



# Preparation of hollow Ag/Pt heterostructures on TiO<sub>2</sub> nanowires and their catalytic properties

Liangshu Jiang<sup>a</sup>, Wenhao Zhu<sup>a</sup>, Chaoyang Wang<sup>a</sup>, Wenjun Dong<sup>a,b,\*</sup>, Longfei Zhang<sup>a</sup>, Ge Wang<sup>b,\*</sup>, Benyong Chen<sup>a</sup>, Chaorong Li<sup>a</sup>, Xiaobo Zhang<sup>a</sup>

<sup>a</sup> Center for Nanoscience and Nanotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, China

<sup>b</sup> Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

## ARTICLE INFO

### Article history:

Received 30 March 2015

Received in revised form 12 June 2015

Accepted 17 June 2015

Available online 23 June 2015

### Keywords:

Ag/Pt

Heterostructure

Hollow

Interfaces

Catalytic property

## ABSTRACT

A novel titanate (TiO<sub>2</sub>) nanowire (NW)@hollow silver (Ag)/platinum (Pt) heterostructure was fabricated by means of a simple wet chemical method. Briefly, Ag nanoparticles with ~20 nm in diameter were grown onto TiO<sub>2</sub> nanowires, subsequently PtO shells with ~1 to 4 nm in thickness were deposited upon the Ag nanoparticles to form TiO<sub>2</sub>–NW@Ag–NP@PtO<sub>x</sub> nanostructures. The hollow Ag-/PtO<sub>x</sub> nanostructures were achieved from Ag-NP@PtO nanostructures by outward diffusion of Ag elements from Ag-NP core to PtO shell via H<sub>2</sub>O<sub>2</sub> treatment. Finally, hollow Ag/Pt heterostructures with diameter of approximately 20 nm were synthesized by reduction of the hollow Ag-/PtO<sub>x</sub> nanostructures. Given the accessible interfaces of bimetallic Ag/Pt shell, the catalytic efficiency of the TiO<sub>2</sub> NW@hollow Ag/Pt heterostructures was significantly enhanced, which was confirmed by the hydrogenation of *p*-nitrophenol into *p*-aminophenol with NaBH<sub>4</sub> as reducing agent in aqueous phase. The conversion rate of *p*-nitrophenol was yielded as high as ~95% for 9 min under ambient atmosphere and room temperature.

© 2015 Elsevier B.V. All rights reserved.

## 1. Introduction

Multimetallic nanostructures [1], in particular bimetallic nanostructures, have attracted considerable interest owing to their remarkable electronic [2], optical [3], and catalytic [4] properties. Of these, the complex bimetallic heteronanostructures with diverse morphologies, such as core-shell nanoparticles [5,6], hollow nanospheres [7–10] and yolk-shell nanostructures [11,12], exhibit outstanding catalytic properties.

To date, a variety of bimetallic nanostructures have been fabricated for catalytic applications [13]. Ag-doped Pt nanoparticle catalysts were synthesized to perform high hydrogen activation in transformation C<sub>2</sub>H<sub>2</sub> to C<sub>2</sub>H<sub>4</sub> at high reaction temperatures, by utilizing their inherent phase-segregation-function to provide preferential access to chemically selective C<sub>2</sub>H<sub>2</sub> hydrogenation sites [14,15]. Concave Au@Pt nanocubes with a unique plasmonic optical property exhibit an improved catalytic activity, which is attributed to the large surface area, rich atomic steps and the syn-

ergistic effect between Au and Pt [16]. Recent research work also confirms that the introduction of bimetallic interfaces, such as bimetallic hollow structures, improves the catalytic performance of metal catalysts to a great magnitude, and increases the surface area and the utilization efficiency of new metal catalysts [17]. Particularly, the bimetallic interface between Ag and Pt with different work functions facilitates an electron relay system, which opens up a pathway for diverse intermediate steps in the reaction of adsorbed species and enhancement in the activity of Pt/Ag catalysts [18]. Similarly, bimetallic hollow nanostructures greatly enhance the accessible interface, which also improves the electron transfer property for high catalytic activity. For example, Co-Pt hollow spheres exhibit a unique electrocatalytic activity toward methanol oxidation in comparison with ordinary Co-Pt nanoparticle counterparts [19]. Hollow Pt-Ni nanospheres with electron-deficient Pt active sites can enhance the catalytic activity of liquid-phase *p*-chloronitrobenzene hydrogenation to *p*-chloroaniline [20]. However, the synthesis of hollow hetero-nanostructures with bimetallic interfaces and various work functions to improve the catalytic activity and accessible interfaces remain a challenge.

\* Corresponding authors at: Center for Nanoscience and Nanotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, China. Fax: +86 010 62333827.

E-mail addresses: [wdong@ustb.edu.cn](mailto:wdong@ustb.edu.cn) (W. Dong), [gewang@mater.ustb.edu.cn](mailto:gewang@mater.ustb.edu.cn) (G. Wang).

In this work,  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures were synthesized to perform a desirable catalytic function. In a typical preparative process, Ag nanoparticles were grown on  $\text{TiO}_2$  nanowires, followed by the deposition of PtO shells on the Ag– $\text{TiO}_2$  system to form  $\text{TiO}_2$  NW@Ag–NP@PtO nanostructures. Subsequently, hollow feature of the Ag–/PtO<sub>x</sub> nanostructures were realized by outward diffusion of Ag elements from Ag–NP core to PtO<sub>x</sub> shell. Finally, hollow Ag/Pt heterostructures were obtained by the reduction of the hollow Ag–/PtO<sub>x</sub> nanostructures. Interestingly, the step by step reaction avoids the formation of Ag/Pt alloy structure, and the catalytic efficiency of the hollow Ag/Pt heterostructures is greatly enhanced due to the bimetallic and accessible interface between Ag and Pt. Furthermore,  $\text{TiO}_2$  nanowires, as a catalyst support, can eliminate the aggregation of active Ag/Pt particles and realize essential reusability of the catalyst. The  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures with numerous accessible interfaces of metallic components demonstrate an excellent catalytic performance to hydrogenate *p*-nitrophenol with NaBH<sub>4</sub> as reducing agent in aqueous phase.

## 2. Experimental

### 2.1. Reagents

$\text{AgNO}_3$ ,  $\text{K}_2\text{PtCl}_4$ , NaOH,  $\text{NH}_3\cdot\text{H}_2\text{O}$ , ethanol,  $\text{H}_2\text{O}_2$  and trisodium citrate were purchased from Sigma–Aldrich, and all the reagents were used without further purification.  $\text{TiO}_2$  nanowires were synthesized according to the previously reported method [21].

### 2.2. Preparation of $\text{TiO}_2$ NW@Ag–NP@PtO nanostructures

$\text{TiO}_2$  NW@Ag–NP@PtO nanostructures were prepared by a solution reaction. Firstly,  $\text{TiO}_2$  nanowires were added to a mixed solution containing 20 mL absolute ethanol and 20 mL  $\text{Ag}(\text{NH}_3)_2\text{NO}_3$  (0.10 mol/L) solution under vigorous magnetic stirring at room temperature, and the mixture was further stirred for 30 min at 70 °C.  $\text{TiO}_2$  NW@Ag NP nanostructures were obtained by filtration, rinsed with deionized water and dried at 70 °C for 5 h. Subsequently, 20 mL  $\text{K}_2\text{PtCl}_4$  aqueous solution was refluxed with stirring at 110 °C for 60 min in oil bath. Afterwards, the  $\text{TiO}_2$  NW@Ag NP nanostructures were added into  $\text{K}_2\text{PtCl}_4$  solution and stirred for 10 min. Finally, 80  $\mu\text{L}$  aqueous trisodium citrate solution (38.8 m mol/L) was added to this solution quickly. The mixture was refluxed for 60 min to obtain the  $\text{TiO}_2$  NW@Ag–NP@PtO nanostructures, and then naturally cool down to room temperature.  $\text{TiO}_2$  NW@Ag–NP@PtO nanostructures were collected and rinsed with deionized water.

### 2.3. Preparation of $\text{TiO}_2$ NW@hollow Ag/Pt heterostructures

$\text{TiO}_2$  NW@Ag–NP@PtO nanostructures were added into 10 mL  $\text{H}_2\text{O}_2$  solution (15 wt%) and stirred for a few minutes, and then  $\text{TiO}_2$  NW@hollow Ag/PtO<sub>x</sub> nanostructures were obtained. Finally, the  $\text{TiO}_2$  NW@hollow Ag/PtO<sub>x</sub> nanostructures were added into 10 mL aqueous NaBH<sub>4</sub> solution (0.10 mol/L).  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures were collected, rinsed with deionized water and dried in air.

### 2.4. Characterizations and catalytic activities of the yielded products

Morphology and size of the products were characterized using JEOL JEM 2010 transmission electron microscopy (TEM), equipped with energy-dispersive X-ray spectroscopy (EDX) for determination of chemical composition. The samples for TEM measurements

were prepared by dispersing the suspension containing target samples in distilled water and dried on a porous carbon film. X-ray photoelectron spectroscopy (XPS, VG ESCALAB MKII) was used for elemental analysis using non-monochromatized Al-K $\alpha$  X-ray ( $h\nu = 1486.6\text{ eV}$ ) as excitation source. The obtained binding energies were corrected by referencing the C1s to 284.7 eV.

To study the catalytic activity of the synthesized products, a freshly prepared aqueous solution of NaBH<sub>4</sub> (1.00 mL, 0.1 mol/L) was added into 50.0 mL of *p*-nitrophenol aqueous solution ( $1 \times 10^{-4}$  mol/L) under constant stirring at room temperature. Later, 1.5 mg of each catalyst (*i.e.*  $\text{TiO}_2$  NW@hollow Ag–/PtO<sub>x</sub>,  $\text{TiO}_2$  NW@Ag–NP@PtO,  $\text{TiO}_2$  NW@Ag NP and  $\text{TiO}_2$  NW@Pt NP) was added in the above mixture, respectively. Moreover, excessive NaBH<sub>4</sub> in the mixture can quickly reduce the  $\text{TiO}_2$  NW@hollow Ag–/PtO<sub>x</sub> catalysts ( $\text{TiO}_2$  NW@Ag–NP@PtO catalysts) to  $\text{TiO}_2$  NW@hollow Ag/Pt catalysts ( $\text{TiO}_2$  NW@Ag NP@Pt catalysts) with 100% yield rate. The mixture was collected at an interval of reaction time, and UV–vis absorption spectra were recorded to monitor the reaction (Hitachi U-3900 UV–vis spectrophotometer). The catalysts were collected, rinsed with deionized water, and dried in vacuum for 12 h for the next catalysis run under identical conditions.

## 3. Results and discussion

### 3.1. Structural and morphological characterization

TEM image (Fig. 1a) of the  $\text{TiO}_2$  NW@Ag NP nanostructures, synthesized by mixing  $\text{TiO}_2$  NW and  $\text{Ag}(\text{NH}_3)_2\text{NO}_3$  in ethanol aqueous solution at 70 °C for 30 min, illustrates the Ag nanoparticles, with a diameter of 10~30 nm, were orderly grown onto  $\text{TiO}_2$  nanowires (inset in Fig. 1a). EDX analysis confirms that only Ti, Ag and O elements were present in the  $\text{TiO}_2$  NW@Ag NP nanostructures, indicating that the Ag nanoparticles were modified on  $\text{TiO}_2$  NW (Fig. 1b). When PtO layers were subsequently deposited onto the individual Ag nanoparticles on the surface of the  $\text{TiO}_2$  NW,  $\text{TiO}_2$  NW@Ag–NP@PtO nanostructures were obtained (Fig. 1c). However, Ag–NP was transferred into Ag/AgCl composites due to low stability of Ag nanoparticles at 110 °C. TEM image of the  $\text{TiO}_2$  NW@Ag–NP@PtO nanostructures (inset in Fig. 1c) reveals that the PtO layers of about 2 nm in thickness covered the Ag–NP. EDX spectrum of  $\text{TiO}_2$  NW@Ag–NP@PtO nanostructures, suggesting that the PtO layers were deposited on Ag cores (Fig. 1d). However, the low stability of Ag–NP@PtO nanostructures when being exposed to 200 kV electron beam irradiation inside TEM chamber, and the decomposition of AgCl into Ag nanoparticles [22], led to the formation of Ag@PtO yolk–shell nanostructures (inset in Fig. 1c), which is similar to the previous study [23]. When the Ag–NP@PtO nanostructures were immersed into  $\text{H}_2\text{O}_2$  aqueous solution, Ag began immigrating from Ag–NP core (Ag/AgCl composites) toward PtO shell, and hollow Ag–/PtO<sub>x</sub> nanostructures were obtained within 7 min. Finally, uniform hollow Ag/Pt heterostructures modified on  $\text{TiO}_2$  NW (Fig. 1e) were synthesized by reduction of Ag–/PtO<sub>x</sub> into Ag/Pt with the aid of NaBH<sub>4</sub>, and the SEM and TEM images with larger area were provided as follows (SI Fig. S1). TEM image of the  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures unveils that hollow Ag/Pt heterostructures were about 20 nm in diameter and 5 nm in thickness (inset in Fig. 1e). The  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures contain Ti, Ag, Pt and O (Fig. 1f).

### 3.2. Chemical composition analysis

Chemical state of Pt plays an important role in performing its catalytic activity [24,25]. As such, XPS was employed to determine



**Fig. 1.** Representative TEM images and EDX spectra of (a, b)  $\text{TiO}_2$  NW@Ag NP nanostructures, (c, d)  $\text{TiO}_2$  NW@Ag-NP@PtO nanostructures and (e, f)  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures.

the chemical state of the synthesized products, and to elucidate the catalytic performance. The survey spectra (SI Fig. S2) conform the presence of Pt, Ag, Ti, O elements. XPS spectra of Pt (4f) in the products ( $\text{TiO}_2$  NW@Ag-NP@PtO,  $\text{TiO}_2$  NW@hollow Ag-/PtO<sub>x</sub> and  $\text{TiO}_2$  NW@hollow Ag/Pt) are depicted in Fig. 2a. A peak shift of 2.0 eV of Pt 4f<sub>7/2</sub> from the lower (72.8 eV) to the higher (74.8 eV) binding energy clearly indicates that oxidization of  $\text{Pt}^{2+}$  into  $\text{Pt}^{4+}$  took place during the immersion of  $\text{TiO}_2$  NW@Ag-NP@PtO nanostructures in  $\text{H}_2\text{O}_2$  aqueous solution. Regarding to  $\text{TiO}_2$  NW@hollow Ag-/PtO<sub>x</sub> catalyst, Pt(4f<sub>7/2</sub>) peaks at 72.8 and 74.8 eV can be attributed to  $\text{Pt}^{2+}$ (PtO) and  $\text{Pt}^{4+}$ (PtO<sub>2</sub>), respectively [26,27]. Moreover, majority of Pt presents as  $\text{Pt}^{4+}$ . XPS spectra of Pt in the  $\text{TiO}_2$  NW@hollow Ag/Pt catalyst demonstrate that the PtO<sub>x</sub> was reduced to Pt<sup>0</sup> by NaBH<sub>4</sub>. XPS spectrum of Ag in the  $\text{TiO}_2$  NW@Ag-NP@PtO shows that Ag was dispersed in  $\text{Ag}^+$  and  $\text{Ag}^0$  (Fig. 2b) [22], which is in agreement with the XRD results (SI Fig. S3). A slight shift of the Ag 3d<sub>5/2</sub> binding energy in the  $\text{TiO}_2$  NW@hollow Ag-/PtO<sub>x</sub> catalyst from that of the  $\text{TiO}_2$  NW@Ag-NP@PtO catalyst suggests that an oxidizing reaction occurred, transforming  $\text{Ag}^0$  ( $\text{Ag-NP}$ ) into  $\text{Ag}^+$ . Furthermore, the XPS spectrum of Ag in the  $\text{TiO}_2$  NW@hollow Ag/Pt catalyst indicates that  $\text{Ag}^+$  was reduced to  $\text{Ag}^0$  by NaBH<sub>4</sub>.

### 3.3. Formation mechanism of $\text{TiO}_2$ NW@hollow Ag/Pt heterostructures

The formation process of  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures was illustrated in Scheme 1. At the initial stage, Ag nanoparticles with approximately 20 nm in diameter were grown onto  $\text{TiO}_2$  NW, and followed by the deposition of PtO shells with ~1 to 4 nm in thickness upon the Ag nanoparticles to yield  $\text{TiO}_2$  NW@Ag-NP@PtO nanostructures. When the Ag-NP@PtO nanostructures were exposed to  $\text{H}_2\text{O}_2$  solution, the dominant chemical potential difference between Pt and Ag drove the occurrence of outward diffusion of Ag elements from Ag-NP core toward PtO<sub>x</sub> shell. Given such diffusion effect of Ag, internal Ag core diffused outwards until approaching boundary sites and enlarging voids, and the nucleation and growth of hollow Ag-/PtO<sub>x</sub> nanostructures occurred on the surface of PtO<sub>x</sub> nanostructures. Furthermore, the dissolution of Ag core increased the concentrations of Cl<sup>-</sup> on the locations of etched Ag, leading to the growth of pits by autocatalytic processes [28]. As a result,  $\text{TiO}_2$  NW@hollow Ag-/PtO<sub>x</sub> nanostructures were generated. Finally,  $\text{TiO}_2$  NW@hollow Ag-/PtO<sub>x</sub> nanostructures were reduced by NaBH<sub>4</sub> to form  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures with the accessible interface between Ag



**Scheme 1.** Schematic illustration of the formation mechanism of  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures.



**Fig. 2.** XPS spectra of Pt 4f and Ag 3d regions for  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures (a, a\*),  $\text{TiO}_2$  NW@hollow Ag-/PtO<sub>x</sub> nanostructures (b, b\*) and  $\text{TiO}_2$  NW@Ag-NP@PtO nanostructures (c, c\*).

and Pt. The presence of such interface between two dissimilar metals with different work functions contributes greatly to enhanced the catalytic activity of the bimetallic hollow Ag/Pt nanostructures in two perspectives: (1) providing the accessible interfaces and high surface-to-volume ratio; (2) supplying defects, vacancies and boundaries incurred by the outward diffusion of Ag element from Ag-NP core toward PtO shell [29,30].

### 3.3.1. Reaction of $\text{TiO}_2$ NW@Ag-NP@PtO nanostructures with $\text{H}_2\text{O}_2$

The reaction of  $\text{TiO}_2$  NW@Ag-NP@PtO nanostructures with  $\text{H}_2\text{O}_2$  results in  $\text{TiO}_2$  NW@hollow Ag-/PtO<sub>x</sub> nanostructures.  $\text{H}_2\text{O}_2$

plays a vital role in diffusing Ag element from Ag-NP core to PtO shell [31]. Ag-NP core was oxidized by  $\text{H}_2\text{O}_2$  under acidic condition as indicated by the following reaction:



On the other hand, the produced  $\text{Ag}^+$  diffused from Ag-NP core to PtO<sub>x</sub> shell, and subsequently  $\text{Ag}^+$  was reduced by  $\text{H}_2\text{O}_2$  to ultrafine Ag nanoparticles on the shell. The reaction of  $\text{Ag}^+$  with  $\text{H}_2\text{O}_2$  was confirmed by the continuous bubbles produced in the solution.



Meanwhile, the PtO shells of the  $\text{TiO}_2$  NW@Ag-NP@PtO nanostructures were *in situ* oxidized to PtO<sub>x</sub> (PtO<sub>2</sub> and PtO) in the Ag-/PtO<sub>x</sub> shell by  $\text{H}_2\text{O}_2$ . Recent studies also report that the Pt-oxide prevents the dissolution of Pt in the presence of  $\text{H}_2\text{O}_2$  and  $\text{H}_2\text{O}_2$  facilitates *in situ* oxidation of PtO to PtO<sub>2</sub> [32].

### 3.4. Catalytic activities

Catalytic activities of the synthesized products in terms of reduction of *p*-nitrophenol into *p*-aminophenol with aid of NaBH<sub>4</sub> were investigated, and the conversion process was monitored by UV-vis absorption spectroscopy. In the catalytic reaction, an excessive quantity of NaBH<sub>4</sub> was employed to perform three purposes: (i) reducing  $\text{AgCl}/\text{PtO}_x$  into Ag/Pt within the catalysts; (ii) protecting the *p*-aminophenol from aerial oxidation; and (iii) controlling independent reduction rate regardless the concentration of NaBH<sub>4</sub> [33–35]. Moreover, excessive NaBH<sub>4</sub> can reduce the  $\text{TiO}_2$  NW@hollow Ag-/PtO<sub>x</sub> catalysts ( $\text{TiO}_2$  NW@Ag-NP@PtO catalysts) to  $\text{TiO}_2$  NW@hollow Ag/Pt catalysts ( $\text{TiO}_2$  NW@Ag NP@Pt catalysts) with 100% yield rate within 5 s.

The reducing reaction of *p*-nitrophenol into *p*-aminophenol can be summarized by the following equation:



The reaction of *p*-nitrophenol with NaBH<sub>4</sub> is a thermodynamically favorable process. The electrochemical potential of *p*-nitrophenol/*p*-aminophenol is  $-0.76 \text{ V}_{\text{SCE}}$  and the electrochem-



**Fig. 3.** (a) Successive UV-vis absorption spectra of the reduction of *p*-nitrophenol by NaBH<sub>4</sub> in the presence of the TiO<sub>2</sub> NW@hollow Ag/Pt catalyst at different reaction times, indicating the decrease in the intensity for the peak at 400 nm associated with *p*-nitrophenol as the reduction of the  $\text{--NO}_2$  group to an  $\text{--NH}_2$  group. (b)  $C/C_0$  versus reaction time for the reduction of *p*-nitrophenol, no catalyst, TiO<sub>2</sub> NW@Ag NP, TiO<sub>2</sub> NW@Ag/Pt NP, and TiO<sub>2</sub> NW@hollow Ag/Pt nanostructure catalysts, and the  $k_{app}$  of TiO<sub>2</sub> NW@Ag NP@Pt and the TiO<sub>2</sub> NW@hollow Ag/Pt catalyst (the inset in Fig. 3b).

ical potential of H<sub>3</sub>BO<sub>3</sub>/BH<sub>4</sub><sup>−</sup> is  $-1.33 \text{ V}_{\text{SCE}}$ . However, such a reduction is a kinetically restricted reaction (initiated 2 days later) without the catalyst tested. The absorption spectrum of the aqueous mixture of *p*-nitrophenol and NaBH<sub>4</sub> exhibits a peak at 400 nm that is a characteristic peak of the *p*-nitrophenolate ions. When the catalyst was added into the mixture of *p*-nitrophenol and NaBH<sub>4</sub>, the absorbance peak at shifts from 400 nm down to 300 nm, corresponding to *p*-aminophenol, suggesting the reduction product of *p*-nitrophenol. Fig. 3a depicts the UV-vis absorption spectra of the *p*-nitrophenol reduction by NaBH<sub>4</sub> in the presence of catalyst. The reduction followed a pseudo-first-order reaction due to the presence of excessive NaBH<sub>4</sub>. The values of the rate constants ( $k_{app}$ ) of the catalytic reactions were estimated from the plot of  $\ln A_{400\text{nm}}$  ( $A_{400\text{nm}}$  is the absorbance at 400 nm) versus time. Fig. 3b shows the  $C/C_0$  ( $C_0$  is the initial concentration of *p*-nitrophenol and  $C$  is the concentration of *p*-nitrophenolate as a function of time,  $t$ ) and  $\ln A$  versus reaction time for the reduction of *p*-nitrophenol in the presence of the respective TiO<sub>2</sub> NW@Ag NP, TiO<sub>2</sub> NW@Ag NP@Pt and TiO<sub>2</sub> NW@hollow Ag/Pt catalysts. Apparently, when the TiO<sub>2</sub> NW@Ag NP catalyst was added into the aqueous mixture of *p*-nitrophenol and NaBH<sub>4</sub>, the reaction was finalized by 120 min. When the TiO<sub>2</sub> NW@Ag NP@Pt catalyst was involved, the reaction duration was shortened into 40 min. The  $k_{app}$  of TiO<sub>2</sub> NW@Ag NP@Pt catalyst was  $0.05 \text{ min}^{-1}$  (inset in Fig. 3b). When TiO<sub>2</sub> NW@hollow Ag/Pt catalyst ( $k_{app} = 0.23 \text{ min}^{-1}$ ) was utilized, the reaction was completed within 9 min. The catalytic efficiency of TiO<sub>2</sub> NW@hollow Ag/Pt heterostructures was enhanced due to a larger accessible interface and higher aspect (surface-to-volume) ratio.



**Fig. 4.** (a) Plot of time versus  $\ln A_{400\text{nm}}$  by TiO<sub>2</sub> NW@hollow Ag/Pt heterostructures at different temperatures (*p*-nitrophenol:100 mL, NaBH<sub>4</sub>:2.0 mL, catalyst:1.5 mg); (b) Arrhenius plot of  $\ln k_{app}$  vs  $(1/T)$ .

Fig. 4a shows the plot of  $\ln(C/C_0)$  of TiO<sub>2</sub> NW@hollow Ag/Pt catalysts as a function of time measured at various temperatures. The values of  $k$  at various temperatures (25, 37 and 52 °C) were estimated from the slope of the linear part of the plots, and the activation energy was determined accordingly. Fig. 4b depicts the linear fitting of  $\ln k$  as a function of  $1/T$ , and the apparent activation energy ( $E_a$ ) can be calculated from the Arrhenius equation:

$$\ln k = \ln A - E_a/RT$$

The calculated  $E_a$  value is approximately 52.4 kJ/mol, where  $\ln A$  is the intercept of the line and  $R$  is the constant of gas.

Reusability is an important property for catalysts. Typically, hollow nanostructured catalysts suffer from both low separation efficiency and easy reduced catalytic activity. The hollow Ag/Pt heterostructures decorated on the TiO<sub>2</sub> NW with good stability and dispersibility were designed to enhance the recycling and reusability of the catalysts. After 3 cycles of catalytic hydrogenation of *p*-nitrophenol using TiO<sub>2</sub> NW@hollow Ag/Pt catalyst, the conversion efficiency remains at 90%, and the TiO<sub>2</sub> NW@hollow Ag/Pt still can maintain the morphology of the as-prepared samples, indicating a good stability and outstanding recyclability of the catalyst (SI Fig. S4). After eight cycles of catalytic hydrogenation, the conversion efficiency of the TiO<sub>2</sub> NW@hollow Ag/Pt catalysts remains at 88%, which is slightly lower than that in the first run (93%), indicating an outstanding recyclability of the catalyst (Fig. 5). It demonstrates that the TiO<sub>2</sub> NW@hollow Ag/Pt catalysts are capable of efficient decomposition of organic contaminants for long-lasting and recycle applications.



**Fig. 5.** The correlation of the conversion of *p*-nitrophenol with the number of catalyst recycles.

#### 3.4.1. Effect of Pt/Ag ratio on the reactivity of the catalysts

In terms of the  $\text{TiO}_2$  NW@Ag NP@Pt nanostructures, Ag NPs were a structural pier for the Pt shell, which can increase the utilization of Pt, and enhance the catalytic performance. Fig. 6a depicts the  $C/C_0$  versus reaction time for the reduction of *p*-nitrophenolate in the presence of over  $\text{TiO}_2$  NW@Ag NP,  $\text{TiO}_2$  NW@Pt NP and  $\text{TiO}_2$  NW@Ag NP@Pt catalysts, respectively. Obviously, all the reductions catalyzed by  $\text{TiO}_2$  NW@Ag NP@Pt catalyst proceeded faster than those catalyzed by the  $\text{TiO}_2$  NW@Ag NP and  $\text{TiO}_2$  NW@Pt NP catalyst, indicating that an enhanced catalytic activity derived from its high surface-to-volume ratio and synergistic core/shell effect [36]. The  $\text{TiO}_2$  NW@Ag NP@Pt nanostructured catalysts with various Pt shell thicknesses were obtained by changing the quantity of

$\text{K}_2\text{PtCl}_4$  (SI Fig. S5). In the case of the  $\text{TiO}_2$  NW@Ag NP@Pt nanostructured catalyst prepared by using 20 mL 50  $\mu\text{M}$   $\text{K}_2\text{PtCl}_4$  solution, the Pt shell thickness is 1 nm. When the amount of the Pt precursor increases up to 100  $\mu\text{M}$   $\text{K}_2\text{PtCl}_4$ , the Pt shell thickness increases to 2 nm. With a further increase in the amount of Pt precursor (200  $\mu\text{M}$ ), the Pt shell thickness goes up to 4 nm. The Pt/Ag molar ratio of the composite is 0.13, 0.39 and 0.68, respectively (Table S1). Results reveal that higher amount of Pt source in the precursor solutions elicits both larger the Pt shell thickness and higher Pt/Ag molar ratio. Fig. 6b presents  $k_{app}$  dependence on Pt shell thickness of the  $\text{TiO}_2$  NW@Ag NP@Pt catalysts. The  $\text{TiO}_2$  NW@Ag NP@Pt catalyst (1 nm) exhibits higher catalytic activity compared with  $\text{TiO}_2$  NW@Ag NP@Pt catalyst (2 nm, 4 nm), which indicates that the catalytic efficiency of the  $\text{TiO}_2$  NW@Ag NP@Pt catalyst (1 nm) was enhanced due to the Ag nanoparticles exposure and the synergistic effect between Ag and Pt. In order to control the leaching of Ag, the  $\text{TiO}_2$  NW@Ag NP@Pt catalyst (2 nm Pt shell) was selected as the precursor to generate  $\text{TiO}_2$  NW@hollow Ag/Pt catalyst with satisfactory stability.

#### 3.4.2. Interfacial effect on the reactivity of the catalysts

It is well known that bimetallic nanostructures can enhance the activity of the catalyst, which is attributed to the presence of distinguished interface between dissimilar metals performing different functions [37]. Fig. 6c and d displays the  $C/C_0$  and  $\ln A$  versus reaction time for the reduction of *p*-nitrophenol over the  $\text{TiO}_2$  NW@hollow Ag/Pt catalysts. The rate constant  $k_{app}$  of the  $\text{TiO}_2$  NW@hollow Ag/Pt catalyst was controlled between 0.12 and 0.23  $\text{min}^{-1}$ .  $\text{TiO}_2$  NW@hollow Ag/Pt catalysts exhibit a higher activity than  $\text{TiO}_2$  NW@Ag NP@Pt (Fig. 6), indicating that more bimetallic interfaces were obtained by dispersing Ag nanoparticles dispersed in Pt shells. The inset image in Fig. 6d exhibits the rate constant  $k_{app}$  curve for the reduction of *p*-nitrophenol over  $\text{TiO}_2$  NW@hollow Ag/Pt cata-



**Fig. 6.** (a) Extinction at the peak position for *p*-nitrophenol (400 nm) as a function of time with  $\text{TiO}_2$  NW@Ag NP@Pt nanostructures; (b) Plot of reduction time vs  $\ln(A_{400\text{nm}})$  by  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures used as catalysts; (c) Extinction at the peak position for *p*-nitrophenol (400 nm) as a function of time with  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures catalysts, and the catalytic rate vs reaction time of the  $\text{TiO}_2$  NW@Ag NP@PtO and  $\text{H}_2\text{O}_2$  aqueous (the inset in Fig. 6d).

lysts. When short reaction time ( $\text{TiO}_2$  NW@Ag NP@PtO catalysts and  $\text{H}_2\text{O}_2$  aqueous) was applied (less than 7 min), the catalytic rate increased with reaction time, indicating that the dispersibility of ultrafine Ag nanoparticles in Pt shells was increased and numerous accessible interfaces between Ag and Pt were obtained. However, when reaction time exceeded 7 min, the catalytic rate was decreased with reaction time due to the less accessible bimetal interfaces and the reduced Pt sites (SI Fig. S6). Moreover, the constant molar ratio of Pt/Ag in the  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures catalysts confirms a good stability of the catalyst. The  $\text{TiO}_2$  NW@hollow Ag/Pt catalyst (7 min) exhibited higher catalytic activity due to accessible bimetallic interfaces obtained by the superfine Ag nanoparticles homogenously dispersed in the Pt shell (the inset in Fig. 6d).

On the basis of the above-mentioned experimental results and theoretical analysis, a catalytic mechanism is proposed as illustrated in Scheme 1 (Part 2). According to the traditional theory in terms of the catalytic reduction of *p*-nitrophenol by Ag nanoparticles [38,39], electrons transfer from  $\text{BH}_4^-$  to *p*-nitrophenol through adsorption of the reactant molecules onto the catalyst surface, and the catalytic efficiency is highly dependent on the large surface areas of nanoparticle catalyst. In this regard, the high activity of the  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures catalyst was attributed to the high surface-to-volume ratio and the accessible interfaces between Ag and Pt with different work functions. The catalytic function of Ag is lower than that of Pt. It is well-known that Fermi level alignment occurs whenever two dissimilar metals are put into contact, resulting in charge redistribution [40]. Therefore, electrons leave Ag from a thus depleted region near Pt/Ag interface into Pt, and approach an electron-enriched region. Existence of these surplus/depletion electrons inside the metals facilitates the uptake/release of electrons by molecules that happen to be close to these regions (atop the Ag/Pt hollow nanostructures). The regions with excessive electrons were increased due to more interfaces, which concomitantly increase the possibility for randomly absorbed molecules to give rise to reactions at such regions. On the other hand, the  $\text{TiO}_2$  acted as an electron donor to activate Ag/Pt heterostructures, resulting in a higher electronic density on the Ag/Pt heterostructure surface, thus promoting the catalytic performance of the entire catalyst [41,42]. Therefore, bimetallic interfaces are expected to play as an electron relay system that opens up pathways for diverse intermediate steps in the reaction of adsorbed species. Recent studies provide insights into the improved catalytic activity of bimetal nanostructures [17,18,43]. According to the experimental results, the  $\text{TiO}_2$  NW@hollow Ag/Pt heterostructures offere the accessible Ag/Pt interfaces, which are responsible for the high catalytic efficiency.

#### 4. Conclusions

$\text{TiO}_2$  NW@hollow Ag/Pt heterostructures were synthesized by a simple solution reaction method. Results reveal that the catalytic activity of the  $\text{TiO}_2$  NW@hollow Ag/Pt catalyst is improved due to the accessible interfaces and high surface-to-volume ratio. Meanwhile, the Ag/Pt bimetal nanostructures decorated on the  $\text{TiO}_2$  NW enhance their stability, dispersibility, recycling and reusability. The  $\text{TiO}_2$  NW@hollow Ag/Pt catalyst show an excellent catalytic performance to hydrogenate *p*-nitrophenol with  $\text{NaBH}_4$  as a reducing agent in aqueous phase, which yields the conversion rate of *p*-nitrophenol as high as ~95% within 9 min under atmosphere and room temperature. Notably, the  $\text{TiO}_2$  NW@hollow Ag/Pt catalyst still displays an excellent recycling and reusability even after 8 times reducing reaction of *p*-nitrophenol into *p*-aminophenol.

#### Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51272235, 51436001); National High-tech R&D Program of China(2013AA031702); Program for New Century Excellent Talents in University (NCET-13-0998); Fundamental Research Funds for the Central Universities (230201406500016); Zhejiang Provincial Natural Science Foundation of China (LR12E02001).

#### Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at <http://dx.doi.org/10.1016/j.apcatb.2015.06.033>.

#### References

- [1] S. Guo, X. Zhang, W. Zhu, K. He, D. Su, A. Mendoza-Garcia, S.F. Ho, G. Lu, S. Sun, J. Am. Chem. Soc. 136 (2014) 15026–15033.
- [2] A.T.N. Dao, D.M. Mott, K. Higashimine, S. Maenosono, Sensors 13 (2013) 7813–7826.
- [3] J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.-Y. Li, Y. Xia, Nano Lett. 5 (2005) 2058–2062.
- [4] L. Chen, L. Kuai, X. Yu, W. Li, B. Geng, Chem. Eur. J. 19 (2013) 11753–11758.
- [5] S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Nat. Mater. 7 (2008) 333–338.
- [6] J.-M. Yan, X.-B. Zhang, T. Akita, M. Haruta, Q. Xu, J. Am. Chem. Soc. 132 (2010) 5326–5327.
- [7] J. Gao, X. Ren, D. Chen, F. Tang, J. Ren, Scripta Mater. 57 (2007) 687–690.
- [8] Y. Li, P. Zhou, Z. Dai, Z. Hu, P. Sun, J. Bao, New J. Chem. 30 (2006) 832–837.
- [9] Z. Bai, L. Yang, J. Zhang, L. Li, J. Lv, C. Hu, J. Zhou, Catal. Commun. 11 (2010) 919–922.
- [10] W. Zhang, J. Yang, X. Lu, ACS Nano 6 (2012) 7397–7405.
- [11] L. Kuai, S. Wang, B. Geng, Chem. Commun. 47 (2011) 6093–6095.
- [12] E.C. Cho, P.H. Camargo, Y. Xia, Adv. Mater. 22 (2010) 744–748.
- [13] H. Liu, J. Qu, Y. Chen, J. Li, F. Ye, J.Y. Lee, J. Yang, J. Am. Chem. Soc. 134 (2012) 11602–11610.
- [14] L.C. Jones, Z. Buras, M.J. Gordon, J. Phys. Chem. C 116 (2012) 12982–12988.
- [15] L.C. Jones, M.J. Gordon, J. Phys. Chem. C 116 (2012) 23472–23476.
- [16] H. Li, H. Wu, Y. Zhai, X. Xu, Y. Jin, ACS Catal. 3 (2013) 2045–2051.
- [17] C. Li, Y. Yamauchi, Phys. Chem. Chem. Phys. 15 (2013) 3490–3496.
- [18] J. Huang, S. Vongehr, S. Tang, H. Lu, X. Meng, J. Phys. Chem. C 114 (2010) 15005–15010.
- [19] G. Chen, D. Xia, Z. Nie, Z. Wang, L. Wang, L. Zhang, J. Zhang, Chem. Mater. 19 (2007) 1840–1844.
- [20] H. Li, H. Lin, Y. Hu, H. Li, P. Li, X. Zhou, J. Mater. Chem. 21 (2011) 18447–18453.
- [21] W. Dong, T. Zhang, J. Epstein, L. Cooney, H. Wang, Y. Li, Y.-B. Jiang, A. Cogbill, V. Varadan, Z.R. Tian, Chem. Mater. 19 (2007) 4454–4459.
- [22] M. Zhu, P. Chen, W. Ma, B. Lei, M. Liu, ACS Appl. Mater. Interfaces 4 (2012) 6386–6392.
- [23] Z. Yan, G. Compagnini, D.B. Chrisey, J. Phys. Chem. C 115 (2011) 5058–5062.
- [24] J. Zhao, G.P. Huffman, B.H. Davis, Catal. Lett. 24 (1994) 385–389.
- [25] A.V. Vorontsov, E.N. Savinov, J.S. Zhen, J. Photochem. Photobiol. A 125 (1999) 113–117.
- [26] L.K. Ono, J.R. Croy, H. Heinrich, B. Roldan Cuenya, J. Phys. Chem. C 115 (2011) 16856–16866.
- [27] P. Bera, K. Priolkar, A. Gayen, P. Sarode, M. Hegde, S. Emura, R. Kumashiro, V. Jayaram, G. Subbanna, Chem. Mater. (2003) 2049–2060.
- [28] W. Li, L. Kuai, L. Chen, B. Geng, Sci. Rep. 3 (2013) 2377.
- [29] W. Hu, B. Liu, Q. Wang, Y. Liu, P. Jing, S. Yu, L. Li, J. Zhang, Chem. Commun. 49 (2013) 7596–7598.
- [30] A.A. Ismail, A. Hakki, D.W. Bahnemann, J. Mol. Catal. A-Chem. 358 (2012) 145–151.
- [31] Y. Li, Y. Ding, J. Phys. Chem. C 114 (2010) 3175–3179.
- [32] M. Inoue, A. Nakazawa, M. Umeda, Int. J. Hydrogen Energy 37 (2012) 1226–1235.
- [33] S.-D. Oh, M.-R. Kim, S.-H. Choi, J.-H. Chun, K.-P. Lee, A. Gopalan, C.-G. Hwang, K. Sang-Ho, O.J. Hoon, J. Ind. Eng. Chem. 14 (2008) 687–692.
- [34] X. Wang, D. Liu, S. Song, H. Zhang, J. Am. Chem. Soc. 135 (2013) 15864–15872.
- [35] P. Pachfule, S. Kandambeth, D.D. Diaz, B. Rahul, Chem. Commun. 50 (2014) 3169–3172.
- [36] H. Wang, L. Chen, Y. Feng, H. Chen, Acc. Chem. Res. 46 (2013) 1636–1646.
- [37] J. Huang, S. Vongehr, S. Tang, H. Lu, J. Shen, X. Meng, Langmuir 25 (2009) 11890–11896.
- [38] W. Zhang, F. Tan, W. Wang, X. Qiu, X. Qiao, J. Chen, J. Hazard. Mater. 217 (2012) 36–42.
- [39] D.K. Bhui, A. Misra, Carbohydr. Polym. 89 (2012) 830–835.
- [40] A. Zangwill, Physics at Surfaces, Cambridge University Press, 1988.
- [41] J.L. Shi, Chem. Rev. 113 (2013) 2139–2181.
- [42] D.H. Zhang, G.D. Li, J.X. Li, J.S. Chen, Chem Commun. 341 (2008) 3414–3416.
- [43] N.R. Jana, Z. Wang, T. Pal, Langmuir 16 (2000) 2457–2463.