Physics through Computational Thinking

Random walks: Stirling Approximation

Auditya Sharma and Ambar Jain

Dept. of Physics, IISER Bhopal

Outline

In this module we

1. look at the power of Stirling's approximation in the context of the one dimensional random walk problem.

Random Walk: Mean and variance of net displacement

Clear["Global`*"]

The probability distribution is

$$P_N(m) = \frac{N!}{\left(\frac{N+m}{2}\right)! \left(\frac{N-m}{2}\right)!} p^{\left(\frac{N+m}{2}\right)} q^{\left(\frac{N-m}{2}\right)}$$
(1)

We have the condition

$$N = n_1 + n_2 m = n_1 - n_2$$
 (2)

from which we have

$$m = 2 n_1 - N \tag{3}$$

Therefore

$$< m > = 2 < n_1 > -N$$

= $2N\left(p - \frac{1}{2}\right)$ (4)

Also the variance is now given by

$$\langle m^2 \rangle - \langle m \rangle^2 = \langle (2 n_1 - N)^2 \rangle - \langle 2 n_1 - N \rangle^2$$

$$= (4 \langle n_1^2 \rangle - 4 N \langle n_1 \rangle + N^2) - (4 \langle n_1 \rangle^2 - 4 N \langle n_1 \rangle + N^2)$$

$$= 4 (\langle n_1^2 \rangle - \langle n_1 \rangle^2)$$
(5)

Therefore

$$< m^2 > - < m >^2 = 4 N p q$$
 (6)

Special Case: The unbiased random walk

The unbiased random walk when $p = q = \frac{1}{2}$, and where the drunkard is equally likely to move to the right or to the left deserves special attention.

The mean and variance in displacement after N steps is now

$$\langle m \rangle = 2N\left(p - \frac{1}{2}\right) = 0$$

 $\langle m^2 \rangle - \langle m \rangle^2 = 4Npq = N.$ (7)

Equivalently

$$\langle m^2 \rangle = N, \tag{8}$$

which is an important result. Physically what it means is that although the random walker takes N steps the typical displacement is only of $O(\sqrt{N})$. This fact finds application in a variety of fields ranging from error-analysis to the stock market to polymer physics to Brownian motion.

The probability distribution for the unbiased walk is

$$P_N(m) = \frac{N!}{\left(\frac{N+m}{2}\right)! \left(\frac{N-m}{2}\right)!} \left(\frac{1}{2}\right)^N \tag{9}$$

In the limit of large N, n_1 and n_2 , it is reasonable to assume that m is much smaller than N, and with the help of a powerful tool called Stirling's approximation, the limiting procedure can be carried out to yield

$$P_N(m) \approx \sqrt{\frac{2}{\pi N}} \exp\left(\frac{-m^2}{2N}\right).$$
 (10)

Exercise

Use *Mathematica* to check the Stirling formula:

$$\ln(n!) = \left(n + \frac{1}{2}\right) \ln(n) - n + \frac{1}{2} \ln(2\pi) + O(n^{-1})$$
(11)

• Plot on the same graph the full expression and the approximation as a function of n, and see how for larger n works out great.

+

Solution

plotexact = ListPlot[Table[Log[Factorial[n]], {n, 1, 10}], PlotMarkers
$$\rightarrow$$
 Style[" \bullet ", 14, Red]]; plotapprox = ListPlot[Table[$\left(n + \frac{1}{2}\right) \text{Log}[n] - n + \frac{1}{2} \text{Log}[2\pi]$, {n, 1, 10}], PlotMarkers \rightarrow Style[" \bullet ", 10, Blue]]; Show[plotexact, plotapprox];

$$\text{Manipulate} \Big[\text{Plot} \Big[\Big\{ \frac{\text{Factorial}[N]}{\text{Factorial} \Big[\frac{N+m}{2}\Big] \text{ Factorial} \Big[\frac{N-m}{2}\Big]} \, \frac{1}{2^N}, \, \sqrt{\frac{2}{\pi \, N}} \, \text{Exp} \Big[\frac{-m^2}{2 \, N} \Big] \Big\}, \, \{m, -N, \, N\} \Big], \, \{N, \, 10, \, 100\} \Big]$$

