SwitchOut: An Efficient Data Augmentation for Neural Machine Translation

Xinyi Wang*, Hieu Pham*, Zihang Dai, Graham Neubig

November 2, 2018

^{*:}equal contribution

Data Augmentation

• Neural models are data hungry, while collecting data is expensive

¹image source:Medium

Data Augmentation

- Neural models are data hungry, while collecting data is expensive
- Prevalent in computer vision¹

¹image source:Medium

Data Augmentation

- Neural models are data hungry, while collecting data is expensive
- Prevalent in computer vision¹

- More difficult for natural language
 - ▶ Discrete vocabulary
 - ► NMT sensitive to arbitrary noise

¹image source:Medium

Word replacement

wie geht es dir ? \longrightarrow How are you ?

Word replacement

```
wie geht es dir ? \longrightarrow How are you ?
```

Dictionary [Fadaee et al., 2017]
 wie geht es Tom ? → How is Tom ?

Word replacement

```
How
    wie
            geht
                           dir
                                                 are you
                    es

    Dictionary [Fadaee et al., 2017]

         geht
                 es Tom ? \longrightarrow How is
                                                 Tom
  wie
• Word dropout [Sennrich et al., 2016a]
  wie
         geht
                es NULL ? \longrightarrow How
                                           are
                                                 you
```


Word replacement

```
wie
            geht
                            dir
                                           How
                                                   are you
                     es

    Dictionary [Fadaee et al., 2017]

         aeht
                 es Tom ? \longrightarrow How is
                                                  Tom
  wie
• Word dropout [Sennrich et al., 2016a]
         aeht
                 es NULL ? \longrightarrow How
  wie
                                             are
                                                   you

    Reward Augmented Maximum Likelihood (RAML)

  [Norouzi et al., 2016]
  wie
         geht
                 es
                       dir
                              ? \longrightarrow How
                                             are
                                                   hello?
```


Word replacement

```
geht
                            dir
                                            How
                                                    are you
     wie
                     es

    Dictionary [Fadaee et al., 2017]

                 es Tom ? \longrightarrow How is
                                                   Tom
  wie
         aeht

    Word dropout [Sennrich et al., 2016a]

         aeht
                 es NULL ? \longrightarrow How
  wie
                                              are
                                                    you

    Reward Augmented Maximum Likelihood (RAML)

  [Norouzi et al., 2016]
  wie
         aeht
                 es
                        dir
                               ? \longrightarrow How
                                              are
                                                    hello?
```

 \rightarrow Can we characterize all of the related approaches together?

Existing Strategies: RAML

RAML [Norouzi et al., 2016]

 Motivation: NMT relies on imperfect partial translation at test time, but trained only on gold standard target

```
How
                                                  are
                                                         you
wie
        geht
                         dir
                  es
wie
        geht
                         dir
                                          How
                                                  are
                                                         you
                  es
wie
        geht
                         dir
                                          How
                  es
                                                  are
                                                         vou
wie
        geht
                         dir
                  es
                                          How
                                                         hello
                                                  are
                                                                ?
        geht
                         dir
wie
                  es
                                          How
                                                  yes
                                                         vou
        aeht
                         dir
wie
                  es
                                                  him
                                          How
                                                         her
                                                                ?
```

Existing Strategies: RAML

RAML [Norouzi et al., 2016]

- Motivation: NMT relies on imperfect partial translation at test time, but trained only on gold standard target
- Solution: Sample corrupted target during training

```
How
                                                  are
                                                         you
wie
        geht
                         dir
                  es
wie
        aeht
                         dir
                                          How
                                                  are
                                                         you
                  es
wie
        geht
                         dir
                                          How
                  es
                                                  are
                                                         vou
wie
        geht
                         dir
                  es
                                          How
                                                         hello
                                                  are
                                                                 ?
        geht
                         dir
wie
                  es
                                          How
                                                  yes
                                                         vou
        aeht
                         dir
wie
                  es
                                          How
                                                  him
                                                         her
                                                                 ?
```

Existing Strategies: RAML

RAML [Norouzi et al., 2016]

- Motivation: NMT relies on imperfect partial translation at test time, but trained only on gold standard target
- Solution: Sample corrupted target during training
- Gold target y, corrupted \hat{y} , similarity measure r_y

$$\mathbf{q}^*(\widehat{y}|y,\tau) = \frac{\exp\{r_y(\widehat{y},y)/\tau\}}{\sum_{\widehat{y}'} \exp\{r_y(\widehat{y}',y)/\tau\}}$$

wie	geht	es	dir	? ¬	How	are	you	?
wie	geht	es	dir	?	How	are	you	?
wie	geht	es	dir	?	How	are	you	?
wie	geht	es	dir	? 🗖	➤ How	are	hello	?
wie	geht	es	dir	?	How	yes	you	?
wie	geht	es	dir	? —	How	him	her	?

• **Real** data distribution: $x, y \sim \mathbf{p}(X, Y)$

- **Real** data distribution: $x, y \sim \mathbf{p}(X, Y)$
- **Observed** data distribution: $x, y \sim \widehat{\mathbf{p}}(X, Y)$

- **Real** data distribution: $x, y \sim p(X, Y)$
- **Observed** data distribution: $x, y \sim \widehat{\mathbf{p}}(X, Y)$
 - ightarrow Problem: $\mathbf{p}(X,Y)$ and $\widehat{\mathbf{p}}(X,Y)$ might have large discrepancy

- **Real** data distribution: $x, y \sim \mathbf{p}(X, Y)$
- **Observed** data distribution: $x, y \sim \widehat{\mathbf{p}}(X, Y)$ \rightarrow Problem: $\mathbf{p}(X, Y)$ and $\widehat{\mathbf{p}}(X, Y)$ might have large discrepancy
- Data augmentation: $\widehat{x}, \widehat{y} \sim \mathbf{q}(\widehat{X}, \widehat{Y})$

• **q**: function of **observed** (x, y)

- **q**: function of **observed** (x, y)
- How should **q** approximate **p**?

- **q**: function of **observed** (x, y)
- How should **q** approximate **p**?
 - **Diversity**: larger support with all valid data pairs (x, y)
 - ***** Entropy $\mathbb{H}[\mathbf{q}(\widehat{x},\widehat{y}|x,y)]$ is large

- **q**: function of **observed** (x, y)
- How should **q** approximate **p**?
 - **Diversity**: larger support with all valid data pairs (x, y)
 - ★ Entropy $\mathbb{H}[\mathbf{q}(\widehat{x},\widehat{y}|x,y)]$ is large
 - ▶ Smoothness: probability of similar data pairs are similar
 - * **q** maximizes similarity measure $r_x(x, \hat{x})$, $r_y(y, \hat{y})$

- **q**: function of **observed** (x, y)
- How should **q** approximate **p**?
 - **Diversity**: larger support with all valid data pairs (x, y)
 - ★ Entropy $\mathbb{H}[\mathbf{q}(\widehat{x},\widehat{y}|x,y)]$ is large
 - ▶ Smoothness: probability of similar data pairs are similar
 - *** q** maximizes similarity measure $r_x(x, \hat{x})$, $r_y(y, \hat{y})$
- τ : control effect of diversity; **q** should maximize

$$J(\mathbf{q}) = \tau \cdot \mathbb{H}\left[\mathbf{q}(\widehat{x}, \widehat{y}|x, y)\right] + \mathbb{E}_{\widehat{x}, \widehat{y} \sim \mathbf{q}}\left[r_{x}(x, \widehat{x}) + r_{y}(y, \widehat{y})\right]$$

Mathematically Optimal q

$$J(\mathbf{q}) = \tau \cdot \mathbb{H}\left[\mathbf{q}(\widehat{x}, \widehat{y}|x, y)\right] + \mathbb{E}_{\widehat{x}, \widehat{y} \sim \mathbf{q}}\left[r_{x}(x, \widehat{x}) + r_{y}(y, \widehat{y})\right]$$

Solve for the best q

$$\mathbf{q}^*(\widehat{x},\widehat{y}|x,y) = \frac{\exp\{s(\widehat{x},\widehat{y};x,y)/\tau\}}{\sum_{\widehat{x}',\widehat{y}'} \exp\{s(\widehat{x}',\widehat{y}';x,y)/\tau\}}$$

Mathematically Optimal q

$$J(\mathbf{q}) = \tau \cdot \mathbb{H}\left[\mathbf{q}(\widehat{x}, \widehat{y}|x, y)\right] + \mathbb{E}_{\widehat{x}, \widehat{y} \sim \mathbf{q}}\left[r_{x}(x, \widehat{x}) + r_{y}(y, \widehat{y})\right]$$

Solve for the best q

$$\mathbf{q}^*(\widehat{x},\widehat{y}|x,y) = \frac{\exp\left\{s(\widehat{x},\widehat{y};x,y)/\tau\right\}}{\sum_{\widehat{x}',\widehat{y}'} \exp\left\{s(\widehat{x}',\widehat{y}';x,y)/\tau\right\}}$$

Decompose x and y

$$\mathbf{q}^*(\widehat{x},\widehat{y}|x,y) = \frac{\exp\left\{r_x(\widehat{x},x)/\tau_x\right\}}{\sum_{\widehat{x}'} \exp\left\{r_x(\widehat{x}',x)/\tau_x\right\}} \times \frac{\exp\left\{r_y(\widehat{y},y)/\tau_y\right\}}{\sum_{\widehat{y}'} \exp\left\{r_y(\widehat{y}',y)/\tau_y\right\}}$$

Mathematically Optimal q

$$J(\mathbf{q}) = \tau \cdot \mathbb{H}\left[\mathbf{q}(\widehat{x}, \widehat{y}|x, y)\right] + \mathbb{E}_{\widehat{x}, \widehat{y} \sim \mathbf{q}}\left[r_{x}(x, \widehat{x}) + r_{y}(y, \widehat{y})\right]$$

Solve for the best q

$$\mathbf{q}^*(\widehat{x},\widehat{y}|x,y) = \frac{\exp\{s(\widehat{x},\widehat{y};x,y)/\tau\}}{\sum_{\widehat{x}',\widehat{y}'} \exp\{s(\widehat{x}',\widehat{y}';x,y)/\tau\}}$$

• Decompose x and y

$$\mathbf{q}^*(\widehat{x},\widehat{y}|x,y) = \frac{\exp\left\{r_x(\widehat{x},x)/\tau_x\right\}}{\sum_{\widehat{x}'} \exp\left\{r_x(\widehat{x}',x)/\tau_x\right\}} \times \frac{\exp\left\{r_y(\widehat{y},y)/\tau_y\right\}}{\sum_{\widehat{y}'} \exp\left\{r_y(\widehat{y}',y)/\tau_y\right\}}$$

- Formulate existing methods
 - ▶ Dictionary: jointly on x and y, but deterministic and not diverse
 - ► Word dropout: **only** *x* side with null token
 - ► RAML: **only** *y* side

Formulate SwitchOut

• Augment **both** x and y!

```
How
                                                  are
                                                         you
wie
        geht
                        dir
                 es
        geht
                 das
                        dir
                                          What
                                                  are
                                                         this
was
        geht
                        heute
wie
                 es
                                           How
                                                  is
                                                         hello
```

Formulate SwitchOut

- Augment both x and y!
- Sample for x, y independently

```
How
                                                   are
                                                         you
                        dir
wie
        geht
                 es
        geht
                 das
                         dir
                                          What
                                                   are
                                                         this
was
                         heute
wie
        geht
                                           How
                                                   is
                                                          hello
                 es
```

Formulate SwitchOut

- Augment both x and y!
- Sample for x, y independently
- Define $r_x(\widehat{x}, x)$ and $r_y(\widehat{y}, y)$
 - Negative Hamming Distance, following RAML

SwitchOut: Sample efficiently

Given a sentence
$$s = \{s_1, s_2, ... s_{|s|}\}$$

• How many words to corrupt? Assumption: only one token for swapping.

$$P(n) \propto \exp(-n)/\tau$$

SwitchOut: Sample efficiently

- Given a sentence $s = \{s_1, s_2, ... s_{|s|}\}$
 - How many words to corrupt?Assumption: only one token for swapping.

$$P(n) \propto \exp(-n)/\tau$$

What is the corrupted sentence?

$$P(\text{randomly swap } s_i \text{ by another word}) = \frac{n}{|s|}$$

See Appendix: Efficient batch implementation in PyTorch and Tensorflow

Experiments

- Datasets
 - en-vi: IWSLT 2015de-en: IWSLT 2016en-de: WMT 2015
- Models
 - Transformer model
 - Word-based, standard preprocessing

Results: RAML and word dropout

Method	en-de	de-en	en-vi		
src	trg	en-de	ue-en	en-vi	
N/A	N/A	21.73	29.81	27.97	
WordDropout	N/A	20.63	29.97	28.56	
SwitchOut	N/A	22.78 [†]	29.94	28.67^{\dagger}	
N/A	RAML	22.83	30.66	28.88	
WordDropout	RAML	20.69	30.79	28.86	
SwitchOut	RAML	23.13 [†]	30.98 [†]	29.09	

Results: RAML and word dropout

• SwitchOut on source > word dropout

Method	en-de	de-en	en-vi		
src	trg	en-ue	ue-en	CII-VI	
N/A	N/A	21.73	29.81	27.97	
WordDropout	N/A	20.63	29.97	28.56	
SwitchOut	N/A	22.78 [†]	29.94	28.67 [†]	
N/A	RAML	22.83	30.66	28.88	
WordDropout	RAML	20.69	30.79	28.86	
SwitchOut	RAML	23.13 [†]	30.98 [†]	29.09	

Results: RAML and word dropout

- SwitchOut on source > word dropout
- SwitchOut on source and target > RAML

Method	en-de	de-en	en-vi	
src	trg	en-de	ue-en	en-vi
N/A	N/A	21.73	29.81	27.97
WordDropout	N/A	20.63	29.97	28.56
SwitchOut	N/A	22.78 [†]	29.94	28.67^{\dagger}
N/A	RAML	22.83	30.66	28.88
WordDropout	RAML	20.69	30.79	28.86
SwitchOut	RAML	23.13 [†]	30.98 [†]	29.09

Where does SwitchOut help?

• More gain for sentences more different from training data

Figure: Left: IWSLT 16 de-en. Right: IWSLT 15 en-vi.

• SwitchOut sampling is efficient and easy-to-use

- SwitchOut sampling is efficient and easy-to-use
- Work with any NMT architecture

- SwitchOut sampling is efficient and easy-to-use
- Work with any NMT architecture
- Formulation of data augmentation encompasses existing works and inspires future direction

- SwitchOut sampling is efficient and easy-to-use
- Work with any NMT architecture
- Formulation of data augmentation encompasses existing works and inspires future direction

Thanks a lot for listening! Questions?

References

Sennrich et al. (2016b) Improving neural machine translation models with monolingual data. In ACL.

Currey et al. (2017) Copied Monolingual Data Improves Low-Resource Neural Machine Translation. In WMT.

Fadaee et al. (2017) Data Augmentation for Low-Resource Neural Machine Translation. In ACL.

Results: Back Translation (WMT en-de 2015)

SwitchOut > Back Translation

Method	en-de
Transformer	21.73
+SwitchOut	22.78
+BT	21.82

Results: Back Translation (WMT en-de 2015)

- SwitchOut > Back Translation
- Switchout + RAML + back translate wins

Method	en-de
Transformer	21.73
+SwitchOut	22.78
+BT	21.82
+BT + RAML	21.53
$+BT\ +SwitchOut$	22.93
+BT +RAML +SwitchOut	23.76