CV5100 – MUDE

Modeling, Uncertainty, and Data for Engineers Ch4 – Linear Algebra

Course instructors:

Prof. Phanisri Pradeep Pratapa Prof. Prakash Singh Badal Prof. Sudheendra Herkal

Department of Civil Engineering

Indian Institute of Technology Madras

27 August 2025

Numerical Modelling, Linear Algebra, Optimization

Date	Day	Week	Lecture#	Topic	Topic summary				
28-Jul-25	Mon	1		•	NO CLASS				
29-Jul-25	Tue	1			NO CLASS				
30-Jul-25	Wed	1	1	Introduction lecture	motivation, course content, logistics, etc.				
31-Jul-25	Thu	1	2	Modelling Concepts	sudheendra's part, course logistics; model classification				
4-Aug-25	Mon	2	Asst-0		Software installation & github				
5-Aug-25	Tue	2	3	Numerical Modelling	model decisions, verification vs. validation; differential equations in structural engg, examples, ODE types (linear, nonlinear, order)				
6-Aug-25	Wed	2	4	Numerical Modelling	Analytical vs. Numerical solutions, code, algorithm				
7-Aug-25	Thu	2	5	Numerical Modelling	Numerical derivative/Finite Differences, Taylor series, error, convergence, forward, backward difference				
11-Aug-25	Mon	3	Asst-1		Finite difference, convergence rate, newton-raphson for finding roots (solving an equation)				
12-Aug-25	Tue	3	6	Numerical Modelling	Central finite diff (1st &2nd order); Numerical integration; IVP example, accuracy/error, convergence,				
13-Aug-25	Wed	3	7	Numerical Modelling	stability, explicit vs. implicit; BVP e.g. analytical, numerical/FDM, code implementation				
14-Aug-25	Thu	3	8	Numerical Modelling	BVP matrix eqn; PDEs - types, gradient and laplacian operators,				
18-Aug-25	Mon	4	Asst-2		IVP & BVP numerical solutions - explicit vs implicit and implementing matrix eq solving using inverse				
19-Aug-25	Tue	4	9	Linear Algebra	Vector spaces, span, linear dependence, basis, dimension, examples, tensor vs. matrix				
20-Aug-25	Wed	4	10	Linear Algebra	System of linear eqns, matrix form, solution approach-direct				
21-Aug-25	Thu	4	11	Linear Algebra	matrix eqns solutions approach - iterative methods				
25-Aug-25	Mon	5	Asst-3		-				
26-Aug-25	Tue	5	-	Linear Algebra	NO CLASS				
28-Aug-25	Thu	5	12	Linear Algebra	Eigenvalueproblem, solution approaches, compliexity/scaling; parallel computing?				
29-Aug-25	Fri	5	13		Quiz-1 @ 8am				
1-Sep-25	Mon	6	Asst-4		Direct vs Iterative method implementation and comparison; convergence, error plot etc.; Eig vs Eigs				
2-Sep-25	Tue	6	14	Optimization	Classification, Mathematical formulations, standard form, key concepts				
3-Sep-25	Wed	6	15	Optimization	Gradient based approaches				
4-Sep-25	Thu	6	16	Optimization	Non-gradient approaches				
8-Sep-25	Mon	7	Asst-5						
9-Sep-25	Tue	7	17	Uncertainty and Estimation	random variables (rv), covariance, correlation; goodness of fit concepts				

Outline

- Vector space concepts
- System of linear equations
- Solution using direct methods
- Solution using indirect (iterative) methods
- Eigenvalue problem
- Orthogonality and orthogonalization

Vector space concepts

- Vector (Linear) space and subspace
- Span
- Linear dependence/independence
- Basis
- Dimension
- Orthogonal vs. non-orthogonal basis
- Column space, null space, rank

System of Linear Equations

Algebraic to Matrix form

$$egin{array}{lll} y_1 &=& a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \ y_2 &=& a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \ dots & & dots \ y_m &=& a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \end{array} \qquad egin{bmatrix} y_1 \ y_2 \ dots \ y_m \end{bmatrix} = egin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \ a_{21} & a_{22} & \ldots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \ldots & a_{mn} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

$$y = Ax$$

$$\mathbf{y} = egin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} x_1 + egin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} x_2 + \cdots + egin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} x_n$$
 Give an example of linear equation in structural engineering

y is an element of the range space of A: $y \in \mathcal{R}(A)$

Solution using direct methods

Gaussian Elimination

Elementary row operations to get row echelon form:

- 1.Interchanging two rows.
- 2. Multiplying a row by a non-zero scalar.
- 3. Adding a scalar multiple of one row to another.

$$2x + y - z = 8 \qquad (L_1)$$

$$-3x - y + 2z = -11$$
 (L₂)

$$-2x + y + 2z = -3$$
 (L₃)

System of equations	Row operations	Augmented matrix			
2x+y- $z=$ 8			1	-1	8
-3x - y + 2z = -11		-3	-1	2	$\left[egin{array}{c} 8 \ -11 \ -3 \end{array} ight]$
-2x + y + 2z = -3		ig ig -2	1	2	$\begin{bmatrix} -3 \end{bmatrix}$

Solution using direct methods

LU decomposition

$$egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix} = egin{bmatrix} \ell_{11} & 0 & 0 \ \ell_{21} & \ell_{22} & 0 \ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix} egin{bmatrix} u_{11} & u_{12} & u_{13} \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{bmatrix}$$

- Decomposes matrix A into:
 - L: Lower triangular matrix
 - U: Upper triangular matrix
- Solves AX=B by solving LY=B and then UX=Y.

- Useful for multiple RHS e.g.?
- What if A is symmetric?
 LU → LL^T Cholesky

Solution using direct methods

- Gaussian Elimination Computational efficiency
 - Eliminate elements of first column nxn ops
 - For every subsequent column reduce n by 1
 - Sum of squares of n natural number O(n^3)
- Run time scaling
- Memory scaling (storing the matrix); 8 bytes per number in 64-bit (double precision) – 15 decimals
- Triangular matrix solved sequentially (not efficient for parallel computing)
- Finds the exact solution in a finite number of steps

Eigenvalue problem

- Definition and details
- Computational complexity/scaling
- eig vs. eigs eigensolvers (numpy vs scipy) full vs sparse matrices – direct vs indirect/iterative methods
- Inverse and pseudoinverse
- Energy and eigenvalues

 Where do we come across eigenvalues in structural engineering?

Orthogonalization

Gram-Schmidt process

Given k nonzero linearly-independent vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ the Gram–Schmidt process defines the vectors $\mathbf{u}_1, \dots, \mathbf{u}_k$ as follows:

$$egin{aligned} \mathbf{u}_1 &= \mathbf{v}_1, \ \mathbf{u}_2 &= \mathbf{v}_2 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_2), \ \mathbf{u}_3 &= \mathbf{v}_3 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_3) - \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_3), \ \mathbf{u}_4 &= \mathbf{v}_4 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_4) - \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_4) - \operatorname{proj}_{\mathbf{u}_3}(\mathbf{v}_4), \ &dots \ \mathbf{u}_k &= \mathbf{v}_k - \sum_{i=1}^{k-1} \operatorname{proj}_{\mathbf{u}_j}(\mathbf{v}_k), \end{aligned}$$

The vector projection of a vector ${f v}$ on a nonzero vector ${f u}$ is defined

$$ext{proj}_{\mathbf{u}}(\mathbf{v}) = rac{\langle \mathbf{v}, \mathbf{u}
angle}{\langle \mathbf{u}, \mathbf{u}
angle} \, \mathbf{u}$$

Solution using indirect methods

Jacobi iteration

 $\mathbf{A} = \mathbf{D} + \mathbf{R}$

Let $A\mathbf{x} = \mathbf{b}$ be a square system of *n* linear equations, where:

$$A=egin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\ a_{21}&a_{22}&\cdots&a_{2n}\ dots&dots&\ddots&dots\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{bmatrix}, \qquad \mathbf{x}=egin{bmatrix} x_1\ x_2\ dots\ x_n \end{bmatrix}, \qquad \mathbf{b}=egin{bmatrix} b_1\ b_2\ dots\ b_n \end{bmatrix}.$$

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}, \qquad \mathbf{b} = egin{bmatrix} b_1 \ b_2 \ dots \ b_n \end{bmatrix}.$$

$$egin{align} \mathbf{g}(\mathbf{x}) &= \mathbf{D}^{-1}(\mathbf{b} - \mathbf{R}\mathbf{x}) \ \mathbf{f}(\mathbf{x}) &= \mathbf{g}(\mathbf{x}) - \mathbf{x} \ \mathbf{e}(\mathbf{x}) &= \mathbf{x} - \mathbf{x}^* & \mathbf{e}(\mathbf{x}_{k+1}) &= \left(\mathbf{I} - \mathbf{D}^{-1}\mathbf{A}\right)\mathbf{e}(\mathbf{x}_k) \ \mathbf{x}_{k+1} &= \mathbf{g}(\mathbf{x}_k) & \|\mathbf{I} - \mathbf{D}^{-1}\mathbf{A}\| < 1 \ \end{aligned}$$

$$\mathbf{x}_{k+1} = (1-\omega)\mathbf{x}_k + \omega\mathbf{g}(\mathbf{x}_k)$$
 $\|\mathbf{I} - \omega\mathbf{D}^{-1}\mathbf{A}\| < 1$

- Fixed-point iteration
- Residual vs. Error
- L² norm
- Condition number
- Spectral radius

$$\kappa(A) = \|A\| \cdot \|A^{-1}\|$$

$$\|A\|_2 = \max_{\|x\|_2=1} \|Ax\|_2$$

 $\rho(A) = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\}$

Solution using indirect methods

- Gauss-Seidel Method
- Conjugate Gradient Method
- GMRES
- Preconditioned Conjugate Gradient (PCG)
- Multigrid methods
- Anderson-Jacobi
- Alternating Anderson Jacobi

Pratapa, P. P., Suryanarayana, P., & Pask, J. E. (2016). Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems. *Journal of Computational Physics*, *306*, 43-54.

High Performance & Parallel Computing


```
b_i = A_{i1}x_1 + A_{i2}x_2 + \ldots + A_{in}x_n = \sum_{j=1}^n A_{ij}x_j

% Given, Matrix A of size n x n.
% Given, Vector x of size n x 1.
% Find, Vector b = A*x.

for i=1:n

S = 0;

computers

for j=1:n

S = S + A(i,j)*x(j);

end

b(i) = S;

end
```


Computer Cluster

Other things if you are curious

- Scientific/High-performance computing
- Profiling
- BLAS
- LAPACK
- MPI
- PETSc
- Threading
- Parallel scaling, parallel computing
- Cache, retrieval
- Communication
- Petaflops, Exaflops, Supercomputers