

Miejsce na nalepkę z kodem szkoły

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Arkusz I Czas pracy 120 minut

Instrukcja dla zdającego

- 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 16 stron. Ewentualny brak należy zgłosić przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi należy zapisać czytelnie w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Proszę pisać tylko w kolorze czarnym; nie pisać ołówkiem.
- 4. W rozwiązaniach zadań trzeba przedstawić tok rozumowania prowadzący do ostatecznego wyniku.
- 5. Nie wolno używać korektora.
- 6. Błędne zapisy trzeba wyraźnie przekreślić.
- 7. Brudnopis nie będzie oceniany.
- 8. Obok każdego zadania podana jest maksymalna liczba punktów, którą można uzyskać za jego poprawne rozwiązanie.
- 9. Podczas egzaminu można korzystać z udostępnionego zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Nie można korzystać z kalkulatora graficznego.

Życzymy powodzenia!

Wpisuje egzaminator / nauczyciel sprawdzający pracę												
Nr. zadania	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	SUMA
Maksymalna liczba punktów	4	4	5	4	4	4	3	4	5	6	7	50
Uzyskana liczba punktów												

Zadanie 1. (4 pkt)

- Janek ma w tym semestrze następujące oceny z języka polskiego: 5, 5, 3, 4, 3, 3, 4.

 a) Oblicz średnią ocen Janka z języka polskiego. Wynik podaj z dokładnością do 0,01.
 - b) Oblicz wariancję i odchylenie standardowe. Wyniki podaj z dokładnością do 0,01.

Zadanie 2. (*4 pkt*)

Pożyczkę w wysokości 8700 zł zaciągniętą w banku należy spłacić w 12 ratach, z których każda następna jest mniejsza od poprzedniej o 50 zł. Oblicz wysokość pierwszej i ostatniej raty.

Zadanie 3. (*5 pkt*)

Funkcja f jest określona wzorem: $f(x) = ax^2 + bx + 1$ dla $x \in R$.

- a) Wyznacz wzór tej funkcji tak, aby f(1) = 2 i f(2) = -1.
- b) Dla wyznaczonych wartości współczynników a i b rozwiąż nierówność: f(x)1.

Zadanie 4. (*4 pkt*)

Aby wyznaczyć równanie symetralnej odcinka o końcach A(-1;4), B(3;-2) postępujemy w następujący sposób:

- wybieramy dowolny punkt P(x; y) należący do symetralnej odcinka AB i korzystamy z własności symetralnej odcinka: $|AP| = |BP| \Leftrightarrow |AP|^2 = |BP|^2$
- ponieważ $|AP|^2 = (x+1)^2 + (y-4)^2$ oraz $|BP|^2 = (x-3)^2 + (y+2)^2$, więc $(x+1)^2 + (y-4)^2 = (x-3)^2 + (y+2)^2$
- przekształcamy otrzymane równanie do prostszej postaci i otrzymujemy równanie: 2x-3y+1=0, które jest równaniem symetralnej odcinka *AB*.

Postępując w analogiczny sposób, wyznacz równanie symetralnej odcinka o końcach: C(4;6), D(6;-2).

Zadanie 5. (*4 pkt*)

Wielkość prostokątnego ekranu telewizora określa długość jego przekątnej wyrażona w calach. Oblicz, o ile procent zwiększymy powierzchnię ekranu, jeśli długość przekątnej wynoszącą 21 cali powiększymy do 32 cali zachowując stosunek długości boków prostokąta. Wynik podaj z dokładnością do 0,1%.

Zadanie 6. (*4 pkt*)

Ciąg (a_n) określony jest wzorem: $a_n = n^3 - 10n^2 + 31n - 30$. Wiedząc, że $a_2 = 0$ wyznacz wszystkie pozostałe wyrazy tego ciągu równe zero.

Zadanie 7. (*3 pkt*)

Dana jest funkcja określona za pomocą zbioru par uporządkowanych: $\left\{\left(x,x^2+1\right):\ x\in N_+\ i\ x\le 7\right\}$ a) Sporządź wykres tej funkcji i określ jej zbiór wartości.

$$\{(x, x^2 + 1): x \in N_+ i \ x \le 7\}$$

- b) Wyznacz wszystkie argumenty dla których funkcja przyjmuje wartość 37.

Zadanie 8. (*4 pkt*)

Metalową kulę o promieniu długości 10 cm oraz stożek, w którym średnica i wysokość mają długości odpowiednio 16 cm i 12 cm, przetopiono. Następnie z otrzymanego metalu wykonano walec o średnicy

 $\frac{8\sqrt{3}}{3}$ cm. Oblicz wysokość tego walca.

Zadanie 9. (5 pkt)Opisz za pomocą układu nierówności zbiór wszystkich punktów należących do trójkąta *ABC* przedstawionego na rysunku. Oblicz pole tego trójkąta.

Zadanie 10. (6 pkt)
W pudełku znajdują się żetony. Wśród nich jest 6 żetonów o nominale 5 zł oraz n żetonów o nominale 10 zł. Losujemy z pudełka dwa żetony. Prawdopodobieństwo zdarzenia polegającego na wylosowaniu obu żetonów o nominale 10 zł jest równe $\frac{1}{2}$. Oblicz n.

Zadanie 11. (7 *pkt*)

Wyznacz miarę kąta między ścianą boczną i płaszczyzną podstawy ostrosłupa prawidłowego sześciokątnego wiedząc, że pole jego podstawy jest równe $6\sqrt{3}$, a pole powierzchni bocznej ostrosłupa jest równe 12. Sporządź rysunek ostrosłupa i zaznacz na nim szukany kąt.

Brudnopis