

0

GERMAN TRAFFIC DATASET

>>>>

CIFAR DATASET

PROCEDURE

We tried with simple CNN models

We started using ResNet, as the state of the art in networks. (worst performance)

Finally decided to use **AlexNet**.

ALEXNET

Size Reduction

We reduced the size of the network, removing intermediate layers.

>>>>

Different activation function

We used LeakyRelu instead of RELU for the first model and ELU for the second.

Data augmentation

We used the data augmentation capabilities with Keras. •

O1. German traffic. DATASET

>>>>

SELECTED ARCHITECTURE

Adam optimizer Epochs: 20 (100 steps / epoch)

Conv 2D
512
Kernel: 11x11
LeakyRELU
MaxPooling 3x3

256 Kernel: 5x5 LeakyRELU MaxPooling 3x3 Conv 2D 256 Kernel: 3x3 LeakyRELU Conv 2D 128 Kernel: 3x3 LeakyRELU MaxPooling 3x3

1028 LeakyRELU Dropout 0.5

1028 LeakyRELU Dropout 0.5 0

>>>>

RESULTS

ACCURACY

0

0.9667

LOSS

0

0.1441

02. CIFAR. DATASET

>>>>

•

SELECTED ARCHITECTURE

Adam optimizer Epochs: 20 (100 steps / epoch)

Conv 2D 32 Kernel: 3x3 ELU

32
Kernel: 3x3
ELU
MaxPooling 2x2
Dropout 0.5

Conv 2D Conv 2D

64 Kernel: 3x3 ELU

Conv 2D 64 Kernel: 3x3 ELU axPooling 2x

MaxPooling 2x2 Dropout 0.5

Conv 2D

128 Kernel: 3x3 • k ELU Ma

128 • Kernel: 3x3 ELU MaxPooling 2x'

Conv 2D

MaxPooling 2x2 Dropout 0.5

Dense

1028 ELU Dropout 0.55

RESULTS

0.5502

0

0

1.6939

REFERENCES

- Krizhevsky, Alex, et al. «ImageNet Classification with Deep Convolutional Neural Networks»
- He, Kaiming, et al. «Deep Residual Learning for Image Recognition»
- https://keras.io/

0

