11) Publication number:

0 251 446 **A2**

(2)

EUROPEAN PATENT APPLICATION

(21) Application number: 87303761.8

(22) Date of filing: 28.04.87

(5) Int. Cl.³: **C** 12 N 15/00 C 12 N 9/54, C 12 N 1/00

- 30 Priority: 30.04.86 US 858594 06.04.87 US 35652
- 43 Date of publication of application: 07.01.88 Bulletin 88/1
- 84 Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE
- (7) Applicant: GENENTECH, INC. 460 Point San Bruno Boulevard South San Francisco California 94080(US)
- 72 Inventor: Wells, James Allen 64 Otay Avenue San Mateo CA 94403(US)
- (72) Inventor: Cunningham, Brian C. 24 Olive Avenue Piedmont CA 94611(US)
- (72) Inventor: Caldwell, Robert Mark 1828 Broadway No.101 San Francisco Ca 94109(US)
- (72) Inventor: Bott, Richard Ray 3032 Hillside drive Burlingame CA 94010(US)
- 2 Inventor: Estell, David Aaron 250 Diablo Avenue Mountan View CA 94043(US)
- 12 Inventor: Power, Scott Douglas 732 Olive Court San Bruno CA 94066(US)
- (4) Representative: Bizley, Richard Edward et al, BOULT, WADE & TENNANT 27 Furnival Street London EC4A 1PQ(GB)

(54) Non-human Carbonyl hydrolase mutants, DNA sequences and vectors encoding same and hosts transformed with said

5) Novel carbonyl hydrolase mutants derived from the amino acid sequence of naturally-occurring or recombinant non-human carbonyl hydrolases and DNA sequences encoding the same. The mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to encode the substitution, insertion or deletion of one or more amino acids in the amino acid sequence of a precursor carbonyl hydrolase. Such mutants have one or more properties which are different than the same property of the precursor hydrolase.

Ш

NON-HUMAN CARBONYL HYDROLASE MUTANTS, DNA SEQUENCES AND VECTORS ENCODING SAME AND HOSTS TRANSFORMED WITH SAID VECTORS

The recent development of various in vitro techniques manipulate the DNA sequences encoding naturally-occuring polypeptides as well as recent developments in the chemical synthesis of relatively short sequences of single and double stranded DNA has resulted in the speculation that such techniques can be used to modify enzymes to improve some functional property in a predictable way. Ulmer, K.M. (1983) <u>Science 219</u>, 666-671. The only working example disclosed therein is the substitution of a single amino acid within the active site of tyrosyl-tRNA synthetase (Cys35-Ser) which lead to a reduction in enzymatic activity. See Winter, G., et al. (1982) Nature 299, 756-758; and Wilkinson, A.J., et al. (1983) <u>Biochemistry 22</u>, 3581-3586 (Cys35-Gly mutation also resulted in decreased activity).

When the same t-RNA synthetase was modified by substituting a different amino acid residue within the active site with two different amino acids, one of the mutants (Thr51-Ala) reportedly demonstrated a predicted moderate increase in kcat/Km whereas a second mutant (Thr51-Pro) demonstrated a massive increase in kcat/Km which could not be explained with

certainty. Wilkinson, A.H., et al. (1984) <u>Nature</u> 307, 187-188.

Another reported example of a single substitution of an amino acid residue is the substitution of cysteine for isoleucine at the third residue of T4 lysozyme. Perry, L.J., et al. (1984) Science 226, 555-557. resultant mutant lysozyme was mildly oxidized to form a disulfide bond between the new cysteine residue at position 3 and the native cysteine at position 97. This crosslinked mutant was initially described by the author as being enzymatically identical to, but more thermally stable than, the wild type enzyme. However, in a "Note Added in Proof", the author indicated that the enhanced stability observed was probably due to a chemical modification of cysteine at residue 54 since the mutant lysozyme with a free thiol at Cys54 has a thermal stability identical to the wild type lysozyme.

Similarly, a modified dihydrofolate reductase from E.coli has been reported to be modified by similar methods to introduce a cysteine which could crosslinked with a naturally-occurring cysteine in the reductase. Villafranca, D.E., et al. (1983) Science The author indicates that this mutant 222, 782-788. fully reactive in the reduced state but has significantly diminished activity in the oxidized In addition, two other substitutions state. specific amino acid residues are reported which in mutants which had diminished or resulted activity.

EPO Publication No. 0130756 discloses the substitution of specific residues within <u>B. amyloliquefaciens</u> subtilisin with specific amino acids. Thus, Met222 has been substituted with all 19 other amino acids,

5

10

15

20

25

30

Gly166 with 9 different amino acids and Gly169 with Ala and Ser.

As set forth below, several laboratories have also reported the use of site directed mutagensis to produce the mutation of more than one amino acid residue within a polypeptide.

The amino-terminal region of the signal peptide of the prolipoprotein of the <u>E. coli</u> outer membrane was stated to be altered by the substitution or deletion of residues 2 and 3 to produce a charge change in that region of the polypeptide. Inoyye, S., et al. (1982) <u>Proc. Nat. Acad. Sci. USA 79</u>, 3438-3441. The same laboratory also reported the substitution and deletion of amino acid redisues 9 and 14 to determine the effects of such substitution on the hydrophobic region of the same signal sequence. Inouye, S., et al. (1984) <u>J. Biol. Chem. 259</u>, 3729-3733.

Double mutants in the active site of tyrosyl-t-RNA 20 synthetase have also been reported. Carter, P.J., et al. (1984) Cell 38, 835-840. In this report, the improved affinity of the previously described Thr51+Pro mutant for ATP was probed by producing a second mutation in the active site of the enzyme. 25 double mutants, Gly35/Pro51, reportedly demonstrated an unexpected result in that it bound ATP in the transition state better than was expected from the two single mutants. Moreover, the author warns, at least for one double mutant, that it is not readily 30 predictable how one substitution alters the effect caused by the other substitution and that care must be taken in interpreting such substitutions.

10

A mutant is disclosed in U.S. Patent No. 4,532,207, wherein a polyarginine tail was attached to the C-terminal residue of β -urogastrone by modifying the DNA sequence encoding the polypeptide. As disclosed, the polyarginine tail changed the electrophoretic mobility of the urogastrone-polyaginine permiting selective purification. The polyarginine was subsequently removed, according to the patentee, by a polyarginine specific exopeptidase to produce the urogastrone. Properly construed, reference discloses hybrid polypeptides which do not constitute mutant polypeptides containing substitution, insertion or deletion of one or more amino acids of a naturally occurring polypeptide.

Single and double mutants of rat pancreatic trypsin 15 have also been reported. Craik, C.S., et al. (1985) Science 228, 291-297. As reported, glycine residues at positions 216 and 226 were replaced with alanine residues to produce three trypsin mutants (two single mutants and one double mutant). In the case of the 20 single mutants, the authors stated expectation was to observe a differential effect on Km. They instead reported a change in specificity (kcat/Km) which was primarily the result of a decrease in kcat. contrast, the double mutant reportedly demonstrated a 25 differential increase in Km for lysyl and arginyl substrates as compared to wild type trypsin but had virtually no catalytic activity.

The references discussed above are provided solely for their disclosure prior to the filing date of the instant case, and nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or priority based on earlier filed applications.

5

Based on the above references, however, it is apparent that the modification of the amino acid sequence of wild type enzymes often results in the decrease or destruction of biological activity.

Accordingly, it is an object herein to provide carbonyl hydrolase mutants which have at least one property which is different from the same property of the carbonyl hydrolase precursor from which the amino acid of said mutant is derived.

It is a further object to provide mutant DNA sequences encoding such carbonyl hydrolase mutants as well as expression vectors containing such mutant DNA sequences.

Still further, another object of the present invention is to provide host cells transformed with such vectors as well as host cells which are capable of expressing such mutants either intracellularly or extracellularly.

25

15

20

30

Summary of the Invention

5

10

15

20

The invention includes carbonyl hydrolase mutants, preferably having at least one property which is substantially different from the same property of the precursor non-human carbonyl hydrolase from which the amino acid sequence of the mutant is derived. properties include oxidative stability, specificity catalytic activity, thermal stability, alkaline stability, pH activity profile and resistance to proteolytic degradation. The precursor carbonyl hydrolase vsm be naturally occurring hydrolases or recombinant carbonyl hydrolases. amino acid sequence of the carbonyl hydrolase mutant is derived by the substitution, deletion or insertion of one or more amino acids of the precursor carbonyl hydrolase amino acid sequence.

The invention also includes mutant DNA sequences encoding such carbonyl hydrolase mutants. Further the invention includes expression vectors containing such mutant DNA sequences as well as host cells transformed with such vectors which are capable of expressing said carbonyl hydrolase mutants.

Brief Description of the Drawings

Figure 1 shows the nucleotide sequence of the coding strand, correlated with the amino acid sequence of B.

amyloliquefaciens subtilisin gene. Promoter (p) ribosome binding site (rbs) and termination (term) regions of the DNA sequence as well as sequences encoding the presequence (PRE) putative prosequence (PRO) and mature form (MAT) of the hydrolase are also shown.

Figure 2 is a schematic diagram showing the substrate binding cleft of subtilisin together with substrate.

Figure 3 is a stereo view of the S-1 binding subsite of <u>B</u>. <u>amyloliquefaciens</u> subtilisin showing a lysine P-1 substrate bound in the site in two different ways. Figure 3A shows Lysine P-1 substrate bound to form a salt bridge with a Glu at position 156. Figure 3B shows Lysine P-1 substrate bound to form a salt bridge with Glu at position 166.

Figure 4 is a schematic diagram of the active site of subtilisin Asp32, His64 and Ser221.

Figures 5A and 5B depict the amino acid sequence of subtilisin obtained from various sources. residues directly The beneath each residue amyloliquefaciens subtilisin are equivalent residues which (1) can be mutated in a similar manner to that 15 described for B. amyloliquefaciens subtilisin, or (2) can be used as a replacement amino acid residue in B. amyloliquefaciens subtilisin. Figure 5C conserved residues of B. amyloliquefaciens subtilisin when compared to other subtilisin sequences. 20

Figures 6A and 6B depict the inactivation of the mutants Met222L and Met222Q when exposed to various organic oxidants.

Figure 7 depicts the ultraviolet spectrum of Met222F subtilisin and the difference spectrum generated after inactivation by diperdodecanoic acid (DPDA).

Figure 8 shows the pattern of cyanogen bromide digests of untreated and DPDA oxidized subtilisin Met222F on high resolution SDS-pyridine peptide gels.

25

5

Figure 9 depicts a map of the cyanogen bromide fragments of Fig. 8 and their alignment with the sequence of subtilisin Met222F.

Figure 10 depicts the construction of mutations between codons 45 and 50 of <u>B</u>. <u>amyloliquefaciens</u> subtilisin.

Figure 11 depicts the construction of mutations between codons 122 and 127 of B. amyloliquefaciens subtilisin.

Figure 12 depicts the effect of DPDA on the activity of subtilisin mutants at positions 50 and 124 in subtilisin Met222F.

Figure 13 depicts the construction of mutations at codon 166 of <u>B</u>. <u>amyloliquefaciens</u> subtilisin.

Figure 14 depicts the effect of hydrophobicity of the P-l substrate side-chain on the kinetic parameters of wild-type <u>B</u>. <u>amyloliquefaciens</u> subtilisin.

Figure depicts the effect of position 15 side-chain substitutions on P-1 substrate specificity. Figure 15A shows position 166 mutant subtilisins 25 containing non-branched alkyl and aromatic side-chain substitutions arranged in order of increasing molecular volume. Figure 15B shows a series of mutant enzymes progressing through B -and r-branched aliphatic side chain substitutions of 30 increasing molecular volume.

Figure 16 depicts the effect of position 166 side-chain volumn on log kcat/Km for various P-1 substrates.

35

5

Figure 17 shows the substrate specificity differences between Ilel66 and wild-type (Gly166) B. amyloliquefaciens subtilisin against a series of alphatic and aromatic substrates. Each bar represents the difference in log kcat/Km for Ilel66 minus wild-type (Gly166) subtilisin.

Figure 18 depicts the construction of mutations at codon 169 of \underline{B} . $\underline{amyloliquefaciens}$ subtilisin.

10 Figure 19 depicts the construction of mutations at codon 104 of <u>B</u>. <u>amyloliquefaciens</u> subtilisin.

Figure 20 depicts the construction of mutations at codon 152 B. amyloliquefaciens subtilisin.

Figure 21 depicts the construction of single mutations at codon 156 and double mutations at codons 156 and 166 of <u>B</u>. <u>amyloliquefaciens</u> subtilisin.

20 Figure 22 depicts the construction of mutations at codon 217 for <u>B</u>. <u>amyloliquefaciens</u> subtilisin.

Figure 23 depicts the kcat/Km versus pH profile for mutations at codon 156 and 166 in \underline{B} . amyloliquefaciens subtilisin.

Figure 23A depicts the kcat/Km versus pH profile for mutations at codon 156 and 166 in \underline{B} . amyloliquefaciens subtilisin.

Figure 24 depicts the kcat/Km versus pH profile for mutations at codon 222 in \underline{B} . amyloliquefaciens subtilisin.

35

5

15

25

Figure 25 depicts the constructing mutants at codons 94, 95 and 96.

Figures 26 and 27 depict substrate specificity of various wild type and mutant subtilisins for different substrates.

Figures 28 A, B, C and D depict the effect of charge in the P-1 binding sites due to substitutions at codon 156 and 166.

10

15

20

٠5

Figures 29 A and B are a stereoview of the P-1 binding site of subtilisin BPN' showing a lysine P-1 substrate bound in the site in two ways. In 29A, Lysine P-1 substrate is built to form a salt bridge with a Glu at codon 156. In 29B, Lysine P-1 substrate is built to form a salt bridge with Glu at codon 166.

Figure 30 demonstrates residual enzyme activity versus temperature curves for purified wild-type (Panel A), C22/C87 (Panel B) and C24/C87 (Panel C).

Figure 31 depicts the strategy for producing point mutations in the subtilisin coding sequence by misin-corporation of $^{\alpha}$ -thioldeoxynucleotide triphosphates.

25

Figure 32 depicts the autolytic stability of purified wild type and mutant subtilisins 170E, 107V, 213R and 107V/213R at alkaline pH.

Figure 33 depicts the autolytic stability of purified wild type and mutant subtilisins V50, F50 and F50/V107/R213 at alkaline pH.

Figure 34 depicts the strategy for constructing plasmids containing random cassette mutagenesis over residues 197 through 228.

Figure 35 depicts the oligodeoxynucleotides used for random cassette mutagenesis over residues 197 through

Figure 36 depicts the construction of mutants at codon

10

5

Figure 37 depicts the oligodeoxynucleotides used for synthesizing mutants at codon 204.

Detailed Description

15 The inventors have discovered that various single and multiple in vitro mutations involving substitution, deletion or insertion of one or more amino acids within a non-human carbonyl hydrolase amino acid sequence can confer advantageous properties 20 to such mutants when compared to the non-mutated carbonyl hydrolase.

Specifically, B. amyloliquefaciens subtilisin, alkaline bacterial protease, has been mutated by 25 modifying the DNA encoding the subtilisin to encode the substitution of one or more amino acids at various amino acid residues within the mature form of the subtilisin molecule. These in <u>vitro</u> subtilisins have at least one property which is mutant 30 different when compared to the same property of the precursor subtilisin. These modified properties fall several categories including: stability, substrate specificity, thermal stability, alkaline stability, catalytic activity, pH activity 35

profile, resistance to proteolytic degradation, Km, kcat and Km/kcat ratio.

Carbonyl hydrolases are enzymes which hydrolyze

0

5

10

15

compounds containing C-X bonds in which X is oxygen or nitrogen. They include naturally-occurring carbonyl hydrolases and recombinant carbonyl hydrolases. Naturally occurring carbonyl hydrolases principally include hydrolases, e.g. lipases and hydrolases, e.g. subtilisins or metalloproteases. Peptide hydrolases include a-aminoacylpeptide hydrolase, peptidylamino-acid hydrolase, acylamino hydrolase, serine carboxypeptidase, metallocarboxypeptidase, thiol proteinase, carboxylproteinase and metalloproteinase. Serine, metallo, thiol and acid proteases are included, as well as endo and exoproteases.

- "Recombinant carbonyl hydrolase" refers to a carbonyl hydrolase in which the DNA sequence encoding the naturally occurring carbonyl hydrolase is modified to produce a mutant DNA sequence which encodes the substitution, insertion or deletion of one or more amino acids in the carbonyl hydrolase amino acid sequence. Suitable modification methods are disclosed herein and in EPO Publication No. 0130756 published January 9, 1985.
- Subtilisins are bacterial carbonyl hydrolases which generally act to cleave peptide bonds of proteins or peptides. As used herein, "subtilisin" means a naturally occurring subtilisin or a recombinant subtilisin. A series of naturally occurring subtilisins is known to be produced and often secreted

by various bacterial species. Amino acid sequences of members of this series are not entirely homologous. However, the subtilisins in this series exhibit the same or similar type of proteolytic activity. This class of serine proteases shares a common amino acid sequence defining a catalytic triad which distinguishes them from the chymotrypsin related class of serine proteases. The subtilisins chymotrypsin related serine proteases both have a catalytic triad comprising aspartate, histidine and In the subtilisin related proteases the relative order of these amino acids, reading from the amino to carboxy terminus is aspartate-histidineserine. In the chymotrypsin related proteases the relative order, however is histidine-aspartate-serine. Thus, subtilisin herein refers to a serine protease having the catalytic triad of subtilisin related proteases.

"Recombinant subtilisin" refers to a subtilisin in 20 which the DNA sequence encoding the subtilisin is modified to produce a mutant DNA sequence which encodes the substitution, deletion or insertion of one or more amino acids in the naturally occurring subtilisin amino acid sequence. Suitable methods to 25 produce such modification include those disclosed herein and in EPO Publication No. 0130756. For the subtilisin multiple mutant example, containing the substitution of methionine at amino acid residues 50, 124 and 222 with phenylalanine, 30 isoleucine and glutamine, respectively, considered to be derived from the recombinant subtilisin containing the substitution of glutamine at residue 222 (Q222) disclosed in EPO Publication No. 0130756. The multiple mutant thus is produced by the 35 substitution of phenylalanine for methionine

5

10

residue 50 and isoleucine for methionine at residue 124 in the Q222 recombinant subtilisin.

"Carbonyl hydrolases" and their genes may be obtained from many procaryotic and eucaryotic organisms. Suitable examples of procaryotic organisms include gram negative organisms such as E. coli or pseudomonas and gram positive bacteria such as micrococcus or bacillus. Examples of eucaryotic organisms from which carbonyl hydrolase and their genes may be obtained include yeast such as S. cerevisiae, fungi such as Aspergillus sp., and non-human mammalian sources such for example, Bovine sp. from which the gene encoding the carbonyl hydrolase chymosin can obtained. As with subtilisins, a series of carbonyl hydrolases can be obtained from various species which have amino acid sequences which are not entirely homologous between the members of that series but which nevertheless exhibit the same or similar type of biological activity. Thus, non-human carbonyl hydrolase as used herein has a functional definition refers to carbonyl hydrolases which associated, directly or indirectly, with procaryotic and non-human eucaryotic sources.

A "carbonyl hydrolase mutant" has an amino acid sequence which is derived from the amino acid sequence of a non-human "precursor carbonyl hydrolase". The precursor carbonyl hydrolases include naturally-occurring carbonyl hydrolases and recombinant carbonyl hydrolases. The amino acid sequence of the carbonyl hydrolase mutant is "derived" from the precursor hydrolase amino acid sequence by the substitution, deletion or insertion of one or more amino acids of the precursor amino acid sequence. Such modification is of the "precursor DNA sequence" which encodes the

5

10

15

.

amino acid sequence of the precursor carbonyl hydrolase rathern than manipulation of the precursor carbonyl hydrolase per se. Suitable methods for such manipulation of the precursor DNA sequence include methods disclosed herein and in EPO Publication No.

Specific residues of B. amyloliquefaciens subtilisin identified for substitution, insertion deletion. These amino acid position numbers refer to those assigned to the B. amyloliquefaciens subtilisin sequence presented in Fig. 1. The invention, however, is not limited to the mutation of this particular subtilisin but extends to precursor hydrolases containing amino acid residues which are carbonyl "equivalent" to the particular identified residues in B. amyloliquefaciens subtilisin.

A residue (amino acid) of a precursor carbonyl hydrolase is equivalent to 20 a residue amyloliquefaciens subtilisin if it is homologous (i.e., corresponding in position in either primary or tertiary structure) or analagous to a specific residue or portion of that residue in B. amyloliquefaciens subtilisin (i.e., having the same or 25 similar functional capacity to combine, react, or interact chemically).

In order to establish homology to primary structure, the amino acid sequence of a precursor carbonyl hydrolase is directly comparted to the B. amyloliquefaciens subtilisin primary sequence and particularly to a set of residues known to be invariant in all subtilisins for which sequence is known (Figure 5C). After aligning the conserved residues, allowing for necessary insertions and

5

10

deletions in order to maintain alignment (i.e., avoiding the elimination of conserved residues through arbitrary deletion and insertion), the residues equivalent to particular amino acids in the primary sequence of \underline{B} . amyloliquefaciens subtilisin are defined. Alignment of conserved residues preferably should conserve 100% of such residues. alignment of greater than 75% or as little as 50% of conserved residues is also adequate equivalent residues. Conservation of the catalytic triad, Asp32/His64/Ser221 should be maintained.

For example, in Figure 5A the amino acid sequence of subtilisin from <u>B</u>. <u>amyloliquefaciens</u> <u>B</u>. <u>subtilisin</u> var. I168 and <u>B</u>. <u>lichenformis</u> (carlsbergensis) are aligned to provide the maximum amount of homology between amino acid sequences. A comparison of these sequences shows that there are a number of conserved residues contained in each sequence. These residues are identified in Fig. 5C.

These conserved residues thus may be used to define the corresponding equivalent amino acid residues of B. amyloliquefaciens subtilisin in other carbonyl hydrolases such as thermitase derived Thermoactinomyces. These two particular sequences are aligned in Fig. 5B to produce the maximum homology of conserved residues. As can be seen there are a number of insertions and deletions in the thermitase sequence as compared to B. amyloliquefaciens subtilisin. in thermitase the equivalent amino acid of Tyr217 in B. amyloliquefaciens subtilisin is the particular lysine shown beneath Tyr217.

In Fig. 5A, the equivalent amino acid at position 217 in <u>B</u>. <u>amyloliquefaciens</u> subtilisin is Tyr. Likewise,

5

10

15

20

25

in <u>B</u>. <u>subtilis</u> subtilisin position 217 is also occupied by Tyr but in <u>B</u>. <u>licheniformis</u> position 217 is occupied by Leu.

Thus, these particular residues in thermitase, and subtilisin from B. subtilisin and B. licheniformis may be substituted by a different amino acid to produce a mutant carbonyl hydrolase since they are equivalent in primary structure to Tyr217 in B. amyloliquefaciens subtilisin. Equivalent amino acids of course are not limited to those for Tyr217 but extend to any residue which is equivalent to a residue in B. amyloliquefaciens whether such residues are conserved or not.

Equivalent residues homologous at the level 15 tertiary structure for a precursor carbonyl hydrolase whose tertiary structure has been determined by x-ray crystallography, are defined as those for which the atomic coordinates of 2 or more of the main chain atoms of a particular amino acid residue of the 20 precursor carbonyl hydrolase and B. amyloliquefaciens subtilisin (N on N, CA on CA, C on C, and O on O) are within 0.13nm and preferably 0.1nm after alignment. Alignment is achieved after the best model has been oriented and positioned to give the maximum overlap of 25 atomic coordinates of non-hydrogen protein atoms of the carbonyl hydrolase in question to the amyloliquefaciens subtilisin. The best model is the crystallographic model giving the lowest R factor for experimental diffraction data at the 30 resolution available.

$$R \text{ factor} = \frac{\sum |Fo(h)| - |Fc(h)|}{\sum |Fo(h)|}$$

Equivalent residues which are functionally analogous specific residue of B. amyloliquefaciens subtilisin are defined as those amino acids of the precursor carbonyl hydrolases which may adopt conformation such that they either alter, modify or contribute to protein structure, substrate binding or catalysis in a manner defined and attributed to a specific residue of the В. amyloliquefaciens subtilisin as described herein. Further, they are those residues of the precursor carbonyl hydrolase (for which a tertiary structure has been obtained by x-ray crystallography), which occupy an analogous position to the extent that although the main chain atoms of the given residue may not satisfy the criteria of equivalence on the basis of occupying a homologous position, the atomic coordinates of at least two of the side chain atoms of the residue lie with 0.13nm of the corresponding side chain atoms of amyloliquefaciens subtilisin. dimensional structures would be aligned as outlined above.

Some of the residues identified for substitution, insertion or deletion are conserved residues whereas others are not. In the case of residues which are not conserved, the replacement of one or more amino acids is limited to substitutions which produce a mutant which has an amino acid sequence that does not correspond to one found in nature. In the case of conserved residues, such replacements should not result in a naturally occurring sequence. The carbonyl hydrolase mutants of the present invention include the mature forms of carbonyl hydrolase mutants as well as the pro- and prepro-forms of such hydrolase mutants. The prepro-forms are the preferred construction since

10

15

20

25

this facilitates the expression, secretion and maturation of the carbonyl hydrolase mutants.

"Expression vector" refers to containing a DNA sequence which is operably linked to a DNA a suitable control sequence capable of effecting the expression of said DNA in a suitable host. control sequences include a promoter to effect transcription, an optional operator sequence such transcription, a suitable mRNA ribosome binding sites, and sequences encoding termination of transcription translation. The vector may be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may, in some instances, integrate into the In the present specification, "plasmid" and "vector" interchangeably as the plasmid is the most commonly are sometimes form of vector at present. invention is intended to include such other forms of expression vectors which serve equivalent functions and which are, or become, known in the art.

The "host cells" used in the present invention generally are procaryotic or eucaryotic hosts which preferably have been manipulated by the methods disclosed in EPO Publication No. 0130756 to render

10

15

them incapable of secreting enzymatically active endoprotease. A preferred host cell for expressing subtilisin is the Bacillus strain BG2036 which is deficient in enzymatically active neutral protease and alkaline protease (subtilisin). The construction of strain BG2036 is described in detail in EPO Publicatin No. 0130756 and further described by Yang, M.Y., et al. (1984) J. Bacteriol. 160, 15-21. Other host cells for expressing subtilisin include Bacillus subtilis I168 (EPO Publication No. 0130756).

10

ė 5

Host cells are transformed or transfected with vectors constructed using recombinant DNA techniques. transformed host cells are capable replicating vectors encoding the carbonyl hydrolase either mutants or expressing the desired carbonyl hydrolase 15 In the case of vectors which encode the pre or prepro form of the carbonyl hydrolase mutant, such mutants, when expressed, are typically secreted from the host cell into the host cell medium.

20

25

30

"Operably linked" when describing the relationship between two DNA regions simply means that they are functionally related to each other. For example, a presequence is operably linked to a peptide if it functions as a signal sequence, participating in the secretion of the mature form of the protein most probably involving cleavage of the signal sequence. A promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation.

The genes encoding the naturally-occurring precursor carbonyl hydrolase may be obtained in accord with the general methods described herein in EPO Publication No. 0130756.

Once the carbonyl hydrolase gene has been cloned, a number of modifications are undertaken to enhance the use of the gene beyond synthesis of the naturally-occurring precursor carbonyl hydrolase. Such modifications include the production of recombinant carbonyl hydrolases as disclosed in EPO Publication No. 0130756 and the production of carbonyl hydrolase mutants described herein.

carbonyl hydrolase mutants of the present invention may be generated by site mutagenesis (Smith, M. (1985) Ann, Rev. Genet. 423; specific Zoeller, M.J., et al. (1982) Nucleic Acid Res. 10, . 15 6487-6500), cassette mutagenesis (EPO Publication No. 0130756) or random mutagenesis (Shortle, D., et al. (1985) Genetics, 110, 539; Shortle, D., et al. (1986) Proteins: Structure, Function and Genetics, 1, 81; Shortle, D. (1986) J. Cell. Biochem, 30, 281; Alber, 20 T., et al. (1985) Proc. Natl. Acad. of Sci., 82, 747; Matsumura, M., et al. (1985) <u>J. Biochem.</u>, <u>260</u>, 15298; Liao, H., et al. (1986) Proc. Natl. Acad. of Sci., 83 576) of the cloned precursor carbonyl hydrolase. Cassette mutagenesis and the random mutagenesis method 25 disclosed herein are preferred.

The mutant carbonyl hydrolases expressed upon transformation of suitable hosts are screened for enzymes exhibiting one or more properties which are substantially different from the properties of the precursor carbonyl hydrolases, e.g., changes in substrate specificity, oxidative stability, thermal stability, alkaline stability, resistance to

30

5

proteolytic degradation, pH-activity profiles and the like.

A change in substrate specificity is defined as a difference between the kcat/Km ratio of the precursor carbonyl hydrolase and that of the hydrolase mutant. 5 kcat/Km ratio is a measure of efficienty. Carbonyl hydrolase mutants with increased or diminished kcat/Km ratios are described in the examples. Generally, the objective will be to secure a mutant having a greater (numerically large) kcat/Km 10 ratio for a given substrate, thereby enabling the use of the enzyme to more efficiently act on a target substrate. A substantial change in kcat/Km ratio is preferably at least 2-fold increase or decrease. However, smaller increases or decreases in the ratio 15 at least 1.5-fold) are also considered substantial. An increase in kcat/Km ratio for one substrate may be accompanied by a reduction in kcat/Km ratio for another substrate. This is a shift in substrate specificity, and mutants exhibiting such 20 shifts have utility where the precursor hydrolase is undesirable, e.g. to prevent undesired hydrolysis of a particular substrate in an admixture of substrates. and kcat are measured in accord with known procedures, as described in EPO Publication No. 25 0130756 or as described herein.

Oxidative stability is measured either by known procedures or by the methods described hereinafter. A substantial change in oxidative stability is evidenced by at least about 50% increase or decrease (preferably decrease) in the rate of loss of enzyme activity when exposed to various oxidizing conditions. Such oxidizing conditions are exposure to the organic

oxidant diperdodecanoic acid (DPDA) under the conditions described in the examples.

Alkaline stability is measured either by known procedures or by the methods described herein. A substantial change in alkaline stability is evidenced by at least about a 5% or greater increase or decrease (preferably increase) in the half life of the enzymatic activity of a mutant when compared to the precursor carbonyl hydrolase. In the case of subtilisins, alkaline stability was measured as a function of autoproteolytic degradation of subtilisin at alkaline pH, e.g. for example, 0.1M sodium phosphate, pH 12 at 25° or 30°C.

15 Thermal stability is measured either by procedures or by the methods described herein. substantial change in thermal stability is evidenced by at least about a 5% or greater increase or decrease (preferably increase) in the half-life of 20 catalytic activity of a mutant when exposed to a relatively high temperature and neutral pH as compared to the precursor carbonyl hydrolase. In the case of subtilisins, thermal stability is measured by the autoproteolytic degradation of subtilisin at elevated 25 temperatures and neutral pH, e.g., for example 2mM calcium chloride, 50mM MOPS pH 7.0 at 59°C.

The inventors have produced mutant subtilisins containing the substitution of the amino acid residues of B. amyloliquefaciens subtilisin shown in Table I. The wild type amino acid sequence and DNA sequence of B. amyloliquefaciens subtilisin is shown in Fig. 1.

30

5

TABLE I

	Residue	Replacement Amino Acid
	Tyr21	F A
	Thr22	c
	Ser24	C
5	Asp32	Q S
	Ser33	A T
	Asp36	A G
	Gly46	v
	Ala48	EVR
10	Ser49	CL
	Met50	CFV
	Asn77	D
	Ser87	С
	Lys94	- c
15	Val95	C
	Leu96	D .
	Tyr104	ACDEFGHIKLMNPQRSTVW
	Ile107	V
20	Gly110	C R
20	Met124	IL
	Asn155	ADHQT
•	Glu156	Q S
	Gly166	CEILMPSTWY
25	Gly169	CDEFHIKLMNPQRTVWY
23	Lys170	ER
	Tyr171	F
	Pro172	E Q
	Phe189	ACDEGHIKLMNPQRSTVWY
30	Asp197	R A
	Met199	I
	Ser204	CRLP
	Lys213	R T
	Tyr217	ACDEFGHIKLMNPQRSTVW
35	Ser221	A C

The different amino acids substituted are represented in Table I by the following single letter designations:

5	Amino acid or residue thereof	3-letter symbol	l-letter <u>Symbol</u>
	Alanine	Ala	Α
	Glutamate	Glu	E
	Glutamine	Gln	Q
10	Aspartate	Asp	D
	Asparagine	Asn	N
	Leucine	Leu	
	Glycine	Gly	L
	Lysine	Lys	G T
15	Serine	Ser	K
	Valine	Val	S
	Arginine	Arg	V
	Threonine	Thr	R —
	Proline	Pro	T .
20	Isoleucine	Ile	P
	Methionine	Met	I
	Phenylalanine	Phe	M
	Tyrosine		F
	Cysteine	Tyr	Y
25	Tryptophan	Cys	C
	Histidine	Trp	W
		His	H

Except where otherwise indicated by context, wild-type amino acids are represented by the above three-letter symbols and replaced amino acids by the above single-letter symbols. Thus, if the methionine at residue 50 in B. amyloliquefaciens subtilisin is

replaced by phenylalanine, this mutation (mutant) may be designated Met50F or F50. Similar designations are used for multiple mutants.

In addition to the amino acids used to replace the residues disclosed in Table I, other replacements of amino acids at these residues are expected to produce mutant subtilisins having useful properties. These residues and replacement amino acids are shown in Table II.

TABLE II

5	Residue Tyr-21 Thr22 Ser24 Asp32 Ser33	Replacement Amino Acid(s) L K A
10	Gly46 Ala48	G
	Ser49 Met50 Asn77	LKIV
15	Ser87 Lys94 Val95 Tyr104	D N R Q L I
20	Met124 Ala152 Asn155 Glu156 Gly166	K A C L I T M A T M L Y
25	Gly169 Tyr171 Pro172 Phe189 Tyr217 Ser221 Met222	KREQ DN

30

Each of the mutant subtilisins in Table I contain the replacement of a single residue of the B. amyloliquefaciens amino acid sequence. These particular residues were chosen to probe the influence

of such substitutions on various properties of \underline{B} . amyloliquefacien subtilisin.

Thus, the inventors have identified Metl24 and Met222 as important residues which if substituted with another amino acid produce a mutant subtilisin with enhanced oxidative stability. For Metl24, Leu and Ile are preferred replacement amino acids. Preferred amino acids for replacement of Met222 are disclosed in EPO Publication No. 0130756.

Various other specific residues have also been identified as being important with regard to substrate specificity. These residues include Tyr104, Ala152, Glu156, Gly166, Gly169, Phel89 and Tyr217 for which mutants containing the various replacement amino acids presented in Table I have already been made, as well as other residues presented below for which mutants have yet to be made.

20 The identification of these residues, including those yet to be mutated, is based on the inventors' high resolution crystal structure of B. amyloliquefaciens subtilisin to 1.8 A (see Table III), their experience with in vitro mutagenesis of subtilisin and the 25 literature on subtilisin. This work and the x-ray crystal structures of subtilisin containing covalently bound peptide inhibitors (Robertus, J.D., et al. (1972) Biochemistry 11, 2439-2449), product complexes (Robertus, J.D., et al. (1972) Biochemistry 11, 30 4293-4303), and transition state analogs (Matthews, D.A., et al (1975) J. Biol. Chem. 250, 7120-7126; Poulos, T.L., et al. (1976) J. Biol. Chem. 251, 1097-1103), has helped in identifying an extended peptide binding cleft in subtilisin. This substrate 35 binding cleft together with substrate is schematically

5

10

diagramemed in Fig. 2, according to the nomenclature of Schechter, I., et al. (1967) Biochem Bio. Res. Commun. 27, 157. The scissile bond in the substrate is identified by an arrow. The P and P' designations refer to the amino acids which are positioned respectively toward the amino or carboxy terminus relative to the scissle bond. The S and S' designations refer to subsites in the substrate binding cleft of subtilisin which interact with the corresponding substrate amino acid residues.

Atomic Coordinates for the Apoenzyme Form of B, Amyloliquefaciens Subtilisin to 1.8AResolution

1 ALA W	10						
3 ALA C	19.434		-21.756	• • •			
3 ALA CO	18.731		-21-324	1 ALA E	4 17.82	1	_
2 BLW CA	21.091	51.518	-21.183	3 ALA D	18.37		
2 GLM D	27-219		-21.434	ટે દાય થ	18.26	~~ • 1 7 7	
5 PF# CP	13.765		-21-691	5 PFM C	11		-22.841
2 GLM DE1	15.024	47.485	-21.927	2 SER CO	14		-28.992
3 SER M		48.612	-22.867	5 PEN CO	1 2		-22.449
3 SER C	37.477	47.205	-19.852	S PER RE	Z 84		-22.930
3 SER CB	16.735	44.918	-17.490	3 SER CA	17.95		-23.926
4 VAL N	14.588	45.838	-18.049	3 2EB 0	15 0		-19.437
4 VAL C	16.771	43.646	-19.725	3 568 06	17.682		-19.229
4 VAL CB	14-129	41.934	-18.290	4 VAL. CA	15.944		-17.049
4 VAL CG2	16.008	41.622	-20.822	4 AVT D	17	,	-19.639
5 PED CA	14.037	42.266	-22.186	4 VAL CG3	24.874		-18.024
5 PRO O	15.384	41.415	-16.027	S PRD W			-20.741
S PRO EG	14.885	39.243	-10.02/	5 PRD C	15.239		-17.331
6 TTE 6	13.841	43.215	-27-144	5 PRD CS	15.581	39.985	-14.249
	16.363	39.240	-15-921	5 P20 CD	14.150	41.880	-25.243
	15.359	36.975	-25.487	6 TTR CA	14.844	42.786	-17.417
	17.824		-15.528	4 TYR D	16.628	37.803	-15.715
4 TYR CD1	18.437	35.452	-14.834	6 TTR CG	15.224	35.743	-16.235
	18.535	• • • • •	-16.346	4 TYR CD2	14.021	35.847	-15.055
6 TYR CZ	18.222		-16.653	4 TYR CEZ	17.494	34.908	-14 633
7 GLY M	14.464	33.154	-15.628	6 TTR DH	17.815	33.539	-14.071
7 GLT C	12.400	37.362	-14-630	7 GLY CA	18.312	31.836	-14.379
VAL #	12.441	36.535	-15.670	7 GLT D	13.211	36.640	-15.994
AAL C	12.363	37.529	-16.541	VAL CA	11.747	35.478	-14.376
. VAL CB	11.765	34.433	-18.735	PAL D	11.777		-15.883
WAL CE2	10.771	38.900	-18.567	V	11.639		-17.836
SER CA	24.419	39.919	-17.733	ANT CCI	11.106		-19-478
9 SER O	14.112	35.342	-19.562		13.661		-19.943
9 SER DC	16.162	33.834	-17.301		14.188		-18.775
10 ELH CA	13.964	30.747 -	-20.35#		15.924		-18.945
10 CTH D	11.704	32.836 -	16.876		14.115		-19.505
10 GLM CG	22-785	J0.642 -	17.413	10 BLM C	12.687		-17-662
18 GLM DE1	14.295	J1-617 -	14.588	16 GLM CB	34.125	31.887	-27.277
11 ILE M	14.554	33.068 -	12.746	10 GLN CD	14.486	32.885	-15.410
11 TLE C	11.625	32.575 -	17.670	10 GLW MEZ	14.552	31.911 -	13.147
11 ILE CE	10.209	31.772 -	19.605	11 ILE CA	10.373	30.960 -	12.251
11 ILE CG2	9.132	32.669 -	17.475	11 ILE O	9.173	31.904 -	18-182
12 LYS M	9.162	32.655 -	15.941	11 ILE CG1	7-046	31.333 -	20.180
12 LYS E	11.272		20.277	11 TLE CO1	7.588	34.117 -	18.049
12 LYS CA	30.454		22.522	12 LYS CA	11.388	34.648 -	17.923
12 LYS ED	11.257	30.646 _	12.216	12 LYS D	10.178	35-114 -	21.722
12 LYS MZ	12.543	21.517	2.159	12 LYS CG	12.283	32.703 -	23.686
13 ALA CA	24.476		0.935	12 LTS CE	13.023	54.420 -	21.423
13 ALA 0	7-325		2.431	13 ALA W	18.109	67.467	21.166
14 PRD #	7.338	35.804 -2	4.901	23 ALA C	10.026	3138 -3	21.991
	41.332		3-893	13 ALA CO		33.716 -7	23.863
14 PRO CO	41-786		6.317	34 PRO CA	8.085 11.985		11.565
14 PRD CD	43-462		T. 31 /	14 PRD 0	11.752	30.038 -2	3.120
	32.281	• • • •	4-692	14 PRD CG	11.778	30.047 _3	7.445
15 ALA CA	11.379	33.458	2.758	15 ALA M		79.7/1 _>	3.221 .
16 LEU M	10.00;		7-367	15 ALA C	21.300	34.234 -7	6.129
le Leu c	7.085	• • • • •	278	15 ALA CO	30.082	23-142 -5	8.032
	7-912	•	7.240	16 LEU CA	11.552	JI.749 _2	7-062
			1.521	16 LEU O	1-141	34.558 -2	7.828
			- 478	Je Fin CC	1.365	36.114 -2	1.588
			.009	16 LEU CD2	3.170	33.465 -2	.522
			-922	IT HIS CA	0.074		-283
17 WIS CB			-878	17 HTS 8	4.375		.530
17 MES MD1		-21	-652	17 WIS CS	V-107		. 134
17 MIS CEL		7-147 -25	-272	17 HIS CO2	9-185		-262
18 . SEE N		7-734 -24	-146	17 MIS MEZ	3.00 6 1		- 404 - 494
		7-833 -38	-822	30 SEE CA	8.679		-341
				64			- 322
					•		• 366

3 8	811 C	10.139	34.323	-31.343	18	812 8	28.547	34.112	-33.534
18	811 CB	12.311	35.799	-31.172	11	31 05	13.323		
19	BLA N	1.11:	25.415	-31.943	3 6		8.012	34.485	-30.311
19	SLN C	7.142			_	BLN CA		34.942	-32.878
lii	SLN CD	7.221	36.111	-33.303	19	SLM D	6.297	35.972	-34.219
lii	8LM ED	•	33.849	-32.210	19	SLM CG	7.975	32.692	-31.823
		4.823	31.707	-31.181	. 39	SLR DEL	5.719	31.833	-31.444
19	Pra #13	7.362	30.857	-30.256	20	SLT N	7.205	37.223	-32.587
2.0	SLT CA	4.341	38.387	-32.859	28	BLY E	5.181	38.492	-31.885
30	SLT D	4.243	39.276	-32.215	21	TYR N	8.202	37.801	
21	TYR CA	4.111	37.831	-27.763	21	TVE C	4.579		-30.741
21	TTR D	3.422	38.074	-27.756		_		38.552	-28.925
21	118 CG	2.973	31.784		21	778 CE	3.411	34.431	-29.443
21	TYR CD2			-30.784	21	940 601	1.795	34.332	-31.238
21	TTR 682	3.450	34.794	-31.397	21	TYR CEL	2.306	85.797	-32.446
ži		3.173	. 34.262	-32.531	21	TYP EI	2.083	34.755	-33.847
	TYE ON	1.501	34.241	-34.250	22	THE N	3.962	39.695	-21.214
22	THE EA	4.242	40.527	-27.129	22	THP C	3.091	68.922	-24.244
11	THE D	3.287	41.725	-25.325	22	THE CE	5.133	41.759	-27.611
2.2	THE DG1	4.317	42.457	-21.597	22	THR C62	4.474	41.323	
23	SLY M	1.131	48.285	-24.453	23	GLY EA	8.809		-28.229
23	SLT E	-0.157	41.431	-26.218	23	SLY D	-1.013	40.000	-23.542
24	111 H	-0.023	41.967	-27.371				42.895	-25.330
24	3 4 9 &	-2.363	42.626		24	SE. C.	-8.897	42.937	-28.812
24	384 CB	-8.734		-27.864	24	SER D	-2.113	41.508	-28.168
21	ASH R		43-125	-29.520	24	see de	0.563	43.432	-29.728
2;	ASH E	-3.059	43.692	-27.515	25	ASH CA	-4.519	43.417	-27.313
		-5.015	42.873	-24.205	23	ASH D	-6.233	42.641	-24.198
11	ASH CS	-3.145	43.227	-28.783	23	ASH CG	-4.960	44.178	-21.445
51	ALM DDI	-4.745	43.747	-31.053	23	ASH HDZ	-4.747	45.441	-29.594
84	VAL &	-4.177	42.449	-25.292	26	WAL CA	-4.674	41.479	-24.143
24	VAL C .	-4.792	42.652	-22.957	26	VAL D	-3.858	43.439	-22.689
24	ANT ER	-3.714	40.503	-23.821	26	VAL EGI	-4.160	34.802	-22.548
24	VAL CEZ	-3.348	39.576	-23.018	27	LYS W	-3.910	42.613	-21.301
27	LTS CA	-4.133	41.526	-21.175	27	LYS C	-3.815	42.872	
27	LYS D	-6.405	41.873	-19.413	27	LYS ES	-7.590		-19.341
27	LTS CG	-1.046	44.575	-22.490	27	LTS ED	-9.321	43.981	-21.349
27	LTS CE	-10.304	45.497	-23.137				43.302	-22.820
2.	VAL N	-4.818	43.442		27	LYS MI	-1.616	44.253	-24.244
21	VAL E	-4.754	43.731	-19.205	20	ANT CV	-4.437	42.930	-17.897
21	VAL CO	-2.926		-16.828	31	ANT D	-4.209	45.875	-14.817
ii	VAL ES2	-2.667	42.666	-17.032	31	ANT CET	-2.466	42.103	-16.589
21	ALA CA		41.885	-19.273	29	ALA M	-8.484	43.527	-15.813
ži	ALA D	-8.747	44.330	-14.631	29	ALA C	-4.750	44-910	-13.553
30	VAL B	-4.666	42.843	-13.104	29	ALA ES	-7.172	64.187	-14.181
		-4.257	45.833	-13.072	30	ANT CV	-3.146	44.762	-11.910
38	VAL C	-3.731	45.407	-10.681	30	VAL D	-4.195	46.441	-10.874
30	VAL CB	-1.884	45.310	-12.149	30	VAL CES	-0.9.96	45.761	-10.900
30	ANT EES	-1.853	45.234 -	-13.307	31	ILE M	-4.514	44.515	-9.877
31	IFE CV	-5.328	44.844	-8.679	31	TLE C	-4.344	44.733	-7.546
31	ILE D	-3.825	43.915	-6.997	31	ILE EP	-6.457	43.774	
31	111 E61	-7.298	43.707	-9.798	31	ILE CEZ	-7.278		-8.961
31	ILT CD1	-8.617	42.954	-9.717	52	ASP N	-6.844	44.838	-7.225
32	ASP CA	-2.944	44.447	-4.233		43P E		44.193	-7.227
32	ASP D	-4.197	48.418	-5.392	32		-3.071	47.889	-8.765
32	ASP EE	-0.483	48.702		32	ASP EB	-1.495	46-129	-7.092
32	45 - 002	-6.081	46.429	-6.273	32	AS* BD1	1.174	44.392	-6.876
32	BIR CA	-1.895	49.857	-3.330	33	SER W	-1.931	48-312	-3.394
35	3 E E D	-1.706		-4.881	33	3 118	-1.952	\$8.874	-3.311
33	10 11	0.535	\$2.134	-3.363	33	311 C1	-9.621	49.922	-3.937
34	SLT EA		\$0.025	-4.774	34	SLT N	-2.173	38.749	-7.884
34	SLY D	-2.255	51.728	-8.143	34	SLT C	-1.031	\$1.641	-9.857
-		-8.344	\$0.832	-8.761	33	ILE N	-0.763	52.431	-18.102
31	ILE EA	9.208	\$2.478	-10.995	35	ILE C	1.361	83.919	-11.243
35	ILE D	-0.327	84.638	-22.744	35	ILE CO	-1.042	B1.494	-12.367
33	1rf 661	-0.530	80.210	-12.097	35	ILE CE2	1.147	81.741	-13.362
31	ILE EDI	-4.942	49.485	-13.424	36	457 4	1.016	\$4.25)	-10.971
34	ASP EA	2.339	85.418	-11-232	36	45P E	2.281	31.734	-12.702

34 ASP D	3.004	\$5.47					
JA ASP CE	4.170		,	36 ASP CE	3.71		
34 ASP BD	3.441			36 ASP 00	3.75		
37 SER CA	2.183		,	37 542 0	1.304		-11.629
37 SER 0	2.545			37 SER C			-13.111
37 SER DC	-8.010			37 SER CB	2.377	,	-24.949
38 SEE CA				38 Ste #	-8.093		-14.788
38 SER D	4-241			38 SER C	3.16)		-14.003
38 SER DE	4.343			31 SER CB	5.444	58.705	-14.992
39 HIS CA	\$-376	,	-12.234	• • • • • •	4.742	60.435	-13.398
39 MIS D	6-637	,	-15.291	39 MIS M	5.454	\$7.390	-14.892
39 MIS CG	5.738		-17.419		6.612	\$4.401	-16.778
39 MIS-CO>	8.814		-14.456		6.637	\$5.203	-14.77
	8.749	\$4.345	-13.319		8.785	54.354	-14.515
	7.716	53.910	-13.808	39 MIS CE1	9.970	53.930	-15.541
40 PED CA	7.911	\$6.697	-18.831	40 PPD w	7-807	56.834	-15.130
	8.832	55.997	-20.578	40 PRO C	8.154	\$5.280	-17.387
40 PRD CG	10.053	57.485	-17.902	40 PED CS	9.247	57.533	-19.357
41 ASP W	8.462	54.328	-18.415	48 PRD CD	3.788	37.533	-19.161
41 ASP 801	10.325	51.395	-20.429	41 ASP BDZ	11.148	\$7.452	-26.776
41 ASP CB	9.799	52.239	-20.429	41 ASP CG	10.473	50.399	-18.668
41 ASP C	7.311	52.163	-18.224	41 ASP CA	8.645	51.387	-39.211
42 LEU M	4.185	52.803	-18.839	41 ASP D	7.396	\$2.959	-18.766
42 LEU C	3.924		-18.558	42 LEU CA	4-892	50.947	-18.977
42 LEU CB	4.421	\$2.907	-19.376	42 LEU D		\$2.147	-18.466
42 LEU CD1	4.535	32.158	-17.808	42 LEU CS	3.193	54.163	-19.490
43 LYS H	3.018	51.546	-14.581	42 LEU CDZ	5.182	\$1.363	-15.946
43 LTS C	0.637	\$2.135	-19.944	43 LTS CA	5.273	49.877	-16.356
43 LTS CE	2.821	\$2.156	-20.818	43 LTS 0	1.893	52.685	-20.721
43 LYS CD	8.778	\$2.389	-22.169	43 LTS CE	0.504	50.920	-19.820
43 LTS M2		52.362	-24.339	43 LYS CE	0-685	52.436	-22-910
44 VAL CA	8.337	\$1.757	-26.418	44 VAL M	-9-180	52.584	-25.260
44 VAL D	-1.407	52.639	-18.745	44 VAL C	-8.191	53.035	-19.490
44 VAL CES	-2.623	53.966	-28.434	. 44 VAL CB	-2.571	52.887	-19.731
45 ALA M	-2.724	52.941	-16.582		-1.480		-17.383
45 ALA C	-3.494	51.951	-19.871	45 ALA CA	-0.197		-14.553
45 ALA CO	-5.841	52.507	-20.053	45 ALA D	-4.619		-20.810
46 GLY CA	-4.831	50.580	-21.389		-6.783		-20.703
46 ELT D	-7.082	52.837	-12.001		-5.916	#	
47 GLT CA	-5.934	52.806	-14.035		-6.987		-18.768 -16.538
47 GLT D	-8.014	\$2.246	-14.388		-8.992		-16.338
48 ALA CA	-9.911	53.411	-14.185	47 GLY C	-7.179		-15.793
	-10.255	\$2.870	-11.382	48 ALA W	-9.221		-13.572
44	-7.866	51.720	-9.725	48 ALA C	-9.790	52.675	-12.330
	-18.349	\$3.547	-9.037	48 ALA CB	-11.558		-9.968
49 SER C	-10.947	\$2.986		49 SER CA	-9.752	63 344	-11-617
49 SER CA	-9.092	34.588	-4-783 -7-029	49 SER 0	-11.972	53.355	-7-452
59 MET M	-18.835	52.007	-5.932	49 SEE DG	-8.879	53.677	-4.908
SO MET C	-11.463	\$1.962	-70736	SO RET CA	-11.852	\$4.255	-3-650
SO MET CO	-12.812	50.013	-3.561	50 MET D	-11.997	\$1.549	-4-974
SO MET SD	-13.466	49.887	-4.996	SO MET CO	-11.912		-2.575
51 VAL M	-18.427	\$2.740	-7.256	SO MET CE	-12.808		-4.317
SI VAL C	-20-630	\$4.562	-3.422	23 AUF CV	-7.748		-8.703
SI VAL ES	-8.443	53-155	-2-787	SI VAL B	-10.237	53-170	-2.067
51 VAL CG2	-7.764		-2.900	51 VAL CG1		\$5.437	-2.612
SZ PRO CA	-12.372	51.815	-2.302	32 P20 M		\$3.579	-0.631
52 Paa n	-11.771	55.933	-8.821	SE PED C		54-693	-1.056
52 PRD CE	-13.583	58.220	-8.925	52 PRO CB	-11.498	57-123 .	-8.448
53 SER #	-18.442	54.183	0.085	52 PED CD	-13.436	55.594	0.244 .
53 SER C	-3.429	36.906	8.299	53 SER CA	-12.404	53.620 .	-0.175
53 SER CO	-9.09 4	58.245	-9.324	53 See 8	-7.538	57.982	0.682
S4 GLU M		\$7.707	2.069	53 558 06	-7.679	59.224 .	-0.038
S4 GLU C	-8.254	\$7.523	-1.393	S4 SLU CA	-0.236	54.521	2-127
54 SLU CB	-7-767	37.303	-3.785	S4 GLU D	-1-204		2.421
44 ELH FR	-6.134	36.599	-2.154	34 SLU CS	-7.533	86.263 -	4.379
	-4 .864	SE.BL7	-8.078	er ein uri	-5-584	36.959 .	0.927
					-1.444		1.948

	_								
34	ETA BES	-3.908	55.777	0.271	51	THE B	-8.571	80 30.	
55	THE CA	-9.433	38.121	-5.441	35			50.231	-4.249
33	THE B	-1.433					-B.744	58.139	-6.779
	_		57.919	-7.810	5 5	THR EB	-18.586	59.200	-5.383
35	THE DEL	-9.385	60.510	-5.418	5 3	THE CEZ	-11-432	39.143	
56	ASH #	-7.482	58.403	-6.877	54			_	-4.917
34	ASE DD1	-5.875	58.967	-18.337			-4.930	61.179	-9.8 81
		- · · · -			54	ASH CG	-5.273	\$9.925	-5.555
56	ASH CB	-5.878	51.494	-8.208	\$6	ASM CA	-6.762	58.425	
36	ASH C	-4.812	57.894	-8.305	54				-0.200
37	PRD M	-4.342	54.261				-5-184	54.864	-7.674
37	PRO CD			-9.258	57		-7.123	55.257	-11.177
		-7.384	54.433	-18.272	57	PED CB	-6.644	54.178	
57	PRD CA	-5.679	54.763	-9.332	57				-10.235
57	PED D	-3.589	54.128	-9.945			-4.301	55.082	-9.946
38	PHE CA	-2.747			51		-3.998	56.262	-18.491
			\$4.577	-11.222	\$8	PHE C	-1.712	57.129	-14.253
58	PHE D	-0.635	57.497	-10.680	50	PHE CS	-2.943		
58	PHE CG	-3.983	54.741	-13.357	58			57.582	-12.423
38	PHE CD2	-5.211	57.630				-3.756	55.7BC	-14.859
58	PHE CE2	_		-13.459	58	PHE CEI	-6.722	\$5.255	-14.928
		-6.194	57.895	-14.276	51	PHE CZ	-5.949	\$5.939	
59	CTA P	-2.044	57.119	-8.778	59	SLM CA			-15.051
59	SLN E	-8.807	56.403	-7.900	_		-1.172	\$7.583	-7.934
59	GLN CB				59	era D	-1-639	54.883	-6-115
		-1.862	58.668	-7.819	59	ELM CE	-6.942	59.261	~~
59	CTM CD	-1.798	60.157	-5.150	59	GLM DE1			-4.834
59	GLW MEZ	-2.959	59.485	-6.742			-1.684	61.788	-4-836
60	ASP CA	0.851		_	60	ASP N	0.410	55.895	-7.211
			54.792	-6.304	69	ASP C	1.631	\$5.267	-3.090
40	ASP D	. 2.827	53.550	-5.231	67	ASP CB	1.396		
80	ASP EG	2.077	52.538	6.380	6.5	ASP DD1		\$3.744	-7-188
40	ASP. DD2	2.915	51.841	-7.030		_	1.746	52.337	-5.190
61	ASM MD2				61	ASN N	8.959	55.265	-3.950
-		-1.364	57.747	-2.347	61	72# BD1	8.666	58.566	
61	ASH CG	-8.040	\$7.670	-2.399	61	ASH CB			-2.875
+ 1	ASH CA	1.557	55.734	-2.700	61	ASN C	0.531	56-401	-1.784
61	ASH D	2-933					2.291	54.632	-1.940
62	ASH CA		34.862	-0.902	42	ASM B	2.210	53.434	-2.461
		2.877	52.348	-1.709	62	ASH C	4-124	\$1.893	
62	ASW D	4-951	51.313	-1.770	62	ASH CB			-2.479
62	ASH CG	2.371	50.103	-8.697			1.783	51.319	-1.421
62	ASH WD2	2-622			62	ASH DD1	2.633	49.877	-1.343
			50.208	0.601	43	SER N	4.152	52.184	-3.741
63	SER CA	5.189	51.676	-4.709	63	SER C	5.671		
63	SER D	5.593	49.790	-6-269	- 43	SER CO		50.256	-3.209
63	SER DE	6.871	50.698				6.523	51.958	-4.812
64	HIS CA			-3.418	64	MIS W	4-202	49.475	-4.639
		3.994	48.855	-4.935	64	MIS C	3.344	47.759	-6.261
64	MIS B	3.861	46.974	-7.104	64	MIS CO	3.184		
64	MIS CG	3.144	46.821	-3.726	64	WIS MD1		47.501	-3.747
64	MIS CD2	4.054	45.294		_		2-107	45.247	-4.241
64	MIS ME2			3.135	64	MIS CEI	2.416	43.944	-4.054
		3.554	43.920	-3.368	65	SLY M	2.287	41.428	-6.587
45	SLY CA	1.552	48.264	-7.830	45	SLT C			
65	GLY D	2-238	48.078	-10.134			2.392	48.636	-9.837
64	THR CA	4.064	58.117		46	THE M	3.233	41.659	8.832
66	THE D			-9-954	46	THR C	5-889.	47.809	-10.291
		5-333	48.789	-11.461	66	THR CS	4.744	51.511	
66	THE DG1	3.637	52.425	-9.404	66	THR CS2			-9.667
47	MIS B	5.685	48.463	-9.274			5.534	52.078	-10.849
67	MIS C	6.091			67	MIS CA	6.783	47.341	-9.458
67			46.141	-10.143	67	MIS 0	6.647	45.638	-11.150
	MIS CO	7.300	47.871	-8.064	•7	MIS EC	8.575	66.275	
67	MI2 BD1	8.590	44.907	-8.276	67	MIS CD2			-8.148
67	MIS CEL	9.857	44.491			–	9.904	46.678	-8.874
48	VAL W			-8.299	67	MIS MEZ	18.678	45.514	-8.186
61		4-192	45.749	-9.731	6.	VAL CA .	4.242	44.687	-10.266
	VAL C	3.854	44.848	-11.740	63	VAL D	4-114		
48	VAL CB	2.939	44.252	-7-384	6.8	VAL CES		43.942	-12.535
41	VAL CES	3.319	43.705	_	_		1.940	43.240	-10.020
47	ALA CA			-8.000	67	ALA M	3.373	46.947	-12.113
		3.037	44.448	-13.429	69	ALA C	4.173	46.370	
49	ALA D	4.028	45.913	-15.545	49	ALA ES			-14.411
78	GLT M	5.348	44.782	-13.914			2-332	47.851	-13.314
70	SLT C	7.84.	45.378		70	SLY CA	6.595	46.805	-14.670
71	THE M			-15.821	. 70	ETA D	7.604	45.154	-16.319
_		4.820	44.431	-14.138	71	THE CA	7.177	43.017	
71	TAR C	6.224	42.306	-13.543	71	THE D	4.482		-14.444
71	THE CO	7.119	42.870	-13.191	_		_	41.028	-16.475
			~500.0	7	73	THE BC1	2. 191	42.592	-12.390
									_

71 THE ES2						••	
72 VAL CA		,	-13.596	72 VAL m			-
72 VAL 8	3.776	,	-16.484		4.930	42.987	-10
72 VAL CES	4.341		-18.268		4.312	43.084	-15.427
			-17.178	71 VAL EB	2-514		-37-831
	4.524	44-417	-17.980	77 VAL CE	2.142		-14.885
73 ALA C	5.433	44.333	-10.300	73 ALA CA	4-387	~/	-34.723
73 ALA CB	3.107	45.443	-19.355	73 ALA D	5.062		-19.147
74 ALA CA	7.478	47.591	-19.433	76 ALA W	4.344	* * * * * * * * * * * * * * * * * * * *	-20.214
74 ALA B	7.959	46.640	-18.959	76 ALA C			-18.435
75 LEU M	7.650	48.30	-21.054	74 ALA CE	7.740		-28.342
75 LEU C	9.192	48.784	-21.839	75 LEU CA	8.453	47.446	-17.925
75 LEU CB	7.548	48.568	-22.966	75 LEU D	7.812	48.768	-22.454
75 LEU CD1		\$0.471	-22.809	75 LEU CE	18.142	48.750	- 22 - 434
76 ASH M	4.079	52-436	-22.300	73 LEU CD2	6-123	59.913	-22.253
76 ASH DD1	9.147	48.103	-24.169		5.894		-22.379
76 ASH CA	10.750	45.840	-27.928	76 ASH HDZ	12.385		-23.405
	28.810	46.651	-25.908	76 ASH CG	11.195	46.432	-24.384
	10.783	49.048	-25.643	' 76 ASH CA	18.359	44.274	-26.802
77 ASM M	11.804	47.664	-23.003	76 ASW D	10.157	*1.138	-24.938
TT ASH C	13.707		-25.071	TT ASH CA		47.479	-26-619
TT ASH CB	11.335	51.029	-25.348	77 ASH D	12.220	70.737	-25.481
77 ASH DD1	12.032	52.076	-25.117	77 ASH CG	14.364	49.979 .	-25.323
TR SER M	14 11:	51.346	-22.917	77 ASH MD2	11.250		-21 41
78 SER C	14-125	52.267	-25.164		18.294	87.949	-23-616
78 SER CB	15.810	52.742	-23.436		15.513.		-23.025
79 ILE M	15.905	53.942	-25.587		16.982		-24.906
79 ILE C	14.858	52-545	-22.529	78 SER DG	15.924		-23.164
79 3LE CB	34.617		-20.230	TO ILE CA	15.155		26.994
79 ILE C62	14.471		-28.497	79 ILE D	13.843	\$2.784 -	21-120
	14.997		-21.612	79 ILE E61	12.945	56.841 -	28.679
SO GLY M	14.995		-21.612	79 ILE CDI	12.135	>*** #32 =	20.814
BD GLY C	14.612		-18.981	BO GLY CA	14.474	22.176 -	28.155
B1 VAL M	13.513		-38.219	80 ELY D	16 310	>0.948 _	17.913
B1 VAL C	12.511		-17.980	B1 VAL CA	15.719	75.774 -	18.544
81 YAL CO	13.001	46.717	-19.217	81 VAL D	33.411	47.286 _	28.041
81 VAL CG2	11.638	46.755	-16.677	B1 VAL CG1	12.260	47.739 -	20.117
82 LEU CA	11.312	47.261	-16.231	BZ LEU N	16.030		15.573
#2 LEU D	10.858	45.020 -	-20.256	BZ LEU C	12.126		19.216
82 LEU CE		43.356 -	-18.600	BZ LEU CB	10.390		7.510
82 LEU CD2	11.430	43.568 -	-22.366		12-286		74310
83 GLY CA	12.359	42.675 -	23.192		28.796		1.229
83 GLT D	8-133	43.321 -	19-114		9-131	_	3-223
84 VAL CA	8.546	91.822 ~	21.026	43 GLY C .	8.027		9.816
84 VAL D	6.973	39.807 -	19.868	S4 VAL N	7-272		9.925
84 VAL CES	6.424	• • • • •	22.194	94 VAL C	6.164		9-283
85 ALA M	5.680			MAL CO	4-256	48.830 -2	1-140
	5-156		19.557	64 VAL EG2	7.190	38.720 -1	8-841
	4.213	4 9 4 4 4 4	21-024	BS ALA CA		35.387 -13	7-705
AS ALA CO	2.846		22-396	95 ALA D	4-217	-1-194 -27	2.158
86 PED CA			21-748	D6 PRD M	3-260	•3.401 -21	- 930
86 PRD D		44-635	23.205	86 PRD C	5.240	43.186 -23	. 05 9
86 PED CC		46-605 -2	3.849	DE PRO CB	4.321	43.371 -27	. 947
AT SER W	• • -	43.466 -2	4.546	86 PRO CD	4-322		-813
BY SER C		** 676 -2	4.769		4.377		
BT SER CO		•>•132 - 2	4.897				-436 _
BB ALA M	2.401	••• <i>177</i> –2	6.927				.529
SE ALA CA	1.017	44.544 -2	3.742	87 SER DS	3.591		-619
88 ALA D	-0 .273		3.014	88 ALA CB	~		.583 :
39 SER DE	-8.174		2.435	88 ALA C		43.510 -21	-828
	-4.146	. .	4 344	89 SER M		-22	470
	-3.001		4.280	49 SER C3		******	478
89 358 0			2.227	er ser c	· ·	•••783 -22.	111
SO LEU CA			0.209	SO LEU M	-3-136	6.780 -20	727
10 FER D		17.667 -11	9.593	90 LEU C	-2	7.656 -20	
SO FER CE		17.604 -1	8.215	SO LEU CS	-1.013	1.438 -17	
På LEU CD2		7-851 -17	7.174	90 LEU CA	~~. 731 a		434
91 TTR CA	1-160	19-524 -17	7.047				• 4 •
	-5.258 4		.137				41 7
				92 THE C			738
				•		-750 -34.	 .
				-			•

91 TYR B	-4 454						
DI TYR CE	-4.496 -7.894			91 TYE CO	-1 40		
91 TYR COZ	-7.971			91 TYR CB		,	
93 THE CEZ				91 TYR CE		47.419	-18.755
91 TYE DH	-8.315 -8.102		-19.492	91 TYR CZ			-25.544
92 ALA CA		~ ~	-21.764	92 ALA M	-7.79	~~~~	-20-443
92 ALA D	-4.549	,	-12.767	92 ALA C	-4.89	49.951	-14-104
93 VAL B	-4.723		-12.050	92 ALA CO	-5.82	38.811	-11.903
93 VAL C	-5.957		-31.129	93 VAL CA	-3.997	51 - A71	-12.488
93 VAL CB	-6.701		-2.277	93 VAL D	-7-183	48.854	-18.325
	-7-957		-10-411		-6.181	47.991	-8.372
93 VAL EGZ 94 LYS CA	-8-195		-12.872	93 VAL CES	-9-213	47.488	-0.312
	-6.378	50.464	-6.777	B4 LYS &	-6.987	58.217	-9-725
94 LTS D 94 LTS CE	-8-458	. 50.480	-5.783	94 LYS C	-7.331	40.000	-8.327
	-5.394	\$2.320	-5.467	94 LYS CB	-6.051	\$1.976	-5.894
94 LYS CE 95 Val m	-4.399	54.208	-4.199	94 LYS CD	-4.868	53.785	-4.818
	-6.709	49-071	-5.026	94 LYS MZ	-3.735	55-544	-5.582
	-6.919	48.477	-2.568	95 VAL CA	-7.646	48.457	-4.387
	-8.184	47-838	-4.319	95 VAL D	-7.625	48.156	-3.920
	-4.900	44-100	-4.332	95 VAL EGI	-8.868	44.852	-1.501
96 LEU CA	-4.782	49.183	-1.436	34 FER R	-5.476	48.974	-5-419
94 LEU D	-3.942	\$1.121	-2.336	96 LEU C	-4-331	50.559	-2-684
96 LEU CG	-3.593	46.799	-2.072	96 LEU CA	-3.589	48.241	-1.321
96 LEU CDZ	~ ₽9	46.982	-1.845	94 LEU CD1	-2.267	46.184	-1.573
97 ELT CA	-3.890	32.307		97 GLY N	-4.324		-2.163
97 6LT D	-1.619	51.443	8.287	97 GLT C	-2.363	58.975 52.437	-9.034
98 ALA ER	-0.428	35.478	- 1.510	98 ALA H	-1.954	52.437	8.325
98 ALA C	9.188	53.118	4.319	98 ALA CA	-0.563	53.648	0.758
99 ASP M	-8.504	\$2.573	1.917	98 ALA D	1.393	34.868	8.745
99 ASP DD1	-2.730	58.982	2.912	TO ASP BD2	-2.631	\$2.921	1.663
99 ASP CB	-8.648	51.603	4.003	SS 95 ASP EG	-2.083	51.042	6.151
99 ASP C	0.146	50.165	3.175	99 ASP CA	0.101	51.131	5.040
100 CLY M	-0.424	49.883	3.320	99 ASP D	0.735	51.610	3.855
100 ELT C	-1.520	47-451	2.168	18D BLY CA	-8.343	49.313	4.829
101 SER H	-2.342	48.128	2.002	100 ELY D	-1.649	48.521	1-615
101 SER C	-4.750	47.894	2.908	181 SER CA	-3.542	44.512	1.479
301 SER CB	-3.716	47.447	2.532	101 SER D	-4.758	67.301	3.315
102 GLY M	-5.821	47.092	4.817	101 SER OC	-4.411	48.972	1.907
102 GLY C	-8-164	44.536	2-577	192 GLY CA	-7.877	48.434	5-209
103 ELW M	-9.377	47.056	2.328	183 ELY D	-7.388	47.422	1.894
103 ELM C	-10-963	45.232	2.498	103 GLM CA	-18.535	45.431	3.930
103 ELM CB	-11-671	47.307	2.022	103 ELW .	-10.779	46.297	3.020
103 ELM CD	-12.360	49.104	3-274	103 ELN CE	-11.368	45.482	0.817
103 GLM MES	-23.419	49.197	4.915	103 ELM DE1	-12.159	48.005	4.586
194 TTE CA	-12.868	43.124	4.312	184 AAB W	-31.611	49.816	5.702
184 778 0	-12.939	43.276	1.564	184 TTE C	-13.031	44.141	2.451
194 TTR CS	-11-629	40.829	-0.687	184 TYR CS	-12.697	43.496	0.473
184 TYR CD2	-10.379	40.757	2.472	104 TYR CD1	-11-819	41-366	2.143
104 TYR CE2	-9.352	40.057	1-840	104 TYR CEL	-10.809	39.789	3.377
104 TYE OH	-8.481	38.191	2-171	104 TYR CZ	-9.564	38.885	3.707
105 SER CA	-14.877	45-144	3.324	105 SER N	-13.009	39-022	3.001
105 SER 4	-14.759	45.935	-0.034	105 SER C	-14.172	44-572	8.703
105 SER DE	-15.289	47.839	-2.258	105 Sen Co	-15.880	65.920	-1.159
184 TEP CA	-12.421	47.391	1.450	106 TRP M	-13.079	46.121	0.601
184 TEP B	-12.021	46.648	-1.948	106 TRP C	-11.895	46.625	-9.834
104 TOP CC	-21.645	49.111	-4.245	166 TRP C9	-31.321	44.434	-3.012
106 TEP CD2	-10.658	47.832	-8.206	106 TEP CDI	-12.862	48.254	-1.355
106 TEP CE2	-31.359	\$0.573	0.591	186 TEP BE1	-12-691	49.524	0.264
106 TEP CZ2	-10.671	\$1.318	1.561	186 789 683	-9-275	30.352	1.340
186 TOP CH2	-9.293	\$1.291	2-500	184 TOP CZ3	-8-368	49.352	9.576
107 ILE CA	-10.745	44.250	2.455	107 ILE #	-11.339	\$0.563	1.525
107 ILE 0	-11.675	43.474	-3.325	107 ILE C	-11.955		-2.481
187 ILE CE1	-8.634		-5-398	107 ILE CS	-9.944		-4-198
187 ILE COL	-4.213	42.998	-1.736	107 ILF CG2	-9.432		-2.523
	- -		-8.627	189 IL! W	-12.994		-3.301
•						43.292	-3.577

100 TLE						
308 31E			3 > 9	·		
100 ILE		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	388 711			
100 112		44 4		47.437	43.694	
					43	5-386
	-14_5m4		31	- Lb2		3.321
199 ASH B	-14 44	-5.9	14			4.075
309 ASH C	-14 ***	~*• 412 ~ · ·	7		*****	4.981
189 AZH H		419000		-14.232	44.847	441
110 GLY C		A A			47 300	7-884
110 GLY B					44	5.207
111 TLE C.	-11.929	4	45	-12.951	46 '	4.646
	-12.403		34			6-774
	-12		79		779/12	1.112
111 THE CO	-19					-244
111 116 CD	11		* *** ***		42.560	- 4 - 6
112 ELU CA		39.786 -6.33			48 4	-942
112 GLU D			212 6LU	. • • • • • • • •	74	-364
112 GLU CG	-16.447		4	-14.891	4 6 6 6	- 347
	~ * * * * * * * * * * * * * * * * * * *	4			73.873 -9.	280
	1 -19.841	42.917 -8.13	5		~~~~~	. 171
113 TEP #	-15.094	70.766	. ••• blu (~~ • • • • • • • • • • • • • • • • • •	141
113 TEP C	-34	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 BLU Z		4	441
113 TRP CE	-14.876	45.663 -23.14	113 TEP C	• • • • • • • •		415
113 TAP COL	-23.882	47.553		-140 124		266
113 TEP MEI	-34.148			-14.319	-12.	888
	~13.597				-14.	312
		-13.72	I THE		~~~338 -11	401
	-10.410	7/0003 -03	127 [~~.332 -11	443
314 ALA M	-13.00,	7 () 0 7 Y - 1 A - 2 A	ALS TRP C	72	49.761 -14	***
114 ALA C		770801 -00	213 TRP C	42		112
114 ALA CB	-13.199	-43-179 -14-752	114 ALA CA			174
115 ILE CA	~444477		114 ALA D	• < • 3.2.3		.03
115 TLE D	-25.070		115 TLE M	-12.943	77.22 -13.8	74
	-36.077			-14.174	-15.9	78
	-15.218	42.225 -17.870		-17	74.0340 -14.	10
		270836 -11 A.S.	315 ILE CO	-94	~~ • • • • • • • • • • • • • • • • • •	1
116 ALA CA		37.411 -91 -1.	115 ILE CE	2	40.840	
116 ALA D	27.370	44.448	116 ALA N			12
117 ASH H	+ 3 2 3		116 ALA C			<i>i</i> 5
117 ASH C	- 63.923		116 ALA CA	-14.764		17
117 ASH CB	-43-627		117 ASH CA	-18.017		'8
	-13.615		117 45m D	-24.55%	-15.15	1
				-11	''•78/ -18 ••	i
		-27.773				á
		430/25 -18 Ac-	117 ASH NOZ			. I
118 ASH CO	_ 4 4 4 '	· · · · · · · · · · · · · · · · · · ·	TIN WEN CO		8.249	
ALE ASH DD1		'4+883	218 ASH 0	**** / BD /		
319 MET W			318 ASH E6			2
119 MET E			318 ASM MO2	137 A		!
119 MET CO	-10-025 A		119 BET CA	-16.134	-21.395	;
					-22.133	1
	A A.	-17.055				
120 ASP M	- A	70793 -17 20.	119 MET CG	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		•
120 ASP C		8.437	119 MET CE	41		
120 ASP CR		1.340 -10	120. ASP CA	70 782 44		
120 ASP DD:	~/+333 1:		220 ASP 0			. 1
121 VAL W			120 ASP EG	-8.838		
121 VAL C	-7.021		120 450 000	-8.237	-18.470	1
	-6.294	****			-/30	1
		-15.786	121 VAL CA		1133>>	1
ALL CES		.>87	ASI AVE D		681 -14 -2	1
THE CA		4718 min m.,	121 VAL CC1	V-684 48		1
122 ILE 8	39	.799	122 ILE M	136 80		1
122 ILF ec.			122 TLE C	-4-318		ļ.
22 FE COI	A A A					•
		-13.063			262	_
		-12.393	122 1LE C62		DD411	•
		434 -11_22	123 ESE		883 -14 844	
23 ASR CE		951	123 ASH C	40.	222 -12	
45 ASH MAD	-0.492 40.	-10.777	323 ASH CS	AA .		1
24 MET CA	-D.J&& 4A		323 ASE DO1	-1.828		.
	-3.650 39.		154 461 #	-8.043		1
	- 27.	973 -7.438	124 mry c		70 -11 414	- 1
			124 MET C		D& a a > .	1
				-2.423 39.6	-6.614	-
					2.0.4	!

		_						
115		-2.304	30.101	-6.811	124 #27 64	-4 040		
334		-6.198	48.082	-7.673		-4.943	31.387	
320		-7.949	38.075	-7.542		-7.585	39.472	-8.450
121		-0.192	48.287	-3.747	125 810 W	-1.454	48.494	-6.502
321		1.131	41.417		125 880 C	-8.422	48.712	-4.324
111	388 86	1.444		-3.005	125 3F4 C0	1.021	41.027	
124	LEU CA	-1.642	40.494	-7.575	126 LEU w	-1.433	48.875	
124			48.347	-2.304	176 LEU C	-2.431		
120		-3.844	31.134	-2.521	126 Leu ce		37.914	-1.867
		-).981	42.447	-3.333	326 LEU CD2	-2.791	41.548	-2.410
124		-6.178	42.740	-4.073	777		41.131	-2.578
127		-3.835	37.871	9.193		-2.522	39.012	-8.481
127		-2.444	39.838	1.220	127 BLY E	-3.174	35.180	1-412
121	BLY EA	-4.475	37.494		128 GLY M	-4.121	37.443	2.222
121	SLT B	-4.983	35.150	3.642	128 BLY C	-4.444	36.934	
129	PRE EA	-4.671		3-274	329 PED m	-4.519	35.857	4.104
129			34.323	5.741	129 PED C	-6.116		8.402
129		-4.338	32.117	4.303	129 PRD CA	-4.865	34-884	4.087
130		-4.419	36.316	7.727	129 P#2 CD		34.614	7-384
		-7.011	33.013	5.912	130 SER CA	-4.239	34.870	6.418
130		-9.218	34.884	4.726	130 381 3	-8.470	34.611	4.023
130		-7.049	35.352	7.216.		-1.949	35.881	4.921
131		-10.013	33.967	4.341		-1.723	34.624	8.493
131		-12.205	34.713	3.547	131 BLY CA	-10.824	34.227	3.074
111	. \$ 1 2 k	-13.940	33.031		131 SLY D	-12.495	34.722	4.751
132	311 5	-15.219		2.594	133 SEB CA	-14.487	31.422	
112	311 Ca	-14.590	34.805	1.734	172 SER D	-14,799	34.314	3-911
111		-14.547	36.927	3.245	132 388 06	-14.493	37.539	0.824
iii	ALA E		34.588	2.294	. 333 ALA CA	-17.507		1.875
155	ALA ES	-17.630	34.945	8.097	133 ALA D		34.037	1.324
134		-11.866	33.121	1.994	134 ALA W	-17.743	34.437	-1.014
	ALA CA	-27.872	37.259"	-0.792	134 414 6	-17.483	34.288	8.294
134	ALA D	-34.781	37.585	-2.141	134 ALA CA	-16.635	37.369	-1.676
135	LEU N	-25.478	37.229	-1.046		-18.263	38.400	-8.187
135	Fin C	-14.138	36.005	-2.703		-14.197	37.244	-1.804
133	TEC CO	-13.038	37.324	-0.798	131 FER D	-13.784	34.826	-3.192
131	LEU CD1	-11.440	38.415		131 FED CE	-11.693	37.130	-1.303
134	LTS N	-14.509	3	-2.212	131 FER CDS	-10.582	34.887	-0.519
116	LTS C	-15.544		-2.173	136 LYS CA	-14.343	33.597	
136	LYS CO	-14-903	33.739	-4.150	136 LTS C	-15.279	33.431	-3.013
134	LTIES	-15.083	32.341	-2.196	. 136 LTS CG	-14.747	31.047	-3.703
134	LYS MI		29.192	-2.134	336 LTS CE	-15.743		-3.843
137	ALA CA	-15.300	28.411	-4.160	337 ALA W	-16.744	28.707	-2.778
137	ALA O	-17.795	34.426	-4.813	137 ALA E		34.240	-3.847
111	ALA W	-17.705	35.049	-7.201	337 ALA CB	-17.338	35.303	-6.843
iii		-36.521	36.301	-3.729	131 ALI E4	-19.094	34.741	-4.243
131	ALA E	-14.903	34.494	-7.857	138 ALA E	-16.001	37.311	-4.411
	ALS CB	-15.522	31.567	-3.434		-14.785	26.543	-8.762
139	ANT CT	-12.944	35.291	-7.837		-13.938	33.959	-7.827
129	VAL D	-13.208	34.070 -	-9.877	337 VAL E	-13.423	34.228	-8.720
131	TAL CG1	-10.919	33.834		134 AVT ER	-11.830	34.671	-4.948
140	ASP N	-14.593	33.334	-7.866	139 VAL CG2	-11.078	35.780	-6.253
140	ASP C	-14.023		-8.122	340 ASP CA	-18.276	32.494	
140	ASP CA	-14.149	33.131	-10.084	140 45P D	-14.980	32.570	-8.929
140	43 - 901	-14.178	31.349	-1.133	347 ASP CG	-15.341	36.440	-11.190
141	LTS W		30.493	-7.202	140 ASP DC2	-16.139		-7.184
141	LTS C	-16.658	34.243	-9.820	141 LYS CA		30.132	-4.329
141	LYS ED	-14.371	35.413	-11.944	341 LYS D	-17.373	35.004	-10.500
iši		-18.939	36.275	-10.325	341 LYS EG	-10.700	35.248	-13.111
141	LTS CO	-19.584	38-187	-10.534	141 673 68	-18.884	37.034	-11.304
	L75 h2	-21.138	40-037	-10.275		-20.572	39.051	-11.250
142	ALA CA	-14.173	36.192	-12.514		-13.167	35.949	-11.566
342	ALA B	-33.770	35.149	-14.755	142 ALA C	-13.818	35.010	-13.521
343	VAL N	-13.512	33.114	-12-832	142 ALA CA	-12.678	36.617	-11.946
143	AVT E	-14.344	32.233	-14.474	143 VAL CA	-13.168	32.705	-13.450
143	VAL CO	-12.511	31.673		343 VAL B	-14.140	31.884	-11.639
143	VAL EE2	-11.305		-12.714	343 AVT CET	-12.300		
144	ALA EA	-16.766	32.195	-12.014	364 ALA M	-35.531		-11.461
•		-10.100	31.834	-14.641	344 ALA C	-14.920		-13.875
						767		-15.861

166 ALA 303 100		99. 0			
141 111		32.263 -26.91			
163	-11.489	-13.70	L START	-17.942	
166 6LT	-37.BIA	-17.82	103 529 64	-14 400	21.968 -17.70
344 617		-14.41	3 5 6 8 D		14.917
SAT VAL		-37.541	27 28 06		3.321
147 VAL	-12.156	-18,315	TA ET	-13.419	LA
147 VAL	-9.115		TT DLY B		3.700
147 VAL	-11.152		ANT EV		4.384
in val	-12.340	-13.684	TO AUT D	-14	1.016
148 941	•••	-14.230	147 VAL CES		3.091
148 VAL E		-16.808	4 . T . T . W	31	7-803
149 VAL W	-5.070	-14.750			~~~
249 941 6	-/.231	-24.281		24 44	774/ -14
149 741 61	-3.788		4	-4	
TAL E	-8.224			-4 44-	****
350 VAL CA	-7.434			- A A A	
350 VAL D	~2.713 1				14/3
130 TAL ES	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				7919 -14
891 At a					
391 ALA P	•••••			~ 4 4 4	
393 ALA CA				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
APE ALA EA					774 6 83 66.
APE ALA D	40734 24				786 -8
373 ALA M		***		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
353 ALA E	***** 11	AAA	152 ALA C		
193 ALA CO	7.732 32				40 -4:
SE SET CA	****** 31.		353 ALA CA		** •A. •A.
SLT D			354 617	A	·2.942
155 ASH EA	***** 11.		186 817	4	
353 ASN D	71.044 34.		235 ASH N	3.519 33.6	74 64 64 .
155 ASW E6	5-151 34. 5-895 34.	2.037	ASS ASN E	7.77	
	£	92 6. 464	133 ASH EN	71377 34.34	. 4.765
	4 40- 0101		ASN DD:	24.44	
	32.1	37	478 ELU L	~~~~	: 2.964
	30.6	37	136 SLU E	~~'44 31.44	*****
		42 A. 121	136 SLU Pa		/>
The state of the s	4 44 44 44 44 44 44 44 44 44 44 44 44 4	42 e	334 BLU ED		~~407
157 BLY C	4.44	7 4.55	470 510 889		
138 THE DG1		4.10.	AP7 BLY CA	34.454	2.271
158 THE CA			SET BLT B	20.917	****
158 THE 0	4. 86	7 6.217	153 THE 262	20.344	~000/
339 514 06	6.47	2 90702	. THE EL	25.394	4.00; 3.05)
311 64	3-141		THE E	4	5.274
477 558 6	70000 24.31		199 Sea W	E	7.187
BOD BLT CA	******	,,		1.4	7.497
ADD BLY D	21.86	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4 444	9.212
363 SEE CA	70000 31.22	****	360 SLY &	47.720	5. 544
301 318 D	4.014	4.335	141 150 4	46.767	8.121
381 888 06	*****	7.034	161 181 2	3.525 21.845	7.728
202 SER CA	*****	,		1.490 -00.331	8.114
162 814 0	27.224	****	362 318 4	2.34	4.786
162 848 06	23.040	7-113 8-304	162 321 6	1.309 21.441	7.272
163 312 54	-0.611	9.486	142 110		7.459
	-1.00	3.912	483 SIO . "	*****	J. 14 B
	-1 - 84 1	3.304	141		9.342
	A 444	2. 991	263 570	77771 34 455	\$.297
		4.300	THE M	O TO BA	4.313
44.		3.276	164 THE E	24.533	3-211
SAS VAL E		1.400	66 THE ER	7122 27.284	3.852
	-2.026 20.742	2.190	THE ECO "	28.514	3.194
	,	1.447	TE VAL CA _T	27.410	4.818
				27.542	4.001 2.010
				31.137	3.300
				•	

169 VAL C6 -1.339 28.624 -8.161 169 VAL C31 -1.947	90.000
\$66 \$LY CA	90.00
1 144 Kin A	29.357 -1.374 21.821 1.124
1 147 779 74	
167 TV8 8 -5.056 9.112 -5.056	33.004
367 TYR CG	
1 167 778 267	4 444
167 TTR CR2 -7.208	19 000
367 Yrs Da	14 44.
100 PRC CE 29-681 3.652 178.486	
	4.00
169 PRD C -6.273	
307 617 h -1.34 1	4.457 -2.540
307 517 5 -4.007 377 -3.309 440 377 3	2.520 -3.912
17 by a -1.400 -	2.877 -3.927
27 57 5	9.733
170 172 0	70755 -1.942
-6.250 -6.250 20 170 170 PF PF	7.884
-4.239 37.443 2.031 170 tvt Pa	J.104
9.012 90.013 371 778 8	7.271 1.474
-7.7AD 28 VI.	-616 -3.148
191 - 18.497 20.441 171 778 FR	-101 -1.112
171 978 CD1 10-496 B2-874 18 481 173 TYR CD1 171 448	-224 -4.34
171 Tea no -10.941 33.084 -1 -11 TT TTE CE1 -11 -170	-303 -1.962
172 846 21 42.006 32.116 416 271 778 62 -11.416	.003 -0.847
172 PAG	-111
172 apn e. 200325 26.786 april 172 PRO C -0.339	-254 -3.374
173 188 1 13 -435 28.271 -8.004 173 PRO CO -10.167 34	-154 -7.909 -129 -4-511
373 SEP C -30.364 -8.019 -30.364 34	
373 Ste ta	****
174 VAL W -8.744 29.623 -9.481 171 181 -8.746 28	-70339
374 VAL C	
174 VAL CO	
- 1 VAL 662 - 1 33A 1 1 1 7 1 3 96 1 2 1 1 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1	152 -8.855
- 1/3 3LE CA	137 -7.617
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	729 -9.885
176 916 bol -3.857 20.979 11979 375 216 CR	736 -1.644
478 118 PP.	324 m11.414
174 At A	
177 WALL 30033 25.216 TO ALL 376 ALA C 8.198	-7.925
177 - VAL F 3-64 31.410 -7.140 376 ALA CB -1.420	-7.310
177 VAL CR 2007 31.693 -4.492 011 VAL CA 2.343 011	-5.541
177 VAL CE2 220 220 22007 -0.768 11 VAL D 3.178 220	
378 617 CA 32.352 -9.845 31 VAL 661 3.842 32	
178 6LT 0 30.703 -5.333 178 6LT N 4.871 38.	
179 ALA CA 9714 11-035 -7-296 179 411 6-446 911	
179 ALA C 10.113 33.837 -5.859 778 ALA G 7.812 31.0	
380 VAL N 30-481 -4.710 170 4.6 9.929 31.0	
100 VAL C 13-A41 01-182 -6.885 180 041 04 0.825 12.9	
27 70 60 12.004 22.007 27.073 204 22.22 21.0770 38.4	31 -4.973 82 -4.981
71 552 11.472 00.166 180 MAI 32.712 32.6	7.427
25.41 25.271 28.2	-7.833
18.339 B3.449 B3	-4.486
191 LG 17.126 30-121 191 419 PB 11.46 B1.46	-8-447
17.44c 00.000 181 Ato 00.000 31.00	11 -8.414
100 17.622 17.514 17.51	3 -4.973
182 1FA DC 38-365 3D-652 313-A90 388 888 C 30-387 32-36	-8-847
183 184 74 18-816 96-961 -18-478 182 888 68 18-478 18-818	7 -18-484
163 150 m 38.736 SB.445 maile SB SER N 38.546	3 -18.444
37-839 24-413 24-133 884 (
183 188 Pa	- 70741
11.154 28.32	3 -8.007

38	3 32 95	28.509	20.418				•	
11		25.144	28.613	-0.231	394 ASW W	16.371	28.00	
10	4 ASH D	34.134		-1.510	284 ASW C	14.93		
38	4 454 66	14.993		-8.897	194 ASH CO	15.014		
18		13.352		-12.074	484 ASH 831	14.700		
28		25.274		-13.076	283 BLM W	15.542		
101		34.159		-3.835	185 6LW C	14.290		,
3.0		16.529		-5.314	183 GLW CO	14.599		
10		14.14.	26.242	-3.414	123 GLW CD	18.011		
310		13.274		-4.943	191 6LW MEZ	11.266		~~~~
110		32.780	24.951	-4.443	184 485 24	12.185		
310			28.782	-2.866	184 APS 0	13.691		
111		11.315	24.143	-3.114	334 ARE EG	10.214		
110		9-467	24.337	-1.461	. 186 ARS ME			
111		9.941	26.871	1.859	286 ARG MH2	9.966	24.333	-8.117
117		18.946	26.721	2.71)	187 ALA M	9.347		1.451
117		32.724	31.844	-2.815	187 ALA E	12.294	38.019	-2.853
111		11-151	30.543	-8.317	197 ALA ER	12.262	33.404	-8.317
111		13-851	30.776	8.547	101 SEE CA	12.144	32.492	-2.344
111		11.334	39.847	2.412	188 588 0	22.671	30.244	1.863
111		23.767	30.454	2.731	188 189 06	18.740	30-111	3.212
11,		10.943	32.010	1.974	189 PHE CA	14.137	31.826	2.841
iii		8.499	32.198	1.609	189 PAE D	1.497	32.488	2.418
117		9.787	34.217	2.243	189 PHE EL	7.389	32.554	2.011
111		9.147	34.830	-8.121	189 PHE CD2	10.117	34.694	8.867
117	PRE 61	9.483	33.167	-3.411	189 Put Ceg	11.415	35.116	8.567
116	SER CA	18.786	25.516	-1.725	190 SER W	11.749	33.345	-8.781
190	56 8 0	7.426	31.094	-0.311	. 190 888 6	8.70)	31.524	8.499
195	36. 36	7.834	29.013	0.044	100 381 68	- 4.443	38.142	0.321
191	312 24	7.136	38.337	-2.618		8-181	30.590	-1.711
171	311 0	4.341	29.674	8.957	393 SER W 193 SER C	5.388	30.531	0.324
193	111 06	4.543	28.248	-0.975	391 882 64	4.261	28.330	0.223
192	VAL EA	2.729	31.285	2.914	195 AVE	3.015	30.411	9.911
192	VAL D	3.627	25.932	8.391	192 VAL E	3.756	27.310	8.921
192	VAL CS1	2.559	25.411	1.594	192 VAL CO	2.254	25.291	0.414
193	614 M	4.144	25.727	0.722		4.781	25.127	1.011
171	GLY E	1.931	24.172	8.047	143 PTA CV 145	6.637	25.104	2.712
194	PR: W	0.081	23.029	-8.901	193 SLY D	8.629	23.564	8.418
11.	735	-1.023	22.289	-0.722	194 PRD CA	9.530	23.244	-2.815
194	PRD C.	-2.237	22.605	-2.914	194 PRD D	-1-662	21.651	-1.871
194	PRO CD	-2.769	20.783	-1-210	194 PRO CC	-2.403	22.244	-4.715
111	BLU CA	-1.633	21.954	8.572	395 BLU N	-2.311	28.622	8.213
193	ern B	-3.145	24.850	-3.212	195 BLU C	-2.522	23.793	-2.431
171	SLU ES	-2.816	24.311	-4.734	175 BLU CB	-2.013	23.631	-4.851
143		-4.942	25.134	-1.435	195 GLU CD	-4. 543	25.784	-2.470
114	PLU BE1	-3.110	24.940	D. 143		4.333	24.840	-0.100
196	LEU M	-9.529	25.264	-3.870		-1-131	24.520	6.743
176	LEU CE	8.228	21.374	-4.059	196 LEU CA	8.241	25.929	-4.664
194		1.340	25.739	-3.854	106 LEU CG	0.305	24.121	-6.113
197	FEN EDS	2.739	27.716	-4.639	196 LEU CD?	2.770	26.178	-4.643
197	48	8.140	24.208	-7.003		4.827	25.721	-3.911
197		1.307	25.738	-9.293		0.032	25.774	-8.410
177	457 68	-1.067	24.511	-9.191		1.053	24.734	-9.914 -
171	ASP BD1	-2.804	23.355	-1.354		-2.404	26.331	-8.349
171	VAL N	2.013	24.319	-9.344		-3.835	27.327	-1.011
:::	YAL C	6.157	27.950	-9.514		3.204	26.970	-18.209
191	VAL CB	2.814		-11.637		3.752	28.677	-8.557
177	ANT EES	2.337		-11.484		1.438	24.726	-12.537
	BET CA	6.438	28.802	-9.492		8.374		-10.016
199	RET B	6.616	A	-11.793		6.843		-18.574
177	23 TER	7.343	24.849	-8.139		7.660	27.978	-9.877
200	41 68	8.227	27.755	-8.587		4.753	27.449	-4.342
200	ALA CA	7.993		-11.055		7.426	30.942	-11.10)
		9.127	32.524	-9.040		9.000	32.566	-14.272
					sec are ca	4.932		-11.434
								

21	12 PEC 8							
21		9. 921		-33.931				
;;		10.435			\$01 PRE CA	11.017	34.23	
		11.817	34.723		201 PRC B	9.579	25.99	
20		9.941	33.416		23 344 185	11.312	34.94	
1)		10,473			\$03 614 F	18.925		
20	2 GLT D	11.312			202 BLY E			
30	3 VAL CA				203 VAL &	11.300		-4.115
20		11.943		-3.734		32.815		
20		11.117	37.731	-7.593	SES ANT C	14.714	30.017	~.~,
		14.094	36.104		303 AVF CG	14.814		
10		14.845		-4.612	203 VAL CC2	14.879		
200		11.047	39.182	-3.859	204 350 54		34.743	-4.378
200	4 588 68	17.017	48.619	-7.872	204 311 2	15.572	48.281	-4.487
201	ILE &		21.974	-4.324		" 25.784	45.415	-1.119
201		33.771	45.945	-8.008		17.712	41.184	
201		13.207	42.749	-9.478	205 ILE CA	13.049	41.234	-4.472
		11.532	40.833		301 275 0	12.474		-1.225
\$01		20.899		-9.344	305 TLE C61	11.434	43.492	-1.641
204	SLN N	13.914	41.281	-10.467	203 111 601		31.334	-8.810
284	SLE E		43.093	-15.489	204 BLN EA	12.257	38.412	-9.771
204		13.002	44.978	-21.630	1	24.204	44.517	-18.834
234		23.453	44.708	-11.740		12.447	44.318	-41.134
206		17.21;	45.145	-10.887	300 BIN CC	16.684	44.363	-12.621
		16.556	40.260		206 ELW DEI	18.328		-10.910
201		31.217		-8.857	207 SER W		44.936	-1.353
207		11.919	46.572	-11.987	207 888 6	12.355	46.344	-11.214
207	\$ f a B S	4.773	48.637	-11.004	207 528 68	11.009	48.81)	-11.749
201			46.034	-12.613		9.718	45.853	-11.509
201		9.171	50.319	-14.784		10.854	48.644	
201		8.620	\$0.415	-11.357	208 THP DG1	7.570	49.414	-12.326
	THE E	7.117	80.444		208 THE CA	9.475		-13.144
201	ren #	1.634	\$1.613	-10.803	298 THE D	8.423	50.012	-12.173
201	LEU C	8.473		-10.228	200 LEU CA		49.807	-11.049
504	LEU CO	20.333	\$3.410	-9.242	300 FEU D	9.192	52.158	-4.759
201	LEU COL		32.192	-7.938.	111	9.140	84.227	-10.222
210	PRO A	23.968	31.114	-6.472		10.804	\$8.814	
210	PROE	7.798	54.139	-8.444	SOU PEN CDS	9.687	30.212	-7.416
		1.313	\$6.573	-8.639	210 PRO CA	7.273	44.4.4	-6.669
210	PRO CO	6.302	55.733		210 PRC D	9.491	\$5.517	-1.647
210	PRD CD	7.113		-7.517	210 PRC CC	6.004	\$4.445	-8.184
211	ELT EA .	3.049	\$3.472	-7.271	211 SLT W		34.379	-6.944
211	SLY D	21.174	38.743	-7.410	212 BLY C	8.077	37.665	-1.355
212	ASH CA		59.005	-11.259		10.094	\$8.454	-10.498
212	ASE D	10.903	87.422	-12.643		9.852	37.770	
212	484 66	13.111	87.262	-12.420		12.011	\$6.753	-11.587
112		11.803	\$8.185	-14.814	212 ASH CB	11.224	38.373	-12.054
213	ASH ND2	12.273	97.259		212 ASN BD1	11.05)		-13.499
	LYS CA	12.810	34.944	-15.376	213 LYS W	11.801	\$7.834	-15.323
213	LYS D	11.775		-20.537	213 LTS C		35.749	-11.247
213	LTS EG	13.204	\$3.039	-11.413	213 LYS CD	12-661	53.419	-20.504
213	LTS EE		34.614	-8.767	213 LTS CD	12.709	\$5.241	-9.819
214	TTE W	34.108	\$8.21#	-6.870		13.246	37.830	-7.312
214	TYE	13.481	\$2.703	-20.444		15.048	\$8.765	
214	TYR CR	14.383	\$0.620	-1.489	214 TYR CA	13.50;	A A .	•7.921
214		14.641	50.941	-11.984	214 TYR B	15.211		-10.722
	TYR EDI	14.619	82.847		214 TTR ES	34.330	\$1.253	-8.817
214	TYR EE1	14.230		-13.478	214 TYR ED2	13.179	\$1.421	-23.244
214	TTR CZ	13.204	\$3.475	-14.814	214 TYR CER	*****	51.045	-34.816
213	SLY M	14.952	52.875	-15.550	214 TYR DH	12.63.		-15.178
	BLY E		48.847	-9-151		12.756		-16.676
	ALA M	14.138	47.323	-7.769		14.622	48.772	
	ALA C	34.418	44.471	-6.833	332 ELY D	13.249	44.917	-7.905
		13.482	44.922		816 ALA EA	14.654		-8.521
	ALA ES	25.715	44.354	-8.912	236 ALA D	33.944	45.203	-6.781
	TYE CA	21.964	43.488	-4.887	217 772 W	12.78.	43.527	-4.475
	TYS D	12.252	41 415	-4.440	237 TYR C		43.942	-5.575
317	778 EE	10.117	41.442	-3.616	217 778 69	12.033	41.928	-4.547
217	TYR CD2		43.211	-4.214		18.473	43.842	-4.870
	TTR EEZ	9.016	43.913	-4.785		18.846	45.971	-3.236
	TTR DA	8.454	47.219	-4.381	317 778 663		49 8	
	43 H EA	1.713	40.140	-2.911	237 778 62		49 888	-2.790
		11.645	39.942		218 48H W -		4.	-3.311
		-		-3.227	218 ASH E		41.31	-3.311
					• •		38.434	

811	•	9.743	43.347	-1.917	218 85- 68	12.953		
211		14.831	31.366	-2.343	218 45% BD1		30.340	-2.136
211	ASH WDZ	14.660	31.644	-1.765		34.612	39.789	-1.422
211		0.362	38.132		319 BLY m	9.678	31.534	-3.249
211		7.873		-2.649	319 BLT C	7:378	37.384	-3.681
			37.50;	-4.874	225 TMR W	6.542	24.431	-3.201
231		3.697	35.934	-4.179	220 THE C	4.279	37.044	
\$21		4.417	36.742	-3.911	220 THE CE			-4.344
111	7#1 861	4.134	35.543	-2.451		4.825	34.819	-2.524
223	881 .	4.738			220 THR EG2	5.784	33.496	-2.985
223			31.231	-4.363	221 SEP CA	3.784	39.201	-3.141
		4.760	31.643	-6.311	221 See D	4.117	48.701	-7.277
321		3.323	40.383	-4.344	"221 SEe DE			
222	! # ₹7 ±	8.043	31.329	-4.415	222 AET CE	3.435	48.282	-1.149
222	MET SD	7.748	42.333			6.671	42.771	-3.173
222		8.351		-4.993	222 MET EG	9.504	41.399	-4.602
222			40.015	-7.218	222 MET CA	6.916	39.478	-7-638
		6.877	31.435	-8.367	222 #27 6	7.084	31.547	
223		4.554	37.244	-2.841	223 ALS CA			-9.775
513	ALE C	5.200	34.041	-9.707		6.469	34.020	-1.115
223	ALA CB	6.301	34.807		223 ALA D	3.113	35.748	-10.921
224		2.758		-7.923	224 SEP N	4.074	34.345	-9.831
224			36.411	-9.703	224 SER C	2.661	37.161	-11.639
		2.145	36.193	-12.057	224 SPR C8	1.801	34.775	
114		8.492	34.299	-9.137	225 PRD 4			-8.603
225		3.015	34.130	-12.439		3.354	38.411	-11.159
225	PRD D	3.404	31.450		225 PED C	3.764	38.469	-13.626
225		4.411		-14.804	225 PRD C8	3.653	48.311	-12.954
226			40.402	-10.764	225 PRD ED.	3.735	39.224	-10.014
	• • •	4.749	37.626	-13.211	226 MJS CA	3.444	34.879	
224		4-418	35.947	-35.061	226 MIS C			-14.362
224		4.503	36.046	-13.745	226 MIS CG	4.425	35.409	-16.293
226	MIS MOI	8.141	37.488			7.814	36.157	-13.351
224	MIS CEI	9.270		-12.170	\$26 MIS COS	8.713	37.118	-14.167
227	VAL W		38.052	-12.236	226 WIS NEZ	9.771	37-866	-13.443
227		3.593	31.344	-14.199	.227 VAL CA	2.143	34.338	-14.727
	ATT E	3.479	33.197	-15.421	TET VAL D	1.016	34.773	
227	VAL EB	2.173	33.444	-13.619	227 VAL CES			-16.496
227	ANT EES	3.204	32.445	-12.871		1.074	32.474	-14.246
221	ALA CA	8-611	37.189			1.003	36.242	-14.814
221	ALA B	-0.253		-15-517	SSS WIN C	8.543	37.531	-16.961
22.0	SLT N		37.435	-17.828	238 ALA CB	-9.387	38.333	-14.661
229		1.793	38.524	-16.941	229 ELT CA	2.352	38.408	
	GLT E	2.420	37.197	-17.187	354 EL4 D	2.109		-18.239
236	ALA M	2.711	35.911	-11.466	230 ALA CA		37.375	-20.384
372	ALA E	1.424	34.800	-20.153		2.794	34.801	-11.544
238	ALA ER	3.298	33.624			1.380	34.203	-21.343
231	ALA CA	-1.010	34.414	-18.707	231 ALS M	8.315	34.523	-17.324
231	ALA D			-19.744	231 ALA C	-1.254	35.423	-20.064
112	ALA	-1.909	33.854	-21.852	231 ALA CO	-1.932	24-644	-18.549
		-8.778	34.457	-26.721	232 ALA CA	-1.013		
\$ 2.5	ALA C	-0.281	37.284	-23.078	232 ALA D		37.663	-21.792
132	ALA ED	-8.742	39.121	-21.377	= :	-D.843	37.501	-24.387
2))	LEU CA	3.617	34.293		233 LEU M	8.935	36.724	-22.967
133	LEU D	8.414	31 33	-34.309	533 FEA C	0.821	35.169	-24.886
233	LEU CG		33.231	-24.111	533 FER CA	3.043	35.877	-23.907
233		3.194	36.774	-23.433	233 LEU CD1	3.239	34.342	
	TEN CDS	4.242	37-853	-24.480	234 JLE W	7.17		-22.921
23.	ILE CDI	8.306	30.444	-21.637		8.357	34-199	-24.847
234	ILE CD	-8-811	32.014			8,454	31.223	-23.103
234	ILE CA	-0.404		-23.570	234 ILE CG2	-1.801	30.900	-24.991
1).	11 P		33.076	-34.644	THE C	-1.621	33.597	-25.434
211		-1-11)	33.144	-24.346	233 LEU W	-2.315	36.463	
	LEU EA	-3.374	25.028	-25.423	235 LEU C			-24.779
233	FEN B	-4.109	35.914	-27.519	235 LTU Ct	-3.258	33.143	-26.672
235	Ltu EG	-3.140	34.273	-23.342		-4.432	33.765	-24.378
235	LEU CD2	-4.252	34.138		235 FED CD1	-5.652	35.613	-22.145
236	\$1 × EA			-24-120	236 SER N	-2.894	34.431	-26.798
236		-3-764	37.237	-27.184	236 SER C	-1.491	34.292	-29.144
	313 0	-1.744	34.634	-30.298	276 SER CA	-0.633		
2).	36 95		37.571	-27.582	237 LTS N		34.234	-27.733
237	LTS CA	-8.346	34.035	-29.952		-1.844	33.067	-28.882
237	LTS D	-2.378	32.951	-31.666	837 173 5	-3.111	33.277	-30.241
237	LTS CC	8.677			237 LYS CA	0.272	33.112	-21.551
	-		32.240	-30.716	237 LTS CD	2.929	31.935	-30.462

3	37 LTS CE	2.345	84 84 8					
	Ji mil m	-2.951		-31.724	237 LY3 m2	3.525	29.848	
	31 M35 C	-1.334		-30.315	230 M25 Ca	-4.100	32.143	~ , ,
	31 MIS CO.	-3.943	32.099	-21.697	234 MZS D	-5.713		
	31 WIL MET	-1.707	35.862	-28.311	230 #21 66	-3.000	32.504	-27.862
3	38 WIS CEL	-1.916	21.679	-21.433	238 H78 CD2	-3.137	29.921	-29.237
2:	31 P20 W	-3.64	21.931	-24.642	236 MIS OF 2	-1.948	21.231	-38.394
2	31 PED E	-1.204	33.917	-21.345	234 PED C4		21.400	-20.349
21	IT PED CB	-7.818	34.852	-21.332	234 -00 0	-4.911	34.779	-28.771
21			35.977	-29.713	237 PED EE	-8.949	34.519	-27.662
20		-3.436	34.434	-30.663	240 414 4	-6.666	23.294	-31.827
24		-9.329	32.041	-21.216	240 484 6	-3.334	32.949	-29.227
84	,-,	-10.340	30.410	-27.574	240 ASH CR	-0.500	31.180	-27.980
24		-7-971	30.827	-30.889	240 43N 801	-9.493	31.249	-20.535
24		-7.675	29.309	-35.976	241 789 %	-7.808	31.500	-31.147
. 24		-8.304	30.124	-26.120	241 789 6	-1.35.	31.804	-27.384
. 34		-1.843	31.833	-24.486	241 729 68	-9.106	30.434	-24.936
2.		-4.094	28.903	-26.557	241 789 501	-4.879	29.836	-25.679
2.		-4.831	21.324	-26.115	261 789 881	-6.311	28.433	-27.818
24		-4.414	27.476	-27.216		-3.342	27.547	-20.211
1.		-3.193	24.784	-27.174		-4.097	28.494	-24.711
34		-2.478	26.873	-26.005		-2.912	27.667	-24.942
24		-18.458	36.319	-22.911	242 THE G	-9.727	29.781	-24.142
34		-0.333	29.674	-21.937		-7.667	30.374	-21.747
1.		-18.837	27.786	-22.476		-11.579	29.032	-22.675
24		-9.904	30.457	-20.611		-12.494	28.987	-23.000
24		-11.465	31.518	-14.788	243 A34 H32 243 A54 EE	-11.787	38.486	-18.747
24		-9.784	31.530	-10.332		-11.00)	31.331	-17.905
24		-8.657	29.363	-19.010	243 454 CA	-9.853	30.711	-19.444
240		-1.364	21.362	-19.213	243 ASW D 244 THR CA	-7.513	29.136	-31.448
244		-1.113	24.313	-17.102		-9.381	24.724	-19.059
244		-10.665	24.088	-19.494		~7.324	25.757	-19.111
201		-10.503	24.595	-19.150		-22.735	24.575	-18.484
241		-6.764	24.342	-21.962		-8.582	26.716	-21.073
243		-4.373	24.393	-21.447		-5.647	27.820	-21.520
241		-0.245	25.526	-23.989		-7.338	24.599	-23.397
200		-1.104	24.769	-25.727		-8.473	21.873	-25.428
200		-3.697	21.304	-21.218		-7.745	21.312	-26.370
244		-3.934	24.462	-19.467		-4.677	29.040	-20.778
266	VAL CG2	-4.779	30.555	-20.621		-2.783	28.227	-19.341
247	ARS CA	-5.169	31.331	-21.959		-3.544	31.272	-20.027
247	ARG D	-4.386	27.714	-17.168	247 ARG W	-4.767	21.246	-18.462
247	43 6 E	-2.701	25.985	-14.764	247 485 58	-3.778	24.252	-17.360
247	486 42	-4.987	27.093	-14.882		-3.533		-16.149
247	486 bH3	-3.440	26.757	-12.544		-6.834		-13.793
241	888 6	-7.004	27.484	-11.210		-3.813		-11.315
249	1 2 2 E	-4.480	23.503	-18.131	247 ARG NW2 248 STR CA	-3.177		-10.276
248	SER CA	-2.637		-19.072	241 SER B	-4-839		-11.426
249	Ste u	-3.034	23.408	-19.372	241 522 95	-1-848	23.253	-11.51)
249	\$14 C	-3.500	24.883	-20.136	247 328 64	-4.144		-11.532
249	\$ 2 P E B	-0.071	25.302	-19.940	247 884 0	-1.223		-20.851
210	LEU A	-1.369	25.754	-22.048	241 111 05	1.624		-20.049
230	LEU CO1	-1.209	24.333	-19.160		-3-300		-21.934
210	Leu ca	-0.373	38.453	-17-248	588 FBN CC 530 FBN CD5	3.83.		-11.222
230	LEUC	8-178	21.843 .	-17.503	230 LEU CA	0.312	21.431	-11.151
251	SLW W	1.092	25.494	-17.263	SEO FED E	0.718	8	-18.214
žii	SLW DES	0 - D 6 B	25.867 -	-16.714	231 GLW WES	2-213		-17.032
231	SLW EG	-2.819	23.424 .	-12.931	291 BLN CD	-2.750		-12.237
231	BLW CA	-1.210	24.814 -	-13.794	231 614 68	-2.343	24.310 .	13.034
251	5L= D	4.383		-11.745	251 614 6	-0.337	23.621 -	14.877
111	ASH CA	1.743	22.014	13.616	252 454 4	0.717	22.664 -	14.341
232	454 D	1.002		18.282	232 ASR C	0.611	22.314 -	17.395
232	45 K E6	2.801		11.768	252 434 69		21.359 .	18.991
		-1.834	19.924 -	11.573	252 ASW 801		28.780 -	19.292
						-8.834		17.502

33		-2.234	29.874	-11.141	253 Tel 6			
23		4.234	22.717	-19.713		3.918	22.501	-11.923
25		4.341	23.733	-19.427	253 7mb g	9.311	23.247	-28.811
23	3 Tat Dil	3.573	20.937	-20.428	233 tnt C3	4.914	23.672	-21.952
25	. Tal a	3.218	23.177		SED THE CE	3.247	23.130	-22.832
23	1 tuf .	7.466	22.730	-27.151	254 TMP.CA	6.214	23.612	-36.581
29		3.444		-14.412	234 THE D	7.432	21.980	
21		4.330	23.931	-13.132	254 THE DE	8.129	22.178	
21		9.771	84.547	-34.802	255 THE W	1.411	21.294	
23			22.594	-15.817	255 THE C	9.621	22.031	
2.5		1.439	22.786	-23.474	255 7=8 28	11.010	23.455	-34.414
23		23.032	23.709	-17.321	253 THP CC2	12.284	22.628	-35.897
21		1.696	25.702	-34.314	256 LYS CA	9.344		-13.484
		30.322	26.333	-12.043	256 LTS D		20.043	-13.61;
25		9.03.	18.993	-23.249	236 LTS CC	21.662	20.274	-12.592
23		10.214	26.741	-11.777	296 L75 CE	9.018	17-805	-11.921 -
530		1.243	14.949	-11.554		10.212	33.940	-18.623
231		21.272	21.034	-9.193		30.212	20.474	-11.824
233		12.296	25.345	-7-732		11.250	20.232	-8.614
257	7 LEU [6	21.357	23.420		257 LEU CB	31.187	22.547	-9.522
231	LEU CO2	12.678	21.443	-10.368	Sai Fan EDI	21.245	25.903	-9.921
231		10.602		-11.325	238 GLT W	10.431	39.282	-8.291
251		8.213	33.793	-6.879	238 6 L7 C	9.261	18.703	-4.373
251		7.757	11.754	-7.202	259 A5P N	9.824	18.282	
211			37.894	-4.516	239 A30 C	6.459	18.941	-5.150
211		4.853	20.831	-4.214	259 ASP CB	7.994	17.540	-4.709
219		4.781	17.128	-2.241	259 ASP BD1	5.611		-3.933
200		7.011	26.299	-1.321	240 Sta M	5.340	37-327	-2.354
240		4.483	28.587	-1.529	240 STR C	4.846	18.610	-5.312
		3.500	21.503	-4.444	240 412 68		20.362	-4.211
346		2.745	17.937	-5.441	241 PHE W	3.345	38.919	-4.211
243		3.431	21.461	-1.865	261 PHE C	4.241	39.778	-3.112
261		3.744	22.848	-1.432	261 PHE CB	4,544	21.046	-1.863
\$63		3.549	20.337	0.715		4.053	19.749	-8.543
241		4.403	21.060	1.511		2.206	20.163	1.125
241		3.945	21.602	2.748		1.737	28.717	2.315
262	TTR M	8.778	21.758	-2.305	241 PHE CZ	2.625	21.463	3.114
545		6.820	23.619	-3.545	262 TYR CA	4.691	22.914	-2.251
242		8.122	22.433	-1.851	362 772 9	7.201	24.853	-3.293
312	TTR CC1	8.034	20.484	-0.364	295 448 66	B.146	21.892	-8.454
242	TYR CEL	8.062	19.372		262 TYR CD2	8.149	22.641	0.471
242	TTR EZ	8.069	20.472	6.812	365 445 685	8.214	22.969	1.962
263	TTE &	6.624	23.104	2.018	362 TTR DH	7-945	20.020	3.205
263	TVR C	8.624	23.680	-4.493	263 778 64	6.812	23.455	-6.822
243	TTR CO	7.924		-6.956	243 TTE D	5.781	24.117	-8.111
243	TYR CD1	10.000	22.768	-6.612	243 TYR CG	9.274	23.035	-4.041
243	778 CE2	11.335	24.044	-6.637	243 448 603	9.800	22.342	-4.913
243	778 62	.11.131	34.328	-6.168	343 446 665	31.042	22.640	-4,491
264	SLY &		23.618	-8.156	243 TTE DE	17.063	23.949	-4.897
264	SLY C	4.473	23.161	-6.516	264 BLY CO	- 3.301	23.064	-7.412
245	LYS	3.847	22.194	-8.536	264 6LY D	4.447	21.274	
263	LYE	3.436	22.477	-3.754	263 LTS EA	3.834	21.798	-1.345
245	LTS CA	8-111	\$2.232	-11.464	245 LYS D	8.684		-36.971
24;		2.733	22.071	-12.044	245 LYS EC	1.495	23.843	-12.314
201	LYS CD	8.710	20.548	-12.579	265 LTS CE		21.943	-11.305
20.	175 M2	-1.678	22.757	-12.489	266 617 8	-8-672	28.696	-11.371
	BLT CA	7.120	23.612	-11.725	266 6LY C	\$.767	23.226	-10.817
364	SLY D	4.177	23.793	-11.648	267 LRU W	7.133	23.032	-11.818
267	TEN CT	8.495	24.440	-13.097	267 184 6	8.262	25.336	-12.41:
267	LEU D	7.953	25.909	-13.291		7.804	26.771	-14.437
267	TEN CC	30.432	28.042	-14.050		30.010	24.355	-13.214
267	TEN CDS	22.924	27.921	-14.327		10.076	29.331	-13.21:
341	ITS CV	4.404	28.033	-11.944	261 ILI N	7.04.	27.843	-14.432
201	ILE D	8.539	20.713	-14.912	348 IFE C	7.426	28.244	-17.045
241	ILE CG1	4.077	30.541	-15.552	548 374 CB	5.347		-15.011
241	ILE CD1	8.311	4 1 1 2		398 SF4. E85	4.743		-14.867
	-	••••	044 177	-14.262	267 ESW W	7.897		-11.237

260 834 267 434 270 VAL 270 VAL 271 614 271 614 271 614 271 614 271 614 271 614 271 614 271 614	C6	27.978 -10.497 27.76: -21.912 26.626 -21.472 21.472 21.418 -21.614 23.614 23.614 23.797 -21.392 27.934 -26.521 23.220 -26.964 28.313 -21.310 23.303 -21.300 23.303 -21.300 23.303 -21.300 23.303 -21.300 23.303 -21.300 23.303 -21.300	### 65% E ### 254 A5% E #### 254 A5% E ####################################	6.053 6.453 6.453 6.453 6.453 6.453 6.454 6.771 6.743 6.771 6.743 6.771 6.743 6.743 6.743 6.753 6.753 6.753 6.753 6.753 6.753 6.753	TATABLE TO A BEAR TO A BEA	######################################
--	----	---	---	--	--	--

The above structural studies together with the kinetic data presented herein and elsewhere (Philipp, M., et al. (1983) Mol. Cell. Biochem. 51, 5-32; Svendsen, I.B. (1976) Carlsberg Res. Comm. 41, 237-291; Markland, S.F. Id; Stauffe, D.C., et al. (1965) J. Biol. Chem. 244, 5333-5338) indicate that the subsites in the binding cleft of subtilisin are capable of interacting with substrate amino acid residues from P-4 to P-2'.

The most extensively studied of the above residues are Gly166, Gly169 and Ala152. These amino acids were identified as residues within the S-1 subsite. As seen in Fig. 3, which is a stereoview of the S-1 subsite, Gly166 and Gly169 occupy positions at the bottom of the S-1 subsite, whereas Ala152 occupies a position near the top of S-1, close to the catalytic Ser221.

All 19 amino acid substitutions of Gly166 and Gly169
20 have been made. As will be indicated in the examples
which follow, the preferred replacement amino acids
for Gly166 and/or Gly169 will depend on the specific
amino acid occupying the P-1 position of a given
substrate.

The only substitutions of Ala152 presently made and analyzed comprise the replacement of Ala152 with Gly and Ser. The results of these substitutions on P-1 specificity will be presented in the examples.

In addition to those residues specifically associated with specificity for the P-l substrate amino acid, Tyrlo4 has been identified as being involved with P-4 specificity. Substitutions at Phel89 and Tyr217,

25

however, are expected to respectively effect P-2' and P-1' specificity.

The catalytic activity of subtilisin has also been modified by single amino acid substitutions at Asn155. 5 The catalytic triad of subtilisin is shown in Fig. 4. As can be seen, Ser221, His64 and Asp32 are positioned facilitate nucleophilic attach by the hydoxylate on the carbonyl of the scissile peptide of subtilisin Crystallographic studies 10 (Robertus, et al. (1972) Biochem. 11, 4293-4303; Matthews, et al. (1975) J. Biol. Chem. 250, 7120-7126; Poulos, et al. (1976) J. Biol. Chem. 250, 1097-1103) show that two hydrogen bonds are formed with the oxyanion of the substrate transition state. One 15 hydrogen bond donor is from the catalytic serine-221 main-chain amide while the other is from one of the NE2 protons of the asparagine-155 side chain. Fig. 4.

20 Asn155 was substituted with Ala, Asp, His, Glu and Thr. These substitutions were made to investigate the tetrahedral charged stabilization of the the intermediate of the transition state complex by the potential hydrogen bond between the side chain of 25 Asn155 and the oxyanion of the intermediate. particular substitutions caused large decreases in substrate turnover, kcat (200 to 4,000 fold), marginal decreases in substrate binding Km (up to 7 fold), and a loss in transition state stabilization energy of 2.2 30 to 4.7 kcal/mol. The retention of Km and the drop in kcat will make these mutant enzymes useful as binding proteins for specific peptide sequences, the nature of which will be determined by the specificity of the precursor protease. 35

Various other amino acid residues have been identified which affect alkaline stability. In some cases, mutants having altered alkaline stability also have altered thermal stability.

- 5 In <u>B</u> <u>amyloliquefaciens</u> subtilisin residues Asp36, Ile107, Lys170, Ser204 and Lys213 have been identified as residues which upon substitution with a different amino acid alter the alkaline stability of the mutated enzyme as compared to the precursor enzyme. 10 substitution of Asp36 with Ala and the substitution of Lys170 with Glu each resulted in a mutant enzyme having a lower alkaline stability as compared to the wild type subtilisin. When Ilelo7 was substituted with Val, Ser204 substituted with Cys, Arg or Leu or 15 Lys213 substituted with Arg, the mutant subtilisin had a greater alkaline stability as compared to the wild However, the mutant Ser204P demonstrated a decrease in alkaline stability.
- 20 In addition, other residues, identified as being associated with the modification of other properties of subtilisin, also affect alkaline stability. residues include Ser24, Met50, Glul56, Gly166, Gly169 and Tyr217. Specifically the following particular 25 substitutions result in stability: Ser24C, Met50F, Gly156Q or S, Gly166A, H, alkaline K, N or Q, Gly169s or A, and Tyr217F, K, R or L. The mutant Met50V, on the other hand, results in a decrease in the alkaline stability of the mutant 30 subtilisin as compared to wild type subtilisin.

Other residues involved in alkaline stability based on the alkaline stability screen include Aspl97 and Met222. Particular mutants include Aspl97(R or A) and Met 222 (all other amino acids).

→

Various other residues have been identified as being involved in thermal stability as determined by the thermal stability screen herein. These residues include the above identified residues which effect alkaline stability and Met199 and Tyr21. These latter two residues are also believed to be important for alkaline stability. Mutants at these residues include I199 and F21.

The amino acid sequence of B. amyloliquefaciens 10 substilisin has also been modified by substituting two or more amino acids of the wild-type sequence. Six categories of multiply substituted mutant subtilisin have been identified. The first two categories comprise thermally and oxidatively stable mutants. 15 The next three other categories comprise mutants which combine the useful properties of any cf several single mutations of B. amyloliquefaciens subtilisin. last category comprises mutants which have modified alkaline and/or thermal stability. 20

The first category comprises double mutants in which two cysteine residues have been substituted at various amino acid residue positions within the subtilisin molecule. Formation of disulfide bridges between the two substituted cysteine residues results in mutant subtilisins with altered thermal stability and catalytic activity. These mutants include A21/C22/C87 and C24/C87 which will be described in more detail in Example 11.

The second category of multiple subtilisin mutants comprises mutants which are stable in the presence of various oxidizing agents such as hydrogen peroxide or peracids. Examples 1 and 2 describe these mutants

25

30

which include F50/I124/Q222, F50/I124, F50/Q222, F50/L124/Q222, I124/Q222 and L124/Q222.

The third category of multiple subtilisin mutants comprises mutants with substitutions at position 222 5 combined with various substitutions at positions 166 These mutants, for example, combine the property of oxidative stability of the A222 mutation with the altered substrate specificity of the various 166 or 169 substitutions. Such multiple mutants 10 include A166/A222, A166/C222, F166/C222, K166/A222, K166/C222, V166/A222 and V166/C222. The K166/A222 mutant subtilisin, for example, has a kcat/Km ratio which is approximately two times greater than that of the single A222 mutant subtilisin when compared using 15 a substrate with phenylalanine as the P-1 amino acid. This category of multiple mutant is described in more detail in Example 12.

The fourth category of multiple mutants combines substitutions at position 156 (Glu to Q or S) with the substitution of Lys at position 166. Either of these single mutations improve enzyme performance upon substrates with glutamate as the P-1 amino acid. When these single mutations are combined, the resulting multiple enzyme mutants perform better than either precursor. See Example 9.

The fifth category of multiple mutants contain the substitution of up to four amino acids of the B. 30 amyloliquefaciens subtilisin sequence. These mutants have specific properties which are virtually identicle the properties of the subtilisin licheniformis. The subtilisin from B. licheniformis differs from B. amyloliquefaciens subtilisin at 87 out 35 275 amino acids. The multiple mutant

F50/S156/A169/L217 was found to have similar substrate specificity and kinetics to the licheniformis enzyme. (See Example 13.) However, this is probably due to only three of the mutations (S156, A169 and L217) which are present in the substrate binding region of the enzyme. It is quite surprising that, by making only three changes out of the 87 different amino acids between the sequence of the two enzymes, the B. amyloliquifaciens enzyme was converted into an enzyme with properties similar to B. licheniformis enzyme. enzymes in this series F50/Q156/N166/L217 and F50/S156/L217. include

The sixth category of multiple mutants includes the combination of substitutions at position 107 (Ile to 15 V) with the substitution of Lys at position 213 with Arg, and the combination of substitutions of position 204 (preferably Ser to C or L but also to all other _ amino acids) with the substituion of Lys at position 213 with R. Other multiple mutants which have altered 20 alkaline stability include Q156/K166, Q156/N166, S156/K156, S156/N166 (previously identified as having altered substrate specificity), and F50/S156/A169/L217 (previously identified 35 a mutant amyloliquifaciens subtilisin having properties similar 25 to subtilisin from B. licheniformis). The mutant F50/V107/R213 was constructed based on the observed increase in alkaline stability for the single mutants F50, V107 and R213. It was determined that the V107/R213 mutant had an increased alkaline stability 30 as compared to the wild type subtilisin. particular mutant, the increased clkaline stability was the result of the cumulative stability of each of the individual mutations. Similarly, the mutant F50/V107/R213 had an even greater alkaline stability 35 as compared to the V107/R213 mutant indicating that

5 .

the increase in the alkaline stability due to the F50 mutation was also cumulative.

Table IV summarizes the multiple mutants which have been made including those not mentioned above.

In addition, based in part on the above results, substitution at the following residues in subtilisin is expected to produce a multiple mutant having increased thermal and alkaline stability: Ser24, Met50, Ilel07, Glul56, Glyl66, Glyl69, Ser204, Lys213, Gly215, and Tyr217.

VSDOCID: <EP__0251446A2_I_>

TABLE IV

	Double Mutants	Triple, Quadruple or Other Multiple						
	C22/C87	F50/I124/Q222						
5	C24/C87	F50/L124/Q222						
	V45/V48	F50/L124/A222						
	C49/C94	A21/C22/C87						
	C49/C95	F50/S156/N166/L217						
	C50/C95	F50/0156/N166/L217						
10	C50/C110	F50/Q156/N166/L217 F50/S156/A169/L217 F50/S156/L217						
	F50/I124							
	F50/Q222	F50/S156/L217						
	I124/Q222	F50/Q156/K166/L217						
	Q156/D166	F50/S156/K166/L217						
15	Q156/X166	F50/Q156/K166/K217						
	Q156/N166	F50/S156/K166/K217						
	S156/D166	F50/V107/R213						
	S156/K166	[S153/S156/A158/G159/S160/A161-						
	S156/N166	-04/1165/S166/A169/R1701						
_	S156/A169	L204/R213						
20	A166/A222	R213/204A, E, Q, D, N, G, K,						
	A166/C223	V, R, T, P, I, M, F, Y, W						
	F166/A222	OI M						
	F166/C222	V107/R213						
	K166/A222							
25	X166/C222	· •						
	V166/A222							
	V166/C222							
	A169/A222							
	A169/A222	•						
0	A169/C222							
	A21/C22							

In addition to the above identified amino acid residues, other amino acid residues of subtilisin are

also considered to be important with regard to substrate specificity. Mutation of each of these residues is expected to produce changes in the substrate specificity of subtilisin. Moreover, multiple mutations among these residues and among the previously identified residues are also expected to produce subtilisin mutants having novel substrate specificity.

Particularly important residues are His67, Ile107, Leu126 and Leu135. Mutation of His67 should alter the S-1' subsite, thereby altering the specificity of the mutant for the P-1' substrate residue. Changes at this position could also affect the pH activity profile of the mutant. This residue was identified based on the inventor's substrate modeling from product inhibitor complexes.

Ilel07 is involved in P-4 binding. Mutation at this position thus should alter specificity for the P-4 substrate residue in addition to the observed effect on alkaline stability. Ilel07 was also identified by molecular modeling from product inhibitor complexes.

25 The S-2 binding site includes the Leul26 residue.

Modification at this position should therefore affect
P-2 specificity. Moreover, this residue is believed
to be important to convert subtilisin to an amino
peptidase. The pH activity profile should also be
modified by appropriate substitution. These residues
were identified from inspection of the refined model,
the three dimensional structure from modeling studies.
A longer side chain is expected to preclude binding of
any side chain at the S-2 subsite. Therefore, binding
would be restricted to subsites S-1, S-1', S-2', S-3'

and cleavage would be forced to occur after the amino terminal peptide.

Leul35 is in the S-4 subsite and if mutated should alter substrate specificity for P-4 if mutated. was identified inspection by three-dimensional structure and modeling based on the the product inhibitor complex of F222.

In addition to these sites, specific amino acid residues within the segments 97-103, 125-129 and 10 213-215 are also believed to be important to substrate binding.

Segments 97-103 and 126-129 form an antiparallel beta sheet with the main chain of substrate residues P-4 15 through P-2. Mutating residues in those regions should affect the substrate orientation through main chain (enzyme) - main chain (substrate) interactions, since the main chain of these substrate residues do not interact with these particular residues within the 20 S-4 through S-2 subsites.

Within the segment 97-103, Gly97 and Asp99 may be mutated to alter the position of residues 101-103 within the segment. Changes at these sites must be 25 compatible, however. In B. amylcliquifaciens subtilisin Asp99 stabilizes a turn in the main chain tertiary folding that affects the direction residues 101-103. B. <u>licheniformis</u> subtilisin Asp97, functions in an analogous manner.

In addition to Gly97 and Asp99, Serl01 interacts with Asp99 in B. amyliquefaciens subtilisin to stabilize the same main chain turn. Alterations at this residue should alter the 101-103 main chain direction.

30

35

Mutations at Glul03 are also expected to affect the 101-103 main chain direction.

The side chain of Glyl02 interacts with the substrate P-3 amino acid. Side chains of substituted amino acids thus are expected to significantly affect specificity for the P-3 substrate amino acids.

All the amino acids within the 127-129 segment are considered important to substrate specificity. Gly 127 is positioned such that its side chain interacts with the S-1 and S-3 subsites. Altering this residue thus should alter the specificity for P-1 and P-3 residues of the substrate.

The side chain of Glyl28 comprises a part of both the S-2 and S-4 subsites. Altered specificity for P-2 and P-4 therefore would be expected upon mutation. Moreover, such mutation may convert subtilisin into an amino peptidase for the same reasons substitutions of Leul26 would be expected to produce that result.

The Prol29 residue is likely to restrict the conformational freedom of the sequence 126-133, residues which may play a major role in determining P-l specificity. Replacing Pro may introduce more flexibility thereby broadening the range of binding capabilities of such mutants.

The side chain of Lys213 is located within the S-3 subsite. All of the amino acids within the 213-215 segment are also considered to be important to substrate specificity. Accordingly, altered P-3 substrate specificity is expected upon mutation of this residue.

25

The Tyr214 residue does not interact with substrate but is positioned such that it could affect the conformation of the hair pin loop 204-217.

Finally, mutation of the Gly215 residue should affect the S-3' subsite, and thereby alter P-3' specificity.

In addition to the above substitutions of amino acids, the insertion or deletion of one or more amino acids within the external loop comprising residues 152-172 10 may also affect specificity. This is because these residues may play a role in the "secondary contact region" described in the model of streptomyces inhibitor complexed with Hirono, et al. (1984) J. Mol. Biol. 178, 389-413. subtilisin. 15 Thermitase K has a deletion in this region, which eliminates several of these "secondary contact" residues. In particular, deletion of residues 161 through 164 is expected to produce a mutant subtilisin having modified substrate specificity. In addition, a 20 rearrangement in this area induced by the deletion should alter the position of many residues involved in substrate binding, predominantly at P-1. should affect overall activity against proteinaceous substrates. 25

The effect of deletion of residues 161 through 164 has been shown by comparing the activity of the wild type (WT) enzyme with a mutant enzyme containing this deletion as well as multiple substitutions (i.e., S153/S156/A158/G159/S160/A161-164/I165/S166/A169/R170). This produced the following results:

35

TABLE V

	kcat	<u>Km</u>	kcat/Km
WT	50	1.4×10^{-4}	3.6×10 ⁵
Deletion mutant	8	5.0×10^{-6}	1.6x10 ⁶

The WT has a kcat 6 times greater than the deletion mutant but substrate binding is 28 fold tighter by the deletion mutant. The overall efficiency of the deletion mutant is thus 4.4 times higher than the WT enzyme.

All of these above identified residues which have yet to be substituted, deleted or inserted into are presented in Table VI.

TABLE VI

Substi	tution.	/Insertion	/Deletion
--------	---------	------------	-----------

	Resid	dues
25	His 67 Leu126 Leu135 Gly97 Asp99 Ser101 Gly102 Glu103 Leu126 Gly127 Gly128 Pro129	Ala152 Ala153 Gly154 Asn155 Gly156 Gly157 Gly160 Thr158 Ser159 Ser161 Ser162
30	Tyr214 Gly215 Gly166 Tyr167 Pro168	Ser163 Thr164 Val165 Gly169 Lys170 Tyr171 Pro172

35

5

1-2

The following disclosure is intended to serve as a representation of embodiments herein, and should not be construed as limiting the scope of this application. These specific examples disclose the construction of certain of the above identified mutants. The construction of the other mutants, however, is apparent from the disclosure herein and that presented in EPO Publication No. 0130756.

All literature citations are expressly incorporated by reference.

EXAMPLE 1

Identification of Peracid Oxidizable Residues of Subtilisin Q222 and L222

As shown in Figures 6A and 6B, organic peracid oxidants inactivate the mutant subtilisins Met222L and Met222Q (L222 and Q222). This example describes the identification of peracid oxidizable sites in these mutant subtilisins.

First, the type of amino acid involved in peracid oxidation was determined. Except under conditions (Means, G.E., et al. (1971) Chemical drastic 25 Modifications of Proteins, Holden-Day, S.F., CA, pp. 160-162), organic peracids modify only methionine and tryptophan in subtilisin. Difference spectra of the enzyme over the 250nm to 350nm range were determined during an inactivation titration employing the reagent, diperdodecanoic acid (DPDA) as oxidant. 30 Despite quantitative inactivation of the enzyme, no change in absorbance over this wavelength range was noted as shown in Figures 7A and 7B indicating that tryptophan was not oxidized. Fontana, A., et al. 35 (1980) Methods in Peptide and Protein Sequence

15

Analysis (C. Birr ed.) Elsevier, New York, p. 309. The absence of tryptophan modification oxidation of one or more of the remaining methionines of B. amyloliquefaciens subtilisin. See Figure 1.

5 To confirm this result the recombinant subtilisin Met222F was cleaved with cyanogen bromide (CNBr) both before and after oxidation by DPDA. The peptides produced by CNBr cleavage were analyzed on high resolution SDS-pyridine peptide gels (SPG).

10

20

25

Subtilisin Met222F (F222) was oxidized in following manner. Purified F222 was resuspended in 0.1 M sodium borate pH 9.5 at 10 mg/ml and was added to a final concentration of 26 diperdodecanoic acid 15 (DPDA) at 26 mg/ml was added to produce an effective active oxygen concentration of 30 ppm. The sample was incubated for at least 30 minutes at room temperature and then quenched with 0.1 volume of 1 M Tris pH 8.6 buffer to produce a final concentration of 0.1 M Tris pH 8.6). 3mM phenylmethylsulfonyl fluoride (PMSF) was added and 2.5 ml of the sample was applied to a Pharmacia PD10 column equilibrated in 10 mM sodium phosphate pH 6.2, 1 mM PMSF. 3.5 ml of 10 mM sodium phosphate pH6.2, 1mM PMSF was applied and the eluant collected.

F222 and DPDA oxidized F222 were precipitated with 9 volumes of acetone at -20°C. The samples were resuspended at 10 mg/ml in 8M urea in 88% formic acid 30 and allowed to sit for 5 minutes. An equal volume of 200 mg/ml CNBr in 88% formic acid was added (5 mg/ml protein) and the samples incubated for 2 hours at room temperature in the dark. Prior gel electrophoresis, the samples were lyophilized and resuspended at 2-5 mg/ml in sample buffer (1%

pyridine, 5% NaDodSO₄, 5% glycerol and bromophenol blue) and disassociated at 95°C for 3 minutes.

The samples were electrophoresed on discontinuous polyacrylamide gels (Kyte, J., et al. (1983) Anal. Bioch. 133, 515-522). The gels were stained using the Pharmacia silver staining technique (Sammons, D.V., et al. (1981) Electrophoresis 2 135-141).

10 The results of this experiment are shown in Figure 8. As can be seen, F222 treated with CNBr only gives nine resolved bands on SPG. However, when F222 is also treated with DPDA prior to cleavage, bands X, 7 and 9 disappear whereas bands 5 and 6 are greatly increased in intensity.

In order to determine which of the methionines were effected, each of the CNBr peptides was isolated by reversed phase HPLC and further characterized. The buffer system in both Solvent A (aqueous) and Solvent B (organic) for all HPLC separations was 0.05% triethylamime/trifloroacetic acid (TEA-TFA). In all cases unless noted, solvent A consisted of 0.05% TEA-TFA in H₂0, solvent B was 0.05% TEA-TFA in 1-propanol, and the flow rate was 0.5 ml/minute.

For HPLC analysis, two injections of 1 mg enzyme digest were used. Three samples were acetone precipitated, washed and dried. 30 The dried 1 mg samples were resuspended at 10 mg/ml in 8M urea, 88% formic acid; an equal volume of 200 mg/ml CNBr in 88% formic acid was added (5 mg/ml protein). incubation for 2 hours in the dark temperature, the samples were desalted on a 0.8 cm \times 7 35

cm column of Tris Acryl GF05 coarse resin (IBF, Paris, France) equilibrated with 40% solvent B, 60% solvent 200 ul samples were applied at a flow rate of 1 ml a minute and 1.0-1.2 ml collected by monitoring the absorbance at 280nm. Prior to injection on the HPLC, each desalted sample was diluted with 3 volumes of solvent A. The samples were injected at 1.0 ml/min (2 minutes) and the flow then adjusted to 0.5 ml/min (100% A). After 2 minutes, a linear gradient to 60% B at 1.0% B/min was initiated. From each 1 mg run, the pooled peaks were sampled (50ul) and analyzed by gel electrophoresis as described above.

Each polypeptide isolated by reversed phase HPLC was further analyzed for homogeneity by SPG. The position 15 of each peptide on the known gene sequence (Wells, J.A., et al. (1983) <u>Nucleic Acids Res.</u> <u>11</u> 7911-7924) was obtained through a combination of amino acid compositional analysis and, where needed, terminal sequencing.

20

5

10

Prior to such analysis the following peptides were to rechromatographed.

CNBr peptides from F222 not treated with DPDA:

25

30

Peptide 5 was subjected to two additional reversed phase separations. The 10 Cm C4 column equilibrated to 80%A/ 20%B and the pooled sample applied and washed for 2 minutes. Next an 0.5% ml B/min gradient was initiated. Fractions from this separation were again rerun, this time on the 25 cm C4 and employing 0.05% TEA-TFA acetonitrile/1-propanol (1:1) for solvent B. The gradient was identical to the one just described.

**

Peptide "X" was subjected to one additional separation after the initial chromatography. The sample was applied and washed for 2 minutes at 0.5ml/min (100%A), and a 0.5% ml B/min gradient was initiated.

Peptides 7 and 9 were rechromatographed in a similar manner to the first rerun of peptide 5.

Peptide 8 was purified to homogeneity after the initial separation.

CNBr Peptides from DPDA Oxidized F222:

Peptides 5 and 6 from a CNBr digest of the oxidized F222 were purified in the same manner as peptide 5 from the untreated enzyme.

Amino acid compositional analysis was obtained as follows. Samples (-lnM each amino acid) were dried, hydrolyzed in vacuo with 100 ul 6N HCl at 106°C for 24 hours and then dried in a Speed Vac. The samples were analyzed on a Beckmann 6300 AA analyzer employing ninhydrin detection.

Amino terminal sequence data was obtained as previously described (Rodriguez, H., et al. (1984) Anal. Biochem. 134, 538-547).

The results are shown in Table VII and Figure 9.

30

20

TABLE VII

Amino and COOH terminii of CNBr fragments

Terminus and Method

5	Fragment	amino, method	COOH, method
J	X 9 7 8	1, sequence 51, sequence 125, sequence	50, composition 119, composition 199, composition
10	50x 60x	200, sequence 1, sequence 120, composition	275, composition 119, composition 199, composition

Peptides 5ox and 6ox refer to peptides 5 and 6 15 isolated from CNBr digests of the oxidized protein where their respective levels are enhanced.

From the data in Table VII and the comparison of SPG tracks for the oxidized and native protein digests in 20 Figure 8, it is apparent that (1) Met50 is oxidized leading to the loss of peptides X and 9 and the appearance of 5; and (2) Met124 is also oxidized leading to the loss of peptide 7 and the accumulation of peptide 6. Thus oxidation of B. amyloliquifaciens subtilisin with the peracid, diperdocecanoic acid leads to the specific oxidation of methionine at residues 50 and 124.

EXAMPLE 2

Substitution at Met50 and Met124 in Subtilisin Met2220

The choice of amino acid for substitution at Met50 was based on the available sequence data for subtilisins 35

25

1**-2** ...

from B. licheniformis (Smith, E.C., et al. (1968) J. Biol. Chem. 243, 2184-2191), B.DY (Nedkov, P., et al. (1983) Hoppe Sayler's Z. Physiol. Chem. 364 1537-1540), B. amylosacchariticus (Markland, F.S., et al. (1967) J. Biol. Chem. 242 5198-5211) and B. subtilis (Stahl, M.L., et al. (1984) J. Bacteriol. 158, 411-418). In all cases, position 50 is a phenylalanine. See Figure 5. Therefore, Phe50 was chosen for construction.

At position 124, all known subtilisins possess a methionine. See Figure 5. Molecular modelling of the x-ray derived protein structure was therefore required to determine the most probable candidates for substitution. From all 19 candidates, isoleucine and leucine were chosen as the best residues to employ. In order to test whether or not modification at one site but not both was sufficient to increase oxidative stability, all possible combinations were built on the Q222 backbone (F50/Q222, I124/Q222, F50/I124/Q222).

A. Construction of Mutations Between Codons 45 and 50

All manipulations for cassette mutagenesis were 25 carried out on pS4.5 using methods disclosed in EPO Publication No. 0130756 and Wells, J.A., et al, (1985) Gene 34, 315-323. The paso in Fig. 10, line 4, mutations was produced using the mutagenesis primer shown in Fig. 10, line 6, and employed an approach 30 designated as restriction-purification which described below. Briefly, a M13 template containing the subtilisin gene, M13mpl1-SUBT was used heteroduplex synthesis (Adelman, et al (1983), DNA 2, 183-193). Following transfection of JM101 35 33876), the 1.5 kb EcoRI-BamHI fragment containing the

subtilisin gene was subcloned from M13mpll SUBT rf into a recipient vector fragment of pBS42 construction of which is described in EPO Publication No. 0130756. To enrich for the mutant sequence (pa50, line 4), the resulting plasmid pool was digested with 5 KpnI, and linear molecules Were purified polyacrylamide gel electrophoresis. Linear molecules were ligated back to a circular form, and transformed into E. coli MM294 cells (ATCC 31446). plasmids were screened by restriction analysis for the 10 KpnI⁺ plasmids were sequenced site. confirmed the paso sequence. Asterisks in Figure 11 indicate the bases that are mutated from the wid type sequence (line 4). pa50 (line 4) was cut with Stul and EcoRI and the 0.5 Kb fragment containing the 5' 15 half of the subtilisin gene was purified (fragment 1). p Δ 50 (line 4) was digested with <u>Kpn</u>I and <u>Eco</u>RI and the 4.0 Kb fragment containing the 3' half of the subtilisin gene and vector sequences was purified (fragment 2). Fragments 1 and 2 (line 5), and duplex 20 DNA cassettes coding for mutations desired (shaded sequence, line 6) were mixed in a molar ratio of 1:1:10, respectively. For the particular construction of this example the DNA cassette contained the triplet TTT for codon 50 which encodes Phe. This plasmid was 25 designated pF50. The mutant subtilisin was designated F50.

B. Construction of Mutation Between Codons 122 and 127

The procedure of Example 2A was followed in substantial detail except that the mutagenesis primer of Figure 11, line 7 was used and restriction-purification for the <u>EcoRV</u> site in pal24 was used. In addition, the DNA cassette (shaded sequence, Figure

1**-4** ... _ ...

11, line 6) contained the triplet ATT for codon 124 which encodes Ile and CTT for Leu. Those plasmids Which contained the substitution of Ile for Met124were designeated PI124. The mutant subtilisin designated I124.

5

C. Construction of Various F50/I124/0222 Multiple Mutants

The triple mutant, F50/I124/Q222, was constructed from a three-way ligation in which each fragment contained 10 one of the three mutations. The single mutant Q222 was prepared by cassette mutagenesis as described in EPO Publication No. 0130756. mutation was contained on a 2.2kb AvaII to PvuII The F50 fragment from pF50; the I124 mutation was contained on 15 a 260 bp Pvull to Avall fragment from pll24; and the Q222 mutation was contained on 2.7 kb AvaII to AvaII fragment from pQ222. The three fragments were ligated together and transformed into \underline{E} . \underline{coli} MM294 cells. Restriction 20 analysis of plasmids from isolated transformants confirmed the construction. To analyze the final construction it was convenient that the AvaII site at position 798 in the wild-type subtilisin gene was eliminated by the Il24 construction.

25

The F50/Q222 and I124/Q222 mutants were constructed in a similar manner except that the appropriate fragment from pS4.5 was used for the final construction.

30

35

Oxidative Stability of Q222 Mutants D. The above mutants were analyzed for stability to peracid oxidation. As shown in Fig. incubation with diperdodecanoic acid (protein 2mg/mL, oxidant 75ppm[0]), both the I124/Q222

F50/I124/Q222 are completely stable whereas the F50/Q222 and the Q222 are inactivated. This indicates that conversion of Met124 to I124 in subtilisin Q222 is sufficient to confer resistance to organic peracid oxidants.

EXAMPLE 3

Subtilisin Mutants Having Altered Substrate Specificity-Hydrophobic Substitutions at Residues 166

Subtilisin contains an extended binding cleft which is hydrophobic in character. A conserved glycine at residue 166 was replaced with twelve non-ionic amino acids which can project their side-chains into the S-1 subsite. These mutants were constructed to determine the effect of changes in size and hydrophobicity on the binding of various substrates.

20

15

5

A. Kinetics for Hydrolysis of Substrates Having Altered P-1 Amino Acids by Subtilisin from B. Amyloliquefaciens

Wild-type subtilisin was purified from B. subtilis culture supernatants expressing the B. amylolique-25 faciens subtilisin gene (Wells, J.A., et al. (1983) Nucleic Acids Res. 11, 7911-7925) as described (Estell, D.A., et al. (1985) J. Biol. Chem. 260, 6518-6521). Details of the synthesis of tetrapeptide 30 substrates having the form succinyl-L-AlaL-AlaL-ProL-[X]-p-nitroanilide (where X is the P1 amino acid) are described by DelMar, E.G., et al. (1979) Anal. Biochem. 99, 316-320. parameters, Km(M) and $kcat(s^{-1})$ were measured using a modified progress curve analysis (Estell, D.A., et al. 3.5 (1985) J. Biol. Chem. 260, 6518-6521). Briefly, plots of rate versus product concentration were fit to the differential form of the rate equation using a non-linear regression algorithm. Errors in kcat and Km for all values reported are less than five percent. The various substrates in Table VIII are ranged in order of decreasing hydrophobicity. Nozaki, Y. (1971), J. Piol. Chem. 246, 2211-2217; Tanford C. (1978) Science 200, 1012).

10 TABLE VIII

	Pl substrate Amino Acid	kcat(S ⁻¹)	1/Km (M ⁻¹)	$\frac{\text{kcat/Km}}{(s-^{1}M-1)}$
15	Phe	50	7,100	360,000
	\mathtt{Tyr}	28	40,000	1,100,000
	Leu	24	3,100	75,000
	Met	13	9,400	120,000
	His	7.9	1,600	13,000
20	Ala	1.9	5,500	11,000
	Gly	0.003	8,300	21
	Gln	3.2	2,200	7,100
•	Ser	2.8	1,500	4,200
	Glu	0.54	32	1,200
25				

The ratio of kcat/Km (also referred to as catalytic efficienty) is the apparent second order rate constant for the conversion of free enzyme plus substrate (E+S) to enzyme plus products (E+P) (Jencks, W.P., Catalysis in Chemistry and Enzymology (McGraw-Hill, 1969) pp. 321-436; Fersht, A., Enzyme Structure and Mechanism (Freeman, San Francisco, 1977) pp. 226-287). The log (kcat/Km) is proportional to transition state binding

30

energy, ΔG_T^{\neq} . A plot of the log kcat/Km versus the hydrophobicity of the Pl side-chain (Figure 14) shows a strong correlation (r = 0.98), with the exception of glycine substrate which shows evidence non-productive binding. These data show that relative differences between transition-state binding energies can be accounted for by differences in P-1 side-chain hydrophobicity. When the transition-state binding energies are calculated for these substrates and versus their respective side-chain hydrophobicities, the line slope is 1.2 (not shown). A slope greater than unity, as is also the case for chymotrypsin (Fersht, A., Enzyme Structure and Mechanism (Freeman, San Francisco, 1977) pp. 226-287; Harper, J.W., et al. (1984) Biochemistry, 23, 2995-3002), suggests that the Pl binding cleft is more hydrophobic than ethanol or dioxane solvents that were used to empirically determine the hydrophobicity of amino acids (Nozaki, Y., et al. J. Biol. Chem. (1971) 246, 2211-2217; Tanford, C. (1978) Science 200, 1012).

For amide hydrolysis by subtilisin, kcat can be interpreted as the acylation rate constant and Km as the dissociation constant, for the Michaelis complex (E-S), Ks. Gutfreund, H., et al (1956) Biochem. J. 63, The fact that the log kcat, as well as log 1/Km, correlates with substrate hydrophobicity is consistent proposals (Robertus, J.D., et al. Biochemistry 11, 2439-2449; Robertus, J.D., et al. (1972) Biochemistry 11, 4293-4303) that during the acylation step the P-l side-chain moves deeper into the hydrophobic cleft as the substrate advances from the Michaelis complex (E·S) to the tetrahedral transition-state complex $(E \cdot S^{\neq})$. However, these data can also be interpreted as the hydrophobicity of the Pl side-chain effecting the orientation, and thus the

5

10

15

20

25

30

susceptibility of the scissile peptide bond to nucleophilic attack by the hydroxyl group of the catalytic Ser221.

The dependence of kcat/Km 5 on P-1 side chain hydrophobicity suggested that the kcat/Km hydrophobic substrates may be increased by increasing the hydrophobicity of the S-1 binding subsite. this hypothesis, hydrophobic amino acid substitutions of Gly166 were produced. 10

Since hydrophobicity of aliphatic side-chains directly proportional to side-chain surface area (Rose, G.D., et al. (1985) <u>Science</u> 229, 834-838; Reynolds, J.A., et al. (1974) Proc. Natl. Acad. Sci. 15 USA 71, 2825-2927), increasing the hydrophobicity in the S-1 subsite may also sterically hinder binding of larger substrates. Because of difficulties predicting the relative importance of these two opposing effects, we elected to generate 20 non-charged mutations at position 166 to determine the resulting specificities against non-charged substrates of varied size and hydrophobicity.

B. Cassette Mutagenesis of the Pl Binding Cleft

The preparation of mutant subtilisims containing the substitution of the hydrophobic amino acids Ala, Val and Phe into residue 166 has been described in EPO Publication No. 0130756. The same method was used to produce the remaining hydrophobic mutants at residue 166. In applying this method, two unique and silent restriction sites were introduced in the subtilisin genes to closely flank the target codon 166. As can be seen in Figure 13, the wild type sequence (line 1)

was altered by site-directed mutagenesis in Ml3 using the indicated 37mer mutagenesis primer, to introduce a 13 bp delection (dashedline) and unique SacI and XmaI sites (underlined sequences) that closely flank codon The subtilisin gene fragment was subcloned back into the E. coli - B. subtilis shuttle plasmid, pBS42, giving the plasmid pAl66 (Figure 13, line 2). was cut open with SacI and XmaI, and gapped linear molecules were purified (Figure 13, line 3). Pools of synthetic oligonucleotides containing the mutation of interest were annealed to give duplex DNA cassettes 10 that were ligated into gapped pal66 (underlined and overlined sequences in Figure 13, line 4). construction restored the coding sequence except over position 166(NNN; line 4). Mutant sequences were confirmed by dideoxy sequencing. Asterisks denote sequence changes from the wild type Plasmids containing each mutant B. amyloliquefaciens subtilisin gene were expressed at roughly equivalent levels in a protease deficient strain of B. subtilis, BG2036 as previously described. EPO Publication No. 0130756; Yang, M., et al. (1984) J. Bacteriol. 160, 15-21; Estell, D.A., et al (1985) J. Biol. Chem. 260, 6518-6521.

25

5

15

20

C. Narrowing Substrate Specificity by Steric Hindrance

To probe the change in substrate specificity caused by steric alterations in the S-1 subsite, position 166 mutants were kinetically analyzed versus Pl substrates 30 of increasing size (i.e., Ala, Met, Phe and Tyr). Ratios of kcat/Km are presented in log form Figure 15 to allow direct comparisons of transitionstate binding energies between various substrate pairs. 35

According to transition state theory, the free enery difference between the free enzyme plus substrate (E+S) and the transition state complex $(E\cdot S^{\frac{1}{2}})$ can be calculated from equation (1),

5 (1)
$$^{\Delta}G_{T}^{\neq} = -RT \ln kcat/Km + RT \ln kT/h$$

in which kcat is the turnover number, Km is the Michaelis constant, R is the gas constant, T is the temperature, k is Boltzmann's constant, and h is Planck's constant. Specificity differences are expressed quantitatively as differences between transition state binding energies (i.e., $\Delta\Delta G_{t}^{\neq}$), and can be calculated from equation (2).

15 (2)
$$^{\Delta\Delta}G_{T}^{\neq} = -RT \ln (kcat/Km)_{A}/(kcat/Km)_{B}$$

A and B represent either two different substrates assayed againt the same enzyme, or two mutant enzymes assayed against the same substrate.

As can be seen from Figure 15A, as the size of the side-chain at position 166 increases the substrate preference shifts from large to small P-1 side-chains. Enlarging the side-chain at position 166 causes kcat/Km to decrease in proportion to the size of the P-1 substrate side-chain (e.g., from Gly166 (wild-type) through W166, the kcat/Km for the Tyr substrate is decreased most followed in order by the Phe, Met and Ala P-1 substrates).

Specific steric changes in the position 166 side-chain, such as he presence of a β-hydroxyl group, β- or γ-aliphatic branching, cause large decreases in kcat/Km for larger Pl substrates. Introducing a β-hydroxyl group in going from Al66 (Figure 15A) to

(Figure 15B), causes an 8 fold and 4 fold reduction in kcat/Km for Phe and Tyr substrates, respectively, while the values for Ala and Met substrates are unchanged. Producing a β-branched structure, in going from S166 to T166, results in a 5 drop of 14 and 4 fold in kcat/Km for Phe and Tyr, respectively. These differences are slightly magnified for V166 which is slightly larger and isosteric with T166. Enlarging the \$-branched substituents from V166 to I166 causes a lowering of 10 kcat/Km between two and six fold toward Met, Phe and Tyr substrates. Inserting a γ -branched structure, by replacing M166 (Figure 15A) with L166 (Figure 15B), produces a 5 fold and 18 fold decrease in kcat/Km for Phe and Tyr substrates, respectively. Aliphatic 15 7-branched appears to induce less steric hindrance toward the Phe P-1 substrate than β -branching, as evidenced by the 100 fold decrease in kcat/Km for the Phe substrate in going from L166 to I166.

20 Reductions in kcat/Km resulting from increases in side chain size in the S-1 subsite, or specific structural features such as β - and γ -branching, are quantitatively illustrated in Figure 16. The kcat/Km values for the position 166 mutants determined for the Ala, 25 Met, Phe, and Tyr P-1 substrates (top panel through bottom panel, respectively), are plotted versus the position 166 side-chain volumes (Chothia, C. (1984) Ann. Rev. Biochem. 53, 537-572). Catalytic efficiency for the Ala substrate reaches a maximum for Il66, and 30 for the Met substrate it reaches a maximum between V166 and L166. The Phe substrate shows a broad kcat/Km peak but is optimal with A166. Here, the β -branched position 166 substitutions form a line that is parallel to, but roughly 50 fold lower in kcat/Km 35 than side-chains of similar size [i.e., Cl66 versus

T166, L166 versus I166]. The Tyr substrate is most efficiently utilized by wild type enzyme (Gly166), and there is a steady decrease as one proceeds to large position 166 side-chains. The β -branched and γ -branched substitutions form a parallel line below the other non-charged substitutions of similar molecular volume.

The optimal substitution at position 166 decreases in volume with increasing volume of the Pl substrate [i.e., Il66/Ala substrate, 10 Ll66/Met substrate, Al66/Phe substrate, Glyl66/Tyr substrate]. combined volumes for these optimal approximate the volume for productive binding in the S-1 subsite. For the optimal pairs, Glyl66/Tyr substrate, Al66/Phe substrate, Ll66/Met substrate, 15 V166/Met substrate, and Il66/Ala substrate, combined volumes are 266,295,313,339 and 261 A³, respectively. Subtracting the volume of the peptide backbone from each pair (i.e., two times the volume of glycine), an average side-chain volume of 160±32A3 for 20 productive binding can be calculated.

The effect of volume, in excess to the productive binding volume, on the drop in transition-state binding energy can be estimated from the Tyr substrate curve (bottom panel, Figure 16), because these data, and modeling studies (Figure 2), suggest that any substitution beyond glycine causes steric repulsion. A best-fit line drawn to all the data (r = 0.87) gives a slope indicating a loss of roughly 3 kcal/mol in transition state binding energy per 100A³ of excess volume. (100A³ is approximately the size of a leucyl side-chain.)

D. Enhanced Catalytic Efficiency Correlates with Increasing Hydrophobicity of the Position 166 Substitution

Substantial increases in kcat/Km occur With enlargement of the position 166 side-chain, except for the Tyr P-1 substrate (Figure 16). 5 For example, kcat/Km increases in progressing from Gly166 to I166 for the Ala substrate (net of ten-fold), from Gly166 to L166 for the Met substrate (net of ten-fold) and from Gly166 to Al66 for the Phe substrate (net of 10 two-fold). The increases in kcat/Km entirely explained by the attractive terms in the van der Waals potential energy function because of their strong distance dependence $(1/r^6)$ and because of the weak nature of these attractive forces (Jencks, W.P., Catalysis in Chemistry and Enzymology (McGraw-Hill, 15 1969) pp. 321-436; Fersht, A., Enzyme Structure and Mechanism (Freeman, San Francisco, 1977) pp. 226-287; Levitt, M. (1976) <u>J. Mol. Biol.</u> <u>104</u>, 59-107). example, Levitt (Levitt, M. (1976) J. Mol. Biol. 104, 59-107) has calculated that the van 20 attraction between two methionyl residues would produce a maximal interaction energy of roughly -0.2 This energy would translate to only 1.4 fold increase in kcat/Km.

The increases of catalytic efficiency caused by side-chain substitutions at position 166 are better accounted for by increases in the hydrophobicity of the S-1 subsite. The increase kcat/Km observed for the Ala and Met substrates with increasing position 166 side-chain size would be expected, because hydrophobicity is roughly proportional to side-chain surface area (Rose, G.D., et al. (1985) Science 229, 834-838; Reynolds, J.A., et al. (1974) Proc. Natl. Acad. Sci. USA 71, 2825-2927).

1**-2** ______

Another example that can be interpreted hydrophobic effect is seen when comparing kcat/Km for isosteric substitutions that differ in hydrophobicity such as S166 and C166 (Figure 16). Cysteine is considerably more hydrophobic than serine (-1.0 versus 5 +0.3 kcal/mol) (Nozaki, Y., et al. (1971) J. Biol. Chem. 246, 2211-2217; Tanford, C. (1978) Science 200, 1012). The difference in hydrophobicity correlates with the observation that Cl66 becomes more efficient relative to Ser166 as the hydrophobicity of the substrates increases (i.e., Ala < Met < Tye < Phe). Steric hindrance cannot explain these differences because serine is considerably smaller than cysteine (99 versus 118A3). Paul, I.C., Chemistry of the -SH Group (ed. S. Patai, Wiley Interscience, New York, 15 1974) pp. 111-149.

E. Production of an Elastase-Like Specificity in Subtilisin

20 The Il66 mutation illustrates particularly well that large changes in specificity can be produced by altering the structure and hydrophobicity of the S-1 subsite by a single mutation (Figure 17). Progressing through the small hydrophobic substrates, a maximal 25 specificity improvement over wild type occurs for the Val substrate (16 fold in kcat/Km). As the substrate side chain size increases, these enhancements shrink to near unity (i.e., Leu and His substrates). Il66 enzyme becomes poorer against larger aromatic 30 substrates of increasing size (e.g., I166 is over 1,000 fold worse against the Tyr substrate than is We interpret the increase in catalytic efficiency toward the small hydrophobic substrates for Il66 compared to Glyl66 to the greater hydrophobicity 35 of isoluecine (i.e., -1.8 kcal/mol versus 0). Nozaki,

Y., et al. (1971) J. Biol. Chem. 246, 2211-2217; Tanford, C. (1978) Science 200, 1012. The decrease in catalytic efficiency toward the very large substrates for II66 versus Gly166 is attributed to steric repulsion.

5

The specificity differences between Gly166 and I166 are similar to the specificity differences between chymotrypsin and the evolutionary relative, elastase (Harper, J.W., et al (1984) Biochemistry 10 2995-3002). In elastase, the bulky amino acids, Thr and Val, block access to the P-1 binding site for large hydrophobic substrates that are preferred by chymotrypsin. In addition, the catalytic efficiencies toward small hydrophobic substrates are greater for elastase than for chymotrypsin as we obeseve for I166 15 versus Gly166 in subtilisin.

EXAMPLE 4

20 Substitution of Ionic Amino Acids for Gly166

The construction of subtilisin mutants containing the substitution of the ionic amino acids Asp, Asn, Gln, Lys and Ang are disclosed in EPO Publication No. 0130756. The present example describes the construction of the mutant subtilisin containing Glu at position 166 (E166) and presents substrate specificity data on these mutants. Further data on position 166 and 156 single and double mutants is presented infra.

pal66, described in Example 3, was digested with SacI and XmaI. The double strand DNA cassette (underlined and overlined) of line 4 in Figure 13 contained the

35

25

triplet GAA for the codon 166 to encode the replacement of Glu for Gly166. This mutant plasmid designated pQ166 was propagated in BG2036 as described. This mutant subtilisin, together with the other mutants containing ionic substituent amino acids at residue 166, were isolated as described and further analyzed for variations in substrate specificity.

Each of these mutants was analyzed with the tetrapeptide substrates, succinyl-L-AlaL-AlaProL-X-p-nitroanilide, where X was Phe, Ala and Glu.

The results of this analysis are shown in Table IX.

15 TABLE IX

P-1 Substrate
(kcat/Km x 10⁻⁴)

Position 166		$(\text{KCat}/\text{Km} \times 10^{-4})$		
	<u> </u>	<u>Phe</u>	Ala	_Glu
20	Gly (wild type)	•		
	-	36.0	1.4	0.002
	Asp (D)	0.5	0.4	<0.001
	Glu (E)	3.5		_
	Asn (N)		0.4	<0.001
25	Gln (Q)	18.0	1.2	0.004
	• • •	57.0	2.6	0.002
	The (K)	52.0	2.8	
	Arg (R)	42.0		1.2
		42.0	5.0	0.08

These results indicate that charged amino acid substitutions at Glyl66 have improved catalytic efficiencies (kcat/Km) for oppositely charged P-l substrates (as much as 500 fold) and poorer catalytic efficiency for like charged P-l substrates.

EXAMPLE 5

Substitution of Glycine at Position 169

The substitution of Gly169 in B. <u>amyloliquefaciens</u> subtilisin with Ala and Ser is described in EPO Publication No. 0130756. The same method was used to make the remaining 17 mutants containing all other substituent amino acids for position 169.

The construction protocol is summarized in Figure 18.

The overscored and underscored double stranded DNA cassettes used contained the following triplet encoding the substitution of the indicated amino acid at residue 169.

15				
	GCT	- A	ATG	v
	TGT	С		M
	GAT	D	AAC	N
			CCT	P
	GAA	E	CAA	Q
20	TTC	F	AGA	R
	GGC	G	AGC	
	CAC	H		S
	ATC		ACA	T
		I	GTT	V
	AAA	K	TGG	W
25	CTT	L	TAC	Y

Each of the plasmids containing a substituted Gly169 was designated pX169, where X represents the substituent amino acid. The mutant subtilisins were simialrly designated.

Two of the above mutant subtilisins, Al69 and Sl69, were analyzed for substrate specificity against synthetic substrates containing Phe, Leu, Ala and Arg in the P-1 position. The following results are shown in Table X.

30

35

TABLE X

Effect of Serine and Alanine Mutations
at Position 169 on P-1 Substrate Specificity

5	Position 169	P-1 Sul Phe-	<u>Leu</u>	(kcat/Km	x 10 ⁻⁴)
	Gly (wild type)	4.0			
	A169	40	10	ı	0.4
		120	20	נ	
	S169	50	10	_	0.9
• -			10	1	0.6

10

15

These results indicate that substitutions of Ala and Ser at Gly169 have remarkably similar catalytic efficiencies against a range of P-l substrates compared to their position 166 counterparts. This is probably because position 169 is at the bottom of the P-l specificity subsite.

EXAMPLE 6

20

Substitution at Position 104

Tyr104 has been substituted with Ala, His, Leu, Met and Ser. The method used was a modification of the site directed mutagenesis method. According to the protocol of Figure 19, a primer (shaded in line 4) introduced a unique HindIII site and a frame shift mutation at codon 104. Restriction-purification for the unique HindIII site facilitated the isolation of the mutant sequence (line 4). Restriction-selection against this HindIII site using pimers in line 5 was used to obtain position 104 mutants.

The following triplets were used in the primers of Figure 19, line 5 for the 104 codon which substituted the following amino acids.

	GCT	A	TTC	F
5	ATG	М	CCT	P
	CTT	L	ACA	T
	AGC	S .	TGG	W
	CAC	H	TAC	Y
	CAA	Q	GTT	v
10	GAA	E	AGA	R
	GGC	G	AAC	N
	ATC	I	GAT	D
	AAA	ĸ	TGT	C
				_

The substrates in Table XI were used to analyze the substrate specificity of these mutants. The results obtained fo H104 subtilisin are shown in Table XI.

TABLE XI

	k	at	<u>F</u>	(m	Kca	ıt/Km
Substr	ate WI	H104	WT	H104	WI	H104
25 SAAPFp SAAPAp SFAPFp SFAPAp	NA 3.2 NA 26.0	22.0 2.0 38.0 2.4	1.4x10 ⁻⁴ 2.3x10 ⁻⁴ 1.8x10 ⁻⁴ 7.3x10 ⁻⁵		3.6x10 ⁵ 1.4x10 ⁴ 1.5x10 ⁵ 4.4x10 ³	1x10 ³ 9.1x10 ⁴

From these data it is clear that the substitution of His for Tyr at position 104 produces an enzyme which is more efficient (higher kcat/Km) when Phe is at the P-4 substrate position than when Ala is at the P-4 substrate position.

30

EXAMPLE 7

Substitution of Alal52

Ala152 has been substituted by Gly and Ser to determine the effect of such substitutions on substrate specificity.

The wild type DNA sequence was mutated by the V152/P153 primer (Figure 20, line 4) using the above restriction-purification approach for the new KpnI site. Other mutant primers (shaded sequences Figure 20; S152, line 5 and G152, line 6) mutated the new KpnI site away and such mutants were isolated using the restriction-selection procedure as described above for loss of the KpnI site.

The results of these substitutions for the above synthetic substrates containing the P-1 amino acids Phe, Leu and Ala are shown in Table XII.

20

TABLE XII

25		P-1 Substrate
	Position 152	(kcat/Kmx10 ⁻⁴) Phe Leu Ala
30	Gly (G) Ala (wild type) Ser (S)	0.2 0.4 <0.04 40.0 10.0 1.0
		1.0 0.5 .0.2

These results indicate that, in contrast to positions 166 and 169, replacement of Alal52 with Ser or Gly causes a dramatic reduction in catalytic efficiencies

across all substrates tested. This suggests Ala152, at the top of the S-1 subsite, may be the optimal amino acid because Ser and Gly are homologous Ala substitutes.

5

20

EXAMPLE 8

Substitution at Position 156

Mutants containing the substitution of Ser and Gln for Glul56 have been constructed according to the overall method depicted in Figure 21. This method was designed to facilitate the construction of multiple mutants at position 156 and 166 as will be described hereinafter. However, by regenerating the wild type Gly166, single mutations at Glul56 were obtained.

The plasmid pAl66 is already depicted in line 2 of Figure 13. The synthetic oligonucleotides at the top right of Figure 21 represent the same DNA cassettes depicted in line 4 of Figure 13. The plasmid pl66 in Figure 21 thus represents the mutant plasmids of Examples 3 and 4. In this particular example, pl66 contains the wild type Gly166.

25 Construction of position 156 single mutants were prepared by ligation of the three fragments (1-3) indicated at the bottom of Figure 21. Fragment 3, containing the carboxy-terminal portion of subtilisin gene including the wild type position 166 30 codon, was isolated as a 610 bp SacI-BamHI fragment. Fragment 1 contained the vector sequences, as well as the amino-terminal sequences of the subtilisin gene through codon 151. To produce fragment 1, a unique KpnI site at codon 152 was introduced into the wild 35 type subtilisin sequence from pS4.5. Site-directed

mutagenesis in M13 employed a primer having sequence 5'-TA-GTC-GTT-GCG-GTA-CCC-GGT-AAC-GAA-3' produce the mutation. Enrichment for the mutant sequence was accomplished by restriction with KpnI, purification and self ligation. containing the KpnI site was confirmed by direct The mutant sequence 5 plasmid sequencing to give pV152. pV152 (~1 μ g) was digested with KpnI and treated with 2 units of DNA polymerase I large fragment (Klenow fragment from Boeringer-Mannheim) plus 50 triphosphates at 37°C for 30 min. deoxynucleotide 10 blunt end that terminated with codon 151. The DNA was This created a extracted with 1:1 volumes phenol and CHCl3 and DNA in the aqueous phase was precipitated by addition of 0.1 volumes 5M ammonium acetate and two volumes ethanol. After centrifugation and washing the DNA pellet with 15 70% ethanol, the DNA was lyophilized. digested with BamHI and the 4.6kb piece (fragment 1) DNA was purified by acrylamide gel electrophoresis followed by electroelution. Fragment 2 was a duplex synthetic DNA cassette which when ligated with 20 fragments 1 and 3 properly restored the coding sequence except at codon 156. The top strand was synthesized to contain a glutamine codon, and the complementary bottom strand coded for serine at 156. Ligation of heterophosphorylated cassettes leads to a 25 large and favorable bias for the phosphorylated over the non-phosphorylated oligonucleotide sequence in the final segrated plasmid product. Therefore, to obtain Q156 the top strand was phosphorylated, and annealed to the non-phosphorylated bottom strand prior to 30 ligation. Similarly, to obtain S156 the bottom strand phosphorylated and annealed non-phosphorylated top strand. Mutant sequences were isolated after ligation and transformation, and were confirmed by restriction analysis and DNA sequencing

as before. To express variant subtilisins, plasmids were transformed into a subtilisin-neutral protease deletion mutant of <u>B. subtilis</u>, BG2036, as previously described. Cultures were fermented in shake flasks for 24 h at 37°C in LB media containing 12.5 mg/mL chloramphenicol and subtilisin was purified from culture supernatants as described. Purity of subtilisin was greater than 95% as judged by SDS PAGE.

These mutant plasmids designated pS156 and pQ156 and mutant subtilisins designated S156 and Q156 were analyzed with the above synthetic substrates where P-1 comprised the amino acids Glu, Gln, Met and Lys. The results of this analyses are presented in Example 9.

15

5

10

EXAMPLE 9

Multiple Mutants With Altered Substrate Specificity - Substitution at Positions 156 and 166

20 Single substitutions of position 166 are described in Examples and 4. Example 8 describes substitutions at position 156 as well as the protocol of Figure 21 whereby various double mutants comprising the substitution of various amino acids at positions 25 156 and 166 can be made. This example describes the construction and substrate specificity of subtilisin containing substitutions at position 156 and 166 and summarizes some of the data for single and double mutants at positions 156 and 166 with various 30 substrates.

K166 is a common replacement amino acid in the 156/166 mutants described herein. The replacement of Lys for

0251446

Gly166 was achieved by using the synthetic DNA cassette at the top right of Figure 21 which contained the triplet AAA for NNN. This produced fragment 2 with Lys substituting for Gly166.

The 156 substituents were Gln and Ser. The Gln and Ser substitutions at Gly156 are contained within fragment 3 (bottom right Figure 21).

The multiple mutants were produced by combining fragments 1, 2 and 3 as described in Example 8. The mutants Q156/K166 and S156/K166 were selectively generated by differential phosphorylation as described. Alternatively, the double 156/166 mutants, c.f. Q156/K166 and S156/K166, were prepared by ligation of the 4.6kb SacI-BamHI fragment from the relevant p156 plasmid containing the 0.6kb SacI-BamHI fragment from the region of the relevant p166 plasmid.

These mutants, the single mutant Kl66, and the S156 and Q156 mutants of Example 8 were analyzed for substitute specificity against synthetic polypeptides containing Phe or Glu as the P-1 substrate residue. The results are presented in Table XIII.

25

5

10

15

20

30

TABLE XIII

	kcat/Km (mutant) kcat/Km(wt)		(1)	1.4 750	4.4 3100	4.4 1000	2.0.6.9	3.1
	kcat/Km	3.6×10 ⁵	1.6×101	1.2×104	5.0x104	1.6x10 ⁴	7.3×10° 1.1×10° 1.1×10°	2.7x10 ²
	Кт	1.4×10-4	3.4×10 ⁻²	5.6x10 ⁻⁵	3.1x10 ⁻⁵	3.9x10 ⁻⁵	1.8×10 ⁻³ 4.5×10 ⁻⁵	3.3x10 ⁻³
	kcat	50.00	0.54	0.70	1.60	0.60	0.40	06.0
Substrate	P-1 Residue	Phe	olu . Phe	G1u Phe	Glu Phe	Glu Phe	Glu Phe	Glu
	Enzymes Compared (b)	Glu156/Gly166 (WT)	K166	Q156/R166	S156/K166	S156	E156	

As can be seen in Table XIV, either of these single mutations improve enzyme performance upon substrates with glutamate at the P-1 enzyme binding site. When these single mutations were combined, the resulting multiple enzyme mutants are better than either parent. These single or multiple mutations also alter the relative pH activity profiles of the enzymes as shown in Figure 23.

To isolate the contribution of electrostatics to substrate specificity from other chemical binding 10 forces, these various single and double mutants were analyzed for their ability to bind and cleave synthetic substrates containing Glu, Gln, Met and Lys as the P-1 substrate amino acid. This permitted comparisons between side-chains that were 15 sterically similar but differed in charge (e.g., Glu versus Gln, Lys versus Met). Similarly, enzymes were assayed against homologous P-1 substrates that were most sterically similar but differed in charge (Table XIV).

20

5

25

30

2.3 (2.2) -1.3 (-1.0)

1.8 (1.4)

3.5 (3.0)

TABLE XIV

ilisins trates kcat/Km (log 1/Km) (c) Met Lys	4) 4.23 8) 4.48 5) 4.15 6) 4.10 7) 4.41 3) 4.24 3) 4.24 3) 4.60 7) 4.90 7) 4.90 7) 3.76 7) 3.46 7) 3.68 7) 3.68 7) 3.75 7) 3.23 7) 4.23 7) 3.75 7) 3.75 7) 3.75 7) 3.75 8)	
Position 156/166 Subt for Different P1 Subs P-1 Substrate log	3.02 (2.56) 3.93 3.06 (2.91) 3.86 (2.22) 3.85 (3.14) 4.99 ((2.12) 4.36 (3.64) 5.43 ((1.79) 3.40 (3.08) 4.94 ((2.13) 3.41 (3.09) 4.67 ((2.30) 3.89 (3.19) 5.64 ((2.48) 4.53 (3.35) 5.07 ((2.48) 4.53 (3.81) 5.77 ((2.73) 4.09 (3.68) 5.72 (4(2.72) 4.51 (3.76) 5.72 (4(4.25) 4.50 (3.82) 5.97 (4(4.50) 4.84 (3.94) 6.16 (4.50)	(3,0)
Enzyme (a) Net (b) Charge (b)	sp -2 Iu -2 Sn -1 In -1 P -1 P -1 Y(wt) -1 O 0 O 0 Hifference: Ym (log 1/Km) (d)	3.5
Enzy Posit 156	Glu As Glu Gl Glu As Glu Gl Gln As Glu Met Glu Met Glu Ala Glu Gly Glu Gly Gln As Ser Gly Glu Arg Glu Arg Glu Lys Glu Lys Glu Lys Glu Lys	

- (a) B. subtilis, BG 2036, expressing indicated variant subtilisin were fermented and enzymes purified as previously described (Estell, et al. (1985) J. Biol. Chem. 260, 6518-6521). Wild type subtilisin is indicated (wt) containing Glul56 and Glyl66.
- (D) Net charge in the P-1 binding site is defined as the sum of charges from positions 156 and 166 at pH 8.6.
 - (c) Values for kcat(s⁻¹) and Km(M) were measured in 0.1M Tris pH 8.6 at 25°C as previously described against P-1 substrates having the form succinyl-L-AlaL-ProL-[X]-p-nitroanilide, where X is the indicated P-1 amino acid. Values for log 1/Km are shown inside parentheses. All errors in determination of kcat/Km and 1/Km are below 5%.
 - (d) Because values for Glul56/Aspl66(Dl66) are too small to determine accurately, the maximum difference taken for GluP-1 substrate is limited to a charge range of +1 to -1 charge change.

n.d. = not determined

10

The kcat/Km ratios shown are the second order rate constants for the conversion of substrate to product, and represent the catalytic efficiency of the enzyme. 20 These ratios are presented in logarithmic form to the data, and because proportional to the lowering of transition-state log activation energy ($\Delta G_{\overline{\mathbf{T}}}$). Mutations at position 156 and 166 produce changes in catalytic efficiency toward 25 Glu, Gln, Met and Lys P-1 substrates of 3100, 60, 200 fold, respectively. Making binding-site more positively charged [e.g., compare Gln156/Lys166 (Q156/K166) versus (Glu156/M166)] dramatically increased kcat/Km toward Glu156/Met166 30 the Glu P-1 substrate (up to 3100 fold), and decreased the catalytic efficiency toward the Lys P-1 substrate (up to 10 fold). In addition, the results show that the catalytic efficiency of wild type enzyme can be

greatly improved toward any of the four P-1 substrates by mutagenesis of the P-1 binding site.

The changes in kcat/Km are caused predominantly by changes in 1/Km. Because 1/Km is approximately equal to 1/Ks, the enzyme-substrate association constant, the mutations primarily cause a change in substrate These mutations produce smaller effects on kcat that run parallel to the effects on 1/Km. changes in kcat suggest either an alteration in binding in the P-1 binding site in going from the Michaelis-complex E.S) to the transition-state complex 10 (E-S≠) as previously proposed (Robertus, J.D., et al. (1972) <u>Biochemistry 11</u>, 2439-2449; Robertus, J.D., <u>et</u> al. (1972) Biochemistry 11, 4293-4303), or change in the position of the scissile peptide bond over the 15 catalytic serine in the E'S complex.

Changes in substrate preference that arise changes in the net charge in the P-1 binding site show trends that are best accounted for by electrostatic effects (Figure 28). As the P-1 binding cleft becomes 20 positively charged, the average catalytic efficiency increases much more for the Glu P-1 substrate than for its neutral and isosteric P-1 homolog, Gln (Figure 28A). Furthermore, at the positive extreme both substrates have nearly identical 25 catalytic efficiencies.

In contrast, as the P-1 site becomes more positively charged the catalytic efficiency toward the Lys P-1 substrate decreases, and diverges sharply from its neutral and isosteric homolog, Met (Figure 28B). The similar and parallel upward trend seen with increasing positive charge for the Met and Glu P-1 substrates probably results from the fact that all the substrates

are succinylated on their amino-terminal end, and thus carry a formal negative charge.

The trends observed in log kcat/Km are dominated by changes in the Km term (Figures 28C and 28D). As the pocket becomes more positively charged, the log l/Km values converge for Glu and Gln P-l substrates (Figure 28C), and diverge for Lys and Met P-l substrates (Figure 28D). Although less pronounced effects are seen in log kcat, the effects of P-l charge on log kcat parallel those seen in log l/Km and become larger as the P-l pocket becomes more positively charged. This may result from the fact that the transition-state is a tetrahedral anion, and a net positive charge in the enzyme may serve to provide some added stabilization to the transition-state.

The effect of the change in P-1 binding-site charge on substrate preference can be estimated from the differences in slopes between the charged and neutral isosteric P-1 substrates (Figure 28B). The average change in substrate preference (Alog kcat/Km) between charged and neutral isosteric substrates increases roughly 10-fold as the complementary charge or the enzyme increases (Table XV). When comparing Glu versus Lys, this difference is 100-fold and the change in substrate preference appears predominantly in the Km term.

30

Differential Effect on Binding Site Charge on log kcat/Km or (log 1/Km) for P-1 Substrates that Differ in Charge (a)

5	Change in P-1 Binding Site Charge (b)	Δlog GluGln	kcat/Km MetLys	(Alog 1/Km) _GluLys
	-2 to -1 -1 to 0	n.d.	1.2 (1.2)	n.d.
	0 to +1	0.7 (0.6) 1.5 (1.3)	1.3 (0.8)	2.1 (1.4)
10			0.5 (0.3)	2.0 (1.5)
	Avg. change in log kcat/K or (log l/Km) ^m per unit charge change			
	- Charge Change	1.1 (1.0)	1.0 (0.8)	2.1 (1.5)

The difference in the slopes of curves were taken between the P-1 substrates over the charge interval given for log (kcat/Km) (Figure 28A, B) and (log 1/Km) (Figure 28C, D). Values represent the differential effect a charge change has in distinguishing the substrates that are compared.

25

30

35

#SDOCID: <EP___0251446A2_I_>

^{20 (}b) Charge in P-1 binding site is defined as the sum of charges from positions 156 and 166.

The free energy of electrostatic interactions in the structure and energetics of salt-bridge formation depends on the distance between the charges and the microscopic dielectric of the media. To dissect these microenvironmental energies involved in specific salt-bridges were 5 the evaluated. In addition to the possible salt-bridges shown (Figures 29A and 29B), reasonable salt-bridges can be built between a Lys P-1 substrate and Asp at position 166, and between a Glu P-1 substrate and a Lys at position 166 (not shown). Although only one of 10 these structures is confirmed by X-ray crystalography (Poulos, T.L., et al. (1976) J. Mol. Biol. 257 1097-1103), all models have favorable torsion angles (Sielecki, A.R., et al. (1979) J. Mol. Biol. 134, 781-804), and do not introduce unfavorable van der 15 Waals contacts.

The change in charged P-1 substrate preference brought about by formation of the model salt-bridges above are shown in Table XVI.

25

20

30

Ave AAlog (kcat/Km) 1.70 ± 0.3

TABLE XVI

Effect of Salt Bridge Formation Between Enzyme and Substrate on Pl Substrate Preference (a)

Change in Substrate Preference \$\lambdalog (kcat/Km)	0.83 1.20 1.63 0.82	Km) 1.10 ± 0.3 1.14 1.95 1.51 1.61 2/06	
Substrate (d) Preference	+0.30 -0.53 -0.84 -2.04 -0.47 -2.10 -1.92 -2.74	Ave AAlog (kcat/Km) 1.10 ± 0.3 +0.30 -0.84 1.14 +0.62 -1.33 1.95 -0.53 -2.04 1.51 -0.43 -2.69 2/06	
P-1 Substrates Compared	LysMet LysMet LysMet LysMet	LysMet LysMet LysMet LysMet GluGln	
Enzyme Position Changed	156 156 156 156	166 166 166 166	
ompared (b)	Gln156/Asp166 Gln156/Asn166 Gln156/Gly166 Gln156/Lys166	Glu156/Asn166 Glu156/Glu166 Gln156/Asn166 Ser156/Asn166 Glu156/Met166	
Enzymes Compared (b	Glu156/Asp166 Glu156/Asn166 Glu156/Gly166 Glu156/Lsy-166	Glu156/Asp166 Glu156/Glu166 Gln156/Asp166 Ser156/Asp166 Glu156/Lys166	

144

Footnotes to Table XVI:

- Molecular modeling shows it is possible to form a salt bridge between the indicated charged P-1 binding site of the enzyme at the indicated position (b)
- 5 (b) Enzymes compared have sterically similar amino acid substitutions that differ in charge at the indicated position.
 - (c) The P-1 substrates compared are structurally similar but differ in charge. The charged P-1 substrate is complementary to the charge change at the position indicated between enzymes 1 and 2.
 - (d) Date from Table XIV was used to compute the difference in log (kcat/Km) between the charged and the non-charged P-1 substrate (i.e., the substrate preference). The substrate preference is shown separately for enzyme 1 and 2.
- 15 (e) The difference in substrate preference between enzyme 1 (more highly charged) and enzyme 2 (more neutral) represents the rate change accompanying the electrostatic interaction.

The difference between catalytic efficiencies (i.e., alog kcat/Km) for the charged and neutral P-1 substrates (e.g., Lys minus Met or Glu minus Gln) give the substrate preference for each enzyme. The change in substrate preference (AAlog kcat/Km) between the charged and more neutral enzyme homologs (e.g., Glul56/Gly166 minus Gln156(Ql56)/Gly166) reflects the change in catalytic efficiency that may be attributed solely to electrostatic effects.

These results show that the average change in substrate preference is considerably greater when electrostatic substitutions are produced at position 166 (50-fold in kcat/Km) versus position 156 (12-fold in kcat/Km). From these AAlog kcat/Km values, an average change in transition-state stabilization energy can be calculated of -1.5 and -2.4 kcal/mol for

0251446

substitutions at positions 156 and 166, respectively. should represent the stabilization energy contributed from a favorable electrostatic interaction for the binding of free enzyme and substrate to form the transition-state complex.

5

EXAMPLE 10

Substitutions at Position 217

- Tyr217 has been substituted by all other 19 amino 10 Cassette mutagenesis as described in EPO publication No. 0130756 was used according to the protocol of Figure 22. The EcoRV restriction site was used for restriction-purification of pA217.
- 15 Since this position is involved in substrate binding, mutations here effect kinetic parameters enzyme. An example is the substitution of Leu for Tyr at position 217. For the substrate sAAPFpNa, this mutant has a kcat of 277 5' and a Km of 4.7×10^{-4} with 20 a kcat/Km ratio of $6x10^5$. This represents a 5.5-fold increase in kcat with a 3-fold increase in Km over the wild type enzyme.
- In addition, replacement of Tyr217 by Lys, Arg, Phe or 25 Leu results in mutant enzymes which are more stable at pHs of about 9-11 than the WT enzyme. Conversely, replacement of Tyr217 by Asp, Glu, Gly or Pro results in enzymes which are less stable at pHs of about 9-11 than the WT enzyme. 30

EXAMPLE 11

Multiple Mutants Having Altered Thermal Stability

ŧ

5

10

15

B. amyloliquefacien subtilisin does not contain any Thus, any attempt to produce thermal stability by Cys cross-linkage required the substitution of more than one amino acid in subtilisin with Cys. The following subtilisin residues were multiply substituted with cysteine: Thr22/Ser87

Ser24/Ser87

Mutagenesis of Ser24 to Cys was carried out with a 5' phosphorylated oligonucleotide primer having

5'-pc-tac-act-g<u>ga-t</u>c-aat-gtt-aaa-g-3'.

(Asterisks show the location of mismatches and the underlined sequence shows the position of the altered 20 Sau3A site.) The B. amyloliquefaciens subtilisin gene on a 1.5 kb EcoRI-BAMHI fragment from ps4.5 was cloned into M13mpll and single stranded DNA was isolated. This template (M13mpllSUBT) was double primed with the 5' phosphorylated M13 universal sequencing primer and 25 the mutagenesis primer. Adelman, et al. (1983) DNA 2, 183-193. The heteroduplex was transfected competent JM101 cells and plaques were probed for the mutant sequence (Zoller, M.J., et al. (1982) Nucleic Acid Res. 10, 6487-6500; Wallace, et al. (1981) 30 Nucleic Acid Res. 9, tetramethylammonium chloride hybridization protocol (Wood, et al. (1985) Proc. Natl. Acad. Sci. USA 82, 1585-1588). The Ser87 to Cys mutation was prepared in

a similar fashion using a 5' phosphorylated primer having the sequence

5'-pggc-gtt-gcg-cca-fgc-gca-tca-ct-3'.

(The asterisk indicates the position of the mismatch and the underlined sequence shows the position of a new MstI site.) The C24 and C87 mutations were obtained at a frequency of one and two percent, respectively. Mutant sequences were confirmed by dideoxy sequencing in M13.

10

20

25

30

5

Mutagenesis of Tyr21/Thr22 to A21/C22 was carried out with a 5' phosphorylated oligonucleotide primer having the sequence

15 5'-pac-tct-caa-ggc-551-15t-gg5-tca-aat-gtt-3'.

(The asterisks show mismatches to the wild type sequence and the underlined sequence shows position of an altered Sau3A site.) Manipulations for heteroduplex synthesis were identical described for C24. Because direct cloning of the heteroduplex DNA fragment can yield increased frequencies of mutagenesis, the EcoRI-BamHI subtilisin fragment was purified and ligated into pBS42. E. coli MM 294 cells were transformed with the ligation mixture and plasmid DNA was purified from isolated transformants. Plasmid DNA was screened for the loss of the Sau3A site at codon 23 that was eliminated by the mutagenesis primer. Two out of 16 plasmid preparations had lost the wild type Sau3A site. mutant sequence was confirmed by dideoxy sequencing in M13.

Double mutants, C22/C87 and C24/C87, were constructed 0251446 by ligating fragments sharing a common ClaI site that separated the single parent cystine Specifically, the 500 EcoRI-ClaI bр containing the 5' portion of the subtilisin gene (including codons 22 and 24) was ligated with the 4.7 kb ClaI-EcoRI fragment that contained the 3' portion of the subtilisin gene (including codon 87) plus pBS42 vector sequence. E. coli MM 294 was transformed with ligation mixtures and plasmid DNA was purified from individual transformants. Double-cysteine plasmid constructions were identified by restriction site 10 markers originating from the parent cysteine mutants (i.e., C22 and C24, Sau3A minus; Cys87, MstI plus). Plasmids from E. Coli were transformed into B. subtilis BG2036. The thermal stability of these mutants as compared to wild type subtilisin are presented in Figure 30 and Tables XVII and XVIII.

20

15

5

25

30

TABLE XVII

Effect of DTT on the Half-Time of Autolytic Inactivation of Wild-Type and Disulfide Mutants of Subtilisin*

5		France		t _]	
		Enzyme	-DDT	+DTT	-DTT/+DTT
			m	in	
		Wild-type	95	85	1 1
10	•	C22/C87	44	25	1.1 1.8
	C24/C87	92	62	1.5	

Purified enzymes were either treated or not treated with 25mM DTT and dialyzed with or without 10mM DTT in 2mM CaCl₂, 50mM Tris (pH 7.5) for 14 hr. at 4°C. Enzyme concentrations were adjusted to 80µl aliquots were quenched on ice and assayed for residual activity. Half-times for autolytic inactivation were determined from semi-log plots of log₁₀ (residual activity) versus time. These plots were linear for over 90% of the inactivation.

25

30

TABLE XVIII

Effect of Mutations in Subtilisin on the Half-Time of Autolytic Inactivation at 58°C*

		TC 28 CX
5	Enzyme	t,
		min
	Wild-type	• <u> </u>
	C22	120
10	C24	. 22
	C87	120
	C22/C87	104
	C24/C87	43
	224/ 68/	115

(*) Half-times for autolytic inactivation were determined for wild-type and mutant subtilisins as non-reduced enzymes were used directly from <u>B</u>.

The disulfides introduced into subtilisin did not improve the autolytic stability of the mutant enzymes 20 when compared to the wild-type enzyme. However, the disulfide bonds did provide a margin of autolytic stability when compared to their corresponding reduced double-cysteine enzyme. Inspection of a refined x-ray structure of wild-type B. amyloliquehighly 25 faciens subtilisin reveals a hydrogen bond between Thr22 and Ser87. Because cysteine is a poor hydrogen donor or acceptor (Paul, I.C. (1974) in Chemistry of the -SH Group (Patai, S., ed.) pp. 111-149, Wiley Interscience, New York) weakening of 22/87 hydrogen 30 bond may explain why the C22 and C87 single-cysteine mutant proteins are less autolytically stable than either C24 or wild-type (Table XVIII). The fact that C22 is less autolytically stable than C87 may be the result of the Tyr2lA mutation (Table XVIII). Indeed, 35

construction and analysis of Tyr21/C22 shows the mutant protein has an autolytic stability closer to that of C87. In summary, the C22 and C87 of single-cysteine mutations destabilize the protein toward autolysis, and disulfide bond formation increases the stability to a level less than or equal to that of wild-type enzyme.

EXAMPLE 12

10

15

20

25

5

Multiple Mutants Containing Substitutions at Position 222 and Position 166 or 169

Double mutants 166/222 and 169/222 were prepared by ligating together (1) the 2.3kb <u>Aca</u>II fragment from ps4.5 which contains the 5' portion of the subtilisin gene and vector sequences, (2) the 200bp <u>Ava</u>II fragment which contains the relevant 166 or 169 mutations from the respective 166 or 169 plasmids, and (3) the 2.2kb <u>Ava</u>II fragment which contains the relevant 222 mutation 3' and of the subtilisin genes and vector sequence from the respective p222 plasmid.

Although mutations at position 222 improve oxidation stability they also tend to increase the Km. An example is shown in Table XIX. In this case the A222 mutation was combined with the Kl66 mutation to give an enzyme with kcat and Km intermediate between the two parent enzymes.

30

1**-4** ... _ ...

TABLE XIX

		<u>kcat</u>	Km
5	WT	5 0	
	A222	50	1.4x10 ⁻⁴
	K166/A222	42	9.9x10 ⁻⁴
		21 _	3.7x10 ⁻⁵
		29	2.0x10 ⁻⁴

substrate sAAPFpNa

10

EXAMPLE 13

Multiple Mutants Containing 15 Substitutions at Positions 50, 156, 166, 217 and Combinations Thereof

The double mutant S156/A169 was prepared by ligation of two fragments, each containing one of the relevant The plasmid pS156 was cut with XmaI and treated with S1 nuclease to create a blunt end at 20 After removal of the nuclease phenol/chloroform extraction and ethanol precipitation, the DNA was digested with BamHI and the approximately 4kb fragment containing the vector plus the 5' portion of the subtilisin gene through codon 25 167 was purified.

The pAl69 plasmid was digested with KpnI and treated with DNA polymerase Klenow fragment plus 50 μM dNTPs to create a blunt end codon at codon 168. 30 removed by phenol/chloroform extraction and ethanol precipitation. The DNA was digested with BamHI and the 590bp fragment including codon 168 through the carboxy terminus of the subtilisin gene

was isolated. The two fragments were then ligated to give S156/A169.

Triple and quadruple mutants were prepared by ligating together (1) the 220bp PvuII/HaeII fragment containing the relevant 156, 166 and/or 169 mutations from the respective pl56, pl66 and/or pl69 double of single mutant plasmid, (2) the 550bp HaeII/BamHI fragment containing the relevant 217 mutant from the respective p217 plasmid, and (3) the 3.9kb PvuII/BamHI fragment containing the F50 mutation and vector sequences.

10

15

5

The multiple mutant F50/S156/A169/L217, as well as B. amyloliquefaciens subtilisin, B. lichenformis subtilisin and the single mutant L217 were analyzed with the above synthetic polypeptides where the P-1 amino acid in the substrate was Lys, His, Ala, Gln, Tyr, Phe, Met and Leu. These results are shown in Figures 26 and 27.

These results show that the F50/S156/A169/L217 mutant
has substrate specificity similar to that of the B.
licheniformis enzyme and differs dramatically from the
wild type enzyme. Although only data for the L217
mutant are shown, none of the single mutants (e.g.,
F50, S156 or A169) showed this effect. Although B.
licheniformis differs in 88 residue positions from B.
amyloliquefaciens, the combination of only these four
mutations accounts for most of the differences in
substrate specificity between the two enzymes.

30

35

EXAMPLE 14

Subtilisin Mutants Having Altered Alkaline Stability

A random mutagenesis technique was used to generate single and multiple mutations within the \underline{B} .

0251446

amyloliquefaciens subtilisin gene. Such mutants were screened for altered alkaline stability. Clones having increased (positive) alkaline stability and decreased (negative) alkaline stability were isolated and sequenced to identify the mutations within the subtilisin gene. Among the positive clones, the mutants V107 and R213 were identified. These single mutants were subsequently combined to produce the mutant V107/R213.

One of the negative clones (V50) from the random mutagenesis experiments resulted in a marked decrease in alkaline stability. Another mutant (P50) was analyzed for alkaline stability to determine the effect of a different substitution at position 50. The F50 mutant was found to have a greater alkaline stability than wild type subtilisin and when combined with the double mutant V107/R213 resulted in a mutant having an alkaline stability which reflected the aggregate of the alkaline stabilities for each of the individual mutants.

The single mutant R204 and double mutant C204/R213 were identified by alkaline screening after random cassette mutagenesis over the region from position 197 to 228. The C204/R213 mutant was thereafter modified to produce mutants containing the individual mutations C204 and R213 to determine the contribution of each of the individual mutations. Cassette mutagenesis using pooled oligonucleotides to substitute all amino acids at position 204, was utilized to determine which substitution at position 204 would maximize the increase in alkaline stability. The mutation from Lys213 to Arg was maintained constant for each of these substitutions at position 204.

A. Construction of pB0180, an E. coli-B. subtilis Shuttle Plasmid

The kb EcoRI-BamHI fragment from **PBR327** (Covarrubias, L., et al. (1981) Gene 13, 25-35) was ligated to the 3.7kb EcoRI-BamHI fragment of pBD64 T., et al. (1980) J. Bacteriol., 5 246-253) to give the recombinant plasmid pB0153. The unique EcoRI recognition sequence in pBD64 eliminated by digestion with EcoRI followed treatment with Klenow and deoxynucleotide triphosphates (Maniatis, T., et al. (eds.) (1982) in 10 Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.). end ligation and transformation yielded pB0154. unique AvaI recognition sequence in pBO154 eliminated in a similar manner to yield pB0171. 15 pB0171 was digested with BamHI and PvuII and treated with Klenow and deoxynucleotide triphosphates to create blunt ends. The 6.4 kb fragment was purified, ligated and transformed into LE392 cells (Enquest, L.W., et al. (1977) J. Mol. Biol. 111, 97-120), to 20 yield pB0172 which retains the unique BamHI site. facilitate subcloning of subtilisin mutants, a unique and silent KpnI site starting at codon 166 was introduced into the subtilisin gene from pS4.5 (Wells, J.A., et al. (1983) <u>Nucleic Acids Res.</u>, <u>11</u>, 7911-7925) 25 by site-directed mutagenesis. The $\underline{\mathsf{Kpn}}\mathsf{I}+\mathsf{plasmid}$ was digested with EcoRI and treated with Klenow and deoxynucleotide triphosphates to create a blunt end. The Klenow was inactivated by heating for 20 min at 68°C, and the DNA was digested with BamHI. The 1.5 kb 30 blunt EcoRI-BamHI fragment containing the entire subtilisin was ligated with the 5.8 kb NruI-BamHI from pB0172 to yield pB0180. The ligation of the blunt NruI end to the blunt EcoRI end recreated an EcoRI

site. Proceeding clockwise around pB0180 from the EcoRI site at the 5' end of the subtilisin gene is the unique BamHI site at the 3' end of the subtilisin gene, the chloramphenicol and neomycin resistance genes and UB110 gram positive replication origin derived from pBD64, the ampicillin resistance gene and gram negative replication origin derived from pBR327.

B. Construction of Random Mutagenesis Library

10 The 1.5 kb EcoRI-BamHI fragment containing the B. amyloliquefaciens subtilisin gene (Wells et al., 1983) from pB0180 was cloned into M13mpl1 to give M13mpl1 SUBT essentially as previously described (Wells, J.A., (1986) J. Biol. Chem., 15 <u>261</u>,6564-6570). Deoxyuridine containing template DNA was prepared according to Kunkel (Kunkel, T.A. (1985) Proc. Natl. Acad. Sci. USA, 488-492). Uridine containing 82 template DNA (Kunkel, 1985) was purified by CsCl density gradients (Maniatis, T. et al. (eds.) (1982) 20 in Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.). primer (Aval) having the sequence

5 GAAAAAAGACCCTAGCGTCGCTTA

ending at codon -11, was used to alter the unique AvaI recognition sequence within the subtilisin gene. (The asterisk denotes the mismatches from the wild-type sequence and underlined is the altered AvaI site.)

The 5' phosphorylated AvaI primer (~320 pmol) and ~40 pmol (~120µg) of uridine containing M13mpl1 SUBT template in 1.88 ml of 53 mM NaCl, 7.4 mM MgCl2 and 7.4 mM Tris.HCl (pH 7.5) were annealed by heating to

25

30

90°C for 2 min. and cooling 15 min at 24°C (Fig. 31). Primer extension at 24°C was initiated by addition of 100µL containing 1 mM in all four deoxynucleotide triphosphates, and 20µl Klenow fragment (5 units/1). The extension reaction was stopped every 15 seconds over ten min by addition of 10µl 0.25 M EDTA (pH 8) to 50µl aliquots of the reaction mixture. Samples were pooled, phenol chlorophorm extracted and DNA was precipitated twice by addition of 2.5 vol 100% ethanol, and washed twice with 70% ethanol. The pellet was dried, and redissolved in 0.4 ml 1 mM EDTA, 10 mM Tris (pH 8).

Misincorporation of α -thiodeoxynucleotides onto the 3' ends of the pool of randomly terminated template was carried out by incubating four 0.2 ml solutions each containing one-fourth of the randomly terminated 15 template mixture $(~20\mu g)$, 0.25 mM of a α -thiodeoxynucleotide triphosphate, 100 units AMV polymerase, 50 mM KCL, 10 mM MgCl₂, dithiothreitol, and 50 mM Tris (pH 8.3) (Champoux, J.J. (1984) Genetics, 2, 454-464). After incubation 20 at 37°C for 90 minutes, misincorporation reactions were sealed by incubation for five minutes at 37°C with 50 mM all four deoxynucleotide triphosphates (pH 8), and 50 units AMV polymerase. Reactions were stopped by addition of 25 mM EDTA (final), and heated 25 at 68°C for ten min to inactivate AMV polymerase. ethanol precipitation and resuspension, synthesis of closed circular heteroduplexes carried out for two days at 14°C under the same conditions used for the timed extension reactions 30 above, except the reactions also contained 1000 units T4 DNA ligase, 0.5 mM ATP and 1 mM β-mercaptoethanol. Simultaneous restriction of each heteroduplex pool with KpnI, BamHI, and EcoRI confirmed that the

5

extension reactions were nearly quantitative. Heteroduplex DNA in each reaction mixture was methylated by incubation With S-adenosylmethionine and 150 units dam methylase for 1 80 uM hour at 37°C. Methylation reactions were stopped by heating at 68°C for 15 min.

One-half of each of the four methylated heteroduplex reactions were transformed into 2.5 ml competent E. coli JM101 (Messing, J. (1979) Recombinant DNA Tech. Bull., 43-48). 2, The 10 number of independent transformants from each of the four transformations ranged from $0.4-2.0 \times 10^5$. After growing out phage pools, RF DNA from each of the four transformations was isolated and purified by centrifugation through CsCl density gradients. Approximately 2µg of RF DNA 15 from each of the four pools was digested with EcoRI, BamHI and AvaI. The 1.5 kb EcoRI-BamHI fragment AvaI resistant) was purified on temperature agarose and ligated into the 5.5 kb low EcoRI-BamHI vector fragment of pB0180. 20 The total number of independent transformants from a-thiodeoxynucleotide misincorporation plasmid library ranged from 1.2-2.4 imes 10 4 . The pool of plasmids from each of the four transformations was grown out in 200 ml LB media containing 12.5µg/ml cmp and plasmid DNA 25 was purified by centrifugation through CsCl density gradients.

C. Expression and Screening of Subtilisin Point Mutants

Plasmid DNA from each of the four misincorporation pools was transformed (Anagnostopoulos, C., et al. (1967), J. Bacteriol., 81, 741-746) into BG2036. For each transformation, 5µg of DNA produced approximately

35

30

 2.5×10^5 independent BG2036 transformants, and liquid culture aliquots from the four libraries were stored in 10% glycerol at 70°C. Thawed aliquots of frozen cultures were plated on LB/5µg/ml cmp/1.6% skim milk plates (Wells, J.A., et al. (1983) Nucleic Acids Res., 11, 7911-7925), and fresh colonies were arrayed onto 5 96-well microtiter plates containing 150 l per well LB media plus $12.5\mu g/ml$ CMD. After 1 h temperature, a replica was stamped (using a matched 96 prong stamp) onto a 132 mm BA 85 nitrocellulose filter (Schleicher and Scheull) which was layered on a 140 mm 10 diameter LB/cmp/skim milk plate. Cells were grown about 16 h at 30°C until halos of proteolysis were roughly 5-7 mm in diameter and filters transferred directly to a freshly prepared agar plate at 37°C containing only 1.6% skim milk and 50 mM 15 sodium phosphate pH 11.5. Filters were incubated on plates for 3-6 h at 37°C to produce halos of about 5 mm for wild-type subtilisin and were discarded. plates were stained for 10 min at 24°C with Coomassie blue solution (0.25% Coomassie blue (R-250) ethanol) and destained with 25% ethanol, 10% acetic acid for 20 min. Zones of proteolysis appeared as blue halos on a white background on the underside of the plate and were compared to the original growth plate that was similarly stained and destained as a Clones were considered positive produced proportionately larger zones of proteolysis on the high pH plates relative to the original growth Negative clones gave smaller halos under plate. alkaline conditions. Positive and negative clones were restreaked to colony purify and screened again in triplicate to confirm alkaline pH results.

20

25

Identification and Analysis D. of Mutant Subtilisins

Plasmid DNA from 5 ml overnight cultures of more active B. subtilis clones was according to Birnboim and Doly (Birnboim, H.C., et al. Nucleic Acid Res. 7, 1513) except 5 incubation with 2 mg/ml lysozyme proceeded for 5 min 37°C to ensure cell lysis and an additional phenol/CHCl3 extraction was employed to contaminants. The 1.5 kb EcoRI-BamHI containing the subtilisin gene was fragment 10 ligated M13mp11 and template DNA was prepared sequencing (Messing, J., et al. (1982) Gene, for DNA 269-276). Three DNA sequencing primers ending at codon 26, +95, and +155 were synthesized to match the subtilisin coding sequence. For preliminary sequence 15 identification a single track of DNA sequence, corresponding to the dNTPaS misincorporation library. from which the mutant came, was applied over the entire mature protein coding sequence (i.e., a single dideoxyguanosine sequence track 20 was applied identify a mutant from the dGTPas library). complete four track of DNA sequence was performed 200 bp over the site of mutagenesis to confirm and identify the mutant sequence (Sanger, F., et al., J. Mol. Biol., 143, 161-178). 25 Confirmed positive and negative bacilli clones were cultured in LB media containing 12.5 $\mu g/mL$ cmp and purified from culture supernatants as previously described (Estell, D.A., et al. (1985) J. Biol. Chem., 260, 6518-6521). Enzymes were greater than 98% pure as analyzed by 30 SDS-polyacrylamide gel electrophoresis (Laemmli, U.K. (1970), <u>Nature</u>, <u>227,</u> 680-685), and concentrations were calculated from the absorbance at 280 nm, $\epsilon_{280}^{0.18} = 1.17$ (Maturbara, H., et al. (1965), J. Biol. Chem, 240, 1125-1130).

activity Was measured with $200\mu g/mL$ succinyl-L-AlaL-AlaL-ProL-Phep-nitroanilide (Sigma) in 0.1M Tris pH 8.6 or 0.1 M CAPS pH 10.8 at 25°C. Specific activity (μ moles product/min-mg) calculated from the change in absorbance at 410 nm from production of p-nitroaniline with time per mg of enzyme (E410 = 8,480 M-1cm-1; Del Mar, E.G., et al. (1979), Anal. Biochem., 99, 316-320). Alkaline autolytic stability studies were performed on purified enzymes (200 μ g/mL) in 0.1 M potassium phosphate (pH 12.0) at 37°C. At various times aliquots were assayed for residual enzyme activity (Wells, J.A., et al. (1986) <u>J. Biol. Chem.</u>, <u>261</u>, 6564-6570).

E. 15 Results

10

Optimization and analysis 1. of mutagenesis frequency

A set of primer-template molecules that were randomly 3'-terminated over the subtilisin gene (Fig. 31) was 20 produced by variable extension from a fixed 5'-primer (The primer mutated a unique AvaI site at codon 11 in the subtilisin gene). This was achieved by stopping polymerase reactions with EDTA after various times of extension. The extent and distribution of duplex 25 formation over the 1 kb subtilisin gene fragment was assessed multiple restriction by digestion (not shown). For example, production of new HinfI fragments identified when polymerase extension had proceeded past Ilello, Leu233, and Asp259 in the subtilisin gene.

Misincorporation of each dNTPos at randomly terminated 3' ends by AMV reverse transcriptase (Zakour, R.A., et al. (1982), Nature, 295, 708-710; Zakour, R.A., et al. (1984), <u>Nucleic Acids Res.</u>, <u>12</u>, 6615-6628) used 35

'**-\$**

conditions previously described (Champoux, J.J., (1984), Genetics, 2, 454-464). The efficiency of each misincorporation reaction was estimated to be greater than 80% by the addition of each dNTPos to the AvaI restriction primer, and analysis by polyacrylamide gel electrophoresis. Misincorporations were sealed by polymerization with all four dNTP's and closed circular DNA was produced by reaction with DNA ligase.

Several manipulations were employed to maximize the yield of the mutant sequences in the heteroduplex. 10 These included the use of a deoxyuridine containing template (Kunkel, T.A. (1985), Proc. Natl. Acad. Sci. 82 488-492; Pukkila, P.J. et al. (1983), Genetics, 104, 571-582), in vitro methylation of the mutagenic strand (Kramer, W. et al. (1982) Nucleic 15 Acids Res., 10 6475-6485), and the use of AvaI restriction-selection against the wild-type template strand which contained a unique AvaI site. separate contribution of each of these enrichment procedures to the final mutagenesis frequency was not 20 determined, except that prior to AvaI restrictionselection roughly one-third of the segregated clones in each of the four pools still retained a wild-type AvaI site within the subtilisin gene. After AvaI restriction-selection greater than 98% of the plasmids 25 lacked the wild-type AvaI site.

The 1.5 kb EcoRI-BamHI subtilisin gene fragment that was resistant to AvaI restriction digestion, from each of the four CsCl purified Ml3 RF pools was isolated on low melting agarose. The fragment was ligated in situ from the agarose with a similarly cut E. coli-B. subtilis shuttle vector, pB0180, and transformed directly into E coli LE392. Such direct ligation and transformation of DNA isolated from agarose avoided

loses and allowed large numbers of recombinants to be 1446 obtained (>100,000 per μg equivalent of input M13 pool).

The frequency of mutagenesis for each of the four dNTPos misincorporation reactions was estimated from the frequency that unique restriction sites were 5 eliminated (Table XX). The unique restriction sites chosen for this analysis, ClaI, PvuII, and KpnI, were distributed over the subtilisin gene starting at codons 35, 104, and 166, respectively. As a control, the mutagenesis frequency was determined at the PstI 10 site located in the β <u>lactamase</u> gene which was outside the window of mutagenesis. Because the absolute mutagenesis frequency was close to the percentage of undigested plasmid DNA, two rounds of restrictionselection were necessary to reduce the background of 15 surviving uncut wild-type plasmid DNA below the mutant plasmid (Table XX). The background of surviving plasmid from wild-type DNA probably represents the sum total of spontaneous mutations, uncut wild-type plasmid, plus the efficiency with which linear DNA can 20 transform E. coli. Subtracting the frequency unmutagenized DNA (background) from the frequency for mutant DNA, and normalizing for the window mutagenesis sampled by a given restriction analysis (4-6 bp) provides an estimate of the mutagenesis 25 efficiency over the entire coding sequence (~1000 bp).

30

5	a-thiol dNTP misincor- porated (b) None G T	Restriction Site Selection PstI PstI PstI PstI PstI	1st	2nd	clones ^C Total 0.002 0.003 <0.002 0.013	<pre>% resistant clones over Background 0 0.001 0 0.011</pre>	mutants per 1000bpe 0.2 0 3
10	None G T C	ClaI ClaI ClaI	0.28 2.26 0.48 0.55	5 85 31 15	0.014 1.92 0.15 0.08	0 1.91 0.14 0.066	- 380 35 17
15	None G T C	PvuII PvuII PvuII PvuII	0.08 0.41 0.10 0.76	29 90 67 53	0.023 0.37 0.067 0.40	0 0.35 0.044 0.38	- 88 9 95
20	None G T C	KpnI KpnI	0.41 0.98 0.36 1.47	3 35 15 26	0.012 0.34 0.054 0.38	0 0.33 0.042 0.37	- 83 8 93

⁽a) Mutagenesis frequency is estimated from the frequency for obtaining mutations that alter unique gene (i.e., ClaI, PvuII, or KpnI) compared to mutation frequencies of the PstI site, that is outside the

^{30 (}b) Plasmid DNA was from wild-type (none) or mutagenized by dNTPαs misincorporation as described.

⁽c) Percentage of resistant clones was calculated from the fraction of clones obtained after three fold or greater over-digestion of the plasmid with the indicated restriction enzyme compared to a

non-digested control. Restriction-resistant plasmid DNA from the first round was subjected to a second round of restriction-selection. The total represents the product of the fractions of resistant clones obtained from both rounds of selection and gives percentage of restriction-site mutant clones in the original starting pool. Frequencies were derived from counting at least 20 colonies and usually greater than 100.

- (d) Percent resistant clones was calculated by subtracting the percentage of restriction-resistant clones obtained for wild-type DNA (i.e., none) from that obtained for mutant DNA.
- (e) This extrapolates from the frequency of mutation over each restriction site to the entire subtilisin gene (-1 kb). This has been normalized to the number of possible bases (4-6 bp) within each restriction site that can be mutagenized by a given misincorporation event.

this analysis, the average percentage subtilisin genes containing mutations that result from dCTPas, or dTTPas misincorporation estimated to be 90, 70, and 20 percent, respectively. 20 These high mutagenesis frequencies were generally quite variable depending upon the dNTPas misincorporation efficiencies at this site. Misincorporation efficiency has been reported to be both dependent on the kind of mismatch, and the 25 context of primer (Champoux, J.J., (1984); Skinner, J.A., et al. (1986)Nucleic Acids Res., 6945-6964). Biased misincorporation efficiency of $dGTP\alpha s$ and $dCTP\alpha s$ over $dTTP\alpha s$ has been previously observed (Shortle, D., et al. (1985), Genetics, 110, 30 539-555). Unlike the dGTP α s, dCTP α s, and dTTP α s libraries the efficiency of mutagenesis for the dATPas

5

misincorporation library could not be accurately assessed because 90% of the restriction-resistant plasmids analyzed simply lacked the subtilisin gene insert. This problem probably arose from self-ligation of the vector when the dATPas mutagenized subtilisin gene was subcloned from M13 into pB0180. Correcting for the vector background, we estimate the mutagenesis frequency around 20 percent in the dATP α s misincorporation library. In a separate experiment (not shown), the mutagenesis efficiencies for dGTPas and dTTPas misincorporation were estimated to be around 50 and 30 percent, respectively, based on the frequency of reversion of an inactivating mutation at codon 169.

location and identity of each mutation was 15 determined by a single track of DNA sequencing corresponding to the misincorporated athiodeoxynucleotide over the entire gene followed by a complete four track of DNA sequencing focused over the site of mutation. Of 14 mutants identified, the distribution 20 was similar to that reported by Shortle and Lin (1985) except we did not observe nucleotide insertion or deletion mutations. The proportion of AG mutations was highest in the G misincorporation library, and some unexpected point mutations appeared in the dTTPas 25 and dCTPas libraries.

Screening and Identification of Alkaline Stability Mutants of Subtilisin

It is possible to screen colonies producing subtilisin by halos of casein digestion (Wells, J.A. et al. (1983) Nucleic Acids Res., 11, 7911-7925). However, two problems were posed by screening colonies under high alkaline conditions (>pH 11). First, B. subtilis

30

35

5 -

will not grow at high pH, and we have been unable to transform an alkylophilic strain of bacillus. problem was overcome by adopting a replica plating strategy in which colonies were grown on filters at neutral to produce subtilisin and filters subsequently transferred to casein plates at pH 11.5 to assay subtilisin activity. However, at pH 11.5 the casein micells no longer formed a turbid background and thus prevented a clear observation of proteolysis halos. The problem was overcome by briefly staining the plate with Coomassie blue to amplify proteolysis zones and acidifying the plates to develop casein micell turbidity. By comparison of the halo size produced on the reference growth plate (pH 7) to the high pH plate (pH 11.5), it was possible to identify mutant subtilisins that had increased (positives) or decreased (negatives) stability under alkaline conditions.

Roughly 1000 colonies were screened from each of the 20 four misincorporation libraries. The percentage of colonies showing a differential loss of activity at pH 11.5 versus pH 7 represented 1.4, 1.8, 1.4, and 0.6% of the total colonies screened from the thiol dGTPas, dATP α s, dTTP α s, and dCTP α s libraries, respectively. Several of these negative clones were sequenced and 25 all were found to contain a single base change as expected from the misincorporation library from which they came. Negative mutants included A36, E170 and V50. Two positive mutants were identified as V107 and 30 R213. The ratio of negatives to positives was roughly 50:1.

5

10

1**-3**

3. Stability and Activity of Subtilisin Mutants at Alkaline pH

Subtilisin mutants were purified and their autolytic stabilities were measured by the time course of inactivation at pH 12.0 (Figs. 32 and 33). mutants identified from the screen (i.e., V107 and R213) Were more resistant to alkaline autolytic inactivation compared to wild-type; negative mutants (i.e., E170 and V50) were less resistant. had advantageously produced another mutant at position 50 (F50) by site-directed mutagenesis. was more stable than wild-type enzyme to alkaline This mutant autolytic inactivation (Fig. 33) At the termination of the autolysis study, SDS-PAGE analysis confirmed that each subtilisin variant had autolyzed to an extent consistent with the remaining enzyme activity.

The stabilizing effects of V107, R213, and F50 are cumulative. See Table XXI. The double mutant, V107/R213 (made by subcloning the 920 bp EcoRI-KpnI 20 fragment of pB0180V107 into the 6.6 kb EcoRI-KpnI fragment of pB0180R213), is more stable than either single mutant. The triple mutant, F50/V107/R213 (made by subcloning the 735 bp EcoRI-PvuII fragment of pF50 (Example 2) into the 6.8 kb EcoRI-PvuII fragment of 25 pB0180/V107, is more stable than the double mutant V107/R213 or F50. The inactivation curves show a biphasic character that becomes more pronounced the more stable the mutant analyzed. This may result from destablizing chemical modification(s) 30 deamidation) during the autolysis study and/or reduced stabilization caused by complete digestion of larger autolysis peptides. These alkaline autolysis studies have been repeated on separately purified enzyme batches with essentially the same results. Rates of 35 autolysis should depend both on the conformational

5

10

Random Cassette Mutagenesis F. of Residues 197 through 228

Plasmid pA222 (Wells, et al. (1985) <u>Gene 34</u>, 315-323) was digested with PstI and BamHI and the 0.4 kb PstI/BamHI fragment (fragment 1, see Fig. 34) purified from a polyacrylamide gel by electroelution.

The 1.5 kb EcoRI/BamHI fragment from pS4.5 was cloned into M13mp9. Site directed mutagenesis was performed to create the Al97 mutant and simultaneously insert a 10 silent <u>Sst</u>I site over codons 195-196. The mutant EcoRI/BamHI fragment was cloned back into pBS42. pA197 plasmid was digested with BamHI and SstI and the 5.3 kb BamHI/SstI fragment (fragment 2) was purified from low melting agarose.

Complimentary oligonucleotides were synthesized to span the region from <u>Sst</u>I (codons 195-196) to <u>Pst</u>I (codons 228-230). These oligodeoxynucleotides were designed to (1) restore codon 197 to the wild type, 20 (2) re-create a silent KpnI site present in pa222 at codons 219-220, (3) create a silent Smal site over codons 210-211, and (4) eliminate the PstI site over codons 228-230 (see Fig. 35). Oligodeoxynucleotides were synthesized with 2% contaminating nucleotides at each cycle of synthesis, e.g., dATP reagent was spiked with 2% dCTP, 2% dGTP, and 2% dTTP. For 97-mers, this 2% poisoning should give the following percentages of non-mutant, single mutants and double or higher mutants per strand with two or more misincorporations per complimentary strand: 14% non-mutant, 28% single mutant, and 57% with ≥2 mutations, according to the general formula

$$\begin{array}{ccc}
\mu^{n} \\
f &= \frac{1}{n!} e^{-\mu}
\end{array}$$

15

25

where μ is the average number of mutations and n is a number class of mutations and f is the fraction of the total having that number of mutations. Complimentary oligodeoxynucleotide pools were phosphorylated and annealed (fragment 3) and then ligated at 2-fold molar excess over fragments 1 and 2 in a three-way ligation.

coli MM294 was transformed with the ligation reaction, the transformation pool grown up over night and the pooled plasmid DNA was isolated. represented 3.4 x 10⁴ independent transformants. plasmid pool was digested with PstI and then used to retransform E. Coli. A second plasmid pool was prepared and used to transform B. subtilis (BG2036). Approximately 40% of the BG2036 transformants actively 15 expressed subtilisin as judged by halo-clearing on Casein plates. Several of the non-expressing transformants were sequenced and found to have insertions or deletions in the synthetic cassettes. Expressing BG2036 mutants were arrayed in microtiter 20 dishes with $150\mu l$ of LB/12.5 μ g/mL chloramphenicol (cmp) per well, incubated at 37°C for 3-4 hours and then stamped in duplicate onto nitrocellulose filters laid on LB 1.5% skim milk/5 μ g/mL cmp plates and incubated overnight at 33°C 25 (until halos approximately 4-8 mm in diameter). Filters were then lifted to stacks of filter paper saturated with 1 x Tide commercial grade detergent, 50 mM Na₂CO₃, pH 11.5 and incubated at 65°C for 90 min. Overnight growth plates were Commassie stained and destained to 30 establish basal levels of expression. After this treatment, filters Were returned to pH7/skim milk/20 μ g/mL tetracycline plates and incubated at 37°C for 4 hours to overnight.

0251446

Mutants identified by the high pH stability screen to be more alkaline stable were purified and analyzed for autolytic stability at high pH or high temperature. The double mutant C204/R213 was more stable than wild type at either high pH or high temperature (Table XXII).

This mutant was dissected into single mutant parents (C204 and R213) by cutting at the unique Smal restriction site (Fig. 35) and either ligating wild 10 type sequence 3' to the Smal site to create the single C204 mutant or ligating wild type sequence 5' to the Smal site to create the single R213 mutant. two single parents, C204 was nearly as alkaline stable as the parent double mutant (CO4/R213) and slightly more thermally stable. See Table XXII. The R213 mutant was only slightly more stable than wild type under both conditions (not shown).

Another mutant identified from the screen of the 197 20 to 228 random cassette mutagenesis was R204. mutant was more stable than wild type at both high pH and high temperature but less stable than C204.

25

5

15

30

TABLE XXII

Stability of subtilisin variants

5 Purified enzymes (200 μ g/mL) were incubated in 0.1M phosphate, pH 12 at 30°C for alkaline autolysis, or in 2mM CaCl₂, 50mM MOPS, pH 7.0 at 62°C for thermal autolysis. At various times samples were assayed for residual enzyme activity. Inactivations were roughly pseudo-first order, and t 1/2 gives the time it took 10 to reach 50% of the starting activity in two separate experiments.

15		(alka auto	l/2 line lysis)	(them	l/2 mal lysis)
	Subtilisin variant	Exp.	Exp. #2	Exp. _#1	Exp. _#2
	Wild type	30	25	20	23
20	F50/V107/R213 R204	49	41	18	23
	C204	35	32	24	27
	C204/R213	4 3 5 0	46 52	38	40
25	L204/R213	32	30	32	36
			- •	20	21

G. Random Mutagenesis at Codon 204

Based on the above results, codon 204 was targeted for 30 random mutagenesis. Mutagenic DNA cassettes (for codon at 204) all contained a fixed R213 mutation which was found to slightly augment the stability of the C204 mutant. 35

Plasmid DNA encoding the subtilisin mutant C204/R213 was digested with <u>SstI</u> and <u>EcoRI</u> and a 1.0 kb <u>EcoRI/SstI</u> fragment was isolated by electro-elution from polyacrylamide gel (fragment 1, see Fig. 35).

5

C204/R213 was also digested with <u>SmaI</u> and <u>EcoRI</u> and the large 4.7 kb fragment, including vector sequences and the 3' portion of coding region, was isolated from low melting agarose (fragment 2, see Fig. 36).

10

Fragments 1 and 2 were combined in four separate three-way ligations with heterophosphorylated fragments 3 (see Figs. 36 and 37). This heterophosphorylation of synthetic duplexes should preferentially drive the phosphorylated strand into 15 the plasmid ligation product. Four plasmid pools, corresponding to the four ligations, were restricted with Smal in order to linearize any single cut C204/R213 present from fragment 2 isolation, thus reducing the background of C204/R213. E. coli was 20 then re-transformed with Smal-restricted plasmid pools to yield a second set of plasmid pools which are essentially free of C204/R213 and any non-segregated heterduplex material.

25

30

These second enriched plasmid pools were then used to transform B. subtilis (BG2036) and the resulting four mutant pools were screened for clones expressing subtilisin resistant to high pH/temperature inactivation. Mutants found positive by such a screen were further characterized and identified by sequencing.

The mutant L204/R213 was found to be slightly more stable than the wild type subtilisin. See Table XXII.

Having described the preferred embodiments of the present invention, it will appear to those ordinarily skilled in the art that various modifications may be made to the disclosed embodiments, and that such modifications are intended to be within the scope of the present invention.

CLAIMS;

5

- A carbonyl hydrolase mutant having at least one property which is substantially different from the same property of a precursor carbonyl hydrolase from which the amino acid sequence of said carbonyl hydrolase mutant is derived, said property being group consisting of the stability and alkaline stability precursor carbonyl hydrolase is selected from the wherein consisting of naturally occurring carbonyl 10 hydrolases and recombinant carbonyl hydrolases and said carbonyl hydrolase mutant amino acid sequence is derived by a method selected from the group consisting of the substitution, deletion and insertion of at least one amino acid in said amino acid sequence of said precursor carbonyl hydrolase.
- A carbonyl hydrolase mutant having at least one property which is substantially different from the same property of a precursor carbonyl hydrolase from 20 which the amino acid sequence of said carbonyl hydrolase mutant is derived, said property being selected from the group consisting of oxidative stability, substrate specificity, catalytic activity, thermal stability, alkaline stability and pH activity 25 profile wherein said precursor carbonyl hydrolase is selected from the group consisting of naturally occurring carbonyl hydrolases and recombinant carbonyl hydrolases and said carbonyl hydrolase mutant amino acid sequence is derived by a method selected from the 30 group consisting of deletion and insertion of at least one amino acid in said amino acid sequence of said precursor carbonyl hydrolase and substitution of more than one amino acid residue of said amino acid sequence of said precursor carbonyl hydrolase.

A carbonyl hydrolase mutant derived by the replacement of at least one amino acid residue of a precursor carbonyl hydrolase with a different amino acid, said one amino acid residue being selected from group of 5 amino acid residues of Bacillus amyloliquefaciens subtilisin consisting of Tyr21, Thr22, Ser24, Ser33, Asp36, Ala45, Gly46, Ala48, Ser49, Met50, Asn77, Ser87, Lys94, Val95, Leu96, Tyr104, Ile107, Gly110, Met124, Asn155, Glu156, Lys170, Tyr171, Pro172, Phe189, Asp197, Met199, 10 Ser204, Lys213, Tyr217, Ser221, His67, Leu126, Leu135, Gly97, Asp99, Ser101, Gly102, Glu103, Leu126, Gly127, Gly128, Pro129, Tyr214, Gly215, and equivalent amino acid residues in other precursor carbonyl hydrolases.

15

4. A carbonyl hydrolase mutant having an amino acid sequence derived from the amino acid sequence of a precursor carbonyl hydrolase by the substituion of a differnt amino acid for more than one amino acid residue of said amino acid sequence of said precursor 20 carbonyl hydrolase, said amino acid residues being selected from the group of amino acid residues of Bacillus amyloliquefaciens subtilisin consisting of Tyr21, Thr22, Ser24, Asp32, Ser33, Asp36, Ala45, Gly46, Ala48, Ser49, Met50, Asn77, Ser87, Lys94, 25 Val95, Leu96, Tyr104, Ile107, Gly110, Met124, Ala152, Asn-155, Glu156, Gly166, Gly169, Lys170, Tyr171, Pro172, Phe189, Asp197, Met199, Ser204, Tyr217, Ser221, Met222, His67, Leu126, Leu135, Gly97, Asp99, Ser101, Gly102, Glu103, Leu126, Gly127, Gly128, 30 Prol29, Tyr214, Gly215, and equivalent amino acid residues in other precursor carbonyl hydrolases.

- The mutant of Claim 4 wherein said combinations are selected from the group consisting of Thr22/Ser87, Ser24/Ser87, Ala45/Ala48, Ser49/Lys94, Ser49/Val95, Met50/Val95, Met50/Gly110, Met50/Met124, Met50/Met222, 5 Met124/Met222, Glu156/Gly166, Glu156/Gly169, Gly166/Met222, Gly169/Met222, Tyr21/Thr22, Met50/Met124/Met222, Tyr21/Thr22/Ser87, Met50/Glu156/ Gly166/Tyr217, Met50/Glu156/Tyr217, Glu156/Gly169/ Ile170/Lys213, Ser204/Lys213, Met50/Ile107/ Tyr217, 10 Lys213 and Ser24/Met50/Ile107/Glu156/Gly166/Gly169/ Ser204/Lys213/Gly215/Tyr217.
- A carbonyl hydrolase mutant derived by replacement of at least one amino acid residue of a 15 precursor carbonyl hydrolase with a different amino acid, said one amino acid residue being selected from the group of amino acid residues of of Bacillus amyloliquefaciens subtilisin consisting of Tyr21, Thr22, Ser24, Asp32, Ser33, Asp36, Ala45, Gly46, 20 Ala48, Ser49, Met50, Asn77, Ser87, Lys94, Val95, Tyr104, Ile107, Gly110, Met124, Ala152, Leu96, Asn-155, Glu156, Gly166, Gly169, Lys170, Tyr171, Pro172, Phe189, Asp197, Met199, Ser204, Lys213, Tyr217, Ser221, Met222, His67, Leu126, Leu135, Gly97, 25 Asp99, Ser101, Gly102, Glu103, Leu126, Gly127, Gly128, Pro129, Tyr214, Gly215, and equivalent amino acid residues in other precursor carbonyl hydrolases, wherein said at least one amino acid residue of said precursor carbonyl hydrolase is replaced with the amino acid residues listed in TABLE I and TABLE II 30 herein.
- 7. The mutant of Claim 6 wherein the amino acid replacing said at least one amino acid residue in said precursor carbonyl hydrolase is selected from the replacement amino acids listed in TABLE I herein.

- 8. Mutant DNA sequence encoding the mutant of claims 1 through 7.
- 9. Expression vector containing the mutant DNA sequence of claim 8.

10. Host cell transformed with the expression vector of Claim 9.

FIG. -2

FIG. - 3

His - 64

F1G.-4

Honology of Bacillus protesses

1.Bacillus emyloliquifeciens 2.Bacillus subtilis var.I158

3.Bacillus licheniformis (carlsbergensis)

1 6 6	0 0	S S T	v	P P	Y Y	6 6	I	/ 5 5 P				K 4	A 1		, (L	H H :	5 5 A	20 Q 6 Q 6
21 Y Y F	T T K	6 6	5 5 6	N N N	U U	K K K	V	A A	3	0 I L	0	S S T	5 6 6	1	D Q) s	5 S	5 H	40
41 D D	r r	K N N	V	A R V	6	6	A A	S S S	50 H F F	v	P P	5 'S 6	E E	T T	N N Y	P P N	FYT	99.	68 D D
61 N 6	N S N	S S G	H	6 6	T T	H	UUU	A A	70 6 6	T T T	V I V	A A	A A	L L	N N D	N N N	S S T	I I T	88 6 6
81 U U	L L	6 6	U U	A S A	P P	S S	A A V	S S S	90 L L	Y Y Y	A A A	VVV	K K	U U U	L L L	6 D N	A S S.	D T S	100 6 6
101 S S S	6 6	Q Q S	Y Y Y	\$ \$ \$	e n	1 1 1	I I V	N N S	110 6 6]]]	EEE	ה ה	A A A	I T	A S T	N N N	N N S	M M M	120 D D

FIG. - 5A-1

•	,	1	N I	4	5 5 5		5 (5 (6 1 6 1	P	138 5 T 5	6 6 6	S S S	A T T	6	Ĺ	. 1	Κ '	7	U	148 V D V D
I K K N		•	U A	\$	6	n I	U	U		•	A A A	A A	666	6 6	N N N	E	6	S	5 5	6
1 5 5 5	61 5 7 7	9	T	U	6	Y Y Y	P P	6 A A		•	•	P P D	S S S	UTU	1	A A	v		A	182 U U
1 E D N D	5 5 5	S S N	N	0 0 N	R R R	A A	s 5 5	F	1 5 5 5	90 S S	1	4	6 6	PSA	E	L	D D E	v	H	200 A A
20 P P P	1 6 6	U V	5 5 6	I I U	QQY	S S	T T T	L L Y	21 P P P	0 6 6 T	N 6	, •	K T	YYY	8	AAT	Y Y L	N N	6 6	228 T T
22 5 5 5	H H H	A A	\$ T 5	P P P	H	U	A A A	6	23 A A	0 A A	A A A	i L		I I	L L	S S S	K	Н Н	P P P	240 N T
241 U U L	T T S	N N	T A S	0 0	U U U	R R R	S D N	S R R	250 L L L	E E S	N S S	T T	•	T A	T T T	K Y Y	L	6 6	D	N 260 5
261 F F F	Y Y Y	Y Y Y	6 6	K K K	6 6 6	L L L	I I I	N N N	278 U U U	0 0 E	466	500	6)	Q ·	•	_	•	5	5

FIG.-5A-2

ALIGNMENT OF B.AMYLOLIQUIFACIENS SUBTILIEIN AND THERHITASE I.B. sayloliquifaciens subtilisin 2.thermitses

																				K A
																				D 5
6	I	D	\$ 5	5 N	H	4(P	D D	L	•	•	, s	(U	A	6	8	•		3 i	50 M <i>u</i> F u
PD	S	E D	T	N T	P	F	0	E E	N E	N N	S	1	A A	6 6	T T	H	U	A	6	T I
0	6	6	L	• T	N	N N	S	I T	8 8	U	L	6	; 1	י ע ר ו	A A	P P	S	6	\$	S e L 1
																				118 6 6
1	E T	¥	A	ı	A D	N D	6 6	H 6	128 D K	U	1	N S	Ħ	5 \$	1	•	6	•	P T	138 \$ V
6 6	5 N	A S	A 6	L	K	6	A	U	148 D N	K Y	A A	U	AN	s K	6	!	V S	v	U	ise V

FIG. -5B-1

																			178 K Y
														0 10					
5 T	V	6 6	P 5	E	L	D	Ų	H A	20 A A	B P	6	Ų S	S	Ī	0 Y	5	7	L	21e P P
6 T	N S	K	Y	8	A S	Y L	N S	6 6	22(T T	8 <u>\$</u>	Ħ	A	S T	P	H	U	A	6	238 A U
A A	6	r	ĭ	L A	\$	K.	H 8	P R	248 N S	U ·	T .	N	T 5	0 %	U	R R	\$ A	S	258 L I
E	N N	T	7	T D	K	•	L S	6	D 7	260 S 6	F	Y	٠ ٧	6	K	5 6	L R	I U	N N
278 U A	Q	A K	^	Û	D	Y													

FIG.-5B-2

1	TAL	LY	CO	VS E I	RVE	R	ESI	DUE	S IA	, su	BTILI								02	5144
•	•		•	•	•	•	•	•	•		•	•	•	•		, ,	, ,			2
21											•	•					•		•	•
•	•	1	B	•	•		•	•	•	•	3	•	۵	•	•		•	•		H .
41											50)								•
•	•)	•	~		6	•	•	•	•	V	•	•	•	•	•	•	•	
6 1	•	•		H	6	•	7	н			78 6									
B 1							•	•	•	•	6	•	•	•	•	•	•	•	•	
•	•	6		•	•		•	•	•	•	•									184
181										•	•	•	•	•	•	U	L	•	•	. 6
_	B	•		•	•	•	•	•	•	•	118 6	•		_						126
21													•	•	•	•	•	•	•	• •
•)	•	•		•	L	1	6	•	•	138	•	•	•	•	•	•			148
41				-							150							•	•	•
•		•	•	•	•	6	•		•	•	•	•	•	•	6	N	•	•	•	158
51		•		_			•	_			176									·
			•	•		•	_ Y		•	•	•	•	,	•	•	•	•	V	• ,	188
•						•	•	5	; F	.	198									
1								_	•		э.	•	•	•	•	•	•	•	•	. 208
1	•		•	•	•)	•	•	•		210	•	•	•	_	_			_	226
Ħ										•					-	•	•	•	6	7
F	٨		•	•	H	1	V	A	£	•	38	•	•	•	•	•	•	•		248
•							_			2	58							-	•	•
	•		•	•	•		R	•	•		•		•							258

FIG. -6B

FIG. - 7A

FIG. - 7B

FIG. - 8

CNBr FRAGMENT MAP OF F222 MUTANT

FIG. - 9

 Wild type amino acid sequence: Wild type DNA sequence: 	Lys-Val-Ala-Gly-Gly-Ala-Ser-Met-Val-Pro-Ser 5'-AAG-GTA-GCA-GGC-GGA-GCC-AGC-ATG-GTT-CCT-TCT TTC-CAT-CGT-CCG-CCT-CGG-TCG-TAC-CAA-GGA-AGA-5'
4. pd50;	5'-AAG_GCC_T
5. pΔ50 cut with Stu I.Kpn 1	5'-AAG-G TTC-Cp CAT-GGA-AGA-5'
6. Cut pΔ50 ligated with cassettes:	* TCC-CAT-CGT-CGG-GGA-GCC-AGC-ATG-GTA-GCT-TCT TCC-CAT-CGT-CCG-CCT-CGG-TCG-TAG-CAT-GGA-AGA-5'
7. Mutagenesis primer for p∆50:	*** 5'-CT-GAT-TTA-AAG-GCC-TGC-ATG-CTA

V45, P45, V45/P48, E46, E48, V48, C49, C50, F50 FIG.-10

8. Mutants made:

5'-CT-GAT-TTA-AAG-GCC-TGC-ATG-GTA-CCT-TCT-GA

1. Codon number:

 Codon number: 117 120 124 126 130 3. Wild type amino acid sequence: Asn-Asn-Met-Asp-Val-Ile-Asn-Met-Ser-Leu-Gly-Gly-Pro-Ser Wild type DNA sequence: 5'-AAC-AAT-ATG-GAC-GTT-ATT-AAC-ATG-AGC-CTC-GGC-GGA-CCT-TCT TTG-TTA-TAC-CTG-CAA-TAA-TTG-TAC-GGG-CCG-CCT-GGA-AGA-5' 	* * * C-GGG-GGC#CCT-TCT G-CCC-CCG-GGA-AGA-5'	* pcr-rcr ccg-cga-aga-5
117 ce: Asn-Asn-Met-Asp-Val-Ile-As 5'-AAC-AAT-ATG-GAC-GTT-ATT-AA TTG-TTA-TAC-CTG-CAA-TAA-TT	* * * * * TAC-AAT-ATG-GATATCTG-TTA-TAG-CTA-TAG	* 5'-AAC-AAT-ATG-GAT TTG-TTA-TAC-CTAp
 Codon number; Wild type amino acid sequen Wild type DNA sequence; 	4. pΔ124:	5. pd124 cut with Eco RV and Apa I

5'-AAC-AAT-ATG-GAT-ATC-C-GGG-GGC-CCT-TCT-GGT-TC-3' 7. Mutagenesis primer for pa124::

5'-AAC-AAT-ATG-GAT-GTT-ATT-AAC-ATG-AGC-CTC-GGC-GGC-CCT-TCT TTG-TTA-TAC-CTA CAALTAA-TTG-TAC-TCG-GAG-CCG-GG-GGA-AGA-5'

6. Cut pA124 ligated with

cassettes:

1 124, L 124 AND C126

8. Mutants made:

VSDOCID: <EP 025144642

* pcc6 66T-3' CA-5' 5'-ACT TCC GGC AGC TCA AGC ACA GTG GGC TAC CCT GGT-3'
3'-TGA AGG CCG TCG AGT TCG TGT CAC CCG ATG GGA CCA-5' C CCG GGT-3' 5'-ACT TCC GGG AGC TCA AGC ACA GTG NNN TAC CCG GGT-3'
3'-TGA AGG CCC TCG AGT TCG TGT CAC NNN ATG GGC CCA-5' Thr Ser Gly Ser Ser Ser Thr Val Gly Tyr Pro Gly Xma I 5'-ACT TCC 666 AGC TCA A 3'-TGA AGG CCC TCG AGT T SacI 5'-ACT TCC GGG AGC T 3'-TGA AGG CCCp PA166 cut with SacI and XmaI: Codon: Wild type amino acid sequence: duplex DNA cassette pools: Wild type DNA sequence: Cut pal66 ligated with pal66 DNA sequence: ۳.

MUTAGENESIS PRIMER 37 MER

AN GGC ACT TCC GGG AGC TCA ACC CGG GTA AA TAC CCT 3'
FIG.-13

FIG. - 14

FIG. -15A

FIG.-15B

FIG.-16

GLY-169 CASSETTE MUTAGENESIS

	CODON: WILD TYPE AMINO ACID SEQUENCE;		162 SER SER THR VAL GLY TYR PRO GLY LIS TYR PRO SEB	
	1. WILD TYPE DNA SEQUENCE	in m	TCA AGC ACA GTG GGC TAC CCT GGT AAA TAC CCT TCT 3. AGT TCG TGT CAC CCG ATG GGA CCA TTT ATG GGA AGA 5"	. .
N	2. P169 DHA SEQUENCE	in in	TCA AGC ACA GTC GGG TAC CCTGA TAT CCT TCT 3. AGT TCG TGT CAC CCC ATG GGA CT ATA GGA AGA 5. KPNI ECORY	• •
m.	P169 CUT MITH KPNÎ AND ECORV _i	is in	TAC AGC ACA GTC GGG TAC AGT TCG TGT CAC CCP TA GGA AGA 5º	
÷	CUT P169 LIGATED WITH OLIGONUCLEOTIDE POOLS	3. 1	TAC AGC ACA GTG GGG TAC CCT WWW TAT TAT CCT TGT 3. AGT TCG TGT CAC CC <u>C ATG GGA NNN TIT A</u> TA GGA AGA 5.	

5º ANG CAC AGT GGG GTA CCC TGA TAT CCT TCT GTC A
FIG.—18

MUTAGENESIS PRIMER FOR P169

5'-GGT-TCC-GGC-CAA-TAC-AGC-TGG-ATC-ATT-3' 2. Wild type amino acid sequence: Gly-Ser-Gly-Gln-Tyr-Ser-Trp-Ile-Ile-3. Wild type DNA sequence:

104 105

4. Primer for Hind III insertion at 104:

5'-GGT-TCC-GGC-CAA-GCTT-AGC-TGG-ATC-ATT-3'

5. Primers for 104 mutants:

*** 5'---T-TCC-GCC-CAA-NNN-AGC-TGG-ATC----3'

6. Mutants made:

A, M, L, S, AND HIO4

2. Wild type amino acid sequence: Val-Val-Val-Ala-Ala-Ala-Gly-Asn-Glu 148

5'-GTA-GTC-GTT-GCG-GCA-GCC-GGT-AAC-GAA-3' 3. Wild type DNA sequence:

4. VI52/PI53

5'-GTA-GTC-GTT-GCG-GTA-CCC-GGT-AAC-GAA-3'

5. S 152:

5'-GTA-GTC-GTT-GCG-AGC-GCC-GGT-AAC-GAA-3'

6 152:

5'-GTA-GTC-GTT-GCG-GCC-GCT-AAC-GAA-3'

2. Wild type amino acid sequence: 211

Gly-Asn-Lys-Tyr-Gly-Ala-Tyr-Asn-Gly-Thr-Ser-Met-Ala

CCT-TTG-TTT-ATG-CCC-CGC-ATG-TTG-CCA-TGC-AGT-TAC-CGT-5' 5'-GGA-AAC-AAA-TAC-GGG-GCG-TAC-AAC-GGT-ACG-TCA-ATG-GCA 3. Wild type DNA sequence:

4. pa217

---GGATATIÇA-ATG-GCA 5'-GGA-AAC-AAA-TAC#GGC#GCC-TAC---

5. pA217 cut with Nar I and Eco RI

5'-GGA-AAC-AAA-TAC-GG* CCT-TTG-TTT-ATG-CCG-Gp

* pa-tca-atg-gca T-agt-tac-cgt-5'

6. Cut pA217 ligated with cassettes:

CCT-TIG-TIT-AIG-CCG-CGC-NNN-IIG-CCA-IGT-AGI-TAC-CGI-5 5'-GGA-AAC-AAA-TAC-GGC-GCG-NNN-AAC-GGT-ACA-TCA-ATG-GCA

> Mutagenesis primer for p∆217;

5'-GA-AAC-AAA-TAC-GGC-GCC-TAC-GGA-TAT-CAA-TGG-CAT-3'

**

8. Mutants made:

All 19 at 217

2. Wild type amino acid sequence:

3. Wild type DNA sequence:

Tyr-Ala-Val-Lys-Val-Leu-Gly-Ala-Asp-Gly-Ser

5'-TAC-GCT-GTA-AAA-GTT-CTC-GGT-GCT-GAC-GGT-TCC

ATG-CGA-CAT-TTT-CAA-GAG-CCA-CGA-CTG-CCA-AGG-5

4. pA95:

5'-TACGGGGT------CTC-GCT-GCAGGAC-GGT-TCC ATG-CGC-A----GAG-CGA-CGT-CTG-CCA-AGG-5'

5. pA95 cut with Muland Pst I

5'-TA * ATG-CGCp

* PGAC-GGT-TCC A-CGT-CTG-CCA-AGG-5'

6. Cut pA95 ligated with cassettes:

* ATG-CGC-CAT-TIT-CAA-GAG-CCA-CGT-CTG-CGT-TCC

Mutagenesis primer for p∆95;

5'-CA-TCA-CTT-TAC-GCG-T-CTC-GCT-GCA-GAC-GGT-TCC

8. Mutants made:

C94, C95, D96

FIG. - 29A

FIG. -30

FIG. - 32

FIG. -33


```
0251446
                      195
         W.T A.A.:
                     Glu Leu Asp Val Met Ala Pro Gly Val Ser Ile Gln
        W.T. DNA:
                     GAG CTT GAT GTC ATG GCA CCT GGC GTA TCT ATC CAA
                     CTC GAA CTA CAG TAC CGT GGA CCG CAT AGA TAG GTT
       pΔ222DNA:
                     GAG CTT GAT GTC ATG GCA CCT GGC GTA TCT ATC CAA
                     CTC GAA CTA CAG TAC CGT GGA CCG CAT AGA TAG GTT
       A197 DNA:
                    GAG CTC GCA GTC ATG GCA CCT GGC GTA TCT ATC CAA
                    CTC GAG CGT CAG TAC CGT GGA CCG CAT AGA TAG GTT
    Fragments from
                    GAG-CT
    pA222 and A197
                    Cp
   cut w/ Pstl, Sstl:
     pΔ222, A197
                   GAG CTC GAT GTC ATG GCA CCT GGC GTA TCT ATC CAA
      cut & ligated
                   CIC GAG CIA CAG TAC CGT GGA CCG CAT AGA TAG GIT
    w/oligodeoxy-
   aucleotide pools:
                   207
       W.T A.A.:
                                210
                   Ser Thr Leu Pro Gly Asn Lys Tyr Gly Ala Tyr Asn
                  AGC ACG CTT CCT GGA AAC AAA TAC GGG GCG TAC AAC
      W.T. DNA:
                  TCG TGC GAA GGA CCT TTG TTT ATG CCC CGC ATG TTG
     DΔ222DNA:
                  AGC ACG CTT CCT GGA AAC AAA TAC GGG GCG TAC AAC
                  TCG TGC GAA GGA CCT TIG TTT ATG CCC CGC ATG TTG
     A197 DNA:
                  AGC ACG CTT CCT GGA AAC AAA TAC GGG GCG TAC AAC
                  ICG IGC GAA GGA CCT TIG TIT ATG CCC CGC ATG TTG
  Fragments from
  pd 2222 and A 197
                  AGC ACG CTT CCC GGG AAC AAA TAC GGG GCG TAC AAC
 cut w/ Pstl, Sstl:
                 TCG TGC GAA GGG CCC TTG TTT ATG CCC CGC ATG TTG
                  219 220
     W.T A.A.:
                  Gly Thr Ser Met Ala Ser Pro His Val Ala Gly Ala
    W.T. DNA:
                  GGT ACG TCA ATG GCA TCT CCG CAC GTT GCC GGA GCG-3'
                 CCA TGC AGT TAC CGT AGA GGC GTG CAA CGG CCT CGC-5'
                 GGT ACC TCA-----CG CAC GCT GCA GGA GCG-3'
    PΔ222DNA:
                 CCA TGG AGT------GC GTG CGA CGT CCT CGC-5'
    A197 DNA:
                 GGT ACG TCA ATG GCA TCT CCG CAC GTT GCC GGA GCG-3
                 CCA TGG AGT TAC CGT AGA GGC GTG CAA GTG CCT CGC-5'
 Fragments from
 p∆222 and A197
cut w/ Psil, Ssil:
                                                         PGGA GCG-3
                                                    A CGT CCT CGC-5'
  pA222, A197
                GGT ACC TCA ATG GCA TCT CCG CAC GTT GCA GGA GCG-3'
  on & ligated
                CCA TGG AGT TAC CGT AGA GGC GTG CAA CGT CCC-5'
 W/ oligodeoxy-
aucleouide pools:
                                                    Psil destroyed
```

Oligodeoxynucleotide pools synthesized with 2% contaminating nucleotides in each cycle to give -15% of pool with 0 mutations, -28% of pool with single mutations, and -57% of pool with 2 or more mutations, according to the general formula $f = \frac{\mu^n}{n!} e^{-\mu}$.

ATC CAĞ TÇĞ ACG CTT CCT GGĞ AAC AĞA-3' TAG GTC AGC TGC GAA GGA CCC TTG TCT-5'

5'-GAG CTC GAT CTC ATG GCA CCT GGG GTA 3'-CIC GAG CIA CAG TAC CGT GGA CCG CAT

deoxymucleotide pools;

ligated with oligo.

Smal-

Stop, Y, H, Q, N, K, D or $E \leftarrow \begin{bmatrix} G \end{bmatrix} TN$ or $\begin{bmatrix} G \end{bmatrix} AN \rightarrow L$, F, I, V or M

3'-CTC GAA CTA CAG TAC CGT GGA CCG CAT AGA TAG GTT TCG TGC GAA GGA CCT TTG TTT-5' 5'-GAG CTT GAT GTC ATG GCA CCT GGC GTA TCT ATC CAA AGC ACG CTT CCT GGA AAC AAA-3' 5'-<u>gag ct</u>c gat gtc atg gca cct ggc gta tgt atc caa agc acg ctt <u>ccc gg</u>g aac aga-3' 3'-ctc gag cta cag tac cgt gga ccg cat aca tag gtt tcg tgc gaa ggg ccc ttg tct-5' GGG AAC AGA-3' CCC TTG TCT-5. Glu Leu Asp Val Met Ala Pro Gly Val Ser Ile Glu Ser Thr Leu Pro Gly Asn Lys Smal 5'-GAG CT 3'-C with Sstl and Smal: C204/R213 DNA: Wild type A.A.: Wild type DNA: C204/R213 cut and C204/R213 cut

F16.-37

11) Publication number:

0 251 446

A3

(12)

EUROPEAN PATENT APPLICATION

21) Application number: 87303761.8

22 Date of filing: 28.04.87

(5) Int. Cl.³: **C** 12 N 15/00 C 12 N 9/54, C 12 N 1/00

- 30 Priority: 30.04.86 US 858594 06.04.87 US 35652
- 43 Date of publication of application: 07.01.88 Bulletin 88/1
- (8B) Date of deferred publication of search report: 23.11.88
- 84 Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE
- 71 Applicant: GENENTECH, INC. 460 Point San Bruno Boulevard South San Francisco California 94080(US)
- 12 Inventor: Wells, James Allen 64 Otay Avenue San Mateo CA 94403(US)
- (72) Inventor: Cunningham, Brian C. 24 Olive Avenue Piedmont CA 94611(US)
- 72 Inventor: Caldwell, Robert Mark 1828 Broadway No.101 San Francisco Ca 94109(US)
- 72 Inventor: Bott, Richard Ray 3032 Hillside drive Burlingame CA 94010(US)
- 72 Inventor: Estell, David Aaron 250 Diablo Avenue Mountan View CA 94043(US)
- 2 Inventor: Power, Scott Douglas 732 Olive Court San Bruno CA 94066(US)
- (74) Representative: Marlow, Nicholas Simon et al, Reddie & Grose 16, Theobalds Road London WC1X 8PL(GB)
- (54) Non-human Carbonyl hydrolase mutants, DNA sequences and vectors encoding same and hosts transformed with said
- (5) Novel carbonyl hydrolase mutants derived from the amino acid sequence of naturally-occurring or recombinant non-human carbonyl hydrolases and DNA sequences encoding the same. The mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to encode the substitution, insertion or deletion of one or more amino acids in the amino acid sequence of a precursor carbonyl hydrolase. Such mutants have one or more properties which are different than the . same property of the precursor hydrolase.

ш

EUROPEAN SEARCH REPORT

Application Number

	DUCUMENTS CO	NSIDERED TO BE RELE	VANT	EP 87 30 :
Category	I amadon of adequirent &	rith indication, where appropriate,	Reievan	CLASSIFICATION
X,D	EP-A-0 130 756 * Claims 11,12,15	CENENTECH THE	2,3,6-	APPLICATION (Int. Cl. 4)
	ABSTRACTS OF THE CHEMICAL SOCIETY 190, 1985, page 2 et al.: "Protein subtilisin" * Abstract *	NATIONAL MEETING, vol.	1-3,8-	C 12 N 9/54 C 12 N 1/00
E F III	JOURNAL OF CELLUL SUPPL., vol. 0, no page 271, no. E101 PROTEASES IN BIOLO BIOTECHNOLOGY, 15t MEETING ON MOLECUL BIOLOGY, Los Angel BIOLOGY, Los Angel BEDRUARY 1986; P. Protein engineeri Proteases of enhance Abstract *	D. 10, part A, 1986, SYMPOSIUM ON DGICAL CONTROL AND H ANNUAL UCLA, AR AND CELLULAR es, CA., 9th-15th BRYAN et al.:	1-5,8-	
þ.	ORLD BIOTECH. REPO ages 51-59, Online inner, GB; R. BOTT rystallographic an ite-specific mutan	Modeling &	4,8-10	TECHNICAL FIELDS SEARCHED (Int. Cl.4) C 12 N C 12 P
X III ,X JO SU pa ES pro	DEM OURNAL OF CELLULAR PPL., vol. 0, no. ge 200, no. NO24, TELL et al . "Tais	BIOCHEMISTRY 11, part C, 1987,	6,8-10 2,3,4,5 ,8-10	
Piace	present search report has bee	n drawn up for all claims Date of completion of the search		
THE HA		09-08-1988		TEN A.J.
: particularly : particularly document of : technologic : non-writter	GORY OF CITED DOCUMENT: y relevant if taken alone y relevant if combined with anothe of the same category al background in disclosure e document	S I: theory or principle E: earlier patent docu after the filing dat D: document cited for L: document cited for	underlying the invenment, but published of the application other reasons	tion on, or

EUROPEAN SEARCH REPORT

Application Number

	DOCUMENTS C	ONSIDERED TO BE RELEV		EP 87 30 37
Category	Cicarton of Gocumen	Of with indication when	7	
P,X		Passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 4)
	1219-1223, Wash WELLS et al.: " specificity by electrostatic i	THE NATIONAL ACADEMY OF ol. 84, March 1987, pages nington, D.C., US; J.A. Designing substrate protein engineering of nteractions"	2-10	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	* Paragraph "Ma	terials and methods" *	- -	
P,X I	BIOCHEMISTRY, vol. 1987, pages 2073 Chemical Society I.W. PANTOLIAND Ingineering of sondinated stabilintroduction of isulfide bond"	ol. 26, no. 8, April 7-2082, American /, Washington, D.C., US; et al.: "Protein subtilisin BPN': zation through the two cysteines to form a	2-10	•
*	Abstract *			
37 BR mu	743-3745, Washir NYAN et al.: "Si Stagenesis and t	ha mala .e	3,8-10	IECHNICAL FIELDS SEARCHED (Int. Cl.4)
	yanion hole in Abstract *	subtilisin"		-
E WO	-A-8 704 461 (/Page 6, line 1	page 8, line 6 *	1,2,3,6	
et enz eng * p	al.: "Tailoring yme catalysis u ineering"	the all all THOMAS	3,8-10	
		-/-		
			-	
The r	resent search			
Place o	search report has b	een drawn up for all claims	1	
THE HAG	UE	Date of completion of the search	Exami	her
		09-08-1988	VAN PUTTE	
particularly particularly document of technological	licala	a : theory or principle i	underlying the invention nent, but published on, o	
	lisclosure document			1

PO PORM 1503 03.82 (POK01)

EUROPEAN SEARCH REPORT

Application Number

 	DUCUMENTS CON	SIDERED TO BE RELEV	ZANT	EP 87 30
Category	Citation of document wit of relevant	h indication where	Relevant	CLASSIFICATION OF THE
Ε	WO-A-8 705 050 (0 * Page 18 *		1,2,3,8	APPLICATION (Int. Cl. 4)
A	Society for Microb D.C., US; M.L. STA "Replacement of th	e Bacillus subtilis		•
	al.: "Cloning sec	pages /911-7925, IRL ye, GB; J.A. WELLS et Jencing, and		
		·		
	•			TECHNICAL FIELDS SEARCHED (Int. Cl.4)
	•	•		
Th	e present search report has been	drawn up for all al-		
Pia	ts of search	Date of completion of the search		1
THE H		09-08-1988	VAN PUTT	
particular particular document technolog	GORY OF CITED DOCUMENTS rly relevant if taken alone rly relevant if combined with another of the same category ical background en disclosure	E : earlier patient document cited in L : document cited for	underlying the invention iment, but published on, e the application other reasons	OF -2
intermedia	ate document	& : member of the sam	ne patent family, correspo	