## UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Mecânica dos Sólidos Prof<sup>a</sup> Dra. Eng. Cristiane Pescador Tonetto Avaliação 2 – 24 de novembro de 2020

| N | ome: |  |
|---|------|--|
|   |      |  |

Lembre-se:

Estou avaliando seu conhecimento no assunto, assim, peço que todos os passos da resolução nas questões sejam justificados e baseados na teoria apresentada nas aulas.

Não é permitido consulta ao material.

Você pode utilizar calculadora e uma folha A4 (frente e verso) com as fórmulas, escrita a mão e a caneta, esse formulário deverá ser anexado junto as resoluções.

(2,5)1. Com base na ilustração da estrutura apresentada, determine a espessura do membro BC e o diâmetro dos pinos A e B, considere a tensão normal admissível para o membro BC como sendo  $\sigma_{adm}=200$  MPa e a tensão de cisalhamento para os pinos A e B como sendo  $\tau_{adm}=70$  MPa. Observe que em A o pino está submetido a cisalhamento simples e em B o pino está submetido a cisalhamento duplo.



(2,5) 2. A viga rígida repousa na posição horizontal sobre dois cilindros A e B feitos de alumínio 2014-T6 cujo o módulo de elasticidade é E= 73,1 GPa. O comprimento do cilindro A sem a carga é 220 mm e do cilindro B é 210 mm. Se cada cilindro tiver um diâmetro de 30 mm, determine a colocação de x da carga de 80 kN aplicada de forma que a viga permaneça horizontal. Qual é o novo diâmetro do cilindro A após a aplicação da carga?  $\nu = 0,35$ 



(2,5) 3. A barra rígida é suportada por 3 hastes de aço A-36 com diâmetro de 25 mm. Se a barra suporta a força de P = 230 kN, determine a força desenvolvida em cada haste. Considere o aço como um material perfeitamente plástico elástico. Lembrando que a tensão nas hastes deve ser respeitada e não ultrapassar a tensão de escoamento do material ( $\sigma_e = 250 \text{ MPa}$ ).



(2,5) 4. Os segmentos AB e BC da estrutura são feitos de alumínio 6061-T6 ( $G_{al}=26$  GPa) e aço A992 ( $G_{aco}=75$  GPa), respectivamente. Se a tensão de cisalhamento admissível para o alumínio é  $\tau_{adm-al}=90$  MPa e para o aço é  $\tau_{adm-aco}=120$  MPa, determine qual a força máxima de P que pode ser aplicada para o braço de alavanca DE. A montagem é engastada em A e em C.

