$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \qquad a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Tabela 3.1 Propriedades da série de Fourier de tempo contínuo

Propriedade	Seção	Sinal periódico	Coeficientes da série de Fourier
		$x(t)$ Periódicos com período T e $y(t)$ frequência fundamental $\omega_0 = 2\pi/T$	a_k b_k
 Linearidade	3.5.1	Ax(t) + By(t)	Aa _k + Bb _k
Deslocamento no tempo	3.5.2	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/7)t_0}$
Deslocamento em frequência		$e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$	а _{к-М}
Conjugação	3.5.6	$x^{r}(t)$	a_{-k}^*
Reflexão no tempo	3.5.3	<i>x</i> (- <i>t</i>)	a_{-k}
Mudança de escala no tempo	3.5.4	$x(\alpha t)$, $\alpha > 0$ (periódico com período T/α)	a_k
Convolução periódica		$\int_{T} x(\tau) y(t-\tau) d\tau$	$Ta_k b_k$
Multiplicação	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Diferenciação		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
ntegração		$\int_{-\infty}^{t} x(t) dt$ (com valor finito e periódica somente se $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
Simetria conjugada para sinais reais	3.5.6	x(t) real	$\begin{cases} a_k = a_{-k}^* \\ \Re_{\mathcal{C}} \{a_k\} = \Re_{\mathcal{C}} \{a_{-k}\} \\ \Im_{m_k} \{a_k\} = -\Im_{m_k} \{a_{-k}\} \\ a_k = a_{-k} \\ \measuredangle a_k = - \blacktriangleleft_{a_{-k}} \end{cases}$
Sinais reais e pares	3.5.6	x(t) real e par	a_k real e par
Sinais reais e ímpares	3.5.6	x(t) real e ímpar	a_k puramente imaginário e ímpar
Decomposição par-ímpar de sinais reais		$\begin{cases} x_e(t) = \mathcal{E} v \{x(t)\} & [x(t) \text{ real}] \\ x_0(t) = \mathcal{O} d \{x(t)\} & [x(t) \text{ real}] \end{cases}$	Re{a _k } j{a _k }

Relação de Parseval para sinais periódicos

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{+\infty} |a_{k}|^{2}$$