Topic 3

Boolean Algebra & Optimization

Boolean Algebra

"Traditional" algebra

- Variables represent real numbers
- Operators operate on variables, and return real numbers

Boolean Algebra

- Developed mid-1800's by George Boole to formalize human thought
- Variables represent 0 or 1 only
- Operators return 0 or 1 only
- Basic operators
 - AND, OR, NOT

Boolean Algebra Terminology

- Example equation: F(a,b,c) = a'bc + abc' + ab + c
- Variable
 - Represents a value (0 or 1)
 - Three variables: a, b, and c
- Literal
 - Appearance of a variable, in true or complemented form
 - Nine literals: a', b, c, a, b, c', a, b, and c
- Product term
 - AND of literals
 - Four product terms: a'bc, abc', ab, c
- Sum term
 - OR of literals
 - No sum terms
- Sum-of-products
 - Equation written as OR of product terms only
 - Above equation is in sum-of-products form. "F = (a+b)c + d" is not.

Basic Theorems of Boolean Algebra

• (a)
$$x + 0 = x$$
;

• (a)
$$x + x' = 1$$
;

$$\bullet \quad (a) \ x + x = x;$$

• (a)
$$x + 1 = 1$$
;

•
$$(x')' = x;$$

(b)
$$x \cdot 0 = 0$$
;

(b)
$$x \cdot x' = 0$$
;

(b)
$$x \cdot x = x$$
;

(b)
$$x \cdot 1 = x$$
;

Basic Theorems of Boolean Algebra

• (a)
$$x + y = y + x$$
;

• (a)
$$x + (y + z) = (x + y) + z$$
;

• (a)
$$x(y + z) = xy + xz$$
;

$$\bullet \quad (a) \ x + xy = x;$$

• (a)
$$xy + xy' = x$$
;

$$\bullet \quad (a) \ x + x'y = x + y$$

(b)
$$xy = yx$$
;

(b)
$$x(yz) = (xy)z$$
;

(b)
$$x + yz = (x+y)(x+z)$$
;

(b)
$$x(x + y) = x$$
;

(b)
$$(x + y)(x + y') = x$$

$$\mathbf{(b)} \ \mathbf{x}(\mathbf{x'} + \mathbf{y}) = \mathbf{x}\mathbf{y}$$

Operator Precedence

- The operator precedence for evaluating basic Boolean expressions is:
 - Parenthesis
 - NOT
 - AND
 - OR
- Example: (x + y)
 - Evaluate the parenthesized expression (x + y) first and then the inversion
- Example: x + xy
 - Evaluate xy first and then OR it with the value of x

Prove theorem 5(a): xy + xy' = x
 xy + xy'
 x(y + y')
 x • 1
 x • 1
 x • 1
 x • (theorem 2(a))
 x • (theorem 4(b))

Prove theorem 5(b): (x + y)(x + y') = x
 (x + y)(x + y')
 = x + yy' (distributive (b))
 = x + 0 (theorem 2(b))
 = x (theorem 1(a))

Prove theorem 5(b): (x + y)(x + y') = x, alternatively
 (x + y)(x + y')
= (x + y)x + (x + y)y' (distributive (a))
= xx + xy + xy' + yy' (distributive (a))
= x + xy + xy' + 0 (theorem 2(b), 3(b))
= x + x(y + y') (theorem 1(a), distributive (a))
= x + x
(theorem 2(a), 4(b))

(theorem 3(a))

 $= \mathbf{x}$

Prove theorem 6(a): x + x'y = x + y
 x + x'y
 (x + x')(x + y)
 1 • (x + y)
 x + y
 (theorem 2(a))
 x + y

Exercises

- 1. x'y + x'
- 2. a'bc + a'
- 3. a'b'c + (a'b'c)'
- 4. (a + b)(c + b)(d' + b)(acd' + e)
- 5. wx'y' + wxz' + wx'yz'

DeMorgan's Law

(a)
$$(x + y)' = x'y'$$

(b)
$$(xy)' = x' + y'$$

• Very Useful

Applications of DeMorgan's Law

- Find the complement of F = x(y'z' + yz)
- F' = (x(y'z' + yz))' (All steps by DeMorgan's law)

 = x' + (y'z' + yz)'

 = x' + (y'z')' (yz)'

 = x' + (y + z)(y' + z')
- Exercise

$$((AB' + C)D' + E)'$$

XOR Properties

$$\mathbf{x} \oplus \mathbf{0} = \mathbf{x} \ (\mathbf{a})$$

$$\mathbf{x} \oplus \mathbf{1} = \mathbf{x'}(\mathbf{b})$$

(theorem 1)

$$x \oplus x = 0$$
 (a)

$$\mathbf{x} \oplus \mathbf{x'} = \mathbf{1} \ (\mathbf{b})$$

(theorem 2)

$$x \oplus y' = x' \oplus y = (x \oplus y)'$$

(theorem 3)

$$\mathbf{x} \oplus \mathbf{y} = \mathbf{y} \oplus \mathbf{x}$$

(commutative)

$$(\mathbf{x} \oplus \mathbf{y}) \oplus \mathbf{z} = \mathbf{x} \oplus (\mathbf{y} \oplus \mathbf{z}) = \mathbf{x} \oplus \mathbf{y} \oplus \mathbf{z}$$

(associative)

Boolean Representation: Minterm and Maxterm

- A binary literal may be in the unprimed (true) form and primed (false) forms, representing true and false conditions respectively
 - E.g. a vs. a'
- **Minterm** is a product of n literals in which each literal appears exactly once in either true or complemented form, but not both
 - Minterm is represented by m_i
- **Maxterm** is a sum of n literals in which each literal appears exactly once in either true or complemented form, but not both
 - Maxterm is represented by M_i

Minterm and Maxterm

			M	linterms	Maxterms		
X	y	Z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	m_0	x+y+z	M_0	
0	0	1	x'y'z	m_1	x+y+z'	M_1	
0	1	0	x'yz'	m_2	x+y'+z	M_2	
0	1	1	x'yz	m_3	x+y'+z'	M_3	
1	0	0	xy'z'	m_4	x'+y+z	M_4	
1	0	1	xy'z	m_5	x'+y+z'	M_5	
1	1	0	xyz'	m_6	x'+y'+z	M_6	
1	1	1	xyz	m ₇	x'+y'+z'	M_7	

Subscription i of minterm is the decimal equivalent of the corresponding binary combination

Minterm in Truth Table

X	у	Z	F
con1	con2	con3	result
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Result would happen if con1 is **false** AND con2 is **false** AND con3 is **true**, **x'y'z**

Result would happen if con1 is **false** AND con2 is **true** AND con3 is **true**, **x'yz**

Result would happen if con1 is **true** AND con2 is **false** AND con3 is **false**, **xy'z'**

Result would happen if con1 is **true** AND con2 is **false** AND con3 is **true**, **xy'z**

Result would be true if any of these four conditions is true, implies OR logic, This relationship is expressed by:

$$\mathbf{F} = \mathbf{x'y'z} + \mathbf{x'yz} + \mathbf{xy'z'} + \mathbf{xy'z}$$

Minterm Expression From Truth Table

- A Boolean Equation can be derived from a truth table and expressed as a sum-of-minterms (**standard-sum-of-products**)
- The minterms chosen in the sum-of-minterms expression are those which produce a logic 1 for the corresponding output
- Example:

$$F = x'y'z + x'yz + xy'z' + xy'z$$

= $m_1 + m_3 + m_4 + m_5$
= Σ m(1, 3, 4, 5)

x con1	y con2	z con3	F result
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Exercise

• Find minterm logic equation from these truth table

X	y	Z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

-	W	X	Y	Z	F	_	
	0	0	0	0	1		W'X'Y'Z'
	0	0	0	1	0	m1	W'X'Y'Z
	0	0	1	0	0	m2	W'X'YZ'
	0	0	1	1	1	m3	W'X'YZ
	0	1	0	0	0	m4	W'XY'Z'
_	0	1	0	1	0	_ m5	W'XY'Z
_	0	1	1	0	0	_ m6	W'XYZ'
_	0	1	1	1	1	_ m7	W'XYZ
_	1	0	0	0	1	_ m8	WX'Y'Z'
	1	0	0	1	0	_ m9	WX'Y'Z
_	1	0	1	0	0	m10	WX'YZ'
_	1	0	1	1	0	m11	WX'YZ
	1	1	0	0	0	m12	WXY'Z'
_	1	1	0	1	0	m13	WXY'Z
_	1	1	1	0	0	m14	WXYZ'
	1	1	1	1	1	m15	WXYZ

Minterms and Maxterms

• The complement of Minterm is the corresponding Maxterm, vice versa

- $m_i' = M_i$ - e.g.: $m_0 = x'y'z'$ $m_0' = (x'y'z')' = x + y + z = M_0$ (DeMorgan's)
- Conversion between Standard Forms
 - the term numbers missing from one form will be the term numbers used in the other form
 - e.g.: if all the terms are indexed by $0 \sim 7$, then

$$F = \Sigma m(1, 2, 4, 7) = \Pi M(0, 3, 5, 6)$$

Minterms and Maxterms

• Example: In the given truth table, F1 is output of a 3-input device

Truth Table

X	y	Z	F1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Sum-of-minterms

$$F1 = x'y'z + xy'z' + xy'z$$
$$xyz' + xyz$$

$$F1 = m_1 + m_4 + m_5 + m_6 + m_7$$

$$F1 = \Sigma (1, 4, 5, 6, 7)$$

Product-of-maxterms

$$F1 = (x+y+z) \bullet (x+y'+z) \bullet (x+y'+z')$$

$$F1 = M_0 \cdot M_2 \cdot M_3$$

$$F1 = \Pi (0, 2, 3)$$

Incompletely Specified Functions

- In a circuit, some input conditions may never happen, then the output is not completely specified
- The corresponding output is designated as "x", called don't care
- A don't care output could be either 0 or 1
- $F = \Sigma m(1, 3, 4)$ with d(2, 5)

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	X
0	1	1	1
1	0	0	1
1	0	1	X
1	1	0	0
1	1	1	0

Simplified Forms

- The minterm and maxterm forms can be further simplified
 - Boolean function may contain less number of terms
 - Each term may have less literals
 - e.g.:

$$F1 = x + y'z$$

$$F1 = (x + y')(x + z)$$

Why to simplify? & How to?

- Why?
- How to? Boolean theorems. And more....