CS5691 Assignment 1: Regression Models with Polynomial and Gaussian Basis Functions

Lakshmiram S (EE22B117), Hrushikesh Kant (EE22B108)

September 3, 2025

Abstract

This report presents polynomial and Gaussian basis function regression models applied to three datasets (univariate, bivariate, and multivariate). Model complexity, regularization, and basis function choices are explored using training, validation, and test datasets. Results are evaluated in terms of ERMS and visualized using curves, surfaces, and scatter plots

1 dataset1-polynomial regression

1.1 training10

Figure 1: N=10,deg = 3, $\lambda = 0$, $E_{rms} = 35$

Figure 3: N=10,deg=7, λ =0, $E_{rms} = 5$

Figure 2: N=10,deg=5, λ =0, E_{rms} = 6

Figure 4: N=10,deg=9, λ =0, E_{rms} = 0

Figure 5: N=10,deg=9, λ =0.001, E_{rms} = 1.66

Figure 6: N=10,deg=9, λ =0.1, E_{rms} = 5.15

Figure 7: N=10,deg=9, λ =1, E_{rms} = 6.57

1.2 training50

Figure 8: N=50,deg=3, λ =0, E_{rms} = 28.29

Figure 9: N=50,deg=5, λ =0, E_{rms} = 10.37

Figure 10: N=50,deg=7, λ =0, E_{rms} = 10.11

Figure 11: N=50,deg=9, λ =0, E_{rms} = 10.03

Figure 12: N=50,deg=9, λ =1, E_{rms} = 10.03, no overfitting here, no point using λ and there's practically no change in E_{rms}

1.3 validation

Figure 13: N=50,deg=3, λ =0, E_{rms} = 31.19

Figure 14: N=50,deg=5, λ =0, E_{rms} = 11.90

Figure 15: N=50,deg=7, λ =0, E_{rms} = 9.7

Figure 16: N=50,deg=9, λ =0, E_{rms} = 9.5

Figure 18: M=9 and $\lambda=0$ on the test data, $E_{rms}=11.71$

Figure 17: N=50,deg=9, λ =1, E_{rms} = 9.95, here regularization is making the error worse since there is no overfitting, we will not use λ

Figure 19: Enter Caption

2 dataset1-gaussian regression

2.1 train10

1.3.1 results

Table 1: E_{rms} values for Dataset 1, Polynomial Regression

Model	Train10	Train50	Val	Test
$M=3, \lambda = 0.001$	34.79	28.30	31.19	32.16
$M=3, \lambda = 0.1$	34.81	28.30	31.19	32.16
$M=3, \lambda=1$	35.64	28.35	31.25	32.20
$M=5, \lambda = 0.001$	6.02	10.37	11.90	13.37
$M=5, \lambda = 0.1$	6.14	10.37	11.90	13.37
$M=5, \lambda=1$	8.19	10.42	11.97	13.45
$M=7, \lambda = 0.001$	5.31	10.11	9.78	12.13
M=7, $\lambda = 0.1$	5.83	10.11	9.79	12.13
$M=7, \lambda=1$	6.55	10.15	9.96	12.17
$M=9, \lambda = 0.001$	1.67	10.04	9.54	11.71
M=9, $\lambda = 0.1$	5.16	10.05	9.67	11.87
$M=9, \lambda=1$	6.57	10.12	9.95	12.08

we choose the model with M=9 and $\lambda=0$ as the best model. we now plot its performance on the test data

Figure 20: $E_{rms} = 96.12$

Figure 21: $E_{rms} = 78$

Figure 22: $E_{rms} = 81$

2.2 validation

2.3 test

Figure 23: $E_{rms} = 79$, on par with the results from the validation set

3 dataset2-polynomial

3.1 train25

Figure 24: N=25,deg=2, $\lambda = 0$, $E_{rms} = 3.19$

Polynomial Regression Fit (output 1)

Figure 25: N=25,deg=4, $\lambda = 0$, $E_{rms} = 0.07$

Polynomial Regression Fit (output 1)

Figure 26: N=25,deg= $6, \lambda = 0, E_{rms} = 258.55$

Polynomial Regression Fit (output 1)

Figure 27: N=50,deg=6, $\lambda = 0.1$, $E_{rms} = 0.11$

Polynomial Regression Fit (output 1)

Figure 28: N=50,deg=8, $\lambda = 0.1, E_{rms} = 0.08$

$3.2 \quad train100$

Figure 29: N=100,deg=2, $\lambda=0,\,E_{rms}=4.39$

Figure 30: N=100,deg=4, $\lambda=0,\,E_{rms}=0.09$

Figure 31: N=100,deg=6, $\lambda=0,\,E_{rms}=0.09$

Polynomial Regression Fit (output 1)

Figure 32: N=100,deg=8, $\lambda = 0,\, E_{rms} = 0.083$

3.3 validation

Figure 33: N=100,deg=2, $\lambda = 0, E_{rms} = 3.32$

Figure 34: N=100,deg=4, $\lambda=0,\,E_{rms}=0.09$

Figure 35: N=100,deg=6, $\lambda = 0, \, E_{rms} = 0.085$

Polynomial Regression Fit (output 1)

Figure 36: N=100,deg=8, $\lambda=0,\,E_{rms}=0.07$

3.4 test

3.4.1 results

dataset2-gaussian

4.1 train25

Table 2: E_{rms} values for Dataset 2, Polynomial Regres-

Model	Train25	Train100	Validation	Test
$M=2, \lambda=0$	3.19	4.40	3.32	3.91
$M=2, \lambda = 0.001$	3.19	4.40	3.32	3.91
$M=2, \lambda = 0.1$	3.19	4.40	3.32	3.91
$M=2, \lambda=1$	3.22	4.40	3.32	3.91
$M=4, \lambda=0$	0.071	0.099	0.094	0.0872
$M=4, \lambda = 0.001$	0.071	0.099	0.094	0.0872
$M=4, \lambda = 0.1$	0.096	0.100	0.095	0.0881
$M=4, \lambda=1$	0.319	0.149	0.159	0.141
$M=6, \lambda=0$	258.55	0.093	0.0859	0.0844
$M=6, \lambda = 0.001$	0.020	0.093	0.0859	0.0844
$M=6, \lambda = 0.1$	0.114	0.100	0.0928	0.0896
$M=6, \lambda=1$	0.317	0.192	0.188	0.186
$M=8, \lambda=0$	259.77	0.084	0.0716	0.0788
$M=8, \lambda = 0.001$	0.0093	0.0838	0.0716	0.0788^{2}
$M=8, \lambda = 0.1$	0.080	0.101	0.0836	0.0936
$M=8, \lambda=1$	0.266	0.172	0.152	0.169

train100

the model that produced the least E_{rms} in the validation data set is M=8, $\lambda = 0$ and so we will plot the results on this model for the test data

Polynomial Regression Fit (output 1)

Figure 41: n=100, $E_{rms} = 9.68$

Figure 38: straight line!

Gaussian Regression Surface (Output 0)

Figure 39: N=25, $E_{rms} = 10.69$

Gaussian Regression Surface (Output 0)

 $\begin{array}{c} -2.0 \\ -2.0 \\ 1.5 \\ 1.0 \\ 1.5 \\ 1.0 \\ 1.5 \\ 1.0 \\ 1.5 \\ 2.0 \end{array}$

Figure 40: n=100, $E_{rms} = 11.35$

4.4 test

Gaussian Regression Surface (Output 0)

Figure 42: n=100, $E_{rms} = 10$

5 Multiple Parameters - Multiple Output

In this section we will be dealing with the multiple outputs case. The dataset is as follows - There are 3 input features [x1, x2, x3] and 3 output parameters [y1, y2, y3] and a total of 350 training samples. 100 validation samples and 50 test samples. The highlighted part is the best model.

5.1 Polynomial regression -

Here we will be running the polynomial regression to find the curve for the given dataset.

Table 3: ERMS on train, validation, and test data for polynomial ridge regression models. Best models in each block (without/with regularization) are highlighted in hold

Degree	λ	Train ERMS	Val ERMS	Test ERMS
2	0	0.4054	0.4210	0.4247
3	0	0.3979	0.4260	0.4382
4	0	0.3899	0.4396	0.4460
2	1×10^{-6}	0.4054	0.4210	0.4247
2	1×10^{-4}	0.4054	0.4210	0.4247
2	$1 imes 10^{-1}$	0.4057	0.4206	0.42 Figure 0.4232
3	1×10^{-6}	0.3979	0.4260	0.4232 test). 0.4382
3	1×10^{-4}	0.3979	0.4259	0.4381
3	1×10^{-1}	0.4021	0.4218	0.4268
4	1×10^{-6}	0.3899	0.4396	0.4459
4	1×10^{-4}	0.3901	0.4377	0.4442
4	1×10^{-1}	0.3996	0.4237	0.4300

43: True vs predicted scatter plots (train, val,

5.2 Gaussian Basis

Table 4: RBF regression results with different numbers of clusters (k). For each k, the model with the lowest validation ERMS is shown in **bold**.

\overline{k}	s	λ	Train ERMS	Val ERMS	Test ERMS	S
			k = 17	,		_
17	1.0	0.001	0.4057	0.4224	0.4238	 Best RBF (k=35, s=1.0, λ=0.001) — y1
17	0.7	0.1	0.4095	0.4252	0.4243	-0.5 Validation (ERMS=0.4222)
17	1.0	0.1	0.4157	0.4253	0.4249	-1.0 - Test (ERMS=0.4243) -1.0 - y = x
17	0.7	0.001	0.4027	0.4260	0.4272	-1.5
17	0.7	1.0	0.4168	0.4275	0.4239	S 7 -2.0
17	0.5	0.1	0.4084	0.4291	0.4256	
17	0.5	1.0	0.4138	0.4299	0.4247	e −2.5 -
17	1.0	1.0	0.4226	0.4312	0.4247	-3.0
17	0.5	0.001	0.3996	0.4318	0.4375	-3.5 -
17	0.1	0.1	0.4823	0.5559	0.5142	-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 True y
17	0.1	0.001	0.4821	0.5561	0.5162	Best RBF (k=35, s=1.0, λ=0.001) — γ1
17	0.1	1.0	0.4911	0.5633	0.5118	-0.5 Validation (ERMS=0.4222)
			k = 28	}		-1.0 - Test (ERMS=0.4243)
28	1.0	0.001	0.4050	0.4223	0.4241	-1.5
28	0.7	0.1	0.4078	0.4242	0.4235	(S) -2.0
28	1.0	0.1	0.4132	0.4243	0.4245	⁸ −2.5 -
28	0.7	1.0	0.4143	0.4261	0.4236	-3.0
28	0.7	0.001	0.4003	0.4265	0.4285	-3.5
28	0.5	0.1	0.4055	0.4284	0.4257	-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5
28	0.5	1.0	0.4116	0.4288	0.4237	True y,
28	1.0	1.0	0.4212	0.4291	0.4248	Best RBF (k=35, s=1.0, λ =0.001) — y1 -0.5 • Validation (ERMS=0.4222)
28	0.5	0.001	0.3948	0.4316	0.4388	• Validation (ERMS=0.4222) • Test (ERMS=0.4243) -1.0 y = x
28	0.1	0.001	0.4393	0.5212	0.4696	
28	0.1	0.1	0.4395	0.5219	0.4686	-1.5
28	0.1	1.0	0.4496	0.5336	0.4725	——————————————————————————————————————
			k = 35	,		
35	1.0	0.001	0.4048	0.4222	0.4243	-3.0
35	0.7	0.1	0.4073	0.4241	0.4236	-3.5 -
35	1.0	0.1	0.4120	0.4242	0.4242	-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 True y _i
35	0.7	1.0	0.4130	0.4260	0.4233	
35	0.7	0.001	0.3995	0.4261	0.4300	Figure 44: True vs predicted scatter plots (val, test).
35	0.5	0.1	0.4043	0.4273	0.4265	
35	0.5	1.0	0.4106	0.4285	0.4239	
35	1.0	1.0	0.4205	0.4286	0.4247	
35	0.5	0.001	0.3943	0.4308	0.4406	
35	0.1	0.001	0.4296	0.5052	0.4724	
35	0.1	0.1	0.4298	0.5058	0.4704	
35	0.1	1.0	0.4406	0.5188	0.4705	