

Lecture II: Linear Algebra Revisited

Overview

- · Vector spaces, Hilbert & Banach Spaces, Metrics & Norms
- · Matrices, Eigenvalues, Orthogonal Transformations, Singular Values
- Operators, Operator Norms, Function Spaces

Note: We will need many of these concepts as basic tools to quantify and evaluate the performance of machine learning algorithms and also to come up with more efficient and effective solutions ...

Vectors

Usually denoted by lower case, bold letters, e.g. x, y

Operations:

- Multiplication by scalar (αx) .
- Addition of vectors $(\mathbf{x}+\mathbf{y}) \mathbf{x}$ and \mathbf{y} have to be of same dimensions.
- Linear combination.
 - $\mathbf{u} = \alpha \mathbf{x} + \beta \mathbf{y}$ (x and y have to be of same dimensions).
- Angle between vectors. $\cos \theta = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|}$
- Linear independence.
 - When one vector cannot be written as a linear combination of other, then the vectors are said to be *linearly independent*.

Metric

Definition 1 (Metric/ *Distance*)

Denote by X a space. Then $d: X \times X \to \mathbb{R}_0^+$ is a metric on X if for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$

- 1. $d(\mathbf{x}, \mathbf{y}) = 0$ is equivalent to $\mathbf{x} = \mathbf{y}$
- 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
- 3. $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ (Triangle Inequality)

Example 1 (Trivial Metric)

For arbitrary X define $d(\mathbf{x}, \mathbf{y}) = 1$ if $\mathbf{x} \neq \mathbf{y}$ and $d(\mathbf{x}, \mathbf{y}) = 0$ if $\mathbf{x} = \mathbf{y}$.

Example 2 (Manhattan Distance)

For
$$\mathfrak{X} = \mathbb{R}^n$$
 define $d(\mathbf{x}, \mathbf{y}) := \sum_{i=1}^n |x_i - y_i|$.

Vector Spaces

Definition 2 (Vector Spaces)

A space X on which for all $\mathbf{x}, \mathbf{y} \in X$ and for all $\alpha \in \mathbb{R}$ the following operations are defined:

- 1. $\mathbf{x} + \mathbf{y} \in \mathcal{X}$ (Addition)
- 2. $\alpha \mathbf{x} \in \mathcal{X}$ (Multiplication)

Definition 3 (Cauchy Series)

Given a space \mathfrak{X} , a series $\mathbf{x}_i \in \mathfrak{X}$ with $i \in \mathbb{N}$ is a Cauchy series if for any ϵ there exists an n_0 such that for all $m, n \geq n_0$ we have $d(\mathbf{x}_m, \mathbf{x}_n) \leq \varepsilon$.

Definition 4 (Completeness)

A space $\mathfrak X$ is complete if the limits of every Cauchy series are elements of $\mathfrak X$. We call $\overline{\mathfrak X}$ the completion of $\mathfrak X$, i.e. the union of $\mathfrak X$ and all its limits of Cauchy series.

Examples of Vector Spaces

Rational Numbers, Real Numbers, Polynomials are all Vector Spaces

Series

series (a_i) of numbers with $a_i \in \mathbb{R}$ and $i \in \mathbb{N}$ are clearly vector spaces.

Fourier Expansions

expansions via the discrete Fourier transform form a vector space where

$$f(x) = \sum_{j=1}^{n} s_j \sin(jx) + c_j \cos(jx)$$

Functions

many classes of functions, e.g., $f:[0,1]\to\mathbb{R}$.

Counterexamples

- $f:[0,1] \to [0,1]$ does not form a vector space!
- ullet Z is not a vector space, unless we only allow multiplications by integers.
- The alphabet {a,...,z} is not a vectorspace (still it can be an interesting mathematical object, e.g. when determining similarity of documents).

Norm & Banach Spaces

Definition 5 (Norm / Length)

Given a vector space \mathfrak{X} , a mapping $\|\cdot\|: \mathfrak{X} \to \mathbb{R}_0^+$ is called a norm if for all $\mathbf{x}, \mathbf{y} \in \mathfrak{X}$ and all $\alpha \in \mathbb{R}$ it satisfies

- 1. $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = 0$
- 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ (scaling)
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

A mapping $\|\cdot\|$ not satisfying (1) is called **pseudo norm**.

Note that a norm also introduces a **metric** via $d(\mathbf{x}, \mathbf{y}) := ||\mathbf{x} - \mathbf{y}||$.

Definition 6 (Banach Space)

A complete vector space \mathfrak{X} together with a norm $\|\cdot\|$.

Examples of Banach Spaces

ℓ_p Spaces

These are subspaces of $\mathbb{R}^{\mathbb{N}}$ with $\|\mathbf{x}\| := \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}$.

Not for all series x_i the sum converges, e.g., $x_i = \frac{1}{i}$ is in ℓ_2 but not in ℓ_1 .

Function Spaces $L_p(\mathfrak{X})$

We replace sums by integrals over \mathfrak{X} and obtain $||f|| := \left(\int_{\mathfrak{X}} |f(x)|^p dx\right)^{\frac{1}{p}}$. Again, not for all f this integral is defined, i.e. they are not elements of the corresponding $L_p(\mathfrak{X})$.

Dot Products & Hilbert Spaces

Definition 7 (Dot Product/ *Inner Product*)

Given a vector space X, a mapping $\langle \cdot, \cdot \rangle$ with $X \times X \to \mathbb{R}$ which for all $\alpha \in \mathbb{R}$ and

 $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X} \ satisfies$

1.
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$$
 (symmetry)

2.
$$\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$$
 (linearity)

2.
$$\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$$
 (linearity)
3. $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$ (additivity)

Example:

$$\mathbf{v} = \begin{bmatrix} \mathbf{3} \\ \mathbf{4} \end{bmatrix}; \quad \|\mathbf{v}\| = \langle \mathbf{v}, \mathbf{v} \rangle^{\frac{1}{2}} = \sqrt{3^2 + 4^2} = 5$$

Definition 8 (Hilbert Space)

A complete vector space \mathfrak{X} , endowed with a dot product $\langle \cdot, \cdot \rangle$.

The dot product automatically generates a norm (and a metric) by

 $\|\mathbf{x}\| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. Thus Hilbert spaces are special case of a Banach space.

Examples of Hilbert Spaces

Euclidean Spaces Use standard dot product for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ given by $\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{i=1}^m x_i y_i$

Function Spaces $(L_2(X))$ Functions on X with $f: X \to \mathbb{C}$ for all $f \in \mathcal{F}$. Here we can define the dot product for $f, g \in \mathcal{F}$ by $\langle f, g \rangle := \int_X \overline{f(x)} g(x) dx$ Note that we take the complex conjugate of f. Also note that all we did was to replace the sum by an integral.

 ℓ_2 (Infinite) series of real numbers, $\ell_2 \subset \mathbb{R}^{\mathbb{N}}$. We define a dot product for $\mathbf{x}, \mathbf{y} \in \ell_2$ by $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{\infty} x_i y_i$

Polarization Inequality We can recover the dot product from the norm $\|\mathbf{x}\|$ by computing $\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x}\|^2 - \|\mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{y} \rangle$.

Matrices

In the following we assume that a matrix $M \in \mathbb{R}^{m \times n}$ corresponds to a linear map from \mathbb{R}^m to \mathbb{R}^n and is given by its entries $M_{ij} \in \mathbb{R}$.

Review:

- Addition of Matrices
- Multiplication of matrices by scalars, vectors and matrices.
- Domain and Range of a Matrix

Special matrices

Square and Diagonal Matrix

A **square** matrix has equal number of rows and columns. A **diagonal** matrix has all off-diagonal elements zero.

Symmetric Matrix

A symmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{ij} = M_{ji}$.

Anti-symmetric Matrix

An antisymmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{ij} = -M_{ji}$.

Orthogonal Matrix

A matrix $M \in \mathbb{R}^{m \times m}$ with $M^{\top}M = 1$ is called an orthogonal matrix (if $M \in \mathbb{C}^{m \times m}$ it is called unitary). This means $M^{\top} = M^{-1}$. (Often denoted as $\mathbf{O}(m)$)

Matrix Concepts

Rank of a Matrix

Denote by I the image of \mathbb{R}^m under $M \in \mathbb{R}^{m \times n}$. Since M is a linear map, we can find a I as a linear combination of vectors. rank(M) is the smallest number of such vectors that span I.

Range, Domain and Null Space

Range of \mathbf{M} , denoted by $\mathcal{R}(\mathbf{M})$, is the space of all vectors that can be obtained by the operation of \mathbf{M} on the vectors in the domain of \mathbf{M} denoted by $\mathcal{D}(\mathbf{M})$.

$$v \in R(\mathbf{M}) \text{ iff } \exists u \in D(\mathbf{M}) \text{ s.t. } u\mathbf{M} = v$$

Null Space of \mathbf{M} , denoted by $\mathcal{N}(\mathbf{M})$, is a subspace of all the vectors in the domain of \mathbf{M} $\mathcal{D}(\mathbf{M})$ that map to the zero (null) vector in $\mathcal{R}(\mathbf{M})$ when operated upon by the matrix \mathbf{M} .

$$v \in N(\mathbf{M}) iff v\mathbf{M} = \mathbf{0}$$

Matrix Invariants

Trace

 $\operatorname{tr} M := \sum_{i=1}^{m} M_{ii}$ One can show $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ and thus for symmetric matrices

$$\operatorname{tr} M = \operatorname{tr}(O^{\top} \Lambda O) = \operatorname{tr}(\Lambda O O^{\top}) = \operatorname{tr} \Lambda = \sum_{i=1}^{m} \lambda_{i}$$

Properties of Trace: $tr(a\mathbf{A}) = atr(\mathbf{A})$

$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$$

$$tr(\mathbf{AB}) = tr(\mathbf{BA})$$

Determinant

Determinant can be written as the product of the eigenvalues : $\det M = \prod_{i=1}^{n} \lambda_i$

Note: Trace and Determinant are invariant under orthogonal transformation

Matrix Norms

Operator Norm

The norm of a linear operator A between two Banach spaces X and Y is defined as

$$||A|| := \max_{\mathbf{x} \in \mathcal{X}} \frac{||A\mathbf{x}||}{||\mathbf{x}||}$$

This clearly satisfies all conditions of a norm:

- $\|\alpha A\| = \max_{\mathbf{x} \in \mathcal{X}} \frac{\|\alpha A \mathbf{x}\|}{\|\mathbf{x}\|} = |\alpha| \|A\|.$
- $\bullet \|A + B\| = \max_{\mathbf{x} \in \mathcal{X}} \frac{\|(A + B)\mathbf{x}\|}{\|\mathbf{x}\|} \le \max_{\mathbf{x} \in \mathcal{X}} \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|} + \max_{\mathbf{x} \in \mathcal{X}} \frac{\|B\mathbf{x}\|}{\|\mathbf{x}\|} = \|A\| + \|B\|$
- ||A|| = 0 implies $\max_{\mathbf{x} \in \mathcal{X}} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = 0$ and thus $A\mathbf{x} = 0$ for all \mathbf{x} . This means that A = 0.

Frobeius Norm

For a matrix $M \in \mathbb{R}^{m \times n}$ we can define a norm in analogy to the vector norm by

$$||M||_{\text{Frob}}^2 = \sum_{i=1}^m \sum_{j=1}^n M_{ij}^2$$

Eigensystems

Definition 9 (Eigenvalues/ Eigenvectors)

Denote by $M \in \mathbb{R}^{m \times m}$ matrix, then an eigenvalue $\lambda \in \mathbb{R}$ and eigenvector $\mathbf{x} \in \mathbb{R}^m$ satisfy

$$M\mathbf{x} = \lambda \mathbf{x}$$

IMP: Defined only for square Matrices

- Intuitive Explanation.
 - A square matrix \mathbf{M} is a mapping from \mathbf{n} -dim to \mathbf{n} -dim space.
 - Most vectors change *both* direction and length when undergoing this mapping transformation.
 - Those vectors which *only change length* (i.e., multiplying them by a matrix is similar to multiplying by a scalar) are called eigenvectors and the eigenvalue indicates how much they are shortened or lengthened.

Eigensystems II

Eigenvectors/Eigenvalues of Symmetric Matrices

- o All eigenvalues of symmetric matrices are real
- o Symmetric matrices are fully **diagonalizable**, i.e. we can find *m* eigenvectors
- o All *eigenvectors* of symmetric matrices M with different eigenvalues are **mutually orthogonal** (Prove !!)

Decomposition of Symmetric Matrices

We can decompose symmetric $M \in \mathbb{R}^{m \times m}$ into $O^{\top} \Lambda O$ where $O \in SO(n)$ and $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_m)$.

Example

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 has eigenvalues $(-1, 3)$ and eigenvectors $v_1 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, v_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

Positive Matrices

Definition 10 (Positive Definite Matrices)

A matrix $M \in \mathbb{R}^{m \times m}$ for which for all $\mathbf{x} \in \mathbb{R}^m$ we have

$$\mathbf{x}^{\mathsf{T}} M \mathbf{x} \geq 0 \text{ if } \mathbf{x} \neq 0$$

This matrix has only positive eigenvalues since for all eigenvectors \mathbf{x} we have $\mathbf{x}^{\top} M \mathbf{x} = \lambda \mathbf{x}^{\top} \mathbf{x} = \lambda \|\mathbf{x}\|^2 > 0$ and thus $\lambda > 0$.

Induced Norm and Metrics

Every positive definite matrix induces a norm via

$$\|\mathbf{x}\|_M^2 := \mathbf{x}^\top M \mathbf{x}$$

- Linearity is obvious, so is uniqueness
- The triangle inequality can be seen by writing

and using the triangle inequality for $M^{\frac{1}{2}}\mathbf{x}$ and $M^{\frac{1}{2}}\mathbf{x}'$.

Mahalanobis Distance

$$d(\mathbf{x}, \mathbf{y})_{\mathbf{M}} = \langle \mathbf{x}, \mathbf{y} \rangle_{\mathbf{M}} = \mathbf{x}^{T} \mathbf{M} \mathbf{y}$$

$$\mathbf{M} = \mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

= Euclidean Distance

$$\mathbf{M} \neq \mathbf{I} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 2 & 1.4 \\ 1.4 & 1 \end{bmatrix}$$

Singular Value Decomposition

Note: Eigenvalue/Eigenvector decompositions are valid only for *square matrices*Do we have some decomposition for rectangular matrices ??

Singular value Decomposition (SVD)

Without loss of generality assume $m \geq n$ For $M \in \mathbb{R}^{m \times n}$ we may write M as $U \wedge O$ where $U \in \mathbb{R}^{m \times n}$, $O \in \mathbb{R}^{n \times n}$, and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Furthermore $O^{\top}O = OO^{\top} = U^{\top}U = \mathbf{1}$.

Matrix Inverse

$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix} \qquad \mathbf{M}$$

$$\mathbf{Range}$$

$$\mathbf{M}^{-1}$$

$$\mathbf{Range}$$

$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

$$M^{-1}M = I; MM^{-1} = I$$

Note: A regular inverse exists only for square matrices with linearly independent column vectors

Interpretation: We need a one-to-one mapping to uniquely go from one element of a space to another and back. Square matrices and linearly independent columns ensure this!!

Pseudoinverse

For rectangular matrices and square matrices with linearly dependent columns, there exists the **pseudoinverse** or **generalized inverse** which performs the inverse mapping. In general, these inverses are not unique.

The Moore-Penrose Pseudoinverse (M⁺)

$$\mathbf{M}^{+} = (\mathbf{M}^{T}\mathbf{M})^{-1}\mathbf{M}^{T} or \mathbf{M}^{T} (\mathbf{M}\mathbf{M}^{T})^{-1}$$

The above generalized inverse is called the Moore-Penrose Psuedoinverse and is **unique**. Among the multiple inverse solutions, it chooses the one with the **minimum norm**.

Operators

Linear Operators

Generalization of matrix – a mapping from one Banach space to another. Norms and eigenvalues/eigenvectors are defined as for matrices; so are Range & Null Spaces.

Notation

 $A : F \rightarrow G$ denotes a linear operator A mapping from space F to space G.

A Matrix-Operator Correspondence

Matrix Transpose	Adjoint Operator
\mathbf{A}^T	$\langle \mathbf{A}f, g \rangle = \langle f, \mathbf{A}^*g \rangle \text{ for all } f \in F, g \in G.$
Symmetric Matrix $\mathbf{A} = \mathbf{A}^T$	Self Adjoint Operator $\langle \mathbf{A}f, g \rangle = \langle \mathbf{A}^*f, g \rangle$ for all $f \in F, g \in G$.
Orthogonal Matrix $\mathbf{A}^{-1} = \mathbf{A}^{T}$	Isometry $\langle f, g \rangle = \langle \mathbf{A}f, \mathbf{A}g \rangle$ for all $f \in F, g \in G$.

Linear Operators - Examples

Input transformation

Consider class of functions $f: \mathbb{R}^n \to \mathbb{R}$. A linear operator on such functions could be $A: f(\cdot) \to f(a(\cdot))$, i.e. the argument of f is transformed (e.g. we transform the images before feeding them into a classifier).

Sampling

Sampling from a function to yield scalar outputs. (We will see later why this is so !!!)

Fourier Transform

We map f into its Fourier transform. This leads to

$$f \to \tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x)e^{-i\omega x} dx$$

 \mathcal{X}_{1}

 x_2

 χ_3

This map is an isometry, since

$$||f||^2 = \int_{\mathbb{R}} |f(x)|^2 dx = \int_{\mathbb{R}} |\tilde{f}(\omega)|^2 d\omega = ||\tilde{f}||^2$$

Range and Null Space of Operators

Recollect: Definition of Range, Domain and Null space of a matrix

