SME0821 - Análise de Sobrevivência - Atividade I

Francisco Rosa Dias de Miranda - 4402962 Heitor Carvalho Pinheiro - 11833351 Lua Gusthavo

abril 2022

1) Introdução

O mieloma múltiplo é o câncer que afeta aos plasmócitos, células da medula óssea responsáveis pela produção de anticorpos. Nos indivíduos acometidos, os plasmócitos são anormais e se multiplicam rapidamente, comprometendo a produção das outras células do sangue.

Foram obtidos medidas de expressão gênica em indivíduos com mieloma múltiplo, a partir de bases disponíveis no GEO (Id: GSE4581), um repositório de dados genômicos públicos do NCBI (National Center for Biotechnology Information). Nesse estudo, foram coletados dados de uma amostra de 256 pacientes, consistindo nas 11 colunas descritas abaixo:

Variável	Descrição
molecular_group chr1q21_status treatment event	Subgrupos moleculares dos pacientes Status de amplificação do cromossomo 1q21 Todos os pacientes receberam o tratamento TT2 Status de sobrevivência, $0 = \text{vivo}$, $1 = \text{morto}$
time	Tempo de sobrevivência, em meses
CCND1, CRIM1, DEPDC1, IRF4 TP53, WHSC1	Nível de expressão dos respectivos genes

```
# Conjunto de dados utilizado
df <- survminer::myeloma %>% rownames_to_column %>% tibble
head(df)
## # A tibble: 6 x 12
##
     rowname molecular_group chr1q21_status treatment event
                                                                      CCND1 CRIM1
                                                                time
##
     <chr>>
              <fct>
                               <fct>
                                               <fct>
                                                         <int> <dbl>
                                                                      <dbl> <dbl>
                               3 copies
                                                                69.2
                                                                      9908. 421.
## 1 GSM50986 Cyclin D-1
                                              TT2
## 2 GSM50988 Cyclin D-2
                               2 copies
                                              TT2
                                                                66.4 16699.
                                                                             52
                                                                66.5
## 3 GSM50989 MMSET
                               2 copies
                                              TT2
                                                             0
                                                                       294. 618.
## 4 GSM50990 MMSET
                               3 copies
                                              TT2
                                                                42.7
                                                                       242.
                                                                             11.9
## 5 GSM50991 MAF
                               <NA>
                                              TT2
                                                             0
                                                                65
                                                                       473.
                                                                             38.8
## 6 GSM50992 Hyperdiploid
                               2 copies
                                              TT2
                                                                65.2
                                                                       664.
## # ... with 4 more variables: DEPDC1 <dbl>, IRF4 <dbl>, TP53 <dbl>, WHSC1 <dbl>
## trocar por tempo vs raiz quadrada da contagem
  df %>%
ggplot(aes(x=1:nrow(df), y=time)) +
  geom_segment( aes(x=1:nrow(df), xend=1:nrow(df), y=0, yend=time, color=event)) +
  geom point( aes(color=event), size=4, alpha=0.6) +
```


2) Metodologia: Uma breve descrição da metodologia;

Nesse trabalho, nosso objetivo é a análise de dados de sobrevivência com censura a direita a partir de uma abordagem não-paramétrica, em que o interesse é identificar fatores de prognóstico para o mioma múltiplo a partir da amostra coletada.

A análise de sobrevivência tem como objetivo a identificação de Neste estudo, utilizamos metodologia não paramétrica a dados de sobrevivência em presença de censura

3) Análise de dados

- [-] K-M
- ☐ Atuarial
- \square Nelson-Aalen
- \square EMV
- \square Newton-Rapson
- \Box Testes de hipotese

```
I) K-M Algoritmo
```

```
km_fit <- survfit(Surv(time, event) ~ 0, data = df)
ggsurvplot(km_fit)</pre>
```

1.00-20 40 60 80

Time

summary(km_fit, times = c(0,1:70))

Call: survfit(formula = Surv(time, event) ~ 0, data = df) ## time n.risk n.event survival std.err lower 95% CI upper 95% CI ## ## 0 256 1 0.996 0.00390 0.988 1.000 ## 1 255 0 0.996 0.00390 0.988 1.000 2 252 3 0.969 ## 0.984 0.00775 1.000 3 251 0.980 0.00865 0.998 ## 1 0.964 ## 4 250 0.977 0.00946 0.958 0.995 1 ## 5 250 0 0.977 0.00946 0.958 0.995 6 247 3 0.965 0.01151 ## 0.943 0.988 ## 7 246 1 0.961 0.01211 0.937 0.985 ## 8 242 4 0.945 0.01421 0.918 0.974 ## 9 241 0.941 0.01468 0.913 0.971 1 239 2 ## 10 0.934 0.01556 0.904 0.965 ## 11 236 3 0.922 0.01677 0.890 0.955 ## 12 233 3 0.910 0.01787 0.876 0.946 ## 231 2 13 0.902 0.01855 0.867 0.939 ## 14 231 0 0.902 0.01855 0.867 0.939 ## 228 3 0.891 0.01951 15 0.853 0.930 ## 16 226 0.883 0.02010 0.844 0.923

##	17	225	1	0.879	0.02039	0.840	0.920
##	18	222	3	0.867	0.02121	0.827	0.910
##	19	222	1	0.863	0.02147	0.822	0.906
##	20	220	1	0.859	0.02173	0.818	0.903
##	21	218	2		0.02222	0.809	0.896
##	22	208	3		0.02293	0.796	0.886
##	23	194	1		0.02321	0.791	0.882
##	24	189	2		0.02378	0.781	0.875
##	25	179	0		0.02378	0.781	0.875
##	26	172	1		0.02410	0.776	0.871
##	27	167	1		0.02443	0.771	0.867
##	28	160	1		0.02478	0.765	0.862
##	29	155	1		0.02516	0.759	0.858
##	30	149	3		0.02628	0.741	0.845
##	31	139	1		0.02667	0.735	0.840
##	32	134	0		0.02667	0.735	0.840
##	33	129	1		0.02712	0.728	0.835
##	34	121	1		0.02758	0.722	0.830
##	35	116	0		0.02758	0.722	0.830
##	36	111	0		0.02758	0.722	0.830
##	37	107	3		0.02939	0.697	0.813
##	38	104	1		0.02997	0.689	0.807
##	39	101	1		0.03054	0.681	0.801
##	40	94	3		0.03225	0.655	0.782
##	41	88	0		0.03225	0.655	0.782
##	42	86	0		0.03225	0.655	0.782
##	43	81	1		0.03299	0.645	0.775
##	44	74	1		0.03385	0.635	0.767
##	45	69	0		0.03385	0.635	0.767
##	46	63	1		0.03503	0.622	0.759
##	47	60	0		0.03503	0.622	0.759
##	48	58	1		0.03632	0.608	0.750
##	49	55	0		0.03632	0.608	0.750
##	50	50	1		0.03780	0.592	0.741
##	51	45	0		0.03780	0.592	0.741
##	52	44	0		0.03780	0.592	0.741
##	53	37	2		0.04187	0.555	0.719
##	54	30	0		0.04187	0.555	0.719
##	55	27	0		0.04187	0.555	0.719
##	56	25	0		0.04187	0.555	0.719
##	57	22	0		0.04187	0.555	0.719
##	58	17	1		0.05222	0.503	0.708
##	59	15	0		0.05222	0.503	0.708
##	60	10	0		0.05222	0.503	0.708
##	61	9	0		0.05222	0.503	0.708
##	62	7	0		0.05222	0.503	0.708
##	63	7	0		0.05222	0.503	0.708
##	64	7	0		0.05222	0.503	0.708
##	65	6	0		0.05222	0.503	0.708
##	66	3	0		0.05222	0.503	0.708
##	67	1	0		0.05222	0.503	0.708
##	68	1	0		0.05222	0.503	0.708
##	69	1	0	0.597	0.05222	0.503	0.708

Determining the optimal cutpoint for each gene expression

```
cutpoint statistic
## CRIM1
              82.3 1.968317
## DEPDC1
             279.8 4.275452
## WHSC1
            3205.6 3.361330
## CCND1
             450.7 1.976398
## IRF4
           12052.9 2.177788
## TP53
             748.3 2.928906
Plot of each cutpoint
genes <- c("CCND1", "CRIM1", "DEPDC1", "IRF4", "TP53", "WHSC1")</pre>
#plotando a distribuicao de cada gene
for(gene in genes){
  print(plot(res.cut, gene, pallete = "npg"))
```

\$CCND1

Distribution

CCND1

\$CRIM1

Categorizing the variables

```
res.cat <- surv_categorize(res.cut)
head(res.cat)</pre>
```

```
##
      time event CRIM1 DEPDC1 WHSC1 CCND1 IRF4 TP53
## 1 69.24
               0
                  high
                         high
                                low high high low
                                     high high high
## 2 66.43
                          low
                   low
                                low
                  high
## 3 66.50
               0
                          low
                               high
                                      low low high
## 4 42.67
               1
                   low
                          low
                               high
                                      low low high
## 5 65.00
               0
                   low
                          low
                                low
                                     high low low
## 6 65.20
                   low
                         high
                                low
                                     high high high
```

#splots

```
#defyning each fit for each gene
fit1 <- survfit(Surv(time, event) ~ CCND1, data = res.cat)
fit2 <- survfit(Surv(time, event) ~ CRIM1, data = res.cat)
fit3 <- survfit(Surv(time, event) ~ DEPDC1, data = res.cat)
fit4 <- survfit(Surv(time, event) ~ IRF4, data = res.cat)
fit5 <- survfit(Surv(time, event) ~ TP53, data = res.cat)</pre>
```

```
fit6 <- survfit(Surv(time, event) ~ WHSC1, data = res.cat)</pre>
#List of qqsurvplots
splots <- list()</pre>
splots[[1]] <- ggsurvplot(fit1, data = df, risk.table = TRUE, risk.table.height = 0.3,</pre>
                           ggtheme = theme_minimal())
splots[[2]] <- ggsurvplot(fit2, data = df, risk.table = TRUE, risk.table.height = 0.3,</pre>
                           ggtheme = theme_minimal())
splots[[3]] <- ggsurvplot(fit3, data = df, risk.table = TRUE, risk.table.height = 0.3,</pre>
                           ggtheme = theme_minimal())
splots[[4]] <- ggsurvplot(fit4, data = df, risk.table = TRUE, risk.table.height = 0.3,</pre>
                           ggtheme = theme_minimal())
splots[[5]] <- ggsurvplot(fit5, data = df, risk.table = TRUE, risk.table.height = 0.3,</pre>
                           ggtheme = theme minimal())
splots[[6]] <- ggsurvplot(fit6, data = df, risk.table = TRUE, risk.table.height = 0.3,</pre>
                           ggtheme = theme_minimal())
#arrange multiple ggsurvplots
arrange_ggsurvplots(splots, print = TRUE,
                     ncol = 3, nrow = 2)
```


Fitting Survival Curves for each gene expression

```
if (TRUE) {
# Arrange and save into pdf file
res <- arrange_ggsurvplots(splots, print = FALSE)
ggsave("myfile.pdf", res)
}</pre>
```

Saving 6.5×4.5 in image

Ratio of Distribution of Event Times

#surv <- ggsurvevents()</pre> fit <- survfit(Surv(time, event) ~ chr1q21_status, data = df)</pre> ggsurvplot(# survfit object with calculated statistics. fit, data = df, # data used to fit survival curves. risk.table = TRUE, # show risk table. pval = TRUE, # show p-value of log-rank test. conf.int = TRUE, # show confidence intervals for # point estimaes of survival curves. xlim = c(0,65),# present narrower X axis, but not affect # survival estimates. break.time.by = 5, # break X axis in time intervals by 500. ggtheme = theme_minimal(), # customize plot and risk table with a theme. risk.table.y.text.col = T, # colour risk table text annotations. risk.table.y.text = FALSE # show bars instead of names in text annotations # in legend of risk table) chr1q21_status=2 copies chr1q21_status=3 copies -- chr1q21_status=4+ copies 1.00 Survival probability 0.75 -0.50 -0.25 p = 0.0320.00 -5 10 15 20 25 30 50 55 35 40 45 60 65 Time Number at risk 0 5 10 15 25 30 35 50 20 40 45 55 60 65 Time

Referências

- Noll, J.E., Vandyke, K., Hewett, D.R. et al. PTTG1 expression is associated with hyperproliferative disease and poor prognosis in multiple myeloma. J Hematol Oncol 8, 106 (2015). https://doi.org/10.1 186/s13045-015-0209-2
- João, Cristina et al. "Long-term survival in multiple myeloma." Clinical case reports vol. 2,5 (2014): 173-9. doi:10.1002/ccr3.76