Из (15) следует, что A=-C и B=-D. В результате имеем для системы (15)-(17) матрицу, определитель которой определяет характеристическое уравнение $P(\beta)=0$, которое,в свою очередь, определяет собственные значения $\beta_j>0(\lambda_j=\beta_j^4)$

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

$$A_{11} = -\beta^{2}(\cosh(\beta) + \cos(\beta)) + \lambda M J \beta(\sinh(\beta) + \sin(\beta)) + a\lambda M(\cosh(\beta) - ac(\cosh(\beta) - \cos(\beta)) - a^{2}c\beta(\sinh(\beta) + \sin(\beta))$$

$$A_{12} = -\beta^{2}(\sinh(\beta) + \sin(\beta)) + \lambda M J \beta(\cosh(\beta) - \cos(\beta)) + a\lambda M(\sinh(\beta) - \sin(\beta)) - ac(\sinh(\beta) - \sin(\beta)) - a^{2}c\beta(\cosh(\beta) - \cos(\beta))$$

$$-ac(\sinh(\beta) - \sin(\beta)) - a^{2}c\beta(\cosh(\beta) - \cos(\beta))$$

$$A_{21} = -\beta^{3}(\sinh(\beta) + \sin(\beta)) - (\lambda M - c)(\cosh(\beta) - \cos(\beta)) - (\lambda M - c)a\beta(\sinh(\beta) + \sin(\beta))$$

$$A_{22} = -\beta^{3}(\cosh(\beta) + \cos(\beta)) - (\lambda M - c)(\sinh(\beta) - \sin(\beta)) - (\lambda M - c)a\beta(\cosh(\beta) - \cos(\beta))$$

$$P(\beta) = A_{11}A_{12} - A_{21}A_{22} = 0$$

В ходе выполнения работы была написана программа на языке Python, вычисляющая первые 5 положительных корней характеристического уравнения, и строящая соответствующие им собственные функции $\nu_i(x)$

Рис. 1. $c = 0.1, d = 0.025, l = 0.5, d_1 = 0.08, l_1 = 0.3$

Рис. 2. $c=1, d=0.025, l=0.5, d_1=0.08, l_1=0.3$

Рис. 3. $c = 500, d = 0.025, l = 0.5, d_1 = 0.08, l_1 = 0.3$

Рис. 4. $c = 10000, d = 0.025, l = 0.5, d_1 = 0.08, l_1 = 0.3$

Собственные функции удовлетворяют следующим условиям нормировки

$$\langle v, \nu \rangle = \int_{0}^{1} v(x)\nu(x)dx + Mv(1)\nu(1) + MJv'(1)\nu'(1) + Ma(v'(1)\nu(1) + v(1)\nu'(1))$$
$$||v|| = \langle v, v \rangle^{1/2}$$

По теорме о неявной функции имеем для λ_{*1} :

$$\lambda_{*1} = -\frac{f_{\epsilon}(i\sigma_{1*}; 0)}{f_{\lambda}(i\sigma_{1*}; 0)} = -\frac{a_{0*}i\sigma_{1*}}{2i\sigma_{1*} + a_{0*}} = -\frac{a_{0*}i\sigma_{1*} + 2\sigma_{1*}^2 a_{0*}}{a_{0*} + 4\sigma_{1*}}$$

Вещественная часть $\lambda_{*1} = -\frac{2\sigma_{1*}^2 a_{0*}}{a_{0*} + 4\sigma_{1*}^2} < 0$, следовательно, при увеличении параметра a_0 нули характеристического уравнения с мнимой оси переходят в \mathbb{C}_- . На основании этим данных строим картину D-разбиений, где D_j обозначает область, где характеристическое уравнение имеет j нулей, принадлежащих полуплоскости \mathbb{C}_+ .

Рис. 5. $c = 0.1, d = 0.025, l = 0.5, d_1 = 0.08, l_1 = 0.3$

Рис. 6. $c=1, d=0.025, l=0.5, d_1=0.08, l_1=0.3$

Рис. 7. $c = 500, d = 0.025, l = 0.5, d_1 = 0.08, l_1 = 0.3$

Рис. 8. $c = 10000, d = 0.025, l = 0.5, d_1 = 0.08, l_1 = 0.3$