University of Pennsylvania

Mathematics Department

MATH 104 FINAL EXAMINATION/FALL 2007

NAME:				
Your Professor (check one):	□CROTTY	□DeTurck □Rimmer	□Drumm □Temkin	□Golubeva □vanErp
Your TA:	TRICASIILIN			-VANEIG

INSTRUCTIONS:

- 1. You have two hours for this examination.
- 2. You are permitted the use of a one page notes sheet (8.5x11, both sides).
- 3. Solve each problem in the space provided. Write the letter of your answer in the appropriate space on this page.
- 4. Show your work. A correct answer with no supporting work may receive little or no credit
- 5. Each problem is worth 10 points.
- 6. There are 20 problems; you are to do all of them.

Write the letters corresponding to your answers here:

1.	
2.	
3.	
4.	
1. 2. 3. 4. 5. 6. 7. 8. 9.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13. 14.	
14.	
15.	
16.	
15. 16. 17.	
18.	
19. 20.	
20.	

- Find the average value of the function $f(x) = x\cos(2x)$ on the interval $0 \le x \le \frac{\pi}{4}$. 1.

- a) $\frac{1}{2\pi}$ b) $\frac{1}{2} \frac{1}{\pi}$ c) $\frac{1}{2} \frac{1}{2\pi}$ d) $1 \frac{1}{\pi}$ e) $\frac{1}{4} \frac{1}{2\pi}$ f) $\frac{1}{4} \frac{1}{\pi}$

- Find the volume of the solid obtained by rotating the region bounded by the curves $y = e^x$, y = 1, x = 12. about the *x*-axis.
 - a) $\frac{\pi}{2}(e^2 3)$
- b) $\frac{\pi}{4} (e^2 1)$

- d) $\pi(e^2 3)$
- e) $\frac{\pi}{2} (e^2 1)$
- c) $\pi (e^2 1)$ f) $\frac{\pi}{4} (e^2 3)$

- 3. What is the volume of the solid of revolution generated by rotating about the *y*-axis the region enclosed by the graph of $\frac{1}{x^2 + 5x + 6}$, the *x*-axis and the lines x = 0 and x = 3.
 - a) $2\pi(3\ln 6 2\ln 5)$
- b) $2\pi(3\ln 6 2\ln 2)$
- c) $2\pi(3\ln 3 2\ln 5)$

- d) $2\pi(3\ln 5 2\ln 3)$
- e) $2\pi(5\ln 2 2\ln 5)$
- f) $2\pi(5\ln 2 3\ln 3)$

- Calculate the area of the region bounded by the curves $y = \ln x$, x + y = 1 and y = 1. 4.

- a) $e \frac{1}{4}$ b) $\frac{e}{2} + \frac{1}{2}$ c) $\frac{e}{2} \frac{1}{2}$ d) $\frac{e}{2} \frac{3}{2}$ e) $e \frac{1}{2}$ f) $e \frac{3}{2}$

- Evaluate: $\int_0^e \frac{x^3}{3} \ln x \ dx$ 5.

- a) $\frac{e^2}{2}$ b) $\frac{e^2}{2} \frac{1}{2}$ c) $\frac{e^4}{36} + \frac{1}{32}$ d) $\frac{e^4}{36}$ e) $\frac{e^4}{16} \frac{1}{4}$ e) $\frac{e^4}{16}$

- 6. Evaluate: $\int_4^\infty \frac{dx}{x^2 6x + 10}$

 - a) $\frac{\sqrt{3}}{2} + \frac{1}{2}$ b) $\frac{\sqrt{3}}{2} + \frac{1}{4}$ c) $\frac{\sqrt{3}}{4} + \frac{1}{4}$ d) $\frac{\pi}{2}$ e) $\frac{\pi}{4}$ f) diverges

Evaluate: $\int_0^2 \sqrt{16 - x^2} \ dx$

a)
$$\frac{\sqrt{3}}{2} + \frac{8\pi}{2}$$
 b) $\sqrt{3} + \frac{8\pi}{3}$

b)
$$\sqrt{3} + \frac{8\pi}{3}$$

c)
$$2\sqrt{3} + \frac{8\pi}{3}$$

d)
$$\frac{\sqrt{3}}{2} + \frac{4\pi}{3}$$

e)
$$\sqrt{3} + \frac{4\pi}{3}$$

f)
$$2\sqrt{3} + \frac{4\pi}{3}$$

- 8. Find the volume of the solid of revolution obtained by revolving the region between the graph of $y = e^{\sqrt{x}}$ and the x-axis for $0 \le x \le 1$ around the x-axis.

- a) $\frac{\pi}{2}(e-1)$ b) $\frac{\pi}{2}(e^2-1)$ c) $\frac{\pi}{2}(e+1)$ d) $\frac{\pi}{2}(e^2+1)$ e) $\frac{\pi}{2}(e-3)$ f) $\frac{\pi}{2}(e^2-3)$

- Find the surface area of the surface obtained by revolving the part of the curve $y = \frac{1}{2}x^2$ for $0 \le x \le 2$ 9. around the *y*-axis.
 - a) $\frac{\pi}{3}(5\sqrt{5}-1)$
- b) $\frac{\pi}{3}(\sqrt{5}-1)$
- c) $\frac{2\pi}{3}(5\sqrt{5}-1)$ c) $\frac{2\pi}{3} (5\sqrt{5} - 1)$ f) $\frac{\pi}{2} (\sqrt{5} - 1)$

- d) $\frac{2\pi}{3}(\sqrt{5}-1)$
- e) $\frac{\pi}{2}(5\sqrt{5}-1)$

- Find the area inside *one* leaf (i.e., one loop) of the graph of $r = 4\cos 3\theta$.

 a) $\frac{2\pi}{3}$ b) $\frac{3\pi}{4}$ c) $\frac{\pi}{2}$ d) $\frac{4\pi}{3}$ e) $\frac{7\pi}{4}$ 10.

- f) 2π

- Find the limit: $\lim_{x \to 0} \frac{\sin^3 x x^3}{(\cos x 1)^2}$ 11.
 - a) $\frac{1}{e}$ b) π c) -1
- d) 0
- e) 1
- f) no finite limit

- Find the limit of the sequence $\left\{ \left(\frac{1+n}{2+n} \right)^n \right\}$. 12.
 - a) $\frac{1}{2}$ b) $\frac{1}{e}$ c) 0 d) 1

- e) *e*
- f) sequence diverges

Determine if the series is convergent or divergent. If it is convergent, find its sum. 13.

a) 1 b)
$$\frac{1}{7}$$
 c) $\frac{5}{12}$ d) $\frac{12}{7}$ e) $\frac{25}{12}$ f) divergent

14. How many of the following series converge?

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n+2}$$

$$\sum_{n=1}^{\infty} \frac{2^n + n^2}{3^n + n^3}$$

$$\sum_{n=1}^{\infty} \frac{n^2 + 3}{(n+4)^2}$$

$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

$$\sum_{n=2}^{\infty} \frac{n^2}{\ln n}$$

- a) none
- b) one
- c) two
- d) three
- e) four f) five

- Which statement is true of the following series?
 - (I) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1} = \frac{1}{2} \frac{1}{3} + \frac{1}{4} \dots$
 - (II) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (n!)^2}{(2n)!} = \frac{1}{2} \frac{1}{6} + \frac{1}{20} \dots$
 - (III) $\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{n!} = 1 2 + \frac{9}{2} \dots$
 - A) (I) converges conditionally, (II) converges absolutely, (III) diverges
 - B) (I) converges absolutely, (II) converges conditionally, (III) diverges
 - C) (I) and (II) converge absolutely, (III) converges conditionally
 - D) (I) and (II) converge absolutely, (III) diverges
 - E) (I) and (III) diverge, (II) converges conditionally
 - F) (I) and (III) converge conditionally, (II) converges absolutely

- What is the largest open interval on which the series $\sum_{n=1}^{\infty} \frac{n(x-5)^n}{n^3+4^n}$ converges? a) (-4, 4) b) (-4, 5) c) (4, 6) d) (1, 9) e) (4, 5) f) (-4, 14) 16.

Which of the following is the beginning of the Maclaurin series for $arctan(x^2)$? 17

a)
$$x^2 - \frac{x^4}{2} + \frac{x^6}{3} - \frac{x^8}{4} + \dots$$

b)
$$\frac{x^2}{3} - \frac{x^6}{6} + \frac{x^{10}}{9} - \frac{x^{14}}{12} + \dots$$

c)
$$x^2 - 2x^4 + 3x^6 - 4x^8 + ...$$

d)
$$1 + 2x^2 + 3x^4 + 4x^6 + \dots$$

c)
$$x^2 - 2x^4 + 3x^6 - 4x^8 + \dots$$

e) $x^2 - \frac{x^6}{3} + \frac{x^{10}}{5} - \frac{x^{14}}{7} + \dots$

f)
$$x^2 + \frac{x^6}{2} + \frac{x^{10}}{3} + \frac{x^{14}}{4} + \dots$$

- Compute the arclength of the graph of the function $y = \frac{2}{3}x^{\frac{3}{2}}$ for $0 \le x \le 4$. 18.

- a) $\frac{2}{3} \left(5^{\frac{3}{2}} 1 \right)$ b) $\frac{3}{2} \left(5^{\frac{1}{2}} + 1 \right)$ c) $\frac{2}{3} \left(5^{\frac{3}{2}} + 1 \right)$ d) $\frac{3}{2} \left(5^{\frac{1}{2}} 1 \right)$ e) 4 f) $\frac{8}{15} \sqrt{265}$

- 19. Evaluate $\int_2^3 \frac{x^3}{x^2 + 1} dx$.
 - a) $\frac{1-\sqrt{2}}{2}$ b) $\frac{5-\ln 2}{2}$ c) $\frac{\sqrt{2}}{2}$ d) $\frac{\pi}{2}$ e) $\frac{1+\sqrt{2}}{2}$ f) $\frac{1}{2}+\frac{\pi}{2}$

20.

One of the two following integrals converges.

$$\int_0^\infty e^{-x} \sin x \ dx; \quad \int_{-\infty}^0 e^{-x} \sin x \ dx$$

The value of the convergent integral is:

- a) $\frac{1}{2}$ b) $\frac{1}{2} e$ c) -e d) e e) $e \frac{1}{2}$ f) $-\frac{1}{2}$