効率的に計算可能な 加法的誤りの訂正可能性

安永 憲司

九州先端科学技術研究所

SITA 2012 @ 別府湾ロイヤルホテル 2012.12.14

誤り訂正符号

誤り訂正符号

- 多くの誤りを訂正したい
- 多くのメッセージを送りたい(高い符号化レート)

誤り訂正符号

- 多くの誤りを訂正したい
- 多くのメッセージを送りたい(高い符号化レート)
 - → その限界は通信路モデルに依存

通信路モデル

通信路モデル

- 確率的通信路(二元対称通信路)
 - 各ビット毎に独立に一定確率で誤りが発生

- 確率 p < 1/2 に対し 符号化レート 1 - H(p) で訂正可能
 - レート 1 H(p) は最適

- 効率的な符号化・復号法が存在
 - 連接符号・Polar 符号

通信路モデル

- 最悪ケース通信路
 - 符号語に挿入される誤りの数だけを制限

- 誤り割合 p < 1/4 に対し 符号化レート 1 - H(2p) で訂正可能
 - レート 1 H(2p) が最適化かどうかは未解決
 - 明示的な構成法・効率的な復号法の存在も未解決
- 誤り割合 p ≥ 1/4 だと訂正不可能 (符号化レートが 0 でない限り)

通信路モデルのギャップ

■ 確率的通信路では、単純な方法で誤りが発生

■ 最悪ケース通信路では、 符号に関する十分な知識・考察から誤りが発生

通信路モデルのギャップ

- 確率的通信路では、単純な方法で誤りが発生
 - → 低コスト計算を行う通信路

- 最悪ケース通信路では、 符号に関する十分な知識・考察から誤りが発生
 - → 高コスト計算を行う通信路

計算量制限通信路

■ Lipton (STACS '94) が導入

- 通信路の計算量は、符号長の多項式時間
 - 確率的/最悪ケース通信路の中間モデル
 - 現実的に存在するすべての通信路を含む

本研究

- 標本可能な加法的誤りの訂正限界の考察
 - 標本可能 ≈ 効率的に計算可能
 - 加法的誤り ≈ 符号語と独立な誤り

Z: {0,1}ⁿ 上の標本可能な分布

$$C^{Z}(x) = x + z, z \sim Z$$

以降の発表内容

- ■既存の関連研究
 - 確率的/最悪ケース通信路の中間モデル

- 本研究の位置づけ・成果
 - 標本可能な加法的誤りの訂正限界

■ 今後の方向性

Lipton (STACS '94)

- 計算量制限通信路 C^{comp}: {0,1}ⁿ → {0,1}ⁿ
 - Ccomp は多項式時間計算アルゴリズム
 - 反転可能な誤りの数は制限

- BSC に対する符号 → C^{comp} に対する符号
 - C^{comp} に秘密の共有乱数を仮定
 - 符号語を擬似ランダムに置換することで、
 C^{comp} の誤り → ランダム誤りに
 - 一方向性関数の存在を仮定

Micali, Peikert, Sudan, Wilson (TCC '05, IEEE IT '10)

- 計算量制限通信路 Ccomp
- ■公開鍵基盤を仮定
 - 共有乱数は仮定しない

- リスト復号可能符号 → C^{comp} に対する符号
 - 「メッセージ+カウンター+署名」を符号化
 - 一方向性関数の存在を仮定
 - 正しい訂正のためには、誤り数の制限が必要

Guruswami, Smith (FOCS '10)

- 共有乱数・公開鍵は仮定しない
- ■誤りの数は制限

- 以下の通信路に対する効率的な符号化方式
 - 最悪ケース加法的通信路
 - 最適なレート 1 H(p) を達成
 - 空間量制限通信路
 - 変転通信路(Arbitrarily Varying Channel)を含む
 - 一意復号ではなくリスト復号を達成

Dey, Jaggi, Langberg, Sarwate (IEEE IT '13(?))

- オンライン通信路
 - 符号語を1ビットずつ見て反転するかを決める
 - ・誤りの数は制限
 - 共有乱数は仮定しない
 - 通信路の計算能力は制限しない

- 確率分布 Z が標本可能
 - ⇔ 確率的多項式時間アルゴリズム S が存在し、 S(1ⁿ) が Z に従って分布

- 確率分布 Z が標本可能
 - ⇔ 確率的多項式時間アルゴリズム S が存在し、 S(1ⁿ) が Z に従って分布

- ■標本可能な分布 Z による 加法的通信路 C^Z: {0,1}ⁿ → {0,1}ⁿ
 - \bullet $C^{Z}(x) = x + z, z \sim Z$
 - 発生する誤りの数は制限しない
 - 誤り数がまばらだが規則性のある誤りを含む
 - 符号化方式は C^Z に依存して存在性を議論

- 確率分布 Z が標本可能
 - ⇔ 確率的多項式時間アルゴリズム S が存在し、 S(1ⁿ) が Z に従って分布

- 標本可能な分布 Z による 加法的通信路 C^Z: {0,1}ⁿ → {0,1}ⁿ
 - $C^{Z}(x) = x + z, z \sim Z$
 - 発生する誤りの数は制限しない
 - 誤り数がまばらだが規則性のある誤りを含む
 - 符号化方式は C^Z に依存して存在性を議論
 - → どのような Z なら訂正可能か?

- H(Z) = 0 ならば簡単に訂正可能
 - 誤りの系列を知っているので

- H(Z) = 0 ならば簡単に訂正可能
 - 誤りの系列を知っているので

- H(Z) = n ならば訂正不可能
 - 受信系列は乱数

- H(Z) = 0 ならば簡単に訂正可能
 - 誤りの系列を知っているので

- H(Z) = n ならば訂正不可能
 - 受信系列は乱数

- H(Z) = n·H(p) のとき レート R > 1 - H(p) では訂正不可能
 - Z = BSC_p を計算できる場合

標本可能な Z の訂正可能性

- H(Z) ≤ n^ε で効率的に訂正できない Z が存在
 - 任意の 0 < ε < 1

標本可能な Z の訂正可能性

- H(Z) ≤ n^ε で効率的に訂正できない Z が存在
 - 任意の 0 < ε < 1
- ■証明
 - 擬似乱数生成器 G: {0,1}^m → {0,1}ⁿ に対し
 Z = G(U_m) とする
 - y = x + G(U_m) から x を効率的に復号できると、 G(U_m) が擬似ランダムであることに矛盾
 - 一方向性関数の存在を仮定した場合、
 任意の 0 < ε < 1 について m = n^ε とできる

シンドローム復号による訂正可能性

- H(Z) = ω(log n) のとき レート R > Ω((log n)/n) では シンドローム復号による効率的な訂正は不可能
 - あるオラクルへのアクセスを許すとき

シンドローム復号による訂正可能性

- H(Z) = ω(log n) のとき レート R > Ω((log n)/n) では シンドローム復号による効率的な訂正は不可能
 - あるオラクルへのアクセスを許すとき
- ■証明
 - H(Z) = ω(log n) で長さ < n Ω(log n) に効率的に 圧縮できない標本可能分布が存在 (Wee '04)
 - あるオラクルへのアクスを許すとき
 - レート R で Z をシンドローム復号訂正可能⇔ Z を長さ n(1 R) に線形圧縮可能

訂正可能性のまとめ

■標本可能な Z による加法的誤りの訂正可能性

H(Z)	訂正可能性
0	効率的に訂正可能
ω(log n)	レート R > Ω((log n)/n) で シンドローム復号による 効率的な訂正は不可能
n^{ϵ} for $0 < \epsilon < 1$	効率的に訂正不可能
n·H(p) for 0 < p < 1	レート R > 1 - H(p) では 訂正不可能
n	訂正不可能

今後の研究

- ■無損失濃縮器との関係
 - 濃縮器: エントロピーを高くする関数
 - 平坦分布 Z に対する線形無損失濃縮器⇔ 加法的誤り Z を線形関数で訂正可能
 - Cheraghchi (ISIT '09)
 - 復号の効率性は考えていない
 - → 標本可能な Z に対する 無損失濃縮器の存在の可能性を探る

まとめ

■ 中間的な通信路モデルとして 標本可能な加法的誤り通信路

■訂正限界の考察

- ■今後の課題
 - 訂正可能な Z の特徴付け
 - 訂正可能性に関する議論

オラクルアクセスについて

- H(Z) = ω(log n) のとき レート R > Ω((log n)/n) では シンドローム復号による効率的な訂正は不可能
 - あるオラクルへのアクセスを許すとき

- (a) から (b) のブラックボックス構成は存在しない
 - (a) $H(Z) = \omega(\log n) \mathcal{O} Z$
 - (b) Z をシンドローム復号で効率的に訂正する レート R > Ω((log n)/n) の符号