

Corso di Laurea Magistrale in Informatica **Curriculum Software Engineering and IT Management**

Infrastructure-as-Code **Defect Prediction** using PDG metrics

Prof. Dario Di Nucci

Dott. ssa Valeria Pontillo

Gerardo Iuliano

Mat.: 0522501329

⊠ g.iuliano29@studenti.unisa.it

Gerardoluliano.github.io

Infrastructure as Code

Cos'è:

- Pratica DevOps che vede l'infrastruttura come codice
- Gestione automatizzata della configurazione dell'infrastruttura

Vantaggi:

- Automazione
- Tracciabilità e versioning
- Ripetibilità

Tools:

- Ansible, Chef e Puppet
- Kubernetes, Docker Swarm (container)
- Terraform, Cloudify (virtual machine)

Ansible

Cos'è:

 Strumento open source di automazione della configurazione e orchestrazione di sistemi IT

Vantaggi:

- Agent-less
- Linguaggio dichiarativo
- Idempotenza

Struttura:

- Playbook
- Task
- Roles
- Inventory

⊠ g.iuliano29@studenti.unisa.it

Gerardoluliano.github.io

Defect Prediction

Cos'è

• È una pratica che mira a prevedere e identificare potenziali difetti o errori nel software

Come

- Metriche strutturali
- Metriche di processo
- Metriche basate sugli sviluppatori
- Metriche basate su PDG

Program Dependence Graph

Cos'è

- Una rappresentazione tramite grafo delle dipendenze e delle relazioni nel codice
- Combinazione di CFG e DFG

Usi e vantaggi

- Analisi del codice, identificazione dei problemi
- Comprensione del codice complesso

⊠ g.iuliano29@studenti.unisa.it

Gerardoluliano.github.io

Estrazione delle metriche


```
name: Gather Distribution Info
     ansible.builtin.setup:
         gather_subset: distribution!
3
     when:
         - ansible_distribution is not defined
```

Metrica	Valore	
verticesCount	7	
edgesCount	7	
globalInput	2	

Obiettivo

L'obiettivo dello studio è valutare se le metriche estratte dal Program Dependence Graph sono adatte per i modelli di previsione dei difetti in un within-project scenario, con lo scopo di migliorare il rilevamento precoce dei difetti negli script laC.

Research Questions

- RQ1. Quali metriche relative al Program Dependence Graph sono buoni predittori di difetti?
- RQ2. Qual è il miglior modello di previsione dei difetti basato sulle metriche estratte da un PDG?
- RQ3. In che misura un modello basato su metriche PDG è complementare ai modelli dello stato dell'arte?
- **RQ4**. Una combinazione di metriche basate su PDG, strutturali e di processo migliora le prestazioni?

Context Selection

80 progetti Ansible open source che rispecchiano tali criteri:

- Almeno l'11% dei file presenti nel repository sono script lac
- Evidenzia una pratica di Continuous Integration
- Ha una frequenza di commit di almeno 2 al mese in media
- Ha una frequenza di issue di almeno 0,02 al mese in media
- Ha almeno 190 linee di codice sorgente
- Ha almeno due collaboratori di base

Empirical Study Variables

Variabile Dipendente: è un valore binario che indica la presenza/assenza di un difetto.

Variabili Indipendenti: Insieme di metriche basate sull'analisi del Program Dependence Graph.

maxPdgVertices, lackOfCohesion, verticesCount, edgesCount, edgesToVerticesRatio, globalInput, globalOutput, directFanIn, indirectFanIn, directFanOut, indirectFanOut

Selecting Machine Learning Classifiers

La selezione è stata guidata principalmente dalla nostra volontà di effettuare un confronto equo con lo stato dell'arte.

Configuration and Training

Data balancing

- No balancing
- **Under-sampling**
- Over-sampling

Data normalization

- No normalization
- MinMaxScaler
- Standardization

Validation of the Approach

RQ1. Quali metriche relative al Program Dependence Graph sono buoni predittori di difetti?

RFECV: Recursive Feature Elimination Cross Validation.

L'insieme iniziale di features viene utilizzato per il primo addestramento ed ogni feature viene classificata in base al contributo che ha dato nell'addestramento.

Le features peggiori vengono eliminate dall'insieme corrente.

Questa procedura viene ripetuta ricorsivamente fino ad ottenere un numero ottimale di features.

RQ1. Quali metriche relative al Program Dependence Graph sono buoni predittori di difetti?

Metrica	Occorrenze	Rank
maxPdgVertices	57	2.21
verticesCount	50	2.92
edgesCount	41	3.88
edgesToVerticesRatio	42	3.95
globalInput	38	4.79
lackOfCohesion	24	13.58
globalOutput	2	310.50

RQ2. Qual è il miglior modello di previsione dei difetti basato sulle metriche estratte da un PDG?

Abbiamo sperimentato come le performance variano quando vengono incluse o escluse le operazioni di data balancing e data normalization.

Abbiamo calcolato metriche come *precision*, *recall*, *F-measure*, *MCC*, *AUC-PR*

Abbiamo effettuato il test statistico di *Wilcoxon* applicando la correzione di Bonferroni e il test statistico di *Friedman* applicando il test post-hoc di *Nemenyi*

Abbiamo calcolato anche il coefficiente di *Cohen* per misurare le dimensioni dell'effetto tra le coppie di classificatori.

RQ2. Qual è il miglior modello di previsione dei difetti basato sulle metriche estratte da un PDG?

Random Forest e Decision Tree riportano un valore medio di MCC di 0.64 e 0.63 rispettivamente.

Classificatore	Occorrenze
Decision Tree	47
Random Forest	46
Naive Bayes	22
Linear Regression	15
Support Vector Machine	11

RQ2. Qual è il miglior modello di previsione dei difetti basato sulle metriche estratte da un PDG?

Random Forest e Decision Tree sono i migliori modelli basati sulle metriche estratte da un PDG.

RQ3. In che misura un modello basato su metriche PDG è complementare ai modelli dello stato dell'arte?

Dati i due modelli di previsione, m_i e m_i abbiamo calcolato:

- $m_i \cap m_i$, ovvero il numero di bug correttamente previsti sia da m_i che da m_i
- m_i/m_i e m_i/m_i , ovvero il numero di bug correttamente previsti da m_i e mancati da m_i e viceversa.
- Il numero di bug mancati sia da m_i che da m_i .

RQ3. In che misura un modello basato su metriche PDG è complementare ai modelli dello stato dell'arte?

	$A \cap B$	$A \setminus B$	$B \setminus A$	$A \Delta B$
PDG – Delta	60,50%	23,80%	4,55%	5,15%
PDG – Process	69,16%	21,13%	4,75%	4,95%
PDG – ICO	88,70%	1,60%	6,92%	2,79%

RQ4. Una combinazione di metriche basate su PDG, strutturali e di processo migliora le prestazioni?

Abbiamo combinato 4 gruppi di metriche tra di loro.

Abbiamo generato 15 combinazioni di metriche e utilizzato la RFE per ottenere il sottoinsieme migliore da ogni combinazione.

Infine, le prestazioni sono state calcolate allo stesso modo della RQ2.

RQ4. Una combinazione di metriche basate su PDG, strutturali e di processo migliora le prestazioni?

Introduzione e Background I name: Gather Distribution Info ansible.builtin.setup: gather_subset: distribution! when: - ansible_distribution is not defined Metriche • VerticesCount: 7 • EdgesCount: 7 • GlobalInput: 2 Seguillano29@studenti.unisa.it Gerardoluliano.github.io @Gerardoluliano

Defect Prediction using PDG metrics

Infrastructure-as-Code

Grazie!

Gerardo Iuliano

g.iuliano29@studenti.unisa.it Gerardoluliano.github.io

Questa tesi ha contribuito a piantare un albero in Kenya

