I Group Theory

1. Let
$$f: G_1 \longrightarrow G_2$$
 be a gp hom. Prove that $G_1/\ker(f) \cong \operatorname{Im}(f)$

2. There is a bijection
$$(\forall N \leq G)$$
 $\{H \leq G \leq G\}$ $\{H \leq G \leq G\}$ $\{H \leq G \leq G\}$ $\{H \leq G \leq G\}$.

So
$$G/_{H} \cong \frac{(G/N)}{(H/N)}$$

3. GCX: Prove
$$|G \cdot x| = \frac{|G|}{|Stab_{G}(x)|}$$

$$|\chi| = \sum_{0 \text{ interf}} |0| = \sum_{i=1}^{n} \frac{|G|}{|Shab_{G}(x_{i})|} \qquad (where \{G \cdot x_{i}, \dots, G \cdot x_{n}\} = \bigotimes)$$

(a)
$$|G/H| = \frac{|G|}{|H|}$$

$$4^{\dagger}$$
: $|G^{X}| = \frac{1}{161} \sum_{g \in G} |X^{g}|$ (Burnside's Counting Lemma)

5:
$$|G| = p^n$$
 (N), p prime), $GCX \Longrightarrow |X| \equiv |X^G|$ and p

6 Sylow Theorems:

(3)
$$n_p \equiv 1 \mod p$$
; $n_p \mid |G|$

7: Semi-direct products:

(2)
$$H \subseteq G$$
, $N \subseteq G$, $H \cap N = \{e\}$, $G = H \cdot N = N \cdot H$
Prove (1) \iff (2).

8: Commutator Subgroups

(1)
$$A,B \triangleleft G \Rightarrow [A;B] \triangleleft G$$

II Rings (Commutative and nontrivial: 0 = 1 e R)

9: Isomorphism Theorems: Let
$$f: R_1 \longrightarrow R_2$$
 be a ray hom.
then $R_1/\ker(f) \cong \operatorname{Im}(f)$ (Note that hom means $0 \longrightarrow 0 \atop 1 \longrightarrow 1$)

$$|0: \left\{ \begin{array}{c} \widetilde{\mathbb{I}} \stackrel{\text{ideal}}{=} R & \text{f. } I \\ I \subseteq \widetilde{\mathbb{I}} \end{array} \right\} \longleftrightarrow \left\{ |\text{deals of } R/I \right\}$$

$$R/\tilde{I} = \frac{(R/I)}{(\tilde{I}/I)}$$

11**: Maximal ideals exist

12: Maximal ideals are prime

13: Coprime ideals
$$(I_1 + I_2 = R)$$
: $I_1 \cdot I_2 = I_1 \cap I_2$

and $R/I_1 = R/I_1 \times R/I_2$ (chince remainder thm).

- 14: I_1 , I_2 coprime $\Longrightarrow I_1^{n_1}$, $I_2^{n_2}$ coprime $(\forall n_1, n_2 \ge 1)$
- 15: If $S \subseteq R$ is multiplical ruly closed then $j: R \longrightarrow S^{1}R \qquad is a ring hom,$ and $j(t) \in (S^{-1}R)^{\times} \ \forall \ t \in S$.
- 16: Ideals in STR = {STI | I = R is } (Note: it is possible that STI = STI) when I, # I2
- 17: 5 = R ← Ins + Ø
- 18: $P_1, P_2 \subseteq R$ distinct prime ideals set. $P_1 \cap S = P_2 \cap S = \emptyset$ $\Rightarrow S^{-1}P_1 \neq S^{-1}P_2$
- 19: R: domain; S = R \ 903 => 5-1 R is a field.
- 20: R: any ring, PER prime ideal, S=R-P => S'R is a local ring.
- 21: $N(R) := Set of nilpotent elements. Then <math>N(R) \subseteq R$ is an ideal, and $N(R) = \bigcap_{P \in R \text{ prime}} P$ (nilradical)
- 22: R: PID Maxil ideals = nonzero prime ideals
- 23: (1) every ideal in R is finitely generated
 - (2) Ascending Chanh Condition
 - (3) every non-empty set of ideals has a max'l element are three equivalent definitions of "R is a Noetherian Ring" torove this
- 24: Prose that Euclidean domains are PIDs.
- 25 : Hilbert Basis Theorem

26: (1) Q: primary ideal -> Rad(Q) is prime

(2) Rad(I) maximal => I is primary

(3) Rad $(I_1 \cap I_2) = Rad(I_1) \cap Rad(I_2)$

(4) (Noetherium) Rad (I) ~ C I for some N > 1.

(6) (PID) prinary ideal = (Prime ideal) N

27 PID => UFD (UFD => PID como be on exam)

28: R = K (x) where K is a fireld.

(1) K(x) is a enclidean domain with norm = degree

(2) {Maxil in K(x)} = {(f) where f is non-zero irreducible}

(3) $f(x) = (x-\alpha)^{N+1} g(x)$ for some g(x) s.t. $g(\alpha) \neq 0$ iff $f(\alpha) = f'(\alpha) = \dots = f^{(N)}(\alpha) = 0$ & $f^{(N+1)}(\alpha) \neq 0$.

[in words: f has a voot in K => fis not ir reducible]

29: Cherracteristic of a field K is p:pnm or o.

In the first case, Fp C K.

In the second case, Q C K

30: Char(K) = p. prime implies $K \xrightarrow{\sigma_p} K$ is a ring hom (this is the Frobenius homomorphism)

(as kis a field, op is injective and op(a) = a Yae IFp).