K. NEAREST NEIGHBOUR (K. NN)									
			K. Neaux Christaing						
Problems-tellung.		K. Neaux Christaing 1 (1. Somester)							
Sendung	Gewicht (kg)	Volumen (m3)	Kategorie						
A	b	0/02	Normal						
В	50	0'15	Schwer						
C	30	010	Normal						
D	60	0/20	Schwer						
E	20	0 ¹ 05	Normal						
X	40	0 12	?						
X 40 0/12 ?									
Anhand bereits geclusterte Daten, sind wir in der Lage neue Daten einer Klasse zuzuordnen.									
Daten einer Klasse zuzuordnen.									
VORTEIL. Wir benotigen nicht eine rekursive									

VORTEIL. wir benötigen micht eine rekursive Herangehensweise (wie beim K. Means Clustening), KNN istein s.g. Lazy Learning Algorythmus.

SCHRITTE K.NN.

1. SCHRITT. HORMIEREN.
$$x_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$
(Min. Max Skalierung)

2. SCHRITT. Abstände vom neven Punkt zu allen Anderen.

$$d_{XA} = \begin{pmatrix} 0 - 06 \\ + \\ 0 - 055 \end{pmatrix} = 0^{1}8139. \quad N$$

$$Sending | Genidth | Nolimath | Kategorie | 10-10 | 0 002-b2 | 0 12-b2 |$$

$$d_{XD} = (1-0'6)^{2} + (1-0'55)^{2} = 0'602$$

$$d_{XE} = (0'2-0'6)^{2} + (0'167-0'55)^{2} = 0'5537$$
N

3. SCHRITT. Ordnen der Abstände aussteigend.

dxc < dxb < dxe < dxd < dxA N S N S N

4. SCHRITT. Mehrheitsentscheidung

K=1 bedeutet, wir nehmen nur einen Nichbar; die W. dafüs plass X

zu Kategorie N gehort ist 100/.

K=2 bedeutet, wir nehmen zwei Nachbar; die W. da fri, das X zur Vategorie N. gehört ist 50%. K=3 redertet, wir nehmen drei Nachbar, die W. dafür, dass X zur Kategorie N gehört ist 66%.

••

4. SCHRITT. Entscheidung der K.

Anhand der Wahrscheinlichkeiten sehen wir, dass
die optimale Verteilung bei K=3 erreicht wir.

X gehört also zur Wasse Normal.

•	TJ!	ang.			
		×	Y		
	ſ	0	0	$d_{XA} = (2-0)+(5-0)=5'38$ $d_{XA2} = 3'605$ 3	
A		ø	2	$d_{242} = 3605$	
	L	_ 1	1	dxA3 = 41123	
		3	2		2.
ħ	3	4	1	1	
		4	3	dx B3 = 2182	1
	1	-			
Ì	Ven	var/lund	le 2,5	Welche Wlasse?	
		^			
		0'33		→ K=3. A	classe B
			K= 1 K=2	2 K=3 K=4 K=5 K-6	