NAME: T SANDEEP RISHI, REG NO: 21BCE9361

In [1]: Import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt

In [2]: A data=pd.read_csv("Employee-Attrition.csv")

In [3]: M data.head()

Out[3]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Emţ
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	

5 rows × 35 columns

4

In [4]: | data.tail()

Ծաղ-

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	I
1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical	
1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical	
1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences	
1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical	
1469	34	No	Travel_Rarely	628	Research & Development	8	3	Medical	

5 rows × 35 columns

4

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns);

	igeindex: 14/0 entr	
	ta columns (total 35	
#	Column	Non-Null Count Dtype
0		1470 non-null int64
1	C	1470 non-null object
2	BusinessTravel	1470 non-null object
	DailyRate	1470 non-null int64
	Department	1470 non-null object
	DistanceFromHom	
6	Education	1470 non-null int64
7	EducationField	1470 non-null object
8	EmployeeCount	1470 non-null int64
9	EmployeeNumber	1470 non-null int64
10	EnvironmentSatisf	action 1470 non-null int64
11	Gender	1470 non-null object
12	HourlyRate	1470 non-null int64
	JobInvolvement	1470 non-null int64
	JobLevel	1470 non-null int64
	JobRole	1470 non-null object
	JobSatisfaction	1470 non-null int64
17	MaritalStatus	1470 non-null object
18	MonthlyIncome	1470 non-null int64
19	MonthlyRate	1470 non-null int64 1470 non-null int64
20	NumCompanies Wo	orked 1470 non-null int64
21	Over18	1470 non-null object 1470 non-null object
22	OverTime	1470 non-null object
23	PercentSalaryHike	1470 non-null int64
24	PerformanceRating	g 1470 non-null int64
25	RelationshipSatisfa	action 1470 non-null int64
26	StandardHours StockOptionLevel	1470 non-null int64
27	StockOptionLevel	1470 non-null int64
28	Total Working Years	s 14/0 non-null int64
29	TrainingTimesLast	Year 1470 non-null int64
30	WorkLifeBalance	1470 non-null int64
31	YearsAtCompany	1470 non-null int64
		e 1470 non-null int64
		motion 1470 non-null int64
34	Years With Curr Mai	nager 1470 non-null int64

dtypes: int64(26), object(9) memory usage: 402.1+ KB

In [6]:

data.describe()

Out[6]:

:		Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	Environ
	count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	
	mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	
	std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	
	min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	
	25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	
	50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	
	75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	
	max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	

8 rows × 26 columns

4

HANDLING NULL VALUES

In [7]: data.isnull().any()

Out[7]:

Age False Attrition False BusinessTravel False DailyRate False False Department DistanceFromHome False Education False EducationField False **EmployeeCount** False False EmployeeNumber

EnvironmentSatisfaction False Gender False HourlyRate False JobInvolvement False JobLevel False JobRole False JobSatisfaction False MaritalStatus False False MonthlyIncome False MonthlyRate NumCompaniesWorked False

Over18 False OverTime False False PercentSalaryHike False PerformanceRating RelationshipSatisfaction False StandardHours False StockOptionLevel False **TotalWorkingYears** False TrainingTimesLastYear False WorkLifeBalance False YearsAtCompany False YearsInCurrentRole False False YearsSinceLastPromotion YearsWithCurrManager False dtype: bool

data.isnull().sum() In [8]: Age U Out[8]: Attrition 0 BusinessTravel 0 DailyRate 0 Department 0 DistanceFromHome 0 Education 0 EducationField 0 **EmployeeCount** 0 EmployeeNumber 0 EnvironmentSatisfaction 0 Gender 0 0 HourlyRate JobInvolvement 0 JobLevel 0 JobRole 0 JobSatisfaction 0 0 MaritalStatus MonthlyIncome 0 MonthlyRate NumCompaniesWorked 0 Over18 0 OverTime 0 PercentSalaryHike 0 PerformanceRating 0 RelationshipSatisfaction 0 StandardHours 0 StockOptionLevel 0 TotalWorkingYears 0 TrainingTimesLastYear 0 WorkLifeBalance 0 YearsAtCompany 0 YearsInCurrentRole YearsSinceLastPromotion 0 YearsWithCurrManager

dtype: int64

cor=data.corr() In [9]:

> C:\Users\srich\AppData\Local\Temp\ipykernel 26344\1426905697.py:1: FutureWarning: The default value of numeric only in Data Frame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric only t o silence this warning. cor=data.corr()

In [10]:

fig=plt.figure(figsize=(18,18)) sns.heatmap(cor,annot=True)

Out[10]: <Axes: >

OUTLIERS

In [12]: sns.boxplot(data["DailyRate"])

Out[12]: <Axes: >

In [13]: M data.describe()

Out[13]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	Environ
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	_
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	
8 rows >	× 26 columns						

In [14]: data.head()

Out[14]:

:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Emŗ
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	_
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	

5 rows × 35 columns

In []:

H

In [15]: In

Out[15]: <Axes: >

HANDLING THE OUTLIERS

```
In [17]:
          YearsInCurrentRole q1 = data. YearsInCurrentRole.quantile(0.25)
              YearsInCurrentRole q3 = data. YearsInCurrentRole.quantile(0.75)
             IQR YearsInCurrentRole=YearsInCurrentRole q3-YearsInCurrentRole q1
             upperlimit YearsInCurrentRole=YearsInCurrentRole q3+1.5*IQR YearsInCurrentRole
             lower limit YearsInCurrentRole =YearsInCurrentRole q1-1.5*IOR YearsInCurrentRole
             median YearsInCurrentRole=data["YearsInCurrentRole"].median()
             data['YearsInCurrentRole'] = np.where(
                (data['YearsInCurrentRole'] > upperlimit YearsInCurrentRole),
                median YearsInCurrentRole,
                data['YearsInCurrentRole']
In [18]:
             YearsSinceLastPromotion g1 = data. YearsSinceLastPromotion.quantile(0.25)
             YearsSinceLastPromotion q3 = data. YearsSinceLastPromotion.quantile(0.75)
             IQR YearsSinceLastPromotion=YearsSinceLastPromotion q3-YearsSinceLastPromotion q1
             upperlimit YearsSinceLastPromotion=YearsSinceLastPromotion q3+1.5*IOR YearsSinceLastPromotion
             lower limit YearsSinceLastPromotion = YearsSinceLastPromotion q1-1.5*IQR YearsSinceLastPromotion
             median YearsSinceLastPromotion=data["YearsSinceLastPromotion"].median()
             data['YearsSinceLastPromotion'] = np.where(
                (data['YearsSinceLastPromotion'] > upperlimit YearsSinceLastPromotion),
                median YearsSinceLastPromotion,
                data['YearsSinceLastPromotion']
In [19]:
             YearsWithCurrManager q1 = data.YearsWithCurrManager.quantile(0.25)
              YearsWithCurrManager q3 = data.YearsWithCurrManager.quantile(0.75)
             IOR YearsWithCurrManager=YearsWithCurrManager q3-YearsWithCurrManager q1
             upperlimit YearsWithCurrManager=YearsWithCurrManager q3+1.5*IQR YearsWithCurrManager
             lower limit YearsWithCurrManager =YearsWithCurrManager q1-1.5*IQR YearsWithCurrManager
             median YearsWithCurrManager=data["YearsWithCurrManager"].median()
             data['YearsWithCurrManager'] = np.where(
                (data['YearsWithCurrManager'] > upperlimit YearsWithCurrManager),
                median YearsWithCurrManager,
                data['YearsWithCurrManager']
```

```
In [20]:
             TotalWorkingYears q1 = data. TotalWorkingYears.quantile(0.25)
             TotalWorkingYears q3 = data.TotalWorkingYears.quantile(0.75)
             IQR TotalWorkingYears=TotalWorkingYears q3-TotalWorkingYears q1
             upperlimit TotalWorkingYears=TotalWorkingYears q3+1.5*IOR TotalWorkingYears
             lower limit TotalWorkingYears=TotalWorkingYears q1-1.5*IOR TotalWorkingYears
             median TotalWorkingYears=data["TotalWorkingYears"].median()
             data['TotalWorkingYears'] = np.where(
               (data['TotalWorkingYears'] > upperlimit TotalWorkingYears),
               median TotalWorkingYears,
               data['TotalWorkingYears']
In [21]:
             YearsAtCompany q1 = data. YearsAtCompany.quantile(0.25)
             YearsAtCompany q3 = data. YearsAtCompany.quantile(0.75)
             IQR YearsAtCompany=YearsAtCompany q3-YearsAtCompany q1
             upperlimit YearsAtCompany=YearsAtCompany q3+1.5*IQR YearsAtCompany
             lower limit YearsAtCompany=YearsAtCompany q1-1.5*IQR YearsAtCompany
             median YearsAtCompany=data["YearsAtCompany"].median()
             data['YearsAtCompany'] = np.where(
               (data['YearsAtCompany'] > upperlimit YearsAtCompany),
               median YearsAtCompany,
               data['YearsAtCompany']
```

In [22]: In [22]: In [22]: If ig, axes = plt.subplots(2,2)

sns.boxplot(data=data["YearsWithCurrManager"],ax=axes[0,0])

sns.boxplot(data=data["TotalWorkingYears"],ax=axes[0,1])

sns.boxplot(data=data["YearsSinceLastPromotion"],ax=axes[1,0])

sns.boxplot(data=data["YearsAtCompany"],ax=axes[1,1])

Out[22]: <Axes: >

Out[23]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Em
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	
	5 r	ows ×	35 column	S						
	4									•
n [24]: ► ►	data	a.drop("Educationl	Field",axis=1,inplace=	True)					•
n [24]: H		a.drop(a.head(Field",axis=1,inplace=	True)					•
		a.head(Field",axis=1,inplace= BusinessTravel		Department	DistanceFromHome	Education	EmployeeCount	
[25]:)		a.head((2)			Department Sales	DistanceFromHome	Education 2	EmployeeCount	
n [25]: 🕨	data	a.head(2) Attrition Yes	BusinessTravel Travel_Rarely	DailyRate	<u> </u>				
ı [25]: 🕨		Age 41 49	2) Attrition Yes	BusinessTravel Travel_Rarely Travel_Frequently	DailyRate 1102	Sales Research &	1	2	1	
ı [25]: 🕨		Age 41 49	Attrition Yes No	BusinessTravel Travel_Rarely Travel_Frequently	DailyRate 1102	Sales Research &	1	2	1	
ı [25]: ►	0 1 2 ro	a.head(Age 41 49 ows ×	Attrition Yes No	BusinessTravel Travel_Rarely Travel_Frequently s	DailyRate 1102	Sales Research &	1	2	1	

SPLITTING THE DATA

In [27]:	M	y=da	ıta["A	ttrition"]						
In [28]:	M	y.hea	ad()							
Out[28]:	1 1 2 Y 3 1 4 1	Yes No Yes No No No	rition, dtype: object						•
In [29]:	H	data.	drop("Attrition",axis=1,inp	lace=True)					
In [30]:	H	data.	head()						
Out[301:					5	D'ata a Faralla a			
		-	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EmployeeCount	EmployeeNu
		0	Age 41	Travel_Rarely	1102	Sales	Distance From Home 1	Education 2	EmployeeCount 1	EmployeeNu
03.1										EmployeeNu
		0	41	Travel_Rarely	1102	Sales Research &	1	2	1	EmployeeNu
		0	41 49	Travel_Rarely Travel_Frequently	1102 279	Sales Research & Development Research &	1	2	1	EmployeeNu
		0 1 2	41 49 37	Travel_Rarely Travel_Frequently Travel_Rarely	1102 279 1373	Sales Research & Development Research & Development Research &	1 8 2	2 1 2	1 1	EmployeeNu
		0 1 2 3 4	41 49 37 33 27	Travel_Rarely Travel_Frequently Travel_Rarely Travel_Frequently	1102 279 1373 1392	Sales Research & Development Research & Development Research & Development Research &	1 8 2 3	2 1 2 4	1 1 1	EmployeeNu

ENCODING

```
▶ from sklearn.preprocessing import LabelEncoder
In [31]:
In [32]:
              le=LabelEncoder()
              data["BusinessTravel"]=le.fit transform(data["BusinessTravel"])
In [33]:
           data["Department"]=le.fit transform(data["Department"])
In [34]:
              data["Gender"]=le.fit transform(data["Gender"])
In [35]:
           y=le.fit transform(y)
In [36]:
In [37]:
          \mathbf{H} \mid \mathbf{y}
    Out[37]: array([1, 0, 1, ..., 0, 0, 0])
           data["JobRole"]=le.fit transform(data["JobRole"])
In [38]:
           data["Over18"]=le.fit transform(data["Over18"])
In [39]:
              data["MaritalStatus"]=le.fit transform(data["MaritalStatus"])
In [40]:
           data["OverTime"]=le.fit transform(data["OverTime"])
In [41]:
```

In [42]: M data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 33 columns): # Column Non-Null Count Dtype _____ Age 1470 non-null int64 BusinessTravel 1470 non-null int32 2 DailyRate 1470 non-null int64 Department 1470 non-null int32 4 DistanceFromHome 1470 non-null int64 5 Education 1470 non-null int64 EmployeeCount 1470 non-null int64 EmployeeNumber 1470 non-null int64 EnvironmentSatisfaction 1470 non-null int64 9 Gender 1470 non-null int32 10 HourlyRate 1470 non-null int64 11 JobInvolvement 1470 non-null int64 12 JobLevel 1470 non-null int64 13 JobRole 1470 non-null int32 14 JobSatisfaction 1470 non-null int64 1470 non-null int32 15 MaritalStatus 16 MonthlyIncome 1470 non-null int64 17 MonthlyRate 1470 non-null int64 18 NumCompaniesWorked 1470 non-null int64 19 Over18 1470 non-null int32 20 OverTime 1470 non-null int32 21 PercentSalaryHike 1470 non-null int64 22 PerformanceRating 1470 non-null int64 23 RelationshipSatisfaction 1470 non-null int64 24 StandardHours 1470 non-null int64 25 StockOptionLevel 1470 non-null int64 26 TotalWorkingYears 1470 non-null float64 27 TrainingTimesLastYear 1470 non-null int64 28 WorkLifeBalance 1470 non-null int64 29 YearsAtCompany 1470 non-null float64 30 YearsInCurrentRole 1470 non-null float64 31 YearsSinceLastPromotion 1470 non-null float64 32 YearsWithCurrManager 1470 non-null float64 dtypes: float64(5), int32(7), int64(21) memory usage: 338.9 KB

,

TRAIN TEST SPLIT

FEATURE SCALING

- In [45]: | from sklearn.preprocessing import StandardScaler
- In [46]: ► sc=StandardScaler()
- In [47]: x_train=sc.fit_transform(x_train)
- In [48]: \mathbf{N} x_test=sc.fit_transform(x_test)

BUILDING THE MODEL

MULTI LINEAR REGRESSION

- In [49]: M from sklearn.linear_model import LinearRegression
- In [50]: ► Ir = LinearRegression()

```
In [51]:
          Ir.fit(x train, y train)
    Out[51]: LinearRegression()
             In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
             On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [52]:
             lr.coef #slope(m)
    Out[52]: array([-3.54982205e-02, 5.83302672e-05, -1.72249253e-02, 3.46305828e-02,
                  2.45263256e-02, 3.89940919e-03, -8.89214800e+11, -9.43596046e-03,
                 -4.12143211e-02, 1.05731111e-02, -3.10438176e-03, -3.84488534e-02,
                 -1.53491202e-02, -1.57440821e-02, -3.66214700e-02, 3.35650229e-02,
                 -5.85270940e-03, 5.89670852e-03, 3.77895930e-02, -1.09571684e+07,
                  9.55711035e-02, -2.54155836e-02, 1.99397870e-02, -2.64643443e-02,
                 -2.64138305e+04, -1.79073382e-02, -3.31099987e-02, -1.08374986e-02,
                 -3.09087610e-02, -2.49869759e-02, -1.08495820e-02, 2.10399164e-02,
                 -6.46780261e-03])
In [53]:
             lr.intercept #(c)
    Out[53]: 0.16229348882410102
In [54]:
             y pred = lr.predict(x test)
```

In [55]: **y**_pred

```
Out[55]: array([1.30796232e-01, 2.17900848e-01, 3.46642078e-01, 5.58365807e-03,
             4.99016900e-01, 1.01768656e-01, 3.45454856e-01, 1.23487843e-01,
             -1.60508211e-01, 4.02774192e-01, 1.43863626e-01, 2.67493211e-01,
             -4.61376545e-02, 5.58563347e-01, 2.81985888e-01, 1.48533683e-02,
             1.78513543e-01, 2.78218063e-01, 9.39501521e-02, 2.16824147e-01,
             2.65686758e-01, 1.40480328e-02, 8.35045241e-02, 9.65278467e-02,
             5.10152592e-01, 2.94947412e-01, 7.87474989e-02, 1.26281046e-01,
             5.05599470e-01, 8.44181518e-02, -7.94455244e-02, 2.00664655e-02,
             1.07159698e-01, 3.65801296e-01, 1.25083285e-01, 5.15443890e-02,
             1.06691263e-01, 6.10560784e-02, 6.66004307e-02, 4.86894584e-02,
             -1.07548569e-02, -2.94781175e-02, 5.20898060e-02, -1.58276250e-02,
             -1.77848612e-02, 4.18379396e-01, 3.66954632e-01, -2.14407437e-01,
             5.48302265e-01, 4.40485603e-01, 1.97011357e-01, 4.42145584e-01,
             1.46307401e-01, 3.75270817e-01, 4.93018248e-01, 2.95973962e-01,
             -4.67912123e-02, 3.16682815e-01, -7.70189517e-03, 2.53080649e-01,
             -3.14434764e-02, 2.83109378e-01, 9.08930998e-02, 1.26210137e-01,
             3.60059433e-01, 2.42994338e-02, 3.55930832e-01, 1.96149466e-01,
             1.27766995e-01, 1.19157288e-01, -2.87607873e-02, 3.18174064e-01,
             1.08182581e-01, 1.25900358e-01, 2.30252390e-01, 9.79248506e-02,
             9.13876026e-02, 2.72922895e-01, 2.52302174e-01, 4.06448037e-02,
             -9.11781684e-02, -1.11336412e-02, 1.94492552e-01, -2.23451867e-02,
             -1.72239428e-02, 1.16255875e-01, 8.35014963e-02, 2.28958407e-03,
             4.87956812e-02, 2.40960805e-01, 3.14231768e-01, 2.25370717e-01,
             3.30101918e-01, 2.38617684e-01, -2.14125086e-02, 2.27066280e-01,
             3.01683445e-01, 2.98737390e-01, 9.82670241e-02, 8.83243788e-02,
             2.86155158e-01, 4.99817815e-01, 3.04309363e-01, -5.27010704e-03,
             1.71351185e-01, -5.95768064e-03, 2.56475095e-02, 2.15399623e-01,
             6.10705957e-02, 1.64259248e-01, 1.08747531e-01, 1.07853987e-01,
             -3.13741410e-02, 1.96152859e-01, 9.68496302e-02, 3.33338078e-02,
             1.06769816e-01, 2.33826858e-01, -8.62611908e-02, -7.73660020e-02,
             2.00264727e-01, 3.42215765e-02, 1.28025570e-01, 6.03549521e-01,
             5.90092635e-03, -3.09303352e-02, -1.46523580e-01, 2.18857517e-01,
             2.75684912e-01, 1.68178132e-01, -2.73302560e-03, 2.61705896e-01,
             4.40410881e-01, 3.95659751e-01, 1.69391826e-01, 4.18498413e-01,
             4.90851141e-01, 2.02156908e-01, 1.58125659e-01, 3.60608308e-01,
             2.26116966e-01, 1.46080493e-01, 2.13446831e-01, 2.66808395e-01,
             3.11988347e-01, -8.15460457e-04, 1.49618075e-01, -1.34986507e-01,
             2.07992802e-01, 2.79499979e-01, 1.16456567e-01, 2.74369274e-01,
             5.51722773e-02, 3.41682216e-01, 1.70237398e-01, -3.43112640e-04,
             -4.05339167e-02, 1.34919977e-01, -1.02695835e-01, -5.64532727e-02,
             3.37155137e-01, -9.52131633e-02, 2.11183014e-01, 6.18254327e-01,
```

```
2.03804707e-01, 3.04259774e-01, 1.82073591e-01, 1.84394143e-01,
-2.87766822e-03, -8.96366447e-02, 4.16941567e-02, 1.30414229e-01,
1.73722893e-01, 1.58172468e-01, -8.67312423e-02, 1.87531180e-01,
1.99848543e-01, 1.82435808e-01, 1.03617628e-01, 1.91507185e-01,
2.51148859e-03, 1.95023436e-01, -6.13160664e-02, 5.85144923e-01,
6.61570629e-02, 4.50721221e-02, 3.30228796e-01, 9.79202044e-02,
5.51504673e-01, 1.52340046e-01, 3.58897737e-01, 3.66200721e-01,
2.47443494e-01, 5.94731854e-02, 1.28084751e-01, 2.80510398e-01,
7.23178238e-02, -8.08554776e-02, 3.39348594e-01, 8.20383069e-02,
2.19295711e-01, 2.48497484e-01, 4.96830400e-01, 1.36684877e-01,
2.88225529e-01, 4.60162124e-02, 4.52391987e-01, -8.24840394e-02,
2.26359015e-01, 1.41222376e-02, 1.61414983e-01, 2.32302068e-01,
9.12373829e-02, 1.19076584e-01, 2.12036068e-01, -2.68369095e-02,
4.51730340e-02, 1.10311902e-01, 2.54707406e-02, 2.31690547e-01,
1.63046164e-01, 2.42643454e-01, 5.44826624e-01, 1.26147728e-01,
3.69618044e-01, -8.09176638e-02, 1.41896523e-01, 2.86097884e-01,
3.14623385e-01, 1.32523750e-02, -3.54222514e-02, 3.52906106e-01,
1.01707522e-01, -2.91908173e-02, 2.56905687e-01, 3.46396010e-01,
2.95875605e-01, -1.38445641e-01, 1.39596811e-01, -8.05889099e-03,
2.16896759e-01, 2.92976269e-01, 7.00238057e-02, 3.06907336e-01,
7.16086314e-02, 2.74594548e-02, 4.04667254e-01, 3.33250070e-01,
2.67893243e-03, 2.58662868e-01, 3.27678154e-01, 3.95596214e-01,
5.53509138e-01, 8.14215009e-02, 2.60282515e-01, 1.00230090e-01,
1.26948575e-02, 5.30248445e-01, 3.35155300e-01, 3.45505042e-01,
3.77110523e-01, 5.23021324e-02, 2.44730157e-01, 1.33118055e-01,
1.44475714e-01, 1.36746115e-01, -1.49246937e-01, 3.09352966e-01,
4.13159052e-01, 1.22471830e-01, 1.68862687e-01, -2.76620640e-02,
1.98881785e-01, 8.15231626e-02, -5.50205859e-02, 3.42038192e-02,
1.76105990e-01, 3.52276339e-01, 3.24122243e-01, 2.91660509e-01,
2.79231073e-01, -7.10928656e-02, 1.84992345e-01, 2.02531249e-01,
1.86105681e-01, 2.53053459e-01, -1.32223405e-01, 2.80455589e-01,
-1.30384828e-01, 1.72960350e-02, 2.95800667e-01, 6.10135479e-01,
1.20327547e-01, 2.99137697e-01, 2.47541803e-01, -1.63703382e-02,
3.11624181e-01, 2.56005823e-01, 5.64756059e-01, -8.56338946e-02,
2.27563370e-01, 1.35786621e-01, 1.83177501e-01, 2.64975305e-02,
1.04161257e-01, 1.32019719e-01, 2.07299847e-01, 3.32994202e-01,
-2.01312398e-01, -9.51028162e-02, 5.00111328e-02, -6.54371755e-03,
2.09302958e-01, 2.74754710e-01, 2.28084376e-01, 2.79732365e-01,
2.35725648e-01, 7.46006444e-02, 1.19896761e-01, -1.07066798e-02,
2.66923182e-01, 1.34140118e-01, 3.84463812e-01, 3.27409070e-01,
1.92451398e-01, 1.37585867e-01, 3.13412432e-01, 3.02375698e-01,
-1.79360389e-01, 1.07332671e-01, -2.17014249e-03, 3.45943461e-01,
```

```
1.36200101e-01, 3.83158073e-01, 2.45980114e-01, -1.69792245e-01,
2.55581602e-01, -2.28372223e-01, 3.36823844e-01, 1.50033956e-01,
1.17253943e-01, 4.83660482e-01, 1.46579634e-01, 4.18107584e-01,
1.15835801e-01, 9.90182028e-03, 2.34785935e-01, 1.36552754e-01,
8.52882619e-03, 2.34543958e-01, 6.09756451e-02, 3.41468766e-01,
1.59294995e-01, 9.75421036e-02, 2.32676296e-01, -8.12398090e-02,
1.92392477e-01. 1.91696176e-01. -6.88684994e-03. 2.65082504e-01.
-2.67290272e-01, -3.76876152e-02, 1.82987749e-01, 1.78101741e-02,
1.97238497e-01, 2.06514753e-01, -1.09632049e-01, 3.55228383e-01,
7.24827035e-02, 2.36363938e-01, -8.16169248e-02, 3.21071947e-01,
1.62813472e-02, 2.39336106e-01, 3.15931799e-01, 1.22614169e-01,
9.00083375e-03, 9.34631288e-02, 4.76412767e-01, -5.65172803e-02,
3.20357008e-01, 1.90009384e-02, 1.84117901e-01, 2.16278454e-01,
-2.02785555e-01, 2.52564639e-01, -1.50856458e-01, 3.50111406e-01,
-9.85040851e-02, 2.15620856e-01, 2.45829671e-02, 2.09072817e-01,
9.49806038e-02, 3.11567457e-01, 4.07284673e-01, -2.19987388e-02,
7.65184056e-02, 3.07591042e-01, 4.35392606e-02, 1.09065715e-01,
4.21630293e-01, 1.48897439e-01, 4.42988409e-02, 3.35130176e-02,
9.96284166e-02, -5.29452820e-02, 3.46797085e-01, 1.03461109e-01,
-4.11871255e-02, -5.81603769e-02, 3.09315615e-01, 1.01570176e-01,
2.09448790e-01, 4.10347757e-01, 3.33094014e-01, 1.81228317e-01,
2.77318425e-01, 2.86403262e-01, 2.62049298e-01, -1.88118573e-02,
2.35820366e-01, 1.54110630e-01, 6.23994747e-02, 6.70778678e-03,
1.86183882e-02, 7.74249168e-02, 1.34438409e-01, 1.87764721e-01,
2.36760139e-01, -1.81894158e-01, 2.98162656e-01, 1.74334561e-01,
-8.91020361e-02, 3.47082854e-02, 1.36644027e-01, 1.70179690e-01,
1.70464873e-01, 2.28231706e-01, 2.15402007e-01, 1.04763685e-01,
-8.16311344e-02])
```

```
In [56]:
          y test
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
                 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
                 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
                 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
                 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                 01)
```

LOGISTIC REGRESSION

```
In [57]:  

from sklearn.linear_model import LogisticRegression

In [58]:  

Ig=LogisticRegression()

In [59]:  

Ig.fit(x_train,y_train)

Out[59]: LogisticRegression()

$\$\$
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [60]: y_pred_lg=lg.predict(x_test)

In [61]: **y**_pred

```
Out[61]: array([ 1.30796232e-01, 2.17900848e-01, 3.46642078e-01, 5.58365807e-03,
             4.99016900e-01, 1.01768656e-01, 3.45454856e-01, 1.23487843e-01,
             -1.60508211e-01, 4.02774192e-01, 1.43863626e-01, 2.67493211e-01,
             -4.61376545e-02, 5.58563347e-01, 2.81985888e-01, 1.48533683e-02,
             1.78513543e-01, 2.78218063e-01, 9.39501521e-02, 2.16824147e-01,
             2.65686758e-01, 1.40480328e-02, 8.35045241e-02, 9.65278467e-02,
             5.10152592e-01, 2.94947412e-01, 7.87474989e-02, 1.26281046e-01,
             5.05599470e-01, 8.44181518e-02, -7.94455244e-02, 2.00664655e-02,
             1.07159698e-01, 3.65801296e-01, 1.25083285e-01, 5.15443890e-02,
             1.06691263e-01, 6.10560784e-02, 6.66004307e-02, 4.86894584e-02,
             -1.07548569e-02, -2.94781175e-02, 5.20898060e-02, -1.58276250e-02,
             -1.77848612e-02, 4.18379396e-01, 3.66954632e-01, -2.14407437e-01,
             5.48302265e-01, 4.40485603e-01, 1.97011357e-01, 4.42145584e-01,
             1.46307401e-01, 3.75270817e-01, 4.93018248e-01, 2.95973962e-01,
             -4.67912123e-02, 3.16682815e-01, -7.70189517e-03, 2.53080649e-01,
             -3.14434764e-02, 2.83109378e-01, 9.08930998e-02, 1.26210137e-01,
             3.60059433e-01, 2.42994338e-02, 3.55930832e-01, 1.96149466e-01,
             1.27766995e-01, 1.19157288e-01, -2.87607873e-02, 3.18174064e-01,
             1.08182581e-01, 1.25900358e-01, 2.30252390e-01, 9.79248506e-02,
             9.13876026e-02, 2.72922895e-01, 2.52302174e-01, 4.06448037e-02,
             -9.11781684e-02, -1.11336412e-02, 1.94492552e-01, -2.23451867e-02,
             -1.72239428e-02, 1.16255875e-01, 8.35014963e-02, 2.28958407e-03,
             4.87956812e-02, 2.40960805e-01, 3.14231768e-01, 2.25370717e-01,
             3.30101918e-01, 2.38617684e-01, -2.14125086e-02, 2.27066280e-01,
             3.01683445e-01, 2.98737390e-01, 9.82670241e-02, 8.83243788e-02,
             2.86155158e-01, 4.99817815e-01, 3.04309363e-01, -5.27010704e-03,
             1.71351185e-01, -5.95768064e-03, 2.56475095e-02, 2.15399623e-01,
             6.10705957e-02, 1.64259248e-01, 1.08747531e-01, 1.07853987e-01,
             -3.13741410e-02, 1.96152859e-01, 9.68496302e-02, 3.33338078e-02,
             1.06769816e-01, 2.33826858e-01, -8.62611908e-02, -7.73660020e-02,
             2.00264727e-01, 3.42215765e-02, 1.28025570e-01, 6.03549521e-01,
             5.90092635e-03, -3.09303352e-02, -1.46523580e-01, 2.18857517e-01,
             2.75684912e-01, 1.68178132e-01, -2.73302560e-03, 2.61705896e-01,
             4.40410881e-01, 3.95659751e-01, 1.69391826e-01, 4.18498413e-01,
             4.90851141e-01, 2.02156908e-01, 1.58125659e-01, 3.60608308e-01,
             2.26116966e-01, 1.46080493e-01, 2.13446831e-01, 2.66808395e-01,
             3.11988347e-01, -8.15460457e-04, 1.49618075e-01, -1.34986507e-01,
             2.07992802e-01, 2.79499979e-01, 1.16456567e-01, 2.74369274e-01,
             5.51722773e-02, 3.41682216e-01, 1.70237398e-01, -3.43112640e-04,
             -4.05339167e-02, 1.34919977e-01, -1.02695835e-01, -5.64532727e-02,
             3.37155137e-01, -9.52131633e-02, 2.11183014e-01, 6.18254327e-01,
```

```
2.03804707e-01, 3.04259774e-01, 1.82073591e-01, 1.84394143e-01,
-2.87766822e-03, -8.96366447e-02, 4.16941567e-02, 1.30414229e-01,
1.73722893e-01, 1.58172468e-01, -8.67312423e-02, 1.87531180e-01,
1.99848543e-01, 1.82435808e-01, 1.03617628e-01, 1.91507185e-01,
2.51148859e-03, 1.95023436e-01, -6.13160664e-02, 5.85144923e-01,
6.61570629e-02, 4.50721221e-02, 3.30228796e-01, 9.79202044e-02,
5.51504673e-01, 1.52340046e-01, 3.58897737e-01, 3.66200721e-01,
2.47443494e-01, 5.94731854e-02, 1.28084751e-01, 2.80510398e-01,
7.23178238e-02, -8.08554776e-02, 3.39348594e-01, 8.20383069e-02,
2.19295711e-01, 2.48497484e-01, 4.96830400e-01, 1.36684877e-01,
2.88225529e-01, 4.60162124e-02, 4.52391987e-01, -8.24840394e-02,
2.26359015e-01, 1.41222376e-02, 1.61414983e-01, 2.32302068e-01,
9.12373829e-02, 1.19076584e-01, 2.12036068e-01, -2.68369095e-02,
4.51730340e-02, 1.10311902e-01, 2.54707406e-02, 2.31690547e-01,
1.63046164e-01, 2.42643454e-01, 5.44826624e-01, 1.26147728e-01,
3.69618044e-01, -8.09176638e-02, 1.41896523e-01, 2.86097884e-01,
3.14623385e-01, 1.32523750e-02, -3.54222514e-02, 3.52906106e-01,
1.01707522e-01, -2.91908173e-02, 2.56905687e-01, 3.46396010e-01,
2.95875605e-01, -1.38445641e-01, 1.39596811e-01, -8.05889099e-03,
2.16896759e-01, 2.92976269e-01, 7.00238057e-02, 3.06907336e-01,
7.16086314e-02, 2.74594548e-02, 4.04667254e-01, 3.33250070e-01,
2.67893243e-03, 2.58662868e-01, 3.27678154e-01, 3.95596214e-01,
5.53509138e-01, 8.14215009e-02, 2.60282515e-01, 1.00230090e-01,
1.26948575e-02, 5.30248445e-01, 3.35155300e-01, 3.45505042e-01,
3.77110523e-01, 5.23021324e-02, 2.44730157e-01, 1.33118055e-01,
1.44475714e-01, 1.36746115e-01, -1.49246937e-01, 3.09352966e-01,
4.13159052e-01, 1.22471830e-01, 1.68862687e-01, -2.76620640e-02,
1.98881785e-01, 8.15231626e-02, -5.50205859e-02, 3.42038192e-02,
1.76105990e-01, 3.52276339e-01, 3.24122243e-01, 2.91660509e-01,
2.79231073e-01, -7.10928656e-02, 1.84992345e-01, 2.02531249e-01,
1.86105681e-01, 2.53053459e-01, -1.32223405e-01, 2.80455589e-01,
-1.30384828e-01, 1.72960350e-02, 2.95800667e-01, 6.10135479e-01,
1.20327547e-01, 2.99137697e-01, 2.47541803e-01, -1.63703382e-02,
3.11624181e-01, 2.56005823e-01, 5.64756059e-01, -8.56338946e-02,
2.27563370e-01, 1.35786621e-01, 1.83177501e-01, 2.64975305e-02,
1.04161257e-01, 1.32019719e-01, 2.07299847e-01, 3.32994202e-01,
-2.01312398e-01, -9.51028162e-02, 5.00111328e-02, -6.54371755e-03,
2.09302958e-01, 2.74754710e-01, 2.28084376e-01, 2.79732365e-01,
2.35725648e-01, 7.46006444e-02, 1.19896761e-01, -1.07066798e-02,
2.66923182e-01, 1.34140118e-01, 3.84463812e-01, 3.27409070e-01,
1.92451398e-01, 1.37585867e-01, 3.13412432e-01, 3.02375698e-01,
-1.79360389e-01, 1.07332671e-01, -2.17014249e-03, 3.45943461e-01,
```

```
1.36200101e-01, 3.83158073e-01, 2.45980114e-01, -1.69792245e-01,
2.55581602e-01, -2.28372223e-01, 3.36823844e-01, 1.50033956e-01,
1.17253943e-01, 4.83660482e-01, 1.46579634e-01, 4.18107584e-01,
1.15835801e-01, 9.90182028e-03, 2.34785935e-01, 1.36552754e-01,
8.52882619e-03, 2.34543958e-01, 6.09756451e-02, 3.41468766e-01,
1.59294995e-01, 9.75421036e-02, 2.32676296e-01, -8.12398090e-02,
1.92392477e-01. 1.91696176e-01. -6.88684994e-03. 2.65082504e-01.
-2.67290272e-01, -3.76876152e-02, 1.82987749e-01, 1.78101741e-02,
1.97238497e-01, 2.06514753e-01, -1.09632049e-01, 3.55228383e-01,
7.24827035e-02, 2.36363938e-01, -8.16169248e-02, 3.21071947e-01,
1.62813472e-02, 2.39336106e-01, 3.15931799e-01, 1.22614169e-01,
9.00083375e-03, 9.34631288e-02, 4.76412767e-01, -5.65172803e-02,
3.20357008e-01, 1.90009384e-02, 1.84117901e-01, 2.16278454e-01,
-2.02785555e-01, 2.52564639e-01, -1.50856458e-01, 3.50111406e-01,
-9.85040851e-02, 2.15620856e-01, 2.45829671e-02, 2.09072817e-01,
9.49806038e-02, 3.11567457e-01, 4.07284673e-01, -2.19987388e-02,
7.65184056e-02, 3.07591042e-01, 4.35392606e-02, 1.09065715e-01,
4.21630293e-01, 1.48897439e-01, 4.42988409e-02, 3.35130176e-02,
9.96284166e-02, -5.29452820e-02, 3.46797085e-01, 1.03461109e-01,
-4.11871255e-02, -5.81603769e-02, 3.09315615e-01, 1.01570176e-01,
2.09448790e-01, 4.10347757e-01, 3.33094014e-01, 1.81228317e-01,
2.77318425e-01, 2.86403262e-01, 2.62049298e-01, -1.88118573e-02,
2.35820366e-01, 1.54110630e-01, 6.23994747e-02, 6.70778678e-03,
1.86183882e-02, 7.74249168e-02, 1.34438409e-01, 1.87764721e-01,
2.36760139e-01, -1.81894158e-01, 2.98162656e-01, 1.74334561e-01,
-8.91020361e-02, 3.47082854e-02, 1.36644027e-01, 1.70179690e-01,
1.70464873e-01, 2.28231706e-01, 2.15402007e-01, 1.04763685e-01,
-8.16311344e-02])
```

```
y_test
In [62]:
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
                 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
                 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
                 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
                 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                 01)
In [63]:
             score = lg.score(x test, y test)
             print(score)
             0.8820861678004536
         CONFUSION MATRIX
In [64]:
             from sklearn import metrics
             cm = metrics.confusion matrix(y test,y pred lg)
             print(cm)
             [[366 5]
              [47 231]
```

RIDGE AND LASSO


```
Out[71]: array([ 1.34413485e-01, 2.22561818e-01, 3.41692977e-01, 3.88209867e-03,
             4.84617338e-01, 1.16361483e-01, 3.30449743e-01, 1.27358807e-01,
             -1.34442619e-01, 3.77692888e-01, 1.33001445e-01, 2.69898751e-01,
             -2.54707392e-02, 5.25771894e-01, 2.67543514e-01, 2.78725024e-02,
             1.82233111e-01, 2.78896415e-01, 9.12689699e-02, 2.11494641e-01,
             2.70103341e-01, 8.44922044e-03, 8.74746722e-02, 1.05348798e-01,
             4.87749940e-01, 2.83080512e-01, 8.80556209e-02, 1.23817268e-01,
             4.82185624e-01, 9.34824523e-02, -7.16448509e-02, 4.07003104e-02,
             1.08437994e-01, 3.42151399e-01, 1.22270929e-01, 6.85889862e-02,
             1.06690533e-01, 7.08689637e-02, 7.51570276e-02, 6.05829413e-02,
             1.08782897e-02, -6.91368661e-03, 5.83191600e-02, -1.54680056e-02,
             -4.02267475e-03, 4.08010612e-01, 3.43668700e-01, -1.83519405e-01,
             5.29536511e-01, 4.27646098e-01, 1.95234877e-01, 4.25012930e-01,
             1.40754410e-01, 3.52173952e-01, 4.70372694e-01, 2.89240343e-01,
             -3.11642726e-02, 3.04206456e-01, 9.89337674e-03, 2.44569884e-01,
             -1.40249115e-02, 2.75133912e-01, 8.64669565e-02, 1.24214885e-01,
             3.48994545e-01, 3.41026778e-02, 3.40548051e-01, 1.95847356e-01,
             1.30040885e-01, 1.32259137e-01, -2.34680143e-02, 3.04595468e-01,
             1.12452197e-01, 1.30525275e-01, 2.19329505e-01, 9.44722098e-02,
             9.98185782e-02, 2.60042486e-01, 2.51475715e-01, 4.59039018e-02,
             -7.94007856e-02, -7.05812314e-03, 2.04344419e-01, -3.97180151e-03,
             -5.91286905e-03, 1.26797761e-01, 8.02495203e-02, 2.55422079e-02,
             4.65384158e-02, 2.32985240e-01, 3.16063931e-01, 2.02833301e-01,
             3.14235904e-01, 2.33427101e-01, -1.42446708e-02, 2.24789285e-01,
             2.94719863e-01, 2.94698323e-01, 1.19907108e-01, 9.47152062e-02,
             2.86026178e-01, 4.75925979e-01, 2.87802013e-01, 6.72561468e-03,
             1.65013565e-01, 1.72887026e-02, 3.34684186e-02, 2.15466121e-01,
             7.50317322e-02, 1.67646673e-01, 1.16585544e-01, 1.07157808e-01,
             -1.84689359e-02, 1.86217544e-01, 1.16586463e-01, 4.67201201e-02,
             1.11060472e-01, 2.27053971e-01, -7.00247692e-02, -5.81070776e-02,
             2.03141688e-01, 4.69029664e-02, 1.31525768e-01, 5.66738022e-01,
             2.41883060e-02, -3.41250985e-02, -1.13904557e-01, 2.18572744e-01,
             2.60568042e-01, 1.65533667e-01, -5.94078459e-05, 2.60009384e-01,
             4.20709666e-01, 3.71031267e-01, 1.70250288e-01, 4.03052216e-01,
             4.67312765e-01, 1.98845366e-01, 1.55005619e-01, 3.41505080e-01,
             2.20024496e-01, 1.40989758e-01, 1.97796963e-01, 2.57841889e-01,
             2.99122317e-01, 9.24907038e-03, 1.39162817e-01, -1.13916709e-01,
             1.97670909e-01, 2.70864780e-01, 1.22454317e-01, 2.58893294e-01,
             6.78818374e-02, 3.08485027e-01, 1.49347982e-01, 2.01436659e-02,
             -3.30262214e-02, 1.44305312e-01, -8.99199978e-02, -3.74712872e-02,
             3.10198738e-01, -7.96862570e-02, 2.18579680e-01, 5.85363859e-01,
```

```
1.98166099e-01, 3.02558934e-01, 1.82182301e-01, 1.84955080e-01,
1.83694574e-02, -7.41419216e-02, 4.48013268e-02, 1.38405390e-01,
1.84013774e-01, 1.60373463e-01, -6.83819091e-02, 2.00146771e-01,
1.97563797e-01, 1.73505024e-01, 1.01481984e-01, 1.83169586e-01,
1.99747065e-02, 1.81881922e-01, -5.23948254e-02, 5.46171171e-01,
6.66114639e-02, 5.88865384e-02, 3.17247692e-01, 9.77721299e-02,
5.25297461e-01, 1.62566350e-01, 3.51341492e-01, 3.58324715e-01,
2.37059552e-01, 8.05788438e-02, 1.36041888e-01, 2.66653277e-01,
7.95513973e-02, -6.96788172e-02, 3.29442074e-01, 8.93231393e-02,
2.16673846e-01, 2.50725892e-01, 4.72995721e-01, 1.26285837e-01,
2.72059331e-01, 6.13056795e-02, 4.38912502e-01, -7.79381284e-02,
2.09974643e-01, 2.20746796e-02, 1.56186553e-01, 2.26485767e-01,
9.61150570e-02, 1.27870464e-01, 2.13995902e-01, -9.95070059e-03,
2.59908614e-02, 1.24499158e-01, 3.31256404e-02, 2.39369272e-01,
1.48870840e-01, 2.49438253e-01, 5.25239856e-01, 1.25104891e-01,
3.65711314e-01, -5.96554519e-02, 1.45443911e-01, 2.80327834e-01,
3.15149040e-01, 2.25038913e-02, -2.55968584e-02, 3.39893959e-01,
1.13068264e-01, -1.40778596e-02, 2.41548652e-01, 3.30468114e-01,
2.79352111e-01, -1.11653133e-01, 1.30812123e-01, 5.94136334e-03,
2.15791900e-01, 2.89769560e-01, 6.35971718e-02, 2.98116673e-01,
5.90198982e-02, 4.13352130e-02, 3.77978672e-01, 3.28916149e-01,
3.93836061e-03, 2.47850806e-01, 3.23692453e-01, 3.69738410e-01,
5.25445397e-01, 8.81102278e-02, 2.60937425e-01, 9.86284476e-02,
1.33675781e-02, 5.03508194e-01, 3.13852304e-01, 3.23698856e-01,
3.56168397e-01, 6.40677131e-02, 2.39875950e-01, 1.30293453e-01,
1.49885837e-01, 1.46778013e-01, -1.27871947e-01, 3.00062088e-01,
3.83140060e-01, 1.33561747e-01, 1.76445188e-01, -2.02405714e-02,
2.05300799e-01, 8.08917915e-02, -2.89389327e-02, 3.88975789e-02,
1.66754600e-01, 3.46231726e-01, 3.01325806e-01, 2.82141156e-01,
2.72386022e-01, -4.84039332e-02, 1.90411095e-01, 1.89810174e-01,
1.67705712e-01, 2.58007480e-01, -1.08871386e-01, 2.70056893e-01,
-1.13365420e-01, 3.41754165e-02, 2.92189798e-01, 5.71351976e-01,
1.25404974e-01, 2.97241061e-01, 2.29580043e-01, 2.16006118e-03,
2.94123343e-01, 2.48418344e-01, 5.44089373e-01, -6.68570736e-02,
2.24222741e-01, 1.35207932e-01, 1.91240682e-01, 3.87158365e-02,
1.17416027e-01, 1.20780070e-01, 2.19845528e-01, 3.11363894e-01,
-1.70611843e-01, -6.89093044e-02, 5.87182022e-02, 1.46846582e-02,
2.07924051e-01, 2.57017951e-01, 2.33929422e-01, 2.81772193e-01,
2.28214280e-01, 8.56533063e-02, 1.28782763e-01, 6.89964545e-03,
2.66888647e-01, 1.25060071e-01, 3.71449815e-01, 3.23080605e-01,
1.80691831e-01, 1.35736688e-01, 3.05937337e-01, 3.02505887e-01,
-1.61842349e-01, 1.22990350e-01, 1.33351902e-02, 3.42072173e-01,
```

```
1.35302335e-01, 3.71921241e-01, 2.43987619e-01, -1.42777272e-01,
2.54178774e-01, -1.97769860e-01, 3.22194537e-01, 1.46753524e-01,
1.28207748e-01, 4.59813547e-01, 1.49345212e-01, 3.97978765e-01,
1.11492990e-01, 2.94090069e-02, 2.30676290e-01, 1.19192017e-01,
1.49461455e-02, 2.42284371e-01, 7.22361156e-02, 3.33852369e-01,
1.61213354e-01, 9.69685794e-02, 2.32264965e-01, -6.93181380e-02,
1.86467739e-01. 2.03098589e-01. -1.10349710e-02. 2.63095846e-01.
-2.48406147e-01, -3.25418955e-02, 1.74487006e-01, 2.62780720e-02,
1.91428194e-01, 2.03493779e-01, -8.84696022e-02, 3.35631012e-01,
6.29476544e-02, 2.28818932e-01, -7.72255471e-02, 3.05353195e-01,
3.63634109e-02, 2.30128273e-01, 3.03522210e-01, 1.05913376e-01,
1.26693452e-02, 9.53511494e-02, 4.52766233e-01, -4.37470263e-02,
3.05687630e-01, 3.57706117e-02, 1.82867743e-01, 2.10106289e-01,
-1.71378996e-01, 2.60157245e-01, -1.38655420e-01, 3.36603939e-01,
-7.65297319e-02, 2.15165094e-01, 3.72947326e-02, 1.96608549e-01,
1.07172893e-01, 3.07687901e-01, 3.97760529e-01, 1.06797074e-03,
8.12866229e-02, 2.95445495e-01, 5.47994817e-02, 1.13818287e-01,
4.07117263e-01, 1.48860323e-01, 3.88471838e-02, 3.79029267e-02,
1.09895981e-01, -4.30946471e-02, 3.30298512e-01, 1.07254284e-01,
-1.13032643e-02, -3.69192632e-02, 2.87732288e-01, 9.91961213e-02,
2.12225886e-01, 3.88660531e-01, 3.15623317e-01, 1.80996998e-01,
2.69970366e-01, 2.81850174e-01, 2.49972461e-01, -2.33065542e-03,
2.34240860e-01, 1.51536128e-01, 6.56810225e-02, 1.35221573e-02,
3.03956323e-02, 9.22075626e-02, 1.28297232e-01, 2.04669352e-01,
2.26917512e-01, -1.62627965e-01, 2.95984225e-01, 1.80934145e-01,
-6.34810776e-02, 4.36092057e-02, 1.39814157e-01, 1.72029014e-01,
1.65538329e-01, 2.24411690e-01, 2.15315070e-01, 1.16342630e-01,
-6.24745967e-02])
```

```
In [72]:
          y test
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
                 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
                 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
                 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                 01)
In [73]:
             from sklearn import metrics
             print(metrics.r2 score(y test,y pred rg))
             print(metrics.r2 score(y train,ridgecv.predict(x train)))
             0.21073458438815917
             0.2061567210285109
         LASSO
In [74]:
          from sklearn.linear model import Lasso
             from sklearn.model selection import GridSearchCV
```

```
la=Ridge()
In [75]:
In [76]:
             parametres={"alpha":[1,2,3,5,10,20,30,40,60,70,80,90]}
              ridgecv=GridSearchCV(la,parametres,scoring="neg mean squared error",cv=5)
             ridgecv.fit(x train,y train)
    Out[76]: GridSearchCV(cv=5, estimator=Ridge(),
                     param grid={'alpha': [1, 2, 3, 5, 10, 20, 30, 40, 60, 70, 80, 90]},
                     scoring='neg mean squared error')
             In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
             On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [77]:
             print(ridgecv.best params)
             {'alpha': 90}
In [78]:
             print(ridgecv.best score )
              -0.1139062113923418
In [79]:
          y pred la=ridgecv.predict(x test)
```

In [80]: y_pred_la

```
Out[80]: array([ 1.34413485e-01, 2.22561818e-01, 3.41692977e-01, 3.88209867e-03,
             4.84617338e-01, 1.16361483e-01, 3.30449743e-01, 1.27358807e-01,
             -1.34442619e-01, 3.77692888e-01, 1.33001445e-01, 2.69898751e-01,
             -2.54707392e-02, 5.25771894e-01, 2.67543514e-01, 2.78725024e-02,
             1.82233111e-01, 2.78896415e-01, 9.12689699e-02, 2.11494641e-01,
             2.70103341e-01, 8.44922044e-03, 8.74746722e-02, 1.05348798e-01,
             4.87749940e-01, 2.83080512e-01, 8.80556209e-02, 1.23817268e-01,
             4.82185624e-01, 9.34824523e-02, -7.16448509e-02, 4.07003104e-02,
             1.08437994e-01, 3.42151399e-01, 1.22270929e-01, 6.85889862e-02,
             1.06690533e-01, 7.08689637e-02, 7.51570276e-02, 6.05829413e-02,
             1.08782897e-02, -6.91368661e-03, 5.83191600e-02, -1.54680056e-02,
             -4.02267475e-03, 4.08010612e-01, 3.43668700e-01, -1.83519405e-01,
             5.29536511e-01, 4.27646098e-01, 1.95234877e-01, 4.25012930e-01,
             1.40754410e-01, 3.52173952e-01, 4.70372694e-01, 2.89240343e-01,
             -3.11642726e-02, 3.04206456e-01, 9.89337674e-03, 2.44569884e-01,
             -1.40249115e-02, 2.75133912e-01, 8.64669565e-02, 1.24214885e-01,
             3.48994545e-01, 3.41026778e-02, 3.40548051e-01, 1.95847356e-01,
             1.30040885e-01, 1.32259137e-01, -2.34680143e-02, 3.04595468e-01,
             1.12452197e-01, 1.30525275e-01, 2.19329505e-01, 9.44722098e-02,
             9.98185782e-02, 2.60042486e-01, 2.51475715e-01, 4.59039018e-02,
             -7.94007856e-02, -7.05812314e-03, 2.04344419e-01, -3.97180151e-03,
             -5.91286905e-03, 1.26797761e-01, 8.02495203e-02, 2.55422079e-02,
             4.65384158e-02, 2.32985240e-01, 3.16063931e-01, 2.02833301e-01,
             3.14235904e-01, 2.33427101e-01, -1.42446708e-02, 2.24789285e-01,
             2.94719863e-01, 2.94698323e-01, 1.19907108e-01, 9.47152062e-02,
             2.86026178e-01, 4.75925979e-01, 2.87802013e-01, 6.72561468e-03,
             1.65013565e-01, 1.72887026e-02, 3.34684186e-02, 2.15466121e-01,
             7.50317322e-02, 1.67646673e-01, 1.16585544e-01, 1.07157808e-01,
             -1.84689359e-02, 1.86217544e-01, 1.16586463e-01, 4.67201201e-02,
             1.11060472e-01, 2.27053971e-01, -7.00247692e-02, -5.81070776e-02,
             2.03141688e-01, 4.69029664e-02, 1.31525768e-01, 5.66738022e-01,
             2.41883060e-02, -3.41250985e-02, -1.13904557e-01, 2.18572744e-01,
             2.60568042e-01, 1.65533667e-01, -5.94078459e-05, 2.60009384e-01,
             4.20709666e-01, 3.71031267e-01, 1.70250288e-01, 4.03052216e-01,
             4.67312765e-01, 1.98845366e-01, 1.55005619e-01, 3.41505080e-01,
             2.20024496e-01, 1.40989758e-01, 1.97796963e-01, 2.57841889e-01,
             2.99122317e-01, 9.24907038e-03, 1.39162817e-01, -1.13916709e-01,
             1.97670909e-01, 2.70864780e-01, 1.22454317e-01, 2.58893294e-01,
             6.78818374e-02, 3.08485027e-01, 1.49347982e-01, 2.01436659e-02,
             -3.30262214e-02, 1.44305312e-01, -8.99199978e-02, -3.74712872e-02,
             3.10198738e-01, -7.96862570e-02, 2.18579680e-01, 5.85363859e-01,
```

```
1.98166099e-01, 3.02558934e-01, 1.82182301e-01, 1.84955080e-01,
1.83694574e-02, -7.41419216e-02, 4.48013268e-02, 1.38405390e-01,
1.84013774e-01, 1.60373463e-01, -6.83819091e-02, 2.00146771e-01,
1.97563797e-01, 1.73505024e-01, 1.01481984e-01, 1.83169586e-01,
1.99747065e-02, 1.81881922e-01, -5.23948254e-02, 5.46171171e-01,
6.66114639e-02, 5.88865384e-02, 3.17247692e-01, 9.77721299e-02,
5.25297461e-01, 1.62566350e-01, 3.51341492e-01, 3.58324715e-01,
2.37059552e-01, 8.05788438e-02, 1.36041888e-01, 2.66653277e-01,
7.95513973e-02, -6.96788172e-02, 3.29442074e-01, 8.93231393e-02,
2.16673846e-01, 2.50725892e-01, 4.72995721e-01, 1.26285837e-01,
2.72059331e-01, 6.13056795e-02, 4.38912502e-01, -7.79381284e-02,
2.09974643e-01, 2.20746796e-02, 1.56186553e-01, 2.26485767e-01,
9.61150570e-02, 1.27870464e-01, 2.13995902e-01, -9.95070059e-03,
2.59908614e-02, 1.24499158e-01, 3.31256404e-02, 2.39369272e-01,
1.48870840e-01, 2.49438253e-01, 5.25239856e-01, 1.25104891e-01,
3.65711314e-01, -5.96554519e-02, 1.45443911e-01, 2.80327834e-01,
3.15149040e-01, 2.25038913e-02, -2.55968584e-02, 3.39893959e-01,
1.13068264e-01, -1.40778596e-02, 2.41548652e-01, 3.30468114e-01,
2.79352111e-01, -1.11653133e-01, 1.30812123e-01, 5.94136334e-03,
2.15791900e-01, 2.89769560e-01, 6.35971718e-02, 2.98116673e-01,
5.90198982e-02, 4.13352130e-02, 3.77978672e-01, 3.28916149e-01,
3.93836061e-03, 2.47850806e-01, 3.23692453e-01, 3.69738410e-01,
5.25445397e-01, 8.81102278e-02, 2.60937425e-01, 9.86284476e-02,
1.33675781e-02, 5.03508194e-01, 3.13852304e-01, 3.23698856e-01,
3.56168397e-01, 6.40677131e-02, 2.39875950e-01, 1.30293453e-01,
1.49885837e-01, 1.46778013e-01, -1.27871947e-01, 3.00062088e-01,
3.83140060e-01, 1.33561747e-01, 1.76445188e-01, -2.02405714e-02,
2.05300799e-01, 8.08917915e-02, -2.89389327e-02, 3.88975789e-02,
1.66754600e-01, 3.46231726e-01, 3.01325806e-01, 2.82141156e-01,
2.72386022e-01, -4.84039332e-02, 1.90411095e-01, 1.89810174e-01,
1.67705712e-01, 2.58007480e-01, -1.08871386e-01, 2.70056893e-01,
-1.13365420e-01, 3.41754165e-02, 2.92189798e-01, 5.71351976e-01,
1.25404974e-01, 2.97241061e-01, 2.29580043e-01, 2.16006118e-03,
2.94123343e-01, 2.48418344e-01, 5.44089373e-01, -6.68570736e-02,
2.24222741e-01, 1.35207932e-01, 1.91240682e-01, 3.87158365e-02,
1.17416027e-01, 1.20780070e-01, 2.19845528e-01, 3.11363894e-01,
-1.70611843e-01, -6.89093044e-02, 5.87182022e-02, 1.46846582e-02,
2.07924051e-01, 2.57017951e-01, 2.33929422e-01, 2.81772193e-01,
2.28214280e-01, 8.56533063e-02, 1.28782763e-01, 6.89964545e-03,
2.66888647e-01, 1.25060071e-01, 3.71449815e-01, 3.23080605e-01,
1.80691831e-01, 1.35736688e-01, 3.05937337e-01, 3.02505887e-01,
-1.61842349e-01, 1.22990350e-01, 1.33351902e-02, 3.42072173e-01,
```

```
1.35302335e-01, 3.71921241e-01, 2.43987619e-01, -1.42777272e-01,
2.54178774e-01, -1.97769860e-01, 3.22194537e-01, 1.46753524e-01,
1.28207748e-01, 4.59813547e-01, 1.49345212e-01, 3.97978765e-01,
1.11492990e-01, 2.94090069e-02, 2.30676290e-01, 1.19192017e-01,
1.49461455e-02, 2.42284371e-01, 7.22361156e-02, 3.33852369e-01,
1.61213354e-01, 9.69685794e-02, 2.32264965e-01, -6.93181380e-02,
1.86467739e-01, 2.03098589e-01, -1.10349710e-02, 2.63095846e-01,
-2.48406147e-01, -3.25418955e-02, 1.74487006e-01, 2.62780720e-02,
1.91428194e-01, 2.03493779e-01, -8.84696022e-02, 3.35631012e-01,
6.29476544e-02, 2.28818932e-01, -7.72255471e-02, 3.05353195e-01,
3.63634109e-02, 2.30128273e-01, 3.03522210e-01, 1.05913376e-01,
1.26693452e-02, 9.53511494e-02, 4.52766233e-01, -4.37470263e-02,
3.05687630e-01, 3.57706117e-02, 1.82867743e-01, 2.10106289e-01,
-1.71378996e-01, 2.60157245e-01, -1.38655420e-01, 3.36603939e-01,
-7.65297319e-02, 2.15165094e-01, 3.72947326e-02, 1.96608549e-01,
1.07172893e-01, 3.07687901e-01, 3.97760529e-01, 1.06797074e-03,
8.12866229e-02, 2.95445495e-01, 5.47994817e-02, 1.13818287e-01,
4.07117263e-01, 1.48860323e-01, 3.88471838e-02, 3.79029267e-02,
1.09895981e-01, -4.30946471e-02, 3.30298512e-01, 1.07254284e-01,
-1.13032643e-02, -3.69192632e-02, 2.87732288e-01, 9.91961213e-02,
2.12225886e-01, 3.88660531e-01, 3.15623317e-01, 1.80996998e-01,
2.69970366e-01, 2.81850174e-01, 2.49972461e-01, -2.33065542e-03,
2.34240860e-01, 1.51536128e-01, 6.56810225e-02, 1.35221573e-02,
3.03956323e-02, 9.22075626e-02, 1.28297232e-01, 2.04669352e-01,
2.26917512e-01, -1.62627965e-01, 2.95984225e-01, 1.80934145e-01,
-6.34810776e-02, 4.36092057e-02, 1.39814157e-01, 1.72029014e-01,
1.65538329e-01, 2.24411690e-01, 2.15315070e-01, 1.16342630e-01,
-6.24745967e-02])
```


0.21073458438815917 0.2061567210285109

DECISION TREE

```
In [82]:
           from sklearn.tree import DecisionTreeClassifier
           dtc=DecisionTreeClassifier()
In [83]:
           dtc.fit(x train, y train)
   Out[83]: DecisionTreeClassifier()
           In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
           On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
           pred=dtc.predict(x test)
In [84]:
In [85]:
           pred
   0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
               0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
               0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
               0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
               0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
               0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
               0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
               0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
               0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
               0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
               0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
               0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,
               0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
               0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
               0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
               01)
```

```
In [86]:
          y test
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                  0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                  1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
                  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                  1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
                  0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                  0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                  1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                  0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                  0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
                  0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                  0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
                  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
                  0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                  0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                  1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                  0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
                  0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                  01)
In [87]:
             #Accuracy score
              from sklearn, metrics import accuracy score, confusion matrix, classification report, roc auc score, roc curve
In [88]:
             accuracy score(y test,pred)
    Out[88]: 0.77777777777778
             confusion matrix(y test,pred)
In [89]:
    Out[89]: array([[326, 45],
                 [ 53, 17]], dtype=int64)
```

```
pd.crosstab(y test,pred)
In [90]:
    Out[90]:
              col 0
                       0 1
             row_0
                  0 326 45
                      53 17
In [91]:
         print(classification report(y test, pred))
                    precision recall f1-score support
                        0.86
                               0.88
                                       0.87
                                                371
                        0.27
                               0.24
                                       0.26
                                                70
                                     0.78 441
               accuracy
                                                441
                           0.57
                                 0.56
                                        0.56
              macro avg
             weighted avg
                           0.77
                                 0.78 0.77
                                                 441
         probability=dtc.predict proba(x test)[:,1]
In [92]:
In [93]:
            #roc curve
             fpr,tpr,threshsholds = roc curve(y test,probability)
```

```
In [94]: 

plt.plot(fpr,tpr)
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.title('ROC CURVE')
plt.show()
```


RANDOM FOREST

In [95]:		from sklearn.ensemble import RandomForestClassifier rfc=RandomForestClassifier()
In [96]:	H	forest_params = [{'max_depth': list(range(10, 15)), 'max_features': list(range(0,14))}]
In [97]:	M	from sklearn.model_selection import GridSearchCV
In [98]:	M	rfc_cv= GridSearchCV(rfc,param_grid=forest_params,cv=10,scoring="accuracy")

```
In [99]:  rfc_cv.fit(x_train,y_train)
```

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\model selection\ validation.py:425: FitFailedWarning:

50 fits failed out of a total of 700.

The score on these train-test partitions for these parameters will be set to nan.

If these failures are not expected, you can try to debug them by setting error score='raise'.

Below are more details about the failures:

50 fits failed with the following error:

Traceback (most recent call last):

File "C:\ProgramData\anaconda3\Lib\site-packages\sklearn\model_selection_validation.py", line 732, in _fit_and_score estimator.fit(X train, y train, **fit params)

File "C:\ProgramData\anaconda3\Lib\site-packages\sklearn\base.py", line 1144, in wrapper estimator. validate params()

File "C:\ProgramData\anaconda3\Lib\site-packages\sklearn\base.py", line 637, in _validate_params validate_parameter_constraints(

File "C:\ProgramData\anaconda3\Lib\site-packages\sklearn\utils_param_validation.py", line 95, in validate_parameter_constraints raise InvalidParameterError(

sklearn.utils._param_validation.InvalidParameterError: The 'max_features' parameter of RandomForestClassifier must be an int in the range [1, inf), a float in the range (0.0, 1.0], a str among {'log2', 'sqrt'} or None. Got 0 instead.

warnings.warn(some_fits_failed_message, FitFailedWarning)

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\model_selection_search.py:976: UserWarning: One or more of the test scores are non-finite: \[\] nan 0.84256615 0.84644965 0.84935275 0.85420712 0.85615839

0.85323625 0.85226537 0.84934323 0.8512945 0.85324576 0.84837236

0.85423567 0.85713878 nan 0.84159528 0.84644965 0.85227489

0.85226537 0.85422616 0.85228441 0.85227489 0.85226537 0.85130402

0.84256615 0.85224634 0.84642109 0.84838188 nan 0.84936227

0.8483914 0.847411 0.85322673 0.85519703 0.85324576 0.85421664

 $0.847411 \ \ 0.85615839 \ 0.84935275 \ 0.84545974 \ 0.84642109 \ 0.8561679$

nan 0.84645917 0.85032362 0.85228441 0.85033314 0.85422616

0.85422616 0.85323625 0.85226537 0.84935275 0.84837236 0.8512945

0.8541976 0.847411 nan 0.84255663 0.84644013 0.85226537

0.85810965 0.85324576 0.8512945 0.84838188 0.85130402 0.8512945

 $0.85227489\ 0.8512945\ \ 0.84837236\ 0.84935275]$

warnings.warn(

Out[99]: GridSearchCV(cv=10, estimator=RandomForestClassifier(),

```
param grid=[{'max depth': [10, 11, 12, 13, 14],
                             'max features': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
                                       12, 131}1,
                      scoring='accuracy')
               In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
               On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [100]:
              pred=rfc cv.predict(x test)
In [101]:
           print(classification report(y test, pred))
                       precision recall f1-score support
                          0.86
                                  0.99
                                          0.92
                                                    371
                          0.73
                                  0.16
                                          0.26
                                                    70
                                        0.86
                                              441
                 accuracy
                             0.80
                                     0.57
                                            0.59
                                                    441
                macro avg
               weighted avg
                              0.84
                                     0.86
                                           0.82
                                                     441
In [102]:
           rfc cv.best params
    Out[102]: {'max depth': 14, 'max features': 4}
In [103]:
           rfc cv.best score
    Out[103]: 0.8581096516276412
   In [ ]:
```