VİTMO

Исследовательская работа по теме "Функции"

Группа М3103

Белова Инга Костыгов Андрей Кравченкова Елизавета

Преподаватель

Сарычев Павел Александрович

Математический анализ **Университет ИТМО** Санк-Петербург, Россия

12 декабря 2022 г.

Оглавление

1	Задача 1		3
	1.1	Сделайте графическую иллюстрацию к задаче	3
	1.2	Составьте математическую модель(введите обозначения, составьте формулу)	3
	1.3	Решите задачу аналитически	3
2	Задача 2		
	2.1	Найдите область определения функции $f(x,y)$	5
	2.2	Изобразите семейство линий уровня $f(x,y)=c$ функции $f(x,y)$	5
	2.3	Выберите на поверхности какую либо точку $M_0(x_0,y_0,z_0)$, не являющейся ни	
		особой, ни стационарной, и докажите это по определению.	6
	2.4	Найдите вектор $\vec{m} (\in \mathbb{R}^2)$, показывающий направление наискорейшего подъема	
		(спуска) в точке M_0	6
	2.5	Изобразите линию уровня $f(x,y)=z_0$ и направление $\vec{m}.$ Проверьте их ортого-	
		нальность.	7
3	Задача 3		8
	3.1	Найдите стационарные точки внутри области	8
	3.2	Определите, яввлются ли стационарные точки точками экстремума	8
	3.3	Исследуйте значения функции вдоль границ области	8
	3.4	Определите точки области, в которых достигаются наибольшее и наименьшее	
		значения функции, и сами значения	9
4	Вы	воды	10
5	Опеночный лист		11

Задача 1

При подготовке к экзамену студент за t дней изучает $\frac{t}{t+0.5}$ -ю часть курса, а забывает $\frac{2}{49}t$ -ю часть. Сколько дней нужно затратить на подготовку, чтобы была изучена максимальная часть курса?

1.1

1.2

Пусть t - это количество дней, а S(t) - выученная часть курса

Составим формулу: $S(t) = \frac{t}{t+0.5} - \frac{2}{49}t$

1.3

Найдём производную:

$$S'(t) = \frac{(t)'(t+0.5) - t(t+0.5)'}{(t+0.5)^2} - (\frac{2}{49}t)' = \frac{t+0.5 - t}{t^2 + t + 0.25} - \frac{2}{49} = \frac{0.5}{t + t + 0.25} - \frac{2}{49}$$

Чтобы найти максимальное кол-во дней, нужно приравнять производную к нулю

$$\frac{0.5}{t+t+0.25} - \frac{2}{49} = 0$$

$$\frac{0.5}{t+t+0.25} = \frac{2}{49}$$

$$2t^2 + 2t + 0.5 = 24.5$$

$$2t^2 + 2t - 24 = 0$$

$$t^2 + t - 12 = 0$$

Получаем:

$$t_1 = -4$$
 и $t_2 = 3$

 t_1 - неподходит, т. к. t - это время, а значит t не может быть отрицательным

Значит, t=3 дня

Ответ: 3 дня нужно затратить студенту на подготовку, чтобы была изучена максимальная часть курса

Задача 2

Изобразите в графическом редакторе поверхность, заданную уравнением $z=\sin x+y^2$

2.1

Область определения: $(x,y) \in \mathbb{R}^2$

2.2

c = 0.5 - эллипсы (зеленая)

c=1 - трансцендентная функция (красная)

c = 3 - синусоиды (фиолетовая)

2.3

Выберите на поверхности какую-либо точку $M_0(x_0, y_0, z_0)$, не являющейся ни особой, ни стационарной, и докажите это по определению.

Стационарными называются точки, в которых обе частные производные первого порядка равны 0.

Точка М называется **особой**, если $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial z} = 0$ или когда не существует хотя бы одна из них.

$$F = \sin(x) + y^2 - z = 0$$

$$\frac{\partial F}{\partial x} = \cos(x)$$

$$\frac{\partial F}{\partial y} = 2y$$

$$\frac{\partial F}{\partial z} = -1$$

Выберем точку $M_0(\frac{\pi}{4},1,\frac{\sqrt{2}}{2}+1)$ и убедимся что она подходит.

$$F_x' = \frac{\sqrt{2}}{2}$$

$$F'_{u} = 2$$

$$F'_z = -1$$

$$z_x' = -\frac{F_x'}{F_z'} = \frac{\sqrt{2}}{2}$$

$$z_y' = -\frac{F_y'}{F_z'} = 2$$

2.4

Градиент функции в точке - вектор, отложеный от точки, показывающий направление наискорейшего роста функции в данной точке.

Для функции двух переменных z(x,y): $\nabla z = \frac{\partial z}{\partial x}\vec{i} + \frac{\partial z}{\partial y}\vec{j}$

Таким образом $\nabla \vec{z} = \frac{\sqrt{2}}{2}\vec{i} + 2\vec{j} = \vec{m}$ Является вектором отложенным от точки $M_0(\frac{\pi}{4},1)$, показывающим направление наискорейшего роста функции в данной точке.

2.5

Изобразите линию уровня $f(x,y)=z_0$ и направление $\vec{m}.\Pi$ роверьте их ортогональность.

Найдем угловой коэффицент касательной в точке $M'(\frac{\pi}{4},1)$ для функции

 $Q:\sin x + y^2 - \frac{\sqrt{2}}{2} - 1 = 0$ (линия уровня)

$$k_1 = \frac{dy}{dx} = -\frac{Q_x'}{Q_y'} = -\frac{\cos(x)}{2y}$$

Теперь угловой коэффицент прямой, задающейся градиентом:

$$k_2 = \frac{z_x'}{z_y'} = \frac{2y}{\cos(x)}$$

Заметим, что $k_1 = -\frac{1}{k_2}$.

Так как две прямые перпендикулярны, если произведение их угловых коеффицентов равно -1, то прямая, задающаяся градиентом перпендикулярна касательной в точке M' Значит $f(x,y)=z_0$ и \vec{m} ортогональны.

Задача 3

Найдите наибольшее и наименьшее значения функции $z=-2x^2+4x-y^2+2y$ в области $D = [-3, 0] \times [0, 3].$

3.1

Стационарными называются точки, в которых обе частные производные первого порядка

$$z'_x = -4x + 4$$

$$z'_y = -2y + 2$$

$$\begin{cases} -4x + 4 = 0 \\ -2y + 2 = 0 \end{cases}$$

Решением системы является точка M(1,1), являющаяся единственной стационарной точкой данной функции.

Данная точка не попадает в область D, поэтому приходим к выводу, что стационарных точек в данной области нет

3.2

Проверим точку M(1,1) на экстремум.

Для этого найдем частные производные второго порядка для данной функции

$$A = z''_{x_x} = -4 B = z''_{x_y} = 0 C = z''_{y_y} = -2$$

$$C = z_{y_y}^{x_y} = -2$$

По теореме о достаточных условиях (гладкого) экстремума: так как $AC-B^2>0$, то функция имеет экстремум в точке M(1,1), причем точка M является точкой максимума (так как A<0)

3.3

При y = 0

$$z = -2x^2 + 4x$$
, тогда $z'_x = -4x + 4$.

 $z_x = 0$ при x = 1, что не входит в исследуемую область. А значит точка $M_1(1,0)$ (критическая точка) нас не интересует

Посчитаем значения также на концах отрезка для х [-3,0].

$$z(-3,0) = -30 - 0 + 0 = -30$$

$$z(0,0) = 0 - 0 = 0$$

При
$$x = -3$$

 $z=-30-y^2+2y$, тогда $z_y'=-2y+2$. $z_y'=0$ при y=1, точка $M_2(-3,1)$ (критическая точка) входит в область D, посчитаем $z(M_2) = -30 - 1 + 2 = -29$

Посчитаем значения также на концах отрезка для у [0,3].

$$z(-3,0) = -30 - 0 + 0 = -30$$

$$z(-3,3) = -30 - 9 + 6 = -33$$

При
$$x=0$$

$$z = -y^2 + 2y$$
, тогда $z'_y = -2y + 2$.

 $z_y' = 0y = 1$, точка $M_3(0,1)$ (критическая точка) входит в область D, посчитаем $z(M_3) =$ -1 + 2 = 1

Посчитаем значения также на концах отрезка для у [0,3].

$$z(0,0) = 0 + 0 = 0$$

$$z(0,3) = -9 + 6 = -3$$

При
$$y=3$$

$$z = -2x^2 + 4x - 3$$
, тогда $z'_x = -4x + 4$.

 $z_x = 0$ при x = 1, что не входит в исследуемую область. А значит точка $M_4(1,3)$ (критическая точка) нас не интересует

Посчитаем значения также на концах отрезка для х [-3,0].

$$z(-3,3) = -30 - 0 + 0 = -33$$

$$z(0,3) = -30 - 9 + 6 = -3$$

3.4

Из предыдущих пунктов следует, что наибольшее значение функции $z = -2x^2 + 4x - y^2 + 2y$ в области $D = [-3,0] \times [0,3]$ достигается в точке $M_3(0,1)$ в которой $z(M_3) = 1$ Наименьшее значение z достигается в точке (-3,3) в которой z(-3,3)=-33

Выводы 4

В результате нашей работы мы научились работать с функциями одной и двух переменных.

Исследовавать их на экстремумы, а в случае функции двух переменных – находить линии

уровня и градиент.

Оценочный лист 5

Белова Инга

Вклад исполнителя - 33 $\frac{1}{3}$ %

Костыгов Андрей

Вклад исполнителя - 33 $\frac{1}{3}$ %

Кравченкова Елизавета

Вклад исполнителя - 33 $\frac{1}{3}$ %