

Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277

E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47CFR part 15 subpart C § 15.247 (DTS) and subpart B, RSS-247 issue 1, ICES-003 Issue 6:2016

FOR:

Triple Plus Ltd.
Shut Off actuator of
Cloud Leak Management system
Models: ZBS-SHAMAP-1-20,

SOV1

FCC ID:2AFOIZBSASOU20

IC:20798-ZBSASOU20

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Report ID: TRIRAD_FCC.29260.docx

Date of Issue: 28-Mar-17

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Changes made in EUT	5
6.4	EUT test positions	6
6.5	Transmitter characteristics	7
7	Transmitter tests according to 47CFR part 15 subpart C and RSS-247 requirements	8
7.1	Minimum 6 dB bandwidth	8
7.2	Peak output power	12
7.3	Field strength of spurious emissions	18
7.4	Band edge radiated emissions	40
7.5	Maximum power spectral density (PSD)	44
7.6	Antenna requirements	49
8	Unintentional emissions	50
8.1	Radiated emission measurements	50
9	APPENDIX A Test equipment and ancillaries used for tests	54
10	APPENDIX B Measurement uncertainties	55
11	APPENDIX C Test laboratory description	56
12	APPENDIX D Specification references	56
13	APPENDIX E Test equipment correction factors	57
14	APPENDIX F Abbreviations and acronyms	67
15	APPENDIX G Manufacturer's declaration	68

1 Applicant information

Client name: Triple Plus Ltd.

Address: 5 Hamada street, Yokneam 2069200, Israel

Telephone: +972 72 211 7711 **Fax:** +972 221 1379

E-mail: jacob.goren@tripleplus.io

Contact name: Mr. Jacob Goren

2 Equipment under test attributes

Product name: Shut off actuator of Cloud Leak Management system

Product type: Transceiver operating in 2.4 GHz band

Model(s): ZBS-SHAMAP-1-20

Serial number: 90-7A-F1-00-52-3A-01-C7

Hardware version: 1.0
Software release: 1.0.0.12
Receipt date 21-Feb-17

3 Manufacturer information

Manufacturer name: Triple Plus Ltd.

Address: 5 Hamada street, Yokneam 2069200, Israel

Telephone: +972 72 211 7711 **Fax:** +972 221 1379

E-Mail: jacob.goren@tripleplus.io

Contact name: Mr. Jacob Goren

4 Test details

Project ID: 29260

Location: Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel

Test started: 21-Feb-17 **Test completed:** 05-Mar-17

Test specification(s): FCC 47CFR part 15 subpart C § 15.247 (DTS) and subpart B;

RSS-247 issue 1, RSS-Gen issue 4, ICES-003 issue 6:2016

5 Tests summary

Test	Status
Transmitter characteristics	
FCC section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth	Pass
FCC section 15.247(b)3/ RSS-247 section 5.4(4), Peak output power	Pass
FCC section 15.247(i) / RSS-102 section 2.5.2, RF exposure	Pass, the exhibit to the application of certification is provided
FCC section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions	Pass
FCC section 15.247(d)/ RSS-247 section 5.5, Emissions at band edges	Pass
FCC section 15.247(e) / RSS-247 section 5.2(2), Peak power density	Pass
FCC section 15.203 / RSS-Gen section 8.3, Antenna requirement	Pass
FCC section 15.207(a) / RSS-Gen section 8.8, Conducted emission	Not required
Unintentional emissions	
FCC section 15.107 / ICES-003, Section 6.1 class B, Conducted emission at AC power port	Not required
FCC section 15.109 / RSS-Gen, Section 7.1.2/ ICES-003, Section 6.2 class B, Radiated emission	Pass

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. K. Zushchyk, test engineer	March 5, 2017	A
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	March 19, 2017	Chu
Approved by:	Mr. M. Nikishin, EMC and radio group leader	March 28, 2017	H

6 EUT description

6.1 General information

The EUT, shut off actuatort transceiver, is a part of of Cloud Leakage Management (CLM) system. The EUT, installed on a water valve, shuts off the water pipe when receives a command from the HUB. The unit is powered by a battery and utilizes the integral antenna.

According to manufacturer's declaration provided in Appendix G of the test report, both devices, model ZBS-SHAMAP-1-20 and model SOV1 are electrically/electronically identical. That is why only ZBS-SHAMAP-1-20 was tested.

6.2 Test configuration

6.3 Changes made in EUT

No changes were implemented in the EUT during testing.

6.4 EUT test positions

Photograph 6.4.1 EUT in X-axis orthogonal position

Photograph 6.4.2 EUT in Y-axis orthogonal position

Photograph 6.4.3 EUT in Z-axis orthogonal position

6.5 Transmitter characteristics

					•				
Туре	of equipment								
Χ	Stand-alone (E								
	Combined equ	ipment (Equ	ipment wh	ere the	radio part	is fully integ	grated within and	other type of equipm	nent)
	Plug-in card (E	quipment in	tended for	a variet	y of host s	ystems)			
nter	nded use	Cor	ndition of	use					
	fixed Always at a dis			stance r	nore than :	2 m from a	II people		
X	mobile	Alw	ays at a di	stance r	nore than 2	20 cm from	all people		
	portable	May	May operate at a distance closer than 20 cm to human body						
Assigned frequency range 2400-2483.5 MHz									
Эрег	rating frequency r	ange		2405 –	- 2480 MH	Z			
				At tran	smitter 50	Ω RF outp	ut connector	NA	
viaxi	mum rated outpu	t power		Peak o	utput pow	er .		18.09 dBm	
				Χ	No				
				continuo			continuous varia	ble	
s tra	ansmitter output p	ower varia	ble?		V	stepped variable with stepsize dB		dB	
				Yes	Yes	minimum I	RF power	•	dBm
					ľ	maximum	RF power		dBm
Ante	nna connection								
			-4		dard connector X		! t I	with temporary RF connector without temporary RF connector	
	unique coupling	g	star	idard co			X integral		
Ante	nna/s technical c	haracteristi	cs						
Гуре			Manufac	turer		Model n	umber	Gain	
Internal Johanson			n Techn	ology	P/N 245	0AT18D0100	1.5 dB	i	
Гуре	of modulation				OQF	SK			
Mod	ulating test signa	l (baseband	l)		PRB	S			
Tran	smitter power so	urce							
Χ	Battery	Nominal	rated vol	tage	6.0 \	/DC	Battery type	4 x 3V batteries	s (CR123)
	DC		rated vol		VD0				•
	AC mains	Nominal	rated vol	tage	VAC		Frequency		

Test specification:	Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth				
Test procedure:	ANSI C63.10 section 11.8.1				
Test mode:	Compliance	Verdict: PASS			
Date(s):	26-Feb-17	Verdict: PASS			
Temperature: 25 °C	Relative Humidity: 44 %	Air Pressure: 1019 hPa	Power: Battery		
Remarks:					

7 Transmitter tests according to 47CFR part 15 subpart C and RSS-247 requirements

7.1 Minimum 6 dB bandwidth

7.1.1 General

This test was performed to measure 6 dB bandwidth of the EUT carrier frequency. Specification test limits are given in Table 7.1.1.

Table 7.1.1 The 6 dB bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points*, dBc	Minimum bandwidth, kHz
902.0 – 928.0		
2400.0 – 2483.5	6.0	500.0
5725.0 – 5850.0		

^{* -} Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- **7.1.2.2** The EUT was set to transmit modulated carrier.
- **7.1.2.3** The transmitter minimum 6 dB bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.1.2 and associated plot.

Figure 7.1.1 The 6 dB bandwidth test setup

Test specification:	Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth				
Test procedure:	ANSI C63.10 section 11.8.1				
Test mode:	Compliance	Vardiate	PASS		
Date(s):	26-Feb-17	Verdict: PASS			
Temperature: 25 °C	Relative Humidity: 44 %	Air Pressure: 1019 hPa	Power: Battery		
Remarks:					

Table 7.1.2 The 6 dB bandwidth test results

ASSIGNED FREQUENCY BAND: 2400.0 – 2483.5 MHz

DETECTOR USED:

SWEEP TIME:

RESOLUTION BANDWIDTH:

VIDEO BANDWIDTH:

MODULATION ENVELOPE REFERENCE POINTS:

MODULATION:

MODULATING SIGNAL:

Peak

Auto

100 kHz

300 kHz

6.0 dBc

OQPSK

PRBS

Carrier frequency, MHz	6 dB bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
Low frequency				
2405.00	1658.00	500.00	1158.00	PASS
Mid frequency				
2440.00	1655.00	500.00	1155.00	PASS
High frequency				
2480.00	1655.00	500.00	1155.00	PASS

Reference numbers of test equipment used

HL 3818	HL 4114	HL 5111			

Full description is given in Appendix A.

Test specification: Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth

Test procedure: ANSI C63.10 section 11.8.1

Test mode: Compliance Verdict: PASS

Date(s): 26-Feb-17

Temperature: 25 °C Relative Humidity: 44 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Plot 7.1.1 The 6 dB bandwidth test result at low frequency

Transmit Freq Error -45.474 Hz x dB Bandwidth 1.658 MHz

Plot 7.1.2 The 6 dB bandwidth test result at mid frequency

Transmit Freq Error -3.975 kHz x dB Bandwidth 1.655 MHz

Test specification: Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth

Test procedure: ANSI C63.10 section 11.8.1

Test mode: Compliance Verdict: PASS

Date(s): 26-Feb-17

Temperature: 25 °C Relative Humidity: 44 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Plot 7.1.3 The 6 dB bandwidth test result at high frequency

Transmit Freq Error -3.685 kHz x dB Bandwidth 1.655 MHz

Report ID: TRIRAD_FCC.29260.docx

Date of Issue: 28-Mar-17

Test specification:	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power				
Test procedure:	ANSI C63.10 section 11.9.1.1				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	21-Feb-17	verdict:	PASS		
Temperature: 25 °C	Relative Humidity: 42 %	Air Pressure: 1019 hPa	Power: Battery		
Remarks:					

7.2 Peak output power

7.2.1 General

This test was performed to measure the maximum peak output power radiated by transmitter. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Peak output power limits

Assigned frequency	Maximum antenna	Peak output power*		Equivalent field strength
range, MHz	gain, dBi	W	dBm	limit @ 3m, dB(μV/m)**
902.0 - 928.0				
2400.0 - 2483.5	6.0	1.0	30.0	131.2
5725.0 - 5850.0				

^{*-} The limit is provided in terms of conducted RF power at the antenna connector. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:

by 1 dB for every 3 dB that the directional gain of antenna exceeds 6 dBi for fixed point-to-point transmitters operate in 2400-2483.5 MHz band;

without any corresponding reduction for fixed point-to-point transmitters operate in 5725-5850 MHz band; by the amount in dB that the directional gain of antenna exceeds 6 dBi for the rest of transmitters.

**- Equivalent field strength limit was calculated from the peak output power as follows: E=sqrt(30×P×G)/r, where P is peak output power in Watts, r is antenna to EUT distance in meters and G is transmitter antenna gain in dBi.

7.2.2 Test procedure

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- 7.2.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.2.2.3** The resolution bandwidth of spectrum analyzer was set wider than 6 dB bandwidth of the EUT and the field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.2.2.4** The maximum field strength of the EUT carrier frequency was measured as provided in Table 7.2.2 and associated plots.
- 7.2.2.5 The maximum peak output power was calculated from the field strength of carrier as follows:

$$P = (E \times d)^2 / (30 \times G)$$

where P is the peak output power in W, E is the field strength in V/m, d is the test distance and G is the transmitter numeric antenna gain over an isotropic radiator.

The above equation was converted in logarithmic units for 3 m test distance:

Peak output power in dBm = Field strength in dB(μV/m) - Transmitter antenna gain in dBi – 95.2 dB

7.2.2.6 The worst test results (the lowest margins) were recorded in Table 7.2.2.

Test specification:	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power				
Test procedure:	ANSI C63.10 section 11.9.1.1				
Test mode:	Compliance	Vordict	PASS		
Date(s):	21-Feb-17	Verdict: PASS			
Temperature: 25 °C	Relative Humidity: 42 %	Air Pressure: 1019 hPa	Power: Battery		
Remarks:					

Figure 7.2.1 Setup for carrier field strength measurements

Test specification: Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power

Test procedure: ANSI C63.10 section 11.9.1.1

Test mode: Compliance Verdict: PASS

Date(s): 21-Feb-17

Temperature: 25 °C Relative Humidity: 42 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Table 7.2.2 Peak output power test results

ASSIGNED FREQUENCY: 2400 – 2483.5 MHz

TEST DISTANCE: 3 m

TEST SITE: Semi anechoic chamber

EUT HEIGHT: 1.5 m DETECTOR USED: Peak

TEST ANTENNA TYPE: Biconilog (30 MHz – 1000 MHz)

Double ridged guide (above 1000 MHz)

MODULATION:

MODULATING SIGNAL:

TRANSMITTER OUTPUT POWER SETTINGS:

DETECTOR USED:

OQPSK
PRBS
Maximum
Peak

EUT 6 dB BANDWIDTH: Low – 1658.00 kHz

Mid – 1655.00 kHz High – 1655.00 kHz

RESOLUTION BANDWIDTH: 3 MHz
VIDEO BANDWIDTH: 10 MHz

Frequency, MHz	Field strength, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	EUT antenna gain, dBi	Peak output power, dBm**	Limit, dBm	Margin, dB***	Verdict
2405.00	114.15	Horizontal	1.13	245	1.5	17.45	30.00	-11.05	Pass
2440.00	114.75	Horizontal	1.27	49	1.5	18.05	30.00	-10.45	Pass
2480.00	114.79	Horizontal	1.27	77	1.5	18.09	30.00	-10.41	Pass

^{*-} EUT front panel refer to 0 degrees position of turntable.

Reference numbers of test equipment used

HL 1984	HL 4353	HL 4360	HL 5103		

Full description is given in Appendix A.

^{**-} Peak output power was calculated from the field strength of carrier as follows: $P = (E \times d)^2 / (30 \times G)$, where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance: Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB ***- Margin = Peak output power – specification limit.

Test specification:	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power						
Test procedure:	ANSI C63.10 section 11.9.1.1						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	21-Feb-17	verdict.	FASS				
Temperature: 25 °C	Relative Humidity: 42 %	Air Pressure: 1019 hPa	Power: Battery				
Remarks:							

Plot 7.2.1 Field strength of carrier at low frequency (X-axis EUT position)

Plot 7.2.2 Field strength of carrier at low frequency (Y-axis EUT position)

Test specification:	Section 15.247(b)3 / RSS-24	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power							
Test procedure:	ANSI C63.10 section 11.9.1.1								
Test mode:	Compliance	Verdict:	PASS						
Date(s):	21-Feb-17	verdict.	FAGG						
Temperature: 25 °C	Relative Humidity: 42 %	Air Pressure: 1019 hPa	Power: Battery						
Remarks:									

Plot 7.2.3 Field strength of carrier at low frequency (Z-axis EUT position)

Plot 7.2.4 Field strength of carrier at mid frequency (X-axis EUT position)

Test specification:	Section 15.247(b)3 / RSS-24	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power							
Test procedure:	ANSI C63.10 section 11.9.1.1								
Test mode:	Compliance	Verdict:	PASS						
Date(s):	21-Feb-17	verdict:	PASS						
Temperature: 25 °C	Relative Humidity: 42 %	Air Pressure: 1019 hPa	Power: Battery						
Remarks:									

Plot 7.2.5 Field strength of carrier at high frequency (X-axis EUT position)

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions						
Test procedure:	ANSI C63.10 section 11.12.1						
Test mode:	Compliance	Verdict: PASS					
Date(s):	23-Feb-17	verdict:	PASS				
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery				
Remarks:							

7.3 Field strength of spurious emissions

7.3.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Radiated spurious emissions limits

Frequency, MHz	Field streng	th at 3 m within res dB(μV/m)*	tricted bands,	Attenuation of field strength of spurious versus		
1 requeitey, imiz	Peak	Quasi Peak	Average	carrier outside restricted bands, dBc***		
0.009 - 0.090	148.5 – 128.5	NA	128.5 - 108.5**			
0.090 - 0.110	NA	108.5 – 106.8**	NA			
0.110 - 0.490	126.8 – 113.8	NA	106.8 - 93.8**			
0.490 - 1.705		73.8 – 63.0**				
1.705 – 30.0*		69.5		20.0		
30 – 88	NΙΔ	40.0	NA	20.0		
88 – 216	NA	43.5	INA			
216 – 960		46.0				
960 - 1000		54.0				
1000 – 10 th harmonic	74.0	NA	54.0			

^{*-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $\lim_{S^2} = \lim_{S^1} + 40 \log (S_1/S_2)$,

where S_1 and S_2 – standard defined and test distance respectively in meters.

7.3.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized and the performance check was conducted.
- **7.3.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- 7.3.2.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

7.3.3 Test procedure for spurious emission field strength measurements above 30 MHz

- **7.3.3.1** The EUT was set up as shown in Figure 7.3.2, Figure 1.1.3, energized and the performance check was conducted.
- **7.3.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.3.3.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

^{**-} The limit decreases linearly with the logarithm of frequency.

^{*** -} The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions						
Test procedure:	ANSI C63.10 section 11.12.1						
Test mode:	Compliance	Verdict: PASS					
Date(s):	23-Feb-17	verdict:	PASS				
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery				
Remarks:							

Figure 7.3.1 Setup for spurious emission field strength measurements below 30 MHz

Test specification:	Section 15.247(d) / RSS-24	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions							
Test procedure:	ANSI C63.10 section 11.12.1								
Test mode:	Compliance	Verdict:	PASS						
Date(s):	23-Feb-17	verdict:	PASS						
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery						
Remarks:									

Figure 7.3.2 Setup for spurious emission field strength measurements in 30 -1000 MHz

Figure 7.3.3 Setup for spurious emission field strength measurements above1000 MHz

Test specification: Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions

Test procedure: ANSI C63.10 section 11.12.1

Test mode: Compliance Verdict: PASS

Date(s): 23-Feb-17

Temperature: 25 °C Relative Humidity: 35 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Table 7.3.2 Field strength of emissions outside restricted bands

ASSIGNED FREQUENCY: 2400 – 2483.5 MHz INVESTIGATED FREQUENCY RANGE: 0.009 – 25000 MHz

TEST DISTANCE: 3 m

MODULATION: OQPSK

MODULATING SIGNAL: PRBS

TRANSMITTER OUTPUT POWER SETTINGS: Maximum

TRANSMITTER OUTPUT POWER: 18.45 dBm at low carrier frequency

19.15 dBm at mid carrier frequency 19.19 dBm at high carrier frequency

DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 100 kHz
VIDEO BANDWIDTH: 300 kHz

TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)

Biconilog (30 MHz – 1000 MHz)

Double ridged guide (above 1000 MHz) Field strength Field strength Attenuation Azimuth, Margin, Frequency Antenna Antenna Limit, of spurious, of carrier, below carrier, Verdict dB** MHz polarization height, m degrees* dBc $dB(\mu V/m)$ dB(μV/m) dBc Low carrier frequency 20.00 7216.57 Vertical 2.5 315 107.41 64.04 44.04 Pass 43.37 Mid carrier frequency No emissions were found Pass High carrier frequency No emissions were found **Pass**

^{*-} EUT front panel refers to 0 degrees position of turntable.

^{**-} Margin = Attenuation below carrier – specification limit.

Test specification: Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions

Test procedure: ANSI C63.10 section 11.12.1

Test mode: Compliance Verdict: PASS

Date(s): 23-Feb-17

Temperature: 25 °C Relative Humidity: 35 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Table 7.3.3 Field strength of spurious emissions above 1 GHz within restricted bands

ASSIGNED FREQUENCY: 2400 – 2483.5 MHz INVESTIGATED FREQUENCY RANGE: 0.009 – 25000 MHz

TEST DISTANCE: 3 m

MODULATION: OQPSK

MODULATING SIGNAL: PRBS

TRANSMITTER OUTPUT POWER SETTINGS: Maximum

TRANSMITTER OUTPUT POWER:

18.45 dBm at low carrier frequency
19.15 dBm at mid carrier frequency

19.19 dBm at high carrier frequency

DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 1000 kHz

TEST ANTENNA TYPE: Double ridged guide

TECTATO						Jubic Huge	ou galac				
Fraguenav	Anteni	na	A = i ma : :4 h	Peak field s	trength(VB	W=3 MHz)	Average	e field stren	gth(VBW=1	0 Hz)	
Frequency, MHz	Polarization	Height,	Azimuth, degrees*	Measured,	- ,	• .	Measured,	•	,	Margin,	Verdict
171112	i Giarization	m	acgrees	dB(μV/m)	dB(μV/m)	dB**	dB(μV/m)	dB(μV/m)	dB(μV/m)	dB***	
Low carrie	r frequency										
4811.22	Vertical	2.0	330	54.20	74.00	-19.80	54.20	21.24	54.00	-32.76	Pass
Mid carrier	frequency										
4881.23	Horizontal	2.0	0	55.04	74.00	-18.96	55.04	22.08	54.00	-31.92	Pass
7321.63	Vertical	1.9	10	51.57	74.00	-22.43	51.57	18.61	54.00	-35.39	F 455
High carrie	High carrier frequency										
4958.98	Vertical	1.7	45	55.79	74.00	-18.21	55.79	22.83	54.00	-31.17	Pass
7441.77	Vertical	1.8	0	51.77	74.00	-22.23	51.77	18.81	54.00	-35.19	F a 5 5

^{*-} EUT front panel refers to 0 degrees position of turntable.

where Calculated field strength = Measured field strength + average factor.

Table 7.3.4 Average factor calculation

Transmis	sion pulse	Transmis	sion burst	Transmission train	Average factor,
Duration, ms	Period, ms	Duration, ms	Period, ms	duration, ms	dB
2.25	1001.00	NA	NA	NA	-32.96

^{*-} Average factor was calculated as follows for pulse train shorter than 100 ms: $\frac{Average\ factor}{Average\ factor} = 20 \times \log_{10} \left(\frac{Pulse\ duration}{Pulse\ period} \times \frac{Burst\ duration}{Train\ duration} \times Number\ of\ bursts\ within\ pulse\ train} \right)$ for pulse train longer than 100 ms: $\frac{Average\ factor}{Average\ factor} = 20 \times \log_{10} \left(\frac{Pulse\ duration}{Pulse\ period} \times \frac{Burst\ duration}{100\ ms} \times Number\ of\ bursts\ within\ 100\ ms} \right)$

^{**-} Margin = Measured field strength - specification limit.

^{***-} Margin = Calculated field strength - specification limit,

Power: Battery

Temperature: 25 °C

Remarks:

Test specification: Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions

Test procedure: ANSI C63.10 section 11.12.1

Test mode: Compliance Verdict: PASS

Date(s): 23-Feb-17

Air Pressure: 1019 hPa

Table 7.3.5 Field strength of spurious emissions below 1 GHz within restricted bands

ASSIGNED FREQUENCY: 2400 – 2483.5 MHz INVESTIGATED FREQUENCY RANGE: 0.009 – 1000 MHz

Relative Humidity: 35 %

TEST DISTANCE: 3 m

MODULATION: OQPSK

MODULATING SIGNAL: PRBS

TRANSMITTER OUTPUT POWER SETTINGS: Maximum

TRANSMITTER OUTPUT POWER: 18.45 dBm at low carrier frequency

19.15 dBm at mid carrier frequency 19.19 dBm at high carrier frequency

RESOLUTION BANDWIDTH: 0.2 kHz (9 kHz – 150 kHz)

9.0 kHz (150 kHz – 30 MHz) 120 kHz (30 MHz – 1000 MHz)

VIDEO BANDWIDTH: > Resolution bandwidth
TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)

Frequency,	Peak	Qua	si-peak		Antenna	Antenna	Turn-table	
MHz			polarization	height, m	position**, degrees	Verdict		
Low carrier	Low carrier frequency							
No emissions were found							Pass	
Mid carrier f	requency							
	-	No	emissions we	ere found				Pass
High carrier	High carrier frequency							
	No emissions were found						Pass	

^{*-} Margin = Measured emission - specification limit.

Reference numbers of test equipment used

HL 0446	HL 0604	HL 3818	HL 3901	HL 4353	HL 4360	HL 4933	HL 4956
HL 5103							

Full description is given in Appendix A.

^{**-} EUT front panel refer to 0 degrees position of turntable.

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.1			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	23-Feb-17	verdict:	PASS	
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery	
Remarks:				

Table 7.3.6 Restricted bands according to FCC section 15.205

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 38.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	ADUVE 30.0

Table 7.3.7 Restricted bands according to RSS-Gen

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.291 - 8.294	16.80425 - 16.80475	399.9 - 410	3260 - 3267	10.6 - 12.7
2.1735 - 2.1905	8.362 - 8.366	25.5 - 25.67	608 - 614	3332 – 3339	13.25 - 13.4
3.020 - 3.026	8.37625 - 8.38675	37.5 - 38.25	960 – 1427	3345.8 – 3358	14.47 – 14.5
4.125 – 4.128	8.41425 - 8.41475	73 - 74.6	1435 – 1626.5	3500 – 4400	15.35 – 16.2
4.17725 – 4.17775	12.29 – 12.293	74.8 - 75.2	1645.5 - 1646.5	4500 – 5150	17.7 – 21.4
4.20725 - 4.20775	12.51975 – 12.52025	108 – 138	1660 - 1710	5350 - 5460	22.01 - 23.12
5.677 - 5.683	12.57675 – 12.57725	156.52475 - 156.52525	1718.8 - 1722.2	7250 - 7750	23.6 - 24
6.215 - 6.218	13.36 – 13.41	156.7 - 156.9	2200 - 2300	8025 - 8500	31.2 - 31.8
6.26775 - 6.26825	16.42 - 16.423	240 - 285	2310 - 2390	9000 - 9200	36.43 - 36.5
6.31175 - 6.31225	16.69475 - 16.69525	322 - 335.4	2655 - 2900	9300 - 9500	Above 38.6

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.1			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Feb-17	verdict:	PASS	
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery	
Remarks:				

Plot 7.3.1 Radiated emission measurements at the low carrier frequency

TEST SITE: OATS
TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

Plot 7.3.2 Radiated emission measurements at the low carrier frequency

TEST SITE: OATS
TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.1			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Feb-17	verdict.	FASS	
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery	
Remarks:				

Plot 7.3.3 Radiated emission measurements at the mid carrier frequency

TEST SITE: OATS
TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

Plot 7.3.4 Radiated emission measurements at the mid carrier frequency

TEST SITE: OATS
TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal

Test specification: Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions

Test procedure: ANSI C63.10 section 11.12.1

Test mode: Compliance Verdict: PASS

Date(s): 23-Feb-17

Temperature: 25 °C Relative Humidity: 35 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Plot 7.3.5 Radiated emission measurements at the high carrier frequency

TEST SITE: OATS
TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

Plot 7.3.6 Radiated emission measurements at the high carrier frequency

TEST SITE: OATS
TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.1			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Feb-17	verdict.	FASS	
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery	
Remarks:				

Plot 7.3.7 Radiated emission measurements from 0.009 to 30 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m

Plot 7.3.8 Radiated emission measurements from 0.009 to 30 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Feb-17	verdict.	FASS
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery
Remarks:			

Plot 7.3.9 Radiated emission measurements from 0.009 to 30 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m

Plot 7.3.10 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.1			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Feb-17	verdict.	FASS	
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery	
Remarks:				

Plot 7.3.11 Radiated emission measurements from 30 to 1000 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.12 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.1			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Feb-17	verdict.	FASS	
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery	
Remarks:				

Plot 7.3.13 Radiated emission measurements from 1000 to 3000 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.14 Radiated emission measurements from 1000 to 3000 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Feb-17	verdict.	FASS
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery
Remarks:			

Plot 7.3.15 Radiated emission measurements from 1000 to 3000 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.16 Radiated emission measurements from 3000 to 18000 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.1			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Feb-17	verdict.	FASS	
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery	
Remarks:				

Plot 7.3.17 Radiated emission measurements from 3000 to 18000 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.18 Radiated emission measurements from 3000 to 18000 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Feb-17	verdict:	PASS
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery
Remarks:			

Plot 7.3.19 Radiated emission measurements from 18000 to 25000 MHz at the low carrier frequency

22.9805 GHz, 23.0715 GHz - ambient

Plot 7.3.20 Radiated emission measurements from 18000 to 25000 MHz at the mid carrier frequency

22.9805 GHz, 23.0715 GHz - ambient

Test specification: Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions

Test procedure: ANSI C63.10 section 11.12.1

Test mode: Compliance Date(s): 23-Feb-17

Temperature: 25 °C Relative Humidity: 35 % Air Pressure: 1019 hPa Power: Battery

Remarks: PASS

Plot 7.3.21 Radiated emission measurements from 18000 to 25000 MHz at the high carrier frequency

22.9805 GHz, 23.0715 GHz - ambient

Plot 7.3.22 Radiated emission measurements at the second harmonic of low carrier frequency

Test specification: Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions

Test procedure: ANSI C63.10 section 11.12.1

Test mode: Compliance Verdict: PASS

Date(s): 23-Feb-17

Temperature: 25 °C Relative Humidity: 35 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Plot 7.3.23 Radiated emission measurements at the second harmonic of mid carrier frequency

Plot 7.3.24 Radiated emission measurements at the second harmonic of high carrier frequency

Test specification: Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions

Test procedure: ANSI C63.10 section 11.12.1

Test mode: Compliance Verdict: PASS

Date(s): 23-Feb-17

Temperature: 25 °C Relative Humidity: 35 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Plot 7.3.25 Radiated emission measurements at the third harmonic of low carrier frequency

Plot 7.3.26 Radiated emission measurements at the third harmonic of mid carrier frequency

Test specification: Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions

Test procedure: ANSI C63.10 section 11.12.1

Test mode: Compliance Verdict: PASS

Date(s): 23-Feb-17

Temperature: 25 °C Relative Humidity: 35 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Plot 7.3.27 Radiated emission measurements at the third harmonic of high carrier frequency

Test specification: Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions

Test procedure: ANSI C63.10 section 11.12.1

Test mode: Compliance Verdict: PASS

Date(s): 23-Feb-17

Temperature: 25 °C Relative Humidity: 35 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Plot 7.3.28 Transmission pulse duration

Plot 7.3.29 Transmission pulse period

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Band edge emissions				
Test procedure:	ANSI C63.10 section 11.12.1				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	02-Mar-17	verdict:	PASS		
Temperature: 25 °C	Relative Humidity: 44 %	Air Pressure: 1013 hPa	Power: Battery		
Remarks:	-		·		

7.4 Band edge radiated emissions

7.4.1 General

This test was performed to measure emissions, radiated from the EUT at the assigned frequency band edges. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Band edge emission limits

Output power	Assigned frequency, MHz	Attenuation below carrier*, dBc	Field strength at 3 m within restricted bands, dB(μV/m)		
	rrequericy, winz	carrier, ubc	Peak	Average	
	902.0 - 928.0				
Peak	2400.0 - 2483.5	20.0	74.0	54.0	
	5725.0 – 5850.0				
Averaged ever a time	902.0 - 928.0				
Averaged over a time interval	2400.0 - 2483.5	30.0	74.0	54.0	
iritervar	5725.0 – 5850.0				

^{* -} Band edge emission limit is provided in terms of attenuation below the peak of modulated carrier measured with the same resolution bandwidth.

7.4.2 Test procedure

- **7.4.2.1** The EUT was set up as shown in Figure 7.4.1, energized normally modulated at the maximum data rate and its proper operation was checked.
- **7.4.2.2** The EUT was adjusted to produce maximum available to end user RF output power at the lowest carrier frequency.
- **7.4.2.3** The spectrum analyzer span was set to capture the carrier frequency and associated modulation products. The resolution bandwidth was set wider than 1 % of the frequency span.
- **7.4.2.4** The spectrum analyzer was set in max hold mode and allowed trace to stabilize. The highest emission level within the authorized band was measured.
- **7.4.2.5** The maximum band edge emission and modulation product outside of the band were measured as provided in Table 7.4.2 and associated plots and referenced to the highest emission level measured within the authorized band.
- **7.4.2.6** The above procedure was repeated with the EUT adjusted to produce maximum RF output power at the highest carrier frequency.

Figure 7.4.1 Band edge emission test setup

Test specification: Section 15.247(d) / RSS-247 section 5.5, Band edge emissions

Test procedure: ANSI C63.10 section 11.12.1

Test mode: Compliance Verdict: PASS

Date(s): 02-Mar-17

Temperature: 25 °C Relative Humidity: 44 % Air Pressure: 1013 hPa Power: Battery

Remarks:

Table 7.4.2 Band edge emission test results outside restricted bands

ASSIGNED FREQUENCY RANGE: 2400.0 – 2483.5 MHz

DETECTOR USED:

MODULATION:

MODULATING SIGNAL:

TRANSMITTER OUTPUT POWER SETTINGS:

Peak

OQPSK

PRBS

Maximum

TRANSMITTER OUTPUT POWER: 18.45 dBm at low carrier frequency 19.19 dBm at high carrier frequency

Frequency, MHz	Band edge emission, dB(μV/m)	Emission at carrier, dB(μV/m)	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict	
Peak power							
2400.00	68.85	104.26	-35.41	20.0	-15.41	Pass	
Averaged over a time interval power							
2400.00	58.44	93.59	-35.15	30.0	-5.15	Pass	

^{*-} Margin = Attenuation below carrier - specification limit.

Table 7.4.3 Band edge emission test results within restricted bands

ASSIGNED FREQUENCY RANGE: 2400.0 – 2483.5 MHz

DETECTOR USED: Peak
MODULATION: OQPSK
MODULATING SIGNAL: PRBS
TRANSMITTER OUTPUT POWER SETTINGS: Maximum

TRANSMITTER OUTPUT POWER: 18.45 dBm at low carrier frequency 19.19 dBm at high carrier frequency

F	Peak b	and edge emis	ssion	Average band edge emission				
Frequency, MHz	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Measured, dB(μV/m)	Calculated, dB(μV/m)	Limit, dB(μV/m)	Margin, dB***	Verdict
2483.56	73.56	74.00	-0.44	73.56	40.6	54.00	-13.40	Pass

^{*-} EUT front panel refers to 0 degrees position of turntable.

where Calculated field strength = Measured field strength + average factor.

Table 7.4.4 Average factor calculation

Transmis	Transmission pulse		Transmission burst		Average factor,	
Duration, ms	Period, ms	Duration, ms	Period, ms	duration, ms	dB	
2.25	1001.00	NA	NA	NA	-32.96	

^{*-} Average factor was calculated as follows

for pulse train shorter than 100 ms: $\frac{Pulse\ duration}{Pulse\ period} \times \frac{Burst\ duration}{Train\ duration} \times \frac{Burst\ duration}{Number\ of\ bursts\ within\ pulse\ train}$

for pulse train longer than 100 ms: $Average\ factor = 20 \times \log_{10} \left(\frac{Pulse\ duration}{Pulse\ period} \times \frac{Burst\ duration}{100\ ms} \times Number\ of\ bursts\ within\ 100\ ms \right)$

Reference numbers of test equipment used

HL 3818	HL 4114	HL 5111			

Full description is given in Appendix A.

^{**-} Margin = Measured field strength - specification limit.

^{***-} Margin = Calculated field strength - specification limit,

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Band edge emissions				
Test procedure:	ANSI C63.10 section 11.12.1				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	02-Mar-17	verdict.	FASS		
Temperature: 25 °C	Relative Humidity: 44 %	Air Pressure: 1013 hPa	Power: Battery		
Remarks:					

Plot 7.4.1 The highest emission level within the assigned band at low carrier frequency

Plot 7.4.2 The highest emission level within the assigned band at high carrier frequency

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Band edge emissions					
Test procedure:	ANSI C63.10 section 11.12.1					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	02-Mar-17	verdict.	FAGG			
Temperature: 25 °C	Relative Humidity: 44 %	Air Pressure: 1013 hPa	Power: Battery			
Remarks:						

Plot 7.4.3 Transmission pulse duration

Plot 7.4.4 Transmission pulse period

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density					
Test procedure:	ANSI C63.10 section 11.10.2					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	27-Feb-17	verdict:	PASS			
Temperature: 25 °C	Relative Humidity: 44 %	Air Pressure: 1019 hPa	Power: Battery			
Remarks:						

7.5 Maximum power spectral density (PSD)

7.5.1 General

This test was performed to measure the peak spectral power density radiated by the transmitter RF antenna. Specification test limits are given in Table 7.5.1.

Table 7.5.1 Peak spectral power density limits

Assigned frequency range, MHz	Measurement bandwidth, kHz	Peak spectral power density, dBm	Equivalent field strength limit @ 3m, dB(μV/m)*
902.0 - 928.0			
2400.0 - 2483.5	3.0	8.0	103.2
5725.0 – 5850.0			

^{* -} Equivalent field strength limit was calculated from the peak spectral power density as follows: E=sqrt(30×P)/r, where P is peak spectral power density and r is antenna to EUT distance in meters.

7.5.2 Test procedure for field strength measurements

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- **7.5.2.2** The EUT was adjusted to produce maximum available to end user RF output power.
- **7.5.2.3** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.5.2.4** The frequency span of spectrum analyzer was set to capture the entire 6 dB band of the transmitter, in peak hold mode with resolution bandwidth set to 3.0 kHz, video bandwidth wider than resolution bandwidth, auto sweep time and sufficient number of sweeps was allowed for trace stabilization.
- **7.5.2.5** Spectrum analyzer was set in peak hold mode, sufficient number of sweeps was allowed for trace stabilization and peak spectral power density was measured as provided in Table 7.5.2 and the associated plots.

Test specification:	Section 15.247(e) / RSS-24	7 section 5.2(2), Maximum p	oower spectral density
Test procedure:	ANSI C63.10 section 11.10.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	27-Feb-17	verdict:	PASS
Temperature: 25 °C	Relative Humidity: 44 %	Air Pressure: 1019 hPa	Power: Battery
Remarks:			

Figure 7.5.1 Setup for carrier field strength measurements

Test specification: Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density

Test procedure: ANSI C63.10 section 11.10.2

Test mode: Compliance Verdict: PASS

Date(s): 27-Feb-17

Temperature: 25 °C Relative Humidity: 44 % Air Pressure: 1019 hPa Power: Battery

Remarks:

Table 7.5.2 Field strength measurement of peak spectral power density

ASSIGNED FREQUENCY: 2400 – 2483.5 MHz

TEST DISTANCE: 3 m
TEST SITE: OATS
EUT HEIGHT: 1.5 m
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 3 kHz
VIDEO BANDWIDTH: 10 kHz

TEST ANTENNA TYPE: Double ridged guide (above 1000 MHz)

MODULATION: OQPSK MODULATING SIGNAL: PRBS TRANSMITTER OUTPUT POWER SETTINGS: Maximum

TRANSMITTER OUTPUT POWER: 18.45 dBm at low carrier frequency

19.15dBm at mid carrier frequency 19.19dBm at high carrier frequency

Frequency, MHz	Field strength, dB(μV/m)	EUT antenna gain, dBi	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees
2405.00	96.53	0.5	103.20	-7.17	Horizontal	1.13	245
2440.00	96.38	0.5	103.20	-7.32	Horizontal	1.27	49
2480.00	98.05	0.5	103.20	-5.65	Horizontal	1.27	77

^{*-} Margin = Field strength - EUT antenna gain - calculated field strength limit.

Reference numbers of test equipment used

HL 3818	HL 4114	HL 5111			

Full description is given in Appendix A.

^{**-} EUT front panel refer to 0 degrees position of turntable.

Test specification:	Section 15.247(e) / RSS-247	section 5.2(2), Maximum p	power spectral density	
Test procedure:	ANSI C63.10 section 11.10.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	27-Feb-17	verdict:	PASS	
Temperature: 25 °C	Relative Humidity: 44 %	Air Pressure: 1019 hPa	Power: Battery	
Remarks:				

Plot 7.5.1 Peak spectral power density at low frequency

Plot 7.5.2 Peak spectral power density at mid frequency

Test specification:	Section 15.247(e) / RSS-24	7 section 5.2(2), Maximum p	oower spectral density	
Test procedure:	ANSI C63.10 section 11.10.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	27-Feb-17	verdict:	PASS	
Temperature: 25 °C	Relative Humidity: 44 %	Air Pressure: 1019 hPa	Power: Battery	
Remarks:				

Plot 7.5.3 Peak spectral power density at high frequency

Test specification:	specification: Section 15.203, Antenna requirements							
Test procedure:	Visual inspection							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	5-Mar-17	verdict:	PASS					
Temperature: 25 °C	Relative Humidity: 44 %	Air Pressure: 1013 hPa	Power: Battery					
Remarks:								

7.6 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.6.1.

Table 7.6.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	Visual inspection	
The transmitter employs a unique antenna connector	NA	Comply
The transmitter requires professional installation	NA	

Photograph 7.6.1 Antenna assembly

Test specification:	FCC 47 CFR, Section 15.109 / RSS-Gen, Section 7.1.2 / ICES-003, Radiated emission						
Test procedure:	ANSI C63.4, Sections 8.3 and 12.2.5						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	23-Feb-17	verdict.	FASS				
Temperature: 25 °C	Relative Humidity: 35 % Air Pressure: 1019 hPa		Power: Battery				
Remarks:							

8 Unintentional emissions

8.1 Radiated emission measurements

8.1.1 General

This test was performed to measure radiated emissions from the EUT enclosure. The specification test limits are given in Table 8.1.1, Table 8.1.2.

Table 8.1.1 Radiated emission limits according to FCC Part 15, Section 109 and ICES-003, Section 6.2

Frequency,	Class B lim	it, dB(μV/m)	Class A limit, dB(μV/m)			
MHz	10 m distance	3 m distance	10 m distance	3 m distance		
30 - 88	29.5*	40.0	39.0	49.5*		
88 - 216	33.0*	43.5	43.5	54.0*		
216 - 960	35.5*	46.0	46.4	56.9*		
960 - 5 th harmonic**	960 - 5 th harmonic** 43.5*		49.5	60.0*		

^{* -} The limit for test distance other than specified was calculated using the inverse linear distance extrapolation factor as follows: $Lim_{S2} = Lim_{S1} + 20 log (S_1/S_2)$,

where S_1 and S_2- standard defined and test distance respectively in meters.

Table 8.1.2 Radiated emission limits according to RSS-Gen, Section 7.1.2

Frequency, MHz	Field strength limit at 3 m test distance, dB(μV/m)
30 - 88	40.0
88 - 216	43.5
216 - 960	46.0
960 - 5 th harmonic**	54.0

^{** -} harmonic of the highest frequency the EUT generates, uses, operates or tunes to.

8.1.2 Test procedure

8.1.3 Test procedure

- **8.1.3.1** The EUT was set up as shown in Figure 8.1.1 and the associated photograph/s, energized and the EUT performance was checked.
- **8.1.3.2** The measurements were performed in the anechoic chamber at 3 m test distance. The specified frequency range was investigated with the antenna connected to the EMI receiver. To find the highest emission the turntable was rotated 360° and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal polarizations. The EUT cables position was varied to maximize emission.
- **8.1.3.3** The worst test results with respect to the limits were recorded in Table 8.1.3 and shown in the associated plots.

Test specification:	FCC 47 CFR, Section 15.109 / RSS-Gen, Section 7.1.2 / ICES-003, Radiated emission							
Test procedure:	ANSI C63.4, Sections 8.3 and	ANSI C63.4, Sections 8.3 and 12.2.5						
Test mode:	Compliance	Verdict:	PASS					
Date(s):	23-Feb-17	verdict.	PASS					
Temperature: 25 °C	Relative Humidity: 35 %	Air Pressure: 1019 hPa	Power: Battery					
Remarks:								

Figure 8.1.1 Setup for radiated emission measurements in anechoic chamber, table-top equipment

Photograph 8.1.1 Setup for radiated emission measurements

Test specification: FCC 47 CFR, Section 15.109 / RSS-Gen, Section 7.1.2 / ICES-003, Radiated emission ANSI C63.4, Sections 8.3 and 12.2.5 Test procedure: Compliance Test mode: **PASS** Verdict: 23-Feb-17 Date(s): Temperature: 25 °C Relative Humidity: 35 % Air Pressure: 1019 hPa Power: Battery Remarks:

Table 8.1.3 Radiated emission test results

EUT SET UP: TABLE-TOP LIMIT: Class B

EUT OPERATING MODE: Receive
TEST SITE: SEMI ANECHOIC CHAMBER

TEST DISTANCE: 3 m

DETECTORS USED: PEAK / QUASI-PEAK FREQUENCY RANGE: 90 MHz - 1000 MHz

RESOLUTION BANDWIDTH: 120 kHz

Eregueney	Peak	Quasi-peak				Antonno	Turn table	
Frequency,	emission,	Measured	Limit,	Margin,	Antenna polarization	Antenna height,	Turn-table position**,	Verdict
MHz	dB(μV/m)	emission,						verdict
IVITIZ	αΒ(μν/ιιι)	dB(μV/m)	dB(μV/m)	dB*		m	degrees	
No emissions were found								

TEST SITE: SEMI ANECHOIC CHAMBER

TEST DISTANCE: 3 m

DETECTORS USED: PEAK / AVERAGE FREQUENCY RANGE: 1000 MHz – 18000 MHz

RESOLUTION BANDWIDTH: 1000 kHz

Fraguency	Peak		Average				Antonno	Turn-table		
Frequency,	Measured	Limit,	Margin,	Measured	Limit,	Margin,	Antenna		position**,	
MHz	emission,		_	emission,		_	polarization	_	-	verdict
IVITIZ	dB(μV/m)	dB(μV/m)	dB*	$dB(\mu V/m)$	dB(μV/m)	dB*		m	degrees	
	No emissions were found									

^{*-} Margin = Measured emission - specification limit.

Reference numbers of test equipment used

HL 0604	HL 4353	HL 4360	HL 4933	HL 5103		

Full description is given in Appendix A.

^{**-} EUT front panel refers to 0 degrees position of turntable.

Test specification:	FCC 47 CFR, Section 15.109 / RSS-Gen, Section 7.1.2 / ICES-003, Radiated emission				
Test procedure:	ANSI C63.4, Sections 8.3 and 12.2.5				
Test mode:	Compliance	Verdict: PASS			
Date(s):	23-Feb-17	verdict: PASS			
Temperature: 25 °C	Relative Humidity: 35 % Air Pressure: 1019 hPa Power: Battery				
Remarks:					

Plot 8.1.1 Radiated emission measurements in 30 – 1000 MHz range, vertical and horizontal antenna polarization

TEST SITE: Anechoic chamber TEST DISTANCE: 3 m

Plot 8.1.2 Radiated emission measurements above 1000 MHz, vertical and horizontal antenna polarization

TEST SITE: Anechoic chamber TEST DISTANCE: 3 m

9 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 kHz – 30 MHz	EMCO	6502	2857	19-Jan-17	19-Jan-18
0604	Antenna BiconiLog Log-Periodic/T Bow- TIE, 26 – 2000 MHz	EMCO	3141	9611-1011	10-May-16	10-May-17
1984	Antenna, Double-Ridged Waveguide Horn, 1 to 18 GHz, 300 W	EMC Test Systems	3115	9911-5964	13-Nov-16	13-Nov-17
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	03-May-16	03-May-17
3901	Microwave Cable Assembly, 40.0 GHz, 3.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1225/2A	20-Feb-17	20-Feb-18
4114	Antenna, Double-Ridged Waveguide Horn, 1 to 18 GHz	ETS Lindgren	3117	00123515	17-Jan-17	17-Jan-18
4353	Low Loss Armored Test Cable, DC – 18 GHz, 6.2 m, N type-M/N type-M	MegaPhase	NC29- N1N1-244	12025101 003	15-Mar-17	15-Mar-18
4360	EMI Test Receiver, 20 Hz to 40 GHz.	Rohde & Schwarz	ESU40	100322	04-Dec-16	04-Dec-17
4933	Active Horn Antenna, 1 GHz to 18 GHz	Com-Power Corporation	AHA-118	701046	14-Oct-16	14-Oct-17
4956	Active horn antenna, 18 to 40 GHz	Com-Power Corporation	AHA-840	105004	17-Jan-17	17-Jan-18
5103	RF cable, 18 GHz, 6 m, N-type	Huber-Suhner	SF106A/1 1N/11N/6 000MM	500849/6A	26-Jul-16	26-Jul-17
5111	RF cable, 40 GHz, 5.5 m, K-type	Huber-Suhner	SF102EA/ 11SK/11S K/5500M M	502493/2E A	26-Jul-16	26-Jul-17

10 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Occupied bandwidth	± 8.0 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

11 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for 1, 2, 15, 18 parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; registered by Industry Canada for electromagnetic emissions, file number IC 2186A-1 for OATS, certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-869 for RE measurements above 1 GHz, C-845 for conducted emissions site and T-1606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address: P.O. Box 23, Binyamina 3055001, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

12 APPENDIX D Specification references

FCC 47CFR part 15: 2016 Radio Frequency Devices ANSI C63.10: 2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices ANSI C63.2: 1996 American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications ANSI C63.4: 2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and RSS-247 Issue 1: 2015 Licence- Exempt Local Area Network (LE-LAN) Devices RSS-Gen Issue 4: 2014 General Requirements for Compliance of Radio Apparatus

13 APPENDIX E Test equipment correction factors

Antenna factor Active loop antenna Model 6502, S/N 2857, HL 0446

Frequency, MHz	Magnetic antenna factor, dB	Electric antenna factor, dB
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.8
0.750	-41.9	9.7
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.2
4.000	-41.4	10.1
5.000	-41.5	10.1
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Antenna factor Biconilog antenna EMCO Model 3141 Ser.No.1011, HL 0604

Frequency, MHz	Antenna factor,	Frequency, MHz	Antenna factor,	Frequency, MHz	Antenna factor,
	dB(1/m)		dB(1/m)		dB(1/m)
26	7.8	580	20.6	1320	27.8
28	7.8	600	21.3	1340	28.3
30	7.8	620	21.5	1360	28.2
40	7.2	640	21.2	1380	27.9
60	7.1	660	21.4	1400	27.9
70	8.5	680	21.9	1420	27.9
80	9.4	700	22.2	1440	27.8
90	9.8	720	22.2	1460	27.8
100	9.7	740	22.1	1480	28.0
110	9.3	760	22.3	1500	28.5
120	8.8	780	22.6	1520	28.9
130	8.7	800	22.7	1540	29.6
140	9.2	820	22.9	1560	29.8
150	9.8	840	23.1	1580	29.6
160	10.2	860	23.4	1600	29.5
170	10.4	880	23.8	1620	29.3
180	10.4	900	24.1	1640	29.2
190	10.3	920	24.1	1660	29.4
200	10.6	940	24.0	1680	29.6
220	11.6	960	24.1	1700	29.8
240	12.4	980	24.5	1720	30.3
260	12.8	1000	24.9	1740	30.8
280	13.7	1020	25.0	1760	31.1
300	14.7	1040	25.2	1780	31.0
320	15.2	1060	25.4	1800	30.9
340	15.4	1080	25.6	1820	30.7
360	16.1	1100	25.7	1840	30.6
380	16.4	1120	26.0	1860	30.6
400	16.6	1140	26.4	1880	30.6
420	16.7	1160	27.0	1900	30.6
440	17.0	1180	27.0	1920	30.7
460	17.7	1200	26.7	1940	30.9
480	18.1	1220	26.5	1960	31.2
500	18.5	1240	26.5	1980	31.6
520	19.1	1260	26.5	2000	32.0
540	19.5	1280	26.6		
560	19.8	1300	27.0		

Antenna factor in dB(1/m) is to be added to receiver meter reading in $dB(\mu V)$ to convert it into field strength in $dB(\mu V/m)$.

Antenna factor Double-ridged wave guide horn antenna Model 3115, S/N 9911-5964, HL1984

Frequency, MHz	Antenna factor, dB(1/m)
1000.0	24.7
1500.0	25.7
2000.0	27.6
	28.9
2500.0	31.2
3000.0	32.0
3500.0	32.5
4000.0	32.7
4500.0	33.6
5000.0	35.1
5500.0	35.1
6000.0	
6500.0	34.9
7000.0	36.1
7500.0	37.8
8000.0	38.0
8500.0	38.1
9000.0	39.1
9500.0	38.3
10000.0	38.6
10500.0	38.2
11000.0	38.7
11500.0	39.5
12000.0	40.0
12500.0	40.4
13000.0	40.5
13500.0	41.1
14000.0	41.6
14500.0	41.7
15000.0	38.7
15500.0	38.2
16000.0	38.8
16500.0	40.5
17000.0	42.5
17500.0	45.9
18000.0	49.4

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Antenna factor Double-ridged waveguide horn antenna ETS Lindgren, Model 3117, serial number: 00123515, HL 4114

		Antenna factor, dB/m	
Frequency, MHz	Measured	Manufacturer	Deviation
1000	28.0	28.4	-0.4
1500	28.0	27.4	0.6
2000	31.2	30.9	0.3
2500	32.5	33.4	-0.9
3000	32.9	32.6	0.3
3500	32.7	32.8	-0.1
4000	33.1	33.4	-0.3
4500	33.8	33.9	-0.1
5000	33.8	34.1	-0.3
5500	34.4	34.5	-0.1
6000	35.0	35.2	-0.2
6500	35.4	35.5	-0.1
7000	35.7	35.7	0.0
7500	35.9	35.7	0.2
8000	35.8	35.8	0.0
8500	35.9	35.8	0.1
9000	36.3	36.2	0.1
9500	36.6	36.6	0.0
10000	37.1	37.1	0.0
10500	37.6	37.5	0.1
11000	37.9	37.7	0.2
11500	38.5	38.1	0.4
12000	39.2	38.7	0.5
12500	39.0	38.9	0.1
13000	39.1	39.1	0.0
13500	38.9	38.8	0.1
14000	39.0	38.8	0.2
14500	39.6	39.9	-0.3
15000	39.9	39.7	0.2
15500	39.9	40.1	-0.2
16000	40.7	40.8	-0.1
16500	41.3	41.8	-0.5
17000	42.5	42.1	0.4
17500	41.3	41.2	0.1
18000	41.4	40.9	0.5

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field strength in $dB(\mu V/meter)$

Antenna factor, HL 4933

Active Horn Antenna Factor Calibration

1 GHz to 18 GHz

Equipment:

Model:
Serial Number:
Calibration Distance:
Polarization:
Calibration Date:

ACTIVE HORN ANTENNA
AHA-118
701046
3 Meter
Horizontal

Frequency	Preamplifier Gain	Antenna Factor with pre-amp	Frequency	Preamplifier Gain	Antenna Factor with pre-amp
(GHz)	(dB)	(dB/m)	(GHz)	(dB)	(dB/m)
1	40.96	-16.47	10	40.94	-1.97
1.5	41.21	-14.53	10.5	40.63	-1.06
2	41.44	-13.30	11	40.74	-1.50
2.5	41.71	-12.87	11.5	40.65	-0.52
3	41.96	-12.26	12	40.76	-0.15
3.5	42.14	-11.77	12.5	41.03	-0.85
4	42.13	-10.91	13	41.37	-0.81
4.5	41.79	-9.41	13.5	41.18	0.05
5	41.44	-7-54	14	40.98	0.36
5.5	40.91	-6.47	14.5	40.81	1.26
6	40.69	-5.48	15	40.65	0.25
6.5	40.64	-5.53	15.5	40.93	-1.05
7	40.76	-4.12	16	41.31	-1.44
7.5	40.94	-3.12	16.5	40.96	-0.80
8	40.68	-1.69	17	40.64	-0.02
8.5	40.08	-1.71	17.5	40.57	1.81
9	40.41	-1.86	18	40.08	3.63
9.5	41.21	-2.73			

Calibration according to ARP 958

Antenna Factor to be added to receiver reading:

Meter Reading (dBuV) + Antenna Factor (dB/m) = Corrected Reading (dBuV/m)

28.5

43.01

Antenna factor, HL 4956

Active Horn Antenna Factor Calibration

18 GHz to 40 GHz

Equipment: ACTIVE HORN ANTENNA Model: AHA-840 Serial Number: 105004 Calibration Distance: 3 meter Polarization: Horizontal Calibration Date: 1/26/2015 Preamplifier Antenna Factor Preamplifier Antenna Factor Frequency Frequency with pre-amp with pre-amp Gain Gain (GHz) (dB) (dB/m) (GHz) (dB) (dB/m) 18 38.83 -1.06 29.5 42.47 -5.33 18.5 -2.65 -4.86 39.34 30 41.91 19 39.71 -3.88 30.5 41.60 -4.64 19.5 39.87 41.52 -4.60 -4-35 31 20 39.98 -3-97 41.56 31.5 -4.79 20.5 40.42 -3.68 41.80 -5.21 32 41.12 -4.06 42.29 21 32.5 -5.54 41.74 21.5 -5.46 33 42.79 -5.63 -6.22 42.88 22 42.14 33.5 -5.38 -6.42 22.5 42.35 42.62 -4.76 34 42.50 -6.59 42.63 -4.84 23 34.5 23.5 42.65 -6.82 35 43.15 -5.13 42.81 -7.01 -5.83 24 43.91 35.5 24.5 42.86 -7-37 36 44.59 -6.39 42.73 -7-53 36.5 45.04 -6.64 25 42.77 45.08 -6.40 25.5 -7.45 37 -7.21 26 42.85 44.82 -5.75 37.5 26.5 42.98 44.16 -4.58 -7.17 38 -2.66 27 43.14 -7.22 38.5 42.90 27.5 43.18 -1.71 -7.32 39 42.39 28 43.04 -7.10 43.76 -2.49 39.5

Calibration per ANSI C63.5: 2006
Standard Site Method, Equations 1-6 (3-antenna)

40

45.98

-6.73

Corrected Reading (dBµV/m) = Meter Reading (dBµV) + AFE(dB/m)

-5.21

Cable loss Microwave Cable Assembly, Huber-Suhner, 40 GHz, 3.5 m, SMA-SMA, S/N 1225/2A HL 3901

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.09	9500	4.29	21000	6.67
100	0.41	10000	4.40	22000	6.92
500	0.93	10500	4.52	23000	7.00
1000	1.33	11000	4.64	24000	7.18
1500	1.63	11500	4.76	25000	7.29
2000	1.90	12000	4.87	26000	7.55
2500	2.12	12500	4.99	27000	7.70
3000	2.33	13000	5.11	28000	7.88
3500	2.50	13500	5.20	29000	8.02
4000	2.67	14000	5.31	30000	8.15
4500	2.82	14500	5.42	31000	8.35
5000	2.99	15000	5.51	32000	8.40
5500	3.16	15500	5.58	33000	8.62
6000	3.32	16000	5.68	34000	8.73
6500	3.51	16500	5.78	35000	8.78
7000	3.65	17000	5.91	36000	8.94
7500	3.79	17500	5.99	37000	9.21
8000	3.92	18000	6.07	38000	9.37
8500	4.04	19000	6.36	39000	9.45
9000	4.18	20000	6.49	40000	9.52

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244S/N 12025101 003, HL 4353

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.20	9000	2.71
100	0.27	9500	2.81
300	0.47	10000	2.90
500	0.61	10500	2.97
1000	0.87	11000	3.06
1500	1.07	11500	3.13
2000	1.24	12000	3.20
2500	1.39	12500	3.26
3000	1.53	13000	3.34
3500	1.65	13500	3.39
4000	1.77	14000	3.47
4500	1.89	14500	3.54
5000	1.99	15000	3.62
5500	2.07	15500	3.69
6000	2.20	16000	3.76
6500	2.30	16500	3.83
7000	2.39	17000	3.86
7500	2.51	17500	3.94
8000	2.58	18000	4.02
8500	2.65		

Cable loss RF Cable, Huber-Suhner, 18 GHz, 6 m, N- type, SF106A/11N/11N/6000MM, S/N 500849/6A HL 5103

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
0.1	0.01	5500	2.43
50	0.22	6000	2.54
100	0.31	6500	2.66
200	0.43	7000	2.76
300	0.53	7500	2.87
400	0.62	8000	2.97
500	0.69	8500	3.07
600	0.76	9000	3.17
700	0.82	9500	3.27
800	0.88	10000	3.36
900	0.94	10500	3.45
1000	0.99	11000	3.54
1100	1.04	11500	3.62
1200	1.08	12000	3.71
1300	1.13	12500	3.79
1400	1.17	13000	3.88
1500	1.21	13500	3.97
1600	1.26	14000	4.05
1700	1.30	14500	4.13
1800	1.33	15000	4.22
1900	1.37	15500	4.30
2000	1.41	16000	4.38
2500	1.59	16500	4.45
3000	1.75	17000	4.52
3500	1.90	17500	4.61
4000	2.04	18000	4.72
4500	2.17		
5000	2.30		

Cable loss RF Cable, Huber-Suhner, 40 GHz, 5.5 m, K type, SF102EA/11SK/11SK/5500MM, S/N 502493/2EA HL 5111

Frequency,	Cable loss,	Frequency,	Cable loss,
MHz	dB	MHz	dB
100	0.69	20500	10.18
200	0.97	21000	10.32
300	1.18	21500	10.47
500	1.52	22000	10.60
1000	2.14	22500	10.75
1500	2.62	23000	10.87
2000	3.03	23500	11.00
2500	3.40	24000	11.12
3000	3.73	24500	11.23
3500	4.04	25000	11.35
4000	4.33	25500	11.52
4500	4.60	26000	11.64
5000	4.86	26500	11.73
5500	5.10	27000	11.84
6000	5.34	27500	11.93
6500	5.57	28000	12.05
7000	5.79	28500	12.19
7500	6.00	29000	12.33
8000	6.21	29500	12.44
8500	6.43	30000	12.53
9000	6.62	30500	12.58
9500	6.82	31000	12.71
10000	7.01	31500	12.86
10500	7.17	32000	13.00
11000	7.34	32500	13.11
11500	7.51	33000	13.24
12000	7.68	33500	13.33
12500	7.84	34000	13.44
13000	8.00	34500	13.58
13500	8.16	35000	13.69
14000	8.32	35500	13.81
14500	8.48	36000	13.93
15000	8.63	36500	14.05
15500	8.77	37000	14.24
16000	8.92	37500	14.28
16500	9.08	38000	14.38
17000	9.23	38500	14.50
17500	9.37	39000	14.61
18000	9.51	39500	14.70
18500	9.66	40000	14.83
19000	9.78		1 1100
19500	9.92		
20000	10.07		

14 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
AM amplitude modulation
AVRG average (detector)

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$

 $dB(\mu V/m) \hspace{1cm} \text{decibel referred to one microvolt per meter} \\$

 $dB(\mu A)$ decibel referred to one microampere

DC direct current

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories
Hz hertz

k kilo kHz kilohertz LO local oscillator meter m MHz megahertz min minute mm millimeter ms millisecond microsecond μS

NA not applicable
NB narrow band
OATS open area test site

 $\Omega \qquad \qquad \mathsf{Ohm}$

PM pulse modulation PS power supply

ppm part per million (10⁻⁶)

QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square

Rx receive s second T temperature Tx transmit V volt WB wideband

END OF TEST REPORT

APPENDIX G 15

Manufacturer's declaration

Declaration of Identity

We, the undersigned,

Company: Triple+

Address: 5 Hamada Street, Yoqneam, 2069200

Country: Israel

Telephone number: +972 722211370

Fax number: +972 49593991

declare under our sole responsibility that the following equipment:

Brand/Item		
Triple+ CLM™	Type/Model ZBS-SHAMAP-1-20	Short Product description
		Wireless actuator

is electronically/electrically/mechanically identical to the following equipment (including Software/Hardware

Brand/Item		
Triple+ CLM™	SOV1	Short Product description
		Wireless actuator

The reason for name change is: branding considerations. 2 pieces of equipment are absolutely identical.

END OF DOCUMENT