      |
| 1   940   155   91 143177   PULALIVE   ENGLOSE   POLICIA   POLIC | - 9 -          | -              | gi 1474                                 | MAINTOON   PARTIE    | 09    | - 5e      | 786      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br>-         |                | gi 143177                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09    | 45        | 192      |
| 14   10619   9384   gi 1788389   Residues coli!   Co | <del> </del> - | 192            | 91 396348                               | [Escherichia Colli]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 27        | 1236     |
| 5   5548   8121   gnl PID e329895   (AJ000496)   7   5396   4533   g1 1591396   transketoluzion   2   2081   2833   gnl PID e320929   hypothetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14             | <del></del>    | <u> </u>                                | is<br>ot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |          |
| 5   5548   8121   gn. PiD es.20075   (Accounty)   7   5396   4533   gi 1591396   kransketoli   2   2081   2833   gn. PiD e320929   hypothetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - †            | - ‡ ·          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09    | 80        | 2574     |
| 7   5396   4533  91 1591.<br>  2   2081   2833  911 PID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | - †            | laurikini                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09    | 43        | 864      |
| 2   2081   2833  gnl PID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | - †            | gi 1591                                 | republication of the control of the | 09    | 43        | 753      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2            | -              | gn1   PID                               | hypothetical protein (Mycobacterium tubercarosas)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           | •        |

S. pneumoniae - Putative coding regions of novel proteins siffilar to known proteins

| Contig | ORF  | Start (nt) | Stop<br>(nt) | match                | match gene name                                                               | e is | ident | length<br>(nt) |
|--------|------|------------|--------------|----------------------|-------------------------------------------------------------------------------|------|-------|----------------|
|        | 6    | 9773       | 9183         | gn1   P1D   e334782  | YIBN protein (Bacillus subtilis)                                              | 60   | 31    | 591            |
| 113    | - 8  | 6361       | 6837         | gi 466875            | nifU; B1496_C1_157 (Mycobacterium leprae)                                     | 60   | 43    | 477            |
| 115    | 7    | 2755       | 524          | gn1 PID e328143      | (AJ000332) Glucosidase II (Homo sapiens)                                      | 60   | 32    | 2232           |
| 122    | †-   | A763       | 5068         | 918101b d101876      | transposase [Symechocystis sp.]                                               | 60   | 39    | 306            |
| 127    | 80   | 4510       | 5283         |                      | Pgm (Treponema pallidum)                                                      | 60   | 38    | 774            |
| 138    | -    | 3082       | 2672         | gn1 PID e325196      | hypothetical protein (Bacillus subtilis)                                      | 9    | 36    | 411            |
| 139    | -    | 177        |              | 0890016    1006      | ORF (Thermus thermophilus)                                                    | 9    | 39    | 174            |
| 1 961  | =    | 14520      | 13009        | gi 537145            | ORF_6437 [Escherichia coli]                                                   | 90   | 30    | 1512           |
| 140    | 7    | 2592       | 1249         | <br> gi 1209527      | protein histidine kinase (Enterococcus faecalis)                              | 09   | 37    | 1344           |
| 141    | -    | 210        | 1049         | gi 463181            | ES ORF from bp 3842 to 4081; putative [Human papillomavirus type 33]          | 09   | 34    | 840            |
| 141    | - 5  | 5368       | 6405         | gi 145362            | tyrosine-sensitive DAHP synthase (arof) (Escherichia coli)                    | 9    | 41    | 1038           |
| 142    | 9    | 3558       | 4049         |                      | putative (Bacillus subtilis)                                                  | 60   | 37    | 492            |
| 148    | 100  | 7742       | 8713         | gn1 PID e313022      | hypothetical protein [Bacillus subtilis]                                      | 909  | 27    | 972            |
| 153    | 5    | 3667       | 4278         | gi 2293322           | (AF008220) branch-chain amino acid transporter (Bacillus subtilis)            | 9    | 42    | 612            |
| 155    | -    | 1413       | 748          | 91 2104504           | putative UDP-glucose dehydrogenase (Escherichia coli)                         | 60   | 0.0   | 999            |
| 158    | - E  | 3116       | 2472         |                      | a negative regulator of pho regulon (Pseudomonas aeruginosa)                  | 09   | 37    | 645            |
| 159    |      | 778        | 1386         | gn1   P1D   e308090  | product highly similar to Bacillus anthracis CapA protein (Bacillus subtilis) | 09   | 89    | 609            |
| 163    | 1, 1 | 8049       | 8468         | [gn1   PID   d101313 | Yqen (Bacillus subtilis                                                       | 9    | 38    | 420            |
| 170    | 3    | 4130       | 1 2688       | 91 11574179          | H. influenzae predicted coding region HI1244 [Haemophilus influenzae]         | 09   | 39    | 1443           |
| 171    | 17   | 4717       | 1 5901       | 91 606076            | ORF_0384 [Escherichia coli]                                                   | 09   | 94    | 1185           |
| 1 183  |      | 2440       | 2135         | gi 1877427           | repressor [Streptococcus pyogenes phage T12]                                  | 9    | 38    | 306            |
| 191    | 110  | 9444       | 8428         | 91 415664            | catabolite control protein (Bacillus megaterium)                              | 09   | 42    | 1017           |
| 200    |      | 139        | 1083         | 91 438462            | transmembrane protein [Bacillus subtilis]                                     | 9    | 37    | 945            |
| 201    |      | 3895       | 1928         | gi 475112            | enzyme Ilabc [Pediococcus pentosaceus]                                        | 09   | 39    | 1968           |
| 214    | 115  | 10930      | 10439        | gi 1573407           | hypothetical (Haemophilus influenzae)                                         | 09   | 39    | 492            |
| 218    | -    | 2145       | 2363         | 91 608520            | myosin heavy chain kinase A [Dictyostellum discoideum]                        | 09   | 31    | 219            |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| 226             4             5518             2353             [6] [137705             [Application content of the procession of the proc                                                                       | Contig | ORF      | Start<br>(nt) | Stop<br>(nt) | match             | match gene name                                                 | # sim | * ident | length<br>(nt) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|---------------|--------------|-------------------|-----------------------------------------------------------------|-------|---------|----------------|
| 1   725   33   59 13339   Socregulator (Ribebilla precenties)   1   725   33   59 13339   Socie type I restriction modification engage M subunit (Escherichia coll)   1   1   205   45   59 1513744   StreepCoccus aureual   2   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   143   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   144   1 | 226    | -        | 2518          | 2351         | gi 437705         | hyaluronidase (Streptococcus pneumoniae)                        | 09    | 53      | 168            |
| 1   17   288   94   100897   Paces type I restriction eddiffication entyme N subunit (Escherichia coll)     1   965   45   94   6115324   Independent (Estaphylococcus aureus)     1   965   45   94   6115324   Independent (Estaphylococcus aureus)     1   965   45   94   94   94   94   94   94   9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 242    | -        | 725           | 3            | gi 43938          | regulator                                                       | 09    | 41      | 723            |
| 1   905   45   91 671632   Unknoom (Stephy)Ococcus aureual   1   969   82   91 53794   Graphic transposses - Berillus stearothermophilus   1   965   92   91 53794   Graphic transposses - Berillus stearothermophilus   1   962   96   96   96   96   96   96   9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 245    | -        | 1 1           | 1 288        | 91   304897       | restriction modification enzyme M subunit (Escherichia          | 09    | 36      | 288            |
| 1   555   37   51  51  51  51  51  51  51  51  51  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 251    | -        | 506           | 1 45         | gi 671632         | unknown (Staphy)ococcus aureus)                                 | 09    | 36      | 861            |
| 1   1916   1662   pir[531840[5313   probable transposses Bacillus stearothemophilus   1   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1916   1 | 259    | -        | 696           | 82           | 91 153794         | rgg (Streptococcus gordonii)                                    | 09    | 32      | 888            |
| 1   836   96   gill1993173   N-ethylammeline chlorohydrolase [Methanococcus Jannaschii]   1   453   2   gill1993173   [Az000214] old7 [Escherichia coli]   1   3   308   gill1993179   [Az000214] old7 [Escherichia coli]   1   3   308   gill1993173   [Az000214] old7 [Escherichia coli]   1   3   308   gill1993173   [Az000220] Traf [Bacillus subtilis]   1   1   1   1   1   2   4   gill293173   [Az000220] Traf [Bacillus subtilis]   1   1   1   1   2   4   gill293174   [Az000220] Traf [Bacillus subtilis]   2   4   gill293174   [Az000220] Prop Azoccus probamonlae]   2   4   gill293174   [Az000220] Prop Azoccus probamonlae]   3   4   gill293174   [Az000220] Prop Azoccus probamonlae]   4   3578   3   gill40469   [Azoccus probamonlae]   3   4   gill293174   [Azoccus probamonlae]   4   3578   3   gill2931   [Azoccus probamonlae]   3   358   [Azoccus probamonlae]   3   358   [Azoccus probamonlae]   3   358   [Azoccus probamonlae]   3   358   [Azoccus probamonlae]   3   3578   [Azoccus proba | 260    | - 2      | 1492          | 1662         | pir  S31840  S318 | probable transposase - Bacillus stearothermophilus              | 09    | 26      | 171            |
| 1   463   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 274    | -        | 836           | 96           | gi 1592173        | N-ethylammeline chlorohydrolase [Methanoco:cus jannaschii]      | 09    | 40      | 741            |
| 1   37   308   gni FiD e13754   xerC recombinase [Lactobacillus laichmannii]   1   13   322   ggi509672   repressor protein [Bacteriophage Tuc2009]   1   576   4   ggi2293147   (AF008220) Ytwf [Bactlius subtilis]   1   1413   4   ggi[2293147   (AF008220) Ytwf (Bactlius subtilis]   1   1413   4   ggi[2293147   (AF008220) Ytwf (Bactlius subtilis]   1   1413   4   ggi[1353800   sialidase L (Harrobdalia decoral sialidase L (Harrobdalia sialidase L (Harrobdalia decoral sialidase L (Harrobdalia sialidase L (Harrobdalia) sialidase L (Harrobdalia) sialidase L (Harrobdalia sialidase L (Harrobdalia sialidase L (Harrobdalia sialidase L (Harrobdalia sialidase L (Harrobdalia) sialidase L (Harrobdalia sialidas | 308    | 1-       | 463           | 2            | 91 1787397        | (AE000214) o157 (Escherichia coli)                              | 09    | 43      | 462            |
| 1   73   522   [91]509672   [repressor procein (Bacterlophage Tuc2009]   1   576   4   [91]223147   [AxF008220] VK#H [Bacillus subtilis]   122   13140   17142   [91]1203147   [AxF008220] VK#H [Bacillus subtilis]   1   1413   4   [91]1331800   [sialidase L Hacrobdella decora]   2   479   1393   [91]142469   [als operom regulatory protein [Bacillus subtilis]   1   208   558   [91]142469   [als operom regulatory protein [Bacillus subtilis]   1   208   558   [91]142469   [als operom regulatory protein [Bacillus subtilis]   1   208   558   [91]142469   [als operom regulatory protein [Bacillus subtilis]   1   208   558   [91]142469   [als operom regulatory protein [Bacillus subtilis]   1   208   2455   [91]14219664   [Aypothetical protein [Bacillus subtilis]   1   208   2455   [91]14219664   [Aypothetical protein [Bacillus subtilis]   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 318  | -        | 3             | 308          | gn1 PID e137594   | xerC recombinase [Lactobacillus leichmannii]                    | 09    | 42      | 306            |
| 1   576   4   gi 2293147   [ArPO08220] YKM [Bacillus subtilis]     22   18140   17142   gi [Pio]e280724   unknown [Mycobacterium tubercollosis]     3   1413   4   gi [135880   sialidase L [Macrobdalla decora]     4   6465   5156   gi 580841   FT [Bacillus subtilis]     5   2658   4614   gi [Pio]e28052]   PCPA [Sreptococcus pneumonlae]     1   208   558   gil Pio]e213866   hypothetical protein [Bacillus subtilis]     4   1567   2455   gil Pio]e202290   unknown [Lactobacillus sake]     5   1678   2455   gil Pio]e202290   unknown [Lactobacillus subtilis]     6   1788   17182   gil Si0535   H. jannaschli predicted coding region HJ655 [Methanococcus jannaschli]     8   18076   17897   gil Si0535   H. jannaschli predicted coding region HJ655 [Methanococcus jannaschli]     8   18076   1728   gil Si0535   M. jannaschli subtilis]     9   1952   3151   gil Si0535   M. jannaschli subtilis]     9   18078   1728   gil Pio]e101329   YqdK [Bacillus subtilis]     9   18078   1728   gil Pio]e101329   YqdK [Bacillus subtilis]     9   18078   1808   gil Pio]e11516   aminotransferase [Bacillus subtilis]     9   18098   gil Pio]e11516   aminotransferase [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 344    | -        | 1 73          | 522          | 91   509672       |                                                                 | 09    | 32      | 450            |
| 12   18140   17742   gni PrD e280724   unknown iMycobacterium tuberculosis    1   1413   4   gil1353860   stalidase L iMacrobdalla decora    1   1413   4   gil1353860   stalidase L iMacrobdalla decora    2   479   1393   gil144469   als operom regulatory protein [Bacillus subtilis    1   208   558   gni PrD e223290   unknown [Lactobacillus sake]   1   1   208   558   gni PrD e222290   unknown [Lactobacillus sake]   1   1   1   208   558   gni PrD e22864   hypothetical protein [Bacillus subtilis    1   1   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5      | -        | 1 576         | -            | 91 2293147        | (AF008220) YtxH (Bacillus subtilis)                             | 65    | 31      | 573            |
| 1   1413   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7      | 122      | 118140        | 17142        | 6280724           | luknown (Mycobacterium tuberculosis)                            | 65    | 39      | 666            |
| 6   6463   5156   91580841   PT   [Bacillus subtlife]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01     | -        | 1413          | -            | 91 1353880        | (Macrobdella                                                    | 65    | 41      | 1410           |
| 2   479   1333   g1 142469   als operom regulatory protein [Bacillus subtliis]   1   208   558   gn1 PID e238662   PCPA [Streptococcus pneumoniae]   4   3678   2455   gn1 PID e238664   hypothetical protein [Bacillus subtliis]   1   12201   11071   gn1 PID e238664   hypothetical protein [Bacillus subtliis]   1   12201   11071   gn1 PID e238664   hypothetical protein [Bacillus subtliis]   1   12201   11071   gn1 PID e238664   hypothetical protein [Bacillus subtliis]   1   12201   11071   gn1 PID e33866   hypothetical protein [Bacillus subtliis]   1   12201   11071   gn1 PID e338664   hypothetical protein [Bacillus subtliis]   1   12201   11071   gn1 PID e33896   Hypothetical protein [Bacillus subtliis]   1   12201   11071   gn1 PID e137594   Kark [Bacillus subtliis]   1   1870   1388   gn1 PID e137594   kark recombinase [Lactobacillus leichmannii]   1   1870   1388   gn1 PID e137594   kark recombinase [Bacillus subtliis]   1   1870   1388   gn1 PID e33896   124004040   124004040   124004040400000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15     | 9        | 6463          | 1 5156       | gi 580841         | FT (Bacillus subtilis)                                          | 65 ]  | 35      | 1308           |
| 5   2698   4614   gni PID e2206623   PCPA [Streptococcus pneumoniae]   1   208   558   gni PID e220290   unknown [Lactobacillus sake]   1   1201   11071   gni PID e228664   hypothetical protein [Bacillus subtilis]   1   12021   11071   gni PID e228664   hypothetical protein [Bacillus subtilis]   14   11288   12182   gi 1657647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22     | - 2      | 479           | 1 1393       | 91 142469         | als operom regulatory protein (Bacillus subtilis)               | 65    | 34      | 915            |
| 1   208   558   gnl PID e213868   hypothetical protein [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 22   | 5        | 2698          | 4614         |                   | PCPA (Streptococcus pneumoniae)                                 | 59    | 44      | 1917           |
| 4   3678   2455   gni PID e202290   unknown [Lactobacillus sake]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30     | -        | 1 208         | 558          | e233868           |                                                                 | 65    | 37      | 351            |
| 13   12201   11071   gni PID e238664   hypothetical protein [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30     | -        | 3678          | 2455         | e202290           | unknown (Lactobacillus sake)                                    | 65    |         | 1224           |
| 14   13288   12182   gi    1657647     Cap8H     Staphylococcus aureus    18076   17897   gi    1500535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35     | 3        | 12201         | 11071        | e238664           |                                                                 | 59    | 35      | 1131           |
| 18   18076   17897   gi   15006335   M. jannaschii predicted coding region MJ16:5 [Hethanococcus Jannaschii]   12   6172   7137   gi   1293339   (AP008220) YxxK [Bacillus subtilis]   1   1952   3361   gi   1684845   pinin (Canis familiaris]   1   1870   2188   gnl   PID   Gl   1728   gnl   PID   Gl   1728   gnl   PID   Gl   1728   gnl   PID   Gl   1728   minotransferase (Bacillus subtilis)   6   6812   5628   gnl   PID   Gl   1540   2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)   7   2182   3023   gi   1146190   2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)   7   1820   gr   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840   1840    | 35     | 14       | 13288         | 12182        | 9111657647        | Cap8H  Staphylococcus aureus                                    | 59    | 39      | 1107           |
| 12   6172   7177   gi  [2293239   (AF000220) YxxK (Bacillus subtilis)   1952   3361   gi  [684845   pinin (Canis familiaris)   1952   3361   gin  PID  Gil   1959   YqjK (Bacillus subtilis)   5   1870   2388   gin  PID  e117594   xerC recombinase (Lactobacillus leichmanni)   6   6812   5628   gin  PID  e311516   aninotransferase (Bacillus subtilis)   5   2382   3023   gi  [1146190   2-keto-3-depxy-6-phosphogluconate aldolase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36     | 118      | 118076        | 17897        | 91 1500535        | jannaschii predicted coding region MJ1635 (Methanococcus        | 59    | 33      | 180            |
| 3   1952   3361   gil 684645   pinin (Canis familiaris)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38     | 112      | 6172          | 7137         | 91   2293239      | (AF008220) YtxK (Bacillus subtilis]                             | 59    | 34      | 996            |
| 3   2678   1728   gnl PID d101329   YqjK (Bacillus subtilis)   5   1870   2188   gnl PID e117594   xerC recombinase (Lactobacillus leichmannii)   6   6812   5628   gnl PID e311516   aninotransferase (Bacillus subtilis)   5   2182   3023   gi l146190   2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42     | <u> </u> | 1952          | 3361         | 91 1684845        | pinin (Canis familiaris)                                        | 65    | 40      | 1410           |
| 5   1870   2388   gnl PID e137594  xerC recombinase (Lactobacillus leichmannii)<br>  6   6812   5628  gnl PID e311516  aminotransferase (Bacillus subtilis)<br>  5   2382   3023   gi l146190  2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05     |          | 2678          | 1728         | d101329           | Yqjk (Bacillus subtilis)                                        | 59    | 41      | 951            |
| 6   6812   5628   gnl PID e311516  aminotransferase (Bacillus subtilis)<br>  5   2382   3023   gi l1146190  2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95     | - 2      | 11870         | 2388         | e137594           | xerC recombinase [Lactobacillus leichmannii]                    | 59    | 41      | 519            |
| 5   2382   3023   gi 1146190  2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61     | 9        | 6812          | 5628         |                   | aminotransferase (Bacillus subtilis)                            | 65    | 40      | 1185           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69     | 2        | 2382          | 3023         | gi 1146190        | [2-keto-1-deoxy-6-phosphogluconate aldolase [Bacillus subtilis] | 59    | 36      | 642            |

S. pneumoniae - Putative coding regions of novel proteins 站前lar to known proteins

| Contig | ORF   | Start  | Stop   | match                | match gene name                                                                                                                                         | sim . | * ident | length<br>(nt) |
|--------|-------|--------|--------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
|        |       | 8567   | 6889   | <br> qi 1573628      | antothenate kinase (coak) (Haemophilus influenzae)                                                                                                      | 59    | 38      | 333            |
| 82     | - † - | 11383  | į      |                      | e323504 [putative Fmu protein [Bacillus subtilis]                                                                                                       | 59    | 44      | 1329           |
| 113    | ·     | 13927  | 1      | 91   1673731         | (AE000010) Mycoplasma pneumoniae, fructosa-permease IIBC component; similar to Swiss-prot Accession Number P20966, from E. coli (Mycoplasma pneumoniae) | 65    | 63      | 1968           |
| 115    | 8     | 8766   | 8521   | gi 1590886           | H. jannaschli predicted coding region MJ0110 (Methanococcus jannaschii)                                                                                 | 59    | 38      | 246            |
| 119    | 7     | 1966   | 1526   | e209005              | homologous to ORF2 in nrdEF operons of E.co.i and S.typhimurium<br>[Lactococcus lactis]                                                                 | 65    | 43      | 441            |
| 128    | 17    | 13438  | 13178  | gn1 PID e279632      | unknown  Mycobacterium tuberculosis                                                                                                                     | 59    | 38      | 261            |
| 140    | 22    | 23903  | 123388 | gi 482922            | procein with homology to pail repressor of B. subtilis (Lactobacillus delbrueckii)                                                                      | 59    | 40      | 516            |
| 148    | =     | 9697   | 9014   | gn1   P10   d102005  | (ABOD1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN H. INFLUENZAE AND SYNECHOCYSTIS. (Bacillus subtilis)                                                    | 65    | 32      | 684            |
| 149    | 01    | 7213   | 8244   | 191   710422         | cmp-binding-factor 1 (Staphylococcus aureus)                                                                                                            | 59    | 40      | 1032           |
| 164    | 6     | 6993   | 6013   | gn1   P1D   d100965  | [exric anguibactin-binding protein precusor FatB of V. angulllarum [Bacillus subtilis]                                                                  | 59    | 41      | 981            |
| 164    | 12    | 8836   | 7823   | gn1 PID d100964      | homologue of ferric anguibactin transport system permerase protein FatC of<br>V. anguillarum (Bacillus subtilis)                                        | 65    | 35      | 1014           |
| 111    | 7     | 401    | 1072   | gi 289759            | coded for by C. elegans cDNA CE2G3 (GenBank:214728); putative<br>  Caenorhabditis elegans                                                               | 59    | 0,      | 672            |
| 177    | -     | 1 3841 | 4200   | gi 2313445           | (AE000551) H. pylori predicted coding region HP0342 (Helicobacter pylori)                                                                               | 59    | 38      | 360            |
| 183    | -     | 2768   | 1 2508 | gi 509672            | repressor protein (Bacteriophage Tuc2009)                                                                                                               | 59    | 05      | 261            |
| 186    | 9     | 3398   | 2820   | 91 606080            | ORF_0290; Geneplot suggests frameshift linking to 0267, not found<br>[Escherichia coli]                                                                 | 59    | 88      | 579            |
| 190    | -     | 3120   | 1171   | 91 1613768           | histidine protein kinase (Streptococcus pneumoniae)                                                                                                     | 59    | 32      | 1410           |
| 194    | - 2   | 1621   | 1 1019 | gn1 PID d100579      | unknown (Bacillus subtilis)                                                                                                                             | 59    | 40      | 603            |
| 198    | -     | 1 5205 | 4306   | gn1 P1D e313073      | hypothetical protein (Bacillus subtilis)                                                                                                                | 89    | 38      | 006            |
| 220    | - 5   | 4362   | 1 3958 | [gn]   P1D   d101322 | YqhL (Bacillus subtilis)                                                                                                                                | 59    | 1 46    | 405            |
| 242    |       | 1573   | 2367   | gi 1787045           | [AE000184] f108; This 108 as orf is 15 pct Edentical (15 gaps) to 105 residues of an approx. 296 as protein PFLC_ECOLI SW: P12675 [Escherichia coli]    | 65    | 42      | 795            |
| 1 247  | - 2   | 1154   | 1480   | 91 40073             | ORF107 [Bacillus subtilis]                                                                                                                              | 59    | 39      | 327            |

S. pneumoniae - Putative coding regions of novel proteins "Mailar to known proteins

| Contig  | ORF   | Start  | Stop   | match               | match gene name                                                                       | e is | * Ident | length<br>(nt) |
|---------|-------|--------|--------|---------------------|---------------------------------------------------------------------------------------|------|---------|----------------|
| 956     | - 1   | 868    | 2      | PID   d101924       | d101924  hemolysin (Synechocystis sp.)                                                | 59   | 39      | 867            |
| 258     | -     | 69     | 820    | 91 2246532          | ORF 73, contains large complex repeat CR 73 (Kaposi's sarcoma-associated herpesvixus) | 65   | 50      | 756            |
|         |       | 386    | 1126   |                     | YfnB (Bacillus subtilis)                                                              | 59   | 40      | 741            |
|         | .   - | 552    | 166    |                     | putative  Lactococcus lactis                                                          | 59   | 31      | 387            |
| 100     |       | -      | 479    | lqi  405879         | yeiH (Escherichia coli)                                                               | 59   | 38      | 477            |
| 363     |       | 2      | 1894   | gi   915208         | gastric mucin (Sus scrofa)                                                            | 59   | 31      | 1893           |
| 1 387   | 7     | 425    | 84     | 91   160671         | S antigen precursor [Plasmodium falciparum]                                           | 59   | *       | 342            |
| 5       | 9     | 111223 | 10465  | gn1   P1D   d101812 | LumQ (Synechocystis sp.1                                                              | 58   | 1 29    | 759            |
| 29      | 4     | 2098   | 1 3513 | gn1   PID   d100479 | Na+ -ATPase subunit J [Enterococcus hirae]                                            | 58   | 39      | 1416           |
| 1 30    | - 2   | 4058   | 3651   | gi 39478            | ATP binding protein of transport ATPases (Bacillus firmus)                            | 58   | 34      | 408            |
| 33      | 9     | 2983   | 1 2210 | gn1 PID d101164     | unknown (Bacillus subtilis)                                                           | 58   | 45      | 774            |
| 36      | 8     | 5316   | 6119   | gi 1518679          | orf (Bacillus subtilis)                                                               | 58   | 32      | 864            |
| 43      | - 5   | 5926   | 3971   | 91 1788150          | (AE000278) protease II (Escherichia coli)                                             | 58   | 37      | 1956           |
| 46      | - 5   | 3704   | 5221   | gn1 PID e267329     | Unknown (Bacillus subtilis)                                                           | 58   | 42      | 1518           |
| 48      | 114   | 111722 | 111066 |                     | [thiamin biosynthetic bifunctional enzyme [Symechocystis sp.]                         | 58   | 34      | 657            |
| 52      | -     | 1229   |        | gn1 P1D d101291     | reductase [Pseudomonas aeruginosa]                                                    | 58   | 35      | 1227           |
| 1 53    | 2     | 702    | 412    | 91(2313357          | (AE000545) cytochrome c biogenesis protein (ccdA) [Helicobacter pylori]               | 5.8  | 25      | 291            |
| 85      | -     | 6586   | 5498   | 91 147329           | transport protein (Escherichia coli)                                                  | 58   | 41      | 1089           |
| 69      | 5     | 4934   | 1 3807 | gn1 PID e311492     | unknown [Bacillus subtilis]                                                           | 58   | 41      | 1128           |
| 17      | 127   | (31357 | 77228  | 91 2408014          | hypothetical protein (Schizosaccharomyces pombe)                                      | 58   | 33      | 921            |
| 27      | -     | 3586   | 2882   | 91 18694            | nodulin-21 (AA 1-201) [Glycine max]                                                   | 58   | 34      | 705            |
| 74      | - 3   | 4937   | 4230   | gi 2293252          | [AF008220] YtmO [Bacillus subtilis]                                                   | 58   | 33      | 708            |
| 97      | -     | 4594   | 3422   | gi 1217989          | ORF3 (Streptococcus pneumoniae)                                                       | 58   | 44      | 1173           |
| 82      | 8     | 110585 | 1718   | gi 882711           | exonuclease V alpha-subunit (Escherichia coli)                                        | 88   | 38      | 2415           |
| 98      | 12    | 116017 | 15337  | gi 47642            | S-dehydroquinate hydrolyase (1-dehydroquinase) (Salmonella typhil                     | 58   | 32      | 681            |
| 1 97    | 7     | 931    | 995    | gi 153794           | [rgg [Streptococcus gordon11]                                                         | 58   | 32      | 372            |
| 1111111 |       |        |        | *************       |                                                                                       |      |         |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contig | ID  | Start<br>(nt) | Stop<br>(nt) | match               | match gene name                                                                              | e sim | * ident | length<br>(nt) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|---------------|--------------|---------------------|----------------------------------------------------------------------------------------------|-------|---------|----------------|
| 5   4533   5340   91 1532142   AgC transporter, probable APP-binding subunit   Hethanococous   16   1111   12673   91 66399   ONF U [Enterococus Arrable]   1   1111   12673   91 66399   ONF U [Enterococus Arrable]   1   1111   13673   91 66399   ONF U [Enterococus Arrable]   1   1111   13673   91 66399   ONF U [Enterococus Arrable]   1   1111   13673   91 66399   ONF U [Enterococus Arrable]   1   111   13673   91 66399   ONF U [Enterococus Arrable]   1   111   13673   91 670 610014   DA- protein [door sapiens]   1   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111  | 108    | 2   | 358           | 1 2724       | 91   537020         | vacB gene product [Escherichia coli]                                                         | 58    | 37      | 2367           |
| 1   111   12673   91 663219   OPP U [Enterococcus hize]   1   111   12673   91 663219   OPP U [Enterococcus hize]   1   111   12673   91 663219   OPP U [Enterococcus hize]   1   111   890   91 1800301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1111   | - 5 | 4593          | 5240         | gi 1592142          | transporter, probable ATP-binding subunit [Methanococcus                                     | 58    | 36      | 648            |
| 16   13131   12673   91 66319   ORF U [Enterococcus hitse]   1   111   12673   91 66319   ORF U [Enterococcus hitse]   1   111   890   91 1800301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120    | -   | 4421          | 5110         | gn1 P1D d101320     | Yqgx (Bacillus subtilis)                                                                     | 88    | 47      | 069            |
| 1   111   890   91   120   625488   Unknown [Bacillus subtilis]   111   890   91   120   62588   1965   91   473901   9865   9865   91   970   971   970   971   970   971   970   971   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   970   | 128    | 116 | 13131         | 12673        | gi 662919           | ORF U (Enterococcus hirae)                                                                   | 88    | 42      | 459            |
| 1   111   890   gni PrD e259488   Unknown (Bacillus subfills)     1   111   896   gi 473901   ORPI (Lactococcus lactis)     1   214   2   gni PrD d10047   translation elongation factor-1 (Chlorella to the total total translation elongation factor-1 (Chlorella total total translation elongation factor-1 (Chlorella to the total translation elongation factor-1 (Chlorella to the total translation elongation elo | 132    | -   | 6174          | 4939         | gi 1800301          | i                                                                                            | 58    | 35      | 1236           |
| 11   8615   9865   91  PID  010024   DJ-1 procein [Homo sapiens]   1   214   2   91  PID  010024   DJ-1 procein [Homo sapiens]   1   487   2   91  PID  010024   DJ-1 procein [Homo sapiens]   1   487   2   91  PID  0100447   translation elongation factor-3 [Chlorellas   1484   4620   91  PID  0100556   rat GCP30 (Rattus rattus)   1   1292   696   91  PID  0100556   rat GCP30 (Rattus rattus)   1   1292   696   91  PID  0100556   rat GCP30 (Rattus rattus)   1   1292   696   91  PID  0100556   rat GCP30 (Rattus rattus)   1   1292   696   91  PID  01020559   product similar to Wrba (Lactobacillus sakillas)   1   2   313   555   91  PID  0102056   Phypothetical protein [Bacillus subtilis]   1   2   715   91  91  910  9102048   B. subtilis cellobiose phosphotransferase enzyme II'   1   2   715   91  910  910748   Ramsembrane [Bacillus subtilis]   1   1   2   715   91  910  910400   NARA (Bacillus subtilis)   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133    | -   | 1111          | 890          | gn1 PID e269488     |                                                                                              | 85    | 36      | 180            |
| 6   6668   6849   gn1 PID d101024   DJ-1 protein [Homo sapiens]   1   121   2   gn1 PID d100447   translation elongation factor-3 [Chlorellas   1   128   2   gn1 PID d100447   translation-related protein [Craterostigma   1   1292   1464   1640   gn1 PID d246727   competance pheromone [Streptococcus gordon   1   1292   696   gn1 PID d200556   krt GCP360 [Rattus rattus]   1   1292   696   gn1 PID d200559   product similar to Wrbh [Lactobacillus sake   1   1292   696   gn1 PID d200559   product similar to Wrbh [Lactobacillus sake   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 160  | === | 8615          | 1 9865       | gi 473901           | ORFI (Lactococcus lactis)                                                                    | 88    | 39      | 1251           |
| 1   214   2   gni Pio din00447   translation elongation factor-3   Chlorella   487   2   gi 475114   regulatory protein [Pediococcus pentosaceu   6   4384   4620   gi 167475   dessication-related protein [Craterostigae   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 191    | 9 - | 6268          | 6849         | gn1 P1D d101024     | [M-1 protein [Homo sapiens]                                                                  | 88    | 32      | \$82           |
| 1   487   2   gi 475114   regulatory protein [Pediococcus pentobaceus   1   487   2   gi 167475   dessication-related protein [Craterostigma   4620   gi 167475   dessication-related protein [Craterostigma   1464   1640   gii PID e246727   competence pheromone [Streptococcus gordon   2   2012   1344   gii PID e202579   product similar to WrbA [Lactobacillus sak   2   2333   555   gii PID e202579   product similar to WrbA [Lactobacillus sak   2   2333   555   gii PID e202579   product similar to WrbA [Lactobacillus sak   2   2333   555   gii PID e102656   rat GCP360   Rattus rattus    2   811   gi 466474   cellobiose phosphotransferase   2   2333   555   gii PID d102048   B. subtilis cellobiose phosphotransferase   2   2335   5106   gii PID d102048   B. subtilis cellobiose phosphotransferase   3   767   gi 173077   cell division ATP-binding protein (ffsEP)   [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 169    | -   | 214           | 2            | gn1 PID d100447     | translation elongation factor-1 [Chlorella virus]                                            | 85    | 31      | 213            |
| 6   4384   4620   gi    167475   dessication-related protein [Craterostigna   1464   1640   gii    PID    246727   competence pheromone   Streptococcus gordon   1   1292   696   giii    PID    202579   product similar to Wrba   Lactobacillus sak   1   1292   696   giii    PID    202579   product similar to Wrba   Lactobacillus sak   1   1292   696   giii    PID    202579   product similar to Wrba   Lactobacillus sak   1   1   2   gii    466474   cellobiose phosphotransferase   1   2   811   gii    PID    402048   B. subtilis cellobiose phosphotransferase   1   2   811   gii    PID    402048   B. subtilis cellobiose phosphotransferase   1   2   715   gii    973330   Nata   (Bacillus subtilis)   (Ransmembrane   Bacillus subtilis)     1   2   715   gii    973330   Nata   (Bacillus subtilis)   (Racherichia coli)     1   845   3   gii    PID    6334780   YlbL protein   Bacillus subtilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 187  | -   | 487           | - 2          |                     | regulatory protein (Pediococcus pentosaceus)                                                 | 88    | 38      | 486            |
| 2   1464   1640   gnl PID e246727   competence pheromone (Streptococcus gordon   2   2012   1344   gnl PID e100556   rat GCP360 (Rattus rattus)     1   1292   696   gnl PID e1020579   product similar to WrbA (Lactobacillus sak   1   1292   696   gnl PID e1020579   product similar to WrbA (Lactobacillus sak   1   120   696   gnl PID e1020569   hypothetical protein (Bacillus subtilis)     1   5636   5106   gnl PID e102048   B. subtilis cellobiose phosphotransferase   ransmembrane (Bacillus subtilis)     1   2   811   gi 973777   (cell division ATP-binding protein (ftsE) f     1   2   715   gi 973377   (cell division ATP-binding protein (ftsE) f     1   33   767   gi 1786187   (AE000111) hypothetical 29.6 kD protein in     1   845   3   gnl PID e334780   Y1bL protein (Bacillus subtilis)     2   7160   1867   gi 160671   S antigen precursor (Plasmodium falciparum   1   806   3   gi 193394   Tb-291 membrane associated protein (Trypan   1   806   3   gi 19131011   hypothetical 20.3K protein (insertion sequence   2   749   519   pir JC1151 JC111   hypothetical 20.3K protein (insertion sequence   2   749   519   pir JC1151 JC111   hypothetical 20.3K protein (insertion sequence   2   749   519   pir JC1151 JC111   tumefaciens (strain P022) plasmid Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 187    | 9   | 4384          | 4620         | gi 167475           | dessication-related protein [Craterostigma plantagineum]                                     | 88    | 55      | 762            |
| 2   2012   1344   gn1 PID d100556   rat GCP360 [Rattus rattus]   1292   696   gn1 PID e202579   product similar to WrbA [Lactobacillus sak   1   1292   695   gn1 PID e325036   hypothetical protein [Bacillus subtilis]   555   gn1 PID e325036   hypothetical protein [Bacillus subtilis]   1   2   715   gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190    |     | 1464          | 1640         | gn1 P1D e246727     |                                                                                              | 88    | 38      | 177            |
| 1   1292   696   gnl PID e202579   product similar to WrbA [Lactobacillus sak   2   2333   555   gnl PID e325036   hypothetical protein [Bacillus subtilis]   5536   4321   gi 466474   cellobiose phosphotransferase   7   5636   5106   gnl PID d102048   B. subtilis cellobiose phosphotransferase   8   1   2   811   gi 1573777   cell division ATP-binding protein (ffsE)   1   2   715   gi 773377   cell division ATP-binding protein (ffsE)   1   2   715   gi 773377   (AEDO0111) hypothetical 29.6 kD protein in   845   3   gnl PID e334780   YlbL protein (Bacillus subtilis)   1   845   3   gnl PID e334780   YlbL protein (Bacillus subtilis)   1   845   3   gnl PID e334780   YlbL protein (Plasmodium falciparum   1   806   3   gi 160671   S antigen precursor (Plasmodium falciparum   2   749   519   pir JC1151 JC11   hypothetical 20.3K protein (insertion sequence   2   749   519   pir JC1151 JC11   tumefaciens (strain P022) plasmid Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 192    | 1 2 | 2012          | 1344         | gn1   P1D   d100556 | GCP360 (Rattus                                                                               | 88    | 44      | 699            |
| 2   2333   555   gnl PID e325036   hypothetical protein [Bacillus subtilis]     7   5636   5106   gnl PID d102048   B. subtilis cellobiose phosphotransferase enzyme II'     1   2   811   gi 1573777   cell division ATP-binding protein (ffsE)     1   2   715   gi 973330   Nath [Bacillus subtilis]     1   33   767   gi 1786187   (AE000111) hypothetical 29.6 kD protein in     1   845   3   gnl PID e334780   YlbL protein (Bacillus subtilis)     1   845   199194351 YZCD   HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE     1   806   3   gi 193394   Tb-291 membrane associated protein (Trypan tumefaciens (strain P022) plasmid Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 206  | -   | 1292          | 969          | gn1 PID e202579     | product similar to WrbA (Lactobacillus sake)                                                 | 58    | 35      | 597            |
| 7   5636   4321   gi 466474   Cellobiose phosphotransferase enzyme II'   5636   5106   gnl PID d102048   B. subtilis cellobiose phosphotransferase   transmembrane   Bacillus subtilis    1   2   715   gi 37777   Cell division ATP-binding protein (ffsE)     1   2   715   gi 773777   Cell division ATP-binding protein (ffsE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 216  | - 5 | 2333          | 555          | gn1 PID e325036     | hypothetical protein (Bacillus subtilis)                                                     | 58    | 33      | 6771           |
| 7   5636   5106   9n1   PTD   4102048   B. subtilis cellobiose phosphotransferase system celB;   1   2   811   91   1573777   cell division ATP-binding protein (ftsE) (Haemophilus i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 217    | 5   | 1 5250        | 4321         | 91 466474           |                                                                                              | 58    | 38      | 930            |
| 1   2   811   91   1573777   Cell division APP-binding protein (ftsE) [Haemophilus in the coll   1   33   767   91   1786187   (AE000111) hypothetical 29.6 kD protein in thrC-talB in [Escherichia coli   29.6 kD protein in thrC-talB in [Escherichia coli   1845   3   91   91   91   91   91   91   91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 217    |     | 5636          | 5106         |                     | . subtilis<br>transmembra                                                                    | 88    | 44      | 531            |
| 1   2   715   91 973330   NatA [Bacillus subtilis]   1   33   767   91 1786187   (AECOOIII) hypothetical 29.6 kD protein in thrC-talB in   Escherichia coli)   1   845   3   9n1 PID e334780   Y1bL protein (Bacillus subtilis)   1   1556   1092   sp P46351 Y2CD_   HYPOTHETICAL 45.4 kD PROTEIN IN THIAMINASE I S'RECION.   5   2160   1867   91 160671   S antigen precursor (Plasmodium falciparum)   1   806   3   91 39334   Tb-291 membrane associated protein (Trypanosoma brucei   2   749   519   pir JC1151 JC11   hypothetical 20.3k protein (insertion sequence IS1131)   2   749   519   pir JC1151 JC11   tumefaciens (strain P022) plasmid Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 232  | -   | 2             | 811          |                     | (ftsE)                                                                                       | 58    | 39      | 810            |
| 1   33   767   gi  1786187   (AECO00111) hypothetical 29.6 kD protein in thrC-talB in   Escherichia coli    1   845   3   gnl  PID  e334780   Y1bL protein (Bacillus subtilis    1556   1092   sp  P46351  Y2GD_   HYPOTHETICAL 45.4 kD PROTEIN IN THIAMINASE I S.REGION.   5   2160   1867   gi  160671   S antigen precursor (Plasmodium falciparum)   1   806   3   gi  393394   TD-291 membrane associated protein (Trypanosona brucei   2   749   519   pir  JC1151  JC11   hypothetical 20.3k protein (insertion sequence IS1131)   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 264    | -   | 2             | 715          | gi 973330           | Nata (Bacillus subtilis)                                                                     | 58    | 32      | 714            |
| 1   845   3   gn1 FID e334780   YlbL protein (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 280    |     | 33            | 792          | 91 1786187          | (AE000111) hypothetical 29.6 kD protein in thrC-talB intergenic region<br>[Escherichia coli] | 28    | 31      | 735            |
| 3   1556   1092   Sp P46351 YZCD_   HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I S'REGION.   5   2160   1867   Gi 160671   S antigen precursor [Plasmodium falciparum]   1   806   3   Gi 193394   Tb-291 membrane associated protein (Trypanosoma brucei   2   749   519   pir JC1151 JC11   hypothetical 20.3K protein (insertion sequence IS1111)   2   749   519   pir JC1151 JC11   tumefaciens (strain PO22) plasmid Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 306    | -   | 845           | _            | gn1 PID e334780     | [YlbL protein (Bacillus subtilis)                                                            | 58    | 47      | 843            |
| 5   2160   1867   91   160671   S antigen precursor (Plasmodium falciparum)   1   806   3   91   3931394   Tb-291 membrane associated protein (Trypanosoma brucei   2   749   519   pir JC1151 JC11   hypothetical 20.3K protein (insertion sequence IS1131)   Lumefaciens (strain PO22) plasmid Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 360    | _   | 1556          | 1092         | sp P46351 Y2GD_     | -                                                                                            | 85    | 32      | 465            |
| 1   806   3   gi 393394   Tb-291 membrane associated protein (Trypanosoma brucei<br>  2   749   519   pir JC1151 JC11   hypothetical 20.3K protein (insertion sequence IS1131)<br>  tumefaciens (strain PO22) plasmid Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 363  | 5   | 2160          | 1867         | 12991160671         | S antigen precursor (Plasmodium falciparum)                                                  | 58    | 51      | 294            |
| 2 749 519  pir JC1151 JC11  hypothetical 20.3K protein (insertion sequence IS1131)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 372  | -   | 806           | <u> </u>     | gi 393394           | Tb-291 membrane associated protein (Trypanosoma brucei subgroup)                             | 58    | 37      | 804            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 382    | 7   | 749           | 519          | pir JC1151 JC11     |                                                                                              | 89    | 41      | 231            |

S. pneumonise - Putative coding regions of novel proteins similar to known proteins

| Contia                                  | ORF                                     | Start  | Stop   | match           | match gene name                                                                                                          | # sim | s ident | length<br>(nt) |
|-----------------------------------------|-----------------------------------------|--------|--------|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| QI I                                    | 91                                      | (at)   | (at)   | acession        |                                                                                                                          | 57    | 38      | 939            |
| -                                       | 6                                       | 8409   | 17471  | gi 1499745      |                                                                                                                          | 57    | 30      | 168            |
| 10                                      | 110                                     | 7674   | 7507   | gi 1737169      | Arabidopsis                                                                                                              | 57    | 42      | 411            |
|                                         | -                                       | ~      | 412    |                 | ORF [Acetobacter pasteurianus]                                                                                           |       |         | 1 543          |
| 31                                      |                                         | 2032   | 1388   | 91 (2293213     | (AF008220) YtpR (Bacillus subtilis)                                                                                      | 70    |         |                |
| 33                                      | ======================================= | 6931   | 6449   |                 | hypothetical protein (Bacillus subtilis)                                                                                 | 57    | 36      | 00             |
|                                         | · · ·                                   | 5446   | 1 5060 | di 1592204      | phosphoserine phosphatase (Methanococcus jannaschii)                                                                     | 57    | 44      | 387            |
|                                         | , , ,                                   | 6523   | 7632   | di    155369    | PrS enzyme-II fructose (Xanthomonas campestris)                                                                          | 53    | 35      | 1110           |
| 5.5                                     | 9                                       | 4520   | 1 6850 | gi 1574144      | single-stranded-DNA-specific exonuclease (recJ) (Haemophilus influenzae)                                                 | 57    | 35      | 2331           |
| 5                                       | -                                       | 2079   | 1795   | 91 1843580      | replicase-associated polyprotein (oat blue dwarf virus)                                                                  | 57    | 46      | 285            |
|                                         | 9                                       | 5312   | 1 4995 | gi   2182608    | [AE000094] Y4rJ [Rhizobium sp. NGR234]                                                                                   | 57    | 39      | 318            |
| 72                                      | 15                                      | 13883  | 113059 | 00892           | homologous to SwissProt: YIDA_ECOLI hypothetical protein (Bacillus subtills)                                             | 57    | 40      | 825            |
| 79                                      | 2                                       | 2561   | 1815   |                 | homologue of NADPH-flavin oxidoreductase Frp of V. harveyl (Bacillus subtlis)                                            | 57    | \$      | 747            |
| 82                                      | 6                                       | 9656   | 9763   | 91   1206045    | short region of similarity to glycerophosphoryl diester phosphodiesterases                                               | 57    | 35      | 168            |
| 86                                      | 116                                     | 15371  | 14493  | 91   1787983    | (AED00264) 0288; 92 pct identical (1 gaps) to 222 residues of fragment YDIB_ECOLI SW: P28244 (223 aa) [Escherichia coli! | 57    | 34      | 879            |
|                                         |                                         | 1 1695 | 7711   | gi 1500003      | mutator mutT protein [Methanococcus jannaschii]                                                                          | 57    | 1 33    | 519            |
| 96                                      | 9                                       | 3026   | 4519   | 91 559882       | threonine synthase (Arabidopsis thaliana)                                                                                | 57    | 43      | 1494           |
| 66                                      | 12                                      | 11211  | 118212 | gi 773349       | BirA protein (Bacillus subtilis)                                                                                         | 52    | 44      | 1002           |
| 1112                                    | 8                                       | 7448   | 1 7903 | 91 1591393      | H. jannaschii predicted coding region MJ0678 [Methanococcus jannaschii]                                                  | 57    | 1 30    | 456            |
| ======================================= | 91                                      | 18627  | 18328  | pir A45605 A456 | mature-parasite-infected erythrocyte surface antigen HESA - Plasmodium falciparum                                        | 57    | 22      | 300            |
| 123                                     | 2                                       | 343    | 1110   | pir F64149 F641 | hypothetical protein H10355 - Haemophilus influenzae (strain Rd KW20)                                                    | 57    | 38      | 768            |
| 123                                     | -                                       | 2108   | 1 2884 | gn1 PID d102148 | [AB001684] sulfate transport system permease protein [Chlorella vulgaris]                                                | 57    | 39      | 777            |
| 127                                     | 110                                     | 6477   | 5587   | 91 1573082      | ntrogenase C (nifC) (Haemophilus influenzae)                                                                             | 57    | 35      | 891            |
| 128                                     | 13                                      | 9251   | 9266   | 91   153692     | [pneumolysin  Streptococcus pneumoniae]                                                                                  | 57    | 38      | 540            |
| 131                                     | 4                                       | 2139   | 1363   | gi 42081        | nagD gene product (AA 1-250) [Escherichia coli]                                                                          | 52    | 36      |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

|        | -         |               | 1111111      |                    |                                                                                                                           |       |         |                |
|--------|-----------|---------------|--------------|--------------------|---------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| Contig | ORF<br>ID | Start<br>(nt) | Stop<br>(nt) | match              | match gene name                                                                                                           | E sis | * ident | length<br>(nt) |
| 136    |           | 214           | 1221         | bbs   148453       | Spakendocarditis immunodominant antigen (Streptococcus sobrinus, MUCOB<br>263, Peptide, 1566 aa) [Streptococcus sobrinus] | 57    | 4       | 1008           |
| 1 140  | 25        | 28701         | 126851       | gi 505576          | beta-glucoside permease (Bacillus subtilis:                                                                               | 57    | 38      | 1851           |
| 141    | 9         | 6395          | 7438         | gi 995560          | unknown (Schizosaccharomyces pombe                                                                                        | 57    | 41      | 1044           |
| 144    | 13        | 3231          | 2785         | gn1 PID d100139    | ORF (Acetobacter pasteurianus)                                                                                            | 57    | 42      | 447            |
| 155    | 4         | 5454          | 4564         | gi 600431          | glycosyl transerase (Erwinia amylovora)                                                                                   | 57    | 34      | 891            |
| 159    | 6         | 4877          | 5854         | gi 290509          | o307 [Escherichia coli]                                                                                                   | 57    | 35      | 978            |
| 167    | 111       | 9710          | 9249         | gn1   pro  d100139 | ORF (Acetobacter pasteurianus)                                                                                            | 57    | 42      | 462            |
| 171    | 9         | 4023          | 4436         | gi 147402          | mannose permease subunit III-Man  Escherichia coli                                                                        | 57    | 29      | 414            |
| 178    | -         | 2170          | 1006         | gn1 PtD d102004    | (ABGO1488) ATE-DEPENDENT RNA HELICASE DEAC HOMOLOG. (Bacillus subtilis)                                                   | 57    | 39      | 1095           |
| 1 190  | -         | 145           | 1455         | gi 149420          | export/processing protein [Lactococcus lactis]                                                                            | 57    | 30      | 1311           |
| 198    |           | 1 298         | - 36         | 91   522268        | unidentified ORF22 (Bacteriophage bIL67)                                                                                  | 57    | 36      | 204            |
| 203    | - 2       | 3195          | 2110         | gn1 PID e283915    | orf c01001 [Sulfolobus solfataricus]                                                                                      | 57    | 41      | 1086           |
| 1 205  | -         | 40            | 507          | gi 1439527         | EIIA-man [Lactobacillus curvatus]                                                                                         | 57    | 28      | 468            |
| 214    |           | 4243          | 3797         | gn1 P1D d102049    | H. influenzae, ribosomal protein alanine acetyltransferase; P44105 (189)<br>(Bacillus subtilis)                           | 57    | 48      | 447            |
| 268    |           | 1767          | 1276         | gi 43979           | L.curvatus small cryptic plasmid gene for rep protein (Lactobacillus curvatus)                                            | 57    | 36      | 492            |
| 351    | -         | 324           | 34           | gn1 PID e275871    | 103F6.b [Caenorhabditis elegans]                                                                                          | 57    | 31      | 291            |
| 386    | -         | 226           | 7            | gi 160671          | S antigen precursor [Plasmodium falciparum]                                                                               | 57    | 45      | 225            |
| 5      | 2         | 10486         | 7778         | gi 405857          | yehU (Escherichia coli)                                                                                                   | 95    | 33      | 1710           |
| 8      | - 2       | 1 3674        | 3910         | [gi   467199       | pksC; L518_F1_2 [Mycobacterium leprae]                                                                                    | 56    | 39      | 237            |
| 10     | <u> </u>  | 3442          | 1874         | gn1 P1D d101907    | sodium-coupled permease [Synechocystis sp.]                                                                               | 96    | 36      | 1569           |
| 21     | -         | 1880          | 333          | [gi 2313949        | (AEGO0593) osmoprotection protein (proWX) [Helicobacter pylori]                                                           | 96    | 33      | 1548           |
| 22     | 129       | 21968         | 122456       | gn1 PID d102001    | [ABGO1488] PROBABLE ACETYLTRANSFERASE. [Bacillus subtilis]                                                                | 95    | 37      | 489            |
| 72     |           | 1361          | _            | gi 215132          | ea59 (525) [Bacteriophage lambda]                                                                                         | 96    | 30      | 1359           |
| 28     | 6         | 1 4667        | 4278         | gi 1592090         | DNA repair protein RAD2 [Methanococcus jannaschii]                                                                        | 96    | 29      | 390            |
| 33     | 1         | £             | 386          | gn1 PID d100139    | ORF (Acetobacter pasteurianus)                                                                                            | 56    | 41      | 384            |
|        | 11111     |               |              |                    |                                                                                                                           |       |         |                |

S. pneumoniae - Putative coding regions of novel proteins' Similar to known proteins

| Contig | ORF | Start (nt) | Stop<br>(nt) | match               | match gene name                                                                                                                                      | mis * | , ident | length<br>(nt) |
|--------|-----|------------|--------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| 36     |     | 5122       | 5397         | pir PQ0053 PQ00     | hypothetical protein (proC 3' region) - Pseudomonas aeruginosa (strain PAO) (fragment)                                                               | 26    | 28      | 276            |
| 40     | -   | 1 3137     | 4318         | 91 1800301          | macrolide-efflux determinant (Streptococcus pneumoniae)                                                                                              | 99    | 27      | 1182           |
| 40     | 116 | 112511     | 19161        | gn1   PID   e217602 |                                                                                                                                                      | 56    | 38      | 681            |
| 48     |     | 13775      | 13023        | 91   143729         | transcription activator (Bacillus subtilis)                                                                                                          | 56    | 35      | 753            |
| 2,4    | -   | 1 1674     | 2594         | gn1 PID d102036     | membrane protein (Bacillus stearothermophilus)                                                                                                       | 96    | 25      | 921            |
| 88     | -   | 1 1842     | 1459         |                     | ORF (Acetobacter pasteurianus)                                                                                                                       | 95    | 41      | 384            |
| 88     | 17  | 1 5815     | 4940         | 191   853777        | product similar to E.coll PRFA2 protein (Bacillus subtilis)                                                                                          | 56    | 42      | 876            |
| 105    | - 5 | 1360       | 1 2718       | gn1 P1D d101913     | hypothetical protein (Synechocystis sp.)                                                                                                             | 96    | 37      | 1359           |
| 112    | -   | 1 2151     | 3194         | gi 537201           | ORF_0345 [Escherichia coli]                                                                                                                          | 95    | 33      | 1044           |
| 113    | -   | 1 2754     | 1 2963       | gn1 PID d100340     | ORF [Plum pox virus]                                                                                                                                 | 96    | 28      | 210            |
| 122    |     | 1203       | 2054         | gi 1649035          | high-affinity periplasmic glutamine binding protein (Salmonella<br>typhimurium)                                                                      | 92    | 30      | 852            |
| 124    | 8 - | 1 3939     | 3694         | gn1 PID e248893     | unknown [Mycobacterium tuberculosis]                                                                                                                 | 95    | 27      | 246            |
| 125    | -   | 4403       | 4107         | gn1 PID d100247     | human non-muscle myosin heavy chain (Homo Hapiens)                                                                                                   | 96    | 32      | 297            |
| 127    | =   | 1 6608     | 6405         | gi 2182397          | (AE000073) Y4fN (Rhizobium sp. NGR234)                                                                                                               | 95    | 35      | 204            |
| 134    |     | 4769       | 3849         | PID                 | hypothetical protein (Synechocystis sp.)                                                                                                             | 56    | 39      | 921            |
| 137    | 01  | 6814       | 7245         | gi 1592011          | sulfate permease (cysA) (Methanococcus jannaschii)                                                                                                   | 95    | 34      | 432            |
| 1 142  | 8   | 1 5019     | 4582         | pir A47071 A470     | orfl immediately 5' of nifS - Bacillus subtilis                                                                                                      | 96    | 29      | 438            |
| 1 146  | -   | 4676       | 1 3660       |                     | hypothetical protein (Symechocystis sp.)                                                                                                             | 96    | 32      | 1017           |
| 1 148  | -   | 1 1906     | 2739         |                     | phosphate transport system permease protein PstA [Synechocystis sp.]                                                                                 | 96    | 36      | 834            |
| 150    |     | 4449       | 2743         | gn1 PID e304628     | probably site-specific recombinase of the resolvase family of enzymes [Bacteriophage TP21]                                                           | 56    | 27      | 1707           |
| 172    |     |            | 208          | gi   1787791        | (AE000249) f117; This 317 aa orf is 27 pct identical (16 gaps) to 301 residues of an approx. 320 aa protein YXXC_BACSU SW: P39140 (Escherichia coli) | 56    | 34      | 207            |
| 172    |     | 4979       | 2668         | 91   396293         | similar to Bacillus subtilis hypoth. 20 kDa protein, in tsr 3' region<br>(Escherichia coli)                                                          | 26    | 40      | 069            |
| 186    | _   | 3732       | 13367        | 91   1732200        | PTS permease for mannose subunit IIPMan [Vibrio furnissii]                                                                                           | 56    | 36      | 366            |
| 187    | ~   | 2402       | 819          | pir S57904 S579     | virR49 protein - Streptococcus pyogenes (strain CS101, serotype M49)                                                                                 | 56    | 35      | 1584           |
|        | i   |            |              |                     |                                                                                                                                                      |       |         |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| 204   | <u> </u>     | (ut)   | (ut)  | acession            | match gene hane                                                                                                                                     |     |    | (nt)  |
|-------|--------------|--------|-------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-------|
| 206   |              | 2772   | 2239  | gi 606376           | [ORF_o162 [Escherichia coli]                                                                                                                        | 2.6 | 35 | 534   |
| 1 219 | ~            | 3342   | 1633  | gi 559861           | clyM [Plasmid pAD1]                                                                                                                                 | 56  | 38 | 1710  |
| :     | _            | 1689   | 1096  | gi 1146197          | putative (Bacillus subtilis)                                                                                                                        | 26  | 27 | 594   |
| 230   | 7            | 409    | 1485  | pir C60328 C603     | hypothetical protein 2 (sr 5' region) - Streptococcus mutans (strain OM2175, serotype f)                                                            | 95  | 40 | 1077  |
| 233   | -            | 2930   | 3268  | gi   1041785        | rhoptry protein [Plasmodium yoelii]                                                                                                                 | 36  | 24 | 339   |
| 273   | ~            | 1543   | 2724  | gi 143089           | lep protein (Bacillus subtilis)                                                                                                                     | 95  | 32 | 1182  |
| 353   | -            |        | 516   | gn1 PID e325000     | e325000 hypothetical protein (Bacillus subtilis)                                                                                                    | 56  | 41 | 516   |
| 359   |              | 87     | 641   | gi 1786952<br>      | (AEGOG176) 0877; 100 pct identical to the first 86 residues of the 100 aa<br>hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coli] | 95  | 46 | 555   |
| 363   | -            | 4482   | 4198  | gi 1573353          | outer membrane integrity protein (tolh) [Hiemophilus influenzae]                                                                                    | 56  | 38 | 285   |
| 376   | -            | 2      | 508   | gn1   PID   e325031 | hypothetical protein (Bacillus subtilis)                                                                                                            | 96  | 33 | 507   |
| 18    | <del>-</del> | 836    | 177   | gn1   PID   d100872 | a negative regulator of pho regulon (Pseudomonas aeruginosa)                                                                                        | 55  | 31 | 1 099 |
| 28    | 7            | 1824   | 1618  | gn1 PID e316518     | STAT protein (Dictyostelium discoideum)                                                                                                             | 55  | 40 | 207   |
| 29    | 9            | 4496   | 5041  | 91 1088261          | unknown protein (Anabaena sp.)                                                                                                                      | 55  | 31 | 546   |
| 38    | 16           | 5696   | 10702 | gi 580905           | B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB (Bacillus subtilis)                                                                                | 55  | 31 | 1008  |
| 49    |              | 5727   | 6182  | [gi   1786951       | (AE000176) heat-responsive regulatory protein (Escherichia coli)                                                                                    | 55  | 29 | 456   |
| 51    | -            | 2381   | 3241  | 101293              | [YbbA [Bacillus subtilis]                                                                                                                           | 55  | 42 | 861   |
| 52    | -            | 9640   | 10866 | 91 153016           | ORF 419 protein (Staphylococcus aureus)                                                                                                             | 55  | 23 | 1227  |
| 1 53  | -            | 1813   | 1349  | gi 896042           | OspF (Borrella burgdorferi)                                                                                                                         | 55  | 30 | 465   |
| 09 ]  | -            | 4794   | 5756  | 91 1499876          | magnesium and cobalt transport protein (Methanococcus jannaschiil                                                                                   | 55  | 38 | 963   |
| 112   | 6            | 14176  | 15408 | gi 1857120          | glycosyl transferase (Neisseria meningitidis)                                                                                                       | 55  | 41 | 1233  |
| 75    | 9            | 3189   | 4229  | gn1 PID e209890     | NAD alcohol dehydrogenase (Bacillus subtilis)                                                                                                       | 55  | 44 | 1041  |
| 108   | 01           | 10488  | 9820  | gn1 PID e324997     | e324997  hypothetical protein (Bacillus subtilis)                                                                                                   | 55  | 36 | 699   |
| 113   | 12 11        | 112273 | 13037 | gn1 P1D e311496     | unknown [Bacillus subtilis]                                                                                                                         | 55  | 34 | 765   |
| 113   |              | 13007  | 13945 | gi 1573423          | 1-phosphofructokinase (fruk) [Haemophilus influenzae]                                                                                               | 55  | 39 | 939   |
| 126   | · —— }       | 6764   | 5907  | 91   1790131        | (AE000446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region                                                                              | 55  | 37 | 858   |

S. pneumoniae - Putative coding regions of novel proteinb~sfmilar to known proteins

| Contig | I ORF                                   | Start (nt) | Stop<br>(nt) | match           | match gene name                                                                                                              | e sia | * ident | length (nt) |
|--------|-----------------------------------------|------------|--------------|-----------------|------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------------|
| 129    | 1 2                                     | 2719       | 902          | gn1 PID d101425 | Pz-peptidase (Bacillus licheniformis)                                                                                        | 55    | 35      | 1818        |
| 138    | - n                                     | 1 2593     | 1610         | gi 142833       | ORF2 (Bacillus subrilis)                                                                                                     | 55    | 37      | 984 [       |
| 140    | 9-                                      | 6916       | 5633         | gn1 PID d100964 | homologue of hypothetical protein in a rapamycin synthesis gene cluster of<br>Streptomyces hygroscopicus (Bacillus subtilis) | 55    | 26      | 1284        |
| 147    | - m                                     | 1 3854     | 2136         | 91 472330       | dihydroliposmide dehydrogenase (Clostridium magnum)                                                                          | 55    | 39      | 1 6171      |
| 147    | 10                                      | 10204      | 8921         | gn1 PID e73078  | dihydroorotase [Lactobacillus leichmannii]                                                                                   | 55    | 38      | 1284        |
| 148    | - 5                                     | 3430       | 4119         | 191 290572      | peripheral membrane protein U (Escherichia coli)                                                                             | 55    | 29      | 690         |
| 1 148  | 9                                       | 1 4171     | 1 4650       | gi 695769       | transposase (Xanthobacter autotrophicus)                                                                                     | 55    | 37      | 480         |
| 149    | 114                                     | 112564     | 111650       | gn1 PID d101329 | YqjG (Bacillus subtilis)                                                                                                     | 55    | 32      | 915         |
| 156    |                                         | 1113       | 850          | di   2314496    | [AEGO0664] conserved hypothetical integral membrane protein [Helicobacter pylori]                                            | 55    | 34      | 564         |
| 159    | 70                                      | 6625       | 5897         | gi 290533       | similar to E. coli ORF adjacent to suc operon; similar to gntR class of regulatory proteins (Escherichia coli)               | 55    | 59      | 729         |
| 164    | -                                       | 1784       | 2332         | gn1 PID e255118 | hypothetical protein (Bacillus subtilis)                                                                                     | 55    | 1 76    | 549         |
| 164    | - 5                                     | 1 2772     | 3521         | .  gi 40348     | put. resolvase Inp I (AA 1 - 284) [Bacillus thuringiensis]                                                                   | 55    | 35      | 750         |
| 1 164  | ======================================= | 7428       | 1 7216       | gn1 PID e249407 | unknown (Mycobacterium tuberculosis)                                                                                         | 55    | 38      | 213         |
| 1 167  | - 5                                     | .3860      | 3345         | 91   535052     | involved in protein secretion (Bacillus subtilis)                                                                            | 55    | 28      | 516         |
| 186    |                                         | 2880       | 2563         | 91,606080       | ORF_0290; Geneplot suggests frameshift linking to 0267, not found<br>[Escherichia coli]                                      | 55    | 35      | 318         |
| 189    | 8                                       | 4311       | 5396         | gn1 P1D e183450 | hypothetical EcsB protein (Bacillus subtilis)                                                                                | 55    | 32      | 1086        |
| 192    | - 2                                     | 3270       | 3079         | 91 1196504      | vitellogenin convertase (Aedes aegypti)                                                                                      | 55    | 38      | 192         |
| 195    | - 2                                     | 2454       | 1384         | gi 1574693      | transferase, peptidoglycan synthesis (murG) [Haemophilus influenzae]                                                         | 55    | 33      | 1071        |
| 198    | -                                       | 3013       | 2471         | gn1 P1D e313074 | hypothetical protein [Bacillus subtilis]                                                                                     | 55    | 29      | 543         |
| 214    | -                                       | 373        | 744          | gn1 PID d101741 | transposase (Symechocystis sp.)                                                                                              | 55    | 33      | 372         |
| 219    | 7                                       | 1115       | 456          | 91 288301       | ORF2 gene product (Bacillus megaterium)                                                                                      | 55    | 30      | 099         |
| 263    |                                         | 3742       | 3443         | 91   18137      | cgcr-4 product (Chlamydomonas reinhardtii)                                                                                   | 55    | 48      | 300         |
| 285    | -                                       | 7          | 829          | gn1 P1D d100974 | unknown (Bacillus subtilis)                                                                                                  | 55    | 40      | 828         |
| 286    |                                         | 650        | 249          | gi 396844       | ORF (18 kDa) [Vibrio cholerae]                                                                                               | 55    | 31      | 402         |
| 297    | 7                                       | 1229       | 1696         | gi 150848       | prtC (Porphyromonas gingivalis)                                                                                              | 55    | 39      | 468         |
|        | ,                                       | •          |              |                 |                                                                                                                              |       |         |             |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF     | Start<br>  (nt) | Stop<br>(nt) | match           | match gene name                                                                                                 | Esia | * ident | length |
|--------|---------|-----------------|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------|------|---------|--------|
| 1 309  | - 2     | 218             | 982          | gi 1574491      | hypothetical [Haemophilus influenzae]                                                                           | 55   | 35      | 765    |
| 328    | 7       | 646             | 224          | gi 571500       | prohibitin (Saccharomyces cerevisiae)                                                                           | 55   | 27      | 423    |
| 330    | -       | 1340            | 474          | gi 396397       | sox5 [Escherichia coli]                                                                                         | 55   | 29      | 867    |
| 364    | -       | 2538            | 1546         | 91 393394       | Tb-291 membrane associated protein (Trypanosoma brucei subgroup)                                                | 55   | 36      | 993    |
| 368    | _       | 941             | 105          | gi 160671       | S antigen precursor (Plasmodium falciparum)                                                                     | 55   | 09      | 837    |
|        | - 2     | 4604            | 3624         | 91   2293176    | (AF008220) signal transduction protein kinase (Bacillus subtilis)                                               | 54   | 26      | 981    |
| 6      | Ξ       | 7746            | 7246         | gi 1146245      | putative (Bacillus subtilis)                                                                                    | 54   | 38      | 501    |
| 38     | - 1     | 116213          | 17937        | gi 1480429      | putative transcriptional regulator (Bacillus stearothermophilus)                                                | 54   | 27      | 1725   |
| 40     | 8       | 5076            | 4882         | gi 39989        | methionyl-tRNA synthetase  Bacillus stearuthermophilus                                                          | 54   | 35      | 195    |
| 43     | -       | 3980            | 1 2367       | gn1 PID e148611 | ABC transporter (Lactobacillus helveticus)                                                                      | 54   | 25      | 1614   |
| 52     | 01      | 110844          | 12103        | gi 1762962      | FemA  Staphylococcus simulans                                                                                   | 54   | 29      | 1260   |
| 57     | -       | n,              | 512          | gi 558177       | endo-1,4-beta-xylanase [Cellulomonas fimi                                                                       | 54   | 36      | 510    |
| 58     |         | 4749            | 4246         | gn1 P1D d101237 | gnl PID d101237  hypothetical (Bacillus subtilis)                                                               | 54   | 29      | 504    |
| 1,1    |         | 10684           | 111703       | 91 510255       | orf3 (Escherichia coli)                                                                                         | 54   | 31      | 1020   |
| 1,     | 120     | 127546          | 127737       | gi 202543       | serotonin receptor [Rattus norvegicus]                                                                          | 54   | 31      | 192    |
| 72     | 7       | 844             | 1098         | gi 148613       | srnB gene product (Plasmid F)                                                                                   | 54   | 37      | 255    |
| 27     |         | 7438            | 6699         | gi 1196496      | recombinase (Moraxella bovis                                                                                    | 54   | 38      | 744    |
| 74     | 2       | 14043           | 13465        | gi 1200342      | ORF 3 gene product (Bradyrhizobium japonicum)                                                                   | 54   | 32      | 579    |
| 74     | 112     | 16483           | 115995       | gi 2317798      | maturase-related protein (Pseudomonas alcaligenes)                                                              | 54   | 30      | 489    |
| 98     | -       | 2877            | 2155         | 91 46988        | orf9.6 possibly encodes the O unit polymerase (Salmonella enterica)                                             | 54   | 34      | 723    |
| 89     | - 5     | 4433            | 3921         | 91 147211       | phnO protein (Escherichia coli)                                                                                 | 54   | 41      | 513    |
| 06     | -       | 2               | 464          | 94   2317798    | maturase-related protein (Pseudomonas alcaligenes                                                               | 54   | 30      | 462    |
| 96     | 0       | 8058            | 8510         | gn1 PID d102015 | (ABOO1488) SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. (Bacillus subtilis) | 54   | 32      | 453    |
| 97     | 9       | 4662            | 3604         | 91   1591394    | [transketolase'' {Methanococcus jannaschii}                                                                     | 54   | 30      | 1059   |
| 106    | =       | 10406           | 12010        | 91   606286     | ORF_0637 (Escherichia coli)                                                                                     | 54   | 32      | 1605   |
| 147    | <b></b> | 8663            | 7404         |                 | ORF_ID:031997; similar to (SwissProt Accession Number P37340) (Escherichia                                      | 54   | 35      | 1260   |
|        | •       |                 | -            |                 | · •                                                                                                             | - +  |         |        |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| 171     |           | 41111 |        |                      |                                                                                                                                                                                                                       |                                         |     | (at) |
|---------|-----------|-------|--------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----|------|
| 1 / 1   | 4   20    | 2477  | 3223   | gi 1439528           | EIIC-man [Lactobacillus curvatus]                                                                                                                                                                                     | 54                                      | 36  | 747  |
| 174     |           | 2068  | 1787   | gn1 PID d100518      | motor protein (Homo sapiens)                                                                                                                                                                                          | 54                                      | 35  | 282  |
| 188     | 1   52    | 526   | 1188   | gn1 P1D e250352      | unknown [Mycobacterium tuberculosis]                                                                                                                                                                                  | 54                                      | 31  | 663  |
| 198     | 5   35    | 3582  | 2884   | gn1  PID e313074     | hypothetical protein (Bacillus subtilis)                                                                                                                                                                              | 54                                      | 33  | 669  |
| 207     | -         |       | 1641   | [gn1   PID   d101813 | hypothetical protein (Symechocystis sp.]                                                                                                                                                                              | 54                                      | 24  | 1641 |
|         | 1         | -     | 655    | 91 [2293206          | (AF008220) YtmP (Bacillus subtilis)                                                                                                                                                                                   | 54                                      | 29  | 654  |
| 225     | 2   966   | 99    | 2357   | gn1   PID   e330194  | R11H6.1 (Caenorhabditis elegans)                                                                                                                                                                                      | 54                                      | 39  | 1392 |
| 241     | 1 1 16    | 1681  | 347    | gn1 PID d101813      | hypothetical protein (Synechocystis sp.)                                                                                                                                                                              | 54                                      | 26  | 1335 |
| 263     | 2   907   | _     | 1395   | gn1 PrD d101886      | transposase (Synechocystis sp.)                                                                                                                                                                                       | 54                                      | 30  | 489  |
| -       | 6   34    | 3450  | 2977   | 91 160671            | S antigen precursor (Plasmodium falciparum)                                                                                                                                                                           | 54                                      | 47  | 474  |
| 277     | 3   25    | 2517  | 1363   | 91 1196926           | unknown protein (Streptococcus mutans)                                                                                                                                                                                | 54                                      | 30  | 1155 |
| 307     | 1   828   | 88    | 4      | 91   2293198         | (AF008220) YtgP (Bacillus subtilis]                                                                                                                                                                                   | 54                                      | 28  | 825  |
| 325     | _         | 19    | 768    | gi 2182507           | (AE000083) Y41H (Rhizobium sp. NGR234)                                                                                                                                                                                | 54                                      | 37  | 750  |
| 332     | 2   898   |       | 290    | 91   1591815         | ADP-ribosylglycohydrolase (draG) [Methanococcus jannaschii]                                                                                                                                                           | 54                                      | 32  | 309  |
| 385     | 4 240     |       | 479    | gi 530878            | amino acid feature: N-glycosylation sites, aa 41 43, 46 48, 51 53, 72 74, 107 109, 128 130, 132 134, 158 160, 163 165, amino acid feature: Rod protein domain, aa 169 340; amino acid feature: globular protein domai |                                         | 49  | 240  |
| 7  25   | 5   19702 | : :   | 19493  | gn1 PID e255111      | hypothetical protein (Bacillus subtilis)                                                                                                                                                                              | 53                                      | 32  | 210  |
| 23      | 3 2497    |       | 2033   | gn1 PID d102015      | (ABBOIA88) SIMILAR TO SALMONELLA TYPHIMUREUN SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. [Bacillus subtilis]                                                                                                       | 53                                      | 25  | 465  |
| 29 [11] | 1   9042  | İ     | 10121  | 91   143331          | alkaline phosphatase regulatory protein (Macillus subtilis)                                                                                                                                                           | 53                                      | 31  | 1080 |
| 33      | 3   1479  | ·     | 1009   | pir S10655 S106      | hypothetical protein X - Pyrococcus woesel (fragment)                                                                                                                                                                 | 53                                      | 33  | 471  |
| 36      | 6   4583  | -     | 5134   | 16029                | unknown (Mycobacterium tuberculosis)                                                                                                                                                                                  | 53                                      | 30  | 552  |
| 38   14 | 4   8521  | - ;   | 8688   | 91   580904          | homologous to E.coli rnpA [Bacillus subtilis]                                                                                                                                                                         | 53                                      | 30  | 378  |
| 52   7  | 7 1 7007  | -;    | 8686   | 181 1377831          | unknown [Bacillus subtilis]                                                                                                                                                                                           | 53                                      | 59  | 1680 |
| 54  17  | 117555    | - !   | 119564 | 91   666069          | orf2 gene product [Lactobacillus leichmannii]                                                                                                                                                                         | 53                                      | 36  | 2010 |
| 56   1  |           | _     | 681    | gi   1592266         | restriction modification system S subunit Imethernocent :                                                                                                                                                             | • • • • • • • • • • • • • • • • • • • • | *** |      |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ID        | Start<br>(nt) | Stop<br>(nt) | match<br>acession   | match gene name                                                                                                                                                          | mis &  | * ident | length<br>(nt) |
|--------|-----------|---------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------------|
| 53     | 01        | 9431          | 8487         | 91   1788543        | (AE000310) f351; Residues 1-121 are 100 pct identical to YOJL_ECOLI SW: P33944 (122 as) and aa 152-351 are 100 pct identical to YOJK_ECOLI SW: P33943 [Escherichia coli] | 53     | 31      | 945            |
| 61     | -         | 429           | 4            | gn1 PID e236467     | B0024.12 {Caenorhabditis elegans}                                                                                                                                        | 53     | 33      | 426            |
| 71     | -         | 5772          | 4            | gi 393394           | [Tb-29] membrane associated protein [Trypanosoma brucei subgroup]                                                                                                        | 1 53   | 33      | 5769           |
| 72     | ~         | 894           | 2840         | gi 2293178          | (AF008220) YtsD (Bacillus subtilis                                                                                                                                       | 53     | 72      | 1947           |
| 73     | 71        | 9793          | 9212         | gi 1778556          | putative cobalamin synthesis protein [Escherichia coli]                                                                                                                  | 53     | 32      | 582            |
| 88     | -         | 5217          | 4342         | gi 2098719          | putative fimbrial-associated protein  Actinomyces naeslundii                                                                                                             | 53     | 38      | 876            |
| 93     | - 5       | 2395          | 1688         | gi 563366           | [gluconate oxidoreductase [Gluconobacter cxydans]                                                                                                                        | 53     | 33      | 708            |
| 96     | 6         | 6632          | 7762         | 91   517204         | ORF1, putative 42 kDa protein (Streptococcus pyogenes)                                                                                                                   | 53     | 42      | 1131           |
| 801    | -         | 1629          | 8600         | 91   149581         | maturation protein [Lactobacillus paracasei]                                                                                                                             | - 63 - | 32      | 972            |
| 128    | 6         | 6412          | 6972         | gn1   PID   e317237 | unknown  Mycobacterium tuberculosis                                                                                                                                      | 53     | 36      | 561            |
| 128    |           | 8429          | 9253         | 91 311070           | [pentraxin fusion protein [Xenopus laevis]                                                                                                                               | 53     | 3.1     | 825            |
| 148    |           | -             | 950          | pir A61607 A616     | probable hemolysin precursor - Streptococius agalactiae (strain 74-360)                                                                                                  | - 53   | 36      | 948            |
| 163    | ~         | 2162          | 3022         | gi 1755150          | nocturnin (Xenopus laevis)                                                                                                                                               | 53     | 30      | 861            |
| 171    | -         | 2304          | 2624         | gi 1732200          | PTS permease for mannose subunit IIPHan [Vibrio furnissii]                                                                                                               | - 83   | 32      | 321            |
| 182    | 5         | 3785          | 3051         | gn1  PID d100572    | unknown (Bacillus subtilis)                                                                                                                                              |        | 35      | 735            |
| 209    | 7         | 2948          | 1935         | 91 1778505          | ferric enterobactin transport protein (Escherichia coli)                                                                                                                 | 53     | 28      | 1014           |
| 218    | - 3       | 3884          | 2406         | gi 40162            | murE gene product (Bacillus subtilis                                                                                                                                     | 53     | 34      | 1479           |
| 250    | -         | 473           | 190          | gn1 PID e334776     | YlbH protein (Bacillus subtilis)                                                                                                                                         | 53     | 30      | 318            |
| 275    | -         | -             | 1611         | gn1  PID d101314    | YqeW (Bacillus subtills)                                                                                                                                                 | 53     | 35      | 1611           |
| 332    | -         | 544           | 2            | gi   409286         | bmrU [Bacillus subtilis]                                                                                                                                                 | 53     | 31      | 543            |
| 2      | 2 - 2     | 2543          | 3445         | gn1 PID e233879     | hypothetical protein (Bacillus subtilis)                                                                                                                                 | 52     | 39      | 903            |
| -      | 22  22    | 22402 [2      | 23376        | gi 38969            | lacF gene product (Agrobacterium radiobacter)                                                                                                                            | 52     | 36      | 975            |
| 2      | 3 - 8     | 8094          | 2356         | gn1 PID e324915     | [IgA] protease (Streptococcus sanguis)                                                                                                                                   | 52     | 32 +    | 5739           |
| 22     | 26   19   | 19961         | 20212        | 91   152901         | ORF 3 (Spirochaeta aurantia)                                                                                                                                             | 52     | 35      | 252            |
|        | 131   123 | 23140  2      | 24666        | 91 289262           | comE ORF3 (Bacillus subtilis)                                                                                                                                            | 52     | 32      | 1527           |
| 27     | 9   9     | 5397          | 4801         | gi   39573          | P20 (AA 1-178) (Bacillus licheniformis)                                                                                                                                  | 52     | 35      | 597            |
|        |           |               |              |                     |                                                                                                                                                                          |        | +       | +              |

pneumoniae - Putative coding regions of novel proteins Similar to known proteins

|       |          |          |          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                     | e s s | 10611  | (nt)    |
|-------|----------|----------|----------|-----------------------------------------|---------------------------------------------------------------------|-------|--------|---------|
| 6     | ORF      | Start    | Stop     | match                                   | match gene hame                                                     | 52    | 27     | 1248    |
| 35    | 9 9      | 8604     | -        |                                         | putative O-antigen transporter (Escherichia colli                   | 52    | 36     | 1140    |
| 45    | 7        | 4801     | 3662     | gn1 P1D d102243                         | [8]                                                                 | 55    | 25     | 099     |
| - [ - |          | 14385    | 113726   | 12                                      | orf2 [Lactobacillus helveticus]                                     | 55    | 19     | 435     |
| _ [ _ | 01       | - 1      | 57.55    | 91 2317740                              | (AF013987) nitrogen regulatory IIA protein (vivia)                  | 52    | 36     | 1896    |
| 6.0   | ,   -    | 2773     | 4668     | 91 1500472                              | H jannaschii predicted coding region Milly (merin                   | 1 52  | 40     | 282     |
| *6    | ,   ,    | 1 5250   | 6967     | gi 2182453                              | (AE000079) Y410 (Rhizobium sp. NGR234)                              | 1 52  | 30     | 1446    |
| 99    | 9        | 8400     | 1 6955   | 91 43140                                | TrkG protein (Escherichia coli)                                     | 52    | 1 23   | 654     |
|       | 126      | 130659   | (31312   | gn1 PID e314993                         | Unknown (Hycobacterium tuberculosis)                                | 25    | 72     | 639     |
|       |          | 1 1673   | 1 1035   | gn1 PID d102271                         | [AB001683] Fara [Streptomyces sp. ]                                 | 1 52  | 32     | 1455    |
|       | .   -    | 1439     | 1 2893   |                                         | rhamnulose kinase (Bacillus subtilis)                               | 52    | 37     | 795     |
| 81    |          | 4987     | 5781     | [91]147403                              | se subunit II-P-Man [Escheriches<br>aminoimidazole carboxylase II ( | 52    | 37     | 1167    |
| 83    | 12       | 120687   | 21853    | gi 143365<br>                           | phosphoriosy.                                                       | 1 52  | 1 26   | 1194    |
|       |          | 1 5785   | 1 4592   | 91 1276879                              | [EpsP [Streptococcus thermophilus]                                  | 525   | 1 26   | 1530    |
| 80    | - + -    | 06101    | 117861   | gi 454844                               | ORF 3 (Schistosoma mansoni)                                         | 1 52  | 1 33   | 1 B82   |
| 98    | 2   2    | 110540   | 6596     | į                                       | ORFI gene product (Bacillus megaterium)                             | 1 52  | 1 27   | 2025    |
|       |          | 7        | 1 2026   | gi 148309                               | _ :                                                                 | 52    | 1 33   | -       |
| 211   |          | 1 1457   | 2167     | 1911471234                              | potentiator p                                                       |       | 3      | 567     |
| 118   | <u> </u> | 2931     | 2365     | pbs 151233<br>                          | g.                                                                  |       | 36     | 306     |
| 1 122 |          | 1 5646   | 1 5951   | gi 8214                                 | myosin heavy chain (Drosophila melanogaster)                        | 1 52  | 52     | 1 216   |
| 122   | =        | 6119     | 6374     | 4    91   434025                        | dihydrolipoamide acetyltransferase (resonance)                      | 1 52  | 43     | 1434    |
| 134   |          | 4880     | 6313     | 3  91 153733                            |                                                                     | 1 52  | 35     | 1479    |
| 135   | -        | 1238     | 3   2716 | 6  gn1 PID e245024                      | - 1                                                                 | 52    | 32     | 639     |
| 141   |          | 1681     | 1   2319 | gnl   P1D                               | unknown (Bacillus Su                                                |       | 96     | 2463    |
| 191   |          | 4   2562 | 2   5024 | 4  91 1146243                           | putative [Bacillus subtilis]                                        | 52    | 06 1 2 | 0   786 |
| 173   | -        | 2   968  | 183      | [gi 1215693                             | putative orf; GT9_orf834   Pycopius                                 | -     |        |         |
| 11111 | 1 1 1 1  |          |          |                                         |                                                                     |       |        |         |

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

| 1   | +        | *      |              |                     | Since deer deer deer deer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>I |      | (nt)  |
|-----|----------|--------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|
| D   | ORF      | Start  | Stop<br>(nt) | match<br>acession   | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52    | 26   | 834   |
|     |          | 4400   | 1            | 3010                | hypothetical protein [Bacillus subtilis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25    | 38   | 264   |
|     |          | 8844   | 1            | gi 497647           | DNA gyrase subunit B [Mycoplasma genitalium]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52    | 36   | 168   |
| -   |          | 5264   | 5431         |                     | envelope protein (Human immunodeficiency virus type 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52    | 34   | 870   |
| 1   | -        | 15.    | 884          | gi 1552773          | hypothetical (Escherichia coli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52    | 28   | 324   |
| 677 |          |        | 362          |                     | unknown (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52    | 29   | 870   |
| 287 |          | 87.1   | 2            | gn1   PID   e335028 | protease/peptidase (Mycobacterium leprae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52    | 32   | 1302  |
| 363 | 7        | 1305   | 4            | gi 393394           | (Trypanosona process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51    | 30   | 876   |
| 23  | - 7      | 2048   | 5111         | gn1 PID e254943     | unknown (Mycobacterium tuberculosis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51    | 31   | 780   |
| 29  | 3        | 742    | 1251         | gi 929900           | osphorylase (surfering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51    | 32   | 1188  |
| 45  | -        | 410    | 1 1597       | gi 1877429          | (Streptococcus p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51    | 33   | 282   |
| 48  | 26       | 119227 | 118946       | gi 2314455          | (AE000633) transcriptional regulator (telm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51    | 31   | 261   |
| 5   | 5        | 4276   | 4016         | 191 474177          | alpha-p-1,4-glucosidase (Staphylococcus xylosus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51    | 31   | 3123  |
|     | :        | 8935   | 112057       | 1911311070          | pentraxin fusion protein (Xenopus laevis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51    | 33   | 1 792 |
| 12  |          |        | 1086         | i .                 | Yqfi (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1 28 | 1008  |
| 83  | ^        |        |              | 143600              | ORF 3 (AA 1-352); 38 kD (put. ftsx) (Escherichia coli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;     |      | 1366  |
| 98  | <u>=</u> | 1531   | 8528         | 0001116             | the state of the s | 21    | ,,   |       |
| 113 | 9 -      | 3908   | 1 5173       | gi 466882           | ppsl; B1496_CZ_109 inyconoccorrections   ppsl; B1496_CZ_109 thaliana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15    | 32   | 270   |
| 124 |          | 326    | 1 57         | gi 2191168          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 -  | 1 30 | 471   |
| 130 |          | 1 7286 | 6816         | -  91   1046241     | orf14 (Bacteriophage HP1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15    | 1 26 | 1 981 |
|     |          | 1 4963 | 1 3983       |                     | probable copper-transporting atpase [Escherichia coll]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 36   | 1134  |
| 143 | ,        | 111359 | 110226       | :                   | (AF008220) putative hippurate hydrolase (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 21   | 1311  |
| 149 |          | 6003   | 1            | Ì                   | Herpesvirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |      |       |
|     |          | -      |              | -                   | - ÷ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51    | 34   |       |
| 151 | <u>.</u> | 112092 | 111550       | gn1 PID e281580     | - +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12    | 96   | 1 654 |
| 159 | 9        | 1 2555 | 1 3208       | gi 146944           | CMP-N-acetylneuraminic acid synchrouse for the control of the cont | - 51  | 1 28 | 1794  |
| 174 | -        | 1797   | -            | gi 1773166          | probable copper-transporting atpase (csuretransporting atpase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 51  | 18   | 459   |
| 265 | -        | 1 2231 | 1 1773       | :                   | 10e (Salmitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51    |      | 699   |
| -   |          | 11+    |              |                     | acadaracoca cinera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •     |      |       |

S. pneumoniae - Putative coding regions of novel protein# 4s/milar to known proteins

| Contig | ORF      | Start  | Stop   | match            | match gene hame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m is a | & ident | length<br>(nt) |
|--------|----------|--------|--------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------------|
| 9      |          | 2000   | -      | lai 1290509      | 0307 (Escherichia coli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51     | 30      | 888            |
| ner l  |          |        | , , ,  |                  | in one Connection of Department of the Connection of the Connectio | 51     | 23      | 3258           |
| 363    | -        | 1228   | 4485   | 191   110   24   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51     | 32      | 1698           |
| 367    | <u>-</u> | 1701   | •      | gi 393394        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         | 1 003          |
| 15     | - 2      | 5174   | 4497   | gn1 PID e58151   | F3 (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05     | 85      | 0/0            |
| 16     | 4        | 1 2220 | 1 2582 | gn1 PID e325010  | hypothetical protein (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 05     | 29      | 363            |
| 67     |          | 2591   | 4159   | 91 1552733       | similar to voltage-gated chloride channel protein {Escherichia coli}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20     | 30      | 1569           |
| 25     | 4        | 2701   | 1997   | gi 887849        | ONF_f219 (Escherichia coli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20     | 27      | 705            |
| 35     | -        | 211    | 417    | gn1 PID e236697  | unknown (Saccharomyces cerevisiae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50     | 33      | 207            |
|        | 4        | 3416   | 1 5152 | gn1 PID d100974  | unknown (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80     | 27      | 1737           |
| 51     | -        | 4000   | 5181   | gi 1592027       | carbamoyl-phosphate synthase, pyrimidine-spacific, large subunit<br>  (Methanococcus jannaschii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 05     | 27      | 1182           |
| 51     | 6        | 9717   | 8303   | 91/1591847       | [type I restriction-modification enzyme, S subunit [Methanococcus jannaschil]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5    | 28      | 1125           |
| 52     | 8        | 8740   | 1 9534 | gi 144297        | acetyl esterase (XynC) [Caldocellum saccharolyticum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50     | 34      | 195            |
| 52     | 116      | 16291  | 15770  | gi 2108229       | basic surface protein (Lactobacillus fermen;um)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80     | 34      | 822            |
|        | 1        | 6031   | 6336   | 91 2275264       | 60S ribosomal protein L78 (Schizosaccharomy:es pombe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50     | 09      | 306            |
| 1,4    | [23      | 29348  | 28383  | gn1 P10 d101328  | YqjA (Bacillus subtilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20     | 30      | 996            |
| 98     | 112      | 111155 | 110769 | gn1 PID e324964  | hypothetical protein (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80     | 24      | 387            |
| 83     | 2 .      | 1205   | 330    | gi 1066016       | similar to Escherichia coli pyruvate, water dikinase, Swiss-Prot Accession<br>  Number P23538 [Pyrococcus furiosus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20     | 24      | 876            |
| 96     | 5        | 1 1673 | 1 2959 | gn1  PID e322433 | gamma-glutamylcysteine synthetase (Brassica juncaa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20     | 29      | 1287           |
| 86     | - 2      | 1 218  | 1711   | 91 151110        | [leucine-, isoleucine-, and valine-binding protein [Pseudomonas aeruginosa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90     | 30      | 954            |
| 103    | -        | 1 3303 | 1 2785 | 91   154330      | O-antigen ligase (Salmonella typhimurium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05     | 31      | 519            |
| 115    | - 2      | 6480   | 1 5980 | 91   895747      | putative cel operon regulator (Bacillus sub:ilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05     | 92      | 501            |
| 129    | ==       | 1 7559 | 1 7305 | gi 1216475       | skeletal muscle ryanodine receptor [Homo sapiens]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05     | 32      | 255            |
| 129    | 12       | 8192   | 1 7965 | gi 152271        | 119-kDA protein (Rhizobium meliloti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05     | 30      | 228            |
| 151    | - 2      | 1 7634 | 6819   | 91 40348         | put. resolvase Tnp I (AA 1 - 284) (Bacillus thuringiensis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 05     | 35      | 816            |
| 153    | -        | -      | 1 597  | gn1 PID d102015  | (AB001488) SIMILAR TO NITROREDUCTASE. (Bacillus subtilis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50     | 29      | 1 65           |
|        | -        |        | 1      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |                |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig<br>ID<br>155 | ORF                                     | Start  | Stop   | match               | match gene name                                                                                                                                                                                     | _   |      | (ut) |
|---------------------|-----------------------------------------|--------|--------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| 155                 |                                         | (14)   | ייי    | - acessaron         |                                                                                                                                                                                                     | +   |      |      |
| CCI                 | 1                                       | 7000   | 5412   | Jai 11276880        | EpsG [Streptococcus thermophilus]                                                                                                                                                                   | 20  | 28   | 555  |
| 160                 |                                         | 7390   | 6323   | 91   1786983        | (AE000179) 0331; 92 pct identical to the 333 aa hypothetical protein YBHE ECOLI SW. P52697, 26 pct identical (7 gaps) to 167 residues of the 333 as propein MLE TRICU SW. P62697 (Escherichia coli) | 05  | 00   | 1068 |
| 1                   |                                         |        |        |                     | forething subtilies                                                                                                                                                                                 | 80  | 22   | 969  |
| 163                 | 9                                       | 7396   | 8091   | 9101313             | 19acilius                                                                                                                                                                                           | 20  | 27   | 1293 |
| 167                 | 9                                       | 5232   | 3940   | 9                   | ipa-2r gene product (bactitus subtities)                                                                                                                                                            | 9   | 15.  | 678  |
| 169                 | ~                                       | 807    | 130    | gn1 PID e304540     | endolysin (Bacteriophage Bastille)                                                                                                                                                                  | 000 |      |      |
| 171                 | 5                                       | 3168   | 4025   | 91   606080         | ORF.0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]                                                                                                                | 05  | 27   | 828  |
| 210                 | ======================================= | 8151   | 8414   | 91)330038           | HRV 2 polyprotein [Human rhinovirus]                                                                                                                                                                | 50  | 25   | 264  |
| 1                   |                                         | 81.51  | 115    | 1011393396          | Tb-292 membrane associated protein (Trypanosoma brucel subgroup)                                                                                                                                    | 05  | 31   | 1404 |
| ,                   |                                         | 2011   | 2090   |                     | ORF B (Clostridium perfringens)                                                                                                                                                                     | 49  | 24   | 822  |
| 24                  |                                         | 10754  | 9768   |                     | ATP-dependent nuclease (Bacillus subtilis)                                                                                                                                                          | 67  | 31   | 987  |
| 9                   |                                         |        | 1 000  | 1 4 1 4 1 4 1 7 0   | trka gene product (Methanosarcina mazeli)                                                                                                                                                           | 49  | 56   | 1380 |
| 00 1                |                                         | 776    | 4648   | 6285322             |                                                                                                                                                                                                     | 49  | 28   | 717  |
| 82                  | 2                                       | 1      | 13249  | e255091             | hypothetical protein (Bacillus subtilis)                                                                                                                                                            | 49  | 20   | 561  |
| 93                  | 6                                       | 4866   | 4531   | gi 40067            | X gene product (Bacillus sphaericus)                                                                                                                                                                | 49  | 26   | 336  |
| 112                 | 2                                       | 4019   | 4948   | gi 1574380          | lic-l operon protein (licB) (Haemophilus influenzael                                                                                                                                                | 49  | 27   | 930  |
| 129                 |                                         | 6058   | 4949   | gn1   P1D   e267587 | Unknown (Bacillus subtilis)                                                                                                                                                                         | 49  | 35   | 1110 |
| 135                 | 5                                       | 3875   | 4438   | [gi[39573           | P20 (AA 1-178) [Bacillus licheniformis]                                                                                                                                                             | 49  | 25   | 564  |
| 154                 | 2                                       | 1423   | 1953   | gn1   PID   d101102 | regulatory components of sensory transduction system [Synechocystis sp.]                                                                                                                            | 6.9 | 29   | 531  |
| 1 156               | - 8                                     | 2878   | 1637   | gn1 P1D d101732     | hypothetical protein (Symechocystis sp.)                                                                                                                                                            | 49  | 25   | 1242 |
| 173                 | 2                                       | 3500   | 2940   | gi 490324           | LORF X gene product [unidentified]                                                                                                                                                                  | 49  | 30   | 561  |
| 1 182               | -                                       | 1057   | 2      | gi 331002           | first methionine codon in the ECLF1 ORF (Saimiriine herpesvirus 2)                                                                                                                                  | 49  | 25   | 1056 |
| 1 192               | 9                                       | 5352   | 1 3667 | gi 2394472          | (AF024499) contains similarity to homeobox domains (Caenorhabditis elegans)                                                                                                                         | 49  | 23   | 1686 |
| 1 253               | 4                                       | 1 1129 | 1350   | 91   531116         | SIR4 protein (Saccharomyces cerevisiae)                                                                                                                                                             | 49  | 23   | 222  |
| 277                 | -                                       | 009    | 136    | 91 396844           | ORF (18 kDa) (Vibrio cholerae)                                                                                                                                                                      | 49  | 32   | 465  |
| 327                 | - m                                     | 1435   | 1 887  | 91 733524           | phosphatidylinositol-4,5-diphosphate 3-kinase (Dictyostelium discoideum)                                                                                                                            | 46  | 1 24 | 549  |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF      | Start (nt) | Stop<br>(nt) | match               | match gene name                                                                                   | mis a | * ident | length (nt) |
|--------|----------|------------|--------------|---------------------|---------------------------------------------------------------------------------------------------|-------|---------|-------------|
| 365    | -        | 1436       | 132          | gi   393394         | Tb-291 membrane associated protein (Trypancsoma brucei subgroup)                                  | 49    | 31      | 1305        |
| 33     | 7        | 4461       | 725          | gi 145644           | codes for a protein of unknown function (Escherichia coli)                                        | 89    | 26      | 1185        |
| 40     | 2        | 652        | 1776         | 290649              | ornithine decarboxylase (Nicotiana tabacum)                                                       | 48    | 29      | 1125        |
| 67     | 7        | 1377       | 2384         | gi 1772652          | 2-keto-1-deoxygluconate kinase [Haloferax alicantei]                                              | 89    | 30      | 1008        |
| 74     | 2        | 4269       | 1786         | gi 2182678          | (AE000101) Y4vJ (Rhizobium sp. NGR234)                                                            | 48    | 27      | 399         |
| 81     | 2        | 1326       | 541          | 91 153672           | lactose repressor (Streptococcus mutans)                                                          | 48    | 33      | 786         |
| 81     | -        | 2981       | 3646         | 91 146042           | fuculose-1-phosphate aldolase (fucA) (Escherichia coll)                                           | 48    | 30      | 999         |
| - 6    | -        | 602        | 12           | gi 153794           | rgg (Streptococcus gordonii)                                                                      | 89    | 29      | 552         |
| 110    | -        | -          | 1 3132       | 91/1381114          | prtB gene product [Lactobacillus delbrueckii]                                                     | 48    | 23      | 3132        |
| 133    | - 5      | 2914       | 2147         | gn1 P1D e183811     | Acyl-ACP thloesterase (Brassica napus)                                                            | 48    | 27      | 168         |
| 133    | -        | 3494       | 1 2628       | gn1   P1D   e261988 | putative ORF (Bacillus subtilis)                                                                  | 48    | 27      | 867         |
| 139    | 9        | 4231       | 4599         | gi 1049388          | 2x470.1 gene product (Caenorhabditis elegans)                                                     | 48    | 23      | 369         |
| 139    | - 8      | 5036       | 5995         | gi 1022725          | unknown (Staphylococcus haemolyticus)                                                             | 48    | 29      | 630         |
| 140    | 122      | 11936      | 11007        | gn1   P1D   d102049 | H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189)<br>  (Bacillus subtilis) | 88    | 27      | 930         |
| 146    | 6        | 5670       | 4654         | gi 1591731          | melvalonate kinase (Methanococcus jannaschiil                                                     | 48    | 24      | 1017        |
| 161    |          | 1280       | 2374         |                     | Collagenase precursor (EC 3.4). (Escherichia coli)                                                | 48    | 24      | 1095        |
| 172    | Ξ        | 10581      | 11048        | gn1 PrD d101132     | hypothetical protein (Synechocystis sp.)                                                          | 48    | 27      | 468         |
| 1 182  | <b>-</b> | 1 2930     | 1 2586       | gi 40067            | X gene product (Bacillus sphaericus)                                                              | 48    | 37      | 345         |
| 210    | 115      | 110786     | 96111        | sp[P13940 LE29_     | LATE EMBRYOGENESIS ABUNDANT PROTEIN D-29 (LEA D-29).                                              | 48    | 30      | 411         |
| 214    | 122      | 6231       | 6482         | gi 40389            | non-toxic components [Clostridium botulinum]                                                      | 48    | 26      | 252         |
| 1 221  | 1-       | 704        | _            | 91   1573364        | H. influenzae predicted coding region HI0392 (Haemophilus influenzae)                             | 48    | 27      | 702         |
| 227    |          | 647        | 3928         | 91(1673693          | (AE000005) Mycoplasma pneumoniae, C09_orf713 Protein (Mycoplasma<br>pneumoniae)                   | 68    | 30      | 3282        |
| 1 253  | 7        | 480        | 1 758        | gn1 PID e236697     | unknown (Saccharomyces cerevisiae)                                                                | 48    | 31      | 279         |
| 1 363  | -        | 1874       | 1122         | 91   18137          | cgcr-4 product [Chlamydomonas reinhardtil]                                                        | 48    | 40      | 753         |
| 389    | -        | 505        | ~            | 191   18137         | cgcr-4 product (Chlamydomonas reinhardtii)                                                        | 48    | 38      | 504         |
| 6      | 21       | 120879     | 122258       | gn1 P1D e264778     | [putative maltose-binding pootein [Streptomy:es coelicolor]                                       | 47    | 33      | 1380        |
|        | 111111   |            |              |                     |                                                                                                   |       |         |             |

S. pneumoniae - Putative coding regions of novel proteins sīmilar to known proteins

| Contig | ORF                                     | Start  | Stop<br>(nt) | match                | match gene name                                                                                                                                   | e si | \$ ident | length (nt) |
|--------|-----------------------------------------|--------|--------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-------------|
| 9      | 4                                       | 4089   | 4658         | <br>    91 39573     | P20 (AA 1-178) (Bacillus licheniformis]                                                                                                           | 47   | 23       | 570         |
| 15     |                                         | 3736   | 1760         | Bn1   PID   d100572  | unknown (Bacillus subtilis)                                                                                                                       | 47   | 25       | 1977        |
| 35     | 115                                     | 14516  | 13263        | 121   171   191      | Cap5L (Staphylococcus aureus)                                                                                                                     | 47   | 20       | 1254        |
| 51     | 9                                       | 3547   | 4002         | pir    A37024   A370 | 32K antigen precursor - Mycobacterium tuberculosis                                                                                                | 47   | 38       | 456         |
| 55     | 1                                       | 10154  | 1 9273       | gi 39848             | UJ (Bacillus subtilis)                                                                                                                            | 47   | 26       | 882         |
| 92     | ;                                       | 1753   | 3276         | e280611              | PCPC (Streptococcus pneumoniae)                                                                                                                   | 47   | 35       | 1524        |
| 127    | 6                                       | 5589   | 5386         | gi   1786458         | (AEGG0134) f120; This 120 as orf is 76 pct identical (0 gaps) to 42 residues of an approx. 48 as protein Y127_HAEIN SW: P43949 (Escherichia coli) | 47   | 32       | 204         |
| 130    | 7                                       | 1232   | 1759         | [gn1   P1D   e266555 | unknown (Mycobacterium tuberculosis)                                                                                                              | 47   | 23       | 528         |
| 140    |                                         | 4951   | 3542         | gn1   Pt0   d100964  | homologue of hypothetical protein in a rapamycin synthesis gene cluster of<br>Streptomyces hygroscopicus [Bacillus subtilis]                      | 47   | 24       | 1410        |
| 151    |                                         | 6814   | 6200         | gi 1522674           | H. jannaschii predicted coding region MJECL41 (Methanococcus jannaschiil                                                                          | 47   | 1 72     | 615         |
| 157    | -                                       | 803    | 11174        |                      | d101320  YqgZ  Bacillus subtilis                                                                                                                  | 47   | 25       | 372         |
| 178    | 5                                       | 3267   | 2155         | 91 2367190           | (AE000199) 0314; sequence change joins ORFs ygjR & ygjS from earlier version (YGJR_ECOLI SW: P42600) [Escherichia coli!]                          | 47   | 30       | 1113        |
| 273    | -                                       | 2      | 1549         | gn1 PID e254973      | Butolysin sensor kinase (Bacillus subtilis)                                                                                                       | 47   | 32       | 1548 ]      |
| 300    | - 2                                     | 880    | 644          | gi 1835755           | zinc finger protein Png-1 (Mus musculus)                                                                                                          | 47   | 22       | 237         |
| 54     | 114                                     | 14182  | 112638       | pir S43609 S436      | rofA protein - Streptococcus pyogenes                                                                                                             | 46   | 24       | 1545        |
| 88     | -                                       | 1 2    | 1018         | gn1 PID e223891      | xylose repressor (Anserocellum thermophilum)                                                                                                      | 46   | 27       | 1017        |
| 96     |                                         | 4553   | 5860         | gn1   P10   d101652  | ORF_ID:034715; similar to [SwissProt Accession Number P45272] (Escherichia<br>coli)                                                               | 46   | 23       | 1308        |
| 112    |                                         | 1127   |              | gi 2209215           | (AF004325) putative oligosaccharide repeat unit transporter (Streptococcus pneumoniae)                                                            | 9    | 24       | 1125        |
| 122    | ======================================= | 7308   | 1 7982       | gi 1054776           | hr44 gene product (Homo sapiens)                                                                                                                  | 46   | 34       | 675         |
| 127    | 114                                     | 9198   | 8125         | gi 1469286           | afua gene product (Actinobacillus pleuropneumoniae)                                                                                               | 46   | 28       | 1074        |
| 132    | -                                       | 7093   | 6197         | 91 153794            | rgg (Streptococcus gordonii)                                                                                                                      | 46   | 26       | 897         |
| 140    | 8                                       | 8220   | 1723         | 91   1235795         | [pullulanase [Thermoanaerobacterium thermosulfurigenes]                                                                                           | 9    | 21       | 498         |
| 140    | 6                                       | 1 9205 | 8315         | gi 407878            | leucine rich protein (Streptococcus equisimilis)                                                                                                  | 46   | 27       | 891         |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF      | Start  | Stop   | match           | match gene name                                                                                                                                                                                                                                                                            | e sin | % ident | length  <br>(nt) |
|--------|----------|--------|--------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|------------------|
| 162    |          | -      | 1125   | gi 1143209      | ORF7: Method: conceptual translation supplied by author (Shigella sonnel)                                                                                                                                                                                                                  | 46    | 25      | 1125             |
| 199    | -        | -      | 1 585  | 91 1947171      | (AF000299) No definition line found (Caenurhabditis elegans)                                                                                                                                                                                                                               | 46    | 28      | 585              |
| 223    | 7        | 11971  | 1477   | 62 HYSS_        | HYOSIN HEAVY CHAIN, SKELETAL MUSCLE (FRACHENTS).                                                                                                                                                                                                                                           | 46    | 27      | 495              |
| 232    | 7        | 1 760  | 1608   | 91   1016112    | ycf38 gene product [Cyanophora paradoxa]                                                                                                                                                                                                                                                   | 46    | 28      | 849              |
| 292    |          | 687    | 220    | 91 1673744      | (AE000011) Mycoplasma pneumoniae, cytidine deaminase; similar to GenBank<br>Accession Number C53312, from M. pirum [Mycoplasma pneumoniae]                                                                                                                                                 | 46    | 29      | 468              |
| 30     |          | 5843   | 6472   | gi   1788049    | (AEC00270) 0235; This 235 aa orf is 29 pct. identical (10 gaps) to 198 residues of an approx. 216 aa protein YTXB_BACSU SW: P06568 [Escherichia coli]                                                                                                                                      | 4.5   | 24      | 630              |
| 48     | 9 -      | 3461   | 3868   | 91   722339     | unknown [Acetobacter xylinum]                                                                                                                                                                                                                                                              | 45    | 29      | 408              |
| 09     | <u> </u> | 307    | 2      | 91   1699079    | coded for by C. elegans cDNA yk41h4.3; coded for by C. elegans cDNA yk148g10.5; coded for by C. elegans cDNA yk152g5.5; coded for by C. elegans cDNA yk59a10.5; coded for by C. elegans cDNA yk59a10.5; coded for by C. elegans cDNA yk41h4.5; coded for by C. elegans cDNA cm20g10; coded | 45    | 36      | 306              |
| 72     | 116      | 114371 | 114874 | gi 1321900      | NADH dehydrogenase (ubiquinone) (Artemia franciscana)                                                                                                                                                                                                                                      | 45    | 25      | 504              |
| 66     |          | 9158   | 7941   | 91   152192     | mutation causes a succincollucan-minus phenotype; ExoQ is atransmembrane protein; third gene of the exoYfQ operon;; putative (Rhizobium meliloti)                                                                                                                                          | 45    | 28      | 1218             |
| 127    | 112      | 7046   | 9099   | bbs 153689      | HitB=iron utilization protein [Haemophilus influenzae, type b, DL42, NTHI<br>TN106, Peptide, 506 aa] [Haemophilus influenzae]                                                                                                                                                              | 45    | 24      | 441              |
| 137    |          | 1561   | 2619   | 91 (472921      | v-type Na-ATPase (Enterococcus hirae)                                                                                                                                                                                                                                                      | 45    | 33      | 1059             |
| 209    |          | 1774   | 364    | gi 304141       | restriction endonuclease beta subunit (Ba:illus coagulans)                                                                                                                                                                                                                                 | 45    | 1 28    | 411              |
| 314    | -        | 1 604  | - 5    | gi 1480457      | latex allergen (Hevea brasiliensis)                                                                                                                                                                                                                                                        | 45    | 33      | 603              |
| 1 20   | 118      | 119782 | 20288  | gi 433942       | ORF [Lactococcus lactis]                                                                                                                                                                                                                                                                   | 44    | 26      | 1 507            |
| 1 87   | 8        | 1 7030 | 6452   | 91   537207     | ORF_[277 (Escherichia coli)                                                                                                                                                                                                                                                                | 44    | 1 26    | 579              |
| 166    | s –      | 1 4909 | 1 4037 | gn1 PID e308082 | membrane transport protein (Bacillus subtilis)                                                                                                                                                                                                                                             | 44    | 1 25    | 873              |
| 1 247  | -        | 818    | 1 75   | gn1 PID d100718 | ORFI (Bacillus sp.)                                                                                                                                                                                                                                                                        | 44    | 20      | 744              |
| 1 32   | _        | 1 1885 | 3876   | gi 2351768      | [PspA [Streptococcus pneumoniae]                                                                                                                                                                                                                                                           | 43    | 24      | 1992             |
| 36     | 117      | 115467 | 118256 | gi 1045739      | H. genitalium predicted coding region MG064 [Mycoplasma genitalium]                                                                                                                                                                                                                        | 43    | 1 26    | 2790             |
| 54     | 115      | 114656 | 117343 | 91   520541     | [penicillin-binding proteins 1A and 1B (Bacillus subtilis]                                                                                                                                                                                                                                 | 43    | 27      | 2688             |
| 69     | 7        | 969    | 1352   | 91   536934     | yjcA gene product [Escherichia coli]                                                                                                                                                                                                                                                       | 43    | 29      | 657              |
| 139    | 7        | 2416   | 338    | gi 396400       | similar to eukaryotic Na+/H+ exchangers [Escherichia coli]                                                                                                                                                                                                                                 | £     | 24      | 2079             |
|        |          |        |        |                 |                                                                                                                                                                                                                                                                                            |       |         |                  |

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

| Contig | ORF    | Start<br>(nt) | Contig ORF   Start   Stop | match                             | match gene name                                                                                                           | e sım | a ident | (nt) |
|--------|--------|---------------|---------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------|---------|------|
| 298    | -      | 3             | 1 809                     | gi 413972                         | ipa-48r gene product (Bacillus subtilis)                                                                                  | 43    | 24      | 807  |
| 387    | -      | 47            | 427                       | gi 2315652                        | (AF016669) No definition line found (Caenorhabditis elegans)                                                              | £3    | 30      | 381  |
| 185    | 4      | 4221          | 3127                      | 4   4221   3127  gi 2182399       | (AE000073) Y4fP [Rhizobium sp. NGR234]                                                                                    | 41    | 25      | 1095 |
| 340    | -      | 582           | 0,                        | gn1 PID e218681                   | gni PID e218681  CDP-diacylglycerol synthetase [Arabidopsis thaliana]                                                     | 41    | 20      | 513  |
| 363    | 9      | 4205          | 1914                      | gi 1256742                        | R27-2 protein (Trypanosoma cruzi)                                                                                         | 41    | 27      | 2292 |
| 368    | 2      | 2             | 943                       | gi 21783                          | LWW glutenin (AA 1-356) (Triticum aestivum)                                                                               | 41    | 34      | 942  |
| 155    | -      | 4489          | 2861                      | 91   42023                        | member of ATP-dependent transport family, very similar to mdr proteins and hemolysin B, export protein (Escherichia coli) | 40    | 88      | 1629 |
| 365    | 7      | 56            | 1438                      | 65   2   95   1438   91   1633572 | Herpesvirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like virus)                                         | 40    | 21      | 1344 |
| -      | -      | 2979          | 1 3860                    | gn1   PID   d101908               | hypothetical protein (Synechocystis sp.)                                                                                  | 39    | 26      | 882  |
| -      | 5      | 3814          | 4647                      | PID   d101961                     | hypothetical protein (Symechocystis sp.)                                                                                  | 39    | 19      | 834  |
| 26     | 26   6 | 114035        | 110724                    | gi 142439                         | 6   14035   10724   gi 142439   ATP-dependent nuclease (Bacillus subtilis)                                                | 38    | 20      | 3312 |
| 47     | 47   1 |               | 1 3   4916  91 63         | gi 632549                         | NF-180   Petromyzon marinus                                                                                               | 36    | 23      | 4914 |
|        |        |               |                           |                                   |                                                                                                                           |       |         |      |

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

| Stop (nt)     | 3009 | 4964 | 994 | 1574 | 6497       | 25396 | 26317        | 1689       | 12618 | 12841    | 15390        | 9419       | 9910       | 4280             | 5704       | 6298         | 6889         | 7672 | -    | 1456 | 1434 | 243 | 3087     | 34       | 1050 | 4465 | 15893 |
|---------------|------|------|-----|------|------------|-------|--------------|------------|-------|----------|--------------|------------|------------|------------------|------------|--------------|--------------|------|------|------|------|-----|----------|----------|------|------|-------|
| Start<br>(nt) | 3428 | 4611 | 818 | 1182 | 5382       | 25046 | 25625        | 1519       | 12875 | 13215    | 15977        | 9955       | 10101      | 3915             | 6024       | 6069         | 7136         | 7968 | 1140 | 6771 | 1913 |     | 5675     | 324      | 1451 | 4890 | 14544 |
| ORF           | 7    | 9    | ~   | ۳.   | -          | 52    | 56           | ~          | 2     | 15       | 18           | 12         | =          | 9                | 6          |              | 6            | Ξ.   | -    | ~    | 7    | -   | 5        | -        | _    | 6    | 14    |
| Contig        | -    | -    | m   | 9    | 3          | 6     | m            | 9          | 9     | 9        | 9            | 7          | ,          | 8                | 6          | 10           | 07           | 01   | 12   | 12   | 14   | 16  | 16       | - 71     | 17   | 17   | 20    |
| · ·           |      |      |     |      | <b>·</b> — | · —   | <b>.</b> — · | <b>·</b> — | • —·  | <b>-</b> | <b>.</b> — · | <b>-</b> - | <b>.</b> — | <del>.</del> — . | <b>:</b> — | <b>:</b> — : | <b>:</b> — : |      |      |      |      | -   | <b>-</b> | <u>.</u> |      |      | ! !   |

| Putative coding regions of novel proteins not similar to Anomic proteins |
|--------------------------------------------------------------------------|
|                                                                          |
| 5                                                                        |
| 191 mis                                                                  |
| ğ                                                                        |
| ا<br>ا                                                                   |
| rocein                                                                   |
| <u>α</u>                                                                 |
| nove                                                                     |
| ö                                                                        |
| ons                                                                      |
| reg                                                                      |
| ğ                                                                        |
| codi                                                                     |
| ķ                                                                        |
| at i                                                                     |
| ž                                                                        |
| 7                                                                        |
| pneumoniae -                                                             |
|                                                                          |

| 159   250p   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   17162   1 | 234   | 13 | 9 1 9 | 1 4 | 8641 | 7756 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|-----|------|------|
| 11119 1119 1119 1119 1119 1119 1119 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4   6 | Ĭ  | - ĭ = |     |      |      |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 10 | 7 1 6 | 1 2 | i m  |      |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9   5 | 8  | n   m | 92  | 22   | 1 2  |
| Contig<br>10<br>11<br>21<br>22<br>22<br>23<br>23<br>23<br>23<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |    |       |     |      | 34   |

| eins                                  |
|---------------------------------------|
| n proteins                            |
| Know                                  |
| ů                                     |
| ar                                    |
| \$ tfm1 las                           |
| not                                   |
| eins                                  |
| prot                                  |
| regions of novel proteins not sthilar |
| of                                    |
| gions                                 |
| F                                     |
| coding                                |
| ive                                   |
| Putal                                 |
| ,                                     |
| 9                                     |
| pneumoniae -                          |
|                                       |

| 8:0           | 7     | <u></u> | -     | _   | _     |       | <u>.</u> | <u></u> | _    | -    | -     | _    | -        | 7    | _    | -    | ٽ<br>ا | _    | _    | 7    | 6          | 7    | 7     | -     | -     | -     | -   |
|---------------|-------|---------|-------|-----|-------|-------|----------|---------|------|------|-------|------|----------|------|------|------|--------|------|------|------|------------|------|-------|-------|-------|-------|-----|
| Sto           | 1190  |         | 1 967 | 01  | 1089  | 1138  | 1459     | 457     | 200  | 172  | 1137  | 3.4  | <u>.</u> | 873  | 907  | 683  | 366    | 346  | 708  | 358  | 422        | 892  | 1249  | 1576  | 11835 | 7712  | 7   |
| Start<br>(nt) | 13104 | 9688    | 11073 | 334 | 11120 | 10993 | 12172    | 4269    | 4480 | 5517 | 10732 | 1728 | 172      | 8884 | 9956 | 4831 | 3204   | 3875 | 6074 | 3196 | 4579       | 9323 | 13042 | 16342 | 17971 | 21979 | 209 |
| I OR          | 18    | 1       | 12    | ~   | 12    | 1     | 15       | _       |      | 9    | 12    | _    | -        | _    |      | •    |        | •    |      | s    | -          | 17   | 16    | 20    | 24    | 30    | -   |
| Contig<br>ID  | 34    |         | 35    | 36  | 36    | 36    | 36       | 3.8     | 38   | 38   | 38    | 40   | 43       | 43   | 43   | 44   | 45     | 46   | 46   | 48   | 48         | 48   | 48    | 8.4   | 8.4   | 48    | 49  |
| •             | • •   | •       | • —   | • — |       | + —   |          | • —     | -    | -    | -     | •    | -        | • —  |      | • —  | ·      | -    | •    |      | <b>+</b> · | •    | •     | -     | • •   | · ·   | ٠   |

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

| 1 2 5  | 2672 | i vi | 12883 | 5187     | 5459 | 6210     | 17506 | 10123 | 12141 | 1387 | 1939 | 2130       | 2501 | 2135         | 430          | 2736     | 3063         | 5549 | 5929 | 6451 | 1772     | 3176     | 2          | 3147         | 9495     | 1182         | 980          |
|--------|------|------|-------|----------|------|----------|-------|-------|-------|------|------|------------|------|--------------|--------------|----------|--------------|------|------|------|----------|----------|------------|--------------|----------|--------------|--------------|
| ء تد ا | 3307 |      | 12146 | 5588     | 6013 | 6004     | 17685 | 10515 | 11947 | 935  | 1496 | 1624       | 2100 | 7541         | ~            | 2416     | 2734         | 4743 | 5459 | 5741 | 2395     | 3316     | 2722       | 1180         | 9082     | 1343         | 1165         |
| ORF    | •    | 5    | Ξ.    | 2        | 8    | - 6      | 16    | 6     | 112   | -    | 4    | _          | 4    | 9            | -            | -        | 5            |      | 6    | 9    | -        | 'n       | -          | ~            | -        | -            | 7            |
| Contig | 20   | 51   | 52    | 54       | 5.4  | 54       | 54    | 55    | 55    | 95   | 99   | 57         | 57   | 28           | 89           | - 65     | 59           | 89   | 59   |      | 61       | 61       | 64         | 99           | 99       |              | 69           |
| +      |      |      |       | <b>-</b> |      | <b>-</b> | · — · |       |       | -    | _    | <b>:</b> — |      | <b>:</b> — : | <b>:</b> — : | <b>-</b> | <del>-</del> |      |      |      | <u>.</u> | <b>!</b> | <b>!</b> · | <b>:</b> — : | <u>.</u> | <b>!</b> — . | <b>↓</b> _ ↓ |

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

|              | -     |      | -    | _     | -     |       | -    | -    |            | -        | <del>-</del> | -     | -   | -   | -    | - 6  | <del>-</del> - | _     | -    | _     | -        | -    | <del>-</del> | <del>-</del> | <del>-</del> | <del>;</del> –   | ;-             |
|--------------|-------|------|------|-------|-------|-------|------|------|------------|----------|--------------|-------|-----|-----|------|------|----------------|-------|------|-------|----------|------|--------------|--------------|--------------|------------------|----------------|
| υ c          | 392   | 405  | 550  | 2190  | 2233  | 2755  | 808  | 421  | 458        | 477      | 6428         | 996   | 195 | 535 | 9210 | 8105 | ~              | 18931 | 115  | 16460 | 2929     | 1092 | 2875         | 17114        | 2000         | 6001             | 7006           |
|              | 4059  | 4215 | 5268 | 20351 | 21859 | 26204 | 8458 | 3815 | 4214       | 4369     | 7183         | 9462  | 524 | 867 | 8602 | 7924 | 244            | 6631  | 1872 | 16810 | 4464     | 2147 | 3606         | 16767        | 5326         | 6459             | 7224           |
| ID           | 5     | 9    | 6    | 1.5   | 116   | 119   | 0    | 4    | 9          | _        | 2            | 15    | -   | ~   | 1    | 9    | -              | 01.   | 4    | 17    |          | 7    | 4            | 19           | 5            | _                | 6              |
| Contig<br>ID | 70    | 70   |      |       | 1.1   | 1,1   | 72   | נג   | 13         | 7.3      | 7.3          | 23    | 76  | 9,6 | 9/   |      | 81             | 18    | 83   | 83    | 84       | 98   | 986          |              | 87           | 87               | 87             |
|              | • — • |      |      |       |       | -     |      |      | <b>·</b> — | <b>-</b> | <b>.</b> — . | · — · |     |     |      |      |                | -     |      |       | <b>-</b> | -    | -            |              | <u> </u>     | <del>.</del> — - | <del>-</del> - |

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

|               | 17670 | 17928 | 1840 | 2878 | 6016 | 1621 | 8989 | 2395 | 952  | 3141 | 3691 | 4573 | 2   | 2379 | 3712 | 182 | 632 | 1147 | 1420 | 6753 | 18692 | 19541 | 1980 | 299 | 4373 | 6735 | 6517       |
|---------------|-------|-------|------|------|------|------|------|------|------|------|------|------|-----|------|------|-----|-----|------|------|------|-------|-------|------|-----|------|------|------------|
| Start<br>(nt) | 17930 | 18275 | 1619 | 2711 | 6252 | 2634 | 1767 | 889  | 1143 | 2959 | 3170 | 4253 | 391 | 2648 | 4533 | m   | 904 | 1407 | 1250 | 7043 | 18522 | 19717 | 4094 | 8.4 | 4924 | 6142 | 8609       |
| I ORF         | B1    | 61    | 7    | 4    | 6    | ۳    | 6    | 7    | -    | _    | 4    | ۰    | -   | ٠    | -    | -   | ~   | -    | 47   | •    | 15    | 12    | ~    | -   | 9    | S    | 7          |
| Contig        | 87    |       | 88   | 88   | 88   | 88   | 68   | 90   | 06   | 91   | 91   | 91   | 93  | 93   | 93   | 96  | 96  | 96   | 96   | 9.7  | 66    | 66    | 001  | 103 | 103  | 104  |            |
|               | • —   | • —   | • —  | •    | •    | • —  | •    | •—   | • —  | • ·  | • —  |      | • — | • —  |      |     | -   |      |      |      |       | · — · |      |     |      |      | · <b> </b> |

S. pneumoniae - Putative coding regions of novel proteins not sliftilar to known proteins

| · ·           |          |       |     |              |            |              |              |              |              |      |            |                |          |              |          |              | <b>.</b> | • —          | • —        | • —      |                | • —     |            |            |       | <b>.</b> | <b>.</b>     |
|---------------|----------|-------|-----|--------------|------------|--------------|--------------|--------------|--------------|------|------------|----------------|----------|--------------|----------|--------------|----------|--------------|------------|----------|----------------|---------|------------|------------|-------|----------|--------------|
| Stop<br>(nt)  | 363      | 05    | 268 | 3788         | 4606       | 10438        | 2121         | 1357         | 2333         | 6619 | 7416       | 069            | 3368     | 102          | 724      | 9509         | 6277     | 7621         | 756        | 5673     | 11209          | 1140    | 3830       | 134        | 14521 | 14532    | 14875        |
| Start<br>(nt) | 1        | 9832. | i   | 3417         | 3809       | 10854        | 2873         | 2274         | 2698         | 5858 | 6301       | 346            | 2544     | 689          | 1011     | 6454         | 6540     | 7809         | 1433       | 5972     | 11838          | 625     | 2913       | 325        | 14027 | 14840    | 15363        |
| 9 E           | -        | ទ     | 1   | _            | •          | 9            | _            | ~            | 7            | 1001 | 122        | ~              | 4        | -            | 7        | 8            | 6        | 12           | _          | 2        | =              | ~       | 4          | ~          | 77    | =        | 7            |
| Contig        | 106      | 106   | 108 | 111          | 111        | 115          | 116          | 118          | 122          | 122  | 122        | 124            | 128      | 129          | 129      | 129          | 129      | 129          | 131        | 131      | 134            | 135     | 136        | 137        | 139   | 139      | 139          |
| <del></del>   | <b>.</b> |       |     | <b>:</b> — . | <b>:</b> — | <b>!</b> — · | <b>!</b> — · | <b>!</b> — · | <b>:</b> — : | -    | <b>!</b> — | <del>!</del> — | <b>!</b> | <b>:</b> — : | <b>-</b> | <b>!</b> — · | ÷        | <del>-</del> | <b>:</b> — | <b>-</b> | <del>\</del> _ | <b></b> | <b>:</b> — | <b>!</b> · |       | ÷ — ÷    | <b>!</b> — ! |

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

| Stop (nt) |     | 1 79 1 | 479 | 1.877 |      | 9401         | 92901 | 9750     | 7276       | 8647      | 4765     | 1936 | 2880 | 6070 | 579  | 1909     | 2642 | 1741 | 1411 | 4311      | 294 | 780 | 1722     | 4017 | 1018     | 4945       | 4972 |
|-----------|-----|--------|-----|-------|------|--------------|-------|----------|------------|-----------|----------|------|------|------|------|----------|------|------|------|-----------|-----|-----|----------|------|----------|------------|------|
| tart      | 22  |        | 760 | 1149  | 3604 | 8223         | 9399  | 10052    | 7488       | 8913      | 5298     | 7    | 2557 | 6258 | 1355 | 2556     | 2061 | 1953 | 2181 | 4550      | 37  | 631 | 1384     | 3271 | 1332     | 5535       | 5406 |
| I ORF     | 20  | -      | ~   | -     | -    | 13           | 14    | 15       | -          | 6         | 7        | -    | - ·  |      | ~    | -        | m    | -    | ~    |           | -   | 7   | <b>-</b> | -    | 7        | -          | -    |
| Contig    | 140 | 142    | 146 | 146   | 146  | 146          | 146   | 146      | 147        | 147       | 148      | 149  | 149  | 149  | 150  | 150      | 153  | 154  | 155  | 156       | 157 | 159 | 159      | 159  | 161      | 165        | 166  |
| +         | •   | . — .  | • • | • —   | •    | • <b>—</b> · | • —   | <b>-</b> | <b>.</b> · | <b></b> • | <b>-</b> | •    |      |      | · ·  | <b>-</b> |      |      |      | <b></b> . |     |     | -        | ·    | <b>-</b> | <b>!</b> — |      |

| proteins   |
|------------|
| known<br>F |
| ů          |
| lar        |
| simila     |
| not        |
| eins       |
| prot       |
| novel      |
| ë          |
| regions    |
| coding     |
| Putative   |
| ı          |
| pneumoniae |
|            |

| Stop<br>(nt)  | 6395 | 3205         | 6243       | 6362 | 6962 | 7906 | 7476 | 1948 | 7.192 | 835 | 1789  | 546          | 1466     | 4925 | 5177       | 5347 | 8703 | 3724 | 2473 | 1102 | 2006 | 2320 | 4219 | 4634 | 3557     | 4363 | 4821       |
|---------------|------|--------------|------------|------|------|------|------|------|-------|-----|-------|--------------|----------|------|------------|------|------|------|------|------|------|------|------|------|----------|------|------------|
| Start<br>(nt) |      | 2828         | 6485       | 6964 | 7303 | 8790 | 7150 | 2298 | 2913  | 629 | 893   | 1487         | 2200     | 4686 | 4923       | 5111 | 7396 | 3452 | 1853 | 2112 | 2617 | 2126 | 4683 | 4846 | 2940     | 3686 | 4183       |
| ORF           | 6    | 5            | _          |      | 6    | =    | 6    | S .  | 7     | ~   | -     | ~            | <u></u>  | 6    | 101        | =    | 13   | 9    | 5    | 7    | _    | ~    | 5    | 9    | <b>-</b> | -    | 2          |
| Contig        | 167  | 169          | 170        | 170  | 170  | 170  | 171  | 27.1 | 173   | 175 | 175   | 176          | 176      | 7.1  | 177        | 177  | 177  | 178  | 181  | 182  | 182  | 183  | 185  | 185  | 187      | 188  | 188        |
| *             | •    | <b>+ -</b> · | <b>+</b> · | • —  | •    | •    | • •  | • —  |       | •   | · — · | • <b>—</b> • | <b>.</b> |      | <b>.</b> — |      |      |      |      |      |      |      |      | _    | _        |      | · <b>·</b> |

ABLE 3

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

| <b>.</b>      |      |          |            |            |       |                |      |            |     | _    |              |            |              |              |              | _          |              |                  | _            |              |      |            |       |       |          |          |              |
|---------------|------|----------|------------|------------|-------|----------------|------|------------|-----|------|--------------|------------|--------------|--------------|--------------|------------|--------------|------------------|--------------|--------------|------|------------|-------|-------|----------|----------|--------------|
| Stop<br>(nt)  | 6493 | 2844     | 5564       | ₹          | 10001 | 2268           | 2878 | 5331       | 839 | 2127 | 4543         | 6231       | 1849         | 861          | 6644         | 5769       | 6595         | 3276             | 1709         | 2460         | 2682 | 8230       | 10441 | 10705 | 2330     | 5277     | 5754         |
| Start<br>(nt) |      | 3143     | 5956       | 618        | 10357 | 2861           | 3081 | 0089       | 997 | 2315 | 6249         | 6620       | 1553         | -            | 6844         | 5329       | 5993         | 3914             | 447          | 2038         | 2458 | 7370       | 9059  | 10439 | 2581     | 5905     | 9665         |
| ORF           | 9    | 2        | 0          | -          | -     | ~              | -    | _          | ~   | 7    | 5            | 9          | ~            | -            | 6            | 2          | 9            | 5                | 7            | 4            | 8    | 01         | 13    | 14    | 2        | 6        | 11           |
| Contig        | 188  | 189      | 189        | 191        | 191   | 192            | 192  | 192        | 193 | 194  | 195          | 195        | 196          | 197          | 198          | 200        |              | 204              |              | 209          | 209  | 210        | 210   | 210   | 214      | 214      | 214          |
| <del></del>   |      | <b>!</b> | <b>-</b> - | <b>-</b> - | -     | <del>!</del> — |      | <b>!</b> · |     |      | <b>!</b> — · | <b>!</b> · | <b>!</b> — . | <b>!</b> — : | <b>:</b> — · | <b>!</b> · | <b>:</b> _ · | <del>!</del> — : | <b>.</b> — . | <b>!</b> — · | - :  | <b>:</b> — | _     |       | <b>.</b> | <b>.</b> | <b>!</b> — ! |

S. pneumoniae - Putative coding regions of novel proteins nut binflar to known proteins

| <del>;</del>  | <del>;</del> : | <del>-</del> | <del>;</del> — | <del>.</del> — : | <del>.</del> | -     | <del>-</del> | <del>-</del> | <del>-</del> | <del>.</del> – | ÷ — | <u>. –</u> | <b>.</b> –    | +   | • <b>—</b>   | + —          | · —          | • — · | <b>.</b> — | ٠_           | <b>.</b> — | ٠ ــ         | ٠_           | <b>.</b> –   | • –  |              |                     |
|---------------|----------------|--------------|----------------|------------------|--------------|-------|--------------|--------------|--------------|----------------|-----|------------|---------------|-----|--------------|--------------|--------------|-------|------------|--------------|------------|--------------|--------------|--------------|------|--------------|---------------------|
|               | 194            | 1432         | 1972           | 3821             | 39           | 600   | 1964         | 510          | 1312         | 1838           | 312 | 687        | 64            | 270 | 362          | 1222         | 792          | 1616  | 2123       | 177          | 1900       | 2973         | 342          | 1022         | 1681 | 186          | 2295                |
| Start<br>(nt) | 541            | 914          | 1430           | 3639             | 458          | 869   | 2617         | -            | 1539         | 2116           | 52  | 310        | 099           | -   | E            |              | 2789         | 1179  | 1770       | 653          | 2244       | 3569         | -            | 177          | 1124 | 857          | 1684                |
| ORF<br>ID     | 2              | 7            | _              | 9                | -            | -     |              | -            | -            | •              | -   | 7          | -             | -   | -            | 7            | -            | - 2   | e .        | -            | -          | - ·          |              |              | -    | -            | 7                   |
| Contig        | 217            | 218          | 218            | 218              | 219          |       | 223          | 722          | 234          | 234            | 235 | 235        | 238           | 246 | 248          | 248          | 254          | 258   | 260        | 263          | 263        | 263          |              | i võ         | · ~  | 272          | 275                 |
|               |                | •            | • — •          |                  |              | • — • | •            | • — ·        |              | • —            | • • |            | <b>.</b> —- · | • • | <b>.</b> — . | <b>.</b> — . | <b>.</b> — · |       | <b>.</b>   | <b>.</b> — · | <b>-</b>   | <b>.</b> — . | <b>.</b> _ · | <b>! —</b> : |      | <b>.</b> — . | <b>⊹</b> — <b>↓</b> |

| to known proteins  |
|--------------------|
| 2                  |
| ns not simmlar to  |
| not                |
| protei             |
| novel              |
| ŏ                  |
| regions of novel p |
| coding             |
| Putative           |
| •                  |
| pneumoniae         |

| 119 826 608 119 826 608 119 826 608 118 539 135 608 118 536 135 608 118 536 135 608 118 536 135 608 118 536 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 135 608 13 |            | · • |      | . <b>-</b> | • <b>-</b> - |      |      | •   | •   | . — . |   | · — ·    | . — . |    | . — - | . <b></b> . | . <del></del> . | . — - |     |     | · · |     |        |     | · — · | <del>.</del> — · | <b>.</b> | · <del>-</del> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|------|------------|--------------|------|------|-----|-----|-------|---|----------|-------|----|-------|-------------|-----------------|-------|-----|-----|-----|-----|--------|-----|-------|------------------|----------|----------------|
| 114 463 114 460 114 460 116 116 117 117 117 117 117 117 117 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 5        | 1 9 | i on | 12         | in           | 4    | 4    | 83  | 2 1 | 1 8 1 | ŏ |          | i     | 0  | 60    | -           | ã               | ררר   |     |     | -   | m   | i boʻi | 4   | 0     | 107              | 199      | 198            |
| · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tar<br>nt) | 1 7 | i 🛋  | 1 9        | 6111         | 4    | 8    | 58  | 53  |       | Ď | i ~      |       | i  | 9     | 8           | 1 6             | -     | 1 1 | 1 1 |     | 7   | 465    | 127 | -     | 895              | ı vı     | -              |
| 0 1 1 1 7 7 1 1 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × 0        | -   | -    | -          | 7            | -    | -    | 5   | ~   | -     | ~ | <u> </u> | -     |    | - 2   | ~           | - 2             | 7     | 6   | 7   |     | -   | 7      | -   | -     | 7                | 2        | -              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ont i      |     | 28   | 188        | iào          | 1 00 | 1 00 | 291 | 293 | • 6   | i | ا م      | . 0   | 10 | 1     | i =         | i               |       | -   | 327 | 331 | 333 | 333    | 333 | 341   | 345              | 346      | 349            |

S. pneumoniae - Putative coding regions of novel proteins not sinilar to known proteins

| Stop<br>(nt)  | 433 | 973 | 448 | 628 | 1265 | 1004 | 510 | 693 | -   | 30  |
|---------------|-----|-----|-----|-----|------|------|-----|-----|-----|-----|
| Start<br>(nt) | 18  | 4   | 636 | 948 | 1639 | 345  | 683 | 109 | 150 | 269 |
| 9 G           | 7   | -   | ~   | ~   | 7    | 1    | 7   | -   | -   | ~   |
| Contig        | 350 | 355 | 358 | 360 | 364  | 378  | 379 | 381 | 385 | 385 |
|               |     | ,   |     |     |      |      |     |     |     |     |

TABLE 3

148

# (1) GENERAL INFORMATION:

(i) APPLICANT: Charles Kunsch

Gil H. Choi

Patrick S. Dillon

Craig A. Rosen

Steven C. Barash

Michael R. Fannon

Brian A. Dougherty

- (ii) TITLE OF INVENTION: Streptococcus pneumoniae Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 391
- (iv) CORRESPONDENCE ADDRESS:
  - (A) ADDRESSEE: Human Genome Sciences, Inc.
  - (B) STREET: 9410 Key West Avenue
  - (C) CITY: Rockville
  - (D) STATE: Maryland
  - (E) COUNTRY: USA
  - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
  - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
  - (B) COMPUTER: HP Vectra 486/33
  - (C) OPERATING SYSTEM: MSDOS version 6.2
  - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER:
  - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
  - (A) NAME: Brookes, A. Anders
  - (B) REGISTRATION NUMBER: 36,373
  - (C) REFERENCE/DOCKET NUMBER: PB340P1
- (vi) TELECOMMUNICATION INFORMATION:
  - (A) TELEPHONE: (301) 309-8504
  - (B) TELEFAX: (301) 309-8512

150

#### (2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 5625 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CCAAGCAAAA CCAGCTACAG CTAAAGGAAC TTACGTAACA AACTTGACTA TCACAACTAC 60 TCAAGGTGTT GGTATCAAAG TTGACGTAAA CTCACTTTAA TCAGTAGTTA AAGTAATGTA 120 AAAAAGTTGA AGACGCTATG TCTCAACTTT TTTTGATGTA CGACGGCCAT GTTGTATAGT 180 240 AGATGTGTAC TATTCTAGTT TCAATCTACT ATAGTAGCTC AGAAGTCGGT ACTTAAACGT GCTATATCAA AACCAGTCCT TGAAAAACGT GGACTGGTTT CGTGTTTGGA TTATTACCTT 300 GAACGACATG CGTTAAAAGT TAGTTGAACC GCCGTATGCC GAACGGACGT ACGGTGGTGT 360 GAGAGGGGCT AGAGATTATC CCCTACTCGA TTTCGAAATC TAGTGGAATG AATCTGGAAT 420 AGTCCATCGA GCTTTCTAAT ACTCTTCGAA AATCTCTTCA AACCACGTCA ACGTCGCCTT 480 540 GCCGTGCGTA TGGTTACTGA CTTCGTCAGT TCTATCCACA ACCTCAAAAC AGTGTTTTGA GCTGACTACG TCAGTTCCAT CTACAACCTC AAAACAGTGT TTTGAGCAAC CTGCGGCTAG 600 660 TTTCCTAGTT TGCTCTTTGG TTTTCATTGA GTATAACACA TTGTTAGAAG TTGGTTTAAA TTTCCTAATC AGTTTGTTCA CATTTACCTT CGATATATTA TATCCCATAG TTAAGGTTGG 720 TCATACAGAT GATTATAGTC ATGGAGCCGT AAAACTTAGT GTTTCTTTAG TTGACAAAGA 780 TGCCATGAAA AAAATATTTG TAACTGTAAT AGGATATTTT GAAATAAATA TAGATGAAAA 840 TATCACCGAT ATTCTATACG TAAATGGTAC TGCTATTCTT TATCTTTATT TACGTTCAAT 900 TGTTTCAATA GTTTCGGCAA TTGATAGCAG TGAAGCAATG TTGCTACCTA TCATTAATGT 960 TTTAGAGTTA CTAGATAAAT CTCAACCTTT TGAAGAAGAA TAATTTATTA GCTCACTAAA 1020 TTGAGGGTAA GGAAAAGTAA AAGCAGTAAG AAAAATGTCT TGCATTATAC AGCAACCTTT 1080 TGGGAATGAG TGGATGGATT GAATAAAATT TGATTAAGAG TGGATGATTT ATCTGTAGAT 1140 TATTATTGGA CAGTTAGTCT TGAAGTAGTC TAAGAATTAG GTTATAATCA GTAGAAGCCT 1200 1260 TGCTAATAAT GAGGAGGTTA GTTTATGTAT AGTAGACTGA ATCTAAAATA GTACGAAACA ATTGCTAAAA CATTTATAGA AATTAATTTT ACTTTCCCAA TCGATTTGTT CTCATCTTAT 1320 TTCAATCCGC TATATATTAT GGTATCGAAT CTTCATCAGA ATGATAAAAT TAATCAATTG 1380 ATATCTGATT ACAAACAGAA TATGAAAGCT TTTTATATCA CTATTGAAAA ATTTATACGA 1440

|            |              |             |              |              |              | •    |
|------------|--------------|-------------|--------------|--------------|--------------|------|
| GATGATGAAA | GCCTTAAGTG   | TTATTTTATA  | AAGGTTATTT   | CAAGTCGTTC   | CAAGGTAACA   | 1500 |
| AGTCTAGATC | AGATTGAAGC   | TGATAAAACG  | ATACAAAGAA   | AATATTCAAG   | TGAGCTAAAA   | 1560 |
| AAATTTATTG | GATTTTATAA   | TGAGATTATT  | TGTGAGGAAA   | ATAGTTTCCT   | ACATGTACGA   | 1620 |
| AAGAGGTGGT | CGAGTTGGTT   | TAGGTAGTCG  | ATGCGTGAGT   | TGATAATTCT   | CAGGGTATGG   | 1680 |
| ACTTCTTTT  | CATGAATGAG   | GTAAAAGAGC  | AGGTATTGTT   | TAGAGACAAT   | CATTCTGAGC   | 1740 |
| ATATTTTCTG | GATAGAGGGA   | GTATCCGATT  | TTATGATCAA   | AGTTAATACC   | GCCCTCTGGT   | 1800 |
| GAGAAGATGA | GTAGGTTGGT   | AATTTAAACT  | ATTAAACAGA   | ATTTTTGATT   | AAAAGTATTA   | 1860 |
| TTTCATGAGA | GAAATCCTAA   | TTTCACAATC  | CATAGGCAAA   | CGCTTGCATT   | TCGTTTTTTA   | 1920 |
| TTGGACTATA | ATAGGTTGGT   | ATAAAGCCTT  | CTGTAGTAAT   | AAAATGTAGA   | AGGTGTAGAA   | 1980 |
| AGTAAGGATT | TAGAATATTT   | GTAGTTAAAA  | ACACAATGTT   | GCTATTCCTT   | ACGATAGGGA   | 2040 |
| GATAGATATG | GCAATGATAG   | AAGTGGAACA  | TCTTCAGAAA   | AATTTTGTGA   | AGACTGTTAA   | 2100 |
| GGAACCGGGC | TTGAAGGGGG   | CTTTGCGCTC  | CTTTATTCAT   | CCTGAAAAGC   | AGACCTTTGA   | 2160 |
| AGCGGTCAAG | GATTTGACCT   | TTGAGGTTCC  | AAAAGGGCAG   | ATTTTAGGAT   | TTATCGGGGC   | 2220 |
| AAATGGTGCT | GGGAAGTCGA   | CAACCATTAA  | AATGCTGACA   | GGAATTTTGA   | AACCAACATC   | 2280 |
| TGGTTTTTGT | CGGATTAACG   | GCAAGATTCC  | CCAGGACAAT   | CGGCAAGATT   | ATGTCAAAGA   | 2340 |
| TATTGGCGTA | GTCTTTGGAC   | AACGCACCCA  | GCTATGGTGG   | GATTTGGCTC   | TGCAAGAGAC   | 2400 |
| CTACACTGTC | TTAAAAGAGA   | TTTATCATCI  | GCCAGACTCG   | CTCTTTCATA   | AGCGTATCCA   | 2460 |
| CTTTTTGAAT | GAAGTCTTGG   | ATTTGAAGGA  | CTTTATCAAG   | GATCCCGTGC   | GGACTCTTTC   | 2520 |
| ACTGGGACAA | CGGATGCGGG   | CGGATATTGC  | GGCCTCCTTG   | CTCCACAATC   | CCAAGGTTCT   | 2580 |
| TTTTTTAGAT | GAGCCGACCA   | TTGGTTTGGA  | CGTTTCGGTT   | ' AAGGATAATA | TTCGTCGGGC   | 2640 |
| AATTACTCAC | ATCAATCAAG   | AGGAAGAAA   | TACCATTCTT   | TTGACCACTC   | ACGATTTGAG   | 2700 |
| TGATATTGAG | CAACTTTGTG   | ATCGGATTT   | CATGATTGAC   | AAGGGGCAAG   | AGATTTTTGA   | 2760 |
| TGGAACGGT  | AGCCAACTC    | AGGAGACCT   | TGGTAAGATG   | AAGACTCTC1   | CTTTTGAACT   | 2820 |
| GCTACCAGG  | CAAAGTCATC   | TCGTCTCTC1  | CTATGACGGT   | CTGTCTGATA   | TGACCATTGA   | 2880 |
| TAGACAAGG  | A AACAGCCTC  | A ACATTGAAT | r TGATAGTTCT | CGCTACCAG    | CAGCTGACAT   | 2940 |
| TATCAAGCA  | A ACCCTGTCTC | ATTTTGAAA   | r ccgcgatttc | AAGATGGTG    | S ATACGGATAT | 3000 |
| TGAGGATAT  | r ATCCGTCGC  | TCTACCGAA   | A GGAGCTCTAG | GATGATCAA/   | TTGTGGAGAC   | 3060 |
| GTTATAAAC  | C CTTTATCAA  | r GCAGGGGTT | CAGGAGTTGAT  | r TACTTACCG/ | GTCAACTTTA   | 3120 |
| TTCTCTATC  | G GATTGGCGA  | r GTCATGGGG | G CTTTTGTGGG | CTTTTATCT    | TGGAAGGCTG   | 3180 |

152 TCTTTGATTC TTCGCAAGAG TCTTTGATTC AGGGCTTCAG TATGGCGGAT ATCACCCTCT 3240 ACATCATCAT GAGTTTTGTG ACCAATCTTC TGACTAGATC CGATTCGTCC TTTATGATTG 3300 GGGAGGAGGT CAAGGATGGC TCCATTATCA TGCGTTTGTT GCGACCAGTG CATTTTGCGG 3360 CCTCCTATCT TTTCACCGAG CTTGGTTCCA AGTGGTTGAT TTTTATCAGC GTTGGCCTTC 3420 CATTTTAAG TGTCATTGTC TTGATGAAAA TCATATCGGG TCAAGGTATT GTAGAGGTGC 3480 TAGGATTAAC TGTCATTTAT CTTTTTAGCT TAACGCTCGC CTATCTGATT AACTTTTTCT 3540 TTAATATTTG CTTTGGATTT TCAGCCTTTG TGTTTAAAAA TCTTTGGGGT TCCAACCTAC 3600 TTAAGACTTC CATAGTGGCT TTTATGTCGG GGAGTTTGAT TCCCTTGGCA TTTTTTCCAA 3660 AGGTTGTTTC AGATATTCTC TCCTTTTTGC CTTTTTCATC CTTGATTTAT ACTCCAGTTA 3720 TGATCATTGT TGGAAAATAC GATGCCAGTC AGATTCTTCA GGCACTCCTT TTGCAGTTCT 3780 TCTGGCTCTT AGTGATGGTG GGATTGTCTC AGTTAATTTG GAAACGGGTC CAGTCCTTTA 3840 TCACCATTCA AGGAGGTTAG TATGAAAAAA TATCAACGAA TGCATCTGAT TTTTATCAGA 3900 CAATACATCA AACAAATCAT GGAATATAAG GTAGATTTTG TGGTTGGTGT CTTGGGAGTC 3960 TTTCTGACTC AAGGCTTGAA TCTCTTGTTT CTCAATGTCA TCTTTCAACA TATTCCATTC 4020 CTAGAAGGCT GGACCTTTCA AGAGATAGCT TTCATTTATG GATTTCCTT GATTCCCAAG 4080 GGAATGGACC ATCTCTTTT TGACAATCTC TGGGCACTAG GGCAACGCCT AGTCCGAAAA 4140 GGGGAGTTTG ACAAGTATCT GACTCGTCCC ATCAATCCTC TCTTTCACAT CCTAGTTGAA 4200 ACCTTTCAGA TTGATGCCTT GGGTGAACTC TTAGTCGGTG GTATTTTATT GGGAACAACA 4260 GTGACCAGCA TTGTTTGGAC TCTTCCAAAA TTCCTGCTTT TCCTAGTTTG TATTCCTTTT 4320 GCGACCTTGA TTTATACTTC TCTTAAAATC GCAACAGCCA GTATCGCCTT TTGGACTAAG 4380 CAGTCAGGCG CCATGATTTA CATCTTCTAT ATGTTCAATG ACTTTGCTAA GTATCCGATT 4440 TCTATTACA ATTCTCTTCT TCGTTGGTTG ATTAGCTTTA TCGTGCCTTT CGCCTTTACA 4500 GCCTACTATC CAGCTAGCTA TTTCTTACAG GAAAAGGATG TGTTCTTTAA CGTAGGAGGT 4560 TTGATGTTGA TTTCTCTGGT TTTCTTTGTT ATTTCCCTTA AACTTTGGGA TAAGGGCTTA 4620 GATTCCTACG AAAGTGCGGG TTCGTAAAAG CTAAAGTAAG ACTAAAATCA AGAAAGAAAC 4680 TTATGATGTT TGTAATTGAA GAAGTCAAGG ATGAAAATCA AAAAAAGGCA GTTGTCGCTG 4740 AGGTTTTGAA GGATTTGCCA GAATGGTTTG GAATCCCAGA AAGCACACAA GCCTATATAG 4800 AAGGAACCAC GACACTGCAA GTTTGGACCG CCTATCAGGA GAGTGATTTG ACTAGATTTG 4860 TAAGCTTATC CTATTCGAGT GAAGATTGTG CAGAGATTGA TTGTCTCGGC GTAAAAAAGC 4920 TTATCAAGGT AGAAAATTG GGAGCCAATT GCTTGCTACT TTAGAGAGTG AAGCTCGTAA 4980

PCT/US97/19588 WO 98/18931

153

| AAAAGTTGGT TATCTGCAGG | TCAAAACAGT | GGCAGAAGGT | TCTAATAAAG | ATTATGATCG | 5040 |
|-----------------------|------------|------------|------------|------------|------|
| AACAAATGAC TTTTATCGAG | GTCTTGGCTT | TAAAAAGTTA | GAGATTTTTC | CTCAACTATG | 5100 |
| GAATCCGCAA AATCCTTGTC | AGATTTTGAT | TÄAAAAGCTT | GAATAATATT | ACTTGACATC | 5160 |
| TATTCTCAGA GTGCTATACT | GTAAGTGTAA | TCGCCGATTT | AGCTTAGTTG | GTAGAGCAAG | 5220 |
| GCACTCGTAA AGCCTAGGTT | ATAGGTAGAT | AAACGACTGA | GGATTTGAAA | AAATAGATAG | 5280 |
| GTAGAAGATA ACCGTTAAGC | CTTACTCTTA | GCGGTTATTT | ATATTGTTTA | ATAGCGCTAA | 5340 |
| TATTTATCA ATTATGCCTG  | TTTTCGTGTT | TCTGGTAGTT | GTTCAAGTTT | ATTGCTACTA | 5400 |
| TTTTTGATGG TATGAATGTG | CTTATAATGT | ATCCCGGTTA | ACGAAAGTTT | TGGACTTATA | 5460 |
| CTCTTCGAAA ATCTCTTCAA | ACCACGTCAA | CGTCGCCTTG | CCGTGCGTAT | GGTTATGACT | 5520 |
| TCGTCAGTTC TATCCACAAC | CTCAAAACAG | TGTTTTGAGT | GACTACGTCA | GTTCCATCTA | 5580 |
| CAACCTCAAA ACACTGTTTT | GCCCAATCTG | CGGCTAGTTT | CCTAG      |            | 5625 |

# (2) INFORMATION FOR SEQ ID NO: 2:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7571 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

| CT  | CTCCAGCT | TTCCTTGCGA | GTTGGCCATG | TTGTGTCTTT | AAGAAGTCTA | AAAATATCTC | 60  |
|-----|----------|------------|------------|------------|------------|------------|-----|
| CA  | ATAAAACG | CATCGCTCTC | TCCTATCTCG | TTTCTCTGTG | TGTAGTGTAC | TTGCCACAAT | 120 |
| GC' | TTACAAAA | TTTATTTACT | TCTAGTCGTG | TAGGCTTGAG | GTTTCCGCTG | ATCTTGATTG | 180 |
| AA  | TAGTTTCT | CGAACCACAA | ACCGCACAAG | CTAGGCTTGC | TTTTTTAGT  | GCCATAACGC | 240 |
| CT  | CCATCTTA | TCCATTATAA | CAAGAAAGCT | AGGCTTTGAC | AAGCATCTTA | GCGAAATAGA | 300 |
| ТT  | GACTATCG | AATCCCATAT | TGTTTGAGCC | ТТТТССТТАА | TCTTCGCATC | TGAGATAGCC | 360 |
| CG  | GCTAGCCT | CATCTACTAG | ACTTTGCGCA | CGCCCTCGAA | TATCAGACAA | ATTATCATCT | 420 |
| GT  | CTGGCTAT | TATCATTGGT | TTGTACTTGT | CTTTTTGTAT | TGGCTGGTGC | AATTCCATTT | 480 |
| ТG  | CTTATAAG | CATTTTCAAC | CGTAAAGGTA | CTTCCTGGCG | TATAAGGTAA | AATGGTATTG | 540 |
| GC  | AATGTTTC | TAAAGACATG | AGCTGCACCG | TTTGAAGTAG | AGCCAGCTAG | ATAGTGGTTT | 600 |
| TC  | ATCAGTGG | TCGGAAAGCC | AAGCCAGTGG | СТААТСАСТА | CATCCGGAGT | ATAACCAATT | 660 |
| AC  | CCACTGGT | CACTTGTGTA | CTCCGGATTG | AAAACTGCTT | CAGTTGTTCC | AGTTTTCCCT | 720 |

154

780 GCCATGACAT AGTCTGCAGG CGATGAACTA ATACCGGTAC CGTTGGTGAA AGTCCCCAAC ATCATACTGG TCATCTTGTC AGCTACAGAC TTATCAATCA CCCGTTTTTG TGAATTTTTA 840 TGACTCGCAA TAACTTGTCC ACTAGCATTT TCAATTCTAC TAATAAAATG AGCTTCAGGC 900 ATTAAACCTT CATTTGCAAA GGCGGCGTAT GCTTGAGCCA TTTGAAGAGG GTTGGTTTCA 960 ACACCGCTTC CCAAGGCGAC ACCAAGAACA CGGTCGACCT TTTCCATGTT GAGTCCGAAT 1020 TTTTCGCCTG CCTCAAAAGC CTTGTCGACA CCCAAATCAT TAACAGTGGC AACAGCAGGT 1080 AGATTAAGCG ATTCTGCCAA GGCTTGATAC ATAGGAACTT CTCGACTCGT TTTGATCCCT 1140 GCATAGTTAT CAACCTTATA GCTGTCATAC TGCATGGTAT GGTTATCCAA CTGCTTATTC 1200 AAAGCCCAGC TTGCTTCAAC TGCTGGCGTA TAAACAACTA AAGGCTTAAT TGTAGAACCA 1260 GGACTACGCT TTGATTGGGT TGCATAGTTG AAATTCCGGA ATCCAGTTTT ATCATTGTCA 1320 GCAACTTGAC CGACAACTCC ACGAACTCCC CCTGTTTTCG GTTCGAGGGC TACACTTCCT 1380 GATTGAGCAA ACGTTCCATC CTCTGCCCTC GGAAATAGCG ATGTGTTTTC ATAAACAATC 1440 TGCATATTTG CTTGGTAGTT TTGGTCCAGC TCTGTGTAAA TGCGGTAGCC ATTATTGACA 1500 ATCTCTTCCT CTGTTAGATT ATACTTGGAA ACAGCTTCAT TAACCACCGC ATCAAAATAA 1560 GAGGGGTAAC GGTAATCTGA GATTTTTCCT TCATACTTAT CGTGCAATTG CGAAGTCATA 1620 TCAACTTCAG CAGCTTTGGT TTCTTGGTTT TTATCAATAT ATCCTGCTGC AACCATATTC 1680 TGCAAGACAG TATCGCGCCG ATTAGTAGAA TCTTCTACGG AATTCAAGGG ATTATACAGT 1740 TCCGGCCCCT TGAGCATCCC TGCCAGAGTC GCAGCTTGAT CCAGACTCAC TTCTGATGCA 1800 GAAACTCCAA AGTATTTCTT ACTCGCATCT TCTACACCCC ACACACCATT TCCAAAATAA 1860 GCGTTGTTAA GGTACATGGT TAGAATTTGC TCCTTACTAT ATTTTTTGCT TAATTCTAAG 1920 GCAAGGAAAA ATTCTTTCGC TTTTCTCTCA ACAGTTTGAT CCTGCGATAA ATAGGCGTTT 1980 TTAGCCAGCT GTTGGGTAAT GGTAGAGCCA CCACCTGAAC GTCCAGCAGT GACAATAGCC 2040 AAGAAAAAC GGCCATAGTT AATCCCGTCA TTTTTATAGA AAGAACGGTC TTCTGTCGCA 2100 ATAACAGCAT TCTGCAAGTT TTTACTGATG TCAGTCAGCT CAACATAGGT TCCCTTTTGA 2160 CCAGACAAGG CACCAGCCTC TTTTTCTTCA CGGTCAAAAA TAAGAGTCCG AGTTTTCAAG 2220 GCATTTTGCA AATCATTGAC ATTGGTCGAC TTGGCTACAG CAAACAAATA GATTCCAACT 2280 AGCAAGCCTG CACTCAAACC TAGTATAAGG ATAATCTTTG TTAGATGATA ACGACGCCAG 2340 AATTTTCGAA TCGGACCTAC TTGGGCTAAT TTTTTTCGAT CACTACGAGA GCGACGTAAG 2400 ATAGTAGAAT CAGAGTCCTC TAGTTCACTT GTTTCTTTTT TAAAAAGAGA AAGAAATTTC 2460 TCAAATAATT TATCTAATTT CATGCGTTTA TTTTATCATC TTCATCATAG GAAGACAAGA 2520

| ATTTAGCTAT | TTCCTATCCA | AATAGGGCTT | TTTTTGTTAC | AATATCTGTA | TGCAATTCAC | 2580 |
|------------|------------|------------|------------|------------|------------|------|
| ATTTACATTA | CCCGCCTCTC | TACCTCAAAT | GACAGTAAAG | CAATTACTTG | AGGAACAACT | 2640 |
| CCTCATCCCT | AGAAAAATCC | GTCATTTTT  | GAGAATCAAG | AAACATATTT | TGATAAATCA | 2700 |
| AGAAGAAGTC | CACTGGAAGG | AAATCGTAAA | TCCTGGAGAT | GTTTGCCAGT | TGACTTTTGA | 2760 |
| CGAGGAAGAT | TATTCCCAAA | AGACGATCCC | TTGGGGCAAC | CCAGACTTAG | TGCAGGAAGT | 2820 |
| TTATCAAGAT | CAACACTTGA | TTATTGTAAA | CAAACCAGAG | GGGATGAAAA | CGCATGGTAA | 2880 |
| TCAACCAAAC | GAAATTGCCC | TTCTTAACCA | TGTCAGTACC | TATGTTGGCC | AAACCTGCTA | 2940 |
| TGTCGTTCAT | CGTCTGGACA | TGGAAACCAG | TGGCTTAGTT | CTCTTTGCCA | AAAATCCTTT | 3000 |
| TATCCTGCCC | ATTCTCAATC | GCTTATTGGA | GAAAAAAGAG | ATTTCTAGAG | AATATTGGGC | 3060 |
| TCTAGTTGAT | GGAAATATCA | ACAGAAAAGA | ACTTGTTTTC | AGAGACAAAA | TTGGACGTGA | 3120 |
| TCGCCATGAT | CGTAGAAAAA | GAATAGTTGA | ТССААААААТ | GGGCAATATG | CTGAAACGCA | 3180 |
| TGTAAGCAGA | TTAAAGCAAT | TCTCAAACAA | GACTTCCTTG | GCTCATTGCA | AGCTAAAGAC | 3240 |
| AGGGCGAACC | CATCAGATTC | GTGTGCACCT | TTCGCATCAT | AATCTTCCTA | TCCTGGGAGA | 3300 |
| CCCTCTCTAT | AATAGTAAAT | CAAAGACAAG | CCGGCTTATG | CTTCATGCCT | TCCGACTTTC | 3360 |
| CTTTACCCAC | CCACTTACTT | TAGAGAAGCT | AACTTTCACT | ACCCTTTCAA | ATACATTTGA | 3420 |
| AAAAGAATTA | AAAAAGAATG | GATGATCGTG | TCATCCATTT | ТТССАТАТАА | AAAAGCAAGA | 3480 |
| CCACAAAGCC | TTGCTTTCTA | TCAACTCAAG | AATTATTTAG | ĊĀĀŦŦŦŦŦĠĊ | GAAGTATTCA | 3540 |
| AGAGTACGAA | CAAGTTGTGC | AGTGTATGAC | ATTTCGTTGT | CGTACCATGA | TACAACTTTA | 3600 |
| ACCAATTGTT | TACCGTCAAC | GTCAAGAACT | TTAGTTTGAG | TTGCGTCAAA | CAATGAACCG | 3660 |
| TAAGACATAC | CTACGATATC | TGAAGATACG | ATTGGATCTT | CTGTGTAACC | GTATGATTCG | 3720 |
| TTTGAAGCTG | CTTTCATAGC | TGCGTTCACT | TCATCAACAG | TAACGTTCTT | TTCAAGAACT | 3780 |
| GCTACCAATT | CAGTAACTGA | TCCAGTTGGA | GTTGGAACGC | GTTGTGCAGA | TCCGTCAAGT | 3840 |
| TTACCATTCA | ATTCTGGGAT | TACAAGACCG | ATAGCTTTTG | CAGCACCAGT | TGAGTTAGGA | 3900 |
| ACGATGTTTG | CAGCACCAGC | GCGAGCACGG | CGAAGGTCAC | CACCACGGTG | TGGTCCGTCA | 3960 |
| AGGATCATTT | GGTCACCAGT | GTAAGCGTGG | ATAGTAGTCA | TCAATCCTTC | AACAACACCA | 4020 |
| AAGTTGTCTT | GAAGAGCTTT | AGCCATTGGA | GCCAAGCAGT | TTGTAGTACA | TGAAGCACCT | 4080 |
| GAGATAACTG | TTTCAGTACC | GTCAAGAACG | TCGTGGTTAG | TGTTGAATAC | AACTGTTTTA | 4140 |
| ACGTCGTTTC | CACCAGGAGC | AGTGATAACA | ACTTTTTAG  | CTCCACCTTT | AAGGTGTTTT | 4200 |
| TCAGCTGCTT | CTTTCTTAGC | AAAGAAACCA | GTAGCTTCAA | GAACGATTTC | TACACCGTCA | 4260 |

156 GTAGCCCAGT CGATTTGTTC TGGATCACGT TCAGCAGAAA CTTTGATGAA TTTACCGTTA 4320 ACTTCAAATC CACCTTCTTT AACTTCAACA GTACCGTCGA AACGACCTTG AGTTGTGTCG 4380 TATTTCAACA AGTGTGCAAG CATAACTGGA TCTGTAAGGT CGTTGATGCG TGTAACTTCA 4440 ACACCTTCTA CGTTTTGGAT ACGACGGAAA GCAAGACGAC CGATACGTCC GAAACCGTTA 4500 ATACCAACTT TAACTACCAT TAGTGATTTC CTCCTTATGA AAATCATGAA ATTTTTATTG 4560 TGAAAAGAGT AACTTGAATC ACTACAAATC ACCTTTCAAC AAACCTATTA TACAACTATT 4620 TGAGTTGAAT TGCAAGTATG GCCATTGTTT TTCTATGTTA GTTTCTTTTT AAGACTGTAA 4680 ACCAAGGAAT CCCTTACTAT TCATAGCATA ACGATTCTAT AGGATCCATT TTACTAATCT 4740 TACGCGCCGG GAAGTAGGCT GAGACATAAC CAAGTAATAG AGCGAAAACT AGAGTTCCTA 4800 AAACAGATAA AAGATTTAAT TTAAAAACCT TAGTGATGGA TGGGTAAAAG TGACTTACAA 4860 TCGCATTCGC CAAACTTCCC ACCCCTTGTG CAACCAAAAA TGCCAGCAGC AAGGCGATGC 4920 CTACAATCCA GATAGCCTCG TAAATAAAAA TTCCTTTGAC ATCACGATTC TGATAACCAA 4980 CTGCTTTCAT GACACCTATT TCCTTGGAAC GTTGCATGAT ATTGATGTAA ATAATGATAC 5040 CAATCATAAC CGCTGCTACC ACAATAGCTT GTGATGAAAG CACAATCAAT AATCCCTGAA 5100 TAACACGAAT AAAGGTAATC ACAATATCAA GAACTCTCTG TTGAGAAAGC ACAGTATACT 5160 TCTTATTTT CTGTAATTCT TCTGTTACTA CTTTTGTCTG TGATGGATCT TTGAGTTCCA 5220 AGATAAAATA AGATACAGCT TTCGTAAATC CAGCCTCTTT CAAAATCGTT TCCATTTGAT 5280 GAGACAGCAT GAAACTGTTG CTGTCCTCCA TGTCATCTTC ATCATTGATT ACACGTACAA 5340 TCTTCGTTTG AAATTGAGCA ATCTTACTAG TTTCGGCAGC ACTTTCTACA ATGCTGGCTG 5400 AGACTGATTT GCCAATAAGA TCATTAGCTG TCAAATTTTT TCCTGTCTGT TCATTCCAAT 5460 TTTTTAGTAA ACTGCTTGGA ATCGTTAATC CCTGTTCATT TGTATCAGTA TAGAGGGATC 5520 CAGCCAACAC TTTGTCCGTC TCATTATTAC TAACAGAGAT ACTTGTATCA TCATAAAGAC 5580 TCACTACTTG AGCATAAGAA GGCATCGTTT GACTCAGATC CATTTCTTGC CCATCTATAG 5640 TAATATTTGA CATGTTCATC CCAAAAGGAC TCTCCAAATA TTTAATAGCT TCTTTCCCAA 5700 CTGTATCCGT GATATATAGT CAATTGAAAC AAGAGCAGGA TAAAAAAGCC TCGTAAAAGG 5760 TATTGCAACT TGGTAATACC TTTTTGAGGT GCTTTTTGAT ATGAGCCCAT GTTTTCTCAA 5820 TAGGATTGTA CTCAGGCGAG TAGGGAGGAA GAGGTAAAAG TTTATGCCCA AACTCTTCGC 5880 ATAAAAGTTC TAGCTTCCCC ATTCTATGGA ATCTTACATT ATCCATAATA ATAACCGATG 5940 GTGTGTTTAA TGTTGGTAAG AGAAAATTCT GAAACCAAGC TTCAAAAAAG TCGCTCGTCA 6000 TCGTCTCTC GTAAGTCATT GGAGCGATTA ATTCACCATT TGTTAGACCT GCAACCAAAG 6060

| AAATCCTCTG | ATATCTTCTT | CCAGATACTT | TGCCTCTTAT        | TAATTGACCT | TTTAATGAGC | 6120 |
|------------|------------|------------|-------------------|------------|------------|------|
| GACCATATTC | TCGATAAAAA | TAAGTATCGA | ATCCTGTTTC        | GTCAATCTAA | ACAGGTGCTA | 6180 |
| GGTGCTTTAA | ACTATTAAAA | TTCTTAAGAA | ATAAGGCTAC        | TTTTTCTGGG | TCTTGTTCAT | 6240 |
| AGTAGGTGTG | GTTCTTTTT  | CGAGTGTAGC | CCATAGCTTT        | GAGCGTATAG | TGGATGGTAG | 6300 |
| TTGGATGACA | GCCAAATTCA | GAAGCTATTT | CAGTCAAATA        | AGCGTCTGGA | TTGTCAGTAA | 6360 |
| GATAGTTTTT | AAGTCTATCT | CTATCAACCT | TTCTTGGTTT        | TATTCCTTTT | ACTTGGTGGT | 6420 |
| TTAGCTCTCC | TGTTTTCTCT | TTTAGCTTTA | ACCAGCCATA        | AATGGTATTA | CGTGAGATTT | 6480 |
| GGAAAACGTG | TGATGCTTCT | GTTATACTAC | CTGTTCGCTC        | ACAATAAGAG | AGAACTTTTT | 6540 |
| TACGAAAATC | TATTGAATAT | GCCATAAAAA | GATTATACCA        | CATTGTGTAC | TATTTTTGGT | 6600 |
| TCATTTTACT | ATATTTGAAG | AGGCGTTTAA | ACTATCTGAC        | ATAAAACTCG | TTCTAGAGGA | 6660 |
| AAGACATCCT | TTAAAAAGTT | AGTTTATTTT | ACAACTTAGA        | CATCAAGGTA | GGTTAACCCC | 6720 |
| TTCATGGAAA | AATCAAGACT | CTTAGCACTA | TGGGTTAAAC        | TACCACTGGA | GACGTAATCA | 6780 |
| ATCGCTAAAC | CACGAAAACG | GCTAATAGTG | GTCATATCAA        | TATTTCCAGA | ACATTCAATC | 6840 |
| CGAGAACGTC | CTGCAATTAG | GGTAATGGCC | TGTTCAATCT        | GTTCCAATGA | CATATTATCC | 6900 |
| AACATGATAA | TATCAGCACC | CGCCGCCGCA | GCTTCTTCGG        | CAGCAGCAAG | GCTTTCCACT | 6960 |
| TCCACCTCGA | CCATTTTCAC | AAAAGGGGCA | TAGGCACGCG        | CTTGAGCAAT | TGCCTTTTGA | 7020 |
| ACACTACCTA | CTGCCGCAAT | GTGATTGTCT | <b>TTTAGCAGGA</b> | TAGCATCTGA | TANATTANG  | 7080 |
| CGATGATTAT | AGCCACCGCC | AACTCTCACG | GCATATTTCT        | CAAAAAGACG | TAAATTAGGA | 7140 |
| GTAGTTTTTC | GAGTATCAAA | TACCTTAATG | CAATCATCGC        | CTAAGGCTTC | TACATAAGCA | 7200 |
| GCTGTCATCG | AAGCAATCCC | TGATAAATGT | TGTAAAAAAT        | TCAAGGCAAC | GCGTTCACAT | 7260 |
| GTTAAGAGAC | TTCTCACCGA | GCCTATGATT | TCTAAAACCA        | AATCGCCACT | AGTCAAACGA | 7320 |
| TCCCCATCCT | TAAATTGATG | AGGATTCTGG | AAGGTCACCT        | CGGCATCAAA | TAGGGTAAAA | 7380 |
| ACCCTTTGAA | AAACGGTTAG | CCCCGCTAAA | ACACCAGCTT        | CCTTGGCAAA | AAGCGACACC | 7440 |
| TTGGCTTGGC | CATGATGATC | AAAAATGGCA | TTGGTACTGT        | AATCTTCGGA | ATGAACATCT | 7500 |
| TCTCGCAAGG | CTGCTTTCAA | TGTATCATCT | ATTTGAAAAG        | GGGTTAAATC | AGTTGAAATG | 7560 |
| ATTGACATCA | C          |            |                   |            |            | 7571 |

# (2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 26385 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double

. 158

# (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

| (XI) SEQUENCE DE      | ockillion. c | DQ 1D      |                    |              |      |
|-----------------------|--------------|------------|--------------------|--------------|------|
| TTTGCTAGTG GCTTAAATTC | TTCAGGAAAA   | TCAGGCGTAT | CTAAAAGTCG         | TGTCGTTTTT   | 60   |
| GTTTCATCTA TATAAAGACT | TCCTGCTCCC   | CCTACAACTA | GAAAACGTGT         | CTGTGTTCCA   | 120  |
| GCAAGAAGCT GATTAAATAG | TTCGATTGAT   | TTGCTGTGGA | GCGGTAGCGT         | ATCTGGTGTA   | 180  |
| TAAGCACCAA ACGCTGAAAT | AACAGCATCA   | AATCCAGTAA | GATCATCTTT         | TGTCAACTCA   | 240  |
| AATAAATCTT TTTTAATAAT | AGACTCAGCT   | TGACTTTTGT | TTTCAGAACG         | AACAATAGCC   | 300  |
| GTTACTTCAT GTCCTCGTTT | GACTGCTTCT   | TCAACAATTG | CTTTCCCCGC         | TTGTCCATTT   | 360  |
| GCTGCAATAA CTGCTAGTTT | CATTTTTTAT   | ACCTCTCTTG | TTGTAATTAT         | TTTAGTTACA   | 420  |
| GAAATTGTGA CACTCTTAAT | AATCAATGTC   | AATAGTCTTG | CTTAATTATT         | АТСААААТАТ   | 480  |
| TTCTACCAAG AAAACTAACC | ATGATTCTAG   | TGAAAAAAA  | TCTTCTTTGT         | CAACAAATTT   | 540  |
| ACTTTCTTGT TTTAAACATC | СТАТААТААТ   | CATAGCAAGA | GATCTAAGTT         | GTCTGTTTT    | 600  |
| TTAAAACGAG GTGATTATCA | TGCGTAGATT   | CTATTCCCAT | CTCCCCTACT         | ATCTGGTCAT   | 660  |
| ATTATTCTTT TATTGGCCAC | TTTATGAGTT   | GTTCTTACTA | GTTGTTTCTG         | ACCCCCTTAC   | 720  |
| ACTCAAGGGA CTCTATATAA | ACAATCTTCT   | CTTCTTTACA | CCTCTGGTAA         | TCTTGATTGT   | 780  |
| ATCGTTACTC TATAGCTAC  | GTTTCCGTTT   | CTCACTTTGA | TGGTTAGTTG         | GTAACGGACT   | 840  |
| GCTCTTTTAC TTTACTATC  | A TAACCTTTGG | TGAGTTTATA | CTAATTTACT         | TGCTAATCTA   | 900  |
| TGAAACAGTT GCTCTGGTC  | GCATGGATTC   | TGGTATTAGC | ATCAAGCATA         | TTCTACAAAA   | 960  |
| AATGAAAAAC AAAAAACTT  | r cacaaaatcc | TTGAAAAATC | TCACAATCAT         | GCTATAATAA   | 1020 |
| TCCATAGAGA CAAGTCACT  | r AGTCCCTTTC | TACTAGAGAG | TGCGTGGTTG         | CTGGAAACGC   | 1080 |
| ATAGGAAGTC TAAACTGAT  | A CTACTCTTGA | GTTTTTTATG | алалсатал <i>а</i> | ACGGTGGCCA   | 1140 |
| CGTTAGAGCC GATCAGAGG  | r GTCCCTCTCT | TTTGAGGTAC | ATAAATGAAG         | GTGGAACCAC   | 1200 |
| GTTGCGACGT CCTTTCGAG  | G ATGTCGCATI | TTTTTATTAC | GATACTAATT         | ATGGAGTTGC   | 1260 |
| AAGAATTAGT GGAGCGCAG  | T TGGGCAATCO | GACAAGCTTA | TCACGAACTO         | GAAGTTAAGC   | 1320 |
| ATCATGATTC CAAGTGGAC  | G GTAGAAGAAG | ACCTCTTGGG | TTTATCTAA          | GATATTGGAA   | 1380 |
| ATTTCCAACG ACTGGTGAT  | G ACAAAGCAAG | GACGCTACT  | A TGATGAAAC        | CCCTACACAC   | 1440 |
| TGGAACAAAA ACTTTCAGA  | A AATATCTGGT | GGCTATTAG  | A ACTTTCTCA        | CGTTTGGATA   | 1500 |
| TAGACATTCT GACGGAAAT  | G GAAAACTTC  | TCTCTGATA  | A AGAAAAGCA        | A TTGAACGTTA | 1560 |
| GGACTTGGAA GTAGTCTGC  | T GATAAAAAA  | CAATGCTTAG | G AAACTATGA        | AAAATAATA    | 1620 |

| AGGAGAACAT | CATGATTAAC | ATTACTTTCC | CAGATGGCGC | TGTTCGTGAA | TTCGAATCTG | 1680 |
|------------|------------|------------|------------|------------|------------|------|
| GCGTAACAAC | TTTTGAAATT | GCCCAATCTA | TCAGCAATTC | CCTAGCTAAA | AAAGCCTTGG | 1740 |
| CTGGTAAATT | CAACGGCAAA | CTCATCGACA | CTACTCGCGC | TATCACTGAA | GATGGAAGCA | 1800 |
| TCGAAATTGT | GACACCTGAT | CACGAAGATG | CCCTTCCAAT | CTTGCGTCAC | TCAGCAGCTC | 1860 |
| ACTTGTTCGC | CCAAGCAGCT | CGTCGTCTTT | TCCCAGACAT | TCACTTGGGA | GTTGGTCCAG | 1920 |
| CCATCGAAGA | TGGTTTCTAC | TACGATACTG | ACAACACAGC | TGGTCAAATC | TCTAACGAAG | 1980 |
| ACCTTCCTCG | TATCGAAGAA | GAAATGCAAA | AAATCGTCAA | AGAAAACTTC | CCATCTATTC | 2040 |
| GTGAAGAAGT | GACTAAAGAC | GAGGCACGTG | AAATCTTCAA | AAATGACCCT | TACAAGTTGG | 2100 |
| AATTGATTGA | AGAACACTCA | GAAGACGAAG | GCGGTTTGAC | TATCTATCGT | CAGGGTGAAT | 2160 |
| ATGTAGACCT | CTGCCGTGGA | CCTCACGTTC | CATCAACAGG | TCGTATCCAA | ATCTTCCACC | 2220 |
| TTCTCCATGT | AGCTGGTGCG | TACTGGCGTG | GAAACAGCGA | CAACGCTATG | ATGCAACGTA | 2280 |
| TCTACGGTAC | AGCTTGGTTT | GACAAGAAAG | acttgaaaaa | СТАССТТСАА | ATGCGTGAAG | 2340 |
| AAGCTAAGGA | ACGTGACCAC | CGTAAACTTG | GTAAAGAGCT | TGACCTCTTT | ATGATTTCAC | 2400 |
| AAGAAGTGGG | ACAAGGTTTG | CCATTCTGGT | TGCCAAATGG | TGCGACTATC | CGTCGTGAAT | 2460 |
| TGGAACGCTA | CATCGTAAAC | AAAGAGTTGG | TTTCTGGCTA | CCAACACGTC | TACACTCCAC | 2520 |
| CACTTGCTTC | TGTTGAGCTT | TACAAGACTT | CTGGTCACTG | GGATCATTAC | CAAGAAGACA | 2580 |
| TGTTCCCAAC | CATGGACATG | GGTGACGGGG | AAGAATTTGT | CCTTCGTCCA | ATGAACTGTC | 2640 |
| CGCACCACAT | CCAAGTTTTC | AAACACCATG | TTCACTCTTA | CCGTGAATTG | CCAATCCGTA | 2700 |
| TCGCTGAAAT | CGGTATGATG | CACCGTTACG | AAAAATCTGG | TGCCCTCACT | GGCCTTCAAC | 2760 |
| GTGTACGTGA | AATGTCACTC | AACGACGGTC | ACCTATTCGT | TACTCCAGAA | CAAATCCAAG | 2820 |
| AAGAATTCCA | ACGTGCCCTT | CAGTTGATTA | TCGATGTTTA | TGAAGACTTC | AACTTGACTG | 2880 |
| ACTACCGCTT | CCGCCTCTCT | CTTCGTGACC | CTCAAGATAC | TCATAAGTAC | TTTGATAACG | 2940 |
| ATGAGATGTG | GGAAAATGCC | CAAACCATGC | TTCGTGCAGC | TCTTGATGAA | ATGGGCGTGG | 3000 |
| ACTACTTTGA | AGCCGAAGGT | GAAGCAGCCT | TCTACGGACC | AAAATTGGAT | ATCCAGATTA | 3060 |
| AAACTGCCCT | TGGAAAAGAA | GAAACCCTTT | CTACTATCCA | ACTTGATTTC | TTGTTGCCAG | 3120 |
| AACGCTTCGA | CCTCAAATAC | ATCGGAGCTG | ATGGCGAAGA | TCACCGTCCA | GTCATGATCC | 3180 |
| ACCGTGGGGT | TATCTCAACT | ATGGAACGCT | TCACAGCTAT | CTTGATTGAG | AACTACAAGG | 3240 |
| GGGCCTTCCC | AACATGGCTG | GCACCACACC | AAGTAACCCT | CATCCCAGTA | TCTAACGAAA | 3300 |
| AACACGTGGA | CTACGCTTGG | GAAGTGGCCA | AGAAACTCCG | TGACCGCGGT | GTCCGTGCAG | 3360 |

160 ACGTAGATGA GCGCAATGAA AAAATGCAGT TCAAGATCCG TGCTTCACAA ACCAGCAAGA 3420 TTCCTTACCA ATTAATTGTT GGAGACAAAG AAATGGAAGA CGAAACAGTC AACGTTCGTC 3480 GCTACGGCCA AAAAGAAACA CAAACTGTCT CAGTTGATAA TTTTGTTCAA GCTATCCTAG 3540 CTGATATCGC CAACAAATCA CGCGTTGAGA AATAAGAGTC TAGCATAAAA GCCTCCAATC 3600 TGGAGGCTTT TTCTCATCTA TTTTTACTCA AGGACTAAGT TCACTTGAGC AAACTGAATC 3660 CGCACTGTCG TTCCTTTTCC GACCTCAGAC TCGATACGAA TCTGGTGCCC CAGTTCTTCA 3720 GAAATTTTCT TAGATAGATA AAGGCCAAGT CCAGAGGACT GCTGGGTCAA ACGGCCATTG 3780 TATCCTGAAA AGCCACGTTC AAATACTCGG AGGACATCAC TGTTTTTTAT CCCGATTCCC 3840 GTATCTTTGA TACAAAGCTC TTGGTCATCC ATATAAATCT CCAGACCACC TTCCTTGGTG 3900 TACTTGAGAC TGTTTGAGAT GATTTGCTCA ATAACCACTA GCAGCCACTT TTTATCCGTC 3960 4020 GCATATTTAC GAATTATTTC CTTGACCAAG TCCTCAATTT GAACCTGCTT TAAGACCAAA 4080 TCATCATGGA AACTTTCTAA ACGCAGGTAC TGTAAAACTA GGTTGGTATA GGAGTCGATT 4140 TTGAAAATTT CCTGTTCTAG CTGCTGCTTC AGTTGGCGGT CGACCACTTC TGCAACTAAG 4200 AGTTGACTGG CTGCAATGGG GGTCTTTATC TGATGGACCC ACAAGGTATA GTAATCCAGC 4260 AAATCCGTCA GTTTTCTTTC TGCTTTTGAC CTCTGCTGAT AGAGTTCCAT CTCACGCGCT 4320 TCTAATTTT CTGCTAAAGC TATTTCCAAA GGAGACTTGG CTTCCCTCTC TCCATAGAGA 4380 AGTTCCTGGC GATAGACCTG CGTTTCCACC AATATGTCCC AAGTGAAAAA TAATATGGTT 4440 ACAAAGCAAC ACAAGAAGAA AAAGTAGAGG AAGTAAATTC CTAGACTGGC AAATAAAAAAC 4500 TGAAAGAGTA AGACAAGAAA TGCCAAAGAA AGCAGATAGA TAAAAAGACG ACTACGGGAG 4560 CGCAGATAGG CTAGAAAAA TTGTTTCCAA TCAAGCATGC TTCAATCCGT ACCCTATTCC 4620 TTTCTTGGTC TCGATAAATC CTACCAATCC CTGCTCCTCC AACTTTTTAC GCAAACGAGC 4680 CACATTGACA GAGAGGGTAT TATCATCAAT GAAAAAGTCA CTGTTCCAAA GTTCCCGCAT 4740 CAGGTCGTCA CGTGCTACGA TGTTGCCTGC ATGCTCAAAT AACACGCGTA AAATCTGGAA 4800 TTCATTCTTG GTCAAATTCA AGACTTGCCC TTGATAATGT AAATCCATGG ATTTGGTATT 4860 GAGGATAACA CCAGCATATT CCAGCAAACT CTCATCACGC CCAAACTCAT AGGAACGACG 4920 CAACAAGCCC TGAACCTTAG CTAAAAGAAC CTGCTGGTCA AAAGGCTTGG TCACAAAGTC 4980 ATCCGCCCC ATATTGATTG CCATGACAAT ATCCATAGCC TGGTCTCTCG AAGAAAGAAA 5040 CATGATAGGT ACCTTGGAAA TCTTGCGGAT TTCCTGACAC CAGTGATAAC CATTAAACAA 5100 GGGCAAACCA ATATCCATGA GGACCAGATG AGGTTCCGAC TGAACAAATA GACTCAAAAC 5160

| rtcc.  | ATAAAG  | TCTTCTACCA   | GGACCACTTC   | AAATCCCCAT | TCAGAGAGCA   | TTTTCCCAAT | 5220 |
|--------|---------|--------------|--------------|------------|--------------|------------|------|
| TGT    | TGACGA  | ATGACCTGAT   | CATCTTCTAT   | таатаааатс | TTGTGCATGC   | GCTTCTCCTT | 5280 |
| PTCC.  | АТТАТТ  | ATAACAGATT   | TTTCCATGCT   | AGATGGTCTG | AAACTGAATT   | TGAAATAGCC | 5340 |
| rgtt   | TTTAGC  | CAGTACAAAC   | AGGCTATGCT   | ACTAGCTAAT | TTGAGGGAAA   | TTTGCTAAGA | 5400 |
| AAAT   | AAAAT   | GAAAGGAGCT   | CTTATGGCCA   | ATATTTTTGA | CTATCTGAAA   | GATGTCGCAT | 5460 |
| ATGA   | TTCTTA  | TTACGACCTT   | CCCTTGAATG   | AGTTAGACAT | TCTAACCTTA   | ATAGAAATCA | 5520 |
| ССТА   | CCTCTC  | CTTTGATAAT   | CTGGTCTCCA   | CACTTCCTCA | ACGTCTTTTA   | GATCTAGCAC | 5580 |
| CTCA   | GGTTCC  | AAGAGATCCC   | ACCATGCTTA   | CTAGCAAAAA | TCGCCTTCAA   | TTATTAGATG | 5640 |
| TTAA   | GGCTCA  | ACACAAGCGC   | TTCAAAAATT   | GCAAACTCTC | CCATTTTATC   | AACGACATCG | 5700 |
| ACCC   | TGAACT  | GCAAAAGCAA   | TTTGCGGCTA   | TGACTTATCG | TGTCAGCCTC   | GATACCTATC | 5760 |
| TGAT   | TGTCTT  | TCGTGGGACA   | GATGACAGTA   | TCATTGGCTG | GAAGGAAGAT   | TTCCACCTGA | 5820 |
| ССТА   | TATGAA  | GGAAATTCCT   | GCTCAAAAGC   | ACGCCCTTCG | CTATTTAAAG   | AACTTTTTTG | 5880 |
| CCCA   | TCATCC  | TAAGCAAAAG   | GTTATTCTAG   | CTGGGCATTC | CAAGGGAGGA   | AATCTCGCTA | 5940 |
| TCTA   | TGCTGC  | TAGCCAAATT   | GAGCAAAGTT   | TGCAAAATCA | GATCACAGCA   | GTTTATACAT | 6000 |
| TTGA   | ATGCACC | TGGTCTCCAT   | CAAGAATTGA   | CACAGACTGC | GGGTTATCAA   | AGGATAATGG | 6060 |
| ATAC   | GAAGCAA | GATATTCATT   | CCACAAGGTT   | CCATTATCGG | TATGATGCTG   | GAAATTCCTG | 6120 |
| CTC    | ACCAAAT | CATCGTTCAG   | AGTACTGCCC   | TGGGTGGCAT | CGCCCAGCAC   | GATACCTTTA | 6180 |
| GTTC   | GCAGAT  | TGAGGACAAG   | CACTTCGTCC   | AACTGGATAA | GACCAACAGT   | GATAGCCAGC | 6240 |
| AAG    | PAGACAC | AACCTTTAAA   | GAATGGGTGG   | CCACAGTCCC | TGACGAAGAA   | CTTCAGCTCT | 6300 |
| ACT'   | rcgacct | CTTCTTTGGC   | ACTATTCTTG   | ATGCTGGTAT | TAGCTCTATC   | AATGACTTGG | 6360 |
| CTT    | CCTTAAA | GGCGCTTGAA   | TACATTCATC   | ATCTCTTTGT | CCAAGCTCAA   | TCCCTCACTC | 6420 |
| CAG    | AAGAAAG | AGAAACCTTG   | GGTCGCCTTA   | CCCAGTTATT | GATTGATACT   | CGTTACCAGG | 6480 |
| CAT    | GGAAAAA | TAGATAATAC   | TCTTGAAAAT   | ТАААТСТАТА | СААААСАААА   | GACCTAGAAT | 6540 |
| ACA'   | TACTTTC | ATGTGCATTC   | TAAGTCTTTT   | TAAATAGAAT | CTAATAGTCA   | ATAAAAATCA | 6600 |
| AAG    | AGCATTG | AGAGATAATG   | GGGCTTGGAA   | CGTCCCTCTC | GCTTCAACAA   | AATGACCCCA | 6666 |
| TTA'   | TAGATTA | AAAAGATGCC   | ACTTAGAAAA   | AGCAAAAAAG | GAAGTAAGAC   | AAAGGCAAAT | 672  |
| ATA    | TAAAAAG | CTAACTGAAC   | : ATTCTCGTAT | CCATTTTAT  | ' AAAAAAGGTA | GGATAGATAA | 678  |
| AAA    | TAACTTO | AAATGAGGG    | TAATAAAAA    | AATACTGGAT | TCCACAAACT   | TCTATTATCC | 684  |
| كاتلمك | СДДДДТС | : አሮልሮሞልሞልል? | GGCTAATAC    | ATTCCTATAA | CGAGATACAT   | TTCTTACTCC | 690  |

162

TTTAATAGCT ACATTTTATC ATAATTATCC AAAGAAAAA GAGGGCATTT ATCCCTCTTA 6960 7020 ATCCTTCATC TGACTCTCTG CATCGGCCAC GACTTTTTCT AGACTGGTTT GACCAAGTTC TGCCTCCATA GTCAACTGAA TTCTCTCCAA TTTTTGATCC AAAACATCAT GAATATGAGC 7080 TCCTACAGGG CAATTTGGAT TCGGATTGTC ATGGAAACTG AAGAGTTGAC CTGTCTTACC 7140 AAGACATTCG ACCGCCTGAT AAACATCTAA AAGACTAATA TCCTTAAGGT CCTTGACAAT 7200 CTCTGTTCCG CCCGTTCCAC GCGCTACTGA AATCAGCTCT GCCTTCTTCA ACTGGGACAA 7260 GATCTTTCTG ATAATGACAG GATTGACCCC GACACTAGCA GCCAGAAAAT CACTGGTCAC 7320 CTTGCTTTCC TTCCCCTCGA GGGCAATGAT TATCAGCATA TGAGTCGCAA TGGTAAATCT 7380 ACTTGGAATT TGCATCCTCT TCTCCTTTTT ACGAGGCTAC CCTGCCTCTA CTCTTCTTTT 7440 TCTATTATTA TACCCTTTTT AGTTGTAATG TCAATCGTTA CCACTTTTCA ACCAGTCGTC 7500 TAACTCCCGA TCGCAGCCCT CTTTCTGAGC CAATTCTCTC AAAAATTCCT GATGATGAGT 7560 ATGGTGGATC CCATTGACCA GACTTTCATA GTAAACCTCA AAATAGGGAA GTCTCAGGTC 7620 TTTAGCCAGC TGCAATTCAG CTGCTACATC GTAGTCTACC CGTCGGAAGT CCATATCTAC 7680 CAGGCCTTTG TCATCAAACT CCAAAATCAT ATACTGGGCC CGCAAGTCCT TCCGTAGCTG 7740 AGCGTCCAAA AAGAAAGGTT GGCCAATCGA ACCCGGATTG ACAATCAATT GCCCACCAGT 7800 CCCGTAACGA AGCAACTGCT GGTGAATATG TCCATAAACA GCAATATCAC AGGGAGGATG 7860 AGTCACCAAG CGGTCAAACT CCTCTTGTTT GCCAGTATGA ATCAACTCTC GCCCCCAGTT 7920 CTTATCAGGC AGATGATGGC TAATTCCCAC CGTCAAATCC CCAAACTGAC GATGAATTTG 7980 AAGAGGTTGA TTGTGGAGCA CTTCAATTTC TTCTAGGGAA ATTTCCTCTA AAACATACTG 8040 GCACTGGCGC AAGAGATAGC GTTGACTGGG GCGAGTACTG TCCAATTCCT TACGGACACC 8100 ATGCCAAAGA CTGTCTTCCC AGTTTCCCAA AACTCTAGCC GTAATCGGTA GTTGATCCAA 8160 CAAGTCCAAA ATCCTTCTAC GCCCTGTCCC TGGCATGAGA ATATCTCCCA AAAGCCAGTA 8220 TTCATCCACT CCTATCTGCC GAGCATCTGC CAAAACAGCC TCCAAGGCGG TGGTATTTCC 8280 ATGAATATCT GAAAGAAGAG CTATTTTCGT CATATCCATC TCCTCGTTTT TTCTCTTGCA 3340 ATAAGTATAA CATAAAAAGT CACAGCTAGA GAAATCTAGC TTTTTTTGAT ATACTAGATA 8400 AAGATATTAG ACAAGAGGAA ACGAATGACC CCAAACAAAG AAGACTATCT AAAATGTATT 8460 TATGAAATTG GCATAGACCT GCATAAGATT ACCAACAAGG AAATTGCGGC TCGCATGCAA 8520 GTCTCTCCCC CTGCCGTAAC TGAAATGATC AAACGAATGA AAAGTGAAAA TCTCATCCTA 8580 AAGGACAAGG AATGTGGCTA TCTACTGACT GACCTCGGTC TCAAACTGGT CTCTGAGCTC 8640 TATCGTAAGC ACCGCTTGAT TGAAGTTTTT CTAGTTCATC ATTTAGACTA TACAAGTGAC 8700

| CAGATTCACG | AGGAAGCTGA   | GGTCTTGGAA | CACACTGTCT | CTGACCTGTT   | CGTGGAAAGA | 8760  |
|------------|--------------|------------|------------|--------------|------------|-------|
| CTAGATAAAC | TGCTAGGTTT   | CCCTAAAACC | TGCCCCCACG | GGGGAACTAT   | TCCTGCCAAG | 8820  |
| GGAGAACTAC | TCGTTGAAAT   | CAATAACCTC | CCACTAGCTG | ATATCAAGGA   | AGCTGGCGCC | 8880  |
| TACCGCCTGA | CTCGGGTGCA   | CGATAGTTTT | GACATTCTCC | ATTATCTGGA   | CAAGCACTCA | 8940  |
| CTTCACATCG | GTGACCAGCT   | CCAAGTCAAG | CAGTTTGATG | GCTTCAGCAA   | TACCTTCACT | 9000  |
| ATCCTCAGTA | ACGACGAGGA   | TTTACAAGTG | AATATGGACA | TTGCAAAACA   | ACTCTATGTC | 9060  |
| GAGAAAATCA | ACTAATTTCT   | CAAGTCCCCT | ACCAACCCTG | AAAGTTTTAT   | TTTGGCTCTT | 9120  |
| TGTCAACTGT | AGTGGGTTGA   | AGTCAGCTAA | GCTCGAGAAA | GGACAAATTT   | TGTCCTTTCT | 9180  |
| TTTTTGATAT | TCAGAGCGAT   | AAAAATCCGT | TTTTTGAAGT | TTTCAAAGTT   | CCGAAAACCA | 9240  |
| AAGGCATTGC | GCTTGATAAG   | TTTGATGAGA | TTATTGGTCG | CTTCCAGTTT   | GGCATTAGAA | 9300  |
| TAGTGTAGTT | GAAGGGCGTT   | GACAATCTTT | TCTTTATCTT | TGAGGAAGGT   | TTTAAAGACA | 9360  |
| GTCTGAAAAA | TAGGATGAAC   | CTGCTTTAGA | TTGTCCTCAA | TGAGTCCGAA   | AAATTTCTCC | 9420  |
| GGTTTCTTAT | TCTGAAAGTG   | AAACAGCAAG | AGTTGATAGA | GCTGATAGTG   | GTGTTTCAAG | 9480  |
| TCTTGTGAAT | AGCTCAAAAG   | CTTGTCTAAA | ATCTCTTTAT | TGGTTAAGTG   | CATACGAAAA | 9540  |
| GTAGGACGAT | AAAATCGCTT   | ATCACTCAGT | TTACGGCTAT | CCTGTTGTAT   | GAGCTTCCAG | 9600  |
| TAGCGCTTGA | TAGCCTTGTA   | TTCATGGGAT | TTTCGATCCA | ATTGGTTCAT   | AATTTGAACA | 9660  |
| CGCACACGAC | TCATAGCACG   | GCTAAGATGT | TGTACAATGT | ĞAAAĞCGATC   | CAACACGATT | 9720  |
| TTAGCATTCG | GGAGTGAAAC   | AGTCTGGGAG | ACTGTTTCAG | CCTGAGCCTA   | GAAATTTGAA | 9780  |
| AGCGAAGCTG | TTTAGCCAAG   | TCATAGTAAG | GACTAAACAT | ATCCATCGTA   | ATGATTTTCA | 9840  |
| CTTGACAACG | AACGGCTCTA   | TCGTAGCGAA | GAAAGTGATT | TCGGATGACA   | GCTTGTGTTC | 9900  |
| TGCCTTCAAG | AACAGTGATA   | ATATTAAGAT | TATCAAAATC | TTGCGCAATG   | AAACTCATCT | 9960  |
| TTCCCTTAGT | GAAGGCATAC   | TCATCCCAAG | ACATAATCTT | TGGAAGCCGA   | GAAAAATCAT | 10020 |
| GCTCAAAGTG | AAAGTCATTG   | AGCTTGCGAA | TGACAGTTGA | AGTTGAAATG   | GCCAGCTGAT | 10080 |
| GGGCAATATC | AGTCATAGAA   | ATTTTTTCAA | TTAACTTTTG | AGCAATYTTT   | TGGTTGATGA | 10140 |
| TACGAGGGAT | TTGGTGATTT   | TTCTTTACCA | GGGGAGTCTC | AGCAACCATO   | ATTTTTGAAC | 10200 |
| AGTGATAGCA | CTTGAAACGA   | CGCTTTCTAA | GGAGAATTCT | ' AGAAGGCATA | CCAGTCGTTT | 10260 |
| CAAGATAAGO | AATTTTAGAA   | GGTTTTTGA# | AGTCATATTT | CTTCAATTGC   | TTTCCGCACT | 10320 |
| CAGGGCAAG  | A TGGGGCGTCG | TAGTCCAGTT | TGGCGATGAT | TTCCTTGTGT   | GTATCCTTAT | 10380 |
| TGATGATGT  | TAAAATCTGG   | ATATTAGGG1 | CTTTAATGTO | TAGTAATTT    | GTGATAAAAT | 10440 |

| GTAATTGTTC CATATGATTC | TTTCTAATGA | GTTGTTTTGT | CGCTTTTCAT | TATAGGTCAT | 10500 |
|-----------------------|------------|------------|------------|------------|-------|
| ATGGGACTTT TTTTCTACAA | TAAAATAGGC | ТССАТААТАТ | CTATAGTGGA | TTTACCCACT | 10560 |
| ACAAATATTA TAGAACCGTA | AAAATAGAAG | GAGATAGCAG | GTTTTCAAGC | CTGCTATCTT | 10620 |
| TTTTTGATGA CATTCAGGCT | GATACGAAAT | CATAAGAGGT | CTGAAACTAC | TTTCAGAGTA | 10680 |
| GTCTGTTCTA TAAAATATAG | TAGATTGAAA | TAAGATGTGA | ACAACTCTAT | CAGGAAAGTC | 10740 |
| AAATTAATTT ATAGAATTAT | TTTAGCAGTC | AAGGTGTACT | GTTATAGATT | СААТАТАТТА | 10800 |
| TATGACTATT AACCTTGTCT | тстссталал | TTGACTTTCT | TGTTTTCTTA | TCTTGTCCAC | 10860 |
| TCGAAACAAG TATTGTAAGA | ATTTGATTAT | TTTTGAAAGT | ACTTTTAATA | TACTTGATAT | 10920 |
| AGTTAAAAAA GATTTGAAAC | таааттссаа | ATTAGAAAAA | GACTTGAAAT | АСТАААААА  | 10980 |
| AAAAAGTATA CTCTAATTGA | AAACGGTAAC | AAAACTAATT | TAGAGAATGA | AATATAGAGT | 11040 |
| ATTTCTCTCT TAAAAGTTTT | TGGTGAAACG | AGATGTAGAA | AGGAGATTTA | GCCAAAGAGT | 11100 |
| CTATTAGTGC TAGAATAATA | GATTAGAATT | ATTTTAGAAA | AACGAAGTGA | GCAGCTTATA | 11160 |
| AATTCAAGTC CCCAAATAGA | TTCATACTAG | TATCTTTTGC | AAATAAAAA  | GGGCGACTTC | 11220 |
| CTTCATGAAT ATCAATTTCA | TCTATAAGGA | AGGTAGCTAA | TTGAACTAAC | TTATTTATTC | 11280 |
| TGTTTGTCGC TAGAAAAATC | AGACCTCCTT | GTGAAGATTG | AGGAGATACT | TAATGAAAAT | 11340 |
| CAAAGAAGAA ACTAGCAAGC | TAGTAGCAGA | TTGCCCAAAA | CACCGCTTTG | AGGTTGTAGA | 11400 |
| TAAGACTGAC CTATATAATC | CAAGGTGAAG | CGACTGTGGT | TTGAAGAGAT | TTTCAAAGAG | 11460 |
| TATAGGCTAG AGAGTAGTGT | TTTTATGTCC | TTCTAGTAGA | AAATGCTAGA | CAGAAGAATG | 11520 |
| GGGAACTTGG ATAGGAAAAA | TAGATTGAGA | AAGGAGGTTA | GAAGAGATGA | ТТАТТАСААА | 11580 |
| AATTAGCCGT TTAGGAACTT | ATGTGGGAGT | AAATCCACAT | TTTGCAACAT | TAATAGATTT | 11640 |
| TCTAGAAAAA ACAGGACTAG | AAAATTTAAC | AGAAGGTTCG | ATTGCTATCG | ATGGTÄATCG | 11700 |
| ATTGTTTGGG AATTGCTTTA | CTTATCTAGC | AGATGGTCAA | GCAGGGGCTT | TCTTTGAAAC | 11760 |
| CCACCAAAAA TATTTGGATA | TTCATTTAGT | TTTGGAAAAC | GAAGAAGCCA | TGGCTGTTAC | 11820 |
| ATCGCCGGAA AATGTAAGCG | TTACCCAAGA | ATATGATGAA | GAGAAAGATA | TTGAATTATA | 11880 |
| CACAGGGAAA GTGGAACAGT | TGGTTCATTT | GAGAGCTGGC | GAATGCCTCA | TCACTTTTCC | 11940 |
| AGAAGATTTA CATCAACCCA | AGGTTCGTAT | AAATGATGAA | CCTGTGAAAA | AAGTTGTCTT | 12000 |
| TAAAGTTGCG ATTTCTTAAT | GTAGAAAGAG | AAGAACGATG | AAAAAAATGA | GAAAGTTTTT | 12060 |
| ATGTCTAGCT GGAATTGCGC | TAGCGGCTGT | TGCCTTGGTA | GCTTGTTCAG | GAAAAAAAGA | 12120 |
| AGCTACAACT AGTACTGAAC | CACCAACAGA | ATTATCTGGT | GAGATTACAA | TGTGGCACTC | 12180 |
| CTTTACTCAA GGACCCCGTT | TAGAAAGTAT | TCAAAAATCA | GCAGATGCTT | TCATGCAAAA | 12240 |

165

GCATCCAAAA ACGAAAATCA AGATTGAAAC ATTTTCTTGG AATGACTTCT ATACTAAATG 12300 GACTACAGGT TTAGCAAATG GAAATGTGCC AGATATCAGT ACAGCTCTTC CTAACCAAGT 12360 AATGGAAATG GTCAACTCAG ATGCTTTGGT TCCGCTAAAT GATTCTATCA AGCGTATTGG 12420 ACAAGATAAA TTTAACGAAA CTGCCTTAAA TGAAGCAAAA ATCGGAGATG ATTACTACTC 12480 TGTTCCTCTT TATTCACATG CACAAGTCAT GTGGGTTAGA ACAGATTTGT TAAAAGAACA 12540 TAATATTGAG GTTCCTAAAA CTTGGGATCA ACTCTATGAA GCTTCTAAAA AATTGAAAGA 12600 AGCTGGAGTT TATGGCTTGT CTGTTCCGTT TGGAACAAAT GACTTAATGG CAACACGTTT 12660 CTTGAACTTC TACGTACGTA rTGGTGGAGG AAGCCTCTTA ACAAAAGATC TTAAAGCAGA 12720 CTTGACAAGC CAACTTGCTC AAGATGGTAT TAAATACTGG GTTAAATTGT ATAAAGAAAT 12780 CTCACCTCAA GATTCTTTGA ACTTTAATGT CCTTCAACAA GCTACCTTGT TCTATCAAGG 12840 AAAAACAGCA TTTGACTTTA ACTCTGGCTT CCATATCGGA GGAATTAATG CCAACAGTCC 12900 TCAATTGATT GATTCGATTG ATGCTTATCC TATTCCAAAA ATCAAAGAGT CTGATAAAGA 12960 CCAAGGAATT GAAACCTCAA ACATTCCAAT GGTTGTTTGG AAAAATTCAA AACATCCAGA 13020 AGTTGCTAAA GCATTCTTAG AAGCACTTTA TAATGAAGAA GACTACGTTA AATTCCTTGA 13080 TTCAACTCCA GTAGGTATGT TGCCAACTAT TAAGGGGATT AGCGATTCTG CAGCCTATAA 13140 AGAAAATGAA ACTCGTAAGA AATTTAAACA TGCTGAAGAA GTAATTACTG AAGCTGTTAA 13200 AAAAGGTACT GCTATTGGTT ATCAAAATGG GCCAAGTGTA CAAGCTGGTA TGTTGACTAA 13260 CCAACACATT ATTGAACAAA TGTTCCAAGA TATCATTACA AATGGAACAG ATCCTATGAA 13320 AGCAGCAAAA GAAGCAGAAA AACAATTAAA TGATTTATTT GAGGCTGTTC AGTAGATGTA 13380 AAAGACTAGA AAATAGGTGG GATAGTGAGC TGAAAAGCTC TAGCCCAATC TTGTAAAAGA 13440 AGGGAGAAGG AGAATGGTTA AAGAACGTAA TTTAACTCGC TGGATATTTG TTTTGCCAGC 13500 TATGATTATC GTAGGATTAC TCTTTGTTTA TCCGTTTTTC TCGAGTATTT TTTATAGCTT 13560 TACCAATAAG CATTTGATTA TGCCTAATTA TAAATTTGTT GGTTTGGCTA ACTATAAAGC 13620 TGTGCTATCA GATCCCAACT TCTTTAATGC GTTCTTTAAT TCAATTAAGT GGACCGTTTT 13680 CTCATTAGTT GGTCAAGTTT TAGTAGGGTT TGTATTGGCT TTAGCTCTTC ACAGAGTACG 13740 CCACTTCAAG AAATTATATA GGACATTATT GATTGTTCCT TGGGCATTTC CTACCATCGT 13800 13860 CGTAAAATTA GGTTTAATGG AACATACACC TGCATTTTTG ACAGATAGTA CATGGGCATT 13920 CCTATGTTTG GTGTTTATCA ACATTTGGTT TGGAGCACCA ATGATTATGG TTAATGTGCT 13980 TTCAGCTTTG CAAACAGTAC CAGAAGAACA ATTTGAGGCT GCTAAGATAG ATGGTGCTTC 14040 AAGTTGGCAG GTGTTCAAGT TTATCGTCTT TCCACATATT AAAGTGGTTG TAGGACTTCT 14100 AGTTGTTTTG AGAACTGTAT GGATCTTTAA TAACTTTGAC ATTATCTACC TCATTACTGG 14160 TGGTGGACCA GCCAATGCTA CAACGACGCT TCCAATTTTT GCTTACAACC TGGGCTGGGG 14220 AACTAAATTG TTGGGTCGTG CTTCAGCAGT TACAGTACTG CTCTTTATCT TCTTGGTGGC 14280 GATTTGCTTT ATCTACTTTG CTATCATCAG TAAGTGGGAA AAGGAGGGTA GAAAATAATG 14340 AAGAAGAAAT CCAGTATTTA TTTAGATATT CTCTCACATG TACTTTTAGT TGGTGCGACC 14400 ATCGTTGCAG TTTTCCCATT GGTATGGATT ATCATATCTT CTGTCAAAGG GAAAGGGGAA 14460 TTAACTCAGT ATCCAACACG ATTTTGGCCT GAACAGTTTA CATTAGATTA TTTCACTCAT 14520 GTTATCAACG ATTTGCACTT CATTGATAAC ATTCGAAACA GTTTAATCAT TGCCTTGGCT 14580 ACAACCCTTA TTGCGATTAT TATTTCTGCT ATGGCAGCCT ATGGTATTGT TCGATTCTTT 14640 CCTAAATTGG GAGCAATCAT GTCGAGACTA CTCGTCATTA CCTACATTTT CCCACCAATT 14700 TTGTTAGCAA TTCCCTATTC AATTGCCATT GCTAAAGTTG GGTTAACAAA TAGTTTATTT 14760 GGCTTGATGA TGGTTTATCT ATCTTTTAGT GTTCCATATG CAGTTTGGCT CTTAGTTGGA 14820 TTTTTCCAAA CAGTTCCAAT TGGAATTGAA GAAGCGGCTA GAATTGATGG TGCAAATAAA 14880 TTTGTTACGT TTTATAAAGT TGTGCTACCG ATTGTAGCAC CAGGTATTGT AGCAACAGCT 14940 ATTTATACAT TTATCAATGC TTGGAATGAA TTCCTGTATG CCTTGATTTT GATTAACAAT 15000 ACAGGAAAGA TGACAGTAGC AGTAGCCCTT CGTTCACTTA ATGGTTCAGA AATACTAGAC 15060 TGGGGAGATA TGATGGCAGC GTCTGTTATT GTAGTTCTTC CATCAATTAT TTTCTTCTCT 15120 ATCATCCAAA ATAAGATTGC AAGTGGATTA TCAGAAGGAT CTGTGAAGTA GACGAAAGAA 15180 GGAAAAAAT GAATAAAAGA GGTCTTTATT CAAAACTAGG AATTTCCGTT GTAGGCATTA 15240 GTCTTTTAAT GGGAGTCCCC ACTTTGATTC ATGCGAATGA ATTAAACTAT GGTCAACTGT 15300 CCATATCTCC TATTTTCAA GGAGGTTCAT ATCAACTGAA CAATAAGAGT ATAGATATCA 15360 GCTCTTTGTT ATTAGATAAA TTGTCTGGAG AGAGTCAGAC AGTAGTAATG AAATTTAAAG 15420 CAGATAAACC AAACTCTCTT CAAGCTTTGT TTGGCCTATC TAATAGTAAA GCAGGCTTTA 15480 AAAATAATTA CTTTTCAATT TTCATGAGAG ATTCTGGTGA GATAGGTGTA GAAATAAGAG 15540

ACGCCCAAAA GGGAATAAAT TATTTATTTT CCAGACCAGC TTCATTATGG GGAAAACATA

AAGGACAGGC AGTTGAAAAT ACACTAGTAT TTGTATCTGA TTCTAAAGAT AAAACATACA

CAATGTATGT TAATGGAATA GAAGTGTTCT CTGAAACAGT TGATACATTT TTGCCAATTT

CAAATATAAA TGGTATAGAT AAGGCAACAC TAGGAGCTGT TAATCGTGAA GGTAAGGAAC

15600

15660

15720

| ATTACCTCGC | AAAAGGAAGT   | ATTGATGAAA   | TCAGTCTATT   | TAACAAAGCA | ATTAGTGATC | 15840 |
|------------|--------------|--------------|--------------|------------|------------|-------|
| AGGAAGTTTC | AACTATTCCC   | TTGTCAAATC   | CATTTCAGTT   | AATTTTCCAA | TCAGGAGATT | 15900 |
| CTACTCAAGC | TAACTATTTT   | AGAATACCGA   | CACTATATAC   | ATTAAGTAGT | GGAAGAGTTC | 15960 |
| ТАТСААСТАТ | TGATGCACGT   | TATGGTGGGA   | CTCATGATTC   | TAAAAGTAAG | ATTAATATTG | 16020 |
| ССАСТТСТТА | TAGTGATGAT   | AATGGGAAAA   | CGTGGAGTGA   | GCCAATTTTT | GCTATGAAGT | 16080 |
| ТТААТGАСТА | TGAGGAGCAG   | TTAGTTTACT   | GGCCACGAGA   | TAATAAATTA | AAGAATAGTC | 16140 |
| aaattagtgg | AAGTGCTTCA   | TTCATAGATT   | CATCCATTGT   | TGAAGATAAA | AAATCTGGGA | 16200 |
| AAACGATATT | ACTAGCTGAT   | GTTATGCCTG   | CGGGTATTGG   | АААТААТААА | GCAAATAAAG | 16260 |
| CCGACTCAGG | TTTTAAAGAA   | ATAAATGGTC   | TTTATTATTA   | AAAACTAAAG | AAGAATGGAG | 16320 |
| ATAACGATTT | CCGTTATACA   | GTTAGAGAAA   | ATGGTGTCGT   | TTATAATGAA | АСААСТААТА | 16380 |
| AACCTACAAA | TTATACTATA   | AATGATAAGT   | ATGAAGTTTT   | GGAGGGAGGA | AAGTCTTTAA | 16440 |
| CAGTCGAACA | ATATTCGGTT   | GATTTTGATA   | GTGGCTCTTT   | AAGAGAAAGG | CATAATGGAA | 16500 |
| AACAGGTTCC | TATGAATGTT   | TTCTACAAAG   | ATTCGTTATT   | TAAAGTGACT | CCTACTAATT | 16560 |
| ATATAGCAAT | GACAACTAGT   | CAGAATAGAG   | GAGAGAGTTG   | GGAACAATTT | AAGTTGTTGC | 16620 |
| CTCCGTTCTT | AGGAGAAAAA   | CATAATGGAA   | CTTACTTATG   | TCCCGGACAA | GGTTTAGCAT | 16680 |
| TAAAATCAAG | TAACAGATTG   | ATTTTTGCAA   | CATATACTAG   | TGGAGAACTA | ACCTATCTCA | 16740 |
| TTTCTGATGA | TAGTGGTCAA   | ACATGGAAGA   | AATCCTCAGC   | TTCAATTCCG | TTTAAAAATG | 16800 |
| CAACAGCAGA | AGCACAAATG   | GTTGAACTGA   | GAGATGGTGT   | GATTAGAACA | TTCTTTAGAA | 16860 |
| CCACTACAGO | TAAGATAGCT   | TATATGACTA   | GTAGAGATTC   | TGGAGAAACA | TGGTCGAAAG | 16920 |
| TTTCGTATAT | TGATGGAATC   | CAACAAACTT   | CATATGGCAC   | ACAAGTATCT | GCAATTAAAT | 16980 |
| ACTCTCAATT | AATTGATGG    | AAAGAAGCAG   | TCATTTTGAG   | TACACCAAAT | TCTAGAAGTG | 17040 |
| GCCGCAAGG  | AGGCCAATTA   | GTTGTCGGTT   | TAGTCAATAA   | AGAAGATGAT | AGTATTGATT | 17100 |
| GGAAATACC  | A CTATGATATI | GATTTGCCTT   | CGTATGGTTA   | TGCCTATTCT | GCGATTACAG | 17160 |
| AATTGCCAA  | A TCATCACATA | GGTGTACTGT   | TTGAAAAATA   | TGATTCGTGG | TCGAGAAATG | 17220 |
| AATTGCATT  | r aagcaatgt/ | GTTCAGTATA   | TAGATTTGGA   | AATTAATGAT | ттаасаааат | 17280 |
| AAAGGAGAA  | A AACATGGTT  | A AATACGGTGT | TGTTGGAACA   | GGGTATTTTC | GAGCTGAATT | 17340 |
| GGCTCGCTA  | C ATGCAAAAG  | A ATGATGGAG  | AGAGATTACT   | CTTCTCTATO | ATCCAGATAA | 17400 |
| TGCAGAGGC  | G ATTGCAGAA  | G AATTGGGAG  | AAAAGTAGCA   | AGTTCCTTAC | ATGAGTTGGT | 17460 |
| TTCTAGCGA  | T GAAGTAGAT  | r gtgttatcg  | r CGCAACTCCA | AATAATCTTC | ATAAGGAACC | 17520 |

168 GGTTATTAAG GCTGCACAGC ATGGTAAAAA TGTTTTCTGT GAAAAACCAA TTGCGCTTTC 17580 TTATCAAGAT TGTCGCGAGA TGGTAGATGC GTGTAAAGAA AACAATGTAA CCTTTATGGC 17640 AGGACATATT ATGAATTTCT TTAATGGTGT TCATCATGCA AAAGAACTCA TTAATCAAGG 17700 AGTTATCGGA GACGTTCTAT ATTGTCATAC AGCTCGTAAT GGTTGGGAAG AACAACAACC 17760 GTCAGTATCA TGGAAAAAA TTCGTGAAAA ATCAGGTGGT CACTTGTATC ACCACATCCA 17820 TGAATTGGAT TGCGTTCAAT TCCTTATGGG GGGCATGCCT GAAACTGTAA CCATGACAGG 17880 TGGAAATGTG GCCCATGAAG GTGAACATTT CGGTGATGAA GATGATATGA TTTTTGTCAA 17940 TATGGAATTT TCTAATAAGC GTTTTGCCTT GTTAGAATGG GGTTCAGCTT ATCGTTGGGG 18000 TGAACATTAT GTCTTAATCC AAGGAAGCAA AGGTGCCATC CGCTTAGACT TATTCAACTG 18060 TAAAGGAACT CTTAAGCTAG ATGGGCAAGA AAGCTATTTC TTGATTCACG AATCGCAAGA 18120 AGAAGATGAT GATCGGACTC GTATCTATCA TAGTACAGAG ATGGATGGAG CAATTGCTTA 18180 TGGTAAACCA GGTAAACGTA CTCCATTATG GCTATCATCT GTCATTGATA AAGAAATGCG 18240 CTATCTGCAT GAGATTATGG AAGGAGCTCC AGTATCAGAA GAATTTGCAA AACTTTTGAC 18300 AGGTGAAGCT GCCCTAGAAG CAATTGCTAC TGCAGATGCT TGTACCCAGT CTATGTTTGA 18360 AGATCGCAAA GTAAAATTGT CAGAAATTGT AAAATAAATT TTGGTATTCT CCTATTTATA 18420 GGTCGACTTG CTCCTCTGAA AGTACTTTTA GAGGAGCTGT TTGACTTTGC TAGTTTTTGA 18480 AACTGAAATC TATTATACTA CAAACTATTG AAAGCGTTTT AATTTTAAGG TATAATAATC 18540 TCATAGAAAT AAAGAAAAGG AGGAAAGAGG ATGCCACAGA TTAGCAAAGA AGCCTTGATT 18600 GAGCAAATCA AAGATGGAAT CATCGTTTCT TGTCAGGCTC TTCCTCATGA ACCGCTTTAT 18660 ACAGAAGCGG GAGGGGTGAT TCCCTTGCTG GTCAAAGCGG CTGAGCAAGG TGGAGCAGTC 18720 GGTATCCGAG CAAACAGTGT TCGCGATATC AAGGAAATTA AGGAAGTCAC TAAACTTCCA 18780 ATCATTGGGA TTATCAAACG TGATTATCCA CCTCAGGAAC CCTTCATCAC GGCTACTATG 18840 AAAGAAGTTG ATGAATTGGC AGAACTGGAC ATCGAGGTGA TTGCTCTGGA TTGTACCAAG 18900 CGTGAACGCT ACGATGGTTT GGAAATTCAA GAGTTCATTC GTCAGGTTAA GGAGAAATAT 18960 CCTAATCAGC TTTTGATGGC TGATACTAGT ATCTTCGAAG AAGGGCTAGC AGCTGTAGAA 19020 GCAGGAATTG ACTTTGTCGG AACAACCTTA TCAGGCTACA CATCCTACAG TCCAAAAGTA 19080 GACGGTCCAG ATTTTGAATT GATTAAGAAA CTCTGTGATG CTGGTGTAGA TGTCATTGCA 19140 GAAGGAAAAA TTCATACACC AGAACAAGCC AAACAAATCC TTGAATATGG AGTGCGAGGC 19200 ATCGTTGTTG GTGGCGCCAT TACTAGACCA AAAGAGATTA CAGAACGCTT CGTTGCTAGT 19260 CTTAAATAAG ATGTGAGGGG GAGTTTTATG TTTAAAGTTT TACAAAAAGT TGGAAAAGCT 19320

| TTTATGTTAC | CTATAGCTAT         | ACTTCCTGCA | GCAGGTCTAC | TTTTGGGGAT | TGGTGGTGCA | 19380 |
|------------|--------------------|------------|------------|------------|------------|-------|
| CTTTCAAACC | CAACCACGAT         | AGCAACTTAT | CCAATACTAG | ACAATAGTAT | TTTTCAATCA | 19440 |
| ATATTCCAAG | TAATGAGCTC         | TGCAGGAGAG | GTTGTATTCA | GTAATTTGTC | ACTACTTCTC | 19500 |
| TGTGTGGGAT | TATGTATTGG         | CTTAGCGAAA | CGAGATAAAG | GAACCGCTGC | GTTAGCAGGA | 19560 |
| GTAACTGGTT | ACTTAGTTAT         | GACTGCAACG | ATCAAAGCTT | TGGTAAAACT | TTTTATGGCA | 19620 |
| GAAGGATCTG | CAATTGATAC         | TGGAGTTATT | GGAGCATTAG | TTGTCGGAAT | AGTTGCCGTA | 19680 |
| TATTTGCACA | ACCGATATAA         | CAATATTCAA | TTACCTTCCG | CTTTAGGATT | CTTTGGAGGT | 19740 |
| TCACGCTTCG | TTCCTATTGT         | TACATCGTTC | TCTTCTATCT | TGATTGGCTT | TGTCTTCTTT | 19800 |
| GTTATTTGGC | CACCTTTCCA         | ACAACTTCTT | GTTTCTACAG | GTGGATATAT | TTCTCAGGCG | 19860 |
| GGTCCAATTG | GAACTTTTCT         | ATATGGATTT | TTAATGAGAC | TTTCTGGAGC | AGTAGGCTTA | 19920 |
| CATCATATAA | TTTACCCTAT         | GTTTTGGTAT | ACTGAACTTG | GTGGTGTTGA | AACTGTTGCA | 19980 |
| GGACAAACAG | TGGTTGGAGC         | тсаааааата | TTTTTTGCTC | AATTAGCCGA | TTTGGCCCAT | 20040 |
| TCTGGATTAT | TTACAGAAGG         | AACAAGGTTT | TTTGCAGGTC | GTTTCTCAAC | AATGATGTTC | 20100 |
| GGTTTACCGG | CTGCCTGTTT         | AGCGATGTAC | CATAGTGTTC | CTAAAAATCG | TCGTAAAAA  | 20160 |
| TACGCGGGTT | TGTTTTTTGG         | AGTTGCTTTA | ACATCTTTTA | TTACCGGTAT | TACAGAACCA | 20220 |
| ATTGAATTTA | TGTTTCTATT         | CGTCAGTCCG | GTTCTATATG | TTGTTCACGC | ATTCCTTGAT | 20280 |
| GGTGTTAGCT | <u>vCrrrvvrrGC</u> | AGACCTCTTA | AATATTTCAA | TAGGAAACAC | ATTTTCAGGA | 20340 |
| GGTGTAATCG | ATTTCACTTT         | ATTTGGAATT | TTGCAGGGGA | ACGCTAAGAC | GAATTGGGTT | 20400 |
| CTTCAGATTC | CATTTGGACT         | TATTTGGAGT | GTTTTGTATT | ATATTATTTT | TAGATGGTTC | 20460 |
| ATTACTCAAT | TCAACGTTCT         | AACGCCAGGG | CGAGGAGAAG | AAGTAGATTC | TAAAGAAATT | 20520 |
| TCTGAATCCG | CAGATTCAAC         | TTCAAATACT | GCAGATTATT | TAAAACAGGA | TAGCCTACAA | 20580 |
| ATTATCAGAG | CCTTGGGTGG         | ATCAAATAAT | ATAGAAGATG | TAGATGCTTG | TGTGACACGT | 20640 |
| TTACGTGTAG | CTGTAAAAGA         | AGTTAATCAA | GTTGATAAAG | CACTTTTAAA | ACAAATTGGT | 20700 |
| GCAGTTGATG | TCTTAGAAGT         | GAAGGGTGGC | ATTCAAGCAA | TCTATGGAGC | AAAAGCAATC | 20760 |
| ТТАТАТАААА | ATAGTATTAA         | TGAAATTTTA | GGTGTAGATG | ATTAAGTACT | TACTGACTTA | 20820 |
| ATAAAAAACA | GAGGAGAGTG         | ATGGATGAGT | AGGATGAAAT | GAAATCGCAT | ACAAGAAATA | 20880 |
| AAGAACTCAT | TATCCAAGTT         | GGATACGCTT | ATTACATAGG | AGAATACAAA | TGAAATTTAG | 20940 |
| AAAATTAGCT | TGTACAGTAC         | TTGCGGGTGC | TGCGGTTCTT | GGTCTTGCTG | CTTGTGGCAA | 21000 |
| TTCTGGCGGA | AGTAAAGATG         | CTGCCAAATC | AGGTGGTGAC | GGTGCCAAAA | CAGAAATCAC | 21060 |

TTGGTGGGCA TTCCCAGTAT TTACCCAAGA AAAAACTGGT GACGGTGTTG GAACTTATGA 21120 AAAATCAATC ATCGAAGCGT TTGAAAAAGC AAACCCAGAT ATAAAAGTGA AATTGGAAAC 21180 CATCGACTTC AAGTCAGGTC CTGAAAAAAT CACAACAGCC ATCGAAGCAG GAACAGCTCC 21240 AGACGTACTC TTTGATGCAC CAGGACGTAT CATCCAATAC GGTAAAAACG GTAAATTGGC 21300 TGAGTTGAAT GACCTCTTCA CAGATGAATT TGTTAAAGAT GTCAACAATG AAAACATCGT 21360 ACAAGCAAGT AAAGCTGGAG ACAAGGCTTA TATGTATCCG ATTAGTTCTG CCCCATTCTA 21420 CATGGCAATG AACAAGAAAA TGTTAGAAGA TGCTGGAGTA GCAAACCTTG TAAAAGAAGG 21480 TTGGACAACT GATGATTTTG AAAAAGTATT GAAAGCACTT AAAGACAAGG GTTACACACC 21540 AGGTTCATTG TTCAGTTCTG GTCAAGGGGG AGACCAAGGA ACACGTGCCT TTATCTCTAA 21600 CCTTTATAGC GGTTCTGTAA CAGATGAAAA AGTTAGCAAA TATACAACTG ATGATCCTAA 21660 ATTCGTCAAA GGTCTTGAAA AAGCAACTAG CTGGATTAAA GACAATTTGA TCAATAATGG 21720 TTCACAATTT GACGGTGGGG CAGATATCCA AAACTTTGCC AACGGTCAAA CATCTTACAC 21780 AATCCTTTGG GCACCAGCTC AAAATGGTAT CCAAGCTAAA CTTTTAGAAG CAAGTAAGGT 21840 AGAAGTGGTA GAAGTACCAT TCCCATCAGA CGAAGGTAAG CCAGCTCTTG 'AGTACCTTGT 21900 AAACGGGTTT GCAGTATTCA ACAATAAAGA CGACAAGAAA GTCGCTGCAT CTAAGAAATT 21960 CATCCAGTTT ATCGCAGATG ACAAGGAGTG GGGACCTAAA GACGTAGTTC GTACAGGTGC 22020 TTTCCCAGTC CGTACTTCAT TTGGAAAACT TTATGAAGAC AAACGCATGG AAACAATCAG 22080 CGGCTGGACT CAATACTACT CACCATACTA CAACACTATT GATGGATTTG CTGAAATGAG 22140 AACACTTTGG TTCCCAATGT TGCAATCTGT ATCAAATGGT GACGAAAAAC CAGCAGATGC 22200 TTTGAAAGCC TTCACTGAAA AAGCGAACGA AACAATCAAA AAAGCTATGA AACAATAGTC 22260 CTTAGTTATT CTATAAAAAG TAGTTTTTTA AAGAACCTAA GAGTGTATAC CCCCTTTTCC 22320 CTCTACACAG ATAGTGTAAG AAAAGGGGGC TTTTGTTTAA AATGTAAGAA ACTGTCACGA 22380 AATTAAAATG AAGTTCTTAC ATAAGCGAAT CATAAAAAAT TTCATTTTGA TTTTAAAACA 22440 GTTCAAGAAA GTCAAAAAAT TATTCTATTT GAAAGAGAGG TGCCGACTGT GAAAGTCAAT 22500 AAAATCCGTA TGCGGGAAAC AGTGATTTCC TACGCTTTCC TAGCACCAGT ATTATTCTTC 22560 TTTGTCATCT TTGTGTTGGC TCCGATGGTG ATGGGCTTCA TTACAAGTTT CTTTAACTAC 22620 TCAATGACTA AATTTGAGTT TGTAGGCTTG GATAACTATA TCCGTATGTT TAAAGATCCT 22680 GTCTTTACAA AATCTCTGAT TAACACAGTT ATTTTGGTTA TTGGATCTGT ACCAGTTGTT 22740 GTTCTATTCT CACTCTTTGT AGCATCTCAG ACCTATCATC AAAATGTCAT TGCCAGATCC 22800 TTCTACCGTT TCGTCTTCTT CCTTCCTGTT GTAACGGGTA GTGTTGCCGT GACAGTTGTT 22860

| TGGAAATGGA | TTTATGACCC                                                                                                                                                                                                                                                                                                       | ACTATCAGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | АТТСТАААСТ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TTGTCCTTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GTCCAGCCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATCATCAGCC | AAAACATTTC                                                                                                                                                                                                                                                                                                       | TTGGTTGGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GATAAAAACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GGGCATTGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GGCGATTATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ATTATTCTCT | TGACCACTTC                                                                                                                                                                                                                                                                                                       | AGTTGGTCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCCATCATCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TTTATATCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TGCCATGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AATATTGACA | ATTCACTGGT                                                                                                                                                                                                                                                                                                       | TGAAGCGGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CGTGTTGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GTGCAACTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GTTTCAAGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TTTTGGAAGA | TTAAATGGCC                                                                                                                                                                                                                                                                                                       | AAGCCTTCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCAACAACTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TTTATATTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AATCATCACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ACAATTAACT | CATTCCAGTG                                                                                                                                                                                                                                                                                                       | TTTCGCCTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATTCAGCTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TGACATCTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TGGTCCAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TACTCAACAA | GTACCTTGAT                                                                                                                                                                                                                                                                                                       | GTACTACCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TACGAAAAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CCTTCCAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GACAGAATAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GGCTATGCCA | ACACAATTGG                                                                                                                                                                                                                                                                                                       | TGTCTTCTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GCAGTCATGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TTGCTATCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AAGCTTTGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CAATTTAAAG | TACTTGGAAA                                                                                                                                                                                                                                                                                                       | CGACGTAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TACTAAAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGGAGACAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TATGCAATCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ACAGAAAAAA | AACCATTAAC                                                                                                                                                                                                                                                                                                       | AGCCTTTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GTTATTTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAATCATTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTCTTGTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ACTGTGCTGT | TCATCTTTCC                                                                                                                                                                                                                                                                                                       | ATTCTACTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATTTTGACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GGGCATTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATCACAACCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GATACAATTG | TTATTCCTCC                                                                                                                                                                                                                                                                                                       | TCAGTGGTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCTAAAATGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAACCATGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AAACTTCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CAACTCATGG | TGCAGAACCC                                                                                                                                                                                                                                                                                                       | TGCCTTGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TGGATGTGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACTCAGTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TATCTCATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GTAACCATGT | TCTTAGTTTG                                                                                                                                                                                                                                                                                                       | TGCAACCTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TCTCTAGCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GTTATGTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GGCTAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CGTTTCTATG | GTCAACGCAT                                                                                                                                                                                                                                                                                                       | TCTATTTGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATCTTTATCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CTGCTATGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTTCCAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CAAGTTGTCC | TTGTACCATT                                                                                                                                                                                                                                                                                                       | GGTACGTATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GTCAACTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TGGGAATCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TGATACTCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TCCGCAGTTA | TCTTGCCTTT                                                                                                                                                                                                                                                                                                       | GATTGGATGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCATTCGGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TCTTCCTCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GAAACAGTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AGTGAAAATA | TCCCTACAGA                                                                                                                                                                                                                                                                                                       | GTTGCTTGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TCAGCTAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TCGACGGTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TGGTGAGATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CGTACCTTCT | GGAGTGTAGC                                                                                                                                                                                                                                                                                                       | CTTCCCGATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GTGAAACCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GGTTTGCAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCTTGCAATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TTTACCTTCA | TCAATACTTG                                                                                                                                                                                                                                                                                                       | GAATGACTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTCATGCAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TGGTAATGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GACTTCACGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AACAATTTGA | CCATCTCACT                                                                                                                                                                                                                                                                                                       | TGGGGTTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACCATGCAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CTGAAATGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AACCAACTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GGTTTGATTA | TGGCAGGAGC                                                                                                                                                                                                                                                                                                       | TGCCCTTGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GCTGTTCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TCGTCACAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CTTCCTAGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ТТССАААААТ | CCTTCACACA                                                                                                                                                                                                                                                                                                       | GGGTATTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATGGGAGCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TCAAAGGATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATACTCTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AAAATCTCTT | CAAACTACGT                                                                                                                                                                                                                                                                                                       | CAGCTTCACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTGCCATACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TAAGTATTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CTGCGGTTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CTTCCTAGTT | TGTTCTTCAA                                                                                                                                                                                                                                                                                                       | TTTTCATTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GTATAGGAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATCAATCTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CAAGATACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AAGTATATTT | TATAGATTTA                                                                                                                                                                                                                                                                                                       | GAGAATATAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AGGTTATAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TGTCTACAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATGGAGGGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TGCAGTTACT | TTATGAAGTT                                                                                                                                                                                                                                                                                                       | TTGTCAGACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CTTATAAACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TAAGAATGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TTTAGTTAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TATCAGAAAC | GAAGGAAAGA                                                                                                                                                                                                                                                                                                       | GTATGATTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TGACGATTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AAAAACATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCTTTTACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AGGGATTCAT | CCTAATTTAG                                                                                                                                                                                                                                                                                                       | ACAAGGCTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CGACTATCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TACCAACATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GTAAGGATTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | ATCATCAGCC ATTATTCTCT AATATTGACA TTTTGGAAGA ACAATTAACT TACTCAACAA GGCTATGCCA CAATTTAAAG ACAGAAAAAA ACTGTGCTGT GATACATTG CAACTCATGG GTAACCATGT CGTATCTATG CAAGTTGTCC TCGCAGTTA AGTGAAAATA CGTACCTTCT TTTACCTTCA AACAATTTGA GGTTTGATTA TCCAAAAAT AAAATCTCTT CTTCCTAGTT AAGTATATTT TGCAGTTACT TGCAGTTACT TTCCAAAAAC | ATCATCAGCC AAAACATTTC ATTATTCTCT TGACCACTTC AATATTGACA ATTCACTGGT TTTTGGAAGA TTAAATGGCC ACAATTAACT CATTCCAGTG TACTCAACAA GTACCTTGAT GGCTATGCCA ACACAATTGG CAATTAAAG TACTTGGAAA ACAGAAAAAA AACCATTAACC GATACAATTG TTATTCCTCC GAACTCATGG TGCAGAACCC GTAACCATGT TCTTAGTTTG CGTTTCTATG GTCAACGCAT ACAGAAAAAA TCCCTACAGA CGTACCTTCT GGAGTGTAGC TTACCTTCA TCAATACTTG AACAATTGA TCCTACAGA CGTTTCTATG GGAGTGTAGC TTTACCTTCA TCAATACTTG AACAATTTGA CCTTCACAGA CGTTTGATTA TCCTCACACA AAAATCTCT TCAAACACT CAAACTCTCA TCAATACCTT CAAACTCTCA TCAAACACAC AAAATCTCT TATAGATTTA AAGTATATTT TATAGATTTA TGCAGTTACCT TTATGAAGTT TATCAGAAAC GAAGGAAAGA | ATCATCAGCC AAAACATTC TTGGTTGGAA ATTATTCTCT TGACCACTTC AGTTGGTCAG AATATTGACA ATTCACTGGT TGAAGCGGCG TTTTGGAAGA TTAAATGGCC AAGCCTTCTT ACCAATTAACT CATTCCAGTG TTTCGCCTTG TACTCAACAA GTACCTTGAT GTACTACTT GGCTATGCCA ACCAATTGG TGTCTTCTG CAATTTAAAG TACTTGGAAA CGACGTAGAA ACCATTACC TCATCTTCC ATTCTACTG GATACAATTG TCATCTTCC TCAGTGGTTC CAACTCATG TGCAGAACCC TGCCTTGCAA GTAACCATG TCTTAGTTTG TGCAACCTCA CGTTTCTATG GTCAACGCAT TCTATTTGCT CAAGTTGTCC TTGTACCATT GGTACCTAC CGTACCATTA TCTTGCCTTT GATTGGATGG AGTGAAAAAA TCCCTACAGA GTTGCTTGAA CGTACCATTC TCAGATGTTG GAATGATAC CGTACCTTC GGAGTGTAGC CTTCCCGATT TTTACCTTCA TCAATACTTG GAATGACTAC CGTTTGATTA TGCCTTC TGGGGTTGCC GGTTTGATTA TGCCACCT TGGGGTTGCC CTTCCAAAAAT CCTTCACACA GGGTATTACT AAAATCTCTT CAAACACTT GGGGTTGCC CTTCCTAGTT TGTCACACA GGGTATTACC CTTCCTAGTT TGTTCTCAA TTTTCATTGA AAGTATATTT TATAGATTTA GAGAATATAG TGCAGTTACT TTATGAAGTT TTGTCAGACA TTTCCAGAAAC GAAGGAAAGA GTATGATTTT | ATCATCAGCC AAAACATTC TTGGTTGGGA GATAAAACT  ATTATTCTCT TGACCACTTC AGTTGGTCAG CCCATCATCC  AATATTGACA ATTCACTGGT TGAAGCGGCG CGTGTTGATG  TTTTGGAAGA TTAAATGGCC AAGCCTTCTT CCAACAACTC  ACAATTAACT CATTCCAGTG TTTCGCCTTG ATTCAGCTTT  TACTCAACAA GTACCTTGAT GTACTACCTT TACGAAAAAG  GGCTATGCCA ACACAATTGG TGTCTTCTTG GCAGTCATGA  ACAGAAAAAA AACCATTAAC AGCCTTTACT GTAATTCAA  ACTGTGCTGT TCATCTTCC ATTCACTGG ATTTTGACAG  GATACAATTG TTATTCCTCC TCAGTGGTTC CCTAAAAATGC  CAACTCATGG TGCAGAACCC TGCCTTGCAA TGGATCTGGA  GGTAACCATGT TCTTAGTTTG TGCAACCTCA TCTCTAGCAG  GGTACCATGT TCTTAGCTTT GGTACGTATC GTCAACCTCA  TCCGCAGTTA TCTTGCCTTT GATTGGCT GTCAACCTCA  AGGGAAAAAA TCCCTACAGA GTTGCTTGAA TCAGCTGAA  AGGGAAAAATA TCCCTACAGA GTTGCTTGAA TCAGCTAAAA  CGTACCTTCT GGAGTGTAGC CTTCCCGATT GTGAAACCAG  GTTACCTTCA TCAATACTTG GAATGACTAC TCATGCAGT  AACAATTTGA CCATCACTA TGGGGTTGCG ACCATGCAGG  GGTTTGATTA TCGCAGAACCC TGCCCTTGCT GCTGAAACCAG  GTTTGATTA TCGCAGAACCC TGCCCTTGCT GCTGAAACCAG  CTTCCCAAAAAT CCCTACACA GTTCCCGATT GTGAAACCAG  GGTTTGATTA TGGCAGGAGC TGCCCTTGCT GCTGTCCAA  AACAATTTGA CCATCACT TGGGGTTGCG ACCATGCAGG  GGTTTGATTA TGGCAGGAGC TGCCCTTGCT TTGCCATACT  TTCCAAAAAT CCTTCACACA GGGTATTACT ATGGGAGCGG  AAAATCTCTT CAAACCACA GGGTATTACC TTGGCAATACT  CTTCCTAGTT TGTTCTCAA TTTTCATTGA GTATAGGAAA  AAGTATATTT TATAGAATTTA GAGAATATAG AGGTTATAAG  TGCAGTTACT TTATGAAGTT TTGTCCAGCA CTTATAAACTT  TATCCAGAAAC GAAGGAAAGA GTATGATTT TGACCATTTG | ATCATCAGCC AAAACATTC TTGGTTGGGA GATAAAAACT GGGCATTGAT ATTATTCTCT TGACCACTTC AGTTGGTCAG CCCATCATCC TTTATATCGC AATATTGACA ATTCACTGGT TGAAGCGGCG CGTGTTGATG GTGCAACTGA TTTTGGAAGA TTAAATGGCC AAGCCTTCTT CCAACAACTC TTTATATTGC ACAATTAACT CATTCCAGTG TTTCGCCTTG ATTCAGCATTT TGACATCTGG TACTCAACAA GTACCTTGAT GTACTACCTT TACGAAAAAG CCTTCCAATT GGCTATGCCA ACACAATTGG TGTCTTCTTC GCAGTCATGA TTGCTATCGT CAATTTAAAG TACTTGGAAA CGACGTAGAA TACTAAAGAA AGGAGACAGC ACAGAAAAAA AACCATTAAC AGCCTTTACT GTTATTTCAA CAATCATTTT ACTGTGCTGT TCATCTTCC ATTCTACTGG ATTTTGACAG GGGCATTCAA GATACAATTG TTATTCCTCC TCAGTGGTTC CCTAAAATGC CAACCATGGA CAACTCATGG TGCAGAACCC TGCCTTGCAA TGGATGTGGA ACTCAGTATT CGTTCTATG GTCAACACCT TCTATTTGCT ATCTTATCG GTTATTTATC CGTTTCTATG GTCAACACCT TCTATTTGCT ATCTTTATCG CTGCTATGGC CAAGTTGTCC TTGTACCATT GGTACGTAC GTCAACTCA TGGGAATCCA TCGCCAGTTA TCTTGCCTTT GATTGGATG CAATCCAGTG TCTTCCTCAT AGTGAAAAAA TCCCTACAGA GTTGCTTGAA TCAGCTAAAA TCGACGGTTG CGTACCTTCT GGAGTGTAG CTTCCCGATT GTGAAACCAG GGTTTGCAGC TTTACCTTCA TCAATACTTG GAATGACTAC TTCATGCAG GTTTGCAGC TTTACCTTCA TCAATACTTG GAATGACTAC TTCATGCAG GTTTGCAGT TTTACCTTCA TCAATACTTG GAATGACTAC TTCATGCAGT TGGTAATGTT AACAATTTGA CCATCTCACT TGGGGTTGCG ACCATGCAG CTGAAATGGC GGTTTGATTA TGGCAGGAC TGCCCTTGCT GCTGTTCCAA TCGTCACAGT TTCCAAAAAT CCTTCACCA GGGTTTCCC TTCATGCAAT TGGTAATGTC TTCCAAAAAT CCTTCACCA GGGTATTACT ATGGGAGCG TCAAAGGATA AAAATCTCTT CAAACACGT CAGCTTCACC TTGCCATACT TAAGGAATGGC CTTCCAAAAAT CCTTCACCA GGGTATTACT ATGGGAGCG TCAAAGGATA AAAATCTCTT CAAACTACGT CAGCTTCACC TTGCCATACT TAAGGAATATGC CTTCCTAGTT TGTTCTCAA TTTTCATTGA GTATAGGAA ATCAATCTAT AAGAATATTT TATAGAATTA GAGAATATAG AGGTTATAAG TGTCTACAAA TGCAGTTACT TTATGAAGTT TTGTCCACAC CTTTATAAACT TAAGAATCACT TACCAGAAAC GAAGGAAAG GTATGACTAC TTAATAACT TAAGAATCACT TACCAGAAAC GAAGGAAAG GTATGACTAT TAAGAATCTAT TATGCAGTACT TTATGAAGTT TTGTCCACAC CTTTATAAACT TAAGAATCTCT | ATCATCAGCA ATCATCAGCA ATCATCAGCA ATCATCAGCA ATCATCAGCA ATTATCTCT TGACCACTTC AGTTGGTCAG CCCATCATCC TTTATATCCC TGACCACTTC AGTTGGTCAG CCCATCATCC TTTATATCCC TGCCATGGGG ATTATTGACA ATTCACTGGT TGAACCGGCC CGTGTTGATG GTGCAACTGA GTTTCAAGTT TTTTGGAAGA TTAAATGGCC AAGCCTTCTT CCAACAACTT TTAAATTGC ACACTTCAGTG TTTCGCCTTG TTACCACTCT TGACCACTCT TACGAAAAAA AACCATTACC ATTCTACTCA ACACTTACCA ACACTCACAC ACACTCACT |

172 TTTCGAATTA GGAAAGTATG ATATTGATGG AGATAAAGTC TTTCTAGTTG TTCAGGAAAA 24660 TGTCCTCAAT CAAGCTGAAA ATGATCAATT TGAGTATCAT AAGAACTATG CAGATTTGCA 24720 TTTGCTGGTA GAAGGACATG AATATTCGAG CTACGGTTCA CGTATCAAAG ACGAGGCAGT 24780 AGCATTCGAC GAAGCGAGTG ACATTGGCTT TGTTCATTGT CATGAACACT ACCCACTCTT 24840 GTTGGGTTAT CACAATTTTG CGATTTTCTT CCCAGGTGAG CCACATCAGC CAAATGGTTA 24900 TGCAGGCATG GAAGAAAAGG TTCGAAAATA TCTCTTTAAA ATTTTGATTG ATTAAAAATA 24960 GGATGAATTG TTTTTTGTA AAGCTTTGAT AATACTCTAC CATGAAATTG ATCTTTGTGA 25020 GGTAGAGAAA TGAGAATAAA ATATTTAAAA ATTGGTATCT TCTAAGTATG CTGCAAGAGC 25080 TAGTTTCTTA GATGGACAGG GGATTACAGT TGATGAGATG GCTTGGATAA TTAGGGGCAT 25140 TGTGAATGCA TTGATTGGTA GATACATAAA ATTAGGTACT TATGCGGCTA AGTATGGTAT 25200 TAGTATGGCA CGCTCGATCT TAAGTAGGGT AGCTGCAACT GCAGCAGCAA GAGTAGGATT 25260 ACTGACCAAG ATTTCTGGAT GGATTTTACG AGTAGCTGTG AATGTAGCTG ATGTATATGG 25320 TAATTTTGCC AACAATATTG CTGCAGCTTG GGATGCATAT GATAAAATTC CTAACAATGG 25380 TCGTATAAAC TTTTAAAATG CGAGAATGAA AGCACTTTGT ATTTTTTAT TGAATATGTT 25440 AGCTTGGACA GTGCTTGCAA TGATAATTCG TGGAGGGCTA GATGGATTTG ATAGGCATAC 25500 TTGGAGTACT ATTTTAATTG CGTCGCTGTT CGGGGTATAT GATTATAAGC CCATAGATAA 25560 AAATAGAAAA AAGTCCAAAA GAAAAAATAG ATTTGTTCAT GGTAGGGACT TATGAAAGCT 25620 TTACTGACAA AAAAGAAAAC AGTTTACAAA GAAAAATGAT GGAGGAGCAA ACATGGCACA 25680 AAAAGGAGTA AGCCTTATCA AGGCAGCATT TGATACAGAT AACTTTCTCA TGCGTTTTAG 25740 TGAGAAGGTC TTGGACATCG TGACAGCCAA TCTTCTTTTT GTCGTCTCTT GTTTACCCAT 25800 CGTGACGATT GGAGTGGCTA AAATCAGCCT CTACGAGACC ATGTTCGAAG TTAAGAAGAG 25860 CAGACGGGTG CCTGTTTTTA AAATCTATCT AAGATCTTTC AAGCAAAATC TGAAACTAGG 25920 TCTTCAGCTG GGTTTAATGG AGTTAGGAAT TGTGTTTCTT ACCCTTTCAG ATCTCTATCT 25980 TTTCTGGGGT CAAACAGCTC TGCCCTTCCA ATTGCTGAAA GCCATTTGTT TAGGTATTCT 26040 GATTTTTCTT ACTATCGTGA TGCTGGCTAG TTACCCTATC GCGGCACGTT ATGACCTATC 26100 TTGGAAAGAA ATTCTTCAAA AAGGATTGAT GTTGGCTAGT TTTAACTTTC CTTGGTTCTT 26160 CCTCATGTTA GCCATTCTTG TCCTCATTGT GATGGTTCTT TATCTGTCCG CCTTCAGTCT 26220 ACTCTTAGGT GGCTCAGTCT TCCTACTTTT TGGGTTTGGA CTATTGGTCT TTATCCAGAC 26280 TGGATTGATG GAGAAAATT TCGCAAAATA CCAATAGGAG CTTTATTTCT GAAACTACTT 26340 TCAAAGGCTC CAAACGCTAT TCTATAAGCG AGAAACTAAA ATCGG 26385

173

## (2) INFORMATION FOR SEQ ID NO: 4:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2716 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

| CCTGCCCGCA | TTGCCCTAGG | CATTAAGTAA | АСАТАТАААА | GCATGTGAGA | GACTGTTGGA | 60   |
|------------|------------|------------|------------|------------|------------|------|
| AAAGCGAGGA | AATTTCCCCT | CTTTTCCTCT | AGTCTCTCCT | TTCTTTTGCT | GATTTTATTC | 120  |
| AAAGAAAATG | ATATAATAGT | AGTTATGGAG | AAAAAGAAAT | TACGCATCAA | TATGTTGAGT | 180  |
| TCAAGTGAGA | AAGTAGCAGG | ACAGGGAGTT | TCAGGTGCTT | ACCGTGAATT | AGTTCGTCTT | 240  |
| CTTCACCGTG | CTGCCAAGGA | CCAATTGATT | GTTACAGAAA | ATCTTCCAAT | CGAGGCAGAT | 300  |
| GTGACTCACT | TTCATACGAT | TGATTTTCCC | TATTATTAT  | CAACCTTCCA | AAAGAAACGC | 360  |
| TCAGGGAGAA | AGATTGGCTA | TGTGCATTTC | TTGCCAGCTA | CACTTGAGGG | AAGTTTGAAA | 420  |
| ATTCCATTTT | TCTTAAAGGG | AATTGTGAAA | CGCTATGTAT | тттсттттта | CAACCGGATG | 480  |
| GAGCACTTGG | TTGTGGTCAA | TCCTATGTTT | ATTGAGGATT | TGGTAGCAGC | TGGTATTCCA | 540  |
| CGTGAAAAAG | TGACCTATAT | TCCTAACTTT | GTCAACAAGG | AAAAATGGCA | TCCTCTACCA | 600  |
| CAAGAAGAGG | TAGTCAGACT | GCGCACAGAT | CTTGGTCTTA | ĞTĞACAATCA | GTTTATCGTA | 660  |
| GTAGGTGCTG | GGCAAGTTCA | GAAACGTAAA | GGGATTGATG | ACTTTATCCG | TCTGGCTGAG | 720  |
| GAATTGCCTC | AGATTACCTT | TATCTGGGCT | GGTGGCTTCT | CTTTTGGTGG | TATGACAGAT | 780  |
| GGTTATGAAC | ACTATAAGAA | AATTATGGAA | ААТСССССТА | AAAATTTGAT | TTTTCCAGGC | 840  |
| ATTGTATCGC | CAGAGCGGAT | GCGCGAATTG | TATGCTCTAG | CGGATCTTTT | CTTGTTGCCT | 900  |
| AGTTACAATG | AGCTCTTTCC | TATGACTATT | TTAGAAGCTG | CGAGTTGTGA | GGCTCCTATT | 960  |
| ATGTTGCGTG | ATTTAGATCT | CTATAAGGTG | ATTTTGGAGG | GAAATTATCG | GGCGACAGCG | 1020 |
| GGTAGAGAAG | AGATGAAAGA | GGCTATTTTG | GAATATCAAG | CAAATCCTGC | TGTCTTAAAA | 1080 |
| GATCTCAAAG | AAAAGGCTAA | GAATATTTCC | AGAGAGTATT | CTGAAGAGCA | TCTGTTACAA | 1140 |
| ATCTGGTTGG | ACTTTTATGA | GAAACAAGCC | GCTTTAGGGA | GAAAGTAAAA | AGTGAGGTAA | 1200 |
| TCTATGCGAZ | TTGGTTTATT | TACAGATACC | TATTTTCCTC | AGGTTTCTGG | TGTTGCGACC | 1260 |
| AGTATTCGA  | CCTTGAAAAC | AGAACTTGAA | AAGCAGGGAC | ATGCTGTTTT | TATCTTTACG | 1320 |
| ACGACAGATA | AGGATGTCAA | TCGCTACGAA | GATTGGCAAA | TTATCCGCAT | TCCAAGTGTT | 1380 |

PCT/US97/19588 WO 98/18931

| CCTTTCTTTG | CTTTTAAGGA | TCGTCGCTTT | 174<br>GCCTACCGAG | GTTTTAGCAA | GGCACTTGAA | 1440 |
|------------|------------|------------|-------------------|------------|------------|------|
| ATTGCTAAAC | AGTATCAGCT | AGATATTATC | CATACTCAGA        | CAGAATTTTC | TCTTGGCCTG | 1500 |
| PTGGGGATTT | GGATTGCGCG | TGAATTGAAA | ATTCCAGTCA        | тссатасста | TCACACCCAG | 1560 |
| FATGAAGACT | ATGTCCATTA | TATTGCTAAG | GGGATGTTGA        | TCCGGCCGAG | TATGGTCAAG | 1620 |
| PATCTGGTTA | GAGGTTTCCT | GCATGATGTG | GATGGGGTTA        | TTTGCCCTAG | TGAGATTGTC | 1680 |
| CGTGACTTGC | татстдатта | TAAGGTCAAG | GTTGAAAAAC        | GGGTCATTCC | TACTGGGATT | 1740 |
| GAATTAGCCA | AGTTTGAGCG | TCCGGAAATC | AAGCAGGAAA        | ATTTGAAAGA | ACTGCGTAGT | 1800 |
| AAACTAGGGA | TTCAAGATGG | TGAAAAGACG | TTGCTTAGTC        | TTTCGAGAAT | CTCCTATGAA | 1860 |
| AAAAATATTC | AAGCAGTTTT | AGCAGCCTTT | GCTGATGTTC        | TGAAAGAGGA | AGACAAGGTT | 1920 |
| AAACTGGTAG | TAGCTGGGGA | TGGCCCTTAT | CTGAATGACC        | TCAAAGAGCA | AGCCCAGAAC | 1980 |
| CTAGAGATTC | AAGACTCAGT | CATCTTTACA | GGGATGATTG        | CTCCTAGTGA | GACGGCTCTT | 2040 |
| TACTATAAAG | CGGCGGATTT | CTTCATTTCG | GCATCGACAA        | GCGAAACGCA | AGGTTTGACC | 2100 |
| TACTTGGAAA | GCTTAGCCAG | TGGAACACCT | GTCATTGCTC        | ACGGAAATCC | TTATTTGAAC | 2160 |
| AACCTCATCA | GTGATAAAAT | GTTTGGAACC | TTGTACTATG        | GAGAACATGA | TTTGGCTGGT | 2220 |
| GCTATTTTGG | AAGCCCTGAT | TGCAACACCA | GACATGAACG        | AGCATACCTT | ATCAGAGAAA | 2280 |
| TTGTATGAGA | TTTCAGCTGA | GAACTTTGGG | AAACGAGTGC        | ATGAGTTTTA | TCTGGATGCC | 2340 |
| АТТАТТТСАА | ATAACTTCCA | GAAAGATTTG | GCTAAAGATG        | ATACGGTCAG | TCAGCGTATC | 2400 |
| TTTAAGACAG | TTTTGTATCT | TCAGCAACAG | GTGGTTGCTG        | TACCTGTAAA | AGGATCTAGA | 2460 |
| CGCATGTTGA | AGGCTTCAAA | AACACAGTTG | ATCAGTATGA        | GAGACTATTG | GAAAGACCAT | 2520 |
| GAAGAATAGA | AAGAGGAACA | GCTATGAAAA | AAACAATTAA        | TGAGAAGCGG | TCGTGATAAA | 2580 |
| AAGATTGCGG | GTGTTTGTGC | TGGGGTGGCC | CATTATCTGG        | ATATGGATCC | GACTATCGTT | 2640 |
| CAAGTCATTT | GGGGTGTTCT | TACTTGCTGT | TACGGAGCTG        | GAATTGTAGC | TTACATTATT | 2700 |
| TTATGGATTA | TCGCGA     |            |                   |            |            | 2716 |

## (2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 13926 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CTTTGGTTTT GCCTTATTCA AGACATGAGG GCCATCAGGA ATGATCTGAA ACTGCGAATC

where the state of  $\mathcal{T}_{\mathcal{T}}$ 

| TGTTAACAGT | CTATGGAGAG | CTTTCATAGA | ACTAAGATTC | GGTTTATCTT | TGCTGCCACA | 120  |
|------------|------------|------------|------------|------------|------------|------|
| AATTAGTAAG | GTTGGATAAG | GGTAAGTTCC | TGCTATATCC | GTTAAATCAA | GTGTCTTCAA | 180  |
| CTCCTCAGAA | ACTCCGACCA | TAAGAGTCTT | GTCTGCTCCC | TGTTTTTCAA | ATACTCTTTT | 240  |
| GGGAAGTAGT | TTAAAAATCA | GCAATTGAAG | ATAAAATAGG | ATATTCCCTG | CTAATTTAAG | 300  |
| CGGGCATCCT | GACAGAATCA | AAGCTCGAAG | ATTTGGTAAA | TCGTAACTGG | AAAGTTCTAG | 360  |
| TGTCAGGGCA | GCACCTAAGG | ACAATCCAAT | CAAAACAAAA | GGTTCTGTCT | CTTGAGCTAG | 420  |
| GTGCTGATAA | ACTCGCTCTT | TAGCTTGTTG | ATAGTTACTA | ACTCCAGAAG | GAAATAACTC | 480  |
| GATAGCCTCA | GAAGGATAAT | CTGTCAGTAG | ATTCCGAACT | TCTTTCCAAG | ACTCTGCTGA | 540  |
| CTGCCCTAAC | CCATGCAAAA | АТАТТААТТТ | CATCTAGTTC | TCCTCAAGGC | ттааттсата | 600  |
| CAAGCCTCTC | ACTGCATTAC | AGCCGTAAAT | AGCTTCTGCT | TGGGTTAAAT | CTGCCAAGGT | 660  |
| CAAGACTTTC | TCTTCTACCT | GTCCTGTTTC | TAGCAAATGC | TGACGGTAAA | TTCCTGGCAA | 720  |
| GATTCCAAGT | CGGATAGGCG | GTGTGTAGAG | TTTTCCAGCG | ATTTTCAGAA | CCAAATTTCC | 780  |
| TATAGAGGTT | TCAAGCAGTT | CTCCTGACTT | ATTGTGGTAA | ATCTTCTCTT | GTTCTCCTAG | 840  |
| GCTCAAATGC | GGTCGGTGAG | TGGTTTTAAA | GTAGGTAAAG | GATTGATTCA | AAGCAGCTTC | 900  |
| CTGAAGACAG | ACTTGGGCCT | GACAAAAGCT | TGTACTGAGA | GGGGTTAATA | CTTGACGATT | 960  |
| GACTTCTATC | TCTCCAGATT | TGCTAAGGCT | GATTCGCAAG | CGGTAATCTC | GATTAGCTTC | 1020 |
| ACAATCCTGA | CACTCTTCCT | CAATCTTGTG | TCCCAAGTCT | TCTGCATCAA | MAGGAAAAGC | 1080 |
| AAAATAACGA | CTAGCTTTTC | TCAGCCTTTC | CAGATGTTGT | TCTTCAAACA | TCAGTTGTTT | 1140 |
| TTGGCTGATT | TTTCCAGTTG | TAATTAATTG | GAAGCGAGCT | TGTTTACGAT | AGAGAACTGC | 1200 |
| TGCCTTTTGA | TGAACCTCTC | GGTATTCAGA | TTCCCATGTG | CTATCCCAAG | TAATCCCTCC | 1260 |
| GCCAACTCCA | TAAATGGCTT | GACCTTTGTG | AAGTTGAATG | GTACGAATGG | CCACATTAAA | 1320 |
| AATCCGTCGT | CCATTTGGAA | GCAAGAGACC | AATCGTTCCA | CAGTAGACTC | CACGCGGTTG | 1380 |
| AGGCTCCAAG | TCCTTGATAA | TCTCCATTGT | CGCAATTTTC | GGTGCACCCG | TTATGGAACC | 1440 |
| ACAAGGAAAG | AGTGAGCGGA | AGATTTCAAC | AAGGTCCACA | TCCTCTCGCA | ACTGACTCTT | 1500 |
| GATGGTCGAA | GTCATCTGCC | AAACAGTTGA | ATACTGCTCT | ACCTGACACA | GACGCTCCAC | 1560 |
| GTGCTCGCTC | CCAACTTCAG | AAATACGGTT | CATATCATTG | CGCAAGAGGT | CCACAATCAT | 1620 |
| CATATTTTCA | GAGCGATTTT | TGGGATCCTG | TTCCAACCAA | CTGGCCTGTT | CAAGATCTTC | 1680 |
| TTGGTCAGTT | ACCCCACGCT | GAGTCGTCCC | CTTCATTGGT | CGTGTTGTCA | ACTCGCGATC | 1740 |
| ATTTTGCTCA | AAAAAGAGCT | CTGGGCTCAT | GGAAATCACT | GTCATCTCGT | CATGTTCCAC | 1800 |

176 ATAGGCATTG TAGCCCGCCT CCTGCTCTAC CACCATACGA TTGTAGATGG CAAAAGGATT 1860 1920 GGCATTTAAC TTTTGCTTAA GTTGGACGGT GTAGTTGACC TGATAGGTAT CTCCCTGCCG TAAATGATGG TGAATTTGGG CAATGGCCTT TTCATAGTCT GCTGCAGACG TTACTTCCTG 1980 CCAATTTGAG GGCAAATCAA TATCCTCATA AGTCAGAGGA ATAGGGGAAG TTTCTACGAT 2040 ATCATGAACA GTAAAGTAAA GCAGGTACTC TCCCAGTAGG GGATCCTTGT GAACTGCTAA 2100 TTTTTCCTCA AAAGCAGGTG CAGCCTCGTA GCTGACATAC CCCACCACAT AATAACCTTG 2160 CTCTTGGTAG CTTTCCACTT GTGCCAGCAA ATCTGCCACT TCTTCTACAT TTCTCGTTTT 2220 CAACTCTTTA ATAGGCTGGG TAAAGGTATA TCTCTCCCCC AAAGTCCTAA AATCAATCAC 2280 TGTTTTCTA TGCATACCTT AAGTATAGCA TAAAATAAGA AAACCCTCAT CCGCAAAGCA 2340 GATGAGAGAT TTCAATTATT TAAAGATTGA AGTTTTAAAG CTATTTGTTT GTTGAAGAAG 2400 TTTCTTATAA ACAGCTTCTT TTAATTTAAC TGTATTATTC ATAGATACTG TTTTATTACC 2460 GTTTGCTTCT TGTTTAAGAG TTTCGGCATC TTTTTTAACA GCTTCTTTAA ACAATGTCAG 2520 TAAATCATCG TATGATGAAA CGGAAGAACC ATTTACTTCG AATGTTGTTA ATCCTTTCGT 2580 TGCTTTATCT TTAACTTCTT TGAAGTAAGC TTTTTTAAAT TCTTCAATAG TATTAAATGT 2640 ATTGTTAGAT ATTTTCTTGA TAATATATTC ATCACTTAGA ACAGACTCAC CATCTGTTTT 2700 AGATTGTTGT TTATATTTAT TTGAAGCATA ACCTAAGAAC CCATTTTCGT ATCCGTAGTA 2760 ACCCCATAAT CTAAAAGCAT TATGTTTGAA TGAAACAGCT CCAGGAGCAC CTTTACTAGT 2820 ATTACCTCCG TAGATACCGG TCATCATTCT AACACCTACA TAAGGTGATT GATCGTTATA 2880 GCTAATTGCT TCGGGTTTAT AGATACCATT ACCTGGATTG CGATTAGTCA TTAATTGTTG 2940 ATCAACTAAA TCATTAACAG ATTGAATATT TAATTCATTT TTCTCTTCTT GACTTAGATT 3000 TCGAATTTTA TCCCATTGAT TTAATTTATT GTTATCACGG TATTCTCTAT CTATTTTTTT 3060 GAACCATGCA CTATTTAAAT CTTTATTTTG TTGAGAAATC ACAGATTCAG CCTCAATTTC 3120 ATCAAGAAGA GTTAAAGTGT CATTATAACC CTTCATATAT CTATTAATAT CTTCTCGTGT 3180 TTTTAGAGTT TTTGGATCTG TAATATACCA CTGATTCCCA TCATTTTTGC GTTTAAATAC 3240 CATATTAATA CCTAAAGAAC CAAACTCATC AAATCCACTA CCAGTAACAG GAGTTTGTAG 3300 CATACCCTGA GCATATGCTT CAGCATCAGT ACCTTCACGG TGTCCAAAGC CACCTAAGTA 3360 AATCGCACGG TCGTTGACGT GTGTTGTTTC ATGTGTGTAA ACTGAAATAC CGTATTCACC 3420 AACCATTTCT AAATGAACAT ATTTTACATC AGTTCTAATA TCATCAGAGT TAGGATATAT 3480 AGCAGCATAA GCTCCTGTTC CATTATAATT ATAATACTTA TCCATAGGAC CAAAGAATTC 3540 TCTAAGAGGA GTATATACTT TGTCGGTATT ATAGCGGCCA TATTTTTCAA CCCATCCACC 3600

| AGGAGCGTTA | TAACCTTCCC | AAATAGGAAT | AACAGCATCT | CTTAGTAGTC | GTTGTTTAAC  | 3660 |
|------------|------------|------------|------------|------------|-------------|------|
| GTTATCAGAC | GCTAGACGAT | ACCAGAAATC | ATAATAGTTT | CTATAACCAT | CTGCAGCTTT  | 3720 |
| GTTAACGATA | ТСТТТААТАТ | CTTCTAATGA | TTTTTTACCT | AATCGCTCTG | CACTACCAAA  | 3780 |
| GGCAATTGCA | TTATAATTTG | ATAAATTAAA | AAGATGTGCT | TTATCAATAT | TCAGTAGTGG  | 3840 |
| GAGTATAGTA | TTTCTAAGGT | GACTTCGTTT | TAAATTATCG | AATGCACGAT | GTTTAGAATT  | 3900 |
| TTTAATTTCT | TCGACCTCAG | AAGCGCGTTC | TGCGATGTAG | ACATGGTCTT | CTGTAGCATC  | 3960 |
| AATAAACCAA | TCGTTCATAT | TGTCTATATT | TGTGAACAAT | TGTCTATTAT | AAATTTAAAAA | 4020 |
| TGCATCTAAA | TTACCTGATT | TAGTATATTT | AGCCAATACT | TGACCGAATG | CGTCGAATGT  | 4080 |
| ACGTGAACCT | TTAATGTTGT | TCTCTTTAGA | ACCGATTTCA | ATTAATCTGT | CTAATACGCT  | 4140 |
| AACTTTTTCA | CCATAGAAAT | CTGGTTTGAA | TAGCATTAAT | ТСТТТААТАТ | TAACATCACC  | 4200 |
| АААТТТААСТ | CCATAGTAAC | GATTTAGGTA | AGTTAAACCT | AGTAATAAAG | CTGCTTTGTT  | 4260 |
| TTTCTCGACT | TTATCACGAA | TCATTTGACG | AGCAGCTGGA | GAATCATTTA | GTTGATGTTC  | 4320 |
| TTCGTTTTGA | ACTAATTTTG | TGATTAGGTT | TGTTAAGTTT | TCTTTAACAT | CTGTGAAGCT  | 4380 |
| TTCTTCTAAA | TATAAATCTT | TGATTGCATT | AACTCTATAG | TCACCTAATC | GATTTAGATG  | 4440 |
| CTGATACATC | GTTTGAGACT | GAAGCTCTAC | TGATTCTAAA | ATAGATTTTA | TATCATTAAC  | 4500 |
| AAGAGTAGTG | TTATCTTTTT | GAACGATATT | AGGTGTATAT | ттааттсста | AGTCAGTTAT  | 4560 |
| AGTATATTCT | TTTACATTAC | TTAAACCTTC | ACTGCTAGAA | CACAAGTTAA | AGTAATCTTT  | 4620 |
| TGTACCGTCC | GCATAGTGAA | CAATAATTTT | ATTAGCTTCA | TCTAGGTTTG | TGATAAACTC  | 4680 |
| ATTGTTGTTC | ATCGCGGTAA | CAGAAAGAAC | TTCTTTAGTA | TTTAGATGGT | GTTCTTTATT  | 4740 |
| TAATTTATTA | CCTTGATATA | CAATATAATC | TTTATTGTAG | AATGGTATTA | ATTTTTCAAG  | 4800 |
| ATTTTTATAG | GCTTGGTTAT | ATTCAGCGTT | ATAATCTTGA | ATACTAGAAT | AGGCTTTTTC  | 4860 |
| TTCATTAAGT | TTTGCAAGAG | GAGATAGATC | ACTTTCTAAT | TTATCAGCAG | TAATATTGAA  | 4920 |
| AGTAGTAACT | TTAGCATCAG | CTTGTTCTTT | AGTTAATTTA | GTAAATGTTT | TAGATTTCCT  | 4980 |
| AAATGATCTA | TTACCTGACG | AATATCCCTC | TACCGCATAT | AAATCTTTTA | TATGAGCACT  | 5040 |
| AGCATAATCA | GAATCATCAA | CGTCGTTAGA | GCCGAATAAC | TCCTCTCCAC | GGATAATCTT  | 5100 |
| AGCATAGCTG | ACAGAATTAC | TTACCGTACC | TACAGGCCAA | GTCTTACTTG | CTATTGCTCC  | 5160 |
| AACTTCTACT | GGATTTGAAA | CATCTATTTT | ACCTTTTACA | ACCGACTCAG | TTAGGAGAGC  | 5220 |
| TTTTGTACCA | ATAAGATGGT | CTAGAGTTAA | TCCATAATCT | ACTTTAGGAA | CTAACAAGCT  | 5280 |
| GCCCCTCTT  | TTGTTTCCTG | TAATAGTAGC | ATCAACATAT | GCTTTTCTAA | CAATTCCTCT  | 5340 |

77345 T

| ATAGTTTGTA | CCTGCAATTC | CCCCTGTATG   | AGAGCCATTT | CCACTTGTAG | AGTGTAGTTT | . 5400       |
|------------|------------|--------------|------------|------------|------------|--------------|
| GCCAAAGAAA | GCAACATTTT | CAATACGAGT   | TCCATCATTC | ATATTATTTA | CAAATCCAGC | 5460         |
| AACATTATTA | CGACCTGAAA | GTGTGCCTGT   | AATTTTGACA | TTTGTAATAA | CTGAAGAACC | 5520         |
| TTTCATAGTA | TTGGCTAATG | ATGCAATATT   | ATCTTGACCA | GAACGTTCTA | TCTCTACATT | 5580         |
| TTCAAAATTC | ACATTATTTA | TCGTTGCGTT   | TGTTATCACA | ТТАААТААТС | GATGTTCCAA | 5640         |
| TTCAGTAATA | GCAAATTGTT | TTCCTTCAGA   | ACTTAAAAGT | TTTCCTGTGA | ATTCTTTAGT | 5700         |
| GATATATGAT | TTTCCATTAG | GAACAACATT   | TCTAGCGCTC | ATTGATTGTC | CCAGACGATA | 5760         |
| TTCTTTTGAA | GGATCGTTTT | GAATAGCTTC   | CACTAATTCT | TTGAAATTAT | AATATACATT | 5820         |
| ATCTTCGTGG | ACTTTAGGTT | TTTCAATATA   | GTGAACGTAT | TCTTCTTCAA | ATTTATTATC | 5880         |
| AGCAGTTCTA | GAGACTAAAT | TGTCTGCGAT   | TGCTGTAACT | TTATATACAG | GTGTTCCGTT | 5940         |
| AACCGTAGTT | TCTTCTATAT | TTTTAACAGC   | TAGTAATGTA | GTTTTCTGAT | TATTTGAAGT | 6000         |
| ТАТТТТТААА | TAATAATTGC | TCTTATCATC   | AGGAATAGTT | GTTATCAGTG | ATTCATTAGT | 6060         |
| TTCTTTTCCA | TTTTCGTATT | TGATTAAATC   | TGTACGTTTA | ATATTTTAA  | GCTCAACTTT | 6120         |
| TTTAAGATCT | AATTGAATAT | TTTGATTTTC   | TAGAGTTTCA | GTTTCTTCAC | CGTTACCTCT | 6180         |
| GTCGTAAATC | ATAGTTGTAG | ATAGGGTGTA   | TTCTTTGTAG | TACTCTAGGT | TCTTAAATGC | 6240         |
| AGCGCTTATA | GTTTCTGTTG | TTACCTTGTC   | ATCTGTAAGG | ACTACAGTAT | таатаасттс | <b>63</b> 00 |
| TTCTCCTTTT | TTCAATTCAG | CTGTGATTGA   | TTTGATTTTT | GTTTTGTTTT | GATTTTCTAG | 6360         |
| AGTATACTTA | GCAACAGCTT | CACGTTCCAA   | ТАТТТТСТТА | TCGGTACTAG | TCAATGTTAA | 6420         |
| TATTGGCTTT | TCAGATAATT | CAACCAATTT   | TTCAATAGTT | GCAGTTAATT | TTTCAACAGC | 6480         |
| TTCGTTAACT | TCACTTTGTT | TAGCATCTGT   | ATTAGCTGCA | ACTTTTTCAG | CCTTTGTAAC | 6540         |
| TTCAGTTTGG | AGGTTTTGCC | AACTTCTATC   | ACTGTAATGT | TCTTTTACCT | TTGTTTTTGC | 6600         |
| ATCTGCAATC | GTATTGTTTA | ATTCAGTTTT   | ATCAACGTTT | AGAGCGTCAA | TAGCCGTTTT | 6660         |
| AAGTTTATTT | GTCTCGCTAT | TTACCTCAGG   | CTGTTTTACA | GGCTCTGAAG | CATAGACACC | 6720         |
| TTTTGCAGTT | TCTAAAACAG | GTCCAAGAGC   | ATTGTAACTT | GCTGTAGAAT | AATCAGTAGG | 6780         |
| AGAAACTGAA | CTAGCTTTAT | CAATTTGATT   | АТТТААСТСА | CTTTTATCAA | CTGGTTCTTT | 6840         |
| AGTACCAATA | CCCTTTATTT | TATCTTCTGG   | TTTCGGTGTT | TCCTCTACAG | CCTTCTCTTC | 6900         |
| TTCAGGAACT | TCTGGTTGCT | TTTCTGGCTC   | AACTGGTGCC | GTTGGTGCCT | GTTCGTCTTC | 6960         |
| TCTTGGCGCG | ACTGGTTCAC | : CTGCTTGTTC | AACTTTTGGT | TCCTCTGTTG | GTTCTGTTTG | 7020         |
| TTTTTCTACA | GCAGGCGTTT | CAACTTTTGG   | TTGTTCAATA | GATTGATTAA | CAGTCTCCTC | 7080         |
| TTTTGGTTCT | ACAGTTTCTT | CAGCCTTGGT   | ATCTGGAGTT | GACTCTTCTT | GTTTCGGTGT | 7140         |

PCT/US97/19588

| TTCCTCTACA GCCTTCTCTT CTTCAGGAGC TTCTGGTTGC TTTTCTGGCT CGACTGGTGC | 7200 |
|-------------------------------------------------------------------|------|
| CTTTTCGTCT TCTCTTGGCG CGACTGGTTC ACCTGCTTGT TCAACTTTTG ATTCCTCAGC | 7260 |
| TGGTTTGTCT GATGGTTGAC TTTCTGGCTT AACTGCTACT TTTTCCTCTG GTTTTGACTC | 7320 |
| AACTTCTCCA CCTACTTCTT CAACTGGAGC TGGTTCTGCT GAATCTTCTT TCCCCTCTTC | 7380 |
| TACTTTAGGA AGGGTGTCGT CAGTAGGTTT TACCTCCGAT TTTGGTTCTT CCTTTGGACT | 7440 |
| TTCTTCTGTT TTAGGTGCTT CTTCTTTTGG AGCTTCCTCT GTCTCTACTA CTTGGTTTTC | 7500 |
| TGTCCTAGCT TGCTCCTGAT TTGTTATTGA TTGAGGAGTC TCAACTTCGA CCACAGTCAC | 7560 |
| CTCTCCAGGT TTTGCTGAGG TTTCTTCTAA AACAGTGTCC AAGCCAAGCG TTTTGAGGAT | 7620 |
| GTCACCTGAT AGATAACCAA CATAGCGATA GCCCTCCATT TCAACAACAC CCTCTCGACT | 7680 |
| AGCCAGCGCT AGGGTCGCAA CTGGGTCTAC AGCCCCTGCA CTAGGAAGAA CTACCAATCC | 7740 |
| CATAGCTCCA ACTAGAAAGA CGCTAGCAAT TTTCTTTCTC TTGTAGATTA AAAGCAAGCT | 7800 |
| CCCAACAGTC AGCAAACCAA AAGCTGTCAA AACAGATGCT TCTGTCCCTG TTTGAGGCAA | 7860 |
| CTGATCTTTT TGATACACCA AACCATATAC AACTTCATTC CTGTCAGGCT TTCCTGTCTG | 7920 |
| AATTAAATCT TTAGCTTCTT GTGAAATAAT CTCTTTATTT ACATAGTGAT AGGTGGCTGC | 7980 |
| GTCCACTACA GAAGGAGCCA TCAAAAGGCT TCCAAGAAAT ACAGAGCCTA CAACTCCCTT | 8040 |
| AATCTTACGA ATTGAAAAAC GGTCTTTTTT AAACACTTTT ATCTCCTTTA TTCATTCTCA | 8100 |
| AAACTTCCTA ATAGCATCTT GCGGATAGTG CGCACGCGCA CCTCCGATTA ATTTTGGACG | 8160 |
| ACTAGCCAGT GCCGTTACAT GGGCATGACC AATCTCTCTC AAAATAGGGC GAATCGGAAC | 8220 |
| CTGAACATGC TTGACATGCA TGCCAATTGC AGTGTCTCCG ATATCCAATC CAGCATGAGC | 8280 |
| CTTGATAAAT TCAACCTCAA CTGGATCCTG CATAAACTTA AAGGCTGCCA ACTGCCCCGA | 8340 |
| ACCTCCTGCA TGAAGAGTAG GATGGACACT GACAATTTCC AGACCAAACT GCTCTGCCAC | 8400 |
| CTGACGTTCA ACAACGAGAG CCCGATTGAC ATGCTCACAA CCTTGAACTG CTAAATGGAT | 8460 |
| ACCTCTACTA CCTAGAATAT CCAAGATAGT CTCCACTATC AGCTCACCAA TCTCTTGACT | 8520 |
| GGATTCTTTC CCAATATGAC CACCTAGCAC CTCACTAGAA GATAGACCTA AAACAAAAAG | 8580 |
| GGCCCCCTGC TTCAAATTGG TCTTTTCTAA AACATCTTCC ACTACCTGAC GTGTTTCTCT | 8640 |
| TTGAATCTGT GTCTCGTTCA TCTCTGTTAC CTCTGTTGTC ACTCTTCTAT CATACCGTTT | 8700 |
| TTTCTTGTTT TTAGCAAGAT AGACAACCTA GAAAGTTTGC CCAATTACGC ATAAAACTCC | 8760 |
| CAGAATTGAC TGGGAGTTAG CTAGTTTCTA TTCTATTTAT ATATATTTCA ACTTTCGTCC | 8820 |
| CTTTTTGGGG TCTAGAATCA ATCTTCATAT GGTAATTGGC TCCAAAATGA AGTTTGAGCC | 8880 |

|                   |              |              | 180          |             |              |       |
|-------------------|--------------|--------------|--------------|-------------|--------------|-------|
| GTTGATCGAC        | ATTTTGAAGA   | CCAACTCCCC   | CACGTTTGAG   | TTGACTTTGA  | CTACTATCAC   | 8940  |
| CAGCATCTTG        | GAAGCCAACG   | CCATCATCCT   | CAATACGGAT   | GACCAATCCC  | GAATCCTGTT   | 9000  |
| TCTGGACAGA        | AAGTTTAATA   | TGGCCCTGAC   | CTTCCTTTTC   | CTTAATGCCA  | TGGTAAAGAG   | 9060  |
| CATTTTCTAC        | AAGGGGTTGT   | AGGACCAGCT   | TGGGTAAGAC   | TAAATTATCA  | AAGGCAACAT   | 9120  |
| ТТТСАТТААТ        | TTCGTATTCC   | AGCTTATCTC   | CATAGCGTTG   | TTTCTGGATA  | AAGAGATACT   | 9180  |
| GGCGGACATG        | ATTGATTTCG   | TCAGAGAGAC   | AAATCAAGTC   | CTTGCCTTGA  | TTGAGCGCCA   | 9240  |
| AGCGGAAATA        | GGTTGCCAAG   | GACTTGGTCA   | CCTGCACCAC   | TCGCTGACTA  | TCATGAAATT   | 9300  |
| CAGCCATCCA        | GATGATGGTG   | TCCAAAGTGT   | TATAGAGGAA   | ATGTGGATTA  | ATCTGGCTCG   | 9360  |
| AAAGGGCTTG        | AAGTTGGTAC   | TGACGGGTCG   | TTTCTTCCTG   | GCTACGAATA  | GCTACCATCA   | 9420  |
| ACTGATCAAT        | CTGATCCAAC   | ATAGCATTAA   | ATTGGCGAGT   | TACTTCTCTC  | AGTTCATAGG   | 9480  |
| CACCAACTTC        | CTTGGCACGA   | AGATTTTGAG   | CACCAGAAGC   | AATTTCCAAC  | ATGGTTTCTC   | 9540  |
| TCAAATCCTT        | CAAAGGAGCA   | ATCCAGCGTT   | TAAGACTGAA   | CCACACTAAG  | CAGAGACAGA   | 9600  |
| CAAGAAGAGA        | TGTGACACTG   | GCCCCAAGCA   | AGGTCCACAA   | GAGCTGACTC  | CGAACCTGGT   | 9660  |
| CTAACTTTTC        | CAATGATGAC   | ACGCCAAGCA   | CCGTCCAATC   | AGTTCCTGCA  | ATCTTCTCTT   | 9720  |
| GACTGACGTA        | GGATTTGTGA   | CCAGGAGTAT   | AACCCTGACC   | TGTATCGATG  | TAGGGTTTCA   | 9780  |
| TAGCCTCCAT        | TTTGCTAGAC   | GAACTATAAA   | CTGTGTGTTG   | AGGATGGTAG  | ACAAATTCAT   | 9840  |
| GGTTTTCATT        | GATAATGAAG   | GCAAAGCCCT   | GCTGCCCCAA   | CTGGAGTTGA  | TTGAGATAGG   | 9900  |
| CTTCCAGAGT        | TTCATAAGAA   | ATATCCAAAC   | GAAGCACACC   | AAGATTGGCT  | CCCTTTGCAT   | 9960  |
| CAACAAGTTC        | TTGAGTGACA   | GAAATGACCC   | ACTGACTATO   | TGATTTACGA  | GCTGGAGTCA   | 10020 |
| AAACAGGCAT        | AGCTCCCTGA   | TGAATGGCCT   | TTTGGTACCA   | ATCCTCAGCC  | ATCATATCAG   | 10080 |
| AGGAAGTTTT        | CATCTGCACA   | CTGTCATCTC   | TAGAAATGAC   | CTGACCAGAT  | TTGGTCACCA   | 10140 |
| GCACAACAGT        | TTTCAAGTCC   | TTATCTGACT   | TCAAGATGGT   | CAAAAACAA   | TCTCGGATTC   | 10200 |
| CCTCGACCTT        | GTCTTGACTC   | GGATTCTCAC   | CATAGGCCAG   | AACATCCGT   | TGCTGGGTCA   | 10260 |
| AACCAGTCG         | GGTGGTTTC1   | AGTTTTTTGA   | TATAAGACTO   | AATAAAGTG   | CTAGTCTGGC   | 10320 |
| TGATGGTCGT        | TTGGCTGTTC   | CCCTCAATG    | TGGCCTCAAT   | GGCTGAAGA   | A CTTGATTGAT | 10380 |
| AGTAGAAAG         | TCCAACCAG    | A GCTAGGAGAI | TGAGAAAGAG   | CAGAAAGAT   | G GAAATAACCA | 10440 |
| TTCTAACTA         | A AAGAGAAGA  | A CGCTTCATC  | GTCTTCTCC    | TTCTTAAAC   | r gacgaggtgt | 10500 |
| CACACCTGC         | A ATCTGCTTAL | A AACGTTGGG  | T AAAATAGTTO | ATATCTTCA   | A AACCAACCTT | 10560 |
| CTCTGCGAT         | C TCATAAATC  | r TCAGATCTG  | r agttaaagg  | AAGAGCTTG   | G CTTGTTTAAC | 10620 |
| <b>እ</b> ሮርጥጥሮጥርጥ | r accagataa' | T CCTGAAAAG  | G CAAGCCCAAG | C TCTTTCTTA | A TCAAGGAACT | 10686 |

| 101                                                               |       |
|-------------------------------------------------------------------|-------|
| CAGATAGGTC GGACTAAAAC CTAAGTCACT GGCTAAAGAC TTTAAACTAA ATTGGCTATC | 10740 |
| AGCCAGATGA GACTGGATTT TCTGGGCCAT GTTTCCTTCA AACCTATTAG TCAATAAATC | 10800 |
| TTGTAACTGC TCTTCTTTCT CTTCCTTGTC TAGTTTTTGT TTGATTTTCC CCAACATTTC | 10860 |
| CTCAATATCC TGACGAGAAA AGGGTTTGAG CAGGTAGTCG TCCACACCTA GTTTGACAGC | 10920 |
| AGACAAGGCA TAATCAAAAT CATCGTAACC TGTTAAAAAG ACCAAATGAA CCTGAGGATA | 10980 |
| GGTTTCTCGT ACCAGACTGG CCAACTGGAT GCCATTTAGA TGAGGCATGT TGATATCGGT | 11040 |
| TAAAATGATA TCTGGCACCT GCTTTTGGAT CAATTCCCAA GCCTGCCTTC CATTTTCAGC | 11100 |
| CTGACCGATG ATTTCCATAT CGTAGGCTGC TACATTGACC AGTTTAGTCA AACCTTGTCT | 11160 |
| TACCAGATAT TCATCTTCTA CGATTAAGAT TGTGTAGGTC ATGCTCTGCT CCTTTACCAC | 11220 |
| TTACTAGTAT CAGTATAGCA AAATTCTCCT CTAACTGCTT AGGAAAGACC TCTTATACTC | 11280 |
| AATAAAAATC AAAAAGTAAA CTAGGAAGAT AGCCACAGGT TTCTCAAAGT ACCGCTTTGA | 11340 |
| GGTTGTAAAT AAAACTGACG AAGTCGACTC AAAGTATAGC TTTGAGGTTG TAGATAAAAC | 11400 |
| TGACGAAGTC GATAACCCTA CATACGGTAA GGCGACGCTG ACGTGGTTTG AAGAGATTTT | 11460 |
| CGAAGAGTAT TAATCAACAT AATCTAGTAA ATAAGCGTAC CTTTTTCTTC CATTTGGTCT | 11520 |
| TTGGGAATAA AGCGGATAGA GAGGCTATTG ATACAGTAAC GTAAGCCGCC CTTGTCCTGT | 11580 |
| GGACCATCCG TAAAGACATG CCCAAGGTGA GAATCTCCTA CTCGGCTCCG CACTTCCATA | 11640 |
| CGCGTCATAT TGTAGGACTT ATCTTCCTTG TAGGTGACAA CATCTGGACT GATGGGTTGG | 11700 |
| GTAAAACTAG GCCAGCCACA ACCAGACTCA AATTTGTCTT TTGATGAAAA GAGAGGTTCC | 11760 |
| CCAGTTGCTA TATCCACATA GATACCGGAT TCAAATTTAT CCCAGTAACG GTTTGAGAAA | 11820 |
| GCTCGTTCTG TTTGATTTTC CTGGGTAACT GCATACTCCT CAGGTGACAG GGTCTTTTTC | 11880 |
| AATTCCTCAT CACTTGGTTT TGGATATTTG CTGGCATCAA TGACAGGATA GGCCGCCTGA | 11940 |
| TTAACATTGA TATGGCAGTA GCCATTTGGA TTTTTCTTGA GATAGTCTTG ATGGTAATCC | 12000 |
| TCAGCCACCA CAAAATTCTT CAAGTTTTCC TTTTCAACTG CTAGAGGTTG ATCGTATTTC | 12060 |
| TTAGCCACCT CATCAAAGAC TTGGTTAATC ACTTCCAAAT CCTTGTCATC TGTGTAATAA | 12120 |
| ACACCAGTAC GGTACTGGGT CCCCACATCA TTTCCTTGTT TATTTTTGCT GGTTGGATTG | 12180 |
| ATAATGCGGA AATAGTGAAG CAGGATTTCC TTGAGAGAAA TTTGCTTGGC ATCATAGGTG | 12240 |
| ACATGGACGG TTTCTGCATG ACCTGTTTGG TTAATCAATT CGTACTTGGT TGTTTCTCCT | 12300 |
| CTACCATTTG CATAGCCTGA AACGGCATCC GTCACCCCGG GAACACGTGA GAAATATTCC | 12360 |
| TCCACTCCCC AGAAACAACC TCCAGCTAGA TAAATTTCGT GCAAGTCTGC GTCTTTACTA | 12420 |

182

|             |            |            | 102        |            |            |       |
|-------------|------------|------------|------------|------------|------------|-------|
| ATTTCTGTTT  | TTTTCACTGC | TTTTCCTCCT | TGGCTAACTG | CCGCCTTTTC | AATTTGCGAG | 12480 |
| GCATCTGTCT  | GCCCTGCATT | TCGTATCAAT | AGAACATAGA | AACCGGTTAT | GGCTAGAAAA | 12540 |
| AATACTCCTA  | GCAACAAGAA | GATTTTTAAC | TTATCATTCA | TAAGACGCCT | CCTAGGCTAA | 12600 |
| TTCCTTCAAA  | GTTTGCAAAA | TTGCATCTTT | TTCCATGAAT | CCTGGATGTG | TTTTGACCAG | 12660 |
| CTTGCCTTCT  | TTGTCTATAA | AGGCTTGGGT | TGGGTAAGAA | CGGACACCAT | AAGTTTCCAA | 12720 |
| AAGTTTGCCT  | GATGGGTCAA | CTAGGACTGG | GAGATTTTTA | TAATCCAATC | CCTTATACCA | 12780 |
| ATTCTTAAAG  | TCCGCTTCAG | ATTGCTCTCC | CTTATGTCCT | GGTGACACTA | CTGTCAAGAC | 12840 |
| CACATAGTCA  | TCACCAGCTT | CTTTAGCAAT | CTCATCCGTA | TCTGGAAGAC | TAGCCAGACA | 12900 |
| GATGGAACAC  | CAAGAAGCCC | AGAATTTGAG | ATAGACTTTC | TTGCCCTTGT | AATCAGATAA | 12960 |
| ACGGTAGGTC  | TTGCCATCTA | CTCCCATCAA | TTCAAAATCA | GCCACCTCTT | TCCCTTTAGC | 13020 |
| TGCGCTTGTT  | TTACTAGCTG | TCTGCTCCGT | CTTCATTTCA | TCTTTCGTTT | GGTGTTCACT | 13080 |
| AGTCACGGAC  | TTGCCTGAAC | AAGCCGTCAA | ACAAAGGAGC | GAACCTGCTC | CAAGAACACA | 13140 |
| TGTTTGCCAT  | TTTTTCATAT | TGATATTCCT | TTCCATTTTA | TTCAAATAAT | TGACTTAAAA | 13200 |
| TTGAAGCATT  | TCCAAACAGA | ACCAAGAAGC | CCATCACAAT | AATGAGAAAA | CCACCCACTT | 13260 |
| TTTTGAGGAT  | TCCGAGATAG | GGATGAAGTT | TTCGGAAATG | ТТТСААААСА | TAACTAGAGG | 13320 |
| TCAGAGCTAG  | AAGCAAGAAT | GGTAGCGCCA | AGCCCAGCGT | ATACACCAAC | ATGAGACCAG | 13380 |
| CTCCCTGCCA  | AGCTCCTGAA | CCACCTGAAG | CCGCCAAGGC | CAAAACAGAC | CCCAGAACCG | 13440 |
| GCCCCACGCA  | AGGCGTCCAA | GCAAAACTAA | AGGTCAAGCC | СААТАААААТ | GCCTGACTAT | 13500 |
| AGCCCTTACC  | ATTTTGCCCC | TGTCCTTGCA | GTTGTAGCCT | CTTTTCCTTA | TAAAGCCCCT | 13560 |
| TAAAGTGTAG  | AATCTCCATT | TGGTGCAAAC | CAAGAAGGAT | AATAATTGCC | CCAGTAAGAT | 13620 |
| ATTGGAACCA  | AGAAGCATAA | AGCAAATCGC | СТААААААСС | AGCTCCATAG | CCCAACAAAA | 13680 |
| ТАААТАТАААТ | GGAAATTCCT | GCTATAAAGG | CCAGAGTTCG | таатаааста | GTAACTGAGA | 13740 |
| TTGAAAATTT  | GCCGCTAGAA | GCCTGAGCAC | CATCCTTATC | ATCTAGTAAC | ACTCCTGTAT | 13800 |
| AGACCGGTAA  | CAAAGGTAAG | ATACAAGGAG | AAAAGAAGGA | TAGAATCCCT | GCCAAAAAGA | 13860 |
| CACTTAGAAA  | АААСААААТА | TGACCCATAA | AGTTCCTCCT | ATCATTTAT  | TGATAGATTT | 13920 |
| АТТАТА      |            |            |            |            |            | 13926 |

## (2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20199 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

| CCCAGCAGAA | AAATGGCATT | TGGAGATAAT | GGAAATCGTA   | AAAAAACTAT | GTTTGAGAAA | 60   |
|------------|------------|------------|--------------|------------|------------|------|
| ATAACCTTGT | TTATCGTGAT | TATCATGCTA | GTAGCAAGTT   | TATTGGGAAT | TTTTGCAACT | 120  |
| GCAATTGGTG | CCCTCAGTAA | TCTATAAAAT | AGATTCAAGA   | AAATTTAGTG | ACTGGGATTT | 180  |
| CCCAGCCCTT | TTTTAAAGTG | AGAAGAAATA | ATGAGTATGT   | TTTTAGATAC | AGCTAAGATT | 240  |
| AAGGTCAAGG | CTGGTAATGG | TGGCGATGGT | ATGGTTGCCT   | TTCGTCGTGA | AAAATATGTC | 300  |
| CCTAATGGAG | GCCCTTGGGG | TGGTGATGGT | GGTCGTGGAG   | GCAATGTGGT | CTTCGTTGTA | 360  |
| GACGAAGGAC | TACGTACCTT | GATGGATTTC | CGCTACAATC   | GTCATTTCAA | GGCTGATTCT | 420  |
| GGTGAAAAAG | GGATGACCAA | AGGGATGCAT | GGTCGTGGTG   | CTGAGGACCT | TAGAGTTCGA | 480  |
| GTACCACAAG | GTACGACTGT | TCGTGATGCG | GAGACTGGCA   | AGGTTTTAAC | AGATTTGATT | 540  |
| GAACATGGGC | AAGAATTTAT | CGTTGCCCAC | GGTGGTCGTG   | GTGGACGTGG | AAATATTCGT | 600  |
| TTCGCGACAC | CAAAAAATCC | TGCACCGGAA | ATCTCTGAAA   | ATGGAGAACC | AGGTCAGGAA | 660  |
| CGTGAGTTAC | AATTGGAACT | AAAAATCTTG | GCAGATGTCG   | GTTTAGTAGG | ATTCCCATCT | 720  |
| GTAGGGAAGT | CAACACTTTT | AAGTGTTATT | ACCTCAGCTA   | AGCCTAAAAT | TGGTGCCTAC | 780  |
| CACTTTACCA | CTATTGTACC | AAATTTAGGT | ATGGTTCGCA   | CCCAATCAGG | TGAATCCTTT | 840  |
| GCAGTAGCCG | ACTTGCCAGG | TTTGATTGAA | GGGGCTAGTC   | AAGGTGTTGG | TTTGGGAACT | 900  |
| CAGTTCCTCC | GTCACATCGA | GCGTACACGT | GTTATCCTTC   | ACATCATTGA | TATGTCAGCT | 960  |
| AGCGAGGGCC | GTGATCCATA | TGAGGACTAC | CTAGCTATCA   | ATAAAGAGCT | GGAGTCTTAC | 1020 |
| AATCTTCGCC | TCATGGAGCG | TCCACAGATT | ATTGTAGCTA   | ATAAGATGGA | CATGCCTGAG | 1080 |
| AGTCAGGAAA | ATCTTGAAGA | CTTTAAGAAA | AAATTGGCTG   | AAAATTATGA | TGAATTTGAA | 1140 |
| GAGTTACCAG | CTATCTTCCC | AATTTCTGGA | TTGACCAAGC   | AAGGTCTGGC | AACACTTTTA | 1200 |
| GATGCTACAG | CTGAATTGTT | AGACAAGACA | CCAGAATTT    | TGCTCTACGA | CGAGTCCGAT | 1260 |
| ATGGAAGAAG | AAGCTTACTA | TGGATTTGAC | GAAGAAGAAA   | AAGCCTTTGA | AATTAGTCGT | 1320 |
| GATGACGATG | CGACATGGGT | ACTTTCTGGT | САЛАЛАСТСА   | TGAAACTCTT | TAATATGACC | 1380 |
| AACTTTGATO | GTGATGAAT  | TGTCATGAA  | TTTGCCCGTC   | AGCTTCGTGG | TATGGGGGTT | 1440 |
| GATGAAGCCC | TTCGTGCGCG | TGGAGCTAA  | A GATGGGGATT | TGGTCCGCAT | TGGTAAATTT | 1500 |
| GAGTTTGAAT | TTGTAGACT  | GGAGACTGG  | r atgggagata | AACCGATATC | TTTCCGAGAT | 1560 |
| GCGGATGGT  | ATTTTGTTT  | CGCCGCAGAG | C GTTTGGAATC | AAAAGAAATT | GGAAGAACTA | 1620 |
|            |            |            |              |            |            |      |

| TTTAATCGTC | TCAATCCAAA   | TCGTGCCTTG  | 184<br>AGATTGGCAC | GAACTAAAAA   | GGAAAATCCA   | 1680 |
|------------|--------------|-------------|-------------------|--------------|--------------|------|
| TCTCAGTAAA | GAAGCTAAAA   | AATCCCGTGC  | CTCATCAGAC        | ACGGGATTTT   | GTGGTACGAC   | 1740 |
| AGGCATGTAT | AGCAAACTGA   | ATCTGGAATA  | GCACAGCATA        | TCTTCTAAAA   | TATAGTAAAA   | 1800 |
| TGAAATGAGA | ACAGGACAAA   | TCGATCAGGA  | CAGTAAAATC        | GATTTCTAAC   | AATGTTTTAT   | 1860 |
| AAGCAGAGAT | GTACTATTCT   | AGTTTCAATC  | AACTATATTG        | TTATAAATTG   | ATTTGAATTT   | 1920 |
| СААААТТААА | TTGTTTGATT   | СТТАТТТСАА  | TTTGTTATAG        | TATATCTGAT   | GTCAAAGTTC   | 1980 |
| TCGGCGAGTC | AAATAGCGAT   | TCCCAAGCCT  | GACTATCGTG        | AGGTAGCGGA   | TTAAAATGGT   | 2040 |
| CTGGGGATAG | ACCGTTTTAA   | GTCTGACGCT  | GGAAATAAGA        | ATTGTCAGAA   | GAAGGGATAG   | 2100 |
| CGAAATCGTG | GCTCTACGAA   | CAGGAACGTG  | ATAATAAGGC        | GTATATAGCG   | GATAAGAGGG   | 2160 |
| CATCAAACTC | TAAAGTCCAA   | AAAGGTAGTC  | GTAACCTATA        | TGCGTAAATC   | ACGAGAGTAA   | 2220 |
| TTGAATTCGT | ACTAAGATTT   | TCTATTTTCA  | CTGTAACCTT        | TTAACGCCCT   | TATATCTTGT   | 2280 |
| ATACACGAGG | AAAGATGTAC   | GACTTATCCC  | GTGAGGTCTA        | тсастатала   | GAGAAAACGA   | 2340 |
| CAGATAGAAG | TGATCCTGAG   | TCACGGTTAT  | CTGTCTGATA        | GGACGGTATG   | TATAAAACGC   | 2400 |
| TTCTGTGAAC | TGAGAGAAGG   | GGGAGAAGTT  | CTTGCTAAAA        | TTTAGTTGAA   | CAGCCGTATT   | 2460 |
| CCGATACTTA | GATAAGAGAT   | CTAGTCTTAG  | CTCCTACTCA        | GTTTTAGGGG   | ATAAAAAAGG   | 2520 |
| GGCAATAGCG | ATTCGAGAAA   | GATTATACTO  | TTCGAAAATC        | TCTTCAAATC   | ACGTCAATAT   | 2580 |
| CGCCTTGTCG | TATGTGTAGG   | ATACTGACTA  | CGTCAGTTCC        | ATCTACAACC   | TCAAAACAGT   | 2640 |
| GTTTTGAGCA | ACCTGCGGCT   | AGTTTCCTAG  | TTTGATCTTT        | GATTTTCATT   | GAGTATTAGT   | 2700 |
| AATTCAGTTA | CTAACTCGTC   | AACTCTGATT  | TATCCAATAA        | AATTGAAAAG   | GATGGAAAAA   | 2760 |
| AGGATAAATT | TATGATATAC   | TTTATTTTG   | AGACCTTATI        | AGAAATCTTG   | AAAGAGTATT   | 2820 |
| GAAAACTTAG | AATGAGAAAA   | ATTGTTATCA  | ATGGTGGATT        | ACCACTGCAA   | GGTGAAATCA   | 2880 |
| CTATTAGTG  | TGCTAAAAAT   | AGTGTCGTTC  | CCTTAATTCC        | AGCTATTATO   | TTGGCTGATG   | 2940 |
| ATGTGGTGAG | TTTGGATTG    | GTTCCAGAT!  | A TTTCGGATGT      | AGCCAGTCTI   | GTCGAAATCA   | 3000 |
| TGGAATTGA  | r GGGAGCTACT | GTTAAGCGT   | r ATGACGATG1      | T ATTGGAGATT | GACCCAAGAG   | 3060 |
| GTGTTCAAA  | A TATTCCAATO | CCTTATGGT   | A AAATTAACAC      | TCTTCGTGC#   | TCTTACTATT   | 3120 |
| TTTATGGGA  | G CCTCTTAGG  | CCTTTTGGT   | G AAGCGACAG       | TGGTCTACCO   | GGAGGATGTG   | 3180 |
| ATCTTGGTC  | C TCGTCCGAT  | r GACTTACAC | C TTAAGGCGT"      | TGAAGCTATC   | GGTGCCACTG   | 3240 |
|            |              |             |                   |              | CATGGTGCAA   | 3300 |
| GTATTTACA  | T GGATACGGT  | P AGTGTGGGA | G CAACGATTA       | A TACGATGAT  | r GCTGCGGTTA | 3360 |
| AAGCAAATG  | G TCGTACTAT  | T ATTGAAAAT | G CAGCCCGTG       | A ACCTGAGAT  | r ATTGATGTAG | 3420 |

|   | CTACTCTCTT | GAATAATATG   | GGTGCCCATA  | TCCGTGGGGC | AGGAACTAAT | ATCATCATTA | 3480 |
|---|------------|--------------|-------------|------------|------------|------------|------|
| • | PTGATGGTGT | TGAAAGATTA   | CATGGGACAC  | GTCATCAGGT | GATTCCAGAC | CGCATTGAAG | 3540 |
| , | CTGGAACATA | тататсттта   | GCTGCTGCAG  | TTGGTAAAGG | AATTCGTATA | AATAATGTTC | 3600 |
|   | TTTACGAACA | CCTGGAAGGG   | TTTATTGCTA  | AGTTGGAAGA | AATGGGAGTG | AGAATGACTG | 3660 |
|   | TATCTGAAGA | CAGCATTTTT   | GTCGAGGAAC  | AGTCTAATTT | GAAAGCAATC | AATATTAAGA | 3720 |
|   | CAGCTCCTTA | CCCAGGCTTT   | GCAACTGATT  | TGCAACAACC | GCTTACCCCT | CTTTTACTAA | 3780 |
|   | GAGCGAATGG | TCGTGGTACA   | ATTGTCGATA  | CGATTTACGA | AAAACGTGTA | AATCATGTTT | 3840 |
|   | TTGAACTAGC | AAAGATGGAT   | GCGGATATTT  | CGACAACAAA | TGGTCATATT | TTGTACACGG | 3900 |
|   | GTGGACGTGA | TTTACGTGGG   | GCCAGTGTTA  | AAGCGACCGA | CTTAAGAGCT | GGGGCTGCAC | 3960 |
|   | TAGTCATTGC | TGGGCTTATG   | GCTGAAGGTA  | AAACTGAAAT | TACCAATATC | GAGTTTATCT | 4020 |
|   | TACGTGGTTA | TTCTGATATT   | ATCGAAAAAT  | TACGTAATTT | AGGAGCGGAT | ATTAGACTTG | 4080 |
|   | TTGAGGATTA | AACCGTAGAG   | GTGTTTATGA  | ATATTTGGAC | CAAATTAGCA | ATGTTTTCTT | 4140 |
|   | TTTTTGAAAC | GGATCGCTTG   | TATTTGCGTC  | CTTTCTTTTT | TAGTGATAGT | CAGGACTTCC | 4200 |
|   | GCGAGATAGC | TTCAAATCCA   | GAAAATCTTC  | AATTTATTTT | CCCAACGCAG | GCAAGTCTGG | 4260 |
|   | AAGAAAGTCA | ATATGCACTG   | GCCAATTACT  | TTATGAAGTC | CCCTTTGGGA | GTGTGGGCAA | 4320 |
|   | TTTGTGACCA | GAAAAATCAA   | CAAATGATTG  | GTTCTATTAA | ATTTGAGAAG | TTAGATGAAA | 4380 |
|   | TCAAAAAAGA | AGCTGAGCTT   | GGCTA TTTTT | TGAGAAAAGA | TGCTTGGTCG | CAACCATTTA | 4440 |
|   | TGACAGAGGT | TGTTAGAAAA   | ATTTGTCAGC  | TTTCTTTTGA | GGAATTTGGC | TTAAAACAAT | 4500 |
|   | ТАТТТАТСАТ | TACCCACCTT   | GAAAATAAAG  | CTAGCCAAAG | AGTTGCTCTT | AAGTCTGGAT | 4560 |
|   | TTAGTTTGTT | CCGTCAGTTT   | AAGGGAAGTG  | ATCGTTACAC | AAGAAAAATG | CGGGATTATC | 4620 |
|   | TTGAATTTCG | GTATGTAAAA   | GGAGAGTTCA  | ATGAGTAAGC | ATCAGGAAAT | TCTAAGCTAT | 4680 |
|   | TTGGAGGAAT | TACCAGTAGG   | TAAAAGGGTC  | AGTGTTCGTA | GCATTTCGAA | TCATCTAGGA | 4740 |
|   | GTTAGTGATG | GAACAGCCTA   | TCGGGCTATT  | AAAGAAGCTG | AAAACCGTGG | AATTGTGGAG | 4800 |
|   | ACCCGTCCTA | GAAGTGGAAC   | AATTCGTGTT  | AAATCCCAGA | AAGTTGCTAT | AGAGAGATTA | 4860 |
|   | ACGTTTGCTG | AAATTGCAGA   | AGTGACTTCT  | TCTGAGGTTC | TGGCTGGGCA | AGAAGGTTTA | 4920 |
|   | GAGAGAGAAT | TTAGTAAGTT   | TTCAATTGGT  | GCCATGACTG | AACAAAATAT | CTTGTCTTAC | 4980 |
|   | CTTCATGATG | GGGGGCTCTT   | GATTGTCGGA  | GACCGAACCC | GTATTCAGTT | GCTAGCCTTG | 5040 |
|   | GAAAATGAAA | ATGCAGTTCT   | GGTTACAGGG  | GGATTTCAGG | TTCATGATGA | TGTGCTTAAA | 510  |
|   | СТССССААТС | · AAAAAGGGAT | · ጥርርጥርጥጥርጥ | AGAAGTAAGO | ATGATACCTT | TACCGTCGCG | 5160 |

186 5220 ACCATGATCA ATAAAGCCTT GTCAAATGTC CAAATCAAGA CTGATATTCT GACAGTTGAG AAACTTTATC GCCCTAGTCA TGAGTATGGT TTTCTGAGAG AGACAGATAC AGTTAAAGAT 5280 TATTTGGACT TGGTTCGTAA GAATCGTAGC AGCCGTTTCC CTGTTATCAA TCAACATCAG 5340 GTCGTTGTTG GTGTTGTAAC CATGAGAGAC GCTGGTGATA AATCACCAAG CACGACAATT 5400 GATAAGGTTA TGTCTCGTAG TCTATTTTTG GTTGGATTAT CGACAAATAT TGCCAATGTG 5460 AGTCAACGGA TGATCGCAGA AGACTTTGAA ATGGTACCAG TTGTTCGAAG CAATCAAACT 5520 TTGCTTGGCG TTGTGACGCG ACGAGATGTC ATGGAGAAGA TGAGCCGTTC CCAAGTTTCG 5580 GCTCTACCAA CTTTTTCTGA GCAGATTGGA CAAAAGCTCT CTTATCACCA TGATGAAGTA 5640 GTCATTACAG TGGAACCCTT TATGCTAGAA AAAAATGGAG TTTTGGCTAA TGGTGTATTG 5700 GCAGAAATTC TGACCCACAT GACCCGATTT AGTTGTTAAT AGTGGTCGCA ATCTCATTAT 5760 CGAGCAGATG CTGATCTACT TTTTGCAGGC TGTTCAGATA GATGATATAT TGCGCATTCA 5820 GGCACGGATT ATTCATCATA CGAGACGGTC AGCTATAATT GATTACGATA TTTATCATGG 5880 TCACCAGATT GTTTCAAAAG CAAATGTGAC TGTTAAAATT AATTAGAAAC TAGGAGAAAA 5940 GATGATAACA TTAAAATCAG CTCGTGAAAT CGAAGCTATG GACAAGGCTG GTGATTTTCT 6000 AGCAAGTATT CATATAGGCT TACGTGATTT GATTAAGCCA GGCGTAGATA TGTGGGAAGT 6060 TGAAGAATAT GTCCGCCGTC GTTGTAAAGA AGAAAATTTC CTTCCACTTC AGATTGGGGT 6120 TGACGGTGCC ATGATGGACT ATCCTTATGC TACCTGTTGC TCTCTTAACG ATGAAGTGGC 6180 TCACGCTTTC CCTCGTCATT ATATCTTGAA AGATGGTGAT TTGCTCAAAG TTGATATGGT 6240 TTTGGGAGGT CCCATTGCTA AATCTGACCT AAATGTCTCA AAATTAAACT TCAACAATGT 6300 TGAACAAATG AAAAAATACA CTCAGAGCTA TTCTGGTGGT TTAGCAGACT CATGTTGGGC 6360 TTATGCTGTT GGTACACCGT CCGAAGAAGT CAAAAACTTG ATGGATGTAA CCAAAGAAGC 6420 TATGTACAAG GGTATTGAGC AAGCTGTTGT TGGAAATCGT ATCGGTGATA TCGGTGCGGC 6480 TATTCAAGAA TACGCTGAAA GTCGTGGTTA CGGTGTAGTG CGTGATTTGG TTGGTCATGG 6540 TGTTGGCCCA ACTATGCACG AAGAACCAAT GGTTCCTAAC TATGGTATTG CAGGTCGTGG 6600 ACTCCGTCTT CGTGAAGGAA TGGTCTTAAC CATTGAACCA ATGATCAATA CAGGCGATTG 6660 GGAAATTGAT ACAGATATGA AAACTGGTTG GGCGCATAAG ACCATTGACG GTGGATTGTC 6720 ATGTCAGTAT GAACACCAAT TTGTCATTAC GAAAGATGGA CCTGTTATCT TGACTAGCCA 6780 AGGTGAAGAA GGAACTTATT AATAAAAAGT GAAAAGACTA CTGGAAGTTT ATTTTGATAA 6840 AAAATCCAGT AGATCTTTTC ATAATAAAAC GCATTGTATC AAGTGTTAGG GGCTGATATC 6900 ATGCGTTTTT CTGCTTTTAA GATTTTTTCC AACTCTGTTT GTAAGCGCAT CATAACAAAG 6960

# PCT/US97/19588

WO 98/18931

| GTCTAGGAT TCAGGGCTCT CCTCCTATAT ACTATTAGTA AAGTAAAACT AAGGGAGGAT  | 7020 |
|-------------------------------------------------------------------|------|
| TTTTAGTGT CGCAGTCTAT TGTTCCTGTA GAGATTCCAC AATATTGTCG TTTTGATTCT  | 7080 |
| AAAAAGAGAA ATGGAATTCT GTTTAATGTT CGTATTGCCA ATCTTAAATT TACTTTTTTA | 7140 |
| PATTATACTT CCTGCGAAAC AAAATATGGT ATAGTAGTTC TATGAATGAT GAAGCAAGTA | 7200 |
| AACAACTAAC TGATGCACGA TTTAAGCGTC TTGTTGGTGT TCAGCGTACC ACTTTTGAAG | 7260 |
| AGATGTTAGC TGTATTAAAA ACAGCTTATC AACTTAAACA CGCAAAAGGT GGACGAAAAC | 7320 |
| CTAAATTAAG CCTAGAAGAC CTTCTTATGC CCACTCTTCA ATAGTGCGAG AATATCGAAC | 7380 |
| TTATGAAGAA ATTGCGGCTG ATTTTGGTAT TCACGAAAGC AACTTTATCC GTCGGAGCCA | 7440 |
| ATGGGTTGAA ATAACTCTTG TTCAAAGTGG TTTTACGGTT TCAAGAACTC CTCTCAGTTC | 7500 |
| TGAGGACACG GTAATGATTG ATGCGACGGA AGTAAAAATC AATCGCCCTA AAAAAACAAT | 7560 |
| TAGCGAATGA TTCTGGTAAA AAGAAATTTC ACGCTATGAA GGCTCAAGCG ATTGTCACAA | 7620 |
| GTCAAGGGAG AATTGTTTCT TTGGATATCG CTGTGAACTA TAGTCATGAT ATGAAGTTGT | 7680 |
| TCAAAATGAG TCGTAGAAAT ATCGAACAAG CTGGTAAAAT CTTGGCTGAC AGTGGTTATC | 7740 |
| AAGGGCTCAT GAAGATATAT CCTCAAGCAC AAACTCCACG TAAATCCAGC AAACTCAAGC | 7800 |
| CGCTAACAGC TGAAGATAAA GCCTATAACC ATGCGCTATC TAAGGAAAGA AGCAAGGTTG | 7860 |
| AGAACATCTT TGCCAAAGTA AAAACGTTTA AAATATTTTC AACAACCTAT CGAAATCATC | 7920 |
| GTAAACGCTT CGGATTACGA ATGAATTTGA GTGCTGGTAT TATCAATCAT GAACTAGGAT | 7980 |
| TCTAGTTTTG CAGGAAGTCT ATTGAGGTAT TGAGCTAGTT TATGAAAAAA TTGGGTGAAA | 8040 |
| AGTCGAGTGT TTTAGAAACC CACAGTGTAG TATTCTAGTT TCAATCCACT ATATTTTGCT | 8100 |
| ACTCCCCGTA AAGTTTCTAT TTTCCCTGAT TTCTGATATA ATAGAAATAT TGACTTCAAG | 8160 |
| AGTAAGGAAG AGAAGATGAA CGCATTATTA AATGGAATGA ATGACCGTCA GGCTGAGGCG | 8220 |
| GTGCAAACGA CAGAAGGTCC CTTGCTAATC ATGGCAGGGG CTGGTTCTGG AAAGACTCGT | 8280 |
| GTTTTGACCC ACCGTATCGC TTATTTGATT GATGAAAAGC TGGTCAATCC TTGGAATATC | 8340 |
| TTGGCCATTA CCTTTACCAA CAAGGCTGCG CGTGAGATGA AAGAGCGTGC TTATAGCCTC | 8400 |
| AATCCAGCGA CTCAGGACTG TCTGATTGCG ACCTTCCACT CCATGTGTGT GCGTATTTTG | 8460 |
| CGTCGCGATG CGGACCATAT TGGCTACAAT CGTAATTTTA CAATTGTGGA TCCTGGTGAA | 8520 |
| CAGCGAACGC TCATGAAACG TATTCTCAAA CAGTTGAACT TGGACCCTAA AAAATGGAAT | 8580 |
| GAACGAACTA TTTTGGGGAC CATTTCCAAT GCTAAGAATG ATTTGATTGA TGATGTTGCT | 8640 |
| TATGCTGCCC AAGCTGGCGA TATGTATACG CAAATTGTGG CCCAGTGTTA TACAGCCTAT | 8700 |

| CAAAAAGAAC | TTCGTCAGTC | TGAATCCGTT | GACTTTGATG | ATTTGATTAT | GCTGACCTTG | 8760  |
|------------|------------|------------|------------|------------|------------|-------|
| CGTCTCTTTG | ATCAAAATCC | TGATGTTTTG | ACCTACTACC | AGCAAAAATT | CCAATACATC | 8820  |
| CACGTTGATG | AGTACCAAGA | TACCAACCAC | GCTCAGTACC | AATTGGTCAA | ACTCTTGGCT | 8880  |
| TCCCGTTTTA | AAAATATCTG | TGTGGTTGGG | GATGCGGACC | AGTCTATCTA | CGGTTGGCGT | 8940  |
| GGTGCTGATA | TGCAGAATAT | CTTGGACTTT | GAAAAGGATT | ACCCCAAAGC | CAAGGTTGTT | 9000  |
| TTGTTGGAGG | AAAATTACCG | CTCAACCAAA | ACCATTCTCC | AAGCGGCCAA | CGAGGTTATT | 9060  |
| АААААТААТА | AAAATCGCCG | TCCTAAAAAT | CTCTGGACTC | AAAACGCTGA | TGGGGAGCAA | 9120  |
| ATCGTTTACT | ATCGTGCCGA | TGATGAGCTG | GATGAGGCTG | TATTTGTAGC | CAGAACCATC | 9180  |
| GATGAACTTA | GTCGCAGTCA | AAACTTCCTT | CATAAGGATT | TTGCAGTTCT | CTATCGGACT | 9240  |
| AATGCCCAGT | CCCGTACAAT | TGAGGAAGCC | CTGCTCAAGT | CTAACATTCC | TTATACCATG | 9300  |
| GTTGGCGGAA | CCAAATTCTA | CAGCCGTAAG | GAAATTCGCG | ATATTATTGC | TTATCTCAAC | 9360  |
| CTTATTGCTA | ATTTGAGTGA | CAATATTAGT | TTTGAGCGTA | TTATCAACGA | GCCTAAACGT | 9420  |
| GGAATTGGTC | TAGGTACAGT | TGAGAAAATC | CGTGATTTTG | CAAATTTGCA | AAATATGTCT | 9480  |
| ATGCTGGATG | CTTCTGCTAA | TATTATGTTG | TCTGGTATCA | AGGGTAAGGC | AGCCCAATCT | 9540  |
| ATCTGGGATT | TTGCCAATAT | GATGCTTGAT | TTGCGGGAGC | AGCTAGACCA | CTTAAGCATT | 9600  |
| ACAGAGTTGG | TTGAGTCCGT | CCTAGAAAAA | ACAGGTTATG | TCGATATTCT | TAACTCCCAA | 9660  |
| GCGACTCTAG | AAAGCAAGGC | ACGGGTTGAA | AATATCGAAG | AGTTTCTTTC | TGTTACGAAG | 9720  |
| AACTTTGATG | ACACCACGGA | TGTGACAGAA | GAGGAAACTG | GTCTGGACAA | ACTGAGTCGT | 9780  |
| TTCTTAAATG | ACTTGGCTTT | GATTGCCGAC | ACAGATTCAG | GTAGTCAGGA | GACATCAGAA | 9840  |
| GTGACCTTGA | TGACCCTGCA | TGCTGCCAAA | GGTCTCGAAT | TTCCAGTTGT | CTTTTTGATT | 9900  |
| GGGATGGAAG | AAAATGTCTT | TCCACTTAGT | CGTGCGACTG | AAGATTCAGA | TGAATTAGAA | 9960  |
| GAAGAGCGCC | GTCTAGCCTA | TGTAGGTATC | ACGCGTGCAG | AGAAAATTCT | CTATCTGACC | 10020 |
| AATGCCAACT | CACGCTTGCT | TTTTGGTCGT | ACCAATTATA | ACCGTCCGAC | TCGTTTTATT | 10080 |
| AACGAAATCA | GTTCAGACTT | GCTTGAGTAT | CAAGGTCTGG | CTCGTCCTGC | AAATACAAGC | 10140 |
| TTTAAGGCAT | CATATAGCAG | TGGTAGTATT | TCCTTTGGTC | AAGGTATGAG | TTTGGCTCAG | 10200 |
| GCTCTTCAAG | ACCGTAAACG | CGGTGCTGCC | CCAAAATCAA | TCCAGTCAAG | CGGTCTTCCA | 10260 |
| TTTGGTCAAT | TTACAGCTGG | CGCAAAACCA | GCATCTAGCG | AGGCAAATTG | GTCCATTGGT | 10320 |
| GATATTGCTC | TCCACAAGAA | ATGGGGAGAG | GGAACCGTTC | TGGAAGTTTC | AGGTAGCGGT | 10380 |
| GCTAGGCAGG | AATTGAAAAT | CAATTTCCCA | GAAGTAGGTT | TGAAAAAACT | TTTAGCCAGT | 10440 |
| GTGGCTCCAA | TTGAGAAAAA | AATCTAATTT | TCCATCCTTC | TCACGAATAA | TAAAGTGAGG | 10500 |

| AGGATTTTTA | TGTACAGTAT   | TTCATTCCAA   | GAAGATTCAC   | TATTACCAAG | AGAAAGGCTG   | 10560 |
|------------|--------------|--------------|--------------|------------|--------------|-------|
| GCCAAGGAAG | GAGTTGAAGC   | GCTTAGTAAC   | CAAGAGTTGC   | TAGCTATTTT | ACTCAGGACA   | 10620 |
| GGAACACGTC | AAGCTAGCGT   | TTTTGAAATT   | GCCCAAAAAG   | TCTTGAACAA | TCTTTCAAGC   | 10680 |
| CTAACGGATT | тсаалалалт   | GACCCTGCAG   | GAATTGCAGA   | GTTTGTCTGG | TATTGGGCGT   | 10740 |
| GTTAAGGCCA | TAGAATTACA   | AGCTATGATT   | GAACTGGGGC   | ATCGTATTCA | CAAACACGAG   | 10800 |
| ACTCTTGAAA | TGGAAAGTAT   | TCTCAGCAGT   | CAAAAGTTGG   | CCAAGAAGAT | GCAGCAGGAA   | 10860 |
| TTAGGGGATA | AAAAACAAGA   | GCACCTGGTG   | GCACTCTATC   | TCAATACTCA | AAATCAAATC   | 10920 |
| ATCCATCAGC | AGACCATTTT   | TATCGGGTCT   | GTAACTCGTA   | GTATCGCTGA | ACCGCGAGAG   | 10980 |
| ATTCTTCACT | ATGCAATCAA   | GCATATGGCG   | ACTTCTCTTA   | TCTTGGTCCA | CAATCATCCT   | 11040 |
| TCAGGAGCGG | TAGCGCCTAG   | CCAAAATGAT   | GATCATGTCA   | CTAAACTTGT | TAAAGAAGCC   | 11100 |
| TGCGAATTGA | TGGGGATTGT   | TCTCTTGGAC   | CATTTGATTG   | TCTCTCATTC | TAATTACTTT   | 11160 |
| AGTTATCGTG | AAAAGACAGA   | ТТТААТСТАА   | AGTTCATTAA   | CGACATAGTC | AAAGAGTTTT   | 11220 |
| TTATCTTTGG | GACGATTTTC   | AAAAAGAAGT   | TCTGGATGCC   | ATTGGACACC | GAGAAAGGCG   | 11280 |
| ACATCATCCG | TACTCATGAC   | AGCCTCAATG   | ATACCATCTT   | TAGGATCATG | AGCCACAACT   | 11340 |
| TTTAAATTTC | GTGCTAAGTC   | CTTGATGCTC   | TGGTGGTGGA   | AGGAGTTGAT | ATGAGAGATT   | 11400 |
| TCTCCATAGA | TTTCTTGGAG   | AACGGTATCT   | GGTTCTGTTA   | CCAAGCGTTG | AGTTGTGTAC   | 11460 |
| TCAACAGAAC | AATCCTGCCA   | ATGGTCTTCG   | ATATCTTGGT   | ACAAAGTTCC | ACCCATGGCA   | 11520 |
| ACGTTAAAGA | A GTTGGGTACC | ACGGCAGACA   | GAGAAAATGG   | GCTTTTTCTG | TTTAATAGCT   | 11580 |
| TCCTTGATGA | A GGGCCAGTTC | GAAGATATCT   | CTTTGAAGGT   | GATAGTCATC | ACTATCAATG   | 11640 |
| GTTTTGGGT  | CGCCATAAAA   | TTTTGGATCG   | ACATTTTGCC   | CACCTGTCAA | GATGAGCTTG   | 11700 |
| TCAATCAAA  | TGATATAGTO   | GCAGGCCATT   | TCTTGATCAC   | CAATCGGTAG | GATGATGGGA   | 11760 |
| ATCCCTCCA  | G CATCTTTAAC | GCCTTCAACA   | A AAGCCTTTTG | CTGCGTAGCT | CATCATGATG   | 11820 |
| TCATCATCT  | G GATGAGTTT  | TTCGTTTCCT   | г стаатсссаа | TAACTGGTTT | AAAATAOTTT   | 11880 |
| TGATTTTCG  | C TTTCTAATCO | C TCTTTTCGC/ | A TGAAGTAGAG | GAGGGTTTGC | AGTTCACTTG   | 11940 |
| TCAAATCGA  | C ATACTGAAC  | G ACCACGTCT  | r TTGGTAAATC | CAGATGGACT | r GGTGAAAAAC | 12000 |
| TGAGAATTC  | C TTTCACACC  | A GCATCAACC  | A AGAGATTAGO | AACCTCTTG  | r GACTTGACGC | 12060 |
| TGGGAACAG  | T TAGGATAGC  | A GTCTTCACA  | T CAGCATCCT  | GATTTTATCO | C TTGATCTGAG | 12120 |
| AAATCCCGT  | A AATGGGAAT  | C CCGTCAGGA  | G TTTGGGTAC  | GACTTCAGG  | A TGGTCGTCTA | 12180 |
| GGTCAAAGG  | C CATGATAAT  | C TTCATCTTG  | T TACGTTCGT  | GAAGCGGTAG | G TGGAGAAGGG | 12240 |

190 CATGGCCCAT ATTTCCAATA CCAACCAGCA TGACATTGGT AATAGAGTTG TCATTGAGCA 12300 AATCGGCAAA AAATGTCATT AGTTTTTTGA CATCATAGCC AAAACCACGA CGACCAAGTT 12360 CACCAAAATA GGAAAAATCA CGACGTACGG TCGCTGAATC AATACCGATA GCCTCTGCAA 12420 12480 TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT AGAGAGAG TCTTTTTGCT GTAGCTTTTG GAATAGCAAA CTGTTTATCT TTCACAAAAT 12540 CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTGA AAAAATCAAC AAAAATAAGA 12600 AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGATAG AAAACGGTAG 12660 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA 12720 AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA 12780 TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT 12840 CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 12900 TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 12960 CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG 13020 GAAGCCTTCA CCGCTGTTTG GCACTTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 13080 13140 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 13200 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTTCA AATGCCATAT GGCTAACCTC 13260 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 13320 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 13380 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 13440 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 13500 CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 13560 13620 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 13680 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13740 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13860 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980 GAACCAAGTA ATCAATTGTT TCAAGGACAG CATGGTGCTC GATGGCAGTT GTGATGATAT 14040

| STTTT | CCTTG          | TTCTTGGTGA | CGAAGACAGT | AGCCAATGAT            | GGTAGTATTA       | TTGCCTTCAG     | 14100 |
|-------|----------------|------------|------------|-----------------------|------------------|----------------|-------|
| rccc# | ACCAGA         | AGTGAAAAAG | ATATGTTGAG | GTTTTGTCCT            | TAGTAACTGG       | GCTAGTTCCT     | 14160 |
| GACGO | GCTTC          | TCGCAAGAGT | TTGCCAGCTT | GACGACCATG            | ACCATGAATA       | CTAGAAGGAT     | 14220 |
| rrcco | etgggt         | TTCTTGCATA | ACCTTGGTCA | TAGCTGAAAT            | AGCAACTGCT       | GACATAGGAG     | 14280 |
| rcgti | rgcagc         | ATTGTCCAAA | TAAATCAAAG | AATCACCTTA            | тттстттта        | TTGTAGGCAA     | 14340 |
| AGAGT | rgggct         | GACTGGTTTT | CTTTCGTGAA | TACGGACGAT            | AGCATCACCA       | ATTAACTCAC     | 14400 |
| ragc? | AGTGAT         | GTAGCATACA | TTTTTAGGAG | TTTTTTCTTT            | TGTTGCTACT       | GAATCAGTCA     | 14460 |
| CAAGA | AATTTC         | ТТТААТАТТА | GTATTGTCAA | GAAGCTCAGC            | AGCTCCCTCG       | ACGAAGAGAC     | 14520 |
| CGTG  | GCTAGA         | AACAGCATAA | ATTTCTGTAG | CTCCTTCACG            | TTCAACGATT       | TTAGAAGCTT     | 14580 |
| CAGA  | GAAGGT         | ACGTCCTGTA | TTTAAAATAT | САТСААТСАА            | GATAGCTTTC       | TTACCTTCAA     | 14640 |
| CATC  | ACCAAT         | AATATAACCT | TCGTTACGAG | TTGCATCGTC            | TTGAGGGTAG       | TCGATAATGG     | 14700 |
| CGAT  | AGGAGC         | ATCAAGATAT | TCAGCCAGGC | TACGCGCACG            | TTTGACACCT       | GAATTTTTAG     | 14760 |
| GGCT  | AACGAC         | AACAACATCT | GAACCAAGCA | ATCCTTTATC            | GCAGTAATGT       | TTTGCGAATA     | 14820 |
| GGGG  | AACAGT         | GAAAAGATTA | TCCACTGGAA | TATCAAAGAA            | ACCTTGAACC       | TGAACGGCAT     | 14880 |
| GCAA  | ATCAAG         | AGTCAGGATA | CGATCAACTC | CAGCCTTAAC            | CAGCATATTG       | GCAACTAGTT     | 14940 |
| TTGC  | TGTAAG         | TGGCTCACGA | GGACAAGCAA | TGCGGTCTTG            | ACGTGCATAG       | CCAAAATATG     | 15000 |
| GAAG  | GACAAC         | GTTGATACTG | TGGGCACTTG | CACGCACACA            | AGCATCGACC       | ATGATTAACA     | 15060 |
| ATTC  | CATTAG         | GTGGTTGTTG | ACAGGGAAAC | TTGTTGATTG            | GATGATGTAA       | ACATCATAAC     | 15120 |
| CACG  | GACACT         | TTCTTCGATA | TTTACTTGGA | TTTCTCCGTC            | TGAAAATTGA       | CGTGATGATA     | 15180 |
| GTTT  | TCCAAG         | TGGGACACCA | ACAGCTTGGG | CAATTTTTTG            | TGCAATCTCT       | TGGTTAGAGT     | 15240 |
| TGAG  | TGCGAA         | AAGTTTCATG | TTTTTTCTAT | CTGACATTAT            | AGACCGTCCT       | CTGTAAACTT     | 15300 |
| TATA  | AATCCT         | AGTTATATT  | ACCTTACATA | TATGAACTGG            | GATTTGTGTA       | TTTTTATCTT     | 15360 |
| TTCT  | 'ATTTTA        | CCAAAAAATG | GAGATTATTT | CAGCTATTTT            | TCATACTTTT       | GACAAATCGA     | 15420 |
| ACCA  | ATTTTG         | AAGGAGCTTT | TTGATAGGAA | ATCTGATTTT            | ТСТСТААААА       | TTGTCGAAAA     | 15480 |
| TCCT  | GTTTGC         | CTTGCTCATG | ATTTTCCACT | TCAAGCTCCA            | ATTCGTAATC       | TGTTATATCA     | 15540 |
| AAGI  | ATCGGC         | TCTGATCCAC | TGCCATGAGA | CCAATAGCTG            | TTTTCATTTC       | ATAGCGAAGC     | 15600 |
| GTTG  | TTAGAC         | AACCAAGAAC | CTGCCAGTTC | TTACTTTGGA            | TACCATGTTT       | CGCCAATTCA     | 15660 |
| TCC   | <b>IGTACTA</b> | GCCCTTGAGC | AAGTTCTTCC | TTACTCAGAT            | AGTTCTCAGC       | ATCTTTTAGT     | 15720 |
| mac:  | 3 mmm~~        |            |            | A C A C TO C TO C C C | CC A COMMONO A C | memera a emera | 15700 |

192 GCCCAGTCTT CAAAGGTTCG AATGCGCATA GCGACTTTCT TTTCTCGCAG TTCAAAATCA 15840 GGCGTGTCGA TGTAGTAATT TGTTTGAAGA ACAGGAGTGA CACCTGTGAA CTGGTCTTTT 15900 AGACGATTGT ATTCATCTTT TTTCAATAGT GTTTTCAATT CAATTTCTAA ATGTTTCATT 15960 TTTCTTACCT TTTTTTATCG TTGAAAGCGG ATTTATGGTA TAATAAGCAT TGTATTTATT 16020 GTATATGAAT CTGGAGAAAA AATCAAAGAT ATTTTTGACG GATAATATGA GAACAAGGGA 16080 GAATATATGA CCTTAGAATG GGAAGAATTT CTAGATCCTT ACATTCAAGC TGTTGGTGAG 16140 TTAAAGATTA AACTTCGTGG TATTCGTAAG CAATATCGTA AGCAAAATAA GCATTCTCCA 16200 ATTGAGTTTG TGACCGGTCG AGTCAAGCCA ATTGAGAGCA TCAAAGAAAA AATGGCTCGT 16260 CGTGGCATTA CTTATGCGAC CTTGGAACAC GATTTGCAGG ATATTGCTGG CTTACGTGTG 16320 ATGGTTCAGT TTGTAGATGA CGTCAAGGAA GTAGTGGATA TTTTGCACAA GCGTCAGGAT 16380 ATGCGAATCA TACAGGAGCG AGATTACATT ACTCATAGAA AAGCATCAGG CTATCGTTCC 16440 TATCATGTGG TAGTAGAATA TACGGTTGAT ACCATCAATG GAGCTAAGAC TATTTTGGCA 16500 GAAATTCAAA TTCGTACTTT GGCCATGAAT TTCTGGGCAA CGATAGAACA TTCTCTCAAC 16560 TACAAGTACC AAGGGGATTT CCCAGATGAG ATTAAGAAGC GACTGGAAAT TACAGCTAGA 16620 ATCGCCCATC AGTTGGATGA AGAAATGGGT GAAATTCGTG ATGATATCCA AGAAGCCCAG 16680 GCACTTTTTG ATCCTTTGAG TAGAAAATTA AATGACGGTG TAGGAAACAG TGACGATACA 16740 GATGAAGAAT ACAGGTAAAC GAATTGATCT GATAGCCAAT AGAAAACCGC AGAGTCAAAG 16800 GGTTTTGTAT GAATTGCGAG ATCGTTTGAA GAGAAATCAG TTTATACTCA ATGATACCAA 16860 TCCGGATATT GTCATTTCCA TTGGCGGGGA TGGTATGCTC TTGTCGGCCT TTCATAAGTA 16920 CGAAAATCAG CTTGACAAGG TCCGCTTTAT CGGTCTTCAT ACTGGACATT TGGGCTTCTA 16980 TACAGATTAT CGTGATTTTG AGTTGGACAA GCTAGTGACT AATTTGCAGC TAGATACTGG 17040 GGCAAGGGTT TCTTACCCTG TTCTGAATGT GAAGGTCTTT CTTGAAAATG GTGAAGTTAA 17100 GATTTTCAGA GCACTCAACG AAGCCAGCAT CCGCAGGTCT GATCGAACCA TGGTGGCAGA 17160 TATTGTAATA AATGGTGTTC CCTTTGAACG TTTTCGTGGA GACGGGCTAA CAGTTTCGAC 17220 ACCGACTGGT AGTACTGCCT ATAACAAGTC TCTTGGCGGT GCTGTTTTAC ACCCTACCAT 17280 TGAAGCTTTG CAATTAACGG AAATTGCCAG CCTTAATAAT CGTGTCTATC GAACACTGGG 17340 CTCTTCCATT ATTGTGCCTA AGAAGGATAA GATTGAACTT ATTCCAACAA GAAACGATTA 17400 TCATACTATT TCGGTTGACA ATAGCGTTTA TTCTTTCCGT AATATTGAGC GTATTGAGTA 17460 TCAAATCGAC CATCATAAGA TTCACTTTGT CGCGACTCCT AGCCATACCA GTTTCTGGAA 17520 CCGTGTTAAG GACGCCTTTA TCGGCGAGGT GGATGAATGA GGTTTGAATT TATCGCAGAT 17580

| GAACATGTCA | AGGTTAAGAC   | CTTCTTAAAA   | AAGCACGAGG | TTTCTAAGGG | ATTGCTGGCC | 17640 |
|------------|--------------|--------------|------------|------------|------------|-------|
| AAGATTAAGT | TTCGAGGTGG   | AGCTATTCTG   | GTCAATAATC | AACCGCAAAA | TGCAACGTAT | 17700 |
| CTATTGGACG | TTGGAGACTA   | CGTTACCATT   | GACATTCCCG | CTGAGAAAGG | CTTTGAAACC | 17760 |
| TTGGAGGCTA | TTGAGCTTCC   | ATTAGATATT   | CTCTATGAGG | ATGACCACTT | TCTAGTCTTG | 17820 |
| AATAAACCCT | ATGGAGTGGC   | TTCTATTCCT   | AGTGTCAATC | ACTCTAATAC | CATTGCCAAT | 17880 |
| TTTATCAAGG | GTTACTATGT   | CAAGCAAAAT   | TATGAAAATC | AGCAGGTTCA | CATTGTTACC | 17940 |
| AGACTAGATA | GGGATACTTC   | TGGCTTGATG   | CTCTTTGCCA | AGCACGGTTA | TGCCCATGCA | 18000 |
| CGATTAGACA | AGCAGTTGCA   | GAAGAAATCT   | ATCGAGAAAC | GCTACTTTGC | TTTGGTTAAG | 18060 |
| GGAGATGGAC | ATTTGGAGCC   | AGAAGGGGAA   | ATTATTGCTC | CGATTGCGCG | TGATGAAGAT | 18120 |
| TCCATTATTA | CCAGACGAGT   | GGCTAAAGGC   | GGAAAGTATG | CCCATACTTC | ATACAAGATT | 18180 |
| GTAGCTTCTT | ATGGAAATAT   | TCACTTGGTC   | TATATTCACC | TGCACACTGG | TCGAACCCAT | 18240 |
| CAAATCCGAG | TCCATTTTTC   | TCATATCGGT   | TTTCCTTTGC | TGGGAGATGA | TTTGTATGGT | 18300 |
| GGTAGTCTGG | AAGATGGTAT   | TCAACGTCAG   | GCTCTGCATT | GCCATTACCT | ATCCTTTTAT | 18360 |
| CATCCATTTT | TAGAGCAAGA   | CTTGCAGTTA   | GAAAGTCCCT | TGCCGGATGA | TTTTAGTAAC | 18420 |
| CTTATTACCC | AGTTATCAAC   | ТААТАСТСТА   | TAAAAACTGT | CTCAGAGTAT | AATTATTATC | 18480 |
| TTAAAGGAGA | AAACTCATGG   | AAGTTTTTGA   | AAGTCTCAAA | GCCAACCTTG | TTGGTAAAAA | 18540 |
| TGCTCGTATC | GTTCTCCCTG   | AAGGGGAAGA   | GCCTCGTATT | CTTCAAGCAA | CAAAACGCTT | 18600 |
| AGTAAAAGAA | ACAGAAGTGA   | TTCCTGTTTT   | GCTTGGAAAT | CCTGAAAAAA | TTAAAATTTA | 18660 |
| TCTTGAAATT | GAAGGAATCA   | TGGATGGTTA   | TGAGGTCATC | GACCCTCAAC | ATTATCCTCA | 18720 |
| ATTTGAAGAA | ATGGTTTCTG   | CCTTGGTGGA   | GCGTCGCAAG | GGCAAAATGA | CTGAAGAAGA | 18780 |
| TGTACGCAAG | GTTTTGGTTG   | AAGATGTCAA   | CTACTTTGGT | GTGATGTTGG | TTTACTTGGG | 18840 |
| CTTGGTTGAT | GGAATGGTGT   | CAGGAGCGAT   | TCACTCAACA | GCTTCAACAG | TTCGCCCAGC | 18900 |
| TCTACAAATC | ATCAAAACTC   | GTCCAAATGT   | AACTCGTACT | TCAGGAGCCT | TCCTCATGGT | 18960 |
| TCGTGGTACC | GAACGTTACC   | TATTTGGAGA   | CTGTGCCATT | AACATCAATC | CAGATGCAGA | 19020 |
| AGCCTTGGCT | GAAATTGCCA   | TCAACTCAGC   | AATCACAGCT | AAGATGTTTG | GCATCGAACC | 19080 |
| TAAAATTGCC | ATGTTGAGCT   | · АТТСТАСТАА | AGGTTCAGGG | TTTGGTGAAA | GCGTTGATAA | 19140 |
| GGTCGTTGA  | GCAACTAAAA   | TTGCTCACGA   | CTTGCGTCCT | GACCTTGAAA | TCGATGGTGA | 19200 |
| GTTGCAATT  | r GATGCAGCCT | TTGTTCCTGA   | AACTGCAGCT | CTGAAAGCTC | CTGGAAGTAC | 19260 |
| GGTAGCTGG  | r CAAGCAAATO | TCTTCATCT    | CCCAGGTATC | GAGGCAGGAA | ATATTGGTTA | 19320 |

> 194 CAAGATGGCT GAACGCCTGG GTGGCTTTGC GGCTGTAGGA CCTGTTTTGC AAGGTTTAAA 19380 CAAGCCAGTT AATGATCTTT CTCGTGGATG TAATGCAGAT GATGTTTACA AGTTGACCCT 19440 CATCACAGCA GCTCAAGCAG TTCATCAATA GTGAAAACTA TAAAGTGATA TACTATGCTA 19500 TACTGTAGTT ATGAAACTAT GTACGAAAAG CACTGCCATT AATTCCTGAG AACTAAATTA 19560 CTGATTGGTG TCAAAAAGGA AAACTTCCAA GCGATGATAT CCTGTCTATA CACGACCTAT 19620 AGAAATCTGT AATATACATA TCCGTAAAAC GATAAATTCC CTTTTTGATT TTAAATGAGT 19680 ATGAAAAGAG AATTTTTTGG CTCTTTGTCA ACTGTAGTGG GTTGAAGAAA AGCTAAGCTC 19740 GAGAAAGGAC AAATTTCATC CTTTCTTTT TGATATTCAG AGCGATAAAA ATCCGTTTTT 19800 TGAAGTTTTC AAAGTTCCGA AAACCAAAGG CATTGCGCTT GATAAGTTTG ATGAGATTAT 19860 TGGTCGCTTC CAGTTTGGCG TTAGAATAGT GTAGTTGAAG GGCGTTGATA ATCTTTCTT 19920 TATCTTTGAG GAAGGTTTTA AAGACAGTCT GAAAAATAGG ATGAACCTGC TTAAGATTGT 19980 CCTCAATAAG TCCGAAAAAT TTCTCTGGTT CCTTATTCTG GAAGTGAAAA AGCAAGAGTT 20040 GATAGAGCTG ATAGTGGTGT TTCAAGTCTT CCGAATAGCT CAAAAGCTTG TTTAAAATCT 20100 CTTTATTGGT TAAGTGCATA CGAAAAATAG GACGATAAAA TCGCTTATCA CTCAGTTTAC 20160 GGCTATCCTG TTGAATGAGT TTCCAGTAGC GCTTGATAG 20199 (2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 19702 base pairs
  - (B) TYPE: nucleic acid (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

| ACCCGATGTA | TCAGCGGATA | TTTACTCTAT | TTTTCAAACG | ATGTTATACC | САСААТАААА | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| GAAAAAAGAC | CCTAAGGTCT | CCTTTGCTTT | TATTATTAAA | CGCGTTCAAC | TTTACCTGAT | 120 |
| TTCAAAGCAC | GAGCTGAAGC | CCAAACTTTT | TTAGGTTTAC | CATCGATAAG | AACAGTAACT | 180 |
| TTTTGAAGGT | TTGGTTTTAC | GGCACGTTTT | GTTTGGTTCA | TCGCGTGTGA | ACGGTTGTTT | 240 |
| CCTGATACAG | TCTTACGACC | TGTAAAGTAA | CATACTTTAG | CCATTGTGTT | TTCCTCCTAT | 300 |
| TAGATCTAAT | ATAGCGGATG | TGCTAGCACC | ACATACCGTA | CTATGTTATC | ACATTTTCTT | 360 |
| GTTTTTTGCA | agggaattgg | AAGATTTTTT | ATTTGTGTCT | TAAATCAGGT | CTTGCGTGAC | 420 |
| ATTTCTGCTC | TCCACATGCC | ATCGTTGATT | AACAGAACAC | CAGAATTAAA | ATTATGTGTA | 480 |
| ТАААААТСАТ | CTCTAACTGC | AGCTAAGGGT | ATAGCCGTCA | AGTCCAAATC | CCACAGCTCA | 540 |

| TCTATCGATT | TTCTTACAAC | AATATCTGAA | TCCAAATACA | GTACACGAGA | CTCGCTTACA | 600  |
|------------|------------|------------|------------|------------|------------|------|
| TACTTTGGAA | TAAAATACCT | AAAAAAGCCG | CATATGAAAG | TCCCTCAAAG | GGGAGACGAT | 660  |
| AACCTTTCAG | AATATTACTG | TCAATCTAAA | CATTCACAAT | CTCACTATTC | AAAGTCTCTA | 720  |
| GTCTTTTTTC | CATCAATTGG | AACCATTCTC | GCGGAAGGTC | АТСАТТАААА | ACATAAAACT | 780  |
| TAAGATTATA | ATGATGAACA | CAAAGAGATT | TTATTGTTGT | TTCAACTTTA | TCCATATAAG | 840  |
| CATTATCTGC | ACCTAAGACA | ATCGCTTTTT | TCTCTTCTTT | CACTTTTTAT | CTCATTTCTT | 900  |
| TTTATTCCCA | TCATATTATT | CCCATCATAT | GTTTCCCATC | ATATGTTTCT | ACGTAACCAT | 960  |
| TATTTTCGCC | TATTCGTTCG | TAAAACCATA | CCAGTGGAGA | TTTTAGATGA | AGTCCCATTA | 1020 |
| CGGTTTACAA | TTTTTACATT | ACGACACGGA | GTTTTACAAA | TCGATTTCAT | TTGCCAAACG | 1080 |
| TAGTTAGTGA | GGCAGTTAGC | TAGTTCGCCA | AATAGCGACT | AGCGTCCAAC | AATTTGGAAC | 1140 |
| TTTAGTTCCA | ATTGTTGGTA | CTGAGTCACA | TCTTCTCCTC | TAACTCTACG | TCTGGATACT | 1200 |
| TGTCCGCAAA | CCAGCGGAGG | GCAAAGTCAT | TTTCAAAGAG | AAAGACTGGT | TGGTCAAAAC | 1260 |
| GGTCTTTGGC | TAAGATATTG | CGACTTGACG | ACATCCGTTC | ATCCAAGTCC | TCAGGCTTGA | 1320 |
| TCCAACGAAC | GGTCTTTTTA | CCCATTGGGT | TCATAACTAC | TTCCGCATTG | TACTCGCCTT | 1380 |
| CCATGCGGTG | TTTAAAGACT | TCAAACTGGA | GTTGACCTAC | AGCGCCTAGC | ATGTACTCAC | 1440 |
| CTGTTTGGTA | ATTCTTATAA | AGCTGAACGG | CTCCTTCTTG | CACCAATTGC | TCAATCCCCT | 1500 |
| TGTGGAAGGA | TTTTTGCTTC | ATAACATTCT | TAGCAGAAAC | TTTCATGAAA | ATCTCAGGTG | 1560 |
| TAAAGGTTGG | CAGGGGTTCA | AATTCAAACT | TGTTTTTTCC | AACCGTCAAG | GTATCCCCAA | 1620 |
| CCTGATAAGT | ACCGGTATCG | TAAACCCCGA | TAATATCACC | TGCCACGGCA | TTGGTCACAT | 1680 |
| TCTCACGACT | CTCCGCCATA | AACTGGGTAA | CATTAGATAG | TTTAGCCCCC | TTACCAGTAC | 1740 |
| GAGGGAGATT | GACACTCATG | CCGCGCTCAA | ATTCGCCAGA | TACGATACGG | ACAAAGGCAA | 1800 |
| TACGGTCACG | GTGACGAGGG | TCCATGTTGG | CTTGGATTTT | AAAGACAAAG | CCTGAGAAAT | 1860 |
| CCTTGTCATA | AGGATCCACA | ATTTCACCGT | CTGTTTTCTT | GTGACCATGT | GGTTCTGGAG | 1920 |
| CAAACTTGAG | GAAGGTTTCA | AGGAAGGTCT | GCACACCAAA | GTTTGTCAGG | GCTGAACCGA | 1980 |
| AAAAGACAGG | CGTCAATTCT | CCAGCCAGAA | TAGCTTCCTC | TGAAAACTCA | TTCCCGGCTT | 2040 |
| CATTTAAAAG | CTCAATGTCA | TCCTTGACTT | GCTCGTAGAA | AGGATTGCTA | CCAAAGAGTT | 2100 |
| TGTCCCCGTC | TTCTAGACTG | GCAAAACGCT | CATCCCCTTT | GTAAAGCTCT | AAACGTTGGT | 2160 |
| TATAGAGGTC | ATACAAGCCC | TCAAAGGCTT | TCCCCATCCC | GATAGGCCAG | TTCATAGGGT | 2220 |
| AGCTAGCAAT | GCCCAAGATT | TCTTCCAATT | CTTGCAAGAG | ATCCAAAGGC | TCACGACCGT | 2280 |

|            |            |            | 196        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| CACGGTCCAG | CTTGTTCATA | AAGGTAAAGA | CTGGAATGCC | ACGATGTTTC | ACAACCTCAA | 234  |
| ACAATTTCTT | GGTTTGAGCC | TCGATCCCCT | TGGCAGAGTC | CACGACCATG | ACCGCAGCAT | 240  |
| CCACCGCCAT | CAAGGTACGA | TAGGTATCTT | CTGAGAAGTC | CTCGTGCCCT | GGCGTGTCTA | 246  |
| AGATATTCAC | GCGCTTGCCG | TCGTAGTCAA | ATTGCATAAC | AGATGAAGTA | ACAGAAATCC | 2520 |
| CACGTTGCTT | CTCGATATCC | ATCCAGTCAG | ATTTAGCAAA | AGTCCCTGTT | TTCTTCCCTT | 2580 |
| TTACCGTACC | AGCCTCACGA | ATCTCACCCC | CAAAGTAGAG | TAACTGCTCA | GTGATGGTTG | 2640 |
| TTTTCCCCGC | GTCCGGGTGG | GAGATAATGG | CAAAGGTACG | ACGTTTCTTA | ATTTCTTCTT | 2700 |
| GAATATTCAT | AAGTTCTCTT | TCTTTGATTC | TCTATTTTC  | TTGTTTCAAT | AGCTGAGAAT | 2760 |
| GATTTTTACA | TTGGATTTTA | CCATTCCTTT | CAACACTCCA | TTATATCGGA | TTTTAGCATT | 2820 |
| TTTTTCAATT | TCTATTTCTT | TTCACTTCCC | CCTCCCTTAT | TTATAGGAAA | ATATGGTAAA | 2880 |
| ATAGAACAGA | CTAAAAATCA | TCATTTCACG | AAAGGATGCA | AGATGAAAAT | TACGCAAGAA | 2940 |
| GAGGTAACAC | ACGTTGCCAA | TCTTTCAAAA | TTAAGATTCT | CTGAAGAAGA | AACTGCTGCC | 3000 |
| TTTGCGACCA | CCTTGTCTAA | GATTGTTGAC | ATGGTTGAAT | TGCTGGGCGA | AGTTGACACA | 3060 |
| ACTGGTGTCG | CACCTACTAC | GACTATGGCT | GACCGCAAGA | CTGTACTCCG | CCCTGATGTG | 3120 |
| GCCGAAGAAG | GAATAGACCG | TGATCGCTTG | TTTAAAAACG | TACCTGAAAA | AGACAACTAC | 3180 |
| TATATCAAGG | TGCCAGCTAT | CCTAGACAAT | GGAGGAGATG | CCTAATGACT | TTTAACAATA | 3240 |
| AAACTATTGA | AGAGTTGCAC | AATCTCCTTG | TCTCTAAGGA | AATTTCTGCA | ACAGAATTGA | 3300 |
| CCCAAGCAAC | ACTTGAAAAT | ATCAAGTCTC | GTGAGGAAGC | CCTCAATTCA | TTTGTCACCA | 3360 |
| TCGCTGAGGA | GCAAGCTCTT | GTTCAAGCTA | AAGCCATTGA | TGAAGCTGGA | ATTGATGCTG | 3420 |
| ACAATGTCCT | TTCAGGAATT | CCACTTGCTG | TTAAGGATAA | CATCTCTACA | GACGGTATTC | 3480 |
| TCACAACTGC | TGCCTCAAAA | ATGCTCTACA | ACTATGAGCC | AATCTTTGAT | GCGACAGCTG | 3540 |
| TTGCCAATGC | AAAAACCAAG | GGCATGATTG | TCGTTGGAAA | GACCAACATG | GACGAATTTG | 3600 |
| CTATGGGTGG | TTCAGGTGAA | ACTTCACACT | ACGGAGCAAC | TAAAAACGCT | TGGAACCACA | 3660 |
| GCAAGGTTCC | TGGTGGGTCA | TCAAGTGGTT | CTGCCGCAGC | TGTAGCCTCA | GGACAAGTTC | 3720 |
| GCTTGTCACT | TGGTTCTGAT | ACTGGTGGTT | CCATCCGCCA | ACCTGCTGCC | TTCAACGGAA | 3780 |
| TCGTTGGTCT | CAAACCAACC | TACGGAACAG | TTTCACGTTT | CGGTCTCATT | GCCTTTGGTA | 3840 |
| GCTCATTAGA | CCAGATTGGA | CCTTTTGCTC | CTACTGTTAA | GGAAAATGCC | CTCTTGCTCA | 3900 |
| ACGCTATTGC | CAGCGAAGAT | GCTAAAGACT | CTACTTCTGC | TCCTGTCCGC | ATCGCCGACT | 3960 |
| TTACTTCAAA | AATCGGCCAA | GACATCAAGG | GTATGAAAAT | CGCTTTGCCT | AAGGAATACC | 4020 |
| TAGGCGAAGG | AATTGATCCA | GAGGTTAAGG | AAACAATCTT | AAACGCGGCC | AAACACTTTG | 4080 |

| AAAAATTGGG | TGCTATCGTC | GAAGAAGTCA | GCCTTCCTCA | СТСТАААТАС | GGTGTTGCCG | 4140 |
|------------|------------|------------|------------|------------|------------|------|
| ТТТАТТАСАТ | CATCGCTTCA | TCAGAAGCTT | CATCAAACTT | GCAACGCTTC | GACGGTATCC | 4200 |
| GTTACGGCTA | TCGCGCAGAA | GATGCAACCA | ACCTTGATGA | AATCTATGTA | AACAGCCGAA | 4260 |
| GCCAAGGTTT | TGGTGAAGAG | GTAAAACGTC | GTATCATGCT | GGGTACTTTC | AGTCTTTCAT | 4320 |
| CAGGTTACTA | TGATGCCTAC | TACAAAAAGG | CTGGTCAAGT | CCGTACCCTC | ATCATTCAAG | 4380 |
| ATTTCGAAAA | AGTCTTCGCG | GATTACGATT | TGATTTTGGG | TCCAACTGCT | CCAAGTGTTG | 4440 |
| CCTATGACTT | GGATTCTCTC | AACCATGACC | CAGTTGCCAT | GTACTTAGCC | GACCTATTGA | 4500 |
| CCATACCTGT | AAACTTGGCA | GGACTGCCTG | GAATTTCGAT | TCCTGCTGGA | TTCTCTCAAG | 4560 |
| GTCTACCTGT | CGGACTCCAA | TTGATTGGTC | CCAAGTACTC | TGAGGAAACC | ATTTACCAAG | 4620 |
| CTGCTGCTGC | TTTTGAAGCA | ACAACAGACT | ACCACAAACA | ACAACCCGTG | ATTTTTGGAG | 4680 |
| GTGACAACTA | ATGAACTTTG | AAACAGTCAT | CGGACTTGAA | GTCCACGTAG | AGCTCAACAC | 4740 |
| СААТТСАААА | ATCTTCTCAC | CTACTTCTGC | CCACTTTGGA | AATGACCAAA | ATGCCAACAC | 4800 |
| TAACGTGATT | GACTGGTCTT | TCCCAGGAGT | TCTACCAGTT | CTCAATAAAG | GGGTTGTTGA | 4860 |
| TGCCGGTATC | AAGGCTGCTC | TTGCCCTCAA | CATGGACATC | CACAAAAAGA | TGCACTTTGA | 4920 |
| CCGCAAGAAC | TACTTCTATC | CTGATAACCC | CAAAGCCTAC | CAAATTTCTC | AGTTTGATGA | 4980 |
| ACCAATCGGA | TATAATGGCT | GGATTGAAGT | CAAACTAGAA | GACGGTACGA | CCAAGAAAAT | 5040 |
| CGGTATCGAA | CGTGCCCACC | TAGAGGAAGA | CGCTGGTAAA | AACACCCATG | GTACAGATGG | 5100 |
| CTACTCTTAT | GTTGACCTCA | ACCGCCAAGG | GGTTCCCTTG | ATTGAGATTG | TATCTGAGGC | 5160 |
| AGATATGCGT | TCTCCTGAAG | AAGCCTATGC | TTATCTGACA | GCCCTCAAGG | AAGTTATCCA | 5220 |
| GTACGCTGGC | ATTTCTGACG | TTAAGATGGA | GGAAGGTTCG | ATGCGTGTGG | ATGCCAACAT | 5280 |
| CTCCCTTCGT | CCTTATGGTC | AAGAGAAATT | CGGTACCAAG | ACTGAATTGA | AGAACCTCAA | 5340 |
| CTCCTTCTCA | AACGTTCGTA | AAGGTCTTGA | ATACGAAGTC | CAACGCCAGG | CTGAAATTCT | 5400 |
| rcgctcaggt | GGTCAAATCC | GCCAAGAAAC | ACGCCGTTAC | GATGAAGCGA | ATAAAGCAAC | 5460 |
| CATCCTCATG | CGTGTCAAGG | AAGGGGCTGC | TGACTACCGC | TACTTCCCAG | AACCAGACCT | 5520 |
| ACCCCTCTTT | GAAATTTCTG | ACGAGTGGAT | TGAGGAAATG | CGGACTGAGT | TGCCAGAGTT | 5580 |
| PCCAAAAGAA | CGTCGTGCGC | GTTATGTATC | TGACCTTGGT | TTATCAGACT | ACGATGCTAG | 5640 |
| FCAGTTGACT | GCTAATAAAG | TCACTTCTGA | CTTCTTTGAA | AAAGCTGTTG | CCCTAGGTGG | 5700 |
|            |            | ACTGGCTCCA |            |            |            | 5760 |
| AGGTAAAACA | CTGGAACAAA | TCGAATTGAC | ACCAGAAAAC | ттссттсала | TCATTCCCAT | 5820 |

|            |            |            | 198        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| CATCGAAGAC | GGTACTATTT | CATCTAAGAT |            | GTCTTTGTCC | ATCTAGCTAA | 5886 |
| AAATGGCGGT | GGCGCGCGTG | AATACGTGGA | AAAAGCAGGT | ATGGTTCAAA | TTTCAGATCC | 5940 |
| AGCTATCTTG | ATCCCAATCA | TCCACCAAGT | CTTTGCCGAT | AACGAAGCTG | CTGTTGCCGA | 6000 |
| CTTCAAGTCA | GGCAAACGTA | ACGCCGACAA | GGCtTTACAG | GATTCCTTAT | GAAGGCAACC | 6060 |
| AAAGGCCAAG | CCAACCCACA | AGTTGCCCTT | AAACTACTTG | CACAGGAATT | GGCGAAGTTG | 6120 |
| AAAGAAAACT | AGACAGAACA | AAACCAGCCC | TAAGGTTGGT | TTTTTCTTCT | CTACCAACTC | 6180 |
| CCAATAACTA | TTTTGGCTTT | ATTTCCAGAG | TATTTTATGG | TAAAATGAAG | AGTAATAATA | 6240 |
| TTTATTAAAG | AGGTAAAAAC | ATGATTGAAG | CAAGTACCTT | AAAAGCTGGT | ATGACCTTTG | 6300 |
| AAACAGCTGA | CGGCAAATTG | ATTCGCGTTT | TGGAAGCTAG | TCACCACAAA | CCAGGTAAAG | 6360 |
| GAAACACGAT | CATGCGTATG | AAATTGCGTG | ATGTCCGTAC | TGGTTCTACA | TTTGACACAA | 6420 |
| GCTACCGTCC | AGAGGAAAAA | TTTGAACAAG | CTATTATCGA | GACTGTCCCA | GCTCAATACT | 6480 |
| TGTACAAAAT | GGATGACACA | GCATACTTCA | TGAATACAGA | AACTTATGAC | CAATACGAAA | 6540 |
| TCCCTGTAGT | CAATGTTGAA | AACGAATTGC | TTTACATCCT | TGAAAACTCT | GATGTGAAAA | 6600 |
| TCCAATTCTA | CGGAACTGAA | GTGATCGGTG | TCACCGTTCC | TACTACTGTT | GAGTTGACAG | 6660 |
| TTGCTGAAAC | TCAACCATCT | ATCAAAGGTG | CTACTGTTAC | AGGTTCTGGT | AAACCAGCAA | 6720 |
| CGATGGAAAC | TGGACTTGTC | GTAAACGTTC | CAGACTTCAT | CGAAGCAGGA | CAAAAACTCG | 6780 |
| TTATCAACAC | TGCAGAAGGA | ACTTACGTTT | CTCGTGCCTA | ATCTCTAGAA | AGAGGTCATT | 6840 |
| CTATGGGAAT | TGAAGAACAA | CTTGGCGAAA | TCGTTATCGC | CCCACGTGTA | CTTGAAAAA  | 6900 |
| TCATTGCTAT | CGCTACTGCA | AAGGTAGAGG | GTGTTCACTC | TTTTTCAAAC | AGATCAGTGT | 6960 |
| CTGATACCCT | TTCAAAACTT | TCACTCGGCC | GTGGCATTTA | TCTTAAAAAC | GTGGACGAAG | 7020 |
| AACTCACAGC | AGATATCTAT | CTCTACCTTG | AGTACGGAGT | AAAAGTTCCT | AAGGTAGCGG | 7080 |
| TTGCTATCCA | GAAAGCTGTC | AAAGATGCCG | TCCGTAATAT | GGCTGATGTA | GAACTCGCTG | 7140 |
| CTATCAATAT | TCACGTTGCA | GGTATCGTCC | CAGATAAAAC | ACCAAAACCA | GAATTGAAAG | 7200 |
| ATCTATTTGA | CGAGGACTTC | CTCAATGACT | AGTCCACTAT | TAGAATCTAG | ACGCCAACTC | 7260 |
| CGTAAATGCG | CTTTTCAAGC | TCTCATGAGC | CTTGAGTTCG | GTACGGATGT | CGAAACTGCT | 7320 |
| TGTCGTTTCG | CCTATACTCA | TGATCGTGAA | GATACGGATG | TACAACTTCC | AGCCTTTTTG | 7380 |
| ATAGACCTCG | TTTCTGGTGT | TCAAGCTAAA | AAGGAAGAAC | TAGATAAGCA | AATCACTCAG | 7440 |
| CATTTAAAAG | CAGGTTGGAC | CATTGAACGC | TTAACGCTCG | TGGAGAGAAA | CCTCCTTCGC | 7500 |
| TTGGGAGTCT | TTGAAATCAC | TTCATTTGAC | ACTCCTCAGC | TGGTTGCTGT | TAATGAAGCT | 7560 |
| ATCGAGCTTG | CAAAGGACTT | CTCCGATCAA | AAATCTGCCC | GTTTTATCAA | TGGACTGCTC | 7620 |

| AGCCAGTTTG | TAACAGAAGA | ACAATAAGGC | TCTTTGTCAA | CTGTAGTGGG | TTGAAAAAA         | 7680 |
|------------|------------|------------|------------|------------|-------------------|------|
| GCTAAGCTCG | AGAAAGGACA | AATTTCGTCC | TTTCTTTTTT | GATGTTCAAA | GCGATAAAAA        | 7740 |
| TCCGTTTTTT | GAAGTTTTCA | AAGTTTCGAA | AACCAAAGGC | ATTGCGCTTG | ATAAGTTTGA        | 7800 |
| TGAGATTATT | GGTCGCTTCC | AGTTTGGCAT | TAGAATAGTG | TAGTTGAAGG | GCGTTGACAA        | 7860 |
| TCTTTTCTTT | ATCTTTGAGG | AAGGTTTTAA | AGACAGTCTG | AAAAATAGGA | TGAGCCTGCT        | 7920 |
| TAAGATTGTC | CTCAATAAGT | CCGAAAAATT | TCTCTGGTTC | CTTATTCTGG | AAGTGAAACA        | 7980 |
| GCAAGAGCTG | ATAGAGCTGA | TAGTGGTGTT | TCAAGTCTTG | TGAATGGCTC | AAAAGCTTGT        | 8040 |
| СТААААТСТС | TTTATTGGTT | AAGTGCATAC | GAAAAGTAGG | ACGATAAAAT | CGCTTATCAC        | 8100 |
| TCAGTCTACG | GCTATCCTGT | TGAATGAGTT | TCCAGTAGCG | CTTGATATCC | TTGTATTCAT        | 8160 |
| GGGATTTTCG | ATGAAACTGA | TTCATGATTT | GGACACGCAC | ACGACTCATG | GCACGGCTAA        | 8220 |
| GATGTTGTAC | AATGTGAAAG | CGATCAAGAA | CGATTTTAGC | ATTCGGGAGT | GAAACAGTCT        | 8280 |
| GGGAGACTGT | TTCAGCCTGA | GCCTAGGAAT | TTGAAAGCGA | AGCTGTTTAG | CCAAGTCATA        | 8340 |
| GTAAGGGCTA | AACATATCCA | TAGTAATAAT | TTTGACGCGA | CATCGGACAA | CTCTATCGTA        | 8400 |
| GCGAAGAAAG | TGATTTCGAA | TGATAGCTTG | TGTTCTACCC | TCAAGAACAG | TGATGATATT        | 8460 |
| GAGATTGTTA | AAATCTTGCG | CAATGAAGCT | CATCTTTCCC | TTTGTAAAAG | CATACTCATC        | 8520 |
| CCAAGACATA | ATCTCAGGAA | GACAAGAAAA | ATCATGTTTA | AAGTGAAAAT | CATTGAGCTT        | 8580 |
| ACGAATAACA | GTTGAAGTTG | AGATGGAAAG | CTGATGGGCA | ATATCAGTCA | <b>ТАĢĄĄŢ</b> ŢŢŢ | 8640 |
| TTCAATCAAC | TTTTGAGCAA | TCTTTTGGTT | GATGATACGA | GGGATTTGGT | GATTTTTCTT        | 8700 |
| GACGATAGAA | GTTTCAGCGA | CCATCATTTT | TGAACAGTGA | TAGCACTTGA | ATCGACGCTT        | 8760 |
| TCTAAGGAGA | ATTCTAGTAG | GCATACCAGT | CGTTTCAAGA | TAAGGAATTT | TAGAAGGTTT        | 8820 |
| TTGAAAGTCA | TATTTCTTCA | ATTGGTTTCC | GCACTCAGGG | CAAGATGGGG | CGTCGTAGTC        | 8880 |
| CAGTTTGGCG | ATGATTTCCT | TGTGTGTATC | CTTATTGATG | ATGTCTAAAA | TCTGGATATT        | 8940 |
| AGGGTCTTTA | ATGTCTAGTA | ATTTTGTGAT | AAAATGTAAT | TGTTCCATAT | GAATCTTTCT        | 9000 |
| AATGAGTTGT | TTTGTCGCTT | TTCATTATAG | GTCATATGGG | ACTTTTTTC  | ТАСААТАААА        | 9060 |
| TAGGCTCCAT | ААТАТСТАТА | GGGGATTTAC | CCACTACAAA | TATTATAGAG | CCAACAATAA        | 9120 |
| AAAGAAAAAG | TGTTTGATAG | АТАТСАААСА | CTTTTTTCTT | TGCCTCCCAC | ТАТСТААААА        | 9180 |
| AATGATAATA | GATATAATTG | таласалала | TCCAGATAGG | TTTTGCATGA | TTGAGAAAGT        | 9240 |
| ТАААААААСТ | ATGGCAGAGA | ATCGTTAATC | TCAGATTGTC | GGTAGAACGA | TAAACAAGGG        | 9300 |
| CAAAAAAGAA | ACCAATCAGA | СТАТААТАТА | АТАААСТААТ | TGGATCTCTG | TGAGATAGTA        | 9360 |

200 TCAAATGGCT AATCCCAAAG ATGATAGCAG ATAGGATAAC ATCCAAATAG TACTTGGACT 9420 AGGGAAAGAA GGTATTCATA AAATACCCTC TATCAAGAGT CTCCTCAAAA ACAGGACCGA 9480 TGATTACAGG CAGGACAAAA GATAAGATAG TCGATAAAAA GGTTGGTTGT CCATTTGAAA 9540 AAAGCACGGT AAAATACTCA TCATGAATAT TCCTATGATT AATCAAATGA GCATAGCGTG 9600 CCCAAAAATT ACCGAGAATC TGATAAACCA CATAAGTTGC AAATAAGTAG AAGACAAATG 9660 ACCAGTTCCA GCTCTTTTC TCAAAGATAA AGAGCATCTT TTTCTTTTTT AACCTCCAAA 9720 TTAATAGAAG GAAACTTCCC ACTAATCCCA TTGTTAAAAT AAGAGAATAG ACATCAGCTC 9780 CTAACCCTAA AATGATCGTC ACATACAATC CAATTGTTTG TGGTAAATAG GTAGATAGTA 9840 AAATAATAAG CAAAAATATT CCAAATTGTC TTAGTTTTTT TGTGTTTCTC ATCGTACTTT 9900 TTTGAAAGAT TACCCTGCTC GGAAGCCGTA CTTCCAAGCA TCTATATAAG AATTAAGTGC 9960 CCCTTGCCTC ATATAGGGAG CAAATTCTCT ATAATATAAC CATCTACTAT ATCCATCTTC 10020 CCAAACAGCA AGACCACCTG AAGTTTGCTC CAAGTCCTCA GTTGAAAGAA CTGTAAATGT 10080 ATTTGTACCT GTCATTGCAA GTACCTTCTT AAAATAGATT GTTGTAGGCT CACATTTATA 10140 GTATATTTCT TTTTTGTCT ATTTTATAGC CCATCTCCTC AACTGGCAAT TTTTCGACCT 10200 GAATTACATT TTTCCATAAA AAATGAGACC TTTCTAGTCT CATTTAGTCA TTCTTAGTAT 10260 TTTCTAAATC GTTGATAGCG TTCTTCCAGC AACTCTTCTA GCGGTTTTTG TGAAAGTCTA 10320 GCCAGCTCCG TTTGGAGTTC TTTTTGACA CTCTTAATCA GTTCTTTACT AGAAAGTCCT 10380 ATTTCAGAAA TCACCTTATC CACCACGTCC ATTTCTAACA GTTCATGCGA AGTGATTTTC 10440 ATCAGTTCTG CTGCTTCCAT AGCGCGAGTA CCGTCCTTCC ATAAAATGGA AGCAAAGCCT 10500 TCTGGACTGA GAATGGCATA GATAGAATTT TCCAGCATCC AGACACGGTC CGCGACAGCT 10560 AGAGCCAGAG CCCCGCCTGA ACCACCTTCA CCGATAATAA TGGCGATAAT AGGAACTTTC 10620 AGGTCACTCA TTTCCATGAG ATTGCGAGCG ATAGCTTCCC CTTGACCACG TTCTTCCGCT 10680 CCGACACCAG GATAAGCACC TGCTGTATTG ATAAAGGTCA CAACTGGACG GCCAAATTTC 10740 TCAGCCTGTT TCATCAACCG CAGTGCCTTT CGGTAGCCTT CTGGATGTGG TTGGCCAAAA 10800 TTCCGTTTGA GGTTGTCTTG CAAACTCTTG CCTTTTTGGA TACCAACCAC TGTTACAGCT 10860 TGGTCTCCAA GCCAACCAAT ACCACCAACA ACTGCACCAT CATCACGAAA AGAACGGTCA 10920 CCATGTAATT GGATAAATTC ATCAAAAATG CCTGTCGCAA AGTCCAAGGT TGTCAAGCGA 10980 CTCTGCTCAC GCGCTTCTCT GACTATTTTT GCAATATTCA TCTAGGACTC CCTCCATGCA 11040 ATCTGACTAG GCTAGCAATC GTATCTGGTA AGTCTCTTCT TTTGACAATA GCATCCACAA 11100 AGCCATGTTC TAATAGGAAT TCTGCCTTTT GGAAATCCTC AGGCAAGCTT TCACGAACCG 11160

| TATTTTCAAT | CÁCACGACGC | CCAGCAAAAC         | CAACCAAGCT | CTGTGGTTCA | GCCAGAATGA | 11220 |
|------------|------------|--------------------|------------|------------|------------|-------|
| TATCGCCTTC | CATAGCGAAA | GAAGCTGTCA         | CACCACCAGT | CGTTGGATCT | GTCAAAATGG | 11280 |
| TCAGGTAAAA | GAGACCAGCA | TTTGAATGGC         | GTTTAACCGC | CGCAGAGATC | TTAGCCATCT | 11340 |
| GCATGAGACT | CATGATTCCT | TCCTGCATAC         | GGGCTCCACC | AGAGGCTGTG | AATAGGACAA | 11400 |
| CTGGCAATTT | TTCGACAGTC | GCATACTCAA         | ACAAACGAGT | GATTTTTTCA | CCTACAACCG | 11460 |
| TACCCATAGA | AGCCATGATA | AAGTTAGAAT         | CCATAATCCC | AAGAGCCACA | GTCTGACCTT | 11520 |
| TAATAAGAGC | AGTTCCTGTC | ACAACGGCTT         | CATGCAGACC | TGTTTTTTCA | CGCATAGATG | 11580 |
| CCAGTTTCTT | TTGGTAACCA | GGGAAATGCA         | AGGGATCCTT | GCTTTCAATC | CCTGTAAACA | 11640 |
| ATTCTTTGAA | GGTTCCCATA | TCAATCGTCA         | AAGCCAAGCG | TTCTTGGGCA | GAAATACGAA | 11700 |
| AGGTATAGCT | ACAGTGCGGA | CAGATACGTT         | CACTTCCCAG | ATCCTTCTGA | TAGATGGTAT | 11760 |
| GCTTACAGCC | TGGACACTGG | GAAAATAATT         | CATCTGGAAC | CTCTGGCTTA | GCTTGAGGTT | 11820 |
| тттссстаас | CGAACGATTG | GGATTGATTC         | GAATATACTT | ATCTTTTTTA | CTAAATAGAG | 11880 |
| CCATTGATTC | CCCTTTTCGG | TTTAAACTCT         | TAAAGTCATT | TTATTCTTTT | TCTTGATATT | 11940 |
| TAGGTAAGAA | GGTTTCCATC | AAGAAGGAAG         | TATCATAATC | CCCAGCAATG | ACATTGCGAT | 12000 |
| CTGAAATGAG | GTCAAGCTGG | AAATCTGCAT         | TGGTCTGCAC | TCCTTCAATT | TCTAATTCAT | 12060 |
| AGAGGGCACG | TTGCATTTTC | ATCAAGGCGT         | CAAAACGATT | TTCGCCGTGT | ACTATGATTT | 12120 |
| TGGCAATCAT | ACTATCATAA | TAAGGCGG <u>AA</u> | TGGTATAACC | TGGATAAACT | GCTGAATCCA | 12180 |
| CGCGCAAGCC | AACTCCACCA | CTTGGCAGAT         | AGAGATTAGT | AATCTTACCT | GGACTTGGAG | 12240 |
| CAAAGTTAAA | GGCTGGGTTT | TCTGCATTGA         | TACGACACTC | GATGGCATGA | CCGCGTAGGA | 12300 |
| СААТАТСТТС | TTGCTTAACA | GACAAAGGCT         | GACCTGCCGC | AATGCAAATC | TGTTCCTTAA | 12360 |
| CGATATCAAC | ACCTGAAACA | AACTCTGTTA         | CTGGATGTTC | TACCTGAACA | CGAGTATTCA | 12420 |
| TCTCCATGAA | ATAGAAATTG | CTACTTGCTT         | CATCAAGAAG | AAATTCAATG | GTTCCTGCAT | 12480 |
| TCTCATAGCC | AACAAACTCT | GCCGCTCGAA         | CAGCAGCAGC | ACCTATTTCA | TGACGCAGCG | 12540 |
| TTTTTCCGAT | TGCAATCGAG | GGACTTTCTT         | CCAAAACCTT | TTGGTTATTC | CTTTGAAGAG | 12600 |
| AACAATCCCG | TTCACCCAAG | TGAATCACAT         | GTCCATGCTC | ATCACCTAGG | ATTTGAACCT | 12660 |
| CAATGTGCCG | AGCTGGATAG | ATAACCCGTT         | CTATGTACAT | GGCACCATTG | CCATAATTGG | 12720 |
| CCTTGGCCTC | ACTAGAGGCA | GTTTCAAAGG         | CAGAAACGAG | GTCATCTGGT | TTTTCAACCT | 12780 |
| TACGAATCCC | TTTACCACCT | CCACCTGCTG         | AAGCCTTGAG | CATAACAGGA | TAGCCAATTT | 12840 |
| TTTCAGCAAC | AATCAAAGCT | TCTTCAGAGT         | TATGCACTTC | TCCATCTGAA | CCTGGTATAA | 12900 |

202 CAGGCACACC TGCTTTAATC ATCTGAGCAC GCGCATTGAT CTTATCCCCC ATCATATCCA 12960 TAACATGACC AGATGGACCG ATAAACTTGA TACCTACTTC TTCACACATG GTCGCAAATT 13020 TGGAATTTC ACTGAGAAAT CCAAAACCAG GGTGAATAGC TTCTGCCTCA GTCAAGACTG 13080 CAGCTGATAG AACTGCATTA ATATTGAGAT AAGACTCTGT TGCCTTGCCA GGACCAATAC 13140 AAACTGCTTC ATCTGCCAAA AGCGTATGAA GAGCTTCCTT ATCAGCAGTT GAATAAACCG 13200 CTACCGTCGC AATCCCCAAT TCACGTGCCG CACGGATAAT ACGAACCGCA ATTTCACCAC 13260 GATTGGCAAT TAAAATTTTT CGAAACATGG AGAACCTCCT TAGTTCCCAA TTGCAAAAGT 13320 AAGGGTACCA CTGGCTGCAA GCTTGCCATC CACTTCAGCC TTTGCTTCAA CCACAGCTAT 13380 GGTGCCACGA CGTTTTACAA AAGTCGCTGT CATAACCAAT TGGTCGCCTG GTACAACTTG 13440 CTTCTTGAAC TTAACCTTGT CCATACCAGC GTAAAAGACC AGTTTTCCTT TATTTTCAGG 13500 TTTTGATAAC TCCAACACAC CGGCAGTTTG CGCCAAGGCT TCCATAATCA CAACACCTGG 13560 CATAACTGGG TATTGAGGAA AGTGGCCGTT AAAGAAAGGC TCGTTGATGG TCACATTTTT 13620 GATAGCAACA ATGGTATCCT CGCTCACTTC CAAGACACGG TCCACTAGAA GCATAGGATA 13680 ACGGTGGGGA AGAGCTTCTT TGATTCCTTG AATATCGATC ATTTGATACG TACCAATCCT 13740 TTACCAAACT CAACCATTTC TTCGTTAGAG ACGAGAATTT CCGTTACCAC ACCATCCTTA 13800 GGAGCTGGGA TTTCATTCAT GACTTTCATG GCTTCGATAA TTACCAATGT TTGACCTTTT 13860 TTGACACTAT CACCAACTGT AACGAAGGCA GGTTTATCTG GTCCAGCAGC CAAGTAAACC 13920 ACTCCAACAA GTGGACTCTC TACAAGATTT CCCTCAGTAG CCACACTTGC TTCAGCTGGA 13980 GCTGGAACTT CTTCTGCTAC AGTCTCTGCT GGAGCAGATG TAGGAGCTAC TGGACTCGGT 14040 GTTGCTAGAA CGGGTGCTGG AGCGACTTGA GTTGCAACTT CAGGCACAGG TCTTGCTTCA 14100 TTCTTGCTAA ACTGCAACTC ATCCGTCCCA TTTTTATAAG AAAATTCTCT CAAACTTGAC 14160 TGGTCAAATT GAGTCATCAA GTCTTTAATA TCGTTTAAAT TCATACTTAT CTATTCTCCC 14220 AACGTTTGAA AGCAAGAACT GCATTGTGGC CTCCAAAACC AAAAGTATTT GAAATAGCGT 14280 ATGGAATTTC TTTCTCCAAG CCTTGTCCAT AAACGACATT AGCTTCGATA TAATCTGATA 14340 CTTCACTTGT CCCAGCTGTC ATTGGTACAA AGTTATGACG CATAGCTTCG ATGGTGACGA 14400 TAGCTTCTAC TGCACCCGCA GCCCCCAGCA AATGTCCTGT AAAAGACTTG GTTGATGATA 14460 CAGGTACTTC CTTACCAAGA ACAGCTACGA TAGCACCACT TTCTCCTTTT TCATTGGCAG 14520 GAGTTGACGT TCCGTGAGCA TTGACATAGG CTACTTGCTC TGGAGAAATC TCAGCTTCTT 14580 CCAAGGCTAG TTTGATGGCC TTGATAGCTC CCTGACCTTC TGGATGTGGA GAAGTCATGT 14640 GGTAGGCATC ACAAGTATTT CCGTAACCAA CCACTTCAGC CAGGATAGTA GCTCCACGTT 14700

| TTTCAGCGTG | TTCAAGACTT | TCTAGAACCA | ACATCCCTGA | ACCTTCACCC | ATAACAAACC | 14760 |
|------------|------------|------------|------------|------------|------------|-------|
| CATTGCGATC | СТТАТСАААТ | GGGATCGAAG | CACGAGTTGG | ATCCTCTGTA | GTAGAGAGAG | 14820 |
| CTGTTAAGGC | TTGGAAACCA | GCGATGGCAA | AAGGTGTGAT | AGAAGCTTCT | GTTCCTCCCA | 14880 |
| CCAACATCAC | ATCTTGGAAA | ССАААСТТАА | TGGAGCGGAA | GGCATCCCCA | ATCGCATCAT | 14940 |
| TTGATGAAGA | GCAGGCAGTA | TTGATAGATT | TACAAACACC | GTTTGCACCA | AAACGCATGG | 15000 |
| CTACATTCCC | AGAAGCCATA | TTTGGTAAAG | CTTTTGGAAG | AGTCATTGGT | TTGACACGTT | 15060 |
| TGGGTCCTTT | TTCATGAAGG | CGAAGTACCT | GATCTTCAAT | TTCCTTGATT | CCACCAATAC | 15120 |
| CAGATGCAAC | GATAACACCA | AAACGATCCC | TATTAAGAGC | CTCTACATCA | AGATTGGCAT | 15180 |
| GATTTACAGC | CTCTTGGGCT | GCATACAAGG | CATATAAAGA | ATAGTTATCA | AAACGGTTGG | 15240 |
| TATCTTTTT  | TACAAAGTAT | TTATCGAACG | GAAAATCTTG | GATTTCTGCC | GCATTATGCA | 15300 |
| CATCAAAGTC | ACTATGATCA | AATTTTGTAA | TGCCACCAAT | GCCGATTTTC | CCAGTTGCTA | 15360 |
| AACTATTCCA | AAATTCTTCT | GGTGTATTTC | CGATTGGAGA | TGTTACTCCA | TAACCTGTTA | 15420 |
| CCACTACTCG | ATTTAGTTTC | ATTCTTTTCA | CCTCTAGCTT | TCGCTACATA | CTTAAGCCAC | 15480 |
| CATCAATGGC | AACCACTTGT | CCAGTTAGAT | AATCTTGGCC | TGCTAAAAAT | ACTGTCAAAT | 15540 |
| CTGCAACCTG | CTCTGCCTGC | CCAAATTCTT | TCATCGGAAT | CTGAGCTAGT | GTAGCTTCCT | 15600 |
| TAATCTTATC | TGACAGGATA | GCGGTCATAT | CAGACTCAAT | CATTCCTGGA | GCAATCACAT | 15660 |
| TGACTCGTAT | ATTCCGACTA | GCGACCTCGC | GTGCCACAGA | CTTGGTAAAG | CCAATCAACC | 15720 |
| CAGCCTTAGA | AGCAGCATAA | TTAGCTTGAC | CAATATTCCC | CATCAAACCA | ACAACACTAG | 15780 |
| ACATATTAAT | GATAGCACCT | TCTCTGGCTT | TCATCATCGG | TTTCAAGACT | GATTGTGTCA | 15840 |
| TATTAAAGGC | ACCAGTCAGA | TTGACCTTGA | GCACTTTTTC | AAAATCTGCT | TCTGTCATCT | 15900 |
| TGAGCATAAG | AGTATCTTGG | GTAATCCCTG | CATTGTTGAC | CAAAACATCT | ACTGAACCCA | 15960 |
| GTTCTGCAAT | AGCTTGATCA | ATCATACGCT | TAGCGTCTGC | AAAATCTGAT | ACATCTCCTG | 16020 |
| AAATGGGAAC | CACCTTGATA | CCATAGTTTG | AAAACTCAGC | GAGCAATTCT | TCTGAGATTG | 16080 |
| CCCCACGACT | GTTTAAGACA | ATGTTGGCTC | CTGCTTGAGC | AAACTTGTGG | GCGATGGCAA | 16140 |
| GACCAATTCC | ACGACTCGAA | CCTGTAATAA | AGATATTTT  | ATGTTCTAGT | TTCATTTTTT | 16200 |
| TCCTTTCAAA | ACTTCTACTT | ATTTTAGTCT | ATTTTTCTAA | AAGTGCTACT | AAACTCGCTT | 16260 |
| GATCTTCCAC | ATGAGCTAAG | TGAGCAGTTT | GATCAATTTT | TTTAACAAAA | CCTGACAAGA | 16320 |
| CTTTCCCCGG | TCCAATCTCG | ATAAAGTTGC | TTATGCCTGC | TTCTTGCATG | ACCCCAATAC | 16380 |
| TTTCATAGAA | ACGAACGGGT | TCCTTGACCT | GACGCGTCAA | GAGCTGAGCA | ATGTCCTCTT | 16440 |

204 TTTGCATCAC AGCAGCTTCT GTATTGCCGA CTAGGGGACA AGTAAAATCT GAAAAACTTA 16500 CCTGAGCTAG AGTTTCAGCT AGTTTCTGGC TAGCAGGTTC AAGGAGAGCG GTGTGAAAGG 16560 GACCTGACAC CTTAAGAGGA ATCAAGCGTT TGGCACCTGC TTCTTGCAAA AGTTCAACCG 16620 CTCGATCAAC TGCAACCACT TCTCCAGCAA TGACGATTTG TGCAGGTGTG TTATAGTTGG 16680 CTGGAGTAAC CACTCCAAGT TCAGAAGCTT TTTGACAGGC TTCTTCAATG ACCTCTACTG 16740 GCGTATTGAG AACTGCTACC ATCTTGCCAG AGTCAGCAGG AGCCGCTTCT TCCATATAGG 16800 CTCCACGCTT AGCTACCAAG GCAACCGCAT CTTCAAAATC CAAGGCGCCA CTTGCCACCA 16860 AGGCAGAGTA TTCTCCAAGA GACAAACCAG CAACCATATC AGGCTGATAG CCCTTTTCTT 16920 GCAATAAACG GTAGATAGCA ACCGAAGTCG CTAGAATGGC TGGTTGCGTA TAGCGGGTCT 16980 GATTGAGTTT GTCTTCTCC GTATCGATGA GATAACGCAA ATCATAACCG AGCACCTGGC 17040 TCGCTCGATC AATCGTTTCT TTAACAATCG GATACTGATC ATAGAAATCC CGTCCCATCC 17100 CTAGATACTG GGCACCTTGA CCAGCAAATA AAAAGGCTGT TTTAGTCATT TCTTACAACT 17160 CCTGTCCAGC GAGAGGCTTC TTCTTGAATT TTCTTAGCGG CTCCGTAATA CAAATCTTTT 17220 AGGATTTCTT CAGCTGTTTC TTCTTTAGAA ACAAGCCCTG CGATTTGACC TGCCATAACA 17280 GAGCCACCAT CCACATCACC GTGAACAACT GCTTTGGCTA GAGCACCTGC TCCCATTTGT 17340 TCAAAGATTT CTAAATCAGG ATCTTCTTGC TTAAAGGCAT CTTTTTCAGC CAGTTCAAAA 17400 TCTCTAGTCA ACTGATTTTT AATAGCACGA ACAGCATGAC CAAAGTGCTG AGCTGAAATC 17460 GTAGTATCAA TATCCCTTGC TTTTAAAATT TTCTCCTTGT AGTTTGGATG GGCATTCGAC 17520 TCTTTTGCAA CTACAAACCG TGTCCCCACC TGTACAGCCT CTGCACCTAG CATAAAGCCA 17580 GCCGCAGCAC CTTCACCATC CGCAATTCCT CCTGCAGCAA TAACAGGAAT AGATATAGCT 17640 GTGGCTACCT GTCGCACCAA GGTCATGGTT GTTAATTTAC CGATATGCCC CCCAGCTTCC 17700 ATTCCTTCTG CAATAACAGC GTCTGCACCG ATTTTTTCCA TGCGTTTAGC TAAAGCGACA 17760 CTAGGAACAA CAGGAATAAC GATTATCCCA GCTTCATGGA AACGTTCCAT ATACTTGCTT 17820 GGATTTCCTG CTCCTGTTGT GACAACTTTA ACACCTTCTT CAATAACGAG ATCCACGATG 17880 TCTTCCACAA AGGGAGATAA GAGCATGATG TTGACCCCAA AGGGTTTATC AGTCAATGAT 17940 TTGATTTTAT CAATATTGGC CTTGACAACT TCTTTCGGGG CATTTCCCCC ACCGATAATT 18000 CCTAATCCTC CAGCCTTGGA AACAGCCCCT GCCAAATCAC CATCAGCAAC CCAGGCCATC 18060 CCTCCTTGGA AAATAGGATA ATCAATCTTC AATAATTCTG TAATACGCGT TTTCATAGTG 18120 CCTCCAACCT TCCTTGCTTA CGTAATAGTT CGATTTCACC ATAATTTGAC AGTCAAACTA 18180

TTACCTAAAC AAGAGGGAGT GGGTTTCTCC CTACTCCTTC TACTAATATT CTGCTTATTT

205

| TGCTTGCTCT | TCAACGTAAG | CAACCAAGTC | ACCAACTGTT | TTCAAGTCAT | TTTCTGCTTC | 18300 |
|------------|------------|------------|------------|------------|------------|-------|
| GATTTGGATA | TCAAAAGCAT | CTTCGATTTC | TGAGATTACT | TGGAACAAGT | CCAATGAATC | 18360 |
| TGCGTCCAAA | TCATCAAAAG | TTGATTCAAG | TGTTACTTCT | GATGCGTCTT | TTCCAAGTTC | 18420 |
| TTCAACGATA | ATTTCTTGTA | CTTTTTCAAA | TACTGCCATG | ATAGGACTCC | ттталалтаа | 18480 |
| ATAGTTTTTT | TATAACAATG | TGTTCACCAC | ATGATTACCT | AAATTGTAAG | AATGAGCGTG | 18540 |
| CCCCAGGTCA | AGCCTCCACC | GAAGCCTGAT | AGAAGAACAG | TCTGGCTACC | ATCTAAAGGG | 18600 |
| ATGAGACCTT | GTTCTACACA | CTCTGAAAGT | AAAATCGGGA | TACTGGCTGC | ACTGGTATTG | 18660 |
| CCATATTCCA | TCATATTGGC | TGGAAGTTTG | GCTCGGTCAA | CACCAATTTT | TCTAGCCATC | 18720 |
| TTATCCAAAA | TACGGTCATT | GGCTTGATGA | AGTAGCAGAT | AATCCAAGTC | TGTCACCTCT | 18780 |
| ATAGGAGATT | CATCAATAGT | CTGCTTGATA | GACTTGGCTA | CATCTCGAAT | GGCAAAATCA | 18840 |
| AAGACTGTGC | GTCCATCCAT | CTTCAAAAAC | GAATCTGCAC | TTTCTTGATC | TGAAAATGGA | 18900 |
| GAATGTAAAC | CTGAATGCCC | ATAAGTTAAA | CACTCGCTGC | GACTTCCATC | GCTATTGAGA | 18960 |
| CTCTCAGCTA | AGAAATGCTC | TTGCTCGCTA | GCTTCTAACA | AGACACCACC | AGCACCATCT | 19020 |
| CCAAACAACA | CAGCTGTTGA | TCGATCCGAC | CAATCGACTG | CCTTAGAGAG | GGTTTCACTA | 19080 |
| CCAATCACCA | AGCCTTTTTG | AAAGCGACCA | GAAGCGATAA | ACTTTTCAGC | AGTTGAAAGA | 19140 |
| GCAAATACAA | ATCCACTGCA | AGCCGCGGTT | AAGTCAAAAG | CAAAGGCTTT | ATTAGCACCA | 19200 |
| ATATTAGCTT | GAACACGAGC | AGCTGTAGAG | GGCATCATCG | AATCTGGAGT | AATGGTAGCT | 19260 |
| AGGATGATAA | AATCCAGTTC | TTCTCCTGTT | ATTCCAGCTT | TTGCCATCAG | TTTCTTAGCA | 19320 |
| ACCTCTGTAG | CCAAATCACT | GGTAGATTCT | GTTCTTGAAA | TATGCCTTTG | TCGTATTCCC | 19380 |
| GTTCGACTTG | AAATCCACTC | ATCATTGGTA | TCCATAATCT | GAGCCAAGTC | GTGATTTGTA | 19440 |
| ACCACTTGCT | CTGGCACATA | ATGAGCAACC | TGACTTATTT | TTGCAAAAGC | CATTATTTCA | 19500 |
| AATCCTCCAA | AAATTGGTAA | AGATTAGTCA | AACCTTTACC | CATGACAGCA | ATTTCTTCCT | 19560 |
| CGCTCATGCC | ATCAATAATT | TTTTCTACCA | TGGCCTTGTG | GAAGCGTTTA | TGCAGTCTAT | 19620 |
| GAATCAAGCG | ACCCTTCTTT | GTCAAATGCA | GATGCACCAC | ACGACGATCC | TGTTCTGACC | 19680 |
| GAACTCGCTC | AATGTAGCCC | GG         | •          |            |            | 19702 |

## (2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 6211 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

| 60   | AACAAGTTAT | GTATGATAGT | TGAAAAAATG | TGAAAAATTT | TCTCTTCTCT | GAAAATTTCC |
|------|------------|------------|------------|------------|------------|------------|
| 120  | CTAAGACGGG | TTAGAATCTC | GAAAATCAGT | GAATAATGGA | AAAGAAAGGG | TTTTAAGAGG |
| 180  | TTGGTTATCC | GATACCATCT | TTTAGGAGTT | CACTTCGTGA | GTTTTGGAAA | GTCGGACCTA |
| 240  | TTCGCCACAT | TTTAAAGGCA | GATATATAAT | TTTATGATGC | GTTTTGCCTT | TGGTGGTGCG |
| 300  | AATCAACTGG | GGTTATGCCA | TGAAGCTGAA | GTTGTTTGCA | CATGAGCAAG | TCTAGGGCGC |
| 360  | TTACAGGGAT | ACAAATGCCA | ACCAGGAGCA | TCACTAGTGG | GTTGCCGTCG | AAAGTTGGGT |
| 420  | TGGCGCGAGC | ACAGGTCAGG | TTTGGTCTTT | GCGTTCCCCT | ATGAGCGATA | TGCGGATGCC |
| 480  | TGCCAATCAC | GGAATTACCA | AGACATCGTG | TTCAGGAGGC | AAGGATGCCT | AGGĢATTGGG |
| 540  | CGGAAGCTGT | CGTATCATTA | TGATATTCCG | GTGAGACAGC | TACCAAGTTC | TAAGTACAAT |
| 600  | AAGACATATC | GACCTACCAA | AGTTGTAATT | GTCCAGGGCC | ACTACAGGCC | CCATATCGCA |
| 660  | ATCAGCCGAC | TTACCAAGTT | AGAAGTGAAT | TTTATTCACC | ACAGACTTCA | TGCTTTAGAA |
| 720  | AGGCTAAAAA | CAATTGTCCA | AATCTTGAAG | AAATCAAGAA | AATGATATGC | TCTTGAGCCG |
| 780  | AACTAAATGA | GCTGCTACGG | TTATGCTGAG | GTGGAATTAG | TTAGCTGGTG | GCCAGTCTTG |
| 840  | GAACGATTGC | TTGGGACAAG | AACCAGTCTT | TTCCAGTGGT | CGCTATCAAA | ATTTGCAGAA |
| 900  | CAGCAAATAT | GGGTCATTCG | AGGCATGCAC | TTGGAATGGG | CCACTCTTTC | AACGAGTCAC |
| 960  | ACCGTTTGAC | CGTTTCGATG | TATTGGTTCT | TTATGATTAG | GAAGCGGACT | TĠĊTATGACG |
| 1020 | TTGACCCAGC | CACATTGATA | TAAGGTTGCC | CTAAGAATGC | AAGACTTTCG | GGGGAATCCT |
| 1080 | AGAAGGCCTT | GGAGATGCTA | TCCTGTAGTT | GTGCAGACAT | AAGATTATCA | TGAGATTGGC |
| 1140 | TTGAGAAAGT | GAAAAGTGGA | CAACAACACT | CAACAGTTCA | CTAGCAGAAC | GCAAATGTTG |
| 1200 | TTCAACCGCA | GAGCGTGTGG | TGATAAGAAA | TTCGTTCTTA | AAGAATCGTG | CACTAAAGAC |
| 1260 | TAACAGACGT | GCCATTGTGG | GAATGGAGAT | GTGAATTGAC | GAACGAATTG | AGCAGTTATT |
| 1320 | GTCAGTTAGT | CAAAATGAAC | TTATCCCTAC | CAGCTCAGTA | CAAATGTGGA | TGGTCAACAC |
| 1380 | GTGCTAAAAT | GCAGCAATCG | TGGAATTCCA | CAATGGGCTT | GGTTTGGGAA | GACTTCAGGT |
| 1440 | AAATGACCAA | GGTGGTTTCC | TGTTGGGGAT | TAGTCTTGTT | GATAAGGAAG | TGCTAACCCA |
| 1500 | TGCTGAACAA | AAGGTGGTTA | GGTGCCAATC | ATATTTACAA | GCTATTTTGA | CCAGGAGTTG |
| 1560 | GAACATCAGA | TATGAAGGCA | GGAATCCTTC | GCCAGTGGCA | GGAATGGTTC | TCATTCACTT |
| 1620 | GTATTAAAAA | CAGGCTTATG | ATTGATGGCG | CTGATTTCCA | GATACCCTTC | GTCGGTCTTT |
| 1680 | CTGAGGATGT | GAAGTCATCA | TCAAGACCTT | AGACCTTGGC | GACAATCCTG | CTATAAGTTT |
|      |            |            |            |            |            |            |

| TCCTATGCTA | ATTGAGGTAG | ATATTTCTCG | TAAGGAACAG | GTGTTACCAA | TGGTACCGGC | 1740 |
|------------|------------|------------|------------|------------|------------|------|
| TGGTAAGAGT | AATCATGAGA | TGTTGGGGGT | GCAGTTCCAT | GCGTAGAATG | TTAACAGCAA | 1800 |
| AACTACAAAA | TCGTTCAGGA | GTCCTCAATC | GCTTTACAGG | TGTCCTATCT | CGTCGTCAGG | 1860 |
| TTAATATTGA | AAGCATCTCT | GTTGGAGCAA | CAGAAGATCC | GAATGTATCG | CGTATCACTA | 1920 |
| TTATTATTGA | TGTTGCTTCT | CATGATGAAG | TGGAGCAAAT | CATCAAACAG | CTCAATCGTC | 1980 |
| AGATTGATGT | GATTCGCATT | CGAGATATTA | CAGACAAGCC | TCATTTGGAG | CGCGAGGTGA | 2040 |
| TTTTGGTTAA | GATGTCAGCG | CCAGCTGAGA | AGAGAGCTGA | GATTTTAGCG | ATTATTCAAC | 2100 |
| CTTTCCGTGC | AACAGTAGTA | GACGTAGCGC | CAAGCTCGAT | TACCATTCAG | ATGACGGGAA | 2160 |
| ATGCAGAAAA | GAGCGAAGCC | CTATTGCGAG | TCATTCGCCC | ATACGGTATT | CGCAATATTG | 2220 |
| CTCGAACGGG | TGCAACTGGA | TTTACCCGCG | ATTAAAAATC | CAACTTAAAT | TTATTAAACC | 2280 |
| AGCCTAAAAG | GCAATAAATA | ATAGAAAAGA | GAGAAAAGCT | ATGACAGTTC | AAATGGAATA | 2340 |
| TGAAAAAGAT | GTTAAAGTAG | CAGCACTTGA | CGGTAAAAAA | ATCGCCGTTA | TCGGTTATGG | 2400 |
| TTCACAAGGG | CATGCGCATG | CTCAAAACTT | GCGTGATTCA | GGTCGTGACG | TTATTATCGG | 2460 |
| TGTACGTCCA | GGTAAATCTT | TTGATAAAGC | AAAAGAAGAT | GGATTTGATA | CTTACACAGT | 2520 |
| AGCAGAAGCT | ACTAAGTTGG | CTGATGTTAT | CATGATCTTG | GCGCCAGACG | AAATTCAACA | 2580 |
| AGAATTGTAC | GAAGCAGAAA | TCGCTCCAAA | CTTGGAAGCT | GGAAACGCAG | TTGGATTTGC | 2640 |
| CCATGGTTTC | AACATCCACT | TTGAATTTAT | CAAAGTTCCT | GCGGATGTAG | ATGTCTTCAT | 2700 |
| GTGTGCTCCT | AAAGGACCAG | GACACTTGGT | ACGTCGTACT | TACGAAGAAG | GATTTGGTGT | 2760 |
| TCCAGCTCTT | TATGCAGTAT | ACCAAGATGC | AACAGGAAAT | GCTAAAAACA | TTGCTATGGA | 2820 |
| CTGGTGTAAA | GGTGTTGGAG | CGGCTCGTGT | AGGTCTTCTT | GAAACAACTT | ACAAAGAAGA | 2880 |
| AACTGAAGAA | GATTTGTTTG | GTGAACAAGC | TGTACTTTGT | GGTGGTTTGA | CTGCCCTTAT | 2940 |
| CGAAGCAGGT | TTCGAAGTCT | TGACAGAAGC | AGGTTACGCT | CCAGAATTGG | CTTACTTTGA | 3000 |
| AGTTCTTCAC | GAAATGAAAT | TGATCGTTGA | CTTGATCTAC | GAAGGTGGAT | TCAAGAAAAT | 3060 |
| GCGTCAATCT | ATTTCAAACA | CTGCTGAATA | CGGTGACTAT | GTATCAGGTC | CACGTGTAAT | 3120 |
| CACTGAACAA | GTTAAAGAAA | ATATGAAGGC | TGTCTTGGCA | GACATCCAAA | ATGGTAAATT | 3180 |
| TGCAAATGAC | TTTGTAAATG | ACTATAAAGC | TGGACGTCCA | AAATTGACTG | CTTACCGTGA | 3240 |
| ACAAGCAGCT | AACCTTGAAA | TTGAAAAAGT | TGGTGCAGAA | TTGCGTAAAG | CAATGCCATT | 3300 |
| CGTTGGTAAA | AACGACGATG | ATGCATTCAA | AATCTATAAC | TAATTAGAAA | TATATAGCGC | 3360 |
| TGGAGATGAT | TTTATGAAAA | AGATTATGAG | AAAAATTGCA | TCGTTATTAT | TGGTTCTAGT | 3420 |

208 TGTATAATGT AATTACACCG TCGGTAATAG TGCTAGCAGA CCAAAATAAA GCAGATTGGT 3480 CGTATGATGA AAATGCTGTA ATTAACATTT ATGATGATGC TAATTTTGAA GATGGTAGGT 3540 TGCATATGAA CTTTGAACAA TTCTTCAAAT TGGCACAAAT AGCTAGAGAA GAAGGTCTTG 3600 AAATTCATTC TCCGTTTGAG AGAGCTGGTG CGACTAAATC TGCTCGTTAT ATAGCGAAAT 3660 GGATTTTGAG AAATAAAAAA CATTAACAAA TATAGTTGGT AAATCATTAG GACCTAAATC 3720 AGCTGTTAGA TTCGGAGAAG CTTTATCCTA TATTGAAGGT CCTCTTCGCA GAATAAATGA 3780 GACGATAGAT GGCGGTTTAT ATCAAATAGA GCAAATTATT GCATCTGGAT TGAAAGAATC 3840 GGGTTTAAAT GACTGGACTG CGAAAACTTT AGCTTCAGCT ATTCGTGGGA TATTAGATGT 3900 ACTTATTTAG GGGTTGAAAT CATATGAATA TTACCAATTT GTTTTCTATC AAGACAGGAT 3960 GTGATGAAAC TGATAGGCAA CTGCAAAAAC TATTTTTTCA GTTGGATTTA CAATTGGGAG 4020 AATTGACAGA TCAACTAAGA AAATTAGATT CTAATTTTGT TCCTCGTAGT CAATTTGTAG 4080 ACACGTTGGA TTTGAATGAT GTAGAATATA AAGAAATTTT AAACTATTTT ATCTTCCATC 4140 GTAATGATAG TGAAGAAAGT TTGGTAGAAT GGTTATATGA TTGGATTTCC ACAAATCGTT 4200 ATGAACTTCC TAAAGAGTTT TCGATTCGTA TGGCTCATAA ATACCATGAA AGTGTTACTG 4260 AAGTTTTCGG AGATGAATAA CTAAAAAACA GTCATTAGTG ACTGTTTTTT ATAGAAAAAG 4320 AGGTTTTATA TGTTAAGTTC AAAAGATATA ATCAAGGCTC ACAAGGTCTT GAACGGTGTG 4380 GTTGTGAATA CTCCACTGGA TTACGATCAT TATTTATCGG AGAAGTATGG TGCTAAGATT 4440 TATTTGAAAA AAGAAAATGC CCAGCGTGTT CGCTCCTTTA AAATTCGTGG TGCCTATTAT 4500 GCCATTTCCC AGCTCAGCAA GGAAGAACGT GAACGTGGGG TAGTCTGCGC TTCTGCGGGA 4560 4620 ATGCCCATTA CTACGCCACA ACAAAAGATT GGTCAGGTTC GCTTTTTTGG TGGGGATTTT 4680 GTAACTATTA AACTAGTTGG AGATACCTTT GATGCCTCAG CCAAAGCAGC TCAAGAATTT 4740 ACAGTCTCTG AAAATCGTAC CTTTATTGAT CCTTTTGATG ATGCTCATGT TCAAGCAGGT 4800 CAAGGAACAG TTGCTTATGA GATTTTAGAA GAAGCTCGAA AAGAATCGAT TGATTTTGAT 4860 GCTGTCTTGG TTCCTGTTGG TGGTGGCGGT CTCATTGCCG GGGTTTCTAC CTATATCAAG 4920 GAAACAAGTC CAGAGATTGA GGTTATCGGA GTAGAGGCGA ATGGAGCGCG TTCCATGAAA 4980 GCTGCCTTTG AGGCTGGAGG TCCAGTAAAA CTCAAGGAAA TTGATAAATT TGCTGATGGG 5040 ATTGCTGTGC AAAAGGTAGG TCAGTTGACC TATGAAGCAA CTCGTCAACA TATTAAAACT 5100 TTGGTAGGTG TCGATGAGGG ATTGATTTCT GAAACCTTGA TTGACCTTTA CTCTAAGCAA 5160 GGGATAGTCG CAGAACCTGC TGGAGCGGCT AGTATCGCCT CTTTAGAGGT TTTAGCTGAA 5220

209

| TATATTAAGG | GGAAAACCAT | TTGTTGTATC | ATTTCTGGAG | GAAATAATGA | TATCAACCGT | 5280 |
|------------|------------|------------|------------|------------|------------|------|
| ATGCCAGAAA | TGGAAGAGCG | TGCCTTGATT | TATGATGGTA | ТСАААСАТТА | CTTTGTGGTC | 5340 |
| AATTTCCCAC | AACGTCCAGG | AGCTTTGCGT | GAGTTTGTAA | ATGATATCCT | GGGGCCAAAT | 5400 |
| GATGATATCA | CACGTTTTGA | GTATATCAAA | CGAGCTAGCA | AGGGAACAGG | CCCAGTATTA | 5460 |
| ATTGGGATCG | CTTTAGCAGA | TAAGCATGAT | TATGCAGGTT | TGATTCGTAG | AATGGAAGGT | 5520 |
| TTTGATCCAG | СТТАТАТТАА | CTTAAATGGT | AATGAAACGC | ТТТАТААТАТ | GCTTGTCTGA | 5580 |
| GGACTAATAA | AAAAATATCA | TACCTTCATT | TTGATTTCCT | ATCTATTGAC | AAGCATAGTC | 5640 |
| ACACTGTCTT | TAATACTCTT | CGAAAATCTC | TTCAAACCAC | GTTAGCTCTA | TCTGCAACCT | 5700 |
| CAAAACAGTG | TTTTGAGCAA | CTTGCGGCTA | GCTTCCTAGT | TTGCTCTTTG | ATTTTCATTG | 5760 |
| AGTATAAGGT | ATGATTTGAT | TTCTTTTTGT | TGACAAATAT | АСТАТАТТАА | AAAGATATAT | 5820 |
| AAGTAATTAA | CTGAGCTTAT | CTGTCTTGTC | ATCTCTATTA | AGGATGGTTT | AGATAATCGG | 5880 |
| GTGTCTGCTT | CTAGGCTAGC | ACCTCAATAT | CCAAAGGAGT | GATGAATTTG | AAGGACATAA | 5940 |
| GGAATACCTA | TCTCTCAGAT | GATTTATTGA | GGAAGAAAGA | TAGGAGTTTT | TGAGCTAGTG | 6000 |
| AAGGCTTGGA | TTTCTAAAGG | TTAGAACTAT | CATCTTCAGT | TCTTAAATCG | AAGAAATAAG | 6060 |
| CTATCTTACG | GAAATAGAGA | AGCATTTTTT | AAGAACTTGA | ATAATTTCGC | ACCTTAAGAG | 6120 |
| GGTAATAATA | CAGTATTTTT | ATTAGCAAAT | ATTTATGGTG | TAGAGGCTAG | CAAAACCTAT | 6180 |
| ATATTATCGG | ATTTAAAAAG | GAAGTAAGAA | A          |            |            | 6211 |
|            |            |            |            |            |            |      |

## (2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 7939 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

| CCGGACTCCC | CACGATTCTT | CAAAATAACT | GAGTATATTT | CTATCTTGAT | TTTCAGATAT | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| AAATTCTTCC | TTCTGTGGCC | TCTTCTTACG | CTTGAGAAGA | GCTTCTCCGA | CATGGCTTCT | 120 |
| TCCTTACTGA | GCAAAACCTT | GAGCATAGAT | AAGTTTGACT | GGCAAGCGTG | CTCTTGTATA | 180 |
| TTTGGCTCCC | TTCCCACTAT | TGTGGATAGC | GAGGCGTCTT | CTCATATCAG | TCGTATAGCC | 240 |
| TATATAGTAG | GATCCATCAC | GACACTCCAG | AACGTACATA | TAAGCCTTAT | GATCCATAAT | 300 |
| AAATCTCTTC | GATTTCGGGC | GTATAAGAGC | CATCATCATT | GTGGACAATC | AAAGGAGGTA | 360 |

|            |            |            | 210        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| AGACCTTAAA | GCCACTTGTT | GAGCCATCCT | TGATCGCCTC | AATCAAAAGC | ATATTGGCTT | 42   |
| CCTTTTCTCT | TTTTGGATAA | ACAAACTGCA | GGCGCTTAGG | GGCTAGATTA | TGTCGTTTTA | 48   |
| ACGTATCCAA | AATATCCAGA | AGTCGATCAG | GACGATGAAC | CATGGCCAAA | CGCCCATTAG | 54   |
| ACTTGAGAAT | ACTCTGGGCA | CTACGACAGA | TTTCTTCCAA | ATTAGTCGTG | ATTTCGTGTC | 60   |
| GAGCCAAGAG | ATAATGTTCA | CTCTCGTTCA | GATTAGAATA | AGGATTCACC | TTGAAATAGG | 66   |
| GTGGATTACA | СААААТСАТА | TCCACCTTAC | TCCCCTGAAT | GTGAGCAGGC | ATATTTTTCA | 72   |
| AATCATCGCA | GATGACCTGC | ATTTGCTCCT | CTAATCCATT | CAAACGGACA | GAGCGTTCAG | 786  |
| CCATATCCGC | CAAACGCTCC | TGAATCTCAA | CAGACAATAT | CTGTGCTTGA | GTACGAGTGC | 840  |
| TAGCAAAAAG | CCCCACTGCT | CCATTCCCAG | CACAGAAATC | CACAATCAAC | CCCTTCTTAG | 900  |
| GAAAACGTGG | AAATCGTGAT | AAGAGAACAC | TATCCACCGA | ATAGCTAAAA | ACCTCTCTAT | 960  |
| TTGAATGAT  | TTTGATATCT | GTCGAAAAGA | GCTGGTTAAT | GCGCTCTCCT | GATTTTAATA | 1020 |
| ATTGTTCTTC | TTCCATGGTC | CTATTATAGC | AAATTCATAT | TAACATTACA | АААААТАТАА | 1080 |
| AACTCTAAAC | TACTTCTTCT | TTTTTAAATG | GTGCAGGGCT | TCTCCAGTCC | AGATTGGTAG | 1140 |
| CATTCGTCGA | AAGGGAGCAA | AGCCGTAGTT | AAAGCGGTCG | CTTGAAAAGC | GTCTCCGTCT | 1200 |
| AGGAAACTGG | TACTTTTCTT | CCTCCAAAGT | GCGGATAGAA | AGACTGGCTT | TCCCTGTAAA | 1260 |
| ГТСАТСТААА | TCCACTACCT | GAACTTGAAC | CTCTTCATCG | ACTTTCAAGG | TTTCATGAAT | 1320 |
| АТТТТСААТА | AATCCTGTCC | GAATCTCTGA | AATGTGAATC | AGCCCCGTAT | CACCCGTCTC | 1380 |
| TAACTCAACA | AAGGCACCGT | AGGGCTGAAT | CCCTGTAATA | CGCCCCTTTA | GCTTATCACC | 1440 |
| GATTTTCATC | TTAGTCCTCG | ATTTCAATAG | TTTCAATTAC | AACATCTTCA | ACTGGCTTGT | 1500 |
| CCATAGCTCC | TGTCTCAACA | GCAGCAATGG | CATCCAAGAC | AGCGTAAGAT | GCTTCATCAG | 1560 |
| CTAACTGACC | AAAAACCGTG | TGACGGCGGT | CTAGGTGAGG | TGTCCCACCT | TGATTGGCAT | 1620 |
| AGATTTCTGC | AATCGGTTCT | GGCCAACCAC | CACGAGTAAT | TTCTTTCTTA | GAATAAGGTA | 1680 |
| GTGTTGGTT  | TTGCACGATA | AAGAACTGGC | TGCCGTTGGT | ATTTGGACCA | GCATTTGCCA | 1740 |
| rggaaagagc | ACCACGGATA | TTGTAAAGCT | CTTCTGAGAA | TTCATCCTCA | AAAGATTCGC | 1800 |
| GTAGATTGA  | CTCGCCACCC | ATACCAGTTC | CAGTTGGGTC | TCCACCTTGG | ATCATAAAGT | 1860 |
| CTTGATAAT  | ACGGTGGAAA | ATGACACCAT | CATAGTAGCC | ATCTTTTGAA | AGAGATACAA | 1920 |
| AGTTAGCCAC | TGTTTTAGGA | GCATGTTCAG | GGAAAAGCTT | GATACGTAAG | TCTCCGTGAT | 1980 |
| GGTCTTAAT  | AGTCGCAAGA | GGACCTTCTA | CTGTTTCAAT | GTCTACTTGT | GGAAAATGCA | 2040 |
| ATTCTTTTTC | TACCATACCA | AATACTTCTA | AGGCAGCAAA | AATGCCATCT | TCTTCTAATG | 2100 |
| TTTTGTAAT  | ATAATCTGCT | TTTTCTTTGA | TTTTATCATG | AGAAATTCCC | ATGGCAACGC | 2160 |

| TGATTCCAGC | ATAATCAAAG | AGTTCCAAGT        | CGTTGAGACC | АТСТССАААА | ACCATGACCT | 2220 |
|------------|------------|-------------------|------------|------------|------------|------|
| TCTCTGGTTT | CAAGCCAAGG | TGTTCCACAA        | CCTTTTCCAC | CCCCGTCGCT | TTGGAGCCTG | 2280 |
| AAATCGGCAC | AATATCAGAC | GAATGTTGAT        | GCCAACGAAC | CATGCGAAGT | TTGTCTGAGA | 2340 |
| GACTGTCAGG | CAAGTGCAAG | TCATCTCCCT        | ТАТСТТСААА | AGTCCACATC | TGATAGATAT | 2400 |
| СТТСТТТТТС | ATGGAAATCG | GGATCTACAT        | CTAAGTCGGG | ATAAATTGGA | TTGATAGCTT | 2460 |
| CACTCATCAT | ATCGGTGCGA | GTCGACAACT        | TGGCATCATG | ACTCCCAACC | AAGCCATACT | 2520 |
| CAATTCCTTC | TTGCTTAGCC | CAAGAGATAT        | ACTCCTCAAC | ATCTGACTTT | TCAATCTGAT | 2580 |
| GCTGATAAAT | GACCTGACCT | TTTTTATCTT        | CGATATAAGC | CCCATTCAAA | GTTACAAAAA | 2640 |
| AGTCAGGCTT | GAGATCACGA | ATCTCTGGAA        | CAACACCAAA | AATGCCACGT | CCAGAGGCGA | 2700 |
| TTCCTGTTAA | AATTCCTTTT | TCACGCAACT        | GTTTAAAAAC | AGTGGGAATT | GTAGTTGGAA | 2760 |
| TAAACCCTGT | CTTTGAATTC | CGCAATGTAT        | CATCAATATC | AAAAAAGACA | ATCTTGATCT | 2820 |
| TCTTTGCCTT | GTATCTTAAT | TTCGCGTCCA        | TCTCACTACC | TCTTTCAATC | TAACTCTTTC | 2880 |
| CATTATATCA | TAAAGTAGGC | AAATCCCCTA        | TTTTCAAAAA | GTTTATCATT | TTTATTTTAA | 2940 |
| TTTCTTGGAT | GAGAAAAGAG | ACATATTTAT        | GAAAAAGCTC | CATCGTGCTT | TTAATGTGTT | 3000 |
| CTCTTGTTTT | CAAACTCGTA | AAAAGGGAGC        | CACTGATCCT | AACTCGCTCT | CTCATTTCAA | 3060 |
| AGCTTGTGAA | AAAAGACCCG | TTGGGGTCTT        | AATTCGCTTT | CTTGTTTTCA | AGCTCATGAA | 3120 |
| AAAGAGACCC | AACTGGGTCT | <u>ݽ</u> ݨݽݨݽݨݞݞݨ | CTTCGTTTAC | GANAGGCATC | AMAGCCATTA | 3180 |
| CGCGAGCGCG | TTTGATAGCT | GTTGTTACTT        | TACGTTGGTT | TTTAGCTGAA | GTTCCTGTTA | 3240 |
| CACGACGAGG | AAGGATTTTC | CCACGTTCTG        | AAACGAAACG | GCTAAGAAGC | TCAGTATCTT | 3300 |
| TGTAATCAAC | ATATTCAATT | TTGTTTGCTG        | CGATGTAATC | AACTTTTTTA | CGGCGTTTGA | 3360 |
| ATCCGCCACG | ACGTTGTTGA | GCCATGTTTT        | TTCTCCTTTA | TAAGTTTAGT | TGTCCATTAG | 3420 |
| AATGGTAAAT | CATCATCTGA | AATATCCAAT        | GGGTTTGTTG | CTCCAAATGG | ATTTTCATTA | 3480 |
| CGTGAAAAGT | CTGGTACTGA | ATTTGTAGGT        | GCTGAATAGT | TTGCAGTTGG | TGCAGAGTAA | 3540 |
| GCTCCACCTG | TGTGACCCTC | ACGCACACTA        | CGGCTTTCCA | ACATTTGGAA | ATTCTCAGCC | 3600 |
| ACGACCTCTG | TCACGTAGAC | ACGTTGTCCT        | TGCTGGTTAT | CGTAACTACG | AGTCTGGATA | 3660 |
| CGACCTGTCA | CCCCGATAAG | TGAGCCTTTT        | TTAGCCCAGT | TAGCAAGATT | TTCAGCCTGT | 3720 |
| TGGCGCCACA | TAACGACATT | GATAAAATCA        | GCCTCACGTT | CACCATTTTG | ACTCTTAAAT | 3780 |
| GTACGGTTTA | CTGCAAGAGT | AAAAGTCGCA        | ACTGCTACAT | TTGATGGGGT | ATAACGCAAC | 3840 |
| TCAGCGTCAC | GTGTCATACG | CCCTACAAGT        | ACAACATTGT | TAATCATAGT | TTACCTTCTT | 3900 |

212 ACGCGTCAAT TTTGACGATC ATGTGACGAA GAATGTCAGC GTTGATTTTT GAAAGACGGT 3960 CAAACTCTTT AAGAGCTGCA TCGTCATTTG CTTCAACGTT AACGATGTGG TAAAGTCCTT 4020 CACGGAAATC TTGGATTTCG TATGCAAGAC GACGTTTTTC CCAAGTTTTT GATTCAACAA 4080 CAGTTGCACC GTTGTCAGTC AAAATAGAGT CAAAACGTGC TACCAAAGCG TTTTTAGCTT 4140 CTTCTTCAAT GTTTGGACGA ATGATATAAA GAATTTCGTA TTTAGCCATT GATATGTTCC 4200 TCCTTTTGGT CTAATGACCC CAAGACTTTG CAAGGGGTAA GTGAGGTTCG CTCACAATAA 4260 ACTATTATAC TAGAAAAAAT TTTTTTACGC AAGTAAAAAC ACTAGAATTC GAAAAAACGC 4320 4380 AGCTTCACGG ATATGTTTTG TTCCTGCTGC GAAGGTTACC ATACGTTCGA TACCGATACC 4440 AAATCCTCCG TGTGGAACTG TACCGTATTT ACGAAGGTCA AGGTAGAATT CATATTCTGT 4500 ACGATCCATG CCAAGTTCAT CCATCTTAGC GACAAGGGCA TCGTAATCTT CCTCACGCAT 4560 AGACCCACCG ATAATTTCTC CATAGCCTTC TGGAGCAAGC AAGTCTGCAC AAAGCACGCG 4620 CTCTGGATTT CCAGGAACTG GTTTCATGTA GAAGGCCTTG ATGGCTGCTG GATAGTTCAT 4680 GACAAATGTT GGCACACCAA AGTGGTTTGA AATCCAAGTT TCGTGTGGTG ACCCAAAGTC ATCACCATGC TCAAGATGCT CGTAGTCAGC ATCTTCATCA TTTTCATGCT CTTGCAAGAG 4800 GTCAATGGCT TGATCGTAAG TGATACGTTT GAATGGCTCT GCAATGTAGC GTTTCAAGAG 4860 TTCTGTATCA CGTTCCAAGG TTTCCAAGGC TTGAGGCGCG CGGTCAAGAA CACCTTGTAG 4920 AAGAGCTTTC ACATAAGCTT CTTGCAAGTC AAGCGACTCA TCATGTGTCA AGTATGAGTA 4980 CTCAGCATCC ATCATCCAGA ACTCAGTCAA GTGACGGCGT GTTTTTGATT TTTCAGCACG 5040 GAAAACTGGA CCAAAGTCAA AGACACGACC AAGAGCCATA GCCCCTGCTT CTAGGTAAAG 5100 CTGACCTGAT TGGCTCAAGT AGGCTGGCGT TCCGAAGTAG TCAGTTTCAA AGAGTTCTGT 5160 AGAATCTTCT GCCGCATTTC CTGAAAGAAT TGGGCTGTCA AACTTCATAA AACCGTTCTT 5220 GTCAAAGAAC TCATAAGTTG CATAGATAAT AGCGTTACGG ATTTGCAACA CAGCTACTTG 5280 CTTACGAGAG CGTAGCCACA AGTGACGGTT ATCCATCAAA AAGTCTGTTC CGTGTTCTTT 5340 TGGTGTGATT GGGTAGTCTT GAGATTCACC GATCACTTCG ATGTCTGTGA TGTCCAACTC 5400 ATAGCCAAAT TTAGAACGTT CGTCCTCTTT GACAATACCT GTCACATAAA CAGACGTTTC 5460 TTGGCTCAAG CGTTTGATAA CATCAAACTT CTCAAGTCCC ACTTCTTCAC CAAATTTTTC 5520 GACAAAGTTT GGTTTAAAAG CCACACCTTG AAAGAAGGCT GTTCCATCAC GCAATTGTAA 5580 GAAAGCGATT TTTCCTTTTC CTGATTTGTT GGCAACCCAA GCGCCAATCG TCACTTCCTG 5640 ACCAACATAG TCTTTTACGT CAATAATCGT TACACGTTTT GTCATTATTT TTCCTTTTCT 5700

| TTTTTATTCT | TTATGGCAAA      | CCACCTCTAT    | ATTGTTCCCA | TCCAGGTCAA | TCATAAAAGC | 5760 |
|------------|-----------------|---------------|------------|------------|------------|------|
| AGCATAGTAA | ATCGGATGCT      | CACTTCGATA    | ACCAGGAGCC | CCATTGTCTC | GCCCACCTGC | 5820 |
| CTCTAAGCCA | GCCTCATAAC      | AAGCCTGAAC    | TTCTTCCTTA | TTTTCTGCTA | AAAAAGCAAA | 5880 |
| ATGAACAGGA | TCTTGTGTTC      | CCTGAGTCAG    | CCAAAAATCA | CCACCAGGAT | GAGGGCTGTT | 5940 |
| CGGGGATAGA | AAACTAATTA      | GAGAACTAGT    | CTTAAAAGCC | AATTTATAGT | CCAAAGGAGC | 6000 |
| GAGAAAACTC | СТАТААААТС      | CTTATGAAAT    | TTGTAAATCC | TTTACCTTAA | TCTCAAAATG | 6060 |
| АТСААТСАТТ | CTCACTACCC      | ATAAATGCTT    | TCAAGCGTTC | GACTGCTTCT | TTAAGCGTGT | 6120 |
| CTAGGTCTGT | CGCATAGCTG      | AGGCGGACAT    | TTTCTGGTGC | TCCAAATCCA | GCTCCTGTTA | 6180 |
| CCAAGGCCAC | TTCGGCTTCT      | TCTAAGATAA    | CAGTTGTAAA | GTCTGTCACA | TCCGTGTAGC | 6240 |
| CTTTCATCTC | CATGGCCTTT      | TTGACATTTG    | GGAAGAGATA | GAAGGCCCCT | TGCGGTTTGA | 6300 |
| CCACTTCAAA | TCCTGGTACC      | TCTGCAAGGA    | GGGGATAGAT | GGTATTAAGA | CGTTCCTCAA | 6360 |
| AGGCCTGACG | CATGCTTTCT      | ACAGTATCTT    | GCTCACCTGA | TAGAGCCTCA | ACTGCTGCAT | 6420 |
| ATTGGGCTAC | TGCTGACGGA      | TTCGAAGTTG    | TTTGACCTGC | AATCTTGGAC | ATGGCAGCGA | 6480 |
| TAATGTCTGC | TTCTCCAACG      | GCATAACCAA    | TCCGCCAACC | AGTCATGGCA | TAAGTTTTAG | 6540 |
| ACACACCATT | GATGACCACT      | GTTTGCTTGC    | GAATCGCTTC | CGATAGGCTA | GAAATCGGTG | 6600 |
| TGAACTCATG | ACCATTATAA      | ACCAAGCGGC    | CATAGATATC | GTCTGCTAGG | ATGAGAATAT | 6660 |
| CATTTTCTAC | AGCCCAGTTT      | CCAATTGCCA    | AGAGTTCCTC | ACGGGTGTAN | ATCATACCTG | 6720 |
| TGGGATTAGA | TGGCGAATTC      | AGCACCAAAA    | CCTTGGTCTT | GTCAGTGCGA | GCTGCTTCTA | 6780 |
| ACTGCTCTAC | GGTCACCTTA      | AAGTGATTGT    | CTTCCTTAGC | AGAAACAAAG | ACGGGAACGC | 6840 |
| CTTCTGCCAT | CTTGACCTGA      | TCTCCATAGC    | TAACCCAGTA | TGGGGTTGGG | ATGATGACTT | 6900 |
| CATCACCTGG | ATTGACCACA      | GCCATAAAGA    | AGGTATAGAG | AGAATATTTG | GCTCCCGCAG | 6960 |
| CGACTGTCAC | TTGATTTGAC      | GCTACAGAAT    | AGCCGTAAAA | GCGCTCAAAG | TAGCTATTGA | 7020 |
| CCGCCGCCTT | AAGCTCTGGC      | AGACCTGAGG    | TTACTGTATA | AAAAGAAGCA | CGCCCATCTC | 7080 |
| GAATCGATGC | AATGGCGGCA      | TCTTGGATAT    | TTTTGGGAGT | AGTGAAATCT | GGCTCACCCA | 7140 |
| AGGTTAGAGA | СААААТАТСТ      | CTACCCTCAG    | CCTTCAGTGC | TTTGGCACGG | GCTCCAGCAG | 7200 |
| CCAAAGTCAC | ACTTTCTTCC      | ATTTCTAAAA    | CACGGTTGGA | TAGTTTCATA | GGCCCTCCTT | 7260 |
| GTTGACCAAT | GCTCCTGTTT      | CAAAATCTAC    | TAGATAAAAA | TCAGATCCTG | ACTTAACTTC | 7320 |
| CCAGATTGGC | TTATCTTGAT      | AACGGCCAAA    | GGTTATCTTG | TCAATCTCGC | CAGCTCCCTT | 7380 |
| ттссттасаа | <b>ACCGMPMC</b> | <b>Շփփփփփ</b> | TCAAACACCC | ጥርስጥጥጥስርርጥ | CATALACCTA | 7440 |

|                                    |            |            | 214        |            |            |      |
|------------------------------------|------------|------------|------------|------------|------------|------|
| AATCTTATGG                         | TCATCTTTAC | CAATCAGGAC | AGCAAGCGCT | TCTTGCTGTT | TGTTACGACC | 7500 |
| AAGAACGCTG                         | TAATAAGATT | CCAAGCCATT | GTATAAATCA | ACCTGATCAG | CCTGCTCTAA | 7560 |
| TCCTGCATAC                         | TGCTGAGCTA | ATTTTTCTCC | TTCACTTTTA | GCTGTTTGAT | AGGGTTTCAT | 7620 |
| GCTAAGAGAA                         | ACCATATACA | GAAAGGAACC | ACTGATAACC | ACAAACAAAA | TCGTCATCCC | 7680 |
| TAGACCATAC                         | TGCCACAGTA | GATTATTTT  | TGCTTTGTTT | TGTCTTTTTT | TCACTCGTCT | 7740 |
| ATTTTACCAT                         | CTATTAAGCT | TTATTACAAG | TGAATATAAG | AATACTCTTC | GAAAATCTCT | 7800 |
| TCAAACCACG                         | TCAGCTTTAT | CTGCAGACCT | CAAAGCTGTG | CTTTGAGCAA | CCAATTCTAT | 7860 |
| ттстсссттс                         | AAACAAAACC | GATTTTGAAA | GTGAAACAGT | TCTTACTTTT | TCAGTCACAA | 7920 |
| ATGATTAGAG                         | TTTGCCGGG  |            |            |            |            | 7939 |
| (2) INFORMATION FOR SEQ ID NO: 10: |            |            |            |            |            |      |

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 9897 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CCGCTCTACC GTCAAATAAT TACCATTTTG TTTAATACCG AAATTTTTAT CTACTGAAAA 60 TTCAGTTGGT CTGTTGGTAC GATCGTCGTA TACAGTACCA TTCTCACGAA TAGTATAATT 120 GTAATCAGTA TCACCTTGTT TCCTTAATTT AAGGTAATAA TTACCATCAA TTTGTTTATA 180 ACCTGAATCT TTTCTAGTTG CTTCTCTAAA ACTTACTCCA GCAGGCATCA CATCAGCAAA 240 CATGAGTACT TGTTTGTTCT TTTTTCAAC AATAACAGAG TCAATATAGG TTGCACCACC 300 GCTGATTTGT AAGTCACGTC CACCAACTTC ACGAGGCCAT TCTAATGGTA CTGGCGCAAA 360 ATCATCGAAT GCCAATGTTA ATTTTGGTTT AGTCCATGTC TTACCATTAT CATCACTATA 420 ACTTGTAGCA ATATTAATTT TATTCAAGAA ATCATGAGTT CCACCGTAAC GAGCGTCAAT 480 GCTTGAAAAT ACCCGACCAT TGCTAAAAGT ATACAGAACT GGAATACGGA AATAGTTAGA 540 ACCTGTTGTA TCATTAGCCG TATAAATTAA ATGTCCAGTA ACAGCGTTTG TTGTCATCTT 600 TTTAACAGTT TCTTCATCCA ATGCACTATT AAAGAATTTG ATATTTTCTA GTGTTCCGTT 660 AAAACCAAAC GCCGTTTTTC CTGCACGTTT CACTCCCCCA AGCATATAGT AATCAATACC 720 TTTAATATCC TTGATGTTTA GGAAATTATC CACTTTCTTT TCTACTACTT TTGTACCATT 780 TGCGTATAAA GAATATGTTT TTTTGACTGA ATCTGCTACT ACTGCAACAG TGTTAGTCAC 840 AGCCTCTTGT TTGTACTTAC CCCAAACTGA AGCAGGTCTG GATACTAGGT TATTTTTATT 900

| GGAAGAAGTA TCACGCGCTT | CCATCCCCAA | CTCACCATTG | TCTCTAAGGA | ACACATCTAC                | 960  |
|-----------------------|------------|------------|------------|---------------------------|------|
| ATAACTATTT TGTTGACCGG | GTTTGGAATT | AGATATTCCA | AACAGAGCTT | GTAAGCCTTT                | 1020 |
| CTCACTTGAC TGATTGTACT | таатсастас | AGTAAAGTCA | CCGCTAGTAA | АТТТАТССТТ                | 1080 |
| TAACTCTTTA GTAACATTTT | CTCCGCCCCC | TGTTAAAGTA | ACATTATTT  | TTTCTAAGAC                | 1140 |
| AGGAGTTTCT TCCGCTGTAG | AAGATGGATC | CTTAACAGTA | GTTTCAACTG | TTCGAGGTTG                | 1200 |
| TACAGTAACT TCCGAAGAGT | TATCCGATGT | AGGTTGTACT | TCCGAAATCG | GAGTCGTTGG                | 1260 |
| TGCAACAGGT TGCACCAACT | TTGGTGTTGA | TACTTCAGAA | GTTTCAGTCT | CCTGAGCTGC                | 1320 |
| AACTGAGTTA GCAACAAATG | CTGATAATAC | CACTACAGTA | CCTAAGGTTA | CATATTGTTT                | 1380 |
| AATATTTTT TTCATTTAT   | TTTTCCTCGT | TTAAAACTTT | GATAACAAGT | TTTTTAACAG                | 1440 |
| TTTCATCATT GCAATGAATC | TTTGGTTGGT | GAAGATCTTC | TTCAAAAGTC | ACCAACATAT                | 1500 |
| TCCCTGGAAG CAATTCAACA | ATTTGATAGT | CTTTGCTATC | GTAAAAAGCA | ATATCCTTCT                | 1560 |
| CTTCGCTAAA AGGTACACGT | GACTGGGCAC | GAACTGGGGA | AGTTACTGCC | ATTTTTTCAG                | 1620 |
| TATTTTCAAC AACAATATGA | АТАТСТАААТ | ATTTCTTATG | AGTTTCAAAA | ATATCTCCTG                | 1680 |
| GAACTCCATC AGCTAGATAA | GTCATACAAT | TTGCAAAAAC | ATTTTCCCCG | TCAATATCAA                | 1740 |
| TTTTTCCATC AACTAAATCT | GTCAAATTTG | ТАТТТТСТАА | AAAATCACAG | ACTTTTGAAA                | 1800 |
| AATATTTATT GACAGAAGCA | TATCGTTTAA | AATCAGATTG | TTCAGAAATA | ATCATATTAT                | 1860 |
| TTTCTCTTTT CTATTAGTGA | CGAACTTCCC | AACTTGAATC | CGCTTTAATT | <b>ТСТĢŢ<u>Ą</u>ĄŢĄ</b> Ţ | 1920 |
| CATGAATCGT TGTATATTTA | GGTGCAGATA | CTTTATTTCC | AGTAAGAACA | GATACAATAT                | 1980 |
| AACCTGAAAC TACTGATACA | GAGATTGAAA | TCAATGAATA | TGCCCAGTAG | CTAACAGCTG                | 2040 |
| TTGGAGGAAG GAAGTATTTA | ATAAATACCA | TGACGATGGT | TGATACAATC | AGCGCTGCAT                | 2100 |
| AAGCACCTTG TTTATTTGCT | TTTTTAGAAA | CAAATCCAAG | AATAAATACA | CCACCAAGTA                | 2160 |
| GACCAAGTAC AAGTCCCATG | AAACTATTGA | ACCATTCGTA | TGCAGATTTA | ATATCTGAGT                | 2220 |
| GAGCCATGAC AATGGAAACA | CCAATTGAGA | ATAAACCTAC | TGCTAGAGAT | ACGAATTGTG                | 2280 |
| CAATTTTCGT ACGACGATTG | TCTGACATAT | TTTTAGAAAT | GACATCTTGA | ATATCCAATG                | 2340 |
| TCCATGAAGT TGCAACAGAG | TTCAAACCTG | TTGAAATAGT | TGATTGAGAT | GCTGCATAAA                | 2400 |
| TCGCTGCCAA GATCAAACCT | GTGATACCTA | CTGGTAACTG | GTATGCAATA | AAGTACATAA                | 2460 |
| AGATTTGGTC TTGAGGGATA | TTGCTAGCTG | CACTATCTGC | ATTTTGTACT | TGATAGAATA                | 2520 |
| CGTACAAGCC TGTACCAATC | AAGTAAAAGA | CTGTTGCAGT | TGCAAGTGAC | AAAACACCGT                | 2580 |
| TTGTGAACAA CATCTTATTA | AGTTTCTTAA | TATTTTGTGT | TGTAGTAAAA | CGTTGAACCA                | 2640 |

|                  |            |                         | 216        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|------------------|------------|-------------------------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| AATCTTGAGA       | TGAAGCATAG | GAAGACAAGA              | TTGTAAAGCC | TGAACCCATC   | ACAATTAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2700 |
| AGATGGAGTT       | TGAAAGCAAG | TTAGGATCGA              | AAAGTTTTTC | ATTTGCAGCA   | AGGAATTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2760 |
| CGTTTGCTAA       | TGTTTCTGCT | ACTGCACCAA              | AGCCACCTTT | AATATTAGCA   | ATCAGTACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2820 |
| ATAAAGCTAA       | AACGACACCA | CTAATCAGAA              | TCACACCTTG | AATAAAGTCT   | GTCCATAATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2880 |
| CGGATTTTAG       | ACCACCAGTA | TAAGAATAAA              | CAATTGCAAC | TACACCCATC   | AAAATAATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2940 |
| AATATTGAT        | GTCAATTCCT | GTCAATACTG              | ATAAACCAGC | TGATGGGAGG   | TACATAATGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3000 |
| TAGACATACG       | TCCCAATTGA | TAAATAATAA              | ACAAGAGTGC | TGAAATAATA   | CGAAGTGCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3060 |
| PAGAATTAAA       | ACGTTTATCC | AAGTAATCAT              | ATGCCGTATC | GATGTCTATC   | CGTGCAAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3120 |
| PAGGTAAGAT       | AAAACGAATT | GTCAGTGGAA              | TAGCTACTAC | CATCCCTAAT   | TGAGCAAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3180 |
| ТААААТССА        | GCTACCTGCA | TAAGAGCTAC              | CAGCGAGTCC | CAAGAAGGAA   | ATCGGACTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3240 |
| CATTGTGGC        | AAAAATGGAT | ACCGAAGTAA              | CATACCAAGG | AACCGAACCA   | TCTCCTTTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3300 |
| GAACTCTTT        | TCCTTTCATC | TCTTTTTTAG              | AGAAATAGAT | ACCTGCAACC   | AACACCGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3360 |
| <b>ТАААТАААС</b> | AATCAAGATA | ATTAAGTCAA              | TTATTGTAAA | TCCTGTTGTG   | CCCATAACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3420 |
| TCTCCATAT        | TGATTTTATT | TATTATAAAA              | ATTCTTTTCG | TGCTTGTTGA   | ATAAGTTCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3480 |
| TGCTTGTTT        | TGCAACTTCC | AAGTCACCTT              | CTGCCAATGC | TTCTAAAGGT   | TGACGAACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3540 |
| ACCTAAATC        | AAGTTTTTCA | TTTAGACGCA              | AAACTTCTTT | TGCTACAGCA   | TACATATTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3600 |
| CTTACCTGA        | TATCATCTTA | TAGATAACTT              | CATTGATAGC | ATATTGAAGT   | TTTTTAGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3660 |
| ATCTAAATC        | TCGTTCTTGA | ATCAAACTTT              | CCAATTTCAA | GAACAAATCT   | GGCATAACGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3720 |
| ATAAGTACC        | ACCAATACCA | GCTTCTGCTC              | CCATCAAGCG | ACCACCAAGA   | TATTGTTCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3780 |
| TGGACCATT        | GAATACAATG | TAATCTTCTC              | CACCTGCAGC | TACAAACATT   | TGAATATCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3840 |
| TACAGGCAT        | AGAAGAATTT | TTAACTCCAA              | TCACACGAGG | ATTTTGACGC   | ATTGTTGCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3900 |
| CAAACTACC        | AGTCAACGCA | ACCCCTGCCA              | ATTGTGGAAT | ATTATAGATA   | ATAAAATCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3960 |
| ATTTGACGC        | AGCTTCACTC | ATTGCATTCC              | AATATGCTGC | GATTGAATAC   | TCTGGCAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4020 |
| 'GAAАТАААТ       | AGGTGGGATA | GCTGCAATAG              | CATCGACTCC | AACACTTTCT   | GAATGTTTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4080 |
| CAATTCGAT        | ACTATCTTTC | GTGTTATTAC              | ATGCAATATG | GTTGATAACT   | GTTAATTTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4140 |
| TTTAGCAAC        | TTCCATAACA | GCTTCAATAA              | TTTGTTTACG | ATCTTCTACA   | CTTTGGTAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4200 |
| ACATTCACC        | TGAAGAACCA | TTTACATAGA              | TACCTTTTAC | ACCTTTGTCA   | ATGAAATATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4260 |
| TACCAGAGA        | TTTTACACGA | TCTTGGCTAA              | TTTCACCATT | TTCATCATAG   | CAAGCATAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4320 |
| TGCAGGGAT        | AACGCCTTTG | TATTTAGTTA              | AATCTTTCAT | CAGATTTCTC   | CTTTATATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4380 |
| ւրտև Վփփանվու    | САТСАСАТТА | <b>ΑΤΆ Α ΆΤΡΟ Ο Ο Τ</b> | CACCAAMMMC | መመመጥርር አ ርረመ | COLVER TO THE COLUMN TO THE CO | 4440 |

|   | CACCAATGAC  | TACACTGGTA | ACACCTAAAC | TATAAGCTTT        | TTTTAATTGT | TCTGGATAAT | 4500 |
|---|-------------|------------|------------|-------------------|------------|------------|------|
|   | GAATTTTTCt  | TCGGCAATTA | CCGGAATATT | AAAATCAGCC        | AATTTTTTCA | TTAGTTCAAA | 4560 |
|   | ATCAGGCTCA  | TCTGATTGTA | CACTTGTACT | TGTGTAACCT        | GATAATGTTG | TACCAACAAA | 4620 |
|   | ATCAACGCCT  | GATTTAAATG | CATAGAGACC | <b>ТТСАТСТААА</b> | TTACTTACAT | CCGCCATCAG | 4680 |
|   | CAATTGATTC  | GGATATTTT  | CTTTTATTTT | TTTGATAAAT        | TCACTGACAA | CTAAGCCATC | 4740 |
|   | ATATCTTGGT  | CTTAAAGTTG | CATCAAATGC | AATGACTGTT        | GTTCCGCATT | CTACAAGTTC | 4800 |
|   | ATCTACTTCT  | TTCATCGTAG | CAGTAATATA | TGGTTCTTGA        | GGTGGATAAT | CCCTTTTGAT | 4860 |
|   | AATTCCAATT  | ATTGGTAAAT | CTACTACTTT | CTGAATTGCT        | TTAATATCAC | GCACAGAATT | 4920 |
|   | TGCGCGAATG  | CCCACTGCTC | CTGCCTCTAA | AGCTGCTTTA        | GCCATAAAAG | GCATCAAGCT | 4980 |
|   | Aaattcttca  | TTATAAAGGG | CTTCACCAGG | TAAAGCTTGA        | CAAGAAACAA | TGACTCCACC | 5040 |
|   | TTGAACTTGG  | CTTATAAATT | TTTCTTTAGT | CCAAATTTGG        | CTCATTTTAT | TATTCCTCCT | 5100 |
| , | TATGGATAAT  | AGTTTGATTG | TAATAATATT | GTCTCTCTGG        | ACTTTCCAGA | TAATTAGAGA | 5160 |
|   | ATAAGCAGTC  | TGTAATTAAA | AGTATTGGAA | ACTGAGGTGA        | TATGCGATTG | CCATACGAGA | 5220 |
| ı | GATGATCGGT  | CGAAGCTAAT | AACAATAGTT | CATCAAAGAA        | ACAATCTTCT | TCGTCAAATT | 5280 |
|   | TTCTTGTAGT  | CATTAAAACT | GTTTTAGCGC | CTTTATCTGC        | AGCTTTTTGT | AGACCTTCTA | 5340 |
| , | GTACAATATC  | AGTTTGACCT | GAAATGGATG | CTCCAATGAC        | AAGGCAATTT | TCATTAAGTA | 5400 |
|   | GTAAGCTACT  | CCACAAAATC | ATATCCTCGT | CTGATAATAC        | TTCACCAATC | ACTCCGAGAC | 5460 |
| 1 | GCATAAATCT  | CATCTTCATT | TCTTGTAAAG | CAAGAACAGA        | ACTTCCTTTA | CCGTAGAGAT | 5520 |
| , | ATACACGCTC  | AGCAGTTTCT | ATCATCTCAG | CAATACGCTC        | AAGTTGAACT | TCATCAAGAA | 5580 |
|   | CCGTGTAAGT  | TTTTCTCAAC | ATTTCCTCAT | AGTCGGATAA        | AACTTTTTCT | GTTGCCTCTG | 5640 |
| • | TATATAATGC  | CAACTTTTCT | TTCTCATGAA | TCATCTCTTG        | GTATTTGAAA | ATGAATTGTC | 5700 |
| • | PAAAACCTTT  | AAAACCACAT | TTTTTCGCAA | ATCGAGTCAA        | TGTTGCTTTG | GATACATTAA | 5760 |
| • | GGTATTCGCA  | CAATGCTTTA | GATGAATAAT | CATTCAGAGG        | TTGCTGTTTT | AAGAAGAATT | 5820 |
| • | PAGCAATGTC  | TTTTTCAGCA | TATGCCATAT | TTGGTAAGTT        | AGCTTCTATC | ATTGGAATTA | 5880 |
| ( | GTTCTTTTTG  | CAGTAACATA | TGAGCTCCTT | agttgaagta        | AACGTTTACA | TTCTTTATTT | 5940 |
| • | PAACACTTTT  | TTTTTTTTC  | AATATTTTTC | ATAAATTAGA        | AACTAGTTTC | CAATTTCTTT | 6000 |
| • | CGTTTCATAA  | CAGAACAACA | ААСАТАААА  | TATAATAGTT        | TTTATTCTTT | TTATCGTAAT | 6060 |
| • | PATATGTATT  | GTAAGAACGT | ттатсастаа | TAATATGTTC        | АТАТТААААТ | ATTTTAGTAA | 6120 |
| ٠ | TATTTTATTAT | TGGTTTTATT | ATTTCTTTTC | GGAATTTCTA        | TATAATATTT | TATTTCTAAA | 6180 |

218 AAAATTGAAA AAATATTTCT AGTTTCTTTA TTTTATATAG GTAATATATT TTATTTCTAA 6240 ATTAAAAGAG AATCCCATAA AAACTACAGA TTTATGAGAT AAATCAGGTC ACCTATTTTA 6300 AAAAAGCAGC AAACTATAAA CTAAAAAGTT CCACACCAAA TGTAACCCCA TACTTCCCCA 6360 TAAGTCAGAT TTATAGCGCA CCATACCTAA AAACATTCCA AGTGAAACGT ACAGACACCA 6420 AGCTAGAATG GTTCCTGGAT GATGTACTAA GGCAAATAAA ACACTTGTCA AAGCAACTCG 6480 AATATCTAAT TTTCTAACCA AGTTCCATAA AATTTCACGA TACAGAAATT CTTCAACCAT 6540 ACTCGCATTG ATTAAGAACA ATAAAAATGA AAACCAAGGA ACTTGATGTT GAAGGCCAAT 6600 TAAATTTGTT TGATTCGTGC TTCCTTGAGC ATGAATCAGG CTAAAACATA GACTTATAAT 6660 CAGTAGACTA GCTAGTCCAA TACCAAGGCA TTTCATCCTA GTTTTCATAT TGACCTTGAC 6720 CACTTGTTTT CGTTGACCAT ACATCCATAA AAAAGAAAAA AGAGACGCAC CATAGAGAAC 6780 CTGTAGTATA GTTAACTCAC CGATACAAAG AAATTTCAAT AAGTATAGAG ATACCAATAG 6840 GACATTTACT TGTTGGAATA TATAAACTGG AATTATTCTT TTCATAGTTA CCTCCGAAAT 6900 AAATCTTCAT AATCTAAATC TAATATCTGC ACAATCCTTT CTACCCATGG ACTTTGAGGC 6960 ATTCGTTGTT CCATCTTGTA GTGGCGAATC TTTTGATATA AACGATTCAA TTCACTTGGA 7020 TAGTGAAACT CTCCCGCAAA CATTTTCTG GTTAACTCAA TCCAGCTGAT ATTTCTTTCA 7080 GCCAAAATAA TGGACAAGTT CTCCCAAAAT CGTTCAGCCA TATTrCTTCT CCTTTAGTTA 7140 GATAAATAAT GTGTTTGYGC CATGTAAATC AATTGTTTCG TATCTCTTGG CAATAGAGCT 7200 CTAGCCTCTT CCAAATTCAG ACTTGGATAA ACCCGCTTAT TTGAAACCAC AAAAGGAAGT 7260 CCGATGGTTA GTTCAGGATT TTTTAAAATT ATCTCAACGA AATCCGTTAA TCTTAGATTG 7320 TCACGGTTCT TAAATCGTAA TAAATTGGGA GATAAAAACT CAAAACAATC TGAAGAATAG 7380 CTCATCATCT CAATTAATTT GTCCTTTGTC ATTTCAGAAA CTGAATGACA AGATACCTCA 7440 ATGCCATAGT TTTGGAAGAA GTCTAAAAGA AGTTGATTTC TTTGGCTATT TTTACTTAGA 7500 TAGAGATCAA TCATGGGAGA CCTCCAACAA ATTTGCTTCC ATTTGATATT CTGAGACGAT 7560 TAAGGAATCT AACAACTTTG AGAAGTTAAT CGATTTCTTG TCTTCATCAT AAGCTTTTAC 7620 AGTTACTTGG GTTGTAAGTA TCCCCTCTTT TCCCTCGGCT CGATAGTCTT GTCAATATAA 7680 AACAAAAACA AGATTCTGAT TATCATCTAC AAAGGCATTA ACTCCGTTCT TTATATCCTG 7740 ACTTTCAAGG AATTCCATAA CGTTTTGAAG ATAGGATTCA TAAAATAGTG GGTAATTATG 7800 TTTTTTATGG TAATCATCTA AAAATGTTAC CTCAAACTCA CATGGATAAT TGGGCATCAA 7860 AAATATTTGT TCATCCAGCT GTTTGATTTC TGCATCATGT AATTCTGTTT CTAATTCATC 7920 ACAATCTAGT ATTGATTCTT TATTTAATGC TTTTATCTTT TTCCTCTATT TCTTTTAATT 7980

| TCTTTGCGAT | TGCGGCAATC | ACAGGAACGG | TTACACTATT | ACCAACTTGT | TTATAGAGCT | 8040 |
|------------|------------|------------|------------|------------|------------|------|
| GACTATTAAT | AGAGACTTTT | CTAGCAGCTT | CAAAAGCCTA | ATCAGGAAAG | CCATGCAATC | 8100 |
| GAAAACACTC | TTTAGGAGTG | ATTCGTCGTA | ТТСТСАЛАСС | GTAAAATTGT | CCATCTATTA | 8160 |
| AAACACCAGC | TACTTGGTAA | ACTTGTTTAT | CTTCTCCTTC | ATAGCTAGCC | ACTACTACTC | 8220 |
| CCATTTGACC | ACTAGTTGTT | AACGTATTAG | CTATACCTTT | TCCAACTCTA | CCACGACGAT | 8280 |
| ACTGAGAACT | TGGTCTTTCT | AAATTGATTG | AATCCCCAAT | CTCTGCTTGA | GCATATCCTT | 8340 |
| TTTTCGTTGC | TTCCCGTACT | TTTAGAAATT | GGATTGGTTC | TGGAATTAGT | ATTTTGGGGA | 8400 |
| TTTTATCTCC | TCCTTGCATC | GTAGTCAGTG | TTGGAGATAA | GCCCTCACTT | CCATAGACAC | 8460 |
| GACCTGTCTC | CTTAAAGCTA | GTCGGTAAAT | CTCCAACAAC | GACAATGCCA | TAACGATCCT | 8520 |
| GAGTATTTAA | AGTAAACATC | GGCTCTTGAT | TTTCCTTAAA | GCGTCTCCCA | TTTTGTCTCT | 8580 |
| TGTCTAATCT | ATCTGGTGTC | ATACAAGGAA | TCGCAACTTT | AAATCCTTCT | CCTTTACCAC | 8640 |
| GAACTAAGGT | TGGCGCAAGA | CCTTCTGAAT | AATAGACTTT | ACCGCTCATT | CCACTTCTTG | 8700 |
| ATGGATTCAA | ATTTCCTAGT | GCTTTCAAAG | TCTCAGAGTT | AGTTGCTTGA | CCTTCTCGTC | 8760 |
| TGAAAGGAAA | TAAGAGTCTG | GTACCTTTCT | TTCTAGAATG | TCCGATAATA | AACACCCTCT | 8820 |
| CTCTGTTTTT | GGGAACGCCA | AAATCCTTAC | TGTTAAGCAC | CTGCCACTCA | ACATCAAACC | 8880 |
| CCAACTCATC | AAGTGTGGTA | AGTATTGTGG | TGAACGTCCG | TCCCTTATCG | TGATTGAGTA | 8940 |
| GGCCTTTAAC | ATTTTCAAGA | AAAAGAAAAC | GTGGTTGGAT | TTGTTTGGCC | GCCCGACCAA | 9000 |
| TTTCAAAGAA | CAAAGTTCCT | CTAGTATCTT | CAAATCCCAA | TCGTCTTCCT | GCGATTGAAA | 9060 |
| ATGCTTGACA | AGGGAATCCC | CCACAGATGA | CATCGACTTT | CCCTCTAAGT | TTTTTAAATT | 9120 |
| CGTCATCTGA | AACATCTCGT | ATGTCATGAA | ATTCTATTTC | TCCTTCCGTT | TGAAAAATGG | 9180 |
| ACTTATAAGA | TTTCCTAGCA | AATTTATCAA | TCTCACAAAA | TCCCAAGCAC | TCATGCCCTT | 9240 |
| GAGCTTCCAT | TCCCATCCTA | AAGCCTCCTA | TCCCAGCAAA | ТАААТСТААА | ACCCAAATCA | 9300 |
| TTCATACCTC | TCTCAACTAG | ATGTAACTTA | CAAAACCCCT | GACCTCATGA | GCCACTTTCT | 9360 |
| TCCTCCTCAT | GAGGTCAGTT | TTACTTTCTG | CTGTTCCAGT | ATCGTTTTTC | CTCGCTAGAT | 9420 |
| TTCCTCAAAA | GGGCAGACTC | CTCCCTTGGT | TCGTCACACG | ATTTTTTCAT | CTCGACTGTT | 9480 |
| CTTTAATGCA | TCATTAACGA | CGCTTTTCTT | CTAGGTGGTT | CATAAGGAAC | AGGAAGATTC | 9540 |
| AGGTTGACTT | TTCTAATCCT | AGAATAAAGT | GCTGAAAACA | ATTCGGAATA | GGCATAGAGA | 9600 |
| CTAGACAATT | TGAGGAGCTG | CTTGCGTCCT | GTTCGAACAC | ATTTTCCTAC | CACGTGAAGA | 9660 |
| AAAAGATGGC | GGAAGCGTTT | GATTGTTAAA | GTTTGGAAGT | CACCTCCAGC | TAGATGTTTG | 9720 |

AGAAAAAGAT AGAGATTGTA GGCGATACAG CTCATCATCA TACGAACTCG TTTTTGATTA 9780

AGGTTGAACT ATCCGTTTTA TCGCCAAAAA ATCCCTCCTT CATCTCCTTG ATGAAATTCT 9840

CGGCTTGACC ACGTCCACGA TAAAGCTGAA ACTGGTCTTG GCTTGTTCCG GTACCGA 9897

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 8148 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

CCGTGGAACA AGCCAAGACC AGTTTCAGCT TTATCGTGGA CGTGGTCAAG CCGAGAATTT 60 CATCAAGGAG ATGAAGGAGG GATTTTTTGG CGATAAAACG GATAGTTCAA CCTTAATCAA 120 AAACGAAGTT CGTATGATGA TGAGCTGTAT CGCCTACAAT CTCTATCTTT TTCTCAAACA 180 TCTAGCTGGA GGTGACTTCC AAACTTTAAC AATCAAACGC TTCCGCCATC TTTTTCTTCA 240 CGTGGTAGGA AAATGTGTTC GAACAGGACG CAAGCAGCTC CTCAAATTGT CTAGTCTCTA 300 TGCCTATTCC GAATTGTTTT CAGCACTTTA TTCTAGGATT AGAAAAGTCA ACCTGAATCT 360 TCCTGTTCCT TATGAACCAC CTAGAAGAAA AGCGTCGTTA ATGATGCATT AAAGAACAGT 420 CGAGATGAAA AAATCGTGTG ACGAACCAAG GGAGGAGTCT GCCCTTTTGA GGAAATCTAG 480 CGAGGAAAAA CGATACTGGA ACAGCAGAAA GTAAAACTGA CCTCATGAGG AGGAAGAAAG 540 TGGCTCATGA GGTCAGGGGT TTTGTAAGTT ACATCTAGTT GAGAGAGGTA TGAATGATTT 600 GGGTAAATAC AATGAGCTTG AAAGAAGTAG CAAACTCACC AAGCGCCAAT TCTTTGAGAA 660 TCAGATGCTG GATTATACCA TCATTGCGCA TGAGAGTTTT GAAATCATCC GTCATTCTGT 720 CTACCAGACA GATGATCGTG AAGTGGAAAA TGCTCTGGCT TTTGAAGTGA AAAATGATGA 780 AACAGACAAG CTGATTCTGT TATTAAGCGA GGATATTGGT GTAGGTGAAA AATTGTGCCT 840 CGTTGACGGA ACAAAAATGC GTGGAAAATG TTTAGTATAT GATAAAATAA ATGAGAGAAT 900 GATTCGCTTG CAGTGCTAGA AATAGGCATT TTGAATAGTG AATATGTTAT AATAAGTATT 960 AGTAGGAGGT GTTTTAGATT GGAGAAGAAA CTGACCATAA AAGACATTGC GGAAATGGCT 1020 CAGACCTCGA AAACAACCGT GTCATTTTAC CTAAACGGGA AATATGAAAA AATGTCCCAA 1080 GAGACACGTG AAAAGATTGA AAAAGTTATT CATGAAACAA ATTACAAACC GAGCATTGTT 1140 GCGCGTAGCT TAAACTCCAA ACGAACAAAA TTAATCGGTG TTTTGATTGG TGATATTACC 1200 AACAGTTTCT CAAACCAAAT TGTTAAGGGA ATTGAGGATA TCGCCAGCCA GAATGGCTAC 1260

| CAGGTAATGA | TAGGAAATAG | TAATTACAGC | CAAGAGAGTG | AGGACCGGTA | TATTGAAAGC               | 1320 |
|------------|------------|------------|------------|------------|--------------------------|------|
| ATGCTTCTCT | TGGGAGTAGA | CGGCTTTATT | ATTCAGCCGA | CCTCTAATTT | CCGAAAATAT               | 1380 |
| TCTCGTATCA | TCGATGAGAA | AAAGAAGAAA | ATGGTCTTTT | TTGATAGTCA | GCTCTATGAA               | 1440 |
| CACCGGACTA | GCTGGGTTAA | AACCAATAAC | TATGATGCCG | TTTATGACAT | GACCCAGTCC               | 1500 |
| TGTATCGAAA | AAGGTTATGA | ACATTTTCTC | TTGATTACAG | CGGATACGAG | TCGTTTGAGT               | 1560 |
| ACTCGGATTG | AGCGGGCAAG | TGGTTTTGTG | GATGCTTTAA | CAGATGCTAA | TATGCGTCAC               | 1620 |
| GCCAGTCTAA | CCATTGAAGA | TAAGCATACG | AATTTGGAAC | AAATTAAGGA | ATTTTTACAA               | 1680 |
| AAAGAAATCG | ATCCCGATGA | AAAAACTCTG | GTATTTATCC | CTAACTGTTG | GGCCCTACCT               | 1740 |
| CTAGTCTTTA | CCGTTATCAA | AGAGTTGAAT | TATAACTTGC | CACAAGTTGG | GTTGATTGGT               | 1800 |
| TTTGACAATA | CGGAGTGGAC | TTGCTTTTCT | TCTCCAAGTG | TTTCGACGCT | GGTTCAGCCC               | 1860 |
| TCCTTTGAGG | AAGGACAACA | GGCTACAAAG | ATTTTGATTG | ACCAGATTGA | AGGTCGCAAT               | 1920 |
| CAAGAAGAAA | GGCAACAAGT | CTTGGATTGT | AGTGTGAATT | GGAAAGAGTC | GACTTTCTAA               | 1980 |
| AATGAAGGAA | AATGACTTGC | AATCTCTGTT | AAGAAATAAA | ATAATCCCAC | CTAGAACAAG               | 2040 |
| CTAGGTGGGA | TTATTTGCCT | ATGAAATGAG | AAATTATGGG | AGCAAGCTCC | ТАААТСААСТ               | 2100 |
| GTTTTTGATC | TACTTCTTTA | ACTACTTGAT | AAAAGTTATA | GAAGTAGGCC | AAACTTGAAA               | 2160 |
| TGATGGTTAC | GACTAGGAAT | ATTGAAAATT | TCCATTGGAC | AGGGTTGGTT | AAAAGTTGTG               | 2220 |
| GAAAGGATAT | GAGGAGAAAG | AAGAGGGCTG | CGTTGAGGAC | AGGTATCCCT | <del>ҧҧҧ</del> ҈СУ҈ѽѽС҈Ѷ | 2280 |
| TTTTCTCAAG | TCCTTTATTG | AGCGCAGGAA | GAAAGAGGAG | TAGGAGTAGT | AAAACTGTAT               | 2340 |
| GAGAAATAGC | TCCTGAAGTA | AGGGCGAAGA | AAAGGAAAAT | ACTGATAAAA | ACATGAATGA               | 2400 |
| TCAGTAGTCT | AGCTAGTGAT | TTCATAAGGC | ACCTCCTAAT | CCTGGTCTTT | TTTAGCTCTT               | 2460 |
| GCAATACGAA | GTGAGTCGAC | AATATGTATC | ATCACTCCGA | AAAAGAAAGC | TCCCAGTATA               | 2520 |
| GTTTTAAAAA | TATGTTTTGT | atttagaaga | GAACTGATAA | AATTTGGATT | TTCACTTGTT               | 2580 |
| AGGGTATCAA | TGAGTGGAAT | TATAAAAAAT | ATCACTGTTC | CATAAATCGA | ACCTGCTTTC               | 2640 |
| AGACCAGGAT | AACGTAACTG | TTTCTTTTCT | TTTTTCATGA | GTTTCCTCCT | AATCCTCATC               | 2700 |
| TTGATTTTTC | TTAGTTTTTG | CAATGCGACG | GGAGATGAGG | AACTGTATGC | TCGCTCCGAA               | 2760 |
| GAAAATAGAA | CCGAGAATAC | TTGATACACC | АТТТСТТАТА | GTGAGAAGAG | AATGAAAATA               | 2820 |
| GTCCTGACCT | TCATCTATGA | GTATCCTGAG | AAGAGGAGTT | АТААААААСА | TCCATAGACC               | 2880 |
| AAAGAACAAA | CCTGCTTTCA | GACCTGGGTA | GTGTAGTTGC | TTGCTTTCTT | TCTCATTCAG               | 2940 |
| CATATCTGGT | TCAATGACTG | TGATGCCTGT | TTTTTTCATT | TGGTAGGTGA | CATAGCCAGA               | 3000 |

|                    |            |            | 222        |            |            |      |
|--------------------|------------|------------|------------|------------|------------|------|
| AGCGATGAGG         | GCAATCACTA | AAATCAGAGG | AGGATAGATT | AGAGCCACTT | CTTGAGGGTA | 306  |
| TTTATAGGCC         | AGAAGGAGTG | GAATAAGATT | TCCGAAAATC | ATCAGATAAA | AGAGGATGAT | 312  |
| AAAGACTTGG         | TTCCCAATAC | TATCGGCCTC | ACGCCGTTTG | TATTCGTCAA | GGGGACCAGA | 318  |
| AATACCGTAT         | GTGCGTTTGA | TCAGTTTTTC | AGTGAAGGTT | TCTTTTTTCA | TGAGTTTGCT | 324  |
| CCTTTTTTAA         | AAATCTTCCT | CCCAAAAGAG | ACTGTTGAGG | TCAGTTTGGA | GGCTGCGGGC | 330  |
| Gagattgaga         | CAGAGTTCCA | AGGTTGGATT | GTACTTGTCG | ТТТТСААТСА | TATTGATAGT | 336  |
| CTGTCTCGAG         | ACACCGATAT | CCTTGGCGAG | TTCGAGCTGG | GAAATACCCA | ATTCCTTGCG | 342  |
| AAATTCTTTC         | ACACGATTCA | TCTGTTCTCC | TTTCTGATTT | ATGTCGTATA | TATTTGACTA | 348  |
| PATTATAGTC         | TTTTAAACAT | AAAGTGTCAA | GTATTTTGA  | CATATTTTT  | GAAGAAATAG | 354  |
| <b>FAGTCTCCTT</b>  | GTCCTATTTG | TCTGACAAGT | GCAAGCTGGT | CGGATTTGTG | GTAAAATAGA | 360  |
| <b>FAAGATATGA</b>  | CAAAAGAATT | TCATCATGTA | ACGGTCTTAC | TCCACGAAAC | GATTGATATG | 3660 |
| CTTGACGTAA         | AGCCTGATGG | TATCTACGTT | GATGCGACTT | TGGGCGGAGC | AGGACATAGC | 3720 |
| GAGTATTTAT         | TAAGTAAATT | AAGTGAAAAA | GGCCATCTCT | ATGCCTTTGA | CCAGGATCAG | 3780 |
| AATGCCATTG         | ACAATGCGCA | AAAACGCTTG | GCACCTTACA | TTGAGAAGGG | AATGGTGACC | 3840 |
| <b>TTTATCAAG</b> G | ACAACTTCCG | TCATTTACAG | GCATGTTTGC | GCGAAGCTGG | TGTTCAGGAA | 3900 |
| attgatggaa         | TTTGTTATGA | CTTGGGAGTG | TCTAGTCCTC | AATTAGACCA | GCGTGAGCGT | 3960 |
| GTTTTTCTT          | ATAAAAAGGA | TGCGCCACTG | GACATGCGGA | TGAATCAGGA | TGCTAGCCTG | 4020 |
| ACAGCCTATG         | AAGTGGTGAA | CAATTATGAC | TATCATGACT | TGGTTCGTAT | TTTCTTCAAG | 4080 |
| TATGGAGAGG         | ACAAATTCTC | TAAACAGATT | GCGCGTAAGA | TTGAGCAAGC | GCGTGAAGTG | 4140 |
| AGCCGATTG          | AGACAACGAC | TGAGTTAGCA | GAGATTATCA | AGTTGGTCAA | ACCTGCCAAG | 4200 |
| GAACTCAAGA         | AGAAGGGGCA | TCCTGCTAAG | CAGATTTTCC | AGGCTATTCG | AATTGAAGTC | 4260 |
| ATGATGAAC          | TGGGAGCGGC | AGATGAGTCC | ATCCAGCAGG | CTATGGATAT | GTTGGCTCTG | 4320 |
| GATGGTAGAA         | TTTCAGTGAT | TACCTTTCAT | TCCTTAGAAG | ACCGCTTGAC | CAAGCAATTG | 4380 |
| PTCAAGGAAG         | CTTCAACAGT | TGAAGTTCCA | AAAGGCTTGC | CTTTCATCCC | AGATGATCTC | 4440 |
| AAGCCCAAGA         | TGGAATTGGT | GTCCCGTAAG | CCAATCTTGC | CAAGTGCGGA | AGAGTTAGAA | 4500 |
| GCCAATAACC         | GCTCGCACTC | AGCCAAGTTG | CGCGTGGTCA | GAAAAATTCA | CAAGTAAGAG | 4560 |
| GAAAAAGAT          | GGCAGAAAAA | ATGGAAAAAA | CAGGTCAAAT | ACTACAGATG | CAACTTAAAC | 4620 |
| GTTTTCGCG          | TGTGGAAAAA | GCTTTTTACT | TTTCCATTGC | TGTAACCACT | CTTATTGTAG | 4680 |
| CCATTAGTAT         | TATTTTTATG | CAGACCAAGC | TCTTGCAAGT | GCAGAATGAT | TTGACAAAAA | 4740 |
| CAATGCGCA          | GATAGAGGAA | AAGAAGACCG | AATTGGACGA | TGCCAAGCAA | GAGGTCAATG | 4800 |

|   | AACTATTACG | TGCAGAACGT | TTGAAAGAAA | TTGCCAATTC | ACACGATTTG | CAATTAAACA | 4860 |
|---|------------|------------|------------|------------|------------|------------|------|
|   | ATGAAAATAT | TAGAATAGCG | GAGTAAGATA | TGAAGTGGAC | AAAAAGAGTA | ATCCGTTATG | 4920 |
|   | CGACCAAAAA | TCGGAAATCG | CCGGCTGAAA | ACAGACGCAG | AGTTGGAAAA | AGTCTGAGTT | 4980 |
|   | TATTATCTGT | CTTTGTTTTT | GCCATTTTT  | TAGTCAATTT | TGCGGTCATT | ATTGGGACAG | 5040 |
|   | GCACTCGCTT | TGGAACAGAT | TTAGCGAAGG | AAGCTAAGAA | GGTTCATCAA | ACCACCCGTA | 5100 |
|   | CAGTTCCTGC | CAAACGTGGG | ACTATTTATG | ACCGAAATGG | AGTCCCGATT | GCTGAGGATG | 5160 |
|   | CAACCTCCTA | TAATGTCTAT | GCGGTCATTG | ATGAGAACTA | TAAGTCAGCA | ACGGGTAAGA | 5220 |
|   | TTCTTTACGT | AGAAAAAACA | CAATTTAACA | AGGTTGCAGA | GGTCTTTCAT | AAGTATCTGG | 5280 |
|   | ACATGGAAGA | ATCCTATGTA | AGAGAGCAAC | TCTCGCAACC | TAATCTCAAG | CAAGTTTCCT | 5340 |
|   | TTGGAGCAAA | GGGAAATGGG | ATTACCTATG | CCAATATGAT | GTCTATCAAA | AAAGAATTGG | 5400 |
|   | AAGCTGCAGA | GGTCAAGGGG | ATTGATTTTA | CAACCAGTCC | CAATCGTAGT | TACCCAAACG | 5460 |
|   | GACAATTTGC | TTCTAGTTTT | ATCGGTCTAG | CTCAGCTCCA | TGAAAATGAA | GATGGAAGCA | 5520 |
|   | AGAGCTTGCT | GGGAACCTCT | GGAATGGAGA | GTTCCTTGAA | CAGTATTCTT | GCAGGGACAG | 5580 |
|   | ACGGCATTAT | TACCTATGAA | AAGGATCGTC | TGGGTAATAT | TGTACCCGGA | ACAGAACAAG | 5640 |
| , | TTTCCCAACG | AACGATGGAC | GGTAAGGATG | TTTATACAAC | CATTTCCAGC | CCCCTCCAGT | 5700 |
| , | CCTTTATGGA | AACCCAGATG | GATGCTTTTC | AAGAGAAGGT | AAAAGGAAAG | TACATGACAG | 5760 |
|   | CGACTTTGGT | CAGTGCTAAA | ACAGGGGAAA | TTCTGGCAAC | AACGCAACGA | CCGACCTTTG | 5820 |
|   | ATGCAGATAC | AAAAGAAGGC | ATTACAGAGG | ACTTTGTTTG | GCGTGATATC | CTTTACCAAA | 5880 |
|   | GTAACTATGA | GCCAGGTTCC | ACTATGAAAG | TGATGATGTT | GGCTGCTGCT | ATTGATAATA | 5940 |
|   | ATACCTTTCC | AGGAGGAGAA | GTCTTTAATA | GTAGTGAGTT | AAAAATTGCA | GATGCCACGA | 6000 |
| ١ | PTCGAGATTG | GGACGTTAAT | GAAGGATTGA | CTGGTGGCAG | AACGATGACT | TTTTCTCAAG | 6060 |
| 1 | GTTTTGCACA | CTCAAGTAAC | GTTGGGATGA | CCCTCCTTGA | GCAAAAGATG | GGAGATGCTA | 6120 |
| 1 | CCTGGCTTGA | TTATCTTAAT | CGTTTTAAAT | TTGGAGTTCC | GACCCGTTTC | GGTTTGACGG | 6180 |
| į | ATGAGTATGC | TGGTCAGCTT | CCTGCGGATA | ATATTGTCAA | CATTGCGCAA | AGCTCATTTG | 6240 |
| ( | GACAAGGGAT | TTCAGTGACC | CAGACGCAAA | TGATTCGTGC | CTTTACAGCT | ATTGCTAATG | 6300 |
| i | ACGGTGTCAT | GCTGGAGCCT | AAATTTATTA | GTGCCATTTA | TGATCCAAAT | GATCAAACTG | 6360 |
| 1 | CTCGGAAATC | TCAAAAAGAA | ATTGTGGGAA | ATCCTGTTTC | TAAAGATGCA | GCTAGTCTAA | 6420 |
| ( | CTCGGACTAA | CATGGTTTTG | GTAGGGACGG | ATCCGGTTTA | TGGAACCATG | TATAACCACA | 6480 |
| ( | GCACAGGCAA | GCCAACTGTA | ACTGTTCCTG | GGCAAAATGT | AGCCCTCAAG | TCTGGTACGG | 6540 |

PCT/US97/19588 WO 98/18931

| CTCAGATT  | GC  | TGACGAGAAA | AATGGTGGTT | 224<br>ATCTAGTCGG | GTTAACCGAC | TATATTTTCT | 6600 |
|-----------|-----|------------|------------|-------------------|------------|------------|------|
| CGGCTGTA' | TC  | GATGAGTCCG | GCTGAAAATC | CTGATTTTAT        | CTTGTATGTG | ACGGTCCAAC | 6660 |
| AACCTGAA  | CA  | TTATTCAGGT | ATTCAGTTGG | GAGAATTTGC        | CAATCCTATC | TTGGAGCGGG | 6720 |
| CTTCAGCT. | ΑТ  | GAAAGACTCT | СТСААТСТТС | AAACAACAGC        | TAAGGCTTTA | GAGCAAGTAA | 6780 |
| GTCAACAA  | AG  | TCCTTATCCT | ATGCCTAGTG | TCAAGGATAT        | TTCACCTGGT | GATTTAGCAG | 6840 |
| AAGAATTG  | CG  | TCGCAATCTT | GTACAACCCA | TCGTTGTGGG        | AACAGGAACG | AAGATTAAAA | 6900 |
| ACAGTTCT  | GC  | TGAAGAAGGG | AAGAATCTTG | CCCCGAACCA        | GCAAGTCCTT | ATCTTATCTG | 6960 |
| ATAAAGCA  | GA  | GGAGGTTCCA | GATATGTATG | GTTGGACAAA        | GGAGACTGCT | GAGACCCTTG | 7020 |
| CTAAGTGG  | CT  | CAATATAGAA | CTTGAATTTC | AAGGTTCGGG        | CTCTACTGTG | CAGAAGCAAG | 7080 |
| ATGTTCGT  | GC  | TAACACAGCT | ATCAAGGACA | TTAAAAAAAT        | TACATTAACT | TTAGGAGACT | 7140 |
| AATATGTT  | TΑ  | TTTCCATCAG | TGCTGGAATT | GTGACATTTT        | TACTAACTTT | AGTAGAAATT | 7200 |
| CCGGCCTT  | TA  | TCCAATTTTA | TAGAAAGGCG | CAAATTACAG        | GCCAGCAGAT | GCATGAGGAT | 7260 |
| GTCAAACA  | \GC | ATCAGGCAAA | AGCTGGGACT | CCTACAATGG        | GAGGTTTGGT | ТТТСТТСАТТ | 7320 |
| ACTTCTGT  | TT  | TGGTTGCTTT | CTTTTTCGCC | статттаста        | GCCAATTCAG | CAATAATGTG | 7380 |
| GGAATGAT  | TT  | TGTTCATCTT | GGTCTTGTAT | GGCTTGGTCG        | GATTTTTAGA | TGACTTTCTC | 7440 |
| AAGGTCTT  | TC  | GTAAAATCAA | TGAGGGGCTT | AATCCTAAGC        | AAAAATTAGC | TCTTCAGCTT | 7500 |
| CTAGGTGG  | GAG | ттатсттста | TCTTTTCTAT | GAGCGCGGTG        | GCGATATCCT | GTCTGTCTTT | 7560 |
| GGTTATCO  | CAG | TTCATTTGGG | ATTTTTCTAT | ATTTTCTTCG        | CTCTTTTCTG | GCTAGTCGGT | 7620 |
| TTTTCAAA  | ACG | CAGTAAACTT | GACAGACGGT | GTTGACGGTT        | TAGCTAGTAT | TTCCGTTGTG | 7680 |
| ATTAGTTT  | rgt | CTGCCTATGG | AGTTATTGCC | TATGTGCAAG        | GTCAGATGGA | ТАТТСТТСТА | 7740 |
| GTGATTCT  | ГТG | CCATGATTGG | TGGTTTGCTC | GGTTTCTTCA        | TCTTTAACCA | TAAGCCTGCC | 7800 |
| AAGGTCTT  | ГТА | TGGGTGATGT | GGGAAGTTTG | GCCCTAGGTG        | GGATGCTGGC | AGCTATCTCT | 7860 |
| ATGGCTCT  | rcc | ACCAAGAATG | GACTCTCTTG | ATTATCGGAA        | TTGTGTATGT | TTTTGAAACA | 7920 |
| ACTTCTG   | ГТA | TGATGCAAGT | CAGTTATTTC | AAACTGACAG        | GTGGTAAACG | TATTTTCCGT | 7980 |
| ATGACGC   | CTG | TACATCACCA | TTTTGAGCTT | GGGGGATTGT        | CTGGTAAAGG | AAATCCTTGG | 8040 |
| AGCGAGT   | GGA | AGGTTGACTT | CTTCTTTTGG | GGAGTGGGAC        | TTCTAGCAAG | TCTCCTGACC | 8100 |
| CTAGCAA'  | TTT | TATATTTGAT | GTAAGAATGG | CACCCTGATG        | TTTCAGGG   |            | 8148 |

<sup>(2)</sup> INFORMATION FOR SEQ ID NO: 12:

<sup>(</sup>i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9909 base pairs
(B) TYPE: nucleic acid

225

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

| TACTCCACCC | TTAATATCCG | TTCCTGTAAA | TACTTTACCG | CTTTTAAGTT | CATAGAATTG | 60   |
|------------|------------|------------|------------|------------|------------|------|
| ААСТТТТААА | TGCTTGTCTT | CAAGCATCTT | TTCCATCCAA | TTTTTAGGAG | TTTGACCAGC | 120  |
| тттааатааа | AACCTTGCTG | GGGTGATTAG | TATAGATTTA | TCTGCGATTT | TATAAGCTTC | 180  |
| АТСААТАААА | TAGTGATATA | TCGGCTCATC | TCTGGCTTCT | CCTGTTTCCT | GATACGGAGG | 240  |
| ATTTCCTATC | ACGACATCAA | ATTTCATTTC | ACTTTCCTCG | CTAGATAGGC | GCTCAAAACC | 300  |
| TATCATTCTA | TTCTTTTTCC | AGTCTTTGAT | ATGGGTTTTA | GATTCTTCTA | CTTCTTGGAC | 360  |
| TTCTAGCTCA | TCCGCAAACA | AACTCAATTG | TTGAGATTGC | TTTTGTTTAG | CTGAATAAGG | 420  |
| ACTACTTTTT | TTCAATCCAT | CCATCTGAAA | GACATTGTAA | GAGATAATAG | TCGCAATTTC | 480  |
| TTTCTTTTGC | TCTAATGTTG | GTTGATTTCC | AGTCTTAGET | AGATAATAGT | CCTCAAAAGT | 540  |
| TGCCAAAAGA | TTCTCACGCG | CCAAAAGGAG | AGAATCTCCT | TGATACTCAT | AACCATACGA | 600  |
| AGCATGATAA | GCATCTTTTA | CAAGTTTATA | AAATGTGACT | TCATCTGAAA | CCTCACGACT | 660  |
| AATCCGTTGC | AGTTTTCTAT | CAACAAAACC | AACTCGCTCA | GATAATGGAA | TTTCCTCACC | 720  |
| AGTTACGGTA | TCATATCTCG | TTACCATATA | AGGTGCTTCA | CCACAAGTTA | CCTCTAACCA | 780  |
| TCGTAAGTCC | ACATACTCCT | CAACACTTAA | CGAGCCTAAT | TTCGATTCTA | CATATCCATT | 840  |
| TTGCTTTGCG | ACCAACCACG | TTGGTGTAAA | CACTTCTGCC | CTTATTTTTG | TCCGATCTTT | 900  |
| TTGTTCATAT | TTGGATTTTT | CAGATCTGGG | CTGAATCAAG | TTGGCAAAGT | TTCCAGTAAC | 960  |
| CTTACTTGGA | TTGATGCGAT | CACTTGGAGC | AAATCCCTTT | CCTAACAATT | CATAAGAATG | 1020 |
| CGTAnGCCAA | ACAATTGATT | TCTTTGTCGT | TCGATCTTTT | AAAAGAATTT | TTAATAAGTC | 1080 |
| AGCCGATTCT | TTAGCCAAAC | TTTCTTCACT | AATATCTATT | GTCATCAGCA | ACCTCTCTTA | 1140 |
| TATTGTAAGC | CCTATTATAT | CATATTTTAA | AGAATGAAAA | TTTACTTGAA | AAAAGTAATT | 1200 |
| CAATAAATAT | CTCTCCGATG | ACCAACTTCT | AGAGTAGCAA | CGACTAATTC | ATCATCTACA | 1260 |
| ATTTGTACGA | TAACTCGATA | ATTACCAATT | CTATAGCGCC | ATTGACCAAC | GCGATTACCA | 1320 |
| ACCAAAGCCT | TTCCGTGTCG | TCTTGGGTCT | TCCAAAACAT | TGGTTTGTAA | ATAGTTTGTA | 1380 |
| ATTAGCTTCT | GCGTATAACG | GTCCAATTTT | TTCAATTGCT | TGATAAAACG | TCTTGTTGGA | 1440 |
| ACTAATTTAT | ACAAATTATT | CATCCTTCAA | GCCTAAATCA | TGCATCATTT | CTTCCCAAGT | 1500 |
| AATGGGTTCA | ACTCCTTTTT | CCAAGTCTTC | TAAATACTCT | TGATAGGCTA | AATCTGCCAC | 1560 |

| ACGAGCATCG | TATTCATCTT | CTAGGGCTTC | 226<br>AAGAGTTTTG | GTGCGAATAA | GTTCCGAAAG | 1620 |
|------------|------------|------------|-------------------|------------|------------|------|
| GGAAACTCCT | TCAAACTTAG | CCATTGCTTT | CATAAATGTT        | TTATCAGCTT | CAGAAACTTT | 1680 |
| ТААТСТААТА | GTAGTCATCT | TTTGTGCTCC | СТТТТТААТ         | GGTAACACCA | TTGTATTACT | 1740 |
| TTTTAGGTGT | TCAGTCAATA | TAAAAAGAAC | ACCTTCTCAG        | CGTTCTTTCT | ATATCTCTGT | 1800 |
| CAATGGTGTT | GCGGTATCTG | GTGAGGTATC | АТАААССТТА        | AAGTCTACTC | CGACTCCCAG | 1860 |
| ATCAGCTTGA | GCCAGCTGAT | TGACCATGGT | CATATGAGCC        | AGTTCCTTGA | TATTGTTTTC | 1920 |
| CTTAGATAAA | TGCCCAAGGT | AAATCTTCTT | AGTACGATTT        | CCTAGCGTCC | GAATCATAGC | 1980 |
| TTCAGCACCG | TCCTCGTTAG | AAAGGTGACC | AAGGTCAGAT        | AGGATTCGTT | GTTTGAGTCG | 2040 |
| CCAAGCGTAA | GAACCTGATC | GCAAAATCTC | TACATCATGG        | TTGGCCTCGA | TAAGATAACC | 2100 |
| ATCCGCATTT | TCGACAATGC | CCGCCATACG | GTCACTGACA        | TAACCTGTAT | CTGTCAAGAG | 2160 |
| GACAAAACTC | TTATCATCCT | TCATAAAGCG | ATAGAACTGC        | GGTGCGACTG | CATCATGGCT | 2220 |
| TACACCAAAA | CTCTCGATGT | CGATATCTCC | AAAGGTTTTG        | GTTTTACCCA | TTTCAAAAAT | 2280 |
| ATGCTTTTGC | GAAGAATCCA | CCTTGCCAAG | АТАТТТАСТА        | TTTTCCATAG | CTTGCCAGGT | 2340 |
| CTTTTCATTG | GCATAAAGAT | CCATACCATA | CTTGCGAGCC        | AAAACGCCTA | CTCCATGGAT | 2400 |
| ATGATCTGAA | TGCTCATGGG | TAATCAAGAT | GGCATCCAGG        | TCTTCTGGCT | TACGGTTAAT | 2460 |
| TTCAGCTAGC | AGACTGGTAA | TTTTCTTGCC | AGACAAGCCT        | GCATCTACTA | AAAGCTTCTT | 2520 |
| TTTTGAGGTT | TCCAGATAAA | AAGAATTTCC | ACTGGAACCC        | GACGCTAAAA | TACTGTATTT | 2580 |
| AAAGCCTATT | TCACTCATTC | TAGTCTTCTA | CTTCATCCTC        | CCATACTTCT | TCTTTCACTG | 2640 |
| CATCCTTATC | ATAAGGGAGT | ACAATGGTAA | AGGTTGAACC        | CTTGCCGTAT | TCACTCTTGG | 2700 |
| СССАААТААА | GCCCTTATGT | TGTTTGATAA | TTTCTTTAGC        | GATAGACAGT | CCTAGACCTG | 2760 |
| TACCACCTTG | TGCACGACTT | CTAGCACGAT | CCACACGATA        | GAAACGGTCA | AAGATACGTG | 2820 |
| GTAAATCCTG | CTTAGGAATC | CCCAAACCGT | GGTCAGAAAT        | GGATAAAATC | ATCTGGTCTT | 2880 |
| CAGTTGTCTT | CATTCTGACA | GTGATTTTAC | CCCCATCTGG        | CGAATACTTA | ATAGCATTAT | 2940 |
| TTAAAATTT  | GTCGACAACC | TGCGTCATCT | TATCTGTATC        | AATTTCCATC | CAGATAGAAT | 3000 |
| TGATGGGATA | ATCTCTCACC | AACTCATATT | TTTTCTCCTT        | TTCCTGTCCT | TTCATCTTGT | 3060 |
| CAAAACGATT | GAGGATAAAG | GTAATAAAAG | CAGTGAAGTT        | AATCAGTTCC | ACATCTAGGT | 3120 |
| GACTGGTAGC | АТТАТСААТА | CGTGAAAGAT | GGAGGAGATC        | CGTCACCATG | CGCATCATAC | 3180 |
| GGTTGGTCTC | ATCAAGAGAA | ACCTTGATAA | AGTCTGGTGC        | TACAGTTTCA | CACAAAGCCC | 3240 |
| CCTCATCCAA | GGCTTCAAGA | TAGGATTTTA | CGCTAGTCAG        | AGGAGTCCGT | AACTCATGGC | 3300 |
| TAACATTGGA | AACAAAGAGT | CTTCCTTCGC | GTTCTTCCTT        | CTCCTGCTCC | GTCGTATCAT | 3360 |

| GCA | AAACAGC  | CACCAAACCT | GAAATAAAGC | CAGACTCTCG | ACGTATCAAG | GCAAAGCGAA | 3420 |
|-----|----------|------------|------------|------------|------------|------------|------|
| CTC | GAAGGTT  | CAAATATTCG | CCATTGATAT | CTTGGGAATC | TAGCAACAAT | TCTGGACTTT | 3480 |
| GGG | TAATCAA  | ATCACGCAAT | TCATAGTTTT | CTTCTATCTT | GAGCAATTCC | AAAATGCTTC | 3540 |
| ΓAΊ | TCAGAAC  | ATCTTCCTTA | ACCAACCCCA | GTTGCTTCTT | GGCTGTATCG | TTAATCATGA | 3600 |
| raa | TCTGACC  | CCGACGGTTA | GTCGCAAGAA | CCCCATCTGT | CATATAAAAC | AGAATACTAT | 3660 |
| ГТA | GCCTCTT  | ACTCTCTTGT | TCTAGATTTT | CCTGAGTGAG | ACGAATAACC | TCCGACAAGT | 3720 |
| CAI | TCAAATT  | ATTGGTAATA | TTGGTGATTT | CAGACCCACC | TTGCATATCA | AGAACCTTGG | 3780 |
| LAA | PARTCTCC | TGCAATCAAA | TCTTTAACCT | TTTGATTGAC | TTGCTTCAAC | TGAATATTAT | 3840 |
| CAC | GTCTATT  | TTCCAGTAAT | AAGAGGGTCA | CAACAAGGAT | GAAACCTAAC | AAAATCAGGA | 3900 |
| TAP | agataaa  | ATCTCTGGTA | AAAATGGTTT | GTTTCAGTAA | ATCAAGCATT | ATTTCTCATG | 3960 |
| TAA | тассста  | CACCACGGCG | CGTCAAGATA | TACTCTGGTC | GGCTGGGCGT | ATCTTCAATC | 4020 |
| TTC | CTCACGCA | GACGTCGTAC | AGTCACATCA | ACTGTACGGA | CATCACCAAA | ATAGTCATAA | 4080 |
| ccc | CCAGACAG | TCTCAAGCAA | GTGTTCGCGC | GTGATGACTT | GACCTGTATG | CGATGCTAAA | 4140 |
| TG? | ТАСАААА  | GCTCAAATTC | ACGATGGGTT | AAGTCTAGTT | CTTCGCCATA | TTTTTTAGCC | 4200 |
| ACC | STAGGCGT | CTGGAACAAT | TTCTAAATCC | CCAATTTGGA | TAGGTTGAGG | TTTACTATCT | 4260 |
| GC: | PTCCTGAC | CATCTACTGG | CATAGGTTGA | GAACGACGCA | GAAGAGCTTT | AACACGCGCC | 4320 |
| TG  | CAACTCAC | GATTGGAGAA | GGGTTTTGTT | ACATAGTCAT | CTGCCCCAAG | TTCCAAACCG | 4380 |
| AT? | AACCTTAT | CAAATTCACT | ATCTTTGGCT | GAAAGCATAA | GAATGGGCAC | ACTGCTTGTC | 4440 |
| TT  | ACGAATGG | TCTTAGCAAC | TTCTAAACCA | TCAATTTCTG | GAAGCATCAA | ATCCAGAATA | 4500 |
| AT  | AATATCTG | GTTGCTCTGC | TTCAAATTGC | TCTAGCGCTT | CACGACCATT | AAAAGCAGTT | 4560 |
| AC  | AACTTCGT | AACCTTCCTT | GGTCATATTA | AACTTGATAA | TATCCGAGAT | TGGTTTCTCA | 4620 |
| TC  | ATCTACAA | TTAGTATTT  | TTTCATATGT | TCACCTTTTT | CTCTACTATT | ATACCAAAAA | 4680 |
| AA' | TAGTCAGA | AGACACAATA | GCTAGTCTTG | GCTACTGTCT | AAGTTGGCTT | GTGCATAAAC | 4740 |
| CT  | GCCAGATT | TTTTGTTGGG | GTTTGGCAAG | TGGGTAATTC | TTGAATTCTT | CTGGTGAAAG | 4800 |
| CC  | AGCGAACT | TCCCTATCTG | AAAAATCATG | GAAGTCACTC | ACCTGACCTG | CTACAATCTG | 4860 |
| TA  | CATGCCAT | TTTCGATGAC | TAAAAACATG | CTGGACTGTA | TCAAAACAAA | CATCAAGCCA | 4920 |
| АТ  | CAACATCT | AGGTCATAGI | CCTGCTGGAA | ACTCTCTTCT | GGACTGGGAC | CAAAGTTCAC | 4980 |
| AC  | TTTCTTCC | GCAACCTGAT | GAAAGAGGTC | AAACTGCTCT | TCTTGCGAAA | AGTTATCAAC | 5040 |
| тт  | CTATAAAG | GGGAAATGCC | AAAAACCTGC | CAAGAGCTTT | TCGCTTTCAT | TTTTTTCAAG | 5100 |

228

TAAAAATTGT CCTTGAGAAT TTTTCACAAC TAAGGCTTTA AGATAAATAG GAACCGGCTT

5160 TTTCTTAGGA GATTTAATTG GATAACGGTC CATGGTTCCA TTCTGATATG CCGCACTAAA 5220 GTCCTTGACT GGGCTTTCTT CAGGTCTGGG ATTTACAGGA GACTCAATAT CAGACCCTAA 5280 GTCCATCAAG GCTTGATTAA AATCACCCGG ACGATCCGGA TTAATCAAGA TCTCCATCAT 5340 TGCCTGAAAA ATTTTTCGAT TACTTGGAAT CCCAATATCG TGGTTGACTT CAAACAGACG 5400 CGCCAAGACC CGCATGACAT TACCATCTAC AGCTGGCTCA GGCAAGTTAA AAGCAATACT 5460 GGAAATGGCT CCTGCTGTGT AAGGTCCAAT CCCTTTCAAG CTGGAAATTC CTTCATAGGT 5520 ATTTGGAAAT TGGCCACCAA AGTCAGTCAT AATCTGCTGG GCTGCAGCCT GCATATTGCG 5580 AACTCGAGAA TAATAGCCCA AGCCCTCCCA AGCTTTCAGT AAACTCTCCT CAGGCGCAGT 5640 TGCCAGACTT TCGACAGTTG GAAACCAGTC CAAAAATCTT TCGTAGTAAG GGATAACTGT 5700 ATCCACCCTG GTCTGCTGAA GCATGATTTC AGATACCCAG ATGTGATAAG GATTTTTACT 5760 TCTCCTCCAA GGCAAATCTC TTTTGTTTTC ATCATACCAA GCGAGAAGTT TCTCACGGAA 5820 AGAAATGACT TTCTCCTCCG GCCACATGAC GATACCGTAT TCTTTCAAAT CTAACATATC 5880 TCTAGTATAA CACAGAAGGT TTCACCTGTC TTTGTATCTG ATTTATAATA TTTTCAATAG 5940 ATAGTATATA ACTITICTAT CTACTTATAC TCAATGAAAA TCAAAGAGCA AACTAGGAAG 6000 CTAGCCGCAG GTTGCTCAAA ACACTGTTTT GAGGTTGTGG ATAGAACTGA CAGAGTCAGT 6060 ATCATATACT ACGGCAAGGT GAAGCTGACG TAGTTTGAAG AGATTTTCGA AGAGTATAAA 6120 TCTTATTGAT GAACTGCTTG CAGTCTGAGA AAAAATGAGC TTGGATATTA TTTCCAAACT 6180 CACTTAAAGT CAATTTCAAT CCACTAGAAC AAGCCTAGTA CAGTTCCATC GCTTTCAACA 6240 TCCATGTTGA GAGCTGCTGG ACGTTTTGGA AGACCTGGCA TGGTCATAAC ATCACCAGTT 6300 AAGGCAACGA TGAAGCCTGC ACCTAATTTT GGTACCAATT CACGAATGGT AATTTCAAAG 6360 TTTTCTGGTG CTCCAAGCGC ATTTGGATTG TCTGAGAAAC TGTATTGAGT TTTAGCCATA 6420 CAGATTGGCA ATTTGTCCCA ACCGTTTTGA ACGATTTGAG CAATTTGTGT TTGAGCTTTC 6480 TTCTCAAAGT TCACTTTGCT ACCACGATAG ATTTCAGTGA CAATTTTTTC AATCTTTTCT 6540 TGGACAGAAA GGTCATTATC ATACAAACGT TTATAGTTAG CTGGATTTTC AGCAATTGTC 6600 TTAACAACTG TTTCGGCAAG TGCTACTCCA CCTTCTGCTC CATCAGCCCA GACACTAGCC 6660 AATTCAACTG GTACATCGAT TGAGGCACAG AGTTCTTTTA AGGCTGCAAT TTCAGCTTCT 6720

GTATCAGATA CAAATTCGTT AATAGCTACA ACTGCTGGAA TACCGAACTT ACGGATATTT

TCAACGTGGC GTTTCAAGTT AGCAAAACCT GCACGAACTG CCTCTACATT TTCTTCAGTC

AGAGCGTCTT TAGCCACACC ACCATTCATC TTAAGGGCAC GAAGGGTTGC GACAATAACA

6780

6840

| CTGCATCTG GAG                          | GATGTTGG ( | CAAGTTTGGT       | GTCTTGATAT    | CAAGGAATTT   | CTCAGCACCA   | 6960 |
|----------------------------------------|------------|------------------|---------------|--------------|--------------|------|
| AGGTCCGCAC CA                          | AAACCAGC 1 | <b>TCAGTAACA</b> | GTGTAATCAG    | CCAAGTGAAG   | GGCTGTTGTC   | 7020 |
| TCGCCAAAA CA                           | GAGTTACA ( | GCCATGAGCG       | ATATTGGCAA    | ATGGACCACC   | GTGTACAAAG   | 7080 |
| GCAGGTGTAC CG                          | TAAATTGT ( | CTGAACCAAG       | TTTGGCTTAA    | TAGCATCCTT   | CAAAATCAAA   | 7140 |
| GCCAAGGCAC CC                          | TCAACCTG ( | CAAATCACCT       | ACAGAAACAG    | GCGTACGGTC   | ATAGCGATAA   | 7200 |
| CCAATAACGA TA                          | TTCGCCAA   | ACGACGTTTC       | AAGTCCTCGA    | TGTCCGTTGC   | CAAGCAAAGA   | 7260 |
| ATTGCCATGA TT                          | TCTGAAGC   | AACTGTAATA       | TCAAAACCAT    | CCTCACGTGG   | AATACCGTTT   | 7320 |
| AGAGGACCAC CA                          | AGACCAAC   | AGTCACATGG       | CGGAGCGTAC    | GGTCGTTCAA   | GTCCACAACG   | 7380 |
| CGTTTCCAGA GG                          | ATACGACG   | TTGATCAATT       | CCCAGCTCAT    | TCCCTTGGTG   | CAAGTGGTTG   | 7440 |
| TCAATCAAGG CA                          | GAAAGGGC   | ATTGTTGGCA       | GTTGTAATAG    | CATGCATATC   | TCCAGTAAAG   | 7500 |
| TGGAGGTTGA TG                          | TCTTCCAT   | TGGCAGAACT       | TGTGCATACC    | CACCACCAGC   | AGCACCACCC   | 7560 |
| TTGATCCCCA TG                          | SACTGGACC  | AAGAGACGGT       | TCGCGGATAG    | CAATCATGGT   | TTTCTTGCCA   | 7620 |
| ATCTTGTTCA AC                          | GCATCCGC   | AAGACCAATG       | GTAAGCGTCG    | ACTTTCCTTC   | ACCTGCAGGT   | 7680 |
| GTTGGGTTGA TO                          | GCAGTAAC   | CAAGATCAAT       | TTACCGACTG    | GATTGCTCTC   | AACTGCACGA   | 7740 |
| ATTTTATCAA AG                          | CTGAGTTT   | AGCCTTGTAC       | TTTCCGTACA    | ACTCCAAATC   | GTCATAAGAA   | 7800 |
| ATACCAAGTT TO                          | CTCTACAAC  | ATCAACAATT       | GGCTTCAACT    | CAATACTCTG   | TGCGATTTCA   | 7860 |
| ATATCTGTTT TO                          | САТТСАААА  | TTCCTCTAAC       | CTCTTATATG    | ATAATTCATT   | ATATCACAAA   | 7920 |
| ACAAGATTTT T                           | AACATCCTA  | AAACTCTCTA       | AACGTTCGTA    | , ААТАТСТСТО | TTTTAAGAC    | 7980 |
| TTTTAGAGTC C                           | тттсттааа  | TTTTATATGG       | CTTTATAGTT    | ' ТСАДАСТАТА | ATAAATCTTC   | 8040 |
| GTTTTTACCA A                           | AAATTTATC  | ACTTTCATTT       | TACTTACCGC    | TTATTTTGT    | GTACAATAGT   | 8100 |
| GCTATGAAAA T                           | TTTAGTTAC  | ATCGGGCGGT       | ACCAGTGAAG    | CTATCGATAC   | CGTCCGCTCT   | 8160 |
| ATCACTAACC A                           | TTCTACAGG  | TCACTTGGGG       | AAAATTATCA    | CAGAGACTT    | GCTTTCTGCA   | 8220 |
| GGGTATGAAG T                           | TTGTTTAAT  | TACGACAAA        | CGAGCTCTGA    | AGCCAGAGC    | TCATCCTAAC   | 8280 |
| CTAAGTATTC G                           | AGAAATTAC  | CAATACCAAC       | GACCTTCTA     | A TAGAAATGC  | AGAACGTGTT   | 8340 |
|                                        |            |                  |               |              | TGTTTATATG   | 8400 |
| ACAGGGCTTG A                           | GGAAGTTCA  | GGCTAGCTC        | AAACTAAA C    | AATTTTTAA    | G CAAGCAAAAT | 8460 |
| CATCAGGCCA A                           | \GATTTCTTC | AACTGATGA        | G GTTCAGGTT   | r TGTTCCTTA  | A AAAGACACCC | 8520 |
| AAAATCATAT (                           | CCTAGTCAA  | GGAATGGAA        | r CCTACTATT   | C ATCTGATTG  | G TTTCAAACTG | 8580 |
| 00000000000000000000000000000000000000 |            | maxmancacan      | n (የእርአጥጥርርል) | C CAAAAACTC  | т татсаасаат | 8640 |

| CAAGCAGATT | TAATCATCGC | GAATGACCTG | 230<br>ACTCAAATTT | CAGCAGATCA | GCACCGAGCT | 8700 |
|------------|------------|------------|-------------------|------------|------------|------|
|            | AGAAAAATCA |            |                   |            |            | 8760 |
| niniiidiid | AGAAAAAICA | GCIICAAACA | GICCAGACIA        | ANGANGAANI | TOCAGAACTC | 8700 |
| CTCCTTGAAA | AAATTCAAGC | CTATCATTCT | TAGAAAGGAA        | AACTATGGCA | AACATTCTCT | 8820 |
| TGGCTGTAAC | GGGTTCAATC | GCCTCTTATA | AGTCGGCAGA        | TTTAGTCAGT | ТСТСТААААА | 8880 |
| AACAAGGCCA | TCAAGTCACT | GTCTTAATGA | CTCAGGCTGC        | TACAGAGTTT | ATCCAACCTT | 8940 |
| TGACACTACA | GGTACTCTCA | CAGAATCCTG | TCCACTTGGA        | TGTCATGAAG | GAACCCTATC | 9000 |
| CTGATCAGGT | CAATCATATC | GAACTTGGAA | AAAAAGCAGA        | TTTATTTATC | GTGGTACCTG | 9060 |
| CAACTGCTAA | CACTATTGCA | AAACTAGCTC | ACGGATTTGC        | GGACAACATG | GTAACCAGTA | 9120 |
| CAGCTCTAGC | CCTACCAAGT | CATATTCCCA | AACTAATAGC        | TCCTGCTATG | AATACAAAAA | 9180 |
| TGTATGACCA | TCCAGTAACT | CAGAATAATC | TGAAAACATT        | AGAAACTACG | GCTATCAGCT | 9240 |
| GATTGCTCCT | AAGGAATCCC | TACTAGCTTG | TGGAGACCAC        | GGACGAGGAG | CTTTAGCTGA | 9300 |
| CCTCACAATT | ATTTTAGAAA | GAATAAAGGA | AACTATCGAT        | GAAAAAACGC | TCTAATATTG | 9360 |
| CACCCATTGC | TATCTTTTT  | GCTACCATGC | TCGTGATACA        | CTTTCTGAGC | TCACTTATCT | 9420 |
| TTAACCTTTT | TCCATTTCCA | ATCAAACCGA | CCATTGTTCA        | TATTCCTGTC | ATTATTGCCA | 9480 |
| GCATTATTTA | TGGTCCACGA | GTTGGGGTTA | CACTTGGATT        | TTTGATGGGA | TTACTTAGCT | 9540 |
| TGACGGTTAA | CACGATTACG | ATTCTACCGA | CAAGCTACCT        | CTTCTCTCCC | TTCGTACCAA | 9600 |
| ACGGAAACAT | CTACTCAGCT | ATCATTGCCA | TCGTCCCACG        | TATTTTGATT | GGTTTAACTC | 9660 |
| CTTACTTAGT | CTATAAACTG | ATGAAAAACA | AGACTGGTCT        | GATTTTAGCT | GGAGCCCTTG | 9720 |
| GTTCcTTGAC | AAATACTATC | TTTGTCCTTG | GAGGAATCTT        | CTTCCTATTT | GGAAATGTTT | 9780 |
| ATAATGGAAA | TATCCAACTT | CTTCTGGCAA | CCGTTATCTC        | AACAAATTCA | ATTGCTGAAT | 9840 |
| TGGTCATTTC | TGCAATTCTA | ACCCTAGCCA | TTGTTCCACG        | ACTACAAACC | TTGAAAAAAT | 9900 |
| AAAAACAGG  |            |            |                   |            |            | 9909 |
|            |            |            |                   |            |            |      |

#### (2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 1126 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAATTTCAT ATAATAGTAA AATAGAATGT GTGATTCAAT AATCACCTCA AATAGAAAGG 60 AAATTCTATG TCAAATCTAT CTGTTAATGC AATTCGTTTT CTAGGTATTG ACGCCATTAA 120

231

| TAAAGCCAAC | TCAGGTCATC | CAGGTGTGGT | TATGGGAGCG | GCTCCGATGG | CTTACAGCCT | 180  |
|------------|------------|------------|------------|------------|------------|------|
| СТТТАСАААА | CAACTTCATA | TCAATCCAGC | TCAACCAAAC | TGGATTAACC | GCGACCGCTT | 240  |
| TATTCTTTCA | GCAGGTCATG | GTTCAATGCT | CCTTTATGCT | CTTCTTCACC | TTTCTGGTTT | 300  |
| TGAAGATGTC | AGCATGGATG | AGATTAAGAG | TTTCCGTCAA | TGGGGTTCAA | AAACACCAGG | 360  |
| TCACCCAGAA | TTTGGTCATA | CGGCAGGGAT | TGATGCTACG | ACAGGTCCTC | TAGGGCAAGG | 420  |
| GATTTCAACT | GCTACTGGTT | TTGCCCAAGC | AGAACGTTTC | TTGGCAGCCA | AATATAACCG | 480  |
| TGAAGGTTAC | AATATCTTTG | ACCACTATAC | TTACGTTATC | TGTGGAGACG | GAGACTTGAT | 540  |
| GGAAGGTGTC | TCAAGCGAGG | CAGCTTCATA | CGCAGGCTTG | CAAAAACTTG | ATAAGTTGGT | 600  |
| TGTTCTTTAT | GATTCAAATG | ATATCAACTT | GGATGGTGAG | ACAAAGGATT | CCTTTACAGA | 660  |
| AAGTGTTCGT | GACCGTTACA | ATGCCTACGG | TTGGCATACT | GCCTTGGTTG | AAAATGGAAC | 720  |
| AGACTTGGAA | GCCATCCATG | CTGCTATCGA | AACAGCAAAA | GCTTCAGGCA | AGCCATCTTT | 780  |
| GATTGAAGTG | AAGACGGTTA | TTGGATACGG | TTCTCCAAAC | AAACAAGGAA | CTAATGCTGT | 840  |
| ACACGGCGCC | CCTCTTGGAG | CAGATGAAAC | TGCATCAACT | CGTCAAGCCC | TCGGTTGGGA | 900  |
| CTACGAACCA | TTTGAAATTC | CAGAACAAGT | ATATGCTGAT | TTCAAAGAAC | ATGTTGCAGA | 960  |
| CCGTGGCGCA | TCAGCTTATC | AAGCTTGGAC | TAAATTAGTT | GCAGATTATA | AAGAAGCTCA | 1020 |
| TCCAGAACTG | GCTGCAGAAG | TAGAAGCCAT | CATCGACGGA | CGTGATCCAG | TCGAAGTGAC | 1080 |
| TCCAGCAGAC | TTCCCAGCTT | TAGAAAATGG | TTTTtCTCAA | CCAACT     |            | 1126 |

#### (2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:

   (A) LENGTH: 2520 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

| CCGGCAACAA | AAAAGAAAAA | ATCAACAGTT | AAAAAAAATC | TAGTCATCGT | GGAGTCGCCT | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| GCTAAGCCAA | GACGATTGAA | AAATATCTAG | GCAGAAACTA | CAAGGTTTTA | GCCAGTGTCG | 120 |
| GGCATATCCG | TGATTTGAAG | AAATCCAGTA | TGTCCGTCGA | TATTGAAAAT | AATTATGAAC | 180 |
| CGCAATATAT | TAATATCCGA | GGAAAAGGCC | CTCTTATCAA | TGACTTGAAA | AAAGAAGCTA | 240 |
| AAAAAGCTAA | TAAAGTTTTT | CTCGCGAGTG | ACCCGGACCG | TGAAGGAGAA | GCGATTTCTT | 300 |
| GGCATTTGGC | CCATATTCTC | AACTTGGATG | AAAATGATGC | CAACCGTGTG | GTCTTCAATG | 360 |

|                    |            |            | 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |       |
|--------------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-------|
| AAATCACCAA         | GGATGCAGTC | AAAAATGCTT | TTAAAGAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCGTAAGATC      | GATATGGACT | 42    |
| TGGTCGATGC         | CCAACAAGCT | CGTCGGATCT | TGGATCGCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GGTAGGGTAT      | TCGATTTCGC | 48    |
| CTATTTTGTG         | GAAGAAGGTC | AAGAAGGGCT | TGTCAGCAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCGCGTTCAG      | TCCATTGCCC | 546   |
| ттааастсат         | CATTGACCGT | GAAAATGAAA | TCAATGCCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCAGCCAGAA      | GAATACTGGA | 60    |
| CAGTTGATGC         | TGTCTTTAAA | AAGGGAACCA | AACAATTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TGCTTCCTTC      | TATGGAGTAG | 666   |
| ATGGTAAAAA         | GATGAAACTG | ACCAGCAATA | ACGAAGTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GGAAGTCTTG      | TCTCGTCTGA | 72    |
| CGAGTAAAGA         | CTTTTCAGTA | GATCAGGTGG | ATAAGAAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCGCAAGCGC      | AATGCTCCTT | 786   |
| ТАСССТАТАС         | CACTTCATCT | ATGCAGATGG | ATGCTGCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAAAATCAAT      | TTCCGTACTC | 840   |
| <b>GAAAAAC</b> CAT | GATGGTTGCC | CAACAGCTCT | ATGAAGGAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAATATCGGT      | TCTGGTGTTC | 900   |
| AAGGTTTGAT         | TACCTATATG | CGTACCGATT | CGACTCGTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAGTCCTGTA      | GCGCAAAATG | 960   |
| AGGCGGCAAG         | CTTCATTACG | GATCGTTTTG | GTAGCAAGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TTCTAAGCAC      | GGTAGCAAGG | 1020  |
| TCAAAAACGC         | ATCAGGTGCT | CAGGATGCCC | ATGAGGCTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCGTCCGTCA      | AGTGTCTTTA | 1080  |
| ATACACCAGA         | AAGCATCGCT | AAGTATCTGG | ACAAGGATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCTTAAGCTA      | TATACCCTTA | 1140  |
| TCTGGAATCG         | TTTTGTGGCT | AGCCAGATGA | CAGCGGCCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TTTTGATACC      | ATGGCTGTTA | 1200  |
| AATTGTCTCA         | AAAAGGGGTT | CAATTTGCTG | CCAATGGTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCAGGTTAAG      | TTTGATGGTT | 1260  |
| ATCTTGCCAT         | TTATAATGAT | TCTGACAAGA | ATAAGATGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACCGGACATG      | GTTGTTGGAG | 1320  |
| ATGTGGTCAA         | ACAGGTCAAT | AGCAAACCAG | AGCAACATTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CACCCAACCG      | CCTGCCCGTT | 1380  |
| ATTCTGAAGC         | AACACTGATT | AAAACCTTAG | AGGAAAATGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GGTTGGACGT      | CCATCAACCT | 1440  |
| ACGCGCCAAC         | CATTGAAACC | ATTCAGAAAC | GTTATTATGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCGCCTGGCA      | GCCAAACGTT | 1500  |
| TTGAACCGAC         | AGAGTTGGGA | GAAATTGTCA | ATAAGCTCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CGTTGAATAT      | TTCCCAGATA | 1560  |
| TCGTAAACGT         | GACCTTCACA | GCTGAAATGG | AAGGTAAACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GGATGATGTC      | GAAGTTGGAA | 1620  |
| AAGAGCAGTG         | GCGACGGGTC | ATTGATGCCT | TTTACAAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATTCTCTAAA      | GAAGTTGCCA | 1680  |
| AGGCTGAAGA         | AGAAATGGAA | AAAATCCAGA | TTAAGGATGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACCAGCTGGA      | TTTGACTGTG | 1740  |
| AAGTGTGTGG         | CAGTCCAATG | GTCATTAAAC | TTGGTCGTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TGGTAAATTC      | TACGCTTGTA | 1800  |
| GCAATTTCCC         | AGATTGCCGT | CATACCCAAG | CAATCGTGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGAGATTGGT      | GTTGAGTGTC | 1860  |
| CAAGCTGTCA         | TCAGGGACAA | ATTATTGAGC | GAAAAACCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCGTAATCGC      | CTATTCTATG | 1920  |
| GTTGCAATCG         | CTATCCAGAA | TGTGAATTTA | CCTCTTGGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAAGCCTGTT      | GGTCGTGACT | 1980  |
| GTCCAAAATG         | TGGCAACTTC | CTCATGGAGA | AAAAAGTCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TGGTGGTGGC      | AAGCAGGTTG | 2040  |
| TTTGTAGCAA         | AGGCGACTAC | GAGGAAGAAA | AGATGGCTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TTGTCAACTG      | TAGTGGGTTG | 2100  |
| <b>ΔΑ</b> CΦCΑCCΦΑ | ACCTCGAGAA | ACCACAAATT | THE THE PROPERTY OF THE PROPER | manaman c a m a | MMC3C3CCC3 | 21.66 |

233

| TAAAAATCCG  | TTTTTTGAAG   | TTTTCAAAGT   | TCCGAAAACC | AAAGGCATTG | CGCTTGATAA | 222  |
|-------------|--------------|--------------|------------|------------|------------|------|
| GTTTGATGAG  | ATTATTGGTC   | GCTTCCAATT   | TGGCGTTAGA | ATAGTGTAGT | TGAAGGCCGT | 228  |
| TGACGATTTT  | CTCTTTGTCC   | TTTAGAAAGG   | TTTTAAAGAC | AGTCTGAAAA | AGAGGATGAA | 2340 |
| CCTGCTTTAG  | ATTGTCCTCA   | ATGAGTCCGA   | AAAATTTCTC | CGGTTCCTTA | TTCTGAAAGT | 2400 |
| GAAACAGCAA  | GAGTTGATAG   | AGCTGATAGT   | GATGTTTCAA | GTCTTGTGAA | TAGCTCAAAA | 2460 |
| GCTTGTTTAA  | AATCTCTTTA   | TTGGTTAAAT   | GCATACGAAA | AGTAGGGCGA | TAAAAATGTT | 2520 |
| (2) INFORMA | ATION FOR SE | EQ ID NO: 15 | i:         |            |            |      |

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10993 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TTTTCTCGAT AATAACTTCC ACCTTATTAT TTGGGATACC CTCCTCTTCT TCACCACCAC 60 GTTCATAGTA GTCATCGCGA TAGAGAAAAG CTACGATATC AGCGTCCTGC TCAATAGACC 120 CAGATTCACG AATATCAGAC AAGACCGGTC TCTTGTCCTG ACGTTGTTCT ACACCACGAG 180 AAAGCTGACT CAGAGCGATT ACTGGAACCT TCAATTCCTT GGCTAGTATT TTCAACTGAC GAGAAATTTC AGAAACTTCT TGTTGACGAT TTTCTCGACC AGTTCCCGTG ATAAGTTGCA 300 AATAGTCTAT CAAAATCAAA CCAAGATTTC CAGTTTCTTG AGCCAATTTA CGAGAACGAG 360 AACGAATCTC TGTAATCCGA ATACCTGGCG TATCATCGAT ATAGATACTG GCGTTAGCTA 420 GATTACCCTG AGCAATAGTA TATTTTTGCC ACTCCTCATC TGTCAATTGC CCTGTACGGA 480 TAGAATGTGA CTCCACTAAG CCTTCTGCAG CTAACATACG ATCTACCAAG CTTTCCGCAC 540 CCATTTCGAG TGAAAAAATA GCAACCGTTT TGTCCAACTT AGTCCCAATG TTCTGAGCGA 600 TATTCAAGGC AAATGCTGTC TTACCAACTG CTGGACGAGC TGCTAAGATA ATCAACTCCT 660 CCTCATGAAG TCCTGTTGTC ATATGATCCA AATCACGATA ACCTGTCGCA ATACCTGTAA 720 TATCGGTCGT TTGTTGCGAG CGAGCTTCCA GATTTCCAAA GTTGAGATTC AACACATCTC 780 GAATGTTCTT AAACCCGCTT CGATTTGCAT TTTCACTGAC ATCAATCAAC CCTTTTTCTG 840 CCTGAGCAAT AATTTCATCA GCTGGTTGTG ACGCTTCGTA AGCTTGGTTG ACAGACTCTG 900 TCAACTTGGC AATTAAACGA CGTAGCATTG CTTTTTCTGC AACAATCTTA GCATAATACT 960 CCGCATTAGC AGAAGTTGGC ACAGAATTAA CAATCTCAAC CAAGTAAGAC AAGCCACCAA 1020

234 TATTCTGTAA ATCACCTTGA TTATCAAGGA TAGTACGAAC CGTTGTTGCA TCTATGGCAT 1080 CACCACGATC GGATAAATCG ACCATGGCTT GGAAAATCAA ACGATGGGCA TACTTAAAAA 1140 AGTCCCGAGA CTCAATGTAT TCTCGCACAA AAACAAGTTT ACTCTCATCA ATAAAGATAG 1200 CCCCTAAAAC GGATTGCTCA GCTAAGATAT CTTGAGGTTG TACTCGTAAC TCTTCTACTT 1260 CTGCCATCAG ACTTCCCTTC CTTTTACAAT CTTGTCAAGA AGGTGTAAAC TTATCCTTCT 1320 TTCACACGAA GATTGATTAC ACTTGTGATA TCTTGATAGA TTTTCACTGG CACATCAATC 1380 AAACCAACCG CTCGAATCGG AGCTTGTACT TGAATATGAC GTTTATCAAT CTTAATTCCA 1440 AATTGCTTTT GCAATTCTTC TGCAATCTTC TTATTGGTAA TAGAACCAAA GGTACGACCA 1500 TCTGGACCAA CTTTTCAAC AAATTCTACA ACAGTTTCTT CTGCTTCAAG TTGTGCTTTA 1560 ATTGCTTTTC CTTCTGCAAT CATCTCAGCG TGAGCTTTTT CTTCCGATTT TTGTTTACCA 1620 CGAAGTTCAC CTACAGCTTG AGCAGTCGCT TCTTTGGCTA GATTCTTTTT GATAAGAAAG 1680 TTTTGCGCAT ACCCTGTTGG TACTTCCTTA ATTTCGCCTT TTTTACCTTT TCCTTTAACA 1740 TCTGCTAAAA AGATTACTTT CATTCTTCTT TCTCCTTTTC CTTCATTTCA TTTAATACAA 1800 TTTCTGTCAG TTTTTCACCT GCTTCTGACA AGGTTACATC TTTAATTTGA GCTGCTGCCA 1860 AATTAAAGTG GCCTCCACCG CCTAACTCTT CCATAATCCG TTGTACATTC AGTTTACTAC 1920 GACTTCGAGC TGAGATAGAG ATAAATCCTT GTGTATTCTT CGCAAGAACA AAACTCGCTT 1980 CAATACCTGA CATGGCTAAC ATGGCATCTG CTGCCTTACT AATAACAACT GTATCATAGC 2040 ATTTCATGTC CTTAGCCTCT GCTATTAGTA CATCTGAACC TAATTTACGC CCCTGTAAAA 2100 TAAGTTCATT GACCTCACGA TATTCTTCAA AATCTGTCGC AGCGATTTCC TGGATAGCAA 2160 TACTATCACT TCCGCGCGTT CTGAGATAGC TAGCAACATC AAATGTCCGA CTAGTTACTC 2220 GCGAGGTGAA ATTTTTAGTA TCCAACATCA TACCAGCCAT CAAGACACTT GCTTGCATAC 2280 GACTCAAACG ATTTTCTTA GAATTCTGGA ACTGAATCAA TTCCGTTACC AACTCACTGG 2340 CACTACTTGC ACCACTTTCG ATATAAGTAA TAACCGCATT ATCTGGAAAA TCCTGATCCC 2400 TTCTATGGTG GTCAATAACA ATGGTTTGGG TAAATAAATC ATAAAATTCT TTTGATAATG 2460 TTAAGGCTGT CTTTGAATGG TCTACAAGAA TCAACAAAGA ACGATTGGTC ACCATCCCCA 2520 TTGCATCCTT AACAGACAAC AACTTCGTAA CTCCTTCTTT TTCTATGAAT GAAACAGCTC 2580 GTTCAATATC TGGAGACATT TGTTCTTCAT CATAAAGAGC ATAGCTATTT TCAATCACAT 2640 TGCTGGCGAA CAACTGCATA CCTACAGCAG AGCCCAAAGC ATCCATGTCT AAATTTTTGT 2700 GACCGACTAC AAAAACCTGA TCTACACTCC GAATCTTATC TGAAATAGCT GTCATCATAG 2760 CGCGCGTACG AGTCCGTGTA CGCTTGATTG AAGCAGCAGA CCCACCACCA AAATAAACTG 2820

235

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

| GAT' | TTTTCGT              | TTCGTCGTTT  | TCCTTAACAA | CCACCTGGTC         | GCCACCACGT | ACTTCAGCCA | 2880 |
|------|----------------------|-------------|------------|--------------------|------------|------------|------|
| AGT  | гсааатт              | GAGCAAAGCA  | ACTTTCCCTA | TCTCATCATG         | ATTTCCATCG | CCATAAGAAA | 2940 |
| ATC  | CATACT               | TAAGGTCAAG  | GGCAACTGTC | TCTGTTTCGA         | CTCTTCTCTG | AAAGCATCAA | 3000 |
| TAA  | CAGAAAA              | TTTATCATTC  | ATCAAGCCCT | CAAGCACCGT         | GTAGTCAGTA | AATAGATAAA | 3060 |
| ATC  | GATCCAT              | ACTTACCCGA  | CGAGAAAACA | TCATGTGTTT         | TTCTGAAAAC | TCTGATATAA | 3120 |
| 'TAA | TAGCTAC              | AAAACTATTG  | ATTTGACTAA | TATCTGACTC         | AGAAGTTTCA | TCCTCCAAAT | 3180 |
| CAT  | CATAATT              | ATCCACAGAG  | ACAATCCCAA | TCACTGGTCT         | ACTTGTTACC | AATTCATCTG | 3240 |
| TTA' | TGGCTTG              | TTCCCTGGAT  | ACATCTACAA | AATACAAAAC         | ACCGGAAGAA | GCATCCATAT | 3300 |
| GAA  | CAGCATA              | ACGCTTCTCA  | CCAAGCTTGG | CATAAGTAGA         | CGGATTTCCT | ACTGAAGCCT | 3360 |
| TGA' | TAATCGT              | TTGAACAGCT  | тстааатсаа | AATCACCATC         | TTCCTTGGTC | AAAATCAATT | 3420 |
| CAG  | CATAGGG              | ATTAAACCAC  | TCAACCTCTC | CAGAAGATAA         | ATTCAATTTC | ATAACACCTA | 3480 |
| CAG  | GCATCTG              | TTCCAATAGA  | GCTGTCAAAC | TTTCTTCCGC         | TTGGTGGTTT | ACATACTGTA | 3540 |
| TCT  | GTTCTAC              | ATCACTCCTT  | GTATAATGCA | CTCTCAGTTT         | СТТАААТААА | AAAACATAGC | 3600 |
| СТС  | СТАСААА              | AAGAAACAAA  | ATTAAAACCG | TCAACAGATT         | АТТАТТААСА | AAAATAATGA | 3660 |
| AAG  | TGGATAA              | GACTCCAAAC  | GCAATCAATC | CTACTAGAAT         | AGGAAAAATT | GGACTTACAT | 372  |
| AAA  | ATTTTTT              | CATTCAAAAC  | CTCTTGGCAC | CCATTATACC         | ATAATACCCC | TCAAAAAGCG | 378  |
| act  | AAATTTT              | AGTGTAATCA  | GTAATTCTAT | CAATTATAAG         | AAAAAGGTAG | TTTACAATTC | 384  |
| AGT  | AAACCTA              | CCTTTACACA  | TATTGAAATT | AAGATTCTTT         | AACCTCTAAC | AAACCAATTT | 390  |
| CGC  | CATCCTC              | ACGACGATAA  | ATCACATTGG | TTGTCTGATC         | TTCAACATCC | ACATAGATAA | 396  |
| AGA  | AATCATG              | CCCCAATAAA  | TCCATTTGTA | GAATTGCTTC         | TTCCAAATCC | ATTGGTTTTA | 402  |
| LAA  | CAATTTG              | TTTTGAACGA  | ACAACTTTAG | ACTGGACAAT         | ATTTGAATCT | TCCACCAAAG | 408  |
| CAT  | CTGTAAA              | TAATTGACCA  | GTTGCTACCT | TATTTTTATT         | TTTACGCTCG | ATTTTTGTTT | 414  |
| TAT  | TTTTACO              | AATCTGACGT  | TCAATTTAT  | CAGTTACAAG         | GTCAATTGAA | CCATACATAT | 420  |
| CTT  | rgagatac             | ATCTTCTGCC  | CGGAGAGTA  | TAGATCCAAG         | CGGAATCGTT | ACTTCCACTT | 426  |
| TAC  | CCGTTTI              | TTCACGATA   | ACTTTTAAGT | TAATTCGGGC         | ATCCAACTCT | TGTTCTGGTT | 432  |
| GGZ  | AAGTACTI             | TTCGATCTT   | TCGAGTTTAC | <b>ЗАВАСТАСАТА</b> | ATCACGAATT | GCTTCTGTTA | 438  |
| CT   | rctaggt <sup>1</sup> | TTCACCACGO  | ATACTATAT  | TAATCATATC         | AGTACCTTCT | TTCTAAACAT | 444  |
| TT.  | rtgtttt:             | r atgatttat | TATAACGCT  | TCATTCTATT         | TTTGCAAATT | TTTTCCTCAT | 450  |
| CT'  | TACAAGG              | AAAATGTTT   | TACATCCTT  | GCACCAGCTT         | CTTCCAACAC | TTTCTTAACA | 456  |

|            |            |            | 236        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| CGATTTATAG | TTGCTCCTGT | AGTATAGATA | TCATCTATAA | GTAGGATTTT | TTTAGGAATA | 4620 |
| GTGACTCCAC | ТТТТААТААА | GAAAGGAAGT | TCTGTCCCCA | AGCGCTCTGA | ACGATTTTTA | 4680 |
| GAAGAACTGG | CTCTCTCTTC | TCTTTTCTCT | AATAAATCCA | GATACTCAAA | GCCTGCTGCC | 4740 |
| TCTACCAAGC | CCTCAACCTG | ATTAAATCCT | CTATTAGCAT | ATCTATCAGG | ACTTAGGGGA | 4800 |
| ATTACAACAA | ATTGATACTC | TTTGTACTTT | TTCAACTCCT | САСТТААААА | TGAAGCGAAA | 4860 |
| ACTTTTCTTA | ACAGGAAGTC | TCCATCAAAC | TTATACCGAC | TGAAAAAATC | CTTCATAGCT | 4920 |
| TGATTGTAAG | TAAAAATCGC | TCTATGACTG | ACTTCAACTC | CCTCTTTACA | CCAAAGTTGA | 4980 |
| CAATCTTGAC | ACTTTGTTGA | CAACTCTGTT | TTCATACAAT | TTGGACAGTT | CTCTTCCCCA | 5040 |
| ATTCTTTCAA | AAGTAGAATC | ACAGTCTGAA | CAAAGACAAG | AGTCATCATT | CCTCAGAAGT | 5100 |
| AAGAGACTAC | TAAAAGTTAA | AACAGTCTTC | ATAGTCTGCC | CACATAACAA | GCACTTCATA | 5160 |
| GACCAGCCTC | CTTATTCATC | ATCTGAATTT | CCTTAATCGC | CTTCTTGATT | GAAGCATTTA | 5220 |
| ACCCATCATG | GAAGAAAAGC | AAATCTCCTG | TCGGTCTATC | CATGCTTCGT | CCAACTCGTC | 5280 |
| CACCAATCTG | AATCAAACTA | GACTTGGTAA | ACAAACGATG | ATTGGCCTCT | ACTACGAAAA | 5340 |
| CATCCACACA | AGGGAAGGTA | ACTCCGCGCT | CCAAGATTGT | CGTACTGATA | AGTATTGTCA | 5400 |
| GTTCTCCATC | TCGAAAAGCT | TGTACTTGCT | CTAATCGATC | CTCTGTTACA | GAAGATACAA | 5460 |
| AGCCAATTTT | CTCATTTGGA | AATTGCTCCT | GTAAGATTTC | TGCTAACTGC | TCCCCTTTCT | 5520 |
| TAATTTCTGA | AGCAAAAATG | AGTAACGGAT | AAGCTGTCTT | TCTCTGCTTC | TCAATATAGG | 5580 |
| ACTTTAACTT | TGGTGACAAA | CGATTCTTGT | CTAAGTAGCG | ATTAAAATCC | GATAACCAAA | 5640 |
| TTGGTTTTGG | AATAATCAAC | GGATTTCCAT | GAAACCGTCT | CGGTAAATTC | AGTCTTTTTA | 5700 |
| GTTCTCCTAA | ACGGACCTTT | TTATCTAACT | CATTGGTCGA | AGTCGCTGTT | AAAAAGATTC | 5760 |
| TCAATCCATT | CTCCTTTACA | CTATTCTTGA | CAGCGTGGTA | AAGCATGGGA | TTATCAACAT | 5820 |
| AAGGAAAAGC | ATCTACTTCA | TCCACTATCA | GCAAATCAAA | AGCTTGATAA | AACTTCAATA | 5880 |
| ACTGATGGGT | TGTTGCAACA | ACTAGTGGTG | TTCGAAAATA | AGGTTCCGAT | TCTCCATGTA | 5940 |
| GCAAAGCTAT | CCCGCAAGAA | AAATCCTGTT | GCAGGCGCTT | GTACAGCTCC | AAACAAACAT | 6000 |
| CTATGCGAGG | ACTAGCCAAA | CACACTGCAC | CACCCGCATT | GATCACTTTA | GCCACTACTT | 6060 |
| GATAAATCAT | TTCTGTCTTT | CCAGCTCCTG | TTACCGCATG | AACTAAGGTT | GGCTTTTGCT | 6120 |
| PGTCTACTAC | TTGAAGCAAT | CCCTCTGACA | CCTTCTCTTG | AAAAGGAGTT | AATTGGCCGC | 6180 |
| GCCATTTGAG | AACATCTTGC | TTTGGAAAAT | CCTCCTGCGG | AAAATAGTAT | AAAGTTTGAT | 6240 |
| CACTTCTGAC | TCGCTTCATC | AGCAAGCACT | CTCGACAATA | GTAAGCACCG | ATGGGCAAAT | 6300 |
| ACCATTCTTC | TAGAATAGTA | CTATTACAGC | GTTGACAGAA | AAGTTTCCCC | TTCTCCTTTC | 6360 |

| rca | TTGCTGG          | AAGTTTCTCC                  | GCCAACTGAC | GTTCTTCTTC | TGTTAATTCA | TTCTCAGTAA   | 6420 |
|-----|------------------|-----------------------------|------------|------------|------------|--------------|------|
| \TA | AACGACC          | GAGATAATCT                  | AAATTTACTT | TCATACTTCT | TTATTCGTAA | AAACTAGCAC   | 6480 |
| ľΨ  | AGATGAT          | TTTTTAGTAC                  | AATTAAATCA | TGGAATTTAG | GACAATTAAA | GAGGACGGTC   | 6540 |
| AAC | TCCAAGA          | AGAAATCAAA                  | AAATCTCGCT | TTATCTGCCA | TGCCAAGCGT | GTTTATAGCG   | 6600 |
| AAC | SAAGAGGC         | TCGTGACTTC                  | ATTACTGCCA | TCAAAAAAGA | ACACTACAAA | GCGACACATA   | 6660 |
| ACT | CCTCTGC          | CTTCATTATT                  | GGAGAACGTA | GTGAAATTAA | ACGTACAAGT | GATGATGGTG   | 6720 |
| AGC | CTAGTGG          | TACTGCTGGT                  | GTTCCCATGC | TTGGGGTACT | AGAAAATCAC | AATCTCACCA   | 6780 |
| ATO | STCTGTGT         | GGTCGTGACA                  | CGCTACTTTG | GTGGTATTAA | ACTAGGCGCT | GGAGGACTAA   | 6840 |
| PTC | CGTGCTTA         | CGCCGGCAGT                  | GTCGCCTTAG | CTGTCAAAGA | AATTGGTATT | ATTGAAATAA   | 6900 |
| AAC | GAACAGGC         | TGGCATTGCT                  | ATTCAAATGT | CTTATGCTCA | GTACCAAGAG | TACAGTAACT   | 6960 |
| TC  | CTTAAAGA         | ACATGGTCTC                  | ATGGAGCTGG | ATACAAACTT | TACAGATCAA | GTCGATACGA   | 7020 |
| TG  | ATTTATGT         | TGATAAAGAA                  | GAAAAAGAAA | CTATTAAAGC | TGCACTTGTG | GAGTTTTTTA · | 7080 |
| ATO | GGAAAAGT         | CACTTTAACT                  | GACCAAGGTT | TACGAGAGGT | TGAAGTTCCT | GTAAACTTAG   | 7140 |
| TG  | ГАААСААТ         | GAATAATACA                  | GCGTTTCGTT | GACATTCTCA | CAACTACTTT | AGCGAGCAAA   | 7200 |
| AT  | <b>AAAAAGA</b> G | GCGTACCAAA                  | ATATACTAGA | AAATGAAGCA | ATTCAAACGA | AACCTGATAT   | 7260 |
| CG  | PTTTCCTT         | CACACCTATT                  | TACTAGAATT | AGCTGAACGC | AATCACTTGA | AAATTAATGA   | 7320 |
| CT' | PTGATCTA         | <b>Т</b> GАТАТА <u>ТА</u> С | AAATGGTATG | GATAGCGTTA | TACTALACAT | АТСТТАТАСА   | 7380 |
| AA  | GAGGTATT         | CATATGTCTA                  | ТТТАТААСАА | CATTACTGAA | TTAATCGGTC | AAACACCGAT   | 7440 |
| TG' | TTAAACTT         | AACAACATCG                  | TGCCAGAAGG | TGCTGCAGAC | GTCTATATAA | AGCTTGAAGC   | 7500 |
| AT' | TTAATCCT         | GGTTCATCTG                  | TAAAAGACCG | TATTGCCCTT | AGCATGATTG | AAAAAGCTGA   | 7560 |
| AC. | AAGATGGT         | ATTCTGAAAC                  | CTGGTTCTAC | TATTGTTGAA | GCAACAAGTG | GAAACACCGG   | 7620 |
| 'AT | TTGGACTT         | TCATGGGTAG                  | GTGCTGCTAA | AGGGTATAAA | GTCGTCATCG | TTATGCCTGA   | 7680 |
| AA  | CTATGAGT         | GTAGAACGAC                  | GTAAAATTAT | CCAAGCTTAT | GGTGCTGAAC | TCGTCCTAAC   | 7740 |
| TC  | CTGGTAGC         | GAGGGAATGA                  | AAGGTGCTAT | TGCTAAGGCT | CAAGAAATCG | CTGCTGAACG   | 7800 |
| TG  | ATGGTTTC         | CTTCCTCTTC                  | AATTTGACAA | TCCAGCTAAT | CCAGAAGTAC | ACGAAAGAAC   | 7860 |
| AA  | CAGGAGCT         | GAGATACTAG                  | CTGCTTTCGG | TAAAGATGGA | TTAGATGCCT | TTGTTGCTGG   | 7920 |
| ΑG  | TAGGTACT         | GGTGGAACGA                  | TTTCTGGTGT | TTCTCATGCA | CTCAAATCAG | AAAATTCTAA   | 7980 |
| CA  | TTCAAGTT         | TTTGCAGTAG                  | AAGCAGATGA | ATCTGCTATT | CTATCTGGTG | AAAAACCTGG   | 8040 |
| тc  | CTCACAAA         | ATTCAAGGTA                  | TCTCAGCTGG | ልጥምዋልጥሞርርጥ | GATACACTTG | АТАСТАВАСС   | 8100 |

CTATGATGGT ATCGTTCGTG TAACATCAGA TGACGCTCTT GCACTCGGAC GTGAAATTGG 8160 TGGAAAAGAA GGCTTCCTTG TAGGGATTTC CTCAGCTGCA GCTATCTACG GAGCCATCGA 8220 GGTTGCCAAA AAATTAGGTA CAGGTAAAAA AGTCCTTGCC CTAGCACCAG ATAACGGTGA 8280 ACGTTATCTC TCTACAGCAC TTTATGAATT GTAACCGTCC AATAACGAAG TCTATTGAAA 8340 AATCTCCAGA CTAGAGAACT CACGGATAGT TCCTAATCTG GAGATTTCTT ATTTGCACTT 8400 TTCTTGTACA ACTTTAGTCC ATGGTAAATA GGCCTCTAAA ACCTCTTTGT TTACGAGAGT 8460 TTCCACGTTT GGAAGACATT CTAGAAGATA GGATAGATAT TTCTCACTAT TTATAATGGA 8520 TTGAAATAAG ATATGAACAA ATCGATTAGA ACATGATGGT AAAGCGTAAT CCCTTGTTTC 8580 TCAGCTTTCC CAGACAAAAA AGTCCAATAG TAAGTCAGCT GACTATCACT CTCTAGCACC 8640 CTATAAGAAG TTTCATCCGC ATGAAGTAAG GGCTGAGTCA ATAGTCTCTC TCGCAAGAGG 8700 TTATAAAGGG GCTCCAAATA GTATTGACTC GTCTTGATAT GCCAATTAGA GATTTCCTTA 8760 CGTGTGATTG GTAAACCCAT CCTAGCCCAA TCTTCTTCTT GGCGATAATT GGGTACCTTC 8820 AGATTAAACT TCTGATGGAT GGTGTGAGCG ATAATAGAAG CTGAGCCAAA GTTATGCGCT 8880 AAAGGGGCTT TAGGAATAGG AGCTTTCACA AGCTTATCCA GATGATTATC TTTTACTCGT 8940 TATGGACAAT GCTATATGGC ATAAATCAAG TACCTTAAAG ATTCCGACTA ATATTGGCTT 9000 TGCATTTATT CCTCCATACA CACCAGAGAT GAACCCCATT GAACAAGTGT GGAAAGAGAT 9060 TCGTAAACGT GGATTTAAGA ATAAAGCCTT TCGAACTTTG GAAGATGTCA TACAAGGACT 9120 GGAGAAGGAG GTGATAAAGT CCATCGTTAA TCGGAGACGG ACTAGAATGC TTTTTGAAAA 9180 CAGATGAGTA TAAAAAGAAA GTCCTCATTT CAATAGAAAT CACGACTTTC TGATGAATTT 9240 ATAGTAAAAT GAAATAAGAA CAGGATAGTC AAATCGATTT CTAACAATGT TTTAGAAGCA 9300 GAGGTGTACT ATTCTAGTTT AAATCCACTA TATTTGGGGA GTGATAGAAA AGCCCTTCAT 9360 CAGCCAATCT ACTTGTTCAG GTGCGAGAGC TTTGACATCC TTTTCTGTAC TGGACCAAGT 9420 CAGTTTTCCG TTCTCAAAGC GTTTATATAA TATCCAAAAT CCTTGACCAT CCCAGTAAAG 9480 AACTTTAAAG CGGTCTTTAC GTCCACCACA AAAGAGAAAG ACTTGATCGG AGAAAGGATC 9540 CAATTCAAAG TGGGTTTTAA CTACATAGGC TAATGAGTCT ATTCCCTGCC TCATATCTGT 9600 CTTGCCACAA ACAAGGTGAA CTTGACCTAA ATCACTTAGT TGAATTATCA TAGTACAATA 9660 CCTTTCCTCC GATAATTATT TTTTATCTGG TATACTGGAA GTTGGGGAAT TAGGATAGAT 9720 ACCTTGTTAT GACGCGCTTA CTATGAATTT GAAGTATAGT CTCCTAAATG CACTTAGCCC 9780 TTATTATAGG GCTTTTTGTT TTAATTATTC TAATCGAGTG AGACTGGGGA AAAAACAATT 9840 TCAGGAAAAA TCTAAGCCCT ATACAAAAAA GGAAGCAATT TGCTTCCTTT CTATTATTAG 9900

239

| TTATTCAAGG | CTGCTGCCAT | TGTAGCTGCA | ACTTCAGCTT | CGAAGTCGTT | TGCAGCTTTC | 9960  |
|------------|------------|------------|------------|------------|------------|-------|
| TCGATACCTT | CACCAACTTC | AAAGCGAGCA | ААСТСААСТА | CCGAAGCGTT | AACTGATTCA | 10020 |
| AGGTATGCTT | CAACTGTCTT | GCTGTCATCC | ATGATGTAAA | CTTGTGCAAG | AAGTGTGTAA | 10080 |
| GCTTGGTCAA | CTTTAGTGTT | ATCAAGCATG | AAGCGATCCA | TTTTACCTGG | AATAATTTTG | 10140 |
| TCCCAGATTT | TTTCTGGTTT | GCCTTCTGCA | GCCAATTCAG | CTTTGATGTC | AGCTTCAGCT | 10200 |
| TGAGCAATAA | CATCATCAGT | TAATTGAGCT | TTTGATCCAT | ACTTCAAGTG | TGGAAGAGCT | 10260 |
| GGTTTATTAA | CCATTGCACG | GCTTTCGTTG | TCTTGGTCGA | TAACGTGATT | CAATTGTGCC | 10320 |
| AACTCATCTT | TAACGAATTG | CTCATCCAAT | TCTTTGTAAG | AAAGAACTGT | TGGTTTCATC | 10380 |
| GCTGCGATGT | GCATTGACAA | TTGTTTAGCA | AGTGCTTCGT | CTCCACCTTC | AACAACTGAA | 10440 |
| ATAACACCGA | TACGTCCACC | GTTATGTTGG | TATGCTCCAA | AGTGTTGTGC | GTCTGTTTTT | 10500 |
| TCAATCAATG | CAAAGCGACG | GAATGAGATT | TTCTCTCCGA | TAGTTGCTGT | TGCAGATACG | 10560 |
| TATGCAGCTT | CAAGAGTTTC | ACCTGAAGGC | ATTATCAAAG | CAAGAGCTTC | TTCGTTGTTA | 10620 |
| GCAGGTTTTC | CTTCAGCAAT | GACTTTAGCT | GTAGTATTTA | CCAATTCAAC | GAATTGAGCG | 10680 |
| TTTTTTGCAA | CGAAGTCAGT | TTCAGCGTTT | ACTTCAATAA | CTGCTGCAAC | ATTACCGTTA | 10740 |
| ACATAAACAC | CAGTCAAACC | TTCTGCAGCA | ACACGGTCAG | CTTTCTTAGC | TGCCTTAGCC | 10800 |
| ATACCTTTTT | CACGAAGCAA | TTCAATCGCT | TTTTCGATGT | CACCGTCTGT | TTCTACAAGC | 10860 |
| GCTTTTTTAG | CGTCCATAAC | ACCGGCACCA | ĠĸŢŢŢŢŢĊĸĊ | GCAACTCTTT | TACAACTTTA | 10920 |
| GCTGTAATTT | CTGCCATTTT | AATTCTCCTA | TATTTTTTGA | AAATAGGAGA | GCGCGGCTAA | 10980 |
| GCCCCGCCTC | CGG        |            |            |            |            | 10993 |

# (2) INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 8411 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

| С | GACGGGGAG | GTTTGGCACC | TCGATGTCGG | CTCGTCGCAT | CCTGGGGCTG | TAGTCGGTCC | 60  |
|---|-----------|------------|------------|------------|------------|------------|-----|
| С | AAGGGTTGG | GCTGTTCGCC | CATTAAAGCG | GCACGCGAGC | TGGGTTCAGA | ACGTCGTGAG | 120 |
| A | CAGTTCGGT | CCCTATCCGT | CGCGGGCGTA | GGAAATTTGA | GAGGATCTGC | TCCTAGTACG | 180 |
| A | GAGGACCAG | AGTGGACTTA | CCGCTGGTGT | ACCAGTTGTC | TTGCCAAAGG | CATCGCTGGG | 240 |

|                   |            |            | 240        |            |            |      |
|-------------------|------------|------------|------------|------------|------------|------|
| <b>FAGCTATGTA</b> | GGGAAGGGAT | AAACGCTGAA | AGCATCTAAG | TGTGAAACCC | ACCTCAAGAT | 300  |
| GAGATTTCCC        | ATGATTATAT | ATCAGTAAGA | GCCCTGAGAG | ATGATCAGGT | AGATAGGTTA | 360  |
| GAAGTGGAAG        | TGTGGCGACA | CATGTAGCGG | ACTAATACTA | ATAGCTCGAG | GACTTATCCA | 420  |
| AAGTAACTGA        | GAATATGAAA | GCGAACGGTT | TTCTTAAATT | GAATAGATAT | TCAATTTTGA | 480  |
| GTAGGTATTA        | CTCAGAGTTA | AGTGACGATA | GCCTAGGAGA | TACACCTGTA | CCCATGCCGA | 540  |
| ACACAGAAGT        | TAAGCCCTAG | AACGCCGGAA | GTAGTTGGGG | GTTGCCCCCT | GTGAGATAGG | 600  |
| GAAGTCGCTT        | AGCTTTAATC | CGCCATAGCT | CAGTTGGTAG | TAGCGCATGA | CTGTTAATCA | 660  |
| TGATGTCGTA        | GGTTCGAGTC | CTACTGGCGG | AGTAATtGAT | AAAAGGGaAC | ACAGCTGTGT | 720  |
| TCCTCTTTTT        | GTATCAATTT | GTATCACCAA | GCATTTTCAT | AAGGAAGTCT | GTTATTTCTT | 780  |
| GAGAACTTTC        | TTTTTTCCA  | TGTGCAATCC | AAGTTTGGCA | GACACCAAAA | AGTGCATGAG | 840  |
| TTAGATAGAT        | GCTACTATAT | TCTAATTCAG | TGGTATTTAG | ATTCAGTTGC | ATAAATCGCT | 900  |
| TTTGTAAATC        | TGTACTAAGC | ATGATATGAA | GTTTATTTCG | TAAGAAATTT | TGGATTTCTT | 960  |
| TAGTCCCATT        | TTCAGAAAGA | AGGGCAGCCA | GAAGTGGTTC | TGACTCTAGA | TATTCAAAAA | 1020 |
| СТТСТААААТ        | AGCGTCTCTT | TTGTGATGAG | CATGTTTTTG | АААААТАТАТ | TCAAATGTAT | 1080 |
| GGAATAGCTT        | GCTTTGATAG | TGCTCAATCA | TATCATACTT | ATCCTTATAG | TGAGTATAGA | 1140 |
| AGCTGGAACG        | ACTAATTCCG | GCTTTTTCTA | CTAATTTGAC | AGTAGAAATT | TTATCAAATG | 1200 |
| GCTGTTCCAT        | CAGTAATTGT | ACCATAGCAT | TTTCAATAGT | TCGCTTTGTT | TTTAAGCGTT | 1260 |
| TGTTACTTTC        | TTGCATATTT | CCTCCTTGTA | AACAAATTAG | ACTATATGTC | TAAAAATAGA | 1320 |
| TTTTTTATCT        | TGTAATTTAG | ATTTTTTAAT | GTATAATCTA | TTATATCAAA | ATTTTAGACA | 1380 |
| ATATGTTTAA        | AAAAGGAGAA | ACTAAGTTTA | AAGAATGGAA | AGCAATTTAA | AAAAAACCAA | 1440 |
| CCTTTATTAT        | TGTCATGATC | GGGATTTCTC | TTATTCCAGA | TCTGTACAAT | ATCATATTTT | 1500 |
| TGTCATCAAT        | GTGGGATCCA | TATGGGCAAT | TGTCTGACTT | ACCTGTGGCA | GTTGTAAATA | 1560 |
| atgataaaga        | GGCTTCCTAT | AATGGTAATA | CTATGGCAAT | AGGAAAAGAC | ATGGTGTCCA | 1620 |
| ATTTAAAAGA        | AAATAAAACC | TTGGATTTTC | ATTTTGTAGA | TGAAGAGGAA | GGAAAGAAGG | 1680 |
| Gattggaaga        | TGGCGATTAC | TATATGGTAG | TGACTTTACC | AAGTGATTTA | TCTGAAAAA  | 1740 |
| CAACTACATT        | ATCCAATATT | CAATCGACAG | CAGCTTATCA | ATCATTGACA | AGTGAGCAAC | 1800 |
| AAACTGAGAT        | AAGTGATTCT | GTATCTCAAA | ATTCAACTGA | TAGTATTCAA | TCGGCTCAGT | 1860 |
| CAATTGTAGC        | TTTAGTACAA | GATTTACAGG | GAAGTTTAGA | AAACTTACAA | AATCAATCTT | 1920 |
| CTAATCTTTC        | GACTTTAAAA | AATCAATCTA | ATCAAGTATC | ACCTATTACT | TCTACTTCTT | 1980 |
| TGATAGGATT        | GTCAAGTGGA | TTAACAGAGA | TACAAGGAGA | TGTTACTAGC | AAATTAGTTC | 2040 |

| CTGCCAGTC | A GTCGATTGCA  | TCAGGTGTAA | ACGCATATAC | TACAGGTGTT | GATAAAGTTT | 2100 |
|-----------|---------------|------------|------------|------------|------------|------|
| CTCAGGGCC | C AAGTCAACTA  | AGTGAAAAAA | ATGCCACCTT | GACAGGTAGT | TTGGATAAAC | 2160 |
| TAGTTTCAG | G CTCAAACACC  | TTGACACAAA | AATCTTCTAG | ATTGACAGCA | GGAGTTGGTT | 2220 |
| AATTACAAT | 'C AGGATCTGGG | CAATTAGCAG | ACAAATCCAG | TCAGTTACTT | TCAGGTGCTT | 2280 |
| CTCCATTAG | A GAATAGAGCT  | AATAAATTGG | CAGATGGATC | TGGGAAACTA | GCAGAAGGTG | 2340 |
| GAACAAAGT | T AACTTCTGGA  | TTGGAAGATT | TACAGACAGG | ACTTGCTTCT | TTAGGACAAG | 2400 |
| GACTAGGTA | A TGCTAGTGAT  | СААСТСАААТ | CAGTATCAAC | AGAATCTAAA | AATGCAGAGA | 2460 |
| TTTTGTCAA | A TCCACTCAAT  | CTTTCAAAAA | CAGACAATGA | TCAAGTTCCT | GTAAATGGAA | 2520 |
| TCGCAATAG | C TCCTTATATG  | ATATCAGTTG | CTCTTTTTT  | GCAGCAATAT | CAACAAATAT | 2580 |
| GATATTTGC | G AAATTGCCTT  | CAGGACGTCA | TCCAGAGAGC | CGTTGGGCTT | GGTTGAAATC | 2640 |
| TTGAGCTGA | A ATAAATGGTA  | TTATAGCTGT | TTTGGCAGGA | ATTTTGGTAT | ATGGAGGAGT | 2700 |
| TCAGCTTAT | T GGTTTAACTG  | CTAATCATGA | GATGAGAATA | TTTATTCTCA | TCATCCTAAC | 2760 |
| AAGTTTAGT | А ТТСАТСТСТА  | TGGTGACCAC | TTTAGCAACG | TGGAATAGCC | GTATAGGAGC | 2820 |
| TTTTTTCTC | A CTTATTTTGC  | TTTTACTACA | GTTAGCATCA | AGTGCAGGTA | CTTATCCACT | 2880 |
| TGCTTTGAC | A AATGATTTCT  | TTAGATCTAT | TAATCCCTGG | TTACCAATGA | GCTATTCAGT | 2940 |
| TTCGGGATT | A CGACAAACAA  | TCTCTATCAA | CAAGTCATTT | TCCTAGCTGT | CATACTAGTT | 3000 |
| CTATTTACT | A GTTTAGGTAT  | GCTAGCCTAT | CAACATAAGA | AAATGGAAGA | AGATTAAAAA | 3060 |
| AATCGACCG | A TTAACTGGTC  | GATTTTTTAT | GCCTTAGATG | ACTTTCGTCT | GTGATTATAG | 3120 |
| ATTCCAAAT | A GTAAGAGAGA  | AGTAAAGGAA | CAGATTGCTC | CAGTAATAAA | ACCATTGGGA | 3180 |
| ATGAAGGAA | A GTGTAATAGT  | TCCTTTCCCC | TTGGGAATGT | CAACTTTCAT | AAATCCAGTT | 3240 |
| TGAGCTTGT | т таатттстат  | TTTCTTACCA | TCTTGGTAGG | CAGACCAACC | TTTGTCATAA | 3300 |
| GGAATGGTG | A AGAAAATAGA  | TGTATCTTGT | TGGACATCAT | ATGTAGCAAA | AACCTTGTTT | 3360 |
| TTAGAAGTT | G ATACTGTGAC  | AGGTTGTTCT | TTAATTTTTT | GAATTGCCTC | GGTGAAAGTT | 3420 |
| TTGGTATCT | A AACGATAGAA  | GGTAGGAGAT | TCAAATGATA | CTTGTGAATT | TCCAGGGAAA | 3480 |
| CTAACATTG | A TATTGAAAGT  | TTTTTTCTCT | TTAGTATATC | CTAGATTAAA | GAAGGAGAAG | 3540 |
| ACATTATCA | G TTGTAAAAGT  | CTTTTTTCA  | CCATTTACAA | GGATGTCAAC | CTTCTTTTGT | 3600 |
| TTATCGTTA | G AAAAGTGAAG  | GTTTATGAAA | GAGAGATAAA | CTTGGCTGTT | TTCTGGAACT | 3660 |
| TCAATTTGA | T ACTGGATTGC  | TGCATCTTCA | TTTGAAGAAC | TTGTGACACT | AATCAAATCA | 3720 |
| TTAGTATTT | T CTATTTTTC   | TGTTTTTCA. | TAAGGTATTG | GAGAAAAATA | ATCAAAATTG | 3780 |

|            |            |            | 242        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| ACGTTAGCAA | GTTGATTTAA | AAATGAGGCC | TGATTATCCA | AGGTATGTTC | ATTGAACTTG | 3840 |
| ACATCATTGT | AAACAGATTG | ACTCGCAACT | GCAATCGGAA | GAGAGTATTG | ATTTTCATAT | 3900 |
| AGGGTAAGAT | TATCTTTTTG | ATAGATATCT | TTAAAGCCAT | ACTTATCAAT | AGGACTGTCT | 3960 |
| GAGATATTGT | ACTGGATACC | AAATAAACTA | TCAGCCAAAA | TACTATTATT | TGCATATCGG | 4020 |
| AGATTGAGAT | TAGTCCCAGA | GGATTTAAAA | CCAAGTTTAT | CTAAAGTAGA | GCTTGATGAA | 4080 |
| CGATTTCGAA | CAGATGAAAA | TTGAGAGATT | CCATTGTAGT | TGAATTTCAT | ACTGTCATTT | 4140 |
| CCTGTCTGAG | TTTGTAGTTT | TTCAGTACGA | GTAAATTGAT | TTCCAATATA | TGTTGAGAAA | 4200 |
| GATTCCATAG | CTGGGATATC | TCGACTATAA | GCACTTCGAG | AAGCAAATCC | CCATTCCTTA | 4260 |
| GCAATTCCGT | CCATTTGAGA | TGAAGCATTT | AAACTCATTT | CAACCAGTAT | AAATAAAGAG | 4320 |
| ATTAGAATGG | CAAATAGATT | CACAGATATA | AACTTTTTGA | TAACTGCAAG | GAGTAAAAGA | 4380 |
| GAATAGACAA | CCAAAAATTC | AAGAGTAAGC | AGAATATTCA | AATCTGTTAA | AAAAGAATAA | 4440 |
| TGCGATTTTA | GATAGATGGT | AGCTAAAAAT | CCTGCTACTA | CAAGAAAAAG | CGAAACTAAA | 4500 |
| AAATTCCAGA | CTTTAAGTTC | TTTCAGACGC | TTTAAGACTT | CTGCTGCTGT | GTAAATTAAC | 4560 |
| AAGGTAGAGA | AAATCCAAGC | ATAGCGATGT | AAAAACATGT | TTGGAGTATG | CATGCCTTGC | 4620 |
| CAAAATAAGT | CAAGAGCTTC | TATGTAAAAG | CTTGCAATTA | GAAATGCAAA | GAATATTACA | 4680 |
| TATATGAGTT | TCACGTGAAA | CTTAATAGAT | TTCAGCGTAA | ТААААТАААА | GGTCAAAATA | 4740 |
| AAGGGAAATA | GTCCAACAAA | AATCATTGGG | ATGGCCCCAT | ACTTTGTTGT | GTCAAAGGAA | 4800 |
| CCAATGAATT | GCTTAGCAAA | GAGATCAAGA | TACCAGCTAC | TTTCAGTTTG | AAACTTTGTA | 4860 |
| ACTTCAGTCA | ATTTTTCCCC | ATGTGTCTGT | AAATCAAATA | GAGTGGGAAG | AGTCATAATC | 4920 |
| AAACTAGCCA | TACCAGCTAA | AAAGGAGATA | ACTATGAAAT | CAAGAACAGA | TGATTTTCGA | 4980 |
| GTCTTAAAGT | CCCACGAAAT | TTGACAGAGA | TACCAGAAAA | TAAGAAACAA | TACTGTCATA | 5040 |
| TATCCAAAAT | AATAATTTTG | AATAAATAAG | ATTGACAGAC | TTGTAAAGTA | CAATAGGAGT | 5100 |
| TTCTTTTCAG | TTATCAGTAG | ATGTAAACCA | GTTATAATTA | AAGGAATCAA | GATAAAAACA | 5160 |
| TCTAGCCAGG | TTTTTATCTC | TAATTGACTG | ACAGTGAAAC | TCATCAGAGC | ATAGGAAGTA | 5220 |
| GATAAGGCTA | GTTTTAAAAT | CTGAGGGATA | GATTGAAACA | ATTTATTCAA | ACTAAAAAAG | 5280 |
| GTTGACAGAC | CAATCAATCC | AAATTTTAAG | AGAGTTGTCA | GATAGATAGC | ATCTGGCATA | 5340 |
| TTCGTTAGAT | CAAAAAAGTA | AACCAGAGGC | GCGAGAAAAC | TACCCAAGTA | ATAACTAGAT | 5400 |
| AGGGCATAGA | AGTTTAGCCC | TAGACCACTT | GTAAAGGTGT | AAAACAGATT | ACTATTTCCA | 5460 |
| TGTAGGATAT | TTCGTAAGGC | TACATCAAAA | ATAACGTATT | GATGAAAGCC | ATCTCCTAAT | 5520 |
| AGAGGAGAGT | TGTCGCTATT | CCAGTAGATA | CTTTGAGATA | GATATACTCC | AGACATAATC | 5580 |
|            |            |            |            |            |            |      |

| ACTACAGGAA                | TGATGAAAGA | AATAAAATAG | GTTCGATATG | ТТТТААААА  | TGATTTCATG | 5640 |
|---------------------------|------------|------------|------------|------------|------------|------|
| TTACCTCGTA                | GAATGATAGA | AAACTCAGTT | GGTTAACCCA | ACTGAGTTTT | GAAGTTTTAT | 5700 |
| TTAGTCTTTC                | CAAAGTTCTT | TAACTTTTGC | TTGTACTTCT | GCATTTTCTA | GGAATTCATC | 5760 |
| GTAGGTTTCA                | TCGATACGGT | CAATGACGCC | ATTTTTAGAT | AAGACAATGA | TATGGTTAGC | 5820 |
| CAAAGTTTGA                | ATAAATTCGT | GGTCATGGCT | GGCAAAGATG | ATTGATTCTT | TAAAGTTTTT | 5880 |
| CAATCCATCA                | TTCAAGCTTG | AGATAGATTC | CAAGTCCAAG | TGATTTGTTG | GATCATCAAG | 5940 |
| TACAAGGACA                | TTTGATTTTA | AGAGCATGAG | TTTTGAAAGC | ATGACACGAA | CTTTTTCTCC | 6000 |
| CCCTGACAAG                | ACATTTACAG | GTTTGTTAAC | TTCATCTCCA | GAGAAGAGCA | TACGGCCGAG | 6060 |
| GAAGCCACGT                | AGGAAAGTAT | TGTCATCTTC | TTCTTTACTT | GCGAATTGAC | GCAACCAGTC | 6120 |
| AAGAATTGAT                | TCTCCTCCTG | CAAAATCAGC | TGAGTTATCT | TTTGGTAGGT | AAGATTGACT | 6180 |
| AGTTGTAACT                | CCCCACTTGA | CAGTTCCTTC | ATAGTCAATA | TCTCCCATGA | TTGCACGAAT | 6240 |
| TAATGCAGTC                | GTTTGAATAT | CATTTTGTCC | AATAAGTGCT | GTCTTATCAT | CTGGACGCAA | 6300 |
| GATGAAACTA                | ATATTATCCA | AGATAGTTTC | ACCATCAATC | TTTACAGTTA | AATTTTCTAC | 6360 |
| TGTCAAGAGA                | TCATTACCAA | TCTCACGTTC | CGCTTTAAAG | TTGATAAATG | GATATTTACG | 6420 |
| ACTAGATGGC                | ACAATCTCTT | CTAGCTCAAT | CTTATCAAGC | ATTCTCTTAC | GTGATGTTGC | 6480 |
| CTGCCTTGAC                | TTAGAAGCAT | TGGCAGAGAA | ACGAGCAACA | AATTCTTGCA | ATTGTTTAAT | 6540 |
| <u>մոմոմոմուՇմոմո</u> Cմո | GCTTTAGCAT | TACGGTCTGC | TAGCAATTTA | GCAGCAAGCT | CAGAAGATTC | 6600 |
| CTTCCAGAAG                | TCGTAGTTTC | CGACATAGAG | TTTGATTTTT | CCAAAGTCAA | GGTCGGCCAT | 6660 |
| GTGAGTACAA                | ACTTTGTTTA | AGAAGTGACG | GTCGTGGGAT | ACTACGATAA | CTGTGTTATC | 6720 |
| AAAGTCAATC                | AAGAAGTCTT | CTAACCAAGT | AATCGATTGG | ATATCCAAAC | CGTTAGTAGG | 6780 |
| CTCGTCCAAG                | AGAAGAACAT | CTGGTTTACC | AAAAAGTGCT | TTGGCGAGGA | GAACCTTTAC | 6840 |
| TTTTTCACCG                | TTGGCCAATT | CGCTCATGTT | TTGGTAGTGT | AATTCTTCTG | GAATGTTTAG | 6900 |
| GTTTTGAAGT                | AGTTGAGAGG | CTTCACTCTC | TGCTTCCCAA | CCTCCAAGTT | CGGCAAACTC | 6960 |
| TCCTTCGAGT                | TCGGCAGCAC | GAACCCCGTC | CTCGTCTGAG | AAATCTTCCT | TCATGTAGAT | 7020 |
| AGCATCTTTC                | TCTTTCATGA | TGCTATAAAG | TTTTTCATTT | CCCATGATAA | CGACATCAAT | 7080 |
| GGCACGTTCA                | TCTTCGTAGT | CAAAGTGATT | TTGACGAAGA | ACAGAGAGAC | GTTCATCTGG | 7140 |
| ACCAAGAGAG                | ATGTGACCAG | TAGTAGGTTC | GATATCTCCA | GCTAAAATTT | TTAAAAAGGT | 7200 |
| TGATTTTCCG                | GCACCATTAG | CACCGATTAA | TCCGTAAGTA | TTTCCTTCTG | TAAATTTGAT | 7260 |
| ATTGACATCA                | TCAAAAAGTT | TGCGATCACT | AAAACGTAGT | GAAACATCAG | ATACTGTAAG | 7320 |

| CAATGTTTTT | CTCCTATATG   | TGTAATATAT   | 244<br>TTATTCTACT | AGAAAATACA | GAAATATTCA | 7380 |
|------------|--------------|--------------|-------------------|------------|------------|------|
| AATTTTTAAT | TGTCAATTTT   | GTGTAAATTA   | TATTTACAGT        | ATCCTTTACA | CAAATCTGTA | 7440 |
| AAAAGCAAGG | CTGATTTATT   | TTGATAAATT   | ACGGTTATTT        | CATTAAAAAA | ATGCTATAAT | 7500 |
| TGAAAGGACT | ATATCGAAGG   | AGAACAAAAT   | GACTAAACCC        | ATTATTTTAA | CAGGAGACCG | 7560 |
| TCCAACAGGA | AAATTGCATA   | TTGGACATTA   | TGTTGGAAGT        | CTCAAAAATC | GAGTATTATT | 7620 |
| ACAGGAAGAG | GATAAGTATG   | ATATGTTTGT   | GTTCTTGGCT        | GACCAACAAG | CCTTGACAGA | 7680 |
| TCATGCCAAA | GATCCTCAAA   | CCATTGTAGA   | GTCTATCGGA        | AATGTGGCTT | TGGATTATCT | 7740 |
| TGCAGTTGGA | TTGGATCCAA   | ATAAGTCAAC   | TATTTTTATT        | CAAAGCCAGA | TTCCAGAGTT | 7800 |
| GGCTGAGTTG | TCTATGTATT   | ATATGAATCT   | AGTTTCGTTA        | GCACGTTTGG | AGCGAAATCC | 7860 |
| AACAGTCAAG | ACAGAGATTT   | CTCAGAAAGG   | ATTTGGAGAA        | AGCATTCCGA | CAGGATTCTT | 7920 |
| GGTCTATCCA | ATCGCTCAAG   | CAGCTGATAT   | CACAGCTTTC        | AAGGCTAATT | ATGTTCCTGT | 7980 |
| TGGGACAGAT | CAGAAACCAA   | TGATTGAGCA   | AACTCGTGAA        | ATTGTTCGTT | CTTTTAACAA | 8040 |
| TGCATATAAC | TGTGATGTCT   | TGGTAGAGCC   | GGAAGGTATT        | TATCCAGAAA | ATGAGAGAGC | 8100 |
| AGGGCGTTTG | CCTGGTTTAG   | ATGGAAATGC   | TAAAATGTCT        | AAATCACTAA | ATAATGGTAT | 8160 |
| TTATTTAGCT | GATGATGCGG   | ATACTTTGCG   | TAAAAAAGTA        | ATGAGTATGT | ATACAGATCC | 8220 |
| AGATCATATC | CGCGTTGAGG   | ATCCAGGTAA   | GATTGAGGGA        | AATATGGTTT | TCCATTATCT | 8280 |
| AGATGTTTTT | GGTCGTCCAG   | AAGATGCTCA   | AGAAATTGCT        | GATATGAAAG | AACGTTATCA | 8340 |
| ĀŪĢĀGGTGGT | CTTGGTGATG   | TGAAGACCAA   | GCGTTATCTA        | CTTGAAATAT | TAGAACGTGA | 8400 |
| ACTGGGTCCG | G            |              |                   |            | •          | 8411 |
| (2) INFORM | ATION FOR SE | EQ ID NO: 17 | <b>'</b> :        |            |            |      |
| (i) S      | EQUENCE CHAP | CACTERISTICS | S:                |            |            |      |

- - (A) LENGTH: 9064 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

| TGCCGTACTC | AAGTACAGCC | TGCGCTAAGT | TTCCTAGTTT | GCTCTTTGAT | TTTCATTGAG | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| TATTAGTAAC | CAAAATCCGA | CCACATAGCC | AGCCCCTATG | AATATAGCCA | TTAAAGCTAG | 120 |
| CATGGAATTT | AGGAAATTAA | AAACCACCGC | AGATACAAAG | GTTAGCACAA | AAACATTAAA | 180 |
| AGCAATGGTG | TCAGAAGCCA | AGACTAGAAT | ATAGGGTGTC | AACCGATCTA | AAGTTTTGGA | 240 |
| ATCTAGGAAA | AATAAGTGTT | TATACATGAT | GACCTCCTCT | ATGGCTGAAA | AGCAAGCCTT | 300 |

| TTGTT | TTTTT  | ACCCCAAGAC | CCTATGTAGA | AAAGTGAGCA | AAAACGGGAA | GGTCGCTACA | 360  |
|-------|--------|------------|------------|------------|------------|------------|------|
| TTATE | ATTGA  | TCACATGCAC | CGCATAGGAT | GGATAAATGC | TCTTGGTATA | GCGGGTCAAA | 420  |
| CAGO  | AAAGA  | TGATTCCAAC | TGTTGCAAAG | ACGAAGATAT | CTAACAGACT | AGGCAGGCTT | 480  |
| AAAA  | ATGAG  | GGAGAGCAAA | TAAAATAGAA | GGAAGAAGCA | AATCAAGACC | AAATCGCGAA | 540  |
| rgctt | 'AAAGA | AAGCATGTTG | CAGTAATCCT | СТАТАЛАТСА | ATTCTTCCAT | CAGTGGAACC | 600  |
| AGAAA | GAACA  | GGGCTATATA | AATACCTAGC | TCTGCAAAGT | TAGTCCCACT | ATAACCAATC | 660  |
| ATAC  | AGCCC  | AACCTTCCGC | AGTTGACTGA | ACATGTTTAG | CTGTCTGAAC | GTTAAAAGAG | 720  |
| АТСТС | GAACA  | CTAGCACTAA | TACTGTCAAA | ATCGAATACC | AAAGCCATTT | TTTTCTTGGA | 780  |
| ATGCG | GAAGA  | GATAACCATG | GCCTGTCTTA | ACAAGAACCA | CAATCATGAC | тссаатаааа | 840  |
| AGTAA | ACTCA  | AGATATTTTG | AATCCAGAAT | AAATTGCCTA | TCTGAGAAGA | AAATTGCCAA | 900  |
| ragtt | TTGGA  | CGATAAGCGT | CAGCTGAGAA | AGACTAAATA | CGAAAAATAA | GTAAGAGAAG | 960  |
| ACTGO | ACTTA  | TTTTGAATAG | AAGTTGATAC | TTTTTCATAG | AAATCCTCCC | TACTATGACC | 1020 |
| CACC  | TTGTC  | AGGCTCTACT | GCTGTAAGAT | TAAGAAGACA | GTTTGTTTTT | TTTAAGGCTA | 1080 |
| ACCTG | ACTAC  | TAGATAATAG | ATACATTAAG | GCATTAAAGA | CAATGAAAAT | ATGTCCATAG | 1140 |
| AATAA | AATCA  | ACCTCGCATC | CAAACCAAGA | TAAAGTTTGA | TTATCAAAAA | GATGAGCAAA | 1200 |
| AGAAT | TTGAA  | ACCATAAGGT | TTTTCCAAAA | ATAAATTTAA | AGCGATTTCG | AATATCTACT | 1260 |
| rccti | GATTT  | TTACCGCCAC | CCCTTTATTA | GCAAGAAGGA | AAACTCCTGC | TTCAAACAAA | 1320 |
| CCACT | GTAAA  | GAACAAGCCA | CCCAATAGAT | ACGATAGAGA | TTTGTAAAAA | TGTCCCTAAA | 1380 |
| AGAAT | ATCCA  | ACACACTACT | CAAGAAAATA | АСААААААТА | ATCTGTATTT | CATATTAAAT | 1440 |
| ACCTO | CATTC  | ATTTATTTCA | CTAACAATTT | AATAGAGCCT | TCTACTCAAA | TATCCTGTCA | 1500 |
| GAAA  | AGGATA | GAAAGCTACT | TTTTATAATA | CTTCAAGCCC | CACATGAGCA | GAAGCGTGAT | 1560 |
| AAACA | AGCAG  | AGAATACACC | TATATAAGCG | ATTAGTTGTT | GATAGAATTC | TGTTTCTGAA | 1620 |
| ATACO | TCTAT  | ACAAACAAAT | GACAAACATA | AAATCTGCCA | AGCCGATAAA | CATAAGTTGA | 1680 |
| TTGGT | TCTAG  | GACTAACCAA | ATCATCATTT | ACTTATATTT | AAGAGTATCT | CTTTTATTTT | 1740 |
| AATGT | PATGTT | AGCACTGAAA | AGCAAGACAG | GCCAATAATA | TTTAAAATGA | ACAGTAACGG | 1800 |
| GGTT  | AGTCT. | СТАААААААТ | TATCTACTGA | CACTACAAGA | AATACTATAC | ATATTATAGT | 1860 |
| CGAA  | ACTATC | TTTTTCTTAT | CCATAATTAT | TTACTCCTTT | CCTAACAAAT | CCAGCTTATC | 1920 |
| AATC  | AAGAGC | GATTTTTAAC | ATAATGTAGC | AGCACCCGTT | GCAACTTTGA | CAAGTTTAGT | 1980 |
| ATATO | CATTGT | ТТТТТААААТ | TTTTCATCCA | AATCTTGAAT | TGTCATCGAA | ACATCTTGAA | 2040 |

|            |            |            | 246        |                    |            |      |
|------------|------------|------------|------------|--------------------|------------|------|
| PTGTTAAAAA | ATTTAAAAAG | TAAGCATTAA | AAACATACTT | TCCTCTTTAT         | ATTGTATTGA | 210  |
| TACCAACTTG | TTTGTAGACT | TTTCATCCTG | CTATCACATA | TCATTTTGAC         | AGGCGAAACA | 216  |
| ATATTAAAGA | AACTCCCCTG | TAAATTAAGC | TAGCAAATAC | AGGGGAGAAA         | TTTATTTTT  | 222  |
| AGAGAGTACT | ATCCGTATCC | TTTTTGGAAG | ATTTTGAAAA | ТАТТТТТСТА         | ATTAAGTCAT | 228  |
| CCATATAAGG | ACCAAATATA | ССААСТАСТА | AACCAATAAT | AAAACTTTTA         | AAATCCATAA | 234  |
| TTACCACCAA | CATATTGCTG | CATAGGCTAC | ACCTCCAAGT | ATAGCTCCAC         | CTGCAGCACC | 240  |
| AGTTACACCT | ATTCCTATAG | CAAATGGTCC | CAATAGAAAT | GTCAAACCGT         | TGTTGCACAC | 246  |
| CCATCAATTG | CGCCATATGC | AACCCCTGCT | GCACAACTAA | TTTTTCTTCC         | CCAATCAATA | 252  |
| PCTCCACCTT | CAACGCAAGC | AAGCATTTCA | TTATCCATAA | CTGCAAATTG         | TGACATCATT | 258  |
| PTTGTATCCA | TATAGTGTAT | CACTTTTCAG | TTACGGAACA | AGTTTAATAT         | AAAAATTATC | 264  |
| АААААААСАТ | AGGCAATAAA | GAGAAAAATT | AATTTATCAT | AGATTAGAAA         | TAATATGACA | 270  |
| AAACAATTCA | ATGATGTTAA | TTCAATAGTC | TTTTGTTTT  | TATCGGAGAT         | ACTTATGGAT | 276  |
| АGАТАААТАА | GATAGGTTTG | AAAAGCGAAG | AGAATAATAA | AGAATATAGC         | СТТСАТАААА | 282  |
| TTAGCTTTC  | ATTTTTATGA | TGTAGCGGTA | TAGGCTAAAT | ATCCACAAAC         | CACTGCTCCT | 288  |
| CCAATTCCTC | CTATTGCAGC | GCCCCATGGT | CCTAGAAGTC | TCCCATATTT         | CACTCCACCC | 294  |
| GCTGCACAAC | CTAAAGCAGC | AACTACAGCT | GCTCCTCCGG | AATTACCTCC         | ATAAACCTCA | 3000 |
| CTCAGCATTG | TTTCATTTAT | АТТАСААТАА | GTATTCATAC | AAGTCTCCTT         | TAAAAAT    | 306  |
| CCACCCGTTG | CCCCTGTTAC | TCCTGCCCAA | AGATCCACAC | CAAATTTAGC         | TCCTATGTAT | 312  |
| CCACATGCTC | CCATAAATGG | TGCTCCAACA | CCACTCGCAG | CACAAATAGC         | TGTCCCTAGC | 3180 |
| CCCCAGCCAC | CAAAAGCAGC | ACCACCACCT | TCTAAGACAT | TAGTTTGCCA         | ATTATTCTTG | 3240 |
| CCTCCTTCAA | TACTAGATAA | CATAGTTATA | TCCATTTCAT | GAAATTGTTC         | CATAATTTTT | 3300 |
| STATCCATGA | CAAATACTCT | TTTTTATTT  | TAATTTTTGT | CTTGTTGTAA         | CTTTGACAAG | 3360 |
| TTAGTATAT  | CATCGTTTTT | TTTTTAAAAT | CATCCAGATT | TTGAATAGTC         | ATCGAAACGT | 3420 |
| CTTGAATTGC | AAAAATTACA | TTAGACTTCC | TGCAAAACTA | GAATCCTAGT         | TCATGATTGA | 3480 |
| PAATACCAGC | ACTCAAATTC | ATTCGTAATC | CGAAGCGTTT | ACGATGACTT         | CGATAGGTTG | 3540 |
| rtgaaaacat | TTTAAACGTT | TTTACTTTGG | CAAAGATGTT | CTCAACCTTG         | СТТСТСТССТ | 3600 |
| PAGATAGCGC | ATGGTTACAG | GCTTTATCTT | CAACTGTTAG | CGGTTTGAGT         | TTGCTGGATT | 3660 |
| PACGTGAAGT | TTGTGCTTGA | GGATATATCT | TCATGAGCCC | TTGATAACCA         | CTGTCAGCCA | 3720 |
| AGATTTTACC | AGCTTGTCCG | ATATTTCTGC | GACTCATTTT | GAACAACTTC         | ATATCATGAC | 3780 |
| VATAGTTCAC | AGTGATATCC | AAAGAAACAA | ጥጥርጥርርርጥጥር | <b>ል</b> ሮሞጥርጥርልርል | ልጥሮርርጥጥሮልር | 3040 |

| CTTCATAGC  | GTGAAATTTC | TTTTTACCAG | AATCATTCGC | TAATTCTTTT | TTTAGGGCGA | 3900 |
|------------|------------|------------|------------|------------|------------|------|
| TGATTTTTA  | CTTCCGTCGC | ATCAATCATT | ACCGTGTCCT | CAGAACTGAG | AGGAGTTCTT | 3960 |
| SAAATCGTAA | CACCACTTTG | AACAAGAGTT | ACTTCAACCC | ATTGGCTCCG | ACGGAGTAAG | 4020 |
| TGCTTTCGT  | GAACACCAAA | ATCAGCCGCA | ATTTCTTCAT | AAGTGCGGTA | TTCTCGCACA | 4080 |
| ATTGAAGAG  | TGGCCATAAG | AAGGTCTTCT | AGGCTTAATT | TAGGTTTTCG | TCCACCTTTT | 4140 |
| CCTCTTTAA  | GTTGATAAGC | TGTTTTTAAT | ACAGCTAGCA | ТСТСТТСААА | AGTCGTGCGC | 4200 |
| GAACACCAA  | CAAGACGCTT | AAATCGTGCA | TCAGTTAGTT | GTTTACTTGC | TTCATAATTC | 4260 |
| TAGAACTAT  | AGTAAAATGA | AATAAGAACA | GGATAAATCG | ATCAGGACAG | TCAAATCGAT | 4320 |
| тстаасаат  | GTTTTAGAAG | TAGAGGCGTA | CTATTCTAGT | TTCAATCTAC | TATACTATAC | 4380 |
| ATATTTTGT  | TTCGCAGGGA | ATCTATTATA | AAAGGGTAAG | TATTGCAAAA | ACACTTACCC | 4440 |
| TTTCTTTTA  | TACTTCATTA | AGCTCTACTT | TTTATAATAC | TTCAAGCCCC | ACATGAGCAG | 4500 |
| AGCATGATG  | ATTAAGCAGA | GAACAGCGCC | AATATAAGCG | ATTATTTGTT | GGTAGGATTC | 4560 |
| CCTGCTGTG  | ATACCTCTAT | ACAAACAAAT | AATAGACATA | AAACCTGTCA | AGCCGATGAA | 4620 |
| ATAAGTTGA  | TTGGTTCTAG | GACTAACCAA | ATCATCATCT | TCAAACTCTC | TTATCCTCAT | 4680 |
| TCCCTAGTG  | AGATAAACAG | TAACCAAAAT | AGAAGCCAAG | ттаатааста | CTAAAAGAAA | 4740 |
| TGGAAAACT  | ACGGAAAAAT | TTAAAAACTG | ACGAGATAGA | AATAGATAAG | TAGAAACAAG | 4800 |
| CAAGGGCAAC | TGACCTAAGA | ACAATCTCGC | AAGGAAGATG | TTCCGTTTTT | TAGCAAGAAA | 1860 |
| GTTTTCATT  | TCTTTTCTCC | TTTCTTTTTA | TTGATAGCAA | AATAGATCAT | AACTGCAATC | 4920 |
| CATAGGCTA  | TGGTATAAAA | TAGCTGATAC | CAAGCACTCT | CCCTAAGCGG | ATATAGAAAG | 4980 |
| TGGACATGA  | TTAGATACAG | AACGAAAATA | ATCAGTATTT | TTTTCTTCAT | AAGATTTCCT | 5040 |
| CTAAATGTG  | CGATTTATCT | TAGTTGAGCA | AGAACATTTA | CACTGCTAGT | ATAGCACTTA | 5100 |
| TTTGACCTT  | GGATCACTCA | AATCATAAAT | GGTCATCAAA | ACCTCTTGAA | TTGTAAAAAT | 5160 |
| 'AAAAAAGCA | AGCATGAAAA | ACATACTTTC | CTCTTTATAT | TGTATTGATA | CCAACTTGTT | 5220 |
| GTAGACTTT  | TCATCCTGCT | ATCACATATC | ATTTTGACAG | GCGAAACAAT | ATTAAAGAAA | 5280 |
| TCCCCTGTA  | AATTAAGCTA | GCAAATACAG | GGGAGAAATT | TATTTTTAG  | AGAGTACTAT | 5340 |
| CGTATCCTT  | TTTGGAAGAT | TTTGAAAATA | TTTTTCTAAT | TAAGTCATCC | ATATAAGGAC | 5400 |
| CAAATATACC | AACTACTAAA | ССААТААТАА | AACTTTTAAA | ATCCATAATT | ACCACCAACA | 5460 |
| GTTGCTGCA  | TAGGCTACAC | CTCCAAGTAT | AGCTCCACCC | GCAGCACCAG | TTGCTGCACC | 5520 |
| TGCCATGTT  | CCTGTTTTAA | TGCCTAGTTG | AAGACCTCTT | GCTGCTCCTC | CTCCAACACC | 5580 |

|            |            |            | 248        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| TGCTTTGGCA | AAATCTCCCC | AATTGCATCC | GCCACCTTCA | ACGCAAGCAA | GCATTTCAGT | 5640 |
| ATCCATAACA | GAAAATTGTG | ACATCATTTT | TGTATCCATG | ACAAATACTC | CTTTTTTAAA | 5700 |
| АААСТААААТ | AAATCAGAAT | AGAATCCTCA | TAATTTTACT | ATAAGTCTTA | CCAACTTAGT | 5760 |
| CCCAATTTAT | CACCAACCAT | ACCTCCTAAG | CATGTTAATC | CACCCCCAAT | TGCACCAATG | 5820 |
| TGTGCTCCAA | CAAATGCACC | AGCAAGTCCA | GCTACTCCTA | AAGTGGCCAA | ACCTGCTCCA | 5880 |
| GTTCCACCAG | TTATAATTCC | CGTAGTGACT | CCTGTAATCA | GTGCATTTTG | ACAATCAGTG | 5940 |
| GAGCTATACC | CCCCTTCAAC | TTTCGCAAGC | ATTTCAGTAT | ССАТААССТС | TAACTGTGAC | 6000 |
| AACATTTTTG | TATTCATGAT | GAATACCTCC | TTTTTATTT  | CAATTTGTTA | CCAAAGTCTT | 6060 |
| AAATTCAATA | AACAAATAGA | TTTTTTATAG | TATCTTTTTG | ATTTTCTTAA | AAAAGTATAT | 6120 |
| ACGTCTACTA | ТСТТСТТАЛА | GGTAGCAGTA | CCTATTTTTT | AGTCTAAGAT | ТТСААТААТС | 6180 |
| TTGAGTATCT | AAAATATCTT | AATTTCGTTA | TTCTCCTTGC | AATAAAAAGT | TTTACTATAC | 6240 |
| TATTTATTAA | CTTGCAGAAA | GCAAAAAATA | TTAGTAAATA | ATAGTTTATA | GTTAAGTTTT | 6300 |
| TTATTCCTAC | CAATCCATCA | ACTAAGTAAA | GCATCAACGA | TTACATAAAC | GATTGATAAT | 6360 |
| АТААТТАААА | TTTTGCTAAC | TATCTTATTC | TCATCATTCT | TAGATAACTT | TGATATTTTG | 6420 |
| TAAGTAAGTA | AATAAGACAG | TAAATTAATA | GCGATAATAA | TACTATATTT | AAGAATCATA | 6480 |
| ATCTTACAAA | GAGGACATAA | TTCCTGAACC | TACACAAATA | AGTGTTGCTG | CTCCCCCAGT | 6540 |
| TATCGGACCA | GTCGCAGCAG | CTAATAGTAC | TGCTCCAATA | CAACCACCGA | TTGCAGATCC | 6600 |
| TAAATTGCCT | CTTCCTCCAC | TAACTATTTC | GAGTTCTTCA | TTATCCATAA | CAGAAAATTG | 6660 |
| TTCCATCATT | TTTGTATTCA | TGACAAATAC | TCCTTTTTTC | TTTTTTTATT | TTTGTCTTGT | 6720 |
| TGTAACTTTG | ATAAGTTTAG | TATATCATCG | AAAATTTTTT | TTTTTCATCC | AGATCTTGAA | 6780 |
| TTGTCATCGA | AACGTCTTGA | ATTAGCTTTT | TTATTTCAAG | CCACCTCTAA | ATGTTTAAAA | 6840 |
| AAAATAATTT | CTAATCACTT | TTTTACCATT | CAGGAAGTTT | TAATGACTAT | TCAAGATTTC | 6900 |
| ATAAAATATG | AACTTAGTTT | TATGACATAA | TAGACCTATC | CACTATATGA | AAGGAATTGC | 6960 |
| CAATGACTTC | TTATAAACGT | ACATTTGTTC | CTCAAATAGA | TGCGAGAGAC | TGTGGTGTCG | 7020 |
| CTGCCTTAGC | CTCGATTGCT | AAATTCTATG | GTTCAGATTT | TTCTCTAGCT | CACTTGAGAG | 7080 |
| AACTTGCAAA | GACCAATAAA | GAAGGGACGA | CTGCTCTTGG | CATTGTAAAA | GCCGCTGATG | 7140 |
| AAATGGGCTT | TGAAACAAGA | CCTGTTCAAG | CAGATAAAAC | GCTCTTTGAC | ATGAGTGATG | 7200 |
| TCCCCTATCC | ATTTATCGTT | CACGTTAACA | AAGAAGGAAA | ACTCCAACAT | TACTATGTTG | 7260 |
| TCTATCAAAC | AAAGAAAGAC | TATCTGATTA | TTGGTGATCC | TGACCCTTCT | GTAAAAATCA | 7320 |
| CTAAAATGTC | AAAAGAACGC | TTTTTCTATG | AATGGACTGG | AGTAGCTATT | TTTCTAGCTA | 7380 |

| CCAAACCCAG | CTATCAACCC | CATAAAGATA | AAAAGAATGG | TCTACTAAGC | AAGCTTCCTT | 744  |
|------------|------------|------------|------------|------------|------------|------|
| CCTCTGATTT | TCAAACAAAA | ATCTCTCATT | GCTTACATTG | TTCTCTCAAG | CTTATTGGTC | 750  |
| ACTATTATCA | ATATAGGTGG | TTCTTACTAT | CTCCAAGGAA | TCTTGGATGA | ATACATTCCA | 756  |
| AATCAGATGA | AATCAACTTT | AGGAATCATC | TCAGTTGGTC | TGGTTATCAC | CTATATCCTC | 7620 |
| CAACAAGTCA | TGAGCTTCTC | CAGAGATTAT | CTCCTAACCG | TTCTGAGTCA | GAGATTAAGT | 7686 |
| attgatgtga | ттттатсста | TATTCGCCAT | ATTTTTGAAC | TTCCCATGTC | TTTCTTTGCG | 7740 |
| ACACGTCGTA | CAGGAGAAAT | CATTTCACGA | TTCACAGATG | СТААСТСТАТ | TATAGATGCC | 7800 |
| PTGGCTTCTA | CCATTCTTTC | TCTTTTTCTG | GATGTTTCTA | TTCTGATTCT | TGTAGGAGGC | 7860 |
| GTCTTACTGG | CACAAAACCC | TAATCTCTTC | CTTCTTTCTC | TTATTTCCAT | TCCTATATAC | 7920 |
| ATGTTCATCA | TCTTTTCTTT | TATGAAACCT | TTCGAAAAAA | TGAACCATGA | TGTCATGCAA | 7980 |
| AGTAATTCTA | TGGTTAGCTC | TGCCATTATC | GAAGATATCA | ACGGGATTGA | AACTATAAAG | 8040 |
| PCGCTCACGA | GTGAAGAAAA | TCGCTATCAA | AATATAGACA | GCGAATTTGT | AGATTATTTG | 8100 |
| GAAAAATCCT | TTAAGCTCAG | TAAATATTCT | ATTTTACAAA | CGAGTTTAAA | GCAGGGAACA | 8160 |
| AAATTAGTTC | TGAATATCCT | TATCCTATGG | TTTGGCGCTC | AATTAGTCAT | GTCAAGTAAA | 8220 |
| ATTTCTATCG | GTCAGCTGAT | TACCTTTAAC | ACACTTTTTT | CTTACTTTAC | AACTCCTATG | 8280 |
| SAAAATATTA | TCAACCTCCA | AACCAAACTC | CAATCTGCGA | AGGTCGCTAA | TAACCGTTTG | 8340 |
| AACGAAGTCT | ATCTAGTCGA | ATCTGAATTT | CAAGTTCAAG | AAAACCCTGT | TCATTCACAT | 8400 |
| TTTTGATGG  | GCGATATTGA | ATTTGATGAC | СТТТСТТАТА | AGTATGGTTT | TGGATGAGAT | 8460 |
| ACCTTAACAG | ATATTAATCT | CACGATTAAA | CAAGGAGATA | AGGTTAGCCT | AGTTGGAGTT | 8520 |
| AGTGGTTCTG | GTAAAACAAC | TTTAGCCAAA | ATGATTGTCA | ATTTCTTTGA | ACCCTACAAA | 8580 |
| GGCATATTT  | CCATCAATCA | TCAGGATATT | AAAAACATTG | ATAAAAAAGT | CTTGCGCCGT | 8640 |
| TTAATTAATT | ACCTACCCCA | ACAAGCCTAT | ATCTTTAATG | GCTCTATTTT | GGAAAACTTA | 8700 |
| ACCTTGGGCG | GTAATCATAT | GATTAGTCAA | GAAGATATTC | TAAAAGCTTG | TGAAGTAGCT | 8760 |
| GAAATCCGTC | AAGACATTGA | AAGAATGCCT | ATGGGCTATC | AAACTCAGCT | CTCTGATGGA | 8820 |
| GCTGGTCTAT | CAGGAGGACA | GAAGCAACGA | ATCGCTCTCG | CTCGTGCTCT | ТТТААСТААА | 8880 |
| PCTCCTGTTT | TAATACTAGA | TGAAGCTACT | AGCGGTCTTG | ATGTCTTGAC | TGAGAAAAAG | 8940 |
| GTTATAGATA | ATCTTATGTC | TCTAACTGAT | AAAACCATTC | TCTTTGTAGC | CCATCGTCTC | 9000 |
| AGTATAGCCG | AACGAACCAA | CCGTGTCATT | GTTCTTGACC | AGGGGAAAAT | CATTGAAGTT | 9060 |
| GGTA       |            |            |            |            |            | 9064 |

A SERVICE CONTRACTOR OF STREET

250

# (2) INFORMATION FOR SEQ ID NO: 18:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7780 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

| 60   | AATTATAACG | AATTTTGTAT | CCTCTCTGTT | AAATAAACAA | TTGATTTCAT | CTCCATTTTT |
|------|------------|------------|------------|------------|------------|------------|
| 120  | TTTTTCGTTC | ТСАААААТАТ | AATTTTTATC | GTGTTTTTTA | TACTTGTCAA | ATATCCAAGT |
| 180  | ACTATTTAT  | ACAGAATTAA | TCCCTTTTAT | GATTTCAAGC | GCCATCAGTT | AAAAAAAGGA |
| 240  | TTTAGCATAG | CACAGATATT | ACAACCCATT | TTCAAAGTAG | TCTTACCTGT | AGTTCGACAA |
| 300  | AACAATGGCT | CACGACCCGT | TGGAAATAAT | GGAAATAACT | GCTCCAAGTA | TCACCGATAC |
| 360  | ATAGTGGTTA | TAGTTTCAAA | AGGTCACGGA | TTCAGTCGCA | TCTTAATCTC | TCTGGATTTT |
| 420  | AAGATAAAGA | CAGAACCATT | GCGTCGTCAA | CACCCGGTAT | CCATGGAGGC | ATTTGCTCAT |
| 480  | TTCTTCCTCT | TTTTTTTAAT | TCACGTCCCA | GCTTTTAACT | CTTCCACAAC | TCAAGTGCTG |
| 540  | GGCTACAGCG | CCTGGGCAAT | CGGATGGTTG | CCCCTTCATA | TGCGCTCTTC | ACAGCTGGAA |
| 600  | TGTACGCAAA | CAGTCAAGAC | GCCTTAAGGA | ATCTGATACA | TACGCTCCAC | TGATCCCCCA |
| 660  | CAGTTTCACT | ATTTCTTTTC | ATTTCAAATG | GAGTGCGATC | CTGGTTGTTG | TCTTGAGAGA |
| 720  | ACGGTCATGC | TTGCCAGGTC | ATGACCTCTT | ATCATCTTCG | TTACTTCTGC | TCGTATTCAT |
| 780  | CATAGCGTAG | CTTCTTGTCC | TGTGAGAGCA | ACGATTGATT | CACGTACCGT | GTGACAAAAG |
| 840  | CTTTCATCTC | ATCGTAACAT | TCAAATTGAG | TAAATCTTCT | GTAATTTCTC | AACTGGTTAT |
| 900  | TCAAGGAACA | GTGTTGGGGA | CCGTTTCCTT | ATATAGTCTT | TTTTCCTGTA | CTTATCCAAA |
| 960  | GTCTTATCAG | GAAAAATCCT | CTCCATCTAG | TCAATCAAAT | ATCATTAAAT | TCTGCTTGGT |
| 1020 | TTGTCTTTTA | CATGGTGTAC | TTACCAGAAG | ATGGAACGGG | AGCTTGCTGC | AGATACGTGA |
| 1080 | GAAGTTGGCT | ATCCAAAGCC | CTGAAATCGG | ATTTTACCAG | GGTTTCCTCA | GACCATACAA |
| 1140 | ACACGCTGCT | GGCCACGCAG | CCAAGACACG | GGACTAGTTG | GATGATTTTA | CATCCAAGAG |
| 1200 | TCATCCCAGA | ATCCTTGACC | CATATAGACG | ATAGCTGAAT | TGACAATCCA | GTTGACCACC |
| 1260 | TCCTTAATTC | AACCTGCTTA | CTTCATCCAG | TTTTCTACGG | TTGCAAGGCT | TAGAGGCACC |
| 1320 | GGATTAGGTT | CATAGGGAAA | CATAGATAGT | ACAACATTCT | AAGCCCGTAG | CATTGATACG |
| 1380 | GGACTGTAGA | ATCTGTACGC | ATTCAACCGT | TCCTTACGTA | CATTCCGATT | GTTGGAAAAC |
| 1440 | AGATCTCCCA | CTCTGGATTG | TTGTGGTCAC | ACGGATCCAG | ATTGTACACC | TGTTGTGACC |
|      |            |            |            |            |            |            |

| TGCGGTTGAG | AGACTTGAGG | AGGGTTGACT | TCCCTGATCC | AGATGGACCA | ATCAAGGCTG | 1500 |
|------------|------------|------------|------------|------------|------------|------|
| TAATTTCCTT | AGGTTGGAAA | GATAGGGAAA | CACTATTCAA | AGCCTTCTTT | TTATTATAAT | 1560 |
| AAACGGACAG | GTCTGATACC | TGTAAAATCG | CATCTGTCAT | ACGGTTTCCT | TTCTAACCAA | 1620 |
| AGTGACCAGA | TACATAGTCA | TTGGTGGACT | GTAGCTTGGC | ATTTTGGAAA | ATAGTTGCAG | 1680 |
| TCTTGTCÁTA | СТСААТСААА | TCACCCAAGT | AAAAGAAGCC | TGTATAGTCA | CTTGCACGAG | 1740 |
| CAGCCTGCTG | CATATTATGC | GTTACAATGA | TGATGGTAAA | GTTTTTCTTG | AGCTCAAACA | 1800 |
| TGGTCTCTTC | TAGTTGCATG | GTCGCAATCG | GATCCAAGGC | TGAGGCTGGC | TCATCCATTA | 1860 |
| AGAGGATATC | TGGCTTAACA | GAGATGGCAC | GAGCGATACA | GAGACGTTGT | TGCTGACCAC | 1920 |
| CTGATAAGGT | CAAGGCTGAC | TTGTGGAGAT | CGTCTTTAAC | CTGATCCCAG | AGGGCAGCCT | 1980 |
| GACGAAGGGA | GGTTTCTACG | ATTTCATCTA | GGACTTGCTT | ATCCTTAACT | CCAGCACGTT | 2040 |
| CATGCGCAAA | GGTAATATTA | CGGTAAATTG | ACTTAGCAAA | TGGATTGGGA | CGTTGAAAAA | 2100 |
| CCATTCCAAT | GTGTTTACGC | ATTTCATAAA | CGTTGATTTC | TGGACGGTTG | ACATCAATTC | 2160 |
| CACGATAGAG | AATCTGCCCA | GTTACTTTAG | CAATATCAAT | AGTATCATTC | ATGCGATTGA | 2220 |
| GACTGCGTAA | GTAGGTAGAT | TTCCCCGATC | CCGACGGGCC | AATCAAAGCT | GTAATTTTAT | 2280 |
| TTCTTTCAAA | TTGCATATCA | ATCCCCTTAA | TGGATTCATT | TTTACCATAG | TAAACATGGA | 2340 |
| CATCCTTAGT | AGAAAGGGCT | ACTTTTTCTT | CAGGAAAGGT | AAGGATATGC | TTCTCATCCC | 2400 |
| AGTTATATGT | TGACATGGCT | TCTCCTTTAG | GCAGCGGTTA | ATTTCTTGTG | TAGATACCTT | 2460 |
| CCGAACTTAC | GAGCTCCAAA | GTTAAAAATC | AGGATAAAGA | TCAGGAGCAC | AGCGGCAGAA | 2520 |
| CCTGCTGATA | CAATGGTTCC | ATCTGGAATA | GTGCCTTCAC | TATTGACTTT | CCAGATATGG | 2580 |
| ACAGCCAAGG | TTTCTGCTTG | ACGGAAGATA | GAGATGGGGC | TAGTCACACT | GAGGATATTC | 2640 |
| CAGTTAGACC | AGTCAAGAGC | TGGCGCCGAT | TGCCCTGCTG | TATAGATCAG | AGCTGCAGCT | 2700 |
| TCGCCAAAGA | TACGACCAGA | TGCCAAGACG | ACACCCGTTA | CAATACCTGG | AAGCGCTTCC | 2760 |
| GGAATAACAA | CATGAACCAC | TGTCTCCCAG | CGAGAAATCC | CAAGAGCCAG | ACCAGCCTCA | 2820 |
| CGTTGGGTAT | GGTGAACGTG | TTTCAAACTA | TCCTCTACAT | TACGCGTCAT | CTGAGGCAAG | 2880 |
| TTAAAGACTG | TCAAGGCCAA | GGCACCTGAA | ATGATTGAAA | ATCCATACTC | AAACTGGACT | 2940 |
| ACAAAGATCA | AGTAACCAAA | GAGACCCACC | ACCACTGATG | GTAAAGAGGA | CAAAATTTCA | 3000 |
| ATACAAGTCC | GCACAAAGTT | GGTAACAGGA | CCTTTTTTAG | CATATTCAGC | CAAGTAAATC | 3060 |
| CCAGCTCCCA | TAGAAAGAGG | TACAGAAATA | ATCAAGGTAA | TGACCAATAG | GAAAAAGGAA | 3120 |
| TTGTAAAGCT | GAATGCCAAT | CCCACCACCT | GCTTGAAAAG | CAGAAGACCT | TCCAGTCAAG | 3180 |

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

| •••                                               |                                |
|---------------------------------------------------|--------------------------------|
| 252<br>AAAGACCAAG AGATATGGGG CAAGCCCCGA ACCAAGATA | AT AGAGAATCAA GGAAGCCAAG 3240  |
| ATTGTCACAA TGATGCTAGC AATCGTATAG AGGACAGCT        | TG TTGCAAGTTT ATCTAATTTC 3300  |
| TTAGCGCGCA TAATTTTCT TTCCTCTTTC TTTCGTAAT         | C AATTTAATCA CACTGTTAAA 3360   |
| AACTAAGCTC ATCAAGAGCA GTACCAAGGC CAGTGACCA        | AG AGAACATTAT TATTTACAGT 3420  |
| TCCCATGACA GTGTTCCCAA TTCCCATAGT TAATATAGA        | AA GTTAAAGTTG CAGCTGGTGT 3480  |
| GGTCAAGGAA GTTGGGATAA CAGCTGAGTT TCCGACAAC        | CC ATCTGGATAG CTAGAGCCTC 3540  |
| ACCAAAGGCA CGCGCCATCC CAAAGACCAC TGCAGTGAA        | AA ATACCAGAAC GGGCCGCCTT 3600  |
| CAAGATCACA CGCCAGATAG TCTGCCAGCG AGTGGCTCC        | CC ATAGCGAAAC TGGCTTCACG 3660  |
| ATAATAACGA GGAACCGCAC GCAAGCTATC CGTTGTCAT        | TA AAGGTTACGG TCGGCAAAAT 3720  |
| CATGACAAAG AGGACGGAAA TCCCTGACAA AATCCCAAA        | AA CCAGTCCCAC CAAAGACACT 3780  |
| GCGAACAAAG GGAACGACGA CTTGCAAGCC AATAAATCC        | CG TACACTACTG AAGGAATCCC 3840  |
| AACCAGGAGT TCAATAGCTG GTTGCAAAAT CTTCGCCCC        | CT TTTGGTGATA CTTCGGTCAT 3900  |
| AAAAACTGCT GCACCAATAG CAAAGGGTGT TGCGATAAC        | GG GCTGAGAGAA TGGTAACGAT 3960  |
| AAAGGAACCC AAAATCATAG GAAGGGCACC AAATTCTTT        | PA CTAGAAGGAT TCCAAGTTCC 4020  |
| TCCCAAAAGA AAGTCAAAGA TATTCACACC ATTGACAAA        | AG AAGGTCGACA AGCCTTTTTG 4080  |
| CGCTACGAAA ACCAAAATCA TGGCCACAAG GATGACTAT        | TC AAAGAAAGAC AGGCAAAGGT 4140  |
| CAAACCTTTT CCTAATTTCT CCAGACGAGA ATTCTTTGA        | AT GGAAGCAACA TTTTCTTAGC 4200  |
| TAATTCTTCT TGATTCATTA TTGTCTCCCT TCCAACACT        | TG TCACAGTTCC GGCAGCATCT 4260  |
| TTTTCAACCT TCATTTCCTT AATCGGAATA TACTTCAAT        | PC CTTTGACAAT CCCTTCTTGG 4320  |
| GTCTCATCCG AGAGAACAAA ATTGAGAAAT TCTGCAGCC        | CA ACTCATTGGG CTGCCCCAAT 4380  |
| GTATACATAT GCTCATAAGA CCACAAGGGC CAATTATTC        | GC TACTTATATT TTCTGGACTT 4440  |
| AAGTCATAGC CATTCAACTT CATGCTTTTG ACCGAATCA        | AT CTATATAGGT AAGAGATAAA 4500  |
| TAAGAGATAG CTCCTGGACT TTTTGATACG ATTGATTT         | TA CCGCTCCATT TGAATCCTGC 4560  |
| TCCTGACTTT GCATGGCAGA CTGACCTTCC ATAATGACA        | AG TATCAAAGGT AGCACGAGAG 4620  |
| CCAGAGCCGG CTGCCCGATT GATAACAGAG ATGGGTAAG        | GT CCTTACCACC AACCTCTTTC 4680  |
| CAATTGGTTA CCTCACCTAT GAAGATTTGA CGAAGTTGG        | CT CTGTCGTTAG GTTATCAACA 4740  |
| TCAACCTCCT TATTGACAAT CAGAGCCAAG CCAGCTACC        | CG CGACCTTGTG GTCAACAAGA 4800  |
| GCAGAAGCAT CAATTCCGTC TTTTTCCTCA GCAAATACA        | AT CTGAGTTTCC TATATCAACT 4860  |
| GCCCCAGACT GAACCTGGGA CAAGCCTGTA CCAGAACC         | TC CCCCTTGGAC ATTGACCGTT 4920  |
| TTTCCAACAT GGATCGTGCC AAATTCATCT GCCGCTAC         | TT CAACCAAGGG. TTGCAAGGCA 4980 |

| GTTGAGCCAA        | CAGCCGTTAT | GGATTCTCCA | CGATCAATCC | AGCTAGCACA | GCCTACTAAA | 5040 |
|-------------------|------------|------------|------------|------------|------------|------|
| CAAGCCGTCA        | GCCAAAAAGC | GATAAGAGAC | AGAGCAAGCT | TTTTTCTTTT | TTTCACTGTT | 5100 |
| PTTCTCCTCG        | ATTAATAAAA | TGAATACTGT | GAATTTTTA  | AGTAGTTCTT | TATGAGTTGA | 5160 |
| CGCATGAATT        | CTTACCAAAT | TTCTGCGCAA | TTGATTATTT | АТАТААТАТА | GGCTATATTA | 5220 |
| CTCTTTCCTA        | ACCTCCTTTT | TTCATATGTG | GATAAAATCT | CTTGTCTATC | CCTTCCCCCA | 5280 |
| PTGTCACCCA        | TTATAGTCAT | TTCGTGTCTC | TTTTTCCCCT | TTTTAATGCA | AGGGAAATTA | 5340 |
| CTCTCCTTAG        | ATGATAATCC | AAAAGCTAGA | AAGGTATCTC | AAACCTCTCT | ACTCTCCCAG | 5400 |
| ACTAGTTTAC        | AACTAAAAGG | AAAAGATTCT | ATTTTATGAG | AAATCTAGTT | TACAAGCGGT | 5460 |
| AAGAACGCTA        | ATAACTAAAC | TTCTTGTACT | CTTTGAAAAT | CTCTTCAAAC | CAGTGTTTTG | 5520 |
| AGCTATCTAT        | GGCTAGCTTC | CTAGTTTGCT | CTTTGATTTT | CATTGAGTAG | TAAAACTACA | 5580 |
| IGTAATGGCA        | ATCAAGATAT | CAAGAATCAT | ССТАСТАААА | AAATCCATAC | TTTCACTATA | 5640 |
| ACATAGAATA        | AGATATTTGA | CTAGCATTTT | CATTTGAATC | TGAGGCCTTT | TGGAAAATAA | 5700 |
| PTTTTCAAAA        | CATTTCCAGT | AACCTTTGCA | AAGCCCAAGC | CATTGCCTTT | AACCAAAACT | 5760 |
| TGGTACCAAC        | CATTTGGCAG | ACTTTCTGCC | AGCTGAACGG | TTTCTCCAGC | CGCATACTTG | 5820 |
| ACAAACGCTT        | CTTGGCCAAT | TTCAACCGAC | TGTTCGACCT | GACTCGGTTT | CAAGGCTAAA | 5880 |
| CCAAGAGCGA        | AACTGGGCTC | AAAGCGTTTC | TTCTTAAAAG | TACCCAGATG | CAGTCCATTG | 5940 |
| CGAGCAATCT        | TGAGCTTCCA | TAAATCTGGC | AAAAGTTCTG | GCAAGAGATA | AAGCTGGTCT | 6000 |
| CCAAAAATCT        | GCAAGATACC | CGGTAGATTG | ACCTTCAAAT | GGTTTTGGGC | AAATTCCTGC | 6060 |
| CACAAGGCAA        | CTTGTTCACG | GCTGAGGTTA | CTCTTACTTG | CCTTAAATTT | AGGAGCTGGA | 6120 |
| TTGTTACCCT        | TAAACTGTAG | ATGGGCAACA | AACTGACCCT | СТСССТТААА | CTGATGAGGA | 6180 |
| PACATCCGAG        | CCGTTTCTGG | CAGGTCAATA | CCAGCTACCA | TTCCATTGAT | ATGCTCTACT | 6240 |
| GGCAACAAGT        | CAAAATCATA | CTCTTCCAGC | AACCAATTGA | CAATCTCTTC | GTTTTCCTCG | 6300 |
| GGTGCCCAGG        | TACAGGTCGA | ATAAACCAGA | TGACCACCTT | CAGCTAACAT | GGTCACTGCA | 6360 |
| ICCTCCAGAA        | TTTCTCTTTG | CAAGCTAGCA | CATTGACTCG | GATAATCTAA | GCTCCAATAG | 6420 |
| <b>PCCATAGCAT</b> | CAGGTTGCTT | ACGAAACATT | CCTTCACCAG | AGCAAGGGGC | ATCAAGAACG | 6480 |
| ATTAAGTCAA        | AATAGCCTTT | AAAGACCTTG | ACCAAGCGGT | CGGCAGATTC | ATTGGTCACC | 6540 |
| ACGACATTTG        | TCGCTCCAAA | ACGCTCCATG | TTTTCAACCA | AAATCTTAGC | CCGTTTGCTT | 6600 |
| GAAATTTCAT        | TGGAAnCAAG | TAGCCCCTCC | CCTGCTAGAT | AGGCTGCCAG | TTGAGTTGAT | 6660 |
| TTGCCCCCCG        | GTGCAGCAGC | CAAGTCCAAG | ACCTTCATAC | CAGGACTGGG | TTGGGCTACT | 6720 |

man the supplier of the supplier

| TGAGCCACCA        | TTTGAGCAGC   | AGGTTCTTGC   | 254<br>GAATAAACTA | AACCTGTAGC | ATGCTCAGGC | 6780 |
|-------------------|--------------|--------------|-------------------|------------|------------|------|
|                   | AAACCTTCCC   |              |                   |            |            | 6840 |
| GAAAGTTGCT        | СТТСТТТТАА   | GGGATTGACC   | CGAAAGGCCG        | AAACCGCTTC | CTCCTCAAAA | 6900 |
| GAGGCAAGAA        | AATCTCTTGC   | СТСАТСТССТ   | AGTATCTCTT        | ТАТАТТТТС  | AACAAATCCT | 6960 |
| TCTGGAAATT        | GCATTTAAGT   | TCTTTTCCTT   | TCGTAAATAT        | AGGACTGAAT | TTCCTCCTGC | 7020 |
| ATCTCAAGAG        | GCACCATCAT   | GACCGGCTGT   | CTGGTTTGAA        | AATCAGGAGC | TTCACCAAAA | 7080 |
| AGGGTCACAA        | CCCGATAGCC   | CAGACTTTCC   | CCTAAAATAC        | TAGCTGCGGC | ATAATCCCAT | 7140 |
| GGTTGCAGAT        | AAGTGAGATA   | GGTCAACAAA   | CGCCCTGACA        | AAATCTTGGC | AAAACTAATG | 7200 |
| GCCGCACTTC        | CATAGACACG   | AACACCAAGA   | ACCGCTCGGC        | TCAAATCAGC | CAGCCCCCAT | 7260 |
| PCATTGGTTT        | CCAGCATACC   | ACTATTCCCT   | GCAATGAGAA        | AATCTCCAAG | TGGTTTAGTT | 7320 |
| <b>PTAAAAGGAG</b> | CTAGGGACCT   | ATCATTTAGA   | CAAACTGGAA        | ATTCCCCACC | ACCGTGGTAA | 7380 |
| CAATCCCCTT        | TGACCACATC   | ATAAATCAGA   | CCAAACTGTC        | CCTGACCATT | ТТСААААТАА | 7440 |
| GCCATCATAA        | CAGCAAAATC   | TTCCTGCTGG   | GCTACAAAAT        | TATTGGTACC | ATCAATGGGA | 7500 |
| FCAATGACCC        | AAACCTTGCC   | CTCTTGAACC   | GAGGCTCGCA        | GACAACCTTC | TTCAGCACAA | 7560 |
|                   | CAGGATAACG   |              |                   |            |            | 7620 |
|                   | TCACCAAATC   |              |                   |            |            | 7680 |
|                   | GAATGTACTG   |              |                   | CTTTAGCAAA | TTCAAATTTA | 7740 |
|                   | GAAATCTTTC   |              |                   |            |            | 7780 |
| (C) THEOREM       | ATION FOR SE | אל דר אס: דא | ':                |            |            |      |

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 4820 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

| • | GTAATGATAT | AGGAACACCA | GGTGACCTGA | TGGGACGTCG | TAAGCCTATG | AACTACTAGC | 60  |
|---|------------|------------|------------|------------|------------|------------|-----|
| , | TGCTAAAGGC | TTTAAAGATG | GTATGGTACC | ATATATCTCA | AACCAATACG | AAGAAGAAGC | 120 |
|   | CAAACAAAAG | GGCAAGACAA | TCAATCTCTA | CGGTAAAACA | AGAGGTTTGG | TTACAGATGA | 180 |
| 1 | CTTGGTTTTG | GAAAAGGTAT | TTAATAACCA | ATATCATACT | TGGAGTGAGT | TTAAGAAAGC | 240 |
| • | TATGTATCAA | GAACGACAAG | ATCAGTTTGA | TAGATTGAAC | AAAGTTACTT | TTAATGATAC | 300 |
|   | AACACAGCCT | TGGCAAACAT | TTGCCAAGAA | AACTACAAGC | AGTGTAGATG | AATTACAGAA | 360 |

| ATTAATGGAC | GTTGCTGTTC | GTAAGGATGC | AGAACACAAT | TACTACCATT | GGAATAACTA | 420  |
|------------|------------|------------|------------|------------|------------|------|
| CAATCCAGAC | ATAGATAGTG | AAGTCCACAA | GCTCAAGAGA | GCAATCTTTA | AAGCCTATCT | 480  |
| TGACCAAACA | AATGATTTTA | GAAGTTCAAT | TTTTGAGAAT | AAAAAATAGT | GTCTACTATT | 540  |
| AGGAAATAAA | GTTTAAAAAG | GTGATGAAGA | ACAAACCAAG | ATTCAAGCAG | GAATTCCTAC | 600  |
| TGATAATGAA | GTAAGTTATG | ATCTTATTTA | TCAGCAGGAA | ACTCTTCCTG | CAACAGGTTC | 660  |
| ATCAACTTCT | GAGCTTACAG | CTTTAGGCCT | ATTAGCTGTT | GGTAGTTTAG | TTCTTTTGGT | 720  |
| TCATAATATG | ACGGGAACAG | TTTTTTGCTC | CCTCTGAAAA | GTCATCATTT | GATGGCTTTT | 780  |
| TTCTATATAG | GGTAAAAGAT | AGGGTAAAAG | GCTATCATCG | GACAAAATAA | AGAAGGCATG | 840  |
| АТАТААТАТА | AAGTAGATTT | CTATGTCATA | AAACAAGAAC | TGTTTGGACA | TCATTCATTT | 900  |
| GAAAACTCTC | TATGTTCAAA | CAATAGTAAA | ATAAAATAGG | GGATCTAAAT | CCTTGCTATG | 960  |
| AAAGGAAAAA | ACTCAATGGC | TACTATTCAA | TGGTTTCCTG | GTCACATGTC | TAAAGCTCGT | 1020 |
| CGACAGGTGC | AGGAGAATTT | AAAATTTGTT | GATTTTGTGA | CGATTTTAGT | AGATGCACGC | 1080 |
| TTGCCTCTAT | CTAGTCAAAA | TCCTATGTTG | ACCAAGATTG | TTGGTGATAA | ACCAAAACTC | 1140 |
| TTGATTTTAA | ACAAGGCCGA | CTTGGCTGAT | CCAGCAATGA | CCAAGGAATG | GCGTCAGTAT | 1200 |
| TTTGAATCAC | AAGGAATCCA | GACGCTAGCT | ATCAACTCCA | AAGAGCAAGT | GACTGTAAAA | 1260 |
| GTTGTAACAG | ATGCGGCCAA | GAAGCTCATG | GCTGATAAGA | TTGCTCGCCA | GAAAGAACGT | 1320 |
| GGGATTCAGA | TTGALACCTT | GCGTACTATG | ATTATCGGGA | TTCCAAACGC | TGGTAAATCA | 1380 |
| ACTCTGATGA | ACCGTTTGGC | TGGTAAAAAG | ATTGCTGTTG | TTGGAAACAA | GCCAGGGGTC | 1440 |
| ACAAAAGGTC | AACAATGGCT | TAAAACCAAT | AAAGACCTGG | AAATCTTGGA | TACACCGGGG | 1500 |
| ATTCTCTGGC | CTAAGTTTGA | GGATGAAACT | GTTGCACTTA | AGTTGGCATT | GACTGGAGCT | 1560 |
| ATCAAAGACC | AGTTGCTTCC | TATGGATGAG | GTTACCATTT | TTGGTATCAA | ТТАТТТСААА | 1620 |
| GAACATTATC | CAGAAAAGCT | GGCTGAACGC | TTCAAACAAA | TGAAAATTGA | AGAAGAAGCG | 1680 |
| CCTGTGATTA | TTATGGATAT | GACCCGCGCC | CTCGGTTTCC | GTGATGACTA | TGACCGTTTT | 1740 |
| TACAGTCTCT | TCGTGAAGGA | AGTCCGTGAT | GGCAAACTCG | GTAACTATAC | CTTAGATACA | 1800 |
| TTGGAAGACC | TCGATGGCAA | CGATTAAAGA | AATCAAAGAA | TTCCTTGTGA | CAGTCAAGGA | 1860 |
| GTTAGAAAGC | CCTATTTTTT | TAGAGCTTGA | AAAGGATAAT | CGCTCAGGAG | TTCAAAAGGA | 1920 |
| AATCAGCAAG | CGTAAAAGAG | CCATTCAAGC | TGAATTAGAT | GAAAATTTGC | GCTTGGAATC | 1980 |
| CATGCTTTCT | TATGAAAAAG | AACTTTATAA | GCAAGGATTG | ACCTTAATTG | CAGGTATTGA | 2040 |
| TGAGGTTGGT | CGTGGTCCTC | TTGCTGGTCC | TGTAGTCGCT | GCGGCCGTTA | TTTTATCTAA | 2100 |

t. Take Hoperson

256 AAATTGTAAG ATTAAAGGTC TCAACGACAG CAAGAAAATT CCTAAAAAGA AACATCTGGA 2160 GATTTTCCAA GCCGTTCAAG ACCAAGCCTT GTCGATTGGA ATTGGTATCA TAGATAATCA 2220 GGTCATCGAC CAAGTCAACA TCTATGAAGC AACCAAACTA GCCATGCAAG AAGCAATCTC 2280 CCAGCTCAGC CCTCAACCAG AGCACCTTTT GATTGATGCC ATGAAACTGG ACTTGCCCAT 2340 TTCACAAACC TCCATTATCA AAGGAGATGC CAACTCCCTC TCTATCGCAG CAGCATCTAT 2400 AGTAGCCAAG GTAACACGTG ATGAATTGCT GAAAGAATAC GATCAGCAGT TCCCTGGCTA 2460 TGATTTCGCT ACTAATGCAG GATATGGCAC AGCTAAACAT CTGGAAGGCC TCACAAAACT 2520 AGGAGTTACC CCAATTCACC GAACCAGCTT TGAACCCGTT AAATCACTGG TTTTAGGTAA 2580 AAAAGAAAGT TAATTGAAAG GAAATAACAT GGAGGAACAG TCGGAAATAG TCCGTTCTAA 2640 GAAAGAATTC GCCTTTGCAT CCAGCACTAT ACTATCCCAA GTTGGTCGAG GAATCATTGT 2700 CGGCCTCATC GTTGGAATTA TCGTCGGATC CTTTCGTTTC TTAATTGAAA AGGGCTTCCA 2760 CCTGATACAA GGAGTTTATC AAGATCAAGG GTACTTAGTG CGCAATCTTT TTGTACTGGT 2820 TTTGTTTTAT ATACTCATCT GTTGGCTCAG TGCCAAACTA ACACGGTCAG AAAAAGATAT 2880 TAAAGGCTCA GGAATTCCTC AAGTCGAAGC CGAACTGAAA GGCCTCATGT CCCTCAACTG 2940 GTGGGGCATT CTTTGGAAAA AATATGTGCT AGGTATTCTT GCTATTGCCA GTGGACTCAT 3000 GCTGGGTCGA GAGGGACCCA GCATTCAACT TGGAGCAGTT GGTGGTAAAG GAATTGCCAA 3060 GTGGCTCAAA TCCAGTCCAG TAGAGGAACG TTCCTTGATT GCCAGTGGAG CTGCAGCAGG 3120 TTTAGCCGCA GCCTTTAATG CTCCTATTGC AGCACTTCTC TTTGTTGTAG AAGAAGTCTA 3180 TCACCATTTT TCGCGCTTTT TCTGGGTCTC AACTCTAGCA GCCAGCATCG TAGCAAACTT 3240 TGTGTCTCTA CTCATGTTCG GTTTGACACC AGTATTGGAT ATGCCAGATA ACATTCCTCC 3300 CATGACCCTA GATCAGTATT GGATATATCT CGTCATGGGA ATTTTCCTTG GATTTTCAGG 3360 TTTTCTCTAT GAGAAAGCTG TATTAAACGT TGGAAGAGTT TATGACTTGA TTGGTCAAAA 3420 AATCCATTTG GATAGGGCTT ATTATCCCAT CTTGGCTTTT ATCCTTATCA TACCAGTCGG 3480 AATCTTCTTA CCTCAAATCA TTGGTGGCGG AAATCAGCTT GTCCTTTCTT TAACTGAACA 3540 AAATTTTAGT TTCCAAGTTT TATTAGCTTA CTTTTTAATC CGCTTTATTT GGAGTATGAT 3600 TAGCTATGGA AGTGGACTGC CAGGAGGAAT TTTCCTCCCC ATTTTAGCTC TTGGTTCTTT 3660 GCTTGGTGCC TTAGTTGGTG TTATCTGTGT CAATCTTGGA CTTGTCAGTC AAGAGCAATT 3720 CCCTATATTT GTCATTCTAG GAATGAGTGG CTATTTTGGA GCCATATCAA AAGCTCCCTT 3780 AACCGCTATG ATCCTCGTAA CTGAGATGGT AGGAGATATT CGCAACCTTA TGCCACTTGG 3840 TCTTGTCACT CTTGTTTCTT ATATTATCAT GGATTTGCTC AAAGGTACGC CAGTCTATGA 3900

- विर्योक्तर स्टिप्यूक प्रतासक प्रमुख्य देश देश । विर्योक स्वर्थ का अल्ब्स्टर का स्वर्थ का स्वर्थ का स्वर्थ का

257

| AGCCATGCTG | GAAAAAATGC | TTCCAGAAGA | AGTATCTAGC | GAAGGAGAAG | TTACACTTAT | 3960 |
|------------|------------|------------|------------|------------|------------|------|
| CGAAATACCA | GTTTCTGATA | AAATTGCTGG | GAAACAAGTT | CATGAACTCA | ACTTACCACA | 4020 |
| CAACGTCCTC | ATCACAACTC | AAGTCCATAA | TGGCAAGAGC | CAAACAGTTA | ACGGCTCAAC | 4080 |
| CAGAATGTAT | CTGGGTGATA | TGATTCACCT | GGTTATTCCA | AAAAGTGAAA | TTGGAAAAGT | 4140 |
| CAAAGATTTG | TTGTTGTAGT | ATGAGTATTT | ACATAATTTA | TGTTATGTAA | ATGATCAGTT | 4200 |
| TGATTTATTT | AGAAAACCGA | TTCTCAGGAA | TGAGATCGGT | TATTTTTAC  | TGATGAGGAA | 4260 |
| ТТТТАСАТАТ | AAATAATTGA | ACTTTATTAA | AAATAAGACT | ATAATTAAGT | TAGAAATGAT | 4320 |
| AAAGTATAAA | GCTAGAAAGG | AGTTTACTGT | ATCAAATCTG | TACAGTAAGA | TTAAAATCAT | 4380 |
| GAAAAAGAAA | ACAATAGCAA | TTATATAGAG | AAATGAAATA | GAAATAGGAT | AAAACAATCA | 4440 |
| GGACAATCAA | ATCAATTTCT | AGCAATGTTT | TAGAAGTCCA | GATGTACTAT | TCTAGTTTCA | 4500 |
| АТСТАТТАТА | CAATGTGTTT | TGTATCTCAT | AGCTCCTTAT | ATAGCTCTTC | AGTTATGTAG | 4560 |
| TATTAACAGA | AGTTTAGTGG | GTGAGATTTT | TATTATTTTC | CTTATTCTGT | TTTGTTTGTA | 4620 |
| GGTCTAAGTC | TTTTTATCAC | TTTGAAAAAC | TCCTATAACA | TCTTTCCGAA | АААСТАТААТ | 4680 |
| TTTCTTGAAA | AATATACAAG | TCTATGCTAT | ACTACTAGTA | TACTTACTTA | TGGAGAAAAT | 4740 |
| ACATGAAACG | TGAGATTTTA | CTGGAACGAA | TCGACAAACT | аааасаастс | ATGCCCTGGT | 4800 |
| AAGTTCTGGA | ATACTACCAA |            |            |            |            | 4820 |
|            |            |            |            |            |            |      |

### (2) INFORMATION FOR SEQ ID NO: 20:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 21338 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

| C' | PACGACATC | ATGATTAACA | GTCATGCGCT | ACTACCAACT | GAGCTATGGC | GGATAAAATA | 60    |
|----|-----------|------------|------------|------------|------------|------------|-------|
| G' | PCCGTACGG | GATTCGAACC | CGTGTTACCG | CCGTGAAAAG | GCGGTGTCTT | AACCCCTTGA | 120   |
| C  | CAACGGACC | TTCTATCTGT | AGCAGATATA | ACCATTATAT | CAATTTCTTG | CTAATTGTCA | ` 180 |
| A' | CACTTTTG  | AGATTTTTTC | TCTAAAATAT | CTTTTAATTT | TCTAATTTTT | AATCTTGAAA | 240   |
| T  | AGGACAACG | ATGGTCTTCA | TAGAAAACAA | TTTCTAAGTT | TTTTCGATCA | ATTTCTCTGA | 300   |
| T  | ATTACCTAT | ATTTACCAAA | AATGACTTGT | GAGGAGAATA | AAATCGCTGA | GTATGTTTGT | 360   |
| C  | CTTTTCCTG | AATATCTGTC | ATGGTACCAT | AAAACTCTTT | TGCAAAATTC | TTACCAATAA | 420   |

When or A

258 TGCGCAATTT ATGAGATACC CCTGTTGTTT CAATATACAA AATATCATGG TAAGGAATTT 480 TTAAATCATT TCCCTTGTAA TTGTAGTCGA AATAATCTAC AACATCTTCA TTTTCAAGTA 540 ACATACTCTT CGTGTAGAAG ATATTTTGCT CAATTCTCTT CTTAAACATC TCATCATTGA 600 TATCCTTATC AACAAATCT AGGGCTGATA CCTGGTATTT ATAGGTTAGA GTCGCAAACT 660 CTGATCGACT AGTGATAAAG ACGATAATAG CGTAAGGATT GTAATGACGA ATGAGCTGAG 720 CCACTTCAAA TCCCTTTTTC TCAATTCCAT GAATATCGAT ATCTAGGAAA TAAAGCTGAT 780 TTACTTCATC ATTTTCAATG TATTCTTCAA ATTCACGGAC TTTTCCCGTT GTCTTGTATG 840 ATATTGGAAT ATTCGATTCT TTCGAAATTT CATCCAATAT TCTCTCTAGT CTCACTTGAT 900 GTTCAATAAC ATCTTCTAAA ATTAAAACTT TCATTCAAAT TCCCTCTTAA ATCTAATGAT 960 TTGTCTAAAT GTACTGCCTT CCATCTCTGT TTCTAAAATA ATATTGTTGT ACTTATCTAG 1020 TAGTTCTTTC ACATTATTTA ATCCGACTCC GCGATTTCTT CCCTTAGTGG AGAATCCTAA 1080 GGCAAATAGA TCTCCTGAAG GAGTCATCGT CATTTTACAT GAATTCTGAA TCACAATAAC 1140 TGTTTCAGTT TCCATCTTAA TAACTGCTAC TTCCATCTGC TTTTTATAGC TATCAGCCGA 1200 TCCTTCGACA GCATTATTCA ATAAAACGCT CATGATACGA ACCAAATCCA ATAGTTCAAT 1260 TGGAAGCTTG GTAATCGTAT CTTTTACTTC CAGTGTAAAC TCTACACCAT TATTTCGAGC ATAGACAATT GACTGAGCAA CCAAACTTCG TAAAGCTGAG TCTTCTATGT TGTTCAAATC 1380 AAAGTAAGTG TACTTATCTG AACGCAATTT ATGATTTGCT TTGACTAAAA CTTCATTGTA 1440 AATTCTGTCA ATTTCCTGTA AATTACCACT GTCAATTGCC ATCTGCATGC TGACAAGCAT 1500 TCCAGCATAA TCATGTCGAA AACCACGGAT TTCATTATAC AGACCAACAA TTTCATCTGT 1560 GTAATTCTGT AAATGTTTCT GTTCAAATTT CTTCTGCTTC AAAGCAATCT CTTTCTCCAT 1620 TTGAACTTTA TGAGAATTCA TTGCAAAGAA GGTCAAAAGG AGAGAGATAA AGACAATAGA 1680 TGACAAAATA CTTCCAAAAC TATTCAAATG TTTAATCGTA CTTACCATAT CTGAAACGAA 1740 AGATACAATA TGTAGCAATA GTAAAGCAAA AAATACTTTT TTCAAGAAAG GATAAAGGTA 1800 GTCCTTGTCA AAATAGGCTA GTTCCAAATG GAAATAGTAA ATGATTTTTA ATGTAACAAA 1860 ATAGGTTAAC ACCGTCACAA CGAAAAAGAA TGGGAAATGA TATTGTAAAA CAAAATTATC 1920 TCCTGTTATA GAGGAGAAAA TTACGGACAG AAAGTTATGA GTGCTCTCAT ATAAAAGAGA 1980 TAGTAGTAAA CTTAGGAATA GTCCTCTATC CCTCTCATAC TGTTTCATCC ATCGAAAATA 2040 GGAATATAAG CCCAAAGGAA ATAAAAATCT TTCAATCCCT ATTTTATCTA AATATAGAAG 2100 ATAAAAGGAA AATTCAAGTA CTATTTCAGT TAGTAATGTA TAAGCACCAA AAACGTATAA

TTCTTTTCTA TTTATTCGAC CTTTACAAAT TAAACGGTAA CTGTGACTAA TAATTAAAAA

| ATGAACAATA        | ACTGTCCCAA | ATCCAAGTAA | ATCCATTACT | CTTTCTCCTT | ATTTCATTAC        | 2280 |
|-------------------|------------|------------|------------|------------|-------------------|------|
| TTTTTTCGTA        | GGAAAAGAAA | ATCAAGGATG | ATTCTTGAAA | TCCTCATCTC | CCCACCTTTA        | 2340 |
| ATCTTTTGTA        | AGTCTTTTTC | CTTCAAAGCT | ACAAACTGTT | CCAATTTAAC | TGTGTTTTTC        | 2400 |
| АТААТАААТ         | CTCCTAAAAT | GTTTTTTCTT | GTAAGCTAAC | TTACAAAAAC | CATTATACAA        | 2460 |
| AATGGAATTT        | CGTTTTAGAT | AAAATTCTCT | CAACTGTCAT | TTTTTTCTCC | CAAAGTGTAC        | 2520 |
| TTTTTTAAGA        | AAAAAGCCGG | GAAAATTCCC | AGCTTTGCTA | TTATATTGAT | CCCAGCAGGA        | 2580 |
| TTCGAACCTG        | CGACCGTTCG | CTTAGAAGGC | GAATGCTCTA | TCCAGCTGAG | CTATGAGACC        | 2640 |
| ТААТАСААТТ        | ATTCTACCAA | AAATTCAATT | AAAAGTCAAT | TTTCTATTTA | TGGTAGGGGA        | 2700 |
| ATCCCTGCTG        | AATCGTAAAA | GCGCGATAGA | TTTGTTCAAC | AAGAACTAGT | СТСАТТААСТ        | 2760 |
| GATGGGGTAA        | GGTTAGGCGA | CCAAAACTGA | CAGAAAGATT | GGCTCTATTT | TTTACAGATG        | 2820 |
| ATGATAATCC        | TAAACTTCCC | ССААТААТАА | AAGTAAGAGT | AGAAAATCCT | TTTATAGAAG        | 2880 |
| ТТТСТТСТАА        | CTGCTTACTA | AATTCTTCTG | AGAAGAAAGT | TTTCCCTTCA | ATGGCTAACA        | 2940 |
| CAATAACGAA        | ATCACGGTCA | GCAATTTTTG | ATAAAATTCT | CTGACCTTCT | ATTTCTAAAA        | 3000 |
| TCTTTTGATT        | TTCTGATTCA | CTGGCCTTAT | CTGGTGTTTT | TTCATCTGAT | AACTCAATCA        | 3060 |
| TTTCAAACTT        | AGCAAATCTA | GAAATTCGTT | TTGAATACTC | TGCGATACCA | TCTTTTAAAT        | 3120 |
| ACTTTTCTTT        | CAGTTTCCCA | ACTGTTACAA | CTTTAATTTT | CATGACTCTA | TTCTAACATA        | 3180 |
| ТТСТСТАТТТ        | TTTCACATCT | TATTCACAAA | АТАААААТА  | GATTTCAATT | AAĢA <u>AATCA</u> | 3240 |
| СААТТТСААА        | AGAGTTATCC | ACAGTTTGTG | TAAAACTTTT | GTGTTTAAGT | TATAATTAAG        | 3300 |
| CTAGTCAGTT        | TATACTTTCA | GTAATTCAAA | CATATGGAGG | CAAATATGAA | ACATCTAAAA        | 3360 |
| ACATTTTACA        | AAAAATGGTT | TCAATTATTA | GTCGTTATCG | TCATTAGCTT | TTTTAGTGGA        | 3420 |
| GCCTTGGGTA        | GTTTTTCAAT | AACTCAACTA | АСТСААААА  | GTAGTGTAAA | CAACTCTAAC        | 3480 |
| AACAATAGTA        | CTATTACACA | AACTGCCTAT | AAGAACGAAA | ATTCAACAAC | ACAGGCTGTT        | 3540 |
| AACAAAGTAA        | AAGATGCTGT | TGTTTCTGTT | ATTACTTATT | CGGCAAACAG | ACAAAATAGC        | 3600 |
| GTATTTGGCA        | ATGATGATAC | TGACACAGAT | TCTCAGCGAA | TCTCTAGTGA | AGGATCTGGA        | 3660 |
| <b>GTTATTTATA</b> | AAAAGAATGA | TAAAGAAGCT | TACATCGTCA | CCAACAATCA | CGTTATTAAT        | 3720 |
| GGCGCCAgCA        | AAGTAGATAT | TCGATTGTCA | GATGGGACTA | AAGTACCTGG | AGAAATTGTC        | 3780 |
| GGAGCTGACA        | CTTTCTCTGA | TATTGCTGTC | GTCAAAATCT | CTTCAGAAAA | AGTGACAACA        | 3840 |
| GTAGCTGAGT        | TTGGTGATTC | TAGTAAGTTA | ACTGTAGGAG | AAACTGCTAT | TGCCATCGGT        | 3900 |
| AGCCCGTTAG        | GTTCTGAATA | TGCAAATACT | GTCACTCAAG | GTATCGTATC | CAGTCTCAAT        | 3960 |

260 AGAAATGTAT CCTTAAAATC GGAAGATGGA CAAGCTATTT CTACAAAAGC CATCCAAACT 4020 GATACTGCTA TTAACCCAGG TAACTCTGGC GGCCCACTGA TCAATATTCA AGGGCAGGTT 4080 ATCGGAATTA CCTCAAGTAA AATTGCTACA AATGGAGGAA CATCTGTAGA AGGTCTTGGT 4140 TTCGCAATTC CTGCAAATGA TGCTATCAAT ATTATTGAAC AGTTAGAAAA AAACGGAAAA 4200 GTGACGCGTC CAGCTTTGGG AATCCAGATG GTTAATTTAT CTAATGTGAG TACAAGCGAC 4260 ATCAGAAGAC TCAATATTCC AAGTAATGTT ACATCTGGTG TAATTGTTCG TTCGGTACAA 4320 AGTAATATGC CTGCCAATGG TCACCTTGAA AAATACGATG TAATTACAAA AGTAGATGAC 4380 AAAGAGATTG CTTCATCAAC AGACTTACAA AGTGCTCTTT ACAACCATTC TATCGGAGAC 4440 ACCATTAAGA TAACCTACTA TCGTAACGGG AAAGAAGAAA CTACCTCTAT CAAACTTAAC 4500 AAGAGTTCAG GTGATTTAGA ATCTTAATTG ACATCTATGT AAAGAAAGCT TTACATAAGA 4560 GAAAAGATGT GTTAGTGTAG AATCATGGAA AAATTTGAAA TGATTTCTAT CACAGATATA 4620 CAAAAAAATC CCTATCAACC CCGAAAAGAA TTTGATAGAG AAAAACTAGA TGAACTAGCA 4680 CAGTCTATCA AAGAAAATGG GGTCATTCAA CCGATTATTG TTCGTCAATC TCCTGTTATT 4740 GGTTATGAAA TCCTTGCAGG AGAGAGACGC TATCGGGCTT CACTTTTAGC TGGTCTACGG 4800 TCTATCCCAG CTGTTGTTAA ACAGATTTCA GACCAAGAGA TGATGGTCCA GTCCATTATT 4860 GAAAATTTAC AGAGAGAAA TTTAAACCCA ATAGAAGAAG CACGCGCCTA TGAATCTCTC 4920 GTAGAGAAAG GATTCACCCA TGCTGAAATT GCAGATAAGA TGGGCAAGTC TCGTCCATAT 4980 ATCAGCAACT CCATTCGTTT ACTTTCCTTG CCAGAACAGA TTCTTTCAGA AGTAGAAAAT 5040 GGCAAACTAT CACAAGCCCA TGCGCGTTCC CTAGTTGGGT TAAATAAGGA ACAACAAGAC 5100 TATTCTTTC AACGGATTAT AGAAGAAGAT ATTTCTGTAA GGAAATTAGA AGCTCTTCTG 5160 ACAGAGAAAA AACAAAAGAA ACAGCAAAAA ACTAATCATT TCATACAAAA TGAAGAAAAA 5220 CAGTTAAGAA AACTACTCGG ATTAGATGTA GAAATTAAAC TATCTAAAAA AGACAGTGGA 5280 AAAATCATTA TTTCTTTTC AAATCAAGAA GAATATAGTA GAATTATCAA CAGCCTGAAA 5340 TAAGGCTGTT CTTTTATTTT TTTATCTCAC AAGGTTATCC ACTATGTTTT TCGATAAAAA 5400 GCTTAATAAA TCAATAATTT CTTCTTTTAT CCCCAACCTG TGGATAAAGT TTGGTAACAT 5460 TGTGGATTAT TTTCACAGC TTGTGGAAAA TTCTTGCTAT CTATGGTAAA ATATCTCTAG 5520 TATTAAACTT TTAAATAGTA AAGGAGGAGA AAGGATTGAA AGAAAAACAA TTTTGGAATC 5580 GTATATTAGA ATTTGCACAA GAAAGACTGA CTCGATCCAT GTATGATTTC TATGCTATTC 5640 AAGCTGAACT CATCAAGGTA GAGGAAAATG TTGCCACTAT ATTTCTACCT CGCTCTGAAA 5700 TGGAAATGGT CTGGGAAAAA CAACTAAAAG ATATTATTGT AGTAGCTGGT TTTGAAATTT 5760

| ATGACGCTGA | AATAACTCCC | CACTATATTT | TCACCAAACC | TCAAGATACG           | ACTAGCTCAC | 582  |
|------------|------------|------------|------------|----------------------|------------|------|
| AAGTTGAAGA | AGCTACAAAT | TTAACTCTTT | ATAACTATAG | TCCAAAGTTA           | GTATCTATTC | 588  |
| CTTATTCAGA | TACGGGATTA | AAAGAAAAGT | ATACCTTTGA | TAACTTTATT           | CAAGGGGATG | 594  |
| GAAATGTTTG | GGCTGTATCA | GCCGCTTTAG | CTGTCTCTGA | AGATTTGGCT           | CTGACCTATA | 600  |
| ACCCTCTTTT | TATCTATGGA | GGACCAGGCC | TTGGTAAGAC | TCACTTATTA           | AACGCTATTG | 606  |
| GAAATGAAAT | TCTAAAAAAT | ATTCCTAATG | CGCGTGTTAA | АТАТАТСССТ           | GCCGAAAGCT | 6120 |
| TTATTAATGA | CTTTCTTGAT | CACCTAAGAC | TTGGGGAAAT | GGAAAAGTTT           | AAAAAGACCT | 6180 |
| ATCGTAGTCT | TGATCTTTTG | TTAATCGATG | ATATCCAGTC | ACTCAGCGGA           | AAAAAAGTCG | 6240 |
| CAACTCAGGA | AGAATTTTTC | AATACCTTTA | ACGCCCTTCA | TGACAAGCAA           | AAACAGATTG | 6300 |
| TCCTAACGAG | TGATCGTAGT | ССААААСАТС | TAGAAGGGCT | CGAGGAGAGG           | CTTGTCACGC | 6360 |
| GTTTTAGTTG | GGGATTGACA | CAAACTATCA | CCCCCCTGA  | CTTTGAAACA           | CGTATTGCCA | 6420 |
| TTTTACAAAG | TAAGACGGAA | CATTTAGGCT | ACAATTTCCA | AAGTGATACT           | CTAGAATACC | 6480 |
| TAGCTGGGCA | ATTTGATTCA | AATGTTCGAG | ATCTTGAGGG | AGCCATCAAC           | GACATCACTT | 6540 |
| TAATTGCCAG | AGTAAAAAA  | ATCAAGGATA | TCACTATTGA | TATTGCTGCA           | GAAGCCATTA | 6600 |
| GAGCCCGCAA | ACAAGATGTT | AGCCAAATGC | TCGTCATCCC | AATTGATAAA           | ATCCAAACTG | 6660 |
| AAGTTGGTAA | CTTTTATGGT | GTTAGTATCA | AAGAAATGAA | GGGAAGTAGA           | CGCCTTCAAA | 6720 |
| ATATTGTTTT | GGCCCGTCAA | GTAGCÇATGT | ATTTATCTAG | AGAACTAACA           | GATAATAGTC | 6780 |
| ттссааааат | TGGGAAGGAA | TTTGGGGGAA | AAGATCATAC | CACAGTCATT           | CATGCCCATG | 6840 |
| CCAAAATAAA | ATCTTTGATT | GATCAAGACG | ATAATTTACG | TTTAGAAATT           | GAATCAATCA | 6900 |
| AAAAGAAAAT | CAAATAATTT | GTGGATAACT | TTTAGTTTTT | TATCTTTTTT           | ATCCACATTT | 6960 |
| TTTAAACAAG | CTAAAAAACT | TGATATGACT | TGTTTAAAGG | CTGTTTTCCA           | CAGATTTCAC | 7020 |
| AGACTCTATT | ATTACTATTA | TCTTTCTAAT | АСТАААААТА | AATAAAGGAG           | AATCCATGAT | 7080 |
| TCATTTTTCA | ATTAATAAAA | ATTTATTTCT | ACAAGCATTA | ААТАСТАСТА           | AGAGAGCTAT | 7140 |
| TAGTTCTAAA | AATGCCATTC | CTATTTTATC | AACAGTAAAA | ATTGACGTGA           | CCAATGAAGG | 7200 |
| TATTACTTTA | ATTGGTTCAA | ATGGTCAAAT | TTCAATTGAA | AATTTTTATTT          | СТСАААААА  | 7260 |
| TGAAGATGCT | GGTTTGTTAA | TTACTTCTTT | AGGTTCGATC | CTTCTTGAAG           | CTTCTTTCTT | 7320 |
| TATCAATGTA | GTATCTAGTT | TACCTGATGT | AACTCTTGAT | TTTAAAGAAA           | TTGAACAAAA | 7380 |
| TCAAATTGTT | TTAACCAGTG | GCAAATCAGA | AATTACCCTA | AAAGGAAAAG           | ATAGCGAACA | 7440 |
| ATATCCACGA | ATCCAAGAAA | TTTCAGCAAG | САСТССТТТА | <b>ል</b> ጥልርጥጥርል አ አ | CAAAATTACT | 7500 |

|            |            |            | 262        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| CAAGAAAATT | ATTAATGAAA | CAGCCTTTGC | TGCAAGTACA | CAAGAGAGTC | GTCCGATTTT | 756  |
| AACAGGTGTC | CACTTCGTAT | TGAGTCAACA | CAAAGAGTTA | AAAACAGTTG | CAACAGACTC | 762  |
| TCATCGCCTA | AGCCAGAAAA | AATTGACTCT | TGAAAAAAAT | AGTGATGATT | TTGATGTCGT | 768  |
| AATTCCTAGC | CGTTCTCTAC | GCGAATTTTC | AGCGGTATTT | ACAGATGATA | TCGAAACTGT | 774  |
| AGAGATTTTC | TTTGCCAATA | ACCAAATCCT | CTTTAGAAGC | GAAAATATTA | GCTTCTATAC | 780  |
| TCGTCTCCTA | GAAGGAAACT | ATCCTGATAC | AGATCGCTTG | ATTCCAACAG | ACTTTAACAC | 786  |
| TACTATTACT | TTTAATGTGG | TAAACTTACG | CCAGTCAATG | GAGCGTGCCC | GTCTTTTATC | 792  |
| AAGTGCGACT | CAAAATGGTA | CTGTGAAACT | TGAAATTAAG | GATGGGGTTG | TTAGCGCCCA | 798  |
| TGTTCACTCT | CCAGAAGTTG | GTAAAGTAAA | CGAAGAAATC | GATACTGATC | AGGTTACTGG | 8046 |
| TGAAGATTTG | ACCATTAGTT | TCAACCCAAC | TTACTTGATT | GATTCTCTTA | AAGCTTTAAA | 8100 |
| TAGCGAAAAG | GTGACTATTA | GCTTTATCTC | AGCTGTTCGT | CCATTTACTC | TTGTGCCAGC | 8160 |
| AGATACTGAC | GAAGACTTCA | TGCAGCTCAT | TACACCAGTT | CGTACAAATT | AAGTGAAAGA | 8220 |
| GGTTGAGCCT | GGCTCGCCTC | TTTTATGATA | TAATCGAAAA | AGAAAAGGAG | AGTAGTATGT | 8280 |
| ATCAAGTTGG | AAATTTTGTT | GAGATGAAAA | AATCACACGC | TTGTACAATC | AAGTCGACTG | 8340 |
| GTAAAAAGGC | TAATCGTTGG | GAAATTACAC | GTGTAGGAGC | AGATATCAAA | ATAAAATGTA | 8400 |
| GTAATTGTGA | GCATGTTGTC | ATGATGGGC  | GATATGATTT | TGAGCGAAAA | ATGAATAAAA | 8460 |
| TTATTGACTG | AGAACCCTTA | GTTAGAGGGT | TAGCACTTTA | TCCCTTTTTG | TGTTATAATA | 8520 |
| TTAGGGATTG | AAATGAAAAC | GGAGAATGAG | AAATATGGCT | TTGACAGCAG | GTATCGTTGG | 8580 |
| TTTGCCAAAC | GTTGGTAAAT | CAACACTATT | TAATGCAATT | ACAAAAGCAG | GAGCAGAGGC | 8640 |
| AGCAAACTAC | CCATTTGCGA | CGATTGATCC | AAATGTTGGA | ATGGTGGAAG | TTCCAGATGA | 8700 |
| ACGCCTACAA | AAACTAACTG | AAATGATAAC | TCCTAAAAAG | ACAGTTCCCA | CAACATTTGA | 8760 |
| ATTTACAGAT | ATTGCAGGGA | TTGTAAAAGG | AGCTTCAAAA | GGAGAGGGGC | TAGGGAATAA | 8820 |
| ATTCTTGGCC | AATATTCGTG | AAGTAGATGC | GATTGTTCAC | GTAGTTCGTG | CTTTTGATGA | 8880 |
| TGAAAATGTA | ATGCGCGAGC | AAGGACGTGA | AGACGCCTTT | GTAGATCCAC | TTGCAGATAT | 8940 |
| TGATACCATT | AATCTGGAAT | TGATTCTTGC | TGACTTAGAA | TCAGTGAACA | AACGATATGC | 9000 |
| GCGTGTAGAA | AAGATGGCAC | GTACGCAAAA | AGATAAAGAA | TCAGTAGCAG | AATTCAATGT | 9060 |
| TCTTCAAAAG | ATTAAACCAG | TCCTAGAAGA | CGGGAAATCA | GCTCGTACCA | TTGAATTTAC | 9120 |
| AGATGAGGAA | CAAAAGGTTG | TCAAAGGTCT | TTTCCTTTTG | ACGACTAAAC | CAGTTCTTTA | 9180 |
| TGTAGCTAAT | GTGGACGAGG | ATGTGGTTTC | AGAACCTGAC | TCTATCGACT | ATGTCAAACA | 9240 |
| AATTCGTGAA | TTTGCAGCGA | CAGAAAATGC | TGAAGTAGTC | GTTATTTCTG | CGCGTGCTGA | 9300 |

2 94 53

| 9360  | CCATTGGTTT | TTTCTTGAAG | TAAAAAAGAG | ATGATGAAGA | TCTGAATTGA | GGAAGAAATT |
|-------|------------|------------|------------|------------|------------|------------|
| 9420  | GATTGGGAAC | CACTTGCTTG | TGCAGCTTAC | AGTTGACGCG | GGTGTAGATA | GACAGAATCA |
| 9480  | GTATGAAGGC | TTCAAACGTG | CGCTTGGACT | AAGAAGTTCG | GCTGGTGAAA | TTACTTCACA |
| 9540  | GTGCAGTAAC | GGCTTTATTC | CTTTGAAAAA | TCCACTCAGA | GCTGGTATTA | TCCTCAAGCA |
| 9600  | AAGCTGGACG | GCCGTAAAAG | ATCTGAAAAG | TGAAATACGG | GAAGATCTAG | CATGTCATAT |
| 9660  | AATTCCGCTT | GATATCATGG | TCAAGATGGC | AATATATCGT | GAAGGAAAAG | CTTGCGTGAA |
| 9720  | AACCCTTTTG | AAAAAATTCC | TTAGGTTGGA | ATGGTGTCAA | AAATTAATAA | TAATGTCTAA |
| 9780  | CCAGGGGATA | CTTGGGAAAT | TACTTGTAGG | ATGACCAAAT | GGAAAAATAA | GCTTTTGAAA |
| 9840  | GCGAAGAAAC | TGATCAACTA | TTATGTTGAT | AATGTTGGTT | AACAAAACAC | AATATTTTGA |
| 9900  | TTTTTCCTAA | CCTAGCATCC | TTCAAGCTGA | GATAAGATAT | TTTTACACAC | AGAATGTCAC |
| 9960  | GGAAAAGCAG | GAATGAAAGT | CGACCTTTAT | GTTAAACCAA | AATTTATCTG | ATGGAGAAAA |
| 10020 | ATTTACGATG | TTTACTTATC | ATATTGACGA | TATGGTTTGG | ATTAACTTAC | TTCATGCTTT |
| 10080 | GGTGGTCATA | AGGCTCAGCA | TAAGAGCAAA | AAAATTCGTT | GGAAGTTGGG | ATCTTGACAT |
| 10140 | GTTAAGATTG | CTTTAACCGT | GAACTCAGGT | CAACATATAG | GTCTATTATT | ATGGTATCAA |
| 10200 | AAGTTTGACA | TGTTTTGAGT | TTGTTCATCA | GGTATGTCAG | ACCTAAAAAT | Gaattggaag |
| 10260 | GTAAACTACT | TGACGATTCT | TTGACAAAGT | TTACAGTCTG | TATCGGTATT | GGGATGATTA |
| 10320 | ATGGTGACCT | TAACGGATAA | TECAGAGGTA | GAGAAAACAA | GAAAATTTT  | ATTTACAAGA |
| 10380 | TTAACAGATA | GCATCAAAAT | TTAAAAAATG | AATGATCAGA | ATTCTCAGAA | TATTAGATTT |
| 10440 | ATTGCAAGCA | GGCTCTTGCA | CATCTACTAA | GGTTTATCAA | ACTAATACTT | AGAAAAGACA |
| 10500 | GCAGAAGGAC | TTATGGAGAA | TGACGTCAAC | ATTGTGTTAT | AGAAGATAGG | GTTTAGAAAA |
| 10560 | TTGGTAGATG | CTATCCATTT | AGGAACTCGT | ATCTTGGGTG | TCTTATTTCT | TTGTTAGTGA |
| 10620 | CGGGTTGAAG | AATTATTTCA | CACAGGAAAA | TTGATGTCTT | GGTGGAGTTT | ATGCTCCTAT |
| 10680 | ATCGCAGCAA | AGTTTGTAAT | AAGGGATTTT | TCATCTAAGA | TTTGACTGAT | CCTTGCGTTT |
| 10740 | ATCTCAGTTG | TATTGTAAAA | TCAAAGATAG | CCCAATGCAT | TTTACCGTCT | GTCGATTGAT |
| 10800 | TATCGAAAAG | GGAAAATGGC | ATCAGTTAAA | GCGTTTATCC | TGATCAACAC | GTGAAGAATA |
| 10860 | GATATTTTTG | AGATATTTTA | GTCTTCGAGG | GGCGAATTTA | ACAAACTCAG | TTACTCAAGT |
| 10920 | GATGGTATCA | TGATGAAATT | AGTTTTTTGG | TGTCGAATTG | GTTAGAACCT | AAATATCCCA |
| 10980 | ACTATCTTTC | GACAGAACTC | AAGAAAATAA | CAATTATCGA | AGTAGAAACA | GGTCATTTGA |
| 11040 | GCTTTAGAAA | AGGACAGTCA | ATTATCAACG | AGAGAAAAGG | TATGCTTTTG | CAGCTAGTGA |

264 AACAAATTTC AAAAACTTTA TCACCTATTT TGAAATCATA CCTAGAAGAA ATTCTTTCAA 11100 GTTTTCACCA AAAACAAAGT CATGCAGACT CTCGGAAGTT TTTATCTTTG TGCTATGATA 11160 AGACATGGAC TGTCTTTGAT TATATTGAAA AAGATACTCC AATATTCTTT GATGATTATC 11220 AAAAATTGAT GAATCAGTAT GAAGTCTTTG AAAGAGACTT AGCGCAGTAC TTTACAGAAG 11280 AATTACAGAA TAGTAAAGCA TTTTCTGATA TGCAGTATTT TTCTGATATT GAACAAATCT 11340 ATAAAAAACA AAGTCCAGTG ACCTTTTCT CTAATCTTCA AAAGGGTTTA GGAAATCTCA 11400 AATTTGACAA AATTTATCAA TTCAATCAAT ATCCTATGCA GGAATTTTTC AATCAGTTTT 11460 CTTTTCTAAA AGAAGAAATT GAACGATATA AAAAAATGGA TTACACCATT ATTCTGCAGT 11520 CTAGCAATTC AATGGGAAGT AAAACATTGG AGGATATGTT AGAGGAATAT CAGATTAAAT 11580 TGGATTCTAG AGATAAGACA AATATCTGTA AAGAATCTGT AAACTTAATA GAGGGTAATC 11640 TCAGACATGG TTTTCATTTT GTAGATGAAA AGATTTTATT GATAACTGAA CATGAGATTT 11700 TTCAAAAGAA ATTAAAGCGT CGTTTTCGAA GACAACATGT TTCAAATGCA GAGAGATTAA 11760 AAGATTACAA TGAACTTGAA AAAGGGGACT ATGTTGTCCA TCATATCCAT GGGATTGGTC 11820 AATATCTAGG AATTGAAACC ATTGAAATCA AGGGAATTCA TCGCGATTAT GTCAGTGTCC 11880 AATACCAAAA TGGTGATCAA ATTTCTATCC CCGTGGAACA GATTCATCTA CTGTCCAAAT 11940 ATATTTCAAG TGATGGTAAA GCTCCAAAAC TCAATAAATT AAATGACGGT CATTTTAAAA 12000 AGGCCAAGCA AAAGGTTAAG AACCAGGTAG AGGATATAGC TGATGATTTA ATCAAACTCT 12060 ACTCTGAACG TAGTCAGTTG AAGGGTTTTG CTTTCTCAGC TGATGATGAT GATCAAGATG 12120 CCTTTGATGA TGCTTTCCCT TATGTTGAAA CGGATGATCA ACTTCGTAGT ATTGAGGAAA 12180 TCAAGAGGGA TATGCAGGCT TCTCAGCCAA TGGATCGACT TTTAGTTGGG GATGTTGGTT 12240 TTGGAAAGAC TGAAGTTGCT ATGCGTGCAG CCTTTAAAGC AGTCAATGAT CACAAACAGG 12300 TTGTCATTCT AGTTCCGACG ACGGTTTTAG CGCAACAGCA CTATACGAAT TTTAAGGAAC 12360 GATTCCAAAA TTTTGCAGTT AATATTGATG TGTTGAGTCG CTTTAGAAGT AAAAAAGAGC 12420 AGACTGCAAC ACTTGAAAAA TTGAAAAACG GTCAAGTCGA TATTTTGATT GGAACACATC 12480 GTGTTTGTC AAAAGATGTT GTGTTTGCTG ATTTGGGCTT GATGATTATT GATGAGGAAC 12540 AGCGATTTGG TGTCAAGCAT AAGGAAACTT TGAAAGAACT GAAGAAACAA GTGGATGTCC 12600 TAACCTTGAC CGCTACGCCA ATCCCTCGTA CCCTCCATAT GTCTATGCTG GGAATCAGAG 12660 ATTTATCTGT TATTGAAACT CCGCCGACTA ATCGCTATCC TGTTCAGACC TATGTTTTGG 12720 AAAAGAATGA TAGTGTCATT CGTGATGCTG TCTTGCGTGA AATGGAGCGT GGAGGTCAAG 12780 TTTATTATCT TTACAACAAA GTTGACACAA TTGTTCAGAA GGTTTCAGAA TTACAGGAGT 12840

| TGATTCCGGA | GGCTTCGATT | GGATATGTTC | ATGGTCGAAT | GAGTGAAGTC | CAGTTGGAAA | 12900 |
|------------|------------|------------|------------|------------|------------|-------|
| ATACTCTATT | AGACTTTATT | GAGGGACAAT | ACGATATCTT | GGTGACGACT | ACTATTATTG | 12960 |
| AGACAGGGGT | GGACATTCCA | AATGCTAATA | CTTTATTTAT | TGAAAATGCG | GACCATATGG | 13020 |
| GCTTGTCAAC | CTTATATCAG | TTAAGAGGAA | GAGTCGGTCG | TAGTAATCGT | ATTGCTTATG | 13080 |
| CTTATCTCAT | GTATCGTCCA | GAAAAATCAA | TCAGTGAAGT | CTCTGAAAAG | AGATTAGAAG | 13140 |
| CGATTAAAGG | ATTTACAGAA | TTGGGCTCTG | GCTTTAAGAT | TGCAATGCGA | GATCTTTCGA | 13200 |
| TTCGTGGAGC | AGGAAATCTT | TTAGGAAAAT | CCCAGTCTGG | TTTCATTGAT | TCTGTTGGTT | 13260 |
| TTGAATTGTA | TTCGCAGTTA | TTAGAGGAAG | CTATTGCTAA | ACGAAACGGT | AATGCTAACG | 13320 |
| CTAACACAAG | AACCAAAGGG | AATGCTGAGT | TGATTTTGCA | AATTGATGCC | TATCTTCCTG | 13380 |
| ATACTTATAT | TTCTGATCAA | CGACATAAGA | TTGAAATTTA | CAAGAAAATT | CGTCAAATTG | 13440 |
| ACAACCGTGT | CAATTATGAA | GAGTTACAAG | AGGAGTTGAT | AGACCGTTTT | GGAGAATACC | 13500 |
| CAGATGTAGT | AGCCTATCTG | TTAGAGATTG | GTTTGGTCAA | ATCATACTTG | GACAAGGTCT | 13560 |
| TTGTTCAACG | TGTGGAAAGA | AAAGATAATA | AAATTACAAT | TCAATTTGAA | AAAGTCACTC | 13620 |
| AACGACTGTT | TTTAGCTCAA | GATTATTTTA | AAGCTTTATC | CGTAACGAAC | TTAAAAGCAG | 13680 |
| GCATCGCTGA | GAATAAGGGA | TTAATGGAGC | TTGTATTTGA | TGTCCAAAAT | AAGAAAGATT | 13740 |
| ATGAAATTTT | AGAAGGTTTG | CTGATTTTTG | GAGAAAGTTT | ATTAGAGATA | AAAGAGTCTA | 13800 |
| AGGAAGAAAA | TTCCATTTGA | TATTTTTCTT | СТАТААААТА | GATAAAAATG | GTACAATAAT | 13860 |
| AAATTGAGGT | AATAAGGATG | AGATTAGATA | AATATTTAAA | AGTATCGCGA | ATTATCAAGC | 13920 |
| GTCGTACAGT | CGCAAAGGAA | GTAGCAGATA | AAGGTAGAAT | CAAGGTTAAT | GGAATCTTGG | 13980 |
| CCAAAAGTTC | AACGGACTTG | AAAGTTAATG | ACCAAGTTGA | AATTCGCTTT | GGCAATAAGT | 14040 |
| TGCTGCTTGT | AAAAGTACTA | GAGATGAAAG | ATAGTACAAA | AAAAGAAGAT | GCAGCAGGAA | 14100 |
| TGTATGAAAT | TATCAGTGAA | ACACGGGTAG | AAGAAAATGT | СТАААААТАТ | TGTACAATTG | 14160 |
| AATAATTCTT | TTATTCAAAA | TGAATACCAA | CGTCGTCGCT | ACCTGATGAA | AGAACGACAA | 14220 |
| AAACGGAATC | GTTTTATGGG | AGGGGTATTG | ATTTTGATTA | TGCTATTATT | TATCTTGCCA | 14280 |
| ACTTTTAATT | TAGCGCAGAG | TTATCAGCAA | TTACTCCAAA | GACGTCAGCA | ATTAGCAGAC | 14340 |
| TTGCAAACTC | AGTATCAAAC | TTTGAGTGAT | GAAAAGGATA | AGGAGACAGC | ATTTGCTACC | 14400 |
| AAGTTGAAAG | ATGAAGATTA | TGCTGCTAAA | TATACACGAG | CGAAGTACTA | TTATTCTAAG | 14460 |
| TCGAGGGAAA | AAGTTTATAC | GATTCCTGAC | TTGCTTCAAA | GGTGATAAAA | TGGAAAATTT | 14520 |
| ATTAGACGTA | ATAGAGCAAT | TTTTGAGTTT | GTCAGATGAA | AAGCTGGAAG | AATTGGCTGA | 14580 |

266 14640 TTATTTTGTT GCTACCAAGT TTTTTGACCA TTTCAAAAGT CGTTAGCACA GAAAAAGAAG 14700 TCGTCTATAC TTCGAAAGAA ATTTATTACC TTTCACAATC TGACTTTGGT ATTTATTTTA 14760 GAGAAAAATT AAGTTCTCCC ATGGTTTATG GAGAGGTTCC TGTTTATGCG AATGAAGATT 14820 TAGTAGTGGA ATCTGGGAAA TTGACTCCCA AAACAAGTTT TCAAATAACC GAGTGGCGCT 14880 TAAATAAACA AGGAATTCCA GTATTTAAGC TATCAAATCA TCAATTTATA GCTGCGGACA 14940 AACGATTTTT ATATGATCAA TCAGAGGTAA CTCCAACAAT AAAAAAAGTA TGGTTAGAAT 15000 CTGACTTTAA ACTGTACAAT AGTCCTTATG ATTTAAAAGA AGTGAAATCA TCCTTATCAG 15060 CTTATTCGCA AGTATCAATC GACAAGACCA TGTTTGTAGA AGGAAGAGAA TTTCTACATA 15120 TTGATCAGGC TGGATGGGTA GCTAAAGAAT CAACTTCTGA AGAAGATAAT CGGATGAGTA 15180 AAGTTCAAGA AATGTTATCT GAAAAATATC AGAAAGATTC TTTCTCTATT TATGTTAAGC 15240 AACTGACTAC TGGAAAAGAA GCTGGTATCA ATCAAGATGA AAAGATGTAT GCAGCCAGCG 15300 TTTTGAAACT CTCTTATCTC TATTATACGC AAGAAAAAT AAATGAGGGT CTTTATCAGT 15360 TAGATACGAC TGTAAAATAC GTATCTGCAG TCAATGATTT TCCAGGTTCT TATAAACCAG 15420 AGGGAAGTGG TAGTCTTCCT AAAAAAGAAG ATAATAAAGA ATATTCTTTA AAGGATTTAA 15480 TTACGAAAGT ATCAAAAGAA TCTGATAATG TAGCTCATAA TCTATTGGGA TATTACATTT 15540 CAAACCAATC TGATGCCACA TTCAAATCCA AGATGTCTGC CATTATGGGA GATGATTGGG 15600 ATCCAAAAGA AAAATTGATT TCTTCTAAGA TGGCCGGGAA GTTTATGGAA GCTATTTATA 15660 ATCAAAATGG ATTTGTGCTA GAGTCTTTGA CTAAAACAGA TTTTGATAGT CAGCGAATTG 15720 CCAAAGGTGT TTCTGTTAAA GTAGCTCATA AAATTGGAGA TGCGGATGAA TTTAAGCATG 15780 ATACGGGTGT TGTCTATGCA GATTCTCCAT TTATTCTTTC TATTTTCACT AAGAATTCTG 15840 ATTATGATAC GATTTCTAAG ATAGCCAAGG ATGTTTATGA GGTTCTAAAA TGAGGGAACC 15900 AGATTTTTTA AATCATTTTC TCAAGAAGGG ATATTTCAAA AAGCATGCTA AGGCGGTTCT 15960 AGCTCTTTCT GGTGGATTAG ATTCCATGTT TCTATTTAAG GTATTGTCTA CTTATCAAAA 16020 AGAGTTAGAG ATTGAATTGA TTCTAGCTCA TGTGAATCAT AAGCAGAGAA TTGAATCAGA 16080 TTGGGAAGAA AAGGAATTAA GGAAGTTGGC TGCTGAAGCA GAGCTTCCTA TTTATATCAG 16140 CAATTTTCA GGAGAATTTT CAGAAGCGCG TGCACGAAAT TTTCGTTATG ATTTTTTCA 16200 AGAGGTCATG AAAAAGACAG GTGCGACAGC TTTAGTCACT GCCCACCATG CTGATGATCA 16260 GGTGGAAACG ATTTTATGC GCTTGATTCG AGGAACTCGC TTGCGCTATC TATCAGGAAT 16320 TAAGGAGAAG CAAGTAGTCG GAGAGATAGA AATCATTCGT CCCTTCTTGC ATTTTCAGAA 16380

| AAAAGACTTT | CCATCAATTT | TTCACTTTGA | AGATACATCA | AATCAGGAGA | ATCATTATTT | 16440 |
|------------|------------|------------|------------|------------|------------|-------|
| TCGAAATCGT | ATTCGAAATT | CTTACTTACC | AGAATTGGAA | AAAGAAAATC | CTCGATTTAG | 16500 |
| GGATGCAATC | TTAGGCATTG | GCAATGAAAT | TTTAGATTAT | GATTTGGCAA | TAGCTGAATT | 16560 |
| ATCTAACAAT | ATTAATGTGG | AAGATTTACA | GCAGTTATTT | TCTTACTCTG | AGTCTACACA | 16620 |
| AAGAGTTTTA | CTTCAAACTT | ATCTGAATCG | TTTTCCAGAT | TTGAATCTTA | CAAAAGCTCA | 16680 |
| GTTTGCTGAA | GTTCAGCAGA | TTTTAAAATC | TAAAAGCCAG | TATCGTCATC | CGATTAAAAA | 16740 |
| TGGCTATGAA | TTGATAAAAG | AGTACCAACA | GTTTCAGATT | TGTAAAATCA | GTCCGCAGgC | 16800 |
| TGATGAAAAG | GAAGATGAAC | TTGTGTTACA | CTATCAAAAT | CAGGTAGCTT | ATCAAGGATA | 16860 |
| TTTATTTTCT | TTTGGACTTC | CATTAGAAGG | TGAATTAATT | CAACAAATAC | CTGTTTCACG | 16920 |
| TGAAACATCC | ATACACATTC | GTCATCGAAA | AACAGGAGAT | GTTTTGATTA | AAAATGGGCA | 16980 |
| TAGAAAAAA  | CTCAGACGTT | TATTTATTGA | TTTGAAAATC | CCTATGGAAA | AGAGAAACTC | 17040 |
| TGCTCTTATT | ATTGAGCAAT | TTGGTGAAAT | TGTCTCAATT | TTGGGAATTG | CGACCAATAA | 17100 |
| TTTGAGTAAA | AAAACGAAAA | ATGATATAAT | GAACACTGTA | CTTTATATAG | AAAAATAGA  | 17160 |
| ŢAGGTAAAAA | ATGTTAGAAA | ACGATATTAA | AAAAGTCCTC | GTTTCACACG | ATGAAATTAC | 17220 |
| AGAAGCAGCT | AAAAAACTAG | GTGCTCAATT | AACTAAAGAC | TATGCAGGAA | AAAATCCAAT | 17280 |
| CTTAGTTGGG | ATTTTAAAAG | GATCTATTCC | TTTTATGGCT | GAATTGGTCA | AACATATTGA | 17340 |
| TACACATATT | GAAATGGACT | TCATGATGGT | TTCTAGCTAC | CATGGTGGAA | ĊAGCAAGTAG | 17400 |
| TGGTGTTATC | AATATTAAAC | AAGATGTGAC | TCAAGATATC | AAAGGAAGAC | ATGTTCTATT | 17460 |
| TGTAGAAGAT | ATCATTGATA | CAGGTCAAAC | TTTGAAGAAT | TTGCGAGATA | TGTTTAAAGA | 17520 |
| AAGAGAAGCA | GCTTCTGTTA | AAATTGCAAC | CTTGTTGGAT | AAACCAGAAG | GACGTGTTGT | 17580 |
| AGAAATTGAG | GCAGACTATA | CTTGCTTTAC | TATCCCAAAT | GAGTTTGTAG | TAGGTTATGG | 17640 |
| TTTAGACTAC | AAAGAAAATT | ATCGTAATCT | TCCTTATATT | GGAGTATTGA | AAGAGGAAGT | 17700 |
| GTATTCAAAT | TAGAAAGAAT | AATCTTTAAT | GAAAAAACAA | AATAATGGTT | ТААТТАААА  | 17760 |
| ТССТТТТСТА | TGGTTATTAT | TTATCTTTTT | CCTTGTGACA | GGATTCCAGT | ATTTCTATTC | 17820 |
| TGGGAATAAC | TCAGGAGGAA | GTCAGCAAAT | CAACTATACT | GAGTTGGTAC | AAGAAATTAC | 17880 |
| CGATGGTAAT | GTAAAAGAAT | TAACTTACCA | ACCAAATGGT | AGTGTTATCG | AAGTTTCTGG | 17940 |
| TGTCTATAAA | AATCCTAAAA | CAAGTAAAGA | AGAAACAGGT | ATTCAGTTTT | TCACGCCATC | 18000 |
| TGTTACTAAG | GTAGAGAAAT | TTACCAGCAC | TATTCTTCCT | GCAGATACTA | CCGTATCAGA | 18060 |
| ATTGCAAAAA | CTTGCTACTG | ACCATAAAGC | AGAAGTAACT | GTTAAGCATG | AAAGTTCAAG | 18120 |

268 TGGTATATGG ATTAATCTAC TCGTATCCAT TGTGCCATTT GGAATTCTAT TCTTCTTCCT 18180 ATTCTCTATG ATGGGAAATA TGGGAGGAGG CAATGGCCGT AATCCAATGA GTTTTGGACG 18240 TAGTAAGGCT AAAGCAGCAA ATAAAGAAGA TATTAAAGTA AGATTTTCAG ATGTTGCTGG 18300 AGCTGAGGAA GAAAAACAAG AACTAGTTGA AGTTGTTGAG TTCTTAAAAG ATCCAAAACG 18360 ATTCACAAAA CTTGGAGCCC GTATTCCAGC AGGTGTTCTT TTGGAGGGAC CTCCGGGGAC 18420 AGGTAAAACT TTGCTTGCTA AGGCAGTCGC TGGAGAAGCA GGTGTTCCAT TCTTTAGTAT 18480 CTCAGGTTCT GACTTTGTAG AAATGTTTGT CGGAGTTGGA GCTAGTCGTG TTCGCTCTCT 18540 TTTTGAGGAT GCCAAAAAAG CAGCACCAGC TATCATCTTT ATCGATGAAA TTGATGCTGT 18600 TGGACGTCAA CGTGGAGTCG GTCTCGGCGG AGGTAATGAC GAACGTGAAC AAACCTTGAA 18660 CCAACTTTTG ATTGAGATGG ATGGTTTTGA GGGAAATGAA GGGATTATCG TCATCGCTGC 18720 GACAAACCGT TCAGATGTAC TTGACCCTGC CCTTTTGCGT CCAGGACGTT TTGATAGAAA 18780 AGTATTGGTT GGTCGTCCTG ATGTTAAAGG TCGTGAAGCA ATCTTGAAAG TTCACGCTAA 18840 GAATAAGCCT TTAGCAGAAG ATGTTGATTT GAAATTAGTG GCTCAACAAA CTCCAGGCTT 18900 TGTTGGTGCT GATTTAGAGA ATGTCTTGAA TGAAGCAGCT TTAGTTGCTG CTCGTCGCAA 18960 TAAATCGATA ATTGATGCTT CAGATATTGA TGAAGCAGAA GATAGAGTTA TTGCTGGACC 19020 TTCTAAGAAA GATAAGACAG TTTCACAAAA AGAACGAGAA TTGGTTGCTT ACCATGAGGC 19080 AGGACATACC ATTGTTGGTC TAGTCTTGTC GAATGCTCGC GTTGTCCATA AGGTTACAAT 19140 TGTACCACGC GGCCGTGCAG GCGGATACAT GATTGCACTT CCTAAAGAGG ATCAAATGCT 19200 TCTATCTAAA GAAGATATGA AAGAGCAATT GGCTGGCTTA ATGGGTGGAC GTGTAGCTGA 19260 AGAAATTATC TTTAATGTCC AAACCACAGG AGCTTCAAAC GACTTTGAAC AAGCGACACA 19320 AATGGCACGT GCAATGGTTA CAGAGTACGG TATGAGTGAA AAACTTGGCC CAGTACAATA 19380 TGAAGGAAAC CATGCTATGC TTGGTGCACA GAGTCCTCAA AAATCAATTT CAGAACAAAC 19440 AGCTTATGAA ATTGATGAAG AGGTTCGTTC ATTATTAAAT GAGGCACGAA ATAAAGCTGC 19500 TGAAATTATT CAGTCAAATC GTGAAACTCA CAAGTTAATT GCAGAAGCAT TATTGAAATA 19560 CGAAACATTG GATAGTACAC AAATTAAAGC TCTTTACGAA ACAGGAAAGA TGCCTGAAGC 19620 AGTAGAAGAG GAATCTCATG CACTATCCTA TGATGAAGTA AAGTCAAAAA TGAATGACGA 19680 AAAATAACCC TGAGAGAGGC TGGAGCCTCT CTTTTTTGTG CAGTTTAGGA GCTAAAGGGA 19740 ACAGAATGGA GAAAATGGAA CAAATGTGTT TTCTAATCTG TTAGACTGTA TCTAGAAAGG 19800 GGAAAATTAT GATTAAAGAA TTGTATGAAG AAGTCCAAGG GACTGTGTAT AAGTGTAGAA 19860

ATGAATATTA CCTTCATTTA TGGGAATTGT CGGATTGGGA GCAAGAAGGC ATGCTCTGCT

| TACATGAATT | GATTAGTAGA | GAAGAAGGAC | TGGTAGACGA | TATTCCACGT | TTAAGGAAAT | 19980 |
|------------|------------|------------|------------|------------|------------|-------|
| ATTTCAAGAC | CAAGTTTCGA | AATCGAATTT | TAGACTATAT | CCGTAAACAG | GAAAGTCAGA | 20040 |
| AGCGTAGATA | CGATAAAGAA | CCCTATGAAG | AAGTGGGTGA | GATCAGTCAT | CGTATAAGTG | 20100 |
| AGGGGGGTCT | CTGGCTAGAT | GATTATTATC | TCTTTCATGA | AACACTAAGA | GATTATAGAA | 20160 |
| ACAAACAAAG | TAAAGAGAAA | CAAGAAGAAC | TAGAACGCGT | CTTAAGCAAT | GAACGATTTC | 20220 |
| GAGGGCGTCA | AAGAGTATTA | AGAGACTTAC | GCATTGTGTT | TAAGGAGTTT | ACTATCCGTA | 20280 |
| CCCACTAGTA | AGTCATGCAA | AAAAAATGAA | AAAAATTAGA | AAAAGTAGTT | GACAAAGTTT | 20340 |
| GAAAAGGCTG | TATAATAGTA | AGAGTTGAAA | АТААСААСТС | AGGTCCGTTG | GTCAAGGGGT | 20400 |
| TAAGACACCG | CCTTTTCACG | GCGGTAACAC | GGGTTCGAAT | CCCGTACGGA | CTATGGTATG | 20460 |
| TTGCGTCAGG | ACCACTTGAT | GAAAAAAAGT | TTAAAAAAAC | TTAAAAATCT | TCAAAAAAGT | 20520 |
| GTTGACAAGC | GAAAGCAGTT | GTGATATACT | AATATAGTTG | TCGCTTGAGA | GAAGCAAGTG | 20580 |
| ACAAAGACCT | TTGAAAACTG | AACAAGACGA | ACCAATGTGC | AGGGCGCTAC | AACGTAAGTT | 20640 |
| GTAGTACTGA | ACAATGAAAA | AAACAATAAA | TCTGTCAGTG | ACAGAAATGA | GTAAGAACTC | 20700 |
| AAACTTTTTA | ATGAGAGTTT | GATCCTGGCT | CAGGACGAAC | GCTGGCGGCG | TGCCTAATAC | 20760 |
| ATGCAAGTAG | AACGCTGAAG | GAGGAGCTTG | CTTCTCTGGA | TGAGTTGCGA | ACGGGTGAGT | 20820 |
| AACGCGTAGG | TAACCTGCCT | GGTAGCGGGG | GATAACTATT | GGAAACGATA | GCTAATACCG | 20880 |
| CATAAGAGTA | GATGTTGCAT | GACATTTGCT | TAAAAGGTGC | ACTTGCATCA | CTACCAGATG | 20940 |
| GACCTGCGTT | GTATTAGCTA | GTTGGTGGGG | TAACGGCTCA | CCAAGGCGAC | GATACATAGC | 21000 |
| CGACCTGAGA | GGGTGATCGG | CCACACTGGG | ACTGAGACAC | GGCCCAGACT | CCTACGGGAG | 21060 |
| GCAGCAGTAG | GGAATCTTCG | GCAATGGACG | GAAGTCTGAC | CGAGCAACGC | CGCGTGAGTG | 21120 |
| AAGAAGGTTT | TCGGATCGTA | AAGCTCTGTT | GTAAGAGAAG | AACGAGTGTG | AGAGTGGAAA | 21180 |
| GTTCACACTG | TGACGGTATC | TTACCAGAAA | GGGACGGCTA | ACTACGTGCC | AGCAGCCGCG | 21240 |
| GTAATACGTA | GGTCCCGAGC | GTTGTCCGGA | TTTATTGGGC | GTAAAGCGAG | CGCAGGCGGT | 21300 |
| TAGATAAGTC | TGAAGTTAAA | GGCTGTGGCT | ТААССАТА   |            |            | 21338 |
|            |            |            |            |            |            |       |

# (2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 6273 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

| TGTTTTAAA  | GAGCCGTGTC | TGGATAGACT | TTCGGACGCA | ACGCTCTATT | AGATAATGAA | 60   |
|------------|------------|------------|------------|------------|------------|------|
| CTGCCTATAC | ACAAGATTTC | TAACCTTAGT | CGACATGAGC | TGAAACCTCT | TATTTGTTAA | 120  |
| GTAGTTCACA | AAATATTATA | CACCTATTTT | ATGAATAGTC | AACTGTCTTT | ACAGTAAAAT | 180  |
| TTTAGAAAAT | CATGAAAATT | TTCTCTTTCT | TTCCATTTTA | AGTGACATTC | AGTCATTCTC | 240  |
| АСАТСААААА | AGCCCAGACG | AAATTGTCTG | AGCATTCTTT | TATCTAGTCG | TTTAAGGAAG | 300  |
| TTGAGTTCAG | TATGTTTAAA | GTCTCTGTCC | CATCATTTCT | TCAACAAACC | TTGTTCTTGG | 360  |
| AGAAACTCCT | TGGCTACTTG | CTTTGCTGAC | TTGCCTTCAA | CACCGACTTG | GTAGTTGAGC | 420  |
| TGGCTCATCT | GGCTTTCTGT | AATCTTACCA | GCCAATGTAT | TAAGAACTCT | TTCCAACTCT | 480  |
| GGGTGTTTCT | TGAGAAGAGC | TTCTTTCATG | AGTGGAGCCC | CTTGATAAGG | TGGGAAGAGT | 540  |
| TGCTTGTCAT | CTTCCAAGAC | CTGTAAATCA | TAACGCTCCA | ATTCCGCATC | AGTCGAATAG | 600  |
| GCATCCGTGA | TTTGAATATC | CCCTGACTGA | ATAGCCTGAT | AGCGAAGGGC | TGGCTCAATG | 660  |
| GTCGCTACAT | TGAGATTGAG | ACCATACATT | GATTGCAAGC | CCTTATTTCC | ATCTTCACGG | 720  |
| TCGTTAAACT | CGAGTGTAAA | ACCTGCCTTC | AACTGCCCTT | CCACTTTTTT | CAAGTCTGAA | 780  |
| ATGGTCTTCA | AGCCATATTC | TTGAGCAATC | TTTTTCGGAA | CAGCTACAGC | ATAGGTGTTT | 840  |
| TGATAAGACA | TGGGTTTGAG | ATAGGCTAGA | TGATCCTGCT | TAGCAATGCC | ATCACGCGCC | 900  |
| ACCTGATAAA | CCTGTTCTGG | TTCATGACTC | ACCTTGGGTG | ATGGTTGAAG | CAAACTTTCA | 960  |
| GTCACCGTAC | CAGTAAATTC | AGGATAGATG | TCAATATCGC | CTTTTTTCAG | AGCTTCATAA | 1020 |
| AGGAAGCTTG | TCTTCCCAAA | ATTCGGTTTA | ACAGTCGCAG | TCATGCTGGT | ATTTTCTTCA | 1080 |
| ATCAGCAACT | TATACATATT | GGCCAAAATT | TCTGGTTCTG | GACCTATTT  | CCCAGCAATA | 1140 |
| ACCAAGTTTT | CCTTCTCTTT | TTGAACCAAA | AGAGCTGGAC | TATAAGACAG | ACCCAGTAAT | 1200 |
| AAAGCCACCA | AGGCAAAACC | TGAGAAAATC | GTCCGTAATT | TTGCTTTTTC | CATCACTTTT | 1260 |
| AGTAGGAAGT | TAAAGGCAAT | GGCTAGCACT | GCAGAAGAAA | GTGCCCCAAT | СААААТСААА | 1320 |
| CTGGCATTAT | TACGGTCAAT | TCCCAAAAGA | ATAAAGGAAC | CTAGTCCCCC | TGCACCAATC | 1380 |
| AAGGCCGCCA | AGGTTGCCGT | ACCGATAATC | AAAACAGCTG | CCGTCCGAAT | CCCAGACATG | 1440 |
| ATAACAGGCA | TGGCGAGTGG | AATTTCAAAT | TTCTTGAGAC | GTTCCCATCT | GGTCATCCCA | 1500 |
| AAGGCAATCC | CAGCCTCTTG | CAGGTTCGGA | TCAATTCCCT | TCAGCCCAGT | GATAGTATTT | 1560 |
| TGCAAAATAG | GGAAAATCGC | ATAAATCACT | AGAGCTGTCA | AAGCCGGCAA | GGTCCCAATT | 1620 |
| CCCATCAAAG | GGATAAAGAG | CCCCAACAAG | GCCAGAGACG | GGATGGTCTG | GAAAATACCT | 1680 |
| GCAATCTGCA | AGACCCAGTC | GGCCAGCTTC | TCATGATAGC | GAAGAAAAAC | AGCCAAGGGA | 1740 |

| ATCGCAAGCA | AAATAGCTAG | TAACAAGGTC | AAAAGCGACA | ACTGCAAATG | TTGAGATAGA | 1800 |
|------------|------------|------------|------------|------------|------------|------|
| GCTGTCAACC | AATCACTAAA | ACGATCCTGA | AAAGTTGCAA | TTAAATTAGT | CATGAACACT | 1860 |
| ACCTCCAAAC | AAGTCTGCTA | CAAAGTCTGT | TGCAGGCGCT | TTTAAAATTG | TCTCGGGATT | 1920 |
| CGCTACCTGG | CGAATTTCTC | CATCCTGCAA | GACAGCAATA | CGGTCCGCCA | ACTTCAAGGC | 1980 |
| PTCATCCGTA | TCATGGGTTA | CAAAAATCGT | TGTCATCCCA | AACTCTTTAT | GCAATTCTTT | 2040 |
| rgtcagaacc | TGCAACTGTT | TTCTCGAAAT | AGCATCCAAG | GCCGAAAAGG | GTTCATCCAT | 2100 |
| GAGGAAAATC | TTGGGCTGAC | CAATCATAGC | TCGGACAATA | CCGACCCGTT | GCTGTTCTCC | 2160 |
| ACCAGATAAT | TCACTAGGTA | AGCGATGCCC | ATACTCGGCT | ACTGGTAAAC | CAACCTTAGC | 2220 |
| CAAAAGCTCT | TCTGTTTTCT | TCGTAATTTC | TTCCTTGCTC | CACCCCTTCA | TTTCAGGAAT | 2280 |
| GAGAGCAATA | TTTTCCGCAA | CTGTTAGATT | TGGAAAAAGA | GCAATAGCCT | GTAAAACATA | 2340 |
| ACCAGTAGAA | AGACGAAGTT | CACGCTCATC | ATAGTCTTTG | ATGCGCTTCC | CATCCATATA | 2400 |
| AATATTTCCA | TCAGTTGGTT | CCAAAAGACG | GTTAATCATC | TTGAGCATGG | TCGTCTTACC | 2460 |
| rgacccagaa | GGCCCTACTA | AAACCATAAA | TTCCCCATCC | TCAATCTGTA | AGTTGACATC | 2520 |
| CTCAAGACA  | TCCTTTTCTG | TGTAGCGCAG | TGCTACATTT | TTGTATTCAA | TCATTCTTTG | 2580 |
| TCCTCAATTT | AAAACTTCCC | TCGATTGGTC | AAGTCTTCTA | CCTTAGGCAT | AACTTCCTTA | 2640 |
| татессаат  | GCTCCACAAT | TTTCCCGTTC | TCTAAACGGA | AGATATCGTA | CTGGGCATAA | 2700 |
| CAACGCCAT  | CAATCTGAGT | CTGACCATAC | CTAACCACAT | AGTTTCCTTG | TCCTAAGAGT | 2760 |
| GGAAAACAA  | AGTCAAAAGT | GACACTATAT | TCAGCCACAT | AGTTTTTATA | AGCAGCACTT | 2820 |
| CTTGTCCAA  | TATCATGATT | ATGCTGAATC | AAATCGTCTG | CCACATAATC | ACTCCACTGC | 2880 |
| CTAGCTCCC  | CATTTTGGAA | AATTTCTGTC | AAGAAACGGC | GAACCAGCTT | TTTATTTTCT | 2940 |
| CTTTCTTAT  | CCAAATCCTT | GATTTCAAAA | TCTCCAAAAA | TTTGATCTAG | TTGGTCATTT | 3000 |
| CAGGTGTTC  | GATAGTAGTC | AATGACATCC | CAATGCTCAA | CAATACAACC | ATTCTCATCC | 3060 |
| CACGGAAAG  | TATCCGTCGT | CACCCATTGA | GCTTCTCCAC | CATTCAGATA | TTGATGAACA | 3120 |
| GAACAAAGA  | CCAGATTGCC | ATCCTCAATG | GTGCGGACAA | TCTTAATCTG | ACGCTCTGGA | 3180 |
| GACGCTCAA  | AGAAATCTGC | AAAGAAGGCT | GCAAATCCTT | CTTTCCCGTC | AGGAACACCT | 3240 |
| TCGAATGTT  | GGATATAGGT | ATCCCCTACA | GACTGGGCTT | GAGCCTCAGC | AACTCGTCCG | 3300 |
| CTTGAATGG  | CATGGATGTA | TAGGTTGTGA | GCATTTTTCA | CTTGTTGTGA | CATATTCTAA | 3360 |
| CCTCATTTC  | CCTTCTCTTT | CAGATTCGCC | AAAATTCTTT | CTTGAAAACC | TTCAAATTGG | 3420 |
| GAATTTCTT  | CCTCTGAAAA | TCCTTTGTAA | AAGATAGTAT | CCAATTTCTG | ACTGACACGA | 3480 |

272 TGCCCCACTT CTTTCTGGGA CTTGCCTAAC TCCGTTAAAA CTAAATACTT CTTACGCTTG 3540 TCTTTTCCAC ACGGACTAAC AATTACAAGC TTTTGTTCCT CTAGCTTTTT TATCATAGTC 3600 GTCAGCGTAT TATTCGCAAG TCCAGTCGCA AGCGCGATAT CTGTCGCAGT TGCGCAGCCA 3660 GTTTCACTAT TCCATAAAAC CGCTAAAATC TTGCCCTGTT CACCCCTATA AAGAGCCTCA 3720 GGATCTTGAC TCAGTAACTT TTGAAAAATC CGCCCATTCA ACAAACGAAT ATGATGGGCT 3780 AGCAAATGAC CATCTTTCAT AACACCTCCA ATTTATTTCG ATATCGAAAT GAATAAAACA 3840 ATTGTAACAC TCATCGTTCT AACTGTCAAC TATTTCGATT TAGAAATAAT TTTTGATAAT 3900 TATCCACACC ACCATACTCC GGCTCAACTA ACTTTTAACG AGAGTTTCTA AACTCCTTCG 3960 TCCTCCAGTC TACAAAAGCC TTCCATTCGT ACTATCCTAT ATTTTATGAG GGGACACATT 4020 TTTCCTATCA GACCATTTAT TTTAAAGATA GAAGTAAATC ATAATTGCTT CCATCTGTTC 4080 TTTTATAGTA TATTGAAGTT AGACTAGAGC ACTGTATCTT CTAAAACATT GATAGAAAGC 4140 GATTTGAATT TCCCAATCAA TTTGTTCGTA TTTATAGCAT TTCGAAACTG GAATAGGACA 4200 CCATGACTGC TAAAAGATTT CTATAAATTC ATTTAATTTC CTCAATCAAT TTGTTCATAT 4260 CTTATTTCAT TCCGCTATAA TTTCACCTTA CCCTATCTTT TTCGTAGCAC CCTTCAAACA 4320 GCCTATCCCC TACCGTTTGA CGATTCCTCA CTTCGCTCCA CTTCCATTAC AGAAGTTTCT 4380 TCACTACTAT GGGCTCGGCT GACTTCTCAT GATTCCTTGT TACTACTATT TGAACGCTCA 4440 CGAGATAGAT CTTACAAAAA ATGCTTTGAT CCACAATGGA ATCAAAGCAT TTTAAAGAGT 4500 TCCTCATACA TAAGCGCAGA AGTCGCAGTT CCTCTGTACT TGGCTTCTTC TCTTTTGACA 4560 AAGCGAGCCA AGTTGAGCAA CTCAGGTGCT GGATGTTTGG GATTTAGGAG CAATTCACGA 4620 TTGACCAGGC CTGAGAGACG AACTGCCTGC AATTGCTCAT TTGTAGTAGG CAGTTTTTTA 4680 GTAGTCTCTA GGAGAGCAGC AACTAAATCT TCACTCAAAT CATGTCGAGC ATGATTGTAA 4740 AGATCTTTTA TAAGGCTTTC TAGGTTTGGT TCTACCATCC CTACCACCTC CCTTATGGTT 4800 TAATAATGTT TAATCAAATC AACCGTTGAA CGATCCAATT TCTTCACCAA GGCTTGTAAG 4860 AAAGCTTGCG CTTCTAGGAA GTCATCCATT GCATAGAGGG TTTGGTGAGA ATGGATATAA 4920 CGAGCGCAGA CACCGATAGT TGTTGATGGG ACACCACCAT TTTTCAGATG AGCTGCACCT 4980 GCATCTGTTC CGCCTTTACC ACAGTAGTAT TGGTACTTGA TACCAGCTTC TTCAGCCGTT 5040 GTCAAAAGGA AATCCTTCAT CCCTGGGAGA AGCAAGTGAC CTGGATCATA GAAACGAATC 5100 AAGGTTCCAT CTCCAATCTT GCCTTGACCA CCGTAGACAT CACCTGCTGG TGAGCAATCA 5160 ACTGCGAGGA AGACTTCTGG GTCAAACTTG GTTGTAGAGG TATGAGCGCC ACGCAGACCA 5220 ACTTCTTCTT GGACGTTAGA ACCCAGATAG AGTTCATTGC CGAGTTTTTG ACCCGATAAA 5280

273

| GCTTCAGCTA  | GCTCGCTTAC  | CATGAGGACA  | CCGTAGCGGT | TATCCCAAGC | TTTTGAGATG | 5340 |
|-------------|-------------|-------------|------------|------------|------------|------|
| ATATTTTTTT  | CATTGGCTGT  | CAAAATTGCA  | GAACTATCTG | GTACAATGGT | ATCACCAGGA | 5400 |
| CGGATGCCAA  | AACTTTCTGC  | CTCAGCCTTG  | TCCGCAAAAC | CACCATCAAA | AACGATATCG | 5460 |
| GCAATGGCTG  | GCATGGTTGG  | TCCCCCCTTT  | CCACGAGTCA | AATGCGGAGG | AACAGAACCT | 5520 |
| GAAATCACAG  | GAATTTCATG  | ACCATCACGA  | GTCAAGAGTT | TGAAACGTTG | GCTGCTAACC | 5580 |
| ACCATGGGGT  | TCCAGCCACC  | GATTTCTACG  | ACACGGAAGG | TACCATCTGG | CTTGATTTCG | 5640 |
| CTGACCATAA  | AACCAACTTC  | GTCCATATGA  | GAAGCGACCA | AGACGCGCGG | TGCATCCACA | 5700 |
| GCTTCTGAAT  | GTTTGATACC  | AAAAATACCA  | CCCAAGCCAT | CTGTCACCAC | TTCATCCACA | 5760 |
| TGCGGTGTCA  | ACTTTTCACG  | AAGATAAGCA  | CGGACAGGCG | CTTCATGACC | TGAGACTGCA | 5820 |
| GCAAGTTCTG  | TTACTTCTTT  | AATTTTTGAA  | AATAATGTTG | TCATTTCAGT | TCCTTCTTTC | 5880 |
| TTTCATCCAT  | TTTACCACTT  | TTTATAGGAG  | AAGGATAGTG | GGAAGGTGGA | TTTCTAAGTT | 5940 |
| AGTATCTTAG  | TCCTGCTCTA  | TCTTAGAAAA  | GGATAGTATT | CTCTTGCATG | TAGTGCAAAA | 6000 |
| TCTAGTAAAC  | ATTCCAAAAT  | TAACTCGAAT  | ATTTATTTCC | ааасаааааа | ACAATACACC | 6060 |
| ATCAAAGTTG  | TTTGGATTTT  | TCATGAAATT  | TACAGAAAAT | AGTTGACTTC | CCTTTCTTCT | 6120 |
| ТТСТТТАААТ  | ATATAGTTGG  | TTGAGTTTGG  | AATAGTACGC | TGTAGCTGCT | AAAACATTTC | 6180 |
| TAGAAATTAA  | TTTGACTTTC  | CTAATAGAGT  | TGTTCATATC | TTATTTCAAT | TTACTATAGT | 6240 |
| ACAAAACTAG  | AAAAGGAAAA  | AATCATGACC  | AGG        |            |            | 6273 |
| (2) INFORMA | איד אורד אר | O TO NO. 22 | ).         |            |            |      |

#### (2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 28171 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

| ACAACCTTTT | TCAAAAACTC | ACCTTGGTAC | GGAGATGTTT | TGCTTTCTGC | TATTATTTTC | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| GGTTATATTC | ATATCAATTT | TGCTTTAACT | CCTCTTGCTT | ТТТТСАТТТА | TGCTAGTGGA | 120 |
| GGTCTTATTT | TAGCTCTATT | GTATCGCATG | ACTAAAAATC | TCTACTATCC | AATACTAGTT | 180 |
| CATATTCTCA | TTAATATCAC | TGCCTTCTGG | GATGTGTGGT | TGCTCCTATT | TTCAGGAAGT | 240 |
| TAGCTTACTA | AAATAATGTC | GGAACTTTCC | GGCATTTTCT | TTTTTCACAA | ATAGTCAACG | 300 |
| TTTTTCTTTT | CGATATTGTA | GTGGTGTGTA | TCCAGTTATT | TTTTŢGAATT | GATTTTGAAA | 360 |

274 ATAAGGTTGA CTTGAGAAAG GCAGATAGTG AAGATAGTTA AGAAGAATAG GATGTTCTTT 420 TTTCCTTTTT GGAAAACTTC TAAAATATGG TATAATGAAA AGATAAAGAA GTTGGGGGTA 480 GAAGATGAAC ATTCAACAAT TACGCTATGT TGTGGCTATT GCCAATAGTG GTACTTTTCG 540 TGAAGCTGCT GAAAAGATGT ATGTTAGTCA GCCGAGTCTG TCTATTTCTG TTCGTGATTT 600 GGAAAAAGAG TTGGGCTTTA AGATTTTCCG TCGGACCAGC TCAGGGACTT TCTTGACCCG 660 TCGTGGGATG GAATTTTATG AAAAATCGCA AGAATTGGTT AAAGGATTTG ATATTTTTCA 720 AAATCAGTAT GCCAATCCTG AAGAAGAAAA AGATGAATTT TCTGTTGCTA GCCAGCACTA 780 TGACTTCTTG CCACCAACTA TTACGGCCTT TTCAGAGCGC TATCCTGACT ATAAGAACTT 840 CCGTATTTT GAATCAACTA CTGTTCAAAT ATTAGATGAA GTGGCGCAAG GGCATAGTGA 900 GATTGGGATT ATCTACCTCA ACAATCAAAA TAAAAAGGGG ATTATGCAAC GGGTTGAAAA 960 ATTAGGTCTG GAGGTCATCG AATTGATTCC TTTCCATACC CATATTTATC TCCGTGAGGG 1020 TCATCCTTTA GCCCAGAAAG AGGAATTAGT CATGGAGGAT TTAGCGGATT TACCAACGGT 1080 TCGTTTCACT CAAGAGAAAG ACGAGTACCT TTATTATTCA GAGAACTTTG TCGATACCAG 1140 CGCTAGCTCA CAGATGTTTA ATGTGACAGA CCGTGCCACC TTGAATGGTA TTTTGGAGCG 1200 GACGGACGCC TATGCGACAG GTTCTGGATT TTTAGATAGT GACAGTGTTA ATGGCATTAC 1260 AGTTATTCGT CTCAAGGATA ACCTAGATAA CCGCATGGTC TATGTTAAAC GTGAAGAAGT 1320 GGAGCTTAGT CAAGCTGGGA CTCTCTTCGT AGAAGTCATG CAAGAATATT TTGATCAAAA 1380 GAGGAAATCA TGAAAAAAAG AGCAATAGTG GCAGTCATTG TACTGCTTTT GATTGGGCTG 1440 GATCAGTTGG TCAAATCCTA TATCGTCCAG CAGATTCCAC TGGGTGAAGT GCGCTCCTGG 1500 ATCCCCAATT TCGTTAGCTT GACCTACCTG CAAAATCGAG GTGCAGCCTT TTCTATCTTA 1560 CAAGATCAGC AGCTGTTATT CGCTGTCATT ACTCTGGTTG TCGTGATAGG TGCCATTTGG 1620 TATTTACATA AACACATGGA GGACTCATTC TGGATGGTCT TGGGTTTGAC TCTAATAATC 1680 GCGGGTGGTC TTGGAAACTT TATTGACAGG GTCAGTCAGG GCTTTGTTGT GGATATGTTC 1740 CACCTTGACT TTATCAACTT TGCAATTTTC AATGTGGCAG ATAGCTATCT GACGGTTGGA 1800 GTGATTATTT TATTGATTGC AATGCTAAAA GAGGAAATAA ATGGAAATTA AAATTGAAAC 1860 TGGTGGTCTG CGTTTGGATA AGGCTTTGTC AGATTTGTCA GAATTATCAC GTAGTCTCGC 1920 GAATGAACAA ATTAAATCAG GCCAGGTCTT GGTCAATGGT CAAGTCAAGA AAGCTAAATA 1980 CACAGTCCAA GAGGGTGATG TCGTCACTTA CCATGTGCCA GAACCAGAGG TATTAGAGTA 2040 TGTGGCTGAG GATCTTCCGC TAGAAATAGT CTACCAAGAT GAGGATGTGG CTGTCGTTAA 2100 CAAACCTCAG GGAATGGTTG TGCACCCGAG TGCTGGTCAT ACCAGTGGAA CCCTAGTAAA 2160

| TGCCCTCATG | TATCATATTA | AGGACTTGTC | GGGTATCAAT | GGGGTTCTGC | GTCCAGGGAT | 2220 |
|------------|------------|------------|------------|------------|------------|------|
| TGTTCACCGT | ATTGATAAGG | ATACGTCAGG | TCTTCTCATG | ATTGCTAAAA | ACGATGATGC | 2280 |
| GCATCTAGCA | CTTGCCCAAG | AACTCAAGGA | TAAAAAGTCT | CTCCGCAAAT | ATTGGGCGAT | 2340 |
| TGTTCATGGA | AATCTACCTA | ATGATCGTGG | TGTAATTGAA | GCGCCGATTG | GCCGGAGTGA | 2400 |
| AAAAGACCGT | AAGAAACAGG | CTGTAACTGC | TAAAGGGAAG | CCTGCAGTGA | CGCGTTTTCA | 2460 |
| CGTCTTGGAA | CGCTTTGGCG | ATTATAGCTT | AGTAGAGTTG | CAACTGGAGA | CAGGGCGCAC | 2520 |
| TCATCAAATC | CGTGTCCACA | TGGCTTATAT | CGGCCATCCA | GTCGCTGGTG | ATGAGGTCTA | 2580 |
| TGGTCCTCGC | AAGACTTTGA | AAGGACATGG | ACAATTTCTT | CATGCCAAGA | CTTTAGGTTT | 2640 |
| TACTCATCCG | AGAACAGGTA | AGACCTTGGA | ATTTAAAGCA | GATATCCCAG | AGATTTTTAA | 2700 |
| GGAAACCTTG | GAGAGATTGA | GAAAGTAAGA | ATGAAAAAGA | AATTAACTAG | TTTAGCACTT | 2760 |
| GTAGGCGCTT | TTTTAGGTTT | GTCATGGTAT | GGGAATGTTC | AGGCTCAAGA | AAGTTCAGGA | 2820 |
| AATAAAATCC | ACTTTATCAA | TGTTCAAGAA | GGTGGCAGTG | ATGCGATTAT | TCTTGAAAGC | 2880 |
| AATGGACATT | TTGCCATGGT | GGATACAGGA | GAAGATTATG | ATTTCCCAGA | TGGAAGTGAT | 2940 |
| TCTCGCTATC | CATGGAGAGA | AGGAATTGAA | ACGTCTTATA | AGCATGTTCT | AACAGACCGT | 3000 |
| GTCTTTCGTC | GTTTGAAGGA | ATTGGGTGTC | CAAAAACTTG | ATTTTATTT  | GGTGACCCAT | 3060 |
| ACCCACAGTG | ATCATATTGG | AAATGTTGAT | GAATTACTGT | CTACCTATCC | AGTTGACCGA | 3120 |
| GTCTATCTTA | AGAAATATAG | TGATAGTCCT | ATTACTAATT | CTGAACGTCT | ATGGGATAAT | 3180 |
| CTGTATGGCT | ATGATAAGGT | TTTACAGACT | GCTGCAGAAA | AAGGTGTTTC | AGTTATTCAA | 3240 |
| AATATCACAC | AAGGGGATGC | TCATTTTCAG | TTTGGGGACA | TGGATATTCA | GCTCTATAAT | 3300 |
| TATGAAAATG | AAACTGATTC | ATCGGGTGAA | TTAAAGAAAA | TTTGGGATGA | CAATTCCAAT | 3360 |
| TCCTTGATTA | GCGTGGTGAA | AGTCAATGGC | AAGAAAATTT | ACCTTGGGGG | CGATTTAGAT | 3420 |
| AATGTTCATG | GAGCAGAAGA | CAAGTATGGT | CCTCTCATTG | GAAAAGTTGA | TTTGATGAAG | 3480 |
| TTTAATCATC | ACCATGATAC | CAACAAATCA | AATACCAAGG | ATTTCATTAA | AAATTTGAGT | 3540 |
| CCGAGTTTGA | TTGTTCAAAC | TTCGGATAGT | CTACCTTGGA | AAAATGGTGT | TGATAGTGAG | 3600 |
| TATGTTAATT | GGCTCAAAGA | ACGAGGAATT | GAGAGAATCA | ACGCAGCCAG | CAAAGACTAT | 3660 |
| GATGCAACAG | TTTTTGATAT | TCGAAAAGAC | GGTTTTGTCA | ATATTTCAAC | ATCCTACAAG | 3720 |
| CCGATTCCAA | GTTTTCAAGC | TGGTTGGCAT | AAGAGTGCAT | ATGGGAACTG | GTGGTATCAA | 3780 |
| GCGCCTGATT | CTACAGGAGA | GTATGCTGTC | GGTTGGAATG | AAATCGAAGG | TGAATGGTAT | 3840 |
| TACTTTAACC | AAACGGGTAT | CTTGTTACAG | AATCAATGGA | AAAAATGGAA | CAATCATTGG | 3900 |

|                   |            |            | 276        |            |            |      |
|-------------------|------------|------------|------------|------------|------------|------|
| TTCTATTTGA        | CAGACTCTGG | TGCTTCTGCT | AAAAATTGGA | AGAAAATCGC | TGGAATCTGG | 3960 |
| TATTATTTA         | ACAAAGAAAA | CCAGATGGAA | ATTGGTTGGA | TTCAAGATAA | AGAGCAGTGG | 4020 |
| TATTATTTGG        | ATGTTGATGG | TTCTATGAAG | ACAGGATGGC | TTCAATATAT | GGGGCAATGG | 4080 |
| TATTACTTTG        | CTCCATCAGG | GGAAATGAAA | ATGGGCTGGG | TAAAAGATAA | AGAAACCTGG | 4140 |
| TACTATATGG        | ATTCTACTGG | TGTCATGAAG | ACAGGTGAGA | TAGAAGTTGC | TGGTCAACAT | 4200 |
| ТАТТАТСТGG        | AAGATTCAGG | AGCTATGAAG | CAAGGCTGGC | ATAAAAAGGC | AAATGATTGG | 4260 |
| ТАТТТСТАСА        | AGACAGACGG | TTCACGAGCT | GTGGGTTGGA | TCAAGGACAA | GGATAAATGG | 4320 |
| TACTTCTTGA        | AAGAAAATGG | TCAATTACTT | GTGAACGGTA | AGACACCAGA | AGGTTATACT | 4380 |
| GTGGATTCAA        | GTGGTGCCTG | GTTAGTGGAT | GTTTCGATCG | AGAAATCTGC | ТАСААТТААА | 4440 |
| ACTACAAGTC        | ATTCAGAAAT | AAAAGAATCC | AAAGAAGTAG | TGAAAAAGGA | TCTTGAAAAT | 4500 |
| AAAGAAACGA        | GTCAACATGA | AAGTGTTACA | AATTTTTCAA | CTAGTCAAGA | TTTGACATCC | 4560 |
| TCAACTTCAC        | AAAGCTCTGA | AACGAGTGTA | AACAAATCGG | AATCAGAACA | GTAGTAGAAA | 4620 |
| AGAAGGTTTT        | AGGGCCTTCT | TTTTCCTATC | AACTCTTTTC | TATTTCCTGT | TATTCATGTT | 4680 |
| ATAATGGATA        | AATATGAATA | ATCGGAGTGA | GACTATGAAA | TACAAACGGA | TTGTCTTTAA | 4740 |
| GGTGGGTACT        | TCTTCTCTGA | CAAATGAGGA | TGGAAGTTTA | TCACGTAGTA | AGGTAAAGGA | 4800 |
| TATTACCCAG        | CAGTTGGCTA | TGCTGCACGA | GGCTGGTCAT | GAGTTGATTT | TGGTGTCTTC | 4860 |
| AGGTGCCATT        | GCGGCTGGTT | TTGGAGCCTT | AGGATTTAAA | AAGCGTCCGA | CTAAGATTGC | 4920 |
| TGATAAACAG        | GCTTCAGCAG | CGGTAGGGCA | GGGGCTTTTG | TTGGAAGAAT | ATACAACCAA | 4980 |
| TCTTCTCTTG        | CGTCAAATCG | TTTCTGCACA | AATCTTGCTG | ACCCAAGATG | ACTTTGTGGA | 5040 |
| TAAGCGTCGT        | TATAAAAATG | CCCATCAGGC | TTTGTCGGTT | TTGCTCAACC | GTGGGGCAAT | 5100 |
| PCCTATCATC        | AATGAGAATG | ATAGTGTCGT | TATTGATGAG | CTCAAGGTTG | GGGACAATGA | 5160 |
| CACTCTAAGT        | GCTCAAGTAG | CGGCGATGGT | CCAAGCAGAC | CTTTTAGTTT | TCTTGACAGA | 5220 |
| PGTGGACGGT        | CTCTATACTG | GAAATCCTAA | TTCAGATCCA | AGAGCCAAAC | GCTTGGAGAG | 5280 |
| AATCGAGACC        | ATCAATCGTG | AGATTATTGA | TATGGCTGGT | GGAGCTGGTT | CGTCAAACGG | 5340 |
| AACTGGGGGT        | ATGTTAACCA | AAATCAAGGC | TGCAACTATC | GCGACGGAAT | CAGGAGTTCC | 5400 |
| rgtttatatc        | TGCTCATCCT | TGAAATCAGA | TTCCATGATT | GAGGCGGCAG | AGGAGACCGA | 5460 |
| GGATGGTTCT        | TACTTTGTTG | CTCAAGAGAA | GGGGCTTCGT | ACCCAGAAAC | AATGGCTTGC | 5520 |
| CTTCTATGCT        | CAGAGTCAAG | GTTCTATTTG | GGTTGATAAA | GGGGCTGCGG | AAGCTCTCTC | 5580 |
| <b>FCAATATGGA</b> | AAGAGTCTTC | TCTTATCTGG | TATCGTTGAA | GCAGAAGGAG | ТСТТТТСТТА | 5640 |
| CGGTGATATC        | GTGACAGTAT | TTGACAAGGA | AAGTGGAAAA | TCACTTGGAA | AAGGACGCGT | 5700 |

| <b>SCAATTTGGA</b> | GCATCTGCTT | TGGAGGATAT | GTTGCGTTCT | CAAAAAGCCA | AGGGTGTCTT | 5760 |
|-------------------|------------|------------|------------|------------|------------|------|
| GATTTACCGT        | GACGACTGGA | TTTCCATTAC | TCCTGAAATC | CAACTACTTT | TTACAGAATT | 5820 |
| rtagaggtaa        | ACTATGGTGA | GTAGACAAGA | ACAATTTGAA | CAGGTACAGG | CTGTTAAAAA | 5880 |
| ATCGATTAAC        | ACAGCTAGTG | AAGAAGTGAA | AAACCAAGCC | TTGCTAGCCA | TGGCTGATCA | 5940 |
| CTTAGTGGCT        | GCTACTGAGG | AAATTTTAGC | GGCTAATGCC | CTCGATATGG | CAGCGGCTAA | 6000 |
| GGGAAAATC         | TCAGATGTGA | TGTTGGATCG | TCTTTATTTG | GATGCAGATC | GTATAGAAGC | 6060 |
| GATGGCAAGA        | GGAATTCGTG | AAGTGGTTGC | CTTACCAGAT | CCAATCGGTG | AAGTTTTAGA | 6120 |
| ACAAGTCAG         | CTTGAAAATG | GTTTGGTTAT | САСАААААА  | CGTGTAGCTA | TGGGTGTCAT | 6180 |
| GGTATTATC         | TATGAAAGCC | GTCCAAATGT | GACGTCTGAT | GCGGCTGCTT | TGACTCTTAA | 6240 |
| agtggaaat         | GCGGTTGTTC | TTCGTAGTGG | TAAGGATGCC | ТАТСАААСАА | CCCATGCCAT | 6300 |
| GTCACAGCC         | TTGAAGAAGG | GCTTGGAGAC | GACTACTATT | CATCCAAATG | TGATTCAACT | 6360 |
| GTGGAGGAT         | ACTAGCCGTG | AAAGTAGTTA | TGCTATGATG | AAGGCCAAGG | GCTATCTAGA | 6420 |
| CTTCTCATT         | CCTCGTGGAG | GAGCTGGCTT | GATCAATGCA | GTGGTTGAGA | ATGCGATTGT | 6480 |
| CCTGTTATC         | GAGACAGGGA | CTGGGATTGT | CCATGTCTAT | GTGGATAAGG | ATGCAGACGA | 6540 |
| GACAAGGCG         | CTGTCTATCA | TCAACAATGC | TAAAACCAGT | CGTCCTTCTG | TTTGTAATGC | 6600 |
| ATGGAGGTT         | CTGCTGGTTC | ATGAAAACAA | GGCAGCAAGC | TTCCTTCCTC | GCTTGGAGCA | 6660 |
| GTGTTGGTT         | GCAGAGCGTA | AGGAAGCTGG | ACTGGAACCA | ATTCAATTCC | GCCTACATAG | 6720 |
| AAAGCAAGC         | CAGTTTGTTT | CAGGTCAAGC | AGCTGAGACC | CAAGACTTTG | ACACCGAGTT | 6780 |
| TTAGACTAT         | GTCCTTGCTG | TTAAGGTTGT | GAGCAGTTTA | GAAGAAGCGG | TTGCGCACAT | 6840 |
| GAATCCCAC         | AGCACCCATC | ATTCGGATGC | TATTGTGACG | GAAAATGCTG | AAGCTGCAGC | 6900 |
| TACTTTACA         | GATCAAGTGG | ACTCTGCAGC | GGTGTATGTT | AATGCCTCAA | CTCGTTTCAC | 6960 |
| GATGGAGGA         | CAATTTGGTC | TTGGTTGTGA | AATGGGGATT | TCTACTCAGA | AATTGCACGC | 7020 |
| CGTGGTCCC         | ATGGGCTTGA | AAGAGTTGAC | CAGCTACAAG | TATGTGGTTG | CCGGTGATGG | 7080 |
| CAGATAAGG         | GAGTAAGAGA | TGAAGATTGG | ATTTATCGGT | TTGGGGAATA | TGGGTGCTAG | 7140 |
| TTGGCAAAA         | TCTGTCTTGC | AGACTAGGAC | GTCAGATGAG | ATTCTCCTTG | CCAATCGTAG | 7200 |
| CAAGCTAAG         | GTAGATGCTT | TCATTGCAGA | CTTTGGTGGT | CAGGCTTCCA | GCAATGAAGA | 7260 |
| ATGTTTGCA         | GAAGCAGATG | TGATTTTTCT | aggagttaag | CCTGCTCAGT | TTTCTGAACT | 7320 |
| CTTTCTCAA         | TACCAGACCA | TCCTTGAAAA | AAGAGAAAGT | CTTCTTTTGA | TTTCGATGGC | 7380 |
| GCTGGATTG         | ACCTTAGAAA | AACTAGCAAG | TCTTATCCCA | AGTCAACACC | GAATTATTCG | 7440 |

278 TATGATGCCT AATACCCCTG CTTCTATCGG GCAAGGAGTG ATTAGTTATG CCTTGTCTCC 7500 TAATTGCAGG GCTGAGGACA GTGAGCTCTT TTATCAGCTT TTAGCCAAGG CTGGTCTCTT 7560 GGTTGAACTA GGAGAAAGTT TAATCGATGC AGCGACAGGT CTTGCAGGTT GTGGACCAGC 7620 CTTTGTCTAT CTTTTTATCG AGGCCTTGGC AGATGCAGGT GTTCAGACAG GATTACCACG 7680 AGAAATAGCA TTGAAAATGG CAGCACAAAC TGTGGTAGGA GCTGGGCAAT TGGTCCTTGA 7740 AAGTCAGCAA CATCCTGGAG TATTGAAAGA CCAAGTCTGT AGCCCAGGCG GTTCGACTAT 7800 CGCTGGTGTA GCAAGCCTAG AAGCGCATGC TTTCCGAGGA ACAGTCATGG ATGCAGTTCA 7860 TCAAGCCTAC AAACGAACAC AAGAACTAGG TAAATAAGAG GTAGTTTTGA CTGCCTCTTT 7920 TATGGTGGCT GAAATGAGAA GACACAAAAA GATTGTCACA AACCCCTATT TTTTTGATAG 7980 AATAGAAGTA GTAAAAAAGA AATGAGTTAG ACATGTCAAA AGGATTTTTA GTCTCTCTTG 8040 AGGGACCAGA GGGAGCAGGC AAGACCAGTG TTTTAGAGGC TCTGCTACCA ATTTTAGAGG 8100 AAAAAGGAGT AGAGGTGTTG ACGACCCGTG AACCTGGCGG AGTCTTGATT GGGGAGAAGA 8160 TTCGGGAAGT GATTTTGGAT CCAAGTCATA CTCAGATGGA TGCTAAAACA GAGCTACTTC 8220 TCTATATTGC CAGTCGCAGA CAGCATTTGG TGGAAAAAGT TCTTCCAGCC CTTGAAGCTG 8280 GCAAGTTGGT CATCATGGAT CGTTTTATCG ATAGTTCTGT TGCCTATCAG GGATTTGGTC 8340 GTGGCTTAGA TATTGAAGCC ATTGACTGGC TCAATCAGTT TGCGACAGAT GGCCTCAAAC 8400 CCGATTTGAC ACTCTATTTT GACATCGAGG TGGAAGAAGG GCTGGCTCGT ATTGCTGCTA 8460 ATAGTGACCG CGAGGTTAAT CGTTTGGATT TGGAAGGGTT GGACTTGCAT AAAAAAGTTC 8520 GTCAAGGCTA CCTTTCTCTT CTGGATAAAG AGGGAAATCG CATTGTCAAG ATTGATGCTA 8580 GTCTCCCTTT GGAGCAAGTT GTGGAAACTA CCAAGGCTGT CTTGTTTGAC GGAATGGGCT 8640 TGGCCAAATG AAACAAGATC AACTAAAGGC TTGGCAACCA GCTCAGTTTG ACCGTTTTGT 8700 CCGTATCTTA GAACAAGACC AGCTCAATCA CGCCTATCTC TTTTCAGGTT TCTTTGAAAG 8760 CTTGGAAATG GCGCAATTTT TAGCTAAGAG CCTCTTTTGT ACGGATAAAG TTGGCGTCTT 8820 ACCATGTGAG AAATGCCGAA GTTGCAAGCT GATTGAACAG GGAGAATTTC CCGATGTCAC 8880 CTTGATTAAA CCAGTTAATC AGGTCATTAA GACGGAACGC ATTCGAGAAT TGGTGGGTCA 8940 GTTTTCTCAA GCAGGGATTG AAAGCCAGCA ACAGGTCTTT ATCATCGAGC AAGCGGATAA 9000 AATGCATCCC AACGCAGCCA ATTCTCTGCT CAAGGTCATC GAAGAACCCC AGAGTGAAGT 9060 TTATATTTTC TTCTTGACTA GCGATGAGGA AAAGATGTTA CCGACAATCC GAAGTCGGAC 9120 TCAGATCTTC CACTTTAAAA AGCAAGAAGA AAAACTTATC TTACTCTTAG AACAAATGGG 9180 ACTTGTTAAG AAAAAAGCGA CTCTTTTAGC TAAGTTTAGT CAATCGCGAG CTGAAGCAGA 9240

| AAAGTTGGCT | AATCAGGCAA | GTTTTTGGAC | CTTGGTCGAT | GAAAGTGAAC | GCCTGCTGAC | 9300  |
|------------|------------|------------|------------|------------|------------|-------|
| TTGGTTAGTA | GCTAAGAAAA | AAGAAAGTTA | TCTACAGGTT | GCCAAATTAG | CCAACTTGGC | 9360  |
| AGATGATAAG | GAAAAACAGG | ATCAGGTTTT | ACGGATTCTT | GAAGTTCTCT | GTGGGCAGGA | 9420  |
| CCTCTTGCAG | GTAAGAGTAA | GAGTGATTCT | ACAAGATTTA | CTAGAAGCTA | GAAAAATGTG | 9480  |
| GCAAGCTAAT | GTCAGCTTTC | AAAATGCCAT | GGAATATCTG | GTCTTGAAAG | алататалас | 9540  |
| TCAAAAATGA | ATGATAAAGA | AAGGAAAGGG | CTGTTTTATG | GACAAAAAAG | AATTATTTGA | 9600  |
| CGCGCTGGAT | GATTTTTCCC | AACAATTATT | GGTAACCTTA | GCCGATGTGG | AAGCCATCAA | 9660  |
| GAAAAATCTC | AAGAGCCTGG | TAGAGGAAAA | TACAGCTCTT | CGCTTGGAAA | ATAGTAAGTT | 9720  |
| GCGAGAACGC | TTGGGTGAGG | TGGAAGCAGA | TGCTCCTGTC | AAGGCCAAGC | ATGTTCGTGA | 9780  |
| AAGTGTCCGT | CGCATTTACC | GTGATGGATT | TCACGTATGT | AATGATTTTT | ATGGACAACG | 9840  |
| TCGAGAGCAG | GACGAGGAAT | GTATGTTTTG | TGACGAGTTG | CTATACAGGG | AGTAGGCATG | 9900  |
| CAGATTCAAA | AAAGTTTTAA | GGGGCAGTCT | CCCTATGGCA | AGCTGTATCT | AGTGGCAACG | 9960  |
| CCGATTGGCA | ATCTAGATGA | TATGACTTTT | CGTGCTATCC | AGACCTTGAA | AGAAGTGGAC | 10020 |
| TGGATTGCTG | CTGAGGATAC | GCGCAATACA | GGGCTTTTGC | TCAAGCATTT | TGACATTTCC | 10080 |
| ACCAAGCAGA | TCAGTTTTCA | TGAGCACAAT | GCCAAGGAAA | AAATTCCTGA | TTTGATTGGT | 10140 |
| TTCTTGAAAG | CAGGGCAAAG | TATTGCTCAG | GTCTCTGATG | CCGGTTTGCC | TAGCATTTCA | 10200 |
| GACCCTGGTC | ATGATTTAGT | TAACGCAGCT | attgaggaag | AAATTGCAGT | TGTGÄČÁGTT | 10260 |
| CCAGGTGCCT | CTGCAGGAAT | TTCTGCCTTG | ATTGCCAGTG | GTTTAGCGCC | ACAGCCACAT | 10320 |
| ATCTTTTACG | GTTTTTTACC | GAGAAAATCA | GGTCAGCAGA | AGCAATTTTT | TGGCTTGAAA | 10380 |
| AAAGATTATC | CTGAAACACA | GATTTTTTAT | GAATCACCTC | ATCGTGTAGC | AGACACGTTG | 10440 |
| GAAAATATGT | TAGAAGTCTA | CGGTGACCGC | TCCGTTGTCT | TGGTCAGGGA | ATTGACCAAA | 10500 |
| ATCTATGAAG | AATACCAACG | AGGTACTATC | TCTGAGTTAT | TAGAAAGCAT | TGCTGAAACG | 10560 |
| CCACTCAAGG | GCGAATGTCT | TCTCATTGTT | GAGGGTGCCA | GTCAGGGTGT | GGAGGAAAAG | 10620 |
| GACGAGGAAG | ACTTGTTCGT | AGAAATTCAA | ACCCGCATCC | AGCAAGGTGT | GAAGAAAAAC | 10680 |
| CAAGCTATCA | AGGAAGTCGC | TAAGATTTAC | CAGTGGAATA | AAAGTCAGCT | CTACGCTGCC | 10740 |
| TACCACGACT | GGGAAGAAAA | ACAATAAAGG | GAGACAGGAT | GTAATAATTC | TGTCTGTTTC | 10800 |
| TGTTTAACTT | AATTAGTGAT | GATAATATAA | AGATGTATCA | CTTGGTATAG | AAGCTTTGGT | 10860 |
| ATTAAGTTTT | TTATTAAGCC | CATACGGAAT | ACCGATGGTT | GGAGCAGCAG | TTATAGCGTT | 10920 |
| CTTAGAAGGT | ATAAATAGAA | AAATAAGGTC | ATTTTAAATC | AAAGGATTGA | TAAATCAGAA | 10980 |

| AGAAGGTGAT | TTTTTGCGAA | CATACGAAAA | 280<br>TAAAGAAGAA | CTAAAAGCTG | AGATAGAGAA | 11040 |
|------------|------------|------------|-------------------|------------|------------|-------|
| AACATTTGAG | AAATATATTT | TAGAATTTGA | ТААТАТТССА        | GAAAATTTAA | AAGATAAGAG | 11100 |
| AGCTGATGAA | GTTGACAGAA | CTCCAGCAGA | AAACCTTGCT        | TATCAGGTTG | GTTGGACCAA | 11160 |
| CTTGGTTCTT | AAATGGGAAG | AAGATGAAAG | AAAGGGGCTT        | СААСТАААА  | CACCATCGGA | 11220 |
| TAAATTTAAA | TGGAATCAAC | TTGGTGAATT | ATATCAGTGG        | TTCACAGATA | CCTACGCTCA | 11280 |
| TTTATCTCTG | CAAGAGTTGA | AAGCAAAATT | AAATGAAAAT        | АТТААТТСТА | TCTCTGCAAT | 11340 |
| GATTGATTCG | TTGAGTGAGG | AAGAATTATT | TGAACCGCAT        | ATGAGAAAGT | GGGCTGATGA | 11400 |
| AGCGACTAAA | ACAGCGACTT | GGGAAGTGTA | TAAGTTTATT        | CATGTAAATA | CGGTTGCACC | 11460 |
| TTTTGGAACT | TTCAGAACTA | AAATCAGAAA | ATGGAAGAAG        | ATAGTATTAT | AAATTATATT | 11520 |
| ТТТААСТТТА | AAAAATTTCA | TAAAAATGGT | TACCAAAGGC        | GATAGAAGAA | AAACTATCGT | 11580 |
| CTTTTTCTTT | GCAAATTTTT | AAGAAGGGAG | GTGATCTTGC        | ATGGACTTTG | ААТАТТТТТА | 11640 |
| TAACAGAGAA | GCGGAAAGAT | TTAACTTCTT | AAAAGTACCG        | GAGATATTAG | TTGATAGAGA | 11700 |
| AGAATTTCGG | GGCTTATCAG | CAGAAGCAAT | TATCCTTTAT        | TCCATACTTC | TTAAACAGAC | 11760 |
| AGGAATGTCA | TTTAAGAATA | ACTGGATAGA | CAAGGAAGGC        | AGAGTATTTA | TCTATTTTAC | 11820 |
| TGTCGAAGAA | ATTATGAAAA | GAAGAAATAT | CTCAAAGCCA        | ACTGCCATAA | AAACATTAGA | 11880 |
| TGAGCTTGAT | GTAAAAAAGG | AATAGGACTG | ATCGAAAGAG        | TAAGGCTTGG | ACTTGGTAAG | 11940 |
| CCGAACATCA | TTTATGTTAA | AGACTTTATG | AGTATATTTC        | AGGTAAAAGA | AAATGACTTA | 12000 |
| CAGAAGTCAA | AAAACTTAAC | TTCAGAAGTA | AAAGATTTTA        | ACCTCAGAAG | TAAAGAAAAT | 12060 |
| GAACTTCAAG | AGGTTAAGAA | CCTTGACTCT | AACTATATAG        | AGAATAATAA | GAGTAAGTAT | 12120 |
| AGTAAGAGAG | AATATAGTTT | TGGTGAAAAC | GGACTTGGAA        | CATTTCAAAA | TGTGTTTTTA | 12180 |
| GCTGCTGAAG | ATATATCGGA | TTTACAAATC | ATAATGAACT        | CACAGCTTGA | GAATTACATT | 12240 |
| AGACTTCCTG | CAAAACTAGA | ATCCTAGTTC | ATGATTGATA        | ATGCCAGCAA | TCAAATTCAT | 12300 |
| TCGTAATCCG | AAGCGTTTAC | GATGATTTCG | ATAGATTGTT        | GAAAACATTT | TAAACGTTTT | 12360 |
| TACTTTGGCA | AAGATGTTCT | CAATCTTGCT | TCTCTCCTTG        | GATAGCGCAT | GGTTACAGGC | 12420 |
| TTTATCTTCA | GCTGTTAGCG | GCTTGAGTTT | GCTGGATTTA        | CGTGGAGTTT | GTACTTGAGG | 12480 |
| ATATATCTTC | ATGAGCCCTT | GATAACCACT | GTCAGACAAG        | ATTTTACCAG | CTTGTCCGAT | 12540 |
| ATTTCTGCGA | CTCATTTTGA | ACAACTTCAT | ATCACGACAA        | TAGTTCACAG | CGATATCCAA | 12600 |
| AGAAACAATT | CTCCCTTGAC | TTGTGACAAT | CGCTTGAGCC        | TTCATAGCGT | GAAATTTCTT | 12660 |
| TTTACCAGAA | TGATTCGCTA | ATTCTTTTTT | TAGGGCGATT        | GATTTTTACT | TCCGTCGCAT | 12720 |
| CAATCATTAC | CGTGTCCTCA | GAACTGAGAG | GAGTTCTTGA        | AATCGTAACA | CCACTTTGAA | 12780 |

| CAAGAGTTAC       | TTCAACCCAT | TGGCTCCGAC | GGATTAAGTT | GCTTTCGTGA | АТАССААААТ | 12840 |
|------------------|------------|------------|------------|------------|------------|-------|
| CAGCCGCAAT       | TTGTTCATAA | GTTCGATATT | CTCGCACATA | TTGAAGAGTG | GCCATAAGAA | 12900 |
| GCTCTTCTAG       | GCTTAATTTA | GGTTTTCGTC | CACCTTTTGC | GTGTTTAAGT | TGATAAGCTG | 12960 |
| CATAATTT         | AGCTAATATC | TCTTCAAAAG | TCGTGCGCTG | AACACCAACA | AGACGCTTAA | 13020 |
| ATCGTGCATC       | AGTTAGTTGT | TTACTTGCTT | CATCATTCAT | AGAACTACTA | TACCATATTT | 13080 |
| rgtttcgcag       | GAAGTCTATT | GGAAAGTAAG | AAATATTGAA | GCTGAGGCTA | TTAGAAGAAA | 13140 |
| TTGTGAGCGT       | GGTGCTATTT | TTTCAGGTAA | AATAAAATAT | CACGAAGATT | CACAGTTTAA | 13200 |
| AGGAGATCAC       | TATGTTGAAT | GTTATGCTGT | TTTAGATAAT | ACGGTTATAG | CAAGAGATAG | 13260 |
| <b>ATAACAGTC</b> | CCTATCGATC | CGTTATGTGG | AAAAGATTTT | ATAGAGTAGC | ATATAATTGA | 13320 |
| TTCTTAACTG       | GAATACTCAC | TATCTCTTTA | CATCAAGAAA | ATGACTAAAC | AGGGAAGTTT | 13380 |
| GCCTTCTTCC       | CTTTTTTTGT | TATACTAGTA | GAAGAAAAA  | TTAGAAAGAT | TTGTGGGTGT | 13440 |
| CAAACAGCCC       | AGTGGGGTGT | TTTAATATGG | ACTTAGGTCC | CACCCAAAGA | GGTATTAGTG | 13500 |
| CGTGTCTCA        | ATCTTATATC | AATGTTATCG | GTGCTGGTTT | GGCAGGTTCT | GAAGCAGCTT | 13560 |
| ACCAAATCGC       | AGAGCGTGGT | ATTCCAGTTA | AACTATATGA | AATGCGTGGT | GTCAAGTCTA | 13620 |
| CACCCCAGCA       | TAAAACAGAC | AATTTTGCTG | AGTTGGTTTG | TTCCAATTCT | TTGCGTGGGG | 13680 |
| ATGCTTTGAC       | AAATGCAGTT | GGTCTTCTCA | AGGAAGAAAT | GCGTCGCTTG | GGTTCTGTTA | 13740 |
| CTTGGAATC        | TECTGAGGCT | ACACGTGTTC | CTGCAGGTGG | TGCCCTTGCA | GTGGACCGTG | 13800 |
| ATGGTTTCTC       | TCAAATGGTG | ACCGAAAAAG | TTGCCAACCA | CCCCTTGATT | GAAGTGGTTC | 13860 |
| STGATGAAAT       | TACAGAATTG | CCGACAGATG | TTATTACGGT | TATCGCTACT | GGTCCTTTGA | 13920 |
| CAAGTGATGC       | CTTGGCTGAA | AAGATTCATG | CTCTTAATGA | CGGTGCTGGT | TTTTATTTCT | 13980 |
| CGATGCGGC        | AGCGCCTATT | ATCGATGTCA | ACACTATCGA | TATGAGCAAG | GTCTACCTCA | 14040 |
| ATCACGTTA        | TGATAAGGGA | GAAGCGGCCT | ACCTCAATGC | CCCTATGACC | AAGCAAGAAT | 14100 |
| TATGGATTT        | CCATGAAGCT | TTGGTCAATG | CAGAAGAAGC | ACCGCTTAGT | TCTTTTGAAA | 14160 |
| agaaaagta        | CTTTGAAGGA | TGTATGCCTA | TCGAAGTCAT | GGCCAAACGT | GGCATTAAAA | 14220 |
| TATGCTTTA        | TGGCCCTATG | AAGCCAGTCG | GTCTTGAGTA | CCCAGACGAC | TATACAGGAC | 14280 |
| TCGTGATGG        | AGAATTTAAA | ACACCTTATG | CGGTTGTGCA | ACTTCGTCAG | GATAATGCAG | 14340 |
| TGGTAGCCT        | CTACAATATT | GTTGGTTTCC | AGACCCACCT | CAAATGGGGA | GAACAAAAGC | 14400 |
| TGTCTTCCA        | AATGATTCCG | GGTCTTGAAA | ATGCGGAGTT | TGTCCGTTAT | GGTGTGATGC | 14460 |
| TCGCAATTC        | TTACATGGAT | TCACCAAATC | TTCTTGAGCA | GACTTACCGT | TCTAAGAAAC | 14520 |

282 AACCAAATCT CTTCTTTGCT GGTCAAATGA CGGGTGTGGA AGGCTATGTT GAGTCGGCGG 14580 CTTCAGGCTT AGTTGCGGGA ATTAACGCAG CTCGTCTCTT CAAGGAAGAA AGCGAGGCTA 14640 TTTTCCCCGA GACGACAGCG ATTGGAAGCT TAGCTCATTA CATTACCCAT GCCGACAGCA 14700 AACATTTCCA ACCAATGAAT GTCAATTTTG GGATCATCAA GGAGTTGGAA GGCGAGCGTA 14760 TCCGTGATAA GAAGGCTCGT TATGAAAAAA TTGCAGAGCG TGCCCTTGCC GACTTAGAGG 14820 AATTTTTGAC TGTCTAATTT TTTTGAAAGA ATTGCTCATG ATACTATAAA AATCTTAGAA 14880 ATTGTGATAA AATAGGTAGG ATGAAAGAAG GAGAGTGAAA ATGGCGAATC CCAAGTATAA 14940 ACGTATTTTA ATCAAGTTAT CAGGTGAAGC CCTTGCCGGT GAACGTGGCG TAGGGATTGA 15000 TATCCAAACA GTTCAAACAA TCGCAAAAGA GATTCAAGAA GTTCATAGCT TAGGTATCGA 15060 AATTGCCCTT GTTATCGGTG GAGGAAATCT CTGGCGTGGA GAACCTGCAG CAGAAGCAGG 15120 TATGGACCGT GTTCAGGCAG ATTACACAGG AATGCTTGGG ACTGTTATGA ATGCTCTTGT 15180 GATGGCAGAT TCATTGCAAC AAGTTGGGGT TGATACGCGT GTACAAACAG CTATTGCCAT 15240 GCAACAAGTG GCAGAGCCTT ATGTCCGTGG ACGTGCCCTT CGTCACCTTG AAAAAGGCCG 15300 TATCGTTATC TTTGGTGCTG GAATTGGTTC ACCTTACTTC TCGACAGATA CAACAGCGGC 15360 CCTTCGTGCA GCTGAAATCG AAGCAGATGC CATCCTCATG GCTAAAAATG GTGTCGATGG 15420 TGTTTACAAT GCCGATCCTA AGAAAGATAA GACAGCTGTT AAGTTTGAAG AATTGACCCA 15480 CCGTGACGTT ATCAATAAAG GTCTTCGTAT CATGGACTCA ACAGCTTCAA CCCTCTCAAT 15540 GGACAACGAC ATTGACTTGG TTGTATTCAA CATGAACCAA CCAGGCAACA TCAAACGTGT 15600 CGTATTTGGT GAAAATATCG GAACAACAGT TTCAAATAAT ATCGAAGAAA AGGAATAAGA 15660 AAGAATATGG CTAACGCAAT TATTGAAAAA GCTAAAGAGA GAATGACCCA GTCTCACCAA 15720 TCACTTGCTC GTGAATTTGG TGGTATCCGT GCTGGTCGTG CCAATGCAAG CTTGCTTGAC 15780 CGTGTACATG TAGAATACTA TGGAGTCGAA ACTCCTCTTA ACCAAATCGC TTCAATTACG 15840 ATTCCAGAAG CGCGTGTTTT GTTGGTAACA CCATTTGACA AGTCTTCATT GAAAGACATC 15900 GAACGTGCCT TGAACGCTTC TGATATTGGT ATCACACCGG CTAATGACGG TTCTGTGATT 15960 CGCTTGGTTA TCCCAGCTCT TACAGAAGAA ACTCGTCGTG ACCTTGCTAA AGAAGTGAAG 16020 AAGGTCGGCG AAAATGCTAA AGTGGCTGTC CGCAATATCC GTCGCGATGC TATGGACGAA 16080 GCTAAGAAAC GAGAAAAAGC AAAAGAAATC ACTGAAGACG AATTGAAGAC TCTTGAAAAA 16140 GACATTCAAA AAGTAACAGA CGATGCTGTT AAACACATCG ACGACATGAC TGCTAACAAA 16200 GAGAAAGAAC TTTTGGAAGT CTAAAAATAA ACAGAAAAAC TCAGTTGGCA TTGCTGGCTG 16260 AGTTTTATTC GAAAGAAGA AATATGAATA CAAATCTTGC AAGTTTTATC GTTGGACTGA 16320

| TCATCGATGA | AAACGACCGT | TTTTACTTTG | TGCAAAAGGA | TGGTCAAACC | TATGCTCTTG | 16380 |
|------------|------------|------------|------------|------------|------------|-------|
| CTAAGGAAGA | AGGCCAACAT | ACAGTAGGGG | ATACGGTCAA | AGGTTTTGCA | TACACGGATA | 16440 |
| TGAAGCAAAA | ACTCCGCCTG | ACAACCTTAG | AAGTGACTGC | CACTCAGGAC | CAATTTGGTT | 16500 |
| GGGGACGTGT | CACAGAGGTT | CGTAAGGACT | TGGGTGTCTT | TGTGGATACA | GGCCTTCCTG | 16560 |
| ACAAGGAAAT | CGTTGTGTCA | CTCGATATTC | TCCCTGAGCT | CAAGGAACTC | TGGCCTAAGA | 16620 |
| AGGGCGACCA | ACTCTACATC | CGTCTTGAAG | TGGATAAGAA | AGACCGTATC | TGGGGCCTCT | 16680 |
| TGGCTTATCA | AGAAGACTTC | CAACGTCTTG | CTCGTCCTGC | СТАСААСААС | ATGCAGAACC | 16740 |
| AAAACTGGCC | AGCCATTGTT | TACCGTCTCA | AGCTGTCAGG | AACTTTTGTT | TACCTACCAG | 16800 |
| аалатаатат | GCTTGGTTTT | ATTCATCCTA | GCGAGCGTTA | CGCAGAGCCA | CGTTTGGGGC | 16860 |
| AAGTATTAGA | TGCGCGCGTT | ATTGGTTTCC | GTGAAGTGGA | CCGCACTCTG | AACCTCTCCC | 16920 |
| TCAAACCACG | CTCCTTTGAA | ATGTTGGAAA | ACGATGCTCA | GATGATTTTG | ACTTATTTGG | 16980 |
| AAAGCAATGG | CGGTTTCATG | ACCTTAAATG | ACAAGTCATC | TCCAGACGAC | ATCAAGGCAA | 17040 |
| CCTTTGGCAT | TTCTAAAGGT | CAGTTCAAGA | AAGCTTTAGG | TGGTCTTATG | AAGGCTGGTA | 17100 |
| AAATCAAGCA | GGACCAGTTT | GGGACAGAGT | TGATTTAGGG | AGGCTTATGA | GAAAATCATT | 17160 |
| TTACACTTGG | CTCATGACCG | AGCGCAATCC | TAAAAGTAAC | AGTCCCAAAG | CAATTTTGGC | 17220 |
| AGACCTCGCT | TTTGAAGAGT | CAGCCTTTCC | AAAACACACA | GATGATTTTG | ATGAGGTCAG | 17280 |
| TCGCTTTTTG | GAGGAGCATG | CCAGTTTCTC | TTTTAACCTA | GGACATTTTC | ACAGCATTTG | 17340 |
| GCAGGAATAT | CTAGAACACT | AGCATTTATT | CATTGGGTTT | GGGCTAGTAA | TTTCTCCATC | 17400 |
| CCTCTGCTAT | AATAAAAAGA | AATAAAAGGA | TTAGAGAGGT | TCTTTATTTG | AAGGAACATT | 17460 |
| CAATAGACAT | TCAACTGAGT | CATCCAGATG | ACCTGTTTCA | TCTTTTTGGT | TCCAATGAAC | 17520 |
| GCCATCTTCG | TTTGATGGAA | GAAGAGCTTG | ATGTTGTGAT | TCATGCTCGT | ACGGAGATTG | 17580 |
| TCCAGGTTTT | GGGAGAAGAG | TCTGCCTGTG | AGGAAGCCCG | TCAAGTTATT | CAGGCTTTGA | 17640 |
| TGGTCTTGGT | AAATCGTGGG | ATGACCGTTG | GTACGCCAGA | TGTAGTCACT | GCGATTAGCA | 17700 |
| TGGTCAAAAA | TGATGAAATT | GACAAGTTTG | TCGCCCTTTA | CGAAGAAGAA | ATTATCAAGG | 17760 |
| ATAATACTGG | GAAACCTATC | CGTGTCAAAA | CCCTAGGGCA | AAAGCTTTAT | GTGGACAGTG | 17820 |
| TCAAACAGCA | TGATGTGACC | TTTGGAATTG | GGCCAGCAGG | TACAGGGAAG | ACCTTCCTTG | 17880 |
| CAGTGACCTT | GGCAGTGACT | GCCCTTAAAC | GTGGGCAAGT | CAAGCGAATT | ATCCTAACTC | 17940 |
| GTCCAGCGGT | GGAAGCGGGA | GAGAGTCTTG | GATTTCTTCC | GGGTGATCTT | AAGGAGAAGG | 18000 |
| TGGATCCTTA | CCTTCGTCCT | GTTTACGATG | CCTTGTATCA | AATTCTTGGG | AAAGACCAAA | 18060 |

284 CGACTCGTCT CATGGAGCGT GAAATTATCG AAATTGCGCC CCTTGCCTAT ATGCGTGGCC 18120 GGACCTTGGA TGATGCCTTT GTCATTCTCG ATGAGGCGCA AAACACGACC ATCATGCAGA 18180 TGAAGATGTT CTTGACGCGT TTAGGTTTTC ATTCTAAGAT GATTGTCAAT GGAGATATTA 18240 GTCAGATTGA CCTGCCACGT AATGTCAAGT CCGGTTTGAT TGATGCTCAA GAGAAACTCA 18300 AGAACATCCA TCAGATTGAC TTTGTTCATT TTTCAGCCAA GGATGTGGTT CGCCATCCTG 18360 TTGTCGCTCA GATTATCCGA GCCTATGAAT ATTCTACTGA AGTTGCACAC GACTGATTTT 18420 GAGGAAGTTC GCCTGCAAAA GAATAGACTT GTTCGGTAAC TGTAAAAAGT GTTATACTAT 18480 TTTTATGGAA ACAGTATACG ACAAAGCACA AAAACTTAAC TCAAAAAACT TCAAACTATT 18540 GATTGGTGTC AAAAAGGAAA CCTTTCAACT CATGCTAGAA CACCTGAATT CAGCCTATCA 18600 GATTCAGCAC CGAAAAGGTG GACGTCCACG TAGTCTGCCC ATGGAAGACC AGCTCATTAT 18660 GACCCTCCGT TACTTGCGAT ATTATCCCAC TCAGCGTCTG CTGGCCTTTG ATTTTGGCGT 18720 CGGTGTAGCT ACGGTAAATG CCATCATCAC TTGGGTGGAG GATACACTTC GTGCGTCAGG 18780 TAGCTTTGAT TTGGACCATT TAGAAGCCCC GAGTGCTGCT GTGGCTATTG ACGTGACCGA 18840 AAGTCCGATT CAGCGTCCAA ACAAAACCAA AGCAAAAATT ATTCTGGTAA AAAGAAACGA 18900 CACACCTTAA AAACTCAAAT TATGCTGGAT TTGACGACAC ATAAAGTCTG TCAAATGGCC 18960 TTTTCTGACG GACATACGCA TGATTTTACT CTCTTCAAAG AAAGTATTGG ACAAAGTTTG 19020 CCTGAAACGA CGCTTGCCTT TGTTGACCTA GGTTATTTAG GCATCTTGAA ATTTCATGAG 19080 AATACTTTCA TTCCTGCTAA AAATTCCAAA AATCGCCGCC TGAGTGAGGA TGATAAGCAG 19140 TTAAATAAAG AGATGTCAGC GATACGAATT GAAATTGAAC ATTTTAACGC TAAATTCAAG 19200 ACCTTCCAAA TCATGTCAGT CCCTTATCGT AACCGCAGAA AACGTTTCGA GTTACGGGCG 19260 GAATTAATTT GTGCCATCAT CAATTATGAA GTGAACTAGA TTCCGAACAA GTCTAATATA 19320 CTTTTGAGAG AGGAAAATCC AGTTGTATAG GCTAAAGGTT TTATCCAAAG GTCTGAGACA 19380 ACGATTAGGC ACGATGGAAA GAACTTTTAT GTGGCTGATG ACGATCAGTG CATCTTCCTG 19440 TGTCATAATC ACAGGGCACA AGAAAGTAGG AATTTGAAAA GATGATTGAC CAACTATCTA 19500 AGTATTACAG TTGTAGGATA CTAACTGAAA AGGATATTCC AAGTATTTTA TCTTTATATG 19560 AAAGTAATCC TCTGTATTTT CAGCATTGTC CACCAGAGCC AAATTTTGCA ACTGTAAAAG 19620 AGGACATGCT TTGTCTACCT GAAGGTAAAG CTAAGGCTGA TAAGTTTTTT GTTGGATTTT 19680 GGAATGGATC TGACCTTGTG GCTGTTATGG ATTTTGTCTA TGCATATCCT GATGAGGAGA 19740 CTGTTTTAT TGGTTTGTTT ATGGTTGATC AAGCCTATCA GAGAAAAGGG ATTGGTAGTC 19800 ATATTGTGAC AGAAGCACTA GCTTATTTTG CTAAGAACTT TCGAAAGGCA CGTTTGGCTT 19860

| ATGTTAAGGG | AAATCCGCAA | TCTCAGCATT | TTTGGGAAAA | GCAGGGCTTT | AAATCAATTG | 19920 |
|------------|------------|------------|------------|------------|------------|-------|
| GATGCGAGGT | TAAGCAAGAA | CTCTATACGG | TTGTTATCGC | TGAACAGAGC | CTAGAAGATT | 19980 |
| AGAAATGGCA | TCAAGTAAGA | ACTATTTGGA | ATTTGTTTTG | GAACAATTAT | CAGGATTAGA | 20040 |
| TGATGTGACT | TACCGTTCCA | TGATGGGGGA | GTATATTCTT | TACTTCCGCG | GCAAGATTAT | 20100 |
| TGGCGGCATT | TATGACGATC | GCTTTTTAGT | TAAACCCGTG | CAAGCAGTCT | TAGATAAGAT | 20160 |
| TGACCAATCT | TCTTTTGAGT | ТТССАТАСАА | AGGTGCCAAA | GAAATGATTT | GAGTGGAAGA | 20220 |
| ACTTGATAAT | AAGATGTTTC | TATAAGACCT | AATTTTAGCT | ATGTATAACC | AACTGCCAAC | 20280 |
| GCCCAAACCT | AAAAAGAAAA | AGCAAGGGTG | AACGAAGTAA | AAAAGAAGTC | TGCTAAGGCC | 20340 |
| CTGTCTTTGC | ACGGGTAAAA | TTTTATATAT | AAAAAGAAGC | TGGGACTAAA | GAGCTCAGCT | 20400 |
| TCCTTTGGTT | TATATAATTG | TCATTACAAG | ACGAAGTGGT | TGGGCGAAAC | TCTGTTGACT | 20460 |
| TTATTCAATT | TAGAGTTTCT | TATGCACAAT | TGAGTCTGGA | ACGAAAGTCT | CCAGTTGCAA | 20520 |
| AGTATACAGT | ACAATAAACC | AACGATGTAA | TAGCTGATGA | CACAAAGCAC | AGTGGGTAGG | 20580 |
| ACTTGCGAAG | TCACCCTTTT | CTTTTCAAAA | TTTATACTAA | ATCATTGATA | TCAGTGTAGT | 20640 |
| CACGATTAAG | TCCTTGAGCA | ACTGGTAGGT | TAGTCAAGTA | ACCTTGATAA | GTAGTCACAC | 20700 |
| CTTGACGCAA | GCCTTCATCT | TCAGAGATTG | CTTGTGCGAA | TCCTTTGCCA | GCCAAAGCTT | 20760 |
| CGATATAAGG | AAGAGTGACA | TTGGTTAGGG | CGATGGTTGA | AGTGCGAGCA | ACCGCACCAG | 20820 |
| GGATATTGGC | AACGGCATAG | TGGAGAACAC | CGTGTTTTTC | ATAGACGGGT | TCATCGTGCG | 20880 |
| TTGTCACACG | GTCAGCTGTT | TCGATAACGC | CACCTTGGTC | AACAGCAACG | TCAACGATAC | 20940 |
| AGAGCCTGGA | CGCATTTGTT | TGACCATCTC | ATCTGTCACC | AATTCCGGTG | CTTTTGCACC | 21000 |
| AGGGATGAGA | ATGGCTCCAA | TCACCACATC | AGCATCTCTC | ACACTTGCTT | CAATGTTGAA | 21060 |
| TGAATTAGAC | ATAAGAGTTT | GAATTTGACT | TCCAAAGACT | TCTTCTAGAA | CTGAGAGACG | 21120 |
| CTTGGAACTA | ATATCTAAAA | TAGTCACTTG | AGCACCAAGA | CCAAGGGCGA | TGCGGGCAGC | 21180 |
| ATGTGTACCG | ACGACACCAC | CACCGATGAT | AGTTACTTTT | CCTTTTGGAA | CACCTGGTAC | 21240 |
| ACCACCAAGT | AGAACACCAG | AGCCACCAGC | TTGCTTAGTA | AGGAAGTGAG | CTCCGATTTG | 21300 |
| AACAGCCATA | CGACCTGCAA | CCTCACTCAT | AGGAACGAGG | AGCGGTAGTT | GTCCTTGATT | 21360 |
| GTCACGAACA | GTTTCAGTTG | TTTTTGCTGT | TAACATAGCA | TCTGCTAATT | CTGGAGCAGC | 21420 |
| GGCCATGTGC | AAGTAGGTGA | AGAGAAGAAG | ATCGTCGCGC | AAGTAACCGT | ATTCAGAACT | 21480 |
| TAAAGATTCT | TTTACTTTCA | CAACCAACTC | TGCTGCCCAA | GCTTCACCAG | CAGTAGCGAC | 21540 |
| AATCTCAGCT | CCTTGCTTTT | GATAGTCAGC | ATCAGTAAAG | CCAGAACCGA | GACCAGCATT | 21600 |

|                    |            |            | 286        |            |            |       |
|--------------------|------------|------------|------------|------------|------------|-------|
| IGTTTCGATA         | AGGACACGAT | GACCACGACT | AACTAAGCTA | TGAACACCTG | CAGGTGTGAG | 21660 |
| GGCGACACGG         | TTTTCGTTAT | TTTTAATTTC | TTTTGGGATT | CCGATTAACA | TTGAGATAAC | 21720 |
| CTACCTTTCA         | ATTGACGGTC | TTGTTTTGGT | TGTCACATTC | CAGTTCATAA | ATCAAAAATG | 21780 |
| rgacggtttc         | ATTGTATATG | AAACCGCTTC | AAAAATCAAG | AAAAACTTGT | CATCCAAATT | 21840 |
| PTTTTATGCT         | AGACTAGTGA | AAATCAAGCT | CTAATGGAGG | GAAAAGTATG | GAATCAATAT | 21900 |
| PTGTGAAATT         | TGCCCAGTAT | CCGTCTATAG | AAACGGAGCG | TTTATTGCTC | AGACCTGTAA | 21960 |
| CTTTGGATGA         | TGCGGAAcAA | TGTTTGACTA | TGCCTCGGAC | AAGGGTAATA | CACGTTACAC | 22020 |
| PTTTCCAACC         | AATCAAAGCT | TGGAAGAAAC | CAAGAATAAC | ATTGCTCAGT | TCTACTTGGC | 22080 |
| PAATCCCTTG         | GGACGTTGGG | GAATAGAACT | AAAAAGCAAT | GGTCAGTTTA | TTGGAACCAT | 22140 |
| rgacttgcac         | AAGATTGATT | CTGTTCTTAA | GAAGGCAGCT | ATTGGCTACA | TTATCAATAA | 22200 |
| <b>AAAGTATT</b> GG | AATCAAGGAT | TAACGACAGA | AGCCAATCGT | GCTGTGATTG | AGCTAGCTTT | 22260 |
| rgagaagata         | GGGATGAATA | AGTTGACTGC | CCTTCACGAT | AAGGCTAATC | CCGCGTCAGG | 22320 |
| AAAGGTCATG         | GAGAAATCAG | GCATGCGTTT | TTCCCATGCA | GAACCATATG | CTTGTATGGA | 22380 |
| CCAGCATGAA         | AAAGGCCGAA | TCGTGACAAG | AGTTCATTAT | GTCTTGACCA | AGGAAGACTA | 22440 |
| TTTTGCAAAT         | AAATAAGCAG | TTGAAAAGAA | ATTTTTCGAC | TGTTTTTTCT | TCCTCTTACG | 22500 |
| ААТААТСТАА         | GAGAGGAGAA | AATATGGAAG | CAATTATCGA | GAAAATCAAA | GAGTATAAAA | 22560 |
| CATCGTCAT          | CTGTACTGGT | CTGGGCTTGC | TTGTAGGAGG | ATTTTTCCTG | CTAAAACCAG | 22620 |
| CTCCACAAAC         | ACCTGTCAAA | GAGACGAATT | TGCAGGCTGA | AGTTGCAGCT | GTTTCCAAGG | 22680 |
| ACTCATCGAC         | CGAAAAGGAA | GTGAAGAAGG | AAGAAAAGGA | AGAACCCCTT | GAACAAGATC | 22740 |
| TAATCACAGT         | AGATGTCAAA | GGTGCTGTCA | AATCGCCAGG | GATTTATGAC | TTGCCTGTAG | 22800 |
| GTAGTCGAGT         | CAATGATGCT | GTTCAGAAGG | CTGGTGGCTT | GACAGAGCAA | GCAGACAGCA | 22860 |
| AGTCGCTCAA         | TCTAGCTCAG | AAAGTTAGTG | ATGAGGCTCT | GGTTTACGTT | CCTACTAAGG | 22920 |
| GAGAAGAAGC         | AGTTAGTCAA | CAGACTGGTT | CGGGGACAGC | TTCTTCAACA | AGCAAGGAAA | 22980 |
| AGAAGGTCAA         | TCTCAACAAG | GCCAGTCTGG | AAGAACTCAA | GCAGGTCAAG | GGACTGGGAG | 23040 |
| GAAAACGAGC         | TCAGGACATT | ATTGACCATC | GTGAGGCAAA | TGGCAAGTTC | AAGTCAGTAG | 23100 |
| ACGAGCTCAA         | GAAGGTCTCT | GGCATTGGTG | GCAAAACAAT | AGAAAAGCTT | AAAGACTATG | 23160 |
| TTACAGTGGA         | TTAAGAATTT | CTCTATTCCC | CTAATTTACC | TGAGTTTTCT | ATTACTTTGG | 23220 |
| CTTTATTACG         | CTATTTTCTC | AGCATCTTAT | CTTGCTTTGT | TGGGCTTTGT | TTTTCTGCTA | 23280 |
| STCTGTCTCT         | TTATCCAATT | TCCGTGGAAA | TCTGCTGGTA | AAGTTCTAAT | AATTTGCGGA | 23340 |
| TCTTTGGAT          | TTTGGTTTGT | ТТТТСААААТ | TGGCAACAGA | GTCAAGCGAG | тсаааатстс | 23400 |

| GCGGATTCTG | TTGAAAGGGT | ACGGATTTTG | CCTGATACTA | TTAAGGTTAA | TGGTGATAGT | 23460 |
|------------|------------|------------|------------|------------|------------|-------|
| СТАТССТТТС | GTGGCAAGTC | TAACGGTCGT | GCTTTCCAAG | TCTATTATAA | ACTCCAGTCC | 23520 |
| GAGGAGGAGA | AAGAAGCCTT | TCAAGCTTTA | ACTGACCTGC | ATGAGATAGG | ACTAGAAGGG | 23580 |
| AAGCTTTCGG | AGCCAGAAGG | GCAGAGAAAT | TTTGGTGGCT | TTAATTACCA | AGCCTATCTG | 23640 |
| AAGACTCAGG | GAATTTACCA | GACTCTCAAT | ATCAAAACAA | TCCAGTCACT | TCAAAAGATT | 23700 |
| GGCAGTTGGG | ATATAGGAGA | AAACTTGTCC | AGTTTACGTC | GAAAGGCTGT | GGTTTGGATT | 23760 |
| AAGACGCACT | TTCCAGACCC | TATGGGCAAT | TACATGACAG | GACTCTTGCT | GGGACATCTG | 23820 |
| GACACCGACT | TTGAGGAGAT | GAATGAGCTT | TATTCCAGTC | TAGGAATTAT | CCACCTCTTT | 23880 |
| GCCCTATCTG | GCATGCAGGT | AGGTTTTTTC | ATGAATGGAT | TTAAGAAACT | TCTCTTGCGA | 23940 |
| TTGGGCTTGA | CCCAAGAAAA | GTTGAAATGG | CTGACTTATC | CCTTTTCCCT | TATCTATGCG | 24000 |
| GGACTAACTG | GATTTTCAGC | ATCGGTTATT | CGCAGTCTCT | TGCAAAAGCT | ACTGGCTCAA | 24060 |
| CATGGGGTTA | AGGGCTTGGA | TAATTTTGCC | TTGACGGTGC | TTGTCCTCTT | TATTGTCATG | 24120 |
| CCAAACTTTT | TCTTGACAGC | AGGAGGAGTC | TTGTCCTGCG | CTTATGCTTT | TATCCTGACC | 24180 |
| ATGACCAGCA | AAGAAGGGGA | GGGGCTCAAG | GCTGTTACTA | GTGAAAGTCT | AGTCATCTCC | 24240 |
| TTGGGCATAT | TGCCCATTCT | ATCCTTCTAT | TTTGCGGAAT | TTCAACCTTG | GTCTATCCTT | 24300 |
| TTGACCTTTG | TCTTTTCCTT | TCTTTTTGAC | TTGGTCTTCT | TACCGCTCTT | GTCTATCTTA | 24360 |
| TTTGTCCTTT | CCTTTCTCTA | TCCAGTCATT | CAGCTGAACT | TTATCTTTGA | ATGGTTAGAG | 24420 |
| GGCATTATTC | GCTTGGTCTC | GCAGGTGGCA | AGGAGACCAC | TTGTCTTTGG | TCAACCCAAC | 24480 |
| GCATGGCTTT | TAATCTTATT | GTTAATTTCC | TTGGCTTTGG | TCTATGATTT | GAGGAAAAAC | 24540 |
| ATTAAAGGAT | TAACAGTATT | GAGTTTATTG | ATTACAGGTC | TCTTTTTCCT | TACCAAGTAT | 24600 |
| CCACTGGAAA | ATGAAATCAC | CATGCTGGAT | GTGGGGCAAG | GAGAAAGTAT | TTTCTACGGG | 24660 |
| ATGTAACTGG | GAAAACCATT | CTCATAGATG | TAGGTGGTAA | GGCAGAATCT | TATAAGAAAA | 24720 |
| TCAAAAAATG | GCAAGAAAAG | ATGACGACCA | GCAATGCCCA | GCGAACCTTG | ATTCCCTATC | 24780 |
| TCAAAAGTCG | AGGAGTAGCT | AAGATTGACC | AGCTAATTTT | GACTAACACG | GACAAGGAGC | 24840 |
| ATGTTGGAGA | TTTGTCAGAG | ATGACCAAGG | CTTTCCATGT | AGGGGAGATT | CTAGTATCAA | 24900 |
| AAGACAGTCT | GAAACAGAAG | GAATTTGTGG | CAGAACTACA | GGCGACTCAA | ACAAAGGTGC | 24960 |
| GTAGTATGAT | AGTAGGGGAG | AACTTGCCCA | TTTTTGGAAG | TCAGTTAGAA | GTTCTATCTC | 25020 |
| CAAGGAAAAT | GGGAGATGGA | GGACACGATG | ATACCCTAGT | TCTGTATGGG | AAATTCTTGG | 25080 |
| ATAAGCAATT | TCTCTTCACG | GGAAATTTGG | AGGAGAAAGG | AGAGAAGGAC | TTGCTGAAGC | 25140 |

288 ACTATCCAGA CTTGAAAGTA AATGTTTTGA AAGCTAGCCA ACATGGCAAT AAAAAATCAT 25200 CAAGTCCAGC CTTTCTAGAA AAACTCAAAC CAGAGCTTAC TCTTATCTCA GTTGGAAAGA 25260 GCAATCGAAT GAAACTCCCC CATCAGGAAA CATTGACACG ACTGGAAGGT ATCAATAGCA 25320 AAGTTTATCG AACTGACCAG CAAGGAGCTA TACGTTTTAA GGGGTTGGAT AGTTGGAAAA 25380 TCGAAAGTGT TCGATAGGAA GGATAAATGT TGTAGATTAG TGAAATAAAC TAAAAATTTG 25440 TTGCATAATA ATGATAAAAA TGGTATAATG AAAACGTATT CAATATTGAG GATATAAAAT 25500 CATTAAAAAT CAGCAAAAGT TGTTTTATTA GTTAGTTTAT AATCTATTGG TCTTCTTCAG 25560 TCCAGTGTAT CTGCTGTGAC AGTCACTAAA AGTTACAAGT ATGATTGGAA TACGGTTTGG 25620 GAATATAGTA CCAACTATCA CGACCATCAG TATGCTTGGA TTCCGTCATG GTCTCGTTAT 25680 GACAGCTATT CTGAGTATAA AGTTGGCGGA GGCTGGAACT ACGCTCGTTA TGAGGTCATA 25740 AACTATTACA GCGGAGGCTA TTAATTCTTA AAGAGTGAGA AAAAGGAGGG CTAGATATGT 25800 TGCAGCTTAC TCATGTGACC TTAAAAACGC GACAAGTCAT CTTGCAAGAT GTGGATTTCA 25860 CCTTTAAAAA GGGTAGGGTT TATGGTCTTC TTGCTATCAA TGGCTCTGGA AAGACGACCC 25920 TGTTCCGTGC CATTAGCAAT TTAATTCCCA TAAGTAGTGG AAATATCGCA GCCCTCCTT 25980 CTTTATTTTA TTATGAGAGT ATTGAATGGC TGGATGGAAA CTTAAGTGGG ATGGACTACC 26040 TTCGTCTTAT CAAAAACATC TGGAAGTCAG GTCTGAACTT GAGGGATGAA ATCGCCTATT 26100 GGGAAATGTC TGACTATATC AGTCTTCCCA TTCGCAAGTA TTCCTTAGGC ATGAAGCAAC 26160 GCTTGGTGAT TGCCATGTAT TTCCTCAGTC AGGCCAAATG CTGGCTCATG GATGAGATTA 26220 CAAATGGCTT AGATGAGTAT TATCGACAGA AGTTTTTTGA TAGGCTAGCA CAAATCGATA 26280 GACAAGAACA GCTGGTTCTT TTAAGTTCCC ACTATAAGGA AGAGTTGGTT GATGTCTGCG 26340 ATAGAGTAGT AACCATTCAT CAGGGGCAGA TAGAAGAGGT TTAGTTTATG AAAGATGTTA 26400 GTCTATTTT ATTGAAAAA GTTTTCAAAA GCCGCTTAAA CTGGATTGTC TTAGCTTTAT 26460 TTGTATCTGT ACTCGGTGTT ACCTTTTATT TAAATAGTCA GACTGCAAAC TCACACAGCT 26520 TGGAGAGCAG GTTGGAAAGT CGCATTGCAG CCAACGAGAG GGCTATCAAT GAAAATGAAG 26580 AGAAACTCTC CCAAATGTCT GATACCAGCT CGGAGGAATA CCAGTTTGCT AAAAATAATT 26640 TAGACGTGCA AAAAAATCTT TTGACGCGAA AGACAGAAAT TCTGACTTTA TTAAAAGAAG 26700 GGCGCTGGAA AGAAGCCTAC TATTTGCAGT GGCAAGATGA AGAGAAGAAT TATGAATTTG 26760 TATCAAATGA CCCGACTGCT AGCCCTGGCT TAAAAATGGG GGTTGACCGC GAACGGAAGA 26820 TTTACCAAGC CCTGTATCCC TTGAACATAA AAGCACATAC TTTGGAGTTT CCGACCCACG 26880 GGATTGATCA GATTGTCTGG ATTTTAGAGG TTATCATCCC AAGTTTGTTT GTGGTTGCTA 26940

|     | TTATTTTTAT | GCTAACACAA | CTATTTGCAG | AAAGATATCA | AAATCATCTG | GACACAGCTC | 27000 |
|-----|------------|------------|------------|------------|------------|------------|-------|
|     | ACTTATATCC | TGTTTCAAAA | GTGACATTTG | СААТАТССТС | TCTTGGAGTT | GGAGTGGGAT | 27060 |
|     | ATGTAACTGT | GCTGTTTATC | GGAATCTGTG | GCTTTTCTTT | TCTAGTGGGA | AGTCTGATAA | 27120 |
|     | GTGGTTTTGG | ACAGTTAGAT | TATCCCTACC | CAATTTATAG | CTTAGTGAAT | CAAGAAGTAA | 27180 |
|     | CTATTGGGAA | AATACAAGAT | GTATTATTTC | CTGGCTTGCT | CTTAGCTTTC | TTAGCCTTTA | 27240 |
| •   | TCGTCATTGT | GGAAGTTGTG | TACTTGATTG | CTTACTTTTT | CAAGCAAAAA | ATGCCTGTCC | 27300 |
| ,   | TCTTTCTTTC | ACTCATTGGG | ATTGTTGGCT | TATTGTTTGG | TATCCAAACC | ATTCAGCCTC | 27360 |
| ,   | TTCAAAGGAT | TGCACATCTG | ATTCCCTTTA | CTTACTTGCG | TTCAGTGGAG | ATTTTATCTG | 27420 |
| 1   | GAAGATTACC | TAAGCAGATT | GATAATGTCG | ATCTAAATTG | GAGCATGGGA | ATGGTCTTAC | 27480 |
| •   | TTCCTTGCCT | GATTATCTTT | TTGCTATTGG | GAATTCTATT | TATTGAAAGA | TGGGGAAGTT | 27540 |
| •   | CACAGAAAAA | AGAATTTTTT | AATAGATTCT | AGCTTTCCTA | TAGGTAGGGA | AAATAAGTAA | 27600 |
| 4   | AAACTAACAT | AGAGAGGGAA | TCAACTTGAT | TCTCTCTTTT | TGATTCGAAA | ACCAAACCAA | 27660 |
| i   | AATACAAACA | CAAACTTTTC | AAAAAATAAC | TTTTTATCTT | GACAAGAGCT | AGAAAACTTG | 27720 |
| (   | GTATCATATA | AAAGTTGAGA | AAAGCAGAAG | TGAGAGCTTC | TCGCCTTGTG | ACATTAAGTT | 27780 |
| (   | SCCTGGCCCT | ACGGATGAAA | AGTTTCGAAG | AAACGCTATC | ATAACGTGCG | GGCTTGTATA | 27840 |
| •   | TTTACAAGTC | CGCTATTGTT | TTTCTCTAAT | AAAACAAAAG | AGGTGAAAAC | CATAGCAAAG | 27900 |
| 4   | CAAGACTTAT | TCATCAATCA | TGAGATTCGT | GTACGTGAAG | TTCGCTTGAT | TGGTCTTGAA | 27960 |
| (   | GGAGAACAGC | TAGGTATCAA | GCCACTCAGT | GAAGCGCAAG | CTTTGGCTGA | TAACGCTAAT | 28020 |
| (   | GTTGACCTAG | TATTGATTCA | ACCCCAAGCC | AAACCGCCTG | TTGCAAAAAT | TATGGACTAC | 28080 |
| . ( | GGTAAGTTCA | AATTTGAGTA | CCAGAAGAAG | CAAAAAGAAC | AACGTAAAAA | ACAAAGCGTT | 28140 |
| (   | GTTACTGTGA | AAGAAGTTCG | TCTAAGTCCG | G          |            |            | 28171 |
|     |            |            |            |            |            |            |       |

## (2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 7147 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CCGCTCAACT TTTGCAATCA AGGCTAAGTA GACAGCAGCA AATTTCATAT TGTATAATTT 60 CTGACTCATA CTTCTCTCT TCTATGTGTA CTAGTATAAA TAAGAAAAAG AAGGCCGTCA 120

|                        |            |              | 290         |             |             |     |
|------------------------|------------|--------------|-------------|-------------|-------------|-----|
| AGCCTTCTTT             | TGATTTATTC | TTCTGCTTCA   | TCTTCTGTAA  | ATTGACTATT  | GTACAAGTCA  | 18  |
| GCGTAGAAGC             | CACCTTGCGC | CATCAGTTCC   | TCATAGTTGC  | CTTGCTCGAT  | GATATTTCCA  | 24  |
| TCTTTCATGA             | CCAAGATCAA | GTCTGCATTT   | CGGATGGTTG  | ACAAGCGGTG  | GGCAATGACA  | 30  |
| AAGGATGTGC             | GTCCTTCCAT | CAAACGGTCC   | ATGGCTTTTT  | GGATCAATTC  | CTCTGTCCGT  | 36  |
| GTGTCAACAG             | AAGAAGTCGC | CTCATCCAAA   | ATCAAAAGCG  | GTGCATCCTT  | AAGAAGGCA   | 42  |
| CGAGCAATAG             | TCAATAGTTG | TTTTTGTCTT   | ACAGACAAGG  | TCACGGTGTC  | ATCCAAGATG  | 48  |
| GTATCATAGC             | CATCTGGCAA | GGTCATAATA   | AAGTGGTGAA  | TTCCCACAGC  | CTTACTAGCT  | 54  |
| TCCATCATTC             | GTTCATCACT | AATCCCTATT   | TGATTATAGA  | TGAGATTGTC  | TCGAATAGTT  | 60  |
| CCTTCAAAGA             | GCCAGGTATC | CTGCAAGACC   | ATTGAAAAGG  | CATCATGCAC  | TTCTGAACGC  | 66  |
| GTCATAGCCT             | TGGTATCCAC | ACCATCAATG   | CGAATACTTC  | CCTTATCAAT  | CTCATAGAAT  | 72  |
| TTCATCAAAA             | GATTGACAAT | GGTTGTCTTA   | CCAGCCCCAG  | TCGGCCCAAC  | AATGGCAACC  | 78  |
| TTTTGACCAG             | CATGAGCTGT | CGCAGAGAAG   | TCATAGTCTT  | GAACATTGAC  | ACCGTCCACC  | 84  |
| AGAATTTCTC             | CTGCTGACAC | GTCGTAGAAA   | CGTGGAATCA  | GATTGACCAG  | AGTTGATTTA  | 90  |
| CCAGAACCTG             | TTGACCCAAT | AAAGGCCACT   | GTTTGACCAG  | TTTCTGCTTT  | AAAGCTAACA  | 96  |
| TGTTCAATAA             | CTGCCTCCGA | ATTTGCCGCA   | TAGCGgAAGG  | TCACATCCTT  | AAACTCGACC  | 102 |
| IGACCTTTGA             | AGTTTTCATC | AGTCAGCTGC   | ACTTGAACAG  | GGTTTTGGAT  | AGAAGAATGC  | 108 |
| ааатстаааа             | CTTGATTAAT | CCGCTTAGCA   | GAGACCATAG  | TTCGGGGAAG  | AACGATGAAG  | 114 |
| AGTGCTCCCA             | TGAGAAGGAA | GCCCATGACA   | ACCTACATGG  | CATAAGACAT  | GAAAACAATC  | 120 |
| ATGTCACTAA             | AGAGAGGCAG | ACGCGCTATC   | GGAGCAGCGT  | CGTTAATCAC  | ATAGGCCCCA  | 126 |
| ATCCAGTAAA             | TCGCCACACT | CAAACCACTT   | GAAATCCCCA  | TCATGATAGG  | АТТСААААТА  | 132 |
| GCCATAAGAC             | GGTTGACAAA | CAAATTCAAA   | CGGGTCAATT  | CATCATTTAC  | TGCTGCAAAT  | 138 |
| TTTTCATTTT             | GATAATCCTC | TGCATTGTAG   | GCACGAACGA  | CACGAATACC  | TGTTAAACTC  | 144 |
| TCACGAGTGA             | TACTGTTCAG | TTTATCTGTC   | AGCCCCTGAA  | TCAAGGACTG  | TTTTGGAAAG  | 150 |
| GCTAGCGTCA             | TCAAAACGGT | CGTCATCAGG   | ACGTTGATAA  | TCACTGCCAC  | AAGTACGGCC  | 156 |
| CAGAGCCAGT             | ATTCTGAATG | ACCTAAAATC   | TTCCCAATAG  | CCCAGATAGC  | CATAATTGAA  | 162 |
| CCACGCGTTA             | CCACTTGCAA | GCCCATAGTA   | ATCAACATTT  | GAACTTGAGT  | AATGTCATTG  | 168 |
| GTAGTACGCG             | TCAAGAGGCT | aggaattgaa   | AATTTCTTAA  | TCTCTGTCTG  | CGAGTAATCC  | 174 |
| AAAACTCGGT             | TAAAAATATC | ACTTCTCAGC   | CTACTAGTAT  | AAGAAGCCGC  | CACTCGGGAT  | 180 |
| GCAAAAAATC             | CAACTGCAAC | TACGGACAAG   | AAGGCAAGAA  | AGGACATTCC  | CATCATCATG  | 186 |
| יייייים ביריכי אַ רייי | CCCACAACTC | አመረመል አ አመመል | COMPONE CAC | MACCHACCA A | AMCCCMA AMM | 100 |

| TTCGAGATAT | AGGTCGGCAC | TTCCAACTCT | AGATAGACCG | AAAAGCAAGT | AAAGAGAATG | 1980 |
|------------|------------|------------|------------|------------|------------|------|
| GCTAGTAAAA | TCATCCCCCA | TTCTTTTCTA | CTAATTCTTT | TGGCTAATTT | CTTTATTCTC | 2040 |
| TCCTCCTATT | CCCTTGATAT | TTTGCCTGTA | GTTGACCGAG | AACCTTCTCA | AAAATCAGTA | 2100 |
| ATTCATCTTC | ATCAATGTCT | TCCATCAACT | GCTTGTCTAT | GCGTTCAAAA | AAAGCCTTAA | 2160 |
| CCTGTTGCAT | CTGAGAACGT | GCTTTGTCCG | TCAGACGAAC | AAACTTAGCC | CGCTTATCAA | 2220 |
| CAGGACTCGC | CTCCAATTCC | ACCAAACCAT | TTTGCACTAT | ACGCTTAACC | AGATTACTAG | 2280 |
| CAACAGGCTT | GGTAATATTG | AGTTCCTGCT | CGATATCTTT | AATCAAGACC | AAGTCTTGGT | 2340 |
| TTTTCTCGCG | ATTATCCAAA | AAACGCACAA | CCTGACCTTG | CGGCCCACCC | ATAAATTCAA | 2400 |
| TGCCGCAACG | TTTGGCTTCC | TTTTGCACCA | TCAGGTGAAT | TTGATGACCA | AAACGCTTAA | 2460 |
| AGACTAACAT | CGGTTTATCC | ATANTCTCCC | CCTTCTAAAT | AAAAATAGTT | CTCTGGAGAA | 2520 |
| TAATTAAATT | TCTATGAGAA | CTATTTTCTT | GATTAAAAAA | ATCCCAAGTG | ATTTTCTCAC | 2580 |
| TTAGGATCAT | GTTCTATAGG | AAATTAAATT | ACCCATCTAC | GTTCGTATAA | ATCTTTTGGA | 2640 |
| CGTCTTCGTC | GTCTTCAAGA | ACGCTGTAAA | GTTTTTCAAA | GGTTTCAAGG | TCTTCGCCTG | 2700 |
| ACAATTCCAC | TTCTGACTGA | GGAATCATTT | CCAATTCAGT | CACTTGGAAT | TCTTCAATAC | 2760 |
| CAGACTCACG | GAGGGCAACG | ATAGCCTTGT | GAAGGTCAGT | TGGCGCTGTG | TAAACTGTGA | 2820 |
| TTGTACCTTC | TTGTGCTTCT | ACGTCATCCA | CATCCACATC | CGCTTCGAGC | AATTGCTCAA | 2880 |
| AGACTGCGTC | CGCATCTTCA | CCTCCAAATA | CAATAACACC | TTTGTTGTCA | AAGAGGTAAG | 2940 |
| AAACAGAACC | TGAAGCGCCC | ATGTTTCCGC | CGTTTTTACC | AAAGGCTGCA | CGGACATTGG | 3000 |
| CTGCTGTACG | GTTGACGTTA | GAAGTCAAAG | TATCCACAAT | TAGCATAGAG | CCATTTGGCC | 3060 |
| CAAAACCTTC | GTAACGTCCT | TCTGTAAAGG | TTTCGTCTGT | GTTTCCTTTG | GCTTTATCAA | 3120 |
| TCGCTTTATC | GATAATGTGT | TTTGGCACTT | GGGCTTGTTT | AGCACGGTCG | ATAACGAATT | 3180 |
| TCAAAGCTGA | GTTTGATTCT | GGATCTGGAT | CACCTTTTTT | AGCTGCTACA | TAGATTTCTA | 3240 |
| CACCAAATTT | TGCATATACT | TTAGAGTTAG | CTCCATCTTT | AGCCGTTTTC | TTGGCTACGA | 3300 |
| TATTGGCCCA | TTTACGTCCC | ATTAGGAATC | TCCTTTTTTC | ACATTTTAAT | CTTTCTTATT | 3360 |
| ATAACACAAG | TTTTTTTGAT | TTTCACTAGA | GGAAATGGAT | TTTATTAGCA | AATCAAGCTA | 3420 |
| GGATAGCACT | TTACCTGCTA | AGATGGTCTT | GCCTTTCTAT | CTTTATCAAC | AGGCACTCAT | 3480 |
| CCACATTCAA | AAAACAAACT | AGACCATTAT | CTGCAAATAG | AAAGTTTCAG | CCAAGTTTGA | 3540 |
| CAAAGTCAGC | TCAAATTACT | GTTTGAAGTT | TGTAGATATA | AGCGACAAAA | ACAATCATAC | 3600 |
| TGCACCTTTT | GTTGACAGTC | TACTCCAGAC | ATATCATAGT | TCAAGTAAAT | ACTTTGAAAT | 3660 |

292 TCAACAGTTC TTATAGGCGC TATTGTATTC TAAGAAATCA ATAGAAGAGT TTCTAAGCAA 3720 ACCTCTAATA CTCAATAAAA ATCAAAGAGC AAACTAGAAA GCTAGCCTCA GGTTGCTCAA 3780 AACACTGTTT TGAGGTTGCG GATGGGGCTG ACATGGTTTG AAGAGATTTT CGAAGAGTAT 3840 AATTTACGTG TTCCCAAGAT GGAGAAGTTA GACTAGTACA CTGGCACTTC TAAAACATTG 3900 CTAGCAATTG ATTTGTTCAT ATTTAATTTC ATTTTTTCCA TAAATGGGTA TTAGATATAA 3960 ACAGCAAAAT ATTTCCGATA CGTGTCGTTC TTGAATTTCC AATCATCTAA AACAAGTAAA 4020 GGATAATCAA TCCCCTGTAT ATCAAGGAAT TGGCTACCCT TTTTACTTTT TTACACATTC 4080 TGTTTGATAG ATTCATTTA ACATCACGAG CATACTCCAA TGGAAATCGC TAGGCAAGAG 4140 ATAAACTTTC AGATATCCGC AGAGAGATCA TCGCCTCTTT TTGTCGCAAG CATTCTCCTC 4200 TCCTAGTCAT TTTCTACCTT ATCTTCTACC TGAGGATAGA GAGTTGTTCC CCAAATAGAA 4260 ATCGTCCGCT TACGCACTAG TGGCAAATCG GTTTTTTCAT AAACCGTACG CCACCATTCC 4320 CAGGCAAGCC CGGTACACTC TCTAATTTTG ACAGAGAGAT TACGAACATT CCCTTTTAAA 4380 GGAATACTAG TGGTAAAGTG AGCCGTTAAA TCCTGCCCAT TTCTGTCCCA AGCCTTAGGA 4440 GTCAAGACTT CCTTACCTTG ATGATCATAG GATAATTCAT TCCAAGTAAT ATAATATTGG 4500 GCAACATAGG CACCACTATG ATCCAGCAGT AAATCTCCGT TTCTGTAAGC TGTAACCTTA 4560 GTCTCAACAT AGTCTGTACT ATTTTGAAAG GTCGCAACTA CATTGTCACG TAAAAAAGAA 4620 GTTGTATAGG AAATCGGCAA GCCTGGATGA TCTGCTGTAA AGCGACTGCC TTCTTGAATC 4680 AAGTCCTCTA CCATATCCAC CTTGCCTGTT ACAACTCGGG CACCCGAACT TGGGTCGCCC 4740 CCTAAAATAA CCGCCTTCAC TTCTGTATTG TCCAAAATCT GTTTCCACTC TGTCTGAGGA 4800 GCTACCTTGA CTCCTTTTAT CAAAGCTTCA AAAGCAGCCT CTACTTCATC ACTCTTACTC 4860 GTGGTTTCCA ACTTGAGATA GACTTGGCGC CCATAAGCAA CACTCGAAAT ATAGACCAAA 4920 GGACGCTCTG CAGAAATTCC TCTCTGTTTT AAATCCTCTA CCGTTACAGT ATCTTGAAAC 4980 ACATCTCCTG GATTTTTAAC AGCATCTACG CTGACTGTAT AATAAATCTG CTTAAAATTA 5040 ACAATCTGAA TCTGCTTTTC GCCTGAATGG ACAGAGTTAA AATCAATATC AAGAGAATTC 5100 CCTGTCTTTT CAAAGTCAGA ACCAAACTTG ACCTTGAGTT GTTCCATGCT GTGAGCCGTG 5160 ATTTTTCAT ACTGCATTCT AGCTGGGACA TTATTGACCT GACCATAATC TTGATGCCAC 5220 TTAGCCAACA AATCGTTTAC CGCTCCGCGA ACACTTGAAT TGCTGGGGTC TTCCACTTGG 5280 AGAAAGCTAT CGCTACTTGC CAAACCAGGC AAATCAATAC TATAAGTCAT CGGAGCACGA 5340 TCGACCGCAA GAAGAGTGGG ATTATTCTCT AACAAGGTCT CATCCACTAC GAGAAGTGCT 5400

CCAGGATAGA GGCGACTGTC GTTGGTAGCT GTTACAGAAA TATCACTTGT ATTTGTCGAC

| AAGCTCCGCT          | TCTTTCTTTC | GATAACAACA | AACTCATCGG | GTAGCTGATT | ACCCTCTTTG | 5520 |
|---------------------|------------|------------|------------|------------|------------|------|
| ATGAAACGAT          | TTTCAATACT | TTCTCCCTGA | TGGGTCAAGA | GTTTCTTTTT | ATCGTAATTC | 5580 |
| ATAGCTAGTA          | TAAAGTCATT | TACTGCTTTA | TTTGCCATCT | TCTACCTCCT | AATAAGTTCC | 5640 |
| TGGATTGAGT          | TGCATAAACT | CAGACTTGTT | CAGCGAAATC | AGCCGTGGTT | GGACTAAGTA | 5700 |
| АТССАДАДТТ          | TCCTCGTACA | ATTCTTCTGA | GACATTGCGT | CGCCGTCTGG | CTAAATAAGA | 5760 |
| AGTCGGAATG          | ACCGTATTAT | ССААСАТААА | TACCTTATCT | AAGTCAATCA | AGGTTGGTCT | 5820 |
| TGTAAAAGGA          | TTACGAGCTA | GATCCGGCTC | TTCTATCATA | AAGTTCTTGA | CCAAACGTCT | 5880 |
| GGTCAAGAGA          | GCTGGTTTGA | AGGTCTGATT | TTTAACCAAC | TCTTTGTTTT | TAGTCATGCT | 5940 |
| GTTGTCAATA          | CAGATATACA | TATGATTCTT | CACAGCCAAA | TCGCTACTAA | TAGTCGGAAA | 6000 |
| AGGCAAATAA          | AGAGCTACAA | CATCTCCTCT | CTTAATCAAG | CAAGAGCACC | CCCTTTTCTC | 6060 |
| СТААТСТААС          | ATAGACAGGA | TTGACCAAGT | CTTCTGATTG | ACTCAGAATT | TCCAAAGTTT | 6120 |
| GAGTTTGGCG          | CGCTGTCAAT | TTAGTAGCAT | CTTGTCTCTT | CAATACAAAA | TGCTTGTCGC | 6180 |
| CAATAACCTT          | GACAATATAA | TCCTTCTCCA | AAGCTGACTG | GTAAATCCAC | ATCAGATGTT | 6240 |
| GTCTGTCCTG          | AGAACTCAAG | AGAGAAGGAT | TTTCAAGCCT | CCCGATAGTC | TGATAAAAAT | 6300 |
| CAAAAACAGG          | AGCTAACTCC | TGCCAATCTG | ATTGGCTAGT | TGTCAAGGCT | AGAAAAAGGG | 6360 |
| CTTTGCGAGC          | TGATACTTCT | TGGTTAGCCT | TGAGAGTTAC | TTTCCCCTCC | AAGTTTTTTA | 6420 |
| GAAATCCCCA          | AACTCCAGAA | AGCAAATTTT | TCTCTAACTG | CGAGAAATAA | AAACCTTTCG | 6480 |
| TTCCCAGACA          | TAAGTCTTTC | ATGTCGCTTT | CTCTAGCAAA | TAAGAGCTCA | AACATTTGAT | 6540 |
| AGTA <b>AA</b> AGAA | AAATATCTGG | CACTGGGTCG | CGCTCATCTT | TTCCTTATCG | GCTTCTTTTT | 6600 |
| PTAACCAGAG          | CAAGGCCGAC | AGGTAGCTGG | ATTGAGACAT | TTCCTCTACC | TCCTACTCTT | 6660 |
| PTTTAACTGG          | AGCATCTGCA | CTAGCTGCCA | CTTCTTTTGA | CTGGATACTT | TCCCACTGGT | 6720 |
| PAATCTCCTC          | TGAGATAAGA | CCTTCGCATG | TCTTGACAAA | TAGGGCAAAA | GCCTTGGTCT | 6780 |
| PTCCTGCATA          | TTTCTCCGTT | TGGCATTGAT | AGAGGAATTT | TTCTTTCTCC | AGGAGTTGCG | 6840 |
| CAGTTTTTTG          | GTAAGAAATC | CAATTTTCCT | TTGCATTATA | CAAATTGATA | ATCCCCTCAC | 6900 |
| ACAGCAAGCC          | GAGACTGGAT | AAGGCAACCG | AAATCAAACG | GTAGCGATCA | CCTGGCATAG | 6960 |
| GAATAGCACA          | AAAGACAGCT | ATGAGGAAAC | CTGCCACGAT | TTCTGTTATT | ТТТААТАССТ | 7020 |
| PATAGCGCCT          | ACGATGTTGA | ACGCTTTTCT | TTAAAAAATG | AGCTATCTGT | ACGTCTAATC | 7080 |
| GCTCTGTCAG          | GTACATTTCT | TCTGGCGTCA | TATTCGTAAC | TCCTTTCATT | TACTTTGATA | 7140 |
| ATCAGGG             |            |            |            |            |            | 7147 |

WO 98/18931

## PCT/US97/19588

| 2 | ^ |  |
|---|---|--|
|   |   |  |

# (2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 755 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

| CCGCATGGGA | TTGGTGTCCT | TTTGGGCAAT | CTCTTTGACC | AAACTGGAAA | CATGTTTTAT | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| GCGCCTGCCT | TTACTGCCCT | TGTCGGCGGT | ACGTCTATAT | GATCCTAGTC | GCAAAAGTTC | 120 |
| CGCGCTTTGG | AGCCATTACC | ACTATCGGCC | TTGTCATTGC | CCTCTTTTTC | TTGGGAACTA | 180 |
| AACACGGTGC | TGGTTCCTTC | CTTCCTGGAA | TTATCTGTGG | CCTCCTAGCA | GATGGAGTAG | 240 |
| CTCATTTAGG | AAAATACAAG | GACAAAACAA | AGAACTTCCT | TTCTTTCATT | ATTTTCGCCT | 300 |
| TTAGTACAAC | AGGACCAATC | TTGCTTATGT | GGATTGCGCC | CAAAGCCTAT | ATGGCTACTC | 360 |
| TTCTGGCAAG | AGGAAAATCC | CAAGAATATA | TCGACCGTAT | CATGGTCGCT | CCAAACCCTG | 420 |
| GAACTGTCCT | TCTATTTATC | GCAAGTATTG | TCATCGGAGC | CCTAGTGGGT | GCCTTGATTG | 480 |
| GACAAGCCTT | GAGTAAAAA  | TTTGCCCAGA | AAATCTGATC | AGTTAAAAAG | AGCCACGCGG | 540 |
| CTCTTTTTTA | TTTATGGCTC | AATTTCTTAG | TCAAGAAATC | TCCCAAGAAT | TGGATTGCAA | 600 |
| AGATAATCAA | AATGATAATA | ATGGTTGCCA | AGATGGTCAC | ATCGTGATTG | TAGCGGTTAA | 660 |
| ATCCATAAGC | GATGGCTACG | TTACCGATAC | CACCAGCTCC | AACCGCACCG | GCCATAGCTG | 720 |
| TTtcCCAACA | AGGGaAtCAA | GGTcACAGTC | GTCAC      |            |            | 755 |

# (2) INFORMATION FOR SEQ ID NO: 25:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3010 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

| TTCAATTGGT | ATCTCAATCA | ACGGTCTTCA | CATGGTTTCA | ACTGGTTTGA | CTCTTGAAAA | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| AGCGAAAGCT | GCTGGTTACA | ACGCAACTGA | AACAGGCTTT | AACGATCTTC | AAAAACCAGA | 120 |
| ATTCATGAAA | CATGACAACC | ATGAAGTAGC | AATTAAGATT | GTCTTTGACA | AAGATAGCCG | 180 |
| TGAAATTCTT | GGTGCCCAAA | TGGTTTCACA | TGATATTGCA | ATTAGCATGG | GAATCCACAT | 240 |
| GTTCTCACTT | GCTATCCAAG | AGCATGTGAC | AATTGATAAA | TTGGCATTGA | CAGACCTCTT | 300 |

| CTTCTTGCCA | CACTTCAACA | AACCATACAA | CTACATCACA | ATGGCTGCCC | TTACGGCTGA | 360  |
|------------|------------|------------|------------|------------|------------|------|
| AAATTAAAA  | TGAATGAGCT | ATCTGGCCTT | AAGTTAAGGT | CAGATAGTTT | TTAGCTAATT | 420  |
| TGTCCCCATA | CAATTATAGT | TTTTTTATCT | TGTGCTTCAT | TCTGTTCTGA | CTTAAAATGA | 480  |
| AAAGGTAGCT | ACCAATACAA | ATGATGAGGA | TAAAACAAAT | GACTGAAAAT | CGTTATGAAC | 540  |
| ТАААТАААА  | CTTGGCACAG | ATGCTCAAGG | GTGGTGTTAT | TATGGATGTG | CAGAATCCTG | 600  |
| AACAGGCTCG | TATCGCAGAA | GCTGCTGGTG | CGGCAGCTGT | GATGGCCTTG | GAACGAATTC | 660  |
| CGGCTGATAT | TCGTGCAGCT | GGAGGAGTTT | CCCGCATGAG | CGACCCAAAG | ATGATTAAGG | 720  |
| AAATCCAAGA | AGCGGTTAGT | ATTCCAGTAA | TGGCTAAGGT | CAGAATCGGG | CATTTTGTTG | 780  |
| AAGCTCAGAT | TTTAGAGGCT | ATTGAAATTG | ATTATATCGA | CGAGAGTGAA | GTTCTATCTC | 840  |
| CAGCTGATGA | CCGTTTCCAT | GTGGACAAGA | AAGAATTCCA | AGTTCCTTTT | GTCTGTGGTG | 900  |
| CTAAGGATTT | GGGTGAAGCC | TTGCGTCGTA | TCGCTGAAGG | TGCTTCCATG | ATTCGTACCA | 960  |
| AAGGAGAACC | AGGGACAGGG | GATATCGTCC | AAGCTGTTCG | TCATATGCGT | ATGATGAATC | 1020 |
| AGGAAATTCG | CCGCATTCAA | AACTTACGTG | AGGACGAGCT | TTATGTTGCT | GCCAAGGATT | 1080 |
| TGCAAGTCCC | TGTAGAATTG | GTCCAATATG | TTCATGAACA | TGGAAAATTG | CCAGTTGTAA | 1140 |
| ATTTCGCTGC | TGGAGGTGTT | GCAACGCCAG | CAGATGCTGC | GTTAATGATG | CAATTAGGGG | 1200 |
| CAGAGGGGGT | CTTTGTCGGT | TCAGGTATTT | TCAAGTCAGG | AGATCCTGTT | AAACGAGCGA | 1260 |
| GTGCCATTGT | TAAGGCTGTG | ACTAACTTCC | GTAATCCTCA | AATCCTAGCT | CAAATCTCTG | 1320 |
| AAGATTTAGG | AGAAGCCATG | GTTGGTATTA | ATGAAAATGA | AATCCAAATT | CTCATGGCTG | 1380 |
| AACGAGGAAA | ATAGATGAAA | ATCGGAATAT | TGGCCTTGCA | AGGGGCCTTT | GCAGAACATG | 1440 |
| CAAAAGTGCT | AGATCAATTA | GGTGTCGAGA | GTGTAGAACT | CAGAAATCTA | GATGATTTTC | 1500 |
| AGCAAGATCA | GAGTGACTTG | TCGGGTTTGA | TTTTGCCTGG | TGGTGAGTCT | ACAACCATGG | 1560 |
| GCAAGCTCTT | ACGTGACCAG | AACATGCTAC | TTCCCATCCG | AGAAGCCATT | CTATCTGGCT | 1620 |
| TACCAGTGTT | TGGGACCTGT | GCGGGCTTAA | TTTTGCTGGC | TAAGGAAATC | ACTTCTCAGA | 1680 |
| AAGAGAGTCA | TCTAGGAACT | ATGGATATGG | TGGTCGAGCG | TAATGCTTAT | GGGCGCCAAT | 1740 |
| TAGGAAGTTT | CTACACGGAA | GCAGAATGTA | AGGGAGTTGG | CAAGATTCCA | ATGACCTTTA | 1800 |
| TCCGTGGTCC | GATTATCAGT | AGTGTTGGTG | AGGGTGTAGA | AATTTTAGCA | ACAGTGAACA | 1860 |
| ATCAAATTGT | TGCAGCCCAA | GAAAAAAATA | TGTTGGTAAG | TTCTTTTCAT | CCAGAATTGA | 1920 |
| CTGATGATGT | GCGCTTGCAC | CAGTACTTTA | TCAATATGTG | TAAAGAAAAA | AGTTGAGATT | 1980 |
| GAATTTCTCA | ACTITTTTAC | ATGTAATAAA | CAATAGCGAT | GTATTGAAGT | GCGGACGCAG | 2040 |

296 CTAGGATAAA GAGATGCCAA ATCATGTGGA AATAAGGTTT TTTCTTGGCA TAAAATCCAG 2100 CTCCAACTGT ATAACAGAGT CCGCCAGTTA CCATGAGACT CCAGAAAACG GGTGTCGTTT 2160 GACTGATAAT GGCAGGAATG ATAGCCAGAA CCAACCAGCC CATAATCAGG TAAAGAGCAA 2220 GGCTAAATTT CTCATTGACC TTTTTAGCAA AGATTTTATA GAGAATACCA AAGATGGTCG 2280 TTCCCCATTG GATGACAATA ATCAGATAGC CAAACCAGTT ATTCATCAAG GTCAAGACAA 2340 CGGGCGTGTA TGAGCCGGCA ATGGCAACGT AAATCATAGA ATGGTCAATG ATTCGCAAAA 2400 CATATTTGTG GGTCGAACCA TAGGCCATAG AGTGATAAAT GGTGGATGAT AGGAACATGA 2460 GAAAGAGACT GATGACGAAA ATGGAAACGC CGATAGAGGA TAAAAATCCG TGTGCTTCAT 2520 AACTATAGAT GGATGAAATA GGCAGCAAGA TAAGCATGAT GACTGCACCC ACAGCATGGG 2580 TCACGCTATT AGCAATCTCC TCTCCAAAAC TGAGTTGTTT GCTGAGTTTA AGACTAGTGT 2640 TCATTGGATT ACCTCCTCTT GAGTATGATC GATTAAGTCT AGAGTTTGAT GATAGAGTTT 2700 AACGGTTTGG CAGCTGGTTT GGATAATAGG GTTAGCTGGG TCAATTCCTT GGTTCATGTA 2760 GTCCACAAAA GCATCGTAGA GTTGGTCTGA ACTTGCTTGA GTTTGTAGAG TATTAAGTGT 2820 CTGGGCTATT TCTTGAATAG AAAATACAGA CTTGAGGGTT GTGATAGCAA TCAAACGGGC 2880 AATCTGTTGG CGTTGGTATT TTTTTTTGTC AGGCTTTGTC AGGTAACCAT TTTTCACATA 2940 ATTGTTGACC ATAGATGCTG TTAGGCCCTT GTCTTTATTA GGAGAGATAG GGGCGCAGAC 3000 CTGATTGACA 3010

# (2) INFORMATION FOR SEQ ID NO: 26:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 15213 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

| CATAAATCGG | TGCAAATAAC | TTAATAGTGA | AGTAGCCATT | TCTTTCGTAT | TTACCTGAGG | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| CATATTCCCT | AGACGAAAGA | ATATTATTAT | CAATCAAATC | ATTGAATGAA | CGTAGTCTTT | 120 |
| CAACTTCTTC | TACTGTTAGA | TTTCTGACAA | CATTTGTTGC | ATAGACCTTA | TTTCCATCAG | 180 |
| GATCAGGATG | GTACTCATTT | GTAACTTTTC | TAAGAAGTTG | TTGTTTTTGA | TTCGTATCCA | 240 |
| ATTTAAGAAT | TGAATTTCCT | TCGAGATATT | CCAACATATA | AACAACGTCA | AACATGTTGT | 300 |
| GGACATATTG | CTTCAAATCA | TCTGCATTAT | TAAATCTTGT | AGTTGGATCA | AGTACTTGTA | 360 |
| ATCGTCGACT | TTCTGTACTA | TCAGATTTTG | AATGTTTCAA | GATGGAGTTG | ATGGTAATGG | 420 |

| 48   | TCTGGTCCCA | AGCAAAGAAC | ATAATCCTTT | GGTGCTTGTA | TGGATGGTCT | TCGCATCATC |
|------|------------|------------|------------|------------|------------|------------|
| 54   | TGTGTCATCT | ATCTGAGTCA | AAATGTCCTG | CCTCCAAGAT | TCGACCATAT | AGCCACTTCT |
| 60   | таатааастс | ATAACCCATA | CCAACATTCG | CCATCCTTAT | AGTAATAGCT | CATGCGTATA |
| 66   | ACAGGTCCAA | ТТТАТТТССА | TATGCCCAAC | CCGTGTTGAT | AGCATAAGCA | CATCACCTGT |
| 72   | GCTTTCCCTA | CACTTCTGTA | CAAAATCTGC | TTTGGATTAT | CATTGCAGGA | AGAAATGTTG |
| 78   | TAAAGTTTTT | ААТАТТТСТА | CGTAAAGCAA | TTATAAGCAT | ATCGCCAAAT | CGGTATTATC |
| 84   | TGACGTTTGG | GTGATCTCGC | AATAATCGTA | ATACGATACC | GTCGTCTAAA | CACGTGCATT |
| 90   | TTATGGTCAC | CTTGCCCGCT | CATTGAGAGC | TCAACAAAAT | CGCATTTTCT | CTGTTTCACG |
| 96   | ATGACAAATA | CATGGTCGAG | CTAGACTAGA | GCTCCAAATC | GCGATCATAA | TACTGCGGTA |
| 102  | CATGTGGCAC | GCGGTATTTC | AGACCATATT | AGGAGAGGCA | TGGCAAGGTC | CGGATCTCTC |
| 108  | TGCTTCGTTT | AGCTAACCCT | ACTTGGTGCC | CCGATAGAAT | ATCATAAACA | TCGTGATACG |
| 114  | GATTTAAACC | CTTAGTCTCT | CAATGTAAGC | TTTTCTTCGA | GATAGTGGAT | TCACCTCTTC |
| 120  | GTGCTAAACA | ATGTTCCAGC | CTTTTCGGTA | GGTAAAAAGA | GCTTGTATTT | AGTCATTATT |
| 126  | TTATTCTTAG | AGTATCGACA | TGATACCATA | CTGGCAAGAC | TCCATGTTGA | AATCTGTCGT |
| 132  | GGTGAAGCAT | AGTATCTAAT | ACTCAATCAG | GATTTACCCA | GTTAAAGCCA | CTAGAAGATT |
| 1380 | ACCTGACCAT | TTTGACATTC | GAACTAGGTC | AAATGGTACA | AAAGAAGTCC | TCCCCTTACC |
| 1440 | TCCTTGTTGC | TAGCAAGGCT | TCAAGCCAAG | TCCACATAGG | ATACCACCGT | AGCTAAAGTT |
| 1500 | AGTCCAGCAT | AGCACTAGCC | TGACGGGGTT | TAACCTTCAG | ATCTACAAGA | GTTTGATTTT |
| 1566 | GCGAACTGGT | TTTTGTTTTG | CCAGTTGTTG | AAACTGTCTT | GAGTTTTTTC | CCGCTGACAA |
| 1620 | TTTCTGATGG | ACCCAGCGTC | TTGGAGAAAT | TGCTTGACGT | GAGCTCAGTT | CTTCTAGATA |
| 1686 | ATAGAGGTTT | TTGCTTGATG | CAGGTAAGAC | TTTTGTAAGT | ATAGTCAACC | CTTCTGAATG |
| 1740 | CTATATTCTG | ATTGCCCAGA | GAAGTCCAGT | GGCGTATAGA | GAATTGGTTT | GGTCATACAG |
| 1800 | TCATCCTTGT | CTCAGATAAA | GATCCAGCTT | TGGTATTTGA | GAAATCATTC | CTAATTTGGC |
| 1860 | ATGACTTGGT | AATGTCTGTG | TGTTAGAAAC | GCAGTCTGTT | GAGTTTGTTT | AGTGAAGCAA |
| 1920 | TTCTCATTGA | TAAAAGACTG | CTTTTTGATA | GACAAGAGTT | CATGACTGCT | TGTCCTTCAT |
| 1986 | TTTTCAATGT | AGGTAGCAAT | TGTTGTAGAA | ATGGTTGCCT | GTATTTGACG | ÇCAGGTTTCC |
| 2040 | TCACTGTCTT | CTTAGAAAAA | AATAGGCCAC | TTAGCTTGAT | CAAGTTGCGC | TTTTATAAGT |
| 2100 | ATTTCTGCTT | GAGAGGATTG | TTGGTAAAAT | GGCTCCACTG | TGTTGAAAGT | TTTTGCCACT |
| 2160 | GATTCCTTGC | TTCTTCAAAG | TTGTTCCTCT | GCATCTAGCA | AATTTGAGAA | TTTTGCTTGC |

298 TGACGACCTC ATCCTTGACC AAGGTGACAT TGTAGACTCT GTTGGCCTTG CTGCTGAATG 2220 TGTCCTTTAC CTTCATTTCG TTATAGTGGT AACCAGTGAT GGCATTTCCG TTGGTTACAT 2280 TAACATCGCT GAGAACATTG GTCAAACTTC CAGCATGCCT AACATCACCA GAAGTTCGAT 2340 CCCACAAATT GCCTGCCACT CCAGCGACTC TACCAAAGTG CTTGACATTG TTGATATCAC 2400 CTTCAGCATA GCTATCTTGG ATCTGTGCAT CTCGGTCTAC TAGGCCTGCA AGTCCACCCA 2460 CAGTCTGATC TGAAGTATTT GTGTTAGATG AAATGGCTAC TGTCGCTTTT GACTTAGTAA 2520 GTAAAGCCTT GTCACCTGTC AAATGACCGA CCATACCACC GATATTGTAG GCAGCAGTCG 2580 TTTCATAAGT GTTGATAATT CTTCCCTTGA AACTGCTCTC TGTGATGCTT GATTGCTCAG 2640 CCTTAGCCAG CAAACCACCG ATACCACGTT CACCAGCCAG AACACCATCG ACGTGAACTT 2700 GCTTAATTTT TGTGTTATTC TGAGCTTCAT TTGCCAGTGA ACCGATATCA TCTTTCCCTG 2760 AAATAGCAAC ATTTTTTAGA CTCAGTTTTT CTACTGTAGC ACCACTCAAG TTTTCAAACA 2820 GAGGTTTTTT CAAATTATAG ATAGCATAAT TCTTGCCATC TTTTTCACCG ATTAAACGAC 2880 CAGTAAAGGT GTCCTTGATA TAGGATCTTT CATCAGGACC AAGCTCCACT TCGTTAGCAT 2940 TCAGGCTGGC CGCTAAATGA TAGGTTCCAG AGGGATTTTG GTTTATAGCT TTGACCAGAT 3000 TACTAAAGGA AGTAAAGTTT GTTGTTTCTT CTGTTCCCTT CTTAGCTAGA TAGAAGGTAA 3060 AATTATCTTT ATATCTGCTT TCTATCTCCT GCTGAAGCTT CTCTACTTTT GCTGTGATTT 3120 TATAAAGGAT TTTATCATTT TTTCTTTCCT CTGATATTGA TGCTACTGGT AGGTATACAT 3180 CTTTGAATGA AGAAGATTTC ACTTTAACAA AGTAGCTATT TGGATTGCTT GGAACTTGCT 3240 CTAACGAAAT GTGTTGTTTA TAAGTACCAT TTGACAAACT GTATAACTCT AGGTCGGAAA 3300 CATTTCTTAA TTCAAGTGTT TTCTCTGGTT CTTCTACCTT TTTATCAGGG TCTAGTTCAT 3360 TTTCTTGTTT AATTTCTTCG TTTCCATTTG AATTGGATGT GTTTGATTCG GTTGAAACAT 3420 CCTCAGTTGA ATTTCCGTTT GATGGTTCTG GTTCTGTTTG TCCATTCTCT GATGTTGTAT 3480 TACCTGAATT TTCTGGTTTT GTTGCAGTTC CGTTTTTTTC TGGTTGATTT GATTCTTCAA 3540 CTGGTGGTTT TGAATCACTA GGTTTATTGG ATACTTCTCC AGTATTTTCG TTAGCTATTT 3600 TCCCAGAGTT TGTTTGTGTT TCTTCTGCAG GTTGAACTGG TTTTTCTGTT TCTTGATTTG 3660 AGGTACCTTC TACTGTGCCT TCATTTGGAT TTACTGGAAC TTCTTCTACA GTTTTTTCTG 3720 AATTTTCATT TTTAGAGTCA TTATGTTCTG GTTTATTTGA TTCTCCAACT GAGGTTGTCG 3780 AATCACTAGG ATTACTGGAC ACTTCCCCAG TATTTTTGCT AGATGTATCT GGTGATACTT 3840 TCTCTGAATT CGTTGTTGAT TCTTCTGCAG GTTGAACTGG ATTTTCTGCT TCTTGAATTG 3900 AGGTTCCTTC TGTAGTACCT TCATTTGGAT TTACTGGTGT TTCTTCTGTT GGTTTTACTG 3960

| • | GAACTTCTTC | AGTTTTTTCT | GGACCTTGTT | CTTTGGTCTT  | CTCAACCGGA | GTTTCAGGTT | 4020 |
|---|------------|------------|------------|-------------|------------|------------|------|
| • | TTACTTGCTC | AATATTACCC | TTATATTCTG | GAAGCGGTGC  | TACCTGCTCT | GGTTCACCTT | 4080 |
| • | TATCACTTAC | CACAGTATCT | GGCGACTCTG | GTTGAACCTC  | AGTCTCACCT | TTGTCGGTCA | 4140 |
| ( | CAACTGCTTC | GGGTAATGTA | GGTTGAACTT | CTGGTTCGCC  | TTTGTCACTT | ACTACAGCTT | 4200 |
| ( | CGGGCAACTC | AGGCTGAATT | GCGGGTTCAA | CAATAGCTCC  | AGACTGTACG | TCCTTATGTT | 4260 |
| • | CTACACCAGT | CTCAGGTTGT | TCCTTTATAA | CTTGAGTTTT  | TTTAGTACCT | TTTTCGACTA | 4320 |
| • | TTCTTGGACT | AGGCGCAGTC | GTTGAAGTTG | AAACAATTTC  | TCGCGAAACT | TCTTCCTTGT | 4380 |
| • | TTACAGAGAA | TATTCTGACG | ATTTCAACTT | TCTTACCTAA  | TTTACCTTCT | TGTTTTACTC | 4440 |
| • | TTACAGTTCC | TTCAGCTAAA | TCAGGATTTT | CTTGAATTTC  | ТТСТТСАААА | TCTATTTTTG | 4500 |
| • | PCTCCATAGT | TTCCTCACGA | TATAAGAGTT | CAGGTTTGTT  | CAATTGACCT | GATAAAACTT | 4560 |
| ( | CATCCTGTGG | ATTTAATGTA | TTTACCCCAG | TCTTTTCTTT  | TGGAGAAATC | TTCTCCTCTT | 4620 |
| • | PCTTCGTTTC | TAGATTCTTA | TGTTCGGCTA | ATTGTTCTTG  | AGAATCTGAA | GATTGTTTCT | 4680 |
| ( | CTTCTTTTCT | TGGATTGATT | AATTCAGTAG | AGAAAGGTTT  | TTCAACTACT | TGAACTTCTG | 4740 |
| , | PCGGCTTAGT | TGAAGAAACA | GGTGTTTGTT | CCTGAATAGC  | TTGTACTGTT | GATGGATGGT | 4800 |
| ( | CTACAAAATT | CGGTGTAACA | TTATAATCCA | CCTTTTGTTG  | TTTTGTAGGA | GTGGCAACTG | 4860 |
| 1 | AACTCTTTTG | ATTACTTACT | TCAGACTCAG | AAGTCGTTTT  | TCCCTCTTTG | ATATATCCAA | 4920 |
| - | PATAAGTGTA | ACCTGAAATC | TCTTTAGGAA | GAGGTAAT1 I | TTCTCCAGAG | GTCAATTCAT | 4980 |
| 2 | AGTCCGTATT | GTAATTTAGC | AAAAGATGAT | TTTCTAAAGC  | ATGGACTGAA | ACTAAGACAC | 5040 |
| ( | CATTTCCTAT | CCCTGCAACC | AATACTAAAT | GTAATACCGT  | TTTATTCTTA | ACCTTTTTCT | 5100 |
| 2 | rggaaacagc | ААААТТААА  | ATTCCCATAG | CAGCTAAGCT  | AGCACCAGCA | ACTAGGGCTT | 5160 |
| ( | CCTCTCATT  | CTTGCTTCCA | GTATTTGGCA | ATTCCGCCAG  | TTGATTTTGA | GAATTTAACT | 5220 |
| 7 | ГАТАААСААС | ATAATAAGTT | TCATCATCAT | TCTCCACGTA  | TGTCGGAATA | TCATAGACAA | 5280 |
| C | SCTGCTTCTT | TTCTTCTGAT | GATAGCTCTG | AATCTGCCAC  | ATATTTATAG | TGAACTCCCG | 5340 |
| C | CAGTTTCTTG | AGCATCCACA | GATGAACTAG | CTAATACAGA  | CATAAAAAAT | AAACTTGAAA | 5400 |
| 7 | TCGTTGCAGA | TACAAGTCCT | ACTGATAATT | TTCTAAATGA  | AAAACGCTCT | TGTTTTTCAC | 5460 |
| ( | CAAAATACTT | TTCCATTATT | CCTCCTTGAA | АТААААТТТА  | TATATGTTAC | AAAGACCTTT | 5520 |
| Į | ATTATATTAG | TGTATTATCT | АТТАТСТАТА | GAAAAGGCAG  | татассттаа | TTATACTCTT | 5580 |
| 7 | ATTTACAAA  | AAAGTCTTAA | AATTGAGATG | CGCTTTCATA  | CTTTGTTTTA | TATTATTTGG | 5640 |
| Į | AGGTACAATA | ACACCTACCA | TGAAATTTAC | ACGGTAGGTG  | TTACTCATAT | CACTAATCGT | 5700 |

300 TCTAAAAATG GTTTGAGGCA GTTGAGGAGA ATTCCTTCTA TCCAGCTTCC TTGTGCTGAT 5760 GAGCGATGGT CTTCCTGCAG GCTTTTTTT AGAAAATCTC GGACTTGTTC TGGTGCGATT 5820 TCAAATTCAA AGGCTTTCAT TTTATAGAAA AAGTCGATGA GATGATCTGA CAGGTATTCA 5880 GTTGAAAAGG GTACTTCACC ACTTTTTCTA TATTCTAATA AGAGTCTAGA AAATCGAGCT 5940 TTTTCTTCAG GAAGCTCACG AAAATAGGAA TTGAGGATCC AAGTCTGCTT CTGTTTTCTT 6000 TCAATTGGAT CCTGACTGGC AATTCGTTGG TCTTTTTCCA GCTCTTTTTG GTATTGTTTG 6060 GCCTTGATAG CTCGTTCTGC TCTATTTTTA CCAAAAAGAA TTTTTTCCCA CTTGCGTTCT 6120 TCTTGAGTCA GGGTCTCTGT AAAGCCAAAG TAATCTTGAT AAGCACGCTC TGCGGGTCCC 6180 ATGGCTAGAA CCAGATTGTC TGCATATTGC TTGGCGATTT TATCCCTCTT CTTGCGTTCT 6240 TTCTCTGCCT GGATACGGAG TTCTTGTTCG TAGTCAATTT TCTCCTTGCC TAGCTTGACA 6300 AGGTAGAGTT GGTCATCCGA TTTCCCAAGT AAAAAGGGTT TGATACACTT TTCAAGGACT 6360 TCTTCCATCC GAGCCTTTTT CTTTGGTTCC GCCTTGGTCC AACTTCCTCC CTGAAAGACT 6420 TCTAGGAAAA GCTGGTAGTC TCTCTCAGGC GCAAATTGAT TGCCACGATT GGGTTTGAAA 6480 ACACCTTTTT CCCAGAGCCA TTTTAGAAGT CGCTCGTCAA AGTTACTTTT ATTGACCTTG 6540 ATTTTTCCT TTTTCTGAGC TTTTCTGGTT AGATTTTCAA CCTTTCTGAG CAGTTTTTCT 6600 TCCTCTTCCA ATTGCTGGTC AAGGGACAAT CGATGAAAAT GACGAACACA GTCGCTACCA 6660 ATTGGAAAGA GGCGTTGGCC TGTGACACCG TTAAAGAGTT CATAAGCGTA TTTGATGGCA 6720 TTTCCACAGA CACAATTGCT ACGGCCGATA CCGTTAAAAA TAAAGGAAAC TTCATTCCAT 6780 TCCTTGGTAG CTTGTTCCCA AGTATCCGCT TTCGAAGCCT GTAAAACTGC ATCGTGCAGG 6840 GATTTTCTAA CTGGAAGTGT CATGAGGTCT CCTTTCTAAT ACTCAATAAA AATCAAAGAG 6900 CAAACTAGAA AGCTAGCCGC AATCAGCTCA AAACACTGTT TTGAGGTTGT AGATAGAACT 6960 GACGAAGTCA GCLCAAAACA CTGTTTTGAG GTTGTGGATA GAACTGACGA AGTCAGTAAC 7020 CATATATACA GCAAGGCGAA GCTGACGTGG TTTGAAGAGA TTTTCAAAGA GTATAAGTTA 7080 TACTTTTACA ACTTGAACCT CGTCTTTACC GAGTAAAATC AAGTATTTTT CAATATTTTC 7140 AATCGAATAG GCTCGTGATA AAGCCTCTTC GTATAGAGCT AACTGACCAC GATAGCGGTC 7200 TACGAGTTGA CTTGGTTCAT CATAGCGGTC TGTCTTGTAG TCGAACAGAA CAATTTTGTT 7260 TTCGTAAAGC AGATAGCCAT CAAGGATACC ACGGACAACA AAGTCTTCCT GACTCTTTTG 7320 GTCTCGTTTG AGCATGGAGA AAGGTTGCTC GCGATAAAGA TGGTCGGTAT TAGCAAGAAT 7380 TTCCTGACCG AGTACTGTGT CAAAGAAAGC AAGAATTTTA TCAAGATTGA TCTTGTCTCT 7440 GACAGCTTGG CTAGTTTGAA CTTGTTTGAG TGTTTCTGTT AGGCTAGCAA GGGTTAGTTG 7500

| CTGGCTGAGG | TCAATTCTCT | GCATGAGTTC | GTGAGTAGCA | CTACCAATCT | CAGCTCCAGT | 7560 |
|------------|------------|------------|------------|------------|------------|------|
| TACCTTTTCT | TTGGTTGAAA | AATCTGGCAA | ATCGAAGCTG | ATTTTCTTGC | CTACTGACTG | 7620 |
| ACCTTGACCA | GCAATCTCGA | CACCTTCCAT | ATCCATAACT | GGTTCGTAGA | ATTTCTTGAT | 7680 |
| TTGACTTGGG | GTTTGAACAC | TAGGAAGTTC | AATAGCTGCG | CGGTGAAGAG | TATTATAAAC | 7740 |
| TTCCACCTCC | TTCAGCATTT | CCAGAGCTTC | TTTGATGGTA | TCTGACTGAC | GATTGTCTGC | 7800 |
| TTGGGAGCTA | TCTTGGAGAG | GACTCTTGGT | TTCCAACTCT | CCGATAGCTT | CTCTGGTCAA | 7860 |
| CTGATCTTCG | ССААТААААС | GATAACTAAA | GTTGAGCTTG | TCCTTAGTAA | ACACTTTACT | 7920 |
| GATAGCCCAA | AGCCAATCTT | GGAAATTCCG | TGCTTGCAGT | CTAGTATTGC | TATTTAGTTT | 7980 |
| CCCATTTTTG | GCTGCTGGGT | ATTCCTTGGA | TTCCAGCTTT | TCACGAGAAC | CCTTGCCGAC | 8040 |
| AAGATAGAGC | TTTTTCTCAG | CCCGCGTCAT | AGCAACATAC | AGCAAACGCA | TCTGCTCAGA | 8100 |
| ATAGCTTGCT | AGCTGTAATT | CCTCTTCGTT | CTGCCTATAG | GTCAGACTAG | GAATGGAGAG | 8160 |
| TTTGATGGTT | TTAGGATAGT | GGTCTTCTAC | TGCCCCTGTC | TCCATCTTGG | CAATATATTT | 8220 |
| GACACCAAGA | CCATTCTGAC | GACTGAGAAT | GACTTCTGAC | ATAGAGTCTT | GCTTGTTGAA | 8280 |
| ATCTTGATCC | ATATTGAGGA | TAAAGACGTA | AGGAAACTCC | AGCCCTTTAC | TCTTGTGGAT | 8340 |
| GGTCATGAGC | TCTACTGCAT | CTTTTGGCGG | TGCGACGGCC | ACGCTTGCCA | AATCGTGCTG | 8400 |
| GGCTTCTAAG | ACTTGGTCAA | TCATACGAAT | AAAACGCGAC | AAACCTTTGA | AATTGCTCTT | 8460 |
| TTCAAATTGA | TCAGCACGCA | GTGCTAGGGC | ATAGAGATTG | GCCTGCCTAG | CAGGACCATT | 8520 |
| CGGCAAAGCC | CCAACATAGT | САТААТАААА | ACGGTCGTTG | TAAATCTTCC | AAATCAAGTC | 8580 |
| ATAGAGAGAG | TGGGTTTTGG | CATACAAGCG | CCAAGAAGCT | AGGATATCCA | TGAATTGCTT | 8640 |
| TAGTTTTTCA | GCTAGAGCTG | TGTGAATCAA | GCCTTTTTGA | CTACTTGCCA | TTTTTTGTGC | 8700 |
| ATTGACCAGT | TTCTCATAGA | GATTTTCGTC | GACTTMATCC | TCTGCTTTCT | GAAGGGACAA | 8760 |
| ACGTGCTAGC | TCATCCTCAT | СААААССААА | CATTGGAGAC | TTCATAAGGG | CAACCAAGGC | 8820 |
| GTAGTCTTGC | AGGGGATTGT | GAATGACACG | AAGAGTGTCT | AGCATGACTT | GCACTTCTAG | 8880 |
| GGATTGGAGA | TAATTGTTTT | GCTCTCCGTC | AGTTTTGACA | GGAATTCCGT | ACTCAGACAG | 8940 |
| GGCGAGGAGA | ATCTGGTCAT | TACGACTGCG | GCTGGAGGTC | AGAAGGGCAA | TTTCCTTAAA | 9000 |
| GGCAACACCT | TTTTCTTGAT | GAAGTTTCAG | AATCTCCTTG | ATAACTAAGC | GCATTTCGCC | 9060 |
| TGTTAGTTTC | GTTTCTGTTT | GACTCTCTTC | TTCCTCACCT | GTATCGTCCT | TGTCGTAGAG | 9120 |
| GAGAAATGCT | GCCTTGTTGT | CTGGATTGGG | AGTCAGTTTG | GTATTGGCAA | AAACAAGCTG | 9180 |
| GTGCTTGTTA | TCATAGTTGA | TTTCGCCGAC | CTCTTGGTCC | ATGAGACGTT | CAAAGACATC | 9240 |

|            |            |            | 302        |            |            |       |
|------------|------------|------------|------------|------------|------------|-------|
| ATTGGTTGCT | GACAGCACTT | CTGAACTACT | ACGGAAATTT | TCCTTGAGGA | TAATGAGCCT | 9300  |
| GCCTTCTTGG | GGATTTTGCG | CATAGCGTTG | GAATTTCTCA | TTGAAAATCT | GCGGGTCTGC | 9360  |
| CTGACGGAAA | CGATAGATGG | ATTGCTTGAT | ATCTCCCACC | ATAAAGCGAT | TGTGGCCATT | 9420  |
| AGACAACAAT | TCCAGCATCC | GTTCTTGAAT | ATGGTTGGTA | TCCTGATACT | CATCGACCAT | 9480  |
| GACTTCATGG | AAGCGCTCCT | GATAAGACTC | ACGAACTTGT | GGGAAATTCT | СТААААТСТС | 9540  |
| AATGGTGTAA | TGGCTGATAT | CAGCGAATTC | GAAGGCATTT | TCCTGTCGTT | TTCTCTGACG | 9600  |
| ATAAGCCTCT | ACAAAATCGC | TCATGAAAGA | TTGGAAGGTT | TTAGCTAGTT | TCCAAGTGTC | 9660  |
| TCCATGATAA | CGTTCTTGAT | AGTCGAGAAT | CGCTATCTGG | TCTGATAATT | GTCCTAGTTT | 9720  |
| AGCAAACTGG | GTCTTTCTCT | CTTCGTTGTA | GGCATCAGCC | AGGGGCTTCA | AATCAGCCTA | 9780  |
| CGGCTGGCAT | TAGTCAGAGC | TCGACCGTTT | TTCTCCTTAG | AGATGGCGAC | AACACGCGCA | 9840  |
| AGCACTGCCT | GATAAGCCTG | ACTATCGGAC | TCCTGATTTA | GGGAGCCAAT | TTCATCCAGA | 9900  |
| ATTAACTGAA | CATTTTCTAA | ATAGGCAGCC | TTTGCAAACT | CCTTGGCATC | GTTATCCAGA | 9960  |
| TGGTAACGGA | AAAAGCTTTC | CAAATCCCAA | AGGGCTTGTT | TGATTTGCTC | GGTCAGTTTT | 10020 |
| TCTTTTTCAC | TGGTAAAATC | AGCTTTCTCA | AATCCTTTGA | GGAAAGATTC | ACTCAGCCAC | 10080 |
| TTTTGAGGAT | TACTGGTGGA | TTGGAGGAAG | TCATAGATTT | TATAGACCTG | CTGGCGCAGA | 10140 |
| CCCCGTTCGT | CCTTGCCACG | CCCAGCAAAG | TTTTTCAGCA | AATGACTAAA | GGTCTCTTTC | 10200 |
| TGTTTACCTT | GGTAATGCGC | TTCAAAGACC | TCATGAAAGA | CTTCGTTTTC | GAGAATAAGT | 10260 |
| TGCTCGCTTT | GGTTTTGTAA | AATACGGAAA | TTAGGTGCAA | TATCAAGCAG | ATAACCATGT | 10320 |
| TTGCCAAGGA | ATTTTTGTGT | GAAAGAATCC | ATGGTTCCAA | TGGCAGCGTT | GGGTAGGTCT | 10380 |
| GCCAACTGGC | GACCCAAGTG | TTGTTTGAGG | TCGACATCAT | CTGTTTCTTG | GATTTTCTTG | 10440 |
| CTGATTTTTT | TCTCTAAACG | TTCTTTAAGT | TCAGTTGCAG | CCTTGACGGT | AAAGGTTGAG | 10500 |
| ATAAAGAGTT | GAGAAATTTC | GACACCACGC | GCCAATTGGT | CCAGAATGCG | CTCTGCCATG | 10560 |
| ACAAAGGTCT | TTCCAGAACC | AGCCGATGCT | GAGACCAGGA | TATTCTGGGC | AGAAGTGTAG | 10620 |
| ATAGCTTCGA | TTTGCTCGGC | AGTTTTCTTC | TGTTCCTTGC | TCGAATTTGC | TTCTGCTTCT | 10680 |
| TGCAGTTTTT | GAATCTCCTC | CTCACTTAAA | AAGGGAATAA | GCTTCATCGA | TTCAACTCCT | 10740 |
| CTCTTATTTT | TTCAAGCCAA | GCTTGCTTGA | GTTTTTCTCC | GACCAGACGC | TTGCCATCAG | 10800 |
| CTAGGTCCAA | CTTTTCTAGG | AAACGGGCTT | GGCCCAGATG | GTAATTGGCT | TCAAAGCCTG | 10860 |
| TAATAGCCTG | ATGTTGCTGG | ACGTATGGGG | CAATGCTTCT | GCCATTTTCA | GTATAAGGAT | 10920 |
| TGATGGCGAA | CCGGCCTGCT | AAAATCTTCT | CAGCAGCTTT | CTTGTAAAGA | TAGGCATTGT | 10980 |
| AGTCCAGTAG | GAGCTGAAAT | TCCTCATCTG | TCAGTTGATT | AGCCTTGTTT | TTGTTATAAA | 11040 |

| ATTCGCCTAA | ATAACTGCTT | TCTTTTTCCA | AGAAGAGCCC | TTGGTATTTC | ATAGATTTGC | 11100 |
|------------|------------|------------|------------|------------|------------|-------|
| TGGCTTCTAC | CACTGCTCCT | GCCAGACTTT | TTACCGCCAT | CAGAGATTGG | ACAGGTTCAG | 11160 |
| CCATTTCCAA | GTACATGGCG | CCGAAAAAGT | TCTGCTCCCC | TTCTCTTTTT | AGGGCAGCAA | 11220 |
| GATAGGTTGG | TAACTGAGAA | TTGAGCCCAT | TAAAGAAATG | AGGAAACTGG | AACTGAGTCA | 11280 |
| GACTGGATTT | GTAGTCTACT | ACTCCTATCG | CTCCATTAGC | TTTCAAACGG | TCAATCCGGT | 11340 |
| CCACCTTGCC | TCGTACAAAG | ACACTGCGTC | CATTGTCTAA | TTGAATAAAG | GCTTGGTCTT | 11400 |
| TTCCACCAAA | ATTTGCTTCT | TCTTTGATGG | TTTCGATGGC | TGGATTGTGT | CGGAGAATAT | 11460 |
| GTCCAGTTGT | CCGTGCAACA | TCAAGCAAAA | CTTCCTTGGT | AAACTGGGCT | TCCAAACTTT | 11520 |
| CTTGATAAAT | AGCTTCAAAT | TCGCGTTCTT | GACTGGTTTC | TTGAATAGCT | TGTTCTAGAC | 11580 |
| GTTGGTCAAA | GGAATCTTCA | TTAGGCAACT | GTAAGGCGCG | TTCAAAGATA | CGATGCAAGA | 11640 |
| AATTCCCGTG | ACTACGGGCA | TCAGGATGCA | AACGTAATTC | CTCCTGCAAG | CCTAAAACGT | 11700 |
| AGCGTAGGAA | ATAACTGTAT | TCATTGCGAT | AAAACTCTGT | CAAACCCGAC | GTAGACAGGT | 11760 |
| AAAACTCCTG | TTTGGCAGGA | TAGAGAGCTT | GCAAGGTGTC | CTTGGCTAAG | GTCTTGCTGC | 11820 |
| TTGGACTGGT | TGGGATAGCT | GGATTTTCCA | GACCTTGCTG | ATCTAGTTTT | TTACCTATGA | 11880 |
| CACGCGACAG | AACCTTGACA | AAAGTCAAAT | CTTGCTCAGT | ATCGCTCATC | TCACCCTGCT | 11940 |
| GGTGATAGGC | AACCAGACTA | GACAAAAGAC | TGTGATAGGA | CCCCATATCC | TCCTTAGACA | 12000 |
| GTCCTTTGTC | ATTCATCCTC | ттстстстсс | GCCTAAATCC | AAAATGGATC | ÄÄÜTÜTTGAA | 12060 |
| GATAGGCAGA | TTCCTTACTT | TCACTTTCGT | TAAAAAGGCT | TGGAGCCGAC | AAGAACAACT | 12120 |
| GCTTACGAGC | AGAATTGACC | AAGGAAAGCA | TAGTGTAGCG | ATTTTTCTTG | AGATTTTCAC | 12180 |
| TGCTGGCAAT | CAGTAATTGA | ACGCCTTCTT | CGGTCGCTTG | GTTTAGGTTT | TGCCTTTCTT | 12240 |
| CATCTGTCAG | AAGACTGGTG | TTTTGAGAAA | TTTTTGGTAA | ATTGTCCTGA | GTTAGTCCAA | 12300 |
| TAGCATAGAC | AAAGTCAGCA | GTCAATGGTG | CAATCAAATC | GTAACTCTGC | ACCAGAACAG | 12360 |
| TGTCCACTGT | TGCTGGAATG | GTACGGTATT | GGGACAAACT | CATTCCAGAA | TGGAGCAAGG | 12420 |
| CTAGGAAGTC | TTCCAGACTA | ACCTGTGAAC | CAGCAAAAAC | AGTCGCAAAT | TGTTCTAAAA | 12480 |
| CATGGCAGAA | AGCCTTCCAA | ACTTCGGCTT | GTCTTTCCTG | TTCTACAGCT | TCCAAAGTGG | 12540 |
| TTGTCAAATC | TTGTAACTGC | TTGGTCACAG | CTCCTTCTTT | TAGAAAGACA | CTCCATTTTT | 12600 |
| GTAGGAGTTT | TTCAGCCTTT | TGTTTTCGGC | TGGCAAAGAG | GGTTTCAAGA | GGTGCTAAAA | 12660 |
| TTCTCAGGCG | GAGGACATTC | AAACGCTCAA | GATTAAATTT | TCCATGGTGG | GATTTGGTGA | 12720 |
| AGGTTTGCTG | AAAGGCTGGC | AAGCCATTGA | TACCAAGATA | GCGGATATAT | TGCTCAAAAG | 12780 |

304 CATCAATATC AGACTGACTG AGGTCAGTAT ACAAATCAGT TCTAAGAAGA TTAATCAAAT 12840 CCTCCTGACG AAAACGGTAA CGTTTTAAAG CTAAAATAGA CTCGACAAAC TGAGTCAAGG 12900 GATGATGAGC CATGGCTTCG CTTCTACCAA GATAAAAAGG AATCTGATAC TGGTCAAAAA 12960 TGGTTTTGAG AGATAACTGG TAAGAAGCTA CATCCCCCAA GAGAATACGA AAATGCTTGT 13020 AGCTCAGGTC TGAGTTCTCA TGTAATTTCT GACGAATACT ACGGGCTACT AGCTCCAACT 13080 CCTCCTTTTG CGTCAAACAA GACCAGATTT GTAAATTTTC ACGGTCTTTC TCATCGACAT 13140 CCAAAGCGAG TTCTGAAAAG TCATAAGAAG ACTCCAACAA ACGAGAGGCC TTGTCAAAAC 13200 TATCCATCTT CTCATGAGTT TGAGAACAGT CCTGAGCAGG CGTTTGGTAT TTAGAAGCCA 13260 GATGATGGAG AAATTTTACG CTGGCTTGGT AGAGATTGCC CTCGCTAAAA GGACTGGTAT 13320 AGGCTTTCTT ACTAGCATAA GCCCCGATAA CAATCTCAAC ACCTTTGCCG TGAAGTAAGT 13380 CCACAACCCG CTCTTCCTCA GCAGAAAAAC GAGTAAAGCC GTCAATGACC AAGGCGATTT 13440 GATTAAAATC ACTACTTACC TTGTCATTCT CAATAGCCTC AATCAAATGG GACAACTGAC 13500 TTTCCTGGGC TAACTGACCT TGATTAAGAT AGGCTGTTAC TTTCTCAAAA ATCAAGAGTA 13560 AATCCGCCCT CTTATCCTCA TCTGTTAAAT TCTCCAAGTC CAAAAAACTC ATCTGAGATT 13620 TGGTCATCTC ATGGTAAAGC TCAATTAACT GCTGGATCAA TTGAGGATCC TGCTTAATAG 13680 CGCCATAAAC ACGCAAGTCC TTGGGATCGA GTTCGGCAAG GCATTTGTAA AAGGCCAACC 13740 CAAGACCGAT ATCATCAAGA GTAGTTTTAG CTGGTAAATC ATTCAAGACC AGATAGCGAG 13800 CCATTTGAGC AAAGCGCGTG ACGGTAATCG AAAAAGAAGC CTGCTGGGAC AAGTATTCCA 13860 GCACGGCGCG TTCCTTTCA AAAGAAAGAG AGTTGGGGGC AATGTAGAAG ACCCGCTTGC 13920 CAGCTGCAAC TAGCTCTTCT GCCTCTCTG TTAGAATTTC TGTCAAAGAA GTCCGAATAT 13980 CAGTATAAAG TAATTTCATC TCAGCCTCGT TGGAATTTTT CATCACCCTA TATTATACCA 14040 TGATTAGCCT CGTAAATCTG TTAAAATATT TAGGCCATCC TTTCTTTCT TCATCATCTG 14100 CTAAATCTTA AATACTTAGC TTTACTTGTA TTAGATAGAA TAAGTCTGGC TACTGAAAAT 14160 CACATAATAA AAAAGCCTCG GTAACAAGGC TTTGAGTTTT ATGATTGTTT CTTAGGTACG 14220 GAATACACTT CAATGTGTTG TCCCAGTATC TTAATGTCGA CTGGTAGATT GTCTGATTTA 14280 TCGCCATCAA CATCGGACTC TAATTCGATA TCAGAAGAAG TTTTAATATT ACGTGCCTTT 14340 ATATATTCAA TATTCTTGAT AGAATGATTG AACTATAGTA AATTGAAACT ATAATAGTAC 14400 ACCGTGGATG CTAAAATATT TCTAGAAATT AATTTGATTT CCCTAATCAA GCTATTCGTA 14460 TCTTATTCA ATCTACTATA ATAAAATGAA CCAAAAATAG TACACAATGT GGTATAATCT 14520 TCTTATGGCA TATTCAATAG ATTTTCGTAA AAAAGTTCTC TCTTATTGTG AGCGAACAGG 14580

305

| TAGTATAACA GAAGCATCAC | ACGTTTTCCA | AATCTCACGT | AATACCATTT | ATGGCTGGTT | 14640 |
|-----------------------|------------|------------|------------|------------|-------|
| AAAGCTAAAA GAGAAAACAG | GAGAGCTAAA | CCACCAAGTA | AAAGGAACAA | AACCAAGAAA | 14700 |
| AGTTGATAGA GATAGACTTA | AAAACTATCT | TACTGACAAT | CCAGATGCTT | ATTTGACTGA | 14760 |
| AATAGCTTCT GACTTTGGCT | GTCATCCAAC | TACCATCCAC | TATGCGCTCA | AAGCTATGGG | 14820 |
| CTACACTCGA AAAAAAGAAC | CACACCTACT | ATGAACAAGA | CCCAGAAAAA | GTAGCCTTAT | 14880 |
| TTCTTAAGAA TTTTAATAGT | TTAAAGCACC | TAGCACCTGT | TTAGATTGAC | GAAACAGGAT | 14940 |
| TCGATACTTA TTTTTATCGA | GAATATGGTC | GCTCATTAAA | AGGTCAGTTA | ATAAGAGGCA | 15000 |
| AAGTATCTGG AAGAAGATAT | CAGAGGATTT | CTTTGGTTGC | AGGTCTAACA | AATGGTGAAT | 15060 |
| TAATCGCTCC AATGACTTAC | GAAGAGACGA | TGACGAGCGA | CTTTTTTGAA | GCTTGGTTTC | 15120 |
| AGAAGTTTCT CTTACCAACA | TTAACCACAC | CATCGGTTAT | TATAGTAAAA | TGAAATAAGA | 15180 |
| ATAGGGGGG GGGGGGAGGG  | GGGGGGAGGG | AGA        |            |            | 15213 |

# (2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 6004 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

| TTATTACCTG | AAACATTAAA | TTTAATTGGA | CATCCCGTTA | TCAATTTTAT | AATATCATCA | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| AGATTTTTAT | TATCTGATTC | AGGAATTTTA | TCTGATATAA | CAACACCATT | TTCAAGATAG | 120 |
| ТТСАТТАААТ | TATTTGATTC | ACTAACATTA | GTGTTTTGAT | CTCCATCAAG | ССАААААТАА | 180 |
| TGGTTATCGG | AATCTAAATA | CGATGAGTTT | AAAATATTAT | TACAAATTAT | TTGATTTGCT | 240 |
| CCACCAGGAA | TATATCTCAC | TACTAAATTC | TGTTTAAGAT | TCTCACTACC | TGAATGAGTG | 300 |
| ATAACAAACT | CTAGAATATA | TTTAGCTAGT | CTATCTTCAA | CATAAATCAT | CTTCCTAGAA | 360 |
| TGATACACAT | CACCTAATTC | AAAAAATGCA | TCCTGATAAT | CAATATTTTC | AATAACATCT | 420 |
| ACCTTTTCTC | CGTTTTTCAC | TAAAAGTTTC | ACGGCTTCTC | TAGGAAAATC | TTTTATAAGT | 480 |
| TGTGTAGAAT | GTGTAGTGAT | AATAATTTGA | TGTTTTTTAT | TTAAACACTC | TTGAAGTAAA | 540 |
| AACTCTTTAA | ATTTATAGAT | TGCACTCGGA | TGAAGTGAGA | TTTCAGGTTC | ATCTATTAAT | 600 |
| ATTAATGAAT | TTGATTGCGC | ATTTACTATA | TCATTTACTA | АСААААТААТ | TCTAGCCTCA | 660 |
| CCTGTTCCTG | CAAAAGCCTC | GGAATATTCT | TTTCCAGATT | TTTTCATCCA | AATAGTTTTG | 720 |

|            |            |            | 306        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| GAAGCTTTTA | TATCATCACC | TTTTGAATAC | AACTTATGTG | TTAAAATTTG | AATGTCTGTA | 78   |
| TAAGATTCAT | CCATTATTTC | ACTAATAATT | TCACAAACTT | TATCATCAAC | TTTAACATTA | 84   |
| TCTATAACCA | TTTCCTTTTT | ATAACGCGTA | TAGCTACTTG | TATTATTCTT | TAAAATATCA | 90   |
| GCAACTGGCT | TAGATCGTAA | TCTTATAAAA | TCTTGTTTAC | TACGTTGAGT | AGAAATTTTT | 96   |
| ТТААААТТАТ | AGTGATAGAA | AAATAAATCA | AAAGCAGAAA | CATATTCTTT | ACAATCACAA | 102  |
| AAGACAACAT | ТТТТТСААТ  | GCCATCCCAT | CTGTCTGTCG | AAGAACTTCC | AATATATTTA | 108  |
| TTTTTGGGTA | ATCTTTCCAT | CTCATATTGT | TTTTGAGGAG | CATATGGTTC | CCAATAATCT | 114  |
| AATCCTTTTT | TTGTTCCAGA | ACGGCCTTTA | AGAACTTCTA | CATTTCTAGA | AGCTTTAATG | 120  |
| ТТАТААТАТG | AATAGATTAA | ACATTGTTTC | CCATCCACTT | CATCTATTTG | ATCAACATTT | 126  |
| GTACTAAACC | AATATTCAGA | CACACTTTTA | TTGGCTGGAG | AACCATATAA | AGCTTGTAAA | 132  |
| ATTGAAGTTT | TATTTACTCC | ATATCTATTA | CAGACACCTC | AGGATTATTT | AACTTATAAG | 1386 |
| TTTTAACAGC | TACGGAATCA | ATTTCAACAG | CAACTTGAAC | ATCTATGCCT | GATTTTTTAA | 1440 |
| GGCCACTTGT | AGTGCCACCT | GCACCGTTAA | ATAAATCAAT | AGCAACAATT | TTCCCCATAG | 1500 |
| таттстсста | AAGTTTCTCC | TTTTTATTAT | AACATTATCA | AATGTAAAAC | CCAACCCGAT | 1560 |
| AGGGTTAGGT | TTTTAACATC | ATTTCACCAA | CTTCTTCATC | TCATCAATAC | GTGCGACGGT | 1620 |
| CGCGTCATAT | TTAGCTTGGT | AGTCAGCTTG | TTTGTCGCAT | TCTTTTTGGA | CGACTTCTGG | 1680 |
| TTTGGCGTTG | GCTACGAAGC | GTTCGTTAGA | GAGTTTCTTA | CCAACCATGT | CCAGTTCTTT | 1740 |
| TTGCCATTTA | GCAAGTTCCT | TGTCGAGACG | GGCCAGTTCT | TCTTCAACAT | TGAGGAGATC | 180  |
| GGCCAGTGGC | AGGTAGATTT | CTGCTCCTGT | GATGACACTT | GACATAGCCA | GTTCAGGTGC | 1860 |
| AGGGATGGTT | GATGCGATTT | CCAAGTGTTC | TGGATTTGTA | AAGCGTTTGA | TATAGTTGAC | 1920 |
| ATTGCTGTTA | AAGAAGGCTT | CCAAGTCGCT | ATCGCTTGTC | TTAACAAGGA | TGGTGATAGG | 1980 |
| CTTGCTTGGT | GCTACATTTA | CTTCCGCACG | CGCATTCCGA | ACAGCACGAA | TCAAGTCTTT | 2040 |
| GAGACTTTCC | ACACCAGTGT | GAGCCGCAAG | GTCTTCAAAG | GCTAGATTAA | CAGTTGGGTA | 2100 |
| TGCAGCTGTC | ACGATAGAAC | CTTCTGAGAT | TTGTCCAAAG | ATTTCCTCTG | TCACGAATGG | 2160 |
| CATGATTGGG | TGAAGGAGAC | GAAGGATCTT | GTCCAGCGTA | TAGAGGAGAA | CAGATCGAGT | 2220 |
| AATGACCTTA | TCGTCTTCAT | TGTCGCTGTA | TAGAACTTCC | TTGGTCAACT | CAACATACCA | 2280 |
| GTTGGCAAAT | TCTTCCCAGA | TGAAGTTGTA | AAGGATATGA | CCAGCCACAC | CAAACTCGAA | 2340 |
| CTTATCAAAG | TTTTCAGTAA | CTTTTGCAAT | GGTTTCGTTG | AGATTGTGGA | GAATCCAGCG | 2400 |
| GTCCGTCACA | TTACCAGCCT | CACCTGTTGC | AACTTTTGTG | ACATTGTCAT | GCGCCACATC | 2460 |
| CAGCGTCAAA | CCTTCATTGT | TCATGAGGAT | ATAGCGAGAA | ATGTTCCAAA | TTTTGTTAAT | 2520 |

| AAAGTTCCAT | GAAGCATCCA | TTTTCTCGTA | AGAGAAACGA | ACGTCTTGAC | CTGGTGCGGA | 2580 |
|------------|------------|------------|------------|------------|------------|------|
| ACCGTTTGAA | AGGAACCAAC | GAAGGGCATC | AGCACCGTAT | TTCTCGATGA | CATCCATTGG | 2640 |
| GTCAATCCCG | TTACCGAGAG | ATTTAGACAT | CTTGCGTCCT | TGCTCGTCAC | GGATGAGACC | 2700 |
| GTGGATAAGC | ACGTTTTGGA | ATGGCTGACG | ACCAGTAAAT | TCCAAGGACT | GGAAGATCAT | 2760 |
| ACGAGACACC | CAGAAGAAGA | TGATGTCGTA | ACCTGTTACC | AAGGTTGAAG | TTGGGAAATA | 2820 |
| ACGTTTAAAG | TCTTCTGAGT | CGACTTCAGG | CCAGCCCATG | GTTGAAAATG | GCCAGAGGGC | 2880 |
| AGAACTGAAC | CAAGTATCCA | AGACGTCTTC | GTCCTGAGTC | CATCCGTCAC | CTTCTGGAGC | 2940 |
| TTCTTCGCCG | ACATACATTT | CACCATCAGC | ATTGTACCAG | GCAGGGATTT | GGTGACCCCA | 3000 |
| CCAAAGCTGA | CGAGAGATAA | CCCAGTCGTG | GACATTTTCC | ATCCATTGAA | GGAAGGTATC | 3060 |
| GTTGAAACGA | GGTGGGTAGA | ATTCGACCTT | GTCCTCTGTG | TCTTGGTTAG | CAATGGCGTT | 3120 |
| CTTAGCCAAT | TGGTCCATCT | TGACGAACCA | TTGAGTAGAC | AAGCGTGGCT | CAACTACGAC | 3180 |
| ACCTGTACGT | TCTGAGTGAC | CAACACTGTG | GACACGTTTT | TCGATTTTGA | CAAGGCACC  | 3240 |
| GATTTCTTCC | AACTTAGCAA | CGACTGCCTT | ACGAGCTTCA | AAACGATCCA | TGCCTGAAAA | 3300 |
| TTCAAAGGCA | AGCTCATTCA | TAGTTCCGTC | GTCGTTCATG | ACGTTGACTT | GTGGCAAGTT | 3360 |
| ATGACGTTGG | CCAACCAAGA | AGTCATTTGG | ATCGTGGGCA | GGTGTGATTT | TCACGACACC | 3420 |
| AGTACCAAGC | TCAGGATCTG | CGTGCTCATC | TCCAACGATT | GGGATGAGTT | TATTAGCGAT | 3480 |
| TGGAAGGATC | ACCTTTTTAC | CAATCAAGTC | CTTGTAGCGC | GGGTCTTCTG | GATTAACCGC | 3540 |
| AACCGCAACG | TCCCCAAACA | TAGTCTCAGG | ACGAGTTGTA | GCAACTTCAA | GGGCGCGTGA | 3600 |
| ACCATCTTCC | AGCATGTAAT | TCATGTGGTA | GAAGGCACCT | TCTACATCCT | TGTGAATCAC | 3660 |
| CTCAATATCA | GAAAGGGCTG | TGCGAGCTGC | TGGGTCCCAG | TTGATGATAA | ACTCACCACG | 3720 |
| ATAGATCCAG | CCTTTCTTGT | AAAGGTTCAC | AAAGACCTTA | CGAACAGCTT | TTGACAAACC | 3780 |
| TTCATCAAGA | GTGAAACGCT | CACGAGAATA | GTCTACAGAA | AGCCCCATCT | TGCCCCATTG | 3840 |
| TTCCTTGATG | GTAGTGGCAT | ATTCGTCTTT | CCATTCCCAG | ACCTTCGTCA | AGAAAGACTC | 3900 |
| ACGACCTAGG | TCATAACGCG | TAATACCCTC | ACCACGTAAG | CGCTCCTCAA | CCTTAGCCTG | 3960 |
| AGTCGCAATA | CCAGCGTGGT | CCATACCTGG | AAGCCAAAGG | GTATCAAAGC | CTTGCATGCG | 4020 |
| TTTTTGACGG | ATGATGATAT | CCTGCAAAGT | CGTATCCCAA | GCGTGACCAA | GGTGAAGTTT | 4080 |
| CCCAGTTACG | TTTGGTGGTG | GAATCACGAT | TGAATAAGGC | TTAGCCTTTT | GATCGCCTGA | 4140 |
| AGGCTTGAAA | ACATCCGCAT | CAAGCCATTT | TTGGTAACGA | CCAGCCTCAA | CCTCGGCTGG | 4200 |
| ATTGTATTTA | GGTGAAAGTT | CTTTAGACAT | GTGTGTGTCC | TTTCTCTATT | TTGTTTATTT | 4260 |

|            |            |            | 300                |            |            |      |
|------------|------------|------------|--------------------|------------|------------|------|
| TATTTTGAAT | TTGCTTAGCA | GCTTCTTCTG |                    | CGTATTATTT | ATTTTAAAGT | 4320 |
| AGTGGTGCAA | CTCATTCGGT | TGATGTTGGG | <b>AATTTAAT</b> TG | AAGTGTTTCA | GCGGTCTCTA | 4380 |
| AAATTTCTCT | TTCAGATACC | TCAATATGTC | GTTTTAAGGG         | TTTGTGCTTT | AATCGATTCT | 4440 |
| CCGTTCGATT | TCGACGTATG | CACTCTTCAA | GACTTGTTTC         | CAATTCAACA | AACAGAATCT | 4500 |
| CTTGATGAAA | GTTATCCAAT | AAATCCTGAA | TTTGCTTTAA         | ATACATCAGC | TGGTACTGAT | 4560 |
| TTGAAAAATC | AATTACGTCT | GTTAAAATTA | CTGATCGCTG         | ATTTCTTGCA | CTTGCTCCAA | 4620 |
| GGAAAGAAAA | GGTAATTCCA | CGAACAAATT | CCCACATCTC         | CTCGGTATAA | TCCTGATAGA | 4680 |
| TCTCTAGTGC | ААААТСААТG | GCTTGATGGT | TATAAAATAG         | GGTAGCATCC | GTCAGTCGAG | 4740 |
| ATAATTCTTG | ACCAATGGTC | ATTTTTCCTG | ATGCTGGAGC         | ACCAATGATG | AAAAGATGCA | 4800 |
| TCAAATCACC | TCCCACTCAC | TCCTCAGCAA | GCCATATCTC         | AAATCATCAC | AGCAGTTGCC | 4860 |
| TTGAGCATCT | TTGCGGTCTC | TTATGCGAGC | TTCGAGGGTA         | AAGCCAAGCT | TTTCCGAGAC | 4920 |
| TCGTTGACTT | TGAAGGTTAT | ATCCAAAGCA | AGTTAGTTCA         | ATCTTGTGAA | GACCAAGTTC | 4980 |
| TTTAAAAGCT | AGATCAATCA | AGGAACACGC | TGCTTCTGGA         | ACATAACCTC | GACCCCAATA | 5040 |
| GTCTGGGTGC | AAGGTATAGC | CAAGCTCTAG | CACATCATCC         | GCATGAAGAT | GGTTGAAGTC | 5100 |
| AACAGAACCA | ATGACTTTAT | CGGTTCCTTT | GACGACAATC         | CCATAGCCAG | CTGGGAGATT | 5160 |
| TTCCTTTTGA | GTACGCTCCG | GAAGAATGTG | CTCCAGATAA         | TAAATCTCAT | CTTCCAAGAT | 5220 |
| CTTGACTGGA | GGAAAACCTG | CTGGATAGGC | GACCTCTGGC         | AAACTAGCGT | AGGTATGGAT | 5280 |
| ATCCTCAGCA | TCCACCACTG | TGCGGACTCG | TAAAACGAGA         | CGTTCTGTTT | CGATTTTATC | 5340 |
| TGGCAGCTCA | GTTCTTGCCA | TCCTTCTTCC | TCGCTTTTTT         | GATGAAACTG | CCCTTCATAT | 5400 |
| CTACACGCTT | GTCCAGATAG | CGATAAACGC | GCTGATATCC         | ATCTCCCATG | AAATAGGTTG | 5460 |
| GGGCAAACAG | TTGATTTTTA | AAATGTCCCT | TTTCATCCAG         | GAGTTCTGGG | GCAACAAGTC | 5520 |
| GCTCAAGAAT | CTTGGCAAAG | ATGTGGCAAA | TACCGTCTTC         | CTCAACAATC | CTATCTACCC | 5580 |
| GACAATCTAA | AACAAGTGGA | CAGGCGTCTA | AAATAGGAGT         | CTGAGTTCGT | TCAGAAATIT | 5640 |
| CATAATGCAC | TCCCAAACGT | TCCAATTTCT | CCTGATGACT         | GATAAAACCA | GCCTGCTCCA | 5700 |
| TCGCAAGCAT | AGAAGTTTCA | TCAGAAATAT | TCACAGTAAA         | TTTTTGATAC | TGTTTGATCT | 5760 |
| GCTCTGCGGC | ATTCTCTCTC | GCAACGACTC | CAATCACAAC         | CCAATCTCCT | AGACTATAAG | 5820 |
| AGGAACTACA | GGTCGTGATG | TTATAGCCAA | AATTCTAATC         | TTGATATCCT | ААААТАААА  | 5880 |
| CAGGAAAACC | ATAATATAGT | TTACTTGTGT | TAAAAGATTG         | CTTCATAACA | ACCCCCTTTG | 5940 |
| ACTAAGACGT | AAAAGAAAAG | CCCTGCCATC | TACATGACAG         | GGACGAATGT | GTTTATCCGC | 6000 |
| GGGG       |            |            |                    |            |            | 6004 |

309

## (2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 5857 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

| TGTAGAATTC | ACGACAATGC | TTCGTTGATT | TCTGGGTTGA | TTTCGTCGCG | TTCTGGCAAG | 60    |
|------------|------------|------------|------------|------------|------------|-------|
| CGAGTCAATG | AACCAAAAAT | AGTACACAAT | GTGGTATAAT | CCTTTTATGG | CATATTCAAT | 120   |
| AGATTTTCGT | AAAAAAGTTC | TCTCTTATTG | TGAGCGAACA | GGTAGTATAA | CAGAAGCATC | 180   |
| ACACGTTTTC | CAAATCTCAC | GTAATACCAT | TTATGGCTGG | TTAAAGCTAA | AAGAGAAAAC | 240   |
| AGGAGAGCTA | AACCACCAAG | TAAAAGGAAC | AAAACCAAGA | AAAGTTGATA | GAGATAGACT | 300   |
| TAAAAACTAT | CTTACTGACA | ATCCAGATGC | TTATTTGACT | GAAATAGCTT | CTGACTTTGG | 360   |
| CTGTCATCCA | ACTACCATCC | ACTATGCGCT | CAAAGCTATG | GGCTACACTC | GAAAAAAGAA | 420   |
| CCACACCTAC | TATGAACAAG | ACCCAGAAAA | AGTAGCCTTA | TTTCTTAAGA | ATTTTAATAG | 480   |
| TTTAAAGCAC | CTAACACCTG | TTTAGATTGA | CGAAACAGGA | TTCGATACTT | ATTTTTATCG | 540   |
| AGAATATGGT | CGCTCATTAA | AAGGTCAGTT | AATAAGAGGC | AAAGTATCTG | GAAGAAGATA | 600   |
| TCAGAGGATT | TCTTTGGTTG | CAGGTCTAAC | ĀAATGGTGAG | TTAATCGCTC | CAATGACTTA | 660   |
| CGAAGAGACG | ATGACGAGCG | ACTTTTTTGA | AGCTTGGTTT | CAGAAGTTTC | TCTTACCAAC | 720   |
| ATTAACCACA | CCATCGGTTA | TTATTATGGA | TAATGCAAGA | TTCCATAGAA | TGGGGAAGCT | , 780 |
| AGAACTCTTG | TGTGAAGAGT | TTGGGTATAA | ACTTTTACCT | CTTCCTCCCT | ACTCACCTGA | 840   |
| GTACAATCCT | attgagaaaa | CATGGGCTCA | TATCAAAAAG | CACCTCAAAA | AGGTATTACC | 900   |
| AAGTTGCAAT | ACCTTTTATG | AGGCTTTTTT | GTCTTGTTCT | TGTTTCAATT | GACTATATAA | 960   |
| ATTGTCTAAG | CGAAACAACC | GATAAGAATT | GGCACAAAAG | CGACCGTATT | TTTGTTACCA | 1020  |
| ATACAGGAAA | AACAGTTCAT | AGTTCTATCT | TGAGCAAGTC | TCTCCAGCGA | GCAAACGAAC | 1080  |
| GCCTTAAAAA | ACCAATTCCC | AAACATCTGT | CCCCTCACAT | CTTCAGACAC | ACCACTATTA | 1140  |
| GCATCTTATC | AGAAAATAAA | ATTCCTTTAA | AAACAATCAC | GGACAGGGTT | GGTCATCCCG | 1200  |
| ACTCTGAAGT | CACTACTTCC | ATCTACACCC | ACGTCACAAA | GAACATGAAA | GATGAAGCAA | 1260  |
| TCAATGTACT | GGATAAAGTT | ATGAAAAAGA | TTTTTTAAAA | AGTTTTGTCC | CTTTTTTGCC | 1320  |
| СТСТАААТАС | AAAAATAGCC | CTTCGGATAA | AATCCGAGGG | GCTAGAAACG | TTGTTAAATC | 1380  |

310 AACGGCCGAA CTTTTGAATT TCATGGTTCG GGATAAAATA GTTCACTGAA CTATTTTATT 1440 TTTTAAGGTT ATCATAATAT CAAATAGTTC AATTAAATAC GCTAAATTAC TAATATACTT 1500 TTTACCTTTT TCATTCTAAA ATGTAAAGTA CAAACAATTA CAATATACTA GAGGGGGAGT 1560 AAAAAAGGTA TTAAATCGAT GAGTTCAGCA GGCAAGAAAA TAGCACCTTT ACGGGTGCTA 1620 TTTTTTAATT AACGCCACGT TAACTTTTGA TTGATGAATT TTATTGTTTG GCACTTCTTT 1680 CATTTCACGG TAAACATCGA TGAAATTCTT TCCAACATTA TTTTTGGAGT TAACTGCATT 1740 TATTTTGTA TTAATAACTT TTTTAGTATC GAAAGAATGG TTTAAGAAAT CCATAACTAA 1800 CTCTCCTTTC TCATCCTGTA ATCAAGATTT TTATCAATGT CAAAATAGTA TTTTCTATCA 1860 ATCCAAATTG GTCCTTCTCC TTTAGAAATA GCAAGTACAT CTACCGGACC TCCTACTGTT 1920 TCAAGAGTGT TGACAATTTT TCTCTTAAAT GAAGTTAATT CAATAAATGT TTTAGCTGTA 1980 CTCGCCATTT CATTAAGTGG TTGCATTCCA ATAAGGTCTA TTATAGGATT TATATAATAT 2040 TTTTGCTGTA TAGATGATAT ATTTTCAAAT ATATTCTCAA TTTCATCACC CAATCCATTT 2100 TTCTCCATAA CTGATGATAC TTGCTCTGCG ATATATACAT TTAAGTTAGG ATCTATACCA 2160 TTCATAATCG TCTCAACCAT CTCTGACTGT GCAAAAGGGA TTATATGACA AGTTTTATGA 2220 TGATTTATCA CACTTTCATT AATAACTTTC CAAATTAATC GTTTAGAAAA AATTCCATAT 2280 AATTCAATTT GTCTTATAGA TGGAAATATC TCGTCTGTAC CATAACCTGC TATAACTAAT 2340 CCAGTTATGT TTGTTGAGTC ATATCCAATG AAAATCGCTT TATATAAAGA TTTAGCAATA 2400 ACTTCAACCT CATCATCAGT ATGAGGAAAG GATTTAAAAA CATCGTCTAC AATGCTTTTT 2460 ATTAACTCTA ACTCAGCTTC AAAAAATTCA AAATTACTTT CAGCTTCTAC TTTTGAAATT 2520 TCTAAACTAA AATTAGTTAT AGCATTTAAT AAAATTTTAT TAAAATCATC TAGAGTGATG 2580 GTTTCACCAT TAGAAACTCT TAAATCAGCT GTTTCTTGCG CTTCATAGGC AATGCTGTCC 2640 AAAATACTTC TTGTACTTCT GACAATATAA TTTCTTAATA AATCCTCAAC TTGTAGATGT 2700 TTAAAGGAAA TTAAAAATTC TATTAGCTTT TCAACGTATT GGGCAGTATT ATCTAATAAA 2760 TCTGTGCCAA TAGCCTGCTT AAACTCATTT AAAATTACCT CCCACGGAAT TTCCATAAAC 2820 GAAGCGTTCC CATATATCAT GATCCCCACG GAATGTTCTT TTGATAAAGT GAATAATTTT 2880 CGGGCGCTAT TAAAAACTTT TGAATTTTTC CCGTCTGATA AGGTTACAGC GCTATCAGAA 2940 GCCAATACAA CACCATTTTT ATTTAATATT CCAATTTCTG CTGTCAAAAT ATCACCTAAA 3000 CTTTCTAAAC CTGCTCATGC TCTAATGGTA CAACAGCTAA GGTCTTACCA AGACTTGCCA 3060 ACACTTTTAA TACTGTATCA AGTTGTGGGC TTGTCTTTCC TGTTTCCATT CTAGCGATAA 3120 CTGGCTGACT AACACCGCTC ATCTCCTCTA GTTTCTTCTG ACTAATACCC TTTTCATTTC 3180

| TAGCCTCGAT AAGCTCACT  | CATGATAGCCA  | CGCGCATATC | ACTTTCCAAA | ATTTCCTCTT | 3240 |
|-----------------------|--------------|------------|------------|------------|------|
| TGCTGAATAA TTCAGCTCT  | r acatetttee | AGTTACTACC | AATAGCATTA | TTTTTCATTG | 3300 |
| TCTAAACCTC TTTCTTTTA  | A ATCTGCAAGT | TCACGTTTAG | CTTGCTCAAT | CTCTCTTTTG | 3360 |
| GGTGTTTTCT GTGTCCTTT  | г сатаааатда | TGCAGTAAAA | CAAAACTACC | ATCCATCCAA | 3420 |
| GCAACAAATA AAATTCTAT  | TCTAAGTGGT   | CTCAGCTCCC | AAATTTCAGC | ATCTAAATGC | 3480 |
| TTAATATATG GTTCGCCTG  | C GCGTGTTCCA | TGTTGGCTTA | ACAACTCAAT | ATAATCATTA | 3540 |
| ATTTTATTAA GCTTAATTC  | GCTATCTTTC   | CCTTTTTTAC | TGGTAAGCTC | TCGCATATAA | 3600 |
| TCAAAAACAG GCTCATTGC  | C GTTTTTATCC | TTGTAAAAAT | AGATATTATG | CACTATTAAC | 3660 |
| ACCTCTTCCT AATAACAAT  | г атаасстааа | AGTTATTGTT | TGTAAATACT | TTTAAGTTAT | 3720 |
| TAAAATAAAA AGCACCTAG  | TTCCTAGATG   | CTAGCACAAT | GACACGGATT | CGCACCGTGG | 3780 |
| CTACCTCTAT CAAGGTGTAG | с тесттетата | CTATCCCTTG | TGCTTTAGAA | TATTATACCA | 3840 |
| CACAATCAAC TAGATACCT  | CCATCTCATG   | ATATACCCCC | ATTTTGGGCA | AGGGTACAAC | 3900 |
| GCTAAAATAC AAATCAGAA  | AGATATTAAA   | CCACTTATTT | AACTTATCAT | AAGCTGGTGA | 3960 |
| TTGACTGATA AATAATATCO | GCTGACAAGC   | TCCGATAACA | TTCATGTGAT | TGTACACATA | 4020 |
| AACCTCTTTT ACAGCCTCT  | AAATGTCAGC   | CTCACTTGTT | TGTACCCTAA | TATCTGTTAT | 4080 |
| CTGCTTGATA GTTGCGTAT  | TTTGATAAGC   | TAGCATATCT | TGATTTTTAG | CAGCATCAAA | 4140 |
| CATTTTACGC TCAAGGACAG | TATACTTAGG   | TTGTTCTTTA | TCTCGCATGA | AATACCACTT | 4200 |
| GAGCCATAAA ATCTTTTCT  | GGTGTATTAC   | AGAAATACGC | TCAATTTTCT | TCTTTGTCAT | 4260 |
| TGCTACCTCC TAAATCATCA | A ATTTAACAAT | TCTAACCACT | CACTTTTAGA | AATAGTTGCA | 4320 |
| TAGATCTTGT TCGATGTATC | ATACAAAGGT   | TCTAAATCTT | TTTCCACCCT | AATATAGTTC | 4380 |
| ATCTTATCCT CATGAGTAGG | AAAGTATAGT   | ATTTCCGTTT | CATCCTCGTT | TAGGATACGA | 4440 |
| TTGCACCAAT CATCAATAA  | AACTGGCACT   | TCCCACTCAC | GCCATTTTTT | AAGGTTTTCT | 4500 |
| AAAAGTTCAT TATCACTAAA | TAGCTCGCCA   | TCTATTTGGA | AAAATTCCCC | TAAGTCATTG | 4560 |
| ТТТССТТСАА СААТААТАА  | CTCTGGCATA   | TTTCTATTAC | TTAATAACTC | CTTGAGTTCT | 4620 |
| TGTAACTCTT TGATTTCCTT | TAGATACTTC   | CTCAATTTCC | AACCTCAATT | CTTCAATCTG | 4680 |
| CCTTACTACT CCAAAAATTT | CATGGGTCTT   | ATAAGATTGT | TCAAGTATAG | CCTTTGCTGC | 4740 |
| TTGAGTTCTT ATAAACGGG  | TGACCTTACT   | GTCCATCATA | ATATCATTGA | GTACAGAAAC | 4800 |
| AGCGTTAGAT GATGCTAAAT | AAAGCATTTG   | AGTTGTTTTA | TCCATCATCT | CATCTTGCTT | 4860 |
| TATCCTCAAT GTCTTTTAA  | CCGCTGCAAC   | TTTTAGATAC | TTATGACCTG | TTGCGCGTGA | 4920 |

312 TACCCCTGCT TTTTGACATG CTTTGTCTAT CGTTGGCTCG GTAAGCATGG CATCTATGAA 4980 TTTAATTTGC TTGGACGTAA GGTTATCATT TTCATTTCCT GCCATCTATT ACCTCCTCAT 5040 TATCAAAATA AAGGGTTGCC CCTTTATTTC CCTATGCTAG ATAATTCTGC AATTCTGCAT 5100 CCATTGCCTC TGAATTGCCC TCAACAATCA TTTCATGCTG TACTAAATCA ATCTTATCTC 5160 CGTTAATAAG TAAACCACCG TGGAAATAAT CAATTTTTCT ATCAAGGAAA TGTACTAGCT 5220 TTTCAAGGCG TTGCTGTTGG CTGAATTGCT CCATGTCAAT TTCGATATAA GCAAGGGTAG 5280 TATCATTATC CATAATATCT TCTAATTTTC TAAGAGCTAG AGGTTTATTT TTATATTTTT 5340 CTAGGTATTC TCTCATTTCT GCCACTGTTA ATTTGATACT AGATAATAAA CTTAGTTCAG 5400 CTGCATCATC TGCTGTAATA GGCTCTTCTT TTGATTCATG GTTTGCTAGT TCAGCATTTT 5460 TCTCTTTTC TAGTTGCTGA TACAATAGCT GAGCAGTATT TTGGGAATAG TTTTCGCCCT 5520 CTTTTTATA TTTTAAAAGT TCTTGCTCTG CATACACTTT CCCGATAATC ACTTCCTTAT 5580 AAACTAATTG CCCATCTTGA GCTTTTAGCT TAATACTCCC ATGCTCTGGA ATTTCAATAT 5640 ACTTAATTAT ACCATTTTTT GAGTATAAAA CAAAGCCTTT CTCCATCATT TTTAATAATT 5700 TATCATCCTT GTTTTCAGTC ATGCTTTTCT CCTTTATTTC ATTTTATTAT AATCTGAATA 5760 CCCCTAGTCT ATTTATTTCA CTAGGTTTTT AGGGTTCGTA TGCTAAAATA CTACCCTTTT 5820 TGTGTACCTT ATGGCTGACT TTTCAAATTG GTTAGTT 5857 (2) INFORMATION FOR SEQ ID NO: 29:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10254 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

| 60  | CTTAGCTCAG | AACTGAGAGC | TCAGACCCAG | TTCCCGTCCA | CAGGAGAGTT | AAAATGATAG |
|-----|------------|------------|------------|------------|------------|------------|
| 120 | GGGAGCCGAA | ACCCCTTGAA | AAGGAAGAGA | CGCCTTTAAC | AAAAACAGGC | GCTTCTCGCC |
| 180 | TCGCTTGATG | ACATCAACAC | AAAAATCTTT | CTCAACCGGG | CTTGGTTTGC | ATCATCAAGA |
| 240 | GAACTTGACC | ATTCTAATTG | GAAAATTTTT | CCATCTAGGG | GTGTCAACAT | GTGGACTACG |
| 300 | TAATTGTCAG | TGATTGGTCC | GACAATGCTA | TCGTATCGGG | TCTGTCCCAT | ATGCTGGATA |
| 360 | CGAGTACGGA | ATTCAGGTAT | CAGGAACGCA | ACTAGATCCA | CCCTCCATCC | TTTTTGACAC |
| 420 | CCTTCCTGGA | GCGTCATTGT | ACTGGTGGTG | TAATTTCTGG | CAATCGGAGA | AAGCCTATCA |
| 480 | ATCTTTTGGC | TAATTACCAA | GCAGGGGCAG | CGTTGCAGGA | GAAATAATGT | GTGACACTGG |

| GACAACGTTG          | TCCTAGCTGG | CAATCCTGCG | CGCGTGATTA | AGGAAATACC | TGTTAAATAG         | 540  |
|---------------------|------------|------------|------------|------------|--------------------|------|
| AAGTAAAAAG          | GAACAGCTGG | GGTTGTTTCT | TTTTTGTAGG | TTTCATCATT | TTTTACCCAG         | 600  |
| TTCACATTTA          | CCTACTCTAT | CTCTTAGCAA | GTCTGTTTCA | TTAAGCAAGT | TCAAAGCATC         | 660  |
| rcgt <b>aagt</b> gg | GATGTTTTTC | TCCTCAGTTC | ATCAGCTTCC | TCCTTGACAC | TCGGTCAGAT         | 720  |
| TTTGATACAA          | TAGTACAAAA | TTAGAGGAGG | CAGGCTATGA | TTCAGAAACA | TGCGATTCCT         | 780  |
| ATTTTAGAGT          | TTGATGACAA | TCCTCAGGCG | GTTATCATGC | CCAATCACGA | GGGGCTGGAC         | 840  |
| PTGCAGTTGC          | CAAAGAAGTG | TGTTTATGCA | TTTTTAGGTG | AGGAGATTGA | CCGCTATGCG         | 900  |
| AGGGAAGTAG          | GGGCGAACTG | TGTTGGCGAA | TTTGTTTCTG | CCACCAAGAC | CTATCCAGTT         | 960  |
| PATGTCGTGA          | ACTACAAGGA | CGAGGAGGTC | TGTCTGGCTC | AGGCTCCTGT | TGGCTCCGCT         | 1020 |
| CCAGCAGCCC          | AGTTTATGGA | TTGGTTGATT | GGCTATGGTG | TGGAGCAGAT | TATCTCTACT         | 1080 |
| GGACCTGTG           | GTGTCCTAGC | TGATATAGAG | GAAAATGCCT | TTCTAGTCCC | TGTTCGCGCT         | 1140 |
| CTGCGAGATG          | AAGGAGCCAG | TTACCACTAT | GTGGCACCTT | GTCGTTATAT | GGAAATGCAG         | 1200 |
| CCAGAGGCTA          | TTGCTGCTAT | TGAGGAAGTT | TTGGAAGACA | GAGGGATTCC | TTATGAAGAA         | 1260 |
| STCATGACCT          | GGACGACAGA | CGGTTTTTAC | CGAGAAACGG | CTGAAAAGGT | GGCTTATCGT         | 1320 |
| AGGAAGAAG           | GCTGTGCTGT | TGTGGAGATG | GAGTGTTCTG | CTCTTGCGGC | AGTAGCTCAA         | 1380 |
| TGCGTGGGG           | TTCTCTGGGG | TGAATTGTTG | TTCACAGCAG | ATTCTCTAGC | GGACTTGGAC         | 1440 |
| CAGTACGACA          | GTÇÇŢGACTÇ | GGGCTCGGAA | GCTTTTAATA | AGGCGCTAGA | ÂĊTGAGTTTA         | 1500 |
| CAAGTGTTC           | ACCACCTTTA | GTTGTACTGG | CAAAGGATTT | GTTTTATCAT | AAAATGTCTA         | 1560 |
| CTCATACTT           | TTCAAAAATA | TGTTTAAACG | AGGTCACCTT | CCTCTTGTCC | TAGGCATGTT         | 1620 |
| aggttggga           | AAAATCTTTA | AAATCAGAAA | AACGTATCAT | ATCAGGTGAT | GAAAACTTTG         | 1680 |
| CACTATGCG           | TTTTATGTCG | ATAAGATTTA | GAGTGAGATG | AAATGATACT | CTTCGAAAAT         | 1740 |
| TCTTCAAAC           | CAGGTCAGCT | TCACCTTGCC | GTAGGTATAT | GTTACTGACT | TCGTCAGTCT         | 1800 |
| ATCCGGCAA           | CCTCAAAACG | GTGTTTTGAG | CTGACTTCGT | CAGTTCTATT | TGCAACCTCA         | 1860 |
| AACAGTGTT           | TTGAGCAACC | TGTGACTAGC | TTTCTAATCG | ATGCCTTGGT | TTTCATTGCC         | 1920 |
| 'ATAATCAAA          | AAGAGAAATT | TTCTCCTGAA | AAGCATATAG | AGTAGCTGGC | GTTAAAAGCT         | 1980 |
| CTGTCTTGC           | TTTTTTGACC | TATAGTCACA | TCTATCAAGT | ATTGTTCTTG | CCTAAGCTAT         | 2040 |
| AATAAAAAG           | GTGGCATTTT | TTAGGCTTGG | TGTTAGTAGA | TTTTGCCTTA | тсстатстаа         | 2100 |
| TCATTTCGA           | ACTTTTTATG | GTACAATGGA | AACATGTTAT | TCAAATTATC | TAAGGAAAAA         | 2160 |
| TAGAGCTAG           | GCTTATCTCG | TTTATCGCCA | GCCCGTCGTA | TTTTTTTGAG | <b>ТТТТСССТТ</b> С | 2220 |

314 GTCATTTTAC TAGGCTCTCT TCTTTTGAGC TTGCCCTTTG TCCAAGTTGA AAGCTCACGA 2280 GCGACTTATT TTGATCATCT TTTCACTGCT GTCTCTGCAG TCTGTGTGAC GGGTCTCTCA 2340 ACCCTTCCAG TAGCTCACAC CTATAATATC TGGGGTCAAA TAATCTGTTT GCTCTTGATT 2400 CAGATCGGTG GTCTAGGGCT CATGACCTTT ATTGGGGTTT TCTATATCCA GAGCAAGCAA 2460 AAGCTTAGTC TTCGTAGCCG TGCAACTATT CAGGATAGTT TTAGTTATGG AGAAACTCGA 2520 TCTTTGAGAA AGTTTGTCTA TTCTATTTTT CTCACGACCT TTTTGGTTGA GAGCTTGGGA 2580 GCTATTTTGC TTAGTTTTCG CCTTATTCCT CAACTTGGCT GGGGACGTGG TCTTTTTAGT 2640 TCCATTTTC TAGCGATCTC AGCCTTCTGT AATGCCGGTT TTGATAATTT AGGGAGCACC 2700 AGTTTATTTG CTTTTCAGAC CGATTTACTG GTCAATCTGG TGATTGCAGG CTTGATTATT 2760 ACAGGCGGCC TTGGTTTTAT GGTCTGGTTT GATTTGGCTG GTCATGTAGG AAGAAAGAAA 2820 AAAGGACGTC TGCACTTTCA TACGAAGCTT GTACTATTAT TGACTATAGG TTTGTTGTTA 2880 TTTGGAACAG CAACTACTCT CTTTCTTGAG TGGAACAATG CTGGAACGAT TGGCAATCTC 2940 CCTGTTGCCG ATAAGGTTTT AGTTAGCTTT TTTCAAACAG TGACGATGCG AACAGCTGGC 3000 TTTTCTACGA TAGATTATAC TCAGGCTCAT CCTGTGACTC TTTTGATTTA TATCTTACAG 3060 ATGTTTCTAG GTGGGGCACC TGGAGGAACA GCTGGGGGAC TCAAGATTAC GACATTTTTT 3120 GTCCTCTTGG TCTTTGCACG AAGTGAGCTT CTAGGCTTGC CTCATGCCAA TGTTGCGAGA 3180 CGAACGATCG CGCCGCGAAC GGTTCAAAAA TCCTTTAGTG TCTTTATTAT CTTTTTGATG 3240 AGCTTCTTGA TAGGATTGAT TCTGCTAGGG ATAACAGCCA AAGGCAATCC TCCCTTTATC 3300 CACCTCGTAT TTGAAACCAT TTCAGCTCTT AGTACAGTTG GTGTAACGGC AAATCTGACT 3360 CCTGACCTTG GGAAATTGGC TCTCAGTGTT ATCATGCCAC TTATGTTTAT GGGACGAATT 3420 GGTCCCTTGA CCTTGTTTGT TAGCTTGGCA GATTACCATC CAGAAAAGAA AGATATGATT 3480 CACTATATGA AAGCAGATAT TAGTATTGGT TAAGAAAGGA AAGAGCATGT CAGATCGTAC 3540 GATTGGAATT TTGGGCTTGG GAATTTTTGG GAGCAGTGTC CTAGCTGCCC TAGCCAAGCA 3600 GGATATGAAT ATTATCGCTA TTGATGACCA CGCAGAGCGC ATCAATCAGT TTGAGCCAGT 3660 TTTGGCGCGT GGAGTGATTG GTGACATCAC AGATGAAGAA TTATTGAGAT CAGCAGGGAT 3720 TGATACCTGC GATACCGTTG TAGTCGCGAC AGGTGAAAAT CTGGAGTCGA GTGTGCTTGC 3780 GGTTATGCAC TGTAAGAGTT TGGGGGTACC GACTGTTATT GCTAAGGTCA AAAGTCAGAC 3840 CGCTAAGAAA GTGCTAGAAA AGATTGGAGC TGACTCGGTT ATCTCGCCAG AGTATGAAAT 3900 GGGGCAGTCT CTAGCACAGA CCATTCTTTT CCATAATAGT GTTGATGTCT TTCAGTTGGA 3960

TAAAAATGTG TCTATCGTGG AGATGAAAAT TCCTCAGTCT TGGGCAGGTC AAAGTCTGAG

| TAAATTAGAC | CTCCGTGGCA | AATACAATCT | GAATATTTTG | GGTTTCCGAG | AGCAGGAAAA | 4080 |
|------------|------------|------------|------------|------------|------------|------|
| TTCCCCATTG | GATGTTGAAT | TTGGACCAGA | TGACCTCTTG | AAAGCAGATA | CCTATATTTT | 4140 |
| GGCAGTCATC | AACAACCAGT | ATTTGGATAC | CCTAGTAGCA | TTGAATTCGT | AAAGAGGGAT | 4200 |
| GACCCCTCTT | TTTTGATGCC | TAAGATGGCA | AATAGAGACA | GAAGCCCCTT | GTCTTCTAGT | 4260 |
| AAAAGTTCTT | CAAAGGCTGG | ACTTTATGGT | AAAATAGAAA | GAAGTGACAA | GAGAGAGTAA | 4320 |
| TACTCAATGA | AAATCAAAGA | TCAAACTAGG | AAACTAGCTA | CGGGCTGCTC | AAAACACTGT | 4380 |
| TTTGAGGTTG | CAGATAGAAC | TGACGAAGTC | AGTAACATCT | ATACGGCAAG | GCGACGTTGA | 4440 |
| CGCGGTTTGA | AGAGATTTTC | GAAGAGTATA | АGAAAAAATC | AGTCCCCTAA | AGGAGTAGAT | 4500 |
| TATGAAGTTA | TTGTCTATCG | CAATTTCTAG | CTATAATGCA | GCAGCCTATC | TTCATTACTG | 4560 |
| TGTGGAGTCG | CTAGTGATTG | GTGGTGAGCA | AGTTGGGATT | TTGATTATCA | ATGACGGGTC | 4620 |
| TCAGGATCAG | ACTCAGGAAA | TCGCTGAGTG | TTTAGCTAGC | AAGTATCCTA | ATATCGTTAG | 4680 |
| AGCCATCTAT | CAGGAAAATA | AATGCCATGG | CGGTGCGGTC | AATCGTGGCT | TGGTAGAGGC | 4740 |
| TTCTGGGCGC | TATTTTAAAG | TAGTTGACAG | TGATGACTGG | GTGGATCCTC | GTGCCTACTT | 4800 |
| GAAAATTCTT | GAAACCTTGC | AGGAACTTGA | GAGCAAAGGT | CAAGAGGTGG | ATGTCTTTGT | 4860 |
| GACCAATTTT | GTCTATGAAA | AGGAAGGGCA | GTCTCGTAAG | AAGAGTATGA | GTTACGATTC | 4920 |
| AGTCTTGCCT | GTTCGGCAGA | TTTTTGGCTG | GGACCAGGTC | GGAAATTTCT | CCAAAGGCCA | 4980 |
| GTATACCATG | ATGCACTCGC | TGATTTATCG | GACAGATTTG | TTGCGTGCTA | GCCAGTTCTA | 5040 |
| ACTGCCTGAA | CATACTTTTT | ATGTCGATAA | TCTCTTTGTC | TTTACGCCCC | TTCAGCAGGT | 5100 |
| CAAGACCATG | TACTATCTGC | CTGTCGATTT | CTATCGTTAT | TTGATTGGGC | GTGAGGACCA | 5160 |
| GTCTGTCAAT | GAGCAAGTGA | TGATTAAGTG | CATTGACCAG | CAACTCAAGG | TCAATCGACT | 5220 |
| CTTGATAGAC | CAACTTGATT | TGTCCCAAGT | GAGTCATCCC | AAAATGCGAG | AATATCTGCT | 5280 |
| GAATCATATT | GAACTCACGA | CGGTGATTTC | CAGTACCCTG | CTCAACCGAT | CTGGAACAGC | 5340 |
| GGAGCATCTG | GCAAAAAAAC | GCCAATTGTG | GACCTATATT | CAGCAGAAAA | ATCCAGAAGT | 5400 |
| CTTTCAGGCT | ATTCGTAAGA | CCATGTTGAG | CCGTTTGACC | AAACATTCTG | TCTTGCCAGA | 5460 |
| TCGCAAACTG | TCCAATGTCG | TCTATCAAAT | CACCAAATCT | GTTTATGGAT | ттааттаата | 5520 |
| TAAGTGTTTT | ATAAGAGGGA | TTTAAGAAAA | ATTTTAACTT | TTTCTTAGTC | CTTTTTAATT | 5580 |
| TCAGGAGATT | ATACTAGAGT | САТСАААТАА | AGAAAGACTC | TAAGGAGAAT | CCTATGAAAT | 5640 |
| TCAATCCAAA | TCAAAGATAT | ACTCGTTGGT | CTATTCGCCG | TCTCAGTGTC | GGTGTTGCCT | 5700 |
| CAGTTGTTGT | GGCTAGTGGC | TTCTTTGTCC | TAGTTGGTCA | GCCAAGTTCT | GTACGTGCCG | 5760 |
|            |            |            |            |            |            |      |

316 ATGGGCTCAA TCCAACCCCA GGTCAAGTCT TACCTGAAGA GACATCGGGA ACGAAAGAGG 5820 GTGACTTATC AGAAAAACCA GGAGACACCG TTCTCACTCA AGCGAAACCT GAGGGCGTTA 5880 CTGGAAATAC GAATTCACTT CCGACACCTA CAGAAAGAAC TGAAGTGAGC GAGGAAACAA 5940 GCCCTTCTAG TCTGGATACA CTTTTTGAAA AAGATGAAGA AGCTCAAAAA AATCCAGAGC 6000 TAACAGATGT CTTAAAAGAA ACTGTAGATA CAGCTGATGT GGATGGGACA CAAGCAAGTC 6060 CAGCAGAAAC TACTCCTGAA CAAGTAAAAG GTGGAGTGAA AGAAAATACA AAAGACAGCA 6120 TCGATGTTCC TGCTGCTTAT CTTGAAAAAG CTGAAGGGAA AGGTCCTTTC ACTGCCGGTG 6180 TAAACCAAGT AATTCCTTAT GAACTATTCG CTGGTGATGG TATGTTAACT CGTCTATTAC 6240 TAAAAGCTTC GGATAATGCT CCTTGGTCTG ACAATGGTAC TGCTAAAAAT CCTGCTTTAC 6300 CTCCTCTTGA AGGATTAACA AAAGGGAAAT ACTTCTATGA AGTAGACTTA AATGGCAATA 6360 CTGTTGGTAA ACAAGGTCAA GCTTTAATTG ATCAACTTCG CGCTAATGGT ACTCAAACTT 6420 ATAAAGCTAC TGTTAAAGTT TACGGAAATA AAGACGGTAA AGCTGACTTG ACTAATCTAG 6480 TTGCTACTAA AAATGTAGAC ATCAACATCA ATGGATTAGT TGCTAAAGAA ACAGTTCAAA 6540 AAGCCGTTGC AGACAACGTT AAAGACAGTA TCGATGTTCC AGCAGCCTAC CTAGAAAAAG 6600 CCAAGGGTGA AGGTCCATTC ACAGCAGGTG TCAACCATGT GATTCCATAC GAACTCTTCG 6660 CAGGTGATGG CATGTTGACT CGTCTCTTGC TCAAGGCATC TGACAAGGCA CCATGGTCAG 6720 ATAACGGCGA CGCTAAAAAC CCAGCCCTAT CTCCACTAGG CGAAAACGTG AAGACCAAAG 6780 GTCAATACTT CTATCAAGTA GCCTTGGACG GAAATGTAGC TGGCAAAGAA AAACAAGCGC 6840 TCATTGACCA GTTCCGAGCA AAYGGTACTC AAACTTACAG CGCTACAGTC AATGTCTATG 6900 GTAACAAAGA CGGTAAACCA GACTTGGACA ACATCGTAGC AACTAAAAAA GTCACTATTA 6960 ACATAAACGG TTTAATTTCT AAAGAAACAG TTCAAAAAGC CGTTGCAGAC AACGTTAAAG 7020 ACAGTATCGA TGTTCCAGCA GCCTACCTAG AAAAAGCCAA GGGTGAAGGT CCATTCACAG 7080 CAGGTGTCAA CCATGTGATT CCATACGAAC TCTTCGCAGG TGATGGTATG TTGACTCGTC 7140 TCTTGCTCAA GGCATCTGAC AAGGCACCAT GGTCAGATAA CGGTGACGCT AAAAACCCAG 7200 CCCTATCTCC ACTAGGTGAA AACGTGAAGA CCAAAGGTCA ATACTTCTAT CAATTAGCCT 7260 TGGACGGAAA TGTAGCTGGC AAAGAAAAAC AAGCGCTCAT TGACCAGTTC CGAGCAAACG 7320 GTACTCAAAC TTACAGCGCT ACAGTCAATG TCTATGGTAA CAAAGACGGT AAACCAGACT 7380 TGGACAACAT CGTAGCAACT AAAAAAGTCA CTATTAACAT AAACGGTTTA ATTTCTAAAG 7440 AAACAGTTCA AAAAGCCGTT GCAGACAACG TTAAGGACAG TATCGATGTT CCAGCAGCCT 7500 ACCTAGAAAA GGCCAAGGGT GAAGGTCCAT TCACAGCAGG TGTCAACCAT GTGATTCCAT 7560

| ACGAACTCTT | CGCAGGTGAT | GGCATGTTGA | CTCGTCTCTT | GCTCAAGGCA | TCTGACAAGG | 7620 |
|------------|------------|------------|------------|------------|------------|------|
| CACCATGGTC | AGATAACGGC | GACGCTAAAA | ACCCAGCTCT | ATCTCCACTA | GGTGAAAACG | 7680 |
| TGAAGACCAA | AGGTCAATAC | TTCTATCAAG | TAGCCTTGGA | CGGAAATGTA | GCTGGCAAAG | 7740 |
| AAAAACAAGC | GCTCATTGAC | CAGTTCCGAG | CAAACGGTAC | TCAAACTTAC | AGCGCTACAG | 7800 |
| TCAATGTCTA | TGGTAACAAA | GACGGTAAAC | CAGACTTGGA | CAACATCGTA | GCAACTAAAA | 7860 |
| AAGTCACTAT | TAAGATAAAT | GTTAAAGAAA | CATCAGACAC | AGCAAATGGT | TCATTATCAC | 7920 |
| CTTCTAACTC | TGGTTCTGGC | GTGACTCCGA | TGAATCACAA | TCATGCTACA | GGTACTACAG | 7980 |
| ATAGCATGCC | TGCTGACACC | ATGACAAGTT | CTACCAACAC | GATGGCAGGT | GAAAACATGG | 8040 |
| CTGCTTCTGC | TAACAAGATG | TCTGATACGA | TGATGTCAGA | GGATAAAGCT | ATGCTACCAA | 8100 |
| ATACTGGTGA | GACTCAAACA | TCAATGGCAA | GTATTGGTTT | CCTTGGGCTT | GCGCTTGCAG | 8160 |
| GTTTACTCGG | TGGTCTAGGT | TTGAAAAACA | AAAAAGAAGA | AAACTAATCA | GCTAAGGAAA | 8220 |
| TAAATGATGG | ATAGTGGGCT | GACTAAGATT | AGTTTAACAA | CTCAATCAGC | AATCAGGACT | 8280 |
| TTCTTTCAAT | AGCAGATTAA | AATCATCGTA | AAACAATAAA | AATAGTGTTA | TACTTAAAGC | 8340 |
| AGTATAGCAC | TGTTTTTATC | AAAGGAGAGA | CAGATGGGAA | AGACAATTTT | ACTCGTTGAC | 8400 |
| GACGAGGTAG | AAATCACAGA | TATTCATCAG | AGATACTTAA | TTCAGGCAGG | TTATCAGGTC | 8460 |
| TTGGTAGCCC | ATGATGGACT | GGAAGCGCTA | GAGCTGTTCA | AGAAAAAACC | GATTGATTTG | 8520 |
| ATTATCACAG | ATGTCATGAT | GCCTCGGATG | GATGGTTATG | ATTTAATCAG | TGAGGTTCAA | 8580 |
| TACTTATCAC | CAGAGCAGCC | TTTCCTATTT | ATTACTGCTA | AGACCAGTGA | ACAGGACAAG | 8640 |
| ATTTACGGCC | TGAGCTTGGG | AGCAGATGAT | TTTATTGCTA | AGCCTTTTAG | CCCACGTGAG | 8700 |
| CTGGTTTTGC | GTGTCCACAA | TATTTTGCGC | CGCCTTCATC | GTGGGGGCGA | AACAGAGCTG | 8760 |
| ATTTCCCTTG | GCAATCTAAA | AATGAATCAT | AGTAGTCATG | AAGTTCAAAT | AGGAGAAGAA | 8820 |
| ATGCTGGATT | TAACTGTTAA | ATCATTTGAA | TTGCTGTGGA | TTTTAGCTAG | TAATCCAGAG | 8880 |
| CGAGTTTTCT | CCAAGACAGA | CCTCTATGAA | AAGATCTGGA | AAGAAGACTA | CGTGGATGAC | 8940 |
| ACCAATACCT | TGAATGTGCA | TATCCATGCT | CTTCGACAGG | AGCTGGCAAA | ATATAGTAGT | 9000 |
| GACCAAACTC | CCACTATTAA | GACAGTTTGG | GGGTTGGGAT | ATAAGATAGA | GAAACCGAGA | 9060 |
| GGACAAACAT | GAAACTAAAA | AGTTATATTT | TGGTTGGATA | TATTATTTCA | ACCCTCTTAA | 9120 |
| CCATTTTGGT | TGTTTTTTGG | GCTGTTCAAA | AAATGCTGAT | TGCGAAAGGC | GAGATTTACT | 9180 |
| TTTTGCTTGG | GATGACCATC | GTTGCCAGCC | TTGTCGGTGC | TGGGATTAGT | CTCTTTCTCC | 9240 |
| TATTGCCAGT | CTTTACGTCG | TTGGGCAAAC | TCAAGGAGCA | TGCCAAGCGG | GTAGCGGCCA | 9300 |

318 AGGATTTTCC TTCAAATTTG GAGGTTCAAG GTCCTGTAGA ATTTCAGCAA TTAGGGCAAA 9360 CTTTTAATGA GATGTCCCAT GATTTGCAGG TAAGCTTTGA TTCCTTGGAA GAAAGCGAAC 9420 GAGAAAAGGG CTTGATGATT GCCCAGTTGT CGCATGATAT TAAGACTCCT ATCACTTCGA 9480 TCCAAGCGAC GGTAGAAGGG ATTTTGGATG GGATTATCAA GGAGTCGGAG CAAGCTCATT 9540 ATCTAGCAAC CATTGGACGC CAGACGGAGA GGCTCAATAA ACTGGTTGAG GAGTTGAATT 9600 TTTTGACCCT AAACACAGCT AGAAATCAGG TGGAAACTAC CAGTAAAGAC AGTATTTTTC 9660 TGGACAAGCT CTTAATTGAG TGCATGAGTG AATTTCAGTT TTTGATTGAG CAGGAGAGAA 9720 GAGATGTCCA CTTGCAGGTA ATCCCAGAGT CTGCCCGGAT TGAGGGAGAT TATGCTAAGC 9780 TTTCTCGTAT CTTGGTGAAT CTGGTCGATA ACGCTTTTAA ATATTCTGCT CCAGGAACCA 9840 AGCTGGAAGT GGTGGCTAAG CTGGAGAAGG ACCAGCTTTC AATCAGTGTG ACCGATGAAG 9900 GGCAGGGTAT TGCCCCAGAG GATTTGGAAA ATATTTTCAA ACGCCTTTAT CGTGTCGAAA 9960 CTTCGCGTAA CATGAAGACA GGTGGTCATG GATTAGGACT TGCGATTGCG CGTGAATTGG 10020 CCCATCAATT GGGTGGGGAA ATCACAGTCA GCAGCCAGTA CGGTCTAGGA AGTACCTTTA 10080 CCCTCGTTCT CAACCTCTCT GGTAGTGAAA ATAAAGCCTA AAACCCCTTT ACAAATCCAG 10140 CTATTCATGG TAGAATAGAT TTTGTGTGAA ATATCAGCAG GAAAGCATGA AGCTCGTCAA 10200 CAGGTGTCTT ATGACAAGTA ACCTTGGCTG TTTAGGCGAA GGGCATCTGC ACGG 10254 (2) INFORMATION FOR SEQ ID NO: 30:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 9769 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

| CCGGCGACTA | TCGATAACAC | TTGACTTGGT | AGCCCCACAT | TTTGGACAAC | GCATCCTTTC | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| CCTCCTTATC | GTTTTCTTTT | CATTATACCA | TTTTTTAAGC | GATTCCCAAA | ACAATTCTTC | 120 |
| TTTTTGCTTG | ACAAGTTTTT | TGTTTTGTTG | ŢATTATTTAA | TTAAGACAAC | AAGGTAAAAG | 180 |
| AAAGGAGACT | AAGATGTCCT | GGACATTTGA | CAACAAAAA  | CCCATCTATT | TACAGATTAT | 240 |
| GGAGAAAATC | AAGCTTCAGA | TTGTTTCCCA | TACACTGGAA | CCCAATCAAC | AACTTCCAAC | 300 |
| CGTGAGGAGC | TAGCTAGCGA | GGCTGGTGTC | AATCCCAATA | CCATCCAAAG | AGCCTTATCA | 360 |
| GACCTTGAAC | GAGAAGGATT | TGTCTACAGC | AAGCGAACAA | CTGGACGATT | TGTGACTAAG | 420 |
| GATAAGGAGC | TAATCGCCCA | GTCACGCAAA | CAATTATCAG | AAGAAGAATT | GGAACACTTC | 480 |

| GTTTCCTC  | CA  | TGACCCATTT | TGGCTATGAA | AAAGAAGAAC | TACCAGGCGT  | AGTCAGTGAT | 540   |
|-----------|-----|------------|------------|------------|-------------|------------|-------|
| ТАТАТТАА  | AG  | GAGTTTAAGC | CTATGTCATT | ACTAGTATTT | GAAAATGTAT  | ССАЛАТСАТА | 600   |
| TGGAGCAA  | CA  | CCAGCCCTTG | AAAATGTTTC | TCTTGACATT | CCAGCTGGAA  | AAATTGTCGG | 660   |
| CCTTCTTG  | GG  | CCAAACGGCT | CAGGAAAAAC | AACCCTGATT | AAACTAATTA  | ATGGCCTCTT | 720   |
| ACAACCAG  | AT  | CAAGGACGTG | TCCTCATCAA | CGACATGGAC | CCAAGCCCAG  | CAACCAAGGC | 780   |
| CGTTGTAG  | CT  | TATTTGCCTG | ATACGACCTA | TCTCAATGAG | CAAATGAAGG  | TCAAAGAAGC | 840   |
| CCTAACCT  | 'AC | TTCAAGACCT | TCTATAAAGA | TTGTCAGATC | TTGAACGCGC  | ССАТСАТСТА | 900   |
| CTTGCAGA  | CC  | TGGGCATTGA | TGAAAATAGT | CGTCTCAAGA | ААСТАТСААА  | AGGAAACAAA | 960   |
| GAAAAGGT  | TC  | AACTGATTTT | GGTTATGAGC | CGTGATGCTC | GTCTCTATGT  | TTTGGACGAA | 1020  |
| CCCATTGG  | TG  | GGGTGGATCC | AGCAGCCCGT | GCTTATATCC | TCAATACCAT  | TATCAACAAC | 1080  |
| TACTCACC  | AA  | CTTCTACCGT | TTTGATTTCT | ACCCACTTGA | TTTCTGATAT  | CGAGCCAATC | 1140  |
| TTGGATGA  | AA  | TTGTCTTCCT | AAAAGACGGA | AAAGTCGTCC | GTCAAGGAAA  | TGTAGATGAT | 1200  |
| ATTCGCTA  | CG  | AGTCAGGTGA | ATCCATTGAC | CAACTCTTCC | GTCAGaATTT  | AAGGCCTAAG | 1260  |
| CAAAGGAG  | АТ  | TATTTATGTT | TTGGAATTTA | GTTCGCTACG | AAATTTAAAAA | TGTTAACAAG | 1320  |
| TGGTATTT  | 'AG | CCCTCTACGC | AGCCGTGCTA | GTCCTTTCTG | CCCTCATCGG  | AATACAGACA | 1380  |
| CAAGGCTT  | ΤA  | AAAATCTACC | TTACCAAGAA | AGTCAGGCTA | CTATGCTACT  | TTTTCTAGCT | 1440  |
| ACAGTCTŢ  | TG  | GTGGCTTGAT | CCTTACACTT | GGGATTTCAA | CCATTTTCTT  | GATTATTAAA | 1500  |
| CGCTTCAA  | AG  | GTAGTGTCTA | CGACCGACAA | GGCTATCTGA | CTTTGACCTT  | GCCAGTTTCT | 1560  |
| GAACACCA  | TA  | TCATCACAGC | CAAACTAATC | GGTGCCTTTA | TCTGGTCATT  | GATTAGCACC | 1620  |
| GCTGTATT  | GG  | CTCTAAGTGC | TGTTATTATT | CTGGCTTTAA | CAGCTCCAGA  | ATGGATTCCT | 1680  |
| CTTTCTTA  | TG  | TGATTACATT | TGTAGAAACA | CATCTCCCTC | AGATCTTTCT  | TACAGGTATA | 1740  |
| TCCTTCCT. | AC  | ТАААТАСТАТ | TTCAGGAATC | CTCTGCATCT | ACCTGGCTAT  | TTCCATTGGA | 1.800 |
| CAGCTTTT  | CA  | ATGAATACCG | TACAGCACTC | GCTGTTGCAG | TCTACATTGG  | ТАТССАААТС | 1860  |
| GTCATTGG. | ΑТ  | TTATTGAACT | TTTCTTCAAT | CTTAGTTCTA | ATTTCTATGT  | CAATTCACTG | 1920  |
| GTAGGACT  | CA  | ATGACCATTT | CTATATGGGA | GCAGGTATAG | CCATTGTTGA  | AGAACTCATA | 1980  |
| TTCATAGC  | TA  | TCTTTTATCT | CGGAACCTAC | TACATCTTGA | GAAATAAGGT  | TAATTTGCTT | 2040  |
| ΤΑΑΑΤΑΑΤ  | TT  | TTACCTAGAT | ATGTAACATA | CTCATAGAAC | AAAAGAGACC  | AGGCAAAAAG | 2100  |
| тстттала  | ΑТ  | TAGAAAACGC | ATAGTATCAG | GTGTTGAATA | TGTACTGCcC  | CCCAAAAGTT | 2160  |
| AGATTTTT  | TC  | TGTCTAACTT | TTGGGGGCAG | TTCATAAGAA | CCTTGGTAAT  | ATGCGTTTTT | 2220  |

320 TGTGAGCTGA CTTATTTCCT TTCACTATAT CGCAAAATGA AATAAGAACG GAACGATGGG 2280 ATTTTGGAAT TCAAATCAAT TTATAAGAAT GTTTTAGAAG TAATATTATC CTATTCCAGA 2340 TTCAGTTCAC TATACAATTG AGTTTTCAAG CAACCTGTTT ACATAATGTG TACATAATTA 2400 GGTTCGTGAT TCCACCCTTT TCACCTTTAA AAACCTCGCT TTCGCAAGGC TCTTCTATTT 2460 ATAAGATAAG GCACGTTTAA AGGTTTTCCA AATCCCTAAA TCATCCGTTT GAAGAACGAG 2520 ACTAGCATAC ATGCGTCCGA TAAATCCTGT TGCTACCACC GCAAAAATCA CTGTAATAGC 2580 AAGTGAAATC CATGCTTCTG CTCCCCCGC ATAGTCATTA ATCGTTCGAA ACGGCATAAA 2640 GAAGGTCGAA ATAAAGGGAA TATAAGAACC AATCTTCAAG AGGAGATTGT CACCAGCTGC 2700 ACCTAGAGCT GTCACTCCAA AAAAACCACC CATAATCAAA ATCATCAAAG GCGACAAGGC 2760 TTTCCCTGAG TCCTCAGGAC GAGAAACCAT AGATCCTAGG AAGGCTGCCA AGACTACGTA 2820 CATGAAAAGA CTGATCAAAA TAAAGAGCAA GGTATTCAGT GAGATAGCAT CTCCCAAGTG 2880 ATCCAAAATA CCAGACTGAG CCAAGAATGG CAAATCTTTA AAGAGCAAAA CGGCAGCCAG 2940 ACCACCTACA ACATAGATCC CAATATGCGT TAAAATCACT AGAAACAGAG CCATCATCCG 3000 CGCATAGAAA TAGTGACTTG CCCTTATGCT AGAAAAAACG ACTTCCATAA TTTTGGTGCC 3060 TTTTTCACTG GCAACTTCCT GAGCTGTTAC ACCCGCATAG GTAATCAGAA TCATATAAAG 3120 AAAGAATCCT AAGGCACCTG CTGCAATTGT TTGAATAAAC TTTTTATTTT CCTTGGCTTC 3180 ATCAATCTTT TCTGTGAATT GAATTGTCTG CGCTAAGCGT TTTTCCTGCT CTTGAGACAA 3240 GGAAGCAGTT GAACGATTAA GCTGATTTTG CAGTTCATTG AGTGTACCTG TAACCTCAAA 3300 TTTAATTCCA TTTTCAAGCG ATGTTTCGCC ATGATAAACT GCCTTTAGAA CACTATCTTC 3360 TTGATCAATG GTCAAATAAC CTTTTAATTT TTCTTCTTTA ATTGCTTCTT TGGCACTTGC 3420 TTCGTCTTTA TAGTCGAAGT TAACACCATT TACATTCTTC AGTCCTTCTG CTACAGATGG 3480 CACTGTTGTC ACTACTGCCA CTTTATTATT TTTAGCCATA GAAGAACCTT GGAGATGCCC 3540 AATTCCTACA GAGATTCCTA AAAAGAGGAA CGGCGAAATC ACCATAAAGA AGAAACTCCA 3600 TGACTCGACA TGTCGAAGAT AGGTTTCCTT GATTACAACC CACATATTTC TCATACTTCC 3660 ACTCCTGATT CTAGTTTAAA GATTTCATCG ATAGTTGGCG CTTGTTGGTC AAATGTTGCG 3720 ATATATTGAC CTTGAGTCAA GATTGAGAAG AGTTCCCTTC CAGCGCTCTC ATCCTCCAAA 3780 ATCAATTTCC AACTGCCTTG TTTGGTCAAG CTCACCTGTT TGACATGAGG AAGATTTTCC 3840 AATTCTTCCT TGCTTCGTTC ACTTGAAACA AAGAGACGCG TTTTCCCGTA TTGATTGCGG 3900 ACATCCTGAA CTGGTCCGTG CAAGACCACA CGGCCATCTC GGATCATCAG AATATCGTCA 3960 CAAAGTTCCT CAACATTGGT CATGACATGG TCAGAAAAGA TAATGGTTGT CCGCGCTCTT 4020

| TTTCCTGAAA | AATGACTTGT | TTGAGCAATT | CTGTATTAAC | TGGGTCCAAT | CCACTAAAAG | 4080 |
|------------|------------|------------|------------|------------|------------|------|
| GCTCATCCAA | GATAATCAGG | TCTGGTTCAT | GAATCAGAGT | AATAATGAGC | TGAATCTTCT | 4140 |
| GCTGATTTCC | TTTTGACAGA | CTCTTGATTT | TATCTGTCAG | CTTTCCTTTC | ACTTCCAACC | 4200 |
| TCTTCATCCA | TTGAGGGAGT | TTTTCTTTGA | CTTCTTTGGC | ATCCATGCCT | TTTAGAGTCG | 4260 |
| CCAAGTAGCG | AACTTGTTCA | AGAACTGTCA | ATTTAGGCAT | GAGATGCGTT | CTTCAGGCAG | 4320 |
| ATAACCAATC | CGAGCATAGG | TCTCCTGACG | AATATCCTGA | CCATCCAGAC | CGATTTCTCC | 4380 |
| CTGATATTCT | AGGAATTTCA | AAATACTATG | GAAAATCGTT | GTTTTTCCAG | CACCATTTTT | 4440 |
| TCCGACTAGT | CCCAAAATAC | GACCTGGTCG | CGCTTGAAAG | TCAATACCAA | ACAAAACTTG | 4500 |
| CTTGGATCCA | AAACTTTTCT | CTAGACTTCT | TACTTCTAGC | ATCTTTCACC | TCCGAAATTT | 4560 |
| CTTGCACTCA | TTATACTCCT | TTTTGATAGC | CTTTACAATG | TTTTTTGTCC | ATTTTTAGAA | 4620 |
| GACTATTGCT | GTGTAAAATA | TGGCCTGGAG | CACTTTTATA | CTCAATGAAA | ATCAAAGAGC | 4680 |
| AAACTAGGAA | GCTAGCCGTA | GACTGCTCAA | AGTACAGCTT | TGAGGTTGCA | GATAAAACTG | 4740 |
| ACGAAGTCgA | CTCAAAACAC | TGTTTTGAGG | TTGTGGATAG | AACTGACGAA | kCrTAaCTAT | 4800 |
| ATCTACGGCA | AGGCGAAcTG | ACGTGGTTTG | AAGAGATTTT | CGAAGAGTAT | TAGTGATAAA | 4860 |
| TCCATTATAC | AGCAGCAAAC | TTAATTTATA | CCTTCCGCTC | CTCAACTGTC | TATTTTTAAT | 4920 |
| CCTGAATTGT | TATTTGAGTA | ACTCCTTTTT | CCTCGTAAAG | TTTTCTTCCT | CTAAAACTTC | 4980 |
| TGGAAAAAGG | CTAATAGTTT | CAGACAACAT | TTTTATAAGA | AACAAGTTCA | TCTGTCATTT | 5040 |
| CAAGAAGGAG | TAATCCTTTA | TCTACTAATG | GACGGAACAG | AATTCAACCG | CTTGTCCGAT | 5100 |
| ATGTTTTCTA | AGGATTATAT | AGTAAAATGA | AATAAGAACA | GGACAAATTG | ATCAGGACAG | 5160 |
| TCAAATTGAT | TTCTAACAAT | GTTTTAGAAG | TAGATGTATA | CTATTCTAGT | TTCAATCTGC | 5220 |
| TATATCTATT | ATGCACACCC | CTATAGGATC | TAATGAAAAT | CACAACAGGC | TCATTCATAG | 5280 |
| ATGGTTACCT | AAGCCTAAGG | GAACTAAGAA | AACGACTACC | AAGGAAGTCG | CATTCATCGA | 5340 |
| AAAGTAGATT | AACAACTATC | CTAAAAAATG | CTTGAACTAC | AAGTCCCCCA | GAGAAGACTT | 5400 |
| CTGGATGACT | AACTTGAACT | TGAAATTTAG | CAATAATTAA | TTCACTATCT | AACTATATTT | 5460 |
| AGTAATTATT | TCAGAACTGA | TTAATATTAA | AATTAACTAA | CAATTCAAAG | GATTCATACT | 5520 |
| AGCCATAAAT | TACGTCCATC | AGAGAGAGAC | TCTTACTACT | TTTAGATTTT | AGTCTTTCTA | 5580 |
| GCTTCAGAAT | ACATCTAAAC | TTTAGGGAAA | ATGACTATTC | GAAAGCGCGA | ATGCCTCAAA | 5640 |
| ATTATCTCAG | ATAAGCTATT | CGAAACTTAG | AATGCTTTTA | AATTTATGGA | ATTGCGATTA | 5700 |
| TTCGAAACCT | AGAATGCATA | TAACCTTTAG | TTGACAGACC | TATTCTAAGT | CTCGAAGGGC | 5760 |

322 TATTTACTTT CTATTCCTTA TCAAAAAAGA CTCATTCCCC CTTTCTCCTC CAAAATATGG 5820 TATAGTAGAA ATATACTATC TATGAGGAGT TTACATGTCA CAGGATAAAC AAATGAAAGC 5880 TGTTTCTCCC CTTCTGCAGC GAGTTATCAA TATCTCATCG ATTGTCGGTG GGGTTGGGAG 5940 TTTGATTTC TGTATTTGGG CTTATCAGGC TGGGATTTTA CAATCCAAGG AAACCCTCTC 6000 TGCCTTTATC CAGCAGGCAG GCATCTGGGG TCCACCTCTC TTTATCTTTT TACAGATTTT 6060 ACAGACTGTC GTCCCTATCA TTCCAGGGGC CTTGACCTCG GTGGCTGGGG TCTTTATCTA 6120 CGGGCACATC ATCGGGACTA TCTACAACTA TATCGGCATC GTGATTGGCT GTGCCATTAT 6180 CTTTTATCTA GTGCGCCTAT ACGGAGCTGC CTTTGTCCAG TCTGTCGTCA GCAAGCGCAC 6240 CTACGACAAG TACATCGACT GGCTAGATAA GGGCAATCGT TTTGACCGCT TCTTTATTTT 6300 TATGATGATT TGGCCCATTA GCCCAGCTGA CTTTCTCTGT ATGCTGGCTG CCCTGACCAA 6360 GATGAGCTTC AAGCGCTACA TGACCATCAT CATTCTGACC AAACCCTTTA CCCTCGTGGT 6420 TTATACCTAC GGTCTGACCT ATATTATTGA CTTTTTCTGG CAAATGCTTT GACACGTAAA 6480 AAATCCGTTT GGTTTCCCAA GTGGATTTTT AAAGCGTAGA TTAACTATAG CTTGATACTA 6540 AATATACTTT GGTATGGAAA TCATGCATAT TTTTCGATAG TGAGGCGAGG ACTTACCTAG 6600 CCTTTCCGCC GTGATAGAAA CACCTGAAAT CTAATGGTTT CAGGTATTCG GAAACTTTGA 6660 GCCTAGTGTC TCAAAGTTTA GGTATGGAAT TTTGAAGAAA GTCGCTACCG TCCGTAATCA 6720 CTTAAGGAAA GGCTCAAAAA TATTGTTTTC AACCACAAAA TCCGTTTGGT TTCCCAAGCG 6780 GATTTTGTGC TTTATTTTGA AACTTCTTTT GCAAGAACAA AGTTCCCAAG TGTGGCAGAA 6840 CCATTTCCTG CGACTGCTGG CGTCACGATA TAGTCACGCA CATCTGGTAC TGGTAGGTAA 6900 CCATTAAGAA GAGATGTAAA TTTCTCACGG ACACGGTCCA GCATATGTTG TTGAGCCATG 6960 ACCCCTCCAC CAAAGACAAT CACGTCTGGG CGGAAAGTCA CTGTCGCATT AACCGCAGCT 7020 TGAGCGATAT AGTAGGCTTG AACATCCCAA ACAGGGTTGT TGAGTTCAAT AGTTTCCCCA 7080 CGTACACCTG TACGAGCTTC CAAACTTGGA CCAGCTGCAT AACCTTCTAG ACATCCCTTA 7140 TGGAAAGGAC AAACACCCTT AAACTCTTTT TCAATATCCA TTGGGTGTCT AGCAACATAA 7200 TAATGACCCA TTTCAGGGTG ACCCACACCA CCGATAAACT CACCACGTTG GATGACGCCT 7260 GCACCGATAC CTGTACCGAT TGTGTAGTAA ACCAAGTTTT CGATACGACC ACCAGCATTG 7320 TTACGGGCAA CCATTTCACC GTAAGCAGAG CTGTTTACGT CTGTTGTGAA GTACATTGGC 7380 ACGTTTAGGG CGCGACGAAG GGCACCAAGC AAGTCTACAT TTGCCCAGTT TGGTTTTGGA 7440 GTCGTCGTGA TAAAGCCATA AGTTTTTGAG TTTTTGTCAA TATCAATCGG CCCAAATGAA 7500 CCAACTGCAA GACCAGCAAG GTTATCGAAT TTTGAGAAGA ACTCAATGGT TTTATCGATT 7560

| GTTTCGATTG GAGTTGTTGT | TGGAAATTGT | GTTTTTTCTA | CAACGTTAAA | GTTTTCATCA | 7620 |
|-----------------------|------------|------------|------------|------------|------|
| CCGACAGCAC AGACAAACTT | TGTACCGCCC | GCTTCCAAGC | ТТССАТАТАА | TTTTGTCATG | 7680 |
| ATAAACCTCT TGTTTTATT  | TTCTTTATTA | TAGCATACTT | CGAAAGTCTA | AATGTCTCTA | 7740 |
| TTTTTTAGAT TTTCCTCTGT | AAATCTTACT | ATCTAATAAA | AACGAACAAA | CATGTCATTT | 7800 |
| GTTCGTTTTC ACATTAGAGA | GGATTGATTA | GATTTTCACT | TCGATCACAG | САТССССТТ  | 7860 |
| AGCAACTGAA CCTGTTGCGA | CTGGAGCTAC | TGAAGCGTAG | TCACCTGTAT | TTGTAACGAT | 7920 |
| AACCATTGTT GTATCATCAA | GTCCAGCTGC | AGCGATTTTG | TTTGAGTCAA | ATGTTCCAAG | 7980 |
| AACATCGCCA GCTTTCACCT | TATTACCTTG | AGCAACTTTT | GTTTCAAAAC | CGTCACCGTT | 8040 |
| CATAGATACA GTATCAATAC | CAACATGAAT | CAAAACTTCA | GCACCATTTC | TTGTTTTCAA | 8100 |
| ACCAAAAGCG TGCCCTGTTG | GAAAGGCAAT | TGAAACTTCA | GCATCAGCTG | GTGCATAGAC | 8160 |
| CACGCCTTGG CTTGGTTTCA | CAACGATACC | TTGTCCCATA | GCTCCACTTG | AGAAGACTGG | 8220 |
| GTCATTGACA TCAGCAAGAG | CGACAACATC | ACCGACGATA | GGAGTTACAA | GTGTTTCATT | 8280 |
| TTGAAGAGCT GCTGGCGCAA | CTTCTTCTTT | TTCTTCAGCC | ACTTCAGCTC | GTTTTGCAGC | 8340 |
| TGCAGTTGCG TCTACTTCAT | CTTCGTAACC | AAACATGTAA | GTAAGAGCAA | AACCAAGGGC | 8400 |
| AAATGATACA GCTACCATAA | GAAGGTATTG | TGGAAGTTGT | CCGTTACCAA | CATAAAGCAT | 8460 |
| TGTACCAGGG ATGATGGTGA | TACCATTACC | AGTACCAGCA | AGTCCAAGGA | TAGAAGCCAA | 8520 |
| TCCACCACCG ATTGCACCAG | CAATCAATGA | AAGGAAGAAT | GGTTTACGGA | AGCGCAAGTT | 8580 |
| CACCCGAAG ATAGCAGGCT  | CTGTAATACC | TAGGAAGGCA | GAAAGAGCAG | CCGGGAAAGC | 8640 |
| AAGTGTTTTC AGTTTTGGAT | TTTTTGTTTT | AACACCAACC | GCAACAGTAG | CAGCACCTTG | 8700 |
| AGCTGTCATA GCAGCTGTGA | TGATAGCGTT | GAATGGGTTA | GCATGGTCAG | CAGCAAGTAA | 8760 |
| TTGCACTTCA AGCAAGTTGA | AGATGTGGTG | CACACCTGAC | ACGACGATCA | ATTGGTGAAC | 8820 |
| CCCACCAATC AAGAAACCAC | CAAGACCAAA | TGGCATGCTA | AGAATCGCTT | TTGTAGCAAT | 8880 |
| AAGGATGTAG TTTTCAACAA | CGTGGAAAAC | TGGTCCAATG | ACAAAGAGTC | CAAGGATAGA | 8940 |
| CATGACCAAA AGTGTCACGA | ATGGTGTTAC | CAAGAGGTCA | ATGACATCTG | GAACAACTTG | 9000 |
| CGGACAGCTT TTTCAAATTT | AGCTCCGACA | ACCCCGATGA | TGAAGGCTGG | AAGAACGGAA | 9060 |
| CCTTGCAAAC CAACAACAGG | GATGAAACCA | AAGAAGTTCA | TCGCTGTTAC | TTCACCACCT | 9120 |
| TGAGCAACTG CCCAAGCGTT | TGGAAGTGAG | CCAGAGACAA | GCATCATACC | AAGAACGATA | 9180 |
| CCAACGGCAG GATTTCCACC | AAATACACGG | AAGGTTGACC | ACACAACCAA | ACCTGGCAAG | 9240 |
| ATGATGAAGG CTGTATCTGT | CAAGATTTGT | GTGTAAGTTG | CAAAGTCACC | TGGAAGTGGC | 9300 |

PCT/US97/19588 WO 98/18931

ATTTCAAGAG CGTTGAAAAG ACCACGCACA CCCATGAAGA GACCTGTCGC TACGATAACT 9360 GGGATGATTG GAACGAAAAC ATCACCAAAA GTACGGATAG CACGTTGGAA CCAGTTCCCT 9420 TGTTTAGCAA CTTCTGCTTT CATGTCATCC TTAGATGATG TTGGTAATCC AAGTACAACA 9480 ACTTCATCGT ACATTTTGTT AACTGTACCT GTACCAAAGA TAATTTGGTA TTGCCCTGAG 9540 TTAAAGAAAG CACCTTGAAC TTTTTCCAAG TTCTCAATCA CTTCTTTATT GATTTTCTCT 9600 TCATCTTTGA CCATGACACG TAGACGAGTC GCACAGTGGG CAACACTATT GACATTTTCA 9660 CGTCCGCCCA AGGCATCGAT GACTTTTTT GCAATTTCCT GATTGTTCAT TTGCAAAAAT 9720 CTCCTTATAT AACATTTTGT TCTTGTTTGA AAGCGATTTT ATTCGCCGG 9769 (2) INFORMATION FOR SEQ ID NO: 31:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3149 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

| 60  | CAAGAAAAA  | CAGAAATAAT | ATCACTTGGT | GTTCTATTGT | CTAATTCATA | CGCTTGAGTG |
|-----|------------|------------|------------|------------|------------|------------|
| 120 | TCTTAAAATG | ACTTTTTAAT | ACCAACTCAG | AAAGCCTGAG | CTCAAGATAA | GTCTGACTTT |
| 180 | TTTTCACGCA | GCCTGCATTA | CCAAATCTTG | ACCAAATCTG | CTCTTCCAAG | GCAATTCTTC |
| 240 | TCGGTCACGT | GACAAGTACT | GGAATCCTGT | TCCAAGAGTT | GGCACGACTT | TAGCACGTTG |
| 300 | ACGGAAATGA | TTCTCCATCA | GGGTACGCAA | TCAAAGCGAC | GCCATTTTTC | AGTTCATTTG |
| 360 | GGACCATATT | CTGCCCCATA | TTCTGCTAGT | TTGCCAAAGT | GGTTGCGTAC | GACTACCTTT |
| 420 | CAGCGATAGT | CGACGGTTCA | GTCTTTGTAA | CACCGTTTTG | GCTTCACGTT | GACAAAATCA |
| 480 | ACGTTAAACG | TCTGGTGTAG | TTTGTGCAAT | CATTGTTGGT | ACCGACTTGT | TGCTCGCGCT |
| 540 | TTCGTAGGAA | ТАСТТАТСТА | TTCTTCCTCC | TATACATATT | ATAACTTTAT | TCCAATCAAG |
| 600 | TTTATGAACC | TTTTTTTTT  | TTCGAGAAAA | TTTGTAACTT | GTTACAGAAA | АТСАААААА  |
| 660 | AACACGACGA | CTGTAATCTG | ATGGTCATAT | ATTGGCCATA | TCGCCTGTTG | ATGAAACCTG |
| 720 | AGCTTCTATT | GAGCTTGCAA | GCAATATCCT | TACTGTATCT | TCACATAGAC | GGTTGACTAG |
| 780 | AGAAAAATCT | AACGCACTGT | TCACCATGAA | TCGTTCTTTA | CGGACGCAGC | CCTTGGTAAA |
| 840 | GGTATCAATT | CCGTTGCGAT | ACCTTGATAT | AATGGTCGTC | TTCCAGGCTG | GTTTCGACAA |
| 900 | AGCTGCACCA | CTGAGTAAAC | GCCTTGGTGG | CTTAACTGCC | CTGAAAAGGT | CGCAGTCCAT |
| 960 | ATTGGCTTTT | TATGACCTTG | ATATTGATAA | GGTTGACCCC | AAATTCCTGC | GCATAGGCAT |

| ACCATTGCTG        | GCAAGAAACA | GCGAGTGACT | GCCATCAAAC | CTTTGACATT | GGTATCCAAC | 1020 |
|-------------------|------------|------------|------------|------------|------------|------|
| ATGGTCAGCA        | TATCCAACTC | TTCATAGTCT | TGATAGGGAG | CTAAGCCAAG | AGCCAGTCCT | 1080 |
| GCGTTATTGA        | CCAGGATGTC | AATCTGACCT | ATCGTTTCTA | AAATATCAGA | GCAGACAGTC | 1140 |
| <b>TTTACCATTG</b> | TCATATCCGT | GACATCTAGG | AGAAAAGTCC | AAACTGTTTG | ATTTGGAAAA | 1200 |
| GTTTCTGCAA        | ACTCCGCCTT | AAGAGCTTCT | AGTCTGTCTA | TCCGTCGTCC | TGTTAGAACG | 1260 |
| ACATCCTCAC        | CCTGCTCCAG | ATAAGCACGC | GCAATCGCTT | CACCGATTCC | TGATGTCGCT | 1320 |
| CCTGTAATCA        | CAACATTTTT | TGCCATCTTA | TTTCCTTCTA | GCTGGTCTAT | CAGATATTAA | 1380 |
| CAACTTCTTA        | GGCAGTCCAG | TGTTTCGCTG | GGTCGAACGG | TGTTCCGACA | ACTTGGTCTT | 1440 |
| CTGATAATTC        | AAGCACCCCA | CGTTTTTGTG | GAGCATTTGG | CAGATGCAAT | TCACGAGGAC | 1500 |
| rgcacatcat        | ACCAAAACTC | TTTTCACCAC | GAAGTTCACC | TGGGAAAATG | AGATTCCCTT | 1560 |
| TTGGCATCAT        | AGCTCCAGGA | AGCGCGACAA | TGGTTTTCAA | CCCCACACGC | GCATTGGGAG | 1620 |
| CTCCTGCAAC        | GATTTGTACA | GTCTTATCAC | TTGCGACTGC | AACTTGGCAG | ATGTTGAGGT | 1680 |
| GTCACTATC         | TGGATGGGCT | ACCATCTCAA | CAATTTCACC | TACAACAAAC | TTAGGTTCCT | 1740 |
| ГАТСАТТААС        | AATTTCTTCT | GTAAAACCTT | CCGCCTGCAA | CTCTTGGTTC | AAACGAGCGA | 1800 |
| CTTGCTCATC        | TGTCAAAAAG | ACTTGACCGC | GCTCTGCAAT | ТТСАААТААА | CTTGAAACTT | 1860 |
| CGAAAATATT        | CCAAGCCACT | GTTTCCCCAT | TATCTTTGAG | AAAAACACGG | GCTACCTTGC | 1920 |
| тттССССТС         | CACATCCAGT | TTGGCATCTC | CGCTATTTTT | CACGATGACC | ATAAGGACAT | 1980 |
| CACCGACATG        | TTCTTTATTA | TATGTAAAAA | TCATTGTTTC | CTTTTTCTCC | TATTTCAGTC | 2040 |
| TGCTAAAAA         | GTCATTGATT | TGTTGCTTGC | TTTTACGGTC | GCGATTGACA | AAACGACCGA | 2100 |
| PTTCCTTGTC        | CTTTTCTAGA | ACAACAAGGC | TAGGAATTCC | GTAAACATCC | CAGAGTTTGG | 2160 |
| CCAAATCCAT        | ATACTGATCT | CGGTCCATTC | GAATAAAGGT | GAACTCTGGA | TTGGTCTCCT | 2220 |
| CAATCTCTGG        | TAAGGCAGGA | TAAATATAAC | GACAATCGCT | ACACCAGTCT | GCCACAAAAA | 2280 |
| GAAGACCTT         | CTTGCCCGCT | TTTTCCACTA | AAGATGCTAA | ТТСТТСТААА | CTTGCTGGCT | 2340 |
| STATCATAAG        | ACTTCCTCCT | CATAGACTAG | GTCTTCATTT | TCATAGACAA | AGGTATAATG | 2400 |
| ACGGCCATCC        | TCAAAAATGA | CGCCACCAAC | CAAGCTCTCC | AGACTGCTTT | CGTAAACTTG | 2460 |
| ACATAAAGG         | GTCGCAATTT | CCCCCATGTC | GGAAAAATGG | TCTCGCACAA | TCTCTGTCAA | 2520 |
| TCTTCCTGA         | GTCTTCATGA | GCTTACGGTC | ATCTGCAACT | TTTTTCGTAG | CAAGAGCAAG | 2580 |
| CTTCCGATA         | CCTAGCAGAG | CCAAGCCTGC | CATCCACATT | TTTTTAGCTT | TCATACCATT | 2640 |
| ATTTTAACA         | CAAAAAAGGC | TTCAGGACAA | ATGAGGAAGC | AGCAGAAAAG | СААСТАААА  | 2700 |

|            |            |            | 326        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| GCCTCTTCCT | TTAAGGAAAA | GGACTTCTTA | TACTCAATGA | AAATCAAAGA | CCAAACTAGG | 2760 |
| AAGCTAGCCG | CAGGCTGCTC | AAAGCACTGC | TTTGAGGTTG | TAGATAGAAC | TGACGAgTCa | 2820 |
| CTCAAAACAC | TGTTTTGAGG | TTGTGGATGA | AGCTGACGTG | GTTTGAAGAG | ATTTTCGAAG | 2880 |
| AGTATTATTC | TTATTGCCAG | GCACCTAAGT | TGCCAACGTA | GTAACTATCA | GGTGTGTAGG | 2940 |
| TATTGCGAGC | ATCTTACCTG | ATGAAGCCAG | ATAATACTAC | TTGCCATTGT | CTTTGACCCA | 3000 |
| ATCATTCGCA | ATCATGGAAC | CAGAAGAACT | TACATAATAC | CATTCTCCCT | TGTCATAAAC | 3060 |
| CCAAGTACTG | ACTTTCATGG | TTCCTGAGCA | ATTAAAGGCA | AAAAAACTGT | CCAATAACAT | 3120 |
| TCGTTTTTTA | AAAGCATTTG | ACACTACAT  |            |            |            | 3149 |

# (2) INFORMATION FOR SEQ ID NO: 32:

eren eren er

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10240 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

| CCAAAAATTC | AACCTTTAAG | GGGAGTCCAG | AGAGACTCAC | AAGGTGTCAG | ATAAAAGAAT | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| GGTGCAATTT | TCTAGAGGAG | ACTTTTTGAG | TGTGCTCTCT | TGTGTTGTAC | GATTTTAACT | 120 |
| GAGGCCTTGC | ACTAGCAAGG | TCTTTTCTTT | ATCTGGTCCC | CTTAAAATTT | AAGGAGGAAA | 180 |
| AGTTATGAAT | CCCACATGTA | AGAAGCGTTT | GGGTGTCATT | CGGTTGGAAA | CCATGAAGGT | 240 |
| GGTTGCACAA | GAGGAAATCG | CGCCACAATC | TTTGAATTAG | TCCTAGAAGG | AGAAATGGTT | 300 |
| GAAGCCATGC | GAGCAGGCCA | ATTTCTTCAT | CTGCGTGTAC | CGGACGATGC | ССАТСТСТТА | 360 |
| CGTCGTCCTA | TTTCAATTTC | GTCTATTGAC | AAGGCAAACA | AGCAGTGTCA | CCTCATTTAT | 420 |
| CGGATTGACG | GAGCTGGGAC | TGCAATTTTT | тсаассттаа | GTCAGGGAGA | CACTCTTGAT | 480 |
| GTGATGGGGC | CTCAGGGAAA | TGGTTTTGAC | TTGTCTGACC | TTGATGAGCA | GAATCAGGTT | 540 |
| CTCCTTGTTG | GTGGTGGGAT | TGGTGTTCCA | CCCTTGCTTG | AGGTGGCCAA | GGAATTGCAT | 600 |
| GAACGTGGAG | TGAAAGTAGT | GACAGTCCTC | GGTTTTGCTA | ATAAGGATGC | TGTTATTTTG | 660 |
| AAAACGGAAT | TGGCTCAGTA | TGGTCAGGTC | TTTGTAACGA | CAGATGATGG | TTCTTATGGC | 720 |
| ATCAAGGGAA | ATGTTTCCGT | TGTTATCAAT | GATTTAGACA | GTCAGTTTGA | TGCTGTTTAC | 780 |
| TCGTGTGGGG | CTCCAGGAAT | GATGAAGTAT | ATCAATCAAA | CCTTTGATGA | TCACCCAAGA | 840 |
| GCCTATTTAT | CTCTGGAATC | TCGTATGGCT | TGTGGGATGG | GAGCTTGCTA | TGCCTGTGTT | 900 |
| CTAAAAGTAC | CAGAAAACGA | GACGGTCAGC | CAACGCGTCT | GTGAAGATGG | TCCTGTTTTC | 960 |

| CGCACAGGAA | CAGTTGTATT | ATAAGGAGAA | AATTATGACT | ACAAATCGAT | TACAAGTTTC | 1020 |
|------------|------------|------------|------------|------------|------------|------|
| TCTACCTGGT | TTGGATTTGA | AAAATCCGAT | TATTCCAGCA | TCAGGCTGTT | TTGGCTTTGG | 1080 |
| ACAAGAGTAT | GCCAAGTACT | ATGATTTAGA | CCTTTTAGGT | TCTATTATGA | TCAAGGCGAC | 1140 |
| AACCCTTGAA | CCACGTTTTG | GGAATCCAAC | TCCAAGAGTG | GCAGAGACGC | CTGCTGGTAT | 1200 |
| GCTCAATGCA | ATTGGCTTGC | AAAATCCTGG | TTTAGAGGTT | GTTTTGGCTG | AAAAGCTACC | 1260 |
| TTGGCTGGAA | AGAGAATATC | CAAATCTTCC | TATTATTGCC | AATGTAGCTG | GTTTTTCAAA | 1320 |
| ACAAGAGTAT | GCAGCTGTTT | CTCATGGGAT | TTCCAAGGCA | ACTAATGTAA | AAGCTATCGA | 1380 |
| GCTCAATATT | TCTTGTCCCA | ATGTTGACCA | CTGTAATCAT | GGACTTTTGA | TTGGTCAAGA | 1440 |
| TCCAGATTTG | GCTTATGATG | TGGTGAAAGC | AGCTGTGGAA | GCCTCAGAAG | TGCCAGTTTA | 1500 |
| TGTCAAATTA | ACCCCGAGTG | TGACCGATAT | CGTTACTGTC | GCAAAAGCTG | CAGAAGATGC | 1560 |
| GGGAGCAAGT | GGCTTGACCA | TGATCAATAC | TCTGGTTGGA | ATGCGCTTTG | ACCTCAAAAC | 1620 |
| TAGAAAACCA | ATCTTGGCCA | ATGGAACAGG | TGGAATGTCT | GGTCCAGCAG | TCTTTCCAGT | 1680 |
| AGCCCTCAAA | CTCATCCGCC | AAGTTGCCCA | AACAACAGAC | CTGCCTATCA | TTGGAATGGG | 1740 |
| AGGAGTGGAT | TCGGCTGAAG | CTGCCCTAGA | AATGTATCTG | GCTGGGGCAT | CTGCTATCGG | 1800 |
| AGTTGGAACA | GCTAACTTTA | CCAATCCTTA | TGCCTGCCCT | GACATCATCG | AAAATTTACC | 1860 |
| AAAAGTCATG | GATAAATACG | GTATTAGCAG | TCTGGAAGAA | CTCCGTCAGG | AAGTAAAAGA | 1920 |
| GTCTCTGAGG | TAMACTGCAA | TCAATCTGTT | CTTGATTTTT | TATTAGTTIG | TAATATGAAT | 1980 |
| TTAGGAGAAT | TTTGGTACAA | TAAAATAAAT | AAGAACAGAG | GAAGAAGGTT | AATGAAGAAA | 2040 |
| GTAAGATTTA | TTTTTTTAGC | TCTGCTATTT | TTCTTAGCTA | GTCCAGAGGG | TGCAATGGCT | 2100 |
| AGTGATGGTA | CTTGGCAAGG | AAAACAGTAT | CTGAAAGAAG | ATGGCAGTCA | AGCAGCAAAT | 2160 |
| GAGTGGGTTT | TTGATACTCA | TTATCAATCT | TGGTTCTATA | TAAAAGCAGA | TGCTAACTAT | 2220 |
| GCTGAAAATG | AATGGCTAAA | GCAAGGTGAC | GACTATTTT  | ACCTCAAATC | TGGTGGCTAT | 2280 |
| ATGGCCAAAT | CAGAATGGGT | AGAAGACAAG | GGAGCCTTTT | ATTATCTTGA | CCAAGATGGA | 2340 |
| AAGATGAAAA | GAAATGCTTG | GGTAGGAACT | TCCTATGTTG | GTGCAACAGG | TGCCAAAGTA | 2400 |
| ATAGAAGACT | GGGTCTATGA | TTCTCAATAC | GATGCTTGGT | TTTATATCAA | AGCAGATGGA | 2460 |
| CAGCACGCAG | AGAAAGAATG | GCTCCAAATT | AAAGGGAAGG | ACTATTATTT | CAAATCCGGT | 2520 |
| GGTTATCTAC | TGACAAGTCA | GTGGATTAAT | CAAGCTTATG | TGAATGCTAG | TGGTGCCAAA | 2580 |
| GTACAGCAAG | GTTGGCTTTT | TGACAAACAA | TACCAATCTT | GGTTTTACAT | CAAAGAAAAT | 2640 |
| GGAAACTATG | CTGATAAAGA | ATGGATTTTC | GAGAATGGTC | АСТАТТАТТА | ТСТААААТСС | 2700 |
|            |            |            |            |            |            |      |

328 GGTGGYTACA TGGCAGCCAA TGAATGGATT TGGGATAAGG AATCTTGGTT TTATCTCAAA 2760 TyTGATGGGA AAATrGCTGA AAAAGAATGG GTCTACGATT CTCATAGTCA AGCTTGGTAC 2820 TACTTCAAAT CCGGTGGTTA CATGACAGCC AATGAATGGA TTTGGGATAA GGAATCTTGG 2880 TTTTACCTCA AATCTGATGG GAAAATAGCT GAAAAAGAAT GGGTCTACGA TTCTCATAGT 2940 CAAGCTTGGT ACTACTTCAA ATCTGGTGGC TACATGGCGA AAAATGAGAC AGTAGATGGT 3000 TATCAGCTTG GAAGCGATGG TAAATGGCTT GGAGGAAAAA CTACAAATGA AAATGCTGCT 3060 TACTATCAAG TAGTGCCTGT TACAGCCAAT GTTTATGATT CAGATGGTGA AAAGCTTTCC 3120 TATATATCGC AAGGTAGTGT CGTATGGCTA GATAAGGATA GAAAAAGTGA TGACAAGCGC 3180 TTGGCTATTA CTATTTCTGG TTTGTCAGGC TATATGAAAA CAGAAGATTT ACAAGCGCTA 3240 GATGCTAGTA AGGACTTTAT CCCTTATTAT GAGAGTGATG GCCACCGTTT TTATCACTAT 3300 GTGGCTCAGA ATGCTAGTAT CCCAGTAGCT TCTCATCTTT CTGATATGGA AGTAGGCAAG 3360 AAATATTATT CGGCAGATGG CCTGCATTTT GATGGTTTTA AGCTTGAGAA TCCCTTCCTT 3420 TTCAAAGATT TAACAGAGGC TACAAACTAC AGTGCTGAAG AATTGGATAA GGTATTTAGT 3480 TTGCTAAACA TTAACAATAG CCTTTTGGAG AACAAGGGCG CTACTTTTAA GGAAGCCGAA 3540 GAACATTACC ATATCAATGC TCTTTATCTC CTTGCCCATA GTGCCCTAGA AAGTAACTGG 3600 GGAAGAAGTA AAATTGCCAA AGATAAGAAT AATTTCTTTG GCATTACAGC CTATGATACG 3660 ACCCCTTACC TTTCTGCTAA GACATTTGAT GATGTGGATA AGGGAATTTT AGGTGCAACC 3720 AAGTGGATTA AGGAAAATTA TATCGATAGG GGAAGAACTT TCCTTGGAAA CAAGGCTTCT 3780 GGTATGAATG TGGAATATGC TTCAGACCCT TATTGGGGCG AAAAAATTGC TAGTGTGATG 3840 ATGAAAATCA ATGAGAAGCT AGGTGGCAAA GATTAGTACT ATAAGTGAAT ATGATTTGAG 3900 TGAATAGTAA GTTAAAAATC CTGATTTCAA GTAAAATCAG GATTTTTTCA TGGATGCAAT 3960 TTTTTTGGAG TCTGGTGTGA CGCGGAGGGT CTTTTGTCCT GTGTAAGTGA CAAAGCCGGG 4020 TTTTCCACCA GTTGGTTTAT TGAGTTTTTT GACTTCAATC ATATCTACCT GCACCAGATT 4080 CGACAGGCGC CCTTGAGAGA AGTAGGCAGC TAACTCTGCT GCGTCTGTCT TGACTGCATC 4140 AGATGGGTCA AGATTTCCTG AGATGACAAC ATGGCTTCCA GGAATGTCCT TAGCATGGAA 4200 CCAAAGTTCC TCCTTGCGGG CCATTTTAAA GGTCAATTCC TCATTTTGAA GATTGTTTCG 4260 TCCGACATAG ATGATGGTTT TGCCATCGCT TGCTAGATAT TGTTCTAGTT TTTTGCGTTT 4320 CTGGATTTTC TCCCGTTGTC TTCTGCGGAT AAAACCTGTT TGAATCAATT CTTCACGGAT 4380 TTCAGCGATT TCTTCCAGTC CAGCTTGGTT GAGGACGGTT TCTACACTTT CCAGATAGAG 4440 AATAGTGGCT TTGGTTTCTT CAATCAAATC AGTCAAGTAT TTGACAGCTT CTTTGAGTTT 4500

| CTGATACCGT | TTAAAATAGC | GTTGGGCATT  | CTGGTTGGGA  | GTCAGAGCCT   | TATCAAGCGC        | 4560 |
|------------|------------|-------------|-------------|--------------|-------------------|------|
| AATCATGATA | GGTTGGTTGG | TATAGTAGTT  | GTCTAGGATA  | ACCTGGTCTT   | GGTCGTTAGG        | 4620 |
| CACTTGGTGG | AGGAAGGTTG | TCAGCAATTC  | TCCTTTTTGA  | CGAAATTCTT   | CAGCGTTGTC        | 4680 |
| TGTCGCCAGT | AACTCTTTTT | CCTGTTTTTT  | GAGTTTGTGT  | CGGTTTTTCT   | GAAGTTCATT        | 4740 |
| TTCAACACGA | CGAATCAGTT | CACTGGCCTG  | CTGTTTGACG  | CGGTCGCGCT   | CAGCCTTATC        | 4800 |
| CTTATAGTAG | GTGTCCAACA | AATCAGAAAG  | ATTTGCAAAA  | GGCTCTCCCA   | CCTGATTTGC        | 4860 |
| AAAAGGAACT | GGACTGAAGG | AAGTCTCAGT  | CAAGCATGGC  | TTGGTTTCTT   | GATTGAAAA         | 4920 |
| ATTTCGGAAA | GCGGAAAGTT | TTTCACTAAC  | CAGTATCCTT  | TCCAATTCAT   | TTGCCGTATC        | 4980 |
| GCGTCCCAGA | CCTTGAAAGA | GGCTTTGAAG  | ATTTTTTGCT  | GTTAGTTCTT   | GGGTTTGCAG        | 5040 |
| GATTTCAAAG | AGCTTTTCAT | CCTTGATAGT  | AAAAGGATTG  | AGAGATTTTG   | TACTTGGCGG        | 5100 |
| AGCGATATAG | GTCGATCCTG | GAAGTAAGGT  | GCGGTAGCTA  | TTTTGTGAAA   | AGCCGACGTG        | 5160 |
| TTTGATAACT | TCGAGGATTT | TATGACTGCT  | TTTATCGACC  | AGTAGAATAT   | TACTGTGTTT        | 5220 |
| CCCCATAATT | TCGATAATCA | AGGTAGCCTG  | GATATGGTCT  | CCAATCTCGT   | TTTTATTGGA        | 5280 |
| AACTGTAATT | TCCACAATAC | GGTCATTTTC  | CACTTGCTCA  | ATCGACTCAA   | TCAGGGCCCC        | 5340 |
| CTGCAAATAC | TTTCTCAAAA | CCATGATAAA  | GGTAGAAGGT  | TGAGCTGGAT   | TTTCAAAAGT        | 5400 |
| CGTTTGGGTC | AGCTGAATGC | GTCCAAAAAC  | TGGATGGGCA  | GAAAGGAGCA   | GGCGATGGCT        | 5460 |
| PTGGCGATTG | CTGCGGATTT | GCAAGACCAA  | CTCTTGTTCA  | AAAGGCTGAT   | TGATTTTCTG        | 5520 |
| GATGCGACCA | TTCACTAATT | CGCTTCGCAA  | TTCCTCAACT  | ATGTGGTGTA   | AAAAAAATCC        | 5580 |
| GTCAAATGAC | ATCGTTCTCT | CCTTGTGATT  | GTATTCCATA  | GTATTATATC   | AAAAAGGTAG        | 5640 |
| ААТААААТСА | TGGAAATGTG | GTATAATAAA  | GCCAAGTAAA  | GAGAAACGAG   | AAGCACATGT        | 5700 |
| ATATTGAAAT | GGTAGATGAA | ACTGGTCAAG  | TTTCAAAAGA  | AATGTTGCAA   | CAAACCCAAG        | 5760 |
| Aaattttgga | ATTTGCAGCC | CAAAAATTAG  | GAAAAGAAGA  | CAAGGAGATG   | GCAGTCACTT        | 5820 |
| TTGTGACCAA | TGAGCGTAGT | CATGAACTTA  | ATCTGGAGTA  | CCGTAACACC   | GACCGTCCGA        | 5880 |
| CAGATGTCAT | CAGCCTTGAG | TATAAACCAG  | AATTGGAAAT  | TGCCTTTGAC   | GAAGAGGATT        | 5940 |
| rgcttgaaaa | TTCAGAATTG | GCAGAGATGA  | TGTCTGAGTT  | TGATGCCTAT   | ATTGGGGAAT        | 6000 |
| IGTTCATCTC | TATCGATAAG | GCTCATGAGC  | AGGCCGAAGA  | ATATGGTCAC   | AGCTTTGAGC        | 6060 |
| GTGAGATGGG | CTTCTTGGCA | GTACACGGCT  | TTTTACATAT  | TAACGGCTAT   | GATCACTACA        | 6120 |
| CTCCGGAAGA | AGAAGCGGAG | ATGTTCGGTT  | TACAAGAAGA  | AATTTTGACA   | GCCTATGGAC        | 6180 |
| TC2C22C2   | 3033300333 | 30000333330 | CCDC3 CDDC3 | mamoca commo | 3 C 3 3 MMM C C M | C240 |

|            |            |            | 330        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| TTGACAGGTA | TTTTTACTGC | TATCAAGGAA |            | TGCGAAAACA | CGCAGTGACG | 630  |
| GCTCTAGTGG | TCATCCTTGC | AGGTTTTGTT | TTTCAGGTGT | CACGAATCGA | ATGGCTCTTT | 636  |
| CTCCTATTGA | GTATTTTCTT | GGTAGTAGCC | TTTGAGATTA | TCAACTCTGC | TATTGAAAAT | 642  |
| GTGGTGGATT | TGGCCAGTCA | CTATCACTTT | TCCATGCTGG | CTAAAAATGC | CAAGGATATG | 648  |
| GCGGCCGGCG | CGGTATTAGT | GGTTTCTCTT | TTCGCAGCCT | TAACAGGCGC | ATTGATTTTT | 654  |
| CTCCCACGAA | TCTGGGATTT | АТТАТТТТАА | ACAGTAAGAG | GAAATTATGA | СТТТТАААТС | 660  |
| AGGCTTTGTA | GCCATTTTAG | GACGTCCCAA | TGTTGGGAAG | TCAACCTTTT | TAAATCACGT | 666  |
| TATGGGGCAA | AAGATTGCCA | TCATGAGTGA | CAAGGCGCAG | ACAACGCGCA | АТААААТСАТ | 672  |
| GGGAATTTAC | ACGACTGATA | AGGAGCAAAT | TGTCTTTATC | GACACACCAG | GGATTCACAA | 678  |
| GCCTAAAACA | GCTCTCGGAG | ATTTCATGGT | TGAGTCTGCC | TACAGTACCC | TTCGCGAAGT | 684  |
| GGACACTGTT | CTTTTCATGG | TGCCTGCTGA | TGAAGCGCGT | GGTAAGGGGG | ACGATATGAT | 690  |
| TATCGAGCGT | CTCAAGGCTG | CCAAGGTTCC | TGTGATTTTG | GTGGTGAATA | AAATCGATAA | 6960 |
| GGTCCATCCA | GACCAGCTCT | TGTCTCAGAT | TGATGACTTC | CGTAATCAAA | TGGACTTTAA | 7020 |
| GGAAATTGTT | CCAATCTCAG | CCCTTCAGGG | AAATAACGTG | TCTCGTCTAG | TGGATATTTT | 7080 |
| GAGTGAAAAT | CTGGATGAAG | GTTTCCAATA | TTTCCCGTCT | GATCAAATCA | CAGACCATCC | 7140 |
| AGAACGTTTC | TTGGTTTCAG | AAATGGTTCG | CGAGAAAGTC | TTGCACCTAA | CTCGTGAAGA | 7200 |
| GATTCCGCAT | TCTGTAGCAG | TAGTTGTTGA | CTCTATGAAA | CGAGACGAAG | AGACAGACAA | 7260 |
| GGTTCACATC | CGTGCAACCA | TCATGGTCGA | GCGCGATAGC | CAAAAAGGGA | TTATCATCGG | 7320 |
| TAAAGGTGGC | GCTATGCTTA | AGAAAATCGG | TAGCATGGCC | CGTCGTGATA | TCGAACTCAT | 7380 |
| GCTAGGAGAC | AAGGTCTTCC | TAGAAACCTG | GGTCAAGGTC | AAGAAAAACT | GGCGCGATAA | 7440 |
| AAAGCTAGAT | TTGGCTGACT | TTGGCTATAA | TGAAAGAGAA | TACTAAGTAG | AGGTAGGCTC | 7500 |
| ATGCCTGCTT | CTTGTTTTTA | CAGAAGGAGG | ACTTATGCCT | GAATTACCTG | AGGTTGAAAC | 7560 |
| CGTTTGTCGT | GGCTTAGAAA | AATTGATTAT | AGGAAAGAAG | ATTTCGAGTA | TAGAAATTCG | 7620 |
| CTACCCCAAG | ATGATTAAGA | CGGATTTGGA | AGAGTTTCAA | AGGGAATTGC | CTAGTCAGAT | 7680 |
| TATCGAGTCA | ATGGGACGTC | GTGGAAAATA | TTTGCTTTTT | TATCTGACAG | ACAAGGTCTT | 7740 |
| GATTTCCCAT | TTGCGGATGG | AGGGCAAGTA | TTTTTACTAT | CCAGACCAAG | GACCTGAACG | 7800 |
| CAAGCATGCC | CATGTTTTCT | TTCATTTTGA | AGATGGTGGC | ACGCTTGTTT | ATGAGGATGT | 7860 |
| PCGCAAGTTT | GGAACCATGG | AACTCTTGGT | GCCTGACCTT | TTAGACGTCT | ACTTTATTTC | 7920 |
| TAAAAAATTA | GGTCCTGAAC | CAAGCGAACA | AGACTTTGAT | TTACAGGTCT | TTCAATCTGC | 7980 |
| CCTTGCCAAG | TCCAAAAAGC | СТАТСАААТС | CCATCTCCTA | GACCAGACCT | TGGTAGCTGG | 8040 |

| ACTTGGCAAT | ATCTATGTGG | ATGAGGTTCT | CTGGCGAGCT | CAGGTTCATC | CAGCTAGACC | 8100 |
|------------|------------|------------|------------|------------|------------|------|
| TTCCCAGACT | TTGACAGCAG | AAGAAGCGAC | TGCCATTCAT | GACCAGACCA | TTGCTGTTTT | 8160 |
| GGCCAGGCT  | GTTGAAAAAG | GTGGCTCCAC | CATTCGGACT | TATACCAATG | CCTTTGGGGA | 8220 |
| AGATGGAAGC | ATGCAGGACT | TTCATCAGGT | CTATGATAAG | ACTGGTCAAG | AATGTGTACG | 8280 |
| CTGTGGTACC | ATCATTGAGA | AAATTCAACT | AGGCGGACGT | GGAACCCACT | TTTGTCCAAA | 8340 |
| CTGTCAAAGG | AGGGACTGAT | GGGAAAAATC | ATCGGAATCA | CTGGGGGAAT | TGCCTCTGGT | 8400 |
| AAGTCAACTG | TGACAAATTT | TCTAAGACAG | CAAGGCTTTC | AAGTAGTGGA | TGCCGACGCA | 8460 |
| GTCGTCCACC | AACTACAGAA | ACCTGGTGGT | CGTCTGTTTG | AGGCTCTAGT | ACAGCACTTT | 8520 |
| GGGCAAGAAA | TCATTCTTGA | AAACGGAGAA | CTCAATCGCC | CTCTCCTAGC | TAGTCTCATC | 8580 |
| PTTTCAAATC | CTGATGAACG | AGAATGGTCT | AAGCAAATTC | AAGGGGAGAT | TATCCGTGAG | 8640 |
| GAACTGGCTA | CTTTGAGAGA | ACAGTTGGCT | CAGACAGAAG | AGATTTTCTT | CATGGATATT | 8700 |
| CCCCTACTTT | TTGAGCAGGA | CTACAGCGAT | TGGTTTGCTG | AGACTTGGTT | GGTCTATGTG | 8760 |
| GACCGAGATG | CCCAAGTGGA | ACGCTTAATG | AAAAGGGACC | AGTTGTCCAA | AGATGAAGCT | 8820 |
| GAGTCTCGTC | TGGCAGCCCA | GTGGCCTTTA | GAAAAAAAGA | AAGATTTGGC | CAGCCAGGTT | 8880 |
| CTTGATAATA | ATGGCAATCA | GAACCAGCTT | CTTAATCAAG | TGCATATCCT | TCTTGAGGGA | 8940 |
| GCTAGGCAAG | ATGACAGAGA | TTAACTGGAA | GGATAATCTG | CGCATTGCCT | GGTTTGGTAA | 9000 |
| PTTTCTGACA | GGAGCCAGTA | <u> </u>   | TGTACCTTTT | ATGCCCATCT | TCGTGGAAAA | 9060 |
| PCTAGGTGTA | GGGAGTCAGC | AAGTCGCTTT | TTATGCAGGC | TTAGCAATTT | CTGTCTCTGC | 9120 |
| PATTTCCGCG | GCGCTCTTTT | CTCCTATTTG | GGGTATTCTT | GCTGACAAAT | ACGGCCGAAA | 9180 |
| ACCCATGATG | ATTCGGGCAG | GTCTTGCTAT | GACTATCACT | ATGGGAGGCT | TGGCCTTTGT | 9240 |
| CCCAAATATC | TATTGGTTAA | TCTTTCTTCG | TTTACTAAAC | GGTGTATTTG | CAGGTTTTGT | 9300 |
| CCTAATGCA  | ACGGCACTGA | TAGCCAGTCA | GGTTCCAAAG | GAGAAATCAG | GCTCTGCCTT | 9360 |
| AGGTACTTTG | TCTACAGGCG | TAGTTGCAGG | TACTCTAACT | GGTCCCTTTA | TTGGTGGCTT | 9420 |
| PATCGCAGAA | TTATTTGGCA | TTCGTACAGT | TTTCTTACTG | GTTGGTAGTT | TTCTATTTTT | 9480 |
| AGCTGCTATT | TTGACTATTT | GCTTTATCAA | GGAAGATTTT | CAACCAGTAG | CCAAGGAAAA | 9540 |
| GCTATTCCA  | ACAAAGGAAT | TATTTACCTC | GGTTAAATAT | CCCTATCTTT | TGCTCAATCT | 9600 |
| CTTTTTAACC | AGTTTTGTCA | TCCAATTTTC | AGCTCAATCG | ATTGGCCCTA | TTTTGGCTCT | 9660 |
| TATGTACGC  | GACTTAGGGC | AGACAGAGAA | TCTTCTTTTT | GTCTCTGGTT | TGATTGTGTC | 9720 |
| CAGTATGGGC | TTTTCCAGCA | ТСАТСАСТСС | AGGAGTCATC | GGCAAGCTAG | GTGACAACCT | 9790 |

332 GGGCAATCAT CGTCTCTTGG TTGTCGCCCA GTTTTATTCA GTCATCATCT ATCTCCTCTG 9840 TGCCAATGCC TCTAGCCCCC TTCAACTAGG ACTCTATCGT TTCCTCTTTG GATTGGGAAC 9900 CGGTGCCTTG ATTCCCGGGG TTAATGCCCT ACTCAGCAAA ATGACTCCCA AAGCCGGCAT 9960 TTCGAGGGTC TTTGCCTTCA ATCAGGTATT CTTTTATCTG GGAGGTGTTG TTGGTCCCAT 10020 GGCAGGTTCT GCAGTAGCAG GTCAATTTGG CTACCATGCT GTCTTTTATG CGACAAGCCT 10080 TTGTGTTGCC TTTAGTTGTC TCTTTAACCT GATTCAATTT CGAACATTAT TAAAAGTAAA 10140 GGAAATCTAG TGCGAGTAAA AATCAATCTC AAATGCTCCT CTTGTGGCAG TATCAATTAC 10200 CTAACCAGTA AAAATTCAAA AACCCATCCA GACAGATTGA 10240

#### (2) INFORMATION FOR SEQ ID NO: 33:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13206 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

| CGCTTTATCG | TGGACGTGGT | CAAGCCGAGA | ATTTCATCAA | GGAGATGAAG | GAGGGATTTT | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| TTGGCGATAA | AACGGATAGT | TCAACCTTAA | TCAAAAACGA | AGTTCGTATG | ATGATGAGCT | 120 |
| GTATCGCCTA | CAATCTCTAT | CTTTTTCTCA | AACATCTAGC | TGGAGGTGAC | TTCCAAACTT | 180 |
| ТААСААТСАА | ACGCTTCCGC | CATCTTTTTC | TTCACGTGGT | GGGAAAATGT | GTTCGAACAG | 240 |
| GACGCAAGCA | GCTCCTCAAA | TTGTCTAGTC | TCTATGCCTA | TTCCGAATTG | TTTTCAGCAC | 300 |
| TTTATTCTAG | GATTAGAAAA | GTCAACCTGA | ATCTTCCTGT | TCCTTATGAA | CCACCTAGAA | 360 |
| GAAAAGCGTC | GTTAATGATG | CATTAAAGAA | CAGTCGAGAT | GAAAAATCG  | TGTGACGCAC | 420 |
| CAAGGGAGGA | GTCTGCCCTT | TTGAGGAAAT | CTAGCGAGGA | AAAACGATAC | TGGAACAGCA | 480 |
| GAAAGTAAAA | CTGACCTCAT | GAGGAGGAAG | AAAGTGGCTC | ATGAGGTCAG | GGGTTTTGTA | 540 |
| AGTTACATCT | AGTTGAGAGA | GGTATGAATG | ATTTGGGATT | AATCATTTCT | TGTTTTAAAT | 600 |
| CAGGAGAATA | GTAACGATTT | TTTCCTTTTT | TGACGAACTC | TATTCCGTAA | CGATCAATCA | 660 |
| ATTTAATCAT | GTACCTAATA | TTAGAATTGT | TTATCCCAAA | TTTATTTGAA | AGCTTCTCTA | 720 |
| AGCTATATCC | TTGTTTTCTA | AGTTCATAGA | TCTGAACTTT | ATCATCATAA | GTTAGTTTCA | 780 |
| TAATAAAAAC | ACCCCAAAAG | TTAGATTTTT | TCTGTCTAAC | TTTTGGGGGG | CAGTTCATTC | 840 |
| AACACCTGAT | ACTATGCGTT | ТТТСТТАТТТ | GAAATACTTT | TTACTCAACC | тстттатаст | 900 |
| CAATGAAAAT | CAAAGTGCAA | ACTAGAAAGC | TAGCCTCAGG | CTGCTCAAAA | CAGTGTTTTG | 960 |

| AGGTTGCAGA | TGGAAGCTGA  | CGTGGTTTGA         | AGAGATTTTC | GAAGAGTATT | ACTTAATCTT          | 1020 |
|------------|-------------|--------------------|------------|------------|---------------------|------|
| CTTGATACTT | TGACTAAGAA  | TAAATCCTAC         | AATCATCCCT | ACCATATTTT | GCATAAAATT          | 1080 |
| CGGTAGAATT | TCTGGGAGGG  | CTGCTGCCCA         | GCCATTCATC | AAAGCAGAAC | CCAAGGCGTA          | 1140 |
| GCCTCCTACC | ATGGCAATAG  | TTGCTAAAAT         | AAGGCCTAAC | CACTGACTTT | TTCCTTTAAA          | 1200 |
| TCCTGCGAAA | AATCCCTGCA  | AGCCATGGTT         | GACCAAGCTA | AAGAACATCC | ACTGAGGGTA          | 1260 |
| GCCTGATAAG | AGGTCAATCA  | AGAAACTTGC         | TAGTCCTCCG | ACTACCGCTC | CTTCACGACT          | 1320 |
| ACCAAAGTAA | AAGGCCGCAA  | AGAAGACACC         | AGCATCTAAA | AGAGTTAGAA | TTCCTGTAGG          | 1380 |
| TGTTGGGATT | TTTAAGAAAT  | AACCTAGAAC         | CACAGAAAGG | GCGGTTAATA | GGGATACAAG          | 1440 |
| GGCGATTTTA | GTTGTTTTTG  | TTTGCTTCAT         | ATTGTCTTAC | TCCATACTGA | TCTGCTTGTG          | 1500 |
| CAATAGCACG | ATAAACGAAA  | GCCTTAGAGC         | TTTCTACTGC | TGGCAAAAGT | TTATCACCTT          | 1560 |
| TAACCAGGTG | ACTGGCAATG  | CTAGAGSCAA         | AGGTACAACs | TGCACCAGCA | TTTTGGCCTT          | 1620 |
| GGATAACTGG | ATTTTCTAGG  | ATAGTAAAGG         | TCTGTCCATC | ATAAAAGACA | TCCACAGCCT          | 1680 |
| TGTCCTGACT | AAGACGATTG  | CCTCCCTTGA         | TAATGACTGt | GGCGCTCCTA | AATCATGCAA          | 1740 |
| TTTCTGCGCT | GCAGTTTTCA  | TGTCTTCCAA         | GGTTTTAATT | TCCTGACCGG | ATAATAATTC          | 1800 |
| TGCTTCTGGG | AGATTAGGCG  | TAATCACACT         | GACATAAGGG | AAAAAGCGAA | TCAACTCTTG          | 1860 |
| GCAGAGCTCA | CTGACAGCTA  | CATCATGCGT         | TTCCTTGCAG | ACCAAGACAG | GATCCAACAC          | 1920 |
| CACAGGTACT | CCTGGGCGTT  | GTTTGATAAA         | GTCCAAGGCC | TTCTCAGCCA | ĆĞĆ TGACAGT         | 1980 |
| agggagaaga | CCAATCTTAA  | TTCCCCCAAA         | TTCCACATCA | CGCAAGCTAT | CTAATTCATG          | 2040 |
| TTGAAAAATG | GTATCATCAG  | TTGGAAAGAC         | TTCAAATCCT | TTTTCTGTCA | AGGCTGTCAA          | 2100 |
| ACAAGTCACT | GCTACAAACC  | CATGCAAGCC         | GTTCAAGGTA | TAGGTAGCCA | AATCAGCTGA          | 2160 |
| CAGTCCACCA | ССАСТААААА  | TATCATTTCC         | AGAAAGTGCT | AAAATACGAT | TATTCTTCAT          | 2220 |
| AACGAATCTC | CTTTAAATAC  | AAACCATTTG         | GTGCTGCAGT | GGGACCTGCA | AGTTGCCTGT          | 2280 |
| CCTTCTTCTC | CAAGATGAGA  | TCAATCTGCT         | CTACTGGCAT | GCGGTTGTTA | CCGATTTTGA          | 2340 |
| GAAGAGTCCC | CACCATATTG  | CGAATCTGTT         | TATACAAGAA | ACCATTTCCT | GAAAAGGTAA          | 2400 |
| AGGTCAAAAA | TTGTCCTGTC  | TCATCGACTA         | TTAAACTAGC | TTCTGTGATG | GTGCGAACCT          | 2460 |
| PATCCTCTAC | ACTAGTCCCA  | GAGGCTGTAA         | AACCGGTAAA | ATCATGGGTT | CCCTCTAGCT          | 2520 |
| PTTTGATTGC | AATCTGCATT  | CGTTCCACAT         | CGAGTGGGTA | GGGAAAGTGG | GTGGCATAGT          | 2580 |
| GACGGCGCAT | CGGATTTTTG  | GGACGTCCTC         | TATCCACAGT | AAACTCATAG | GTCTTGCTAT          | 2640 |
| GCTTGGCATA | ACGCCA ATCA | <b>አልልጥሮልጥሮ</b> ጥር | CCACAAGCTC | ልአጥርርልልልጥር | <b>ል</b> ሮልጥሮል እጥአጥ | 2700 |

|            |            |            | 334        |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| CTTCAGGAGA | CTGGGTATCC | AAGGCAAAAC | GGAGTTTCTC | CTCATCCATC | TGATAAGGCA | 2760 |
| GGTCAAAATG | AATCACCTGT | CCCAGGGCAT | GAACCCCACT | ATCTGTCCTA | CCAGCACCGT | 2820 |
| GAACAGTAAT | GGCTTGCCCT | TTATTTAATC | TGGTCAAGGT | TTTTTCAATT | TCTTCCTGAA | 2880 |
| CGCTACGCGC | ATGAGGCTGG | CGCTGAAAGC | CAGCAAAGGC | ATAACCATCA | TAGGAAATAG | 2940 |
| TTGCTTTATA | TCTCGTCATA | GCCTCTATTT | TATCAAGAAA | TTAGTCTGTA | AACAAGGACC | 3000 |
| ТААААСАААТ | ATTGTATGGG | TATAAAAATC | TCATACTCTT | CGAAAATCTC | TTCAAACCAC | 3060 |
| GTCAGTTTCC | ATCTGCAACC | TCAACACACT | ATTTTGAGCA | ACCTGCGGCT | AGCTTTCTAT | 3120 |
| AGTAGATTGA | AATAAGATAT | GAACAACTCT | ATTAGGAAAG | TCAAATTAAT | TTCTAGAAAT | 3180 |
| ATTTTAGCAG | CTACAGCGTA | СТАТТССААА | CTCAATCAAC | TATAGTTTGC | TCTTTGATTT | 3240 |
| TCATTGAGTA | TCAAAAGAAA | AACTTAGGAA | TCAATCCTAA | GCTCTCTTCT | GAAGTAGGTA | 3300 |
| CATGACAAAG | ATAGAGATTA | CAATCAACCA | ACCTCCTAAG | ATACTAAAGA | CCAACATCCC | 3360 |
| ATTGTGAGTT | AGTAAGCCAA | TTGCACCTAG | AACGAATGGG | GTCGTAAAGG | CTCCGAAACT | 3420 |
| ACAGCCTAAT | ACAGCAAATG | AAGTTGCTTG | ATTGAGGAGT | TTAGCTGGAA | TTCGTTCAGA | 3480 |
| GACAAGTTGA | AAGACCGTCG | TCAAGACTAC | ACTATAGGCA | AATCCAGCCA | GAACACTTCC | 3540 |
| TGCTACTACC | ACCCACAAGG | ATGAAGACAA | GGCAATCACG | ATTTGCCCCA | AGCCAAAGGT | 3600 |
| AATACCAGAC | CAGAGGAGCA | GTTTCTCTTT | AAAGATAGAA | ATÇAAGAAAG | AAAAACTCAC | 3660 |
| CCCAGCCACA | ATCCCGATCA | ACTGCATGAT | ACTAAGAACA | AAACTAGATA | ACTGGGCATC | 3720 |
| CCCCAATCCT | CTTTCCACCA | TCAAACTTGG | AATACGGATG | GTAATAGCTG | TATTGGTACA | 3780 |
| AACTACAACT | GCCGCTTCGA | TAGCTAAGGT | AAAAATCAAG | CCTTTCATTT | CTCGAGTTAA | 3840 |
| ACGACTTGCT | TCCTTCGCTC | TTTTCTTGAC | TTCTTTCTTT | GATTTTCCAT | AAGGGACAAA | 3900 |
| GAGCAGATAA | AGGGGCAGCA | CCAAAAATCC | AGCACTATAG | GCTAGAAAGA | TAGCTGTCCA | 3960 |
| ACCAAAGGCC | AACAACTGAC | CGACGGCCAA | GGTAATGAGA | GAAGCTCCAA | CGACCTCTGC | 4020 |
| AGAAGCGCGT | AGCCCTAACA | TCTGAATTCG | CCTTTTTCCT | TGGTAGCGTT | CACTGATAAT | 4080 |
| AGAAATGGCC | TTGGCATTGA | TCATCCCAAG | ACCCAAACCA | AAGAGAAGCC | GTGTTCCAAA | 4140 |
| GACAAAGGGA | TAGGCTTGGT | ACCAGAAGGG | AGCTGTACCG | CTCAATGATA | AAATCAGCAA | 4200 |
| GCCCAAACTA | ATCTGTAAGC | GCTCAGGAAA | TATTTTTTCT | AAGAAACCAT | TTAGCAGTAA | 4260 |
| CATCATCATG | ATTCCAAAGG | AAGGCAAGCT | CACCAAGAGC | TCAATTTGTT | CCTTAGAATA | 4320 |
| ACCCTGATAA | TAGTCAAACA | TGGCTGGTAG | GGCACTCGAA | ATGGAAAAGG | AGGTAATCAA | 4380 |
| AACGAGGGAG | AGAGCCAAAA | TGCTGGCCCG | ттстааааат | TGTTTCATGA | AATCTCTTTC | 4440 |
| TATATTTCTC | TTAATCTTCT | ACTTTTTTGA | TAGTTATCAA | ATAAGCAAGA | AAAGAAGAAG | 4500 |

| CCTCATTGGT  | TTGTAGACTC | CTTCTTAAAT | TCGAAAATGA | ATCCCTTGTA | TCTTATACTC | 4560 |
|-------------|------------|------------|------------|------------|------------|------|
| AATGAAAATC  | AAAGAGCAAA | CTAGGAAGCT | AGCCGCAGGT | TGTTCAAAAC | AGTGTTTTGA | 4620 |
| GGTTGCAGAT  | GGAAACTGAC | GTGGTTTGAA | GAGATTTTCG | AAGAGTATTA | GGATGACTTT | 4680 |
| CTCTTGATTT  | GCTTGATAAA | GTAGAAAATA | AATCCTGCTA | CCATATAGGC | AACAAAGATA | 4740 |
| ATCAGACACC  | ACTTAAACAC | AACATTCCAA | CCCTTGTTCA | CATTCAAAAA | GAAGTAAGGG | 4800 |
| AAAGGATTAT  | CCTTGGCATT | TGGAATATTG | AGTTTTAGAA | CCAAGCCATT | AAAAAGAGCA | 4860 |
| AACATCATAT  | ACAGAAAGGG | TAAAATGGTC | CACACTGCTG | GATCCCAAAT | CTTGTATTGA | 4920 |
| CCCTGTTTGT  | CAAAAAAGAG | GGTATCCGCT | AAAAACCAGA | TGGGAACGAT | ATAGTGGCAA | 4980 |
| AGGAAATTTT  | CTAGGGTATA | GAAATTAGTC | GCAATGGGCG | CCAAGAGGAA | ATGGTAAATC | 5040 |
| ACACAGGTAA  | TCATGATACT | CATGGTGACC | CCACCTTTTA | AGCGCAAGAG | ACTTGGCCTT | 5100 |
| TGCCAATTTT  | CACCTACACG | GCTCATAACC | TTTAGAAGAT | AAAGGGTAAA | AATAGTTACC | 5160 |
| AAGAGGTTGG  | ACAGAACCGT | GTAATAGAGA | AGCATCCCAA | AACCACCATG | CTTAGTAATT | 5220 |
| TCAAGATAAA  | CTCCCGTAAA | AGCCGCTAGA | AACAAGAAGA | TACGGCTATA | AAATACAAGT | 5280 |
| TTATAGTGTT  | TTGACATGCT | TAAATCTTCC | TCACAAACTC | TGATTTAAGT | TTCATGGCAC | 5340 |
| CAAAACCATC  | AATCTTACAG | TCGATATTGT | GGTCGCCTTC | TACGATGCGG | ATATTTTTCA | 5400 |
| CGCGCGTCCC  | TTGTTTCAAA | TCTTTTGGCG | CACCTTTTAC | TTTCAAGTCC | TTGATGAGAG | 5460 |
| TTACTGTATC  | ACCATCAGCC | AATTTATTTC | CGTTGGCATC | GATAGCGACA | AGACCTTCTT | 5520 |
| CTACTTCTGC  | AACTTCAGCA | GGATTCCACT | CATGAGCACA | CTCTGGGCAA | ACCAGTAGGG | 5580 |
| CACCGTCTTC  | GTAGACATAC | TCTGAGTTAC | ATTTTGGACA | ATTTGGTAAA | TTGTTCATGG | 5640 |
| PTTCTCCTTA  | TCATCATTCA | CTATTCTTTG | AAAATCAAAA | TTTCTCGAAC | AGCAACTATT | 5700 |
| ATACCCTAAA  | ATCAGCATTT | TGACAAATTT | AGAAAAAAAC | CGATATCAAT | CTATCGGCTT | 5760 |
| TTTACATTT   | ACATTCTTTT | TTCAGCTTCT | GCTTTGATTT | TTTCAACTAC | TTCTTGAATG | 5820 |
| TTCAAACCAG  | TTGTATCAAG | GTAGACAGCA | TCCTCTGCTT | GTTTGAGAGG | AGAAGTCTCA | 5880 |
| CGATGACTAT  | CCTTGTAGTC | ACGCGCAGCA | ATTTCCTTTT | TTAGGGTTTC | AAGGTCTGTT | 5940 |
| PCAATTCCCT  | TGGCAATATT | TTCCTTGTAA | CGACGCTCTG | CTCTCTCATC | AACAGAAGCT | 6000 |
| ACTAGGAAAA  | TTTTCAATTC | TGCTTGTGGC | AATACAACAG | TTCCAATATC | GCGACCATCC | 6060 |
| ATGACAATCC  | CGCCTTGCTG | GGCAATTTCT | TGTTGGAGAG | AAACCAGTTT | CTCACGCACT | 6120 |
| rgaggaattg  | CTGCAATAGC | AGAAACATGA | TTGGTCACTT | CATTTTCACG | GATAGGATGG | 6180 |
| GTAA'IATCCA | CATCTCCTAC | AAAAACAAGC | TGGTCTCCAG | TTTCTGAACG | TCCAAAGCTG | 6240 |

336 ATTGGATGCT GGTCCAACAA GGCTAGAAGG GCTTCGACTT CTTCAACTCC TAATTGGTTC 6300 TTAAGAGCCA TATAGGTCGC TGCACGATAC ATAGCTCCTG TATCAAGGTA GGTGAATCCA 6360 AAATCCTTAG CAATAATCTT TGCGACCGTA CTCTTACCGC TGGAAGCAGG ACCATCAATA 6420 6480 CAAACCAAGA TCCTGTAGCC ATGTGCCCAG GATTCAAGGC CTCTAACTGA GCAATGGAGA 6540 TTCCTGCACG AGCGGCAATA GCTGCTTCCC CTTCTCCTGC GAGAACTTTA ATCGTTCCTT 6600 CAGGATTAGC AGCTTCTTCT GAACTACTAG AAGTAGATTC TGGCTCTGAA CTCTGCTCAG 6660 GCTGAGAACT ACTTGAAGAT GAGATTTGTA CTACACTGGC ATCAGAATCA TGAAAGCCTT 6720 TTAAGGCTGC TGTGCGATTA CTCCCCCCG ATGATAGATA GATGAGAACG ATGACCATCA 6780 CCACCACAAT TACAAAGAAA ATACTAGCTA GGATCGTCAA AATACGATTA GCCATCCTAT 6840 CAGCCCCTCC GTGGTTTCGA TGCCGACGCT CTGCTCTTGA TCTTCTTGA TCATAGATAT 6900 CTTCTTGCCA CGGTTCTTTT GCCATACCTT ACTCCTTGTT TTTTTTTACT TTTCTTATTA 6960 CAATATAAAT ATGAACATGA AAATCACACT TATACCTGAA CGATGTATCG CCTGTGGGCT 7020 TTGCCAAACT TATTCTGATT TATTTGATTA CCACGATAAT GGAATCGTGC GTTTTTACGA 7080 TGACCCTGAC CAACTGGAAA AAGAAATTTC TCCTAGTCAG GATATCTTAG AGGCTGTTAA 7140 AAATTGCCCA ACTCGCGCCC TGATTGGAAA CCAGGAAGCC TAAATCAATG GCGATAATCC 7200 ACTCCCTCTA GTTTAGCACA TTTCCATGTA AAATTATAGT CTTTTCACTT TATTTTTTC 7260 7320 TAAATAAATC TTACTGATAT ACTTGCCGAG AATCCCAATG GTCAAGAGTT GAATGCCTCC 7380 AAGAAAGAGA ATAACAGCCA TCAGAGAGGT CCAACCAGAT GTCGGATTGC CCAAAATGAG 7440 GGTCCGAACC ACAACAAAA AGGTCATCAG CAGAGAAAGA AAACAAGATA GGAGACCAGC 7500 TACAAAGGCT ATAATCAAGG GAAAATCTGA AAAATTAATA ATCCCTTCAA TGGAGTAGAA 7560 AAAGAGTTGC CTAAAACTCC AACTTGTCTT GCCAGCCTGC CTTTCGACAT TTGGATAGTC 7620 CAAATAGTAG GTTTTGAAAC CCACCCAGGC GAAGAGCCCC TTTGAAAAAC GATTGGACTC 7680 GGTCAAGCTT AAAATGGCAT CGACTACAGA CCTTCTCATC ATACGAAAAT CACGGACACC 7740 CGACGGCAGA GCTACTGGGC TGATTTTTG CATGAGGCGA TAAAAGAGAA CAGCACAGAA 7800 ACTGCGAAAG AAGGGTTCTC CCTCCCGACT AGTTCTCCGT GTCCCAACGC AGTCCAAGTC 7860 TACATTTTTG TCTAATACAT TTTTCATCTC AAACAACATA CTAGGAGGAT CTTGGAGGTC 7920 TGCATCCATC ACCACCACCA AATCTCCTGT CGCATATTGC AAGCCTGCAT AAAGGGCTGC 7980 TTCTTTGCCA AAATTTCGAG AGAAAGAAAT ATAATGGACT GCCGGATTTT GCTCCCGATA 8040

| GGCCTTTAAG         | AGTTCCAAGG | TCCCATCACT | TGATCCATCA | TCGACAAAGA | CATACTCGAT | 8100 |
|--------------------|------------|------------|------------|------------|------------|------|
| TTCTGTTTCC         | AAATCTGGAA | GTAAAGCTTC | CAGAGCCTGA | TAAAAAAGAG | GAAGTACTTC | 8160 |
| CTCTTCGTTT         | AAACAAGGGA | CGATGATTGA | AATCATCATC | TTAGTCTTCA | AATCCATTTG | 8220 |
| GATGCTTGCT         | TTGCCAACGC | CATGCGTCTT | CACACATTTG | GGTGATGTCG | AGTTCTGCTT | 8280 |
| CCCAACCGAG         | TTCTGCTTTA | GCTTTTGCCG | GGTCTGAGTA | GCAGGCAGCG | ATATCACCTG | 8340 |
| GGCGACGTTC         | TACGATGCGG | TAAGGAATAG | GACGGCCCAC | CGCTTTTTCC | ATGTTTTGGA | 8400 |
| TAATTTCAAG         | AACTGAGTAA | CCTTTACCAG | TTCCAAGGTT | ATAAACGTTT | AGTCCTGAAC | 8460 |
| CTTTTTGGAT         | TTTTTTCAAA | GCTGCAACGT | GACCCTTAGC | CAAATCGACA | ACGTGGATAT | 8520 |
| AGTCACGAAC         | ACCTGTTCCA | TCTTCCGTAT | CGTAATCGTC | TCCAAACACT | TGCACTTGCT | 8580 |
| CTAATTTTCC         | AACGGCTACT | TGAGTCACAT | ATGGCAAGAG | ATTGTTTGGA | ATACCGTTTG | 8640 |
| GATTTTCTCC         | CAAATCACCA | CTCTCATGGG | CTCCCATTGG | GTTAAAGTAA | CGAAGCAAGA | 8700 |
| CAACATTCCA         | TTCTGAGTCT | GCTTTGTAAA | TATCAGTCAA | AATTTCCTCT | AGCATGAGCT | 8760 |
| TAGTACGACC         | GTATGGGTTG | GTCACTGAAA | GTGGGAAATC | TTCCAAGATG | GGCACTGTGT | 8820 |
| GCGGATCCCC         | GTAAACTGTC | GCAGAAGAAC | TGAAGATGAT | GTTTTTACAG | TTGTTTTCTT | 8880 |
| CCATGGCTTT         | CAAAAGGCTG | ACAGTTCCAG | CGATATTGTT | GTCATAGTAG | GCAAGAGGGA | 8940 |
| PACGTGTTGA         | TTCGCCAACA | GCCTTCAAAC | CAGCAAAGTG | AATGACACCA | GTCGGTTCTT | 9000 |
| CCTGCTTGAA         | AATATCTCTG | AGGGTATCTG | TGTCACGAAT | ATCTGCCTCA | TAGAAAGGAA | 9060 |
| PCTCAACTCC         | TGTGATTCCT | TCAACAACTT | CTAAACTCTT | ACGATTGCTA | TTGACAAGAT | 9120 |
| PATCCACCAC         | AACAACTTGA | TGACCTGCTT | GGATCAATTC | AATAACAGTG | TGGGTTCCAA | 9180 |
| TAAAACCGGC         | ACCACCAGTT | ACCAAAATCT | TTTCTTGCAT | CTTTTTTCCT | CGATTCTCAG | 9240 |
| ATTATTTTT          | CTTATTTTAC | CATTTTTGAC | AGGGAATGTC | ATTTGCCATC | CTAAACTACC | 9300 |
| <b>PGATAAAAT</b> T | TCAGTAAAAT | GCTTATACTC | TTCGAAAATC | CAATTCAAAC | TACGTCAACG | 9360 |
| PCGCCTTGCC         | ATGGGTATGG | TTACTGACTT | CGTCAGTTCT | ATCCACAACC | TCAAAACAGT | 9420 |
| GTTTTGAGCT         | GACTTCGTCA | GTTCTATCCA | СААССТСААА | GCAGTGCTTT | GAGTAACCCG | 9480 |
| CGGCTAGTTT         | CCTAGTTTGT | TCTTTGATTT | TTATTGAGTA | TTATTCGCTT | TTTACTCGTT | 9540 |
| rgacatagtt         | TTCAATTGGG | TAATTTAGAG | GGTCCAAGGT | CAACTCCTTG | TCTTGGATCA | 9600 |
| GTTGGGCTAG         | ATGGTAACCA | ATGATAGGAC | CAGTTGTGAG | GCCTGATGAA | CCTAGTCCAC | 9660 |
| rggctgcata         | GACACCAGTT | AAGTCAGGCA | CCTGCCCAAA | GAAAGGAGAG | AAATCACTGG | 9720 |
| TGTAGGCACG         | GATTCCAACA | CGCTCAGATT | TTGAAGTAGC | TTCAGCCAAA | ATCAGATAGT | 9780 |

338 9840 CCATGTCATT TTCGTGGGTA GCGCCTAAGG ATAATTTCCC ACCTGCAAAG GGAATCAAAT 9900 CCCACTCCCC TTCTGGCATG ACAACAGGGT AATCTTCCAT GTCTTGGGCA AGCTGATAAT 9960 CTCGTAGTTG TCCTTTTTGA GGACGGACAT CCACTTCATA ACCTAAAGGC TCTAACATGT 10020 CCCCCAACCA AGCTCCCGTC GCCAAAATAA CCTGCTCAAA CTCCTCTTCA CCAATCTGGT 10080 AGCCTGATGC TAACGGTGTC AGAGTCACTT TTTCTTTGAC CAGCTTGACA TGACTGACTT 10140 CCAGCAAACG AGTCACTAAA AGTTGGCCAT CTACTCTCGC TCCACCAGAA GCATAGAGCA 10200 GGCGGTCAAA TCCCTGCAAA CCAGGGAATA ATTCATTAGC TGAGGCTTGG TTCAGAATGG 10260 CTAATTGCCC TATCAAGGGA GATTCTTCTC TGCGCTGGAG GGCCAGTTGA TAAAGTTCTT 10320 CCAAATTGGA TTCATCCTTT TTCAAGAGAA AGACTCCCGA ACGCTGGTAA AAGTCGATTT 10380 CTTGTCCTGA TTTCTCTAAA TCAGCTAATA AATCCACATA AAAATCAGCC CCCAAGCGCG 10440 CCATCTTGTA CCAGGCTTTA TTACGGCGTT TGGAAAACCA AGGACTGATA ATTCCTGCTG 10500 CGGCCTTGGT GGCTTGACCT TGCTCATGGT CAAAAACGGT CACCTCTAGG TCACTTTCTC 10560 TCGAGAGGTA GTAGGCAGCT GTTGCTCCCA CAATTCCTGC TCCAATAATG GCAACTTTTT 10620 TCATTGTCTT CACTTTCTAA CTAGATATGA TGGAAAGGAT TGGTTGATGC CTGACTAGGC 10680 AAGATATCAA TAGACCACCC CTTATCTTCC TTCCATTGAC TAAGAAGTGC TGCGATTTTT 10740 TCTACAAAAA TCACTTCGAT ATAGTGACCT GGGTCCAATG CAAGCAACCC ATCAGATAGC 10800 ATATCCTGAG CAGTATGGTA GTAGATATCA CCAGTGATAT AGACATCTGC CCCCTTTGCC 10860 AAAGCATCCT TATAGAAAGA CTGCCCGCTT CCACCACAAA TTGCTACTCT TGAAATAGGC 10920 TTCTGCAAAT CATCCTCTTG ATAATGCACC ATTCGAAGGC TATCTAGGTC AAAGACTTGC 10980 TTGACCTGTT GGGCCAATTC CCAAAATGTC TGAGGCTGAA TATTCCCAAT ACGTCCAATT 11040 CCACGTTCTG GACCTGTTTC CTGCAGATAA GTCGTCTCCT CGATTCCTAG CATCTGACAA 11100 AACCAGTCAT TGAGCCCATT TTCAACGATA TCAATATTGG TATGGCTGAC ATAAACTGCG 11160 ATATCATGCT TAATCAGGTC GATGTAAATC TGATTTTGCG GACGGCTGGC AAGCAAGTCC 11220 TTGATAGGAC GAAAGATAGG CGCGTGCTTG ACGATAATCA AGTCCACACC CTTTTCAATG 11280 GCCTCTGCCA CTGTCTCTTC ACGAATATCG AGGGCAACCA TGACCCTTTG GATACCCTTG 11340 TCTAAAGTGC CAATTTGCAG ACCACGGCTG TCTCCCTCCA TAGAAAATTC CTGAGGGCAA 11400 AAGGCTTCAT AAGCTTGGAT CACTTCACTT GCTAACATGG AGCACCTCCT TGATAGCTTG 11460 AATCTTATCT ACTAGAACTT GACGTTCTTC CAGATTTTTT TCTGGGATTT GTCCGAGGGC 11520 GAACTCTAGC TTCTCAGCTT CTTTTTGCCA TTTTTGGACA AATACTGGAC TGACTTCTTT 11580

| GGACAAGAAG | GGACCAAAGC | GAACATCACT | GGCŤGATAGC | TTCATTTGTC | CTGCTTCCAC | 11640 |
|------------|------------|------------|------------|------------|------------|-------|
| САССААААТС | тсаталалст | TTCCAGCTTC | TTCTAAGATG | CTTTCTGCTA | CAATCTGGAA | 11700 |
| TCCATGATCC | TGTAGCCAGA | TACGCAAGTC | GTCTTCACGA | TTATTGGGCT | GGAGGATCAA | 11760 |
| ACGCTCTACA | TTAGCTAACT | TCCCCAAACC | TTCTTCTAAA | ATCCTAGCAA | TCAAACGACC | 11820 |
| ACCCATGCCA | GCAATGGTAA | TGACAGACAC | TTGGTCAGTC | TCTTCAAAAG | CTGCCAAGCC | 11880 |
| ATTGGCTAAA | CGGACTTGGA | TTTTCTCCTT | TAGGCCGTGA | GCCTCAACAT | TTTTAACCGC | 11940 |
| AGACTGATAG | GGACCTTCCA | CCACCTCACC | TGCAATAGCG | CTTTTGATTT | GGCCTCTCTC | 12000 |
| AACCAACTCG | ATAGGCAGAT | AAGCATGGTC | ACTTCCCACA | TCTAGTAAAA | TAGCCCCCTG | 12060 |
| TGACACAAAG | GAAGCTACCA | ATTCTAATCT | CTTTGAAATC | ATCTTCTCTC | ACTTTCCAAA | 12120 |
| ACTCTATTAC | CTCTTATTAT | ACCACATTTC | AATCTTCAAC | TTCCCAGTAA | TATAAGCACC | 12180 |
| TCTGGCGAAA | GAAGTTTCAA | TGTCCTAAAG | TAATAAGTGA | ATCCAATTGA | AAGATTTTAA | 12240 |
| ACAATTTGCA | AAAATGTCAA | аааатааааа | ATAAACAGTT | TATTCAGAAA | ATTCTTGACA | 12300 |
| татаааааса | CATGGTAGAA | TATAATTAGA | AAGTTAGAAA | AAATAAAGT  | TTGACTAAAA | 12360 |
| TTTGTATTTG | AAGGTGGTGT | TCAGATAAGA | AATTTAGTCA | GACGAACCAC | GAATTTGCTC | 12420 |
| TATGCTTTCT | GGAATTTATC | ATAACAGGAG | GATACAGTCA | TGGAACAAAC | ATTGTTTGAA | 12480 |
| TTAGAACTAC | TTCCAGAGGA | AGATATCATT | GTCACAGGTC | TCCCTAAGTA | TTGTTCTTTT | 12540 |
| acttgtttaa | TTACAGGTCG | CTAGTTATAT | TTTATATAAA | ATAAGTAGCT | TTACTTACGG | 12600 |
| AATAGGCTAG | TGCTGTGTCT | CTAGCCTATT | ттаатаатта | GGAGTTTGTT | ATGGATTTAT | 12660 |
| TAGAGAAAGA | ATGTTTAAAA | TGTGATAAAA | ATTTCCAACA | GGGTGATATT | TGGAATTACT | 12720 |
| ATTATTTATC | AGATAAGATG | CCTGCACAAG | GGTGGAAAAT | ACACATAAGC | TCCCAAATAA | 12780 |
| AAGACGCTGT | AAATATTTTT | AAGATTGTGT | ATAAACTATC | CCAACTAAAT | AATTGTAGCT | 12840 |
| TTAAAGTTGT | TAAAAATTTA | GAGGAATTAA | ААЛАААТТАА | TTCCCCTAGG | GAAATGAGCC | 12900 |
| CTACTGCTAA | CAAATTTATA | ACTCTATATC | CTAAGTCAGA | ATCTGAAGCT | AAGAGTATGA | 12960 |
| TTTGTAATCT | TACGAATAGA | CTGTCAGAAT | TTAAGGCTCC | АААААТАСТА | TCTGACTATC | 13020 |
| AATGTGGAAT | GCATTCTCCA | GTTCATTATA | GATATGGGGC | TTTTTTAAAA | AAACAAGCTT | 13080 |
| ATGATGAAAA | ааатааааа  | GTCATCTATT | TATTGCTAGA | TGAAAAAAGG | AAGAACTATG | 13140 |
| TAGAAGATAA | GAGACAAAAT | TTCCCTAGTC | TTCCTAGCTG | GAAAATGGAT | TTATTTTCAG | 13200 |
| AAGAAG     |            |            |            |            |            | 13206 |

<sup>(2)</sup> INFORMATION FOR SEQ ID NO: 34:

340

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13104 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

| CCGGATCCAG CGAAAAATAT | GCTCTTTGAT | GCTGTAAGTG | GTCAAAAAGA | TGCTAAAACA | 60   |
|-----------------------|------------|------------|------------|------------|------|
| GCTGCTAACG ATGCTGTAAC | ATTGATCAAA | GAAACAATCA | ААСАААААТТ | TGGTGAATAA | 120  |
| AAAATTTGTT CAAGGGGGGT | GGAAATCAAA | TCCCCCTTTG | AATTTATCAA | TAGAGACACA | 180  |
| AATAATTTAG CTTTCTTATA | AAAAAGTAGT | ATCCTATGAA | AGGAGTTAAT | ATGGAAAAGC | 240  |
| AACAACCTAG TAAAGCAGCC | CTGCTGTCTA | TCATTCCTGG | GTTAGGACAG | АТТТАСААТА | 300  |
| AACAAAAAGC CAAAGGTTTT | ATCTTCCTTG | GTGTAACCAT | CGTATTTGTC | CTTTACTTCC | 360  |
| TAGCACTTGC AACCCCTGAA | TTGAGCAACC | TCATCACTCT | TGGTGACAAA | CCAGGTCGTG | 420  |
| ATAATTCCCT CTTTATGCTG | ATTCGTGGTG | CCTTCCATCT | AATCTTTGTA | ATCGTTTATG | 480  |
| TACTCTTTTA TTTCTCAAAT | ATCAAAGATG | CACATACGAT | TGCAAAACGC | ATTAACAATG | 540  |
| GAATTCCAGT TCCACGCACA | CTCAAAGACA | TGATCAAAGG | GATTTATGAA | AATGGCTTCC | 600  |
| CTTACCTCTT GATCATTCCA | TCTTATGTTG | CCATGACCTT | CGCGATTATC | TTCCCAGTTA | 660  |
| TCGTAACCTT GATGATCGCC | TTTACCAACT | ACGACTTCCA | ACACTTGCCA | CCAAACAAGT | 720  |
| TGTTGGACTG GGTTGGTTTG | ACCAACTTTA | CAAACATTTG | GAGCTTGAGT | ACCTTCCGTT | 780  |
| CTGCCTTTGG TTCTGTTCTT | TCTTGGACTA | TCATTTGGGC | TTTGGCAGCT | TCTACTTTAC | 840  |
| AAATCGTAAT TGGTATCTTC | ACAGCTATCA | TTGCCAACCA | ACCATTTATC | AAAGGAAAAC | 900  |
| GTATCTTTGG TGTTATTTTC | CTTCTTCCTT | GGGCTGTCCC | AGCCTTCATC | ACTATCTTGA | 960  |
| CATTCTCAAA CATGTTTAAC | GATAGTGTCG | GTGCTATCAA | CACTCAAGTA | TTGCCAATCT | 1020 |
| TGGCTAAATT CCTTCCTTTC | CTTGATGGAG | CTCTTATTCC | TTGGAAAACA | GACCCAACTT | 1080 |
| GGACTAAGAT TGCCTTGATT | ATGATGCAAG | GTTGGCTCGG | ATTCCCATAC | ATCTACGTTC | 1140 |
| TGACCTTGGG TATCTTGCAA | TCTATTCCTA | ACGACCTTTA | CGAAGCAGCT | TATATTGACG | 1200 |
| GTGCCAACGC TTGGCAAAAA | TTCCGCAACA | TCACTTTCCC | AATGATTTTG | GCTGTTGCGG | 1260 |
| CACCTACTTT GATTAGCCAA | TACACCTTCA | ACTTTAACAA | CTTCTCTATC | ATGTACCTCT | 1320 |
| TCAATGGTGG AGGACCTGGT | AGTGTCGGAG | GTGGAGCTGG | TTCAACCGAT | ATCTTGATCT | 1380 |
| CATGGATCTA CCGTTTGACA | ACAGGTACAT | CTCCTCAATA | CTCAATGGCG | GCAGCTGTTA | 1440 |
| CCTTGATTAT CTCTATCATT | GTCATCTCAA | TCTCTATGAT | CGCATTCAAG | AAACTACACG | 1500 |

| CATTTGATAT | GGAGGACGTC | TAAGATGAAT | AACTCAATTA | AACTCAAACG | TAGACTGACT | 1560 |
|------------|------------|------------|------------|------------|------------|------|
| CAAAGCCTTA | CTTACCTTTA | CCTGATTGGT | CTATCAATTG | TAATTATCTA | TCCACTGTTG | 1620 |
| ATTACCATTA | TGTCAGCCTT | TAAAGCAGGT | AACGTCTCAG | CCTTTAAACT | AGATACTAAT | 1680 |
| ATCGACCTCA | ATTTTGATAA | CTTTAAAGGC | CTCTTCACTG | AAACCTTGTA | CGGTACTTGG | 1740 |
| TACCTCAACA | CTTTGATTAT | CGCCTTAATT | ACCATGGCTG | TTCAAACAAG | TATCATCGTA | 1800 |
| CTTGCTGGTT | ATGCTTACAG | CCGTTACAAC | TTCTTGGCTC | GTAAACAAAG | TTTGGTCTTC | 1860 |
| TTCTTGATCA | TCCAAATGGT | GCCAACTATG | GCCGCTTTGA | CAGCCTTCTT | CGTTATGGCG | 1920 |
| CTTATGTTGA | ACGCCCTTAA | CCACAACTGG | TTCCTCATCT | TCCTCTACGT | TGGTGGTGGT | 1980 |
| ATCCCGATGA | ATGCTTGGCT | CATGAAAGGC | TACTTCGATA | CAGTGCCAAT | GTCTTTAGAC | 2040 |
| GAATCTGCAA | AACTAGACGG | TGCAGGACAC | TTCCGCCGCT | TCTGGCAAAT | TGTTCTACCA | 2100 |
| CTTGTTCGCC | CAATGGTTGC | CGTACAAGCT | CTCTGGGCCT | TCATGGGACC | TTTCGGGGAC | 2160 |
| TACATCCTCT | CTAGTTTCTT | GCTTCGTGAG | AAAGAATACT | TTACTGTTGC | CGTAGGTCTC | 2220 |
| CAAACCTTCG | TTAACAATGC | GAAAAACTTG | AAGATTGCCT | ACTTCTCAGC | AGGTGCTATC | 2280 |
| CTCATCGCCC | TTCCAATCTG | TATTCTCTTC | TTCTTCCTAC | AAAAGAACTT | TGTTTCAGGA | 2340 |
| CTTACAAGTG | GTGGCGACAA | GGGATAATTT | ATCCCCGCCA | CCCTTTTTCA | TTTTATACTC | 2400 |
| TTCGAAAATC | TCTTCAAACC | ACGTCAGCTT | TATCTCCAAC | CTCAAAGTTG | TGCTTTGAGC | 2460 |
| AACCTGTGGC | TAGTTTGCAC | TTTGATTTTC | ATTGATTATT | AGCAATTGTC | ACTGTAAATA | 2520 |
| ATATCCTTGT | AGCAAGCAAT | TTTTCTCCTA | GACTTGAAAT | AAAGCGCATT | TCTCTATATA | 2580 |
| ATAATACTCA | TATAGAAAAC | ACCTTTTAGA | AAGATACCTA | TGCTTCCATA | TCCATTTTCC | 2640 |
| TATTTTTCAA | GTATTTGGGG | GGTTCGTAAG | CCCCTGTCCA | AACGTTTCGA | GCTCAACTGG | 2700 |
| TTTCAACTTC | TCTTTACCAG | TATCTTCCTT | ATCAGCTTGT | CTATGGTACC | CATTGCTATC | 2760 |
| CAAAACAGCT | CCCAGGAGAC | CTATCCGCTA | GAAACTTTTA | TCGATAATGT | CTATGAACCT | 2820 |
| CTGACAGATA | AGGTTGTCCA | GGATCTCTCT | GAACATGCTA | CAATTGTCGA | TGGCACATTA | 2880 |
| ACTTATACTG | GAACAGCTAG | TCAAGCCCCT | TCTGTTGTGA | TTGGTCCAAG | TCAAATCAAG | 2940 |
| GAATTACCTA | AGGACTTGCA | ACTGCATTTC | GATACAAATG | AGCTAGTCAT | CAGCAAGGAA | 3000 |
| AGCAAGGAAC | TGACCCGCAT | CTCTTACCGA | GCCATTCAGA | CTGAGAGTTT | CAAAAGCAAA | 3060 |
| GACAGCTTGA | CCCAAGCAAT | TTCTAAAGAC | TGGTACCAAC | AAAATCGTGT | CTATATCAGC | 3120 |
| CTCTTCCTAG | TTCTCGGTGC | GAGCTTCCTC | TTTGGTTTGA | ATTTCTTTAT | CGTCTCTCTT | 3180 |
| GGAGCTAGCT | TTCTCCTTTA | TATCACCAAA | AGATCACGCC | TCTTTTCATT | TAATACCTTT | 3240 |

342 AAAGAGTGCT ACCATTTTAT CTTGAACTGT TTAGGATTGC CGACTCTGAT TACACTTATT 3300 TTGGGATTAT TTGGCCAAAA TATGACAACC CTGATTACTG TACAAAATAT TCTTTTTGTT 3360 CTGTATCTGG TCACTATCTT TTATAAAACA CATTTCCGTG ATCCAAATTA CCATAAATAG 3420 GAGATTTTTA TGCCCGTTAC GATTAAAGAC GTGGCCAAGG CTGCTGGTGT TTCGCCTTCA 3480 ACCGTAACCC GTGTTATTCA AAATAAATCA ACCATTAGCG ACGAAACAAA AAAACGTGTT 3540 CGCAAAGCTA TGAAGGAACT CAACTACCAC CCAAACCTCA ACGCTCGTAG CTTGGTAAGC 3600 AGCTATACTC AGGTTATCGG ATTAGTTCTT CCTGATGACT CAGACGCCTT CTACCAGAAT 3660 CCTTTCTTTC CATCGGTTCT ACGTGGCATC TCTCAAGTCG CATCTGAAAA CCACTATGCC 3720 ATTCAGATAG CAACAGGGAA AGATGAGAAG GAGCGTCTCA ACGCTATTTC ACAAATGGTC 3780 TACGGCAAGC GTGTAGATGG GCTAATTTTT CTCTATGCCC AAGAAGAAGA CCCTCTCGTA 3840 AAACTCGTCG CAGAAGAACA GTTCCCCTTC CTTATCTTAG GTAAATCTCT ATCTCCTTTC 3900 ATCCCACTTG TCGACAACGA CAATGTTCAA GCTGGTTTTG ATGCGACTGA ATATTTCATC 3960 AAAAAAGGCT GCAAACGCAT TGCCTTTATC GGAGGAAGTA AAAAGCTCTT CGTGACCAAA 4020 GACCGTTTAA CAGGCTATGA ACAGGCGCTT AAACATTACA AACTTACCAC TGACAACAAT 4080 CGCATCTACT TTGCCGACGA GTTTCTGGAA GAAAAGGGCT ATAAATTTAG CAAGCGATTA 4140 TTCAAGCACG ATCCACAAAT TGATGCTATC ATCACAACCG ATAGCCTCCT AGCTGAAGGT 4200 GTTTGTAACT ATATTGCCAA ACACCAGCTG GATGTCCCTG TTCTCAGCTT TGACTCGGTT 4260 AATCCCAAGC TCAACTTGGC AGCCTATGTC GATATCAATA GTTTAGAGCT TGGTCGTGTT 4320 TCCCTTGAAA CTATTCTCCA GATTATTAAT GATAATAAAA ACAATAAACA AATTTGTTAC 4380 CGTCAATTGA TCGCCCACAA AATTATCGAA AAATAAGAGA CTGGGCAAAA AGTCGTTAAA 4440 AGCAAAAACG CATACTATCA GGTATTGAAA AAACTTGATA CTATGCGTTT TATTGTGGGA 4500 AGATTTACTT CCTTTTCTAC TGAAATTGAG TCTTTTCCCA AGATCTTTTT ATACTCAATG 4560 AAAATCAAAG TGCAAACTAG GAAGCTAGCC GCAGGTTGCT CAAAACACTG TTTTGAGGTT 4620 GTAGATGAAA CTGACGAAGT CAGTAACCAT ACCTACGGCA AGGTGAAGCT GACGTGGTTT 4680 GAAGAGATTT TCGAAGAGTA TTAATCACTA ATTATCTATC TCAACAAATC TTCCTAGAAT 4740 ATGAACATTT TCCGAGACAG AGACAAAGGA GCTTGGATCC ACTTGTGTCA TAATCTGTTT 4800 AAATTCATTA AACTCTGCAC GTGTAATGAC AGTGATTAAA ACTGCCTTTC TCTCGTGATT 4860 ATAGGTTCCT TCTGCATCGT GGATCATGGT TGCTCCGCGG TGCAATTTTT TATGGATTTT 4920 TTCAATTACC TTCTCTGGAT GATTTGTCAC AATCATGGCC TGCATACGCT TTTGCTTAGT 4980 AAAGACTGCG TCTGTCACAC GGCTAGAGAC AAAGATGGTA ATCATAGAAT AAAGAGCGTA 5040

| TTTCCAACCA | AAGGTCAAAC | CTGCTATCAG | CATGATAGTT | CCATTTACCA | AGAAAGAAAT | 5100 |
|------------|------------|------------|------------|------------|------------|------|
| ACTACCGACA | TTCTTACCCG | TTTTCTTACG | AATAGTCAGG | CTGACGATAT | CCGTCCCACC | 5160 |
| ACTGGAGATA | TTGTTTCGAA | GAGCAAAACC | AATCCCCAAA | CCCATAACAA | CACCCCAAA  | 5220 |
| AAGGGAATTG | ATAATGGGAT | CCTCTGTCAA | GGTTGCCACA | GGGACAAACT | GGATAAAGAA | 5280 |
| GGAACTCATA | GATACCGTGA | TAAAGGTAAA | GACGGTGAAC | TTATGGCCAA | TCTGATACCA | 5340 |
| AGCTAAGACC | ATCAAAGGGA | AGTTAATGGC | GTAGAAGCTT | AGCGAAATCG | GAATATGAAA | 5400 |
| ACCAAACCAG | TGATTACTCA | AGGCAGAGAT | AATCTGTGCC | AGACCTGTTG | CACCACTCGA | 5460 |
| ATACACATGC | CCTGGTTGGA | AAAAGAAATT | AACTGCTACT | GCTGATAAAA | AACCATAGAC | 5520 |
| CAGAGAGGCC | GAAATCTTCT | CATCATACTT | TTCTCGAGAG | ATACTTTGTA | AGACACGTAA | 5580 |
| AATTTTTATC | TGATAAGCAA | AGCGGCGCAG | ATAATAGCGC | CACCGCTTAA | TTCGTTTTGT | 5640 |
| TTGTTTCATC | TTCTTCTACT | TGTAAGCTGA | GTTCCTCTAG | TTGTTTGAGA | GCGACTGTTG | 5700 |
| ATGGAGCTTG | TGTCATTGGG | TCAGTTGCCT | TGTTGTTCTT | AGGAAAGGCA | ATGACTTCAC | 5760 |
| GGATATTTTC | TTCTCCAGCA | AGCAACATGA | CAAAACGGTC | AAGCCCGATA | GCCAAACCAC | 5820 |
| CGTGTGGTGG | GAAACCATAG | TCCATGGCTT | CAAGAAGGAA | ACCAAACTGG | TCATTGGCTT | 5880 |
| CTTCAGTTGA | GAAACCAAGA | GCCTTGAACA | TGCGTTCTTG | AAGGTCTTTT | TGGTTGATAC | 5940 |
| GAAGGCTACC | ACCACCAAGC | TCATAACCGT | TCAAGACGAT | ATCGTAAGCA | ATGGCACGAA | 6000 |
| CCTTAGCCAA | ATCACCTTCT | AATTCATGAG | CACTCTCTTC | CTGTGGAAGT | GTGAAAGGAT | 6060 |
| GGTGGGCGCT | CATGTAGCGG | CCTTCTTCTT | CAGACCATTC | AAACATCGGC | CAGTCAACCA | 6120 |
| CCCAAAGGAA | GTTGAACTTA | TCATTATCAA | TCAAGCCAAG | CTCTTTAGCA | ATACGTCCAC | 6180 |
| GAAGGGCACC | CAGTGTTGCA | TTAGCCACTT | CAAGCGTATC | CGCCACAAAG | AGAACCAAGT | 6240 |
| CCTTATCTTC | AAGAACAAGC | GCTGTTGTCA | ATTCTTCTTG | GATACCAGTC | AAGAACTTGG | 6300 |
| CAACTGGTCC | GTTTAATTCT | CCATCAACCA | CCTTGACCCA | AGCAAGACCT | TTGGCACCAT | 6360 |
| ACTGTTTGGC | TACTTCCGTC | ATCTTGTCGA | TGTCTTTACG | TGAATAGTTG | TCCGCAGCTC | 6420 |
| CTGTGACCAC | AATCGCTTTT | ACAGCAGGTG | CTTCTGAAAA | GACTTTAAAG | TCTACACCTC | 6480 |
| GGACCACTTC | TGTCAAGTCC | TGAAGCAACA | TGTCAAAACG | AGTATCTGGC | TTGTCAGAAC | 6540 |
| CGTAAAGAGC | CATAGCATCA | TCGTATTTCA | TACGAGGGAA | TGGTAGCGTT | ACTTCGATGC | 6600 |
| CTTTTGTTTC | CTTCATCACG | CGCGCGATCA | AGCTTTCTGT | AATATCTTGG | ATTTCTTGCT | 6660 |
| CAGTAAGGAA | GGACGTTTCC | AAGTCGACCT | GAGTAAATTC | AGGCTGGCGG | TCTCCACGCA | 6720 |
| AGTCCTCGTC | ACGGAAACAT | TTAACGATTT | GGTAGTAACG | GTCAAAACCA | GCATTCATCA | 6780 |

344 AGAGCTGTTT CGTGATTTGT GGACTTTGAG GAAGAGCGTA AAAATGCCCC TTATTAACAC 6840 GAGACGGCAC TAAATAATCA CGCGCCCCTT CAGGCGTTGA CTTAGAAAGG AATGGTGTCT 6900 CCACGTCGAT AAACTCCAAC TCATCCAAGT AGTTGCGGAT AGAGTGGGTC ACCTTGGCAC 6960 GAAGTTTAAG ATTTTCCAAC ATTTCTGGAC GACGAAGGTC AAGGTAACGG TAACGCAAAC 7020 GTGTATCGTC ATTTGCCTCA ATGCCATCCT TAATCTCAAA TGGTGTTGTC TTAGCTGTGT 7080 TAAGCACAAT AAGAGCTGTC ACGTTTAACT CAACCGCACC AGTTGGCAAC TTATCATTGG 7140 CTTGTCACGC GCAGCGACCT GACCAGTCAC CTCAATAACA AATTCGCTAC GAAGGCTTTC 7200 AGCTGTTGCC ATAACCTCTG CAGATACTTT TTCAGGGTTG ATAACCAACT GCATGATTCC 7260 TTCACGGTCA CGAAGATCGA TAAAGATCAA ACCACCAAGG TCACGACGAC GGCCAACCCA 7320 TCCTTTCAAG GTTATTTCTT GTCCGATGTG TTCCTCACGA ACACGACCAG CATACATACT 7380 ACGTTTCATT ATTTCTCTCC TCTTTTATTC TGTTACTATT TTACCATAAA AGCGCAGCTC 7440 TTCATGAAAA TCATCAGAAA AGTTTGCCAG TCTTTAAAAG TCAGGTGAAA GCCCTAAAAA 7500 TTAGCGCTAA TACTCTTCGA AAATCTCTTC AAACCACGTC AGCGTCGCCT TACCGTATGT 7560 ATGGTTACTG ACTTCGTCAG TTTCATCTAC AACCTCAAAA CCATGTTTTG AGCTGACTTC 7620 GTCAGTTCTA TCCACAACCT CAAAACAGTG TTTTGAGCAA CCTGCGGCTA GCTTCCTAGT 7680 TTGCTCTTTG ATTTTCATTG AGTATAATAC AAAAATCCGA TGAACTTCAC CGGACTCTTT TATTTTGAAT TTTTGCCTGC TTTACGCTTT TCAGCGATTT CGGCTGCCTT TCGAGGCAAG 7800 ACAATTTCCG TTATGTAAGC CGTCCCAAAA CGCAGTACAC CTGCAATAGG AGCAAAGACA 7860 ACTGCTAGAT AGTTATAGAA GAAATCGCCT TTGAAGGCAT AAGCTAGCGC TCCAATGATG 7920 AAAAATAGAA CGACTGCCTG AATCACTGCT AATAAAATTA CTCGTTTCAT GTGACCTCCT 7980 GACTCTATTA TAGCATGAGA ATCATCAAAA AGCCGACTAA ATTATTCAAA GCGTGAAGAG 8040 AAATACTGTA GACCAGACCT TTTCTGCTAA TGTAAGCCAA ACCCAAACTA AAACCAAGGC 8100 TAAAATAGAC AAAAAATTGT TGCACATCAC CTGGAAAATG AATCAAGGCA AATAGAAGAC 8160 TAGATACCAG AAGAAAAATC AGGGTTCGTT TACTATTGTC CTGCTTAGGA AAGAGATAGC 3220 GTGCTAACAT CCCTCTAAAA ACAATCTCTT CCGTCAAAGG AGCAAAAATA ACCACAGCAA 8280 AGAATGAGAA AAGTGGTTGA GACAAGGTCA AGTCTGTCGC TATTTGCTGA TTTACTGAAG 8340 GATCATCTGG CAAGAAGAAT TGAACGACCA GAGATAAGAA CCAAACCAAG ACAGGAAGCC 8400 AAATAAATCG ATTAAAGCCG CTCTTCTCAA TATGAACAGG AGCCTTCTGA TACCATTTGT 8460 AAATGCCGTA CACATATACT CCAGCCAAGG CCACATAGAG TAGAGTAACA GCATAGGGTG 8520 AAGCGCCTAA AGCAAGCGAC GCAGTCGCGA GCCCCTGAAT AAAGCCATAG ATAAATAAAA 8580

| AGGATAGAAG | GGCTAGAAGA | ATCCAGCCAA        | GGTTTTTAAG | TAATTTCATA | GATAACTCCT | 8640  |
|------------|------------|-------------------|------------|------------|------------|-------|
| TTATTTGAAA | TAACGTTTTA | CCATAGGTAA        | CTGCATCACA | TTGATATAAA | CATGGATGGC | 8700  |
| TCCTACAAGC | AAGAAAGCTA | GTAACTGAAT        | CTCTCCTGTC | AAGAAAGAAA | TGATAATAAG | 8760  |
| АААААТАТАТ | AAGGCTGGTA | AGACATATTG        | GTGTAATTGG | AATAAAATTC | GAAAACTCTG | 8820  |
| ТТССАААТТА | GCCTGACGCT | CCCCTTCATC        | ATAAGAATTT | ATATAGTTCA | AGACATCCTT | 8880  |
| TGGTGTAGCG | AAAAATTCCA | AATCAAACTG        | ACGAACAATC | GCAATGGTTT | TAAAAAGAGA | 8940  |
| TTTTTGAGCG | ACTAAGAATA | CCACAAAGAG        | TAAGAAAGAA | AGGAAAAATG | TTTGAGGGTT | 9000  |
| TGTATGCAAT | ATAATCACCT | CACTTAATGA        | ААТАААААТА | GCCAATGGAA | TCGCTACACC | 9060  |
| TGTAATATTA | AAAGCAATGG | TTCCAAACTC        | AAGATTCCGA | TACATTTGCA | CATAATAGGT | 9120  |
| TTCATTCAGA | TCGTCATCCA | TTTCCTCTTG        | ATACAAAGAA | TGAAATTTTC | TGCTTTTCTT | 9180  |
| TAAGAAATTG | AAAGTCAAAA | ACATACTAAT        | GAAACCTATC | AGTAAACAAA | TAGCTGATAT | 9240  |
| CCATGGCATC | AAGGCTTTTA | CATCTAAAAT        | AATTTCGTGG | GATTCGACAC | GTGCCTTAAA | 9300  |
| CATCCCTACA | AACATGCCCA | AGAACCCCCC        | AAGACAATAG | ACATCAAAAA | TAACAATCTA | 9360  |
| CGTTTCTTTT | TCATATTCAT | TCTCCTTTTT        | CACTTGCTAG | ATTTTTGGAT | TTCTTTTCAA | 9420  |
| TCCATTCAAT | TACTGGGATG | AGAGCAAAGT        | AGACCCAAAC | AAATTGGTCG | CTTTGATAGG | 9480  |
| GATTAAACCA | GCTTAGGTCC | ATCCCAATCA        | GTAGAAATAC | GCTGACTAAT | AAAGCTATGA | 9540  |
| CCACTACATA | ATAAATCACT | <b>ТТАТАСТТСТ</b> | TCATCACTCC | TCCTCCTCCA | AACGAAATAC | 9600  |
| CGATTCGACT | GTTTCGTTGA | AAATTTGAGA        | TATTTTCAGG | GCAATGATAA | TGGATGGGGT | 9660  |
| GTACTCATCC | CGTTCTAGTA | GGCTAATGGT        | CTGTCTGGAA | ACCCCTGCCA | GTTTGGCTAG | 9720  |
| GTCGGTTTGA | TTGAGACCAT | CGCGAGCTCG        | AAGCTCTTTT | AGACGATTTT | TTAGTTGCAT | 9780  |
| GTTACACACC | TACTCTCCGT | CAAATTCAAC        | GGTTTGGATA | TCCTCAATAC | GTTGCAACTT | 9840  |
| GAATTTTTCT | TTTCCCGTAT | TATCTACACG        | TCGTAGCTTT | ACCCATTCCT | CATCAACATC | 9900  |
| CACAACTTCC | CAGTTATCTG | GCCCAATATA        | CACTCCCGTT | ATAATTGGTT | CCTTTCCAAT | 9960  |
| CATTTCTTGT | AATAATCTCG | ACATTTCTGC        | GTTTCCTTTC | TCTTTTCGCT | CAAGTCTTTT | 10020 |
| GATTTTATTC | TCTAGTTTCT | TGATTTTTT         | AGAATTATTA | GAATAAAAGA | AAATCATAAA | 10080 |
| TAGTATAAAT | CCTAGTACCC | ACATTATAAC        | TCCTTTCTGC | TTCCTATTTC | TTAACTTGAA | 10140 |
| TTCATTGTAA | CATATCTTTT | TCTTTTTGAC        | AAGTATAGTT | GTCAAAAAAA | TTATGATTTT | 10200 |
| TGTCATTTTG | CAAAAGAAAA | AGGTCAGGAG        | TAGGTTCCTG | ACCACTTTAT | СТАТСАТТАА | 10260 |
| ТАСТСТТСТА | AAATCTCTTC | AAACCACGTC        | AGCTTCACCT | TGCCGTAGGT | ATGGTTACTG | 10320 |

ACTTCGTCAG TTTCATCTAC AACCTCAAAA CCATGTTTTG AGCTGACTTC GTCAGTTCTA 10380 TCCACAACCT CAAAACCATG TTTTGAGCTG ACTTCGTCAG TTCTATCCAC AACCTCAAAA 10440 CCATGTTTTG AGCTGACTTC GTCAGTTCTA TCCACAACCT CAAAACAGTG TTTTGAGCAA 10500 CCTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTTATTG AGTATAAAAT CCTAGTTTTT 10560 CAAAGATTTC TGAGAAGTTT TGGCTGATTG TCTCAAGTGA CACTTGCACT TCTTCTCGGG 10620 TTTGGTTGTT CTTGACCGTC ACTTGTCCGC TTTCGACTTC GCTCTCTCCT AGGGTGATGA 10680 GGGTCTTAGC CGCAAAGACA TCGGCTGACT TGAACTGAGC TTTTAGTTTA CGGTTGAGGT 10740 AATCACGCTC TGCTTTGAAA CCTTGTTGGC GAAGAGCCTG TACCAATTCC AAGGCCTTGA 10800 TATTTGCCCC TTCGCCCAAG ACTGCGATAT AGACATCTAG GGCGTTTTCG ATAGGGAGGG 10860 TCACACCTTG CTTTTCAAGG ATGAGAAGCA GGCGCTCTAC ACCAAGTCCA AAACCAAATC 10920 CAGCAGTTTC AGGGCCTCCA AAGTAAGCAA CCAAACCATC GTAGCGACCA CCCGCACAGA 10980 CGGTCAGGTC ATTGCCCTCA ATCTCTGTGA TAAACTCGAA AATGGTGTGG TTGTAGTAGT 11040 CCAGACCACG CACCATATTG GTATCGATGA TGTAATCTAC TCCAAGATTT TCCAACATCT 11100 GACGCACAGC ATCAAAATGA GCTTGGCTTT CTTCATCAAG AAAGTCCAAG ATAGACGGCG 11160 CATTCTCTAC TGCCACCTTG TCTTCTTTTT CCTTAGAGTC CAAGACACGA AGAGGATTTT 11220 CCTCCAAGCG ACGTTGGCTA TCCTTAGACA AGGTCTCCTT GAGCGGTGTC AAATAGTCAA 11280 TCAAGGCTTG GCGGTAGGCT GCACGGCTCT CAGGATTTCC AAGAGTGTTG AGGTGCAATT 11340 TGACACCTTG AATACCGATT TCCTTCAAAA AATGGGCTGC CATAGCGATT GTTTCCACAT 11400 CGGTAGCTGG ATTGCTAGAG CCAAAACACT CAACACCAAT CTGGTGGAAT TGGCGCAAGC 11460 GCCCTGCCTG TGGACGCTCA TAACGGAACA TAGGTCCCAT GTAGTAGAAC TTGCTTGGCT 11520 TTTGCACTTC TGGGGCGAAA AGTTTATTTT CCACATAGGA ACGGACAACG GGTGCAGTTC 11580 CTTCTGGACG GAGGGTAATA TGACGGTCAC CCTTGTCATA AAAATCGTAC ATTTCCTTGG 11640 TTACGATATC CGTTGTATCT CCGACAGAGC GACTGATAAC CTCGTAATGC TCAAAAATAG 11700 GCGTGCGCAC TTCTGCATAG TTGTAGCGTT TGAAAATCTC ACGGGCAAAG CCCTCAACGT 11760 ACTGCCACTT AGCAGACTCA GCAGGTAAAA TATCCTGCGT TCCTTTTGGT TTTTGTAATT 11820 TCATAGGGAA TCCTCTTTAA ACTTAATAGT CTTATTTTAC CATAAATAGA GGGATTAAAA 11880 CAGTAAGAAA AAAATTAGGA TTTAGATATC ATTTTTGAGA TTAAGAATTG TCAAAAAAAT 11940 AGCTAGCAAG GAAAGACCAA CAAATAGCAT CCAAGTCAAC TGTATATTCC ATACGGCTAC 12000 TAGTGAAAAA CAAGCTGTTC CCACAGGTAT GGATAAGGTA AACAATAGAC CTAAAAAATT 12060 ACTAGTACGA GCTAGAACCT CTGGAGCTAG ATTTTTCATG AGCATGGCAC TAATCTTTGG 12120

347

| CCAGACACAT | ACAGAGTAAA                                                                                                                                                           | GAAGAGAAAT                                                                                                                                                                                                                                                                                                         | AGCAAACCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GCACGACTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TTAGCCAAAC | CAACTAGACT                                                                                                                                                           | AAGTCCTACG                                                                                                                                                                                                                                                                                                         | GTCTCCCACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCATCAATCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TGCTTCCCAA | AATAATCATT                                                                                                                                                           | GCCCGTAAGG                                                                                                                                                                                                                                                                                                         | CTACTGATGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGACTGATAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AATTGATTGA | TAAATAGTGC                                                                                                                                                           | CTCTGTATAA                                                                                                                                                                                                                                                                                                         | GAAAAATTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGAGAGAATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AAGATATTAT | AAATTCCACC                                                                                                                                                           | CAAAGCGCCA                                                                                                                                                                                                                                                                                                         | CCCAAGGAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAATAAGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AGCATAAAAC | CAAAGTTTTT                                                                                                                                                           | CTGTCCACTT                                                                                                                                                                                                                                                                                                         | TTAAGAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CGAGACGTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ATTGTTAGGA | ACTGGTCTTT                                                                                                                                                           | GATAGAAAGC                                                                                                                                                                                                                                                                                                         | TTCTCATTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTAAGTTTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GATGACATTG | ACAGGCTCAA                                                                                                                                                           | TTTGCTTTTT                                                                                                                                                                                                                                                                                                         | CCTAAAAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GGATAGTGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AAAAAGCAGG | CATTGATTCC                                                                                                                                                           | CGCAACGAGA                                                                                                                                                                                                                                                                                                         | GAAAAATTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGACCGATAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CAGACTCCGA | AAGCTTGACC                                                                                                                                                           | ACCAATAGCT                                                                                                                                                                                                                                                                                                         | GAAATATAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGATGAACTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TAAGCCTCCA | TCAGATCATC                                                                                                                                                           | TTCAGCTACT                                                                                                                                                                                                                                                                                                         | TTTTCCTTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAAGAGGCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CCTGCAAAAT | CACTGATGAT                                                                                                                                                           | ATCACTAATG                                                                                                                                                                                                                                                                                                         | ACATTGATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AACACAGGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AAGAGACTAG | CTTGCTGAAC                                                                                                                                                           | AACTAGGGCT                                                                                                                                                                                                                                                                                                         | GCTAGAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATAGAACCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CCGCTATAGA | CCATCCATTT                                                                                                                                                           | GACCTTGTCC                                                                                                                                                                                                                                                                                                         | CTCGTGTAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTGCCCGAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ACTGTAAAGA | GGGTCGGAAG                                                                                                                                                           | AATCATGACA                                                                                                                                                                                                                                                                                                         | ATATTCGCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAGCAACAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TGTGACAAGG | TCGATGCATA                                                                                                                                                           | GACGATAAAG                                                                                                                                                                                                                                                                                                         | ACCAGGTTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAATCGAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TTGAAGAAGC | GTGG                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | TTAGCCAAAC TGCTTCCCAA AATTGATTGA AAGATATTAT AGCATAAAAC ATTGTTAGGA GATGACATTG AAAAAGCAGG CAGACTCCGA TAAGCCTCCA CCTGCAAAAT AAGAGACTAG CCGCTATAGA ACTGTAAAGA TGTGACAAGG | TTAGCCAAAC CAACTAGACT TGCTTCCCAA AATAATCATT AATTGATTGA TAAATAGTGC AAGATATTAT AAATTCCACC AGCATAAAAC CAAAGTTTTT ATTGTTAGGA ACTGGTCTTT GATGACATTG ACAGGCTCAA AAAAAGCAGG CATTGATCC CAGACTCCGA AAGCTTGACC TAAGCCTCCA TCAGATCATC CCTGCAAAAT CACTGATGAT AAGAGACTAG CTTGCTGAAC CCGCTATAGA CCATCCATTT ACTGTAAAGA GGGTCGGAAG | TTAGCCAAAC CAACTAGACT AAGTCCTACG TGCTTCCCAA AATAATCATT GCCCGTAAGG AATTGATTGA TAAATAGTGC CTCTGTATAA AAGATATTAT AAATTCCACC CAAAGCGCCA AGCATAAAAC CAAAGTTTTT CTGTCCACTT ATTGTTAGGA ACTGGTCTTT GATAGAAAGC GATGACATTG ACAGGCTCAA TTTGCTTTTT AAAAAGCAGG CATTGATTCC CGCAACGAGA CAGACTCCGA AAGCTTGACC ACCAATAGCT TAAGCCTCCA TCAGATCATC TTCAGCTACT CCTGCAAAAT CACTGATGAT ATCACTAATG AAGAGACTAG CTTGCTGAAC AACTAGGCT CCGCTATAGA CCATCCATTT GACCTTGTCC ACTGTAAAGA GGGTCGGAAG AATCATGACA TGTGACAAGG TCGATGCATA GACGATAAAG | TTAGCCAAAC CAACTAGACT AAGTCCTACG GTCTCCACA TGCTTCCCAA AATAATCATT GCCCGTAAGG CTACTGATGA AATTGATTGA TAAATAGTGC CTCTGTATAA GAAAAATTCA AAGATATTAT AAATTCCACC CAAAGCGCCA CCCAAGGAAT AGCATAAAAC CAAAGTTTTT CTGTCCACTT TTAAGAAAAA ATTGTTAGGA ACTGGTCTTT GATAGAAAGC TTCTCATTTT GATGACATTG ACAGGCTCAA TTTGCTTTTT CCTAAAAAGA AAAAAGCAGG CATTGATTCC CGCAACGAGA GAAAAATTGT CAGACTCCGA AAGCTTGACC ACCAATAGCT GAAATATAGG TAAGCCTCCA TCAGATCATC TTCAGCTACT TTTTCCTTAA CCTGCAAAAT CACTGATGAT ATCACTAATG ACATTGATCA AAGAGACTAG CTTGCTGAAC AACTAGGGCT GCTAGAAAAA CCGCTATAGA CCATCCATTT GACCTTGTCC CTCGTGTAAT ACTGTAAAGG GGGTCGGAAG AATCATGACA ATATTCGCCA TGTGACAAGG TCGATGCATA GACGATAAAG ACCAGGTTGA | CCAGACACAT ACAGAGTAAA GAAGAGAAAT AGCAAACCAA GCACGACTTG TTAGCCAAAC CAACTAGACT AAGTCCTACG GTCTCCCACA TCATCAATCT TGCTTCCCAA AATAATCATT GCCCGTAAGG CTACTGATGA TGACTGATAC AATTGATTGA TAAATAGTGC CTCTGTATAA GAAAAATTCA AGAGAGAATG AAGATATTAT AAATTCCACC CAAAGCGCCA CCCAAGGAAT TAATAAGCAA AGCATAAAAC CAAAGTTTTT CTGTCCACTT TTAAGAAAAA CGAGACGTAA ATTGTTAGGA ACTGGTCTTT GATAGAAAGC TTCTCATTTT TTAAGTTTTC GATGACATTG ACAGGCTCAA TTTGCTTTTT CCTAAAAAGA GGATAGTGGC AAAAAGCAGG CATTGATTCC CGCAACGAGA GAAAAATTGT TGACCGATAG CAGACTCCCA AAGCTTGACC ACCAATAGCT GAAATATAGG TGATGAACTG TAAGCCTCCA TCAGATCATC TTCAGCTACT TTTTCCTTAA TAAGAGGCAT CCTGCAAAAT CACTGATGAT ATCACTAATG ACATTGATCA AACACAGGCT AAGAGACTAG CTTGCTGAAC AACTAGGGCT GCTAGAAAAA ATAGAACCGC CCGCTATAGA CCATCCATTT GACCTTGTCC CTCGTGTAAT CTGCCCGAAT ACTGTAAAGA GGGTCGGAAG AATCATGACA ATATTCGCCA TAGCAACAGC TGTGACAAGG TCGATGCATA GACGATAAAG ACCAGGTTGA AAATCGAAAC TTGAACAAGC TCGATGCATA GACGATAAAG ACCAGGTTGA AAATCGAAAC |

### (2) INFORMATION FOR SEQ ID NO: 35:

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 19250 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

| CCGGGCAAAT | AGTTTTGAAC | TTTTCATCAT | TTTCTCCTTT | AAAACTTTCT        | CTCCATTATA         | 60  |
|------------|------------|------------|------------|-------------------|--------------------|-----|
| GACTCTTTTC | AGAAAGTTGT | CAACAGAATT | TTCAGAATTT | TTGAAAATTA        | TTTTTCAAAC         | 120 |
| AACATCTTTG | CAAAAAATAT | GAATATCGTA | AGCGCGTCAT | AACAAGGTAT        | CTATCATTCA         | 180 |
| TGGAGCTCCT | CCTGTATACT | attagtaaag | TAAATATTGG | AGGATATTTT        | AATGCCACAA         | 240 |
| CCTATTGTTC | CTGTAGAGAT | TCCACAATCT | CGTCGTTTTG | АТТСТААААА        | GAGAAATGAT         | 300 |
| ATTCTTCTTA | AAATTCGTAT | TGGCAAGCTT | GAAGTAAGTT | <b>ТТТТТСААТС</b> | <b>ጥርጥር አልጥርጥር</b> | 360 |

348 GAAATGATAG AACAGCTTTT GGATAAGGTG TTGCTCTATG ACAATTCATC TATCTAGCCT 420 AGGCAGGTC TATCTCGTGT GTGGGAAAAC TGATATGAGA CAAGGAATCG ATTCACTGGC 480 TTATCTCGTT AAAACCCACT TTGAATTGGA TCCTTTCTCC GGTCAAATCT TTCTCTTTTG 540 TGGTGGACGT AAAGACCGCT TTAAAGTCCT TTACTGGGAT GGTCAAGGAT TTTGGCTACT 600 ATATAAACGC TTTGAGAACG GCAGACTGAC TTGGCCCAGT ACAGAAAAGG ATGTCAAAGC 660 TCTCGCACCT GAACAAGTAG ATTGGCTGAT GAAAGGCTTT TCTATCACTC CAAAAATATA 720 GTAGATTGAA ACTAGAATAG TACACCTCTG CTTCTAAAAC ATTGTTAGAA ATCGATTTTA 780 CTGTCCTGAT CGATTTGTCC TGTTATTATT TCATTTTACT ATAAATCCAT CAGAAAGTCG 840 TGATTTCTAT TGAAATGAGG ACTTTCTTTT TATACTCATC TGCTTTCAAA AAGCACTCTA 900 GTCCATCTCC GATTAACGAT GGACTTTATC ACCTCCTTCT CCAGTCCTTG TATAACATCT 960 TGAAGTTGAT TCATGACATC TTCCAAAGTT CGAAAGGCTT TATTCTTAAA TCCACGTTTA 1020 CGAATCTCTT TCCACACTTG TTCAATGGGG TTCATCTCTG GTGTGTATGG AGGAATAAAT 1080 GCAAAGCCAA TATTAGTCGG AATCTTTAAG GTACTTGATT TATGCCATAT AGCATTGTCC 1140 ATAACGAGTA AAAGATAATC ATCTGGATAA GCTTGTGAAA GCTCCTATTC CTAAAGCCCC 1200 TTTATAACCT CTTGCGAGAG AGACTATTGA CTCAGCCCTT ACTTCATGCG GATGAAACCT 1260 CCTATCGGGT TCTAGAGAGT GATAGCCATC TGACCTACTA TTGGACTTTT TTGTCAGGTA 1320 AAGCAGAGAA ACAAGGGATT ACGCTTTACC ACCATGATCA GTGTCGAAGT GGTTCAGTAG 1380 TACAAGAATT CCTAGGAGAT TATTCTGGCT ATGTTCATTG TGATATGTTG CGGCAGTAAC 1440 TTAGGACTTT AGTCCTCTAG TTCTGCCTAT GCGATAGCAG TCCAAGGTTT AGGAGTAAGG 1500 CGACGCTAAG CTTGGTAAAC TGCGAACAGC TAGAAGCTTA TCGTCAACTG GAAGAAGCTG 1560 CACTTGTTGG ATGTTGGGCG CATGTGAGAA GGAAGTTTTT TGAAGTGCCC CCCAAGCAAG 1620 CAGATAAATC ATCCTTAGGA GCTAAAGGTT TAGCCTATTG TGATCAGTTA TTTTCCTTGG 1680 AAAGAGACTG GGAGGCTTTG CCAGCTGATG AACGGCTACA GAAACGTCAA GAACATCTCC 1740 AACCCCTACT GGAAGACTTC TTTGCTTGGT GCCGTCGTCA GTCAGTTTTA TCGGGTTCAA 1800 AACTAGGAAG GGCAATTGAA TACAGCCTCA AGTATGAAGA AACCTTTAAG ACCATTTTAA 1860 AAGACGGACA TCTGGTCCTT TCCAATAATC TAGCTGAACG CGCCATTAAA TCATTGGTTA 1920 TGGGACGGAG TAAAAGAGTC CAGTGGACTC TTTTAGCCTA AGCTCAGTTT AAAAAAACGA 1980 GGGTGGTTAT TTTTAAAAAA GCGAGGGTGG TTATTTTCTC AAAGTTTTGA AGGAGCTAAA 2040 GCAAGAGCTA TTATTATGAG TTTGTTGGAA ACAGCTAAAC GTCATCAATT ATAGTGCGTT 2100 2160

| \ATCGATTTG          | TTCATATCTT  | ATTACAATCC           | ATTATAAATA   | GCGAGAAATA | TCTATCCTAT | 2220 |
|---------------------|-------------|----------------------|--------------|------------|------------|------|
| CTTCTAGAAT          | GTCTTCCAAA  | CGAGGAAACT           | CTCGTAAACA   | AAGAGGTTTT | AGAGGCCTAT | 2280 |
| TTACCGTGGA          | CTAAAGTTGT  | ACAAGAAAAG           | TGCAAATAAG   | AAATCTCCAG | ATTAGGAACT | 2340 |
| \TATATGAGT          | TCTCTAGTCT  | GGAGATTTTT           | CAATAGACTT   | CGTTATTGGG | CGGTTACTTT | 2400 |
| GAAACTTTG           | AAAACTTCAA  | AAAACGGATT           | TTTATCGCTC   | TGAACATCAA | AAAAGAAAGG | 2460 |
| ACGAAATTTG          | TCCTTTCTCA  | AGCTTAGCTT           | TTCTTCAACC   | CACTACAGTT | GACAAAGAGC | 2520 |
| CCTTTATTCT          | ATCAAACATG  | AAGCGCAAAA           | ACAAGCCAAA   | AATCCGATAG | AATGGCTATC | 2580 |
| CCTCGACTAT          | CAAGTAAGAC  | ATTTCCATCA           | AATACGTTCA   | ATTTTACTCT | TGTTCTACTA | 2640 |
| AGAATTAATC          | ATCTCGTTTT  | GATTTATTAA           | АААТАТАСАА   | TTCAGCTTTT | CCTCCAAACT | 2700 |
| ATTTTATCCA          | CTATCCCTGT  | ATAGCTCTGT           | ATTATCTTAA   | CAACTTTAGT | AGAGACATTT | 2760 |
| CCTCAACAT           | AATCCGGAAC  | CGGTAATCCA           | AAATCCTCAT   | CTTGTGCCAA | GCTAACAGCA | 2820 |
| STTTCAACTG          | CTTGAAGAAG  | AGAATTTTCA           | TCAATGCCTG   | ССААААТААА | TCCTGCCTTA | 2880 |
| TCTAAGGACT          | CAGGACGTTC  | TGTACTTGTA           | CGAATACATA   | CAGCGGGAAA | AGGATAACCT | 2940 |
| GACTAGTAA           | AGAAACTACT  | TTCTTCCGGT           | AAAGTTCCCG   | AATCAGATAC | ТАСААСАААТ | 3000 |
| CATTCATCT           | GTAAACAATT  | ATAGTCATGG           | AATCCTAGTG   | GCTCATGCTG | AATCACACGT | 3060 |
| TATCTAGTT           | TAAAACCGCT  | CTCTTGTAGC           | CTTTTCTTTG   | ATCTAGGATG | GCAAGAATAT | 3120 |
| AAGATTGGCA          | TATTATACTT  | TTCAGCTAAT           | TGATTAATTG   | CTGTAAAGAG | AGAAATAAAA | 3180 |
| TTTTTATCTG          | TATCAATATT  | TTCCTCACGG           | TGAGCTGAAA   | GTAAGATATA | ACCTCCTTTT | 3240 |
| TCAATCCCA           | AACGTTCATG  | GATATCTGAA           | GACTCAATAG   | CAGATAAATT | TTTATGTAAC | 3300 |
| ACTTCTGCCA          | TAGGAGAACC  | AGTTACATAT           | GTGCGCTCTT   | TAGGTAAACC | ACACTCATGT | 3360 |
| AATACTTAC           | GTGCATGTTC  | AGAGTATGCT           | AAGTTAACAT   | CTGAAATAAC | ATCAACAATC | 3420 |
| GACGATTAG           | TCTCTTCCGG  | TAGGCACTCA           | TCTTTACAGC   | GATTGCCAGC | CTCCATATGA | 3480 |
| AAATTGGAA           | TATGTAAACG  | CTTGGCAGCA           | ATAGCTGATA   | AACAAGAATT | TGTATCCCCT | 3540 |
| AAATCAATA           | AAGCATCTGG  | TTTAATTTGA           | TTCATCAATT   | TGTATGAAGT | АТТААТААТА | 3600 |
| TCCCTACAG           | TAGCACCAAG  | ATCATCTCCA           | ACAGCATCCA   | TGTATACGTC | CGGAGTGTCT | 3660 |
| ACCCTAAAT           | TATCAAAGAA  | AATACCATTT           | AAATTGTAAT   | CATAGTTTTG | TCCAGTATGT | 3720 |
| CCAAAATAA           | CATCAAAATA  | CTTTCGACAT           | TTAGTGATAA   | CACTACTTAG | ACGTATAATC | 3780 |
| CTGGACGTG           | TTCCCACAAT  | AATCAATAAC           | TTAAGTTTGC   | CATTATCTTT | AAAGTGAATA | 3840 |
| ת א מיח א מיים מיים | COCOCOOTAAO | መመመ <i>ር</i> አመመመ አመ | mmcmcc a cmm | COOCAAAAA  | *CM*MCMCC* | 2000 |