Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Ігрова фізика»

"Вивчення законів динаміки обертального руху за допомогою маятника Обербека "

Виконав(ла)	ІП-11 Панченко Сергій	
	(шифр, прізвище, ім'я, по батькові)	
Перевірив	Скирта Ю. Б .	
	(прізвище, ім'я, по батькові)	

Теоретичний конспект

Маятник Обербека являє собою циліндричну муфту, у яку вгвинчено чотири жорсткі стрижні так, що утворюється; призначений для дослідження законів обертального руху. По його стрижнях можна переміщувати і закріплювати чотири вантажі однакової маси, що призводить до зміни моменту інерції системи. На муфту насаджено два шківи різних радіусів. На один з них намотана тонка нитка з тягарцем, при русі якого маятник прискорено обертається.

Поступальний рух цього тягарця можна описати за допомогою другого закону Ньютона :

$$mq-T=ma$$

Обертальний рух маятника Обербека можна описати основним рівнянням динаміки обертального руху:

$$Tr - M_R = I \frac{a}{r}$$

, і об'єднавши дві вищесказані формули отримати рівняння прискорення тягарця від радіусу шківа, маси тягарця, моменту інерції маятника та моменту сил тертя

$$a = \frac{e(mgr - M_r)}{I + mr^2}$$

, яке можна спростити, якщо маса тягарця

мала відносно маси маятника

$$a = \frac{r \left(mgr - M_r \right)}{I}$$

За сталого моменту сил тертя, рух тягарця відбувається рівноприскорено і його прикорення можна визначити експериментально

$$a = \frac{2h}{t^2}$$

У даній роботі час руху тягарця ми отримуватимемо з labmech.exe, як і решту вхідних даних, оскільки ми симулюємо роботу в лабораторії.

Ми обрахуємо кутове прискорення та момент сили натягу нитки для трьох випадків — меншого радіуса шківа та меншого моменту інерції маятника, більшого радіуса шківа та меншого моменту інерції маятника, меншого радіуса шківа та більшого моменту інерції маятника. Для кожного з цих випадків буде по 3 досліда з різними масами тягарця, кожен з яких буде виконуватись по 3 рази для виведення середнього часу руху тягарця.

Дослід

Формули

$$\beta = \frac{a}{r} = \frac{2h}{r*t^2}$$
 $M = m(g-a)r = m(g-\frac{2h}{t^2})r$

Менший момент інерції маятника

r=	r = r1 = 0.021 (M)					r = r2 = 0.042 (M)							
Nº	h, _{MM}	т, г	t1, c	< t > ,	β, 1/c 2	М, Н∙м	Nº	h, mm	т, г	t1,c	<t>, c</t>	β, 1/c 2	М, Н∙м
1	400	56.8	6.861	6.893	0.8017	0.011053	1	400	56.8	2.583	2.6143	2.78688	0.02309
			6.858							2.663	3		96
			6.961							2.597			
2	400	87.8	4.552	4.520	1.8640	0.017997	2	400	87.8	1.962	1.9856	4.8309	0.03539
			4.502	67	9	1				2.002	7		03
			4.508							1.993			
3	400	150.	2.996	44684	4.0951	0.030762	3	400	150.8	1.449	1.4606	8.92768	0.05969
		8	3.057		6	3				1.475	7		44
			3.097							1.475			

Більший момент інерції маятника

Бильший момент терци малтима							
r = r1 = 0.021 (M)							
No	h, мм	т, г	t1, c	< t > , c	β, 1/c 2	М, Н·м	
1	400	56.8	3.367	3.37933	3.33587	0.0116059	
			3.399				
			3.372				
2	400	87.8	2.596	2.581	5.71867	0.0178478	
			2.585				
			2.562				
3	400	150.8	1.841	1.84733	11.163	0.0302923	
			1.883				
			1.818				

Залежності M(β) при апроксимації за допомогою LibreOffice Calc:

- 1) для r = 0.021м, меншого моменту інерції: $M \approx 0.0059439*$ $\beta + 0.00654187$
- 2) для r = 0.042м, меншого моменту інерції: $M \approx 0.0057443*$ $\beta + 0.00654956$
- 3) для r = 0.021м, більшого моменту інерції: $M \approx 0.0023698*$ $\beta + 0.00394444$

Графіки

Блактний для (1) Помаранчевий для (2) Зелений (3)

Момент інерції вантажів можна визначити як кутовий коефіцієнт прямої, що описує залежність моменту сили натягу нитки від кутового прискорення, а момент сил тертя як значення цієї прямої при β = 0. Тоді для експериментів з відповідними номерами:

Похибки вимірювань

 $\alpha = 0.9$

Для m = 56.8г, r=0.021m, менший момент інерції:

$$\langle t \rangle = 6.893 c$$

$$\Delta t_1 = 6.893 - 6.861 = 0.032 c$$

 $\Delta t_2 = 6.893 - 6.858 = 0.035 c$
 $\Delta t_3 = 6.893 - 6.961 = -0.068 c$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1) * \sum_{i=1}^{n} \Delta t_{i}^{2}}} = \sqrt{\frac{1}{3 * 2 * \sum_{i=1}^{3} \Delta t_{i}^{2}}} \approx 0.033 c$$

$$t = \langle t \rangle \pm t_{\alpha,n} * S_{\langle t \rangle} = 6.893 \pm 2.92 * 0.033 = 6.893 \pm 0.09636(c)$$

Для m = 87.8г, r=0.021m, менший момент інерції:

$$\langle t \rangle = 4.52067 c$$

$$\Delta t_1 = 4.52067 - 4.552 = -0.03133 c$$

$$\Delta t_2 = 4.52067 - 4.502 = 0.01867 c$$

$$\Delta t_3 = 4.52067 - 4.508 = 0.01267 c$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1) * \sum_{i=1}^{n} \Delta t_{i}^{2}}} = \sqrt{\frac{1}{3 * 2 * \sum_{i=1}^{3} \Delta t_{i}^{2}}} \approx 0.01576 c$$

 $t = \langle t \rangle \pm t_{\alpha,n} * S_{\langle t \rangle} = 4.52067 \pm 2.92 * 0.01576 = 4.52067 \pm 0.046019(c)$

Для m = 150.8г, r=0.021m, менший момент інерції:

$$\langle t \rangle = 3.05 c$$

$$\Delta t_1 = 3.05 - 2.996 = 0.054 c$$

$$\Delta t_2 = 3.05 - 3.057 = -0.007 c$$

$$\Delta t_3 = 3.05 - 3.097 = -0.047 c$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1) * \sum_{i=1}^{n} \Delta t_i^2}} = \sqrt{\frac{1}{3 * 2 * \sum_{i=1}^{3} \Delta t_i^2}} \approx 0.02936 c$$

$$t = \langle t \rangle \pm t_{\alpha,n} * S_{\langle t \rangle} = 3.05 \pm 2.92 * 0.02936 = 3.05 \pm 0.85144(c)$$

Для m = 56.8г, r=0.042m, менший момент інерції:

$$\langle t \rangle = 2.61433 \, c$$

$$\Delta t_1 = 2.61433 - 2.583 = 0.03133 c$$

$$\Delta t_2 = 2.61433 - 2.663 = -0.04867 c$$

$$\Delta t_3 = 2.61433 - 2.597 = 0.01733 c$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1) * \sum_{i=1}^{n} \Delta t_{i}^{2}}} = \sqrt{\frac{1}{3 * 2 * \sum_{i=1}^{3} \Delta t_{i}^{2}}} \approx 0.02466 c$$

$$t = \langle t \rangle \pm t_{\alpha,n} * S_{\langle t \rangle} = 2.61433 \pm 2.92 * 0.02466 = 2.61433 \pm 0.072(c)$$

Для m = 87.8г, r=0.042m, менший момент інерції:

$$\langle t \rangle = 1.98567 c$$

$$\Delta t_1 = 1.98567 - 1.962 = 0.02367 c$$

$$\Delta t_2 = 1.98567 - 2.002 = -0.01633c$$

$$\Delta t_3 = 1.98567 - 1.993 = -0.00733 c$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1) * \sum_{i=1}^{n} \Delta t_{i}^{2}}} = \sqrt{\frac{1}{3 * 2 * \sum_{i=1}^{3} \Delta t_{i}^{2}}} \approx 0.01211c$$

$$t = \langle t \rangle \pm t_{\alpha,n} * S_{\langle t \rangle} = 1.98567 \pm 2.92 * 0.01211 = 1.98567 \pm 0.0353612(c)$$

Для m = 150.8г, r=0.042m, менший момент інерції:

$$\langle t \rangle = 1.46067 c$$

$$\Delta t_1 = 1.46067 - 1.449 = 0.01167 c$$

$$\Delta t_2 = 1.46067 - 1.475 = -0.01433 c$$

$$\Delta t_3 = 1.46067 - 1.475 = -0.01433 c$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1) * \sum_{i=1}^{n} \Delta t_i^2}} = \sqrt{\frac{1}{3 * 2 * \sum_{i=1}^{3} \Delta t_i^2}} \approx 0.009547 c$$

$$t = \langle t \rangle \pm t_{\alpha,n} * S_{\langle t \rangle} = 1.46067 \pm 2.92 * 0.009547 = 1.46067 \pm 0.027877 (c)$$

Для m = 56.8г, r=0.021m, більший момент інерції:

 $\langle t \rangle = 3.37933 \, c$

$$\Delta t_1 = 3.37933 - 3.367 = 0.01233 c$$

$$\Delta t_2 = 3.37933 - 3.399 = -0.01967 c$$

$$\Delta t_3 = 3.37933 - 3.372 = 0.00733 c$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1) * \sum_{i=1}^{n} \Delta t_i^2}} = \sqrt{\frac{1}{3 * 2 * \sum_{i=1}^{3} \Delta t_i^2}} \approx 0.0099387 c$$

$$t = \langle t \rangle \pm t_{\alpha,n} * S_{\langle t \rangle} = 3.37933 \pm 2.92 * 0.0099387 = 3.37933 \pm 0.02902(c)$$

Для m = 87.8г, r=0.021m, більший момент інерції:

$$\langle t \rangle = 2.581 c$$

$$\Delta t_1 = 2.581 - 2.596 = -0.015c$$

$$\Delta t_2 = 2.581 - 2.585 = -0.004 c$$

$$\Delta t_3 = 2.581 - 2.562 = 0.019 c$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1) * \sum_{i=1}^{n} \Delta t_i^2}} = \sqrt{\frac{1}{3 * 2 * \sum_{i=1}^{3} \Delta t_i^2}} \approx 0.01 c$$

$$t = \langle t \rangle \pm t_{\alpha,n} * S_{\langle t \rangle} = 2.581 \pm 2.92 * 0.01 = 2.581 \pm 0.0292(c)$$

Для m = 150.8г, r=0.021m, більший момент інерції:

$$\langle t \rangle = 1.84733 \, c$$

$$\Delta t_1 = 1.84733 - 1.841 = 0.00633 c$$

 $\Delta t_2 = 1.84733 - 1.883 = -0.03567 c$
 $\Delta t_3 = 1.84733 - 1.818 = 0.02933 c$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1) * \sum_{i=1}^{n} \Delta t_i^2}} = \sqrt{\frac{1}{3 * 2 * \sum_{i=1}^{3} \Delta t_i^2}} \approx 0.0190292 c$$

$$t = \langle t \rangle \pm t_{\alpha,n} * S_{\langle t \rangle} = 1.84733 \pm 2.92 * 0.0190292 = 1.84733 \pm 0.05556 (c)$$

Висновок

Під час виконання лабораторної роботи я дослідив закони динаміки обертального руху за допомогою маятника Обербека. Резульаті досліджень занесені в таблицю, обчислені значення кутового прискорення та моменту сили натягу нитки, побудувано графіки залежності моменту сили натягу нитки від кутового прискорення для , знайдені момент сили тертя та момент інерції системи. У кінці провів перевірку на похибку.

Контрольні запитання

1. Визначити момент сили та момент імпульсу відносно деякої точки та осі

Момент сили відносно деякої точки є добутком радіус-вектора, проведеного з цієї точки О до точки прикладання сили А на вектор сили F:

$$M_o(\vec{F}) = \vec{r} \times \vec{F}$$

2. Записати основний закон динаміки обертального руху

Добуток моменту інерції тіла на кутове прискорення дорівнює моменту зовнішніх сил:

$$\frac{d\vec{L}}{dt} = I\vec{\beta} = \vec{M}$$

3. Сформулювати і записати закон збереження момента імпульсу для системи матеріальних точок

У законі збереження моменту імпульсу для системи матеріальних точок стверджено: "у замкненій системі геометрична сума імпульсів (повний імпульс системи) залишається сталою за будь-яких взаємодій тіл цієї системи між собою". Тобто:

$$\frac{d\, \vec{L}}{dt}$$
=0 , з відки випливає, що L = $const$

4. Як експериментально перевірити основний закон динаміки обертального руху?

Дослідити експериментальну залежність моменту сили натягу нитки від кутового прискорення $M(\beta)$. Тобто треба перевірати, чи результати наближаються до лінійної залежності, що підтверджує даний закон .

5. Як експериментально визначити момент інерції та момент сил тертя маятника Обербека?

Провести досліди, де треба апроксимувати пряму залежності моменту сили натягу нитки від кутового прискорення $M(\beta)$. Значення тангенса кута нахилу цієї прямої буде є моментом інерції маятника. При β =0 M ε моментом сили тертя маятника Обербека.