3rd lecture overview

- 2.1.3 Nondeterministic finite automaton (NFA)
- 2.1.4 Nondeterministic finite automaton with ε -moves (ε -NFA)

Lecture overview

- 2.1.3 Nondeterministic finite automaton (NFA)
- 2.1.4 Nondeterministic finite automaton with ε -moves (ε -NFA)

XXXXXXXXXXX 00 XXXXXXXXXXX

$$nfa = (Q, \Sigma, \delta, q_0, F)$$

Q

 $\mathbf{\Sigma}$

δ

 $q_0 \in Q$

 $F \subset Q$

- finite set of states

- finite set of input symbols

- transition function $Q \times \Sigma \rightarrow 2^Q$

- start state

- set of accept states

$$\delta$$
 (State, InputSymbol) = $P \subseteq Q$

$$\hat{\delta}: \mathbb{Q} \times \Sigma^* \to 2^{\mathbb{Q}}$$

(1)
$$\hat{\delta}$$
 $(q, \varepsilon) = q$

(2)
$$\hat{\delta}$$
 (q, wa) = P = $\{p \mid \text{ for some state } r \text{ from } \hat{\delta} \text{ (q, w), } p \text{ is in } \delta(r, a)\}, \\ W \in \Sigma^*, \quad a \in \Sigma \text{ i } P \subseteq Q$

$$\hat{\delta}$$
 $(q, a) = P = \{p \mid \text{ where } p \text{ is from } \delta(q, a)\} = \delta(q, a)$

$$NFA = (Q, \Sigma, \delta, q_0, F)$$

NFA accepts string w if $\delta(q_0, w)$ contains at least one state from set F

NFA accepts language $L(NFA)=\{w \mid \delta(q_0, w)\}$ contains at least one state from set $F\}$

$$\delta(q_0, 0) = \{q_0, q_3\}$$

$$\delta(q_0, 01) = \delta(\delta(q_0, 0), 1) = \delta(\{q_0, q_3\}, 1) = \delta(q_0, 1) \cup \delta(q_3, 1) = \{q_0, q_1\} \cup \{\} = \{q_0, q_1\}$$

Constructing DFA equivalent to the given NFA q_0 $q_0, q_3,$ q_1 q_0, q_3 $q_0, q_1,$ $q_0, q_1,$ q_0, q_1 q_2 0 $q_0, q_2,$ $q_0, q_{2,}$ $q_0, q_1,$

NKA
$$M=(Q, \Sigma, \delta, q_0, F)$$

DKA
$$M'=(Q', \Sigma, \delta', q_0', F')$$

$$Q=\{q_0, q_1, q_2, ..., q_i\}$$

$$Q'=\{[\varnothing], [q_0], [q_1], ..., [q_i], [q_0, q_1], ..., [q_{i-1}, q_i], [q_0, q_1, q_2], ..., [q_0, q_1, q_2, ..., q_i]\}$$

$$\delta(q_0, w) = \{p_0, p_1, \dots, p_i\}$$

$$\delta'([q_0], w) = [p_0, p_1, ..., p_i]$$

1)
$$Q' = 2^{Q}$$

- 2) F' is the set of all states $[p_0, p_1, ..., p_i]$ where at least one $p_k \in F$
- 3) $q_0' = [q_0]$

4)
$$\delta'([p_0, p_1, ..., p_l], a) = [r_0, r_1, ..., r_j]$$
 if and only if $\delta(\{p_0, p_1, ..., p_l\}, a) = \{r_0, r_1, ..., r_j\}$

1)
$$Q' = \{ [\varnothing], [q_0], [q_1], [q_0, q_1] \}$$

2)
$$F' = \{ [q_1], [q_0, q_1] \}$$

3)
$$q_0' = [q_0]$$

4)
$$\delta'([q_0], 0) = [q_0, q_1]$$

 $\delta'([q_0], 1) = [q_1]$

because
$$\delta(q_0, 0) = \{q_0, q_1\}$$

because $\delta(q_0, 1) = \{q_1\}$

	0	1			0	1	_
q0	{ <i>q</i> 0, <i>q</i> 1}	{ <i>q</i> 1}	0	[<i>q</i> 0]	[<i>q</i> 0, q1]	[<i>q</i> 1]	0
<i>q</i> 1	{}	{ <i>q</i> 0, <i>q</i> 1}	1	[<i>q</i> 1]	[Ø]	[q0, q1]	1
				[<i>q</i> 0, <i>q</i> 1]	[<i>q</i> 0, <i>q</i> 1]	[q0, q1]	1
				[Ø]	[Ø]	[Ø]	0

4)
$$\delta'([q_0], 0) = [q_0, q_1]$$
 because $\delta(q_0, 0) = \{q_0, q_1\}$ $\delta'([q_0], 1) = [q_1]$ because $\delta(q_0, 1) = \{q_1\}$ $\delta'([q_1], 0) = [\varnothing]$ because $\delta(q_1, 0) = \{\}$ $\delta'([q_1], 1) = [q_0, q_1]$ because $\delta(q_1, 1) = \{q_0, q_1\}$ $\delta'([q_0, q_1], 0) = [q_0, q_1]$ because $\delta(\{q_0, q_1\}, 0) = \delta(\{q_0, q_1\}, 0) = \delta(\{q_0, q_1\}, 0) = \{\{q_0, q_1\}, 0\}$ because $\delta(\{q_0, q_1\}, 0) = \{\{q_0, q_1\}, 0\}$ $\delta'([q_0, q_1], 1) = [q_0, q_1]$ because $\delta(\{q_0, q_1\}, 1) = \delta(\{q_0, q_1\}, 1) = \delta(\{q_0, q_1\}, 1) = \{\{q_0, q_1\}, 1\}$ $\delta'([\varnothing], 0) = [\varnothing]$ because $\delta(\{\{q_0, q_1\}, 1) = \{\{q_0, q_1\}, 1\}, 1\} = \{\{q_0, q_1\}, 1\}$ because $\delta(\{\{q_0, q_1\}, 1) = \{\{q_0, q_1\}, 1\}, 1\} = \{\{q_0, q_1\}, 1\}, 1\}$ because $\delta(\{\{\{q_0, q_1\}, 1\}, 1\}, 1\}) = \{\{\{q_0, q_1\}, 1\}, 1\}$ because $\delta(\{\{\{q_0, q_1\}, 1\}, 1\}, 1\}) = \{\{\{q_0, q_1\}, 1\}, 1\}, 1\}$

Equivalence of DFA and NFA

NFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

DFA M'=(Q',
$$\Sigma$$
, δ ', q_0 ', F ')

(i)
$$\delta'([q_0], w) = [r_0, r_1, ..., r_j]$$
 if and only if $\delta(q_0, w) = \{r_0, r_1, ..., r_j\}$

a)
$$|w|=0$$
, i.e. $w=\varepsilon$

$$\delta'([q_0], \varepsilon) = [q_0] \qquad \delta(q_0, \varepsilon) = \{q_0\}$$

b) We assume that (i) is valid for string $x \in \Sigma^*$, and then we prove that (i) is valid for string w=xa, $a \in \Sigma$

According to the assumption that:

$$\delta'([q_0], x) = [p_0, p_1, \dots, p_l]$$
 if and only if $\delta(q_0, x) = \{p_0, p_1, \dots, p_l\}$,

and based on definition (4) for the construction of the function δ' :

$$\delta'([p_0, p_1, ..., p_i], a) = [r_0, r_1, ..., r_j]$$
 if and only if $\delta(\{p_0, p_1, ..., p_i\}, a) = \{r_0, r_1, ..., r_i\},$

we conclude that (i) is valid

Lecture overview

- 2.1.3 Nondeterministic finite automaton (NFA)
- 2.1.4 Nondeterministic finite automaton with ε -moves (ε -NFA)

$$L = \{0^n 1^m 2^l \mid n, m, l \geq 0\}$$

Empty string ε

$$L = \{0^n 1^m 2^l | n, m, l \geq 0\}$$

Empty string ε

String 002

$$L = \{0^n 1^m 2^l \mid n, m, l \geq 0\}$$

Empty string ε

String 002

String 01210 is not accepted

$$q_0
ightharpoonup q_0
ightharpoonup q_1
ightharpoonup q_1
ightharpoonup q_1
ightharpoonup q_2
ightharpoonup q_2
ightharpoonup q_2
ightharpoonup q_2
ightharpoonup q_3
ightharpoonup q_4
ightharpoonup q_5
ightha$$

$$\varepsilon$$
-nfa = (Q , Σ , δ , q_0 , F)

- finite set of states

- finite set of input symbols

- transition function $Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$

 $q_0 \in Q$ - start state

 $F \subseteq Q$ - set of accept states

 ε -CLOSURE(q) = {p | state p is either q or ε -NFA makes transition from state q to state p using exclusively ε -transitions}

$$\varepsilon$$
-CLOSURE(q_0) = { q_0 , q_1 , q_2 }

 ε -CLOSURE(q) = {p | state p is either q or ε -NFA makes transition from state q to state p using exclusively ε -transitions}

$$\varepsilon$$
-CLOSURE(q_0) = { q_0 , q_1 , q_2 }

$$\varepsilon$$
-CLOSURE $(q_1) = \{q_1, q_2\}$

 ε -CLOSURE(q) = {p | state p is either q or ε -NFA makes transition from state q to state p using exclusively ε -transitions}

$$\varepsilon$$
-CLOSURE(q_0) = { q_0 , q_1 , q_2 }

$$\varepsilon$$
-CLOSURE $(q_1) = \{q_1, q_2\}$

$$\varepsilon$$
-CLOSURE $(q_2) = \{q_2\}$

$$\varepsilon$$
-CLOSURE(P)= $\bigcup_{q \in P} \varepsilon$ -CLOSURE (q)

(1)
$$\hat{\delta}(q, \varepsilon) = \varepsilon\text{-CLOSURE}\{q\}$$

(2)
$$\hat{\delta}$$
 (q, wa) = ε -CLOSURE(P)

$$P=\{p \mid \text{for some state } r \text{ from } \hat{\delta} (q,w), p \text{ is in } \delta(r,a)\}$$

$$w \in \Sigma^*$$
, $a \in \Sigma$ and $P \subseteq Q$

$$\delta(R, a) = \bigcup_{q \in R} \delta(q, a)$$

$$\hat{\delta}$$
 (R, w) = $\bigcup_{q \in R} \hat{\delta}$ (q, w), R \(\subseteq \mathbb{Q} \) and w \(\Sigma \Sigma \)*

$$\delta(\boldsymbol{q}_0, \, \boldsymbol{\varepsilon})$$

$$\hat{\delta}$$
 (q_0 , ε)

$$\delta(\boldsymbol{q}_0, \, \varepsilon) = \{\boldsymbol{q}_1\}$$

$$\hat{\delta}$$
 (q_0 , ε)

$$\delta(q_0, \varepsilon) = \{q_1\}$$

$$\hat{\delta}$$
 $(q_0, \varepsilon) = \varepsilon$ -CLOSURE $(q_0) = \{q_0, q_1, q_2\}$

Determining transition function $\hat{\delta}$ using transition function δ

$$\delta(q_0, a) = q_1$$

Determining transition function $\hat{\delta}$ using transition function δ

$$\delta(q_0, a) = q_1$$

$$\hat{\delta}$$
 (q_0 , a)=

 q_0

Determining transition function $\hat{\delta}$ using transition function δ

$$\delta(q_0, a) = q_1$$

$$\hat{\delta}$$
 (q_0 , a)=

ε-CLOSURE(q₀)

Determining transition function $\hat{\delta}$ using transition function δ

$$\delta(q_0, a) = q_1$$

$$\hat{\delta}$$
 (q_0 , a)=

$$δ$$
($ε$ -CLOSURE(q_0) , a)

Determining transition function $\hat{\delta}$ using transition function δ

$$\delta(q_0, a) = q_1$$

$$\hat{\delta}$$
 (q_0 , a)= ϵ -CLOSURE(δ (ϵ -CLOSURE(q_0) , a)

$$\delta(\boldsymbol{q}_0, 1) = \emptyset = \{\}$$

$$\delta(q_0, 1) = \emptyset = \{\}$$

$$\hat{\delta}$$
 $(q_0, 1) = \hat{\delta}$ $(q_0, \varepsilon 1) = \varepsilon$ -CLOSURE $(\delta(\hat{\delta}(q_0, \varepsilon), 1))$

=
$$\varepsilon$$
-CLOSURE($\delta(\{q_0, q_1, q_2\}, 1)$)

=
$$\varepsilon$$
- CLOSURE($\delta(q_0, 1) \cup \delta(q_1, 1) \cup \delta(q_2, 1)$)

=
$$\varepsilon$$
- CLOSURE($\varnothing \cup \{q_1\} \cup \varnothing$)

=
$$\varepsilon$$
- CLOSURE($\{q_1\}$)

=
$$\varepsilon$$
- CLOSURE(q_1) = { q_1 , q_2 }

String 01

$$\hat{\delta}$$
 $(q_0, \varepsilon) = \varepsilon$ -CLOSURE $(q_0) = \{q_0, q_1, q_2\}$

$$\hat{\delta}$$
 $(q_0, 0) = \hat{\delta} (q_0, \varepsilon 0) = \varepsilon - \text{CLOSURE}(\delta(\hat{\delta} (q_0, \varepsilon), 0))$

=
$$\varepsilon$$
-CLOSURE($\delta(\{q_0, q_1, q_2\}, 0)$)

=
$$\varepsilon$$
-CLOSURE($\delta(q_0, 0) \cup \delta(q_1, 0) \cup \delta(q_2, 0)$)

=
$$\varepsilon$$
-CLOSURE($\{q_0\} \cup \varnothing \cup \varnothing$)

=
$$\varepsilon$$
-CLOSURE($\{q_0\}$)

$$= \{q_0, q_1, q_2\}$$

String 01

$$\hat{\delta}$$
 $(q_0, \varepsilon) = \varepsilon$ -CLOSURE $(q_0) = \{q_0, q_1, q_2\}$

$$\hat{\delta}$$
 (q₀, 0) = {q₀, q₁, q₂}

$$\hat{\delta}$$
 (q_0 , 01) = ε -CLOSURE ($\delta(\hat{\delta}(q_0,0),1)$)

=
$$\varepsilon$$
-CLOSURE($\delta(\{q_0, q_1, q_2\}, 1)$)

=
$$\varepsilon$$
-CLOSURE($\delta(q_0, 1) \cup \delta(q_1, 1) \cup \delta(q_2, 1)$)

=
$$\varepsilon$$
-CLOSURE($\varnothing \cup \{q_1\} \cup \varnothing$)

=
$$\varepsilon$$
-CLOSURE($\{q_1\}$)

=
$$\{q_1, q_2\}, q_2 \in F \Rightarrow string 01 is accepted$$

String 10

$$\hat{\delta} (q_0, \varepsilon) = \varepsilon\text{-CLOSURE}(q_0) = \{q_0, q_1, q_2\}$$

$$\hat{\delta} (q_0, 1) = \hat{\delta} (q_0, \varepsilon 1) = \varepsilon\text{-CLOSURE}(\delta(\hat{\delta} (q_0, \varepsilon), 1))$$

$$= \varepsilon\text{-CLOSURE}(\delta(\{q_0, q_1, q_2\}, 1))$$

$$= \varepsilon\text{-CLOSURE}(\delta(q_0, 1) \cup \delta(q_1, 1) \cup \delta(q_2, 1))$$

$$= \varepsilon\text{-CLOSURE}(\emptyset \cup \{q_1\} \cup \emptyset)$$

$$= \varepsilon\text{-CLOSURE}(\{q_1\})$$

$$= \{q_1, q_2\}$$

$$\hat{\delta} (q_0, 10) = \varepsilon\text{-CLOSURE}(\delta(\hat{\delta} (q_0, 1), 0))$$

= ε -CLOSURE($\delta(\{q_1, q_2\}, 0)$)

 $=\varepsilon$ -CLOSURE($\delta(q_1, 0) \cup \delta(q_2, 0)$)

=
$$\varepsilon$$
-CLOSURE($\varnothing \cup \varnothing$)
= ε -CLOSURE(\varnothing)= \varnothing , \Rightarrow string 10 is NOT accepted

$$\varepsilon$$
-NFA M =(Q , Σ , δ , q_0 , F)

NFA
$$M'=(Q', \Sigma, \delta', q_0', F')$$

1)
$$Q' = Q$$

2)
$$q_0' = q_0$$

3)
$$\delta'(q, a) = \hat{\delta}(q, a), \forall a \in \Sigma \text{ and } \forall q \in Q$$

4) If ε -CLOSURE(q_0) contains at least one state from F then

$$F' = F \cup \{q_0\}$$

else

$$F' = F$$

1)
$$Q' = Q = \{q_0, q_1, q_2\}$$

2)
$$q_0'=q_0$$

3)
$$F' = F \cup \{q_0\} = \{q_2\} \cup \{q_0\} = \{q_0, q_2\}$$

because
$$\varepsilon$$
-CLOSURE $(q_0) \cap F = \{q_0, q_1, q_2\} \cap \{q_2\} = \{q_2\}$

q0

q1

 ${q0, q1, q2}$ **q2**

$$\delta'(q_0, 0) = \{q_0, q_1, q_2\}, \text{ because}$$

$$\hat{\delta}(q_0, 0) = \varepsilon\text{-CLOSURE}(\delta(\hat{\delta}(q_0, \varepsilon), 0))$$

$$= \varepsilon\text{-CLOSURE}(\delta(\varepsilon\text{-CLOSURE}(q_0), 0))$$

$$= \varepsilon\text{-CLOSURE}(\delta(\{q_0, q_1, q_2\}, 0))$$

$$= \varepsilon\text{-CLOSURE}(\{q_0\} \cup \emptyset \cup \emptyset)$$

$$= \{q_0, q_1, q_2\}$$

q0

q1

q2

0 1 2

{q0, q1, q2}	{ <i>q</i> 1, <i>q</i> 2}	1
		0
		1

$$\delta'(q_0, 0) = \{q_0, q_1, q_2\}, \text{ because}$$

$$\hat{\delta}(q_0, 0) = \varepsilon\text{-CLOSURE}(\delta(\hat{\delta}(q_0, \varepsilon), 0))$$

$$= \varepsilon\text{-CLOSURE}(\delta(\varepsilon\text{-CLOSURE}(q_0), 0))$$

$$= \varepsilon\text{-CLOSURE}(\delta(\{q_0, q_1, q_2\}, 0))$$

$$= \varepsilon\text{-CLOSURE}(\{q_0\} \cup \emptyset \cup \emptyset)$$

$$= \{q_0, q_1, q_2\}$$

$$\delta'(q_0, 1) = \{q_1, q_2\}, \text{ because}$$

$$\hat{\delta}(q_0, 1) = \varepsilon\text{-CLOSURE}(\delta(\hat{\delta}(q_0, \varepsilon), 1))$$

$$= \varepsilon\text{-CLOSURE}(\delta(\varepsilon\text{-CLOSURE}(q_0), 1))$$

$$= \varepsilon\text{-CLOSURE}(\delta(\{q_0, q_1, q_2\}, 1))$$

$$= \varepsilon\text{-CLOSURE}(\emptyset \cup \{q_1\} \cup \emptyset)$$

$$= \{q_1, q_2\}$$

q0

q1

q2

0	1	2
---	---	---

{q0, q1, q2}	{q1, q2}	{q2}	1
Ø	{ <i>q</i> 1, <i>q</i> 2}	{q2}	0
Ø	Ø	{q2}	1

$$\delta'(q_0, 0) = \{q_0, q_1, q_2\},$$
 because

$$\hat{\delta}(q_0, 0) = \varepsilon$$
-CLOSURE($\delta(\hat{\delta}(q_0, \varepsilon), 0)$)

= ε -CLOSURE($\delta(\varepsilon$ -CLOSURE(q_0), 0))

= ε -CLOSURE($\delta(\{q_0, q_1, q_2\}, 0)$)

 $=\varepsilon$ -CLOSURE($\{q_0\} \cup \varnothing \cup \varnothing$)

 $=\{q_0, q_1, q_2\}$

$$\delta'(q_0, 1) = \{q_1, q_2\},$$
 because

$$\hat{\delta}(q_0, 1) = \varepsilon$$
-CLOSURE($\delta(\hat{\delta}(q_0, \varepsilon), 1)$)

= ε -CLOSURE($\delta(\varepsilon$ -CLOSURE(q_0), 1))

 $=\varepsilon$ -CLOSURE($\delta(\{q_0, q_1, q_2\}, 1)$)

 $=\varepsilon$ -CLOSURE($\varnothing \cup \{q_1\} \cup \varnothing$)

 $=\{q_1, q_2\}$

Equivalence of NFA with ε –NFA

$$\delta'(q_0, \varepsilon) \neq \hat{\delta} (q_0, \varepsilon)$$

a)
$$|x|=1$$
, $\delta'(q_0, a)=\hat{\delta}(q_0, a)$ - follows from the NFA construction

b) We assume the induction hypothesis:

$$P = \delta'(q_0, w) = \hat{\delta}(q_0, w)$$

According to the the definition of the function δ' of the NKA:

$$\delta'(q_0, wa) = \delta'(\delta'(q_0, w), a) = \delta'(P, a) = \bigcup_{q \in P} \delta'(q, a) = \bigcup_{q \in P} \hat{\delta} (q, a)$$

$$= \hat{\delta} (P, a) = \hat{\delta} (\hat{\delta} (q_0, w), a) = \hat{\delta} (q_0, wa)$$

Equivalence of NFA with ε –NFA

We prove:

$$q_0 \in \delta'(q_0, x) \Rightarrow \varepsilon - CLOSURE(q_0) \subseteq \hat{\delta}(q_0, x)$$

Empty string
$$x = \varepsilon$$

 $\delta'(q_0, \varepsilon) = q_0$
 $\hat{\delta}(q_0, \varepsilon) = \varepsilon$ -CLOSURE (q_0)

$$\hat{\delta}$$
 $(q_0, x) = \varepsilon$ -CLOSURE $(\delta (\hat{\delta} (q_0, w), a))$

