Positive subreducts of MV-algebras

Marco Abbadini. University of Salerno, Italy.

Joint work with P. Jipsen, T. Kroupa and S. Vannucci.

Third Algebra Week, University of Siena, Italy, July 4-7, 2023.

Positive MV-algebras

A *positive* referee report: ✓.

A positive COVID test: X.

A positive MV-algebra: ?

In this talk: I share some results about positive MV-algebras, introduced by (Cabrer, Jipsen, Kroupa, 2019), that shall help to develop their theory.

Positive MV-algebras

Positive fragment of Łukasiewicz propositional logic

1

 $\frac{\textbf{Positive MV-algebras}}{\text{MV-algebras}}$

1

Łukasiewicz (many-valued) propositional logic (set of truth values: [0, 1])

Positive fragment of classical propositional logic

↓

Bounded distributive lattices
Boolean algebras

↑

Classical propositional logic

Positive fragments

Examples of positive fragments:

- ▶ Positive modal algebras (Dunn, 1995) := "modal algebras without negation".
- ► Positive relational algebras := "relational algebras without complementation".

Positive MV-algebras: history and motivations

- ► (Cintula, Kroupa, 2013): positive fragment of Łukasiewicz logic in game theory.
- ► (Cabrer, Jipsen, Kroupa, 2019): introduced positive MV-algebras.
- ► (A., 2021): used positive MV-algebras to obtain a duality for Nachbin's compact ordered spaces (≅ stably compact spaces).
- Just like Heyting algebras are based on bounded distributive lattices, an appropriate many-valued version of Heyting algebras (MV-intuitionistic logic) may be based on positive MV-algebras.
- ► Positive MV-algebras are a well-behaved study case for some results in duality theory and general algebra.

MV-algebras

Łukasiewicz logic

Łukasiewicz many-valued propositional logic [Łukasiewicz, 1920, Łukasiewicz, Tarski, 1930]: [0,1] as the set of truth values.

Algebraic semantics

Algebraic semantics of Łukasiewicz logic = MV-algebras (Chang, 1958). Consider [0, 1] with the operations:

- ► $x \oplus y := \min\{x + y, 1\}$. Example: $0.3 \oplus 0.2 = 0.5$, and $0.7 \oplus 0.8 = 1$.
- $\neg x := 1 x$. Example: $\neg 0.3 = 0.7$.
- ▶ 0 as a constant.

MV-algebras

Definition (Chang, 1958, Mangani, 1973)

An MV-algebra (for Many-Valued algebra) is an algebra $\langle A; \oplus, \neg, 0 \rangle$ s.t.

- 1. $\langle A; \oplus, 0 \rangle$ is a commutative monoid;
- $2. \neg \neg x = x$;
- 3. $x \oplus \neg 0 = \neg 0$;
- 4. $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$.

MV-algebras are the algebras $\langle A; \oplus, \neg, 0 \rangle$ satisfying all equations holding in [0,1], i.e.:

Theorem (Chang, 1959)

[0,1] generates the variety of MV-algebras.

I.e.: $\{MV-algebras\} = HSP([0,1]).$

Examples of MV-algebras

Examples of MV-algebras:

- **▶** [0, 1].
- ► Subalgebras of [0,1], such as:
 - 1. $\{0,1\}$ (here, $\oplus = \vee$);
 - 2. $L_3 := \{0, \frac{1}{2}, 1\}.$
 - 3. For every $n \ge 1$, $\mathbb{E}_n := \left\{ \frac{0}{n}, \frac{1}{n}, \dots, \frac{n-1}{n}, \frac{n}{n} \right\}$.
 - **4**. $\mathbb{Q} \cap [0, 1]$.
- ► Any Boolean algebra: set ⊕ = ∨. One way to think of an MV-algebra is as a generalization of a Boolean algebra where the disjunction might fail to be idempotent.
- ▶ The set $[0,1]^X$ of functions from a set X to [0,1].

Derived MV-terms

Every MV-algebra has a bounded distributive lattice reduct:

- $\triangleright x \land y := \neg(\neg x \lor \neg y).$
- ▶ $1 := \neg 0$.

The corresponding order on [0,1] is the usual order. On $[0,1]^X$, it is the pointwise order.

One can also term-define the De Morgan dual of \oplus :

▶ $x \odot y := \neg(\neg x \oplus \neg y)$. In [0,1]: $x \odot y = \max\{x + y - 1, 0\}$. Example: $0.7 \odot 0.8 = 0.5$, and $0.3 \odot 0.2 = 0$.

Abelian lattice-ordered groups

MV-algebras can be understood as intervals of Abelian lattice-ordered groups.

Definition

An Abelian lattice-ordered group (or Abelian ℓ -group, for short) is an Abelian group **G** equipped with a lattice order s.t.:

(Translation invariance) for all $x, y, z \in \mathbf{G}$, $x \le y$ implies $x + z \le y + z$.

Examples:

- 1. \mathbb{R} , \mathbb{Z} , \mathbb{Q} , with the sum.
- 2. The set \mathbb{R}^X of functions from a set X to \mathbb{R} .

MV-algebras as unit intervals

For **G** an Abelian ℓ -group and $1 \in$ **G** positive (i.e. $1 \ge 0$), the interval

$$\Gamma(\mathbf{G}, 1) := \{ x \in \mathbf{G} \mid 0 \le x \le 1 \}$$

is an MV-algebra with

$$x \oplus y \coloneqq (x+y) \land 1$$
, $\neg x \coloneqq 1-x$, $0 \coloneqq$ identity element of **G**.

Examples:

- 1. $\Gamma(\mathbb{R},1) = [0,1]$,
- 2. $\Gamma(\mathbb{Z},1) = \{0,1\}.$
- 3. $\Gamma(\frac{1}{n}\mathbb{Z},1) = \{0,\frac{1}{n},\ldots,\frac{n-1}{n},1\} = \mathcal{L}_{n+1}.$
- 4. For a set X, $\Gamma(\mathbb{R}^X, 1) = [0, 1]^X$.

Mundici's equivalence

Theorem (Mundici, 1986)

Every MV-algebra arises in this way, i.e. it is isomorphic to $\Gamma(\mathbf{G},1)$ for some Abelian ℓ -group \mathbf{G} and some positive $1 \in \mathbf{G}$.

Example: let **A** be the MV-algebra of functions from \mathbb{N} to [0,1].

$$\mathbf{A}\cong\Gamma(?).$$

 $\mathbf{A} \cong \Gamma(\{\text{functions from } \mathbb{N} \text{ to } \mathbb{R}\}, 1)$

 $\mathbf{A} \cong \Gamma(\{\text{bounded functions from } \mathbb{N} \text{ to } \mathbb{R}\}, 1)$

Mundici's equivalence

For each MV-algebra **A** there is a canonical $(\mathbf{G},1)$ s.t. $\mathbf{A} \cong \Gamma(\mathbf{G},1)$, characterized by the condition that 1 is a *strong unit*, i.e. for all $x \in \mathbf{G}$ there is $n \in \mathbb{N}$ s.t.

$$x \leq \underbrace{1 + \cdots + 1}_{n \text{ times}}$$
.

Theorem (Mundici's equivalence, 1986)

The categories

- 1. of MV-algebras and homomorphisms, and
- 2. of <u>Abelian ℓ-groups with strong unit</u> and unit-preserving homomorphisms

are equivalent.

Positive MV-algebras

Positive MV-algebras

$$\frac{\textbf{Positive MV-algebras}}{\text{MV-algebras}} = \frac{\text{Bounded distributive lattices}}{\text{Boolean algebras}}$$

Bounded distributive lattices as subreducts

Relationship between bounded distributive lattices and Boolean algebras?

The $\{\lor, \land, 0, 1\}$ -reduct of any Boolean algebra is a bounded distributive lattice, as well as any subalgebra of this reduct.

Bounded distributive lattices = subalgebras of $\{\lor, \land, 0, 1\}$ -reducts of Boolean algebras.

 \lor , \land , 0, 1 are order-preserving, and they term-generate all order-preserving Boolean terms.

Bounded distributive lattices = positive subreducts of Boolean algebras.

Positive MV-algebras

Definition (Cabrer, Jipsen, Kroupa, 2019)

Positive MV-algebras := subalgebras of the $\{\oplus,\odot,\vee,\wedge,0,1\}$ -reducts of MV-algebras.

 \oplus , \odot , \vee , \wedge , 0, 1 are order-preserving in each coordinate. We leave out \neg , which is not order-preserving.

Theorem (Cintula, Kroupa, 2013)

 \oplus , \odot , \vee , \wedge , 0, 1 generate all order-preserving terms of MV-algebras.

Positive MV-algebras = positive subreducts of MV-algebras = many-valued version of bounded distrib. lattices.

Examples of positive MV-algebras

Examples of positive MV-algebras:

- ► Every MV-algebra, such as [0,1], $\{0,1\}$, $\{1,1\}$, $\{1,1\}$, $\{1,1\}$, $\{1,1\}$.
- ▶ Every bounded distributive lattice (set $\oplus := \lor$ and $\odot := \land$).

Positive MV-algebras are a $\underline{\text{common generalization}}$ of $\underline{\text{MV-algebras}}$ and bounded distributive lattices.

▶ For a poset X, the set of order-preserving functions from X to [0,1].

Examples of positive MV-algebras

Some subreducts of the MV-algebra $\pounds_3 \times \pounds_3 = \{0, \frac{1}{2}, 1\} \times \{0, \frac{1}{2}, 1\}$:

- ▶ Order-preserving functions: $\{(a, b) \in \mathbb{L}_3 \times \mathbb{L}_3 \mid a \leq b\}$.
- ▶ Ordinal sum: $\{(a, b) \in \mathbb{L}_3 \times \mathbb{L}_3 \mid a = 0 \text{ or } b = 1\}.$

Unit intervals

MV-algebras = intervals of Abelian lattice-ordered groups.

Positive MV-algebras = intervals of certain lattice-ordered monoids.

Lattice-ordered monoids

Definition

A cancellative commutative distributive ℓ -monoid is a cancellative commutative monoid equipped with a distributive lattice-order s.t. the monoid operation + distributes over the lattice operations \vee and \wedge .

Examples of cancellative commutative distributive \ell-monoids:

- $ightharpoonup \mathbb{R}$, \mathbb{Z} , \mathbb{Q} , every Abelian ℓ -group.
- ▶ The set of order-preserving functions from a poset X to \mathbb{R} .

Lattice-ordered monoids and positive MV-algebras

Given a cancellative commutative distributive ℓ -monoid \mathbf{M} and a positive invertible element $1 \in \mathbf{M}$, the set

$$\Gamma(\mathbf{M},1) := \{ x \in \mathbf{M} \mid 0 \le x \le 1 \}$$

is a positive MV-algebra, with

- \triangleright $x \oplus y := (x + y) \land 1;$
- \triangleright $x \odot y := (x + y 1) \lor 0;$
- \triangleright \lor , \land , 0, 1 as in \mathbf{M} .

Theorem (A., Jipsen, Kroupa and Vannucci, 2022)

Every positive MV-algebra arises in this way, i.e. it is isomorphic to $\Gamma(\mathbf{M},1)$ for some cancellative commutative distributive ℓ -monoid \mathbf{M} and some positive invertible $1 \in \mathbf{M}$.

Examples:

- $\blacktriangleright \ [0,1] \cong \Gamma(?)(\mathbb{R},1).$
- ▶ $L_3 = \{0, \frac{1}{2}, 1\} \cong \Gamma(?)(\frac{1}{2}\mathbb{Z}, 1).$

▶ The three-element bounded distributive lattice, as a positive MV-algebra (set $\oplus := \lor$ and $\odot := \land$)

is isomorphic to

$$\Gamma(?)(\{(a,b)\in\mathbb{Z}\times\mathbb{Z}\mid a\leq b\},(1,1)),$$

i.e. the set of order-preserving functions from $\{x < y\}$ to \mathbb{Z} .

▶ Let **L** be a bounded distributive lattice, and set $\oplus := \lor$ and $\odot := \land$.

$$\mathbf{L} \cong \Gamma(?)$$
.

Set X :=Priestley dual of **L**.

 $\mathbf{L} \cong \{ \text{order-preserving continuous functions } X \to \{0,1\} \}.$

Set $\mathbf{M} := \{\text{continuous order-preserving functions } X \to \mathbb{Z}\}$; let $1 \in \mathbf{M}$ be the function constantly equal to $1 \in \mathbb{Z}$. Then

 $\textbf{L}\cong \{\text{order-preserving continuous functions }X\rightarrow \{0,1\}\}=\Gamma(\textbf{M},1).$

Positive Mundici's equivalence

For each positive MV-algebra **A** there is a canonical choice of **M** and $1 \in \mathbf{M}$ such that $\mathbf{A} \cong \Gamma(\mathbf{M}, 1)$. This is characterized by the condition that 1 is a *strong unit*, i.e. for all $x \in \mathbf{M}$ there is $n \in \mathbb{N}$ s.t.

$$\underbrace{(-1)+\cdots+(-1)}_{n \text{ times}} \le x \le \underbrace{1+\cdots+1}_{n \text{ times}}.$$

Theorem (Positive Mundici's equivalence) (A., Jipsen, Kroupa, Vannucci, 2022)

The categories

- 1. of positive MV-algebras and homomorphisms, and
- 2. cancellative commutative distributive ℓ -monoids with strong unit and unit-preserving homomorphisms

are equivalent.

Mundici's result follows as a restriction of this equivalence.

Axiomatizations

Boolean algebras	Bounded distributive lattices	MV-algebras	Positive MV- algebras
Variety	Variety	Variety	Not variety ✗ Quasivariety ✓
Generated by $\{0,1\}$ as a quasivariety	Generated by $\{0,1\}$ as a quasivariety	Generated by $[0,1]$ as a quasivariety	Generated by $[0,1]$ as a quasivariety \checkmark
Finitely axiom- atized	Finitely axiom- atized	Finitely axiom- atized	Finitely axiom- atized ✓

Finite axiomatization of positive MV-algebras

Theorem (A., Jipsen, Kroupa and Vannucci, 2022)

Positive MV-algebras are axiomatized by:

- 1. $\langle A; \oplus, 0 \rangle$ and $\langle A; \odot, 1 \rangle$ are commutative monoids;
- 2. $\langle A; \vee, \wedge \rangle$ is a distributive lattice;
- 3. Both \oplus and \odot distribute over both \lor and \land ;
- **4**. If $x_0 = y_0 \oplus y_1$ and $x_1 = y_0 \odot y_1$, then
 - $(Modularity) (x_0 \odot z) \oplus x_1 = x_0 \odot (z \oplus x_1);$
 - ► (Absorption) $((x_0 \odot z) \oplus x_1) \land z = x_0 \odot z$ and $(x_0 \odot (z \oplus x_1)) \lor z = z \oplus x_1$.
- 5. (Cancellation) If $x \oplus z = y \oplus z$ and $x \odot z = y \odot z$, then x = y.

(1-4) are equations, (5) is a quasi-equation.

Free MV-extension

Free MV-extension

By definition, every positive MV-algebra ${\bf A}$ embeds into some MV-algebra.

Is there a canonical embedding?

Yes, for general algebraic reasons: the forgetful functor

 $\{MV-algebras\} \longrightarrow \{Positive\ MV-algebras\}.$

has a left adjoint (for general algebraic reasons). For each positive MV-algebra $\bf A$, the component $\eta_{\bf A}\colon {\bf A}\hookrightarrow {\bf B}$ of the unit is injective (fairly immediate), and we call $\eta_{\bf A}$ (or simply the MV-algebra $\bf B$) the *free MV-extension* of $\bf A$.

Positive MV-algebras

What is the free MV-extension of the following positive MV-algebra?

 $L_3 \times L_3$? $[0,1] \times [0,1]$? Something else?

Canonical embedding

Theorem (A., Jipsen, Kroupa, Vannucci, 2022)

Let $\mathbf{A} \hookrightarrow \mathbf{B}$ be an embedding of a positive MV-algebra \mathbf{A} into an MV-algebra \mathbf{B} (i.e. \mathbf{A} is a positive subreduct of \mathbf{B}), and let \mathbf{C} be the MV-subalgebra of \mathbf{B} generated by \mathbf{A} . The embedding $\mathbf{A} \hookrightarrow \mathbf{C}$ is the free MV-extension of \mathbf{A} .

In other words: an embedding of a positive MV-algebra into an MV-algebra is free iff it is MV-generating.

Free MV-extension

There is a unique generating embedding (the universal one):

Theorem (Equivalent reformulation)

Let A be a positive MV-algebra, let $f: A \hookrightarrow B_1$ and $g: A \hookrightarrow B_2$ be two injective positive MV-homomorphisms into MV-algebras, and suppose that the images of f and g generate B_1 and B_2 as MV-algebras. Then B_1 and B_2 are isomorphic over A.

Free MV-extension

Universal property:

Theorem (Equivalent reformulation)

Given MV-algebras \mathbf{B} and \mathbf{C} and a partial function $f: \mathbf{A} \subseteq \mathbf{B} \to \mathbf{C}$ such that \mathbf{A} MV-generates \mathbf{B} and is closed under \oplus , \odot , \vee , \wedge , 0 and 1, and $f: \mathbf{A} \to \mathbf{C}$ preserves these operations, f extends uniquely to an MV-homomorphism $\mathbf{B} \to \mathbf{C}$.

Computational advantage:

The set of homomorphisms of MV-algebras from $\pounds_3 \times \pounds_3$ to an MV-algebra \boldsymbol{C} is in bijection with the set of homomorphisms of positive MV-algebras from the algebra below to \boldsymbol{C} .

Free MV-extension

(For a general fact holding in subreducts of prevarieties (work in progress with C. van Alten),) this is equivalent to the following:

Theorem

Every MV-equation is equivalent (in MV-algebras) to a system of equations in the positive fragment.

Example: for all x, y, z in an MV-algebra:

$$x = \neg y \iff \begin{cases} x \oplus y = 1; \\ x \odot y = 0; \end{cases}$$
$$x \oplus \neg y = z \iff \begin{cases} 1 = z \oplus y; \\ x \wedge y = z \odot y. \end{cases}$$

Digression: characterization of unique embedding

Abelian groups and commutative monoids

Fact

Each cancellative commutative monoid M has a **unique** (up to iso) generating embedding $M \hookrightarrow G$ into an Abelian group.

Uniqueness up to iso means:

$$\mathbf{M} \overset{f_1}{\smile} \mathbf{G}_1$$

$$\downarrow_{f_2} \downarrow_{\mathsf{iso}}$$

$$\mathbf{G}_2$$

Example: $\mathbb{N} \hookrightarrow \mathbb{Z}$.

It is not difficult to prove that every $g \in \mathbf{G}_1$ is a difference g = x - y of elements of \mathbf{M} . Then, set $\psi(g) := f(x) - f(y) \in \mathbf{G}_2$.

Is this a well-defined function?

Suppose
$$x - y = x' - y'$$
 and let us prove $f(x) - f(y) = f(x') - f(y')$.

$$x - y = x' - y' \iff x + y' = x' + y$$

$$\implies f(x + y') = f(x' + y)$$

$$\iff f(x) + f(y') = f(x') + f(y)$$

$$\iff f(x) - f(y) = f(x') - f(y').$$

Further, one proves that ψ is a group isomorphism that extends f.

Key facts used:

- 1. If **M** is a generating submonoid of an Abelian group **G**, then every element of **G** is a difference of two elements of **M**.
- 2. For all x, y in an Abelian group,

$$x - y = x' - y' \iff x + y' = x' + y.$$

Fact

Any equation between two terms in the language of Abelian groups is equivalent to an equation in the language of monoids.

Example: for all x, y, z in an Abelian group

$$-x + y - z = x \iff y = x + x + z.$$

(Thanks to the cancellation property.)

Groups and monoids

For arbitrary (i.e. non-necessarily commutative) monoids/groups, we do **not** have this uniqueness of embeddings.

For example, the monoid $\{x, y, z\}^*$ of words on three letters has distinct non-isomorphic generating embeddings into groups:

- ▶ into the free group $Free(\{x,y,z\})$ on three elements $(x \mapsto x, y \mapsto y, z \mapsto z)$ and
- ▶ into the free group $\operatorname{Free}(\{x,y\})$ on two elements $(x \mapsto x, y \mapsto y, z \mapsto xy^{-1}x)$.

The equation $z = xy^{-1}x$ cannot be expressed via an equation in the language of monoids.

Abelian ℓ-groups

Fact

Each cancellative commutative distributive ℓ -monoid M has a **unique** (up to iso) generating embedding $M \hookrightarrow G$ into an Abelian ℓ -group.

Key facts used:

- 1. If $\mathbf{M} \hookrightarrow \mathbf{G}$ is a generating sub- ℓ -monoid of an Abelian ℓ -group \mathbf{G} , then every element of \mathbf{G} is a difference of elements of \mathbf{M} .
- 2. For all x, y in an Abelian ℓ -group,

$$x - y = x' - y' \iff x + y' = x' + y.$$

Fact

Any equation between two terms in the language of Abelian ℓ -groups is equivalent to an equation in the language of ℓ -monoids.

Fact

Each bounded distributive lattice L has a **unique** (up to iso) generating embedding $L \hookrightarrow B$ into a Boolean algebra.

This embedding is called the free Boolean extension.

 If L → B is a generating bounded sublattice of a Boolean algebra B, then every element of B is a join of finitely many differences of elements of L:

$$z = \bigvee_{i=1}^{n} x_i \wedge \neg y_i.$$

2. Every equation between joins of differences is equivalent to a system of equations in the language of bounded distributive lattices.

Distributivity in a lattice: For all a, b, c, a = b iff $a \lor c = b \lor c$ and $a \land c = b \land c$.

$$x \wedge \neg y = z \iff \begin{cases} (x \wedge \neg y) \vee y = z \vee y \\ (x \wedge \neg y) \wedge y = z \wedge y \end{cases} \iff \begin{cases} x \vee y = z \vee y \\ 0 = z \wedge y. \end{cases}$$

Fact

Any equation between two terms in the language of Boolean algebras is equivalent to a system of equations in the language of bounded distributive lattices.

Fact

Each positive MV-algebra $\bf A$ has a **unique** (up to iso) generating embedding $\bf A \hookrightarrow \bf B$ into an MV-algebra.

We called this embedding the free MV-extension of A.

1. If $\mathbf{A} \hookrightarrow \mathbf{B}$ is a generating positive MV-subalgebra of an MV-algebra \mathbf{B} , then every element of \mathbf{B} is a sum of finitely many "differences" of elements of \mathbf{A} :

$$z = \bigoplus_{i=1}^n x_i \odot \neg y_i.$$

2. Every equation between sums of differences is equivalent to a system of equations in the language of positive MV-algebras.

Cancellation: For all a, b, c in an MV-algebra, a = b iff $a \oplus c = b \oplus c$ and $a \odot c = b \odot c$.

$$x \odot \neg y = z \iff \begin{cases} (x \odot \neg y) \oplus y = z \oplus y \\ (x \odot \neg y) \odot y = z \odot y. \end{cases} \iff \begin{cases} x \lor y = z \oplus y \\ 0 = z \odot y. \end{cases}$$

Fact

Any equation between two terms in the language of MV-algebras is equivalent to a system of equations in the language of positive MV-algebras.

Definition

A prevariety is a class $\ensuremath{\mathcal{V}}$ of algebras closed under subalgebras and products.

Examples: any variety, any quasivariety.

Setting

- lacktriangle An algebraic language \mathcal{L}_+ and a sublanguage $\mathcal{L}_- \subseteq \mathcal{L}_+$.
- ▶ Two prevarieties V_+ and V_- for \mathcal{L}_+ and \mathcal{L}_- , respectively.

We assume " $\mathcal{V}_+ \subseteq \mathcal{V}_-$ " i.e.: \mathcal{V}_- contains all \mathcal{L}_- -reducts of algebras in \mathcal{V}_+ .

For example:

- 1. $V_+ = \{Abelian groups\}, V_- = \{cancellative commutative monoids\}.$
- 2. $V_+ = \{ Abelian groups \}, V_- = \{ commutative monoids \}.$
- 3. $V_+ = \{\text{groups}\}, V_- = \{\text{monoids}\}.$
- 4. $V_+ = \{MV-algebras\}, V_- = \{positive MV-algebras\}.$

Definition

Unique embeddability property :=

Given $\mathbf{A} \in \mathcal{V}_-$, $\mathbf{B}, \mathbf{C} \in \mathcal{V}_+$, and injective \mathcal{V}_- -homomorpisms $f \colon \mathbf{A} \hookrightarrow \mathbf{B}$ and $g \colon \mathbf{A} \hookrightarrow \mathbf{C}$ whose images \mathcal{V}_+ -generate \mathbf{B} and \mathbf{C} respectively, there is a \mathcal{V}_+ -isomorphism $h \colon \mathbf{B} \to \mathbf{C}$ making the following diagram commute.

We have the unique embeddability property for $V_+ = \{\text{Abelian groups}\}\$ and $V_- = \{\text{commutative monoids}\}\$.

We do not have the unique embeddability property for $\mathcal{V}_+=\{\text{groups}\}$ and $\mathcal{V}_-=\{\text{monoids}\}.$

Definition

Expressibility property := for each pair $(\sigma(x_1,\ldots,x_n),\rho(x_1,\ldots,x_n))$ of terms in \mathcal{L}_+ , there is a (finite) set of pairs $(\alpha_i(x_1,\ldots,x_n),\beta_i(x_1,\ldots,x_n))_i$ of terms in \mathcal{L}_- s.t., for all $\mathbf{A}\in\mathcal{V}_+$ and $x_1,\ldots,x_n\in\mathbf{A}$,

$$\sigma(x_1,\ldots,x_n)=\rho(x_1,\ldots,x_n) \Leftrightarrow \forall i \ \alpha_i(x_1,\ldots,x_n)=\beta_i(x_1,\ldots,x_n).$$

I.e.: every equation in \mathcal{L}_+ is equivalent to a system of equations in \mathcal{L}_- .

For Abelian groups and commutative monoids we have the expressibility property.

For groups and monoids we do **not** have the expressibility property.

Theorem (ongoing joint work with C. van Alten)

Unique embeddability property \iff expressibility property.

Main usage: proving the unique embeddability property by showing that equations in the richer language can be expressed in the poorer language (e.g.: x - y = x' - y' iff x + y' = y + x').

For positive MV-algebras:

Every equation in the language of Abelian ℓ -groups can be rewritten in the language of ℓ -monoids.

Every equation in the lan- equage of MV-algebras can be rewritten in the language of positive MV-algebras.

ightarrow Each cancellative commutative distributive ℓ -monoid has a unique generating embedding into an Abelian ℓ -group.

 Each positive MV-algebra has a unique generating embedding into an MV-algebra.

Recap

Recap

Definition

Positive MV-algebras := $\{\oplus, \odot, \lor, \land, 0, 1\}$ -subreducts of MV-algebras.

- 1. Not a variety. X
- 2. Quasivariety, generated by [0,1]. \checkmark
- 3. Finite quasi-equational axiomatization. ✓
- 4. Intervals of certain ℓ-monoids. ✓
- Unique embedding into MV-algebras. (Embedding + MV-generating ⇒ Free.) ✓

- 1. What makes Mundici's equivalence work? Goal: to obtain an equivalence à la Mundici between
 - \triangleright certain algebras in the signature $\{\oplus, \odot, 0, 1\}$, and
 - \triangleright certain algebras in the signature $\{0,+,1,\tau_0,\tau_1\}$, where τ_0 and τ_1 are unary symbols to be thought of as $\tau_0(x) = x \vee 0$ and $\tau_1(x) = x \wedge 1$.

I would like to do it without assuming the cancellation property so that (not necessarily distributive) bounded lattices can be seen as intervals of monoids.

(Side question: is there a unique generating embedding of $\{\oplus, \odot, 0, 1\}$ -subreducts of MV-algebras into MV-algebras? Equivalently, is every equation in the language of MV-algebras equivalent to an equation in $\{\oplus, \odot, 0, 1\}$? Yet a further step would be to go to the non-commutative case.

- 2. (Jointly with A. Přenosil): MV-version of Blok-Esakia theorem.
 - Consider a notion of modal MV-algebras which is an MV-version of S4 in the sense that the Gödel–McKinsey–Tarski translation $(x \rightarrow y = \Box(\neg x + y))$ connects the logic MV.S4 and the intuitionistic version of Łukasiewicz (= logic of positive MV-algebras where the product is residuated).
 - ► Then, try to extend this to some sort of Blok-Esakia style bijection between the extensions of MV.S4.Grz (whatever this is) and the intuitionistic version of Łukasiewicz.

3. (From an input of a referee:) Does the characterization of the unique embeddability property extend beyond algebraic structures to a general model-theoretic setting? (Replacing equations by atomic formulae.)

4. (From an input of L. Carai) Duality à la Baker-Beynon for positive MV-algebras?

Recap

Definition

Positive MV-algebras $:= \{ \oplus, \odot, \lor, \land, 0, 1 \}$ -subreducts of MV-algebras.

- Not a variety. X
- 2. Quasivariety, generated by [0,1]. \checkmark
- 3. Finite quasi-equational axiomatization. ✓
- 4. Intervals of certain ℓ-monoids. ✓
- Unique embedding into MV-algebras. (Embedding + MV-generating ⇒ Free.) ✓

Based on:

- M. A., P. Jipsen, T. Kroupa, and S. Vannucci. A finite axiomatization of positive MV-algebras. Algebra Universalis, 83:28, 2022.
- M. A. On the axiomatisability of the dual of compact ordered spaces. PhD thesis, University of Milan, 2021. (Ch. 4)
- M. A. Equivalence à la Mundici for commutative lattice-ordered monoids. Algebra Universalis, 82:45, 2021.

Thank you!