Math 2603-F Exam 1 Spring 2016
Date: February 11, 2016 Time: 12:05 to 13:25 Duration of exam: 80 min

Last Name (Print): _____ First Name (Print): _____

This exam contains 4 pages (including this cover page) and 8 questions. Total of points is 55.

Instructions

- 1. Please be sure your name appears correctly at the top of this page and that your initials appear at the top of the remaining pages.
- 2. Answer the questions in the space provided, using the backs of pages for overflow or rough work.
- 3. To obtain maximum marks show all your work, carefully justifying your answers.
- 4. The use of calculator, books or any other aids will not be allowed for the test.

Grade Table (for instructor use only)

Question	Points	Score
1	6	
2	4	
3	5	
4	9	
5	4	
6	8	
7	4	
8	15	
Total:	55	

Initials: _____

- 1. (6 points) Write down the negation of each of the following statements in clear and concise English.
 - (a) (2 points) $n > \pi$ or n is negative.

Solution: $n \leq \pi$ and n is positive

(b) (2 points) $\frac{1}{n}$ is not an integer for all natural numbers n.

Solution: There exists a natural number n such that $\frac{1}{n}$ is an integer.

(c) (2 points) There exists a function f that is differentiable and discontinuous.

Solution: f is not differentiable or f is continuous for all functions f.

2. (4 points) Prove that if a is an irrational number and b a rational number then a + b is an irrational number.

Solution: Let us assume, for a contradiction, that a+b is rational, say $a+b=\frac{p}{q}$ for some $p,q\in\mathbb{Z},\ q\neq 0$. Since b is rational, then $b=\frac{b}{m}$ for some $m,n\in\mathbb{Z},\ m\neq 0$. Then

$$a = \frac{a}{b} - \frac{p}{q} = \frac{pn - qm}{qn},$$

which is a rational number (since $pn-qm, qn \in \mathbb{Z}$ with $qn \neq 0$). This contradicts the fact that a is irrational.

3. (5 points) Let A and B be sets. Prove that $(A \cap B)^{c} = A^{c} \cup B^{c}$

Solution: We have $x \in (A \cap B)^{c}$ iff $x \notin A \cap B$. Now $x \notin A \cap B$ iff $x \notin A$ or $x \notin B$. Also note that $x \notin A$ or $x \notin B$ iff $x \in A^{c}$ or $x \in B^{c}$. Finally $x \in A^{c}$ or $x \in B^{c}$ iff $x \in A^{c} \cup B^{c}$.

4. (9 points) For $a, b \in \mathbb{R}$ consider the following relation:

$$a \sim b$$
 if and only if $|a - 5| = |5 - b|$.

The aim of this exercise is to show that \sim defines an equivalence relation over \mathbb{R} . Prove that the relation \sim is:

(a) (3 points) Reflexive.

Solution: Let $a \in \mathbb{R}$. Then |a-5| = |5-a|, since |x| = |-x|. Thus $a \sim a$ for all $a \in \mathbb{R}$.

(b) (3 points) Symmetric.

Solution: Suppose $a \sim b$. Then |a-5| = |5-b| or |5-a| = |b-5|. Therefore $b \sim a$.

(c) (3 points) Transitive.

Solution: Suppose $a \sim b$ and $b \sim c$. Then |a-5| = |5-b| and |b-5| = |5-c|. Since |5-b| = |b-5| we conclude that |a-5| = |5-c| or $a \sim c$.

- 5. (4 points) Consider the relation \sim given in question 4 .
 - (a) (2 points) What is the equivalence class of 5?

Solution: $\overline{5} = \{x \in \mathbb{R} : |x - 5| = 0\} = \{5\}.$

(b) (2 points) What is the equivalence class of -5?

Solution: $\overline{-5} = \{x \in \mathbb{R} : |x - 5| = 10\} = \{-5, 15\}.$

(c) (Bonus 3 points) Define a function $f: \mathbb{R} \to \mathbb{R}$ such that

f(x) = # elements in \overline{x} ,

that is each $x \in \mathbb{R}$ is mapped to the number of elements contained in its equivalence class.

6. (8 points) (a) (6 points) Compute gcd(282, 137).

		a	b
	282	1	0
Solution:	137	0	1
	8	1	-2
	1	-17	35
			'

(b) (2 points) Find integers m and n such that 282m + 137n = 3.

Solution: From above we have that $-17 \cdot 282 + 35 \cdot 137 = 1$, therefore $(3 \cdot -17) \cdot 282 + (3 \cdot 35) \cdot 137 = 2$. So m = -51 and n = 105.

7. (4 points) Prove that if $k \in \mathbb{N}$, then gcd(3k+2,5k+3)=1.

Solution: Let $g = \gcd(3k+2, 5k+3)$. Then g|3k+2 and g|5k+3. In other words, there exist $m, n \in \mathbb{Z}$ such that

$$3k + 2 = gn \tag{1}$$

and

$$5k + 3 = gm. (2)$$

Multiplying equation (1) by 5 and equation (2) by 3 yields

$$15k + 10 = 5gn \tag{3}$$

and

$$15k + 9 = 3gm. \tag{4}$$

Now, subtracting equation (4) from (3) we obtain (5n-3m)g=1. Finally, since $g\geq 1$ and $g\in\mathbb{Z}$ it follows that g=1.

- 8. (15 points) Decide whether each of the following statements is true or false. Justify your claim.
 - (a) (3 points) If a and b are real numbers such that a + b is a rational number, then a and b are rational numbers.

Solution: False. Let $a = \sqrt{2}$ and $b = -\sqrt{2}$. Then $a + b = 0 \in \mathbb{Q}$ but $a, b \notin \mathbb{Q}$.

(b) (3 points) If A and B are sets, then $A \cup (B \cap C) = (A \cup B) \cap C$.

Solution: False. Let $A = \{1\}$, $B = \{2\}$ and $C = \emptyset$. Then

$$A \cup (B \cap C) = \{1\} \neq \emptyset = (A \cup B) \cap C.$$

(c) (3 points) Let A, B and C be sets. If $A \cap C = B \cap C$ then A = B.

Solution: False. If $A = \{1, 2\}$, $B = \{1, 3\}$ and $C = \{1\}$ then $A \cap C = \{1\} = B \cap C$ but $A \neq B$.

(d) (3 points) For all nonzero integers a and b we have that gcd(a, b) = gcd(-a, b).

Solution: True. Let $g_1 = \gcd(a, b)$ and $g_2 = \gcd(-a, b)$. Let us show that $g_1 \leq g_2$ and $g_2 \geq g_1$. Since $g_1|a$ we have that $g_1|-a$, therefore $g_1|-a$ and $g_1|b$. Since g_2 is the gcd of -a and b we have that $g_1 \leq g_2$. A similar argument shows that $g_2 \leq g_1$, thus $g_1 = g_2$.

(e) (3 points) Let $A = \{a, b, c, d\}$ and $B = \{0, 2, 4, 8\}$. The set $f = \{(c, 4), (d, 0), (a, 0), (b, 2), (d, 4)\}$ defines a function from A to B.

Solution: False. There are two pairs of the form (d, x) with $x \in B$.