B.A.T.F.I.N.K

Brilliant Autonomous Tracking Fast Intelligent Navigation Kinetic

Autonomous maze-solving robot

TASK

Design and manufacture a maze-solving robot

The Task was presented to design and manufacture a maze solving robot that acts autonomously with key aspects being placed on efficient use of material and quality code

Design Stage

Concept

The initial concept drawings outlined the project

CAD

CAD (Computer Aided Design) models were created from the initial design

CAM

CAM (Computer Aided Manufacturing) processes such as 3D printing and laser cutting were used to create the robot

NOV 23

Assembly

Software planning

The next stage was to plan the software for the robot

A balancing act

Software Structure

2248

Lines of code later...

Navigation

Maze Solving

A*

Conclusions

- Don't rely on BLE
- Stream Map and sensor data over Serial
- Integrate Python Mapping solutions to robot
- Don't use Usonic, Not fast enough

THANK YOU!

Any questions?

jf1595@york.ac.uk github.com/jackfitton112

