Autocorrelation is an effective way to observe periodicities in a signal corrupted by noise.

Let s[n] be a periodic signal of interest.

Lot V[n] denote a zero-mean noise waveform that is uncorrelated with s[n].

$$\Gamma_{ZZ}[\ell] = \lim_{M \to \infty} \frac{1}{2M+1} \sum_{n=-M}^{M} (s[n] + \nu[n]) (s^*[n-\ell] + \nu^*[n-\ell])$$

 $= \lim_{M \to \infty} \frac{1}{2M+1} \sum_{n=-m}^{M} s[n]s^*[n-\ell] + s[n]v^*[n-\ell] + v[n]s^*[n-\ell] + v[n]v^*[n-\ell]$

ECE 4531 Stevenson

Autocorrelation is an effective way of revealing periodicities in noisy signals.

Let
$$z_{l}[n] = \begin{cases} s[n] + v[n], & 0 \le n \le 500 \\ 0, & \text{otherwise} \end{cases}$$

where $s[n] = \cos(2\pi \frac{1}{10}(n-5))$ is a sinusoid of amplitude 1 and period 10 samples

and $\nu[n]$ is a zero-mean white gaussian noise with variance 5/2

SNR =
$$\frac{1}{5}$$

or $10 \log_{10}(\frac{1}{5}) = -7 d\Gamma$

Then can use matlab to compute: $r_{z_t z_t}[\ell] = \frac{1}{501} \sum_{n=0}^{500} x_t[n] y_t[n-\ell]$

Plots of $z_t[n]$, $r_{z_tz_t}[\ell]$, and a zoomed version of $r_{z_tz_t}[\ell]$ are shown below.

Note

- autocorrelation function has the same period as s[n]
- the autocorrelation function does not retain phase information

Correlations involving the input and output of an LTI system

Let v[n] denote an energy signal with autocorrelation function:

$$\Gamma_{xx}[l] = \sum_{n=-\infty}^{\infty} \chi[n] \chi^*[n-\ell] \implies \Gamma_{xx}[l] = \chi[\ell] * \chi^*[-\ell]$$

The energy spectral density of x[n] is denoted by $\Rightarrow S_{xx}(F) = X(F) X^*(F)$ $S_{xx}(f)$ and may be found as the DTFT of $F_{xx}[l]$.

Exercise

Given that y[n] is the response of an LTI system with impulse response th[n] when the system's input is x[n].

2(n) LTI system y (n)
4(n), H (F)

Find the relationship between Tyx[l] and Txx[l].

Solution (Hint: start by expressing $\Gamma_{yx}[l]$ as a convolution of two signals) $\Gamma_{yx}[l] =$

The cross spectral density $S_{yx}(F)$ is the DTFT of $\Gamma_{yx}[l]$.

$$\Rightarrow S_{yx}(F) = \Rightarrow H(F) =$$

ECE 4531 Stevenson

Correlations involving the input, xin], and the output, yin], of an LTI system with impulse response hin].

Problem Given that x[n] has autocorrelation [xx[e]

- a) Find the relation between Txx[e] and Txx[e]
- b) Find the relation between Tyy [e] and Txx [e]
- c) Find the relation between Txy[e] and Txx[e]

The relationships determined in this problem are very useful for system identification.

Solution:

a)
$$r_{yx}[l] = y[l] * x^*[-l]$$

= $h[l] * x[l] * x^*[-l]$
 $r_{xx}[l]$

Using relation of cross correlation and convolution

convolution of system's impulse response and the input

using relation between cross correlation and convolution

expressing cross-correlation in terms of convolution

input-output relation of LTT system + property of convolution shown below.

convolution is commutative and associative

cross correlation and convolution

= [hn[e] * [xx[e]

c)
$$r_{xy}[l] = r_{yx}^*[-l]$$

= $h^*[-l] * r_{xx}^*[-l]$

using property of cross-correlations

using result of part (a) together with the convolution property below

= h*[-e] * [xx[e]

auto correlation functions are Hermitian

Useful property of convolution:

From which it follows that

Proof

$$Z[l] = \sum_{k=-\infty}^{\infty} \omega[k] \vee [l-k]$$

using definition of convolution

 $Z[-l] = \sum_{k=-\infty}^{\infty} \omega[k] \vee [-l-k]$

Feplaced l by $-l$ on both sides of equation

 $z = \sum_{m=-\infty}^{\infty} \omega[-m] \vee [-l+m]$

Change of variables:

 $z = \sum_{m=-\infty}^{\infty} \omega[-m] = \omega[-m]$

Let $v_{\perp}[m] = \omega[-m] \Rightarrow v_{\perp}[l-m] = v[-m-l]$
 $z = \sum_{m=-\infty}^{\infty} \omega_{\perp}[m] \vee_{\perp}[l-m] = v[-m-l]$
 $z = \sum_{m=-\infty}^{\infty} \omega_{\perp}[m] \vee_{\perp}[l-m] = v[-m]$
 $z = \omega_{\perp}[l] + v_{\perp}[l]$

The equation of convolution

 $z = \omega[-l] + v_{\perp}[l] + \omega[-l] + v_{\perp}[-l] + v_{\perp}[-$

Q.E.D.

From 3rd last equality in the proof above, we have that:

$$= w_{+}^{*}[-l] = \sum_{m=-\infty}^{\infty} w_{+}^{*}[m] \wedge_{+}^{*}[\ell-m]$$

$$= w_{+}^{*}[\ell] * \wedge_{+}^{*}[\ell]$$

$$= w_{+}^{*}[\ell] * \wedge_{+}^{*}[\ell]$$

$$= w_{+}^{*}[\ell] * \wedge_{+}^{*}[\ell]$$

$$= w_{+}^{*}[\ell] * \wedge_{+}^{*}[\ell]$$