# MODULE #6: CORRELATION FUNCTIONS

BMDE:519 ANALYSIS OF BIOMEDICAL SIGNALS AND SYSTEMS

#### **Correlation Functions**

- Characterize the sequential structure of signals in the time domain
- Useful to detect:
  - repeated patterns within a signal
  - similarities between signals
- Auto-Correlation
  - correlation of a signal with itself
  - used mainly in signal analysis
- Cross-Correlation
  - correlation of a signal with another signal
  - used in both signal and system analysis.

#### **Auto-Correlation**

$$R_{xx}(\tau) = E[x(t)x(t+\tau)]$$

- Characterizes the sequential structure of a signal, x(t).
- Measures the correlation of a signal, x(t), with itself at a lag,  $\tau$ , time units previously.
- Changes with the lag
- Maximum occurs at zero lag
- Changes in correlation with lag characterize a signals time domain sequential structure.
- The power spectrum of a signal also describes its sequential structure - but in the frequency domain.

#### **Auto-Correlation**

- There are three variants of the auto-correlation:
  - the auto-correlation function
  - the auto-covariance function
  - the auto-correlation-coefficient function
- It common, but confusing, for all three forms to be referred to simply as the auto-correlation.

#### **Auto-Correlation Function**

$$R_{xx}(\tau) = E[x(t)x(t+\tau)]$$

- Value depends on both mean and variance of the signal
- Rarely used

## **Auto-Correlation Maxima**

 Auto-correlation functions have their maxima at zero lag

$$\left|R_{_{XX}}(\tau)\right| \leq R_{_{XX}}(0)$$

# **Auto-Covariance Function**

$$C_{xx}(\tau) = E[(x(t) - \mu_x)(x(t+\tau) - \mu_x)]$$

- Eliminates dependence on signal mean
- Variance as a function of lag
- Value still depends on signal amplitude

## **Auto-Covariance Function**

Related to the auto-correlation function by

$$C_{xx}(\tau) = R_{xx}(\tau) - \mu_x^2$$

Zero lag covariance is equal to the signal variance

$$C_{xx}(0) = \sigma_x^2$$

#### **Auto-Correlation Coefficient Function**

$$r_{xx}(\tau) = \frac{C_{xx}(\tau)}{C_{xx}(0)}$$
$$= \frac{C_{xx}(\tau)}{\sigma^2}$$

$$\begin{aligned} \left| C_{xx} \left( \tau \right) \right| &\leq C_{xx} \left( 0 \right) \\ \Rightarrow & -1 \leq r_{xx} \left( \tau \right) \leq 1 \\ \Rightarrow & r_{xx} \left( 0 \right) = 1 \end{aligned}$$

- Does not depend on signal amplitude or mean
- Simplifies comparing the autocorrelation properties of signals with different amplitudes

# **Auto-Correlation Functions**



- The auto-correlation coefficient function values are statistical correlations of the signal with itself:
  - +1 = completely positive correlation
  - 0 = no correlation
  - -1 = completely negative correlation.

Auto-correlation functions are even functions

$$R_{xx}(\tau) = R_{xx}(-\tau)$$

Auto-correlations are symmetric about 0

 The auto-correlation of a periodic signal is periodic with the same period

If: 
$$x(t) = x(t + nT)$$
 for  $n = 1, 2, \dots n$ 

Then 
$$R_{xx}(\tau) = R_{xx}(\tau + nT)$$
 for  $n = 1, 2, \dots n$ 

 The auto-correlation and power spectral density are Fourier transforms of each other

$$R_{xx}(\tau) = \int_{-\infty}^{\infty} \Phi_{xx}(f) e^{j2\pi f \tau} df$$

$$\Phi_{xx}(f) = \int_{-\infty}^{\infty} R_{xx}(\tau) e^{-j2\pi f \tau} d\tau$$

 The autocorrelation of the sum of two completely uncorrelated signals is the sum of the two autocorrelations:

If: x, y are uncorrelated and

$$z(t) = x(t) + y(t)$$

Then:

$$R_{zz}(\tau) = R_{xx}(\tau) + R_{yy}(\tau)$$

 The autocorrelation of a white noise signal has a peak at lag 0 and is 0 at all other lags.

```
If: x(t) is white

Then: R_{xx}(\tau) = \delta(\tau)

where
\delta(0) = 1
\delta(\tau) = 0 \quad \forall \text{ other values of } \tau
```

#### **Cross-Correlation Function**

$$R_{xy}(\tau) = E[x(t)y(t+\tau)]$$

• Rarely used because its values depend on both the means and variances of x(t) and y(t).

#### **Cross-Covariance Function**

$$C_{xy}(\tau) = E[(x(t) - \mu_x)(y(t+\tau) - \mu_y)]$$

Related to the cross-correlation function by

$$C_{xy}(\tau) = R_{xy}(\tau) - \mu_x \mu_y$$

- Does not depend on signal means
- Does depend on variances

#### **Cross-Correlation Coefficient Function**

$$r_{xy}(\tau) = \frac{C_{xy}(\tau)}{\sqrt{\left[C_{xx}(0)C_{yy}(0)\right]}}$$

- Normalized cross-correlation function
- Does not depend on
  - mean values
  - variances
- Useful for examining correlations between sets of signals with different amplitudes and/or mean values

#### **Cross-Correlation Coefficient Function**

$$r_{xy}(\tau) = \frac{C_{xy}(\tau)}{\sqrt{\left[C_{xx}(0)C_{yy}(0)\right]}}$$

If 
$$r_{xy}(0) = 1$$

then 
$$x(t) = ky(t)$$

## **Cross-Correlation Properties**

- Cross-correlation coefficient function measures the statistical correlation between two signals as a function of the lag,  $\tau$ , between them:
  - +1 = completely positive correlation
  - 0 = no correlation
  - -1 = completely negative correlation

## **Cross-Correlation Properties**

· Cross-correlations are neither even nor odd, but

$$R_{xy}(\tau) = R_{yx}(-\tau)$$

The magnitude is limited by that of the auto-correlations

$$\left|R_{xy}\left(\tau\right)\right| \leq \sqrt{R_{xx}\left(0\right)R_{yy}\left(0\right)}$$

## **Cross-Correlation Properties**

 The cross-correlation and cross--power spectral density are Fourier transforms of each other

$$R_{xy}( au) = \int_{-\infty}^{\infty} \Phi_{xy}(f) e^{j2\pi f au} df$$

$$\Phi_{xy}(f) = \int_{-\infty}^{\infty} R_{xy}(\tau) e^{-j2\pi f \tau} d\tau$$

# Cross-Correlation Properties: Delays

If y is a delayed, scaled version of x(t) with added noise

$$y(t) = \alpha x(t - \tau_0) + n(t)$$

 The, the cross-correlation function is the input autocorrelation scaled and displaced by the delay

$$R_{xy}(\tau) = \alpha R_{xx}(\tau - \tau_0)$$

Maximum value occurs at lag equal to delay.

## **Cross-Correlation Estimation**

Sample signals at times

$$t = 0$$
 to  $t=(N-1)\Delta t$ 

Giving samples

$$x(i)$$
 and  $y(i)$  for  $i = 1, 2, \dots N$ 

Unbiased estimate at discrete lag k is

$$R_{xy}(k) = \frac{1}{N-k} \sum_{i=1}^{N-k} x(i)y(i+k)$$

Biased Estimate

$$R_{xy}(k) = \frac{1}{N} \sum_{i=1}^{N-k} x(i)y(i+k)$$

### Effects of Noise

Practical measurements are noisy:

$$w(t) = x(t) + n(t)$$

$$z(t) = y(t) + v(t)$$

where:

x(t), y(t) are the noise free signals of interest

n(t), v(t) are independent noise signals

#### Noise & Auto-Correlation Estimates

$$w(t) = x(t) + n(t)$$

$$R_{ww}(\tau) = E[(x(t) + n(t))(x(t+\tau) + n(t+\tau))]$$

$$= R_{xx}(\tau) + R_{xx}(\tau) + R_{yx}(\tau) + R_{nn}(\tau)$$

$$R_{xn} \equiv R_{nx} = 0 \quad \text{but } R_{nn} \neq 0$$

$$R_{ww}(\tau) = R_{xx}(\tau) + R_{nn}(\tau)$$

#### Noise & Auto-Correlation Estimates



Autocorrelation estimates are biased by noise

#### Noise & Cross-Correlation Estimates

$$w(t) = x(t) + n(t)$$

$$z(t) = y(t) + v(t)$$

$$R_{wz}(\tau) = E[w(t)z(t+\tau)]$$

$$= E[(x(t) + n(t))(y(t+\tau) + v(t+\tau))]$$

$$= R_{xy}(\tau) + R_{x}(\tau) + R_{ny}(\tau) + R_{y}(\tau)$$

$$R_{xy} \equiv R_{ny} \equiv R_{ny} \equiv 0$$

$$R_{wz}(\tau) = R_{xy}(\tau)$$

#### Noise & Cross-Correlation Estimates

$$R_{wz}(\tau) = R_{xy}(\tau)$$

 Cross-correlation function estimates are not biased by noise.

## Data Lengths

- Correlation functions should be calculated for lengths that are much shorter than the data length
- It is desirable to calculate correlation functions at lags no greater than ¼ of the data length.
- It is not acceptable to calculate correlation functions at lags greater than ½ the data length

# **Auto-Correlation Examples**

#### White Noise



# Lightly Filtered Noise



## Heavily Filtered Noise



## Sinusoid



### Sinusoid + low noise



# Sinusoid + large noise



### **Auto-Correlation Applications**

- Auto-correlation functions are often used to assess periodicity in a signal.
  - A periodic component hidden in a noisy signal will appear in the auto-correlation function with the same period.
- Auto-correlation functions of stochastic signals tend to "die out" as the lag increases.
  - The lag at which the auto-covariance function drops to zero can be is a measure of the process "memory"

### **Cross-Correlation Applications**

- Cross-correlation functions measure the sequential relation between two signals.
  - Template matching
    - i.e. spike detection
- Two signals may each have considerable sequential structure but not be correlated

### **Cross Correlation Applications**

- Often used use to determine the value of the delay between two signals.
- The delay is given by the lag at which the maximum value of the cross-covariance function occurs.
  - Comparing emitted and reflected signals can be used for source location
    - Bagpipes in an apartment building
    - 2D cross correlation often used for image registration
    - Submarine echo location

### **Cross Correlation Applications**

- Cross correlation of the same signal measured at different locations can be used to estimate velocity.
- Applications include:
  - Bladder function
  - Peripheral nerve measurements
  - Fish migration

### **Cross Correlation Applications**

- Not all cross-correlation peaks are due to conduction delay
- The dynamic relation between input and output may result in delayed peaks in the cross-correlation function

#### Correlation is not Causation

- The presence of a correlation between two signals does not imply they are causally related
- Many signals that are highly correlated but not related
  - Common inputs
    - Correlation between IQ of post- World War II children and the number of teeth
  - Happen chance: <a href="http://www.tylervigen.com/">http://www.tylervigen.com/</a>

# **Cross Correlation Examples**

#### No Correlation



#### Static Relation: y = k \* x



### Static Relation with Noise y = k \* x + e



#### Low Pass Filter



### Low pass filter: input & output reversed



### Low Pass Filter with Noise



### Low pass filter with noise + delay



# High Pass Filter



- Load the data set edu519m6 from MyCourses.
- This data set contains the test signals x1,x2, ...., x10.
- Signals x1,...x5 have two columns with the domain and range information.
- Signals x6,...x10 have three columns containing domain and range values for input and output signals from some unknown system.

- 1. Write a matlab function called *mycorel* which calculates the biased auto-correlation-coefficient function using a relation similar to that given in the notes for the cross-correlation function.
  - Demonstrate its use with a sample of normal, white data having a mean of 2 and standard deviation of 5.
  - -(2.5/10)

- Signals x1 -> x5.
  - Compute and plot the auto-correlation-coefficient function for each signal.
  - What can you deduce about each signal from your results?
  - (3.75/10)

- 3. Signals x6 -> x10.
  - Compute and plot
    - the auto-correlation-coefficient functions for the input and output signals
    - the input-output cross-correlation coefficient function
    - Plot both sides of the correlation functions
  - What can you deduce about each of these signal pairs from your results.
  - (3.75/10).

- Present your results in the form of a concise report of no more than 10 pages.
- Append a copy of your correlation function to your report.
- Make use of the matlab function xcov or xcorr. Take care to interpret your results in terms of how the lags are used in this function.
- Choose the length of your correlation functions carefully.