1 Propositional logic

1.1 Semantics

 $\Gamma = F_1, \ldots, F_n \ (axioms/promises); F \ conclusion; \Gamma \models F \iff F \ \text{is a logical consequence of } \Gamma.$ Valid formula \iff Tautology \iff True in any circumstance.

Inconsistent formula \iff Unsatisfiable formula \iff False in any circumstance. $G \ \text{valid} \iff \neg G \ \text{inconsistent}.$

Table 1: Truth table of main logical connectives

		Not	And	Or	Implication	Double implication
P_1	P_2	$\neg P_1$	$P_1 \wedge P_2$	$P_1 \vee P_2$	$P_1 \rightarrow P_2$	$P_1 \leftrightarrow P_2$
Т	Т	F	Т	Τ	Т	T
Т	F	F	F	Τ	F	F
F	Т	Т	F	Τ	T	F
F	F	Т	F	F	T	Т

F logically equivalent to $G \iff F \equiv G \iff (F \models G \text{ and } G \models F).$

1.2 Calculus

Table 2: Logical equivalence rules

		0 1	
$P \wedge Q$	=	$Q \wedge P$	Commutativity of AND
$P \lor Q$	=	$Q \lor P$	Commutativity of OR
$(P \wedge Q) \wedge R$	=	$P \wedge (Q \wedge R)$	Associativity of AND
$(P \lor Q) \lor R$	=	$P \vee (Q \vee R)$	Associativity of OR
$\neg(\neg P)$	=	P	Double-negation elimination
$P \rightarrow Q$	=	$\neg P \rightarrow \neg Q$	Contraposition
$P \rightarrow Q$	=	$\neg P \lor Q$	Implication elimination
$P \leftrightarrow Q$	=	$(P \to Q) \land (Q \to P)$	Biconditional elimination
$\neg (P \land Q)$	=	$\neg P \lor \neg Q$	De Morgan's law *
$\neg (P \lor Q)$		$\neg P \land \neg Q$	De Morgan's law *
$P \wedge (Q \vee R)$		$(P \wedge Q) \vee (P \wedge R)$	Distributivity of AND over OR
$P \lor (Q \land R)$		$(P \lor Q) \land (P \lor R)$	Distributivity of OR over AND

^{*} De Morgan's law can be generalized to any arbitrary finite number of connected variables.

Conjunctive Normal Form: $F = F_1 \wedge F_2 \wedge ... \wedge F_n$ where $F_i = F_{i1} \vee F_{i2} \vee ... \vee F_{ik}$ (disjunction of atoms). Disjunctive Normal Form: $F = F_1 \vee F_2 \vee ... \vee F_n$ where $F_i = F_{i1} \wedge F_{i2} \wedge ... \wedge F_{ik}$ (conjunction of atoms). Deduction Theorem: $(F_1 \wedge F_2 \wedge ... \wedge F_n) \models G \iff (\models (F_1 \wedge F_2 \wedge ... \wedge F_n)) \rightarrow G$ Proof by refutation: $(F_1 \wedge F_2 \wedge ... \wedge F_n) \models G \iff F_1 \wedge F_2 \wedge ... \wedge F_n \wedge \neg G$ inconsistent.

1.2.1 Natural deduction

Table 3: Introduction and elimination rules for main logical connectives

	Introduction	Elimination
And	$\dfrac{arphi \ heta}{arphi \wedge heta} \wedge I$	$\frac{\varphi \wedge \theta}{\varphi} \wedge E \qquad \frac{\varphi \wedge \theta}{\varphi} \wedge E$
Or	$\frac{\varphi}{\varphi \vee \theta} \vee I \qquad \frac{\theta}{\varphi \vee \theta} \vee I$	$\frac{\varphi \vee \theta \varphi \to \psi \theta \to \psi}{\psi} \vee E$
	[arphi]	
	:	
Implication	$\dfrac{ heta}{arphi o heta} o I$	$\frac{\varphi \varphi \to \theta}{\theta} \to E \ (modus \ ponens)$

 $[\neg \varphi]$

:

Ex falso sequitur quodlibet: $\frac{\perp}{\varphi} \perp$. Reductio ad absurdum: $\frac{\perp}{\varphi} RAA$.

 $\Gamma \models \varphi \iff \Gamma \models \varphi \text{ (Completeness theorem: } \Gamma \models \varphi \Rightarrow \Gamma \models \varphi; \text{ Soundness theorem: } \Gamma \models \varphi \Leftarrow \Gamma \models \varphi).$

1.2.2 Resolution

Refutation theorem: $\theta \models \psi \iff \not\models \psi \land \neg \theta$ Resolution: $\frac{R \lor A \quad R' \lor \neg A'}{R \lor R'}$

First Order Logic $\mathbf{2}$

TODO

Logic Programming 3

TODO

 $A \doteq B \Leftrightarrow A$ unifiable with B

Let A_1, \ldots, A_k be atomic formulas; A unifier for the set A_1, \ldots, A_k is a substitution σ such that $A_1 \sigma = A_2 \sigma =$ $\cdots = A_k \sigma$, where = represents the property of being the identical formula. A unifier σ is said to be a Most General Unifier (MGU) if, for every unifier τ for the same set, there is a unifier ρ such that $\tau = \sigma \rho$. From the MGU you can derive any other unifier.