HAAR MEASURE § 2.4-2.5. SEPANNIS BOOK SI. h. M, N differentiable millos ₱:M →N differentiable. induces $d\bar{\Phi}: T_{\rho}M \rightarrow T_{\rho}N$ 1€ γ(f) ∈ M e ave. $d_{\rho} \Phi(\dot{\gamma}(0)) := \frac{d}{dt} \Phi(\gamma(t))|_{t=0}$ Take duel spaces $T_p^*M = (T_p^M)^*$ so we also get T*: T*N -> T*M Ashe din M = din N = m alwayer $p^*: \bigwedge^m T^* N \longrightarrow \bigwedge^m T^* M$ EXAMPIS IT Q: UNV at PEM Det A volume form is a map liner bundle on M.

w: M > II / M T M

per

where $\forall p \in M \ O \neq \omega(p) \in \Lambda^m T_p M$ such that it is differentiable. Differentiable nears that $\forall \varphi: V \xrightarrow{\sim} V$ that How to integrate? $9:U^{\sim}V$ dut. f: M -> IR continuous. I is supported on a don't V as before

Op = [x \in M] \f(x) \dagger 0 } $\int_{M} f = \int_{M} f \omega_{M} = \int_{M} f \varphi \omega$ (We mud to restrict to chart with respect to which

g >0) (Con move the condition that f spp. on V by using a pontition of 1)

(NVAPIANT FORMS ON LIB GROUPS.
G lie group, g & & olin G=n
lg: G > G, ng; G > G h > gh h > hg
But A volume from ω on G is soid left-invariant if $f(\omega) = \omega$ (right-inv. if $r_g(\omega) = \omega$) (right-inv. if $r_g(\omega) = \omega$)
Lux Up to mult, by a solon, there exists a migne left invariant volume form on G.
Pf olinte G = n, olin / Te G = 1 we
We can extend it to a global form by setting
$\omega_{g} := l_{g^{-1}}^{*} \omega_{e} \text{all}_{g^{-1}} : T_{g} G \rightarrow T_{e} G$ $l_{g^{-1}}^{*} : \Lambda T_{e} G \rightarrow \Lambda T_{g} G$ $\omega_{e} \text{alg}^{*} : (\omega_{e})$
let's chech that w is left invariant. Yhere Is w = w.
$\forall h \in \mathcal{L} : \omega = \omega.$

If G is corpact we can the integration on G a f: G All continuous I folg:= I where I win the Lun. dy is colled the Haar mesme on G. Lua de is right invariant. Pt Yg, h lg, rh comute. so not a is left invaiant. rgh = (la org + , h =) c: G -> 1R/20} is group hom. (It is corpact =) C(G) is corpact. = C(G)C(-1+1)Co rhw=tw \sim poin any cure $\int t_h^* \omega = \int \omega$ so de is night invoient.

the
$$\forall f: G \rightarrow \mathbb{R}$$

$$f(hg) dg = \int f(g) dg - \int f(gh) dg$$

$$f(hg) dg$$

$$f(hg) dg$$

$$f(hg) dg$$

$$f(gh) dg$$

EXAMPLES OF HAAR MBASURBS.

1) (
$$(R, +)$$
 $dg = dx$ usual Libergu nume $\omega: (R \rightarrow H \rightarrow R, \ni 6: TpR \rightarrow R)$

$$P \rightarrow (V \mapsto V)$$

$$T_{pR} \cong R.$$

$$X \in \mathbb{R}. \quad (2 \times \omega)_{y} (j(6)) = \omega_{xy} (\frac{d}{dt} (x+\gamma(t)))_{to}$$

$$= \omega_{xy} (j(0)) = j(0)$$

$$\omega_{y} (j(0)) = j(0).$$

2)
$$G = (\mathbb{R}^*,)$$
 $dg = \frac{dx}{|x|}$

this cones from the volve for.

 $\omega := \frac{dx}{x} \cdot \mathbb{R}^{\times} \rightarrow \Box T_{p}^{\times} \mathbb{R}^{\times}$
 $p \rightarrow (\gamma(0) \rightarrow \frac{\gamma(0)}{p})$
 $M \in \mathbb{R}^{\times} \cdot (\mathbb{R}^{\times} \rightarrow \mathbb{R}^{\times}) \cdot (\gamma(0)) = (\frac{dx}{x}) \cdot (\frac{d}{dt} \cdot (y_{1}) \cdot (y_{1}) \cdot (y_{2}) \cdot (y_{2}) \cdot (y_{3}) \cdot (y$

.)
$$S' = \{ i^0 | \theta \in \mathbb{R} \} \cong \mathbb{R}/2\pi \mathbb{Z}$$
.

 $d\theta$ is the left invariant for.

 $g(t) \in S'$ we can write $g(t) = e^{iS(t)}$.

 $d\theta(g(0)) = S(0)$.

 $g \in S'$. $(lg^*d\theta)_{R}(g(0)) = [g(0)]_{R}(g(0))_{$

 $\omega_{G} = \frac{\omega_{M}}{(dtA)^{m}}$

Pt We start with an arbitrary scalar product b(-,-) on

The Every f.d. up. of a compact hie group of is a direct on of ineed. up.

Pt V up. of G. If V. ined. V.

If not IWCV G-subrup.

I (-,-) G-inv. scalar product.

V = W D W

Pup let V & co-plex rup. of G and arme $V = V_1 \oplus ... \oplus V_m = V_1 \oplus ... \oplus V_m$. thun m = m', and $\exists G \in S_m S.t.$ $\forall i \ V_i \cong V_G(i)$.

Pf If L is in. up. of G

din
$$Hom_G(L,V) \cong din Hom_G(L,DV_i) =$$
 $= H \{i \mid V_i \subseteq L\}$

$$= \mathcal{H} \left\{ i \left\{ i \left\{ V_{i}^{\prime} \right\} \right\} \right\}$$