Через турбку 1,сделанной из стали и потому обладающей малой теплопроводностью и содержащей на конеце пористую перегородку 2, пропускается исследуемый газ - двуокись углерода CO_2 . Углекислый газ под повышенным давлением попадает в трубку через змеевик 5 из баллона 6. Змеевик в свое время медленно нагревает проходящий через него газ до температуры воды в термостате, который поддерживает ее постоянной с точностью $\pm 0.1^{\circ}C$. Манометр М измеряет разность давлений внутри трубки и снаружи. Разность температур газа до и после перегородки измеряется дифференциальной термопарой медь-констант, концы которой подключены к вольтметру. Если концы термопары имеют разную температуру, то в цепи возникает разность потенциалов, которая и измеряется вольтметром.

Экспериментальные данные

$\sigma_{\text{ман}}$, Бар	$max_{{\scriptscriptstyle \mathrm{M}}{\scriptscriptstyle \mathrm{AH}}}$, Бар	ΔV , мк B	$C_{ m P}$, кДж/(кг \cdot К)		
0.1	6	1	0.846		

Таблица 1: Некоторые константы и погрешности приборов

$N_{ar{o}}$	1	2	3	4	5	6
ΔP , Bap	4	3.5	3.0	2.5	2.0	1.5
$\Delta T^{\circ}C(T = 23.3^{\circ}C)$	-3.87	-3.28	-2.71	-2.22	-1.66	-1.29
$\Delta T^{\circ}C, (T = 30^{\circ}C)$	-3.71	-3.13	-2.71	-2.13	-1.55	-0.97
$\Delta T^{\circ}C, (T = 40^{\circ}C)$	-3.28	-2.61	-2.14	-1.61	-1.11	-0.82
$\Delta T^{\circ}C, (T = 50^{\circ}C)$	-2.56	-1.93	-1.46	-1.06	-0.71	-0.48

Таблица 2: Зависимость $\Delta P(\Delta T)$ при различных значениях T

По полученным данным были построены графики зависимости $\Delta P(\Delta T)$ и по ним вычислены значения $\mu_{\text{д-т}} = \frac{\Delta P}{\Delta T}$ для разных температур. Результаты и сравнение с табличными данными приведины ниже.

$T^{\circ}C$	23	30	40	50
$ \mu_{\rm д-T} , {\rm K/fap} \ ({ m экc})$				
$\mu_{\text{д-т}}, \text{K/бар (табл)}$	1.105	1.03	0.958	0.898

Таблица 3: Сравнение экспериментальных и табличных значений коэффициентов Джоуля-Томсона

Погрешность рассчитывалась по формуле:

$$\sigma_{\rm P} = 0.1 \text{ fap; } \sigma_{\rm V} = 0.003 \text{ MB}$$
 (6)

$$\varepsilon_{\mu} = \sqrt{\left(\frac{\sigma_T}{T}\right)^2 + \left(\frac{\sigma_P}{P}\right)^2} \; ; \; \varepsilon_{\text{max}} = 7.7\%$$
 (7)

(а) График зависимости $\mu_{\mathsf{Д}\text{-}\mathtt{T}}(\frac{1}{T})$

(b) Сравнение табличных и экспериментальных значений $\mu_{\text{д-т}}$

(a) $\Delta P(\Delta T)$ при $T=23.3^{\circ}C$

(b) $\Delta P(\Delta T)$ при $T=30^{\circ}C$

(c) $\Delta P(\Delta T)$ при $T=40^{\circ}C$

(d) $\Delta P(\Delta T)$ при $T=50^{\circ}C$

Вычисляя по формулам $a,b,T_{\mathtt{инв}}$ получаем:

$$a = \frac{1}{2}\mu C_p RT = 0.0270 \pm 0.004 \text{ H} \cdot \text{м}^4 / \text{моль}^2; a_{\text{табл}} = 0.36 \text{ H} \cdot \text{м}^4 / \text{моль}^2$$
 (8)

$$b = \mu C_p = 12.8 \pm 0.9 \text{ см}^3/\text{моль}; \ b_{\text{табл}} = 42.7 \text{ см}^3/\text{моль}$$
 (9)

$$T_{\text{инв}} = \frac{2a}{Rb} = 507 \pm 85 \text{ K}; T_{\text{табл}} = 1520 \text{ K}$$
 (10)

Результаты и выводы