Variational Autoencoder

Auto-encoding Variational Bayes by Kingma and Welling [2013]

Wonbong Jang

Department of Statistics, LSE

11th December, 2018

Outline

- Probabilistic Model
 - Probabilistic Model and Bayes' Rule
 - Why is computing the posterior difficult?
- 2 VAE
 - Neural Networks
 - Optimizing the Variance Lower Bound
 - Reparametrization Trick
 - Example MNIST and CVAE
 - Summary
- Further Topics
 - Disentanglement
 - Other generative models
- 4 Reference

Probabilistic Modeling

- Learn a model that describes the data
- Using Bayes Rule, we can learn and infer about the model and its parameters
- Bayes' Rule : $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$
- Question: How to compute the posterior? (especially when it is not tractable) and how can we compute the predictive distribution based on the updated parameters?
- Answer: Variational Bayes, Markov Chain Mote Carlo (MCMC)..
- The problem is that both methods have some issues

Probabilistic Modeling

- Learn a model that describes the data
- Using Bayes Rule, we can learn and infer about the model and its parameters
- Bayes' Rule : $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$
- Question: How to compute the posterior? (especially when it is not tractable) and how can we compute the predictive distribution based on the updated parameters?
- Answer: Variational Bayes, Markov Chain Mote Carlo (MCMC)..
- The problem is that both methods have some issues

Probabilistic Modeling

- Learn a model that describes the data
- Using Bayes Rule, we can learn and infer about the model and its parameters
- Bayes' Rule : $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$
- Question: How to compute the posterior? (especially when it is not tractable) and how can we compute the predictive distribution based on the updated parameters?
- Answer: Variational Bayes, Markov Chain Mote Carlo (MCMC)..
- The problem is that both methods have some issues

- Intractability: We still need the exact solution for simplified cases in Variational Bayes.
- Inscalability: MCMC is asymtotically unbiased but it is computationally expensive, so it is not easy to scale up.
- Any ideas?
- Neural Network can be a good candidate.
 - Rather than programming in explicit detail, just write a program how to learn, and show computers many examples.
 Then, the computer learns it by itself.
 - We can do that with the development of computing

- Intractability: We still need the exact solution for simplified cases in Variational Bayes.
- Inscalability: MCMC is asymtotically unbiased but it is computationally expensive, so it is not easy to scale up.
- Any ideas?
- Neural Network can be a good candidate.
 - Rather than programming in explicit detail, just write a program how to learn, and show computers many examples.
 Then, the computer learns it by itself.
 - We can do that with the development of computing

- Intractability: We still need the exact solution for simplified cases in Variational Bayes.
- Inscalability: MCMC is asymtotically unbiased but it is computationally expensive, so it is not easy to scale up.
- Any ideas?
- Neural Network can be a good candidate.
 - Rather than programming in explicit detail, just write a program how to learn, and show computers many examples.
 Then, the computer learns it by itself.
 - We can do that with the development of computing

- **Intractability**: We still need the exact solution for simplified cases in Variational Bayes.
- **Inscalability**: MCMC is asymtotically unbiased but it is computationally expensive, so it is not easy to scale up.
- Any ideas?
- Neural Network can be a good candidate.
 - Rather than programming in explicit detail, just write a program how to learn, and show computers many examples.
 Then, the computer learns it by itself.
 - We can do that with the development of computing

- Intractability: We still need the exact solution for simplified cases in Variational Bayes.
- Inscalability: MCMC is asymtotically unbiased but it is computationally expensive, so it is not easy to scale up.
- Any ideas?
- Neural Network can be a good candidate.
 - Rather than programming in explicit detail, just write a program how to learn, and show computers many examples.
 Then, the computer learns it by itself.
 - We can do that with the development of computing

- Intractability: We still need the exact solution for simplified cases in Variational Bayes.
- Inscalability: MCMC is asymtotically unbiased but it is computationally expensive, so it is not easy to scale up.
- Any ideas?
- Neural Network can be a good candidate.
 - Rather than programming in explicit detail, just write a program how to learn, and show computers many examples.
 Then, the computer learns it by itself.
 - We can do that with the development of computing

Why Neural Networks?

 Neural Networks with one hidden layer are universal function approximators.

- By translating and scaling the bump, we can approximate arbitrary functions. see more on Cybenko [1989] and reference this link
- If we go deeper, we can compute more efficiently. See Montufar et al. [2014] for more.

Why Neural Networks?

 Neural Networks with one hidden layer are universal function approximators.

- By translating and scaling the bump, we can approximate arbitrary functions. see more on Cybenko [1989] and reference this link
- If we go deeper, we can compute more efficiently. See Montufar et al. [2014] for more.

Neural Network - example

- $h_{ik} = a(b_k^h + \sum_j W_{jk}^h x_{ij})$ where $a(x) = \max(x, 0)$, a(x) here is Rectified Linear Unit but it can be other functions.
- $\hat{y} = \sigma(b^o + \sum_k W_k^o h_{ik})$ where $\sigma(x)$ is usually a sigmoid function for binary classification.
- The parameters $(b_k^h, b^o, W_{jk}^h, W_k^o)$ are optimized by Gradient Descent.

Neural Network - example

- $h_{ik} = a(b_k^h + \sum_j W_{jk}^h x_{ij})$ where $a(x) = \max(x, 0)$, a(x) here is Rectified Linear Unit but it can be other functions.
- $\hat{y} = \sigma(b^o + \sum_k W_k^o h_{ik})$ where $\sigma(x)$ is usually a sigmoid function for binary classification.
 - The parameters $(b_k^h, b^o, W_{jk}^h, W_k^o)$ are optimized by Gradient Descent.

Neural Network - example

- $h_{ik} = a(b_k^h + \sum_j W_{jk}^h x_{ij})$ where $a(x) = \max(x, 0)$, a(x) here is Rectified Linear Unit but it can be other functions.
- $\hat{y} = \sigma(b^o + \sum_k W_k^o h_{ik})$ where $\sigma(x)$ is usually a sigmoid function for binary classification.
- The parameters (b_k^h, b^o, W_{jk}^h, W_k^o) are optimized by Gradient Descent.

- Backpropagation is used to optimize the parameters. Neural network computes the loss and the gradients, then back-propagate error signals to get derivatives for learning
 - If small changes in parameters increase the probability of the outcome, then keep the change, otherwise drop them.
 - It enables parallel computing, so it is much more efficient.
 (But, different results for every iterations)
 - After defining the loss function and setting the hyper-parameter for updating the parameter, then the neural network optimizes its parameters automatically.

$$W_{jk}^h = W_{jk}^h - \alpha \frac{\partial J}{\partial W_{jk}^h}, \ \frac{\partial J}{\partial W_{jk}^h} = \frac{\partial J}{\partial \hat{h}} \frac{\partial h}{\partial W_{jk}^h}$$

- Backpropagation is used to optimize the parameters. Neural network computes the loss and the gradients, then back-propagate error signals to get derivatives for learning
 - If small changes in parameters increase the probability of the outcome, then keep the change, otherwise drop them.
 - It enables parallel computing, so it is much more efficient.
 (But, different results for every iterations)
 - After defining the loss function and setting the hyper-parameter for updating the parameter, then the neural network optimizes its parameters automatically.

$$W_{jk}^{h} = W_{jk}^{h} - \alpha \frac{\partial J}{\partial W_{jk}^{h}}, \ \frac{\partial J}{\partial W_{jk}^{h}} = \frac{\partial J}{\partial \hat{h}} \frac{\partial h}{\partial W_{jk}^{h}}$$

- Backpropagation is used to optimize the parameters. Neural network computes the loss and the gradients, then back-propagate error signals to get derivatives for learning
 - If small changes in parameters increase the probability of the outcome, then keep the change, otherwise drop them.
 - It enables parallel computing, so it is much more efficient.
 (But, different results for every iterations)
 - After defining the loss function and setting the hyper-parameter for updating the parameter, then the neural network optimizes its parameters automatically.

$$W_{jk}^h = W_{jk}^h - \alpha \frac{\partial J}{\partial W_{jk}^h}, \ \frac{\partial J}{\partial W_{jk}^h} = \frac{\partial J}{\partial \hat{h}} \frac{\partial h}{\partial W_{jk}^h}$$

- Backpropagation is used to optimize the parameters. Neural network computes the loss and the gradients, then back-propagate error signals to get derivatives for learning
 - If small changes in parameters increase the probability of the outcome, then keep the change, otherwise drop them.
 - It enables parallel computing, so it is much more efficient.
 (But, different results for every iterations)
 - After defining the loss function and setting the hyper-parameter for updating the parameter, then the neural network optimizes its parameters automatically.

$$W_{jk}^h = W_{jk}^h - \alpha \frac{\partial J}{\partial W_{jk}^h}, \ \frac{\partial J}{\partial W_{jk}^h} = \frac{\partial J}{\partial \hat{h}} \frac{\partial \hat{h}}{\partial W_{jk}^h}$$

- Backpropagation is used to optimize the parameters. Neural network computes the loss and the gradients, then back-propagate error signals to get derivatives for learning
 - If small changes in parameters increase the probability of the outcome, then keep the change, otherwise drop them.
 - It enables parallel computing, so it is much more efficient.
 (But, different results for every iterations)
 - After defining the loss function and setting the hyper-parameter for updating the parameter, then the neural network optimizes its parameters automatically.

$$W_{jk}^h = W_{jk}^h - \alpha \frac{\partial J}{\partial W_{jk}^h}, \ \frac{\partial J}{\partial W_{jk}^h} = \frac{\partial J}{\partial \hat{h}} \frac{\partial \hat{h}}{\partial W_{jk}^h}$$

From a Recognition model

• Use the idea from the recognition model : Approximate the posterior as $q_{\phi}(z|x)$ rather than $p_{\theta}(z|x)$ directly. Then, use the neural network to approximate it.

- Objective: 1) Maximize the log $p_{\theta}(\hat{x}')$ and 2) minimize the KL divergence between $q_{\phi}(z|x)$ and $p_{\theta}(z|x)$
- Variance Lower Bound(L) can be defined as this. $L(\theta, \phi) = \log p_{\theta}(\hat{x}) D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x))$

From a Recognition model

• Use the idea from the recognition model : Approximate the posterior as $q_{\phi}(z|x)$ rather than $p_{\theta}(z|x)$ directly. Then, use the neural network to approximate it.

- Objective: 1) Maximize the log $p_{\theta}(\hat{x}')$ and 2) minimize the KL divergence between $q_{\phi}(z|x)$ and $p_{\theta}(z|x)$
- Variance Lower Bound(L) can be defined as this. $L(\theta, \phi) = \log p_{\theta}(\hat{x}) D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x))$

From a Recognition model

• Use the idea from the recognition model : Approximate the posterior as $q_{\phi}(z|x)$ rather than $p_{\theta}(z|x)$ directly. Then, use the neural network to approximate it.

- Objective: 1) Maximize the log $p_{\theta}(\hat{x}')$ and 2) minimize the KL divergence between $q_{\phi}(z|x)$ and $p_{\theta}(z|x)$
- Variance Lower Bound(L) can be defined as this. $L(\theta, \phi) = \log p_{\theta}(\hat{x}) D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x))$

Objective

• Start from $\log p_{\theta}(x)$

$$\begin{split} \log p_{\theta}(x) &= \int dz \ q_{\phi}(z|x) \ \log p_{\theta}(x) \\ &= \int dz \ q_{\phi}(z|x) \log \left[\frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right] \\ &= D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)) + \int dz \ q_{\phi}(z|x) \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \end{split}$$

Now, go back to Variance Lower Bound again.

$$L(\theta, \phi) = \int dz \ q_{\phi}(z|x) \log \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)} = \int dz \ q_{\phi}(z|x) \log \frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)}$$
$$= \underset{z \sim q_{\phi}(z|x)}{\mathbb{E}} [\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$$

Objective

• Start from $\log p_{\theta}(x)$

$$\log p_{\theta}(x) = \int dz \ q_{\phi}(z|x) \log p_{\theta}(x)$$

$$= \int dz \ q_{\phi}(z|x) \log \left[\frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$= D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)) + \int dz \ q_{\phi}(z|x) \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)}$$

Now, go back to Variance Lower Bound again.

$$L(\theta, \phi) = \int dz \ q_{\phi}(z|x) \log \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)} = \int dz \ q_{\phi}(z|x) \log \frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)}$$
$$= \underset{z \sim q_{\phi}(z|x)}{\mathbb{E}} [\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$$

- By KL-Divergence's non-negativity, $L(\theta,\phi) \leq \log p_{\theta}(x)$
- Therefore, by optimizing the parameters θ and ϕ , we can increase the evidence lower bound every iteration, similar to Expectation Maximization algorithm.
- The problem is how to optimize the parameters and we will use Neural Networks to do that automatically.
- Here comes another question: How to get back-propagate the sampling? in other words, how to get the derivatives from sampling.

- By KL-Divergence's non-negativity, $L(\theta, \phi) \leq \log p_{\theta}(x)$
- ullet Therefore, by optimizing the parameters heta and ϕ , we can increase the evidence lower bound every iteration, similar to Expectation Maximization algorithm.
- The problem is how to optimize the parameters and we will use Neural Networks to do that automatically.
- Here comes another question: How to get back-propagate the sampling? in other words, how to get the derivatives from sampling.

- By KL-Divergence's non-negativity, $L(\theta, \phi) \leq \log p_{\theta}(x)$
- ullet Therefore, by optimizing the parameters heta and ϕ , we can increase the evidence lower bound every iteration, similar to Expectation Maximization algorithm.
- The problem is how to optimize the parameters and we will use Neural Networks to do that automatically.
- Here comes another question: How to get back-propagate the sampling? in other words, how to get the derivatives from sampling.

- By KL-Divergence's non-negativity, $L(\theta, \phi) \leq \log p_{\theta}(x)$
- ullet Therefore, by optimizing the parameters heta and ϕ , we can increase the evidence lower bound every iteration, similar to Expectation Maximization algorithm.
- The problem is how to optimize the parameters and we will use Neural Networks to do that automatically.
- Here comes another question: How to get back-propagate the sampling? in other words, how to get the derivatives from sampling.

Reparameterization Trick

• We cannot get the derivatives for sampling, but if we assume that $z \sim N(0, \sigma^2)$, then we can compute the $D_{KL}(q_{\phi}(z|x)||p(z))$ with the exact solution.

• We can compute the gradient by the above reparameterization trick, and we will use those gradients for backpropagation.

Reparameterization Trick

• We cannot get the derivatives for sampling, but if we assume that $z \sim N(0, \sigma^2)$, then we can compute the $D_{KL}(q_{\phi}(z|x)||p(z))$ with the exact solution.

• We can compute the gradient by the above reparameterization trick, and we will use those gradients for backpropagation.

• Let's compute $D_{KL}(q_{\phi}(z|x)||p(z))$ when $q_{\phi}(z|x) \sim N(\mu, \sigma^2)$ and $p(z) \sim N(0, I)$.

$$\int dz \ q_{\phi}(z|x) \log p(z) = \int dz \ N(z; \mu, \sigma^{2}) \log N(z; 0, I)$$

$$= -\frac{J}{2} \log(2\pi) - \frac{1}{2} \sum_{j} \mu_{j}^{2} + \sigma_{j}^{2}$$

$$\int dz \ q_{\phi}(z|x) \log q_{\phi}(z|x) = \int dz \ N(z; \mu, \sigma^{2}) \log N(z; \mu, \sigma^{2})$$

$$= -\frac{J}{2} \log 2\pi - \frac{1}{2} \sum_{j} 1 + \log(\sigma_{j}^{2})$$

$$D_{KL}(q_{\phi}(z|x)||p(z)) = \frac{1}{2} \sum_{j} 1 + \log(\sigma_{j}^{2}) - \mu_{j}^{2} - \sigma_{j}^{2}$$

• Let's compute $D_{KL}(q_{\phi}(z|x)||p(z))$ when $q_{\phi}(z|x) \sim N(\mu, \sigma^2)$ and $p(z) \sim N(0, I)$.

$$\int dz \ q_{\phi}(z|x) \log p(z) = \int dz \ N(z; \mu, \sigma^{2}) \log N(z; 0, I)$$

$$= -\frac{J}{2} \log(2\pi) - \frac{1}{2} \sum_{j} \mu_{j}^{2} + \sigma_{j}^{2}$$

$$\int dz \ q_{\phi}(z|x) \log q_{\phi}(z|x) = \int dz \ N(z; \mu, \sigma^{2}) \log N(z; \mu, \sigma^{2})$$

$$= -\frac{J}{2} \log 2\pi - \frac{1}{2} \sum_{j} 1 + \log(\sigma_{j}^{2})$$

$$D_{KL}(q_{\phi}(z|x)||p(z)) = \frac{1}{2} \sum_{j} 1 + \log(\sigma_{j}^{2}) - \mu_{j}^{2} - \sigma_{j}^{2}$$

• Let's compute $D_{KL}(q_{\phi}(z|x)||p(z))$ when $q_{\phi}(z|x) \sim N(\mu, \sigma^2)$ and $p(z) \sim N(0, I)$.

$$\int dz \ q_{\phi}(z|x) \log p(z) = \int dz \ N(z; \mu, \sigma^{2}) \log N(z; 0, I)$$

$$= -\frac{J}{2} \log(2\pi) - \frac{1}{2} \sum_{j} \mu_{j}^{2} + \sigma_{j}^{2}$$

$$\int dz \ q_{\phi}(z|x) \log q_{\phi}(z|x) = \int dz \ N(z; \mu, \sigma^{2}) \log N(z; \mu, \sigma^{2})$$

$$= -\frac{J}{2} \log 2\pi - \frac{1}{2} \sum_{j} 1 + \log(\sigma_{j}^{2})$$

$$D_{KL}(q_{\phi}(z|x)||p(z)) = \frac{1}{2} \sum_{j} 1 + \log(\sigma_{j}^{2}) - \mu_{j}^{2} - \sigma_{j}^{2}$$

• Let's compute $D_{KL}(q_{\phi}(z|x)||p(z))$ when $q_{\phi}(z|x) \sim N(\mu, \sigma^2)$ and $p(z) \sim N(0, I)$.

$$\int dz \ q_{\phi}(z|x) \log p(z) = \int dz \ N(z; \mu, \sigma^{2}) \log N(z; 0, I)$$

$$= -\frac{J}{2} \log(2\pi) - \frac{1}{2} \sum_{j} \mu_{j}^{2} + \sigma_{j}^{2}$$

$$\int dz \ q_{\phi}(z|x) \log q_{\phi}(z|x) = \int dz \ N(z; \mu, \sigma^{2}) \log N(z; \mu, \sigma^{2})$$

$$= -\frac{J}{2} \log 2\pi - \frac{1}{2} \sum_{j} 1 + \log(\sigma_{j}^{2})$$

$$D_{KL}(q_{\phi}(z|x)||p(z)) = \frac{1}{2} \sum_{j} 1 + \log(\sigma_{j}^{2}) - \mu_{j}^{2} - \sigma_{j}^{2}$$

VAE with MNIST dataset

• Use VAE to generate MNIST data

 How about using conditional variables to control the generating process?

VAE with MNIST dataset

Use VAE to generate MNIST data

 How about using conditional variables to control the generating process?

Conditional VAE

• For CVAE, Variance Lower Bound is almost the same : $L(\theta,\phi) = \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z,c)] - D_{KL}(q_{\phi}(z|x,c)||p_{\theta}(z))$

• Using the proper conditional variable stabilizes the training and helps the neural network learn better. (See Sohn et al. [2015])

Conditional VAE

• For CVAE, Variance Lower Bound is almost the same : $L(\theta,\phi) = \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z,c)] - D_{KL}(q_{\phi}(z|x,c)||p_{\theta}(z))$

 Using the proper conditional variable stabilizes the training and helps the neural network learn better. (See Sohn et al. [2015]) Now, we have studied VAE model.

- It is based on solid theoretical background.
- We can see the encoded latent space directly, and control the output if the latent space is sufficiently disentangled.
- Criticisms
 - Why do we approximate the posterior distribution with Gaussian with diagonal covariance matrix?
 - The output on high-frequency parts(e.g. edges) tends to be blurrier than other generative models such as GAN

Now, we have studied VAE model.

- It is based on solid theoretical background.
- We can see the encoded latent space directly, and control the output if the latent space is sufficiently disentangled.
- Criticisms
 - Why do we approximate the posterior distribution with Gaussian with diagonal covariance matrix?
 - The output on high-frequency parts(e.g. edges) tends to be blurrier than other generative models such as GAN

Now, we have studied VAE model.

- It is based on solid theoretical background.
- We can see the encoded latent space directly, and control the output if the latent space is sufficiently disentangled.
- Criticisms
 - Why do we approximate the posterior distribution with Gaussian with diagonal covariance matrix?
 - The output on high-frequency parts(e.g. edges) tends to be blurrier than other generative models such as GAN

Disentanglement

ullet Neural Network suffers from a lack of interpretability. Disentanglement can be a way to interpret the results. Higgins et al. [2016] proposed β -VAE

$$\max_{\theta,\phi} \mathop{\mathbb{E}}_{x \sim p_D} \mathop{\mathbb{E}}_{z \sim q_\phi(z|x)} \log p_\theta(x|z) \; s.t \; D_{KL}(q_\phi(z|x)||p(z)) \leq \beta$$

$$E_{x \sim p(x)}[D_{KL}(q(z|x)||p(z))] = I_q(x;z) + D_{KL}(q(z)||p(z))$$

- β can be viewed as how much we penalize the $q_{\phi}(z|x)$, as we increase β , it is more likely to be disentangled but the quality of the output is also likely to suffer too because $I_q(x;z)$ is also effected.
- Kim and Mnih [2018] proposed factor-VAE which uses additional classifier to check whether the latent space is factorized.

Disentanglement

• Neural Network suffers from a lack of interpretability. Disentanglement can be a way to interpret the results. Higgins et al. [2016] proposed β -VAE

$$\max_{\theta,\phi} \mathop{\mathbb{E}}_{x \sim p_D} \mathop{\mathbb{E}}_{z \sim q_\phi(z|x)} \log p_\theta(x|z) \; s.t \; D_{KL}(q_\phi(z|x)||p(z)) \leq \beta$$

$$E_{x \sim p(x)}[D_{KL}(q(z|x)||p(z))] = I_q(x;z) + D_{KL}(q(z)||p(z))$$

- β can be viewed as how much we penalize the $q_{\phi}(z|x)$, as we increase β , it is more likely to be disentangled but the quality of the output is also likely to suffer too because $I_q(x;z)$ is also effected.
- Kim and Mnih [2018] proposed factor-VAE which uses additional classifier to check whether the latent space is factorized.

Disentanglement

ullet Neural Network suffers from a lack of interpretability. Disentanglement can be a way to interpret the results. Higgins et al. [2016] proposed β -VAE

$$\max_{\theta,\phi} \mathop{\mathbb{E}}_{x \sim p_D} \mathop{\mathbb{E}}_{z \sim q_\phi(z|x)} \log p_\theta(x|z) \; s.t \; D_{KL}(q_\phi(z|x)||p(z)) \leq \beta$$

$$E_{x \sim p(x)}[D_{KL}(q(z|x)||p(z))] = I_q(x;z) + D_{KL}(q(z)||p(z))$$

- β can be viewed as how much we penalize the $q_{\phi}(z|x)$, as we increase β , it is more likely to be disentangled but the quality of the output is also likely to suffer too because $I_q(x;z)$ is also effected.
- Kim and Mnih [2018] proposed factor-VAE which uses additional classifier to check whether the latent space is factorized.

Flow models

Use normalizing flow to approximate the posterior distribution.
 By change of variables, we can derive it as below.

$$\log q(z_T|x) = \log q(z_0|x) - \sum_{t=1}^{I} \log \det \left| \frac{dz_t}{dz_{t-1}} \right|$$

Image from Kingma et al. [2016]

- Using this model, we can approximate the posterior distribution with non-diagonal convariance matrix terms.
- See Germain et al. [2015] Kingma et al. [2016], and Papamakarios et al. [2017] for more developmants.

Flow models

Use normalizing flow to approximate the posterior distribution.
 By change of variables, we can derive it as below.

$$\log q(z_T|x) = \log q(z_0|x) - \sum_{t=1}^{I} \log \det \left| \frac{dz_t}{dz_{t-1}} \right|$$

Image from Kingma et al. [2016]

- Using this model, we can approximate the posterior distribution with non-diagonal convariance matrix terms.
- See Germain et al. [2015] Kingma et al. [2016], and Papamakarios et al. [2017] for more developments.

$$\min_{G} \max_{D} L(D, G) = \underset{x \sim p_r(x)}{\mathbb{E}} \log D(x) + \underset{z \sim p_z(z)}{\mathbb{E}} \log (1 - D(G(z)))$$

- GAN tries to find the Nash Equilibrium between two networks. At the equilibrium, $D(x)=\frac{1}{2}$
- If it is properly trained, the loss function is Jensen-Shannon divergence between two distributions

$$\min_{G} \max_{D} L(D,G) = \underset{x \sim p_r(x)}{\mathbb{E}} \log D(x) + \underset{z \sim p_z(z)}{\mathbb{E}} \log(1 - D(G(z)))$$

- GAN tries to find the Nash Equilibrium between two networks. At the equilibrium, $D(x)=\frac{1}{2}$
- If it is properly trained, the loss function is Jensen-Shannon divergence between two distributions

$$\min_{G} \max_{D} L(D,G) = \mathop{\mathbb{E}}_{x \sim p_r(x)} \log D(x) + \mathop{\mathbb{E}}_{z \sim p_z(z)} \log (1 - D(G(z)))$$

- GAN tries to find the Nash Equilibrium between two networks. At the equilibrium, $D(x)=\frac{1}{2}$
- If it is properly trained, the loss function is Jensen-Shannon divergence between two distributions

$$\min_{G} \max_{D} L(D,G) = \mathop{\mathbb{E}}_{x \sim p_r(x)} \log D(x) + \mathop{\mathbb{E}}_{z \sim p_z(z)} \log (1 - D(G(z)))$$

- GAN tries to find the Nash Equilibrium between two networks. At the equilibrium, $D(x) = \frac{1}{2}$
- If it is properly trained, the loss function is Jensen-Shannon divergence between two distributions

VAE and GAN

	VAE	GAN
Principles		Find the Nash Equilibrium
		between two Networks
	Optimize Lower Bound	(WGAN:
		find the optimal transport
		between two distributions)
Strength	See the latent encodings	
	Based on theoretic	Generates high-quality
	foundations	& more diverse outputs
	Training is stable	
Improvements	Output tends to be	Training is not stable
	blurrier on high-freq	More like a black-box
	parts	approach

- George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control, signals and systems*, 2(4): 303–314, 1989.
- Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for distribution estimation. In *International Conference on Machine Learning*, pages 881–889, 2015.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural* information processing systems, pages 2672–2680, 2014.
- Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework. 2016.
- Hyunjik Kim and Andriy Mnih. Disentangling by factorising. arXiv preprint arXiv:1802.05983, 2018.

- Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.
- Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved variational inference with inverse autoregressive flow. In *Advances in Neural Information Processing Systems*, pages 4743–4751, 2016.
- Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear regions of deep neural networks. In *Advances in neural information processing systems*, pages 2924–2932, 2014.
- George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow for density estimation. In *Advances in Neural Information Processing Systems*, pages 2338–2347, 2017.
- Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep conditional generative models. In *Advances in Neural Information Processing Systems*, pages 3483–3491, 2015.