國立中山大學

Analog Integrated Circuit Design

Project 1

學 生: 許家愷

學 號: B073040049

指導老師: 郭 可 驥 教授

2020 年 12 月 14 日

1. 電路圖

2. 電路分析 解釋電路(詳細) 電流公式推導

根據題目要求,supply voltage 會從 1.6v 升到 2.0v,但必 須將 M11 的電流維持穩定在 100uA ,因此 PTAT 的部分 (M1,M2,M5,M6,R1,Q1,Q2)需要產生良好的參考。在低電壓 的時候,PTAT 無法正常的工作,因此需要 startup circuit(M3,M7,M8,M9,MR1,MR2,MR3,MR4)。PTAT 產出 的參考電壓會被 M4 做 mirror 最後由 M10 帶給 M11 形成穩 定電流。 把電路般簡化.

3. Schematic(要清楚標示 mos)

4. MOS 長寬數據(請做成表格)

Mos name	Туре	w	L
M1	PMos	1.3u	240n
M2	PMos	2.2u	220n
M3	PMos	990n	180n
M4	PMos	240n	180n
M5	NMos	8u	680n
M6	NMos	10u	2.3u

M7	NMos	240n	180n
M8	NMos	400n	180n
M9	NMos	260n	180n
M10	NMos	240n	8u
M11	NMos	240n	180n
MR1	PMos	240n	180n
MR2	PMos	240n	180n
MR3	PMos	240n	180n
MR4	PMos	240n	180n
Q1	PNP_50X50		
Q2	PNP_100X100		
R0	Resistor_1K		
R1	Resistor_1K		

5. sp 檔的模擬指令(整個視窗完整截圖表示) 模擬出題目要求要

求各温度下電流

```
. PROBE DC
     V(18)
    V(17)
    V(11)
    V(16)
    V(15)
    V(14)
    V(13)
    V(12)
    I3(m11)
    I1(m2)
    I1(m1)
.DC /V0 1.6 2.0 1e-3
.TEMP 25.0
.OPTION
    ARTIST=2
    TNGOLD=2
    PARHIER=LOCAL
    PSF=2
.LIB "/home/vlsi109/vlsi109a01/UM180FDKMFC00000A_A02/Models/Hspice/mm180_bjt_v121.lib" tt_bip
.LIB "/home/vlsi109/vlsi109a01/UM180FDKMFC00000A_A02/Models/Hspice/mm180_reg33_v114.lib" tt
.LIB "/home/vlsi109/vlsi109a01/UM180FDKMFC00000A_A02/Models/Hspice/mm180_reg18_v124.lib" tt
** Cell name: schhr
** View name: schematic
q2 gnd gnd net032 pnp_v100x100_mm m=1
xr1 18 net032 gnd rnhr1000_mm lr=1.09e-6 wr=1e-6 m=1
xr0 vdd 16 and rnhr1000_mm 1r=1.09e-6 wr=1e-6 m=1
q1 gnd gnd 17 pnp_v50x50_mm m=1
mr4 14 gnd net25 vdd p_18_mm w=240e-9 1=180e-9 ad=222.4e-15 as=222.4e-15 pd=2.24e-6 ps=2.24e-6 m=1
mr2 net24 gnd net23 vdd p_18_mm w=240e-9 1=180e-9 ad=222.4e-15 as=222.4e-15 pd=2.24e-6 ps=2.24e-6 m=1
mr3 net25 gnd net24 vdd p_18_mm w=240e-9 1=180e-9 ad=222.4e-15 as=222.4e-15 pd=2.24e-6 ps=2.24e-6 m=1
m4 15 11 vdd vdd p_18_mm w=240e-9 1=180e-9 ad=222.4e-15 as=222.4e-15 pd=1.76e-6 ps=1.76e-6 m=1
m3 13 11 vdd vdd p_18_mm w=990e-9 1=180e-9 ad=485.1e-15 as=485.1e-15 pd=1.97e-6 ps=1.97e-6 m=1
m2 11 11 vdd vdd p_18_mm w=2.2e-6 1=220e-9 ad=1.078e-12 as=1.078e-12 pd=3.18e-6 ps=3.18e-6 m=1
m1 12 11 vdd vdd p_18_mm w=1.3e-6 1=240e-9 ad=637e-15 as=637e-15 pd=2.28e-6 ps=2.28e-6 m=1
mr1 net23 gnd vdd vdd p_18_mm w=240e-9 1=180e-9 ad=222.4e-15 as=222.4e-15 pd=1.76e-6 ps=1.76e-6 m=1
m11 16 15 gnd gnd n_18_mm w=240e-9 1=180e-9 ad=222.4e-15 as=222.4e-15 pd=1.76e-6 ps=1.76e-6 m=1
m10 15 15 gnd gnd n_18_mm w=240e-9 1=8e-6 ad=222.4e-15 as=222.4e-15 pd=1.76e-6 ps=1.76e-6 m=1
m9 11 14 gnd gnd n_18_mm w=260e-9 1=180e-9 ad=224.8e-15 as=224.8e-15 pd=1.74e-6 ps=1.74e-6 m=1
m8 14 13 gnd gnd n_18_mm w=400e-9 1=180e-9 ad=241.6e-15 as=241.6e-15 pd=1.6e-6 ps=1.6e-6 m=1
m7 13 13 gnd gnd n_18_mm w=240e-9 1=180e-9 ad=222.4e-15 as=222.4e-15 pd=1.76e-6 ps=1.76e-6 m=1
m6 11 12 18 gnd n_18_mm w=10e-6 1=2.3e-6 ad=4.9e-12 as=4.9e-12 pd=10.98e-6 ps=10.98e-6 m=1
m5 12 12 17 gnd n_18_mm w=8e-6 1=680e-9 ad=3.92e-12 as=3.92e-12 pd=8.98e-6 ps=8.98e-6 m=1
. END
```

6. PRE-SIM 模擬結果 (請仔細標示清楚) 依題目要求 各溫度下電流

M11 @ 1.6v = 80.15847uA

M11 @ 2v = 109.8351uA

7. Layout 截圖 面積大小 細部

寬:56.589uM X 長:39.053uM = 2,209.970217 uM^2

8. DRC LVS 驗證結果截圖笑臉 drc 的 density 的錯誤,現階段可

忽略

DRC: using UMC18 process 剩下都是假錯

LVS:

9. POST-SIM 模擬結果 截圖笑臉 各溫度下電流

M11 @ 1.6v = 79.4uA

10. PRE-SIM 模擬結果與 POST-SIM 模擬結果比較請做表格

請依照格式

	vdd = 1.6v	vdd = 2v
Pre-sim	80.15847uA	109.8351uA
Post-sim	79.4uA	109uA