Ré-identification sans coordination dans les types de données répliquées sans conflits

Matthieu Nicolas (matthieu.nicolas@loria.fr)

Rapporteurs : Hanifa Boucheneb Professeure, Polytechnique Montréal

Davide Frey Chargé de recherche, HdR, Inria Rennes Bretagne-Atlantique

Examinateurs : Hala Skaf-Molli Maîtresse de conférences, HdR, Nantes Université, LS2N

Stephan Merz Directeur de Recherche, Inria Nancy - Grand Est

Olivier Perrin Professeur des Universités, Université de Lorraine, LORIA

Gérald Oster Maître de conférences, Université de Lorraine, LORIA

Encadrants ·

MUTE?

- · Application pair-à-pair
- · Permet à groupes de rédiger collaborativement documents texte
- · Garantit confidentialité & souveraineté de ses données

^{*.} Disponible à : https://mutehost.loria.fr

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

· Doit garantir convergence à terme [1]

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

· Doit garantir convergence à terme [1]

Nécessite mécanismes de résolution de conflits

[1]. TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

Évaluation de MUTE

Taille du texte comparée à taille de la séquence répliquée

- · 1% contenu...
- · ...99% métadonnées

des mécanismes de résolution de conflits dans

les applications pair-à-pair?

Comment peut-on réduire le surcoût mémoire

Conflict-free Replicated Data Types (CRDTs)[2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

^{[2].} Shapiro et al., « Conflict-Free Replicated Data Types ».

Conflict-free Replicated Data Types (CRDTs)[2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

Propriétés des CRDTs

- Permettent modifications sans coordination
- Garantissent la convergence forte

^{[2].} Shapiro et al., « Conflict-Free Replicated Data Types ».

Conflict-free Replicated Data Types (CRDTs) [2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

Propriétés des CRDTs

- · Permettent modifications sans coordination
- Garantissent la convergence forte

Convergence forte

Ensemble des noeuds ayant intégrés le même ensemble de modifications obtient des états équivalents, sans nécessiter d'actions ou messages supplémentaires

^{[2].} Shapiro et al., « Conflict-Free Replicated Data Types ».

LogootSplit [4], un CRDT pour le type Séquence

· Assigne identifiant de position à chaque élément de la séquence

^{[3].} Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

LogootSplit [4], un CRDT pour le type Séquence

· Assigne identifiant de position à chaque élément de la séquence

Propriétés des identifiants de position [3]

- 1. Unique
- 2. Immuable
- 3. Ordonnable par une relation d'ordre strict total <id
- 4. Appartenant à un espace dense

^{[3].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

LogootSplit [4], un CRDT pour le type Séquence

· Assigne identifiant de position à chaque élément de la séquence

Propriétés des identifiants de position [3]

- 1. Unique
- 2. Immuable
- 3. Ordonnable par une relation d'ordre strict total <id
- 4. Appartenant à un espace dense
 - · Ordonne les éléments entre eux en utilisant leurs identifiants

^{[3].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Identifiant

· Composé d'un ou plusieurs tuples suivants

pos^{nodeld nodeSeq}

Identifiant

Identifiant

Identifiant

Identifiant

Identifiant

· Composé d'un ou plusieurs tuples suivants

Exemples

$$d_0^{F5} <_{id} m_0^{C1}$$

Identifiant

· Composé d'un ou plusieurs tuples suivants

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

Identifiant

· Composé d'un ou plusieurs tuples suivants

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

$$i_0^{B1} <_{id}$$
 ? $<_{id} i_1^{B1}$

7

Identifiant

· Composé d'un ou plusieurs tuples suivants

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

$$i_0^{B1} <_{id} i_0^{B1} f_0^{A1} <_{id} i_1^{B1}$$

7

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

· Aggrège en un bloc éléments ayant identifiants contigus

Identifiants contigus

Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

8

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

· Aggrège en un bloc éléments ayant identifiants contigus

Identifiants contigus

Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

 Note l'intervalle d'identifiants d'un bloc : pos^{nodeld nodeSeq} begin..end

8

B•

HL i^{B1}_{0..1}

i^{B1}_{0..1}

Limites de LogootSplit

Sources croissance métadonnées

- · Croissance non-bornée de la taille des identifiants
- Fragmentation en blocs courts

Limites de LogootSplit

Sources croissance métadonnées

- · Croissance non-bornée de la taille des identifiants
- Fragmentation en blocs courts

Taille du contenu comparé à la taille de la séquence LogootSplit

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5]

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...

^{[5].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5]

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...
- · ...mais ne supportent pas opérations rename concurrentes

^{[5].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5]

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...
- · ...mais ne supportent pas opérations rename concurrentes

Inadaptée aux applications pair-à-pair

^{[5].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

• . •

Proposition

Mécanisme de renommage supportant les

renommages concurrents