

classmate	
Date Page	7

LI C	helanation oscillator: 25 a rou-linear electronic
(natisface)	Mark allowers
	non-sinuspidal output signal we the perm of
	Michangular ware hiangular wave on a saw.
	Warren The discount of the discount of the saw.
	Wave The line period of non-sinusoidal output
4	depends on the changing time of the raparities
	connected in the oscillator linearl
	3.04
	> Relanation oscillector ni also valled as fru
	running oscillatos.
	C
	11 12 1
	34
	2 7 4 6 6
	f ₁ N ₃ + V ₀
Ve exist	WWW V1 + Vo
	5/ 1 - Vcc
	RZ
	MAN =
State Con- Con- English &	- In His Pina
	Saturation hegion kere, a justion $\binom{k_2}{k_1+k_2}$ or support is jed back to non inverting $\binom{k_1}{k_1+k_2}$
	putput is led back to use I reallier to
A Total	Inbut thereing (R1+ K2)
Te gra	
	Jake values + (le 2) Ve and may
	PIP O and may
1 6	take values + (f2) V. OH - (P.)
	take values $+\left(\frac{k_2}{R_1+R_2}\right)^{\frac{1}{2}}$ values $+\left(\frac{k_2}{R_1+R_2}\right)^{\frac{1}{2}}$ values $+\left(\frac{k_2}{R_1+R_2}\right)^{\frac{1}{2}}$
	inverding input terminal after integrating by means of low-pass RC combination. Thus whenever
	inventing input terminal after Portionation to means
	of low pass he combination thus who more
	NUMBER

the voltage at inverting input terminal just exceeds enference voltage, writing takes pla resulting in a square wave output. Time period of the output waveform is given by $T = 2 RC \ln \left(\frac{1+\beta}{1-\beta} \right) \rightarrow 0$ $\frac{R_{1} + R_{2}}{9J R_{2} = 1.16 R_{1}}$ When $\beta = 0.463$ From (), T = 2RC ln (1.463) = 2RC ln(e) T= 2RC Foy given fenquency of 1 kHz. T= 1 = 1 1000 If we take Fy = 10 km and R2 = 11.6 km If we take c = 0.1 MF then from 2 $R = T = 10^{-3} = 5RN$ 2c $2 \times 0.1 \times 10^{-6}$

hulaxation	Osvillatou	
Risult:		
St No	J KHZ P	
1	1 KH3 5k1 6V	
2	1.5 KHz 3.335kN 5V	
9	1.5 KHz 3.335kN 5V 2 KHz 2.5 kN 5V	
R = T	$= 0.667 \times 10^{13}$ $T = 1$	
2c	$= 0.667 \times 10^{-6} \qquad T = 1$ $2 \times 0.1 \times 10^{-6} \qquad 1.5 \times 1$	0+3
	= 3.335 kn	
R = T	$= 0.5 \times 10^{3}$ $T =$	1
R = I 2c	$= 0.5 \times 10^{3} \qquad T = 2 \times 0.1 \times 10^{6}$	1 2 × 11
	2 × 0 · 1 × 10 \$	1 2 x 11
	$= \underbrace{0.5 \times 10^{3}}_{2 \times 0.1 \times 10^{4}} T =$ $= \underbrace{2.5 \times 10^{3}}_{N} N$	1 2 × 11
		1 2 x 11
		1 2 × 11
		1 2 × 11