Multilinear Algebra

Guo Haoyang

March 2025

Contents

1	Basic notions	2
2	Symmetric multilinear map	2
3	Alternating multilinear map	2
4	Exterior algebra	2
	4.1 Wedge product	. 2
	4.2 Gradation of exterior algebras	. 2
	4.2.1 <i>k</i> -th exterior power	
	4.2.2 Basis of $\bigwedge^k(M)$. :
	4.2.3 Characterizing by a vector space	. 4
	4.2.4 Interior product	
	4.2.5 Application to algebraic geometry: Plüker embeddings	
	4.3 Funtoriality of exterior algebras	
	4.3.1 Morphisms between two exterior algebras	

1 Basic notions

Consider a group action $S_n \curvearrowright V^n$ by $\forall \sigma \in S_n, \forall \mathbf{v} := (v_1, \dots, v_n) \in V^n$,

$$^{\sigma}\mathbf{v} := (v_{\sigma(1)}, \dots, v_{\sigma(n)})$$

This is a group action. For id, the action is trivial. For $\tau, \sigma \in S_n$, $\tau(\sigma \mathbf{v}) = \tau(v_{\sigma(1)}, \dots, v_{\sigma(n)}) = (v_{\tau\sigma(1)}, \dots, v_{\tau\sigma(n)})$. Now, let's consider another action S_n on the collection of all multilinear maps from V^n to $W: \{\psi : V^n \to W : \psi \text{ is a multilinear map}\}$, by taking arbitrary $\sigma \in S_n$ and ψ ,

$$^{\sigma}\psi := \left(\mathbf{v} \mapsto \psi(^{\sigma}\mathbf{v})\right)$$

2 Symmetric multilinear map

3 Alternating multilinear map

4 Exterior algebra

The motivation for exterior algebra originates from Grassmann. He first tried to use a form to unify all the 'rigid' objects in various dimensional, for instance, lines, plane and paralleloids in \mathbb{R}^3 . His idea was not valued until many years later when Cartan studied the ??.

Given a vector space V over a field F, the intuition of an exterior algebra of power i (with $i \leq \dim_F V$), $\bigwedge^i(V)$, might be all the possible i-dimensional subspaces of V spanned by i elements in some basis of V. More concretely, for $\bigwedge^2(\mathbb{R}^3)$, it consists of all the elements that could span the xy, xz and yz planes.

To make the definition more comprehensive. Instead of a vector space, the context is put into free R-modules. For the heuristic reason, let's use the vector space to discuss and get better motivations.

Definition 4.1: Exterior Algebra

Let R be a commutative ring and M be a free R-module. The exterior algebra, denoted $\bigwedge(M)$, and a unital R-algebra homomorphism $i:M\to \bigwedge(M)$ are the unique ones satisfies: \forall unital R-algebra A and \forall R-linear map $\varphi:M\to A$ with $\forall v\in V,\ \varphi(v)\varphi(v)=0,\ \exists!\ R$ -linear homomorphism $\Phi:\bigwedge(M)\to A$ such that $\Phi\circ i=\varphi$, i.e. the following diagram commutes:

$$M \xrightarrow{i} \bigwedge(M)$$

$$\varphi \qquad \downarrow \exists ! \Phi$$

$$A$$

Construction of an exterior algebra: To construct such a most general R-algebra, start with the most general associative R-algebra containing M, the tensor algebra T(M). Then, force the alternating property by taking a quotient. Take I to be the two-sided ideal of T(M) generated by $\{m \otimes m : m \in M\}$. Then, the quotient

is a candidate for the exterior algebra of M. ¹

4.1 Wedge product

4.2 Gradation of exterior algebras

4.2.1 k-th exterior power

For each gradation component $\bigwedge^k(M)$ of $\bigwedge(M)$, it can be depicted by another universal property. But notice that when we study $\bigwedge(M)$, it is always be considered as an R-algebra. But its pieces, $\bigwedge^k(M)$ loses the multiplication.

¹The quotient is still an algebra, because T(M)/I is a ring and I can be viewed as an R-submodule of M and T(M), hence T(M)/I has all structures.

Because elements $\alpha, \beta \in \bigwedge^k(M)$ are not closed under multiplication \wedge : $\alpha \wedge \beta \in \bigwedge^{2k}(M)$. So, usually $\bigwedge^k(M)$ is only considered as an R-module. This is also reflected in the universal property below.

Definition 4.2: Universal property of k-th exterior power

Let R be a commutative ring and M,N be free R-modules. The k-th **exterior power** of M, $\bigwedge^k(M)$, is defined to be the unique object with unique alternating multilinear $i:M^k\to \bigwedge^k(M)$ satisfying the following universal property: \forall alternating multilinear map $\varphi:M^k\to N$, $\exists!$ R-module homomorphism $\Phi:\bigwedge^k(M)\to N$ such that $\Phi\circ i=\varphi$, i.e. the following diagram commutes:

$$M^k \xrightarrow{i} \bigwedge^k(M)$$

$$\downarrow^{\exists!\Phi}$$

Proposition 4.1: Different spans of the ideal

 $m \otimes m$ can be written in another form $m_1 \otimes \cdots \otimes m_n$ with $m_i = m_j$ for some $i \neq j$.

4.2.2 Basis of $\bigwedge^k(M)$

From now on, the center is to study the basic properties $\bigwedge^k(M)$ as an R-module.

Corollary 4.1: Basis of gradation components $\bigwedge^k(M)$

Let M be a free R-module over a commutative ring R with basis $\{m_1, \ldots, m_n\}$. Then, one basis of $\bigwedge^k(M)$ is

$$\{m_{i_1} \wedge \cdots \wedge m_{i_k} : 1 \leq i_1 < i_2 < \cdots < i_k \leq n\}$$

When k > n, $\bigwedge^k(M) = \{0\}$. In particular, rank_R $\bigwedge^k(M) = \binom{n}{k}$.

Remark Especially, when k = n, $\bigwedge^n(M) = R(m_1 \wedge m_2 \wedge \cdots \wedge m_n)$.

If M is not a free R-module, then it is probably false to have $\bigwedge^k(M)=0$ for k>n. Here is an example. Let $R=\mathbb{Z}$ and consider $\mathbb{Z}[x,y]$. The ideal $\langle x,y\rangle$ is an R-submodule of $\mathbb{Z}[x,y]$, but it is not free because $x\cdot y-y\cdot x=0$. We want to show that $I\bigwedge I\neq 0$.

First construct a map $\varphi: I \times I \to R/I \cong \mathbb{Z}$ by $(ax+by,cx+dy) \mapsto (ad-bc)+I$. This is a well-defined non-trivial alternating bilinear map. ² By the universal property of k-component of $\bigwedge(M)$, $\exists!$ non-trivial R-linear map $\Phi: I \bigwedge I \to R/I$. But this implies that $I \bigwedge I \neq 0$.

Proof: Example (1) Let V be a 1-dimensional vector space over F with basis element v. Then, every element of $\bigwedge^k(V)$ is $a_1v \wedge a_2v \wedge \cdots \wedge a_kv = (a_1a_2 \cdots a_k)v \wedge \cdots \wedge v$. Since $v \wedge v = 0$, $\bigwedge^0(V) = F$, $\bigwedge^1(V) = Fv = V$, $\bigwedge^i(V) = 0$ for $i \geq 2$. As a graded algebra, $\bigwedge^i(V) = F \oplus V \oplus 0 \oplus \cdots$.

(2) Let V be a vector space with $\dim_F(V) = 2$, with basis element v and w. Then, every element is $(a_1v + b_1w) \wedge \cdots \wedge (a_kv + b_kw)$. It follows that $\bigwedge^i(V) = 0$ for $i \geq 3$ because either v or w appear twice in every term of the expansion. For $\bigwedge^2(V)$, $\bigwedge^2(V) = T^2(V)/I$ where I is the ideal generated by the set $\{x \otimes x : x \in V\}$. $T^2(V)$ has a basis consisting of $v \otimes v$, $v \otimes w$, $w \otimes v$ and $w \otimes w$. But every element in I is

$$(av + bw) \otimes (av + bw) = a^2(v \otimes v) + ab(v \otimes w + w \otimes v) + b^2w \otimes w$$

Notice that $v \otimes v$, $v \otimes w + w \otimes v$, $v \otimes w$, $w \otimes w$ is another basis for $T^2(V)$. As a subspace, I contains three elements of the basis of $T^2(V)$ but $v \otimes w \notin I$. So, it is 3-dim and $\bigwedge^2(V)$ is 1-dim. Further, $v \otimes w \notin T^2(V) \Rightarrow v \wedge w \neq 0 \in T^2(V)$, which gives $\bigwedge^2(V) = F(v \wedge w)$. As a graded algebra, $\bigwedge^2(V) = F \oplus V \oplus F(v \wedge w) \oplus 0 \oplus \cdots$.

Bilinear and alternating follows easily from the definition of φ .

Well-defined: Suppose another representation of (ax+by,cx+dy) is (a'x+b'y,c'x+d'y), then a'=a+yf and b'=b-xf for some $f \in \mathbb{Z}[x,y]$. This is because (a-a')x=(b'-b)y and it must be x|b'-b and y|a-a'. Take $f=\frac{b-b'}{x}$. Non-trivial: $\varphi(x,y)=1+I$ is not zero.

4.2.3Characterizing by a vector space

Consider the space of multilinear alternating R-linear maps $M^k \to R$, denoted $Alt_R(M^k, R)$. By the universal property of k-the exterior algebras 4.2, there is a natural equivalence 3

$$\operatorname{Alt}_R(M^k,R)\cong\left(\bigwedge^k(M)\right)^*$$

As long as M is a finitely generated R-module, its dual module $M^* = \operatorname{Hom}_R(M, R)$ is guaranteed to be a free-module and $M \cong M^*$. Under this condition,

$$\bigwedge^k(M^*) \cong \left(\bigwedge^k(M)\right)^*$$

4.2.4 Interior product

There is already an operation for lifting the degree of $\bigwedge^k(V)$. Another dual operation for degrading the operation is interior product. From now on, let $M^* := \operatorname{Hom}_R(M,R)$ be the dual module of M, where R is a commutative ring. The goal is to find a mapping $\bigwedge^k(M) \to \bigwedge^{k-1}(M)$ and how this map interacts with the wedge product. Let's just observe the basic cases, k = 0, 1, 2, and then generalize this rule to arbitrary k.

A natural way of degrading is to pick a $u \in M^*$, $v \in M$, and valuate u on v: $u(v) \in R$. This map should analogue

such a process. Keep $u \in M^*$ and name the map $i_u^k : \bigwedge^k(M) \to \bigwedge^{k-1}(M)$. For k = 0 and $v \in \bigwedge^0(M)$, set $i_u^0(v) := 0$ always. For k = 1 and $\bigwedge^1(M)$, set $i_u^1(v) := u(v) \in R = \bigwedge^0(M)$. In fact, there is a unique extension of $\bigwedge^1(M) \to \bigwedge^0(M)$ to $\bigwedge^k(M) \to \bigwedge^{k-1}(M)$. To avoid a degree k, the map i_u^k can also be regarded as a product, called *interior product*, denoted $u \lrcorner v$. We have

$$u \lrcorner v = i_u^k(v)$$

Let's continue extending the meaning of this \Box . For k=2, take $x,y\in \bigwedge^1(M)$. Then, we have $x\wedge y\in \bigwedge^2(M)$. \Box should be the unique product that extending $\Box: M^*\times \bigwedge^1(M)\to \bigwedge^0(M)$. This is equivalent to seeking the unique product $\Box: M^*\times \bigwedge^k(M)\to \bigwedge^{k-1}(M)$ such that: (1) $u\Box v=u(v)$ for any $v\in \bigwedge^1(M)$ and (2) $\Box(u,\bigwedge^k(M))\subseteq A^{k-1}(M)$

For $u \, \lrcorner (x \wedge y)$, it is a vector in $\bigwedge^1(M)$ and dependent of x and y. To make i_u^2 linear, $\lrcorner (x \wedge y)$ should be a linear combination of x and y,

$$u \rfloor (x \wedge y) = c_1 x + c_2 y$$

where c_1 and c_2 also depend on x and y. Applying i_n^1 , $i_n^1 \circ i_n^2(x \wedge y) = c_1 u(x) + c_2 u(y) = 0$. One plausible choice of coefficients is $c_1 = -u(y)$ and $c_2 = u(x)$. So,

$$u \rfloor (x \wedge y) = -u(y)x + u(x)y = u(x) \wedge y - u(y) \wedge x = (u \rfloor x) \wedge y + (-1)x \wedge (u \rfloor y)$$

• The first generalization admitted is the interaction between $u \in M^*$ and $x \wedge y$ where $x \in \bigwedge^r(M)$ and $y \in \bigwedge^s(M)$,

$$u \rfloor (x \wedge y) = (u \rfloor x) \wedge y + (-1)^r x \wedge (u \rfloor y)$$

• The second generalization is for $u \in \bigwedge^l(M^*)$.

An easier and more acceptable way to establish the interior product is use the identification $Alt_R(M^k, R) \cong$ $\left(\bigwedge^k(M)\right)^*$.

³The map $I: Alt_R(M^k, R) \cong \left(\bigwedge^k(M)\right)^*$ given by $f \mapsto \Phi_f$ is well-defined by the universal property applying to f, where $f: M^k \to R$ and Φ_f is the unique R-linear map corresponding to f. For two morphisms f and g, if $\Phi_f = \Phi_g$, they must agree on M^k : $f = \Phi_f \circ i = \Phi_g \circ i = g$. So, I is injective. Surjectivity comes from composing Φ with i. The linearity also comes from the R-linearity and uniqueness of Φ_f .

Theorem 4.1: Axiomatic characterization and properties of interior product

Let M be a finitely generated free R-module. The interior product on $\bigwedge^k(M)$ satisfies the following properties $\forall u \in M^*$ and $\forall v \in M$

- $(1) \ \forall k, \ \iota_u : \bigwedge^k(M) \to \bigwedge^{k-1}(M)$
- $(2) \iota_u(v) = u(v)$
- (3) It satisfies the graded derivation of degree -1: $\forall x \in \bigwedge^r(M)$ and $\forall y \in \bigwedge^s(M)$,

$$\iota_u(x \wedge y) = \iota_u(x) \wedge y + (-1)^{\deg x} x \wedge \iota_u(y)$$

4.2.5 Application to algebraic geometry: Plüker embeddings

Given a vector space V over F, with $\dim_F(V) = n$. The projective space $\mathbb{P}(V)$ parametrises all the lines of V (all one-dimensional subspace of V). In more condensed language,

$$\mathbb{P}(V) \leftrightsquigarrow \{L_1 : L_1 \le V, \dim_F L_1 = 1\}$$

The collection on the right hand side is exactly the Grassmannian or Grassmann variety $Gr_1(V)$. Now the goal is to generalize this ideal to any $Gr_r(V)$ for $r \leq n$. Are there any counterparts(projective spaces) corresponding to $Gr_r(V)$?

Since all the r-dimensional subspaces are taken into consideration, the exterior product $\bigwedge^r(V)$ is a huge vector space that contains every possible r-dimensional subspaces. There should be a map $\operatorname{Gr}_r(V) \to \bigwedge^r(V)$. But as in the case of V and $\mathbb{P}(V)$, V itself has many elements that describe the same information(the same line) that are compressed into one in $\mathbb{P}(V)$. To remove the redundancy in $\bigwedge^r(V)$, its projective space is better than itself. The effective map should be

$$\operatorname{Gr}_r(V) \to \mathbb{P}\left(\bigwedge^r(V)\right)$$

To define this map concretely, start from an r-dimensional subspace L_r of V, pick a basis $\{e_1, \ldots, e_r\}$ for this L_r and send this basis to $e_1 \wedge \cdots \wedge e_r$. Finally, take the equivalent class $[e_1 \wedge \cdots \wedge e_r] \in \mathbb{P}(\bigwedge^r(V))$. So, this map is defined elementwise as

$$L_r = \operatorname{span}\{e_1, \dots, e_r\} \mapsto P_{L_r} := [e_1 \wedge \dots \wedge e_r]$$

• This map is well-defined or independent of the choice of basis. Take another basis of L_r , $\{f_1, \ldots, f_r\}$. This map gives another representation $[f_1 \wedge \cdots \wedge f_r]$. Both $e_1 \wedge \cdots \wedge e_r$ and $f_1 \wedge \cdots \wedge f_r$ are elements of $\bigwedge^r (L_r)$. Consider a base-change map $T: L_r \to L_r$ by $e_i \mapsto f_i$ for all i. By funtoriality of \bigwedge^r , this T induces a linear map $\bigwedge^r (T): \bigwedge^r (L_r) \to \bigwedge^r (L_r)$ such that

$$\bigwedge^{r} (T) (e_1 \wedge \cdots \wedge e_r) := T(e_1) \wedge \cdots \wedge T(e_r) = f_1 \wedge \cdots \wedge f_r$$

In the meanwhile, $\bigwedge^r(T)(e_1 \wedge \cdots \wedge e_r) = \det(T)e_1 \wedge \cdots \wedge e_r$. Hence, $[f_1 \wedge \cdots \wedge f_r] = [e_1 \wedge \cdots \wedge e_r]$.

4.3 Funtoriality of exterior algebras

4.3.1 Morphisms between two exterior algebras

Let M and N be two free modules over a commutative ring R and $f: M \to N$ be a R-linear map. Apply the universal property in 4.1 to M and N.

$$M \xrightarrow{i} \bigwedge(M)$$

$$\downarrow_{\varphi} \downarrow_{\varphi} \downarrow_{\varphi}$$

$$\bigwedge(N)$$

The unique R-algebra homomorphism Φ can be assigned a new symbol $\Lambda(f)$.