Math 122A Homework 6

Rad Mallari

March 1, 2022

1 Problem 1

Let C be a closed, positive, and simple curve. Using Green's Theorem prove that

$$\frac{1}{2i}\int_C \bar{z}dz$$
 = area enclosed by C

Proof. Since $\bar{z} = x - iy$, this is equivalent to

$$\frac{1}{2i} \int_C (x - iy)(dx + idy) = \frac{1}{2i} \left[\int_C (xdx + ydy) + i \int_C (xdy - ydx) \right]$$

Where D is the area boundead by C. Now using Green's Theorem, twice we have that

$$\frac{1}{2i} \left[\iint_D (0-0) dx dy + i \iint_D (1-(-1)) dx dy \right]$$
$$= \iint_D dx dy$$

Which after evaluating the integrals is exactly the area enclosed by C. \square

2 Problem 2

Consider the function $f(z) = (z+1)^2$ and the region R bounded by the triangle with vertices 0, 2, i (its boundary and interior). Find the points where |f(z)| reaches its maximum and minimum value of R.

Proof. By the Maximum Modulus Theorem, we know that $|f(z)| = |z+1|^2$. Then the minimum would be at the boundary where |f(z)| is the closest to

-1 and maximum is the furthest. Then we know that since |f(z)| = 1 at z = 0, then this is the minimum, and since |f(z)| = 9 at z = 2, then this is the maximum.

3 Problem 3

Find the maximum of $|\sin(z)|$ on $[0, 2\pi] \times [0, 2\pi]$. **Proof.** We can rewrite $\sin(z)$ as:

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{x+iy} - e^{-i(x+iy)}}{2i}$$

$$= \frac{e^{ix}e^{-y} - e^{-ix}e^{y}}{2i}$$

$$= \frac{(\cos x + i\sin x)e^{y} - (\cos x - i\sin x)e^{y}}{2i}$$

$$= -\frac{1}{i}\cos(x)\left(\frac{e^{-y} - e^{y}}{2}\right) + \sin(x)\left(\frac{e^{y} + e^{-y}}{2}\right)$$

$$= i\cos(x)\sinh(y) + \sin(x)\cosh(y)$$
(1)

And using Maximum Modulus Theorem, and (1), we have that:

$$|\sin(z)|^2 = \cos^2(x)\sinh^2(y) + \sin^2(x)\cosh^2(y)$$

Using the identities that states $\cosh^2(y) - \sinh^2(y) = 1$ and $\cos^2(x) + \sin^2(x) = 1$, we can rewrite this as:

$$|\sin(z)|^2 = \cos^x \sinh^2(y) + \sin^2(x) \cdot (1 + \sinh^2(y))$$

Leaving us with

$$\left|\sin(z)\right|^2 = \sinh^2(y) + \sin^2(x)$$

We know that that maximum of $\sin^2(x) = 1$ which is at $x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$, meanwhile the maximum of $\sinh^2(y)$ is located at $y = 2\pi$. Therefore, out maximum is at the boundaries 2π .

4 Problem 4

Calculate:

(a)
$$\int_0^{2\pi} \frac{d\theta}{a + b\cos(\theta)}, \quad 0 < b < a$$

HINT: Work backwards using $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ to convert the integral into a complex integral along the curve |z| = 1

(b)
$$\int_0^{2\pi} \frac{d\theta}{(a+b\cos(\theta))^2}$$

(c)
$$\int_0^{2\pi} \frac{\sin(\theta)d\theta}{(a+b\cos(\theta))^2}, \quad 0 < b < a$$

Proof.

(a) By the hint, we work backwards and get

$$\int_0^{2\pi} \frac{d\theta}{a + b\left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)}$$

Factoring out a 2 gives us

$$2\int_0^{2\pi} \frac{d\theta}{2a + b\left(e^{i\theta} + e^{-i\theta}\right)}$$

Letting $z(\theta)=e^{i\theta}$, where $z:[0,2\pi]\to\mathbb{C}$, implies $d\theta=\frac{dz}{iz}$ and our line integral becomes

$$I = \frac{2}{i} \oint_{|z|=1} \frac{dz}{bz^2 + 2az + b}$$

Here our $f(z) = \frac{1}{bz^2 + 2az + b}$ is analytic except at $\frac{a \pm \sqrt{a^2 - b^2}}{b}$. These two points are:

$$z_1 = \frac{a + a\sqrt{1 - \frac{b^2}{a^2}}}{b}$$
 and $z_2 = \frac{a - a\sqrt{1 - \frac{b^2}{a^2}}}{b}$

By our condition that 0 < b < a, we know z_2 must be outside our z, therefore letting $h(z) = \frac{1}{z - \left(\frac{a - a\sqrt{1 - \frac{b^2}{a^2}}}{b}\right)}$ and by Cauchy Theorem we get

$$I = \frac{2}{i} \oint_{|z|=1} \frac{h(z_2)dz}{z - \left(\frac{a + a\sqrt{1 - \frac{b^2}{a^2}}}{b}\right)} = \frac{2\pi b}{\sqrt{a^2 - b^2}}$$

(b) Similarly, letting $\cos(\theta) = \frac{e^{i\theta} + e^{-\theta}}{2}$ yields

$$\int_0^{2\pi} \frac{d\theta}{\left(a + b\left(\frac{e^{i\theta} + e^{-\theta}}{2}\right)\right)^2}$$

Then letting $z(\theta) = e^{i\theta}$, $d\theta = \frac{dz}{iz}$, we get

$$\frac{4}{i} \oint_{|z|=1} \frac{zdz}{(bz^2 + 2az + b)^2}$$

Our singularities here are the same as (a) which are

$$z_1 = \frac{a + a\sqrt{1 - \frac{b^2}{a^2}}}{b}$$
 and $z_2 = \frac{a - a\sqrt{1 - \frac{b^2}{a^2}}}{b}$

But z_1 in this case is outside of |z| = 1.

(c)

5 Problem 5

Prove that if $f: \mathbb{C} \to \mathbb{C}$ is entire such that for some $n \in \mathbb{N}$

$$\lim_{|z|\to\infty}\frac{|f(z)|}{\left|z\right|^{n}}=M<\infty,$$

then f is a polynomial of degree at most n.

Proof. Since f is analytic, by a theorem in **Lecture 16** which states that f has a power series expansion in the neighborhood of analyticity that is

$$f(z_0) = \sum_{n=0}^{\infty} (z_0 - z_1)^n \left(\frac{f^n(z_1)}{n!}\right)$$

In our case, $z_1 = 0$ so this becomes

$$f(z_0) = \sum_{n=0}^{\infty} (z_0)^n \left(\frac{f^n(0)}{n!} \right)$$

By Section 49 of the book, we get

$$|f^n(0)| \le \frac{n! M_R}{R^n}$$

Where M_R denotes the maximum value of |f(z)|.

6 Problem 6

Let $A \subset \mathbb{C}$ be an open set and $f: A \to \mathbb{C}$ be an analytic function on A. Assuming that $z_0 \in A$ such that

$$\{z \in \mathbb{C} : |z - z_0| \le R\}, \quad R > 0$$

prove that

$$f(z_0) = \frac{1}{\pi R^2} \iint_{|z-z_0| \le R} f(x+iy) dx dy$$

Proof.

7 Problem 7

Let $f: R \to R$ be defined as

$$f(x) = e^{\frac{-1}{x^2}}$$
 if $x \neq 0$, $f(0) = 0$

Show that f is infinitely differentiable $\forall n \in \mathbb{N}, f^{(n)}(0) = 0$. Verify that the power series of f at x = 0 does not agree with f in any neighborhood of 0. **Proof.**