Assessing important features in predicting U.S. income level

Yang Chen | August 2025

01

Key results

Important features and trends on income level

Top 5 important features

- Weeks worked in year
- 2. Sex
- 3. Education status
- 4. Total investment income
- 5. Age

Positive effects predicting income level

Weeks worked in a year and education status have increasing, positive effects on predicting above 50K earners

02

Overview

Analysis goals and data overview

Overview

Goal

Identify important characteristics associated with a person making more or less than \$50,000 per year.

03

Data insights and methodology

Analytical trends, data preparation, and modeling strategy

Insight - Income level

- Income split:
 - Below 50K earners represent large majority of the dataset, only 6% are Above 50K

Income level distribution

Insight - Income level

- Income split:
 - Below 50K earners represent large majority of the dataset, only 6% are Above 50K
- Technical consideration:
 - Balance training data to improve model predictions on both groups

Income level distribution

Insight - Age and income level

- Above 50K:
 - Predominantly middle-age (35-50)

Density of age by income

Insight - Age and income level

- Above 50K:
 - Predominantly middle-age (35-50)
 - Significant overlap, but higher earners more common

Density of age by income

Insight - Age and income level

Above 50K:

- Predominantly middle-age (35-50)
- Significant overlap, but higher earners more common

Below 50K:

- Predominantly <40
- Flatter distribution across younger ages

Density of age by income

Insight - Weeks worked in year and income level

- Above 50K:
 - Concentrated in full-time work 52 weeks worked in a year

Density of weeks worked in year by income

Insight - Gender and income level

Despite similar overall male-female proportions in the dataset, males earning above \$50K are significantly more represented at nearly **5 times** the rate of females in the same income level

Distribution of sex by income level

Insight - Education and income level

 Higher education levels show increased representation in Above 50K Distribution of highest attained education by income level

Highest attained education

Insight - Education and income level

- Higher education levels show increased representation in Above 50K
- Advanced degrees
 (Masters, Doctorate,
 Professional) have
 significantly* higher
 proportions than prior
 levels

Distribution of highest attained education by income level

Highest attained education

^{*:} Evaluated using pairwise chi-square tests at 0.01 significance level with multiple test correction

Preprocessing

Model selection

Model evaluation

- Migration feature missing values
- Univariate feature selection (correlations, chi-square)
- Separation concerns for baseline modeling
- Feature engineering

- Data quality issue: Migration features had missing values for observations where:
 - "Lived in this house 1 year ago" = "Not in universe under 1 year old"
 - Age > 0 for these observations (qualifies for migration questions)

- Data quality issue: Migration features had missing values for observations where:
 - "Lived in this house 1 year ago" = "Not in universe under 1 year old"
 - Age > 0 for these observations (qualifies for migration questions)
- Bias validation:
 - Compared income level patterns and feature distributions between:
 - Observations with complete migration data
 - Observations with missing migration data

- Data quality issue: Migration features had missing values for observations where:
 - "Lived in this house 1 year ago" = "Not in universe under 1 year old"
 - Age > 0 for these observations (qualifies for migration questions)

Bias validation:

- Compared income level patterns and feature distributions between:
 - Observations with complete migration data
 - Observations with missing migration data

• Result:

 Excluding migration features won't bias our predictions and make feature importance unreliable for recommendations

49.3%

Observations impacted

7

Migration features with all missing values or NIU

Features

40

1

33

Feature engineering and selection

Feature created: total investment income Collapsed categories in employment stat, country to reduce dimensions

4

Features removed: capital gains, capital losses, stock dividends, household stat

Features

33

30

Preprocessing

Model selection

Model evaluation

- Models tested:
 - Logistic regression with regularization (mitigate multicollinearity)
 - Random forest (handle non-linear patterns)

Preprocessing

Model selection

Model evaluation

- Models tested:
 - Logistic regression with regularization (mitigate multicollinearity)
 - Random forest (handle non-linear patterns)
- Cross validation (CV) assessment
 - Hyperparameter tuning and selecting final model
 - Oversampling during CV to address income level imbalance

Preprocessing

Model selection

Model evaluation

- Evaluation metrics:
 - Precision:
 - Of all the times the model predicted Above 50K, how often was it correct?

Preprocessing

Model selection

Model evaluation

- Evaluation metrics:
 - Our Precision:
 - Of all the times the model predicted Above 50K, how often was it correct?
 - Our Recall:
 - Of all the actual Above 50K observations, what percentage did the model catch?

Preprocessing

Model selection

Model evaluation

- Evaluation metrics:
 - O Precision:
 - Of all the times the model predicted Above 50K, how often was it correct?
 - Recall:
 - Of all the actual Above 50K observations, what percentage did the model catch?
 - o **F1**:
 - How good is the model at catching Above 50K and be accurate when making predictions?

Preprocessing

Model selection

Model evaluation

- Feature importance ranking:
 - Permutation feature importance
 - How important is a feature based on the model error when we break its relationship?

Preprocessing

Model selection

Model evaluation

- Feature importance ranking:
 - Permutation feature importance
 - How important is a feature based on the model error when we break its relationship?
 - Random variable ranking
 - How important is a feature compared to randomly guessing?

Preprocessing

Model selection

Model evaluation

- Feature importance ranking:
 - Permutation feature importance
 - How important is a feature based on the model error when we break its relationship?
 - Random variable ranking
 - How important is a feature compared to randomly guessing?
- Important feature influence:
 - Partial dependence plots
 - What is the isolated effect of this feature on our income level predictions?

04

Results

Model results and important features

Results - Performance

Random forest was selected as the final model and evaluated on the test set.

	Precision	Recall	F1
Below 50K	0.97	0.96	0.97
Above 50K	0.53	0.62	0.57
Macro Avg.	0.75	0.79	0.77

Results - 11 important features

Results - Top 5 important features

Results - Weeks worked in year effect

Centered partial dependence: Weeks worked in year on income level

Results - Weeks worked in year effect

Centered partial dependence: Weeks worked in year on income level

Results - Sex effect

Partial dependence: Sex on income level

Results - Investment income effect

Centered partial dependence: Total investment income on income level

Results - Investment income effect

Centered partial dependence: Total investment income on income level

Results - Education effect

Centered partial dependence: Education status on income level

Results - Education effect

Centered partial dependence: Education status on income level

05

Recommendations

Recommendations

Compare with more recent time frame

Focus investigative efforts in important features

Investigate potential gender bias

Leverage education to income connection

06

Future Improvements

Future improvements

- Determine missing value pattern for migration features using other demographic information
- Develop more interactions between features
- Create additional features on business context
- Implement additional feature selection methods
- Evaluate model ensembles

Thank you! Questions?