Ejemplos de ecuaciones diferenciales ordinarias

Profesor
Edgar Miguel Vargas Chaparro
Monitor
Sebastian Guerrero Salinas

Se utilizará el método de Euler para resolver el problema de valor inicial

$$y' = \frac{t - y}{2} en[0, 3] con y(0) = 1$$

y a comparar las soluciones que se obtienen con h=1, $\frac{1}{2}$, $\frac{1}{4}$ y $\frac{1}{8}$.

• La figura a continuación muestra las gráficas de las 4 soluciones obtenidas por el método de Euler y la gráfica de la solución exacta $y(t)=3e^{-t/2}-2+t$

Figura: Comparación de las aproximaciones de Euler obtenidas con tamaños de paso diferentes

• Para el tamaño de paso h = 0.25, los cálculos son

$$y_1 = 1.0 + 0.25 \left(\frac{0.0 - 1.0}{2}\right) = 0.875,$$
 $y_2 = 0.875 + 0.25 \left(\frac{0.25 - 0.875}{2}\right) = 0.796875, \text{ etc.}$

 La iteración continua hasta que llegamos al otro extremo del intervalo

$$y(3) \approx y_{12} = 1.440573 + 0.25 \left(\frac{2.75 - 1.440573}{2} \right) = 1.604252$$

+		$y(t_k)$			
t_k	h = 1	$h=\frac{1}{2}$	$h=\frac{1}{4}$	$h=\frac{1}{8}$	Exacto
0	1.0	1.0	1.0	1.0	1.0
0.125				0.9375	0.943239
0.25			0.875	0.886719	0.897491
0.375				0.846924	0.862087
0.50		0.75	0.796875	0.817429	0.836402
0.75			0.759766	0.786802	0.811868
1.00	0.5	0.6875	0.758545	0.790158	0.819592
1.50		0.765625	0.846386	0.882855	0.917100
2.00	0.75	0.949219	1.030827	1.068222	1.103638
2.50		1.211914	1.289227	1.325176	1.359514
3.00	1.375	1.533936	1.604252	1.637429	1.669390

Tabla: Comparación de las aproximaciones de Euler obtenidas con tamaños de paso diferentes

Métodos de Runge-Kutta

Se utilizará el método RK4 para resolver el problema de valor inicial

$$y' = \frac{t-y}{2} en[0,3] con y(0) = 1$$

y a comparar las soluciones obtenidas para h=1, $rac{1}{2}$, $rac{1}{4}$ y $rac{1}{8}$.

Métodos de Runge-Kutta

• Para el tamaño de paso h = 0.25, un cálculo típico es el siguiente

$$f_1 = \frac{0.0 - 1.0}{2} = -0.5,$$

$$f_2 = \frac{0.125 - (1 + 0.25(0.5)(-0.5))}{2} = -0.40625,$$

$$f_3 = \frac{0.125 - (1 + 0.25(0.5)(-0.40625))}{2} = -0.4121094,$$

$$f_4 = \frac{0.25 - (1 + 0.25(-0.4121094))}{2} = -0.3234863,$$

$$y_1 = 1.0 + 0.25\left(\frac{-0.5 + 2(-0.40625) + 2(-0.4121094) - 0.3234863}{6}\right)$$

$$= 0.8974915$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Métodos de Runge-Kutta

+ .		$y(t_k)$			
t_k	h=1	$h=\frac{1}{2}$	$h=rac{1}{4}$	$h=\frac{1}{8}$	Exacto
0	1.0	1.0	1.0	1.0	1.0
0.125				0.9432392	0.9432392
0.25			0.8974915	0.8974908	0.8974917
0.375				0.8620874	0.8620874
0.50		0.8364258	0.8364037	0.8364024	0.8364023
0.75			0.8118696	0.8118679	0.8118678
1.00	0.8203125	0.8196285	0.8195940	0.8195921	0.8195920
1.50		0.9171423	0.9171021	0.9170998	0.9170997
2.00	1.1045125	1.1036826	1.1036408	1.1036385	1.1036383
2.50		1.3595575	1.3595168	1.3595145	1.3595144
3.00	1.6701860	1.6694308	1.6693928	1.6693906	1.6693905

Tabla: Comparación de las soluciones obtenidas con el método RK4

Se utilizará el método de Runge-Kutta:

$$x_{k+1} = x_k + \frac{h}{6} (f_1 + 2f_2 + 2f_3 + f_4),$$

$$y_{k+1} = y_k + \frac{h}{6} (g_1 + 2g_2 + 2g_3 + g_4),$$
(1)

para calcular una solución numérica del sistema

$$\frac{\frac{dx}{dt} = x + 2y}{\frac{dy}{dt} = 3x + 2y} \operatorname{con} \left\{ \begin{array}{l} x(0) = 6, \\ y(0) = 4. \end{array} \right.$$
 (2)

En el intervalo [0.0, 0.2] tomando 10 subintervalos con tamaño de paso h=0.02

• Para el primer punto tenemos $t_1 = 0.02$ y las operaciones intermedias necesarias para obtener x_1 e y_1 son

$$f_1 = f(0.00, 6.0, 4.0) = 14.0 g_1 = g(0.00, 6.0, 4.0) = 26.0$$

$$x_0 + \frac{h}{2}f_1 = 6.14 y_0 + \frac{h}{2}g_1 = 4.26$$

$$f_2 = f(0.01, 6.14, 4.26) = 14.66 g_2 = g(0.01, 6.14, 4.26) = 26.94$$

$$x_0 + \frac{h}{2}f_2 = 6.1466 y_0 + \frac{h}{2}g_2 = 4.2694$$

$$f_3 = f(0.01, 6.1466, 4.2694) = 14.6854$$

$$g_3 = g(0.01, 6.1466, 4.2694) = 26.9786$$

$$x_0 + hf_3 = 6.293708 y_0 + hg_3 = 4.539572$$

$$f_4 = f(0.02, 6.293708, 4.539572) = 15.372852$$

$$g_4 = g(0.02, 6.293708, 4.539572) = 27.960268$$

• Usando estos valores en la fórmula (2) nos queda:

$$x_1 = 6 + \frac{0.02}{6}(14.0 + 2(14.66) + 2(14.6854) + 15.372852) = 6.29354551$$

 $y_1 = 4 + \frac{0.02}{6}(26.0 + 2(26.94) + 2(26.9786) + 27.960268) = 4.53932490$

• La solución del problema del valor inicial (2) es:

$$x(t) = 4e^{4t} + 2e^{-t}$$
$$y(t) = 6e^{4t} - 2e^{-t}$$

• Los cálculos en los demás nodos se recogen en la siguiente tabla

k	t_k	x_k	Уk
0	0.00	6.00000000	4.00000000
1	0.02	6.29354551	4.53932490
2	0.04	6.61562213	5.11948599
3	0.06	6.96852528	5.74396525
4	0.08	7.35474319	6.41653305
5	0.10	7.77697287	7.14127221
6	0.12	8.23813750	7.92260406
7	0.14	8.74140523	8.76531667
8	0.16	9.29020955	9.67459538
9	0.18	9.88827138	10.6560560
10	0.20	10.5396230	11.7157807

Tabla: Aproximación a la solución con valores iniciales x(0) = 6 e y(0) = 4 mediante el método de Runge-Kutta

Consideremos el problema de valor inicial de segundo orden

$$x''(t) + 4x'(t) + 5x(t) = 0$$
 con $x(0) = 3yx'(0) = -5$.

- Vamos a escribir un sistema con dos ecuaciones de primer orden que sea equivalente
- Vamos a resolver el problema reformulado usando el método de Runge-Kutta en el intervalo [0,5] con M=50 intervalos de anchura h=0.1
- Vamos a comparar la solución numérica con la exacta:

$$x(t) = 3e^{-2t}cos(t) + e^{-2t}sin(t)$$

La ecuación diferencial la escribimos como

$$x''(t) = f(t, x(t), x'(t)) = -4x'(t) - 5x(t)$$

• Usando el cambio dado x'(t) = y(t), el problema reformulado queda

$$\frac{\frac{dx}{dt}}{\frac{dy}{dt}} = y \quad \text{con} \begin{cases} x(0) = 3, \\ y(0) = -5. \end{cases}$$

• En la tabla a continuación se recogen algunas de las aproximaciones numéricas que se obtienen. Los valores $\{y_k\}$ no nos interesan, así que no se muestran; sí se muestran, en cambio, los valores exactos $\{x(t_k)\}$ para que podamos hacer la correspondiente comparación:

k	t_k	X_k	$x(t_k)$
0	0.0	3.00000000	3.00000000
1	0.1	2.52564583	2.52565822
2	0.2	2.10402783	2.10404686
3	0.3	1.73506269	1.73508427
4	0.4	1.41653369	1.41655509
5	0.5	1.14488509	1.14490455
10	1.0	0.33324302	0.33324661
20	2.0	-0.00620684	-0.00621162
30	3.0	-0.00701079	-0.00701204
40	4.0	-0.00091163	-0.00091170
48	4.8	-0.00004972	-0.00004969
49	4.9	-0.00002348	-0.00002345
50	5.0	-0.00000493	-0.00000490

Tabla: Solución numérica obtenida con el método de Runge-Kutta

Resolveremos el problema de contorno

$$x''(t) = \frac{2t}{1+t^2}x'(t) - \frac{2}{1+t^2}x(t) + 1$$

con x(0) = 1.25 y x(4) = -0.95 en el intervalo [0, 4].

• Las funciones p, q y r son $p(t) = 2t/(1+t^2)$, $q(t) = -2/(1+t^2)$ y r(t) = 1 respectivamente

• Usando el método de Runge-Kutta de orden 4 con tamaño de paso h=0.2 calculamos soluciones numéricas $\{u_j\}$ y $\{v_j\}$ de los problemas

$$u'' = p(t)u'(t) + q(t)u(t) + r(t)$$
 con $u(a) = \alpha$ y $u'(a) = 0$

$$v^{\prime\prime}=p(t)v^{\prime}(t)+q(t)v(t)$$
 con $v(a)=0$ y $v^{\prime}(a)=1$

respectivamente

• Tomando $u(4) \approx u_{20} = -2.893535$ y $v(4) \approx v_{20} = 4$ en

$$x(t) = u(t) + \frac{\beta - u(b)}{v(b)}v(t)$$

construimos

$$w_j = \frac{b - u(4)}{v(4)}v_j = 0.485884v_j$$

• Entonces la solución numérica del problema de contorno viene dada por $\{x_j\} = \{u_j + w_j\}$

• Puede comprobarse que v(t) = t es la solución exacta del problema

$$v''=p(t)v'(t)+q(t)v(t)$$
 con $v(a)=0$ y $v'(a)=1$

es decir,

$$v''(t) = \frac{2t}{1+t^2}v'(t) - \frac{2}{1+t^2}v(t)$$

con la condición inicial v(0) = 0 y v'(0) = 1

• En la siguiente tabla se comparan las aproximaciones obtenidas con el método de disparo lineal tomando tamaños de paso h=0.2 y h=0.1 y la solución exacta

$$x(t) = 1.25 + 0.4860896526t - 2.25t^2 + 2t \arctan(t) + \frac{1}{2}(t^2 - 1)\ln(1 + t^2)$$

t_i	x_j $h = 0.2$	$x(t_j)$ exacto	$x(t_j)-x_j$ error	$ $ t_i	h = 0.1	$x(t_j)$ exacto	$x(t_j)-x_j$
- tj	n = 0.2	CAACIO	error	l ij	n = 0.1	exacto	error
0.0	1.250000	1.250000	0.000000	0.0	1.250000	1.250000	0.000000
				0.1	1.291116	1.291117	0.000001
0.2	1.317308	1.317350	0.000042	0.2	1.317348	1.317350	0.000002
				0.3	1.328986	1.328990	0.000004
0.4	1.326426	1.326505	0.000079	0.4	1.326500	1.326505	0.000005
				0.5	1.310508	1.310514	0.000006
0.6	1.281652	1.281762	0.000110	0.6	1.281756	1.281762	0.000006
0.8	1.189276	1.189412	0.000136	0.8	1.189404	1.189412	0.000008
1.0	1.056728	1.056886	0.000158	1.0	1.056876	1.056886	0.000010
1.2	0.891911	0.892086	0.000175	1.2	0.892076	0.892086	0.000010
1.6	0.496989	0.497187	0.000198	1.6	0.497175	0.497187	0.000012
2.0	0.064728	0.064931	0.000203	2.0	0.064919	0.064931	0.000012
2.4	-0.350518	-0.350325	0.000193	2.4	-0.350337	-0.350325	0.000012
2.8	-0.700430	-0.700262	0.000168	2.8	-0.700273	-0.700262	0.000011
3.2	-0.942014	-0.941888	0.000126	3.2	-0.941895	-0.941888	0.000007
3.6	-1.036779	-1.036708	0.000071	3.6	-1.036713	-1.036708	0.000005
4.0	-0.950000	-0.950000	0.000000	4.0	-0.950000	-0.950000	0.000000

Tabla: soluciones numéricas de la ecuación x''(t)

- En la tabla también se incluyen las columnas de los errores; puesto que el error en el método de Runge-Kutta es de orden $O(h^4)$, el error de las aproximaciones con el tamaño de paso menor h=0.1 es, aproximadamente, $\frac{1}{16}$ del error de las aproximaciones con el tamaño de paso mayor h=0.2
- En la figura a continuación, se muestra la gráfica de la solución aproximada cuando h=0.2

Figura: Aproximaciones numéricas usadas para formar x(t)=u(t)+w(t)

Figura: Gráfica de la solución numérica de la ecuación x''(t)

Vamos a resolver el problema de contorno

$$x''(t) = \frac{2t}{1+t^2}x'(t) - \frac{2}{1+t^2}x(t) + 1$$

con x(0) = 1.25 y x(4) = -0.95 en el intervalo [0, 4].

• Las funciones p, q y r son $p(t) = 2t/(1+t^2)$, $q(t) = -2/(1+t^2)$ y r(t) = 1, respectivamente.

• Resolviendo el correspondiente sistema de ecuaciones lineales

$$\left(\frac{-h}{2}p_j-1\right)x_{j-1}+(2+h^2q_j)x_j+\left(\frac{h}{2}p_j-1\right)x_{j+1}=-h^2r_j$$

para j=1,2,...,N-1, siendo $x_0=\alpha$ y $x_N=\beta$, el método de diferencias finitas proporciona las soluciones numéricas $\{x_i\}$

• En la tabla a continuación se recoge una muestra de las aproximaciones $\{x_{j,1}\}$ $\{x_{j,2}\}$ $\{x_{j,3}\}$ y $\{x_{j,4}\}$ correspondientes a los tamaños de paso $h_1=0.2$, $h_2=0.1$, $h_3=0.05$ y $h_4=0.025$.

t_j	h = 0.2	h = 0.1	h = 0.05	h = 0.025	$x(t_j)$ exacto
0.0	1.250000	1.250000	1.250000	1.250000	1.250000
0.2	1.314503	1.316646	1.317174	1.317306	1.317350
0.4	1.320607	1.325045	1.326141	1.326414	1.326505
0.6	1.272755	1.279533	1.281206	1.281623	1.281762
0.8	1.177399	1.186438	1.188670	1.189227	1.189412
1.0	1.042106	1.053226	1.055973	1.056658	1.056886
1.2	0.874878	0.887823	0.891023	0.891821	0.892086
1.4	0.683712	0.698181	0.701758	0.702650	0.702947
1.6	0.476372	0.492027	0.495900	0.496865	0.497187
1.8	0.260264	0.276749	0.280828	0.281846	0.282184
2.0	0.042399	0.059343	0.063537	0.064583	0.064931
2.2	-0.170616	-0.153592	-0.149378	-0.148327	-0.147977
2.4	-0.372557	-0.355841	-0.351702	-0.350669	-0.350325
2.6	-0.557565	-0.541546	-0.537580	-0.536590	-0.536261
2.8	-0.720114	-0.705188	-0.701492	-0.700570	-0.700262
3.0	-0.854988	-0.841551	-0.838223	-0.837393	-0.837116
3.2	-0.957250	-0.945700	-0.942839	-0.942125	-0.941888
3.4	-1.022221	-1.012958	-1.010662	-1.010090	-1.009899
3.6	-1.045457	-1.038880	-1.037250	-1.036844	-1.036709
3.8	-1.022727	-1.019238	-1.018373	-1.018158	-1.018086
4.0	-0.950000	-0.950000	-0.950000	-0.950000	-0.950000

Tabla: aproximaciones numéricas de x''(t)

- La sucesión $\{x_{j,2}\}$ generada tomando $h_2=0.1$ contiene 41 términos de los que sólo se muestran uno de cada dos, los que corresponden a los 21 valores de $\{t_j\}$ dados en la tabla anterior y que son los generados tomando $h_1=0.2$
- Análogamente, lo que se muestra de las sucesiones $\{x_{j,3}\}$ y $\{x_{j,4}\}$ es sólo una porción de todos los valores generados tomando los tamaños de paso $h_3=0.05$ y $h_4=0.025$, respectivamente, y corresponden a los mismos 21 nodos $\{t_j\}$

• En la figura a continuación se muestran las gráficas de la poligonal formada con los puntos $\{(t_i, x_{i,1})\}$ para el caso $h_1 = 0.2$

Figura: Gráfica de la aproximación numérica, tomando h = 0.2, a la solución de la ecuación x''(t)

 Ahora comparamos las soluciones numéricas de la tabla con la exacta

$$x(t) = 1.25 + 0.486089652t - 2.25t^2 + 2t \arctan(t) + \frac{1}{2}(t^2 - 1)\ln(1 + t^2)$$

• Puede probarse que las soluciones numéricas tienen un error de $O(h^2)$; por tanto, la reducción del tamaño de paso a su mitad produce una disminución del error a, más o menos, su cuarta parte. Un escrutinio detallado a la siguiente tabla, revela que eso es lo que ocurre.

	$x(t_j) - x_{j,1}$	$x(t_j) - x_{j,2}$	$x(t_{j}) - x_{j,3}$	$x(t_j) - x_{j,4}$
t_j	$= e_{j,1}$	$= e_{j,2}$	$= e_{j,3}$	$= e_{j,4}$
	$h_1 = 0.2$	$h_2 = 0.1$	$h_3 = 0.05$	$h_4 = 0.025$
0.0	0.000000	0.000000	0.000000	0.000000
0.2	0.002847	0.000704	0.000176	0.000044
0.4	0.005898	0.001460	0.000364	0.000091
0.6	0.009007	0.002229	0.000556	0.000139
0.8	0.012013	0.002974	0.000742	0.000185
1.0	0.014780	0.003660	0.000913	0.000228
1.2	0.017208	0.004263	0.001063	0.000265
1.4	0.019235	0.004766	0.001189	0.000297
1.6	0.020815	0.005160	0.001287	0.000322
1.8	0.021920	0.005435	0.001356	0.000338
2.0	0.022533	0.005588	0.001394	0.000348
2.2	0.022639	0.005615	0.001401	0.000350
2.4	0.022232	0.005516	0.001377	0.000344
2.6	0.021304	0.005285	0.001319	0.000329
2.8	0.019852	0.004926	0.001230	0.000308
3.0	0.017872	0.004435	0.001107	0.000277
3.2	0.015362	0.003812	0.000951	0.000237
3.4	0.012322	0.003059	0.000763	0.000191
3.6	0.008749	0.002171	0.000541	0.000135
3.8	0.004641	0.001152	0.000287	0.000072
4.0	0.000000	0.000000	0.000000	0.000000

Tabla: Errores de las aproximaciones numéricas obtenidas con el método de diferencias finitas

- Por ejemplo, en el punto $t_i = 1.0$ los errores de las aproximaciones correspondientes a los tamaños de paso h_1 , h_2 , h_3 y h_4 son $e_{i,1} = 0.014780$, $e_{i,2} = 0.003660$, $e_{i,3} = 0.000913$ y $e_{i,4} = 0.000228$, respectivamente
- Los cocientes sucesivos de estos errores son $e_{i,2}/e_{i,1} = 0.003660/0.014780 = 0.2476$ $e_{i,3}/e_{i,2} = 0.000913/0.003660 = 0.2495 \text{ y}$ $e_{i,4}/e_{i,3} = 0.000228/0.000913 = 0.2497$ que se acercan a $\frac{1}{4}$