Ve406 Lecture 21

Jing Liu

UM-SJTU Joint Institute

July 30, 2018

 \bullet Principal component analysis is about replacing a centred and scaled X by

$$\mathbf{Z}_{n \times \ell} = \mathbf{X}_{n \times k} \mathbf{W}_{k \times \ell}$$
 where $\ell = 1, \dots, k$

and ${f W}$ has orthonormal eigenvectors of ${f X}^T{f X}$ as its columns.

ullet In reverse, the observed data can be completely reconstructed if $\ell=k$

$$\mathbf{X}_{n \times k} = \mathbf{Z}_{n \times k} \mathbf{W}_{k \times k}^{\mathrm{T}}$$

• If only the first few eigenvectors are used, that is $\ell < k$, then

$$\mathbf{X}_{n \times k} \approx \mathbf{X}_{n \times k}^* = \mathbf{Z}_{n \times \ell} \mathbf{W}_{k \times \ell}^{\mathrm{T}}$$

- Note PCA involves absolutely no probabilistic assumptions at all, thus it says nothing about the stochastic processes that generated the data.
- If we assume there is some hidden structure from which the observed **X** are generated, then other dimension reduction methods might be reasonable.

• A factor model is used to model such hidden structures

$$\mathbf{X}_{n \times k} = \mathbf{F}_{n \times \ell} \mathbf{W}_{k \times \ell}^{\mathrm{T}} + \epsilon_{n \times k}$$
 where ϵ is an error term.

• The observed variables in X are known as manifest variables and the hidden variables, now denoted collectively as F are known as latent factors.

 The idea of factor analysis is the variability in a large number of observed variables could be due to a few unobserved factors and unobserved errors.

$$\mathbf{X}_{n \times k} = \mathbf{F}_{n \times \ell} \mathbf{W}_{k \times \ell}^{\mathrm{T}} + \epsilon_{n \times k}$$
 where ϵ is an error term.

- By first identify ${\bf W}$ then ${\bf F}$, dimension reduction is achieved since $\ell < k$.
- The following specifications are used for a typical factor model:
- 1. The manifest variables have zero mean and unit variance.
- 2. The latent factors have zero mean and unit variance.
- 3. The error terms have zero mean.
- 4. The latent factors are uncorrelated

The error terms are uncorrelated

across observations and with other latent factors.

across observations, across manifest variables and across latent factors.

 Under the assumptions 4-5 of the factor model, the manifest variables are correlated with each other solely due to correlation with the latent factors.

$$Cov[X_{i1}, X_{i2}] = \sum_{p=1}^{\ell} w_{1p} w_{2p}$$

where w_{1p} and w_{2p} are elements in the first and the second row of \mathbf{W} , since weights now are the covariance/correlation of manifest and factor variables

$$Cov [X_{ij}, F_{iq}] = w_{jq}$$

ullet This leads us to consider the covariance matrix $oldsymbol{\Sigma}$ in order to compute $oldsymbol{W}$,

$$\mathbf{\Sigma} = \mathbb{E}\left[\mathbf{C}\right] = \frac{1}{n-1}\mathbb{E}\left[\mathbf{X}^{\mathrm{T}}\mathbf{X}\right] = \boldsymbol{\psi} + \mathbf{W}\mathbf{W}^{\mathrm{T}}$$

where C is the sample covariance matrix and ψ is a diagonal matrix.

A natural step next is to use the sample covariance matrix,

$$C = \psi + WW^{T}$$

and try to solve the system of equations obtained from the above equality.

• For example, consider the case k=3 and $\ell=1$, which corresponds

$$\begin{bmatrix} 1 & c_{12} & c_{13} \\ c_{21} & 1 & c_{23} \\ c_{31} & c_{32} & 1 \end{bmatrix} = \begin{bmatrix} \psi_1 & 0 & 0 \\ 0 & \psi_2 & 0 \\ 0 & 0 & \psi_3 \end{bmatrix} + \begin{bmatrix} w_{11} \\ w_{21} \\ w_{31} \end{bmatrix} \begin{bmatrix} w_{11} & w_{21} & w_{31} \end{bmatrix}$$

which from the weights/covariances/correlations w_{ii} are given by

$$w_{11}^2 = \frac{c_{12}c_{13}}{c_{23}}; \qquad w_{21}^2 = \frac{c_{12}c_{23}}{c_{13}}; \qquad w_{31}^2 = \frac{c_{13}c_{23}}{c_{12}}$$

and

$$\psi_1 = 1 - w_{11}^2; \qquad \psi_2 = 1 - w_{21}^2; \qquad \psi_3 = 1 - w_{31}^2$$

• Once $W_{3\times 1}$ is available, we can estimate $F_{n\times 1}$ using "regression"

$$\mathbf{X}_{n\times3}\mathbf{W}_{3\times1} = \hat{\mathbf{F}}_{n\times1} + \epsilon_{n\times3}\mathbf{W}_{3\times1}$$

it can be shown the optimal linear solution which minimises

$$\|\boldsymbol{\epsilon}_{n\times 3}\mathbf{W}_{3\times 1}\|^2$$

is given by

$$\hat{\mathbf{F}}_{n\times 1} = \mathbf{X}_{n\times 3} \mathbf{W}_{3\times 1}$$

ullet However, in general it is not that simple, notice for an orthogonal matrix ${f Q}$,

$$\mathbf{X}_{n \times k} = \mathbf{F}_{n \times \ell} \mathbf{W}_{k \times \ell}^{\mathrm{T}} + \boldsymbol{\epsilon}_{n \times k}$$

$$\mathbf{X}_{n \times k} = (\mathbf{F}_{n \times \ell} \mathbf{Q}_{\ell \times \ell}) (\mathbf{W}_{k \times \ell} \mathbf{Q}_{\ell \times \ell})^{\mathrm{T}} + \boldsymbol{\epsilon}_{n \times k}$$

which means neither ${\bf W}$ nor ${\bf F}$ is unique when we have more than one factor.

 Having multiple solutions is numerically problematic, but it can be avoided by looking at it slightly differently and employ a numerical stable method

$$\mathbf{C} - \boldsymbol{\psi} = \mathbf{W} \mathbf{W}^{\mathrm{T}}$$

which naturally adds constraints to avoid multiple solutions from rotation.

ullet For a given ψ , the left-hand side is surely orthogonally diagonalizable

$$\mathbf{C} - \boldsymbol{\psi} = \mathbf{U}\mathbf{D}\mathbf{U}^{\mathrm{T}}$$

since it is real symmetric, and we can reduce to ℓ factors by finding the first ℓ largest eigenvalues and the corresponding eigenvectors to approximate

$$\mathbf{C} - oldsymbol{\psi} pprox ilde{\mathbf{A}}_{k imes k} = \mathbf{U}_{k imes \ell} \mathbf{D}_{\ell imes \ell} \mathbf{U}_{k imes \ell}^{\mathrm{T}}$$

from which we obtain

$$\mathbf{W}_{k\times\ell} = \mathbf{U}_{k\times\ell} \mathbf{D}_{\ell\times\ell}^{1/2}$$

• Once we have $\mathbf{W}_{k \times \ell}$, by making a more assumption on data

$$\mathbf{x}_i \sim ext{Normal}\left(\mathbf{0}, oldsymbol{\psi} + \mathbf{W}\mathbf{W}^{ ext{T}}
ight)$$

we can update ψ according maximum likelihood estimation, then we iterate by computing W again and then ψ again and again until it converges.

• To illustrate factor analysis, consider the following dataset

[1] 21 12

> names(ct.df)

```
[1] "City" "Area" "Pop.1980" "Pop.1990" [5] "Pop.2000" "Growth" "Food" "PersRoom" [9] "Water" "Elec" "Phones" "Vehicles"
```

> str(ct.df)

```
'data.frame': 21 obs. of 12 variables:
$ City : Factor w/ 21 levels "Beijing", "Bombay",..: 3 7 16 17 1 19 20 4 2 5 ...
$ Area : num 700 100 650 800 1680 ...
$ Pop.1980: int 9918 3290 8789 12101 9029 11739 7268 6852 8067 9030 ...
$ Pop.1990: int 11448 6578 10948 18119 10867 13447 9249 8633 12223 10741 ...
$ Pop.2000: int 12822 11511 12162 22552 14366 17407 12508 10761 18142 12675 ...
$ Growth : num 1.4 7.2 2.2 4.1 1.9 ...
$ Food : int 40 63 26 50 52 55 52 47 57 60 ...
$ PersRoom: num 1.3 2.4 0.8 0.8 1.2 ...
$ Water : int 80 60 86 100 88 95 80 91 92 51 ...
$ Elec : int 91 85 98 100 90 95 84 98 78 63 ...
$ Phones : int 14 2 8 16 2 4 4 4 5 2 ...
$ Vehicles: int 1000 600 4000 4000 308 148 200 939 588 500 ...
```

- > # remove city names
- > X = data.matrix(ct.df[, 2:12])
- > # use city names as row names
- > rownames(X) = ct.df[, 1]

> ct.FA

```
Call:
factanal(x = X, factors = 2, scores = "regression", rotation = "none")
Uniquenesses:
                                   Growth
   Area Pop.1980 Pop.1990 Pop.2000
                                            Food PersRoom
                                                              Water
  0.933
           0.022
                    0.005
                            0.005
                                    0.179
                                             0.437
                                                      0.387
                                                              0.541
   Elec
        Phones Vehicles
  0.605
        0.426
                   0.706
Loadings:
        Factor1 Factor2
         0.129
                 0.225
Area
Pop.1980 0.914
                0.377
Pop.1990 0.988 0.136
Pop.2000 0.967
               -0.243
Growth
        -0.386
               -0.820
Food
        -0.316
               -0.681
PersRoom -0.368
               -0.691
Water 0.558
               0.384
Elec 0.366
               0.510
Phones 0.518
               0.553
Vehicles 0.356
               0.409
```

• The output Uniquenesses tells us what fraction of the variance in each observable comes from its own error/noise, that is, the diagonals of ψ .

- > # The two factors are stored under scores
- > ct.FA\$scores

	Factor1	Factor2	2
Buenos Aires	-0.17889040	0.871144421	1
Dhaka	-1.03956967	-1.209158145	5
Rio de Janeiro	-0.32938587	0.902073847	7
Sao Paolo	1.66151441	-1.255368200	0
Beijing	-0.09985343	-0.037292081	1
Shanghai	0.57846585	-0.279218251	1
Tianjin	-0.52473954	0.005131718	8
Cairo			
Bombay	0.42386495	-1.666913485	5
Calcutta	-0.30956389	0.348401654	4
Delhi	-0.78137675	-0.333084139	9
Jakarta	-0.47221026	-0.711526317	7
Osaka			
Tokyo	3.25066807	-0.170749103	3
Seoul			
Mexico City			
Lagos	-0.67890390	-1.663405574	4
Karachi	-0.79825159	-0.596300773	3
Manila			
Los Angeles	-0.13777899	0.946137238	8
New York	0.89456997	1.503635125	5

Large cities

Notice the first factor from the following two models are not the same,

	Factor1	Factor2	Factor1
Area	0.1288805	0.2253654	0.1840646
Pop.1980	0.9142481	0.3771544	0.9959482
Pop.1990	0.9884345	0.1356698	0.9589555
Pop.2000	0.9673852	-0.2433919	0.7995058
Growth	-0.3856607	-0.8198362	-0.6800145
Food	-0.3156484	-0.6809724	-0.5238999
PersRoom	-0.3677294	-0.6914914	-0.5697535
Water	0.5581297	0.3836780	0.6317289
Elec	0.3662733	0.5103482	0.4915450
Phones	0.5177603	0.5533497	0.6758071
Vehicles	0.3558366	0.4094097	0.4306993

• Similar to what we have defined for PCA, we can define

$$R^2 = \frac{\sum_{j=1}^{k} \sum_{q=1}^{\ell} w_{jq}^2}{k} = \frac{\sum_{j=1}^{k} \lambda_j}{k}$$

- ullet However, \mathbb{R}^2 should not be used to assess the fit of a factor model
- A likelihood ratio test is provided by the output

> ct.FA

```
Call:
factanal(x = X, factors = 2, scores = "regression", rotation = "none")

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 83.44 on 34 degrees of freedom.

The p-value is 4.86e-06
```

which is similar to the deviance χ^2 test we had for glm, and can be used to test the fit of a factor model.