HORVÁTH MILÁN DIPLOMAMUNKA

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

INFORMATIKAI KAR SAVARIA MŰSZAKI INTÉZET

DIPLOMAMUNKÁK

EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR SAVARIA MŰSZAKI INTÉZET

HORVÁTH MILÁN DIPLOMAMUNKA

Diplomamunka

Konzulens:

Őri Zsuzsanna termékfejlesztő

Kiss Henrik műszaki oktató Témavezető:

Bátorfi János György egyetemi tanársegéd

ZÁRADÉK

Ez a diplomamunka elzártan kezelendő és őrzendő, a hozzáférése a vonatkozó szabályok szerint korlátozott, a diplomamunka tartalmát csak az arra feljogosított személyek ismerhetik.

A korlátozott hozzáférés időtartamának lejártáig az arra feljogosítottakon kívül csak a korlátozást kérelmező személy vagy gazdálkodó szervezet írásos engedélyéjével rendelkező személy nyerhet betekintést a diplomamunka tartalmába.

A hozzáférés korlátozása és a zárt kezelés 2034 január 31. napján ér véget.

Szombathely, 2024. 01. 31.

 ${\bf Placeholder\ for\ feladatkiir as.pdf}$

NYILATKOZATOK

Nyilatkozat az önálló munkáról

Alulírott, Horváth Milán (MYQGQ0), az Eötvös Loránd Tudományegyetem hallgatója, büntetőjogi és fegyelmi felelősségem tudatában kijelentem és sajátkezű aláírásommal igazolom, hogy ezt a diplomamunkát meg nem engedett segítség nélkül, saját magam készítettem, és diplomamunkámban csak a megadott forrásokat használtam fel. Minden olyan részt, melyet szó szerint vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a hatályos előírásoknak megfelelően, a forrás megadásával megjelöltem.

Ennek a diplomamunkának önálló, eredeti szerzője vagyok, ez az önálló szellemi alkotás jogtisztaság szempontjából megfelel az "Eötvös Loránd Tudományegyetem Szervezeti és Működési Szabályzata, II. kötet, Hallgatói Követelményrendszer. Módosításokkal egybeszerkesztett változat [2017. szeptember 1.]" c. szabályzat 74/A–74/C. §-aiban foglalt rendelkezéseknek.

Szombathely, 2025. október 5.	
	$hall gat \acute{o}$

Tartalomjegyzék

Εl	őszó			ix
Je	Jelölések jegyzéke			X
1.	Iroc	lalmi á	ittekintés	1
	1.1.	Képlél	keny alakítás elméleti alapjai	2
		1.1.1.	Rugalmas és képlékeny alakváltozás	2
		1.1.2.	Feszültség-alakváltozás kapcsolata, szakítódiagram	2
	1.2.	Mikro	szerkezettől a tervezésig	2
	1.3.	Lemez	zek képlékeny anizotrópiája	2
		1.3.1.	Az anizotrópia	2
		1.3.2.	Lankford-tényező	2
		1.3.3.	Csúcsosodás, az anizotrópia közvetlen hatása	2
		1.3.4.	Ideális mélyhúzható lemez	2
	1.4.	A mél	yhúzás technológiája	2
		1.4.1.	A mélyhúzás alapelvei, fázisai	2
		1.4.2.	Meghatározó technológiai paraméterek	2
		1.4.3.	A mélyhúzás tipikus hibái és azok okai	2
		1.4.4.	A mélyhúzás, mint egyensúlyi folyamat	2
	1.5.	Mélyh	úzó szerszámok tervezése	2
		1.5.1.	A szerszám felépítése	2
		1.5.2.	A szerszámgeometria szerepe	2
		1.5.3.	Technológiai erők számítása	2
	1.6	Végese	elem módszer	2

	1.6.1.	Végeselem módszer alapelvei	2
	1.6.2.	Mélyhúzási folyamat szimulációja VEM-mel	2
	1.6.3.	Anyagmodellek	2
2.	Anyagok é	és módszerek	3
3.	Szerszámk	ialakítás	4
4.	Mérési ere	edmények értékelése	5
5.	Összefogla	ılás	6

Előszó

Már a középiskolás éveim során érdeklődtem a 3D tervezés, a CAD-CAM világa felé. Gépi forgácsoló szakmámból kifolyólag elég régóta kürölvesz engem a gépészeti világ és akkor jött a gondolat, mi lenne ha jelentkeznék egyetemre. Életem egyik legjobb döntése volt a gépészmérnöki képzés elkezdése. Rengeteg új információval gazdagodtam, sokkal jobban el tudtam mélyülni a CAD-CAM rendszerekben, valamint megismerkedtem számomra addig teljesen ismeretlen módszerekkel. Az egyik ilyen volt a végeselem analízis. Ez a terület tetszett meg a legjobban a képzés során, rengeteg lehetőség rejlik benne. A diplomamunka téma kiválasztásánál számomra fontos volt, hogy a CAD-CAM, valamint a végeselem analízis szerepet kapjanak az elkészítés során.

 $\sim \sim \sim$

Köszönetnyilvánítás

Elsőként szeretném megköszönni a TDK Hungary Components Kft.-nek, hogy a gépészmérnöki képzésem alatt biztosítottak számomra duális gyakorlati helyet, valamint hogy támogatták a diplomamunkám minőségi elkészültét. Szeretném megköszönni az Eurosolid Zrt.-nek, hogy biztosították számomra a Soldiworks 2022 Student Edition CAD szoftvert, amellyel a modelleket készítettem el.

Szombathely, 2025. október 5.

Horváth Milán

Jelölések

A táblázatban a többször előforduló jelölések magyar és angol nyelvű elnevezése, valamint a fizikai mennyiségek esetén annak mértékegysége található. Az egyes mennyiségek jelölése – ahol lehetséges – megegyezik hazai és a nemzetközi szakirodalomban elfogadott jelölésekkel. A ritkán alkalmazott jelölések magyarázata első előfordulási helyüknél található.

Latin betűk

Jelölés	Megnevezés, megjegyzés, érték	Mértékegység
E	Rugalmassági modulusz	GPa
F	erő	N
S	keresztmetszet	mm^2

Görög betűk

Jelölés	Megnevezés, megjegyzés, érték	Mértékegység
ε	alakváltozás	1
σ	feszültség	MPa

Indexek, kitevők

Jelölés	s Megnevezés, értelmezés	
e	elem	
max	maximális érték	

Irodalmi áttekintés

1.1. Képlékeny alakítás elméleti alapjai

- 1.1.1. Rugalmas és képlékeny alakváltozás
- 1.1.2. Feszültség-alakváltozás kapcsolata, szakítódiagram
- 1.2. Mikroszerkezettől a tervezésig

1.3. Lemezek képlékeny anizotrópiája

- 1.3.1. Az anizotrópia
- 1.3.2. Lankford-tényező
- 1.3.3. Csúcsosodás, az anizotrópia közvetlen hatása
- 1.3.4. Ideális mélyhúzható lemez

1.4. A mélyhúzás technológiája

- 1.4.1. A mélyhúzás alapelvei, fázisai
- 1.4.2. Meghatározó technológiai paraméterek
- 1.4.3. A mélyhúzás tipikus hibái és azok okai
- 1.4.4. A mélyhúzás, mint egyensúlyi folyamat

1.5. Mélyhúzó szerszámok tervezése

- 1.5.1. A szerszám felépítése
- 1.5.2. A szerszámgeometria szerepe

Anyagok és módszerek

Szerszámkialakítás

Mérési eredmények értékelése

Összefoglalás

Melléklet A

Melléklet B