Toronto Fire Services Incident Data: Revisited By Geoffrey Clark, for Dr. Ceni Babaoglu October 2nd, 2018

Methodology: Compare model trained with ROSE data vs. model trained with randomly sampled data. Both datasets created by sampling 60% of entire dataset. Classifier used was logistic regression with below formula and threshold of 0.5.

```
\label{logistic_bal} $$\operatorname{model_logistic\_bal} <- \operatorname{glm}(\operatorname{CRITICAL} \sim ., \operatorname{data=I\_s\_ROSE}, \operatorname{family=binomial}(\operatorname{link="logit"})) $$\operatorname{model_logistic\_imb} <- \operatorname{glm}(\operatorname{CRITICAL} \sim ., \operatorname{data=I\_s[full\_idx\$train,]}, \operatorname{family=binomial}(\operatorname{link="logit"}))$$
```

	Original Data (%)			ROSE Data (%)				
Accuracy	97.4	97.4			91.8			
False-Negative Rate	56.9			19.1				
Precision	89.4	89.4			31.3			
Recall	43.0			80.8				
F1-Score	58.1	58.1			45.2			
Confusion Matrix		0	1		0	1		
	0 126544 3131		3131	0	117092	1051		
	1 280 2369			1	9730	4448		

October 9th

Support Vector Machines

linear kernal, cost = 1, scale=T

```
model_svm_imb <- svm(formula = CRITICAL ~ ALARM_TO_FD + RESPONSE_TYPE + EST_KM + INITIAL_UNIT_PERSONNEL
+ INCIDENT_DAY + INCIDENT_MONTH + INITIAL_CALL_HOUR + INITIAL_CALL_MIN, data = I_s[full_idx$train, ],
kernel = "linear", cost = 1)</pre>
```

model_svm_bal <- svm(formula = CRITICAL ~ ALARM_TO_FD + RESPONSE_TYPE + EST_KM + INITIAL_UNIT_PERSONNEL
+ INCIDENT_DAY + INCIDENT_MONTH + INITIAL_CALL_HOUR + INITIAL_CALL_MIN, data = I_s_ROSE, kernel =
"linear", cost = 1)</pre>

	Original Data (%)			ROSE Data (%)			
Accuracy	97.2			85.6			
False-Negative Rate	61.6			26.0			
Precision	88.9			18.7	7		
Recall	38.3			73.9			
F1-Score	53.5			29.9			
Confusion Matrix		truth			tro	uth	
	predict	0	1	predict	0	1	
	0 126552 3391		0	109239	1431		
	1 261 2108		1	17574	4068		

October 10th

Support Vector Machines

radial kernal, cost = 1, gamma = 1, scale=T

model_svm_imb_radial11 <- svm(formula = CRITICAL ~ ALARM_TO_FD + RESPONSE_TYPE + EST_KM +
INITIAL_UNIT_PERSONNEL + INCIDENT_DAY + INCIDENT_MONTH + INITIAL_CALL_HOUR + INITIAL_CALL_MIN, data =
I_s[full_idx\$train,], kernel = "radial", cost = 1, gamma = 1)</pre>

	Original Data (%)			ROSE Dat	ROSE Data (%)		
Accuracy	97.0						
False-Negative Rate	66.7						
Precision	87.7						
Recall	33.2						
F1-Score	48.2						
Confusion Matrix		truth			truth		
	predict	0 1		predict	0	1	
	0 126558 3669			0			
	1	255	1830	1			

October 11th

Support Vector Machines

radial kernal, cost = 1, gamma = 1, scale=T

model_svm_imb_radial11b <- svm(formula = CRITICAL ~ EVENT_TYPE_CD + ALARM_TO_FD + RESPONSE_TYPE +
EST_KM + INITIAL_UNIT_PERSONNEL + INCIDENT_DAY + INCIDENT_MONTH + INITIAL_CALL_HOUR + INITIAL_CALL_MIN,
data = I_s[full_idx\$train,], kernel = "radial", cost = 1, gamma = 1)</pre>

	Original Data (%)			ROSE Data (%)		
Accuracy	96.8					
False-Negative Rate	71.1					
Precision	88.6					
Recall	28.8					
F1-Score	43.5					
Confusion Matrix		truth			trı	ıth
	predict	0	1	predict	0	1
	0	0 126609 3913		0		
	1 204 1586			1		

```
<RespondingUnits>
  <INCIDENT NUMBER>F11000010</INCIDENT NUMBER>
  <CAD UNIT ID>P342</CAD UNIT ID>
  <DISPATCH TIME>2011-01-01 00:04:13/DISPATCH TIME>
  <ENROUTE TIME>2011-01-01 00:05:45/ENROUTE TIME>
  <ARRIVE TIME>2011-01-01 00:10:02</ARRIVE TIME>
  <CLEAR TIME>2011-01-01 00:31:19</CLEAR TIME>
</RespondingUnits>
<RespondingUnits>
  <INCIDENT NUMBER>F11000011</incident NUMBER>
  <CAD UNIT ID>A131</CAD UNIT ID>
  <DISPATCH TIME>2011-01-01 00:04:46/DISPATCH TIME>
  <ENROUTE TIME>2011-01-01 00:07:30
  <ARRIVE TIME>2011-01-01 00:09:02</ARRIVE TIME>
  <CLEAR TIME>2011-01-01 00:15:14</CLEAR TIME>
</RespondingUnits>
> str(I s)
'data.frame': 720370 obs. of 11 variables:
                    : Factor w/ 131 levels "CBRN1", "CBRN2",...: 18 18 18 18 18 18 18 18 18 1...
$ EVENT TYPE CD
                       : Factor w/ 12 levels "1","2","3","4",..: 1 1 1 1 5 5 1 1 5 5 ...
: Factor w/ 69 levels "1","2","3","11",..: 14 14 31 14 10 14 15 15 15 15 ...
: num 3 3 3 3 4 5 2 1 3 1 ...
$ ALARM TO FD
$ RESPONSE TYPE
$ EST KM
$ INITIAL UNIT PERSONNEL: int 3 4 3 4 4 3 4 4 4 4 ...
                   : Factor w/ 7 levels "Sunday", "Monday", ..: 1 3 1 3 6 5 2 3 4 4 ...
$ INCIDENT DAY
                         : Factor w/ 11 levels "January", "February", ..: 10 6 2 4 10 4 NA 5 9 6 ...
$ INCIDENT MONTH
$ INITIAL_CALL_HOUR : int 20 13 15 15 13 9 15 14 17 14 ...
$ INITIAL_CALL_MIN : int 33 34 56 45 36 56 0 59 4 8 ...
                       : Factor w/ 2 levels "0","1": 2 2 2 1 2 2 1 1 1 2 ...
: Factor w/ 12 levels "Alarm","CC","CM",...: 1 1 1 1 1 1 1 1 1 1 ...
$ CRITICAL
$ EVENT GROUP
> str(I s ROSE)
'data.frame': 396801 obs. of 10 variables:
                    : Factor w/ 131 levels "CBRN1", "CBRN2",...: 18 76 77 112 14 8 74 70 8 74 ...
$ EVENT TYPE CD
                       : Factor w/ 12 levels "1","2","3","4",..: 13 3 1 5 1 3 3 1 3 ...
: Factor w/ 69 levels "1","2","3","11",..: 14 48 48 40 10 21 48 48 34 48 ...
: num 1.38 2.13 3.85 4.59 4.44 ...
$ ALARM TO FD
$ RESPONSE TYPE
$ EST KM
$ INITIAL UNIT PERSONNEL: num 3.95 4.21 4.05 4.13 3.81 ...
                 : Factor w/ 7 levels "Sunday", "Monday", ...: 4 3 1 3 1 6 6 2 2 5 ...
$ INCIDENT DAY
                        : Factor w/ 11 levels "January", "February", ...: 9 2 2 11 11 9 6 11 3 9 ...
$ INCIDENT MONTH
$ INITIAL CALL HOUR : num 5.99 5.59 15.96 23.77 14.48 ...
$ INITIAL_CALL_MIN : num 32.6 29.5 45.3 49.4 56.5 ...
$ CRITICAL
                        : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
```

October 16th

Support Vector Machines

linear kernal, cost = 1, gamma = 1, scale=T

svm_imb_linear_c1 <- svm(formula = CRITICAL ~ ALARM_TO_FD + INITIAL_UNIT_PERSONNEL + INCIDENT_DAY + INCIDENT_MONTH + INITIAL_CALL_HOUR + INITIAL_CALL_MIN, data = I_s[full_idx\$train,], kernel = "linear",
cost = 1)</pre>

	Original Data (%)			ROSE Data (%)		
Accuracy	95.8					
False-Negative Rate	1					
Precision	NaN					
Recall	0					
F1-Score	0					
Confusion Matrix		truth			tr	uth
	predict	0 1		predict	0	1
	0 126813 5499		0			
	1 0 0			1		

October 16th

Logistic Regression

- > tfsi_formula <- "CRITICAL ~ ALARM_TO_FD + INITIAL_UNIT_PERSONNEL + INCIDENT_DAY + INCIDENT_MONTH +
 INITIAL_CALL_HOUR + INITIAL_CALL_MIN"
 > model_logistic_imb <- glm(formula = tfsi_formula, data = I_s[full_idx\$train,],
 family=binomial(link="logit"))</pre>
- > ypred <- predict(model_logistic_imb, I_s[full_idx\$cv,], type="response")</pre>
- > fitted.results <- ifelse(ypred > 0.11,1,0) # Threshold 0.11
- > table(predict=fitted.results, truth=I_s[full_idx\$cv, 'CRITICAL'])

Threshold: 0.11

	Original Data (%)			ROSE Data (%)			
Accuracy	80.8			4.2			
False-Negative Rate	35.6			0.0			
Precision	13.1			4.1	4.1		
Recall	64.4			99.9			
F1-Score	21.8			7.9			
Confusion Matrix		truth			tr	uth	
	predict	0	1	predict	0	1	
	0 103382 1958		0	147	1		
	1	23442	3542	1	126677	5499	

Threshold: 0.5

Threshold, 0.5								
	Original I	Original Data (%)			ROSE Data (%)			
Accuracy	95.8	95.8			62.7			
False-Negative Rate	1	1			13.8			
Precision	NaN			8.9				
Recall	0	0			86.1			
F1-Score	0	0						
Confusion Matrix		truth				truth		
	predict	t 0 1		predic	t 0	1		
	0	0 126824 5500		0	78340	760		
	1	0	0	1	48484	4740		