Фамилия, имя, номер групп	ы:	
		град, тем жёстче подход. ов, мне нужен мой запретный плод. The Hatters, Shoot Me (2021)
бота будет состоять из трёх част карается обнулением работы. Ра	тей: тестовая, задачи и ответы на от	ормат не стал для вас сюрпризом. Ра- гкрытые вопросы. Списывание будет ку формата А4, исписанную с двух
	Часть первая: тестова	Я
	е требуются. В части вопросов верня	ла. Никакие дополнительные поясне- ыми могут быть несколько ответов. За
Вопрос 1. Какие из следующих с глубокой нейронной сети?	функций активации могут привести	и к затуханию градиентов и параличу
A ReLU	C Leaky ReLU	E Mish
B Tanh	О Сигмоида	F Нет верного ответа.
Вопрос 2. Какие из следующих познавания изображений?	техник могут быть использованы д	ля аугментации данных в задаче рас-
\boxed{A} Зеркальное отражение	C Случайные повороты	E Масштабирование (зум)
В Случайное обрезание	\boxed{D} Смена цветовой гаммы	\boxed{F} Нет верного ответа.
нейросеть выплёвывает вектор [-	о из наблюдений, на последнем слое екоторая функция активации. Каким ации на три класса?
A [0.5, 0.5, 0.5]	C [0.2, 0.5, 0.3]	E [0.3, 0.3, 0.3]
B [1,0,0]	D [0,0,0]	$ \overline{F} $ Heт верного ответа.
Вопрос 4. Какой сложностью по тут имеется в виду глубина сети		ого распространения ошибки? Под т
A O(m!)	(C) O(m)	$E O(\ln m)$
\boxed{B} O(\mathfrak{m}^2)	D $O(m \ln m)$	F Нет верного ответа.

Вопрос 5. Предположим, что на первом слое нейронной сети у нас есть 5 свёрток размера 7×7 с дополнением нулями (zero padding) и сдвигом равным единице (stride). На вход подаётся изображение размера $224 \times 224 \times 3$. Какого размера будет тензор, который пройдёт через этот слой.

$$A 217 \times 217 \times 3$$

$$C$$
 220 × 220 × 5

$$\boxed{E}$$
 218 × 218 × 5

$$\boxed{B}$$
 217 × 217 × 8

$$D$$
 224 × 224 × 5

$$|F|$$
 Нет верного ответа.

Вопрос 6. Выберите все верные утверждения

- А Нормализация по батчам это новый способ реализации дропаута.
- С В нормализации по батчам мы усредняем столбцы матрицы (признаки).
- Нормализация по батчам ускоряет обучение
- D Нормализация по батчам может конфликтовать с дропаутом
- Е Нормализация по батчам это нелинейная трансформация данных, которая делает среднее нулевым.
- F Нет верного ответа.

Bonpoc 7. Вы обучаете свёрточную нейронную сеть на ImageNet. Для этого вы собираетесь использовать градиентный спуск. Какие из перечисленных утверждений являются правдой? Под скоростью тут имеется в виду время в минутах.

- [A] Возможно, SGD по одному наблюдению сойдётся быстрее, чем SGD по минибатчам.
- С Возможно, SGD по минибатчам сойдётся быстрее обычного градиентного спуска.
- E Возможно, SGD по минибатчам сойдётся быстрее, чем SGD по одному наблюдению.

- B Возможно, что обычный градиентный спуск сойдётся быстрее, чем Adam.
- D Возможно, что Adam сойдётся быстрее, чем обычный градиентный спуск.
- $\lceil F \rceil$ Нет верного ответа.

Bonpoc 8. Предположим, что у нас есть глубокая нейронная сеть обученная для классификации на ImageNet. Мы хотим научиться классифицировать автомобили 10 разных типов: спорткары, траки, минивэны и т.д. В нашем расапоряжении есть выборка из 300 картинок. Выберите все способы обучить модель, которые дадут хорошее качество классификации.

- [A] Обучение свёрточной нейросети с нуля на 300 изображениях.
- В Заморозить в большой сети все слои и доучить для решения нашей задачи только последний.
- С Случайно инициализировать в большой сети все веса и обучить её для нашей задачи.
- [D] Заморозить в большой сети случайную половину слоёв, а вторую половину доучить.
- E Заморозить в большой сети все слои и доучить для решения нашей задачи два последних.
- \overline{F} Нет верного ответа.

Вопрос 9. Выберите все верные утверждения о современных свёрточных архитектурах.

- A ResNet это обычная свёрточная сетка, но увеличенная в тысячу раз.
- В VGG и ResNet показывают сопоставимые результаты на ImageNet.
- С Ключевой элемент ResNet это skip-connection, который добавляется чтобы исправлять ошибки предыдущих слоёв.
- D В современных архитектурах отказались от идеи свёр-

точного слоя.

- E Сделать одну свёртку размера 5×5 предпочтительнее, чем сделать друг за другом две свёртки размера 3×3 .
- |F| Нет верного ответа.

Вопрос 10. Выберите все хорошие практики, используемые при организации DL-экспериментов.

- [A] Делать по одному изменению за раз
- <u>В</u> Логировать все эксперименты
- С Тестировать на одном батче
- D Использовать проверенные временем архитектуры
- E Никогда не использовать нормализацию по батчам
- F Нет верного ответа.

Часть вторая: задачки

Все ответы должны быть обоснованы. Решения должны быть прописаны для каждого пункта. Рисунки должны быть чёткими и понятными. Все линии должны быть подписаны. За решение каждой задачи можно получить 8 баллов.

Bonpoc 11. Рассмотрим следующие функции активации: SoftPlus и ReLU:

$$ReLU(z) = max(0, z)$$
 SoftPlus $(z) = ln(1 + e^z)$.

- 1. В современных нейронных сетях SoftPlus в отличие от ReLU практически не используется. Перечислите основные приемущества ReLU перед SoftPlus.
- 2. Выпишите уравнения для шага обратного распространения для обеих функций активации.
- 3. Как взаимосвязаны SoftPlus и сигмоида? Может ли привести использование SoftPlus к параличу нейронной сети?
- 4. ReLU потенциально может занулить выход из слоя нейроной сети. Как на практике решают эту проблему?

Вопрос 12. У Мирона есть картинка размера 3×4 и свёртка размера 3×3

0	1	0	2
1	0	1	0
0	2	0	0

Картинка

0	1	0
1	1	2
0	2	0

Свёртка

- 1. Пусть используется дополнение нулями (zero padding). Найдите результат применения свёртки к исходной картинке.
- 2. Пусть при свёртке не используется никаких дополнений. Найдите результат применения свёртки к исходной картинке.

Вопрос 13. Свёрточная сеть состоит из N слоёв. Каждый слой состоит из свёртки с ядром размера 3×3 , сигмоиды и max-pooling размера 2×2 . Входное изображение имеет размер 512×512 .

- 1. Какого размера будет выход первого слоя?
- 2. Какого размера будет выход второго слоя?
- 3. Каким должно быть N, чтобы на выходе получилось изображение размера 1×1 ? Каким при этом N будет поле обзора (receptive field)?

Вопрос 14. Пусть A, X — матрицы размера $n \times n$. Для следующей задачи оптимизации найдите ее множество решений и оптимальное значение целевой функции

$$\operatorname{tr}(A^TX) - \ln \det(X) \to \min_X$$
.

Почему получившееся значение будет точкой минимума?

Подсказка: подумайте как выглядит A^TX и будет ли эта функция выпуклой вверх или вниз. Вторую производную искать не требуется.

Вопрос 15. В коробке на кухне завалялось три персептрона, у каждого два входа с константой и пороговая функция активации:

$$f(h) = \begin{cases} 1, h \geqslant 0 \\ 0, h < 0. \end{cases}$$

Реализуйте с помощью них функцию:

$$y = \begin{cases} 1, \text{ если } x_2 \geqslant |x_1 - 3| + 2; \\ 0, \text{ иначе} \end{cases}$$
 .

Изобразите соответствующую нейросеть в виде картинки.

Часть третья: открытые вопросы

Эта часть состоит из открытых вопросов. На них необходимо дать краткие, но ёмкие ответы. За ответ на каждый вопрос можно получить 5 баллов.

Вопрос 17. Почему сверточные слои чаще используются для обработки изображений, чем полностью связанные слои?

Вопрос 18. Для чего нужен метод инерции (momentum)? Как он работает? В чём его основное отличие от метода инерции с поправкой Нестерова? Запишите формулы.

Вопрос 19. Что такое fine-tunning нейронных сетей? Почему качество при таком способе обучения, как правило, выше, чем при обучении из случайной инициализации?

Bonpoc 20. Винни-Пух учит нейросеть отличать правильный мёд от неправильного. Он использует две архитектуры. Как думаете какая из них покажет лучший результат и почему?

Dense(64, 'relu')
Dense(32, 'relu')
Dense(16, 'relu')
Dense(1, 'sigmoid')

Dense(128, 'relu')
Dense(10, 'relu')
Dense(64, 'relu')
Dense(1, 'sigmoid')

Bonpoc 21. Предположим, что у нас есть п наблюдений. Мы хотим обучить глубокую нейронную сеть. В процессе мы хотим подобрать скорость обучения, размер батча и способ регуляризации, которые дадут нам лучшую модель. Подробно опишите стратегию, с помощью которой вы будете это делать.