Graph Pebbling

Definitions:

- 1. A configuration C on a connected graph G is a function $C:V(G)\to\mathbb{N}$. The value C(v) signifies the number of pebbles at vertex v. The **size** of C is defined by $|C| = \sum_{v \in V(G)} C(v)$.
- 2. For an edge $\{u, v\} \in E(G)$, if u has at least two pebbles on it, then a **pebbling** step from u to v removes two pebbles from u and places one pebble on v. That is, if C is the original configuration, then the resulting configuration C' has C'(u) = C(u) 2, C'(v) = C(v) + 1, and C'(x) = C(x) for all $x \in V(G) \{u, v\}$.
- 3. We say that a configuration C on G is r-solvable if it is possible from C to place a pebble on r via pebbling steps; it is r-unsolvable otherwise. C is solvable if it is r-solvable for every vertex r.
- 4. For a connected graph G and a particular **root** vertex r, the **rooted pebbling** number $\pi(G,r)$ is defined to be the minimum number t so that every configuration G on G of size t is r-solvable. The **pebbling** number $\pi(G)$ equals $\max_r \pi(G,r)$.
- 5. A graph G is of **Class 0** if $\pi(G) = n(G)$.
- 6. A sequence of paths $\mathcal{P} = (P[1], \dots, P[h])$ is a **maximum** r-path partition of a rooted tree (T, r) if \mathcal{P} forms a partition of E(T), r is a leaf of P[1] and, for all $1 \leq i \leq h$, $T_i = \bigcup_{j=1}^i P[j]$ is a tree and P[i] is a maximum length path in $T T_{i-1}$ among all such paths with one endpoint in T_{i-1} .
- 7. For $m \geq 2t + 1$ the **Kneser** graph K(m,t) has as vertices all t-subsets of $\{1, 2, ..., m\}$ and edges between every pair of disjoint sets.
- 8. For two graphs G_1 and G_2 , define the **cartesian product** $G_1 \square G_2$ to be the graph with vertex set $V(G_1 \square G_2) = \{(v_1, v_2) \mid v_1 \in V(G_1), v_2 \in V(G_2)\}$ and edge set $E(G_1 \square G_2) = \{\{(v_1, v_2), (w_1, w_2)\} \mid (v_1 = w_1 \text{ and } (v_2, w_2) \in E(G_2)) \text{ or } (v_2 = w_2 \text{ and } (v_1, w_1) \in E(G_1))\}.$

Examples:

1. Two r-unsolvable configurations (of maximum size, right) on the path P_7 are shown below.

2. An maximum sized r-unsolvable configuration on a tree is shown below.

3. An r-solvable configuration on the 4-cycle with pendant edge is shown below.

Facts:

- 1. Graph pebbling arose as a method to prove a conjecture of Erdős and Lemke in combinatorial number theory. It has since produced the following more general result. If g_1, \ldots, g_n is a sequence of elements of an abelian group \mathbf{G} of size n, then there is a nonempty subsequence $(g_k)_{k \in K}$ such that $\sum_{k \in K} a_k = 0_{\mathbf{G}}$ and $\sum_{k \in K} 1/|g_k| \leq 1$, where |g| denotes the order of the element g in \mathbf{G} and $0_{\mathbf{G}}$ is the identity element in \mathbf{G} .
- 2. Every rooted graph (G, r) has $\pi(G, r) \ge \max\{n(G), 2^{\mathsf{ecc}_G(r)}\}$.
- 3. The path P_n on n vertices has pebbling number $\pi(P_n)=2^{n-1}$.
- 4. The cycle C_n on n vertices has pebbling number $\pi(C_{2k}) = 2^k$ and $\pi(C_{2k+1}) = \lceil (2^{k+2}-1)/3 \rceil$ for all $k \geq 1$.
- 5. If (T,r) is a rooted tree then $\pi(T,r) = f(T,r) = \sum_{i=1}^{h} 2^{l_i} h + 1$, where (l_1,\ldots,l_h) is the sequence of lengths $l_i = \operatorname{diam}(P[i])$ in a maximum r-path partition \mathcal{P} of T.
- 6. Complete graphs, balanced complete bipartite graphs, cubes, the Petersen graph, and split graphs with minimum degree at least 3 are all Class 0.
- 7. For any constant c > 0 there is an integer t_0 such that K(2t + s, t) is Class 0 when $t > t_0$ and $s \ge c(t/\lg t)^{1/2}$.

- 8. If G is a graph with n vertices and e edges then G is Class 0 when $e \ge \binom{n-1}{2} + 2$, while G is Class 0 implies that $\kappa(G) \ge 2$, $e \ge \lfloor 3n/2 \rfloor$, and $\text{gir}(G) \le 1 + 2 \lg n$.
- 9. If diam(G) = 2 then $\pi(G) \le n(G) + 1$. If also $\kappa(G) \ge 3$ then G is Class 0.
- 10. If diam(G) = d and $\kappa(G) \ge 2^{2d+3}$ then G is Class 0.
- 11. There exists a Class 0 graph G on at most $n \geq 3$ vertices with $gir(G) \geq |\sqrt{(\lg n)/2 + 1/4} 1/2|$.
- 12. Let G be a random graph on n vertices with edge probability p. If $p \gg (n \lg n)^{1/d}/n$ for fixed d then $\Pr[G \text{ is Class } 0] \to 1$ as $n \to \infty$.
- 13. Graham's Conjecture states that every pair of connected graphs G and H satisfy $\pi(G \square H) \leq \pi(G)\pi(H)$. This is true when G and H are both complete graphs, both trees, both cycles, both complete bipartite graphs with at least 15 vertices per part, or both connected graphs on n vertices with minimum degree at least $k \geq 2^{12n/k+15}$.
- 14. Deciding whether a configuration on a graph is solvable is NP-complete, even when restricted to the classes of diameter two graphs or planar graphs, but is in P when restricted to the classes of complete graphs, trees, diameter two planar graphs, or outerplanar graphs.
- 15. Deciding whether $\pi(G) \leq k$ is Π_2^{P} -complete (i.e. complete for the class of decision problems computable in polynomial time by a co-NP machine equipped with an NP-complete oracle).
- 16. $\pi(G)$ can be calculated in polynomial time when G is a tree, a diameter two graph, a split graph, or a 2-path.