Table 18.1 Acoustic velocities for various materials - Ellis and Singer, 2007, Well Logging for Earth Scientists, 2nd ed., Springer in turn adapted from Timur A (1987) Acoustic logging. In Bradley H (ed) Petroleum production handbook. SPE, Dallas TX

Nonporous solids	Vc (ft/s)	Vs (ft/s)	Vc (m/s)	Vs (m/s)	1/Vc (us/m)	1/Vs (us/m)
Anhydrite	20000	11400	6098	3476	164	288
Calcite	20100		6128	0	163	
Cement (cured)	12000		3659	0	273	
Dolomite	23000	12700	7012	3872	143	258
Granite	19700	11200	6006	3415	166	293
Gypsum	19000		5793	0	173	
Limestone	21000	11100	6402	3384	156	295
Quartz	18900	12000	5762	3659	174	273
Salt	15000	8000	4573	2439	219	410
Steel	20000	9500	6098	2896	164	345
Water-saturated porous rocks in situ						
Poros	ty					
Dolomites 5-20%	20000 1500	0 11000 7500	6098 4573	3354 2287	164 219	298 437
Limestones 5-20%	18500 1300	0 9500 7000	5640 3963	2896 2134	177 252	345 469
Sandstones 5-20%	16500 1150	0 9500 6000	5030 3506	2896 1829	199 285	345 547
Sands (unconsolidated) 20-25	6 11500 900	0 4000 1700	3506 2744	1220 518	285 364	820 1929
Shales	7000 1700	0	2134 5183	3	469 193	
Liquids						
Water (pure)	4800		1463		683	
Water (100,00 mg/L of NaCl)	5200		1585		631	
Water (200,00 mg/L of NaCl)	5500		1677		596	
Drilling mud	5700 360	0	1738 1098	3	575 911	
Petroleum	4200		1280		781	
Gases						
Air (dry or moist)	1100		335		2982	
Hydrogen	4250		1296		772	
Methane	1500		457		2187	