Quiz. 1 (Deadline March 07, 2024)

Problem 1

Given the ciphertext:

C UYGHARMZ IUWMPRWIR GAIR YVRMP

MBHMZWMPUM C VMMXWPE YV PYR VCZ

ZMGY MD VZYG CXCZG YP CPCXKTWPE CPD MBHXYZM

RNM VXYYD YV CDQCPUMD OPYSXMDEM SNWUN MCUN

KMCZ LZWPEI SWRN WR

- a) Please write a program to find out the frequencies of letters in the ciphertext.
- **b)** Use the plaintext frequency count information below as a reference to break this encrypted messages.

Table 1: Ciphertext letter frequency count: (times)

			_				_				`	,
A	В	С	D	Е	F	G	Н	Ι	J	K	L	M
2	2	12	6	4	0	5	3	4	0	2	1	19
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
5	1	12	2	9	3	1	6	7	9	6	12	9

Table 2: Common frequency of letters appearance: (%)

E	A	R	I	О	Τ	N	S	L	С	U	D	Р
11.16	8.5	7.58	7.54	7.16	6.95	6.65	5.74	5.49	4.54	3.63	3.38	3.17
M	Н	G	В	F	Y	W	K	V	X	Z	J	Q
3.01	3.0	2.47	2.07	1.81	1.78	1.29	1.10	1.01	0.29	0.27	0.20	0.20

Table 3: Ciphertext to plaintext mapping

Ciphertext	A	В	С	D	Е	F	G	Н	Ι	J	K	L	M
	0	1	2	3	4	5	6	7	8	9	10	11	12
Plaintext													
Ciphertext	N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
	13	14	15	16	17	18	19	20	21	22	23	24	25
Plaintext													

- c) Assume C is ciphertext, and P is plaintext. Can you find a particular relationship between C and P?
- d) Suppose " $f(x) = ax + b \mod 26$ ", where x is plaintext, please solve the value of a and b
- e) What is the key size of the Mono-Alphabetic Substitution Cipher? Such a size makes exhaustive search becomes difficult?
- f) (Bonus) Please try to see if it is possible to decipher this problem with ChatGPT or another tool.

Problem 2

Plaintext is encrypted using an affine cipher. A plaintext symbol, x, is drawn from \mathbb{Z}_{30} and, hence, encryption is defined as " $y = ax + b \mod 30$ ", where y is the resulting ciphertext and the encryption key is given by $k_{\text{enc}} = (a, b)$.

- a) Determine the size of the key space (that is, the total number of keys).
- **b)** Determine all values in \mathbb{Z}_{30} that have inverses and, by trail-and-error, determine the inverses.
- c) An attacker intercepts the following plaintext/ciphertext pairs:

X	У
4	8
10	26
27	7

Determine the encryption key $k_{\text{enc}} = (a, b)$.

d) Determine the decryption key $k_{\text{dec}} = (c, d)$, where " $x = cy + d \mod 30$ ".