

Text Similarity

Spelling Similarity: Edit Distance

Spelling Similarity

- Typos:
 - Brittany Spears -> Britney Spears
 - Catherine Hepburn -> Katharine Hepburn
 - Reciept -> receipt
- Variants in spelling:
 - Theater –> theatre

Who Is This?

معمر القذافي

Muammar (al-)Gaddafi, or Moamar Khadafi, or ...

Quiz

How many different transliterations can there be?

m u o a m mm a e r el al El Al ø

Q G Gh K Kh
a e u
d dh ddh dhdh th
zz
a
f ff
i y

A Lot!

m u o a m mm a e r el al El Al ø

Q G Gh K Kh
a e u
d dh ddh dhdh th
zz
a
f ff
i y

8

x 5

x 360

₌ | 14,400

Edit Operations

- behaviour behavior (insertion/deletion) ("al")
- string spring (substitution) ("k"–"q")
- sleep slept (multiple edits)

Levenshtein Method

- Based on dynamic programming
- Insertions, deletions, and substitutions usually all have a cost of 1.

		S	t	r	е	n	g	t	h
	0	~	2	3	4	5	6	7	8
t	1								
r	2								
е	3								
n	4								
d	5								

Recurrence Relation

Definitions

- $s_1(i)$ i^{th} character in string s_1
- $s_2(j)$ j^{th} character in string s_2
- D(i,j) edit distance
 between a prefix of s₁ of
 length i and a prefix of s₂ of
 length j
- t(i,j) cost of aligning the ith character in string s₁ with the jth character in string s₂

Recursive dependencies

```
D(i,0)=i
D(0,j)=j
D(i,j)=min[
D(i-1,j)+1
D(1,j-1)+1
D(i-1,j-1)+t(i,j)
]
```

Simple edit distance:

```
t(i,j)=0 iff s_1(i)=s_2(j)

t(i,j)=1, otherwise
```


		s¦	t	r	е	n	g	t	h
	0	1	2	3	4	5	6	7	8
_t	1	_1							
r	2								
е	3								
n	4								
d	5								

		S	t¦	r	е	n	g	t	h
	0	1	2	3	4	5	6	7	8
_t	1	1							
r	2								
е	3								
n	4								
d	5								

		S	t	rţ	е	n	g	t	h
	0	τ-	2	3	4	5	6	7	8
t	1	τ-	1	2	3	4	5	6	7
_c	2	2	2						
е	3								
n	4								
d	5								

		S	t	rţ	е	n	g	t	h
	0	τ-	2	3	4	5	6	7	8
t	1	τ-	1	2	3	4	5	6	7
_c	2	2	_ <u>2</u> →						
е	3								
n	4								
d	5								

		S	t	r	е	n	g	t	h
	0	τ-	2	3	4	5	6	7	8
t	1	τ-	1	2	3	4	5	6	7
r	2	2	2	1	2	3	4	5	6
е	3	3	3	2	1	2	3	4	5
n	4	4	4	3	2	1	2	3	4
d	5	5	5	4	3	2	2	3	4

Edit Transcript

		S	t	r	е	n	g	t	h
	0	τ-	2	3	4	5	6	7	8
t	1	τ-	1	2	თ	4	5	6	7
r	2	2	2	1	2	3	4	5	6
е	3	თ	3	2	τ-	2	3	4	5
n	4	4	4	3	2	1	2	3	4
d	5	5	5	4	3	2	2	3	4

Other Costs

- Damerau modification
 - Swaps of two adjacent characters also have a cost of 1
 - E.g., Lev("cats","cast") = 2,
 Dam("cats","cast") = 1

Quiz

- Some distance functions can be more specialized.
- Why do you think that the edit distances for these pairs are as follows?
 - Dist ("sit clown", "sit down") = 1
 - Dist ("qeather", "weather") = 1, but Dist("leather", "weather") = 2

Quiz Answers

- Dist("sit down","sit clown") is lower in this example because we want to model the type of errors common with optical character recognition (OCR)
- Dist("qeather","weather") < Dist("leather","weather") because we want to model spelling errors introduced by "fat fingers" (clicking on an adjacent key on the keyboard)

Quiz: Guess the Language

Quiz Answer

This is a genetic sequence (nucleotides AGCT)

>U03518 Aspergillus awamori internal transcribed spacer 1 (ITS1)

Other Uses of Edit Distance

- In biology, similar methods are used for aligning non-textual sequences
 - Nucleotide sequences, e.g., GTTCGTGATGGAGCG, where A=adenine, C=cytosine, G=guanine, T=thymine, U=uracil, "-"=gap of any length, N=either one of ACGTU, etc.
 - Amino acid sequences, e.g., FMELSEDGIEMAGSTGVI, where A=alanine, C=cystine, D=aspartate, E=glutamate, F=phenylalanine, Q=glutamine, Z=either glutamate or glutamine, X="any", etc. The costs of alignment are determined empirically and reflect evolutionary divergence between protein sequences. For example, aligning V (valine) and I (isoleucine) is lower-cost than aligning V and H (histidine).

Valine	Isoleucine	Histidine
N. W.		

External URLs

- Levenshtein demo
 - http://www.let.rug.nl/~kleiweg/lev/
- Biological sequence alignment
 - http://www.bioinformatics.org/sms2/pairwise_align_dna.html
 - http://www.sequence-alignment.com/sequence-alignmentsoftware.html
 - http://www.ebi.ac.uk/Tools/msa/clustalw2/
 - http://www.animalgenome.org/bioinfo/resources/manuals/ seqformats

NACLO Problem

- "Nok-Nok", NACLO 2009 problem by Eugene Fink:
 - http://www.naclo.cs.cmu.edu/problems2009/N2009 B.pdf

Solution to the NACLO Problem

- "Nok-Nok"
 - http://www.naclo.cs.cmu.edu/problems2009/N2009-BS.pdf

NACLO Problem

- "The Lost Tram", NACLO 2007 problem by Boris Iomdin:
 - http://www.naclo.cs.cmu.edu/problems2007/N2007-F.pdf

Solution to the NACLO problem

- "The Lost Tram"
 - http://www.naclo.cs.cmu.edu/problems2007/N2007 FS.pdf

