Entity-Relationship Model

- 1. Entity
- 2. Attributes
- 3. Entity Sets
- 4. Relationship Sets
- 5. Design Issues
- 6. Mapping Constraints
- 7. Weak Entity
- 8. Keys
- 9. E-R Diagram
- 10. Extended E-R Features
- 11. Design of an E-R Database Schema
- 12. Reduction of an E-R Schema to Tables

Attribute types:

- 1. Simple and composite attributes.
- 2. Single-valued and multi-valued attributes E.g. multivalued attribute: phone-numbers
- 3. Derived attributesCan be computed from other attributesE.g. age, given date of birth

Composite Attributes

Composite and Multi-valued Attributes

- Composite attributes are flattened out by creating a separate attribute for each component attribute
 - E.g. given entity set customer with composite attribute name with component attributes first-name and last-name the table corresponding to the entity set has two attributes name.first-name and name.last-name
- A multivalued attribute M of an entity E is represented by a separate table EM
 - Table EM has attributes corresponding to the primary key of E and an attribute corresponding to multivalued attribute M
 - E.g. Multivalued attribute dependent-names of employee is represented by a table employee-dependent-names(employee-id, dname)
 - Each value of the multivalued attribute maps to a separate row of the table FM
 - E.g., an employee entity with primary key John and dependents Johnson and Johndotir maps to two rows: (John, Johnson) and (John, Johndotir)

Relationships

- Relationships are an association between two or more entities
 - Each Student takes several Modules
 - Each Module is taught by a Lecturer
 - Each Employee works for a single Department
- A relationship connects two or more entity sets.
- It is represented by a diamond, with lines to each of the entity sets involved.

- Relationships have
 - A name
 - A set of entities that participate in them
 - A degree the number of entities that participate (most have degree 2)
 - Higher degrees leads to complex ER Diagrams.
 - A cardinality ratio

Diagramming Relationships

- Relationships are links between two entities
- The name is given in a diamond box
- The ends of the link show cardinality

Example: Relationships

Bars sell some beers.

Drinkers like some beers.

Drinkers frequent some bars.

BANERJEE; Dept of CSE; partha.banerjee@juet.ac.in

Relationship Set

- The current "value" of an entity set is the set of entities that belong to it.
 - Example: the set of all bars in our database.
- The "value" of a relationship is a relationship set, a set of tuples with one component for each related entity set.

A relationship set is a set of relationships of the same type. Formally it is a mathematical relation on (possibly non-distinct) sets. If are entity sets, then a relationship set R is a subset of. where is a relationship. For example, consider the two entity sets customer and account. Sep 10, 1995

An Relationship Set is a collection of relationships all belonging to one relationship type. In the set are instances of relationships. For instance, if a relationship type is registration then each enrollment of a student in a course is an instance of registration and appears is in the relationship set.

April is taking two courses Peter is taking zero courses Jim is taking one course

Example: Relationship Set

 For the relationship Sells, we might have a relationship set like:

	_
Bar	Beer
Joe's Bar	Bud
Joe's Bar	Miller
Sue's Bar	Bud
Sue's Bar	Pete's Ale
Sue's Bar	Bud Lite

Relationship Sets

A relationship is an association among several entities

Example:

Hayes <u>depositor</u> <u>A-102</u> customer entity relationship set account entity

• A *relationship* set is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, ..., e_n) \mid e_1 \in E_1, e_2 \in E_2, ..., e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

– Example:

(Hayes, A-102) \in depositor

Relationship Set borrower

Relationship Sets (Cont.)

- An attribute can also be property of a relationship set.
- For instance, the depositor relationship set between entity sets customer and account may have the attribute access-date

A Typical Relationship Set

Bar	Drinker	Beer
Joe's Bar Ann Sue's Bar Ann Sue's Bar Ann Joe's Bar Bob Joe's Bar Bob Joe's Bar Cal Sue's Bar Cal	Miller Bud Pete's Ale Bud Miller Miller Bud Lite	

Degree of a Relationship Set

- Refers to number of entity sets that participate in a relationship set.
- Relationship sets that involve two entity sets are binary (or degree two). Generally, most relationship sets in a database system are binary.
- Relationship sets may involve more than two entity sets.

E.g. Suppose employees of a bank may have jobs (responsibilities) at multiple branches, with different jobs at different branches. Then there is a ternary relationship set between entity sets *employee*, *job and branch*

 Relationships between more than two entity sets are rare. Most relationships are binary. (More on this later.)