

ERA IITK Corona Break Learning

Instructions

- You are expected to attempt all tasks.
- The final report should be submitted through GitHub by Making a folder Task 4 in your forked folder from ERA-IITK/learning101
- For CMake Tasks, submit files in a seperate folder.
- For ROS tasks, Submit a Work-space <TEAMNAME>_ws with package name ERA_Task4
- Your team-name is the colour of your team given in slack
- the Task part 1 CMake is to be done individually.
- It is advisable that both members of your team attempt both the ends of the part 2- sending and receiving information.
- The final Repo should include all your results, code snippets and necessary information of the task.
- Relevant links can be found at ERA-IITK/res

1 Introduction to ROS Ecosystem- Part 2

1.1 Getting comfortable with the ROS Eco-System - CMake

- What is CMake? Why should we be using it
- Go through 'An Introduction to Modern CMake' from cliutils
 - Installing CMake
 - Running CMake
 - Complete chapter 2- an introduction to the basics.
- Complete tutorial 1 made by the Cmake Foundation
- Complete Using Dependencies Guide
- Those who did not complete ROS tasks by making a package need to do it in this way

2 Having fun with ROS.

- 2.1 You have to work in pairs to write a subscriber publisher pair that can communicate over the network to your partner's computer
 - Ping the network, Perform simple addition.
 - You must use a ROS based approach.
 - Submit these task as a separate compiled workspace
 - Generate the RQT graph and submit that as an image file
- 2.2 Modify your talker subscriber network such that the talker on your computer is able to control the turtlesim turtle in your partner's computer.
 - The movements are forward and backward, turn left 90* turn right 90*. The forward-backward motion must be quantized for each keypress irrespective of the duration of the keypress.
- 2.3 Now modify your above program to include gesture recognition. Control the turtlesim turtle on your partner's computer using hand gestures in front of your webcam
 - The same movement constraints apply as above.
 - You must get feedback of the current position of the turtle, back on your screen.
 - Use OpenCV for image processing
- 2.4 Continue reading Effective Robotics Programming with ROS Third Edition
 - Complete section 4