Escuela de Verano

COFM52-1 Física de partículas: Un viaje a la descripción fundamental del universo

Profesor: Luis Mora Lepin Auxiliar: Bianca Zamora Araya

Formulario y constantes

Energía de un fotón:

$$E = hf$$

Relación de Einstein:

$$E^2 = p^2 c^2 + m^2 c^4$$

Ondas de Broglie:

$$\lambda = \frac{h}{p} = \frac{h}{\gamma m v}$$

Principio de incertidumbre de Heisenberg:

$$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$$

$$\Delta E \cdot \Delta t \ge \frac{h}{4\pi}$$

$$h = 6,626 \times 10^{-34} Js = 4,135 \times 10^{-15} eVs$$

$$m_e = 9,1 \times 10^{-31} kg$$

$$c = 3 \times 10^{8 \ m}/_s$$

Escuela de Verano

COFM52-1 Física de partículas: Un viaje a la descripción fundamental del universo

Profesor: Luis Mora Lepin Auxiliar: Bianca Zamora Araya

Actividad Evaluada: Guía de problemas

Los siguientes problemas deben ser resueltos utilizando papel y lápiz. Sus desarrollos deben ser escaneados o fotografiados utilizando la aplicación **Adobe Scan** disponible para el celular. Los desarrollos deben estar bien justificados, con un correcto uso de las unidades de medida y con una letra clara. La colaboración con otros compañeros y el uso de cualquier recurso visto durante las clases están permitidos. Cualquier indicio de copia y/o plagio será sancionado.

Fecha de entrega: Viernes 22 de Julio hasta las 23:59

- P1. En el año 1934 el físico Hideki Yukawa postuló que la fuerza que mantiene unidos a los nucleones (protones y neutrones) debe ser medidada por una partícula a la que el denominó mesón. Esto en analogía a QED en que el fotón es el mediador de dichar interacción. El objetivo de este problema es estimar la masa del mesón de la forma que lo hizo Yukawa.
 - a) Esta partícula viaja a una velocidad aproximada de c, y debe vivir durante un tiempo Δt suficiente para recorrer una distancia comparable al alcance de la fuerza nuclear ($r_0 = 1.5 \times 10^{-15} \text{m}$). Calcule el tiempo necesario para que la partícula alcance a recorrer la distancia dada.
 - b) Utilizando el principio de incertidumbre para la energía, cuya expresión es $\Delta E \cdot \Delta t \geq \frac{h}{4\pi}$, encuentre la incertidumbre mínima necesaria de la energía.
 - c) Finalmente obtenga la masa equivalente a esta energía y comparela con la masa del electrón.
- **P2.** Un láser de Helio-Neon posee una longitud de onda de 6.3×10^{-7} m. Calcule la energía de un fotón del haz de este láser.
- **P3.** Una partícula de masa M inicialmente en reposo, decae en dos partículas de masas m_1 y m_2 de velocidades no nulas v_1 y v_2 , respectivamente. Determine la razón entre las longitudes de onda de De Broglie de ambas partículas.
- **P4.** Ordene las siguientes partículas según leptones, mesones y bariones: e^+ , τ^- , π^+ , K^0 , n, p, ν_{μ} . Argumente el orden de su elección.
- **P5.** Observa las siguientes reacciones. Una de ellas puede ocurrir y la otra no. Determine cuál es la que no ocurre. De un argumento en base a los contenidos vistos en clase y recordando que los números cuánticos como carga eléctrica, strangness, charmness, etc. deben conservarse en una interacción.
 - a) $K^0 \to \pi^+ + \pi^-$
 - b) $\Lambda^0 \to \pi^+ + \pi^-$
- **P6.** Considere 1 litro de agua. Haga una estimación del número de cada especie de quark y el número de electrones que se encuentran en dicho volumen. Especifique de manera clara los supuestos que tenga en consideración.
- P7. Investigue a qué partículas corresponden las siguientes combinaciones de quarks. Anote sus números cuánticos de carga eléctrica y sabor de quark (charmness, strangeness, etc...):
 - a) suu
 - $b) \bar{u}d$
 - $c) \bar{s}d$
 - d) ssd

Escuela de Verano

COFM52-1 Física de partículas: Un viaje a la descripción fundamental del universo

Profesor: Luis Mora Lepin Auxiliar: Bianca Zamora Araya

P8. Identifique la partícula desconocida al lado izquierdo del siguiente proceso.

HINT: Considere la conservación del número leptónico.

? + p
$$\rightarrow$$
 n + μ^+

- P9. Recordemos que en clase ya se ha mencionado que una interacción fundamental (electromagnetismo, fuerte o débil) se debe al intercambio de una partícula llamada bosón. El objetivo de este problema es obtener una expresión que nos permita obtener el alcance máximo de una interacción fundamental. Para esto siga las siguientes instrucciones:
 - a) Considere que una partícula mediadora (bosón) masiva puede ser intercambiada sólo si esque vive por un tiempo muy corto como para no violar el principio de incertidumbre de Heisenberg $\Delta E \cdot \Delta t \geq \frac{h}{4\pi}$. Reemplace ΔE por la relación de Einstein $E = mc^2$ para obtener una versión del principio de incertidumbre en función de la masa invariante del bosón.
 - b) Asumiendo que el bosón que se ha intercambiando viaja a una velocidad igual a la de la luz (recordemos que esta sería la velocidad tope a la que podría viajar una partícula) y utilizando la relación que obtuvo en a, obtenga una desigualdad para el rango máximo de la interacción. (Recuerde que d = vt).
 - c) Con la fórmula obtenida estime el rango máximo del bosón W.
 - d) Concluya cuál sería el rango máximo de interacción para el fotón (electromagnetismo).
- **P10.** Dibuje los diagramas de Feynman a nivel árbol (menor cantidad de vértices) de los siguientes procesos de QED:
 - a) Dispersión de Compton: $e^- + \gamma \rightarrow e^- + \gamma$
 - b) Moller scattering de dos quarks top: $t + t \rightarrow t + t$
 - c) Aniquilación de un par de muones: $\mu^- + \mu^+ \rightarrow \gamma + \gamma$