通信电子线路

目录

绪论

Section 1

非线性电子线路的作用

利用器件的非线性完成振荡、频率变换等功能的电路统称为非线性电子线路。非线性电子线路分为 3 类: 功率放大器、振荡器、调制解调器电磁波的传播方式:

- 1. 沿地表 1.5MHZ $\lambda > 200m$
- 2. 电离层反射 $1.5MHZ \ 30MHZ \ 10m < \lambda < 200m$ (传播距离、时间最长)
- 3. 沿直线传播波 30MHZ 以上 $\lambda < 10m$

无线通信系统由发射装置、接收装置和传输媒质组成。发射装置包括:换能器、发射机、发射天线。

图 1. 采用调幅方式的发射机组成框图

接收装置包括:接收天线、接收机、换能器

图 2. 采用调幅方式的接收机组成框图 (超外差式)

调制有调辐、调频、调相三种,调频和调相统称为调角。携带有信息的电信号称为调制信号,未调制的高频振荡信号称为载波信号。经过调制后的高频振荡信号称为已调 波信号。

解调是调制的逆过程,将已调波信号变换为携带信息的电信号。

只有信号波长与天线尺寸可以比拟的时候,天线才能有效辐射和接收电磁波,调制可以显著减小天线尺寸。调制可以电信号载到不同频率的载波信号上,接收机就可以根据频率选出信息,抑制其他信息干扰。

调制型号放大器(X放大器),由多级放成,前面几级为小价器,后面几级为功率

混频器可以提高的 $f_I = |f_L - f_c|$ 为一

Section 2

非线性器件的基本特点

直流电导:

$$g_0|_Q = \frac{I_Q}{V_Q}$$

交流电导/增量电导/微变电导:

$$g|_Q = \frac{di}{dv}$$

平均电导: 基波电流振幅与外加电压振幅的比值

$$g_{av}|_{Q,V_m} = \frac{I_{1m}}{V_m}$$

图 3. gav 定义

非线性器件不满足叠加定理

功率电子线路

Section 3

功率电子线路概述

Subsection 3.1

功率放大器

功率放大器的要求:安全、高效、不失真地输出所需信号功率 功率放大器是能量转化器,直流电源提供直流功率 P_D ,一部分转化为输出信号功率 P_o ,其余部分小号在集电极。集电极效率 η_C ,定义为:

$$\eta_C = \frac{P_o}{P_D} = \frac{P_o}{P_o + P_C}$$

功率管的应用状态:

类型	甲类	乙类	甲乙类	丙类
导通时间	一个周期	半个周期	甲类和乙类之间	小于半个周期

表 1. 各种状态下的导通时间

图 4. (a) 甲类 (b) 乙类 (c) 甲乙类 (d) 丙类

集电极耗散功率 Pc:

$$P_C = \frac{1}{2\pi} \int_0^{2\pi} i_C v_{CE} \, dt \tag{3.1}$$

减小管子在一个周期内的导通时间可增大效率, η_C 丙类 > 乙类 > 甲类,该效率的运用 状态都是波形严重失真。、

Subsection 3.2

电源变换电路

1. 整流器: 交流变直流

- 2. 直流-直流变换器
- 3. 逆变器: 直流变交流
- 4. 交流-交流变换器

Subsection 3.3

功率器件

功率器件: 散热、 P_{CM} 、二次击穿要看一下

Section 4

功率放大器的电路组成和工作特性

功率管为大信号工作,性能分析时必须用大信号模型。工程上多用图解分析法。

Example 1

以基本放大器为例,分析功率性能。

图 5. 基本放大器

假设忽略 $V_{CE(on)}$ 和 I_{CEO} ,设工作点 $V_{CEQ}=\frac{V_{CC}}{2}$, $I_{CQ}=\frac{V_{CEQ}}{R_L}=\frac{V_{CC}}{2R_L}$ 在最大幅值的情况下($v_{im}=\frac{V_{CC}}{2}$)

$$i_C = I_{CQ} + I_{cm} \sin(\omega t)$$
$$v_{CE} = V_{CEQ} - v_{cm} \sin(\omega t)$$

直流功率 P_D , 负载功率 P_o , 集电极功率 P_C , 分别为

$$P_D = \frac{1}{2\pi} \int_0^{2\pi} V_{CC} i_C dt = V_{CC} I_{CQ}$$
 (4.1)

$$P_L = \frac{1}{2\pi} \int_0^{2\pi} i_C^2 R_L d\omega t = V_{CEQ} I_{CQ} + \frac{1}{2} V_{cm} I_{cm}$$
 (4.2)

$$P_C = \frac{1}{2\pi} \int_0^{2\pi} v_{CE} i_C = V_{CEQ} I_C - \frac{1}{2} V_{cm} I_{cm}$$
 (4.3)

 P_D 只于电源电压和工作点有关, P_L 和 P_C 都由交流和直流两部分组成,且表达式相同,只是 P_L 是加交流功率, P_C 是减。 P_L 的交流项为 $P_o = \frac{P_L}{4}$,只有这一部分是希望输出的。如果不加信号,管子的负载功率和集电极功率相同,加上信号后,集电极减少的功率即为负载所得的信号功率。

P。 是负载的得到的率,P_L 是负载得到的率,有交流和直流两有交流部分(信号)是希望得到的

基本放大器的集电极最大功率

$$\eta_{Cmax}=\frac{P_o}{P_D}=\frac{1}{4}=25\%$$

如果考虑 $V_{CE(sat)}$ 和 I_{CEO} ,该效率会更低,另外,功率管的集电极饱和压降 $V_{CE(sat)}$ 会大于 0.3V

谐振功率放大器

Section 5

谐振功率放大器工作原理

Section 6

实际电路设计

Subsection 6.1

直流馈电电路

原则:保证直流电流只流过直流电源、保证交流电流不流过直流电源 直流馈电电路有两种不同的链接方式,分别称为串馈和并馈。串馈: V_{CC} 、谐振回 路、三极管再同一条回路上。并馈: V_{CC} 、谐振回路、三极管不能组成一条回路

Example 2

集电极馈电线路:

图 6. 集电极馈电线路

(a) 交流分量从电容处流走,但是仍会有少部分交流分量流经电源,加入高频扼流圈组阻止交流通过。(b)

 V_{CC} 和 V_{BB} 的共同作用是偏置, V_{CC} 多一个作用是提供功率,如果 V_{BB} 是从 V_{CC} 上引入的话就可以少用一个电源。

将 V_{BB} 删去, V_{BB} 由电路本身获得

$$\begin{cases} V_{BB} < 0 \ 丙类 \\ V_{BB} = 0 \\ V_{BB} > 0 \end{cases}$$

Example 3

基极偏置电路

图 7. 集电极馈电线路

(a): 正偏置,偏置 V_{CC} 经过两个电阻分压之后得到,图中 V_{BB} 是 R_{B2} 的分压 V_{BB} 永远大于 0 (b): 负偏压,不引入 V_{CC} ,由电路自己产生偏置。 I_B 从三极管基极进入, I_B 可分为直流分量、一次谐波分量、二次谐波分量…,电阻通直流 I_{B0} ,产生的压降作为 V_{BB} , V_{BB} (C): 零偏压,没有电阻,残生不了压降, V_{BB} = 0 (a) 是固定偏压,(b) 和 (c) 是自给偏压。负偏压的 V_{BB} 很小,因为 I_{B0} 改进:电阻并电容的回路搬到发射极,因为 I_{E} = I_{E} I_{E} + I_{E} 电流增大了一百 (I_{E}) 倍,但是不接地了, I_{E} I_{E

Subsection 6.2

滤波匹配网络

滤波匹配网络使功率 P_o 最有效的输出。在电路中学过,如果一个电压源外接一个电阻,当外接电阻与内阻相同时,电压源输出功率最大。滤波匹配网络的目的就是使网络谐振时的电阻等于负载电阻。滤波匹配网络分为并脸型和串联型。

先看并联谐振网络

1. 变压器: 通过调节抽头