Proyecto Reconocimiento

Luis Alberto Ballado Aradias

CINVESTAV UNIDAD TAMAULIPAS

Cd. Victoria, Tamaulipas - 21 de agosto de 2023

Resumen

† Drone Inspections Based on Best Use Cases https://enterprise-insights.dji.com/blog/complete-guide-to-drone-inspections

 Coordinación eficiente para la exploración multi-VANT

1

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos

T

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas

T

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas
- Evasión y coordinación de obstáculos en tiempo real

Ť

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas
- Evasión y coordinación de obstáculos en tiempo real
- Fusion de información (sensores y navegación)

1

Arquitectura híbrida

•

Multi-robots

Beneficios coordinación multi-VANT

- Eficiencia y cobertura
- Redundancia y tolerancia a fallos
- Adaptabilidad a entornos dinámicos
- Distribución de carga de trabajo
- Esfuerzo colaborativo

†

Panorama Planificación de trayectorias

Figura: Clasificación del enfoque de planificación de rutas¹

¹Different Cell Decomposition Path Planning Methods for Unmanned Air Vehicles - A Review ?

Representación del ambiente 3D

Figura: Mapa probabilistico 3D¹

¹Cooperación en robots heterogeneos

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de \mathcal{V} vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía v la necesidad de una exploración eficiente, el objetivo es determinar la travectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de \mathcal{V} vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía y la necesidad de una exploración eficiente, el objetivo es determinar la trayectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

Retos multi-VANT

- Coordinación Establecer comunicación efectiva entre los múltiples VANTs. Intercambiar información relevante. Tener baja latencia en su comunicación.
- Planificación Los VANTs deben coordinar sus movimientos para evitar colisiones y lograr una cobertura eficiente del área objetivo.
- Asignación de tareas Se busca evitar la duplicación de esfuerzos optimizando el uso de recursos disponibles.

General

Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

- ① General Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- Particulares
 - Diseño de solución en base a los algoritmos reportados en la literatura.

① General Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para

- Particulares
 - Diseño de solución en base a los algoritmos reportados en la literatura.
 - Valoración propuesta (simulación de propuesta).

tareas de exploración en interiores.

General

Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

- 2 Particulares
 - Diseño de solución en base a los algoritmos reportados en la literatura.
 - Valoración propuesta (simulación de propuesta).
 - Comparación y análisis (escalabilidad, robustez y recursos computacionales).

Metodología/Cronograma

Estado del Arte

REFERENCIA	REPRESENTACION	BUSQUEDA	Control de trayectoria
?[?]	Octomap	Basado en fronte- ras	Control directo de veloci- dad
?[?]	Cuadrícula egocéntrica	Offline RRT*	Curvas de Bezier
?[?]	mapa 3D-Local y 2D- Global	A*	Progración cuadrática
?[?]	3D voxel array TSDF	A*	Optimización cuadrática
?[?]	Octomap	NBVP	Control directo de veloci- dad
?[?]	Voxel Hashing TSDF	NBVP	Optimización cuadrática
?[?]	Mapa de cuadrícula	Método de marcha rápida	Optimización cuadrática

REFERENCIA	МАРА	Planificador de ru- tas	Control trayectoria
?[?]	Busqueda basada en visibilidad	2D A*	Control MPC
?[?]	Octomap	NBVP	Control directo de velocidad
?[?]	NA	SGBA	Control directo de velocidad
?[?]	KD Tree + Mapa en Vo- xel	Búsqueda en Grafo	Movimientos suaves
?[?]	Octree	RRT	Basado en contornos
?[?]	Octomap HGrid	NBVP	Control directo de velocidad

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- 2 Validación de la solución en un simulador

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- 2 Validación de la solución en un simulador
- 3 Tesis impresa

Bibliografía I

Temporary page!

ETEX was unable to guess the total number of pages correctly. As there

some unprocessed data that should have been added to the final page extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page will g

because LTEX now knows how many pages to expect for this docume