Київський національний університет імені Тараса Шевченка

Факультет комп'ютерних наук та кібернетики Кафедра інтелектуальних програмних систем **Тестування Програмного Забезпечення**

Лабораторна робота №1

Виконав:

студент 4-го курсу групи IПС-43 Кіщук Ярослав

Крок 1: Подання прямих у загальному вигляді

У даній лабораторній роботі маємо визначити взаємне розташування трьох прямих, заданих наступними рівняннями:

1. Пряма 1:

$$\frac{x}{a_1} + \frac{y}{b_1} = 1,$$

2. Пряма 2:

$$\frac{x}{a_2} + \frac{y}{b_2} = 1,$$

3. Пряма 3:

$$y = k_3 x + b_3.$$

Метою цього кроку є привести кожне з вищезазначених рівнянь до загального вигляду прямої:

$$Ax + By + C = 0.$$

Перетворення Прямої 1

Почнемо з рівняння прямої 1:

$$\frac{x}{a_1} + \frac{y}{b_1} = 1.$$

Щоб позбутися знаменників, помножимо обидві частини рівняння на добуток a_1b_1 :

$$a_1b_1\left(\frac{x}{a_1} + \frac{y}{b_1}\right) = a_1b_1 \cdot 1.$$

Це дає:

$$b_1x + a_1y = a_1b_1.$$

Перенесемо праву частину в ліву:

$$b_1x + a_1y - a_1b_1 = 0.$$

Таким чином, загальний вигляд прямої 1 має вигляд:

$$A_1x + B_1y + C_1 = 0$$
,

де

$$A_1 = b_1, \quad B_1 = a_1, \quad C_1 = -a_1b_1.$$

Перетворення Прямої 2

Аналогічно розглянемо рівняння прямої 2:

$$\frac{x}{a_2} + \frac{y}{b_2} = 1.$$

Помножимо на добуток a_2b_2 :

$$a_2b_2\left(\frac{x}{a_2} + \frac{y}{b_2}\right) = a_2b_2,$$

що дає:

$$b_2x + a_2y = a_2b_2.$$

Переносимо праву частину:

$$b_2x + a_2y - a_2b_2 = 0.$$

Отже, загальний вигляд прямої 2:

$$A_2x + B_2y + C_2 = 0,$$

де

$$A_2 = b_2$$
, $B_2 = a_2$, $C_2 = -a_2b_2$.

Перетворення Прямої 3

Рівняння прямої 3 задано у вигляді з кутовим коефіцієнтом:

$$y = k_3 x + b_3.$$

Перенесемо всі члени в одну сторону, щоб отримати загальний вигляд:

$$y - k_3 x - b_3 = 0.$$

Можна також помножити рівняння на -1, щоб отримати бажаний стандартний вигляд:

$$k_3x - y + b_3 = 0.$$

Таким чином, загальний вигляд прямої 3:

$$A_3x + B_3y + C_3 = 0$$
,

де

$$A_3 = k_3$$
, $B_3 = -1$, $C_3 = b_3$.

Підсумок

Маємо наступні загальні рівняння для трьох прямих:

1. Пряма 1:

$$b_1x + a_1y - a_1b_1 = 0$$
, ge $A_1 = b_1$, $B_1 = a_1$, $C_1 = -a_1b_1$.

2. Пряма 2:

$$b_2x + a_2y - a_2b_2 = 0$$
, ge $A_2 = b_2$, $B_2 = a_2$, $C_2 = -a_2b_2$.

3. Пряма 3:

$$k_3x - y + b_3 = 0$$
, де $A_3 = k_3$, $B_3 = -1$, $C_3 = b_3$.

Ці перетворення забезпечують однорідне подання прямих у вигляді

$$Ax + By + C = 0,$$

що ϵ основою для подальшого аналізу їх взаємного розташування та обчислення точок перетину.

Крок 2: Класи еквівалентності взаємного розміщення прямих

На цьому етапі необхідно визначити, до якого з п'яти можливих класів взаємного розміщення належать задані прямі. Згідно з умовами лабораторної роботи, існують наступні варіанти:

1. Прямі співпадають

Визначення: Дві прямі (L_i) та (L_j) співпадають, якщо їх коефіцієнти загального рівняння Ax + By + C = 0 пропорційні, тобто

$$\frac{A_i}{A_j} = \frac{B_i}{B_j} = \frac{C_i}{C_j}.$$

Пояснення: Якщо ця умова виконується, то рівняння L_i і L_j є кратними, і, отже, описують одну і ту саму пряму. У випадку, коли принаймні дві з трьох прямих співпадають, результатом розрахунку буде повідомлення «Прямі співпадають», оскільки всі точки однієї прямої є спільними.

2. Прямі не перетинаються (попарно паралельні)

Визначення: Дві прямі (L_i) та (L_j) є паралельними, якщо їх напрямні вектори пропорційні. Алгебраїчно це означає, що визначник

$$D_{ij} = A_i B_j - A_j B_i = 0.$$

При цьому, якщо коефіцієнти C_i і C_j не задовольняють пропорційності (тобто $\frac{C_i}{C_j}$ не дорівнює $\frac{A_i}{A_j}$ чи $\frac{B_i}{B_j}$), прямі не співпадають, а є різними паралельними прямими. **Пояснення:** Якщо всі три прямі попарно паралельні (тобто для кожної пари $D_{ij}=0$) і жодна пара не співпадає, то вони не мають спільної точки перетину. Результатом має бути повідомлення «Прямі не перетинаються».

3. Прямі перетинаються в одній точці (конкурентні прямі)

Визначення: Три прямі називаються конкурентними, якщо всі вони проходять через одну спільну точку. Алгебраїчно це можна перевірити наступним чином:

- 1. Обчислити точку перетину для будь-якої пари прямих, наприклад, для L_1 та L_2 . Позначимо її як (x_0, y_0) .
- 2. Перевірити, чи задовольняє ця точка рівняння третьої прямої L_3 . Якщо підставлення (x_0, y_0) в рівняння L_3 дає істинне рівняння (з урахуванням допуску для чисел з плаваючою комою), то всі три прямі перетинаються в одній точці.

Пояснення: У цьому випадку кожна пара прямих дає однакову точку перетину, що свідчить про наявність єдиного спільного розв'язку системи рівнянь. Результатом має бути повідомлення типу: «Прямі перетинаються в одній точці (x_0, y_0) ».

4. Прямі перетинаються в двох точках

Визначення: Такий випадок виникає, коли:

• Дві з прямих, наприклад, L_1 та L_2 , є паралельними (тобто $D_{12}=0$), а третя пряма L_3 не є паралельною до них (тобто $D_{13} \neq 0$ та $D_{23} \neq 0$).

Пояснення: Оскільки паралельні прямі L_1 і L_2 не перетинаються, а L_3 перетинає кожну з них окремо, отримуємо дві різні точки перетину: одна точка для пари L_1 та L_3 , інша — для пари L_2 та L_3 . Результатом має бути повідомлення типу: «Прямі перетинаються в двох точках (x_1, y_1) та (x_2, y_2) ».

5. Прямі перетинаються в трьох точках

Визначення: Якщо всі три прямі не є паралельними і жодна пара не співпадає, то кожна пара прямих перетинається в окремій точці. Таким чином, отримуємо три різні точки перетину:

 (x_1, y_1) — точка перетину L_1 та L_2 ,

 (x_2,y_2) — точка перетину L_1 та L_3 ,

 (x_3, y_3) — точка перетину L_2 та L_3 .

Пояснення: У цьому загальному випадку кожна пара прямих дає свою унікальну точку перетину. Результатом має бути повідомлення: «Прямі перетинаються в трьох точках $(x_1, y_1), (x_2, y_2)$ та (x_3, y_3) ».

Схематичне подання умов

Для кожної пари прямих L_i та L_j з загальним рівнянням

$$A_i x + B_i y + C_i = 0$$
 to $A_j x + B_j y + C_j = 0$,

визначник

$$D_{ij} = A_i B_j - A_j B_i$$

використовується для перевірки паралельності:

• Якщо $D_{ij} = 0$, то прямі L_i та L_j або паралельні, або співпадають. Для визначення співпадання перевіряється додаткова умова пропорційності:

$$\frac{A_i}{A_j} = \frac{B_i}{B_j} = \frac{C_i}{C_j}.$$

• Якщо $D_{ij} \neq 0$, то прямі перетинаються, і точку перетину можна обчислити за формулами:

$$x_0 = \frac{B_i(-C_j) - B_j(-C_i)}{D_{ij}}, \quad y_0 = \frac{A_j(-C_i) - A_i(-C_j)}{D_{ij}}.$$

Підсумок класифікації

На основі аналізу співвідношень коефіцієнтів і визначників для кожної пари прямих, можна розподілити випадки взаємного розташування на наступні класи:

- 1. **Прямі співпадають:** Виконується умова пропорційності коефіцієнтів для принаймні однієї пари прямих.
- 2. Прямі не перетинаються: Всі три прямі попарно паралельні, але не співпадають.

- 3. **Прямі перетинаються в одній точці:** Усі пари прямих перетинаються, і точка перетину однакова для кожної пари.
- 4. **Прямі перетинаються в двох точках:** Дві прямі (наприклад, L_1 та L_2) є паралельними (тобто не мають спільної точки), а третя (L_3) перетинає кожну з них окремо.
- 5. **Прямі перетинаються в трьох точках:** Жодна з пар прямих не є паралельною, тому кожна пара перетинається в своїй унікальній точці.

Ця класифікація є основою для подальшого алгоритму розв'язання задачі, оскільки від неї залежить як саме будемо обчислювати точки перетину, і яке повідомлення буде виведено користувачу.