Report for Assignment 2

-Debanshu Biswas (M20MA053)

Hard SVM using cvxopt

We used the iris dataset from sklearn.datasets. There we used only two linearly separable attributes "petal length" and "petal width. And our target column name is "target". Then we plotted the points with axis petal length and petal width.

Then we used CVXOPT to compute w and b. And we got $w = [1.29411773 \ 0.82352938]$ and b = -3.7882354695378924.

Below is the diagram of the points with optimal solution, margin and support vectors.

Soft SVM using cvxopt

We first defined svm class and defined three functions in t fit, project and predict.

Then we generated linearly separable data, linearly non separable data and linearly separable overlapping data with 100 entries each. The results are below.

Type of Split	No of Support vectors for X_train, y_train		
	Linearly separable data	Linearly non separable data	Linearly separable overlaping data
70:30	3 of 140	9 of 140	18 of 140
80:20	3 of 160	10 of 160	14 of 160
90:10	3 of 180	10 of 180	9 of 180

Type of Split	Accuracy		
	Linearly separable	Linearly non	Linearly separable
	data	separable data	overlaping data
70:30	1	0.95	0.967
80:20	1	1	1
90:10	1	1	1

Soft SVM using SGD

We used one dataset "dataset.csv". Then we used train test split to split the dataset in train and test sets. Then we used SGDClassifier from sklearn.

Then we are plotting score vs n_iter for different splitting,

Type of Split	Accuracy
70:30	0.9003273507167852

