CSE 397 / EM 397 - Stabilized and Variational Multiscale Methods in CFD

Homework #2

Thomas J.R. Hughes, Frimpong A. Baidoo, and Geonyeong Lee,

Oden Institute for Computational Engineering and Sciences, University of Texas at Austin

Spring 2024

Exercise 2.1 (25 points)

Assume that Pe $\gg 1$. Show that $||u||_2 \sim L^{1/2} \text{Pe}^{3/2} (H^2\text{-norm})$ where u is the solution of the advection diffusion equation, assuming f = 0, u(0) = 0, and u(L) = 1.

Exercise 2.2 (25 points)

Assume Pe = 500, u(0) = 0, u(L) = 1, and f = 0. Plot the L_2 -norms of the error ||e||, the H^1 semi-norms $|e|_1$, and the H^1 -norms $||e||_1$ versus the number of elements $N_{el} = 1, 2, 5, 10, 10^2, 10^3$ for SUPG and Galerkin with linear finite elements. Note that $|||e||| \approx \beta N_{el}^{-\gamma}$. Determine γ for each discernible branch, comment on its value, and interpret the difference of branches.

Exercise 2.3 (25 points) Some simple interpolation estimates in the "max norm"

Consider piecewise linear finite elements. Given $u \in C^2(]0, L[)$, obtain a bound for the interpolation error $\eta = \tilde{u}^h - u$ and its derivative $\eta_{,x}$.

Exercise 2.4 (25 points) Some simple inverse estimates

Show that

$$\left\| w_{,x}^{h} \right\|_{\Omega^{e}} \le C_{inv} h^{-1} \left\| w^{h} \right\|_{\Omega^{e}}$$

for the linear element (k = 1) with two nodes and for the quadratic element k = 2 with three nodes, where we assume equally spaced nodes. Determine the smallest C_{inv} in each case.

Furthermore, show that

$$\left\|w_{,xx}^{h}\right\|_{\Omega^{e}} \leq C_{inv}h^{-1}\left\|w_{,x}^{h}\right\|_{\Omega^{e}}$$
 and $\left\|w_{,xx}^{h}\right\|_{\Omega^{e}} \leq C_{inv}h^{-2}\left\|w^{h}\right\|_{\Omega^{e}}$

for the quadratic element with three nodes, and determine the smallest C_{inv} .

^{*}hughes@oden.utexas.edu

[†]fabaidoo@utexas.edu

[‡]geon@utexas.edu