PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-135455

(43) Date of publication of application: 21.05.1999

(51)Int.Cl.

H01L 21/28

(21)Application number: 10-242061

(71)Applicant : TEXAS INSTR INC <TI>

(22)Date of filing:

27.08.1998

(72)Inventor: LU JOING-PING

CHO CHIH-CHEN

(30)Priority

Priority number: 97 920303

Priority date: 28.08.1997

Priority country: US

(54) METHOD FOR MANUFACTURING THERMALLY STABLE CONTACT OBJECT HAVING DISPERSION-PREVENTING WALL AND CAPABLE OF RESISTING HIGH-TEMPERATURE PROCESS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for manufacturing a thermally stable contact object having a despersion-preventing wall for a semiconductor device. SOLUTION: In order to produce a thermally stable dispersion wall for a contact object, a titanium layer 11 is formed on a substrate 10 on which a pattern is formed. A tungsten nitride layer 12 is formed on the titanium layer 11. After annealing, an interface layer 11' and a titanium nitride layer 12' are formed between a substrate 10 and a tungsten layer 13'. These layers can produce a dispersion-preventing wall which is thermally more stable than the titanium nitride layer directly formed on the substrate 10 and can form a contact structure capable of resisting to a following high temperature process.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-135455

(43)公開日 平成11年(1999)5月21日

(51) Int.Cl.⁶

H01L 21/28

識別記号

301

 \mathbf{F} I

H01L 21/28

301R

301T

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出願番号	特願平10-242 061	(71)出顧人	590000879
			テキサス インスツルメンツ インコーポ
(22)出顧日	平成10年(1998) 8月27日		レイテッド
	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		アメリカ合衆国テキサス州ダラス、ノース
(01) 原光松子超 55日	00000		
(31)優先権主張番号	920303		セントラルエクスプレスウエイ 13500
(32)優先日	1997年8月28日	(72)発明者	ジオン - ピン ルー
(33)優先権主張国	米国(US)		アメリカ合衆国 テキサス州ダラス, フォ
			レスト レーン ナンパー1310, 9744
		(72)発明者	チー - チェン チョー
			アメリカ合衆国 テキサス州リチャードソ
			ン,ノース クリッフ 2010
		(74)代理人	弁理士 浅村 皓 (外3名)
		1	

(54) 【発明の名称】 拡散障壁体を備えた高温度工程に耐えることができる熱的に安定な接触体の製造法

(57)【要約】

【課題】 半導体デバイスに対し拡散障壁体を備えた熱 的に安定な接触体の製造法を提供する。

【解決手段】 接触体のための熱的に安定な拡散障壁体を得るために、バターンに作成された基板10の上にチタン層11が作成される。このチタン層11の上に窒化タングステン層12が作成される。焼鈍し段階の後、基板10とタングステン層13′との間に、界面層11′および窒化チタン層12′が作成される。これらの層により、基板の上に直接に取り付けられた窒化チタン層よりも熱的にさらに安定であり、そして後で行われる高温段階に耐えることができる接触構造体の形成が可能となる、拡散障壁体が得られる。

【特許請求の範囲】

【請求項1】 バターンに作成された基板の上にチタン の層を作成する段階と、

前記チタン層の上に窒化タングステンの層を作成する段 階と、

前記層を前記基板と一緒に焼鈍しを行う段階と、を有す る、接触構造体のための拡散障壁層を作成する方法。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、全体的にいえば、 半導体デバイスの製造に関する。さらに詳細にいえば本 発明は、デバイス製造工程において後に続く段階で必要 である髙い温度の工程に耐えることができる、半導体デ バイスのための改良された接触構造体に関する。

[0002]

【発明が解決しようとする課題】ダイナミック・ランダ ム・アクセス・メモリ(DRAM、dynamic randam acc ess memory) デバイスの中に集積されたデバイスの集積 度が増大しているので、接触体ホールの寸法は小さくな り、一方、接触体ホールの縦横比は増大している。その 20 結果、サブミクロン相補型金属・酸化物・半導体 (CM OS, complementary metal oxide semiconductor) $\mathcal{F}\mathcal{N}$ イスのための接触構造体を製造することが難しくなって きている。典型的な場合、コンデンサ・エレメントが作 成された後に接触構造体が作成される。けれども、もし コンデンサ構造体が作成される前に接触構造体を作成す ることができるならば、そして1個または複数個のコン デンサ構造体を作成するのに要求される高い温度での工 程段階に耐えることができるならば、工程の流れを単純 化することができ、そして1個または複数個の接触体ホ ールに対し小さな縦横比を得ることができる。先行技術 では、窒素を含有する雰囲気中でチタンをスパッタリン グすることにより、または化学蒸着により、TiN拡散 障壁体がタングステンの導電層と基板との間に作成され る。Ti/TiN材料は、コンデンサ構造体の作成に要 求される温度における高温度サイクルに耐えることがで きない。

【0003】製造が容易で、かつ接触構造体の作成に要 求される工程温度に十分に耐えることができる熱的安定 度を有する、拡散障壁体を備えた接触体を作成する技術 が要望されている。

[0004]

【課題を解決するための手段】本発明の前記特徴および その他の特徴は、本発明に従い、接触体パターンが製造 された後、チタン層を最初に作成することにより達成さ れる。このチタン層は、例えば、化学蒸着工程または物 理蒸着工程により作成することができる。このチタン層 の上に、窒化タングステン(WNx)が沈着される。と の窒化タングステン層は、熱的にまたは光でまたはプラ

る雰囲気ガスの中でタングステンを標的にしてスパッタ リングを行うことにより、作成することができる。高い 温度での焼鈍し段階の期間中、窒化タングステン層はチ タン層と反応する。窒化タングステン層の中の窒素がチ タン層の中に輸送され、それにより窒化チタン (TiN 、) 層が作成される。この結果としてできた窒化チタン 層により、従来の沈着された窒化チタン層よりも(高い 温度で)さらに安定である拡散障壁体が得られる。

【0005】本発明のこれらの特徴およびその他の特徴 10 は、添付図面を参照しての下記説明により、さらによく 理解されるであろう。

[0006]

【発明の実施の形態】図1A~図1Eは、本発明の第1 実施例に従う熱的に安定な接触構造体を得るための第1 工程を示した図である。図1Aにおいては、基板10が パターンに作成される。図1Bにおいては、基板10の 上にチタン層11が作成される。図1Cにおいては、チ タン層 1 1 の上に窒化タングステン層 (WN、) 12 が 作成される。その後、基板10とその上に形成された層 (11および12)に対し焼鈍し工程が行われる。この 焼鈍し工程の結果、チタン層11が下の基板と反応して 界面層11′が形成され、および窒化タングステン層1 2が窒化チタン層(TiN,)12′に転換し、および 層12′の上にタングステン層13′が形成される。図 1 E においては、タングステン層 13の上にタングステ ンの付加層14が作成される。

【0007】図2A~図2Eは、熱的に安定な拡散障壁 体を作成するための第2工程を示した図である。図2A においては、基板20がパターンに作成される。図2B 30 においては、この基板の上にチタン層21が作成され る。図2 Cにおいては、チタン層21の上に窒化タング ステン層(WN。)22が作成される。そして窒化タン グステン層22の上にタングステン層23が形成され る。基板20とその上に形成された層(21、22、2 3) に対し焼鈍しが行われる。この焼鈍し工程の結果、 チタン層21はチタン・シリコン(TiSi。)層2 1' に転換し、および窒化タングステン層 (WN。) 2 2は下にあるチタンと反応して窒化チタン層(Ti N。)22′が形成され、およびタングステン層23が そのまま残る。

【0008】前記で説明した製造工程において、化学蒸 着工程または物理蒸着工程を用いてチタン沈着段階を実 行することができる。チタン沈着に対する好ましい化学 蒸着工程は、下記の化学工程に基づいている。

[0009]

【数1】TiX,+H, → Ti+HX, [0010]CCC、X=C1、Br、または1であ る。もし物理蒸着工程が用いられるならば、好ましい方 法はイオン化された金属沈着(IMP、ionized metal ズマで増強された化学蒸着により、または窒素を含有す 50 deposition)である。 IMP工程は、従来のスパッタリ

ング法よりもさらによい段階適用範囲を有する。窒化タ ングステン沈着の場合、好ましい工程は下記の化学工程 に基づく化学蒸着である。

[0011]

【数2】WF。+NH,+H2→ WNx+HF(熱、 プラズマ、または光により増強される)

[0012]

【数3】WF。+N,+H,→ WNx+HF(プラズ マ、または光により増強される)

[0013]

【数4】W(CO)。+NH, $\rightarrow WN_x + CO + H$ **、(熱、または光により増強される)**

【0014】X線回折(XRD、x-ray diffraction)技 術またはラザフォード後方散乱スペクトロメトリ (RB S、Rutherford backscattering spectrometry) 技術を 用いた検査により、図1A~図1Eおよび図2A~図2 Eについて説明した工程で得られる多重層構造体は熱的 に安定であることが示された。通常の技術を用いて製造 されたW/TiN/Ti/Si制御サンプルの場合、8 50℃で10分間の焼鈍しの後、XRD技術またはRBS技 20 術を用いてWSi,の形成を検出することができる。こ れと対照区別して、前記で開示された工程では、タング ステンとシリコン基板との間で相互作用が起とっている 証拠は得られていない。

【0015】本発明の技術をわずかに異なる形式で実施 することができる。特定の実施例として、チタン層は、 TiSi。層またはTiSi。/Ti層により置き換え ることができる。それに加えて、チタン層およびチタン ・シリサイド層は、コバルト、ニッケルおよび/または 対応する金属のシリサイドにより置き換えることができ 30 作成する方法。 る。

【0016】好ましい実施例を具体的に参照して本発明 が説明されたが、本発明の範囲内において、種々の変更 を行うことができることおよび好ましい実施例の元素を 等価な元素で置き換えることが可能であることは、当業 者には理解されるはずである。それに加えて、本発明の 本質的な部分は保ったままで、特定の状況および特定の 材料に適合するように、本発明に開示されている内容に 多くの変更を行うことができる。

の特徴は例示された実施例の細部についてまで限定され るものではない。したがって、当業者が他の変更実施例 および他の応用実施例を考案することは容易にできるで あろう。したがって、このような変更実施例および応用 実施例はすべて、本発明の範囲内に包含されるものと理 解されなければならない。

【0018】以上の説明に関して更に以下の項を開示す る。

(1) パターンに作成された基板の上にチタンの層を 作成する段階と、前記チタン層の上に窒化タングステン 50 W(CO)。+ N H, → W N, + C O + H,.

の層を作成する段階と、前記層を前記基板と一緒に焼鈍 しを行う段階と、を有する、接触構造体のための拡散障 壁層を作成する方法。

【0019】(2) 第1項記載の方法において、チタ ンがコバルトおよびニッケルから成る群から選定された 元素により置き換えられる、前記方法。

(3) 第1項記載の方法において、Mをチタン、コバ ルトおよびニッケルから成る群から選定された元素であ るとして、前記チタン層がMSix 層またはMSix / 10 M層により置き換えられる、前記方法。

【0020】(4) 第1項記載の方法において、Xを 塩素、臭素およびヨウ素から成る群から選定された元素 であるとして、前記チタン層が下記の化学工程

[0021]

【数5】TiX,+H, → Ti+HX に基づくCVD工程を用いて作成される、前記方法。

【0022】(5) 第1項記載の方法において、前記 窒化タングステン層が下記の化学工程の群

[0023]

【数6】 $WF_6 + NH_3 + H_2 \rightarrow WN_x + HF_1$ $WF_6 + N_2 + H_2$ \rightarrow WN_x +HF, $W(CO)_6 + NH_3 \rightarrow WN_x + CO + H_2$. から選定された化学工程に基づくCVD工程を用いて作 成される、前記方法。

【0024】(6) 基板の上にチタン層を作成する段 階と、前記チタン層の上に窒化タングステン層を作成す る段階と、前記窒化タングステン層の上にタングステン 層を作成する段階と、これらの層の作成により得られる 構造体に焼鈍しを行う段階と、を有する、接触構造体を

【0025】(7) 第6項記載の方法において、チタ ンがコバルトおよびニッケルから成る群から選定された 元素により置き換えられる、前記方法。

- (8) 第6項記載の方法において、Mをチタン、コバ ルトおよびニッケルから成る群から選定された元素であ るとして、前記チタン層がMSix 層またはMSix / M層の1つにより置き換えられる、前記方法。
- (9) 第6項記載の方法において、Xを塩素 (C 1)、臭素(Br)およびヨウ素(I)から成る群から 【0017】前記説明から明らかであるように、本発明 40 選定された元素であるとして、前記チタン層が下記の化 学工程

[0026]

【数7】TiX,+H, → Ti+HX に基づくCVD工程を用いて作成される、前記方法。 【0027】(10) 第6項記載の方法において、前 記窒化タングステン層が下記の化学工程の群 [0028]

【数8】WF。+NH,+H2 \rightarrow WN_x +HF, $WF_6 + N_2 + H_2 \rightarrow WN_* + HF$

5

から選定された化学工程に基づくCVD工程を用いて作成される、前記方法。

【0029】(11) 接触体のための熱的に安定な拡散障壁体を得るために、パターンに作成された基板10の上にチタンの層11が作成される。とのチタン層11の上に窒化タングステンの層12が作成される。焼鈍し段階の後、基板10とタングステン層13′との間に、界面層11′および窒化チタンの層12′が作成される。これらの層により、基板の上に直接に取り付けられた窒化チタン層よりも熱的にさらに安定であり、そして10後で行われる高温段階に耐えることができる接触構造体の形成が可能となる、拡散障壁体が得られる。

[図1]

【図面の簡単な説明】

*【図1】図1A-1Eは、本発明の第1実施例に従い、 温度に対して安定な接触拡散障壁体を作成する段階を示 した図。

【図2】図2A-2Eは、本発明の第2実施例に従い、 温度に対して安定な接触拡散障壁体を作成する段階を示 した図。

【符号の説明】

- 10 基板
- 11 チタン層
- 10 11′ 界面層
 - 12 窒化タングステン層
 - 12′ 窒化チタン層
 - 13′ タングステン層

E

