ENGR 065: Circuit Theory

Problem Set #10

Read Chapters 15 and 16 from [1] and then solve the following problems.

- Hint 1: you can use the Laplace tables (included in Appendix) to solve the problems
- Hint 2: watch the <u>Lecture 26 Extra video</u> to understand how to perform partial fraction expansion of functions withs repeated poles.

Problem 1 (25%) Use partial fraction expansion to find the time-domain waveform f(t)corresponding to the following transforms:

a)
$$F(s) = \frac{8}{(s+1)(s+3)}$$

b)
$$F(s) = \frac{8}{s(s^2+4s+8)}$$

c)
$$F(s) = \frac{s}{(s+1)(s+2)^2}$$

Additionally, find the initial and final values of the waveforms corresponding to the following transforms

d)
$$F_1(s) = 100 \frac{(s+3)}{s(s+5)(s+20)}$$

e) $F_2(s) = \frac{s-200}{s(s+50)}$

e)
$$F_2(s) = \frac{s-200}{s(s+50)}$$

Problem 2 (20%):

- a) The energy stored in the circuit is zero at the time when the switch is closed (t = 0). Find I(s).
- b) compute i(t)

Hint: the 160V source and the switch can be approximated with a single voltage source (160u(t)).

Problem 3 (20%):

The switch moves to position b at t = 0.

- a) Find I(s)
- b) Use the final-value theorem to determine the value of i(t) as $t \to \infty$.
- c) Determine i(t).

Problem 4 (20%):

Find $I_2(s)$ in the circuit below. Assume A = 15u(t) V and zero initial currents in the inductors.

Problem 5 (15%): find the output voltage $V_{out}(s)$ for the following two circuits (assume zero initial conditions):

Appendix: Laplace transforms and properties

<u>Table 1 – Laplace Transform Pairs</u>

Туре	$f(t) \ (t > 0^-)$	F(s)
(impulse)	$\delta(t)$	1
(step)	u(t)	$\frac{1}{s}$
(ramp)	t	$\frac{1}{s^2}$
(exponential)	e^{-at}	$\frac{1}{s+a}$
(sine)	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
(cosine)	cos <i>ωt</i>	$\frac{s}{s^2 + \omega^2}$
(damped ramp)	te^{-at}	$\frac{1}{(s+a)^2}$
(damped sine)	$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
(damped cosine)	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$

<u>Table 2 – Laplace Transform Pairs (useful for Partial Fraction Expansion)</u>

Pair Number	Nature of Roots	F(s)	f(t)
1	Distinct real	$\frac{K}{s+a}$	$Ke^{-at}u(t)$
2	Repeated real	$\frac{K}{(s+a)^2}$	$Kte^{-at}u(t)$
3	Distinct complex	$\frac{K}{s+\alpha-j\beta} + \frac{K^*}{s+\alpha+j\beta}$	$2 K e^{-at}\cos(\beta t+\theta)u(t)$
4	Repeated complex	$\frac{K}{(s+\alpha-j\beta)^2} + \frac{K^*}{(s+\alpha+j\beta)^2}$	$2t K e^{-at}\cos(\beta t+\theta)u(t)$

Note:

- In pairs 1 and 2, *K* is a real quantity;
- In pairs 3 and 4, K is a complex quantity ($|K|e^{j\theta}$)

<u>Table 3 – Laplace Properties</u>

Operation	f(t)	F(s)
Multiplication by a constant	Kf(t)	KF(s)
Addition/subtraction	$f_1(t) + f_2(t) - f_3(t) + \cdots$	$F_1(s) + F_2(s) - F_3(s) + \cdots$
First derivative (time)	$\frac{df(t)}{dt}$	$sF(s) - f(0^-)$
Second derivative (time)	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0^-) - \frac{df(0^-)}{dt}$
nth derivative (time)	$\frac{d^n f(t)}{dt^n}$	$s^n F(s) - s^{n-1} f(0^-) - s^{n-2} \frac{df(0^-)}{dt}$
		$-s^{n-3}\frac{df^{2}(0^{-})}{dt^{2}}-\cdots-\frac{d^{n-1}f(0^{-})}{dt^{n-1}}$
Time integral	$\int_0^t f(x) \ dx$	$\frac{F(s)}{s}$
Translation in time	f(t-a)u(t-a), a>0	$e^{-as}F(s)$
Translation in frequency	$e^{-at}f(t)$	F(s+a)
Scale changing	f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$
First derivative (s)	tf(t)	$-\frac{dF(s)}{ds}$
nth derivative (s)	$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$
s integral	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(u) \ du$

References

[1] C. Alexander and M. Sadiku "Fundamentals of Electric Circuits", 7th Edition, 2021, McGraw-Hill