18.701 Comments on Quiz 3

- 1. (15 points) Extend the vector (1,1,1) to an orthogonal basis of \mathbb{R}^3 . (The form is dot product.) One such basis consists of the three vectors (1,1,1), (1,-1,0), (1,1,-2).
- 2. (15 points) Prove that the eigenvectors associated to distinct eigenvalues of a hermitian matrix are orthogonal with respect to the standard hermitian form on \mathbb{C}^n .

Say that $A^* = A$, and let $\langle X, Y \rangle = X^*Y$. Then $\langle AX, Y \rangle = \langle X, AY \rangle$. Let X, Y be eigenvectors, say $AX = \alpha X$, and $AY = \beta Y$. First, $\langle AX, X \rangle = \langle \alpha X, X \rangle = \overline{\alpha} \langle X, X \rangle$, while $\langle X, AX \rangle = \langle X, \alpha X \rangle = \alpha \langle X, X \rangle$. Since $\langle X, X \rangle$ is not zero, $\overline{\alpha} = \alpha$, so α is real. Then $\alpha \langle X, Y \rangle = \overline{\alpha} \langle X, Y \rangle = \langle AX, Y \rangle = \langle X, AY \rangle = \beta \langle X, Y \rangle$. If $\alpha \neq \beta$, then $\langle X, Y \rangle = 0$.

- 3. (20 points) Let V denote the real vector space of 2×2 matrices, and let $\langle A, B \rangle = \operatorname{trace} AB$.
- (i) Is this form symmetric? Is it positive definite?

It is symmetric but not positive definite. For example, if $A = e_{12} - e_{21}$, then $A^2 = -I$, so $\langle A, A \rangle = -2$.

(ii) Let W be the one-dimensional subspace spanned by the matrix A below. Determine the projection to W of the matrix B:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Here $\langle A, B \rangle / \langle A, A \rangle = \frac{5}{2}$. The projection is $\frac{5}{2}A$.

4. (20 points) Determine the centralizer and the conjugacy class of the matrix

$$\begin{pmatrix}
0 & i \\
i & 0
\end{pmatrix}$$

in the special unitary group SU_2 .

The conjugacy class is the latitude of all trace zero matrices. the centralizer consists of the matrices

$$\begin{pmatrix} c & si \\ si & c \end{pmatrix}$$
,

where $c = \cos \theta$ and $s = \sin \theta$.

Saying that the conjugacy class consists of the matrices PAP^* was not given full credit, even when expanded into an unreadable formula. Ditto for centralizer.

5. (20 points) Let G denote the group of invertible real matrices of the form

$$A = \begin{pmatrix} a & b \\ 0 & a^2 \end{pmatrix}.$$

Determine the one-parameter groups in G.

They are e^{tA} , where the matrix A has the form $A = \begin{pmatrix} x & y \\ 0 & 2x \end{pmatrix}$.