Matematika Diskrit [KOMS119602] - 2022/2023

9.1. Induksi matematika

Dewi Sintiari

Prodi D4 Teknologi Rekayasa Perangkat Lunak Universitas Pendidikan Ganesha

Week 9 (November 2022)

Bilangan bulat (Integer)

Intuisi di balik Teknik Induksi

Prinsip Induksi Matematika

Misalkan p(n) adalah suatu pernyataan yang berlaku untuk bilangan bulat. Kita ingin membuktikan bahwa p(n) benar untuk semua bilangan bulat ≥ 0 . Maka cukup dibuktikan bahwa:

- 1. $p(n_0)$ benar; dan
- 2. jika p(n) benar, maka p(n+1) benar.

Ini berarti bahwa p(n) benar untuk setiap $n \ge n_0$.

Prinsip Induksi Matematika

- 1. Basis Induksi
- 2. Hipotesis Induksi
- 3. Pembuktian Hipotesis

Untuk setiap bilangan bulat positif *n*, buktikan bahwa:

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Solusi:

Basis induksi:

▶ Untuk n = 1, berlaku: $1 = \frac{1(1+1)}{2} = 1$

Langkah induksi:

ightharpoonup Hipotesis: Andaikan bahwa p(n) benar, yakni:

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Pembuktian hipotesis: Akan ditunjukkan bahwa p(n+1) benar:

$$1+2+3+\cdots+(n+1)=\frac{(n+1)(n+2)}{2}$$

Contoh 1 (lanjutan)

Hipotesis
$$p(n)$$
: $1+2+3+\cdots+n=\frac{n(n+1)}{2}$

$$1+2+3+\cdots+(n+1)=1+2+3+\cdots+n+(n+1)$$

$$=\left(\frac{n(n+1)}{2}\right)+(n+1)$$

$$=\frac{(n(n+1)+2(n+1)}{2}$$

$$=\frac{(n^2+n)+(2n+2)}{2}$$

$$=\frac{(n+1)(n+2)}{2}$$

Untuk setiap bilangan bulat tak-negatif n, buktikan bahwa:

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{n} = 2^{n+1} - 1$$

Solusi:

Basis induksi:

▶ Untuk n = 0, berlaku: $2^0 = 2^{0+1} - 1 = 2 - 1 = 1$

Langkah induksi:

▶ Hipotesis: Andaikan bahwa p(n) benar, yakni:

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{n} = 2^{n+1} - 1$$

Pembuktian hipotesis: Akan ditunjukkan bahwa p(n+1) benar:

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{n+1} = 2^{n+2} - 1$$

$$2^{0} + 2^{1} + \dots + 2^{n+1} = (2^{0} + 2^{1} + \dots + 2^{n}) + 2^{n+1}$$
$$= (2^{n+1} - 1) + 2^{n+1} = 2 \cdot 2^{n+1} - 1 = 2^{n+2} - 1$$

Untuk setiap bilangan bulat $n \ge 1$, buktikan bahwa: $n^3 + 2n$ adalah kelipatan 3.

Solusi:

Basis induksi:

▶ Untuk n = 1, berlaku: $1^3 + 2(1) = 1 + 2 = 3$ merupakan kelipatan 3

Langkah induksi:

▶ Hipotesis: Andaikan bahwa p(n) benar, yakni:

$$n^3 + 2n$$
 adalah kelipatan 3

Pembuktian hipotesis: Akan ditunjukkan bahwa p(n+1) benar, yaitu $(n+1)^3 + 2(n+1)$ juga merupakan kelipatan 3

Contoh 3 (lanjutan)

$$(n+1)^3 + 2(n+1) = (n^3 + 3n^2 + 3n + 1) + (2n+2)$$
$$= (n^3 + 2n) + 3n^2 + 3n + 3$$
$$= (n^3 + 2n) + 3(n^2 + n + 1)$$

Perhatikan bahwa $(n^3 + 2n)$ merupakan kelipatan 3 (sesuai hipotesis), dan $3(n^2 + n + 1)$ jelas juga merupakan kelipatan 3.

Sehingga, $(n+1)^3+2(n+1)$ merupakan jumlah dua bilangan kelipatan 3. Jadi, $(n+1)^3+2(n+1)$ adalah kelipatan 3, $\forall n \geq 1$.

Latihan

Latihan 1

Buktikan dengan Induksi Matematika bahwa:

Untuk tiap ≥ 3 , jumlah sudut dalam poligon dengan n sisi adalah $180(n-2)^{\circ}$.

Solusi:

► Basis:

Untuk n = 3, poligon merupakan segitiga, dengan jumlah sudut $180^{\circ} = 180(3-2)^{\circ}$. Jadi proposisi tersebut benar.

Hipotesis:

Asumsikan bahwa proposisi benar untuk n-gon, yaitu jumlah sudutnya adalah $180(n-2)^o$.

Selanjutnya, akan ditunjukkan bahwa (n+1)-gon memiliki jumlah sudut $180(n-1)^o$.

Latihan 1 (lanjutan)

- Misalkan (n+1)-gon adalah $P_1P_2 \dots P_n$.
- ▶ Poligon tersebut dibentuk oleh *n*-gon kuning dan segitiga hijau.
- Sesuai hipotesis, jumlah sudut-sudut pada n-gon adalah $180(n-2)^o$.
- ▶ Jumlah sudut pada (n+1)-gon = jumlah sudut n-gon + jumlah sudut segitiga, yaitu:

$$180(n-2)^{\circ} + 180^{\circ} = 180(n-1)^{\circ}$$

Dengan demikian, proposisi terbukti.

Latihan 2

Buktikan dengan Induksi Matematika bahwa $n^5 - n$ habis dibagi 5.

Solusi:

► Basis: Untuk n = 1. $1^5 - 1 = 0$ habis dibagi 5.

Hipotesis:
 Misalkan n⁵ – n habis dibagi 5.

Selanjutnya, akan dibuktikan bahwa $(n+1)^5-(n+1)$ habis dibagi 5.

Latihan 2 (lanjutan)

Latihan 3

Diketahui bahwa pada suatu pesta, setiap tamu berjabat tangan dengan tamu lainnya tepat satu kali. Buktikan dengan Induksi Matematika bahwa jika terdapat *n* tamu, maka banyaknya jabat tangan yang terjadi adalah:

$$\frac{n(n-1)}{2}$$

Latihan 3 (lanjutan)

Solusi:

► Basis:

Basis induksi dapat dicek untuk n=1 atau n=2. Untuk n=1, banyaknya jabat tangan adalah $\frac{1(1-1)}{2}=0$. Untuk n=2, banyaknya jabat tangan adalah $\frac{2(2-1)}{2}=1$.

Hipotesis:

Asumsikan bahwa banyaknya jabat tangan yang terjadi jika ada n tamu adalah: $\frac{n(n-1)}{2}$.

Akan dibuktikan bahwa jika terdapat $\frac{n(n+1)}{2}$ jabat tangan di antara (n+1) tamu.

Latihan 3 (lanjutan)

Pembuktian hipotesis:

Perhatikan tamu ke-(n+1). Tamu tersebut berjabat tangan dengan n tamu lainnya.

Sesuai hipotesis, n tamu lainnya berjabat tangan satu sama lain sebanyak $\frac{n(n-1)}{2}$ kali.

Jadi, banyaknya jabat tangan yang terjadi adalah:

$$\frac{n(n-1)}{2} + n = \frac{n(n-1) + 2n}{2} = \frac{n(n+1)}{2}$$

Latihan 4

Buktikan dengan Induksi Matematika "Hukum de Morgan" berikut.

$$\overline{A_1 \cap A_2 \cap \cdots \cap A_n} = \overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_n}$$

Latihan 4 (lanjutan)

Basis:

Untuk
$$n=2$$
, maka $\overline{A_1 \cap A_2} = \overline{A_1} \cup \overline{A_2}$

Latihan 4 (lanjutan)

► Hipotesis:

Asumsikan bahwa pernyataan tersebut benar untuk *n* himpunan:

$$\overline{A_1 \cap A_2 \cap \cdots \cap A_n} = \overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_n}$$

Pembuktian hipotesis:

Misal:
$$A_1 \cap A_2 \cap \cdots \cap A_{n+1} = B$$
.

$$\overline{A_1 \cap A_2 \cap \dots \cap A_{n+1}} = \overline{(A_1 \cap A_2 \cap \dots \cap A_n) \cap A_{n+1}}$$

$$= \overline{B \cap A_{n+1}}$$

$$= \overline{B \cup A_{n+1}}$$

Sesuai hipotesis:

$$\overline{B} = \overline{A_1 \cap A_2 \cap \cdots \cap A_n} = \overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_n}$$

Sehingga:

$$\overline{A_1 \cap A_2 \cap \cdots \cap A_{n+1}} = \overline{B} \cup \overline{A_{n+1}} = \overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_n} \cup \overline{A_{n+1}}$$

Prinsip induksi kuat

Prinsip Induksi Kuat

Pada Induksi Matematika standar, kita melakukan hal berikut:

- 1. Membuktikan bahwa pernyataan benar untuk basis (yaitu, mengambil nilai *n* terkecil);
- 2. Mengasumsikan bahwa pernyataan benar untuk suatu nilai n;
- 3. Berbasis asumsi tersebut, menunjukkan bahwa pernyataan benar untuk n+1.

Kadangkala, dibutuhkan juga asumsi bahwa "pernyataan benar untuk setiap nilai $\leq n$ " (tidak hanya untuk n). Dengan kata lain,

Untuk membuktikan kebenaran p(n+1), maka:

- ▶ p(a) terbukti benar, dimana a adalah basis induksi;
- $ightharpoonup p(a), p(a+1), \ldots, p(n)$ <u>diasumsikan</u> benar.

Perhatikan bahwa pada poin kedua, terdapat **lebih dari satu hipotesis**.

Contoh penerapan Induksi Kuat

Suatu bilangan bulat positif p disebut bilangan prima jhj faktor pembagi bilangan tersebut adalah 1 dan p. (Dengan kata lain, tidak ada bilangan lain yang habis membagi p, selain 1 dan p.)

Dengan Induksi Kuat, buktikan bahwa:

Setiap bilangan bulat $n \geq 2$ dapat dinyatakan sebagai perkalian dari satu atau lebih bilangan-bilangan prima.

Contoh penerapan Induksi Kuat (lanjutan)

- **Basis:** Untuk n = 2, maka 2 dapat dinyatakan sebagai perkalian bilangan prima, yakni 2 = 2 (sebab 2 merupakan bilangan prima).
- ▶ **Hipotesis:** Asumsikan bahwa setiap bilangan 3, 4, 5, ..., n dapat dinyatakan sebagai perkalian bilangan prima.
- **Pembuktian:** akan ditunjukkan bahwa n+1 dapat dinyatakan sebagai perkalian bilangan prima.
 - ▶ Jika n+1 adalah bilangan prima, maka terbukti.
 - ▶ Jika tidak, maka $n + 1 = a \cdot b$, untuk suatu bilangan bulat a dan b, dimana $2 \le a, b < n$.
 - Sesuai basis dan hipotesis, a dan b masing-masing dapat dinyatakan sebagai perkalian bilangan prima. Maka n+1 juga dapat dinyatakan sebagai perkalian bilangan prima.

Latihan

Kesalahan dalam penggunaan Induksi Matematika

Proposisi p(n):

Semua kuda berwarna sama.

Induksi Matematika:

- ▶ Basis: Untuk n = 1, maka hanya ada satu kuda, sehingga proposisi benar.
- ightharpoonup Hipotesis: Asumsikan n kuda berwarna sama.
- Pembuktian: Misalkan terdapat n+1 kuda, yaitu: $k_1, k_2, \ldots, k_{n+1}$. Sesuai hipotesis, kuda k_1, k_2, \ldots, k_n berwarna sama, dan kuda $k_2, k_3, \ldots, k_{n+1}$ berwarna sama. Karena $\{k_1, k_2, \ldots, k_n\} \cap \{k_2, k_3, \ldots, k_{n+1}\} \neq \emptyset$, maka semua kuda berwarna sama.

Dimanakah letak kesalahan pembuktian Induksi di atas?

Proposisi p(n):

Untuk setiap $n \in \mathbb{Z}$, $n \ge 0$ dan $a \in \mathbb{R}$, $a \ne 0$, berlaku:

$$a^n = 1$$

Induksi Matematika:

- **Basis**: Untuk n = 0, maka berlaku $a^0 = 1$
- ▶ Hipotesis: Asumsikan bahwa $a^m = 1$ untuk setiap bilangan bulat $m \ge 0$, dimana $m \le n$.
- Pembuktian: Maka

$$a^{m+1} = \frac{a^m \cdot a^m}{a^{m-1}} = \frac{1 \cdot 1}{1} = 1$$

Dimanakah letak kesalahan pembuktian Induksi di atas?

Proposisi p(n):

Untuk setiap bilangan bulat tak-negatif n, berlaku: 2n = 0

Induksi Matematika:

- **Basis:** Untuk n = 0, berlaku: 2n = 0
- ▶ Hipotesis: Asumsikan bahwa 2m = 0 untuk setiap bilangan bulat tak-negatif $m \le n$
- Pembuktian: Akan ditunjukkan bahwa 2(n+1) = 0Nyatakan 2n+1 = a+b, untuk suatu bilangan bulat tak-negatif a dan b. Maka:

$$2(n+1) = 2(a+b) = 2a+2b$$

Sesuai hipotesis, 2a = 0 dan 2b = 0. Maka: 2(n+1) = 0 + 0 = 0

Dimanakah letak kesalahan pembuktian Induksi di atas?

Penggunaan Induksi dalam pemrograman

Algorithm 1 Menghitung perpangkatan

```
1: procedure HITUNG(a^m)
        k, r: integer
 2:
 3: r \leftarrow 1
 4: k \leftarrow m
 5: while k > 0 do
6:
           r \leftarrow r * a
           k \leftarrow k - 1
 7:
        end while
8:
9.
        return r
10: end procedure
```

Kita ingin membuktikan bahwa algoritma tersebut benar, yakni output dari algoritma adalah nilai a^m .

Contoh (lanjutan)

Pada setiap perulangan, nilai k dan r berubah. Misalkan k_i dan r_i adalah nilai k dan r setelah i perulangan.

Pada akhir iterasi ke-i, algoritma memberikan output $r_n = a^{m-k_n}$. Dengan kata lain, *loop-invariant* dari algoritma tersebut adalah:

$$r_n \cdot a^{k_n} = a^m, \ n \ge 0$$

Pada Induksi Matematika, hal ini dapat dinyatakan dengan:

Proposisi
$$p(n)$$
: $r_n \cdot a^{k_n} = a^m, n \ge 0$

Selanjutnya, kebenaran p(n) akan dibuktikan dengan metode Induksi Matematika.

Contoh (lanjutan)

Basis: Pada awal iterasi (n = 0), nilai $r_0 = 1$ dan $k_0 = m$, sesuai dengan inisialisasi. Maka:

$$r_0 \cdot a^{k_0} = a^m$$
 benar

► Hipotesis: Asumsikan bahwa pada akhir iterasi ke-n, berlaku:

$$r_n \cdot a^{k_n} = a^m$$

Pembuktian: Akan ditunjukkan bahwa pada akhir iterasi ke-n+1, berlaku:

$$r_{n+1} \cdot a^{k_{n+1}} = a^m$$

Pada baris ke-6 dan ke-7 dari Algoritma 1, kita memperbarui nilai r dan k, dimana:

$$r_{n+1} = r_n * a$$
 dan $k_{n+1} = k_n - 1$

Ini berarti:

$$r_{n+1} \cdot a^{k_{n+1}} = (r_n * a) \cdot a^{k_n-1} = r^n \cdot a \cdot \frac{a_n^k}{a} = r^n \cdot a_n^k = a^m$$
 terbukti

Tugas (berkelompok)

- 1. Buatlah kelompok beranggotakan 2-3 orang!
- 2. Buat sebuah contoh pembuktian dengan Induksi Matematika standar!
- 3. Buat sebuah contoh pembuktian dengan Induksi Kuat
- 4. Buat sebuah contoh kesalahan pengunaan Induksi dalam pembuktian!
- 5. Buat sebuah contoh penggunaan Induksi untuk membuktikan kebenaran program komputer!

Ketentuan: Setiap kelompok <u>diharuskan</u> memberikan contoh yang berbeda!