

GEBZE TEKNİK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ

ELEC 341

ELEKTROMANYETİK ALAN TEORİSİ PROJE

Son Teslim: 25.12.2024

Ad – Soyad	Mehmet ALTINTAŞ
Öğrenci No	1901022065

İçindekiler

GİRİS	2
PROBLEM	2
MATLAB KODU	3
ANALİZ	4
SONUÇ	5
REFERANSLAR	5

1. GİRİŞ

Bu projede, boşlukta (yani ϵ_0 ile tanımlanan ortama sahip) bulunan, yarıçapı a=2m ve yüzeysel yük yoğunluğu $\rho_s=-3$ C/m² olan düzgün yüklü bir dairesel diskin, uzayın herhangi bir P(x,y,z) noktasında oluşturduğu elektriksel potansiyelin (Coulomb yasası çerçevesinde) nümerik olarak nasıl hesaplanacağı gösterilmiştir.

Elektrostatik teoriye göre, yüzeysel yük dağılımı ρ_s olan bir yüzeyin herhangi bir noktada yarattığı potansiyel,

$$V(r) = \frac{1}{4\pi\epsilon_0} \iint_{disk} \frac{\rho_s}{|r-r'|} ds$$

ifadesiyle verilir. Burada $\mathbf{r}=(\mathbf{x},\mathbf{y},\mathbf{z})$ ve \mathbf{r}' diskin üzerindeki bir yüzey elemanının konum vektörüdür. Bu integral, düzgün (sabit) $\mathbf{\rho}_s$ varlığında dahi kapalı form her konum için pratik olmayabildiğinden, nümerik yollardan (örneğin MATLAB'in integral2 fonksiyonuyla) çözülebilir

2. PROBLEM

- 1. Aşağıdaki şekilde gözüken ve boşlukta yer alan a = 2m yarıçaplı dairesel disk üzerinde düzgün yayılı $\rho_s = -3 \ C/m^2$ yoğunluklu yüzeysel yükler bulunsun.
 - a) Bu durumda uzayın herhangi bir P(x, y, z) noktasında yaratılan V potansiyel fonksiyonunu veren bir bilgisayar program yazınız
 - b) Yukarıda bahsi geçen programdan faydalanarak $P_0(0,0,1)$ noktasındaki V nin sayısal değerini elde ediniz.

2.1 MATLAB

```
% MEHMET ALTINTAS 1901022065
% ELEKTOMANYETİK ALAN TEORİSİ PROJE
% Dairesel disk (yarıçap a, yüzeysel yük yoğunluğu rho_s)
% herhangi bir P(x,y,z) noktasında oluşturduğu potansiyelin
% nümerik hesaplanması (Coulomb integrali).
clear; clc;
% -- Fiziksel sabitler & Parametreler --
eps0 = 8.8541878128e-12; % Boşluk dielektrik sabiti (F/m)
rho_s = -3;
                       % Yüzeysel yük yoğunluğu (C/m^2)
                      % Disk yarıçapı (m)
   = 2;
% -- POTANSİYELİN HESAPLANACAĞI NOKTA (P) KOORDİNATLARI --
xP = input('P(m) noktasının x-koordinatını girin : ');
yP = input('P(m) noktasının y-koordinatını girin : ');
zP = input('P(m) noktasının z-koordinatını girin : ');
% İntegralin tanımı (polar koordinatlar):
% r: 0 --> a
  phi: 0 --> 2*pi
%
% Disk üzerindeki bir eleman: (r*cos(phi), r*sin(phi), 0).
% P noktasına uzaklık: R = sqrt( (xP - r*cos(phi))^2
                            + (yP - r*sin(phi))^2
%
%
                            + zP^2
% dS = r * dr * dphi
% Integrand = (rho_s / (4*pi*eps0)) * (1 / R) * r
fIntegrand = @(phi,r) ...
   ( rho_s / (4*pi*eps0) ) .* ...
   ( r ./ sqrt( (xP - r.*cos(phi)).^2 ...
            + (yP - r.*sin(phi)).^2 ...
            + zP^2 ) );
% Çifte integralin (phi=0..2*pi, r=0..a) numerik hesabı:
V = integral2( fIntegrand, 0, 2*pi, 0, a );
% -- SONUCU YAZDIR --
fprintf('Diskin P(%.2f, %.2f, %.2f) noktasinda olusturdugu potansiyel = %g
V\n',...
      xP, yP, zP, V);
```

Yazılmış olan matlab kodu, diski (x,y) düzleminde (z=0) ve merkezi orijinde kabul etmektedir. Diskin yarıçapı a=2 m ve yük yoğunluğu $\rho_s=-3$ C/m² şeklinde sabitlenmiştir. Kullanıcı, potansiyelin hesaplanacağı uzay noktası P(xP,yP,zP) değerlerini programı çalıştırmanın ardından el ile belirler.

2.1.1 Parametrelerin Açıklaması

- eps0: Boşluğun dielektrik sabiti ($\approx 8.85 \times 10^{-12} \text{ F/m}$)
- rho_s: Disk üzerindeki sabit yüzeysel yük yoğunluğu (C/m²).
- a: diskin yariçapı (2m)
- xP,yP,zP: Potansiyelin hesaplanacağı nokta P'nin (x,y,z) koordinatları.

2.1.2 integral2 Fonksiyonu ve İntegrand

- integral2(f, phi1, phi2, r1, r2), $\phi \in [\phi 1, \phi 2]$ ve $r \in [r1 \ r2]$ aralıklarında $f(\phi,r)$ ifadesinin nümerik çift integralini hesaplar.
- Diski polar koordinat sisteminde taramak için:

$$r:0\rightarrow a, \phi:0\rightarrow 2\pi$$
.

• İntegrand:

$$\frac{1}{4\pi \in_0} \frac{1}{R} \times r (dS = rdrd\phi),$$

burada

$$R = \sqrt{(x_p - r\cos\phi)^2 + (y_p - r\sin\phi)^2 + z_p^2}$$

Kod, bu integrand'ı tanımlayıp integral2 yardımıyla sayısal çözümü bulur. Çıktı V değişkeninde saklanır ve ekrana basılır.

2.2 ANALİZ

P(m) noktasının x-koordinatını girin : 0 P(m) noktasının y-koordinatını girin : 0 P(m) noktasının z-koordinatını girin : 1 Diskin P(0.00, 0.00, 1.00) noktasında olusturdugu potansiyel = -2.09404e+11 V Şekil 1. P₀ (0,0,1) noktasında oluşan potansiyel

Yukarıdaki kodu çalıştırdığınızda,

- a=2m,
- $\rho_s = -3 \text{ C/m2}$,
- $P_0(0,0,1)$,

için diskin ekseninde, z=1 m yüksekliğinde hesaplanan potansiyel tipik olarak

$$V(0,0,1) \approx -2 \times 10^{11} \text{ volt}$$

dolaylarında bir sonuç verir (yük yoğunluğunun çok büyük olması sebebiyle). Kendi makinenizde integral2'nin hassasiyetine göre son birkaç basamak değişebilir, ancak büyüklük olarak ~10¹¹ mertebesinde (oldukça büyük ve negatif) bir potansiyel elde edersiniz.

Analitik Kontrol

Diskin merkezi ekseninde (r=0 ekseninde z>0) şu analitik ifade de mevcuttur:

$$V(z) = \frac{\rho_s}{2\epsilon_0} [\sqrt{a^2 + z^2} - |z|].$$

Burada a=2 ve z=1 koyarak:

V (1) =
$$\frac{-3}{2 \times 8.854....\times 10^{-12}} [\sqrt{4+1} - 1] \approx -2.04 \times 10^{11} \text{ V}$$

Bu, sayısal integralin düzgün olduğunu teyit eder.

3. SONUÇ

Bu MATLAB kodu, dairesel disk üzerinde sabit bir yüzeysel yük dağılımı olduğunda, uzayın herhangi bir noktasındaki elektrostatik potansiyeli sayılarla belirleme imkânı sunmaktadır. Projedeki parametrelere (örneğin $\rho s=-3$ C/m² gibi oldukça yüksek bir değer) bağlı olarak hesaplanan potansiyel, SI birimlerinde son derece büyük (yaklaşık 10^{10} - 10^{11} V mertebesinde) çıkabilir. Bu, tamamen verilen yük yoğunluğunun büyüklüğünden kaynaklanır.

Örneğin, P (0,0.1) noktasındaki potansiyel, kod çalıştırıldığında ekranda büyük (negatif) bir değer olarak görülecektir. Kullanıcı, xP,yP,zP değerlerini değiştirerek disk ekseni üzerindeki veya diskin yakınındaki farklı noktalar için de hesap yapabilir.

4. REFERANSLAR

- David K. Cheng, Field and Wave Electromagnetics, 2nd Edition, Pearson.
- Constantine A. Balanis, *Advanced Engineering Electromagnetics*, 2nd Edition, Wiley, 2012.
- MATLAB Documentation, MathWorks Docs on integral2.