EEG VE EMG SİNYALLERİ KULLANILARAK YAPAY SİNİR AĞLARI İLE UYKU EVRELERİNİN SINIFLANDIRILMASI

2021 DİPLOMA ÇALIŞMASI

BETÜLAY KABA 160106108010

EEG VE EMG SİNYALLERİ KULLANILARAK YAPAY SİNİR AĞLARI İLE UYKU EVRELERİNİN SINIFLANDIRILMASI

Betülay KABA 160106108010

Zonguldak Bülent Ecevit Üniversitesi

Mühendislik Fakültesi

Biyomedikal Mühendisliği

Bölümü Diploma Çalışması

Olarak Hazırlanmıştır

ZONGULDAK 02 2021

KABUL

160106108010 nolu Betülay KABA tarafından hazırlanan "EEG VE EMG SİNYALLERİ KULLANILARAK YAPAY SİNİR AĞLARI İLE UYKU EVRELERİNİN SINIFLANDIRILMASI" başlıklı bu çalışma jürimiz tarafından değerlendirilerek, Zonguldak Bülent Ecevit Üniversitesi, Mühendislik Fakültesi Biyomedikal Mühendisliği Bölümü Diploma Çalışması olarak oybirliğiyle (veya oyçokluğuyla) kabul edilmiştir. 0 7 /02/2021

Başkan:	Prof. Dr. XXXXX XXXX (ZBEÜ)	
Üye :	Doç. Dr. XXXXX XXXX (ZBEÜ)	
Üye :	Dr. Öğr. Üyesi XXXXX XXXX (ZBEÜ)M	

ONAY:

Yukarıdaki imzaların, adı geçen öğretim üyelerine ait olduğunu onaylarım. 07/02/2021

Prof. Dr. XXXX XXXX Biyomedikal Mühendisliği Bölüm Başkanı

"Bu çalışmadaki tüm bilgilerin akademik kurallara ve etik ilkelere uygun olarak elde edildiğini ve sunulduğunu; ayrıca bu kuralların ve ilkelerin gerektirdiği şekilde, bu çalışmadan kaynaklanmayan bütün atıfları yaptığımı beyan ederim."
İmzası
Betülay KABA 160106108010

ÖZET

Diploma Çalışması

EEG VE EMG SİNYALLERİ KULLANILARAK YAPAY SİNİR AĞLARI İLE

UYKU EVRELERİNİN SINIFLANDIRILMASI

Betülay KABA 160106108010

Zonguldak Bülent Ecevit Üniversitesi Mühendislik Fakültesi Biyomedikal Mühendisliği Bölümü

Tez Danışmanı: Dr. Veli BAYSAL 02 2021, 45 sayfa

Bu çalışmada EEG ve EMG sinyalleri kullanılarak, uyku evrelerinin yapay sinir ağları aracılığı ile sınıflandırma işlemi gerçekleştirilmiş, sonrasında ise performans değerlendirme kriterleri ile sonuçlar değerlendirilmiştir. Özellik çıkarım aşamasında (I) zaman domaini ve (II) zamanfrekans (hibrit) domaini olmak üzere iki grup oluşturulmuştur. Sınıflandırma işlemi için k-en yankı komşu yöntemleri kullanılmıştır. Performans değerlendirme aşamasında doğruluk oranı, duyarlılık, özgüllük, F-ölçümü ve AUC katsayısı hesaplanmıştır. Veriler 47 yaşında kadın hastaya aittir. Veriler Physiobank ATM'den elde edilmiştir ve her iki veri yaklaşık dokuz saat uzunluğundadır. Verilerin örnekleme frekansı 1 Hz'dir.

Anahtar Sözcükler: (EEG, EMG, Uyku Evreleme, K-en Yakın Komşu Algoritması, Veri Analizi, Özellik Çıkarımı, Sınıflandırma)

ABSTRACT

BSc Project

CLASSIFICATION OF SLEEP STAGES WITH ARTIFICIAL NEURAL NETWORKS USING EEG AND EMG SIGNALS

Betülay KABA 160106108010

Zonguldak Bulent Ecevit University
Faculty of Engineering
Department of Biomedical Engineering

Thesis Advisor: Dr. Veli BAYSAL 02 2021, 45 pages

Classification process of EEG and EMG signals and sleep stages was carried out by means of artificial neural networks, and then the results were evaluated with performance evaluation criteria. Two groups were formed as feature extraction (I) time domain and (II) time-frequency (hybrid) domain. K-Nearest Neighbours methods are used for the classification process. Performance evaluation accuracy rate, sensitivity, specificity, F-measurement and AUC coefficient were calculated. Data belong to a 47-year-old female patient. Data was obtained from Physiobank ATM and both data are approximately nine hours long. The sampling frequency of the data is 1 Hz.

Key Words: (EEG, EMG, Sleep Staging, K-Nearest Neighbor Algorithm, Data Analysis, Feature Extraction, Classification)

TEŞEKKÜR

Bölümümüz Diploma çalışması yazım kılavuzu, Maden mühendisliği bölümü öğretim üyesi Prof. Dr. Hasan GERÇEK hocamızın Fen bilimleri enstitüsü için hazırlamış olduğu tez yazım kılavuzu ve Maden Mühendisliği bölümü için hazırlamış olduğu Diploma çalışması yazım kılavuzlarının bölümümüz için düzenlenmesiyle şekillenmiştir. Prof. Dr. Hasan GERÇEK Hocamıza teşekkürlerimizi sunarız.

Betülay KABA Zonguldak, 02 2021

İÇİNDEKİLER

KABUL	ii
ÖZET	iv
ABSTRACT	v
TEŞEKKÜR	vi
İÇİNDEKİLER	vii
SİMGELER VE KISALTMALAR	xii
KISALTMALAR	xii
BÖLÜM 1	1
TANITIM VE AMAÇ	1
1.1 GİRİŞ	1
1.2 UYKU EVRELERİ	3
1.2.1 Uyanıklık (W) Evresi	3
1.2.2 NREM Evre 1	4
1.2.3 NREM Evre 2	5
1.2.4 NREM Evre 3	6
1.2.5 REM (R) Evresi	7
BÖLÜM 2	8
KURAMSAL TERİMLER	8
2.1 BEYİN	8

2.1.1 Ön (Frontal) Lob	8
2.1.2 Yan (Perietal) Lob	9
2.1.3 Arka Baş (Oksipital) Lob	9
2.1.4 Şakak (Temporal) Lob	9
2.2 BEYİN DALGALARI	9
2.2.1 Beta Dalgaları	9
2.2.2 Alfa Dalgaları	10
2.2.3 Teta Dalgaları	10
2.2.4 Delta Dalgaları	10
2.3 EEG	11
2.4 Kaslar	13
2.4.1 Kalp Kası	13
2.4.2 İskelet Kası	13
2.4.3 Düz Kas	13
2.5 EMG	14
BÖLÜM 3	15
ÇALIŞMA AŞAMALARI	15
3.1 Verileri Elde Etme	15
3.2 Verileri Düzenlenmesi	16
3.3 Epoklara Ayırma	17
3.3.1 Hızlı Fourier Dönüşümü	18
3.4 Özellik Çıkarma	19

3.4.1 Zaman ve Frekans Domaininde Özellik Çıkarımı	19
BÖLÜM 4	22
YAPAY SİNİR AĞLARI VE SONUÇLARIN DEĞERLENDİRİLMESİ	22
4.1 Yapay Sinir Ağları	22
4.1.1 Eğitim Verileri	23
4.1.2 Eğitim Cevapları	24
4.1.3. Test Verileri	24
4.1.4 Test Cevapları	24
4.2 K En Yakın Sınıflandırma Algoritmaları	25
4.3 Sonuçların Değerlendirilmesi	27
4.4 Sonuçlar	28
BİBLİYOGRAFYA	31
ÖZGEÇMİŞ	32
ADRES BİLGİLERİ	32

ŞEKİLLER DİZİNİ

<u>No</u>	<u>Sayfa</u>
Şekil 1.1 Uyku durumundaki beynin çalışma ağı (Canan 2018)	2
Şekil 1.2 Uyku döngüsü boyunca uyku evreleri.	3
Şekil 1.3 Polisomnografide EEG, EOG ve EMG kaydı (Köktürk, 2013)	3
Şekil 1.4 Uyanıklık evresi (W) PSG kaydı (Köktürk, 2013)	4
Şekil 1.5 N1 Evresi PSG kaydı (Köktürk, 2013).	5
Şekil 1.6 N2 evresi PSG kaydı (Köktürk, 2013)	6
Şekil 1.7 N3 Evresi PSG Kaydı (Köktürk, 2013).	6
Şekil 1.8 REM evresi PSG kaydı (Köktürk, 2013)	7
Şekil 2.1 Beynin lobları. (Kılıç Ekici 2015)	8
Şekil 2.2 Beyin dalgaları (Çelik E., 2012).	10
Şekil 2.3 EEG' ye Bağlı Hasta (Anon., MOOİST: Psikiyatri ve Nöroloji Hastanes	i, 2021)11
Şekil 2.4 10-20 Sistemine Göre Elektrotların Yerleştirilmesi (Duman, 2005)	12
Şekil 2.5 İskelet kasının yapısı. (Nurhan 2021)	13
Şekil 2.5 Çene EMG'si. (Güney)	14
Şekil 3.1 10 sn'lik EMG grafiği. (Anon., PhysioBank ATM, 1989)	15
Şekil 3.2 10 sn'lik EEG grafiği. (Anon., PhysioBank ATM, 1989)	15
Şekil 3.3 EEG verileri ve formatlar. (Anon., PhysioBank ATM, 1989)	16
Şekil 3.3 Dokuz saatlik işlenmiş EEG verisi.	16
Şekil 3.4 Dokuz saatlik işlenmiş çene EMG verisi	17
Sekil 3.5 Zaman domaininde otuz sanivelik epoklara avrılmıs EEG sinvali	17

Şekil 3.6 Zaman domainde otuz saniyelik EEG sinyali
Şekil 3.7 Zaman domainde otuz saniyelik EMG sinyali
Şekil 3.8 Frekans domaininde otuz saniyelik epoklara ayrılmış EEG sinyali19
Şekil 3.9 Zaman domaini, EMG verilerinden çıkarılan özellikler. (Sütunlar: (1) ortalama, (2)
standart sapma, (3) varyans, (4) ortalama enerji, (5) ortalama eğri uzunluğu ve (6) ortalama teager)
Şekil 3.10 Zaman-Frekans domaini, EEG verilerinden çıkarılan özellikler. (Sütunlar; Zaman:
(1) ortalama, (2) standart sapma, (3) varyans, (4) ortalama enerji, (5) ortalama eğri uzunluğu
ve (6) ortalama teager Frekans: (7) ortalama, (8) standart sapma, (9) varyans)21
Şekil 4.1 Biyolojik sinir hücresi ve yapay sinir ağı (Kadir Öztürk, 2018)22
Şekil 4.2 Kırmızı: Eğitim Verileri, Yeşil: Eğitim Cevapları, Mavi: Test Verileri, Sarı: Test Sonuçları
Şekil 4.3 K – en yakın komşu sınıflandırma (Mehmet Ali KUTLUGÜN, 2018)25
Şekil 4.5 EEG frekans-zaman domaini verilerinin
KNN ile yüzde kaç doğru sınıflandırıldığı26
Şekil 4.6 Test cevaplarıyla YSA cevaplarının Karşılaştırılması,
Yeşil: Doğru tahmin, Kırmızı: Yanlış tahmin26

SİMGELER VE KISALTMALAR

 $Adu/\mu v$: Adult/mikrovolt

e : Euler

j : Sanal Kök

sn : Saniye

t : Zaman

 \overline{x} : Ortalama

Π : Pi Sayısı

 σ : Standart Sapma

μν : Mikrovolt

 μ_x : Standart Sapma

KISALTMALAR

AI : Artificial İntelligence

ATM : Automatic Teller Machine

AUC : ROC Eğrisi altındaki alan

EEG : Elektroensefalografi

EMG : Elektromiyografi

EOG : Elektrookülografi

Hz : Hertz

KNN : K-Nearest Neighbors

PSG : Polisomnografi

REM : Rapid Eye Movement

SEN : Sesitivity

SPE : Specific

W : Wake

YSA : Yapay Sinir Ağları

BÖLÜM 1

TANITIM VE AMAÇ

1.1 GİRİŞ

Uyku, insanın biyolojik ve zihinsel olarak dinlenme durumunda olduğu dönemdir. Vücut bu dönemde dış uyaranlara karşı kısmen veya tamamen savunmasız hale gelir. Uyku dönemine geçiş yapan vücutta; fizyolojik, nöronal ve hormonal olarak değişiklikler gerçekleşir. Adenozin ve melotonin hormonlarının salgılanmasıyla uyku dönemi başlar. Melotonin hormonu salgısının artması uykunun derinleşmesine, uyanıklık evresinden NREM evrelerine geçiş sağlar. Kaslarda gevşeme ve beynin dalgalarında değişme görülür.

Beyin tarafından yönetilen uyku, canlılığın devamı için olmazsa olmaz faktörlerin başında gelir. Uykunun önemini anlamak için 28 Aralık 1963'te Rus asıllı Randy Gardner adında bir erkek öğrenci, ne kadar süre uyanık kalabileceğini denemeye karar verir. 8 Ocak 1964 tarihine kadar tam olarak 11 günü -264 saat- uykusuz geçirir ve uykusuz kaldığı günler içinde ekip arkadaşı beklenmedik ve istenmeyen durumlarla karşılaşır. Başlarda kişilik değişmesine yol açan uykusuzluk, ilerleyen günlerde kişinin halüsinasyon görmesine, nesneleri tanımamasına ayrıca konuşmada güçlük çekmesine sebep olmuştur. Randy Gardner uykusuz geçen günlerin sonunda on dört saat kırk dakika uyuyarak, normal yaşamına kaldığı yerden, kalıcı beyin hasarı yaşamadan devam etmiştir (Çağlar, 2021). Kalıcı bir beyin hasarına sebep olmasa bile gerçekleştirilen deney uykunun insan yaşamında ne derece önem taşıdığını açıkça göstermiştir.

"Uyku, temel mekanizması itibariyle beyinde başlatılan ve esasen beynin doğru işlev görebilmesi için gerekli olan bir süreçtir. Beynimizin en alt kısmında, boynumuzun üst tarafında bulunan "beyin sapı" dediğimiz sinir sistemi parçası, otomatik ve yaşamsal işlevlerimizi kontrol eden sinir hücresi topluluklarını içerir. Kalp atım ritmimiz, soluk alıp-vermemiz, yutma-kusma gibi reflekslerimiz ve daha birçok yaşamsal işlev, bu bölgelerdeki sinir hücreleri tarafından otomatik olarak kontrol edilir. Beyin sapı bölümünde ayrıca, milyonlarca sinir hücresinin birbirlerine karmaşık bir şebeke olarak bağlandığı ve beyin dokumuz içerisinde önemli bir yer tutan "ağsı oluşum" (retiküler formasyon) denilen bir yapı da yer alır." (Canan 2018)

Retiküler Formasyon

Şekil 1.1 Uyku durumundaki beynin çalışma ağı (Canan 2018)

Yapmış olduğumuz çalışma; bir insanın uyku sırasında hangi aşamalardan geçtiğini ve bu aşamalardan geçerken ne gibi elektrofizyolojik, fiziksel ve nörolojik değişimlere uğradığını anlamamızı kolaylaştıran uykunun evrelerini, yapay zeka algoritmalarıyla sınıflandırmaktır. Sınıflandırma aşamasına geçmeden önce sırasıyla; veri elde etme, veri düzenleme, düzenlenmiş verileri zaman ve frekans domainine çevirme işlemi gerçekleştirildi. Sonrasında (I) zaman domaini ve (II) zaman – frekans domaini olmak üzere iki temel giriş (input) sınıfı oluşturuldu. Bu iki temel sınıftan özellik çıkarımı gerçekleştirildi. Devamında ise sınıflandırma işlemi için (I) Uyanık (W), Uykuda (N1, N2, N3 ve R) ve (II) Hafif Uyku Dönemi (W, N1) ve Ağır Uyku Dönemi (N2, N3 ve R) olmak üzere iki temel sınıfa ayrılmıştır (Muhammed Kürşad UÇAR [1], 2014).

1.2 UYKU EVRELERİ

Elektrofizyolojik, davranışsal ve nöronal özellikler temelinde uyku; Amerikan Uyku Tıbbi Akedemisin'nin belirlemiş olduğu kurallara göre beş evrede incelenmektedir. Bu evreler sırasıyla; uyanık (Wake), evre 1 (N1), evre 2 (N2), evre 3 (N3) ve REM (R)'dir. Uyku evreleme yapılan çalışmalarda, çalışmanın ilgi alanına göre sınıf sayısı değişmektedir. Sınıflandırmalar; uyanık (W) – uykuda (S), W – NREM – R veya uyanık (W) – N1 –N2 –N3 – R şeklinde gerçekleştirilebilir (Muhammed Kürşad UÇAR [1], 2014).

Şekil 1.2 Uyku döngüsü boyunca uyku evreleri.

Şekil 1.3 Polisomnografide EEG, EOG ve EMG kaydı (Köktürk, 2013).

1.2.1 Uyanıklık (W) Evresi

Uyanıklık evresi kişinin gözlerinin kapalı, dinlenme ve istirahat durumunda olduğu dönemdir. Kişi dış uyaranlar aracılığıyla veya kendi isteğiyle gözlerini açarsa uyanıklık evresinden çıkmış olur. Uyanıklık evresinde beyin 8-13 Hz frekansında alfa ritmi gösterir. Alfa ritmi sinuzoidal

sinyaldir ve beynin oksipital bölgesinden elde edilir. Çene bölgesinden alınan EMG sinyalinin genliği değişken ve yüksektir. EOG sinyalinde okuyan göz hareketleri gözlenir (Köktürk, 2013) (Argüder, 2017).

Şekil 1.4 Uyanıklık evresi (W) PSG kaydı (Köktürk, 2013).

1.2.2 NREM Evre 1

NREM N1 evresinde kişi uykuya geçiş dönemi yaşar. Etrafında gerçekleşen olaylardan habersiz haldedir fakat eğer uyarılırsa ve gerçek hayatla tekrar bağ kurarsa kişi; uyuyor olduğunun bilincinde olmayacaktır. N1 evresinde beyin çoğunlukla 4-7 Hz frekanslarında teta ritmi gösterir. Teta ritmini düşük genlikli, karışık frekanslı sinyaller oluşturur. Çene EMG'si uyanıklık evresine göre daha düşük genlikli olmasına rağmen hala değişken yapıdadır. EOG sinyalinde yavaş göz hareketleri denen düzenli, sinüzoidal sinyaller gözlenir. Ayrıca bu evrede 0,5 saniyeden kısa süren verteks keskin dalgaları gözlenir (Köktürk, 2013) (Argüder, 2017).

Şekil 1.5 N1 Evresi PSG kaydı (Köktürk, 2013).

1.2.3 NREM Evre 2

NREM N2 evresine geçişte en belirgin özelliklerin başında K-kompleks ve uyku ipçiğinin görülmesi gelir. K-kompleks dalgaları 12-14 Hz frekans aralığında, en az 0,5 saniye süren, Emine Argüder'e göre "iyi ayırt edilen negatif, keskin ve onu takip eden, arka plan EEG'den çıkan pozitif komponentiye sahip" dalgalardır. İğ ipçikleri ise 11-16 Hz frekans aralığında, en az 0,5 saniye süren sinüzoid sinyallerdir. EOG sinyalinin artık yok denilecek kadar az genliğe sahip olmasının yanında bazen yavaş göz hareketlerinde ani ve kısa süreli artışlar görüldüğü olmaktadır. Çene EMG'si bu evrede değişken amplitüd yapıdadır. Amplitüd değeri uyanıklık evresinden düşük seviyede, rem evresine ise daha yakındır (Köktürk, 2013) (Argüder, 2017).

Şekil 1.6 N2 evresi PSG kaydı (Köktürk, 2013).

1.2.4 NREM Evre 3

NREM N3 evresinde kişinin dünya ile bağlantısı kalmamıştır. Bu aşamada kişi rüya görmez, derin uykunun etkisindedir ve Somatotrapin yani büyüme hormonu salgılanır. EEG'de genellikle 0,5 - 2 Hz frekansında, amplitüdü 75 mikrovolttan küçük delta dalgaları oluşur. EOG sinyali tipik değildir. Çene EMG'si bu evrede değişken amplitüd yapıdadır. Amplitüd değeri N2 evresinden düşük seviyede, bazen rem evresine daha yakındır. Uyku ipçikleri N2 evresine göre daha az ve kısa süreli görüldüğü durumlar olabilir (Anon., Aklınızı Keşfein, 2018) (Argüder, 2017) (Köktürk, 2013).

Şekil 1.7 N3 Evresi PSG Kaydı (Köktürk, 2013).

1.2.5 REM (R) Evresi

Bu evrenin en belirgin özelliği EOG sinyallerindeki değişimdir. REM'in açılımı "rapid eye movement" yani "hızlı göz hareketleri" demektir. REM evresine hızlı göz hareketleri denilmesinin sebebi gözler kapalı ve kişi uykuda olmasına rağmen gözlerin 500 msn'den kısa sürelerle hızlı bir şekilde hareket etmesidir. REM evresi rüya evresi olarak da adlandırılır. EEG sinyali düşük genliklidir ve karışık frekans değerlerine sahiptir. Kişi REM evresinin etkisindeyken uyanırsa eğer kısmı kas kontrolünü kolay sağlayamayacaktır. Çünkü REM evresinde kas hareketleri oldukça düşük seviyededir ve kişi kısmı felç durumundadır. EMG sinyali diğer evrelerde olmadığı kadar düşük genlik değerine sahiptir. (Argüder, 2017) (Köktürk, 2013)

Şekil 1.8 REM evresi PSG kaydı (Köktürk, 2013).

BÖLÜM 2

KURAMSAL TERİMLER

2.1 BEYIN

Beyin aksonlar ve nöronlardan oluşan, vücudun duyusal ve fiziksel komuta merkezidir. Düşünmemizi, konuşmamızı, yürümemizi, uyumamızı ve diğer hayati aktivitelerimizi yöneten organdır. Sağ ve sol olmak üzere iki yarım küreden oluşur. Nöronlar sayesinde bilgi aktarımı sağlar ve çok geniş bir sinir ağına sahiptir. Oldukça karmaşık bir organ olan beyin, bölümlerden oluşur ve her bölümün kendine özgü özellikleri vardır (Çelik E. , 2012).

insan Beyni On (frontal) lop Yan (parietal) lop Arka baş (oksipital) lop Sakak (temporal) lobu

Şekil 2.1 Beynin lobları. (Kılıç Ekici 2015)

2.1.1 Ön (Frontal) Lob

İnsanları diğer canlılardan ayıran lobdur. Bilinçli hareket etmemizi, düşünmemizi, plan yapabilmeyi, kişilik özelliklerimizi bu bölüm yönetir. Beynin bu bölümü dopamin salgılar ve kişinin ödül, motivasyon ve kısa süreli bellek işlerini üstlenir (Taybaş, 2018).

2.1.2 Yan (Perietal) Lob

Beş duyu organından gelen bilgileri kontrol eden ve işleyen bölümdür. Ayrıca iç organlarımız için bir kontrol mekanizması sayılır. Çevreden gelen uyarılara duyularımızla cevap verdiğimizi sağlar (Taybaş, 2018).

2.1.3 Arka Baş (Oksipital) Lob

Görme işleminin gerçekleştiği bölümdür. Çevreden gelen görsel uyarılar beynin bu bölümünde işlenir. Üç boyutlu göreme, derinlik algılama, renkleri ayırt edebilme mesafeyi ve hareketi algılayabilmemizi sağlar (Taybaş, 2018).

2.1.4 Şakak (Temporal) Lob

Tempolar lob kulak arkasında yer alır. İşitme, yüz tanıma ve koku algılama gibi işlemleri gerçekleştiren lobdur. Kalabalık bir ortamda uzaktan birini gördüğümüzde kim olduğunu tahmin etmeniz veya burnunuza tanıdık bir koku geldiğinde kokuyu kolayca hatırlamanızın sebebi temporal lobdur (Taybaş, 2018)

2.2 BEYİN DALGALARI

2.2.1 Beta Dalgaları

Odaklanmış dikkat durumunda beynin yaydığı dalgadır. Zihin tamamen açık ve kişi uyanık durumdadır. Önemli bir sınav anındayken, kitap okurken, sunum yaparken veya bisiklet sürerken oluşur. Beta dalgaları nöronların en aktif çalıştığı dönemdir. Eğer denge kaybedilir ve nöronlar yüksek düzeyde aktivite gösterirse stres ve kaygı artışına sebep olabilir. Stres ve kaygı artışıyla beraber kişi agresifleşebilir, dikkat eksikliği yaşayabilir ve odaklanmada ciddi sorunlar yaşayabilir. Sakin kalındığında ve rahat hareket edildiğinde beynin oldukça iyi çözümler üretecek ve yaratıcılığı artıracaktır. Aynı şekilde fazla düşük aktivite göstermesi de bunalıma yol açmaktadır. Beta dalgaları 12-33 Hz frekans aralığına sahiptir. 12-15 Hz düşük beta dalgası, 15-18 orta seviye beta dalgası, 18-33 arası yüksek beta dalgası olarak adlandırılmaktadır ve genlikleri 30 μV'tan azdır (Anon., MOOİST: Psikiyatri ve Nöroloji Hastanesi, 2021) (Yıldız, 2009) (Anon., Beyin Dalgaları, 2020).

2.2.2 Alfa Dalgaları

Günün sakin saatlerinde bir kenara çekilip biraz dinlenildiğinde ya da bilgisayar karşısında bir şeyler izlerken hafif mayışmanın yaşandığı sırada gözlenen sinyal biçimidir. Bu dönemde kişi uykuda değildir ama hafif bir rahatlama yaşamaktadır. Dışarıdan gelecek olan ani uyaranla etkisinden kolayca sıyrılabileceğimiz durumdur. Yüksek düzeydeki alfa aktivitesi kişinin kendini halsiz hissetmesine sebep olurken, düşük düzeydeki alfa aktivitesi kişinin kendini sinirli hissetmesine ve uyku problemi yaşamasına sebep olabilir. Alfa dalgaları 8-13 Hz frekans aralığına sahiptir ve genlikleri 20-200 μV aralığındadır (Yıldız, 2009) (Anon., Beyin Dalgaları, 2020).

2.2.3 Teta Dalgaları

Kişi yaratıcı fikirler üzerinde düşünüyorsa, duygusal bir anın etkisindeyse veya halletmesi gereken bir görevi başarıyla yerine getirdiyse beyin tarafından teta dalgaları üretilir. Teta dalgalarının olduğundan düşük olması kişinin duygusal yönden zayıf hissetmesine ve depresif ruh haline girmesine sebep olur. Olması gerekenden fazla salgılanırsa kişi yine depresifleşebilir. Teta dalgaları 4-8 Hz frekans aralığına sahiptir ve genlikleri 100 μV'tan azdır (Yıldız, 2009) (Anon., Beyin Dalgaları, 2020).

2.2.4 Delta Dalgaları

Bebeklerde ve çocuklarda, büyüme hormonunun salgılandığı evre olarak bilinir. Kişi bu evrede derin uykudadır ve çevresinde olan bitenden habersizdir. Eğer kişi bu evreye uyanık bir şekilde girerse halüsinasyonlar görmeye başlar. Delta dalgaları 1-3 Hz frekans aralığına sahiptir ve genlikleri 100 μV'tan azdır (Yıldız, 2009) (Anon., Beyin Dalgaları, 2020).

Şekil 2.2 Beyin dalgaları (Çelik E., 2012).

2.3 EEG

Nöronlardan oluşan beyin, ölüm gerçekleşmediği sürece sürekli olarak elektriksel aktivite üretir. EEG beynin ürettiği elektriksel aktiviteleri elektrotlar aracılığıyla kayıt altına alan, açılımı elektroensefalogram (elektro=elektriksel, ensefelo=beyin, gram=kayıt) olan medikal cihaza verilen isimdir. EEG'de kullanılan elektrotlardan birisi artı ucu oluşturur ve sinyal alınmak istenen bölgeye yerleştirilir, diğer elektron ise eksi uçludur ve kulak arkasına yerleştirilir. Cihaz artı ve eksi uç arasındaki potansiyel farkı ölçer ve verilerin grafik olarak çıktısını verir. Ayrıca kişiyi cihazdan gelebilecek elektrik kaçaklarına karşı koruyan topraklama hattı vardır. EEG ile birlikte birçok beyin hastalığının teşhisi yapılabilir. Bunun yanında EEG uyku çalışmalarında, psikolojik veya zihinsel engeli bulunan vakaların tespitinde oldukça önemli yer tutar. Literatürde bu konular üzerinde çalışılmış oldukça geniş bir yelpaze vardır (Richard P, 2000).

Şekil 2.3 EEG' ye Bağlı Hasta (Anon., MOOİST: Psikiyatri ve Nöroloji Hastanesi, 2021)

Şekil 2.4 10-20 Sistemine Göre Elektrotların Yerleştirilmesi (Duman, 2005)

Tek sayılı elektrotlar sol yarım küreye yerleştirilirken, çift sayılı elektrotlar sağ yarım küreye yerleştirilmiştir. Ölçümler monopolar veya bipolar olarak yapılabilir. Monopolar (referansa göre) teknikte, potansiyeller bir referans elektroduna göre ölçülür. 10-20 sisteminde, auricular elektrotları referans elektrot olarak kullanılır. Peşpeşe bağlanan elektrotlar arasındaki potansiyel farklar ise bipolar kayıt tekniği ile ölçülür. (Duman 2005)

2.4 Kaslar

Protein yasından oluşan kasların asıl görevi hareket etmektir. Kasların temelde üç çeşidi vardır;

2.4.1 Kalp Kası

Kalp kişinin kontrolünde olmayan istemsiz çalışan kas tipine sahiptir. Kalp kası ölene kadar düzenli çalışır ve sadece kalpte bulunurlar. Çizgili kas grubuna girer ve hücresinde tek çekirdeğe sahiptir.

2.4.2 İskelet Kası

İskelet kası istemli çalışan kas tipine sahiptir. Çizgili kas grubuna girer ve hücresinde birden çok çekirdek bulundurabilir. Tüm iskelet sistemini tamamıyla sarar ve ayakta durmayı, yürümeyi, konuşmayı, yemek yemeği vb. içerisinde istemli hareket gerektiren her türlü hareketi kişinin yapabilmesini sağlar.

2.4.3 Düz Kas

Organlarımız da kalp gibi istemsiz çalışan kas tipine sahiptir. İkisinin arasındaki farkı oluşturan şey Dicle Aras tarafından "İskelet kası somatik sinir sistemi tarafından innerve edilirken kalp kası ve düz kas otonom sinir sistemi tarafından innerve edilir." şeklinde açıklanmıştır. Ayrıca düz kaslar iğ şeklinde, düzenli yerleşim gösterirler. Düz kaslarda kalp kasları gibi tek çekirdeğe sahiptirler. (Aras 2015)

Şekil 2.5 İskelet kasının yapısı. (Nurhan 2021)

2.5 EMG

EMG kasların ürettiği elektriksel aktiviteleri elektrotlar aracılığıyla kayıt altına alan, açılımı elektromiyogram (elektro=elektriksel, miyo=kas, gram=kayıt) olan medikal cihaza verilen isimdir. EMG'de kullanılan elektrotlardan birisi artı ucu oluşturur ve sinyal alınmak istenen bölgeye yerleştirilir, diğer elektron ise eksi uçludur. Cihaz artı ve eksi uç arasındaki potansiyel farkı ölçer ve verilerin grafik olarak çıktısını verir. Ayrıca kişiyi cihazdan gelebilecek elektrik kaçaklarına karşı koruyan topraklama hattı vardır. EMG sinyalinin kaydedilebilmesi için kişinin kasları belirli aralık ve güçlerle uyarması gerekir. EMG ile birlikte birçok kas-sinir hastalığının teşhisi yapılabilir.

Şekil 2.5 Çene EMG'si. (Güney)

BÖLÜM 3

ÇALIŞMA AŞAMALARI

3.1 Verileri Elde Etme

Veriler Physiobank ATM isimli açık kaynak veri tabanından elde edildi. Datalar 47 yaşında kadın hastaya aittir. Yaklaşık 9 saat uzunluğunda olan EEG ve EMG verilerinin her bir 1 Hz frekansla örneklenmiştir. Elimizde toplam 32399 adet örneklem noktası bulunmaktadır. EEG sinyalinin genliği -1,02 adu/uV, EMG sinyalinin genliği ise -4.1129 adu/uV'dur (EEG Base: uV, EMG Base: 128 uV).

Şekil 3.1 10 sn'lik EMG grafiği. (Anon., PhysioBank ATM, 1989)

Şekil 3.2 10 sn'lik EEG grafiği. (Anon., PhysioBank ATM, 1989)

Physiobank ATM'den veriler '.mat' formatında bilgiler ise '.info' formatında çekildi.

- <u>0000m.mat</u> (binary, 208 bytes; the matrix of raw signal values)
- <u>0000m.info</u> (text, 403 bytes; signal names and other information about 0000m.mat)

Şekil 3.3 EEG verileri ve formatlar. (Anon., PhysioBank ATM, 1989)

3.2 Verileri Düzenlenmesi

Elde edilen veriler üzerinde hiçbir işlem yapılmamış ham verilerdir. Ham veriler işlenmeden kullanılırsa sonuçlarda büyük oranda hata oluşur. Ham verileri kullanılabilir hale getirmek için 3.1 numaralı denklemden yararlanılmıştır.

$$\dot{I}slenmis\ veri = \frac{(Ham\ Veri-Base)}{Gain}$$
(3.1)

Şekil 3.3 Dokuz saatlik işlenmiş EEG verisi.

Şekil 3.4 Dokuz saatlik işlenmiş çene EMG verisi.

3.3 Epoklara Ayırma

Uyku evreleme yaparken skorlama işlemi için sinyal otuz saniyelik parçalara bölünür. Her parça bir uyku evresiyle skorlanır. Elimizdeki verilerin örnekleme frekansı 1 Hz'dir. Her iki sinyal 32399 adet örnekleme noktasının oluşmaktadır. Her 30 örneklem noktası otuz saniyelik bir parçaya denk gelir. Parçalara ayırma yapıldığında 1079 adet epok elde edilmiştir.

	Epoklar ×					
	30x1079 doub	ole				
	1	2	3	4	5	6
1	-11.7647	19.6078	0	3.9216	13.7255	-29.4118
2	-2.9412	-14.7059	-7.8431	1.9608	-34.3137	-1.9608
3	2.9412	-1.9608	7.8431	0.9804	3.9216	11.7647
4	-5.8824	2.9412	-1.9608	-4.9020	4.9020	0
5	6.8627	-0.9804	-9.8039	-2.9412	-1.9608	0
6	-2.9412	-4.9020	7.8431	6.8627	8.8235	1.9608
7	-17.6471	-1.9608	-6.8627	-7.8431	-0.9804	0
8	7.8431	2.9412	2.9412	-0.9804	-6.8627	-5.8824
9	1.9608	3.9216	0.9804	3.9216	-1.9608	-6.8627
10	0.9804	0	0.9804	0	13.7255	0
11	0.9804	-14.7059	-0.9804	-6.8627	-6.8627	5.8824
12	5.8824	3.9216	-1.9608	-8.8235	0	9.8039
13	0.9804	0.9804	0	-0.9804	0	-5.8824

Şekil 3.5 Zaman domaininde otuz saniyelik epoklara ayrılmış EEG sinyali.

Şekil 3.6 Zaman domainde otuz saniyelik EEG sinyali.

Şekil 3.7 Zaman domainde otuz saniyelik EMG sinyali.

3.3.1 Hızlı Fourier Dönüşümü

Physiobank ATM'den elde edilen veriler zaman domaininde kaydedilmiştir. Zaman – frekans domaininde çalışabilmek için verilerin frekans domainine çevrilmesi gerekir. Her iki sinyale ayrı ayrı hızlı fourier dönüşümü uygulanarak sinyaller frekans domainine çevrilmiştir.

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk} \quad 0 \le k \le N - 1$$
 (3.2)

$$W_N = e^{-j(2\pi/N)} (3.3)$$

	Epoklar ×					
	30x1079 doub	ole				
	1	2	3	4	5	6
1	2.4735e+04	88.1862	110.0483	123.6662	52.4654	89.8422
2	576.2358	35.3921	52.5323	72.8699	54.1930	118.9487
3	312.3046	139.0284	62.5926	20.5369	80.9330	63.4877
4	127.2555	86.4378	71.6918	84.1362	17.7743	91.5094
5	150.8121	46.9081	67.9961	33.5751	66.5342	50.0409
6	425.7776	56.8423	93.0809	44.9911	100.2545	55.1471
7	299.7600	161.8940	40.4649	45.4693	35.2485	38.2964
8	146.9968	111.0566	173.3639	12.7502	110.7923	59.5949
9	117.9247	123.0227	126.3576	92.6106	71.5157	76.5238
10	79.6632	33.9924	160.0418	81.8273	83.0197	85.7866
11	151.0449	190.2432	83.7726	52.8425	5.5876	41.2038
12	215.7153	130.6268	35.1134	148.1980	59.0695	113.2744
13	74.6073	86.4925	39.3823	140.0228	126.7852	27.6393

Şekil 3.8 Frekans domaininde otuz saniyelik epoklara ayrılmış EEG sinyali.

3.4 Özellik Çıkarma

Özellik çıkarımı uyku sınıflandırmasında en önemli aşamadır. Özellik çıkarımı üç sınıfta gerçekleşir; (I) zaman domaini, (II) frekans domaini, (III) zaman-frekans (hibrit) domaini olmak üzere üç grupta incelenir. Bu çalışmada zaman domaini ve zaman-frekans (hibrit) domaini kullanıldı.

3.4.1 Zaman ve Frekans Domaininde Özellik Çıkarımı

Zaman domainindeki özellikler, orijinal EEG ve EMG işaretinden elde edilen özelliklerdir. (Yıldız, 2009) Bu çalışmada zaman domaininde sırasıyla; (1) ortalama, (2) standart sapma, (3) varyans, (4) ortalama enerji, (5) ortalama eğri uzunluğu ve (6) ortalama teager enerjisi özellikleri hesaplanmıştır. Frekans domaininde ise sırasıyla; (1) ortalama, (2) standart sapma, (3) varyans özellikleri hesaplanmıştır.

Tablo 4.1 Özellik çıkarma formülleri.

Ortalama	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
Standart Sapma	$\sigma = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (x_{n-\mu_x})^2}$
Varyans	$\sigma^2 = \frac{1}{N} \sum_{n=1}^N (x_{n-\mu_x})^2$
Ortalama Enerji	$E = \frac{1}{N} \sum_{t=1}^{N} x[t]^2$
Ortalama Eğri Uzunluğu	$CL = \frac{1}{N} \sum_{t=2}^{N} x[t] - x[t-1] $
Ortalama Teager Enerjisi	$TE = \frac{1}{N} \sum_{t=3}^{N} (x [t-1]^2 - x[t]x [t-2])$

Tablo 4.2 Kullanılan Özellikler

Zaman Domaini	Frekans-Zaman Domaini		
1) Ortalama	1) Ortalama (Zaman)		
2) Standart sapma	2) Standart sapma (Zaman)		
3) Varyans	3) Varyans (Zaman)		
4) Ortalama enerji	4) Ortalama enerji (Zaman)		
5) Ortalama eğri uzunluğu	5) Ortalama eğri uzunluğu (Zaman)		
6) Ortalama teager enerjisi	6) Ortalama teager enerjisi (Zaman)		
	7) Ortalama (Frekans)		
	8) Standart sapma (Frekans)		
	9) Varyans (Frekans)		

∫ iı	nput 🗶					
10	79x6 double					
	1	2	3	4	5	6
1	-0.1297	0.4271	0.1824	0.1931	0	0
2	-0.3242	0.9919	0.9839	1.0562	-0.1945	0
3	-0.5025	1.0835	1.1739	1.3873	-0.1540	1.1055
4	-0.8996	1.4716	2.1655	2.9026	-0.4944	0.9202
5	-0.9482	1.2304	1.5140	2.3627	0.0162	2.5203
6	-0.1864	1.1309	1.2789	1.2710	0.7618	2.2917
7	-0.0243	0.3215	0.1034	0.1005	0.1702	1.3695
8	-0.0729	0.3327	0.1107	0.1123	-0.0486	0.0217
9	0.0162	0.0888	0.0079	0.0079	0.0973	0.1103
10	-0.0162	0.0617	0.0038	0.0039	-0.0324	0.0079
11	-0.0081	0.0444	0.0020	0.0020	0.0081	0.0039
12	-0.0081	0.1006	0.0101	0.0099	0.0081	0.0020
13	-0.0729	0.5034	0.2534	0.2503	-0.0648	0.0079
	•	i			i i	

Şekil 3.9 Zaman domaini, EMG verilerinden çıkarılan özellikler. (Sütunlar: (1) ortalama, (2) standart sapma, (3) varyans, (4) ortalama enerji, (5) ortalama eğri uzunluğu ve (6) ortalama teager)

1 10	079x9 double								
	1	2	3	4	5	6	7	8	9
10	79.1222	41.4984	1.7221e+03	79.1222	41.4984	1.7221e+03	7.9250e+03	-1.5445	2.8068e+03
11	72.3278	38.8076	1.5060e+03	72.3278	38.8076	1.5060e+03	6.6871e+03	-5.1900	1.8322e+03
12	85.9389	42.6977	1.8231e+03	85.9389	42.6977	1.8231e+03	9.1478e+03	15.1459	-397.2333
13	82.4197	40.4354	1.6350e+03	82.4197	40.4354	1.6350e+03	8.3735e+03	-5.3425	3.8605e+03
14	82.8978	37.9202	1.4379e+03	82.8978	37.9202	1.4379e+03	8.2620e+03	-1.7973	1.5460e+03
15	103.5107	44.7236	2.0002e+03	103.5107	44.7236	2.0002e+03	1.2648e+04	16.5034	-858.5054
16	99.6725	50.2284	2.5229e+03	99.6725	50.2284	2.5229e+03	1.2373e+04	-2.3434	3.0470e+03
17	91.0004	55.4201	3.0714e+03	91.0004	55.4201	3.0714e+03	1.1250e+04	-9.2661	3.6759e+03
18	90.7092	40.0701	1.6056e+03	90.7092	40.0701	1.6056e+03	9.7803e+03	1.6949	1.6368e+03
19	104.2874	44.3488	1.9668e+03	104.2874	44.3488	1.9668e+03	1.2777e+04	10.8125	799.4139
20	121.4091	61.0014	3.7212e+03	121.4091	61.0014	3.7212e+03	1.8337e+04	14.0290	1.7350e+03
21	100.3057	48.3414	2.3369e+03	100.3057	48.3414	2.3369e+03	1.2320e+04	-18.3024	7.3903e+03
22	99.1461	54.9768	3.0224e+03	99.1461	54.9768	3.0224e+03	1.2752e+04	-2.1384	1.4841e+03

Şekil 3.10 Zaman-Frekans domaini, EEG verilerinden çıkarılan özellikler.
(Sütunlar; Zaman: (1) ortalama, (2) standart sapma, (3) varyans, (4) ortalama enerji, (5) ortalama eğri uzunluğu ve (6) ortalama teager Frekans: (7) ortalama, (8) standart sapma, (9) varyans)

BÖLÜM 4

YAPAY SİNİR AĞLARI VE SONUÇLARIN DEĞERLENDİRİLMESİ

4.1 Yapay Sinir Ağları

Yapay Sinir Ağları (YSA) İngilizce adıyla Artificial intelligence (AI) insan beyninin bilgisayar ortamında taklit edilmesi temeli üzerine kurulmuş, günümüzde popülerliği giderek artan bilim dalıdır. İnsan sinir ağlarının (nöronların) matematiksel modellenmesiyle oluşmuştur. Bilgisayarlara insan gibi düşünme yeteneği kazandırılmıştır.

Şekil 4.1 Biyolojik sinir hücresi ve yapay sinir ağı (Kadir Öztürk, 2018)

Yapay sinir ağları ile sınıflandırmada iki temel veri seti vardır. Birinci veri seti giriş (input), ikinci veri seti hedeftir (target). Giriş veri seti üçüncü bölümde anlatılan özellik çıkarımı

sonuçlarından elde edilmiştir. Target verileri ise uzman doktor tarafından sınıflandırılmıştır. Physiobank ATM target verilerini de diğer veriler gibi açık kaynak olarak sunmuştur. Ayrıca veriler toplam beş sınıfa ayrıştırılmıştır.

Tablo 4.3 Physiobank ATM'ye göre sınıf sayıları.

Physiobank ATM Sınıflar	Sınıf Sayısı	Sınıflandırma Etiketi
Wake (W)	214	1
Evre 1 (N1)	23	2
Evre 2 (N2)	408	3
Evre 3 (N3)	238	4
R	196	5

Fakat yukarıdaki veriler sayı olarak dengesiz bir dağılıma sahiptir. Bu olay YSA sonuçlarını olumsuz etkilemektedir. Bu olumsuzluğu ortadan kaldırmak adına sınıf sayısı beşten ikiye düşürüldü ve sonuç çeşitliliği açısından iki farklı grup oluşturuldu. Bu gruplardan birisi uyanık – uyuyor şeklinde ayrılırken, ikinci grup ise hafif uyku – ağır uyku şeklinde ayrılmıştır.

Tablo 4.4 Uyanık – Uyuyor grubu ve sınıf sayıları.

Birinci Grup	Sınıf Sayısı	Sınıflandırma Etiketi
Uyanık (W)	214	1
Uyuyor (N1 – N2 – N3 – R)	865	2

Tablo 4.5 Hafif Uyku – Ağır Uyku ve sınıf sayıları.

İkinci Grup	Sınıf Sayısı	Sınıflandırma Etiketi
Hafif Uyku (W – N1)	237	1
Uyuyor (N2 – N3 – R)	842	2

Devamında sınıflandırma işlemi için input ve target verileri toplamda dört parçaya bölünmüştür.

4.1.1 Eğitim Verileri

Eğitim verileri girdi ağının eğitilmesi için kullanılır. İnput verilerinin belirli bir yüzdesi eğitim verisi olarak ayırılır. Bu çalışmada 1079 input verisinin, 540 tanesi (yani %50'si) eğitim verisi olarak ayrıldı.

4.1.2 Eğitim Cevapları

Eğitim cevapları çıktı ağının eğitilmesi için kullanılır. Target verilerinin %50'si cevap verisi olarak ayrılmıştır. Eğitim cevapları da eğitim verileri gibi 540 adettir.

4.1.3. Test Verileri

Test verileri eğitilen sinir ağının, ne derece doğru çalıştığını test etmek için ayrılmış input verileridir. Eğitim verilerinden geriye kalan 539 tane input (yani %50'lik), test verisi olarak ayrılmıştır.

4.1.4 Test Cevapları

Test cevapları; yapay sinir ağının test verilerine ürettiği tahmin verileriyle karşılaştırılmak için ayrılır. Target verilerinin geri kalan %50'lik (yani 539 tane) kısmını oluşturur.

Ⅲ 1079x10 double										
	1	2	3	4	5	6	7	8	9	10
1	972.1002	4.4897e+03	2.0157e+07	-1.6013	8.5293	72.7494	72.8886	0	0	1
2	83.4844	46.1447	2.1293e+03	-0.5229	10.2201	104.4514	101.2431	0.3595	0	1
3	87.8862	40.8027	1.6649e+03	-1.1111	6.6927	44.7927	44.5342	-0.8170	99.2567	1
4	80.6908	44.0762	1.9427e+03	-0.8824	15.2173	231.5654	224.6251	0.3268	19.8642	1
5	77.2112	33.9906	1.1554e+03	-0.2288	11.0939	123.0749	119.0247	0.2614	220.8125	1
6	79.2330	31.3123	980.4607	-1.1765	10.3768	107.6774	105.4723	0.6209	127.6112	1
7	79.0442	37.9083	1.4370e+03	-0.6536	2.2048	4.8611	5.1262	0.4902	86.1207	1
8	70.1531	37.7998	1.4288e+03	-0.6536	8.7966	77.3796	75.2275	0.0654	15.8272	1
9	79.3132	42.4247	1.7999e+03	-0.7843	1.9675	3.8712	4.3573	-0.0327	74.9391	1
10	79.1222	41.4984	1.7221e+03	-0.5229	1.8696	3.4956	3.6524	0.1961	3.0757	1
11	72.3278	38.8076	1.5060e+03	-0.6863	4.9668	24.6689	24.3176	-0.2288	6.3117	1
12	85.9389	42.6977	1.8231e+03	-0.6863	2.6401	6.9701	7.2088	-0.0654	23.2282	1
13	82.4197	40.4354	1.6350e+03	-0.5882	5.3488	28.6097	28.0021	0.0327	-1.5058	1
1067	82.8978	37.9202	1.4379e+03	-0.9150	3.1102	9.6736	10.1884	-0.0654	3.8767	2
1068	82.4197	40.4354	1.6350e+03	-0.8170	2.4706	6.1040	6.5680	-9.6219e-17	8.9068	2
1069	85.9389	42.6977	1.8231e+03	-0.6209	2.7306	7.4562	7.5932	-2.2204e-17	3.6524	2
1070	72.3278	38.8076	1.5060e+03	-0.4902	1.8160	3.2978	3.4282	0.1307	5.8631	2
1071	79.1222	41.4984	1.7221e+03	-1.0131	2.7787	7.7214	8.4903	-0.4575	3.2359	2
1072	79.3132	42.4247	1.7999e+03	-0.6209	6.2722	39.3405	38.4147	-0.0654	8.4262	2
1073	70.1531	37.7998	1.4288e+03	-0.8497	3.6020	12.9747	13.2641	-0.3922	34.6982	2
1074	79.0442	37.9083	1.4370e+03	-0.9150	3.2560	10.6016	11.0855	-0.1961	9.4195	2
1075	79.2330	31.3123	980.4607	-0.5556	2.9545	8.7290	8.7466	0.0980	9.7078	2
107€	77.2112	33.9906	1.1554e+03	-0.8170	2.6267	6.8994	7.3369	0.0654	7.0165	2
1077	80.6908	44.0762	1.9427e+03	-0.6863	2.4581	6.0421	6.3117	0.1961	6.3117	2
1078	87.8862	40.8027	1.6649e+03	-0.5882	2.5174	6.3371	6.4719	0.0980	0	2
1079	83.4844	46.1447	2.1293e+03	-0.7516	2.5053	6.2763	6.6321	0	0	2

Şekil 4.2 Kırmızı: Eğitim Verileri, Yeşil: Eğitim Cevapları, Mavi: Test Verileri, Sarı: Test Sonuçları

4.2 K En Yakın Sınıflandırma Algoritmaları

K – en yakın sınıflandırma algoritmaları; hangi sınıfa ait olduğu bilinen verilerin içerisine, sınıfı bilinmeyen bir veri eklendiğinde yeni verinin diğer verilere olan uzaklığını hesaplanır ve yeni veri hangi sınıfa daha yakınsa o sınıfa dahil edilir. Bu çalışmada MATLAB Toolbox kullanılarak, Classification Learner uygulaması kullanılarak sınıflandırılma yapılmıştır.

Şekil 4.3 K - en yakın komşu sınıflandırma (Mehmet Ali KUTLUGÜN, 2018)

Şekil 4.4 EEG frekans-zaman domaini verilerinin KNN ile sınıflandırması

1.1 A KNN Last change: Fine KNN	Accuracy: 100.0% 9/9 features
1.2 🏠 KNN	Accuracy: 89.0%
Last change: Medium KNN	9/9 features
1.3 🏠 KNN	Accuracy: 83.6%
Last change: Coarse KNN	9/9 features
1.4 🏠 KNN	Accuracy: 86.7%
Last change: Cosine KNN	9/9 features
1.5 A KNN Last change: Cubic KNN	Accuracy: 88.7% 9/9 features
1.6 🏠 KNN	Accuracy: 100.0%
Last change: Weighted KNN	9/9 features
2 🏠 Ensemble	Accuracy: 100.0%
Last change: Subspace KNN	9/9 features

Şekil 4.5 EEG frekans-zaman domaini verilerinin KNN ile yüzde kaç doğru sınıflandırıldığı.

Yukarıda görüldüğü gibi üç algoritma sınıflandırma işleminde %100 sonuç vermiştir. EMG'de %100 sonuç sadece Weighted kNN'de çıkmıştır.

Te	est Cevapları	YSA Tahmini
4	1	1
5	1	1
6	1	2
7	1	1
8	1	2
9	1	1
10	2	2

Şekil 4.6 Test cevaplarıyla YSA cevaplarının Karşılaştırılması,

Yeşil: Doğru tahmin, Kırmızı: Yanlış tahmin.

4.3 Sonuçların Değerlendirilmesi

Yapay sinir ağlarının tahminleriyle test cevapları arasındaki ilişki bu aşamada kontrol edilmektedir. Aşağıdaki tabloda doğru pozitif, yanlış pozitif, yanlış negatif, doğru negatif değerlerinin nasıl bulunduğu gösterilmiştir.

Tablo 4.3 True – False Tablosu

			Gerçek D	eğerler
			Uyanık (Pozitif)	Uyuyor (Negatif)
			True	False
Tahmin	Uyanık (Pozitif)	True	True – Uyanık (TP)	False – Uyanık (FP)
Değerler	Uyuyor (Negatif)	False	False – Uyuyor (FN)	True – Uyuyor (TN)

TP (True – Pozitif): Doğru Onaylanmış

FN (False – Pozitif): Hatalı Onaylanmış

FN (False – Negatif): Doğru Reddedilmiş

TN (True – Negatif): Hatalı Onaylanmış

Tablo 4.4 Performans Formülleri

Performans Parametreleri	Formüller
Duyarlılık (AAC)	TP
	$\overline{TP + FN}$
Özgüllük (SEN)	TN
	$\overline{TN + TP}$
Doğruluk (SPE)	TP + TN
-	$\overline{TP + TN + FP + FN}$
F – Ölçümü (F_O)	2*Duyarlılık*Özgüllük
	Duyarlılık+Özgüllük
AUC	ROC Eğrisinin Altında Kalan Alan

4.4 Sonuçlar

Tablo 4.5 Zaman domaini EEG verileri Performans Parametreleri.

Sınıf	ACC	SEN	SPE	F_O	AUC		
Wake / N1 (Hafif Uyku) N2/N3/R (Derin Uyku)							
Fine kNN	81.261595	0.572649	0.879147	0.693545	0.725898		
Weighted kNN	86.456401	0.555556	0.950237	0.701171	0.752896		
Subspace kNN	76.252319	0.384615	0.867299	0.532906	0.625957		
	Wake (Uy	anık) N1/N2/	N3/R (Uyuyoı	;)			
Fine kNN	83.116883	0.547170	0.900693	0.680772	0.723931		
Weighted kNN	86.641929	0.547170	0.944573	0.692937	0.745871		
Subspace kNN	76.252319	0.330189	0.868360	0.478450	0.599275		

Tablo 4.6 Zaman domaini EMG verileri performans parametreleri.

Sınıf	ACC	SEN	SPE	F_O	AUC		
Wake / N1 (Hafif Uyku) N2/N3/R (Derin Uyku)							
Weighted kNN	85.899815	0.538461	0.947867	0.686779	0.743164		
Wake (Uyanık) N1/N2/N3/R (Uyuyor)							
Weighted kNN	85.899815	0.424528	0.965358	0.589720	0.694943		

Tablo 4.7 Zaman Frekans Domaini EEG veriler performans parametreleri.

Sınıf	ACC	SEN	SPE	F_O	AUC			
Wake / N1 (Hafif Uyku) N2/N3/R (Derin Uyku)								
Fine kNN	77.179963	0.358491	0.872979	0.508262	0.615735			
Weighted kNN	81.076067	0.245283	0.949192	0.389829	0.597237			
Subspace kNN	79.035250	0.330189	0.903002	0.483560	0.616595			
	Wake (Uy	anık) N1/N2/	N3/R (Uyuyoı	<u>r)</u>				
Fine kNN	75.695733	0.367521	0.864929	0.515850	0.616225			
Weighted kNN	79.220779	0.239316	0.945498	0.381956	0.592407			
Subspace kNN	79.220779	0.393162	0.902844	0.547782	0.648003			

Tablo 4.8 Zaman Frekans Domaini EMG verileri performans parametreleri.

Sinif	ACC	SEN	SPE	F_O	AUC
Wake / N1 (Hafif Uyku) N2/N3/R (Derin Uyku)					
Weighted kNN	85.8998	0.5385	0.9479	0.6868	0.7432
Wake (Uyanık) N1/N2/N3/R (Uyuyor)					
Weighted kNN	87.1985	0.5377	0.9538	0.6877	0.7458

Doğruluk değeri %100'e; özgüllük, doğruluk, F-ölçümü ve AUC değeri 1'e ne kadar yaklaşırsa test cevapları ve yapay sinir ağlarının cevapları o kadar benzer orana sahip demektir. Bu çalışmada EEG'de en iyi sonuçları zaman domaininde hafif uyku – ağır uyku grubundan Weighted kNN verirken, EMG'de en iyi sonucu zaman – frekans domaininde uyanık – uyuyor grubundan Weighted kNN vermiştir.

Kaynakça

- ¹Demet İlhan Algın, ¹. A. (2016). Kaliteli Uyku ve Uyku Bozuklukları . *Osmangazi Tıp Dergisi*, 38(Özel Sayı 1), 29-34.
- **Anon.** (2018, 5 1). *Aklınızı Keşfein*. Beyin Dalgaları Delta, Teta, Alfa, Beta ve Gama: https://aklinizikesfedin.com/beyin-dalgalari-delta-teta-alfa-beta-ve-gama/ adresinden alındı
- **Anon.** (2020, 12 03). *Beyin Dalgaları*. Wikipedia: https://tr.wikipedia.org/w/index.php?title=B%C3%BCy%C3%BCme_hormonu&actio n=history adresinden alındı
- **Anon.** (2021, 8). *MOOİST: Psikiyatri ve Nöroloji Hastanesi*. EEG (Elektroensefalografi): https://moodisthastanesi.com/anasayfa/testler/eeg-elektroensefalografi adresinden alındı
- **Aras, D.** (2015, 9 3). *Kas*. Kas, düz, iskelet ve kalp kası, iskelet kaslarının mikroskobik yapısı,: https://acikders.ankara.edu.tr/pluginfile.php/18853/mod_resource/content/0/6-Kas%2C%20d%C3%BCz%2C%20iskelet%20ve%20kalp%20kas%C4%B1%2C%20i skelet%20kaslar%C4%B1n%C4%B1n%20mikroskobik%20yap%C4%B1s%C4%B1%2C%20iskelet%20kaslar%C4%B1n adresinden alındı
- Argüder, E. (2017). UYKU EVRELERİNİN SKORLANMASI. Ankara: Uykuder.
- **Bingöl, N.** (tarih yok). *KAS ANATOMİSİ*. Açık Ders: https://acikders.ankara.edu.tr/pluginfile.php/2935/mod_resource/content/0/4.%20Hafta %20Kas%20Sistemi.pdf adresinden alındı
- Çağlar, S. (2021). *Matematiksel*. 02 01, 2021 tarihinde https://www.matematiksel.org/uykusuzluk-deneyi-11-gun-uyumazsaniz-beyninizdene-olur/adresinden alındı
- Çelik, E. (2012, 11 15). *Beyin Bilim ve Teknoloji*. Beyin Dalgaları: http://www.beyin-beyin.com/beyin-dalgalari/ adresinden alındı
- Çelik, S. (tarih yok). *Bilgi Kılavuzu*. Beyin Nedir?: https://www.bilgikilavuzu.com/beyin-nedir/adresinden alındı
- **Demet İlhan Algın, G. A.** (2016). Kaliteli Uyku ve Uyku Bozuklukları. *Osmangazi Tıp Dergisi, 38*(Özel Sayı 1), 29-34.

- **Duman, F.** (2005). *EEG SİNYALLERİNİN ANALİZİ İLE UYKU DURUMUNUN BELİRLENMESİ* . Ankara: ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ.
- **Ekici, Ö. K.** (2015, 02 04). *Genç Bilim Tübitak*. İnsan Beyninin Yapısı Nasıldır?: https://bilimgenc.tubitak.gov.tr/makale/insan-beyninin-yapisi-nasildir adresinden alındı
- **Güney, S.** (tarih yok). *Yüz Felci Sinkinezi EMG ile Kantitatif Tedavi* . Selçuk Güney, İstanbul.
- **Kadir Öztürk, M. E.** (2018). Yapay Sinir Ağları ve Yapay Zekâ'ya Genel Bir Bakış. *Takvim-i Vekayi*, Sayfa: 25-36. https://dergipark.org.tr/tr/download/article-file/596690 adresinden alındı
- **Köktürk, O. (2013).** *Uyku Kayıtlarının Skorlanması*. Ankara: Gazi Üniversitesi Tıp Fakültesi, Göğüs Hastalıkları Anabilim Dalı.
- **Mehmet Ali KUTLUGÜN, M. Y.** (2018). Yapay Sinir Ağları ve K-En Yakın Komşu Algoritmalarının. *ResearchGate*. İstanbul.
- **Muhammed Kürşad UÇAR [1], M. R.** (2014). EEG Sinyalleri Kullanılarak Uyku Evrelerinin Sınıflandırılmasında Sayısal Filtrelemenin Etkisi. Bursa.
- **Richard P, J. C.** (2000). EMG. *Biopac Student Laboratory Manuel* (s. 2. syf- 4.syf). içinde Ankara: COMMAT.
- **SAYGI, T.** (tarih yok). *HORLAMA TEDAVİSİ*. Rem Uykusu nedir? Neden önemlidir?: https://www.horlamatedavisi.com/rem-uykusu-ve-onemi adresinden alındı
- **Sönmez, E. E.** (2018, 12 23). *Parapsikoloji.Net*. Delta Dalgaları ve Kullanım Alanları: https://www.parapsikoloji.net/delta-dalgalari-ozellikleri-ve-kullanim-alanlari/adresinden alındı
- **Taybaş, Ç.** (2018, 10 31). *Sinirbilim*. Beyin Lobları Kaç Tanedir ve Görevleri Nedir?: https://sinirbilim.org/beyin-loblari-kac-tanedir/ adresinden alındı
- **Yıldız, M.** (2009, 2 25). UYKU EVRELERİNİN EEG İŞARETLERİ KULLANILARAK SINIFLANDIRILMASINDA YENİ BİR YAKLAŞIM. *Doktora tezi*. Sakarya, Türkiye: T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ .

BİBLİYOGRAFYA

- C. Iber, S. Ancoli-Israel, A. Chesson Jr and S. Quan, The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, U.S.: 1st ed. Westchester, Illinois: American Academy of Sleep Medicine, 2007.
- W. Dement ve N. Kleitman, «Cyclic variations in EEG during sleep and their relation to eye movements, body motility and dreaming,» Electroencephalogr Clin Neurophysiol, cilt 9, pp. 673-690, 1957.
- **S. Khalighi, T. Sousa, G. Pires and U. Nunes,** "Automatic sleep staging: A computer assisted approach for optimal combination of features and polysomnographic channels," Expert Systems with Applications, vol. 40, no. 17, pp. 7046-4059, 2013.
- **S. Redmond and C. Heneghan,** "Cardiorespiratory-Based Sleep Staging in Subjects With Obstructive Sleep Apnea," IEEE Transactions On Biomedical Engineering, vol. 53, no. 3, pp. 485-496, 2006.
- M. Ronzhina, J. Janoušsek, J. Kolárová, M. Nováková, P. Honzík and I. Provazník, "Sleep scoring using artificial neural networks," Sleep Medicine Reviews, vol. 16, no. 3, pp. 251-263, 2012.
- Daniels ME (1992). "Lilly's Humatrope Experience". *Nature Biotechnology*. 10 (7). s. 812. doi:10.1038/nbt0792-812a.

ÖZGEÇMİŞ

Öğrenci Betülay KABA 1998'de Sakarya'de doğdu; ilk ve orta öğrenimini aynı şehirde tamamladı; Atike HanımHendek Anadolu Lisesi'nden mezun olduktan sonra 2016 yılında Zonguldak Bülent Ecevit Üniversitesi Mühendislik Fakültesi Biyomedikal Mühendisliği Bölümü'ne girdi; halen aynı bölümde öğrenimini sürdürmektedir.

ADRES BİLGİLERİ

Adres: Kurudere Mah.

Lale Sok, No.

Karasu/SAKARYA

Cep: (530) 449 1463

E-posta: betulay.kaba@mf.karaelmas.edu.tr

^{*} Tezi hazırlayan öğrenci