Решить краевую задачу для уравнения Лапласса $\Delta u = 0$

- 1) Вне круга $r \ge a$, $0 \le \phi \le 2\pi$, с граничным условием $u_r(a, \phi) = 7 \cos^5 \phi$.
- 2) Внутри круга $0 \le r \le a$, $0 \le \phi \le 2\pi$, с граничным условием $u_r(a, \phi) = 4\sin^3 \phi$.
- 3) Вне круга $r \ge a$, $0 \le \phi \le 2\pi$, с граничным условием $u_r(a, \phi) = 3\sin^4 \phi$.
- 4) Вне круга $r \ge a$, $0 \le \phi \le 2\pi$, с граничным условием $u(a, \phi) = 8\cos^4 \phi$.
- 5) Внутри круга $0 \le r \le a$, $0 \le \phi \le 2\pi$, с граничным условием $u(a, \phi) + u(a, \phi) = \cos \phi + \cos 2\phi$.
- 6) Вне круга $r \ge a$, $0 \le \phi \le 2\pi$, с граничным условием $u(a, \phi) = 19\sin^4 \phi$.
- 7) Внутри круга $0 \le r \le a$, $0 \le \phi \le 2\pi$, с граничным условием $u(a, \phi) = 32(\sin^6 \phi + \cos^6 \phi)$.
- 8) Вне круга $r \ge a$, $0 \le \phi \le 2\pi$, с граничным условием $u_r(a, \phi) u(a, \phi) = 4 + \cos 2\phi$
- 9) Внутри круга $0 \le r \le a$, $0 \le \phi \le 2\pi$, с граничным условием $u_r(a, \phi) = 5\cos^2 2\phi$.
- 10) Внутри круга $0 \le r \le a$, $0 \le \phi \le 2\pi$, с граничным условием $u(a, \phi) + u(a, \phi) = 3\cos^3 3\phi$.
- 11) Вне круга $r \ge a$, $0 \le \phi \le 2\pi$, с граничным условием $u(a, \phi) = 14(\cos^3 \phi + \sin^2 \phi)$.
- 12) Внутри круга $0 \le r \le a$, $0 \le \phi \le 2\pi$, с граничным условием $u(a, \phi) u(a, \phi) = 9 + \sin 2\phi + 3\cos^3\phi$.
- 13) Внутри круга $0 \le r \le a$, $0 \le \varphi \le 2\pi$, с граничным условием $u(a, \varphi) = 5\sin^3 \varphi + 4\cos^4 \varphi$.
- 14) Вне круга $r \ge a$, $0 \le \varphi \le 2\pi$, с граничным условием $u_r(a, \varphi) + u(a, \varphi) = 15 + 4\cos^2\varphi$.
- 15) Внутри круга $0 \le r \le a$, $0 \le \varphi \le 2\pi$, с граничным условием $u_r(a, \varphi) = 9\sin^4 \varphi + \cos^2 2\varphi$.
- 16) Вне круга $r \ge a$, $0 \le \phi \le 2\pi$, с граничным условием $u(a, \phi) = 5\cos^3 \phi$.