Suites et Séries – TD₁₅

19-20 décembre 2022

Exercice 1

Déterminer le rayon de convergence R des séries entières suivantes :

1.
$$\sum_{n} \sqrt{n} z^{n}$$

4.
$$\sum_{n} \ln \left(1 + \sin \left(\frac{1}{n} \right) \right) z^n$$
 7. $\sum_{n} \frac{n!}{n^n} z^n$

$$7. \sum_{n} \frac{n!}{n^n} z^n$$

$$2. \sum_{n} z^{n!}$$

$$5. \sum_{n} n^{\ln(n)} z^n$$

8.
$$\sum_{n=1}^{\infty} (2 + (-1)^n)^n z^n$$

3.
$$\sum \ln\left(n\right) z^n$$

$$6. \sum_{n} \frac{1}{\ln(n)^{\ln(n)}} z^n$$

- Pour appliquer le critère de d'Alembert, il est obligatoire de vérifier que la suite $(a_n)_{n\in\mathbb{N}}$ ne s'annule pas à partir d'un certain rang.
- On peut aussi utiliser la méthode suivante : pour r > 0 :
 - $si\ a_n\ r^n\ tend\ vers\ 0\ quand\ n\to +\infty\ (ou\ si\ (a_n\ r^n)_{n\in\mathbb{N}}\ est\ born\'ee),\ alors\ R\geqslant r$
 - $si\ a_n\ r^n$ ne tend pas vers 0 quand $n \to +\infty$ (ou $si\ (a_n\ r^n)_{n\in\mathbb{N}}$ n'est pas bornée),
- Attention à ne pas oublier les valeurs absolues pour le critère d'équivalence ($|a_n| \sim$ $|b_n|$ quand $n \to +\infty$).
- Attention, on ne peut rien dire en général de la convergence de $\sum_n a_n z^n$ pour
- 1. La suite $(\sqrt{n})_{n\in\mathbb{N}}$ n'est pas nulle à partir d'un certain rang (n=1) et pour tout $n\in\mathbb{N}^*$:

$$\frac{\sqrt{n+1}}{\sqrt{n}} = \sqrt{1 + \frac{1}{n}} \underset{n \to +\infty}{\longrightarrow} 1$$

donc d'après le critère de d'Alembert :

le rayon de convergence de $\sum_{n} \sqrt{n} z^n$ est $\frac{1}{1} = 1$.

2. On a

$$\sum_{n} z^{n!} = z^{1} + z^{2} + z^{6} + z^{24} + z^{120} + \dots = \sum_{p} a_{p} z^{p}$$

avec

$$\forall p \in \mathbb{N}^*, \quad a_p = \begin{cases} 1 & \text{s'il existe } n \in \mathbb{N} \text{ tel que } p = n! \\ 0 & \text{sinon} \end{cases}$$

Ici, $(a_p)_{p\in\mathbb{N}}$ s'annule toujours à partir de tous les rangs, on ne peut pas utiliser le critère de d'Alembert.

Soit r > 0.

- si r < 1, on a $a_p r^p \to 0$ quand $p \to +\infty$, donc $R \leqslant r$
- si r < 1, on a $r^{n!} \to 0$ quand $n \to +\infty$, donc $(a_p r^p)_{n \in \mathbb{N}}$ n'est pas bornée donc $R \geqslant r$

Puisque c'est vrai pour tout r > 0, on en déduit que $R \leq 1$ et $R \geq 1$ donc :

le rayon de convergence de
$$\sum_{n} z^{n!}$$
 est 1.

- 3. On peut appliquer le critère de d'Alembert ici ($\ln n$ n'est pas nul à partir d'un certain rang) ou on peut remarquer que pour tout r > 0:
 - si r < 1, on a $\ln(n) r^n \to 0$ quand $n \to +\infty$, donc $R \geqslant r$ donc $R \geqslant 1$
 - si r > 1, on a $\ln(n) r^n \to +\infty$ quand $n \to +\infty$, donc $R \leqslant r$ donc $R \leqslant 1$

Le rayon de convergence de
$$\sum_{n} \ln(n) z^n$$
 est 1.

4. On a

$$\left|\ln\left(1+\sin\left(\frac{1}{n}\right)\right)\right| = \left|\ln\left(1+\frac{1}{n}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n}\right)\right)\right| = \left|\frac{1}{n}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n}\right)\right| \underset{n\to+\infty}{\sim} \left|\frac{1}{n}\right| = \frac{1}{n}$$

donc R est égal au rayon de convergence de la série entière $\sum_n \frac{1}{n} z^n$ qui est 1 (on peut le voir par exemple en utilisant le critère de d'Alembert). D'après le critère d'équivalence pour les séries entières :

le rayon de convergence de
$$\sum_n \ln \left(1+\sin \left(\frac{1}{n}\right)\right) z^n$$
 est 1.

5. Soit r > 0. On a, pour tout $n \in \mathbb{N}^*$,

$$n^{\ln(n)} r^n = \exp\left(\ln(n)^2 + n\ln(r)\right) \underset{n \to +\infty}{\longrightarrow} \begin{cases} 0 & \text{si } r < 1\\ +\infty & \text{si } r \geqslant 1 \end{cases}$$

donc $R \geqslant 1$ et $R \leqslant 1$ donc

le rayon de convergence de
$$\sum_{n} n^{\ln(n)} z^n$$
 est 1.

6. Soit r > 0. On a, pour tout entier $n \ge 2$,

$$\frac{1}{\ln(n)^{\ln(n)}} r^n = \exp\left(n\ln(r) - \ln(n)\ln(\ln(n))\right) \underset{n \to +\infty}{\longrightarrow} \begin{cases} 0 & \text{si } r < 1 \\ +\infty & \text{si } r \geqslant 1 \end{cases}$$

donc $R \geqslant 1$ et $R \leqslant 1$ donc

le rayon de convergence de
$$\sum_{n} \frac{1}{\ln(n)^{\ln(n)}} z^n$$
 est 1.

7. $\frac{n!}{n^n}$ n'est jamais nul pour tout $n \in \mathbb{N}$ et

$$\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \frac{(n+1)n^n}{(n+1)^{n+1}} = \left(\frac{n}{n+1}\right)^n = \left(1 - \frac{1}{n+1}\right)^n \underset{n \to +\infty}{\longrightarrow} \exp(-1) = \frac{1}{e}$$

On a déjà étudié la limite de cette suite :

$$\left(1 - \frac{1}{n+1}\right)^n = \exp\left(n\ln\left(1 - \frac{1}{n+1}\right)\right)$$

On $a: n \ln \left(1 - \frac{1}{n+1}\right) \underset{n \to +\infty}{\sim} \frac{-n}{n+1} \to -1$, donc par continuité de exp en 1, on a $\left(1 - \frac{1}{n+1}\right)^n \underset{n \to +\infty}{\longrightarrow} \exp(-1) = \frac{1}{e}$

D'après le critère de d'Alembert :

le rayon de convergence de $\sum_{n} \frac{n!}{n^n} z^n$ est e.

8. On remarque que $(2+(-1)^n)^n=3^n$ si n est pair et $(2+(-1)^n)^n=1$ si n est impair.

Le rayon de convergence de $\sum_n 3^n z^n$ est $\frac{1}{3}$ (critère de d'Alembert) et le rayon de convergence de $\sum_n z^n$. On conjecture donc que R va être la plus petite de ces valeurs, c'est-à-dire $\frac{1}{3}$.

Soit r > 0.

— Si $r < \frac{1}{3}$, alors pour tout $n \in \mathbb{N}$ on a

$$|(2+(-1)^n)^n r^n| = |2+(-1)^n|^n r^n \le (3r)^n \underset{n \to +\infty}{\longrightarrow} 0$$

 $car \ 0 < 3r < 1 \ donc \ R \geqslant \frac{1}{3}.$

— Si $r > \frac{1}{3}$, alors pour tout $n \in \mathbb{N}$ on a

$$\left(2 + (-1)^{2n}\right)^{2n} r^{2n} = (3r)^{2n} \underset{n \to +\infty}{\longrightarrow} +\infty$$

car 3r > 1. On en déduit que la suite $((2 + (-1)^n)^n r^n)_{n \in \mathbb{N}}$ n'est pas bornée donc $R \leqslant \frac{1}{3}$.

Le rayon de convergence de $\sum_{n} (2 + (-1)^n)^n z^n$ est $\frac{1}{3}$.

Exercice 2

Soit $\sum_{n} a_n z^n$ une série entière de rayon de convergence R. Comparer R avec les rayons de convergence des séries entières :

$$1. \sum a_n e^{\sqrt{n}} z^n$$

$$2. \sum_{n} a_n z^{2n}$$

$$3. \sum_{n} a_n z^{n^2}$$

1. Notons R_1 le rayon de convergence de $\sum_n a_n e^{\sqrt{n}} z^n$. Soit r > 0.

— Puisque $e^{\sqrt{n}} \geqslant 1$ pour tout $n \in \mathbb{N}^*$, on a

$$|a_n e^{\sqrt{n}} r^n| = |a_n| e^{\sqrt{n}} r^n \geqslant |a_n| r^n = |a_n r^n|$$

Si r > R, on sait que $(a_n r^n)_{n \in \mathbb{N}}$ n'est pas bornée (car R est le rayon de convergence de $\sum_n a_n z^n$), donc on en déduit que $(a_n e^{\sqrt{n}} r^n)_{n \in \mathbb{N}}$ non plus donc $R_1 \leq R$.

— Si r < R, alors $a_n r^n \to 0$ quand $n \to +\infty$. Soit ρ un nombre réel tel que $0 < \rho < r < R$. Alors on a pour tout $n \in \mathbb{N}$:

$$a_n e^{\sqrt{n}} \rho^n = a_n r^n e^{\sqrt{n}} \frac{\rho^n}{r^n} = a_n r^n e^{n \ln(\rho/r) + \sqrt{n}}$$

Comme $\frac{\rho}{r} < 1$ alors $e^{n \ln(\rho/r) + \sqrt{n}}$ tend vers 0 lorsque n tends vers $+\infty$, d'où la suite $(a_n e^{\sqrt{n}} \rho^n)_{n \in \mathbb{N}}$ est bornée. On a donc $R_1 \geqslant r$.

Cela est vrai pour tout r < R. Lorsque r tend vers R on obtient donc $R_1 \ge R$.

Conclusion:

le rayon de convergence de
$$\sum_{n} a_n e^{\sqrt{n}} z^n$$
 est R .

2. Soit r > 0. Alors pour tout $n \in \mathbb{N}$, $|a_n r^{2n}| = |a_n (r^2)^n|$. On en déduit que la suite $(a_n r^{2n})_{n \in \mathbb{N}}$ est bornée si, et seulement si, la suite $(a_n (r^2)^n)_{n \in \mathbb{N}}$ est bornée. Conclusion :

le rayon de convergence de
$$\sum_{n} a_n z^{2n}$$
 est \sqrt{R} .

- 3. Supposons R > 0 et $R < +\infty$ et notons R_3 le rayon de convergence de $\sum_n a_n z^{n^2}$.
 - Soit $r \in]0,1[$. Comme r^n tend vers 0 lorsque n tend vers l'infini, alors il existe $N \in \mathbb{N}$ tel que : $r^n \leqslant \frac{R}{2}$ pour tout $n \geqslant N$. Alors pour tout $n \geqslant N$, on a

$$|a_n| r^{n^2} = |a_n| (r^n)^n \leqslant \underbrace{|a_n| \left(\frac{R}{2}\right)^n}_{\text{barriso}}$$

Donc $R_3 \geqslant 1$.

— Soit r > 1. Comme r^n tend vers $+\infty$ lorsque n tend vers l'infini, alors il existe $N \in \mathbb{N}$ tel que : $r^n \ge 2R$ pour tout $n \ge N$. Alors pour tout $n \ge N$, on a

$$|a_n| r^{n^2} = |a_n| (r^n)^n \geqslant \underbrace{|a_n| (2R)^n}_{\text{non bornée}}$$

donc $R_3 \leqslant 1$.

Si
$$R \neq 0$$
 et $R \neq +\infty$, le rayon de convergence de $\sum_{n} a_n z^{n^2}$ est 1.

Quand $R = +\infty$, on ne peut pas conclure. Le raisonnement précédent montre que $R_3 \ge 1$ et :

- si $a_n = \frac{1}{n!}$, le rayon de convergence est 1.
- si $a_n = \frac{1}{(n!)^2}$, le rayon de convergence est $+\infty$.

— si $a_n = \frac{1}{c^{n^2}}$ avec c > 1, le rayon de convergence est c.

Si R=0, on ne peut pas conclure non plus. Le raisonnement précédent montre que $R_3 \leqslant 1$ et

- si $a_n = n!$, le rayon de convergence est 1.
- si $a_n = n^{n^2}$, le rayon de convergence est 0.
- si $a_n = c^{n^2}$ avec c > 1, le rayon de convergence est 1/c.

Si R=0 ou si $R=+\infty$, on ne peut pas conclure.

Exercice 3

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres réels strictement positifs. On suppose que le rayon de convergence de la série entière $\sum_n a_n z^n$ est 1 et que la série $\sum_n a_n$ est divergente. Pour $x \in]-1,1[$, on pose :

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n$$

1. Montrer que $S(x) \xrightarrow[x \to 1^{-}]{} +\infty$.

Cela n'a aucun sens d'écrire

$$S(x) \xrightarrow[x \to 1^{-}]{} \sum_{n=0}^{+\infty} a_n 1^n = +\infty !!!$$

On ne peut pas passer à la limite que $x \to 1^-$ dans le série entière, car 1 n'est pas dans **l'intérieur** du disque de convergence (le rayon de convergence est 1).. C'est pour ça qu'on a fait le théorème de continuité radiale; ici ce théorème ne s'applique pas car $\sum a_n$ est divergente.

Pour ce genre d'exercice, la méthode est un peu toujours la même : revenir à la définition de limites, et de ramener à l'utilisation des sommes finies.

ightharpoonup Soit $M \in \mathbb{R}$. Comme la série $\sum_n a_n$ est à termes positifs et divergente, il existe $N \in \mathbb{N}$ tel

que :
$$\sum_{n=0}^{N} a_n \ge M + 1$$
.

ightharpoonup Pour tout $x \in [0,1[$, on a $S(x) \geqslant \sum_{n=0}^{N} a_n x^n$. Comme $\sum_{n=0}^{N} a_n x^n \xrightarrow[x \to 1^-]{} \sum_{n=0}^{N} a_n$, alors il existe $\eta \in]0,1[$ tel que :

$$\forall x \in [1 - \eta, 1[, S(x)] \ge \sum_{n=0}^{N} a_n x^n \ge \sum_{n=0}^{N} a_n - 1.$$

Alors on a:

$$\forall x \in [1 - \eta, 1[, S(x) \geqslant M.$$

 \triangleright Finalement, on a montré :

$$S(x) \xrightarrow[x \to 1^{-}]{} + \infty$$

2. Soit $(b_n)_{n\in\mathbb{N}}$ une suite telle que $b_n \sim a_n$. Montrer que la série entière $\sum_n b_n z^n$ a pour rayon de convergence 1 et que

$$\sum_{n=0}^{+\infty} b_n x^n \underset{x \to 1^-}{\sim} S(x)$$

ightharpoonup Pour tout $r \in \mathbb{R}$, on a $a_n r^n \underset{n \to +\infty}{\sim} b_n r^n$, donc la suite $(a_n z^n)_{n \in \mathbb{N}}$ converge si et seulement si la suite $(b_n z^n)_{n \in \mathbb{N}}$ converge.

Les séries entières $\sum_n a_n z^n$ et $\sum_n b_n z^n$ ont le même rayon de convergence, égal à 1.

Même remarque que la question précédente. On ne dispose pas d'un théorème qui permet d'établir une équivalence entre les sommes de deux séries entières, sur un point non situé à **l'intérieur** du disque de convergence.

On va donc faire comme précédemment : revenir à la définition de limite, et montrer l'équivalence.

 \triangleright Soit $\varepsilon > 0$. Comme $b_n \underset{n \to +\infty}{\sim} a_n$, on a $b_n - a_n = \underset{n \to +\infty}{o} (a_n)$, donc il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant N, |b_n - a_n| \leqslant \varepsilon |a_n|.$$

Soit $x \in]0,1[$. On a alors (par positivité des termes) :

$$\left| \sum_{n=N}^{+\infty} (b_n - a_n) x^n \right| \leqslant \varepsilon \sum_{n=N}^{+\infty} |a_n| x^n \leqslant \varepsilon \sum_{n=0}^{+\infty} a_n x^n$$

Attention! Ici, on ne peut pas dire à partir de cette ligne que :

$$\sum_{n=N}^{+\infty} (b_n - a_n) x^n = o_{x \to 1^-} \left(\sum_{n=N}^{+\infty} a_n x^n \right)$$

car N **dépend** $du \in fixé!$

 \triangleright L'entier N étant fixé, on a

$$\sum_{n=0}^{N-1} |b_n - a_n| x^n \xrightarrow[x \to 1^-]{N-1} |b_n - a_n|$$

D'après la question précédente,

$$\sum_{n=0}^{+\infty} a_n x^n \xrightarrow[x \to 1^-]{} +\infty$$

donc il existe $\eta > 0$ tel que :

$$\forall x \in [1 - \eta, 1[, \frac{\sum\limits_{n=0}^{N-1} |b_n - a_n| x^n}{\sum\limits_{n=0}^{+\infty} a_n x^n} \leqslant \varepsilon$$

> Finalement, on en déduit que

$$\forall x \in [1 - \eta, 1[, \quad \left| \frac{\sum\limits_{n = 0}^{+ \infty} b_n x^n}{\sum\limits_{n = 0}^{+ \infty} a_n x^n} - 1 \right| = \left| \frac{\sum\limits_{n = 0}^{+ \infty} b_n x^n - \sum\limits_{n = 0}^{+ \infty} a_n x^n}{\sum\limits_{n = 0}^{+ \infty} a_n x^n} \right| \leqslant \left| \frac{\sum\limits_{n = 0}^{N - 1} (b_n - a_n) x^n}{\sum\limits_{n = 0}^{+ \infty} a_n x^n} \right| + \left| \frac{\sum\limits_{n = N}^{+ \infty} (b_n - a_n) x^n}{\sum\limits_{n = 0}^{+ \infty} a_n x^n} \right| \leqslant 2\varepsilon$$

$$ightharpoonup$$
 Ainsi, on a montré $\sum_{n=0}^{+\infty} b_n x^n \xrightarrow[x=0]{} 1$,

d'où

$$\sum_{n=0}^{+\infty} b_n x^n \underset{x \to 1^-}{\sim} S(x).$$

Exercice 4

Soit $\sum_{n} a_n z^n$ une série entière à coefficients réels de rayon de convergence 1. On pose

$$S: \begin{bmatrix}]-1,1[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sum_{n=0}^{+\infty} a_n x^n \end{bmatrix}$$

et on suppose de plus qu'il existe $\ell \in \mathbb{R}$ tel que $S(x) \xrightarrow[x \to 1^{-}]{} \ell$.

1. La série $\sum_{n} a_n$ est-elle nécessairement convergente?

On ne peut pas utiliser le théorème de continuité radiale, car on ne sait pas que $\sum_{n} a_n$ converge!

En posant $a_n = (-1)^n$ pour tout $n \in \mathbb{N}$, on a $S(x) = \frac{1}{1+x}$ pour tout $x \in]-1,1[$. Alors

$$S(x) \xrightarrow[x \to 1^{-}]{} \frac{1}{2}$$
 et $\sum_{n} a_n$ diverge.

La série $\sum a_n$ n'est pas nécessairement convergente.

Lorsque la réponse à une question est **non**, il faut donner un contre-exemple pour justifier.

2. On suppose que $a_n \ge 0$ pour tout $n \in \mathbb{N}$. Montrer que la série $\sum_n a_n$ converge et que

$$\sum_{n=0}^{+\infty} a_n = \ell$$

 \rhd Soit $x\in [0,1[$ et $N\in \mathbb{N}.$ Comme les coefficients sont positifs, on a :

$$\sum_{n=0}^{N} a_n x^n \leqslant S(x)$$

En passant à la limite quand $x \to 1^-$, on obtient

$$\sum_{n=0}^{N} a_n \leqslant l$$

La série $\sum a_n$ est à termes positifs et ses sommes partielles sont majorées par l, donc elle converge et on a $\sum_{n=0}^{+\infty} a_n \leq l$. \triangleright Soit $x \in [0,1[$. Comme $x^n \leq 1$ pour tout $n \in \mathbb{N}$, on a (car les séries convergent) :

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n \leqslant \sum_{n=0}^{+\infty} a_n.$$

En passant à la limite quand $x \to 1^-$, on obtient

$$l \leqslant \sum_{n=0}^{+\infty} a_n.$$

La série
$$\sum_{n} a_n$$
 converge et $\sum_{n=0}^{+\infty} a_n = l$.

Exercice 5

Soit $\sum a_n z^n$ une série entière à coefficients réels de rayon de convergence 1. On pose

$$S: \begin{array}{ccc}]-1,1[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sum\limits_{n=0}^{+\infty} a_n x^n \end{array}$$

et on suppose qu'il existe $\ell \in \mathbb{R}$ tel que $S(x) \xrightarrow[x \to 1^-]{} \ell$. On suppose également que $a_n = o_{n \to +\infty} \left(\frac{1}{n}\right)$. Pour $N \in \mathbb{N}$ et $x \in [0, 1]$, on note

$$A(x) = S(x) - \ell$$
, $B_N(x) = \sum_{n=0}^{N} (1 - x^n) a_n$ et $C_N(x) = \sum_{n=N+1}^{+\infty} a_n x^n$

1. Montrer que pour tout $N \in \mathbb{N}$ et pour tout $x \in [0, 1]$, on a

$$\sum_{n=0}^{N} a_n - \ell = A(x) + B_N(x) - C_N(x).$$

Soit $N \in \mathbb{N}$ et $x \in [0, 1[$. On a

$$A(x) + B_N(x) - C_N(x) = \sum_{n=0}^{+\infty} a_n x^n - l + \sum_{n=0}^{N} a_n - \sum_{n=0}^{N} a_n x^n - \sum_{n=N+1}^{+\infty} a_n x^n$$

$$= \sum_{n=0}^{N} a_n x^n - l + \sum_{n=0}^{N} a_n - \sum_{n=0}^{N} a_n x^n$$

$$= \sum_{n=0}^{N} a_n - l.$$

2. Soit $\varepsilon > 0$. Montrer qu'il existe $N_0 \in \mathbb{N}$ tel que :

$$\forall N \geqslant N_0, \ \forall x \in [0, 1[, \ |C_N(x)| \leqslant \frac{\varepsilon}{N(1-x)}.$$

ightharpoonup Comme $a_n = \underset{n \to +\infty}{o} \left(\frac{1}{n}\right)$, il existe $N_0 \in \mathbb{N}^*$ tel que :

$$\forall N \geqslant N_0, |a_n| \leqslant \frac{\varepsilon}{N}$$

 \triangleright Soit $x \in [0,1[$ et $N \geqslant N_0$. Comme les séries $\sum_n |a_n| x^n$ et $\sum_n x^n$ convergent, on obtient :

$$|C_N(x)| \leqslant \sum_{n=N+1}^{+\infty} |a_n| x^n \leqslant \sum_{n=N+1}^{+\infty} \frac{\varepsilon}{N} x^n \leqslant \frac{\varepsilon}{N(1-x)}.$$

3. Montrer que la série $\sum a_n$ est convergente et que sa somme vaut ℓ . On pourra, pour un entier $N \in \mathbb{N}^*$, utiliser le point $x_N = 1 - \frac{1}{N}$

Pour $N \in \mathbb{N}^*$, on note $x_N = 1 - \frac{1}{N}$. \triangleright Soit $\varepsilon > 0$. Comme $x_N \xrightarrow[N \to +\infty]{} 1$ et que $S(x) \xrightarrow[x \to 1]{} l$, il existe $N_1 \in \mathbb{N}^*$ tel :

$$\forall N \geqslant N_1, |A(x_N)| \leqslant \varepsilon.$$

 \rhd Soit $N\in\mathbb{N}^*.$ Pour tout $n\in\mathbb{N},$ on a

$$|1 - x_N^n| = (1 - x_N) \sum_{k=0}^{n-1} x_N^k \leqslant n \frac{1}{N}$$

Donc pour tout $N \in \mathbb{N}^*$:

$$|B_N(x_N)| \le \sum_{n=0}^N n \frac{1}{N} |a_n| = \frac{1}{N} \sum_{n=0}^N n |a_n|$$

ightharpoonup Comme $n|a_n|\xrightarrow[n\to+\infty]{}0$, par somme de Cesàro, on a $\frac{1}{N}\sum_{n=0}^N n|a_n|\xrightarrow[N\to+\infty]{}0$. Donc il existe $N_2\in\mathbb{N}^*$ tel que :

$$\forall N \geqslant N_2, |B_N(x_N)| \leqslant \varepsilon$$

 $\forall N\geqslant N_2, |B_N(x_N)|\leqslant \varepsilon$ \rhd En posant $N_3=\max(N_0,N_1,N_2),$ on obtient finalement :

$$\forall N \geqslant N_3, \left| \sum_{n=0}^{N} a_n - l \right| \leqslant |A(x_N)| + |B_N(x_N)| + |C_N(x_N)|$$
$$\leqslant \varepsilon + \varepsilon + \frac{\varepsilon}{N(1 - x_N)}$$
$$\leqslant 3\varepsilon$$

D'où:

$$\sum_{n=0}^{N} a_n \xrightarrow[N \to +\infty]{} l.$$