基于BKVision图表平台实现用户画像与行为分析

心蓝脑智士 Tencent腾讯

目录

- 开发案例需求分析与设计
- 开发实战
- 实验评分标准

实战开发需求

●课题目标:

- 1、巩固SaaS应用的软件开发&设计能力
- 2、了解蓝鲸BKVision图表平台的产品功能与使用方法
- 3、掌握基本Django中间件的开发技能与数据采集
- 4、掌握蓝鲸图表平台的嵌入方式与SDK使用
- 5、提升SaaS开发技能,巩固基础数据分析能力与数据采集技能
- 6、提升SaaS开发技能,进一步熟悉开发框架与后台建模

●课题内容:

在此前两期SaaS开发作业的基础上,借助蓝鲸BKVision图表平台实现用户行为可视化分析与前端嵌入,通过设计并开发Django中间件,实现用户行为数据埋点采集并存储至数据库,通过BKVision实现仪表盘嵌入

●样例展示: https://apps.ce.bktencent.com/stag--frontend--bk-class4/DashBoard

需求分析-功能点

●功能一:设计实现用户行为存储Model

●功能二:设计自定义中间件,实现用户行为埋点记录

●功能三: 在BKVision平台添加并配置数据源

●功能四: 创建并配置仪表盘

●功能五:将仪表盘嵌入到自己的前端应用

目录

- 开发案例需求分析与设计
- 开发实战演示
- 作业布置

实战步骤

●功能点:实现用户数据采集并存储记录到数据库中

●步骤一:实现用户行为数据存储Model,并执行数据库的迁移

●步骤二:设计自定义中间件,实现用户行为埋点记录

●步骤三:推送后端代码并部署上线

●功能点:在BKVision平台实现用户画像仪表盘

●步骤四:在BKVision平台添加并配置数据源

●步骤五: 创建并配置仪表盘

●功能点:将仪表盘嵌入到前端应用

●步骤六:使用iFrame方式将仪表盘嵌入到前端应用

●步骤七: 部署展示

步骤一: 实现用户行为数据存储Model

- · 需要实现存储Model,存储两类数据
 - 请求的API类别(如CMDB,JOB),命名为api_category
 - 请求的API名称(如biz-list、set-list),命名为api_name
 - 在home_application/models.py中实现,以api_category 和 api_name 为联合索引,确保每条API只存在一条记录
 - 每个API的访问次数命名为request_count
- Meta类的作用
 - Meta类用于提供关于模型的元数据。元数据是描述数据的数据,它不会直接存储在数据库中,而是用于配置模型的行为和属性。
 - unique_together: 指定模型字段的组合必须是唯一的。
- 执行数据库迁移
 - python manage.py makemigrations
 - python manage.py migrate

步骤二:设计自定义中间件,实现用户埋点记录

- 什么是中间件
 - Django中间件文档: <u>Django中间件原理及示例</u>
 - 中间件是一个轻量级、底层级别的插件系统,可以介入Django生命周期中的请求和响应的处理过程,控制Django程序的输入和输出
 - 使用:在Django配置文件中的 MIDDLEWARE 中注册即可
 - Django中的中间件最多可以定义五个方法:
 - process_request(self,request)
 - process_view(self, request, view_func, view_args, view_kwargs)
 - process_template_response(self,request,response)
 - process_exception(self, request, exception)
 - process_response(self, request, response)

步骤二:设计自定义中间件,实现用户埋点记录

• Django中间件的执行流程

步骤二:设计自定义中间件,实现用户埋点记录

- 实现用户埋点记录
 - 重写process_request 方法,实现在用户请求时,拦截并埋点记录
 - 从 request.user.username 中获取到用户名
 - 注意:这里需要注意中间件的顺序,如果自定义中间件放在较前的位置的话,会拿不到用户名,因为用户名的处理是在蓝鲸开发框架内置的`blueapps.middleware.request_provider.RequestProvider`中实现的,所以我们的自定义中间件的执行顺序必须在其后
 - 从 request.path 中获取到请求的接口名称,并进行split分割处理,只取最后的接口名称部分,忽略此前的前缀
 - 根据映射表关系,判断当前接口所属的类别: CMDB/JOB
 - 存储行为数据到数据库中,使用`get_or_create`进行,因为每一个API只需要一个记录,我们需要做的是递增其`count`值
 - 添加自定义中间件到config/default.py 中的对应 MIDDLEWARE 中

步骤四:在BKVision平台添加并配置数据源

- 在BKVision平台添加并配置数据源
 - · 访问BKVision平台,在空间【24华南理工实训课程】中点击【配置数据源】添加配置自己的SaaS应用的数据源
 - 选择【MySQL】数据源
 - · 从开发者中心,获取自己的SaaS应用的数据库连接信息
 - 将数据库配置信息回填到BKVision中,并测试能否成功联通

步骤五: 创建并配置仪表盘

- 创建并配置仪表盘
 - 在此前的【24华南理工实训课程】空间下,新增仪表盘
 - 编辑仪表盘->选择左侧的样式,拖拽到右边->选择此前配置 好的数据源,选择需要的数据表
 - 这里可以选择任何喜欢的样式来展示
 - · 本次课程选用【柱状图】来展示各类别API调用次数统计图, 选用【仪表盘】展示API调用总次数,选用【饼图】来统计 用户备份文件次数,选用【折线图】来统计API调用次数明 细图

注意创建完成之后要保存

步骤六: 将仪表盘嵌入到前端应用

- 将仪表盘嵌入到前端应用
 - 首先,在BKVision平台->嵌入管理(24华南理工实训课程空间下)->新增
 - · 选择需要嵌入的仪表盘及嵌入目标应用的应用ID
 - 选择嵌入方式,此处选择iFrame进行嵌入,这里的一些教程链接无法打开,嵌入代码比较简单,参考本实验手册即可
 - 选择嵌入方式后,系统会自动生成一段iFrame代码,后续复制到自己的前端应用中
 - 在自己的前端应用中新增页面
 - 在前端代码的`router/index.js`中新增`DashBoard`页面的配置
 - 在`src/App.vue`中新增`DashBoard`相关配置
 - 在`src/views`目录下新增文件夹`DashBoard`, 在`src/views/DashBoard`目录下新增Vue组件文件`index.vue`(刚刚复制的iFrame代码就粘贴到这里)
 - 发布仪表盘并推送代码到远程仓库, 部署上线

目录

- 开发案例需求分析与设计
- 开发实战演示
- 实验评分标准

整体要求	采用迭代方式进行需求分析、面向对象设计和编程实现,实训课报告中需包含相应的需求规约、设计规约,项目开发说明
考点一	在此前两期课程SaaS作业的基础上,通过Django中间件实现用户行为采集并存储到SaaS数据库,比如:登录行为、查询业务列表行为、执行作业行为等
考点二	在BKVision图表平台创建空间,接入对应的SaaS数据库,并对采集的数据进行仪表盘配置(仪表盘样式不限,鼓励大家自由发挥),并发布仪表盘
考点三	设计通过iFrame或BKVision-SDK方式,实现仪表盘发布并嵌入到对应的SaaS前端界面中
其他评分项	1.Python代码符合PEP8规范,可酌情加分
	2.系统边界考虑完善,系统性能优良,可酌情加分
	3. Django中间件实现出色,采集覆盖大部分接口场景,可酌情加分
	4. Django中间件在实现数据存储时,能够通过Celery异步任务实现,可酌情加分
	5.前端界面优美,用户交互体验良好,可酌情加分
	6.后端代码能够实现单元测试以及日志、异常处理等,可酌情加分

心蓝馆智言

官方微信公众号

蓝鲸高校培训群