(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

TERRETARIO CONTROL CON CONTROL CONTROL

(43) Internationales Veröffentlichungsdatum 8. Juli 2004 (08.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/057062 A2

(51) Internationale Patentklassifikation⁷:

C25D 5/00

(21) Internationales Aktenzeichen:

PCT/DE2003/003954

(22) Internationales Anmeldedatum:

1. Dezember 2003 (01.12.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 102 59 361.2 18. Dezember 2002 (18.12.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): KRÜGER, Ursus [DE/DE]; Masolleweg 18C, 14089 Berlin (DE).

KÖRTVELYESSY, Daniel [DE/DE]; Hohefeldstrasse 6, 13467 Berlin (DE). REICHE, Ralph [DE/DE]; Bulgenbachweg 15, 13465 Berlin (DE). DE VOGELAERE, Marc [BE/DE]; Borkumer Strasse 17, 13581 Berlin (DE).

- (74) Gemeinsamer Vertreter: SIEMENS AKTIENGE-SELLSCHAFT; Postfach 22 16 34, 80506 München (DE).
- (81) Bestimmungsstaaten (national): CN, JP, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD AND DEVICE FOR FILLING MATERIAL SEPARATIONS ON A SURFACE

(54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUM AUFFÜLLEN VON MATERIALTRENNUNGEN AN EINER OBERFLÄCHE

(57) Abstract: Disclosed are a method and a device for filling material separations on the surface. In methods known in prior art, which are used for filling material separations, the substrate is often influenced in a negative manner by high processing temperatures and dissimilar additives. The inventive method overcomes said disadvantage, taking place at low temperatures and allowing the material separation (4) to be completely filled without using dissimilar substances.

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Verfahren und Vorrichtung zum Auffüllen von Materialtrennungen an der Oberfläche. Bei bekannten Prozessen nach dem Stand der Technik, die benutzt werden, um Materialtrennungenaufzufüllen, wird das Substrat oft durch hohe Prozesstemperaturen und durch artfremde Zusatzstoffenegativ beeinflusst. Mit dem erfindungsgemäßen Verfahren, das bei niedrigen Temperaturen stattfindet und ein vollständiges Auffüllen der Materialtrennung (4) ohne artfremde Stoffe ermöglicht, wird dieser Nachteil beseitigt.

Verfahren und Vorrichtung zum Auffüllen von Materialtrennungen an einer Oberfläche

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Auffüllen von Materialtrennungen gemäß Oberbegriff des Anspruchs 1 bzw. 17.

Materialtrennungen an einer inneren und/oder äußeren Oberfläche eines Bauteils - bspw. bestehend aus einem Substrat 10 oder einer Schicht-, wie z. B. Risse, Bohrungen oder fertigungsbedingte, betriebsbedingte Einkerbungen müssen oft durch Schweiß- oder Lötprozesse wieder geschlossen werden. Bei diesen Verfahren werden hohe Temperaturen in der Umgebung der aufzufüllenden Materialtrennung eingesetzt, so dass es zu 15 thermischen Spannungen in dem Substrat/der Schicht eines Bauteils kommt, die zu Rissen führen können. Das Material, das bei den Schweiß- oder Lötprozessen eingesetzt wird, um die Materialtrennung aufzufüllen, hat oft eine stark verminderte mechanische Festigkeit gegenüber dem Material des Sub-20 strates, wodurch die Reparaturfähigkeit des Bauteils begrenzt ist.

Daher ist es Aufgabe der Erfindung, ein Verfahren und eine 25 Vorrichtung zum Auffüllen von Materialtrennungen anzugeben, bei dem oben genannte Nachteile überwunden werden.

Die Aufgabe wird durch ein Verfahren und eine Vorrichtung gemäß dem Anspruch 1 bzw. 17 gelöst.

Weitere vorteilhafte Ausbildungen des erfindungsgemäßen Verfahrens und der Vorrichtung sind in den Unteransprüchen aufgelistet.

30

Ausführungsbeispiele sind in den Figuren gezeigt.

Es zeigen

Figur 1 eine Vorrichtung, mit dem das erfindungsgemäße Verfahren durchgeführt wird.

Figur 2 einen Riss, der schrittweise aufgefüllt wird und Figur 3 einen Zeitverlauf eines Stroms zwischen Substrat und Elektrode,

Figur 4 einen weiteren Zeitverlauf eines Stroms zwischen Substrat und Elektrode, und Figur 5 eine erweiterte Materialtrennung.

Figur 1 zeigt eine erfindungsgemäße Vorrichtung 40, mit der das erfindungsgemäße Verfahren durchgeführt wird.

In einem elektrolytischen Prozess bei niedrigen Temperaturen, bspw. kleiner als 100°C, wird Material in eine Materialtrennung 4 eines Substrates 1 oder einer Schicht 1, die sich von einer Oberfläche 2 erstreckt, eingebracht.

20

25

30

35

5

10

Das Substrat 1 mit seiner Materialtrennung 4 ist elektrisch mit einer Elektrode 7 verbunden, die zusammen in einem Elektrolyten 10, der sich in einem Behälter 46 befindet, angeordnet sind. Zwischen der Elektrode 7 und dem Substrat 1 ist eine elektrische Spannungsquelle 25 vorhanden, so dass ein elektrischer Strom fließen kann.

Der Elektrolyt 10 enthält das Material, das in die Materialtrennung 4 eingebracht wird. Der Elektrolyt 10 kann in seiner Lösung Bestandteile der Zusammensetzung des Substrates 1 in Form von Partikeln und/oder Ionen aufweisen.

Der Prozess des erfindungsgemäßen Verfahrens kann bei Raumtemperatur oder niedrigen Temperaturen ablaufen, so dass vor der Anwendung des erfindungsgemässen Verfahrens das Substrat 1 an den Stellen, bei denen keine Beschichtung erwünscht ist, auf einfache Art und Weise eine geeignete Maskierung (Wachse,

Polymere) aufgebracht und gegen eine Beschichtung geschützt werden kann.

Durch die Verwendung eines zeitlich veränderlichen Stromflusses wird eine gezielte Abscheidung der Bestandteile, bspw.
einer Legierung, aus dem Elektrolyten 10 in die Materialtrennung 4 des Bauteils 1 erfolgen.
Durch bspw. nachfolgende Wärmebehandlung können notwendige
Werkstoffeigenschaften eingestellt werden, wie es z. B. bei

Nickel- und Kobaltbasierten Superlegierungen für Turbinenschaufeln notwendig ist, um die gewünschten γ-γ' Ausscheidungen zu erhalten oder um eine Phasenänderung oder einstellung zu erreichen.

Durch das Abscheiden von artähnlichen oder artgleichem Material des Substrats 1 in Form von Partikeln und/oder Ionen wird eine wesentlich bessere Festigkeit erreicht als mit Lötoder Schweißprozessen, da dort durch die Löt- bzw. Schweißzusätze substratfremde Bestandteile in die Materialtrennung 4 eindringen. Dies ist bei der elektrolytischen Abscheidung

Hier kann Material des Substrats 1 oder der Schicht 1 oder Material, das vergleichbare Eigenschaften aufweist, verwendet werden.

25

nicht der Fall.

Der Abscheideprozess in der Materialtrennung 4 kann optional durch eine zusätzliche Ultraschallanregung mittels zumindest einer Ultraschallsonde 19, die durch eine Ultraschallquelle 22 betrieben wird, in dem Elektrolyt 10 verbessert werden.

Durch die Ultraschallanregung findet u.a. eine ständige Durchmischung des Elektrolyten 10 statt, so dass es zu keinen Inhomogenitäten im Elektrolyten 10 und seiner Bestandteile kommt. Weiterhin werden poröse Teile durch die Wirkung der Ultraschallwellen von einer Schicht, die durch das auffüllende Material gebildet wird, kavitativ gelöst.

10

4

Eine weitere Verbesserung des Verfahrens kann vorzugsweise durch die Verwendung von gepulsten Strömen erzielt werden.

Weiterhin kann das Verfahren verbessert werden, indem eine Wirbelstromsonde 16 im Bereich der Materialtrennung 4 angeordnet ist, beispielsweise aufgelegt wird, die ein entsprechendes Wechselwirkungsvolumen 28 in dem Substrat 1 um die Materialtrennung 4 erzeugt, d.h. das Wechselwirkungsvolumen 28 ist mechanisch erregt, d. h. Schwingungen im Substrat 1 erzeugt.

Die Wirbelstromsonde 16 umschließt bspw. die Öffnung 43 der Materialtrennung 4 an der Oberfläche 2 zum Elektrolyten 10 hin, deckt sie aber nicht ab. Die Wirbelstromsonde 16 wird durch einen steuerbaren Wirbelstromgenerator 13 betrieben.

Die Eindringtiefe δ , d.h. die Tiefe bis zu der sich von der Oberfläche 2 in das Substrat 1 hinein das Wechselwirkungsvolumen 28 erstreckt, ist gegeben durch folgende Formel:

$$\delta = \frac{503}{\sqrt{f\sigma\mu_r}}$$

√*fσμ* 20

35

wobei f die Frequenz des Wirbelstromes, σ die Leitfähigkeit des Substrates 1 und μ_r die Permeabilitätskonstante des Substrats/Schicht 1 ist.

25 Durch die Frequenz f ist also die Eindringtiefe δ und das Wechselwirkungsvolumen 28 einstellbar.

Figur 2 zeigt, wie eine Materialtrennung 4 eines Substrates 1 verbessert aufgefüllt werden kann.

Zuerst wird ein Bereich M1 im Bereich des Rissendes 34 mitumfasst, indem die Frequenz f1 passend gewählt wird, so dass das Wechselwirkungsvolumen 28 den Bereich M1 umfasst, während dessen M1 aufgefüllt wird.

15

35

5

In einem zweiten Schritt wird ein zweiter Bereich M2 mit Material aufgefüllt, wobei die Frequenz f2 so verändert wird, dass das Wechselwirkungsvolumen 28 nur bis zu dem vorher aufgefüllten Bereich M1 reicht oder ggf. nur noch teilweise umfasst.

Durch ständige Erhöhung der Frequenz (f3,f4,..) werden weitere Bereiche M3, M4 .. bis zu einer Oberfläche 2 mit Material aufgefüllt.

Natürlich ist auch eine kontinuierliche Anpassung der Fre-10 quenz f an die restliche Tiefe der Materialtrennung möglich.

Bei Berücksichtigung der veränderten Leitfähigkeit im Wechselwirkungsvolumen 28 ist eine Selbstregelung des Prozesses möglich, weil das auffüllende Material in der Materialtrennung 4 die Leitfähigkeit des Substrats 1 im Wechselwirkungsvolumen 28 verändert, welches gemessen wird und zur Regelung verwendet wird.

Figur 3 zeigt einen zeitlichen Verlauf des Stroms der Span20 nungsquelle 25. Dieser kann aus gepulsten oder zeitlich veränderten Strömen gebildet werden und kann periodisch wiederholt werden.

Der Strom setzt sich hauptsächlich aus kathodischen (Substrat 1) Anteilen und auch aus anodischen Anteilen (Elektrode 7) zusammen. Die Pulsdauer ton, während der ein Strom I fließt, die Pause toff zwischen den Pulsen 40 sowie eine maximale Höhe des Stroms Imax können variiert werden. Ebenso ist es möglich, die Form 37 des Stromsignals zu verändern. Alle Parameter (Imax, toff, ton, ...) können eine Funktion der Zeit sein und periodisch wiederholt werden, um das Verfahren zu optimieren.

Eine Legierung (bswp. NiAL) wird dadurch abgeschieden, indem die einzelnen Bestandteile wechselweise verstärkt abgeschieden werden. Für jeden einzelnen Legierungsbestandteil Ni, Al gibt es bspw. verschiedene optimale Parameter (I_{max} , t_{off} , t_{on} , ..), so dass z.B. ein erster Strompuls 40 optimal ist für das Element Nickel (Ion im Elektrolyten 10) und der zweite

darauffolgende Strompulse 40 für Aluminium. Auch bei dem auf das eine Element abgestimmten Strompuls erfolgt eine, wenn auch schlechtere Abscheidung, des anderen Elements.

Die Pulse werden ständig wiederholt, so dass eine optimale Durchmischung der Bestandteile der Legierung erfolgt.

Durch die Pulsdauer kann der Gewichtsanteil eines Legierungsbestandteil in der Materialtrennung eingestellt werden.

Figur 4 zeigt eine beispielhafte Aneinanderreihung von

Strompulsen 40, die sich wiederholen.

Eine Sequenz 34 besteht aus zumindest zwei Blöcken 77. Jeder Block 77 besteht aus zumindest einem Strompuls 40.

Ein Strompuls 40 ist charakterisiert durch seine Dauer ton, die Höhe Imax und seine Form 37 (Rechteck, Dreieck, ...).

Ebenso wichtig als Prozessparameter sind die Pausen zwischen den einzelnen Strompulsen 40 (toff) und die Pausen zwischen den Blöcken 77.

Die Sequenz 34 besteht bspw. aus einem ersten Block 77 mit drei Strompulsen 40, zwischen denen wiederum eine Pause stattfindet. Darauf folgt ein zweiter Block 77, der eine größere Stromhöhe aufweist und aus sechs Strompulsen 40 besteht. Nach einer weiteren Pause folgen vier Strompulse 40 in umgekehrter Richtung, d.h. mit geänderter Polarität.

25

5

Als Abschluss der Sequenz 34 folgt ein weiterer Block 77 mit vier Strompulsen.

Die Sequenz kann mehrfach wiederholt werden.

Die Einzelpulszeiten ton betragen vorzugsweise größenordnungsmäßig etwa 1 bis 10 Millisekunden. Die zeitliche Dauer des Blocks 77 liegt in der Größenordnung bis zu 10 Sekunden, so dass bis zu 500 Pulse in einem Block 77 ausgesendet werden.

35

Die Belegung sowohl während der Pulsabfolgen als auch in der Pausenzeit mit einem geringen Potential (Basisstrom) ist

optional möglich. Somit wird eine Unterbrechung der Elektroabscheidung, die Inhomogenitäten verursachen kann, vermieden.

Ein Block 77 ist mit seinen Parametern auf ein Bestandteil

5 einer Legierung abgestimmt, die bspw. abgeschieden werden
soll, um die beste Abscheidung dieses Bestandteils zu erreichen. Diese können in Einzelversuchen bestimmt werden.
Beispielsweise durch die Dauer der einzelnen Blöcke 77 kann
der Anteil der Bestandteile der Legierung in der aufzubringenden Schicht festgelegt werden, um bspw. Gradienten in der
Schicht zu erzeugen. Dies geschieht dadurch, dass die Dauer
des Blocks 77, der auf einen Bestandteil der Legierung optimal abgestimmt ist, entsprechend verlängert oder verkürzt
wird.

15

20

Figur 5 zeigt eine erweiterte Materialtrennung 4. Um die Abscheidung zu verbessern, wird die Materialtrennung 4 vor dem Auffüllen erweitert. Dies kann durch Bohren, Erodieren, oder andere Verfahren geschehen, um bspw. den Durchmesser zu vergrößern.

Die gestrichelte Linie zeigt die Materialtrennung 4 vor der Erweiterung.

Patentansprüche

- 1. Verfahren zum Auffüllen von Materialtrennungen an einer Oberfläche eines Substrats oder einer Schicht,
- 5 dadurch gekennzeichnet, dass

die Materialtrennung (4) in einem ersten Verfahrensschritt elektrolytisch aufgefüllt wird,

wobei eine oder mehrere Wirbelstromsonden (13) im Bereich der Materialtrennung (4) verwendet werden, die in dem Bereich um die Materialtrennung (4) Schwingungen erzeugen.

15 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass

das Substrat (1) oder die Schicht (1) mit einer Elektrode
(7) elektrisch verbunden ist,

wobei Substrat oder Schicht (1) und Elektrode in einem Elektrolyten (10) angeordnet sind, und dass ein Strom zwischen Substrat (1) und Elektrode (7) zeitlich veränderlich ist.

25

10

3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass
der Strom gepulst wird.

30

- 4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass
- der Strom mit seinen Parametern maximale Stromhöhe (I_{max}) , Pulspause (t_{off}) und Pulsdauer (t_{on}) und Pulsform (37) an den Elektrolyten (10) angepasst wird.

9

- 5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass
 5
 zumindest eine Ultraschallsonde (19) in dem Elektrolyten (10) betrieben wird.
- 10 6. Verfahren nach Anspruch 1,
 dadurch gekennzeichnet, dass
 die Frequenz (f) der Wirbelstromsonde (16) während des
 Verfahrens verändert wird.
 - 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass
- 20 die Frequenz (f) an die Tiefe der Materialtrennung (4) angepasst wird.
- 8. Verfahren nach Anspruch 2,
 25 dadurch gekennzeichnet, dass
 der Elektrolyt (10) artgleiches oder artähnliches Material
 des Substrats (1) oder der Schicht (1) aufweist.
- 9. Verfahren nach Anspruch 1,
 dadurch gekennzeichnet, dass
 die Materialtrennung (4) in einem ersten
 Verfahrensschritt erweitert wird.

- 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
- zum elektrolytischen Abscheiden ein Strom/Spannungspuls

 (40) verwendet wird,
 wobei sowohl positive als auch negative
 Strom/Spannungspulse (40) verwendet werden.
- 10 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass

für das elektrolytische Abscheiden wiederholt mehrere Strom/Spannungspulse (40) verwendet werden,

die in einer Sequenz (34) zusammengefasst sind,
wobei die Sequenz (34) von zumindest zwei verschiedenen
Blöcken (77) verwendet wird,
wobei ein Block (77) aus zumindest einem Strompuls (40)
besteht.

20

35

verstärken.

- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass
- ein Block (77) bestimmt ist durch eine Anzahl von Strompulsen (40), Pulsdauer (t_{on}) , Pulspause (t_{off}) , Stromhöhe (I_{max}) und Pulsform (37).
- 13. Verfahren nach Anspruch 11,30 dadurch gekennzeichnet, dass

ein Block (77) jeweils auf einen Bestandteil einer Legierung abgestimmt ist, um die Abscheidung des Bestandteils der Legierung zu

- 14. Verfahren nach Anspruch 1,
 dadurch gekennzeichnet, dass
- eine Legierung der Art MCrAlY abgeschieden wird,
 wobei M ein Element der Gruppe Eisen, Kobalt oder Nickel
 ist.
- 15. Verfahren nach Anspruch 11,
 10 dadurch gekennzeichnet, dass

 Gradienten in der Materialzusammensetzung innerhalb der Materialtrennung (4) erzeugt werden.
- 16. Verfahren nach Anspruch 3 oder 11,
 dadurch gekennzeichnet, dass
 ein Basisstrom den Strompulsen (40) und/oder den Pausen
 überlagert ist.
- 17. Vorrichtung zum Auffüllen von Materialtrennungen an einer Oberfläche eines Substrats oder einer Schicht,

 25

 dadurch gekennzeichnet, dass

 die Vorrichtung (40)
 einen Behälter (46) mit einem Elektrolyten (10),
 eine Spannungsquelle (25),
 zumindest eine Elektrode (7) und

zumindest eine Wirbelstromsonde (16) aufweist,

die auf dem Substrat (1) oder Schicht (1) auflegbar ist.

12

18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Vorrichtung (40) zumindest eine Ultraschallsonde

(19) aufweist,

die im Elektrolyten (10) angeordnet ist.

1/3

FIG 1

FIG 2

FIG 4

1/U

40

ton1

toff2

toff2

toff2

treverse

FIG 5

