An algorithm for the k-error linear complexity of a sequence with period $2p^n$ over GF(q)

Jianqin Zhou

(Dept. of Computer Science, Anhui University of Technology, Ma'anshan 243002, China)

(E-mail: zhou9@yahoo.com)

Xirong Xu

(Dept. of Mathematics, Univ. of Science and Technology of China, Hefei 230026, China)

(E-mail: xirongxu@ustc.edu.cn)

Abstract-- The union cost is used, so that an efficient algorithm for computing the k-error linear complexity of a sequence with period $2p^n$ over GF(q) is presented, where p and q are odd primes, and q is a primitive root of modulo p^2 .

Index Terms-- Periodic sequence; linear complexity; k-error linear complexity

I. INTRODUCTION

The linear complexity (LC) of a sequence has been used as a convenient measure of the randomness of a sequence. However, the LC has such an instability as an extreme change. The k-error LC (k-LC) of a periodic sequence was defined by Stamp and Martin in [4] as the smallest LC that can be obtained when any k or fewer of the symbols of the sequence are changed within one period. The k-LC is very effective for reducing the instability of the LC caused by symbol substitutions.

Unfortunately an effective algorithm for computing the k-LC has been known only for sequences over GF(2) with period 2^n (the Stamp-Martin algorithm) in [4]. An alternative derivation of the Stamp-Martin algorithm was given in [3] for computing the k-error linear complexity of sequences over GF(p^m) with period p^n , p a prime.

This paper gives a complete description of the algorithm for the k-LC of sequences over GF(q) with period $2p^n$, where p and q are odd primes, and q is a primitive root of modulo p^2 . The algorithm is derived from the Wei-Xiao-Chen algorithm in [5] for the linear complexity of sequences over GF(q) with period $2p^n$ and by using the union cost different from that used in the Stamp-Martin algorithm for sequences over GF(2) with period 2^n . It is shown that both of the logic of our algorithm and its description are rather simple.

II. THE WEI-XIAO-CHEN ALGORITHM

In this paper we will consider sequences over GF(q) with period $2p^n$, where p and q are odd primes, and q is a primitive root of modulo p^2 .

Let $s=(a_0, a_1, \cdots)$ be a sequence with period $N=2p^n$ over GF(q), l>0, $A_i=(a_{(i-1)l}, a_{(i-1)l+1}, \cdots, a_{il-1})$, $i=1,2,\cdots,2p$. It is easy to prove the following lemmas.

Lemma 1: If
$$\begin{cases} A_{p+1} + A_1 = A_{p+2} + A_2 = \mathbf{L} = A_{2p} + A_p \\ A_{p+1} - A_1 = (-1)^{i+1} (A_{p+i} - A_i), \ i = 1, 2, \mathbf{L}, p \end{cases}$$
, then
$$\begin{cases} A_1 = A_3 = \mathbf{L} = A_p = A_{p+2} = \mathbf{L} = A_{2p-1} \\ A_{p+1} = A_{p+3} = \mathbf{L} = A_{2p} = A_2 = \mathbf{L} = A_{p-1} \end{cases}$$
,

hence $(A_1, A_2) = (A_1, A_{p+1})$.

Lemma 2: If $A_{p+1} + A_1 = A_{p+2} + A_2 = \mathbf{L} = A_{2p} + A_p$, then $A_i - A_{i+1} = -(A_{p+i} - A_{p+i+1})$, $i = 2,4,\mathbf{L}$, p-1, hence

$$(\sum_{i=1}^{p} \ (-1)^{i+1}A_i, \sum_{i=1}^{p} \ (-1)^{i+1}A_{i+1}) = (\sum_{i=1}^{p} \ (-1)^{i+1}A_i, \sum_{i=1}^{p} \ (-1)^{i+1}A_{p+i}) \, .$$

Lemma 3: If
$$A_{p+1} - A_1 = (-1)^{i+1}(A_{p+i} - A_i)$$
, $i = 1, 2, \mathbf{L}$, p , then $A_i + A_{i+1} = A_{p+i} + A_{p+i+1}$, $i = 2, 4, \mathbf{L}$, $p - 1$, hence

$$(\sum_{i=1}^{p} A_i, \sum_{i=1}^{p} A_{i+1}) = (\sum_{i=1}^{p} A_i, \sum_{i=1}^{p} A_{p+i}).$$

With the above lemmas, the Wei-Xiao-Chen algorithm in [5] can be changed to the algorithm 1 in Fig.1.

Let $s=(a_0, a_1, \cdots)$ be a sequence with period $N=2p^n$ over GF(q), where p and q are odd primes, and q is a primitive root of modulo p^2 , and let $s^N=(a_0, a_1, \cdots, a_{N-1})$ be the first period of s.

$$\begin{array}{l} \mathbf{a} = s^{N}; \ l = \mathbf{p^{n}} \ ; \ c = 0; \\ \text{while } l > 1 \ \text{do} \\ \\ l = l \ / \mathbf{p} \ ; \ \mathbf{A}_{i} = (\mathbf{a}_{(i-1)l}, \, \mathbf{a}_{(i-1)l+1}, \cdots, \, \mathbf{a}_{il-1}), \ \text{for i} = 1, 2, \cdots, 2\mathbf{p}; \\ \text{if } \ A_{p+1} + A_{1} = A_{p+2} + A_{2} = \mathbf{L} = A_{2p} + A_{p} \ \ \text{then} \\ \\ \text{if } \ A_{p+1} - A_{1} = (-1)^{i+1} (A_{p+i} - A_{i}) \ \text{for } \ i = 1, 2, \mathbf{L}, \ p \ \ \text{then} \\ \\ \ a = (A_{1}, A_{p+1}); \\ \text{else} \end{array}$$

```
c=c+(p-1)l; a=(\sum_{i=1}^{p} (-1)^{i+1} A_i, \sum_{i=1}^{p} (-1)^{i+1} A_{p+i});
   else
      if A_{n+1} - A_1 = (-1)^{i+1} (A_{n+i} - A_i) for i = 1, 2, \mathbf{L}, p then
             c=c+(p-1) l; a=(\sum_{i=1}^{p} A_i, \sum_{i=1}^{p} A_{p+i});
      else
             c=c+2(p-1) l; a=(\sum_{i=1}^{p} A_{2i-1}, \sum_{i=1}^{p} A_{2i});
       end if
   end if
end while
if a \neq (0,0) then
   if a_0=a_1 then
      c=c+1
   else
      if a_0 + a_1 = 0
      else
            c=c+2
      end if
   end if
end if
```

Fig.1. Algorithm 1, computing the linear complexity of a sequence with period 2pⁿ over GF(q)

III. A k-ERROR LINEAR COMPLEXITY ALGORITHM

The *k*-LC of a sequence $s=(a_0, a_1, \cdots)$ over GF(q) with period $N=2p^n$ is defined as k-LC(s)=min{LC(s+e) | w_H(e) $\leq k$ }

where $e=(e_0, e_1, \cdots)$ is an error sequence over GF(q) with period N and $w_H(e)$ is the Hamming weight of the first N-tuple, $(e_0, e_1, \cdots, e_{N-1})$, of e, i.e., the number of nonzero e_j 's. If we have no effective algorithm for computing the k-LC, we must repeatedly apply the Wei-Xiao-Chen algorithm at the worst case

$$\sum_{i=0}^{k} (q-1)^{i} \binom{N}{i} \tag{1}$$

times to the sequences (s+e)'s with all the possible e's having Hamming weight $\leq k$. However, (1) becomes very large even for moderate N and k.

In order to compute the k-LC of s, we must try to force $A_{p+1}+A_1=A_{p+2}+A_2=\mathbf{L}=A_{2p}+A_p$ and $A_{p+1}-A_1=(-1)^{i+1}(A_{p+i}-A_i)$ for $i=1,2,\mathbf{L}$, p, in the Wei-Xiao-Chen algorithm under the condition that the minimum number of changes in the original s^N is less than or equal to k. This logic is the same as that used in the Stamp-Martin algorithm in [4].

In [3,4], cost[i] is intended to measure the cost-in terms of the minimum number of changes required in the original sequence s-of changing the current element a_i without disturbing the results of any previous steps. Due to the condition that $A_{p+1} + A_1 = A_{p+2} + A_2 = \mathbf{L} = A_{2p} + A_p$ and $A_{p+1} - A_1 = (-1)^{i+1}(A_{p+i} - A_i)$ for $i = 1,2,\mathbf{L}$, p, the cost of changing the element a_i and the cost of changing the element a_{l+i} are interrelated. Thus the union cost is used to measure the cost of changing a_i and a_{l+i} at the same time.

In the Stamp-Martin algorithm, only the cost of changing the current element is measured. In fact, the cost of maintaining the current element unchanged is sometimes not zero. In our algorithm, $\cos[i,i+l,h_0,h_1]^{(2l)}$ is the minimum number of changes required in the original sequence s to change the current element a_i to h_0 and the current element a_{l+i} to h_1 , where $h_0=0,1,\cdots,q-1$, $h_1=0,1,\cdots,q-1$, and 2l is the number of current elements. When $l=p^m$, the initial value of $\cos[i,i+l,a_i,a_{l+i}]^{(2l)}$ is 0, the initial value of both $\cos[i,i+l,a_i,a_{l+i}+b]^{(2l)}$ and $\cos[i,i+l,a_i+a,a_{l+i}]^{(2l)}$ is 1, the initial value of $\cos[i,i+l,a_i+a,a_{l+i}]^{(2l)}$

 $a_i + a_i$, $a_{l+i} + b_i$] (2) is 2, where $i = 0, 1, \dots, l-1$, and $i = 1, 2, \dots, q-1$, $i = 1, 2, \dots, q-1$.

Based on algorithm 1, our algorithm for computing the k-error linear complexity is written in Fig.2.

Let $s=(a_0, a_1, \cdots)$ be a sequence with period $N=2p^n$ over GF(q), where p and q are odd primes, and q is a primitive root of modulo p^2 , and let $s^N=(a_0, a_1, \cdots, a_{N-1})$ be the first period of s.

$$a = s^{N}; l = p^{n}; c = 0;$$

while l > 1 do

$$l = l / p$$
; $A_i = (a_{(i-1)l}, a_{(i-1)l+1}, \dots, a_{il-1})$, for $i=1,2,\dots,2p$;

$$(B_1, B_2, \dots, B_n) = (A_1 + A_{n+1}, A_2 + A_{n+2}, \dots, A_n + A_{2n})$$

bcost[i, h] $^{(pl)}$ =min{cost[i, i+ pl, d₁, d₂] $^{(2pl)}$ |d₁+d₂=h}, for h=0,1,···,q-1, i=0,1,···, pl-1;

bcost[i, h]
$$^{(l)} = \sum_{i=0}^{p-1}$$
 bcost[i+jl, h] $^{(pl)}$, for h=0,1,...,q-1, i=0,1,..., l-1;

$$T_{B}=\sum_{i=0}^{l-1} \quad \min_{0 \leq h < q} \{b cost[i, h]^{(l)}\};$$

if $T_{\rm R} \leq k$ then

$$cost[i, i+l, h_0, h_1]^{(2l)} = \sum_{i=0}^{(p-1)/2} cost[i+2lj, i+pl +2lj, h_0, h_1]^{(2pl)}$$

$$+\sum_{i=0}^{(p-1)/2-1} \operatorname{cost}[i+(2j+1)l,\ i+pl+(2j+1)l,\ h_1,h_0]^{(2pl)},\ \text{for}\ h_0=0,1,\cdots,q-1,\ h_1=0,1,\cdots,q-1,\ i=0,1,\cdots,l-1;$$

$$T_{C} = \sum_{i=0}^{l-1} \quad \min_{0 \le h_{0} < q, \, 0 \le h_{1} < q} \left\{ cost[i, \, i+l, \, h_{0}, \, h_{1}]^{(2l)} \right\};$$

If $T_C \leq k$ then

$$a = (A_1, A_{n+1});$$

else

c=c+(p-1)l; a=(
$$\sum_{i=1}^{p} (-1)^{i+1} A_i, \sum_{i=1}^{p} (-1)^{i+1} A_{p+i}$$
);

$$cost[i,\,i+\textit{l},\,h_0,\,h_1]^{(2\textit{l})} = min\{\,\sum_{\textit{i}=0}^{\textit{p}-1} \ cost[i+\textit{l}j,\,i+\textit{p}\textit{l}\,+\textit{l}j,\,h_{\textit{i}+\textit{l}j}^{\,0}\,,\,h_{\textit{i}+\textit{l}j}^{\,1}\,]^{(2\textit{p}\textit{l})}$$

$$|\mathbf{h}_{i+lj}^{0} + \mathbf{h}_{i+lj}^{1} = \mathbf{h}_{i}^{0} + \mathbf{h}_{i}^{1}, \text{ for } j=1,2,\cdots,p-1, \sum_{i=0}^{p-1} (-1)^{j} h_{i+lj}^{0} = \mathbf{h}_{0}, \sum_{i=0}^{p-1} (-1)^{j} h_{i+lj}^{1} = \mathbf{h}_{1} \},$$

for
$$h_0=0,1,\dots,q-1, h_1=0,1,\dots,q-1, i=0,1,\dots, l-1;$$

end if

else

$$(D_1, D_2, \dots, D_p) = (A_{p+1} - A_1, -(A_{p+2} - A_2), \dots, A_{2p} - A_p);$$

$$\operatorname{dcost}[i+jl, h] \stackrel{(pl)}{=} \min\{\operatorname{cost}[i+jl, i+jl+pl, h \stackrel{0}{_{i+lj}}, h \stackrel{1}{_{i+lj}}]^{(2pl)} | (-1)^{-j} (h \stackrel{1}{_{i+lj}} - h \stackrel{0}{_{i+lj}}) = h\},$$

for $h=0,1,\dots,q-1$, $i=0,1,\dots,l-1$, $j=0,1,\dots,p-1$;

dcost[i, h]
$$^{(l)} = \sum_{j=0}^{p-1} \text{dcost}[i+jl, h]^{(pl)}$$
, for h=0,1,...,q-1, i=0,1,..., l-1;

$$T_D = \sum_{i=0}^{l-1} \min_{0 \le h < q} \{ dcost[i, h]^{(l)} \};$$

if $T_D \leq k$ then

c=c+(p-1)
$$l$$
; a= $(\sum_{i=1}^{p} A_i, \sum_{i=1}^{p} A_{p+i})$;

$$\begin{split} & \operatorname{cost}[i,i+l,h_0,h_1]^{(2l)} = \min\{\sum_{j=0}^{p-1} & \operatorname{cost}[i+lj,i+pl+lj,h_0^0,h_{i+lj}^0,h_{i+lj}^0]^{(2p)} \\ & \hspace{0.5cm} | (-1)^{-j} \left(h_{1+lj}^1 - h_{i+lj}^0\right) = h_i^1 - h_i^0, \text{ for } j = 1,2,\cdots,p-1, \sum_{j=0}^{p-1} h_{i+lj}^0 = h_0, \sum_{j=0}^{p-1} h_{i+lj}^1 = h_1 \}, \\ & \hspace{0.5cm} \operatorname{for } h_0 = 0,1,\cdots,q-1, h_1 = 0,1,\cdots,q-1, i = 0,1,\cdots,l-1; \\ & \hspace{0.5cm} \operatorname{else} \\ & \hspace{0.5cm} \operatorname{cost}[i,i+l,h_0,h_1]^{(2l)} = \min\{\sum_{i=1}^{p-1} A_{2i-1}, \sum_{i=1}^{p} A_{2i}\}; \\ & \hspace{0.5cm} \operatorname{cost}[i,i+l,h_0,h_1]^{(2l)} = \min\{\sum_{j=0}^{(p-1)/2} \operatorname{cost}[i+2lj,i+pl+2lj,h_{i+2lj}^0,h_{i+2lj}^0,h_{i+2lj}^1]^{(2pl)} \\ & \hspace{0.5cm} + \sum_{j=0}^{(p-1)/2-1} \operatorname{cost}[i+(2j+1)l,i+pl+(2j+1)l,h_{i+(2j+1)l}^1,h_{i+(2j+1)l}^0]^{(2pl)} \sum_{j=0}^{p-1} h_{i+lj}^0 = h_0, \sum_{j=0}^{p-1} h_{i+lj}^1 = h_1 \}, \\ & \hspace{0.5cm} \operatorname{for } h_0 = 0,1,\cdots,q-1,h_1 = 0,1,\cdots,q-1,i=0,1,\cdots,l-1; \\ & \hspace{0.5cm} \operatorname{end if } \\ \operatorname{end if } \\ \operatorname{end while } \\ \operatorname{if } \min_{0 \leq h \leq q} \{ \operatorname{cost}[0,1,h,h]^{(2)} \} \leqslant k \text{ then } \\ & \hspace{0.5cm} \operatorname{ccc} + 1 \\ \operatorname{else } \\ & \hspace{0.5cm} \operatorname{ccc} + 1 \\ \operatorname{else } \\ & \hspace{0.5cm} \operatorname{ccc} + 2 \\ \operatorname{end if } \\ \end{array}$$

Fig. 2. Algorithm 2, computing the k-error linear complexity of a sequence with period $2p^n$ over GF(q)

This new algorithm reduces to the Wei-Xiao-Chen algorithm [5] in the case k = 0. The validity of our algorithm can be shown by using the following propositions.

Proposition 1. At the jth($j \le n$) step, we may prevent $(p-1)p^{n-j}$ or $2(p-1)p^{n-j}$ from being added to c, and the total of all remaining possible additions is only $2p^{n-j}$.

Proof:
$$\begin{bmatrix} (p-1)p^{n-1} & (p-1)p^{n-2} & \mathbf{L} & (p-1)p & p-1 & 1 \\ (p-1)p^{n-1} & (p-1)p^{n-2} & \mathbf{L} & (p-1)p & p-1 & 1 \end{bmatrix}$$

Here the jth column of the matrix represents the possible additions to c at the jth step.

The total of all remaining possible additions is $2(p-1)p^{m-j-1}+2(p-1)p^{m-j-2}+\cdots+2(p-1)+2=2p^{m-j}$.

Proposition 2.
$$\sum_{l=0}^{l-1} \min_{0 \le h_0 < q, 0 \le h_0 < q} \{ \operatorname{cost}[i, i+l, h_0, h_1]^{(2l)} \} \le k, \quad l = p^n, \dots, p, 1$$

Proof: When $l = p^n$, it is easy to show that $\sum_{i=0}^{l-1} \min_{0 \le h_0 < q, 0 \le h_1 < q} \{ \text{cost}[i, i+l, h_0, h_1]^{(2l)} \} = 0.$

If
$$T_C \le k$$
 at the jth step, we have $\sum_{i=0}^{l-1} \min_{0 \le h_0 < q, 0 \le h_1 < q} \{ \text{cost[i, i+}l, h_0, h_1]^{(2l)} \} = T_C \le k.$

If
$$T_B \le k$$
 and $T_C > k$ at the jth step, we have
$$\sum_{i=0}^{l-1} \min_{0 \le h_0 < q, 0 \le h_i < q} \{ \text{cost[i, i+}l, h_0, h_1]^{(2l)} \} = T_B \le k.$$

If
$$T_D \leq k$$
 and $T_B > k$ at the jth step, we have $\min_{0 \leq h_0 < q, 0 \leq h_1 < q} \{ \operatorname{cost}[i, i+l, h_0, h_1]^{(2l)} \} = T_D \leq k$.

If $T_D > k$ and $T_B > k$ at the jth step, we have

$$\sum_{i=0}^{l-1} \quad \min_{0 \leq h_0 < q, \, 0 \leq h_1 < q} \; \{ \; \operatorname{cost}[\mathrm{i}, \, \mathrm{i} + l, \, h_0, \, h_1]^{(2l)} \} = \\ \sum_{i=0}^{pl-1} \quad \min_{0 \leq h_0 < q, \, 0 \leq h_1 < q} \; \{ \; \operatorname{cost}[\mathrm{i}, \, \mathrm{i} + pl, \, h_0, \, h_1]^{(2pl)} \} \leqslant k. \; \text{The proof is completed.}$$

IV. NUMERICAL EXAMPLE

Example 1. Let s be a sequence over GF(3) with period $N=2 \cdot 5^2$ whose one period is **Initial values:** $a = s^N$; $l = 5^2$; c = 0;

where the ith($0 \le i < l$) column of the matrix represents cost[i,i+l,h₀,h₁]^(2l), h₀=0,1,···,q-1, h₁=0,1,···,q-1.

Step 1. l=5, $A_1=12101$, $A_2=00012$, $A_3=12021$, $A_4=02202$, $A_5=11221$, $A_6=12121$, $A_7=21210$, $A_8=12101$, $A_9=21021$, $A_9=21021$, $A_{10}=12101$, $A_{11}=12101$, $A_{12}=12101$, $A_{13}=12101$, $A_{14}=12101$, $A_{15}=12101$, $A_{15}=12$ $A_{10} = 10100$

$$(bcost[i,h]^{(l)}) = \begin{pmatrix} 5 & 4 & 4 & 5 & 4 \\ 5 & 1 & 4 & 5 & 4 \\ 0 & 5 & 2 & 0 & 2 \end{pmatrix}, \quad T_B = 5 = k. \quad (cost[i, i+l, h_0, h_1]^{(2l)}) = \begin{pmatrix} 8 & 8 & 7 & 6 & 8 \\ 7 & 10 & 5 & 8 & 7 \\ 10 & 7 & 7 & 8 & 7 \\ 5 & 5 & 8 & 6 & 5 \\ 4 & 7 & 6 & 8 & 4 \\ 7 & 4 & 8 & 8 & 4 \\ 6 & 6 & 7 & 4 & 9 \\ 5 & 8 & 5 & 6 & 8 \\ 8 & 5 & 7 & 6 & 8 \end{pmatrix}$$

$$T_{C}=21>k, \text{ so c}=20. \qquad (cost[i, i+l, h_{0}, h_{1}]^{(2l)})= \begin{pmatrix} 5 & 4 & 4 & 5 & 4 \\ 5 & 1 & 4 & 5 & 4 \\ 0 & 5 & 2 & 0 & 2 \\ 5 & 2 & 4 & 5 & 4 \\ 2 & 5 & 2 & 2 & 2 \\ 5 & 4 & 4 & 5 & 4 \\ 2 & 5 & 2 & 2 & 2 \\ 5 & 4 & 4 & 5 & 4 \\ 5 & 1 & 4 & 5 & 4 \end{pmatrix}$$

$$(\operatorname{dcost}[i,h]^{(ph)}) = \begin{pmatrix} 2 & 1 & 2 & 2 & 2 \\ 2 & 2 & 2 & 0 & 2 \\ 0 & 1 & 2 & 2 & 2 \end{pmatrix}, (\operatorname{dcost}[i,h]^{(h)}) = \begin{pmatrix} 9 \\ 8 \\ 7 \end{pmatrix}. T_{D} = 7 > k, \text{ so } c = 20 + 8 = 28. (\operatorname{cost}[i, i+l, h_0, h_1]^{(2h)}) = \begin{pmatrix} 7 \\ 7 \\ 7 \\ 5 \\ 7 \\ 5 \\ 7 \end{pmatrix}$$

Step 3. a=(1,1). Since $cost[0, 1, 0, 0]^{(2)}=5=k$, therefore c=28. Finally the 5-error linear complexity is 28.

V. CONCLUSION

First, we optimize the structure of the Wei-Xiao-Chen algorithm in [5] for the linear complexity of sequences over GF(q) with period $N = 2p^n$, where p and q are odd primes, and q is a primitive root (mod p^2).

Second, we presented an algorithm for determining the k-error linear complexity of a sequence with period $N = 2p^n$ over GF(q), where p and q are odd primes, and q is a primitive root (mod p^2). The algorithm is derived from the Wei-Xiao-Chen algorithm for the linear complexity of sequences over GF(q) with period $2p^n$ and by using the union cost different from that used in the Stamp-Martin algorithm for sequences over GF(2) with period 2^n . The algorithm reduces to the Wei-Xiao-Chen algorithm in the case k = 0.

REFERENCES

- [1] C. Ding, G. Xiao, W. Shan, The Stability Theory of Stream Ciphers. Lecture Notes in Computer Science Vol. 561. Berlin/ Heidelberg, Germany: Springer-Verlag, 1991.
- [2] R. A. Games, A. H. Chan, "A fast algorithm for determining the complexity of a pseudo-random sequence with period 2ⁿ". IEEE Trans. Inform. Theory, vol. IT-29, pp. 144-146, Jan.1983.
- [3] T. Kaida, S. Uehara, K. Imamura, "An algorithm for the *k*-error linear complexity of sequences over GF(p^m)with period pⁿ, p a prime". Information and Computation, 1999, 151(1):134-147.
- [4] M. Stamp, C. F. Martin, "An algorithm for the *k*-error linear complexity of binary sequences with period 2ⁿ". IEEE Trans. Inform. Theory, vol.39, pp. 1389-1401, July 1993.
- [5] S. Wei, G. Xiao, Z.Chen, "A fast algorithm for determining the minimal polynomial of a sequence with period $2p^n$ over GF(q)", IEEE Trans. Inform. Theory, vol.48, pp. 2754-2758, Oct.2002.
- [6] G. Xiao, S. Wei, K. Y. Lam, and K. Imamura, "A fast algorithm for determining the linear complexity of a sequence with period pⁿ over GF(q)", IEEE Trans. Inform. Theory, vol.46, pp. 2203-2206, Sept.2000.

RESUME OF JIANQIN ZHOU

Education:	
1986-1989	Statistics Department, Fudan University,
	Shanghai, P.R.China, Master of Science in Statistics.
1979-1983	Mathematics Department, East China Normal University,
	Shanghai, P.R.China, Bachelor of Science in Mathematics
Anl Pub pro Pau	fessor, Department of Computer Science, nui University of Technology. lished more than thirty five papers, one paper wed a conjecture posed by famous mathematician l Erdos et al. Research interests include theoretical uputer science, combinatorics and algorithm.