Tables

2.1	Activities of glycolytic and anaplerotic enzymes in response	
	to carbon sources and DO levels	60
2.2	Activities of PP and E-D pathway enzymes in response to	
	carbon sources and DO levels	61
2.3	Activities of fermentative enzymes in response to carbon	
	sources and DO levels	61
2.4	Activities of TCA cycle and glyoxylate shunt enzymes in	
	response to carbon sources and DO levels	62
2.5	Specific activity of enzymes of E. coli metabolic pathways	
	in minimal media under aerobic growth conditions at	
	different phases of growth	82
3.1	Growth parameters for E. coli BW25113 and its cra	
	mutant cultivated at the dilution rate of 0.2 h ⁻¹ where feed	
	glucose concentration was 4 g/l	106
3.2	Gene expressions of <i>cra</i> mutant as compared with the	
	wild type strain	107
3.3	Effects of dilution rate on fermentation characteristics of	
	wild type <i>E. coli</i>	112
3.4	Effects of the specific gene mutation on the fermentation	
	characteristics at the dilution rate of 0.2 > h ⁻¹	115
3.5	Fermentation characteristics of the wild-type <i>E. coli</i> and its	
	phoB and phoR mutants in the aerobic chemostat culture	
	under different phosphate concentrations at the dilution	
	rate of 0.2 h ⁻¹ at pH 7.0	133
3.6	Growth parameters of E. coli BW25113 and arcB mutant	
	in aerobic batch cultures	140
3.7	Specific rate of soxR and soxS mutants, and parent E. coli,	
	grown on glucose under aerobic conditions	150
3.8	Regulators involved in regulating glutamate-dependent acid	
	resistance	156
3.9	Fermentation parameters for the aerobic chemostat	
	culture of the wild type E. coli BW25113 at the dilution	
	rate of 0.2 h ⁻¹	160

Batch cultivation characteristics of the parent and the <i>fadR</i> mutant <i>E. coli</i> in glucose minimal medium under aerobic	165
Differentially expressed proteins in the <i>fadR</i> mutant <i>E. coli</i>	163
compared to the parent strain	166
Specific enzyme activities in cell extracts of the parent and the <i>fadR</i> mutant <i>E. coli</i> at the exponential phase grown in glucose minimal medium under aerobic	
conditions	168
Intracellular metabolite concentrations in the parent and the <i>fadR</i> mutant <i>E. coli</i> at the exponential phase grown in glucose minimal medium under aerobic conditions	170
Growth parameters of <i>E. coli</i> BW25113 (parent strain) and <i>E. coli</i> JWK 2711 (<i>rpo</i> S mutant) under aerobic growth	
conditions in LB media Growth parameters of <i>E. coli</i> BW25113 (parent strain) and <i>E. coli</i> JWK 2711 (<i>rpo</i> S mutant) under aerobic growth	180
conditions in LB media Ratio of specific activities of enzymes of <i>E. coli</i> BW25113	181
(parent strain) and E. coli JWK 2711 (rpoS mutant) during	
exponential and early stationary phases of growth Reactions in the networks of three different types of	183
metabolism of Chlorella cell	224
Biochemical reactions for Chlorella cell	225
The consumption of glucose, CO ₂ production, and O ₂ uptake of <i>C. pyrenoidosa</i> under different cultivation	
conditions	231
The generation and utilization of ATP in the autotrophic,	
heterotrophic, and mixotrophic cultures	236
Theoretical yields of biomass on ATP and ATP	
	236
	250
	237
1002	
heterotrophic culture experiments	240
Comparison of fermentation results	245
Comparison of enzyme activities	245
	mutant <i>E. coli</i> in glucose minimal medium under aerobic conditions Differentially expressed proteins in the <i>fadR</i> mutant <i>E. coli</i> compared to the parent strain Specific enzyme activities in cell extracts of the parent and the <i>fadR</i> mutant <i>E. coli</i> at the exponential phase grown in glucose minimal medium under aerobic conditions Intracellular metabolite concentrations in the parent and the <i>fadR</i> mutant <i>E. coli</i> at the exponential phase grown in glucose minimal medium under aerobic conditions Growth parameters of <i>E. coli</i> BW25113 (parent strain) and <i>E. coli</i> JWK 2711 (<i>rpoS</i> mutant) under aerobic growth conditions in LB media Growth parameters of <i>E. coli</i> BW25113 (parent strain) and <i>E. coli</i> JWK 2711 (<i>rpoS</i> mutant) under aerobic growth conditions in LB media Ratio of specific activities of enzymes of <i>E. coli</i> BW25113 (parent strain) and <i>E. coli</i> JWK 2711 (<i>rpoS</i> mutant) during exponential and early stationary phases of growth Reactions in the networks of three different types of metabolism of <i>Chlorella</i> cell Biochemical reactions for <i>Chlorella</i> cell Biochemical reactions for <i>Chlorella</i> cell The consumption of glucose, CO ₂ production, and O ₂ uptake of <i>C. pyrenoidosa</i> under different cultivation conditions The generation and utilization of ATP in the autotrophic, heterotrophic, and mixotrophic cultures Theoretical yields of biomass on ATP and ATP maintenance requirements in the autotrophic, heterotrophic, and mixotrophic cultures Contributions of light energy and glucose to ATP production in the exponential phase of mixotrophic cultures Biomass yields on the supplied energy (Y _{X/SE}) in the autotrophic, mixotrophic, and cyclic autotrophic/heterotrophic culture experiments Comparison of fermentation results

4.10	Comparison of intracellular metabolite concentrations in	
	E. coli mutants	247
4.11	Effect of a single-gene knockout on the flux distribution	249
	Effect of a single-gene knockout on flux partitions	250
4.13	Deviation index for LDH flux	253
5.1	Metabolic reactions for acetate metabolism	287
5.2	Metabolic reactions for glucose metabolism	288
5.3	Sensitivity of mass distribution (fragment [<i>M</i> -159] ⁺ of	
	glutamate) upon changes in fluxes of Icl (aceA)	292
5.4	Sensitivity of mass distribution (fragment [<i>M</i> -159] ⁺ of	
	glutamate) upon changes in exchange coefficients of Pck	
	(pckA)	292
5.5	Experimental determined (exp)* and calculated (cal)	
	fragment mass distribution of TBDMS-derived amino acids	
	from E. coli K12 hydrolysates (chemostat culture by using	
	acetate and glucose as the carbon source; $D = 0.22 h^{-1}$)	293
5.6	90% confidence limits for estimated net fluxes and	
	exchange coefficients in acetate metabolism	294
5.7	90% confidence limits for estimated net fluxes and	
	exchange coefficients in glucose metabolism	294
5.8	Growth parameters of E. coli K12 at a D of 0.11 and	
	0.22 h ⁻¹ , where acetate is used as the sole carbon source	297
5.9	Growth parameters of <i>E. coli</i> K12 at a D of 0.11 and	
	0.22 h ⁻¹ , where glucose is used as the sole carbon source	297
5.10	Transformation matrix K for calculating f values	304
5.11	Growth parameters of chemostat cultures of <i>E. coli</i> wild-	
	type W3110 and pck mutant (JWK3366)	307
5.12	Origins of metabolic intermediates in chemostat cultures of	
	E. coli W3110 and pck mutant JWK3366 determined by	
	flux ratio analysis	308
5.13	Specific enzymatic activities in chemostat cultures of	
	E. coli W3110 and pck mutant JWK3366	313
5.14	Intracellular metabolite concentrations of <i>E. coli</i> W3110	
	and <i>pck</i> mutant JWK3366 in the continuous cultures	314
5.15	Growth parameters of glucose (C)- and ammonia	
	(N)-limited chemostat cultures of <i>E. coli</i> wild-type	
	strain W3110, the pgi mutant, and the zwf mutant	321
5.16	Protein, RNA, and glycogen contents of glucose (C)-	
	and ammonia (N)-limited chemostat cultures of <i>E</i> .	
	coli wild-type strain W3110, the pgi mutant, and	
	the <i>zwf</i> mutant	322

5.17	Origins of metabolic intermediates in glucose (C)- and ammonia (N)-limited chemostat cultures of <i>E. coli</i> wild-	
	type strain W3110, the <i>pgi</i> mutant, and the <i>zwf</i> mutant,	
	as determined by flux ratio analysis	324
5.18	Relative abundances of intact carbon fragments at the	321
3.10	carbon positions used for identification of the glyoxylate	
	shunt activity in <i>E. coli</i> wild-type strain W3110 and the	
	pgi mutant	325
5 10	Relative abundances of intact carbon fragments at the	323
3.17	carbon positions used for identification of the ED pathway	
	activity in glucose (C)- and ammonia (N)-limited cultures	
	of the pgi mutant	328
5 20	Relative abundances of intact carbon fragments at the	320
3.20	carbon positions used for identification of the origin of	
	P5P and E4P pools in glucose (C)- and ammonia	
	(N)-limited cultures of the <i>zwf</i> mutant	329
5 21	Stoichiometric reactions for cyanobacteria	335
	·	333
3.22	Relative intensities of ¹³ C multiplet components of amino acids	220
5 22		338
3.23	Mass isotopomer distribution of ECF-derived amino	240
5 24	acids	340
3.24	Independent constraints on the isotopomer distribution of	242
5 25	amino acids available from labeling measurements	342
	Growth parameters of exponentially growing <i>Synechocystis</i>	344
3.26	Estimated values and 90% confidence regions for estimated	245
5 27	free fluxes	345 349
	Estimated production and consumption of NADPH	
	Estimated production and consumption of ATP	350
6.1	Cell growth parameters of the wild-type <i>E. coli</i> and its	2/2
()	ppc mutant grown on glucose under aerobic conditions	362
6.2	Specific enzyme activities of the wild-type <i>E. coli</i> and its	262
()	ppc mutant grown on glucose under aerobic conditions	363
6.3	Intracellular metabolite concentrations in the wild-type	
	E. coli and its ppc mutant grown on glucose under aerobic	264
	conditions	364
6.4	The NMR spectra of cellular amino acids in the	2
	wild-type E. coli and its ppc mutant	367
6.5	Exponential growth rates of <i>E. coli</i> wild-type (WT) and	2
	mutant cultures on glucose/pyruvate media	369
6.6	Metabolic parameters of <i>E. coli</i> continuous cultures at	
	$D = 0.2 h^{-1}$	369

6.7	Activities of enzymes located at key branch points and involved in NADPH formation	370
6.8	Absolute metabolic fluxes at several key branch points in	
	the central metabolic pathways, when glucose or pyruvate	
	were used as sole carbon sources	371
6.9	Fragment mass distribution of t-butyldimethylsilyl	
	(TBDMS)-derived amino acids from the <i>pykF</i> mutant	378
6.10	Measured and simulated values of the NMR spectra of	
	cellular amino acids	379
6.11	Growth characteristics of <i>E. coli</i> BW25113 at the dilution	
	rate of 0.2 h ⁻¹ and its <i>lpdA</i> mutant at the dilution rate of	
	0.22 h ⁻¹ in continuous culture	386
6.12	Growth characteristics of parent strain E. coli BW25113	
	and its <i>sucA</i> , <i>sucC</i> mutants in the continuous culture at the	
	dilution rate of 0.2 h ⁻¹	392
6.13	Specific rate of parent and <i>icd</i> mutant grown on	
	different carbon sources under different culture	
	conditions	402
6.14	Summary of MALDI-TOF mass spectrometry data for	
	protein spots showing altered expression levels on 2D gels	
	for parent E. coli (WT) and icd mutant	403
6.15	Specific enzyme activities in cell extracts of parent and	
	icd mutant grown on glucose under aerobic conditions	405
6.16	Measurement of intracellular metabolites for parent	
	E. coli and icd mutant grown on glucose under aerobic	
	conditions	408
6.17	The specific carbon source uptake rates and product	
	formation rates for the E. coli pflA mutant using different	
	carbon sources under microaerobic conditions	416
6.18	The yields (Y) of cell mass (x) and metabolites for different	
	carbon sources for the E. coli pflA mutant grown under the	
	microaerobic and the anaerobic conditions	417
6.19	Enzyme activities for the E. coli pflA mutant grown on	
	different carbon sources under microaerobic conditions	419
6.20	Intracellular metabolite concentrations in cells grown on	
	glucose	421
6.21	Intracellular metabolite concentrations in the <i>E. coli</i>	
	pflA mutant grown on different carbon sources in	
	microaerobic conditions	422
6.22	Specific rates of parent and <i>ldhA</i> mutant <i>E. coli</i> grown on	
	glucose under anaerobic conditions	430

6.23	Specific enzyme activities in cell extracts of parent and <i>ldhA</i>	
	mutant E. coli grown on glucose under anaerobic	
	conditions	431
6.24	Comparison between the ratios of gene expressions,	
	enzyme activities, and metabolic fluxes in E. coli grown on	
	glucose under anaerobic conditions	439