Appendix

Derivation Rules for Propositional and Predicate Logic

EQUIVALENCE RULES				
Expression Equivalent to Name/Abbrevia		Name/Abbreviation for Rule		
$P \lor Q$ $P \land Q$	$Q \lor P$ $Q \land P$	Commutative—comm		
$(P \lor Q) \lor R (P \land Q) \land R$	$P \lor (Q \lor R) P \land (Q \land R)$	Associative-ass		
$(P \lor Q)'$ $(P \land Q)'$	P' ∧ Q' P' ∨ Q'	De Morgan's laws-De Morgan		
$P \rightarrow Q$	$P' \lor Q$	Implication—imp		
Р	(P')'	Double negation—dn		
$[(\exists x)A(x)]'$	$(\forall x)[A(x)]'$	Negation-neg		

INFERENCE RULES				
From	Can Derive Name/Abbreviation for Rule			
$P, P \rightarrow Q$	Q	Modus ponens-mp		
$P \rightarrow Q, Q'$	P'	Modus tollens-mt		
P, Q	$P \wedge Q$	Conjunction—con		
$P \wedge Q$	P, Q	Simplification—sim		
Р	$P \lor Q$	Addition-add		
$P \rightarrow Q, Q \rightarrow R$	$P \rightarrow R$	Hypothetical syllogism-hs		
P ∨ Q, P'	Q	Disjunctive syllogism—ds		
$P \rightarrow Q$	$Q' \rightarrow P'$	Contraposition-cont		
$Q' \rightarrow P'$	$P \rightarrow Q$	Contraposition—cont		
Р	$P \wedge P$	Self-reference-self		
$P \lor P$	P	Self-reference-self		
$(P \land Q) \rightarrow R$	$P \rightarrow (Q \rightarrow R)$	Exportation—exp		
P, P'	Q	Inconsistency-inc		
$P \wedge (Q \vee R)$	$(P \wedge Q) \vee (P \wedge R)$	Distributive-dist		
$P \lor (Q \land R)$	$(P \lor Q) \land (P \lor R)$	Distribution — dist		

INFERENCE RULES (CONTINUED)					
From	Can Derive	Name/Abbreviation for Rule	Restrictions on Use		
$(\forall x)P(x)$	P(t), where t is a variable or constant symbol	Universal instantiation—ui	If t is a variable, it must not fall within the scope of a quantifier for t.		
$(\exists x)P(x)$	P(a) where a is a constant symbol not previously used in proof sequence	Existential instantiation—ei	Must be the first rule used that introduces a.		
P(x)	$(\forall x)P(x)$	Universal generalization—ug	P(x) has not been deduced from any hypotheses in which x is a free variable nor has P(x) been deduced by ei from any wff in which x is a free variable.		
P(x) or P(a) where a is a constant symbol	$(\exists x)P(x)$	Existential generalization – eg	To go from $P(a)$ to $(\exists x)P(x)$, x must not appear in $P(a)$.		