Math 510B Notes

Peter Kagey

January 15, 2019

Corollary. If R is a principal ideal domain (PID) then R is also a unique factorization domain (UFD).

Proof. It is sufficient to show that a PID satisfies the hypotheses of the previous theorem.

Proof of (a). Assume that $\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \ldots$ is a chain of (principal) ideals. Then define the ideal $I = \bigcup_{i \geq 1} \langle a_i \rangle$. Since R is a PID, $I = \langle b \rangle$ for some b. Since there exists some m such that $b \in \langle a_m \rangle$, so the chain is constant after $\langle a_m \rangle$.

Proof of (b) (similar to argument for \mathbb{Z}). Assume that p is irreducible, and $p \mid ab$. If $p \mid a$, then we're done, so assume $p \nmid a$. Since p is irreducible, gcd(p, a) = 1, so there exist $x, y \in R$ such that xp + ya = 1 and thus xpb + yab = b since $p \mid ab$, p can be factored from the left-hand side, and thus $p \mid b$, and p is prime.

Note. Euclidean domains (e.g. $\mathbb{Z}[i]$) are PIDs and PIDs are UFDs.

Theorem. If D is a UFD then so it D[x].

Corollary. Let k be a field. Then the ring $k[x_1, x_2, ..., x_n]$ is a UFD.

Lemmas.

- 1. If D is an integral domain then so is D[x].
- 2. If D is a UFD then greatest common divisors exist.

Proof.

1. Assume that $p(x) \cdot q(x) = 0$. For the sake of contradiction, assume we can write each polynomial as

$$(\underbrace{a_n x^n + \ldots + a_0}_{p(x)})(\underbrace{b_m x^m + \ldots + b_0}_{q(x)}) = a_n b_m x^{n+m} + \ldots + a_0 b_0$$

with a_n and b_m nonzero. Then since D is an integral domain, $a_n b_m \neq 0$ so $p(x) \cdot q(x)$ has degree n+m, and so is nonzero. Thus if $p(x) \cdot q(x) = 0$ either p(x) or q(x) is zero.

2. Given $a, b \neq 0$ look at irreducible factorizations of both, and then gcd(a, b) is the product of the factors which are the same up to unit.

(Note: cannot use $\langle a \rangle + \langle b \rangle = \langle d \rangle$ because $\langle a \rangle + \langle b \rangle$ might not be principal.)

Example. The ring $\mathbb{Z}[x]$ is a UFD but not a PID. In particular, the ideal $I = \langle 2, x \rangle$ is not principal. If $\langle 2, x \rangle = \langle f(x) \rangle$ then $2 \in \langle f(x) \rangle$ so $f(x) \in \mathbb{Z}$, but then $x \notin \langle f(x) \rangle$.

Example. The ring F[x, y] with F a UFD is itself a UFD by a previous theorem. Notice that x and y are primes since $R/\langle x \rangle \simeq F[y]$ is a domain, so $\langle x \rangle$ is a prime ideal and thus x is a prime element.

Definitions. Let D be a UFD and let R = D[x].

- 1. The content C(f) is the gcd of the coefficients of f in D. (e.g. If $f(x)=4x^2+6x+8\in\mathbb{Z}[x]$, then C(f)=2)
- 2. The polynomial f(x) is called primitive if C(f) = 1.

Note. Any polynomial can be factored as $f(x) = C(f)f_1(x)$ where $f_1(x)$ is primitive.

Lemma. (Gauss's Lemma)

If $f, g \in D[x]$ are both primitive then their product fg is primitive.

Proof. By contrapositive, assume fg is not primitive, that is $C(fg) \neq 1$. Then there exists a prime $p \in D$ such that $p \mid C(fg)$. Consider the homomorphism $\phi \colon D[x] \to D/\langle p \rangle [x]$ which maps all coefficients modulo p. Since p is chosen to be a prime, $D/\langle p \rangle$ is a domain, so $\phi(fg) = \overline{0} = \phi(f)\phi(g)$ implies that $p \mid C(f)$ or $p \mid C(g)$, a contradiction.

Corollary. The content of a product is the product of the content up to unit. That is, $C(fg) \approx C(f)C(g)$ where \approx means "up to unit".

Fact. Any integral domain D has a field of fractions $K = S/\sim$ where is the set of pairs $S = D \times D$, and $(a,b) \sim (c,d)$ if ad = bc.