Pressure

Pressure tells us whether a force is focused or spread out over an area.

When you push a **drawing pin** with your thumb, the small area of the point has a very high pressure. This enables it to go into the wall. The flat bit you push has a larger area. The force is more spread out. There is less pressure which is why it doesn't go into your thumb.

- 1 Do you want a high or low pressure? How did you decide?
 - (a) Cat's claws when it climbs a tree
 - (b) Standing on soft snow when you don't want to sink in
 - (c) A tractor's wheels in a muddy field

break off one chunk of chocolate at a time.

(d) Scissor blades cutting paper

- Fill in the gaps to complete the explanation:

 A bar of chocolate has six chunks joined with thinner pieces of chocolate. When you try to bend the bar, the _____ is greatest where the bar is _____. This helps you
- A chef is chopping carrots with a sharp knife. Complete the table to compare the force, pressure and area of the knife handle with its blade. Choose from the words larger, smaller and equal.

	On handle compared to blade edge,
Area	area is
Pressure	pressure is
Force	force is

A pressure of 30 N/cm² means that there is a force of 30 N on each square centimetre.

- 4 A chair leg makes a pressure of 10 N/cm² on the floor.
 - (a) Complete the sentence: The force on $1~{\rm cm}^2$ of the floor is newtons.
 - (b) Work out the force on 6 cm² of floor using an equation.

(c) Work out the force on the floor due to one 16 cm^2 chair leg using an equation. force (N) = pressure (N/cm ²) × area (cm ²) = 10 × 16	
(d) Work out the force for the total 64 cm^2 area of the chair legs.	
Calculate the force on these areas if the pressure is 20 N/cm^2 . (c) 30 cm^2	
(b) 4 cm^2 (d) 0.04 cm^2	
A $200~\mathrm{N}$ force is spread over a $40~\mathrm{cm}^2$ area.	
(a) Force on $1 \text{ cm}^2 = \boxed{} \div \boxed{} = \boxed{}$ newtons	
(b) Complete the sentence: The pressure (in N/cm ²) is	
(c) A 100 N force is applied over 25 cm ² . Work out the pressure using an equation. force (N) = pressure (N/cm ²) \times area (cm ²) \times 25	
(d) Work out the pressure if 80 N is applied over an area of 20 cm ² .	
(e) Work out the pressure when a $30~{\rm N}~{\rm TV}$ sits on a base with an area of $600~{\rm cm}^2$.	
Calculate the pressure for these forces and areas.	
(a) 60 N over 3 cm ² , (b) 20 N over 0.2 cm ² ,	
A pump compresses air in a football to a pressure of $10\mathrm{N/cm^2}$.	
(a) What is the force on 1 cm ² ?	
(b) The total force on the football is 15000 N. How many 10 N forces is this?	

(c) What is the area of the football? Count the $10~\mathrm{N}$ forces (each on $1~\mathrm{cm}^2$).

(d) Work out the area for a 90 N total force using an equation.

force (N) = pressure (N/cm²)
$$\times$$
 area (cm²)
90 = 10 \times

- (e) Work out the area for a force of 600 N.
- 9 A force is 300 N. Calculate the area to make these pressures.
 - (a) 150 N/cm^2

(c) 15 N/cm^2

(b) 30 N/cm^2

- (d) 600 N/cm^2
- 10 Complete the word equations using force, pressure and area.
 - (a) force =

- (b) pressure =
- (c) area =
- 11 Rewrite your word equations using symbols. F is the force, P is the pressure and A is the area.
 - (a) F =

(b) P =

- (c) A =
- 12 Use your understanding of pressure, or the formulae, to calculate
 - (a) the pressure when a 48 N force squeezes a 1.2 cm² stamp,
 - (b) the force when a 20 N/cm² pressure fluid pushes a 5 cm² piston,

(c) the area if a $900 \, \mathrm{N}$ force makes a $90 \, \mathrm{N/cm^2}$ pressure.

Areas can also be measured in square metres. 1 m $^2=100\,\mathrm{cm}\times100\,\mathrm{cm}=\frac{10\,000}{1000}\,\mathrm{cm}^2$.

A pressure of $50\,000\,\mathrm{N/m^2}$ can also be written as $50\,000\,\mathrm{Pa}$ (pascals) or $50\,\mathrm{kPa}$ (kilopascals).

- 13 A van with weight $25\,000\,\mathrm{N}$ is supported by tyres with total area $0.25\,\mathrm{m}^2$. Calculate the
 - (a) pressure in kPa,
- (b) area in cm²,
- (c) pressure in N/cm².