Due: Friday, April 25, 2003

- 1. Aluminum and polysilicon are commonly used as gate metals for the MOS structure in silicon. Assume that gold is used as the gate metal. Reconstruct a diagram similar to Figure 6-17 showing the variation of the metal-semiconductor work function potential difference Φ_{ms} with substrate doping concentration. The work function of Pt is 5.1 V and the electron affinity of silicon is 4.0 V. Show your work and draw to scale with accuracy.
- 2. (a) Find the voltage V_{FB} required to reduce to zero the negative charge induced at the semiconductor surface by a sheet of positive charge Q_{ox} located x' below the metal. (b) In the case of an arbitrary distribution of charge $\rho(x')$ in the oxide, show that

$$V_{FB} = -\frac{1}{C_i} \int_0^d \frac{x'}{d} \mathbf{r}(x') dx'$$

- 3. The flat band voltage is shifted to -3V for an n^+ -polysilicon-SiO₂-Si capacitor. The SiO₂ thickness is 200Å and the substrate doping is $N_d = 10^{16}/\text{cm}^3$. Find the value of interface charge Q_i required to cause this shift in V_{FB} , with Φ_{ms} given by Fig. 6-17.
- 4. An n^+ -polysilicon-gate n-channel MOS structure is made on a p-type Si substrate with $N_a = 5 \times 10^{15} / \text{cm}^3$. The SiO₂ thickness is 150Å in the gate region, and the effective interface charge Q_i is 5×10^{10} qC/cm². Find W_m , V_{FB} , V_T . Also, sketch the C-V curve for this device and give important numbers for the scale.