

Plano para esta aula

Introdução ao modelo de Grafo ou Rede

• Grafos: conceitos elementares

2022/2023

SCC Berestino

Grafos e Redes

5

The memoria

Breve Introdução – Grafos e Redes

Na sua forma mais simples grafos são representações de objetos que se relacionam entre si. Formalmente a teoria dos grafos é uma área da Matemática discreta, com uma terminologia precisa.

É fácil de ver que uma rede pode ser representada por um grafo: a rede de amigos, da família, das ligações na rede social, das chamadas telefónicas...

Cada um destes exemplos é um grafo, em que os nós e as ligações ganham atributos semânticos, representando objetos reais ou abstratos.

SCLE UNFESTIGNE

Qualquer que seja o sistema considerado, é possível encontrar uma rede (grafo) que define as interacções entre os seus componentes.

Source: Albert Báràbasi: Network Science: Introduction

- O modelo de Grafo, ou Rede, representa conhecimento sobre iconetividade e interligações num sistema.
- Por exemplo, a rede elétrica é modelada através de um modelo de grafo, que é necessário para entender, por exemplo, como a **estrutura da rede real** afeta a robustez do sistema.
- O uso de *ferramentas* que avaliem o nível de interacção entre estrutura (e os processos dinâmicos que nela ocorrem) e o impacto de um corte na rede é uma área crítica para avaliação da robustez e escalabilidade.
- As "falhas de transporte" em redes (de transportes, de comunicação, infraestruturas) seguem leis que podem ser quantificadas, e até previstas, usando a Teoria de Grafos.

9

SCLe unresente

O facto de modelar sistemas reais como grafos é extremamente útil. Muitas aplicações necessitam representar conjuntos de ligações/relações entre pares de objetos, de modo a responder a questões tais como:

- Existe um caminho para ir de A para B? E qual o "melhor" caminho?
- Qual a menor distância entre 2 objetos?
- Quantos servidores são alcançáveis a partir deste?
- Qual é a minha rede de amigos?

Com o tipo abstrato de dados **Grafo/Rede**, conseguimos modelar os conjuntos de ligações, de modo a responder a estas e muitas outras situações.

11

Grafos - Introdução

Conceitos elementares:

- Definição de grafo e tipos de grafos
- Algumas das principais propriedades dos grafos

SCCE GARBETTANO

Definição de Grafo

- Um grafo G = (V, E) é um par ordenado, onde:
 - V é o conjunto dos vértices (ou nós)
 - E é o conjunto das arestas (ou arcos)

- Os vértices representam os objetos ou entidades que podem estar em ligação.
- As arestas representam a ligação entre os vértices.
- Uma aresta pode ter uma direção, indicando que a ligação se estabelece do nó origem para o nó destino.

2022/2023

14

SCC entering

Definições básicas:

Grafo não orientado: todas as ligações -arestas- entre objetos vértices- são bidirecionais • **Dígrafo**: grafo dirigido ou orientado, ou seja, cada arco tem um nó origem e um nó destino

dito sucessor

dito antecessor

Grafo orientado ou dígrafo

laço ou lacete

 Num digrafo, uma aresta costuma designar-se por arco e um vértice por nó.

Grafo bipartido: constituído dois subconjuntos de nós disjuntos e apenas existem arcos entre nós de subconjuntos diferentes.

SCC Meresum

Definições básicas

Grafo não pesado (non-weighted)

 Neste caso, as arestas (ou arcos) podem ser representadas por uma variável lógica (se não forem permitidas arestas paralelas) Grafo pesado (weighted)

Já neste caso, as arestas/arcos (ou os vértices/nós) podem possuir informação associada, representando um "peso" da ligação (ou do nó).

18

NSTRUTO UNIVERSITIES

Definições Básicas

Grau de um vértice: número de arestas incidentes no vértice

- Adjacência: o nó α diz-de adjacente ao nó b sse existe uma aresta (a,b)
- Denomina-se de laço ou lacete (tadpole ou selfloop) uma aresta com os seus extremos a iniciar e terminar no mesmo nó.
- Multiarestas: arestas paralelas que ligam os mesmos vértices (no mesmo sentido, no caso de um grafo dirigido).
- Um grafo que contém arestas paralelas chama-se um multigrafo.

Num grafo orientado, podemos definir **grau de entrada** e **grau de saída**

Definições Básicas

• Grafo **completo**: cada vértice está ligado **a todos** os outros

20

Definições básicas

- Em grafos não dirigidos, sem lacetes nem arestas paralelas, a densidade é a razão entre o número real de arestas e o número máximo possível de arestas dado o número de vértices, logo, um valor em [0, 1].
- Se n for o número de vértices e m for o número de arestas, a densidade de um grafo não orientado é dada por:

$$d = \frac{m}{\frac{n(n-1)}{2}}$$
 quantidade de arestas real

possívell

Exemplo:

SCLP DE DESCRISSON

Conceitos importantes

Conetividade, caminhos, ciclos e travessias Representações matemáticas

24

Conceitos importantes: caminho caminho: sequência de vértices • P2 = {u, w, x, y, w, v} = {(u, w), (w, x), (x, y), (y, w), (w, v)} = {c, e, g, f, d} • Caminho simples: caminho onde todos os vértices são distintos • P1 = {v, x, z} é um caminho simples Grafo G=(v, E) com: V={u, v, x, y, w, z} e E = {a, b, c, d, e, f, g, h, i, j}

SCCE WEEKE

Conceitos importantes: ciclo

- Ciclo: caminho fechado (começa e termina no mesmo vértice)
 - $C_2 = \{u, w, x, y, w, u\}$
- Ciclo simples: ciclo cujos vértices são todos diferentes (à excepção do inicial, que é também o final)
 - C₁ = {v, x, y, w, u, v}

20

28

Conceitos Básicos: conetividade e árvore

SCLe merce

 Grafo conexo: grafo não orientado onde qualquer vértice é atingível a partir de outro outro (existe caminho entre qualquer par de nós no grafo)

Grafo conexo

- Árvore: grafo conexo e acíclico
- Subgrafo de G: Qualquer grafo H = (V', E') tal que, $V' \subseteq V \ e \ E' \subseteq E \ .$
- Árvore de cobertura do grafo G: subgrafo conexo e acíclico, cujo conjunto de vértices contém (cobre) todos os vértices do grafo original G

Conceitos Básicos

• Grafo **fortemente conexo:** grafo **orientado** onde qualquer nó é atingível a partir de outro nó (existe caminho que liga qualquer par de nós no grafo, **nas duas direções**)

33

SCLe BRITTED BELIEBED

Representações de um grafo

Representações computacionais para um grafo

SCCE GAVESTALISON

Matriz de adjacências

Dado um grafo G = (V, A), com n vértices, v₁, ..., v_n, e m arestas, a₁, ..., a_m, a matriz de adjacências de G é uma matriz

$$M = [m_{ij}]_n$$

de elementos em \mathbb{N}_0 , definida como:

$$m_{ij} = 1$$
 sse existe aresta a_{ij} **de** v_i **para** v_j $m_{ij} = 0$ senão

• O espaço ocupado por esta estrutura de dados é $S(n) = O(n^2)$.

35

Ste werestrated

• Se o grafo G = (V, A) tiver **multiarestas**, a matriz de adjacências de G é a matriz de elementos em № 0 definida por:

$$m_{ij} = \mathbf{k}$$
 sse existem k arestas a_{ij} **de** v_i **para** v_j $m_{ij} = 0$ senão

Propriedades:

- Grafo <u>não dirigido</u>: matriz de adjacências é **simétrica**
- Grafo <u>dirigido:</u> matriz de adjacências não é necessariamente simétrica

Matriz de incidências

Dado um grafo G = (V, A) com n vértices, v_1 , ..., v_n , e m arestas, a_1 , ..., a_m , a matriz de incidências de G é uma matriz

$$M = [m_{ij}]_{mxn}$$

1. Se o grafo for **não orientado**, os elementos são 0 ou 1, definidos como:

$$m_{ij} = 1$$
 sse x_i se encontrar num extremo da aresta j $m_{ij} = 0$ senão

Espaço ocupado: $S(n) = O(m \times n)$

2. Caso o grafo seja **dirigido**, os elementos definem-se em {0, 1, -1}:

$$m_{ij}$$
 = 1 sse x_i é o antecessor do arco m_{ij} = -1 sse x_i é o sucessor do arco

m_{ij} = 0 sse não existe arco

38

Representações computacionais

- As representações matemáticas matrizes em termos de espaço apenas são computacionalmente eficientes **se** o grafo for completo ou muito **denso**.
- A maioria dos grafos utilizados são **esparsos**, ou seja, m << n², e, neste caso, esta ineficiência pode ser significativa.
- Para representar computacionalmente um grafo existem diferentes hipóteses que podem reduzir o espaço ocupado em comparação com a utilização de uma representação com uma matriz de adjacência ou incidência. As mais comuns são:
 - uma estrutura baseada em listas de arestas
 - uma estrutura baseada em listas de adjacências
 - uma estrutura baseada em mapas de adjacências

DAA 2022/2023 Ana Maria de Almeida

Estrutura: lista de arestas

ទី Sequência de vértices (**V**) que aponta cada um dos vértices

• Sequência de arestas (E), que aponta cada uma das arestas

• Objeto vértice:

- Identificação
- A posição (referência) do vértice na sequência de vértices V
- Informação adicional (se existir)
- Objeto aresta:
 - Identificação
 - Referência para o vértice origem
 - Referência para o vértice destino
 - A posição (referência) da aresta na sequência de arestas E
 - Informação adicional (peso), caso exista

41

41

lista de arestas

A <u>ocupação de espaço</u> nesta representação é:

• n objectos do tipo vértice

S(n): O(n + m)

• m objectos do tipo aresta

• A complexidade temporal será:

Operation	Running Time
<pre>vertex_count(), edge_count()</pre>	O(1)
vertices()	O(n)
edges()	O(m)
get_edge(u,v), degree(v), incident_edges(v)	O(m)
$insert_vertex(x)$, $insert_edge(u,v,x)$, $remove_edge(e)$	O(1)
remove_vertex(v)	O(m)

Estrutura: lista de adjacências

- Esta estrutura guarda, para cada vértice n, uma "lista" com todas as arestas incidentes em n.
- No caso de um grafo orientado, existem 2 listas: a lista das arestas que entram e a lista das que saiem de n.
- Sequência de vértices (**V**)
- Cada vértice aponta a sequência das arestas incidentes
- Nesta implementação, tipicamente, o objecto aresta indica (a posição d)o vértice terminal (na sequência de vértices).

11

44

Lista de adjacências

- A ocupação de espaço nesta representação é:
 - **n** objectos do tipo vértice

S(n): O(n + m)

- 2m objectos do tipo aresta
- A complexidade temporal será:

Operation	Running Time	
<pre>vertex_count(), edge_count()</pre>	<i>O</i> (1)	
vertices()	O(n)	
edges()	O(m)	
get_edge(u,v)	$O(\min(\deg(u),\deg(v)))$	
degree(v)	<i>O</i> (1)	
incident_edges(v)	$O(\deg(v))$	
$insert_vertex(x)$, $insert_edge(u,v,x)$	O(1)	
remove_edge(e)	<i>O</i> (1)	
remove_vertex(v)	$O(\deg(v))$	

46

Estrutura: mapas de adjacência

Em comparação com a estrutura baseada em listas de adjacências, esta "dicionário", tendo por *chave* o vértice adjacente e por *valor* a aresta.

• Sequência de vértices (V)

S(n): O(n + m)

• Cada vértice aponta o dicionário de vértices adjacentes → arestas

47

Quadro comparativo de ordens de complexidade temporal

Operation	Edge List	Adj. List	Adj. Map	Adj. Matrix
vertex_count()	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
edge_count()	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
vertices()	O(n)	O(n)	O(n)	O(n)
edges()	O(m)	O(m)	O(m)	O(m)
$get_edge(u,v)$	O(m)	$O(\min(d_u,d_v))$	O(1) exp.	<i>O</i> (1)
degree(v)	O(m)	<i>O</i> (1)	<i>O</i> (1)	O(n)
incident_edges(v)	O(m)	$O(d_v)$	$O(d_v)$	O(n)
$insert_vertex(x)$	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	$O(n^2)$
remove_vertex(v)	O(m)	$O(d_v)$	$O(d_v)$	$O(n^2)$
$insert_edge(u,v,x)$	<i>O</i> (1)	<i>O</i> (1)	O(1) exp.	<i>O</i> (1)
$remove_edge(e)$	<i>O</i> (1)	<i>O</i> (1)	O(1) exp.	<i>O</i> (1)

source: Cormen, Leiserson et al., MIT Press

 d_v : grau do nó v

exp.: tempo esperado

TAD Grafo: definição do conjunto mínimo de operadores

scte

Algumas questões típicas em algoritmos que utilizam grafos:

- O vértice v_i é adjacente ao v_i?
- Qual o grau de v_i?
- Quais são os vizinhos de v_i?

Dado um grafo, G = (V, E), para definiro conjunto mínimo de operações de um grafo é necessário definir, pelo menos, as operações seguintes:

- indicar a quantidade de vértices em G
- indicar a quantidade de arestas em G
- indicar a coleção de todos os vértices em G
- indicar o grau de um dado vértice
- uma listagem com todos os arcos incidentes num dado vértice
- uma listagem de todos os vértices adjacentes a um dado vértice
- indicação se dois vértices dados são adjacentes

Para responder a muitas destas questões, necessitamos de um algoritmo para fazer a **travessia do Grafo**

49

49

SCLE BURGESTANDO

Para estudar

- Cap. 2 e 3 *Introduction to Algorithms*. Cormen, Leiserson et al., 4rd ed. MIT Press, 2020
- Cap. 2 Algorithm Design, John Kleinberg, Eva Tàrdos, Addison-Wesley, 2005.