Recap of last lecture

- Autoregressive models:
 - Chain rule based factorization is fully general
 - Compact representation via *conditional independence* and/or *neural* parameterizations
- Autoregressive models Pros:
 - Easy to evaluate likelihoods
 - Easy to train
- Autoregressive models Cons:
 - Requires an ordering
 - Generation is sequential
 - Cannot learn features in an unsupervised way

Plan for today

- Latent Variable Models
 - Mixture models
 - Variational autoencoder
 - Variational inference and learning

Latent Variable Models: Motivation

- Lots of variability in images x due to gender, eye color, hair color, pose, etc. However, unless images are annotated, these factors of variation are not explicitly available (latent).
- 2 Idea: explicitly model these factors using latent variables z

Latent Variable Models: Motivation

- Only shaded variables x are observed in the data (pixel values)
- Latent variables z correspond to high level features
 - If z chosen properly, p(x|z) could be much simpler than p(x)
 - If we had trained this model, then we could identify features via $p(\mathbf{z} \mid \mathbf{x})$, e.g., $p(EyeColor = Blue \mid \mathbf{x})$
- **Ohallenge:** Very difficult to specify these conditionals by hand

Deep Latent Variable Models

- Use neural networks to model the conditionals (deep latent variable models):
 - $\mathbf{0}$ $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - ② $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
- Hope that after training, z will correspond to meaningful latent factors of variation (features). Unsupervised representation learning.
- As before, features can be computed via $p(\mathbf{z} \mid \mathbf{x})$

Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians. Bayes net: $\mathbf{z} \rightarrow \mathbf{x}$.

- **1** $\mathbf{z} \sim \text{Categorical}(1, \dots, K)$
- $p(\mathbf{x} \mid \mathbf{z} = k) = \mathcal{N}(\mu_k, \Sigma_k)$

Generative process

- lacktriangle Pick a mixture component k by sampling z
- Generate a data point by sampling from that Gaussian

Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians:

- **1** $\mathbf{z} \sim \text{Categorical}(1, \dots, K)$

- **Clustering:** The posterior $p(\mathbf{z} \mid \mathbf{x})$ identifies the mixture component
- **Unsupervised learning:** We are hoping to learn from unlabeled data (ill-posed problem)

Unsupervised learning

Unsupervised learning

Shown is the posterior probability that a data point was generated by the i-th mixture component, P(z=i|x)

Unsupervised learning

Unsupervised clustering of handwritten digits.

Mixture models

Alternative motivation: Combine simple models into a more complex and expressive one

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{z} = k) \underbrace{\mathcal{N}(\mathbf{x}; \mu_k, \Sigma_k)}_{\text{component}}$$

Variational Autoencoder

A mixture of an infinite number of Gaussians:

- $\mathbf{0}$ $\mathbf{z} \sim \mathcal{N}(0, I)$
- $oldsymbol{p}$ $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
 - $\mu_{\theta}(\mathbf{z}) = \sigma(A\mathbf{z} + c) = (\sigma(a_1\mathbf{z} + c_1), \sigma(a_2\mathbf{z} + c_2)) = (\mu_1(\mathbf{z}), \mu_2(\mathbf{z}))$
 - $\Sigma_{\theta}(\mathbf{z}) = diag(\exp(\sigma(B\mathbf{z} + d))) = \begin{pmatrix} \exp(\sigma(b_1\mathbf{z} + d_1)) & 0 \\ 0 & \exp(\sigma(b_2\mathbf{z} + d_2)) \end{pmatrix}$
 - $\theta = (A, B, c, d)$
- **3** Even though $p(\mathbf{x} \mid \mathbf{z})$ is simple, the marginal $p(\mathbf{x})$ is very complex/flexible

Recap

- Latent Variable Models
 - Allow us to define complex models $p(\mathbf{x})$ in terms of simpler building blocks $p(\mathbf{x} \mid \mathbf{z})$
 - Natural for unsupervised learning tasks (clustering, unsupervised representation learning, etc.)
 - No free lunch: much more difficult to learn compared to fully observed, autoregressive models

Marginal Likelihood

- Suppose some pixel values are missing at train time (e.g., top half)
- Let X denote observed random variables, and Z the unobserved ones (also called hidden or latent)
- Suppose we have a model for the joint distribution (e.g., PixelCNN)

$$p(\mathbf{X}, \mathbf{Z}; \theta)$$

What is the probability $p(\mathbf{X} = \bar{\mathbf{x}}; \theta)$ of observing a training data point $\bar{\mathbf{x}}$?

$$\sum_{\mathbf{z}} p(\mathbf{X} = \bar{\mathbf{x}}, \mathbf{Z} = \mathbf{z}; \theta) = \sum_{\mathbf{z}} p(\bar{\mathbf{x}}, \mathbf{z}; \theta)$$

• Need to consider all possible ways to complete the image (fill green part)

Variational Autoencoder Marginal Likelihood

A mixture of an infinite number of Gaussians:

- $\mathbf{0}$ $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, I)$
- ② $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
- Z are unobserved at train time (also called hidden or latent)
- **3** Suppose we have a model for the joint distribution. What is the probability $p(\mathbf{X} = \bar{\mathbf{x}}; \theta)$ of observing a training data point $\bar{\mathbf{x}}$?

$$\int_{\mathbf{z}} p(\mathbf{X} = \bar{\mathbf{x}}, \mathbf{Z} = \mathbf{z}; \theta) d\mathbf{z} = \int_{\mathbf{z}} p(\bar{\mathbf{x}}, \mathbf{z}; \theta) d\mathbf{z}$$

Partially observed data

Suppose that our joint distribution is

$$p(\mathbf{X}, \mathbf{Z}; \theta)$$

- We have a dataset \mathcal{D} , where for each datapoint the **X** variables are observed (e.g., pixel values) and the variables **Z** are never observed (e.g., cluster or class id.). $\mathcal{D} = \{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(M)}\}$.
- Maximum likelihood learning:

$$\log \prod_{\mathbf{x} \in \mathcal{D}} p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$$

- Evaluating $\log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$ can be intractable. Suppose we have 30 binary latent features, $\mathbf{z} \in \{0,1\}^{30}$. Evaluating $\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$ involves a sum with 2^{30} terms. For continuous variables, $\log \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta) d\mathbf{z}$ is often intractable. Gradients ∇_{θ} also hard to compute.
- Need **approximations**. One gradient evaluation per training data point $\mathbf{x} \in \mathcal{D}$, so approximation needs to be cheap.

First attempt: Naive Monte Carlo

Likelihood function $p_{\theta}(\mathbf{x})$ for Partially Observed Data is hard to compute:

$$p_{\theta}(\mathbf{x}) = \sum_{\text{All values of } \mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z}) = |\mathcal{Z}| \sum_{\mathbf{z} \in \mathcal{Z}} \frac{1}{|\mathcal{Z}|} p_{\theta}(\mathbf{x}, \mathbf{z}) = |\mathcal{Z}| \mathbb{E}_{\mathbf{z} \sim \textit{Uniform}(\mathcal{Z})} \left[p_{\theta}(\mathbf{x}, \mathbf{z}) \right]$$

We can think of it as an (intractable) expectation. Monte Carlo to the rescue:

- **1** Sample $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(k)}$ uniformly at random
- Approximate expectation with sample average

$$\sum_{\mathbf{z}}
ho_{ heta}(\mathbf{x}, \mathbf{z}) pprox |\mathcal{Z}| rac{1}{k} \sum_{j=1}^{k}
ho_{ heta}(\mathbf{x}, \mathbf{z}^{(j)})$$

Works in theory but not in practice. For most \mathbf{z} , $p_{\theta}(\mathbf{x}, \mathbf{z})$ is very low (most completions don't make sense). Some completions have large $p_{\theta}(\mathbf{x}, \mathbf{z})$ but we will never "hit" likely completions by uniform random sampling. Need a clever way to select $\mathbf{z}^{(j)}$ to reduce variance of the estimator.

Second attempt: Importance Sampling

Likelihood function $p_{\theta}(\mathbf{x})$ for Partially Observed Data is hard to compute:

$$p_{\theta}(\mathbf{x}) = \sum_{\text{All possible values of } \mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z}) = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right]$$

Monte Carlo to the rescue:

- **1** Sample $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(k)}$ from $q(\mathbf{z})$
- Approximate expectation with sample average

$$p_{ heta}(\mathbf{x}) pprox rac{1}{k} \sum_{i=1}^{k} rac{p_{ heta}(\mathbf{x}, \mathbf{z}^{(j)})}{q(\mathbf{z}^{(j)})}$$

What is a good choice for $q(\mathbf{z})$? Intuitively, frequently sample \mathbf{z} (completions) that are likely given \mathbf{x} under $p_{\theta}(\mathbf{x}, \mathbf{z})$.

3 This is an unbiased estimator of $p_{\theta}(\mathbf{x})$

$$\mathbb{E}_{\mathbf{z}^{(j)}) \sim q(\mathbf{z})} \left[\frac{1}{k} \sum_{j=1}^{k} \frac{p_{\theta}(\mathbf{x}, \mathbf{z}^{(j)})}{q(\mathbf{z}^{(j)})} \right] = p_{\theta}(\mathbf{x})$$

Estimating log-likelihoods

Likelihood function $p_{\theta}(\mathbf{x})$ for Partially Observed Data is hard to compute:

$$p_{\theta}(\mathbf{x}) = \sum_{\text{All possible values of } \mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z}) = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right]$$

Monte Carlo to the rescue:

- **1** Sample $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(k)}$ from $q(\mathbf{z})$
- Approximate expectation with sample average (unbiased estimator):

$$p_{ heta}(\mathbf{x}) pprox rac{1}{k} \sum_{j=1}^{k} rac{p_{ heta}(\mathbf{x}, \mathbf{z}^{(j)})}{q(\mathbf{z}^{(j)})}$$

Recall that for training, we need the *log*-likelihood log ($p_{\theta}(\mathbf{x})$). We could estimate it as:

$$\log\left(p_{ heta}(\mathbf{x})
ight)pprox\log\left(rac{1}{k}\sum_{j=1}^{k}rac{p_{ heta}(\mathbf{x},\mathbf{z}^{(j)})}{q(\mathbf{z}^{(j)})}
ight)\overset{k=1}{pprox}\log\left(rac{p_{ heta}(\mathbf{x},\mathbf{z}^{(1)})}{q(\mathbf{z}^{(1)})}
ight)$$

However, it's clear that $\mathbb{E}_{\mathbf{z}^{(1)} \sim q(\mathbf{z})} \left[\log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z}^{(1)})}{q(\mathbf{z}^{(1)})} \right) \right] \neq \log \left(\mathbb{E}_{\mathbf{z}^{(1)} \sim q(\mathbf{z})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z}^{(1)})}{q(\mathbf{z}^{(1)})} \right] \right)$

Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

$$\log \left(\sum_{\mathbf{z} \in \mathcal{Z}} p_{\theta}(\mathbf{x}, \mathbf{z}) \right) = \log \left(\sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z}) \right) = \log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right] \right)$$

- $\log()$ is a concave function. $\log(px + (1-p)x') \ge p\log(x) + (1-p)\log(x')$.
- Idea: use Jensen Inequality (for concave functions)

$$\log\left(\mathbb{E}_{\mathsf{z}\sim q(\mathsf{z})}\left[f(\mathsf{z})\right]\right) = \log\left(\sum_{\mathsf{z}} q(\mathsf{z})f(\mathsf{z})\right) \geq \sum_{\mathsf{z}} q(\mathsf{z})\log f(\mathsf{z})$$

Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

$$\log \left(\sum_{\mathbf{z} \in \mathcal{Z}} p_{\theta}(\mathbf{x}, \mathbf{z}) \right) = \log \left(\sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z}) \right) = \log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right] \right)$$

- $\log()$ is a concave function. $\log(px + (1-p)x') \ge p\log(x) + (1-p)\log(x')$.
- Idea: use Jensen Inequality (for concave functions)

$$\log(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}[f(\mathbf{z})]) = \log(\sum_{\mathbf{z}} q(\mathbf{z}) f(\mathbf{z})) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log f(\mathbf{z}) = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}[\log f(\mathbf{z})]$$

Choosing
$$f(\mathbf{z}) = \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}$$

$$\log \left(\mathbb{E}_{\mathsf{z} \sim q(\mathsf{z})} \left[\frac{p_{\theta}(\mathsf{x}, \mathsf{z})}{q(\mathsf{z})} \right] \right) \geq \mathbb{E}_{\mathsf{z} \sim q(\mathsf{z})} \left[\log \left(\frac{p_{\theta}(\mathsf{x}, \mathsf{z})}{q(\mathsf{z})} \right) \right]$$

Called Evidence Lower Bound (ELBO).

Variational inference

- Suppose q(z) is any probability distribution over the hidden variables
- Evidence lower bound (ELBO) holds for any q

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right)$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) - \sum_{\mathbf{z}} q(\mathbf{z}) \log q(\mathbf{z})$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) + H(q)$$

• Equality holds if $q = p(\mathbf{z}|\mathbf{x}; \theta)$

$$\log p(\mathbf{x}; \theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

• (Aside: This is what we compute in the E-step of the EM algorithm)

Plan for today

- Latent Variable Models
 - Learning deep generative models
 - Stochastic optimization:
 - Reparameterization trick
 - Inference Amortization

Variational Autoencoder

A mixture of an infinite number of Gaussians:

- $\mathbf{0}$ $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, I)$
- ② $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
- **3** Even though $p(\mathbf{x} \mid \mathbf{z})$ is simple, the marginal $p(\mathbf{x})$ is very complex/flexible

Recap

- Latent Variable Models
 - Allow us to define complex models p(x) in terms of simple building blocks $p(x \mid z)$
 - Natural for unsupervised learning tasks (clustering, unsupervised representation learning, etc.)
 - No free lunch: much more difficult to learn compared to fully observed, autoregressive models because $p(\mathbf{x})$ is hard to evaluate (and optimize)

Variational inference

- Suppose q(z) is any probability distribution over the hidden variables
- Evidence lower bound (ELBO) holds for any q

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right)$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) - \sum_{\mathbf{z}} q(\mathbf{z}) \log q(\mathbf{z})$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) + H(q)$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) + H(q)$$

• Equality holds if $q = p(\mathbf{z}|\mathbf{x}; \theta)$

$$\log p(\mathbf{x}; \theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

• (Aside: This is what we compute in the E-step of the EM algorithm)

Variational Inference

• Suppose $q(\mathbf{z})$ is **any** probability distribution over the hidden variables. A little bit of algebra reveals

$$D_{\mathit{KL}}(q(\mathbf{z}) \| p(\mathbf{z} | \mathbf{x}; \theta)) = -\sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + \log p(\mathbf{x}; \theta) - H(q) \geq 0$$

• Evidence lower bound (ELBO) holds for any q

$$\log p(\mathbf{x}; \theta) \ge \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

• Equality holds if $q = p(\mathbf{z}|\mathbf{x}; \theta)$ because $D_{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}; \theta)) = 0$

$$\log p(\mathbf{x}; \theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

 Confirms our intuition that we seek likely completions z given the observed values (evidence) x.

Intractable Posteriors

- What if the posterior $p(\mathbf{z}|\mathbf{x};\theta)$ is intractable to compute? In a VAE this corresponds to "inverting" the neural networks $\mu_{\theta}, \Sigma_{\theta}$ defining $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$
- Suppose $q(\mathbf{z}; \phi)$ is a (tractable) probability distribution over the hidden variables parameterized by ϕ (variational parameters)
 - For example, a Gaussian with mean and covariance specified by ϕ $q(\mathbf{z};\phi) = \mathcal{N}(\phi_1,\phi_2)$
- Variational inference: pick ϕ so that $q(\mathbf{z}; \phi)$ is as close as possible to $p(\mathbf{z}|\mathbf{x}; \theta)$.

In the figure, the posterior $p(\mathbf{z}|\mathbf{x};\theta)$ (blue) is better approximated by $\mathcal{N}(2,2)$ (orange) than $\mathcal{N}(-4,0.75)$ (green)

The Evidence Lower bound

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi)) = \underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}}$$
$$\log p(\mathbf{x}; \theta) = \mathcal{L}(\mathbf{x}; \theta, \phi) + D_{KI}(q(\mathbf{z}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta))$$

The better $q(\mathbf{z}; \phi)$ can approximate the posterior $p(\mathbf{z}|\mathbf{x}; \theta)$, the smaller $D_{KL}(q(\mathbf{z}; \phi) || p(\mathbf{z}|\mathbf{x}; \theta))$ we can achieve, the closer ELBO will be to $\log p(\mathbf{x}; \theta)$. Next: jointly optimize over θ and ϕ to maximize the ELBO over a dataset

Variational learning

 $\mathcal{L}(\mathbf{x}; \theta, \phi_1)$ and $\mathcal{L}(\mathbf{x}; \theta, \phi_2)$ are both lower bounds. We want to jointly optimize θ and ϕ

The Evidence Lower bound applied to the entire dataset

• Evidence lower bound (ELBO) holds for any $q(z; \phi)$

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi)) = \underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}}$$

Maximum likelihood learning (over the entire dataset):

$$\ell(\theta; \mathcal{D}) = \sum_{\mathbf{x}^i \in \mathcal{D}} \log p(\mathbf{x}^i; \theta) \ge \sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$$

Therefore

$$\max_{\theta} \ell(\theta; \mathcal{D}) \geq \max_{\theta, \phi^1, \cdots, \phi^M} \sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$$

• Note that we use different *variational parameters* ϕ^i for every data point \mathbf{x}^i , because the true posterior $p(\mathbf{z}|\mathbf{x}^i;\theta)$ is different across datapoints \mathbf{x}^i

A variational approximation to the posterior

- Assume $p(\mathbf{z}, \mathbf{x}; \theta)$ is close to $p_{\text{data}}(\mathbf{z}, \mathbf{x})$. \mathbf{z} denotes the top half of the image (assumed to be latent)
- Suppose $q(\mathbf{z}; \phi)$ is a (tractable) probability distribution over the hidden variables \mathbf{z} parameterized by ϕ (variational parameters)

$$q(\mathbf{z};\phi) = \prod_{ ext{unobserved variables } z_i} (\phi_i)^{z_i} (1-\phi_i)^{(1-z_i)}$$

- Is $\phi_i = 0.5 \ \forall i$ a good approximation to the posterior $p(\mathbf{z}|\mathbf{x};\theta)$? No
- Is $\phi_i = 1 \ \forall i$ a good approximation to the posterior $p(\mathbf{z}|\mathbf{x};\theta)$? No
- Is $\phi_i \approx 1$ for pixels i corresponding to the top part of digit ${\bf 9}$ a good approximation? Yes
- Note: not true if $p(\mathbf{z}, \mathbf{x}; \theta)$ is far from $p_{\text{data}}(\mathbf{z}, \mathbf{x})$, i.e., at the beginning of learning

Learning via stochastic variational inference (SVI)

• Optimize $\sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$ as a function of $\theta, \phi^1, \cdots, \phi^M$ using (stochastic) gradient descent

$$\mathcal{L}(\mathbf{x}^{i}; \theta, \phi^{i}) = \sum_{\mathbf{z}} q(\mathbf{z}; \phi^{i}) \log p(\mathbf{z}, \mathbf{x}^{i}; \theta) + H(q(\mathbf{z}; \phi^{i}))$$
$$= E_{q(\mathbf{z}; \phi^{i})}[\log p(\mathbf{z}, \mathbf{x}^{i}; \theta) - \log q(\mathbf{z}; \phi^{i})]$$

- Initialize $\theta, \phi^1, \cdots, \phi^M$
- ② Randomly sample a data point \mathbf{x}^i from \mathcal{D}
- **o** Optimize $\mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$ as a function of ϕ^i :
 - $\bullet \quad \mathsf{Repeat} \ \phi^i = \phi^i + \eta \nabla_{\phi^i} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$
 - $m{Q}$ until convergence to $\dot{\phi}^{i,*} pprox rg \max_{\phi} \mathcal{L}(\mathbf{x}^i; heta, \phi)$
- **o** Compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}^i; \theta, \phi^{i,*})$
- **1** Update θ in the gradient direction. Go to step 2
- How to compute the gradients? There might not be a closed form solution for the expectations. So we use Monte Carlo sampling

Learning Deep Generative models

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi))$$
$$= E_{q(\mathbf{z}; \phi)}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q(\mathbf{z}; \phi)]$$

- Note: dropped i superscript from ϕ^i for compactness
- To evaluate the bound, sample $\mathbf{z}^1, \dots, \mathbf{z}^K$ from $q(\mathbf{z}; \phi)$ and estimate

$$E_{q(\mathbf{z};\phi)}[\log p(\mathbf{z},\mathbf{x};\theta) - \log q(\mathbf{z};\phi)] \approx \frac{1}{K} \sum_{k} \log p(\mathbf{z}^k,\mathbf{x};\theta) - \log q(\mathbf{z}^k;\phi))$$

- ullet Key assumption: $q(\mathbf{z};\phi)$ is tractable, i.e., easy to sample from and evaluate
- Want to compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}; \theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi)$
- ullet The gradient with respect to heta is easy

$$\nabla_{\theta} E_{q(\mathbf{z};\phi)}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q(\mathbf{z}; \phi)] = E_{q(\mathbf{z};\phi)}[\nabla_{\theta} \log p(\mathbf{z}, \mathbf{x}; \theta)]$$

$$\approx \frac{1}{K} \sum_{k} \nabla_{\theta} \log p(\mathbf{z}^{k}, \mathbf{x}; \theta)$$

Learning Deep Generative models

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi))$$
$$= E_{q(\mathbf{z}; \phi)}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q(\mathbf{z}; \phi)]$$

- Want to compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}; \theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi)$
- \bullet The gradient with respect to ϕ is more complicated because the expectation depends on ϕ
- We still want to estimate with a Monte Carlo average
- Later in the course we'll see a general technique called REINFORCE (from reinforcement learning)
- For now, a better but less general alternative that only works for continuous
 z (and only some distributions)

Reparameterization

ullet Want to compute a gradient with respect to ϕ of

$$E_{q(\mathbf{z};\phi)}[r(\mathbf{z})] = \int q(\mathbf{z};\phi)r(\mathbf{z})d\mathbf{z}$$

where z is now continuous

- Suppose $q(\mathbf{z}; \phi) = \mathcal{N}(\mu, \sigma^2 I)$ is Gaussian with parameters $\phi = (\mu, \sigma)$. These are equivalent ways of sampling:
 - Sample $\mathbf{z} \sim q(\mathbf{z}; \phi)$
 - Sample $\epsilon \sim \mathcal{N}(0, I)$, $\mathbf{z} = \mu + \sigma \epsilon = g(\epsilon; \phi)$. g is deterministic!
- Using this equivalence we compute the expectation in two ways:

$$E_{\mathbf{z} \sim q(\mathbf{z};\phi)}[r(\mathbf{z})] = \int q(\mathbf{z};\phi)r(\mathbf{z})d\mathbf{z} = E_{\epsilon \sim \mathcal{N}(0,l)}[r(g(\epsilon;\phi))] = \int \mathcal{N}(\epsilon)r(\mu + \sigma\epsilon)d\epsilon$$
$$\nabla_{\phi}E_{q(\mathbf{z};\phi)}[r(\mathbf{z})] = \nabla_{\phi}E_{\epsilon}[r(g(\epsilon;\phi))] = E_{\epsilon}[\nabla_{\phi}r(g(\epsilon;\phi))]$$

- Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. ϕ and ϵ is easy to sample from (backpropagation)
- $E_{\epsilon}[\nabla_{\phi} r(g(\epsilon; \phi))] \approx \frac{1}{K} \sum_{k} \nabla_{\phi} r(g(\epsilon^{k}; \phi))$ where $\epsilon^{1}, \dots, \epsilon^{K} \sim \mathcal{N}(0, I)$.
- Typically much lower variance than REINFORCE

Learning Deep Generative models

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi))$$
$$= E_{q(\mathbf{z}; \phi)} [\underbrace{\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q(\mathbf{z}; \phi)}_{r(\mathbf{z}, \phi)}]$$

- Our case is slightly more complicated because we have $E_{q(\mathbf{z};\phi)}[r(\mathbf{z},\phi)]$ instead of $E_{q(\mathbf{z};\phi)}[r(\mathbf{z})]$. Term inside the expectation also depends on ϕ .
- Can still use reparameterization. Assume ${\bf z}=\mu+\sigma\epsilon={\bf g}(\epsilon;\phi)$ like before. Then

$$E_{q(\mathbf{z};\phi)}[r(\mathbf{z},\phi)] = E_{\epsilon}[r(g(\epsilon;\phi),\phi)]$$

$$\approx \frac{1}{K} \sum_{k} r(g(\epsilon^{k};\phi),\phi)$$

and use chain rule for the gradient.

Amortized Inference

$$\max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D}) \geq \max_{\boldsymbol{\theta}, \phi^1, \cdots, \phi^M} \sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \boldsymbol{\theta}, \phi^i)$$

- So far we have used a set of variational parameters ϕ^i for each data point \mathbf{x}^i . Does not scale to large datasets.
- Amortization: Now we learn a single parametric function f_{λ} that maps each \mathbf{x} to a set of (good) variational parameters. Like doing regression on $\mathbf{x}^i \mapsto \phi^{i,*}$
 - For example, if $q(\mathbf{z}|\mathbf{x}^i)$ are Gaussians with different means μ^1, \dots, μ^m , we learn a **single** neural network f_{λ} mapping \mathbf{x}^i to μ^i
- ullet We approximate the posteriors $q(\mathbf{z}|\mathbf{x}^i)$ using this distribution $q_{\lambda}(\mathbf{z}|\mathbf{x})$

A variational approximation to the posterior

- Assume $p(\mathbf{z}, \mathbf{x}^i; \theta)$ is close to $p_{\text{data}}(\mathbf{z}, \mathbf{x}^i)$. Suppose \mathbf{z} captures information such as the digit identity (label), style, etc.
- Suppose $q(\mathbf{z}; \phi^i)$ is a (tractable) probability distribution over the hidden variables \mathbf{z} parameterized by ϕ^i
- ullet For each ${f x}^i$, need to find a good $\phi^{i,*}$ (via optimization, expensive).
- Amortized inference: learn how to map \mathbf{x}^i to a good set of parameters ϕ^i via $q(\mathbf{z}; f_{\lambda}(\mathbf{x}^i))$. f_{λ} learns how to solve the optimization problem for you
- ullet In the literature, $q(\mathbf{z}; f_{\lambda}(\mathbf{x}^i))$ often denoted $q_{\phi}(\mathbf{z}|\mathbf{x})$

Learning with amortized inference

• Optimize $\sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi)$ as a function of θ, ϕ using (stochastic) gradient descent

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = \sum_{\mathbf{z}} q_{\phi}(\mathbf{z}|\mathbf{x}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q_{\phi}(\mathbf{z}|\mathbf{x}))$$
$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

- **1** Initialize $\theta^{(0)}, \phi^{(0)}$
- ② Randomly sample a data point \mathbf{x}^i from \mathcal{D}
- **3** Compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}^i; \theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\mathbf{x}^i; \theta, \phi)$
- lacktriangledown Update $heta,\phi$ in the gradient direction
- How to compute the gradients? Use reparameterization like before

Autoencoder perspective

$$\begin{split} \mathcal{L}(\mathbf{x}; \theta, \phi) &= & E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))] \\ &= & E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))] \\ &= & E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \end{split}$$

- **1** Take a data point \mathbf{x}^i , map it to $\hat{\mathbf{z}}$ by sampling from $q_{\phi}(\mathbf{z}|\mathbf{x}^i)$ (encoder). Sample from a Gaussian with parameters $(\mu, \sigma) = encoder_{\phi}(\mathbf{x}^i)$
- **2** Reconstruct $\hat{\mathbf{x}}$ by sampling from $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$ (decoder). Sample from a Gaussian with parameters $decoder_{\theta}(\hat{\mathbf{z}})$

What does the training objective $\mathcal{L}(\mathbf{x}; \theta, \phi)$ do?

- First term encourages $\hat{\mathbf{x}} \approx \mathbf{x}^i$ (\mathbf{x}^i likely under $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$). Autoencoding loss!
- Second term encourages \hat{z} to have a distribution similar to the prior p(z)

Autoencoder perspective

- ① Alice goes on a space mission and needs to send images to Bob. Given an image \mathbf{x}^i , she (stochastically) compresses it using $\hat{\mathbf{z}} \sim q_\phi(\mathbf{z}|\mathbf{x}^i)$ obtaining a message $\hat{\mathbf{z}}$. Alice sends the message $\hat{\mathbf{z}}$ to Bob
- ② Given $\hat{\mathbf{z}}$, Bob tries to reconstruct the image using $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$
 - This scheme works well if $E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z};\theta)]$ is large
 - The term $D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$ forces the distribution over messages to have a specific shape $p(\mathbf{z})$. If Bob knows $p(\mathbf{z})$, he can generate realistic messages $\hat{\mathbf{z}} \sim p(\mathbf{z})$ and the corresponding image, as if he had received them from Alice!