Topological data analysis Homework 1

Sara Bizjak (27202020)

October 28, 2020

1 Theoretical problems

1.1 Exploring different metrics

- a) Determing the distances between the points (2,1), (4,2), (0,2) in metrics α , β , γ .
 - Metric α .

$$d_{\alpha}((2,1), (4,2)) = \sqrt{2^2 + 1^2} + \sqrt{4^2 + 2^2} = \sqrt{5} + \sqrt{20} = 6.708203932499369.$$

$$d_{\alpha}((2,1), (0,2)) = \sqrt{2^2 + 1^2} + \sqrt{0^2 + 2^2} = \sqrt{5} + \sqrt{4} = 4.23606797749979.$$

$$d_{\alpha}\big((4,2),\ (0,2)\big) = \sqrt{4^2+2^2} + \sqrt{0^2+2^2} = \sqrt{20} + \sqrt{4} = 6.47213595499958.$$

• Metric β .

$$d_{\beta}((2,1), (4,2)) = \sqrt{(2-4)^2 + (1-2)^2} = \sqrt{4+1} = 2.23606797749979.$$

$$d_{\beta}((2,1), (0,2)) = \sqrt{2^2 + 1^2} + \sqrt{0^2 + 2^2} = \sqrt{5} + \sqrt{4} = 4.23606797749979.$$

$$d_{\beta}((4,2), (0,2)) = \sqrt{4^2 + 2^2} + \sqrt{0^2 + 2^2} = \sqrt{20} + \sqrt{4} = 6.47213595499958.$$

• Metric γ .

$$d_{\gamma}\big((2,1),\ (4,2)\big) = |2-4|+|1|+|2| = 2+1+2 = 5.$$

$$d_{\gamma}((2,1), (0,2)) = |2-0| + |1| + |2| = 5.$$

$$d_{\gamma}((4,2), (0,2)) = |4-0| + |2| + |2| = 4 + 2 + 2 = 8.$$

b) Draw the open balls B((0,0),1), B((1,0),2), B((0,2),6) in α metric.

$$B\big((0,0),1\big) = \{(0,0)\} \cup \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} + \sqrt{0^2 + 0^2} < 1\}$$
$$= \{(0,0)\} \cup \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < 1\}.$$

Figure 1: B((0,0),1) in metric α .

$$B((1,0),2) = \{(1,0)\} \cup \{(x,y) \in \mathbb{R}^2 \setminus (1,0) : \sqrt{x^2 + y^2} + \sqrt{1^2 + 0^2} < 2\}$$
$$= \{(1,0)\} \cup \{(x,y) \in \mathbb{R}^2 \setminus (1,0) : \sqrt{x^2 + y^2} < 1\}.$$

Figure 2: B((1,0),2) in metric α .

$$B((0,2),6) = \{(0,2)\} \cup \{(x,y) \in \mathbb{R}^2 \setminus (0,2) : \sqrt{x^2 + y^2} + \sqrt{0^2 + 2^2} < 6\}$$
$$= \{(0,2)\} \cup \{(x,y) \in \mathbb{R}^2 \setminus (0,2) : \sqrt{x^2 + y^2} < 4\}.$$

Figure 3: B((0,2),6) in metric α .

c) Draw the open balls B((0,0),1), B((1,0),2), $B((2,2),3\sqrt{2})$ in β metric.

$$B((0,0),1) = \{(x,y) \in \mathbb{R}^2 : \sqrt{(x-0)^2 + (y-0)^2} < 1\}$$
$$= \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < 1\}.$$

Figure 4: B((0,0),1) in metric β .

$$\begin{split} B\big((1,0),2\big) &= \{(x,0) \in \mathbb{R}^2 : \sqrt{(x-1)^2} < 2\} \cup \{(x,y) \in \mathbb{R}^2, \ y \neq 0 : \sqrt{x^2 + y^2} + \sqrt{1^2} < 2\} \\ &= \{(x,0) \in \mathbb{R}^2 : |x-1| < 2\} \cup \{(x,y) \in \mathbb{R}^2, \ y \neq 0 : \sqrt{x^2 + y^2} < 1\} \\ &= \{(x,0) \in \mathbb{R}^2 : -1 < x < 3\} \cup \{(x,y) \in \mathbb{R}^2, \ y \neq 0 : \sqrt{x^2 + y^2} < 1\}. \end{split}$$

Figure 5: B((1,0),2) in metric β .

$$\begin{split} B\big((2,2),3\sqrt{2}\big) &= \{(x,x) \in \mathbb{R}^2 : \sqrt{2 \cdot (x-2)^2} < 3\sqrt{2}\} \cup \{(x,y) \in \mathbb{R}^2, \ x \neq y : \sqrt{x^2 + y^2} + \sqrt{2 \cdot 2^2} < 3\sqrt{2}\} \\ &= \{(x,x) \in \mathbb{R}^2 : \sqrt{2} \cdot |x-2| < 3\sqrt{2}\} \cup \{(x,y) \in \mathbb{R}^2, \ x \neq y : \sqrt{x^2 + y^2} + 2\sqrt{2} < 3\sqrt{2}\} \\ &= \{(x,x) \in \mathbb{R}^2 : -1 < x < 5\} \cup \{(x,y) \in \mathbb{R}^2, \ x \neq y : \sqrt{x^2 + y^2} < \sqrt{2}\}. \end{split}$$

Figure 6: $B((2,2), 3\sqrt{2})$ in metric β .

d) Draw the open balls B((0,0),1), B((1,0),2), B((2,0),3) in γ metric.

$$B((0,0),1) = \{(0,y) \in \mathbb{R}^2 : |y-0| < 1\} \cup \{(x,y) \in \mathbb{R}^2, \ x \neq 0 : |x-0| + |y-0| < 1\}$$
$$= \{(0,y) \in \mathbb{R}^2 : -1 < y < 1\} \cup \{(x,y) \in \mathbb{R}^2 : -1 < x < 1, \ -1 < y < 1\}.$$

Figure 7: B((0,0),1) in metric γ .

$$\begin{split} B\big((1,0),2\big) &= \{(1,y) \in \mathbb{R}^2: |y-0| < 2\} \cup \{(x,y) \in \mathbb{R}^2, \ x \neq 1: |x-1| + |y-0| < 2\} \\ &= \{(1,y) \in \mathbb{R}^2: -2 < y < 2\} \cup \{(x,y) \in \mathbb{R}^2, \ x \neq 1: -1 < x < 3, \ -2 < y < 2\}. \end{split}$$

Figure 8: B((1,0),2) in metric γ .

$$B((2,0),3) = \{(2,y) \in \mathbb{R}^2 : |y-0| < 3\} \cup \{(x,y) \in \mathbb{R}^2, \ x \neq 2 : |x-2| + |y-0| < 3\}$$
$$= \{(2,y) \in \mathbb{R}^2 : -3 < y < 3\} \cup \{(x,y) \in \mathbb{R}^2, \ x \neq 2 : -1 < x < 5, \ -3 < y < 3\}.$$

Figure 9: B((2,0),3) in metric γ .

1.2 Discrete metric

The discrete metric on a space X is defined as $d: X \times X \to \mathbb{R}$, where d(x,y) = 1 if x = y and 1 otherwise.

a) Let $X = \mathbb{N}$. Describe $B(1, \frac{1}{2})$ and B(2, 1).

$$\begin{split} B\left(1,\frac{1}{2}\right) &= \{x \in \mathbb{N}: d(1,x) < \frac{1}{2}\} = \{x = 1: d(1,1) = 0\} = 1. \\ B(2,1) &= \{x \in \mathbb{N}: d(2,x) < 1\} = \{x = 2: d(2,2) = 0\} = 2. \end{split}$$

b) The triangle with vertices at distinct integers a, b, c is always equilateral, because the distance between distinct points in discrete metric is always 1.

1.3 Homeomorphic spaces

Let $X = S^{n-1} \times [0,1] \subset \mathbb{R}^{n+1}$ and $Y = \{(x_1,\ldots,x_n) \in \mathbb{R}^n : 1 \leq x_1^2 + \cdots + x_n^2 \leq 4\}$. What we want to do is to prove that X and Y are homeomorphic. Therefore, we need to define continuous functions $f: X \to Y$ and $g: Y \to X$ and show that $g = f^{-1}$. We do that by calculating $f \circ g$ and $g \circ f$ and show that they are identities.

To get an idea, we first look at the sketches of spaces X and Y for n = 1 and n = 2, denoted as X_1, X_2 and Y_1, Y_2 .

Figure 10: $X_1 = S^0 \times [0, 1] \subset \mathbb{R}^2$.

Figure 11: $Y_1 = \{x_1 \in \mathbb{R} : 1 \le x_1^2 \le 4\}.$

Figure 12: $X_2 = S^1 \times [0,1] \subset \mathbb{R}^3$.

Figure 13: $Y_2 = \{(x_1, x_2) \in \mathbb{R}^2 : 1 \le x_1^2 + x_2^2 \le 4\}.$

We imagine space X_2 as an union of disjointed lines connecting upper and lower circle edges. Similarly, we imagine space Y_2 . Let's present this idea in the following pictures.

Figure 14: X_2 as an union of disjoint lines.

Figure 15: Y_2 as an unoin of disjoint lines.

We see that we can go from space X_2 to space Y_2 by "flipping" lines down on the plane. And equivalently, from Y_2 to X_2 we do the same thing but in reverse.

Lines in X_2 have the form of $(1-t)\cdot(x_1,x_2,0)+t\cdot(x_1,x_2,1)$ and lines in Y_2 have the form of $(1-t)\cdot(x_1,x_2)+2t\cdot(x_1,x_2)$, where $t\in[0,1]$.

To get from X_2 to Y_2 we have to project lines to x_1x_2 -plane (by skipping the third coordinate) and then stretch them with factor (1+t), where $t \in [0,1]$. On the other hand, to get from Y_2 to X_2 we have to squeeze the lines to the unit circle (normalization) and then stretch them up from 0 to 1, so we write the new coordinate, denoted by t, as a function of x_1 and x_2 . Following this idea, functions $f_2: X_2 \to Y_2$ and $g_2: Y_2 \to X_2$ are:

$$f_2(x_1, x_2, t) = (x_1 \cdot (1+t), x_2 \cdot (1+t))$$
 and $g_2(x_1, x_2) = \left(\frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \frac{x_2}{\sqrt{x_1^2 + x_2^2}}, \sqrt{x_1^2 + x_2^2} - 1\right)$, where $t \in [0, 1]$.

Let's get back to X and Y spaces and use our idea for general n. Let $f: X \to Y$ and let $g: Y \to X$. Function f is:

$$f(x_1,\ldots,x_n,t) = (x_1 \cdot (1+t),\ldots,x_n \cdot (1+t)) = (1+t) \cdot (x_1,\ldots,x_n).$$

Now, we need to verify that $(1+t) \cdot (x_1, \ldots, x_n) \in Y$. Because $(x_1, \ldots, x_n, t) \in X$, then $x_1^2 + \cdots + x_n^2 = 1$ and $t \in [0, 1]$. So $((1+t) \cdot x_1)^2 + \cdots + ((1+t) \cdot x_2)^2 = (1+t)^2 \cdot (x_1^2 + \cdots + x_n^2)^2 = (1+t)^2$ and $1 \le (1+t)^2 \le 4$, so the condition is satisfied.

For function g we need to express the new coordinate t as a function of (x_1, \ldots, x_n) . For $t \in [0, 1]$ the relation $t = \sqrt{x_1^2 + \cdots + x_n^2} - 1$ is obvious.

$$g(x_1, \dots, x_n) = \left(\frac{x_1}{\sqrt{x_1^2 + \dots + x_n^2}}, \dots, \frac{x_n}{\sqrt{x_1^2 + \dots + x_n^2}}, \sqrt{x_1^2 + \dots + x_n^2} - 1\right).$$

Similarly as we did for function f, we now need to verify that

$$\left(\frac{x_1}{\sqrt{x_1^2 + \dots + x_n^2}}, \dots, \frac{x_n}{\sqrt{x_1^2 + \dots + x_n^2}}, \sqrt{x_1^2 + \dots + x_n^2} - 1\right) \in X. \text{ Because } (x_1, \dots, x_n) \in Y \text{ follows } 1 \le x_1^2 + \dots + x_n^2 \le 4. \text{ Since } \left(\frac{x_1}{\sqrt{x_1^2 + \dots + x_n^2}}\right)^2 + \dots + \left(\frac{x_n}{\sqrt{x_1^2 + \dots + x_n^2}}\right)^2 = \frac{x_1^2 + \dots + x_n^2}{x_1^2 + \dots + x_n^2} = 1 \text{ and } t = \sqrt{x_1^2 + \dots + x_n^2} - 1 \text{ is equivalent to } t \in [0, 1] \text{ , the condition is satisfied.}$$

Clearly, both functions are continuous.

All there is left to do is to calculate both compositums. Both compositums are also continuous.

$$(f \circ g): Y \to X \to Y$$

$$(f \circ g)(x_1, \dots, x_n) = f\left(\frac{x_1}{\sqrt{x_1^2 + \dots + x_n^2}}, \dots, \frac{x_n}{\sqrt{x_1^2 + \dots + x_n^2}}, \sqrt{x_1^2 + \dots + x_n^2} - 1\right)$$

$$= \left(\frac{x_1}{\sqrt{x_1^2 + \dots + x_n^2}} \cdot \left(\sqrt{x_1^2 + \dots + x_n^2}\right), \dots, \frac{x_n}{\sqrt{x_1^2 + \dots + x_n^2}} \cdot \left(\sqrt{x_1^2 + \dots + x_n^2}\right)\right)$$

$$= (x_1, \dots, x_n) = id_Y$$

$$(q \circ f): X \to Y \to X$$

$$(g \circ f)(x_1, \dots, x_n, t) = g(x_1 \cdot (1+t), \dots, x_n \cdot (1+t))$$

$$= (1+t) \cdot \left(\frac{x_1}{\sqrt{x_1^2 + \dots + x_n^2}}, \dots, \frac{x_n}{\sqrt{x_1^2 + \dots + x_n^2}}, \sqrt{x_1^2 + \dots + x_n^2} - 1\right)$$

$$= (x_1, \dots, x_n, t) = \mathrm{id}_X$$

 $\Longrightarrow X \cong Y.$

1.4 Homeomorphic spaces

Let $S_+^n = \{(x_1, \dots, x_{n+1}) \in S^n ; x_{n+1} \ge 0\}$ and $B^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n ; x_1^2 + \dots x_n^2 \le 1\}$. We want to prove that S_+^n and B^n are homeomorphic. To get an idea it's sufficient to look at sketches for n = 1.

Figure 17: $B^1 = \{x_1 \in \mathbb{R} ; \bot 1^2 \le 1\}.$

Figure 16: $S^1_+ = \{(x_1, x_2) \in S^1 ; x_2 \ge 0\}.$

To get from left to right, the idea is to project the circle down on the line (so we no longer use coordinate x_2 and coordinate x_1 stays the same), and from right to left to stretch the line up to circle (we add the new coordinate x_2 as a function of x_1).

Figure 18: The idea for function $S^1_+ \to B^1$.

Figure 19: The idea for function $B^1 \to S^1_+$.

Using that idea, we write the regulation for general n.

Let
$$f: S^n_+ \subset \mathbb{R}^{n+1} \to B^n \subset \mathbb{R}^n$$
 and let $g: B^n \in \mathbb{R}^n \to S^n_+ \in \mathbb{R}^{n+1}$.

As said before, to determine function f, we just skip the last coordinate.

$$f(x_1, x_2, \dots, x_{n+1}) = (x_1, x_2, \dots, x_n).$$

We need to check if $(x_1, \ldots, x_n) \in B^n$. For $(x_1, x_2, \ldots, x_{n+1}) \in S_+^n$ the relations $x_1^2 + \cdots + x_n^2 + x_{n+1}^2 = 1$ and $x_{n+1} \in [0, 1]$ are valid and that implies that $x_1^2 + \cdots + x_n^2 = 1 - x_{n+1}^2 \le 1$, so the condition is satisfied.

For function g we need to express the new coordinate x_{n+1} as a function of (x_1, \ldots, x_n) . We get $x_{n+1} = \sqrt{1 - x_1^2 - \cdots - x_n^2}$ (we take the positive root because we are in the S_+^n).

$$g(x_1, ..., x_n) = \left(x_1, ..., x_n, \sqrt{1 - x_1^2 - \cdots - x_n^2}\right).$$

We need to check if $(x_1, ..., x_n, \sqrt{1 - x_1^2 - \dots - x_n^2}) \in S_+^n$. For $(x_1, ..., x_n) \in B^n$ the relation $x_1^2 + \dots + x_n^2 \le 1$ is true and $x_1^2 + \dots + x_n^2 + x_{n+1}^2 = x_1^2 + \dots + x_n^2 + 1 - x_1^2 - \dots - x_n^2 = 1$, so $x_{n+1} \ge 0$ and the condition is satisfied.

Clearly, both function are continuous.

All there is left to do is to calculate both compositums, which are continuous, too.

$$(f \circ g): B^n \to S^n_+ \to B^n$$

 $(f \circ g)(x_1, \dots, x_n) = f\left(x_1, \dots, x_n, \sqrt{1 - x_1^2 - \dots - x_n^2}\right) = (x_1, \dots, x_n) = \mathrm{id}_{B^n}$

$$(g \circ f) : S_{+}^{n} \to B^{n} \to S_{+}^{n}$$

$$(g \circ f)(x_{1}, \dots, x_{n}, x_{n+1}) = g(x_{1}, \dots, x_{n}) = \left(x_{1}, \dots, x_{n}, \sqrt{1 - x_{1}^{2} - \dots - x_{n}^{2}}\right) = (x_{1}, \dots, x_{n}, x_{n+1}) = \mathrm{id}_{S_{+}^{n}}$$

$$\implies S_{+}^{n} \cong B^{n}.$$

2 Programming problems