Zagazig University

Faculty of Engineering

Third Year - 1st Term - 2021/2022

Department:

Electronics & Communications Eng.

Date:

Time:

Tuesday, Feb. 01, 2022

Course Name:

Digital Electronic

1:00pm - 4:00pm (3 Hrs.)

Course Code:

ECE 312

Marks:

35

#Pages:

#Questions

28

Final Exam

Choose the Correct Answer (Note: Do not choose more than one answer)

For any calculation, approximate the result to 2 decimal places

Questions 1-6 are based on the following information:

For the circuit shown in Fig.1, if $R_1=10K\Omega$, $R_2=1K\Omega$, and $V_{CC}=\pm 12V$

1) What is the circuit Name?

- Inverting Amplifier
- Noninverting amplifier
- C. Voltage Follower
- D. None of them

2) What is the Voltage Gain A_v ?

- A. $1 + \frac{R_1}{R_1}$
- $B. \quad \frac{R_2}{R_1}$

- $1 + \frac{R_2}{R_1}$

3) Calculate A_{ν} ?

A. 11

- B. -10
- C. 1.1

D. -0.1

4) The circuit shown is an equivalent to:

- Noninverting
- Inverting Differentator
- C. Difference Amp.
- Inverting Integrator

The expression of the Differentiator

 $A. V_o = -CR \frac{dV_i}{dt}$

Integrator

- B. $V_o = -\frac{1}{RC} \int_0^t V_i dt$
- C. $V_o = -CR \int_0^t V_i dt$
- 1 dvi

6) The expression of the Integrator

- $A. V_o = -CR \frac{dV_t}{dt}$
- B. $V_0 = -\frac{1}{PC} \int_0^t V_i dt$
- C. $V_o = -CR \int_0^t V_i dt$

Questions 7-16 are based on the following information:

For the multivibrator circuit shown in Figure:

Given that: $V_{CC}=12V$, $R_1=6.8K\Omega$, $R=6.2K\Omega$, C=33nF.

What is the equivalent circuit representing the charging mode?

D. None of them

Page 1 of 3

Model No. @

Page 2 of 3

