

#### Announcements

 Explanation of midterm grades at end of class (remind me!)

- Reading
  - Today: C 18.1-18.2 NLP
  - Next week: C 18.3, 18.4, NLP
- HW 2 will be returned next week
- My office hours today: 4:30-5:30

### Semantic interpretation

- Semantic role labeling, framenet parsers,
   AMT parsers
  - Take syntactic tree as input, produce a semantic representation as output
- Information extraction
  - Produce relations, events, entities
- Parsing directly into programming language (language as action)
  - Percy Liang: using language to represent ifthen recipes (E.g., controlling smart phones)
  - Large online repository of english/code

# Multilingual Users

Content languages for websites

Percentage of Internet users by language



April 2013



### Google Translate

| Afrikaan<br>s   | Bulgaria<br>n | Greek         | German            | Igno           | Kurdish           | Malayal<br>m  | Polish          | sindhi        | Tamil          |
|-----------------|---------------|---------------|-------------------|----------------|-------------------|---------------|-----------------|---------------|----------------|
| Albanian        | Catalan       | English       | Gujarati          | Indonesi<br>an | Kyrgyz            | Maltese       | Portugue<br>se  | Sinhala       | Telugu         |
| Amharic         | Cebuano       | Esperant<br>o | HaitianCr<br>eole | Irish          | Lao               | Maori         | Punjabi         | Slovak        | Thai           |
| Arabic          | Chichew<br>a  | Estonian      | Hausa             | Italian        | Latin             | Marathi       | Romania<br>n    | Sloveian      | Turkish        |
| Armenia<br>n    | Chinese       | Filipino      | Hawaiian          | Japanese       | Latvian           | Mongolia<br>n | Russian         | Somali        | Ukranian       |
| Azerbaija<br>ni | Corsican      | Finnish       | Hebrew            | Javanese       | Lithuania<br>n    | Myanma<br>r   | Samoan          | Spanish       | Urdu           |
| Basque          | Croatian      | French        | Hindi             | Kannada        | Luxembo<br>urgish | Nepala        | Scots<br>Gaelic | Sundane<br>se | Uzbek          |
| Belarusia<br>n  | Czech         | Frisian       | Hmong             | Kazakh         | Macedon<br>ian    | Norwegi<br>an | Serbian         | Swahili       | Veitnam<br>ese |
| Bengali         | Danish        | Galician      | Hungaria<br>n     | Khmer          | Malagasy          | Pashto        | Sesotho         | Swedish       | welsh          |
| Bosnian         | Dutch         | Georgian      | Icelandic         | Korean         | Malay             | Persian       | Shona           | Tajik         | Xhosa          |

# Thank you for your attention! Questions?

Romance languages handled well

 Similar language pairs handled well (e.g., Spanish, Portuguese)

Formal genres handled better



Still many problems!

# Today

Multilingual Challenges for MT

- MT Approaches
  - Statistical
  - Neural net (Nov 6th)
- MT Evaluation

# Today

Multilingual Challenges for MT

- MT Approaches
  - Statistical
  - Neural net

MT Evaluation

# Multilingual Challenges

- Orthographic Variations
  - Ambiguous spelling

- Ambiguous word boundaries
  - 美单方削减中国纺织品出口配额
- Lexical Ambiguity
  - Bank → بنك (financial) vs. ضفة (river)
  - Eat → essen (human) vs. fressen (animal)

# Multilingual Challenges Morphological Variations

Affixation vs. Root+Pattern

| write | <b>→</b>    | written | بده | <b>→</b> | مكتوب |
|-------|-------------|---------|-----|----------|-------|
| kill  | <b>&gt;</b> | killed  | قتل | <b>→</b> | مقتول |
| do    | <b>&gt;</b> | done    | فعل | <b>→</b> | مفعول |

Tokenization



| And the cars    | <b>→</b> | and the cars   |
|-----------------|----------|----------------|
| والسيارات       | <b>→</b> | w Al SyArAt    |
| Et les voitures | <b>→</b> | et le voitures |

Slide from Nizar Habash

# Translation Divergences conflation



انه تسل

I-am-not here

I am not here

Je <u>ne</u> suis <u>pas</u> ici I <u>not</u> am <u>not</u> here

### **Translation Divergences**

| English | John swam across the river quickly                                                                                        |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Spanish | Juan cruzó rapidamente el río nadando  Gloss: John crossed fast the river swimming                                        |  |  |  |  |
| Arabic  | اسرع جون عبور النهر سباحة Gloss: sped john crossing the-river swimming                                                    |  |  |  |  |
| Chinese | 约翰 快速 地 游 过 这 条 河 Gloss: John quickly (DE) swam cross the (Quantifier) river                                              |  |  |  |  |
| Russian | Джон быстро переплыл реку Gloss: John quickly cross-swam river                                                            |  |  |  |  |
| Chinese | Gloss: sped john crossing the-river swimming 约翰 快速 地 游 过 这 条 河 Gloss: John quickly (DE) swam cross the (Quantifier) river |  |  |  |  |

Language Differences - vocabulary



## Language Differences - Syntax

- Word order
  - SVO: English, Mandarin
  - VSO: Irish, Classical Arabic
  - SOV: Hindi, Japanese
- Word order in phrases (Fr.)
  - la maison bleue, the blue house
- Word order in sentences (Jap.)
  - I like to drink coffee
  - watashi wa kohii o nomu no ga suki desu
  - I-subj coffee-obj drink-dat-rheme like
- Prepositions (Jap.)
  - to Mariko, Mariko-ni

# Today

Multilingual Challenges for MT

- MT Approaches
  - Statistical

MT Evaluation

# MT Approaches MT Pyramid

#### I (Interlingua)



# String-to-String Translation



### **MT Approaches**

#### **Gisting Example**



#### Phrase-Based Translation



#### Tree-to-Tree Translation



#### **MT Approaches**

#### Transfer Example

- Transfer Lexicon
  - Map SL structure to TL structure



X puso mantequilla en Y

X buttered Y

# Tree-to-String Translation



# MT Approaches MT Pyramid



#### AMR characteristics

- Rooted, labeled graphs
- Abstract away from syntactic differences
  - He described her as a genius
  - His description of her: genius
  - She was a genius according to his description
- Use Propbank framesets
  - "bond investor": invest-01
- Heavily biased towards English

- Variables (or nodes) for entities, events, properties, states
- Leaf nodes are labeled with concepts:
  - (b/boy) an instance of the concept boy
- Relations link entities
  - (d/die-01 :location(p/park)): there was a death in the park
- AMR concepts
  - English words (e.g., boy), Propbank framesets (e.g., want-01) or special keywords (entity-types, quantities or conjunctions)

#### AMR relations

- ~100 relations
- Frame arguments
  - Arg0, arg1, arg2, arg3, arg4, arg5 (Propbank)
- General semantic relations
  - :Accompanier, :age, :beneficiary, :cause, :comparedto, :concession, :condition, :consistof, :degree, :destination, :direction, : domain, :duration, :employedby, :example, :extent, :frequency, :instrument, :li, :location, :manner, :m edium, :mod, :mode, :name, :part, :path, :polarity, :poss, :purpose, :sour ce, :subevent, :subset, :time, :topic, :value.
- Relations for quantity
  - :quant, :unit, :scale
- Relations for date entity
  - :day, :month, :year, :weekday, :time, :timezone, :quarter,:dayperiod, :se ason, :year2, :decade, :century, :calendar, :era.
- Relations for lists
  - :op1, :op2, .... :op10
- Plus inverses (e.g., :arg0-of, :location-of)

#### General semantic relations

- Non-core relations
- (s :hum-02
  - :arg0 (s2 / soldier)
  - :beneficiary (g / girl)
  - :time (w / walk-01
    - :arg0 g
    - :destination (t/ town)))
- The soldier hummed to the girl as she walked to town.

#### Inverse relations

In order to obtain rooted structures

```
(s / sing-01:arg0 (b /boy:source (c / college))
```

The boy from the college sang.

- (b / boy
  - :arg0-of (s / sing-01):source (c / college))

the college boy who sang

# Modals and Negation

 Negation is represented with :polarity and modality is represented with concepts

# MT Approaches MT Pyramid



# Today

Multilingual Challenges for MT

- MT Approaches
  - Statistical
  - Neural net

MT Evaluation

# Translation as Decoding

- "One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'
  - Warren Weaver, "Translation (1955)"

# The first parallel corpus: The Rosetta Stone





Carved in 196 BC in Egypt
Deciphered by Champollion in 1822
Mixture of Egyptian (hieroglyphs and Demotic) and Greek

http://www.ancientegypt.co.uk/writing/rosetta.html

# Europarl: A Parallel Corpus for Statistical Machine Translation

- Proceedings of the European Parliament
- 21 European languages
  - Romanic (French, Italian, Spanish, Portuguese, Romanian), Germanic (English, Dutch, German, Danish, Swedish), Slavik (Bulgarian, Czech, Polish, Slovak, Slovene), Finni-Ugric (Finnish, Hungarian, Estonian), Baltic (Latvian, Lithuanian), and Greek
- 60 million words/language
- Must be aligned first

Koehn, MT Summit, 2005 http://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.pdf **Danish:** det er næsten en personlig rekord for mig dette efterår . **German:** das ist für mich fast persönlicher rekord in diesem herbst . **Greek:** πρόκειται για το προσωπικό μου ρεκόρ αυτό το φθινόπωρο . **English** that is almost a personal record for me this autumn! **Spanish:** es la mejor marca que he alcanzado este otoño . **Finnish:** se on melkein minun ennätykseni tänä syksynä! **French:** c ' est pratiquement un record personnel pour moi , cet automne! **Italian:** e ' quasi il mio record personale dell ' autunno . **Dutch:** dit is haast een persoonlijk record deze herfst .

Portuguese: é quase o meu recorde pessoal deste semestre!

Swedish: det är nästan personligt rekord för mig denna höst!

Figure 2: One sentence aligned across 11 languages

Koehn, MT Summit, 2005 http://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.pdf

# What other parallel corpora can you think of?

#### **Statistical MT**

#### Noisy Channel Model



#### Statistical MT

#### Translate from French: "une fleur rouge"?

|                  | p(e) | p(f e) | p(e)*p(f e) |
|------------------|------|--------|-------------|
| 1. a flower red  |      |        |             |
| 2. red flower a  |      |        |             |
| 3. flower red a  |      |        |             |
| 4. a red dog     |      |        |             |
| 5. dog cat mouse |      |        |             |
| 6. a red flower  |      |        |             |

#### Which phrases have high p(e)

a flower red

red flower a

flower red a

a red dog

Dog cat mouse

a red flower

#### Statistical MT

#### Translate from French: "une fleur rouge"?

|                  | p(e) | p(f e) | p(e)*p(f e) |
|------------------|------|--------|-------------|
| 1. a flower red  | Low  |        |             |
| 2. red flower a  | Low  |        |             |
| 3. flower red a  | Low  |        |             |
| 4. a red dog     | High |        |             |
| 5. dog cat mouse | Low  |        |             |
| 6. a red flower  | High |        |             |

# Which phrases have high probability under p(f|e)

A flower red red flower a flower red a a red dog dog cat mouse a red flower

#### Statistical MT

#### Translate from French: "une fleur rouge"?

|                  | p(e) | p(f e) | p(e)*p(f e) |
|------------------|------|--------|-------------|
| 1. a flower red  | Low  | High   |             |
| 2. red flower a  | Low  | High   |             |
| 3. flower red a  | Low  | High   |             |
| 4. a red dog     | High | Low    |             |
| 5. dog cat mouse | Low  | Low    |             |
| 6. a red flower  | High | High   |             |

#### Statistical MT

#### Translate from French: "une fleur rouge"?

|                  | p(e) | p(f e) | p(e)*p(f e) |
|------------------|------|--------|-------------|
| 1. a flower red  | Low  | High   | Low         |
| 2. red flower a  | Low  | High   | Low         |
| 3. flower red a  | Low  | High   | Low         |
| 4. a red dog     | High | Low    | Low         |
| 5. dog cat mouse | Low  | Low    | Low         |
| 6. a red flower  | High | High   | High        |

# Statistical MT Automatic Word Alignment

- GIZA++
  - A statistical machine translation toolkit used to train word alignments.
  - Uses Expectation-Maximization with various constraints to bootstrap alignments

|       | Maria | no | dio | una b | ofetad | a a | la k | oruja | verde |
|-------|-------|----|-----|-------|--------|-----|------|-------|-------|
| Mary  |       |    |     |       |        |     |      |       |       |
| did   |       |    |     |       |        |     |      |       |       |
| not   |       |    |     |       |        |     |      |       |       |
| slap  |       |    |     |       |        |     |      |       |       |
| the   |       |    |     |       |        |     |      |       |       |
| green |       |    |     |       |        |     |      |       |       |
| witch |       |    |     |       |        |     |      |       |       |

# What constraints might be used to bootstrap alignment?

#### **Statistical MT**

#### IBM Model (Word-based Model)



#### IBM's EM trained models (1-5)

- Word translation
- Local alignment
- Fertilities
- Class-based alignment
- Re-ordering

All are separate models to train!

#### Model 1:

$$p(f, a \mid e) = p(a \mid e) * p(f \mid a, e) = \frac{c}{(n+1)^m} \prod_{j=1}^m p(f_j \mid e_{a_j})$$

#### Phrase-Based Statistical MT



- Foreign input segmented in to phrases
  - "phrase" is any sequence of words
- Each phrase is probabilistically translated into English
  - P(to the conference | zur Konferenz)
  - P(into the meeting | zur Konferenz)
- Phrases are probabilistically re-ordered

See [Koehn et al, 2003] for an intro.

This was state-of-the-art before neural MT

#### Word Alignment Induced Phrases



(Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green)

#### Word Alignment Induced Phrases



(Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green) (a la, the) (dió una bofetada a, slap the)

#### Word Alignment Induced Phrases



(Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green) (a la, the) (dió una bofetada a, slap the)

(Maria no, Mary did not) (no dió una bofetada, did not slap), (dió una bofetada a la, slap the) (bruja verde, green witch)

#### Word Alignment Induced Phrases



(Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green) (a la, the) (dió una bofetada a, slap the)

(Maria no, Mary did not) (no dió una bofetada, did not slap), (dió una bofetada a la, slap the) (bruja verde, green witch) (Maria no dió una bofetada, Mary did not slap) (a la bruja verde, the green witch) ...

#### Word Alignment Induced Phrases



(Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green)

(a la, the) (dió una bofetada a, slap the)

(Maria no, Mary did not) (no dió una bofetada, did not slap), (dió una bofetada a la, slap the) (bruja verde, green witch) (Maria no dió una bofetada, Mary did not slap)

(a la bruja verde, the green witch) ...

(Maria no dió una bofetada a la bruja verde, Mary did not slap the green witch)

#### Advantages of Phrase-Based SMT

- Many-to-many mappings can handle noncompositional phrases
- Local context is very useful for disambiguating
  - "Interest rate" → ...
  - "Interest in"  $\rightarrow$  ...
- The more data, the longer the learned phrases
  - Sometimes whole sentences

#### String to Tree Translation



Figure 1: Channel Operations: Reorder, Insert, and Translate

(Yamada and Knight 200)

# Clause restructuring (Collins et al.)

- Ich werde Ihnen den Report aushaendigen ... damit Sie den eventuell uebernehment koennen.
- I will pass\_on to\_you the report, so\_that you can adopt that perhaps
- Google translate: I will give you the report ... so that you can take over the eventuality.
- verb initial: that perhaps adopt can -> adopt that perhaps can
- verb second: so that you adopt...can -> so that you can adopt
- move subject: so that can you adopt -> so that you can adopt

```
(in German, split-prefix phrasal verbs are very common, e.g., "anrufen" -> "rufen sie bitte noch einmal an" – call right back please)
```

#### Synchronous Grammars

- Generate parse trees in parallel in two languages using different rules
- E.g.,
  - NP -> ADJ N (in English)
  - NP -> N ADJ (in Spanish)
- ITG (Inversion Transduction Grammar)
   [Wu 1995]
  - Don't allow all permutations in derivations
  - Only <> and [] are allowed

## MT Approaches Practical Considerations

- Resource Availability
  - Parsers and Generators
    - Input/Output compatability
  - Translation Lexicons
    - Word-based vs. Transfer/Interlingua
  - Parallel Corpora
    - Domain of interest
    - Bigger is better
- Time Availability
  - Statistical training, resource building

#### Today

Multilingual Challenges for MT

- MT Approaches
  - Statistical
  - Neural net (Thursday)
- MT Evaluation

#### MT Evaluation

- More art than science
- Wide range of Metrics/Techniques
  - interface, ..., scalability, ..., faithfulness, ...
     space/time complexity, ... etc.
- Automatic vs. Human-based
  - Dumb Machines vs. Slow Humans

#### Human-based Evaluation Example Adequacy Criteria

| 5 | contents of original sentence conveyed (might need minor corrections)                                                          |
|---|--------------------------------------------------------------------------------------------------------------------------------|
| 4 | contents of original sentence conveyed BUT errors in word order                                                                |
| 3 | contents of original sentence generally conveyed BUT errors in relationship between phrases, tense, singular/plural, etc.      |
| 2 | contents of original sentence not adequately conveyed, portions of original sentence incorrectly translated, missing modifiers |
| 1 | contents of original sentence not conveyed, missing verbs, subjects, objects, phrases or clauses                               |

#### Human-based Evaluation Example Fluency Criteria

| 5 | clear meaning, good grammar, terminology and sentence structure                                 |
|---|-------------------------------------------------------------------------------------------------|
| 4 | clear meaning BUT bad grammar, bad terminology or bad sentence structure                        |
| 3 | meaning graspable BUT ambiguities due to bad grammar, bad terminology or bad sentence structure |
| 2 | meaning unclear BUT inferable                                                                   |
| 1 | meaning absolutely unclear                                                                      |

#### Today: Crowdsourcing

- Amazon Mechanical Turk or CrowdFlower
- Create a HIT for each sentence
- Get multiple workers to rate
- Pay .01 to .10 per hit
- Complete an evaluation in hours (vs days/ weeks)
- Ethics?

(Papineni et al 2001)

- Bleu
  - BiLingual Evaluation Understudy
  - Modified n-gram precision with length penalty
  - Quick, inexpensive and language independent
  - Correlates highly with human evaluation
  - Bias against synonyms and inflectional variations

**Test Sentence** 

Gold Standard References

colorless green ideas sleep furiously

all dull jade ideas sleep irately drab emerald concepts sleep furiously colorless immature thoughts nap angrily

**Test Sentence** 

Gold Standard References

colorless green ideas sleep furiously

all dull jade <u>ideas</u> <u>sleep</u> irately drab emerald concepts <u>sleep</u> <u>furiously</u> <u>colorless</u> immature thoughts nap angrily

Unigram precision = 4/5

Slide from Nizar Habash

**Test Sentence** 

Gold Standard References

colorless green
green ideas
ideas sleep
sleep furiously

all dull jade <u>ideas</u> <u>sleep</u> irately drab emerald concepts <u>sleep</u> <u>furiously</u> colorless immature thoughts nap angrily

Unigram precision = 
$$4 / 5 = 0.8$$
  
Bigram precision =  $2 / 4 = 0.5$ 

Bleu Score = 
$$(a_1 a_2 ... a_n)^{1/n}$$
  
=  $(0.8 \times 0.5)^{1/2} = 0.6325 \rightarrow 63.25$ 

# BLEU scores for 110 translation systems trained on Europarl

| Source   | Target Language |      |      |      |      |      |      |      |      |      |      |
|----------|-----------------|------|------|------|------|------|------|------|------|------|------|
| Language | da              | de   | el   | en   | es   | fr   | fi   | it   | nl   | pt   | sv   |
| da       | -               | 18.4 | 21.1 | 28.5 | 26.4 | 28.7 | 14.2 | 22.2 | 21.4 | 24.3 | 28.3 |
| de       | 22.3            | -    | 20.7 | 25.3 | 25.4 | 27.7 | 11.8 | 21.3 | 23.4 | 23.2 | 20.5 |
| el       | 22.7            | 17.4 | -    | 27.2 | 31.2 | 32.1 | 11.4 | 26.8 | 20.0 | 27.6 | 21.2 |
| en       | 25.2            | 17.6 | 23.2 | -    | 30.1 | 31.1 | 13.0 | 25.3 | 21.0 | 27.1 | 24.8 |
| es       | 24.1            | 18.2 | 28.3 | 30.5 | -    | 40.2 | 12.5 | 32.3 | 21.4 | 35.9 | 23.9 |
| fr       | 23.7            | 18.5 | 26.1 | 30.0 | 38.4 | -    | 12.6 | 32.4 | 21.1 | 35.3 | 22.6 |
| fi       | 20.0            | 14.5 | 18.2 | 21.8 | 21.1 | 22.4 | -    | 18.3 | 17.0 | 19.1 | 18.8 |
| it       | 21.4            | 16.9 | 24.8 | 27.8 | 34.0 | 36.0 | 11.0 | -    | 20.0 | 31.2 | 20.2 |
| nl       | 20.5            | 18.3 | 17.4 | 23.0 | 22.9 | 24.6 | 10.3 | 20.0 | -    | 20.7 | 19.0 |
| pt       | 23.2            | 18.2 | 26.4 | 30.1 | 37.9 | 39.0 | 11.9 | 32.0 | 20.2 | -    | 21.9 |
| sv       | 30.3            | 18.9 | 22.8 | 30.2 | 28.6 | 29.7 | 15.3 | 23.9 | 21.9 | 25.9 | -    |

Table 2: BLEU scores for the 110 translation systems trained on the Europarl corpus

Koehn, MT Summit, 2005 http://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.pdf

| Language        | From | Into | Diff |
|-----------------|------|------|------|
| Danish (da)     | 23.4 | 23.3 | 0.0  |
| German (de)     | 22.2 | 17.7 | -4.5 |
| Greek (el)      | 23.8 | 22.9 | -0.9 |
| English (en)    | 23.8 | 27.4 | +3.6 |
| Spanish (es)    | 26.7 | 29.6 | +2.9 |
| French (fr)     | 26.1 | 31.1 | +5.1 |
| Finnish (fi)    | 19.1 | 12.4 | -6.7 |
| Italian (it)    | 24.3 | 25.4 | +1.1 |
| Dutch (nl)      | 19.7 | 20.7 | +1.1 |
| Portuguese (pt) | 26.1 | 27.0 | +0.9 |
| Swedish (sv)    | 24.8 | 22.1 | -2.6 |

Table 3: Average translation scores for systems when translating *from* and *into* a language. Note that German (de) and English (en) are similarly difficult to translate *from*, but English is much easier to translate *into*.

#### Bleu scores 2019 (teams in WMT)

#### Portuguese - > Spanish Spanish-> Portuguese

| BLEU | TER  |
|------|------|
| 66.6 | 19.7 |
| 59.9 | 25.3 |
| 59.1 | 25.5 |
| 58.6 | 25.1 |
| 58.4 | 25.3 |
| 56.9 | 26.9 |
| 54.9 | 28.4 |
| 54.8 | 29.8 |
| 52.3 | 32.9 |
| 52.3 | 32.8 |
|      |      |
| 51.9 | 30.5 |
| 49.7 | 32.1 |

#### Bleu scores 2019 (teams in WMT) Hindi -> Nepali Nepali -> Hindi

| BLEU | TER  |
|------|------|
| 53.7 | 36.3 |
| 11.5 | 79.1 |
| 11.1 | 79.7 |
| 08.2 | 77.1 |
| 08.2 | 77.2 |
| 03.7 | -    |
| 03.6 | -    |
| 03.5 | -    |
| 03.1 | -    |
| 02.8 | -    |
| 02.7 | -    |
| 01.6 | -    |
| 01.4 | -    |

| <b>BLEU</b> | TER  |
|-------------|------|
| 49.1        | 43.0 |
| 24.6        | 69.1 |
| 12.1        | 76.2 |
| 09.8        | 91.3 |
| 09.1        | 88.3 |
| 09.1        | 88.4 |
| 04.2        | -    |
| 03.6        | -    |
| 02.7        | -    |
| 01.4        | -    |
| 0           | -    |
| 0           | -    |
|             |      |

**Table 17:** Europarl v9 Parallel Corpus

|           | $Czech \leftrightarrow Polish$ |          | Spanish $\leftrightarrow$ Portuguese |          |
|-----------|--------------------------------|----------|--------------------------------------|----------|
| sentences | 631372                         |          | 1811977                              |          |
| words     | 12526659                       | 12641841 | 47832025                             | 46191472 |

**Table 18:** Wiki Titles v1 Parallel Corpus

|           | $Czech \leftrightarrow Polish$ |        | Spanish $\leftrightarrow$ Portuguese |         |
|-----------|--------------------------------|--------|--------------------------------------|---------|
| sentences | 248645                         |        | 621296                               |         |
| words     | 551084                         | 554335 | 1564668                              | 1533764 |

**Table 19:** JRC-Acquis Parallel Corpus

|           | $Czech \leftrightarrow Polish$ |          | Spanish ↔ Portuguese |          |
|-----------|--------------------------------|----------|----------------------|----------|
| sentences | 1311362                        |          | 1650126              |          |
| words     | 21409363                       | 21880482 | 35868080             | 33474269 |

**Table 20:** News Commentary v14 Parallel Corpus

|           | Spanish ↔ Portuguese |         |  |
|-----------|----------------------|---------|--|
| sentences | 48168                |         |  |
| words     | 1271324              | 1219031 |  |

Table 21: GNOME, Ubuntu, KDE Parallel Corpus

|           | Hindi ↔ Nepali |        |  |
|-----------|----------------|--------|--|
| sentences | 65505          |        |  |
| words     | 253216         | 222823 |  |

### **Automatic Evaluation Example**METEOR

(Lavie and Agrawal 2007)

- Metric for Evaluation of Translation with Explicit word Ordering
- Extended Matching between translation and reference
  - Porter stems, wordNet synsets
- Unigram Precision, Recall, parameterized F-measure
- Reordering Penalty
- Parameters can be tuned to optimize correlation with human judgments
- Not biased against "non-statistical" MT systems

#### Midterm grades

Available after class

• Mean: 69

• Median: 70.25

• Max: 95.5

• Min: 32.5

• STDEV: 14.04

Will be curved