Lecture Notes 3 Uniform Bounds

1 Introduction

Recall that, if $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ and $\widehat{p}_n = n^{-1} \sum_{i=1}^n X_i$ then, from Hoeffding's inequality,

$$\mathbb{P}(|\widehat{p}_n - p| > \epsilon) \le 2e^{-2n\epsilon^2}.$$

Sometimes we want to say more than this.

Example 1 Suppose that X_1, \ldots, X_n have cdf F. Let

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n I(X_i \le t).$$

We call F_n the **empirical cdf**. How close is F_n to F? From Hoeffding's inequality, we have for each t, that

$$\mathbb{P}(|F_n(t) - F(t)| > \epsilon) \le 2e^{-2n\epsilon^2}.$$

But how big is $\sup_t |F_n(t) - F(t)|$? We would like a bound of the form

$$\mathbb{P}\left(\sup_{t} |F_n(t) - F(t)| > \epsilon\right) \le \text{ something small.}$$

Example 2 Suppose that $X_1, \ldots, X_n \sim P$. Let

$$P_n(A) = \frac{1}{n} \sum_{i=1}^n I(X_i \in A).$$

How close is $P_n(A)$ to P(A)? That is, how big is $|P_n(A) - P(A)|$? From Hoeffding's inequality,

$$\mathbb{P}(|P_n(A) - P(A)| > \epsilon) \le 2e^{-2n\epsilon^2}.$$

But that is only for one set A. How big is $\sup_{A \in \mathcal{A}} |P_n(A) - P(A)|$ for a class of sets A? We would like a bound of the form

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A)-P(A)|>\epsilon\right)\leq \text{ something small.}$$

Example 3 (Classification.) Suppose we observe data $(X_1, Y_1), \ldots, (X_n, Y_n)$ where $Y_i \in \{0, 1\}$. Let (X, Y) be a new pair. Suppose we observe X. Now we want to predict Y. A

classifier h is a function h(x) which takes values in $\{0,1\}$. When we observe X we predict Y with h(X). The classification error, or risk, is the probability of an error:

$$R(h) = \mathbb{P}(Y \neq h(X)).$$

The training error is the fraction of errors on the observed data $(X_1, Y_1), \ldots, (X_n, Y_n)$:

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} I(Y_i \neq h(X_i)).$$

By Hoeffding's inequality,

$$\mathbb{P}(|\widehat{R}(h) - R(h)| > \epsilon) \le 2e^{-2n\epsilon^2}.$$

How do we choose a classifier? One way is to start with a set of classifiers \mathcal{H} . Then we define \widehat{h} to be the member of \mathcal{H} that minimizes the training error. Thus

$$\widehat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \widehat{R}(h).$$

An example is the set of linear classifiers. Suppose that $x \in \mathbb{R}^d$. A linear classifier has the form h(x) = 1 of $\beta^T x \geq 0$ and h(x) = 0 of $\beta^T x < 0$ where $\beta = (\beta_1, \dots, \beta_d)^T$ is a set of parameters.

Although \widehat{h} minimizes $\widehat{R}(h)$, it does not minimize R(h). Let h_* minimize the true error R(h). A fundamental question is: how close is $R(\widehat{h})$ to $R(h_*)$? We will see later than $R(\widehat{h})$ is close to $R(h_*)$ if $\sup_h |\widehat{R}(h) - R(h)|$ is small. So we want

$$\mathbb{P}\left(\sup_{h}|\widehat{R}(h) - R(h)| > \epsilon\right) \leq \text{ something small.}$$

More generally, we can state out goal as follows. Let \mathcal{A} be a class of sets. We want a bound of the form

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A)-P(A)|>\epsilon\right)\leq c_1\kappa(\mathcal{A})e^{-c_2n\epsilon^2}$$

where $P_n(A) = n^{-1} \sum_{i=1}^n I(X_i \in A)$. Bounds like these are called *uniform bounds* since they hold uniformly over a class of functions or over a class of sets.

2 Finite Classes

Let $\mathcal{A} = \{A_1, \ldots, A_N\}$. We will make use of the *union bound*. Recall that

$$\mathbb{P}\left(B_1 \bigcup \cdots \bigcup B_N\right) \leq \sum_{j=1}^N \mathbb{P}(B_j).$$

Let B_j be the event that $|P_n(A_j) - P(A_j)| > \epsilon$. From Hoeffding's inequality, $\mathbb{P}(B_j) \leq 2e^{-2n\epsilon^2}$. Then

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A) - P(A)| > \epsilon\right) = \mathbb{P}\left(B_1 \bigcup \cdots \bigcup B_N\right) \\
\leq \sum_{j=1}^N \mathbb{P}(B_j) \leq \sum_{j=1}^N 2e^{-n\epsilon^2} = 2Ne^{-2n\epsilon^2}.$$

Thus we have shown that

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A) - P(A)| > \epsilon\right) \le 2\kappa e^{-n\epsilon^2}$$

where $\kappa = |\mathcal{A}|$.

To extend these ideas to infinite classes like $\mathcal{A} = \{(-\infty, t] : t \in \mathbb{R}\}$ we need to introduce a few more concepts.

3 Shattering

Let \mathcal{A} be a class of sets. Some examples are:

- 1. $\mathcal{A} = \{(-\infty, t] : t \in \mathbb{R}\}.$
- 2. $A = \{(a, b) : a \leq b\}.$
- 3. $A = \{(a, b) \cup (c, d) : a \le b \le c \le d\}.$
- 4. $\mathcal{A} = \text{all discs in } \mathbb{R}^d$.
- 5. $\mathcal{A} = \text{all rectangles in } \mathbb{R}^d$.
- 6. $\mathcal{A} = \text{all half-spaces in } \mathbb{R}^d = \{x : \beta^T x \ge 0\}.$
- 7. $\mathcal{A} = \text{all convex sets in } \mathbb{R}^d$.

Let $F = \{x_1, \ldots, x_n\}$ be a finite set. Let G be a subset of F. Say that \mathcal{A} picks out G if

$$A \cap F = G$$

for some $A \in \mathcal{A}$. For example, let $\mathcal{A} = \{(a,b) : a \leq b\}$. Suppose that $F = \{1,2,7,8,9\}$ and $G = \{2,7\}$. Then \mathcal{A} picks out G since $A \cap F = G$ if we choose A = (1.5,7.5) for example. Let $S(\mathcal{A},F)$ be the number of these subsets picked out by \mathcal{A} . Of course $S(\mathcal{A},F) \leq 2^n$.

Example 4 Let $A = \{(a, b) : a \leq b\}$ and $F = \{1, 2, 3\}$. Then A can pick out:

$$\emptyset$$
, $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{2,3\}$, $\{1,2,3\}$.

So s(A, F) = 7. Note that $7 < 8 = 2^3$. If $F = \{1, 6\}$ then A can pick out:

$$\emptyset$$
, $\{1\}$, $\{6\}$, $\{1,6\}$.

In this case $s(A, F) = 4 = 2^2$.

We say that F is **shattered** if $s(A, F) = 2^n$ where n is the number of points in F.

Let \mathcal{F}_n denote all finite sets with n elements.

Define the **shatter coefficient**

$$s_n(\mathcal{A}) = \sup_{F \in \mathcal{F}_n} s(\mathcal{A}, F).$$

Note that $s_n(\mathcal{A}) \leq 2^n$.

The following theorem is due to Vapnik and Chervonenis. The proof is beyond the scope of the course. (If you take 10-702/36-702 you will learn the proof.)

Theorem 5 Let A be a class of sets. Then

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A) - P(A)| > \epsilon\right) \le 8 \ s_n(\mathcal{A}) \ e^{-n\epsilon^2/32}.\tag{1}$$

This partly solves one of our problems. But, how big can $s_n(\mathcal{A})$ be? Sometimes $s_n(\mathcal{A}) = 2^n$ for all n. For example, let \mathcal{A} be all polygons in the plane. Then $s_n(\mathcal{A}) = 2^n$ for all n. But, in many cases, we will see that $s_n(\mathcal{A}) = 2^n$ for all n up to some integer d and then $s_n(\mathcal{A}) < 2^n$ for all n > d.

Class \mathcal{A}	VC dimension $V_{\mathcal{A}}$
$\mathcal{A} = \{A_1, \dots, A_N\}$	$\leq \log_2 N$
Intervals $[a, b]$ on the real line	2
Discs in \mathbb{R}^2	3
Closed balls in \mathbb{R}^d	$\leq d+2$
Rectangles in \mathbb{R}^d	2d
Half-spaces in \mathbb{R}^d	d+1
Convex polygons in \mathbb{R}^2	∞
Convex polygons with d vertices	2d + 1

Table 1: The VC dimension of some classes A.

Example 6 Let $A = \{(a, b) : a, b \in \mathbb{R}, a \leq b\}$. Then we have:

n	2^n	s_n
1	2	2
2	4	4
3	8	γ
4	16	11
:	:	:

So $s_n = 2^n$ for n = 1, 2. For n > 2 we have $s_N < 2^n$.

The Vapnik-Chervonenkis (VC) dimension is

$$d = d(\mathcal{A}) = \text{ largest n such that } s_n(\mathcal{A}) = 2^n.$$

In other words, d is the size of the largest set that can be shattered.

Thus, $s_n(\mathcal{A}) = 2^n$ for all $n \leq d$ and $s_n(\mathcal{A}) < 2^n$ for all n > d. The VC dimensions of some common examples are summarized in Table 1. Now here is an interesting question: for n > d how does $s_n(\mathcal{A})$ behave? It is less than 2^n but how much less?

Theorem 7 (Sauer's Theorem) Suppose that A has finite VC dimension d. Then, for all $n \geq d$,

$$s(\mathcal{A}, n) \le (n+1)^d. \tag{2}$$

Sauer's Theorem is very surprising. It says there is a phase transition from exponential to polynomial. We conclude that:

Theorem 8 Let A be a class of sets with VC dimension $d < \infty$. Then

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A) - P(A)| > \epsilon\right) \le 8 (n+1)^d e^{-n\epsilon^2/32}.$$
 (3)

Example 9 Let's return to our first example. Suppose that X_1, \ldots, X_n have cdf F. Let

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n I(X_i \le t).$$

We would like to bound $\mathbb{P}(\sup_t |F_n(t) - F(t)| > \epsilon)$. Notice that $F_n(t) = P_n(A)$ where $A = (-\infty, t]$. Let $A = \{(-\infty, t] : t \in \mathbb{R}\}$. This has VC dimension d = 1. So

$$\mathbb{P}(\sup_{t} |F_n(t) - F(t)| > \epsilon) = \mathbb{P}\left(\sup_{A \in \mathcal{A}} |P_n(A) - P(A)| > \epsilon\right) \le 8 (n+1) e^{-n\epsilon^2/32}.$$

In fact, there is a tighter bound in this case called the DKW (Dvoretsky-Kiefer-Wolfowitz) inequality:

$$\mathbb{P}(\sup_{t} |F_n(t) - F(t)| > \epsilon) \le 2e^{-2n\epsilon^2}.$$