4.7.2

Эффект Поккельса

Егор Берсенев

1 Цель работы

Исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

2 Оборудование

Гелий-неоновый лазер, поляризатор, кристалл ${\rm LiNbO_3}$, матовая пластинка, экран, источник высоковольтного переменного напряжения, фотодиод, осциллограф, линейка.

3 Теоретическое введение

В одноосных кристаллах существует два типа монохроматических волн, называемых обыкновенными и необыкновенными. Вектор D обыкновенной волны перпендикулярен плоскости оптической оси кристалла и волнового вектора: $D = \varepsilon_{\perp} E_{\perp}$. Вектор D необыкновенной волны лежит в главном сечении: $D = \varepsilon_{\perp} E_{\perp} + \varepsilon_{\parallel} E_{\parallel}$.

Рис. 1: а) обыкновенная и б) необыкновенные волны

$$\begin{cases} n_0 = \sqrt{\varepsilon_\perp}, \text{ обыкновенная волна} \\ n(\theta) = \left(\frac{\sin^2(\theta)}{\varepsilon_\parallel} + \frac{\cos^2(\theta)}{\varepsilon_\perp}\right)^{-1/2}, \text{ необыкновенная волна} \end{cases}$$
 (1)

Эффектом Поккельса называется изменение показателя преломления света в кристалле под действием электрического поля. При отсутствии внешнего электрического поля разность хода между обыкновенной и необыкновенной волнами при прохождении через кристалл длиной l равна:

$$\Delta \varphi = \frac{2\pi}{\lambda} l(n_1 - n_2)$$

Рис. 2: Схема для наблюдения интерференционной картины

Для обыкновенного луча $n_1 = n_0$, для необыкновенного луча, считая что $n_e = \sqrt{\varepsilon_{\parallel}}$ и n_0 отличаются незначительно и угол θ малый (см. равенство (1)):

$$n_2 \approx n_0 - (n_0 - n_e)\theta^2$$

Тогда

$$\Delta \varphi = \frac{2\pi}{\lambda} l(n_0 - n_e)\theta^2$$

Интерференционная картина представляет собой концентрические окружности. Для m-го темного кольца $\Delta \varphi = 2\pi m$. Если L - расстояние от центра кристалла до экрана, то, учитывая закон преломления на границе кристалла, при малых углах $\theta_{\text{внешн.}} = n_0 \theta$ (рис. 3) получаем выражение для радиуса кольца:

$$r_m^2 = \frac{\lambda}{l} \frac{(n_0 L)^2}{(n_0 - n_e)} m \tag{2}$$

При наличии внешнего электрического напряжения появляется разность фаз

$$\Delta \varphi = \frac{2\pi}{\lambda} \frac{l}{d} AU,$$

где U - напряжение на кристалле, d - размер кристалла в поперечном направлении, A - константа, зависящая от типа кристалла.

При перпендикулярной и параллельной поляризациях лазера и анализатора интенсивность света на выходе определяется выражениями:

$$I_{\text{вых}\perp} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right)$$

$$I_{\text{вых}\parallel} = I_0 \cos^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right)$$
(3)

Где

$$U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l} \tag{4}$$

- полуволновое напряжение, т.е. при разности хода $\lambda/2~I_{\text{вых}\perp}$ достигает максимума.

4 Экспериментальная установка

В нашем эксперименте $L=82\pm5cm,\,n_0=2.29,\,\lambda=0.63\mu m$ Размеры кристалла: $3\times3\times26$

Рис. 3: Схема экспериментальной установки

5 Экспериментальная часть

Измерим радиусы темных колец интерференционной картины (таблица). Построим график $r^2 = f(m)$ и по углу наклона прямой определим двулучепреломление $(n_0 - n_e)$ ниобата лития.

Таблица 1: Радиусы темных колец

n	1	2	3	4	5	6	7	8	9	10	11
$r_n, \text{ cm}$	3.1	4.15	5.0	5.8	6.5	7.2	7.8	8.3	8.8	9.2	9.6

$$k = \frac{\lambda}{l} \frac{(n_0 L)^2}{(n_0 - n_e)} = 8.41 \pm 0.08 \text{ cm}^2 \Rightarrow n_0 - n_e = 0.10 \pm 0.01$$

Подадим на кристалл постоянное напряжение и определим по максимуму яркости пятна на экране:

$$U_{\lambda/2} = 0.45 \pm 0.03 \text{ kB}$$

Подадим на кристалл напряжение $U = U_{\lambda/4} = 0.5 U_{\lambda/2}$ и, вращая поляризатор, убедимся в круговой поляризации света(яркость пятна практически не меняется).

Установим вместо экрана фотодиод, переключим напряжение с постоянного на переменное и пронаблюдаем фигуры Лиссажу на экране осциллографа при плавном изменении напряжения. Первый максимум сигнала на осциллограмме соответствует напряжению:

$$U_{\lambda/2} = 0.45 \pm 0.03 \text{ kB}$$

6 Вывод

В проделанной работе была изучена интерференционная картина рассеянного света, пропущенного через кристалл. Также был исследован характер зависимости поляризации света при наложении на кристалл электрического поля.

Рис. 4: График зависимости r_m от номера кольца

Рис. 5: $U = U_{\lambda/2}$

Рис. 6: $U=2U_{\lambda/2}$

Рис. 7: $U = 3/2U_{\lambda/2}$