Chapter 4

Lexical and Syntax Analysis

Chapter 4 Topics

- Introduction
- Lexical Analysis
- The Parsing Problem
- Recursive–Descent Parsing
- Bottom-Up Parsing

Introduction

- Language implementation systems must analyze source code, regardless of the specific implementation approach
- Nearly all syntax analysis is based on a formal description of the syntax of the source language (BNF)

Syntax Analysis

- The syntax analysis portion of a language processor nearly always consists of two parts:
 - A low-level part called a lexical analyzer
 (mathematically, a finite automaton based on a regular grammar)
 - A high-level part called a syntax analyzer, or parser (mathematically, a push-down automaton based on a context-free grammar, or BNF)

Advantages of Using BNF to Describe Syntax

- Provides a clear and concise syntax description
- The parser can be based directly on the BNF
- Parsers based on BNF are easy to maintain

Reasons to Separate Lexical and Syntax Analysis

- Simplicity less complex approaches can be used for lexical analysis; separating them simplifies the parser
- Efficiency separation allows optimization of the lexical analyzer
- Portability parts of the lexical analyzer may not be portable, but the parser always is portable

Lexical Analysis

- A lexical analyzer is a pattern matcher for character strings
- A lexical analyzer is a "front-end" for the parser
- Identifies substrings of the source program that belong together – lexemes
 - Lexemes match a character pattern, which is associated with a lexical category called a *token*
 - sum is a lexeme; its token may be IDENT

- The lexical analyzer is usually a function that is called by the parser when it needs the next token
- Three approaches to building a lexical analyzer:
 - Write a formal description of the tokens and use a software tool that constructs a table-driven lexical analyzer from such a description
 - Design a state diagram that describes the tokens and write a program that implements the state diagram
 - Design a state diagram that describes the tokens and hand-construct a table-driven implementation of the state diagram

State Diagram Design

 A naïve state diagram would have a transition from every state on every character in the source language – such a diagram would be very large!

- In many cases, transitions can be combined to simplify the state diagram
 - When recognizing an identifier, all uppercase and lowercase letters are equivalent
 - Use a character class that includes all letters
 - When recognizing an integer literal, all digits are equivalent – use a digit class

- Reserved words and identifiers can be recognized together (rather than having a part of the diagram for each reserved word)
 - Use a table lookup to determine whether a possible identifier is in fact a reserved word

- Convenient utility subprograms:
 - getChar gets the next character of input, puts it in nextChar, determines its class and puts the class in charClass
 - addChar puts the character from nextChar into the place the lexeme is being accumulated,
 lexeme
 - lookup determines whether the string in
 lexeme is a reserved word (returns a code)

State Diagram

Lexical Analyzer

Implementation:

→ SHOW front.c (pp. 172-177)

- Following is the output of the lexical analyzer of
front.c when used on (sum + 47) / total

```
Next token is: 25 Next lexeme is (
Next token is: 11 Next lexeme is sum
Next token is: 21 Next lexeme is +
Next token is: 10 Next lexeme is 47
Next token is: 26 Next lexeme is )
Next token is: 24 Next lexeme is /
Next token is: 11 Next lexeme is total
Next token is: -1 Next lexeme is EOF
```

The Parsing Problem

- Goals of the parser, given an input program:
 - Find all syntax errors; for each, produce an appropriate diagnostic message and recover quickly
 - Produce the parse tree, or at least a trace of the parse tree, for the program

- Two categories of parsers
 - Top down produce the parse tree, beginning at the root (preorder)
 - Order is that of a leftmost derivation
 - Traces or builds the parse tree in preorder
 - Bottom up produce the parse tree, beginning at the leaves(postorder)
 - Order is that of the reverse of a rightmost derivation
- Useful parsers look only one token ahead in the input

- Top-down Parsers
 - Given a sentential form, $xA\alpha$, the parser must choose the correct A-rule to get the next sentential form in the leftmost derivation, using only the first token produced by A
- The most common top-down parsing algorithms:
 - Recursive descent a coded implementation
 - LL parsers table driven implementation

Bottom-up parsers

- Given a right sentential form, α , determine what substring of α is the right-hand side of the rule in the grammar that must be reduced to produce the previous sentential form in the right derivation
- The most common bottom-up parsing algorithms are in the LR family

- The Complexity of Parsing
 - Parsers that work for any unambiguous grammar are complex and inefficient (O(n³), where n is the length of the input)
 - Compilers use parsers that only work for a subset of all unambiguous grammars, but do it in linear time (O(n), where n is the length of the input)

Recursive-Descent Parsing

- There is a subprogram for each nonterminal in the grammar, which can parse sentences that can be generated by that nonterminal
- EBNF is ideally suited for being the basis for a recursive-descent parser, because EBNF minimizes the number of nonterminals

A grammar for simple expressions:

```
<expr> → <term> { (+ | -) <term>}
<term> → <factor> { (* | /) <factor>}
<factor> → id | int_constant | ( <expr> )
```

- Assume we have a lexical analyzer named lex, which puts the next token code in nextToken
- The coding process when there is only one RHS:
 - For each terminal symbol in the RHS, compare it with the next input token; if they match, continue, else there is an error
 - For each nonterminal symbol in the RHS, call its associated parsing subprogram

```
/* Function expr
   Parses strings in the language
   generated by the rule:
   \langle expr \rangle \rightarrow \langle term \rangle \{ (+ | -) \langle term \rangle \}
 */
void expr() {
/* Parse the first term */
  term();
/* As long as the next token is + or -, call
   lex to get the next token and parse the
   next term */
  while (nextToken == ADD OP ||
          nextToken == SUB OP) {
    lex();
    term();
```

- This particular routine does not detect errors
- Convention: Every parsing routine leaves the next token in nextToken

- A nonterminal that has more than one RHS requires an initial process to determine which RHS it is to parse
 - The correct RHS is chosen on the basis of the next token of input (the lookahead)
 - The next token is compared with the first token that can be generated by each RHS until a match is found
 - If no match is found, it is a syntax error

```
/* term
Parses strings in the language generated by the rule:
<term> -> <factor> { (* | /) <factor>)
*/
void term() {
/* Parse the first factor */
  factor();
/* As long as the next token is * or /,
  next token and parse the next factor */
  while (nextToken == MULT_OP || nextToken == DIV OP) {
    lex();
    factor();
} /* End of function term */
```

```
/* Function factor
   Parses strings in the language
   generated by the rule:
   <factor> -> id | (<expr>) */
 void factor() {
 /* Determine which RHS */
   if (nextToken) == ID CODE || nextToken == INT CODE)
 /* For the RHS id, just call lex */
     lex();
/* If the RHS is (<expr>) - call lex to pass over the left parenthesis,
   call expr, and check for the right parenthesis */
  else if (nextToken == LP CODE) {
   lex();
     expr();
     if (nextToken == RP CODE)
        lex():
      else
      error();
    } /* End of else if (nextToken == ... */
  else error(); /* Neither RHS matches */
```

- Trace of the lexical and syntax analyzers on (sum + 47) / total

```
Next token is: 25 Next lexeme is (
                                         Next token is: 11 Next lexeme is total
Enter <expr>
                                         Enter <factor>
Enter <term>
                                         Next token is: -1 Next lexeme is EOF
Enter <factor>
                                         Exit <factor>
Next token is: 11 Next lexeme is sum
                                         Exit <term>
Enter <expr>
                                         Exit <expr>
Enter <term>
Enter <factor>
Next token is: 21 Next lexeme is +
Exit <factor>
Exit <term>
Next token is: 10 Next lexeme is 47
Enter <term>
Enter <factor>
Next token is: 26 Next lexeme is )
Exit <factor>
Exit <term>
Exit <expr>
Next token is: 24 Next lexeme is /
Exit <factor>
```