Please upload your solution to Problem 3 to canvas for marking after the workshop.

Problem 1

The radius R_h and mass M_h of a black hole are related by $R_h = 2GM_h/c^2$, where c is the speed of light. Assume that the gravitational acceleration a_g of an object at a distance $r_o = 1.001R_h$ from the centre of a black hole is given by $a_q = GM/r^2$ (it is, for large black holes).

- (a) In terms of M_h , find a_q at r_o .
- (b) If an astronaut of height 1.70 m is at r_o with her feet down, what is the difference in gravitational acceleration between her head and feet?

Problem 2

Zero, a hypothetical planet, has a mass of 5.0×10^{23} kg, a radius of 3.0×10^{6} m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. If the probe is launched with an initial energy of 5.0×10^{7} J, what will be its kinetic energy when it is 4.0×10^{6} m from the centre of Zero?

Problem 3

Observations of the light from a certain star indicate that it is part of a binary (two-star) system. This visible star has orbital speed $v = 270 \text{ kms}^{-1}$, orbital period T = 1.70 days, and approximate mass $m_1 = 6M_s$, where M_s is the Sun's mass, 1.99×10^{30} kg. Assume that the visible star and its companion star, which is dark and unseen, are both in circular orbits, as in the figure shown below. What integer multiple of M_s gives the approximate mass m_2 of the dark star?

Problem 4

A satellite orbits a planet of unknown mass in a circle of radius 2.0×10^7 m. The magnitude of the gravitational force on the satellite from the planet is F = 80 N. What is the kinetic energy of the satellite in this orbit?

Want more practice?

Further problems on Newton's Gravitation: Chapter 13.1-13.3 Further problems on Gravitational PE: Chapter 13.4-13.5 Further problems on Kepler's Laws & Orbits: Chapter 13.6-13.7

Problem 1

The radius R_h and mass M_h of a black hole are related by $R_h = 2GM_h/c^2$, where c is the speed of light. Assume that the gravitational acceleration a_g of an object at a distance $r_o = 1.001R_h$ from the centre of a black hole is given by $a_g = GM/r^2$ (it is, for large black holes).

- (a) In terms of M_h , find a_g at r_o .
- (b) If an astronaut of height 1.70 m is at r_o with her feet down, what is the difference in gravitational acceleration between her head and feet?

$$c = 3 \times 10^{8} \text{ Ms}^{-1}$$

$$G = 6 \cdot 67 \times 10^{-11} \text{ M}^{3} \text{ Kg}^{-1} \text{ S}^{-2}$$

$$a_{1} = \frac{GM}{r^{2}} = \frac{GM_{h}}{r_{h}^{2}} = \frac{GM_{h}}{(1 \cdot 001R_{h})^{2}} = \frac{GM_{h}}{(1 \cdot 001)(2)GM_{h}} \left(\frac{1}{C^{2}}\right)^{2} = \frac{1}{GM_{h}} \frac{c^{4}}{(2 \cdot 002)^{2}}$$

$$a_{2} = (3 \cdot 02 \times 10^{4/3} \text{ kg m s}^{-2}) M_{h}^{-1}$$

b)
$$\frac{d}{dr} = \frac{d}{dr} GMr^{-2} = GM(-2r^{-3})$$

 $\therefore dag = -2 GM \frac{1}{(2.002 GM_h(\frac{1}{c^2}))^3} dr = \frac{2}{(GM_h)^2} \frac{c^6}{(2.002)^3} dr$
and $dr = 1.70m$ gives $dag = (-6.94 \times 10^{70} \text{ kg ms}^{-2}) M_h^{-2}$

ANALTSIS

ag at r₀ ~ $(3 \times 10^{43} \text{ kg ms}^{-2}) \text{M}_h^{-1}$: More massive \rightarrow less ag!

dag ~ $(-7 \times 10^{70} \text{ kg ms}^{-2}) \text{M}_h^{-2}$: there is M^2 in the decommotor which means the change in ag with r_0 is a "SECOND-ORDER" effect:

If we let
$$M_h = 3 \times 10^{42} \text{ kg}$$
, a_g at $T_o \approx 10 \text{ ms}^{-2}$.
And $d \log \approx \frac{7 \times 10^{70}}{(3 \times 10^{42})^2} \approx \frac{7}{9} \times 10^{(70-84)} \approx 0.77 \times 10^{-14} \text{ ms}^{-2}$

VERY SMALL DIFFERENCE!

GRAVITATIONAL PE

Problem 2

Zero, a hypothetical planet, has a mass of 5.0×10^{23} kg, a radius of 3.0×10^6 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. If the probe is launched with an initial energy of 5.0×10^7 J, what will be its kinetic energy when it is 4.0×10^6 m from the centre of Zero?

ETOT,
$$i = E_{TOT, f}$$
 $G = 6.67 \times 10^{-11}$ $M^3 \text{ kg}^{-1} \text{ S}^{-2}$ (KE+PE); $= (\text{KE+PE})_f$

PE of the planet+probe system: $PE = -GM_EM_P$

Inhally,

 $T_{2p} = 3 \times 10^6 \text{ m}$: probe on surface

So, $PE_i = -(6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2})(5 \times 10^{23} \text{ kg})(10 \text{ kg})$

$$= -1.11 \times 10^8 \text{ m}^2 \text{ kg}^{-2}$$

PE; $= -1.11 \times 10^8 \text{ J}$

= -1.11 × 10⁸ m² kgs⁻²
$$PE_{i} = -1.11 \times 10^{8} \text{ J}$$

and untral $KE_{i} = 5 \times 10^{7} \text{ J}$, $KE_{i} = 5 \times 10^{7} \text{ J}$.

Finally (at
$$4\times10^6$$
 m from centre of Zero)
PE_f = $\frac{3}{4}$ PE; = $-8\cdot34\times10^7$ m² kg s⁻² PE_f = $-8\cdot3\times10^7$ J

$$KE_{f} = PE_{i} + KE_{i} - PE_{f} = (-11 + 5 + 8.3) \times 10^{7} \text{ J}$$

$$KE_{f} = 2.3 \times 10^{7} \text{ J}$$

Problem 3

KEPLER

Observations of the light from a certain star indicate that it is part of a binary (two-star) system. This visible star has orbital speed $v = 270 \text{ kms}^{-1}$, orbital period T = 1.70 days, and approximate mass $m_1 = 6M_s$, where M_s is the Sun's mass, 1.99×10^{30} kg. Assume that the visible star and its companion star, which is dark and unseen, are both in circular orbits, as in the figure shown below. What integer multiple of M_s gives the approximate mass m_2 of the dark star?

$$F_{12} = \frac{G_1 M_1 M_2}{r_{12}} = \frac{M_1 V_1^2}{r_1}$$

HINT! FIND C.O.M. REL. TO VISIBLE STAR.

$$\stackrel{\bullet}{\underset{\mathsf{M}_{1}}{\longleftrightarrow}} \stackrel{\mathsf{r}}{\underset{\mathsf{M}_{2}}{\longleftrightarrow}}$$

$$\frac{\Gamma_{com} = M_1\Gamma_1 + M_2\Gamma_2}{M_1 + M_2} = \frac{M_2\Gamma}{M_1 + M_2} : \Gamma = \frac{\Gamma_{com}(M_1 + M_2)}{M_2}$$

We can also find room from V, T:

$$V_{com} = \frac{2\pi}{T} \gamma_{com} : \gamma_{com} = \frac{V_{com} T}{2\pi} : \gamma = \frac{\sqrt{T}}{2\pi} \frac{(M_1 + M_2)}{M_2}$$

So,
$$F_{12} = \frac{G_{11}M_{1}M_{2}}{V^{2}T^{2}(M_{1}+M_{2})^{2}} = \frac{M_{1}V^{2}2\pi}{V^{2}}$$

$$\frac{m_{2}^{3}}{(M_{1}+M_{2})^{2}} = \frac{2v^{3}T}{4\pi G} \text{ and } M_{1} = 6M_{S}$$

write M2 = KMs and solve for k:

LHS:
$$\frac{(k M_s)^3}{(6+K)^2 M_s^2} = \frac{K^3}{(6+K)^2} M_s$$

RHS:
$$\frac{2v^3T}{4\pi G} = 6.90 \times 10^{30} \text{ kg}$$

= 3.47 Ms

$$\frac{K^3}{(6+K)^2} - 3.47 = 0 \text{ gwes } K_{real} = 9.3 \text{ m}_2 = 9.3 \text{ Ms}$$