Modeling Preprocessing Attacks

Auxiliary-Input Model/Bit-Fixing Model

Bit-Fixing Model (ROM)

 $\triangleright \mathcal{A}_{\mathsf{pre}}$ fixes random oracle $\mathsf{H}(\cdot)$ at P locations $\triangleright \mathcal{A}_{on}$ initially knows nothing about remaining unfixed values (picked uniformly at random)

multi-user security of **standardized implementations** of short Schnorr signatures against preprocessing attacks in ROM+GGM [New Result]

- Much easier to prove security Not a compelling model for preprocessing
 - attacks!
 - Usage: lower bound in Bit-Fixing Model ⇒ lower bound in Auxiliary-Input Model
 - [Coretti et al., EUROCRYPT 2018] $\varepsilon_{\mathsf{AI}}(S,q) \le \varepsilon_{\mathsf{BF}}(P,q) + \mathcal{O}(Sq/P)$

[Coretti et al., EUROCRYPT 2018] Bit-Fixing ROM ⇒ Auxiliary-Input ROM [Coretti et al., CRYPTO 2018] Bit-Fixing GGM ⇒ Auxiliary-Input GGM Bit-Fixing ICM ⇒ Auxiliary-Input ICM

Bit-Fixing RPM ⇒ Auxiliary-Input RPM

only showed in a single idealized model!

We extend the result to work in **multiple** idealized models!

 Not a black-box extension (the hint may simultaneously depend on all of the idealized primitives)

$$\varepsilon_{\mathsf{AI}}(S,q) \le \varepsilon_{\mathsf{BF}}(P,q) + \mathcal{O}(Sq/P)$$

Modeling Preprocessing Attacks

Auxiliary-Input Model/Bit-Fixing Model

Bit-Fixing Model (ROM)

- $\triangleright \mathcal{A}_{pre}$ fixes random oracle $H(\cdot)$ at P locations
- $\triangleright A_{on}$ initially knows nothing about remaining unfixed values (picked uniformly at random)
- Much easier to prove security
- Not a compelling model for preprocessing attacks!
- **Usage:** lower bound in Bit-Fixing Model \Rightarrow lower bound in Auxiliary-Input Model [Coretti et al., EUROCRYPT 2018] $\varepsilon_{\mathsf{AI}}(S,q) \leq \varepsilon_{\mathsf{BF}}(P,q) + \mathcal{O}(Sq/P)$

multi-user security of standardized implementations of short Schnorr signatures against preprocessing attacks in ROM+GGM [New Result]

[Coretti et al., EUROCRYPT 2018]
Bit-Fixing ROM ⇒ Auxiliary-Input ROM

[Coretti et al., CRYPTO 2018]

Bit-Fixing GGM ⇒ Auxiliary-Input GGM

Bit-Fixing ICM ⇒ Auxiliary-Input ICM

Bit-Fixing RPM ⇒ Auxiliary-Input RPM

only showed in a single idealized model!

We extend the result to work in **multiple** idealized models!

 Not a black-box extension (the hint may simultaneously depend on all of the idealized primitives)

$$\varepsilon_{\mathsf{AI}}(S,q) \le \varepsilon_{\mathsf{BF}}(P,q) + \mathcal{O}(Sq/P)$$

Bridge-Finding Game

In the Bit-Fixing GGM

Fix $(t_1, \tau(t_1)), \ldots, (t_P, \tau(t_P))$

preprocessing phase

$\tau(1), \tau(x_1), \tau(x_2), \tau(x_3)$
$\mathtt{Mult}(au(x_1), au(x_2))$
$\tau(x_1 + x_2)$
$\operatorname{Inv}(au(x_1+x_2))$
$\tau(-x_1-x_2)$
$\mathtt{Mult}(au(x_1), au(1))$
$\tau(x_1 + 1)$
$ exttt{Mult}(au(x_2), \mathfrak{y})$
$\tau(x_2+7)$

 (x_1, x_2, x_3)

$$\tau(y) = \vec{a} \cdot \vec{x} + b$$

au(y)	$ec{a}$	b
$ au(t_1)$	(0, 0, 0)	t_1
• • •	• • •	• • •
$ au(t_P)$	(0, 0, 0)	t_P
au(1)	(0, 0, 0)	1
$ au(x_1)$	(1, 0, 0)	0
$ au(x_2)$	(0, 1, 0)	0
$ au(x_3)$	(0, 0, 1)	0
$\tau(x_1+x_2)$	(1, 1, 0)	0
$\tau(-x_1-x_2)$	(-1, -1, 0)	0
$\tau(x_1+1)$	(1, 0, 0)	1
ŋ	(0, 0, 0)	7
$\tau(x_2+7)$	(0, 1, 0)	7
		• • •

Restricted
Discrete-Log
Oracle