## Kapitola 5

# Goniometrické a hyperbolické funkce

V této kapitole budou uvedeny základní poznatky týkající se goniometrických funkcí - sinus, kosinus, tangens, kotangens a hyperbolických funkcí - sinus hyperbolický, kosinus hyperbolický, tangens hyperbolický, kotangens hyperbolický.

## 5.1 Goniometrické funkce

## Motivace

Nejdříve připomeňme známé vztahy z pravoúhlého trojúhelníku. V trojúhelníku ABC s pravým úhlem při vrcholu C, úhlem o velikosti  $\alpha$  při vrcholu A a se stranami o délkách a, b, c, viz obr.  $\ref{eq:condition}$ , jsou pomocí následujících vztahů definovány trigonometrické funkce:

$$\sin \alpha = \frac{\text{d\'elka protilehl\'e strany}}{\text{d\'elka p\'epony}} = \frac{a}{c}, \quad \cos \alpha = \frac{\text{d\'elka p\'ellehl\'e strany}}{\text{d\'elka p\'epony}} = \frac{b}{c}$$
 (5.1)

a také

$$tg \ \alpha = \frac{d\acute{e}lka \ protilehl\acute{e} \ strany}{d\acute{e}lka \ p\check{r}ilehl\acute{e} \ strany} = \frac{a}{b}, \quad cotg \ \alpha = \frac{d\acute{e}lka \ p\check{r}ilehl\acute{e} \ strany}{d\acute{e}lka \ protilehl\acute{e} \ strany} = \frac{b}{a}.$$
 (5.2)

Takto zavedené funkce mají definiční obor  $(0, \frac{\pi}{2})$ . Přirozeným způsobem lze definiční obor rozšířit na celou



#### Obrázek 5.1:

množinu reálných čísel, pak hovoříme o funkcích goniometrických. V následující části se budeme zabývat vlastnostmi jednotlivých funkcí a to nám pomůže blíže pochopit, jak se tyto funkce chovají na definičním oboru.

#### □ Vlastnosti funkcí sinus a kosinus

Lze ukázat, že tyto funkce mají následující vlastnosti.

**Věta 5.1.1.** 1. Funkce  $\sin x$  a  $\cos x$  jsou definovány pro všechna  $x \in \mathbb{R}$ , takže pro jejich definiční obory platí  $D(\sin) = \mathbb{R}$  a  $D(\cos) = \mathbb{R}$ .

2. Funkce  $\sin x$  a  $\cos x$  jsou na svých definičních oborech omezené, přičemž pro všechna  $x \in \mathbb{R}$  platí

$$|\sin x| \le 1$$
, resp.  $|\cos x| \le 1$ .

*Pro jejich obory hodnot platí pro sinus*  $\langle -1, 1 \rangle$  *a pro kosinus*  $H(\cos) = \langle -1, 1 \rangle$ .

3. Funkce  $\sin x$  a  $\cos x$  jsou periodické s minimální periodou  $2\pi$ . To znamená, že pro všechna  $x \in \mathbb{R}$  a pro všechna  $k \in \mathbb{Z}$  platí

$$\sin(x+2k\pi) = \sin x$$
, resp.  $\cos(x+2k\pi) = \cos x$ .

4. Funkce  $\sin x$  je lichá a funkce  $\cos x$  je sudá, takže pro všechna  $x \in \mathbb{R}$  platí

$$\sin(-x) = -\sin x$$
, resp.  $\cos(-x) = \cos x$ .

Funkce sinus a kosinus jsou na některých intervalech kladné, resp. záporné. Na některých intervalech jsou rostoucí, resp. klesající. Tyto vlastnosti jsou schematicky zapsány v následující tabulce

| interval x | $(0, \frac{\pi}{2})$ | $(\frac{\pi}{2}, \pi)$ | $(\pi, \frac{3\pi}{2})$ | $(\frac{3\pi}{2}, 2\pi)$ |
|------------|----------------------|------------------------|-------------------------|--------------------------|
| $\sin x$   | +/rost.              | +/kles.                | -/kles.                 | -/rost.                  |
| $\cos x$   | +/kles.              | -/kles.                | -/rost.                 | +/rost.                  |

#### **Úloha 5.1.1** *Pro* $x \in \mathbb{R}$ *platí:*

a) 
$$\cos(\pi/2 - x) = \sin x$$
, b)  $\sin(\pi/2 - x) = \cos x$ ,  
c)  $\cos(x + \pi/2) = -\sin x$ , d)  $\sin(x + \pi/2) = \cos x$ ,  
e)  $\cos(x + \pi) = -\cos x$ , f)  $\sin(x + \pi) = -\sin x$ .

Rozmyslete si, jak tyto vztahy souvisí s grafy příslušných funkcí.



Obrázek 5.2: Část grafů funkcí sinus a kosinus.

#### Vlastnosti funkcí tangens a kotangens

Lze ukázat, že funkce tangens a kotangens mají následující vlastnosti.

**Věta 5.1.2.** 1. Funkce tg x je definována pro všechna  $x \in \mathbb{R}$ , pro která není  $\cos x = 0$ , tj. s výjimkou bodů  $x = (2k+1)\pi/2, \ k \in \mathbb{Z}$ . To znamená, že pro definiční obor funkce tg x platí

$$D(tg) = \mathbb{R} \setminus \bigcup_{k \in \mathbb{Z}} \{ (2k+1) \frac{\pi}{2} \}.$$

Funkce cotg x je definována pro všechna  $x \in \mathbb{R}$ , pro která není  $\sin x = 0$ , tj. s výjimkou bodů  $x = k\pi$ ,  $k \in \mathbb{Z}$ . To znamená, že pro definiční obor funkce cotg x platí

$$D(cotg) = \mathbb{R} \setminus \bigcup_{k \in \mathbb{Z}} \{k\pi\}.$$

2. Funkce tg x a cot g x nejsou na svých definičních oborech omezené. Pro obory hodnot těchto funkcí platí

$$H(tg) = \mathbb{R}$$
, resp.  $H(cotg) = \mathbb{R}$ .

3. Funkce  $tg\ x$  a  $cotg\ x$  jsou periodické s nejmenší periodou  $\pi$ . To znamená, že pro všechna  $x \in D(tg)$ , resp. pro všechna  $x \in D(cotg)$ , a pro všechna  $k \in \mathbb{Z}$  platí

$$tg(x + k\pi) = tg x$$
, resp.  $cotg(x + k\pi) = cotg x$ .

4. Funkce  $tg\ x$  a  $cotg\ x$  jsou liché, takže že pro všechna  $x \in D(tg)$ , resp. pro všechna  $x \in D(cotg)$  platí

$$tg(-x) = -tg x$$
, resp.  $cotg(-x) = -cotg x$ .

Funkce tangens a kotangens jsou na některých intervalech kladné, resp. záporné. Na některých intervalech jsou rostoucí, resp. klesající. Tyto vlastnosti jsou schematicky zapsány v následující tabulce.

| interval x | $(0, \frac{\pi}{2})$ | $(\frac{\pi}{2}, \pi)$ | $(\pi, \frac{3\pi}{2})$ | $(\frac{3\pi}{2}, 2\pi)$ |
|------------|----------------------|------------------------|-------------------------|--------------------------|
| tg x       | +/rost.              | -/rost.                | +/rost.                 | -/rost.                  |
| cotg x     | +/kles.              | -/kles.                | +/kles.                 | -/kles                   |



Obrázek 5.3: Část grafů funkcí tangens a kotangens.

## Vztahy mezi goniometrickými funkcemi.

Věta 5.1.3 (Vzájemné vztahy).

1. Pro libovolné  $x \in \mathbb{R}$  platí

$$\sin^2 x + \cos^2 x = 1.$$

2. Pro libovolné  $x\in D(tg)\cap D(cotg)=\bigcup_{k\in\mathbb{Z}}\left(k\frac{\pi}{2},(k+1)\frac{\pi}{2}\right)$  platí

$$tg \ x \cdot cotg \ x = 1.$$

**Věta 5.1.4** (Součtové vzorce). *Pro libovolná*  $x, y \in \mathbb{R}$  *platí* 

$$\sin(x+y) = \sin x \cos y + \cos x \sin y,$$
  

$$\sin(x-y) = \sin x \cos y - \cos x \sin y,$$
  

$$\cos(x+y) = \cos x \cos y - \sin x \sin y,$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y.$$

**Věta 5.1.5** (Dvojnásobné úhly). *Pro libovolné*  $x \in \mathbb{R}$  *platí* 

$$\sin 2x = 2\sin x \cos x,$$

$$\cos 2x = \cos^2 x - \sin^2 x.$$

**Věta 5.1.6** (Poloviční úhly). *Pro libovolné*  $x \in \mathbb{R}$  *platí* 

$$\left| \sin \frac{x}{2} \right| = \sqrt{\frac{1 - \cos x}{2}},$$

$$\left| \cos \frac{x}{2} \right| = \sqrt{\frac{1 + \cos x}{2}}.$$

**Věta 5.1.7** (Součty a rozdíly goniometrických funkcí). *Pro všechna*  $x \in \mathbb{R}$  *a pro všechna*  $y \in \mathbb{R}$  *platí vztahy* 

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2},$$

$$\sin x - \sin y = 2\sin\frac{x-y}{2}\cos\frac{x+y}{2},$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2},$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}.$$

## Řešení goniometrických rovnic

K řešení goniometrických rovnic se využívá výše uvedených vlastností goniometrikých funkcí.

**Příklad 5.1.1.** V množině  $\mathbb{R}$  naleznětě všechna řešení rovnice  $2\sin^2 x + 3\sin x - 2 = 0$ .

*Řešení:* **5.1.1.** Pomocí substituce  $u=\sin x$  získáme kvadratickou rovnici  $2u^2+3u-2=0$ . Kořeny této rovnice jsou  $u_1=-2$ ,  $u_2=\frac{1}{2}$ . Je-li u=-2 získáme rovnici  $\sin x=-2$ , která nemá řešení, protože -2 neleží v oboru hodnot funkce sinus. Je-li  $u=\frac{1}{2}$ , získáme rovnici  $\sin x=\frac{1}{2}$ , jejímž řešením získáme  $x_1=\frac{\pi}{6}+2k\pi$  nebo  $x_2=\frac{5}{6}\pi+2k\pi$ ,  $k\in\mathbb{Z}$ . Množina řešení je

$$\mathbf{K} = \bigcup_{k \in \mathbb{Z}} \left\{ \frac{\pi}{6} + 2k\pi, \frac{5}{6}\pi + 2k\pi \right\}.$$

**Příklad 5.1.2.** V množině  $\mathbb{R}$  naleznětě všechna řešení rovnice  $4\sin^3 x + 4\sin^2 x - 3\sin x = 3$ .

*Řešení:* **5.1.2.** Vše převedeme na jednu stranu rovnice  $4\sin^3 x + 4\sin^2 x - 3\sin x - 3 = 0$ . Poté vytkneme  $4\sin^2 x(\sin x + 1) - 3(\sin x + 1) = 0$ , celkově  $(4\sin^2 x - 3)(\sin x + 1) = 0$ . Rovnost 0 nastává, jestliže platí některá z podmínek  $(4\sin^2 x - 3) = 0$ ,  $(\sin x + 1) = 0$ .

- 1) Pro  $(\sin x + 1) = 0$  platí  $\sin x = -1$ . Jejím řešením je  $x_1 = \frac{3\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$ .
- 2) Pro  $(4\sin^2 x 3) = 0$  platí  $\sin^2 x = \frac{3}{4}$ , tedy  $\sin x = \pm \frac{\sqrt{3}}{2}$ . Jejím řešením je  $x_2 = \frac{\pi}{3} + 2k\pi$ ,  $x_3 = \frac{2\pi}{3} + 2k\pi$ ,  $x_4 = \frac{4\pi}{3} + 2k\pi$ ,  $x_5 = \frac{5\pi}{3} + 2k\pi$ ,  $k \in \mathbb{Z}$ . Množina řešení je

$$\mathbf{K} = \bigcup_{k \in \mathbb{Z}} \left\{ \frac{3\pi}{2} + 2k\pi, \ \frac{\pi}{3} + 2k\pi, \ \frac{2\pi}{3} + 2k\pi, \ \frac{4\pi}{3} + 2k\pi, \ \frac{5\pi}{3} + 2k\pi \right\}.$$

**Příklad 5.1.3.** V množině  $\mathbb R$  naleznětě všechna řešení rovnice  $\sin x + \cos 2x = 0$ .

*Řešení:* 5.1.3. Pro úpravu rovnice použijeme vzorec  $\cos 2x = \cos^2 x - \sin^2 x$ , dostáváme  $\sin x + \cos^2 x - \sin^2 x = 0$ . Dále využijeme vztahu mezi sinem a kosinem  $\sin^2 x + \cos^2 x = 1$ , z něhož vyjádříme  $\cos^2 x$  a dosadíme  $\sin x + 1 - \sin^2 x - \sin^2 x = 0$ . Nyní máme rovnici  $2\sin^2 x - \sin x - 1 = 0$ , dáme substituci  $\sin x = t$ . Získáme kvadratickou rovnici  $2t^2 - t - 1 = 0$ , její řešení jsou  $t_1 = 1$ ,  $t_2 = -\frac{1}{2}$ . Pro  $\sin x = 1$  je  $x_1 = \frac{\pi}{2} + 2k\pi$ ,  $k \in \mathbb{Z}$ . Pro  $\sin x = -\frac{1}{2}$  je  $x_2 = \frac{7\pi}{6} + 2k\pi$ ,  $x_3 = \frac{11\pi}{6} + 2k\pi$ ,  $x_4 \in \mathbb{Z}$ . Množina řešení je

$$\mathbf{K} = \bigcup_{k \in \mathbb{Z}} \left\{ \frac{\pi}{2} + 2k\pi, \ \frac{7\pi}{6} + 2k\pi, \ \frac{11\pi}{6} + 2k\pi \right\}.$$

## 5.2 Hyperbolické funkce

V této části se budeme zabývat funkcemi hyperbolickými. Jejich název vznikl z vlastnosti, že pomocí hyperbolických funkcí se dá parametrizovat hyperbola. Každý bod ležící na hyperbole [x,y] v pravoúhlých souřadnicích se dá vyjádřit rovnicemi  $x=a\sinh t,\ y=b\cosh t;\ a,b>0$  a  $t\in\mathbb{R}$ . My se však v této kapitole nebudeme zabývat těmito geometrickými, třebaže zajímavými vlastnostmi. Poznamenejme, že pomocí goniometrických funkcí se dá podobným způsobem parametrizovat elipsa.

Hyperbolické funkce se dají zavést různými způsoby. V této kapitole si ukážeme zavedení pomocí Eulerova čísla.

Sinus hyperbolický je funkce  $\sinh x = \frac{e^x - e^{-x}}{2}$ . Definičním oborem je množina reálných čísel a oborem hodnot je interval  $(0, \infty)$ . Kosinus hyperbolický je  $\cosh x = \frac{e^x + e^{-x}}{2}$ . Definičním oborem a oborem hodnot je množina reálných čísel. Tangens hyperbolický je funkce  $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ . Definičním oborem je množina reálných čísel a obor hodnot je interval (-1, 1).

#### **Úloha 5.2.2** R

ozmyslete si jak vypadá kotangens hyperbolický, jestliže je to je funkce  $\coth x = \frac{1}{\tanh x} = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$ . Zkuste samostatně načrtnout graf funkce. Jaký je definiční obor a obor hodnot této funkce?



Obrázek 5.4: Část grafů funkcí sinus hyperbolický a kosinus hyperbolický.



Obrázek 5.5: Část grafu funkce tangens hyperbolický.

#### Věta 5.2.1 (Vzájemné vztahy).

1. Pro libovolné  $x \in \mathbb{R}$  platí

$$\cosh^2 x - \sinh^2 x = 1.$$

2. Pro libovolné  $x \in \mathbb{R} \setminus \{0\}$  platí

$$tanh \ x \cdot coth \ x = 1.$$

**Věta 5.2.2** (Součtové vzorce). *Pro libovolná*  $x, y \in \mathbb{R}$  *platí* 

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$
  

$$\sinh(x-y) = \sinh x \cosh y - \cosh x \sinh y,$$
  

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$
  

$$\cosh(x-y) = \cosh x \cosh y - \sinh x \sinh y.$$

**Věta 5.2.3** (Dvojnásobné úhly). *Pro libovolné*  $x \in \mathbb{R}$  *platí* 

$$\sinh 2x = 2\sinh x \cosh x,$$
$$\cosh 2x = \cosh^2 x + \sinh^2 x.$$

**Věta 5.2.4** (Dvojnásobné úhly). *Pro libovolné*  $x \in \mathbb{R}$  *platí* 

$$\sinh 2x = 2 \sinh x \cosh x,$$
  
 $\cosh 2x = \cosh^2 x + \sinh^2 x.$ 

**Věta 5.2.5** (Poloviční úhly). *Pro libovolné*  $x \in \mathbb{R}$  *platí* 

$$\left|\sinh\frac{x}{2}\right| = \sqrt{\frac{\cosh x - 1}{2}},$$

$$\left|\cosh\frac{x}{2}\right| = \sqrt{\frac{1 + \cosh x}{2}}.$$

**Věta 5.2.6** (Součty a rozdíly goniometrických funkcí). *Pro všechna*  $x \in \mathbb{R}$  *a pro všechna*  $y \in \mathbb{R}$  *platí vztahy* 

$$\sinh x + \sinh y = 2\sinh \frac{x+y}{2}\cosh \frac{x-y}{2},$$

$$\sinh x - \sinh y = 2\sinh \frac{x-y}{2}\cosh \frac{x+y}{2},$$

$$\cosh x + \cos y = 2\cosh \frac{x+y}{2}\cosh \frac{x-y}{2},$$

$$\cosh x - \cosh y = -2\sinh \frac{x+y}{2}\sinh \frac{x-y}{2}.$$

## Hyperbolické funkce.

**Příklad 5.2.1.** Vypočtěte funkční hodnoty funkcí sinus hyperbolický, kosinus hyperbolický, tangens hyperbolický v bodě 0.

*Řešení:* 5.2.1. Dosazením do vzorců získáme pro sinus hyperbolický  $\sinh 0 = \frac{e^0 - e^{-0}}{2} = 0$ , pro kosinus hyperbolický  $\cosh 0 = \frac{e^0 + e^{-0}}{2} = 1$ . Tangens hyperbolický je  $\tanh 0 = \frac{\sinh 0}{\cosh 0} = \frac{0}{1} = 0$ . Protože pro kotangens hyperbolický platí  $\coth x = \frac{1}{\tanh x} = \frac{\cosh x}{\sinh x}$ , není v nule definován.

**Příklad 5.2.2.** V množině  $\mathbb{R}$  naleznětě všechna řešení rovnice  $\sinh^2 x + \cosh^2 x = 1$ .

*Řešení:* 5.2.2. Ze vztahu  $\cosh^2 x - \sinh^2 x = 1$  vyjádříme například  $\cosh^2 = \sinh^2 x + 1$  a dosadíme do rovnice  $\sinh^2 x + \sinh^2 x + 1 = 1$ . Tedy hledáme řešení  $\sinh^2 x = 0$ , což je splněno pouze pro  $\sinh x = 0$ . Rovnice má jediné řešení x = 0.