0

Disclaimer

This summary is part of the lecture "ETH Communication Systems" (227-0121-00) by Prof. Dr. Armin Wittneben (FS19). It is based on the lecture.

Please report errors to huettern@student.ethz.ch such that others can benefit as well.

The upstream repository can be found at https://github.com/noah95/formulasheets

Contents

1	Random Processes 1			
	1.1	Stationary processes	1	
	1.2	Mean and correlation	1	
	1.3	Ergodicity	1	
	1.4	Filtered processes	1	
	1.5	Power spectral density	1	
	1.6	Gaussian process	1	
	1.7	Noise	2	
2	Baseband Pulse Transmission 2			
	2.1	Matched Filter	2	
	2.2	Error Rate	2	
	2.3	Intersymbol Interference	2	
	2.4	Nyquist's Criterion	2	
	2.5	Correlative-Level Coding	2	
	2.6	Baseband M-ary PAM Transmission	2	
3	Signal Space Analysis 2			
-	3.1	Geometric Signal Representation	3	
	3.2	Discrete System Model	3	
	3.3	Detection and Decoding	3	
	3.4	Probability of Error	3	
4	Pass	band Data Transmission	4	
•	4.1	PSK: Coherent Phase Shift Keying .	4	
	4.2	QAM: Hybrind Amplitude/Phase		
		Modulation	4	
	4.3	FSK: Coherent Frequency-Shoft	_	
		Keying	4	
	4.4	CPFSK Continuous Phase FSK	4	
	4.5	MSK Minimum Shift Keying	5	
	4.6	GMSK	5	
	4.7	Equivalent baseband representation .	5	
	4.8	Noncoherent Detection	5	
	4.9	ML detection with unknown phase shift	5	
	4.10	Noncoherent FSK	6	
	4.11		6	
		Performance comparison	6	
5	Math 7			
-	5.1	General	7	
		Fourier Transform	7	

5.3 Probability

Compiled: 2019-10-24 11:51:27 on: f3f90f1726f5 git-sha: acb8a87 Noah Huetter

ETH Communication Systems 2019

Noah Huetter

October 24, 2019

1 Random Processes

A random process X(t):

- is a sample space composed of (real valued) time functions: $\{x_1(t), x_2(t), \dots, x_n(t)\}$
- \bullet observed at a fixed t_k is a random variable $X(t_k) = \{x_1(t_k), x_2(t_k), \dots, x_n(t_k)\}\$
- The time function $x_s(t)$ is a **realization** (sample function)
- $x_s(t_k)$ observed at t_k is a real number
- A stochastic process consists of infinitely many random variables, one for each t_k , with the CDF $F_{\{X(t_k)\}}(x) = P(X(t_k) \le x)$

1.1 Stationary processes

A process is Strict Sense Stationary (SSS) if:

- X(t) and $X(t+\tau)$ have same satisfies $\forall \tau$
- The joint distribution function of a set of r.v. observed at times t_1, \ldots, t_n is invariant to a timeshift.

$$\forall n, \tau, t_1, \dots, t_n :$$

$$F_{\{X(t_1+\tau), X(t_2+\tau), \dots, X(t_n+\tau)\}}(x_1, x_2, \dots, x_n) =$$

$$F_{\{X(t_1), X(t_2), \dots, X(t_n)\}}(x_1, x_2, \dots, x_n)$$

Properties:

$$\begin{aligned} \forall t_k : \mu_X(t_k) &= \mu_X \\ \forall t_1, t_2 : R_X(t_1, t_2) &= R_X(t_2 - t_1) = R_X(\tau) \\ C_X(t_1, t_2) &= \mathrm{E}\left[(X(t_1) - \mu_X)(X(t_2) - \mu_X) \right] \\ &= R_X(t_2 - t_1) - \mu_X^2 \end{aligned}$$

A process is Wide Sense Stationary (WSS) if a r.p. has a constant mean and the autocorrelation depends only on the time difference.

$$\forall t : \mu_X(t) = \mu_X$$

 $\forall t_1, t_2 : R_X(t_1, t_2) = R_X(t_2 - t_1) = R_X(\tau)$

Strict sense stationary \implies wide sense stationary.

1.2 Mean and correlation

Defined as expectation of r.v. $X(t_k)$ by observing process at time t_k .

$$\mu_X(t_k) = \mathbb{E}\left[X(t_k)\right] = \int_{-\infty}^{\infty} x f_{\{X(t_k)\}}(x) \,\mathrm{d}x$$

Autocorrelation function R_X and autovariance function C_X of a random process:

$$R_X(t_1, t_2) = \mathbb{E}\left[X(t_1)X(t_2)\right] \triangleq$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_{X_1, X_2}(x_1, x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2$$

$$R_{XY}(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X, Y}(x, y) dx dy$$

$$C_X(t_1, t_2) = R_X(t_2 - t_1) - m_X^2$$

- The mean and autocorrelation function determine the autocovariance function
- The mean and autocorrelation function only describe the first two moments of the process

Properties of the autocorrelation function:

$$E[X^{2}(t)] = R_{X}(0) \qquad R_{X}(\tau) = R_{X}(-\tau)$$
$$|R_{X}(\tau)| \le R_{X}(0)$$

The Cross-correlation function $R_{XY}(t, u)$ of two Autocorrelation: random processes:

$$R_{XY}(t, u) = E[X(t)Y(u)] = \int_{-\infty}^{\infty} xy \cdot f_{X,Y}(x, y) dx dy$$

- Stationariy menas $R_{XY}(t,u) = R_{XY}(\tau)$ for $\tau =$
- Not generally an even function of t
- Not necessarily a maximum at τ = 0
- Symmetry: $R_{XY}(\tau) = R_{XY}(-\tau)$

1.3 Ergodicity

Definition: A random process is ergodic in the mean

- Time average approaches ensemble averages for increasing T
- The variance of the time average approaches zero for incr. T

$$\lim_{T \to \infty} \mu_X(T) = \mu_X \qquad \lim_{T \to \infty} \operatorname{Var} \left[\mu_X(T) \right] = 0$$

Or in other words: The same behavior averaged over time as averaged over the space of all the system's states.

1.4 Filtered processes

Stationary random process X(t) is input to a linear timeinvariant (LTI) filter with impulse response

$$Y(t) = \int_{-\infty}^{\infty} h(\tau_1)X(t-\tau_1) d\tau_1$$
$$S_Y(f) = |H(f)|^2 S_X(f)$$

Find mean and autocorrelation of Y(t):

$$\begin{split} \mu_X &= \mathbf{E}\left[X(t)\right] \quad R_X(\tau) = \mathbf{E}\left[X(t)X(t-\tau)\right] \\ \mu_Y &= \mathbf{E}\left[Y(t)\right] = \mathbf{E}\left[\int\limits_{-\infty}^{\infty} h(\tau_1)X(t-\tau_1)\,\mathrm{d}\tau_1\right] \end{split}$$

Can interchange expectation and integration if stable $\int_{0}^{\infty} |h(t)| dt < \infty$ and finite mean $\mu_X < \infty$

$$\mu_Y = \int_{-\infty}^{\infty} h(\tau_1) \mathbf{E} \left[X(t - \tau_1) \right] d\tau_1 = \mu_X \int_{-\infty}^{\infty} h(\tau_1) d\tau_1$$

$$\begin{split} R_Y(t,u) &= \mathbf{E}\left[Y(t)Y(u)\right] = \\ \mathbf{E}\left[\int\limits_{-\infty}^{\infty}h(\tau_1)X(t-\tau_1)\,\mathrm{d}\tau_1\int\limits_{-\infty}^{\infty}h(\tau_2)X(u-\tau_2)\,\mathrm{d}\tau_2\right] \end{split}$$

Additional condition for interchange is finite meansquare value: $R_X(0) = E[X^2(t)] < \infty$

$$R_Y(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)R_X(\tau - \tau_1 + \tau_2) d\tau_1 d\tau_2$$

(WS) stationary input process X(t) to a stable LTI filter \implies (WS) stationary output process Y(t).

1.5 Power spectral density

$$S_X(f) = \mathscr{F}[R_X(\tau)](f) = \int_{-\infty}^{\infty} R_X(\tau)e^{-j2\pi f\tau} d\tau$$

- $S_X(0) = \int_{-\infty}^{\infty} R_X(\tau) d\tau$
- $E[X^2(t)] = R_X(0) = \int_{-\infty}^{\infty} S_X(f) df$
- $S_X(f) > 0 \ \forall f$
- $S_X(f) = S_X(-f) \ \forall f$, iff $X(t) \in \mathbb{R}$

1.6 Gaussian process

Consider the r.v. $Y = \int_0^T g(t)X(t) dt$ where g(t)is in an arbitraty function. If Y is gaussian distributed, then the process X(t) is a Gaussian pro-

- A filtered Gaussian process remains a Gaussian
- If X(t) is a GP, the arbitrary set of r.v. $\vec{X} = [X(t_1), \dots, X(t_n)]^T$ is jointly gaussian distributed for any n
- The joint cdf is of these r.v. is completely determined by the **means** $\mu_X(t_i) = E[X(t_i)]$ and covariances $C_X(t_k, t_i) = E[(X(t_k) \mu_X(t_k))(X(t_i)-\mu_X(t_i))$

Multivariative Guass distribution:

$$f(x) = \frac{\exp\left(-\frac{1}{2}(\vec{x} - \vec{m}_x)^T \underline{\Sigma}^{-1}(\vec{x} - \vec{m}_x)\right)}{(2\pi)^{\frac{n}{2}} \det\left(\underline{\Sigma}\right)^{\frac{1}{2}}}$$

$$\underline{\Sigma} := \begin{bmatrix} \operatorname{Cov}\left(X_1, X_1\right) & \dots & \operatorname{Cov}\left(X_1, X_n\right) \\ \vdots & \vdots & \vdots \\ \operatorname{Cov}\left(X_n, X_1\right) & \dots & \operatorname{Cov}\left(X_n, X_n\right) \end{bmatrix}$$

1.7 Noise

White noise is defined by its autocorrelation.

$$R_W(\tau) = \frac{N_0}{2}\delta(t)$$
 $S_W(f) = \frac{N_0}{2}$

2 Baseband Pulse Transmission

Digital Baseband Pulse Transmission System: Based on the sample $y(t_i)$ the receiver generates an estimate \hat{a}_i of the amplitude a_i of the transmitted pulse $g(t-iT_b)$.

2.1 Matched Filter

Signal
$$g(t)$$
 Σ Linear time-invariant filter of impulse response $h(t)$ $Sample at$ time $t = T$

$$y(t) = q_0(t) + n(t) = h(t) * q(t) + h(t) * w(t)$$

Maximize pulse signal-to-noise ratio η at sampling time t = T:

$$\eta = \frac{|g_0(T)|^2}{\mathrm{E}[n^2(t)]} = \frac{\left| \int_{-\infty}^{\infty} H(f)G(f)e^{j2\pi f T} \,\mathrm{d}f \right|^2}{\frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 \,\mathrm{d}f}$$

Using Schwarz's inequality:

$$\eta \le \frac{2}{N_0} \int_{-\infty}^{\infty} |G(f)|^2 \, \mathrm{d}f$$

The quality sign (optimum) holds if $a(x) \propto b^*(x)$, i.e.

$$H_{\text{opt}}(f) = kG^*(f)e^{-j2\pi fT} \Rightarrow h_{\text{opt}}(t) = kg(T-t)$$

The impulse response of the optimum filter, except for the scaling factor k, is a time-reversed and delayed version of the input signal q(t).

The pulse SNR of a machted filter depends only on the ratio of the signal energy E to the PSD of the white noise at the input filter.

$$\eta_{\text{max}} = \frac{2}{N_0} \int_{-1}^{\infty} |G(f)|^2 df = \frac{2E}{N_0}$$

$$E = \int_{-\infty}^{\infty} |g(t)|^2 dt = \int_{-\infty}^{\infty} |G(f)|^2 df$$

2.2 Error Rate

Discussed for a binary bipolar non-return-to-zero (NRZ) signal with amplitude A, bit duration T_b .

$$x(t) = \begin{cases} +A + w(t), & \text{Symbol 1 transmitted} \\ -A + w(t), & \text{Symbol 0 transmitted} \end{cases}$$

$$p_{10} = \frac{1}{2}\operatorname{erfc}\left(\frac{A+\lambda}{\sqrt{N_0/T_b}}\right) = Q\left(\sqrt{2}\frac{A+\lambda}{\sqrt{N_0/T_b}}\right)$$
$$= \mathbf{P}\left(y > \lambda \mid \text{symbol 0 was sent}\right)$$

The avg. prob. of symbol error P_e :

$$P_e = \frac{p_0}{2} \operatorname{erfc} \left(\frac{A + \lambda}{\sqrt{N_0 / T_b}} \right) + \frac{p_1}{2} \operatorname{erfc} \left(\frac{A - \lambda}{\sqrt{N_0 / T_b}} \right)$$

The error function:

$$\mathbf{P}(n > a) \equiv \mathbf{Q}\left(\frac{a}{\sigma_n}\right) = \frac{1}{2}\operatorname{erfc}\left(\frac{1}{\sqrt{2}}\frac{a}{\sigma_n}\right)$$

Optimum decision threshold λ that maximizes P_e :

$$\lambda_{\text{opt}} = \frac{N_0}{4AT_b} \log \left(\frac{p_0}{p_1}\right)$$

2.3 Intersymbol Interference

Arises when the channel is dispersive, the magn. freq. resp. is not constant over the range of inter-

$$\begin{split} s(t) &= \sum_k a_k \cdot g(t - kT_b) \\ y(t) &= \mu \sum_k a_k \cdot p(t - kT_b) + n(t) \\ t(t_i) &= \underbrace{\mu a_i}_{i\text{-th bit}} + \sum_{\substack{k = -\infty \\ k \neq i}}^{\infty} a_k p(i - k) T_b + n(t_i) \end{split}$$

2.4 Nyquist's Criterion

In order to avoid ISI, we require $p(mT_b) = 0$ for $m \neq 0$ and obtain

$$\sum_{m=-\infty}^{\infty} p(mT_b)\delta(t-mT_b) = \delta(t)\circ - \bullet P_{\delta}(f) = 1$$

An the nyquist criterion ($R_b = 1/T_b$ symbol rate):

$$\sum_{n=-\infty}^{\infty} P(f - nR_b) = T_b$$

In words: The pulse function P in freq. domain copied with spacing R_h must be constant.

Ideal nyquist channel: The simplest function P(f) that satisfies this is the rectangular function (ideal LPF) with $W = R_b/2$, R_b the nyquist rate.

$$P(f) = \frac{1}{2W} \operatorname{rect}\left(\frac{f}{2W}\right) = \begin{cases} \frac{1}{2W}, & -W \le f \le W \\ 0, & |f| > W \end{cases}$$
$$p(t) = \operatorname{sinc}(2Wt) \quad W = \frac{1}{2T_b} \quad E_b = \frac{A^2}{R_b}$$

Raised Cosine Spectrum: consists of flat portion and sinusodial rolloff.

$$\alpha = 1 - \frac{f_1}{W} \in [0, 1]$$
 Rollof factor

Bandwidth is larger: $B_T = 2W - f_1 = W(1+\alpha)$.

2.5 Correlative-Level Coding

Use basepulses which introduce controlled ISI. Same BW but higher P_e

$$H_I(f) = \begin{cases} 2T_b \cos(\pi f T_b) e^{-i\pi f T_b}, & |f| < 1/2T_b \\ 0, \text{else} \end{cases}$$

$$h_I(t) = \frac{T_b^2 \sin(\pi t/T_n)}{\pi t(T_b - t)}$$

Decoding

Precoding The decision feedback receiver is prone to propagating error. Using modulo-2 precoding, this can be omitted.

$$\begin{aligned} d_k &= b_k \oplus d_{k-1} \Rightarrow b_k = d_k \oplus d_{k-1} \\ c_k &= \begin{cases} 0, & b_k = 1 \\ \pm 2, & b_k = 0 \end{cases} \end{aligned}$$

2.6 Baseband M-ary PAM Transmission

In a M-ary PAM system: M possible amplitude levels. One symbol encodes $\log_2 M$ bits. Thus the signal rate T is related to the bit duration T_b of a binary PAM as:

$$T = T_b \log_2 M$$

- For same avg. P_e , an M-ary PAM requires more Tx power
- If $M \gg 2$ the Tx energy per bit must be increased by $M^2/(3\log_2 M)$ for same P_e

3 Signal Space Analysis

Continuous AWGN (Additive white gaussian noise)

- All symbols m_i from source are eually likely $p_i = p(m_i) = \frac{1}{M}$
- Transmitter codes each m_i into a signal $s_i(t) \in$ $\{s_k(t)|1 \le k \le M\}$

- Cahnnel adds AWGN $x(t) = s_i(t) + w(t)$ for $0 \le 1$. Build basis function ϕ_1 from s_1
- The optimal receiver minimizes the avg. pob. of symbol error P_e

$$P_e = \sum_{i=1}^{M} p_i \mathbf{P} \left(\hat{m} \neq m_i \mid m_i \right)$$

3.1 Geometric Signal Representation

Let $\{\phi_i(t)\}_{i=1...N}$ be a set of othonormal basis fuctions of the signal set $\{s_i(t)\}_{i=1...M}$. All signals can be expressed as a finite sum. The coeff. s_{ij} are given by the projection onto $\{\phi_i(t)\}_{i=1}$ N.

The orthonormal functions deine a N-dimensional Eucledian space - the signal space.

$$\int_{0}^{T} \phi_i(t)\phi_j(t) dt = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & -\neq j \end{cases}$$
$$s_i(t) = \sum_{j=1}^{N} s_{ij}\phi_j(t) \quad s_{ij} = \int_{0}^{T} s_i(t)\phi_j(t) dt$$
$$0 \le t \le T, \quad i = 1 \dots M, \quad j = 1 \dots N$$

$$\langle s_i(t), s_k(t) \rangle = \int_0^T s_i(t) s_k(d) \, \mathrm{d}t = \boldsymbol{s}_i^\top \cdot \boldsymbol{s}_k$$

$$\|\boldsymbol{s}_i\|^2 = \langle s_i(t), s_i(t) \rangle = \int_0^T s_i(t)^2$$

$$\|\boldsymbol{s}_i - \boldsymbol{s}_k\|^2 = \sum_{j=1}^N (s_{ij} - s_{kj})^2 = \int_0^T (s_i(t) - s_k(t))^2 \, \mathrm{d}t$$

$$\cos \theta_{jk} = \frac{\boldsymbol{s}_i^\top \cdot \boldsymbol{s}_k}{\|\boldsymbol{s}_i\| \cdot \|\boldsymbol{s}_k\|} \quad E_i = \sum_{j=1}^N s_{ij}^2 = \|\boldsymbol{s}_i\|^2$$

Gram-Schmidt orthogonalization procedure: Start with a complete system $s_1(t), \ldots, s_M(t)$ that generates the signal space. At each step generate a new basis function ϕ_i . The basis has only $N \leq M$ functions.

$$\phi_1(t) = \frac{s_1(t)}{\sqrt{\int_0^T s_1^2(t) \, dt}}$$

2. Search for a basis function from $s_2(t)$

$$s_{21} = \langle s_2(t), \phi_1(t) \rangle = \int_0^T s_2(t)\phi_1(t) dt$$
$$g_2(t) = s_2(t) - s_{21}\phi_1(t)$$

If $g_2 = 0$, s_2 is lin. dep. on ϕ_1 and does not lead to a new basis function. Otherwise:

$$\phi_2(t) = \frac{g_2(t)}{\sqrt{\int_0^T g_2^2(t) \, \mathrm{d}t}}$$

3. Search for a basis function from $s_3(t)$

$$s_{31} = \langle s_3(t), \phi_1(t) \rangle$$
 $s_{32} = \langle s_3(t), \phi_2(t) \rangle$
 $g_3(t) = s_3(t) - s_{31}\phi_1(t) - s_{32}\phi_2(t)$

If $g_3 = 0$, s_3 is lin. dep. on ϕ_1 and ϕ_2 and does not lead to a new basis function. Otherwise:

$$\phi_3(t) = \frac{g_3(t)}{\sqrt{\int_0^T g_3^2(t) \, \mathrm{d}t}}$$

4. Search for a basis function from $s_M(t)$. Project s_M on the already determined basis functions, decompose S_M into its projection and a difference term q_M . If $q_M \neq 0$:

$$\phi_N(t) = \frac{g_M(t)}{\sqrt{\int_0^T g_M^2(t) dt}}$$

3.2 Discrete System Model

The signal vector \boldsymbol{s} , noise vector \boldsymbol{w} and the received signal \boldsymbol{x} .

$$\mathbf{s}_{i} = \begin{bmatrix} s_{i1} & \dots & s_{iN} \end{bmatrix}^{\top} \quad \mathbf{w} = \begin{bmatrix} w_{1} & \dots & w_{N} \end{bmatrix}^{\top}$$
$$\mathbf{x} = \begin{bmatrix} x_{1} & \dots & x_{N} \end{bmatrix}^{\top} = \mathbf{s}_{i} + \mathbf{w}$$
$$\mathbf{E} [w_{j}] = 0 \quad \mathbf{E} [w_{j} \cdot w_{k}] = \delta_{jk} \quad \text{Var} (w_{j}) = \frac{N_{0}}{2}$$

Theorem of Irrelevance For signal detection with AWGN, only the projection of the noise onto the basis functions of the signal set $\{s_i(t)\}_{i=1}^M$ affect the sufficient statistics of the detection problem. The remainder of the noise is irrelevant.

$$\mu_{X_j} = \mathbb{E}[X_j] = \mathbb{E}[s_{ij} + W_j] = s_{ij} + \mathbb{E}[W_j] = s_{ij}$$

$$\sigma_{X_j}^2 = \operatorname{Var}(X_j) = \mathbb{E}[(X_j - s_{ij})^2] = \mathbb{E}[W_j^2] = \frac{N_0}{2}$$

$$W_j = \int_0^T W(t)\phi_j(t) dt$$

The elements X_i and X_k of the received signal vector have the covariance

$$Cov(x_j, x_k) = E[(x_j - \mu_{x_j})(x_k - \mu_{x_k})] = 0, \quad j \neq k$$

Thus the x_i are mutually uncorrelated. \implies statistical independence.

Likelihood Function As the x_i are statistically indep. the conditional PDF of x given s (i.e. symbol m_i sent usign signal s_i) follows:

$$L(\boldsymbol{s}_i) \coloneqq f_x(\boldsymbol{x}|\boldsymbol{s}_i) = f_W(\boldsymbol{w} = \boldsymbol{x} - \boldsymbol{s}_i) =$$

$$= \frac{1}{(\pi N_0)^{N/2}} \exp\left[-\frac{1}{N_0} \sum_{j=1}^{N} (x_j - s_{ij})^2 \right]$$

$$l(\boldsymbol{s}_i) = \log L(\boldsymbol{s}_i) = -\frac{1}{N_0} \sum_{j=1}^{N} (x_j - s_{ij})^2 + c$$

$$c = -\frac{N}{2}\log(\pi N_0) \quad i \in \{1, \dots, M\}$$

L likelihood function, l log-likelihood function can be used because the pdf is always nonnegative and monot. incr. The constant c is indep. of hyp. s_i and can be discarded for the decision.

3.3 Detection and Decoding

Detection problem: Given the observation x, determine an estimate \hat{m} of the transmitted symbol m_i , s.t. the probability of error is minimized.

$$P_e(m_i|\mathbf{x}) = \mathbf{P}(m_i \text{not sent} \mid \mathbf{x}) = 1 - \mathbf{P}(m_i \text{sent} \mid \mathbf{x})$$

The MAP (Maximum-A-Posteriori) decision rule is optimum in the minimum prob. of error sense. Set $\hat{m} = m_i$ if:

$$\mathbf{P}(m_i \text{sent} \mid \boldsymbol{x}) > \mathbf{P}(m_k \text{sent} \mid \boldsymbol{x}) \quad \forall k \neq i$$

Rephrased using Baye's rule, set $\hat{m} = m_i$ if (p_k, a_i) priori prob. of transmitting m_k , $f_x(\boldsymbol{x}|m_k)$ cond. pdf of x given m_k):

$$\hat{m} = \underset{m_k}{\operatorname{arg\,max}} \frac{p_k \cdot f_x(\boldsymbol{x}|m_k)}{f_x(\boldsymbol{x})} \quad \forall k \neq i$$

We can drop $f_x(\mathbf{x})$ as it is indep. of the symbol decision. For equiprobable source symbols, we obtain the ML decision rule: Set $\hat{m} = m_i$ if $l(m_k)$ max. for k = i.

Simplified ML Rule: x lies in region Z_i if

$$\sum_{i=1}^{N} x_i s_{kj} - \frac{1}{2} E_k$$

is maximum for k = i.

Correlation receiver

3.4 Probability of Error

 $\mathbf{P}(A_{ik}) = P_2(\mathbf{s}_i, \mathbf{s}_k)$ is the pairwise error prob. that observation x is closer to s_i than to s_i :

$$P_2(\boldsymbol{s}_i, \boldsymbol{s}_k) = \mathbf{P}\left(\|\boldsymbol{x} - \boldsymbol{s}_k\|^2 < \|\boldsymbol{x} - \boldsymbol{s}_i\|^2\right)$$

With the eucledian distance $d_{14} := ||s_1 - s_4||$:

$$P_2(\boldsymbol{s}_1, \boldsymbol{s}_2) = \mathbf{P}\left(z < \frac{1}{2}d_{14}\right) = Q\left(\frac{d_{14}}{\sqrt{2M_0}}\right)$$
$$= \frac{1}{2}\operatorname{erfc}\left(\frac{d_{14}}{2\sqrt{N_0}}\right)$$

The pairwise probability of error only depends on the Euclidean distance and is e.g. invariant to rotation and translation of the signal constellation

From the union bound we have

$$P_e(m_i) \leq \sum_{\substack{k=1 \ k
eq i}}^M P_2(oldsymbol{s}_i, oldsymbol{s}_k)$$

 P_e is the error prob. averaged over all symbols. An upper bound follows as

$$P_e = \sum_{i=1}^{M} p_i P_e(m_i) \le \frac{1}{2} \sum_{i=1}^{M} \sum_{\substack{k=1\\k \neq i}}^{M} p_i \operatorname{erfc}\left(\frac{d_{ik}}{2\sqrt{N_0}}\right)$$

4 Passband Data Transmission

In bandpass data transmission, information modulates a carrier and occupies a restricted bandwidth in frequency. The carrier can be modulated by changing:

- Amplitude (ASK)
- Phase (PSK)
- Frequency (FSK)

Cherent modulation is when the receiver's local oscillator is phase-synchronous to the transmitter's local oscillator.

 $M = s^n$ levels for signalling information (M-ary xSK). Using M levels, symbol duration $T = nT_b$ is changed whilek eeping the same datarate. Bandwidth shrinks accordingly by $1/nT_h$.

Figures of merit: Symbol error probability at given SNR, power spectral density, bandwidth efficiency $\rho = R_b/B$ [bit/s/Hz].

4.1 PSK: Coherent Phase Shift Keying

BPSK: Binary PSK

$$\phi_1(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t)$$

$$s_1(t) = \sqrt{E_b} \phi_1(t) \qquad s_2(t) = -\sqrt{E_b} \phi_1(t)$$
 Binary to zero level encoder evel encoder
$$\phi_1(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t)$$
 Correlator
$$\phi_1(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t)$$
 Choose 0 if $x_1 < 0$ (t)

QPSK: Quadriphase SK, use more than just two phase levels.

$$\phi_1(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t) \quad \phi_2(t) = \sqrt{\frac{2}{T_b}} \sin(2\pi f_c t)$$
$$\mathbf{s}_{10} = \begin{bmatrix} +c \\ +c \end{bmatrix} \mathbf{s}_{00} = \begin{bmatrix} -c \\ +c \end{bmatrix} \mathbf{s}_{01} = \begin{bmatrix} -c \\ -c \end{bmatrix} \mathbf{s}_{11} = \begin{bmatrix} +c \\ -c \end{bmatrix}$$
$$c = \sqrt{E/2}$$

Every QPSK symbol carries 2 bits, hence the symbol energy is twice the energy per information bit: $E = 2E_b$. A QPSK system achieves same BER as a BPSK at same E_h/N_0 but at twice the bit rate.

BER =
$$\frac{1}{2}$$
 erfc $\left(\sqrt{\frac{E_b}{N_0}}\right)$
 $S_B(f) = 4E_b \operatorname{sinc}^2(2T_b f)$

4.2 QAM: Hybrind Amplitude/Phase Modulation

QAM: M-ary quadrature amplitude modulation, change phase and amplitude.

 d_{\min} is the distance between adjacent messages in the signal space.

$$\phi_1(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t) \quad \phi_2(t) = \sqrt{\frac{2}{T_b}} \sin(2\pi f_c t)$$

$$\boldsymbol{s}_i = \frac{d_{\min}}{2} \begin{bmatrix} a_i \\ b_i \end{bmatrix} a_i, b_i \text{ odd integers}, i = 1, \dots, M$$

Mapping an even number f bits per symbol (e.g. 4bits \rightarrow 16 symbolds), results in a quadratic $L \times L$ square constellation with $L = \sqrt{M}$. Gray coding is often used for mapiping the bits to the QAM sym-

$$P_c = (1 - P'_e)^2 \rightarrow P_e = 1 - P_c = 1 - (1 - P'_e)^2 \approx 2P'_e$$

$$P'_e = \left(1 - \frac{1}{\sqrt{M}}\right) \operatorname{erfc}\left(\sqrt{\frac{d^2_{\min}}{4N_0}}\right)$$

$$E_{\text{av}} = \frac{(M - 1)d^2_{\min}}{6}$$

$$P_e \approx 2P'_e = 2\left(1 - \frac{1}{\sqrt{M}}\right) \operatorname{erfc}\left(\sqrt{\frac{3E_{\text{av}}}{2(M - 1)N_0}}\right)$$

 $E_{\rm av}$ average symbol energy.

4.3 FSK: Coherent Frequency-Shoft Keying

$$\phi_i(t) = \begin{cases} \sqrt{\frac{2}{T_b}} \cos(2\pi f_i t), & 0 \le t \le T_b \\ 0, & \text{else.} \end{cases}$$

$$f_i = \frac{n_c + i}{T_b} \quad i = 1, 2, \quad n_c \in \mathbb{N}$$

$$\mathbf{s}_1 = \sqrt{E_b} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{s}_2 = \sqrt{E_b} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 f_i chosen by rule to avoid phase discontinuities. The two frequencies f_1 and f_2 are $1/T_h$ Hz appart. The ϕ_i are orthogonal for $f_i = (n_c + i)/T_h$.

Distance between message points in signal space is $1/\sqrt{2}$ smaller compared to binary PSK.

$$d_{\min} = \sqrt{2E_b}$$

$$P_e = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{(d_{\min}/2)^2}{N_0}}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{2N_0}}\right)$$

$$S_B(f) = \frac{E_b}{2T_b}\left[\delta\left(f - \frac{1}{2T_b}\right) + \delta\left(f + \frac{1}{2T_b}\right)\right] + \dots$$

$$\frac{8E_b\cos^2(\pi T_b f)}{\pi^2(4T_b^2 f^2 - 1)^2}$$

PSD contains two delta pulses and decays much faster than BPSK due to continuous phase operation.

4.4 CPFSK Continuous Phase FSK

$$s(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t + \theta(t))$$
$$\theta(t) = \theta(0) \pm \frac{\pi h}{T_b} t, \quad 0 \le t \le T_b$$
$$h = T_b(f_1 - f_2), \quad f_c = \frac{1}{2}(f_1 + f_2)$$

h modulation index.

4.5 MSK Minimum Shift Keying

For integer valued h, the accumulated phase at end of symbol is independent of the previous and current symbol. \implies no phase memory, each symbol can be decoded independently.

$$f_1 - f_2 = 0.5/T_b$$

The minimum difference, for which $s_1(t), s_2(t)$ orthogonal.

$$\theta(0) = 0$$
 $\theta(T_b) = \pi/2$ symbol 1 transmitted $\theta(0) = \pi$ $\theta(T_b) = \pi/2$ symbol 0 transmitted $\theta(0) = -\pi$ $\theta(T_b) = -\pi/2$ symbol 1 transmitted $\theta(0) = 0$ $\theta(T_b) = -\pi/2$ symbol 0 transmitted

Estimation of $\theta(0)$: Expanding s(t) into two terms we get:

We can estimte $\theta(0)$ by observing

$$\sqrt{\frac{2E_b}{T_b}}\cos(\theta(t))\cos(2\pi f_c t)$$

MSK Signal-Space representation

$$\phi_1(t) = \sqrt{\frac{2}{T_b}} \cos\left(\frac{\pi}{2T_b}t\right) \cos(2\pi f_c t), \quad -T_b \le t \le T_b \text{the degradation in dB of GMSK compared to MSK.}$$

$$\phi_2(t) = \sqrt{\frac{2}{T_b}} \sin\left(\frac{\pi}{2T_b}t\right) \sin(2\pi f_c t), \quad 0 \le t \le 2T_b$$

$$P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\alpha E_b}{2N_0}}\right)$$

A coherent receiver has to integrate over two bit 4.7 Equivalent baseband representation

$$x_1 = \int_{-T_b}^{T_b} x(t)\phi_1(t) dt = \sqrt{E_b} \cos(\theta(0)) + w_1$$
$$x_2 = \int_{0}^{2T_b} x(t)\phi_2(t) dt = -\sqrt{E_b} \sin(\theta(T_b)) + w_2$$

Bit error rate The four points in the signal-space diagram correspond to two symbol, hence the BER is the same as with QPSK.

$$\mathrm{BER} = \frac{1}{2} \operatorname{erfc} \left(\frac{d_{\min}/2}{\sqrt{N_0}} \right) = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{E_b}{N_0}} \right)$$

4.6 GMSK

To make sidelobes of MSK smaller, filter the NRZ signal with pulse shaping function.

$$H(f) = \exp\left[-\frac{\log 2}{2} \left(\frac{f}{W}\right)^2\right]$$

The parameter α depends on the time bandwidth product WT_b . The quantity $10\log(\alpha/2)$ expresses

$$P_e = rac{1}{2}\operatorname{erfc}\left(\sqrt{rac{lpha E_b}{2N_0}}
ight)$$

QAM: Two branches: inphase (I) and quadrature

By using complex valued signals, the transmission system can be written as an LTI system.

Important names and notation:

$$\begin{array}{ll} \tilde{s}_{\mathrm{TX}}(t) & \text{compex envelope of } s_{\mathrm{TX}} \\ s_{\mathrm{TX}+}(t) & \text{analytic signal (pre-envelope of } s_{\mathrm{TX}}) \\ s_{\mathrm{TX}}(t) & \text{physical passband signal} \end{array}$$

$$S_{TX+}(f) = \begin{cases} 2S_{TX}(f) & f > 0 \\ 0 & \text{else} \end{cases}$$

$$H_{BP+}(f) = \begin{cases} H_{BP}(f) & f > 0 \\ 0 & \text{else} \end{cases}$$

$$H_{TX}(f) = 0 \forall |f| \ge f_0 \quad H_{RX}(f) = 0 \forall |f| \ge B$$

$$B = \max(0, f_0 - |f_0 - f_1|)$$

Complex Envelope Inphase and quadrature components.

$$\tilde{s}_{\mathrm{TX}}(t) = \tilde{s}_{\mathrm{TX,I}}(t) + j\tilde{s}_{\mathrm{TX,Q}}(t)$$
 $\tilde{S}_{\mathrm{TX}}(f) = 0 \forall |f| > f_0^{\mathsf{L}}$

Analytic signal Pre-envelope. Has one-sided spectrum, scaling factor to preserve power values in passband and geuivalent baseband.

$$s_{\text{TX}+}(t) = \tilde{s}_{\text{TX}}(t)\sqrt{2}\exp(j\omega_0 t)\exp(j\phi_0)$$

$$S_{\text{TX}+}(f) = \sqrt{2}\exp(j\phi_0)\tilde{S}_{\text{TX}}(f-f_0)$$

$$S_{\text{TX}+}(f) = 0 \forall f < 0$$

$$\tilde{S}_{\text{TX}}(f) = \frac{1}{\sqrt{2}}\exp(-j\phi_9 0)S_{\text{TX}+}(f+f_0)$$

Physical passband signal

$$s_{\text{TX}}(t) = \text{Re}\left\{s_{\text{TX}+}(t)\right\}$$

$$S_{\text{TX}}(f) = \frac{1}{2}\left(S_{\text{TX}+}(f) + S_{\text{TX}+}^*(-f)\right)$$

$$s_{\text{TX}}(t) = \sqrt{2}\tilde{s}_{\text{TX},\text{I}}(t)\cos(\omega_0 t + \phi_0) - \sqrt{2}\tilde{s}_{\text{TX},\text{Q}}(t)\sin(\omega_0 t + \phi_0)$$

$$s_{\text{TX}}(t) = \left\{\sqrt{2}\sqrt{\tilde{s}_{\text{TX},\text{I}}^2(t) + \tilde{s}_{\text{TX},\text{Q}}^2(t)}\right\}\cos(\omega_0 t + \phi_0 + \phi(t))$$

$$\phi(t) = \text{atan2}(\tilde{s}_{\text{TX},\text{Q}}(t), \tilde{s}_{\text{TX},\text{I}}(t))$$

Summary

$$x(t) = \text{Re}\{x_{+}(t)\}$$
 $x_{+}(t) = \tilde{x}(t)\sqrt{2}e^{j2\pi ft}$

x(t)physical passband signal

analytic signal (pre-envelope of x(t))

compex envelope of x(t) $\tilde{x}(t)$

4.8 Noncoherent Detection

Carrier phase θ at the receiver becomes a random variable.

4.9 ML detection with unknown phase shift

$$L(s_i) \triangleq f_X(\boldsymbol{x}|s_i) = \frac{1}{(\pi N_0)^{N/2}} \exp\left[-\frac{1}{N_0} \sum_{j=0}^{N} (x_j - s_{ij})^2\right]$$

The ML receiver selects the hypothesis, which maximizes the likelihood function

$$\hat{i} = \arg\max_{i} \left(L(\boldsymbol{s}_i) \right)$$

Expanding the sum in the exponent, the likelihood functino can be calculated from the output of a correlator bank.

$$L(\boldsymbol{s}_i) = c \exp\left[\frac{2}{N_0} \int x(t) s_i(t) dt - \frac{1}{N_0} E_{s_i}\right]$$

With
$$E_{s_i} = \sum_j s_{ij}^2 = \int s_i^2 dt$$

For a known phase offset, the modified receiver correlates with a rotate versino of each hypothesis.

Two-branch correlator

$$s_i(t,\theta) = s_i(t,\theta=0)\cos\theta - s_i(t,\theta=-\pi/2)\sin\theta$$

Equi-Energy Signals with unknown phase offset Shifting the integrator to each branch and obtain equi-energy signals with known phase offset:

$$L(s_i|\theta) = \exp\left(\frac{1}{N_0} \left(a_c \cos \theta - a_s \sin \theta\right)\right)$$
$$= \exp\left(\frac{1}{N_0} \sqrt{a_c^2 + a_s^2} \cos(\theta + \phi)\right)$$
$$\phi = \angle(a_c + ja_s)$$

With unknoen phase offset, we have to average the likelihood functino across all phase offsets θ .

$$\overline{L(s_i)} = \frac{1}{2\pi} \int_{\pi}^{\pi} \exp\left(\frac{1}{N_0} \sqrt{a_c^2 + a_s^2} \cos(\theta + \phi)\right) d\theta$$
$$= I_0 \left(\frac{1}{N_0} \sqrt{a_c^2 + a_s^2}\right)$$

 I_0 is the modified Bessel function of order zero.

As I_0 is monotonously increasing, a simplified decision rule follows as

$$\hat{i} = \arg\max_{i} d_i^2$$

Note that we need a two-branch correlator for each hypothesis $s_i(t)$.

Instead of the two-branch correlator we can use two matched filter - sampler pairs to calculate the decision variable.

We can determine the decision variable woth one matched filter an a Hilbert tranformer. matched filter - envelope detector pair is called a noncoherent matched filter.

$$s_i(t, \theta = -\pi/2) \circ - S_i(f, \theta = -\pi/2)$$

= $-i \operatorname{sgn}(f) S_i(f, \theta = 0)$

4.10 Noncoherent FSK

Signal x(t) at the receiver with unknown carrier phase offset θ :

$$x(t) = sqrt \frac{2E_b}{T_h} \cos(2\pi f_i t + \theta) + w(t), \quad i = 1, 2, 0 \le t \le T$$

The signals s_1 and s_2 each require such a branch. A comparator subsequently compares the two outputs I_i to devide between the hypothesis s_1 and s_2 .

We have

$$P_e = \frac{1}{2} \exp\left(-\frac{E_b}{2N_0}\right)$$

This corresponds to a degradatino of at least 3dB compared to coherent MSK. Less degradation compared to BFSK.

Another implementation is with matched bandpass filters to f_1 and f_2 followed by envelope detectors, samplers and a comparison device.

4.11 DPSK Differential PSK

Differential precoding at transmitter: Symbol $0 \Longrightarrow$ π phasejump, Symbol 1 \Longrightarrow no phase-jump. Assumption: θ does not change significantly between two adjecent sampling instances.

Noncoherent detector for DPSK:

Quadrature implementation of simplified detector:

DPSK is a special case of noncoherent, orthogonal modulation with $T = 2T_b$ and $E = 2E_b$. Th bit error rate is given by:

$$P_e = \frac{1}{2} \exp\left(-\frac{E_b}{N_0}\right)$$

4.12 Performance comparison

Modulation	P_e
Coherent BPSK Coherent QPSK Coherent MSK	$\frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)$
Coherent binary FSK	$\frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{2N_0}}\right)$
DPSK	$\frac{1}{2} \exp\left(-\frac{E_b}{N_0}\right)$
Noncoherent binary FSK	$\frac{1}{2} \exp\left(-\frac{E_b}{2N_0}\right)$

5 Math

5.1 General

$$\cos(a)\cos(b) + \sin(a)\sin(b) = \cos(a-b)$$

$$\cos(a+b)\cos(a-b) = \frac{1}{2} [\cos(2a) + \cos(2b)]$$

$$\cos(a)\cos(b) = \frac{1}{2} (\cos(a-b) + \cos(a+b))$$

$$\sin(a)\sin(b) = \frac{1}{2} (\cos(a-b) - \cos(a+b))$$

$$\cos(a)\sin(b) = \frac{1}{2} (\sin(a+b) - \sin(a-b))$$

$$\sin(x) = \frac{\sin(\pi x)}{\pi x}$$

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i} \quad \cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

5.2 Fourier Transform

u(t)

Source: Haykin, Communication systems, 4th ed.

source: Haykin, Communication systems, 4th ed.

$$\operatorname{rect}\left(\frac{t}{T}\right) \qquad \circ \longrightarrow \qquad T \operatorname{sinc}(fT)$$

$$\operatorname{sinc}(2Wt) \qquad \circ \longrightarrow \qquad \frac{1}{2W} \operatorname{rect}\left(\frac{f}{2W}\right)$$

$$\exp(-at)u(t), a > 0 \qquad \circ \longrightarrow \qquad \frac{1}{a+j2\pi f}$$

$$\exp(-a|t|), a > 0 \qquad \circ \longrightarrow \qquad \frac{2a}{a^2+(2\pi f)^2}$$

$$\exp(-\pi t^2) \qquad \circ \longrightarrow \qquad \exp(-\pi f^2)$$

$$\left\{ \begin{array}{cccc} 1 - \frac{|t|}{T}, & |t| < T \\ 0, & |t| \geq T \end{array} \right. \qquad \circ \longrightarrow \qquad T \operatorname{sinc}^2(fT)$$

$$\delta(t) \qquad \circ \longrightarrow \qquad 1$$

$$1 \qquad \circ \longrightarrow \qquad \delta(f)$$

$$\delta(t-t_0) \qquad \circ \longrightarrow \qquad \delta(f)$$

$$\delta(t-t_0) \qquad \circ \longrightarrow \qquad \delta(f)$$

$$\exp(j2\pi f_c t) \qquad \circ \longrightarrow \qquad \delta(f-f_c)$$

$$\exp(j2\pi f_c t) \qquad \circ \longrightarrow \qquad \delta(f-f_c)$$

$$\cos(2\pi f_c t) \qquad \circ \longrightarrow \qquad \frac{1}{2} [\delta(f-f_c) + \delta(f+f_c)]$$

$$\sin(2\pi f_c t) \qquad \circ \longrightarrow \qquad \frac{1}{2i} [\delta(f-f_c) + \delta(f+f_c)]$$

$$\operatorname{sgn}(t) \qquad \circ \longrightarrow \qquad \frac{1}{j\pi f}$$

$$\cdots \longrightarrow \qquad -j \operatorname{sgn}(f)$$

$$u(t) \qquad \circ \longrightarrow \qquad \frac{1}{2} \delta(f) + \frac{1}{i2\pi f}$$

 $\sum_{t=0}^{\infty} \delta(t-iT_0) \qquad \qquad \circ \longrightarrow \quad \frac{1}{T_0} \sum_{t=0}^{\infty} \delta\left(f-\frac{n}{T_0}\right)$

u(t) unit step function

 $\delta(t)$ delta function

rect(t) rectangular function of unit amplitude and unit duration centered on the origin

7

sgn(t) signum function

sinc(t) sinc function

Relations

$$\alpha f(t) + \beta g(t)$$
 $\circ \longrightarrow \alpha F(f) + \beta G(f)$
 $f^*(t)$ $\circ \longrightarrow F^*(-f)$

$$f(at)$$
 \circ $\frac{1}{|a|}F\left(\frac{f}{a}\right)$

$$f(t-a)$$
 \longrightarrow $e^{-j2\pi fa}F(f)$

$$e^{j2\pi f_0 f}$$
 \circ —• $F(f-f_0)$

$$f^{(n)} \qquad \qquad \bigcirc - (j2\pi f)^n F(f)$$

$$t^n f(t)$$
 \longrightarrow $j^n F^{(n)}(f)$

$$\int_{-\infty}^{t} x(\tau) d\tau \qquad \qquad \circ \longrightarrow \quad \frac{1}{j2\pi f} F(f) + \pi F(0) \delta(f)$$

$$\frac{1}{t}x(t) + \pi x(0)\delta(t) \quad \circ \longrightarrow \quad \int_{-\infty}^{f} X(s) \, \mathrm{d}s$$

$$(f*g)(t)$$
 \circ —• $F(f)\cdot G(f)$

$$f(t) \cdot g(t)$$
 $\circ - \bullet \quad \frac{1}{2\pi} F(f) * G(f)$

 $f^{(n)}$ n^{th} derivation f* complex conjugate

5.3 Probability

$$\mathbf{P}(X > x) = \frac{1}{2}\operatorname{erfc}\left(\frac{x}{\sqrt{2}\sigma_X}\right)$$

$$\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$$

$$\operatorname{erfc}(x) = 1 - \operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt$$