

CAP 7. REDES IP E O TRANSPORTE DE DADOS MULTIMÍDIA

AULA 1: Introdução e Protocolo IP

INE5431 Sistemas Multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

Cap 7. Redes IP e o Tráfego Multimídia

- Conteúdo do capítulo
 - Protocolo IP e a Multimídia
 - Requisitos de Protocolos de Transporte
 - Protocolo TCP
 - Protocolo UDP

Protocolo IP e a Multimídia

UFSC

- Versões do Protocolo IP
 - IPv4
 - Versão amplamente usada nas redes IP atuais
 - Endereços de rede de 32 bits
 - □ IPv6
 - Endereços de rede de 128 bits
 - Novas características (para multimídia)

- Maior parte das redes IPv4 oferece um serviço do tipo "Melhor Esforço"
 - Não garante vazão, atraso, variação de atraso e taxa de perdas de pacotes
 - Não garante a qualidade de apresentação de áudio e vídeo
 - No caso de sobrecarga a rede pode descartar pacotes
 - geralmente a perda de pacotes ocorre nas filas dos roteadores IP.

- Sobrecarga normalmente é de 20 Bytes
 - Mas depende da existência ou não dos campos opcionais
 - Exemplo para RTP

IP (20 bytes)

UDP (8 bytes)

RTP (12 bytes)

Dado (payload)

- Processamento no roteador
 - Tamanho do cabeçalho é variável e requer recálculo do checksum com as mudanças do campo TTL
 - Pode influenciar o atraso e jitter
- Sem mecanismos de segurança na camada rede
 - IPSec não é suportado quando da existência do serviço NAT

IPv6

UFSC

Uma versão do protocolo Internet IP

- "Nova" versão do IP pois o espaço de endereçamento disponível do IPv4 está se esgotando
- Projetado para ser um passo evolucionário do IPv4
 - aumento do espaço de endereçamento, autenticação e criptografia
 - extensões para fluxos de dados multimídia

Características

- IPv6 é baseado nos principais paradigmas do IPv4
 - sem conexão, sem controle de erro e de fluxo na camada de rede
 - oferece serviço melhor esforço

Formato do cabeçalho IPv6

4-bit Version	8-bit Traffic Class	20-bit Flow Label		
16-bit Payload Length		8-bit Next Header	8-bit Hop Limit	
128-bit Source Address				
128-bit Destination Address				

- Version Único campo idêntico ao IPv4. Código é 6 em IPv6
- Traffic Class Facilita manipulação do tráfego tempo real
- Flow Label Distingue pacotes requerendo o mesmo tratamento
- Payload Length Substitui campo length do IPv4.
- Next Header Substitui campo *protocol* do IPv4. Cabeçalhos de extensão pode ser usado.
- Hop Limit Substitui campo TTL do IPv4. Limite de hop reflete melhor o uso.
- Src Address 128 bits no IPv6 vs 32 bits no IPv4.
- Dst Address
 128 bits no IPv6 vs 32 bits no IPv4.

40 bytes

UFSC

- Campo Class do IPv6

- É equivalente ao campo DS do IPv4 e não é geralmente considerado → Então IPv6 geralmente oferece um serviço do tipo "Melhor Esforço"
 - Não garante vazão, atraso, variação de atraso e taxa de perdas de pacotes
 - Não garante a qualidade de apresentação de áudio e vídeo
 - No caso de sobrecarga a rede pode descartar pacotes
 - geralmente a perda de pacotes ocorre nas filas dos roteadores IP.

- Campo *flow label* no cabeçalho permite a identificação de todos os pacotes de um mesmo fluxo de dados
 - Fluxo é uma sequência de pacotes enviados por um host
 - Todos os roteadores no caminho podem identificar os pacotes de um fluxo e tratar eles de um modo específico ao fluxo
 - Por exemplo, eles podem dar um tratamento diferenciado aos pacotes de um fluxo de vídeo
 - Dependendo do tipo de uso, não parece garantir escalabilidade
 - Tratamento diferenciado de cada fluxo passando pelo roteador não é escalável: processamento e recursos é proporcional ao número de fluxos passando pelo roteador

- Melhorias no Roteamento

- Redução da tabela de roteamento e melhorias no roteamento
- Implica na redução do atraso

Melhorias na mobilidade

- Avanços no roteamento suportando melhor a mobilidade
- Permissão de multicasting
 - campo scope no endereçamento limita o seu domínio de validade

- Protocolo passível de expansão
 - através do uso de cabeçalhos de extensão
- Processamentos no roteador
 - Simplificação do cabeçalho do protocolo (retirada do checksum e tamanho fixo)
 - diminui tempo de processamento na análise dos cabeçalhos
 - potencialmente reduzem o atraso e jitter
- Sobrecarga do protocolo IPv6
 - Aumenta de 20 bytes (IPv4) para 40 bytes
- Garantia de mais segurança
 - autenticação e criptografia

Pontos Importantes

Análise do Protocolo IP

- Problema é o serviço oferecido: melhor esforço, não garantido vazão, atraso, jitter e limites de perda de pacotes
- Vantagens do IPv6 em relação a IPv4

CAP 7. REDES IP E O TRANSPORTE DE DADOS MULTIMÍDIA

AULA 2: Protocolos de Transporte

INE5431 Sistemas Multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

Requisitos para Protocolos de Transporte Multimídia

- Aplicações utilizam a rede via protocolos de transporte
 - fornece funções e serviços necessários às aplicações
 - usando protocolos de níveis mais baixo e a rede física
- Requisitos:
 - alta vazão
 - suporte multicast

Requisitos para Protocolos de Transporte Multimídia

- Três categorias de endereçamento:
 - unicast identifica uma interface
 - multicast identifica um grupo; pacote é transmitido para todos os membros do grupo
 - anycast identifica um grupo; pacote normalmente é transmitido ao membro mais próximo do grupo, respeitando os critérios de roteamento

Capacidades Multicast

- Muitas aplicações multimídia exigem multicast
 - necessitam de capacidades multicast do sistema de transporte
- Multicast é implementado na camada de rede
 - muitos sistemas de transporte multimídia usam o algoritmo IP multicast ou assumem a existência de certos algoritmos de roteamento multicast

Protocolo TCP

UFSC

- Arquitetura TCP/IP

- Projetado para comunicação de dados confiável em redes de baixa largura de banda e altas taxas de erro
 - não otimizados para operações de alta velocidade
 - não fornecem suporte a multicast
 - não atende todos os requisitos para comunicações de vários tipos de aplicações multimídia
- Aspectos indesejáveis para multimídia
 - controle de erro
 - controle de fluxo e de congestionamento
 - Não suporte a multicast

Protocolo TCP

Controle de Erro

- Quando TCP transmite um segmento
 - Ele coloca uma cópia do segmento em uma fila de retransmissão e dispara um temporizador
 - Caso o reconhecimento do segmento é recebido
 - o segmento é retirado desta fila
 - Caso o reconhecimento n\u00e3o ocorra antes do temporizador expirar
 - Segmento é retransmitido

TCP: Cenários de retransmissão

- Exemplo no cenário de VoIP
 - Um pacote de voz a cada 20ms
 - Atraso de ida e volta de 60ms
 - Retransmissão gera
 - Envio de pacote que será descartado no destino
 - Reenvio pode gerar jitter no pacote atual
 - Uso de recursos desnecessariamente.

TCP: Cenários de retransmissão

- Exemplo no streaming baseado em servidor
 - Atraso de ida e volta de 60ms
 - Com buffer grande permite a retransmissão

Protocolos de Transporte TCP

UFSC

Controle de Erro e a Multimídia

- Retransmissão não é ideal para várias aplicações multimídia
 - implementação de estratégias de retransmissão necessitam temporizadores e buffers grandes
 - tornam o protocolo complicado e lento
 - dados multimídia toleram algum erro ou perda
 - retransmissão causa atrasos para dados subsequentes
 - resulta em mais dados sem utilidade no receptor
- Aplicável apenas para aplicações baseadas em servidor
 - Para aumentar a qualidade
 - Requer tempos de bufferização maiores

Protocolos de Transporte TCP

UFSC

Controle de Erro e a Multimídia

- Para várias aplicações multimídia
 - somente a detecção de erros deve ser fornecida
 - na detecção de um erro, a aplicação deveria ser notificada e é ela que deveria decidir a providência necessária
 - Uma alternativa para melhorar a qualidade da mídia é a codificação Forward Error Correction (FEC)
 - informações extras são enviadas para permitir correções de erro no receptor sem necessidade de retransmissão
 - problema desta solução é o consumo adicional de largura de banda

Recuperação de Perdas de Pacote

- Mixar fluxos de alta e baixa qualidade
 - Na perda de um pacote, a informação de mais baixa qualidade é apresentada

Recuperação de Perdas de Pacote

- Mixar fluxos de alta e baixa qualidade
 - Ocorre um aumento da taxa de bits
 - Perdas em rajada não são muito bem tratadas
 - Requer aumento do tempo de buferização

Recuperação de Perdas de Pacote

- Entrelaçamento
 - Não tem redundância, mas pode causar um atraso na apresentação
 - Divide 20ms de áudio em unidades de 5ms cada e entrelaçadas
 - Reduz a perda em rajada

Protocolo TCP

UFSC

- Controle de Fluxo

- TCP provê mecanismo para que o transmissor possa determinar o volume de dados que o receptor pode armazenar
 - Baseia-se no envio, junto com o reconhecimento, do número de octetos que o receptor tem condições de enviar contados a partir do último octeto da cadeia de dados recebido com sucesso
- Permite o "speeding matching", ajustando a vazão de acordo com a capacidade do receptor consumir dados

Protocolos TCP

- Controle de Fluxo
 - Tamanho típico da janela é de 64 KB
 - Muito grande para redes lentas
 - rede de 64 Kbps leva 8s para transmitir 64kbytes
 - atraso de ida-e-volta normal é muito menor que 8s
 - transmissor receberá um reconhecimento antes de acabar o envio dos bits de uma janela
 - Controle de fluxo não terá efeito

Protocolos TCP

- Controle de Fluxo
 - Tamanho típico da janela é de 64 KB
 - Muito pequeno para redes de alta velocidade
 - transmissor aguardará muito para receber a permissão de transmissão
 - largura de banda não é inteiramente utilizada
 - transmissor enviará 64 Kbytes em 50 ms na velocidade de 10 Mbps
 - em WAN o atraso ida-e-volta é normalmente muito maior que 50 ms

Protocolos TCP

- Controle de Congestionamento
 - Informalmente: "Excessivo número de fontes enviando grande quantidade de dados mais rápido que a rede possa manipular"
 - Manifestações:
 - Pacotes perdidos (overflow dos buffers nos roteadores)
 - Grandes atrasos (enfileiramento nos buffers dos roteadores)
 - Um grande problema de rede!

Protocolo TCP

- Partida lenta
 - Incremento exponencial no tamanho da janela (não muito lenta!)
 - Evento de perda: timeout e/ou três ACKs duplicados

Algoritmo Partida lenta

inicializa: Congwin = 1 MSS
Para (cada segm com ack)
Congwin++
Até (evento de perda OU
CongWin > threshold)

Controle de Congestionamento TCP

- Fases

- Partida Lenta: janela cresce exponencialmente
- Prevenção do congestionamento
 - Inicia quando o tamanho da janela excede o valor do threshold
 - Janela de congestionamento cresce linearmente
 - Na ocorrência de perdas volta à partida lenta (Reno)

Protocolo TCP e a Multimídia

UFSC

- Controle de erro
 - Ineficiente para aplicações conversacionais de áudio e vídeo:
 - gera retransmissões de dados que são descartados no receptor
- Controle de Congestionamento e de fluxo
 - Requer que a aplicação se adapte a situação da rede
 - Não interessante para várias aplicações multimídia
 - Requer que a rede suporte a taxa de apresentação (+ sobrecargas de protocolos)
- Multicasting
 - não dispõem

Protocolo UDP

- UFSC
- Não oferece meios que permitam uma transferência confiável de dados
 - A rede não controla a taxa com que as informações fluem entre as máquinas. É a aplicação fonte que define a taxa de saída
 - não implementa mecanismos de reconhecimento, de sequenciamento nem de controle de fluxo das mensagens de dados trocadas entre os dois sistemas
 - datagramas podem ser perdidos ou entregues fora de ordem ao sistema de destino
 - aplicação assume toda a responsabilidade pelo controle de erros
 - serve para transportar uma mensagem de uma estação para outra, utilizando o IP para enviar e receber estes datagramas

Protocolo UDP

UFSC

É um protocolo simples

- Latência menor
- Usa mais eficientemente a banda da rede
 - Cabeçalho por segmento é menor (cabeçalho de 8 bytes, e TCP tem 20 bytes)
 - Sem controle de congestionamento e de fluxo: permite usar a banda de maneira mais eficiente
 - Mas pode provocar taxa de perdas altas
 - Aplicações multimídia são tolerantes a perda
 - Sensíveis a taxa
- Usado para aplicações multimídia conversacionais e streaming
 - Transferência confiável sobre UDP: adicionar confiabilidade na camada de aplicação
 - Recobrimento de erro específico de aplicação

UDP e a Multimídia

Protocolo UDP

- Serviço orientado datagrama simples sem confiabilidade
 - melhor para aplicações multimídia
 - mas para nem todas
- Aplicações podem rodar no topo do UDP com funções adicionais integradas nas aplicações
 - Delegando-se às estações o recobrimento das dificuldades que a rede tem quanto a garantias de serviço
 - Técnicas de bufferização
 - Protocolos de transporte melhores adaptados (RTP) que são implementados no nível aplicativo

Pontos Importantes

Protocolos de Transporte TCP e UDP

- Entender as limitações para tráfego multimídia
- Conhecer os mecanismos de confiabilidade sem retransmissão de pacotes apresentados