

National University

of Computer & Emerging Sciences

<u>Tentative</u> Course Outline of BS (CS) Degree Program Instructors: Dr. Fahd Samad, Nadeem Kafi Khan, Mr. Shoaib Raza. Email: nadeem.kafi@nu.edu.pk

Course Title	Computer Networks	Course Code	CS307
Pre-Req.		Credit Hrs.	3+1

Text Book	Title	Computer Networking: A Top-Down Approach (7th Ed. 2017)			
	Author	Kurose and Ross			
	Publisher	Pearson Education (ISBN 978-0-13-359414-0)			
Ref. Books	Title	Computer Networks (5 th Ed. 2011)			
	Author	Tanenbaum and Wetherall			
	Publisher	Pearson Education (ISBN 978-0-13-212695-3)			
	Title	Computer Networks: A Systems Approach (5th			
		Ed. 2012)			
	Author	Larry Peterson and Bruce Davie			
	Publisher	Morgan Kaufmann (ISBN 978-0-12-385059-1)			

Objectives:	The learning and skill based objectives of this course resolve around the following questions:
	• How does the global network infrastructure work and what are the design principles on which it is based?
	In what ways are these design principles compromised in practice?
	How should Internet applications be written, so they can obtain the best possible
	performance both for themselves and for others using the infrastructure?
	How do we ensure that it will work well in the future in the face of rapidly growing scale
	and heterogeneity?
	The course will focus on the design & undergraduate level analysis of large-scale networked
	systems and GNS3 based implementation and evaluation of small-scale networked

Week	Tentative course topics	Chapter
01	L1: Introduction, Course	1.1, 1.2,
	L2: Network Edge, Network Core (ISPs, internet Vs. intranet, Internet)	1.3.3,
	L3: Process to Process and Host to Host connectivity	1.5.1
02	L1: Network Core: Packet and Circuit Switching. Statistical Multiplexing	1.3,
	L2: ISPs and Internet Backbones (Tiers of ISPs)	BK2-1.2
	L3: What are the Requirements for building a Network?	
03	L1: Delay, Loss and Throughput in Packet- Switched Networks,	1.4,
	L2: Delay-Bandwidth Product, End-to-End delay, Application Performance, Traceroute	BK2-1.5
	L3:Protocols Layers and Their Service Model,	1.5,1.6
04	L1: Network Applications Architecture: Client-Server and Peer-to-Peer	2.1.1
	L2: Transport Services: Reliability, Throughput, Timing, Security	to
	L3:Internet Transport Services: TCP, UDP, HTTP (2.2.1 – 2.2.6)	2.1.5
05	L1: DNS (2.5.1 – 2.5.3)	2.2
	L2: BitTorrent	2.5
	L3: BitTorrent (DHT)	
	Semester Project Part-II Due before Midterm # 2	

06	Mid Term 1	-
07	L1: Socket Programming Basics	2.6
	L2: JAVA socket programming (TCP). Example and DEMO	2.7
	L3: Writing a multi-threaded server in Java. Example and DEMO	
08	L1:Internet Transport Layer Protocol, Multiplexing & Demultiplexing	
	L2: Connection Less Transport: UDP	3.3
	L3:Principle of Reliable Data Transfer, rdt 1.0, rdt 2.0	3.4.1
09	L1: Principle of Reliable Data Transfer 3.0	3.4.2
	L2: Pipelined Data Transfer	3.4.3
	L3: Go-Back-N and Selective Repeat	3.4.4
10	L1: Connection Oriented Transport: TCP	3.5.1
	L2: TCP Connection and Segment structure	3.5.2
	L3: Round tip time estimation and Timeout	3.5.3
11	L1: TCP Reliable data transfer mechanism	3.5.4
	L2: Flow and Congestion Control	3.5.5
	L3: Principle of Congestion Control	
	Semester Project Part-II Due before Midterm # 2	
12	Mid Term 2	-
13	L1: Forwarding and Routing, Network Service Models, Datagram Networks	3.6,
	L2: Router Vs. Switch, Architecture and working of a Router (Part # 1)	3.7
	L3: Architecture and working of a Router (Part # 2)	
14	L1: Internet Protocol (IPv4) detailed coverage as per text book.	4.1, 4.2
	L2: New improvements in IPv6	4.3
	L3: Network Address Translation (NAT)	
15	L1: Routing Algorithms, IP routing in the Internet	4.4
	L2: RIP (Distance Vector), OSPF (Link State)	
	L3: Overview of BGP (Modified Distance Vector ~ Path Vector)	
	Semester Project Part-III and grading	
16	1. Datacenter Networking (<u>Optional coverage</u>)	4.5
	2. IoT Networks and Protocols	
	3. Networking issues in High-Performance Compute Clusters	
	4. Security in Computer Networks	

Pre-Requisites:

Students enrolled in this course are expected to have completed following course tracks:

- 1. Digital Logic Design, COAL, Computer Architecture
- 2. Computer Programming, Object Oriented Analysis and Design

Theory Marks Distribution (out of 100):

Mid Terms (1 & 2)	30%	Quiz / Assignment / Project	. 25%
Class Participation Notes / Attendance	5%	Final Examination	40%

Plagiarism:

Mark will be detected and the case shall be reported to the HOD and/or DC.

Rules & Regulation:

Rules and regulations related to attendance, all type of exams, class work, homework and others shall be observed as per FAST-NU policy and/or communicated by the HOD CS department or in absence of the same as communicated by the course instructor during the semester. See Lecture # 1 slides for more coverage.