ЛР1

ИЛИ-НЕ

Логический элемент ИЛИ-НЕ

X1	X2	Y
0	0	1
0	1	0
1	0	0
1	1	0

И-НЕ

Логический элемент И-НЕ

X1	X2	Y
0	0	1
0	1	1
1	0	1
1	1	0

Триггеры

Схема управления — преобразовать входной сигнал в выходной по некоему правилу;

Запоминающая ячейка — сохранить значение выходного сигнала на некий промежуток времени.

RS – триггер (асинхронный, ИЛИ-НЕ)

R	S	Q	!Q
0	0	Q	!Q
0	1	1	0
1	0	0	1
1	1	X	Χ

Состояние R = S = 1 запрещено, т.к. значения выходов становятся неопределенными, и после выхода из этого состояния Q и !Q могут с одинаковой вероятностью стать как 0, так и 1.

RS – триггер (асинхронный, И-НЕ)

!R	!S	Q	!Q
0	0	X	X
0	1	0	1
1	0	1	0
1	1	Q	!Q

Тактовый сигнал (сигнал синхронизации)

Нужен, чтобы синхронизировать несколько частей схемы между собой, чтобы триггеры в ней переключались одновременно и последовательно передавали друг другу сигналы, создавая таким образом «конвейер».

Сигнал на выходе комбинационных схем может устанавливаться не сразу, и быть неопределенным некоторое время. Хорошей идеей будет давать ему время на установление, и только потом передавать его на вход триггера.

RS – триггер (синхронный)

D-триггер (со статическим управлением)

D	С	Q	!Q
0	0	Q	!Q
0	1	0	1
1	0	Q	!Q
1	1	1	0

Передает значение со входа на выход, пока тактовый сигнал активен (C = 1).

Статическое и динамическое управление

Статическое — триггер принимает входной сигнал все время, пока C = 1.

Это синхронизация по уровню, такие триггеры называются защелками (LATCH).

Динамическое — триггер принимает входной сигнал ТОЛЬКО в момент переключения С из одного уровня в другой.

Это синхронизация по фронту, такие триггеры называются flip-flop (FF).

Синхронизация по фронту

Сигнал на входе воспринимается только в момент переключения С из 0 в 1, все остальное время он не воспринимается, независимо от уровня С (0 или 1). Это синхронизация по переднему фронту.

Аналогично возможна синхронизация по заднему фронту (переключение из 1 в 0).

Для тактового сигнала, как правило, используется синхронизация по переднему фронту (из 0 в 1).

Фронт сигнала

В реальности, фронт не прямоугольный, и переключение происходит не мгновенно, и тоже требует некоторого времени.

Комбинационная и последовательностная логика

- Комбинационная логика переключается сразу же, как только получает входной сигнал, и не имеет синхронизации. Все, что не триггеры, а также асинхронные триггеры это комбинационная логика;
- Последовательностная логика переключается не сразу после получения входного сигнала, а с приходом следующего тактового импульса С. Синхронизируется этим же импульсом и переключается вся одновременно. Триггеры с динамическим управлением (т.е., синхронизируемые по фронту) это последовательностная логика.

D – триггер (с динамическим управлением)

D	С	Q(n+1)	!Q(n+1)
0	0	Q(n)	!Q(n)
0	1	Q(n)	!Q(n)
0	r	0	1
0	0	Q(n)	!Q(n)
1	1	Q(n)	!Q(n)
1	r	1	0

Идея состоит в переносе сигнала со входа на выход с промежутком в один такт

DV – триггер

С динамическим управлением (значения С=0,1 опущены)

D	V	С	Q(n+1)	!Q(n+1)
0	0	r	Q(n)	!Q(n)
0	1	r	0	1
1	0	r	Q(n)	!Q(n)
1	1	7	1	0

Со статическим управлением

D	V	С	Q	!Q
0	0	0	Q	!Q
0	0	1	Q	!Q
0	1	0	Q	!Q
0	1	1	0	1
1	0	0	Q	!Q
1	0	1	Q	!Q
1	1	0	Q	!Q
1	1	1	1	0

Добавляется сигнал валидности V, входной сигнал воспринимается только при V = 1 (ограничения тактового сигнала C также остаются в силе).

DV – триггер в Multisim

С динамическим управлением

Со статическим управлением

Т – триггер

Счётный триггер, осуществляющий операцию двоичного сложения текущих входного и выходного значений.

С динамическим управлением

Т	С	Q(n)	Q(n+1)
0	P	0	0
0	7	1	1
1	r	0	1
1	r	1	0

Со статическим управлением

Т	С	Q(n)	Q(n+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

T – триггер в Multisim

