CLAIMS

1. A method for automatically modeling film grain patterns, comprising the steps of:

transforming a set of film grain samples to the frequency domain;

storing each set of coefficients resulting from such transform, the coefficients forming a pattern;

analyzing the pattern created by the transform coefficients; and

estimating the cut frequencies of a 2D band-pass filter that can effectively simulate the pattern of transform coefficients by filtering random noise in a frequency domain.

10

5

- 2. The method according to claim 1 further comprising the step of transmitting at least one cut frequency in a Supplemental Enhancement Information message.
- 3. The method according to claim 1 wherein the film grain samples are processed in blocks of NxN pixels.
 - 4. The method according to claim 3 wherein the step of analyzing the pattern created by the transform coefficients further comprises the steps of:

computing a mean block of NxN transform coefficients by averaging the transform coefficients from all the stored blocks;

defining horizontal and vertical mean vectors of N components each by averaging the mean block of NxN coefficients along rows and columns, respectively, of each transformed block;

representing the horizontal and vertical mean vectors as separate curves; and

establishing horizontal and vertical cut frequencies from the curves represented by the horizontal and vertical mean vectors, respectively.

5. The method according to claim 4 further comprising the step of low pass filtering at least one mean vector.

20

25

- 6. The method according to claim 4 wherein the at least one cut frequency is established from an intersection point in the curve representing the mean vector.
- 7. The method according to claim 4 wherein each of a low and a high cut
 5 frequency is established from a first and second intersection points in the curve representing the mean vector.
 - 8. The method according to claim 3 wherein the step of analyzing the pattern created by the transform coefficients further comprises the steps of:

computing a mean block of NxN transform coefficients by averaging the transform coefficients from all the stored blocks;

defining horizontal and vertical mean vectors of N components each by averaging the mean block of NxN transform coefficients along rows and columns, respectively, of each transformed block;

averaging the horizontal and vertical mean vectors into a single mean vector; representing the mean vectors as a curve; and

establishing horizontal and vertical cut frequencies from the curve represented by the mean vector.

- 9. The method according to claim 8 further comprising the step of low pass filtering the mean vector.
 - 10. The method according to claim 8 wherein at least one cut frequency is established from an intersection point in the curve representing the mean vector.
 - 11. The method according to claim 8 wherein each of a low and a high cut frequency is established from a first and second intersection points in the curve representing the mean vector.

25

10

15

20

12. A method for automatically modeling film grain patterns, comprising the steps of:

receiving a set of film grain samples

performing a transform on the set of film grain samples to the frequency domain storing each set of coefficients resulting from such transform, the coefficients forming a pattern;

analyzing the pattern created by the transform coefficients; and estimating the cut frequencies of a 2D band-pass filter that can effectively simulate the pattern of transform coefficients by filtering random noise in a frequency domain.

5