1 Shuffle de árboles

En esta seción describiremos el producto tensorial $\Omega[S] \otimes \Omega[T]$ para todo par de árboles S y T de Ω . Para ello deberemos introducir la noción del conjunto de shuffles de S y T, que será una gran ayuda para encontrar el producto tensorial. Así podremos entender que es el producto tensorial de conjuntos dendroidales.

1.1 Producto tensorial de árboles lineales

Antes de ver el producto tensorial para árboles en general, estudiaremos el caso de árboles lineales ya que resulta una tarea más sencilla y la podemos relacionar con el producto cartesiano de conjuntos simpliciales.

Sean $S = L_n$ y $T = L_m$ dos árboles lineales, entonces por la proposición 3.30(i),

$$\Omega[L_n] \otimes \Omega[L_m] = i_!(\Delta[n]) \otimes i_!(\Delta[m]) \cong i_!(\Delta[n] \times \Delta[m])$$

Los simplices no degenerados del producto de dos representables en conjuntos simpliciales son computados mediante un *shuffle*. Un (n,m)-shuffle es un camino de longitud máxima en el conjunto de orden parcial $[n] \times [m]$. Los (n+m)-simplices no degenerados de $\Delta[n] \times \Delta[m]$ corresponde a los (n, m)-shuffles. De hecho,

$$\Delta[n] \times \Delta[m] = \bigcup_{(n,m)} \Delta[n+m]$$

Donde la unión recorre todos los posibles (n, m)-shuffles.

Ejemplo 1.1. Sean n = 2 y m = 1. Existen tres (2, 1)-shuffles en $[2] \times [1]$, (00,01,02,12), (00,01,11,12) y (00,10,11,12). Tenemos la siguiente figura que representa $\Delta[2] \times \Delta[1]$

Podemos ver que cada (2, 1)-shuffle corresponde a un tetraedro, y hacen una descomposición de $\Delta[2] \times \Delta[1]$ como la unión de tres copias de $\Delta[3]$:

1.2 Producto tensorial de árboles

1.2.1 Shuffles y conjuntos de shuffles

En este apartado vamos a introducir la noción de un shuffle entre dos árboles y la coleción de todos ellos. También daremos ejemplos extensos de como calcular dichos shuffles.

Definición 1.2. Sea S y T dos objetos de Ω . Un *shuffle* de S y T es un árbol R cuyo conjunto de aristas es un subconjunto de $E(S) \times E(T)$. La raíz de R es (a, x), donde a es la raíz de S y x es la raíz de T, y sus hojas son todos los pares (l_S, l_T) , donde l_S es una hoja de S y l_T es una hoja de T. Los vértices son de la forma

$$(a_1, x) \qquad (a_n, x) \qquad (a, x_1) \qquad (a, x_m)$$

$$(b, x) \qquad (a, y) \qquad (a, y)$$

Donde u es un vértice de S con entradas a_1, \ldots, a_n y salida b, y v es un vértice de T con entradas x_1, \ldots, x_m y salida y. Nos referiremos a los dos tipos de vértices como v értices blancos y v értices negres, respectivamente. Para diferenciarlos visualmente los pintaremos con o y o, respectivamente.

Observamos que existe una biyección entre los shuffles de dos árboles lineales L_n y L_m con los (n, m)-shuffles de $[n] \times [m]$.

Definición 1.3. Sean S y T dos árboles. El conjunto de shuffles de S y T es la colección de todos los shuffles posibles entre S y T. La cardinalidad de este conjunto la denotaremos por sh(S, T).

Proposición 1.4. El número de shuffles sh(S, T) de dos árboles S y T satisface tres propiedades:

- (i) sh(S, T) = sh(T, S)
- (ii) Si T es un árbol unitario η , entonces $sh(S, \eta) = 1$
- (iii) Si $S = C_n[S_1, \dots, S_n]$ y $T = C_m[T_1, \dots, T_m]$, entonces

$$sh(S, T) = \prod_{i=1}^{n} sh(S_i, T) + \prod_{j=1}^{m} sh(S, T_j)$$

Donde C_n y C_m son n y m-corolas, respectivamente; y $C_n[S_1, \ldots, S_n]$ es una n-corola que cada hoja i-esima la conectamos con la raíz del árbol S_i .

Ejemplo 1.5. Sean S y T los árboles

El conjunto de shuffles de S y T consiste de los siguientes tres árboles:

El conjunto de shuffles de S y T es ordenado parcialmente. El árbol minimal R_1 en el conjunto ordenado parcialmente se obtiene mediante la inserción de una copia del árbol negro T en cada entrada del árbol blanco S. Es decir, primero hacemos una copia del árbol S de la forma $S \otimes r_T$, donde todas sus aristas han sido renombradas como $(_, r_T)$, siendo r_T la raíz del árbol T. Luego hacemos una copia del árbol T de la forma $l \otimes T$, para toda hoja l de S; donde todas sus aristas han sido renombradas como $(l, _)$. Finalmente, obtenemos el árbol R_1 encajando las últimas copias encima de las hojas de la forma (l, r_T) de la primera copia. El árbol maximal R_N en el conjunto ordenado parcialmente se obtiene mediante la inserción de una copia del árbol blanco S en cada entrada del árbol negro T. Los árboles R_1 y R_n deberían lucir de la siguiente manera

Existen los shuffles intermediarios R_k (1 < k < N) entre R_1 y R_N obtenidos filtrando los vértices negros en R_1 hacia la raíz del árbol mediante intercambios con los vértices blancos. Todo R_k se obtiene desde un R_l anterior. Es decir, cada intercambio se basa en transformar una configuración de R_l

A una configuración de R_k

Si un shuffle R_k se obtiene the otro shuffle R_l mediante la norma de arriba, entonces decimos que R_k se obtiene mediante un solo intercambio y lo denotaremos por $R_l \leq R_k$. Así, obtenemos un orden parcial en el conjunto de todos los shuffles.

Tenemos que espicificar el caso de un intercambio con un árboles sin entradas, es decir,

n=0o m=0. Si m=0 y $n\neq 0,$ entonces tenemos el intercambio

$$(a, x) \qquad (b_1, x) \qquad (b_n, x) \qquad (1.4)$$

Si n=0 y $m\neq 0,$ entonces tenemos el intercambio

$$(a, y_1) \qquad (a, y_m) \qquad (a, x) \qquad (1.5)$$

Finalmente, si n=m=0, entonces tenemos el intercambio

$$(a, x) \qquad \xrightarrow{} \qquad (a, x) \qquad (1.6)$$

Ejemplo 1.6. Sean S y T los árboles

Existen catorce shuffles R_1, \ldots, R_{14} de S y T. Mostramos una lista completa de ellos. Marcaremos los nombres de las aristas en los tres primeros shuffles.

Tenemos la siguiente estructura dentro del conjunto ordenado parcialmente.

Producto tensorial de árboles

Ahora podemos dar una descripción completa del producto tensorial entre dos objetos representables en Ω mediante el cómputo de su conjunto de shuffles.

Lema 1.7. Para todo shuffle R_i de S y T tenemos un monomorfismo

$$m: \Omega[R_i] \longrightarrow \Omega[S] \otimes \Omega[T]$$

El subconjunto dendroidal, que viene dado por la imágen de este monomorfismo, lo denotaremos $m(R_i)$.

Proof. Los vérties del conjunto dendroidal $\Omega[R_i]$ son las aristas del árbol R_i . La función m envía aristas nombradas como (a, x) en R_i a la arista con el mismo nombre en $\Omega[S] \otimes \Omega[T]$. Vemos que es un monomorfismo. No entiendo.

Corolario 1.8. Para todo objeto T y S en Ω , tenemos que

$$\Omega[S] \otimes \Omega[T] = \bigcup_{i=1}^{N} m(R_i)$$

donde la unión recorre todos los posibles shuffles de S y T.

1.3 Shuffle de árboles en Python

No es complicado ver que tanto encontrar el producto tensorial de conjuntos dendroidales o, equivalentemente, calcular el conjunto de shuffles para dos árboles cualesquiera, resulta una tarea tediosa si los árboles son grandes. Para tal problema, el uso de un programa informático, capaz de almanezar grandes cantidades de información al momento de ejecución, nos resulta cómodo, fácil y rápido.

En este apartado describiré de manera breve el código que he escrito para poder tratar con opéradas, árboles, shuffles y finalmente con el conjunto de shuffles. También, el código incluye una función para formar figuras con el paquete xy de Latex de un árbol mediante una descripción básica.

Finalmente, dicho código lo podréis encontrar tanto en el Anexo 1 como en el repositorio público de código de Github: Trees Shuffling. Hace falta comentar que habrán diferencias entre el código completo que podréis encontrar en el anexo y los pseudocódigos usados a continuación, ya que nos quedamos con la estructura fundamental del algoritmo para una facilitar la lectura.

Clases del paquete

Definición 1.9. Una *clase* es una abastración de propiedades y funciones de un objeto en concreto. Siguiendo tal definición, tenemos las siguientes clases en nuestro paquete:

- Operad: Espacio que guarda los colores y las operaciones que forman un árbol.
- Tree: Clase abstracta que define un árbol con propiedades tipo: raíz, hojas...
- TreeMerger: Clase para juntar dos árboles S y T, uno encima del otro.
- TreeManipulator: Clase para buscar y hacer intercambios.
- ShuffleLattice: Clase para generar todos los shuffles entre dos árboles S y T.

Utilidades

Antes de describir más extensamente las clases nombradas, debemos comentar que existe un fichero llamado *utils.py* donde hay una colección de funciones y algoritmos *utiles* que usaremos a lo largo del código.

Vale la pena mencionar la función que servirá como la puerta de entrarda a los árboles, nombrada: $string_to_tree_space$. Tiene como entrada una descripción completa de un árbol y devuelve una instáncia de la clase Tree. Por ejemplo, la cadena de cáracteres "vW(b,c;a)|wB(d,e,f;c)" describe el árbol S

Donde el vértice v de color blanco (W) tiene como entradas b y c, y salida a; y el vértice w de color negro (B) tiene como entradas d, e y f, y c como salida. Llamaremos operaciones a "vW(b,c;a)" o "wB(d,e,f;c)".

En esta colección se encuentra el algoritmo sorted que nos va a ordenar las operaciones que generan un árbol. El orden que vamos a describir nos asegura que todo color de salida en cada operación, aparezca como entrada de otra operación en la izquierda, salvo el color correspondiente a la raíz ya que esa operación será la primera. Hemos realizado un pseucodódigo para que se entienda mejor el algoritmo sorted.

Algorithm 1 Pseudocódigo del algoritmo para ordenar las operaciones de un árbol T. Podéis encontrar el código completo en el anexo.

```
Input: Requires an array of operations of a tree
 1: function SORTED(operations)
        n \leftarrow \text{Length of } operations
        i \leftarrow 0 Starting index
 3:
        while i < n do
 4:
           for j in [i + 1, ..., n) do
 5:
               if operations[i].trunk in operations[j].branches then
 6.
                   operation \leftarrow Pop operation on index i from operations
 7:
                   opertations[j] \leftarrow operation Insert operation on new index
 8:
 9:
                   break
                        ▶ Note that this else only occurs when the for hasn't been broken
           else
10:
               i \leftarrow i + 1
11:
12:
        return operations
Output: Returns the list of operations sorted
```

Por ejemplo, todas las siguientes descripciones hablan del mismo árbol S. El resultado de sorted es "0W(1;0)|1W(2,4,6;1)|4W(7;6)|3W(5;4)|2W(3;2)", y las entradas podrían ser:

```
1. "2W(3;2)|1W(2,4,6;1)|3W(5;4)|4W(7;6)|0W(1;0)"
2. "1W(2,4,6;1)|2W(3;2)|3W(5;4)|0W(1;0)|4W(7;6)"
3. "3W(5;4)|2W(3;2)|4W(7;6)|0W(1;0)|1W(2,4,6;1)"
```

Clase Tree

La clase Tree tiene las propiedades que define un árbol como opérada coloreada.

- trunk: Color de salida.
- branches: Lista de colores de entrada.
- node: Nombre de la operación.

Sea S un árbol con más de una operación, cada operación será una instancia de Tree y estarán relacionadas entre si mediante las ramas (branches) y los troncos (trunk). Es decir, sea S = "vW(b,c;a)|wB(d,e,f;c)", la rama c del $node\ v$ contiene una instancia de Tree de la operación "wB(d,e,f;c)". Falta mencionar que la clase uTree describe un árbol sin node ni branches.

Clase TreeMerger

Esta clase nos permite unir dos árboles de la misma manera descrita en el apartado 4.2.1. Es decir, con los árboles S y T nos devuelve el shuffle R_1 , y a la inversa, los árboles T y S nos devuelve R_N .

Clase TreeManipulator

Esta clase es importante para la clase que explicaremos a contiunación ShuffleLattice, ya que será su alimento. Es decir, esta clase nos busca en un shuffle R los vértices disponibles para realizar un intercambio, explicado en el apartado 4.2.1; y también la función necesaria para realizar tal intercambio.

La clase contiene el algoritmo find-percolations que es el encargado de buscar los vértices disponibles para realizar un intercambio en un shuffle R cualquiera. Es un algoritmo recursiva donde va acumulando las operaciones donde se encuentran los intercambios posibles. Seguidamente podemos ver el pseudocódigo.

Algorithm 2 Pseudocódigo del algoritmo para encontrar los vértices para hacer un intercambio de un shuffle R. Podéis encontrar el código completo en el anexo.

Input: Requires the class instance of Shuffle Lattice, an optional tree X and an empty array found

```
1: function FIND_PERCOLATIONS(self, R, found)
 2:
       if R is empty then
 3:
           X \leftarrow self.tree
                                              \triangleright Note that self.tree refers to T on top of S
       if R.node is from self.S.operations then
 4:
                                                                \triangleright Note that branch is a Tree
 5:
           for branch in R.branches do
              if branch.node not in self.T.operations then
 6:
 7:
           else
                       ▶ Note that this else only occurs when the for hasn't been broken
 8:
               found \leftarrow Append R
 9:
       for R_i in R.branches do find_percolations(self, R_i, found)
10:
       return found
Output: Returns the list found of locations
```

La clase contiene la función $make_percolation$ que es la encargada de realizar el intercambio préviamiente encontrado. Es decir, realiza un cambio de operaciones y un cambio de los nombres de las aristas afectadas siguiendo la norma de intercambios.

ShuffleLattice

Finalmente, la clase más importante del paquete que usa diractamente o indirecatamente las clases que hemos comentado anteriormente. Esta clase va a generar todos los shuffles R_i entre dos árboles cualesquiera S y T.

La clase contiene el algoritmo $generate_shuffle$ que está basado en el algoritmo clásico de búsqueda en anchura, más conocido como BFS en inglés. Es decir, es un algoritmo de búsqueda no informada que se alimenta con nuestro algoritmo $find_percolations$ y actúa con la función $make_percolation$ cuando se dan unas condiciones.

Algorithm 3 Pseudocódigo del algoritmo para generar todos los shuffles entre S y T. Podéis encontrar el código completo en el anexo.

```
Input: Requires the class instance of ShuffleLattice
 1: function GENERATE_SHUFFLES(self)
        queue \leftarrow Append initial tree
 2:
 3:
        dictionary \leftarrow Save initial tree
        while queue not empty do
 4:
 5:
            tree \leftarrow Pop the first tree in queue
            for location in tree.find_percolations() do
 6:
               new\_tree \leftarrow Apply the percolation on location of the tree
 7:
               {f if}\ new\_tree\ {f not}\ in\ dictionary\ {f then}
 8:
                    queue \leftarrow new\_tree Append new tree
 9:
                    dictionary \leftarrow Save new tree
10:
        return dictionary
11:
Output: Returns dictionary with all the shuffles found
```

Algorithm 4 Pseudocódigo del algoritmo para computar el número de shuffles entre S y T. Podéis encontrar el código completo en el anexo.

```
Input: Requires two trees S and T
 1: function SH(S, T)
        if S is a unitary Tree then
 2:
 3:
            return 1
        if T is a unitary Tree then
 4:
            return 1
 5:
        prod_S \leftarrow 1
 6:
        for branch in S.get_branches() do
 7:
            prod_S \leftarrow prod_S * sh(branch, T)
                                                             \triangleright Note that every branch is a Tree
 8:
        prod_T \leftarrow 1
 9:
        for branch in T.get_branches() do
10:
            prod_T \leftarrow prod_T * sh(S, branch)
                                                            \triangleright Note that every branch is a Tree
11:
12:
        return prod_S + prod_T
Output: Returns the sum of the products
```