Status Finished

Started Monday, 13 January 2025, 4:59 PM

Completed Monday, 13 January 2025, 5:28 PM

Duration 29 mins 17 secs

Question 1 Correct

Marked out of 1.00

Flag question

A binary number is a combination of 1s and 0s. Its n^{th} least significant digit is the n^{th} digit starting from the right starting with 1. Given a decimal number, convert it to binary and determine the value of the the 4th least significant digit.

Example

number = 23

- Convert the decimal number 23 to binary number: $23^{10} = 2^4 + 2^2 + 2^1 + 2^0 = (10111)_2$.
- The value of the 4^{th} index from the right in the binary representation is 0.

Function Description

Complete the function fourthBit in the editor below.

fourthBit has the following parameter(s):

int number: a decimal integer

Returns:

int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number.

Explanation 0

- Convert the decimal number 32 to binary number: 32₁₀ = (100000)₂.
- The value of the 4th index from the right in the binary representation is 0.

Sample Case 1

Sample Input 1

```
STDIN Function
-----
77 → number = 77
```

Sample Output 1

1

Explanation 1

- Convert the decimal number 77 to binary number: $77_{10} = (1001101)_2$.
- The value of the 4th index from the right in the binary representation is 1.

Answer: (penalty regime: 0 %)

Reset answer

```
Answer: (penalty regime: 0 %)
```

```
Reset answer
```

```
2
       * Complete the 'fourthBit' function below.
 3
      * The function is expected to return an INTEGER.

* The function accepts INTEGER number as parameter.
 4
 5
 6
 7
    int fourthBit(int number)
 8
 9 * {
10
          int flsb;
flsb=(number>>3)&1;
11
          return flsb;
12
13 }
```

	Test	Expected	Got	
~	<pre>printf("%d", fourthBit(32))</pre>	0	0	~
_	printf("%d", fourthBit(77))	1	1	~

Passed all tests! <

Question **2**Correct
Marked out of 1.00

F Flag question

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the pth element of the list, sorted ascending. If there is no pth element, return 0.

Example

n = 20

p = 3

The factors of 20 in ascending order are {1, 2, 4, 5, 10, 20}. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

Function Description

Complete the function pthFactor in the editor below.

pthFactor has the following parameter(s):

int n: the integer whose factors are to be found

int p: the index of the factor to be returned

Returns:

int: the long integer value of the p^{th} integer factor of n or, if there is no factor at that index, then 0 is returned

Constraints

 $1 \le n \le 10^{15}$

 $1 \le p \le 10^9$

Sample Case 0

Sample Input 0

STDIN Function $\begin{array}{ccc}
10 & \rightarrow & n = 10 \\
3 & \rightarrow & p = 3
\end{array}$

Sample Output 0

5

Explanation 0

Factoring n = 10 results in {1, 2, 5, 10}. Return the $p = 3^{rd}$ factor, 5, as the answer.

Sample Case 1

Sample Input 1

STDIN Function

10 \rightarrow n = 10

5 \rightarrow p = 5

Sample Output 1

٥

Explanation 1

Factoring n = 10 results in $\{1, 2, 5, 10\}$. There are only 4 factors and p = 5, therefore 0 is returned as the answer.

Sample Case 2

Sample Input 2

STDIN Function $1 \rightarrow n = 1$ $1 \rightarrow p = 1$

Sample Output 2

1

Explanation 2

Factoring n=1 results in {1}. The p=1st factor of 1 is returned as the answer.

Answer: (penalty regime: 0 %)

Docat answer

```
* Complete the 'pthFactor' function below.
3
     * The function is expected to return a LONG_INTEGER.
 4
     * The function accepts following parameters:

* 1. LONG_INTEGER n
 5
 6
     * 2. LONG_INTEGER p
 7
 8
 9
    long pthFactor(long n, long p)
10
11 * {
        long arr[1000000];
arr[0]=1;
12
13
        int c=1;
for(long i=2;i<=n;i++)</pre>
14
15
16
17
             if(n%i==0)
18
19
                 arr[c]=i;
20
                 C++;
21
22
23
         if(p>c)
24
            return 0;
25
26
27
         else
28 -
         {
29
            return arr[p-1];
30
31 }
```

	Test	Expected	Got	
/	printf("%ld", pthFactor(10, 3))	5	5	~
/	printf("%ld", pthFactor(10, 5))	0	0	~
/	printf("%ld", pthFactor(1, 1))	1	1	~