Guía de Ejercicios Resueltos: Transferencia de Calor

Asignatura: Termodinámica Automotriz

Unidad 4: Procesos Termodinámicos y de Transferencia de Calor

Introducción

Esta guía de ejercicios está diseñada para reforzar su comprensión de los mecanismos de transferencia de calor: conducción, convección y radiación. La resolución de estos problemas le permitirá aplicar las leyes fundamentales y desarrollar sus habilidades de cálculo en contextos relevantes para la ingeniería automotriz. Cada ejercicio incluye una solución detallada paso a paso para facilitar su aprendizaje.

Ejercicio 1: Conducción a través de una Pared Plana

Una pared de un cilindro de motor de $0.5\,cm$ de espesor está hecha de un material con una conductividad térmica de $k=45\,W/m\cdot K$. La temperatura de la superficie interior de la pared es de $800^{\circ}C$ y la de la superficie exterior es de $150^{\circ}C$. El área de la superficie de la pared es de $0.01\,m^2$.

Calcule la tasa de transferencia de calor por conducción a través de esta pared.

Solución Detallada

Para calcular la tasa de transferencia de calor por conducción a través de una pared plana, utilizamos la Ley de Fourier:

$$Q_{cond} = -kA\frac{dT}{dx}$$

Para una pared plana, el gradiente de temperatura $\frac{dT}{dx}$ se puede aproximar como $\frac{\Delta T}{\Delta x}$, donde $\Delta T = T_{exterior} - T_{interior}$ y Δx es el espesor de la pared. Sin embargo, para obtener un valor positivo de Q_{cond} (que representa el flujo de calor desde la temperatura más alta a la más baja), es más práctico usar la diferencia de temperatura positiva $(T_{interior} - T_{exterior})$.

$$Q_{cond} = kA \frac{T_{interior} - T_{exterior}}{\Delta x}$$

Datos:

- Conductividad térmica $(k) = 45 W/m \cdot K$
- Espesor $(\Delta x) = 0.5 \, cm = 0.005 \, m$
- Temperatura interior $(T_{interior}) = 800^{\circ}C$
- Temperatura exterior $(T_{exterior}) = 150^{\circ}C$
- Área $(A) = 0.01 \, m^2$

Cálculo:

$$Q_{cond} = (45 \, W/m \cdot K)(0.01 \, m^2) \frac{(800 - 150) \, ^{\circ}C}{0.005 \, m}$$

$$Q_{cond} = (0.45 \, W/K) \frac{650 \, ^{\circ} C}{0.005 \, m}$$

$$Q_{cond} = 0.45 \times 130,000 W = 58,500 W = 58,5 kW$$

La tasa de transferencia de calor por conducción a través de la pared del cilindro es de $58,5 \, kW$.

Ejercicio 2: Convección en un Radiador de Automóvil

Un radiador de automóvil tiene una superficie de $0.8\,m^2$ y su temperatura superficial promedio es de $90^{\circ}C$. El aire que fluye a través del radiador está a $25^{\circ}C$. Si el coeficiente de transferencia de calor por convección es de $120\,W/m^2\cdot K$, ¿cuál es la tasa de transferencia de calor por convección del radiador al aire?

Solución Detallada

Para calcular la tasa de transferencia de calor por convección, utilizamos la Ley de Enfriamiento de Newton:

$$Q_{conv} = hA(T_s - T_{\infty})$$

Datos:

- Coeficiente de transferencia de calor por convección (h) = $120 W/m^2 \cdot K$
- Área $(A) = 0.8 \, m^2$
- Temperatura de la superficie $(T_s) = 90^{\circ}C$
- Temperatura del fluido $(T_{\infty}) = 25^{\circ}C$

Cálculo:

$$Q_{conv} = (120 \, W/m^2 \cdot K)(0.8 \, m^2)(90 - 25) \, ^{\circ}C$$

$$Q_{conv} = (96 \, W/K)(65 \, ^{\circ}C)$$

$$Q_{conv} = 6240 \, W = 6.24 \, kW$$

La tasa de transferencia de calor por convección del radiador al aire es de $6,24 \, kW$.

Ejercicio 3: Radiación de un Tubo de Escape

Un tubo de escape de acero tiene una superficie exterior con una emisividad de 0.75 y un área de $0.2 \, m^2$. La temperatura de la superficie del tubo es de $400^{\circ}C$. Los alrededores (ambiente del motor) están a $80^{\circ}C$. Calcule la tasa neta de transferencia de calor por radiación desde el tubo de escape a los alrededores.

Solución Detallada

Para calcular la tasa neta de transferencia de calor por radiación, utilizamos la Ley de Stefan-Boltzmann. Es crucial convertir las temperaturas a Kelvin.

$$Q_{rad} = \epsilon \sigma A (T_s^4 - T_{alrededores}^4)$$

Datos:

- Emisividad $(\epsilon) = 0.75$
- Constante de Stefan-Boltzmann (σ) = $5.67 \times 10^{-8} \, W/m^2 \cdot K^4$
- Área $(A) = 0.2 \, m^2$
- Temperatura de la superficie (T_s) = $400^{\circ}C = 400 + 273,15 = 673,15 K$
- Temperatura de los alrededores ($T_{alrededores}$) = $80^{\circ}C = 80 + 273,15 = 353,15 K$

Cálculo:

$$Q_{rad} = (0.75)(5.67 \times 10^{-8} W/m^2 \cdot K^4)(0.2 m^2)((673.15 K)^4 - (353.15 K)^4)$$
$$Q_{rad} = (0.75)(5.67 \times 10^{-8})(0.2)(2.05 \times 10^{11} - 1.56 \times 10^{10})$$
$$Q_{rad} = (8.505 \times 10^{-9})(1.894 \times 10^{11})$$

$$Q_{rad}=1610.8\,W\approx 1.61\,kW$$

La tasa neta de transferencia de calor por radiación desde el tubo de escape es de aproximadamente $1{,}61\,kW$.