Position-Normalized CTR Formulation

Variable Definitions

i: query-ad pair

j: ad position

 v_{ij} : number of impressions

 c_{ij} : number of clicks

p : vector of ad relevance CTR $p_i\mathbf{s}$

q: vector of positional priors q_j s

Formulation

Number of clicks can be assumed to follow binomial distribution:

$$c_{ij} \sim \text{Binomial } (v_{ij}, p_i q_j), \forall i, j$$

However, if p is small and as n is sufficiently large, you can model it instead as a Poisson distribution:

$$c_{ij} \sim \text{Poisson}(v_{ij}p_iq_i), \forall i, j$$

In order to regularize lower positions that get very few impressions and clicks, we add in a gamma prior on the positional factor, since it is a good fit for that distribution:

$$q_j \sim \text{Gamma}(\alpha, \beta), \forall j$$

The regularization only applies to the E-step, and when alpha = 1 and $beta \to \infty$, the gamma distribution approaches uniform, i.e. no prior.

EM Steps

You can look at the derivation yourself in the paper, but the final formulas for the expectation and maximization steps are:

E-Step:
$$q_j^{'} \leftarrow \frac{\sum_i c_{ij} + (\alpha - 1)}{\sum_i v_{ij} p_i + 1/\beta}$$

$$\text{M-Step:} \qquad p_i^{'} \leftarrow \frac{\sum_{j} c_{ij}}{\sum_{i} v_{ij} q_j}$$

I will set the initial p values to the average CTRs across all i and the q values to the average CTRs across all i