Практическое занятие №12 Вычеты

Краткие теоретические сведения

12.1. Вычет в конечной точке

Пусть функция f(z) аналитична в проколотой окрестности точки z_0 , т.е. в кольце K: $0 < |z - z_0| < \rho_0$. Тогда в этом кольце функция f(z) представляется сходящимся рядом Лорана

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n,$$
 (12.1)

где

$$c_n = \frac{1}{2\pi i} \oint_{\gamma_\rho} \frac{f(\xi)d\xi}{(\xi - z_0)^{n+1}}, \qquad \gamma_\rho: |z - z_0| = \rho, \qquad 0 < \rho < \rho_0. \quad (12.2)$$

Определение 1. Вычетом функции f(z) в точке z_0 называется коэффициент c_{-1} ряда Лорана функции f(z) в окрестности точки z_0 :

$$\mathop{res}_{z=z_0} f(z) = c_{-1}. \blacktriangle$$

$\mathop{\it res}_{z=z_0}^{res} f(z) = c_{-1}. \ \blacktriangle$ 12.2. Вычисление вычета в полюсе $z=z_0 \ (z_0 \neq \infty).$

Случай простого полюса.

Если z_0 — полюс первого порядка для функции f(z), то

$$\mathop{res}_{z=z_0} f(z) = \lim_{z \to z_0} (z - z_0) f(z). \tag{12.3}$$

 $\mathop{res}_{z=z_0} f(z) = \lim_{z\to z_0} (z-z_0) f(z). \tag{12.3}$ Пусть $f(z)=\varphi(z)/\psi(z)$, где $\varphi(z)$ и $\psi(z)$ аналитичны в точке z_0 , причем $\varphi(z_0)\neq 0$, $\psi(z_0)=0$, $\psi'(z_0) \neq 0$. Тогда $z=z_0$ — полюс первого порядка для функции f(z) и

$$\mathop{res}_{z=z_0} f(z) = \frac{\varphi(z_0)}{\psi'(z_0)} = \lim_{z \to z_0} \frac{\varphi(z)}{\psi'(z)}.$$
 (12.4)

Случай кратного полюса.

Если z_0 — полюс порядка m для функции f(z), то

$$\mathop{res}_{z=z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)]. \tag{12.5}$$

12.3. Вычет в бесконечно удаленной точке ($z_0 = \infty$)

Пусть функция f(z) аналитична в области $\rho_0 < |z| < \infty$. Тогда в этой области

$$f(z) = \sum_{n=-\infty}^{\infty} c_n z^n,$$
 (12.6)

где

$$c_n = \frac{1}{2\pi i} \oint_{\gamma_\rho} \frac{f(\xi)}{\xi^{n+1}} d\xi, \ \rho_0 < \rho < \infty, \qquad \gamma_\rho: |z| = \rho.$$
 (12.7)

Определение 2. Вычетом функции f(z) в точке $z_0 = \infty$ называется число $(-c_{-1})$, где c_{-1} — коэффициент при z^{-1} ряда Лорана (12.9) функции f(z) в окрестности бесконечно удаленной точки:

$$\mathop{res}_{z=\infty} f(z) = -c_{-1} \blacktriangle$$

 $\mathop{res}_{z=\infty} f(z) = -c_{-1} \blacktriangle$ Пусть функция f(z) аналитична в кольце $\rho_1 < |z-z_0| < \infty$. Тогда в этом кольце она представляется рядом Лорана:

$$f(z) = \sum_{n = -\infty}^{\infty} b_n (z - z_0)^n,$$
 (12.8)

$$b_n = \frac{1}{2\pi i} \oint_{\gamma_{\rho_2}} \frac{f(\xi)d\xi}{(\xi - z_0)^{n+1}}, \qquad \gamma_{\rho_2} : |z - z_0| = \rho_2, \qquad \rho_1 < \rho_2 < \infty. \quad (12.9)$$

Ряд (12.12) также является рядом Лорана функции f(z) в окрестности бесконечно удаленной точки. При этом $b_{-1}=c_{-1}$. Поэтому

$$\mathop{res}_{z=\infty} f(z) = -b_{-1} = -\frac{1}{2\pi i} \oint_{\gamma_{\rho_2}} f(\xi) \, d\xi. \tag{12.10}$$

• Другие способы нахождения вычета в бесконечно удаленной точке:

1) Если
$$f(z) \sim \frac{A}{z}$$
 при $z \to \infty$, то $\underset{z=\infty}{res} f(z) = -A$. (12.11)
2) Если $f(z) \sim \frac{A}{z^k}$, $k \ge 2$ при $z \to \infty$, то $\underset{z=\infty}{res} f(z) = 0$. (12.12)

Контрольные вопросы по теоретической части

- 1) Дайте определение вычета функции f(z) в точке $z_0 \neq \infty$.
- 2) Как вычислить вычет функции f(z) в точке $z_0 \neq \infty$ в случае простого полюса?
- 3) Как вычислить вычет функции f(z) в точке $z_0 \neq \infty$ в случае кратного полюса?
- 4) Дайте определение вычета функции f(z) в точке $z_0 = \infty$.
- 5) Как можно найти вычет функции f(z) в точке $z_0 = \infty$?

Практические задания

Найти вычеты указанных ниже функций относительно каждого из ее полюсов, отличных от ∞ :

1)
$$f(z) = \frac{z^2}{(z^2+1)^2}$$
;

2)
$$f(z) = \frac{1}{z(1-e^{2z})}$$
;

$$3) \ f(z) = \frac{1}{\sin z - 1};$$

4)
$$f(z) = \frac{e^z}{z^2(z^2+9)}$$
;

5)
$$f(z) = \frac{\cos 4z}{(z-2)^6}$$
;

6)
$$f(z) = tg \frac{1}{z-1}$$
.

Найти вычеты функций относительно точки $z = \infty$:

7)
$$f(z) = \frac{z^4 + z}{z^6 - 1}$$
;

8)
$$f(z) = z \cos^2 \frac{\pi}{z}$$
;

9)
$$f(z) = \frac{z^2}{z-1} \sin \frac{1}{z}$$
.

Найти вычеты указанных ниже функций относительно всех конечных изолированных особых точек:

10)
$$f(z) = \frac{z^{2n}}{(1+z)^n}$$
;

11)
$$f(z) = z^3 \cos \frac{1}{z-2}$$
;
12) $f(z) = e^{z+\frac{1}{z}}$.

12)
$$f(z) = e^{z + \frac{1}{z}}$$
.

Домашнее задание: №№ 13.408, 13.411, 13.414, 13.419, 13.426, 13.428, 13.429. Типовой расчет: задачи №№ 5,6. (разбор задач типового расчета приведен в примере 9 лекции 12)