Jukebox: A Generative Model for Music

Speaker: Petr Grinberg

Recall: VQ-VAE

New pictures can be generated from autoregressive distribution over z, p(z)

Recall: VQ-VAE, Training Loss

$$\mathcal{L} = \mathcal{L}_{recons} + \mathcal{L}_{codebook} + \beta \mathcal{L}_{commit}$$

$$\mathcal{L}_{\text{recons}} = \frac{1}{T} \sum_{t} \|\mathbf{x}_t - D(\mathbf{e}_{z_t})\|_2^2$$

$$\mathcal{L}_{\text{codebook}} = \frac{1}{S} \sum_{s} \|\text{sg}\left[\mathbf{h}_{s}\right] - \mathbf{e}_{z_{s}}\|_{2}^{2}$$

$$\mathcal{L}_{\text{commit}} = \frac{1}{S} \sum_{s} \|\mathbf{h}_{s} - \text{sg}\left[\mathbf{e}_{z_{s}}\right]\|_{2}^{2}$$

Reconstruction Loss can vary, this one will be used in Jukebox

Recall: VQ-VAE2 (Hierarchical)

Bottom Level: local features, Top Level: high-level semantics

Jukebox: VQ-VAE

Jukebox: VQ-VAE

Jukebox: VQ-VAE, Training Hacks

- Random restarts for embeddings + EMA
- Separated Autoencoders
- Spectral Loss (for high-frequencies reconstruction):

$$\mathcal{L}_{spec} = |||STFT(\mathbf{x})| - |STFT(\widehat{\mathbf{x}})|||_2$$

Jukebox: Learning Prior

$$\begin{split} p(\mathbf{z}) &= p(\mathbf{z}^{\text{top}}, \mathbf{z}^{\text{middle}}, \mathbf{z}^{\text{bottom}}) \\ &= p(\mathbf{z}^{\text{top}}) p(\mathbf{z}^{\text{middle}} | \mathbf{z}^{\text{top}}) p(\mathbf{z}^{\text{bottom}} | \mathbf{z}^{\text{middle}}, \mathbf{z}^{\text{top}}) \end{split}$$

Jukebox: Learning Prior

Top-level prior architecture:

Jukebox: Learning Prior

Jukebox: Conditioner

Jukebox: Scalable Transformer

Firstly, let's recall Sparse Transformer:

Jukebox: Scalable Transformer

Vanilla Transformer

• Sparse Transformer

Scalable Transformer

Jukebox: Lyrics Conditioning

Jukebox: Ablation Study

Jukebox: Ablation Study

		Spectral convergence (dB)	
Level	Hop length	Without restart	With restart
Bottom	8	-21.1	-23.0
Middle	32	-12.4	-12.4
Top	128	-8.3	-8.3

Codebook size	Spectral convergence (dB)	
256	-15.9	
2048	-23.0	
No quantization	-40.5	

Ablation	Spectral convergence (dB)
None	-8.3
Without spectral loss	-6.3
With single autoencoder	2.9