Applied Deep Learning

Gating Mechanism

March 7th, 2022 http://adl.miulab.tw

National Taiwan University Review

Vanishing Gradient Problem

Recurrent Neural Network Definition

$$s_t = \sigma(Ws_{t-1} + Ux_t)$$
 $\sigma(\cdot)$: tanh, ReLU $o_t = \operatorname{softmax}(Vs_t)$

Vanishing Gradient: Gating Mechanism

RNN: keeps temporal sequence information

Issue: in theory, RNNs can handle such "long-term dependencies," but they cannot in practice
→ use gates to directly encode the long-distance information

Long Short-Term Memory

Addressing Vanishing Gradient Problem

LSTMs are explicitly designed to avoid the long-term dependency problem

runs straight down the chain with minor linear interactions

→ easy for information to flow along it unchanged

Gates are a way to optionally let information through

→ composed of a sigmoid and a pointwise multiplication operation

forget gate (a sigmoid layer): decides what information we're going to throw away from the cell state

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- 1: "completely keep this"
- 0: "completely get rid of this"

Example: The cell state might include the gender of the present subject, so that the correct pronouns can be used. When seeing a new subject, we want to forget the old subject's gender.

input gate (a sigmoid layer): decides what new information we're going to store in the cell state

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Vanilla RNN

Example: We want to add the new subject's gender to the cell state for replacing the old one.

cell state update: forgets the things we decided to forget earlier and add the new candidate values, scaled by how much we decided to update each state value

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- f_t : decides which to forget
- *i_t*: decide which to update

where we actually drop the information about the old subject's gender and add the new information

output gate (a sigmoid layer): decides what new information we're going to output

$$o_t = \sigma\left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

$$h_t = o_t * \tanh(C_t)$$

Example: It might output whether the subject is singular or plural, so that we know what form a verb should be conjugated into if that's what follows next.

13

Variants on LSTM

Addressing Vanishing Gradient Problem

LSTM with Peephole Connections

Idea: allow gate layers to look at the cell state

$$f_t = \sigma\left(W_f \cdot \begin{bmatrix} \mathbf{C_{t-1}}, h_{t-1}, x_t \end{bmatrix} + b_f\right)$$

$$i_t = \sigma\left(W_i \cdot \begin{bmatrix} \mathbf{C_{t-1}}, h_{t-1}, x_t \end{bmatrix} + b_i\right)$$

$$o_t = \sigma\left(W_o \cdot \begin{bmatrix} \mathbf{C_t}, h_{t-1}, x_t \end{bmatrix} + b_o\right)$$

LSTM with Coupled Forget/Input Gates

Idea: instead of separately deciding what to forget and what we should add new information to, we make those decisions together

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

We only forget when we're going to input something in its place, and vice versa.

16

Gated Recurrent Unit

Addressing Vanishing Gradient Problem

Gated Recurrent Unit (GRU)

GRU is simpler and has less parameters than LSTM

Concluding Remarks

- Gating mechanism for vanishing gradient problem
- Gated RNN
 - Long Short-Term Memory (LSTM)
 - Peephole Connections
 - Coupled Forget/Input Gates
 - Gated Recurrent Unit (GRU)

