TEXT MINING for PRACTICE

Python을 활용한 비정형 데이터 분석 - WEEK 07 **동시출현분석 & 단어 네트워크 분석**

연세대학교 | 서중원

동시출현분석

(Co-occurrence Analysis)

단어의 동시출현 빈도를 바탕으로 가중치를 계산하는 분석방법

- ▶ 단어들 사이의 동시 출현을 연관성으로 취급하여, 단어의 연관성을 파악하는 방법
- ▶ 상용 소셜 미디어 분석 솔루션에서 제공하는 가장 기본적인 분석 형태 (Social Matrix)
- ▶ 활용분야: 브랜드 이미지 조사, 트렌드 분석, 여론조사, 마케팅 모니터링

2013년				2014년		2015년			2016년		
a.	연관에	연급 비용	No.	연관이	연급비용	No.	연관에	연급비용	No	변환에	연급 비용
1	야쿠로트	21,3%	1	야구르도	26.3%	1	야구로도	26,6%	1	야구르트	13,1%
2	역다	4.9%	2	장장	4,5%	2	집	4.7%	2	골드브루	8.2%
1	아립	4,4%	3	아침	4,0%	3	아립	4.4%	3	커피	7,4%
ı	엄마	4,2%	4	집	3,6%	4	맛	3,9%	- 4	쩟	6,6%
5	집	3,5%	5	제품	3,4%	5	역다	3,4%	5	250	5,7%
ţ	유다	2.8%	6	엄마	3.3%	6	시다	2.8%	-	치즈	5.2%
1	사다	2.7%	7	맞	2.7%	7	추다	2.8%	7	湖町	5,0%
ı	春 段	2,5%	8	깊다	2,6%	8	다니다	2,7%	8	아메리카노	4.1%
,	구입하다	2,4%	9	우유	2,6%	9	엄마	2,6%	9	역다	3,3%
0	0404	2.4%	10	주다	2.2%	10	무용	2.1%	10	크림치즈	3,1%
1	이쿠르트 주다	2,3%	11	역다	2,2%	, 11	만나다	2.1%	1	격력	2.8%
2	배달하다	2.3%	12	한나다	2.0%	12	제품	2.0%	1	한니다	2.7%
3	수업	2,3%	13	사막	1,9%	13	사진	2,0%	10	가격	2,4%
4	다니다	2.1%	14	일다	1,9%	14	나오막	2.0%	, 14	찾다	1,9%
5	열려먹다	2.0%	15	単分的()	1,8%	15	중다	1,9%	15	아립	1,8%
6	살다	2,0%	16	디니다	1,8%	16	지나가다	1,8%	16	109	1,6%
7	격용	2,0%	17	하루이제	1,7%	17	하나	1,7%	17	엄마	1,5%
8	세본	1,8%	18	나누다	1,7%	18	문맥	1,7%	18	유유	1,4%
9	기다	1.8%	19	지나가다	1.6%	19	일하다	1,6%	15	빨다	1,3%
0	자녀	1,8%	20	세분	1,5%	20	오다	1,6%	2	발견하다	1,2%
1	만나다	1,8%	21	수업	1,5%	, 21	찾다	1,6%	2	사다	1,2%
2	메시다	1,7%	22	찾다	2,3%	22	8星	1,5%	2	인기	1,2%
3	유산군	1,7%	23	노인	1,4%	23	마시다	1,4%	2	판의점	1,2%
4	Beich	1,7%	24	마시다	1,4%	24	첉	1,4%	2	제작답행크런치	1,1%
										_	

^{*} Source : 전병진, 신한은행 파이썬으로 시작하는 데이터분석: 텍스트 마이닝 기초, 2018.12.12.

^{**} Source : 백경혜(DBR), "매력을 소비하는 나는 덕후! 즐거움을 위해 기꺼이 지갑을 연다", 2017.1., http://dbr.donga.com/article/view/1203/article_no/7935/.

동시출현분석

(Co-occurrence Analysis)

연관어분석 (Co-word Analysis)

- ▶ 단어들 사이의 동시출현 빈도 중 빈번하게 사용되는 특정 단어를 기준으로 연관성을 파악하는 방법
- ▶ 연관어(공기어, Co-word) : 같은 문맥 안에서 함께 나타나 서로 밀접한 의미 관계를 갖는 단어

^{*} Source : 소셜메트릭스, 2017.11.3., http://www.socialmetrics.co.kr/.

동시출현분석

(Co-occurrence Analysis)

^{*} Source : 소셜메트릭스, 2017.11.3., http://www.socialmetrics.co.kr/.

동시출현분석 (Co-occurrence Analysis)

단어 네트워크 분석 (Word Network Analysis)

- ▶ 텍스트 마이닝 분야에 네트워크 분석, 그래프 이론을 적용한 분석방법▶ 단어의 연관성(동시출현)을 단어와 단어 사이의 관계로 정의하고 네트워크 분석 방법론 적용
- ▶ 문서에서 단어와 단어 사이 관계를 파악하고 정량화하여 분석하기 위해 사용

그래프 (Graph) 기본개념

- ▶ 기본용어
 - 노드 (node, vertex, point) : 관계를 가지는 그래프 요소
 - 엣지 (edge, line, arc): 관계로 연결된 한 쌍의 노드
 - 방향성 그래프 (directed graph) : 화살표를 이용해 방향이 표시된 그래프
 - 비방향성 그래프 (undirected graph): 방향성이 없는 그래프

^{*} Source : Giorgos Cheliotis, Social Network Analysis, 2010.2.25., https://www.slideshare.net/gcheliotis/social-network-analysis-3273045/.

그래프 (Graph) 기본개념

방향성 그래프 (directed graph)

엣지리스트 (edge list)

Vertex Vertex

1	2
1	3
2	3
2	4
3	4

인접행렬 (adjacency matrix)

Vertex	1	2	3	4
1	-	1	1	0
2	0	-	1	1
3	0	0	-	0
4	0	0	1	-

그래프 (Graph) 기본개념

^{*} Source : Giorgos Cheliotis, Social Network Analysis, 2010.2.25., https://www.slideshare.net/gcheliotis/social-network-analysis-3273045/.

그래프 (Graph) 기본개념

- ▶ 기본용어
 - 경로 (path): 간선에 의하여 연결된 노드들의 순차적 배열
 - 최단 경로 (shortest path): 그래프의 두 노드 간의 가장 짧은 경로
 - 엣지 리스트 (edge list) : 노드와 노드 관계(경로)를 짝지어 목록으로 만든 것
 - 가중치 (weight): 네트워크에서 연결 관계의 강도를 나타내는 값

엣지리스트 (edge list)

Vertex Vertex Weight

1	2	30
1	3	5
2	3	22
2	4	2
3	4	37

^{*} Source : Giorgos Cheliotis, Social Network Analysis, 2010.2.25., https://www.slideshare.net/gcheliotis/social-network-analysis-3273045/.

그래프 (Graph) 기본개념

- ▶ 기본용어
 - 에고 네트워크 (ego network) : 한 노드를 중심으로 다른 노드와의 연결관계를 표현한 네트워크

전체 네트워크 (Whole Network)

노드 3의 에고 네트워크

그래프 중심성 척도: 연결 중심성 (Degree Centrality)

- ▶ 어떤 단어가 가장 많은 단어들과 같이 쓰였는가에 대한 척도
- ▶ 한 노드가 다른 노드와 연결된 엣지의 개수
- ▶ 비방향성 그래프에서는 한 노드로 연결될 수 있는 경로의 수
- ▶ 영향력 또는 인기도를 측정할 때 노드의 연결 정도의 척도로 사용
- ▶ 정보의 확산과 관련해 어느 노드가 중심이고, 다른 이웃 노드들에게 영향을 미치는지 평가할 때 사용

^{*} Source : Giorgos Cheliotis, Social Network Analysis, 2010.2.25., https://www.slideshare.net/gcheliotis/social-network-analysis-3273045/.

그래프 중심성 척도: 매개 중심성 (Betweeness Centrality)

- ▶ 어떤 단어가 다른 단어들 사이의 연결고리 역할을 하는가에 대한 척도
- ▶ 네트워크 내에서 한 노드가 다른 노드들 사이의 경로에 위치하는 정도
- ▶ 각 노드가 다른 노드들 간의 최단거리 (shortest path)에 등장하는 빈도

$$C_B(v) = \frac{i \Re j \, \text{간의 최단경로 중 } v \text{를 지나는 경로의 수}}{i \Re j \, \text{간의 최단경로의 수}} \qquad i, j, v : \text{ 노드}$$

매개 중심성 (Betweeness Centrality)

^{*} Source: Giorgos Cheliotis, Social Network Analysis, 2010.2.25., https://www.siidesnare.net/gcneiiotis/social-network-analysis-32/3045/.

그래프 중심성 척도: 근접 중심성 (Closeness Centrality)

- ▶ 어떤 단어가 다른 단어들과의 가장 가까운 거리에 있는가에 대한 척도
- ▶ 한 노드에서 다른 모든 노드까지 모든 최단 경로의 평균(또는 이의 역수)
- ▶ 모든 다른 노드에 도달하는데 까지 평균 소요 시간

^{*} Source : Giorgos Cheliotis, Social Network Analysis, 2010.2.25., https://www.slideshare.net/gcheliotis/social-network-analysis-3273045/.

그래프 중심성 척도

Sample Graph

노드리스트 (node list)						
Node	Degree Centrality	Betweeness Centrality				
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

그래프 중심성 척도

- ▶ 분석의 목적에 따라 척도를 다르게 적용하여 분석에 활용 (중심 노드를 노드의 묶음으로 고려해도 됨)
- ▶ 중심 노드 선정의 예
 - 10은 연결 중심성 측면에서 가장 중심
 - 3과 5는 매개 중심성 측면에서 10 보다 더 중심
 - 또한 3과 5 사이의 관계는 네트워크가 분리될 수 있는 중요한 연결
 - 다른 조건들이 동일할 때, 3과 5는 10보다 네트워크의 중심

E.O.D