Analisi Dati con Excel

Giovanni Della Lunga

giovanni. della lunga@gmail.com

La prima regola di ogni tecnologia è che l'automazione applicata ad un'operazione efficiente ne aumenterà l'efficienza. La seconda è che l'automazione applicata ad un'operazione inefficiente ne aumenterà l'inefficienza.

Bill Gates

Analisi di Regressione

Making Predictions

Analisi di regressione: alcune nozioni di base

- In statistica, l'analisi di regressione viene utilizzata per effettuare una stima tra le relazioni tra due o più variabili.
- Possiamo fare subito una distinzione tra le variabili.
- La variabile dipendente (o variabile y) è la variabile risposta ovvero il fattore principale che si sta tentando di comprendere e prevedere.
- Le **variabili indipendenti** (o variabili x) sono le variabili esplicative ovvero i fattori che potrebbero influenzare la variabile dipendente.

Analisi di regressione: alcune nozioni di base

- Attraverso l'analisi di regressione possiamo capire come si comporta la variabile dipendente (y) quando varia una delle variabili indipendenti (x). Questo ci consente di determinare statisticamente quale delle variabili ha un impatto rilevante.
- Inoltre, possiamo fare una ulteriore distinzione. Possiamo distinguere tra regressione lineare semplice e regressione lineare multipla.
- La **regressione lineare semplice** consente di individuare la relazione tra una variabile dipendente e una variabile indipendente attraverso l'utilizzo di una funzione lineare.
- La **regressione lineare multipla** consente di prevedere la variabile dipendente quando si utilizzano **due o più variabili esplicative**.

Analisi di regressione: alcune nozioni di base

In entrambi i casi, se la relazione tra i dati NON segue una linea retta, è necessario utilizzare una **regressione non lineare**!

Un Esempio di Regressione Lineare

- Cerchiamo di capire subito il tipo di relazione tra la variabile indipendente (x) e la variabile dipendente (y).
- » Per far questo inseriamo un diagramma a dispersione.
- » A colpo d'occhio otteniamo immediatamente le informazioni relative al tipo di relazione.
- » Il grafico ci informa che il tipo di relazione è di tipo lineare. La retta è crescente.
 Possiamo pertanto dedurre che ad un aumento della variabile indipendente x possa corrispondere un aumento della variabile dipendente y.

Regressione lineare: l'equazione

L'equazione che definisce la regressione lineare è la seguente:

$$Y_i = \alpha_0 + \alpha_1 \cdot X_i + \epsilon$$

Dove

- *i* indica la generica osservazione
- *Y* è la variabile dipendente
- X la variabile dipendente
- α_0 è l' intercetta della retta di regressione. Rappresenta il valore di Y quando la variabile X è uguale a 0. All'interno di un grafico di regressione, è il punto in cui la retta interseca l'asse Y.
- α_1 è il coefficiente angolare della retta di regressione ovvero il tasso di variazione di Y quando X cambia. Rappresenta la pendenza della retta.
- ed infine ϵ è l'errore statistico.

- Il primo metodo per eseguire la regressione in Excel utilizza il componente aggiuntivo chiamato Strumenti di analisi.
- Questo strumento è incluso in Excel ed è necessario attivarlo. È disponibile in tutte le versioni di Excel (dalla versione 2003 alla versione 2019) ma, per impostazione predefinita, non è abilitato. Quindi, è necessario procedere alla sua attivazione. Vediamo come.
- Fate click su **File** e successivamente su **Opzioni**. Nella finestra di dialogo **Opzioni** di Excel, selezionate la voce **Componenti aggiuntivi**...

• Nella scheda Dati, fate un clic sul pulsante **Analisi dati** presente nel gruppo **Analisi**.

Analisi dei Risultati

- » R multiplo. Questo valore rappresenta il coefficiente di correlazione che misura la forza di una relazione lineare tra due variabili.
- » Il coefficiente di correlazione può essere qualsiasi valore compreso tra 1 e -1. Il suo valore assoluto indica la forza della relazione.
- » Maggiore è il valore, più forte è la relazione.

Statistica della regressione							
R multiplo	0.94299071						
R al quadrato	0.889231479						
R al quadrato corretto	0.888674853						
Errore standard	3.930705341						
Osservazioni	201						

Analisi dei Risultati

- » R al quadrato: È il valore che misura la proporzione della variazione della variabile dipendente che viene spiegata dalla retta di regressione.
- » Questa proporzione deve essere un valore compreso tra zero e uno ed è spesso espresso come percentuale.
- » Rappresenta il coefficiente di determinazione che viene utilizzato come indicatore della bontà dell'adattamento.

Statistica della regi	ressione
R multiplo	0.94299071
R al quadrato	0.889231479
R al quadrato corretto	0.888674853
Errore standard	3.930705341
Osservazioni	201

Analisi dei Risultati

- » R al quadrato corretto. È una versione modificata dell'R², progettata per tenere conto del numero di variabili indipendenti nel modello.
- » Mentre l'R² standard indica la proporzione di variazione nella variabile dipendente spiegata dal modello, l'R² corretto penalizza i modelli con un numero eccessivo di variabili, riducendo la probabilità di overfitting.

Statistica della regi	Statistica della regressione							
R multiplo	0.94299071							
R al quadrato	0.889231479							
R al quadrato corretto	0.888674853							
Errore standard	3.930705341							
Osservazioni	201							

Formula dell'R² corretto:

$$R_{ ext{corretto}}^2 = 1 - \left(rac{1-R^2}{n-k-1}
ight) imes (n-1)$$

- R² è l'R² standard.
- n è il numero di osservazioni,
- k è il numero di variabili indipendenti.

L'R² corretto tende a essere inferiore all'R² standard, specialmente quando il modello include molte variabili rispetto al numero di osservazioni.

Analisi dei Risultati

- » Errore Standard. Questo valore mostra la precisione dell'analisi di regressione: più piccolo è questo valore, più è precisa l'equazione di regressione.
- » È da considerarsi un'altra misura di bontà di adattamento.
- » Mentre R al quadrato rappresenta la percentuale della varianza delle variabili dipendenti spiegata dal modello, l'Errore standard è una misura assoluta che mostra la distanza media attorno alla retta di regressione.

Statistica della regressione						
R multiplo	0.94299071					
R al quadrato	0.889231479					
R al quadrato corretto	0.888674853					
Errore standard	3.930705341					
Osservazioni	201					

ANALISI VARIANZA					
	gdl	SQ	MQ	F	Significatività F
Regressione	1	24682.692	24682.692	1597.539283	4.97301E-97
Residuo	199	3074.638451	15.45044448		
Totale	200	27757.33045			
Totale	200	27757.33045			

- » Questa parte è dedicata all'ANALISI VARIANZA. Viene usata raramente per l'analisi della regressione lineare semplice.
- » Tuttavia, è importante osservare l'ultimo valore: la Significatività F.
- » Questo valore dà un'idea di quanto sono statisticamente significativi (ovvero affidabili) i risultati.
- » Se il valore della Significatività F è inferiore a 0,05 (5%), il modello utilizzato è buono. Se è maggiore di 0,05, probabilmente è meglio scegliere un'altra variabile indipendente.

	Coefficienti	Errore standard	Stat t	Valore di significatività	Inferiore 95%	Superiore 95%	Inferiore 95.0%	Superiore 95.0%	
Intercetta	4.586433381	0.552438528	8.302160596	1.54588E-14	3.49704861	5.675818152	3.49704861	5.675818152	
Variabile X 1	1.909845227	0.047782889	39.96922921	4.97301E-97	1.815619448	2.004071007	1.815619448	2.004071007	

- L'aspetto più interessante di questa sezione sono i coefficienti.
- Attraverso i coefficienti è possibile creare l'equazione di regressione lineare in Excel.
- Questa equazione può essere quindi utilizzata per la **previsione** di nuovi risultati a partire da nuovi dati della variabile indipendente.

$$Y_i = \alpha_0 + \alpha_1 \cdot X_i$$

Regressione lineare in Excel: Secondo Metodo

Grafico a dispersione con una linea di tendenza

- » Il secondo metodo per eseguire la regressione in Excel è inserire un grafico di regressione lineare.
- » Il grafico consente di visualizzare rapidamente la relazione tra le due variabili.
- » Vediamo come
- » Prima di tutto inseriamo un grafico a dispersione ...

Relazione fra Correlazione e Coefficiente Angolare Retta Regressione

- Il coefficiente di correlazione lineare r e il coefficiente angolare della retta di regressione b sono strettamente collegati.
- La relazione tra questi due è data dalla formula:

$$b = r \left(rac{s_Y}{s_X}
ight)$$

Dove:

- r è il coefficiente di correlazione lineare.
- s_Y è la deviazione standard della variabile Y.
- s_X è la deviazione standard della variabile X.

Analisi Regressione Multipla

- L'analisi di regressione multipla in Excel è estremamente semplice
- Partiamo dal foglio con il nostro dataset, costituito da tre serie di valori.
- Cliccate su (Barra Multifunzione) **Dati> Analisi dati > Regressione**.

А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р
X1	X2	Х3	Υ												
10.99342831	35.84629258	107.1557472	45.25862694		Ho creato un data	set di ese	emnio ne	r una redi	ressione I	ineare m	ultipla co	n 100 ossi	ervazioni	e tre	
9.723471398	45.79354677	111.2156905	34.45801428			Ho creato un dataset di esempio per una regressione lineare multipla con 100 osservazioni e tre									
11.29537708	46.57285483	121.6610249	41.47796888		variabili indipendenti (X1, X2, X3), insieme a una variabile dipendente (Y). I dati sono generati secondo le seguenti specifiche:										
13.04605971	41.97722731	121.076041	48.71094944												
9.531693251	48.38714288	72.44661264	13.09728178			•									
9.531726086	54.04050857	81.2434992	13.12053518		• V1: Variabila i	ndinondo	nto con r	nadia 10	o doviosi	ono stone	Jard 2				
13.15842563	68.86185901	110.3007053	17.70206538		X1: Variabile ii	naipenae	inte con r	nedia 10	e deviazio	one stand	iaru Z.				
11.53486946	51.74577813	110.275719	31.14787737		X2: Variabile i	ndinende	ente con i	media 50	e deviazi	one stand	dard 10				
9.061051228	52.57550391	110.3009537	26.01982652		- XE. Variable	naipena	once com	media 50	e devidei	one stan	aara ro.				
11.08512009	49.25554084	177.0546298	66.69738434		 X3: Variabile i 	ndipende	ente con i	media 10	0 e deviaz	zione star	ndard 20.				
9.073164614	30.81228785	111.4178102	47.26557444												
9.068540493	49.73486125	122.7113128	35.00688413		 Y: Variabile di 	pendente	e calcolat	a come Y	r = 5 + 1	$2 \times X1$	$-1 \times \lambda$	(2 + 0.5)	imes X3 -	+ rumor	e
10.48392454	50.6023021	119.0800353	35.3965515		, con un po' d	li rumore	aggiunto	con dev	iazione st	andard 5					
6.173439511	74.63242112	113.027825	-0.294725496		, com am po c		aggianic	, con acr	IGETOTIC DE	anaara s					
6.550164335	48.07639035	93.69461511	15.55700849												
8.875424942	53.01547342	115.1793844	29.12753083												
7.974337759	49.6528823	84.54349571	14.24924441												
10.62849467	38.31321962	95.26362787	35.31890522												
8.183951849	61.42822815	90.29272904	4.62285573												
7.175392597	57.51933033	101.6374828	11.68441916												
12.93129754	57.91031947	146.2931713	47.07887227												
9.548447399	40.90612545	62.65469615	14.56300186												
10.13505641	64.02794311	113.7252038	18.18578213												

Analisi Regressione Multipla

- L'analisi di regressione multipla in Excel è estremamente semplice
- Partiamo dal foglio con il nostro dataset, costituito da tre serie di valori.
- Cliccate su (Barra Multifunzione) **Dati> Analisi dati > Regressione**.

Analisi Regressione Multipla

• Cliccando sul tasto OK, viene prodotto il report di riepilogo con tutti i dati di output

OUTPUT RIEPILOGO								
Statistica della regre	ssione							
R multiplo	0.998067							
R al quadrato	0.996137							
R al quadrato corretto	0.996016							
Errore standard	1.009954							
Osservazioni	100							
ANALISI VARIANZA								
	gdl	SQ	MQ	F	gnificatività	F		
Regressione	3	25249.89	8416.63	8251.537	1.2E-115			
Residuo	96	97.92073	1.020008					
Totale	99	25347.81						
	Coefficienti	ore standa	Stat t	di signific	feriore 95%	periore 95	eriore 95.0	periore 95.0
Intercetta	4.773539	0.913673	5.224559	1.01E-06	2.959912	6.587166	2.959912	6.587166
Variabile X 1	1.993221	0.057432	34.70547	3.96E-56	1.879218	2.107223	1.879218	2.107223
Variabile X 2	-0.99976	0.010745	-93.0478	6.85E-96	-1.02109	-0.97844	-1.02109	-0.97844
Variabile X 3	0.502893	0.004769	105.4586	4.6E-101	0.493427	0.512359	0.493427	0.512359