

Légende :

Partis ou répartition des gains

Score

Avantage

L'arbre ci-dessus représente tous les scores possibles lors d'un match en 4 manches gagnantes (la partie inférieure de l'arbre qui est manquante est l'exacte symétrique de la partie supérieure). La répartition des gains en cas d'arrêt prématuré de la partie a été calculée selon la méthode indiquée par Pascal.

Si le score en arrive à 1; 1, il suffit pour qu'un joueur gagne la partie qu'il gagne 3 manches. Autrement dit, à 1; 1, le reste de la partie se joue en 3 manches gagnantes.

De même, à 2; 2, le reste de la partie se joue en 2 manches gagnantes. Et à 3; 3, le reste de la partie se joue en 1 manche gagnante, c'est-à-dire que celui des deux qui gagne la manche suivante a gagné la partie.

Ceci nous permet d'affirmer que l'arbre de la répartition des gains pour un match en 1 manche gagnante se trouve inclus dans l'arbre pour un match en 2 manches gagnantes, qui se trouve inclus dans l'arbre pour un match en 3 manches gagnantes, qui se trouve inclus dans l'arbre pour un match en 4 manches gagnantes etc...

Pour construire l'arbre de la répartition des gains pour un match en 5 manches gagnantes, il suffit donc de construire les bords de l'arbre ci-dessus, et comme l'arbre est symétrique, de construire le bord supérieur.

Finalement, au sens où l'entend Pascal et pour une mise de 32 pistoles par joueur :

- la première manche d'un match en 1 manche gagnante vaut 32 pistoles;
- la première manche d'un match en 2 manches gagnantes vaut 16 pistoles;
- la première manche d'un match en 3 manches gagnantes vaut 12 pistoles;
- la première manche d'un match en 4 manches gagnantes vaut 10 pistoles;
- la première manche d'un match en 5 manches gagnantes vaut 8,75 pistoles.

D'une manière générale, pour un match en n manches gagnantes, Pascal propose la formule suivante pour le calcul de la valeur de la première manche lorsque chaque joueur a fait une mise de ${\cal M}$:

 $la \ première \ manche \ d'un \ match \ en \ n \ manches \ gagnantes \ vaut \ M \times \frac{\text{produit des } (n-1) \ \text{premiers nombres impairs}}{\text{produit des } (n-1) \ \text{premiers nombres pairs}}$

Ce qui appliqué aux cas déjà calculés, donne :

• 2 manches gagnantes : $M \times \frac{1}{2} = \frac{M}{2}$ • 3 manches gagnantes : $M \times \frac{1 \times 3}{2 \times 4} = \frac{3M}{8}$ • 4 manches gagnantes : $M \times \frac{1 \times 3 \times 5}{2 \times 4 \times 6} = \frac{5M}{16}$ • 5 manches gagnantes : $M \times \frac{1 \times 3 \times 5}{2 \times 4 \times 6 \times 8} = \frac{35M}{128}$

Généralisation:

- 1. donner une formule explicite pour la valeur de la première manche d'un match en n manches gagnantes à l'aide de factorielles et de puissances de 2;
- 2. combien vaut la $k^{\text{ième}}$ manche d'un match en n manches gagnantes?