Dialogue Data Evaluation

Zoltán Csik

2023-09-08

Data Preparation

This R Markdown serves the purpose of evaluating acquired dialogue data. The collected data represents several linguistic dialogue features.

```
##
                                   HH1
                                          HH2
                                                 ННЗ
                                                        HC1
                                                               HC2
                                                                      HC3
## 1
               Utterance Length 52.558 55.209 73.681 33.372 22.452 38.393
            Words per Utterance 13.767 15.478 20.931
                                                      8.721
                                                             5.613
## 3 Unique words per Utterance 12.093 11.791 17.056
                                                      8.093
## 4
              Lexical Diversity 9.287 11.006 9.816 9.618 6.915
```

Divided Dialogues:

To compare human-human data with human-robot data, the dataframe has to be split into two:

```
##
                        Feature
                                   HH1
                                          HH2
                                                 ННЗ
## 1
               Utterance Length 52.558 55.209 73.681
            Words per Utterance 13.767 15.478 20.931
## 3 Unique words per Utterance 12.093 11.791 17.056
              Lexical Diversity 9.287 11.006
## 4
                                               9.816
##
                        Feature
                                   HC1
                                          HC2
                                                 HC3
## 1
               Utterance Length 33.372 22.452 38.393
            Words per Utterance 8.721
                                       5.710
## 3 Unique words per Utterance 8.093
                                        5.613
## 4
              Lexical Diversity 9.618 6.915
```

Human-Human Diaogue Data

Count the mean value for each linguistic feature data:

```
## Feature HH1 HH2 HH3 Mean
## 1 Utterance Length 52.558 55.209 73.681 60.48267
## 2 Words per Utterance 13.767 15.478 20.931 16.72533
## 3 Unique words per Utterance 12.093 11.791 17.056 13.64667
## 4 Lexical Diversity 9.287 11.006 9.816 10.03633
```

Human-Robot Diaogue Data

Count the mean value for each linguistic feature data:

##					Feature	HC1	HC2	HC3	Mean
##	1		Uti	terai	nce Length	33.372	22.452	38.393	31.405667
##	2		Words	per	${\tt Utterance}$	8.721	5.710	9.714	8.048333
##	3	Unique	words	per	Utterance	8.093	5.613	8.857	7.521000
##	4		Lex	ical	Diversity	9.618	6.915	8.277	8.270000

Combined Mean Values

Combine mean values from both Data Frames

dialogue_summary

##					Feature	HH	HC
##	1		Utt	terai	nce Length	60.48267	31.405667
##	2		Words	per	${\tt Utterance}$	16.72533	8.048333
##	3	Unique	words	per	${\tt Utterance}$	13.64667	7.521000
##	4		Lex	ical	Diversity	10.03633	8.270000

Visual Comparison

Statistical Relevance

95 percent confidence interval:

Since we have two different types of Dialogues, the Two-sample independent t-test is applied:

```
First application: Utterance lengths compared
```

```
##
##
   Welch Two Sample t-test
## data: group_1_Utterance and group_2_Utterance
## t = 3.5716, df = 3.6033, p-value = 0.02778
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
    5.457557 52.696443
## sample estimates:
## mean of x mean of y
## 60.48267 31.40567
Second application: Average words compared
  Welch Two Sample t-test
##
##
## data: group_1_word and group_2_word
## t = 3.5089, df = 3.133, p-value = 0.03662
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.9929812 16.3610188
## sample estimates:
## mean of x mean of y
## 16.725333 8.048333
Third application: Average unique words compared
##
##
   Welch Two Sample t-test
## data: group_1_unique_word and group_2_unique_word
## t = 3.1129, df = 3.1877, p-value = 0.04863
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##
    0.0667547 12.1845786
## sample estimates:
## mean of x mean of y
## 13.64667
             7.52100
Fourth application: Lexical Diversity
## Welch Two Sample t-test
## data: group_1_lex and group_2_lex
## t = 1.8967, df = 3.4384, p-value = 0.1423
\#\# alternative hypothesis: true difference in means is not equal to 0
```

```
## -0.9946258 4.5272924
## sample estimates:
## mean of x mean of y
## 10.03633 8.27000
```