ICLAB 2024-SPRING Lab03 Note

Presenter: ZONG-RUI CAO

Advisor: Chen-Yi Lee

AXI Handshake Process

Handshake Process Scenario 1

☐ Slave: Valid Master: Ready

2

Handshake Process Scenario 2

☐ Slave: Valid Master: Ready

Figure A3-3 READY before VALID handshake

Handshake Process Scenario 3

☐ Slave: Valid Master: Ready

Figure A3-4 VALID with READY handshake

Handshake Process

- □ the VALID signal of one AXI component must not be dependent on the READY signal of the other component in the transaction.
- □ the READY signal can wait for assertion of the VALID signal.

Figure A3-2 VALID before READY handshake

Figure A3-3 READY before VALID handshake

Figure A3-4 VALID with READY handshake

AXI4-Lite Introduction

AXI 4 Basic Transaction

□ Read Transaction

- Read Address Channel
- Read Data Channel

Figure 1-1 Channel architecture of reads

□ Each channel have valid-ready pair for handshaking process

AXI 4 Basic Transaction

□ Write Transaction

- Write Address Channel
- Write Data Channel
- Write Response Channel

Figure 1-2 Channel architecture of writes

□ Each channel have valid-ready pair for handshaking process

Global Signals

Signal	Bit Width	Source	Description			
clk	1	Clock source	Global clock signal. All signals are sampled on the positive edge of the global clock.			
rst_n	1	Reset source	Global reset signal. This signal is active LOW.			

Write Address Channel

Signal	Bit Width	Source	Description
AW_ADDR	32	Master	Write address.
AW_VALID	1	Master	Write address valid. This signal indicates that valid write address is available: 1 = address available 0 = address not available. The address remain stable until the address acknowledge signal, AW_READY, goes HIGH.
AW_READY	1	Slave	Write address ready. This signal indicates that the slave is ready to accept an address signals: 1 = slave ready 0 = slave not ready.

Write Data Channel

Signal	Bit Width	Source	Description
W_DATA	64	Master	Write data bus.
W_VALID	1	Master	Write valid. This signal indicates that valid write data is available: 1 = write data available 0 = write data not available.
W_READY	1	Slave	Write ready. This signal indicates that the slave can accept the write data: 1 = slave ready 0 = slave not ready.

Write Response Channel

Signal	Bit Width	Source	Description
B_RESP	2	Slave	Write response. This signal indicates the status of the write transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR. (In this lab we only issue OKAY(2'b00))
B_VALID	1	Slave	Write response valid. This signal indicates that a valid write response is available: 1 = write response available. 0 = write response not available.
B_READY	1	Master	Response ready. This signal indicates that the master can accept the response information. 1 = master ready. 0 = master not ready.

Write Transaction

Waveform of Write Transaction

Read Address Channel

Signal	Bit Width	Source	Description
AR_ADDR	32	Master	Read address.
AR_VALID	1	Master	Read address valid. This signal indicates, when HIGH, that the read address is valid and will remain stable until the address acknowledge signal, AR_READY , is high. 1 = address and control information valid 0 = address and control information not valid.
AR_READY	1	Slave	Read address ready. This signal indicates that the slave is ready to accept an address signals: 1 = slave ready 0 = slave not ready.

Read Data Channel

Signal	Bit Width	Source	Description					
R_DATA	64	Slave	Read data.					
R_RESP	2	Slave	Read response. This signal indicates the status of the read transfer. The allowaresponses are OKAY, EXOKAY, SLVERR, and DECERR. (In this project we dissue OKAY)					
R_VALID	1	Slave	Read valid. This signal indicates that the required read data is available, and the read transfer can complete: 1 = read data available 0 = read data not available.					
R_READY	1	Master	Read ready. This signal indicates that the master can accept the read data and response information: 1= master ready 0 = master not ready.					

Read Transaction

SPI Introduction

SD Card Signal

Signal	Bit Width	Source	Description
clk	1	Clock source	Global clock signal. All signals are sampled on the positive edge of the global clock.
CS_n	1	Master	Chip Select, active LOW
MISO	1	Slave	Master Input Slave Output. When the data is not transfer, keep HIGH. Serial In Serial Out (SISO) transmission.
MOSI	1	Master	Master Output Slave Input. When the data is not transfer, keep HIGH. Serial In Serial Out (SISO) transmission.

SD Card Read Operation

Command (from host)

Start bit + transmission bit = 2'b01

Command: CMD17 = 6'd17

Argument: address

CRC:CRC-7({Start bit, Transmission bit, Command, Argument})

End bit: 1'b1

(wait $0 \sim 8$ units, units = 8 cycles)

Response (from SD card)

Response: 0x00 (8 bits)

(wait $1\sim32$ units, units = 8 cycles)

Data (from SD card)

Start token: 0xFE (8 bits)

Data block: 64 bits (differ from the original protocol)

CRC: CRC-16-CCITT (Data block)

Command Format

Byte 1				Bytes 2—5		Byte 6	
7	6	5	0	31	0	7	0
0	1	Command		Command Argument		CRC	1

SD Card Write Operation

Command (from host)

Start bit + transmission bit = 2'b01

Command: CMD24 = 6'd24

Argument: address

CRC:CRC-7({Start bit, Transmission bit, Command, Argument})

End bit: 1'b1

(wait $0 \sim 8$ units, units = 8 cycles)

Response (from SD card)

Response: 0x00 (8 bits)

(wait $1\sim32$ units, units = 8 cycles)

Data (from host)

Start token: 0xFE

Data block: 64 bits (differ from the original protocol)

CRC: CRC-16-CCITT (Data block)

(wait 0 units, units = 8 cycles)

Data response (from SD card)

Data_response: 8'b00000101 Busy: keep low until finish write.

(wait $0\sim32$ units, units = 8 cycles)

Command Format

	Byte 1			Bytes 2—5		Byte 6	
7	6	5	0	31	0	7	0
0	1	Commo	and	Command Argu	ment	CRC	1