

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/13
Paper 1 Pure Mathen	natics 1 (P1)	Oct	ober/November 2019
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 20 printed pages.

Cambridge Assessment International Education

JC19 11_9709_13/RP © UCLES 2019

[Turn over

	Expand $(1 + y)^6$ in ascending powers of y as far as the term in y^2 .
(ii)	In the expansion of $(1 + (px - 2x^2))^6$ the coefficient of x^2 is 48. Find the value of the posit constant p .

expression for $g^{-1}(x)$ and state the domain of g^{-1} .	[5

a < x < b. I	Find the least	possible val	ue of a and	the greate	st possible	value of b .	ints in the int	[4
				••••••				•••••
								•••••
•••••					•••••			•••••
								•••••
								•••••
								•••••
							•••••	•••••
								•••••
					•••••			•••••
								•••••
								•••••
•••••				•••••				••••
•••••					•••••			•••••
								•••••
								•••••
								•••••
								•••••

4

The diagram shows a semicircle ACB with centre O and radius r. Arc OC is part of a circle with centre A.

Express angle CAO in radians in terms of π .	[1]
Find the area of the shaded region in terms of r , π and $\sqrt{3}$, simplifying your answer.	[4]
	•••••
	Find the area of the shaded region in terms of r , π and $\sqrt{3}$, simplifying your answer.

5

The dimensions of a cuboid are x cm, 2x cm and 4x cm, as shown in the diagram.

(i)	Show that the surface area $S \text{ cm}^2$ and the volume $V \text{ cm}^3$ are connected by the relation	
	$S=7V^{\frac{2}{3}}.$	[3]

rate of inc	rease of th	e volume	at this i	nstant.	ne surfac					
		•••••								
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
••••••						•••••	•••••			•••••
••••••	•••••	••••••	•••••		••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
		•••••				••••••	•••••			•••••
••••••	•	•••••	•••••	•	•	••••••	•••••	••••••	••••••	•••••
	•••••						•••••			•••••
		•••••								
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••	•••••		••••••	•••••	•••••			
•••••	•••••	•••••	•••••		••••••	••••••	••••••	••••••		•••••
					• • • • • • • • • • • • • • • • • • • •		•••••			
••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••••		••••••			••••••	•••••	••••••		•••••	•••••
										•••••

]	Find the set of values of k for which the line and curve meet at two distinct points.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

ta	For each of two particular values of k , the line is a tangent to the curve. Show that these angents meet on the x -axis.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

X	Show that the equation $3\cos^4\theta + 4\sin^2\theta - 3 = 0$ can be expressed as $3x^2 - 4x + 1 = 0$ $x = \cos^2\theta$.
•	
•	
•	

(ii)	Hence solve the equation $3\cos^4\theta + 4\sin^2\theta - 3 = 0$ for $0^\circ \le \theta \le 180^\circ$. [5]

Fin	d the set o	of values of	f x for w	hich f is	s decrea	sing.		[4
••••					•••••		 	
					•••••		 	
••••		•••••			•••••		 •••••	
		•••••					 •••••	
		•••••					 	
· · · ·		•••••					 	
		•••••					 	
· • • • •		•••••					 	
		•••••					 	
		•••••					 	
		•••••			•••••		 •••••	
		•••••					 	
		•••••					 	
· • • • •							 	
		•••••					 	
		•••••					 	

(ii)	It is now given that $f(1) = -3$. Find $f(x)$. [4]

(-)	Show that k satisfies the equation $7k^2 - 48k + 36 = 0$.	
		•••••
(ii)	Find, showing all necessary working, the exact values of the common	ratio correspondi
(ii)	Find, showing all necessary working, the exact values of the common each of the possible values of k .	ratio correspondi
(ii)		ratio correspondi
(ii)		ratio correspondi
(ii)		ratio correspondi
(ii)		ratio correspondi
(ii)		ratio correspondi
(ii)		ratio correspondi
(ii)		
(ii)	each of the possible values of k.	
(ii)	each of the possible values of k.	

10 Relative to an origin O, the position vectors of the points A, B and X are given by

$$\overrightarrow{OA} = \begin{pmatrix} -8 \\ -4 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 10 \\ 2 \\ 11 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OX} = \begin{pmatrix} -2 \\ -2 \\ 5 \end{pmatrix}.$$

and \overrightarrow{AX} and show that AXB is a straight line.	[3

The position vector of a point C is given by $\overrightarrow{OC} = \begin{pmatrix} 1 \\ -8 \\ 3 \end{pmatrix}$.

(ii)	Show that CX is perpendicular to AX .	[3]
(iii)	Find the area of triangle ABC .	[3]
(iii)	Find the area of triangle <i>ABC</i> .	[3]
(iii)	Find the area of triangle <i>ABC</i> .	[3]
(iii)	Find the area of triangle ABC.	[3]
(iii)	Find the area of triangle ABC.	[3]
(iii)	Find the area of triangle ABC.	[3]
(iii)	Find the area of triangle ABC.	[3]
(iii)	Find the area of triangle ABC.	[3]
(iii)	Find the area of triangle ABC.	[3]
(iii)	Find the area of triangle ABC.	[3]
(iii)	Find the area of triangle ABC.	[3]

11

The diagram shows part of the curve $y = (x - 1)^{-2} + 2$, and the lines x = 1 and x = 3. The point A on the curve has coordinates (2, 3). The normal to the curve at A crosses the line x = 1 at B.

(i)	Show that the normal AB has equation $y = \frac{1}{2}x + 2$.	[3]
		· • • • •
		· • • • •
		· • • • •
		,
		,
		· • • • •
		,
		· • • • •

is r	d, showing all necessal otated through 360° a	bout the x -axis.		
••••	••••••	•••••	•	••••••
••••			 	•••••
••••	•••••		 	
••••	•••••	•••••	 	••••••
••••			 	
••••	••••••	••••••	 	•••••
••••			 	
••••	••••••	••••••	 	•••••
••••			 	•••••
••••			 	
••••	•••••	•••••	 •	••••••
••••			 	
••••	•••••	•••••	 	••••••
••••			 	
••••	•••••	•••••	 	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.						
	••••••					
	••••••					
	•					
	•••••					
	•••••					
	•					
	•••••					
	•••••					

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.