Sistemas Distribuídos

6 Sincronização

- Introdução
- Sincronização Interna
- Sincronização Externa

Prof^a Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Introdução

- Problema: ausência de um relógio global em SDs;
- Em um sistema com n computadores, cada um dos n cristais terá uma frequência própria, fazendo com que os n relógios percam seu sincronismo gradualmente.
- Relógios divergem em relação a um tempo de referência Clock drift rate
 - Relógio de Quartzo normal:
 - 10-6 → atraso de 1 segundo a cada 11,6 dias
 - Relógio de Quartzo de precisão:
 - 10-8 \rightarrow atraso de 1 segundo a cada 3 anos e 2 meses
 - Relógio Atômico:
 - 10⁻¹¹ = Atraso de 1 segundo a cada 3000 anos

Profa. Ana Cristina B. Kochem Vendramin

UTC – Tempo Universal Coordenado

- Padrão internacional de tempo baseado no tempo atômico
- Eventualmente atualizado pelo horário astronômico;
- Difundido por estações de rádio por terra e satélite.
 - Computadores com receptores do sinal de rádio podem sincronizar seus relógios.

Acesse: http://www.worldtimeserver.com/

Profa. Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Sincronização Interna x Externa

• Sincronização interna

 Quando os relógios estão sincronizados entre si dentro de um determinado limite.

• Sincronização externa

 Quando os relógios estão sincronizados com uma autoridade externa dentro de um limite.

Profa. Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Sincronização Interna

• Sincronização entre dois processos P1 e P2

- P1 envia o valor de seu relógio t em uma mensagem mediante requisição de P2 ou em um período préestabelecido.
- P2 configura seu relógio para:
- $\bullet\ t + Ttransmiss\~ao_mensagem$
- Precisão de Ttransmissão_mensagem:
 - Prec = Tmax Tmin

Profa, Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Sincronização Interna

- Casos extremos
 - ullet Se P_2 configurar seu relógio para ${\bf t}$ + Tmin
 - Clock Skew = prec (Tmax Tmin) se o tempo para transmitir a mensagem for de Tmax;
 - ullet Se P_2 configurar seu relógio para t+Tmax
 - Clock Skew = prec (Tmax Tmin) se o tempo para transmitir a mensagem for de Tmin.
- Caso médi
 - P2 configura seu relógio para t+(Tmax+Tmin)/2

Profa. Ana Cristina B. Kochem Vendramin. DAINF/UTFPR

Sincronização Externa em Sistemas Assincronos Algoritmo de Christian Cliente Servidor de Tempo Requisição RTT=10 ms • Servidor conectado a uma fonte UTC responde com o tempo de seu relógio. • Cliente configura seu relógio com t+RTT/2 → 10:00:00.010 • Porém, o valor exato seria: 10:00:00.007. Erro: + 3ms Ponfa Ana Cistima B. Rochem Wendramin.

Algoritmo de Christian

- Precisão → ± (RTT/2 Tmin)
 - Quanto mais o RTT se aproximar de Tmin, melhor será a precisão.
 - Clientes podem fazer *n* pedidos ao servidor de tempo e escolher o menor RTT para configurar seu relógio.
- Problemas do algoritmo:
 - Único servidor de tempo;
 - Solução: utilizar vários servidores. Clientes enviam requisição para um endereço multicast e guardam a primeira resposta recebida;
 - Servidores intrusos podem difundir horários falsos.

Profa. Ana Cristina B. Kochem Vendrami

Sincronização Interna em Sistemas Assincronos Algoritmo de Berkeley

- Conjunto de computadores
 - 1 mestre e *n* escravos;
- A cada t unidades de tempo, o mestre faz polling nos seus escravos a fim de obter o valor do relógio de cada um
- Mestre estima o valor do relógio dos escravos observando o RTT → Método de Christian.
- Mestre calcula a média dos valores obtidos, inclusive do seu relógio.

Profa. Ana Cristina B. Kochem Vendramin

Algoritmo de Berkeley

- Mestre elimina todas as leituras maiores que o RTT máximo.
 - Elimina tendência causada por relógios que rodam mais rápido ou mais lento que outros;
- Mestre envia o valor de ajuste dos relógios aos escravos.
- Se o mestre falhar, outro assume seu papel;
- Possui formas de autenticação para evitar ajustes maliciosos.

Profa. Ana Cristina B. Kochem Vendramir DAINF/UTFPR

Algoritmo de Berkeley

• Exemplo: RTT máximo = 10 ms

Comp	Leitura	RTT (ms)	Estimado (t+RTT/2)	Média	Ajustes
Mestre	1:00:05.010	0	1:00:05.010		+0.006
P ₁	.031	6	.034	1:00:05.016	-0.015
P ₂	.000	8	.004		+0.016
P3	.070	20	.080	Desconsidera	-0.054

Profa. Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Referências Bibliográficas

- Coulouris, George; Dollimore, Jean; Kindberg, Tim. Distributed Systems: concepts and design. Third Edition. Addison-Wesley 2001.
- Coulouris, George; Dollimore, Jean; Kindberg, Tim; tradução João Tortello. Sistemas Distribuídos: conceitos e projeto. 4. ed. Bookman 2007.

Profa. Ana Cristina B. Kochem Vendramin

...