DS 100: Principles and Techniques of Data Science

Discussion #9

Date: April 6, 2018

Name:

Logistic Regression

1. State whether the following claims are true or false. If false, provide a reason or correction.

- (a) A binary or multi-class classification technique should be used whenever there are categorical features.
- (b) A classifier that always predicts 0 has test accuracy of 50% on all binary prediction tasks.
- (c) In logistic regression, predictor variables are continuous with values from 0 to 1.
- (d) In a setting with extreme class imbalance in which 95% of the training data have the same label it is always possible to get at least 95% testing accuracy.

The next two questions refer to a binary classification problem with a single feature x.

2. Based on the scatter plot of the data below, draw a reasonable approximation of the logistic regression probability estimates for $\mathbb{P}(Y=1 \mid x)$

3. Your friend argues that the data are linearly separable by drawing the line on the following plot of the data. Argue whether or not your friend is correct.

2

4. You have a classification data set:

You run an algorithm to fit a model for the probability of Y = 1 given x:

$$\mathbb{P}(Y = 1 \mid x) = \sigma(\phi^{T}(x)\theta)$$

where $\phi(x) = \begin{bmatrix} 1 & x \end{bmatrix}^T$. Your algorithm returns $\hat{\theta} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}^T$

(a) Calculate $\hat{\mathbb{P}}(Y=1 \mid x=0)$

(b) Recall that the average cross-entropy loss is given by

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} -\mathbb{P}(y_i = k \mid x_i) \log \hat{\mathbb{P}}(y_i = k \mid x_i)$$
$$= -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \phi_i^T \theta + \log(\sigma(-\phi_i^T \theta)) \right]$$

where $\phi_i = \phi(x_i)$. Let $\theta = \begin{bmatrix} \theta_0 & \theta_1 \end{bmatrix}$. Explicitly write out the (empirical) loss for this data set in terms of θ_0 and θ_1 .

- (c) Calculate the loss of your fitted model $L(\hat{\theta})$.
- (d) Are the data linearly separable? If so, write the equation of a hyperplane that separates the two classes.
- (e) Does your fitted model minimize cross-entropy loss?
- 5. (a) Show that $\sigma(-x) = 1 \sigma(x)$ where $\sigma(x) = \frac{1}{1 + e^{-x}}$.
 - (b) Show that the derivative of the sigmoid function can be written as:

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$