Team 06 ADLR

Self-supervised Learning for Robot Grasping

Jed Guzelkabaagac Boris Petrović

Technical University of Munich {jed.guzelkabaagac, boris.petrovic}@tum.de

"Can we leverage unlabeled 3D data to make grasping more accurate and data-efficient?"

Data Scarcity: Labelled grasps expensive and slow to collect **Poor Generalization**: Supervised-only models overfit data biases **Abundant Shape Data**: Incorporate priors via unlabeled ShapeNet

Objectives

- Do JEPA embeddings improve robot grasping?
- Can pretraining boost data efficiency in low-data regimes?
- Does it speed up learning or improve generalization?

Full Supervised Pipeline

Min-over-k Regression + Logit Loss

- Multimodal grasps multiple valid solutions per object.
- K = 1 collapses to mean, loses diversity.
- Multi-head outputs + selection term preserve diversity.
- Logit allows utility at generation output most confident.

$$k^* = \arg\min_k \|\hat{\mathbf{j}}_k - \mathbf{j}\|^2$$
 Index of best grasp $L = \|\hat{\mathbf{j}}_{k^*} - \mathbf{j}\|^2 + \alpha \cdot \mathrm{CE}(\ell, k^*)$ grasp output

Prediction 1 Prediction 2 Ground truth | The state of th

In this example, collapsing to the mean grasp would cause collisions.

Training Details & Ablations

- Diversity is captured by **k=3-5**, with predictions collapsing after.
- LR sweeps showed finetuning JEPA at 1e-5 to be optimal.
- · Transforming coordinate system makes little difference.
- Learnable logit scale dynamically balances dual objective.
- Attention pooling outperforms mean and max pooling.

Results

- Validation top-logit RMSE (rad, lower is better).
- Reflects inference-time performance (since logit is learned).

Train split	Scratch	JEPA	Δ (rel.)
1%	0.363 ± 0.002	$\textbf{0.335}\pm\textbf{0.003}$	+7.7%
10%	0.335 ± 0.003	0.303 ± 0.009	+9.6%
25%*	0.331	0.274	+17.2%
100%*	0.232	0.238	-2.8%

*Single long run; each trained until models plateaued.

Conclusions

- Tiny data: JEPA helps, improvements are limited by extreme scarcity.
- Moderate data: JEPA yields highest relative gain, "sweet spot" for SSL.
- Large Data: No meaningful benefit, scratch fine-tuning suffices.
- **Learning speed:** JEPA pretraining enables quicker convergence in all data regimes.

Future work

- Geometric embeddings, through e.g. DINO
- Ablate different SSL strategies and techniques