Data Science Project

10/17/2016

Goal of the Project:

• Company XYZ is a food delivery company. They have been relying significantly on online ads.

• At the moment, they are running 40 different ad campaigns and would like to understand their performance.

Specific Tasks:

- Identify the 5 best ad groups
- Predict how many ads will be shown on Dec, 15 for each campaign
- Cluster ads into 3 groups based on the trend of avg_cost_per_click

Data Exploration:

• Data Shape: (2115,7)

	date	shown	clicked	converted	avg_cost_per_click	total_revenue	ad
0	2015-10-01	65877	2339	43	0.90	641.62	ad_group_1

- Missing Values
- Outlier

Task 1: Identify the 5 Best Ad Groups

• Metric:

•
$$CRT = \frac{Clicks}{Impressoin} * 100\%$$

• Measures how many people see your ads and whether they engage with the ads

Pros & Cons:

Task 2:Predict #of ads to be shown on Dec, 15

- Data type
 - Cross-sectional
 - Time series
 - Panel data

Plot Series Data

Statistical Tests Performed:

- Augmented Dickey–Fuller test
- adf=sm.tsa.adfuller(ads_s, maxlag=None, regression='nc', autolag='AIC', store=False, regresults=False)
- 1. Test for a unit root:

$$abla y_t = \delta y_{t-1} + u_t$$

2. Test for a unit root with drift:

$$abla y_t = a_0 + \delta y_{t-1} + u_t$$

3. Test for a unit root with drift and deterministic time trend:

$$abla y_t = a_0 + a_1 t + \delta y_{t-1} + u_t$$

Check for Autocorrelations:

Model Selection:

• Criteria:

$$AIC = -2\log(L) + 2(p+q+k+1)$$
 $AICc = AIC + (2(p+q+k+1)(p+q+k+2))/(T-p-q-k-2)$
 $BIC = AIC + (\log(T) - 2)(p+q+k+1)$

Model Selection:

- ARIMA(p,d,q): x13_arima_select_order
 - Perform automatic seasonal ARIMA order identification using x12/x13 ARIMA
- AMRM(p,q): arma_order_select_ic

$$X_t = c + arepsilon_t + \sum_{i=1}^p arphi_i X_{t-i} + \sum_{i=1}^q heta_i arepsilon_{t-i}$$

Model Output:

ARMA Model Results

Dep. Variable:	shown	No. Observations:	53
Model:	ARMA(1, 2)	Log Likelihood	-490.101
Method:	css-mle	S.D. of innovations	2492.424
Date:	Sun, 16 Oct 2016	AIC	990.202
Time:	21:44:15	віс	1000.054
Sample:	10-01-2015	HQIC	993.991
	- 11-22-2015		

	coef	std err	z	P> z	[95.0% Conf. Int.]
const	6.939e+04	532.941	130.208	0.000	6.83e+04 7.04e+04
ar.L1.shown	-0.8189	0.127	-6.456	0.000	-1.068 -0.570
ma.L1.shown	1.2858	0.192	6.691	0.000	0.909 1.662
ma.L2.shown	0.5662	0.142	3.978	0.000	0.287 0.845

^{-1.2211 +0.0000}j 1.2211 0.5000 -1.1353 -0.6907j 1.3289 -0.4130 -1.1353 +0.6907j 1.3289 0.4130

Model Performance:

- In sample fit:
 - P-value
 - $\varepsilon_t \sim N(\mu, \sigma^2)$, iid
 - Mean Absolute Error
- Out of Time Prediction

Potential Improvement:

- Data transformation
- ARCH/GARCH
- VAR

Task 3: Cluster ads into 3 groups

Pearson Correlation Coefficient

•
$$\rho = \frac{cov(avg_cost_per_click, days_past)}{\sigma_{avg_cost_per_click}\sigma_{days_past}}$$

- Scipy
 - stats.pearsonr (avg_cost_per_click, days_past)

Q & A:

Thank you!

