Cryptographic Algorithms and Protocols Exercise A (2022)

Student Name:			Student No.:								
Question No.	I	II	III	IV	V	Total Score					
Score											
I. Blank Filling	(Please w	rite the	answer	above the	e line.)						
1) Suppose Bob generated by the	receives a	cipherte	xt ZHZ the plaint	ZLOOPHI ext is	IWDWP						
bits and_	has block le	ength	bits, and	d three allo	wable ke	y lengths:bits,					
	design strat					rd construction, SHA-3 oduce a message diges					
		_	•	secure ha	sh function	on is 224 bits since the					
birthday attack				<i>5</i> (7 9)		~.					
6) Suppose that π					as follow	S.					
$\frac{\lambda}{\pi(x)}$	1 2 3 2 5 1	Q 2	7 1 6								
Then the inverse	-										
II. Multiple Ch	-										
1) The number of a A. n	all different n^2		ons of {1,2 D.		().					
C. chosen 3) There are four n	ext only atta plaintext at nodes of ope	ick tack eration dev	B. know D. chose veloped for	n plaintext n ciphertex	attack t attack	weakest one? (). zed in FIPS Publication					
81 in 1980. The			•). D ^	ounter m	ode					
	nic codeboo feedback mo	,	· ·			edback mode (OFB)					

4) T1 C II	1 A1 '-1 CII	. 1	11 1 6	· 1	1' 4	
4) The Secure Has	sh Algorithm SHA bits.	A-1 is an iterate	ed hash func	tion, whose mess	sage digest	
A. 128	B. 160	C. 224	D. 256			
5) The number of Euler phi-func		that are small oted by $\phi(n)$.	er than <i>n</i> an If an integer	r a is relatively p	orime to n ,	then
respectively?					()
A. 12, 9	B. 12,	13 C	. 10, 9	D. 10, 13		
6) Shannon prove	ed the uncondition	nally security of	of the One-T	Time Pad in 1949	9. Which o	f the
following desc	riptions for the O	ne-Time Pad is	wrong?		()
A. The C	ne-time Pad prov	ides perfect sec	crecy.			
B. Each l	key of the One-Ti	me Pad is used	for only one	e encryption.		
C. The C	One-Time Pad is	vulnerable to a	known-plai	ntext attack sinc	e the key l	k can
be cor	nputed easily.					
D. The ar	mount of key is si	naller than the	amount of p	laintext.		
7) Among the following	lowing Secure Ha	sh Algorithms	, which is ad	lopted as a stand	ard by NIS	T on
August 5, 2015					()
A. SHA-			C. SHA-3	D. SHA-0	1 .	
8) Among the fol by NIST on 200	-	hich is based of	on hash func	tions and adopte	ed as a star (ıdard)
A. DDA	B. HMAC		BC-MAC	D. CMAC		
9) Which of the f II?	following ciphers	is a mechanica	ıl cipher and	was widely use	d in World (War
A. Spartan Sc	cytale Cipher	B. Caesar	Cipher			
C. Enigma		D. Bombe				
10) Stream Ciphe		• 11	ications. An	nong the following	ng descript	ions,
•	practical stream c d in keystream ge	•			()
	tent Scramble Sys		VD encrynti	ion		
`	GSM encryption	,	v D cherype	1011		
	Bluetooth encry					
E. RC4 used						
III. True-False	e (Please deter	mine the tru	th of each	description.)		
1) The Shift Ciphe	er is a kind of Syr	nmetric Crypto	system.		()
2) The Kerckhoffs				• •	•)
3) Let $y=DES(x, y)$	· -		_	-	_	
	and c[•] der	ote the bitw	use comple	ment of its a	rgument.	Then
c[y]=DES(c[x],		a <mark>unkayad</mark> hash	functions		()
4) Message auther5) A Las Vegas al				nay fail to give a	n answer 1) nut if
,	loes return an ans	_		•	u ())

- 6) The cryptographic tools that help to achieve integrity of data include Message Authentication Codes (MACs), Signature Schemes and Hash Functions.
- 7) Different from the MD4, MD5, SHA-0, SHA-1 that were designed by the Merkle-Damgard construction, SHA-2 was designed by the sponge construction, which can produce a message digest of arbitrary length.
- 8) DES is the first encryption standard in the world that is a block cipher and was developed in 1970s. In DES, the design of S-boxes that is the sole non-linear component is vital to the security since it introduce difficulties in linear cryptanalysis and differential cryptanalysis.
- 9) The S-box in AES can not only be represented by a 16 by 16 array, but also can be defined algebraically by introducing the concept of finite field, which provides security against differential and linear attacks.
- 10) Most modern block ciphers are designed iteratively and incorporate the substitution-permutation network (SPN). DES is such an iterated cipher with 10 rounds encryptions.
- 11) The conditional entropy H(K|C), called the key equivocation, is a measure of the amount of uncertainty of the key remaining when the plaintext is known. ()

IV. Answer Questions.

- 1) Consider the Affine Cipher over Z_{55} . Suppose that k = (7, 16) is a key in the Affine Cipher. Express the decryption function $d_k(y)$ in the form $d_k(y) = a'y + b'$, where a', $b' \in Z_{55}$.
- 2) Prove that the Affine Cipher over Z_{55} as given in the above problem, i.e., $y=e_K(x)=ax+b=7x+16 \pmod{55}$ achieves perfect secrecy if every key is used with equal probability 1/2200.
- 3) To encrypt long sequences by Block Ciphers, different modes of operation have been developed. What are the CBC mode and the OFB mode? Please show main differences between these two modes.
- 4) Suppose *g* is a collision resistant hash function that takes an arbitrary bitstring as input and produces an *n*-bit message digest. Define a hash function *h* as follows:

$$h(x) = \begin{cases} 0 \parallel x, & \text{if } x \text{ is a bitstring of length } n, \\ 1 \parallel g(x), & \text{otherwise.} \end{cases}$$

- (a) Prove that *h* is collision resistant.
- (b) Prove that h is not preimage resistant. More precisely, show that preimages (for the function h) can easily be found for half of the possible message digests.

5) Suppose the current State of 128 bits is

3243F68885A308D313198A250307734A

Please write the above State in a 4 by 4 square array, and the new State after the substitution using the following AES S-box.

	Y															
X	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Ε	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2 <i>B</i>	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	<i>B7</i>	FD	93	26	36	3F	F7	CC	34	<i>A</i> 5	E5	<i>F</i> 1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9 <i>A</i>	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1 <i>A</i>	1 <i>B</i>	6E	5 <i>A</i>	A0	52	3 <i>B</i>	D6	В3	29	Е3	2F	84
5	53	D1	00	ED	20	FC	B1	5 <i>B</i>	6 <i>A</i>	CB	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7 <i>F</i>	50	3C	9F	A8
7	51	<i>A</i> 3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
8	CD	0 <i>C</i>	13	EC	5 <i>F</i>	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2 <i>A</i>	90	88	46	EE	B8	14	DE	5E	0 <i>B</i>	DB
Α	E0	32	3 <i>A</i>	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7 <i>A</i>	AE	08
С	BA	78	25	2 <i>E</i>	1 <i>C</i>	A6	B4	C6	E8	DD	74	1 <i>F</i>	4 <i>B</i>	BD	8 <i>B</i>	8 <i>A</i>
D	70	3E	<i>B</i> 5	66	48	03	F6	0E	61	35	57	В9	86	C1	1 <i>D</i>	9E
Е	E1	F8	98	11	69	D9	8E	94	9B	1 <i>E</i>	87	E9	CE	55	28	DF
F	8C	<i>A</i> 1	89	0D	BF	E6	42	68	41	99	2D	0 <i>F</i>	В0	54	BB	16

Table 1: The AES S-box.

6) Suppose that $f: \{0,1\}^m \to \{0,1\}^m$ is a preimage resistant bijection. Define the function as follows

$$h: \{0,1\}^{2m} \to \{0,1\}^m$$
$$h(x) = f(x' \oplus x'')$$

where $x \in \{0,1\}^{2m}$ is represented as $x = x' \parallel x''$ and $x', x'' \in \{0,1\}^m$.

Prove that the function h is not second preimage resistant.