

In the Abstract:

Please delete the abstract accompanying the Preliminary Amendment filed February 28, 1997, and substitute therefor the Abstract attached hereto on a separate sheet.

Remarks

Upon entry of the foregoing amendment, claims 31-49 are pending in the application, with claims 31, 34, and 37 being the independent claims. Claims 28-30 are canceled without prejudice to or disclaimer of the subject matter therein. New claims 31-49 are added. These changes are believed to introduce no new matter, and their entry is respectfully requested.

A Request for Interference Under 37 C.F.R. § 1.604 was filed on February 28, 1997 with the above-captioned application. Subsequent to the filing of the foregoing Request, the application that was the subject of the Request (U.S. national phase of PCT/JP93/01673) issued as U.S. Patent No. 5,656,299 ("the '299 patent"; copy enclosed with the First Supplemental Information Disclosure Statement filed herewith), thereby rendering moot the interference request. Applicants respectfully submit that claims 31-49 as now pending do not define the same patentable invention (as defined in 37 C.F.R. § 1.601 (n)) as the claims of the '299 patent.

Conclusion

Prompt and favorable consideration of this Second Preliminary Amendment is respectfully requested.

Respectfully submitted,

Andrea G. Reister
Registration No. 36,253

Date: October 17, 1997

HOWREY & SIMON
Box No. 34
1299 Pennsylvania Avenue, N.W.
Washington, D.C. 20004-2402
(202) 783-0800

Abstract

A sustained-release microparticle comprising a 1,2 benzazole within a polymeric matrix. One sustained-release microparticle can be produced by dissolving in a solvent an active agent and a biodegradable and biocompatible polymer to form an organic phase, the active agent being selected from the group consisting of risperidone, 9-hydroxy-risperidone, and pharmaceutically acceptable acid addition salts of the foregoing, and extracting the solvent to form microparticles. The sustained-release microparticles can be formulated in a liquid injection vehicle for administration to animals suffering from mental illness.