Machine Learning 101

Carsten Gips (HSBI)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

Was ist Lernen?

Verhaltensänderung eines Agenten in Richtung der Optimierung eines Gütefunktionals (Bewertungsfunktion) durch Erfahrung.

Learning Agent

Feedback während des Lernens

Überwachtes Lernen

- Lernen durch Beobachtung
- Vorgabe von Beispielen: Ein- und Ausgabewerte
- => Regression, Klassifikation

Unüberwachtes Lernen

- Erkennen von Mustern in den Inputdaten, Clustering
- Kein Feedback (!)

Reinforcement Lernen

Bewertung der Aktionen des Agenten am Ende einer Aktionsfolge

Analogie Lernen beim Kleinkind

Beispiel: Kreditrisiko

- Bankkunde beantragt Kredit
- Soll er aus Sicht der Bank den Kredit bekommen?
- Bankangestellter betrachtet (relevante) Merkmale des Kunden:
 - Alter, Einkommen, sozialer Status
 - Kundenhistorie bei der Bank
 - Höhe des Kredits
- Bewertung des Kreditrisikos:
 - Klassifikation: Guter oder schlechter Kunde
 - Regression: Vorhersage Gewinn/Verlust für die Bank

Beispiel: Autoreparatur

- **Gegeben**: Eigenschaften eines Autos
 - => Eigenschaften: Ausprägungen der Merkmale
- **Gesucht**: Diagnose und Reparaturanleitung
 - => Hypothese über den Merkmalen (Funktion h)

Lernen durch Beobachten: Lernen einer Funktion f

• Ein Beispiel ist ein Tupel (x, f(x)), etwa

$$(\mathbf{x}, \mathbf{f}(\mathbf{x})) = \begin{pmatrix} O & O & X \\ . & X & . & , +1 \\ X & . & . \end{pmatrix}$$

- \bullet Aufgabe: Baue Hypothese h auf, so dass h \approx f.
 - Benutze dazu Menge von Beispielen => Trainingsdaten.
- Ziele:
 - 1. Konsistente Hypothese: Übereinstimmung bei Trainingsdaten
 - 2. Generalisierende Hypothese: Korrekte Vorhersage bei unbekannten Daten

Bevorzuge die einfachste konsistente Hypothese!

Trainingsdaten und Merkmalsvektoren

Lehrer gibt Beispiele vor: Eingabe x und passende Ausgabe f(x)

- Ausgabe: typischerweise Skalar (Funktionswert oder Klasse)
 Beispiel: Bewertung eines Spielstandes bei TicTacToe
- Eingabe: (Beschreibung des) Objekt(s) oder Situation, die zur Ausgabe gehört
 Beispiel: Spielstand bei TicTacToe

Merkmalsvektoren:

Zusammenfassen der relevanten Merkmale zu Vektoren

Beispiel: Schwimmen im See

Beschreibung der Faktoren, wann ich im See schwimmen möchte:

- 1. Scheint die Sonne?
- 2. Wie warm ist das Wasser?
- 3. Wie warm ist die Luft?
- Trainingsbeispiel:
 - Eingabe: Merkmalsvektor (sonnig, warm, warm)
 - Ausgabe: Klasse ja

Trainingsdaten – Merkmalsvektoren

Generell: Merkmalsvektor für Objekt *v*:

$$\mathbf{x}(v)=(x_1,x_2,\ldots,x_n)$$

- n Merkmale (Attribute)
- Attribut x_t hat m_t mögliche Ausprägungen
- Ausprägung von v bzgl. x_t : $x_t(v) = i$ (mit $i = 1 \dots m_t$)

Trainingsbeispiel:

• Tupel aus Merkmalsvektor und zugehöriger Klasse: $(\mathbf{x}(v), k)$

Wrap-Up

- Lernen ist Verhaltensänderung, Ziel: Optimierung einer Gütefunktion
 - Aufbau einer Hypothese, die beobachtete Daten erklären soll
 - Arten: Überwachtes Lernen, Unüberwachtes Lernen, Reinforcement Lernen
- Merkmalsvektoren gruppieren Eigenschaften des Problems bzw. der Objekte
- Trainingsdaten: Beispielobjekte (durch Merkmalsvektoren beschrieben) plus Vorgabe vom Lehrer

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.