# Lab Assignment 2 Prakhar Gupta B21AI027

## **Question 1:**

#### Part 1-

- Downloaded dataset using wget command called using os.system
- Loaded the .csv file into df using pd.read\_csv
- Used df.describe() to get insights about the dataset
- Checked for not filled rows using df.isnull().sum()
- Applied MinMaxScalar() to every column to normalise data
- Converted df to X,y
- Using seaborn.scatterplot plotted 8 plots of X(i) vs Y1
- Using train test split to split the X,y into train:val:test 70:10:20 ratio
- Relevant features are plotted below i.e. X5,X1 vs Y



## Part 2-

- Implemented scratch built grid\_search function
- Trained the Decision Tree using scratch built grid\_search function by varying 4 parameters max\_depth, min\_sample\_split, max\_features, min\_samples\_leaf
- Best parameters: {'max\_depth': 7, 'min\_samples\_split': 2, 'max\_features': 5, 'min\_samples\_leaf': 1}
  Best mean\_squared\_error on validation set:
  0.00017774769617306808
  Best accuracy on validation set: 99.10258166915922%

#### • Hyperparameters Varying:-

- 1.) Max depth of the tree controls the complexity of the model. A deeper tree allows the model to capture more information from the data, but it also increases the risk of overfitting. A shallow tree has risk of underfitting
- 2.)Minimum number of samples required to split an internal node controls the complexity of the model by setting a threshold for the amount of data needed to create a new split. Increasing the value of this will make model less overfit
- 3.) Maximum number of features to consider when looking for the best split controls the complexity of the model by setting a threshold for the number of features to be considered at each split, thus making it high make it overfit
- 4.) The minimum number of samples required to be at a leaf node controls the complexity of the model by setting a threshold for the amount of data needed to create a leaf. Increasing the value of this parameter will make the model to underfit

#### • Effect of Varying the hyperparameters:-



• The plots also **supports the arguments** of the hyperparameter

## Part 3-

- Performed Hold-out cross validation, 5-fold cross-validation and repeated-5-fold validation
- Hold-out cross test MSE: 0.0012021222805698557
- 5-fold cross test MSE: 0.0036777312530699344
- Repeated 5-fold cross test MSE: 0.0008579605274120983
- Test data MSE: 0.00028758955749707665
- Accuracy: 99.02646237157461%

#### Part 4-

- Best L1/mean\_average\_error on validation set:
  0.008621251858398281
- Best L2/mean\_squared\_error on validation set:
  0.00017665595754066276
- L2 is working better than L1. It is because L1 tends to perform better
  when there are a smaller number of important features, whereas L2
  performs better when there are many features that are important. The
  same can also be seen in the decision boundary graphs.

## **Question 2:**

## Classification:

## Initials-

- Downloaded dataset using wget command called using os.system
- Load the iris.csv dataset in df variable using pd.read\_csv
- We hardcoded the columns names as it was not given in the dataset itself with the name['sepal\_length', 'sepal\_width', 'petal\_length', 'petal\_width', 'species']
- Used df.describe() && df.drop to drop 'sepal\_length', 'sepal\_width'
- Converted df to X,y
- Using train\_test\_split splitted X,y into train and test in 80:20 ratio

### Part 1-

- Used **sklearn** library **DecisionTreeClassifier** to train dt
- Plotted the decision tree(which indicate the depth at which each split was made) as well as decision boundary.



## Part 2-

- Removed the widest Iris-Versicolor from the iris training set (the one with petals 4.8 cm long and 1.8 cm wide) using np.delete
- Used sklearn library DecisionTreeClassifier to train dt
- Plotted the decision boundary.



## Part 3-

- Fitted the **Decision Tree Classifier** with (max-depth = None) and plotted the decision boundary.
- It is somewhat **overfitting** at the region where green point goes in yellow region
- The accuracy of this will be greater than one trained with (max\_depth=2)



## Part 4-

- Initialized X using np.random.rand
- Using **np.where** defined classes of X either 0,1 depending on the X[:, 0] < 2.5
- Trained a DecisionTreeClassifier(max\_depth=2)
- Plotted the decision boundary
- Got Accuracy=1

 The accuracy is 1 because the points are separable just using a single line at x=2.5



- Rotated the points X in 45 degree in clockwise direction using rot\_matrix= ([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
- Then X\_rotated = X @ rot\_matrix
- Fitted the DecisionTreeClassifier(max\_depth=2)
- Plotted the decision boundary
- Got Accuracy=0.915
- The accuracy is 0.915 because the points are not separable just using depth=2 Decision Tree with max-depth=2



## Part 5-

- As we increased the depth of the model in part 3 we get leaf node of the tree are pure which significantly was a major jump in performance compared to model in part 2
- In part 4 we see that a **depth 2 model** can perform well when the data is **linearly separable** using just one line
- Whereas when the data is not linearly separable using just one line or as shown in decision boundary of part 4, it is difficult to get high accuracy.

 So if we increase the depth here like we do from problem 2 to problem 3, we will get a better model

# Regression:

## Initials-

- Downloaded dataset using wget command called using os.system
- Load the task.csv dataset in df variable using pd.read\_csv
- Used df.describe() && df.isnull().sum to check any NaN value
- Converted df to X,y

## Part 1-

- Used sklearn library DecisionTreeRegressor to train dt
- Plotted the regression predictions at each depth for each max\_depth
- The most above line having max y=c value is the prediction at depth 0 and as we move down y=c we get into more depth



 We can clearly see that the Decision Tree makes a more complex structure as the depth of the tree is increased. So the model gets more complex as its depth increases

## Part 2-

- Used sklearn library DecisionTreeRegressor to train 2 dt
- Plotted the regression predictions for the two min\_samples\_leaf = 0,10



 We can kind of say that DTR with min\_sample\_leaf=0 is kind of overfitting the data and min\_sample\_leaf=10 is underfitting the data

## **Question 3:**

#### Part 1-

- Downloaded palmerpenguins using !pip install palmerpenguins
- Loaded the dataset file into penguins
- Used penguins.isnull().sum() to check for NaN value
- Using dropna.() we dropped the NaN rows which were total 11 rows dropped out of initial 344 rows
- Using categorical label encoder to ['island','sex','year'] columns
- Converted penguins to X,y
- Used **penguins.describe()** to get insights about the dataset
- Used MinMaxScalar() to normalise ['bill\_length\_mm', 'bill\_depth\_mm', 'flipper\_length\_mm', 'body\_mass\_g']
- Converted penguins to X,y
- Using **seaborn.pairplot** plotted 36 plots
- Using train\_test\_split to split the X,y into train:test 80:20 ratio

## Part 2-

• Roll number is B21Al027 so implemented gini\_index

• Got gini\_index(y) = 0.6383680978275572

#### Part 3-

- Implemented cont\_to\_cat
- For every column in dataset, for every value in column splitted the column into two category
- Then find out the best gini for different splits and used that as a base to split the column into two categories
- Applied Col\_to\_categorised to ['bill\_length\_mm', 'bill\_depth\_mm', 'flipper\_length\_mm', 'body\_mass\_g']
- Thresholds=[0.37090909090909085, 0.3928571428571428,
   0.5762711864406782, 0.5] for ['bill\_length\_mm', 'bill\_depth\_mm', 'flipper\_length\_mm', 'body\_mass\_g']
- Assigning X=penguins to update the col\_to\_categorised

## Part 4,5,6-

- Implemented scratch built class 'Node'
- Node contains X,y,depth,done\_col,nodes(its child nodes),gini,split\_col(the column used to split at that node)
- Implemented scratch built class 'DT' (Decision Tree)
- DT contains following function
   \_\_init\_\_, fit (training DT on dataset), build\_tree (create DT),
   best\_split(gives best split for a particular column),
   most\_common\_pred(returns max mode class at leaf node),
   predict(get predicts on test data), accuracy(find accuracy on test data),
   class\_wise\_accuracy(find class wise accuracy on test data)

build tree(self, node) -

- → check for node not exceeding max depth
- → Check if gini==0 then return most common pred
- → Find best split using best\_split and then define ginis of the node from the return value of best split
- → Append the best col to done col
- → Assign best col to the split col
- → Perform **DFS** by iterating over different categories in that column and calling build tree on that child node

→ Iterating over all col not in done\_col and finding best gini and making it the best col for split at that node

#### most common pred(self,y)-

→ Returns the class value which has highest number of counts in the present data at that node

#### predict(self, X test):

→ For each row of test data it starts from the root node and traverse down till it reaches a node ,(it takes decision to which direction to traverse based on the split\_col present in the particular node in which we are currently at) then at the leaf node it predicts the class using most\_common\_pred

## Part 7-

- We splitted the dataset before using col\_to\_categorised so resplitting the X,y into train and test into 80:20 ratio
- Trained DT using max\_depth=5
- Found accuracy on test data equal to 1.0
- Found class wise accuracy on test data equal to {'Adelie': 1.0, 'Chinstrap': 1.0, 'Gentoo': 1.0}