Calculus Formulas

Power Rules: $\frac{d}{dx}x^n = nx^{n-1}$ and $\int x^n dx = \frac{x^{n+1}}{n+1} + c$	Product Rule: $\frac{d}{dx}[f(x)\cdot g(x)] = f(x)\cdot g'(x) + f'(x)\cdot g(x)$
Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{[g(x)]^2}$	Reciprocal Rule: $\frac{d}{dx} \left[\frac{1}{g(x)} \right] = \frac{-g'(x)}{[g(x)]^2}$
Chain Rule: $\frac{d}{dx}(f \circ g)(x) = f'[g(x)] \cdot g'(x)$	Integration-by-Parts: $\int u dv = uv - \int v du$

Trigonometric Functions		Inverse Trigonometric Functions		
Derivative	Integral	Derivative	Integral	
$\frac{d}{dx}\sin x = \cos x$	$\int \sin x dx = -\cos x + c$	$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1 - x^2}}$ $\int \frac{1}{1 - x^2} dx = \sin^{-1}\frac{u}{1 - x^2} + \frac{1}{1 - x^2} dx = \sin^{-1}\frac{u}{1 - x^2} + \frac{1}{1 - x^2} + 1$	$\int \frac{1}{\sqrt{a^2 - u^2}} dx = \sin^{-1} \frac{u}{a} + c$	
$\frac{d}{dx}\cos x = -\sin x$	$\int \cos x dx = \sin x + c$	$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$	$\int \sqrt{a^2 - u^2} dx dx dx$	
$\frac{d}{dx}\tan x = \sec^2 x$	$\int \tan x dx = \ln \sec x + c$ $\int \sec^2 x dx = \tan x + c$	$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$	$\int \frac{1}{a^2 + u^2} dx = \frac{1}{a} \tan^{-1} \frac{u}{a} + c$	
$\frac{d}{dx}\cot x = -\csc^2 x$	$\int \cot x dx = \ln \sin x + c$ $\int \csc^2 x dx = -\cot x + c$	$\frac{d}{dx}\cot^{-1}x = \frac{-1}{1+x^2}$		
$\frac{d}{dx}\sec x = \sec x \cdot \tan x$	$\int \sec x dx = \ln \sec x + \tan x + c$ $\int \sec x \cdot \tan x dx = \sec x + c$	$\frac{d}{dx}\sec^{-1}x = \frac{1}{ x \sqrt{x^2 - 1}}$	$\int \frac{1}{u\sqrt{u^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \frac{u}{a} + c$	
$\frac{d}{dx}\csc x = -\csc x \cdot \cot x$	$\int \csc x dx = \ln \csc x - \cot x + c$ $\int \csc x \cdot \cot x dx = -\csc x + c$	$\frac{d}{dx}\csc^{-1}x = \frac{-1}{ x \sqrt{x^2 - 1}}$	$\int_{u}^{u} \sqrt{u^2 - a^2} \qquad a \qquad a$	

$$\begin{cases}
\sin^2 x + \cos^2 x = 1 & \sin 2x = 2\sin x \cos x & \cos^2 x = \frac{1 + \cos 2x}{2} \\
1 + \cot^2 x = \csc^2 x & \cos 2x = \cos^2 x - \sin^2 x & \sin^2 x = \frac{1 - \cos 2x}{2} \\
\tan^2 x + 1 = \sec^2 x & \cos(x + y) = \cos x \cos y - \sin x \sin y & \sin(x + y) = \sin x \cos y + \cos x \sin y
\end{cases}$$

Exponential Functions		Logarithmic Functions		
Derivative	Integral		Derivative	Integral
$\frac{d}{dx}(e^x) = e^x$	$\int e^x dx = e^x + c$		$\frac{d}{dx} \left(\ln x \right) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$
$\frac{d}{dx}(b^x) = (\ln b)b^x$	$\int b^x dx = \frac{b^x}{\ln b} + c$		$\frac{d}{dx} (\log_b x) = \frac{1}{(\ln b)x}$	
Definition of Log base b: $\log_b N = x \Leftrightarrow b^x = N$		Change of Base Formula: $\log_b x = \frac{\ln x}{\ln b} = \frac{\log x}{\log b}$		

Identities:
$$\begin{cases} \ln(e^x) = x & e^{\ln x} = x & \ln e = \log 10 = \log_b b = 1 \\ \log_b(b^x) = x & b^{\log_b x} = x & \ln 1 = \log 1 = \log_b 1 = 0 \end{cases}$$

Infinite Series: Definitions & Tests

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$$
 (Infinite Series)

1. Series:
$$\begin{cases} s_n = \sum_{i=1}^n a_i = a_1 + a_2 + ... + a_n \text{ (nth Partial Sum)} \\ \text{if } \lim_{n \to \infty} s_n = s \text{ where } s \in \Re \text{ then } \sum_{n=1}^\infty a_n = s \text{ (Infinite Sum)} \end{cases}$$

2. Geometric Series:
$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ar^3 + \dots = \begin{cases} \frac{a}{1-r}, & \text{if } |r| < 1\\ diverges, & \text{if } |r| \ge 1 \end{cases}$$

- 3. P-Series: $\sum_{n=1}^{\infty} \frac{1}{n^p} \Rightarrow \begin{cases} converges, & \text{if } p > 1 \\ diverges, & \text{if } p \leq 1 \end{cases}$ if p = 1, the series is called the harmonic series.
- 4. Quick Divergence Test: Given $\sum_{n=1}^{\infty} a_n \Rightarrow \begin{cases} \text{if } \lim_{n \to \infty} a_n \neq 0, \text{then } \sum_{n=1}^{\infty} a_n \text{ diverges} \\ \text{if } \lim_{n \to \infty} a_n = 0, \text{then No Conclusion! Do another test!} \end{cases}$
- 5. Integral Test: Given $\sum_{n=c}^{\infty} a_n$, $a_n > 0$, a_n decreasing $\Rightarrow \begin{cases} \text{if } \int\limits_{c}^{\infty} a_n \ dn \ \text{converges then } \sum\limits_{n=c}^{\infty} a_n \ \text{converges} \end{cases}$ if $\int\limits_{c}^{\infty} a_n \ dn \ \text{diverges then } \sum\limits_{n=c}^{\infty} a_n \ \text{diverges} \end{cases}$
- 6. Ratio Test: Given $\sum_{n=c}^{\infty} a_n$, $a_n > 0 \Rightarrow if \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = p$ then $\begin{cases} \sum_{n=c}^{\infty} a_n \text{ converges, when } p < 1, \\ \sum_{n=c}^{\infty} a_n \text{ diverges, when } p > 1, \\ \text{No Conclusion, when } p = 1 \end{cases}$
- 7. Root Test: Given $\sum_{n=c}^{\infty} a_n$, $a_n > 0 \Rightarrow \text{if } \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} (a_n)^{\frac{1}{n}} = p \text{ then } \begin{cases} \sum_{n=c}^{\infty} a_n \text{ converges, when } p < 1, \\ \sum_{n=c}^{\infty} a_n \text{ diverges, when } p > 1, \end{cases}$ No Conclusion, when p = 1
- 8. Limit Comparison Test: $\sum_{n=c}^{\infty} a_n \text{ and } \sum_{n=c}^{\infty} b_n \text{ , } a_n > 0, b_n > 0 \Rightarrow \begin{cases} \text{if } \lim_{n \to \infty} \frac{a_n}{b_n} = p, \ p > 0, \ p \text{ finite} \\ \text{then both series converge or both diverge} \end{cases}$
- 9. Comparison Test: $\sum_{n=c}^{\infty} a_n \text{ and } \sum_{n=c}^{\infty} b_n \text{ , } a_n \ge 0, b_n \ge 0, a_n \le b_n \Rightarrow \begin{cases} \text{if } b_n \text{ converges then } a_n \text{ converges,} \\ \text{if } a_n \text{ diverges then } b_n \text{ diverges} \end{cases}$
- 10. Alternating Series Test: Given $\sum_{n=c}^{\infty} (-1)^n a_n$, if $a_n > 0$, $a_{n+1} < a_n$, $\lim_{n \to \infty} a_n = 0$, then $\sum_{n=c}^{\infty} (-1)^n a_n$ converges