

Machine Learning

Linear regression with one variable

Model representation

Supervised Learning Given the "right answer" for

Given the "right answer" to each example in the data.

Regression Problem
Predict real-valued output

Classification: Discerter value a output

Training set of housing prices (Portland, OR)

Size in feet ² (x)	Price (\$) in 1000's (y)	
-> 2104	460	
1416	232	m=47
> 1534	315	
852	178	
		J
C	~	

Notation:

> m = Number of training examples
> x's = "input" variable / features
> y's = "output" variable / "target" variable

$$(x,y)$$
 - one training example
 (x,y) - one training example
 (x,y) - ith training example

$$x^{(2)} = 2104$$

$$x^{(2)} = 1416$$

$$y^{(1)} = 460$$

Andrew Ng

Machine Learning

Cost function

+	ر
j	ر
V	
b	Q
2	<u>-</u>
2	
π	5
_	_
\vdash	_

Size in feet² (x) Price (\$) in 1000's (y)

2104

1416

1534

852

$$m = 47$$

852

Hypothesis: $h_{\theta}(x) = \theta_{0} + \frac{1}{2}$

 θ_i 's: Parameters
How to choose θ_i 's ?

Machine Learning

Cost function intuition l

Hypothesis:

Simplified

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

rameters:
$$heta_0, heta_1$$

Cost Function:

$$\rightarrow J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

Goal: minimize $J(\theta_0, \theta_1)$

$$h_{\theta}(x) = \frac{\theta_{1}x}{\Theta_{\bullet} = 0}$$

$$\theta_{1}$$

$$J(\theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$\min \sum_{\theta_{1}} \frac{J(\theta_{1})}{\Theta_{1}} \Theta_{\bullet}(x^{(i)}) = 0$$

Machine Learning

Cost function intuition II

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$heta_0, heta_1$$

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2$

$$\underset{\theta_0,\theta_1}{\text{minimize}}\ J(\theta_0,\theta_1)$$

Goal:

Machine Learning

Linear regression with one variable

Gradient descent

Have some function $J(\theta_0,\theta_1)$ $\mathcal{I}(\mathbf{e}_{\mathbf{e}_1},\mathbf{e}_{\mathbf{e}_2},\mathbf{e}_{\mathbf{e}_3},\mathbf{e}_{\mathbf{e}_4})$ min I(00, ..., On) Want $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Outline:

- Start with some θ_0, θ_1 ($\leq \alpha_{\rm M}$ $\Theta_{\rm o} = 0$, $\Theta_1 = 0$)
- Keep changing $\overline{ heta_0}, \overline{ heta_1}$ to reduce $J(heta_0, heta_1)$

until we hopefully end up at a minimum

Gradient descent algorithm

repeat until convergence {

Truth OSBHON 2= h Assignment

31:15

(for j = 0 and j = 1)

 $\underline{\theta_j} = \underline{\theta_j} - \underline{\alpha} \frac{\sigma}{\partial \theta_i} J(\theta_0, \theta_1)$

علما المام

Simultaneously

Incorrect:

 $\Rightarrow \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$ $\rightarrow (\theta_0) := \text{temp} 0$

 $\Rightarrow \text{ temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$ $\theta_1 := \text{temp1}$

Correct: Simultaneous update

المام
$$= heta_0 - lpha rac{\partial}{\partial ilde{ heta_0}} J(heta_0, heta_1)$$

 $\rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

 $\theta_0 := \text{temp}_0$

ے $\theta_1 := \text{temp1}$

Machine Learning

Gradient descent intuition

Gradient descent algorithm

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Andrew Ng

minimum, even with the learning rate α fixed. Gradient descent can converge to a local

(10)

Machine Learning

Linear regression with one variable

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence {

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$(\text{for } j = 1 \text{ and } j = 0)$$

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{2}{300_J} \frac{1}{2m} \frac{1}{12m} \frac{1}{12m} \left(\int_{0}^{\infty} (x^{(i)}) - y^{(i)} \right)^2$$

$$= \frac{2}{300_J} \frac{1}{2m} \frac{1}{12m} \frac{1}{12m} \left(\int_{0}^{\infty} (x^{(i)}) - y^{(i)} \right)^2$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{\kappa} \lesssim \text{Ch}_{\bullet}(\kappa^{(0)} - y^{(1)})$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{\kappa} \lesssim \text{Ch}_{\bullet}(\kappa^{(0)} - y^{(1)}) \cdot \chi^{(1)}$$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.