

Bioinformatics Summer School Long-reads Transcriptomics

Fabian Jetzinger

BioBam Bioinformatics, Valencia, Spain

LongTREC - The Long-reads TRanscriptome European Consortium Marie Skłodowska-Curie grant agreement No 101072892

Course Contents

- Functional Annotation
- 2 IsoAnnot & IsoAnnotLite

Section 1

Functional Annotation

Understanding the functional impact of alternative splicing

Isoforms of the same gene can have different functions

So far, we have focused on **structural annotation**. But how do novel transcripts differ from reference transcripts in their **biological functions**?

Isoforms from the same gene can have **different**, even opposite, **functions**.

We want to obtain **functional annotations** for transcript or protein sequences and investigate differences between isoforms.

Diagram:

BCL2L1 xS and xL isoforms

Pio, Ruben, and Luis M. Montuenga. "Alternative splicing in lung cancer." Journal of Thoracic Oncology 4.6 (2009): 674-678.

Intervention opportunities

Detection: Treatment: Overexpression of splicing regulatory factors mRNA from cancer-related splice isoforms Proteins from cancer-related splice isoforms Autoantibodies Treatment: Antisense oligonucleotides (SMOs) Drugs against cancer-related isoforms Vaccines

Many methods exist to add functional annotations to sequences

Blast2GO:

Links high-scoring BLAST hits to Gene Ontology terms for transcriptome/protein function inference.

InterProScan:

Scans sequences through InterPro member databases, e.g. for conserved domains, motifs, and family signatures, and maps to GO terms.

eggNOG-mapper:

Assigns functional annotations via fast orthology mapping, leveraging precomputed orthologous groups from the eggNOG database.

Deep Learning:

Emerging deep learning methods (**DeepGO**, **FANTASIA**, **etc.**) leverage deep neural networks to assign functions e.g. by prediction from sequence or inference from protein language model embeddings.

See:

Gene Ontology Resource
About - InterPro
eggNOG-mapper

Gene Ontology (GO)

Section 2

IsoAnnot & IsoAnnotLite

Understanding how to annotate functions to custom transcriptomes

IsoAnnot brings a wide variety of annotations to the isoform level

IsoAnnot combines a variety of databases and predictive algorithms to obtain **isoform-resolved functional annotations**.

Currently, it is challenging to use. **IsoAnnotLite** offers easily usable transference of functional annotations from pre-computed and manually curated gff3 files.

tappAS visualizes functional annotations at isoform resolution ... and more

tappAS visualizes functional annotations at isoform resolution ... and more

tappAS visualizes functional annotations at isoform resolution ... and more

Missing exon caused loss of PFAM domain PF01352 which included a post-translational modification (phosphorylation site).

Reflection

- Why is functional annotation at isoform-resolution useful?
- Which types of functional annotations provided by IsoAnnot(Lite) can you remember?

Thank You!

For more information about the LongTREC Summer School:

https://longtrec.eu