Metodi a confronto Disegna il triangolo di vertici A(-3, 1), B(0, 2) e C(2, -4). Verifica che il triangolo è rettangolo, nei seguenti due modi:

- a. mostrando che è soddisfatto il teorema di Pitagora;
- b. mostrando, mediante i coefficienti angolari, che due lati sono perpendicolari.

DEFINIZIONE | Radice quadrata

Si dice **radice quadrata** di un numero reale a, e si indica con \sqrt{a} , il numero reale positivo o nullo (se esiste) che, elevato al quadrato, dà come risultato a. In simboli:

$$x = \sqrt{a} \Leftrightarrow x \ge 0 \text{ e } x^2 = a$$

1)
$$\sqrt{4} = 2$$
 ferché 2 30 e 2° = 4

2)
$$\sqrt{\frac{16}{9}} = \frac{4}{3}$$
 fershe $\frac{4}{3} \ge 0$ e $(\frac{4}{3})^2 = \frac{16}{9}$

3)
$$\sqrt{4} \neq -2$$
 anche re $(-2)^2 = 4$, jeché $-2 < 0$

TEOREMA 1 | Esistenza delle radici quadrate in R

Ogni numero reale positivo o nullo ha esattamente una radice quadrata in **R**. Ogni numero reale negativo non ammette radice quadrata in **R**.

La dinostrosione diperde da come sons stati costruiti i numeri redi, fleció la ornettians.

OSSERVAZIONE

$$\sqrt{0} = 0$$
 (0>0 e 0=0) $\sqrt{1} = 1$ (1>0 e 1=1)

DEFINIZIONE | Radice cubica

Si dice **radice cubica** di un numero reale a, e si indica con $\sqrt[3]{a}$, il numero reale che, elevato al cubo, dà come risultato a; in simboli:

$$x = \sqrt[3]{a} \Leftrightarrow x^3 = a$$

ESEMPL

1)
$$\sqrt{8} = 2$$
 ferche $2^3 = 8$

3)
$$\sqrt[3]{\frac{64}{125}} = \frac{4}{5}$$
 ferdie $(\frac{4}{5})^3 = \frac{64}{125}$ 6) $\sqrt[3]{0} = 0$ $\sqrt[3]{1} = 1$ $\sqrt[3]{-1} = -1$

5)
$$\sqrt[3]{-27} = -3$$
 ferch $(-3)^3 = -27$

6)
$$\sqrt[3]{0} = 0$$
 $\sqrt[3]{1} = 1$ $\sqrt[3]{-1} = -1$

TEOREMA 2 | Esistenza delle radici cubiche in R

Ogni numero reale ha esattamente una radice cubica in R.

$$\sqrt[3]{0,001} = \sqrt[3]{\frac{1}{1000}} = \frac{1}{10} = 0.1$$

RADICANDO

INDICE DELLA RADICE

L'INDICE 2 SI OMETTE

Gli indici sono muneri naturali 32