## **Data Preparation For Data Science:** Womit Sie "DATA=" in den analytischen Procedures von SAS am besten füttern? – Teil 2

Gerhard Svolba

Data Scientist, SAS Austria



Medium LinkedIn Github SAS-Books Youtube: DataPreparation4DataScience **Data Science Use Cases** 





§sas







Copyright © SAS Institute mc. An rights reserved

#### Ein Thema mit vielen Dimensionen

## **Data Preparation for Data Science**

Data Assembly

Data Quality for Analytics

Feature Generation



# **Data Preparation for Data Science**

Data Assembly

Data Quality for Analytics

Feature Generation



# Can you build a machine learning model that predicts the cancellation risk of our customers?

- What do you mean by "cancellation"?
  - Do you mean the full cancellation of the product or a decline in usage?
  - Do you want to include customers that have canceled the product but have started to use a more (or less) advanced product?
  - Do you also want to consider customers who did not cancel themselves but were canceled by our company?



### 4 Methods How to Join a (Lookup) Table to a Master Table

|    | Month     | Product | Actual Sales |
|----|-----------|---------|--------------|
| 1  | 01JAN1993 | SOFA    | \$925.00     |
| 2  | 01FEB1993 | SOFA    | \$999.00     |
| 3  | 01MAR1993 | SOFA    | \$608.00     |
| 4  | 01APR1993 | SOFA    | \$642.00     |
| 5  | 01MAY1993 | SOFA    | \$656.00     |
| 6  | 01JUN1993 | SOFA    | \$948.00     |
| 7  | 01JUL1993 | SOFA    | \$612.00     |
| 8  | 01AUG1993 | SOFA    | \$114.00     |
| 9  | 01SEP1993 | SOFA    | \$685.00     |
| 10 | 01OCT1993 | SOFA    | \$657.00     |
| 11 | 01NOV1993 | SOFA    | \$608.00     |
| 12 | 01DEC1993 | SOFA    | \$353.00     |
| 13 | 01JAN1993 | BED     | \$220.00     |
| 14 | 01FEB1993 | BED     | \$444.00     |
| 15 | 01MAR1993 | BED     | \$178.00     |
| 16 | 01APR1993 | BED     | \$756.00     |
| 17 | 01MAY1993 | BED     | \$329.00     |
| 18 | 01JUN1993 | BED     | \$910.00     |
| 19 | 01JUL1993 | BED     | \$530.00     |
| 20 | 01AUG1993 | BED     | \$101.00     |
| 21 | 01SEP1993 | BED     | \$515.00     |
| 22 | 010CT1993 | BED     | \$730.00     |



|    | Month     | Product | Actual Sales | Prodtype  |
|----|-----------|---------|--------------|-----------|
| 1  | 01JAN1993 | SOFA    | \$925.00     | FURNITURE |
| 2  | 01FEB1993 | SOFA    | \$999.00     | FURNITURE |
| 3  | 01MAR1993 | SOFA    | \$608.00     | FURNITURE |
| 4  | 01APR1993 | SOFA    | \$642.00     | FURNITURE |
| 5  | 01MAY1993 | SOFA    | \$656.00     | FURNITURE |
| 6  | 01JUN1993 | SOFA    | \$948.00     | FURNITURE |
| 7  | 01JUL1993 | SOFA    | \$612.00     | FURNITURE |
| 8  | 01AUG1993 | SOFA    | \$114.00     | FURNITURE |
| 9  | 01SEP1993 | SOFA    | \$685.00     | FURNITURE |
| 10 | 01OCT1993 | SOFA    | \$657.00     | FURNITURE |
| 11 | 01NOV1993 | SOFA    | \$608.00     | FURNITURE |
| 12 | 01DEC1993 | SOFA    | \$353.00     | FURNITURE |
| 13 | 01JAN1993 | BED     | \$220.00     | FURNITURE |
| 14 | 01FEB1993 | BED     | \$444.00     | FURNITURE |
| 15 | 01MAR1993 | BED     | \$178.00     | FURNITURE |
| 16 | 01APR1993 | BED     | \$756.00     | FURNITURE |
| 17 | 01MAY1993 | BED     | \$329.00     | FURNITURE |
| 18 | 01JUN1993 | BED     | \$910.00     | FURNITURE |
| 19 | 01JUL1993 | BED     | \$530.00     | FURNITURE |
| 20 | 01AUG1993 | BED     | \$101.00     | FURNITURE |
| 21 | 01SEP1993 | BED     | \$515.00     | FURNITURE |
| 22 | 010CT1993 | BED     | \$730.00     | FURNITURE |

Joining the lookup table explicitly

- Proc SQL
- Datastep

"Applying" the lookup table to the source table

- SAS Format
- •Hash Table



### **Method 1+2: Joining the Lookup Table Explicitly**

```
PROC SQL;
 CREATE TABLE prdsale sql lj
 AS SELECT
    FDOM nodeala AC a
   LEFT JOIN lookup
                      AS b
    UN a.product = p.product
    ORDER BY product, month;
QUIT:
```

```
proc sort data = lookup;
by product; run;
proc sort data = prdsale;
by product; run;
data prdsale ds;
merge prdsale(in=in1)
       lookup:
if in1;
run;
```

### **Method 3: Using a SAS Format**

```
DATA FMT PG(RENAME = (Product=start
            ProdType=label));
SET lookup end=last:
RETAIN fmtname 'PG' type 'c';
RUN;
PROC FORMAT_LIBRARY=work
CNTLIN=FMT PG;
RUN;
DATA prdsale fmt;
SET prdsale:
FORMAT Prodtype $12.:
Prodtype = PUT(product,$PG.);
RUN;
```

Convert the LOOKUP Table into a control table (with specific variable names)

Use PROC FORMAT to create a SAS Format based on that table

Use the SAS Format to retrieve the value from the lookup table



#### Method 4: Using a Hash-Table

Define the HASH Table in the SAS Datastep

Call the HASH to retrieve the Values based on the KeyColumn

```
DATA prdsale hash;
length Product ProdType $10.;
if n = 1 then do;
    declare hash h(dataset: "lookup");
    h.definekey('Product');
    h.definedata('ProdType');
    h.definedone();
    call missing(Product, ProdType);
end;
SET prdsale;
 rc = h.find();
drop rc;
```



# Can you build a machine learning model that predicts the cancellation risk of our customers?

- What is the business process for contacting customers?
  - What additional attributes and explanations do you need?

Derive (additional) variable that are used for model interpretation and decisioning

– Which latency period should we consider between the availability of the scores and the execution of the marketing campaign?



Observe the alignment on the time axis



### **Different Time Windows in Predictive Modeling**



- Target windows: Time Interval where the target event is observed
- Example for Target Events:
  - Pay back of debt
  - Cancellation of contract
  - Purchase of product
- Observation windows: Time Interval where input data are collected
- Offset window: optional time interval between observation and target windows in order to train the model to events that occur not immediately after the snapshot date



# Considerations for Supervised Machine Learning Models: Alignment on the Time Axis





# **Data Preparation for Data Science**

Data Assembly

Data Quality for Analytics

Feature Generation



### Are these two graphs based on the same data?







# Do missing values really only matter in analytics (and not in reporting)? Are these two graphs based on the same data?







# For some measurements (inventory data) this might be the appropriate view



|   | ⅓ Week |    |
|---|--------|----|
| 1 | 1      | 12 |
| 2 | 3      | 16 |
| 3 | 7      | 8  |
| 4 | 8      | 7  |
| 5 | 11     | 15 |



# For other measurements (movement data) this might be the appropriate view

Be careful with line-charts and missing values!

|        | 10 Week | <b>⅓</b> Value |
|--------|---------|----------------|
| 1      | 1       | 12             |
| 3      | 2       |                |
| 3      | 3       | 16             |
| 4      | 4       |                |
| 5      | 5       |                |
| 6<br>7 | 6       |                |
|        | 7       | 8              |
| 8      | 8       | 7              |
| 9      | 9       |                |
| 10     | 10      |                |
| 11     | 11      | 15             |
| 12     | 12      |                |





#### **Transactional Data or Timeseries Data?**

|    | Session Identifier                   | requested_file             |  |
|----|--------------------------------------|----------------------------|--|
| 1  | 43d0a4da826149b5 2002-02-17 08:38:12 | /Home.jsp                  |  |
| 2  | 43d0a4da826149b5 2002-02-17 08:38:12 | /Cookie_Check.jsp          |  |
| 3  | 43d0a4da826149b5 2002-02-17 08:38:12 | /Home.jsp                  |  |
| 4  | 43d0a4da826149b5 2002-02-17 08:38:12 | /Corporate_Relations.jsp   |  |
| 5  | 43d0a4da826149b5 2002-02-17 08:38:12 | /Retail_Store.jsp          |  |
| 6  | 43d0a4da826149b5 2002-02-17 08:38:12 | /Store/Store_Locations.jsp |  |
| 7  | 43d639ebce6c73d8 2002-02-17 23:43:16 | /Home.jsp                  |  |
| 8  | 43d639ebce6c73d8 2002-02-17 23:43:16 | /Cookie_Check.jsp          |  |
| 9  | 43d639ebce6c73d8 2002-02-17 23:43:16 | /Home.jsp                  |  |
| 10 | 43d639ebce6c73d8 2002-02-17 23:43:16 | /Department.jsp            |  |
| 11 | 43d639ebce6c73d8 2002-02-17 23:43:16 | /Department.jsp            |  |
| 12 | 43bb8704bb370e09 2002-02-17 13:44:04 | /Home.jsp                  |  |
| 13 | 43bb8704bb370e09 2002-02-17 13:44:04 | /Home.jsp                  |  |
| 14 | 43bb8704bb370e09 2002-02-17 13:44:04 | /Subcategory.jsp           |  |
| 15 | 43bb8704bb370e09 2002-02-17 13:44:04 | /Product.jsp               |  |
| 16 | 43bb8704bb370e09 2002-02-17 13:44:04 | /Department.jsp            |  |
| 17 | 43bb8704bb370e09 2002-02-17 13:44:04 | 4 /Product.jsp             |  |
| 18 | 43bb8704bb370e09 2002-02-17 13:44:04 | /Department.jsp            |  |

|    | Time     | NumberOfReqestedFiles |
|----|----------|-----------------------|
| 1  | 1:00:00  | 116                   |
| 2  | 2:00:00  | 93                    |
| 3  | 3:00:00  | 17                    |
| 4  | 4:00:00  | 158                   |
| 5  | 6:00:00  | 30                    |
| 6  | 7:00:00  | 66                    |
| 7  | 8:00:00  | 210                   |
| 8  | 9:00:00  | 130                   |
| 9  | 10:00:00 | 143                   |
| 10 | 11:00:00 | 298                   |
| 11 | 12:00:00 | 239                   |
| 12 | 13:00:00 | 145                   |



# Explicit or implicit missing values in longitudinal data

| D PNR | date       | ⊚ amount |              |
|-------|------------|----------|--------------|
| 56    | 2004-02-01 | 48       |              |
| 56    | 2004-03-01 | 51       |              |
| 56    | 2004-04-01 | 42       |              |
| 56    | 2004-05-01 | 36       |              |
| 56    | 2004-06-01 | 6        |              |
| 56    | 2004-07-01 | -        | $\leftarrow$ |
| 56    | 2004-08-01 | 48       |              |
| 56    | 2004-09-01 | 36       |              |
| 56    | 2004-10-01 | 66       |              |
| 56    | 2004-11-01 | 15       |              |
| 56    | 2004-12-01 | 33       |              |
| 58    | 2005-06-01 | 39       |              |
| 58    | 2005-07-01 | 63       |              |
| 58    | 2005-08-01 | 84       |              |
| 58    | 2005-09-01 | 18       |              |
| 58    | 2005-12-01 | 69       |              |
| 58    | 2006-03-01 | 0        |              |
| 58    | 2006-07-01 | 90       |              |
| 58    | 2006-10-01 | 57       |              |
| 58    | 2007-01-01 | 48       |              |

Existing Record Value Missing

Missing Record No Continuity



# Replacing and interpolating missing values in longitudinal data with SAS

Insert missing Replace Replace with Replace with Interpolate based records with 0 last known value mean on splines

|    | DATE  | air_mv | air_mv_zero | air_mv_previous | air_mv_mean  | air_expand   |
|----|-------|--------|-------------|-----------------|--------------|--------------|
| 1  | JAN49 | 112    | 112         | 112             | 112          | 112          |
| 2  | FEB49 | 118    | 118         | 118             | 118          | 118          |
| 3  | MAR49 | 132    | 132         | 132             | 132          | 132          |
| 4  | APR49 | 129    | 129         | 129             | 129          | 129          |
| 5  | MAY49 |        | 0           | 129             | 284.54385965 | 128.29783049 |
| 6  | JUN49 | 135    | 135         | 135             | 135          | 135          |
| 7  | JUL49 |        | 0           | 135             | 284.54385965 | 144.73734152 |
| 8  | AUG49 | 148    | 148         | 148             | 148          | 148          |
| 9  | SEP49 | 136    | 136         | 136             | 136          | 136          |
| 10 | OCT49 | 119    | 119         | 119             | 119          | 119          |
| 11 | NOV49 |        | 0           | 119             | 284.54385965 | 116.19900978 |
| 12 | DEC49 | 118    | 118         | 118             | 118          | 118          |
| 13 | JAN50 | 115    | 115         | 115             | 115          | 115          |
| 14 | FEB50 | 126    | 126         | 126             | 126          | 126          |
| 15 | MAR50 | 141    | 141         | 141             | 141          | 141          |

Use PROC TIMESERIES and PROC EXPAND for these tasks!



# Aggregation and Processing of Data in One Step with the TIMESERIES Procedure

```
proc timeseries data = air_missing
out = air_setmissing_zero;
id date interval =month setmiss=0;
var air_MV;
run;
```

```
proc timeseries data = air_missing

id date interval =month setmiss=PREVIOUS;

var air_MV;
run;
```

```
proc timeseries data = air_missing
out = air_setmissing_mean;
id date interval =month setmiss=MEAN;

var air_riv,
run;
```

| Option value                       | Missing values are set to                                        |  |  |
|------------------------------------|------------------------------------------------------------------|--|--|
| <number></number>                  | Any number. (for example, 0 to replace missing values with zero) |  |  |
| MISSING                            | Missing                                                          |  |  |
| MINIMUM                            | Minimum value of the time series                                 |  |  |
| FIRST                              | First non-missing value                                          |  |  |
| <b>NEXT</b> Next non-missing value |                                                                  |  |  |



### **Convert Leading and Trailing Zeros to Missing Values**

stitute Inc. All rights reserved

|    | DATE  | sales |    | DATE    | sales |
|----|-------|-------|----|---------|-------|
| 1  | JAN49 | 0     | 1  | JAN1949 |       |
| 2  | FEB49 | 0     | 2  | FEB1949 |       |
| 3  | MAR49 | 0     | 3  | MAR1949 |       |
| 4  | APR49 | 0     | 4  | APR1949 |       |
| 5  | MAY49 | 0     | 5  | MAY1949 |       |
| 6  | JUN49 | 0     | 6  | JUN1949 |       |
| 7  | JUL49 | 148   | 7  | JUL1949 | 148   |
| 8  | AUG49 | 148   | 8  | AUG1949 | 148   |
| 9  | SEP49 | 136   | 9  | SEP1949 | 136   |
| 10 | OCT49 | 119   | 10 | OCT1949 | 119   |
| 11 | NOV49 | 104   | 11 | NOV1949 | 104   |
| 12 | DEC49 | 118   | 12 | DEC1949 | 118   |
| 13 | JAN50 | 115   | 13 | JAN1950 | 115   |

```
proc timeseries
    data=sales_original
    out=sales corrected;
id date interval=month
    zeromiss=both;
var sales;
run;
```



#### Two related Articles at Communities.sas.com







https://communities.sas.com/t5/SAS-Communities-Library/Using-the-TIMESERIESprocedure-to-check-the-continuity-of-your/tap/714678



https://communities.sas.com/t5/SAS-Communities-Library/Replace-MISSING-VALUES-in-TIMESERIES-DATA-using-PROC-EXPAND-and/ta-p/714806

SGF-Paper: Want an Early Picture of the Data Quality Status of Your Analysis Data? SAS® Visual Analytics Shows You How



# Data Preparation for Data Science

Data Assembly

Data Quality for Analytics

**Feature Generation** 



# Which of my sales representatives do not follow pre-defined pattern?

The demand for sub-contractors for a company in the

catering business varies over the

calendar year.

Sales Persons are forced to close such sub-contracts following the seasonal demand pattern.







# Looking at the individual seasonal pattern per sales person does not help

No clear picture.

Infeasible to review all individual lines manually.





## Performing a Chi2-Test Using the FREQ Procedure

```
proc freq data=sales_month;
by AccountManager;
table month / nocum out=Sales AccMgr
chisq(testp=HistoricDemand(rename=(HistoricPct= testp )));
weight Sales EUR;
ods output OneWayChiSq=Chi2 AccMgr(drop=table label cvalue);
run;
```



# Receiving a KPI to rank analysis subjects based on their "Accordance" with the predefined pattern

(after transposing and preparing the data – see link section)

| Rank     ■ | ▲ AccountMan | Chi2_Value | P_Value |
|------------|--------------|------------|---------|
|            | 1 John       | 2570.1     | 0.000%  |
|            | 2 Joyce      | 2377.4     | 0.000%  |
|            | Barbara      | 2205.2     | 0.000%  |
|            | 1 Jane       | 1875.5     | 0.000%  |
| ļ          | Alfred       | 1721.0     | 0.000%  |
|            | Alice        | 1669.5     | 0.000%  |
|            | 7 Janet      | 1666.0     | 0.000%  |
|            | Henry        | 877.3      | 0.000%  |
|            | Carol        | 872.6      | 0.000%  |
| 1          | ) Jeffrey    | 815.3      | 0.000%  |
| 1          | 1 James      | 805.6      | 0.000%  |



# **Line Chart for Jeffrey**

| Rank |         | 13 | Chi2_Value |
|------|---------|----|------------|
| 1    | John    |    | 2570.1     |
| 2    | Joyce   |    | 2377.4     |
| 3    | Barbara |    | 2205.2     |
| 4    | Jane    |    | 1875.5     |
| 5    | Alfred  |    | 1721.0     |
| 6    | Alice   |    | 1669.5     |
| 7    | Janet   |    | 1666.0     |
| 8    | Henry   |    | 877.3      |
| 9    | Carol   |    | 872.6      |
| 10   | Jeffrey |    | 815.3      |
| 11   | James   |    | 805.6      |
|      |         |    |            |



# **Line Chart for Joyce**

| Rank | AccountMan | 13 | Chi2_Value |
|------|------------|----|------------|
| 1    | John       |    | 2570.1     |
| 2    | Joyce      |    | 2377.4     |
| 3    | Barbara    |    | 2205.2     |
| 4    | Jane       |    | 1875.5     |
| 5    | Alfred     |    | 1721.0     |
| 6    | Alice      |    | 1669.5     |
| 7    | Janet      |    | 1666.0     |
| 8    | Henry      |    | 877.3      |
| 9    | Carol      |    | 872.6      |
| 10   | Jeffrey    |    | 815.3      |
| 11   | James      |    | 805.6      |
|      |            |    |            |



#### Links

Webinar at Youtube:
 Use Data Science Methods to check the Alignment of your processes
 with Predefined Pattern
 <a href="https://www.youtube.com/watch?v=YWqgPeVWpUg&list=PLdMxv2SumlKs0A2cQLeXg1xb9OVE8e2Yq&index=7&t=0">https://www.youtube.com/watch?v=YWqgPeVWpUg&list=PLdMxv2SumlKs0A2cQLeXg1xb9OVE8e2Yq&index=7&t=0</a>

• SAS Programs: Github Link, Chapter 18-20 https://github.com/gerhard1050/Applying-Data-Science-Using-SAS



### Feature Engineering – Be creative!

| Multip | Multiple Observation per Analysis Subject |      |         |       |  |  |  |  |
|--------|-------------------------------------------|------|---------|-------|--|--|--|--|
| ID     | Month                                     | Type | Billing | Usage |  |  |  |  |
| 1      |                                           |      |         |       |  |  |  |  |
| 1      |                                           |      |         |       |  |  |  |  |
| 1      |                                           |      |         |       |  |  |  |  |
| 2      |                                           |      |         |       |  |  |  |  |
| 2      |                                           |      |         |       |  |  |  |  |
| 3      |                                           |      |         |       |  |  |  |  |
| 3      |                                           |      |         |       |  |  |  |  |
| 3      |                                           |      |         |       |  |  |  |  |
| 4      |                                           |      |         |       |  |  |  |  |
| 4      |                                           |      |         |       |  |  |  |  |
| 4      |                                           |      |         |       |  |  |  |  |
| 4      |                                           |      |         |       |  |  |  |  |



| Billing_Sum | Billing_Mean | Usage_Sum | Usage_Trend | Usage_Variab | N_Trx |
|-------------|--------------|-----------|-------------|--------------|-------|
|             |              |           |             |              |       |
|             |              |           |             |              |       |
|             |              |           |             |              |       |
|             |              |           |             |              |       |

#### Interval Data

- Correlation of Values
- Course over Time
- Concentration of Values
- Seasonal Pattern

#### **Categorical Data**

- Frequency Counts
- Concatenated Frequencies
- Total and Distinct Counts
  - Network Data
  - Textual Data
  - Images and Videos
  - ٠...



#### Conclusion

 Data Preparation is all over the analytic lifecycle!



 Data Preparation is much more than just coding! All you need to prepare your data for data science is available in the integrated SAS Viya platform

 Data Preparation / Data Quality / Feature Engineering / Variety of Analytical Methods / Visualizing Relationships / Comparing Models / What-If Scenarios / Access for different Persona Roles / Model Ops / ...



#### **Data Preparation for Data Science Data Quality** Data **Feature Assembly** Generation for Analytics

**Gerhard Svolba**, Data Scientist @SAS mailto: gerhard.svolba@sas.com

Medium LinkedIn Github SAS-Books Youtube: <u>DataPreparation4DataScience</u> **Data Science Use Cases** 



**Articles** and Blogs



**Webinars** 



Tipps &





Macros & **Downloads** 





#### **Weitere Links**

- Name: Webinar "Data Preparation for Data Science" im SAS DACH Youtube Channel
- URL: https://www.youtube.com/playlist?list=PLdMxv2SumIKsqedLBq0t\_a2\_6d7jZ6Akq
- Name: Data Preparation for Analytics Using SAS
- URL: https://github.com/gerhard1050/Data-Preparation-for-Data-Science-Using-SAS/blob/master/README.md
- Name: Data Quality for Analytics Using SAS
- URL: https://github.com/gerhard1050/Data-Quality-for-Data-Science-Using-SAS/blob/master/README.md
- Name: Applying Data Science Business Analyses Using SAS
- URL: https://github.com/gerhard1050/Applying-Data-Science-Using-SAS/blob/master/README.md

