Caracterización de cuerpos finitos

Kevin Velez

Universidad del Valle

Febrero 7, 2023

Caracterización de cuerpos finitos

Ejemplos conocidos de cuerpos finitos

$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$$

Es un cuerpo finito con p elementos para todo p primo.

Lema 1

Sea F un cuerpo finito conteniendo un subcuerpo K con q elementos. Entonces F tiene q^m elementos, donde m = [F : K]

$$\begin{array}{c}
F \quad q^m \\
 \uparrow \\
 m \\
 K \quad q
\end{array}$$

Sea F un cuerpo finito, entonces F tiene p^n elementos, donde el primo p es la característica de F y n es el grado de F sobre su cuerpo primo.

Construcción de nuevos cuerpos finitos

Si $f \in \mathbb{F}_p[x]$ es un polinomio irreducible de grado n, entonces $\mathbb{F}_p[x]/(f)$ es un cuerpo finito de p^n elementos.

¿Siempre es posible encontrar un polinomio irreducible en \mathbb{F}_p de grado n para todo entero positivo n?

Lema 3

Si F es un cuerpo finito con q elementos, entonces cada $a \in F$ satisface $a^q = a$.

Lema 3

Si F es un cuerpo finito con q elementos, entonces cada $a \in F$ satisface $a^q = a.$

Lema 4

Si F es un cuerpo finito con q elementos, y K es un subcuerpo de F, entonces el polinomio $x^q - x \in K[x]$ se factoriza en F[x] como

$$x^q - x = \prod_{a \in F} (x - a)$$

y F es un cuerpo de descomposición de $x^q - x$ sobre K.

Teorema 5 (Existencia y unicidad de cuerpos finitos)

Para cada primo p y cada entero positivo n, existe un cuerpo finito con p^n elementos. Cualquier cuerpo con $q = p^n$ elementos es isomorfo al cuerpo de descomposición de $x^q - x$ sobre \mathbb{F}_p .

Teorema 5 (Existencia y unicidad de cuerpos finitos)

Para cada primo p y cada entero positivo n, existe un cuerpo finito con p^n elementos. Cualquier cuerpo con $q = p^n$ elementos es isomorfo al cuerpo de descomposición de $x^q - x$ sobre \mathbb{F}_p .

Cuerpos de Galois

Ahora, podemos hablar de cuerpos finitos o cuerpos de Galois de orden q, denotados \mathbb{F}_q , donde $q=p^n$ con p primo.

Ejemplos

• Consideremos $f(x) = x^2 + x + 2 \in \mathbb{F}_3[x]$, el cual es un polinomio irreducible de grado 2 sobre \mathbb{F}_3 . Sea θ una raíz de f(x) en algún cuerpo. Construimos entonces el cuerpo $\mathbb{F}_3(\theta) = \{a + b\theta : a, b \in \mathbb{F}_3\}$ un cuerpo con 9 elementos, y entonces $\mathbb{F}_3(\theta) = \mathbb{F}_9$.

Ejemplos

- Consideremos $f(x) = x^2 + x + 2 \in \mathbb{F}_3[x]$, el cual es un polinomio irreducible de grado 2 sobre \mathbb{F}_3 . Sea θ una raíz de f(x) en algún cuerpo. Construimos entonces el cuerpo $\mathbb{F}_3(\theta) = \{a + b\theta : a, b \in \mathbb{F}_3\}$ un cuerpo con 9 elementos, y entonces $\mathbb{F}_3(\theta) = \mathbb{F}_9$.
- Del mismo modo, consideremos $f(x) = x^2 + x + 1 \in \mathbb{F}_2[X]$ irreducible, y θ una raíz, entonces $\mathbb{F}_2(\theta) = \mathbb{F}_4$.

Teorema 6 (Criterio de subcuerpos)

Sea \mathbb{F}_q un cuerpo finito con $q=p^n$ elementos. Entonces cada subcuerpo de \mathbb{F}_q tiene orden p^m donde m es un divisor positivo de n. Recíprocamente, si m es un divisor positivo de n, entonces hay exactamente un subcuerpo de \mathbb{F}_q con p^m elementos.

Teorema 6 (Criterio de subcuerpos)

Sea \mathbb{F}_q un cuerpo finito con $q = p^n$ elementos. Entonces cada subcuerpo de \mathbb{F}_q tiene orden p^m donde m es un divisor positivo de n. Recíprocamente, si m es un divisor positivo de n, entonces hay exactamente un subcuerpo de \mathbb{F}_q con p^m elementos.

Observación

El único subcuerpo de \mathbb{F}_{p^n} de orden p^m donde m es un divisor positivo de n, consiste de las raíces del polinomio $x^{p^m} - x \in \mathbb{F}_p[x]$ en \mathbb{F}_{p^n} .

Febrero 7, 2023

Ejemplo 7

Los subcuerpos del cuerpo finito $\mathbb{F}_{2^{30}}$ pueden ser determinados listando todos los posibles divisores positivos de 30. La relación de contenencia entre estos subcuerpos es equivalente a la relación de divisibilidad entre los divisores de 30.

para cada cuerpo finito \mathbb{F}_q , el grupo multiplicativo \mathbb{F}_q^* de elementos no cero de \mathbb{F}_q es cíclico.

para cada cuerpo finito \mathbb{F}_q , el grupo multiplicativo \mathbb{F}_q^* de elementos no cero de \mathbb{F}_q es cíclico.

Definición 9

Un generador del grupo cíclico \mathbb{F}_q^* es llamado un elemento primitivo de \mathbb{F}_q .

11/22

para cada cuerpo finito \mathbb{F}_q , el grupo multiplicativo \mathbb{F}_q^* de elementos no cero de \mathbb{F}_q es cíclico.

Definición 9

Un generador del grupo cíclico \mathbb{F}_q^* es llamado un elemento primitivo de \mathbb{F}_q .

 $\mathbb{F}_q^{\ *}$ tiene $\phi(q-1)$ elementos primitivos.

Ejemplo

• \mathbb{F}_5 tiene $\phi(4)=2$ elementos primitivos, estos son 2 y 3.

Ejemplo

- \mathbb{F}_5 tiene $\phi(4) = 2$ elementos primitivos, estos son 2 y 3.
- \mathbb{F}_4 tiene $\phi(3) = 2$ elementos primitivos. Expresando \mathbb{F}_4 como $\mathbb{F}_2(\theta) = \{0, 1, \theta, \theta + 1\}$, donde $\theta^2 + \theta + 1 = 0$, encontramos que θ y $\theta + 1$ son los elementos primitivos de \mathbb{F}_4 .

Sea \mathbb{F}_q un cuerpo finito y \mathbb{F}_r una extensión finita. Entonces \mathbb{F}_r es una extensión algebraica simple de \mathbb{F}_q .

$$\mathbb{F}_r = \mathbb{F}_q(\zeta)$$

$$\uparrow$$

$$\mathbb{F}_q$$

Sea \mathbb{F}_q un cuerpo finito y \mathbb{F}_r una extensión finita. Entonces \mathbb{F}_r es una extensión algebraica simple de \mathbb{F}_q .

$$\mathbb{F}_r = \mathbb{F}_q(\zeta)$$

$$\downarrow$$

$$\mathbb{F}_q$$

Corolario 11

Para cada cuerpo finito \mathbb{F}_q y cada entero positivo n, existe un polinomio irreducible $\mathbb{F}_q[x]$ de grado n.

Ejemplo

Consideremos el cuerpo finito \mathbb{F}_9 , lo podemos expresar en la forma $\mathbb{F}_3(\beta)$, donde β es una raíz del polinomio x^2+1 , irreducible sobre \mathbb{F}_3 ,. Sin embargo, como $\beta^4=1$, β no es un generador de \mathbb{F}_9^* . Por lo tanto, β no es un elemento primitivo de \mathbb{F}_9 .

Raíces de polinomios irredubles sobre cuerpos finitos

Lema 12

Sea $f \in \mathbb{F}_q[x]$ un polinomio irreducible sobre un cuerpo finito \mathbb{F}_q y sea α una raíz de f es una extensión de cuerpo de \mathbb{F}_q . Entonces para un polinomio $h \in \mathbb{F}_q[x]$ tenemos que $h(\alpha) = 0$ si y solo si f divide a h.

Raíces de polinomios irredubles sobre cuerpos finitos

Lema 12

Sea $f \in \mathbb{F}_q[x]$ un polinomio irreducible sobre un cuerpo finito \mathbb{F}_q y sea α una raíz de f es una extensión de cuerpo de \mathbb{F}_q . Entonces para un polinomio $h \in \mathbb{F}_q[x]$ tenemos que $h(\alpha) = 0$ si y solo si f divide a h.

Lema 13

Sea $f \in \mathbb{F}_q[x]$ un polinomio irreducible sobre \mathbb{F}_q de grado m. Entonces f(x) divide a $x^{q^m} - x$ si y solo si m divide a n.

Si f es un polinomio irreducible en $\mathbb{F}_q[x]$ de grado m, entonces f tiene una raíz α en \mathbb{F}_{q^m} . Más aún, todas las raíces de f son simples y están dadas por los m distintos elementos $\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{m-1}}$ de \mathbb{F}_{q^m} .

Si f es un polinomio irreducible en $\mathbb{F}_q[x]$ de grado m, entonces f tiene una raíz α en \mathbb{F}_{q^m} . Más aún, todas las raíces de f son simples y están dadas por los m distintos elementos $\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{m-1}}$ de \mathbb{F}_{q^m} .

Corolario 15

Sea f un polinomio irreducible en $\mathbb{F}_q[x]$ de grado m. Entonces el cuerpo de descomposición de f sobre \mathbb{F}_q es \mathbb{F}_{q^m} .

Si f es un polinomio irreducible en $\mathbb{F}_q[x]$ de grado m, entonces f tiene una raíz α en \mathbb{F}_{q^m} . Más aún, todas las raíces de f son simples y están dadas por los m distintos elementos $\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{m-1}}$ de \mathbb{F}_{q^m} .

Corolario 15

Sea f un polinomio irreducible en $\mathbb{F}_q[x]$ de grado m. Entonces el cuerpo de descomposición de f sobre \mathbb{F}_q es \mathbb{F}_{q^m} .

Corolario 16

Cualesquier dos polinomios irreducibles en $\mathbb{F}_q[x]$ del mismo grado tienen cuerpos de descomposición isomorfos.

Definición 17

Sea \mathbb{F}_{q^m} una extensión de \mathbb{F}_q y sea $\alpha \in \mathbb{F}_{q^m}$, entonces los elementos $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{m-1}}$ son llamados conjugados de α respecto a \mathbb{F}_q .

Definición 17

Sea \mathbb{F}_{q^m} una extensión de \mathbb{F}_q y sea $\alpha \in \mathbb{F}_{q^m}$, entonces los elementos $\alpha.\alpha^q,\alpha^{q^2},\ldots,\alpha^{q^{m-1}}$ son llamados conjugados de α respecto a \mathbb{F}_q .

Los conjugados de $\alpha \in \mathbb{F}_{q^m}$ con respecto a \mathbb{F}_q son distintos si y solo si el polinomio minimal de α en $\mathbb{F}_q[x]$ es de grado m. En otro caso, el grado d de este polinomio minimal es un divisor propio de m y los conjugados de α con respecto a \mathbb{F}_q son los elementos $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{d-1}}$. repetidos cada uno $\frac{m}{d}$ veces.

Los conjugados de $\alpha \in \mathbb{F}_q^*$ con respecto a cualquier subcuerpo de \mathbb{F}_q tienen el mismo orden en el grupo $\mathbb{F}_q^* = \langle \zeta \rangle$

Los conjugados de $\alpha \in \mathbb{F}_q^*$ con respecto a cualquier subcuerpo de \mathbb{F}_q tienen el mismo orden en el grupo $\mathbb{F}_q^* = \langle \zeta \rangle$

Corolario 19

Si α es un elemento primitivo de \mathbb{F}_q , entonces también lo son todos sus conjugados con respecto a cualquier subcuerpo de \mathbb{F}_q .

Ejemplo 20

Sea $\alpha \in \mathbb{F}_{16}$ una raíz de $f(x) = x^4 + x + 1 \in \mathbb{F}_2[x]$. Entonces los conjugados de α respecto a \mathbb{F}_2 son $\alpha, \alpha^2, \alpha^4 = \alpha + 1$ y $\alpha^8 = \alpha^2 + 1$. Siendo cada uno de ellos un elemento primitivo de \mathbb{F}_{16} .

Los conjugados de α respecto a \mathbb{F}_4 son α y $\alpha^4 = \alpha + 1$.

Los distintos automorfismos de \mathbb{F}_{q^m} sobre \mathbb{F}_q son exactamente los automorfismos $\sigma_0, \sigma_1, \dots, \sigma_{m-1}$ definidos por $\sigma_i(\alpha) = \alpha^{q^j}$ con $\alpha \in \mathbb{F}_{a^m}$ y $0 \le j \le m-1$. Estos automorfismos son reciben el nombre de Automorfismos de Frobenius

Con base en el teorema 21, resulta evidente que los conjugados de $\alpha \in \mathbb{F}_{q^m}$ con respecto a \mathbb{F}_q son obtenidos mediante la aplicación de todos los automorfismos de \mathbb{F}_{q^m} sobre \mathbb{F}_q al elemento α .

Los automorfismos de F_{q^m} sobre \mathbb{F}_q forman un grupo con la operación usual de composición. Por el teorema 21, este grupos es cíclico de orden m, generado por σ_1 .

Como $[\mathbb{F}_{q^m}:\mathbb{F}_q]=m$, entonces \mathbb{F}_{q^m} es de Galois sobre \mathbb{F}_q , entonces

$$\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q) = \langle \sigma_1 \rangle \cong \mathbb{Z}/m\mathbb{Z}$$

Referencias

David Steven Dummit and Richard M Foote.

Abstract algebra, volume 3. Wiley Hoboken, 2004.

Rudolf Lidl.

Finite fields.

Encyclopedia of Mathematics and its Applications, 20, 1983.

