

上实验报告如有雷同,雷同各方当次实验成绩均以 0 分计。

2. 当次小组成员成绩只计学号、姓名登录在下表中的。

3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。

4.实验报告文件以 PDF 格式提交。

院系	数技	据科学与计算机学院	班 级	班级 16级信息与计算科学		组长	回煜淼
学号	生号 16339021		<u>16343065</u> <u>163</u>		16339049		
学生	学生 回煜淼		<u>桑娜</u>		辛依繁		
	<u>实验分工</u>						
回煜淼	回煜淼 学习实验内容,完成实验,写实验打		实验报告	辛依繁	学习实验内容,	完成实验,写实验报	
			<u>告</u>				
桑娜		学习实验内容,完成实	<u>、验,写</u> 多	<u> </u>			

【实验题目】RIP路由协议实验

【实验目的】

- 1.掌握 RIP 路由协议, 学会对交换机和路由器进行相应的配置
- 2.理解 RIPv1 和 RIPv2 的区别,并通过实验验证
- 3.学习使用 debug 并对 debug 信息进行分析

【实验内容】

- 1. 在实验设备上完成 P243 实验 7-2 并测试实验网连通性。
- 2. 通过实验观察 RIP V1 和 V2 的区别 (重点在 VLSM 上)给出分析过程与结果 (实验 IP 采用 10.10.x.0 网段)
- 3. 学会使用 Debug ip packet 和 Debug ip rip 命令,并对 debug 信息做分析。
- 4. 观察试验拓扑中链路状态发生改变时路由表的前后信息对比及 debug 信息的变化。

【实验要求】

重要信息信息需给出截图, 注意实验步骤的前后对比。

【实验记录】(如有实验拓扑请自行画出)

第一部分:实验7-2

第二部分:通过实验观察 RIP V1 和 V2 的区别

第三部分:debug 信息分析

第四部分: 改变链路之后信息变化

第一部分:实验7-2

【实验拓扑】

【实验步骤】

步骤 1:

(1) 配置 PC1 与 PC2 的 IP 地址,子网掩码,网关,并测试他们的连通性:

```
C: Wsers Administrator>ping 10.10.3.22
正在 Ping 10.10.3.22 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
10.10.3.22 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4 (100% 丢失),
```

```
Microsoft Windows [版本 6.1.7601]
版权所有 (c) 2009 Microsoft Corporation。保留所有权利。

C: Wsers Administrator > ping 192.168.5.11

正在 Ping 192.168.5.11 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。

192.168.5.11 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4 (100% 丢失),

C: Wsers Administrator >
```

分析:此时 PC1 与 PC2 不能互通,因为不属于同一个网段,且没有路由器连接。

(2)在路由器 R1 或者 R2 上执行 show ip route 命令,记录路由表信息:

13-RSR20-2#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

分析: 此时,路由表中没有任何信息。

步骤 2: 三层交换机配置

```
13-S5750-2(config)#hostname S5750
S5750(config)#vlan 10
S5750(config-vlan)#exit
S5750(config)#vlan 50
S5750(config-vlan)#exit
S5750(config)#interface gigabitethernet 0/1
S5750(config-if-GigabitEthernet 0/1)#switchport access vlan 10
S5750(config-if-GigabitEthernet 0/1)#exit
S5750(config)#interface gigabitethernet 0/5
S5750(config-if-GigabitEthernet 0/5)#switchport access vlan 50
S5750(config-if-GigabitEthernet 0/5)#exit
S5750(config)#interface vlan 10
S5750(config-if-VLAN 10) #*Jun 4 15:02:30: %LINEPROTO-5-UPDOWN: Line protocol on
Interface VLAN 10, changed state to up.
S5750(config-if-VLAN 10)#ip address 192.168.1.2 255.255.255.0
S5750(config-if-VLAN 10)#no shutdown
S5750(config-if-VLAN 10)#exit
S5750(config)#interface vlan 50
S5750(config-if-VLAN 50)#*Jun 4 15:03:46: %LINEPROTO-5-UPDOWN: Line protocol on
Interface VLAN 50, changed state to up.
S5750(config-if-VLAN 50)#ip address 192.168.5.1 255.255.255.0
S5750(config-if-VLAN 50)#no shutdown
S5750(config-if-VLAN 50)#exit
S5750(config)#
```

分析: 划分了两个 VLAN, 这里基本上相当于把交换机当成路由器使用。

步骤 3: 路由器 R1 的基本配置

```
13-RSR20-1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
13-RSR20-1(config)#interface gigabitethernet 0/1
13-RSR20-1(config-if-GigabitEthernet 0/1)#$2.168.1.1 255.255.255.0
13-RSR20-1(config-if-GigabitEthernet 0/1)#no shutdown
13-RSR20-1(config-if-GigabitEthernet 0/1)#exit
13-RSR20-1(config)#interface serial 2/0
13-RSR20-1(config-if-Serial 2/0)#ip address 192.168.2.1 255.255.255.0
13-RSR20-1(config-if-Serial 2/0)#no shutdown
分析: 给路由器的2个接口分别分配ip,注意开启接口。
```


步骤 4: 路由器 R2 的基本配置

13-RSR20-2(config)#interface gigabitethernet 0/1

13-RSR20-2(config-if-GigabitEthernet 0/1)#\$2.168.3.1 255.255.255.0

13-RSR20-2(config-if-GigabitEthernet 0/1)#no shutdown

13-RSR20-2(config-if-GigabitEthernet 0/1)#exit

13-RSR20-2(config)#interface serial 2/0

13-RSR20-2(config-if-Serial 2/0)#ip address 192.168.2.2 255.255.255.0

13-RSR20-2(config-if-Serial 2/0)#no shutdown

分析: 与 R1 相同, 给接口分配 ip 地址, 并且开启接口。

步骤 5: 交换机 S5750 配置 RIPv2 路由协议

S5750#config

Enter configuration commands, one per line. End with CNTL/Z.

S5750(config)#router rip

S5750(config-router)#version 2

S5750(config-router)#network 192.168.1.0

% There is a same network configuration

S5750(config-router)#network 192.168.5.0

分析:交换机上开启 RIP 路由协议进程,进入 RIP 协议配置模式;指定 RIP 的版本为 2,并且申明本交换机参与 RIP 协议的直连网段信息。

步骤 6: 路由器 R1 配置 RIPv2 路由协议

13-RSR20-1(config)#router rip

13-RSR20-1(config-router)#version 2

13-RSR20-1(config-router)#no auto-summary

13-RSR20-1 (config-router) #network 192.168.1.0

13-RSR20-1(config-router)#network 192.168.2.0

步骤 7: 路由器 R2 配置 RIPv2 路由协议

13-RSR20-2(config)#router rip

13-RSR20-2(config-router)#version 2

13-RSR20-2(config-router)#no auto-summary

13-RSR20-2(config-router)#network 192.168.2.0

13-RSR20-2(config-router)#network 192.168.3.0

分析:路由器 R1、R2 均关闭了自动汇总功能。

验证三台路由设备的路由表,查看是否自动学习了其他网段的路由信息。注意观察 R 标 答项。

交换机:

```
S5750(config-router)#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
        0 - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
     192.168.1.0/24 is directly connected, VLAN 10
     192.168.1.2/32 is local host.
     192.168.2.0/24 [120/1] via 192.168.1.1, 00:06:28, VLAN 10
     192.168.3.0/24 [120/2] via 192.168.1.1, 00:00:02, VLAN 10
     192.168.5.0/24 is directly connected, VLAN 50
     192.168.5.1/32 is local host.
|S5750(config-router)#
```

路由器 R1:

13-RSR20-1#show ip route

```
Codes: C - connected, S - static, R - RIP, B - BGP
        0 - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
     192.168.1.0/24 is directly connected, GigabitEthernet 0/1
С
     192.168.1.1/32 is local host.
С
     192.168.2.0/24 is directly connected, Serial 2/0
     192.168.2.1/32 is local host.
     192.168.3.0/24 [120/1] via 192.168.2.2, 00:00:07, Serial 2/0
     192.168.5.0/24 [120/1] via 192.168.1.2, 00:06:22, GigabitEthernet 0/1
```

路由器 R2:

13-RSR20-2#show ip route

```
Codes: C - connected, S - static, R - RIP, B - BGP
        0 - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default
```

Gateway of last resort is no set

```
192.168.1.0/24 [120/1] via 192.168.2.1, 00:10:05, Serial 2/0
     192.168.2.0/24 is directly connected, Serial 2/0
     192.168.2.2/32 is local host.
С
     192.168.3.0/24 is directly connected, GigabitEthernet 0/1
     192.168.3.1/32 is local host.
  192.168.5.0/24 [120/2] via 192.168.2.1, 00:06:16, Serial 2/0
```

分析:可以看到三台设备上都有了 R 条目,说明 RIP 协议生效,可以学习到其他路由器 的路由信息。

步骤 8: 测试网络的连通性

```
C: Wsers Administrator>ping 192.168.3.22

正在 Ping 192.168.3.22 具有 32 字节的数据:
来自 192.168.3.22 的回复: 字节=32 时间<1ms TTL=128

192.168.3.22 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 0ms,平均 = 0ms

C: Wsers Administrator>
```

分析: 可以看到两台 PC 可以连通了。

(1) 将此时的路由表与步骤 1 进行比较,有什么结论?

由上一页中得到的路由表,可以看到路由表不再为空,不仅有了我们新配的直连路由信息,还包含了通过 RIP 协议学习到的新路由信息。

(2) 分析 tracert PC1 的结果

```
C: Wsers Administrator>tracert 192.168.5.11
通过最多 30 个跃点跟踪
到 STU83 [192.168.5.11] 的路由:
                <1 臺秒
                         <1 臺秒 192.168.3.1
      <1 臺秒
  2
      38 ms
               39 ms
                        39 ms
                              192.168.2.1
      46 ms
  3
               47 ms
                        47 ms
                              192.168.1.2
      42 ms
                        43 ms
                              STU83 [192.168.5.11]
               43 ms
跟踪完成。
```

分析:由 192.168.3.22到 192.168.5.11 经过了以下路径

- 1. PC2 发送的数据到与之直接相连的路由 192. 168. 3. 1;
- 2. 路由器 R2 根据目的地址,将其转到另一接口 192. 168. 2. 2,因为它的路由表中记录的信息是:通过 192. 168. 2. 1 这个接口可以到达 192. 168. 5. 0 这个网络:
- 3. 路由器 R1 与 R2 相连的接口 192. 168. 2. 1 收到了数据, 查看路由表: 通过 192. 168. 1. 2 这个接口可以到达 192. 168. 5. 0 这个网络;
- 4. 交换机收到了数据,查看路由表: 192. 168. 5. 0 这个网络是直连网络,直接发送到与之相连的接口 0/5。
- (3) 进行拔线实验,通过 wireshark 抓包测试报文变化的时间差,路由有没有出现毒性反转现象?

未拔线之前的报文:

205 168.25473/192.168.3.22	192.168.5.11	ICMP	74 Echo (ping) request	id=0x0001, seq=170/43520,
206 168.29044(192.168.5.11	192.168.3.22	ICMP	74 Echo (ping) reply	id=0x0001, seq=170/43520,
207 169.25688(192.168.3.22	192.168.5.11	ICMP	74 Echo (ping) request	id=0x0001, seq=171/43776,
208 169.29444(192.168.5.11	192.168.3.22	ICMP	74 Echo (ping) reply	id=0x0001, seq=171/43776,
209 170.13943{192.168.3.1	224.0.0.9	RIPv2	106 Response	
210 170.25885!192.168.3.22	192.168.5.11	ICMP	74 Echo (ping) request	id=0x0001, seq=172/44032,
211 170, 29444; 192, 168, 5, 11	192.168.3.22	ICMP	74 Echo (ping) reply	id=0x0001. seq=172/44032.

展开分组进行观察:

```
209 170.139438000 192.168.3.1 224.0.0.9 RIPv2 106 Response
⊕ Ethernet II, Src: FujianRu_27:bf:0a (58:69:6c:27:bf:0a), Dst: IPv4mcast_09 (01:00:5e:00:00:09)
⊞ Internet Protocol Version 4, Src: 192.168.3.1 (192.168.3.1), Dst: 224.0.0.9 (224.0.0.9)

■ User Datagram Protocol, Src Port: 520 (520), Dst Port: 520 (520)

■ Routing Information Protocol
    Command: Response (2)
    Version: RIPv2 (2)
  ■ IP Address: 192.168.1.0, Metric: 2
      Address Family: IP (2)
       Route Tag: 0
      IP Address: 192.168.1.0 (192.168.1.0)
Netmask: 255.255.255.0 (255.255.255.0)
Next Hop: 0.0.0.0 (0.0 0.0)
      Metric: 2
  ■ IP Address: 192.168.2.0, Metric: 1
      Address Family: IP (2)
       Route Tag: 0
      IP Address: 192.168.2.0 (192.168.2.0)
Netmask: 255.255.255.0 (255.255.255.0)
Next Hop: 0.0.0.0 (0.0 0.0)
      Metric: 1
  ■ IP Address: 192.168.5.0, Metric: 3
      Address Family: IP (2)
       Route Tag: 0
       IP Address: 192.168.5.0 (192.168.5.0)
       Netmask: 255.255.255.0 (255.255.255.0)
       Next Hop: 0.0.0.0 (0.0.0.0)
       Metric: 3
```

上图为路由器 R2 的组播报文信息,其中显示的 Metric 是 R2 到达各个网络的距离,直接相连的 192.168.2.0 为 1,之后每需要经过一个路由器,跳数加 1。

拔掉连接交换机和路由器的网线之后:

192.168.3.1	192.168.3.22	ICMP	Destination unreachable (Network unreachable)
192.168.3.22	192.168.5.11	ICMP	Echo (ping) request id=0x0001, seq=195/49920,
192.168.3.1	192.168.3.22	ICMP	Destination unreachable (Network unreachable)
192.168.3.22	192.168.5.11	ICMP	Echo (ping) request id=0x0001, seq=196/50176,
192.168.3.1	192.168.3.22	ICMP	Destination unreachable (Network unreachable)
192.168.3.22	192.168.5.11	ICMP	Echo (ping) request id=0x0001, seq=197/50432,
192.168.3.1	192.168.3.22	ICMP	Destination unreachable (Network unreachable)

```
> Frame 1503: 106 bytes on wire (848 bits), 106 bytes captured (848 bits) on interface 0
> Ethernet II, Src: RuijieNe_15:57:b5 (58:69:6c:15:57:b5), Dst: IPv4mcast_09 (01:00:5e:00:00:09)
> Internet Protocol Version 4, Src: 192.168.5.1, Dst: 224.0.0.9

User Datagram Protocol, Src Port: 520, Dst Port: 520

    Routing Information Protocol
        Command: Response (2)
        Version: RIPv2 (2)
> IP Address: 192.168.1.0, Metric: 16
> IP Address: 192.168.2.0, Metric: 16
> IP Address: 192.168.3.0, Metric: 16
```

上图为交换机发送的RIP信息,可以看到非直接连接的3个网络地址的跳数都变为了16,即不可达。

> Internet Protocol Version 4, Src: 192.168.3.1, Dst: 224.0.0.9

> User Datagram Protocol, Src Port: 520, Dst Port: 520

Routing Information Protocol

Command: Response (2) Version: RIPv2 (2)

> IP Address: 192.168.1.0, Metric: 16
> IP Address: 192.168.2.0, Metric: 1
> IP Address: 192.168.5.0, Metric: 16

再看路由器 R2 的 rip 信息,除了直连网络 192.168.2.0,其余跳数都变为了 16。由此可知,出现了毒性反转。

(4) 捕获数据包,分析 RIP 封装结构

```
4 209 170.139438000 192.168.3.1 224.0.0.9 RIPv2 106 Response

■ Ethernet II, Src: FujianRu_27:bf:0a (58:69:6c:27:bf:0a), Dst: IPv4mcast_09 (01:00:5e:00:00:09)

⊕ Internet Protocol Version 4, Src: 192.168.3.1 (192.168.3.1), Dst: 224.0.0.9 (224.0.0.9)

■ User Datagram Protocol, Src Port: 520 (520), Dst Port: 520 (520)

☐ Routing Information Protocol

    Command: Response (2)
    Version: RIPv2 (2)
  ☐ IP Address: 192.168.1.0, Metric: 2
      Address Family: IP (2)
      Route Tag: 0
      IP Address: 192.168.1.0 (192.168.1.0)
      Netmask: 255.255.255.0 (255.255.255.0)
      Next Hop: 0.0.0.0 (0.0.0.0)
      Metric: 2
  ☐ IP Address: 192.168.2.0, Metric: 1
      Address Family: IP (2)
      Route Tag: 0
      IP Address: 192.168.2.0 (192.168.2.0)
Netmask: 255.255.255.0 (255.255.255.0)
      Next Hop: 0.0.0.0 (0.0.0.0)
      Metric: 1
  ☐ IP Address: 192.168.5.0, Metric: 3
      Address Family: IP (2)
      Route Tag: 0
      IP Address: 192.168.5.0 (192.168.5.0)
      Netmask: 255.255.255.0 (255.255.255.0)
      Next Hop: 0.0.0.0 (0.0.0.0)
      Metric: 3
```

RIP 报文是封装在 UDP 当中的

```
□ User Datagram Protocol, Src Port: 520 (520), Dst Port: 520 (520)
Source Port: 520 (520)
Destination Port: 520 (520)
Length: 52
☑ Checksum: 0xd049 [validation disabled]
[Stream index: 5]
□ Routing Information Protocol
```

Version RIP 的版本, IP Address:IP 地址 , Netmask: 掩码 , Next Hop:下一跳地址, Metric:最大跳数。

实验表明 RIP 包在 PC1 和 PC2 上都能捕获到。

PC1

Source	Destination	Protocol	Info
192.168.5.1	224.0.0.9	RIPv2	Response
192.168.5.1	224.0.0.9	RIPv2	Response
192.168.5.1	224.0.0.9	RIPv2	Response
192.168.5.1	224.0.0.9	RIPv2	Response
192.168.5.1	224.0.0.9	RIPv2	Response

PC2

Source	Destination	Protoco1	Info
192.168.3.1	224.0.0.9	RIPv2	Response
192.168.3.1	224.0.0.9	RIPv2	Response
192.168.3.1	224.0.0.9	RIPv2	Response
192.168.3.1	224.0.0.9	RIPv2	Response
192.168.3.1	224.0.0.9	RIPv2	Response
192.168.3.1	224.0.0.9	RIPv2	Response

【实验思考】

(1) 查看交换机端口 0/1 所属 VLAN 应使用哪条命令?

答: show vlan 即可查看所有端口所属 VLAN。下图中, 0/1 端口属于 VLAN 10。

S5750(config)#show vlan VLAN Name	Status	Ports
1 VLAN0001	STATIC	Gi0/2, Gi0/3, Gi0/4, Gi0/6 Gi0/7, Gi0/8, Gi0/9, Gi0/10 Gi0/11, Gi0/12, Gi0/13, Gi0/14 Gi0/15, Gi0/16, Gi0/17, Gi0/18 Gi0/19, Gi0/20, Gi0/21, Gi0/22 Gi0/23, Gi0/24, Gi0/25, Gi0/26 Gi0/27, Gi0/28
10 VLAN0010 50 VLAN0050 S5750(config)#	STATIC STATIC	GiO/1 GiO/5

(2) 如何查看 RIP 版本号和发布到的网段?

答: show ip protocols

```
13-RSR20-1(config)#show ip protocols
Routing Protocol is "rip"
  Sending updates every 30 seconds
  Invalid after 180 seconds, flushed after 120 seconds
  Outgoing update filter list for all interface is: not set
  Incoming update filter list for all interface is: not set
  Redistribution default metric is 1
  Redistributing:
  Default version control: send version 1, receive version 1
                                  Send Recv
    Interface
    Serial 2/0
                                   1
                                         1
    GigabitEthernet 0/1
                                   1
                                         1
  Routing for Networks:
   10.0.0.0 255.0.0.0
  Distance: (default is 120)
  Graceful-restart disabled
```


例如,从上面的信息可以看到,RIP版本为1,发布到的网段为10.0.0.0/8。

- (3) RIPv1 的广播地址是什么? RIPv2 的组播地址是什么?
- 答: RIPv1 的广播地址为 255. 255. 255. 255 RIPv2 组播地址为 224. 0. 0. 9
- (4) 使用 10.10.X.0 的 IP 地址重做本次实验。
- (5) RIPv1 必须使用自动汇总,不支持不连续网络,请实验验证。RIPv2 支持不连续 网络吗?
- 答:以上两问见实验报告"第二部分"。
- (6) RIPv1 对路由没有标记功能, RIPv2 可以对路由打标记, 用于过滤和做策略。请在实验中观察和分析。

Routing Information Protocol

Command: Response (2) Version: RIPv1 (1)

v IP Address: 192.168.1.0, Metric: 2

Address Family: IP (2) IP Address: 192.168.1.0

Metric: 2

v IP Address: 192.168.2.0, Metric: 1

Address Family: IP (2) IP Address: 192.168.2.0

Metric: 1

- > User Datagram Protocol, Src Port: 520, Dst Port: 520
- Routing Information Protocol

Command: Response (2) Version: RIPv2 (2)

IP Address: 192.168.1.0, Metric: 1

Address Family: IP (2)

Route Tag: 0

IP Address: 192.168.1.0 Netmask: 255.255.255.0

Next Hop: 0.0.0.0

Metric: 1

可以看到, RIPv2有 Route Tag, 并且比 RIPv1 多了子网掩码的信息。

由图中可以知道,RIPv1 没有携带子网掩码信息,足以说明其不支持 VLSM,但是我们依然按照实验报告中的要求进行了实验验证,详细内容在实验报告的"第二部分"。

第二部分:通过实验观察 RIP V1 和 V2 的区别

也即实验思考的(4)(5)两问。

【实验拓扑】

【实验过程】

配置交换机、路由器的过程与第一部分相同,但是 ip 地址及掩码遇拓扑图中一致,且不使用 v2, 即不输入 version 2 的命令。

测试网络的连通性:

```
C: VIsers Administrator > ping 10.10.3.22 -t

正在 Ping 10.10.3.22 具有 32 字节的数据:
来自 10.10.1.1 的回复: 无法访问目标网。
来自 10.10.1.1 的回复: 无法访问目标网。
来自 10.10.1.1 的回复: 无法访问目标网。
来自 10.10.1.1 的回复: 无法访问目标网。
```

可以看到,在使用 RIPv1 的情况下, 主机无法连通。

使用 tracert 命令,可以看到到达 10.10.1.1 之后就无法继续了。

在我们的实验中,只有 10.10.2.0 这个网络的掩码是 30 位,即 255.255.255.255 ,其他 网络掩码均为 24 位,即 255.255.255 。0,我们知道 RIPv1 不支持 VLSM,那么端口上实际 获得的子网掩码是什么呢?

为了弄清楚这一点,我们通过 show ip database 查看路由信息

路由器 R1:

13-RSR20-1(config)#show ip rip database
10.0.0.0/8 auto-summary
10.10.1.0/24
[1] directly connected, GigabitEthernet 0/1
10.10.2.0/30
[1] directly connected, Serial 2/0
10.10.3.0/30
[1] via 10.10.2.2 Serial 2/0 00:16
10.10.5.0/24
[1] via 10.10.1.2 GigabitEthernet 0/1 00:17

路由器 R2:

```
13-RSR20-2(config)#show ip rip database
10.0.0.0/8 auto-summary
10.10.1.0/30
[1] via 10.10.2.1 Serial 2/0 00:14
10.10.2.0/30
[1] directly connected, Serial 2/0
10.10.3.0/24
[1] directly connected, GigabitEthernet 0/1
10.10.5.0/30
[2] via 10.10.2.1 Serial 2/0 00:14
13-RSR20-2(config)#
```

可以看到,对于 R1 来说,通过 10.10.2.0 与 R2 相连学习到的 10.10.3.0 的掩码也变成了 30 位;对于 R2 来说,通过 10.10.2.0 与 R1 相连学习到的 10.10.1.0 和 10.10.5.0 的子网掩码都变成了 30 位。这是什么原因呢?为此,我们有必要了解一下 RIPv1 的接收更新规则:

将网络地址和接收接口的网络地址进行比较,判断是否处于同一主网络
1).处于同一主网络,直接赋予该网络地址接收接口的掩码并写入路由表
2).不处于同一主网络,首先查看路由表中是否存在该主网络的任一子网
a.不存在,接收该网络地址,并赋予该网络地址一个有类掩码,同时写入路由表
b.存在,忽略该路由更新并丢弃

据此可以知道,由于 R1/R2 所接收到的路由信息中的网络地址和接收接口处于同一主网络(均为 A 类的 10.0.0.0),所以直接赋予该网络地址接收接口的掩码(/30)。 所以说,**它们学习到的网络地址,都是 30 位的掩码**。

之后我们使用 RIPv2 进行处理,做如下修改并查看路由表:

路由器 R1:

```
13-RSR20-1(config-router)#version 2
13-RSR20-1(config-router)#no auto-summary
13-RSR20-1(config-router)#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
        0 - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
     10.10.1.0/24 is directly connected, GigabitEthernet 0/1
     10.10.1.1/32 is local host.
c
     10.10.2.0/30 is directly connected, Serial 2/0
c
     10.10.2.1/32 is local host.
R
     10.10.3.0/24 [120/1] via 10.10.2.2, 00:01:38, Serial 2/0
     10.10.5.0/24 [120/1] via 10.10.1.2, 00:23:01, GigabitEthernet 0/1
```

路由器 R2:

```
13-RSR20-2(config)#router rip
13-RSR20-2(config-router)#version 2
13-RSR20-2(config-router)#no auto-summary
13-RSR20-2(config-router)#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
        O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
     10.10.1.0/24 [120/1] via 10.10.2.1, 00:06:51, Serial 2/0
     10.10.2.0/30 is directly connected, Serial 2/0
     10.10.2.2/32 is local host.
С
     10.10.3.0/24 is directly connected, GigabitEthernet 0/1
С
     10.10.3.1/32 is local host.
     10.10.5.0/24 [120/2] via 10.10.2.1, 00:06:51, Serial 2/0
```

可以看到路由表中的信息都是正确的子网掩码长度了,说明 V2 支持 VLSM,而原因在于RIPv2 在更新路由信息时,是携带子网掩码信息的。

此时测试 PC 的连通性:

```
C: Wsers Administrator>ping 10.10.3.22 -t

正在 Ping 10.10.3.22 具有 32 字节的数据:
来自 10.10.3.22 的回复: 字节=32 时间=37ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=36ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=35ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=38ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=37ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=35ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=35ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=38ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=38ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=36ms TTL=125
```



```
C:\Users\Administrator>tracert 10.10.5.11
通过最多 30 个跃点跟踪
到 STU38 [10.10.5.11] 的路由:
               <1 臺秒
                         <1 憂秒 10.10.3.1
      40 ms
               39 ms
                       39 ms
                              10.10.2.1
               47 ms
 3
      50 ms
                       47 ms
                              10.10.1.2
      46 ms
               43 ms
                       43 ms
                              STU38 [10.10.5.11]
跟踪完成。
```

跟踪路由,没有问题。

下面回答【实验思考】的第(5)问:

在 RIPv1 中,路由报文不带有子网掩码,只能按主类网络号识别网络掩码。当发送路由信息时,路由器首先会检查新的路由信息和发送接口所在网络是否一致。对于边界路由器(连接两个不同主类网络)来说,肯定是不一致。那么路由器就会对新的路由进行汇总(按照主网类型,赋予不同的子网掩码)。

那么在不连续子网中,如果边界路由器采用的是 RIPv1,路由汇总会引起路由信息的丢失。由于 RIPv2 可以关闭自动汇总,VLSM 可以生效,宣告的网段不会被自动汇总成 ABC 三类标准地址。所以说,RIPv2 是可以支持不连续网络的。

实验验证 RIPv1 不支持不连续网络

【实验拓扑】

我们的想法是,在不关闭自动汇总的情况下,PC1 的 ip 地址在交换机(边界路由器)处会被汇总为10.0.0.0/8,PC2 的地址在路由器 R2(边界路由器)处也会被汇总为 A 类主网10.0.0.0/8,并且这两个路由信息都会发送给中间的路由器 R1。

R1上就有了到达同一汇聚类型目的网络,但不同方向的路由网络。任何一侧的 PC 发送一个到达另一侧 PC 的数据包时,在到达 R1 后都会按照路由表中由本侧子网生成的汇聚路由表项回到本地子网,而不会到达目的 PC,即 PC1 和 PC2 无法 ping 通。

【实验过程】

配置交换机、路由器的过程与第一部分相同,我们只需要修改相应的 IP 地址就可以了,我们需要注意的是不要写关于 version2 相关的指令就可以了。 测试网络的连通性:

```
C: Wsers Administrator>ping 10.10.3.22

正在 Ping 10.10.3.22 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
10.10.3.22 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 0,丢失 = 4 <100% 丢失>,
C: Wsers Administrator>
```

可以看到网络是不连通的,说明在使用 RIPv1 的情况下,是不支持不连续网络的。

接着我们换为 RIPv2, 具体做如下修改, 即加上 version2 指令, 此时是开启自动汇总功能的:

路由器 R1:

```
13-RSR20-1(config)#router rip
13-RSR20-1(config-router)#version 2
```

13-RSR20-1(config-router)#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

R 10.0.0.0/8 [120/1] via 192.168.2.2, 00:07:26, Serial 2/0 [120/1] via 192.168.1.2, 00:06:36, GigabitEthernet 0/1

C 192.168.1.0/24 is directly connected, GigabitEthernet 0/1

C 192.168.1.1/32 is local host.

C 192.168.2.0/24 is directly connected, Serial 2/0

C 192.168.2.1/32 is local host.

13-RSR20-1(config-router)#

路由器 R2:

Gateway of last resort is no set

- C 10.10.3.0/24 is directly connected, GigabitEthernet 0/1
- C 10.10.3.1/32 is local host.
- R 192.168.1.0/24 [120/1] via 192.168.2.1, 00:07:10, Serial 2/0
- C 192.168.2.0/24 is directly connected, Serial 2/0
- C 192.168.2.2/32 is local host.

交换机:

Codes: C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

R 10.10.3.0/24 [120/2] via 192.168.1.1, 00:03:17, VLAN 10

C 10.10.5.0/24 is directly connected, VLAN 50

C 10.10.5.1/32 is local host.

C 192.168.1.0/24 is directly connected, VLAN 10

C 192.168.1.2/32 is local host.

R 192.168.2.0/24 [120/1] via 192.168.1.1, 00:23:34, VLAN 10 S5750(config)#

可以看到路由器 R1 中还是有 2 条方向不同,但是目的网络相同的路由表项。

此时虽然采用 RIPv2, 但是没有关闭自动汇总, 在这种情况下依然不连通。通过跟踪路由的指令:

C:\Users\Administrator>tracert 10.10.3.22

通过最多 30 个跃点跟踪到 10.10.3.22 的路由

1 10.10.5.1 报告:无法访问目标网。

跟踪完成。

C:\Users\Administrator>

然后我们关闭自动汇总的功能,即 no auto-summary:

路由器 R1:

Gateway of last resort is no set

R 10.10.3.0/24 [120/1] via 192.168.2.2, 00:08:08, Serial 2/0

R 10.10.5.0/24 [120/1] via 192.168.1.2, 00:07:47, GigabitEthernet 0/1

C 192.168.1.0/24 is directly connected, GigabitEthernet 0/1

C 192.168.1.1/32 is local host.

C 192.168.2.0/24 is directly connected, Serial 2/0

C 192.168.2.1/32 is local host.

13-RSR20-1(config-router)#

路由器 R2:

Gateway of last resort is no set

C 10.10.3.0/24 is directly connected, GigabitEthernet 0/1

C 10.10.3.1/32 is local host.

R 10.10.5.0/24 [120/2] via 192.168.2.1, 00:00:05, Serial 2/0

192.168.1.0/24 [120/1] via 192.168.2.1, 00:11:10, Serial 2/0

C 192.168.2.0/24 is directly connected, Serial 2/0

192.168.2.2/32 is local host.

13-RSR20-2(config-router)#show ip route

使用 tracert 指令进行追踪:

```
通过最多 30 个跃点跟踪
到 STU38 [10.10.3.22] 的路由:
                                                    毫秒 10.10.5.1
毫秒 192.168.1.1
            <1
                             <1
                                               <1
   2
            <1
                             <1
                                               <1
   3
            38 ms
                           40 ms
                                           39 ms
                                                       192.168.2.2
            42 ms
                            43 ms
                                                       STU38 [10.10.3.22]
   4
                                           43 ms
跟踪完成。
C:\Users\Administrator>ping 10.10.3.22
正在 Ping 10.10.3.22 具有 32 字节的数据:
来自 10.10.3.22 的回复: 字节=32 时间=36ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=35ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=34ms TTL=125
来自 10.10.3.22 的回复: 字节=32 时间=37ms TTL=125
10.10.3.22 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 34ms,最长 = 37ms,平均 = 35ms
C:\Users\Administrator>
```

此时我们测试网络的连通性,发现可以连通了,同时跟踪路由,经过的路径是正确的,也没有出现任何问题,跟踪成功!

第三部分: debug 信息分析

Debug ip packet

顾名思义,是用来调试 ip 数据包的

```
13-RSR20-2#*Jun 5 00:26:11: %7: IP: s=192.168.2.1 (Serial 2/0), d=224.0.0.9, vrf=global(0), len=72, received

*Jun 5 00:26:11: %7: IP: s=192.168.2.2 (local), d=224.0.0.9 (Serial 2/0), vrf=global(0), g=224.0.0.9, len=52, sent ip pkt to lin

k_layer 222

*Jun 5 00:26:13: %7: IP: s=192.168.3.22 (GigabitEthernet 0/1), d=192.168.3.255, vrf=global(0), len=78, received

*Jun 5 00:26:14: %7: IP: s=192.168.3.22 (GigabitEthernet 0/1), d=192.168.3.255, vrf=global(0), len=78, received

*Jun 5 00:26:15: %7: IP: s=192.168.3.22 (GigabitEthernet 0/1), d=192.168.3.255, vrf=global(0), len=78, received

*Jun 5 00:26:15: %7: IP: s=192.168.3.22 (GigabitEthernet 0/1), d=192.168.3.255, vrf=global(0), len=78, received

*Jun 5 00:26:16: %7: IP: s=192.168.3.2 (GigabitEthernet 0/1), d=192.168.3.255, vrf=global(0), len=1468, received

*Jun 5 00:26:16: %7: IP: s=192.168.3.1 (local), d=224.0.0.9 (GigabitEthernet 0/1), vrf=global(0), g=224.0.0.9, len=92, sent ip p

kt to link_layer --> raw send

*Jun 5 00:26:24: %7: IP: s=192.168.3.2 (GigabitEthernet 0/1), d=192.168.3.255, vrf=global(0), len=1468, received
```

可以看到数据包的信息:源地址为 192.168.3.22,目的地址为 192.168.3.255,这是在 192.168.3.0 的网络上广播。应该是 ARP 包,是 192.168.3.22 为了找到 ip 地址为 192.168.3.1 的 mac 地址(这是它的网关)。

此外,还可以看到源地址 192.168.3.1,目的地址 224.0.0.9,这个是路由器 R2 在通过组播发送 RIP 包。源地址为 192.168.2.1 的是路由器 R2 的另一个接口,也在发送 RIP 包。

Debug ip rip

这个命令显示了发送和接收到的路由选择更新。

```
[RIP] Update timer expired via interface Serial 2/0[192.168.2.1/24]
 [RIP] Update timer schedule via interface Serial 2/0[192.168.2.1/24]
 [RIP] Prepare to send MULTICAST response
[RIP] Building update entries on Serial 2/0
      192.168.1.0/24 via 0.0.0.0 metric 1 tag 0
      192.168.5.0/24 via 0.0.0.0 metric 2 tag 0
[RIP] Send packet to 224.0.0.9 Port 520 on Serial 2/0
[RIP] RIP recveived packet, sock=32979 src=192.168.2.2 len=24
 [RIP] Received version 2 response packet on Serial 2/0
 [RIP] Cancel peer[192.168.2.2] remove timer
 [RIP] Peer[192.168.2.2] remove timer shedule...
 [RIP] Both do not need auth, Auth ok
      route-entry: family 2 tag 0 ip 192.168.3.0 mask 255.255.255.0 n
 [RIP] [192.168.3.0/24] RIP route update, protocol(4)
 [RIP] Old path is: nhop=192.168.2.2 routesrc=192.168.2.2 intf=2
 [RIP] New path is: nhop=192.168.2.2 routesrc=192.168.2.2 intf=2
 [RIP] [192.168.3.0/24] RIP distance apply from 192.168.2.2!
 [RIP] [192.168.3.0/24] cancel Route timer
 [RIP] [192.168.3.0/24] route timer schedule...
```

图中红色框内的信息,就表示更新接口 S2/0 接收到的路由信息,及路由器 R1 发送过来的两项内容 192.168.1.10 和 192.168.5.0;下一条信息表示自己发送路由信息,通过 224。0.0.9 进行组播。最大跳数分别是 1,2.

第四部分: 改变链路之后信息变化

我们一实验 7-2 为例进行分析说明,通过拔掉连接交换机和路由器 R1 的网线,改变链路 状态。

R1 路由表-拔线前:

Gateway of last resort is no set

- C 192.168.1.0/24 is directly connected, GigabitEthernet 0/1
- C 192.168.1.1/32 is local host.
- C 192.168.2.0/24 is directly connected, Serial 2/0
- C 192.168.2.1/32 is local host.
- R 192.168.3.0/24 [120/1] via 192.168.2.2, 00:00:07, Serial 2/0
- R 192.168.5.0/24 [120/1] via 192.168.1.2, 00:06:22, GigabitEthernet 0/1

R1 路由表-拔线后:

可以看到路由器 R1 之前直接相连的 192.168.1.0 网络,即和交换机相连的网络消失了;通过交换机学习到的 192.168.5.0 也消失了。

Gateway of last resort is no set

- C 192.168.2.0/24 is directly connected, Serial 2/0
- C 192.168.2.1/32 is local host.
- R 192.168.3.0/24 [120/1] via 192.168.2.2, 00:14:03, Serial 2/0

R2 路由表-拔线前:

Gateway of last resort is no set

- R 192.168.1.0/24 [120/1] via 192.168.2.1, 00:10:05, Serial 2/0
- C 192.168.2.0/24 is directly connected, Serial 2/0
- C 192.168.2.2/32 is local host.
- C 192.168.3.0/24 is directly connected, GigabitEthernet 0/1
- C 192.168.3.1/32 is local host.
- R 192.168.5.0/24 [120/2] via 192.168.2.1, 00:06:16, Serial 2/0

R2 路由表-拔线后:

Gateway of last resort is no set

- C 192.168.2.0/24 is directly connected, Serial 2/0
- C 192.168.2.2/32 is local host.
- C 192.168.3.0/24 is directly connected, GigabitEthernet 0/1
- C 192.168.3.1/32 is local host.

可以看到 R2 之前直接相连的网络还在,但是通过 R1 学习到的 192.168.1.0 和 192.168.5.0 都消失了。


```
[RIP] Old path is: nhop=192.168.2.1 routesrc=192.168.2.1 intf=2
  [RIP] New path is: nhop=192.168.2.1 routesrc=192.168.2.1 intf=2
  [RIP] [192.168.1.0/24] RIP distance apply from 192.168.2.1!
  [RIP] [192.168.1.0/24] cancel Koute timer
[RIP] [192.168.1.0/24] route timer schedule...
  [RIP] Update timer expired via interface Serial 2/U[192.168.2.2/24]
  [RIP] Update timer schedule via interface Serial 2/0[192.168.2.2/24]
  [RIP] Prepare to send MULTICAST response...
  [RIP] Building update entries on Serial 2/0
        10.10.3.0/24 via 0.0.0.0 metric 1 tag 0
  [RIP] Send packet to 224.0.0.9 Port 520 on Serial 2/0
  [RIP] Update timer expired via interface GigabitEthernet 0/1[10.10.3.1/24]
  [RIP] Update timer schedule via interface GigabitEthernet 0/1[10.10.3.1/24]
  [RIP] Prepare to send MULTICAST response...
  [RIP] Building update entries on GigabitEthernet 0/1
        10.10.5.0/24 via 0.0.0.0 metric 3 tag 0
        192.168.1.0/24 via 0.0.0.0 metric 2 tag 0
        192.168.2.0/24 via 0.0.0.0 metric 1 tag 0
  [RIP] Send packet to 224.0.0.9 Port 520 on GigabitEthernet 0/1
 [RIP] RIP recveived packet, sock=32979 src=192.168.2.1 len=44
  [RIP] Received version 2 response packet on Serial 2/0
  [RIP] Cancel peer[192.168.2.1] remove timer
  [RIP] Peer[192.168.2.1] remove timer shedule..
  [RIP] Both do not need auth, Auth ok
        route-entry: family 2 tag 0 ip 10.10.5.0 mask 255.255.255.0 nhop 0.0.0.0 metric 2
        route-entry: family 2 tag 0 ip 192.168.1.0 mask 255.255.255.0 nhop 0.0.0.0 metric 1
  [RIP] [10.10.5.0/24] RIP route update, protocol(4)
  [RIP] Old path is: nhop=192.168.2.1 routesrc=192.168.2.1 intf=2
  [RIP] New path is: nhop=192.168.2.1 routesrc=192.168.2.1 intf=2
  [RIP] [10.10.5.0/24] KIP distance apply from 192.168.2.1!
  [RIP] [10.10.5.0/24] cancel Route timer
  [RIP] [10.10.5.0/24] route timer schedule...
  [RIP] [192.168.1.0/24] RIP route update, protocol(4)
我们在验证【实验思考】(5)之后,在路由器 R2 上进行 Debug ip rip
  [RIP] Send packet to 224.0.0.9 Port 520 on GigabitEthernet 0/1
 [RIP] RIP recveived packet, sock=32979 src=192.168.2.1 len=44
  [RIP] Received version 2 response packet on Serial 2/0
  [RIP] Cancel peer[192.168.2.1] remove timer
  [RIP] Peer[192.168.2.1] remove timer shedule.
  [RIP] Both do not need auth, Auth ok
       route-entry: family 2 tag 0 ip 10.10.5.0 mask 255.255.255.0 nhop 0.0.0.0 metric 16
       route-entry: family 2 tag 0 ip 192.168.1.0 mask 255.255.255.0 nhop 0.0.0.0 metric 16
  [RIP] [10.10.5.0/24] RIP route disabling...
  [RIP] [10.10.5.0/24] cancel route timer
  [RIP] [10.10.5.0/24] route timer schedule...
  [RIP] Trigger timer Schedule, by instance 0
  [RIP] [10.10.5.0/24] ready to add into kernel...
  [RIP] NSM delete: IPv4 Route 10.10.5.0/24
  [RIP] [192.168.1.0/24] RIP route disabling...
  [RIP] [192.168.1.0/24] cancel route timer
  [RIP] [192.168.1.0/24] route timer schedule...
  [RIP] [192.168.1.0/24] ready to add into kernel...
  [RIP] NSM delete: IPv4 Route 192.168.1.0/24
  [KIP] Trigger timer expired, by instance U
  [RIP] Prepare to send MULTICAST response..
  [RIP] Building update entries on Serial 2/0
  [RIP] Skip route[10.10.3.0/24] in trigger
  [RIP] Skip route[192.168.2.0/24] in trigger
  [RIP] Skip send response packet...
  [RIP] Prepare to send MULTICAST response..
  [RIP] Building update entries on GigabitEthernet O/1
  [RIP] Skip route[10.10.3.0/24] in trigger
       10.10.5.0/24 via 0.0.0.0 metric 16 tag 0
       192.168.1.0/24 via 0.0.0.0 metric 16 tag 0
  [RIP] Skip route[192.168.2.0/24] in trigger
```

可以看到一切正常,R2 在更新信息,并且可以连通到学习到的网络 192.168.1.0 以及 10.10.5.0。

拔掉连接交换机和路由器的线,可以看到学习到的两个网络 metric 变成了 16,并且被从路由表中删掉了。

⑥ <u>中山大學</u> 计算机网络实验报告

16339021	回煜淼	100
16343065	桑娜	100
16339049	辛依繁	100