1

Belegexemplar stand am:

Beschreibung

Immer auf den neuesten Stand bringen!

Falzapparate

Die Erfindung betrifft Falzapparate gemäß dem Oberbegriff des Anspruchs 1 oder 2.

In der Weiterverarbeitung von bahnförmigem Gut wird grundsätzlich zwischen Falzapparaten mit Punkturzylinder oder mit Greiferzylinder unterschieden. Abhängig von Kundenwunsch und/oder dem zu erzeugenden Produkt wird der Falzapparat entsprechend konstruiert und ausgerüstet. Aufgrund der unten ausgeführten Eigenschaften bei Verwendung von Greiferzylindern ergeben sich für die Herstellung ein und der selben Produktgröße i. d. R. erhebliche Unterschiede in der Konstruktion – wie z. B. in der Zylindergröße, in der Lage der Zylinder zueinander und somit der Gestellausführung, der Antriebsgeometrie im Antriebszug u. v. m. Dies bedingt bislang bei Konstruktion des Falzapparates eine Festlegung auf den Typ sowie eine Doppelkonstruktion für ein und das selbe Falzapparat-Format für die beiden Typen.

Ein Punkturzylinder weist an seinem Umfang – insbesondere versenkbare – Punkturnadeln auf, welche den Strang aufnehmen, der nach weiterer Förderung um einen Abschnitt quergeschnitten wird. Der Folgeabschnitt wird von den auf dem Umfang nachfolgenden Punkturnadeln aufgegriffen und auf die selbe Weise geschnitten. Zwischen den auf dem Umfang folgenden Abschnitten ist kein Abschnitt in Umfangsrichtung erforderlich, so dass der Punkturzylinder die selbe Umfangsgeschwindigkeit aufweisen kann wie die Fördergeschwindigkeit des Stranges. Punkturzylinder und nachfolgender Zylinder – z. B. Falzklappenzylinder – können den selben Umfang aufweisen.

Ein Greiferzylinder trägt an seiner Mantelfläche einen oder mehrere Greifer, die zwischen einer Stellung, in der sie ein führendes Ende eines auf dem Greiferzylinder zu

BEST AVAILABLE COPY

befördernden Stückes Flachmaterial gegen die Mantelfläche gedrückt halten, und einer Freigabestellung beweglich sind, in der sich das Flachmaterial von dem Zylinder wieder lösen kann bzw. ein neues Stück Flachmaterial aufgenommen und eingeklemmt werden kann. Im Allgemeinen führen die Greifer zwischen diesen zwei Stellungen eine Schwenkbewegung aus. Da die zum Festklemmen bzw. Freigeben eines Produktes zur Verfügung stehenden Zeitspannen kurz sind, muss die Schwenkbewegung eine hohe Geschwindigkeit haben, und die Bewegungsamplitude zwischen der Klemmstellung und der Freigabestellung des Greifers sollte so klein wie möglich sein, um Material strapazierende starke Beschleunigungen in Grenzen zu halten.

Um eine Beschädigung eines nacheilenden Endes eines von einem Greifer auf dem Zylinder gehaltenen Stückes Flachmaterial durch die Bewegung eines in Umfangsrichtung am Zylinder nachfolgenden Greifers beim Festklemmen eines nachfolgenden Stückes Flachmaterial zu vermeiden, sind die meisten Greiferzylinder ausgelegt, um Flachmaterialstücke aufzunehmen, die dem Greiferzylinder jeweils voneinander beabstandet zugeführt werden, so dass sich die Flachmaterialstücke jeweils unter Ausbildung einer Lücke zwischen aufeinanderfolgenden Stücken an den Greiferzylinder anlegen und der Greifer sich in der Lücke bewegen kann, ohne das jeweils vorhergehende Stück zu berühren. Wenn diese Flachmaterialstücke zuvor durch Abschneiden von einem kontinuierlichen Strang hergestellt werden, so müssen die abgeschnittenen Stücke, um einen solchen Zwischenraum zu erzeugen, auf eine Geschwindigkeit beschleunigt werden, die höher als die des Stranges vor dem Schneiden ist. Wenn aber ein Fördersystem, das die von dem Strang abgeschnittenen Produkte nach dem Schneiden weiterbefördert, schneller läuft als der zugeführte Strang, so führt dies zu Schlupf und damit zu Reibung zwischen dem Fördersystem und einem darin eindringenden führenden Abschnitt des Stranges, der sich vor dem Abschneiden notwendigerweise noch mit der ursprünglichen Geschwindigkeit des Stranges bewegt. Bei Flachmaterial mit einer empfindlichen Oberfläche wie etwa frischen Druckerzeugnissen kann diese Reibung die Qualität der Oberfläche beeinträchtigen, zum Beispiel durch

Schleifspuren am Bedruckstoff oder Verwischen von Farbe. Wenn sich die Flachmaterialstücke aus einem Stapel von untereinander unverbundenen Bogen zusammensetzen, tritt überdies das Problem auf, dass unterschiedliche Reibung an den verschiedenen Seiten des Stapels dazu führen kann, dass die Bogen gegeneinander verschoben werden und der Stapel auseinandergezogen wird, was die Weiterverarbeitung des Stapels erheblich erschwert.

Besonders problematisch ist es, wenn die Flachmaterialstücke unmittelbar in Kontakt mit dem Greiferzylinder vom Strang abgeschnitten werden, zum Beispiel durch einen rotierenden Messerzylinder, der mit dem Greiferzylinder zusammen einen Schneidspalt begrenzt und zusammenwirkend mit einem Widerlager des Greiferzylinders den Strang durchtrennt. Damit sich der zu schneidende Strang gleichmäßig an die Oberfläche des Greiferzylinders anlegt, müssen die Greifer in der Lage sein, ins Innere des Greiferzylinders abzutauchen. Nachdem ein Flachmaterialstück vom zugeführten Strang abgeschnitten worden ist, steht nur eine sehr kurze Zeit zur Verfügung, um die neu entstandene führende Kante des Stranges mit einem Greifer zu fassen und gegen die Oberfläche des Zylinders zu drücken. Der Weg zwischen der versenkten Stellung des Greifers und der ausgefahrenen, das Flachmaterial gegen den Zylinder drückenden Stellung ist jedoch lang und erfordert eine hohe Geschwindigkeit der Greiferbewegung, die nur mit einer hochwertigen, kostspieligen Antriebsmechanik realisierbar ist. Außerdem ist der Verschleiß und damit die Störanfälligkeit der Antriebsmechanik um so größer, je höher ihre Betriebsgeschwindigkeit ist.

Aus EP 09 31 748 B1 ist ein Greiferzylinder bekannt, der von einem zugeführten Strang abgetrennte Druckerzeugnisse voreilungsfrei, das heißt ohne Abstand zwischen den aufeinanderfolgenden Druckerzeugnissen, zu fördern vermag. Bei diesem Greiferzylinder ist ein Greifer an einer im Zylinder schwenkbar gelagerten Welle über einen Translationsmechanismus montiert, der den Greifer gekoppelt an die Schwenkbewegung zu einer Parallelverschiebung antreibt. Dieser Translationsmechanismus dient dazu, den

Greifer zwischen seiner versenkten Stellung und einer über die Mantelfläche des Zylinders vorspringenden Stellung zu verfahren, aus der heraus er um die Welle geschwenkt werden kann, um die führende Kante eines Stranges von Druckerzeugnissen gegen die Zylinderoberfläche zu drücken.

Es ist weder erläutert, wie der Translationsmechanismus aufgebaut sein soll, noch wie die Bewegung des Translationsmechanismus angetrieben werden soll. Eine mechanische Kopplung an die Drehung des Greiferzylinders würde ein aufwendiges Getriebe erfordern. Es wäre zwar auch denkbar, ein elektrisches oder hydraulisches Antriebsaggregat für die Verschiebung vorzusehen, das gemeinsam mit dem Greifer um die Welle schwenkt, doch stellt sich hier das Problem der Zuführung von Antriebsenergie, und außerdem würde ein solches Antriebsaggregat das Trägheitsmoment des zu schwenkenden Greifers deutlich erhöhen und damit die erreichbare Geschwindigkeit der Bewegung des Greifers reduzieren.

Durch die DE 42 29 059 A1 ist ein punkturloser Falzapparat mit einem Greiferzylinder offenbart, dessen Oberflächengeschwindigkeit der Stranggeschwindigkeit voreilt.

Die DE 197 16 625 A1 zeigt einen Falzapparat mit einem Punkturzylinder, wobei Punktur-, Messer- und Vorfalzzylinder in einem gemeinsamen Gestell gelagert sind.

Der Erfindung liegt die Aufgabe zugrunde, Falzapparate zu schaffen.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 oder 2 gelöst.

Von besonderem Vorteil ist es, dass der Falzapparat unabhängig vom Typ – Greifer oder Punkturnadeln – konstruiert ist. Ein einfaches Austauschen des ersten Zylinders kann erfolgen, ohne dass Gestell und Antriebssituation geändert werden muss. Für eine selbe Abschnittslänge kann bei Beibehaltung der räumlichen Anordnung der Zylinder und/oder

der Antriebsgeometrie eine Wahl zwischen den beiden Typen getroffen werden. Diese Wahl kann bis kurz vor Auslieferung beim Kunden getroffen werden bzw. es kann ein Umrüsten vor Ort stattfinden, ohne dass das Gestell ausgewechsett werden muss.

Wie der aus EP 09 31 748 B1 bekannte Greiferzylinder nutzt der vorliegende Greiferzylinder zum Verkürzen der Bewegung zwischen der eingefahrenen Stellung und der Klemmstellung des Greifers zusätzlich zur Schwenkbewegung eine Translationsbewegung, allerdings mit dem Unterschied, dass ein die Translation antreibender Mechanismus nicht zusammen mit dem Greifer um dessen Schwenkachse schwenkbar ist und so dessen Trägheitsmoment erhöht, sondem die Achse des Greifers als solche in radialer Richtung verschiebt. Da der zum Klemmen oder Freigeben des Flachmaterials am Greiferzylinder erforderliche radiale Hub klein im Vergleich zur erforderlichen Bewegungsamplitude des Greifers in Umfangsrichtung ist, genügt eine geringe Amplitude der radialen Verschiebungsbewegung, die mit geringem Energieaufwand und geringer Belastung der mechanischen Komponenten erzeugbar ist.

Wenn das von dem Greifer festzuklemmende Flachmaterial ein Stapel von Bogen ist, so ist es wünschenswert, im Moment des Festklemmens des Stapels eine Bewegungskomponente des Greifers in Umfangsrichtung des Zylinders zu vermeiden, damit der Stapel keinen Scherkräften ausgesetzt ist. Während herkömmlicherweise das Festklemmen nur durch eine Schwenkbewegung des Greifers zustande kommt und somit die Ausübung einer Scherkraft auf einen Bogenstapel beim Festklemmen nicht zu vermeiden ist, ist bei dem vorliegenden Greiferzylinder vorzugsweise vorgesehen, dass in einer Endphase der Schwenkbewegung in die Klemmstellung die erste Achse sich radial einwärts bewegt.

Eine einfache und robuste Möglichkeit, die radiale Einwärtsbewegung der ersten Achse anzutreiben, ist, diese an einen ersten Arm zu montieren, der um eine in Bezug auf den Zylinderkörper ortsfeste zweite Achse schwenkbar ist, so dass die radiale Bewegung der

ersten Achse einer Schwenkbewegung dieses ersten Armes entspricht.

Diese Schwenkbewegung des ersten Armes kann, wie herkömmlicherweise die Schwenkbewegung des Greifers selbst, in einfacher Weise durch eine Kurvenscheibe angetrieben sein, die nicht zusammen mit dem Greiferzylinder rotiert und deren Form von einem mit dem ersten Arm verbundenen Hebel abgetastet wird.

Um die Schwenkbewegung des Greifers zwischen der versenkten Stellung und der Klemmstellung anzutreiben, ist vorzugsweise eine Koppelstange vorgesehen, die einerseits an den Greifer und andererseits an einen um eine dritte Achse schwenkbaren zweiten Arm angelenkt ist. Auch dessen Schwenkbewegung kann wie oben angegeben durch eine Kurvenscheibe angetrieben sein.

In einer platzsparenden Anordnung befinden sich die zweite und die dritte Achse bezogen auf die Umfangsrichtung des Zylinders auf entgegengesetzten Seiten des Greifers.

Von den zwei Armen ist der erste eher in Umfangsrichtung und der zweite eher in radialer Richtung des Zylinderkörpers orientiert, mit anderen Worten, die Orientierung des ersten Armes ist jeweils näher an der Umfangsrichtung als die des zweiten, und die des zweiten ist näher an der radialen Richtung als die des ersten.

Vorzugsweise ist am Zylinderkörper jedem Greifer ein Widerlager zugeordnet, das im Zusammenwirken mit einem gemeinsam mit dem Greiferzylinder bewegten Messer zum Schneiden von dem Greiferzylinder zugeführtem und von dem Greifer zu greifendem Flachmaterial dient.

Bezogen auf die Drehrichtung eines solchen Greiferzylinders ist der Greifer vor dem ihm zugeordneten Widerlager angeordnet, und der Oberflächenabschnitt des Greiferzylinders, gegen den der Greifer geschnittenes Flachmaterial drückt, ist vorzugsweise dessen

Widerlager selbst, dessen Elastizität so sowohl den Schneidvorgang als auch das Greifen unterstützt.

Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im folgenden näher beschrieben.

Es zeigen:

- Fig. 1 eine schematische Darstellung eines Querfalzapparates, der einen Greiferzylinder verwendet;
- Fig. 2 einen vergrößerten Teilschnitt durch den Greiferzylinder, der den Greifer in seiner versenkten Stellung zeigt;
- Fig. 3 einen Teilschnitt analog dem der Fig. 2, der den Greifer während des Ausfahrens aus der versenkten Stellung zeigt;
- Fig. 4 einen Teilschnitt, der den Greifer in der Klemmstellung zeigt;
- Fig. 5 einen Teilschnitt, der den Greifer auf dem Rückweg in die versenkte Stellung zeigt;
- Fig. 6 einen schematischen Schnitt durch einen Falzapparat;
- Fig. 7 eine schematische Seitenansicht eines Doppelfalzapparates.
- Fig. 1 zeigt einen stark schematisierten Schnitt durch einen Falzapparat 28 gemäß der vorliegenden Erfindung. Der Falzapparat 28 umfasst einen Zylinder 01, z. B. einen Greiferzylinder 01, der beim hier dargestellten Beispiel mit je fünf in Umfangsrichtung

gleichmäßig verteilten Greifern 02 und Falzmessern 03 ausgestattet ist. Der Greiferzylinder 01 bildet zusammen mit einem Messerzylinder 04, hier mit zwei Messern 06, einen Schneidspalt 09, in dem ein zugeführtes Flachmaterial 07, z. B. einen Strang 07, der im Allgemeinen aus einer Mehrzahl von übereinandergelegten bedruckten Materialbahnen, z. B. Papierbahnen zusammengesetzt ist, in einzelnes Flachmaterial 08, z. B. einzelne Druckerzeugnisse 08 oder Produktabschnitte 08 (kurz Abschnitte 08) von jeweils einer Druckseite entsprechender Länge L zerlegt wird. Die Länge L kann auch mehr als einer Druckseite entsprechen, wenn beispielsweise eine weitere Bearbeitung wie z. B. ein weiterer Querfalz erfolgt.

Während der Durchganges durch den Schneidspalt 09 sind die Greifer 02 und die Falzmesser 03 im Inneren des Greiferzylinders 01 versenkt. Die Umfangsgeschwindigkeit des Greiferzylinders 01 entspricht genau der Zufuhrgeschwindigkeit des Stranges 07, so dass die von dem Strang 07 abgeschnittenen Druckerzeugnisse 08 auf den Umfang des Greiferzylinders 01 lückenlos aufeinanderfolgen.

Nach dem Durchgang durch den Schneidspalt 09 werden die Greifer 02 jeweils unterhalb des nacheilenden Abschnittes 11 eines der Druckerzeugnisse 08 aus dem Greiferzylinder 01 ausgefahren und entgegen dessen Drehrichtung geschwenkt, um jeweils die führende Kante 12 des Stranges 07 an der Oberfläche des Greiferzylinders 01 festzuklemmen. Die nacheilenden Abschnitte 11 jedes Druckerzeugnisses 08 sind so ein Stück weit von der Oberfläche des Greiferzylinders 01 abgespreizt, doch beeinträchtigt dies die gleichmäßige Aufwicklung des Stranges 07 auf den Greiferzylinder 01 nicht, da sie erst nach dem Abschneiden vom Greiferzylinder 01 abgespreizt werden.

Der Greiferzylinder 01 bildet einen Falzspalt 13 mit einem zweiten Zylinder 14, z. B. einem Falzklappenzylinder 14. Während des Durchganges durch den Falzspalt 13 fahren die Falzmesser 03 aus dem Greiferzylinder 01 aus, um die Druckerzeugnisse 08 entlang einer Mittellinie in (nicht dargestellte) Falzklappen des Falzklappenzylinders 14

einzuführen. Die auf diese Weise quer gefalzten Druckerzeugnisse 08 werden am Falzklappenzylinder 14 bis zu einer Stelle weiterbefördert, wo sie beispielsweise an ein (nicht dargestelltes) Schaufelrad zum Auslegen auf ein Förderband übergeben werden.

Fig. 2 zeigt in einem Teilschnitt quer zur Achse des Greiferzylinders 01 einen Greifer 02 und dessen Umgebung. Der Greifer 02 umfasst einen Trägerbalken 16, der sich über die gesamte nutzbare Breite des Greiferzylinders 01 erstreckt und an einer radial nach außen gerichteten Seite ein Doppel-L- oder Z-Profil 17 aus einem elastischen Material wie etwa Federstahl trägt, das zum Festklemmen der Druckerzeugnisse 08 ausfahrbar ist. Das Profil 17 kann sich durchgehend in axiale Richtung des Greiferzylinders 01 erstrecken oder in eine Mehrzahl von in axialer Richtung beabstandeten Zinken unterteilt sein, die jeweils durch eine Öffnung im Mantel des Greiferzylinders 01 greifen.

Der Trägerbalken 16 ist einerseits an einen ersten Arm 19 angelenkt, der mit einer drehbar in dem Greiferzylinder 01 gelagerten Welle 21 fest verbunden ist. Der erste Arm 19 erstreckt sich in etwa parallel zur Mantelfläche des Greiferzylinders 01. Der Trägerbalken 16 ist ferner an eine Koppelstange 22 angelenkt, die ebenfalls in etwa parallel zur Mantelfläche des Greiferzylinders 01 ausgerichtet ist und ihrerseits an einen in etwa radial orientierten zweiten Arm 23 angelenkt ist. Dieser zweite Arm 23 ist fest mit einer Welle 24 verbunden, die in dem Greiferzylinder 01 drehbar gelagert ist. Die Drehstellung der zwei Arme 19; 23 ist in an sich bekannter und in der Fig. 2 nicht dargestellter Weise über zwei Kurvenscheiben festgelegt, die nicht gemeinsam mit dem Greiferzylinder 01 rotieren und die von einem mit der Welle 21 bzw. 24 verbundenen, nicht dargestellten Arm abgetastet werden.

Es ist anhand der Fig. 2 leicht nachzuvollziehen, dass eine Drehung des Armes 19 um die Welle 21 im Wesentlichen eine radiale Ein- oder Auswärtsbewegung des Greifers 02 bewirkt, und allenfalls in geringerem Umfang eine Schwenkbewegung des Greifers 02 um die Achse 27, an der der Trägerbalken 16 und der erste Arm 19 aneinandergelenkt sind.

Eine Drehung der Welle 24 hingegen würde - bei als fest angenommener Welle 21 - eine Schwenkbewegung des Greifers 02 um die Achse 27 antreiben.

Der in Fig. 2 ausschnittweise gezeigte Greiferzylinder 01 rotiert im Gegenuhrzeigersinn. Im Uhrzeigersinn hinter der das Profil 17 aufnehmenden Öffnung des Zylindermantels ist in diesen ein Hartgummistreifen eingelassen, der Oberflächenabschnitt 26, z. B. als Widerlagerstreifen 26 für die Messer 06 des Messerzylinders 04 beim Schneiden des Stranges 07 dient. In der in Fig. 2 gezeigten Konfiguration, in der der Greifer 02 ins Innere des Greiferzylinders 01 versenkt ist, kann der Greifer 02 den Schneidspalt 09 passieren, wobei der (in Fig. 2 nicht gezeigte) Strang 07 in Höhe des Widerlagerstreifens 26 durchtrennt wird. Um die dabei entstehende führende Kante 12 des Stranges 07 zu greifen und gegen das Widerlagerstreifen 26 zu drücken, wird der Greifer 02 aus dem Greiferzylinder 01 ausgefahren.

Fig. 3 zeigt eine intermediäre Stellung während des Ausfahrens. Wie man sieht, hat sich zwischen den Konfigurationen der Fig. 2 und 3 die Welle 21 deutlich im Gegenuhrzeigersinn gedreht, wodurch die Achse 27 radial nach außen verschoben wurde und das Profil 17 des Greifers 02 aus der Öffnung des Zylindermantels aufgetaucht ist. Durch eine leichte Drehung der Welle 24 im Uhrzeigersinn ist der Greifer 02 außerdem im Uhrzeigersinn um die Achse 27 geschwenkt, so dass das die Spitze des freien Schenkels 18 des Profils 17 radial über dem Widerlagerstreifen 26 liegt.

Durch eine Drehung der Welle 21 im Uhrzeigersinn wird, wie in Fig. 4 gezeigt, die Achse 27 des Greifers 02 wieder radial ins Innere des Greiferzylinders 01 verschoben, so dass sich das freie Ende des Profils 17 auf den Widerlagerstreifen 26 absenkt und dabei das zwischen sich und dem Widerlagerstreifen 26 liegende führende Ende des Stranges 07 (in der Fig. 3 nicht gezeigt) einklemmt.

Nach dem Durchgang des Greifers 02 durch den Falzspalt 13 wird der Greifer 02 durch

eine Drehung der Welle 21 im Gegenuhrzeigersinn wieder angehoben und das zwischen dem freien Ende und dem Widerlagerstreifen 26 eingeklemmte Druckerzeugnis 08 freigegeben, wie in Fig. 5 gezeigt (ohne Druckerzeugnis 08 dargestellt). Aus diesem Stadium heraus schwenkt die Welle 24 im Gegenuhrzeigersinn, um den freien Schenkel 18 des Greifers 02 über dem Widerlagerstreifen 26 weg und über die Öffnung des Zylindermantels zu ziehen. Durch eine anschließende Drehung der Welle 21 im Uhrzeigersinn wird der Greifer 02 wieder ins Innere des Greiferzylinders 01, in die in Fig. 2 gezeigte Stellung, zurückgezogen. Der Greifer 02 ist nun für einen weiteren Durchgang durch den Schneidspalt 09 bereit.

Wie man sieht, genügt ein geringer Schwenkwinkel des Greifers 02, um diesen zwischen der Klemmstellung und der versenkten Stellung bewegen zu können, und auch der radiale Hub beschränkt sich - in Abhängigkeit von der Dicke der zu verarbeitenden Druckerzeugnisse 08 - auf wenige Millimeter. Da der Greifer 02 einfach aufgebaut sein kann, ist sein Gewicht und Trägheitsmoment gering. Die kurzen Hübe zwischen versenkter Stellung und Klemmstellung des Greifers 02 erfordern geringe Beschleunigungen und damit mäßige, materialschonende Antriebskräfte.

Im folgenden sind besonders vorteilhafte Ausführungen eines variablen Falzapparates 28 dargestellt. Der Falzapparat 28 verfügt wie in Fig. 1 bereits dargestellt über einen ersten Zylinder 01, hier zunächst allgemein als Falzmesserzylinder 01 bezeichnet, und einen zweiten Zylinder 14, einen Falzklappenzylinder 14. Wie in Fig. 6 lediglich in einem Schnitt schematisch dargestellt, sind die Zylinder 01; 14 in einem gemeinsamen Gestell 29 gelagert und werden von zumindest einem Antriebsmotor 31 angetrieben. Der Antrieb erfolgt beispielsweise vom Antriebsmotor 31 über ein Getriebe oder auch axial direkt auf den ersten Zylinder 01 und von dort über eine schematisch angedeutete Antriebsverbindung 33 (z. B. Zahnräder) auf den zweiten Zylinder 14.

Der Falzapparat 28 ist nun dergestalt ausgebildet, dass er in einer Ausführung mit einem

als Greiferzylinder 01 und in einer zweiten Ausführung mit einem als Punkturzylinder 32 ausgeführten ersten Zylinder 01; 32 ausgebildet ist, wobei dieser Greiferzylinder 01 und dieser Punkturzylinder 32 zur Aufnahme der selben Abschnittslängen ausgebildet sind. Der wahlweise eingesetzte Greiferzylinder 01 weist den selben Umfang auf wie der zusammen wirkende Falzklappenzylinder 14. Das selbe gilt für den wahlweise eingesetzten Punkturzylinder 32. Am Falzklappenzylinder 14 sind die am Umfang aufeinander folgenden Abschnitte bzw. abgeschnittenen Druckerzeugnisse 08 ohne Abstand zueinander angeordnet, was beispielsweise durch den Einsatz der oben dargestellten Ausführung des Greifermechanismus bewerkstelligt ist. Die für die selbe Abschnittslänge (= Länge des abgeschnittenen Druckerzeugnisses 08) ausgeführten und wahlweise eingesetzten Punkturzylinder 32 und Falzklappenzylinder 14 weisen den selben Umfang, und bei Betrieb eine der Strang- bzw. Papiergeschwindigkeit entsprechende Umfangsgeschwindigkeit auf.

Die Ausführung des Falzapparates 28 ist dergestalt, dass für den wahlweisen Einsatz von Greiferzylinder 01 und Punkturzylinder 32 deren Anordnung bzgl. des Gestells 29 die selbe ist. Die Rotationsachsen R01; R32 und R14 zwischen dem ersten und dem zweiten Zylinder 01; 32; 14 weisen für beide Ausführungsformen den selben Abstand a (bei dem selben Abschnittformat) auf und befinden sich vorzugsweise für beide Ausführungsformen bzgl. dem Gestell 29 in der selben relativen Lage. Bevorzugt entsprechen sich auch die Ausbildungen und Positionen des Antriebszuges 33 und/oder die Positionen des Antriebsmotors 31 für die beiden Ausführungsformen. Sind Zahnradverbindungen als Antriebszug 32 zwischen den Zylindern 01 und 14 bzw. 32 und 14 angeordnet, so weisen die Zahnräder des ersten Zylinders 01; 32 und des zweiten Zylinders 14 die selbe Zähnezahl auf.

Vorteilhaft ist somit bei Beibehaltung der Lageranordnung im Gestell 29, der Antriebsgeometrie, der Antriebsübersetzung und/oder der relativen Lage zwischen erstem Zylinder 01; 32 (Falzmesserzylinder) und zweiten Zylinder 14 (Falzklappenzylinder 14) für das selbe Abschnittformat in einer Ausführung der erste Zylinder 01; 32 als Punkturzylinder 32 und in zweiter Ausführung als Greiferzylinder 01 ausgeführt.

In besonders vorteilhafter Ausführung im Hinblick auf einen niedrigen Aufwand bei der Konstruktion und/oder Umrüstung ist auch der Abstand a zwischen den Rotationsachsen R01 und R04 sowie R32 und R04 zwischen erstem Zylinder 01; 32 und Messerzylinder 04 (strichliert dargestellt) für die beiden Ausführungen der selbe. Das selbe gilt für die Position und/oder Ausführung einer nicht dargestellten Antriebsverbindung zwischen erstem Zylinder 01; 32 und Messerzylinder 04.

In einer nicht dargestellten, jedoch für ein Umrüsten vorteilhaften Ausführung weist das Gestell 29 zumindest auf einer Stirnseite des ersten Zylinders 01; 32 eine Ausnehmung auf, welche eine seitliche Entnahme und/oder Bestückung des ersten Zylinders 01; 32 ermöglicht. Diese Ausnehmung kann dann beispielsweise derart dimensioniert sein, dass der Zylinder 01, 32 hindurchgeführt und im Betrieb diese durch ein den Zapfen aufnehmendes Lager und ggf. einen dieses umgebenden Ring verschlossen ist. Für beide Ausführungen der Bestückung mit dem ersten Zylinder 01; 32 ist beispielsweise ein Gestell 29 mit identischen Bohrungen zur Aufnahme von Lagern für die beiden Typen von Zylindern 01; 32 vorgesehen.

Der Umfang des ersten Zylinders 01; 32 entspricht sowohl für die Ausführung als Punkturzylinder 32 als auch für die Ausführung als Greiferzylinder 01 im wesentlichen einem ganzzahligen Vielfachen der Länge L der zu verarbeitenden Produktabschnitte 08. D. h., dass im auf in der Ausführung als Greiferzylinder 01 keine Lücken zwischen den auf dem Greiferzylinder 01 aufgenommenen Produktabschnitten 08 (bzw. auch keine Voreilung gegenüber dem Strang) besteht.

Die einem bestimmten Produktabschnitt 08 zugeordneten Greifer 02 sind in Drehrichtung des Greiferzylinder 01 betrachtet vor dem zugehörigen Widerlagerstreifen 26 angeordnet,

d. h., die Greifer 02 passieren kurz vor dem Widerlagerstreifen 26 den Schneidspalt 09.

Es liegen beispielsweise ein erster und ein zweiter Falzapparat 28 vor mit jeweils mindestens einem ersten Zylinder 01; 32, einem als Falzklappenzylinder 14 ausgeführten zweiten Zylinder 14 und einem Messerzylinder 04, mittels welchem aus einem Strang 07 Produktabschnitte 08 einer bestimmten Länge L geschnitten werden können. In beiden Falzapparaten 28 bzw. Ausführungen sind der erste Zylinder 01; 32 und der zweite Zylinder 14 in einem gemeinsamen Gestell 29 gelagert. Der erste Falzapparat 28 ist nun mit einem als Punkturzylinder 32 ausgeführten ersten Zylinder 32 und der zweite Falzapparat 28 mit einem als Greiferzylinder 01 ausgeführten ersten Zylinder 01 ausgebildet. Beide Falzapparate 28 sind zur Verarbeitung von Produktabschnitten 08 der selben Länge ausgebildet, wobei jedoch die Lageranordnung für den ersten und zweiten Zylinder 01; 32; 14 im Gestell 29 und/oder eine Antriebsgeometrie für zumindest den ersten und zweiten Zylinder 01; 32 und zweitem Zylinder 14 in den beiden Falzapparaten 28 dieselbe ist bzw. dieselben sind.

In einer in Fig. 7 dargestellten vorteilhaften Weiterbildung des Falzapparates 28 ist dieser als Doppelfalzapparat 28 ausgeführt, d. h. er weist zwei Zylindergruppen mit jeweils ersten Zylindern 01; 32 und jeweils zugeordneten Falzklappenzylindem 14 sowie Messerzylindem 04 auf. Diese beiden Gruppen sind beispielsweise gleichzeitig mit Teilsträngen nach Teilung des Stranges 07 beaufschlagbar. Die Ausbildung des Doppelfalzapparates 28 ist, wie oben für den einfachen Falzapparat 28 dargelegt bzgl. seines Gestells, der Lage der Zylinder, den Antriebszug und/oder den Antriebsmotor 31 dergestalt, dass für beide Gruppen ein wahlweises Bestücken mit einem als Punkturzylinder 32 oder als Greiferzylinder 01 ausgeführten ersten Zylinder 01; 32 erfolgen kann. Der Falzapparat 28 – einfach oder Doppelt – muss somit nicht insgesamt in zwei Ausführungen konstruiert werden, sondern nur der erste Zylinder 01; 32 und ggf. lediglich Führungseinrichtungen wie z. B. Bandführeinrichtungen und/oder

Produktführungen geändert werden.

In Weiterbildung des Doppelfalzapparates 28 weist dieser zumindest in einer Zylindergruppe einen weiteren Zylinder 34 auf, mittels welchem das Produkt mit einem zweiten Querfalz versehen werden kann.

Bezugszeichenliste

01	Zylinder,	erster,	Greiferzy	ylinder,	Falzmesserz	ylinder
----	-----------	---------	-----------	----------	-------------	---------

- 02 Greifer
- 03 Falzmesser
- 04 Messerzylinder
- 05 -
- 06 Messer
- 07 Flachmaterial, Strang, Abschnitt
- 08 Flachmaterial, Druckerzeugnis
- 09 Schneidspalt
- 10 -
- 11 Abschnitt, nacheilender
- 12 Kante, führende
- 13 Falzspalt
- 14 Zylinder, zweiter, Falzklappenzylinder
- 15 -
- 16 Trägerbalken
- 17 Profil
- 18 Schenkel
- 19 Arm
- 20 -
- 21 Welle
- 22 Koppelstange
- 23 Arm
- 24 Welle
- 25 -
- 26 Oberflächenabschnitt, Widerlagerstreifen
- 27 Achse

R32

28	Falzapparat, Doppelfalzapparat
29	Gestell
30	_
31	Antriebsmotor
32	Zylinder, erster, Punkturzylinder
33	Antriebsverbindung
34	Zylinder (zweiter Querfalz)
а	Abstand
R01	Rotationsachse
R04	Rotationsachse
D11	Potationeacheo

Rotationsachse

Ansprüche

- Falzapparat (28) mit mindestens einem ersten Zylinder (01; 32), einem als
 Falzklappenzylinder (14) ausgeführten zweiten Zylinder (14) und einem
 Messerzylinder (04), mittels welchem aus einem Strang (07) Produktabschnitte (08)
 einer bestimmten Länge L geschnitten werden können,
 - wobei der erste Zylinder (01; 32) und der zweite Zylinder (14) in einem gemeinsamen Gestell (29) gelagert sind,
 - wobei der Falzapparat (28) dazu ausgebildet ist, dass eine Lageranordnung für die Zylinder (01: 32; 14) im Gestell (29), eine Antriebsgeometrie und eine relativen Lage zwischen erstem Zylinder (01; 32) und zweitem Zylinder (14) vorgesehen ist, in welcher unter Beibehaltung dieser Lageranordnung, der Antriebsgeometrie und der relativen Lage zwischen erstem und zweitem Zylinder (01; 32; 14) der Falzapparat (28) wahlweise mit einem als Greiferzylinder (01) oder mit einem als Punkturzylinder (32) ausgeführten ersten Zylinder (01; 32) in der Weise bestückbar ist, dass Produktabschnitte (08) der selben Länge L verarbeitbar sind,
 - wobei die Umfangsgeschwindigkeit des ersten Zylinders (01; 32) genau der Zufuhrgeschwindigkeit des Stranges (07) entspricht.
- Falzapparat (28) mit mindestens einem ersten Zylinder (01; 32), einem als
 Falzklappenzylinder (14) ausgeführten zweiten Zylinder (14) und einem
 Messerzylinder (04), mittels welchem aus einem Strang (07) Produktabschnitte (08)
 einer bestimmten Länge L geschnitten werden können,
 - wobei der erste Zylinder (01; 32) und der zweite Zylinder (14) in einem gemeinsamen Gestell (29) gelagert sind,
 - wobei ein erster derartiger Falzapparat (28) in einer ersten Ausführung mit einem als Punkturzylinder (32) ausgeführten ersten Zylinder (01; 32) ausgebildet ist und eine erste Lageranordnung für den ersten und zweiten Zylinder (32; 14) im Gestell (29), eine erste Antriebsgeometrie für zumindest den ersten und zweiten Zylinder

(32; 14) und eine erste relativen Lage zwischen erstem Zylinder (32) und zweitem Zylinder (14) aufweist, dadurch gekennzeichnet, dass

ein zweiter derartiger Falzapparat (28) in einer zweiten Ausführung mit einem als Greiferzylinder (01) ausgeführten ersten Zylinder (01) ausgebildet ist, wobei in der zweiten Ausführung Produktabschnitte (08) der selben Länge L wie in der ersten Ausführung verarbeitbar sind,

und dass die Lageranordnung der zweiten Ausführung, die Antriebsgeometrie und relative Lage zwischen erstem Zylinder (01) und zweitem Zylinder (14) der zweiten Ausführung derjenigen Lageranordnung, Antriebsgeometrie und relativen Lage aus der ersten Ausführung entspricht.

- Falzapparat nach Anspruch 2, dadurch gekennzeichnet, dass die Umfangsgeschwindigkeit des ersten Zylinders (01; 32) sowohl für die Ausführung als Punkturzylinder (32) als auch für die Ausführung als Greiferzylinder (01) genau der Zufuhrgeschwindigkeit des Stranges (07) entspricht.
- 4. Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Umfang des ersten Zylinders (01; 32) sowohl für die Ausführung als Punkturzylinder (32) als auch für die Ausführung als Greiferzylinder (01) einem ganzzahligen Vielfachen der Länge L der zu verarbeitenden Produktabschnitte (08) entspricht.
- Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Fall des als Greiferzylinders (01) ausgebildeten ersten Zylinders (01; 32) die Greifer (02) dazu ausgebildet sind, zusätzlich zur Schwenkbewegung eine Translationsbewegung auszuführen.
- Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwei auf dem als Greiferzylinder (01) ausgeführten ersten Zylinder (01) in Umfangsrichtung hintereinander angeordnete Produktabschnitte (08) ohne einen Abstand auf dem

Umfang des ersten Zylinders (32) angeordnet sind.

- 7. Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwei auf dem als Punkturzylinder (32) ausgeführten ersten Zylinder (32) in Umfangsrichtung hintereinander angeordnete Produktabschnitte (08) ohne einen Abstand auf dem Umfang des ersten Zylinders (32) angeordnet sind.
- Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Greiferzylinder (01), der Punkturzylinder (32) und der Falzklappenzylinder (14) den selben Außenumfang aufweisen.
- Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sowohl in der Ausführung des ersten Zylinders (01) als Greiferzylinder (01) als auch in der Ausführung des ersten Zylinders (32) als Punkturzylinder (32) die Antriebsübersetzung zwischen erstem Zylinder (01; 32) und zweitem Zylinder (14) die selbe ist.
- 10. Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Abstand (a) der Rotationsachsen (R01; R32; R14) des ersten zum zweiten Zylinder (01; 32; 14) in der Ausführung des ersten Zylinders (01) als Greiferzylinder (01) der selbe ist wie in der Ausführung des ersten Zylinders (32) als Punkturzylinder (32).
- 11. Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine relative Lage zwischen erstem, zweitem und Messerzylinder (01; 32; 14; 04) sowohl in der Ausführung mit dem ersten Zylinder (01) als Greiferzylinder (01) als auch mit dem ersten Zylinder (32) als Punkturzylinder (32) die selbe ist.
- Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für beide Ausführungen ein Gestell (29) mit identischen Bohrungen zur Aufnahme von Lagern

für die beiden Zylinder (01; 32; 14) vorgesehen ist.

- Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für beide Ausführungen eine selbe relative Position eines Antriebsmotors (31) zum ersten Zylinder (01; 32) vorgesehen ist.
- Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein die Zylinder (01; 32; 14) tragendes Gestell (29) eine Ausnehmung zum Austausch des ersten Zylinders (01; 32) aufweist.
- 15. Falzapparat nach Anspruch 1 oder 2, gekennzeichnet durch zwei Gruppen von jeweils zumindest einem ersten Zylinder (01; 32), einem zweiten Zylinder (14) sowie einem Messerzylinder (04), wobei mindestens einer der ersten Zylinder (01; 32) in einer Ausführung als Greiferzylinder (01) und in einer anderen Ausführung als Punkturzylinder (32) ausgeführt ist.
- 16. Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der als Greiferzylinder (01) ausgeführte Zylinder (01) einen Zylinderkörper und wenigstens einen Greifer (02), der zwischen einer im Innern des Zylinderkörpers versenkten Stellung, einer ausgefahrenen Stellung und einer Klemmstellung bewegbar ist, aufweist, wobei in Klemmstellung eine Spitze des Greifers (02) Flachmaterial (07; 08) von außen gegen einen Oberflächenabschnitt (26) des Zylinderkörpers drückt.
- 17. Falzapparat nach Anspruch 16, dadurch gekennzeichnet, dass der Greiferzylinder (01) eine erste Achse (27) aufweist, um die der Greifer (02) zwischen der versenkten und der ausgefahrenen Stellung eine Schwenkbewegung ausführt, und dass die erste Achse (27) in radialer Richtung des Zylinderkörpers beweglich ist.
- 18. Falzapparat nach Anspruch 17, dadurch gekennzeichnet, dass die

Schwenkbewegung des Greifers (02) und die radiale Bewegung der ersten Achse (27) so gekoppelt sind, dass in einer Endphase der Schwenkbewegung in die Klemmstellung die erste Achse (27) sich radial einwärts bewegt.

- 19. Falzapparat nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die erste Achse (27) durch einen ersten Arm (19) getragen ist, der um eine in Bezug auf den Zylinderkörper ortsfeste zweite Achse (21) schwenkbar ist, um die radiale Einwärtsbewegung der ersten Achse (27) anzutreiben.
- Falzapparat nach Anspruch 19, dadurch gekennzeichnet, dass eine Schwenkbewegung des ersten Arms (19) mit Hilfe einer Kurvenscheibe angetrieben ist.
- 21. Falzapparat nach Anspruch nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, dass eine Koppelstange (22) einerseits an den Greifer (02) und andererseits an einen um eine dritte Achse (24) schwenkbaren zweiten Arm (23) angelenkt ist, um die Schwenkbewegung des Greifers (02) anzutreiben.
- Falzapparat nach Anspruch 21, dadurch gekennzeichnet, dass eine Schwenkbewegung des zweiten Arms (23) mit Hilfe einer Kurvenscheibe angetrieben ist.
- 23. Falzapparat nach Anspruch 19 oder 20 und Anspruch 21 oder 22, dadurch gekennzeichnet, dass von den zwei Armen (19; 23) der erste Arm (19) eher in Umfangsrichtung und der zweite Arm (23) eher in radialer Richtung des Zylinderkörpers orientiert ist.
- Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste
 Zylinder (01) als Falzmesserzylinder (01) ausgebildet ist.

25. Falzapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für die translatorische Bewegung des Greifers die Achse des Greifers als solche in radialer Richtung bewegbar gelagert ist.

Zusammenfassung

Ein Falzapparat weist mindestens einen ersten Zylinder, einen als Falzklappenzylinder ausgeführten zweiten Zylinder und einem Messerzylinder auf, mittels welchem aus einem Strang Produktabschnitte einer bestimmten Länge L geschnitten werden können. Der Falzapparat ist dazu ausgebildet, dass er in einer ersten Ausführung mit einem als Greiferzylinder und in einer zweiten Ausführung mit einem als Punkturzylinder ausgeführten ersten Zylinder in der Weise bestückbar ist, dass Produktabschnitte der selben Länge L verarbeitbar sind.

Fig. 1

.

Fig. 6

Fig. 7

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.