Module Interface Specification for the Companion Cube Calculator (\mathbb{C}^3)

Geneva Smith

November 27, 2017

1 Revision History

Date	Version	Notes	
1.0		Initial draft completed	

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at https://github.com/GenevaS/CAS741/tree/master/Doc/SRS for project symbols, abbreviations, and acronyms.

Contents

1	Revision History				
2	Symbols, Abbreviations and Acronyms				
3	Intr	roduction			
4	Not	tation			
5	Mo	odule Decomposition			
6	MIS	S of the Control Flow Module			
	6.1	Module			
	6.2	Uses			
	6.3	Syntax			
		6.3.1 Exported Access Programs			
	6.4	Semantics			
		6.4.1 State Variables			
		6.4.2 Access Routine Semantics			
7	MIS	S of the User Input Module			
	7.1	Module			
	7.2	Uses			
	7.3	Syntax			
		7.3.1 Exported Access Programs			
	7.4	Semantics			
		7.4.1 Environment Variables			
		7.4.2 State Variables			
		7.4.3 Assumptions			
		7.4.4 Access Routine Semantics			
3	MIS	S of the Interval Conversion Module			
	8.1	Module			
	8.2	Uses			
	8.3	Syntax			
		8.3.1 Exported Access Programs			
	8.4	Semantics			
		8.4.1 State Variables			
		8.4.2 Assumptions			
		8.4.3 Access Routine Semantics			

9	MIS	of the Equation Conversion Module	6
	9.1	Module	Ć
	9.2	Uses	Ć
	9.3	Syntax	Ć
		9.3.1 Exported Access Programs	Ć
	9.4	Semantics	Ć
		9.4.1 State Variables	Ć
		9.4.2 Access Routine Semantics	Ć
10	MIS	of the Variable Consolidation Module	11
	10.1	Module	11
	10.2	Uses	11
	10.3	Syntax	11
		10.3.1 Exported Access Programs	11
	10.4	Semantics	11
		10.4.1 State Variables	11
		10.4.2 Access Routine Semantics	11
11	MIS	of the Range Solver Module	12
		Module	12
		Uses	12
		Syntax	12
		11.3.1 Exported Constants	12
		11.3.2 Exported Access Programs	12
	11.4	Semantics	12
		11.4.1 State Variables	12
		11.4.2 Assumptions	12
		11.4.3 Access Routine Semantics	12
12	MIS	of the Output Module	1 4
		Module	
		Uses	
		Syntax	14
	12.0	12.3.1 Exported Access Programs	14
	12.4	Semantics	14
	12.1	12.4.1 State Variables	14
		12.4.2 Environment Variables	14
		12.4.3 Assumptions	14
		12.4.4 Access Routine Semantics	14
12	МТ	of the Interval Data Structure Module	16
τŋ		Module	16
		Heas	16

13.3	Syntax	16
	13.3.1 Exported Access Programs	16
13.4	Semantics	16
	13.4.1 State Variables	16
	13.4.2 Access Routine Semantics	16
14 MIS	S of the Equation Data Structure Module	18
14.1	Module	18
14.2	Uses	18
14.3	Syntax	18
	14.3.1 Exported Access Programs	18
14.4	Semantics	18
	14.4.1 State Variables	18
	14.4.2 Assumptions	19
	14.4.3 Access Routine Semantics	19
15 Apr	pendix	22

3 Introduction

The following document details the Module Interface Specifications for the Companion Cube Calculator (C^3) , a mathematical tool which determines the range of a user-specified function given the domains of the function's variables. The calculations are performed using interval arithmetic.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/GenevaS/CAS741.

4 Notation

[You should describe your notation. You can use what is below as a starting point. —SS]

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Companion Cube Calculator.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of Companion Cube Calculator uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Companion Cube Calculator uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project. It can be found at https://github.com/GenevaS/CAS741/blob/master/Doc/Design/MG.

Level 1	Level 2	
Hardware-Hiding Module	-	
Behaviour-Hiding Module	Control Flow Module User Input Module Interval Conversion Module Equation Conversion Module Variable Consolidation Module Range Solver Module Output Module	
Software Decision Module	Interval Data Structure Module Equation Data Structure Module	

Table 1: Module Hierarchy

6 MIS of the Control Flow Module

6.1 Module

main

6.2 Uses

Input (Section 7), Consolidate (Section 10), Solver (Section 11), Output (Section 12), IntervalStruct (Section 13), EquationStruct (Section 14)

6.3 Syntax

6.3.1 Exported Access Programs

Name	In	Out	Exceptions	
Main	-	-	-	

6.4 Semantics

6.4.1 State Variables

N/A

6.4.2 Access Routine Semantics

Main():

• transition: Create data structures to contain the user inputs and modify their states for the Output module.

```
# Get User Input
  userInputs := Input.GetUserInputs()
  eqString := userInputs[0]
  varList := userInputs[1, userInputs.Length - 1]

# Convert input into equation and interval data structures using
# the list of valid operators from Solver
  operators := Solver.GetValidOperators()
  Consolidate.ConvertAndCheckInputs(eqString, varList, operators)

# Get the equation and interval data structures and pass them to
# the Solver module
  equationData := Consolidate.GetEquationStruct()
  intervalDataList := Consolidate.GetIntervalStructList()
```

```
range := Solver.CalculateRange(equationData, intervalDataList)
```

Report the results back to the user
Output.PrintInterval(range)
Output.PrintEquationTree(equationData)
for each interval in intervalDataList:
Output.PrintInterval(interval)

7 MIS of the User Input Module

7.1 Module

Input

7.2 Uses

N/A

7.3 Syntax

7.3.1 Exported Access Programs

Name	In	Out	Exceptions
CotHoorInnuta		$String^n$	IN_BAD_FILE,
GetUserInputs	-		IN_EMPTY_FILE

7.4 Semantics

7.4.1 Environment Variables

 $inputFile: String^n$

7.4.2 State Variables

N/A

7.4.3 Assumptions

- The GetInputMethod function accepts user inputs from files or as direct inputs (From SRS R1).
- If the user chooses to enter their values via a file, it must be formatted such that:
 - The user equation on the first line
 - The list of variable names and interval values associated with the user equation; each name/value set is on its own line and is of the form varName, minBound, maxBound
- The output of the GetUserInputs function is a list of *String* where the first item is the user equation. The remaining items are the variable names and interval values such that every set of three values represents one data set.

7.4.4 Access Routine Semantics

GetUserInputs():

- transition: If the user has chosen to enter their values via a file, inputFile is associated with the provided file name.
- output: $out := String^n$

```
• exception: exc := (\nexists inputFile \lor \neg Read(inputFile) \Rightarrow IN\_BAD\_FILE)

| (Read(inputFile) == \emptyset \Rightarrow IN\_EMPTY\_FILE)
```

8 MIS of the Interval Conversion Module

8.1 Module

IntervalConversion

8.2 Uses

IntervalStruct (Section 13)

8.3 Syntax

8.3.1 Exported Access Programs

Name	In	Out	Exceptions
			IVC_INSUFF_PARAMS,
			IVC_NO_MIN,
M - 1 T 4 1	C4:	:+1.04	IVC_NO_MAX,
MakeInterval	$String^2$	interval Struct	IVC_WRONG_TYPE_MIN,
			IVC_WRONG_TYPE_MAX,
			IVC_CONV_ERR_MIN,
			IVC_CONV_ERR_MAX

8.4 Semantics

8.4.1 State Variables

N/A

8.4.2 Assumptions

• Ensuring that $min \leq max$ is handled by the IntervalStruct (Section 13) module.

8.4.3 Access Routine Semantics

MakeInterval(min, max):

• output: out := intervalStruct

```
• exception: exc := (\nexists min \lor \nexists max \Rightarrow IVC\_INSUFF\_PARAMS)
| (min == ``` \Rightarrow IVC\_NO\_MIN)
| (max == ``` \Rightarrow IVC\_NO\_MAX)
```

```
(\min \neq String \Rightarrow IVC\_WRONG\_TYPE\_MIN) \\ | \\ (\max \neq String \Rightarrow IVC\_WRONG\_TYPE\_MAX) \\ | \\ (ToReal(\min) \notin \mathbb{R} \Rightarrow IVC\_CONV\_ERR\_MIN) \\ | \\ (ToReal(\max) \notin \mathbb{R} \Rightarrow IVC\_CONV\_ERR\_MAX)
```

9 MIS of the Equation Conversion Module

9.1 Module

EquationConversion

9.2 Uses

EquationStruct (Section 14)

9.3 Syntax

9.3.1 Exported Access Programs

Name	In	Out	Exceptions
			EQC_INSUFF_PARAMS,
MakeEquationTree	String,	equation Struct	EQC_UNSUPPORTED_OP, EQC_CONST_FUNC,
макев quantin rree	$String, String^n$	equationstruct	EQC_NO_FUNC,
			EQC_INCOMPLETE_OP
GetVariableList	-	$String^n$	

9.4 Semantics

9.4.1 State Variables

 \bullet variableList: $String^n$

9.4.2 Access Routine Semantics

MakeEquationTree(userEquation, supportedOperations):

- transition: The value of *variableList* is updated with new variable names as they are encountered during equation processing.
- output: out := equationStruct
- exception: $exc := (\#userEquation \lor \#supportedOperations \Rightarrow EQC_INSUFF_PARAMS)$ $| (\exists op | op \in userEquation \land op \notin supportedOperations \Rightarrow EQC_UNSUPPORTED_OP)$ $| (ToReal(userEquation) \in \mathbb{R} \Rightarrow EQC_CONST_FUNC)$ $| (userEquation == ``` \Rightarrow EQC_NO_FUNC)$

 $(\exists op \in userEquation | (NULL < op > userEquation) \lor (userEquation < op > NULL) \Rightarrow EQC_INCOMPLETE_OP)$

${\bf GetVariableList():}$

 $\bullet \ \text{output:} \ out := variableList \\$

• exception: N/A

10 MIS of the Variable Consolidation Module

10.1 Module

Consolidate

10.2 Uses

10.3 Syntax

10.3.1 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
SS]			

10.4 Semantics

10.4.1 State Variables

10.4.2 Access Routine Semantics

[accessProg —SS]():

- transition: [if appropriate —SS]
- \bullet output: [if appropriate —SS]
- \bullet exception: [if appropriate —SS]

11 MIS of the Range Solver Module

11.1 Module

Solver

11.2 Uses

IntervalStruct (Section 13), EquationStruct (Section 14)

11.3 Syntax

11.3.1 Exported Constants

• $supportedOps : String^n$

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
GetValidOperators -		$String^n$	-
FindRange	$equation Struct,\\interval Struct^n$	interval Struct	SOL_INSUFF_PARAMS, SOL_WRONG_EQ_TYPE, SOL_WRONG_IV_TYPE, SOL_UNSUPPORTED_OP

11.4 Semantics

11.4.1 State Variables

N/A

11.4.2 Assumptions

• The type of *intervalStruct*ⁿ accepts NULL as a valid value.

11.4.3 Access Routine Semantics

GetValidOperators():

 \bullet output: out := supportedOps

• exception: N/A

FindRange(eStruct, ivStructList):

• output: out := intervalStruct

```
• exception: exc := (\nexists eStruct \lor \nexists ivStructList \Rightarrow SOL\_INSUFF\_PARAMS)

| (eStruct \neq equationStruct \Rightarrow SOL\_WRONG\_EQ\_TYPE)

| (ivStructList \neq intervalStruct^n \lor ivStructList \neq NULL

\Rightarrow SOL\_WRONG\_IV\_TYPE)

| ((\exists op \in eStruct \land op \notin supportedOps)

\lor (\exists iv1, iv2 \in ivStructList \land \nexists op \in supportedOps|op(iv1, iv2) \lor op(iv2, iv1))

\Rightarrow UNSUPPORTED\_OP)
```

12 MIS of the Output Module

12.1 Module

Output

12.2 Uses

IntervalStruct (Section 13), EquationStruct (Section 14)

12.3 Syntax

12.3.1 Exported Access Programs

Name	In	Out	Exceptions
PrintInterval	interval Struct	-	-
PrintEquationTre	e equationStruct	-	-

12.4 Semantics

12.4.1 State Variables

N/A

12.4.2 Environment Variables

- cmd: the command-line interface
- win: a 2D sequence of pixels displayed on the screen

12.4.3 Assumptions

- There are no exceptions in this module because it is assumed that only well-formed inputs will be passed in. This assumption is made knowing that this module will only be called post-process and any errors in the data structures have already been identified.
- The object passed to PrintEquationTree is the root of the equation tree

12.4.4 Access Routine Semantics

PrintIntervalList(iStruct):

• transition: If the user interface is the command-line, write the interval *iStruct* to cmd. If the user interface is a GUI, modify win so that the interval is displayed. In both cases, the variable name of the interval must also be displayed.

• exception: N/A

PrintEquationTree(eStruct):

 \bullet transition: If the user interface is the command-line, write the equation tree represented by eStruct to cmd. If the user interface is a GUI, modify win so that the equation tree is displayed.

• exception: N/A

13 MIS of the Interval Data Structure Module

13.1 Module

IntervalStruct

13.2 Uses

N/A

13.3 Syntax

13.3.1 Exported Access Programs

Name	In	Out	Exceptions
IntervalStruct	\mathbb{R}^2	interval Struct	IV_ORD_VIOLATED
GetMinBound	-	\mathbb{R}	_
$\operatorname{GetMaxBound}$	-	\mathbb{R}	_
SetMinBound	\mathbb{R}	-	IV_ORD_VIOLATED
SetMaxBound	\mathbb{R}	-	IV_ORD_VIOLATED

13.4 Semantics

13.4.1 State Variables

For R2 using DD1

• $minBound : \mathbb{R}$

• $maxBound : \mathbb{R}$

13.4.2 Access Routine Semantics

IntervalStruct(minB, maxB):

- output: out := intervalStruct(minB, maxB)
- \bullet transition: Update state variables minBound and maxBound with the provided values minB and maxB
- exception: $exc := (minB > maxB \Rightarrow IV_ORD_VIOLATED)$

GetMinBound():

• output: out := minBound

• exception: N/A

GetMaxBound():

- output: out := maxBound
- exception: N/A

SetMinBound(minB):

- ullet transition: Update state variable minBound with the provided value minB
- exception: $exc := (minB > maxBound \Rightarrow IV_ORD_VIOLATED)$

SetMaxBound(maxB):

- \bullet transition: Update state variable maxBound with the provided value maxB
- exception: $exc := (maxB < minBound \Rightarrow IV_ORD_VIOLATED)$

14 MIS of the Equation Data Structure Module

14.1 Module

EquationStruct

14.2 Uses

N/A

14.3 Syntax

14.3.1 Exported Access Programs

Name	In	Out	Exceptions
EquationStruct		equation Struct	EQ_INSUFF_PARAMS,
	$String^2$,		EQ_WRONG_VARNAME_TYPE,
	$equation Struct^2$		EQ_WRONG_OPERATOR_TYPE
			EQ_WRONG_OPERAND_TYPE
GetOperator	-	String	-
GetVariableName	-	String	-
GetLeftOperand	-	equation Struct	-
GetRightOperand	-	equation Struct	-
SetLeftOperand	equation Struct	-	EQ_INSUFF_PARAMS,
			EQ_WRONG_OPERAND_TYPE
SetRightOperand	equation Struct	-	EQ_INSUFF_PARAMS,
			EQ_WRONG_OPERAND_TYPE

14.4 Semantics

14.4.1 State Variables

To support R4 and R6

ullet operator : String

 $\bullet \ variable Name: String$

 $\bullet \ left Operand: equation Struct$

 $\bullet \ rightOperand: equationStruct$

14.4.2 Assumptions

- The decomposition of the user equation is handled by the Equation Conversion module (Section 9).
- Unsupported operators are identified and handled in the Equation Conversion module (Section 9).
- There is no setter method for the *operator* field because it will not be changed after initialization.
- The values for leftOperand and rightOperand can be set to NULL as required.

14.4.3 Access Routine Semantics

EquationStruct(op, vName, eStruct1, eStruct2):

- output: out := equationStruct
- transition: Update state variables operator, variableName, leftOperand, and rightOperand with the provided values op, vName, eStruct1, and eStruct2

```
• exception: exc := (\nexists op \lor \nexists vName \lor \nexists eStruct1 \lor \nexists eStruct2 \Rightarrow EQ\_INSUFF\_PARAMS)

| (vName \neq string \Rightarrow EQ\_WRONG\_VARNAME\_TYPE)

| (op \neq string \Rightarrow EQ\_WRONG\_OPERATOR\_TYPE)

| (eStruct1 \neq equationStruct \lor eStruct1 \neq NULL \lor eStruct2 \neq equationStruct \lor eStruct2 \neq NULL \Rightarrow EQ\_WRONG\_OPERAND\_TYPE)
```

GetOperator():

- output: out := operator
- exception: N/A

GetVariableName():

- output: out := variableName
- exception: N/A

GetLeftOperand():

- output: out := leftOperand
- exception: N/A

GetRightOperand():

- output: out := rightOperand
- exception: N/A

SetLeftOperand(eStruct):

• transition: Update state variable leftOperand with the provided value eStruct

```
• exception: exc := (\nexists eStruct \Rightarrow EQ\_INSUFF\_PARAMS)

| (eStruct \neq equationStruct \Rightarrow EQ\_WRONG\_OPERAND\_TYPE)
```

SetRightOperand(eStruct):

• transition: Update state variable rightOperand with the provided value eStruct

```
• exception: exc := (\nexists eStruct \Rightarrow EQ\_INSUFF\_PARAMS)

| (eStruct \neq equationStruct \Rightarrow EQ\_WRONG\_OPERAND\_TYPE)
```

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

15 Appendix

Table 2: Possible Error Exceptions

Message ID	Error Message
EQ_INSUFF_PARAMS	Error: Insufficient number of parameters provided to the equation data structure.
EQ_WRONG_OPERAND_TYPE	Error: Operands must have type equationStruct.
EQC_INSUFF_PARAMS	Error: Insufficient number of parameters provided to the equation conversion process.
EQC_UNSUPPORTED_OP	Error: The user equation contains an unsupported operator. Supported operators include < supportedOperators >.
EQC_NO_FUNC	Error: No user equation was passed to the equation conversion process.
EQC_INCOMPLETE_OP	Error: An operator was found that does not have sufficient operands.
IN_BAD_FILE	Error: The file could not be read.
IN_EMPTY_FILE	Error: The file was empty.
IVC_INSUFF_PARAMS	Error: Insufficient number of parameters provided to the interval conversion process.
IVC_CONV_ERR_MIN	Error: The string provided for the minimum bound cannot be converted to a real number.
IVC_CONV_ERR_MAX	Error: The string provided for the maximum bound cannot be converted to a real number.
IVC_WRONG_TYPE_MIN	Error: The value for min passed to the interval conversion process must be of type $String$.
IVC_WRONG_TYPE_MAX	Error: The value for max passed to the interval conversion process must be of type $String$.
SOL_INSUFF_PARAMS	Error: Insufficient number of parameters provided to the range solver.
SOL_WRONG_EQ_TYPE	Error: An equation must be provided to the solver that has type equationStruct.
$SOL_WRONG_IV_TYPE$	Error: An list of intervals must be provided to the range solver. If no intervals exist, the value must be identified as NULL.
SOL_UNSUPPORTED_OP	Error: An unsupported operation was encountered while solving for the range of the equation.

Table 3: Possible Warning Exceptions

Message ID	Error Message
EQ_WRONG_OPERATOR_TYPE	Warning: The operator must have type <i>string</i> . String type conversion has been applied.
EQ_WRONG_VARNAME_TYPE	Warning: The variable name must have type <i>string</i> . String type conversion has been applied.
EQC_CONST_FUNC	Warning: The user equation is a constant value and the range will only include this value.
IV_ORD_VIOLATED	Warning: Value provided for intervals are not in increasing order. The values have been exchanged to maintain the interval ordering.
IVC_NO_MIN	Warning: No minimum interval bound given. Setting it to the same value as the maximum bound.
IVC_NO_MAX	Warning: No maximum interval bound given. Setting it to the same value as the minimum bound.