

SEQUENCE LISTING

<110> Brieden, Walter
Naughton, Andrew
Robins, Karen
Shaw, Nicholas
Tinschert, Andreas
Zimmermann, Thomas

<120> METHOD OF PREPARING (S)-OR (R)
-3,3,3-TRIFLUORO-2-HYDROXY-2-METHYLPROPIONIC ACID

<130> 32213

<140> 09/214,679
<141> 1999-12-30

<160>(14)

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 1442

<212> DNA

<213> Klebsiella oxytoca

<400> 1

ccccgggaact ccatgtggcc gtgatcctgg tcgagcgagga tattgcgatg atccagcgaa
ccgcacagcg ctgtcggtta atggataaaag gcctgggtgt agaaaacgctg acccaacaac 60
agctcttga tgatctttta atgcgtcgtc atctggctct gtaactaaac gctataaaatt 120
acgtggagaa taacatatga aatgggttggaa agaatccatt atggccaaac gcgggtgttgg 180
tgccgggcgt aaaccggtaa cgcatcacct gacggaagaaa atgcaaaaag agtttcatta 240
caccattggc ctttattcca caccggcctt gaccatcgaa cccggtgacc ggattattgt 300
cgacactcga gatgttttg aagggtctat caattcgaa caggatattc cgagccagtt 360
gctaaaaatg ccccttctca acccacaaaaa cggaccgatc atggtcaatg gcgccggagaa 420
aggtgatgtg ctcgctgtct atatcgaatc catgttgccc cgccggcgtt atccctacgg 480
catctgcgcc atgattccgc atttggcggt actgaccggg accgacactga cggccatgt 540
caatgatccg ctgcccagaaa aggtgcgcatt gattaaactc gacagtggaaa aggtctactg 600
gagcaaacgc catacgcttc cctataaaacc ccatattggc accttgcgc tatcgccaga 660
aattgactca atcaattcactg tgacgcccaga caatcacggc gggaaatatgg atgtgccgg 720
tataggacca gggagtatta cctatctggc ggtacgtggc cctggaggcc gcctgtttat 780
tggtgatgcc catgcttgcc aggggtatgg tgagatttgc gggaccgcag tagagtttgc 840
ctcaatcacc accatcaaag tcgatttgcatt caagaactgg cagtttgcatt gcgcacgaat 900
ggagaatgcc gaaaatattatg tgagtattgg cagtcgcacgt ccgctggagg atgcgacgcg 960
aattgcataat cgcaacttacatg tttactggct ggtagaagac tttggcttcg aacaatgggaa 1020
tgcctacatg cttctgagtc aatgcggcaa agtgcggctg ggcaacatgg tcgaccccaa 1080
atacaccgtt ggcgcgtatgc tgaacaaaaaa cctgttagtt tagtaggaat aactaaccgg 1140
tgaacattac cggatgttag atcggggtaa tgtgtaaatg caaacaatgc ctatTTTAA 1200
cagctaaagc aggtgcataat gggggccagat acacccatca atattggttt actttactcc 1260
ttcagccggag tgacggcggc acaagatgg tcacaatggc gcggagcaac ccaggctatt 1320
gccgaaatatacaaaatgg cggcatcaac ggcagaccac tcaatgcatt tcattttggat 1380
1440

<210> 2
<211> 328
<212> PRT
<213> Klebsiella oxytoca

<400> 2
Met Lys Trp Leu Glu Glu Ser Ile Met Ala Lys Arg Gly Val Gly Ala
1 5 10 15
Gly Arg Lys Pro Val Thr His His Leu Thr Glu Glu Met Gln Lys Glu
20 25 30
Phe His Tyr Thr Ile Gly Pro Tyr Ser Thr Pro Val Leu Thr Ile Glu
35 40 45
Pro Gly Asp Arg Ile Ile Val Asp Thr Arg Asp Ala Phe Glu Gly Ala
50 55 60
Ile Asn Ser Glu Gln Asp Ile Pro Ser Gln Leu Leu Lys Met Pro Phe
65 70 75 80
Leu Asn Pro Gln Asn Gly Pro Ile Met Val Asn Gly Ala Glu Lys Gly
85 90 95
Asp Val Leu Ala Val Tyr Ile Glu Ser Met Leu Pro Arg Gly Val Asp
100 105 110
Pro Tyr Gly Ile Cys Ala Met Ile Pro His Phe Gly Gly Leu Thr Gly
115 120 125
Thr Asp Leu Thr Ala Met Leu Asn Asp Pro Leu Pro Glu Lys Val Arg
130 135 140
Met Ile Lys Leu Asp Ser Glu Lys Val Tyr Trp Ser Lys Arg His Thr
145 150 155 160
Leu Pro Tyr Lys Pro His Ile Gly Thr Leu Ser Val Ser Pro Glu Ile
165 170 175
Asp Ser Ile Asn Ser Leu Thr Pro Asp Asn His Gly Gly Asn Met Asp
180 185 190
Val Pro Asp Ile Gly Pro Gly Ser Ile Thr Tyr Pro Leu Val Arg Ala
195 200 205
Pro Gly Gly Arg Leu Phe Ile Gly Asp Ala His Ala Cys Gln Gly Asp
210 215 220
Gly Glu Ile Cys Gly Thr Ala Val Glu Phe Ala Ser Ile Thr Thr Ile
225 230 235 240
Lys Val Asp Leu Ile Lys Asn Trp Gln Leu Ser Trp Pro Arg Met Glu
245 250 255
Asn Ala Glu Asn Ile Met Ser Ile Gly Ser Ala Arg Pro Leu Glu Asp
260 265 270
Ala Thr Arg Ile Ala Tyr Arg Asp Leu Ile Tyr Trp Leu Val Glu Asp
275 280 285
Phe Gly Phe Glu Gln Trp Asp Ala Tyr Met Leu Leu Ser Gln Cys Gly
290 295 300
Lys Val Arg Leu Gly Asn Met Val Asp Pro Lys Tyr Thr Val Gly Ala
305 310 315 320
Met Leu Asn Lys Asn Leu Leu Val
325

<210> 3
<211> 20

<212> PRT
<213> Klebsiella oxytoca

<400> 3
Met Lys Trp Leu Glu Glu Ser Ile Met Ala Lys Arg Gly Val Gly Ala
1 5 . 10 15
Ser Arg Lys Pro
20

<210> 4
<211> 5
<212> PRT
<213> Klebsiella oxytoca

<400> 4
Val Tyr Trp Ser Lys
1 5

<210> 5
<211> 13
<212> PRT
<213> Klebsiella oxytoca

<400> 5
Lys Pro Val Thr His His Leu Thr Glu Glu Met Gln Lys
1 5 10

<210> 6
<211> 9
<212> PRT
<213> Klebsiella oxytoca

<400> 6
Tyr Thr Val Gly Ala Met Leu Asn Lys
1 5

<210> 7
<211> 14
<212> PRT
<213> Klebsiella oxytoca

<400> 7
Met Glu Asn Ala Glu Asn Ile Met Ser Ile Gly Ser Ala Arg
1 5 10

<210> 8
<211> 9
<212> PRT
<213> Klebsiella oxytoca

<400> 8
Trp Leu Glu Glu Ser Ile Met Ala Lys
1 5

<210> 9
<211> 18
<212> PRT
<213> Klebsiella oxytoca

<400> 9
Met Pro Phe Leu Asn Pro Gln Asn Gly Pro Ile Met Val Asn Gly Ala
1 5 10 15
Glu Lys

<210> 10
<211> 19
<212> PRT
<213> Klebsiella oxytoca

<400> 10
Asp Ala Phe Glu Gly Ala Ile Asn Ser Glu Gln Asp Ile Pro Ser Gln
1 5 10 15
Leu Leu Lys

<210> 11
<211> 21
<212> PRT
<213> Klebsiella oxytoca

<400> 11
Glu Phe His Tyr Thr Ile Gly Pro Tyr Ser Thr Pro Val Leu Thr Ile
1 5 10 15
Glu Pro Gly Asp Arg
20

<210> 12
<211> 23
<212> PRT
<213> Klebsiella oxytoca

<400> 12
Leu Phe Ile Gly Asp Ala His Ala Glu Gln Gly Asp Gly Glu Ile Glu
1 5 10 15
Gly Thr Ala Val Glu Phe Ala
20

<210> 13
<211> 14
<212> PRT
<213> Klebsiella oxytoca

<400> 13
Gly Asp Val Leu Ala Val Tyr Ile Glu Ser Met Leu Pro Arg
1 5 10

<210> 14

<211> 33

<212> PRT

<213> Klebsiella oxytoca

<400> 14

Gly Val Asp Pro Tyr Gly Ile Glu Ala Met Ile Pro His Phe Gly Gly

1 5 10 15

Leu Thr Gly Thr Asp Leu Thr Ala Met Leu Asn Asp Gln Leu Gln Pro

20 25 30

Lys