МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра вычислительной математики

Отчёт

Лабораторная работа

"Интерполирование функций. Интерполяционный многочлен в форме Лагранжа и Ньютона"

Вариант 5

Благодарного Артёма Андреевича студента 3 курса, 3 группы специальности «Информатика» дисциплина «Численные методы» Преподаватель: Будник А.М

Содержание:

Постановка задачи	3
Алгоритм решения	4
Листинг программы	5
Результат и его анализ	7

Постановка задачи

Рассмотрим набор различных точек на отрезке [a, b] от x до x по возрастанию значений. В этих точках заданы $f(x_i)$. Требуется восстановить значение f(x) в других точках на [a, b].

```
• отрезок [a,b] = [\alpha, 1+\alpha], где \alpha = 0.1 + 0.05*j,
   где ј - номер в подгруппе (в моем случае 5)
\bullet \quad x = \alpha + i * h,
                          h = 1/n,
                                          i = 0, ..., n, n = 10
\bullet \quad f(x) = \alpha * e^x + (1 - \alpha) * \sin(x)
• x^* = x^2 + \frac{2}{3} * h
• x^{**} = x_{n/2} + \frac{1}{2} * h
• x^{***} = x - \frac{1}{3} * h
Точки x_i и f(x_i):
x_0 = 0.35000, f(x_0) = 0.71956
x_1 = 0.45000, f(x_1) = 0.83164
x_2 = 0.55000, f(x_2) = 0.94639
x_3 = 0.65000, f(x_3) = 1.06381
x_4 = 0.75000, f(x_4) = 1.18402
x_5 = 0.85000, f(x_5) = 1.30721
x_6 = 0.95000, f(x_6) = 1.43372
x_7 = 1.05000, f(x_7) = 1.56400
x_8 = 1.15000, f(x_8) = 1.69866
x_9 = 1.25000, f(x_9) = 1.83846
x_10 = 1.35000, f(x_10) = 1.98432
Специальные точки:
x* = 0.41667, f(x*) = 0.79398
x** = 0.90000, f(x**) = 1.37002
x*** = 1.31667, f(x***) = 1.93496
```

В моем случае:

- $\bullet \quad \alpha_{j} = 0.35$
- отрезок [a, b] = [0,35; 1,35], длина отрезка равна 1
- значения x_i и $f(x_i)$ находятся выше

Алгоритм решения

1) При решении задачи будем использовать многочлен Лагранжа в виде:

$$P_n(x) = \sum_{i=0}^n y_i \Lambda_i(x) = \sum_{i=0}^n y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}.$$

- 2) Для нахождения приближенного значения в точках x^* , x^{**} , x^{***} просто подставим эти точки в функцию $P_{x}(x)$
- 3) Для нахождения оценки величины М будем использовать формулу:

$$M = \max |f^{n+1}(x)|,$$

где $x \in [a, b]$. То есть нужно будет найти n+1 производную функции f(x) и найти ее максимум на отрезке [a, b]

4) Для того, чтобы рассчитать истинную погрешность, будем использовать формулу:

$$r_n(x^*) = f(x^*) - P_n(x^*)$$

то же самое с точками х**, х***

5) Для оценки погрешности используем формулу:

$$|r(x)| \leq \frac{M}{(n+1)!} * |w(x)|,$$

где
$$w_{n+1}(x) = (x - x_0) * (x - x_1) * ... * (x - x_n)$$

Листинг кода

```
import sympy as sp
import numpy as np
import pandas as pd
import math
# Параметры задачи
j = 5
alpha j = 0.1 + 0.05 * j
n = 10
h = 1 / n
# Определение функции
def f(x):
    return alpha j * np.exp(x) + (1 - alpha j) * np.cos(x)
# Значения функции в узлах интерполирования
x vals = np.array([alpha j + i * h for i in range(n + 1)])
f_{vals} = f(x_{vals})
# Таблица значений функции
table = pd.DataFrame({"x_i": x_vals, "f(x_i)": f_vals})
table_transposed = table.T
# Точки для проверки интерполяции
x star = x vals[0] + (2 / 3) * h
x star2 = x vals[len(x vals) // 2] + (1 / 2) * h
x star3 = x vals[-1] - (1 / 3) * h
f x star = f(x_star)
f \times star2 = f(x star2)
f_x_star3 = f(x_star3)
# Интерполяционный многочлен Лагранжа
def lagrange_interpolation(x_vals, y_vals, x):
    n = len(x vals)
    result = 0.0
    for i in range(n):
        term = y vals[i]
        for j in range(n):
            if i != j:
                term *= (x - x vals[j]) / (x vals[i] - x vals[j])
        result += term
    return result
P_x_star = lagrange_interpolation(x_vals, f_vals, x_star)
P x star2 = lagrange interpolation(x vals, f vals, x star2)
P \times star3 = lagrange interpolation(x vals, f vals, x star3)
# Результаты интерполяции
data = {
"Точка": ["x*", "x**", "x***"],
```

```
"Значение x": [x star, x star2, x star3],
    "f(x)": [f_x_star, f_x_star2, f_x_star3],
    "Р(x) (полином)": [P x star, P x star2, P x star3]
df = pd.DataFrame(data)
# Производная (n+1)-го порядка
x = sp.Symbol('x')
f \text{ sym} = \text{alpha j * sp.exp(x)} + (1 - \text{alpha j)} * \text{sp.sin(x)}
f derivative = sp.diff(f sym, x, n + 1)
# Максимум абсолютного значения производной на отрезке [0.4, 1.4]
f derivative abs = sp.lambdify(x, sp.Abs(f derivative), 'numpy')
x \text{ test} = \text{np.linspace}(0.4, 1.4, 1000)
M \max = np.\max(f \text{ derivative abs}(x \text{ test}))
# Истинная погрешность
r x star = f x star - P x star
r \times star2 = f \times star2 - P \times star2
r \times star3 = f \times star3 - P \times star3
# Оценка погрешности по неравенству
factorial = math.factorial(n + 1)
x_{stars} = [x_{star}, x_{star}^{2}, x_{star}^{3}]
r \times stars = [r \times star, r \times star2, r \times star3]
error bound stars = []
for x val in x stars:
    prod term = np.prod([abs(x val - xi) for xi in x vals])
    error_bound = M_max / factorial * prod_term
    error_bound_stars.append(error_bound)
# Проверка выполнения неравенства
is error bound stars valid = [
    abs(r x stars[i]) <= error bound stars[i] for i in range(3)</pre>
# Таблица ошибок
error table = pd.DataFrame({
    "Точка": ["x*", "x**", "x***"],
    "Значение x": x stars,
    "Левая часть |r_n(x)|": [abs(r) for r in r_x_stars],
    "Правая часть оценки погрешности": error_bound_stars,
    "M = \max | f^{(n+1)}(x)|": [M_max] * 3,
    "Неравенство выполняется?": is error bound stars valid
})
# Вывод таблиц
display(table transposed)
display(df)
display(error table)
```

Результаты

• Исходная таблица:

	0	1	2	3	4	5	6	7	8	9	10
x_i	0.350000	0.4500	0.550000	0.650000	0.750000	0.850000	0.950000	1.050000	1.150000	1.25000	1.350000
f(x_i)	1.107266	1.1342	1.160779	1.187894	1.216548	1.247865	1.283092	1.323599	1.370884	1.42658	1.492453

• Значение функции и полинома Лагранжа в точках х*, х**, х***;

	Точка	Значение х	f(x)	P(x)	(полином)
0	x *	0.416667	1.125302		1.125302
1	X**	0.900000	1.264908		1.264908
2	x***	1.316667	1.469249		1.469249

• Проверка неравенства для истинной погрешности

	ТОЧКа	значение х	г истинная	оценка погрешности	$M = \max f(n+1)(x) $	перавенство выполняется?
0	x*	0.416667	6.239453e-14	9.928288e-14	2.059862	True
1	x**	0.900000	1.998401e-15	2.475192e-15	2.059862	True
2	X***	1.316667	1.374456e-13	2.116106e-13	2.059862	True

Анализ

Высокая точность интерполяции:

Истинная погрешность r(x) во всех приближенных точках очень мала

(порядка 10^{-13} , 10^{-14}), что свидетельствует о высокой точности интерполяции.

Оценка погрешности подтверждается:

Во всех случаях левая часть |r(x)| (истинная погрешность) меньше правой части (теоретическая оценка погрешности) из-за $M-\max$.

Разные точки — разный порядок истинной погрешности:

В точке x^* погрешность $\approx 6.24*10^{-14}$, но всё же меньше оценочной границы. В точке x^{**} погрешность минимальна ($\approx 1.99*10^{-15}$), что может быть связано с попаданием точки ближе к узлу интерполяции. В точке x^{***} погрешность снова возрастает ($\approx 1.37 \times 10^{-13}$), но остаётся в пределах оценки.

Метод **интерполяции Лагранжа** работает точно для данной функции и набора узлов. Оценка погрешности выполняется, а истинные погрешности остаются значительно ниже предсказанных границ, что подтверждает надежность метода в данном случае.