1	1. A method for preparing a substrate for detecting at least one				
2	analyte in a sample comprising the steps of:				
3	a) exposing the sample to at least two different selectivity,				
4	conditions, each selectivity condition defined by the combination of an adsorbent and an				
5	eluant, to allow retention of the analyte by the adsorbent;				
6	b) identifying by desorption spectrometry at least one selectivity				
7	condition under which the analyte is retained; and				
8	c) preparing a substrate comprising at least one adsorbent of an				
9 .	identified selectivity condition.				
1	2. The method of claim 1 wherein the step of identifying comprises				
2	identifying at least one selectivity condition under which a plurality of analytes are				
3	retained.				
1	3. The method of claim 1 wherein the step of preparing comprises				
2	preparing a substrate comprising a plurality of adsorbents that retain the analyte under an				
3	elution condition as a multiplex adsorbent.				
1	4. A method for progressively identifying a selectivity condition with				
2	improved resolution for an analyte in a sample comprising the steps of:				
3	(a) identify a selectivity condition that retains an analyte in a				
4	sample by:				
5	(i) exposing a sample to a set of selectivity conditions, each				
6	selectivity condition defined by at least one binding characteristic and at least one elution				
7	characteristic;				
8	(ii) detecting analyte retained under each selectivity				
9	condition by desorption spectrometry; and				
10	(iii) identifying a selectivity condition that retains the				
11	analyte; and				
12	(b) identifying a selectivity condition with improved resolution for				
13	the analyte by:				

14	(i) selecting at least one binding characteristic or elution				
15	characteristic from the identified selectivity condition and adding it to a selectivity				
16	characteristic constant set;				
17	(ii) exposing the sample to a modified set of selectivity				
18	conditions wherein each selectivity condition in the modified set comprises (1) the				
19	selectivity characteristics in the constant set and (2) a binding characteristic or elution				
20	characteristic that is not in the constant set; and				
21	(iii) identifying a selectivity condition from the modified set				
22	by desorption spectrometry that retains the analyte with improved resolution compared				
23	with a prior identified selectivity condition.				
1	5. The method of claim 4 further comprising the step of repeating step				
2	(b) at least once.				
1	6. The method of claim 5 comprising repeating step (b) until a				
2	selectivity condition is identified that retains only the target analyte from the sample.				
1	7. A substrate for desorption spectrometry comprising an adsorbent				
2	from a selectivity condition identified to resolve an analyte by the method of claim 4.				
	·				
1	8. The substrate of claim 7 in the form of a kit further comprising an				
2	eluant from the selectivity condition or instructions on using the eluant in combination				
3	with the adsorbent.				
1	9. A method for determining whether an analyte is differentially				
2	present in a first and second biological sample comprising the steps of:				
3	a) determining a first retention map for the analyte in the first				
4	sample for at least one selectivity condition;				
5	b) determining a second retention map for the analyte in the second				
6	sample for the same selectivity condition; and				
7	c) detecting a difference between the first and the second retention				
8	maps;				

9	whereby a difference in the retention maps provides a determination				
10	that the analyte is differentially present in first and second samples.				
1	10. The method of claim 9 wherein the first biological sample derives				
2	from a healthy subject and the second biological sample is from a subject suffering from				
3	a pathological condition.				
1	11. The method of claim 9 wherein the biological samples comprise				
2	2 first and second cell extracts.				
1	12. The method of claim 9 wherein the retention map comprises a				
2	plurality of selectivity conditions.				
1	13. The method of claim 9 comprising, before the step of detecting, the				
2	step of converting the analyte into at least one fragment whose molecular mass smaller				
3	than the mass of the analyte.				
1	14. The method of claim 9 wherein the step of detecting a difference is				
_	performed in a programmable digital computer.				
2	performed in a programmable digital computer.				
1	15. The method of claim 9 for determining whether an agent alters the				
2	expression of a protein in a biological sample further comprising the step of				
3	administering the agent to a first biological sample but not to a second biological sample.				
1	16. The method of claim 10 wherein the sample is selected from the				
2	group consisting of blood, urine, serum and tissue.				
1	17. The method of claim 10 further comprising identifying an analyte				
2	that is present in a greater amount in second biological sample than in the first biological				
3	sample, whereby the analyte is identified as a candidate diagnostic marker for the				
4	pathological condition.				

1	18. The method of claim 11 wherein the first cell extract is derived			
2	from a healthy cell and the second cell extract is derived from a cancer cell.			
1	19. A method of diagnosing in a subject a disease characterized by at			
2	least one diagnostic marker comprising the steps of:			
3	a) providing a substrate for use in desorption spectrometry that			
4	comprises at least one addressable location, each addressable location comprising an			
5	adsorbent that resolves at least one of the diagnostic markers under an elution condition;			
6	b) exposing the substrate to a biological sample from the subject			
7	under the elution condition to allow retention of the diagnostic marker; and			
8	c) detecting retained diagnostic marker by desorption spectrometry;			
9	whereby detecting retained diagnostic marker provides a diagnosis			
10	of the disease.			
1	20. The method of claim 19 wherein diagnosis involves detection of a			
2	plurality of diagnostic markers and the addressable locations comprise adsorbents that			
3	resolve the plurality of diagnostic markers.			
1	21. A kit for detecting an analyte in a sample comprising (1) a			
2	substrate for use in desorption spectrometry that comprises at least one addressable			
3	location, each addressable location comprising an adsorbent that resolves an analyte			
4	under a selectivity condition comprising the adsorbent and an eluant, and (2) the eluant			
5	or instructions for exposing the sample to the selectivity condition.			
	·			
1	22. The kit of claim 21 for the diagnosis of a disease wherein the at			
2	least one analyte is at least one diagnostic marker for the disease.			
1	23. The kit of claim 22 wherein the disease characterized by a plurality			
2	of diagnostic markers and the substrate comprises a plurality of addressable locations,			
3	each addressable location comprising an adsorbent that resolves at least one of the			
4	diagnostic markers.			

1	24.	The kit of claim 23 wherein at least one adsorbent is a multiplex			
2	adsorbent comprising	adsorbent species that each retain at least one diagnostic marker.			
1	25.	The kit of claim 23 wherein at least one adsorbent does not			
	•				
2	comprise a biopolymer.				
1	26.	The kit of claim 23 wherein at least one addressable location			
2	comprises a ligand specific for a diagnostic marker.				
		·			
1	27.	The kit of claim 26 wherein the ligand is an antibody.			
1	28.	A substrate for desorption spectrometry comprising at least one			
2	adsorbent in at least one addressable location wherein the at least one adsorbent resolve				
3	a plurality of diagnostic markers for a pathological condition from a patient sample.				
1.	29.	The substrate of claim 28 wherein at least one adsorbent does not			
2	comprise a biopolymer.				
-	comprise a cropory in				
1	30.	The substrate of claim 28 wherein one adsorbent resolves the			
2	plurality of diagnostic markers.				