| Total No. of Questions : 5]                                         |            | estions: 5]                | 290              | SEAT No. :               |                  |  |  |  |  |                    |  |
|---------------------------------------------------------------------|------------|----------------------------|------------------|--------------------------|------------------|--|--|--|--|--------------------|--|
| P6979                                                               |            |                            | 2                | [Total N                 | No. of Pages : 4 |  |  |  |  |                    |  |
|                                                                     | [5865] 102 |                            |                  |                          |                  |  |  |  |  |                    |  |
| First Year M.C.A. (Management)                                      |            |                            |                  |                          |                  |  |  |  |  |                    |  |
| IT 12 : DATA STRUCTURE AND ALGORITHMS (2020 Pattern) (Semester - I) |            |                            |                  |                          |                  |  |  |  |  |                    |  |
|                                                                     |            |                            |                  |                          |                  |  |  |  |  | Time: 21 Instructi |  |
| 1)                                                                  | _          | estions are compulsory.    |                  |                          |                  |  |  |  |  |                    |  |
| 2)                                                                  |            | Q2 to Q5 having interne    |                  |                          |                  |  |  |  |  |                    |  |
| 3)                                                                  | Figur      | e to right indicate full m | arks.            |                          |                  |  |  |  |  |                    |  |
| <i>Q1</i> ) M                                                       | ultiple    | choice questions.          |                  |                          | [20×½=10]        |  |  |  |  |                    |  |
| a)                                                                  | In a       | linked list, insertion     | can be done as   | s                        |                  |  |  |  |  |                    |  |
|                                                                     | i)         | begining                   | ii)              | end S                    |                  |  |  |  |  |                    |  |
|                                                                     | iii)       | middle                     | iv)              | all &                    |                  |  |  |  |  |                    |  |
| b)                                                                  | Ger        | nerally collection of n    | odes is called   | as                       |                  |  |  |  |  |                    |  |
|                                                                     | $\sim_i$   | Queue                      | ii)              | Graph                    |                  |  |  |  |  |                    |  |
|                                                                     | iii)       | Linked list                | iv               | Stack                    |                  |  |  |  |  |                    |  |
| c)                                                                  | In a       | stack, if a user tries to  | insert an eleme  | ent in full stack, it is | called           |  |  |  |  |                    |  |
|                                                                     | i)         | Overflow                   | o ii)            | Underflow                |                  |  |  |  |  |                    |  |
|                                                                     | iii)       | Empty collection           | iv)              | Garbage collection       | on               |  |  |  |  |                    |  |
| d)                                                                  | Wh         | ich method is used for     | retrieving the   | top element of the       | stack without    |  |  |  |  |                    |  |
|                                                                     | dele       | eting it                   | 3                |                          | $\sim$           |  |  |  |  |                    |  |
|                                                                     | i)         | POP()                      | ii)              | Dequeue()                |                  |  |  |  |  |                    |  |
|                                                                     | iii)       | Push()                     | iv)              | Peek()                   |                  |  |  |  |  |                    |  |
| e)                                                                  | Bin        | ary Tree is a special t    | ype of tree dat  | a structure in which     | ch every node    |  |  |  |  |                    |  |
|                                                                     | can        | have a maximum             | children.        |                          | .OX              |  |  |  |  |                    |  |
|                                                                     | i)         | 4                          | ii)              | 2                        | 3.               |  |  |  |  |                    |  |
|                                                                     | iii)       | 1                          | iv)              | 0                        |                  |  |  |  |  |                    |  |
| f)                                                                  | Wh         | ich of the following sa    | atisfies the pro | perty of the Red B       | lack tree.       |  |  |  |  |                    |  |
|                                                                     | i)         | A tree which is a Bir      | nary search tree | e but not strictly B     | alanced tree     |  |  |  |  |                    |  |
|                                                                     | ii)        | A node must be either      | er Red or Riaci  | in color and root        | node must he     |  |  |  |  |                    |  |

- black
  A tree with maximum three children
- iii)
- A tree which is binary search tree but not strictly balanced tree and A node must be either Red or Black in color and root node must be black

| g) | Time complexity of DFS is (V-n                               | umber    | of vertex, E-number of edges).      |
|----|--------------------------------------------------------------|----------|-------------------------------------|
|    | i) $O(V+E)$                                                  | \u)      | O (V)                               |
|    | iii) O(E)                                                    | iv)      | None                                |
| h) | For the adjocency matrix                                     | of a d   | irected graph the row sum           |
|    | isdegree and column su                                       | ım is tl | nedegree.                           |
|    | i) in, out                                                   | ii)      | out, in                             |
|    | iii) in, total                                               | iv)      | total, out                          |
| i) | Heap can be used as                                          |          |                                     |
|    | i) Priority queue                                            | ii)      | Stack                               |
|    | iii) A decreasing order array                                | iv)      | Normal array                        |
| j) | What is the best case for linear s                           | earch?   |                                     |
|    | i) O(nlogn)                                                  | ii)      | O(logn)                             |
|    | iii) O(n)                                                    | iv)      | O(1)                                |
| k) | In linear search with array, how                             | many     | comparisons are needed in best      |
|    | case.                                                        |          |                                     |
|    | i) > 0                                                       | ii)      | 1 86                                |
|    | iii) n                                                       | iv)      | n/2×                                |
| 1) | In what manner is a state space                              | ce tree  | for a backtracking algorithm        |
|    | constructed?                                                 | 7        |                                     |
|    | i) Depth-first search                                        | H)/      | Breadth first search                |
| `  | iii) Twice around the tree                                   | 9W)      | Hearest neighbour first             |
| m) | Back tracking algorithm is imper                             | nented   | by constructing a tree of choices   |
|    | called as                                                    | ::)      | State elegations                    |
|    | <ul><li>i) State space tree</li><li>iii) Node tree</li></ul> | ii)      | State chart tree  Packtrocking tree |
| n) | iii) Node tree What is the other name of dijkstr             | iv)      | Backtracking tree                   |
| n) | i) Single source shortest path                               | _        | dum:                                |
|    | <ul><li>ii) Multiple source shortest par</li></ul>           |          | Backtracking tree ithm?             |
|    | iii) Multiple destination                                    | un       | V . Ox.                             |
|    | iv) Single destination shortest p                            | nath nro | phlem                               |
| o) | The output of kruskal and prims                              | _        |                                     |
| 0) | i) Maximum spanning tree                                     | ii)      | Spanning tree                       |
|    | iii) Minimum spanning tree                                   | iv)      | None                                |
| p) | What is the worst case complexi                              |          |                                     |
| Ρ/ | i) O(nlogn)                                                  | ii)      | O(logn)                             |
|    | iii) O(n)                                                    | iv)      | $O(n^2)$                            |
| q) | The optional data structure used                             | ,        | , 6                                 |
| 1/ | i) Tree                                                      | ii). 9   | OHeap                               |
|    | iii) Queue                                                   | iv       | Stack                               |
|    | 2                                                            | 0,       |                                     |

|      | r)                                                                                                   | In dynamic programming the output stage n become the input to              |       |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------|--|--|--|--|--|
|      |                                                                                                      | i) Stage n-1 Stage n it self                                               |       |  |  |  |  |  |
|      |                                                                                                      | iii) Stage n+1 iv) Stage n-2                                               |       |  |  |  |  |  |
|      | s)                                                                                                   | We use dynamic programming approach when                                   |       |  |  |  |  |  |
|      |                                                                                                      | i) We need on optimal solution                                             |       |  |  |  |  |  |
|      | ii) The solution has optional sub structure iii) The given problem can be reduced to 3 - SAT problem |                                                                            |       |  |  |  |  |  |
|      |                                                                                                      |                                                                            |       |  |  |  |  |  |
|      |                                                                                                      | iv) It's faster than Greedy                                                |       |  |  |  |  |  |
|      | t)                                                                                                   | The relationship between stages of a dynamic programming problem is        |       |  |  |  |  |  |
|      |                                                                                                      | called                                                                     |       |  |  |  |  |  |
|      |                                                                                                      | i) State ii) Random Variable                                               |       |  |  |  |  |  |
|      |                                                                                                      | iii) Node iv) Transformation                                               |       |  |  |  |  |  |
| (12) | 2)                                                                                                   | Maly the Slaggithms to draw Dingmy spench, two for the following d         | 242   |  |  |  |  |  |
| Q2)  | a)                                                                                                   | Apply the algorithm to draw Binary search tree for the following d         |       |  |  |  |  |  |
|      | 1- \                                                                                                 | 10, 08, 15, 12, 13, 07, 09, 17, 20, 18, 04, 05                             | [5]   |  |  |  |  |  |
|      | b)                                                                                                   | Compare BFS and DFS.                                                       | [3]   |  |  |  |  |  |
|      | c)                                                                                                   | Explain Min Heap.                                                          | [2]   |  |  |  |  |  |
|      | a) (                                                                                                 | OR  Manly DES algorithm on the following growth and shows the stans        | [2]   |  |  |  |  |  |
|      | a)                                                                                                   | Apply DFS algorithm on the following graph and show the steps.             | [3]   |  |  |  |  |  |
|      |                                                                                                      | $\mathcal{A}$                                                              |       |  |  |  |  |  |
|      |                                                                                                      | B                                                                          |       |  |  |  |  |  |
|      |                                                                                                      |                                                                            |       |  |  |  |  |  |
|      |                                                                                                      |                                                                            |       |  |  |  |  |  |
|      | b)                                                                                                   | Construct Binary Tree for following data 10, 25, 2, 4, 7, 13, 11, 22       | and a |  |  |  |  |  |
|      | determine inorder, postorder & preorder?                                                             | [5]                                                                        |       |  |  |  |  |  |
|      | c)                                                                                                   | Define Hash function 2 collision.                                          | .[2]  |  |  |  |  |  |
|      | <i>C)</i>                                                                                            | Bernie Hash Tunetton 2 Confision.                                          | 2     |  |  |  |  |  |
| Q3)  | a)                                                                                                   | Apply Rain Terrace algorithm to the following problem.                     |       |  |  |  |  |  |
| 20)  | u)                                                                                                   | Input:- Height = $[4, 2, 0, 3, 2, 5]$ . Draw the figure and find solution. | [4]   |  |  |  |  |  |
|      | b)                                                                                                   | Explain power set with example.                                            | [3]   |  |  |  |  |  |
|      | c)                                                                                                   | Discuss use of priority queue.                                             | [3]   |  |  |  |  |  |
|      | <b>(</b> )                                                                                           | OR                                                                         | [0]   |  |  |  |  |  |
|      | a)                                                                                                   | What is Hamiltonian cycle?                                                 | [3]   |  |  |  |  |  |
|      | b)                                                                                                   | Find the Hamiltonian cycle from following graph.                           | [4]   |  |  |  |  |  |
|      | <i>-</i>                                                                                             |                                                                            | r - J |  |  |  |  |  |
|      |                                                                                                      | (a) (a) (b)                                                                |       |  |  |  |  |  |
|      |                                                                                                      |                                                                            |       |  |  |  |  |  |
|      |                                                                                                      |                                                                            |       |  |  |  |  |  |
|      |                                                                                                      | 3———                                                                       |       |  |  |  |  |  |
|      |                                                                                                      | 9.1                                                                        |       |  |  |  |  |  |
|      | c)                                                                                                   | Write an algorithm to count number of nodes in singly linked list.         | [3]   |  |  |  |  |  |
| [586 | ·<br>5]-1                                                                                            |                                                                            |       |  |  |  |  |  |
| 1200 | ·~]-1                                                                                                | V*                                                                         |       |  |  |  |  |  |

What is Jump Game algorithm? **Q4**) a)

[4]

Sort the following data using merge sort algorithm [38, 27, 43, 3, 9, 82, 10]. b)

[4]

Explain need of circular queue. c)

[2]

- Illustrate the stages, in finding the minimum cost spanning tree for given a) graph using Prim's algorithm. [4]



- Explain Rules for Tower of Hanoi with an suitable example. [4]
- What is the purpose of linked list? [2] c)
- Consider the instance of 0/1 knapsack problem n = 3, m = 20, **Q5**) a) p = (25, 24, 15), w = (18, 15, 10) using dynamic programming. Determine the optimal profit and the solution vector. [7]
  - Write an algorithm to reverse the nodes of a linked list. [3] b)



Find the longest common subsequence for following string using dynamic a) programming.

 $X = \{A, B, C, D, B,$  $Y = \{C, B, A, F\}$ 

se su b) Write an algorithm delete element from linked list whose sum is equal to zero. [3]