Independence and Bayesian Networks (Part 2)

Blake VanBerlo

Lecture 8

Readings: RN 13.2. PM 8.3.

Outline

Learning Goals

D-Separation

Constructing Bayesian Networks

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Determine whether an independence relationship holds by applying d-separation.
- Given a Bayesian network and an order of the variables, construct a Bayesian network that correctly represents the independence relationships among the variables.

Learning Goals

D-Separation

Constructing Bayesian Networks

Revisiting the Learning goals

D-Separation

Are two variables X and Y independent given the set of observed variables E?

Definition (D-Separation)

E d-separates X and Y iff E blocks every un-directed path between X and Y.

If E d-separates X and Y, then X and Y are conditionally independent given E.

Blocked Path - Scenario 1/3

If N is observed, then it blocks the path between X and Y.

Blocked Path - Scenario 2/3

If N is observed, then it blocks the path between X and Y.

Blocked Path - Scenario 3/3

If N and N's descendants are NOT observed, then they block the path between X and Y.

Q #1: Are **TravelSubway** and **HighTemp** independent?

Q #1: Are **TravelSubway** and **HighTemp** independent?

Lecturer: Blake VanBerlo

 \rightarrow No.

Q #2: Are **TravelSubway** and **HighTemp** independent given **Flu**?

Q #2: Are **TravelSubway** and **HighTemp** independent given **Flu**?

 \rightarrow Yes.

Q #3: Are **Aches** and **HighTemp** independent?

Q #3: Are **Aches** and **HighTemp** independent?

 \rightarrow No.

Q #4: Are **Aches** and **HighTemp** independent given **Flu**?

Q #4: Are **Aches** and **HighTemp** independent given **Flu**?

 \rightarrow Yes.

Q #5: Are **Flu** and **ExoticTrip** independent?

Q #5: Are **Flu** and **ExoticTrip** independent?

 \rightarrow Yes.

Q #6: Are **Flu** and **ExoticTrip** independent given **HighTemp**?

Q #6: Are **Flu** and **ExoticTrip** independent given **HighTemp**?

 \rightarrow No.

Constructing Bayesian Networks

Constructing Bayesian Networks

For a joint probability distribution, there are many correct Bayesian networks.

 Given a Bayesian network A, a Bayesian network B is correct if and only if the following is true:

If Bayesian network B requires two variables to satisfy an independence relationship, Bayesian network A must also require the two variables to satisfy the same independence relationship.

We prefer a Bayesian network that requires fewer probabilities.

Requiring an Independence Relationship

► Having an edge between two variables DOES NOT mean that the two variables are DEPENDENT.

► The absence of an edge between two variables MEANS that the two variables satisfy an INDEPENDENCE relationship.

Constructing a Correct Bayesian Network

- 1. Order the variables $\{X_1,\ldots,X_n\}$.
- 2. For each variable X_i in the ordering,
 - 2.1 Choose the node's parents:

Choose the smallest set of parents from $\{X_1, \ldots, X_{i-1}\}$ such that given $Parents(X_i)$, X_i is independent of all the nodes in $\{X_1,\ldots,X_{i-1}\}-Parents(X_i)$. Formally,

$$P(X_i|Parents(X_i)) = P(X_i|X_{i-1} \land \cdots \land X_1).$$

- 2.2 Create a link from each parent of X_i to the node X_i .
- 2.3 Write down the conditional probability table $P(X_i|Parents(X_i)).$

Example 1: Construct a Bayes Net

Consider the Bayesian network.

Lecturer: Blake VanBerlo

Construct a correct Bayesian network by adding the variables in the order: W, A, and B.

Example 1: Construct a Bayes Net

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: W, A, and B.

Example 2: Construct a Bayes Net

Consider the Bayesian network:

Lecturer: Blake VanBerlo

Construct a correct Bayesian network by adding the variables in the order: W. G. and A.

Example 2: Construct a Bayes Net

Consider the Bayesian network:

Construct a correct Bayesian network by adding the variables in the order: W. G. and A.

Example 3: Construct a Bayes Net

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: A, B, and E.

Example 3: Construct a Bayes Net

Consider the Bayesian network.

Construct a correct Bayesian network by adding the variables in the order: A, B, and E.

Example 3: Reconstruct the Holmes Scenario Network

Construct a new Bayesian network from the Holmes scenario, using the following order for adding variables: G, W, E, B, A, R.

Constructing a Compact Bayesian Network

- What does an edge mean? Does an edge always represent a causal relationship?
 - → An edge indicates an associational relationship that is not necessarily causal.

- How can we construct a Bayesian network with the smallest number of edges?
 - \rightarrow Cause precedes effect. So add causes first, then effects.

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Determine whether an independence relationship holds by applying d-separation.
- Given a Bayesian network and an order of the variables, construct a Bayesian network that correctly represents the independence relationships among the variables.