1

Structured deposit means that the funding rate (r_f) is bigger than the model rate (r_m) , so:

- a) The guaranteed S_0 at T is a zero-coupon: model PV is $S_0e^{-r_mT}$, funded PV is $S_0e^{-r_fT}$. Since $r_f > r_m$, we get that $e^{-r_f T} < e^{-r_m T}$, so the funding adjustment $S_0(e^{-r_m T} - e^{-r_f T}) > 0$ (benefit), but the call we must finance at r_f is more expensive, than under the model, giving a negative adjustment. So the total is not always positive \Longrightarrow the answer to the question is no
- b) The same reason. The bond price is positive, only the option price is negative. The sum can have either sign depending on their relative sizes \Longrightarrow the answer to the question is no

2

Work in discounted units $\hat{S}_t = e^{-rt}S_t$. The discounted call payoff is $(\hat{S}_T - \hat{K})^+$, with $\hat{K} = Ke^{-rT}$ For continuous paths that cross the level only finitely many times, Tanaka's formula gives $(\hat{S}_T - \hat{K})^+ = (\hat{S}_T - \hat{K})^+$ $(\hat{S}_0 - \hat{K})^+ + \int_0^T \mathbb{1}_{\{\hat{S}_t > \hat{K}\}} d\hat{S}_t$

So hold one discounted share whenever $\hat{S}_t > \hat{K}$ and 0 otherwise, starting with capital $(\hat{S}_0 - \hat{K})^+$, keep the rest in the bank account (self-financing), so returning to original units this is: initial capital $V_0 = (S_0 - Ke^{-rT})^+$, stock position $\Delta t = \mathbb{1}_{\{S_t > Ke^{-r(T-t)}\}}$ own 1 share above the moving boundary $Ke^{-r(T-t)}$, none below. Cash = $V_t - \Delta_t S_t$ earning rate r This produces $V_T = (S_T - K)^+$ for any continuous path with finitely many crossings.

3

Let S_t be a Brownian motion with volatility σ (zero rates)

For a european call with payoff $h(S_T) = (S_T - K)^+$, the naive hedge takes a constant delta $\Delta = h'(S_0) = \mathbb{1}_{\{S_0 > K\}}$ and never rebalances

Let's write a 2 order Taylor expansion of the payoff around \mathcal{S}_0 :

$$h(S_T) \approx h(S_0) + h'(S_0)(S_T - S_0) + \frac{1}{2}h''(S_0)(S_T - S_0)^2$$

With constant-delta hedge, the terminal hedging error is $\varepsilon_T = h(S_T) - \Delta S_T + \Delta S_0 \approx \frac{1}{2}h''(S_0)(S_T - S_0)^2$ For a call, the curvature h'' is concentrated at the strike K

So only paths near the strike contribute, so we can replace $h''(S_0)$ by the mass of the delta spike, which for a one-period approximation is $\Gamma_{ATM} \approx \frac{1}{\sigma \sqrt{2\pi T}}$

Since
$$S_T - S_0 = \sigma W_T$$
, with $W_T \sim N(0, T)$
 $std(\varepsilon_T) \approx \frac{1}{2} \Gamma_{ATM} std[(\sigma W_T)^2] = \frac{1}{2} \Gamma_{ATM} \sqrt{Var(W_T^2)} = \frac{1}{2} \Gamma_{ATM} \sigma^2 \sqrt{2}T$

Plugging $\Gamma_{ATM} \approx \frac{1}{\sigma\sqrt{2\pi T}}$ gives $std(\varepsilon_T) \approx \frac{\sigma^2\sqrt{2}T}{2\sigma\sqrt{2\pi T}} = \frac{\sigma\sqrt{T}}{2\sqrt{\pi}}$. With zero rates, a zero-strike option that pays S_T has premium S_0 , so the ratio of the standard deviation of the hedging error to the premium of a zero-strike option = $\frac{\sigma\sqrt{T}}{2S_0\sqrt{\pi}}$