PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-022647

(43)Date of publication of application: 26.01.2001

(51)Int.Cl.

G06F 12/14 G06F 15/00 G09C 1/00 G11B 20/10 H04L 9/32

(21)Application number: 11-196207

(71)Applicant: TOSHIBA CORP

MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

09.07.1999

(72)Inventor: KAMIBAYASHI TATSU

KATO HIROSHI TOMA HIDEYUKI

TATEBAYASHI MAKOTO HARADA TOSHIHARU YAMADA HISASHI

(54) METHOD AND DEVICE FOR CONTENTS MANAGEMENT, AND RECORDING MEDIUM (57) Abstract:

PROBLEM TO BE SOLVED: To securely and safely erase contents recorded on a recording medium by decoding an comparing data, used for overwriting on an opposite side, with overwriting data when the data are transferred and confirming that necessary information has been erased when recorded contents are deciphered.

SOLUTION: Overwriting data for erasing information, needed to deciphere contents recorded on a recording medium (MC) 13, by overwriting are deciphered by using 1st common information generated by mutual authentication and then transferred to an opposite side. When data used for overwriting on the opposite side are transferred from the opposite side after being ciphered by using 2nd common information generated by performing mutual authentication again, the data are deciphered with the 2nd common information and then compared with the overwriting data to confirm that the information needed to deciphere the recorded contents has been erased. Where, the MC 13 processes an open area 13a, an identification information storage 13b, a secrecy 13c and an authentication part 13d, etc.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-22647 (P2001-22647A)

(43)公開日 平成13年1月26日(2001.1.26)

(51) Int.Cl. ⁷	識別記号	F I - デーマコート*(参考)
G 0 6 F 12/14	3 2 0	G06F 12/14 320E 5B017
15/00	3 3 0	15/00 3 3 0 Z 5 B 0 8 5
G 0 9 C 1/00	6 6 0	G09C 1/00 660E 5D044
G11B 20/10	16	G11B 20/10 H 5J104
H 0 4 L 9/32		H04L 9/00 675A 9A001
110 111 0,01		審査請求 未請求 請求項の数6 OL (全 20 頁
(21)出願番号	特願平11-196207	(71) 出顧人 000003078
		株式会社東芝
(22)出顧日	平成11年7月9日(1999.7.9)	神奈川県川崎市幸区堀川町72番地
		(71) 出願人 000005821
		松下電器産業株式会社
		大阪府門真市大字門真1006番地
		(72)発明者 上林 達
		神奈川県川崎市幸区小向東芝町1番地 杉
		式会社東芝研究開発センター内
		(74)代理人 100058479
		弁理士 鈴江 武彦 (外5名)
		MET ME ME OF OH
		最終頁に統

(54) 【発明の名称】 コンテンツ管理方法およびコンテンツ管理装置および記録媒体

(57)【要約】

【課題】記録媒体に記録された複製コンテンツの消去が 確実にしかも安全に行え、記録媒体に記録する複製コン テンツの数の管理が容易にしかも確実に行えるコンテン ツ管理方法を提供する。

【解決手段】記録媒体に記録された複製コンテンツを復号する際に必要な情報を上書きすることにより消去するための上書きデータを相互認証により生成された第1の共有情報を用いて暗号化してから相手側に転送し、前記相手側から、再度の相互認証により生成された第2の共有情報を用いて暗号化された該相手側で上書きに用いたデータが転送されてきたら、それを前記第2の共有情報で復号した後、前記上書きデータと比較して前記記録媒体に記録された複製コンテンツを復号する際に必要な情報が消去されたことを確認する。

【特許請求の範囲】

【請求項1】 記録媒体に対しコンテンツの記録および 消去を行うコンテンツ管理方法において、

前記記録媒体に記録されたコンテンツを復号する際に必 要な情報を上書きすることにより消去するための上書き データを相互認証により生成された第1の共有情報を用 いて暗号化してから相手側に転送し、

前記相手側から、再度の相互認証により生成された第2 の共有情報を用いて暗号化された該相手側で上書きに用 いたデータが転送されてきたとき、それを前記第2の共 10 有情報で復号した後、前記上書きデータと比較して前記 記録媒体に記録されたコンテンツを復号する際に必要な 情報が消去されたことを確認することを特徴とするコン テンツ管理方法。

【請求項2】 記録媒体に対しコンテンツの記録および 消去を行うコンテンツ管理方法において、

前記記録媒体に記録されたコンテンツを復号する際に必 要な情報を消去するための指示情報が相互認証により生 成された共有情報を用いて暗号化されて相手側から転送 された後、再度相互に認証されたとき、前記記録媒体に 20 記録されたコンテンツを復号する際に必要な情報を消去 することを特徴とするコンテンツ管理方法。

【請求項3】 記録媒体に対しコンテンツの記録および 消去を行うコンテンツ管理装置において、

前記記録媒体に記録されたコンテンツを復号する際に必 要な情報を上書きすることにより消去するための上書き データを相互認証により生成された第1の共有情報を用 いて暗号化してから相手側に転送する転送手段と、

前記相手側から、再度の相互認証により生成された第2 の共有情報を用いて暗号化された該相手側で上書きに用 30 いたデータが転送されてきたとき、それを前記第2の共 有情報で復号した後、前記上書きデータと比較して前記 記録媒体に記録されたコンテンツを復号する際に必要な 情報が消去されたことを確認する確認手段と、

を具備したことを特徴とするコンテンツ管理装置。

【請求項4】 記録媒体に対しコンテンツの記録および 消去を行うコンテンツ管理装置において、

前記記録媒体に記録されたコンテンツを復号する際に必 要な情報を消去するための指示情報を相互認証により生 成された共有情報を用いて相手側に転送する転送手段 と、

この転送手段で指示情報を転送した後、再度相互に認証 を行って、前記記録媒体に記録されたコンテンツを復号 する際に必要な情報の消去を前記相手側に実行させる消 去実行手段と、

を具備したことを特徴とするコンテンツ管理装置。

【請求項5】 演算処理機能を有する記録媒体であっ

相互認証により生成された第1の共有情報を用いて暗号 化された、自己に記録されたコンテンツを復号する際に 50

必要な情報を上書きすることにより消去するための上書 きデータを相手側より受信したとき、前記第1の共有情 報を用いて復号して得られたデータを用いて自己に記録 されたコンテンツを復号する際に必要な情報を上書きす ることにより消去する消去手段と、

この消去手段で上書きに用いたデータを再度の相互認証 により生成された第2の共有情報を用いて暗号化して前 記相手側に転送する転送手段と、

を具備したことを特徴とする記録媒体。

【請求項6】 演算処理機能を有する記録媒体であっ て、

相互認証により生成された共有情報を用いて暗号化され た、自己に記録されたコンテンツを復号する際に必要な 情報を消去するための指示情報を相手側より受信した。 後、再度相互に認証されたとき、自己に記録されたコン テンツを復号する際に必要な情報を消去する手段を具備 したことを特徴とする記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば、複製コン テンツの数を規制して著作権の保護を図るコンテンツ管 理方法およびそれを用いたコンテンツ管理装置に関し、 特に、記録媒体に記録された複製コンテンツの消去方法 に関する。

[0002]

【従来の技術】従来、コンテンツ(著作物等)は、コピ 一管理が行われてきた。コピー世代管理やコピーの数を 管理する事により、著作権保護と利用の便宜のバランス をとってきた。

【0003】さらに、コピー管理に代わって、「移動」 の概念が登場してきた。コピーがオリジナルのデータを 消去しないのと対照的に、移動は、異なった場所(記録 媒体(メディア))にデータを転送すると共に、オリジ ナルデータを消去する。コンテンツのデジタル化とネッ トワーク等の普及が、移動によるコピープロテクション が登場した背景にある。

[0004]

【発明が解決しようとする課題】近年、ネットワーク等 を通じたオリジナルに忠実なコピーが可能になったた め、コピー管理だけでは、著作権保護が困難になってき 40 た。また、メディアからメディアへの無制限な移動、例 えば、データの営利目的の(移動による)配布は、著作 権管理を行うことができない。

【0005】このように、オリジナルのデータ(特に、 著作権保護の対象となるようなコンテンツ)の複製を確 実に管理することが困難となってきた。

【0006】特に、著作権保護のため、複製コンテンツ の数を規制しながら記録媒体に対し複製コンテンツの記 録および消去を行うコンテンツ管理においては、記録媒 体に記録された複製コンテンツの移動の際に、当該記録

媒体に記録されている複製コンテンツを確実に消去する 必要がある。この場合、複製コンテンツの記録を行う場 合とは異なり、その手続の際に、第三者が不正に、例え ば複製コンテンツの消去のためのコマンド等を受け取ら ないよう信号をカット等することにより、容易に当該記 録媒体から複製コンテンツの消去を回避することができ る。

【0007】そこで、本発明は、記録媒体に記録する複 製コンテンツの数を規制しながら該記録媒体に対しコン テンツの記録および消去を行うコンテンツ管理におい て、記録媒体に記録されたコンテンツの消去が確実にし かも安全に行えるコンテンツ管理方法およびそれを用い たコンテンツ管理装置および記録媒体を提供することを 目的とする。

[0008]

【課題を解決するための手段】 (1) 本発明のコンテン ツ管理方法(請求項1)は、記録媒体に対しコンテンツ の記録および消去を行うコンテンツ管理方法において、 前記記録媒体に記録されたコンテンツを復号する際に必 要な情報を上書きすることにより消去するための上書き 20 データを相互認証により生成された第1の共有情報を用 いて暗号化してから相手側に転送し、前記相手側から、 再度の相互認証により生成された第2の共有情報を用い て暗号化された該相手側で上書きに用いたデータが転送 されてきたら、それを前記第2の共有情報で復号した 後、前記上書きデータと比較して前記記録媒体に記録さ れたコンテンツを復号する際に必要な情報が消去された ことを確認することを特徴とする。

【0009】また、本発明のコンテンツ管理装置(請求 項3)は、記録媒体に対しコンテンツの記録および消去 30 を行うコンテンツ管理装置において、前記記録媒体に記 録されたコンテンツを復号する際に必要な情報を上書き することにより消去するための上書きデータを相互認証 により生成された第1の共有情報を用いて暗号化してか ら相手側に転送する転送手段と、前記相手側から、再度 の相互認証により生成された第2の共有情報を用いて暗 号化された該相手側で上書きに用いたデータが転送され てきたら、それを前記第2の共有情報で復号した後、前 記上書きデータと比較して前記記録媒体に記録されたコ ンテンツを復号する際に必要な情報が消去されたことを 40 確認する確認手段とを具備したことを特徴とする。

【0010】本発明の記録媒体(請求項5)は、演算処 理機能を有する記録媒体であって、相互認証により生成 された第1の共有情報を用いて暗号化された、自己に記 録されたコンテンツを復号する際に必要な情報を上書き することにより消去するための上書きデータを相手側よ り受信したとき、前記第1の共有情報を用いて復号して 得られたデータを用いて自己に記録されたコンテンツを 復号する際に必要な情報を上書きすることにより消去す

再度の相互認証により生成された第2の共有情報を用い て暗号化して前記相手側に転送する転送手段とを具備し たことを特徴とする。

【0011】上記本発明によれば、例えば、第三者によ るコンテンツの消去のためのコマンド等を受け取らない ようにする攻撃を確実に回避することができ、記録媒体 に記録されたコンテンツの消去が確実にしかも安全に行 え、記録媒体に記録するコンテンツの数の管理が容易に しかも確実に行える。

【0012】(2) 本発明のコンテンツ管理方法(請求 項2)は、記録媒体に対しコンテンツの記録および消去 を行うコンテンツ管理方法において、前記記録媒体に記 録されたコンテンツを復号する際に必要な情報を消去す るための指示情報が相互認証により生成された共有情報 を用いて暗号化されて相手側から転送された後、再度相 互に認証されたとき、前記記録媒体に記録されたコンテ ンツを復号する際に必要な情報を消去することを特徴と する。

【0013】本発明のコンテンツ管理装置(請求項4) は、記録媒体に対しコンテンツの記録および消去を行う コンテンツ管理装置において、前記記録媒体に記録され たコンテンツを復号する際に必要な情報を消去するため の指示情報を相互認証により生成された共有情報を用い て相手側に転送する転送手段と、この転送手段で指示情 報を転送した後、再度相互に認証を行って、前記記録媒 体に記録されたコンテンツを復号する際に必要な情報の 消去を前記相手側に実行させる消去実行手段とを具備し たことを特徴とする。

【0014】本発明の記録媒体(請求項6)は、演算処 理機能を有する記録媒体であって、相互認証により生成 された共有情報を用いて暗号化された、自己に記録され たコンテンツを復号する際に必要な情報を消去するため の指示情報を相手側より受信した後、再度相互に認証さ れたとき、自己に記録されたコンテンツを復号する際に 必要な情報を消去する手段を具備したことを特徴とす る。

【0015】上記本発明によれば、例えば、第三者によ るコンテンツの消去のためのコマンド等を受け取らない ようにする攻撃を確実に回避することができ、記録媒体 に記録されたコンテンツの消去が確実にしかも安全に行 え、記録媒体に記録するコンテンツの数の管理が容易に しかも確実に行える。

[0016]

【発明の実施の形態】以下、本発明の一実施形態につい て図面を参照して説明する。

【0017】図1は、本実施形態にかかる記録媒体(メ ディア)に記録できる複製コンテンツの数を規制し、メ ディアへの複製コンテンツの記録、メディアに記録され た複製コンテンツの再生等を行う音楽コンテンツ利用管 る消去手段と、この消去手段で上書きに用いたデータを 50 理システム (以下、簡単にLCMと呼ぶことがある) 1

30

の構成例を示したものである。なお、ここでは、コンテ ンツとして音楽を一例として用いているが、この場合に 限らす、映画や、ゲームソフト等であってもよい。ま た、メディアとしてメモリカード(MC)を用いている が、この場合に限るものではなく、フロッピーディス ク、DVD等の各種記録媒体であってもよい。

[0018] EMD (Electronic Music Distributor) は、音楽配信サーバまたは音楽配信放送局である。

【0019】コンテンツ利用管理システム1は、例え ば、パソコン(PC)であり、複数のEMD(ここで は、EMD#1~#3) に対応した受信部#1~#3を 具備しており、EMDが配信する暗号化コンテンツまた はそのライセンス(利用条件と暗号化コンテンツの復号 鍵Kc)などを受信する。受信部#1~#3は、再生機 能や課金機能を有していても良い。配信された音楽コン テンツを試聴する為に再生機能が用いられる。又、課金 機能を利用して、気に入ったコンテンツを購入する事が 可能である。

【0020】LCM1は、セキュア・コンテンツ・サー バ (ここでは、Secure Music Server: SMSで、以 下、簡単にSMSと呼ぶことがある) 2を具備し、利用 者が購入したコンテンツはEMDインタフェース(I/ F) 部3を経由してSMS2に蓄積される。音楽コンテ ンツは、必要に応じてEMDI/F部3で復号され、形 式変換や再暗号化が施される。SMS2が暗号化コンテ ンツを受け取ると、それを音楽データ格納部10に格納 し、音楽データ復号鍵をライセンス格納部9に格納す る。SMS2が再生機能を有していても良い。当該再生 機能により、SMS2が管理する音楽コンテンツをPC 上で再生する事ができる。

【0021】SMS2は、メディア(以下、簡単にMC (memory card) と呼ぶことがある) 13に対してコン テンツデータを出力する機能を有している。MC13を 記録再生装置(以下、簡単にPD (Portable Device) と呼ぶことがある) 12にセットし、MC13に記録さ れたコンテンツを再生することができる。

【0022】SMS2からMC13へのコンテンツの記 録はメディア(MC)インタフェース(I/F)部6を 通じて直接行われるか、又はPD12を経由して行うこ とができる。

【0023】デバイスID格納部4は、例えば、ROM で構成され、当該LCMの識別情報(デバイスID)が 格納されている。

【0024】MC13は、そのメディア固有かつ書き換 え不能の識別情報 (MID) を有しており、MC13に 格納されるコンテンツは、MC13に依存する暗号化鍵 で暗号化されていてもよい。

【0025】まず、チェックイン/チェックアウトにつ いて、図1のLCM1に則して説明する。

してのコンテンツを格納しており、MC13に、その複 製を「子」コンテンツとしてコピーすることをいう。

「子」コンテンツは PD12で自由に再生する事が可能 であるが、「子」から「孫」コンテンツを作成する事は 許されない。「親」が幾つ「子」を生むことができるか は、「親」の属性として定義される。また、チェックイ ンとは、例えば、MC13をLCM1に接続し、LCM 1が「子」コンテンツを消去(又は利用不能)する事 で、LCM1内の「親」コンテンツは「子」を1つ作る 10 権利を回復することをいう。これを「親」にチェックイ ンするともいう。

【0027】このチェックイン/チェックアウトを単純 に、従来からのLCM1で実現しようとすると、実際、 次の様な「攻撃」が存在する。すなわち、MC13に格 納された「子」を別の記憶メディアに(MIDを除い て) 退避しておき、MC13の「子」を「親」にチェッ クインする。次いで、先に退避しておいた「子」を当該 MC13に書き戻す。既にチェックインは済んでいるの で、LCM1上の「親」は別のMC13に「子」をコピ ーして良い。この方法で、任意の個数だけ利用可能な 「子」を作る事が可能である。

【0028】上述の「攻撃」には、MC13とLCM1 とのデータ転送の際に認証を行う事により、対抗可能で ある。すなわち、MC13は正当なLCM1以外からの データ転送を受け付けず、LCM1が正当なMC13以 外からのデータ転送を受け付けないと仮定する。この場 合、MC13内の「子」を別の記録メディアに退避する 事はできない。又、LCM1に対して、偽って、チェッ クインすることもできない。従って、上述の「攻撃」は

【0029】ところが、実は、LCM1とMC13との 認証を前提としても、チェックイン/チェックアウトは 実現できない。次の様な「攻撃」が存在するからであ る。すなわち、まず、LCM1上の「親」が「子」を作 っていない状態で、LCM1のデータ(特に、ライセン ス格納部9の情報)を別の記憶メディアにバックアップ する。MC13に「子」をコピーした後、バックアップ したLCM1のデータを復帰する。LCM1の「親」は 「子」を作る前の状態に戻るから、別のMC13に

「子」を作成する事ができる。この様にして、任意の数 の「子」を作成する事が可能となってしまう。

【0030】そこで、このような攻撃にも対処できるチ ェックイン/チェックアウトを実現するために、MC1 3内の記憶領域に、公開された手順では読み書きできな い領域(秘匿領域)を設け、そこに相互認証に必要な情 報やコンテンツ復号に必要な情報や、アクセス不可能で あるデバイス (LCM1、PD12) の識別情報 (デバ イス I D) のリスト (リボケーションリスト (R V C リ スト))等を記録する(図2参照)。また、LCM1の 【0026】チェックアウトとは、LMS1が「親」と 50 記憶領域(例えば、LCM1がPCで構成されている場 合には、ハードディスク(HDD))上に非公開の手順でしかアクセスできない領域(秘匿領域)を設け、後述するような宿帳を当該秘匿領域に格納する(図2参照)。さらに、PD12の記憶領域上にも非公開の手順でしかアクセスできない領域(秘匿領域)を設け、そこにコンテンツ復号に必要な情報を記録するようにしてもよい(図2参照)。なお、ここでは、記憶領域中の秘匿領域以外の通常に手順にてアクセス可能な領域を公開領域と呼ぶ。

【0031】図1に示すように、LCM1では、秘匿領域には、宿帳格納部8が設けられ、SMS2にてこの宿帳格納部8にアクセスするための秘匿された特定の手続が行われた後、秘匿領域からデータを読み取るための秘匿領域ドライバ7を具備している。

【0032】図4(c)に示すように、MC13は、その識別情報MIDを格納するための外部からは書換不可能で、コピーも不可能なような構成になっている識別情報格納部(ROM)13bと、秘匿領域13cと、公開領域(読み書き可能なRAM)13aと、秘匿領域13cがアクセスされる際に認証部13dにて認証を行って、正当な相手であると確認されたときに初めて秘匿領域13cにアクセス可能なようにゲートを開くスイッチ(SW)13eを具備する。

【0033】なお、本実施形態で利用可能なMC13は、3種類あり、図4(c)に示すような、識別情報MIDと秘匿領域とを両方兼ね備えているMC13の種別を「レベル2」と呼ぶ。秘匿領域は持たないが識別情報MIDは持つ図4(b)に示すようなMC13の種別を「レベル1」と呼ぶ。秘匿領域も識別情報も持たない図4(a)に示すような公開領域だけのMC13の種別を30「レベル0」と呼ぶことにする。これら種別は、例えば、識別情報MIDの有無でレベル0とそれ以外の種別とが判別でき、さらに、識別情報MIDの構成からレベル1とレベル2とを判別する。例えば、識別情報が連続した数値であるとき、所定値以上はレベル2であるとする。

【0034】以下、特に断らない限り、レベル2のMC13の場合を例にとり説明する。

【0035】このMC13は、LCM1に接続されたP D12にセットして用いる場合とLCM1に直接セット 40 して用いる場合とがある。

【0036】図3は、PD12の構成例を示したもので、MC13は、メディアインタフェース(I/F部)12fにセットされる。LCM1がPD12を介してMC13に読み書きする場合は、PD12内の秘匿領域アクセス部を経由してMC13の秘匿領域にアクセスする。メディアI/F部12fには、MC13の秘匿領域にアクセスするための秘匿領域アクセス部を具備している。PD12内の秘匿領域は、フラッシュメモリ12dに設けられていても良い。ROM12cには、MC1

3、LCM1との間で相互認証を行うためのプログラムや、秘匿領域へアクセスするための認証手続を記述したプログラムや、MC13の種別を判別するためのプログラムも書き込まれていて、このプログラムに従って、CPU12aの制御の下、MC13との間の各種認証、種別判別等の処理を実行するようになっている。

8

【0037】ROM12cには、PD12の識別情報(デバイスID)が格納されていてもよい。また、例えば、フラッシュメモリ12dに設けられた秘匿領域に秘匿デバイスID(SPDID)が予め格納されている。【0038】図5は、LCM1のメディアI/F部6の構成を示したもので、MC13との間で相互認証を行うための認証部6cと、MC13の種別を判別するメディア判別部6bと、これら全体を制御するための制御部6aとから構成されている。認証部6cは、MC13の秘匿領域にアクセスするための秘匿領域アクセス部でもある。

【0039】図24は、図4(c)に示したレベル2のMC13の構成をより具体的に示したものである。図24に示すように、秘匿領域102は、例えば、1チップのメモリ素子(例えばRAM)上に構成され、RAM領域とROM領域とを有している。例えば、RAM領域であるかROM領域であるかは例えばCPU等から構成される制御部101によるアクセス制御の違いにより区別する。公開領域にはROM領域103とRAM領域104とがそれぞれ別個のメモリ素子で構成されている。

【0040】制御部101には、秘匿領域102ヘアクセスする際と公開領域103、104ヘアクセスする際とでそれぞれ別個のバスが接続されていて、制御部101は、いずれか一方のバスに切り替えて秘匿領域102、あるいは公開領域103、104ヘアクセスするようになっている。

【0041】制御部101は、MC13の各構成部の制御を司さどるとともに、LCM1等がMC13の秘匿領域にアクセスする度に実行される認証処理(AKE)も実行する。

【0042】秘匿領域102中のROM領域には、例えば、MC13、LCM1との間で相互認証を行うためのプログラムや、秘匿領域へアクセスするための認証処理(AKE)を記述したプログラムや、秘匿メディアID(SMID)等が予め格納されていてもよい。

【0043】次に、LCM1の秘匿領域に格納される宿帳について説明する。

【 0044】SMS2にて保持する全ての音楽コンテンツは、そのそれぞれを識別するための識別情報であるコンテンツID(TID)と、予め定められた複製可能コンテンツ数、すなわち、子の残数とチェックアウトリストとをその属性情報として持つ。この属性情報を宿帳と呼ぶ。宿帳は、秘匿領域に設けられた宿帳格納部8に図7(a)に示すような形態で記録されている。

【0045】図7(a)において、例えば、コンテンツ ID「TID1」なる子の残数は「2」で、そのチェッ クアウトリストはL1である。

【0046】チェクアウトリストは、複製コンテンツ (子)を記録したMC13の識別情報のリストであって、例えば、図7(a)において、チェックアウトリストL1には「m1」と「m2」という識別情報を持つ2つのMC13にコンテンツID「TID1」なるコンテンツの子がチェックアウトされていることがわかる。

【0047】以下、次に示す項目の順に説明する。 【0048】(1)相互認証方法の概略

- (2) レベル2のMCを用いた複製コンテンツのチェックイン/チェックアウト/再生
- (3) レベル 0 のM C を用いた複製コンテンツのチェックイン/チェックアウト/再生
- (1) 相互認証方法の概略

前述したように、チェックイン/チェクアウトを安全に 行うために、LCM1、PD12とMC13との間で

(例えば、互いに同じアルゴリズムをもっているかの確認のための)相互認証を行う必要がある。一般に、相互 20認証処理には、相互認証を行う一方と他方とで共有する秘密の情報を持つ必要がある。従って、このような秘密情報を例えばMC13とLCM1およびPD12が持つことになる。情報セキュリティの観点から考えると、この秘密情報は、認証を行う度に毎回異なるものが生成されるといった動的なものであった方がよい。しかし、MC13というメディア自体にそのような秘密情報を生成するための高度な機能を追加すると、メディアが高価になってしまう。メディアを広く一般大衆に普及させるためには、できるだけ安価である方が望ましい。従って、メディア(MC13)のコスト低減化を考えれば、秘密情報をMC13に予め記憶させておく方がよい。

【0049】しかし、全てのメディア、あるいは一定数の複数のメディアで共通する秘密情報(以下、このような情報をグローバルシークレットな情報と呼ぶ)を各メディアに予め記憶させた場合、ある1つのメディアからその秘密情報が何らかの方法により読まれてしまったとき、同じ秘密情報を記憶する他のメディアも不正に利用されてしまうという問題点があった。メディアにグローバルスシークレットな情報を持たせることは極めて危険40である(図8(a)参照)。

【0050】ある1つのメディアに記憶されている秘密情報が不当に読まれてしまっても、不正に使用できるのは、その秘密情報が読まれしまったメディアだけであれば問題がないわけであるから、秘密情報は、個々のメディアに固有のものであればよい。

【0051】そこで、ここでは、個々のメディアにメディア毎にそれぞれ異なる相互認証のための秘密情報を記憶させておき、この情報を用いてLCM1あるいはPD12とMC13とが相互認証を行うことにより、低コス 50

トなメディアを用いた、よりセキュリティ性の高い安全な相互認証方法を提案する。すなわち、本実施形態で説明する相互認証方法は、図8(b)に示すように、個々のメディア(レベル2のメディア)に相互認証(AKE)のために必要な各メディア毎にそれぞれ異なる秘密情報(ここでは、秘匿メディアID(SMID)で、これは、メディアIDを何らかの方法で取得した鍵情報KMで予め暗号化されたもの)を(秘匿領域に)予め記憶させておき、LCM1、PD12には、そのメディアの10識別情報(MID)を転送する。LCM1あるいはPD12側では、MIDと、先に何らかの方法で取得した情報(KM)とを用いて相互認証のための情報(メディアのもつSMIDと同じもの)を所定のアルゴリズムを用いて生成して認証処理(AKE)を行う。

【0052】このように、MC13にはそれぞれに固有の秘密情報(SMID)を持たせておくだけで、LCM1、PD12がメディアから転送されてきた各メディア毎に固有の情報(MID)を基に秘密情報(SMID)を生成することにより、メディアに負荷をかけずに安全な相互認証が行える。

【0053】なお、以下の説明において、上記した相互 認証処理をAKEと呼ぶことにする。

【0054】MC13がLCM1のメディアI/F部6、あるいは、PD12にセットされると、まず、メディアIF部6とMC13との間、あるいは、PD12とMC13との間で相互認証が行われてもよい(図9のステップS1)、そして、双方にて正当な(例えば、同じ規格のハードウエア構成である)相手であると判断されたととき(ステップS2)、メディアI/F部6あるいはPD12はMC13から読み取った識別情報MIDを基に、MC13の種別を判別する(ステップS3)。そして、メディアI/F部6あるいはPD12は、その種別に応じたチェックイン/チェックアウト/再生処理を実行する(ステップS6)。

【0055】なお、図9のステップS1における相互認証は、必ずしも図8(b)に示したような相互認証である必要はない。

【0056】また、MC13にはレベル0からレベル2までの3種類があると説明したが、ここでは、レベル0とレベル2の2種類のMC13を対象として、図9以降の複製コンテンツのチェックイン/チェックアウト/再生処理動作について説明する。

【0057】さらに、以下の説明では、省略しているが、LCM1とMC13との間、LCM1とPD12との間、PD12とMC13との間で、それぞれの秘匿領域にアクセスする際には、一方と他方との間で相互認証を行い、双方の正当性が確認されたらそれぞれの秘匿領域へのゲートを開き、秘匿領域へのアクセスが終了したら秘匿領域へのアクセスを可能にしていたゲートを閉じる仕組みになっているものとする。例えば、LCM1と

MC13との間において、SMS2は、MC13の秘匿 領域13cにアクセスすべく、MC13との間で相互認 証を行い、双方の正当性が確認されてスイッチ13eに より秘匿領域13cへのゲートが開かれると、秘匿領域 13 c 内に鍵情報等を書込み、それが終了すると秘匿領 域13cへのアクセスを可能にしていたゲートがスイッ チ13eにより閉じられる仕組みになっている。

【0058】(2) レベル2のMCを用いた複製コン テンツのチェックイン/チェックアウト/再生 図4(c)に示したような構成のレベル2のMC13を 用いたチェックイン/チェックアウト、再生処理動作に

ついて説明する。

【0059】チェックアウトの指示がLCM1のユーザ インタフェース(I/F)部15を介して、あるいは、 PD12を介して(すなわち、MC13をLCM1に接 続されたPD12にセットして用いた場合)、SMS2 に対しなされた場合について、図10を参照して説明す る。

【0060】SMS2は、宿帳のチェックアウト要求の あったコンテンツ(例えばコンテンツIDが「TID 1」であるとする)の子の残数nを調べ、n>0のと き、デバイスID格納部4から当該LCM1のデバイス ID(LCMID)を読み出し、それをMC13へ転送 する(ステップS101)。

【0061】MC13では、転送されてきたデバイスI DがRVCリストに登録されていないかチェックし(ス テップS102)、登録されていないとき秘匿領域13 cにアクセスしてマスターキーKMを読み出して、LC M1へ転送する(ステップS103)。MC13は、さ らに、識別情報格納部13bから、その識別情報 (MI D)を読み出して同じくLCM1へ転送する(ステップ S104).

【0062】LCM1では、MC13から転送されてき たメディア I D (M I D) をマスターキーKMで暗号化 して、相互認証処理(AKE)に必要な情報(KM [M ID])を生成する(ステップS105)。

【0063】LCM1では、この生成された情報KM [MID] を用いて相互認証処理(AKE)を実行し、 一方、MC13でも秘匿メディアID(SMID)を用 いて相互認証処理(AKE)を実行する(ステップS1 06)。この相互認証処理(AKE)では、LCM1と MC13とが同じ関数g (x、y)、H (x、y)を共 有していて、LCM1で生成された情報KM [MID] が当該MC13の秘匿メディアID (SMID) と同じ であるならば、相互認証処理 (AKE) により互いに一 方が他方を正当であると確認できるようになっている。

【0064】ここで、図22を参照して、ステップS1 06の相互認証処理(AKE)の処理動作について説明 する。

S301) して、それをMC13に転送するとともに、 2つの変数 x 、 y を有する関数 g (x 、 y) の一方の変 数に代入する。また、図10のステップS105で生成 された情報KM [MID] を関数g (x、y) の他方の 変数に代入して、関数gの値を求める(ステップS30

【0066】 一方、MC13でも、LCM1から転送さ れてきた乱数R1を関数g(x、y)の一方の変数に代 入し、自身の秘匿メディアID(SMID)を他方の変 数に代入して、求めた関数gの値をLCM1へ転送する (ステップS303)。

【0067】LCM1では、MC13から転送されてき た関数gの値と、LCM1側で求めた関数gの値とを比 較し、一致していたら後続の処理を実行する。また、不 **一致であれば、この時点で、LCM1側でのAKEの処** 理を中止する(ステップS304)。

【0068】次に、MC13では、乱数R2を発生し (ステップS305) して、それをLCM1に転送する とともに、2つの変数を有する関数g(x、y)の一方 の変数に代入する。また、当該MC13の秘匿メディア ID (SMID) を関数g (x、y) の他方の変数に代 入して、関数gの値を求める(ステップS306)。

【0069】一方、LCM1でも、MC13から転送さ れてきた乱数R2を関数g(x、y)の一方の変数に代 入し、また、図10のステップS105で生成された情 報KM [MID] を関数g(x、y)の他方の変数に代 入して、関数gの値を求めたら、それをMC13へ転送 する(ステップS307)。

【0070】MC13では、LCM1から転送されてき た関数 g の値と、MC13側で求めた関数 g の値とを比 較し、一致していたら後続の処理を実行する。また、不 一致であれば、この時点で、MC13側でのAKEの処 理を中止する(ステップS308)。

【0071】MC13では、ステップS308で、関数 gの値が一致していたら、2つの変数を有する関数H (x、y)の一方の変数に乱数R2、他方の変数に当該 MC13の秘匿メディアID (SMID) を代入して鍵 情報KTを生成する(ステップS309)。

【0072】一方、LCM1でも、ステップS304で 関数gの値が一致していたら、MC13から転送されて きた乱数R2を関数H(x、y)の一方の変数に代入す るとともに、図10のステップS105で生成された情 報KM [MID] を他方の変数に代入して鍵情報KTを 生成する(ステップS310)。

【0073】なお、ステップS304、ステップS30 8のそれぞれで関数gの値が一致したことによりLCM 1とMC13のそれぞれで同じ関数H(x、y)を用い て生成される鍵情報KTは同じものである。LCM1と MC13のそれぞれでは、以降、この鍵情報KTを用い 【0065】LCM1は、乱数R1を発生し(ステップ 50 てコンテンツ復号鍵Kcの受け渡しを行うようになって

10

いる。

【0074】また、相互認証処理(AKE)で生成される鍵情報KTは、毎回異なるものである方が情報セキュリティ上望ましい。ここでは、鍵情報KTを生成する関数Hに代入される2つの変数のうちの一方には、毎回新たに生成される乱数R2が代入されるので、毎回個となる鍵情報KTが生成される。

【0075】図10の説明に戻り、ステップS106において、LCM1とMC13との間で相互に認証されたときは、MC13では、生成した鍵情報KT(ここでは、KT1とする)を秘匿領域に格納する(ステップS107)。また、LCM1では、暗号化コンテンツを復号するための復号鍵(コンテンツ復号鍵)KcをステップS106で生成された鍵情報KT1で暗号化して(KT1 [Kc])MC13へ転送し(ステップS108~ステップS109)、コンテンツ情報CをKcで暗号化して(Kc [C])MC13へ転送する(ステップS110~ステップS111)。

【0076】最後に、SMS 2は、図7(b)に示すように、宿帳のチェックアウト要求のあったコンテンツ I D「TID1」のコンテンツの子の残数nから「1」減算し、チェックアウトリストL1に、当該MC 13の識別情報「m0」を追加する。

【0077】MC13は、転送されてきた暗号化された コンテンツ復号鍵KT1 [Kc]、暗号化コンテンツK c [C] を公開領域13aに格納する。

【0078】以上の処理が終了したときのMC13の記憶内容を図6に示す。

【0079】次に、再生の指示がLCM1のユーザインタフェース (I/F) 部15を介してSMS2に、ある 30 いは、PD12に対しなされた場合について、図11を参照して説明する。

【0080】まず、PD12あるいはLCM1は、自身のデバイスIDをMC13へ転送する(ステップS12 1)。

【0081】LCM1が図3に示すようなPD2のコンテンツの再生機能部(復調部12g、デコーダ12h、D/A変換部12i等)を持っているのであれば、MC13をPD12で再生する場合もLCM1で再生する場合も同様であるので、以下、PD12で再生する場合を40例にとり説明する。

【0082】MC13では、転送されてきたデバイスIDがRVCリストに登録されていないかチェックし(ステップS122)、登録されていないとき秘匿領域13cにアクセスしてマスターキーKMを読み出して、PD12へ転送する(ステップS123)。MC13は、さらに、識別情報格納部13bから、その識別情報(MID)を読み出して同じくPD12へ転送する(ステップS124)。

【0083】PD12では、MC13から転送されてき。50 cにアクセスしてマスターキーKMを読み出して、LC

たメディア I D (M I D) をマスターキーKMで暗号化して、相互認証処理 (AKE) に必要な情報 (KM [M I D]) を生成する (ステップ S 1 2 5)。

【0084】PD12では、この生成された情報KM [MID] を用いて相互認証処理 (AKE) を実行し、一方、MC13でも秘匿メディアID (SMID) を用いて相互認証処理 (AKE) を実行する (ステップS126)。ステップS126の相互認証処理 (AKE) は、図22と同様であるので説明は省略する。

【0085】PD12とMC13との間で相互に認証されたときは、MC13では、生成した鍵情報KT (ここでは、KT2とする)を用いて秘匿領域13cに格納されていた鍵情報KT1を暗号化して (KT2 [KT1])、PD12へ転送する (ステップS127~ステップS128)。一方、PD12では、ステップS126で生成された鍵情報KT2を用いてMC13から転送されてきたKT2 [KT1]を復号することができる(ステップS128)。

【0086】MC13からは暗号化されたコンテンツ復号鍵KT1 [Kc]、暗号化コンテンツKc [C]を公開領域13aから読み出してPD12へ転送する(ステップS129、ステップS131)。

【0087】PD12は、鍵情報KT1の復号に成功していれば、それを用いて暗号化されたコンテンツ復号鍵KT1 [Kc]を復号してコンテンツ復号鍵Kcが得られるので(ステップS130)、このコンテンツ復号鍵Kcを用いて暗号化コンテンツKc [C]を復号して、コンテンツCを得る(ステップS132)。そして、PD12では、コンテンツCをデコーダ12hでデコードして、D/A変換部12iでデジタル信号からアナログ信号に変換し、MC13に記録されていた複製コンテンツ(例えば音楽)を再生することができる。

【0088】次に、チェックインの指示がLCM1のユーザインタフェース(I/F)部15を介して、あるいは、PD12を介して(すなわち、MC13をLCM1に接続されたPD12にセットして用いた場合)、SMS2になされた場合について、図12を参照して説明する

【0089】図12に示すチェックイン時の処理動作は、MC13に記録した鍵情報(あるいは鍵情報と暗号化コンテンツ情報)を消去(乱数で上書き消去)する際と、消去されたことの確認を行う際との合計2回、相互認証処理(AKE)を行うものである。

【0090】SMS2は、デバイスID格納部4から当該LCM1のデバイスID(LCMID)を読み出し、それをMC13へ転送する(ステップS141)。

【0091】MC13では、転送されてきたデバイスI DがRVCリストに登録されていないかチェックし(ス テップS142)、登録されていないとき秘匿領域13 cにアクセスしてマスターキーKMを読み出して、LC M1へ転送する(ステップS143)。MC13は、さらに、識別情報格納部13 bから、その識別情報(MID)を読み出して同じくLCM1へ転送する(ステップS144)。

【0092】LCM1では、MC13から転送されてきたメディアID (MID) をマスターキーKMで暗号化して、相互認証処理 (AKE) に必要な情報 (KM [MID]) を生成する (ステップS145)。

【0093】LCM1では、この生成された情報KM [MID] を用いて第1の相互認証処理(AKE#1)を実行し、一方、MC13でも秘匿メディアID(SMID)を用いて第1の相互認証処理(AKE#1)を実行する(ステップS146)。

【0094】ステップS146の相互認証処理(AKE#1)は、図22と同様であるので説明は省略する。

【0095】ステップS146において、LCM1とMC13との間で相互に認証されたときは、LCM1では、MC13の秘匿領域(RAM領域)13cに格納されている鍵情報KT1に上書きするための乱数r1を従来からある乱数発生器を用いて発生して、それとMC13への上書き指示情報とをステップS146で生成した鍵情報KT(ここではKT3とする)で暗号化して(KT3[上書指示+r1])MC13へ転送する(ステップS501)。なお、上書指示には、鍵情報KT1の書き込まれているアドレスが含まれていてもよい。

【0096】MC13では、LCM1から転送されてきたKT3 [上書指示+r1]をステップS146で生成した鍵情報KT3で復号し、乱数r1を得る(ステップS502)。この乱数r1で、MC13の秘匿領域(RAM領域)13cに格納されている鍵情報KT1を上書 30きすることで消去する(ステップS503)。なお、鍵情報KT1の他に、さらにコンテンツ復号鍵Kcを鍵情報KT1で暗号化したもの(KT1 [Kc])や暗号化コンテンツ情報Kc [C]も乱数r1で上書きすることで消去してもよい。

【0097】次に、鍵情報KT1(あるいは、鍵情報KT1と暗号化コンテンツ情報等)が乱数r1にて確実に消去されたか否かの確認のための処理を実行する。すなわち、LCM1では、ステップS145で生成された情報KM [MID]を用いて第2の相互認証処理(AKE#2)を実行し、一方、MC13でも秘匿メディアID(SMID)を用いて第2の相互認証処理(AKE#2)を実行する(ステップS504)。

【0098】ステップS504の第2の相互認証処理 (AKE#2)は、図22と同様であるので説明は省略 する。

【0099】ステップS504において、LCM1とM C13との間で相互に認証されたときは、MC13は、 鍵情報KT1と時号化コンテ ンツ情報等)が格納されていたアドレスからデータ(正 50

常に上書きされていれば、乱数r1)を読み取って、それをステップS504で生成された鍵情報KT(ここではKT4とする)で暗号化して(KT4[r1]) LC M1へ転送する(ステップS505)。

【0100】LCM1では、MC13から転送されてきたKT4[r1]をステップS504で生成した鍵情報KT4で復号し(ステップS506)、その際得られたデータとステップS501で発生した乱数r1とを比較し、一致していれば、MC13において、鍵情報KT1(あるいは、鍵情報KT1と暗号化コンテンツ情報等)が乱数r1にて消去されたと判断し、処理を終了する(ステップS507)。不一致のときはLCM1は異常を通知する等の処置を講ずるのが望ましい。

【0101】最後に、図7(c)に示すように、宿帳のチェックイン要求のあったコンテンツID「TID1」のコンテンツの子の残数nに「1」加算し、チェックアウトリストL1から、当該MC13の識別情報m0を削除する。

【0102】次に、図12とは異なる他のチェックイン時の処理動作について、図13を参照して説明する。なお、図12と同一部分には同一符号を付し、異なる部分について説明する。すなわち、図13に示すチェックイン時の処理動作は、MC13に記録した鍵情報(あるいは鍵情報と暗号化コンテンツ情報)を消去するための指示情報(例えば、これからチェックインを行う旨の指示情報)の転送の際と、実際に消去するためのコマンド発生のトリガとしての合計2回、相互認証処理(AKE)を行う点に特徴があり、ステップS146のAKE#1までの処理動作は図12と同様である。

【0103】ステップS146において、LCM1とMC13との間で相互に認証されたときは、LCM1では、これからチェックインを行う旨の指示情報をステップS146で生成した鍵情報KT(ここではKT3とする)で暗号化して(KT3[チェックイン指示])MC13へ転送する(ステップS551)。なお、チェックイン指示には、鍵情報KT1の書き込まれているアドレスが含まれていてもよい。

【0104】MC13では、LCM1から転送されてきたKT3[チェックイン指示]をステップS146で生成した鍵情報KT3で復号し、チェックイン指示情報を得る(ステップS552)。

【0105】次に、実際に消去するためのコマンド発生のトリガとしての第2の相互認証処理(AKE#2)を実行する(ステップS553)。ここでのAKE#2は、図23に示すように、図22のステップS308と同様にして、関数gの値が一致していたか否かをチェックしたら、その結果を出力するのみである。

【0106】MC13では、関数gの値が一致していて、かつ、先にチェックイン指示情報を得ていたときは、鍵情報KT1と暗号化コ

テンツCをデコーダ12hでデコードして、D/A変換

ンテンツ情報等)を消去する(ステップS554~ステ ップS555)。例えば、MC13のファイル管理領域 を書き換えることいより鍵情報 KT1等を消去するよう にしてもよい。

【0107】最後に、図7(c)に示すように、宿帳の チェックイン要求のあったコンテンツID「TID1」 のコンテンツの子の残数 n に「1」加算し、チェックア ウトリストL1から、当該MC13の識別情報m0を削 除する。

【0108】次に、図10とは異なる他のチェックアウ ト時の処理動作について、図14を参照して説明する。 なお、図10と同一部分には同一符号を付し、異なる部 分について説明する。すなわち、図14では、MC13 へ転送すべきコンテンツ復号鍵Kc に対する処理に特徴 がある。

【0109】図14において、LCM1では、コンテン ツ復号鍵Kcに対し、まず、ステップS105で生成さ れたKm [MID] (以下、これをwと表す)を用いて 暗号化を施す(ステップS162)。そして、wで暗号 化されたコンテンツ復号鍵Kc(w [Kc]) をステッ 20 プS106の相互認証処理(AKE)にて生成した鍵情 報KT1を用いてさらに暗号化を行ってから(KT1 [w [Kc]])、MC13へ転送する(ステップS1 63).

【0110】MC13では、ステップS106の相互認 証処理(AKE)にて生成した鍵情報KT1を用いて、 転送されてきたKT1 [w [Kc]] を復号してw [K c]を得、これを秘匿領域13へ格納する(ステップS 164)

【0111】コンテンツ情報Cは、図10の場合と同様 に、Kcで暗号化してから(ステップS165)、MC 13へ転送される(ステップS166)。

【0112】図14に示したようなチェックアウト処理 動作に対応する再生処理動作について、図15を参照し て説明する。なお、図11と同一部分には同一符号を付 し、異なる部分についてのみ説明する。すなわち、図1 5において、MC13は、秘匿領域13cに格納されて いる暗号化コンテンツ復号鍵w [Kc] をステップS1 26の相互認証処理 (AKE) で生成された鍵情報KT 2で暗号化してから(KT2 [w [Kc]]) LCM1 あるいはPD12へ転送する。(ステップS172)。 LCM1あるいはPD12では、同じくステップS12 6で生成された鍵情報KT2でMC13から転送されて きたKT2 [w [Kc]] を復号して(ステップS17 3)、その結果得られたw [Kc] をステップS123 で生成されたw=KM [MID] を用いて復号して、コ ンテンツ復号鍵Kcを得る(ステップS174)。この コンテンツ復号鍵Kcを用いて暗号化コンテンツKc [C] を復号して、コンテンツCを得る(ステップS1 75)。そして、LCM1あるいはPD12では、コン 50 部12iでデジタル信号からアナログ信号に変換し、M C13に記録されていた複製コンテンツ (例えば音楽) を再生することができる。

【0113】図14に示したようなチェックアウト処理 動作に対応するチェックイン処理動作は、図12、図1 3の説明とほぼ同様で、異なるのは、図12のステップ S 5 0 3、図13のステップS 5 5 5 でMC13の秘匿 領域13cから消去されるのは、鍵情報KT1ではな く、w=KM [MID] で暗号化されたコンテンツ復号 鍵w[К c]であるという点である。

【0114】(3) レベル0のMCを用いた複製コンテ ンツのチェックイン/チェックアウト/再生

次に、図4(a)に示したような構成のレベル0のMC 13を用いたチェックイン/チェックアウト、再生処理 動作について説明する。

【0115】この場合、MC13は、PD12にセット され、このPD12を介してLCM1との間でチェック アウト処理が実行される。基本的な動作は、MC13が レベル2の場合と同様であるが、レベル0の場合、秘匿 領域、メディア I Dを有していないので、PD12がL CM1に対する処理をレベル0のMC13に代行して図 10に示したような処理を実行することとなる。そのた め、PD12の秘匿領域には、マスターキーKM、秘匿 デバイスキーSPDID、リボケーションリスト (RV Cリスト)を予め記憶しておくものとする。なお、マス ターキーKMは必ずしもメディアMC13に記憶してお くマスターキーKMとその機能は同じであるが、そのデ ータ自体は同じものである必要はない。

【0116】まず、図9のステップS3において、MC 13の種別がレベル0であると判定される。

【0117】チェックアウトの指示がLCM1のユーザ インタフェース(I/F) 部15を介して、あるいは、 PD12を介してSMS2に対しなされた場合につい て、図16を参照して説明する。

【0118】SMS2は、宿帳のチェックアウト要求の あったコンテンツ(例えばコンテンツIDが「TID 1」であるとする)の子の残数nを調べ、n>0のと き、デバイスID格納部4から当該LCM1のデバイス ID(LCMID)を読み出し、それをPD12へ転送 する(ステップS201)。

【0119】PD12では、転送されてきたデバイスI DがRVCリストに登録されていないかチェックし(ス テップS202)、登録されていないときPD12の秘 匿領域にアクセスしてマスターキーKMを読み出して、 LCM1へ転送する(ステップS203)。PD12 は、さらに、例えばROM12cからその識別情報、す なわち、デバイスID(PDID)を読み出して、同じ くLCM1へ転送する(ステップS204)。

【0120】LCM1では、PD12から転送されてき

20

たデバイスID(PDID)をマスターキーKMで暗号 化して、相互認証処理(AKE)に必要な情報(KM [PDID]) を生成する(ステップS205)。

【0121】LCM1では、この生成された情報KM [PDID] を用いて相互認証処理 (AKE) を実行 し、一方、PD12でも秘匿デバイスID(SPDI D) を用いて相互認証処理 (AKE) を実行する (ステ ップS206)。ステップS206の相互認証処理(A KE)は、図22と同様であるので説明は省略する。

【0122】LCM1とPD12との間で相互に認証さ れたとき、PD12では、生成した鍵情報KT (ここで は、KT1とする)を秘匿領域に格納する(ステップS 207)。LCM1では、暗号化コンテンツを復号する ための復号鍵(コンテンツ復号鍵)KcをステップS2 06で生成された鍵情報KT1で暗号化して(KT1 [Kc])、PD12を経由してMC13へ転送し(ス テップS208~ステップS209)、また、コンテン ツ情報CをKcで暗号化して(Kc[C])、PD12 を経由してMC13へ転送する(ステップS210~ス テップS211)。

【0123】最後に、SMS2は、図7(b)に示すよ うに、宿帳のチェックアウト要求のあったコンテンツ I D「TID1」のコンテンツの子の残数nから「1」減 算し、チェックアウトリストL1に、当該PD12の識 別情報PDIDを追加する。

【0124】MC13は、転送されてきた暗号化された コンテンツ復号鍵KT1 [Kc]、暗号化コンテンツK c [C]を公開領域13aに格納する。

【0125】次に、再生の指示がPD12に対しなされ た場合のPD12とMC13との間の処理動作につい て、図17を参照して説明する。

【0126】まず、MC13は、公開領域に記録されて いる暗号化されたコンテンツ復号鍵KT1 [Kc]をP D12へ転送する(ステップS221)。PD12が当 該MC13に対し当該再生対象のコンテンツ情報をチェ ックアウトした際に用いたものであるならば、その秘匿 領域に暗号化されたコンテンツ復号鍵を復号するための 鍵情報KT1を記憶している(図16のステップS20 7参照)。従って、そのような正当なPD12であるな らば、秘匿領域から読み出した鍵情報KT1を用いて、 MC13から転送されてきたKT1 [Kc] を復号し て、コンテンツ復号鍵Κ c を得ることができる(ステッ プS222)。さらに、このコンテンツ復号鍵Kcを用 いて、MC13から転送されてきた暗号化コンテンツ情 報K c [C] を復号してコンテンツ C を得ることができ る(ステップS223~ステップS224)。そして、 PD12では、コンテンツCをデコーダ12hでデコー ドして、D/A変換部12iでデジタル信号からアナロ グ信号に変換し、MC13に記録されていた複製コンテ ンツ(例えば音楽)を再生することができる。

【0127】次に、チェックインの指示がPD12を介 して(すなわち、MC13をLCM1に接続されたPD 12にセットして用いて)、SMS2になされた場合に ついて、図18を参照して説明する。この場合もチェッ クアウトの場合と同様、PD12がLCM1に対する処 理をレベル0のMC13に代行して図12に示したよう な処理を実行することとなる。

【0128】SMS2は、デバイスID格納部4から当 該LCM1のデバイスID(LCMID)を読み出し、 それをPD12へ転送する(ステップS231)。

【0129】PD12では、転送されてきたデバイスI DがRVCリストに登録されていないかチェックし (ス テップS232)、登録されていないとき秘匿領域にア クセスしてマスターキーKMを読み出して、LCM1へ 転送する(ステップS233)。PD12は、さらに、 その識別情報 (PDID) を読み出して同じくLCM1 へ転送する(ステップS234)。

【0130】LCM1では、PD12から転送されてき たデバイス I D (PDID) をマスターキーKMで暗号 化して、相互認証処理(AKE)に必要な情報(KM [PDID]) を生成する(ステップS235)。

【0131】LCM1では、この生成された情報KM [PDID]を用いて第1の相互認証処理(AKE# 1)を実行し、一方、PD12でも秘匿デバイスID (SPDID) を用いて第1の相互認証処理 (AKE# 1)を実行する(ステップS236)。

【0132】チェックインの際のステップS236の第 1の相互認証処理(AKE#1)動作は、図22におい て、KM [MID] をKM [PDID] に置き換え、秘 匿メディアID (SMID) が秘匿デバイスID (SP DID) に置き換えれば同様であるので、説明は省略す る。

【0133】ステップS236において、LCM1とP D12との間で相互に認証されたときは、LCM1で は、PD12の秘匿領域(RAM領域)に格納されてい る鍵情報KT1に上書きするための乱数r1を従来から ある乱数発生器を用いて発生して、それとMC13への 上書き指示情報とをステップS236で生成した鍵情報 KT (ここではKT3とする)で暗号化して(KT3

[上書指示+r1]) PD12へ転送する (ステップS 601)。なお、上書指示には、鍵情報KT1の書き込 まれているアドレスが含まれていてもよい。

【0134】PD12では、LCM1から転送されてき たKT3 [上書指示+ r 1] をステップS 2 3 6 で生成 した鍵情報KT3で復号し、乱数r1を得る(ステップ S602)。この乱数r1で、PD12の秘匿領域に格 納されている鍵情報KT1を上書きすることで消去する (ステップS603)。

【0135】次に、鍵情報KT1が乱数r1にて確実に 50 消去されたか否かの確認のための処理を実行する。すな

わち、LCM1では、ステップS235で生成された情報KM[PDID]を用いて第2の相互認証処理(AKE#2)を実行し、一方、PD12でも秘匿デバイスID(SPDID)を用いて第2の相互認証処理(AKE#2)を実行する(ステップS604)。

【0136】ステップS604の第2の相互認証処理 (AKE#2)は、ステップS236のAKE#1と同様であるので説明は省略する。

【0137】ステップS604において、LCM1とPD12との間で相互に認証されたときは、PD12は、鍵情報KT1が格納されていたアドレスからデータ(正常に上書きされていれば、乱数r1)を読み取って、それをステップS604で生成された鍵情報KT(ここではKT4とする)で暗号化して(KT4[r1])LCM1へ転送する(ステップS605)。

【0138】LCM1では、PD12から転送されてきたKT4 [r1]をステップS604で生成した鍵情報KT4復号し(ステップS606)、その際得られたデータとステップS601で発生した乱数r1とを比較し、一致していれば、PD12において、鍵情報KT1(あるいは、鍵情報KT1と暗号化コンテンツ情報等)が乱数r1にて消去されたと判断し、処理を終了する(ステップS607)。不一致のときはLCM1は異常を通知する等の処置を講ずるのが望ましい。

【0139】最後に、図7(c)に示すように、宿帳のチェックイン要求のあったコンテンツ ID「TID1」のコンテンツの子の残数nに「1」加算し、チェックアウトリストL1から、当該PD12の識別情報を削除する。

【0140】次に、図18とは異なる他のチェックイン時の処理動作について、図19を参照して説明する。なお、図18と同一部分には同一符号を付し、異なる部分について説明する。すなわち、図19に示すチェックイン時の処理動作は、PD12に記録した鍵情報を消去するための指示情報(例えば、これからチェックインを行う旨の指示情報)の転送の際と、実際に消去するためのコマンド発生のトリガとしての合計2回、相互認証処理(AKE)を行う点に特徴があり、ステップS236のAKE#1までの処理動作は図18と同様である。

【0141】ステップS236において、LCM1とPD12との間で相互に認証されたときは、LCM1では、これからチェックインを行う旨の指示情報をステップS236で生成した鍵情報KT(ここではKT3とする)で暗号化して(KT3[チェックイン指示])PD12へ転送する(ステップS651)。なお、チェックイン指示には、鍵情報KT1の書き込まれているアドレスが含まれていてもよい。

【0142】PD12では、LCM1から転送されてきたKT3 [チェックイン指示] をステップS236で生成した鍵情報KT3で復号し、チェックイン指示情報を 50

得る(ステップS652)。

【0143】次に、実際に消去するためのコマンド発生のトリガとしての第2の相互認証処理(AKE#2)を実行する(ステップS653)。ここでのAKE#2は、図23に示すように、図22のステップS308と同様にして、関数gの値が一致していたか否かをチェックしたら、その結果を出力するのみである。

22

【0144】PD12では、関数gの値が一致していて、かつ、先にチェックイン指示情報を得ていたときは、鍵情報KT1を消去する(ステップS654~ステップS655)。例えば、PD12のファイル管理領域を書き換えることいより鍵情報KT1等を消去するようにしてもよい。

【0145】最後に、図7(c)に示すように、宿帳のチェックイン要求のあったコンテンツ ID「TID1」のコンテンツの子の残数nに「1」加算し、チェックアウトリストL1から、当該PD12の識別情報を削除する。

【0146】次に、図16とは異なる他のチェックアウト時の処理動作について、図20を参照して説明する。なお、図16と同一部分には同一符号を付し、異なる部分について説明する。すなわち、図20では、図14の場合と同様に、PD12へ転送すべきコンテンツ復号鍵Kcに対する処理に特徴がある。

【0147】図20において、LCM1では、コンテンツ復号鍵Kcに対し、まず、ステップS205で生成されたKm[PDID] (以下、これをwと表す)を用いて暗号化を施す(ステップS252)。そして、wで暗号化されたコンテンツ復号鍵Kc(w[Kc])をステップS251の相互認証処理(AKE)にて生成した鍵情報KT1を用いてさらに暗号化を行ってから(KT1[w[Kc]])、PD12へ転送する(ステップS253)。

【0148】 PD12では、ステップS251の相互認証処理(AKE)にて生成した鍵情報KT1を用いて、転送されてきたKT1 [w[Kc]]を復号してw[Kc]を得、これを秘匿領域へ格納する(ステップS254)。

【0149】コンテンツ情報Cは、図16の場合と同様に、Kcで暗号化してから(ステップS255)、PD 12を経由してMC13へ転送される(ステップS256)。

【0150】図20に示したようなチェックアウト処理動作に対応する再生処理動作について、図21を参照して説明する。なお、図20と同一部分には同一符号を付し、異なる部分についてのみ説明する。すなわち、図21において、PD12は、自身の秘匿領域に格納されている暗号化コンテンツ復号鍵w [Kc] を同じく自身の秘匿デバイスID(SPDID=w)を用いて復号し、コンテンツ復号鍵Kcを得ることができる(ステップS

261)。このコンテンツ復号鍵Kcを用いてMC13から転送されてきた暗号化コンテンツKc[C]を復号して、コンテンツCを得ることができる(ステップS262)。そして、PD12では、コンテンツCをデコーダ12hでデコードして、D/A変換部12iでデジタル信号からアナログ信号に変換し、MC13に記録されていた複製コンテンツ(例えば音楽)を再生することができる。

【0151】図20に示したようなチェックアウト処理動作に対応するチェックイン処理動作は、図18、図19の説明とほぼ同様で、異なるのは、図18のステップS603、図19のステップS655でPD12の秘匿領域から消去されるのは、鍵情報KT1ではなく、w=KM[MID]で暗号化されたコンテンツ復号鍵w[Kc]であるという点である。

[0152]

【発明の効果】以上説明したように、本発明によれば、 記録媒体に記録された複製コンテンツの消去が確実にし かも安全に行え、記録媒体に記録する複製コンテンツの 数の管理が容易にしかも確実に行える。

【図面の簡単な説明】

【図1】本発明の実施形態に係る記憶媒体 (メディア) に記憶できる複製コンテンツの数を規制するためのコンテンツ管理方法を用いた音楽コンテンツ利用管理システム (LCM) の構成例を示した図。

【図2】メモリ領域の構成例を示した図。

【図3】記録再生装置(PD)の内部構成例を示した図。

【図4】3種類の記憶媒体の特徴を説明するための図。

【図5】メディアインタフェース (I/F) 部の内部構成例を示した図。

【図6】チェックイン後の記憶媒体の記録内容を説明するための図。

【図7】 L CMの秘匿領域に格納されている宿帳の記憶例を示した図。

【図8】相互認証方法の概略を説明するための図。

【図9】チェックイン/チェックアウト処理手順を説明するためのフローチャートで、メディアの種別を判別して、その種別に応じた処理を選択するまでの手順を示したものである。

【図10】記録媒体の種別がレベル2の場合のチェックアウト時の手順を説明するための図。

【図11】記録媒体の種別がレベル2の場合の再生時の 手順を説明するための図。

【図12】記録媒体の種別がレベル2の場合のチェックイン時の手順を説明するための図。

【図13】記録媒体の種別がレベル2の場合のチェックイン時の他の手順を説明するための図。

【図14】記録媒体の種別がレベル2の場合のチェックアウト時の他の手順を説明するための図。

【図15】記録媒体の種別がレベル2の場合の再生時の10 他の手順を説明するための図。

【図16】記録媒体の種別がレベル0の場合のチェックアウト時の手順を説明するための図。

【図17】記録媒体の種別がレベル0の場合の再生時の 手順を説明するための図。

【図18】記録媒体の種別がレベル0の場合のチェックイン時の手順を説明するための図。

【図19】記録媒体の種別がレベル0の場合のチェックイン時の他の手順を説明するための図。

【図20】記録媒体の種別がレベル0の場合のチェック 20 アウト時の他の手順を説明するための図。

【図21】記録媒体の種別がレベル0の場合の再生時の他の手順を説明するための図。

【図22】相互認証処理(AKE)の処理動作について 説明するための図。

【図23】相互認証処理(AKE)の他の処理動作について説明するための図。

【図24】図4(c)に示したレベル2の記録媒体の構成をより具体的に示した図。

【符号の説明】

30 1…コンテンツ利用管理システム

2…セキュアコンテンツサーバ (SMS)

3…EMDインタフェース部

4…タイムアウト判定部

5…PDインタフェース (I/F) 部

6…メディアインタフェース (I/F) 部

7…秘匿領域ドライバ

8…宿帳格納部

9…ライセンス格納部

10…音楽データ格納部

0 11…CDインタフェース (I/F) 部

12…記録再生装置 (PD)

13…記憶媒体 (MC)

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図18】

【図19】

【図21】

【図20】

【図22】

[図23]

フロントページの続き

(72)発明者 加藤 拓

東京都府中市東芝町1番地 株式会社東芝 府中工場内

(72)発明者 東間 秀之

東京都青梅市末広町2丁目9番地 株式会社東芝青梅工場内

(72) 発明者 館林 誠

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 原田 俊治

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72)発明者 山田 尚志

東京都港区芝浦一丁目1番1号 株式会社

東芝本社事務所内

Fターム(参考) 5B017 AA06 BA05 BA07 BA08 BB02 CA08 CA09 CA14 CA15 CA16

5B085 AE23 AE29 CA04

5D044 AB05 DE50 GK11 GK17 HL11

5J104 AA07 BA03 KA01 NA27 PA05

PAO7 PA14

9A001 BB03 BB04 EE03 EE04 LL03