Equações exatas

Considere a equação

$$\int y dx + x dy = 0.$$

Embora esta equação seja homogênea e separável podemos ver facilmente que ela também é equivalente à diferencial do produto xy, isto é

$$\int d(xy) = ydx + xdy = 0.$$

Por integração, obtemos imediatamente a solução implícita xy = c.

No Cálculo 2 você deve se lembrar que se z=f(x,y) é uma função com derivadas parciais contínuas em uma região R do plano xy, então sua **diferencial total** é dada por

Assim, se
$$f(x,y) = c$$
, segue de 13 que
$$\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

$$\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 0$$
(13)

Em outras palavras, dada uma família de curvas f(x,y) = c, podemos gerar uma equação diferencial de primeira ordem, calculando a diferencial total de f.

Exemplo 27

Se
$$x^2 - 5xy + y^3 = c$$
, então segue da equação 14 que
$$(2x - 5y)dx + (-5x + 3y^2)dy = 0$$
 ou
$$\frac{dy}{dx} = \frac{5y - 2x}{-5x + 3y^2}$$

Vamos reverter a lógica acima: dada a equação

$$\underbrace{\frac{dy}{dx} = \frac{5y - 2x}{-5x + 3y^2}}_{0-71}$$

(que não é separável nem homogênea) será possível identificar esta equação como sendo equivalente à equação

$$d(x^2 - 5xy + y^3) = 0?$$

Se isto for possível, então as soluções dessa equação são dadas (implicitamente) pelas curvas (de nível) $x^2 - 5xy + y^3 = c$.

Estes comentários nos levam ao seguinte conceito.

Definição 5 (Equação exata) Uma expressão diferencial

$$\boxed{M(x,y)dx + N(x,y)dy} \qquad \frac{\partial +}{\partial x} = M \qquad \frac{\partial +}{\partial y} = N$$

é uma diferencial exata em uma região R do plano xy se ela corresponde à diferencial total de alguma função f(x,y). Uma equação diferencial da forma

$$\int M(x,y)dx + N(x,y)dy = 0$$

é chamada de uma equação exata se a expressão do lado direito é uma diferencial exata.

Mais especificamente, a forma diferencial M(x,y)dx + N(x,y)dy é exata se existe uma função f(x,y) tal que

$$\begin{cases}
\frac{\partial f}{\partial x}(x,y) &= M(x,y) \text{ e} \\
\frac{\partial f}{\partial y}(x,y) &= N(x,y)
\end{cases} \tag{15}$$

para todo $(x, y) \in R$. Assim, devemos ter

$$df(x,y) = M(x,y)dx + N(x,y)dy$$

Observação 4 Qualquer equação diferencial de primeira ordem h(x,y) pode ser escrita (de várias maneiras) na forma diferencial

$$\underbrace{M(x,y)dx + N(x,y)dy}_{M(x,y)dx = 0} = 0. \qquad \frac{dy - h(x,y)dx = 0}{h(x,y)dx - dy = 0}$$

Agora, se o lado esquerdo dessa equação puder ser identificado com uma diferencial total,

$$M(x,y)dx + N(x,y)dy = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = df(x,y),$$

então suas soluções são dadas (implicitamente) pela equação f(x,y) = c.

Exemplo 28 Resolva a equação diferencial

$$\int \frac{dy}{dx} = -\frac{2xy^2 + 1}{2x^2y}$$

Solução: Algumas das escolhas possíveis de formas diferenciais equiva-

lentes à equação dada são:

dada são:
$$(2xy^2 + 1)dx + 2x^2ydy = 0,$$

$$\frac{2xy^2 + 1}{2x^2y}dx + dy = 0,$$

$$\frac{2xy^2 + 1}{2x^2y}dx + dy = 0,$$

$$dx + \frac{2x^2y}{2xy^2 + 1}dy = 0.$$

A melhor delas é a primeira pois é a diferencial total da função $f(x,y) = x^2y^2 + x$:

$$d(x^{2}y^{2} + x) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = (2xy^{2} + 1)dx + 2x^{2}ydy$$

Assim, as soluções da equação são dadas, implicitamente, pela fórmula

$$\int x^2 y^2 + x = c \Box$$

$$J(x,y) = \int \frac{24}{2x} dx + C(y)$$

$$= \int (2xy^2+1) dx + C(y)$$

$$= 2y^2 \int x dx + \int dx + C(y)$$

$$= 2y^2 x^2 + x + C(y)$$

Resolvendo equações exatas

Veremos agora um procedimento para resolver equações diferenciais exatas. Pelo que vimos no exemplo acima será necessário (i) um teste para determinar se a forma diferencial M(x,y)dx+N(x,y)dy é exata e, se for, (ii) um procedimento para encontrar a própria função f(x,y). O teste que se refere o item (i) é dado pelo seguinte teorema:

Teorema 2 (Teste de exatidão) $Sejam \ \underline{M(x,y)} \ e \ N(x,y) \ funções \ contínuas$ com derivadas parciais de primeira ordem contínuas em um retângulo R do plano xy. Então a equação

$$M(x,y)dx + N(x,y)dy = 0$$

$$\acute{e} \ exata \ se, \ e \ somente \ se,$$

$$\boxed{\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.}$$

Prova Supil que Max +Ndy = 0 è exata . Existe f(x, m) tal que $\left(\frac{\partial t}{\partial x} = M \cdot c\left(\frac{\partial t}{\partial y} = N\right) \cdot \left(\frac{\partial t}{\partial x}\right) = \frac{\partial M}{\partial y} = \frac{\partial M}{\partial$ $\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x^2 y}$. Pub twde Schwart, como $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$ (2) by individual of the state of t El Vamos mustrar que $x \frac{\partial M}{\partial y} = \frac{\partial V}{\partial x}$ entres a eq. é mate; is to significa que durma muntrar f(x,y) tal que $\frac{\partial f}{\partial x} = M$ e $\frac{\partial f}{\partial y} = N$. Determina opis de f: $\begin{cases} \frac{2t}{2x} = M \\ \frac{2t}{2x} = N \end{cases}$

Suponha que $\frac{2t}{2x} = M(x,y)$. Podemos obber f(x,y) integrandos M(x,y) com relação a x (unsiderando y unstante). Assim (*) $f(x,y) = \int M(x,y) dx + (g(y))$ Consoluterminar g(y)? Derivands (8) um relação a y: $\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \int M(x,y) dx + g'(y) = N(x,y)$) 2/4 dy = 2(4)+C e dat $g(y) = N(x,y) - \frac{\partial}{\partial y} \int M(x,y) dx$ (∂x) Integre (**) com relacés a y e obtenha a [g(y)]
e substitua em (*). A soluciós da agreças serà untàs (f(x,y) = c).

A funces
$$f(x,y) = \int M(x,y)dx$$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \int M(x,y)dx + \frac{\partial}{\partial x} g(x) = M(x,y)$$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \int M(x,y)dx + \frac{\partial}{\partial x} g(x) = M(x,y)$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial x} \int M(x,y)dx + \frac{\partial}{\partial x} g(x) = M(x,y)$$

$$\frac{\partial}{\partial x} \left(\int_{0}^{\infty} (x^{2} + x^{2} +$$

 $\frac{\partial f}{\partial y} = N(x,y)$ $0 = \int N(x,y) dy + h(x) = h'(x) = M(x,y) - \frac{\partial}{\partial x} \int N(x,y) dy$ $\frac{\partial f}{\partial y} = \int N(x,y) dy + h(x) = h'(x) = M(x,y) - \frac{\partial}{\partial x} \int N(x,y) dy$

Procediments para resolución de eg. exactas:

i) Aplicor o teste: $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

 $\lambda \lambda$) Determ: var $f(x,y) = \int M(x,y)dx + g(y)$ and $g'(y) = N(x,y) - \frac{2}{25} \int M(x,y)dx$

on $f(x,y) = \int N(x,y) dy + h(x)$ e $h'(x) = M(x,y) - \frac{\partial}{\partial x} \int N(x,y) dy$

Eximplos:

1) Resolva $2xy dx + (x^2 - 1) dy = 0$

Sulução: M(x,y) = 2xy e $N(x,y) = x^2 - 1$. Timos $\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x}$ A eq. c exata. Existe uma função f(x,y) tal que

 $\frac{\partial f}{\partial x} = 2xy$ e $\frac{\partial f}{\partial y} = x^2 - 1$. Integrandes $\frac{\partial f}{\partial x} = 2xy$ um relações a x

obtime $f(x,y) = \int 2xy \, dx = 2y \int x \, dx = 2y \frac{x^2}{2} + g(y) = x^2y + g(y)$

flx,y)= x²y+g(y). Derivands um velações a y e ismalando o resultado a N/x,v):

 $\frac{24}{50} = \chi^2 + g'(y) = \chi^2 - 1 \Rightarrow g(y) = -1$

Obs: A constante de integración não precise ser incluida pois a solução

sere f(x,y) = c. : $f(x,y) = x^2y - y = c$ a soluções da eq. diferencial () dada por $(x^2y - y = c)$ $y(x^2-1) = c$ $y = \frac{c}{x^2-1}$

2)
$$(e^{2y} - y w x(xy)) dx + (2 \times e^{2y} - x w x(xy) + 2y) dy = 0$$
 $M(x_1)$
 $M(x_1$

Logo una familia de solucier pora este equaçõesé dada pur xe²3-su(xy)+y² + C = 0