Equations

1.
$$P = \frac{dW}{dt} = IV$$

$$2. I = \frac{dq}{dt}$$

3.
$$V = \frac{W}{q}$$

4.
$$R = \frac{\rho L}{A}$$

5. Ohm's Law:
$$V = IR$$

6. Coulomb's Law:
$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

7. Kirchhoff's Voltage Law:
$$\sum V_i = 0$$
 (around a closed loop)

8. Kirchhoff's Current Law:
$$\sum I_i = 0$$
 (going into a node)

9. Conductance:
$$G = \frac{1}{R}$$

10. Equivalent resistance:
$$R_{eq} = \frac{V_{test}}{I_{test}}$$

11. Series capacitance:
$$\frac{1}{C_{total}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

12. Parallel capacitance:
$$C_{total} = C_1 + C_2 + \dots$$

13. Series inductor:
$$L_{total} = L_1 + L_2 + \dots$$

14. Parallel inductor:
$$\frac{1}{L_{total}} = \frac{1}{L_1} + \frac{1}{L_1} + \dots$$

15.
$$I_{cap} = C \frac{dV}{dt}$$

16.
$$V_{ind} = L \frac{dI}{dt}$$

17. Energy stored in capacitor:
$$\frac{1}{2}CV^2$$

18. Energy stored in inductor:
$$\frac{1}{2}LI^2$$

19. Voltage in RC circuit:
$$v_c(\infty) + (v_c(t_0) - v_c(\infty)) e^{(\frac{-1}{RC})(t-t_0)} = x(t_0)e^{\lambda(t-t_0)}$$
 (if $v_c(\infty) = 0$)

20. Current in RL circuit:
$$I_L(\infty) + (I_L(t_0) - I_L(\infty)) e^{(\frac{-R}{L})(t-t_0)}$$

21. Impedance of a capacitor:
$$\frac{-j}{\omega C}$$

22. Impedance of an inductor:
$$j\omega L$$

23. Equivalent impedance for impedances in series:
$$Z_{eq} = \sum_{i=1}^{n} Z_{i}$$

24. Equivalent impedance for impedances in parallel:
$$\frac{1}{Z_{eq}} = \sum_{i=1}^{n} \frac{1}{Z_{i}}$$

25. Maximum power extracted by a load in DC circuits:
$$\frac{Vth^2}{4R_{th}}$$

26. Maximum power extracted by a load in AC circuits:
$$\frac{|\tilde{V}_{th}|^2}{8R_{th}}$$

$$(R_{eq})$$
 Turn off all independent sources (dependent sources remain unchanged) and calculate the resulting resistance at the desired port. Notice that you may have to apply the i-v test if resistors cannot be combined through series and parallel connections, or if the circuit includes dependent sources.

$$(V_{th})$$
 Leave the desired port open-circuited (i.e. no load connected) and find the voltage across it.

 (I_N) Short-circuit the desired port (i.e. connect a short circuit across the port) and find the current through it.

1