Progettare un circuito sequenziale con un ingresso e due uscite z1 e z0. Si consideri la sequenza *s* costituita dagli ultimi tre bit di x. L'uscita z1 deve essere uguale a 1 se *s* considerato come valore in Ca2 (complemento a 2), è un valore negativo dispari, mentre z0 deve essere 1 se *s*, considerato come valore in base 2, è un multiplo di 3. **Non si considerino le eventuali** sovrapposizioni.

Esempio x 0101100111
z1 0001000000
z0 0000000010

Soluzione

Soluzione

Codifica:

Stato	$Q_2Q_1Q_0$
R	001
S _{?0}	010
S _{?1}	011
S ₀₀	100
S ₀₁	101
S ₁₀	110
S ₁₁	111

transizioni:

stato	$Q_2Q_1Q_0$	X	Q' ₂ Q' ₁ Q' ₀
R	001	0	010
R	001	1	011
S _{?0}	010	0	100
S _{?0}	010	1	101
S _{?1}	011	0	110
S _{?1}	011	1	111
S ₀₀	100	0	001
S ₀₀	100	1	101
S ₀₁	101	0	110
S ₀₁	101	1	001
S ₁₀	110	0	100
S ₁₀	110	1	001
S ₁₁	111	0	001
S ₁₁	111	1	001

stato	$Q_2Q_1Q_0$	X	Q' ₂ Q' ₁ Q' ₀
R	001	0	010
R	001	1	011
S _{?0}	010	0	100
S _{?0}	010	1	101
S _{?1}	011	0	110
S _{?1}	011	1	111
S ₀₀	100	0	001
S ₀₀	100	1	101
S ₀₁	101	0	110
S ₀₁	101	1	001
S ₁₀	110	0	100
S ₁₀	110	1	001
S ₁₁	111	0	001
S ₁₁	111	1	001

Equazioni booleane della next state logic e dell'output logic :

$$Q'_0 = x + \bar{Q}_1 \bar{Q}_0 + Q_2 Q_1 Q_0$$

$$Q_1' = \bar{Q}_2 Q_0 + \bar{Q}_1 Q_0 x$$

$${\bf Q'}_2\!\!=\!\!\bar{Q}_2Q_1+\bar{Q}_1\bar{Q}_0x+Q_1\bar{Q}_0\bar{x}+Q_2\bar{Q}_1Q_0\bar{x}$$

$$\mathbf{z_1} = Q_2 Q_1 x$$

$$z_0 = Q_2 \bar{Q}_1 \bar{Q}_0 \bar{x} + Q_2 \bar{Q}_1 Q_0 x + Q_2 Q_1 Q_0 \bar{x}$$

Es. 3. Si consideri la seguente funzione booleana:

х	y	Z	tI	t2	t3	<i>t4</i>
0	0	0	0	0	0	0
0	0	1	0	1	1	0
0	1	0	1	0	0	1
0	1	1	1	1	1	0
1	0	0	1	0	0	1
1	0	1	1	1	0	0
1	1	0	1	1	0	1
1	1	1	0	0	0	1

- a) Si realizzi la funzione tramite una ROM.
- b) Si realizzino t1 e t4 tramite un PLA.
- c) Si realizzino t2 e t3 tramite un MUX 4-a-1 e 2-a-1, rispettivamente.