ELEMENTOS DE ANÁLISIS PARA COMPUTACIÓN E INFORMÁTICA EXAMEN FINAL

Martín Villanueva

23 de Mayo 2016

TAREAS

TAREA 1. Sean (X, σ) y (X, σ') espacios métricos y quasimétricos respectivamente. Denotemos a la topología generada/inducida por σ por:

$$\mathscr{F} = \{A \subset X : A \text{ es un abierto, i.e. } \forall x \in A, \exists \delta > 0 : B_{\sigma}(x, \delta) \subset A\}$$

donde adicionalmente sabemos que una base para esta topología es:

$$B = \{B_{\sigma}(x, \sigma) : x \in X, \delta \in \mathbb{R}_0^+\}$$

y también consideremos la siguiente posible base para dicha topología:

$$B' = \{B_{\sigma'}(x, \delta) : x \in X, \delta \in \mathbb{R}_0^+ \cup \{\infty\}\}$$

se puede ver claramente que $B \subset B'$, pues B' contiene los mismos miembros que B, más las bolas de radio infinito (*que abarcan todo el espacio!*). Además como B es una base para \mathscr{F} , cualquier abierto $\in \mathscr{F}$ puede escribirse como una reunión de miembros de B.

Sea \mathcal{A} un conjunto indexador (no necesariamente contable, ni finito), entonces cualquier reunión de bolas $\bigcup_{\alpha \in \mathcal{A}} B_{\alpha}$ ($B_{\alpha} \in B$), puede formarse también con miembros de B', pues $B \subset B'$. Consideremos ahora reuniones sobre B'. Si entre los miembros no hay bolas de radio infinito, el resultado es análogo al anterior. Consideremos entonces el caso de una reunión con al menos una bola de radio infinito $B_{\sigma'}(x_0,\infty)$:

$$\bigcup_{\alpha \in \mathcal{A}} B_{\alpha} \ (B_{\alpha} \in B') = B_{\sigma'}(x_0, \infty)$$

tal resultado puede obtenerse por reuniones de miembros en *B* como sigue:

$$\bigcup_{\delta>0} B_{\sigma}(x_0,\delta)$$

Luego, hemos probado que cada reunión de miembros en una base, puede formarse con los miembros de la otra (y viceversa). Por lo tanto ambas son bases de \mathscr{F} , y entonces σ y σ' generan/inducen la misma topología.

TAREA 2.

TAREA 3.

TAREA 4. Veamos cada punto separadamente:

1.
$$\int_{\mathbb{R}} |\chi_{[-1,1]}(t)| dt = \int_{-1}^{1} |1| dt = 2 < \infty$$
, por lo tanto $\chi_{[-1,1]} \in L^1$.

2.
$$\widehat{\chi_{[-1,1]}(t)} = \int_{\mathbb{R}} \chi_{[-1,1]}(t) e^{-2\pi i \omega t} dt = \int_{-1}^{1} e^{-2\pi i \omega t} dt$$
. Haciendo uso de la identidad de Euler:

$$\int_{-1}^{1} e^{i(-2\pi\omega t)} dt = \int_{-1}^{1} \cos(-2\pi\omega t) + i\sin(-2\pi\omega t) dt$$

tomando en cuenta la paridad de las funciones (y que la integral de una función impar en un intervalo simétrico es nula):

$$\dots = \int_{-1}^{1} \cos(2\pi\omega t) dt - i \underbrace{\int_{-1}^{1} \sin(2\pi\omega t) dt}_{=0 \text{ por imparidad}} = \frac{\sin(2\pi\omega t)}{2\pi\omega} \Big|_{-1}^{1} = \frac{\sin(2\pi\omega)}{\pi\omega}$$

3.

TAREA 5.

TAREA 6.

TAREA 7.

TAREA 8. Sea $f \in \mathscr{C}^{\infty}_{\downarrow}(\mathbb{R}, \mathbb{C})$ una función con soporte compacto $\operatorname{supp}(f) \subset [a,b] \subset [0,T]$ (0 < a < b < T), con la respectiva prolongación periódica (de periodo T)

$$g(x) = \sum_{n \in \mathbb{Z}} f(x - nT), \quad x \in \mathbb{R}.$$
 (1)

Considerando la norma uniforme $||f||_{\infty} := \sup_{x \in \mathbb{R}} |f(x)|$. Como ya probamos anteriormente (Weierstrass):

$$f \in \mathscr{C}^{\infty}_{\downarrow}(\mathbb{R}, \mathbb{C}) \Rightarrow 0 \leq ||f||_{\infty} < \infty.$$

Debido a la construcción de la prologación periódica (1), se sabe que no existen traslapes entre las *copias* de f en los distintos periodos. Entonces:

$$||g||_{\infty} = \sup_{x \in \mathbb{R}} |g(x)| = \sup_{x \in \mathbb{R}} \left| \sum_{n \in \mathbb{Z}} f(x - nT) \right| \stackrel{\text{(#)}}{=} \sup_{x \in \mathbb{R}} |f(x - nT)| \quad (\forall n \in \mathbb{Z}) = \sup_{x \in \mathbb{R}} |f(x)| = ||f||_{\infty} < \infty$$

donde (#) es posible, pues como se hizo notar, todas las copias de f son iguales y sin traslapes. Puesto que $||g||_{\infty} < \infty$, se comprueba entonces la convergencie de la serie.

TAREA 9.

REFERENCIAS