

SEMITRANSTM4

IGBT Modules

SKM 500GA123D SKM 500GA123DS

Features

- MOS input (voltage controlled)
- N channel, homgeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- . Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

Typical Applications

• Switching (not for linear use)

Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise	_c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V _{CES}		1200	V					
I _C	T _c = 25 (80) °C	500 (420)	Α					
I _{CRM}	t _p = 1 ms	800	Α					
V_{GES}	ľ	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V_{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _c = 25 (80) °C	500 (350)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	800	Α					
I_{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	3600	Α					

Characteristics		T _c = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 16 \text{ mA}$	4,5	5,5	6,5	V			
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{i} = 25 (125) ^{\circ}C$		0,1	0,3	mA			
V _{CE(TO)}	T _i = 25 (125) °C		1,4 (1,6)	1,6 (1,8)	V			
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		2,75 (3,75)	3,5 (4,75)	mΩ			
V _{CE(sat)}	I _{Cnom} = 400 A, V _{GE} = 15 V, chip level		2,5 (3,1)	3 (3,7)	V			
C _{ies}	under following conditions		26	40	nF			
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		4	5,2	nF			
C _{res}			2	2,6	nF			
L _{CE}				20	nH			
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,18 (0,22)		mΩ			
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 400 A		250	600	ns			
t _r	$R_{Gon} = R_{Goff} = 3.3 \Omega, T_j = 125 °C$		170	340	ns			
t _{d(off)}	V _{GE} = ± 15 V		900	1100	ns			
t _f			100	125	ns			
E _{on} (E _{off})			45 (53)		mJ			
Inverse diode								
$V_F = V_{EC}$	$I_{Fnom} = 400 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125)$ $^{\circ}\text{C}$		2 (1,8)	2,5	V			
V _(TO)	T _i = 125 () °C			1,2	V			
r _T	T _i = 125 () °C		1,5	3	mΩ			
I _{RRM}	I _{Fnom} = 400 A; T _j = 25 (125) °C		90 (160)		Α			
Q_{rr}	di/dt = 2000 A/µs		15 (50)		μC			
E _{rr}	V _{GE} = V				mJ			
Thermal characteristics								
R _{th(j-c)}	per IGBT			0,041	K/W			
R _{th(j-c)D}	per Inverse Diode			0,09	K/W			
R _{th(c-s)}	per module			0,038	K/W			
	Mechanical data							
M_s	to heatsink M6	3		5	Nm			
M _t	to terminals M6, M4				Nm			
w				330	g			

SKM 500GA123D

SKM 500GA123D

SKM 500GA123D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com