Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 32: July 14th, 2017

Lecturer: Alan Arroyo Guevara

Notes By: Harsh Mistry

Lemma 32.1 If a matching M has an augmenting path, then M is not maximum

Note: Given M and an augmenting path P, the notation for swapping edges of P is

$$M' = M \triangle E(P)$$

32.1 Covers

Definition 32.2 A cover is a set C of vertices such that every edge is incident with atleast one vertex in C.

Definition 32.3 A cover C is **minimum** if for every other cover C', $|C| \leq |C'|$

Lemma 32.4 If M is a matching and C is a cover of G, then

$$\mid M \mid \leq \mid C \mid$$

Proof:

- Since C is a cover, every edge $m \in M$ has at least one end $Vm \in C$.
- Since M is a matching VmneqVm' for $m, m' \in M(m \neq m')$

Combining these two observations we find that

$$\mid M \mid \leq \mid C \mid$$

32.2 Konig's Theorem

Theorem 32.5 In a bipartite graph, if M is a max matching and C is a min cover then

$$\mid M \mid = \mid C \mid$$

We will prove this theorem, using an algorithm that terminates with a max matching M and a min cover C.