Функціональний аналіз I курс магістратура, 2 семестр

18 лютого 2024 р.

0.1 Деякі вступні слова

Деякі означення зі загальної топології, метричних просторів, лінійної алгебри та теорії міри вважатимуться відомими.

Definition 0.1.1 Задано E – векторний простір над полем k (у рамках даного курсу переважно будуть поля \mathbb{R} . \mathbb{C}).

Векторний простір E буде **топологічним**, якщо

1) задана стандартна топологія на полі k

2) операції $+ : E \times E \to E$ (додавання) та $\cdot : k \times E \to E$ (множення на скаляр) – неперервні

Мабуть, варто розписати детально, що ми матимемо в такому разі. Тимчасово позначу додавання за відображення add: $E \times E \to E$ та множення на скаляр за відображення scalar: $k \times E \to E$. Оберемо будь-яку точку $(x,y) \in E \times E$. Тоді на ній add неперервне, тобто $\forall U$ – відкритий окіл $\mathrm{add}(x,y)$: $\exists V$ — відкритий окіл точки (x,y) : $\mathrm{add}(V)\subset U$. Зауважимо, що для V — відкритого окола (x,y) – існують відкриті околи $V_x,V_y,$ для яких $V_x\times V_y\subset V$. Далі, в нашому випадку $\mathrm{add}(U) = \{\mathrm{add}(x,y) \mid (x,y) \in V\} = \{x+y \mid (x,y) \in V\} \supset \{x'+y' \mid x' \in V_x, y' \in V_y\} \stackrel{\text{позн.}}{=} V_x + V_y.$

Таким чином, $\forall U_{x+y}$ – відкритий окіл $x+y:\exists V_x,V_y$ – відкриті околи $x,y:V_x+V_y\subset U_{(x,y)}.$ Аналогічно $\forall U_{\lambda x}$ – відкритий окіл $\lambda x:\exists V_\lambda,V_x$ – відкриті околи $\lambda,x:V_\lambda\times V_x\subset U_{\lambda x}.$

Remark 0.1.2 Для топологічного векторного простору достатньо визначити окіл точки 0. Дійсно, всі інші околи $U_x \cong U_0$. В одну сторону в нас неперервне відображення $y \mapsto y + x$, а в іншу сторону – теж неперервне $y \mapsto y - x$.

0.2Лінійні нормовані простори

Definition 0.2.1 Задано E – векторний простір над полем $k = \mathbb{R}$ або $k = \mathbb{C}$.

Лінійним нормованим простором називають векторний простір E над полем k, на якій задається **норма** $\|\cdot\|: E \to k$, що задовольняє таким властивостям:

$$1) \forall x \in E: \|x \geq 0\|$$
, при цьому $\|x\| = 0 \iff x = 0$ $2) \forall x \in E: \forall \lambda \in k: \|\lambda x\| = |\lambda| \|x\|$ $3) \forall x, y \in E: \|x + y\| \leq \|x\| + \|y\|$

Proposition 0.2.2 Якщо E – лінійний нормвований простір, то (E, ρ) , де $\rho(x, y) = ||x - y||$, автоматично утворює метричний простір.

Proof.

- 1) $\rho(x,y) = \|x-y\| \ge 0$ перша властивість норми; $\rho(x,y) = \|x-y\| = 0 \iff x-y = 0 \iff x = y;$

2)
$$\rho(y,x) = \|y-x\| = \|(-1)(x-y)\| = |(-1)|\|x-y\| = \rho(x,y);$$

3) $\rho(x,z) = \|x-z\| = \|(x-y) + (y-z)\| \le \|x-y\| + \|y-z\| = \rho(x,y) + \rho(y,z).$

Corollary 0.2.3 Якщо E – лінійний нормований простір, то E – автоматично лінійно топологічний простір.

Задамо просто окіл нуля як $B_0(r) = \{x \in E \mid ||x|| < r\}.$

Proposition 0.2.4 Властивості норми

Задано E – лінійний норований простір. Тоді справедливо наступне:

- 1) $||x y|| \ge |||x|| ||y|||$;
- 2) Нехай задана послідовність $\{x_n, n \geq 1\} \subset E : x_n \to x$. Тоді $||x_n|| \to ||x||$ при $n \to \infty$.

Proof.

Дещо я залишу без доведення:

- 1) Brasiera: ||x|| = ||x y + y|| ma ||y|| = ||y x + x||.
- $(x_n \to x)$, тобто це означає $\|x_n x\| \to 0$. Отже, завдяки властивості 1), отримаємо $(x_n \to x)$ $||x_n - x|| \to 0$ при $n \to \infty$. Таким чином, $||x_n|| \to ||x||$.

Всі властивості доведені.

Theorem 0.2.5 Задано E – лінійний нормований простір. Тоді існує лінійний нормований простір E, такий, що:

- 1) $E \subset \tilde{E}$ щільна;
- 2) $(E, \|\cdot\|_E)$ та $(\tilde{E}, \|\cdot\|_{\tilde{E}})$ ізометричні;

Поки без доведення.

Example 0.2.6 Розглянемо кілька прикладів лінійних нормованих просторів:

- $||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$ 1]), $||f|| = \max_{t \in [0,1]} |f(t)|.$ 2) C([0,1]),
- 3) X довільна множина, $M(X) = \{f \colon X \to \mathbb{C} \mid f$ обмежені на $X\}, \qquad \|f\| = \sup_{t \in X} |f(t)|.$

0.3Гільбертові простори

Definition 0.3.1 Задано E – векторний простір над полем \mathbb{C} .

Простір називається **передгільбертовим**, якщо на просторі задано відображення (\cdot, \cdot) : $E \times E \to k$, що наизвається скалярним добутком, що задовольняє таким умовам:

$$1)\forall x\in E: (x,x)\geq 0, \text{ при цьому } (x,x)=0 \iff x=0$$

$$2)\forall x,y,z\in E, \forall \lambda,\mu\in L: (\lambda x+\mu y,z)=\lambda(x,z)+\mu(y,z)$$

$$3)\forall x,y\in E: (x,y)=\overline{(y,x)}$$

Цей же скалярний добуток можна визначати над полем \mathbb{R} .

Proposition 0.3.2 Властивості скалярного добутку

Задано E – передгільбертів простір. Тоді справедливе наступне:

- 1) (0,x)=0;
- 2) $(x, \lambda y + \mu z) = \bar{\lambda}(x, y) + \bar{\mu}(x, z)$

Вправа: довести.

Theorem 0.3.3 Нерівність Коші-Буняковського

Задано E – передгільбертів простір. Тоді $|(x,y)|^2 \le (x,x)(y,y)$.

Proof.

Маємо $(x,y)=|(x,y)|e^{i\varphi}$, де кут $\varphi=\arg(x+iy)$. Розглянемо вираз $(x+te^{i\varphi}y+x+te^{i\varphi}y)\geq 0$, виконано $\forall t \in \mathbb{R}$. Розпишемо ліву частини за властивостями функціоналу - отримаємо:

$$(x,x) + (x,te^{i\varphi}y) + (te^{i\varphi}y,x) + (te^{i\varphi}y,te^{i\varphi}y) = (x,x) + \overline{te^{i\varphi}}(x,y) + te^{i\varphi}(y,x) + te^{i\varphi}\overline{te^{i\varphi}}(y,y) = 2$$

Зауважимо, що $\overline{e^{i\varphi}} = e^{-i\varphi}$.

$$\boxed{=}(x,x) + te^{-i\varphi}(x,y) + te^{i\varphi}(y,x) + t^2(y,y) \boxed{=}$$

 $\overline{\square}$ алі оскільки $(x,y)=|(x,y)|e^{i\varphi}$, то звідси $\overline{e^{-i\varphi}}(x,y)=|(x,y)|$.

A також $e^{i\varphi}(y,x) = \overline{e^{-i\varphi}(x,y)} = \overline{|(x,y)|} = |(x,y)|.$

$$| = |(x, x) + 2t|(x, y)| + t^2(y, y) \ge 0.$$

 $\overline{D} = 4|(x,y)|^2 - 4(x,x)(y,y) \le 0$, оскільки нерівність завжди виконана.

$$\implies |(x,y)|^2 \le (x,x)(y,y).$$

Remark 0.3.4 $|(x,y)|^2 \le (x,x)(y,y) \iff y = \alpha x$.

Proposition 0.3.5 Задано E – передгільбертів простір. Тоді E – лінійний нормований простір із нормою $||x|| = \sqrt{(x,x)}$.

Proof.

1)
$$||x|| = \sqrt{(x,x)} \ge 0$$
 – зрозуміло. Також $||x|| = \sqrt{(x,x)} = 0 \iff (x,x) = 0 \iff x = 0$.

2)
$$\|\lambda x\| = \sqrt{(\lambda x, \lambda x)} = \sqrt{\lambda \overline{\lambda}(x, x)} = \sqrt{\lambda^2(x, x)} = |\lambda| \|x\|.$$

3)
$$||x+y||^2 = (x+y,x+y) = (x,x) + (x,y) + (y,x) + (y,y) = ||x||^2 + 2\operatorname{Re}(x,y) + ||y||^2 \le ||x+y||^2 + 2\operatorname{Re}(x,y) + ||y||^2 + 2\operatorname{Re}(x,y) + ||y||$$

$$2) \|xx\| = \sqrt{(\lambda x, \lambda x)} = \sqrt{\lambda \lambda}(x, x) = |\lambda| \|x\|.$$

$$3) \|x + y\|^2 = (x + y, x + y) = (x, x) + (x, y) + (y, x) + (y, y) = \|x\|^2 + 2\operatorname{Re}(x, y) + \|y\|^2 \le$$

$$\le \|x\|^2 + 2|(x, y)| + \|y\|^2 \le \|x\|^2 + 2\sqrt{(x, x)}\sqrt{(y, y)} + \|y\|^2 = \|x\|^2 + 2\|x\| \|y\| + \|y\|^2 = (\|x\| + \|y\|)^2.$$

$$\Longrightarrow \|x + y\| \le \|x\| + \|y\|.$$

Proposition 0.3.6 Поляризаційна тотожність

Задано
$$E$$
 — передгільбертів простір. Тоді
$$(x,y)=\frac{1}{4}\left(\|x+y\|^2-\|x-y\|^2+i\|x+iy\|^2-i\|x-iy\|^2\right).$$

Example 0.3.7 Розглянемо кілька прикладів передгільбертових просторів:

1)
$$\mathbb{C}^n$$
, $(x,y) = \sqrt{x_1 \bar{y_1} + \dots + x_n \bar{y_n}}$, $\text{ de } x = (x_1,\dots,x_n), y = (y_1,\dots,y_n)$;

2)
$$C([0,1]), (f,g) = \int_0^1 f(t)\bar{g}(t) dt.$$

Definition 0.3.8 Лінійний нормований простір, що є повним, називається банаховим.

Definition 0.3.9 Банахів передгільбертів простір називається **гільбертовим**.

Remark 0.3.10 Інколи ще дають такі поняття як **квазіскалярний добуток**. Це той же скалярний добуток, без умови $(x,x)=0\iff x=0$. При цьому нерівність Коші-Буняковського досі буде виконуватися.

Також існує поняття **напівнорма**. Це та же норма, без умови $||x|| = 0 \iff x = 0$.

Remark 0.3.11 Таким чином, маючи квазіскалярний добуток, то $||x|| = \sqrt{(x,x)}$ задає уже напівнорму.