CSC 212: Data Structures and Abstractions Fall 2018

University of Rhode Island

Weekly Problem Set #3

Due Thursday 10/4 at the beginning of class. Please turn in neat, and organized, answers **hand-written** on standard-sized paper **without any fringe**. At the top of each sheet you hand in, please write your name, and ID.

- 1. Prove the following. Additionally, is there a more accurate Big Omega or Big O that could be used?
 - $10n^2 = \Omega(n)$ $(10n^2 >= n >= 0) \forall (n > 1)$ Accurate: $\Omega(n^2)$
 - 1 = O(n) $(1 \le n) \forall (n > 1)$ Accurate: O(1)
- 2. Mark each of the following as true or false.

T(n)	Big O	T/F	Big Omega	T/F	Big Theta	T/F
$n^2/10 + 10n\log n$	$O(n \log n)$	F	$\Omega(n \log n)$	Т	$\Theta(n \log n)$	F
$2n^2 + n\log n$	$O(n^2)$	Т	$\Omega(n)$	Т	$\Theta(\log n)$	F
${(n/2)logn + 4n}$	$O(2^n)$	Т	$\Omega(n \log n)$	Т	$\Theta(n \log n)$	Т
$\frac{10\sqrt{n} + 2\log n}{}$	$O(\log n)$	F	$\Omega(n)$	F	$\Theta(\log n)$	F
$3\sqrt{n} + 10\log n$	$O(\sqrt{n})$	Т	$\Omega(1)$	Т	$\Theta(\sqrt{n})$	Т

3. Complete the following table.

T(n)	Big Theta
$\log n + 200n \log n$	$\Theta(n \log n)$
$2^n + n^2$	$\Theta(2^n)$
$\sqrt{n} + \log n$	$\Theta(\sqrt{n})$
2n + 3n + 4n + 5n + 6n	$\Theta(n)$
$\sqrt{n} + 10 \log n$	$\Theta(\sqrt{n})$
$200n * 10n + \log n$	$\Theta(n^2)$

4. Complete the following table using Big Θ notation, measuring performance by the number of comparisons.

Algorithm	Best Case	Average Case	Worst Case
Selection Sort	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$
Insertion Sort	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n^2)$
Bubble Sort	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n^2)$
Maximum of an Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Median of a Sorted Array	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
Mode of a Sorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$

- 5. Given the array A with elements [22, 15, 36, 44, 10, 3, 9, 13, 29, 25], illustrate the performance of the selection-sort algorithm from the lecture slides on A. To illustrate the performance, depict the status of the array after line 15 at every iteration.
 - (i:0) [3, 15, 36, 44, 10, 22, 9, 13, 29, 25]
 - (i:1) [3, 9, 36, 44, 10, 22, 15, 13, 29, 25]
 - (i:2) [3, 9, 10, 44, 36, 22, 15, 13, 29, 25]
 - (i:3) [3, 9, 10, 13, 36, 22, 15, 44, 29, 25]
 - (i:4) [3, 9, 10, 13, 15, 22, 36, 44, 29, 25]
 - (i:5) [3, 9, 10, 13, 15, 22, 36, 44, 29, 25]
 - (i:6) [3, 9, 10, 13, 15, 22, 25, 44, 29, 36]
 - (i:7) [3, 9, 10, 13, 15, 22, 25, 29, 44, 36]
 - (i:8) [3, 9, 10, 13, 15, 22, 25, 29, 36, 44]
- 6. Given the array A with elements [22, 15, 36, 44, 10, 3, 9, 13, 29, 25], illustrate the performance of the insertion-sort algorithm on A. Again, use the function provided in the lecture notes, and depict the status of the array after line 14 at every iteration. (Line 14 signifies the moment after the if statement terminates)
 - (i:0) [22, 15, 36, 44, 10, 3, 9, 13, 29, 25]
 - (i:1) [15, 22, 36, 44, 10, 3, 9, 13, 29, 25]
 - (i:2) [15, 22, 36, 44, 10, 3, 9, 13, 29, 25]
 - (i:3) [15, 22, 36, 44, 10, 3, 9, 13, 29, 25]
 - (i:4) [10, 15, 22, 36, 44, 3, 9, 13, 29, 25]
 - (i:5) [3, 10, 15, 22, 36, 44, 9, 13, 29, 25]
 - (i:6) [3, 9, 10, 15, 22, 36, 44, 13, 29, 25]
 - (i:7) [3, 9, 10, 13, 15, 22, 36, 44, 29, 25]

- $(i:8)\ [3,9,10,13,15,22,29,36,44,25]\\$
- ${\rm (i:9)}\ [3,9,10,13,15,22,25,29,36,44]$
- 7. How many inversions are present in each of the following arrays?
 - A: [1, 5, 4, 3, 3, 7] -> 5
 - B: [5, 4, 3, 2, 1] -> 10
 - C: [1, 2, 3, 4, 5] -> 0
 - D: [5, 1, 3, 2, 4] -> 5
 - E: [6, 9, 1, 4, 10] -> 4