MICROPROCESSADORES E MICROCONTROLADORES

MSP430G2xxx
Value Line MCUs

** Texas INSTRUMENTS

MSP430G2xxx
Value Line MCUs

MSP430G2xxx
Value Line MCUs

MSP430G2xxx
Value Line MCUs

** Texas INSTRUMENTS

** Texas INSTRUM

TSSOP

0,65 mm (0,025") entre pinos

Quadrado de 4mm

0,65 mm (0,025") entre pinos

P1.0-P1.7 e P2.6-P2.7 são entradas e saídas digitais

TACLK pode ser usado como entrada do clock do Timer_A.TAO e TAT podem ser entradas ou saídas do Timer_A.

A0-, A0+, ..., A3-, A3+ são entradas do conversor A/D

VREF é a tensão de referência para o conversor A/D

SMCLK e ACLK são saídas para o sinal de clock do MSP430, para serem aproveitados por outros componentes e para testar o MSP430

SCLK, SDO e SCL são usados pela interface serial universal (comunicação SPI e I2C)

XIN e XOUT são as conexões para o cristal externo, para gerar um clock estável

_RST reseta o MSP430 quando levado ao nível baixo

NMI é a entrada para interrupção nãomascarável, que permite um sinal externo interromper o programa principal

TCK,TMS,TCLK,TDI e TDO formam a interface JTAG, usada para programar e debugar o MSP430

SBWTCK e SBWTDIO formam a interface Spy-Bi-Wire, uma alternativa ao JTAG

A mesma função em dois pinos diferentes pode não funcionar da mesma forma

Únicos pinos que não podem alterados

MAB - barramento de endereços na memória MDB - barramento de dados na memória

MSP430F2003 tem 1KB de flash e 128 bytes de RAM MSP430F2231 tem 2KB de flash e 128 bytes de RAM

Periféricos presentes em todos os modelos de MSP430

Periféricos dependentes do modelo de MSP430

Proteção para baixos níveis de tensão de alimentação

VSS é o terra, e VCC é a alimentação (1,8-3,6V para o MSP430F2013)

De acordo com o nível de VCC, perde-se algumas funcionalidades, como a programação da flash e o clock em frequência máxima

Figure 2.3: Ordering of bits, bytes, and words in memory, adapted from the MSP430x2xx Family User's Guide. Addresses increase up the page.

0x0206						
0x0205	15, msb	14	bits	9	8	word
0x0204	7	6	bits	1	0, Isb) word
0x0203			byte			
0x0202	7, msb	6	bits	1	0, Isb	} byte
0x0201			more significant byte, MSB			word
0x0200			less significant byte, LSB) word
0x01FF						
	•					

Memória separada em bytes Barramento de endereço de 16 bits 2^16 = 64KB de memória

0.0206						
0x0206						
0x0205	15, msb	14	bits	9	8	word
0x0204	7	6	bits	1	0, Isb) word
0x0203			byte			
0x0202	7, msb	6	bits	1	0, Isb	} byte
0x0201			more significant byte, MSB			word
0x0200			less significant byte, LSB] ∫ word
0x01FF						
						·

Primeiro endereço é 0x0000 (IEI - Interrupt Enable I Register), último é 0xFFFF

0x0206			•••			
0x0205	15,msb	14	bits	9	8	$\bigg\}_{\text{word}}$
0x0204	7	6	bits	1	0, Isb	S word
0x0203			byte			
0x0202	7, msb	6	bits	1	0, Isb	} byte
0x0201			more significant byte, MSB) word
0x0200			less significant byte, LSB			word
0x01FF						

Não há conexões dos barramentos para conectar memória externa, nem maneira de aumentar a memória interna

0x0206						
0x0205	15, msb	14	bits	9	8	word
0x0204	7	6	bits	1	0, Isb] J word
0x0203			byte			
0x0202	7, msb	6	bits	1	0, Isb	} byte
0x0201			more significant byte, MSB			word
0x0200			less significant byte, LSB			Sword
0x01FF			•••			
	•					

Barramento de memória é de 16 bits Transfere bytes ou palavras de 2 bytes

O endereço da palavra de 2 bytes é dado pelo byte no endereço menor (sempre par), e esta palavra pode ser lida em um ciclo de clock do barramento

0x0206			•••			
0x0205	15, msb	14	bits	9	8	\ \ \
0x0204	7	6	bits	1	0, Isb	word
0x0203			byte		•	
0x0202	7, msb	6	bits	1	0, Isb	} byte
0x0201			more significant byte, MSB			word
0x0200			less significant byte, LSB			word
0x01FF			•••			

A palavra 0x1234 é armazenada no endereço 0x0200 da seguinte maneira:

0x34 em 0x0200

 $0 \times 12 \text{ em } 0 \times 0201$

	I					ı
0x0206						
0x0205	15, msb	14	bits	9	8	word
0x0204	7	6	bits	1	0, Isb] } ""
0x0203			byte			
0x0202	7, msb	6	bits	1	0, Isb	} byte
0x0201			more significant byte, MSB			word
0x0200			less significant byte, LSB] J word
0x01FF						
						·

A palavra 0x1234 é armazenada no endereço 0x0200 da seguinte maneira:

0x34 em 0x0200

 $0 \times 12 \text{ em } 0 \times 0201$

MSP430 é Littleendian

0.0206						
0x0206						
0x0205	15, msb	14	bits	9	8	word
0x0204	7	6	bits	1	0, Isb) word
0x0203			byte			
0x0202	7, msb	6	bits	1	0, Isb	} byte
0x0201			more significant byte, MSB			word
0x0200			less significant byte, LSB) word
0x01FF						

A palavra 0x1234 é armazenada no endereço 0x0200 da seguinte maneira:

0x34 em 0x0200

 $0 \times 12 \text{ em } 0 \times 0201$

O contrário chamase Big-endian

Type of memory
interrupt and reset
vector table
flash code memory
(lower boundary varies)
flash
information memory
bootstrap loader
(not in F20xx)
RAM
(upper boundary varies)
peripheral registers
with word access
peripheral registers
with byte access
special function registers
(byte access)

Figure 2.4: Memory map of the MSP430F2013, based on the data sheet and the MSP430x2xx Family User's Guide. Addresses increase up the page and are not drawn to scale. Gray regions are unused and their size varies considerably between devices. The F2013 does not have a bootstrap loader but I have shown its location because it is present in most variants of the MSP430.

Address	Type of memory
0xFFFF	interrupt and reset
0xFFC0	vector table
0xFFBF	flash code memory
0xF800	(lower boundary varies)
0xF7FF	
0x1100	
0x10FF	flash
0x1000	information memory
0x0FFF	bootstrap loader
0x0C00	(not in F20xx)
0x0BFF	
0x0280	
0x027F	RAM
0x0200	(upper boundary varies)
0x01FF	peripheral registers
0x0100	with word access
0x00FF	peripheral registers
0x0100	with byte access
0x000F	special function registers
0x0000	(byte access)

Mapas de memória variam de acordo com os modelos do MSP430, mudando o tamanho da RAM e do espaço para código

Address	Type of memory
0xFFFF	interrupt and reset
0xFFC0	vector table
0xFFBF	flash code memory
0xF800	(lower boundary varies)
0xF7FF	
0x1100	
0x10FF	flash
0x1000	information memory
0x0FFF	bootstrap loader
0x0C00	(not in F20xx)
0x0BFF	
0x0280	
0x027F	RAM
0x0200	(upper boundary varies)
0x01FF	peripheral registers
0x0100	with word access
0x00FF	peripheral registers
0x0100	with byte access
0x000F	special function registers
0x0000	(byte access)

Certas partes não são utilizadas (em cor cinza na figura ao lado)

Address	Type of memory
0xFFFF	interrupt and reset
0xFFC0	vector table
0xFFBF	flash code memory
0xF800	(lower boundary varies)
0xF7FF	
0x1100	
0x10FF	flash
0x1000	information memory
0x0FFF	bootstrap loader
0x0C00	(not in F20xx)
0x0BFF	
0x0280	
0x027F	RAM
0x0200	(upper boundary varies)
0x01FF	peripheral registers
0x0100	with word access
0x00FF	peripheral registers
0x0100	with byte access
0x000F	special function registers
0x0000	(byte access)

Habilitam funções de alguns módulos

Habilitam e sinalizam interrupções dos periféricos

Address	Type of memory
0xFFFF	interrupt and reset
0xFFC0	vector table
0xFFBF	flash code memory
0xF800	(lower boundary varies)
0xF7FF	
0x1100	
0x10FF	flash
0x1000	information memory
0x0FFF	bootstrap loader
0x0C00	(not in F20xx)
0x0BFF	
0x0280	
0x027F	RAM
0x0200	(upper boundary varies)
0x01FF	peripheral registers
0x0100	with word access
0x00FF	peripheral registers
0x0100	with byte access
0x000F	special function registers
0x0000	(byte access)

Comunicação entre CPU e periféricos

Address	Type of memory
0xFFFF	interrupt and reset
0xFFC0	vector table
0xFFBF	flash code memory
0xF800	(lower boundary varies)
0xF7FF	
0x1100	
0x10FF	flash
0x1000	information memory
0x0FFF	bootstrap loader
0x0C00	(not in F20xx)
0x0BFF	
0x0280	
0x027F	RAM
0x0200	(upper boundary varies)
0x01FF	peripiteral registers
0x0100	with word access
0x00FF	peripheral registers
0x0100	with byte access
0x000F	special function registers
0x0000	(byte access)

Usada para variáveis

Começam em 0x0200

O fim da RAM depende do modelo de MSP430

Address	Type of memory
0xFFFF	interrupt and reset
0xFFC0	vector table
0xFFBF	flash code memory
0xF800	(lower boundary varies)
0xF7FF	
0x1100	
0x10FF	flash
0x1000	information memory
0x0FFF	bootstrap loader
0x0C00	(not in F20xx)
0x0BFF	
0x0280	
0x027F	RAM
0x0200	(upper boundary varies)
0x01FF	peripheral registers
0x0100	with word access
0x00FF	peripheral registers
0x0100	with byte access
0x000F	special function registers
0x0000	(byte access)

Programa para comunicar usando o protocolo serial padrão (RS232)

Não é tão importante hoje em dia, devido à porta USB

256 bytes para memória não-volátil

Números de série, configurações da última vez em que o sistema foi usado etc.

Address	Type of memory
0xFFFF	interrupt and reset
0xFFC0	vector table
0xFFBF	flash code memory
0xF800	(lower boundary varies)
0xF7FF	
0x1100	
0x10FF	flash
0x1000	information memory
0x0FFF	bootstrap loader
0x0C00	(not in F20xx)
0x0BFF	
0x0280	
0x027F	RAM
0x0200	(upper boundary varies)
0x01FF	peripheral registers
0x0100	with word access
0x00FF	peripheral registers
0x0100	with byte access
0x000F	special function registers
0x0000	(byte access)

Programa

O endereço menor depende do modelo de MSP430

Address	Type of memory
0xFFFF	interrupt and reset
0xFFC0	vector table
0xFFBF	flash code memory
0xF800	(lower boundary varies)
0xF7FF	
0x1100	
0x10FF	flash
0x1000	information memory
0x0FFF	bootstrap loader
0x0C00	(not in F20xx)
0x0BFF	
0x0280	
0x027F	RAM
0x0200	(upper boundary varies)
0x01FF	peripheral registers
0x0100	with word access
0x00FF	peripheral registers
0x0100	with byte access
0x000F	special function registers
0x0000	(byte access)

Lida com interrupções

bits	0
program counter	0
stack pointer	0
status register	·
constant generator	
general purpose	
<u>:</u>	
general purpose	
	program counter stack pointer status register constant generator general purpose

Figure 2.5: Registers in the CPU of the MSP430.

15	bits	0
R0/PC	program counter	0
R1/SP	stack pointer	0
R2/SR/CG1	status register	•
R3/CG2	constant generator	
R4	general purpose	
	:	
R15	general purpose	

Executa instruções, faz bifurcações por software e por hardware

15	bits	0
R0/PC	program counter	0
R1/SP	stack pointer	0
R2/SR/CG1	status register	
R3/CG2	constant generator	
R4	general purpose	
	:	
R15	general purpose	

Possui uma unidade lógico-aritmética (ULA), 16 registradores e a lógica de decodificação das instruções

15	bits	0
R0/PC	program counter	0
R1/SP	stack pointer	0
R2/SR/CG1	status register	·
R3/CG2	constant generator	
R4	general purpose	
	:	
R15	general purpose	

Roda em uma frequência máxima de 16MHz para os MSP430F2xxx e alguns MSP430x4xx, 8MHz para os demais

15	bits	0
R0/PC	program counter	0
R1/SP	stack pointer	0
R2/SR/CG1	status register	•
R3/CG2	constant generator	
R4	general purpose	
	:	
R15	general purpose	

Possui lógica estática: não possui uma frequência mínima de operação, e seu estado não é perdido quando pára de funcionar

15	bits	0
R0/PC	program counter	0
R1/SP	stack pointer	0
R2/SR/CG1	status register	•
R3/CG2	constant generator	
R4	general purpose	
	:	
R15	general purpose	

Registradores não estão na memória principal, e sim na CPU (diferente de alguns processadores)

15	bits	0
R0/PC	program counter	0
R1/SP	stack pointer	0
R2/SR/CG1	status register	
R3/CG2	constant generator	
R4	general purpose	
	:	
R15	general purpose	

Aponta para o endereço da próxima instrução a ser executada

Aponta para o menor endereço da pilha, que guarda informações importantes quando se chama uma subrotina, como o endereço de retorno para o PC

Flags (bits) de estado C, Z, N, V, GIE, CPUOFF, OSCOFF, SCG0 e SCG1

bits	0
program counter	0
stack pointer	0
status register	•
constant generator	
general purpose	
:	
general purpose	
	program counter stack pointer status register constant generator general purpose :

Flags (bits) de estado

Z: I quando a última operação resultou em zero

15	bits	0	
R0/PC	program counter	0	
R1/SP	stack pointer	0	
R2/SR/CG1	status register		
R3/CG2	constant generator		
R4	general purpose		
	:		
R15	general purpose		

Flags (bits) de estado

GIE: habilita interrupções mascaráveis

	15	bits	0
	R0/PC	program counter	0
	R1/SP	stack pointer	0
l	R2/SR/CG1	status register	
	R3/CG2	constant generator	
	R4	general purpose	
		<u>:</u>	
	R15	general purpose	

Flags (bits) de estado

CPUOFF, OSCOFF, SCG0 e SCG1: controlam o modo de operação do MSP430

15	bits	0
R0/PC	program counter	0
R1/SP	stack pointer	0
R2/SR/CC1	status register	
R3/CG2	constant generator	
R4	general purpose	
	:	
R15	general purpose	
		,

Fornece os 6 valores mais utilizados

O compilador e o montador se encarregam dos detalhes

15	bits	0
R0/PC	program counter	0
R1/SP	stack pointer	0
R2/SR/CG1	status register	
R3/CC2	constant generator	
R4	general purpose	
	i	
R15	general purpose	

Uso geral

P1.0-P1.7 e P2.6-P2.7 são entradas e saídas digitais

Alguns desses pinos podem interromper o sistema

O processador do MSP430 enxerga essas portas através de registradores periféricos (endereços na memória)

Cada porta ==> um byte

Cada pino ==> um bit de cada byte

Por exemplo, PIIN apresenta os valores de entrada na porta PI

Pino em Vss ==> bit correspondente = 0

Pino em Vcc ==> bit correspondente = 1

Por exemplo, P2OUT apresenta os valores de entrada na porta P2

Bit correspondente = 0 ==> Pino em Vss

Bit correspondente = | ==> Pino em Vcc

Registradores mais importantes para a porta PI

PIIN: registrador volátil read-only com os valores de entrada

Registradores mais importantes para a porta PI

PIOUT: escrever neste registrador leva o pino de saída a Vss ou Vcc, se o pino for configurado como saída. Caso contrário, o valor correspondente é guardado num buffer e aparece no pino quando este for configurado como saída

DIGITAL I/O MAPPING

Registradores mais importantes para a porta PI

PIDIR: define se o pino é de entrada (bit correspondente = 0) ou de saída (bit correspondente = 1)

DIGITAL I/O MAPPING

Exemplo: configurar em C todos os pinos da porta PI como saída e levá-los para Vcc

```
PIDIR = 0xFF;

PIOUT = 0xFF;
```

DIGITAL I/O MAPPING

Outros periféricos do MSP430 são controlados por registradores semelhantes

Sinal de clock é uma onda quadrada cujas bordas acionam diferentes hardwares de forma sincronizada

Para trabalhar com baixo consumo de energia, o MSP430 necessita de 2 clocks

Um clock rápido e pouco preciso para a CPU, que possa ser parado e reiniciado rapidamente

Para trabalhar com baixo consumo de energia, o MSP430 necessita de 2 clocks

Um clock lento, de baixo consumo, preciso e que nunca pare, para monitorar o tempo real

Opção I: cristal

Mais preciso e estável. Alguns MHz para o barramento principal, ou de 32768 Hz para tempo real.

Opção I: cristal

Caros, delicados, ocupam mais espaço (podem necessitar de capacitores extra), consomem mais energia, e demoram para iniciar e estabilizar

Opção 2: circuito RC

Mais baratos e rápidos de usar. Dependendo dos componentes, podem ser mais precisos e estáveis

Sinais de clock no MSP430

Master clock (MCLK): CPU e alguns periféricos

Subsystem master clock (SMCLK) e Auxiliary clock (ACLK): periféricos

ACLK é geralmente obtido de um cristal de 32768 Hz

MCLK e SMCLK são obtidos de um DCO (oscilador controlado digitalmente)

O DCO pode rodar sozinho, em 0,8 ou 1,1 MHz, ou ser controlado por um FLL (frequency-locked loop) de 32 vezes o ACLK, em 1.048.576 Hz

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG (2) (3)	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG (4)	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG (2) (4)	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG (4)	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG (2) (6)	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (7)			0FFDEh	15
See (8)			0FFDEh to 0FFC0h	14 to 0, lowes

- A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.
- (2) Multiple source flags
- (non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot.
- Interrupt flags are located in the module.
- In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.
- (6) In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.
- (7) This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.
- (8) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

A execução de um programa segue normalmente, exceto quando ocorrem interrupções ou resets

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG (2) (3)	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG (4)	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG (2) (4)	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG (4)	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG (2) (6)	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (7)			0FFDEh	15
See (8)			0FFDEh to 0FFC0h	14 to 0, lowes

- A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.
- (2) Multiple source flags
- (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.
- Interrupt flags are located in the module.
- In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.
- (6) In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.
- (7) This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.
- (8) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

Interrupções:

Causadas por hardware, indicam eventos que devem ser tratados

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ^{(2) (3)}	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG (2) (4)	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG(4)	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG (2)(5)	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG (2) (6)	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (7)			0FFDEh	15
See (8)			0FFDEh to 0FFC0h	14 to 0, lowest

- A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.
- (2) Multiple source flags
- (3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.
- Interrupt flags are located in the module.
- (5) In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.
- (6) In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.
- (7) This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.
- (8) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

Interrupções:

O processador pára o que está fazendo, guarda o conteúdo do Program Counter e do Status Register, e executa a ISR correspondente

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG (2) (4)	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG(4)	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG (2)(5)	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG (2) (6)	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (7)			0FFDEh	15
See (8)			0FFDEh to 0FFC0h	14 to 0, lowes

- A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.
- (2) Multiple source flags
- (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.
- Interrupt flags are located in the module.
- In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.
- (6) In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.
- (7) This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.
- (8) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

Interrupções:

ISR é uma interrupt service routine, uma função ou subrotina chamada por hardware

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG (2) (4)	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG(4)	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG (2) (6)	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (7)			0FFDEh	15
See (8)			0FFDEh to 0FFC0h	14 to 0, lowes

 A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.

(2) Multiple source flags

(non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.

Interrupt flags are located in the module.

In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.

(6) In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.

(7) This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.

(8) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary. Interrupções também podem "acordar" o processador de um estado de baixo consumo

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range (1)	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ^{(2) (3)}	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG (2) (4)	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG(4)	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG (2)(5)	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG (2) (6)	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (7)			0FFDEh	15
See (8)			0FFDEh to 0FFC0h	14 to 0, lowe

- A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.
- (2) Multiple source flags
- (3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.
- Interrupt flags are located in the module.
- In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.
- (6) In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.
- (7) This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.
- (8) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

Resets:

Gerados por hardware ou pelo Watchdog Timer, reiniciam todo o sistema

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ^{(2) (3)}	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG (2) (4)	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG(4)	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG (2)(5)	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG ^{(2) (6)}	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (7)			0FFDEh	15
See (8)			0FFDEh to 0FFC0h	14 to 0, lowes

 A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.

(2) Multiple source flags

(non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.

Interrupt flags are located in the module.

In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.

(6) In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.

(7) This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.

(8) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

Endereços das ISRs (incluindo a de Reset) são guardados em uma vector table, ao final da memória de programa (0xFFC0-0xFFFF)

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range (1)	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ^{(2) (3)}	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG (2) (4)	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG(4)	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG (2)(5)	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG (2) (6)	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (7)			0FFDEh	15
See (8)			0FFDEh to 0FFC0h	14 to 0, lowe

 A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.

(2) Multiple source flags

(non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot.

Interrupt flags are located in the module.

In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.

(6) In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.

(7) This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.

(8) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary. Se duas ou mais ISRs são chamadas, a ordem de execução é definida pela vector table, a partir do endereço mais alto