Tema I

Introducción a los Sistemas Operativos

Evolución del Sistema Operativo

Un SO evolucionará en el tiempo por una serie de razones:

- Actualizaciones de hardware y nuevos tipos de hardware.
- Nuevos servicios.
- Correcciones.

Evolución del Sistema Operativo

La historia de los Sistemas Operativos esta ligada a:

- La rápida evolución del hardware
 \$ decreciente, con el nivel de integración
- Adaptación
 \$ creciente precio de la mano de obra

Evolución del Sistema Operativo Proceso en Serie

- El programador interactuaba directamente con el hardware.
- Reservaba tiempo en la computadora para compilar, cargar y ejecutar el programa.
- Al terminar, se cedía el turno a otro usuario según una planificación en papel.
- No había Sistema Operativo.

Problemas:

- 1. Planificación.
- 2. Monousuario.
- 3. Tiempo de preparación (setup time).

Evolución del Sistema Operativo Proceso por Lotes (*batch processing*)

- El usuario entregaba al operador su programa como un conjunto de:
 - Tarjetas perforadas.
 - Tarjetas de control que codificaban las acciones requeridas, escritas en Lenguaje de Control de Trabajos (JCL, Job Control Language).
- □ Los operadores cargan secuencialmente los programas, entregan los resultados conforme se presentan.

Evolución del Sistema Operativo Proceso por Lotes (*batch processing*)

Se implementa un software llamado *monitor*, el cual leía un programa, lo cedía al procesador. Cuando el trabajo terminaba, devolvía el control al monitor que pasaba al siguiente trabajo.

Problemas:

- 1. Usuario sin acceso directo a la computadora
- 2. Temporizador.
- 3. Protección de memoria.
- 4. Instrucciones privilegiadas.
- 5. Interrupciones.

Evolución del Sistema Operativo Multiprogramación

Se pueden ejecutar varios procesos a la vez: mientras un proceso se ejecuta en el procesador, otro puede realizar operaciones E/S.

Problemas:

- 1. Hardware más complejo.
- 2. Protección de recursos Espacio de memoria.
- 3. Planificación de procesos.
- 4. Cambios de contexto

Evolución del Sistema Operativo Tiempo Compartido

- Sistema interactivo y multiusuario.
- □ El tiempo del procesador se comparte entre los diversos usuarios, es decir, a cada usuario se le cede un *quantum* hasta que le vuelve a tocar el turno.
- Múltiples usuarios acceden simultáneamente al sistema por medio de terminales
- Cuenta con un sistema operativo.

Estructura de los Sistemas Operativos Monolíticos

- No tiene una estructura clara y bien definida.
- Todos sus componentes se encuentran integrados en un único programa (el sistema operativo) que ejecuta en un único espacio de direcciones.
- □ Todas las funciones que ofrece el sistema operativo se ejecutan en modo núcleo.
- Ejemplos: DOS y UNIX

Estructura de los Sistemas Operativos Monolíticos

Estructura de los Sistemas Operativos Por Capas

El SO se organiza como una jerarquía de capas donde cada capa ofrece una interfaz clara y bien definida a la capa superior y solamente utiliza los servicios que le ofrece la capa inferior.

La principal ventaja que ofrece este tipo de estructuras es la modularidad y la ocultación de la información.

Esto facilita la depuración y verificación del sistema, puesto que las capas se pueden ir construyendo y depurando por separado.

Estructura de los Sistemas Operativos Por Capas: THE

Construido Dijkstra (1968) y sus estudiantes.

Era un sencillo sistema por lotes para una computadora holandesa, la Electrologica X8, que tenía 32K de palabras de 27 bits.

El sistema tenía seis capas:

Capa	Función
5	El operador
4	Programas de usuario
3	Administración de E/S
2	Comunicación operador-proceso
1	Administración de memoria
0	Planificación de la CPU y multiprogramación

Estructura de los Sistemas Operativos Por Capas: Multics

Organizado como una serie de anillos concéntricos, siendo los interiores más privilegiados que los exteriores.

Cuando un procedimiento del anillo exterior quería invocar a uno de un anillo interior, emitía una instrucción TRAP cuyos parámetros se examinaban cuidadosamente para comprobar su validez antes de permitir que la llamada procediera.

Estructura de los Sistemas Operativos Por Capas: Multics

Estructura de los Sistemas Operativos Estructurados: Modelo cliente-servidor

Micronúcleo: Pequeña parte del sistema operativo que se ejecuta en modo núcleo.

Servidores: Implementan la mayor parte de los servicios y funciones del sistema operativo en procesos de usuario.

La estructura de este sistema operativo se muestra en la siguiente figura:

Estructura de los Sistemas Operativos Máquinas Virtuales

- Existe un elemento central llamado monitor de la máquina virtual que:
 - Se ejecuta en el hardware.
 - Realiza la multiprogramación.
 - o Proporciona varias máquinas virtuales a la capa superior.
- Las máquinas virtuales instrumentan copias "exactas" del hardware simple, con su modo núcleo/usuario, e/s, interrupciones y todo lo demás que posee una máquina real.
- Pueden ejecutar cualquier SO que se ejecute en forma directa sobre el hardware.
- Las distintas máquinas virtuales pueden ejecutar distintos sistemas operativos y en general así lo hacen.
- Soportan periféricos virtuales.

Ejemplos: "VM/370" de IBM, VirtualBox, Virtual PC, VmWare, Xen.

Estructura de los Sistemas Operativos Máquinas Virtuales

Estructura de los Sistemas Operativos Máquinas Virtuales

Sistemas Operativos utilizados en México Escritorio

http://gs.statcounter.com/#desktop-os-MX-monthly-201412-201501-map

Sistemas Operativos utilizados en México Móviles, Tabletas, Consolas

StatCounter Global Stats

http://gs.statcounter.com/#mobile+tablet+console-os-MX-monthly-201412-201501-map

Sistemas Operativos utilizados en el Mundo Escritorio, Móviles, Tabletas, Consolas

StatCounter Global Stats
Top Operating Systems Per Country from Dec 2014 to Jan 2015

http://gs.statcounter.com/#all-os-ww-monthly-201412-201501-map

Ing. Yesenia Carrera Fournier sofiunam at gmail dot com

ING. YESENIA CARRERA FOURNIER SOFIUNAM SEMESTRE 2015-II