

Equalibrium Single-Region. Mass balance:

dt m = msunge + mspray Energy balance:

dt (mu) = msungehsunge + mspox hspray +Qn - pd (mv) -(2)

m= mv+mr sun= sum + sur no True + Mrue = 100

 $\frac{d}{dt}(mv) = \frac{d}{dt}(mvvv + meve) = 0 - (3)$ (Constant volume)

Poescribed inputs: rospoay, hspray, rosurge, hsurge beg Un known: p, onv, one, Uv, Vv, Up, and ve Equation of State: $u_N = u_g = f(p)$ $u_k = u_f = f(p)$ $v_k = v_g = f(p)$ $v_k = v_f = f(p)$ $v_k = v_f = f(p)$ $v_k = v_f = f(p)$

Condition.

Final Pressure:

Initial State:

(41) out sange (Vg1) insurge

A: (Y2) insurge Final State:

B: (42) outsurge (V52) outsurge

VT = (Vg1) insurge + (Vf1) butsurge

Muknown: with & d

Inputs: suspray, yestray, susary, pourse of.

Integrate equations O-3 between initial (1) and final states (2)

Wordsup + surrace = 1 w- 2 bach want of the salary hands to make a mile of the m2 1/2 = m, 4

For insurge: final state is saturated water at initial 1 the + with the down to with the wall a state of the who = surande (1+f) + with + wid - a fmourge = Inspray

```
mf2 42 = msurge (hourse + fhspray) + mg, ug, + mf, ug, + Ph. -
        sulfix = ms, rd, + ut, xt . - @
 State (1) × (2) are saturated at same present.
       from (5) and B
             sud! = rt nd - rt nd - A nd - A
    and from @ and &
                  sud! = Nd-nt -@
      From (9 + 8)
(Qh)insurge = 20surge (1+f) Evg up - 4g ug]
Vg - 4
                                  - msurge (hsurge tofhspray) &
    Steam volume (Vg) insurge = mg, vg
    For onfourge case,
roans palance: suf + mg - mf - mg = - so surge
   energy bulumce:
         who at the was not - with at - was not = - weards praise + Op.
   regime compaint: sut it + west not = sut it + west not
           sul! = we + surande And - it
     and my = my + ar-membersande
  (Qx) outsurge = mourge hourse - (up - 4 cg) (mourge vg-4)
```

Example: Pressurizer Sizing

Determine size of the pressurizer that can accommodate a maximum cutsunge of 14,000 kg and hotleg insury of 9500 kg for the conditions of Table

Table 7-3 Conditions for pressurizer design problem

Saturation pressure	15.5 MPa	(2250 psia)
Saturation temperature	618.3°K	(652.9°F)
Saturation properties		
$u_{\mathbf{f}}$	$1.60 \times 10^6 \mathrm{J/kg}$	(689.9 B/lb)
u _g	$2.44 \times 10^6 \text{ J/kg}$	(1050.6 B/lb)
v_f	$1.68 \times 10^{-3} \mathrm{m}^3/\mathrm{kg}$	$(0.02698 \text{ ft}^3/\text{lb})$
$v_{\mathbf{g}}$	$9.81 \times 10^{-3} \mathrm{m}^3/\mathrm{kg}$	$(0.15692 \text{ ft}^3/\text{lb})$
Mass of maximum outsurge	14,000 kg	
Mass of maximum insurge	9,500 kg	
Hot leg insurge enthalpy	$1.43 \times 10^6 \mathrm{J/kg}$	(612.8 B/lb)
Cold leg spray enthalpy	$1.27 \times 10^6 \mathrm{J/kg}$	(546.8 B/lb)
Cold leg spray expressed as a fraction of hot leg insurge (f)	0.03	
Outsurge enthalpy	$1.63 \times 10^6 \mathrm{J/kg}$	(701.1 B/lb)
Mass of liquid water necessary to cover the heaters (requires an assumption about the pressurizer configuration)	1827 kg	

Solution:
$$\frac{(Q_h)_{insurge}}{(Q_h)_{insurge}} = \frac{m_{surge}(1+f) L v_g u_f - v_g u_g v_g}{v_g - v_f} = \frac{1.06 \times 10^{7} J}{v_g - v_f}$$

$$mg_1 = \frac{m_{surge}(1+f) v_g}{v_g - v_f} = \frac{2022 kg}{v_g - v_g}$$

(Vg1) in surge = mg, vg = 19.94 m3.

(h) outsunge = msunge hsunge - (up - 4 ug) (msunge vg-y)
= 2.851×109 J

ont! = mts + wende 18-1 = 1:8)5 x 10 fb

(4) out surge = 27, 4 = 31.45.403

78tal volume = VT = (Vg1) insurge + (Vf1) autoringe = 51.29 m3

 \longrightarrow \sim