תרגיל 7 אלגברה לינארית 1

מיכאל גרינבאום

211747639

1א. צ"ל: האם $(U_1+U_2)\cap W=(U_1\cap W)+(U_2\cap W)$ 1א. ב"ל: האם ע"ל: יהי $\mathbb T$ שדה, V מרחב וקטורי ו U_1,U_2,W תתי מרחבים ברחבי

הוכחה:
$$V=\mathbb{R}^2 \ , \mathbb{F}=\mathbb{R} \ , \mathbb{R}$$

$$(U_1=U_2) \ , \mathbb{F}=\mathbb{R} \ , \mathbb{R} \ , \mathbb{R}$$

מ.ש.ל.א.©

1ב. צ"ל: האם $(U_1\cap U_2)+W\subseteq (U_1+W)\cap (W+U_2)$ בב. ב"ל: האם שדה, U_1,U_2,W ו וקטורי מרחב שדה, V שדה, V

 $v\in (U_1\cap U_2)+W$ נכון! יהי $v\in (U_1\cap U_2)+W$ וגם $w\in W$ גו וגם $w\in W$ כך $w\in W$ כך $w\in U_1\cap U_2$ נשים לב כי $u\in U_1+W\in U_1+W$ כי $v=u+w\in U_1+W$ וגם כי $u\in U_2$ כי $v=u+w\in U_2+W$ ולכן $v\in U_1\cap U_2$ ולכן $v\in U_1+W$ ולכן $v\in U_1+W$ ולכן $v\in U_1+W$ ולכן $v\in U_1+W$

מ.ש.ל.ב.©

 $(U_1+W)\cap (W+U_2)\subseteq (U_1\cap U_2)+W$ ג. צ"ל: האם ג"ל: האם על: האם על: האם אחר, על: האם על: האר ע

הוכחה:
$$V=span \left\{ \left[\begin{array}{c} 0\\0\\1 \end{array}\right] \right\}, U_1=span \left\{ \left[\begin{array}{c} 1\\1\\1 \end{array}\right] \right\}, W=span \left\{ \left[\begin{array}{c} 1\\0\\0 \end{array}\right], \left[\begin{array}{c} 0\\1\\0 \end{array}\right] \right\}$$
 נשים לב כי U_1, U_2, W תתי מרחבים של $U_1, U_2, W=0$ נשים לב כי $U_1 \cap U_2=0$ ולכן $U_1 \cap U_2=0$

$$\left[egin{array}{c} 0 \ 0 \ 1 \end{array}
ight]
otin (U_1+W)\cap (W+U_2)
otin (U_1+W)\cap (U_1+W)
otin (U_1+W)\cap (U_1+W)
otin (U_1+W)
ot$$

מ.ש.ל.ג.©

 $U_1+W\subseteq U_2+W$ דד. צ"ל: האם

 $U_1\subseteq U_2$ ע ביהי $\mathbb F$ אדה, V מרחב וקטורי וא U_1,U_2,W תתי מרחבים כך שדה, V מרחב יהי

v=u+w כך ש $w\in W$ נכון! יהי א $v\in U_1+W$ אזי, אזי וגם $u\in U_1$ אזי ולכן $u\in U_1\subseteq U_2$ נשים לב כי בי $u\in U_1+W\subseteq U_2+W$ ולכן כלומר $U_1+W\subseteq U_2+W$

מ.ש.ל.ד.☺

 $U_1\subseteq U_2$ וה. צ"ל: האם $U_1\subseteq U_2$?

 $U_1+W\subseteq U_2+W$ ע מרחבים כך תתי מרחבים וקטורי וקטורי וקטורי ע מרחב ע שדה, V שדה, א שדה, ע מרחב יהיכחה:

, $V=\mathbb{R}^3$, $\mathbb{F}=\mathbb{R}$ לא נכון! נבחר

$$U_2=span\left\{\begin{bmatrix}0\\1\\0\end{bmatrix}\right\}, U_1=span\left\{\begin{bmatrix}1\\0\\0\end{bmatrix}\right\}, W=V$$
 נאים לב כי
$$U_1+W=W=U_2+W$$
 נאים לב כי U_1,U_2,W תתי מרחבים של
$$U_1\not\subseteq U_2$$
 ולכן
$$\begin{bmatrix}1\\0\\0\end{bmatrix}$$
 וגם בי
$$U_1\not\subseteq U_2$$
 וגם בי
$$U_1\not\subseteq U_2$$

2. **צ"ל:** מה הערכים ל $\dim(U \cap W)$ ודוגמא לכל אחד?

נתונים: יהי $\mathbb F$ שדה, V מרחב וקטורי וU,W תתי מרחבים

 $\dim V = 10, \dim U = 8, \dim W = 7$ כך ש

הוכחה:

תחילה נשים לב שממשפט המימדים הראשון מתקיים

 $8 \leq \dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W) \leq 10$ \forall

 $5 < \dim(U \cap W) < 7$ ולכן

 $V=\mathbb{R}^{10}$, $\mathbb{F}=\mathbb{R}$ נבחר

 $U = span\{e_1, \ldots, e_7\}$ ו $W = span\{e_3, \ldots, e_{10}\}$, נבחר $\dim(U \cap W) = 5$ $U \cap W = span\{e_3, \dots, e_7\}$ נשים לב כי התנאים מתקיימים ו

 $\dim(U \cap W) = 5$ כלומר

 $U=span\{e_1,\ldots,e_7\}$ י עבור $W=span\{e_2,\ldots,e_9\}$ נבחר , $\dim(U\cap W)=6$ $U \cap W = span\{e_2, \dots, e_7\}$ נשים לב כי התנאים מתקיימים ו

 $\dim(U \cap W) = 6$ כלומר

 $U=span\{e_1,\ldots,e_7\}$ ו עבור $W=span\{e_1,\ldots,e_8\}$, גבחר לבחר , גבחר לבחר $U\cap W=span\{e_1,\ldots,e_7\}$ נשים לב כי התנאים מתקיימים ו

 $\dim(U \cap W) = 7$ כלומר

מ.ש.ל.©

 $w \in W$ ו $u \in U$ כש u + w בתור יחידה להצגה יחידה $v \in V$ ניתן $v \in V$.3

נתונים: יהי \mathbb{F} שדה, V מרחב וקטורי וU,Wו תתי מרחבים

 $U\cap W=\{0_V\}$ נד שU+W=V כך

 $u_1+w_1=v=u_2+w_2$ כך ש $u_1,w_2\in W$ ו ו $u_1,u_2\in U$ יהיי

 $u_1 - u_2 = w_2 - w_1$ נעביר אגפים ונקבל

Wנקבל של ידי וקטורים כי הוא כי $u_1-u_2\in W$ נקבל נקבל

 $u_1 = u_2$ ולכן $u_1 - u_2 \in U \cap W = \{0_V\}$ ולכן

Uכי וקטורים על ידי מבוטא מבוטא כי הוא מבוט מ $w_1-w_2\in U$ נקבל נקבל

 $w_1 = w_2$ ולכן $w_1 - w_2 \in U \cap W = \{0_V\}$ ולכן

 $v \in V$ ולכן קיימת הצגה יחידה לכל

מ.ש.ל.©

א. **צ"ל:** A, S מרחבים וקטוריים

מטריות הסימטריות אוסף מרחב $V=M_{2 imes2}(\mathbb{R})$ שדה, $\mathbb{F}=\mathbb{R}$ יהי יהי $\mathbb{F}=\mathbb{R}$ ות אוסף המטריצות האנטי סימטריות ובA

הוכחה:
$$A,S\subseteq V \text{ (a) } C \in S \text{ (b) } C \text{ (b) } C \text{ (b) } C \text$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + c_{11} & a_{12} + c_{12} \\ a_{12} + c_{12} & a_{22} + c_{22} \end{bmatrix} \in S \text{ (b)}$$
 נשים לב כי
$$\begin{bmatrix} 0 & b_{12} \\ -b_{12} & 0 \end{bmatrix} + \begin{bmatrix} 0 & d_{12} \\ -d_{12} & 0 \end{bmatrix} = \begin{bmatrix} 0 & b_{12} + d_{12} \\ -(b_{12} + d_{12}) & 0 \end{bmatrix} \in A \text{ (b)}$$
 נשים לב כי
$$A, S \Rightarrow A$$
 מכילות את וקטור האפס, סגורות לחיבור ולכפל בסקלר ולכן הם תתי מרחבים של
$$V = M_{2\times 2}(\mathbb{R})$$

מ.ש.ל.א.ּ ©

 $V=S\oplus A$ ב. צ"ל:

תונים: יהי $F=\mathbb{R}$ שדה, $V=M_{2 imes 2}(\mathbb{R})$ שדה, $\mathbb{F}=\mathbb{R}$ יהי יהי וות סימטריות האנטי המטריות ובA

הוכחה:
$$S\cap A=\left\{0_V\right\}$$
 תחילה נראה כי
$$S\cap A=\left\{0_V\right\}$$
 תחילה נראה כי
$$\left[\begin{array}{c}a&b\\c&d\end{array}\right]\in S\cap A$$
 יהי
$$b=c$$
 יהי
$$b=c$$
 מהיות
$$b=c$$
 מהיות
$$b=c$$
 מהיות
$$b=c$$
 מהיות
$$b=c$$
 מהיות
$$b=c$$
 מדעים
$$b=c$$
 מדעים
$$b=c$$
 מדעים
$$b=c$$
 מדעים
$$b=c$$
 מדעים לב כי
$$a=b=c=d=0$$
 ונם
$$a=b=c$$
 יהי
$$\left[\begin{array}{c}a&b\\c&d\end{array}\right]=\left[\begin{array}{c}a&\frac{b+c}{2}\\\frac{b+c}{2}&d\end{array}\right]+\left[\begin{array}{c}0&\frac{b-c}{2}\\\frac{c-b}{2}&0\end{array}\right]$$
 ונם
$$V\subseteq S+A$$
 ולכן
$$V=S\oplus A$$
 ולכן
$$S\cap A=\left\{0_V\right\}$$
 ונם
$$\left[\begin{array}{c}a&b\\c&d\end{array}\right]\in V$$

מ.ש.ל.ב.©

U=W=Z נייל: האם.5

V שדה, V שדה, U,W,Zו וקטורי של $\mathbb{F}=\mathbb{R}$ שדה, ע מרחבים של $\dim(W+Z)=\dim(U), \dim(Z+U)=\dim(W), \dim(U+W)=\dim Z$ כך ש

 $\dim(W) + \dim(Z) - \dim(W \cap Z) = \dim(U)$ נכון! ממשפט המימדים הראשון מתקיים $\dim(W) + \dim(U) - \dim(W \cap U) = \dim(Z)$ וגם

 $\dim(U) + \dim(Z) - \dim(U \cap Z) = \dim(W)$ וגם

 $d = \dim(U) + \dim(W) + \dim(Z)$ נסמן

 $2d - (\dim(U \cap Z) + \dim(W \cap Z) + \dim(U \cap W)) = d$ נחבר את כולם ונקבל

 $\dim(U) + \dim(W) + \dim(Z) = \dim(U \cap Z) + \dim(W \cap Z) + \dim(U \cap W)$ ולכן

 $U\subseteq Z$ נשים לב כי $\dim(U\cap Z)\leq \dim(U)$ ושוויון מתקיים אם נשים לב

 $Z \subseteq W$ ושוויון מתקיים אם ורק ושוויון $\dim(W \cap Z) < \dim(Z)$ וגם

 $W \subseteq U$ ושוויון מתקיים אם ורק שוויון $\dim(W \cap U) < \dim(W)$ וגם

 $U \neq Z$ או $Z \neq W$ או $U \neq W$ לכן אם

 $\dim(U) + \dim(W) + \dim(Z) > \dim(U \cap Z) + \dim(W \cap Z) + \dim(U \cap W)$ נקבל ש בסתירה לשוויון שקיבלנו.

U=W=Z ולכן

מ.ש.ל.©

Uא. **צ"ל:** מצאו בסיס ל

$$U=span\left\{\left[egin{array}{c} -2\ -5\ -4 \end{array}
ight],\left[egin{array}{c} 3\ 9\ 6 \end{array}
ight],\left[egin{array}{c} 5\ 8\ 10 \end{array}
ight]
ight\}$$
 מרחב וקטורי וגם $V=\mathbb{R}^3$ מרחב $V=\mathbb{R}^3$

$$-7 \cdot \begin{bmatrix} -2 \\ -5 \\ -4 \end{bmatrix} - 3 \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ 10 \end{bmatrix}$$
 נשים לב כי
$$U = span \left\{ \begin{bmatrix} -2 \\ -5 \\ -4 \end{bmatrix}, \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix}, \begin{bmatrix} 5 \\ 8 \\ 10 \end{bmatrix} \right\} = span \left\{ \begin{bmatrix} 2 \\ 5 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \right\}$$
 ולכן

נראה כי
$$U$$
 נראה כי
$$\left\{ \begin{bmatrix} 2\\5\\4 \end{bmatrix}, \begin{bmatrix} 1\\3\\2 \end{bmatrix} \right\}$$
יכי פורשים)
$$a \cdot \begin{bmatrix} 2\\5\\4 \end{bmatrix} = \begin{bmatrix} 1\\3\\2 \end{bmatrix}$$
ש כך $a \in \mathbb{R}$ יהי
$$a = \frac{3}{5} \text{ ומהשנייה } a = \frac{1}{2} \text{ ומהשנייה } a = \frac{3}{5}$$
ולכן מהשורה הראשונה נקבל
$$\left\{ \begin{bmatrix} 2\\5\\4 \end{bmatrix}, \begin{bmatrix} 1\\3\\2 \end{bmatrix} \right\}$$
בת"ל
$$\left\{ \begin{bmatrix} 2\\5\\4 \end{bmatrix}, \begin{bmatrix} 1\\3\\2 \end{bmatrix} \right\}$$
בסיס של ב

מ.ש.ל.א.©

נתונים: יהי
$$\mathbb{F}=\mathbb{C}$$
 שדה, $V=\mathbb{C}^3$ מרחב וקטורי $V=\mathbb{C}^3$ שדה, $V=\mathbb{C}^$

$$\begin{bmatrix} 2i & 3-i & -9+5i \\ 1+i & 5+2i & -11-2i \\ -3+2i & i & -12+5i \end{bmatrix} \xrightarrow{R_3 \leftrightarrow R_1} \begin{bmatrix} -3+2i & i & -12+5i \\ 1+i & 5+2i & -11-2i \\ 2i & 3-i & -9+5i \end{bmatrix} \xrightarrow{R_2 \to R_2 + (\frac{1}{13} + \frac{5i}{13})R_1} \xrightarrow{R_3 \to R_3 + (\frac{-4}{13} + \frac{6i}{13})R_1}$$

$$\left[\begin{array}{cccc} -3+2i & i & -12+5i \\ 0 & \frac{60}{13}+\frac{27}{13}i & -\frac{180}{13}-\frac{81}{13}i \\ 0 & \frac{33}{13}-\frac{17}{13}i & -\frac{99}{13}-\frac{27}{13}i \end{array} \right] \xrightarrow{R_3 \to R_3 + (-\frac{13}{37}+\frac{49}{111}i)R_2} \left[\begin{array}{cccc} -3+2i & i & -12+5i \\ 0 & \frac{60}{13}+\frac{27}{13}i & -\frac{180}{13}-\frac{81}{13}i \\ 0 & 0 & 6i \end{array} \right]$$

$$\frac{R_2 \to R_2 + (\frac{180}{13} + \frac{81}{13}i)R_2}{R_1 \to R_1 + (12 - 5i)R_3} \begin{bmatrix}
-3 + 2i & i & 0 \\
0 & \frac{60}{13} + \frac{27}{13}i & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\xrightarrow{R_2 \rightarrow (\frac{20}{111} - \frac{3}{37}i)R_2} \left[\begin{array}{cccc} -3 + 2i & i & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \xrightarrow{R_1 \rightarrow R_1 - iR_2} \left[\begin{array}{cccc} -3 + 2i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \xrightarrow{R_1 \rightarrow \frac{1}{-3 + 2i}R_1} \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

סג. צייפ מצאו בטיט ל
$$V=\mathbb{F}_3$$
 מרחב וקטורי $V=\mathbb{F}_3$ שדה, $V=\mathbb{F}_3$ מרחב וקטורי $U=span\left\{ \left[egin{array}{c} 0 \\ 1 \\ 1 \end{array} \right], \left[egin{array}{c} 2 \\ 1 \\ 2 \end{array} \right], \left[egin{array}{c} 2 \\ 2 \\ 1 \end{array} \right] \right\}$ וגם

$$\left[\begin{array}{ccc} 0 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{array} \right] \xrightarrow{R_2 \leftrightarrow R_1} \left[\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 1 & 2 & 1 \end{array} \right] \xrightarrow{R_3 \rightarrow R_3 - R_1} \left[\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & 1 & -1 \end{array} \right] \xrightarrow{R_3 \rightarrow R_3 - 2R_2} \left[\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{array} \right]$$

$$\begin{array}{c} \xrightarrow{R_2 \to R_2 - 2R_1} \\ \xrightarrow{R_3 \to R_3 - 2R_1} \end{array} \xrightarrow{\left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right]} \xrightarrow{R_2 \to 2R_2} \xrightarrow{\left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]} \xrightarrow{R_1 \to R_1 - R_2} \xrightarrow{\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]}$$

$$U \text{ בסיס של } \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \right\}$$

$$U \text{ The proof of the proof$$

מ.ש.ל.ג.©

$$W=span \left\{ \left[egin{array}{c} 1 \\ 0 \\ 0 \\ 1 \end{array}
ight], \left[egin{array}{c} 1 \\ 3 \\ 2 \\ 2 \end{array}
ight]
ight\}$$
 ו $U=span \left\{ \left[egin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right], \left[egin{array}{c} 1 \\ 2 \\ 2 \\ 1 \end{array} \right]
ight\} = span \left\{ \left[egin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right], \left[egin{array}{c} 0 \\ 1 \\ 1 \\ 0 \end{array} \right]
ight\}$ וגם $U=span \left\{ \left[egin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right], \left[egin{array}{c} 0 \\ 1 \\ 1 \\ 1 \end{array} \right], \left[egin{array}{c} 0 \\ 1 \\ 1 \\ 0 \end{array} \right]
ight\}$ הוכחה:

$$U+W=span\left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix},\begin{bmatrix} 1\\3\\2\\2 \end{bmatrix},\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix},\begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \right\}$$
 תחילה נשים לב כי
$$U+W=span\left\{ \begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix},\begin{bmatrix} 1\\3\\2\\2 \end{bmatrix},\begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix} \right\}$$
 ולכך
$$\begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix}+\begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix}=\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 3 & 2 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 \to R_3 - \frac{1}{3}R_2} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \xrightarrow{R_3 \to 3R_3}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 3 & 2 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\xrightarrow{R_2 \to R_2 - 2R_1} \left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 3 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{array} \right] \xrightarrow{R_2 \to \frac{1}{3}R_2} \left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array} \right]$$

נשים לב כי המטריצה קנונית ללא שורות אפסים ולכן בת"ל

$$U+W$$
 את בת"ל ופורשים את
$$\left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \right\}$$
ולכן
$$\left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \right\}$$
בסיס של
$$\left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\2\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \right\}$$
וגם
$$\dim(U+W) = 3$$

מ.ש.ל.א.©

7ב. צ"ל: מצאו בסיס לU+W ומימד נתונים: יהי היי $\mathbb{F}=\mathbb{R}$ שדה, $V=\mathbb{R}^4$ מרחב וקטורי וגם U,W המוגדרים בתרגיל

הוכחה:

תחילה נבטא את Wבתור ספאן של בתור Wאת נבטא תחילה נסמן $x_1=-t, x_2=-s-3t$ ונקבל $x_3=s$ ו ג $x_4=t$

$$W = span \left\{ \begin{bmatrix} -1 \\ -3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} 1 \\ 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \right\}$$
 תחילה נבטא את U בתור ספאן של וקטורים
$$x_1 = t, x_2 = s - t$$
 נסמן $x_3 = s$ $x_4 = t$ ונסמן
$$x_3 = s$$
 $x_4 = t$ ונסמן
$$x_3 = s$$
 ונקבל
$$x_3 = s$$

$$x_4 = t$$

$$x_1 = t, x_2 = s - t$$
 ונקבל
$$x_2 = s - t$$

$$x_2 = s - t$$

$$x_3 = s$$

$$x_4 = t$$

$$x_1 = t, x_2 = s - t$$

$$x_2 = s - t$$

$$x_3 = s$$

$$x_4 = t$$

$$x_1 = t, x_2 = s - t$$

$$x_1 = t, x_2 = s - t$$

$$x_2 = s - t$$

$$x_3 = s$$

$$x_4 = t$$

$$x_4 = t$$

$$x_1 = t$$

$$x_2 = s - t$$

$$x_1 = t$$

$$x_2 = s - t$$

$$x_2 = s - t$$

$$x_3 = t$$

$$x_4 = t$$

$$x_4 = t$$

$$x_1 = t$$

$$x_2 = s - t$$

$$x_3 = t$$

$$x_4 = t$$

$$x_4 = t$$

$$x_1 = t$$

$$x_2 = s - t$$

$$x_3 = t$$

$$x_4 = t$$

מ.ש.ל.ב.☺

 $[v]_B$ אא. צ"ל: מצאו 8

$$B=\left\{\left[egin{array}{c}0\\1\end{array}
ight],\left[egin{array}{c}1\\1\end{array}
ight]
ight\}$$
 , $v=\left[egin{array}{c}1\\1\end{array}
ight]$ מרחב וקטורי, $V=\mathbb{R}^2$, שדה, $F=\mathbb{R}$ שדה, $V=\mathbb{R}^2$, שרחב $V=\mathbb{R}$

מ.ש.ל.א.©

 $[v]_B$ ב. צ"ל: מצאו 8

$$B=\left\{\left[egin{array}{c}1\\1\\1\end{array}
ight],\left[egin{array}{c}1\\1\\0\end{array}
ight],\left[egin{array}{c}1\\0\\0\end{array}
ight],v=\left[egin{array}{c}1\\2\\3\end{array}
ight],v=\left[egin{array}{c}1\\2\\3\end{array}
ight],v=\left[egin{array}{c}1\\2\\3\end{array}
ight],v=\left[egin{array}{c}1\\2\\3\end{array}
ight]-1\cdot\left[egin{array}{c}1\\1\\1\\0\end{array}
ight]-1\cdot\left[egin{array}{c}1\\0\\0\\0\end{array}
ight]$$
 מרכם לב ש $v=\left[egin{array}{c}1\\2\\3\end{array}
ight]=3\cdot\left[egin{array}{c}1\\1\\1\\1\end{array}
ight]-1\cdot\left[egin{array}{c}1\\1\\0\\0\end{array}
ight]-1\cdot\left[egin{array}{c}3\\0\\0\\0\end{array}
ight]$ מרכם לב ש $v=\left[egin{array}{c}1\\2\\3\\0\\0\end{array}
ight]$

מ.ש.ל.ב.☺

$$B=\left\{\left[\begin{array}{c}1\\1\end{array}
ight],\left[\begin{array}{c}1\\2\end{array}
ight]
ight\}$$
 , $v=\left[\begin{array}{c}1\\0\end{array}
ight]$, and $V=\mathbb{F}^2_3$, where $v=\mathbb{F}_3$, where $v=\mathbb{F}_3$

מ.ש.ל.ג.☺