Klausur am 24.03.2012:

Aufgabenstellungen

Die Lösungen aller Aufgaben müssen Sie begründen.

Aufgabe 1

Suchen Sie die kleinste natürliche Zahl, für die die Ungleichung $4n + 3 \le 2^n$ gilt, und beweisen Sie durch vollständige Induktion, dass die Ungleichung auch für alle natürlichen Zahlen, die größer sind als diese, erfüllt ist.

[8 Punkte]

Aufgabe 2

Sei $A_{\lambda}=\begin{pmatrix}1&0&1&0\\2&1&1&2\\\lambda&1&0&1\end{pmatrix}\in \mathrm{M}_{34}(\mathbb{R}).$ Bestimmen Sie (in Abhängigkeit von λ) die Treppennormalform von A_{λ} .

[10 Punkte]

Aufgabe 3

Sei
$$V = \left\{ \begin{pmatrix} a & b \\ -b & c \end{pmatrix} | a, b, c \in \mathbb{R} \right\} \subseteq \mathcal{M}_{22}(\mathbb{R})$$
.

- 1. Beweisen Sie, dass V ein Unterraum von $M_{22}(\mathbb{R})$ ist.
- 2. Bestimmen Sie eine Basis von V.

$$[4+6=10 \ Punkte]$$

Aufgabe 4

Sei $f: M_{22}(\mathbb{R}) \to M_{22}(\mathbb{R})$ diejenige Abbildung, die jeder Matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ die Matrix $f(A) = \begin{pmatrix} a & b+c \\ b+c & d \end{pmatrix}$ zuordnet.

- 1. Beweisen Sie, dass f linear ist.
- 2. Bestimmen Sie Basen von Kern(f) und von Bild(f).

$$[3 + 7 = 10 \ Punkte]$$

Aufgabe 5

Beweisen Sie, dass die durch

$$a_1 = 8$$
, $a_{n+1} = 1 + \sqrt{a_n + 1}$ $(n \in \mathbb{N})$

rekursiv definierte Folge konvergiert. Bestimmen Sie ihren Grenzwert. (Hinweis: Monotonieprinzip, vollständige Induktion.)

[10 Punkte]

Aufgabe 6

Berechnen Sie

$$\int_{1}^{2} \frac{\ln x}{\sqrt{x}} \, dx \; .$$

[8 Punkte]

Aufgabe 7

Untersuchen Sie, für welche $x \in \mathbb{R}$ die Potenzreihe

$$\sum_{n=0}^{\infty} \frac{n^2}{2^n} x^n$$

konvergiert, d.h. bestimmen Sie ihren Konvergenzradius R und begründen Sie, ob für x = -R und x = R Konvergenz oder Divergenz vorliegt.

[8 Punkte]

Aufgabe 8

Sei $f:[0,\infty)\to\mathbb{R}$ definiert durch $f(x)=xe^{-x}$. Bestimmen Sie die Intervalle, auf denen f monoton wachsend beziehungsweise monoton fallend ist. Bestimmen Sie die lokalen Extrema von f.

[8 Punkte]

Aufgabe 9

Gegeben sei die Formel

$$\alpha = (A \vee B) \to (C \vee D)$$
.

Bestimmen Sie eine konjunktive und eine disjunktive Normalform von α und geben Sie jeweils die vorgenommenen Äquivalenzumformungen an.

[8 Punkte]

	obsenstellangen		-
	Funktion	Definitionsbereich	Stammfunktion
	$x \mapsto x^n, n \in \mathbb{N}_0$	\mathbb{R}	$x \mapsto \frac{1}{n+1}x^{n+1}$
	$x\mapsto x^{-n}, n\in\mathbb{N}, n\geq 2$	$\mathbb{R}\setminus\{0\}$	$x \mapsto \frac{1}{-n+1}x^{-n+1}$
	$x \mapsto x^{-1}$	$(0,\infty)$	$x \mapsto \ln(x)$
	$x \mapsto x^{-1}$	$(-\infty,0)$	$x \mapsto \ln(-x)$
	$x \mapsto x^{\alpha}, \alpha \in \mathbb{R}, \alpha \neq -1$	$(0,\infty)$	$x \mapsto \frac{1}{\alpha + 1} x^{\alpha + 1}$
	$x \mapsto \frac{1}{1+x^2}$	\mathbb{R}	$x \mapsto \arctan(x)$
	$x \mapsto \frac{1}{\sqrt{1-x^2}}$	(-1,1)	$x \mapsto \arcsin(x)$
San a	$x \mapsto \exp(x)$	\mathbb{R}	$x \mapsto \exp(x)$
	$x \mapsto a^x, a > 0, a \neq 1$	\mathbb{R}	$x \mapsto \frac{1}{\ln(a)}a^x$
1 2 8	$x \mapsto \cos(x)$	\mathbb{R}	$x \mapsto \sin(x)$
AHA	$x \mapsto \sin(x)$	\mathbb{R}	$x \mapsto -\cos(x)$
tyri T	$x \mapsto \frac{1}{\cos^2(x)}$	$((k-\frac{1}{2})\pi,(k+\frac{1}{2})\pi),k\in\mathbb{Z}$	$x \mapsto \tan(x)$
	$x \mapsto \frac{1}{\sin^2(x)}$	$(k\pi, (k+1)\pi), k \in \mathbb{Z}$	$x \mapsto -\cot(x)$