

Prognozowanie parametrów zdrowotnych pacjentów

Zadanie Ensemble

Sprawozdanie z Ćwiczeń Nauka o Danych II

Data wykonania: 28.06.2025

Autor:

Bartosz Bieniek 058085

1. Cel Ćwiczenia

Zadanie polega na prowadzeniu na własnym zbiorze danych (z poprzedniego zajęcia) kolejnych dzialań:

- 1. Porównaj dokładności modeli: Random Forest, XGBoost i Stacking.
- 2. Przeprowad'z tuning hiper parametrów dla modelu XGBoost.
- 3. Wprowadź nowy model do zestawu stackingowego (np. KNN lub DecisionTreeClassifier).
- 4. Przetestuj modele na innym zbiorze danych (np. Wine, Iris).
- 5. Przedstaw wyniki w formie wykresu słupkowego porównującego dokładność.

Zadania umieścić na Github.

2. Przebieg Ćwiczenia

1. Zaimportowano wymagane biblioteki

Załadowano biblioteki służące do analizy danych, budowy modeli ensemble, strojenia hiperparametrów oraz wizualizacji wyników. Uwzględniono modele Random Forest, XGBoost, Stacking oraz klasyczne regresory i klasyfikatory pomocnicze.

```
# Krok 1: Import bibliotek
import pandas as pd
import numpy as np

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestRegressor, StackingRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt

[6] ✓ 0.0s
```

Rys. 1. Zaimportowano wymagane biblioteki

2. Wczytano dane wejściowe

Z pliku synthetic_health_data.csv wczytano dane zawierające pięć zmiennych wejściowych (wiek, BMI, aktywność fizyczna, kalorie, sen) oraz trzy zmienne wyjściowe (cukier, ciśnienie skurczowe, ciśnienie rozkurczowe). Dane te reprezentowały problem regresji wielowymiarowej.

```
# Krok 2: Wczytanie danych

df = pd.read_csv("synthetic_health_data.csv")

X = df[["wiek", "BMI", "aktywnosc", "kalorie", "sen"]]

y = df[["cukier", "cisnienie_skurczowe", "cisnienie_rozkurczowe"]]

✓ 0.0s
```

Rys. 2. Wczytano dane wejściowe

3. Podzielono dane na zbiory treningowy i testowy

Zastosowano funkcję train_test_split, aby losowo podzielić dane w proporcji 80:20. Zbiór treningowy posłużył do nauki modeli, a testowy do ich niezależnej oceny.

```
# Krok 3: Podział danych na treningowe i testowe
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

[8] 

0.0s
```

Rys. 3. Podzielono dane na zbiory treningowy i testowy

4. Zdefiniowano bazowe modele regresyjne

Zainicjalizowano modele RandomForestRegressor, XGBRegressor oraz StackingRegressor, łączący pierwszy i drugi model jako estymatory bazowe z regresją liniową jako meta-estymatorem.

Rys. 4. Zdefiniowano bazowe modele regresyjne

5. Przeprowadzono trenowanie i ocenę modeli

Dla każdego modelu przystąpiono do osobnego trenowania na każdej ze zmiennych wyjściowych. Obliczono współczynnik determinacji R² dla każdej

predykcji i uśredniono wyniki. Najwyższy średni R² uzyskał model stackingowy (0.7717), nieznacznie wyprzedzając Random Forest (0.7685) i XGBoost (0.7548).

```
targets = ["cukier", "cisnienie skurczowe", "cisnienie rozkurczowe"]
      for name, model in models.items():
           scores = []
           for target in targets:
              model.fit(X_train, y_train[target])
              y_pred = model.predict(X_test)
              r2 = r2_score(y_test[target], y_pred)
              scores.append(r2)
          avg_r2 = np.mean(scores)
          results[name] = avg_r2
          print(f"{name} średni R²: {avg_r2:.4f}")
01 V 45.4s
                                                                                                                          Python
  Random Forest średni R<sup>2</sup>: 0.7685
  XGBoost średni R2: 0.7548
  Stacking średni R<sup>2</sup>: 0.7717
```

Rys. 5. Przeprowadzono trenowanie i ocenę modeli

6. Przeprowadzono tuning hiperparametrów modelu XGBoost

Zastosowano siatkę przeszukiwań (GridSearchCV) dla parametrów max_depth i n_estimators. Najlepszy zestaw parametrów to: {'max_depth': 3, 'n_estimators': 50}, który został wykorzystany w dalszych analizach.

Rys. 6. Przeprowadzono tuning hiperparametrów modelu XGBoost

7. Rozszerzono zestaw stackingowy o model KNN

Zbudowano nowy model stackingowy zawierający Random Forest, najlepszy XGBoost oraz KNN jako estymatory bazowe. W roli meta-estymatora

pozostawiono regresję liniową. Po uśrednieniu wyników R² dla trzech zmiennych wyjściowych, uzyskano najwyższy dotychczas wynik: 0.7842, co świadczyło o korzystnym wpływie dodania KNN do kompozycji modeli.

```
from sklearn.neighbors import KNeighborsRegressor
   targets = ["cukier", "cisnienie_skurczowe", "cisnienie_rozkurczowe"]
r2_scores_stack2 = []
    for target in targets:
        stack2 = StackingRegressor(
            estimators=[
                ('rf', rf),
('xgb', best_xgb),
('knn', KNeighborsRegressor())
            final_estimator=LinearRegression()
        stack2.fit(X_train, y_train[target])
        y_pred = stack2.predict(X_test)
        r2 = r2_score(y_test[target], y_pred)
        r2_scores_stack2.append(r2)
    avg_r2_stack2 = np.mean(r2_scores_stack2)
    results["Stacking + KNN"] = avg_r2_stack2
    print(f"Stacking + KNN średni R² score: {avg_r2_stack2:.4f}")
                                                                                                                            Python
Stacking + KNN średni R² score: 0.7842
```

Rys. 7. Rozszerzono zestaw stackingowy o model KNN

8. Przetestowano modele na zbiorze klasyfikacyjnym Wine

W celu przetestowania działania stackingowego podejścia w kontekście klasyfikacji, użyto wbudowanego zbioru wine. Zastosowano modele klasyfikacyjne: RandomForestClassifier, XGBClassifier oraz StackingClassifier. Modele osiągnęły bardzo wysoką skuteczność: Random Forest i Stacking uzyskały 100% trafności, natomiast XGBoost 94.44%.

```
嘡 № № 日… 🛍
        from sklearn.datasets import load_wine
        wine = load_wine()
        X_wine = pd.DataFrame(wine.data, columns=wine.feature_names)
        y_wine = pd.DataFrame(wine.target)
        Xw_train, Xw_test, yw_train, yw_test = train_test_split(X_wine, y_wine, test_size=0.2, random_state=42)
        # Ponieważ mamy klasyfikację, przetestujemy XGBoost jako klasyfikator
        from xgboost import XGBClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import StackingClassifier
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import accuracy_score
        clf_rf = RandomForestClassifier(random_state=42)
        clf_xgb = XGBClassifier(random_state=42)
        clf_stack = StackingClassifier(
           estimators=[('rf', clf_rf), ('xgb', clf_xgb)],
            final estimator=LogisticRegression()
        clf_models = {
            "Random Forest (wine)": clf_rf,
            "XGBoost (wine)": clf_xgb,
"Stacking (wine)": clf_stack
        for name, clf in clf_models.items():
           clf.fit(Xw_train, yw_train.values.ravel())
           y pred = clf.predict(Xw test)
            acc = accuracy_score(yw_test, y_pred)
            results[name] = acc
            print(f"{name} Accuracy: {acc:.4f}")
··· Random Forest (wine) Accuracy: 1.0000
    XGBoost (wine) Accuracy: 0.9444
    Stacking (wine) Accuracy: 1.0000
```

Rys. 8. Przetestowano modele na zbiorze klasyfikacyjnym Wine

9. Zwizualizowano wyniki w formie wykresu słupkowego

Wyniki wszystkich modeli (regresyjnych i klasyfikacyjnych) zaprezentowano na jednym wykresie słupkowym, porównującym średnie R² (dla regresji) i trafność (accuracy) dla klasyfikacji. Wykres potwierdził przewagę modeli ensemble oraz skuteczność stackingowego podejścia, szczególnie w wariancie z dodatkowym modelem KNN.

Rys. 9. Zwizualizowano wyniki w formie wykresu słupkowego

3. Wnioski

Modele ensemble, takie jak Random Forest, XGBoost i szczególnie Stacking, wykazały wysoką skuteczność w zadaniu regresji zdrowotnej, uzyskując średnie wartości współczynnika determinacji R² powyżej 0.75. Dodanie modelu KNN do zestawu stackingowego pozwoliło jeszcze poprawić wynik, co potwierdziło, że różnorodność estymatorów bazowych może pozytywnie wpłynąć na jakość predykcji.