ECSE-200 Electric Circuits 1 Quiz #6 (Feb. 22, 2019)

LAST NAME	MCGILL ID	MCGILL ID#		
FIRST NAME	SIGNATURE			

- Only Faculty standard calculator accepted
- No cellphone allowed
- Show all your work

- Clearly indicate your final answer with the SI unit and multiplier
- You have 45 minutes to complete this quiz

Question 1: Consider the circuit shown. Answer the following questions.

- a) Find and draw the Norton equivalent circuit of the circuit. [2 pt]
- b) Draw the $i_{AB} v_{AB}$ diagram indicating the open-circuit voltage (v_{OC}) and the short-circuit current (i_{SC}) . [2 pt]
- c) What is the value of the power delivered by the independent current supply of the circuit shown (i.e., the 3 A supply) if a short-circuit connects terminals A and B? [1 pt]
- d) What is the current value i_{AB} at the terminals A and B if a load resistance equal to the Thévenin resistance is connected across terminals A and B? [1 pt]

Question 2: Consider the circuit shown below. Answer the following questions.

- a) As shown, a load resistance R_L is connected across the terminals A and B. What is the voltage value v_{AB} if the load resistance R_L is replaced with an open-circuit (i.e., $R_L \to \infty$)? [2 pt]
- b) What is the current value i_{AB} if the load resistance R_L is replaced by a short-circuit (i.e., $R_L = 0 \Omega$)? [2 pt]
- c) Replace and redraw the part of the circuit to the left of terminals A and B by its Thévenin equivalent circuit. Clearly indicate the open-circuit voltage (v_{OC}) value and the Thévenin resistance value (R_T) . [2 pt]
- d) What should the resistance value R_L be for the current at the terminal be -2 mA ($i_{AB} = -2mA$)? [2 pt]

