نظریه زبان و ماشین - دکتر قوامیزاده

امیرحسین منصوری - ۹۹۲۴۳۰۶۹ - تمرین سری ۳

سوال ۱-الف)

توضيح: كافيست طول رشته مورد نظر فرد باشد. بنابراين ماشين مورد نظر به صورت بالا است.

سوال ۱-ب)

توضیح: در بالا وضعیت q_1 ، q_2 و q_2 وضعیتهایی هستند که در آنها باقیمانده تقسیم مجموع ارقام عدد وارد شده به ۳، به ترتیب برابر صفر، ۱ و ۲ است. از وضعیت q_0 شروع میکنیم و با خواندن هر کاراکتر، به وضعیت مناسب میرویم و با خواندن هر کاراکتر، بسته به آن کاراکتر بین وضعیتها جابهجا میشویم. همچنین با توصیفی که از وضعیتها شد، تنها وضعیت شناسایی باید q_3 باشد.

t	0	1	state	ε-closure		δ	0	1	
1	2,3	Ø	1	1	-	1	2,3	Ø	
2	2	3,4	2	2	_	2	2	3,4	
3	Ø	3,5	3	3	_	3	Ø	3,5	
4	3	4	4	4	_	4	3	4	
5	2,5	1	5	5	_	5	2,5	1	
ٰ جدول t			ε-closure جدول			$^{'}$ جدول δ			

با توجه به جدولهای بالا، DFA نهایی به صورت زیر خواهد بود:

t	0	1	state	ε-closure		δ	0	1
1	4	1,2	1	1		1	3,4	1,2
2	2	3,4	2	2		2	2	3,4
3	1,5	Ø	3	3		3	1,5	Ø
4	3	5	4	4		4	3	5
5	1	3	5	5		5	1	3
ٰ جدول t ٰ			' جدول ε-closure			ٰ جدول δ		

با توجه به جدولهای بالا، DFA نهایی به صورت زیر خواهد بود:

t	а	b	state	ε-closure		δ	а	b	ε	
1	4,5,6	3,7	1	1,2,3,7		1	Ø	Ø	2	
2	4,5,6	3,7	2	2,3,7	_	2	4	Ø	3	
3	5,6	3,7	3	3,7	_	3	5,6	3	7	
4	Ø	5,6	4	4	_	4	Ø	5	Ø	
5	7	Ø	5	5,6	_	5	Ø	Ø	6	
6	7	Ø	6	6	_	6	7	Ø	Ø	
7	Ø	3,7	7	7	_	7	Ø	3	Ø	
ٔ جدول t			ε-closure جدول			جدول δ				

با توجه به جدولهای بالا، DFA نهایی به صورت زیر خواهد بود:

اشتراک L₂ و L₂ بر اساس اثبات ساختاری منظم بودن اشتراک دو زبان منظم، معادل ماشین زیر است:

با توجه به این که _C3 وضعیت تله است، بنابراین ماشین به صورت زیر خلاصه میشود:

برای اجتماع دو ماشین، کافیست وضعیتهای شروع این دو ماشین را با گذر تهی یه یک وضعیت شروع جدید وصل کنیم:

سپس با توجه به جدولهای زیر:

t	0	1	state	ε-closure		δ	0	1	ε
S	3,C	2,B	S	s,1,A		S	Ø	Ø	1,A
1	3	2	1	1		1	3	2	Ø
2	Ø	1	2	2		2	Ø	1	Ø
3	2	Ø	3	3		3	2	Ø	Ø
A	С	В	A	A	,	A	С	В	Ø
В	С	Ø	В	В		В	С	Ø	Ø
С	Α	С	С	С		С	Α	С	Ø
ً جدول t			ε-closui	جدول δ					

DFA معادل ماشین به صورت زیر خواهد بود:

سوال ۴

میدانیم هر زبان منظم را میتوان به صورت

$$L = (r) *, L = r_1 r_2, L = (r_1 | r_2)$$

نوشت. حال روی طول هر کدام از r_1 یا r_2 استقرا میزنیم:

(پایه استقرا) اگر طول r برابر ۱ باشد و زبان به صورت r^* باشد، معکوس آن به صورت r^* است که به وضوح منظم است.

است که به $L=r_1^{}r_1^{}$ برابر ۱ باشند و زبان به صورت $L=r_1^{}r_2^{}$ باشد، معکوس آن به صورت $L=r_2^{}r_1^{}$ است که به وضوع منظم است.

است $L=(r_1|r_2)$ باشد، معکوس آن به صورت $L=(r_1|r_2)$ است $L=(r_1|r_2)$ باشد، معکوس آن به صورت $L=(r_1|r_2)$ است.

(گام استقرا) فرض میکنیم طول r برابر n است و حکم برای هر regex با طول کمتر از n درست است. ثابت میکنیم حکم برای r نیز درست است.

اگر regex زبان به صورت r=(r') باشد، قطعا طول r کمتر از r است و بنابراین حتما معکوس آن زبان r=(r') دارد. بنابراین معکوس r را میتوان به صورت $r_R=(r_R')$ نوشت.

اگر regex زبان به صورت r_1 باشد، قطعا طول r_1 و r_2 کمتر از r است و حتما میتوان برای معکوس . باشد، قطعا طول r_1 و r_2 کمتر از r است و حتما میتوان برای معکوس r_1 نوشت. بنابراین معکوس r را میتوان به صورت r_2 و r_1 نوشت. بنابراین معکوس r_2 و r_1 کمتر از r است و حتما میتوان برای معکوس اگر regex زبان به صورت r_2 و باشد، قطعا طول r_1 و r_2 کمتر از r است و حتما میتوان برای معکوس . توشت r_2 و توشت بنابراین معکوس r را میتوان به صورت r_2 و r_1 نوشت r_2 و نوشت است.

سوال ۴.۱

زبان مورد نظر، حاصل concat دو زبان (۱|0) و *(1) است. طبق توضیحات سوال قبل، برای برعکس کردن این زبان کافی است زبانهای *(1) و (۱|0) را برعکس کرده و به ترتیب concat کنیم. برعکس زبان *(1) برابر با *(1) و برعکس زبان (۱|0) برابر (۱|0) است. پس:

 $L^{R} = (1)*(0|1)$

سوال ۵

اگر a یک حرف از حروف الفبای L باشد، Q مجموعه وضعیتهای ماشین متناظر L باشد و A مجموعه وضعیتهای مناسایی ماشین متناظر L باشد، مجموعه وضعیتهای شناسایی ماشین متناظر $Q_F = \{q_i \in Q \mid t(q_i, a) \in F\}$

یعنی $Q_{\scriptscriptstyle F}$ شامل همه وضعیتهایی است که از آنها با خواندن دقیقا یک a، به یک وضعیت شناسایی میرسیم.

سپس ماشین 'M را به این شکل تعریف میکنیم که همانند ماشین متناظر L است، با این تفاوت که وضعیتهای شناسایی آن فقط برابر Q_F است. بنابراین 'M ماشین متناظر L/a است و در نتیجه L/a زبان منظم است.