I collaborated with: TA

Solution

Using FordFulkerson on a network flow G = (V, E), we can build a residual graph using the following rules, where $e = (u, v) \in E, e^R = (v, u)$, flow f(e), capacity c(e):

$$c_f(e) = \left\{ \begin{array}{ll} c(e) - f(e), & \text{if } e \in E \\ f(e), & \text{if } e^R \in E \end{array} \right\}$$

Now, grab all the vertices reachable from s in the residual graph. These vertices are upstream. Then, switch the direction of every edge in G, and grab all the vertices reachable from t in the residual graph. These vertices are downstream. All the remaining vertices are central.

Time Complexity: O(|E||V|C)Space Complexity: O(|E|+|V|)

Proof. Let A be the set of all vertices reachable from s in the residual graph of a network flow G. Let U be the set of all upstream vertices.

Claim: A = U.

In order to show A=U, we must show $U\subseteq A$ and $A\subseteq U$. We know A is a min-cut because all edges not reachable from s have maximum flow and are not part of a min-cut, thus all upstream vertices are in A (7.9 in the book). Therefore, $U\subseteq A$. Now, assume a vertex $v\in A$ is downstream. This means that v is always on the sink side of every min-cut. However, we know v is reachable from s. This is a contradiction, so v is upstream and $A\subseteq U$. We have showed that $U\subseteq A$ and $A\subseteq U$ which implies A=U.