(6) For calculating the quantity of air required for combustion following formulae can be applied:

Weight of air needed =
$$\left\{ \frac{32C}{12} + \frac{16H}{2} + \frac{32S}{32} - 0 \right\} \times 100$$

('O' is oxygen present in fuel)

Volume of air required = (Number of moles of air) × 22.4 litres at N.T.P.

Weight of air needed in g

28.94 × 22.4 litres at N.T.P.

(7) The mass of any gas can be converted to its volume at certain temperature and pressure by using the gas equation

Where

P = Pressure of gas in atmosphere

V = Volume of gas in litres

n = Number of mole of the gas

T = Temperature on the Kelvin scale.

(8) To enfoulate the volume of gas at given temperature and pressure, following relation is used.

$$\frac{P_0 V_0}{T_0} = \frac{P_1 V_1}{T_1}$$
 (from Boyle's and Charles law)

Where P_0 , V_0 and T_0 are standard pressure, volume and temperature, P_1 and T_1 are the given pressure and temperature. Thus, V_1 volume at given pressure and temperature can be easily calculated.

6.12 Numericals on Combustion

(A) Calculation of Amount of Air (Weight Basis)

Problem 1

A coal sample contains C = 65%, H = 13%, O = 6%, S = 4%, N = 2%. Calculate the minimum amount of air needed for complete combustion of 1 kg of coal.

(M.U. May 2008)

% by weight	Weight
65	Weight of each per kg of fue
13-	65 / 100 = 0.65 13 / 100 = 0.13 6 / 100 = 0.06
6	
2	
ä	Does not contribute 4 / 100 = 0.04
	65

Amount of air required =
$$\frac{100}{23}$$
 [2.67 C + 8 H + 5 - 0] kg
= $\frac{100}{23}$ [2.67 × 0.65 + 8 × 0.13 + 0.04 - 0.06] kg
= $\frac{100}{23}$ [1.7355 + 1.04 - 0.02] kg
= $\frac{100}{23}$ [2.7555] kg
= 11.98 kg

Ans. : Weight of air needed for combustion of 1 kg of fuel = 11.98 kg.

Problem 2

A coal sample was found to contain the following constituents: C = 81%, O = 8%, S = 1%, H = 5%, N = 1%, ash = 4%. Calculate the minimum amount of air required for complete combustion of 2 kg of coal.

(M.U. May 2016)

Solution :

Constituent	% by weight	Weight of each per kg of fur
e	81	81 / 100 = 0.81
0	8	8 / 100 = 0.08
S	1	1 / 100 = 0.01
н	5	5 / 100 = 0.05
N	1	Does not contribute

Amount of air required
$$=\frac{160}{23} [2.67 \text{ C.} + 8 \text{H} + \text{S.} - \text{O}] \text{ kg}$$

 $=\frac{100}{23} [2.67 \times 0.81 + 8 \times 0.05 + 0.01 - 0.08] \text{ kg}$
 $=\frac{100}{23} [2.163 + 0.4 + 0.01 - 0.08] \text{ kg}$
 $=\frac{100}{23} [2.493] \text{ kg}$
 $=10.839 \text{ kg}$

Amount of air required for 2 kg of coal

$$= 2 \times 10.839$$

= 21.68 kg

Ans.: Amount of air needed for 2 kg of coal = 21.68 kg

Problem 3

...

Calculate weight of air needed for complete combustion of 1 kg of coal containing C = 72%, H = 10%, O = 9%, N = 3% and remaining being ash. (M.U. Dec. 2011)

Solution:

Constituent	% by weight	Weight of each per kg of fuel
C-	72	72 / 100 = 0.72
Ą	10	10/100 = 0.01
.0	9	9 / 100 = 0.09

Amount of air required =
$$\frac{100}{23} [2.67 \text{ C} + 8 \text{ H} + \text{S} - \text{O}] \text{ kg}$$

= $\frac{100}{23} [2.67 \times 0.72 + 8 \times 0.1 - 0.09] \text{ kg}$
= $\frac{100}{23} [1.9224 + 0.8 - 0.09] \text{ kg}$
= $\frac{100}{23} [2.6324] \text{ kg}$
= 11.45 kg

Ans. : Weight of air required for combustion of 1 kg of coal = 11.45 kg.

problem 4

A coal sample was found to contain the following constitutents:

C=81%, H=6%, S=1%, N=2%, Ash = 4% and rest is oxygen.

Calculate the minimum weight of air required at STP for complete combustion of [kg of the coal sample.

(M.U. Dec. 2019)

Solution:

Constituent	% by weight	Weight of each per kg of fuel
C	81	81/100 = 0.81
· H	. 6	6/100 = 0.06
<u>\$</u>	1	1/100 = 0.01
N	2	Does not contribute
O	6	6 / 100 = 0.06
Ash	4	Does not contribute

Amount of air required =
$$\frac{100}{23}$$
 [2.67 C + 8 H + S - O] kg
= $\frac{100}{23}$ [2.67 × 0.81 + 8 × 0.06 + 0.01 - 0.06] kg
= $\frac{100}{23}$ [2.1627 + 0.48 - 0.05] kg
= $\frac{100}{23}$ [2.5927] kg
= 11.273 kg

Ans.: Weight of air required for combustion of 1 kg of coal = 11.273 kg.