ROB 101 - Fall 2021

Hyperplanes in \mathbb{R}^n , Quadratic Program, and Maximum Margin Classifier

November 29, 2021

Learning Objectives

- ► Introduce material that is assumed in UofM Computer Science courses that have Math 214 as a prerequisite.
- ▶ Provide a resource for use after you leave ROB 101.

Outcomes

- ightharpoonup Learn how to separate \mathbb{R}^n into two halves via hyperplanes.
- ▶ The notion of signed distance to a hyperplane.
- An example of a max-margin classifier, a common tool in Machine Learning.

Separating Hyperplanes

We want to study linear structures than can be used to divide \mathbb{R}^n into pieces.

Figure: Dividing \mathbb{R}^3 into disjoint regions. Image from Wikimedia Commons.

Example: Classification

Example: Classification

Lines in \mathbb{R}^2 as Separating Hyperplanes

ightharpoonup Consider the set of all points, $x \in \mathbb{R}^2$ such that

$$\langle a, x \rangle = 0, \quad a \in \mathbb{R}^2.$$

 $ightharpoonup a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, and $\langle a, x \rangle = a_1 x_1 + a_2 x_2$.

Lines in \mathbb{R}^2 as Separating Hyperplanes

ightharpoonup Consider the set of all points, $x \in \mathbb{R}^2$ such that

$$\langle a, x \rangle = 0, \quad a \in \mathbb{R}^2.$$

Writing it in the set notation:

$$L = \{ x \in \mathbb{R}^2 \mid \langle a, x \rangle = 0, \ a \in \mathbb{R}^2 \}.$$

ightharpoonup L is a line that passes through the origin.

Separating Hyperplanes in \mathbb{R}^n

▶ Consider the set of all points, $x \in \mathbb{R}^n$ such that

$$\langle a, x \rangle = 0, \quad a \in \mathbb{R}^n.$$

Writing it in the set notation:

$$H = \{ x \in \mathbb{R}^n \mid \langle a, x \rangle = 0, \ a \in \mathbb{R}^n \}.$$

ightharpoonup H is a hyperplane that passes through the origin.

Separating Hyperplanes in \mathbb{R}^n

- $H = \{ x \in \mathbb{R}^n \mid \langle a, x \rangle = 0, \ a \in \mathbb{R}^n \}.$
- $\langle a, x \rangle = 0 \iff a$ (normal vector) is orthogonal to all vectors that lie on the hyperplane.

Lines in \mathbb{R}^2 as Separating Hyperplanes

- ightharpoonup We can divide \mathbb{R}^2 into two halves.
- ▶ Indeed, we define the following half-planes.

$$H^+ := \{ x \in \mathbb{R}^2 \mid \langle a, x \rangle > 0 \},$$

$$H^- := \{ x \in \mathbb{R}^2 \mid \langle a, x \rangle < 0 \}.$$

Remark

Using the angle between a and x, $\cos\theta = \frac{\langle a,x \rangle}{\|a\|\cdot\|x\|}$, we see that $\langle a,x \rangle > 0$ is the side (H^+) where the angle is less than $90\deg$, and $\langle a,x \rangle < 0$ is the side (H^-) where the angle is greater than $90\deg$.

Separating Hyperplanes in \mathbb{R}^n

The same observation holds in \mathbb{R}^n .

- \triangleright We can divide \mathbb{R}^n into two halves.
- ▶ Indeed, we define the following half-planes.

$$H^+ := \{ x \in \mathbb{R}^n \mid \langle a, x \rangle > 0 \},$$

$$H^- := \{ x \in \mathbb{R}^n \mid \langle a, x \rangle < 0 \}.$$

Affine Subspace (Linear Variety)

If we take a subspace and translate it by x_c , then we get an affine subspace.

$$M = x_c + H = \{ x \in \mathbb{R}^n \mid \langle a, x - x_c \rangle = 0, \ a, x_c \in \mathbb{R}^n \}.$$

Affine Subspace (Linear Variety)

If we take a subspace and translate it by x_c , then we get an affine subspace.

$$M = x_c + H = \{ x \in \mathbb{R}^n \mid \langle a, x - x_c \rangle = 0, \ a, x_c \in \mathbb{R}^n \}.$$

Remark

Previously, we had $x_c=0$. If $x_c\neq 0$, then the vector $x-x_c$ lie on the hyperplane. Hence, $\langle a, x-x_c \rangle = 0$.

Affine Subspace (Linear Variety)

We can look into the translated subspace as follows.

$$\langle a, x - x_c \rangle = a^{\mathsf{T}}(x - x_c) = 0$$

 $a^{\mathsf{T}}x = a^{\mathsf{T}}x_c =: d, \quad d \in \mathbb{R}.$

Remark

If a is normalized, then $d=a^{\mathsf{T}}x_c$ is the distance from the origin to the hyperplane, i.e., the length of a vector parallel to a that starts from the origin and ends at the hyperplane.

Separating Hyperplanes in \mathbb{R}^n

We can divide \mathbb{R}^n into two halves.

$$H^{+} := \{ x \in \mathbb{R}^{n} \mid \langle a, x - x_{c} \rangle > 0 \}, H^{-} := \{ x \in \mathbb{R}^{n} \mid \langle a, x - x_{c} \rangle < 0 \}.$$

Signed Distance to a Hyperplane

- For any point that does not lie on the hyperplane, we have $\langle a, x x_c \rangle \neq 0$ or $a^{\mathsf{T}} x \neq a^{\mathsf{T}} x_c$.
- We define the signed distance of a point to the hyperplane by the amount of deviation from the hyperplane equation.

$$y(x) = \frac{\langle a, x - x_c \rangle}{\|a\|}$$

▶ We normalize by ||a|| to avoid scaling the space.

Supervised machine learning can be divided into two categories:

- Regression; in this case, the outputs (also called target values) are continuous (real numbers).
- Classification; in this case, the outputs (targets) are discrete categories (called labels).

You have seen regression problems in ROB 101. In this example, we will formulate a classification problem.

- ► We wish to find a classifier (here a hyperplane) that separates × and ∘ categories.
- Furthermore, we want to predict the label for a new input (called query or test point).

- We wish to find a classifier (here a hyperplane) that separates × and ○ categories.
- Furthermore, we want to predict the label for a new input (called query or test point).

- We are given a data set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, where the inputs are $x_i \in \mathbb{R}^2$ and targets are $y_i \in \{+1, -1\}$.
- Our model is a hyperplane $a^{\mathsf{T}}x + a_0 = 0$. a_0 is called the bias term.
- ▶ Define $w := \begin{bmatrix} a \\ a_0 \end{bmatrix}$ and $\bar{x} := \begin{bmatrix} x \\ 1 \end{bmatrix}$. Then $w^\mathsf{T} \bar{x} = 0$.

We define the following hard margins.

- $w^{\mathsf{T}}\bar{x}=1$, anything on or above this boundary belongs to class +1.
- $w^{\mathsf{T}}\bar{x}=-1$, anything on or below this boundary belongs to class -1.
- ▶ We get the following constraints:

$$\begin{split} w^\mathsf{T} \bar{x}_i &\geq 1, \quad \text{if } y_i = 1, \\ w^\mathsf{T} \bar{x}_i &\leq -1, \quad \text{if } y_i = -1. \end{split}$$

► We get the following constraints:

$$w^{\mathsf{T}}\bar{x}_{i} \ge 1$$
, if $y_{i} = 1$, $w^{\mathsf{T}}\bar{x}_{i} \le -1$, if $y_{i} = -1$.

▶ We can combine both constraints into one as

$$y_i \cdot w^\mathsf{T} \bar{x}_i \ge 1$$
, for $i = 1, \dots, n$.

We now formulate the following *constrained* optimization problem.

$$\min_{w \in \mathbb{R}^3} \quad \frac{1}{2} w^\mathsf{T} w$$
 subject to $y_i \cdot w^\mathsf{T} \bar{x}_i \ge 1$, for $i = 1, \dots, n$.

Training and Testing

Remark

Training is the process of finding (called estimating or learning depending on the context) "optimal" w^* .

Remark

Testing is the process of evaluating the trained model for a new input (an example that was not seen before).

Deploying the Classifier

Given a query point (new input) x_* , we can evaluate the signed distance and pass it through the sign function. This is called the decision or response function.

$$y_* = \operatorname{sgn}(w^{\star \mathsf{T}} \bar{x}_*),$$

where sgn is the sign function.

$$sgn(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Quadratic Programs

A *Quadratic Program* (QP) is a special kind of optimization problem with *constraints*. The cost to be minimized is supposed to be quadratic, meaning that $f: \mathbb{R}^m \to \mathbb{R}$ has the form

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Qx + qx,$$

where Q is an $m \times m$ symmetric matrix, meaning that $Q^{\mathsf{T}} = Q$, and where q is a $1 \times m$ row vector.

Quadratic Programs

We consider the QP

$$x^* = \underset{x \in \mathbb{R}^m}{\arg \min} \frac{1}{2} x^{\mathsf{T}} Q x + q x$$
$$A_{in} x \leq b_{in}$$
$$A_{eq} x = b_{eq}$$
$$lb \leq x \leq ub$$

and assume that Q is symmetric $(Q^T = Q)$ and positive definite $(x \neq 0 \implies x^TQx > 0)$, and that the subset of \mathbb{R}^m defined by the constraints is non empty, that is

$$C := \{ x \in \mathbb{R}^m \mid A_{in}x \leq b_{in}, A_{eq}x = b_{eq}, lb \leq x \leq ub \} \neq \emptyset.$$

Then x^* exists and is unique.

Example

Let's switch to the Julia notebook.

Next Time

- ► Soft Margin Classifier, Gaussian Support Vector Machine
- ▶ Read Chapter 13 of ROB 101 Book. QP is in Chapter 12.