

Mathématiques 2

Oral

PC

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose

$$P_n(x) = 1 + x + x^2 + x^3 + \dots + x^{2n} = \sum_{k=0}^{2n} x^k$$

- 1. À l'aide de l'ordinateur, tracer les courbes des fonctions P_n pour $-2 \leqslant x \leqslant 2$ et $1 \leqslant n \leqslant 10$. On utilisera la commande plt.axis([-2, 2, 0, 5]) afin de cadrer la fenêtre graphique. Que remarquez-vous sur les lieux où P_n atteint un minimum?
- 2. Pour $x \neq 1$ et $n \in \mathbb{N}^*$, montrer que

$$P_n'(x) = \frac{u_n(x)}{(x-1)^2}$$

où \boldsymbol{u}_n est une fonction polynomiale à déterminer.

- 3. Pour $n \in \mathbb{N}^*$, donner l'allure du tableau de variations de la fonction P_n . Montrer en particulier que P_n possède un minimum unique sur \mathbb{R} . Dans la suite, on notera a_n le réel où P_n atteint son minimum.
- 4. Créer une fonction informatique A qui prend en argument un entier $n \in \mathbb{N}^*$ et renvoie une valeur approchée de a_n .
- 5. Représenter graphiquement a_n en fonction de n pour $1 \le n \le 500$. Que peut-on conjecturer sur la limite de cette suite ?
- 6. Déterminer un équivalent simple de la quantité $\ln(2n+1-2na_n)$ puis, en exploitant la relation $P_n{'}(a_n)=0$, en déduire la limite de la suite $(a_n)_{n\in\mathbb{N}^*}$.
- 7. On pose maintenant $a_n = -1 + h_n$. Déterminer un équivalent de h_n lorsque n tend vers $+\infty$.
- 8. On pose $w_n = h_n \frac{\ln n}{2n} \frac{\ln 2}{n}$. À l'aide d'une représentation graphique, conjecturer la nature de la série $\sum w_n$.
- 9. Démontrer le résultat conjecturé à la question précédente.