

Module 2 Unit 1 SEMICONDUCTORS - FORMULAS

(As per Revised Curriculum SVU R-2023)

1.	Number of atoms per unit volume	$n = \frac{D \times N_0}{M}$
2.	Intrinsic carrier concentration	$n = p = n_i = \sqrt{N_C N_V} \exp\left(-\frac{E_g}{2kT}\right)$
3.	Extrinsic carrier concentration	$\begin{array}{ll} \underline{\text{N-type}} \colon \\ \bullet & \text{Majority carriers: } n_n \approx N_D \text{ at RT} \\ \bullet & \text{Minority carriers: } p_n \approx \frac{n_i^2}{N_D} \text{ at RT} \\ \bullet & n = N_C \text{exp} \left(-\frac{E_C - E_F}{kT} \right) \text{at moderate} \\ & \text{temperatures} \\ \\ \underline{P-type} \colon \\ \bullet & \text{Majority carriers: } p_p \approx N_A \text{ at RT} \\ \bullet & \text{Minority carriers: } n_p \approx \frac{n_i^2}{N_A} \text{ at RT} \\ \bullet & p = N_V \text{exp} \left(-\frac{E_F - E_V}{kT} \right) \text{ at moderate} \\ & \text{temperatures} \end{array}$
4.	Conductivity and resistivity	$\begin{split} & \underline{\text{Conductivity}} : \\ & \text{Intrinsic: } \sigma_i = q n_i (\mu_n + \mu_p) \\ & \text{N-type: } \sigma_n = q n \mu_n \\ & \text{P-type: } \sigma_p = q p \mu_p \\ & \underline{\text{Resistivity}} : \rho = \frac{1}{\sigma} \end{split}$
5.	Drift velocity and mobility	$\begin{array}{l} \frac{\text{Drift velocity}:}{v_d = \mu\epsilon} \\ \\ \frac{\text{Mobility}:}{\mu = \frac{q\langle \tau \rangle}{m^*}}; \langle \tau \rangle \text{: average charge carrier lifetime} \end{array}$
6.	Drift current density	$\begin{split} & \underline{\text{Electrons}} \colon \\ & J_n(\text{drift}) = \text{qn} \mu_n \epsilon = \sigma_n \epsilon \\ & \underline{\text{Holes}} \colon \\ & J_p(\text{drift}) = \text{qp} \mu_p \epsilon = \sigma_p \epsilon \end{split}$
7.	Diffusion current density	$\frac{\text{Electrons}:}{J_{n}(\text{diffusion}) = qD_{n}\frac{dn}{dx}}$ $\frac{\text{Holes}:}{J_{p}(\text{diffusion}) = -qD_{p}\frac{dp}{dx}}$
8.	Einstein's relation	$\frac{D}{\mu} = \frac{kT}{q} = \text{constant at a given temperature}$

9.	Probability factor for occupation of	<u>Electrons:</u>
	energy level E (Fermi-Dirac function)	$F(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$
		<u>Holes:</u>
		$1 - F(E) = \frac{\exp\left(\frac{E - E_F}{kT}\right)}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$
10.	Position of Fermi level in intrinsic semiconductors	$\begin{split} E_F &= E_i = \frac{E_C + E_V}{2} + \frac{3}{4} kT \ln \frac{m_h^*}{m_e^*} \\ &\approx \frac{E_C + E_V}{2} = \frac{E_g}{2} \end{split}$
11.	. Fermi level shift due to doping	<u>N-type</u> :
		$E_F - E_i = kT \ln \left(\frac{n}{n_i}\right); p \approx N_A \text{ at RT}$
		<u>P-type</u> :
		$F_n - F_1 = -kT \ln \left(\frac{p}{r}\right) \cdot n \approx N_n$ at RT