Complex Manifolds

1 Definition and Examples

Definition 1. A complex manifold of complex dimension n is a topological space M such that

- (a) *M* is Hausdorff and second countable;
- (b) M is locally homeomorphic to \mathbb{C}^n , i.e., for every point $p \in M$, there exists an open neighborhood U of p and a homeomorphism $\varphi: U \to V \subset \mathbb{C}^n$, where V is an open subset of \mathbb{C}^n , The pair (U, φ) is called a *chart*;
- (c) if (U, φ) and (U', φ') are two charts with $U \cap U' \neq \emptyset$, then the transition map

$$\varphi' \circ \varphi^{-1}$$
: $\varphi(U \cap U') \to \varphi'(U \cap U')$

is holomorphic.

The collection of all charts $\{(U_{\alpha}, \varphi_{\alpha})\}$ that cover M is called an *atlas*. If the atlas is maximal, it is called a *complex structure* on M.

Another way to define complex manifolds is to use the language of ringed spaces.

Definition 2. A complex manifold of complex dimension n is a locally ringed space (M, \mathcal{O}_M) such that

- (a) *M* is Hausdorff and second countable;
- (b) for every point $p \in M$, there exists an open neighborhood U of p such that $(U, \mathcal{O}_M|_U)$ is isomorphic to (B, \mathcal{O}_B) , where B is the unit open ball in \mathbb{C}^n and \mathcal{O}_B is the sheaf of holomorphic functions on B.

Question 3. Given a topological space M that is Hausdorff and second countable, when does it admit a complex structure? Is such a complex structure unique?

For complex dimension 1, the answer is positive and well-known. For higher dimensions, the answer is negative in general. In particular, does the 6-sphere S^6 admit a complex structure? This is a famous open problem in complex geometry.

Question 4. Does the 6-sphere S^6 admit a complex structure?

Definition 5. Let M and N be two complex manifolds. A continuous map $f: M \to N$ is called holomorphic if for every point $p \in M$, there exist charts (U, φ) of M around p and (V, ψ) of N around f(p) such that

$$\psi \circ f \circ \varphi^{-1} : \varphi(U \cap f^{-1}(V)) \to \psi(f(U) \cap V)$$

is holomorphic. Yang: To be continued...

Date: October 3, 2025, Author: Tianle Yang, My Homepage

Definition 6. Let M be a complex manifold of complex dimension n. A subset $S \subset M$ is called a complex submanifold of complex dimension k if for every point $p \in S$, there exist a chart (U, φ) of M around p such that

$$\varphi(U \cap S) = \varphi(U) \cap (\mathbb{C}^k \times \{0\}) \subset \mathbb{C}^n,$$

where we identify \mathbb{C}^n with $\mathbb{C}^k \times \mathbb{C}^{n-k}$. Yang: To be continued...

Example 7. Any complex vector space V of complex dimension n is a complex manifold of complex dimension n.

Example 8. Let $f: \mathbb{C}^{n+m} \to \mathbb{C}^m$ be a holomorphic function. Suppose that 0 is a regular value of f, i.e., the Jacobian matrix Df_p is surjective for every $p \in f^{-1}(0)$. Then by the holomorphic implicit function theorem (Theorem 20), for every point $p \in f^{-1}(0)$, there exist open neighborhoods U of p and V of 0 such that $f^{-1}(0) \cap U$ is biholomorphic to an open subset of \mathbb{C}^n . Thus $f^{-1}(0)$ is a complex manifold of complex dimension n. In particular, any non-singular complex algebraic variety is a complex manifold. Yang: To be continued...

Example 9. The complex projective space $\mathbb{CP}^n := \mathbb{C}^{n+1} \setminus \{0\}/\mathbb{C}^{\times}$ is a complex manifold of complex dimension n. In fact, \mathbb{CP}^n can be covered by n+1 charts, each of which is biholomorphic to \mathbb{C}^n . For example, the chart $U_0 = \{[z_0 : z_1 : \cdots : z_n] \in \mathbb{CP}^n : z_0 \neq 0\}$ is biholomorphic to \mathbb{C}^n via the map

$$[z_0 : z_1 : \cdots : z_n] \mapsto \left(\frac{z_1}{z_0}, \frac{z_2}{z_0}, \dots, \frac{z_n}{z_0}\right).$$

The other charts are defined similarly.

Proposition 10. Let $f: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}$ be a homogeneous polynomial of degree d such that 0 is a regular value of f. Then $f^{-1}(0)/\mathbb{C}^{\times}$ is a complex submanifold of \mathbb{CP}^n of complex dimension n-1.

Proof. Yang: To be continued...

Example 11. The Hopf manifolds are a class of complex manifolds that can be constructed as quotients of complex vector spaces by the action of a group of automorphisms. Yang: To be continued...

Example 12. The Iwasawa manifold is a complex manifold that can be constructed as a quotient of the complex Heisenberg group by a discrete subgroup. Yang: To be continued...

2 Almost Complex Structures

Let X be a complex manifold of complex dimension n. The tangent bundle TX is a real vector bundle of rank 2n. There is a natural endomorphism $J: TX \to TX$ induced by the complex structure of X, i.e., for every point $p \in X$, $J_p: T_pX \to T_pX$ is the multiplication by $\sqrt{-1}$. We have $J^2 = -\mathrm{id}$.

Definition 13. Let M be a smooth manifold of real dimension 2n. An almost complex structure on M is a smooth endomorphism $J: TM \to TM$ such that $J^2 = -\mathrm{id}$. The pair (M, J) is called an almost complex manifold.

Definition 14. Let (M,J) be an almost complex manifold. A smooth function $f:M\to\mathbb{C}$ is called $J\text{-}holomorphic}$ if

$$\mathrm{d}f\circ J=\sqrt{-1}\cdot\mathrm{d}f.$$

Question 15. Given a smooth manifold M of real dimension 2n, when does it admit an almost complex structure? Is such an almost complex structure unique?

Giving an almost complex structure J on a smooth manifold M is equivalent to giving the tangent bundle TM the structure of a complex vector bundle. Hence the existence of almost complex structures is a purely topological problem. Note that to find a complex structure on M needs to solve some non-linear partial differential equations, which is much harder.

Example 16. The 6-sphere S^6 admits an almost complex structure. In fact, S^6 can be identified with the unit sphere in the imaginary octonions Im \mathbb{O} . Denote by m(x,y) the octonionic multiplication of $x,y\in\mathbb{O}$. For every point $p\in S^6$, the tangent space T_pS^6 can be identified with the orthogonal complement of $\mathbb{R}p$ in \mathfrak{IO} . Define $J_p:T_pS^6\to T_pS^6$ by $J_p(v)=m(p,v)$. Then $J_p^2(v)=p(pv)=-v$ for every $v\in T_pS^6$. Thus we get an almost complex structure on S^6 . Yang: To be continued...

Remark 17. Recall some fundamental facts about the octonions **O**:

Yang: To be continued...

Let (M,J) be an almost complex manifold. Then the complexified tangent bundle $TM_{\mathbb{C}}:=TM\otimes_{\mathbb{R}}\mathbb{C}$ splits into the direct sum of two complex subbundles

$$TM_{\mathbb{C}}=T^{1,0}M\oplus T^{0,1}M,$$

where

$$T^{1,0}M:=\ker(\sqrt{-1}\mathrm{id}-J),\quad T^{0,1}M:=\ker(\sqrt{-1}\mathrm{id}+J).$$

We have $\overline{T^{1,0}M} = T^{0,1}M$ and both $T^{1,0}M$ and $T^{0,1}M$ are complex vector bundles of rank n. This decomposition induces a decomposition of the complexified cotangent bundle Yang: To be continued...

Proposition 18. There exist differential operators

$$\partial: \Omega^{p,q}(M) \to \Omega^{p+1,q}(M), \quad \mu: \Omega^{p,q}(M) \to \Omega^{p+2,q-1}(M)$$

such that

$$d = \partial + \overline{\partial} + \mu + \overline{\mu}$$
.

In a diagram:

Proof of Proposition 18. Yang: To be continued...

Proposition 19. The operators ∂ and μ satisfy the following properties:

(a)

Yang: To be continued...

Requirements

Theorem 20 (Holomorphic implicit function theorem). Let $f: \mathbb{C}^{n+m} \to \mathbb{C}^m$ be a holomorphic function. If the Jacobian determinant $\det(\partial f/\partial w)$ is nonzero at $(z_0, w_0) \in \mathbb{C}^{n+m}$, then there exist open neighborhoods U of z_0 and V of w_0 , and a unique holomorphic function $g: U \to V$ such that for any $(z, w) \in U \times V$, $f(z, w) = f(z_0, w_0)$ if and only if w = g(z). Yang: To be continued...

