IN THE CLAIMS

Please amend the claims to the following.

1	1.	(Currently Amended) A system for maintaining cache coherency in a CMP
2		comprising:
3		an integrated circuit including
4		one or more processor cores, wherein the one or more processor cores
5		each include a private cache;
6		a shared cache separate from the plurality of cores to be shared by the one
7		or more processor cores; and
8		a ring to connect the one or more processor cores and the shared cache.
1	2.	(Canceled)
1 2	3.	(Previously Amended) The system of claim 1 wherein the shared cache includes one or more banks.
1	4.	(Original) The system of claim 3 wherein the one or more cache banks is
2		responsible for a subset of a physical address space of the system.
1	5.	(Original) The system of claim 1 wherein the one or more processor cores are
2		write-thru.
1	6.	(Original) The system of claim 5 wherein the one or more processor cores writes
2		data through to the shared cache.

1 7. (Original) The system of claim 1 wherein the one or more processor cores 2 includes a merge buffer. 1 8. (Original) The system of claim 7 wherein data is stored in the merge buffer. 1 9. (Original) The system of claim 8 wherein the merger buffer purges data to the 2 shared cache. 1 10. (Original) The system of claim 1 wherein the one or more processor cores 2 accesses data from the shared cache. 1 11. (Original) The system of claim 8 wherein the merger buffer coalesces multiple 2 stores to a same block. 1 12. (Original) The system of claim 1 wherein the ring is a synchronous, unbuffered 2 bidirectional ring interconnect. 1 13. (Original) The system of claim 12 wherein a message has a fixed deterministic 2 latency around the ring interconnect.

1	14.	(Currently Amended) An apparatus comprising:
2		an integrated circuit including: a plurality of cores and a shared memory
3		connected in a ring, the shared cache being separate from the plurality of
4		cores, wherein each of the plurality of cores includes a private cache
5		memory, and wherein the shared memory is accessible by each of the
6		plurality of cores.
1	15.	(Previously Added) The apparatus of claim 14, wherein the plurality of cores
2		and the shared memory are connected in a ring with a synchronous unbuffered bi-
3		directional ring interconnect.
1	16.	(Previously Added) The apparatus of claim 14, wherein the shared memory is a
2		shared cache including a plurality of blocks, and wherein the shared cache is
3		capable of holding each of the plurality of blocks in a cache coherency state.
1	17.	(Previously Added) The apparatus of claim 16, wherein the cache coherency
2		state for each of the plurality of blocks is selected from a group consisting of (1) a
3		not present state, (2) a present and owned by a core of the plurality of cores state,
4		(3) a present, not owned, and custodian is a core of the plurality of cores state,
5		and (4) a present, not owned, and no custodian state.

1	18.	(Currently Amended) An system comprising:
2		a processor including: a plurality of cores and a shared memory separately
3		coupled together with an unbuffered bi-directional ring interconnect,
4		wherein each of the plurality of cores is associated with a private cache
5		memory, and wherein the shared memory is accessible by each of the
6		plurality of cores; and
7		a system memory associated with the processor die to hold elements to be stored
8		by the shared memory.
1	19.	(Previously Added) The apparatus of claim 18, wherein the shared memory is a
2		shared cache including a plurality of blocks, and wherein the shared cache is
3		capable of holding each of the plurality of blocks in a cache coherency state.
1	20.	(Previously Added) The apparatus of claim 19, wherein the cache coherency
2		state for each of the plurality of blocks is selected from a group consisting of (1)
3		not present state, (2) a present and owned by a core of the plurality of cores state,
4		(3) a present, not owned, and custodian is a core of the plurality of cores state,
5		and (4) a present, not owned, and no custodian state.