

"Welcome! Glad you joined us! Let's build something for fun!"

Prof. Erich Styger erich.styger@hslu.ch +41 41 349 33 01 Scriptum: Requirements

Learning Goals

- Your Goal?: You want to earn 6 ECTC credits
- Course overview and philosophy
- Exam admission (Testat)
- Exam rules
- Hardware/Kits
- Tips and Tricks

Course Outcome

- Successfully demonstrating the ability to build an embedded real-time cross-platform application
- Usage of hardware/software, multiple sensors and actuators to control multiple real-time embedded systems
- Software creation with tools and middleware, in a multiuser collaborative environment

Stick

Application Goals

- DC Motor closed loop control + Wireless Controller
- Remote Controller for Robot
- Robot is able to perform autonomous tasks

MEP / Examination

- 4 hours total, in writing (1h+3h), English
 - 1h: no supporting material allowed
 - Simple pocket calculator allowed
 - 3h: up to 16 A4 pages written summary
 - Summary does not have to be in handwriting
 - Pocket calculator allowed
- Multiple Choice questions
- Evaluation questions (+/-)
- Programming Quizzes
- Discussion (Pros/Cons) questions
- Bonus Points and Lab Points
- MEP example(s) provided during the course
- See script/lab assignments for questions, ...

Exam Admission (Attestation)

1. 'Recap' of Previous Week

- ~5-10" short presentation/session
- What have you learned a week ago?
 - Or: your own subject related to course
- 5 Quiz Questions (in writing!) with solutions (no need to go through them during recap)
- Register for your time slot in advance

Bonus: Good recap questions will be in MEP ©

2. Tips for next students (until SW13)

What to do, not to do (see example), in English

3. Maze (until SW13)

- Demonstration of Sumo requirements fulfilled
- Successfully running Sumo Robot in Competition

Technik & Architektur

Sudo!

Source: https://kings2027.files.wordpress.com/2014/09/sudo-make-me-a-sandwich-300x249.jpg

Lab Points (Max 30)

- Course: manual, 5 Points + time ranking (max 10 Points)
- Maze exploration: autonomous robot, 5 Points
- Maze solving: Time ranking (max 10 Points)
- Penalty time for hitting walls/pillars

Technik & Architektur

K22 Zumo Robot

- ARM Cortex-M4F
- 120 MHz
- 512 Kbyte of FLASH
- 64 Kbyte of RAM
- USB (Device)
- I²C Accelerometer + Magnetometer
- 2 LEDs
- Buzzer
- Reset + user button
- 1:75 DC Motors
- Quadrature Encoder
- IR Line Sensor
- Arduino Headers

Technik & Architektur

FRDM-KL25Z Board and Shield

- ARM Cortex-MO+
- 48 MHz
- 128 Kbyte of FLASH
- 16 Kbyte of RAM
- Debug Interface (USB)
- OpenSDA (K20) USB CDC
- KL25Z USB (device)
- Accelerometer (I²C)
- RGB LED
- Reset /user button
- Capacitive touch slider
- Joystick Shield
 - 4 XY Buttons, Analog Joystick with Button, 2 User buttons
 - nRF and LCD Connector

Software and Hardware Challenges

- Cross-Platform:
 - Multiple microcontrollers
 - BitIO, LED, push button, MEMS, LCD, DC Motor, Encoder, Sensor, ...
 - Same/shared source base
- Development Tools
 - Eclipse + VCS
 - Low Level Driver Code Generator (Processor Expert)
- Design Patterns
 - Events, Triggers, Queues, FSM's
 - Reentrancy, Priorities, Realtime
 - Closed Loop Control
- Middleware
 - USB, RTOS, Trace, PEx Components

Technik & Architektur

Lecture & Lab Organization

Course Philosophy

- We learn by doing
- We learn from each other
- Students
 - Working in groups of 2
 - Projects can be shared, not copied (!)
 - Copyright/IP/work is respected
- Instructor
 - Shares most parts (!!) of his project
 - Publishes material in advance
- Material
 - ILIAS (first week only): script, software)
 - GitHub: components, projects, sources, documents,
 - Blog articles

- ...

Technik & Architektur

Technik & Architektur

Script

- III Building Blocks
 Introduction
 ANSI-C
 LED
 State Machines
 Events
 Triggers
 RTOS
 Position Encoder
 Closed Loop Control
- □ IV Laboratory Short Courses ₱ Introduction Exploring Embedded C Bouncing Switch ₱₩ Interrupts using C □ V The Firmware Handbook Reentrancy Interrupt Latency □ VI Appendix **₩** Glossarv Acronyms Symbols ... Bibliography

Version with 'Solutions' available

Technik & Architektur

Schedule

We	ek	Topic (SUBJECT of CHANGE!)	
1	17.09.2015	Intro	
		Build & Debug	
	18.09.2015	Project Structure	
		VCS, Git	
2	24.09.2015	Systems and Realtime	
		Processor Expert	
	25.09.2015	Robo Assembly	
		LED, Preprocessor	
3	01.10.2015	Synchronization	
		Interrupts, FRDM Debug Probe	
	St. Leodegar		
4	00 10 2015	ARM Cortex	
4	08.10.2015	Events	
	00 10 2015	Clock & Timer	
	05.10.2013	Keys, Statemachines	
5	15.10.2015	Console, Shell	
_	1011012010	Trigger, Buzzer	
	16.10.2015	Self-Study	
		Self-Study	
6	22.10.2015	•	
		RTOS	
	23.10.2015	FreeRTOS	
		Task & Scheduler	
7	29.10.2015	Kernel Awareness	
		Shell & USB	
	30.10.2015	Mutual Access	

8	05.11.2015	Sem & Mutex Reflectance
	06.11.2015	Motor Signals NVM Config
9	12.11.2015	Position Encoder Quadrature Encoder
	13.11.2015	Tacho
10	19.11.2015	Closed Loop Control Line Following
	20.11.2015	_
11	26.11.2015	Remote Control
	27.11.2015	Ultrasonic Sensor Turning
12	03.12.2015	Maze Solving
	04.12.2015	Maze Solving
13	10.12.2015	Working on Bots
	11.12.2015	*Competition*
14	17.12.2015	Q&A, MEP Wrap-up
	18.12.2015	· · · ·

Lab Material: FRDM-Kit

- 1 Kit/Box per Group
 - 2 FRDM-KL25Z Boards
 - Might need to populate headers for shield
 - Headers from E workshop
 - 2 Mini-USB Cables
 - 1 Joystick Shield
 - 1 nRF24L01+ Wireless Transceiver Module

2nd FRDM-KL25Z Board used for 2nd Team Member during first half of the Course

Lab Material: Robot Kit

- 1 Kit/Box per group
 - 1 P&E ML + USB Cable
 - 1 Mini USB Cable
 - 1 Ultrasonic Module
 - 1 nRF24L01+ Module
 - 1 NiMH Charger with Power Supply
 - 4 NiMH AA Batteries

Options

- Use Lab/provided hardware
 - Standard robot and parts
 - Return material at end of course
 - Only reversible changes allowed!
 - 6 Pre-Built Robots available

- Build/Buy what you want/need
- It's yours!
- Support
 - Instructor assisted (orders, ...)
 - 'Trial' hardware available

Technik & Architektur

Robo Kit (CHF 90.--)

- K22 PCB
- Chassis Kit
- Optical Encoders
- Motors
- Headers
- Blade
- Reflectance Sensor
- Reflectance Sensor
 Headers
- USB Cable

Robo Sensor & Connectivity Kit (CHF 25.--)

- Sensor Shield with I²C I/O Expander
- nRF24L01+
- Ultrasonic Sensor
- Bluetooth Module with cable
- Option: additional Pololu 38 kHz IR Sensors

Technik & Architektur

FRDM Kit (CHF 20.--)

- For programming Robot
- FRDM-KL25Z Board
- SWD Cable
- SWD Header
- USB Cable

Architektur

Joystick Kit (CHF 25.--), LCD (CHF 5.--)

- Joystick Shield
- nRF24L01+ Transceiver

- Nokia Display-
- -84x48, B/W
- CHF 5.--

Tips and Rules

- Maintain your project
- Make backups / use VCS
- Only do small steps
- Maintain a lab journal (discussions, white boarding)
- Not everything is provided! (script, slides,...)
- Understand the lab code
- Tips from previous INTRO!
 - → Exam admission element
- Classroom / Lab Rules
 - Do not disturb
 - Taking out hardware/boards
 - Breaks

Tips from previous students

Technik & Architektur

Get HELP to avoid THIS!

Summary

- Plan enough for self study
- Prepare things in advance
- Learn as you go
- Catch up!
- Ask if something is not clear!
- Maintain your project
- Read and follow tips from previous students

(I'm learning too ⊕)

Lab 1: Start (15")

- Build Teams
- Fill out Team form
- Get Team Hardware
 - 2 FRDM boards
 - 2 Mini-USB cables
 - 1 P&E Multilink
- Fill out Preorder form
- Mem Stick
 - KDS Windows (32bit/64bit): 7, (8), 10 (???)
 - KDS Linux (Ubuntu, RHE, Centos), RPM/DEB
 - Mac OS X
 - Software/Datasheets

Lab #1

INTRO TEAM

Recap Schedule

- Team of two
- Register for slot one week after lecture
- Material to cover from one week BEFORE
- Schedule your slot WHEN deliver

Wee	k	Topic (SURIECT of CHANGE!)	Recap schedule (Material from week before)	Recap	ı
1	17.09.2015	Intro Build & Debug	[NO RECAP]		
	18.09.2015	Project Structure VCS, Git	[NO RECAP]		
2	24.09.2015	Systems and Realtime Processor Expert	17.9		
	25.09.2015	Robo Assembly LED, Preprocessor	17.9		
3	01.10.2015	Synchronization Interrupts, FRDM Debug Probe			
:	St. Leodegar		[NO RECAP]	Re	ecap
4	08.10.2015	ARM Cortex Events	1.10		hedule
	09.10.2015	Clock & Timer Keys, Statemachines	???		

Technik & Architektur

Lab 2: Recap Instructions (10")

- Register for Recap Slot
 - Paper form (for now)
 - Update on GitHub (later)
- Read Tips from previous students

Lab #2

Tips

Lecture Material on GitHub

- All lecture material shared on GitHub
 - Private Repository, need to be added as user for access
 - You will need a (free) GitHub account

Git Provider

Applied Sciences and Arts

HOCHSCHULE

LUZERN

Technik & Architektur

Lucerne University of

- Bitbucket
 - bitbucket.org
- GitHub
 - github.com

GitHub (https://github.com/)

- Open Source Collaboration Platform
- Free for ,public' projects
- Wiki, Bug Tracking, Statistics, ...
- Example: https://github.com/ErichStyger/mcuoneclipse

Creating GitHub Account

- Create new GitHub Account if you do not have one
- https://github.com/
- Provide user name, email address and password
- Use 'Free' plan and 'Finish sign up'
- Send your GitHub User Name to erich.styger@hslu.ch

Email Verification

- Verify your email account
- Click on link in received email

Lab 3: GitHub (10")

- Create your GitHub Account
- Send GitHub User name to Erich Styger
- Verify Login/Account
- Browse INTRO GitHub repository content

Lab #3