Curs 3

Din cursul trecut

Programare logică – cazul logicii de ordinul I Logica clauzelor definite/Logica Horn – un fragment al logicii de ordinul I Singurele formule admise sunt clauze definite: \square formule atomice: $P(t_1, \ldots, t_n)$ \square $A_1 \wedge \ldots \wedge A_n \rightarrow B$, unde toate A_i, B sunt formule atomice. Majoritatea limbajelor de programare logice (de ex., Prolog) folosesc acest fragment. Problema programării logice: $T \models A_1 \land \ldots \land A_n$ ☐ T multime de clauze definite toate A_i sunt formule atomice

Cuprins

Substituții și unificare

2 Sistem de deducție pentru logica Horn

Substituții și unificare

Definiție

O subtituție σ este o funcție (parțială) de la variabile la termeni, adică

$$\sigma: V \to \mathit{Trm}_{\mathcal{L}}$$

Exemplu

În notația uzuală, $\sigma = \{x/a, y/g(w), z/b\}$.

- □ Substituțiile sunt o modalitate de a înlocui variabilele cu alți termeni.
- □ Substituțiile se aplică simultan pe toate variabilele.

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- ☐ Substituțiile se aplică simultan pe toate variabilele.

Exemplu

- \square substituția $\sigma = \{x/a, \ y/g(w), z/b\}$

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- ☐ Substituțiile se aplică simultan pe toate variabilele.

Exemplu

- \square substituția $\sigma = \{x/a, y/g(w), z/b\}$
- \square substituția $\phi = \{x/y, \ y/g(a)\}$
- $\Box \ \phi(f(x)) = f(y)$

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

Exemplu

$$\square \ t = P(u, v, x, y, z)$$

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

Exempli

- $\square \ t = P(u, v, x, y, z)$
- $\square \ \tau = \{x/f(y), \ y/f(a), \ z/u\}$
- $\square \mu = \{y/g(a), u/z, v/f(f(a))\}$

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

Exempli

```
\Box t = P(u, v, x, y, z)
\Box \tau = \{x/f(y), y/f(a), z/u\}
\Box \mu = \{y/g(a), u/z, v/f(f(a))\}
\Box (\tau; \mu)(t) = \mu(\tau(t)) = \mu(P(u, v, f(y), f(a), u)) = P(z, f(f(a)), f(g(a)), f(a), z)
```

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

Exempli

$$\Box t = P(u, v, x, y, z)
\Box \tau = \{x/f(y), y/f(a), z/u\}
\Box \mu = \{y/g(a), u/z, v/f(f(a))\}
\Box (\tau; \mu)(t) = \mu(\tau(t)) = \mu(P(u, v, f(y), f(a), u)) =
= P(z, f(f(a)), f(g(a)), f(a), z)
\Box (\mu; \tau)(t) = \tau(\mu(t)) = \tau(P(z, f(f(a)), x, g(a), z))$$

= P(u, f(f(a)), f(y), g(a), u)

Unificare

- Doi termeni t_1 și t_2 se unifică dacă există o substituție θ astfel încât $\theta(t_1) = \theta(t_2)$.
- \square În acest caz, θ se numesțe unificatorul termenilor t_1 și t_2 .
- ☐ În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.

Unificare

- Doi termeni t_1 și t_2 se unifică dacă există o substituție θ astfel încât $\theta(t_1) = \theta(t_2)$.
- \square În acest caz, θ se numesțe unificatorul termenilor t_1 și t_2 .
- ☐ În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.
- Un unificator ν pentru t_1 și t_2 este un cel mai general unificator (cgu,mgu) dacă pentru orice alt unificator ν' pentru t_1 și t_2 , există o substituție μ astfel încât

$$\nu' = \nu; \mu.$$

Exemplu

$$\Box t = x + (y \star y) = +(x, \star (y, y))$$

Exemplu

- $\Box t' = x + (y \star x) = +(x, \star (y, x))$
- $\square \ \nu = \{x/y, y/y\}$

 - $\nu(t) = y + (y * y)$ $\nu \text{ este cgu}$

Exemple

```
\Box t = x + (y * y) = +(x, *(y, y))

\Box t' = x + (y * x) = +(x, *(y, x))

\Box \nu = \{x/y, y/y\}

\Box \nu(t) = y + (y * y)

\Box \nu(t') = y + (y * y)

\Box \nu \text{ este cgu}

\Box \nu' = \{x/0, y/0\}
```

 $\nu'(t) = 0 + (0 \star 0)$ $\nu'(t') = 0 + (0 \star 0)$

Exemple

```
\Box t = x + (y \star y) = +(x, \star(y, y))
\Box t' = x + (y \star x) = +(x, \star(y, x))
\square \nu = \{x/y, y/y\}
      \nu(t) = y + (y \star y)
      \square \nu(t') = y + (y \star y)
      \square \nu este cgu
\nu' = \{x/0, y/0\}
      \nu'(t) = 0 + (0 \star 0)
      \nu'(t') = 0 + (0 \star 0)
      \nu' = \nu; \{y/0\}
```

Exempli

```
\Box t = x + (y \star y) = +(x, \star(y, y))
\Box t' = x + (y \star x) = +(x, \star (y, x))
\square \nu = \{x/y, y/y\}
     \nu(t) = y + (y \star y)
     \square \nu(t') = y + (y \star y)
     \square \nu este cgu
\nu' = \{x/0, y/0\}
     \nu'(t) = 0 + (0 \star 0)
     \nu'(t') = 0 + (0 \star 0)
     \nu' = \nu; \{y/0\}
      \square \nu' este unificator, dar nu este gcu
```

- Pentru o mulțime finită de termeni $\{t_1, \ldots, t_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.

- Pentru o mulțime finită de termeni $\{t_1, \ldots, t_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - Lista soluție: *S*
 - ☐ Lista de rezolvat: R

- Pentru o mulțime finită de termeni $\{t_1, \ldots, t_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - ☐ Lista soluție: *S*
 - ☐ Lista de rezolvat: R
- ☐ Iniţial:
 - Lista soluție: $S = \emptyset$
 - lacksquare Lista de rezolvat: $R = \{t_1 \stackrel{.}{=} t_2, \dots, t_{n-1} \stackrel{.}{=} t_n\}$

- □ Pentru o mulțime finită de termeni $\{t_1, \ldots, t_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - Lista soluție: *S*
 - ☐ Lista de rezolvat: R
- ☐ Iniţial:
 - \square Lista soluție: $S = \emptyset$
 - lacksquare Lista de rezolvat: $R = \{t_1 \stackrel{.}{=} t_2, \ldots, t_{n-1} \stackrel{.}{=} t_n\}$
- = este un simbol nou care ne ajută sa formăm perechi de termeni (ecuații).

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- □ DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.
- □ REZOLVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S. În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S dă cgu.

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S dă cgu.

Algoritmul este oprit cu concluzia inexistenței unui cgu dacă:

1 În R există o ecuație de forma

$$f(t_1,\ldots,t_n)\stackrel{\cdot}{=} g(t'_1,\ldots,t'_k)$$
 cu $f\neq g$.

2 În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat	
	S	R	
Inițial	Ø	$t_1 \stackrel{.}{=} t'_1, \ldots, t_n \stackrel{.}{=} t'_n$	
SCOATE	S	R', $t = t$	
	S	R'	
DESCOMPUNE	S	R' , $f(t_1,\ldots,t_n) = f(t'_1,\ldots,t'_n)$	
	5	R' , $t_1 \stackrel{.}{=} t'_1, \ldots t_n \stackrel{.}{=} t'_n$	
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t	
	x = t, $S[x/t]$	R'[x/t]	
Final	5	Ø	

S[x/t]: în toate ecuațiile din S, x este înlocuit cu t

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ au gcu?

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y),h(g(y)),y) = f(g(z),w,z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = g(z), h(g(y)) = w, y = z	

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y),h(g(y)),y) = f(g(z),w,z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), \ h(g(y)) \stackrel{\cdot}{=} w, \ y \stackrel{\cdot}{=} z$	REZOLVĂ

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \doteq g(z), h(g(y)) \doteq w, y \doteq z$	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \stackrel{\cdot}{=} h(g(z))$		

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, \ f(x, h(x), y) \stackrel{.}{=} f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
w = h(g(y)),	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \stackrel{.}{=} h(g(z))$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	Ø	
$w \doteq h(g(z))$		

 \square $\nu = \{y/z, x/g(z), w/h(g(z))\}$ este cgu.

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)\}$ au gcu?

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, \ f(x, h(y), y) \stackrel{.}{=} f(g(z), b, z)\}$ au gcu?

S	R	
Ø	$g(y) = x, \ f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(y) \stackrel{\cdot}{=} b, y \stackrel{\cdot}{=} z$	- EŞEC -

- \square h și b sunt simboluri de operații diferite!
- \square Nu există unificator pentru ecuațiile din U.

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, \ f(x, h(x), y) \stackrel{.}{=} f(y, w, z)\}$ au gcu?

Exempli

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, \ f(x, h(x), y) \stackrel{.}{=} f(y, w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y),h(g(y)),y)=f(y,w,z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \stackrel{.}{=} y$, variabila y apare în termenul g(y).
- \square Nu există unificator pentru ecuațiile din U.

Terminarea algoritmului

Propoziție

Algoritmul de unificare se termină.

Terminarea algoritmului

Propoziție

Algoritmul de unificare se termină.

Demonstrație

- Notăm cu
 - \square N_1 : numărul variabilelor care apar în R
 - \square N_2 : numărul aparițiilor simbolurilor care apar în R
- □ Este suficient să arătăm că perechea (N_1, N_2) descrește strict în ordine lexicografică la execuția unui pas al algoritmului:

dacă la execuția unui pas (N_1, N_2) se schimbă în (N'_1, N'_2) , atunci $(N_1, N_2) \ge_{lex} (N'_1, N'_2)$

Demonstrație (cont.)

Fiecare regulă a algoritmului modifică N_1 și N_2 astfel:

	N_1	N_2
SCOATE	<u> </u>	>
DESCOMPUNE	=	>
REZOLVĂ	>	

- \square N_1 : numărul variabilelor care apar în R
- \square N_2 : numărul aparițiilor simbolurilor care apar în R

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

□ SCOATE: evident

Lema 1

Multimea unificatorilor pentru reuniunea ecuatiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

- ☐ SCOATE: evident
 - DESCOMPUNE: Trebuie să arătăm că

$$\nu$$
 unificator pt. \Leftrightarrow ν unificator pt.

$$f(t_1,\ldots,t_n) \stackrel{\cdot}{=} f(t_1',\ldots,t_n')$$
 $t_i \stackrel{\cdot}{=} t_i', \text{ or. } i=1,\ldots,n.$

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

- □ SCOATE: evident
 - □ DESCOMPUNE: Trebuie să arătăm că

$$u$$
 unificator pt. \Leftrightarrow u unificator pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad t_i = t'_i, \text{ or. } i = 1, \ldots, n.$
 u unif. pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad \Leftrightarrow
u(f(t_1, \ldots, t_n)) =
u(f(t'_1, \ldots, t'_n)) \qquad \Leftrightarrow
f(
u(t_1), \ldots,
u(t_n)) =
f(
u(t'_1), \ldots,
u(t'_n)) \qquad \Leftrightarrow
u(t_i) =
u(t'_i), \text{ or. } i = 1, \ldots, n$
 $\Leftrightarrow
u$ unificator pt. $t_i = t'_i, \text{ or. } i = 1, \ldots, n$

<u>Dem</u>onstrație (cont.)

- □ REZOLVĂ:
 - \square Se observă că or. unificator ν pt. reuniunea ecuațiile din R și S, atât înainte cât și după aplicarea regulii REZOLVĂ, trebuie să satisfacă:

$$\nu(x)=\nu(t).$$

 \square Pt. or. unificator μ pt. x = t observăm că:

$$(x \leftarrow t); \mu = \mu$$

$$((x \leftarrow t); \mu)(x) = \mu(t) = \mu(x)$$

$$((x \leftarrow t); \mu)(y) = \mu(y), \text{ or. } y \neq x$$

Deci.

 μ este un unificator pt. ec. din R şi S înainte de REZOLVĂ

$$\rightleftharpoons$$

 μ este un unificator pt. ec. din R și S după REZOLVĂ

Lema 2

Variabilele care apar în partea stângă a ecuațiilor din S sunt distincte două câte două și nu mai apar în altă parte în S și R.

Lema 2

Variabilele care apar în partea stângă a ecuațiilor din S sunt distincte două câte două și nu mai apar în altă parte în S și R.

Demonstrație

Exercițiu!

- \square Pres. că algoritmul de unificare se termină cu $R = \emptyset$.
- \square Fie $x_i \stackrel{.}{=} t_i$, i = 1, ..., k, ecuațiile din S.
- Definim substituţia:

$$\nu(x_i) = t_i$$
, or. $i = 1, ..., k$.

- \square ν este corect definită (vezi Lema 2).
- □ Cum variabilele x_i nu apar în termenii t_i , deducem că $\nu(t_i) = t_i = \nu(x_i)$, or. i = 1, ..., k.
- \square Deci ν este unificator pentru U (vezi Lema 1).

Lema 3

 ν definit mai sus cf. algoritmului de unificare este cgu pentru U.

Lema 3

 ν definit mai sus cf. algoritmului de unificare este cgu pentru U.

Demonstrație

Exercițiu!

Sistem de deducție pentru logica Horn

Sistem de deducție backchain

Sistem de deducție pentru clauze Horn

Pentru o mulțime T de clauze Horn, avem:

Sistem de deducție backchain

Sistem de deducție pentru clauze Horn

Pentru o mulțime T de clauze Horn, avem:

□ Axiome: orice clauză din *T*

Sistem de deducție backchain

Sistem de deducție pentru clauze Horn

Pentru o mulțime T de clauze Horn, avem:

- □ Axiome: orice clauză din *T*
- □ Regula de deducție: regula backchain

$$\frac{\theta(p_1) \quad \theta(p_2) \quad \dots \quad \theta(p_n) \quad (p_1 \wedge p_2 \wedge \dots \wedge p_n \to q)}{\theta(q')}$$

unde $p_1 \wedge p_2 \wedge \ldots \wedge p_n \rightarrow q \in T$, iar θ este cgu pentru q' și q.

Sistem de deducție

Pentru o țintă q, trebuie să verificăm dacă q se poate unifica cu partea dreapta a unei clauze

$$p_1 \wedge \ldots \wedge p_n \rightarrow q$$
,

printr-un unificator θ . Dacă da, vom verifica $\theta(p_1), \ldots, \theta(p_n)$.

Exemplu

Pentru ţinta

putem folosi o clauză

$$daughter(X, Y) \rightarrow ancestor(Y, X)$$

cu unificatorul

$$\{Y/Q, X/ken\}$$

pentru a obține o nouă țintă

$$daughter(ken, Q)$$
.

Puncte de decizie în programarea logica

Având doar această regulă, care sunt punctele de decizie în căutare?

Puncte de decizie în programarea logica

Având doar această regulă, care sunt punctele de decizie în căutare?

- ☐ Ce clauză să alegem.
 - Pot fi mai multe clauze a căror parte dreaptă se potrivește cu o ţintă.
 - ☐ Aceasta este o alegere de tip SAU: este suficient ca oricare din variante să reușească.

Puncte de decizie în programarea logica

Având doar această regulă, care sunt punctele de decizie în căutare?
□ Ce clauză să alegem.
 Pot fi mai multe clauze a căror parte dreaptă se potrivește cu o țintă Aceasta este o alegere de tip SAU: este suficient ca oricare din variante să reușească.
□ Ordinea în care rezolvăm noile ținte.
 Aceasta este o alegere de tip \$1: trebuie arătate toate țintele noi. Ordinea în care le rezolvăm poate afecta găsirea unei derivări, depinzând de strategia de cautare folosită.

Strategia de căutare din Prolog

Strategia de căutare din Prolog este de tip depth-first,

- ☐ de sus în jos
 - pentru alegerile de tip SAU
 - alege clauzele în ordinea în care apar în program
- □ de la stânga la dreapta
 - pentru alegerile de tip \$1
 - □ alege noile ținte în ordinea în care apar în clauza aleasă

Proprietăți ale sistemului de inferență

Vești bune!

☐ Regula backchain conduce la un sistem de deducție complet:

Pentru o mulțime de clauze T și o țintă Q, dacă $T \models Q$, atunci există o derivare a lui Q folosind regula *backchain*.

Vești proaste!

☐ Strategia de căutare din Prolog este incompletă:

Poate eșua în a găsi o derivare, chiar și când există o derivare!

Sistemul de inferență backchain

Notăm $T \vdash_b Q$ dacă există o derivare a lui Q din T folosind sistemul de inferență *backchain*.

Teoremă

Sistemul de inferență backchain este corect și complet pentru formule atomice fără variabile Q.

$$T \models Q$$
 dacă și numai dacă $T \vdash_b Q$

Sistemul de inferență backchain este corect și complet și pentru formule atomice cu variabile Q.

$$T \models \theta(Q)$$
 dacă și numai dacă $T \vdash_b \theta(Q)$, pentru o substituție θ .

Corectitudine

Propoziție (Corectitudine)

Dacă $T \vdash_b Q$, atunci $T \models Q$.

Demonstrație [schiță] [*]

- □ Presupunem că toate clauzele din *T* sunt adevărate.
- \square Ne uităm, inductiv, la cazurile care pot să apară în derivarea lui Q.

Completitudine

Teoremă (Completitudine)

Dacă $T \models Q$, atunci $T \vdash_b Q$.

Completitudine

Teoremă (Completitudine)

Dacă $T \models Q$, atunci $T \vdash_b Q$.

Trebuie să arătăm că

pentru orice structură și orice interpretare, dacă orice clauză din $\mathcal T$ este adevărată, atunci și Q este adevărată,

există o derivare a lui Q din T.

Demonstrația este mai simplă deoarece

este suficient să ne uităm la o singură structură!

Demonstrația este mai simplă deoarece

este suficient să ne uităm la o singură structură!

De ce? Vom da mai multe detalii peste câteva cursuri.

Demonstrația este mai simplă deoarece

este suficient să ne uităm la o singură structură!

De ce? Vom da mai multe detalii peste câteva cursuri.

Vom construi o structură specială \mathcal{LH} astfel încât

 $T \vdash_b Q$ ddacă $\mathcal{LH} \models Q$

Fie \mathcal{L} un limbaj de ordinul I.

- □ Presupunem că are cel puțin un simbol de constantă!
- □ Dacă nu are, adăugăm un simbol de constantă.

Fie \mathcal{L} un limbaj de ordinul I.

- □ Presupunem că are cel puțin un simbol de constantă!
- ☐ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor lui \mathcal{L} fără variabile.

Fie \mathcal{L} un limbaj de ordinul I.

- □ Presupunem că are cel puțin un simbol de constantă!
- □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor lui \mathcal{L} fără variabile.

Un model Herbrand este o structură $\mathcal{H}=(\mathcal{T}_{\mathcal{L}},\mathbf{F}^{\mathcal{H}},\mathbf{P}^{\mathcal{H}},\mathbf{C}^{\mathcal{H}})$, unde

- \square pentru orice simbol de constantă c, $c^{\mathcal{H}} = c$
- \square pentru orice simbol de funcție f de aritate n,

$$f^{\mathcal{H}}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

Într-un model Herbrand, nu spunem nimic despre interpretarea simbolurilor de relații!

 \square pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}}(t_1,\ldots,t_n)\subseteq (\mathcal{T}_{\mathcal{L}})^n$

Într-un model Herbrand, nu spunem nimic despre interpretarea simbolurilor de relații!

 \square pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}}(t_1,\ldots,t_n)\subseteq (\mathcal{T}_{\mathcal{L}})^n$

Exemplu

- Interpretăm toate simbolurile de predicate ca fiind adevărate peste tot.
- \square Adică, pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}} = (T_{\mathcal{L}})^n$.
- ☐ Această structură este model pentru orice mulțime de clauze definite.
- □ Exerciţiu: De ce?

Definim o ordine între modelele Herbrand:

 $\mathcal{H}_1 \leq \mathcal{H}_2$ este definită astfel:

```
pt. or. sb. de predicat R de aritate n și or. termeni t_1, \ldots, t_n dacă M_1 \models R(t_1, \ldots, t_n), atunci M_2 \models R(t_1, \ldots, t_n)
```

Definim o ordine între modelele Herbrand:

 $\mathcal{H}_1 \leq \mathcal{H}_2$ este definită astfel:

pt. or. sb. de predicat
$$R$$
 de aritate n și or. termeni t_1, \ldots, t_n dacă $M_1 \models R(t_1, \ldots, t_n)$, atunci $M_2 \models R(t_1, \ldots, t_n)$

□ Ne interesează cel mai mic model Herbrand!

Definim o ordine între modelele Herbrand:

 $\mathcal{H}_1 \leq \mathcal{H}_2$ este definită astfel:

```
pt. or. sb. de predicat R de aritate n și or. termeni t_1, \ldots, t_n dacă M_1 \models R(t_1, \ldots, t_n), atunci M_2 \models R(t_1, \ldots, t_n)
```

- □ Ne interesează cel mai mic model Herbrand!
- □ De ce există? Este unic?
- □ Folosim o construcție de punct fix pentru a stabili când sunt adevărate predicatele.

 \square O instanță de bază a unei clauze $Q_1(X_1) \wedge \ldots \wedge Q_n(X_n) \rightarrow P(Y)$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.

- \square O instanță de bază a unei clauze $Q_1(X_1) \wedge \ldots \wedge Q_n(X_n) \rightarrow P(Y)$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.
- \square Pentru o mulțime de clauze T, o formulă atomică P și o mulțime de formule atomice X,

 $oneStep_T(P, X)$ este adevărat

- \square O instanță de bază a unei clauze $Q_1(X_1) \wedge \ldots \wedge Q_n(X_n) \rightarrow P(Y)$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.
- \square Pentru o mulțime de clauze T, o formulă atomică P și o mulțime de formule atomice X,

$$oneStep_T(P, X)$$
 este adevărat

dacă există o instanță de bază a unei clauze $Q_1(X_1) \wedge \ldots \wedge Q_n(X_n) \rightarrow P(Y)$ din T astfel încât P este instanța lui P(Y) și instanța lui $Q_i(X_i)$ este în X, pentru orice $i=1,\ldots,n$.

- \square O instanță de bază a unei clauze $Q_1(X_1) \wedge \ldots \wedge Q_n(X_n) \rightarrow P(Y)$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.
- \square Pentru o mulțime de clauze T, o formulă atomică P și o mulțime de formule atomice X,

$$oneStep_T(P, X)$$
 este adevărat

dacă există o instanță de bază a unei clauze $Q_1(X_1) \wedge \ldots \wedge Q_n(X_n) \rightarrow P(Y)$ din T astfel încât P este instanța lui P(Y) și instanța lui $Q_i(X_i)$ este în X, pentru orice $i=1,\ldots,n$.

 \square Baza Herbrand $B_{\mathcal{L}}$ este mulțimea formulelor atomice fără variabile.

- \square O instanță de bază a unei clauze $Q_1(X_1) \wedge \ldots \wedge Q_n(X_n) \rightarrow P(Y)$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.
- \square Pentru o mulțime de clauze T, o formulă atomică P și o mulțime de formule atomice X,

$$oneStep_T(P, X)$$
 este adevărat

dacă există o instanță de bază a unei clauze $Q_1(X_1) \wedge \ldots \wedge Q_n(X_n) \rightarrow P(Y)$ din T astfel încât P este instanța lui P(Y) și instanța lui $Q_i(X_i)$ este în X, pentru orice $i=1,\ldots,n$.

- \square Baza Herbrand $B_{\mathcal{L}}$ este mulțimea formulelor atomice fără variabile.
- \square Pentru o mulțime de clauze T, definim

$$f_T: \mathcal{P}(B_{\mathcal{L}}) \to \mathcal{P}(B_{\mathcal{L}})$$
 $f_T(X) = \{P \in B_{\mathcal{L}} \mid oneStep_T(P, X)\}$

Exemplu

 \square Fie $\mathcal L$ un limbaj cu un sb. de constantă 0, un sb. de funcție unară s și un sb. de relație unar par

Exempli

- \square Fie \mathcal{L} un limbaj cu un sb. de constantă 0, un sb. de funcție unară s și un sb. de relație unar par
- $\Box T_{\mathcal{L}} = \{0, s(0), s(s(0)), \ldots\}$

Exempli

- \square Fie \mathcal{L} un limbaj cu un sb. de constantă 0, un sb. de funcție unară s și un sb. de relație unar par
- $\Gamma_{\mathcal{L}} = \{0, s(0), s(s(0)), \ldots\}$
- ☐ Fie *T* mulţimea clauzelor:

$$par(X) \rightarrow par(s(s(X)))$$

Exempli

- \square Fie \mathcal{L} un limbaj cu un sb. de constantă 0, un sb. de funcție unară s și un sb. de relație unar par
- $\Box T_{\mathcal{L}} = \{0, s(0), s(s(0)), \ldots\}$
- ☐ Fie *T* mulţimea clauzelor:

$$par(0)$$
 $par(X) \rightarrow par(s(s(X)))$

- Instanțe de bază:

- \square Fie \mathcal{L} un limbaj cu un sb. de constantă 0, un sb. de funcție unară ssi un sb. de relatie unar par $\Box T_{\mathcal{L}} = \{0, s(0), s(s(0)), \ldots\}$ ☐ Fie T multimea clauzelor:

$$par(0)$$
 $par(x) o par(s(s(X)))$

Instanțe de bază:

- $\Box f_T(\{\}) = \{par(0)\}\$
- \Box $f_T(\{par(0)\}) = \{par(0), par(s(s(0)))\}$
- $\sqcap f_T(\{par(s(0))\}) = \{par(0)\}$
- \Box $f_T(\{par(s(s(0)))\}) = \{par(0), par(s(s(s(s(0)))))\}$

- \Box f_T este monotonă, deci are un cel mai mic punct fix FP_T !
- \square FP_T este reuniunea tuturor mulțimilor

$$f_T(\{\}), f_T(f_T(\{\})), f_T(f_T(f_T(\{\}))), \ldots$$

- \Box f_T este monotonă, deci are un cel mai mic punct fix FP_T !
- ☐ *FP_T* este reuniunea tuturor mulțimilor

$$f_T(\{\}), f_T(f_T(\{\})), f_T(f_T(f_T(\{\}))), \ldots$$

□ Pentru o mulțime de clauze T, definim cel mai mic model Herbrand £H ca fiind un model Herbrand în care

un predicat
$$R(t_1, \ldots, t_n)$$
 este adevărat ddacă $R(t_1, \ldots, t_n) \in FP_T$.

- \Box f_T este monotonă, deci are un cel mai mic punct fix FP_T !
- \square FP_T este reuniunea tuturor mulțimilor

$$f_T(\{\}), f_T(f_T(\{\})), f_T(f_T(f_T(\{\}))), \ldots$$

□ Pentru o mulțime de clauze T, definim cel mai mic model Herbrand £H ca fiind un model Herbrand în care

un predicat
$$R(t_1,\ldots,t_n)$$
 ddacă $R(t_1,\ldots,t_n) \in \mathit{FP}_T.$

 \square $\mathcal{LH} \models T$. Exercițiu: De ce?

Propoziție

Pentru orice formulă atomică Q,

$$T \vdash_B Q$$
 ddacă $\mathcal{LH} \models Q$.

Propoziție

Pentru orice formulă atomică Q,

$$T \vdash_B Q$$
 ddacă $\mathcal{LH} \models Q$.

Demonstrație (schiță) [*]

Implicația de la stânga la dreapta rezultă ușor din corectitudinea sistemului de inferență backchain.

Propoziție

Pentru orice formulă atomică Q,

$$T \vdash_B Q$$
 ddacă $\mathcal{LH} \models Q$.

Demonstrație (schiță) [*]

- ☐ Implicația de la stânga la dreapta rezultă ușor din corectitudinea sistemului de inferență *backchain*.
- Implicația de la dreapta la stânga este mai complicată.
 - $lue{}$ Q apare în interpretările simbolurilor de predicate din \mathcal{LH}
 - \square Deci Q este obținut după un număr finit n de aplicări ale lui f_T
 - Se arată prin inducție după n că pentru fiecare formulă care apare prin aplicări ale lui f_T există o derivare în sistemul de inferență backchain.

Teoremă (Completitudine)

Dacă $T \models Q$, atunci $T \vdash_B Q$.

Teoremă (Completitudine)

Dacă $T \models Q$, atunci $T \vdash_B Q$.

Demonstrație

- \square Dacă $T \models Q$, atunci $\mathcal{LH} \models Q$
- \square Deci $T \vdash_B Q$

Pe săptămâna viitoare!