Name:	Group:	$\mathbf{Matric} \ \# :$	

Due date: 13 November 2014 (Thursday)

National University of Singapore Department of Electrical & Computer Engineering EE2023 Signal & Systems

Consider the system in Figure 1 which shows a crane hoisting and moving a load which is attached to the end of a rope. The cart is supposed to deliver the load from one place to another. The objective is to move the cart in a way which does not cause the rope and its load to swing too much. This assignment explores the modelling of such a system and leads up to the design of a control system for the cart such that the load does not swing wildly.

Figure 1: Schematic of crane hoisting a load.

Although the actual system is highly nonlinear, if the rope is considered to be stiff with a fixed length L, the system can be modelled using the following differential equations:

$$\ddot{x}_{La} = g\phi
 m_T \ddot{x}_T = f_T - m_L g\phi
 x_{La} = x_T - x_L
 x_L = L\phi$$

where m_L is the mass of the load, m_T is the mass of the cart, x_T and x_L are displacements as defined in Figure 1, ϕ is the rope angle with respect to the vertical, and f_T is the force applied to the cart. In this problem, the mass of the cart, m_T can be considered a constant. For simplicity, you may choose $m_T = 1$ unit mass while the gravitational constant can be approximated as $g = 10 \ m/s^2$. The mass of the load, m_L and the length of the rope, L are parameters which vary for each hoisting problem.

In this assignment, generate m_L and L using your matriculation number as follows:

- $m_L = (C + 10)$ unit mass
- L = (D+1) unit length

where C and D may be derived by reading the last 4 digits of your student matriculation
number. Equate the first two digits to C and the remaining two to D . For example, if the
last 4 digits of your matriculation number is 1234, then choose $C = 12$ and $D = 34$. With
the values of m_L and L determined in this manner, you may proceed to answer the following
questions.

1 1 1 1 1 1	t) and the rope angle, ϕ	(3 ma
		,

ngle of sv	way of the rope as	ven at a constant s the cart moves.	 ,	(5 marks

(3) Under the condition in part (2) above, show that the load w	
$\omega_0 = \sqrt{\frac{g}{L}} \text{ rad/s.}$	(2 marks
·	
$V_{T}(s)$	
4) Find the transfer function, $\frac{V_T(s)}{F_T(s)}$, from the applied force to the	cart's velocity where $V_T(s)$
$F_T(S)$ $C(s_{-}(t)) \text{ and } F_{-}(s) = C(f_{-}(t)) \text{ are the Laplace transforms of } S$	the cart's velocity $w_{-}(t)$ ar
$\mathcal{L}\{v_T(t)\}\ $ and $F_T(s) = \mathcal{L}\{f_T(t)\}\ $ are the Laplace transforms of	the cart's velocity, $v_T(t)$ ar
the force, $f(t)$ respectively.	(0.1
	(3 mark

he trajectory	of the velocity.	You may assume the constant force to be 1 unit.	(5 m

(6) Suppose a crane controller is designed as shown in Figure 2, to automatically modulate the cart velocity in a manner which ensures that the load does not swing wildly when the cart is driven at the constant velocity, v_0 i.e. $V_T(s) = \mathcal{L}\{v_0U(t)\}$ where U(t) is the unit step function. K is the controller parameter to be tuned in order to achieve the control objective.

Figure 2: Control Configuration for the Crane.

- Derive the final transfer function $\frac{\Phi(s)}{V_T(s)}$, of the crane cart plus controller shown in Figure 2
- ullet Design a suitable value of K such that the resulting response of the rope sway is non-oscillatory.
- Sketch the trajectory of the rope sway when the cart is driven at a constant velocity of $v_0 = 2$ m/s. You may assume that the initial angle of the rope is zero.
- Explain qualitatively how the control system works. How does the control parameter K affect the quality of control?

