D PR 20.04. 2022 rlos

Performance meesures for A P(AUB)= P(A)+P(B)-P(A NB)

YANB = & then

P(AUB) = P(A) + P(B)

PTN + PFP = P(H=H0) + P(H=H0) Hence,

= P(H = Hoor H, 1 H = Ho)
This is always true due to binary detection

PFN + PTP = 1 = P(H = 40 or H, | H = H1)

#1 PEN = 1- PTP A = HO PIN= 1 - PFP

n = H,

no guarentes to be I

Goal: Design H(2) such that

*) max PTP } impossible to achieve both of them at the same *) min PFP } time. We can only compromise, due to LD complex optimisation problem. Conflicting goals.

This can be extended to Multinary detection peroblem.

1.3 Pallern Recognition	= ML
1.25 No mathematical way	tell what is the best way for feature important here. boundary so as to not overfit or underfit.
extraction. Domain knowledge is	important here. so as to not overfit or underfit.
We need good generalized	boundary
Ou has reach to the	generalized decision boundary
9 How can be seenly 8 Will there be only	generalized decision boundary 1 decision rule for I model for a girm dateset?
1.30.1	Rd
classification. Divide feature space Rd of into C non-overlapping decision	* * * R2 decision boundary
into C non-overlapping decis	ion regions R Rc
. If the new feature vector	2 ER; Hen is (x) = Wi
	decision rule
	av ala a la serie de la companya de
How to determine / design of	decision rule? pattern recognition
detection	144
lam wanel model	learn from examples
P(2/40), P(2/H1)	3 kind a manasor, sound
, (– 1 – v	
database of raw date	" dies (or) is special to be
database of raw date	m A

database of feature vectors 1, 22... 2n Divide me whole date into 2 non-overlapping parts - training date, when the test & trainging error rate is nearby, then the @ mk is ready for deployment. If train test then overfitting. 1.35.1 1.4 Confusion matrix A détailed performance measure for touts déctor/ classifier. confusion matrix w

[n ij] ij

CXC materix column sum = n; = ¿n; = # (w=w;) 1000 sum = n: = \(\frac{c}{j=1} nij = \pm (\warman \cup w_i) \) matrix sum = N = & & n; = total no of samples. Normalization of nij - probability.

(a) marginal prob. $f_i = f(w = w_i) = \lim_{N \to \infty} \frac{n_{ij}}{N}$ $P(\hat{\omega} = \omega_i) = \lim_{N \to \infty} \frac{n_i}{N}$ $\leq P_i = 1$

(b) Joint prob: by matrix sum normalization $P(\hat{w} = w; , w = w;) = \frac{n_{ij}}{N} \le \xi R_{ij} = 1$

(c) Conditional Probability:

Column sum normalization:
$$P_{ij} = P(\hat{\omega} = \omega_i | \omega = \omega_j)$$

$$= \frac{n_{ij}}{n_{ij}} \triangleq TN, FP,$$

$$= \frac{r_{ij}}{n_{ij}} \triangleq TN, FP,$$

$$= \frac{r_{ij}}{n_{ij}} \triangleq TN, FP,$$

$$= \frac{r_{ij}}{n_{ij}} = \omega_i$$

$$= \frac{r_{ij}}{n_{ij}}$$

1.38

1.38.1

$$\omega$$

$$\omega$$

$$\omega$$

$$\omega$$

$$\omega_1$$
 ω_2 ω_1 ω_2 ω_1 ω_2 ω_2

 $P_{TP} = \frac{n_{22}}{n_{12} + n_{22}} = recall$

Need to maximize Fi