SOLUZIONI

$$7! = 7 \cdot 6! = 7 \cdot 720 = 5 \cdot 040$$

$$8! = 8 \cdot 7! = 8 \cdot 5040 = 40'320$$

$$\frac{16!}{14!} = \frac{16 \cdot 15}{14!} = \frac{240}{10!}$$

$$\frac{8!}{10!} = \frac{1 \cdot 8!}{10 \cdot 9 \cdot 8!} = \frac{1}{90} = 0,01$$

$$\frac{(m+2)!}{m!} = \frac{(m+2)(m+1)}{1!} \frac{m!}{m!} = (m+2)(m+1)$$

$$= m^2 + 3m + 2.$$

$$\frac{(m-1)!}{(m+2)!} = \frac{1 \cdot (m+1)!}{(m+2)(m+1)m(m-1)!} = \frac{1}{m(m+1)(n+2)}$$

$$\frac{(m-2+1)!}{(m-2-1)!} = \frac{(m-2+1)(m-2)(m-2-1)!}{(m-2-1)!}$$

$$= (m-2)(m-2+1).$$

TABLE

ACIONAL

		n	n!				
		0	1	(by definition)	-		
		1	1				
		2	2				
		3	6				
		4	24				
		- 1	100				
		5	120				
	- 1	7	720				
		3	5040				
	4 22		40,3				
	1.	1	362,	580			
	10	1	3,628	3,800			
	111	-		16,800			
	12			001,600	1		
	13	1	6,227	7,020,800	-		
	14		87,17	78,291,200	1		
	15	1	1 307	,674,368,000	1		
	16	- 1	20.92	2,789,888,000	1		
	17	13	355.6	87,428,096,000	1		
	18	1	3.402	,373,705,728,000	1		
	19	1	21.6	45,100,408,832,000	1		
		1			1		
	20	2	2,432	,902,008,176,640,000	ı		
	21	1 5	1,09	0,942,171,709,440,000	ı		
	22	1 1	,124	,000,727,777,607,680,000	ı		
I	23	1 4	0,85	2,016,738,884,976,640,000	l		
į	24	6	20,4	48,401,733,239,439,360,000	ı		
İ	25	1	5,511	1,210,043,330,985,984,000,000			
l	26	4	03.29	01,461,126,605,635,584,000,000			
ı	27	1	0.888	3,869,450,418,352,160,768,000,000			
	28	3	04,88	88,344,611,713,860,501,504,000,000			
	29	8	,841,	761,993,739,701,954,543,616,000,000			
	30	2	65,25	2,859,812,191,058,636,308,480,000,000			
	31	1		_			
	32			4 × 10 ³³ 1 × 10 ³⁵			
	33			2 × 10 ³⁶			
	34			3 × 10 ³⁸			
	-		-020	10.7			
	35	1.	0333	1 × 1040			
	36			3×4041			
	37			3 × 10 ⁴³			
	38			3 × 1044			
٠	39	2.0	3979	9×1046			
•	_						

7	n!		
41 42 43 44	3.34525 × 10 ⁴⁰ 2 1.40501 × 10 ⁵¹ 3 6.04153 × 10 ⁵²		
45 46 47 48 49	1.19622 × 1056 5.50262 × 1057 2.58623 × 1059 1.24139 × 1061 6.08282 × 1052		
50 51 52 53 54	3.04141×10^{64} 1.55112×10^{68} 8.06582×10^{67} 4.27488×10^{69} 2.30844×10^{71}		
55 56 57 58 59	1.26964×10^{73} 7.10999×10^{74} 4.05269×10^{76} 2.35056×10^{78} 1.38683×10^{80}		
60 61 62 63 64	8.32099 × 10 ⁸¹ 5.07580 × 10 ⁸³ 3.14700 × 10 ⁸⁵ 1.98261 × 10 ⁸⁷ 1.26887 × 10 ⁸⁹		
65 66 67 68 69	8.24765×10^{90} 5.44345×10^{92} 3.64711×10^{94} 2.48004×10^{98} 1.71122×10^{98}		
70 71 72 73 74	1.19786 × 10 ¹⁰⁰ 8.50479 × 10 ¹⁰¹ 6.12345 × 10 ¹⁰³ 4.47012 × 10 ¹⁰⁵ 3.30789 × 10 ¹⁰⁷		
75 76 77 78 79	2.48091 × 10 ¹⁰⁹ 1.88549 × 10 ¹¹¹ 1.45183 × 10 ¹¹³ 1.13243 × 10 ¹¹⁵ 8.94618 × 10 ¹¹⁶		

1		
- 1	80	7.15695 × 10118
1	81	5.79713 × 10120
	82 83	4.75364 × 10122
	84	3.94552 × 10 ¹²⁴ 3.31424 × 10 ¹²⁶
	85	2.81710 × 10128
	86	2.42271 × 10130
	87	2.10776 × 10132
	88 89	1.85483 × 10134 1.65080 × 10136
	90	1.48572 × 10138
	91	1.35200×10^{140}
	92	1.24384 × 10142
	93	1.15677 × 10144
	94	1.08737 × 10148
	95 96	1.03300 × 10148
	97	9.91678 × 10149
	98	9.61928×10^{151} 9.42689×10^{153}
	99	9.33262 × 10155
1	00	9.33262 × 10157

SOLUZIONI

$$\binom{16}{13} = \frac{16!}{13! \cdot 3!} = \frac{16!}{3! \cdot 13!} = 560.$$

$$\begin{pmatrix} 12 \\ 4 \end{pmatrix} = \frac{12!}{4!8!} = \frac{1}{4!8!} = \frac{1}{4!8!} = \frac{1}{4!5} = 495$$

$$\binom{12}{8} = \frac{12!}{8!4!} = \frac{12!}{4!8!} = 495.$$

$$\begin{pmatrix} n \\ n-k \end{pmatrix} = \frac{m!}{(n-k)! \left[m-(m-k)\right]!} = \frac{m!}{(n-k)! k!}$$
$$= \frac{m!}{k! \left[m-k\right]!} = \binom{m}{k}.$$

$$\begin{pmatrix} 7 \\ 3 \end{pmatrix} = \frac{7!}{3! \cdot 4!} = \frac{7.6.5.4!}{61.4!} = 35.$$

$$\binom{6}{3} = \frac{6!}{3! \cdot 3!} = \frac{6 \cdot 5 \cdot 4 \cdot 3!}{6 \cdot 3!} = 20$$

$$\binom{6}{3} = \frac{6!}{3! \cdot 3!} = \frac{6! \cdot 5 \cdot 4!}{2! \cdot 4!} = \frac{35!}{2! = \frac{3$$

$$\binom{8}{4} = \frac{8!}{4! \cdot 4!} = \frac{18.7.6.50.45}{14.4!} = 70.$$

$$\frac{m}{k} + \frac{m}{k-2} = \frac{m!}{k!(m-k)!} + \frac{m!}{(k-1)![m-(k-1)]!}$$

$$= \frac{m!}{k!(m-k)!} + \frac{m!}{(k-1)!(m-k+1)!}$$

$$= \frac{m! (m-k+1)}{k! (m-k)! (m-k+1)} + \frac{m! k}{(k-1)! k (m-k+1)!}$$

$$= \frac{m! (m-k+1)}{k! (m-k+1)!} + \frac{m! k}{k! (m-k+1)!}$$

$$= \frac{m! (m-K+1) + m! K}{K! (m-K+1)!}$$

$$= \frac{m! \left[(m-K+1)+k \right]}{K! (m-K+1)!} = \frac{m! (m-K+1+k)}{k! (m-K+1)!}$$

$$= \frac{m \cdot (m+1)}{K! \cdot (m-K+1)!} = \frac{(m+1)!}{K! \cdot (m+1-K)!}$$

$$= \binom{m+1}{k}.$$

$$\frac{5020210N1}{(2x+y^2)^5} = \sum_{k=0}^{5} {5 \choose k} (2x)^k (y^2)^{5-k} \\
= {5 \choose 0} (2x)^6 (y^2)^5 + {5 \choose 1} (2x)^1 (y^2)^4 + {5 \choose 2} (2x)^2 (y^2)^3 + \\
+ {5 \choose 3} (2x)^3 (y^2)^2 + {5 \choose 4} (2x)^4 (y^2)^4 + {5 \choose 5} (2x)^5 (y^2)^6 \\
= y^{10} + 10 \times y^8 + 40 \times^2 y^6 + 80 \times^3 y^4 + 80 \times^4 y^2 + 32 \times^5. \\
(x^2 - 2y)^6 = \sum_{k=0}^{6} {6 \choose k} (x^2)^k (-2y)^{6-k} \\
= {6 \choose 0} (x^2)^6 (-2y)^6 + {6 \choose 1} (x^2)^7 (-2y)^5 + {6 \choose 2} (x^2)^7 (-2y)^4 + {6 \choose 3} (x^2)^7 (-2y)^4 \\
+ {6 \choose 4} (x^2)^4 (-2y)^2 + {6 \choose 5} (x^2)^5 (-2y)^4 + {6 \choose 6} (x^2)^6 (-2y)^6 \\
= 64y^6 - 192 \times^2 y^5 + 240 \times^4 y^4 - 160 \times^6 y^3 + 60 \times^8 y^2 + 60 \times^8 y^2 + 60 \times^8 y^3 + 60 \times^8 y^2 + 60 \times^8 y^3 $

$$= 64y^{6} - 192 x^{2}y^{5} + 240 x^{4}y^{4} - 160 x^{6}y^{3} + 60 x^{8}y^{2} + 12 x^{10}y + x^{12}.$$

$$\sum_{k=0}^{\infty} {n \choose k} = \sum_{k=0}^{\infty} {n \choose k} 1^{k} 1^{n-k} = (1+1)^{m} = 2^{n}$$

$$\sum_{K=0}^{n} (-1)^{k} \binom{n}{k} = \sum_{K=0}^{n} \binom{m}{k} (-1)^{K} 1^{n-k} = (-1+1)^{m} = 0.$$

30LUZION1

$$\binom{8}{4,3,1} = \frac{8!}{4!3!1!} = \frac{8!7.6.5.4}{6.14!} = 280.$$

$$\begin{pmatrix} 1 & 0 \\ 5, 3, 2, 2 \end{pmatrix}$$
 non ha significato

$$\begin{pmatrix} 8 \\ 7, 1 \end{pmatrix} = \frac{8!}{7! \cdot 1!} = \frac{8 \cdot \cancel{7}!}{1 \cdot \cancel{7}!} = 8.$$

$$\binom{10}{8,2} = \frac{10!}{8!2!} = \frac{10!90.8!}{210.8!} = 45.$$

$$\begin{pmatrix} m \\ k, m-k \end{pmatrix} = \frac{m!}{k!(m-k)!} = \begin{pmatrix} m \\ k \end{pmatrix}.$$

50LUZ10N1

$$D_{3;2}^{(z)} = 3^2 = 9$$

$$D_{3;3} = 3^3 = 27.$$

$$D_{3/14}^{(1)} = 3^{14} = 4.782.969.$$

$$D_{10;6}^{(n)} = 10^6 = 1'000'000.$$

Je prima elementa della K-seleriane pirò esseze scetta in m modi, il secondo elemento della K-seleriane pirò essere scetta in M modi e così via fino al K-imo elemento. Per il principio fondamentale del calcolo combinatorio si ha:

$$D_{m,k}^{(r)} = m \cdot m \cdot \dots \cdot m = m^{k}$$
.

D3;2 = 3.2 = 6 ,
$$D_{3;3} = 3.2.1 = 6.$$

$$0 D8_{13} = 8.7.6 = 336.$$

$$(m-k) Dm; k = (m-k) \frac{m!}{(m-k)!} = \frac{m! (m-k)}{(m-k)(m-k-2)!}$$

$$= \frac{m!}{(m-2-k)!} = \frac{m (m-2)!}{(m-2-k)!} = m \frac{(m-1)!}{(m-1-k)!}$$

$$= m D_{m-2}; k.$$

$$D_{x+1;3} = 8 D_{x;2} + (x+1)(x)(x-1) = 8 x(x-1)$$

$$t=0$$
 oppure $x=1$ oppure $x+1=8$
de scentare de scentare $x=7+x$

$$|x=7|$$

50LUZIONI

Siccome le sedie sono disposte in arcolo le 7 permutazioni de si dtengono da una permutazione qualsiasi facendo permutere circolarmente le persone sono del tutto equivalente. Ad esempio:

Quindi, il numero di moot oliversi per disporre le 7 persone sulle 7 sedie in circolo è olato da: $P_7/q = \frac{7!}{7!} = 6! = 720$.

-23 bis -

SOLUZIONI

$$\begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} = \frac{6!}{2! \cdot 4!} = \frac{6 \cdot 5}{2} = 15.$$

$$\begin{pmatrix} 4 \\ 1, 1, 1, 1 \end{pmatrix} = 4! = 24;$$

$$\begin{pmatrix} 7 \\ 3, 1, 1, 1 \end{pmatrix} = \frac{7!}{3! \cdot 1! \cdot 1! \cdot 1!} = 840;$$

$$\begin{pmatrix} 1 \\ 2 \\ 2, 2, 2, 1, 2, 3 \end{pmatrix} = \frac{12!}{2! \cdot 2! \cdot 2! \cdot 2! \cdot 3!} = 4989600.$$

Il memero delle n-permutarioni en!

se gli elementi sono tutti olistinti.

Ce ne sono Ks uguoli al pumo elemento
di S cle si possono permutare in Ks!

senze cambiare la N-selexione. Ce ne sono

K2 uguali al seconolo elemento oli S cle

si possono permutare in K2! senze cambie
re la N-selexione. E così via fino a Kn.

SOLUZIONE

$$\begin{pmatrix} 90 \\ 2 \end{pmatrix} = \frac{90!}{2!88!} = \frac{90.89.88!}{288!} = 4005;$$

$$\begin{pmatrix} 90 \\ 3 \end{pmatrix} = \frac{90.89.88.81}{3 \cdot 2.187!} = 117.480;$$

$$\begin{pmatrix} 90 \\ 4 \end{pmatrix} = 2555190;$$

$$\begin{pmatrix} 90 \\ 5 \end{pmatrix} = 43949268$$

- Dal momento che l'ordine di presentazione degli elementi mon è importante allora il permutarre: in tutti i mods possibili gli elementi di una K- disposizione semplice non me altera il significato. Quindi: $C_{m,K} = \frac{D_{m,K}}{P_K} = \frac{n!}{(m-K)!} = \frac{n!}{K!} \frac{-n!}{(m-K)!} = \binom{m}{K}$.
-) o (90,6 = (90) = 622'614'630.
 - · C32,8 = (32) = 10:518:300 .
 - $C_{10,8} = {10 \choose 8} = \frac{10.9 \cdot 8!}{2 \cdot 8!} = \frac{90}{2} = 45$

DINOSTRAZIONE TEOREMA 4

Basta identificare ogni k-Combinazione

Con ripetizione con una (n+k-1)-permuta
Zione con repetizione fatta con k lettere "P"

e (N-1) lettere "A".

Ad esempio se S = S(a,b,c,d,k,f,g)e k = 4 l'iolentificazione e fatta al se
guente modo (oriviamente, m = 7):

a b c d e f g

- della casella de opita la puma pollina (A); al secondo posto della K-selezione vi è il numero della casella che ospita la seconda pollina (B) e così via Gli elementi della K selezione possono non essere tutti olistinti in quanto le casella possono ospitare pui di una pollina.
- o E identice al coso precedente solo de gli elementi delle K-selezione sono tutti distinti.
- oumero delle caselle de la state utiliztato per la pirme collocatione di una palline; al secondo posto delle K-selezione voi è il numero delle caselle de è state utilitzate per le seconde collocasione oli una polline e così via. Gli elementi della K-selesione possono non essere tutti otistinti.
- element della R-selexione sono tutti distinti.