Contents

1	Fur	ndemental Group	2		
2		vering Space Basic Definitions	3		
•			5		
3	67 6				
		Basic definition			
	3.2	Exact Sequence	7		
		Homology			
Index					

1

Fundemental Group

Covering Space

2.1 Basic Definitions

Definition 2.1.1 ▶ Covering Space

Let $p: \bar{X} \to X$ be a surjective map.

• We say an open subset V of \bar{X} is *evenly coverd* by p, if $p^{-1}(V)$ is a disjoint union of open subsets of \bar{X} :

$$p^{-1}(V) = \coprod_{i} U_{i}$$

where, each U_i is maped homeomorphically onto V by p.

- In this case, we shall refer to each U_i as a **sheet** for p over V.
- If the space X can be covered by open subsets which are evenly covered by p, then we say that p is a *covering projection*; the space \bar{X} is called a covering space of X.

Theorem 2.1.2

Let $p: \bar{X} \to X$ be a contininuous map, where X is locally path connected.

- 1. The map p is a covering space iff for each componet \bar{C} of \bar{X} , the restriction map $p: p^{-1}(C) \to C$ is a covering projection.
- 2. If p is a covering projection then for each component \bar{C} of \bar{X} , the map $p:\bar{C}\to p(\bar{C})$ is a covering projection and $p(\bar{C})$ is a component of X.

Remark.

Thus, we always assume that *a* covering space is locally path connected and connected. For the following content, unless otherwise specified, we will all adopt this assumption.

Proposition 2.1.3

Let $p: \bar{X} \to X$ be a covering projection. If X is Hausdorff then \bar{X} is Hausdorff. Further, if p is finite-to-one, then show that if \bar{X} is Hausdorff then X is Hausdorff.

Note.

I haven't finish the proof of the second part yet. Actually, if a covering projection is proper it is also closed. Once we have this conclusion we can then finish the proof easilly.

Proof. 1. Take two different points $\bar{x}, \bar{y} \in \bar{X}$. Denote $x := p(\bar{x}), y := p(\bar{y})$.

- (a) If $x \neq y$: Since X is Haussdorff, there exists two open sets U, V such that $x \in U, y \in V, U \cap V = \emptyset$. We have $p^{-1}(U), p^{-1}(V)$ are two open subsets of \bar{X} with $p^{-1}(U) \cap p^{-1}(V) = \emptyset$. Since $\bar{x} \in p^{-1}(U), \bar{y} \in p^{-1}(V)$, it shows that \bar{X} is Haussdorff.
- (b) If x = y: Let W be a open neighbourhood of x = y. We write $p^{-1}(W) = \coprod_i W_i$. Since $\bar{x}, \bar{y} \in \coprod_i W_i$ and any two W_i are disjoint, there are two different W_{i_1}, W_{i_2} such that $\bar{x} \in W_{i_1}, \bar{y} \in W_{i_2}$.

The above shows that \bar{X} is Hausdorff.

2. Take two different points $x, y \in X$. Then $p^{-1}(x), p^{-1}(y)$ are two finite sets of \bar{X} with empty intersection. We write

$$p^{-1}(x) = \{\bar{x}_i\}_{i=1}^n, \quad p^{-1}(y) = \{\bar{y}_i\}_{i=1}^n$$

For each $i = 1, \dots, n$, let $U_i \ni \bar{x}_i, V_i \ni \bar{y}_i, U_i \cap V_i = \emptyset$. Then $p\left(\bigcup_i U_i\right) \cap p\left(\bigcup_i V_i\right) = \emptyset, x \in p\left(\bigcup_i U_i\right), y \in p\left(\bigcup_i V_i\right)$.

Basic Homology Algebra

3.1 Basic definition

Definition 3.1.1

Consider a direct sum

$$C_{\cdot} := C_* := \bigoplus_{n \in \mathbb{Z}} C_n$$

of R-modules^a. Often we call C_* a *graded-module* with its nth *graded component* C_n . Members of C_n are also called *homogeneous elements* of C_* of degree n.

- 1. A **R-module homomorphism** $f: C_* \to C'_*$ is called a graded homomorphism if there exists d such that $f(C_r) \subseteq C'_{r+d}$ for all r. We then call d the degree of f. We shall denote $f|_{C_r}$ by f_r , and often we may simply write f itself for f_r provided that there is no confusion.
- 2. By a *chain complex* (C_*, ∂) of R -modules, we mean a graded R-module C_* , together with an endomorphism $\partial := \partial_* : C_* \to C_*$ of degree -1 with the property $\partial \circ \partial = 0$. The endomorphism ∂ is called the *differential* or the *boundry map* of the chain complex. Often we shall not mention the ∂ at all and merely say C_* is a chain complex.
- 3. If C and C_* are two chain complexes then by a *chain map* $f = f_*$: $C_* \rightarrow C'_*$ we mean a graded module homomorphism of degree 0 that commutes with the corresponding differentials.

Remark.

- 1. The direct sum C_* is also an R-module.
- 2. Observe that ∂ consists of a sequence $\{\partial_n: C_n \to C_{n-1}\}$ of R-module homomorphisms such that $\partial_n \circ \partial_{n-1} = 0$ for all n.
- 3. f consists of a sequence $\{f_n': C_n^{n-1} \to C_n'\}$ of R-module homomorphisms such that $\partial_n' \circ f_n = f_{n-1} \circ \partial_n$ for all n. Expressed with an

^ais also a R-module

 \bigcirc

diagram, that is

$$C_{n} \xrightarrow{\partial_{n}} C_{n-1}$$

$$\downarrow^{f_{n}} \qquad \downarrow^{f_{n-1}}$$

$$C'_{n} \xrightarrow{\partial'_{n}} C'_{n-1}$$

Proposition 3.1.2

There is a category of chain complexes of R-modules and chain maps. We shall denote this category by $\mathbf{Ch}_{\mathbf{R}}$.

Proof. The objects are chain complexes. The morphisms are chain maps. For composition of morphisms, consider two chain maps $f: C_* \to C'_*$, $g: C'_* \to C''_*$. Only need to show that the following diagram commutes

$$C_{n} \xrightarrow{\partial_{n}} C_{n-1}$$

$$\downarrow^{f_{n}} \qquad \downarrow^{f_{n-1}}$$

$$C'_{n} \xrightarrow{\partial'_{n}} C'_{n-1}$$

$$\downarrow^{f'_{n}} \qquad \downarrow^{f'_{n-1}}$$

$$C''_{n} \xrightarrow{\partial''_{n}} C''_{n-1}$$

which is obvious. Finally, the existence of the identity map is also obvious.

Definition 3.1.3 ► **Direct Sum of Chain Complexes**

Definthe the direct sum of a family of chain complexes $\{(C^{\alpha}, \partial^{\alpha})\}_{\alpha \in \Lambda}$ as the chain complexes $(C, \partial) := (\bigoplus_{\alpha} C^{\alpha}, \bigoplus_{\alpha} \partial^{\alpha})$, where the n^{th} graded component of C is

$$C_n = \left(C_n^{\alpha}\right)_{\alpha \in \Lambda},$$

 ∂ is defined as

$$\partial\left(\left(c^{\alpha}\right)_{\alpha\in\Lambda}\right):=\left(\partial^{\alpha}\left(c^{\alpha}\right)\right)_{\alpha\in\Lambda}$$

3.2 Exact Sequence

Definition 3.2.1 ► Exact Sequence

1. A sequence of *R*-modules

$$M' \xrightarrow{\alpha} M \xrightarrow{\beta} M''$$

is said to be *exact* at *M* if ker $\beta = \text{Im } \alpha$.

2. A sequence

$$\cdots \longrightarrow M_{n-1} \longrightarrow M_n \longrightarrow M_{n+1} \longrightarrow \cdots$$

is said to be exact if it is exact at each M_n .

3. By a short exact sequence we mean an exact sequence of the form

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

Definition 3.2.2 ► Exact Sequence of Chain Complexes

A sequence of chain complexes and chain maps

$$0 \longrightarrow C'. \xrightarrow{f.} C. \xrightarrow{g.} C''. \longrightarrow 0$$

is said to be exact if for each n the corresponding sequence of modules

$$0 \longrightarrow C'_n \stackrel{f_n}{\longrightarrow} C_n \stackrel{g_n}{\longrightarrow} C''_n \longrightarrow 0$$

is exact.

Lemma 3.2.3 ▶ Snake lemma

Given a commutative diagram of *R*-module homomorphisms: where the two horizontal sequences are exact, there exists a *R*-module homomorphism

$$\begin{array}{ccc}
M' & \xrightarrow{\alpha} & M & \xrightarrow{\beta} & M'' & \longrightarrow & 0 \\
\downarrow^{f'} & & \downarrow^{f} & & \downarrow^{f''} \\
0 & \longrightarrow & N' & \xrightarrow{\alpha'} & N & \xrightarrow{\beta'} & N''
\end{array}$$

 $\delta: \operatorname{Ker} f'' \longrightarrow \operatorname{Coker} f',$ called the *connecting homomorphism* such that the sequence

$$\operatorname{Ker} f' \xrightarrow{\bar{\alpha}} \operatorname{Ker} f \xrightarrow{\bar{\beta}} \operatorname{Ker} f'' \xrightarrow{\delta} \operatorname{Coker} f' \xrightarrow{\bar{\alpha'}} \operatorname{Coker} f \xrightarrow{\bar{\beta'}} \operatorname{Coker} f''$$

is exact. Moreover, the *connecting homomorphism* δ has the naturality properties, so that the above assignment of a 'snake' to the corresponding 'six-term' exact sequence of modules defines a covariant functor.

Note.

最关键的信息是 *connetcting homomorphism* δ . 构造的过程就是借助 β 的是 surjective, α' 是 injectinve, 来调整使得 β 和 α' 对应的箭头是可以反转的. 事实上在应用时, 这个 connetcting homomorphism 的具体构造往往比它的存在性更重要.

Proof. to be finished We need to show

- 1. $\bar{\alpha}, \bar{\beta}$ are well defined, where $\bar{\alpha} := \alpha|_{\ker f'}, \bar{\beta} := \beta|_{\ker f}$
- 2. Im $\bar{\alpha} = \ker \bar{\beta}$.
- 3. $\bar{\alpha}', \bar{\beta}'$ are well defined, where $\bar{\alpha}'([x]) := [\alpha'(x)], \bar{\beta}'([y]) := [\beta'(y)]$
- 4. Im $\bar{\alpha}' = \ker \bar{\beta}'$
- 5. Construct a δ .
- 6. Im $\bar{\beta} = \ker \delta$
- 7. Im $\delta = \ker \bar{\alpha}'$

We prove the above points below.

- 1. By commutative, $f \circ \alpha(\ker f') = \alpha' \circ f'(\ker f') = 0$, which shows that $\alpha(\ker f') \subseteq \ker f$. Thus $\bar{\alpha}$ is well defined. $\bar{\beta}$'s is similar.
- 2.

 $\operatorname{Im} \bar{\alpha} = \alpha (\ker f') \subseteq \operatorname{Im} \alpha = \ker \beta \implies \beta (\operatorname{Im} \bar{\alpha}) = 0 \implies \operatorname{Im} \bar{\alpha} \subseteq \ker \bar{\beta}$ The other side,

$$\ker \bar{\beta} = \ker \beta \cap \ker f = \operatorname{Im} \alpha \cap \ker f$$

Take $y \in \ker \bar{\beta}$, there exists $x \in M'$ such that $y = \alpha(x)$ and $f(y) = f(\alpha(x)) = 0$. Since $f \circ \alpha = \alpha' \circ f'$, $\alpha' \circ f'(x) = 0$. Since α' is injective, $x \in \ker f'$. Thus $y \in \operatorname{Im} \bar{\alpha}$.

3. For $\bar{\alpha}'$, we need to show that for $x_1, x_2 \in N'$ such that $x_1 - x_2 \in \text{Im } f'$, $\alpha'(x_1) - \alpha'(x_2) \in \text{Im } f$. It is true by commutative

$$\alpha'(x_1) - \alpha'(x_2) = \alpha'(x_1 - x_2) \in \operatorname{Im}(\alpha' \circ f') = \operatorname{Im}(f \circ \alpha) \subseteq \operatorname{Im} f$$

 \bigcirc

 $\bar{\beta}'$'s is similar.

4. Take $[y]_{\sim \operatorname{Im} f} \in \operatorname{Im} \bar{\alpha}'$, then there exists $[x]_{\sim \operatorname{Im} f'} \in \operatorname{Coker} f'$, such that $\alpha'([x]_{\sim \operatorname{Im} f'}) = [y]_{\sim \operatorname{Im} f}$. Then $\alpha'(x) - y \in \operatorname{Im} f$, there exists $z \in M$, such that

$$\alpha'(x) - y = f(z)$$

By commutative and exactness: $\ker \beta' = \operatorname{Im} \alpha'$,

$$\beta'(y) = \beta'(\alpha'(x) - f(z)) = 0 - \beta' \circ f(z) = -f'' \circ \beta(z) \in \operatorname{Im} f''$$

, which shows that $\bar{\beta}'([y]_{\sim \operatorname{Im} f}) = [0]_{\sim \operatorname{Im} f''}$, $\operatorname{Im} \bar{\alpha}' \subseteq \ker \bar{\beta}'$.

Then, take $[y]_{\sim \operatorname{Im} f} \in \ker \bar{\beta}'$. Then $y \in \ker \beta' = \operatorname{Im} \alpha'$. There exists $x \in N'$ such that $y = \alpha'(x)$. Then $[y]_{\sim \operatorname{Im} f} = \alpha^{\bar{i}}([x]_{\sim \operatorname{Im} f'})$, $[y]_{\sim \operatorname{Im} f} \in \operatorname{Im} \bar{\alpha}'$, $\ker \bar{\beta}' \subseteq \operatorname{Im} \bar{\alpha}'$.

5. Take $z \in \ker f''$. Since β is surjective, there exists $y \in M$ such that $\beta(y) = z$. Once we show that $f(y) \in \operatorname{Im} \alpha'$, we can define

$$\delta(z) = \left[\left(\alpha' \right)^{-1} \left(f(y) \right) \right]_{\sim \operatorname{Im} f'}$$

provided that this definition is well defined. By commutative

$$\beta'(f(y)) = f''(\beta(y)) = f''(z) = 0.$$

Hence $f(y) \in \ker \beta' = \operatorname{Im} \alpha'$. Finally, to show that it is well defined, we take $z_1, z_2 \in \ker f''$ such that $\beta(y_1) = \beta(y_2) = z$. We need to show that $(\alpha')^{-1}(f(y_1 - y_2)) \in \operatorname{Im} f'$. Since $\beta(y_1) - \beta(y_2) = 0$, $\beta(y_1 - y_2) = 0$, $y_1 - y_2 \in \ker \beta = \operatorname{Im} \alpha$. Suppose $\alpha(x) = y_1 - y_2$. Then

$$(\alpha')^{-1} (f(y_1 - y_2)) = (\alpha')^{-1} (f\alpha(x)) = (\alpha')^{-1} (\alpha' \circ f')(x) = f'(x) \in \text{Im } f'$$

, which completes the proof.

Corollary 3.2.4

Consider the following commutative diagram of R-modules and R-linear maps in which the two rows are exact. If f_1 and f_3 are isomorphisms then so is f_2 .

$$0 \longrightarrow M_1 \xrightarrow{\alpha_1} M_2 \xrightarrow{\alpha_2} M_3 \longrightarrow 0$$

$$\downarrow^{f_1} \qquad \downarrow^{f_2} \qquad \downarrow^{f_3}$$

$$0 \longrightarrow N_1 \xrightarrow{\beta_1} N_2 \xrightarrow{\beta_2} N_3 \longrightarrow 0$$

Proof. By snake lemma, we have

$$0 \xrightarrow{\alpha_1} \ker f_2 \xrightarrow{\alpha_2} 0 \xrightarrow{\delta} 0 \xrightarrow{\beta_1} \operatorname{Coker} f_2 \xrightarrow{\beta_2} 0$$

is exact. Then we have

$$0 = \ker \alpha_2 = \operatorname{Im} \alpha_1 = 0$$
$$= \ker f_2$$

which shows that ker $f_2 = 0$. Similarly, Coker $f_2 = 0$. The above shows that f_2 is an isomorphisim.

Corollary 3.2.5 ▶ Four lemma

Consider the following commutative diagram of R modules and R-linear maps in which the two rows are exact. Suppose that f_1 is surjective and f_4 is injective. Then

- (i) f_2 is injective $\implies f_3$ is injective. (ii) f_3 is surjective $\implies f_2$ is surjective.

$$M_{1} \xrightarrow{\alpha_{1}} M_{2} \xrightarrow{\alpha_{2}} M_{3} \xrightarrow{\alpha_{3}} M_{4}$$

$$\downarrow^{f_{1}} \qquad \downarrow^{f_{2}} \qquad \downarrow^{f_{3}} \qquad \downarrow^{f_{4}}$$

$$N_{1} \xrightarrow{\beta_{1}} N_{2} \xrightarrow{\beta_{2}} N_{3} \xrightarrow{\beta_{3}} N_{4}$$

Proof sketch.

如果 f_3 被两个单射 f_2 , f_4 夹在中间, 得益于 f_1 是满射, 可以将右三列保持单射性 地调整为一条 snake, 从而导出 f_3 是单射.

类似地, 如果 f_2 被两个满射 f_1 , f_3 夹在中间, 得益于 f_4 是单射, 左三列可以保持 满射性地调整为一条 snake, 导出 f_2 是满射.

Proof. 1. We can construct a snake

$$M_{2}/\ker \alpha_{2} \xrightarrow{\alpha_{2}} M_{3} \xrightarrow{\alpha_{3}} \operatorname{Im} \alpha_{3} \longrightarrow 0$$

$$\downarrow^{\bar{f}_{2}} \qquad \downarrow^{f_{3}} \qquad \downarrow^{f_{4}|_{\operatorname{Im}\alpha_{3}}}$$

$$0 \longrightarrow N_{2}/\ker \beta_{2} \xrightarrow{\beta_{2}} N_{3} \xrightarrow{\beta_{3}} N_{4}$$

By snake lemma, the following sequence is exact

$$\ker \bar{f}_2 \to \ker f_3 \to \ker f_4|_{\operatorname{Im} \alpha_3}$$

Since f_4 is injective, $f_4|_{\mathrm{Im}_{\alpha_3}}$ is as well. Furthermore, by applying the snake lemma to the following diagram

$$M_{1} \xrightarrow{\alpha_{1}} M_{2} \xrightarrow{p} M_{2}/\ker \alpha_{2} \longrightarrow 0$$

$$\downarrow^{\bar{f}_{1}} \qquad \downarrow^{f_{2}} \qquad \downarrow^{\bar{f}_{2}}$$

$$0 \longrightarrow N_{1}/\ker \beta_{1} \xrightarrow{\bar{\beta_{1}}} N_{2} \xrightarrow{p} N_{2}/\ker \beta_{2}$$

We get

$$0 = \ker f_2 \to \ker \bar{f}_2 \xrightarrow{\delta} \operatorname{Coker} \bar{f}_1$$

is a exact suquence,where Coker $\bar{f}_1=0$ since f_1 is surjective and \bar{f}_1 is as well. It shows that $\ker \bar{f}_2=0$. Finally, we have the following sequence is exact

$$0 = \ker \bar{f}_2 \to \ker f_3 \to \ker f_4|_{\operatorname{Im}\alpha_3} = 0$$

It follows that ker $f_3 = 0$, f_3 is injective.

2. Another snake we can construct is

$$M_{1} \xrightarrow{\alpha_{1}} M_{2} \xrightarrow{\alpha_{2}} \operatorname{Im} \alpha_{2} = \ker \alpha_{3} \longrightarrow 0$$

$$\downarrow \bar{f}_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3|_{\operatorname{Im}}\alpha_{2}}$$

$$0 \longrightarrow N_{1}/\ker \beta_{1} \xrightarrow{\bar{\beta}_{1}} N_{2} \xrightarrow{\beta_{2}} \operatorname{Im} \beta_{2} = \ker \beta_{3}$$

Then by snake lemma, the following sequence is exact

$$\ker \bar{f}_1 \to \ker f_2 \to \ker f_3|_{\operatorname{Im}\alpha_2} \to \operatorname{Coker}\bar{f}_1 \to \operatorname{Coker}f_2 \to \operatorname{Coker}f_3|_{\operatorname{Im}\alpha_2}$$

 \bigcap

Furthermore, by applying the snake lemma to the following diagram

$$0 \longrightarrow \operatorname{Ker} \alpha_{3} \xrightarrow{\iota_{M}} M_{3} \xrightarrow{\alpha_{3}} \operatorname{Im} \alpha_{3} \longrightarrow 0$$

$$\downarrow^{f_{3}|_{\operatorname{Im}\alpha_{2}}} \downarrow^{f_{3}} \downarrow^{f_{4}|_{\operatorname{Im}\alpha_{3}}}$$

$$0 \longrightarrow \operatorname{Ker} \beta_{3} \xrightarrow{\iota_{N}} N_{3} \xrightarrow{\beta_{3}} \operatorname{Im} \beta_{3} \longrightarrow 0$$

We get

$$0 = \ker f_4|_{\operatorname{Im}\alpha_3} \xrightarrow{\delta} \operatorname{Coker}(f_3|_{\operatorname{Im}\alpha_2}) \to \operatorname{Coker}f_3 = 0$$

which shows that $\operatorname{Coker}(f_3|_{\operatorname{Im}\alpha_2})$. Finally, we have the following sequence exact

$$0 = \operatorname{Coker} \bar{f}_1 \to \operatorname{Coker} f_2 \to \operatorname{Coker} f_3|_{\operatorname{Im} \alpha_2} = 0$$

Thus Coker $f_2 = 0$, f_2 is surjective.

Corollary 3.2.6 ▶ Five lemma

In the following diagram of R-modules, the two rows are given to be exact. If f_1 , f_2 , f_4 and f_5 are isomorphisms then f_3 is also an isomorphism.

$$M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \longrightarrow M_{4} \longrightarrow M_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$M'_{1} \longrightarrow M'_{2} \longrightarrow M'_{3} \longrightarrow M'_{4} \longrightarrow M'_{5}$$

Proof. By applying the Four lemma to the left four columns, we get f_3 is injective. And by applying the Four lemma to the right four columns, we get f_3 is surjective.

3.3 Homology

Definition 3.3.1

Given a chain complex C_* , define the *homology group* of C_* to be the graded R-module

$$H_*(C_*) := \bigoplus_{n \in \mathbb{Z}} H_n(C_*)$$

by taking

$$H_n(C_*) := \operatorname{Ker} \partial_n / \operatorname{Im} \partial_{n+1}, \quad \forall n \in \mathbb{Z}.$$

Proposition 3.3.2

If $f: C_* \to C'_*$ is a chain map then f induces a graded homomorphism

$$H_*(f): H_*(C_*) \to H_*(C_*')$$

In addition, this has the natruality property, viz.,

- 1. $H_*(Id) = Id$
- 2. If g is another chain map such that $f \circ g$ is defined, then

$$H_*(f \circ g) = H_*(f) \circ H_*(g)$$

Thus, H_* is a *covariant functor* from the category of chain complexe to the category of graded modules.

Theorem 3.3.3

The homology of a direct sum of chain complexes is isomorphic to the direct sum of the homology of chain complexes.

Proof.

$$H_n\left(\bigoplus_{\alpha} C_*^{\alpha}\right) = \ker\left(\bigoplus_{\alpha} \partial_n^{\alpha}\right) / \operatorname{Im}\left(\bigoplus_{\alpha} \partial_{n+1}^{\alpha}\right)$$
$$\bigoplus_{\alpha} H_n\left(C_*^{\alpha}\right) = \bigoplus_{\alpha} \left(\ker \partial_n^{\alpha}/\operatorname{Im} \partial_{n+1}^{\alpha}\right)$$

There are obvious isomorphics:

$$\ker (\bigoplus_{\alpha} \partial_n^{\alpha}) \simeq \bigoplus_{\alpha} \ker \partial_n^{\alpha}, \quad \operatorname{Im} (\bigoplus_{\alpha} \partial_{n+1}^{\alpha}) \simeq \bigoplus_{\alpha} \operatorname{Im} \partial_{n+1}^{\alpha}$$

 \bigcirc

A standard result in algebra is that if K_{α} is a submodule of M_{α} , then

$$\frac{\bigoplus_{\alpha} M_{\alpha}}{\bigoplus_{\alpha} K_{\alpha}} \cong \bigoplus_{\alpha} \frac{M_{\alpha}}{K_{\alpha}}$$

. Hence, we have

$$\bigoplus_{\alpha} \ker \partial_n^{\alpha} / \bigoplus_{\alpha} \operatorname{Im} \partial_{n+1}^{\alpha} \simeq \bigoplus_{\alpha} \left(\ker \partial_n^{\alpha} / \operatorname{Im}_{n+1}^{\alpha} \right)$$

Theorem 3.3.4

Given a short exact sequence of chain complexes

$$0 \to C'_* \xrightarrow{\alpha} C_* \xrightarrow{\beta} C''_* \to 0$$

there is a functorial long exact sequence of homology groups

$$\to H_n(C_*') \xrightarrow{H_n(\alpha)} H_n(C_*) \xrightarrow{H_n(\beta)} H_n(C_*'') \xrightarrow{\delta_n} H_{n-1}(C_*') \xrightarrow{H_{n-1}(\alpha)} H_{n-1}(C_*) \to$$

Proof sketch.

Consider the diagram

$$C'_{n}/\operatorname{Im}\partial'_{n+1} \xrightarrow{\bar{\alpha}_{n}} C_{n}/\operatorname{Im}\partial_{n+1} \xrightarrow{\bar{\beta}_{n}} C''_{n}/\operatorname{Im}\partial''_{n+1} \longrightarrow 0$$

$$\downarrow_{\partial'_{n}} \qquad \downarrow_{\partial_{n}} \qquad \downarrow_{\partial''_{n+1}}$$

$$0 \longrightarrow \operatorname{Ker}\partial'_{n-1} \xrightarrow{\alpha'_{n-1}} \operatorname{Ker}\partial_{n-1} \xrightarrow{\beta'_{n-1}} \operatorname{Ker}\partial''_{n-1}$$

Index

Def	initions	Corollarys			
2.1.1	Covering Space	3	3.2.4 9		
3.1.1		5	3.2.5 Four lemma 10		
3.1.3	Direct Sum of Chain		3.2.6 Five lemma 12		
	Complexes	6			
3.2.1	1	7	T 044444 0 0		
3.2.2	Exact Sequence of		Lemmas		
	Chain Complexes	7	3.2.3 Snake lemma 7		
3.3.1		13	5.2.5 Shake lemma /		
Duo	nogition g		Thomas		
Pro	positions		Theorems		
2.1.3		4	2.1.2		
3.1.2		6	3.3.3 13		
3.3.2		13	3.3.4 14		