Day 7

Outline

- 1. Two-way tables and diagnostic testing
- 2. Conditional probability
- 3. Tree Diagrams
- 4. Bayes' Rule
- 5. Solving conditional probability problems

Two-Way Table

Gender compared to handedness

	Handed		
	Left	Right	
Female	7	46	53
Male	5	63	68
	12	109	121

Figure 1: Table Example

Example

Helsinki Heart Study

 $2035~\mathrm{men}$ in control group had $84~\mathrm{heart}$ attacks $2046~\mathrm{men}$ in special drug name group had $54~\mathrm{heart}$ attacks

Referring to the table above, these are the correct mappings:

• Male: placebo

Female: special drugLeft: Heart attackRight: No heart attack

Diagnostic Testing

Formal definition: an examination to identify an individual's specific areas of weakness and strength in order determine a condition, disease or illness.

Figure 2: Diagnostic Testing Table

Machine Learning Terminology: we evaluate on a "training set" in which number if actual positive and actual negative is known in advance.

We compute:

- Sensitivity (recall): proportion of actual positive classified correctly $\frac{TP}{TP+FN}.$
- Specificity: proportion of actual negative classified correctly $\frac{TN}{TN+FP}$

These are both properties of our test/algorithm.

- Positive Predictive Value(PPV, precision): proportion of positive tests that were actually positive
- Negative Predictive Value(NPV): proportion of negative tests that are actually negative $\frac{TN}{TN+FN}$

Also depend on prevalence (base rate) $\frac{Actual\,positive}{Actual\,positive + Actual\,negative}$

Example

- 300 units
- 83% prevalence
- TP = 200
- FP = 10
- FN = 50
- TN = 40

Compute:

- Sensitivity: $\frac{200}{200+50} = 80\%$ Specificity: $\frac{40}{40+10} = 80\%$ PPV = $\frac{200}{200+10} = 95.20\%$

- NPV = $\frac{40}{40+50}$ = 44.4%

In Class Example

- \bullet 300 units
- 3% prevalence
- TP = 8
- FP = 58
- FN = 2
- TN = 232

Answers

- Sens: $\frac{8}{10} = 80\%$ Spec: $\frac{232}{232+58} = 80\%$ PPV: $\frac{8}{8+58} = 12.1\%$ NPV: $\frac{232}{232+2} = 99.2\%$

Conditional Probability

The conditional probability of event "B" given event "A", denote denoted P(B|A), is the probability of event "B", looking only at outcomes in A.

 $P(B|A) = \frac{number\ of\ outcomes\ in\ A\cap B}{number\ of\ outcomes\ in\ A}$ when all outcomes are equally likely

More generally: $P(B|A) = \frac{P(A \cap B)}{P(A)} P(A) > 0$

Figure 3: Conditional Probability Diagram

Independent events: $P(A \cap B) = P(A) \times P(B)$

Conditional probability: $P(A \cap B) = P(A) \times P(B|A)$

So: "A" and "B" are independent when P(B) = P(B|A) dependent when $P(B) \neq P(B|A)$

Example

- 1. What is the probability that a randomly selected person in the control group had a heart attack?
- 2. What is the probability that a randomly selected heart attack victim was in the control group?

Both of these are different questions

- 1. $P(heart \, attack | control) = \frac{84}{2035}$
- 2. $P(control|heart attack) = \frac{84}{140}$

Tree Diagram

- $\cdot = node$
- ----=branch

Each node represents an event.

Each branch represents probability of getting to next node, given that we got to previous node.

Ending node is the **terminal node**.

Splits in the branches must add up to one. Please refer to node "A" when it splits between "NP" and "P".

Notes on Probabilities

- 1. Probability of leaving a node is 1. The sum of probabilities on all branches exiting a node = 1.
- 2. Probability of getting to a terminal node is a product of probabilities along the branch path to it.
- 3. Probability of event "B" is sum of probabilities at all terminal nodes including "B"

Bayes' Rule

"Switch" between P(A|B) and P(B|A)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(B|A) \times P(A)$$

By fancy set theory logic:

- $P(B) = P(B \cap A) + P(B \cap A^c)$
- $P(B \cap A) = P(B|A) \times P(A)$
- $P(B \cap A^c) = P(B|A^c) \times P(A^c)$

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B|A) \times P(A) + P(B|A^c) \times P(A^c)}$$

Use Bayes' Rule to find P(A|B) given P(B|A), $P(B|A^c)$, and P(A)

e.g) Find PPV given sensitivit, 1 - spec & prevalence