EECS240 - Spring 2010

Lecture 2: CMOS Technology and Passive Devices

Elad Alon Dept. of EECS

Process Options

- · Available for many processes
- · Add features to "baseline process"
- E.g.
 - Silicide block option
 - "High voltage" devices (2.5V & 3.3V, >10V)
 - Low V_{TH} devices
 - Capacitor option (2 level poly, MIM)
 - ...

EECS240 Lecture 2

Today's Lecture

- EE240 CMOS Technology
- · Passive devices
 - Motivation
 - Resistors
 - Capacitors
 - (Inductors)
- · Next time: MOS transistor modeling

EECS240 Lecture 2

2

EE240 Process

- 90nm 1P7M CMOS
 - Minimum channel length: 90nm
 - 1 level of polysilicon
 - 7 levels of metal (Cu)
 - 1.2V supply
 - Models for this process not "real"
- · Other processes you might see
 - Shorter channel length (45nm / 1V)
 - Bipolar, SiGe HBT
 - soi

EECS240 Lecture 2

Why Talk About Passives?

EECS240 Lecture 2

Silicide Block Option

Layer	R/□ [Ω/□]	T _C [ppm/°C]	V _c [ppm/V]	B _c [ppm/V]
		@ T = 25 °C		
N+ poly	100	-800	50	50
P+ poly	180	200	50	50
N+ diffusion	50	1500	500	-500
P+ diffusion	100	1600	500	-500
N-well	1000	-1500	20,000	30,000

- Non-silicided layers have significantly larger sheet
- Even with silicide block, many non-idealities:
 - Temperature coefficient: R = f(T)
 - Voltage coefficient: R = f(V)
 - Manufacturing Variations

Resistors

- No provisions in standard CMOS
- Resistors are bad for digital circuits →
 - Minimized in standard CMOS
 - But, often want big, well-controlled R for analog...
- Sheet resistance of available layers:

Layer	Sheet resistance	
Aluminum	60 mΩ/□	
Polysilicon	5 Ω/□	
N+/P+ diffusion	5 Ω/□	
N-well	1 kΩ/□	

EECS240 Lecture 2

Resistor Temp-Co. Example

EECS240 Lecture 2

How about an N-Well Resistor?

EECS240 Lecture 2

Voltage Dependence

EECS240 Lecture 2 12

Types of mismatch: Run-to-run variations Global differences in thickness, doping, etc. Systematic (e.g. contacts) Random variations between devices Run-to-run variations in absolute R value: 20+% Can be problematic for termination, bias current, etc. Best case: make circuit depend only on ratios E.g., use feedback to control opamp gain With careful layout, can get 0.1 – 1% matching

Lecture 2

15

Resistor Matching

EECS240

MOSFETs as Resistors

• Triode region ("square law"):

$$I_D = \mu C_{ax} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}$$
 for $V_{GS} - V_{TH} > V_{DS}$

• Small signal resistance:

$$\begin{split} \frac{1}{R} &= \frac{\partial I_D}{\partial V_{DS}} = \mu C_{os} \frac{W}{L} (V_{os} - V_{TM} - V_{DS}) \\ R &\approx \frac{1}{\mu C_{os} \frac{W}{L} (V_{os} - V_{TM})} \quad \text{for} \quad V_{os} - V_{TM} >> V_{DS} \end{split}$$

· Voltage coefficient:

$$V_C = \frac{1}{R} \frac{\partial R}{\partial V_{DS}} = \frac{1}{V_{GS} - V_{TH} - V_{DS}}$$

Capacitors

· Simplest capacitor:

· What's the problem with this?

EECS240 Lecture 2

MOS Resistors

Example: R = 1 MΩ

· Large R-values realizable in

· Very large voltage coefficient

$$R \approx \frac{1}{\mu C_{ss} \frac{1}{L} (V_{cs} - V_{rs})}$$

$$\frac{W}{L} = \frac{1}{\mu C_{ss} R (V_{cs} - V_{rs})}$$

$$= \frac{1}{100 \frac{\mu A}{V^2} \times 1 M \Omega \times 2 V} = \frac{1}{200}$$
• Applications:
• MOSFET-C filters: (linearization)
• Ref: Tsividis et al, "Continuous-Time MOSFET-C Filters in VLSI,"
JSSC, pp. 15-30, Feb. 1986.
• Biasing: (>1GQ)

$$V_{C|_{V_{IS}-0W}} = \frac{1}{V_{GS} - V_{TH}}$$

Biasing: (>1GQ)
 Ref: Geen et al, "Single-Chip
 Surface-Micromachined Integrated
 Gyroscope with 50% hour Root Allen
 Variance," ISSCC, pp. 426-7, Feb.
 2002.

Lecture 2

Capacitors

• "Improved" capacitor:

substrate

· Is this only 1 capacitor?

EECS240 Lecture 2

23

Resistor Summary

- No or limited support in standard CMOS
 - Large area (compared to FETs)
 - Nonidealities:
 - Large run-to-run variations
 - · Temperature coefficient
 - Voltage coefficients (nonlinear)
- · Avoid them when you can
 - · Especially in critical areas, e.g.
 - · Amplifier feedback networks
 - · Electronic filters
 - A/D converters
 - · We will get back to this point

EECS240

Capacitor Options

Туре	C [aF/μm²]	V _C [ppm/V]	T _C [ppm/°C]
Gate	10,000	Huge	Big
Poly-poly (option)	1000	10	25
Metal-metal	50	20	30
Metal-substrate	30		
Metal-poly	50		
Poly-substrate	120		
Junction caps	~ 1000	Big	Big

EECS240 Lecture 2

MIM Capacitors Some processes have MIM cap as add-on option Separation between metals is much thinner Higher density Used to be fairly popular But not as popular now that have many metal layers anyways

Distributed Effects

- · Can model IC resistors as distributed RC circuits.
- Could use transmission line analysis to find equivalent 2-port parameters.

EECS240 Lecture 2

Double Contact Strucutre |J(x)|· If contact on both edges, • R drops 4X · Can be a good idea even if not hitting distributed effects EECS240 Lecture 2

Effective Resistance

- · High frequency resistance depends on W, e.g.:
 - W=1μ 10kΩ resistor works fine at 1GHz
 - W= 5μ 10k Ω resistor drops to 5k Ω at 1 GHz
- May need distributed model for accurate freq

EECS240 Lecture 2 32

What About Inductors?

- Mostly not used in analog/mixed-signal design
 - Usually too big
 - More of a pain to model than R's and C's
 - · But they do occasionally get used
- Example inductor app.: shunt peaking
 - · Can boost bandwidth by up to 85%!
 - Q not that important (L in series with R)
 - · But frequency response may not be flat

EECS240 Lecture 2 35

Capacitor Q

· Current density drops as you go farther from contact edge...

EECS240 33 Lecture 2

Spiral Inductors

- Used widely in RF circuits for small L (~1-10nH).
- Use top metal for Q and high self resonance frequencies.
 - · Very good matching and accuracy if you model them right

EECS240 Lecture 2