Collusion-Tolerable Privacy-Preserving Sum and Product Calculation without Secure Channel

- previous work:
 - o require secure pair-wise channels: both HE & SMC, request keys via secure channel.
 - o high complexity: SMC & fully HE
- this paper
 - reduce the complexity to linear time
 - o insecure channels
 - tolerate *k* passive adversaries

Related Work

- Castelluccia et al., HE scheme:
 - o provable secure & efficient
 - o modular addition, good for nodes in WSN
- Sheikt et al., k-secure sum protocol
 - o segments data
 - o significantly reduced the prob. of data leakage
- He et al., SMART, similar to above
 - \circ segments data into n slices, distributes n-1 slices via secure channel
 - o only sum
 - \circ O(n) complexity communication overhead
- Shi et al., similar to our solution
 - o periodically upload encrypted data
 - \circ brute-force search or Pollard's λ method, so **restricted**
- Our scheme
 - o no trusted aggregator
 - o insecure channels
 - \circ segments k data, constant communication overhead
 - o based on DDH assumption
 - o novel efficient protocols

System Model & Achieving & Security Analysis

- One Aggregator Model & Participants Only Model
- CDH, DDH & CDH-Security
- Lemma 4.1 & 2: segments $O(\ln k)$ slices
- (more details in paper)

Complexity

each participant sends m ciphertexts to the aggregator:

One Aggregator Model

Aggregator	Computation	Communication
Product	O(mn)	O(mn p)
Sum	O(m)	O(m p)
Per Participant	Computation	Communication
Setup(Product)	O(1)	O(p)
Encrypt(Product)	O(m)	O(m p)
Setup(Sum)	O(1)	O(p)
Encrypt(Sum)	O(1)	O(p)

• Participants Only Model

Per Participant	Computation	Communication
Setup(Prod)	O(1)	O(p)
Encrypt(Prod)	O(m)	O(mn p)
Product(Prod)	O(mn)	O(mn p)
Setup(Sum)	O(1)	O(p)
Encrypt(Sum)	O(1)	O(m p)
Sum(Sum)	O(m)	O(m p)

• Compared with Naehrig et al.'s work, One of main contributions: high speed while security level is still acceptable