Semana II.

¿Qué es un límite?

Es el valor al cual se aproxima una función cuando x tiende a un valor determinado.

-Nosotros trabajaremos con el cálculo analítico de límites determinados del tipo $\frac{0}{0}$ e indeterminados del tipo $\frac{\infty}{\infty}$.

<u>Calculo de límites</u>: Para calcular un límite hay que reemplazar la X por el valor que quiero que se acerque.(o sea el valor al cual tiende X).

Ejemplo 1: Calcular el límite de f (x) = $2x^2 + 3x - 2$ para x tendiendo a -2.

$$2x^2 + 3x - 2$$

Reemplazo x por $-2 \Rightarrow f(x) = 2.(-2)^2 + 3.(-2) - 2 = 2.4 - 6 - 2 = 0$

$$f(x) = 0$$

Ejemplo 2:

 $\frac{3x^2-1}{\sqrt{x+3}}$ \Rightarrow Siempre lo primero que hago cuando tengo que calcular un límite es

Reemplazar X por el valor al cual tiende el límite.

Entonces reemplazando X, nos queda:

$$\frac{3x^2 - 1}{\sqrt{x + 3}} = \frac{3 \cdot (1)^2 - 1}{\sqrt{1 + 3}} = \frac{3 - 1}{\sqrt{4}} = \frac{2}{2} = 1.$$

Limites Indeterminados.

Veamos qué pasa si quiero calcular: $\frac{x^2-1}{x-1}$

 $\frac{x^2-1}{x-1} = \frac{1-1}{1-1} = \frac{0}{0}$ Indeterminado \Rightarrow Esta cuenta que no solo no se puede hacer , sino que , además ,

Entonces la pregunta es: ¿Cuánto da ese límite?

Para hacer eso vamos a tener que resolver la indeterminación .Pero, Antes que nada vamos a ver cuáles son las indeterminaciones más comunes:

• Las indeterminaciones más comunes son:

$$\Rightarrow \frac{\infty}{\infty} \Rightarrow$$
 infinito sobre infinito. $\frac{0}{0} \Rightarrow cero \ sobre \ cero$.

Empecemos a analizar la primera indeterminación, la de $\frac{0}{0}$.

Hay varias maneras de salvar la indeterminación. (a continuación veremos las más comunes).

- Una es factorear el numerador y el denominador para poder simplificar el factor que genera la indeterminación.
- Otra es aplicando regla de Ruffini.
- Y la tercera es multiplicar numerador y denominador por su conjugado.

Volviendo al ejemplo 1:

$$\frac{x^2-1}{x-1} = \frac{0}{0}$$
 \Rightarrow Indeterminado.

Ya sabemos que el límite indeterminado, por lo tanto se debe salvar la indeterminación, para poder calcular el límite. Una de las maneras de Salvar las indeterminaciones era factorear, bueno vamos a ver como se salva la indeterminación del ejemplo, factoreando:

• Vamos a factorear el numerador
$$\Rightarrow \frac{x^2-1}{x-1} = \frac{(x-1)\cdot(x+1)}{x-1}$$

En el numerador aplicamos diferencia de cuadrados, el denominador dejamos como esta porque es la mínima expresión.

- Simplificamos las expresiones iguales.
- Y reemplazando por lo que tiende el límite resulta.

$$\bullet \quad \frac{(x-1)\cdot(x+1)}{x-1} = (x+1) = 2$$

Ejemplo 2 : salvar la indeterminación aplicando Ruffini.

$$\frac{x^3 - 4x^2 + x + 6}{x - 3} = \frac{0}{0} \Rightarrow \text{Indeterminado.}$$

Usando Ruffini:

Resultado:
$$(x^2 - x - 2)$$
. $(X - 3)$

Reemplazando en el numerador y simplificando las expresiones iguales nos queda.

$$\frac{(x^2-x-2) \cdot (x-3)}{(x-3)} = (x^2 - x - 2) = 3^2 - 3 - 2 = 4$$
quedando salvada la indeterminación.

$$3 - \sqrt{x+7}$$

Ejemplo 3: $\frac{3-\sqrt{x+7}}{2-x}$ el caso en que aparecen raíces-

$$\frac{3-\sqrt{2+7}}{2-x} = \frac{0}{0} \Rightarrow \text{Indeterminado}.$$

En este caso como salvamos la indeterminación.

Habíamos dicho que una delas manera de hacer esto era multiplicar numerador y denominador por el conjugado de alguno de ellos.

Entonces multipliquemos a ambos por el conjugado del numerador.

$$\frac{3-\sqrt{x+7}}{2-x} = \frac{3-\sqrt{x+7}}{2-x} \cdot \frac{3+\sqrt{x+7}}{3+\sqrt{x+7}}$$
 Colocamos paréntesis a todo lo que tenga dos términos.

$$\frac{(3-\sqrt{x+7})}{(2-x)}$$
 . $\frac{(3+\sqrt{x+7})}{(3+\sqrt{x+7})}$ Aplicando diferencia de cuadrados en el numerador.

$$\frac{3^2 - (\sqrt{x+7})^2}{(2-x).(3+\sqrt{x+7})} = \text{Simplificando raíz y exponente.} \frac{9-x-7}{(2-x).(3+\sqrt{x+7})} =$$

$$\frac{2-x}{(2-x).(3+\sqrt{x+7})}$$
 Simplificando las expresiones iguales. $\frac{1}{3+\sqrt{2+7}} = \frac{1}{6}$

Ejercitación: Resolver los siguientes limites indeterminados del tipo $\frac{0}{0}$

a)
$$\frac{x^2-16x+63}{x^2-7x}$$
 =

b)
$$\frac{x^2-81}{x^2+27x+162}$$
 =

c)
$$\frac{x^3+8}{x^2-4} =$$

d)
$$\frac{\sqrt{3x} - \sqrt{6}}{x - 2} =$$

e)
$$\frac{x^2-4}{x-2}$$
 =

f)
$$\frac{13 - \sqrt{4x^2 + 69}}{x - 5}$$
 =

g)
$$\frac{x^2+14x+49}{x^2+8x+7}$$
 =

h)
$$\frac{x}{1 - \sqrt{x+1}} =$$

$$i) \frac{x^2 + 3x - 10}{x^2 - 25} =$$

$$j) \frac{x^2 + 10x + 9}{x^2 + 10x + 9} =$$

k)
$$\frac{6-\sqrt{3x+7}}{x-5} =$$

$$1) \frac{x^3 - 1}{x^2 - 1} =$$