Summary

Grammaires

CS410 - Langages et Compilation

Julien Henry Catherine Oriat

Grenoble-INP Esisar

2012-2013

Grammaires Hors Contexte

Grenoble-INP Esisar

2012-2013 < 1 / 33 > Grenoble-INP Esisar

Grammaires hors-contexte

Les grammaires hors contexte permettent de définir la classe des langages hors-contexte.

Définition: (Grammaire hors-contexte)

Une grammaire hors-contexte est un quadruplet $G = \langle V_T, V_N, S, R \rangle$, où:

- V_T est un vocabulaire, appelé vocabulaire terminal;
- V_N est un vocabulaire, appelé vocabulaire non terminal, et tel que $V_N \cap V_T = \emptyset$;
- $S \in V_N$ est appelé axiome (ou source) de la grammaire.
- R est un ensemble de règles de la forme $A \to w$ avec $A \in V_N$ et $w \in (V_N \cup V_T)^*$

Langages Réguliers C Langages Hors Contexte

Exemple

On définit la grammaire suivante sur le vocabulaire $V_T = \{(,), a, b, \cdots, z\}$:

$$R = \begin{cases} S \to \varepsilon \\ S \to (S) \\ S \to LSL \\ L \to a|b|\cdots|z \end{cases}$$

$$V_N = \{S, L\}$$

Grenoble-INP Esisar

2012-2013 < 3 / 33 > Grenoble-INP Esisar

2012-2013 < 4/33 >

Relation de Dérivation

Définition: (Relation de dérivation)

- Soit $x, y \in V^*$. On dit que x dérive vers y, noté $x \to_B y$ si et seulement si il existe une règle $A \rightarrow w$ et deux chaînes $\alpha, \beta \in V^*$ telles que $x = \alpha A \beta$ et $y = \alpha w \beta$.
- On note \rightarrow_R^* la fermeture transitive de \rightarrow_R . $x \rightarrow_R^* y$ si et seulement si il existe x_1, \dots, x_k , tels que $x \to_R x_1 \to_R \dots \to_R x_k \to_R y$.

Exemple

$$R = \begin{cases} S \rightarrow \varepsilon \\ S \rightarrow (S) \\ S \rightarrow LSL \\ L \rightarrow a|b|\cdots|z \end{cases}$$

- $(abS) \rightarrow_R (ab(S))$
- $(ab(S)) \rightarrow_R (ab(LSL))$
- $(ab(S)) \rightarrow_B^* (ab(ab()a))$

Langage engendré

Définition: (Langage engendré par une grammaire hors contexte)

- Le langage engendré par une grammaire $G = \langle V_T, V_N, S, R \rangle$ $est L(G) = \{x \in V_T^*, S \rightarrow_B^* x\}$
- Deux grammaires G_1 , G_2 sont équivalentes ssi $L(G_1) = L(G_2)$.

$$R = \begin{cases} S \rightarrow \varepsilon \\ S \rightarrow (S) \\ S \rightarrow LSL \\ L \rightarrow a|b|\cdots|z \end{cases}$$

Cette grammaire définit le langage des expressions sur V qui sont bien parenthésées.

Arbre de dérivation

Exemple : un arbre de dérivation de la chaîne a()b, pour la grammaire précédente :

Grenoble-INP Esisar

2012-2013 < 7 / 33 > Grenoble-INP Esisar

Grammaire Ambigüe

Définition: (Grammaire ambigüe)

Une grammaire est ambigüe si et seulement si il existe une chaîne qui admet plusieurs arbres de dérivation.

Exemple: Expressions arithmétiques

$$\begin{cases} Exp \rightarrow (Exp) \\ Exp \rightarrow Exp + Exp \\ Exp \rightarrow Exp - Exp \\ Exp \rightarrow Exp * Exp \\ Exp \rightarrow \underline{num} \\ Exp \rightarrow idf \end{cases}$$

Grenoble-INP Esisar

2012-2013 < 9 / 33 > Grenoble-INP Esisar

Chaîne $\underline{idf} + \underline{num} \times \underline{idf}$:

num

Arbres abstraits

Élimination des ambiguïtés

Choix des priorités : L'opérateur \times est prioritaire sur + et -.

→ Terme

Terme * Terme Facteur Terme

Facteur $\rightarrow idf |num| (Exp)$

Choix d'associativités : On décide que les opérateurs sont associatifs à gauche.

> $\rightarrow \hspace{0.1in} \textit{Exp} + \textit{Terme} | \textit{Exp} - \textit{Terme} | \textit{Terme}$ Ехр

Terme → Terme * Facteur | Facteur

Facteur $\rightarrow \underline{idf}|\underline{num}|(Exp)$

Chaîne $\underline{idf} - \underline{idf} - \underline{idf}$:

Grenoble-INP Esisar

2012-2013 < 11 / 33 > Grenoble-INP Esisar

2012-2013 < 12 / 33 >

Langages de programmation

Les langages de programmation peuvent être caractérisés par une grammaire hors contexte. Un programme écrit dans un langage de programmation est syntaxiquement correct si on peut lui associer un arbre de dérivation.

```
Prog
              program Liste_idf begin Liste_inst end;
```

Liste idf ε | Liste idfidf; $\mathsf{Liste_inst} \ \, \to \ \, \varepsilon \, \, | \, \, \mathsf{Inst} \, ; \, \mathsf{Liste_Inst} \,$ Inst idf := Exp;

ightarrow Exp + Terme | Exp - Terme | Terme Exp

Terme <u>idf | num | (Exp)</u>

Exemple

Prog program Liste_idf begin Liste_inst end; ε | Liste_idf idf; Liste_idf Liste_inst ightarrow ε | Inst; Liste_Inst Inst $\underline{idf} := Exp;$ Exp Exp + Terme | Exp - Terme | Terme

Terme <u>idf | num | (Exp)</u>

Le programme suivant est syntaxiquement correct :

Grenoble-INP Esisar

2012-2013 < 13 / 33 > Grenoble-INP Esisar

2012-2013 < 14 / 33 >

Summary

- Grammaires attribuées
- Grammaires LL

Exemple

On prend le langage suivant :

$$Exp \rightarrow Exp + Exp \mid Exp - Exp \mid \underline{num}$$

On peut facilement calculer la valeur d'une telle expression par induction sur les chaînes de la grammaire :

- Si Exp → num, alors val(Exp) = num
- Si $Exp \rightarrow Exp_1 + Exp_2$, alors $val(Exp) = val(Exp_1) + val(Exp_2)$
- Si $Exp \rightarrow Exp_1 Exp_2$, alors $val(Exp) = val(Exp_1) val(Exp_2)$

On peut calculer des propriétés sur l'arbre abstrait grâce à des grammaires attribuées.

Grenoble-INP Esisar

2012-2013 < 15 / 33 > Grenoble-INP Esisar

2012-2013 < 16 / 33 >

Grammaire Attribuée

Définition: (Grammaire Attribuée)

Une grammaire attribuée est une grammaire Hors-Contexte $G(V_T, V_N, S, R)$, à laquelle on associe à chaque élément de V_T et de V_N des attributs.

Il existe 2 types d'attributs :

- attribut synthétisé (noté ↑attr): attribut dont la valeur est transmise du fils vers le père dans l'arbre de dérivation
- attribut hérité (noté $\downarrow_{\mathit{attr}})$: attribut dont la valeur est transmise du père vers le fils dans l'arbre de dérivation

Exemple

Pour déterminer la valeur de l'expression, on utilise des attributs synthétisés:

$$\begin{array}{ccc} \mathsf{Exp} \uparrow^{\mathit{val}} & \to & \mathsf{Exp} \uparrow^{\mathit{val}_1} + \mathsf{Exp} \uparrow^{\mathit{val}_2} \\ & \mathit{val} = \mathit{val}_1 + \mathit{val}_2 \end{array}$$

$$\operatorname{\mathsf{Exp}} \uparrow^{\mathit{val}} \ o \ \operatorname{\mathsf{Exp}} \uparrow^{\mathit{val}_1} - \operatorname{\mathsf{Exp}} \uparrow^{\mathit{val}_2} \ \mathit{val} = \mathit{val}_1 - \mathit{val}_2$$

$$\begin{array}{ccc} \mathsf{Exp} \uparrow^{\mathit{val}} & \to & \underline{\mathsf{num}} \\ & \mathit{val} = \mathit{num} \end{array}$$

Grenoble-INP Esisar 2012-2013 < 17 / 33 > Grenoble-INP Esisar 2012-2013 < 18 / 33 >

Summary

Problème de la reconnaissance

Soit une grammaire $G = (V_T, V_N, S, R)$. On note L(G) le langage engendré par G. Le problème de la reconnaissance consiste à répondre à la question :

Est-ce que $p \in V_T^* \in L(G)$?

Grammaires LL

Pour répondre à cette question, on a deux possibilités :

- Analyse ascendante : faire correspondre la chaîne à des parties droites de règles, et remonter vers l'axiome.
- Analyse descendante : Partir de l'axiome et obtenir la chaîne à dériver en appliquant les règles.

Grenoble-INP Esisar

2012-2013 < 19 / 33 > Grenoble-INP Esisar

2012-2013 < 20 / 33 >

Exemple

Grammaires LL(1)

On considère la grammaire G suivante, avec $V_T = \{a, b, c\}$ et S = P:

$$P \rightarrow Lb$$

 $L \rightarrow a \mid aL \mid cL$

On cherche à déterminer si $acaab \in L(G)$, c'est à dire si $P \to_R^* acaab$. Il faut donc faire un parcours de l'arbre des dérivations possibles.

Définition: (Grammaires LL)

- La classe des grammaires LL(1) définit les grammaires dont il est possible de répondre au problème de la reconnaissance de facon déterministe par une analyse descendante en connaissant uniquement le premier symbole de la chaîne.
- D'une manière générale, la classe des grammaires LL(k) est l'ensemble des grammaires dont le problème de reconnaissance se résout de façon déterministe par une analyse descendante en connaissant les k premiers symboles de la chaîne.

Grenoble-INP Esisar

2012-2013 < 21 / 33 > Grenoble-INP Esisar

2012-2013 < 22 / 33 >

Exemple

S Ab

S а

Α aaS \rightarrow

Α b

Cette grammaire est elle LL(1)?

S \rightarrow Ab

S \rightarrow

ε Α aaS \rightarrow

Α \rightarrow b

Cette grammaire est elle LL(1)?

Ensembles des symboles directeurs

Soit $G = (V_T, V_N, S, R)$ une grammaire. On définit :

- soit $\alpha \in (V_T \cup V_N)^*$, le prédicat **Vide**(α) est vrai si et seulement si ε peut être dérivé de α , c'est à dire $\alpha \to^* \varepsilon$.
- soit $\alpha \in (V_T \cup V_N)^*$, **Premier**(α) est l'ensemble des symboles terminaux qui peuvent débuter une dérivation de α .

$$\mathbf{Premier}(\alpha) = \{ a \in V_T / \exists \beta \in V_T^*, \alpha \to^* a\beta \}$$

• Soit $X \in V_N$. **Suivant**(X) est l'ensemble des symboles terminaux qui peuvent suivre une occurence de X dans une dérivation de Spar G.

Suivant(
$$X$$
) = { $a \in V_T/\exists (\alpha, \beta) \in V_T^{*^2}, S \rightarrow^* \alpha Xa\beta$ }

• soit $X \to u$ une règle de R, avec $u \in (V_T \cup V_N)^*$.

Directeur($X \rightarrow u$) est l'ensemble des symboles terminaux qui peuvent débuter une dérivation par cette règle.

 $\mathbf{Directeur}(X \to u) = \mathbf{Premier}(u) \cup (\ \mathsf{si} \ \mathbf{Vide}(u) \ \mathsf{alors} \ \mathbf{Suivant}(X),$ sinon ∅)

Grenoble-INP Esisar

2012-2013 < 23 / 33 > Grenoble-INP Esisar

2012-2013 < 24 / 33 >

Calcul de Premier et Suivant

Premier(u): les u qui nous intéressent sont les parties droites de règles (voir définition Directeur)

- Si $u = \varepsilon$, alors **Premier** $(u) = \emptyset$,
- Si $u \in V_T$, alors **Premier**(u) = u,
- Si $u \in V_N$, alors $\mathbf{Premier}(u) = \bigcup_{u \to v \in R} \mathbf{Premier}(v)$
- Si $u = u_1 u_2 \cdots u_n$ avec les $u_i \in (V_T \cup V_N)$, alors **Premier** $(u_1) \cup (si\ Vide(u_1)\ alors\ Premier(u_2 \cdots u_n),$

Suivant(X): On regarde toutes les parties droites de règles contenant le symbole X, c'est à dire les règles de la forme $u \to \alpha X\beta$ (α et β possiblement vides)

• Suivant(X) = $\bigcup_{u \to \alpha X \beta \in R}$ Premier(β) \cup (sinon si Vide(β) alors Suivant(u) sinon ∅)

Grenoble-INP Esisar

2012-2013 < 25 / 33 >

Exemple

$$Premier(S\#) = Premier(S) \cup \{\#\}$$

$$Premier(Xa) = Premier(X) \cup \{a\}$$

$$Premier(Xb) = Premier(X) \cup \{b\}$$

$$Premier(X) = Premier(Xb) \cup Premier(Y)$$

$$Z \rightarrow S\#$$

$$S \rightarrow Xa$$

$$S \rightarrow \varepsilon$$

$$X \rightarrow Xb$$

$$Premier(Y) = Premier(aX) = \{a\}$$

$$Premier(S) = Premier(S\#) \cup Premier(Xa)$$

$$Premier(S) = Premier(X) \cup \{\#, a\}$$

$$Y \rightarrow aX$$

$$Y \rightarrow aX$$

$$Y \rightarrow \varepsilon$$

$$Suivant(Z) = \emptyset$$

$$Suivant(S) = \{\#\}$$

$$Suivant(X) = \{a\} \cup \{b\} \cup Suivant(Y)$$

$$Suivant(Y) = Suivant(X)$$

Exemple

$Z \rightarrow S\#$ $Directeur(Z \rightarrow S\#) = \{a, b, \#\}$ S o Xa $Directeur(S \rightarrow Xa) = \{a, b\}$ $\mathcal{S} ightarrow arepsilon$ $Directeur(S \rightarrow \varepsilon)$ $= \{ \# \}$ $X \rightarrow Xb$ $Directeur(X \rightarrow Xb) =$ { a, b} $X \rightarrow Y$ $Directeur(X \rightarrow Y) = \{a, b\}$ $Y \rightarrow aX$ $Directeur(Y \rightarrow aX) = \{a\}$ $\mathbf{Y} ightarrow arepsilon$ *Directeur*(Y → ε) $= \{a, b\}$

CNS pour qu'une grammaire soit LL(1)

Théorème:

Une grammaire est LL(1) si et seulement si pour tout couple de règles $(X \rightarrow u_1, X \rightarrow u_2)$, on a

Directeur(
$$X \rightarrow u_1$$
) ∩ *Directeur*($X \rightarrow u_1$) = \emptyset

Grenoble-INP Esisar

2012-2013 < 27 / 33 > Grenoble-INP Esisar

2012-2013 < 28 / 33 >

2012-2013 < 26 / 33 >

Transformation de grammaires

Le problème de construire une grammaire LL(1) équivalente à une grammaire Hors contexte est indécidable : Il n'existe pas d'algorithme général pour rendre une grammaire LL(1). On peut cependant utiliser des techniques qui fonctionnent généralement en pratique.

Suppression de la récursivité à gauche

Un non terminal A est récursif à gauche lorsqu'il existe une dérivation de la forme $A \rightarrow A\alpha$.

Dans ce cas, on introduit un nouveau non terminal A' et on remplace les règles de départ :

$$\begin{array}{ccc} A & \rightarrow & A\alpha_1|A\alpha_2|\cdots|A\alpha_n \\ A & \rightarrow & \beta_1|\beta_2|\cdots|\beta_m \end{array}$$

par:

$$\begin{array}{ccc}
A & \rightarrow & \beta_1 A' | \beta_2 A' | \cdots | \beta_m A' \\
A' & \rightarrow & \varepsilon | \alpha_1 A' | \alpha_2 A' | \cdots | \alpha_n A'
\end{array}$$

Exemple

On considère la grammaire suivante, récursive à gauche :

$$\mathcal{S} \rightarrow \mathcal{A}\#$$

$$A \rightarrow Aa$$

$$A \rightarrow b$$

Après suppression de la récursivité à gauche, on obtient :

$$S \rightarrow A\#$$

$$A \rightarrow bA'$$
 $A' \rightarrow aA'$
 $A' \rightarrow \varepsilon$

Factorisation

Si une grammaire possède deux règles de la forme

$$A \rightarrow \omega \alpha_1$$

$$A \rightarrow \omega \alpha_2$$

On transforme ces deux règles et on crée un nouveau symbole non

$$\begin{array}{ccc} \textbf{\textit{A}} & \rightarrow & \omega \textbf{\textit{A}}' \\ \textbf{\textit{A}}' & \rightarrow & \alpha_1 \\ \textbf{\textit{A}}' & \rightarrow & \alpha_2 \end{array}$$

$$A' \rightarrow \alpha_1$$

$$A' \rightarrow \alpha_2$$

Grenoble-INP Esisar

2012-2013 < 31 / 33 > Grenoble-INP Esisar

2012-2013 < 32 / 33 >

Substitution

Si une grammaire possède des règles de la forme

$$A \rightarrow B \mid C$$

$$B \rightarrow \omega X | \alpha_1$$

$$C \rightarrow \omega Y | \alpha_2$$

On transforme la grammaire en substituant B et C pour obtenir :

$$A \rightarrow \omega X |\alpha_1| \omega Y |\alpha_2|$$

Ensuite, on factorise et on obtient :

$$A \rightarrow \omega A' |\alpha_1| \alpha_2$$

$$A' \rightarrow X | Y$$

Grenoble-INP Esisar

2012-2013 < 33 / 33 >