The spark foundation ¶

Data Science & Business Analytics intern (July-2022)

Author: Priti kolkante

Task 1: Prediction using supervised ML

```
In [20]: # Importing all required Libraries

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
```

```
In [21]: # Reading the data

data='http://bit.ly/w-data'
df=pd.read_csv(data)
df.head()
```

Out[21]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30

```
In [22]: # Checking for null values
df.isnull().sum()

Out[22]: Hours    0
    Scores    0
    dtype: int64

In [23]: plt.figure(figsize=(10,5))
    sns.set_style('darkgrid')
    plt.scatter(x=df['Hours'],y=df['Scores'])
    plt.title('Marks scored vs Study hours',size=20)
    plt.xlabel('Hours Studied',size=10)
    plt.ylabel('Marks Scored',size=10)
    plt.show()
```



```
In [24]: fig=plt.figure(figsize=(10,5))
    sns.regplot(x='Hours',y='Scores',data=df)
    plt.title('Regression plot',size=20)
    plt.xlabel('Hours Studied',size=10)
    plt.ylabel('Marks Scored',size=10)
    plt.show()
```


In [25]:	df.corr()
----------	-----------

Out[25]:	Hours		Score
	Hours	1.000000	0.97619

Scores 0.976191 1.000000

It's confirmed that the variables are positively correlated.

Training Model

```
In [26]: # Splitting the data
         x=df.drop(columns=['Scores'])
         y=df['Scores']
In [27]: # spliting it into train and test sets
          x train,x test,y train,y test = train test split(x,y,test size=0.25)
In [28]: # Training the model
          linear=LinearRegression()
          linear.fit(x_train,y_train)
          predicitions=linear.predict(x test)
          print('Training completed')
         Training completed
In [32]: # Testing Module
          predict=linear.predict(x_test)
          prediction=pd.DataFrame({'Hours':x_test['Hours'], 'Predictied Marks':predict})
          prediction
Out[32]:
              Hours Predictied Marks
           2
                 3.2
                          33.378209
           20
                 2.7
                          28.442596
                 3.5
                          36.339576
           13
                 3.3
                          34.365331
                 5.9
           11
                          60.030516
                          26.468351
           16
                 2.5
           5
                1.5
                          16.597126
```

```
In [33]: # Comparing it with actual marks
    compare=pd.DataFrame({'Hours':x_test['Hours'], 'Actual Marks':y_test ,'Predictied Marks':predict})
    compare
```

Out[33]:		Hours	Actual Marks	Predictied Marks
	2	3.2	27	33.378209
	20	2.7	30	28.442596
	4	3.5	30	36.339576
	13	3.3	42	34.365331
	11	5.9	62	60.030516
	16	2.5	30	26.468351
	5	1.5	20	16.597126

```
In [36]: plt.scatter (x=x_test,y=y_test,color='red')
   plt.plot(X=x_test,Y=predict,color='Black')
   plt.title('Actual vs Predictions',size=20)
   plt.xlabel('Hours Studied',size=10)
   plt.ylabel('Marks Scored',size=10)
   plt.show()
```


Evaluating Model

```
In [38]: print('Mean error is:',mean_absolute_error(y_test,predict))
print('Small value of mean absolute error state that the chances of error or incorrect forcasting through the model is verified to the state of the state of
```

Mean error is: 4.401980529060308 Small value of mean absolute error state that the chances of error or incorrect forcasting through the model is very le ss

Finding predicted score of student who have studied for 9.25 hours/day