Dynamique d'un point matériel dans un référentiel galiléen

Table des matières

1 Notion de force			force	
	1.1	Défini	t <mark>ion</mark>	
	1.2	Classification des forces		
	1.3	Forces	s usuelles en mécanique	
		1.3.1	Force gravitationnelle	
		1.3.2	Force de rappel d'un ressort	
		1.3.3	Force de contact entre un point matériel et un solide	
		1.3.4	Force de frottement fluide	
2	Lois de Newton			
	2.1	Principe de d'inertie (1^{er} loi de Newton)		
	2.2	Principe fondamental de la dynamique $(2^d \text{ loi de Newton}) \dots \dots$		
	2.3	3 Loi des actions réciproques $(3^{em}$ loi de Newton)		

L'objectif de la dynamique est de prévoir le mouvement d'un corps dans son environnement . Connaissant l'état mécanique (position ,vitesse) d'un corps à l'instant t=0,on peut déterminer son état mécanique à l'instant t ,ce système est dit déterministe car il évolue de manière prévisible à partir de son état initial .

1 Notion de force

1.1 Définition

Définition : On définit la force \overrightarrow{f} comme étant tout action capable de provoquer le mouvement ou de modifier le vecteur vitesse d'un point matériel .

- Exemples
 - ▶ force gravitationnelle
 - ▶ force de frottement

1.2 Classification des forces

On distingue entre deux types de forces :

- ▶ Forces à distance : les deux corps en interaction ne sont pas en contact :
 - force gravitationnelle : entre les masses
 - force électromagnétique : entre les charges
 - force nucleaire : entre les protons et les neutrons
- ▶ Forces de contact : les deux corps en interaction sont en contact :
 - tension d'un ressort ou d'un fil
 - réaction du support
 - force de frottement
 - force préssante (thermodynamique)

1.3 Forces usuelles en mécanique

1.3.1 Force gravitationnelle

Considérons deux masses m_1 et m_2 ponctuelles de distance $r = M_1 M_2$ et on pose $\overrightarrow{u} = \frac{\overrightarrow{r}}{r}$ vecteur unitaire

 \blacktriangleright la force gravitationnelle appliquée par m_1 sur m_2

$$\overrightarrow{F}_{1\to 2} = -Gm_1m_2\frac{\overrightarrow{r}}{r^3} = -Gm_1m_2\frac{\overrightarrow{u}}{r^2}$$

avec
$$\overrightarrow{r} = \overrightarrow{M_1 M_2}$$

 \blacktriangleright la force gravitationnelle appliquée par m_2 sur m_1

$$\overrightarrow{F}_{2\to 1} = -\overrightarrow{F}_{1\to 2} = Gm_1m_2\frac{\overrightarrow{u}}{r^2}$$

$$G = 6,672.10^{-11} N.m^{-2}.kg^{-2}$$

ightharpoonup poids \overrightarrow{P}

Définition : le poids \overrightarrow{P} d'une masse m est défini par

$$\overrightarrow{P} = m\overrightarrow{g}$$

avec \overrightarrow{g} : champ de pesanteur

▶ le poids s'identifie à la force gravitationnelle exercée par la terre de centre C et de rayon R_T , de masse m_T sur le point matérielle située à une altitude z :

$$\overrightarrow{P} = -Gm_T m \frac{\overrightarrow{u}_z}{(R_T + z)^2} = m \overrightarrow{g}$$

$$\overrightarrow{g} = -m_T \frac{\overrightarrow{u}_z}{(R_T + z)^2}$$

•
$$g = \frac{Gm_T}{(R_T + z)^2}$$

• au voisinage du sol $z \ll R_T$

$$g \approx \frac{Gm_T}{R_T^2}$$

 $m_T = 6.10^{24} kg$ et $R_T = 6400 km$ donc

$$g = 9,8m.s^{-2}$$

• pour les points ou z est non négligeable devant R_T

$$g = g_0 \frac{R_T^2}{(R_T + z)^2}$$

$$g_0 = \frac{Gm_T}{R_T^2} = 9,8m.s^{-2}$$

1.3.2 Force de rappel d'un ressort

► Ressort horizontal

Considérons un ressort linéaire de masse négligeable, de longueur au repos l_0 . Une petite variation algébrique $\Delta l=l-l_0$ de la longueur produit une force de rappel élastique uniforme au niveau de ressort .

$$\overrightarrow{F} = -k(l - l_0)\overrightarrow{u}$$

• k : constante de raideur du ressort

• $\Delta l = l - l_0$: allongement algébrique du ressort

• traction du ressort $l_1 > l_0$

$$\overrightarrow{f}_1 = -k(l_1 - l_0)\overrightarrow{u}_x$$

• compression du ressort $l_2 < l_0$

$$\overrightarrow{f}_2 = -k(l_2 - l_0)\overrightarrow{u}_x$$

Conclusion : la force de rappel a tendance de ramener le ressort vers son état de repos

► Ressort verical

- l_0 : longueur du ressort vide
- l_e : longueur du ressort à l'équilibre
- à l'équilibre $0 = m \overrightarrow{g} + \overrightarrow{f}_e \text{ avec } \overrightarrow{f}_e = -k(l_e l_0) \overrightarrow{u}_x$

$$l_e = l_0 + \frac{mg}{k}$$

• hors équilibre $\begin{array}{l} l = l_e + X \text{ donc la } \mathbf{r\acute{e}sultante} \text{ des forces } \overrightarrow{F} \text{ appliqu\'ee sur la masse } m \\ \overrightarrow{F} = m \overrightarrow{g} + \overrightarrow{f} = m \overrightarrow{g} - k(l_e - l_0) \overrightarrow{u}_x - kX \overrightarrow{u}_x \end{array}$

$$\overrightarrow{F} = -kX\overrightarrow{u}_x$$

1.3.3 Force de contact entre un point matériel et un solide

les actions de contact sont régies par les lois de Coulomb : on distingue entre deux cas

▶ Absence de glissement la composante tangentielle \overrightarrow{R}_T et la composante normale \overrightarrow{R}_N sont reliées par la relation

$$||\overrightarrow{R}_T|| \leqslant f_0||\overrightarrow{R}_N||$$

 f_0 : coefficient statique de frottement l'angle des frottements φ est défini par

$$\tan \varphi = \frac{R_T}{R_N}$$

▶ glissement du point matériel sur (S) la composante tangentielle \overrightarrow{R}_T et la composante normale \overrightarrow{R}_N sont reliées par la relation

$$||\overrightarrow{R}_T|| = f||\overrightarrow{R}_N||$$

 $f \approx f_0$ coefficient de frotement dynamique

Conclusion

• condition de contact : $R_N > 0$

• pas de contact : $R_N = 0$

• absence des frottements : $R_T=0 \Rightarrow \overrightarrow{R}=\overrightarrow{R}_N \Rightarrow \overrightarrow{R}$ est orthogonal à la surface

1.3.4 Force de frottement fluide

On distingue entre deux cas

 $\bullet\,$ solide à faible vitesse en translation \overrightarrow{v} (modéle linéaire)

$$\overrightarrow{f} = -\alpha \overrightarrow{v}$$

avec $\alpha = cte$

• solide en translation à grande vitesse $\overrightarrow{v} = v \overrightarrow{u}$ (modéle quadratique)

$$\overrightarrow{f} = -k\Sigma \cdot v^2 \overrightarrow{u}$$

 Σ : section du solide

k = cte

2 Lois de Newton

2.1 Principe d'inertie (1^{er} loi de Newton)

Enoncé : Il existe une classe de référentiels, appelés référentiels galiléens par rapport aux quels un point matériel isolé mécaniquement est soit au repos soit en mouvement rectiligne uniforme .

- ▶ point matériel isolé mécaniquement : ne soumis à aucune force
- ▶ point matériel pseudo-isolé mécaniquement : la résultante des forces appliquées à ce point est nulle

référentiel galiléen : un référentiel est galiléen si le principe d'inertie est valable dans ce référentiel .

- ▶ Référentiel de Copernic : son origine est le centre du système solaire, et les axes sont dirigés vers trois étoiles fixes . il s'agit d'un bon référentiel galiléen .
- ▶ Référentiel terrestre : référentiel lié à la surface de la terre . Ce référentiel n'est pas galiléen ,mais si la durée de l'expérience est trés faible par rapport à la période de la terre on peut le considérer comme galiléen .
- ▶ référentiel géocentrique : son centre est le centre de la terre et les axes sont parallèle à ceux de Copernic . Ce référentiel n'est pas galiléen ,mais dans l'hypothèse précédente il se comporte comme galiléen .
- ▶ tout référentiel en mouvement rectiligne uniforme par rapport à un référentiel galiléen est aussi galiléen .

2.2 Principe fondamental de la dynamique $(2^d \text{ loi de Newton})$

Enoncé : Par rapport à un référentiel galiléen R,le mouvement d'un point matériel de masse m soumis à une résultante de force \overrightarrow{F} satisfait à la relation :

$$\overrightarrow{F} = m\overrightarrow{a}$$

 \overrightarrow{a} : accélération du point matériel

2.3 Loi des actions réciproques (3^{em}loi de Newton)

Soient deux points matériels M_1 et M_2 dont les forces d'interactions réciproques sont notées $\overrightarrow{f}_{1\to 2}$ (exercée par M_1 sur M_2) et $\overrightarrow{f}_{2\to 1}$ (exercée par M_2 sur M_1).

Enoncé:

- les forces réciproques sont opposées : $\overrightarrow{f}_{2\rightarrow 1} = -\overrightarrow{f}_{1\rightarrow 2}$
- les forces réciproques sont portées par la droite passant par M_1 et M_2