Model Optimization for Deployment

Fast inference

- 1. Make models smaller
- 2. Make models faster
- 3. Make hardware more powerful

Model Optimization

- Quantization: Accelerating by reducing the precision of the data types.
- Pruning: Removing the unused parts of the model
- Knowledge Distillation: Transferring knowledge from a large model to a smaller one.

Model Compression: Quantization

- Reduces the size of a model by using fewer bits to represent parameter values.
 - E.g. half-precision floating point (16-bit), or integer (8-bit) representations
- Pros:
 - Reduces memory footprint and computation speed
- Cons:
 - Rounding errors can have downstream effects.
 - Rounding can lead to over/under-flow, or zeroing.
 - Non-trivial to implement efficient rounding/scaling.

Quantization

Speed-Up

	Batch size 1			Batch size 8			Batch size 128		
	FP32	FP16	Int8	FP32	FP16	Int8	FP32	FP16	Int8
MobileNet v1	1	1.91	2.49	1	3.03	5.50	1	3.03	6.21
MobileNet v2	1	1.50	1.90	1	2.34	3.98	1	2.33	4.58
ResNet50 (v1.5)	1	2.07	3.52	1	4.09	7.25	1	4.27	7.95
VGG-16	1	2.63	2.71	1	4.14	6.44	1	3.88	8.00
VGG-19	1	2.88	3.09	1	4.25	6.95	1	4.01	8.30
Inception v3	1	2.38	3.95	1	3.76	6.36	1	3.91	6.65
Inception v4	1	2.99	4.42	1	4.44	7.05	1	4.59	7.20
ResNext101	1	2.49	3.55	1	3.58	6.26	1	3.85	7.39

The Advantages of Lower Precision Formats

- Higher Throughput
 - Faster math operations such as convolution
- Reduced Memory Bandwidth Requirement
- Reduced Memory Size Need
 - Better cache utilization

Input Data type	Accumulation Data type	Math Throughput	Bandwidth Reduction
FP32	FP32	1x	1x
FP16	FP16	8x	2x
INT8	INT32	16x	4x
INT4	INT32	32x	8x
INT1	INT32	128x	32x

Table 1: Benefits of lower precision data types for tensor operations on the NVIDIA Turing GPU architecture

Quantization Basics

Let $[\beta, \alpha]$ be the range of representable real values chosen for quantization and b be the bit-width of the signed integer representation.

Uniform quantization transforms the input value $x \in [\beta, \alpha]$ to lie within $[-2^{b-1}, 2^{b-1} - 1]$, where inputs outside the range are clipped to the nearest bound.

Considering only uniform transformations, there are only two choices for the transformation function:

$$f(x) = s \cdot x + z$$

and its special case

$$f(x) = s \cdot x$$

Quantization Basics

Tensor(fp32) = Scale Factor(fp32) * Quantized(int8) + bias(fp32)

Figure 1: Quantization mapping of real values to int8

Quantization Basics

$$\operatorname{clip}(x, l, u) \begin{cases} l, & x < l \\ x, & l \le x \le u \\ u, & x > u \end{cases}$$

$$x_q = \text{quantize}(x, b, s, z) = \text{clip}(\text{round}(s \cdot x + z), -2^{b-1}, 2^{b-1} - 1)$$

$$\hat{x} = \text{dequantize}(x_q, s, z) = \frac{1}{s}(x_q - z)$$

Cost of Affine Transform

- The cost increases when affine is used in weight quantization
 - Otherwise, online calculation head is added.
- The scale quantization is enough for activation

$$y_{ij} \approx \sum_{k=1}^{p} \frac{1}{s_x} (x_{q,ik} - z_x) \frac{1}{s_{w,j}} (w_{q,kj} - z_{w,j})$$

$$= \frac{1}{s_x s_{w,j}} \left(\sum_{k=1}^{p} x_{q,ik} w_{q,kj} - \sum_{k=1}^{p} (w_{q,kj} z_x + z_x z_{w,j}) - \sum_{k=1}^{p} x_{q,ik} z_{w,j} \right)$$
(1)
(2)
(3)

Calibration

- The clipping range should be determined from the data
- Forwardpass some sample images and record an histogram for every activation(input) tensors
- 100-1000 samples can be enough to determine the limits. Generally 512 and 1024 in the paper.
- Selecting minumum maximum is the best way?

Calibration Types

- Rounding Error vs Clipping Error Tradeoff
- Max Calibration
- Percentile (99.9, 99.99, 99.999)
- Entropy Calibration

Figure 2: Histogram of input activations to layer 3 in ResNet50 and calibrated ranges

Partial Quantization

- Sensitive Layer
 - Quantize only a single layer and measure the performance drop

Weight Quantization

In this case, we quantize the weights only and activations remain full-precision Tensor Quantization Granularity:

- Coarsest: per-tensor, the same quantization parameters are shared by all elements in the tensor.
- Finest: individual quantization parameters per element.
- Intermediate granularities reuse parameters over various dimensions of the tensor per row or per column for 2D matrices, per channel for 3D (image-like) tensors, etc.

Model	fp32	Per-channel	Per-channel fold BN	Per-tensor	Per-tensor fold BN
MobileNet v1	71.88	71.59	71.59	69.58	66.88
MobileNet v2	71.88	71.61	71.61	71.12	70.21
ResNet50 v1.5	76.16	76.14	76.14	75.83	75.84
ResNeXt50	77.61	77.62	77.62	77.48	77.45
EfficientNet b0	76.85	76.72	76.72	76.68	12.93

Table 3: Accuracy with int8 quantization of weights only: per-tensor vs per-channel granularity. Fold BN indicates batch norms were folded into the preceding convolution before quantization

Activation Quantization

- In addition to the weights, activations are also quantized
- Different calibrations may be needed for activations

Post training quantization accuracy

Models	fp32	Max	Entropy	99.9%	99.99%	99.999%	99.9999%
MobileNet v1	71.88	69.51	70.19	70.39	70.29	69.97	69.57
MobileNet v2	71.88	69.41	70.28	70.68	71.14	70.72	70.23
ResNet50 v1.5	76.16	75.82	76.05	75.68	75.98	75.97	76.00
ResNet152 v1.5	78.32	77.93	78.21	77.62	78.17	78.17	78.19
Inception v3	77.34	72.53	77.54	76.21	77.52	77.43	77.37
Inception v4	79.71	0.12	79.60	78.16	79.63	79.12	71.19
ResNeXt50	77.61	77.31	77.46	77.04	77.39	77.45	77.39
ResNeXt101	79.30	78.74	79.09	78.77	79.15	79.17	79.05
EfficientNet b0	76.85	22.3	72.06	70.87	68.33	51.88	42.49
EfficientNet b3	81.61	54.27	76.96	77.80	80.28	80.06	77.13
Faster R-CNN	36.95	36.38	36.82	35.22	36.69	36.76	36.78
Mask R-CNN	37.89	37.51	37.75	36.17	37.55	37.72	37.80
Retinanet	39.30	38.90	38.97	35.34	38.55	39.19	39.19
FCN	63.70	63.40	64.00	62.20	64.00	63.90	63.60
DeepLabV3	67.40	67.20	67.40	66.40	67.40	67.50	67.40
GNMT	24.27	24.31	24.53	24.34	24.36	24.38	24.33
Transformer	28.27	21.23	21.88	24.49	27.71	20.22	20.44
Jasper	96.09	95.99	96.11	95.77	96.09	96.09	96.03
BERT Large	91.01	85.92	37.40	26.18	89.59	90.20	90.10

Partial Quantization

	fp32		Full int8	Partial int8		
Model	Accuracy	Calibration	Total quantized layers	Accuracy	Skipped layers	Accuracy
MobileNet v1	71.88	max	28	69.51	2	71.50
EfficientNet b0	76.85	entropy	82	72.06	10	76.35
EfficientNet b3	81.61	99.99%	131	76.96	3	81.27
Transformer	28.27	max	121	21.23	5	28.20
BERT large	91.01	max	244	85.92	141	90.41

Table 6: Partial post training quantization

Quantization Aware Training

- Post Training Quantization (PTQ)
 - Calibration
- Quantization Aware Training (QAT)
 - What if we fine tune over quantized activations and weights
 - The idea is to add fake quantize and dequantize functions
 - Operations is still on fp32 performance
 - Does not require architecture change
- Learns also scales during fine-tuning (PACT)
 - But not a difference between PACT and PTQ+QAT

Quantization Workflow

Weights

- Use scale quantization with per-column/per-channel granularity
- Use a symmetric integer range for quantization [-127, 127])
 and max calibration

Activations

Use scale quantization with with per-tensor granularity

Inference Results on Culane Dataset

TensorRT Inference

Performance inference of R-18-DeeplabV3

Category	Torch	TensorRT fp32	TensorRT fp16	TensorRT int8	TensorRT ptq int8 100 samples calibration	TensorRT qat wo ptq
Normal	90.2	90.2	90.2	89.0	89.5	90.3
Crowded	71.9	71.9	71.9	71.0	71.3	71.2
Night	66.4	66.4	66.3	63.5	65.0	63.9
No Line	43.2	43.2	43.2	42.3	42.9	39.9
Shadow	72.3	72.3	72.5	69.7	71.7	68.0
Arrow	85.5	85.5	85.4	83.6	84.3	85.7
Dazzle Light	63.8	63.8	63.8	59.2	62.6	60.5
Curve	66.8	66.8	66.7	63.4	65.1	64.0
Overall	72.9	72.9	72.9	71.3	72.1	71.6
Crossroad	2131	2132	2129	1821	1991	1371
Total Inference Time	07:00	06:47	04:52	04:28	04:37	04:37
Total Inference Ratio	1	0.97	0.7	0.64		

Calibration Results on Culane Dataset

Baselin	e Max	Entro	ру М	se	99.9	99.99	99.999	99.9999
60.0	59.8	59.72	59	.78	53.1	58.92	59.67	59.82
mloU results with respect to calibration samples								
32	64	128	256	512	2			
59.90	59.82	59.84	59.86	59.8	32			

Pruning

- Remove the less useful parameters.
 - Efficient storage schemes for sparse data.
- Can prune either weights or neurons:
 - Weights: set weights which are almost zero to zero.
 - Neurons: neurons with invariant activations can be removed.

Pruning

- Reduced memory bandwidth
- Reduced memory footprint
- Acceleration (especially in presence of hardware acceleration)

Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271.

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

- Designed for mobile and embedded vision applications.
- MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light weight deep neural networks.
- Introduces two simple global hyperparameters that efficiently trade off between latency and accuracy.
- These hyper-parameters allow the model builder to choose the right sized model for their application based on the constraints of the problem.

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Figure 1. MobileNet models can be applied to various recognition tasks for efficient on device intelligence.

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

The standard convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and pointwise convolution in (c) to build a depthwise separable filter.

Efficientnet: Rethinking model scaling for convolutional neural networks

44x less compute required to get to AlexNet performance 7 years later

Binary Networks

- The major computational bottleneck is in the convolutional operations
- GPUs can parallelize these huge amount of floating point operations. But GPUs are expensive and consume extensive power to run.
- With binary networks, it is possible to reduce the precision of the parameters and the activation values for the neurons from 32 bits all the way down to a single bit.
- By reducing the precision there are savings in both memory and computation.
- Single bit precision enables using logical operations instead of floating point operations.

Binary Networks

[-1,+1]	{0,1}
MUL	XNOR
ADD, SUB	Bit-Count (popcount)

		*		Operations	Memory	Computation	Accuracy Res-Net-50 (top-1)
Full precision	\mathbb{R}	*	\mathbb{R}	+ - x	1x	1x	75.7%
Binary weight	\mathbb{R}	*	\mathbb{B}	+ -	~32x	~2x	75.1%
XNOR-Networks	\mathbb{B}	*	\mathbb{B}	XNOR Bit-count	~32x	~58x	70.3%

Binary Networks

Model Compression

Knowledge distillation

- Train a small model "student" to mimic the results of a larger model "teacher".
 - Fast to train student network if teacher is pre-trained.
 - Teacher and student can be completely different architectures.
 - E.g. DistillBERT, reduces size of BERT by 40%, and increases inference speed by 60%, while retaining 97% language understanding.
- If teacher is not pre-trained, may require larger dataset and training time, because you first have to train the more complex, teacher model, then train the student model.

