WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 5:		(11) International Publication Number: WO 94/22787
	A 1	(11) International Publication Number: WV 94/22/6/
C04B 35/58	A1	(43) International Publication Date: 13 October 1994 (13.10.94)
(21) International Application Number: PCT/US9 (22) International Filing Date: 15 February 1994 (1		(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,
(30) Priority Data: 08/039,657 30 March 1993 (30.03.93)	τ	Published With international search report.
(71) Applicant: THE DOW CHEMICAL COMPANY [7 2030 Dow Center, Abbott Road, Midland, MI 4864		
(72) Inventors: GUITON, Theresa, A.; 1605 Crane Court, N MI 48640 (US). MILLS, Lynne, K.; 604 Sylva Midland, MI 48640 (US).	Midlan n Lan	•
(74) Agent: HOWARD, Dan, R.: The Dow Chemical Co- Patent Dept., P.O. Box 1967, Midland, MI 4864 (US).		
	•	*

(54) Title: AN IMPROVED PROCESS FOR SINTERING ALUMINUM NITRIDE TO A HIGH THERMAL CONDUCTIVITY AND RESULTANT SINTERED BODIES

(57) Abstract

Sintered aluminum nitride bodies having a TC of at least 200 W/m.K are prepared by sintering under non-reducing conditions and controlling interrelated parameters such as binder burnout atmosphere, heating rate, sintering temperature, time at sintering temperature, cooling rate and cooling temperature. The sintered bodies may also have a TC in excess of 270 W/m.K.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	ETU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Beam	IT	Italy	PL	Poland
BR	Brazil	JP	lapan	PT	Portugal
BY	Belanus	KE	Kenya	RO	Romania
CA	Canada	KG	Kytgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	
CM	Cameroon	ш	Liechtensein	SN	Slovakia Sanasi
CN	China	LK	Sri Lanka	TD	Senegal
cs	Czechoslovakia	LU	Luxembourg	TG	Chad
CZ	Czech Republic	LV	Larvia		Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
ES	Spain	MG	Madagascar	UA	Ukraine
FI	Finland	MIL	Mali	US	United States of America
FR	France	MIN	Mongolia	UZ	Uzbekistan
GA	Gabon	IATIA	tytorigo ma	VN	Vict Nam

AN IMPROVED PROCESS FOR SINTERING ALUMINUM NITRIDE TO A HIGH THERMAL CONDUCTIVITY AND RESULTANT SINTERED BODIES

TECHNICAL FIELD

The present invention relates generally to a process for preparing sintered aluminum nitride (AIN) bodies and to bodies resulting from the process. The present invention relates more particularly to a process for preparing sintered AIN bodies having a thermal conductivity (TC) in excess of 270 watts/meter®K (W/m®K).

BACKGROUND OF THE INVENTION

AIN is subject to increasing interest as a microelectronic substrate material. With a TC approaching that of berylia (BeO) and a thermal expansion coefficient well matched to silicon, AIN represents an attractive alternative in high power or multi-chip module applications.

At room temperature, single crystal AIN has a theoretical TC of 319 W/m[®]K.

Polycrystalline ceramics tend to have a lower TC than single crystal AIN due to a number of factors. The factors include random orientation of AIN grains, crystalline lattice impurity levels and existence of crystalline grain boundary phases with an even lower TC.

F. Miyashiro et al., in "High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 2, 313-19 (June 1990), suggest that three key technologies are very important if one is to realize the highest TC by sintering. The technologies are: reducing or minimizing oxygen content of AIN powders; proper choice and quantity of additives; and sintering conditions in terms of temperature, time and atmosphere. They suggest that a reducing atmosphere yields the highest TC.

H. Buhr et al., in "Phase Composition, Oxygen Content, and Thermal Conductivity of AIN(Y₂O₃) Ceramics", <u>J. Am. Ceram. Soc.</u> 74[4], 718-723 (1991), disclose sintering cold isostatically pressed cylindrical compacts under a pressure of 0.2 MPa nitrogen. They employ heating rates of 16 to 30 K per minute (K/min).

K. Watari et al., in "Sintering Chemical Reactions to Increase Thermal Conductivity of Aluminum Nitride", J. Mater. Sci. 26, 4727-32 (1991), discuss chemical reactions to increase TC by decreasing oxygen contents during AIN sintering with an Y₂O₃ additive in a reducing nitrogen atmosphere with carbon. They use a heating rate of 15 K/min and report TC values as high as 220 W/m*K.

T. A. Guiton et al., in "Optimization of Aluminum Nitride Thermal Conductivity Via Controlled Powder Processing", Mat. Res. Soc. Symp. Proc., Vol 271, 851-56 (1992), suggest that TC depends strongly on oxygen chemistry and sintering parameters. They disclose two sets of sintering parameters, denominated as "Cycle 1" and "Cycle 2" in Table II (page 852). Cycle 2 includes a heating rate of 2.5°C/min, a sintering temperature of 1850°C, a sintering time of 3 hours, a cooling rate of 1°C/min and a cooling temperature of 1500°C.

US-A 4,847,221 discloses a process for preparing sintered AIN bodies as well as the resultant bodies. The process comprises firing an admixture of AIN powder and one or more rare earth compounds in an amount of 0.01 to 15 wt-% in a reducing atmosphere at a temperature of 1550°C to 2050°C for four hours or more. The resultant bodies have a TC as high as 272 W/m-K.

US-A 4,778,778 reports a particular sintering cycle described in a copending application. The cycle includes: increasing the temperature of a compacted AIN body from room temperature to a sintering temperature at a rate of no more than 250°C per hour (°C/hr); sintering the body in an inert atmosphere at a temperature of 1600°C to 1900°C; and cooling the sintered body at a rate of no more than 300°C/hr. The '778 patent improves upon this cycle by introducing an amount of hydrogen gas along with the inert gas up to a temperature of 1200°C, after which pure inert gas is introduced.

Summary of the Invention

5

One aspect of the present invention is a sintered polycrystalline AIN ceramic body having a TC at room temperature (25°C) of > 270 W/m K.

A second aspect of the present invention is an improved process for preparing a sintered polycrystalline AIN body having a TC of greater than 200 W/m^oK by heating an admixture of AIN powder and at least one powdered sintering aid in the presence of nitrogen gas to a sintering temperature, holding the admixture at that temperature for a period of time sufficient to convert the admixture to a sintered body, and thereafter cooling the body to ambient temperature, characterized by a combination of heating to the sintering temperature at a rate of from > 0°C/min to 6°C/min, maintaining that temperature for a period of time sufficient to convert the admixture to a sintered body having a density of > 95 % of theoretical density, and cooling the sintered body in the presence of a vacuum or an inert gas from the sintering temperature to a temperature of 1400°C at a rate of from > 0°C/min to 6°C/min before cooling the sintered body further to ambient temperature (25°C).

A third aspect of the present invention centers upon the sintered body resulting from the process of the second aspect.

Description of Preferred Embodiments

AlN powder suitable for purposes of the present invention may be of commercial or technical grade. It should not contain any impurities that would have a significant adverse effect upon desired properties of a resulting sintered product. Although some level of impurities is present in commercial powders, that level should be less than that which produces the aforementioned adverse effect.

The AIN powder typically has a bound oxygen content of < 4 wt%. The oxygen content is desirably < 3 wt% and preferably < 2 wt%.

WO 94/22787

10

20

.35

The AIN powder also typically has a surface area (SA), measured by conventional B.E.T. absorption methods, of from 1.5 to 10 square meters per gram (m²/g). The powder SA is desirably from 2 to 9 m²/g.

AIN powder meeting these specifications is preferably prepared either by carbothermal reduction of alumina (Al₂O₃) or direct nitridation of aluminum metal. AIN powders may also be prepared by other processes using aluminum alkyls or aluminum halides. Preferred carbothermal AIN powders are available from The Dow Chemical Company under the trade designation XUS 35544 and XUS 35548 or Tokuyama Soda under the trade designations Grade F and Grade H. Mixtures of these and other powders may also be used.

The AIN powder may be mixed with any of the art-recognized sintering aids such as, for example, oxides or fluorides of metals selected from: yttrium; rare earth metals such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, and dysprosium; and alkaline earth metals such as calcium, strontium and barium. A combination of sintering aids may be used in place of a single sintering aid. Yttrium compounds, particularly yttria (Y2O3), 15 yield satisfactory results.

The sintering aid or combination of sintering aids is suitably admixed with AIN powder in an amount of from 0.05 to 10 wt%, based upon combined weight of sintering aid and AIN powder. The amount is desirably from 0.05 to 3 wt%. The sintering aid preferably has a SA similar to that of the AIN powder.

Preparing an admixture of AIN powder and the sintering aid(s) may be carried out by conventional procedures such as attritor milling and wet and dry ball milling. Wet ball milling with an appropriate solvent and suitable milling media provides satisfactory results. Milling media, usually in the form of cylinders or balls, should have no significant adverse effect upon admixture components or upon sintered bodies prepared from the admixture. A liquid 25 milling or mixing medium such as ethanol, heptane or another organic liquid may be used. After mixing, the milling medium may be removed by conventional procedures to yield an admixture suitable for conversion to ceramic greenware. Oven drying and spray drying produce satisfactory results.

An organic binder may also be used during processing of the admixture into a sintered body. Suitable binders are well known in the art and typically comprise high molecular weight organic materials that are soluble in organic solvents. Illustrative binders include polyethyloxazoline, industrial waxes such as paraffin, highly viscous polyglycols, polymethylmethacrylate and polyvinyl butyral. Polyethyloxazoline is particularly suitable. The binder is suitably added to admixture components prior to milling.

Ceramic greenware may be prepared by any one of several conventional procedures such as extrusion, injection molding, die pressing, isostatic pressing, slip casting, roll compaction or forming or tape casting to produce a desired shape. Particularly satisfactory results are obtained by dry pressing a spray dried admixture or tape casting a slurry.

The ceramic greenware is desirably subjected to conditions sufficient to remove the organic binder prior to sintering. Binder removal, also known as binder burn out, typically occurs by heating the greenware to a temperature that ranges from 50 to 1000°C to pyrolyze, or thermally decompose, the binder. The temperature varies depending upon the binder.

Thermal decomposition may be carried out at or near ambient pressure or in a vacuum. It may be carried out in the presence of atmospheric air or in a nonoxidizing atmosphere that is desirably established with an inert gas. The inert gas is suitably nitrogen, a source of nitrogen such as ammonia, or a noble gas such as argon. The inert gas is preferably nitrogen. As a general rule, binder burn out in the presence of an inert gas yields a higher residual carbon level than binder burn out in the presence of atmospheric air. Binder burnout in the presence of nitrogen is preferred for purposes of the present invention.

Sintered polycrystalline AIN bodies having a TC of > 200 W/m
K are suitably prepared under nonoxidizing conditions by combining several, interrelated sintering parameters. The parameters are heating rate, sintering temperature, time at sintering temperature, cooling rate, cooling temperature, cooling environment and type and amount of sintering aid.

Sintering of the greenware occurs in the presence of gaseous nitrogen or a source of gaseous nitrogen and is followed by cooling in a nonreducing environment. The latter may be established by using either an inert gas or a vacuum. The inert gases described as suitable for binder burn out are also suitable for use in this aspect of the process. One means of establishing a nonreducing environment, at least in part, includes placing the greenware into a crucible fabricated from a nonreducing material prior to sintering and cooling. The nonreducing material is desirably selected from boron nitride (BN), AIN, molybdenum metal, and tungsten metal. BN and AIN are preferred nonreducing materials for a graphite furnace.

Molybdenum metal or tungsten metal are preferred nonreducing materials for a tungsten furnace.

Because the parameters of heating rate, cooling rate, sintering temperature, time at sintering temperature, cooling temperature and amount and type of sintering aid are closely interrelated, several, but not all, parameter combinations lead to a TC of 200 W/meK or more.

As an additional consideration, a given combination of parameters may produce such a TC in one AIN powder but not in another. This disparity stems from variations in powder properties, particularly impurity levels, and in methods of synthesizing powders as in carbothermal synthesis versus direct nitridation. As a further consideration, differences in binder burn out atmosphere lead to modifications of desirable parameter combinations.

Using a single AIN powder as an example, various parameter combinations for nitrogen binder burn out (BBO) and air BBO that produce a TC \geq 200 W/m $^{\circ}$ K or more using 3 wt% Y₂O₃ as a sintering aid are shown in Table I. The AIN powder is commercially available from The Dow Chemical Company under the trade designation XUS 35548 and has the

following specification: an oxygen content of 0.8 \pm 0.2 wt%; a carbon content \leq 0.08 wt%; a silicon content \leq 100 parts per million (ppm); a calcium content \leq 200 ppm; an iron content \leq 35 ppm; and a SA of 2.8 \pm 0.2 m²/g.

Parameter combinations for nitrogen BBO that produce a TC \geq 270 W/m $^{\bullet}$ K using the same AlN powder and either 2 or 3 wt% Y₂O₃ as a sintering aid are shown in Table II. The amount of Y₂O₃ varies in direct proportion to the AlN powder's oxygen content. In other words, with an oxygen content at or near 0.6 wt%, 2 wt% Y₂O₃ suffices whereas an oxygen content at or near 1 wt% requires as much as 3 wt% Y₂O₃. The actual level of sintering aid is tied, at least in part, to residual carbon levels and may be readily determined without undue experimentation.

Table I

		1 a c			
Condi- tion	BBO Atmos- phere	Sinter Temp (°C)	Sinter Time (min.)	Heat Rate (°C/min)	Cool Rate (°C/min)
.1	N ₂	1817	165	≦1.2	≦ 5.4
2	N ₂	1817	165	≦0.6	≦ 5.4
3	N ₂	1817	165	≦5.4	0.1
4	N ₂	1817	165	≦ 5.4	. ≦ 1.1
5	N ₂	1817	≦278 .	≦ 5.4	0.1
6	N ₂	1862	165	≦5.4	≦ 5.5
7	N ₂	1908	238	≦2.3	≦ 5.5
8	N ₂	1908	238	≦1.6	≦ 5.5
9	N ₂	1908	≧ 133	1.6	. ≦ 5.5
10	N ₂	1908	165	≦ 5.4	≦0.5
11	N ₂	1908	165	3	≦ 1.1
12	N ₂	1908	165	0.6	≦ 5.5
13	Air	1862	165	≦ 1.3	0.1
14	Air	1862	165	≦0.8	≦0.5
15	Air	1862	165	≦0.6	≦0.5

15

20

25

10

15

20

30

35

Table II

Condi- tion	Sinter Temp (°C)	Sinter Time (min.)	Heat Rate (°C/min)	Cool Rate (°C/min)	Cool- ing Temp (°C)
1	1850-1875	80-180	0.6	0.1	≦1650
2	1850-1875	80-180	0.6	≦0.2	≦1275
3	1850-1875	80-180	8.0	0.1	≦1275
4	1850-1875	80-180	≦1.4	0.1	1160
5	1850-1875	80-180	≦ 1.7	0.1	1160
6	1850-1875	80-180	0.6	≦0.6	1160
7	1850-1875	80-180	0.6	≦0.4	1160
8	1850-1875	80-180	≦1	0.4	1160
9	1863	165	≦3	0.1	≦ 1400

The combinations shown in Tables I and II are particularly suitable when the powder is XUS 35548 (The Dow Chemical Company). Some modification of the combinations may be needed depending upon factors such as oxygen content of the AIN powder, residual carbon content of the AIN greenware and amount and type of sintering aid present in the greenware. If, for example, the powder has an oxygen content at or near the upper limit of the specification and the amount of Y_2O_3 is 3 wt% in Table I or 2 wt% in Table II, modification may be necessary only for condition 9 of Table II. As another example, modification of conditions 1, 7, 9, 11 and 14 of Table I may also be necessary when such a powder is used in combination with a lesser amount, such as 2 wt%, of Y_2O_3 . The modification, particularly with respect to Table I, may be as simple as lowering the upper limit of the cooling rate by $< 1^{\circ}$ C/min. If the same powder has an oxygen content at or near the lower limit of the specification, the lesser amount of Y_2O_3 may be used with little or no modification of the combinations shown in Tables I and II. Further modifications may be made without undue experimentation.

The combinations shown in Tables I and II generally suffice to yield a sintered body having a density of > 95% of theoretical density. The density is desirably $\ge 97.5\%$, preferably $\ge 99\%$ and more preferably $\ge 99.5\%$ of theoretical density.

Sintered AIN bodies prepared under nonreducing conditions in accordance with the process of the present invention have a TC of ≥ 200 W/m $^{\circ}$ K. The TC is desirably ≥ 240 W/m $^{\circ}$ K, preferably ≥ 270 W/m $^{\circ}$ K, more preferably ≥ 274 W/m $^{\circ}$ K. The TC is also desirably ≤ 319 W/m $^{\circ}$ K. A TC of ≤ 285 W/m $^{\circ}$ K is readily attainable.

Sintered AIN bodies prepared as described herein also display color/translucency combinations that range from light cream and translucent to dark gray or even black and opaque. Surface appearance, also known as mottling (marked with spots or blotches of different color or shades of color as if stained), varies from a high degree of mottling to an absence of visually detectable mottling. Skilled artisans can attain a desired combination of color, degree of mottling and TC without undue experimentation.

The following example is solely for purposes of illustration and is not to be construed, by implication or otherwise, as limiting the scope of the present invention. Example

Ceramic greenware was prepared from admixtures of 2000 g quantities of various AIN powders, either 2 or 3 wt% (41 g or 62 g) Y₂O₃ (Molycorp, 99.99% purity) and 6.7 wt% (134.2 g) of a binder composition. The binder composition was a 33/67 weight ratio blend of polyethyloxazoline and polyethylene glycol 3350 (The Dow Chemical Company). The binder was dissolved in 3000 g of ethanol after which the AIN and Y2O3 powders were added. The 15 admixtures were ball milled for five hours. The solvent was removed by spray drying.

Table III. Powder Data

Powder . ID	0 (wt %)	C (wt %)	Si (ppm)	Ca (ppm)	Fe (ppm)	S.A. (m²/g)
Α	0.63	0.03	77	158	17	2.75
В	1.04	0.05	74	107	17	2.86
С	1.19	0.05	94	189	28	3.33
D	1.25	0.04	<20	84	<10	3.67
Е	0.91	0.03	36	220	<10	2.72

25

30

35

20

10

The dried powders were dry pressed into greenware using a 7/8 inch (2.2 cm) round die under uniaxial pressure at 6.9 megapascals (MPa). The binder composition was removed from the greenware in the presence of either air (air 880) or nitrogen (N₂ 880). Binder removal employed a heating rate of 2°C/min up to 550°C, a one hour hold at that temperature and a cooling rate of 2°C/min down to room temperature (25°C).

The AIN powders and their chemical composition are shown in Table III. AIN powders A and B were different lots of powder commercially available from The Dow Chemical Company under the trade designation XUS 35548. AIN powder C was a powder commercially available from The Dow Chemical Company under the trade designation XUS 35544. AIN powders D and E were commercially available from Tokuyama Soda Co., Ltd. as, respectively, grades F and H.

20

25

30

35

A BN box measuring 7.5 inch by 4.5 inch by 3.5 inch (19.0 cm by 11.4 cm by 8.9 cm) was used as a container to establish a non-reducing environment. The greenware resulting from binder removal was placed in BN setters, one for air BBO and one for N_2 BBO. A one cubic foot (0.028 cubic meter) graphite furnace (Thermal Technology Model 121212G) was used for sintering.

The conditions that were used for sintering are shown in Table IV. Table V shows the results of sintering N₂ BBO greenware. Table VI shows the results of sintering air BBO greenware. Column headings in Tables V and VI, such as A-3 or B-2 refer to the AIN powder type (Table III) before the hyphen and the amount of sintering aid, in wt%, after the hyphen.

Two TC values are shown for most sintering runs in Tables V and VI. This reflects measurements made on two different pieces of greenware made from a single admixture and sintered at the same time.

Table IV. Sintering Package Design

Table IV. Sintering Package Design						
Sinter- ing Run	Heating Rate (°C/min)	Soak Temper- ature (°C)	Soak Time (minutes)	Cooling Rate (°C/min)	Cooling Temper- ature (°C)	Total Time (hours)
1	1	1825	300	0.5	1600	26
2	3	1862	165	2.8	1400	12.8
3	5	1825	30	5	1200	8.3
4	5	1900	30	5	1600	8.6
5	3	1862	165	2.8	1400	12.8
6	1	1900	300	5	1600	20.9
7	3	1862	329	2.8	1400	16.7
8	5	1900	30	0.5	1200	30.9
9	5	1825	30	0.5	1600	13.7
10	1	1900	30	5	1200	17.8
11	3	1862	1	2.8	1400	11.3
12	. 3	1862	165	2.8	1157	14.2
13	3	1862	165	0.1	1400	88
14	5	1825	300	5	1600	11.4
15	5	1825	300	0.5	1200	31.6
16	5	1900	300	0.5	1600	21.2
17	3	1862	165	2.8	1643	11.3

-8-

Table IV. Sintering Package Design

Sinter- ing Run	Heating Rate (°C/min)	Soak Temper- ature (°C)	Soak Time (minutes)	Cooling Rate (°C/min)	Cooling Temper- ature (°C)	Total Time (hours)
18	3	18623.0	165	2.8	1400	12.8
19	5	1900	300	5	1200	13.3
20	1	1825	30	0.5	1200	35
21	3	1817	165	2.8	1400	13.4
22	0.6	1862	165	2.8	1400	26.8
23	1	1825	300	5	1200	20.7
24	1	1900	30	0.5	1600	25.6
25	3	1908	165	2.8	1400	14.5
26	1	1825	30	5	1600	14.8
27	3	1862	165	5.5	1400	11.4
28	3	1862	165	2.8	1400	12.8
29	5.4	1862	165	2.8	1400	11.2
30	1	1900	300	0.5	1200	43.1

15

10

25 .

30

Table V. Measured Thermal Conductivities (W/m•K) for Sintered Parts Prepared From Nitrogen Debindered Greenware

	_					
Sintering Run	A-2	B-2	B-3	C-3	D-3	E-3
1	223-231	211-225	200-208	206-220	206	200-205
2	217-218	208-213	208-212	206-211	206	197-198
3	189-193	189-195	192-196	183-184	189	180-182
4	181-181	160-164	180-181	173-174	180	188-189
5	218-223	215-219	213-217	217-218	224	207-214
6	228-238	224-233	221-228	226-231	219	207-214
7	202-208	182-189	203-205	189-194	200	208-208
8	201-202	184-185	204-209	204-207	199	205-208
9	208-210	214-215	208-210	210-213	214	204-206
10	213-225	209-213	205-206	209-212	214	198-198
11	182-186	165-167	181-181	177-181	182	192-195
12	233-233	216-223	218-219	214-222	230	216-219
13	269-274	258-267	274-277	260-270	285	256-263
14	214-221	206-206	208-213	205-205	210	202-199
15	181-200	187-206	212-212	186-194	207	208-208
16	204-208	206-207	201-204	197-200	211	198-199
17	213-217	215-215	209-213	206-209	216	202-204
18	217-220	221-223	212-214	207-209	226	205-205
19	228-231	232-236	221-228	216-220	253	216-217
20	242-245	244-244	245-247	236-236	240	229-229
21	189-195	177-178	187-193	177-182	189	193-198
22 2	222-231	225-230	222-224	220-222	217	214-215
23 2	223-223	217-227	216-219	213-217	223	208-208
24 2	37-238	225-228	221-225	223-224	225	214-222
25 1	93-196	180-186	199-203	192-193	196	196-202
26 1	97-203	197-199	198-200	191-193	190	184-185
27 2	08-210	202-203	208-215	205-206	205	198-199

10

15

20

25

30

Table V. Measured Thermal Conductivities (W/m-K) for Sintered Parts Prepared From Nitrogen Debindered Greenware

Sintering Run	A-2	B-2	B-3	C-3	D-3	E-3
28	217-220	202-203	205-207	206-207	203	202-203
29	218-220	200-204	211-217	206-210	203	202-205
30	235-235	225-233	227-228	229-235	235	218-221

5

15

20

25

30

10

15

20

25

30

Table VI. Measured Thermal conductivities (W/m•K) For Sintered Parts Prepared From Air Debindered Greenware

						
Sinterin Run	9 _{A-2}	B-2	B-3	C-3	D-3	E-3
1	178-179	158-166	180-185	179-187	182	182-183
2	160-163	153-155	171-172	167-175	164	169-170
3	153-153	134-135	161-164	162-164	161	158-162
4	138-141	125-125	161-161	147-148	148	160-161
5	163-166	154-155	179-181	169-170	175	173-177
6	182-187	169-177	186-189	188-189	183	182-185
7	157-160	144-145	175-179	160-163	167	173-173
8	162-164	152-155	179-182	167-170	168	181-185
9	182-183	159-166	185-194	184-189	182	178-179
10	165-166	153-153	180-183	168-169	171	175-177
11	146-147	120-123	162-163	154-159	159	164-166
12	167-167	156-160	186-188	181-182	168	180-184
13	207-211	198-200	217-217	214-214	218	206-207
14	177-182	162-165	179-182	181-184	183	178-186
15	179-185	169-170	185-189	172-177	175	188-194
16	138-141	125-134	149-152	133-140	131	135-147
17	159-161	148-151	172-177	163-164	162	162-173
18	161-164	154-156	175-176	164-168	164	171-176
19	171-180	165-170	179-181	171-179	193	180-184
20	177-189	178-184	192-193	186-192	180	192-199
21	165-168	140-139	171-174	170-178	177	172-175
22	172-173	160-162	186-187	175-178	175	179-183
23	176-176	166-172	185-190	175-177	189	182-190
24	177-179	175-182	190-191	178-186	176	185-186
25	156-157	145-148	175-179	159-161	163	172-175
26	167-167	149-150	169-175	174-176	177	170-171
27	161-162	153-154	174-182	165-196	173	174-175

Table VI. Measured Thermal conductivities (W/m²K) For Sintered Parts Preparad From Air Debindered Greenware

Sintering Run	A-2	B-2	B-3	C-3	D-3	E-3
28	164-167	156-159	181-181	174-175	177	178-181
29	165-165	153-158	175-181	170-170	170	177-180
30	188-196	181-185	200-200	187-194	195	192-192

5

15

20

25

30

The data in Table V show that a TC ≥ 200 W/m®K was readily attainable under most of the sintering conditions of Table IV. In fact, sintering run 13 provided TC values of 270-285 W/m®K for several powders. Sintering runs 3, 4, 11 and 21 were notable exceptions in that the sintering conditions failed to yield any sintered materials with a TC ≥ 200 W/m®K.

Sintering runs 14, 25 and 26, for example, showed that some variability in TC was present even when two pieces of substantially identical greenware were subjected to the same sintering conditions. Sintering runs 2, 7, 8, 10, 15, 16 and 27 showed that variations in powder properties lead to differing results under identical sintering conditions. Based upon the number of sintering run/powder combinations that do provide a TC ≥ 200 W/m®K, combinations that do not are readily modified to at least that level by skilled artisans without undue experimentation.

The data in Table VI show that a TC ≥ 200 W/m°K was rarely attainable under the conditions shown in Table IV. The success of sintering run 13 suggests that a skilled artisan might make modifications such as an increase in amount of sintering aid or a decrease in cooling rate, heating rate or both to achieve a TC ≥ 200 W/m°K. A comparison of run 13 from Table V with run 13 from Table VI suggests that a TC of ≥ 270 W/m°K may not have been attainable when an air BBO procedure was used with those combinations. However, with elevated levels of Y₂O₃ or some other appropriate sintering additive, such TC's may be possible.

Analysis of all of the sintered bodies, including those having a TC > 270 W/m^oK, by powder X-ray diffraction and electron microscopy revealed the presence of crystalline AIN and secondary boundary phases: The boundary phases contained Y₄Al₂O₉, YAlO₃ or both. The boundary phase was along grain boundaries, at triple points or both. The analysis did not reveal the presence of yttrium nitride.

Similar results are expected with these powders and the sintering conditions of Tables I and II. Although some changes in sintering conditions may be required, similar results are also expected with other AIN powders.

30

CLAIMS:

- 1. An improved process for preparing a sintered polycrystalline aluminum nitride body having a thermal conductivity of greater than 200 watts/meter®K by heating an admixture of aluminum nitride powder and at least one powdered sintering aid in the presence of nitrogen gas to a sintering temperature, holding the admixture at that temperature for a period of time sufficient to convert the admixture to a sintered body, and thereafter cooling the body to ambient temperature, characterized by a combination of heating to the sintering temperature at a rate of from greater than 0°C per minute to 6°C per minute, maintaining that temperature for a period of time sufficient to convert the admixture to a sintered body having a density of greater than 95 percent of theoretical density, and cooling the sintered body in the presence of a vacuum or an inert gas from the sintering temperature to a temperature of 1400°C at a rate of from greater than 0°C/minute to 6°C/minute before cooling the sintered body further to ambient temperature.
- 2. A process as claimed in Claim 1, wherein the admixture is converted to ceramic greenware prior to sintering.
- 3. A process as claimed in Claim 1, wherein cooling is accomplished in the presence of an inert gas that is selected from nitrogen, argon and helium.
- 4. A process as claimed in Claim 1, wherein the rate of cooling is from 0.1°C/minute to 5.5°C/minute.
- A process as claimed in any of Claims 1-4, wherein the sintered body is further present in a non-reducing environment during cooling in the presence of a vacuum or an inert gas.
- 6. A process as claimed in Claim 5, wherein the non-reducing environment is established by placing the admixture into a crucible fabricated from a non-reducing material prior to sintering and cooling, the non-reducing material being selected from boron nitride, aluminum nitride, molybdenum metal and tungsten metal.
 - 7. A process as claimed in Claim 1, wherein the sintering temperature is within a range of from 1817 to 1908°C.
- 8. A sintered polycrystalline aluminum nitride body prepared by the process of any of Claims 1-7 and having a microstructure characterized by a crystalline aluminum nitride phase and secondary grain boundary phases and a thermal conductivity between 270 and 319 watts/meter®K.
 - 9. A sintered body as claimed in Claim 8 wherein the grain boundary phases comprise at least one yttrium-aluminate selected from $Y_4AI_2O_9$ and $YAIO_3$.
 - 10. A sintered body as claimed in Claim 8 or Claim 9, wherein the grain boundary phases are located along grain boundaries, at triple points or both.
 - 11. A sintered body as claimed in Claim 10, wherein the thermal conductivity is 274 watts/meter*K or greater.

INTERNATIONAL SEARCH REPORT

Intern. Lal Application No PCT/US 94/01688

A. CLA	SSIFICATION OF SUBJECT MATTER		101/03/34/01088
IPC 5	5 C04B35/58		
Accordin	ig to International Patent Classification (IPC) or to both national	classification and IPC	
B. FIEL	DS SEARCHED		
IPC 5	n documentation searched (classification system followed by classification	ssification symbols)	
D-			
Documen	tation searched other than minimum documentation to the exten	t that such documents are incl	uded in the fields searched
Electronic	data hase compiled them a the in-		
	data base consulted during the international search (name of da	ta base and, where practical,	search terms used)
1			
l			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category *		the relevant names	
	o appropriate, or	uit reitvalit passages	Relevant to claim No.
A	US,A,4 952 535 (G.A. MERKEL) 2	8 August	1-7
	see claims 1-15,26,52; figure	2	
A	JOURNAL OF MATERIALS SCIENCE		1-11
	vol. 3, no. 2 , June 1992 , LO	NDON, GB	1 11
	pages 93 - 101 XP275448 W.E. LEE ET AL. 'Relation between		
	conductivity, sintering mechan	en thermal	
	microstructure of AlN'	ram and	1
	see page 94; table II		
		,	
		-/	
]	•		
1		•	1
			*
1			
			ļ
	er documents are listed in the continuation of box C.	Y Patent family me	mbers are listed in annex.
Special cate	gories of cited documents:	"T" later doors	had after the internal of the first
A* documer	nt defining the general state of the art which is not red to be of particular relevance	or billottich dare and i	hed after the international filing date not in conflict with the application but
E' carlier de	ocument but published on or after the international	macunou	ne principle or theory underlying the
L' documen	at which may throw doubts on priority doings on	CONTROL DE COUZIGELEO	ar relevance; the claimed invention novel or cannot be considered to
diation	or other special reason (as specified)	Y document of particula	step when the document is taken alone ar relevance; the claimed invention
O' document other me	at referring to an oral disclosure, use, exhibition or	document is combine	d with one or more other such docu-
P* documen	it published prior to the international filing date but	in the art.	non being obvious to a person skilled
	n the priority date claimed Tual completion of the international search	'&' document member of	
	compression of the international search		international search report
3 .	June 1994	17.	06. 94
ame and ma	iling address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Hauck, H	
		1	

Form PCT/ISA/210 (second sheet) (July 1992)

J 1

INTERNATIONAL SEARCH REPORT

Intern. al Application No
PCT/US 94/01688

2	PCT/US 94/01688	
C.(Continu	aon) DOCUMENTS CONSIDERED TO BE RELEVANT	
801 y	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	JOURNAL OF THE CERAMIC SOCIETY OF JAPAN vol. 97, no. 12 , December 1989 , TOKYO, JP pages 1486 - 1493 XP140502 M. OKAMOTO ET AL. 'Effect of microstructure on thermal conductivity of AlN ceramics' see figure 1; table 1	1-11
	see rigure 1, cable 1	
		·
		40
	•	-

INTERNATIONAL SEARCH REPORT

information on patent family members

Interr. al Application No

Patent document cited in search report Publication date Patent family member(s) Publication date

US-A-4952535 28-08-90 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)