Laboratorio di Analisi Numerica Interpolazione polinomiale

Ángeles Martínez Calomardo amartinez@units.it

Laurea Triennale in Intelligenza Artificiale e Data Analytics A.A. 2024–2025

Interpolazione polinomiale

Sia \mathbb{P}_n lo sp. vett. dei polinomi di grado n in \mathbb{R} . Date n+1 coppie $(x_0,y_0),\ldots$, (x_n,y_n) con $x_j\neq x_k$ se $j\neq k$, si calcoli $p_n\in\mathbb{P}_n$ t.c.

$$p_n(x_k) = y_k, \quad k = 0, \dots, n$$

Tali polinomi p_n si dicono **interpolare** $\{(x_k, y_k)\}_{k=0,...,n}$ oppure interpolare i valori y_k nei nodi x_k .

Alcuni fatti fondamentali

Alcune questioni risultano di importanza fondamentale:

- Esiste tale polinomio ed è unico? Sì.
- È possibile calcolarlo? Sì, $p_n(x) = \sum_{k=0}^n y_k L_k(x)$, dove L_k è il k-esimo polinomio di Lagrange relativo ai punti $\{x_k\}_{k=0,\ldots,n}$.
- Per quanto riguarda l'errore:

Teorema

Sia $f \in C^{(n+1)}([a,b])$ e sia p_n il polinomio che interpola le coppie $\{(x_k,y_k)\}_{k=0,\ldots,n}$ con $x_k \in [a,b]$, $k=0,1,\ldots,n$, $x_k \neq x_s$ se $k \neq s$. Allora per ogni $x \in [a,b]$

$$f(x) - p_n(x) = f^{(n+1)}(\xi) \frac{\prod_{i=0}^n (x - x_i)}{(n+1)!}$$
 (1)

dove $\xi \in \mathcal{I}$ con \mathcal{I} il più piccolo intervallo contenente i nodi x_0, \ldots, x_n e x.

Interpolazione polinomiale

Interpolazione in Matlab/Octave

Supponiamo di dover interpolare le coppie $\{(x_k, y_k)\}_{k=0,...,n}$ e supponiamo sia $\mathbf{x} = [x_0, \ldots, x_n]$, $\mathbf{y} = [y_0, \ldots, y_n]$. I coefficienti del polinomio interpolatore sono ottenibili dal comando polyfit.

Esempio:

```
>> x=[-2 1 3];

>> y=[-2 11 17];

>> a=polyfit(x,y,2)

a =

-0.2667 4.0667 7.2000

>>
```

In effetti, calcolando manualmente il polinomio interpolatore si ha, semplificando quanto ottenuto coi polinomi di Lagrange che è

$$p_2(x) = (-4/15) \cdot x^2 + (61/15) \cdot x + (36/5) \approx -0.2\overline{6}x^2 + 4.0\overline{6}x + 7.2.$$

Quindi, se $a = (a_k)_{k=1,...,3}$, abbiamo $p_2(x) = a_1 x^2 + a_2 x + a_3$. In generale, se p_n è il polinomio interpolatore di grado n, e $a = (a_k)$ è il vettore ottenuto utilizzando polyfit, allora

$$p_n(x) = a_1 x^n + a_2 x^{n-1} + \dots + a_{n+1}.$$

Interpolazione in Matlab/Octave

Per valutare in un vettore di ascisse $\mathbf{X} = [X_k]_{k=1,...,m}$ un polinomio

$$p_n(x) = a_1 x^n + a_2 x^{n-1} + \dots + a_{n+1}$$

i cui coefficienti sono memorizzati nel vettore $\mathbf{P} = [a_k]_{k=1,...,n+1}$ usiamo il comando polyval.

Dall'help:

```
>> help polyval To get started, select "MATLAB Help" from the Help menu. POLYVAL Evaluate polynomial. Y = \text{POLYVAL}(P,X), \text{ when } P \text{ is a vector of length } N+1 \text{ whose elements are the coefficients of a polynomial, is the value of the polynomial evaluated at } X. .... <math display="block">Y=P(1)*X^N+P(2)*X^(N-1)+...+P(N)*X+P(N+1) >>
```

Interpolazione in Matlab/Octave

Scriviamo una function MATLAB che:

- Date le n coppie di punti da interpolare, le cui ascisse e ordinate sono, rispettivamente, nei vettori $\mathbf{x} = [x_k]_{k=1,...,n}$ e $\mathbf{y} = [y_k]_{k=1,...,n}$,
- calcoli i coefficienti del polinomio di interpolazione di grado n-1 $p_{n-1}(x_k)=y_k$, per $k=1,\ldots,n$ (vettore coeff)
- e lo valuti sui punti $\mathbf{s} = [s_k]_{k=1,...,m}$, cioè, restituisca come parametro di output il vettore $\mathbf{t} = [t_k]_{k=1,...,m}$ per cui $t_k = p_{n-1}(s_k)$, per ogni k.

```
\begin{array}{ll} & function & t=interpol\left(x,y,s\right) \\ & grado=length\left(x\right)-1; \\ & coeff=polyfit\left(x,y,grado\right); \\ & t=polyval\left(coeff,s\right); \end{array}
```

Alcune scelte dei nodi

Consideriamo l'intervallo chiuso e limitato [a, b]. Vediamo alcuni sets di nodi.

- Equispaziati: $x_k = a + k \frac{(b-a)}{n}, \ k = 0, \ldots, n.$
- Chebyshev-Gauss (scalati): fissato n, i punti sono

$$x_k = \frac{(a+b)}{2} + \frac{(b-a)}{2} t_k, \ k = 0, \dots, n$$

con

$$t_k = \cos\left(\frac{2k+1}{2n+2}\pi\right), k = 0, \dots, n;$$

Chebyshev-Gauss-Lobatto (scalati): fissato n, i punti sono

$$x_k = \frac{(a+b)}{2} + \frac{(b-a)}{2} t_k, \ k = 0, \dots, n$$

con

$$t_k = -\cos\left(\frac{k\pi}{n}\right), k = 0, \dots, n.$$

Interpolazione polinomiale

Interpretazione geometrica Chebyshev-Gauss-Lobatto

I nodi di Chebyshev-Gauss-Lobatto si possono interpretare geometricamente.

- Si considerano n+1 punti equispaziati sulla semicirconferenza di raggio 1, $\{(\cos(\theta_k),\sin(\theta_k))\}_{k=0,...,n}$ con $\theta_k=(k\cdot\pi)/n$
- Si proiettano $\{(\cos(\theta_k), \sin(\theta_k))\}_{k=0,...,n}$ sull'asse delle ascisse. Le coordinate x di tali punti corrispondono ai punti di Chebyshev-Gauss-Lobatto.

Figura: Interpretazione geometrica dei punti di Chebyshev-Gauss-Lobatto.

Esercizio

Si scriva la funzione chebgauss.m che calcola il vettore dei nodi di Chebyshev-Gauss in un intervallo [a, b].

```
function xc = chebgauss(a,b,m) for k = 1:m xc(k) = (a+b)/2 - ((b-a)/2)*cos((2*k-1)/(2*m)*pi) end
```

Si rappresentino sull'asse reale m=10 (oppure m=20) nodi di Chebyshev nell'intervallo [-1,1]. Cosa si osserva? Sono più addensati agli estremi dell'intervallo di interpolazione?

Esercizio

Si ripeta l'esercizio per i nodi di Chebyshev-Gauss-Lobatto. Qual è la principale differenza tra i due insiemi di nodi? Si scriva la function che genera m nodi di Chebyshev-Gauss-Lobatto nell'intervallo [a,b]:

```
 \begin{array}{ll} \mbox{function} & \mbox{xc=chebgausslob}(a,b,m) \\ \mbox{for} & \mbox{k=1:m} \\ & \mbox{xc}(k) = \!\! (a + b)/2 + \!\! ((b - a)/2) * \!\! \cos(pi * (k - 1)/(m - 1)); \\ \mbox{end} \\ \end{array}
```

Hint: Lo script confronto.m calcola e disegna i nodi di Chebyshev e quelli di Chebyshev-Lobatto. Si esegua con n=15 e n=55.

Convergenza ed esempio di Runge

L'interpolante polinomiale in un set di nodi prefissati non converge sempre, nemmeno puntualmente, alla funzione da approssimare.

Infatti, per la funzione di Runge

$$f(x) = \frac{1}{1+x^2}, \ x \in [-5, 5]$$
 (2)

si ha che il polinomio interpolatore p_n in nodi equispaziati non converge a f.

Fortunatamente ciò non succede per i nodi di Chebyshev(-Lobatto).

Figura: Grafico della funzione di Runge $1/(1+x^2)$ nell'intervallo [-5,5] e delle sue interpolanti di grado 12 nei nodi equispaziati e di Chebyshev-Gauss-Lobatto.

Figura: Grafico errore della funzione di Runge $1/(1+x^2)$ nell'intervallo [-5,5] con le sue interpolanti di grado 12 nei nodi equispaziati e di Chebyshev-Gauss-Lobatto.

Se $p_n \in \mathbb{P}_n$ è polinomio intp. nei nodi eqsp. o di G.-C.-L., vediamo al variare del grado quali sono gli errori $\|1/(1+x^2)-p_n(x)\|_{\infty}$:

Deg	Err. Eqs.	Err. GCL
2	6.46e - 01	6.46e - 01
3	7.07e - 01	8.29e - 01
4	4.38e - 01	4.60e - 01
5	4.33e - 01	6.39e - 01
6	6.09e - 01	3.11e - 01
7	2.47e - 01	4.60e - 01
8	1.04e + 00	2.04e - 01
9	2.99e - 01	3.19e - 01
10	1.92e + 00	1.32e - 01
11	5.57e - 01	2.18e - 01
12	3.66e + 00	8.41e - 02
13	1.07e + 00	1.47e - 01
14	7.15e + 00	5.35e - 02

Importante: l'esempio di Runge mostra che esiste una funzione $C^{\infty}([-5,5])$ tale che al crescere del numero di nodi equispaziati n non è garantita nemmeno la convergenza puntuale!

D'altra parte sussiste il seguente teorema dovuto a Bernstein:

Teorema

Se $f \in C^1([a,b])$ con [a,b] intervallo limitato e chiuso della retta reale, il polinomio p_n di grado n di interpolazione della funzione f nei nodi di Chebyshev converge uniformemente a f su [a,b], per $n \to \infty$.

Se inoltre $f \in C^2([a,b])$ si ha la seguente stima dell'errore

$$||f - p_n||_{\infty} = O(n^{-1/2}).$$

Esercizio proposto

Esercizio

Si confronti l'errore commesso nell'interpolare la funzione di Runge $f(x)=\frac{1}{1+x^2}$ in [-5,5] su nodi equispaziati e su nodi di Chebyshev-Gauss-Lobatto (o Chebyshev-Gauss), con polinomi di grado k, con $k=1,3,5,\ldots,31$. Si risolva l'esercizio creando uno script Matlab che produca una tabella **su file** contenente gli errori (in norma) ottenuti per ogni polinomio considerato.

Suggerimento: si modifichi lo script esperimento.m fornito dal docente.

Alla luce dei risultati si dica se **c'è** convergenza uniforme di p_n a $1/(1+x^2)$, al crescere di n, qualora si utilizzino nodi **equispaziati** e qualora si utilizzino nodi di **Gauss-Chebyshev-Lobatto**.

Interpolazione polinomiale