## Método de Zhou 2013

# PCOM Posterior-focused catch-only method S. Zhou, Modificado por Elson Leal y María José Zúñiga para sardina austral Aysen, CBA 2021

This method requires time series of catch data only. However, some life history parameters, M, Linf, k,  $T_{max}$ ,  $T_{max}$ ,  $T_{max}$ , a rough guess of maximum depletion level D = B end/K will be helpful. This example is for single catch series

## Modelo

```
library(knitr) # para generar reporte Rmarkdown
library(stringr)
library(reshape)
library(dplyr)
library(ggplot2)
library(ggthemes) # para ggplot
library(patchwork) # para unir gráficos de ggplot
library(strucchange) # libreria utilizada para análisis de quiebres
getwd()
```

## [1] "/Users/mariajosezunigabasualto/MJZ/CTP2022/SARDINAAUSTRAL\_AYSEN/PRIMER\_INFORME"

## Simulación

```
# simulation
sim1=function(k25=k25,k75=k75,r25=r25,r75=r75,yr=yr,C=C,nsim=nsim,msy=NULL)
Bend.keep=K.keep=r.keep=dep.keep=d.keep=vector()
nyr=length(yr)
B=F2Fmsy=B2Bmsy=matrix(NA,nyr,nsim)
K=r=vector()
plot(0,0,type="n",xlim=c(min(yr),max(yr)),ylim=c(-1,round(k75,0)*1.15),
xlab="", ylab="",yaxt="n",xaxt="n")
for(j in 1:nsim){
  K[1] = runif(1, k25, k75)
  r[1]=runif(1,r25,r75)
  B[1,j]=K[1]
  for(i in 2:(nyr)){
    r[i]=runif(1,r25,r75)
    K[i]=runif(1,k25,k75)
    B[i,j]=B[i-1,j]+r[i]*B[i-1,j]*(1-B[i-1,j]/K[i])-C[i-1]
    F2Fmsy[i,j]=(C[i]/B[i,j])/(r[i]/2)
    B2Bmsy[i,j]=B[i,j]/(K[i]/2)
  cols \leftarrow rgb(runif(1,0,j)/nsim, (nsim-runif(1,0,j))/nsim, (1)/(nsim+100),
  alpha=0.6)
  lines(yr,B[,j],col=cols)
  K.keep[j]=mean(K)
  r.keep[j]=mean(r)
  F2Fmsy[,j]=(C/B[,j])/(mean(r)/2)
  B2Bmsy[,j]=B[,j]/(mean(K)/2)
}
Bend.keep=B[nyr,]
d.keep=B[nyr,]/mean(K)
lines(yr,apply(B,1,median),lty=1,lwd=3)
lines(yr,C,lwd=2,col="#363636",lty=2)
points(yr,C,pch=21,col=4,bg=4,cex=1.3)
y1 < -seq(0, round(k75, 0) *1.1, le=5);
x1<-seq(1,length(yr),by=1)
axis(1,at=yr[x1],labels=yr[x1],las=1,cex.axis=1)
axis(2,at=y1,labels=format(round(y1/1000,0),3),las=2,cex.axis=1)
legend(yr[nyr-4], max(y1)*1.05,c("Biomasa", "Captura", "RMS"), lty=c(1,2,2),
col=c(1, "#363636", 2), pch=c(NA, 21, NA), lwd=c(2, 2, 2), pt.bg=c(NA, 4, NA), cex=1.3, bty="n")
BC<-expression(paste('Biomasa ('%*%'1000 ton) y Captura (ton)',sep=""))
mtext(BC,side=2,line=4.0,cex=1)
mtext("Años",side=1,line=3.5,cex=1)
if(is.null(msy)){} else {abline(h=msy,lty=2,col=2,lwd=2)}
msy=K.keep*r.keep/4
return(list(K.keep,r.keep,msy,Bend.keep,d.keep,B,r,F2Fmsy,B2Bmsy))
```

## Ingresa datos de captura

```
# input catch data and r range for sautral XI stock
C=c(4033,5318,4163,7547,5097,3853,653,1352,1839,4488)
yr = seq(2012, 2021)
r.lci=0.85;
r.uci=1.2
# search through K grids, with specific range for K1 follow
K1=\exp(\operatorname{seq}(\log(\max(C)),\log(\max(C)*50),l=N1))
# genera los valores de la deplecion
dep=round(seq(0.1,0.8,0.05),2)
nd=length(dep)
r1=obj1=matrix(0,N1,nd) #matriz que almacena los output de las funciones
b=1#Si (C[1]/max(C)<0.5, (0.5+0.9)/2 (0.3+0.6)/2);b=0.5
# ciclo
for(j in 1:nd){
 for(i in 1:N1){
  out=optimize(BDM,K=K1[i],b=b,C=C,dep=dep[j],
  interval=c(r.lci-.05,r.uci+.05))
  r1[i,j]=out$min
  obj1[i,j]=out$obj
 }
}
#vLinf=58.95; vk=0.28; Tmax=10; Tmat=NA; T=17
#M=vector()
\#M[1] = exp(1.44-0.982*log(Tmax))
\#M[2]=1.65/Tmat
\#M[3] = exp(1.2-0.17*log(vLinf)+log(vk))
#M[4]=1.82*vk
\#M[5] = exp(-0.0152-0.279*log(vLinf)+0.6543*log(vk)+0.463*log(T))
#w=0.87 #para teleost y w=0.41 para chondrithys
\#r.mean=2*mean(M,na.rm=T)*w
\#r.sd=sd(M,na.rm=T)
\#r.backup=r
\#r[r > r.mean + 2*r.sd \mid r < r.mean - 2*r.sd] = NA
r1.backup=r1 ;# r1=r1.backup
r1[obj1 > K1*0.01]=NA
r1[r1 > r.uci | r1 < r.lci]=NA
kr=as.data.frame(cbind(K1,r1))
colnames(kr)=c('k',dep)
```

```
all=cbind(K1,stack(kr[,2:nd+1]))#antes nd+1
colnames(all)=c("k","r","ind")
all$d=as.numeric(as.character(all$ind))
all=all[,c(1,2,4)]
all=all[!is.na(all[,2]),]
all$msy=all[,1]*all[,2]/4
# estimate reference points
#################################
\#cutoff = ifelse(tail(C,1)/max(C) \le 0.5, 0.5, 0.8)
         =all[!is.na(all$r) & all$d <= 0.50,]#cutoff,assume upper depettion=0.50
al12
quan1
        =apply(all2,2,quantile)
k25
        =quan1[,1][2]
k75
        =quan1[,1][4]
r25
         =quan1[,2][2]
        =quan1[,2][4]
r75
msy.media=quan1[,4][3]
        =all2[all2$k>k25 & all2$k<k75 & all2$r>r25 & all2$r<r75,]
al13
para
        =list(k25=k25, k75=k75, r25=r25, r75=r75)
```

## Figura biomasa



```
F2Fmsy.med=apply(F2Fmsy,1,median),
                quan1.F=apply(F2Fmsy,1,quant)[1,],
                quan3.F=apply(F2Fmsy,1,quant)[2,])
BF2msy.end = data.frame(t(rbind(B2Bmsy[length(yr),],F2Fmsy[length(yr),])))
colnames(BF2msy.end)=c("B2Bmsy","F2Fmsy")
#kable(BF2msy.end)
out1.backup=out1 #out1=out1.backup
sp=out1[1:5]
sp=as.data.frame(sp)
                  # summary(sp)
colnames(sp)=c("k","r","msy","Bend","Depletion")
BendD=apply(sp,2,quantile)
#FINAL RESULT
tabla<-cbind(quan1[,c(1,2,4)],BendD[,4:5])
write.csv2(tabla, "tabla1.csv", row.names=FALSE)
kable(tabla)
```

|      | k        | r         | msy      | Bend     | Depletion |
|------|----------|-----------|----------|----------|-----------|
| 0%   | 16634.15 | 0.8534279 | 3692.060 | 6247.066 | 0.3689473 |
| 25%  | 16634.15 | 0.8614773 | 3726.883 | 7760.780 | 0.4583462 |
| 50%  | 16969.38 | 0.8861789 | 3757.632 | 8234.216 | 0.4863070 |
| 75%  | 17304.61 | 0.9106092 | 3786.803 | 8714.520 | 0.5146734 |
| 100% | 17304.61 | 0.9178450 | 3816.893 | 9623.804 | 0.5683751 |

```
Bioma <-apply(out1.backup[[6]],1,quantile)
#note: Bmsy = k/2, Blim = k/4
B.sim =data.frame(out1[6])
BF =t(apply(B.sim,1,quantile))
BF =cbind(BF,C/BF)
BRP =c(quan1[3,1]/2,quan1[3,2]/2)
fs =data.frame(cbind(BF[,c(8,3)],yr)) # F y Biomasa media
#GRAFICA BIOMASA V/S CPUE
#plot(yr,BF[,3],type="b",ylab="Biomasa and CPUE")
#par(new=T)
#plot(yr,U,type="b",col=2,axes=F,xlab="",ylab="")
#plot(yr,U,type="b",col=2,axes=F,xlab="",ylab="")
#plot(yr,U,type="b",col=2,axes=F,xlab="",ylab="")</pre>
```

## Sensibilidad

```
# sensitivity to assumed upper depletion (if needed) #
med.out=low.out=up.out=matrix(NA,nrow=4,ncol=6)
d.1=c(0.45,0.6,0.7,0.8) # assumed upper depletion levels
layout(matrix(1:4,ncol=2,byrow=T),widths=c(1,1),heights=c(1,1))
for(i in 1:4){
 all2=all[!is.na(all$r) & all$d <= d.l[i],]
 quan1=apply(all2,2,quantile)
 k25=quan1[,1][2]
 k75=quan1[,1][4]
 r25=quan1[,2][2]
 r75=quan1[,2][4]
 msy.median=quan1[,4][3]
 nsim=100
 #Figura
 par(mar=c(5,5.5,1,1),cex.axis=1.3)
 out1=sim1(k25=k25,k75=k75,r25=r25,r75=r75,C=C,yr=yr,nsim=nsim,msy=msy.media)
 tex=paste("reducción=",d.l[i],sep="")
 text(2015,round(para$k25,0)*0.26,tex,cex=1.2,xpd=T)
 # Tablas
 sp = out1[1:5]
 sp = as.data.frame(sp) # summary(sp)
 colnames(sp)= c('k','r','msy','Bend','D')
 BendD = apply(sp,2,quantile)
 med.out[i,] =(c(quan1[3,],BendD[3,4:5]))
 low.out[i,] =(c(quan1[2,],BendD[1,4:5]))
 up.out[i,] =(c(quan1[4,],BendD[5,4:5]))
 med.out[,3] = t(d.1)
 low.out[,3] = t(d.1)
 up.out[,3] = t(d.1)
 colnames(med.out)=c("k","r","d.upper","msy","Bend","D")
 colnames(low.out)=c("k","r","d.upper","msy","Bend","D")
 colnames(up.out)=c("k","r","d.upper","msy","Bend","D")
 kable(med.out)
 kable(low.out)
 kable(up.out)
 }
```



```
# parameters as a function of assumed upper depletion level
#name3<-paste(getwd(), "/Figuras/Fig3_Zhou2013_sensitivity.png",sep="")</pre>
#pnq(file=name3, width=900, height=1000)
layout(matrix(1:4,ncol=2,byrow=T),widths=c(1,1),heights=c(1,1))
par(mar=c(5.6,6.7,4,4),cex.axis=1.4)
plot(med.out[,3],med.out[,1]/1000,ylim=c(0,max(med.out[,1]/1000*1.3)),type='l',lwd=2,xlab='',ylab='',la
lines(low.out[,3],low.out[,1]/1000,lty=2);lines(up.out[,3],up.out[,1]/1000,lty=2)
mtext(expression(paste('K ('%*%'1000 ton)')),side=2,line=3.8,cex=1.4)
mtext("Reducción superior", side=1, line=3.6, cex=1.4)
plot(med.out[,3],med.out[,2],ylim=c(0,max(med.out[,2]*1.3)),type='1',lwd=2,xlab='',ylab='',las=1)
mtext('r', side=2, line=3.8, cex=1.4)
mtext("Reducción superior", side=1, line=3.6, cex=1.4)
lines(low.out[,3],low.out[,2],lty=2);lines(up.out[,3],up.out[,2],lty=2)
plot(med.out[,3],med.out[,4]/1000,ylim=c(0,max(med.out[,4]/1000*1.3)),type='1',lwd=2,xlab='',ylab='',la
lines(low.out[,3],low.out[,4]/1000,lty=2); lines(up.out[,3],up.out[,4]/1000,lty=2)
mtext(expression(paste('RMS ('%*%'1000 ton)')),side=2,line=3.8,cex=1.4)
mtext("Reducción superior", side=1, line=3.6, cex=1.4)
plot(med.out[,3],med.out[,6],ylim=c(0,max(med.out[,6]*1.5)),type='l',lwd=2,xlab='',ylab='',las=1)
lines(low.out[,3],low.out[,6],lty=2);lines(up.out[,3],up.out[,6],lty=2)
mtext("Reducción", side=2, line=3.8, cex=1.4)
mtext("Reducción superior", side=1, line=3.6, cex=1.4)
```



```
#dev.off()
# GRAFICA DIAGRAMA DE FASE
library(MASS)
K
   <- med.out[1,1]
mc.dat <-BF2msy.end</pre>
   <-tabla[3,1]/2 #BMRS
{\tt Bmrs}
Fmrs
   <-tabla[3,2]/2 #FMRS
   <-C/Bioma[3,] #F anual
Fest
Y1
   <-Fest/Fmrs;
   <-Bioma[3,]/Bmrs
X1
```

| year | ВТ    | Fest | B_Bo | Brel | Frel |
|------|-------|------|------|------|------|
| 2012 | 16903 | 0.24 | 1.00 | 1.99 | 0.54 |
| 2013 | 12968 | 0.41 | 0.76 | 1.53 | 0.93 |
| 2014 | 10323 | 0.40 | 0.61 | 1.22 | 0.91 |
| 2015 | 9768  | 0.77 | 0.58 | 1.15 | 1.74 |
| 2016 | 5906  | 0.86 | 0.35 | 0.70 | 1.95 |
| 2017 | 4212  | 0.91 | 0.25 | 0.50 | 2.06 |
| 2018 | 3161  | 0.21 | 0.19 | 0.37 | 0.47 |
| 2019 | 4810  | 0.28 | 0.28 | 0.57 | 0.63 |
| 2020 | 6489  | 0.28 | 0.38 | 0.76 | 0.64 |
| 2021 | 8234  | 0.55 | 0.49 | 0.97 | 1.23 |
|      |       |      |      |      |      |

#### kable(rbind(Bmrs,Fmrs))

Bmrs 8484.6911038 Fmrs 0.4430894

```
#library(rJava)
                                                           ## PROBLEMAS CON ESTO
#library(xlsx)
write.csv2(soli, "tabla2.csv", row.names=FALSE)
#DEFINE LAS AREAS DE LOS POLIGONOS
cols<-c("#696969","#A8A8A8","#DEDEDE")
ini < -c(-0.09);
xmax < -max(X1) * 1.35;
ymax < -max(Y1)*1.22;
xmin < -(0.08)
pol1 < -matrix(c(0.9,ini,0.9,1.1,xmax,1.1,xmax,0.75,1.25,0.75,1.25,ini),
ncol=2,byrow=T)
pol2<-matrix(c(1.25,ini,1.25,0.75,xmax,0.75,xmax,ini),ncol=2,byrow=T)
pol3<-matrix(c(xmax,1.1,xmax,ymax,0.9,ymax,0.9,1.1),ncol=2,byrow=T)</pre>
pol4<-matrix(c(0.5,ini,0.9,ini,0.9,ymax,0.5,ymax),ncol=2,byrow=T)
pol5<-matrix(c(-0.07,ini,0.5,ini,0.5,ymax,-0.07,ymax),ncol=2,byrow=T)
#name4<-paste(getwd(),"/Figuras/Fig4_Zhou2013_fase.png",sep="")</pre>
\#png(file=name4, width=1200, height=1000)
par(mar=c(6.1,6.5,4.8,4.8),cex.axis=1,cex.lab=1)
plot(X1,Y1,col=0,xlab="",ylab="",yaxt="n",xlim=c(xmin,max(X1)*1.1),
ylim=c(0.09, max(Y1)*1.17))
```

```
axis(2,las=1)
polygon(pol5,col=cols[1],border=1);polygon(pol4,col=cols[2],border=1)
polygon(pol3,col=cols[3],border=1);polygon(pol2,col=cols[3],border=1)
polygon(pol1,col="white",border="black")
#points(mc.dat[,1],mc.dat[,2],pch=21,bq="#B5B5B5",cex=0.9,col=1)
lines(X1,Y1,lty=2,col=1,lwd=2)
lines(X1,Y1,type="p",bg=2,pch=21,cex=1,lwd=2)
abline(v=1,lty=2,col=8,lwd=2); abline(h=1,lty=2,col=8,lwd=2)
abline(v=0.5, lty=2, col=8, lwd=2)
contour(z,drawlabels=FALSE,levels=c(0.1,0.25,0.5,0.75),add=TRUE)
text(0.5,max(Y1)*1.29,expression(PBR[paste("agotamiento")]),cex=1.1,
pos=1,xpd=T)
text(1,max(Y1)*1.29,expression(B[paste("RMS")]),cex=1.1,pos=1,xpd=T)
text(max(X1)*1.19,1.11,expression(F[paste("RMS")]),cex=1.1,pos=1,xpd=T)
mtext(expression(paste("Biomasa total relativa a ",B[paste("RMS")],sep="")),
side=1,line=4.2,cex=1.2)
mtext(expression(paste("Mortalidad por pesca relativa a ",F[paste("RMS")],
sep="")),side=2,line=3.8,cex=1.2)
\#a2 < -which(yr\%in\%seq(2015, 1994, by=-2) == TRUE)
a2 < -c(1,2,3,4,5,6,7,8,9)
text(X1[a2],Y1[a2]*1.06,yr[a2],cex=1,pos=4,col=4)
#text(1.10,0.83, "Plena Explotación", cex=1.6, pos=4, col=1, lwd=2)
#text(1.56,0.31, "Sub Explotación", cex=1.6, pos=4, col=1, lwd=2)
#text(1.33,1.51, "Sobrepesca", cex=1.6, pos=4, col=1, lwd=2)
#text(0.58,0.67, "Sobre", cex=1.6, pos=4, col=1, lwd=2)
#text(0.52,0.51, "Explotación", cex=1.6, pos=4, col=1, lwd=2)
#text(0.68,1.18, "Sobre-explotación y Sobrepesca", cex=1.6, pos=4, lwd=2, srt=90)
#text(0.23,1.18, "Colapso y/o Agotamiento", cex=1.6, pos=4, lwd=2, srt=90)
box()
```



Biomasa total relativa a  $B_{\text{RMS}}$ 

#dev.off()

## Cálculo de CBA

```
#CALCULO DE LA CBA PARA SARDINA AUSTRAL XI
mata <-out1.backup[1:5];</pre>
   <-length(mata)
mato <-vector()</pre>
for(p in 1:mm){
 mato <-cbind(mato,mata[[p]])}</pre>
 mate <-as.data.frame(mato)</pre>
 colnames(mate)<-c("k","r","msy","Bend","Depletion")</pre>
      <-length(yr)
уу
prob
      <-c(0.6666667,1.00,1.25) # pnderadores de Frms
      <-dim(sp)
yrs_pro <-seq(yr[yy],yr[yy]+11,by=1) # años de proyección
      <-length(yrs_pro)
уур
BT=CT=array(NA,c(length(prob),ss[1],length(yrs_pro)))
BT[,,1] \leftarrow Bioma[3,yy]
CT[,,1] \leftarrow C[yy]
Fi
      <-Fmrs*prob
# y = Frms ponderados
\# n = n\'umero de simulaciones
# m = años de proyección
for(y in 1:length(Fi)){
for(n in 1:ss[1]){
 ki=sp$k[n] # parámetro K simulado
 ri=sp$r[n] # parámetro r simulado
 for(m in 1:(yyp-1)){ # PROYECCIÓN
  if(m==1){
    CT[y,,1]=C[yy]} # igual a la captura del último año
    CT[y,n,m]=BT[y,n,m]*Fi[y]} # captura proyectada
    BT[y,n,m+1] = BT[y,n,m] + ri*BT[y,n,m]*(1-BT[y,n,m]/ki) - CT[y,n,m] * biomasa total proyectada
  if(m==(yyp-1)){
    CT[y,n,m+1] = BT[y,n,m+1] *Fi[y]
 }
}
}
# GRAFICA LA CBA 2 PARA sardina austral
FF
    <-formatC(Fi,format="f",digits=2)
    <-expression(paste("Biomasa (mil t)",sep=""))</pre>
Binf <-tabla[2,1]/2
Bsup -tabla[4,1]/2
rng1 <-range(BT[,,],na.rm=T)</pre>
```

```
ax2 <-seq(0,rng1[2]*1.15,by=1500)
cols <-"#858585"
                    <-length(yrs_pro)
y1
xxxx<-matrix(ncol=3,nrow=11)</pre>
par(mar=c(5,5,1,1),cex.axis=1,cex.lab=1)
plot(yrs_pro[-2],seq(0,rng1[2]*1.15,le=(y1-1)),col=0,type="o",xlab="",ylab="",yaxt="n",ylim=c(0,rng1[2]
for(x in 1:length(Fi)){
       xxxx[,x] \leftarrow apply(BT[x,,],2,quantile)[3,-2]
   lines(yrs_pro[-2],xxxx[,x],col=x,lty=2,lwd=2)
abline(h=Bmrs,lty=2,lwd=2,col=cols)
axis(2,at=ax2,labels=ax2/1000,las=1,cex=1)
mtext(BB,side=2,line=3.5,cex=1.2)
mtext("Años",side=1,line=3.4,cex=1.2)
legend(2021,rng1[2]*0.5,c(expression(F[paste("0,30")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46")]),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[paste("0,46"])),expression(F[past
expression(F[paste("0,58")])),lty=c(2,2,2,2,2),lwd=c(2,2,2,2,2),cex=1.4,
col=c(1,2,3),bty="n")
```



```
CC
                  <-expression(paste("Captura (mil t )",sep=""))</pre>
MRS <-tabla[3,3] #50%
rng2 <-range(CT[,,],na.rm=T)</pre>
ax3 <-seq(0,rng2[2]*1.15,by=1000)
xxxx<-matrix(ncol=3,nrow=11)</pre>
par(mar=c(5,5,1,1),cex.axis=1,cex.lab=1)
plot(yrs_pro[-2],seq(0,rng2[2]*1.15,le=11),col=0,type="o",xlab="",ylab="",yaxt="n",ylim=c(0,rng2[2]*0.9
for(x in 1:length(Fi)){
       xxxx[,x] \leftarrow apply(CT[x,,],2,quantile)[3,-2]
   lines(yrs_pro[-2],xxxx[,x],col=x,lty=2,lwd=2)
abline(h=MRS,lty=2,lwd=2,col=cols)
axis(2,at=ax3,labels=sprintf("%0.0f",ax3/1000),las=1,cex=1.4)
mtext(CC, side=2, line=3.5, cex=1.2)
mtext("Años",side=1,line=3.4,cex=1.2)
legend(2021, rng2[2]*0.5, c(expression(F[paste("0,30")]), expression(F[paste("0,46")]), expres
expression(F[paste("0,58")])),lty=c(2,2,2,2,2),lwd=c(2,2,2,2,2),cex=1.4,
col=c(1,2,3),bty="n")
```



```
# TABLA DE RESULTADOS CAPTURA 2021
ct<-matrix(NA,length(Fi),5)
for(i in 1:length(Fi)){
ct[i,]<-as.numeric(quantile(CT[i,,2],probs=c(.1,.2,.3,.4,.5))) # CT[i,,2] (el 2 representa 1 año de p
colnames(ct)<-c("10%","20%","30%","40%","50%")</pre>
rownames(ct)<-formatC(Fi,format="f",digits=2)</pre>
cat("\n")
print(ct)
               20%
         10%
## 0.30 2277.035 2282.162 2288.156 2293.619 2295.858
## 0.44 3415.552 3423.243 3432.234 3440.429 3443.786
## 0.55 4269.440 4279.054 4290.293 4300.536 4304.733
# TABLA DE RESULTADOS biomasa 2021
bt <-matrix(NA,length(Fi),5)
for(i in 1:length(Fi)){
bt[i,]<-as.numeric(quantile(BT[i,,2],probs=c(.1,.2,.3,.4,.5))) # CT[i,,2] (el 2 representa 1 año de p
colnames(bt)<-c("10%","20%","30%","40%","50%")
rownames(bt)<-formatC(Fi,format="f",digits=2)</pre>
cat("\n")
print(bt)
year < -seq(2012, 2021)
bioHil<-c(NA,17712,12394,11186,6911,5161,4212,6108,7933,8592)
par(mar=c(5,5,1,1),cex.axis=1,cex.lab=1)
plot(year,c(soli[,2],bt[2,5]),type="o",pch=19,ylim=c(0,20000), xaxp=c(2012,2022,10),ylab="Biomasa total
lines(year,bioHil,type="o",col=2,pch=19)
legend(2017,16000,c("Hilborn y Mangel 1997","Zhou 2013"),
    bty="n", lwd=1, pch=19, col=c(2,1), title="Método de estimación")
# RANGO CBA PARA PBR Al MRS (2) y EL 2021(2)
rango<-quantile(CT[2,,2],prob=c(0.025,0.25,0.50,0.75,0.975))
kable(rango)
                                    x
```

|       | X        |
|-------|----------|
| 2.5%  | 3392.999 |
| 25%   | 3427.983 |
| 50%   | 3443.786 |
| 75%   | 3458.664 |
| 97.5% | 3497.313 |

#

#FIN