VERMES MIKLÓS Fizikaverseny 2017. február 27. II. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fízika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

XI. osztály

I. feladat

Egy *m* tömegű kis testet *l* hosszúságú nyújthatatlan fonálra függesztünk. Az így kapott matematikai inga lengéseinek periódusa 1 *s*. Az inga felfüggesztési pontja mozog. Számítsuk ki a lengések periódusát, ha a felfüggesztési pont:

a) v sebességgel egyenletesen mozog lefelé,	1 p
b) $a = g/2$ gyorsulással mozog felfelé,	2 p
c) $a = g/2$ gyorsulással mozog lefelé,	2 p
d) $a = g/2$ gyorsulással mozog, és a gyorsulás vektora $\beta = 120$ fokos szöget zár be a gravitációs	
gyorsulás vektorával,	3 p
e) $a = g$ gyorsulással mozog lefelé. Értelmezzük a kapott eredményt!	2 p

II. feladat

Két, egyenként 1 kg tömegű kis test súrlódás nélkül mozoghat egy vízszintes asztallapon. A kezdetben C, ill. D helyzetben nyugalomban levő testeket egy k = 200 N/m rugóállandójú nyújtatlan rugó köti össze ($\acute{a}bra$).

Az 1. testet a C helyzetben rögzítve a rugót 2 cm-rel megnyújtjuk. Ezután a 2. testet elengedjük.

a) Mennyi idő múlva és a D ponttól mekkora távolságra áll meg először az elengedett test?	2 p
b) Ennek a megállásnak a pillanatában az 1. testet is elengedjük.	
Ezt követően mennyi idő múlva, és a C, ill. a D ponttól mekkora távolságra állnak meg ismét a	
testek?	3 p
c) Ennek a második megállásnak a pillanatában az 1. testet meglökjük a 2. test felé 0,2 <i>m</i> /s	
sebességgel. Mekkora sebességgel mozog ezután a rendszer tömegközéppontja?	2 p
d) Mekkora lesz a testek maximális gyorsulása a tömegközépponthoz képest,	
ill. az asztallaphoz képest?	3 p
	3 p

III. feladat

Egy kötél egy méternyi darabjának tömege 25 *g*. Ezt a kötelet megfeszítve egy hullámforrás segítségével transzverzális hullámokat keltünk benne.

A keltett hullámok hullámegyenlete a következő: $y = 0.02\sin(628t - 31.4x)(m)$.

a) Számítsuk ki a hullámban tovaterjedő rezgés amplitúdójának és a hullámhossznak az arányát!	1,5 p
b) A rezgő pontok maximális sebességének és a hullám tovaterjedési sebességének arányát.	1,5 p
c) A hullámforrástól $x = 1$ m távolságra található anyagi pont rezgési sebességét a $t = 0.055$ s	
időpillanatban.	2 p
d) A kötelet feszítő erőt.	1,5 p
e) Ha tudjuk, hogy a kötél egységnyi hosszúságára jutó energia középértéke 2 J/m (lineáris	
energiasűrűség),	
számítsuk ki a kötél keresztmetszetén egységnyi idő alatt továbbított energia értékét (az	
energiaátadás sebességét)!	2 p
f) Ugyanazt a hullámforrást használva a hullámhossz megkétszerezéséhez mekkora	
erővel kell feszítenünk a kötelet	1,5p