Згадаємо постановку задачі у класичному регресійному аналізі. Вважаємо, що для регресійної моделі

$$y = X\alpha + e$$

справедливі усі припущення класичного регресійного аналізу:

I.
$$e \sim \mathcal{N}(\theta_N, \sigma^2 E_N), \sigma^2 \in \mathbb{R}_+,$$

II.
$$rank(X) = p$$
,

III. немає ніяких обмежень на α , тобто $\alpha \in \mathbb{R}^p$.

Введемо позначення $Q(\alpha) = \|y - X\alpha\|^2$. Тоді відомо, що при справедливості припущень І, ІІ, ІІІ оцінка МНК є розв'язком такої оптимізаційної задачі

$$\hat{\alpha} = \arg\min_{\alpha} Q(\alpha) = (X^T X)^{-1} X^T y.$$

Послабимо тепер припущення Π , а саме будемо вважати, що матриця X задовольняє умові:

II'.
$$rank(X) = p - r, \quad r \ge 1.$$
 (0.39)

Припущення Π' еквівалентно умові, що стовпчики матриці X лінійно залежні, тобто що

$$\exists a_i \neq \vec{\theta}_p : Xa_i = \vec{\theta}_N, i = \overline{1,r}.$$
 (0.40)

Якщо справедливі припущення І, ІІ', ІІІ, тобто умова (0.40) виконується строго, то кажуть, що знаходяться в умовах *строгої мультиколінеарності*, якщо ж умова (0.40) виконується не строго, тобто добутки Xa_i попадають тільки в окіл початку координат, то кажуть, що знаходяться в умовах *мультиколінеарності*.

Проаналізуємо обидва ці випадки.

Випадок строгої мультиколінеарності. У цьому випадку оцінка МНК існує і вона буде не єдина. А множина цих усіх оцінок МНК задається як множина усіх розв'язків системи нормальних рівнянь для оцінки МНК, а саме:

$$(X^TX)\hat{\alpha} = X^Ty.$$

Зауважимо, що в умовах строгої мультиколінеарності оцінка МНК у вигляді

$$\hat{\alpha} = \left(X^T X\right)^{-1} X^T y \tag{0.41}$$

не існуе.

Випадок мультиколінеарності. В умовах мультиколінеарності оцінка МНК у вигляді (0.41) теоретично існує, бо матриця $\left(X^TX\right)$ є не виродженою, але її практичне використання буде проблематичним. Дійсно справедливість умов мультиколінеарності

приводить до того, що існують власні значення матриці (X^TX) , які попадають в окіл нуля, а це означає, що $\det(X^TX)$ буде близьким до нуля, тобто матриця (X^TX) буде погано обумовленою. А це у свою чергу приводить до таких негативних наслідків для оцінки МНК у вигляді (0.41):

Оцінка МНК у вигляді (0.41) буде вже нестійкою. Тобто незначні зміни в елементах матриці X можуть привести до значної зміни значень оцінок параметрів â = (X^TX)⁻¹X^Ty.
 Свій внесок до цього додадуть також похибки машинного округлення. А це у свою чергу приводить до втрати точності прогнозу згідно нашої моделі.

- Оцінка МНК у вигляді (0.41) буде вже мало ефективною, бо її характеристика розсіювання $\sigma^2 \left(X^T X \right)^{-1}$ різко зростає. Згадайте властивість І.а. $\hat{\alpha} \sim \mathcal{N} \left(\alpha, \sigma^2 \left(X^T X \right)^{-1} \right)$.
- Параметри регресійної моделі будуть сильно корельовані між собою згідно властивості І.а. α̂ ~ N (α,σ² (X^TX)⁻¹). А це вже позбавляє змісту їх інтерпретацію.

Для подолання цих проблем при оцінюванні параметрів регресійної моделі в умовах мультиколінеарності використовують:

- Попереднє центрування незалежних змінних.
- При поліноміальній апроксимації функції регресії переходять від регресорів ${x^i}_{i=0}^p$ до регресорів у вигляді набору ортогональних поліномів ${\{\phi_i(x)\}}_{i=0}^p$.
- Гребеневі оцінки.

Найбільш вживаним підходом ϵ використання гребеневих оцінок.

Гребенева оцінка (ridge estimate).

Гребенева оцінка була запропонована Хоерлом (A. Hoerl) у 1962 році і визначається таким чином:

$$\hat{\alpha}(\varepsilon) = \left(X^T X + \varepsilon E_p\right)^{-1} X^T y, \varepsilon > 0, \tag{0.42}$$

де в – мале позитивне дійсне число.

Ця оцінка дозволяє подолати погано обумовленість матриці (X^TX) . Але з'ясувалося, що гребенева оцінка є зміщеною і це призвело до відтермінування її широкого використання на практиці. Але згодом з'ясувалося, що гребенева оцінка при коректному виборі параметра є дозволяє досягти навіть більшої точності у середньо квадратичному розумінні у порівнянні з оцінкою МНК $\hat{\alpha} = (X^TX)^{-1}X^Ty$. Саме це відновило інтерес до використання на практиці гребеневої оцінки.

Введемо позначення: $B(\varepsilon) = (X^T X + \varepsilon E_p)^{-1}$. Це дозволяє гребеневу оцінку записати у такому вигляді

$$\hat{\alpha}(\varepsilon) = B(\varepsilon)X^{T}y, \varepsilon > 0. \tag{0.43}$$

T е о p е м a. Для гребеневої оцінки $\hat{\alpha}(\epsilon)$ справедливо:

1)
$$\hat{\alpha}(\varepsilon) = \left[E_p - \varepsilon B(\varepsilon)\right]\hat{\alpha}$$
, $\exists \varepsilon \hat{\alpha} = \left(X^T X\right)^{-1} X^T y$,

2)
$$M\hat{\alpha}(\varepsilon) = \alpha + \Delta(\hat{\alpha}(\varepsilon))$$
, $\text{ge } \Delta(\hat{\alpha}(\varepsilon)) = -\varepsilon B(\varepsilon)\alpha$,

3)
$$m(\varepsilon) = M \|\hat{\alpha}(\varepsilon) - \alpha\|^2 = M \|\hat{\alpha}(\varepsilon) - M\hat{\alpha}(\varepsilon)\|^2 + \|\Delta(\hat{\alpha}(\varepsilon))\|^2$$
.

$$m(\varepsilon) = M \|\hat{\alpha}(\varepsilon) - \alpha\|^{2} = M \|\hat{\alpha}(\varepsilon) - M\hat{\alpha}(\varepsilon) + M\hat{\alpha}(\varepsilon) - \alpha\|^{2} = M \|\hat{\alpha}(\varepsilon) - - \alpha\|^{2} = M$$

$$= M \|\hat{\alpha}(\varepsilon) - M\hat{\alpha}(\varepsilon)\|^{2} + 2M \left\{ (\hat{\alpha}(\varepsilon) - M\hat{\alpha}(\varepsilon))^{T} \Delta(\hat{\alpha}(\varepsilon)) \right\} + \\
+ \|\Delta(\hat{\alpha}(\varepsilon))\|^{2} = M \|\hat{\alpha}(\varepsilon) - M\hat{\alpha}(\varepsilon)\|^{2} + \\
+ 2M \left\{ (\hat{\alpha}(\varepsilon) - M\hat{\alpha}(\varepsilon))^{T} \right\} \Delta(\hat{\alpha}(\varepsilon)) + \|\Delta(\hat{\alpha}(\varepsilon))\|^{2} = \\
= M \|\hat{\alpha}(\varepsilon) - M\hat{\alpha}(\varepsilon)\|^{2} + 2 \left\{ \underbrace{(M\hat{\alpha}(\varepsilon) - M\hat{\alpha}(\varepsilon))^{T}}_{\theta_{p}} \right\} \Delta(\hat{\alpha}(\varepsilon)) + \\
+ \|\Delta(\hat{\alpha}(\varepsilon))\|^{2} = M \|\hat{\alpha}(\varepsilon) - M\hat{\alpha}(\varepsilon)\|^{2} + \|\Delta(\hat{\alpha}(\varepsilon))\|^{2}.$$

Зауваження 1. Згідно п. 3 теореми

$$m(\varepsilon) = M \|\hat{\alpha}(\varepsilon) - \alpha\|^2 = \underbrace{M \|\hat{\alpha}(\varepsilon) - M\hat{\alpha}(\varepsilon)\|^2}_{m_1(\varepsilon)} + \underbrace{\|\Delta(\hat{\alpha}(\varepsilon))\|^2}_{m_2(\varepsilon)}.$$

	1 1 4	V		repend		+++	1111
Tozar wogen:	-	1(K) =	do +	e+ (4	:), K	= 1, N	
Igea:	0		1			2	
	1	1 :=	17,2	P.	4, 1	2:=1,	8+20
	2						
				14 14			
		Ii:	= I	1601	5		N. W.
		1					
		20	(Ito)	, i E -	1_		
	9	and the second	-	OV I	20001		
	3.	1+=	argn	eax 1	20017	, /	

D	1.7	1	Li X: (4) + e	(K) K= L, N
Потогт шодель:	y (K)	= 00 + 2	THE TE	(K), K= &, W
Iges:	1	1:= (1)	I+= { 1, 2,,	P3;
		M: = Ø;	p:= 1>+1;	8-28.20
	2.	Fi, i	E[]+ // nepulo []+ \(\lambda \cdot + y \);	перація
	3	i - an	quein F.	17epayal

Jayboneened. The ex our spayrobales $3 \approx 600$, a new payrobales $3 \approx 600$, a negative of sake original bapto experiences experiences of the grainson of sugari.

Layo suggests (3) Engrymente original payroba new grands $g_1(\cdot)$, $g_2(\cdot)$, $g_3(\cdot)$, $g_3(\cdot)$, $g_3(\cdot)$, $g_3(\cdot)$, $g_4(\cdot)$, $g_4(\cdot)$, $g_5(\cdot)$, $g_5(\cdot)$, $g_7(\cdot)$

Bungok byjophunophunoi cueroun (5) $J = avgnein \stackrel{\sim}{Z} e^2(E) = arg min I(A)$ ge $I(A) = \stackrel{\sim}{Z} e^2(E)$ Ja gonowoko werezib Jephusbner maripainor

Ontwinipayti winiwijyowo grypkophune I(A).

Hanpukiag. Metog Mapk Bapta

(pagis HTHUM + LIKE apizawii)