Positive Definite Matrices

Definition: Positive Definite

To say that $A \in M_n$ is *positive definite* means $\forall \vec{x} \in \mathbb{C}^n - \{\vec{0}\}:$

$$\vec{x}^* A \vec{x} > 0$$

Note that A positive definite $\implies A$ Hermitian.

Example

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} \bar{x}_1 & \bar{x}_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2\bar{x}_1 + \bar{x}_2 & \bar{x}_1 + 2\bar{x}_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= x_1(2\bar{x}_1 + \bar{x}_2) + x_2(\bar{x}_1 + 2\bar{x}_2)$$

$$= 2|x_1|^2 + x_1\bar{x}_2 + \bar{x}_1x_2 + 2|x_2|^2$$

$$= 2|x_1|^2 + 2\operatorname{Re}(x_1\bar{x}_2) + 2|x_2|^2$$

$$= 2(|x_1|^2 + \operatorname{Re}(x_1\bar{x}_2) + |x_2|^2)$$

$$= 2(|x_1|^2 - 2|x_1\bar{x}_2| + |x_2|^2 + 2|x_1\bar{x}_2| + \operatorname{Re}(x_1\bar{x}_2))$$

$$= 2[(|x_1| - |x_2|)^2 + 2|x_1\bar{x}_2| + \operatorname{Re}(x_1\bar{x}_2)]$$

$$\geq 0$$

With equality only at $x_1 = x_2 = 0$, or $\vec{x} = 0$.

Properties: Positive Definite

1). $A \in M_n$ positive definite $\implies \operatorname{Sp}(A) \subseteq (0, \infty)$

Assume A is positive definite

Assume $\vec{x} \in \mathbb{C}^n$ such that $\vec{x} \neq \vec{0}$

$$\vec{x}^*A\vec{x} > 0$$

Let $\vec{x} \in \text{Eig}_A(\lambda)$ such that \vec{x} is a unit vector

$$\vec{x}^* A \vec{x} = \vec{x}^* \lambda \vec{x} = \lambda \vec{x}^* \vec{x} = \lambda > 0$$

2). $A \in M_n$ positive definite $\implies a_{ii} > 0$

Assume A is positive definite

$$\vec{e}_i^* A \vec{e}_i = a_{ii} > 0$$

3). $A \in M_n$ positive definite $\implies \forall S \in GL(n), S^*AS$ positive definite

Assume A is positive definite

Assume $\vec{x} \in \mathbb{C}^n$ such that $\vec{x} \neq \vec{0}$

$$\vec{x}^*(S^*AS)\vec{x} = (\vec{x}^*S^*)A(S\vec{x}) = (S\vec{x})^*A(S\vec{x}) = \vec{y}^*A\vec{y} > 0$$

 $\therefore S^*AS$ is positive definite.

4). $A \in M_n$ positive definite \implies any principle submatrix B of A is positive definite

Assume A is positive definite

AWLOG: B is a leading principle submatrix, otherwise permute and note property (3) Assume $\vec{x} \in \mathbb{C}^k$ for $1 \leq k \leq n$

$$\begin{bmatrix} \vec{x}^* & 0 \end{bmatrix} \begin{bmatrix} B & * \\ \hline * & * \end{bmatrix} \begin{bmatrix} \vec{x} \\ 0 \end{bmatrix} = \vec{x}^* B \vec{x} > 0$$

 $\therefore B$ is positive definite.

Theorem

Let $A \in M_n$. A positive definite \iff A Hermitian and $\operatorname{Sp}(A) \subseteq (0, \infty)$

Proof

 \implies Assume A is positive definite

A is also Hermitian By property (1), $\forall \lambda \in \operatorname{Sp}(A), \lambda > 0$

 \iff Assume A is Hermitian and $\mathrm{Sp}(A)\subseteq (0,\infty)$

Assume $\lambda \in \operatorname{Sp}(A)$

Let \vec{x} be a unit eigenvector associated with λ

$$\vec{x} \neq 0$$

$$\vec{x}^*A\vec{x} = \vec{x}^*\lambda\vec{x} = \lambda\vec{x}^*\vec{x} = \lambda > 0$$

 \therefore A is positive definite.

Theorem

Let $A \in M_n$. A positive definite $\iff \exists C \in GL(n), A = C^*C$

Proof

 \implies Assume A is positive definite

 \boldsymbol{A} is Hermitian and is thus unitary diagonalizable:

$$A = U \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} U^* = U \begin{bmatrix} \sqrt{\lambda_1} & & 0 \\ & \ddots & \\ 0 & & \sqrt{\lambda_n} \end{bmatrix} U^* U \begin{bmatrix} \sqrt{\lambda_1} & & 0 \\ & \ddots & \\ 0 & & \sqrt{\lambda_n} \end{bmatrix} U^*$$

Let
$$C=U\begin{bmatrix}\sqrt{\lambda_1}&&0\\&\ddots&\\0&&\sqrt{\lambda_n}\end{bmatrix}U^*=C^*$$

Note that since $\lambda_k > 0$, C is invertible

$$A = C^*C$$

$$\iff$$
 Assume $\exists C \in GL(n), A = C^*C$

Assume
$$\vec{x} \in \mathbb{C}^n$$
 such that $\vec{x} \neq \vec{0}$
 $\vec{x} * A \vec{x} = \vec{x} * C * C \vec{x} = (C \vec{x}) * (C \vec{x}) = \|C \vec{x}\|_2^2 > 0$

Therefore A is positive definite.

Example

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix} \implies \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 5 \end{bmatrix} \implies \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Use rowops to convert to eschelon form:

1).
$$-R_1 + R_2$$

2).
$$-R_1 + R_3$$

3).
$$-2R_2 + R_3$$

$$E_3 E_2 E_1 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix} = (E_3 E_2 E_1)^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = E_1^{-1} E_2^{-1} E_3^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \qquad E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \qquad E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

$$E_1^{-1}E_2^{-1}E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = C^*C$$

$$\therefore C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Theorem

Let $A \in M_n$. A positive definite \iff A Hermitian and $\det A_k > 0$ for all $1 \le k \le n$, where A_k is the $k \times k$ leading principle submatrix of A.

Proof

 \implies Assume A is positive definite

A is Hermitian Assume $1 \leq k \leq n$ A_k is positive definite Assume $\lambda \in \sigma(A_k)$

$$\lambda > 0$$

$$\det A_k = \prod_{i=1}^k \lambda_i(A_k) > 0$$

 \iff Assume A is Hermitian and $\det A_k > 0, 1 \le k \le n$

Proof by induction on n

Base Case: n=1

$$A=\left[\lambda\right]$$
 with $\lambda>0$

Therefore, A is positive definite.

Assume A is positive definite for $A \in M_{n-1}$

Consider
$$A \in M_n$$
 and let $A = \begin{bmatrix} B & * \\ \hline * & * \end{bmatrix}$ where $B = A_{n-1}$

Since A is Hermitian, B is also Hermitian

Assume $1 \le k \le n-1$ det $B_k = \det A_k > 0$

So by the inductive assumption, \boldsymbol{B} is positive definite

Thus $\sigma(B) \subseteq (0, \infty)$

But by the interlacing theorem, $\lambda_k(B) \leq \lambda_{k+1}(A)$, so $\lambda_k(A) > 0$ for $2 \leq k \leq n$

But $\det A = \det A_n = \prod_{k=1}^n \lambda_k(A) > 0$

Thus, since $\lambda_2, \ldots \lambda_n > 0$ it must be the case that $\lambda_1 > 0$

And so $\sigma(A) \subseteq (0, \infty)$

Therefore A is positive definite.