จุฬาลงกรณ์มหาวิทยาลัย
คณะวิศวกรรมศาสตร์
ภาควิชาวิศวกรรมคอมพิวเตอร์
2110-263 DIGITAL COMPUTER LOGIC LAB I

ชื่อ		
เลขประจำตัว		
 หมายเลขเครื่อง		
าับที่		

7. Latch และ Flip-flop

<u>วัตถุประสงค์</u>

- 1. เพื่อให้นิสิตเข้าใจโครงสร้าง Latch และ Flip-flop
- 2. เพื่อให้นิสิตเข้าใจโครงสร้าง Flip-flop ที่เป็นแบบ Edge Triggered และ Master/Slave
- 3. เพื่อให้นิสิตเข้าใจโครงสร้าง Flip-flop ชนิค S-R ,J-K , D และ T
- 4. เพื่อให้นิสิตได้ฝึกใช้ part สำเร็จรูปต่าง ๆ

<u>บทนำ</u>

1. วงจร R-S Latch แบบ NAND และตารางความจริง สังเกตคูว่าแบบนี้จะ ไม่ใช้กับวงจรที่ทำให้ เกิด S และ R เป็น o พร้อมกัน

Inputs		Output	
R	S	Qn+1	/Qn+1
0	0	1	1
0	1	1	0
1	0	0	1
1	1	Qn	/Qn

2. วงจร R-S Latch แบบ NOR และตารางความจริง สังเกตดูว่าแบบนี้จะไม่ใช้กับวงจรที่ทำให้เกิด S และ R เป็น 1 พร้อมกัน

Inputs		Output	
R	S	Qn+1	/Qn+1
0	0	Qn	/Qn
0	1	1	0
1	0	0	1
1	1	0	0

- 3. Flip-flop มีลักษณะที่ต้องคำนึงถึง 2 อย่าง คือ
 - 3.1 Clock เป็นอย่างไร
 - Level Sensitive
 - Pulse-width Sensitive (Master-Slave)
 - Edge-triggered ได้แก่ Positive และ Negative Edge-triggered
 - 3.2 คุณสมบัติ
 - D Flip-flop (Data type)
 - RS Flip-flop (Reset-Set)
 - JK Flip-flop
 - T Flip-flop

การทดลอง (ข้อ 1-5 หลังสร้าง part เสร็จให้ทดลองใช้งานให้เห็นว่าถูกต้องจริงด้วย)

สร้าง part ของ MEM ตามรูป

คือ Port In และ — คือ Port Out อยู่ใน Pseudo Devices.clf

- 2. สร้าง part ของ RS Latch แบบ NOR โดยมี input คือ R และ S Output คือ Q และ \Q
- 3. ใช้ part ในข้อ 2. นำมาสร้าง part ของ Master-Slave JK Flip-flop คือ J K Clock และ \Clear มี Output คือ Q และ \O \Clear เป็น asynchronous input และ active LOW เมื่อ \Clear ถูก assert output Q จะเป็น 0 และ \Q จะเป็น 1 ทันที (ไม่ต้องรอ clock)
- 4. ใช้ part ในข้อ 2. นำมาสร้าง part ของ Positive Edge Triggered D Flip-flop มี input คือ D Clock และ \Clear เป็น synchronous input มี Output คือ Q และ \Q
- 5. นำมาสร้าง part ของ Positive Edge Triggered T Flip-flop มี input คือ T Clock และ \Clear เป็น synchronous input มี Output คือ Q และ \Q
- (ไม่ต้องเซ็นตรวจ) ทดสอบ part ดังต่อไปนี้ 74_73, 74_76, 74_103, 74_107, 74_175, 6. 74_276, 74_373, 74_374