Exercises, Algebraic Geometry I – Week 2

Do not be seduced by the lotus-eaters into infatuation with untethered abstraction. $(Ravi\ Vakil)$

Exercise 6. (4 points) Sheafification

Describe examples of presheaves (of abelian groups) \mathcal{F} for which the sheafification $\mathcal{F} \to \mathcal{F}^+$ is not injective resp. not surjective. Find an example with $\mathcal{F} \neq 0$ but $\mathcal{F}^+ = 0$.

Exercise 7. (3 points) Support of a section.

Let \mathcal{F} be a sheaf on a topological space X and let $s, t \in \mathcal{F}(U)$ be two sections over an open set $U \subset X$. Show that the set of points $x \in U$ with $s_x = t_x$ in \mathcal{F}_x is an open subset of U.

If \mathcal{F} is a sheaf of abelian groups, one defines the $support \operatorname{supp}(s)$ of a section $s \in \mathcal{F}(U)$ as the set of points $x \in U$ such that $0 \neq s_x \in \mathcal{F}_x$. Show that $\operatorname{supp}(s)$ is a closed subset of U.

Exercise 8. (4 points) 'Espace étale' of a presheaf.

Let \mathcal{F} be a presheaf on a topological space X. Define

$$|\mathcal{F}| := \bigsqcup_{x \in X} \mathcal{F}_x,$$

which comes with a natural projection $\pi: |\mathcal{F}| \to X$, $(s \in \mathcal{F}_x) \mapsto x$. Then any $s \in \mathcal{F}(U)$ defines a section of π over U by $x \mapsto s_x$. One endows $|\mathcal{F}|$ with the strongest topology such that all $s \in \mathcal{F}(U)$ define continuous sections $x \mapsto s_x$. Show that the sheafification \mathcal{F}^+ can be described as the sheaf of continuous sections of $|\mathcal{F}| \to X$.

Exercise 9. (3 points) Subsheaf with support.

Let $Z \subset X$ be a closed subset. For any sheaf \mathcal{F} of abelian groups on X one defines for any open $U \subset X$ the subgroup $\Gamma_{Z \cap U}(U, \mathcal{F})$ of all sections $s \in \Gamma(U, \mathcal{F})$ with supp $(s) \subset Z \cap U$. Show that this defines a sheaf (denoted $\mathcal{H}_Z^0(\mathcal{F})$).

(A sheaf \mathcal{F} is said to be supported on Z if $\mathcal{H}_Z^0(\mathcal{F}) = \mathcal{F}$.)

Exercise 10. (4 points) Exponential map.

Consider $X = \mathbb{C} \setminus \{0\}$ with its usual topology and let \mathcal{O}_X be the sheaf of holomorphic functions, i.e. $\mathcal{O}_X(U) = \{f : U \to \mathbb{C} \mid \text{holomorphic}\}$. Similarly, let \mathcal{O}_X^* be the sheaf of holomorphic functions without zeroes. (Throughout, you may work with differentiable function instead of holomorphic ones if you prefer.)

Show that the exponential map defines a morphism of sheaves (of abelian groups)

$$\exp: \mathcal{O}_X \to \mathcal{O}_X^*, f \in \mathcal{O}_X(U) \mapsto \exp(f) \in \mathcal{O}_X^*(U).$$

Find a basis of the topology such that $\exp_U : \mathcal{O}_X(U) \to \mathcal{O}_X^*(U)$ is surjective for all U in this basis. Note that $\mathcal{O}_X(X) \to \mathcal{O}_X^*(X)$ is not surjective. Describe the kernel of \exp_U .

Continued on next page.

The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 11. (4 extra points) Grothendieck topology.

The notion of a (pre)sheaf on a topological space can be formalized as follows.

A Grothendieck topology $(\mathcal{C}, Cov_{\mathcal{C}})$ consists of a category \mathcal{C} with a set $Cov_{\mathcal{C}}$ of collections $\{\pi_i: U_i \to U\}_i$ of morphisms in \mathcal{C} (called *coverings* of U) subject to the following conditions:

- (1) Any isomorphism $\varphi: U \xrightarrow{\sim} U$ defines a covering $\{U \to U\} \in \text{Cov}_{\mathcal{C}}$.
- (2) Suppose we are given $\{\pi_i: U_i \to U\}_i \in \text{Cov}_{\mathcal{C}}$ and for each i a covering $\{\pi_{ij}: U_{ij} \to U_i\}_j \in$ $\operatorname{Cov}_{\mathcal{C}}$. Then $\{\pi_i \circ \pi_{ij} : U_{ij} \to U\}_{ij} \in \operatorname{Cov}_{\mathcal{C}}$ is a covering. (3) If $\{\pi_i : U_i \to U\}_i$ is a covering and $V \to U$ is a morphism in \mathcal{C} , then $\{\tilde{\pi}_i : U_i \times_U V \to V\}_i$
- (In particular, one assumes that the fibre products in (2) and (3) exist. Recall the abstract notion of a fibre product.)
- (i) Show that for a topological space X the category of open sets Ouv_X comes with a natural Grothendieck topology given by the usual open coverings $U = \bigcup U_i$. Show that the notions presheaf, sheaf, stalk, morphism of (pre)sheaves, etc., can be phrased entirely in terms of this Grothendieck topology.

Here is another example of a Grothendieck topology: For a finite group G consider the category G-Sets of sets S with a left G-action $G \times S \to S$. Morphisms in this category are maps that commute with the G-action.

(ii) Show that the collections of $\{S_i \to S\}_i$ with $\bigcup S_i \to S$ surjective define a Grothendieck topology on G-Sets.

The group G itself comes with a natural left G-action (by multiplication). The corresponding object is denoted $\langle G \rangle \in G\text{-}Sets$.

(iii) Show that any sheaf \mathcal{F} on G-Sets yields a set $\mathcal{F}(\langle G \rangle)$ that is endowed with a natural left G-action. (In fact, \mathcal{F} is determined by this set, as $\mathcal{F}(S) = \text{Hom}_G(S, \mathcal{F}(\langle G \rangle))$.)

The final object in G-Sets consists of a set $\{*\}$ of one element.

(iv) One can show that for a sheaf \mathcal{F} the space of sections $\mathcal{F}(\{*\})$ is the fixed point set $\mathcal{F}(\langle G \rangle)^G$.