Lec 13: Shape-constrained Regression & Course Recap

Yanjun Han Dec. 10, 2024 Regression: given (x,y,), ... (x, y.), estimate f(x) = F[Y| X=x]

<u>Previous lectures</u>: smoothness assumption on f (||f(to)||on EL or ||f(to)||on EL or

Fourier, Wavelet, etc.);

approximation theory plays a key role.

This lecture: shope constraint on f (monotone, convex. ...)

Isotonic regression: $f(x_1) \le f(x_2)$ as long as $x_1 \le x_2$ (f increasing) W.l.o.g. assume that $x_1 < x_2 < \cdots < x_n$, and $y_1 \sim N(x_1, \sigma^2)$, $i=1,2,\cdots,n$.

Motivation from MLE: instead of estimating the entire function f, let's estimate $(f(x_i), \dots, f(x_n))$ first

- Q: given estimates of $(\hat{\theta}_1, \dots, \hat{\theta}_n)$ of $(f(x_i), \dots, f(x_n))$, when do they give rise to a monotone function \hat{f} ?
- A: very easy just need $\hat{\theta}_1 \leq \hat{\theta}_2 \leq \cdots \leq \hat{\theta}_n$!

 (use piecewise constant/linear function to find \hat{f})
- (Similar idea to splines: in smoothing spline, one also hypothetically:
 - 1. fix the estimates $(\hat{\theta}_1, \dots, \hat{\theta}_n)$ for $(f(x_i), \dots, f(x_n))$;
 - 2. construct the most smooth function \hat{f} with $\hat{f}(x_i) = \hat{\theta}_i$, $i=1,2,\cdots,n$
 - If turns out to be a spline!
 - 3. find $(\hat{\theta}_1, \dots, \hat{\theta}_n)$ to minimize $\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i \gamma_i)^2 + \lambda \cdot R(\hat{f})$.

Resulting estimator:

$$(\hat{e}_1, \dots, \hat{e}_n)$$
 is the solution to the following program:

min $\hat{\sum}_{i=1}^n (\gamma_i - \hat{e}_i)^2$

(.t. $\hat{e}_1 \leq \hat{e}_2 \leq \dots \leq \hat{e}_n$.

Computation. a convex program with n variables & (n-1) constraints —) interior point method solves it in time $\widetilde{O}(n^{\omega+\frac{1}{n}})$, where $\omega \leq 2.373$ is the matrix multiplication exponent

The O(n2) exact algorithm used in many solvers: PAVA!

Pool Adjacent Violators Algorithm (PAVA).

- 1. Initialization: Set m=n. and $B_j = \{j\}$ for all j=1,2,...,m(consequently $V_j = Y_j$)
- 2. Iteration: if a adjacent blocks with $v_j > v_{j+1}$, (adjacent violators)

 pick an arbitrary pair, (leftmost, rightmost, random, ...)

 merge these two blocks. (and update (v_j, v_{j+1}) to a single v)

 Go back to step 2.
- 3. Stopping criterion, if v_j \(\sigma\) for all j=1.2....m-1, then output the resulting (\(\theta_1, \cdots, \theta_n\))

An illustration of PAVA:

Correctness of PAVA.

Karush-Kuhn-Tucken (KKT) condition:

For convex
$$f$$
 and g_1, \dots, g_m .

 x^* is the solution to $\begin{cases} \min f(x) \\ s.t. g_1(x) \le 0, \ i=1,2,\dots,m \end{cases}$
 $\Rightarrow (\lambda_1^n, \dots, \lambda_m^n)$ such that the following holds:

(Stationarity) $\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g(x_i^*) = 0$

(primal feasibility) $g_1(x^*) \le 0, \ i=1,\dots,m$

(dual feasibility) $\lambda_i^* \ge 0, \ i=1,\dots,m$

(complementary slackness) $\lambda_i^* g(x_i^*) = 0, \ i=1,\dots,m$

Application to PAVA: need to find (ê, ..., ê, , \, ..., \, \, ...) s.t.

1.
$$y_i - \hat{\theta}_i = \lambda_i - \lambda_{i-1}$$
, $\forall i=1,\dots, n \ (\lambda_n \stackrel{>}{=} 0, \lambda_n \stackrel{=}{=} 0)$

2.
$$\hat{\theta}_i \leq \hat{\theta}_{i+1}$$
, $\forall i=1,\cdots,n-1$

3.
$$\lambda_i \geqslant 0$$
, $\forall i=1,\dots,n-1$

4.
$$\lambda_i(\hat{\theta}_i - \hat{\theta}_{in}) = 0$$
, $\forall i = 1, \dots, n-1$

High-level idea: PAVA maintains 1. 3. 4. and tries to arrive at 2.

```
Formal Pf. Initialization: \hat{\theta}_i = y_i, \lambda_i \equiv 0 (1.3.4 hold)
                                     Iteration: suppose we merge Bi & Bi+1:
                                                          i_1-1 i_2 i_3-1 i_4 i_5-1 i_5 i_5-1 i_5
                                       Values of (0, 2) before merging:
                                                   \begin{array}{lll} & \text{ of } (\theta,\lambda) & \text{ before merging}: \\ & & \\ & \hat{\theta}_i = V_j &, & i_1 \leq i < i_2 ; & \hat{\theta}_i = V_{j+1} , & i_2 \leq i < i_3 ; \\ & & \\ & \lambda_{i_1-1} = \lambda_{i_2-1} = \lambda_{i_2-1} = 0 & \text{ (complementary slockness)} \\ & & \\ & \lambda_i - \lambda_{i-1} = \gamma_i - V_j , & i_1 \leq i < i_2 \\ & & \\ & \lambda_i - \lambda_{i-1} = \gamma_i - V_{j+1} , & i_2 \leq i < i_3 \\ & \\ & \lambda_i \geqslant 0 & \text{ (dual feasibility)} \end{array}
                                      Updates of (\hat{\theta}', \lambda') after merging:
                                                      \begin{cases} \hat{\Theta}_{i}' = v \stackrel{\triangle}{=} \frac{1}{i_{3} - i_{1}} \sum_{k=i_{1}}^{i_{1} - i_{2}} \gamma_{k} , \quad i_{1} \leq i < i_{3} \\ \lambda_{i}' = \sum_{k=i_{1}}^{i_{1}} (\gamma_{k} - v) , \quad i_{1} \leq i < i_{3} \end{cases}
                                      Verification of properties 1.3.4:
                                                1. stationarity: for issicia.
                                                                                 \lambda'_i - \lambda'_{i-1} = \gamma_i - \nu = \gamma_i - \hat{\theta}'_i
                                               4. complementary slackness:
                                                                       \lambda'_{i_1-i} = \lambda_{i_1-1} = 0
                                                                         \lambda_i(\widehat{\theta}_{i+1} - \widehat{\theta}_i) = \lambda_i(v-v) = 0, \quad i_1 \leq i < i_3 - 1
                                                                       \lambda'_{3-1} = \sum_{k=1}^{i_{3}-1} (y_k - v) = 0 by definition of v
                                             3. dual feasibility:
                                                           We only merge blocks when v_j \ge v_{j+1} \implies v_j \ge v \ge v_{j+1}
                                                          therefore:
                                                               i_{1} \leq i < i_{2} : \lambda_{i}' = \sum_{k=i_{1}}^{i} (\gamma_{k} - v) \geqslant \sum_{k=i_{1}}^{i} (\gamma_{k} - v_{1}) = \lambda_{i} \geqslant 0;
i_{2} \leq i < i_{3} : \lambda_{i}' = \sum_{k=i_{1}}^{i} (\gamma_{k} - v) = -\sum_{k=i+1}^{i} (\gamma_{k} - v)
\geqslant -\sum_{k=i+1}^{i-1} (\gamma_{k} - v_{k}) = \lambda_{i} \geqslant 0.
                        PAVA stops in < n-1 iterations => 2 holds in the end, so PAVA is correct!
```

Statistical property (pf on itted)
$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\left(f(x_{i})-\widehat{\theta}_{i}\right)^{2}\right]=O(n^{-\frac{2}{2}}),$$

Convex regression:
$$f(x) = \mathbb{E}[Y|X=x]$$
 is convex

Estimator in I-D:
$$(\hat{\theta}_1, \dots, \hat{\theta}_n)$$
 is the solution to min $\sum_{i=1}^{n} (y_i - \hat{\theta}_i)^2$

St. $\frac{\hat{\theta}_i - \hat{\theta}_{i-1}}{x_i - x_{i-1}} \leq \frac{\hat{\theta}_{i+1} - \hat{\theta}_i}{x_{i+1} - x_i}$, $i = 2, \dots, n-1$

(increasing derivative)

Statistical property.

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\left(\widehat{\theta}_{i}-f(\mathbf{x}_{i})\right)^{2}\right]=O(n^{-4/5}).$$

High-dimension: interesting phenomena could happen

Course Recap.

- 1. Parametric models: find the right model & apply MLE
 - 1.1 make MLE computationally efficient:

generalized linear model, exponential family

(estimation . confidence interval (bootstrap) , testing , etc.)

1.2 adapt MLE to complicated scenarios:

empirical likelihood, partial likelihood, EM algorithm

- 1.3 MLE fails sonatines: empirical Bayes
- 2. Semiparametric models: deal with nuisance
 - 2.1 Full MLE: profile MLE (Cox model)
 - 2.2 Take unisance as given: orthogonality

score, afficient score, estimating function/equation. Neyman orthogonality

- 23 Example: causal inference
- 3. Nonparametric models: explicit bias-variance tradeoff
 - 3.1 locality: Kernel (Nadaraya-Watson_ KDE, ...)
 - 3.2 function approximation:

time domain (polynomials, splines, ...)

transformed domain (Fourier, wavelets, ...)

linear vs. nonlinear (WLS, Ridge regression, projection, thresholding)

3.3 MLE: isotonic/convex regression