10/19/109 Mandey 800.05 Hardont! ·PS#2 will be released on Tuesday. · The sand at randor functions in MATAB can be given a rordon seed by the statement: "rando ('seed', 12845)" where 12345 is an example of an integer seed, Using undo ('state', sum (101x clock)); will initial to a different state every time, (See 15#2).

"Calculating export in MATLAB; in 18#2 ye'll compare 3 methods. Keuns from last time D Functional derivatives ESF SAT) [Real NyE=B]
. Follow-up comments from "Aside (Functionals of Functional Derivatives" on next pages 2 Perturbation leary by extracting interaction from interprit

[Sort [= [Sort] (Sort) (Sort [= [] + tax=xft]) In he discrete version, this is a Gaussian integral < C'Idet AT 1/2

· A is just a motion with 1's and 2's and E, &a factors.

· Now > start with continuum version > (89) [he repeat and uphanter . Make it look like a matrix problem. There pages]

 $(X(T)X(T_{0})) = \frac{S}{(SF(T_{0})SF(T_{0}))} = \frac{S}{(SF(T_{0})SF(T_{0}))} = \frac{S}{(SF(T_{0})SF(T_{0}))} = \frac{S}{(SF(T_{0}))} =$

10/4/09 How do no openeralize to a few- or many-body system? + = = V(xi0-xi) + (3-body V)+, Par N particles with identical masses · Since they are identical particles, the partition Existen has to be a sum (trace) der a complète busis that has the correct symmetry (bosons-symmetric, formionsonti symmetric).
So gong from IX7 to IX9 1/29 . IXMS as a direct product seems problematic because it is not a definite symmity.
[Mode: The indices written as superscripts have losel the different particles. This are typically lade activity written as Xx, Xx, Xx, Hurcer, This directly clashes with our use of subscripts to indicate Mak & A. the x's at different time steps, Newle and Orland states in the Just use the same notation for both?] Symmetry Inste the curly backet) where the P means a permutation of the porticles and & fixes up bosons (?=1, all ? have some sign) and fermions (?=-1, ? =±1 as P .The completeness relation is is exten(6dd) $N_1 \lesssim |x_0, x_0| \times |x_0, x_0| = 1$ · More generally, let x > 00 represent a single-particle basis, it is not a normalized basis as yet, but that is not important for us.

1014/01 · At this stage we simply need this basis to define the trace: front of Hope for a xon of = 1580 MUX (83) YOU) (BH) XI) XI) Just as before, the "time interval" from 0 to B can be broken into Nr pieces and ne insert complete sets of states.

- We can actually use eiter (onti) symmetrized or just product states. In the latter case, the final states of correct symmetry imposes the acrect Fermi or Bose statistics.

In the direct product use xa/2) = xb/0/ Xm(b)=X6M)(0)

When we simulate termions with this form, EPH filters out the lovest state of any symmetry > but the lowest symmetric will be lower than the anti-symmetric > noise arming exponentially before projection on antisymmetric states. Alternative is to project at each E step

= (m = n) Det 10 = m E(V) + 1) = = E(V) + V)

but Det M his minus sups! More lake on why this is bad,

Let's fill in some detail on the colculation of [xa) this = EA; | you was · WA A = \(\frac{\gamma_{\infty}}{2m} + \frac{\frac{\gamma_{\infty}}{2m}}{2m} + \frac{\frac{\gamma_{\infty}}{2m}}{2m} \]
. WA A = \(\frac{\gamma_{\infty}}{2m} + \frac{\frac{\gamma_{\infty}}{2m}}{2m} = \frac{\gamma_{\infty}}{2m} \]
. The normal ordering simply puts all of the post terms to the left and the V terms to the right. So insert a complete set of 1pt post states between these two terms: . The vs pick up the sum of terms with y - 40) arguments e = 5 = V(y) - y)) with no permutations in the end, I've count up the same terms when is sun over i' and j'it permuted). . If me didn't have the permutations to account for, thin we would just get (2/15) 2 = (* (Xi) - (1))2 For each i= 1 to N = Just a summention in the exportent. But the permutations new that we have to sum accoult ways of mixing up the x's > 2(-1) = m 2(xPi) yill) $= \frac{1}{2} \sum_{i=1}^{n} (x_{i} - y_{i})^{2} \sum_{i=1}^{n} (x_{i} - y_{i})^{2} - (x_{i} - y_{i})^{2}$ · whe assuming now he have fermions, so for (1).

The N=2 case for the sum over P: $=\frac{n_1 \times n_2}{n_2 \times n_3} = \frac{n_1 \times n_2}{n_3 \times n_3} = \frac{n_2 \times n_3}{n_3 \times n_3} = \frac{n_3 \times n_3}{n_3 \times n_3} = \frac{n_3$

3 10/19

10/19/09 . Considering general N, we see that This does match the detinition of a determinant: (det mi) = Z(-3) of mijei).

In Wiki pedia, this is called the "Leibniz formula" for the determinant. They write it for nxn matrix I as det in) = Z sono TI Ai, our

permutation graph of a dopects

50 me at Pat [5 me

which, except for the determinant, looks like a simple generalization of the N=1 result.
The problem is that there are minus signs in det of that cause problem.
The sign problem.
A description of the problem is given in Chapter 8 of Negele and Orland.
The will probably return to this later.

Asile: Finding Symmetrized States in Practice

Suppose we have a single particle basis las Plat we use to form a direct product (in unsymmetrized). basis they do he construct symmetrized or continuational basis states in practice? While particularly inforested in implementing this on a computer.

So how do he represent our Hilbert space?
We can see how it goes with a two level system and
two particles.
We have four possibilities: la, 16) @ la, 16)
or laa?, lab?, lba?, lbb?, which he
label: 2 3 4

· Now any operator can be represented as Ite 16 matrix elements Oi; with (i,j) = 1,2,3,4.

The such operators are $S=N_1 \lesssim P$ and $A=\frac{1}{N_1} \gtrsim [-1]^N \cdot P$ each permutation takes a basis state (on i) to exactly are ofter are.

When label the N=2 P's as fig and Palistate 2>2.

Piz is the identity -> porticle 1 > 1, particle 2>2.

Par takes state of particle 2>1 at state of particle 1>9.

$$\Rightarrow P_{12} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \qquad P_{21} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow S = \frac{1}{2}(P_{1} + P_{2}) = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \qquad \Rightarrow \frac{1}{2}(P_{1} - P_{2}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

. Non we simply diagonalize to find the symmetry and anti-symmetric combinations,

10/9/09 for this simple case, on it to MATLAB! ex(S) = V= (00 10) D= 01 15 16 00 D= 1 The symmetric states are those with eigenvalve #1 (5147=41147)
Rend of eyenvectors to (1067+1607), 1007, 1667. [V,D]=e1g(A) => V= (1000) (0 100 15) so are attisymmetric state: to [-lab7+16a7 correlization is undetermined up to a sign · These are exactly what you would have written down. · Note that $\mathcal{H} = \mathcal{H}_S \oplus \mathcal{H}_A \Rightarrow \mathcal{H}_A$ is the Hilbert space. We can use these matrices to project onto the subspaces. The key point is that the generalization of this trivial example works just the same way.

But there will generally be states that are realter symmetric or antisymetric.

Try a two-level system with 3 particles

1 and (A) = \$\frac{1}{2}\tau (P_{123} + P_{312} + P_{31} + P_{132} + P_{313} + P_{321})

2 and Unt is Pisz? (identity) O Ð bbb Ö

** ***)	10/19/09
	Now we diagonalize and find I unit expinalize for S and O
	unit emonalitis for A.
	1 (3 estate of 2 estates for forming and a
	'When are the 4"missing states? You should be able to write down the symmetric states by inspection, but its nice to see this work out
	· You should be able to write down the symmetric states
	by inspection, but its nice to see this work out
	automagically with MATLAB,
	in laca
	(4661)
	13(10ab) + 10ba) + 1baa)
	\$ (1abb)+1bab)+1bba>

.

10/19/09 Asile: Functionals and Functional Derivatives Ref. : Appendix B in the text by N. Nagaosa is the source for much of this presentation. Most field thony books have an introduction to functionals in their discussions of elorgestri Aug First let's contrast functions and functionals: i) function f: you give me a real number XER and III gire you another its number: · generalizations include different domains and ranges (eg. complex numbers) ii) Functional F: rather than a single x, give me an entire function F(X) in an interval & \x < B and I'll give you a single real number back! $F: f(x) \in \mathcal{X} \rightarrow F(f(x)) = F(f) = F(f(x)) \in \mathbb{R}$ · we'x indicated a variety of notations you might find in the literature
· It signifies a Hilbert space
· Note that when we use the notation F[fx], Here is no particular value of x involved; He entire function (in a relevant interval) is Re input. . It is useful (as usual) to imagine putting a functional on a computer. · We can represent a function fox) as breaking up the interval a<x<\big| into a discrete mesh (set) of points [Xi] with [x=xy<x3<...<Xn-1< Xn=\beta

· Notice the 8's instead of 2's.

	10/19/09
·	We define the functional derivative star as
	$\frac{SF(f)}{Sf(x)} = \lim_{\Delta x_i \to \infty} \frac{\Delta x_i}{\Delta x_i} \frac{\Delta F(f_{\pm 1},,f_n)}{\Delta x_i} \text{where } f_i = f(x_i)$
	this x matters!
	The x on the left corresponds to x; on the right; in
	the limit that we note the mesh very fire.
	> We look how much the functional changes when we
	change the Function at the ith mech point,
	Apply this definition to the example:
	$\frac{ SF[f(x)] }{Sf(x)} = \lim_{\Delta X_i \to 0} \frac{1}{\Delta X_i} (\xi f_i g_i \Delta X_i)$
	St(X)
	$= \lim_{\Delta x \to 0} \Delta x, \leq \delta i, g, \Delta x,$
	$= \lim_{X \to 0} \overrightarrow{SX} \cdot g_i \overrightarrow{SX} = \lim_{X \to 0} g_i = g(X)$
	ZX,70/
	· Rewriting this?
	$\int \frac{S}{S(x)} \int f(x') g(x') dx' = g(x)$
	8t(X)) , y, y
	7 - H H "V" - L - 1 1 P+ +
	· note again that the "X" argument on the left is not a dummy argument.
	d daming andangen.
	· Special case: F[FX)] = (f(x) dx (or gx)=1)
9. 98.14.18.1	
	$\Rightarrow s_{K} f(x') dx' = 1$
. ~	
)	

10/19/09
 For completeness, we present an alternative detinition of the functional derivative that is more common in the
 interature. 1 (1/10) 1 = fix) As in the picture at the left we add a "bump" at y, which me take to be a dilta function with strength 1, and see how much the
x tunctional changes!
 $\frac{SF[f]}{Sf(y)} = \lim_{N \to \infty} \frac{F[f(x) + \lambda S(x + y)] - F[f(x)]}{\lambda}$
 Try it out on the example: [Style fix) glys dx = tim [[fast \lambda (fast)] glys dx - [fasgas dx]]
 $= \lim_{x \to 0} \pm \lambda \int \delta x - y / g(x) dx = g(y) $ as before,
· Another special case, which can be used as the definition of the functional derivative as well: g(x) = S(x-z)
 $\Rightarrow \left \frac{g}{g}(x) \right g(x'-2) dx' = \frac{g}{g}(x-2) = g(x-2)$
 where the last equality is what we haint.
· Note that this is the analog of $5, i = 1$, which he used repeatedly in the model problem. · Here, if he let $f(x) \Rightarrow f_i \Rightarrow j_i$, then the equivalent
 formula u
$\frac{\partial i}{\partial j_k} = S_{jk} \Rightarrow \frac{S_{j(x)}}{S_{j(y)}} = S(x-y)$

10/19/19

Let's try another example we'll come across

Sfix) $\int f(x_1)C(x_1,x_2)f(x_2) dx_1 dx_2 \qquad \text{with } C(x_2,x_1)=C(x_1,x_2)$ $=\lim_{X \to 0} dx_1 dx_1 Z f_1 C_{1k} f_k \Delta x_1 \Delta x_k$ $=\lim_{X \to 0} dx_1 dx_1 Z f_2 C_{1k} f_k + f_1 C_{1k} dx_1 \Delta x_1 \Delta x_k$ $=\lim_{X \to 0} dx_1 Z f_2 G_{11} C_{1k} f_k + f_1 C_{1k} dx_1 \Delta x_2 \Delta x_1 \Delta x_2 \Delta x_2$

· More generally, If $C_n(x_1, x_2, ..., x_n)$ is totally symmetric under interchange of any two x_i , then $\frac{S^nF[F]}{S^n(x_1,...,x_n)} = n! C_n(x_1,...,x_n)$

· We get the special case of n=2 by taking another functional derivative of the example up top,

Exercise for the diligent reader: rederive these results using the alternative definition of a functional derivative.

The familiar properties of ordinary (portial) derivatives, such as the product and chain rules, carry over to functional derivatives in a natural way,

	10/19/09	41)
······································		
	So consider $\frac{S_0 + S_1}{S_1} = \frac{1}{3} + $	
	\$\frac{\infty}{\text{A(x)}}\frac{\(\text{R(y)}\)^3 g(y) dy = \(\text{lim}\) \(\text{\text{x}}\) \(\text{\text{3}}\) \(\text{\text{1}}\) \(\text{\text{3}}\) \(\text{\text{1}}\) \(\text{\text{3}}\) \(\text{3}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{3}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\text{\text{3}}\) \(\t	<u>-</u>
***************************************	·	<i></i>
	= 1/m = 3(F,) = 61, 95 X5	· · · · · ·
	$= \lim_{n \to \infty} 3f()^3g(n) = 3(f(x))^2g(x)$	
		<u>—</u> <u></u>
<u> </u>	and so he have the chain rule:	
	Stan S 9 [fw] dy = 9' [fm]	
***	where of means to take the derivative of g with respect to f as if it were a partial derivative.	··· •
<i>j</i>		
	- Controller form of the chain rule well use a lot is.	_
	· Another form of the chain rule we'll use a lot is: Signy = Sax(04002+ jan(x)) = -4(y) e Sax (04a)2+ jan(x))	
		<u>J</u>
	· What if we have a function of \hat{x} or \hat{x} and \hat{y} [for \hat{y}]?	 .
	· We can combine of and t into a "four-vector" x", 50	
	· We can combine of and t into a "four-vector" x", so it is sufficient to consider an n-vector $X = (X,, X)$	(a
	· Consider	
	·	
<u></u>	SFIFTING Stroken Stroken SXIn	
		wd
	where we now have n-dimensional arrays $X[i_2,,i_n]$ or $F[i_2,,i_n]$, where i_1 runs over the mesh for x_2 , is runs the mesh for i_2 , and so on.	OKC
	the mest for is, and so on.	

	110/19/101
	Let's take n=2 for clarity. Then our nesh is a two-dimensional good and the function value is defined at each good point (i,j) to be Fij
	two-dimensional gold and the Function value is
	defined at each and point (i,j) to be Fi;
	$\Rightarrow F(Ex)] = \sum_{i,j} f_{i,j} g_{i,j} \Delta X_i \Delta y_j, \text{with } \vec{X} = (X, Y)$
-	and the Functional decirative
	SF(x) = lim dixin; of in Sin Dividing
	= 1 m
	$=\lim_{x\to 0}g_{ij}=g(x)$
	Similarly) $\frac{SF(\vec{x})}{SF(\vec{x}')} = S'(\vec{x} - \vec{x}')$
	and so on.
	1 0" ex 20 0(1)
	3 :
	*
	:
	: /- /- /- /- /- /- /- /- /- /- /- /- /-
· <u>}</u>	· · · · · · · · · · · · · · · · · · ·
.sdi	• · · · · · · · · · · · · · · · · · · ·

	10/19/69
	· What if flere is a derivative in the functional?
·	Strx) (dr(x,) d(x,) g(x,) g(x
	- We can do this several ways. Here are two!
	i) partially integrate
	$\frac{1}{2\pi x^2} \int \frac{dx}{dx} g(x') dx' = \frac{2\pi x^2}{2\pi x^2} \int f(x') \frac{dx}{dx} dx' + \text{surface form}$
	= - do(x) (4 th surface term chain to contribute)
·)	
	ii) discrete version:
	$\frac{g}{g_{K,i}}\int \frac{df(x)}{dx'} g(x') dx' = \lim_{x \to \infty} \frac{1}{dx} \frac{\partial}{\partial x'} \frac{g}{g(x')} \frac{\partial}{\partial x'} \frac{\partial}{\partial x'} \frac{g}{g(x')} $
	= lim tx; Z(81)+ 81,) 9;
	$= \pm \frac{1}{2}(9i-1-9i) = -\frac{d9}{dx}$
	note that the possible surface terms in this case are left over from taking 2 fix 9; - 2 fig; and changing dummy indices in the first.
	dummy indices in the first.
	·OK, Phat's it for now => more later!
····	

10/9/09 In openeralizing the path integral to many-particle systems by which we news much two a few particles to of order 1023 particles - effectively infinity) here are two choices i) Works with many particle states that from a basis for each particle & path integral is direct generalization of the example of one-particle quantum mechanics we've been discussion.

I main complication is dealing with properly symmetrized states to lish means artisymmetrizing for fermions, which leads to End bropping? ii) Work with fields that operate in the space spanned by the number basis. Let's pursue this second option. . We will give a very brut introduction now and backfill details as reeded, · We'll assume our building blocks for the basis is a set of athonormal single-particle states labeled las - not recessing for most results that arthogonal, but easier. · Busis for Hibert space Ital < < > > = grb ~ v cobins -Then Hu is tensor product Hat @ Ha @ -- @ Yen = HN
and who is tensor product the Barbaration of the symmetrical in the symmetr /4,00, ... (N) = /42 / (2) ... /4N> · order of tets refus to particle 1, 2, ...

Even outside & symmetrizing, This seems like a pain!

10/19/09

is Different H for each N, or H refers specifically to N
ii) and word at best for identical particles - permutations
iii) with one, the, three body operators, only one, two, there states
affected -> rest on bystonoise

ey, $\hat{H} = \sum T_i + \sum_i V_{ij} + ... = ... + V_{12} + V_{13} + V_{93} + ...$ 50 $\langle \alpha'_1 \alpha'_2 \alpha'_3 \alpha'_4 \alpha'_5 \alpha'_6 ... | \hat{H} | \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 ... \rangle$ $= \langle \alpha'_1 \alpha'_2 | V_{12} | \alpha_1 \alpha_2 \rangle \delta_{\alpha'_2 \alpha'_2} \delta_{\alpha'_4 \alpha'_4} ... + \langle \alpha'_4 \alpha'_3 | V_{13} | \alpha_1 \alpha'_3 \rangle \delta_{\alpha'_2 \alpha'_2} \delta_{\alpha'_4 \alpha'_4} + ...$ but try are identical!

Afternative: number basis
"Line up single-particle states in some order and just say how many in each state

In a no no - no = In In ... Ino

eg. 2 1 3 m example spoute harmopic each "made"

· complete and althornormal: <n2n2...no | n2n2...no) = Smn/ Snowno

 $\sum_{n_1,n_2\cdots n_\infty} |n_1,n_2\cdots n_\infty| < n_1 n_2\cdots n_\infty| = 1$

fragons 0! = 0'7.

· Use coising and lowering operators to change ni (creation and destruction)

 $[a_{\alpha}, a_{\beta}]_{\mp} = [a_{\alpha}^{\dagger}, a_{\beta}]_{\mp} = 0 \qquad [a_{\alpha}, a_{\beta}]_{\mp} = \delta_{\alpha\beta}$ $\text{where } \mp \Rightarrow \text{bosons } [a_{\beta}b]_{\mp} = a_{\beta}b_{\beta}$ $\text{fermions } [a_{\beta}b]_{\mp} = a_{\beta}b_{\beta} \Rightarrow [a_{\beta}a] = 0$

10/19/191

 $a_k^*|u^k\rangle = (u^k)_p|u^{k+1}\rangle$ "destruction operator." $a_k^*|u^k\rangle = (u^k)_p|u^{k+1}\rangle$ "destruction operator."

For fermions, $a_{k}(0) = 11$ $a_{k}(1) = 0$ $a_{k}(1) = 0$

 $|n_{x}-n_{\infty}\rangle = (0_{x}^{\dagger})^{n_{1}} \cdot (0_{x}^{\dagger})^{n_{\infty}}|_{0}\rangle$ implies signs of $(0_{x}+n_{1}\cdots n_{\infty})=n_{k}|_{0}\cdots n_{\infty}\rangle \Rightarrow (0_{x}^{\dagger}n_{k}=n_{k})^{n_{k}}$ operator "

Key point: (h) ITIH) = (h) ITIH)

With A = 20 at (alTIP) OB + & 2 at at (xp)V/8) Os OB + [what object 3-body look like?] Note order

The symmetrication is taken core of by the ciscal ofs.
It doesn't reference N

· only the relevant orbitals play a role - don't warry about the other 1831

Can switch to x-representain let = Jak |xxxxxx = Jax |xxxxx a) = Jax |xxxxx |x>

7(x) = 2 4 xx 0x 4(x) = 20 x 4(x)

"field operator" create and distroy at X.

. We'll use these a lot,

Boson Coherent states: What are the eigenstates of $Q_{\alpha}, Q_{\alpha}^{\dagger}$?

Start with a one-level system (one od.) $|n\rangle = \frac{(\sigma^{\dagger}N)}{(\sigma^{\dagger})} |o\rangle = (0,1,2,...)$

along= Solves at at In) = John Inta) so not eugenstates of either,

· But now superpose the In)'s so that the factorials work at.

Let Z be a complex number (any one - like x representation)

Plan alt)= alo)+ (元)+ (元)+ (元) + (

= 2/27! exponstate

Further, <= = <0/e> = Now <2/td>
<2/e> = = not orthogon.

 $\frac{\langle z|:A(d,\sigma):|z'\rangle}{\langle z|z'\rangle} = A(z',z') \quad \text{just what we road},$

· note <0127=1, 12=07=1=0)=10)

Proof: Substitute: 127, (2) definitions;

\[
\begin{align*}
\[
\frac{37 \delta^2}{2\tau} = \frac{2}{2} & \text{ } & \text

· For fermions, => grassmann numbers · More later. For now, works the share except no 2017, In particular

$$(z|:A(at,a):|z') = A(z',z')$$

10/19/19

Coherent State Functional Integral: First Pass

This discussion is based largely on Negete at Orland, objetus I ad 2.

· We want to use the same possedure for evaluating the partition function (or, more generally, on evolution operator) by splitting the interval from 0 to B into little steps of Size & for which

 $e^{\epsilon \hat{H}} = e^{\epsilon \hat{H}} + O(\epsilon^2)$

and we can insert intermediate states to evaluate: ett: Except now we want A to be expressed in and quantized form; at's and als. I normal andering in this case will mean that a's appear to be right of at's.

It won't help to use the number basis in general, because we need

It won't help to use the number basis in general, because we need the analog of $\langle p_n|H(\hat{p},\hat{x})|\chi_n\rangle = H(p_n\chi_n)\langle p_n|\chi_n\rangle \Rightarrow$ in need states that are eigenstates of the annihilation operators—these are the advient states.

The steps are the same as before, only now we have $\widehat{H} \supset \widehat{H}(o_{x}^{\dagger}, q_{x})$ (and we assume it is normal ordered \supset at's to left, o's to right). We break up $[D, \beta]$ into N_{T} steps of width ε .

· The portition function we want to use now is the grand partition function Z= Ir e P(H-yra) (note that coherent states do not have a definite number of particles, so we really need u.).

· our starting expression is lip to an overall constant)

$$Z = Tr e^{\beta(\hat{H} - \mu \hat{N})} + for bosons - for fermion = \int_{C} L \int_{C} d\rho_{x} d\rho_{x} e^{-\frac{2}{3}\rho_{x}^{2}} e^{-\frac{2}{3}\rho_{x}^{$$

alke da) o (Inda) 10/19/09 For bosons, this comes from month 1= II ani E 2016 TO A = Z COIAIN = STI OBA OBA E Z DA DA Z COIDX DIAIN> = ([dot doa e & oa da < 6 | A (& lo Xn I) 6> = (IT do do e Zdada < plato) For fermions it is the same except no 2Th' factors and we get a minus sign (hence < {p}) who moving A through 10×0). : So now we insert at each time step k= 1,..., No 1 = CTdd, dbak = 2 bak bak bak bak $e^{iH(a_{m}^{\dagger}a_{m})} = e^{iH(a_{m}^{\dagger}a_{m})} + O(\epsilon^{2})$ and commission of the contraction of the contracti 7= 1 m 5 T = do do do e 20 do No-1 T = do no do e 2 2 do no do no e 2 2 2 do no e 2 2 Now $\langle \phi_k | : e^{-\varepsilon H(\alpha_{x_1} \alpha_{x_2})} : | \phi_{k-1} \rangle = e^{\varepsilon} \phi_{x_1} k \phi_{x_1,k-1} - \varepsilon H(\phi_{x_1} k \phi_{x_2,k-1})$ so we get another sum on k and or. We can also combine with the trace be's that \$\phi_{\sigma} = \phi_{\pi} , \text{ban} = \frac{1}{2} \phi_{\pi} \text{to get: (with \$\phi_{\pi} = \frac{1}{2} \phi_{\pi} \text{Ny})}

 $Z = \lim_{n \to \infty} \left(\frac{Nr}{11} \prod_{k=1}^{n} \frac{d}{dt} \frac{dd}{dt} \frac{dd}{$ $5(b^{x},d) = \left\{ \sum_{k=1}^{N} \left\{ \sum_{k=1}^{N} \left\{ \left(\phi_{\alpha,k} - \phi_{\alpha,k-1} \right) - \mu \phi_{\alpha,k-1} \right\} + \mu \left(\phi_{\alpha,k} - \phi_{\alpha,k-1} \right) \right\} \right\}$ + E[\(\frac{2}{5} \phi_{\lambda, 1} \) \(\frac{\epsilon_{\lambda, 1} - \lambda_{\lambda, m}}{\epsilon} - \lambda_{\lambda, m} \(\phi_{\lambda, 1} \) + \(\frac{\phi_{\lambda, 1}}{\epsilon} \) \(\frac{\epsilon_{\lambda, 1}}{\epsilon} \) \(\f · With H> Ho= & Exga a, we can land will!) show that Z= I(1-2=p(e=m))-1 The trajectory notation is 10m, --, da, m, -> b(7) $\phi^{\alpha,k}\left(\frac{\partial^{\alpha,k}-\phi^{\alpha,k-1}}{\partial^{\alpha,k}-\phi^{\alpha,k-1}}\right)=\phi^{\alpha,k}_{*}(\mathcal{L})\frac{\partial^{\mu}}{\partial^{\mu}}\phi^{\gamma},$ H(\$\phi_{x}, \phi_{x}, \phi_{x}, \phi_{x}) = H(\phi_{x}(1), \phi_{x}(1)) > = = (0,4) + + (1,4) + + (1,4) = (0,4) = (0,4) = 5 (0,4

integrations are over complex variables satisfying periodic BCs for bosons at Grassman variables satisfying antiperiodic BCs for fermions

. We can now do pesturbation Heavy as before (with some generalizations!)

Rotter than general &, let's go to the X representation
so Px(7) - 4(x,7) where now & is just a spin index
at x muns (x,7) where used. Assume a spin-independent potential for mu. (1, 2) (1, 2) (2, 1) (2, 1) (2, 1) (2, 1) (2, 1) できるからればりかけばかりく(えーマクチ(えいり)生まか -= 58 (8x 7 x (8 - 5m - 1) 2 (x) x 0= 3 (b) (13x 4 x) 4 x) 4 x) 4 x) 4 x) Now this is suitable for porturbation thony, and well do that, but what about stochastic simulation? · Neiter to boson nor fermion form is suitable here > introduce on auxiliary Full! Z= 60(244) \$ 6(x) \in \begin{align*} \delta \gamma \delta = $\int \Omega_0(x) \left[Dot N(6) \right]^2 e^{-\frac{1}{2} \int d\eta dx dx'} G(x,T) V(x-x') G(x',T)}$ wher Mx; xx, = 2 37- p-2m + 2 dy v(xy) O(y,7) xx, xx · Much simplified if v(xy) ->-> &(x-y)