

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelorarbeit in Informatik

Myriad – a mailmerge tool for massive parallel, yet individual email conversations

Ludwig Schubert

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelorarbeit in Informatik

Myriad – a mailmerge tool for massive parallel, yet individual email conversations

Myriad – ein Serienbrief Email-Tool für hochgradig parallele, jedoch individualisierte Emailkonversationen

Author: Ludwig Schubert

Supervisor: Prof. Dr. Johann Schlichter

Advisor: Dr. Wolfgang Wörndl

Date: September 30, 2013

Ich versichere, dass ich diese Bachelorarbeit s Quellen und Hilfsmittel verwendet habe.	selbständig verfasst und nur die angegebenen
München, den 30. September 2013	Ludwig Schubert

Abstract

This thesis introduces the myriad system for email mass communication.

Despite its age, Email has remained the prevalent form of electronic communication, it's usage being wildly different from how it was imagined. The tools to handle it, however, are still stuck in their original UI metaphors.

Myriad aims at producing personalized communication on a comparable level to manually composed messages, while reducing user effort. A cross-over of mailmerge and customer support/helpdesk software, it enables managing big volumes of bidirectional email-based communication. It is based on a self-developed framework for separating information extraction, decision-making, and personalization steps in communication.

The myriad system consists of a server component that handles interfacing with email servers, a core logic system and a web frontend for users.

It can be tested at http://myriad.ludwigschubert.de.

Keywords

Email, Workflow, He Assisted Templating,		lized Communica	tion,

Acknowledgements

This thesis is based on research conducted from October 2012 through April 2013 together with Christian Ikas, Barış Öztop and Nicolas Kokkalis under the guidance of *Prof. Michael S. Bernstein* and *Prof. Scott R. Klemmer* during a stay at Stanford University's Human Computer Interaction Department.

The research stay was partly financed by Elitenetzwerk Bayern through a grant to the study program *Technology Management* at the Center for Digital Technology and Management.

Contents

Di	sclai	mer		v
Al	ostrac	:t		vii
Ac	knov	vledge	ments	ix
Та	ble o	f Conte	ents	xi
M	ain N	Matter		3
1.	Intro	oductio	on	3
	1.1.	Outlin	ne	3
	1.2.	Motiv	ation	4
	1.3.	Goals	and Background	4
2.	Tech	nical I	Backgrounds	5
	2.1.	Web A	Applications	6
		2.1.1.	Why build a web application instead of a native one?	6
		2.1.2.	Main Components of a Web Application	6
		2.1.3.	Rails and Ruby	6
	2.2.	Email	Systems	6
		2.2.1.	Working with RFC 2822	6
		2.2.2.	IMAP and SMTP	6
	2.3.	Worki	flow Systems	6

		2.3.1.	History of Workflow Systems	6
		2.3.2.	Famous Examples	6
3.	Com	pariso	n with similar systems	7
	3.1.	Mailm	erge Systems	7
		3.1.1.	CRM Systems	7
		3.1.2.	Dedicated Mailmerge Systems	7
		3.1.3.	Backend Services	7
	3.2.	Custon	mer Support Systems	7
4.	Con	cept		9
	4.1.	Functi	onal Analysis	10
	4.2.	Produ	ct Functions	10
	4.3.	User I	nterface	10
		4.3.1.	Prototyping Approaches	10
	4.4.	Techni	cal Analysis	10
		4.4.1.	Runtime Environment	10
		4.4.2.	Server Software Stack	10
		4.4.3.	Client Side	10
		4.4.4.	Backend Service Connections	10
	4.5.	Systen	n Design	10
		4.5.1.	Database Schema	10
		4.5.2.	Distribution of System Components	10
5.	Imp	lement	ation	11
	5.1.	Prepar	ration and Tools	12
		5.1.1.	Development Environment	12
		5.1.2.	Collaborative Development	12
		5.1.3.	Deployment	12
	5.2.	Server	Component	12
		5.2.1.	Core Classes and their Interaction	12
		5.2.2.	Workers and their Jobs	12

		5.2.3.	Maintenance and Rake Tasks	12
	5.3.	Backer	nd Services Connection	12
		5.3.1.	Email Fetching	12
		5.3.2.	Google Docs Syncing	12
	5.4.	"Best	Practices"	12
		5.4.1.	Core Extensions	12
		5.4.2.	Lean Workers with AbstractWorker	12
		5.4.3.	Monitoring Services	12
6.	Eval	luation		13
	6.1.	Comp	arison with Initial Goals	13
	6.2.	Obser	ved Use Cases	13
		6.2.1.	Recruiting Exchange Students for one of the Most Desired Universi-	
			ties of the World	13
		6.2.2.	Requesting paper Reviews for a Journal	13
		6.2.3.	Managing Incoming Class Administration Emails	13
7.	Con	clusion	ı	15
	7.1.	Concl	usion of this work	15
	7.2.	Discus	ssion of results	15
	7.3.	Future	e Work	15
Bi	bliog	raphy		17
Li	st of l	Figures		19
$\mathbf{A}_{]}$	ppen	dix		23
A.	Sele	cted So	ource Code Examples	23
В.	UM	L Diag	rams over time	25
	B.1.	Usage	of UML Diagrams for internal communication	25
	B.2.	Stabili	ty of UML Diagrams over time	25

C. Colophon 31

Main Matter

1. Introduction

This is the introduction.

1.1. Outline

This chapter will give an overview and arguments for the relevance of new Email tools, as well the goals pursued by this thesis. Additionally, the structure of the work is explained.

In **chapter 2**, **Technical Backgrounds**, relevant technical background information is provided. The decision to build a web app is motivated. Standard-compliant email systems are explained and relevant standards are introduced. Lastly, an introduction to workflow systems and historic examples is given.

In **chapter 3**, **Comparison with similar systems**, two major categories of software – dedicated mailmerge systems, and customer support systems – are introduced, which overlap in functionality with Myriad.

In **chapter 4**, **Concept**, the architecture of the proposed system is motivated and its development process is highlighted.

1. Introduction

In **chapter 5**, **Implementation**, is concerned with technical details of how Myriad was implemented. The collaborative development process is described, as are actual system component and their functionality.

In **chapter 6**, **Evaluation**, Myriad's initial goals will be reiterated and contrasted with real world observed usage.

In **chapter 7**, **Conclusion**, the relevance of this system and the proposed framework is discussed; future work is outlined and possible directions proposed.

This is followed by a **Bibliography** of cited works and a **List of Figures**.

The **Appendix** contains selected source code examples, the development of the system design over time in UML Diagrams, and a **Colophon**.

1.2. Motivation

1.3. Goals and Background

2. Technical Backgrounds

	2.1.	Web	App]	licati	ions
--	------	-----	------	--------	------

- 2.1.1. Why build a web application instead of a native one?
- 2.1.2. Main Components of a Web Application
- 2.1.3. Rails and Ruby
- 2.2. Email Systems
- 2.2.1. Working with RFC 2822
- 2.2.2. IMAP and SMTP
- 2.3. Workflow Systems
- 2.3.1. History of Workflow Systems

3. Comparison with similar systems

3.1. Mailmerge Systems
3.1.1. CRM Systems
3.1.2. Dedicated Mailmerge Systems
3.1.3. Backend Services
Amazon SES

SendGrid

3.	Comparison	with	simil	lar si	vstems
∵ .	Companison	VVILIL	JIIIII	ui s	

4. Concept

4.1.	Functional	Ana	lysis
			.,

4.2. Product Functions

4.3. User Interface

4.3.1. Prototyping Approaches

4.4. Technical Analysis

4.4.1. Runtime Environment

4.4.2. Server Software Stack

4.4.3. Client Side

4.4.4. Backend Service Connections

Google Mail

5. Implementation

5.1. Preparation and Tools	
5.1.1. Development Environment	
5.1.2. Collaborative Development	
git, gitflow and Github	
5.1.3. Deployment	
Deployment Tool Capistrano	
5.2. Server Component	

5.2.1. Core Classes and their Interaction

Contact

Template

12

Email

6. Evaluation

- 6.1. Comparison with Initial Goals
- 6.2. Observed Use Cases
- 6.2.1. Recruiting Exchange Students for one of the Most Desired Universities of the World
- 6.2.2. Requesting paper Reviews for a Journal
- 6.2.3. Managing Incoming Class Administration Emails

7. Conclusion

- 7.1. Conclusion of this work
- 7.2. Discussion of results
- **7.3. Future Work**

Bibliography

[1] Leslie Lamport. LaTeX: A Documentation Preparation System User's Guide and Reference Manual. Addison-Wesley Professional, 1994.

List of Figures

B.1.	The first stable UML Diagram from January 24^{th} still had separate <code>Email</code>	
	and contacts_messages tables, no rule automation and a semantically	
	incomplete model of Emails which didn't discern between user generated	
	emails and system generated emails	27
B.2.	The second UML Diagram from May 28th fixed most of the aforementioned	
	problems and already introduced optimizations such as extracting the Raw-	
	Mail content to a different table. Those had become necessary when support	
	for attachments was introduced.	28
B.3.	This third UML Diagram from May 29^{th} finally tamed the <code>Email</code> inheri-	
	tance tree, and also introduced improvements to legibility for the first time.	29
B.4.	By the time of this fourth UML Diagram from April 18 th only minor im-	
	provements were still made to the system design, such as adding $\verb ValueSetti $	ngAction ${f s}$
	and supporting assistants via SharingAssignments.	30

Appendix

A. Selected Source Code Examples

```
1
    class Notification < ActiveRecord::Base</pre>
2
       belongs_to :user
3
       attr_accessible :user, :message, :resource_id, :resource_type
4
5
       def resource
6
         @resource ||= resource_class.find resource_id
7
       rescue ActiveRecord::RecordNotFound
8
         <u>nil</u>
9
       <u>end</u>
10
11
       def resource_class
12
         resource_type.classify.constantize
13
       end
14
15
       def has_resource?
16
         should_have_resource? and resource.present?
17
       <u>end</u>
18
       def should_have_resource?
20
         resource_type.present? and resource_id.present?
       end
22
23
    end
```

B. UML Diagrams over time

Test esetnetcyiegslcsgeycagfjegsf

B.1. Usage of UML Diagrams for internal communication

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

B.2. Stability of UML Diagrams over time

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend

at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Figure B.1.: The first stable UML Diagram from January 24th still had separate Email and contacts_messages tables, no rule automation and a semantically incomplete model of Emails which didn't discern between user generated emails and system generated emails.

Figure B.2.: The second UML Diagram from May 28th fixed most of the aforementioned problems and already introduced optimizations such as extracting the Raw-Mail content to a different table. Those had become necessary when support for attachments was introduced.

Figure B.3.: This third UML Diagram from May 29th finally tamed the Email inheritance tree, and also introduced improvements to legibility for the first time.

Figure B.4.: By the time of this fourth UML Diagram from April 18th only minor improvements were still made to the system design, such as adding ValueSettingActions and supporting assistants via

C. Colophon

This thesis is set in LaTeX[1]. The template used is based on the official TUM Computer Science template. The sources are hosted publicly on GitHub, while the actual PDF file is built by the continuous integration server Travis.