

https://gregorjs.github.io/ceph_at_uibk

CEPH

an der

UNIVERSITÄT INNSBRUCK

gregor.schwab@uibk.ac.at

Was ist Ceph?

Ceph ist ein

Software defined Storage (SDS)

System

Ceph wurde von

Sage Weil

in der Firma

Inktank

entwickelt und 2014 von

Redhat

gekauft

Warum Ceph

- distributed
- scalable
- free as in speech

Warum nicht Ceph?

- Performance
- Stabilität
- Benutzerfreundlichkeit

Kann Ceph produktiv eingesetzt werden?

Dies hängt von der Betrachtung ab

RADOS object store, RBD, und RadosGW

gelten als ausreichend stabil grosse Organisationen verwenden es

CephFS is stabil seit Jewel

(ohne Snapshots)

tendentiell stabiler als so manch kommerzielles System

Ceph Release Cycle

RELEASE CADENCE

Ceph Developer Community

GROWING DEVELOPMENT COMMUNITY

- Red Hat
- Mirantis
- SUSE
- SanDisk
- XSKY
- ZTE
- LETV
- Quantum
- EasyStack
- H3C
- UnitedStack

- Digiware
- Mellanox
- Intel
- Walmart Labs
- DreamHost
- Tencent
- · Deutsche Telekom
- Igalia
- Fujitsu
- DigitalOcean
- · University of Toronto

Ceph besteht aus

- OSDs
- Monitors
- MDS

OSDs Monitor MDS

Ceph ist eigentlich ein

OBJECT STORE

Was ist Ceph nicht?

CEPH # RAID

Ceph beherrscht aber

- Striping
- Replicas
- Erasure Coding
- Cache Pools

Ceph bietet mehrere

Storage Frontends

- RBD
- RADOS Gateway
- CephFS

BLOCK

FILE

RGW

S3 and Swift compatible object storage with object versioning, multi-site federation, and replication

RBD

A virtual block device with snapshots, copy-on-write clones, and multi-site replication

CEPHFS

A distributed POSIX file system with coherent caches and snapshots on any directory

LIBRADOS

A library allowing apps to direct access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS

A software-based, reliable, autonomic, distributed object store comprised of self-healing, self-managing, intelligent storage nodes (OSDs) and lightweight monitors (Mons)

RBD

über

qemu-librbd

(caching)

CEPH UND HYPERCONVERGED

7

HYPERCONVERGED NODE IN-DEPTH

Unterstützung für

CEPH

in

OPENSTACK?

Unterstützung für

CEPH

in

RHEV?

• seit RHEV 3.6

CEPH @ UIBK

Einige Fakten:

- Einsatz seit 2014
- RBD produktiv seit 2015
- RADOSGW seit 2015/16
- Vanilla Variante

Warum Vanilla?

- kein Vendor-lockin
- kein Hardware lockin
- weniger Gesamtkosten
- Transparenz
- Lernkurve f
 ür unified storage

2 Ceph Cluster

- Ceph Produktiv Cluster
 - 3 Mons, 4 Osd Nodes, Hammer
 - SSD journals
- Ceph Backup Cluster
 - 3 Mons, 2 Osd Nodes, Jewel
 - SSD journals

Anbindung über

Storage VLAN Storage Backend über VLAN

OPENSTACK @ UIBK

Einige Fakten:

- Erstinistallation 2014
- Produktiv seit 2015
- Vanilla Variante

einige Produktivtenants

- Rados Gateway
- Cl Runner
- Puppet / Foreman Infrastructure

Vorteil:

flexibler

als andere Virtualisierungen

Nachteil: immer noch viele

Entwicklungen

RadosGW über 2 HAProxys

RadosGW Architektur

RBD

über

Cinder

in

- Openstack
- RHEV

Data-Center C	luster Hosts	Netz	werke	Speicher	Disks	Virtuelle Maschinen	Pools	Vorlagen Vo	olumes Benutzer			Ereignisse
Neu Entfernen Verschieben Kopieren Exportieren												1-16
Alle												
Alias	ID	OS In	ia.	Zugeordnet zu	Spe	icherdomäne(n)	Virtuelle Größe	Volume-Typ	Erstellungsdatum	Status	Beschreibung	i
docker_Disk1	b6b0a4a7-716f		Ų	docker	Op	enstackCinder	500 GB	ceph	14.11.2016 15:59:35	ОК	docker_con.	
docker.intra_Disk1	8cb1dc45-0bb4		Ū	docker.intra	Op	enstackCinder	500 GB	ceph	14.11.2016 16:00:02	ОК	docker_intr	
elastic01.intra	9e7380a4-afeb		Ū	elastic01.intra	Op	enstackCinder	100 GB	ceph	04.11.2016 10:47:17	OK		
elastic02.intra	df388689-351e		Ū	elastic02.intra	Op	enstackCinder	100 GB	ceph	04.11.2016 10:55:28	OK		
git2.uibk.ac.at	12576623-0f1c		Ū	git2.uibk.ac.at	Op	enstackCinder	200 GB	ceph	06.11.2016 17:30:20	OK	git2.uibk.ac.	
git_backup_ceph	b318f602-ae9c		Ü	git	Op	enstackCinder	1000 GB	ceph	10.11.2016 12:05:10	OK	git_backup	
git_intra-backup	387f1ea8-0d30		Ū	git.intra	Op	enstackCinder	700 GB	ceph	10.11.2016 12:06:07	OK	git_intra-ba	
git.intra_data_ce	f89caa16-b047		Ū	git.intra	Op	enstackCinder	700 GB	ceph	05.10.2016 17:05:06	OK	Gitlab Intra	
git_storage_ceph	9635d5ed-0cd5		Ū	git	Op	enstackCinder	1000 GB	ceph	04.11.2016 10:28:50	OK	Cinder Disk	
grafana_Disk1	cf9b0187-fcaf-4	OS	Ū	grafana	Op	enstackCinder	20 GB	ceph	14.11.2016 15:53:21	OK	Grafana_o	
ipa-dev_Disk1	c20cd1f1-4863	OS	Ď	ipa-dev	Op	enstackCinder	20 GB	ceph	21.11.2016 14:33:55	OK		
lxdoc_Disk2	01ada900-b5d8		Ū	Ixdoc	Ор	enstackCinder	20000 GB	ceph	06.10.2016 13:10:40	OK	LxDoc Libr	
ovirt-test8_Disk1	bcebe171-6286	OS	Ū	ovirt-test8	Op	enstackCinder	30 GB	ceph	16.11.2016 09:05:02	OK		
PGDB-Data2-db	818d629e-5647		Ū	db05-b	Op	enstackCinder	100 GB	ceph	17.11.2016 22:52:31	ОК	Data volum	
superceph	d6c12123-659b				Ор	enstackCinder	25 GB	ceph	28.09.2016 14:10:49	ОК	geil isses	

RBD Backups

über

Incremental Snapshots

RADOS Backups

über

RGW Multisite

(noch s3sync, ersetzt federated gateways)

INSTALLATION:

keine

manuellen

Installationen

Automatisieren!

Installationsarten:

- Puppet (am Anfang)
- Ansible
- Docker?

positive Erfahrungen:

- sehr stabil
- läuft ohne Unterbruch
- Rolling Upgrades (manuell)
- ansible_ceph beste Codequalität

weniger schöne Erfahrungen:

- RPM Dependency Hell in Hammer
- RBD Kernelmodul
- richtigen Controller wählen!
- parted-3.2" package BUG

Performance

mit

caching

sehr gut

Operations:

Auskonfigurieren einer kaputten OSD

```
#!/bin/bash
ceph osd out $1
sudo service ceph-osd@$1 stop
ceph osd crush remove osd.$1
ceph auth del osd.$1
ceph osd rm $1
sudo umount /var/lib/ceph/osd/ceph-$1
sudo rmdir /var/lib/ceph/osd/ceph-$1
```

Einhängen einer neuen OSD

```
#!/bin/bash
CLUSTER_UUID="YOUR UUID"
disk=/dev/sdx
journal=/dev/sda2
ceph-disk prepare --cluster ceph --cluster-uuid $CLUSTER_UUID --fs-type
ceph-disk activate ${disk}
```

Ausblick Ceph:

- Hybrid Cluster (SSD, HDD)
- Ceph on Flash
- Bluestore (Kraken Release)
- DPDK Stack (Kraken Release)
- Erasure code overwrites, append only (Kraken Release)
- ceph-mgr for metrics
- RBD ordered writeback cache, low latency

CEPH ON FLASH

- Samsung
 - up to 153 TB in 2u
 - 700K IOPS, 30 GB/s

SanDisk

- up to 512 TB in 3u
- 780K IOPS, 7 GB/s

Ordered writeback cache

LOCAL SSD → LOW LATENCY

WRITEBACK IS UNORDERED

RBD ORDERED WRITEBACK CACHE

A B C D → CRASH CONSISTENT!

Ausblick Openstack:

- Newton Release Upgrade (in 2 Wochen)
- Docker Integration

Kurze Demo

Die Präsentation enthält hier eine kleine Live Demo.

DANKE