# 数学建模课程论文

组员 1: 陈铭硕

组员 2: 唐铭泽

组员 3: 尹贝尔

## 人员分工:

唐铭泽 模型设计、绘图、论文编写、排版

罗浩宇 模型设计、论文编写

陈子轩 资料收集、模型设计

# 繁花曲线的分析与绘制

## 摘要

关键字: 疫情防控 图论 网络流 最短路

# 目录

| 一、问        | 题重述                             |                              | •            |                   |           | • | • | • | <br>• |      |  |      |      |      | • |      |      | • | • |   | • | <br>• | 3                |
|------------|---------------------------------|------------------------------|--------------|-------------------|-----------|---|---|---|-------|------|--|------|------|------|---|------|------|---|---|---|---|-------|------------------|
| 1.1        | 1 问题的                           | 提出                           |              |                   |           |   |   |   |       |      |  |      |      |      |   |      |      |   |   |   |   |       | 3                |
| 二、问        | 题分析                             |                              |              |                   |           |   |   |   |       |      |  |      |      |      |   |      |      |   |   |   |   |       | 3                |
| 2.1        | 1 总体分                           | 析                            |              |                   |           |   |   |   |       |      |  |      |      |      |   |      |      |   |   |   | • |       | 3                |
| 2.2        | 2 问题—                           | 分析                           |              |                   |           |   |   |   |       |      |  |      |      |      |   |      |      |   |   |   |   | <br>  | 3                |
| 2.3        | 3 问题二                           | 分析                           |              |                   |           |   |   |   |       |      |  |      |      |      |   |      |      |   |   |   |   |       | 4                |
| 2.4        | 4 问题三                           | 分析                           |              |                   |           |   |   |   |       |      |  |      |      |      |   |      |      |   |   |   |   |       | 4                |
| 三、模        | 型假设                             |                              |              |                   |           |   |   |   |       |      |  |      |      |      |   |      |      |   |   |   |   | <br>  | 4                |
|            |                                 |                              |              |                   |           |   |   |   |       |      |  |      |      |      |   |      |      |   |   |   |   |       |                  |
| 四、符        | 号说明                             |                              |              |                   |           |   |   |   |       |      |  |      |      |      |   |      |      | • |   |   |   | <br>  | 4                |
|            | 号说明<br>型建立、                     |                              |              | •                 |           |   |   |   |       |      |  |      |      |      |   |      |      |   | • |   |   |       |                  |
| 五、模        |                                 | 求解                           |              | ·<br>分            | <br>析     |   |   |   |       |      |  |      |      |      |   |      |      |   |   |   |   | <br>  | 4                |
| 五、模        | 型建立、                            | ·····<br>求解                  |              | ·<br>分            | <br>析     |   |   |   |       |      |  |      |      |      |   |      |      |   |   |   |   | <br>  | <b>4</b>         |
| 五、模        | [ <b>型建立</b> 、<br>1 问题—         | <b>求解</b><br>·<br>选择-        | <br><br>     | ·<br>分<br>·       | <br>析<br> |   |   |   |       | <br> |  | <br> | <br> |      | • |      |      |   |   |   |   | <br>  | <b>4</b><br>4    |
| 五、模        | 型建立、<br>1 问题—<br>5.1.1          | <b>求解</b><br>·<br>选择-<br>选择- | <br><br>     | ·<br>分<br>·<br>·  | <br>析<br> |   |   |   |       | <br> |  | <br> | <br> | <br> |   | <br> | <br> |   |   |   | • | <br>  | <b>4</b> 4 4     |
| 五、模<br>5.1 | 型建立、<br>1 问题—<br>5.1.1<br>5.1.2 | <b>求解</b><br>                | ····<br>···· | ·<br>分<br>· · · · | 析         |   |   |   |       | <br> |  | <br> | <br> | <br> | • | <br> | <br> |   |   | • |   | <br>• | 4<br>4<br>4<br>4 |

## 一、问题重述

#### 1.1 问题的提出

## 二、问题分析

### 2.1 总体分析

一个居民小区通常由一些单元与道路组成。每个单元都有一定数量的人居住,每条 道路都有一定的通过时间。此外,我们可以把道路的交叉点与核酸检测点的候选位置看 作没有人居住的单元。于是我们可以把居民小区抽象为一张无向图,点权为居住人数, 边权为边的通过时间,把核酸检测点的规划转化成图论问题进行求解。

#### 2.2 问题一分析

定义图上两点的花费为两点的最短路径长度乘上起始点的点权。

建立核酸检测点位置要使居民总体方便,那么建立核酸检测点的位置有两种选择: 一种是使得居民到达核酸检测点的总花费最短,另一种是使得到达核酸检测点的最大的 花费最小;并且需要考虑建立的位置是否会给居民的正常生活造成影响。

#### 2.3 问题二分析

#### 2.4 问题三分析

## 三、模型假设

## 四、符号说明

| 符号         | 意义                     |
|------------|------------------------|
| n          | 图的点数                   |
| m          | 图的边数                   |
| $w_i$      | 第 i 个点的点权              |
| $e_i$      | 第 <i>i</i> 条边的边权       |
| $u_i$      | 第 <i>i</i> 条边的起点       |
| $v_i$      | 第 <i>i</i> 条边的终点       |
| $d_{i,j}$  | 第 i 个点和第 j 个点最短路径长度    |
| $rk_{i,j}$ | 第 i 到其他所有结点中第 j 小的结点编号 |

## 五、模型建立、求解与分析

#### 5.1 问题一

#### 5.1.1 选择一

使得居民到达核酸检测点的总花费最短。首先

#### 5.1.2 选择二

使得到达核酸检测点的最大的花费最小。

提出一个概念叫图的绝对重心,定义为到所有点的花费距离的最大值最小的点,那我们的核酸检测点应建立在绝对重心上。

接下来考虑如何求解绝对重心。

假设图的绝对重心在边上,枚举每一条边  $(u_k, v_k)$ ,钦定图的绝对重心 c 在这一条边上,假设其距  $u_k$  的距离为  $x(x \le e_k)$ ,那么它距离  $v_k$  的距离为  $e_k - x$ 。

如图绝对重心 c 与一点 i 的关系图:



图 1 图的绝对中心与一点的位置关系 [1]

那么  $d_{c,i} = \min\{w_i \times (d_{u_k,i} + x), w_i \times (d_{v_k,i} + e_k - x)\}$ 。 随着 c 从  $u_k$  到  $v_k$  的移动  $d_{c,i}$  的变化如图可以画到一个平面直角坐标系上:



图 2 图的绝对中心变化的影响 [1]

然后显然可以发现图像会是两条斜率相同的一次函数所构成。 接下来将对于每一个点 *i* 都画像这样的图像就可以得到:



图 3 图的绝对中心变化的影响 [1]

这些折线交点中的最低点, 横坐标就是图的绝对中心的位置。

对于绝对中心在一个点上,那么就枚举一下那个节点,再用与其距离最远的节点更 新一下就行了。

对于每一条边,每一个点都这样做一下就可以了。 总结一下过程:

- 1. 使用最短路算法求出  $d_{i,j}$ ;
- 2. 求出  $rk_{i,j}$ ;
- 3. 对于绝对中心在点上更新答案;
- 4. 对于绝对中心在边上, 枚举每一条边更新答案;

如果使用堆优化的 Dijkstra 求解最短路、邻接表存图,时间复杂度为  $\Theta(n^2\log m + nm)$ 

#### 5.2 问题二

我们发现

## 六、模型评价

## 参考文献

[1] OI Wiki Team. 图的绝对中心与一点的位置关系. https://oi-wiki.org/graph/mdst/, 2022.