2

CLAIMS

What is claimed is:

- 1 1. A method of patterning a recording medium comprising:
 2 selectively thermally coupling said recording medium and a heat source to
 3 alter a chemical composition of said recording medium.
- The method according to claim 1, wherein said chemical composition is
 altered according to a predetermined pattern.
 - 3. The method according to claim 2, wherein said predetermined pattern comprises one of concentric circles and parallel tracks.
- 4. The method according to claim 1, wherein altering said chemical composition causes an altered magnetic order of said recording medium.
- The method according to claim 1, wherein altering said chemical
 composition causes an altered dielectric constant of said recording medium.
- 1 6. The method according to claim 5, wherein altering said dielectric constant causes an altered reflectivity of said recording medium.
- 1 7. The method according to claim 1, wherein altering said chemical

- 2 composition causes an altered electrical conductivity of said recording medium.
- 1 8. The method according to claim 7, wherein altering said electrical
- 2 conductivity causes an altered electron transport property of said recording
- 3 medium.
- 9. The method according to claim 1, wherein altering said chemical composition causes an altered thermal conductivity of said recording medium.
- 1 10. The method according to claim 1, further comprising:
- depositing said recording medium on a substrate.
- 1 11. The method according to claim 1, wherein said selectively thermally
 2 coupling comprises selectively directing an incident thermal wave from said heat
 3 source to said recording medium to form a direct thermal coupling between said
 4 heat source and said recording medium.
- 1 12. The method according to claim 1, wherein said medium comprises cobalt 2 and chromium.
- 1 13. The method according to claim 1, wherein said substrate comprises one of glass, silicon, quartz, sapphire, AlMg and a ceramic substrate.

- 1 14. The method according to claim 1, wherein said heat source comprises one of a near-field thermal probe and a nanoheater.
- 1 15. The method according to claim 1, wherein said heat source physically contacts said recording medium.
- 1 16. The method according to claim 1, wherein said heat source is physically separated from said recording medium.
- The method according to claim 1, wherein said chemical composition is altered by one of interfacial mixing, interfacial reactions, selective oxidation, structural relaxation, phase segregation and phase change.
- 1 18. The method according to claim 1, wherein altering said chemical composition transforms said medium from a paramagnetic medium to a ferromagnetic medium.
- 1 19. The method according to claim 1, wherein altering said chemical composition transforms said medium from a ferromagnetic medium to a paramagnetic medium.

- The method according to claim 1, wherein altering said chemical composition alters a magnetic axis orientation of said medium.
- The method according to claim 1, wherein altering said chemical composition reduces at least one of magnetization and coercivity of said medium.
- The method according to claim 1, wherein said selectively thermally coupling comprises selective near-field radiative coupling of blackbody radiation from said heat source to said recording medium.
- 1 23. The method according to claim 1, wherein said medium comprises 2 Co₂Cr₁₋₂, where x is in a range from 0.63 to 0.75.
- The method according to claim 1, wherein thermal energy is transferred to said medium by conductive heating.
- The method according to claim 1, wherein thermal energy is transferred to said medium by radiative heating.
- 1 26. An apparatus for patterning a recording medium, comprising:
- a heat source for generating and directing an incident thermal wave to a recording medium. said thermal wave altering a chemical composition of a

4	recording medium; and		
5	a controller for coordinating a mutual position of said inc	ident thermal	
6	wave and said recording medium so as to thermally couple said heat source and		
7	said recording medium.		
1	27. The apparatus according to claim 26, wherein said heat so	ource comprises:	
2	a heating plate for developing a thermal energy field which	ch couples said	
3	heat source to said recording medium; and		
4	a heat sink connected to said heating plate.		
1	28. The apparatus according to claim 27, wherein said heating	g plate comprises	
2	a tip for concentrating and directing a thermal energy.		
1	29. The apparatus according to claim 27, further comprising:	'	
2	an optical waveguide coupled to said heat sink, for carryi	ing a focused lase	
3	beam.		
1	30. The apparatus according to claim 29, wherein said optical	ıl waveguide	
2	comprises an optical fiber.		

The apparatus according to claim 29, wherein said optical waveguide

comprises a planar optical waveguide.

31.

2

8

32.

2		a resistive heating element thermally coupled to said heat sink.	
1	33.	The apparatus according to claim 26, wherein said heat source comprises	
2	an atoi	mic force microscope probe.	
1	34.	The apparatus according to claim 26, wherein said heat source comprises	
2	one of	one of a nanoheater and a near-field thermal probe.	
1	35.	The apparatus according to claim 26. wherein said controller coordinates	
2	said m	autual position of said incident thermal wave and said recording medium to	
3	induce	ace a direct thermal coupling that subsumes at least one portion of a thermal	
4	near-fi	near-field.	
1	36.	A read/write head assembly, comprising:	
2		a read/write head;	
3		a heat source connected to said read/write head for generating and	
4	directing an incident thermal wave to a recording medium, said thermal wave		
5	altering a chemical composition of a recording medium; and		
6		a controller for coordinating a mutual position of said incident thermal	
7	wave a	and said recording medium so as to thermally couple said heat source and	

The apparatus according to claim 27, further comprising:

said recording medium.

2

1	37.	The read/write head assembly according to claim 36, wherein heat source	
2	comprises one of a nanoheater and a near field thermal probe.		
1	38.	The read/write head assembly according to claim 36, wherein said	
2	chemical composition is altered according to a predetermined pattern, and wherein		
3	said heat source patterns said recording medium during a read/write operation of		
4	said read/write head assembly.		
1	39.	A patterned recording medium. comprising:	
2		a substrate; and	
3		a single layer medium formed on said substrate having a portion which has	
4	been pa	atterned by altering a chemical composition of said medium using selective	
5	thermal coupling.		
1	40.	A method for manufacturing a patterned magnetic disk, comprising:	
2		depositing a recording medium on a substrate;	
3		selectively thermally coupling said recording medium and a heat source so	
4	as to alter a chemical composition of said recording medium, and		
5		depositing a protective coating on said recording medium.	

41. A programmable storage medium tangibly embodying a program of machine-readable instructions executable by a digital processing apparatus to

- perform a method for patterning a recording medium, said method comprising:
- 4 selectively thermally coupling said recording medium and a heat source to
- 5 alter a chemical composition of said recording medium.