WBS & resources levelling

EIT Digital Master School @Eötvös Lorand University

Business Development Lab

Work Breakdown Structure

"WBS is a hierarchical and incremental decomposition of the project into phases, deliverables and work packages. It is a tree structure, which shows a subdivision of effort required to achieve an objective

*Wikipedia: https://en.wikipedia.org/wiki/Work breakdown structure

WBS Example

WBS Example

1.0 Aircraft System

- 1.1 Air Vehicle
 - 1.1.1 Airframe
 - 1.1.1.1 Airframe Integration, Assembly, Test and Checkout
 - 1.1.1.2 Fuselage
 - 1.1.1.3 Wing
 - 1.1.1.4 Empennage
 - 1.1.1.5 Nacelle
 - 1.1.1.6 Other Airframe Components 1..n (Specify)
 - 1.1.2 Propulsion
 - 1.1.3 Vehicle Subsystems
 - 1.1.4 Avionics
- 1.2 System Engineering
- 1.3 Program Management
- 1.4 System Test and Evaluation
- 1.5 Training
- 1.6 Data
- 1.7 Peculiar Support Equipment
- 1.8 Common Support Equipment
- 1.9 Operational/Site Activation
- 1.10 Industrial Facilities
- 1.11 Initial Spares and Repair Parts

This is the same!

MIL-STD-881C, Work Breakdown Structures for Defense Materiel Items, 3 October 2011 Appendix A, ¶A.3

*https://en.wikipedia.org/wiki/Work_breakdown_structure

WBS

- Two formats:
- Graphical tree
- Textual outline
- Uses a decimal numbering system to identify elements (Ex: 3.1.5)
- Shows "is contained in" relationships
- Does not show dependencies nor durations

Why WBS?

- Defining the work to be performed in a project
- Showing how various activities are related to the project obj.
- Defining, assigning, and monitoring work and costs
- Identifying responsibilities

How to make a good WBS?

-100%: all work must be there

- -Mutually Exclusive : no overlaps in the definition of the elements
- All paths do not have to go to the same level

How to make a good WBS?

- Coherence: tasks within a work
 package should have the same goal;
- Coupling: work package dependencies should be minimized, so team members can work independently;
- Continuity: production work packages should be <u>full-time</u> to maximize efficiency;

WBS Dictionary

WBS Level	WBS Code	WBS Name	WBS Description	PWS/SOW Mapping
1	1	Aircraft System	X Series Aircraft System to fly to the moon	
2	1.1	Air Vehicle	X Series Air Vehicle to fly to the moon	
3	1.1.1	Air Frame	X seriese air frame	
3	1.1.2	Avionics	Brains behind the air frame	
4	1.1.2.1	Comms	Communications	
5	1.1.2.1.1	Antenna	Thinging to pick up signals	1.1, 1.2, 1.3.1, 1.13.1
5	1.1.2.1.2	Receiver	Box to interpert signals picked up by Antenna	1.1, 1.2, 1.13.2
5	1.1.2.1.3	Transmitter	Box to send out signals when we talk	1.1, 1.2, 1.3.1, 1.13.3
4	1.1.2.2	Navigation	Back seat driver	
4	1.1.2.3	Fire Control	Off/Def weapons in case we run into aliens	
3	1.1.3	Propulsion	Engine to propel x series air frame	
2	1.2	Training	Training for operation and maintenance of X Series Air Vehicle	

When do we stop breaking down?

- Beware of Cost & Time:
 bottom level work packages should require between
 one man- week and one man-month of effort.
- The level of details depends on the size of the project!

Speaking of measuring and sizes...

	Effort	Duration	Elapsed Time
Defined as	# of work units to complete an activity	the activity (can reduce if more	t between designating a resource to a task and its completion
Measured in	Staff *hours, days or weeks	Work H, Days or Weeks (no holidays)	Work H, Days or Weeks (+ holidays)
2 Person *6 h a day *9 days	108 h	y days	11 days (1 Saturday and 1 Sunday)

From WBS to Gantt

Adding relationships and constraints

- We start testing as soon as we start coding
- First T2 and with those result decide what to test in T3

Resources Allocation

"the process by which a resource is assigned to a task, that is, is tasked with carrying out part of the work (effort) defined in a task"

- Inputs:
- the plan: WBS activities, constraints, effort
- project team
- delivery dates (project constraints)
- Resource allocation:
- Constraints:
- resource availability and needs: the type of resource above maximum availability (resource leveling)
- If no solution is found variate some hypotheses (eg. Hire a new guy!)

Resources Levelling

R1 full time developer (100%)

40h

80h

- R2 R3 testers
- R2 is intern (50%)

- R1 works 2w full time(100%) on T1 => 40h * 2w
- R2 works 2w 50% on T2=> 20h*2w
- R1 and R2 work 50% on T1 the third week => (20+20)h* 1w
- R1 and R2 work 50% on T3 => (20+20)h* 1w
- R3 work 100% on T3 => 40h*1w

120h

Thank you!

Brought to you by EIT Digital Master School @Eötvös Lorand University

Find me at: anna.reale@inf.elte.hu

١ nah