Cours "Systèmes numériques : de l'algorithme aux circuits"

Leçon inaugurale Septembre

Sylvain GUILLEY

<sylvain.guilley@telecom-paristech.fr>

Program

- How to design and use an electronic circuit
- Emphasis on : energy and time
- Technologies: FPGA, ASIC
- Complexity management
- CPU and programmation

• Team:

- Sylvain GUILLEY
- Hadrien BARRAL et Théophile WALLEZ,
 Sumanta CHAUDHURI et Yves MATHIEU

Electronics: WIPO report

zaibatsu (財閥)

Electronics: WIPO report

Electronics: WIPO report

Patent Applications per Country/Patent Authority since 1985

Electronics profits

Factories

Fab-less industries

2013 Rank	2012 Rank	Company	Headquarters	2012	2013	%
				(\$M)	(\$M)	Change
1	1	Qualcomm	U.S.	13,177	17,211	31%
2	2	Broadcom	U.S.	7,793	8,219	5%
3	3	AMD	U.S.	5,422	5,299	-2%
4	5	MediaTek	Taiwan	3,366	4,587	36%
5	4	Nvidia	U.S.	3,965	3,898	-2%
6	6	Marvell	U.S.	3,144	3,352	7%
7	7	LSI	U.S.	2,506	2,370	-5%
	8	Xilinx	U.S.	2,196	2,297	5%
9	9	Altera	U.S.	1,783	1,732	-3%
10	10	Avago	Singapore	1,479	1,619	9%
11	12	Novatek	Taiwan	1,256	1,398	11%
12	13	HiSilicon	China	1,178	1,355	15%
13	11	MStar	Taiwan	1,271	1,136	-11%
14	18	Spreadtrum	China	725	1,070	48%
15	14	CSR	Europe	1,025	961	-6%
16	15	Realtek	Taiwan	836	951	14%
17	16	Dialog	Europe	774	903	17%
18	19	Cirrus Logic	U.S.	714	772	8%
19	17	Himax	Taiwan	737	771	5%
20	21	Silicon Labs	U.S.	563	580	3%
21	22	MegaChips	Japan	553	577	4%
22	24	Semtech	U.S.	518	555	7%
23	23	PMC-Sierra	U.S.	531	508	-4%
24	25	IDT	U.S.	497	475	-4%
25	26	Microsemi	U.S.	450	433	-4%
Top 25 Total			-	56,459	63,029	12%
Other Total			_	15,650	14,882	-5%
Total Fabless			-	72,109	77,911	8%

Why electronics?

- Processors → software
- Performance : e.g., Kalray
- Low-power
- Security
- Safety
- ...

Records

- 10 nm feature size
- #transistors, exponential increase (2x/18month)
- More processors today than human beings

Trends: this morning at station F

Trends: for 5 and 3 nm

PPC970fx (90nm)

Power6 (65nm)

ELECINF102

Power7 (45nm)

28/40

Power7+ (32nm)

A l'échelle

2009 65nm Power6

2011 45nm Power7

2013 32 nm Power7+

Crédits

Les images sont issues de l'analyse de l'évolution des technologies IBM faite par ChipWorks Inc.

L'analyse ainsi que les images originales étaient accessibles en 2014 ici :

http://www.chipworks.com/en/
technical-competitive-analysis/resources/blog/
ibm-continues-major-source-chip-innovation/

"Downsizing théorique"

- Générations technologiques :
 - La longueur de grille minimale est caractéristique d'une génération technologique (90nm, 65nm, 40nm, 28nm, ...)
 - À chaque génération, les fondeurs visent une réduction de la surface d'un facteur 2
 - Les fondeurs investissent les milliards nécessaires pour cela...

"Downsizing théorique"

- Générations technologiques :
 - La longueur de grille minimale est caractéristique d'une génération technologique (90nm, 65nm, 40nm, 28nm, ...)
 - À chaque génération, les fondeurs visent une réduction de la surface d'un facteur 2
 - Les fondeurs investissent les milliards nécessaires pour cela . . .
- On utilise un facteur de réduction $\beta = \sqrt{2}$
 - division par β de la largeur W et la longueur L des transistors
 - division par β de l'épaisseur d'oxyde de grille T_{OX}
 - division par β de la tension d'alimentation V_{dd} des circuits
 - division par β de la tension de seuil V_T des transistors

Conséquences sur les performances

Évolution des capacités parasites

$$C_{par}(\beta) = (W/\beta)(L/\beta)(\beta C'_{ox}) = \frac{C_{par}}{\beta}$$

Evolution de l'énergie consommée par une porte

$$E_{porte}(\beta) = \frac{C_{par}}{\beta} (\frac{V_{dd}}{\beta})^2 = \frac{E_{porte}}{\beta^3}$$

Évolution du temps de propagation des fonctions combinatoires

$$t_{calc}(\beta) = \frac{t_{calc}}{\beta}$$

Diminuer les coûts et la consommation

- On n'exploite pas le gain en vitesse
 - $F_h(\beta) = F_h$
- Le gain en surface fait diminuer les prix
 - $Surf(\beta) = \frac{Surf}{\beta^2}$
- La consommation diminue.

•
$$P_{circuit}(eta) = T_{act}(F_h) rac{E_{circuit}}{eta^3} = rac{P_{circuit}}{eta^3}$$

Diminuer les coûts et la consommation

- On n'exploite pas le gain en vitesse
 - $F_h(\beta) = F_h$
- Le gain en surface fait diminuer les prix
 - $Surf(\beta) = \frac{Surf}{\beta^2}$
- La consommation diminue.

•
$$P_{circuit}(eta) = T_{act}(F_h) rac{E_{circuit}}{eta^3} = rac{P_{circuit}}{eta^3}$$

- Cette stratégie est particulièrement intéressante dans l'embarqué :
 - transition du haut de gamme vers le milieu, puis bas de gamme (smartphones),
 - ouverture à de nouvelles utilisations (objets connectés).

Augmenter les performances

- On exploite le gain en vitesse
 - $F_h(\beta) = \beta F_h$
- On profite du gain en taille des transistors pour accroître la complexité du circuit
 - $Surf(\beta) = Surf$
- La consommation ne change pas
 - $P_{circuit}(\beta) = P_{circuit}$

Augmenter les performances

- On exploite le gain en vitesse
 - $F_h(\beta) = \beta F_h$
- On profite du gain en taille des transistors pour accroître la complexité du circuit
 - $Surf(\beta) = Surf$
- La consommation ne change pas
 - $P_{circuit}(\beta) = P_{circuit}$
- Cette stratégie est particulièrement pour les processeurs de serveurs :
 - la puissance de calcul profite de l'augmentation de fréquence,
 - la puissance de calcul profite de l'augmentation du parallélisme.

Dans la pratique

Dans la pratique ça ne fonctionne plus si bien :

- Les vitesses maximum stagnent depuis le début des années 2000 (3 à 4 Ghz) à cause des problèmes de dissipation thermique.
- On ne peut diminuer sans cesse la tension d'alimentation sans s'éloigner du modèle d'interrupteur idéal : les circuits ont des courants de fuite de moins en moins négligeables
- Les technologues doivent jongler avec des procédés de fabrication de plus en plus complexes (et couteux) pour continuer à suivre la "loi de Moore".
- On a plusieurs fois prédit la fin de la loi de Moore pour des raisons "scientifiques" (physique du transistor) mais il semble depuis 2014 que le plus grave problème soit économique!

Evolution technologique

La fin de la loi de Moore?

Evolu

Evolution technologique

Pas pour Intel?

Gordon Moore Fishing

source https://commons.wikimedia.org/wiki/File:Gordon_moore_fishing.jpg

Le signal électrique

Support de l'information

- Passer de grandeurs physiques à des signaux électriques grâce à :
 - Capteurs
 - Transducteurs
- Possibilité de mesurer/manipuler :
 - la tension
 - le courant
 - la charge . . .
- C'est pour cela qu'on fait de l'électronique
 - analogique : traitement de valeurs continues
 - numérique : traitement de valeurs discrètes

Codage numérique de l'information

- Discrétiser le signal dans le temps
 - échantillonnage
- Représenter le signal par nombre fini de valeurs (de nombres)
 - quantification

Codage numérique de l'information

- Discrétiser le signal dans le temps
 - · échantillonnage
- Représenter le signal par nombre fini de valeurs (de nombres)
 - quantification

Codage numérique de l'information

- Discrétiser le signal dans le temps
 - échantillonnage
- Représenter le signal par nombre fini de valeurs (de nombres)
 - · quantification

Codage numérique de l'information : intérêts

- Possibilité de reproduire sans perte et de façon illimitée l'information
- Indépendance du support utilisé
 - Câble électrique
 - Fibre optique
 - CDROM, disque dur...
- Possibilité d'organiser le traitement de l'information dans le temps

Codage binaire

- Interprétations logiques multiples
 - 0/1
 - vrai/faux
- Support électrique très simple
 - Codage utilisant deux valeurs

Codage binaire : travailler en base 2

Comment représenter plus de deux niveaux en binaire ?

- Utiliser plusieurs fils
- Les transmettre à tour de rôle

Chaque élément est un bit

binary digit

On peut représenter tous les nombres en base 2

Le bit

Convention

- 2 niveaux de tension (0/5 V ou −12/12 V ou ...)
- 2 niveaux de courant électrique
- · Absence/présence de lumière sur une fibre
- •

Interprétations

- Vrai/Faux pour des variables de commande ou status
 - Contrôle
- valeur des nombres
 - Calcul

Plan

Traitement numérique de l'information

Signal électrique binaire

Logique Booléenne

Représentation des nombres

Opérateurs Arithmétiques

Notion de temps de propagation

Génération d'un signal électrique binaire

- Interrupteur fermé
 - \rightarrow 0 V en sortie
- Interrupteur ouvert
 - \rightarrow V_{dd} en sortie

tension	niveau logique
0 <i>V</i>	0
V_{dd}	1

Génération d'un signal électrique binaire

Interrupteur commandé :

- Si V_{in} < V_{ref} alors l'interrupteur est ouvert
- Si V_{in} > V_{ref} alors l'interrupteur est fermé
- Cet interrupteur peut être :
 - Un relais électromagnétique
 - Un tube à vide
 - Un transistor

Opérateur de traitement binaire

Fonction Non

V _{in}	V _s	In	Sortie
$< V_{ref}$	V_{dd}	0	1
$> V_{ref}$	0 <i>V</i>	1	0

- La fonction Non
- La sortie vaut 0 ssi l'entrée vaut 1

Opérateur de traitement binaire :

Fonction Non-Ou

V _{in1}	V _{in2}	V _s	In ₁	In ₁	Sortie
< V _{ref}	< V _{ref}	V _{dd}	0	0	1
< V _{ref}	> V _{ref}	0 <i>V</i>	0	1	0
> V _{ref}	< V _{ref}	0 <i>V</i>	1	0	0
> V _{ref}	> V _{ref}	0 <i>V</i>	1	1	0

- Fonction Non–Ou
- la sortie vaut 0 si l'une des entrées vaut 1

Opérateur de traitement binaire :

Fonction de mémorisation

- Le couple (V_a, V_b) possède deux états stables :
 - (V_{dd}, V_{min}) ou (V_{min}, V_{dd})

De l'opérateur de traitement binaire au microprocesseur

- Assemblage simples :
 - Portes logiques
- Assemblage en opérateurs
 - Arithmétique, contrôle . . .
- Circuits électroniques exécutant des fonctions complexes
 - Microprocesseur
 - ASIC¹ (Circuits spécifiques à une application)
 - Circuits logiques programmables

^{1.} Application Specific Integrated Circuit

Plan

Traitement numérique de l'information

Signal électrique binaire

Logique Booléenne

Représentation des nombres

Opérateurs Arithmétiques

Notion de temps de propagation

Algèbre de Boole

Formalisme de la logique

On le doit à George Boole

Crédits image : wikipedia (http://fr.wikipedia.org/wiki/George_Boole)

Variables et fonctions logiques

Variables logiques

- Une variable logique est un élément qui appartient à l'ensemble E = {0,1}
- Ne possède que deux états possibles : 0 ou 1

Fonctions logiques

Fonction d'une ou plusieurs variables logiques.

$$\begin{cases} E \times E \dots \times E \to E \\ e_0, e_1, \dots, e_n \to s = F(e_0, e_1, \dots, e_n) \end{cases}$$

Deux catégories

Fonctions combinatoires

La sortie ne dépend que de l'état actuel des entrées

$$\forall t, s(t) = F(e_0(t), e_1(t), \dots, e_n(t))$$

Fonctions séquentielles

La sortie dépend de l'état actuel des entrées et de leur passé

$$s(t) = F(e_0(t), e_1(t), \dots, e_n(t), e_0(t-t_1), e_1(t-t_1)\dots)$$

Fonctions logiques

Représentations

Plusieurs représentations possibles :

Table de vérité : En donnant toutes les valeurs possibles pour

toutes les entrées possibles.

Analytique : En donnant l'équation analytique

Graphique: En utilisant les symboles de fonctions de base

HDL: Langage "informatique" de description du matériel

(Hardware Description Language)

Fonctions élémentaires

L'inverseur (Not)

- La sortie est le complément de l'entrée
- La sortie vaut 1 si et seulement si l'entrée vaut 0

Symbole

Équation

$$s = \overline{e}$$

е	s
0	1
1	0

Fonctions élémentaires

Le "et" (And)

- La sortie vaut 1 si et seulement si les deux entrées valent 1
- Si l'une des entrées vaut 0 alors la sortie vaut 0

Symbole

Équation

$$s = a \cdot b$$

а	b	s
0	0	0
0	1	0
1	0	0
1	1	1

Fonctions élémentaires

Le "ou" (Or)

- Si l'une des entrées vaut 1 alors la sortie vaut 1
- La sortie vaut 0 si et seulement si les deux entrées valent 0

Symbole

Équation

$$s = a + b$$

а	b	s
0	0	0
0	1	1
1	0	1
1	1	1

Le "non et" (Nand)

- La fonction complémentaire du And
- La sortie vaut 1 si l'une des entrées est à 0

Symbole

Équation

$$s = \overline{a \cdot b}$$

а	b	S
0	0	1
0	1	1
1	0	1
1	1	0

Le "non et" (Nand)

- La fonction complémentaire du And
- La sortie vaut 1 si l'une des entrées est à 0

Symbole

Équation

$$s = \overline{a \cdot b}$$

а	b	S
0	0	1
0	1	1
1	0	1
1	1	0

Le "non ou" (Nor)

- La fonction complémentaire du Or
- La sortie vaut 0 si l'une des entrées est à 1

Symbole

Équation

$$s = \overline{a+b}$$

а	b	S
0	0	1
0	1	0
1	0	0
1	1	0

Le "non ou" (Nor)

- La fonction complémentaire du Or
- La sortie vaut 0 si l'une des entrées est à 1

Symbole

Équation

$$s = \overline{a + b}$$

а	b	S
0	0	1
0	1	0
1	0	0
1	1	0

Équivalence And/Or

Théorème de De Morgan

$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

$$= \overline{a \cdot b}$$

Exercice

- Comment réaliser une porte à deux entrées, dont la sortie vaut '1' si et seulement si les deux entrées sont différentes?
- Comment réaliser une porte à deux entrées, dont la sortie vaut '1' si et seulement si les deux entrées sont identiques?

Le "Ou exclusif" (Xor)

- La sortie vaut 1 si une seule entrée est à 1
- La sortie vaut 1 si les deux entrées sont différentes

Symbole

Équation

$$s = a \oplus b$$

 $s = a \cdot \overline{b} + \overline{a} \cdot b$

а	b	S
0	0	0
0	1	1
1	0	1
1	1	0

Le "Non Ou exclusif" (Xnor)

- La sortie vaut 1 si les deux entrées sont identiques
- C'est la fonction complémentaire du xor
- C'est la porte égalité

Symbole

Équation

$$s = \overline{a \oplus b}$$
$$s = a \cdot b + \overline{a} \cdot \overline{b}$$

а	b	S
0	0	1
0	1	0
1	0	0
1	1	1

Exercices?

Multiplexeur

- lacksquare On veut réaliser une fonction d'aiguillage 2 \rightarrow 1.
- Cette porte permet de sélectionner l'une des deux entrées en fonction d'une troisième entrée de sélection

Disjunctive Normal Form

Elle correspond à une somme de produits logiques : $F = \Sigma \Pi(e_i)$, où e_i représente une variable ou son complément. Exemple :

$$F_1(X,Y,Z) = X \cdot Y + X \cdot \overline{Z} + \overline{X} \cdot \overline{Y} \cdot Z$$

Si chacun des produits contient toutes les variables d'entrée sous une forme directe ou complémentée, alors la forme est appelée « **première forme canonique** » ou « **forme canonique** disjonctive ». Chacun des produits est alors appelé **minterme**. Exemple de forme canonique disjonctive :

$$F_2(X, Y, Z) = \overline{X} \cdot \overline{Y} \cdot Z + \overline{X} \cdot Y \cdot Z + X \cdot \overline{Y} \cdot \overline{Z}$$

Conjunctive Normal Form

Elle fait référence à un produit de sommes logiques : $F = \Pi\Sigma(e_i)$. Voici un exemple :

$$F_3(X,Y,Z) = (X+Y) \cdot (\overline{X}+Z) \cdot (\overline{X}+Y+\overline{Z})$$

Si chacune des sommes contient toutes les variables d'entrée sous une forme directe ou complémentée, alors la forme est appelée « deuxième forme canonique » ou « forme canonique conjonctive ». Chacune des sommes est alors appelée maxterme. Exemple de forme canonique conjonctive :

$$F_4(X,Y,Z) = (X+Y+Z) \cdot (\overline{X} + \overline{Y} + Z) \cdot (\overline{X} + Y + \overline{Z})$$

Example of DNF

A	B	C	H(A,B,C)	État	Minterme
0	0	0	1	0	$\overline{A}\cdot \overline{B}\cdot \overline{C}$
0	0	1	1	1	$\overline{A}\cdot \overline{B}\cdot C$
0	1	0	0	2	$\overline{A} \cdot B \cdot \overline{C}$
0	1	1	1	3	$\overline{A} \cdot B \cdot C$
1	0	0	0	4	$A \cdot \overline{B} \cdot \overline{C}$
1	0	$\mid 1 \mid$	1	5	$A\cdot \overline{B}\cdot C$
1	1	0	0	6	$A\cdot B\cdot \overline{C}$
1	1	1	0	7	$A \cdot B \cdot C$

 $H(A,B,C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C$

Example of CNF

A	B	C	H(A,B,C)	Etat	Maxterme
0	0	0	1	0	A+B+C
0	0	$\mid 1 \mid$	1	1	$A+B+\overline{C}$
0	1	0	0	2	$A + \overline{B} + C$
0	1	1	1	3	$A + \overline{B} + \overline{C}$
1	0	0	0	4	$\overline{A} + B + C$
1	0	1	1	5	$\overline{A} + B + \overline{C}$
1	1	0	0	6	$\overline{A} + \overline{B} + C$
1	1	1	0	7	$\overline{A} + \overline{B} + \overline{C}$

$$H(A,B,C) = (A + \overline{B} + C) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + \overline{C})$$

Boolean algebra properties

Complémentarité :	$a + \overline{a} = 1$, $a \cdot \overline{a}$	$=0$, $\overline{a}=a$
Idempotence:	$a+a+a+\cdots=a,$	$a \cdot a \cdot a \cdot \cdot \cdot = a$
Éléments neutres :	a+0=a,	$a \cdot 1 = a$
Éléments absorbants :	a+1=1,	$a \cdot 0 = 0$
Commutativité:	a+b=b+a,	$a \cdot b = b \cdot a$
Associativité:	(a+b) + c = a + (b+c) = a+b+c,	$(a \cdot b) \cdot c = a \cdot (b \cdot c) = a \cdot b \cdot c$
Distributivité :	$(a+b)\cdot c = (a\cdot c) + (b\cdot c),$	$(a \cdot b) + c = (a+c) \cdot (b+c)$
Théorème d'absorption (1)	$a + (a \cdot b) = a ,$	$a \cdot (a+b) = a$
Théorème d'absorption (2)	: $a \cdot \bar{b} + b = a + b$,	$(a+\bar{b})\cdot b=a\cdot b$
Théorème d'adjacence :	$(a+\bar{b})\cdot(a+b)=a,$	$a \cdot \bar{b} + a \cdot b = a$

Remarque : Deux termes sont dits adjacents logiquement s'ils ne diffèrent que par une variable.

Secondary results

Théorème de De Morgan :

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$
, $\overline{a \cdot b} = \overline{a} + \overline{b}$

Premier théorème d'expansion :

$$F(e_0, e_1, \dots, e_i, \dots, e_{n-1}) = e_i \cdot F(e_0, e_1, \dots, 1, \dots, e_{n-1}) + \overline{e_i} \cdot F(e_0, e_1, \dots, 1, \dots, e_{n-1})$$

Second théorème d'expansion :

$$F(e_0, e_1, \cdots, e_i, \cdots, e_{n-1}) = [e_i + F(e_0, e_1, \cdots, 0, \cdots, e_{n-1})] \cdot [\overline{e_i} + F(e_0, e_1, \cdots, 1, \cdots, e_{n-1})]$$

Simplifications 1/3

Regroupement des termes et mises en facteur

$$\begin{array}{lll} Z & = & \overline{a} \cdot \overline{c} \cdot d + \overline{a} \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot b \cdot c \cdot \overline{d} = \overline{a} \cdot \overline{c} \cdot (d + \overline{d}) + \overline{a} \cdot b \cdot c \cdot \overline{d} \\ & = & \overline{a} \cdot \overline{c} + \overline{a} \cdot b \cdot c \cdot \overline{d} = \overline{a} \cdot (\overline{c} + c \cdot b \cdot \overline{d}) = \overline{a} \cdot (\overline{c} + b \cdot \overline{d}) \end{array}$$

Nous avons successivement utilisé une mise en facteur, la complémentarité, une deuxième mise en facteur et enfin le théorème d'absorption.

Simplifications 2/3

Réplication de termes existants

$$Z = \overline{a} \cdot b \cdot c + a \cdot \overline{b} \cdot c + a \cdot b \cdot \overline{c} + a \cdot b \cdot c$$

$$= \overline{a} \cdot b \cdot c + a \cdot b \cdot c + a \cdot \overline{b} \cdot c + a \cdot b \cdot c + a \cdot b \cdot \overline{c} + a \cdot b \cdot c$$

$$= (\overline{a} + a) \cdot b \cdot c + (\overline{b} + b) \cdot a \cdot c + (\overline{c} + c) \cdot a \cdot b$$

$$= b \cdot c + a \cdot c + a \cdot b$$

La réplication du terme $a \cdot b \cdot c$ permet de simplifier chacun des trois premiers termes en utilisant une mise en facteur et la complémentarité.

Simplifications 3/3

Suppression de termes superflus

$$Z = \overline{a} \cdot \overline{b} + b \cdot \overline{c} + \overline{a} \cdot \overline{c} = \overline{a} \cdot \overline{b} + b \cdot \overline{c} + \overline{a} \cdot \overline{c} \cdot (b + \overline{b})$$

$$= \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{b} \cdot \overline{c} + b \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c} = \overline{a} \cdot \overline{b} \cdot (1 + \overline{c}) + b \cdot \overline{c} \cdot (1 + \overline{a})$$

$$= \overline{a} \cdot \overline{b} + b \cdot \overline{c}$$

Nous avons ici réintroduit la variable b dans le troisième terme par l'intermédiaire de la propriété de complémentarité, nous avons ensuite utilisé la propriété d'absorption pour simplifier les produits.

Karnaugh maps

A BC	00	01	11	10
0	1	1	1	0
1	1	0	1	1

A BC	00	01	11	10
0	1	1	1	0
1	1	0	1	1

$$\overline{b}\cdot\overline{c}+\overline{a}\cdot c+a\cdot b$$

$$\overline{a} \cdot \overline{b} + b \cdot c + a \cdot \overline{c}$$