# Lecture 5: Model-free RL (Part II)

Lei Zhang

#### Outline

- TD Prediction
- TD Control
- Summary: DP vs. TD

<sup>\*</sup>Materials are modified from David Silver's RL lecture notes

### Outline

- TD Prediction
- TD Control
- Summary: DP vs. TD

## MC Learning (Refresher)

• Update V(s) incrementally after episode  $S_1, A_1, R_2, ..., S_T$ For each state  $S_t$  with return  $G_t$ 

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

 In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha \left( G_t - V(S_t) \right)$$

## Temporal Difference (TD) Learning

- TD methods learn directly from episodes of experience
- TD is *model-free*: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

#### **TD Prediction**

Goal: learn  $v_{\pi}$  online from experience under policy  $\pi$ Incremental every-visit Monte-Carlo

• Update value  $V(S_t)$  toward actual return  $G_t$ 

$$V(S_t) \leftarrow V(S_t) + \alpha \left( G_t - V(S_t) \right)$$

Simplest temporal-difference learning algorithm: TD(0)

• Update value  $V(S_t)$  toward estimated return  $R_{t+1} + \gamma V(S_{t+1})$ 

$$V(S_t) \leftarrow V(S_t) + \alpha \left( R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- $R_{t+1} + \gamma V(S_{t+1})$  is called the *TD target*
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$  is called the *TD error*

## MC backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left( G_t - V(S_t) \right)$$



## TD Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left( R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$



# **DP Backup**

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[ R_{t+1} + \gamma V(S_{t+1}) \right]$$



### **Bootstrapping & Sampling**

#### Bootstrapping: update involves an estimate

- MC does not bootstrap
- DP bootstraps
- TD bootstraps

Sampling: update samples an expectation

- MC samples
- DP does not sample
- TD samples

#### TD can learn before knowing the final outcome

- TD can learn online after every step
- MC must wait until end of episode before return is known

#### TD can learn without the final outcome

- TD can learn from incomplete sequences
- MC can only learn from complete sequences
- TD works in continuing (non-terminating) environments
- MC only works for episodic (terminating) environments

- Return  $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$  is unbiased estimate of  $v_{\pi}(S_t)$
- True TD target  $R_{t+1} + \gamma v_{\pi}(S_{t+1})$  is unbiased estimate of  $v_{\pi}(S_t)$
- TD target  $R_{t+1} + \gamma V(S_{t+1})$  is biased estimate of  $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
  - Return depends on many random actions, transitions, rewards
  - TD target depends on one random action, transition, reward

#### MC has high variance, zero bias

- Good convergence properties
- (even with function approximation)
- Not very sensitive to initial value
- Very simple to understand and use

#### TD has low variance, some bias

- Usually more efficient than MC
- TD(0) converges to  $v_{\pi}(s)$
- (but not always with function approximation)
- More sensitive to initial value

In practice, TD methods have usually been found to converge faster than constant step-size MC methods on stochastic tasks

### Example: Random Walk





- All episodes start in the center state C.
- Move either left or right by one state for each step, with equal probability.

# Example: Random Walk



### Batch Update

- MC and TD converge:  $V(s) o v_\pi(s)$  as experience  $o \infty$
- But what about batch solution for finite experience?

$$s_1^1, a_1^1, r_2^1, ..., s_{T_1}^1$$
 $\vdots$ 
 $s_1^K, a_1^K, r_2^K, ..., s_{T_K}^K$ 

## A-B Example

Two states A, B; no discounting; 8 episodes of experience

A, 0, B, 0

B, 1

B, 1

B, 1

B, 1

B, 1

B, 1

B, 0

What is V(A), V(B)?



MC converges to solution with minimum mean-squared error

Best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (G_t^k - V(s_t^k))^2$$

• In the AB example, V(A) = 0

TD(0) converges to solution of max likelihood Markov model

• Solution to the MDP  $\langle \mathcal{S}, \mathcal{A}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, \gamma \rangle$  that best fits the data

$$\hat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$$

$$\hat{\mathcal{R}}_{s}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \mathbf{1}(s_{t}^{k}, a_{t}^{k} = s, a) r_{t}^{k}$$

• In the AB example, V(A) = 0.75

### Outline

- TD Prediction
- TD Control
- Summary: DP vs. TD

#### **TD Control**

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
  - Lower variance
  - Online
  - Incomplete sequences
- Natural idea: use TD instead of MC in our control loop
  - Apply TD to Q(S, A)
  - Use  $\epsilon$ -greedy policy improvement
  - Update every time-step

#### Sarsa



$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

### Sarsa for On-Policy Control

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
   Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Repeat (for each step of episode):
   Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
  Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

22

# **Example: Windy Gridworld**



#### **Q-Learning**

- One of the most important breakthroughs in RL
- An Off-policy TD control algorithm (Watkins, 1989), why off-policy?



$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A)\right)$$

### Q-Learning for Off-Policy Control

```
Initialize Q(s,a), \forall s \in \mathbb{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
   Initialize S
Repeat (for each step of episode):
   Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
   Take action A, observe R, S'
   Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma \max_a Q(S',a) - Q(S,A) \big]
   S \leftarrow S';
   until S is terminal
```

## Example: Cliff Walking



- $\epsilon = 0.1$ , Q-learning is worse than Sarsa, why?
- If  $\epsilon \to 0$ , Q-learning vs. Sarsa ?

#### **Extensions**

Expected Sarsa

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \left[ R_{t+1} + \gamma \mathbb{E}[Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_{t}, A_{t}) \right]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \left[ R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \right].$$

- Off-policy or on-policy?
- Better than Sarsa or not?
- See "A Theoretical and Empirical Analysis of Expected Sarsa" (Seijen 09')

## Summary: DP vs. TD

|                                            | Full Backup (DP)                                                                                 | Sample Backup (TD) |
|--------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|
| Bellman Expectation                        | $v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$                                  |                    |
| Equation for $v_{\pi}(s)$                  | Iterative Policy Evaluation                                                                      | TD Learning        |
| Bellman Expectation                        | $q_{\pi}(s,a) \leftrightarrow s,a$ $r$ $s'$ $q_{\pi}(s',a') \leftrightarrow a'$                  | S.A<br>R<br>S'     |
| Equation for $q_{\pi}(s, a)$               | Q-Policy Iteration                                                                               | Sarsa              |
| Bellman Optimality Equation for $q_*(s,a)$ | $q_{\bullet}(s,a) \leftrightarrow s,a$ $q_{\bullet}(s',a') \leftrightarrow a'$ Q-Value Iteration | Q-Learning         |

## Summary: DP vs. TD

| Full Backup (DP)                                                                                     | Sample Backup (TD)                                                                   |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Iterative Policy Evaluation                                                                          | TD Learning                                                                          |
| $V(s) \leftarrow \mathbb{E}\left[R + \gamma V(S') \mid s\right]$                                     | $V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$                                |
| Q-Policy Iteration                                                                                   | Sarsa                                                                                |
| $Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma Q(S', A') \mid s, a\right]$                           | $Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$                           |
| Q-Value Iteration                                                                                    | Q-Learning                                                                           |
| $Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a\right]$ | $Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$ |

where 
$$x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y - x)$$