UNIVERSITETET I OSLO Institutt for Informatikk

A. Maus, R.K. Runde, I. Yu

INF2220: algorithms and data structures

Series 5

Topic Graphs1 - Solution

Issued: 21. 09. 2017

Classroom

Exercise 1 1. 1 Not connected, directed, cyclic

- 2 Connected, undirected (it doesn't make so much sense to talk about cyclic undirected graphs)
- 3 Connected, directed, cyclic
- 4 Not connected, undirected
- 2. (a) Undirected, not necessesarily connected graph
 - (b) Directed, not necessesarily connected graph
 - (c) Directed, not necessesarily connected graph

Exercise 2

1.

2. Weakly connected.

3.

Series 5 21. 09. 2017

Adjacency matrix											
	1	2	3	4	5	6	7				
1	0	1	1	1	0	0	0				
2	0	0	0	1	0	0	0				
3	0	0	0	0	0	1	0				
4	0	0	0	0	0	1	1				
5	0	0	0	1	0	0	1				
6	0	0	0	0	0	0	0				
7	0	0	0	0	0	1	0				

4.

2 3 4 5 7 0 3 0 2 indegree: 1 1 3 outdegree: 3 1 1 2 2 1

5. 1, 2, 3, 5, 4, 7, 6

Exercise 3 (Not unique)

- 1. A, B, D, F, E, C
- 2. A, C, D, B, E
- 3. No, the graph is cyclic (several possible cycles)

```
Exercise 4 topSort O(|V| + |E|) + edge test O(|V|)
```

```
//modify topsort from M.A. Weiss
//\, the \ topsort \ part \ is \ the \ same \ from \ M.A.\, Weiss
Bool hamilstonskSti(G) {
  bool isHamiltonskŠti = true;
  Queue<Vertex> q = new Queue<Vertex>();
  int counter = 0;
  Vertex [] topsort = new Vertex [|V|];
     for each Vertex v
         if(v.indegree == 0)
              q.enqueue(v);
     while (!q.isEmpty())
       Vertex v = q.dequeue();
       topsort[counter++] = v;
       for each Vertex w adjacent to v
           if(--w.indegree == 0)
                q.enqueue(w);
    }
    //\,\mathrm{her} comes the new part
     if (counter != |V|)
       ishamilstonskSti = false
    else
       for (int = 0; i < |V| - 1; i++)
         if \quad (\,!\,(\,topsort\,[\,i\,]\,,topsort\,[\,i\,+\!1]) \quad in\ G)\,\{\\
           isHamilstonskSti = false;
           break;
         }
```

Series 5 21. 09. 2017

```
}
}
return isHamilstonskSti;
}
```

Exercise 5

1.

2. It is strongly connected, then it must be weakly connected, of course.

3.

Adjacency matrix										
		1	2	3	4	5	6			
	1	0	0	0	0	1	2			
	2	7	0	0	0	0	9			
	3	2	0	0	0	3	0			
	4	3	0	2	0	4	0			
	5	0	6	0	0	0	0			
	6	0	4	0	4	0	0			

The value after the ";" is the respective weight of the edge

4.

- 5. To 2: $\{(1,6;2), (6,2;4)\}$, total cost = 2+4=6
 - To 3: $\{(1,6;2), (6,4;4), (4,3;2)\}, \text{ total } \cos t = 2+4+2=8$
 - To 4: $\{(1,6;2), (6,4;4)\}$, total cost = 2+4=6
 - To 5: $\{(1,5;1)\}$, total cost = 1
 - To 6: $\{(1,6;2)\}$, total cost = 2