

Band III 11n20 CH100

Band III 11n20 CH140

Band III 11n40 CH102

Band III 11n40 CH102

Band III 11n40 CH134

Band III 11ac80 CH106

Band III 11ac80 CH106

Band III 11ac80 CH122

Band IV 11a CH149

Band IV 11a CH165

Band IV 11n20 CH149

| Ref Offset 37.81 dB | Ref 100.00 dByV | Ref 10

Band IV 11n20 CH165

Band IV 11n40 CH151

Band IV 11n40 CH159

Band IV 11ac80 CH155

Band IV 11ac80 CH155

A.7 Frequency Stability

Voltage vs. Frequency Stability (5180 MHz)

Test Conditions			0 Minute		2 Minute		5 Minute		10Minute	
TEMP.	Voltage (VDC)	Test Frequen cy (MHz)	Measurem ent Frequency (MHz)	Max. Deviation (ppm)	Measure ment Frequenc y (MHz)	Max. Deviation (ppm)	Measure ment Frequenc y (MHz)	Max. Deviation (ppm)	Measure ment Frequenc y (MHz)	Max. Deviation (ppm)
20	9	5180	5179.9917 45	-1.59	5179.959 945	-7.73	5179.973 602	-5.10	5179.963 544	-7.04
	13.5	5180	5180.0355 7	6.87	5180.004 844	0.94	5180.037 181	7.18	5180.047 957	9.26
	16	5180	5180.0009 65	0.19	5180.010 767	2.08	5180.039 505	7.63	5180.014 338	2.77

Temperature vs. Frequency Stability (5180 MHz)

Test Conditions			0 Minute		2 Minute		5 Minute		10Minute	
Voltage (VDC)	TEMP.	Test Frequen cy (MHz)	Measurem ent Frequency (MHz)	Max. Deviation (ppm)	Measure ment Frequenc y (MHz)	Max. Deviation (ppm)	Measure ment Frequenc y (MHz)	Max. Deviation (ppm)	Measure ment Frequenc y (MHz)	Max. Deviation (ppm)
13.5	-30	5180	5179.9880 28	-2.31	5179.969 952	-5.80	5179.968 753	-6.03	5179.997 669	-0.45
	-20	5180	5180.0069 59	1.34	5180.038 953	7.52	5180.028 96	5.59	5180.048 696	9.40
	-10	5180	5180.0346 12	6.68	5180.021 754	4.20	5180.027 372	5.28	5180.032 123	6.20
	0	5180	5180.0007 2	0.14	5180.007 235	1.40	5180.035 927	6.94	5180.007 822	1.51
	10	5180	5179.9579 1	-8.13	5179.969 017	-5.98	5179.978 564	-4.14	5179.990 084	-1.91
	20	5180	5180.0469 46	9.06	5180.046 42	8.96	5180.015 71	3.03	5180.045 741	8.83
	30	5180	5180.0468 13	9.04	5180.000 366	0.07	5180.011 182	2.16	5180.016 476	3.18
	40	5180	5179.9896 86	-1.99	5179.972 096	-5.39	5179.959 259	-7.87	5179.966 234	-6.52
	50	5180	5180.0145 21	2.80	5180.037 764	7.29	5180.049 961	9.64	5180.027 653	5.34
	60	5180	5180.0107 73	2.08	5180.019 224	3.71	5180.046 001	8.88	5180.027 51	5.31
	70	5180	5180.0418 17	8.07	5180.029 255	5.65	5180.018 883	3.65	5180.015 115	2.92

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-HK18C0341-AR.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-HK18C0341-AW.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-HK18C0341-AI.PDF".

--END OF REPORT--