CLAIMS

What is Claimed is:

1. A method of estimating a communication channel impulse response h(t), comprising the steps of:

generating a data sequence d_i having a constrained portion Cd_i associated with at least two codes w_0, w_1 , wherein a correlation $A_{code}(k)$ of the constrained portion Cd_i with one of the codes w_0, w_1 is characterized by a maximum value at k = 0 less than maximum values at $k \neq 0$;

generating a chip sequence c_j having a chip period T_c as the data sequence d_i spread by a spreading sequence S_i of length N;

generating $co_m(t) = co(t + mNT_c)$ for $m = 0,1,\Lambda$, M by correlating a received signal r(t) with the spreading sequence S_i , wherein the received signal r(t) comprises the chip sequence c_i applied to the communication channel; and

generating an estimated communication channel impulse response $\hat{h}_M(t)$ as a combination of $co_m(t)$ and d_m for $m=0,1,\Lambda$, M.

- 2. The method of claim 1, wherein the step of generating an estimated communication channel impulse response $\hat{h}_M(t)$ as a combination of $co_m(t)$ and d_m for $m=0,1,\Lambda$, M comprises the step of computing $\hat{h}_M(t)$ as $\frac{1}{M}\sum_{m=0}^{M-1}d_m \bullet co(t+mNT_c)$.
- 3. The method of claim 2, wherein the at least two codes w_0, w_1 are each two symbols in length and wherein M=2.
- 4. The method of claim 1, wherein the data sequence d_i includes a preamble having a pseudorandom code including the constrained portion of the data sequence d_i .

- 5. The method of claim 1, wherein $A_{code}(k) = 1$ at k = 0 and $A_{code}(k) = 0$ for substantially all $k \neq 0$.
- 6. The method of claim 1, wherein $A_{code}(k) = 0$ for $0 < |k| \le J$, wherein J is selected to minimize the correlation of the constrained portion Cd_i with the one of the codes w_0, w_1 for substantially all $k \ne 0$.
- 7. The method of claim 6, wherein 2J is a length of the constrained portion Cd_i .
- 8. The method of claim 1, wherein $A_{code}(k) = 1$ at k = 0 and $A_{code}(k) \approx 0$ for substantially all $k \neq 0$.
- 9. The method of claim 1, wherein each of the two codes w_0, w_1 comprises two symbols.
- 10. The method of claim 1, wherein the each of the two codes w_0, w_1 consists of two symbols.
 - 11. The method of claim 1, wherein the codes w_0 , w_1 comprise Walsh codes.
- 12. The method of claim 1, further comprising the step of filtering the estimated communication channel impulse response $\hat{h}_{M}(t)$ with a filter f selected at least in part according to the spreading sequence S_{i} .
- 13. The method of claim 12, wherein the filter f is further selected at least in part according to an autocorrelation A(n) of the spreading sequence S_i .

- 14. The method of claim 13, wherein the filter f is further selected at least in part according to a duration of the impulse response of the communication channel h(t).
- 15. The method of claim 13, wherein the filter f is further selected at least in part according to a zero-forcing criteria $\sum_{i=-L}^{L} (A(n-i) \bullet f(i) = A_f(n), -L \le n \le L$, wherein: f(i) is the impulse response of the filter f such that $A_f(n)$ is a convolution of A(n) and f(i);

$$A_f(n) = 1$$
 for $n = 0$ and $A_f(n) = 0$ for $0 < |n| \le L$; and

 $A(n) = A(-n) = \sum_{i=0}^{N-1-n} S_i \bullet S_{i+n}, 0 \le n \le N \text{ , and } N \text{ is a length of the spreading}$ sequence S_i .

- 16. The method of claim 15, wherein the parameter L is chosen such that a time duration of the impulse response of the communication channel h(t) is less than LT_c .
- 17. The method of claim 15, wherein the parameter L is chosen such that a time duration of the impulse response of the communication channel h(t) is approximately equal to LT_c .
 - 18. The method of claim 12, wherein N is less than 20.

19. An apparatus for estimating a communication channel impulse response h(t), comprising:

means for generating a data sequence d_i having a constrained portion Cd_i associated with at least two codes w_0, w_1 , wherein a correlation $A_{code}(k)$ of the constrained portion Cd_i with one of the codes w_0, w_1 is characterized by a maximum value at k = 0 less than maximum values at $k \neq 0$;

means for generating a chip sequence c_j having a chip period T_c as the data sequence d_i spread by a spreading sequence S_i of length N;

means for generating $co_m(t) = co(t + mNT_c)$ for $m = 0,1,\Lambda$, M by correlating a received signal r(t) with the spreading sequence S_i , wherein the received signal r(t) comprises the chip sequence c_i applied to the communication channel; and

means for generating an estimated communication channel impulse response $\hat{h}_M(t)$ as a combination of $co_m(t)$ and d_m for $m=0,1,\Lambda$, M.

- 20. The apparatus of claim 19, wherein the means for generating an estimated communication channel impulse response $\hat{h}_M(t)$ as a combination of $co_m(t)$ and d_m for $m=0,1,\Lambda$, M comprises means for computing $\hat{h}_M(t)$ as $\frac{1}{M}\sum_{m=0}^{M-1}d_m \bullet co(t+mNT_c)$.
- 21. The apparatus of claim 20, wherein the at least two codes w_0, w_1 are each two symbols in length and wherein M=2.
- 22. The apparatus of claim 19, wherein the data sequence d_i includes a preamble having a pseudorandom code including the constrained portion of the data sequence d_i .

- 23. The apparatus of claim 19, wherein $A_{code}(k) = 1$ at k = 0 and $A_{code}(k) = 0$ for substantially all $k \neq 0$.
- 24. The apparatus of claim 19, wherein $A_{code}(k) = 0$ for $0 < |k| \le J$, wherein J is selected to minimize the correlation of the constrained portion Cd_i with the one of the codes w_0, w_1 for substantially all $k \ne 0$.
- 25. The apparatus of claim 24, wherein 2J is a length of the constrained portion Cd_i .
- 26. The apparatus of claim 19, wherein $A_{code}(k)=1$ at k=0 and $A_{code}(k)\approx 0$ for substantially all $k\neq 0$.
- 27. The apparatus of claim 19, wherein each of the two codes w_0, w_1 comprises two symbols.
- 28. The apparatus of claim 19, wherein the each of the two codes w_0, w_1 consists of two symbols.
- 29. The apparatus of claim 19, wherein the codes w_0, w_1 comprise Walsh codes.
- 30. The apparatus of claim 19, further comprising the step of filtering the estimated communication channel impulse response $\hat{h}_{M}(t)$ with a filter f selected at least in part according to the spreading sequence S_{i} .

- 31. The apparatus of claim 30, wherein the filter f is further selected at least in part according to an autocorrelation A(n) of the spreading sequence S_i .
- 32. The apparatus of claim 31, wherein the filter f is further selected at least in part according to a duration of the impulse response of the communication channel h(t).
- 33. The apparatus of claim 31, wherein the filter f is further selected at least in part according to a zero-forcing criteria $\sum_{i=-L}^{L} (A(n-i) \bullet f(i) = A_f(n), -L \le n \le L$, wherein:

f(i) is the impulse repsonse of the filter f such that $A_f(n)$ is a convolution of A(n) and f(i);

$$A_f(n) = 1$$
 for $n = 0$ and $A_f(n) = 0$ for $0 < |n| \le L$; and

 $A(n)=A(-n)=\sum_{i=o}^{N-1-n}S_i\bullet S_{i+n}, 0\leq n\leq N \ , \ \ \text{and} \ \ N \ \ \text{is a length of the spreading}$ sequence S_i .

- 34. The apparatus of claim 33, wherein the parameter L is chosen such that a time duration of the impulse response of the communication channel h(t) is less than LT_c .
- 35. The apparatus of claim 33, wherein the parameter L is chosen such that a time duration of the impulse response of the communication channel h(t) is approximately equal to LT_c .
 - 36. The apparatus of claim 30, wherein N is less than 20.

37. An apparatus for estimating a communication channel impulse response h(t), comprising:

means for generating a data sequence d_i having a constrained portion Cd_i associated with at least two codes w_0, w_1 , wherein a correlation $A_{code}(k)$ of the constrained portion Cd_i with one of the codes w_0, w_1 is characterized by a maximum value at k = 0 less than maximum values at $k \neq 0$;

means for generating a chip sequence c_j having a chip period T_c as the data sequence d_i spread by a spreading sequence S_i of length N;

a correlator for generating $co_m(t) = co(t + mNT_c)$ for $m = 0,1,\Lambda$, M by correlating a received signal r(t) with the spreading sequence S_i , wherein the received signal r(t) comprises the chip sequence c_i applied to the communication channel; and

an estimator for generating an estimated communication channel impulse response $\hat{h}_M(t)$ as a combination of $co_m(t)$ and d_m for $m=0,1,\Lambda$, M.

- 38. The apparatus of claim 37, wherein the estimator comprises means for computing $\hat{h}_M(t)$ as $\frac{1}{M} \sum_{m=0}^{M-1} d_m \cdot co(t+mNT_c)$.
- 39. The apparatus of claim 38, wherein the at least two codes w_0, w_1 are each two symbols in length and wherein M=2.
- 40. The apparatus of claim 37, wherein the data sequence d_i includes a preamble having a pseudorandom code including the constrained portion of the data sequence d_i .
- 41. The apparatus of claim 37, wherein $A_{code}(k) = 1$ at k = 0 and $A_{code}(k) = 0$ for substantially all $k \neq 0$.

- 42. The apparatus of claim 37, wherein $A_{code}(k) = 0$ for $0 < |k| \le J$, wherein J is selected to minimize the correlation of the constrained portion Cd_i with the one of the codes w_0, w_1 for substantially all $k \ne 0$.
- 43. The apparatus of claim 42, wherein 2J is a length of the constrained portion Cd_i .
- 44. The apparatus of claim 37, wherein $A_{code}(k)=1$ at k=0 and $A_{code}(k)\approx 0$ for substantially all $k\neq 0$.
- 45. The apparatus of claim 37, wherein each of the two codes w_0, w_1 comprises two symbols.
- 46. The apparatus of claim 37, wherein the each of the two codes w_0 , w_1 consists of two symbols.
- 47. The apparatus of claim 37, wherein the codes w_0, w_1 comprise Walsh codes.
- 48. The apparatus of claim 37, further comprising the step of filtering the estimated communication channel impulse response $\hat{h}_{M}(t)$ with a filter f selected at least in part according to the spreading sequence S_{i} .
- 49. The apparatus of claim 48, wherein the filter f is further selected at least in part according to an autocorrelation A(n) of the spreading sequence S_i .

- 50. The apparatus of claim 49, wherein the filter f is further selected at least in part according to a duration of the impulse response of the communication channel h(t).
- 51. The apparatus of claim 49, wherein the filter f is further selected at least in part according to a zero-forcing criteria $\sum_{i=-L}^{L} (A(n-i) \bullet f(i) = A_f(n), -L \le n \le L$, wherein:
- f(i) is the impulse repsonse of the filter f such that $A_f(n)$ is a convolution of A(n) and f(i);

$$A_f(n) = 1$$
 for $n = 0$ and $A_f(n) = 0$ for $0 < |n| \le L$; and

 $A(n)=A(-n)=\sum_{i=o}^{N-1-n}S_i\bullet S_{i+n}, 0\leq n\leq N \ , \ \ \text{and} \ \ N \ \ \text{is a length of the spreading}$ sequence S_i .

- 52. The apparatus of claim 51, wherein the parameter L is chosen such that a time duration of the impulse response of the communication channel h(t) is less than LT_c .
- 53. The apparatus of claim 51, wherein the parameter L is chosen such that a time duration of the impulse response of the communication channel h(t) is approximately equal to LT_c .
 - 54. The apparatus of claim 48, wherein N is less than 20.