19. Show that
$$\int_0^\infty \frac{\ln x}{1+x^2} dx = 0.$$

20. Show that
$$\int_0^\infty \frac{x^a}{a^x} dx = \frac{\Gamma(a+1)}{(\ln a)^{a+1}} \text{ for } a > 1.$$

21. Use the result from Example 6.28 to show that

$$\frac{d^{1/2}}{dx^{1/2}} \left(\frac{d^{1/2}}{dx^{1/2}} (x) \right) = 1 = \frac{d}{dx} (x) .$$

22. Calculate
$$\frac{d^{1/2}}{dx^{1/2}}(c)$$
 for all constants c . **23.** Calculate $\frac{d^{1/3}}{dx^{1/3}}(x)$.

23. Calculate
$$\frac{d^{1/3}}{dx^{1/3}}(x)$$

24. Show that
$$\int_0^1 \frac{1}{\sqrt{1-x^n}} dx = \frac{1}{n} B\left(\frac{1}{n}, \frac{1}{2}\right)$$
 for $n \ge 1$.

25. Show that the Gamma function $\Gamma(t)$ can be written as

$$\Gamma(t) = p^t \int_0^\infty u^{t-1} e^{-pu} du$$
 for all $t > 0$ and $p > 0$.

26. Show that the Gamma function $\Gamma(t)$ can be written as

$$\Gamma(t) = \int_0^1 \left(\ln \left(\frac{1}{u} \right) \right)^{t-1} du$$
 for all $t > 0$.

27. Using the result from Exercise 27 in Section 6.1 that

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax} (a \cos bx + b \sin bx)}{a^2 + b^2}$$

for all constants a and $b \neq 0$, differentiate under the integral sign to show that for all $\alpha > 0$

$$\int_0^\infty x e^{-x} \sin \alpha x \, dx = \frac{2\alpha}{(1+\alpha^2)^2}$$

C

28. Use the Leibniz rule and formula (6.8) from Section 6.3 to show that for all a > 0,

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln |x + \sqrt{a^2 + x^2}| + C.$$

29. Use Example 6.27 to show that the Beta function satisfies the relation

$$B(x, 1-x) = \int_0^1 \frac{t^{-x} + t^{x-1}}{1+t} dt \quad \text{for all } 0 < x < 1.$$

(Hint: First use a substitution to show that $\int_0^\infty \frac{u^{x-1}}{1+u} du = \int_0^\infty \frac{t^{-x}}{1+t} dt.$)

30. Show that for all a > -1,

$$\int_0^{\pi/2} \frac{d\theta}{1 + a \sin^2 \theta} = \frac{\pi}{2\sqrt{1+a}} .$$