Тема 5. Сортировка

5.3. Обменная сортировка

Обменная сортировка некоторым систематическим образом меняет местами пары имен, не отвечающие порядку до тех пор, пока такие пары существуют. Рассмотрим два алгоритма обменных сортировок.

5.3.1. Пузырьковая сортировка

Пузырьковая сортировка (алгоритм 5.3) основана на просмотре пар смежных имен последовательно слева направо и перемене мест тех имен, которые не отвечают порядку. Переменная b используется для предотвращения избыточного просмотра имен в правой части таблицы, про которые известно, что они находятся на своих окончательных позициях. В начале цикла **while** значение переменной b равно наибольшему индексу t, такому, что про имя x_t еще не известно, стоит ли оно на окончательной позиции. Процесс работы алгоритма и изменения значений элементов вектора инверсий после каждого прохода для таблицы из n = 8 имен представлены на рис. 5.4.

$$b \leftarrow n$$

while
$$b \neq 0$$
 do
$$\begin{cases} t \leftarrow 0 \\ \text{for } j \leftarrow 1 \text{ to } b - 1 \text{ do} \end{cases}$$

$$\text{if } x_j > x_{j+1} \text{ then} \begin{cases} x_j \leftrightarrow x_{j+1} \\ t \leftarrow j \end{cases}$$

Алгоритм 5.3. Пузырьковая сортировка

Проход
$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8

1 07 27 42 14 10 25 17 54 0 0 0 2 3 2 3 0

2 07 27 14 10 25 17 42 54 0 0 1 2 1 2 0 0

3 07 14 10 25 17 27 42 54 0 0 1 0 1 0 0 0

4 07 10 14 17 25 27 42 54 0 0 0 0 0 0 0 0 0

5 07 10 14 17 25 27 42 54 0 0 0 0 0 0 0 0 0

Рис. 5.4. Процесс работы алгоритма пузырьковой сортировки

Эффективность рассматриваемого алгоритма зависит от трех факторов: числа проходов (числа выполнений тела цикла **while**), числа сравнений $\langle x_j \rangle x_{j+1} \rangle$ и числа обменов $\langle x_j \rangle x_{j+1} \rangle$.

Очевидно, что число обменов M(n) равно сумме элементов вектора инверсий. Поэтому

$$M_{\min}(n) = 0$$
 в лучшем случае,

$$M_{\text{ave}}(n) = \frac{1}{4}n(n-1) = O(n^2)$$
 в среднем,

$$M_{\max}(n) = \frac{1}{2}n(n-1) = O(n^2)$$
 в худшем случае.

При сравнительном анализе различных алгоритмов необходимо иметь в виду, что для многих языков программирования операция обмена отсутствует. В таких случаях операция обмена эквивалентна трем операциям пересылки (присваивания): $t \leftarrow x_i, x_i \leftarrow x_{i+1}$ и $x_{i+1} \leftarrow t$.

Анализ изменений вектора инверсий в процессе пузырьковой сортировки показывает, что каждый проход (исключая последний) уменьшает на единицу каждый ненулевой элемент вектора инверсий и сдвигает вектор на одну позицию влево. Таким образом, число проходов A(n) равно наибольшему элементу вектора инверсий плюс единица, т. е.

$$A(n) = 1 + \max(d_1, d_2, ..., d_n).$$

Следовательно, в лучшем случае имеется всего один проход, в худшем случае — n проходов. Для определения среднего числа проходов необходимо найти математическое ожидание $\sum_{k=1}^{n} k P_k$, где P_k — вероятность того, что потребуется ровно k проходов, т. е. вероятность того, что наибольшим элементом вектора инверсий является k-1. Число векторов инверсий, содержащих только такие элементы, значения которых меньше k ($1 \le k \le n$), равно $k^{n-k}k$!. Тогда число векторов инверсий с наибольшим элементом, равным k-1, будет равно $k^{n-k}k!-(k-1)^{n-k+1}(k-1)!$. Следовательно,

$$P_k = \frac{1}{n!} (k^{n-k} k! - (k-1)^{n-k+1} (k-1)!).$$

вероятность того, что потребуется ровно k проходов, равна

Теперь можно вычислить среднее значение

$$\sum_{k=1}^{n} k P_k = n + 1 - \sum_{k=1}^{n} \frac{k^{n-k} k!}{n!} = n + 1 - F(n),$$

где F(n) — функция, асимптотическое поведение которой описывается формулой $F(n) = \sqrt{\pi\,n/2} - 2/3 - O(1/\sqrt{n}) \; .$

Таким образом, общее число проходов цикла **while**, осуществляемых алгоритмом пузырьковой сортировки, составляет

 $A_{\min}(n) = 1$ в лучшем случае,

$$A_{\text{ave}}(n) = n - \sqrt{\pi n/2} + 5/3 + O(1/\sqrt{n}) = O(n)$$
 в среднем,

 $A_{\max}(n) = n$ в худшем случае.

Общее число сравнений C(n) исследовать несколько сложнее. Поэтому приведем только результаты анализа:

$$C_{\min}(n) = n-1 = O(n)$$
 в лучшем случае,
$$C_{\mathrm{ave}}(n) = \frac{1}{2}(n^2 - n \ln n) + O(n) = O(n^2) \;\; \mathrm{B} \; \mathrm{среднем},$$

$$C_{\max}(n) = \frac{1}{2}n(n-1) = O(n^2) \;\; \mathrm{B} \; \mathrm{худшем} \; \mathrm{случае}.$$

Проведенный анализ показывает, что алгоритм пузырьковой сортировки имеет асимптотическую временную сложность $O(n^2)$ в среднем и в худшем случаях. При этом наилучшим для алгоритма является случай, когда исходная таблица уже упорядочена, а наихудшим — когда имена в исходной таблице первоначально расположены в обратном порядке.

Усовершенствованием пузырьковой сортировки является так называемая *шей-кер-сортировка*, которая предполагает попеременные проходы в противоположных направлениях. Это позволяет несколько сократить число сравнений, но не число обменов. Как пузырьковая, так и шейкер-сортировка существенно уступают по эффективности простой сортировке вставками.

Другое усовершенствование основано на идее сортировки Шелла (сортировки с убывающим шагом), когда осуществляется обмен именами, расположенными не в соседних позициях, а на больших расстояниях друг от друга. Отличием от сортировки Шелла является то, что в качестве *h*-сортировки используется пузырьковая сортировка. Это позволяет улучшить асимптотические характеристики, но полученный алгоритм все равно будет существенно уступать по эффективности сортировке Шелла.

5.3.2. Быстрая сортировка

Как и в простой сортировке вставками, в пузырьковой сортировке основным источником неэффективности является то, что обмены дают слишком малый эффект, так как в каждый момент времени имена сдвигаются только на одну позицию. Такие алгоритмы всегда требуют порядка n^2 операций, как в среднем, так и в худшем случаях. В быстрой сортировке используется прием, приводящий к тому, что каждый обмен совершает больше работы.

Идея метода *быстрой сортировки* заключается в том, что в таблице выбирается одно из имен, которое используется для разделения таблицы на две подтаблицы, состоящие соответственно из имен меньших и больших выбранного. Разделение можно реализовать, одновременно просматривая таблицу слева направо и справа налево, меняя местами имена в неправильных частях таблицы. Имя, используемое для расщепления таблицы (*расщепляющее*, или *базовое*, имя), затем помещается между двумя подтаблицами. Полученные подтаблицы сортируются рекурсивно.

Рекурсивный алгоритм быстрой сортировки (алгоритм 5.4) сортирует таблицу $x_f, x_{f+1}, ..., x_l$, где x_f является базовым именем, используемым для разбиения таблицы на подтаблицы.

```
procedure QUICKSORT(f, l)
    // отсортировать x_f, x_{f+1}, ..., x_l
    if f > l then return
    // разделить таблицу
    i \leftarrow f + 1
    while x_i < x_f do i \leftarrow i + 1
    i \leftarrow l
    while x_j > x_f do j \leftarrow j-1
   \mathbf{while} \ \ i < j \ \ \mathbf{do} \begin{cases} /\!\!/ \ \mathbf{B} \ \ \mathbf{j} \mathbf{TOT} \ \ \mathbf{MOMEHT} \ \ i < j, \ x_i \geq x_f \geq x_j \\ x_i \leftrightarrow x_j \\ i \leftarrow i+1 \\ \mathbf{while} \ \ x_i < x_f \ \ \mathbf{do} \ \ i \leftarrow i+1 \\ j \leftarrow j-1 \\ \mathbf{while} \ \ x_j > x_f \ \ \mathbf{do} \ \ j \leftarrow j-1 \end{cases}
    x_f \leftrightarrow x_i
    // отсортировать подтаблицы рекурсивно
    QUICKSORT(f, i-1)
    QUICKSORT(j+1, l)
return
```

Алгоритм 5.4. Рекурсивный алгоритм быстрой сортировки

Алгоритм предполагает, что имя x_{l+1} определено и больше, чем x_f , x_{f+1} , ..., x_l , т. е. перед первым обращением к процедуре QUICKSORT(1,n) необходимо установить $x_{n+1} \leftarrow \infty$ в качестве сторожа. В начале цикла «**while** i < j» индексы i и j указывают соответственно на первое и последнее имена, о которых известно, что они находятся не в тех частях таблицы, в которых требуется. Когда i и j встречаются, т. е. когда $i \ge j$, все имена находятся в соответствующих частях таблицы, а имя x_f помещается между двумя частями, меняясь местами с x_j . Процесс разбиения алгоритмом 5.4 таблицы на две подтаблицы показан на рис. 5.5.

Рис. 5.5. Процесс разбиения таблицы на две подтаблицы

Определим общее число сравнений имен $(x_i < x_f)$ » и $(x_j > x_f)$ ». В конце цикла (x_f) все имена $x_{f+1}, x_{f+2}, ..., x_l$ сравнивались с x_f по одному разу, исключая имена x_s и x_{s+1} (где просмотры встретились), которые сравнивались с x_f дважды. Следовательно, для таблицы из n имен (n = l - f + 1) к моменту разделения на подтаблицы выполняется n + 1 = l - f + 2 сравнений. Поскольку разбиение таблицы производится только в случае, если f < l, для тривиальных таблиц (вырожденных, когда n = 0 при f > l, или состоящих из одного имени, когда n = 1 при f = l) число сравнений равно нулю.

Пусть $C_{ave}(n)$ — среднее число сравнений имен для сортировки таблицы из n разных имен в предположении, что все n! перестановок таблицы равновероятны. Для тривиальных таблиц $C_{ave}(0) = C_{ave}(1) = 0$. В общем случае имеем

$$C_{\text{ave}}(n) = n + 1 + \sum_{s=1}^{n} p_s (C_{\text{ave}}(s-1) + C_{\text{ave}}(n-s)), n \ge 2$$

Здесь p_s — вероятность того, что x_1 (расщепляющее имя) есть s-е наименьшее имя. Поскольку две подтаблицы, порожденные разбиением, случайны, т. е. все (s-1)! перестановок имен в левой подтаблице равновероятны и все (n-s)! перестановок имен в правой подтаблице равновероятны, $p_s = 1/n$. Таким образом,

$$C_{\text{ave}}(n) = n + 1 + \frac{1}{n} \sum_{s=1}^{n} (C_{\text{ave}}(s-1) + C_{\text{ave}}(n-s)), n \ge 2$$

Поскольку эта сумма равна

$$C_{\text{ave}}(0) + C_{\text{ave}}(n-1) + C_{\text{ave}}(1) + C_{\text{ave}}(n-2) + \dots + C_{\text{ave}}(n-2) + C_{\text{ave}}(1) + C_{\text{ave}}(n-1) + C_{\text{ave}}(0),$$

получаем

$$C_{\text{ave}}(n) = n + 1 + \frac{2}{n} \sum_{s=0}^{n-1} C_{\text{ave}}(s), n \ge 2.$$

Использование известных способов решения подобных рекуррентных соотношений (см. п. 1.4) дает

$$C_{\text{ave}}(n) = (\ln 4) n \log n + O(n) \approx 1.386 n \log n,$$

т. е. среднее число сравнений имен равно $O(n \log n)$.

Очевидно, что худшим для алгоритма быстрой сортировки является случай, когда каждый раз для разбиения таблицы берется наибольшее или наименьшее имя. Тогда на каждом этапе одна из подтаблиц будет вырожденной (n=0), а другая будет состоять из n-1 имен. Таким образом, если алгоритм применяется к уже отсортированным или отсортированным в обратном порядке таблицам, то производится

$$C_{\text{max}}(n) = (n+1) + n + (n-1) + \dots + 3 = \frac{1}{2}n^2 + \frac{3}{2}n - 2 = O(n^2)$$

сравнений имен.

Аналогичный (но более сложный) анализ показывает, что среднее число $M_{\text{ave}}(n)$ обменов $\langle x_i \leftrightarrow x_i \rangle$ и $\langle x_f \leftrightarrow x_i \rangle$

$$M_{\text{ave}}(n) = \frac{1}{6}n + \frac{2}{3} + \frac{2}{n} \sum_{s=0}^{n-1} M_{\text{ave}}(s) \approx 0.231 n \log n$$

т. е. среднее число обменов имен равно $O(n \log n)$. В худшем случае $M_{\max}(n) \le n \log n$, т. е. $M_{\max}(n) = O(n \log n)$.

Таким образом, рекурсивный алгоритм быстрой сортировки требует $O(n \log n)$ операций в среднем, но $O(n^2)$ операций в худшем случае. Кроме того, поскольку рекурсия используется для записи подтаблиц, рассматривающихся на более поздних этапах, в худших случаях (когда таблица уже отсортирована) глубина рекурсии может равняться n. Следовательно, для стека, реализующего рекурсию, необходима память, пропорциональная n. Для больших n такое требование становится неприемлемым.

Очевидно, что основным источником неэффективности быстрой сортировки является выбор расщепляющего имени. В алгоритме расщепляющим именем является первое имя таблицы (подтаблицы). Можно несколько улучшить быструю сортировку, если использовать для разделения таблицы случайно выбранное имя $x_{\text{rand}(f, l)}$. Для этого достаточно в алгоритм добавить операцию $x_f \leftrightarrow x_{\text{rand}(f, l)}$ непосредственно перед операцией $i \leftarrow f+1$. Дополнительное время для выбора случайного целого числа несущественно, а случайный выбор является вполне приемлемой защитой от наихудшей ситуации. Более сильным улучшением является использование для разделения таблицы медианы малой случайной выборки из k (обычно k нечетное) имен или даже медианы медиан. Медианой является среднее по величине имя в множестве из k случайным образом выбранных из исходной таблицы имен. Например, если k=3, то $C_{\text{ave}}(n) \approx 1,188 \, n \log n$.

Одним из наиболее эффективных алгоритмов внутренней сортировки является итерационный вариант быстрой сортировки (алгоритм 5.5), который свободен от некоторых недостатков рекурсивного алгоритма. В алгоритме стек S ведется явно; элементом стека является пара (f, l), показывающая, что нужно отсортировать имена $x_f, x_{f+1}, ..., x_l$. В стек помещается большая из двух подтаблиц и продолжается обработка меньшей подтаблицы. Это уменьшает глубину стека в худшем случае до $\lfloor \log{(n+1)/3} \rfloor$, $n \ge 2$, т. е. для организации стека необходима память, пропорциональная \log{n} .

Учитывая то, что для небольших таблиц длины меньше некоторого m среднее число сравнений имен в быстрой сортировке больше среднего числа сравнений, например, в простой сортировке вставками, для быстрой сортировки можно сделать значительное усовершенствование. Вместо того, чтобы использовать быструю сортировку для всех подтаблиц, можно применять ее только к подтаблицам длины не меньше m, а для подтаблиц длины меньше m воспользоваться простой сортировкой вставками.

```
f \leftarrow 1
x_{n+1} \leftarrow \infty
l \leftarrow n
                                                                                                                                                                                                                   \begin{cases} x_f \leftrightarrow x_{\text{rand}(f,\,l)} \\ i \leftarrow f + 1 \\ \text{while } x_i < x_f \text{ do } i \leftarrow i + 1 \end{cases}
                                                                                                                                                                                                    while x_i > x_f do j \leftarrow j-1

while i < j do \begin{cases} // \text{ имеет место } i < j, x_i \ge x_f \ge x_j \} \\ x_i \leftrightarrow x_j \\ i \leftarrow i+1 \\ \text{while } x_i < x_f \text{ do } i \leftarrow i+1 \\ j \leftarrow j-1 \\ \text{while } x_j > x_f \text{ do } j \leftarrow j-1 \end{cases}
                                                                                                                                                                                                                                                                                \begin{cases} j-1 \leq f \text{ and } l \leq j+1 \text{:} \begin{cases} /\!/ \text{ обе подтаблицы} \\ /\!/ \text{ тривиальны} \\ (f,l) \Leftarrow S \end{cases} \\ j-1 \leq f \text{ and } l > j+1 \text{:} \begin{cases} /\!/ \text{ правая подтаблица} \end{cases}
while f < l do
                                                                                                                                                                                                                                                                                           f \leftarrow j+1 f \leftarrow
                                                                                                                                                                                                                       case
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          // нетривиальны,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // поместить большую
                                                                                                                                                                                                                                                                                // в стек S
```

 $S \Leftarrow (0,0)$

Алгоритм 5.5. Итерационный алгоритм быстрой сортировки

Интересным аналогом быстрой сортировки является так называемая *цифровая* обменная сортировка. В этом методе сортировки используется двоичное представление имен. Разделение таблицы осуществляется на основании самого старшего разряда имен: если этот разряд равен единице, то имя пересылается в правую часть таблицы, если этот разряд равен нулю – в левую часть таблицы. На следующих этапах расщепления основываются на следующих разрядах имен и т. д. Таким образом, метод цифровой обменной сортировки позволяет исключить проблему выбора расщепляющего имени.