BEST AVAILABLE COPY

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 764 647 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 26.03.1997 Patentblatt 1997/13

(51) Int. Cl.⁶: **C07D 473/00**, C07D 473/06, C07D 473/08, A61K 31/52

(21) Anmeldenummer: 96114577.8

(22) Anmeldetag: 12.09.1996

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

(30) Priorität: 25.09.1995 DE 19535504

(71) Anmelder: BAYER AG 51368 Leverkusen (DE)

(72) Erfinder:

 Connell, Richard, Dr. Trumbull, CT 06611 (US)
 Goldmann, Siegfried, Dr.

42327 Wuppertal (DE)

Müller, Ulrich, Dr.
 42111 Wuppertal (DE)

 Lohmer, Stefan, Dr. 20132 Milano (IT)

 Bischoff, Hilmar, Dr. 42113 Wuppertal (DE)

• Denzer, Dirk, Dr.

42115 Wuppertal (DE)
 Grützmann, Rudi, Dr.
 42657 Solingen (DE)

 Wohlfeil, Stefan, Dr. 40721 Hilden (DE)

(54) Substituierte Xanthine

(57) Substituierte Xanthine werden hergestellt durch Umsetzung der geeigneten unsubstituierten Xanthine mit Halogenmethylphenylessigsäuren und anschließende Reaktion der Carbonester bzw. -säuren mit Phenylglycinolamin. Die substituierten Xanthine eignen sich als Wirkstoffe in Arzneimitteln, insbesondere in antiatherosklerotischen Arzneimitteln.

durch Halogen, Phenyl, Trifluormethyl, Hydroxy, Carboxyl oder durch geradkettiges oder verzweigtes Alkyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_a-NR⁹R¹⁰substituiert sind, worin

eine Zahl 0 oder 1 bedeutet,

R9 und R10 ...

gleich oder verschieden sind und

Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis

zu 5 Kohlenstoffatomen bedeuten,

D und E

а

10

15

20

25

30

35

45

55

gleich oder verschieden sind und

für Wasserstoff, Halogen, Trifluormethyl, Hydroxy, Carboxyl oder für geradkettiges oder verzweigtes Alkyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen

stehen,

 R^1

für Wasserstoff oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen steht, oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 8 Kohlenstoffatomen steht, die gegebenenfalls durch Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Phenyl oder durch einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus

der Reihe S, N und/oder O substituiert sind, oder

für Phenyl oder einen 5- bis 6-gliedrigen aromatischen Heterocylcus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht, wobei die Ringsysteme gegebenenfalls bis zu 3-fach gleich oder verschieden durch Halogen, Phenyl, Trifluormethyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffato-

men, Hydroxy oder durch eine Gruppe der Formel -NR 11 R 12 substituiert sind,

worin

R¹¹ und R¹²

die oben angegebene Bedeutung von ${\mathsf R}^9$ und ${\mathsf R}^{10}$ haben und

mit dieser gleich oder verschieden sind,

für ein Sauerstoff- oder Schwefelatom steht,

R²

für Mercapto, Hydroxy, geradkettiges oder verzweigtes Alkóxy mit bis zu 8 Kohlenstoffatomen oder für die Gruppe der Formel

R¹⁴

steht, worin

R¹³

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen

50 R¹

Wasserstoff, Phenyl oder einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet,

R¹⁵

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen

bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

und deren Salze.

Die erfindungsgemäßen substituierten Xanthine können auch in Form ihrer Salze vorliegen. Im allgemeinen seien hier Salze mit organischen oder anorganischen Basen oder Säuren genannt.

Im Rahmen der vorliegenden Erfindung werden physiologisch unbedenkliche Salze bevorzugt. Physiologisch

eine Zahl 0 oder 1 bedeutet. R9 und R10 gleich oder verschieden sind und Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen bedeuten. gleich oder verschieden sind und D und E für Wasserstoff, Fluor, Chlor, Brom, Trifluormethyl, Hydroxy oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstofatomen stehen, 10 R1 für Wasserstoff, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 6 Kohlenstoffatomen steht, die gegebenenfalls durch Cylcopropyl, Cyclopentyl, Cyclohexyl, Phenyl, Pyridyl oder Thienyl substituiert sind, oder 15 für Phenyl, Pyridyl, Furyl oder Thienyl steht, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Phenyl, Trifluormethyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen oder durch eine Gruppe der Formel -NR¹¹R¹² substituiert sind, worin 20 die oben angegebene Bedeutung von R9 und R10 haben und mit dieser gleich oder R11 und R12 verschieden sind, für ein Sauerstoff- oder Schwefelatom steht, 25 R^2 für Mercapto, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen oder für die Gruppe der Formel 30 35 steht, worin R^{13} Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen 40 R14 Wasserstoff, Phenyl, Pyridyl, Furyl oder Thienyl bedeutet, R¹⁵ Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist, 45 und deren Salze. Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in welcher 50 für einen Rest der Formel Α

für ein Sauerstoff- oder Schwefelatom steht,

R² für Mercapto, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 5 Kohlenstoffatomen oder für die Gruppe der Formel

-NR¹³/CH R¹⁵

steht, worin

L

10

15

25

30

35

40

50

55

T, V, X und Y

R5 und R8

R¹³ Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

Wasserstoff, Phenyl, Pyridyl oder Thienyl bedeutet,

R¹⁵ Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

und deren Salze.
Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in welcher

A für einen Rest der Formel

steht, worin

R³, R⁴, R⁶ und R⁷ Wasserstoff, geradkettiges oder verzweigtes Alkyl mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,

gleich oder verschieden sind und ein Sauerstoff- oder Schwefelatom bedeuten.

gleich oder verschieden sind und

Wasserstoff, Fluor, Chlor, Brom, Cyclopropyl, Cyclopentyl, Cyclohexyl oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 3 Kohlenstoffatomen bedeuten, die gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Phenyl, Pyridyl, Thienyl oder Furyl substituiert sind, die ihrerseits bis zu 2-fach gleich oder verschieden durch Phenyl, Benzyl, Fluor, Chlor, Brom, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein können,

oder Phenyl, Pyridyl, Thienyl oder Furyl bedeuten, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Phenyl, Trifluormethyl, Hydroxy oder durch

$$R^{16}-H_2C \xrightarrow{D} E R^1 \qquad (III)$$

10 in welcher

:;;

D, E, L und R¹ die oben angegebene Bedeutung haben,

R¹⁶ für Hydroxy oder Halogen, vorzugsweise für Brom steht,

und

25

30

R² für geradkettiges oder verzweigtes Alkoxy mit bis zu 8 Kohlenstoffatomen steht,

in inerten Lösemitteln und in Anwesenheit von Basen und/oder Hilfsmitteln in Verbindungen der allgemeinen Formel (la)

$$A-H_2C$$

$$D$$

$$E$$

$$R^1$$

$$C$$

$$R^2$$

$$(Ia)$$

in welcher

A, D, E, L, R¹ und R² die oben angegebene Bedeutung haben,

überführt und diese gegebenenfalls (R² = OH) verseift, oder gegebenenfalls diese Säuren mit Glycinolen und Glycinolderivaten der allgemeinen Formel (IV)

$$R^{14}$$
 (IV)

45 in welcher

50

55

R¹³, R¹⁴ und R¹⁵ die oben angegebene Bedeutung haben,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit von Basen und/oder Hilfsmitteln umsetzt.

Das erfindungsgemäße Verfahren kann durch folgendes Formelschema beispielhaft erläutert werden:

Die erfindungsgemäßen Verfahren werden im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, die Verfahren bei Überdruck oder bei Unterdruck durchzuführen (z.B. in einem Bereich von 0,5 bis 5 bar).

Die Verseifung der Carbonsäureester erfolgt nach üblichen Methoden, indem man die Ester in inerten Lösemitteln mit üblichen Basen behandelt.

Als Basen eignen sich für die Verseifung die üblichen anorganischen Basen. Hierzu gehören bevorzugt Alkalihydroxide oder Erdalkalihydroxide wie beispielsweise Natriumhydroxid, Kaliumhydroxid oder Bariumhydroxid, oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Natriumhydroxidonat. Besonders bevorzugt wird Natriumhydroxid oder Kaliumhydroxid eingesetzt.

Als Lösemittel eignen sich für die Verseifung Wasser oder die für eine Verseifung üblichen organischen Lösemittel. Hierzu gehören bevorzugt Alkohole wie Methanol, Ethanol, Propanol, Isopropanol oder Butanol, oder Ether wie Tetrahydrofuran oder Dioxan, oder Dimethylformamid oder Dimethylsulfoxid. Besonders bevorzugt werden Alkohole wie Methanol, Ethanol, Propanol oder Isopropanol verwendet. Ebenso ist es möglich, Gemische der genannten Lösemittel einzusetzen.

Die Verseifung kann auch mit Säuren wie beispielsweise Trifluoressigsäure, Essigsäure, Chlorwasserstoffsäure, Bromwasserstoffsäure, Methansulfonsäure, Schwefelsäure oder Perchlorsäure, bevorzugt mit Trifluoressigsäure erfolgen.

Die Verseifung wird im allgemeinen in einem Temperaturbereich von 0°C bis +100°C, bevorzugt von +20°C bis +80°C durchgeführt.

Im allgemeinen wird die Verseifung bei Normaldruck durchgeführt. Es ist aber auch möglich, bei Unterdruck oder bei Überdruck zu arbeiten (z.B. von 0,5 bis 5 bar).

Bei der Durchführung der Verseifung wird die Base im allgemeinen in einer Menge von 1 bis 3.Mol, bevorzugt von 1 bis 1,5 Mol bezogen auf 1 Mol des Esters eingesetzt. Besonders bevorzugt verwendet man molare Mengen der Reaktanden.

Als Lösemittel für die Umsetzung mit Glycinolen eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Ether, wie Diethylether oder Tetrahydrofuran, Halogen-kohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethylen oder Trichlorethylen, Kohenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, Nitromethan, Dimethylformamid, Aceton, Acetonitril oder Hexamethylphosphorsäuretriamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt ist Dichlormethan, Tetrahydrofuran, Aceton oder Dimethylformamid.

30

45

Als Basen können hier im allgemeinen anorganische oder organische Basen eingesetzt werden. Hierzu gehören vorzugsweise Alkalihydroxide wie zum Beispiel Natriumhydroxid oder Kaliumhydroxid, Erdalkalihydroxide wie zum Beispiel Bariumhydroxid, Alkalicarbonate wie Natriumcarbonat oder Kaliumcarbonat, Erdalkalicarbonate wie Calciumcarbonat, oder Alkali- oder Erdalkalialkoholate wie Natrium- oder Kaliummethanolat, Natrium- oder Kaliumethanolat oder Kalium-tert.butylat, oder organische Amine (Trialkyl(C₁-C₆)amine) wie Triethylamin, oder Heterocyclen wie 1,4-Diazabicyclo[2.2.2]octan (DABCO), 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU), Pyridin, Diaminopyridin, Methylpiperidin oder Morpholin. Es ist auch möglich als Basen Alkalimetalle wie Natrium und deren Hydride wie Natriumhydrid einzusetzen. Bevorzugt sind Natrium- und Kaliumcarbonat und Triethylamin.

Die Base wird in einer Menge von 1 mol bis 5 mol, bevorzugt von 1 mol bis 3 mol, bezogen auf 1 mol der entsprechenden Carbonsäure eingesetzt.

Die Reaktion wird im allgemeinen in einem Temperaturbereich von 0°C bis 150°C, bevorzugt von + 20°C bis + 110°C durchgeführt.

Die Umsetzung kann bei normalen, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

Die Umsetzung mit Phenylglycinolen kann gegebenenfalls auch über die aktivierte Stufe der Säurehalogenide, die aus den entsprechenden Säuren durch Umsetzung mit Thionylchlorid, Phosphortrichlorid, Phosphorpentachlorid, Phosphortribromid oder Oxalylchlorid hergestellt werden können, verlaufen.

Die oben aufgeführten Basen können gegebenenfalls auch als säurebindende Hilfsmittel eingesetzt werden.

Als Hilfsmittel eignen sich ebenso Dehydratisierungsreagenzien. Dazu gehören beispielsweise Carbodiimide wie Diisopropylcarbodiimid, Dicyclohexylcarbodiimid oder N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimid-Hydrochlorid oder Carbonylverbindungen wie Carbonyldiimidazol oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfonat oder Propanphosphonsäureanhydrid oder Iso-butylchloroformat oder Benzotriazolyloxy-tris-(dimethylamino)phosphoniumhexa-fluorophosphat oder Phosphorsäurediphenyl-esteramid oder Methan-sulfonsäurechlorid, gegebenenfalls in Anwesenheit von Basen wie Triethylamin oder N-Ethylmorpholin oder N-Methylpiperidin oder Dicyclohexylcarbodiimid und N-Hydroxysuccinimid.

Die säurebindenden Mittel und Dehydratisierungsreagenzien werden im allgemeinen in einer Menge von 0,5 bis 3 mol, bevorzugt von 1 bis 1,5 mol, bezogen auf 1 mol der entsprechenden Carbonsäuren, eingesetzt.

Die Verbindungen der allgemeinen Formeln (III) und (IV) sind an sich bekannt oder nach üblichen Methoden herstellbar.

(Lösemittelkontrolle ohne Substanz) um 50% inhibiert ist.

Tabelle 1:

BspNr.	ApoB IC ₅₀ [nM]
112	4.0
113	58.0
114 .	39.0
115	240.0
117	3.0
118	7.0
119 ·	11.0
120	28.0
121	36.0
122	48.0
123	8.0
126	41.0
129	34.0
130	25.0
131	135.0
132	743.0
133	5.0
136	23.0
137	124.0
138	403.0
139	90.0
140	10.0
143	11.0
146	6.0
149	9.0
151	34.0
152	169.0
154	3.0
155	2.0
156	25.0

BspNr.	ApoB IC ₅₀ [nM]
197	43.0
198	5.0
199	5.0
200	24.0
201	11.0
202	9.0
203	63.0
204	16.0
207	40.0
211	9.0
212	8.0
215	3.0
216	16.0
217	11.0
218	3.0
219	5.0
224	16.0
224	4.0
224	4.0
225	4.0
226	11.0
227	40.0

2. Bestimmung der VLDL-Sekretion in vivo am Hamster

Der Effekt der Testsubstanzen auf die VLDL-Sekretion in vivo wird am Hamster untersucht. Hierzu werden Goldhamster nach Prämedikation mit Atropin (83 mg/kg s.c.) mit Ketavet (83 mg/kg s.c.) und Nembutal (50 mg/kg i.p.) narkotisiert. Wenn die Tiere reflexfrei geworden sind, wird die V. jugularis freipräpariert und kanüliert. Anschließend werden 0,25 ml/kg einer 20%igen Lösung von Triton WR-1339 in physiologischer Kochsalzlösung appliziert. Dieses Detergens hemmt die Lipoproteinlipase und führt so zu einem Anstieg des Triglyceridspiegels aufgrund eines ausbleibenden Katabolismus von sezernierten VLDL-Partikeln. Dieser Triglyceridanstieg kann als Maß für die VLDL-Sekretionsrate herangezogen werden. Den Tieren wird vor sowie ein und zwei Stunden nach Applikation des Detergens durch Punktion des retroorbitalen Venenplexus Blut entnommen. Das Blut wird zwei Stunden bei Raumtemperatur, anschließend über Nacht bei 4°C inkubiert, um die Gerinnung vollständig abzuschließen. Danach wird 5 Minuten bei 10.000 g zentrifugiert. Im so erhaltenen Serum wird die Triglyceridkonzentration mit Hilfe eines modifizierten kommerziell erhältlichen Enzymtests bestimmt (Merckotest[®] Triglyceride Nr. 14354). 100 μl Serum werden mit 100 μl Testreagenz in 96-Lochplatten versetzt und 10 Minuten bei Raumtemperatur inkubiert. Anschließend wird die optische Dichte bei einer Wellenlänge von 492 nm in einem automatischen Platten-Lesegerät bestimmt (SLT-Spectra). Serumproben mit einer zu hohen Triglyceridkonzentration werden mit physiologischer Kochsalzlösung verdünnt. Die in den Proben enthaltene Triglyceridkonzentration wird mit Hilfe einer parallel gemessenen Standardkurve bestimmt. Testsubstanzen werden in

Tabelle 3

BspNr.	Absorption ED ₅₀ oder % Inhibition (mg/kg p.o.)
112	3 mg/kg
114	< 2 mg/kg
117	3 mg/kg
123	2 mg/kg
129	20 mg/kg
130	5 mg/kg
133	2 mg/kg
136	2 mg/kg
140	> 3 mg/kg
143	> 3 mg/kg
146	> 3 mg/kg
149	> 3 mg/kg
151	6 mg/kg
154	< 2 mg/kg
157	> 2 mg/kg
160	3 mg/kg
167	> 2 mg/kg
169	2 mg/kg
174	< 2 mg/kg
178	3 mg/kg
179	> 3 mg/kg
182	2 mg/kg
191	>> 3 mg/kg
197	· 3 mg/kg
201	> 3 mg/kg
227	> 6 mg/kg

Die statistische Auswertung erfolgt mit Student's t-Test nach vorheriger Überprüfung der Varianzen auf Homogenität.

Substanzen, die zu einem Zeitpunkt den postprandialen Serumtriglyceridanstieg, verglichen mit dem der unbehandelten Kontrollgruppe, statistisch signifikant (p <0,05) um mindestens 30 % vermindern, werden als pharmakologisch wirksam angesehen.

4. Hemmung der VLDL-Sekretion in vivo (Ratte)

Die Wirkung der Testsubstanzen auf die VLDL-Sekretion wird ebenfalls an der Ratte untersucht. Dazu wird Ratten 500 mg/kg Körpergewicht (2,5 ml/kg) Triton WR-1339, gelöst in physiologischer Kochsalzlösung, intravenös in die Schwanzvene appliziert. Triton WR-1339 inhibiert die Lipoproteinlipase und führt somit durch Hemmung des VLDL-Katabolismus zu einem Anstieg des Triglycerid- und Cholsterinspiegels. Diese Anstiege können als Maß für die VLDL-

mg/kg, vorzugsweise etwa 0,01 bis 0,5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen, und bei oraler Applikation beträgt die Dosierung etwa 0,01 bis 20 mg/kg, vorzugsweise 0,1 bis 10 mg/kg Körpergewicht.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchem die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muß. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

10 Verwendete Abkürzungen:

TFA ...

= Trifluoressigsäure

```
Ac
               = Acetyl
     bs
               = broad singlet
     Bn
               = Benzyl
     Bz
               = Benzovl
     CI
               = Chemische Ionisation
     cDec
               = cyclo Decyl
    cDodec
               = cyclo Dodecyl
    cHept
               = cyclo Heptyl
    cHex
               = cyclo Hexyl
    cNon
               = cyclo Nonyl
    cOct
               = cyclo Octyl
    cPent
               = cyclo Pentyl
    cPr
               = cyclo Propyl
    cUndec
               = cyclo Undecyl
25
               = doublet
    d
    DCC
               = Dicyclohexylcarbodiimid
    DCCI
               = N'-(3-Dimethylaminopropyl)-N'-ethylcarbodiimid
    dd
               = doublet doublets
    DDQ
               = 2,3-Dichlor-5,6-dicyano-1,4-benzochinon
.30
               = Diastereomer
    dia
               = 4-(N,N-Dimethylamino)pyridin
    DMAP
    DMF
               = N,N-Dimethylformamid
    DMSO
               = Dimethylsulfoxid
    EΙ
               = Elektronenstoß-lonisation
              = Enantiomer
    ent
               = Ethyl
    Et.
    FAB
               = Fast Atom Bombardment
    HOBT
               = 1-Hydroxy-1H-benzotriazol
    Hz
               = Hertz
              = iso Butyl
    iBu
    iPr
              = iso Propyl
    m
               = multiplet
    Me
              = Methyl
    Mes
              = Mesyl
    NBS
              = Bromsuccinimid
    nBu
              = normales Benzyl
    nPr
               = normales Propyl
    Ph
               = Phenyl
    PPA
              = Polyphosphorsäure
    pTol
              = para Tolyl
    pTos
              = para Tosyl
    rac
              = Racemat
    RT
              = Raumtemperatur
55
              = sinalet
    s
    sBu
              = sekundär Butyl
              = tertiär Butyl
    tBu
              = triplet
```

Beispiel I (Methode A)

5

15

45

1,3-Dimethyl-8-(4-methyl)phenyl-xanthin

O N N N CH3

8.5 g (50 mmol) 5,6-Diamino-1,3-dimethyluracil Hydrat wurden unter Rückfluß in Ethanol (180 ml) gelöst. Zu diese Lösung wurde eine Lösung von 6.0 g (50 mmol) p-Tolylaldehyd sowie 4.5 g Essigsaeure in Ethanol (50 ml) gegeben. Es wurde für 1 Std unter Rückfluß erhitzt, auf Raumtemperatur abgekühlt und abgesaugt. Die Kristalle wurden mit Diethylether nachgewaschen.

Die so erhaltenen Kristalle wurden vorgelegt und mit 36.6 g (210 mmol) Azodicarbonsaeurediethylester versetzt. Es wurde 5 Min. auf 90°C erwärmt, wobei ein Feststoff ausfiel. Die Lösung wurde auf Raumtemperatur abgekühlt und mit Ethanol (100 ml) verdünnt. Der ausgefallene Feststoff wurde abgesaugt, mit Diethylether gewaschen und i. Vak. getrocknet.

25 Ausbeute 10.9 g (81%);

 $R_f = 0.56$ (Dichlormethan : Methanol, 20 : 1);

 $Fp = >240 \, {}^{\circ}C;$

Masse (berechnet) für $C_{14}H_{14}N_4O_2 = 270.30$, Massenspektrum (EI, rel. Intensität) 270 (100%);

¹H NMR (200 MHz, Pyridin-D₅) δ 8.29 (d, J = 8.62 Hz, 2 H), 7.33 (d, J = 7.89 Hz, 2 H), 4.98 (bs, 1 H), 3.72 (s, 3 H), 3.53 (s, 3 H), 2.29 (s, 3 H).

Beispiel II (Methode B)

1,3-Dimethyl-8-[1-(3-chlorphenyl)methyl]xanthin

O N N N CI

11.94 g (70 mmol) 3-Chlorphenylessigsäure wurden in 100 ml Dichlormethan gelöst, mit einem Tropfen DMF versetzt und auf 0°C gekühlt. Zu dieser Lösung gab man langsam 8.74 g (73.5 mmol) Thionylchlorid und rührte bis zum Ende der Gasentwicklung (ca. 1 h), wobei man das Reaktionsgemisch auf Raumtemperatur erwärmen ließ.

11.91 g (70 mmol) 5,6-Diamino-1,3-dimethyluracil Hydrat wurden in 1M NaOH (150 ml) und Wasser (350 ml) vorgelegt und auf 45°C erwärmt bis eine homogene Lösung entstand. Man kühlte diese Lösung auf Raumtemperatur ab und gab die Säurechloridlösung (s.o.) unter kräftigem Rühren hinzu. Es wurden noch weitere 16 h bei Raumtemperatur gerührt. Der ausgefallene Feststoff wurde abgesaugt und mit Wasser gewaschen.

Dieser Feststoff wurde in Methanol (400 ml) suspendiert und mit 4 M NaOH (400 ml) 1 h unter Rückfluß erhitzt. Nach Abkühlen auf Raumtemperatur säuerte man die Lösung mit konz. HCl auf pH 3 an, wobei das gewünschte Produkt ausfiel. Der ausgefallene Feststoff wurde abgesaugt, mit Wasser und Methanol gewaschen und im Umlufttrockenschrank getrocknet.

	Z/ -Z/ -Z/	− I ==>

BspNr.	R⁴	R³	R ⁵	Ţ	۸	R, *	F (°C)	CH ₃ thode	Massen- spektrum	Ausbeute (% d.Th.)
IV	СН	СН,	сн,	0	0	0.57 (L)	>240	C.	*194 (100%)	, 05
Λ	СН,	сн,	с,Н,	0	0	0.56 (K)	>240	၁	*208 (100%)	46
ΛΙ	СН,	СН	cPro	0	.0	0.35 (K)	>240 .	٧	*220 (100%)	47
VII	CH ₃	сн₃	-CH ₂ cHex	o [.]	0	0.64 (L.)	238	В	*276 (40%) 194 (100%)	72
VIII	сн _{3.}	сн		. 0	0	0.80 (L)	>240	В	276 (100%)	47
XI	СН,	СН3	£ \$	0	0	0.67 (K)	>240	٧	*270 (100%)	82
×	СН3	сн,	CH ₃	. 0	0	0.86 (L.)	>240	Α .	*270 (100%)	97
IX	СН3	сн,	\$	0	0	0.80 (L)	>240	¥	*284 (100%)	69

	T Total	r	T	T .		T T	1		Γ
Ausbeute (% d.Th.)	88	78	. 51	83	70	89	64	. 64	47
Massen- spektrum		276 (100%)	276 (100%)	341 (100%)	283 (100%)	*284 (100%)	*284 (100%)	*284 (100%)	*346 (100%)
CH ₃ thode	Ą	۷ .	Ą	¥	A	a .	В	В	В
F (°C)	>240	>240	>240	>240	>240	>240	>240	>240	>240
R _f *		0.30 (K)	0.38 (K)	0.54 (K)	0.69 (K)	0.68 (L)	(7) 89:0	0.28 (K)	(L) 87.0
V	0	0	. O	0	0	0	0	0	0
Т	0	0	0	Ö	0.	O	0	0	0
R ⁵	$\langle \rangle$	H ₃ C	A, ScH,	Br.	-сн=сн	CH3	CH,	P. P	
R ³	СН3	сн3	сн³	сн₃	CIH ₃	сн3	СН3	сн³	сн³
R⁴	СН3	снз	сн³	сн³	СН3	СН3	СН3	сн³	сн³
BspNr.	XXII	XXIII	ΛΙΧΧ	xxx	XXVI	XXVII	XXVIII	XIXX	XXX

.

 $\cdot ^{\circ }\in \cdot$

BspNr.	₽4	R.	R ⁵	T	Λ	R _r *	F (°C)	CH ₃ thode	Massen- spektrum	Ausheute (% d,Th.)
XLII	СĤ	СН	сн,	S	0	0.30 (K)	>240	U	*210 (100%)	51
XLIII	CH,	CH,	С,Н,	S	0	0.62 (K)	>240	v	*224 (100%)	78
XTIV	СН3	СН3		s	0	(X) 6L.0	>240 .	∢	*278 (100%)	51
			\s\ \							
XT.V	сн, сн	СН3	£ S	S	. 0	0.80 (K)	>240	Ą	*286 (100%)	59

Tabelle II:

BspNr.	R ¹	R ¹⁸	R _f *	
XLIII	(R&S) iPr	CH ₃	0.86 (S)	
IL	(R&S) iBu	tBu	0.84 (R)	
L	(R&S) cPent	CH ₃	0.59 (C)	
LI	(R&S) cHex	CH ₃	0.38 (B)	
LII	(R&S) cHex	tBu	0.71 (P)	
LIII	(R&S) cHept	CH ₃	0.57 (P)	
LIV	(R&S) cHept	tBu	0.32 (P)	

Beispiel LV

10

15

25

30

35

40

50

55

2-(4-Brommethyl-phenyl)-2-cyclopentyl-essigsaure-tert.butylester

racemisch
$$CO_2C(CH_3)_3$$

27.4 g (0.1 mol) der Verbindung aus Beispiel XLVII werden in 200 ml Tetrachlormethan gelöst und zum Sieden erhitzt. Nach Zugabe von 0.82 g Azobisisobutyronitril werden 18.7 g (0.105 mol) N-Bromsuccinimid portionsweise zugegeben und anschließend 1 h refluxiert, auf 0°C abgekühlt und vom Succinimid abfiltriert. Nach Einengen des Filtrats fällt das Produkt aus. Einengen des Filtrats fällt das Produkt aus.

Ausbeute: 20 g (57% d.Th.);

Fp.: 73-76°C.

Die Verbindungen der Tabelle III werden analog der Vorschrift des Beispiels LV hergestellt:

Ausbeute 9.3 g (88%);

10

15

20

25

30

35

40

55

R_f = 0.48 (Dichlormethan: Methanol, 20:1);

Masse (berechnet) für $C_{32}H_{38}N_4O_4 = 542.68$, Massenspektrum (CI (NH₃), rel. Intensität) 560 (25%, M+NH₄), 543 (100%);

¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, 2 H), 7.28-7.20 (m, 4 H), 6.95 (d, 2 H), 5.60 (s, 2 H), 3.61 (s, 3 H), 3.40 (s, 3 H), 3.10 (d, 1 H), 2.42 (m, 1 H), 2.40 (s, 3 H), 1.90 (m, 1 H), 1.70-1.20 (m, 6 H), 1.41 (s, 9 H), 0.95 (m, 1 H).

Die in den Tabellen 1, 2 und 3 aufgeführten Verbindungen werden in Analogie zur Vorschrift des Beispiels 1 hergestellt:

BspNr.	R¹	R ⁵	R ²⁰	R _r *	F (°C)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs- verbindung
10	(R&S)cPent		tBu ,	0.11 (T)			. 84	VIII
	(R&S)cPent	F. S	tBu	0.31 (J)		543 (60%) 57 (100%)	09	×
12	(R&S)cPent	GH,	tBu	0.37 (J)	86	543 (100%)	64	×
13	(R&S)cPent	£ 5	tBu	0.39 (J)	88 (Schaum)	557 (100%)	. 99	×
14	(R&S)cPent	C,H,	сн₃	0.46 (J)	104 (Schaum)	563 (100%)	52	XII
15	(R&S)cPent	To Co	tBu	0.24 (J)	90 (Schaum)	563 (80%) 57 (100%)	40	XIII
. 91	(R&S)cPent	-Cr,	tBu	0.26 (J)		597 (80%) 57 (100%)	53	, XIX
17	(R&S)cPent	-осн,	tBu .	0.36 (J)	96 (Schaum)	*559 (100%)	51	XV
18	(R&S)cPent	-(cH,),	tBu	0.06 (J)	(Schaum)	571 (80%) 298 (100%)	.36	XVI
19	(R&S)cPent	NIC phi)	tBu	0.3 (J)	84. (Schaum)	600 (100%) 599 (100%)	61	XVII

5

	:	i
- 7	•	ט
:	9	5
•	-	2
8		

. 25

	Ausg verbi					×	XX	ξχ	X	X	=
· .	Ausheute (% d.Th.)	89	. 08	. 98	44	55	51	56	. 58	61	40
	Masssen- spektrum	543 (60%) 57 (100%)	515 (100%)	571 (100%)	. (%001) 605	557 (100%)	557 (60%) 57 (100%)	557 (100%)	619 (60%) 57 (100%)	577 (40%) 57 (100%)	577 (100%)
OR ²¹	F (ور)	136	131	78	92	148	65 (Schaum)	165	90 (Schaum)	156	135
	R _f *	0.26 (J)	0.21 (J)	0.76 (K)	0.23 (J)	0.29 (J)	0.40 (J)	0.17 (J)	0.35 (J)	0.26 (J)	0.21 (J)
Z Z Z O D O D O D O D O D O D O D O D O	R ²²	Н	Н	Н	Н	2-CH ₃	3-CH ₃	4-CH ₃	4-Phenyl	2-C1	3-CI
O DE L	R ²¹	· tBu	СН	tBu !	CH,	tBu.	tBu	tBu	tBu	tBu	tBu
	R¹	(R&S) cPent	(R&S) cHex	(R&S) c Hept	(R&S) Phenyl	(R&S) cPent	(R&S) cPent	(R&S) cPent	(R&S) cPent	(R&S) cPent	(R&S) cPent
	BspNr.	29	30	31	32	33	34	35	36	37	38

	0=	OR ²³
Z R R	Z	
~ Z	£ 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

Bsp Nr.	R1	R³	R ⁴	R ⁵	R ²³	Т	>	R _r *	F (C)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs- verbindung
43	(R&S) cPent	С2Н3	c ₂ H ₅	Н	tBu	0	0	0.28 (J)	ij.	481 (100%) 57 (90%)	76	III
44	(R&S) cPent	С2Н5	C ₂ H ₅	сн³	tBu.	0	0	0.22 (J)	167	495 (50%) 57 (100%)	99	XXXVII
45	(R&S) cPent	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	tBu	0	0	0.34 (J)	121-24	509 (100%) 57 (80%)	69	XXXVIII
46	(R&S) cPent	C ₂ H ₅	C ₂ H ₅	cPro	CIII3	. 0	0	0.40 (J)	128	479 (80%) 55 (100%)	49	XXIX
47	(R&S) cPent	C ₂ H ₅	C ₂ H ₅	Phenyl	сн₃	0	0	0.26 (J)	58 (Schaum)	(%001) 515	57	
48	(R&S) cPent	C ₂ H ₅	C ₂ H ₅	,-Сн,	СН3	0	0	0.40 (J)	58 (Schaum)	529 (100%)	46	XL ·
49	(R&S) cPent	С2Н5	C ₂ H ₅	S	СН3	0	0	0.58 (J)	166	521 (85%) 55 (100%)	65	XL1
20	(R&S) cPent	СН3	iBu	Н	tBu	0	0	0.64 (J)	ţ	495 (60%) 57 (100%)	69	

Tabelle 3:

Beispiel 55

10

15

30

35

40

50

Man löst 5.26 g (9.18 mmol) der Verbindung aus Beispiel 41 in 50 ml CH₂Cl₂ und kühlt die Lösung auf -78°C ab. Dazu tropft man 45.9 ml (45.9 mmol; 1 molar in CH₂Cl₂) Bortribromid langsam dazu. Das Gemisch wird 2 Stunden bei Raumtemperatur nachgerührt. Man kühlt dieses anschließend mit einem Eisbad wieder auf 0°C ab und versetzt mit 50 ml Methanol. Es wird über Nacht bei Raumtemperatur nachgerührt. Das Lösemittel wird abrotiert, der Rückstand wird in CH₂Cl₂ und Wasser aufgenommen und extrahiert. Die organische Phase wird über Natriumsulfat getrocknet, dabei fallen Kristalle aus, die mit Zugabe von wenig Methanol wieder in Lösung gehen. Das Natriumsulfat wird abgesaugt, die Mutterlauge wird einrotiert. Der Rückstand (Kristalle) wird in CH₂Cl₂ verrührt und abgesaugt.

Ausbeute (36 %)

R_f = 0,27 (Dichlormethan:Methanol, 20:1)

Fp= 160°C

In Analogie zur Vorschrift des Beispiels 55 werden die in Tabelle 4 aufgeführten Verbindungen hergestellt:

 $R_f = 0.23$ (Dichlormethan: Methanol, 20:1);

- 10

15

20

25

30

35

40

45

50

55

Masse (berechnet) für $C_{28}H_{30}N_4O_4$ = 486.58, Massenspektrum (FAB, rel. Intensität) 487 (100%);

¹H NMR (300 MHz, CDCl₃) δ 7.45 (d, J = 8.19 Hz, 2 H), 7.28-7.23 (m, 4 H), 6.98 (d, J = 8.18 Hz, 2 H), 5.60 (s, 2 H), 3.64 (s, 3 H), 3.40 (s, 3 H), 3.23 (d, J = 11.08 Hz, 1 H), 2.41 (m, 1 H), 2.40 (s, 3 H), 1.92 (m, 1 H), 1.70-1.20 (m, 6 H), 0.97 (m, 1 H).

Die in den Tabellen 5, 6 und 7 aufgeführten Verbindungen werden in Analogie zur Vorschrift des Beispiels 58 hergestellt:

÷ ;: ...

BspNr.	R1	R ⁵	R _r *	F (°C)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs- verbindung
29	(R&S)cPent		0.39 (J)			100	10
89	(R&S)cPent	5	0.28 (K)	185	487 (100%)	001	11
69	(R&S)cPent	P.	0.24 (K)	155	487(100%)	84	12
70.	(R&S)cPent	£ 5	0.35 (K)	165	501 (100%)	. 96	13
11	(R&S)cPent	fa	0.36 (K)	218	549 (100%)	56	14
72	(R&S)cPent	ō	0.33 (K)	130 (Schaum)	507 (100%)		15
73	(R&S)cPent	- G.	0.31 (K)	132	541 (80%) 149 (100%)	85	16
74	(R&S)cPent	- ОСН,	0.35 (K)	122 (Schaum)	503 (100%)	88	17
75	(R&S)cPent	-N(CH),	0.29 (K)	>245	*516 (70%) 307 (100%)	88	
76	(R&S)cPent	-N(C,H,),	0.46 (K)	(Schaum)	544 (100%)	100	19

Tabelle 6:

5

CH ₃	0=	¥ - <u>-</u> -~
	·	

BspNr.	R¹	R ²⁵	R _f *	F (°C)	Masssen- spektrum	Ausbeute (% d.Th.)	Ausgangs- verbindung
98	(R&S) cPent	Н	0.44 (K)	16	487 (100%)	06	29
87	(R&S) cHex	Н	0.29 (K)	117 (Schaum)	(%001) 109	55	30
88	(R&S) cHept	Н	0.41 (K)	214	*514 (100%)	9	31
68	(R&S)Ph	Н	0.22 (K)	130	495 (100%)	42	32
06	(R&S) cPent	2-CH ₃	0.42 (K)	192	501 (100%)	94	33
91	(R&S) cPent	3-CH ₁	0.24 (K)	196	501 (100%)	. 16	34
92	(R&S) cPent	4-CH ₁	0.27 (K)	222	501 (100%)		35
93	(R&S) cPent	4-Ph	0.31 (K)	215	563 (100%)	100	36
94	(R&S) cPent	2-C1	0.34 (K)	155	521 (100%)	100	37
95	(R&S) cPent	3-Cl	0.25 (K)	194	521 (100%)	89	38
96	(R&S) cPent	4-F	0.25 (K)	213	505 (100%)	94	39

	o=\
F. 40	٠

Bsp Nr.	R¹	R³	R4	R ⁵	Т	>	R _f *.	F (°C)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs- verbindung
100	(R&S) cPent	C_2H_5	C ₂ H ₅ C ₂ H ₅ H	H	0	0	0.27 (K)	110	425 (100%)	100	43
101	(R&S) cPent	C_2H_5	C ₂ H ₅ C ₂ H ₃ CH ₃	СН3	0	0	0.24 (K) 82-85	82-85	439 (100%)	100	44
701	(R&S) cPent	C ₂ H ₅	C ₂ H ₅ C ₂ H ₅	C ₂ H ₅	0	0	0.20 (K)	181	453 (100%)	96	45
103	(R&S) cPent	C ₂ H ₅	C ₂ H ₅ cPro	cPro :	0	0	0.30 (K)	98 (Schaum)	465 (100%) 78	78	46
104	(R&S) cPent	C ₂ H ₅	C ₂ H ₅ Ph	Ph	0	. 0	0.38 (K) 100 (Sch	100 (Schaum)	(%001) 105	. 08	47
105	(R&S) cPent	C ₂ H ₅	C ₂ H ₅	—(. 0	0	0.16 (K) 92 (Sc	92 (Schaum)	(%001) 515	75	48
901	(R&S) cPent	C ₂ H ₅ C ₂ H ₅	C ₂ H ₅	S	0	0	0.33 (K) 232	232	507 (80%) 464 (100%)	. 58	49

Tabelle 7:

Beispiel 112

10

15

40

45

50

55

N-[2-(R)-Phenyl-1-hydroxyethan]-2-(R&S)-cyclopentyl-[4-(1,3-dimethyl)-2,6-dioxo-8-(4-methyl)phenyl-1,2,3,6-tetrahydro-purin-7-ylmethyl)phenyl]essigsäureamid

6.1 g (12.5 mmol) der Verbindung aus Beispiel 58, (R)-Phenylglycinol (1.71 g, 12.5 mmol), 1-Hydroxy-1-benzotriazol (1.86 g, 13.8 mmol), N`-(3-Dimethylaminopropyl)-N-ethylcarbodiimid Hydrochlorid (2.76 g, 14.4 mmol) und Triethylamin (2.53 g, 25 mmol) werden nacheinander in CH₂Cl₂ (60 ml) gelöst und über Nacht bei Raumtemperatur gerührt. Es werden nochmal 15 ml CH₂Cl₂ zugegeben und mit wäßriger NH₄Cl- und NaHCO₃-Lösung sowie mit Wasser gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und eingedampft. Der Rückstand wird säulenchromatographisch gereinigt.

Ausbeute 6.59 g (87%);

Fp 87 °C (Schaum);

 $R_f = 0.32$ (Dichlormethan: Methanol, 20:1);

Masse (berechnet) für $C_{36}H_{39}N_5O_4$ = 605.75, Massenspektrum (FAB, rel. Intensität) 606 (100%), 105 (95%);

Die in Tabellen 8, 9 und 10 aufgeführten Verbindungen werden in Analogie zur Vorschrift des Beispiels 112 hergestellt. Entweder fallen die Verbindungen direkt als reine Diastereomere an, oder sie werden ausgehend vom Racemat nach üblichen Methoden säulenchromatographisch getrennt.

. ÷

BspNr.	R¹	R ⁵	R _f *	F (°C)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs- verbindung
121	(R&S) cPent	cPro .	0.36 (K)	110 (Schaum)	556 (80%) 105 (100%)	73	63
122	(R&S) cPent	cPent	0.33 (K)	194	584 (100%)	65	64
123	(R&S) cPent	-CH ₂ cHex	0.31 (K)	117 (Schaum)	612 (100%)	69	65
124	(dia A) cPent	-CH2cHex	0.46 (K)	173	C, HN Pent		123
125	(dia B) cPent	-CH2cHex	0.46 (K)	90 (Schaum)	612 (100 %)		123
126	(R&S)cPent		0.35 (K)	112 (Schaum)	612 (100%)	81	99
127	(dia A)cPent		0.16 (K)	183	612 (50 %) 227 (100 %)		126
128	(dia B)cPent		0.16 (K)	82 (Schaum)	612 (40 %) 105 (100 %)		126
129	(R&S)cPent		0.50 (L)			86	<i>L</i> 9
130	(dia A) cPent		0.50 (L)	•	592 (100%)		129
131	(dia B) cPent		0.50 (L.)	-	592 (100%)		129
132	(R&S)cPent	CH ₃	0.31 (K)	128 (Schaum)	606 (100%)	79	89

Q.7

.

BspNr.	R ¹	R ⁵	R _r *	₽ (°C) ·	Massen- spektrum	Ausheute (% d.Th.)	Ausgangs- verbindung
143	(R&S) cPent	-cr,	0.34 (K)	130 (Schaum)	660 (100%)	69	73
144	(dia A) cPent	-CF,	0.47 (K)	245	660 (50 %) 171 (100 %)		143
145	(dia B) cPent	-{_}-or,	0.45 (K)	212	C,H,N Anal.	-	143
146	(R&S) cPent	, осн,	0.20 (K)	126 . (Schaum)	(100%)	84	74
147	(dia A) cPent	————осн,	0.43 (K)	ŎI	622 (351) 105 (100 %)		146
148	(dia B) cPent	— ОСН,	0.45 (K)	201	C,H,N Anal.		. 146
149	(R&S) cPent	-NICH ₃),	0.25 (K)	140 (Schaum)	635 (100%)	13	75
150	(R&S) cPent	-NIC,H,),	0.24 (K)	128 (Schaum)	663 (100%)	72	76
151	(R&S) cPent		0.28 (K)	>240	593 (100%)	64	77
152	(R&S) cPent		0.14 (K) ·	123 (Schaum)	593 (100%)	81	78
153	(R&S) cPent	N					79
154	(R&S) cPent	S	0.21 (K)	115 (Schaum)	598 (60%) 105 (100%)	82	

.

.

BspNr.	R¹	R ⁵	R _f *	F . (°C)	Massen- spektrum	Ausheute (% d.Th.)	Ausgangs- verbindung
163	(R&S) cPent	, HO S	0.39 (J)	97 (Schaum)	612 (60%) 57 (100%)	85	83
164	(R&S) cPent	Br S	0.48 (K)	>235	676 (20%) 55 (100%)	61	84
591	(dia A) cPent	Br S	0.37 (K)	175	C,H,N Anal.		164
991	(dia B) cPent	Br S	0.37 (K)	169	676 (100 %)		164
167	(R&S)cPent	-Сн-сн-С	0.49 (K)	69-091	(%001) 819	31	85

1.4.4

BspNr.	R1	R ²⁶	R _f *	F (°C)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs- verbindung
178	(R&S) cPent	2-CH ₃	0.38 (K)·	137	620 (100%)	54	06
179	(R&S) cPent	3-CH ₃	0.28 (K)	121 (Schaum)	620 (100%)	36	91
180	(dia A) cPent	3-CH ₃	0.16 (K)	200	C,H,N Anal.		179
181	(dia B) cPent	3-СН,	0.17 (K)	166			179
182	(R&S) cPent	4-CH ₃	0.33 (K)	.113 (Schaum)	620 (100%)	92	
183	(dia A) cPent	4-CH,	0.37 (K)	223	C,H,N Anal.		182
184	(dia B) cPent	4-CH ₃	0.40 (K)	208	C,H,N Anal.		182
185	(R&S) cPent	4-Phenyl	0.49 (K)	180	682 (100%)	47	93
186	(dia A) cPent	4-Phenyl	0.32 (K)	>230	C,H,N Anal.		185
187	(dia B) cPent	4-Phenyl	0.31 (K)	200	C,H,N Anal.		185
188	(R&S) cPent	2-Cl	0.39 (K)	113 (Schaum)	640 (100%)	77	94
681	(dia A) cPent	2-CI	0.38 (K)	208	C,H,N Anal.		188
. 061	(dia B) cPent	2-CI	0.34 (K)	142	C,H,N Anal.		188
161	(R&S) cPent	3-Cl	0.41 (K)	142	640 (100%)	86	. 56
192	(dia A) cPent	3-CI	0.35 (K)	200	C,H,N Anal.		161
193	(dia B) cPent	3-CI	0.35 (K)	183	-		161
194	(R&S) cPent	4-F	0.42 (K)	151 (Schaum)	624 (100%)	81	96
195	(dia A) cPent	4-F	0.38 (K)	212	C,H,N Anal.		194
196	(dia B) cPent	4-F	· 0.37 (K)	681	C,H,N Anal		
197	(R&S) cPent	2-0CH ₃	0.37.(K)	120 (Schaum)	636 (100%)	19	26

.

	۰	٠
4	=	∍
•	Ē	4
	9	u
•		=
•	9	5
	٢	2
	c	₹

40 °

	4 }		. 7	2		~		<u> </u>	Ξ
	Ausbeute (% d.Th.)	67			83	. 84		87	06
	Massen- spektrum	.544 (100%)			558 (100%)	572 (80%)	584 (100%)	620 (100%)	634 (90%)
	F (°C)		. 011	121	112-14	104	104 (Schaum)	115 (Schaum)	168
ج چ تح	R,*	0.40 (J)	0.40 (J)	0.35	0.48 (K)	0.20 (J)	0.36 (K)	0.31 (K)	0.44 (K)
o= Z-I	>	0	0	0	0	. O.	0	0	0
α	Т	0	0	0	0	0	0	0	0
	R ¹⁵	сн2он	сн ₂ он	сн ₂ он	сн ² он	сн ₂ он	сн ₂ он	сн ₂ он	сн
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	R14	(R) Ph							
	R ⁵	н	Н	11	сН3	C ₂ H ₅	cPro	Ph	\$
-	R4	C_2H_S	C ₂ H ₅	C_2H_5	C ₂ H ₅				
	R³	C ₂ H ₅	C_2H_5	C ₂ H ₅					
	R ¹	(R&S) cPent	(dia A) cPent	(dia B) cPent	(R&S) cPent	(R&S) cPent	(R&S) cPent	(R&S) cPent	(R&S)
	Bsp Nr.	211	212	213	214	215	216	217	218

 $\{\cdot,\cdot\}:$

Beispiel 227

10

15

20

30

35

40

Man löst 0.40 g (0.648 mmol) der Verbindung aus Beispiel 167 in 10 ml Methanol und 10 ml Essigsäure. Dazu gibt man eine Spatelspitze Palladium-Kohle (10%ig) und hydriert 4 Stunden unter Normaldruck. Das Gemisch wird über Celite abgesaugt und einrotiert. Der Rückstand wird in CH_2CI_2 und Wasser aufgenommen, mit Natriumhydrogencarbonat auf pH 8 gestellt und extrahiert. Die organische Phase wird über Natriumsulfat getrocknet und einrotiert. Der Rückstand wird säulenchromatographisch gereinigt.

Ausbeute: 0.180 g (44.9%)

 $R_f = 0.16$ (Dichlormethan : Methanol 20:1) Masse (berechnet) für $C_{37}H_{41}N_5O_4 = 619.77$

Patentansprüche

1. Substituierte Xanthine der allgemeinen Formel

$$A-CH_2 \longrightarrow \begin{matrix} & & & \\ & & \\ & & \\ & & &$$

in welcher

45 A

für einen Rest der Formel

R⁶ N N N R

55

steht, worin R²

für Mercaptyl, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 8 Kohlenstoffatomen oder für die Gruppe der Formel

> R¹⁴ -NR¹³/CH -NR¹³/R¹⁵

10

15

20

steht, worin

R¹³

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

R¹⁴

Wasserstoff, Phenyl oder einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet,

R¹⁵

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

und deren Salze.

25 2. Substituierte Xanthine der Formel nach Anspruch 1, in welcher

Α

für einen Rest der Formel

30

35

R⁶ N N R⁸

steht, worin

40

45

55

R3, R4, R6 und R7

gleich oder verschieden sind und

Wasserstoff, Phenyl, Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 6 Kohlenstoffatomen bedeuten, die gegebenenfalls durch Fluor, Chlor, Brom, Hydroxy oder Phenyl substituiert sind,

T, V, X und Y

gleich oder verschieden sind und

ein Sauerstoff- oder Schwefelatom bedeuten,

50 R⁵ und R⁸

gleich oder verschieden sind und

Wasserstoff, Fluor, Chlor, Brom, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 6 Kohlenstoffatomen bedeuten, die gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Naphthyl, Phenyl, Pyridyl, Thienyl oder Furyl substituiert sind, die ihrerseits bis zu 2-fach gleich oder verschieden durch Phenyl, Benzyl, Fluor, Chlor, Brom, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen substituiert sein können, oder

Phenyl, Pyridyl, Thienyl oder Furyl bedeuten, die gegebenenfalls bis zu 2-fach

oder

steht. worin

R3, R4, R6 und R7

10

15

20

25

30

35

45

50

gleich oder verschieden sind und

Wasserstoff, Phenyl, Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 5 Kohlenstoffatomen bedeuten, die gegebenenfalls durch Fluor, Chlor, Brom, Hydroxy oder

Phenyl substituiert sind,

T, V, X und Y

gleich oder verschieden sind und

ein Sauerstoff- oder Schwefelatom bedeuten.

R5 und R8

gleich oder verschieden sind und

Wasserstoff, Fluor, Chlor, Brom, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 5 Kohlenstoffatomen bedeuten, die gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Pyridyl, Thienyl oder Furyl substituiert sind, die ihrerseits bis zu 2-fach gleich oder verschieden durch Phenyl, Benzyl, Fluor, Chlor, Brom, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein können, oder Phenyl, Pyridyl, Thienyl oder Furyl bedeuten, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Phenyl, Trifluormethyl, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3

Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_a-NR⁹R¹⁰ substitu-

iert sind. worin

eine Zahl 0 oder 1 bedeutet,

R9 und R10 40

gleich oder verschieden sind und

Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 3 Kohlenstoffatomen bedeuten,

D und E

gleich oder verschieden sind und

für Wasserstoff, Fluor, Chlor, Brom oder Trifluormethyl stehen,

R1

für Wasserstoff, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 5 Kohlenstoffatomen steht, die gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Phenyl, Pyridyl oder Thienyl substituiert sind, oder

für Phenyl, Pyridyl, Furyl oder Thienyl steht, die gegebenenfalls bis zu 2-fach aleich oder verschieden durch Fluor, Chlor, Brom, Phenyl, Trifluormethyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoff-

atomen oder durch eine Gruppe der Formel -NR¹¹R¹² substituiert sind,

R¹¹ und R¹² die oben angegebene Bedeutung von R⁹ und R¹⁰ haben und mit dieser gleich oder verschieden sind,

für ein Sauerstoff- oder Schwefelatom steht,

worin die Zahl 0 bedeutet, R9 und R10 gleich oder verschieden sind und Wasserstoff, oder geradkettiges oder verzweigtes Alkyl mit jeweils bis zu 3 Kohlenstoffatomen bedeuten, gleich oder verschieden sind und D und E für Wasserstoff, Fluor, Chlor, Brom oder Trifluormethyl stehen, 10 für Wasserstoff, Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl oder R^1 für geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen steht, für ein Sauerstoffatom steht, 15 für Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 5 Kohlenstoffatomen R² oder für die Gruppe der Formel 20 25 steht, worin R¹³ Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffato-30 men bedeutet. R14 Phenyl bedeutet, R¹⁵ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das 35 gegebenenfalls durch Hydroxy substituiert ist, und deren Salze. Substituierte Xanthine nach Anspruch 1 bis 4 zur therapeutischen Anwendung. Verfahren zur Herstellung von substituierten Xanthinen nach Ansprüch 1 bis 4, dadurch gekennzeichnet, daß man zunächst durch Umsetzung von Verbindungen der allgemeinen Formel (II) 45 (II)A-H in welcher die oben angegebene Bedeutung hat, 50 mit Verbindungen der allgemeinen Formel (III)

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 96 11 4577

	EINSCHLÄGIG	GE DOKUMENTE			
Categorie	Kennzeichnung des Dokum der maßgebli	ents mit Angabe, soweit erforderlich, chen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (InLCL6)	
A	GB-A-2 276 383 (ME * Seite 148 - Seite	RCK & CO INC) e 197; Ansprüche *	1-10	C07D473/00 C07D473/06 C07D473/08	
4	EP-A-0 363 320 (CII * Seite 22 - Seite	BA-GEIGY AG) 33; Ansprüche *	1-10	A61K31/52	
			•		
	•				
				•	
		•			
	· ·	<u>.</u>			
				RECHERCHIERTE SACHGEBIETE (Int. Cl. 6)	
				C07D	
				•	
		·	-		
	•		. *		
,				·	
Der voi	liegende Recherchenbericht wur	de für alle Patentansprüche erstellt			
	Recharchemort	Abschlußdatum der Recherche		Prthr	
	DEN HAAG	2.Januar 1997	Luy	ten, H	
X:von Y:von ande	ATEGORIE DER GENANNTEN i besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindungen Verbiffentlichung derselben Kate	E: ilteres Patent tet pach dem An- g mit einer D: in der Annele	zugrunde liegende idokument, das jedoc meldedatum veröffen dung angeführtes De ründen angeführtes i	tlicht worden ist kument	
O: nich	nologischer Hintergrund tschriftliche Offenbarung chenliteratur	& : Mitglied der Dokument	gleichen Patentfami	lie, übereinstimmendes	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

	☐ BLACK BORDERS
	☐ IMAGÉ CUT OFF AT TOP, BOTTOM OR SIDES
_	FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.