Performance Analysis and Simulation of Communication Systems: Project A

Adam Temmel (adte
1700) & Fredrik Sellgren (frse 1700) 2021/08/31

1 PRNG and Random Variables

1.1 Create a function that implements a linear congruential generator (LCG), accepting as input the parameters: seed, m, a, and c.

We implemented our LCG as a class in order to keep it somewhat similar to the STL generators. The code used is as follows:

```
1 class Lcg {
2
  public:
3
       using seed_t = uint32_t;
4
5
       Lcg(seed_t seed, seed_t m = 100, seed_t a = 13,
           seed_t c = 1)
6
7
           : seed(seed), m(m), a(a), c(c) {}
8
9
       seed_t operator()() {
10
           seed = ((a * seed) + c) % m;
           return seed;
11
       }
12
13
14
       // These are kept public to make it easier to change
15
       // them later in the lab, a more authentic generator
       // would probably keep them private.
16
17
       seed_t seed, m, a, c;
18 };
```

Figure 1: LCG Class

1.2 Generate 1000 values uniformly distributed in the range [0,1] using your PRNG. For this case use m=100, a=13 c=1and seed =1;

The code used to generate 100 uniformly distributed values is presented in 2.

```
1 template < typename T >
   double normalize(T x, T min, T max) {
       return static_cast < double > (x - min)
            / static_cast < double > (max - min);
4
5 }
6
7
   void testPrng() {
8
       Lcg lcg(1);
9
        auto urv = CreateObject < UniformRandomVariable > ();
10
11
        constexpr size_t n = 1000;
12
13
        std::vector<double> ourResults(n);
14
        std::generate(ourResults.begin(), ourResults.end(),
15
16
                [&]() {
            return normalize(lcg(), Ou, lcg.m);
17
        });
18
19
20
        std::vector<double> theirResults(n);
21
22
        std::generate(theirResults.begin(), theirResults.end(),
23
                [&]() {
            return urv->GetValue(0., 1.);
24
25
        });
26
27
        {
            std::ofstream ourFile("our_results.txt");
28
            for(auto f : ourResults) {
29
30
                ourFile << f << 'u';
31
            }
       }
32
33
34
        {
            std::ofstream theirFile("their_results.txt");
35
36
            for(auto f : theirResults) {
37
                theirFile << f << 'u';
38
39
        }
40
```

Figure 2: Code used to write 1000 uniformly generated values from each generator to disk

1.3 Compare the distribution of your values with the distribution of values generated using the

UniformRandomVariable() of ns-3.

Two histograms comparing our generator to the Ns3 generator are visualized in *figure 3*.

Figure 3: The corresponding plots gathered from the data above

1.4 Comment on the difference in the results and propose values of m, a, and c which gives you better results.

The main issue we found with the parameters given comes from the divisor used when performing the modulus operation, m. As m was initially set to 100, we are guaranteed to only generate numbers in [0, 99]. It then follows that our generator can only generate 100 different values. This might be enough for some cases, but seeing as we wish to normalize it into a continuous value between [0, 1], the lack of representable numbers provided by the generator will have a negative impact on the final result. As such, it is in our interest to increase the divisor. One suggested method of improving the generator is to use a divisor that is a power of 2, such as 2^{32} or 2^{64} combined with keeping c at 0[1]. Another possible competitor for good divisors are the Mersenne Primes, such as $2^{32} - 1$ or $2^{64} - 1[2]$, which also happens to be exactly the fix we implemented. This improvement proved to make a noticeable difference, which is illustrated in figure 4.

Figure 4: Our improved generator compared to the Ns3 generator

1.5 What PRNG does ns-3 use? What method does ns-3 use to generate a normal random variable?

The PRNG that is used in Ns3 is the MRG32k3a generator[3]. The underlying implementation comes from Pierre L'Ecuyer's (among others) random number generator package[4]. MRG32k3a implements a way to generate random numbers capable of being separated into disjoint substreams that are independent from one another. Ns3 states that the total period of the generator is $3.1 \cdot 10^{57}$ [3].

1.6 Using the time system command of Linux compare the execution time for the generation of the uniform distribution using your function and ns-3 function

```
1 # our class:
2 time ./waf --run scratch/project 2.54s user 0.20s
3 system 107% cpu 2.547 total
4 # their class:
5 time ./waf --run scratch/project 2.59s user 0.17s
6 system 107% cpu 2.556 total
```

Figure 5: The results from timing a program that generated 1000 random numbers using time

As we can see, our implementation is slightly faster (around 0.01 seconds) than the Ns3 implementation.

1.7 Write a second function that generates an exponential distribution with mean $\beta > 0$ from a uniform distribution generated using the LCG; Choose one of the methods for generating RV covered in the course and motivate your choice with respect to the specific task.

The course brought up the concept of *The Inverse Transform Algorithm*. It operates as follows:

- 1. Generate $u \in U(0,1)$.
- 2. Define a function F(X), which represents the distribution of the random data you wish to generate. In our case, this was an exponential distribution, so something akin to $F(X) = 1 e^x$.
- 3. Solve the equation F(X) = U for X, finding the inverse $X = F^{-1}(U)$. In our case, $F^{-1}(U) = -ln(1-U)$.
- 4. By inserting u into F^{-1} , we can now convert a uniform [0,1] variable into the desired distribution.

We argued that the Inverse Transform Algorithm was the most appropriate method for the task, as we have a specific target function we wish to reach, which rules out a few of the alternative methods. Furthermore, all the steps involved in this algorithm are arguably less complex compared to, say, The Rejection Method.

```
double expDist(double value, double lambda) {
   return -log(1 - value) / lambda;
}
```

Figure 6: Resulting code after implementing the Inverse Function Transform

1.8 Compare your exponential distribution with ns-3 ExponentialRandomVariable() and the theoretical expression of the probability density function.

Figure 7: Our exponentially distributed generator compared to the Ns3 counterpart

As is illustrated in *figure 7*, the two generators ended up performing on a somewhat equal level.

Citations

References

- [1] Donald E. Knuth. *The Art of Computer Programming*. Addison-Wesley Professional, 1997. Chap. Seminumerical Algorithms, pp. 10–26.
- [2] Wikipedia. Mersenne Primes. URL: https://en.wikipedia.org/wiki/Mersenne_prime (visited on 08/29/2021).
- [3] Ns3. Random Variales. URL: https://www.nsnam.org/docs/manual/html/random-variables.html (visited on 08/29/2021).
- [4] PIERRE L'ECUYER, PIERRE L'ECUYE, E. JACK CHEN, et al. "AN OBJECT-ORIENTED RANDOM-NUMBER PACKAGEWITH MANY LONG STREAMS AND SUBSTREAMS". In: (2000).