Importing the essential libraries

In [1]: import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

Reading the files (AM.CSV)

In [2]: df = pd.read_csv('AM.csv')
 df.head()

	order_id	product	quantity	price	address	month	day	month_	year	hour	tot_amt	shop_no	street	city	city_code
0	236677	20in Monitor	1	109.99	918 6th St, San Francisco, CA 94016	August	13	8	2019	7	109.99	918	6th St	San Francisco	CA
1	236682	AA Batteries (4-pack)	1	3.84	Johnson St, Portland, OR 97035	August	19	8	2019	12	3.84	118	Johnson St	Portland	OR
	236687	USB-C Charging Cable	1	11.95	668 Meadow St, New York City, NY 10001	August	23	8	2019	12	11.95	668	Meadow St	New York City	NY
	236689	AAA Batteries (4-pack)	1	2.99	13 Cedar St, San Francisco, CA 94016	August	21	8	2019	10	2.99	13	Cedar St	San Francisco	CA
	236690	AAA Batteries (4-pack)	1	2.99	139 River St, San Francisco, CA 94016	August	8	8	2019	12	2.99	139	River St	San Francisco	CA

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 67948 entries, 0 to 67947
Data columns (total 17 columns):

# Column Non-Null Count	Dtype
0 order_id 67948 non-null	int64
1 product 67948 non-null	object
2 quantity 67948 non-null	int64
3 price 67948 non-null	float64
4 address 67948 non-null	object
5 month 67948 non-null	object
6 day 67948 non-null	int64
7 month 67948 non-null	int64
8 year 67948 non-null	int64
9 hour 67948 non-null	int64
10 tot amt 67948 non-null	float64
11 shop no 67948 non-null	int64
12 street 67948 non-null	object
13 city 67948 non-null	object
14 city code 67948 non-null	object
15 pincode 67948 non-null	int64
16 time_ 67948 non-null	object
dtypes: $f\overline{loat64(2)}$, int64(8), ob	bject(7)
memory usage: 8.8+ MB	

In [4]: df.describe()

_			
n	+	[4]	١.
1	ווו	14	ι.

	order_id	quantity	price	day	month_	year	hour	tot_amt	shop_no
count	67948.00000	67948.000000	67948.000000	67948.000000	67948.000000	67948.000000	67948.000000	67948.000000	67948.000000
mean	230263.93342	1.125890	183.367589	15.781141	7.046712	2019.000500	8.625773	184.473470	499.341761
std	51522.29619	0.447965	331.073278	8.753619	3.504184	0.022364	3.451435	331.333148	287.931027
min	141238.00000	1.000000	2.990000	1.000000	1.000000	2019.000000	0.000000	2.990000	1.000000
25%	185725.25000	1.000000	11.950000	8.000000	4.000000	2019.000000	7.000000	11.950000	250.000000
50%	230146.00000	1.000000	14.950000	16.000000	7.000000	2019.000000	10.000000	14.950000	498.000000
75%	274659.50000	1.000000	150.000000	23.000000	10.000000	2019.000000	11.000000	150.000000	749.000000
max	319669.00000	9.000000	1700.000000	31.000000	12.000000	2020.000000	12.000000	3400.000000	999.000000

In [5]: df.isnull().sum()

Out[5]: order_id 0 product 0 quantity 0 price 0 address 0 month 0 0 day 0 month_ 0 year 0 hour tot_amt shop_no 0 0 street city 0 city_code pincode 0 time_ dtype: int64

In [6]:	df	.head()														
Out[6]:		order_id	product	quantity	price	address	month	day	month_	year	hour	tot_amt	shop_no	street	city	city_code
	0	236677	20in Monitor	1	109.99	918 6th St, San Francisco, CA 94016	August	13	8	2019	7	109.99	918	6th St	San Francisco	CA
	1	236682	AA Batteries (4-pack)	1	3.84	Johnson St, Portland, OR 97035	August	19	8	2019	12	3.84	118	Johnson St	Portland	OR
	2	236687	USB-C Charging Cable	1	11.95	668 Meadow St, New York City, NY 10001	August	23	8	2019	12	11.95	668	Meadow St	New York City	NY
	3	236689	AAA Batteries (4-pack)	1	2.99	13 Cedar St, San Francisco, CA 94016	August	21	8	2019	10	2.99	13	Cedar St	San Francisco	CA
	4	236690	AAA Batteries (4-pack)	1	2.99	139 River St, San Francisco, CA 94016	August	8	8	2019	12	2.99	139	River St	San Francisco	CA

Which pincode has the maximum orders (valid pincodes)

```
In [7]: pins = []
        for i in df['pincode'].unique():
            if len(str(i)) == 5:
                                                                    # check if the length of pincode is 5
                pins.append(i)
        orders del = []
        for pin in pins:
            c = 0
            for pincodes in df['pincode']:
                if pin == pincodes:
                                                                   # check if the pincodes is equal to unique
                    c += 1
            orders del.append([pin,c])
        orders = pd.DataFrame(orders del,columns = ['pincode','order count']) # creating the dataframe
        orders.sort values(by = 'order count', ascending = False)
                                                                                # sorting the dataframe
           nincodo ordor count
```

Out[7]:

	pincode	order_count
0	94016	16417
3	90001	10815
2	10001	9109
5	30301	5451
7	98101	5366
4	75001	5344
6	73301	3705
1	97035	3626

Data visualization | Pincode sales | Pie Chart

```
In [8]: fig,axs = plt.subplots(figsize = (5,5))
plt.pie(orders['order_count'], labels = orders['pincode'], autopct = '%1.2f')
plt.show()
```


Monthly Sales (monthly amount collected)

```
In [9]: ## Direct method
                                              ---- > (Data is structured)
        months = ['January','February','March','April','May','June','July','August','September','October','N
        # indirect method
                                               ----> (data is unstructured)
        # for i in df['month'].unique():
              months.append(i)
        monthly = []
        for month in months:
            c = 0
            for i in df.values:
                if month == i[5]:
                    c += i[10]
            monthly.append([month, round(c,2)])
        monthly amount = pd.DataFrame(monthly,columns =['month','sales amount'])
        monthly_amount
```

Out[9]:

		Jaios_amount
0	January	693942.59
1	February	758572.26
2	March	1016413.66
3	April	1277385.76
4	May	1165805.80
5	June	944818.30
6	July	945849.08
7	August	808356.80
8	September	738195.74
9	October	1384955.30
10	November	1114003.43
11	December	1686304.61

month sales amount

Data visualization | Monthly sales | Pie Chart ,line Graph and Bar Graph

```
In [10]: fig,axs = plt.subplots(figsize = (5,5))
    plt.pie(monthly_amount['sales_amount'], labels = monthly_amount['month'], autopct = '%1.2f')
    plt.show()
```



```
In [11]: fig,axs = plt.subplots(figsize = (12,4))
    plt.plot(monthly_amount['month'], monthly_amount['sales_amount'])
    plt.title('Monthly Sales')
    plt.xlabel('Months')
    plt.ylabel('Sales')
    plt.show()
```



```
In [12]: fig,axs = plt.subplots(figsize = (12,4))
    plt.bar(monthly_amount['month'], monthly_amount['sales_amount'])
    plt.xlabel('Months')
    plt.ylabel('Sales')
    plt.show()
```


Yearly Sales

Data visualization | Yearly sales | Pie Chart and Horizontal Bar Graph

1 2020

8670.29

In [14]: fig,axs = plt.subplots(figsize = (5,5))
 plt.pie(year_sales['sales'],labels = year_sales['year'],explode =[0.05,0],shadow = True,autopct = '9
 plt.legend()
 plt.show()

In [15]: fig,axs = plt.subplots(figsize = (6,3))
 plt.barh(year_sales['year'], year_sales['sales'],color = ['green','black'])
 plt.xlabel('Months')
 plt.ylabel('Sales')
 plt.show()

Sales per hour

_			-
() i	11	[28	
v	ı	120	

	liours	Sales
3	0	713721.27
9	1	460866.88
8	2	234851.44
11	3	145757.89
12	4	162661.01
10	5	230679.82
6	6	448113.00
0	7	744854.12
4	8	1192348.97
7	9	1639030.58
2	10	1944286.77
5	11	2300610.24
1	12	2316821.34

hours

sales

Data visualization | Hourly sales | Horizontal Bar Graph

```
In [46]: fig,axs = plt.subplots(figsize = (6,3))
    plt.bar(hour['hours'], hour['sales'])
    plt.xlabel('hours')
    plt.ylabel('Sales')
    plt.show()
```



```
In [47]: fig,axs = plt.subplots(figsize = (6,3))
    plt.plot(hour['hours'], hour['sales'])
    plt.xlabel('hours')
    plt.ylabel('Sales')
    plt.show()
```


Product sales

Out[49]:

	Product_name	total
0	20in Monitor	1544
1	AA Batteries (4-pack)	7407
2	USB-C Charging Cable	8103
3	AAA Batteries (4-pack)	7563
4	Lightning Charging Cable	7913
5	Wired Headphones	6877
6	Apple Airpods Headphones	5769
7	ThinkPad Laptop	1491
8	Bose SoundSport Headphones	4875
9	Flatscreen TV	1776
10	iPhone	2537
11	Macbook Pro Laptop	1698
12	27in 4K Gaming Monitor	2182
13	Google Phone	2035
14	27in FHD Monitor	2740
15	Vareebadd Phone	755
16	34in Ultrawide Monitor	2240

LG Dryer 227

Data visualization | Product | Pie Chart and Horizontal Bar Graph

```
In [52]: fig,ax = plt.subplots(figsize = (8,8))
    plt.pie(product['total'],labels = product['Product_name'],autopct = '%1.2f')
    plt.show()
```


In [51]: fig,axs = plt.subplots(figsize =(10,5))
plt.barh(product['Product_name'],product['total'])
plt.show()

Reading the file (PM.csv)

In [54]: df = pd.read_csv('PM.csv')
 df.head()

AA Batteries

(4-pack)

2

3.84

236674

Out[54]: product quantity price address month day month_ year hour tot_amt shop_no street order id city city_code 359 Spruce Wired St, Spruce 236670 11.99 August 8 2019 23.98 Seattle 2 22 359 WA 31 Seattle, Headphones WA 98101 492 Ridge Bose Ridge St St, August 492 236671 SoundSport 1 99.99 15 8 2019 15 99.99 Dallas TX Dallas, Headphones TX 75001 149 7th St, 236672 1 700.00 Portland, August 700.00 7th St Portland 2 iPhone 6 8 2019 14 149 OR OR 97035 631 2nd St, Los **AA Batteries** Los CA 236673 3.84 Angeles, August 29 8 2019 20 7.68 631 2nd St Angeles (4-pack) CA 90001

New

York

City

NY

736 14th St

736 14th St, New

City, NY

10001

York August

15

8 2019

19

7.68

In [56]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 118002 entries, 0 to 118001
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype					
0	order_id	118002 non-null	int64					
1	product	118002 non-null	object					
2	quantity	118002 non-null	int64					
3	price	118002 non-null	float64					
4	address	118002 non-null	object					
5	month	118002 non-null	object					
6	day	118002 non-null	int64					
7	month	118002 non-null	int64					
8	year [—]	118002 non-null	int64					
9	hour	118002 non-null	int64					
10	tot amt	118002 non-null	float64					
11	shop no	118002 non-null	int64					
12	street	118002 non-null	object					
13	city	118002 non-null	object					
14	city code	118002 non-null	object					
15	pincode	118002 non-null	int64					
16	time	118002 non-null	object					
dtyp	dtypes: $float64(2)$, int64(8), object(7)							
	ry usage: 1		-					

In [57]: df.describe()

A L	r	
OHIT	15/1	•
0ut		

	order_id	quantity	price	day	month_	year	hour	tot_amt	shor
count	118002.000000	118002.000000	118002.000000	118002.000000	118002.000000	118002.0	118002.000000	118002.000000	118002.00
mean	230506.036152	1.123515	184.994066	15.747089	7.066295	2019.0	17.745886	186.076784	499.87
std	51507.242404	0.439786	333.682284	8.798591	3.502307	0.0	3.016175	333.829955	289.03
min	141234.000000	1.000000	2.990000	1.000000	1.000000	2019.0	13.000000	2.990000	1.000
25%	185889.500000	1.000000	11.950000	8.000000	4.000000	2019.0	15.000000	11.950000	249.00
50%	230484.500000	1.000000	14.950000	16.000000	7.000000	2019.0	18.000000	14.950000	501.000
75%	275247.750000	1.000000	150.000000	23.000000	10.000000	2019.0	20.000000	150.000000	751.000
max	319670.000000	9.000000	1700.000000	31.000000	12.000000	2019.0	23.000000	3400.000000	999.00

In [59]: df.isnull().sum()

Out[59]: order_id 0 product 0 quantity 0 price 0 address 0 month 0 0 day 0 month_ year 0 0 hour tot_amt shop_no 0 street 0 city 0 city_code pincode 0 time_ dtype: int64

In [60]:	df.	head()														
Out[60]:		order_id	product	quantity	price	address	month	day	month_	year	hour	tot_amt	shop_no	street	city	city_code
	0	236670	Wired Headphones	2	11.99	359 Spruce St, Seattle, WA 98101	August	31	8	2019	22	23.98	359	Spruce St	Seattle	WA
	1	236671	Bose SoundSport Headphones	1	99.99	492 Ridge St, Dallas, TX 75001	August	15	8	2019	15	99.99	492	Ridge St	Dallas	TX
	2	236672	iPhone	1	700.00	149 7th St, Portland, OR 97035	August	6	8	2019	14	700.00	149	7th St	Portland	OR
	3	236673	AA Batteries (4-pack)	2	3.84	631 2nd St, Los Angeles, CA 90001	August	29	8	2019	20	7.68	631	2nd St	Los Angeles	CA
	4	236674	AA Batteries (4-pack)	2	3.84	736 14th St, New York City, NY 10001	August	15	8	2019	19	7.68	736	14th St	New York City	NY

Which pincode has the maximum orders (valid pincodes)

```
In [61]: pins = []
for i in df['pincode'].unique():
    if len(str(i)) == 5 :
        pins.append(i)

orders_del = []
for pin in pins:
    c = 0
    for pincodes in df['pincode']:
        if pin == pincodes:
            c += 1
        orders_del.append([pin,c])

orders = pd.DataFrame(orders_del,columns = ['pincode','order_count'])
orders.sort_values(by = 'order_count',ascending = False)
```

Out[61]:

	pincode	order_count
5	94016	28315
3	90001	18790
4	10001	15767
1	75001	9476
6	30301	9430
0	98101	9366
2	97035	6384
7	73301	6200

```
In [62]: fig,axs = plt.subplots(figsize = (5,5))
    plt.pie(orders['order_count'],labels = orders['pincode'],autopct = '%1.2f')
    plt.show()
```


Monthly Sales (monthly amount collected)

```
In [63]: ## Direct method
                                               ---- > (Data is structured)
         months = ['January','February','March','April','May','June','July','August','September','October','N
         # indirect method
                                                ----> (data is unstructured)
         # for i in df['month'].unique():
               months.append(i)
         monthly = []
         for month in months:
             c = 0
             for i in df.values:
                 if month == i[5]:
                     c += i[10]
             monthly.append([month, round(c,2)])
         monthly amount = pd.DataFrame(monthly,columns =['month','sales amount'])
         monthly_amount
```

Out[63]:

	month	sales_amount
0	January	1121392.53
1	February	1444908.98
2	March	1792649.64
3	April	2118673.35
4	May	1978779.00
5	June	1633475.00
6	July	1701050.61
7	August	1436055.51
8	September	1360620.96
9	October	2351928.75
10	November	2084905.80
11	December	2932992.51

Data visualization | Monthly sales | Pie Chart ,line Graph and Bar Graph

```
In [64]: fig,axs = plt.subplots(figsize = (5,5))
    plt.pie(monthly_amount['sales_amount'], labels = monthly_amount['month'], autopct = '%1.2f')
    plt.show()
```



```
In [65]: fig,axs = plt.subplots(figsize = (12,4))
    plt.plot(monthly_amount['month'], monthly_amount['sales_amount'])
    plt.title('Monthly Sales')
    plt.xlabel('Months')
    plt.ylabel('Sales')
    plt.show()
```



```
In [66]: fig,axs = plt.subplots(figsize = (12,4))
    plt.bar(monthly_amount['month'], monthly_amount['sales_amount'])
    plt.xlabel('Months')
    plt.ylabel('Sales')
    plt.show()
```


Sales per hour

hours sales 7 13 2155389.80 2 14 2083672.73 1 15 1941549.60 16 1904601.31 9 17 2129361.61 10 18 2219348.30 19 2412938.54 20 2281716.24 21 2042000.86 8

22 1607549.2123 1179304.44

Data visualization | Hourly sales | Horizontal Bar Graph

```
In [69]: fig,axs = plt.subplots(figsize = (6,3))
    plt.bar(hour['hours'], hour['sales'])
    plt.xlabel('hours')
    plt.ylabel('Sales')
    plt.show()
```


In [70]: fig,axs = plt.subplots(figsize = (6,3))
 plt.plot(hour['hours'], hour['sales'])
 plt.xlabel('hours')
 plt.ylabel('Sales')
 plt.show()

Product sales

Out[71]:

	Product_name	total
0	Wired Headphones	12005
1	Bose SoundSport Headphones	8450
2	iPhone	4305
3	AA Batteries (4-pack)	13170
4	34in Ultrawide Monitor	3941
5	Macbook Pro Laptop	3026
6	LG Washing Machine	450
7	27in FHD Monitor	4767
8	Lightning Charging Cable	13745
9	Apple Airpods Headphones	9780
10	AAA Batteries (4-pack)	13078
11	USB-C Charging Cable	13800
12	27in 4K Gaming Monitor	4048
13	Google Phone	3490
14	Flatscreen TV	3024
15	20in Monitor	2557
16	ThinkPad Laptop	2637

Vareebadd Phone 1310

Data visualization | Product | Pie Chart and Horizontal Bar Graph

```
In [72]: fig,ax = plt.subplots(figsize = (8,8))
    plt.pie(product['total'],labels = product['Product_name'],autopct = '%1.2f')
    plt.show()
```


In [73]: fig,axs = plt.subplots(figsize =(10,5))
 plt.barh(product['Product_name'],product['total'])
 plt.show()

