Prognozowanie Cen Nieruchomości z Wykorzystaniem Zaawansowanych Modeli Regresji

Kompleksowa Analiza Wyceny Nieruchomości na Podstawie Zestawu Danych "kc_house"

Łukasz Syguła 02.08.2024

Cel projektu:

Opis: Rozwój i ocena różnych modeli regresji do przewidywania cen nieruchomości.

Etapy:

- Przygotowanie danych
- Tworzenie modeli
- Ewaluacja modeli
- Optymalizacja i strojenie
- Raportowanie wyników

Zbiór danych: "kc_house"

Opis danych:

 Dane sprzedaży domów w King County, Washington (USA) z lat 2014-2015.

Kluczowe zmienne: Cena, liczba sypialni, liczba łazienek, powierzchnia mieszkalna, stan, rok budowy, lokalizacja.

Analiza Eksploracyjna (EDA)

Czyszczenie danych:

- Wypełnienie brakujących wartości w sqft_above.
- Usunięcie outlierów w kolumnach bedrooms i bathrooms.

Wizualizacje:

- Histogram cen nieruchomości.
- Boxplot cen nieruchomości.
- Dystrybucja liczby sypialni i łazienek.

Wypełnienie brakujących wartości w sqft_above

Filling the two missing values in the 'sqft_above' column with the median to maintain robustness against outliers.

```
In [8]:
               median_sqft_above = df['sqft_above'].median()
 In [9]:
               df['sqft above'].fillna(median sqft above, inplace=True)
In [10]:
               df.drop(columns='id', inplace=True)
In [11]:
            1 df
Out[11]:
                                    price bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition grade sqf
                            date
               0 20141013T000000 221900.0
                                                 3
                                                        1.00
                                                                  1180
                                                                         5650
                                                                                 1.0
                                                                                            0
                                                                                                          3
                                                        2.25
                                                                                 2.0
                 20141209T000000 538000.0
                                                                  2570
                                                                         7242
                                                                                                          3
               2 20150225T000000 180000.0
                                                 2
                                                        1.00
                                                                  770
                                                                         10000
                                                                                 1.0
                                                                                                 0
                                                                                                                 6
                                                                                            0
               3 20141209T000000 604000.0
                                                        3.00
                                                                  1960
                                                                         5000
                                                                                 1.0
               4 20150218T000000 510000.0
                                                        2.00
                                                                                 1.0
                                                                                                          3
                                                                                                                 8
                                                 3
                                                                  1680
                                                                         8080
                                                                                            0
                                                                                                 0
```

Usunięcie outlierów w kolumnie bedrooms

Removing outlier values from the 'bedrooms' column to enhance data quality and model accuracy.

Usunięcie outlierów w kolumnie bathrooms

Removing records with 'bathrooms' values greater than 6 to ensure data quality and improve model performance.

Histogram przedstawia rozkład cen nieruchomości, ukazując, że większość domów ma niższe ceny, z mniejszą liczbą nieruchomości w wyższych przedziałach cenowych.

Boxplot ukazuje rozkład cen nieruchomości, wskazując na obecność wartości odstających oraz medianę cen domów.

Boxplot przedstawia zależność między stanem nieruchomości a jej ceną. Wykres pokazuje, że lepszy stan techniczny przekłada się na wyższe ceny sprzedaży.

Wykres punktowy pokazuje zależność między rokiem budowy a stanem nieruchomości, z rozmiarem i kolorem punktów reprezentującymi ceny. Widać, że nowsze budynki częściej mają lepszy stan techniczny, co koreluje z wyższymi cenami.

Macierz korelacji pokazuje, które cechy nieruchomości, takie jak liczba pokoi czy rok budowy, mają największy wpływ na cenę.

Correlation Matrix for Key Variables									
price	1.00	0.32	0.52	0.70	0.67	0.60	0.06		0.75
bedrooms	0.32	1.00	0.53	0.59	0.37	0.49	0.16		0.50
bathrooms	0.52	0.53	1.00	0.75	0.66	0.68	0.51		0.25
sqft_living	0.70	0.59	0.75	1.00	0.76	0.87	0.32		0.00
grade	0.67	0.37	0.66	0.76	1.00	0.76	0.45		-0.25
sqft_above	0.60	0.49	0.68	0.87	0.76	1.00	0.43		-0.50
yr_built	0.06	0.16	0.51	0.32	0.45	0.43	1.00		-0.75
	price	bedrooms	bathrooms	sqft_living	grade	sqft_above	yr_built		-1.00

Modele regresyjne - Implementacja

Przeprowadzone modele:

- Regresja liniowa
- Ridge
- Lasso
- Regresja wielomianowa
- Drzewo decyzyjne
- Las losowy
- Gradient Boosting

Proces: Podział danych na zestawy treningowy i testowy, normalizacja danych.

Wyniki Modeli - MSE i R²

Porównanie wyników:

- Wykres słupkowy MSE i R² dla wszystkich modeli.
- Podkreślenie najlepszych modeli: Random Forest i Gradient Boosting.

Ten wykres przedstawia porównanie modeli regresyjnych na podstawie ich wartości błędu średniokwadratowego (MSE) oraz współczynnika determinacji (R²). Modele są uszeregowane od najlepszych do najgorszych w obu kategoriach, co ułatwia identyfikację najbardziej efektywnych algorytmów w przewidywaniu cen nieruchomości.

Wnioski

Podsumowanie wyników:

- Random Forest i Gradient Boosting uzyskały najlepsze wyniki.
- Regresja wielomianowa pokazała znaczny wzrost dokładności w stosunku do regresji liniowej.

Modele regularizowane (Ridge i Lasso): Brak istotnej poprawy.

Rekomendacje i Dalsze Kroki

Wybór modelu: Na podstawie analizy danych, rekomenduję wykorzystanie modeli Random Forest lub Gradient Boosting do przewidywania cen nieruchomości. Oba modele uzyskały najlepsze wyniki w zakresie dokładności przewidywań i są najbardziej skuteczne w tym przypadku.

Dalsze kroki:

- 1. **Optymalizacja Modeli:** Przeprowadzenie dalszej optymalizacji hiperparametrów dla modeli Random Forest i Gradient Boosting, aby maksymalnie poprawić ich wydajność.
- 2. **Testowanie na Większych Zbiorach Danych:** Rozszerzenie testów na większe zbiory danych, aby sprawdzić, czy modele zachowują wysoką jakość prognoz w różnych kontekstach.
- 3. **Walidacja Krzyżowa:** Wykonanie bardziej zaawansowanej walidacji krzyżowej w celu oceny stabilności i generalizacji modeli na różnych podzbiorach danych.
- 4. **Analiza Cech:** Dokonanie pogłębionej analizy znaczenia cech, aby zrozumieć, które zmienne mają największy wpływ na ceny nieruchomości i ewentualnie przeprowadzenie dalszych prac nad ich selekcją.
- 5. **Udoskonalenie Modelu:** Rozważenie wykorzystania zaawansowanych technik, takich jak kombinacje modeli (ensemble learning) lub zastosowanie głębokiego uczenia, jeśli dostępne są większe zbiory danych i zasoby obliczeniowe.