Fundamentals of Nondestructive Evaluation Ultrasonics Laboratory Spring 2023

Tasks

1. (First week) Reproduce (within a scaling factor) the example figures. Make sure you understand the steps involved.

Parameter	Value
c_{Al}	$6.2~\mathrm{mm}/\mu\mathrm{s}$
$ ho_{Al}$	2700 kg/m^3
c_w	$1.5~\mathrm{mm}/\mu~\mathrm{s}$
$ ho_w$	1000 kg/m^3
Transducer Center Frequency	$1 \mathrm{\ MHz}$
-3dB transducer BW	$400~\mathrm{kHz}$
Initial water path distance	10 mm
Crack scattering coefficient	-0.2
Noise amplitude	$22~\mathrm{kPa}~\mathrm{RMS}$

- 2. (Second week) Extend your simulation according to your and your teammates' interest. Here are some ideas:
 - Try adjusting frequencies, bandwidths, material properties and verify that the waveform changes you predict make sense.
 - Perform a simple (physical) ultrasound experiment, and adjust the simulation to match that experiment.
 - Try simulating a wave equation that is dispersive, such as the flexural wave equation $EI\frac{\partial^4 u}{\partial x^4} = \rho \frac{\partial^2 u}{\partial t^2}$. Animate wave arrivals to observe the difference between phase and group velocities.
 - Switch to a geometry that is more relevant to your interest/application.
 - Simulate a more exhaustive list of beam paths.
 - Consider viscoelastic absorption. This is usually modeled with a complex stiffness (imaginary part is known as "Loss Modulus") that results in a complex wavespeed and complex wavenumber.
 - Consider geometric amplitude losses (roughly uniform in near-field; roughly 1/r in far-field).
 - Based on an ultrasonic simulation and a population of simulated flaws with different sizes (reflection coefficients), build a POD model and adjust the thresholds to obtain an acceptible POD with an acceptible false call rate.
 - The Gaussian wave packet we have used is mathematically convenient, but not very physical because it is not causal (non-zero prior to t=0). Replace the Gaussian packet with a minimum-phase wavelet that is causal.
 - Use spatial (possibly multi-dimensional) Fourier transforms to model a conformal focused transducer or a delay-line phased array.

Fundamentals of Nondestructive Evaluation EM 550 Ultrasonics Laboratory Spring 2023

Write up what you have done and turn it in after the second week.