武汉大学 2015-2016 学年第二学期期末考试

线性代数 C(A卷)

1、(10 分)设
$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 3 & -2 \\ -3 & -1 & 1 \end{pmatrix}$$
,问 A 是否可逆?如可逆求 A^{-1} ,如不可逆,求 A 的伴

随矩阵 A^* .

$$A^* = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 4 & 4 \\ 7 & 7 & 7 \end{pmatrix}$$

2、(10 分)已知矩阵
$$\begin{pmatrix} 1 & 2 & 3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$
与 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ 可交换. 试求 $\begin{vmatrix} 1 & 2 & 3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ 的值.

解 由
$$\begin{pmatrix} 1 & 2 & 3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$
与 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ 可交换. 得 $a_2 = b_3 = 1, b_1 = a_3 = 2, a_1 = b_2 = 3$.

所求行列式为
$$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix} = 6 \begin{vmatrix} 1 & 1 & 1 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix} = 6 \begin{vmatrix} 1 & 1 & 1 \\ 3 & 1 & 2 \\ 0 & 3 & 0 \end{vmatrix} = 18$$

3、(10 分)设三阶矩阵 A满足 $Alpha_i=ilpha_i$ $\left(i=1,2,3
ight)$ 其中列向量

$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}, \ \alpha_3 = \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix}$$
求矩阵 A .

解 因 $A\alpha_i = i\alpha_i$, $\alpha_i \neq 0$ (i=1,2,3), 故 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$ 是 A 的特征值且特征值互

不相同,
$$\alpha_1,\alpha_2,\alpha_3$$
 线性无关, 令 $P = \begin{bmatrix} \alpha_1,\alpha_2,\alpha_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -2 \\ 2 & -2 & -1 \\ 2 & 1 & 2 \end{bmatrix}$,则 P 可逆,

$$P^{-1} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ -2 & -1 & 2 \end{bmatrix} \text{ th}, \quad P^{-1}AP = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}$$

$$A = P = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix} \cdot P^{-1} = \begin{bmatrix} \frac{7}{3} & 0 & \frac{-2}{3} \\ 0 & \frac{5}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{-2}{3} & 2 \end{bmatrix}$$

- 4、(12 分)设 3 阶方阵 A 的特征值分别为1,-1,0,方阵 $B = 2A^2 3A 4E$
- 1) 试求矩阵 B 的特征值及与 B 相似的对角矩阵; 2) 验证 B 可逆, 并求 B^{-1} 的特征值及 行列式 $\left|B^{-1}\right|$ 之值。

解 1)
$$B$$
 的特征值分别为 $u_1 = -5$; $u_2 = 1$; $u_3 = -4$ 与 B 相似的对角矩阵为 $\Lambda = \begin{pmatrix} -5 \\ 1 \\ -4 \end{pmatrix}$

2) $|B| = (-5) \times 1 \times (-4) = 20 \neq 0$ 故 B 可逆

$$B^{-1}$$
的 3 个特征值分别为 $-\frac{1}{5}$,1, $-\frac{1}{4}$ $|B^{-1}| = -\frac{1}{5} \times 1 \times (-\frac{1}{4}) = \frac{1}{20}$

5、(10 分)设 $\alpha_1 = (2,1,3,1)$, $\alpha_2 = (1,2,0,1)$, $\alpha_3 = (-1,1-3,0)$, $\alpha_4 = (1,1,1,1)$,求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的一个最大无关组,并用最大无关组线性表示该组中其它向量。

解 设
$$A = [\alpha'_1 \ \alpha'_2 \ \alpha'_3 \ \alpha'_4]$$
,对 A 作初等行变换: $A \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

故 $\alpha_1,\alpha_2,\alpha_4$ 是该向量组的一个最大无关组,且有 $\alpha_3=-\alpha_1+\alpha_2+0\alpha_4$

6、(10 分)设二次型 $f = x_1^2 + 2x_2^2 + (1-k)x_3^2 + 2kx_1x_2 + 2x_1x_3$ 其中 k 为参数,确定 k 的取值范围使 f 为正定的。

可得-1 < k < 0

7、(10 分) 设有向量组 $I: \alpha_1 = (1,2,1), \alpha_2 = (2,3,3), \alpha_3 = (3,7,1),$ 及量组 $II: \beta_1 = (3,1,4), \beta_2 = (5,2,1), \beta_3 = (1,1,-6)$ 。证明:组 I 与组 II 等价.

证明 因为
$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ 3 & 7 & 1 \end{vmatrix}$$
 = $1 \neq 0$ 。故 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,它可作为 R^3 的一个基。即 (II) 可由

$$(I)$$
 线性表出。又因为 $\begin{vmatrix} 3 & 4 & 1 \\ 5 & 2 & 1 \\ 3 & 7 & 1 \end{vmatrix} = 4 \neq 0$ 。故 $\beta_1, \beta_2, \beta_3$ 线性无关,它可作 R^3 的一个基,可

知(I)可由(II)线性表出。故(I)与(II)可互相线性表出,即它们等价。

8、(12 分)设有方程组
$$\begin{cases} x_1 + 3x_2 + x_3 = 0 \\ 3x_1 + 2x_2 + 3x_3 = -1 , \ \ \text{问} \ \textit{m,k} \ \text{为何值时, 方程组有唯一解?无解?} \\ -x_1 + 4x_2 + \textit{mx}_3 = \textit{k} \end{cases}$$

有无穷多解?在有无穷多解时,求出一般解.

$$\widetilde{A} = \begin{bmatrix}
1 & 3 & 1 & 0 \\
3 & 2 & 3 & -1 \\
-1 & 4 & m & k
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 3 & 1 & 0 \\
0 & 1 & 0 & \frac{1}{7} \\
0 & 0 & m+1 & k-1
\end{bmatrix}$$

- ①当 $m \neq -1$ 时,方程组有唯一解,
- ②当 $m = -1, k \neq 1$ 时,方程组无解.
- ③当m = -1且k = 1时,方程组有无穷多解.

此时
$$\overline{A} \rightarrow \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & 0 & \frac{1}{7} \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & -\frac{3}{7} \\ 0 & 1 & 0 & \frac{1}{7} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 $\therefore X = k \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -\frac{3}{7} \\ \frac{1}{7} \\ 0 \end{bmatrix}$

9、(10 分)用正交变换化二次型 $f=2x_1^2+x_2^2+x_3^2+2x_1x_3+2x_1x_2$ 为标准形,并写出所用正交变换及 f 的标准形。

解
$$\lambda_1 = 0$$
, $\lambda_2 = 1$, $\lambda_3 = 3$

$$e_1 = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \ e_2 = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T, \ e_3 = \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^T$$

经正交变换
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \quad f \text{ 化为标准形: } y_2^2 + 3y_3^2$$

10、(6 分)设 $\alpha_1,\cdots,\alpha_{n-1}$ 是 R^n 中n-1线性无关的向量, β_i 与 $\alpha_1,\cdots,\alpha_{n-1}$ 均正交(i=1,2),证明: β_1,β_2 线性相关。

证明 因为 $\alpha_1,\cdots,\alpha_{n-1}$, β_1,β_2 是n+1个n维向量,故必线性相关,存在 $k_1,\cdots,k_{n-1},\ell_1,\ell_2$ 使

得
$$k_1\alpha_1 + \dots + k_{n-1}\alpha_{n-1} + \ell_1\beta_1 + \ell_2\beta_2 = 0$$
 ······(1)

因 $\alpha_1,\cdots,\alpha_{n-1}$ 线性无关,故 ℓ_1,ℓ_2 不全为0 用 $\ell_1oldsymbol{eta}_1+\ell_2oldsymbol{eta}_2$ 与 $\left(1\right)$ 式两边作内积得