MA 101 (Mathematics - I) Exercise set 3

- 1. (a) Can a power series $\sum_{n=0}^{\infty} a_n(x-3)^n$ converge at x=0 and diverge at x=5?
 - (b) Suppose $\sum_{n=0}^{\infty} a_n x^n$ converges at -3 and diverges at 4. What can you say about the radius of convergence of the power series?
 - (c) Prove or disprove: There is a power series about 0 which converges at π and diverges at $-\pi$.
- 2. Suppose $a_n > 0$, $a_n \to 0$ and $a_n^2 > \frac{1}{10^{50}} a_{n+1}$ for each n. Can you determine the domain of convergence of $\sum a_n x^n?$
- 3. Suppose (a_n) is a sequence converging to 0. One student found that the power series $a_1x + 2a_2x^2 + 3a_3x^3 + \cdots$ converges to f on the interval (-5,5) and another student found that $1 + a_1x + a_2x^2 + a_3x^3 + \cdots$ converges to g with radius of convergence as R. How are the answers of the two students related?
- 4. (a) Suppose that $\sum a_n x^n$ is a power series whose radius of convergence is R. Define $f(x) = \sum a_n x^n$ on (-R,R). Argue that $\sum a_n x^n$ is the Taylor series of f about 0?
 - (b) Use your argument and the Taylor series for $\sin x$ to find the Taylor series of $\sin x \cos 3x$ about 0.
- 5. Find radius of convergence and domain of convergence of the following power series:

1.
$$\sum \frac{x^n}{n^2}$$

$$2. \sum_{n=1}^{\infty} n(n+1)x^n$$

3.
$$\sum \frac{(-1)^n x^{2n}}{n^2}$$
4.
$$\sum \frac{3^n x^n}{2^n}$$

$$4. \sum \frac{3^n x^n}{2^n}$$

5.
$$\sum n^n x^n$$

6.
$$2x + \left(\frac{9}{4}x\right)^2 + \dots + \left(\left(\frac{n+1}{n}\right)^n x\right)^n + \dots$$

- 6. Find the domain of convergence of the power series $\frac{1}{a} \left(\frac{1}{a}\right)^2(x-a) + \left(\frac{1}{a}\right)^3(x-a)^2 \left(\frac{1}{a}\right)^4(x-a)^3 + \cdots$. Can you give an explicit formula for the function represented by the power series?
- 7. (a) For f(x) = x on [0,1] calculate $L(f, \mathbf{P}_n)$ and $U(f, \mathbf{P}_n)$, conclude $f \in \mathcal{R}[0,1]$, and find $\int_a^b f$.
 - (b) For $f(x) = x^2$ on [0,1] calculate $L(f, \mathbf{P}_n)$ and $U(f, \mathbf{P}_n)$, conclude $f \in \mathcal{R}[0,1]$, and find $\int_a^b f$.
- 8. For the function $f:[-2,2]\to\mathbb{R}$ defined by $f(x)=x^5$, find a partition P such that $U(f,P)-L(f,P)<\epsilon$.
- 9. Give an example of a function on [0,1] such that L(f)=1 and U(f)=2.
- 10. Show by definition that $f:[0,1]\to\mathbb{R}$ defined by $f(x)=x^n$ is integrable.
- 11. Suppose you know that $\lim_{n\to\infty} U(f,\mathbf{P}_n) = \ell$. Is it true that $f \in \mathcal{R}([a,b])$?
- 12. Show that $\frac{1}{2} \le \int_0^1 \frac{1+x-x^2}{1+x^4} dx \le \frac{5}{4}$.
- 13. Let f be continuous on [a,b]. If $\int_a^b f = 0$ then show that f(c) = 0 for at least one $c \in [a,b]$. Show that the result may not hold if f is not continuous.
- 14. If f is continuous on [a, b] and $\int_a^b fg = 0$ for every $g \in \mathcal{R}[a, b]$, then show that f = 0.

15. Suppose $f:[0,1]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{2^n}, & \text{if } x = \frac{k}{2^n} \text{ for some } k, n \in \mathbb{N}, \text{ where } k \text{ is odd,} \\ 0, & \text{otherwise.} \end{cases}$$

Determine whether f is Riemann integrable, and if so, find $\int_0^1 f.$