Marius Schneider

POSTDOC · UC SANTA BARBARA

3205 Bioengineering, Santa Barbara, CA 93117

Google Scholar Profile | © ORCID Profile

Computational neuroscientist studying how the brain processes and integrates sensory input to support perception and behavior, using large-scale neural recordings and computational modeling. My PhD introduced a theoretical model of inter-areal coherence that challenges prevailing interpretations of neural oscillations and functional connectivity.

Education _

Ph.D. in Neurophysics Nijmegen (NL) 02/2020 - 05/2024

DONDERS CENTRE FOR NEUROSCIENCE, RADBOUD UNIVERSITY

Title: Mechanisms of inter-areal neuronal communication

Advisor: Prof. Dr. Martin Vinck.

Committee: Prof. Dr. Marie Carlen, Prof. Dr. Gaute Einevoll, Prof. Dr. Dr. h.c. mult, Wolf Singer.

Graduated with highest honors (top 5%).

M.Sc. in Physics Frankfurt (DE) 10/2016 - 04/2019 **GOETHE UNIVERSITY**

Title: Biological complexity facilitates tuning of the neuronal parameter space

Advisor: Dr. Hermann Cuntz, Prof. Dr. Peter Jedlicka.

German Grade - 1.1, American GPA - 3.9.

B.Sc. in Physics Frankfurt (DE) **GOETHE UNIVERSITY** 10/2012 - 10/2016

Advisor: Prof. Dr. Reinhard Dörner. German Grade - 1.7. American GPA - 3.3.

Professional Experience _

2024-2026 Postdoc, UC Santa Barbara, California, USA

- Leading several highly collaborative projects
- Mentoring graduate students on deep reinforcement learning and digital twin models of mouse vision
- Large-scale data analysis of electrophysiological recordings from visual cortex and behavior in freely moving mice

PhD student, Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society 2019-2024

- Led several highly collaborative projects resulting in high-impact publications
- Large-scale data analysis of neural recordings in different species
- Developed biophysical and abstract models of neural circuits and LFP signals
- Mathematical analysis

Research Assistant, Justus Liebig University, Gießen 2018-2019

• Developed biophysical models of degeneracy in the hippocampus

2017-2018 **Research Assistant**, Frankfurt Institute for Advanced Studies

- Biophysical modeling of hippocampal granule cells
- Teaching and supervision of undergraduate students

Accelerator Operator, Goethe University, Frankfurt 2017-2018

• Operate a linear particle accelerator to carry out ion beam analyses

Research Assistant, Max Planck Institute for Empirical Aesthetics 2016-2018

- Performed & preprocessed MEG recordings
- Project management and recruitment of subjects

Publications_

PUBLISHED

Onorato I, Tzanou A, **Schneider M**, Uran C, Broggini AC, Vinck M. 2025. Distinct roles of PV and Sst interneurons in visually-induced gamma oscillations. Cell Reports, 44 (3), 115385.

Spyropoulos G*, **Schneider M***, van Kempen J, Gieselmann MA, Thiele A, Vinck M. 2024. Distinct feedforward and feedback pathways for cell-type specific attention effects. Neuron, 112 (14): 2423-2434.e7.

Schneider M, Tzanou A, Uran C, Vinck M. 2023. Cell-type-specific propagation of visual flicker. Cell Reports, 42(5): e1011212.

Schneider M, Bird AD, Gidon A, Triesch J, Jedlicka P, Cuntz H. 2023. Biological complexity facilitates tuning of the neuronal parameter space. PLOS Computational Biology, 19(7): e1011212.

Vinck M, Uran C, Spyropoulos G, Onorato I, Broggini AC, **Schneider M**, Johnson AC. 2023. Principles of large-scale neural interactions. Neuron, 111(7): 987-1002.

JR Dowdall, **Schneider M**, M Vinck. 2023. Attentional modulation of inter-areal coherence explained by frequency shifts. NeuroImage, 277: 120256.

Schneider M, Broggini AC, Dann B, Tzanoua A, Uran C, Sheshadri S, Scherberger H, Vinck M . 2021. A mechanism for inter-areal coherence through communication based on connectivity and oscillatory power. Neuron, 109(24): 4050-4067.

Cuntz H, Bird A, Beining M, **Schneider M**, Mediavilla L, Hoffmann F, Deller T, Jedlicka P. 2021. A general principle of dendritic constancy – a neuron's size and shape invariant excitability. Neuron, 109(22): 3647-3662.

In Review

Vinck M, Uran C, **Schneider M**. Aperiodic processes explaining rhythms in behavior: A matter of false detection or definition?

Awards, Fellowships, & Grants _____

2024	EBBS young investigator award European Brain and Behaviour Society
2019	PhD research fellowship, International Max Planck Research School for Neural Circuits
	Travel Grant for CNS conference, Organization for Computational Neurosciences
2018	Travel Grant for Neural Dynamics Summer School, University of Bristol
2016	German National Student Scholarship

Invited Talks & Selected Conference Presentations

2025	Cosyne (Montreal, Canada), Poster: Uncovering behavioral strategies: Training mice and AI on a shared foraging task.
2025	Cosyne (Montreal, Canada), Poster: A mechanism for selective attention in biophysically realistic Daleian spiking neural networks.
2025	Cosyne (Montreal, Canada), Poster: A deep learning framework for center-periphery visual processing in mouse visual cortex.
2024	FENS Forum (Vienna, Austria), Poster: Mechanisms of attention in biophysiologically realistic Daleian spiking neural networks
2022	Bernstein Center of Computational Neurosciences (Berlin, Germany), Invited Talk: Do neurons communicate through coherence?
2022	SFN (San Diego, USA), Poster: Cell-type specific entrainment during rhythmic visual flicker stimulation.

^{*} These authors contributed equally

Bernstein (Berlin, Germany), Poster: Cell-type specific entrainment during rhythmic visual flicker stimulation.

Neuromatch Conference (Online), Selected Talk: A mechanism for inter-areal coherence through communication based on connectivity and oscillatory power.

CNS (Barcelona, Spain), Poster: High dimensional ion channel composition enables robust and efficient targeting of realistic regions in the parameter landscape of neuron models.

3R Centre Kick-off symposium (Giessen, Germany), Poster: Ion channel diversity enables robust and flexible targeting of realistic regions in the parameter landscape of dentate granule cell models.

Academic Contributions and Services _____

Peer Reviewer for Nature Communications

Peer Reviewer for Journal of Neurophysiology

Co-organizer of lecture series *ESI-talks*, *Ernst Strüngmann Institute for Neuroscience*

Teaching & Mentoring _____

2025	Graduate Course: Bionic Vision, Guest lecture: Introduction to Computational Neuroscience, UC Santa Barbara
2024	Jing Peng, Master's Thesis supervision, UC Santa Barbara
2022	Neuromatch Academy: Computational Neuroscience, Teaching Assistant, Online
2019	Aysin Yildirim, Bachelor Thesis supervision, Goethe University
2019	7th Baltic-Nordic School on Neuroinformatics, Teaching Assistant, Frankfurt Institute for Advanced Studies
2018	Computational Neurobiology Course, Teaching Assistant, Goethe University, Frankfurt)

Further Qualifications _____

LANGUAGES: German (native speaker), English (fluent), French (basic)

TECHNICAL SKILLS: Python, PyTorch, TensorFlow, MATLAB, C++, NEURON, FieldTrip, LaTeX, Adobe Illustrator

OTHER SKILLS: Mentoring, collaborative research, teaching, scientific communication, problem solving