B.A.T.M.A.N-ADV AND BABLE HYBRID

- Shubham Aher
- Rishabh Pandita
- Swapnil Satpute

Problem Statement

BATMAN-ADV and BABEL Hybrid

 To integrate B.A.T.M.A.N.-ADV and BABEL algorithms into a single routing algorithm and to carry out performance analysis for the same What is MANET, BATMAN and BABEL?

MANET (Mobile Ad-hoc Network)

Infrastructure based Networks vs. Ad-hoc

Routing MANET

- Challenges for routing
 - Dynamic Topology
 - Device Discovery

Dynamic Topology in MANET

MANET Routing Approaches

 Better Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.-ADV)

BABEL

Others like OLSR, AODV, etc.

B.A.T.M.A.N-ADV

- Proactive
- Data Link Layer Protocol
- Network layer agnostic
- Nodes can participate in mesh without an IP
- Easy Integration of Non-Mesh clients
- Used in Linux kernel v2.6 and above

Working of B.A.T.M.A.N.-ADV

Decentralized knowledge

 OGMs(Originator Messages) determine TQ(Transmission Quality)

BABEL

- Proactive
- Network Layer
- Distance vector routing
- User space daemon
- Loop free routing

Working of BABEL

- Neighbor cost based on ETX(Expected Transmission Count)
- Periodic broadcast of 'Hello' messages
- 'IHU' (I Heard You) messages as acknowledgments.
- History sensitive routing
- Feasibility check to avoid route loops.

Combining B.A.T.M.A.N.-ADV with BABEL

 Running babel daemon over B.A.T.M.A.N.-ADV directly without any modifications results into a highly unstable protocol

 Data bursts are very frequent, which are disastrous for wireless meshes

 Hence, modifications are required so that the protocols can function together as a single unit

Problem Statement Revisited

BATMAN-ADV and BABEL Hybrid

 To integrate B.A.T.M.A.N.-ADV and BABEL algorithms into a single routing algorithm and to carry out performance analysis for the same

Why implement a hybrid protocol?

- No protocol is perfect in general
 - Performance greatly depends on the nature of mesh (mobility, number of nodes, etc.)

Proposed by Sven Eckelmann (OpenMesh community).

• It is an attempt to formulate a general solution for all kinds of meshes.

Behavioral Comparison of B.A.T.M.A.N.-ADV and BABEL

	Factor	B.A.T.M.A.NADV	BABEL
	Implementation	Data link layer i.e. kernel space routing module	Network layer i.e. user space routing daemon
	Throughput	Tends to route through more number of hops hence low multi-hop bandwidth	Higher multi-hop bandwidth
	Packet delivery	Higher packet delivery rate	Lower packet delivery rate
	Mobility	Slower route convergence and frequent route flapping is observed after repair.	Fast route convergence and repair
	Scalability	Performance remains consistent as the no. of participating nodes rises.	Low round trip delay for few nodes but increases with the number of nodes
	Stability	Higher stability	Route flapping may occur even for tiny changes

Hybrid Protocol Design

Metrics under consideration

Babel metrics:

- TxTransmission Cost
- Rx Reception Cost
- -ETX = 1/(Tx * Rx)

- B.A.T.M.A.N.-ADV metric:
 - TQ Transmission Quality (Bi-directional link quality)

Our Modifications

- During, route selection babel will select the neighbor with least cost as next hop
- Existing neighbor cost function in babel:

cost =
$$((Tx * Rx) + 128) >> 8$$

We know that ETX = 1/(Tx * Rx), also an increase in TQ value should decrease the neighbor cost

Modified neighbor cost function in babel:

cost =
$$(((Tx * Rx) + 128) >> 8) - TQ$$

Performance Measure

Protocols tested

 B.A.T.M.A.N – ADV and BABEL Without Any Metric Modification

 B.A.T.M.A.N – ADV and BABEL With Metric Modification

B.A.T.M.A.N – ADV standalone

BABEL standalone

Softwares Used for Benchmarking

- To Measure Bandwidth
 - Bwm-ng on Intermediate Nodes
- To Generate Traffic and measure performance
 - I-perf Client run on source node
 - I-perf Server run on destination node
- To Generate graphs
 - Gnuplot.py
 - J-perf to generate iperf data graphs
- Shell scripts to automate the testing

S TELENA HER SEASED

Network reachable

Unreachable network

Bandwidth Monitor
(bwm-ng)
S and D cannot reach each other

A,B - Intermediate Nodes

S - Source Node

D - **Destination Node**

(bwm-ng)

Testing Scenario

Comparison 1

Unmodified vs. Modified Protocol

Results

Reduction in bursty data

Reduction in Jitter

Reduction in Packet Loss from 16% to 11%

Reduction in out-of-sequence packets

Comparison 2

Modified Protocol vs. B.A.T.M.A.N.-ADV

Results

- Instability after route repair in B.A.T.M.A.N.
- Bandwidth drops to Zero at node failure in B.A.T.M.A.N.-ADV

Jitter is less in B.A.T.M.A.N. –ADV.

Comparison 3

Modified vs. BABEL

Bandwidth & Jitter

Results

 Bandwidth drops to zero at node failure in Babel.

Babel is more stable

Conclusion

 Visible improvements are observed over existing approaches but more work is required to make the protocol suitable for real world applications

Future Scope

 To resolve physical and logical hop problem in Babel and B.A.T.A.M.A.N-ADV.

Reduce overhead of modified protocol.

Metric tweaks to improve performance.

