中文图书分类号: TU311 密 级: 公开

UDC: 004 学 校 代 码: 10005

工程硕士学位论文

M.E. DISSERTATION

论 文 题 目: BjutTHESIS ver. 2.7 ——北京工业

大学硕士学位论文 LATEX 模板

论 文 作 者: 林钰辉

学 科: 建筑与土木工程

指 导 教 师: 张永祥

论文提交日期: 2021年12月

UDC: 004 中文图书分类号: TU311

题

学校代码: 10005

学 号: S201904283

密 级:公开

北京工业大学硕士专业学位论文

(全 日 制)

目: BrutT_HE_SI_S ver. 2.7 — 北京工业大学硕士学位 论文 L^AT_FX 模板

英文题目: BJUTTHESIS: A LATEX TEMPLATE FOR DOC-TRAL DISSERTATION OF BEIJING UNIVER-SITY OF TECHNOLOGY

论 文 作 者: 林钰辉

学 科 专 业:建筑与土木工程

研 究 方 向:城市水系统健康循环与水环境恢复技术

申 请 学 位: 工学硕士

指导教师: 张永祥教授

所 在 单 位:城市建设学部

答 辩 日 期: 2021年12月

授予学位单位: 北京工业大学

独创性声明

本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京工业大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

签	名:			
Н	期:	年	月	Н

关于论文使用授权的说明

本人完全了解北京工业大学有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。

(保密的论文在解密后应遵守此规定)

签	名:	日	期:	年	月	日
导师签名	艺:	日	期:	年	月	日

摘要

纳米零价铁(nZVI)越来越多地用于污染土壤和含有氯化溶剂和重金属的地下水的原位修复。但分散在水相中的纳米零价铁颗粒由于磁力作用而具有强烈的聚集趋势,形成远超过微米尺寸的枝状絮体和网状结构,降低了它的有效表面积和反应活性在实验室研究和现场试验中的迁移性和稳定性表现均不理想。因此研究纳米零价铁在多孔介质中的迁移,通过制备改性纳米铁增强其稳定性与分散性,提高其在多孔介质中的迁移距离。并通过填充柱实验,研究硫化型纳米零价铁在多孔介质中的迁移过程以及多孔介质水力特性的变化过程。建立考虑拦截、布朗扩散、重力沉降和多孔介质性质变化影响的非稳态变参数数学模型。通过模型与实验数据的拟合,研究实验过程中各种机理的变化。

关键词:包覆型硫化型纳米铁;颗粒稳定性; XDLVO; 多孔介质; 迁移

Abstract

Nanometer zero-valent iron (nZVI) is increasingly used for in situ remediation of contaminated soils and groundwater containing chlorinated solvents and heavy metals. However, due to the magnetic force, the zero-valent iron nanoparticles dispersed in the aqueous phase have a strong tendency to aggregate and form dendritic flocs and network structures with a size far larger than micron, which reduce their effective surface area and reactivity. Their mobility and stability are not ideal in laboratory and field tests. Therefore, the migration of zero-valent iron nanoparticles in porous media was studied, and its stability and dispersion were enhanced by preparing modified iron nanoparticles to improve its migration distance in porous media. The migration process of sulfurized zero-valent iron nanoparticles in porous media and the change process of hydraulic characteristics of porous media were studied by packed column experiment. A mathematical model of unsteady variable parameters considering interception, Brownian diffusion, gravity settlement and property change of porous media is established. By fitting the model with experimental data, the changes of various mechanisms in the experimental process are studied.

Keywords: Sulfidated nanoscale zero valent iron, Dispersion stability, Extended DLVO, Porous medium, Transport

目录

摘要	I
Abstract ·····	III
目录	VI
Contents ·····	VII
第1章 绪论	1
1.1 研究目的及意义	1
1.2 纳米零价铁的研究现状	1
1.3 纳米零价铁的注入方式	4
1.4 本文主要研究内容	5
1.4.1 SA-S-NZVI 的颗粒稳定性研究·······	5
1.4.2 SA-S-NZVI 在多孔介质的迁移性能研究	5
1.4.3 技术路线	5
第2章 试验材料和方法	7
2.1 实验试剂与仪器	7
2.1.1 实验试剂	7
2.2 主要试验仪器	7
2.3 实验装置	7
2.4 分析方法	7
2.4.1 海藻酸钠改性硫化型纳米铁的制备	7
2.4.2 材料的表征	9
2.4.3 附着效率计算	9
2.5 理论和模型计算	10
2.5.1 聚电解层厚度计算	10
2.5.2 碰撞频率的计算	11
2.5.3 团聚动力学模型	12
第3章 改性硫化型纳米零价铁的稳定性研究	13
3.1 pH 对不同包覆比的 S-NZVI 稳定性的影响	13
3.2 不同包覆比下 S-NZVI 的稳定性	13

北京工业大学工程硕士学位论文

3.3 离子强度对 SA-S-NZVI 稳定性的影响	14
3.4 聚电解质包覆层的特性	16
3.5 本章小结	17
结论与展望	19
参考文献	24
攻读硕士学位期间所发表的学术论文 ······	25
致谢	27

Contents

Abstract (in Chinese)	I
Abstract	III
Contents (in Chinese)	VI
Contents	VII
Chapter 1 introduction	1
1.1 Purpose and significance of the study ·····	1
1.2 NZVI	1
1.3	4
1.4	5
Chapter 2 Material and methods	7
2.1 Chemical reagents and instrument analyses	7
2.3	7
2.4 Analytical method ·····	7
Chapter 3 Study on stabilization of coated sulfur-modified NZVI	13
3.1 Effect of pH on the stability of S-NZVI with different coating ratios	13
3.2 Stability of S-NZVI at different coating ratios	13
3.3 Effect of ionic strength on the stability of SA-S-NZVI	14
3.4 Characteristics of the polyelectrolyte layers	16
3.5 Result	17
Conclusions ····	19
Reference	24
Publications	25
Acknowledgement	27

第1章 绪论

1.1 研究目的及意义

纳米零价铁 (NZVI) 因为独特的物理和化学性质,如高界面反应性显示出在处理废水中有机污染物方面具有巨大潜力; 极小的粒径使 NZVI 可以直接注入受污染的含水层中[1]。因此 NZVI 越来越多地用于污染土壤和含有氯化溶剂和重金属的地下水的原位修复[2-5]。然而,研究表明,纳米零价铁在实验室研究和现场试验中的迁移性和稳定性表现均不理想[6]。主要原因在于分散在水相中的纳米零价铁颗粒由于磁力作用而具有强烈的聚集趋势,形成远超过微米尺寸的枝状絮体和网状结构,降低了它的有效表面积和反应活性[7],以及 NZVI 的高表面活性导致其常在与污染物接触前被氧化,于表面形成铁氧化物外壳,导致 NZVI 活性降低[8]。同时,砂粒表面在中性条件下带负电,零价铁颗粒易吸附在其表面上[9],使得零价铁在多孔介质中不易扩散。因此研究纳米零价铁在多孔介质中的迁移,增强纳米铁的稳定性与分散性,提高其在介质中的迁移距离,对实现 NZVI 颗粒在可操作条件下成功运送至"反应区域"具有重要意义。

1.2 纳米零价铁的研究现状

零价铁 (Zero-Valent Iron,ZVI) 由于具有很强的还原能力 (E0 = -0.44 V) 和吸附重金属、金属等一系列重要污染物的能力,在环境修复中得到了广泛的研究^[10]。Gould^[11]报道了 ZVI 在环境中的最早应用,他研究了金属铁丝还原六价铬的动力学。使用纳米零价铁(Nano Zero-Valent Iron,NZVI)在地下进行原位脱氯的概念首先由 Wang 和 Zhang^[12]提出,他们假设 nZVI 可以直接注入受污染的地下水中,并有助于污染土壤和地下水的原位修复^[2]。Wang 和 Zhang^[12]证明了合成的、不稳定的 ZVI 颗粒用于还原脱氯的有效性,并指出新制备的 ZVI 颗粒比商业铁粉的活性高得多。Zhang 等^[13]还报道了添加少量催化剂(Pd)可使表面积归一化速率常数增加约 100 倍。然而所有这些开创性的工作都是在水溶液中进行的,并没有解决与土壤修复相关的其他关键问题,如 nZVI 易钝化、易流失、颗粒易聚集,土壤输送能力差等。随后,技术进入了一个强调颗粒稳定和迁移性的新阶段。

nZVI 的稳定化可以通过表面改性和(或)创建分离纳米粒子的网络来实现,如图 1-1所示。nZVI 的稳定剂可分为表面活性剂、合成或天然大分子或高分子电

解质、粘度调节剂、油乳化剂和微尺度固体载体。

图 1-1 (a) 纳米零价铁稳定化示意图 (b)EZVI 液滴示意图

Fig. 1-1 (a)Schematic diagram of stabilized NZVI (b)Schematic diagram of EZVI droplets

硫化纳米零价铁(Sulfidated Nanoscale Zero Valent Iron, S-NZVI)是一种对 NZVI 进行表面钝化的改性方法, 在原有的零价铁内核-氧化物外壳结构的基础上, 再形成了一层铁硫化物的外壳 (FeS_x), 该 FeS_x 保护层可以有效的防止内层的 NZVI 内核被周围环境介质氧化 [14]。此外, FeS_x 保护层内存在的离域电子有助于电子传递的进行, 因此提高了材料对污染物的还原能力, 很好地解决了 NZVI 易钝化的缺点 [14-16]。Kim 等 [17] 发现,硫化条件下形成的纳米零价铁双相材料 (Fe/FeS),比仅与氧化铁 (Fe/FeO) 结合的 nZVI 更快地还原三氯乙烯 (TCE),并且将 Fe/FeS 暴露于溶解有 Pd^{2+} 、 Cu^{2+} 、 N^{2+} 、 Co^{2+} 和 Mn^{2+} 的溶液中可以进一步提高脱氯反应

性。然而,由于纳米颗粒的范德华力和零价铁的磁性作用,S-nZVI 颗粒仍然会形成团聚体,这大大减少了它们在受污染的地下水中的传输。因此需要对 S-NZVI 颗粒进行改性,引入克服范德华力和磁性的斥力,以增强 S-NZVI 的稳定性,从而增强其在地下水中的迁移能力。

表面活性剂是常用的控制颗粒之间的相互作用的稳定剂之一。张永祥、马晓敏等^[18]以聚乙二醇 (PEG) 为分散剂,在乙醇-水混合溶剂中合成改性纳米零价铁(NZVI)颗粒,讨论了 nZVI 去除 Cr(VI) 的影响因素,并对反应产物进行 XPS检测。结果表明,乙醇比例为 50% 时制备出的纳米零价铁直径在 30 60 nm,对Cr(VI) 的去除率最高,为 95.30%。NZVI 投加量越大,Cr(VI) 初始浓度越小,pH越小,温度越高,均有利于水中 Cr(VI) 的去除。纳米零价铁将 Cr(VI) 吸附后将其还原为 Cr(III),反应过程主要以还原作用为主。

与表面活性剂相比,合成聚合物和天然聚合物材料已经被更广泛地研究^[19]。聚电解质通过吸附接枝的方式固定于 NZVI 颗粒表面,形成聚合物包覆层,层内的大分子为包覆粒子提供静电斥力和空间斥力^[20-21]避免其发生团聚。此外,这些大分子不仅能有效地促进 NZVI 的稳定,还能被微生物降解,作为微生物群落的能量来源。张永祥、常杉等^[22] 利用羧甲基淀粉钠 (CMS) 对 nZVI 进行包覆改性,利用空间位阻效应提高其分散悬浮性。研究其对 2,4-二氯苯酚 (2,4-DCP)的去除效果。结果表明,改性后的 nZVI 直径大约在 80 100 nm,呈链状或分散颗粒分布,主要物质组成为零价铁,具有强还原性。当 CMS 的比例为 80.00% 时,悬浮性最佳;经过 CMS 包覆改性后,nZVI 还保留原有的活性,在不同包覆比例对于 2,4-DCP 的去除效果的实验中发现,同样 CMS 比例为 80% 时去除效果最好,达到 83.69%,且有明显的脱氯降解过程。

乳化型纳米铁的开发是为了针对地下水中高密度非水相液体(Dense nonaqueous-phase liquids,DNPLs)的去除。通常使用食品级表面活性剂、可生物降解的植物油和水将 nZVI 包装成油滴,即使用油膜包围 nZVI,然后疏水油膜涂层使 DNAPL 浓缩,nZVI 将其降解^[23],如图 1-1所示。

负载型纳米铁是将微尺度的固体材料作为载体或是支撑材料来稳定 nZVI。 张永祥、王友好等[24-25] 研究新制备复合材料改性沸石负载纳米零价铁/镍去除水中 2,4-二氯苯酚效果以及该材料在地下水污染原位修复中的应用情况, 开展了 2,4-二氯苯酚的批实验和柱实验。批实验结果表明, 25时,0.6 g 的复合材料对 20 mg • L-1 的 2,4-DCP 去除效果达到 80%; 柱实验结果表明, 材料的双金属颗粒分

散性良好,避免了团聚现象的出现。

1.3 纳米零价铁的注入方式

nZVI 的直接注入技术可概括为以下几种方法:

- 通过固定注入点将 nZVI 泥浆引入处理区[26];
- 通过气动或水力压裂在注入点周围形成优先流动路径的裂缝网络,并增强 nZVI 的分布^[27];
- 通过压力脉冲技术注入 nZVI 泥浆:
- 将 nZVI 流体混合物与载气相结合,形成可分散到处理区的气溶胶[28];
- 通过重力进料注入[29];
- 使用携带 nZVI 的泡沫表面活性剂注入[30]。

nZVI 在原位修复中的直接注入技术已经较为成熟,基本目的都是将特定量的 nZVI 泥浆直接注入到含水层中。He 等^[31]在压力作用下,注入 CMC 稳定的 Fe/Pd 纳米材料,用于阿拉巴马北部含水层中四氯乙烯(PCE)、三氯乙烯(TCE)和多氯联苯(PCBs)污染物的原位治理,沿地下水流向共设置 4 口试验井,在长达 596 天的试验时间里,纳米材料有助于非生物降解的早期快速进行,长期来看,以 CMC 为碳源,以非生物/生物过程中的氢为电子供体,促进了现有的生物降解过程,导致了地下水中氯代有机污染物的持续强化破坏。Su 等^[32]在美国的 Parris 岛进行了表面修饰型纳米铁材料的现场测试,并对其进行了两年半的监测,以评估对 PCE 为主的地下源区氯化挥发性有机污染物的处理效果,分别采用了气动注入和固定点注入两种方式,气动注入时能够传输 2.1m,但固定点注入只能移动 0.89m。Ariel 等^[33]在加拿大萨尼亚市的一个氯化溶剂污染场地进行现场试验,采用复合改性方式,制得 CMC-S-nZVI 悬浮液,并通过重力注入到砂质材料中,上游和下游井中收集的样品表明铁颗粒的径向和垂直分布效果优良,行进距离 0.9m-2.7m,在地下水中具有稳定的流动性,并且对场地中的多种氯化类有机污染物有着良好的反应活性。

1.4 本文主要研究内容

1.4.1 SA-S-NZVI 的颗粒稳定性研究

制备不同包覆比的 SA-S-NZVI 并研究不同包覆比的沉降曲线;研究不同 pH 值 S-NZVI 的 ζ 电位、不同离子强度各包覆比 SA-S-NZVI 的电泳迁移率和粒径变化情况,结合 Ohshima 的软粒子理论计算 SA-S-NZVI 的表面电势及包覆层的厚度和软度,结合扩展 DLVO 理论,解释包覆型 S-NZVI 的团聚机理,利用 Smoluchowski 团聚动力学模型预测颗粒平均粒径随时间的变化曲线。

1.4.2 SA-S-NZVI 在多孔介质的迁移性能研究

通过柱实验研究 SA-S-NZVI 悬浮液在多孔介质中的运移过程, 堵塞的形成、发展过程; 堵塞对多孔介质水力特性造成的影响; 纳米零价铁在多孔介质中的分布规律; 深入分析造成堵塞的机理。

1.4.3 技术路线

第2章 试验材料和方法

2.1 实验试剂与仪器

2.1.1 实验试剂

本文研究主要用到的实验试剂如表 2-1

表 2-1 主要实验试剂

Tab. 2-1 Main experimental reagents

分子式	纯度	生产厂家
X	AR	X
Na_2S	AR	天津市福晨化学试剂厂
NaBH	AR	天津市福晨化学试剂厂
$FeSO_4 \cdot 7H_2O$	AR	天津市福晨化学试剂厂
HCl	AR	天津市福晨化学试剂厂
NaOH	AR	天津市福晨化学试剂厂
HONH ₃ Cl	AR	X
$C_12H_8N_2H_2O$	AR	X
N_2	LP	X
	X Na_2S $NaBH$ $FeSO_4 \cdot 7H_2O$ HCl $NaOH$ $HONH_3Cl$ $C_12H_8N_2H_2O$	$\begin{array}{ccc} X & AR \\ Na_2S & AR \\ NaBH & AR \\ FeSO_4 \cdot 7H_2O & AR \\ HCl & AR \\ HCl & AR \\ NaOH & AR \\ HONH_3Cl & AR \\ C_12H_8N_2H_2O & AR \\ \end{array}$

2.2 主要试验仪器

试验过程中主要使用到的仪器和设备见表 2-2

2.3 实验装置

2.4 分析方法

2.4.1 海藻酸钠改性硫化型纳米铁的制备

用于制备 SA-S-NZVI 的海藻酸钠和硫化钠购自天津市福晨化学试剂厂。超纯水 (SIM-T30UV, 北京飞翔赛思科技有限公司) 在反应前通过氮气 (北京顺驰东环干冰经营中心) 进行脱氧。实验的所有试剂均为分析纯, 所有溶液和稀释液均在超纯水中制备。

采用表面腐蚀法制备 $S-nZVI,S^{2-}$ 水解产生 HS^{-} 和 H_2S 对 nZVI 具有腐蚀

表 2-2 主要实验试剂

Tab. 2-2 Main experimental reagents

仪器名称	规格型号	生产厂家
精密定时电动搅拌器	JJ-1	北京市中兴伟业仪器有限公司
超声波细胞粉碎机	BILON-650Y	上海比朗仪器制造有限公司
冷冻干燥机	FD-1A-50	上海比朗仪器制造有限公司
流量型蠕动泵	BT100-1L	保定兰格恒流泵有限公司
紫外可见分光光度计	2082S UV/VIS	上海尤尼柯仪器有限公司
电子天平	JA2003	上海恒平科学仪器有限公司
Zeta 电位及粒度分析仪	90Plus Zeta	美国布鲁克海文仪器公司
真空干燥箱	DZ-2AII	天津市泰斯特仪器有限公司

作用, 生成的 Fe^{2+} 与 S^{2-} 结合, 在 nZVI 表面生成 $FeS^{[34]}$ 。使用液相还原法制备 $NZVI^{[??]}$, 将 2.48 g $FeSO_4 \cdot 7H_2O$ 溶解于 350 ml 超纯水中。取 0.68 g $NaBH_4$ 溶于 150 ml 超纯水后逐滴加入到上述溶液中。同时用电动搅拌机 (JJ-1, 北京市中兴伟业仪器有限公司) 以 600 r· min^{-1} 的转速搅拌,反应完成后继续搅拌 15 min,反应式如式 (2-1)。将混合液过滤,收集的固体颗粒用去离子水冲洗 2 次,无水乙醇冲洗 1 次,将其干燥后密封置于冰箱中保存。配置 1 g/L 的 NZVI 悬浊液,超声 10 min,向其中加入 0.32 g Na_2S ,使用电动搅拌机搅拌 2 h,获得 S/Fe 比 (摩尔比) 为 0.15 的 S-nZVI。其反应式如式 (2-4) 所示 [35]。

$$Fe^{2+} + 2BH_4^- + 4H_2O \rightarrow 2Fe^0(s) + B(OH)_4^- + 4H^+ + 2H_2(g)$$
 (2-1)

$$Na_2S + H_2O \rightarrow 2Na^+ + HS^- + OH^-$$
 (2-2)

$$Fe^{2+} + 2HS^{-} \rightarrow FeS(s) + H_2S$$
 (2-3)

$$S^{2-} + Fe^{2+} \to FeS(s)$$
 (2-4)

将 0.5 g 的 S-NZVI 颗粒分别分散在不同浓度的海藻酸钠的水溶液中 (0.0、0.1、0.2、0.3 wt%), 超声处理 30 min。然后 27500 rpm 转速离心 80 min, 倒去上清液, 用超纯水清洗数次后干燥备用。样品依次记为 S-NZVI,0.1%SA-S-NZVI,0.2%SA-S-NZVI 和 0.3%SA-S-NZVI。

2.4.2 材料的表征

将 S-NZVI 悬浮于 0.1 mM 的 NaCl 溶液中, 使用 NaOH 或 HCl 调整溶液 pH, 使用超声细胞粉碎机中超声 30 min。使用 Zeta 电位及粒度分析仪 (90Plus Zeta, Brookhaven Instruments Corporation) 测定不同 pH 在 3 到 10 范围内 S-NZVI 的电泳迁移率 (u_e)。S-NZVI 的 ζ 电位由 Smoluchowski 方程计算: $\zeta = \eta u_e/\varepsilon$ 。其中 η 为水粘度, ε 为水的介电常数。将??制备完成的 4 种样品分别悬浮于不同离子强度的 NaCl 溶液中 (5.0,10.0,20.0,40.0,60.0,80.0 mM), 调节溶液 pH 为 8, 测定样品的电泳迁移率。

使用 0.1 mM NaCl 溶液将??制备完成的 4 种样品配置成 1.0 g/L 的悬浮液,调整溶液 pH=8 放入石英比色皿,使用紫外分光光度计 (2082S UV/VIS,Unico Instrument Corporation) 在 508 nm 波长下测定不同时刻对铁的吸光度,扫描时间 4000 s,扫描间隔 30 s。

利用 Zeta 电位及粒度分析仪 (90Plus Zeta, Brookhaven Instruments Corporation) 的动态光散射 (DLS) 模块测定 SA-S-NZVI 纳米颗粒的颗粒尺寸 (a_h) 。将上述样品配置成 0.015 g/L 的悬浮液, 使用 NaOH 或 HCl 调整溶液 pH=8, 于氮气气氛超声 30 min 后立即测量。散射光由光电探测器以 90° 散射角检测, 每次检测 60 s。根据瑞利近似, 散射光强度与粒径的六次方正相关, 因此强度分布对粒径特别敏感, 不适用与宽分布样品 (图 S1)。为了有效确定团聚颗粒的粒径分布, 对比了DLS 的强度平均 (by intensity) 数据和数量平均 (by number) 数据。本文选择使用水力粒径的数量平均值以表征颗粒的尺寸分布。

2.4.3 附着效率计算

通过计算初始团聚速率常数 k 和附着效率 (α) 来表征 SA-nZVI 的团聚动力学。团聚行为刚开始时, 水力半径 a_h 与时间 t 呈线性关系。因此, 初始团聚速率常数 (k) 可以通过对 $a_h(t)$ 随 t 的变化量进行线性最小二乘回归分析得到。该回归分析通常在从 t=0 到 $a_h(t)$ 的值达到 1.25a(0) 的时间范围内进行 [36]。由式 (2-5) 计算不同离子强度下颗粒的初始团聚速率 [37]:

$$k \propto \frac{1}{N_0} \left(\frac{\mathrm{d}a_\mathrm{h}(t)}{\mathrm{d}t} \right)_{t \to 0}$$
 (2-5)

其中, N_0 为纳米颗粒悬浊液的初始浓度。附着效率 α_{pp} 反映了颗粒之间发生有效碰撞的几率。它被定义为反应受限团聚 (并非所有的碰撞都是有效的, 团聚的发生需要颗粒的能量超过反应势垒, 因此碰撞效率 ($\alpha_{pp} < 1$) 与扩散受限团聚

(聚集的发生由布朗运动引起, 只要颗粒发生接触, 就会形成更大的团簇, 即碰撞效率 ($\alpha_{pp} = 1$)。导出的团聚速率之比^[38]:

$$\alpha_{\rm pp} = \frac{k}{k_{\rm fast}} = \frac{\frac{1}{N_0} \left(\frac{\mathrm{d}a_{\rm h}(t)}{\mathrm{d}t}\right)_{t \to 0}}{\frac{1}{N_{0,\rm fast}} \left(\frac{\mathrm{d}a_{\rm h}(t)}{\mathrm{d}t}\right)_{t \to 0,\rm fast}}$$
(2-6)

其中,下标"fast"指扩散受限团聚。 k_{fast} 取扩散限制团聚阶段下 k的平均值。

2.5 理论和模型计算

2.5.1 聚电解层厚度计算

由于溶液中的阴阳离子和电荷可以透过包覆型 S-NZVI 表面, 分布在吸附层内部, 因此测量电泳迁移率结合 Ohshima 的软粒子理论来确定聚电解质吸附层的特性。Ohshima 认为, 软粒子周围的电势由吸附层内厚度为 d 的 Donnan 电势 (ψ_{DON}) 和吸附层与溶液边界的表面电势 (ψ_0) 组成^[39-41](??)。结合 Navier-Stokes 方程计算吸附层的摩擦力, 软粒子的电泳迁移率的表达式为^[42]:

$$\psi_{\text{DON}} = \frac{k_B T}{z e_0} \ln\left[\frac{ZN}{2zn} + \left\{ \left(\frac{ZN}{2zn}\right)^2 + 1 \right\}^{1/2} \right]$$
 (2-7)

$$\psi_0 = \psi_{\text{DON}} - \frac{k_B T}{z e_0} \tanh \frac{z e_0 \psi_{\text{DON}}}{2k_B T} + \frac{4k_B T}{z e_0} \cdot e^{-\kappa_m d} \cdot \tanh \frac{z e_0 \zeta}{4k_B T}$$
(2-8)

$$\kappa = \sqrt{\frac{2nz^2e_0^2}{\varepsilon k_B T}} \tag{2-9}$$

$$\kappa_{\rm m} = \kappa \sqrt{\cosh(\frac{ze_0\psi_{\rm DON}}{k_BT})}$$
 (2-10)

$$u_{e} = \frac{\varepsilon}{\eta} \cdot \frac{\psi_{0}/\kappa_{m} + \psi_{DON}/\lambda}{1/\kappa_{m} + 1/\lambda} \cdot \frac{2}{3} \cdot \left[1 + \frac{1}{2(1 + d/a)^{3}}\right]$$

$$+ \frac{Ze_{0}N}{\eta\lambda^{2}} + \frac{8\varepsilon k_{B}T}{\eta\lambda ze_{0}} \cdot \tanh \frac{ze_{0}\zeta}{4k_{B}T} \cdot \frac{e^{-\lambda d}/\lambda - e^{-\kappa_{m}d}/\kappa_{m}}{1/\lambda^{2} - 1/\kappa_{m}^{2}}$$

$$(2-11)$$

其中,Z 为聚电解质电离基团的价态; $N(m^{-3})$ 为包覆层中聚电解质的浓度;z 为水相中电解质的价态 (本文中使用 NaCl,z 取 1); n 为电解质的浓度; e_0 为电子电荷; k_B 为玻尔兹曼常数; κ_m 为有效德拜常数; a、d 分别为颗粒粒径和包覆层厚度; ζ 为裸 S-NZVI 的 ζ 电位; $1/\lambda$ 为参数, 其大小代表聚电解质层的软度, 当 $1/\lambda \to 0$ 时,包覆层为刚性,此时式 (2-11) 等价于 Smoluchowski 方程。测定不同离子强度下裸 S-NZVI 和包覆型 S-NZVI 的电泳迁移率用于拟合式 (2-7), (2-8) and (2-11) 得到 N、 λ 和 d。

图 2-1 软粒子表面的电势示意图

Fig. 2-1 Schematic diagram of the electric potential on the surface of a soft particle

2.5.2 碰撞频率的计算

碰撞频率函数反映的是颗粒在分散体系中单位时间碰撞的次数。水环境中,粒子碰撞的机制主要为三种: 布朗运动、流体剪切和差速沉降 $^{[43]}$ 。采用 Coalesced Fractal Sphere(CFS)模型 $^{[44]}$:(1) 所有的絮凝体由单一类型的初级颗粒组成, 这些初级颗粒是致密的球体。(2) 所有絮凝体都具有固定的分形维数, 且不受絮凝体粒径的影响。(3) 当两个絮凝体碰撞并结合时, 新形成的絮凝体具有与碰撞前絮凝体相同的分形维数, 新絮凝体的固体体积是碰撞前絮凝体的固体体积之和。布朗运动、流体剪切和差速沉降三种碰撞频率函数 β_{BR} 、 β_{SH} 、 β_{DS} 按下式计算 $^{[44]}$:

$$\beta_{BR}(v_i, v_j) = \frac{2kT}{3\mu} (v_i^{1/D_F} + v_j^{1/D_F}) (v_i^{-1/D_F} + v_j^{-1/D_F})$$
 (2-12)

$$\beta_{SH}(v_i, v_j) = \frac{G}{\pi} v_0^{1-3/D_F} \left(v_i^{1/D_F} + v_j^{1/D_F} \right)^3$$
 (2-13)

当 D_F ∈ [2,3] 时

$$\beta_{DS}(v_i, v_j) = \frac{g}{12\mu} \left(\frac{\pi}{6}\right)^{-1/3} \left[(\rho_0 - \rho_w)/\rho_w \right] v_0^{1/3 - 1/D_F}$$

$$\times \left(v_i^{1/D_F} + v_j^{1/D_F} \right)^2 \left| v_i^{(D_F - 1)/D_F} - v_j^{(D_F - 1)/D_F} \right|$$
(2-14)

当 D_F ∈ [0,2] 时

$$\beta_{DS}(v_i, v_j) = \frac{g}{12\mu} \left(\frac{\pi}{6}\right)^{-1/3} \left[(\rho_0 - \rho_w)/\rho_w \right] v_0^{4/3 - 3/D_F}$$

$$\times \left(v_i^{1/D_F} + v_j^{1/D_F} \right)^2 \left| v_i^{1/D_F} - v_j^{1/D_F} \right|$$
(2-15)

式中 v_0 为颗粒体积, v_i 和 v_j 分别为不同絮凝体的固体体积, ρ_0 为单体密度, ρ_w 为水密度, D_F 为分形维数。

2.5.3 团聚动力学模型

Von Smoluchowski 在 1917 年提出了团聚动力学方程^[45], 在胶体化学的范畴内, 在忽略重力、无絮体分裂、无介质流动、絮体沿直线相互碰撞等假设的简化条件下, 在数学上反映团聚过程中不同粒径颗粒的团聚过程^[45]:

$$\frac{\mathrm{d}n_k}{\mathrm{d}t} = \frac{1}{2}\alpha_{\mathrm{pp}} \sum_{i+i=k} \beta(i,j)n_i n_j - \alpha_{\mathrm{pp}} n_k \sum_{i=1}^{z} \beta(i,k)n_i$$
 (2-16)

式中, 右下角标代表形成对应阶数聚集体消耗的初级颗粒数量, 对应 n_i 、 n_j 、 n_k 分别为对应阶数的聚集体浓度 (m^{-3}); z 为其中构成最大絮凝体消耗的初级颗粒数量 $(i,j,k \leq z)$; α_{pp} 表示碰撞效率由式 (2-6) 计算; β 是与两个碰撞颗粒体积相关的函数由式 (2-12) to (2-14) 计算。方程右侧的第一项表示 i 阶团聚体和 j 阶团聚体碰撞形成阶数为 k 的团聚体的速率,第二项表示 k 阶团聚体与其他团聚体碰撞后损失的速率。第一项前的 1/2 确保了在求和过程中,相同的碰撞不会被计算两次。方程定义了 k 阶团聚体浓度的变化速率。

第3章 改性硫化型纳米零价铁的稳定性研究

3.1 pH 对不同包覆比的 S-NZVI 稳定性的影响

如图 3-1所示,未包覆的 S-NZVI 在酸性条件下时 ζ 电位为正,碱性条件下为负,等电点在 pH=7.0 附近,此时颗粒表面静电力变小,排斥力减弱。由于通常地下水的 pH 范围在 6.5 到 8.5 之间 [46],因此该环境下未包覆的 S-NZVI 胶体团聚速率快,更易脱稳沉降,与相关研究结果相符。为模拟地下水环境,调节 pH=8,因此本研究中的硫化纳米铁表面带负电。

Figure 3-1 不同 pH 裸 S-NZVI 的 ζ 电位 Zeta potential of bare S-NZVI as a function of pH

3.2 不同包覆比下 S-NZVI 的稳定性

纳米颗粒在水中同时受到扩散和重力沉降作用,如果纳米粒子的扩散克服了沉降作用,那么纳米粒子可以保持很长时间的稳定。其中重力作用与粒子半径的平方成正比,扩散作用与粒子尺寸成反比,当纳米粒子聚集成微米大小的团簇时,由于扩散作用小于沉降作用,团聚体会沉降到容器的底部。所以沉降速率是表征 S-NZVI 胶体稳定性的良好指标。

如图 3-2所示,未包覆的 S-NZVI 的沉降可分为两个阶段:在 S1 阶段,样品中存在大量超过临界尺寸的颗粒,因此快速沉降。在 t_0 时刻,多数大颗粒沉降完成,沉降速率降低,样品进入 S2 缓慢沉降阶段,逐渐趋于稳定。

海藻酸钠包覆 S-NZVI 的沉降模式与未包覆材料相同,均由 S1、S2 两个阶

Figure 3-2 不同包覆比和裸 S-NZVI 的沉降曲线 Sedimentation curves of bare and modified S-NZVI

段组成,但由于聚电解质层的存在,包覆硫化钠米铁的沉降速率与海藻酸钠浓度 负相关。海藻酸钠浓度越大,S1阶段的沉降速率越小,S2阶段保持悬浮的颗粒 数量越多,体系的稳定性越好。

由于 S-NZVI 粒径分布较宽,为进一步了解颗粒团聚情况,取新鲜配置的样品稳定沉降 3 h 后,取上层悬浊液测定粒径分布情况。如图 3-3所示,3 h 沉降后体系中 S-NZVI 主要以 20nm 粒径稳定存在。这表明包覆改性并不足以防止大粒径的 S-NZVI 颗粒聚集,但可以减缓聚集速率。

3.3 离子强度对 SA-S-NZVI 稳定性的影响

金属氧化物纳米颗粒在水溶液中的稳定性在很大程度上取决于离子强度。为了研究离子强度对 SA-S-NZVI 在溶液中的稳定性 (pH=8 ± 0.1),制备不同包覆比 (0、0.1、0.2、0.3wt%) 的 SA-S-NZVI,采用 NaCl 调节离子强度 (0.00~100 mM NaCl)。颗粒之间的附着效率由式 (2-6) 计算,其中 $k_{\rm fast}$ 取扩散限制团聚阶段下 k 的平均值。

实验结果如图 3-4所示,不同包覆比的 SA-S-NZVI 与裸 S-NZVI 随着离子强度的增加,在低浓度 NaCl 下,NaCl 浓度的增加将提高电荷屏蔽的程度,从而提高团聚速率,这反映在附着效率的提高上。该过程中,附着效率与 NaCl 的投加量正相关,这种团聚过程称为反应限制团聚 ($\alpha < 1$)。在高 NaCl 浓度下,SA-NZVI 的电荷被完全屏蔽,势垒消失,该过程中颗粒发生扩散限制团聚 ($\alpha = 1$),团聚速率达到最大值,且与 NaCl 投加量无关。NaCl 对不同包覆比 S-NZVI 的临界浓度均在 $0.05\sim0.06$ mM 附近。

图 3-3 SA-S-NZVI 沉降 3 h 后的悬浮颗粒尺寸

Fig. 3-3 Particle size for suspensions of SA-S-NZVI sedimented for 3 h

图 3-4 不同离子强度下包覆型 S-NZVI 的附着效率

Fig. 3-4 Influence of iron strength on aggreation behaviors of modified S-NZVI

3.4 聚电解质包覆层的特性

颗粒间空间斥力的大小和作用范围与表面吸附的聚合物浓度和包覆层厚度有关。不同包覆比的 S-NZVI 的电泳迁移率随离子强度的变化如图 3-5所示,其中曲线由测量的平均电泳迁移率式 (2-7), (2-8) and (2-11) 拟合得到,各参数见表 3-1。

由于包覆层的存在,SA-S-NZVI 周围的扩散层被压缩,其电泳迁移率随离子强度的变化较未包覆 S-NZVI 小。随着离子强度不断提高,未包覆 S-NZVI 的电泳迁移率逐渐趋于零,而不同包覆比的 SA-S-NZVI(0.1%wt,0.2%wt,0.3%wt) 受包覆层特性影响分别趋于-2.8,-2.2 和-2.3 μ m s⁻¹ cm V⁻¹。

由于软粒子对滑移面位置不敏感^[47],Smoluchoski 公式以硬粒子为基础并不适用于包覆型 S-NZVI。根据 Ohshima 的软粒子理论计算的包覆型 S-NZVI 的表面电荷 ψ_0 远小于由 Smoluchoski 公式计算的 ζ 电位。因此,软粒子并不适用于传统 DLVO 理论的双电层公式计算静电斥力。

包覆层中聚电解质的体积分数是影响颗粒稳定性的重要因素。根据计算的颗粒平均包覆层厚度和吸附浓度估算吸附到 NZVI 表面聚电解质的体积分数:

$$\phi_{p} = \frac{\Gamma \cdot 4\pi a^{2}}{\rho_{p} \cdot \frac{4}{3}\pi [(d+a)^{3} - a^{3}]}$$

$$= \frac{3 \cdot \Gamma a^{2}}{\rho_{p} [(d+a)^{3} - a^{3}]}$$
(3-1)

其中, ρ_p 是聚电解质密度; d 为包覆层厚度; a 为颗粒粒径; Γ 为 S-NZVI

图 3-5 不同 NaCl 浓度下包覆型 S-NZVI 的电泳迁移率

by Ohshima's soft particle analysis

Fig. 3-5 Electiophoretic mobility of the sodium alginate coated S-NZVI as a function of NaCl (mM)

表 3-1 利用 Ohshima 软粒子理论计算 pH 值为 8.0±0.1 时吸附聚电解质层的特性 Tab. 3-1 Characteristics of the adsorbed polyelectrolyte layers at pH 8.0±0.1 as estimated

样品类型	ZN/N_A	d	$1/\lambda$	ϕ_p
	(mol/m^3)	(nm)	(nm)	(10^{-3})
0.1%SA	3.28±1.08	7.97±4.11	6.63±0.58	113
0.2%SA	1.47±1.25	10.94±4.68	8.51±1.06	80
0.3%SA	1.50±1.39	16.62±4.58	9.57±1.97	54

表面聚电解质的吸附浓度,制备样品吸附后通过差量法利用总有机碳分析仪测量 TOC 计算。

3.5 本章小结

结论与展望

还

结论

没

展望

编

参考文献

- [1] HAORAN D, IRENE M C L. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid.[J/OL]. Water research, 2013, 47(7). DOI: 10.1016/j.watres.2013.02.022.
- [2] ZHANG W X. Nanoscale iron particles for environmental remediation: An overview[J]. Journal of Nanoparticle Research, 2003, 5(3-4): 323-332.
- [3] MAURYA S K, SARKAR S, MONDAL H K, et al. Electrophoresis of soft particles with hydrophobic inner core grafted with ph-regulated and highly charged polyelectrolyte layer [J/OL]. ELECTROPHORESIS, n/a(n/a). https://analyticalsciencejournals.onlinelibrary.wile y.com/doi/abs/10.1002/elps.202100147. DOI: https://doi.org/10.1002/elps.202100147.
- [4] REN Y, LEE Y, CUI M, et al. Evaluation of self-oxidation and selectivity of iron-based reductant in anaerobic pentachlorophenol contaminated soil[J/OL]. Journal of Hazardous Materials, 2022, 424: 127322. https://www.sciencedirect.com/science/article/pii/S0304389 421022901. DOI: https://doi.org/10.1016/j.jhazmat.2021.127322.
- [5] LI J H, YANG L X, LI J Q, et al. Anchoring nzvi on metal-organic framework for removal of uranium() from aqueous solution[J/OL]. Journal of Solid State Chemistry, 2019, 269: 16-23. https://www.sciencedirect.com/science/article/pii/S0022459618303980. DOI: https://doi.org/10.1016/j.jssc.2018.09.013.
- [6] BUSCH J, MEISSNER T, POTTHOFF A, et al. Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nzvi) in a column experiment and a laboratory 2d-aquifer test system[J/OL]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2014, 21(18): 10908-10916. DOI: 10.1007/s11356-014-3049-7.
- [7] ERSENKAL D A, ZIYLAN A, INCE N H, et al. Impact of dilution on the transport of poly(acrylic acid) supported magnetite nanoparticles in porous media[J/OL]. JOURNAL OF CONTAMINANT HYDROLOGY, 2011, 126(3-4): 248-257. DOI: 10.1016/j.jconhyd.2011.0 9.005.
- [8] HUANG J F, LI Y T, WU J H, et al. Facile preparation of amorphous iron nanoparticles filled alginate matrix composites with high stability[J/OL]. Composites Science and Technology, 2016, 134: 168-174. https://www.sciencedirect.com/science/article/pii/S0266353816310235. DOI: https://doi.org/10.1016/j.compscitech.2016.08.018.
- [9] MOHAN B, SUBHASIS G, NATHALIE T. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron

- nanoparticles in saturated porous media.[J/OL]. Environmental science & technology, 2013, 47(23). DOI: 10.1021/es402619v.
- [10] PASINSZKI T, KREBSZ M. Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects[J/OL]. Nanomaterials (Basel, Switzerland), 2020, 10(5): 917. DOI: 10.3390/nano10050917.
- [11] GOULD J P. The kinetics of hexavalent chromium reduction by metallic iron[J/OL]. Water Research, 1982, 16(6): 871-877. DOI: https://doi.org/10.1016/0043-1354(82)90016-1.
- [12] WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of tce and pcbs[J]. Environmental Science & Technology, 1997, 31(7): 9602-9607.
- [13] ZHANG W X, WANG C B, LIEN H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles[J]. Catalysis Today, 1998, 40(4): 387-395.
- [14] HE F, LI Z, SHI S, et al. Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron[J/OL]. Environmental Science & Technology, 2018, 52(15): 8627-8637. https://doi.org/10.1021/acs.est.8b01735.
- [15] HAN Y, YAN W. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: Reactivity enhancement through sulfidation treatment[J/OL]. Environmental Science & Technology, 2016, 50(23): 12992-13001. https://doi.org/10.1021/acs.est.6b03997.
- [16] 汤晶,汤琳,冯浩朋,等. 硫化纳米零价铁去除水体污染物的研究进展[J]. 化学学报, 2017, 75(06): 575-582.
- [17] KIM E J, KIM J H, CHANG Y S, et al. Effects of metal ions on the reactivity and corrosion electrochemistry of fe/fes nanoparticles[J/OL]. Environmental Science & Technology, 2014, 48(7): 4002-4011. DOI: 10.1021/es405622d.
- [18] 张永祥, 马晓敏. 纳米零价铁去除水中六价铬的研究[J]. 应用化工, 2018, 47: 1569-1573.
- [19] ZHOU L, THANH T L, GONG J, et al. Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron[J/OL]. Chemosphere, 2014, 104: 155-161. https://www.sciencedirect.com/science/article/pii/S0045653513015452. DOI: https://doi.org/10.1016/j.chemosphere.2013.10.085.
- [20] ZHANG W, SCHWAB A P, WHITE J C, et al. Impact of nanoparticle surface properties on the attachment of cerium oxide nanoparticles to sand and kaolin[J]. Journal of Environmental Quality, 2018, 47(1): 129.
- [21] PIACENZA E, PRESENTATO A, TURNER R J. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures[J/OL]. Critical Reviews in Biotechnology, 2018, 38(8): 1137-1156. https://doi.org/10.1080/07388551.2018. 1440525.

- [22] 张永祥, 常杉, 李飞, 等. 稳定型纳米零价铁去除地下水中 2,4-二氯苯酚[J]. 环境科学, 2017, 38(06): 2385-2392.
- [23] QUINN J, GEIGER C, CLAUSEN C, et al. Field demonstration of dnapl dehalogenation using emulsified zero-valent iron[J]. Environmental Science & Technology, 2005, 39(5): 1309-18.
- [24] 张永祥, 王由好, 段智隆, 等. 改性沸石承载纳米 Fe/Ni 对水中 2,4-二氯苯酚的去除[J]. 环境工程学报, 2017, 11: 1341-1346.
- [25] 王由好, 张永祥, 段智隆, 等. 改性沸石负载纳米铁/镍去除地下水中 2,4-二氯苯酚的渗透 反应格栅研究[J]. 应用化工, 2016, 45(09): 1606-1610.
- [26] ELLIOTT D, LIEN H L, ZHANG W X. Nanoscale zero-valent iron (nzvi) for site remediation [M]//2007: 25-48.
- [27] EPA U S. Nanotechnology for site remediation fact sheet[J]. 2008.
- [28] BARDOS P, BONE B, DALY P, et al. A risk/benefit appraisal for the application of nano-scale zero valent iron (nzvi) for the remediation of contaminated sites[J]. 2014.
- [29] HENN K W, DAN W W. Utilization of nanoscale zerovalent iron for source remediation—a case study[J]. Remediation Journal, 2010, 16(2): 57-77.
- [30] DING Y, BO L, XIN S, et al. Foam-assisted delivery of nanoscale zero valent iron in porous media[J]. Journal of Environmental Engineering, 2013.
- [31] HE F, ZHAO D, PAUL C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.[J]. Water Research, 2010, 44(7): 2360-2370.
- [32] SU C, PULS R W, KRUG T A, et al. Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years[J]. Water Research, 2013, 47(12): 4095-4106.
- [33] GARCIA A N, BOPARAI H K, DE BOER C V, et al. Fate and transport of sulfidated nano zerovalent iron (s-nzvi): A field study[J/OL]. WATER RESEARCH, 2020, 170(115319). DOI: 10.1016/j.watres.2019.115319.
- [34] FAN D, JOHNSON G O, TRATNYEK P G, et al. Sulfidation of nano zerovalent iron (nzvi) for improved selectivity during in-situ chemical reduction (iscr)[J/OL]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50(17): 9558-9565. DOI: 10.1021/acs.est.6b02170.
- [35] RAJAJAYAVEL S R C, GHOSHAL S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron[J/OL]. WATER RESEARCH, 2015, 78: 144-153. DOI: 10.1016/j.watres.2015.04.009.
- [36] CHEN K L, ELIMELECH M. Influence of humic acid on the aggregation kinetics of fullerene (c60) nanoparticles in monovalent and divalent electrolyte solutions[J/OL]. Journal of Colloid and Interface Science, 2007, 309(1): 126-134. DOI: 10.1016/j.jcis.2007.01.074.

- [37] CHEN K L, MYLON S E, ELIMELECH M. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes[J/OL]. Environmental Science & Technology, 2006, 40(5): 1516-1523. DOI: 10.1021/es0518068.
- [38] CHEN K L, ELIMELECH M. Aggregation and deposition kinetics of fullerene (c60) nanoparticles [J/OL]. Langmuir, 2006, 22(26): 10994-11001. https://doi.org/10.1021/la062072v.
- [39] Chapter 14 general expressions for the force and potential energy of the double layer interaction between two charged colloidal particles and analytic approximations for the interaction between two parallel plates[M/OL]//OHSHIMA H. Interface Science and Technology: volume 12 Theory of Colloid and Interfacial Electric Phenomena. Elsevier, 2006: 315-363. https://www.sciencedirect.com/science/article/pii/S1573428506800372. DOI: https://doi.org/10.1 016/S1573-4285(06)80037-2.
- [40] OHSHIMA H. Electrostatic interaction of soft particles[J/OL]. Advances in Colloid and Interface Science, 2015, 226: 2-16. https://www.sciencedirect.com/science/article/pii/S00018 68615000743. DOI: https://doi.org/10.1016/j.cis.2015.05.001.
- [41] OHSHIMA H. Electrophoresis of soft particles[J/OL]. Advances in Colloid and Interface Science, 1995, 62: 189-235. DOI: 10.1016/0001-8686(95)00279-Y.
- [42] OHSHIMA H, NAKAMURA M, KONDO T. Electrophoretic mobility of colloidal particles coated with a layer of adsorbed polymers[J]. Colloid & Polymer Science, 1992, 270(9): 873-877.
- [43] THOMAS D N, JUDD S J, FAWCETT N. Flocculation modelling: a review[J]. Water Research, 1999, 33(7): 1579-1592.
- [44] LEE D G, BONNER J S, GARTON L S, et al. Modeling coagulation kinetics incorporating fractal theories: a fractal rectilinear approach[J/OL]. Water research (Oxford), 2000, 34(7): 1987-2000. DOI: 10.1016/S0043-1354(99)00354-1.
- [45] SMOLUCHOWSKI M. Versuch einer mathematischen theorie der koagulations kinetis kolloider losungen[J]. Z Phys Chem, 1917, 92.
- [46] 中国国家标准化管理委员会中华人民共和国国家质量监督检验检疫总局. 地下水质量标准[Z]. 2017: 19.
- [47] OHSHIMA H, NAKAMURA M, KONDO T. Electrophoretic mobility of colloidal particles coated with a layer of adsorbed polymers[J]. Colloid & Polymer Science, 1992, 270(9): 873-877.

攻读硕士学位期间所发表的学术论文

内容...

致谢