

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΚΑΙ ΥΛΙΚΩΝ

Ηρώων Πολυτεχνείου 5, Κτίριο Θεοχάρη Πολυτεχνειούπολη Ζωγράφου, 157 73 Ζωγράφου

Δρ Σταύρος Κ. Κουρκουλής, Καθηγητής Πειραματικής Μηχανικής

Τηλέφωνα: +210 772 1313, +210 772 1263 (γραφείο)

+210 772 4025, +210 772 4235, +210 772 1317, +210 7721310 (εργαστήρια)

Τηλεομοιότυπο (Fax): +210 7721302

Διεύθυνση ηλεκτρονικού ταχυδρομείου (e-mail): stakkour@central.ntua.gr

ΜΗΧΑΝΙΚΗ Ι (ΣΤΑΤΙΚΗ) 14^η σειρά ασκήσεων: Ισορροπία σε δύο διαστάσεις

Άσκηση 1

Ο σηματοδότης κυκλοφοριακής ρύθμισης φορτίζεται όπως φαίνεται στο Σχ.1. Υπολογίστε τις αντιδράσεις στην πάκτωση Α.

Ασκηση 2

Η σταθερά του ελατηρίου του Σχ.2 είναι ίση με 2 kN/m και το φυσικό του μήκος είναι 400 mm. Αν η ράβδος ΑΒ ισορροπεί στη θέση που απεικονίζεται στο σχήμα, υπολογίστε τη μάζα της ράβδου, γνωρίζοντας ότι το κέντρο μάζας της είναι στο μέσο G.

Άσκηση 3

Η αρθρωτή δοκός ΑΒΓ (άρθρωση στο B) στηρίζεται με πάκτωση στο Α και κύλιση στο Γ, φέρει δε κατανεμημένο φορτίο όπως φαίνεται στο Σχ.3. Υπολογίστε τις αντιδράσεις στηρίξεων και τη δύναμη που μεταβιβάζεται στην άρθρωση B.

Άσκηση 4

Η δοκός του Σχ.4 στηρίζεται με πάκτωση στο A, κύλιση στο Γ, φέρει δε εσωτερική άρθρωση στο B. Για τη φόρτιση του Σχ.4 υπολογίστε τις αντιδράσεις στηρίξεως. Δίνεται: q=10 kN/m και F=50 kN.

Σχήμα 4

Άσκηση 5

Ο πρόβολος του Σχ.5 είναι πακτωμένος στη θέση ΑΗ και φέρει τριγωνικώς κατανεμημενο φορτίο κατά μήκος της ΕΔ. Να ευρεθούν:

- α. Το κέντρο βάρους της διατομής.
- β. Οι αντιδράσεις στήριξης, αν το βάρος ανά μονάδα επιφάνειας του υλικού του προβόλου είναι ρ=1 kN/m².

Άσκηση 6

Το πλαίσιο του Σχ.6 στηρίζεται με αρθρώσεις στα A και Δ και φέρει εσωτερική άρθρωση στο E. Το πλαίσιο φορτίζεται με τραπεζοειδές φορτίο στο οριζόντιο τμήμα του. Να υπολογισθούν οι αντιδράσεις στηρίξεως. (F=4 kN, q_o =2 kN/m, L=4m).

Σχήμα 6

Άσκηση 7

Η ομοιόμορφη ράβδος ΑΒ στηρίζεται με άρθρωση στο Α και καλώδιο που ενώνεται με οριζόντιο ελατήριο (Σχ.7). Το ελατήριο ευρίσκεται στο φυσικό του μήκος όταν η ράβδος είναι οριζόντια (θ=0°). Η σταθερά του είναι 2.5 kN/m. Το μήκος της ράβδου είναι 1=600 mm. Θεωρώντας την τροχαλία ιδανική:

- **α.** Υπολογίστε τη μάζα της ράβδου αν στη στατική θέση ισορροπίας θ=30°.
- **β.** Εκφράστε τη μάζα της ράβδου συναρτήσει της σταθεράς του ελατηρίου k, του μήκους *l* και της γωνίας θ στη στατική θέση ισορροπίας.

14º Esigo asimosim: lorgophia de São Grassadeis "Asuran - HEN 5m EFx=0 = H-1-0,5=00, H=1,5xN EFy=0 @1 V-3 =0 @1 V=3 EMA=0 @1 MA + 13-3.1 +0,5.5=0 -7 MA = -2,5KN

$$A_{pa}$$
 tand= $\frac{EC}{EB} = \frac{AC-BD}{AD} = \frac{O.3}{0.39} = 0,769 => 0 = 3.7,57°$

FEZY = = FEZSIN 8 = 0,174-SIN (37,570) =0,106 KN FEL, = FELCOS & = 0, 174 · COS(37,57°) = 0,138 KN Moère SEFY = 0 EFY = 0 EFY = 0 Efy=0 @) H-FELx=0 @H=FELx=0,138 kN Efy=0 @) N+FELy-W=0 @,V=W-FELy EMA=OGI W. AD FEDX. BD - FEDY. AD =OGI a W=2(FEZX.BD+FEZY.AD) - 0,283 KN Apr N=0,283-0,106=0,177 KN

Feg = 100000 10.10 - SOKN now asxerou of ariozam d= 4+10 - 7,33 m karu 20 DEE 200 oxylponos 2 fx=0 on H=0 EFy=0 > V=W+feq = 50+34 = 84nN EN= 0 €1 MAH == 6,02.W+7,33. Feq=204,68 + 366,5 = 57/18 W mm To ontero now armena n H

6) la roxas D'èxa: BT = Dl = 12AB2 - 2AB2 - COSO = 12AB2(1-COSO) - TEAB [1-COSO] = 0,85 /1-COSO Apa FEZ= NOL = 2,135 /1-cost EMA=0=) Wy-0,3-FEJ.0,6=0=) wy= 2FEJ=4,25 11-608 (058 COSD $M = \frac{4.25 \sqrt{1-\cos\theta}}{9} = \frac{4.25 \cdot \sqrt{1-\cos\theta}}{10 \cdot \cos\theta} = 0,425 \sqrt{1-\cos\theta}$ COSB

