Lógica

Lógica Proposicional Aula 04 – Consequência e Equivalência Lógicas

Profa. Helena Caseli helenacaseli@ufscar.br

Semântica dos conectivos lógicos

Tabela-verdade

	р	q	¬р	¬q	рлд	pvq	$p \rightarrow q$	$p \leftrightarrow q$
l ₁	V	V	F	F	V	V	V	V
	V	F	F	V	F	V	F	F
I ₃	F	V	V	F	F	V	V	F
I ₄	F	F	V	V	F	F	V	V

Consequência lógica

- Uma fórmula β é **consequência lógica** de outra fórmula α (ou α implica logicamente β) se <u>toda</u> interpretação que <u>satisfaz</u> α também <u>satisfaz</u> β
 - Representada por $\alpha \mid = \beta$
 - \rightarrow Se não houver consequência lógica utiliza-se $\alpha \not\models \beta$
 - Exemplo: p |= p v q

	р	q	p v q	
l ₁	V	V	V	
I ₂	V	F	V	
I ₃	F	V	V	
I _4	F	F	F	

Consequência lógica

- Uma fórmula α é **consequência lógica** de um conjunto de fórmulas Γ se <u>toda</u> interpretação que <u>satisfaz todas</u> as fórmulas de Γ também <u>satisfaz</u> α
 - Representado por $\Gamma \mid = \alpha$
 - Exemplo: { p, q } |= p v q

	р	q	p v q
 1	V	V	V
	V	F	V
 3	F	V	V
 4	F	F	F

Consequência lógica

- Verifique se as seguintes consequências lógicas são verdadeiras
 - a) $p \rightarrow q = q$
 - b) $p \leftrightarrow \neg q \mid = p \land q$
 - c) p = p v q
 - d) $\neg p \rightarrow q \mid = p \vee q$

Consequência lógica

 Verifique se as seguintes consequências lógicas são verdadeiras

a)
$$p \rightarrow q = q$$

b)
$$p \leftrightarrow \neg q \mid = p \land q$$

c)
$$p \mid = p v q$$

d)
$$\neg p \rightarrow q \mid = p \vee q$$

RESPOSTAS

- a) FALSA, pois quando I[p]=F e I[q]=F, $I[p \rightarrow q] = V$, mas I[q] = F
- b) FALSA, pois quando I[p]=V e I[q]=F, I[p $\leftrightarrow \neg q$]=V, mas I[p $\land q$] = F
- c) VERDADEIRA
- d) VERDADEIRA

Equivalência lógica

- Duas fórmulas α e β são **logicamente** equivalentes se as interpretações que satisfazem α são exatamente as mesmas que satisfazem β
 - Representada por $\alpha \equiv \beta$ (ou $\alpha \Leftrightarrow \beta$) ocorre se $\alpha \models \beta \in \beta \models \alpha$
- Para demonstrar a equivalência lógica de duas fórmulas α e β , construímos uma tabela-verdade simultaneamente para α e β e verificamos que <u>as colunas para α e β são idênticas</u>

Equivalência lógica

■ Exemplo: $\neg p \lor q \equiv p \rightarrow q$

colunas idênticas

Teoremas interessantes

- Teorema 4.1
 - Dadas as fórmulas β_1 , β_2 , β_3 , ..., β_n e uma fórmula α , dizse que α é consequência lógica de β_1 , β_2 , β_3 , ..., β_n se, e somente se, a fórmula

$$\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge \dots \wedge \beta_n \rightarrow \alpha$$

for uma tautologia

- Teorema 4.1
 - Dadas as fórmulas β_1 , β_2 , β_3 , ..., β_n e uma fórmula α , dizse que α é consequência lógica de β_1 , β_2 , β_3 , ..., β_n se, e somente se, a fórmula β_1 \wedge β_2 \wedge β_3 \wedge ... \wedge β_n \rightarrow α for uma tautologia
 - Parte "se"
 - Se α é consequência lógica de β_1 , β_2 , β_3 , ..., β_n então a fórmula $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \rightarrow \alpha$ é uma tautologia
 - Parte "somente-se"
 - Se a fórmula $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \rightarrow \alpha$ é uma tautologia então α é consequência lógica de $\beta_1, \beta_2, \beta_3, ..., \beta_n$

Teoremas interessantes

- Teorema 4.1
 - Dadas as fórmulas β_1 , β_2 , β_3 , ..., β_n e uma fórmula α , dizse que α é consequência lógica de β_1 , β_2 , β_3 , ..., β_n se, e somente se, a fórmula β_1 \wedge β_2 \wedge β_3 \wedge ... \wedge β_n \rightarrow α for uma tautologia
 - Prova (parte "se"):
 - Sejam as fórmulas β₁, β₂, β₃, ..., β_n e α e considere que α é consequência lógica de β₁, β₂, β₃, ..., β_n. Seja I uma interpretação qualquer, então:
 - i. Se β_1 , β_2 , β_3 , ..., β_n forem todas avaliadas V em I, então α também é V em I, uma vez que é consequência lógica das fórmulas β_1 , β_2 , β_3 , ..., β_n . Portanto, a fórmula $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ...$

Λ β_n → α é avaliada V em I.

- Teorema 4.1
 - Dadas as fórmulas β_1 , β_2 , β_3 , ..., β_n e uma fórmula α , dizse que α é consequência lógica de β_1 , β_2 , β_3 , ..., β_n se, e somente se, a fórmula $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \rightarrow \alpha$ for uma tautologia
 - Prova (parte "se"):
 - Sejam as fórmulas β_1 , β_2 , β_3 , ..., β_n e α e considere que α é consequência lógica de β_1 , β_2 , β_3 , ..., β_n . Seja I uma interpretação qualquer, então:
 - ii. Se uma das fórmulas β_1 , β_2 , β_3 , ..., β_n for avaliada F em I, a conjunção $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge \dots \wedge \beta_n$ também será F em I. Assim, independente da avaliação de α , a fórmula $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge \dots \wedge$

- Teorema 4.1
 - Dadas as fórmulas β_1 , β_2 , β_3 , ..., β_n e uma fórmula α , dizse que α é consequência lógica de β_1 , β_2 , β_3 , ..., β_n se, e somente se, a fórmula β_1 \wedge β_2 \wedge β_3 \wedge ... \wedge β_n \rightarrow α for uma tautologia
 - Prova (parte "se"):
 - De (i) e (ii) tem-se que $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \rightarrow \alpha$ é avaliada V em qualquer interpretação, ou seja, a fórmula $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \rightarrow \alpha$ é uma tautologia.

- Teorema 4.1
 - Dadas as fórmulas β_1 , β_2 , β_3 , ..., β_n e uma fórmula α , dizse que α é consequência lógica de β_1 , β_2 , β_3 , ..., β_n se, e somente se, a fórmula $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \rightarrow \alpha$ for uma tautologia
 - Prova (parte "somente-se"):
 - Do fato de $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \rightarrow \alpha$ ser uma tautologia tem-se que a fórmula $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \rightarrow \alpha$ é avaliada V em qualquer interpretação.
 - Para isso é preciso que, sempre que $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n$ seja avaliada V em uma interpretação I, α também seja avaliada V em I, ou seja, α deve ser consequência lógica de β_1 , β_2 , β_3 , ..., β_n .

Teoremas interessantes

- Teorema 4.2
 - Dadas as fórmulas β_1 , β_2 , β_3 , ..., β_n e uma fórmula α , dizse que α é consequência lógica de β_1 , β_2 , β_3 , ..., β_n se, e somente se, a fórmula

$$\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge \dots \wedge \beta_n \wedge \neg \alpha$$

for uma contradição

Prova ... tente fazer em casa!

Teoremas interessantes

Teorema 4.2

■ Dadas as fórmulas β_1 , β_2 , β_3 , ..., β_n e uma fórmula α , dizse que α é consequência lógica de β_1 , β_2 , β_3 , ..., β_n se, e somente se, a fórmula β_1 \wedge β_2 \wedge β_3 \wedge ... \wedge β_n \wedge $\neg \alpha$ for uma contradição

Prova

Sabe-se pelo Teorema que a fórmula α é consequência lógica das fórmulas $\beta_1, \beta_2, \beta_3, ..., \beta_n$ se, e somente se, $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \rightarrow \alpha$ for uma tautologia. De modo equivalente, α é consequência lógica das fórmulas $\beta_1, \beta_2, \beta_3, ..., \beta_n$ se e somente se a negação de $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \rightarrow \alpha$ for uma contradição. Mas,

$$\neg(\beta_1 \land \beta_2 \land \beta_3 \land ... \land \beta_n \rightarrow \alpha) \equiv \\ \neg(\neg(\beta_1 \land \beta_2 \land \beta_3 \land ... \land \beta_n) \lor \alpha) \equiv \\ \beta_1 \land \beta_2 \land \beta_3 \land ... \land \beta_n \land \neg\alpha$$

Fonte: (NICOLETTI, 2017, p. 21)

ou seja, $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge ... \wedge \beta_n \wedge \neg \alpha$ é uma contradição.

4.1