

LOG1810 STRUCTURES DISCRÈTES

TD 13: MODÉLISATION COMPUTATIONNELLE E2023

SOLUTIONNAIRE

Exercice 1

Donnez la grammaire G qui génère le langage reconnu par l'automate suivant. Vous devez préciser l'alphabet V, l'ensemble des symboles terminaux T, l'axiome S et l'ensemble des règles de production P.

Solution:

Soit les symboles non terminaux associés aux états comme suit :

- État 0 : Symbole non terminal *S*, axiome de la grammaire
- État 1 : Symbole non terminal A
- État 2 : Symbole non terminal **B**
- État 3 : Symbole non terminal *C*
- État 4 : Symbole non terminal **D**

Nous avons les ensembles suivants :

$$V = \{\mathbf{a}, \mathbf{b}, S, A, B, C, D\}$$
$$T = \{\mathbf{a}, \mathbf{b}\}$$

Les productions de **P** sont :

 $S \rightarrow aA \mid bB \mid a \mid b$

 $A \rightarrow aB \mid bS \mid a$

 $B \rightarrow aS \mid bA \mid bC \mid b$

 $C \rightarrow bC \mid bD \mid b$

 $D \rightarrow aD \mid bD \mid bC \mid a \mid b$

Exercice 2

Soit la grammaire G = (V, T, S, P) où $V = \{a, b, S, A, B, C, D, E\}$, $T = \{a, b\}$. S est l'axiome et P l'ensemble des règles de production suivant :

$$S \rightarrow aA \mid bS$$

$$A \rightarrow aA \mid bB$$

$$B \rightarrow aC \mid bS \mid a$$

$$C \rightarrow aC \mid bD \mid a \mid b$$

$$D \rightarrow aC \mid bE \mid a \mid b$$

$$E \rightarrow aC \mid bE \mid a \mid b$$

Construisez l'automate M tel que L(G) = L(M).

Solution:

Exercice 3

Vous êtes un.e ingénieur.e en informatique travaillant pour une entreprise de conception de drones autonomes. Votre équipe est en train de développer un logiciel de pilotage automatique pour les drones qui leur permettra de voler de manière autonome. Le logiciel utilise un automate fini pour identifier les obstacles et éviter les collisions en temps réel. Cependant, l'automate fini courant contient un grand nombre d'états, ce qui peut ralentir le système et réduire l'autonomie du drone. Minimisez l'automate cidessous afin d'améliorer la performance du logiciel. Donnez la table d'états-transition, précisez les états finaux et construisez l'automate minimal.

Solution:

• Table d'états-transition

États	Entrée				
Liais	a	b			
A	A	В			
В	D	В			
С	A	D			
D	В	C			
Е	В	A			

- État final : A
- Automate

Exercice 4

En utilisant le lemme d'Arden, trouvez le langage reconnu par la machine à états finis suivante. Présentez toutes les étapes de votre démarche.

Solution:

Soient X_1, X_2, X_3 et X_4 les étiquettes associées aux états 1, 2, 3 et 4, respectivement.

Le système d'équations décrivant les états de l'automate est :

$$\begin{cases} X_1 = aX_1 + bX_2 \\ X_2 = bX_2 + aX_4 + \varepsilon \\ X_3 = aX_4 + bX_1 \\ X_4 = aX_4 + bX_3 + \varepsilon \end{cases}$$

En substituant X_3 dans X_4 , on a :

$$X_{4} = aX_{4} + b(aX_{4} + bX_{1}) + \varepsilon$$

$$= aX_{4} + baX_{4} + bbX_{1} + \varepsilon$$

$$= (a + ba)X_{4} + bbX_{1} + \varepsilon$$

$$= (a + ba)^{*}(bbX_{1} + \varepsilon)$$

$$= (a + ba)^{*}bbX_{1} + (a + ba)^{*}$$

$$lemme d'Arden$$

En substituant le résultat obtenu pour X_4 dans X_2 , on obtient :

$$X_{2} = bX_{2} + a((a + ba)^{*}bbX_{1} + (a + ba)^{*}) + \varepsilon$$

$$= b^{*}(a((a + ba)^{*}bbX_{1} + (a + ba)^{*}) + \varepsilon)$$

$$= b^{*}(a(a + ba)^{*}bbX_{1} + a(a + ba)^{*} + \varepsilon)$$

$$= b^{*}a(a + ba)^{*}bbX_{1} + b^{*}a(a + ba)^{*} + b^{*}$$

En substituant le résultat obtenu pour X_2 dans X_1 , on obtient :

```
X_1 = aX_1 + b(b^*a(a+ba)^*bbX_1 + b^*a(a+ba)^* + b^*)
= aX_1 + bb^*a(a+ba)^*bbX_1 + bb^*a(a+ba)^* + bb^*
= (a+bb^*a(a+ba)^*bb)X_1 + bb^*a(a+ba)^* + bb^*
= (a+bb^*a(a+ba)^*bb)^*(bb^*a(a+ba)^* + bb^*)
= (a+b^*a(a+ba)^*bb)^*(b^*a(a+ba)^* + b^*)
= (a+b^*a(a+ba)^*bb)^*(b^*a(a+ba)^* + b^*)
```

Le langage reconnu par cette machine à état est donc $(a + b^+a(a + ba)^*bb)^*(b^+a(a + ba)^* + b^+)$.

Exercice 5

Montrez que le langage L n'est pas régulier.

$$L = \{0^n 1^n 2^n | n \in \mathbb{N}\}$$

Solution:

Raisonnons par l'absurde.

Supposons que le langage L est régulier. Il vérifie donc le lemme de pompage.

Soit p le seuil de pompage.

Le mot $w = 0^p 1^p 2^p$ est un mot de L.

Il existe une décomposition w=xyz tel que $x=0^q$, $y=0^r$ et $z=0^{p-q-r}1^p2^p$ avec $q+r\leq p$ (car $|xy|\leq p$) et r>0 (car $y\neq \varepsilon$).

D'après le lemme de pompage, $\forall i \geq 0, xy^iz \in L$.

Ainsi, le mot xy^0z devrait être aussi un mot de L.

Pour i = 0, on a:

$$xy^{i}z = 0^{q}(0^{r})^{0}0^{p-q-r}1^{p}2^{p}$$
$$= 0^{q}0^{p-q-r}1^{p}2^{p}$$
$$= 0^{p-r}1^{p}2^{p}$$

Puisque r > 0, on a p - r < p.

Donc lorsque $i=0, xy^iz \notin L$. Le lemme de pompage n'est pas vérifié.

D'où le langage L n'est pas régulier.

CQFD

Exercice 6

Montrez que le langage L n'est pas régulier.

$$\mathbf{L} = \{0^{n!} | n \in \mathbb{N}\}$$

Solution:

Raisonnons par l'absurde.

Supposons que le langage \boldsymbol{L} est régulier. Il vérifie donc le lemme de pompage. Soit p le seuil de pompage.

Le mot $w=0^{p!}$ est un mot de \boldsymbol{L} (sauf si p<3, auquel cas nous choisirons $0^{3!}$). Il existe une décomposition w=xyz tel que $x=0^q, y=0^r$ et $z=0^{p!-q-r}$ avec $q+r\leq p$ (car $|xy|\leq p$) et r>0 (car $y\neq \varepsilon$).

D'après le lemme de pompage, $\forall i \geq 0, xy^iz \in L$.

Ainsi, le mot xy^0z devrait être aussi un mot de L.

Pour i = 0, on a:

$$xy^{i}z = 0^{q}(0^{r})^{0}0^{p!-q-r}$$
$$= 0^{q}0^{p!-q-r}$$
$$= 0^{p!-r}$$

Pour que $0^{p!-r}$ soit un mot de \boldsymbol{L} , il doit y avoir un entier s tel que s!=p!-r. Cependant, cela n'est pas possible puisque lorsque $p\geq 3$ et $r\leq p$, on a :

$$p! - p \le p! - r \tag{1}$$

Or,
$$p! - p = p \cdot (p-1)! - p = p((p-1)! - 1)$$

Et
$$(p-1)! < p((p-1)!-1)$$
, $car p \ge 3$

Soit

$$(p-1)! < p! - p \tag{2}$$

Par (1) et (2), on obtient :

$$(p-1)! < p! - p < p! - r$$

Soit

$$(p-1)! < p! - r \tag{3}$$

Aussi, lorsque $p \ge 3$ et $r \le p$, on a :

$$p! - r < p! \tag{4}$$

Avec (3) et (4), on obtient:

$$(p-1)! < p! - r < p!$$

Ainsi, on en déduit que p! - r ne peut être factoriel d'un entier.

Donc lorsque i=0, $xy^iz\not\in \textbf{\textit{L}}$. Le lemme de pompage n'est pas vérifié. D'où le langage $\textbf{\textit{L}}$ n'est pas régulier. CQFD

Exercice 7

Construisez une machine de Turing qui reconnaît l'ensemble de toutes les chaînes de bits qui contiennent au moins deux '1'.

Solution:

Nous pouvons rester dans S_0 jusqu'à ce que nous atteignions le premier '1' et puis rester l'état S_1 jusqu'à ce que nous atteignions le deuxième '1'. À ce stade, nous pouvons entrer dans l'état S_2 qui sera un état d'acceptation. Si nous arrivons au dernier blanc alors que nous sommes toujours dans les états S_0 ou S_1 , nous n'accepterons pas. Les quintuples sont donc

$$(S_0, 0, S_0, 0, R)$$
; $(S_0, 1, S_1, 1, R)$; $(S_1, 0, S_1, 0, R)$; $(S_1, 1, S_2, 1, R)$;

Exercice 8

Soit M_T la machine de Turing dont l'état initial est S_0 et définie par les sept quintuples suivants :

$$(S_0, 0, S_1, 0, R)$$
; $(S_0, 1, S_2, B, L)$; $(S_0, B, S_1, 1, R)$; $(S_1, 0, S_2, 1, R)$; $(S_1, 1, S_1, 1, R)$; $(S_1, B, S_2, 0, R)$; $(S_2, B, S_0, 0, L)$

En considérant le ruban initial suivant, déterminez le ruban final lorsque M_T s'arrête. On suppose que M_T commence en position initial.

•••	В	В	0	1	0	В	1	0	В	В	•••
-----	---	---	---	---	---	---	---	---	---	---	-----

Solution:

