

Product Name	PIR motion sensor
Model No.	HSP02-0
FCC ID.	ZGXHSP02

Applicant	Chromagic Technologies Corporation	
Address	5 of 2nd Fl., No.611, Sec.1, Wanshou Rd., Kwei Shan	
	Taoyuan Hsien 333, Taiwan.	

Date of Receipt	Nov. 01, 2011
Issued Date	Nov. 25, 2011
Report No.	11B076R-RFUSP30V01
Report Version	V1.0

The Test Results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issued Date: Nov. 25, 2011

Report No.: 11B076R-RFUSP30V01

Product Name	PIR motion sensor		
Applicant	Chromagic Technologies Corporation		
Address	5 of 2nd Fl., No.611, Sec.1, Wanshou Rd., Kwei Shan, Taoyuan Hsien 333, Taiwan.		
Manufacturer	Chromagic Technologies Corporation		
Model No.	HSP02-0		
FCC ID.	ZGXHSP02		
EUT Rated Voltage	DC 3V(Power by Battery)		
EUT Test Voltage	DC 3V(Power by Battery)		
Trade Name	Chromagic Technologies Corporation		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2010		
	ANSI C63.4: 2009		
Test Result	Complied NVLAP Lab Code: 200533-0		

The Test Results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By: Jinn Chen

(Senior Adm. Specialist / Jinn Chen)

Vincent chu

FC

Tested By :

(Engineer / Vincent Chu)

Approved By

lac-MRA

0914

Page: 2 of 29

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	4
1.1.	EUT Description	4
1.2.	Operation Description	4
1.3.	Tested System Details	6
1.4.	Configuration of Test System	6
1.5.	EUT Exercise Software	6
1.6.	Test Facility	7
2.	Conducted Emission	8
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	10
3.	Radiated Emission	11
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Radiated Emission	15
4.	Band Edge	20
4.1.	Test Equipment	20
4.2.	Test Setup	
4.3.	Limit	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Band Edge	23
5.	Duty Cycle	25
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Uncertainty	
5.4.	Test Result of Duty Cycle	26
6.	EMI Reduction Method During Compliance Testing	27

Attachment 1: EUT Test Photographs
Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	PIR motion sensor
Trade Name	Chromagic Technologies Corporation
FCC ID.	ZGXHSP02
Model No.	HSP02-0
Frequency Range	908.42MHz
Type of Modulation	FSK
Number of Channels	1
Channel Control	Auto
Antenna Type	Monopole

Center Frequency of Each Channel:

Channel Frequency
Channel 1: 908.42MHz

- 1. The EUT is a PIR motion sensor with a built-in Z-Wave transceiver.
- 2. These tests are conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.249.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

EMI Test Mode Mode 1: Transmit	EMI Test Mode	Mode 1: Transmit	
----------------------------------	---------------	------------------	--

1.2. Operation Description

The EUT is a PIR motion sensor with a built-in Z-Wave transceiver. The EUT operation frequency is 908.42MHz. The signals modulated by FSK are transmitted from the Monopole Antenna of the EUT.

Together with the patented Z-Wave Protocol the Z-Wave Module delivers a complete highly reliable RF communication solution. The Z-Wave Protocol uses Flood Detector, Temperature/Humidity Detector, illumination Sensor and sophisticated Routing to assure reliable full home coverage.

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product	Manufacturer	Model No.	Serial No.	Power Cord
N/A	N/A	N/A	N/A	N/A

Signal Cable Type	Signal cable Description
N/A	N/A

1.4. Configuration of Test System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in section 1.4.
- (2) Plug-in the power cable and power on the EUT.
- (3) Starts the continuous transmit.
- (4) Verify that the EUT works correctly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://tw.quietek.com/modules/myalbum/ The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

Site Description: File on

Federal Communications Commission

FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046

Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation

Site Address: No.5-22, Ruishukeng,

Linkou Dist. New Taipei City 24451,

Taiwan, R.O.C.

TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789

E-Mail: service@quietek.com

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
X	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2011	
X	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2011	Peripherals
X	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2011	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2011	EUT
X	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2011	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit				
Frequency	Frequency Limits			
MHz	QP	AV		
0.15 - 0.50	66-56	56-46		
0.50-5.0	56	46		
5.0 - 30	60	50		

Remarks: In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Owing to the EUT use battery supply voltage, this test item is not performed.

Page: 10 of 29

3. Radiated Emission

3.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3	X	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	X	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
	X	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	X	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2011
	X	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2011
	X	Pre-Amplifier IMITEO		AMF-4D-180400-45-6P/ 925975	Mar, 2011
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2011
	X	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2011
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Below 1GHz

Above 1GHz

3.3. Limits

> Fundamental and Harmonics Emission Limits

FCC Part 15 Subpart C Paragraph 15.249 Limits							
Frequency	Field Strength	of Fundamental	Field Strength of Harmonics				
MHz	(mV/m @3m)	(dBuV/m @3m)	(uV/m @3m)	(dBuV/m @3m)			
902-928	50	94	500	54			
2400-2483.5	50	94	500	54			
5725-5875	50	94	500	54			

Remarks: 1. RF Voltage $(dBuV/m) = 20 \log RF$ Voltage (uV/m)

2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits							
Frequency MHz	uV/m @3m	dBuV/m@3m					
30-88	100	40					
88-216	150	43.5					
216-960	200	46					
Above 960	500	54					

Remarks: 1. RF Voltage (dBuV/m) = 20 log RF Voltage (uV/m)

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The worst radiated emission is measured on the Final Measurement.

The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

3.5. Uncertainty

- ± 3.9 dB above 1GHz
- \pm 3.8 dB below 1GHz

3.6. Test Result of Radiated Emission

Product : PIR motion sensor

Test Item : Fundamental Radiated Emission

Test Site : No.3OATS

Test Mode : Mode 1: Transmit (X-Axis)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					_
Peak Detector:					
908.400	28.155	59.300	87.455	-26.545	114.000
Vertical Peak Detector:					
908.400	28.155	63.900	92.055	-21.945	114.000

- 1. Measurement Level = Reading Level + Correct Factor.
- 2. Correct Factor = Antenna Factor + Cable Loss PreAMP.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Test Item : Fundamental Radiated Emission

Test Site : No.3OATS

Test Mode : Mode 1: Transmit (Y- Axis)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal Peak Detector:					
908.400	28.155	67.800	95.955	-18.045	114.000
Vertical Peak Detector:					
908.400	28.155	57.800	85.955	-28.045	114.000

Note:

- 3. Measurement Level = Reading Level + Correct Factor.
- 4. Correct Factor = Antenna Factor + Cable Loss PreAMP.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Average Detector:

Frequency	Peak Measurement	Duty Cycle Correct Factor	Measurement Level	Margin	Limit
MHz	dBuV/m	dB	dBuV/m	dB	dBuV/m
Horizontal Average Detector: 908.40	95.955	-13.850	82.105	-11.895	94.000
Vertical Average Detector: 908.40	85.955	-13.850	72.105	-21.895	94.000

- 1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 5.

Test Item : Fundamental Radiated Emission

Test Site : No.3OATS

Test Mode : Mode 1: Transmit (Z- Axis)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal Peak Detector:					
908.400	28.155	66.600	94.755	-19.245	114.000
300. 4 00	20.133	00.000	94.733	-19.243	114.000
Vertical Peak Detector:					
908.400	28.155	59.100	87.255	-26.745	114.000

Note:

- 5. Measurement Level = Reading Level + Correct Factor.
- 6. Correct Factor = Antenna Factor + Cable Loss PreAMP.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Average Detector:

Frequency	Peak Measurement	Duty Cycle Correct Factor	Measurement Level	Margin	Limit
MHz	dBuV/m	dB	dBuV/m	dB	dBuV/m
Horizontal Average Detector:					_
908.40	94.755	-13.850	80.905	-13.095	94.000
Vertical Average Detector: 908.40	87.255	-13.850	73.405	-20.595	94.000

- 1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 5.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
1816.800	-4.390	39.010	34.620	-39.380	74.000
2725.200	-1.076	37.830	36.754	-37.246	74.000
3633.600	-0.394	40.060	39.666	-34.334	74.000
4542.000	1.902	38.310	40.211	-33.789	74.000

Average

Detector:

--

Vertical

Peak Detector:

1816.800	-2.612	40.030	37.417	-36.583	74.000
2725.200	-1.228	37.440	36.211	-37.789	74.000
3633.600	0.379	40.460	40.839	-33.161	74.000
4542.000	5.407	37.810	43.217	-30.783	74.000

Average

Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : General Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
136.700	-10.363	31.779	21.416	-22.084	43.500
289.960	-4.477	24.287	19.810	-26.190	46.000
460.680	1.589	22.943	24.532	-21.468	46.000
573.200	2.537	26.055	28.592	-17.408	46.000
745.860	3.308	26.382	29.690	-16.310	46.000
844.800	5.601	23.450	29.051	-16.949	46.000
Vertical					
286.080	-8.097	27.210	19.113	-26.887	46.000
371.440	-2.737	25.945	23.208	-22.792	46.000
511.120	-0.261	24.654	24.393	-21.607	46.000
693.480	2.168	22.854	25.022	-20.978	46.000
844.800	3.181	27.401	30.582	-15.418	46.000
941.800	6.585	28.368	34.953	-11.047	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Band Edge

4.1. Test Equipment

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3	X	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
		Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	X	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 201
		Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2011
		Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2011
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2011
	X	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2011
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

- 1. All equipments are calibrated every one year.
- 2. The test equipments marked by "X" are used to measure the final test results.

4.2. Test Setup

4.3. Limit

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

4.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:2009 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter (R&S Test Receiver ESCS 30)is 120 kHz, above 1GHz are 1 MHz.

4.5. Uncertainty

Radiated is \pm 3.9 dB.

4.6. Test Result of Band Edge

Product : PIR motion sensor
Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 1: Transmit

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Quasi-Peak Limit (dBuV/m)	Result
01(Quasi-Peak)	902.000	28.096	5.500	33.596	46.020	Pass
01(Quasi-Peak)	928.000	28.347	5.500	33.847	46.020	Pass

Figure Channel 01:

Horizontal (Quasi-Peak)

- 1. Quasi-Peak measurements: RBW=100kHz,VBW=1MHz,Sweep: Auto.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Product : PIR motion sensor
Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 1: Transmit

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Quasi-Peak Limit (dBuV/m)	Result
01(Quasi-Peak)	902.000	28.096	5.400	33.496	46.020	Pass
01(Quasi-Peak)	928.000	28.347	5.500	33.847	46.020	Pass

Figure Channel 01:

Vertical (Quasi-Peak)

- 1. Quasi-Peak measurements: RBW=100kHz,VBW=1MHz,Sweep: Auto.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

5. Duty Cycle

5.1. Test Equipment

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2011

Note:

- 1. All equipments are calibrated every one year.
- 2. The test equipments marked by "X" are used to measure the final test results.

5.2. Test Setup

5.3. Uncertainty

± 150Hz

5.4. Test Result of Duty Cycle

Product : PIR motion sensor
Test Item : Duty Cycle Data
Test Site : No.3 OATS

Test Mode : Mode 1: Transmit

Time on of 100ms= 20.3 ms

Duty Cycle= 20.3ms / 100ms= 0.203

Duty Cycle correction factor= 20 LOG 0.203= -13.850 dB

Duty Cycle correction factor	-13.850	dB
-------------------------------------	---------	----

6. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Page: 27 of 29