Hall Effect

Advanced Placement Physics C

Dr. Timothy Leung

March 7, 2021

Olympiads School

Current Through the Conductor

The electric current through conductor is the rate at which charge carriers pass through a point in the conductor:

$$\boxed{I = \frac{dQ}{dt}} = \left(\frac{Q}{V}\right) \frac{dV}{dt} = [ne] [Av_d]$$

where

- Q/V is the amount of charges *per volume*, which is just the charge carrier density n times the elementary charge e
- dV/dt is the rate the volume of charges moves through the conductor, give by the cross-section area of the conductor A times the **drift velocity** v_d of the charge carrier

For simplicity, we *assume* that charge carriers are positive. While the opposite is true, the behavior will be *almost* identical.

Current Through the Conductor

$$I = \frac{dQ}{dt} = neAv_d$$

Quantity	Symbol	SI Unit
Current	1	Α
Charge carrier density (carriers per volume)	n	$/ m^3$
Elementary charge	е	С
Cross-section area of the conductor	Α	m ²
Drift velocity of the charge carriers	V _d	m/s

The terms nev_d is also called the **current density** J, which has the unit ampère per meter squared (A/m²).

Charge Carrier Density

Finding the charge carrier density *n* in a *conductor* requires some additional physical information about the material:

- 1. Divide the metals density ρ by the metal's molar mass M to find the number of moles of atams per unit volume
- 2. Multiply by Avagadro's number N_A to find number of atoms per unit volume
- 3. Multiply by the number of free electrons per atom k for that particular metal

Charge Carrier Density

Collecting all the terms from the last slide, we can see that the charge carrier density is given by:

$$n = \frac{\rho k N_A}{M}$$

Quantity	Symbol	SI Unit
Charge carrier density	n	$/ \mathrm{m}^3$
Density of material	ρ	kg/m^3
Number of free electrons per atom	k	
Avogadro's number	N_A	/mol
Molar mass	М	kg/mol

For copper, $M = 63.54 \times 10^{-3} \, \text{kg/mol}$, $\rho = 9.0 \times 10^{3} \, \text{kg/m}^{3}$, k = 1 and therefore $n = 8.5 \times 10^{28} \, / \text{m}^{3}$.

Hall Effect

When a current I flows through a conductor in a magnetic field B, the magnetic field exerts a transverse (i.e. perpendicular to motion) magnetic force F_m on the moving charges which pushes them toward one side of the conductor.

This is most evident in a thin, flat conductor as illustrated.

Magnetic Force

As the charges enter the magnetic field, F_m is directed toward the top:

$$F_m = e v_d \times B = \frac{e I \times B}{neA} = \frac{I \times B}{nA}$$

leading to a surplus of positive charges on the top edge of the conductor, and negative charges on the bottom.

7

Hall Voltage

The charge imbalance on the conductor creates an electric field *E*, pointing toward the bottom, and therefore a voltage across two sides of the conductor (width *W*), called the *Hall voltage*:

$$V_H = EW$$

Balancing Electrostatic & Magnetic Forces

Subsequently, charge carriers entering the magnetic field will experience both a magnetic force and an electrostatic force. At equilibrium, the two forces are balanced:

$$\mathbf{F}_m + \mathbf{F}_q = \mathbf{0}$$

Calculating Hall Voltage

The electrostatic force on the charge carrier can be expressed in terms of the Hall voltage V_H across the two sides of the plate:

$$F_q = eE = \frac{eV_H}{W}$$

Equating the magnitudes of electrostatic and magnetic forces, we can solve for the Hall voltage:

$$F_m = F_q \quad \rightarrow \quad \frac{IB}{nA} = \frac{eV_H}{W}$$

Hall Voltage

Cancelling terms and noting that the thickness of the conductor is

$$d = \frac{A}{W}$$

we find the expression for the Hall voltage V_H :

$$V_H = \frac{IB}{ned}$$

Hall Probe

Large magnetic fields (\sim 1T) is often measured using a **Hall probe**. A thin film Hall probe is placed in the magnetic field and the transverse voltage (usually measured in on the order of 10^{-6} V) is measured.

The polarity of the Hall voltage for a copper probe shows that electrons (negative charge) are the charge carriers.