5 הרצאה

אלגוריתם Prim אלגוריתם

תזכורת - האלגוריתם:

$$1.T \leftarrow \emptyset, S \leftarrow \{s\}$$

 $2.\text{while}S \neq V$:

$$2.1\,e=(u,v) \text{ e is the lightest edge crossing } \mathsf{J}S,\overline{S}) \text{ assuming } u\in S,v\notin S$$

$$2.2\,T\leftarrow T\cup\{e\},\quad S\leftarrow S\cup\{v\}$$

3.Return T

?Prim כיצד נממש את האלגוריתם

נשמור את צמתי Sבערימה מינימום. הערך והמפתח של צומת vבערימה בערימת מינימום. בערימת הקלה ביותר שנוגעת בו ומחברת אותו ל-S (אם לא קיימת קשת כזו ערך המפתח יהיה ∞ .). אתחול:

 ${\cal O}$ יהיה ${\cal S}$ המפתח של

 ∞ המפתח של כל צומת אחר יהיה

:צעד

סיבוכיות:

$$O(|E \log |V|)$$

:Kruskal האלגוריתם של

$$w(e_1) \leq w(e_2) \leq \cdots \leq w(e_m)$$
 : מיין את הקשתות. 1 $T \leftarrow \emptyset$

$$:m$$
 עד $i=1$ -ם.

$$T \leftarrow T \cup \{e_i\}$$
 אם $T \cup \{e_i\}$ אם לא מכיל מעגלים אזי

.T את החזר את

משפט:

האלגוריתם של Kruskal מחזיר עץ פורש מינימום.

הוכחה:

נראה שהאלגוריתם של Kruskal הוא מימוש מסוים של השיטה הכללית. כלומר אם נצבע בכחול כל קשת שהאלגוריתם מוסיף ל-T ונצבע באדום כל קשת שהאלגוריתם לא מוסיף ל-T, נקבל הפעלה חוקית של הכללים. ממחלק לשני מקרים:

- ברגע שהאלגוריתם בוחן את $T \cup \{e_i\}$ מתקיים: $T \cup \{e_i\}$ מכיל מעגל C נשים לב שבמעגל C כל הקשתות שייכות ל-C (פרט ל- e_i), כלומר כולן צבועות בכחול לפי הכלל האדום, ניתן לצבוע באדום את הקשת הכבדה ביותר ב-C מבין הקשתות הלא-צבועות. e_i היא הקשת היחידה ב-C שאינה צבועה ולכן צביעתה באדום היא הפעלה חוקים של הכלל האדום.
 - לא נסגרת מעגל $T \cup \{e_i\}$ -ם: ב-גע שהאלגוריתם בוחן את הקשת e_i את בוחן את ב-גע

 $S = \{x | \text{there is a path from } x \text{ to } u \text{ in } T \}$ נתבונן בתחום:

- .(א) $u \in S$ (א)
- $v \in S$ נניח השלילה כי $v \notin S$ (ב) $v \notin S$ נניח זאת: נניח v- יש ב-T מסלול (כחול) בין $v \notin S$ מכיל מעגל וזו סתירה. $T \cup \{e_i\} \notin S$
- (x) למה אין קשת כחולה שחוצה את S? נניח בשילה שיש קשת כחולה (x,y) כך שמתקיים $x\in S,y\notin S$ יש מסלול כחול בין $x\in S$ נשרשר למסלול זה את הקשת $x\in S$ וקבלנו מסלול כחול בין $x\in S$ וז סתירה לכך ש $x\in S$ וקבלנו מסלול כחול בין $x\in S$ וז סתירה לכך ש $x\in S$ $y\notin S$ שאלה: מדוע אין אף קשת $x\in S$ שחוצה את $x\in S$, אינה צבועה וגם $x\in S$ אם זה קורה, $x\in S$ שהייתה צריכה להיצבע באיטרציה קודמת וזו סתירה. $x\in S$ וו הפעלה חוקית של הכלל הכחול.

? כיצד ניתן לממש את האלגוריתם

(V,T) הרעיון: הכל איטרציה נרצה לשמור את רכיבי הקשירות של union find-נשתמש ב-משטריד בכל איטרציה:

- 1. לבדוק האם שני רכיבי קשירות באותה קבוצה.
 - 2. אולי לאחד שני רכיבי קשירות.
 - $.O(|E|\log|V|)$ סה"כ סיבוכיות: \leftarrow

מסלולים קלים ביותר

נתון:

 $W:E o\mathbb{R}$ מכוון מכוון ,G=(V,E) פונקציית

 $[w(p) \stackrel{\triangle}{=} \sum\limits_{e \in p} w(e)]:$ של של מסלול p מוגדר להיות סך משקלי הקשתות ב-p

t-t מהו מים ביותר המסלול הקל ו-t, מהו המסלול שני צמתים t

דוגמה:

מסלול קל ביותר = 6.

- אזי ממש מאפס, בו קטן משקלי הקשתות שסכום מאפס, אזי \star מרחקים קלים ביותר לא בהכרח מוגדרים).
 - .BFS נפתר ע"י $\forall e \in E$ w(e)=1 -ש הערה: המקרה \star

. אם p גם הוא קל ביותר מ-v, כל תת-מסלול של מסלול קל ביותר מ-v, כל תת-מסלול אם מסלול קל ביותר מ-v

:p נסתכל על

 $p:\,u=u_0\stackrel{e_1}{ o}u_1\stackrel{e_2}{ o}u_2 o\cdots o u_{k-1} o u_k=v$ נתבונן בתת-המסלול מ- u_i ל-

 $u \overset{p'}{\rightarrow} u_i \overset{p_{ij}}{\rightarrow} u_j \overset{p''}{\rightarrow} v :$ מתקיים: $w(p) = w(p') + w(p_{ij}) + w(p'')$ נניח בשלילה ש- p_{ij} אינו קל ביותר. $w(q) < w(p_{ij})$ - ש מסלול u_i - מ ל u_i - u_i -

 $u\stackrel{p'}{ o}u_i\stackrel{q}{ o}u_j\stackrel{p''}{ o}v$ נבנה מסלול חדש מ-u ל-u באופן הבא: w(p)=w(p')+w(q)+w(p'') שאורכו:

וזו סתירה סתירה

vל מ-ש ביותר המסלול הקל את אורך את $\delta(u,v)$ -ם נסמן

$$\delta(u,v) = \begin{cases} \infty & v \text{ is not reachable from } u \\ -\infty & \text{"negative" circle reachable from } u \\ & \text{and v reachable from the circle} \end{cases}$$

$$\min\{w(p): p = \text{path from } u \text{ to } v\} \quad \text{otherwise}$$

