LAPORAN PRAKTIKUM KELOMPOK PROBABILITAS DAN STATISTIKA

ESTIMASI SATU RATAAN DAN DUA RATAAN

Agus Pranata Marpaung 13323033 DIII TEKNOLOGI KOMPUTER

INSTITUT TEKNOLOGI DEL FAKULTAS VOKASI

Judul Praktikum

Minggu/Sesi XII/2 MA32101 **Kode Mata Kuliah** PROBABILITAS DAN STATISTIKA Nama Mata Kuliah Setoran Softcopy **Batas Waktu** 16 November 2024 jam 20:00 Setoran Mahasiswa dapat menyelesaikan soal Estimasi Satu Rataan Tujuan Mahasiswa dapat menyelesaikan soal Estimasi Dua Rataan Tugas

	No.
Nama: Agus Pranata NIM: 13323033	Date .
1) 0:	
1) Diketahui: - Simpangan baku Populasi (T) = 0,15	desilitor = 0.015 liter
	desitives > 0.012 fitter
- Rata-rata sampel (7) = 2,2r Liter	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- Ukuran Sampel (n) =36	P4 P2 2 40122
- Tingkat kepercayaan = 95 %	
0.1	(And) was a night and one
Ditanya:	30 X 22 2 3 4 10 10 10 10 10 10 10 10 10 10 10 10 10
- Selang kepercayaan 95 % Untuk rata.	
	ms to cool a tall
Jawab:	at as Co. Co. In Party cash Co. onl
	2) Manghitung Simpangan baku Rata-Rata Sampel
= 0 = 0 - 0 , 95 = 0 , 05	$\sigma_{\chi} = \frac{\sigma}{\Gamma}$
= <u>d</u> : 0.025	
ANTINATE THE	of on melaconstal feature
	Ox = 0.015 = 0.015 = 0.002
	V36 6
3) Menghitung Selang kepercayaan	4) Menogtukan batas bawah dan batas atas
= X + Z × σz	4) Menoqtukan batas bawah dan batas atas kepercayaan
$= \bar{X} + Z_{\frac{1}{2}} \times \sigma_{\bar{x}}$ $= 2.25 + 1.96 \times 0.0025$	4) Menoqtukan batas bawah dan batas atas kepercayaan -> Batas bawah: 2,25-0,0049 = 2,2451
= X + Z × σz	
$= \bar{X} + Z_{\frac{1}{2}} \times \sigma_{\frac{1}{2}}$ $= 2.25 \pm 0.0049$	4) Menortukan batas bawah dan batas atas kepercayaan -> Batas bawah: 2.25 - 0.0049 = 2.2451 -> Batas atas : 2.25 + 0.0049 = 2.2549
$= \overline{X} + Z_{\frac{1}{2}} \times \sigma_{\overline{x}}$ $= 2.25 + 1.96 \times 0.0025$ $= 2.25 + 0.0049$ Second keparangan yang diketuarkan oleh me	4) Menoqtukan batas bawah dan batas atas kepercayaan -> Batas bawah: 2,25-0,0049 = 2,2451
$= \bar{X} + Z_{\frac{1}{2}} \times \sigma_{\frac{1}{2}}$ $= 2.25 \pm 0.0049$	4) Menortukan batas bawah dan batas atas kepercayaan -> Batas bawah: 2.25 - 0.0049 = 2.2451 -> Batas atas : 2.25 + 0.0049 = 2.2549
$= \overline{X} + Z_{\frac{1}{2}} \times \sigma_{\overline{x}}$ $= 2.25 + 1.96 \times 0.0025$ $= 2.25 + 0.0049$ Second keparangan yang diketuarkan oleh me	4) Menoqtukan batas bawah dan batas atas kepercayaan -> Batas bawah: 2.25-0,0049 = 2,2451 -> Batas atas : 2,25 +0,0049 = 2,2549 esin sebangak 95% adalah dalam rentang 2,24
$= \overline{X} + \overline{Z} + \overline{Z} \times \overline{\sigma}$ $= 2.25 + 1.96 \times 0.0025$ $= 2.25 + 0.0049$ Solang kepercagaan yang dikeluarkan oleh mehingga 2.2549 liter	4) Menortukan batas bawah dan batas atas kepercayaan 3 Batas bawah: 2,25 - 0,0049 = 2,2451 3 Batas atas : 2,25 + 0,0049 = 2,2549 esin sebangak 95% adalah dalam rentang 2,24 Ditanya:
= $\bar{x} + Z_{1}^{d} \times \sigma_{7}$ = 2.25 + 1.36 × 0.0025 = 2.25 ± 0.0049 Solang kepercagaan yang dikeluarkan oleh mehingga 2.2549 liter. 2) Diketahvi: - Ukuran Sampel (n) > 100	4) Menoetukan batas bawah dan batas atas kepercayaan 3 Batas bawah: 2.25 - 0.0049 = 2.2451 3 Batas atas : 2.25 + 0.0049 = 2.2549 esin sebangak 95% adarah daram rentang 2.24 Ditanya: a) Serang kepercayaan 33% untuk rata-rat
= $\overline{X} + Z_{1}^{d} \times \sigma_{\overline{x}}$ = 2.25 ± 1.36 × 0.0025 = 2.25 ± 0.0049 Solong keporcayaan yang dikeluarkan oleh mahingga 2.2549 liter. 2) Diketahui: - Ukuran Sampel (n) = 100 - Rata-rata Sampel (\overline{X}) = 23-500 km	4) Mencetukan batas bawah dan batas atas kepercayaan 3 Batas bawah: 2.25 - 0.0049 = 2.2451 3 Batas atas : 2.25 + 0.0049 = 2.2549 esin sebangak 95% adarah dalam rentang 2.24 Ditanya: a) Selang Kepercayaan 99% untuk rata-rat yang ditempuh Sebuah mebil di virginia dara
= \$\overline{\chi} + 2\frac{d}{d} \times 0.0025 = 2.25 \pm 0.0049 Selang kepercayaan yang dikeluarkan oleh me hingga 2.2549 liter. 2) Diketahvi: - Ukuran Sampel (n) = 100 - Rata-rata Sampel (\overline{\chi}) = 23.500 km - Simpanyan baku Popuasi (\overline{\chi}) = 3.900 km	4) Menoetukan batas bawah dan batas atas kepercayaan 3 Batas bawah: 2.25 - 0.0049 = 2.2451 3 Batas atas : 2.25 + 0.0049 = 2.2549 esin sebangak 95% adarah dalam rentang 2.24 Ditanya: a) Selang kepercayaan 99% untuk rata-rat yang ditempuh Sebuah mebil di virginia dara Setahun-
= $\overline{X} + Z_{1}^{d} \times \sigma_{\overline{x}}$ = 2.25 ± 1.36 × 0.0025 = 2.25 ± 0.0049 Solong keporcayaan yang dikeluarkan oleh mahingga 2.2549 liter. 2) Diketahui: - Ukuran Sampel (n) = 100 - Rata-rata Sampel (\overline{X}) = 23-500 km	4) Menortukan batas bawah dan batas atas kepercayaan 3 Batas bawah: 2,25-0,0049 = 2,2451 3 Batas atas : 2,25 t0,0049 = 2,2549 esin sebangak 95% adarah dalam rentang 2,24 Ditanya: a) Selang kepercayaan 99% untuk rata-rat yang ditempuh Sebuah mebil di virginia dala Setahun- b) Besarnya garat (margin of error) dengan 1
= \$\overline{\chi} + 2\frac{d}{d} \times 0.0025 = 2.25 \pm 0.0049 Selang kepercayaan yang dikeluarkan oleh me hingga 2.2549 liter. 2) Diketahvi: - Ukuran Sampel (n) = 100 - Rata-rata Sampel (\overline{\chi}) = 23.500 km - Simpanyan baku Popuasi (\overline{\chi}) = 3.900 km	4) Menortukan batas bawah dan batas atas kepercayaan 3) Batas bawah: 2,25-0,0049 = 2,2451 3 Batas atas : 2,25 +0,0049 = 2,2549 esin sebangak 95% adarah dalam rentang 2,24 Ditanya: a) Selang kepercayaan 99% untuk rata-rat yang ditempuh Sebuah mebil di virginia dara Setahun- b) Besarnya garat (margin of error) dengan k
= $\bar{X} + Z_{\frac{1}{2}} \times \sigma_{\bar{x}}$ = 2.25 ± 1.96 × 0.0025 = 2.25 ± 0.0049 Solong keperanyaan yang dikeluarkan oleh mehingga 2.2549 liter. 2) Diketahui: - Ukuran Sampel (n) = 100 - Rata-rata Sampel (\bar{x}) = 23-500 km - Simpanyan baku Popuasi (σ) = 3.900 km - Tingkat kepercagaan = 99%	4) Menortukan batas bawah dan batas atas kepercayaan 3) Batas bawah: 2,25-0,0049 = 2,2451 3 Batas atas : 2,25 +0,0049 = 2,2549 esin sebangak 95% adarah dalam rentang 2,24 Ditanya: a) Selang kepercayaan 99% untuk rata-rat yang ditempuh Sebuah mebil di virginia dara Setahun- b) Besarnya garat (margin of error) dengan 1
= $\bar{X} + Z_{\frac{1}{2}} \times \sigma_{\overline{x}}$ = 2.25 ± 1.96 × 0.0025 = 2.25 ± 0.0049 Selong kepercayaan yang dikeluarkan oleh mehingga 2.2549 liter. 2) Diketahui: - Ukuran Sampel (n) = 100 - Rata-rata Sampel (\bar{X}) = 23.500 km - Simpangan baku Populasi (σ) = 3.900 km - Tingkat kepercayaan = 99%	4) Mencetukan batas bawah dan batas atas kepercayaan 3 Batas bawah: 2.25-0.0049 = 2.2451 3 Batas atas : 2.25 t0.0049 = 2.2549 esin sebangak 95% adarah dalam rentang 2.24 Ditanya: a) Selang kepercayaan 99% untuk rata-rat yang ditempuh Sebuah mebil di virginia dala Setahun- b) Besarnya garat (margin of error) dengan 1 40% jika jarak yang ditakir adarah 2
= $\bar{X} + Z_{\frac{1}{2}} \times \sigma_{\overline{x}}$ = 2.25 ± 1.36 × 0.0025 = 2.25 ± 0.0049 Solong keperanyaan yang dikeluarkan oleh mehingga 2.2549 liter. 2) Diketahui: - Ukuran Sampel (n) = 100 - Rata-rata Sampel (\bar{x}) = 23-500 km - Simpanyan baku Populasi (σ) = 3.900 km - Tingkat kepercagaan = 99% Jaluah: a) Menghitung Selang kepercagaan 99%	4) Menortukan batas bawah dan batas atas kepercayaan 3 Batas bawah: 2.25 - 0.0049 = 2.2451 3 Batas atas : 2.25 + 0.0049 = 2.2549 esin sebangak 95% adarah dalam rentang 2.24 Ditanya: a) Selang kepercayaan 99% untuk rata-rat yang ditempuh Sebuah mebil di virginia dara Setahun- b) Besarnya garat (margin of error) dengan 1 99% jika jarak yang ditakir adarah 2
= $\bar{X} + Z_{\frac{1}{2}} \times \sigma_{\bar{x}}$ = $2.25 \pm 1.96 \times 0.0025$ = 2.25 ± 0.0049 Solong keperanyaan yang dikeluarkan oleh mehingga 2.2549 liter. 2) Diketahui: - Ukuran Sampel (n) = 100 - Rata-rata Sampel (\bar{x}) = 23-500 km - Simpanyan baku Populasi (σ) = 3.900 km - Tingkat kepercayaan = 99% Jaluah: a) Menghitung Selang kepercayaan 99% 1) Menentukan nitai 24	4) Menortukan batas bawah dan batas atas kepercayaan 3) Batas bawah: 2,25-0,0049 = 2,2451 3) Batas atas : 2,25 +0,0049 = 2,2549 esin sebangak 95% adarah dalam rentang 2,24 Ditanya: a) Selang kepercayaan 99% untuk rata-rat yang ditempuh Sebuah mebil di virginia dara Setahun- b) Besarnya garat (margin of error) dengan k 90% jika jarak yang ditakir adarah 2. b) Menghitung Simpanyan baku rata-rata
= $\bar{X} + Z_{1}^{d} \times \sigma_{\bar{x}}$ = 2.25 ± 1.36 × 0.0025 = 2.25 ± 0.0049 Solong kepercayaan yang dikeluarkan oleh mehingga 2.2549 liter. 2) Diketahvi: - Ukuran Sampel (n) = 100 - Rata-rata Sampel (\bar{X}) = 23.500 km - Simpangan baku Populasi (σ) = 3.900 km - Tingkat kepercayaan = 99% Jalaab: a) Menghitung Selang kepercayaan 99%	4) Menortukan batas bawah dan batas atas kepercayaan 3) Batas bawah: 2,25-0,0049 = 2,2451 3) Batas atas : 2,25 +0,0049 = 2,2549 esin sebangak 95% adarah dalam rentang 2,24 Ditanya: a) Selang kepercayaan 99% untuk rata-rat yang ditempuh Sebuah mebil di virginia dara Setahun- b) Besarnya garat (margin of error) dengan se 90% jika jarak yang ditakir adarah 2 b) Menghitung Simpanyan baku rata-rata

2) Manalitata Calana Lauranna and	
3) Menghirung Selang kepercayaan 99%.	4) Menentukan batas bawah dan batas atas
	→ Batas bawah: 23500 - 1004,64 = 22495,36 km → Batas at as = 23500 + 1004,64 = 24504,64 km
= 23500 ± 1004,64	→ Batas at as = 23500 + 1004, 64 = 24504, 64 km
25700 5 1004,04	A to market maket
b) Menghitung Margin Of Error (Gasat)	
Mo E = 2 & × 02	Cita na
Mob = 21576 X 390	4 (410) 800 N 10
Mo E= 1004,64 km	
	le al
Diretahui: 11 2 11 12 11 11 11 11 11 11 11 11 11 1	
- Data sample diameter Potongan Logam (dalam	
1.01 ; 0.97 ; 1.03 ; 1.04 ; 0.99; 0.98 ; 0.99	
- Tingkat kepercayaan = 99 %	yang dihasikan mesin.
- Distribusi dianggap hampir hormal	
- Ukuran Sampel (n) = 9	
1) Menghiwng rata-rata Samper $\overline{X} = \sum Xi = 0.05 = 1,0056$	2) Menghitung Simpangan baku sampel $S = \frac{\sum (x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2} = \frac{0.00482544}{2}$
n 3	V N-1 V B
	= 0.02455
3) Menentukan nilai të Untuk df = 8 dan	tingkat Kepercayaan 99%
t = 3,355	a country to
in the same time are not and around	
4) Menghibung simpangan baku tata-rata Sampel	
The same of the sa	2 ± t ± × Sz = 1,0056 ± 3,355 × 0,008183
the within the to prove any say of the	= 1,0056 ± 0,02746
6) Batas bawah dan Batas atas 🗦 0,9781	14 £ \$ 1,03306
and and the second particular of	the audient set problem to
A TOTAL TOTAL	

	No.
Noma: Agus Pranata NIM: 13323033	Date .
4) Diketahui	Ditanya:
- Ukuran Sampet (n) = 12	Selang kepercayaan 90% untuk rataan kek
- Rata-rata Sampel (x) = 48,50	tockwell kegala Paku.
_ Simpangan baku Sampel (S) = 1.5	
- Tingkat Kepercayaan = 90 %	
Jawah:	, indian
1) Menghitung nitai té	Menghitung simpangan baku rata-rata Sam
= d=0,10, == 0,05	Sz = 1 => Sz = 1/2
= df = n-1 = 12-1=11	17 - 27 - 27 - 27 - 27
= t== 11796	=> S== 115 3,464 = 0,4
	STATE AND ADDRESS TO A STATE OF
3) Menghiwng Selang Kepercayaan 4)	Menentukan batas bawah dan batas atas
= x ± tg x Sx	Batas Bawah = 48,50-0,477 = 47,7
= 48,50 ± 1,796 x 0,433	Batas atas = 48,50+0,777 = 49,2
= 48,50 ± 0,777	
5) Diketahui:	Ditanya:
o) Samper 1 (tanpa cairan A)	selang kepercagoan go % Untuk selisih ra
- Ukutan Sampel (n.) =100	(* - 12) Kedua populasi dan apakah c
- Rata-Rata Sampel (Z1) = 12,2 mm	A menurunkan banyaknya logam yang
- Simpangan baku Sampet (S1) = 1.1 mm	kir ?
e) Sampel 2 (dengan Cairan A)	
- Ukuran Sampei (n2) = 200	
- Rata - Rata Sampel (x2) = 9,1 mm	
simpangan baku sampel (S2)=0.9 mm	adding solve tuberth again is more to f
·) Tingkat Keper cayaan = 98 %	1,1
Ja Wab:	
	Jesus - Dune
= X = 0:02, = = 0:01	
₹ = 2,33	
2) Menghitung error Standar Seisih rata-rata	
$SE_{\bar{x}_1 - \bar{x}_2} = \begin{cases} \frac{S_1^2}{n_1} + \frac{S_2^2}{n_2} \\ \frac{S_2^2}{n_1} + \frac{S_2^2}{n_2} \end{cases} SE_{\bar{x}_1}$	x > 1121 + 0181 = NO.0121+0.00
\n, n ₂	1 100 200
	= 10,01615

```
a) Menentukan batas bawah dan batas atas
3) Menghitung Selang Kepercayaan
   = (x1 - x2) + 2 x SE x1 - x2
                                                => Batas Bawah = 3, 1 - 0 12961 = 2,8039
   = (12,2-9,1) + 2,33 x 0,1271
                                                   Batas Atas = 311+0,2961 = 3,3961
   = 3,1 ± 2,33 x 0, 1271
    = 3 11 + 0 12981
6) Diketahui:
                                                      Ditanya:
    ·) Samper A
                                                       Serang kepercayaan 90 % untuk sewih rata -
                   o) Sampel B
        - n = 12
                  - h2 = 10
                                                       rata (4. - 1)
        - x1 = 85
                      - 82 = 81
        - S1 = 4 - S2 = 5
     ·) Tingkat kepercayaan = 30 %
     1) Asumsi : Variansi kedua populasi Sama (0) = 02)
 Jawab:
    1) Manghitung Variansi gabungan (Sp):
                                                     2) Menghitung simpangan baku gabungan (Sp)
         S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}
                                                             Sp = $20,05 = 9,40
        Sp = (12-1) 42 +(10-1) 52
        SP = 11 x 16+9 x 25 = 176+225 = 401 = 20:05
    3) Menghitung error Standar untuk Seisih rata-rata
                                                     4) Menentukan nikai to untuk derajat
          SE = Sp \ \ \frac{1}{01} + \frac{1}{02}
                                                              kebebasan df = n, +n2-2 = 20 dan
                                                              tingkai kepercayaan 30 %
                                                                  t= 11725
             = 4.48 \sqrt{\frac{1}{12} + \frac{1}{10}} = 4.48 \sqrt{0.0033 + 0.1}
                                  = 4,40 /0,1833
                                                           6) Menentukan batas bawah dan
                                  = 4148 × 0,4283 = 1192
                                                               batas atas
                                                               =) Batas bawah = 4 - 3,312
    5) Menghitung Selang kepercayaan
                                                                                 = 0,608
        = (x, -x2) ± t x x se
                                         0 = 4 ± 3,312
                                                               =) Batas atas = 4 + 3,312
          (85-81) ± 1,725 × 1,92
                                                                                 = 7,312
           4 ± 11725 × 1192
```

```
Nama: Agus Pranata
                    NIM: 13323033
7) Diketahui:
                     ator-ator a medical results of rotal entires
    ") Merek A
                          ·) Merek B
                                          . Tingkat kepercayaan
       - n1 = 12 51 51 - n2 = 12 = 95%
       - X1 = 36 300 km - X2 = 38100 km
       - S1 = 5 000 km - S2 = 6100 km · Asumsi = Variansi kedua
                                              Populasi sama (o = o 2)
1995 . 06 N C . 3334 - 199 . 08 x 6,577
     Ditanya:
     Selang Kepercayaan 95 % Untuk Seisih rata rata (1, - 1/2).
 at Manuturan ning to total design des not the per at dans
     Dwab:
     1) Menghitung Variansi gabungan (Sp)
            S2 = (n: -1) S1 + (n2-1) S2
     enting an element to 11 + 12 -2 nasymptotic grant grant to
     5 = (12-1) 5000 + (12-1) 6 100 = 10018 - 108 45)
                          12 + 12-2 | CIE x AEG, C + 008/-
          5° = 11 x 25.000.000 +11 x 37.210.000 = 275.000.000 + 409.310.000
                                                          22
                                                    = 684 - 310 - 000
                                                          22
                                                Sp = 31.105.000
     a) Menghitung Simpangan baku gabungan (Sp)
                Sp = \31-105.000 = 5.578,08
```

	No.
	Date
n 18328083	Memo: Ages Promoto Nin
Monshitung error Standar untuk Selisih rata-1	
$SE = S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} = 5.578,08$	1 + 1
V n, n ₂	12 12 11
- X = 28100 km	m4 008 dE = 12 +
100 h see 200 man / 1 200 2 A + 1 2 5 570,08 \$ 01	1667 +0.1667
D (D) and isolat	
= 5578,08 10	3334 2 5578.08 x 0,5774
/ 12 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 3219,65
by cotton solid table rate (M. Pr.)	
4) Menentukan nizai t untuk derajat kebebasa	
tingkat kepercayaan 95 % t= 2,074	most.
ti = 2,079	
5) Monghitung Selang kepercayaan	
	dan batas atas
= (36300 - 38100) ± 2074 x 3219,65	
= -1800 ± 2,074 × 3219,65	
= -1800 ± 6673,53	= -04+3,53
ree ere + 11 × 3+ 110 - 000 . 275-00-100 € 0.10	TEY II - 35
22 22	=) Batas atas
	= - 1800 + 6673,53
000 gis - 863 a	: 4893,53
22	
000,201-15 # 90	
(42) menusep u	a) mentiling Standar
	1 - 12 - 1 - 1 - 1

	No.
	Date
Nome A. Barata Mineria	7 9 2 1 2 2
Nama: Agus Pranata Nim: 13	
	Ditanya's all assuments
	- Selang kepercayaan 90 % o
- Data waktu film Perusahaan 1	Selish rata-tota waktu p
	Mending Suns Cardinal
	32 X 7 1 ± (8X + AX)
	× (18.) + (15.311- p.80)
Jawab:	780410 ± 18151 - 9
	simpangan boku (3) untuk masing-masing
	Memerican Sator bounts don P
	NC - IE. II - House I would
3 103 + AU +1/D:	187+98 98.4
$S_A = \sqrt{\frac{\sum (x_i - \bar{x}_i)^2}{n-1}}$	
C Σ (×i - 7	$\left(\frac{A}{A}\right)^2 = 8.96$
√ n-1	
- Perusahaan B	
X = 97 +82 +12	3+92+175+80+118 = 110,71
	7
$S_8 = \frac{\sum (x_1 - \bar{x}_1)}{\sum (x_1 - \bar{x}_1)}$	30,26
N n-1	
2) Menghitung Error Standar ur	
SE = 32A + 52B	$= \sqrt{\frac{8.96^2}{5} + \frac{30.26^2}{7}}$
√ n _A n _B	N 5 7
	= \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
1 1 1 1 1 1 1 1	, V 5 , 7,
	= N16.0563 + 130,8097 = N146.
	= 12;

	No.
	Date
	Nome Agus Pranata Nimi 1832303
) Menentukan nilai te untuk der	rajat kebebasan df = NA + NB -2 = 5+5
= 10 dan tingvat kepercayaan	90 % A mortioned still milk ofe? -
10) 11 10 11 11 11 1 1 1 1 1 1 1 1 1 1 1	Be . (B , on , ite , Ed)
(au - Au) mai	a remember of the furnament E
4) Mendhibung Selang kepercayaan	: 27,82, 123, 92, 134, 88 (nB -
= (xA + xB) + t xx	a Trotal kantanana apin 3
= (98,4-110,71) + 1,8	
= -12,31 ± 21,945	JANATA
	agail ash (x) startiff southland (1
5) Menentukan Batas bawah da	an Batas Atas
=) Batas Bawah = -12,31 -	21,945 = -34,255
Batas Atas = -12,31 +	21 1945 = 8,635
	(+x-+) 3 A2
	St. mentalang
10,000 80+08+04145	0 4 5 (1) + 10 2 + (1) 2 + (1)
	1
	(ax x) 2
ning of an angle	some which sould continued to
taract trae.8	6 5 4 A 2 12
	AR A
803 21 JP 68	