Ensemble Learning

https://www.youtube.com/watch?v=Un9zObFjBH0

See also:

https://github.com/knathanieltucker/data-science-foundations

XGBoost

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting

Example

Task: Predict Age

PersonID	LikesGardening	PlaysVideoGames	LikesHats	Age
1	. FALSE	TRUE	TRUE	13
2	. FALSE	TRUE	FALSE	14
3	S FALSE	TRUE	FALSE	15
4	TRUE	TRUE	TRUE	25
5	5 FALSE	TRUE	TRUE	35
6	5 TRUE	FALSE	FALSE	49
7	7 TRUE	TRUE	TRUE	68
8	B TRUE	FALSE	FALSE	71
9	TRUE	FALSE	TRUE	73

Intuitively, we might expect

- The people who like gardening are probably older
- The people who like video games are probably younger
- LikesHats is probably just random noise

Let's check these assumptions:

Feature	FALSE	TRUE
LikesGardening	{13, 14, 15, 35}	{25, 49, 68, 71, 73}
PlaysVideoGames	{49, 71, 73}	{13, 14, 15, 25, 35, 68}
LikesHats	{14, 15, 49, 71}	{13, 25, 35, 68, 73}

Tree 1

Let's model the data with a regression tree.

To start, we'll require that terminal nodes have at least three instances.

With this condition, the regression tree will make its first and last split on **LikesGardening**.

Overfit Tree

Let's try letting terminal nodes have 2 instances.

Here we pick up some information from *PlaysVideoGames* but we also pick up information from *LikesHats* – a good indication that we're overfitting and our tree is splitting random noise.

A better approach – model residuals

D ID	A	Tree1	Tree1
PersonID	Age	Prediction	Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

Tree2

Now we can fit a second regression tree to the residuals of the first tree.

In other words, for the second regression tree, we will not use **age** as y, but **Tree1Residual**.

Doing that, selects

PlayVideoGames as the attribute at the root.

Now we can improve the predictions from our first tree by adding the "error-correcting" predictions from this tree.

PersonID	Age	Tree1 Prediction	Tree1 Residual	Tree2 Prediction	Combined Prediction	Final Residual
1	13	19.25	-6.25	-3.567	15.68	2.683
2	14	19.25	-5.25	-3.567	15.68	1.683
3	15	19.25	-4.25	-3.567	15.68	0.6833
4	25	57.2	-32.2	-3.567	53.63	28.63
5	35	19.25	15.75	-3.567	15.68	-19.32
6	49	57.2	-8.2	7.133	64.33	15.33
7	68	57.2	10.8	-3.567	53.63	-14.37
8	71	57.2	13.8	7.133	64.33	-6.667
9	73	57.2	15.8	7.133	64.33	-8.667

Tree1 SSE

Combined SSE

1994

1765

Gradient Boosting

- 1. Fit a model to the data, $F_1(x) \sim y$
- 2. Fit a model to the residuals, $h_1(x) \sim y F_1(x)$
- 3. Create a new model, $F_2(x) = F_1(x) + h_1(x)$

We can repeat this process

- 4. Fit a model to the residuals, $h_2(x) \sim y F_2(x)$
- 5. Create a new model, $F_3(x) = F_2(x) + h_2(x)$

...

What we get, XGBoost, is one of most used algorithms in Kaggle competitions.

How do we predict?

PersonID	LikesGardening	PlaysVideoGames	LikesHats	Age
100	TRUE	TRUE	TRUE	?

Overfit Tree

How do we predict?

PersonID	LikesGardening	PlaysVideoGames	LikesHats	Age
100	TRUE	TRUE	TRUE	?

Tree 1

Instance ends up here, so we predict avg(25, 49, 68,71, 73) = 57.2

Tree2

Combined prediction 57.2 - 3.6 = 53.6

Instance ends up here, so we predict avg(-6.25, -5.25, -4.25, -32.2, 15.75, 10.8) = -3.6

Another instance

PersonID	LikesGardening	PlaysVideoGames	LikesHats	Age
100	FALSE	FALSE	TRUE	?

Overfit Tree

Another instance

PersonID	LikesGardening	PlaysVideoGames	LikesHats	Age
100	FALSE	FALSE	TRUE	?

Tree 1

Tree2

Combined prediction 19.25 + 7.1 = 26.35

Instance ends up here, so we predict avg(13, 14, 15, 35) = 19.25

Instance ends up here, so we predict avg(-8.2, 13.8, 15.8) = 7.1