

Guidelines for Acquisition of UWNMR spectra using WCPMG

Recommended sample: glycine HCl

Field of choice: 14.1 T

 35 Cl (S = 3/2) Larmor frequency: 58.78 MHz

NMR Parameters

$C_{\rm Q}({ m MHz})$	6.5
η_Q	0.6
$\delta_{\rm iso}$ (ppm)	101
Ω (ppm)	100
κ	0.3

Total pattern breadth at 14.1 T: 2480 ppm / 145 kHz

Ideal simulated pattern

Experimental spectrum

³⁵Cl offset frequency [kHz]

³⁵Cl offset frequency [kHz]

Experimental Parameters	Bruker notation	Value
Pulse sequence file name	_	wcpmg.jk
Number of Transients	NS	16
Recycle Delay (s)	D1	1
Dwell Time (µs)	DW	1
Number of Meiboom-Gill loops, N	L22	50
Spin Echo Length, τ _{SE} (μs)	D6	300
Acquisition Time (ms)	AQ	18.9
Ring-Down Delay, τ _{dead} (μs)	D3	10
WURST-B length, τ_B (μ s)	P5	50
WURST-B Sweep width, Δ _B (kHz)	SPNAM-5	300
WURST-B Amplitude, $v_{1,B}$ (kHz)	SPW5	10.9
WURST-C length, τ_{C} (μs)	P5	50
WURST-C Sweep width, $\Delta_{\rm C}$ (kHz)	SPNAM-5	300
WURST-C Amplitude, v _{1,C} (kHz)	SPW5	10.9
¹ H CW Decoupling RF Power (kHz)	PLW9	50
Spectrum Width (kHz)	SW	1000

Pulse Sequence Schematic with Bruker variable notation:

Key points:

- 1. Generally, the WURST-B and -C pulses are identical ($\Delta_B = \Delta_C$, $\tau_B = \tau_C$, and $\nu_{1,B} = \nu_{1,C}$).
- 2. The optimal value for Δ_B and Δ_C is ca. 1.5 to 2.0 times the pattern breadth (*NB*: this parameter is field dependent).
- 3. The optimal values for $v_{1,B}$ and $v_{1,C}$ are given by the following expression: $v_{1,B/C} \approx \frac{0.26\sqrt{R}}{S+1/2}$ where R is the rate of the WURST pulse defined as the ratio of the sweep width to the pulse length: $R = \Delta_{B/C}/\tau_{B/C}$
- 4. The SNR and resolution of experimental spectra acquired with WCPMG are related directly and indirectly, respectively, to *R*.

Suggested references:

- (1) O'Dell, L. A.; Schurko, R. W. Chem. Phys. Lett. **2008**, 464, 97–102.
- (2) O'Dell, L. A.; Rossini, A. J.; Schurko, R. W. Chem. Phys. Lett. 2009, 468, 330–335.
- (3) MacGregor, A. W.; O'Dell, L. A.; Schurko, R. W. J. Magn. Reson. 2011, 208, 103–113.
- (4) Schurko, R. W. Encycl. Magn. Reson. 2011.
- (5) Schurko, R. W. Acc. Chem. Res. 2013, 46, 1985–1995.
- (6) O'Dell, L. A. Solid State Nucl. Magn. Reson. 2013, 55–56, 28–41.
- (7) Veinberg, S. L.; Lindquist, A. W.; Jaroszewicz, M. J.; Schurko, R. W. *Solid State Nucl. Magn. Reson.* **2017**, *84*, 45–58.
- (8) Koppe, J.; Hansen, M. R.; Hansen, M. R. J. Phys. Chem. A 2020, 124, 4314–4321.

