

### پردازش تکاملی

برنامه ریزی تکاملی



مجتمع دانشگاهی فن آوری اطلاعات و امنیت

زمستان ۱۳۹۲







### مروری کوتاه بر برنامه ریزی تکاملی

- توسعه اولیه در ایالات متحده آمریکا و در سال ۱۹۶۰
  - اولین افراد توسعه دهنده این حوزه D. Fogel
  - نوعا به منظور کاربردهای ذیل استفاده میگردید:
- EP − اولیه : کاربردهای یادگیری ماشین به وسیله ماشین های متناهی
  - EP − معاصر: بهینه سازی عددی
    - ویژگی ها:
- چارچوب بسیار باز: هر گونه تغییر و تحول و عملیات های کامپیوتری در آن امکان پذیر میباشد.
  - پیوند خورده با ES میباشد.( در EP معاصر)
  - نهایتا: به سختی میتوان گفت چه چیزی به عنوان استانداره EP می باشد.
    - خصوصیات
    - عدم ترکیب
    - خود انطباقی درپارامترهای استاندارد(EP معاصر)



### مرز آموزش اکترویو

### متد اصلي

- فرم اصلى (L. J. Fogel)
- جهش های تصادفی واحد
  - الفباي گسسته
  - $(\mu + \mu)$  انتخاب -
- برنامه ریزی تکاملی توسعه یافته (D. B. Fogel)
  - بهینه سازی پارامترهای پیوسته
    - شباهت هایی با ES
    - دگرگونی توزیع شده معمول
  - خود انطباقی در پارامترهای دگرگونی



### مرز آموزش اکترویو

### **انواع** EP

- EP استاندارد ( مبتنی بر ارائه)
  - EP استاندارد متوالی
- EP مشابه GA در حالت دائمی ( یایدار)
  - ( state-of-the-art) EP متا •
- یکپارچه نمودن واریانس ها به منظور خود انطباقی
  - متوالى( پيوسته)meta-EP
    - Rmeta-EP •
- یکپارچه نمودن کو واریانس به منظور خود انطباقی



### مرز آموزش اکترو

### خلاصه ای فنی از EP

| معرفی             | بردارهای مقدار دهی شده<br>واقعی                  |  |  |
|-------------------|--------------------------------------------------|--|--|
| ترکیب مجدد        | None                                             |  |  |
| دگرگونی           | اختلالات گوسی                                    |  |  |
| انتخاب والدين     | قطعی                                             |  |  |
| انتخاب بازماندگان | (μ+μ)                                            |  |  |
| اختصاصی           | ( در متا EP) خود انطباقی در<br>اندازه گامهای جهش |  |  |





### دورنمایی از EP

- EP در راستای هوشمند سازی روی کار آمد.
- هوشمندی در قالب رفتارهای قابل تطبیق دیده میشد.
- پیش بینی محیط به عنوان یک پیشنیاز در راستای رفتار قابل تطبیق در نظر گرفته میشد.
  - بدین ترتیب: توانایی انجام پیشگویی یک کلید به منظور هوشمندی قلمداد میشود.



### پیشگویی به کمک ماشین های حالت متناهی

- · (FSM)ماشین حالت متناهی ۱
  - States S
  - Inputs I
  - Outputs O
  - تابع انتقال  $\delta: S \times I \to S \times O$ 
    - انتقال رشته ورودی به رشته خروجی
  - میتواند به منظور پیشگویی مورد استفاده قرار گیرد. به صورتی که نماد ورودی بعدی در یک توالی را پیشگویی کند.





### مرز آموزش اکنته

### مثال FSM

• یک FSM را در نظر بگیرد:

$$S = \{A, B, C\} -$$

$$I = \{0, 1\}$$

$$O = \{a, b, c\} -$$

 $\delta$  given by a diagram -





### FSM **به عنوان پیشگو**



- FSM زیر را در نظر بگیرید:
- وظیفه: پیشگویی ورودی بعدی
- Quality: % of in<sub>(i+1)</sub> = out<sub>i</sub>
  - Given initial state C •
  - Input sequence 011101 •
  - Leads to output 110111
    - Quality: 3 out of 5 •



### مرز آموزش اکترویو

### مث**ال** مقدماتی: FSM به منظور پیشگویی prime

P(n) = 1 if n is prime, 0 otherwise •

$$I = N = \{1,2,3,..., n, ...\}$$
 •

$$O = \{0,1\}$$
 •

• تابع سازگاری:





### مثال مقدماتی: به کارگیری FSM به منظور پیشگویی prime

- انتخاب والدين: هر FSM يكبار جهش يافته است.
- Parent selection: each FSM is mutated once
  - عملگرهای جهش: (یک انتخاب تصادفی)
    - تغییر یک نماد خروجی
  - (i.e. redirect edge) تغییر یک مرحله انتقال
    - اضافه نمودن یک مرحله
      - پاک کردن یک مرحله
        - تغيير مرحله آغازين
    - انتخاب باقی مانده: (µ+µ)
- ' نتایج: در حال مناسب پس از ۲۰۲ ورودی بهترین FSM یک حالت دارد و دو خروجی آن ۰ می باشد. همیشه "not prime" را پیشگویی نموده است.





$$x_i' = x_i + \sqrt{\beta_i \cdot \Phi(\vec{x}) + \gamma_i} \cdot N_i(0,1)$$

' حالت عمومی (std. EP)

رمترهای خارجی  $eta_i, \gamma_i$  میبایست به منظور وظیفه ای خاص تطبیق داده شوند.  $oldsymbol{-}$ 

$$x_i' = x_i + \sqrt{\Phi(\vec{x})} \cdot N_i(0,1)$$

– معمولا

– مسئله

- چنانچه حداقل های عمومی سازگار مقادیر صفر نباشد دستیابی به اهداف مورد نظر امکان پذیر نخواهد بود.
  - چنانچه مقادیر سازگاری بسیار بزرگ باشد جستجو معمولا به صورت گامهای تصادفی می باشد.
  - چنانچه کاربر اطلاع نسبی از محل مینیمم سراسری نداشته باشد میزان سازی پارامترها امکان پذیر نخواهد بود.



### EP مدرن

• ارائه از پیش تعریف شده ای در حالت عمومی وجود ندارد.

• بدین ترتیب: جهش از پیش تعریف شده ای ندارد. (must match representation)

• اغلب خود انطباقی را در پارامترهای جهت به کار میگیرد.

• در ادامه آن یک متغیر EP توسط ما ارائه خواهد شد( P

(canonical EP







• In meta-EP 
$$x'_i = x_i + \sqrt{v_i} \cdot N_i(0,1)$$

$$v_i' = v_i + \sqrt{\zeta v_i} \cdot N_i(0,1)$$

for guaranteeing positive variances

$$v_i' \le 0 \Longrightarrow v_i' := \varepsilon_\sigma > 0$$

- difference with ES
  - delayed effect of strategy parameter changes
  - ability of zero selection pressure and no guarantee positive variance values



### مرز آموزش اکت

### ارائه

- برای بهینه سازی پارامترهای پیوسته
- کروموزوم ها از دو بخش تشکیل شده اند:
  - $X_1,...,X_n$  متغیرهای شیء: -
  - $\sigma_1,...,\sigma_n$ :اندازه گامهای جهش –
  - $\langle x_1,...,x_n,\sigma_1,...,\sigma_n \rangle$ : اندازه کامل



### مرز آموزش اکترو

### جهش

- $\langle x_1,...,x_n,\sigma_1,...,\sigma_n \rangle$  : کروموزوم ها
  - $\sigma_i' = \sigma_i \cdot (1 + \alpha \cdot N(0,1)) \cdot$ 
    - $x'_{i} = x_{i} + \sigma'_{i} \cdot N_{i}(0,1) \cdot$ 
      - $\alpha \approx 0.2$  •
  - $\sigma' < \varepsilon_0 \Rightarrow \sigma' = \varepsilon_0$  محدوده رول •
- دیگر گزینه های پیشنهاد شده و مورد آزمایش قرار گرفته:
  - رویه Lognormalهمانند ES
  - استفاده از واریانس به جای انحراف از معیار
    - σ-last جهش –
  - دیگر توزیع ها ( Cauchy به جای گوسی)



### تركيب مجدد

- None •
- منطق: یک نقطه در فضای جستجو بر انواع مختلفی استوار میباشد، نه به صورت اختصاصی.
- not for an individual and there can be no crossover between species
  - بحث و مناظره میان mutation"و "crossover
  - اینگونه به نظر میرسد که هدف برنامه ریزی شده امروزه شایع تر شده است.







- عدم ترکیب
- جهش گوسی روش مناسب تری میباشد Fogel and) Atmar)
  - نه در همه موقعیت ها
  - زیست شناسی تکاملی
  - نقش متقاطع اغلب بیشتر مورد تایید بوده است.
  - mutation-enhancing evolutionary optimization
    - crossover-segregating defects -
- the main point of view from researchers in the field of Genetic Algorithms





### مرنة موزش اكترويو

### انتخاب والدين

- هر کدام به صورت جداگانه یک فرزند به وسیله جهش ایجاد میکند.
  - بدین ترتیب:
    - قطعی
  - به وسیله fitness جهت دار نشده است.



### مرز آموزش اکتروین

### انتخاب بازماندگان

- P(t): μ parents, P'(t): μ offspring •
- جفت ها در قالب round-robin در رقابت میباشند.
- هر راه حل X از  $P'(t) \cup P'(t) \cup P'(t)$  در مقابل  $P'(t) \cup P'(t)$  انتخابی تصادفی دیگر مورد ارزیابی قرار میگیرد.
- حر هر مقایسه یک "win" تخصیص خواهد یافت چنانچه X از رقیب آن
   بهتر باشد.
  - راه حل های  $\mu$  با بزرگترین تعداد winها ضمانت کننده والدین در نسل بعدی میباشند.
  - q پارامتر q اجازه میزان سازی فشار انتخاب را میدهد به عنوان نمونه q=10



### انتخاب

### • مسابقه انتخاب Q

$$s_{\{q\}}: I^{2\mu} \to I^{\mu},$$
  
 $s_{\{q\}}(P(t) \cup P'(t)) = P(t+1), q \in N$ 

$$w_i = \sum_{j=1}^{q} \begin{cases} 1, & \text{if } \Phi(\vec{a}_i) \leq \Phi(\vec{a}_{\chi_j}) \\ 0, & \text{otherwise} \end{cases}$$

$$\chi_i \in \{1, ..., 2\mu\}$$
 a uniform randominteger



# مرز آموزش اکترون

### **پارامترهای استاندارد**

• پارامترهای استاندارد

- ارائه

std. EP •

 $EP(\beta_i, \gamma_i, q, \mu)$ 

meta-EP •

 $mEP(\zeta, c, q, \mu)$ 

default -

*mEP*(6,25,10,200)



### کز آموزش

### تنظيمات پيش فرض پارامترهاي خارجي

| Parameter                                    |   | cours in | Default        |
|----------------------------------------------|---|----------|----------------|
|                                              |   | meta-EP  |                |
| Range bounds us, vr                          | × | ×        | $u_i = -50$    |
|                                              |   |          | v; ≃ 50        |
| Upper bound c of $\sigma_i$                  |   | ×        | c = 25         |
| Proportionality constants $oldsymbol{eta}_i$ | х |          | $eta_i = 1$    |
| Offset constants y:                          | × |          | $\gamma_i = 0$ |
| Meta-parameter ζ for sclf-adaptation         |   | ×        | ζ = 6          |
| Tournament size q                            | × | ×        | q = 10         |
| Population size μ                            | × | *        | $\mu = 200$    |

Table 2.2. Default settings of exogenous parameters of standard- and meta-Evolutionary Programming.



### مرز آموزش الکا

### : مثال کاربردی Ackley(Bäck et al '93)

• تابع Ackley دراینجا با n=30

$$f(x) = -20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} x_i^2\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$

- ارائه:
- $-30 < x_i < 30$  (coincidence of 30's!)
  - 30 variances as step sizes —
- ابتدا جهش به وسیله تغییر متغیرهای شیء
- q = 10 انتخاب با  $\mu = 200$  اندازه جمعیت
  - خاتمه: پس از ۲۰۰۰۰۰ ارزیابی شایستگی
  - $1.4 \cdot 10^{-2}$  نتایج: بهترین مقدار میانگین



### تئوري

### مرنة موزش اكتروية

 $\sigma = \sqrt{f(\vec{x})}$ 

- std. EP(Fogel) تحليل
- aims at giving a proof of convergence with prob. 1 for resulting algorithm
  - <del>-</del> جهش :

$$EP(1,0,q,\mu) \ x'_i = x_i + \sqrt{\Phi(\vec{x})} \cdot N_i(0,1)$$

- تحلیل یک مورد خاص (1,0,q,1
  - identical to a (1+1)-ES having
    - تابع هدف
    - ساده سازی حوزه مدل  $\widetilde{f}_2(x_i) = \sum_{i=1}^n x_i^2 = r^2$



# مرز آموزش اکتروی

### - ترکیب با SD بهینه

$$\sqrt{\tilde{f}_2(x_i)} = r = \frac{\sigma_2^* n}{1.224}$$
  $\sigma_2^* = 1.224 \cdot r/n$ 

- زمانی که ابعاد افزایش می یابد عملکرد نسبت به الگوریتیم که قادر است . SD را باز گرداند بدتر میشود.
  - از (2.30) •

$$\varphi_2 = \frac{\sigma_2}{\sqrt{2\pi}} \exp\left(-\frac{1}{8} \left(\frac{\sigma_2 n}{r}\right)^2\right) - \frac{\sigma_2^2 n}{4r} \left(1 - \operatorname{erf}\left(\frac{\sigma_2 n}{r\sqrt{8}}\right)\right)$$

• نرخ کواریانس یک EP-(1+1)بوسیله

$$\widetilde{\varphi}_{2} = \varphi_{2}(\sigma_{2} = r)$$

$$\widetilde{\varphi}_{2} = \left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{n^{2}}{8}\right) - \frac{n}{4} \left(1 - \exp\left(\frac{n}{\sqrt{8}}\right)\right)\right) \cdot r$$



# مرز آموزش اکترویی

### نسبت نرخ كوواريانس

• نسبت نرخ کوواریانس

$$egin{aligned} \phi_2(n) \coloneqq & \dfrac{\widetilde{\varphi}_2}{\varphi_2^*} \ = & \dfrac{n}{0.2025} \bigg( \dfrac{1}{\sqrt{2\pi}} \expigg( -\dfrac{n^2}{8} igg) - \dfrac{n}{4} \bigg( 1 - \operatorname{erf} \bigg( \dfrac{n}{\sqrt{8}} \bigg) \bigg) \bigg) \\ & \mathsf{n*} = 1.48 \end{aligned}$$
 با دقت بیشتر

$$\left. \frac{d\phi_2(n)}{dn} \right|_{n^*} = 0$$



### نسبت نرخ کوواریانس



Fig. 2.7: Ratio of convergence rate for standard Evolutionary Programming  $(\phi_2)$  and optimal convergence rate  $(\phi_2^*)$  over the dimension (n) of the objective function sphere model.





• یک فاکتور مقیاس گذاری زمانی که 2<n

$$\beta_i = n^{-2}$$

– مورد دیگر

$$\sqrt{\frac{\widetilde{f}_2(\vec{x})}{n^2}} = \frac{r}{n} = \frac{\sigma_2^*}{1.224}$$

• تفاوت كمتر ميان EP<sub>e</sub>ES





### فرآيند ماركوف

• تعریف(Stochastic process, Markov process) •

$$P\{X(t_k) \le x_k \mid X(t_{k-1}) = x_{k-1}, \dots, X(t_1) = x_1\} = \{X(t_k) \le x_k \mid X(t_{k-1}) = x_{k-1}\}$$

- چنانچه تعداد مراحل  $x_i$  م<sub>تناهی</sub> است یا قابل شمارش نامتناهی است  $X_i$  یک زنجیره مارکوف نامیده میشود.

- احتمالات انتقال

$$p_{ij}(k) = P\{X_{k+1} = j \mid X_k = i\}$$



# مرز آموزش اکتروین

- زنجیره مارکوف همگن
- مستقل از K باشد  $p_{ij}(k)$  مستقل از  $\Phi_{ij}(k)$

$$\mathbf{P}\!=\!\left(p_{ij}
ight)$$
 ماتریس انتقال  $ullet$ 

- احتمالات انتقال I-step

$$p_{ij}^{(l)} = Pig\{X_{k+l} = j \mid X_k = iig\}$$
ف به وسیله معادلات چپمن کولموگروف $p_{ij}^{(m+l)} = \sum_k p_{ik}^{(m)} p_{kj}^{(l)}$ 

expressed by matrix multiplication -

$$\mathbf{P}^{(m+l)} = \left(p_{ij}^{(m+l)}\right) = \mathbf{P}^m \mathbf{P}^l$$





### جذب مرحله ۱

 $p_{ij}=1$  از زمانی که فرآیندها وارد یک مرحله جذب میشوند هرگز نمیتوانند ullet آن فضا را ترک نمایند

### Fogel's استدلال

- تنها مرحله جذب یک زنجیره مارکوف به عنوان یک واحد از تمامی مراحل است که شامل نقطه بهینه عمومی میباشد.



### كز آموزش اکترویو

### • تئورى

K وارد مرحله جذب در زمان p1(k) وارد مرحله جذب در ومان m شوند به وسیله رابطه زیر بدست می آید:

$$p_1(k) = \left(\vec{P}(0)\mathbf{P}^k\right)_1 = \vec{P}(0)\begin{pmatrix}1\\\mathbf{N}_k\mathbf{R}\end{pmatrix}$$

$$\lim_{k \to \infty} p_1(k) = \vec{P}(0) \begin{pmatrix} 1 \\ \cdot \\ \cdot \\ 1 \end{pmatrix} = 1$$
 then -





### Result based on elitist property of — selection

- guarantee •
- monotone behavior of evolution
  - existence of an absorbing state -
- discretization of the search space -
- ability to get anywhere in the search space either in one step or many

 $f: \mathbb{R}^n \to \mathbb{R}$ 

no guarantee •

when -