

复分析

作者: 邹文杰

组织: 无

时间:2024/10/25

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

目录

第1章 复数与复变函数	1
1.1 复数的定义及其运算	1
1.2 复数的几何表示	3
1.3 扩充平面和复数的球面表示	7
1.4 复数列的极限	8
1.5 开集、闭集和紧集	9
1.6 曲线和域	13
1.7 复变函数的极限和连续性	15
	18
2.1 复变函数的导数	18
2.2 Cauchy-Riemann 方程	19
2.3 导数的几何意义	20
2.4 初等全纯函数 2	20
2.5 分式线性变换	20

第1章 复数与复变函数

1.1 复数的定义及其运算

定义 1.1 (复数域)

我们把复数定义为一对有序的实数 (a,b), 如果用 \mathbf{R} 记实数的全体, \mathbf{C} 记复数的全体, 那么

$$C = \{(a, b) : a \in \mathbf{R}, b \in \mathbf{R}\}.$$

在这个集合中定义加法和乘法两种运算:

$$(a,b) + (c,d) = (a+c,b+d),$$

$$(a,b)(c,d) = (ac - bd, ad + bc).$$

容易验证, 加法和乘法都满足交换律和结合律;(0,0) 是零元素,(-a,-b) 是 (a,b) 的负元素;(1,0) 是乘法的单位元素; 每个非零元素 (a,b) 有逆元素 $\left(\frac{a}{a^2+b^2},-\frac{b}{a^2+b^2}\right)$; 此外, \mathbb{C} 中的加法和乘法还满足分配律:

$$[(a,b) + (c,d)](e,f) = (a,b)(e,f) + (c,d)(e,f).$$

因此,C在上面定义的加法和乘法运算下构成一个域, 称为复数域. 如果记

$$\tilde{\mathbf{R}} = \{(a,0) : a \in \mathbf{R}\},\$$

那么 $\tilde{\mathbf{R}}$ 是 \mathbf{C} 的一个子域. 显然, $(a,0) \to a$ 是 $\tilde{\mathbf{R}}$ 与 \mathbf{R} 之间的一个同构对应, 因此, 实数域 \mathbf{R} 是 \mathbf{C} 的一个子域. 我们直接记 (a,0)=a. 在 \mathbf{C} 中,(0,1) 这个元素有其特殊性, 它满足

$$(0, 1)^2 = (0, 1)(0, 1) = (-1, 0) = -1.$$

专门用 i 记 (0,1) 这个元素,于是有 $i^2 = -1$. 由于 $(0,b) = (b,0) \cdot (0,1) = bi$,于是每一个复数 (a,b) 都可写成

$$(a, b) = (a, 0) + (0, b) = a + bi.$$

从现在开始, 我们不再用实数对 (a,b) 来记复数, 而直接用 z = a + bi 记复数, a 称为 z 的实部, b 称为 z 的虚部, 分别记为 a = Rez, b = Imz. 加法和乘法用现在的记号定义为:

$$(a + bi) + (c + di) = (a + c) + (b + d)i,$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i.$$

减法和除法分别定义为加法和乘法的逆运算:

$$(a+bi) - (c+di) = (a-c) + (b-d)i,$$

$$\frac{a+bi}{c+di} = (a+bi) \left(\frac{c-di}{c^2+d^2}\right) = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i.$$

设z = a + bi 是一复数,定义

$$|z| = \sqrt{a^2 + b^2},$$

$$\bar{z} = a - bi$$
,

|z| 称为 z 的模或**绝对值**, z 称为 z 的共轭复数.

定义 1.2 (有序域)

域 F 称为**有序域**, 如果在 F 的元素间能确定一种关系 (记为 a < b), 其满足下列要求:

(i) 对 F 中任意两个元素 a, b, 下述三个关系中必有而且只有一个成立:

$$a < b$$
, $a = b$, $b < a$;

- (ii) 如果 a < b, b < c, 那么 a < c;
- (iii) 如果 a < b, 那么对任意 c, 有 a + c < b + c;
- (iv) 如果 a < b, c > 0, 那么 ac < bc.

笔记 容易知道, 实数域是有序域, 而复数域则不是.

定理 1.1

复数域不是有序域.

证明 如果 C 是有序域, 那么因为 i ≠ 0,i 和 0 之间必有 i > 0 或 i < 0 的关系. 如果 i > 0,则由(iv)得 i · i > i · 0,即 -1>0, 再由(iii), 两端都加 1, 即得 0>1. 另一方面, 从 -1>0 还可得 $(-1)\cdot(-1)>0\cdot(-1)$, 即 1>0, 这和刚才得 到的0 > 1矛盾.如果i < 0,两端都加-i,得0 < -i,再由(iv),两端乘-i,得-1 > 0.重复上面的讨论,即可得0 > 1和 0 < 1 的矛盾. 所以, 复数域不是有序域.

命题 1.1 (复数运算性质)

设 2 和 w 是两个复数,那么

(i) Rez =
$$\frac{1}{2}(z + \bar{z})$$
,Imz = $\frac{1}{2i}(z - \bar{z})$;

(ii)
$$z\overline{z} = |z|^2, \overline{z} = \frac{|z|^2}{\overline{z}};$$

(iii) $\overline{z+w} = \overline{z} + \overline{w}, \overline{zw} = \overline{z}, \overline{w};$

(iii)
$$\overline{z+w} = \overline{z} + \overline{w}, \overline{zw} = \overline{z} \, \overline{w};$$

(iv)
$$|zw| = |z||w|, \left|\frac{z}{w}\right| = \frac{|z|}{|w|};$$

证明

- (i)
- (ii)
- (iii)
- (iv) 由 (ii) 可得 $|zw|^2 = (zw)(\overline{zw}) = |z|^2 |w|^2$, 进而 |zw| = |z||w|.
- (v)

命题 1.2

设 2 和 w 是两个复数,那么

- (i) $|\text{Re}z| \leq |z|, |\text{Im}z| \leq |z|$;
- (ii) $|z+w| \leq |z| + |w|$, 等号成立当且仅当存在某个实数 $t \geq 0$, 使得 z = tw;
- (iii) $|z w| \ge ||z| |w||$.

证明 (i) 从 Rez,Imz 和 |z| 的定义马上知道不等式成立.

(ii) 利用复数运算性质 (ii)(i)和这里的不等式 (i), 即得

$$|z+w|^2 = (z+w)(\overline{z+w}) = |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2$$

$$\leq |z|^2 + 2|z||w| + |w|^2 = (|z| + |w|)^2,$$

由此即知 (ii) 成立. 由上面的不等式可以看出,等式成立的充要条件是 $Re(z\overline{w}) = |z\overline{w}|$, 这等价于 $z\overline{w} \in \mathbb{R}$ 且 $z\overline{w} \ge 0$. 不妨设 $w \neq 0$ (w = 0 时, 等号显然成立), 由于 $\overline{w} = \frac{|w|^2}{w}$, 故 $z\overline{w} = \frac{z}{w}|w|^2 \geqslant 0$. 令 $t = \left(\frac{z}{w}|w|^2\right)\frac{1}{|w|^2}$, 则 $t \in \mathbb{R}$ 且 $t \geqslant 0$,

而且 z = tw.

(iii) 当 |z| = |w| 时, 结论显然成立.

当 |z| > |w| 时, 由 (ii) 可得

$$|z| = |(z - w) + w| \le |z - w| + |w|,$$

移项可得 $|z-w| \ge |z| - |w| = ||z| - |w||$. 由 (ii) 可知, 此时等号成立当且仅当存在某个实数 $t \ge 0$, 使得 z-w=tw, 即 z=(t+1)w.

当 |z| < |w| 时, 由 (ii) 可得

$$|w| = |(w - z) + z| \le |w - z| + |z|,$$

移项可得 $|z-w| = |w-z| \ge |w| - |z| = ||z| - |w||$. 由 (ii) 可知, 此时等号成立当且仅当存在某个实数 $t \ge 0$, 使得 w-z=tz, 即 w=(t+1)z.

推论 1.1

设 z_1, \dots, z_n 是任意n个复数,则

$$|z_1+\cdots+z_n|\leqslant |z_1|+\cdots+|z_n|.$$

证明 由命题 1.2(ii)及数学归纳法易证. 等号成立当且仅当 z_1, z_2, \cdots, z_n 线性相关.

1.2 复数的几何表示

在平面上取定一个直角坐标系, 实数对 (a,b) 就表示平面上的一个点, 所以复数 z = a + bi 可以看成平面上以 a 为横坐标、以 b 为纵坐标的一个点 (图 1.1). 这个点的极坐标设为 (r,θ) , 那么

 $a = r \cos \theta$, $b = r \sin \theta$,

因而复数 z = a + bi 也可表示为

$$z = r(\cos\theta + i\sin\theta).$$

这里, $r = |z| = \sqrt{a^2 + b^2}$ 就是前面定义过的 z 的模, θ 称为 z 的**辐角**, 记为 $\theta = \text{Arg}z$. 容易看出, 如果 θ 是 z 的辐角, 那么 $\theta + 2k\pi$ 也是 z 的辐角, 这里,k 是任意的整数, 因此 z 的**辐角有无穷多个**. 但是在 Argz 中, 只有一个 θ 满足 $-\pi < \theta \leq \pi$, 称这个 θ 为 z 的**辐角的主值**, 把它记为 argz. 因而

$$Argz = arg z + 2k\pi, k \in \mathbb{Z},$$

这里.Z表示整数的全体.注意.0的辐角没有意义.

我们还可把复数 z = a + bi 看成在 x 轴和 y 轴上的投影分别为 a 和 b 的一个向量, 这时我们就把复数和向量作为同义语来使用. 容易知道, 由一向量经过平行移动所得的所有向量表示的是同一个复数. 如果一个向量的起点

和终点分别为复数 z_1 和 z_2 , 那么这个向量所表示的复数便是 $z_2 - z_1$, 因而 $|z_2 - z_1|$ 就表示 z_1 与 z_2 之间的距离. 特别地, 当一个向量的起点为原点时, 它的终点所表示的复数和向量所表示的复数是一致的.

由此可以知道, 前面定义的复数的加法和向量的加法是一致的: 把两个不重合的非零向量 z_1 和 z_2 的起点取在原点, 以 z_1 和 z_2 为两边作平行四边形, 那么以原点为起点沿对角线所作的向量就表示 z_1+z_2 ; 以 z_2 为起点, z_1 为终点的向量就表示 z_1-z_2 (图 1.2). 现在再来看命题 1.2(ii)的不等式 $|z_1+z_2| \leq |z_1|+|z_2|$, 它实际上就是三角形两边之和大于第三边的最简单的几何命题.

定理 1.2

设 21, 20 是两个复数,则

(1) $|z_1z_2| = |z_1||z_2|$, $Arg(z_1z_2) = Argz_1 + Argz_2$.

(2)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
, Arg $\left(\frac{z_1}{z_2} \right) = \text{Arg} z_1 - \text{Arg} z_2$.

\$

笔记 在 (1) 中, 第一个等式在命题 1.1(iv) 中已经证明过; 第二个等式应该理解为两个集合的相等. 这就是说, 两个复数的乘积是这样一个复数, 它的模是两个复数的模的乘积, 它的辐角是两个复数的辐角之和. 从几何上看, 用复数 w 乘复数 z, 相当于把 z 沿反时针方向转动大小为 arg w 的角, 再让 z 的长度伸长 |w| 倍. 特别地, 如果 w 是单位向量, 那么 w w z 的结果就是把 z 沿反时针方向转动大小为 arg w 的角. 例如, 已知 i 是单位向量, 它的辐角为 $\frac{\pi}{2}$, 因此 i z 就是把 z 按反时针方向转动 $\frac{\pi}{2}$ 角所得的向量. 这种几何直观在考虑问题时非常有用.

在 (2) 中,第二个等式也理解为集合的相等. 这说明向量 z_1 与 z_2 之间的夹角可以用 $\operatorname{Arg}\left(\frac{z_1}{z_2}\right)$ 来表示, 这一简单的事实在讨论某些几何问题时很有用.

证明 为了说明复数乘法的几何意义,我们采用复数的三角表示式.设

$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1),$$

$$z_2 = r_2(\cos \theta_2 + i \sin \theta_2),$$

(1) 注意到

$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)).$$

由此立刻得到

$$|z_1 z_2| = |z_1||z_2|,$$

$$Arg(z_1z_2) = Argz_1 + Argz_2.$$

(2) 再看复数的除法,由于

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)],$$

所以

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|},$$

$$Arg\left(\frac{z_1}{z_2}\right) = Argz_1 - Argz_2.$$

命题 1.3

- (1) 向量 z_1 与 z_2 垂直的充要条件是 $Re(z_1\bar{z}_2) = 0$.
- (2) 向量 z_1 与 z_2 平行的充要条件为 $Im(z_1\bar{z}_2) = 0$.

证明

- (1) 这是因为 z_1 与 z_2 垂直就是 z_1 与 z_2 之间的夹角为 $\pm \frac{\pi}{2}$, 即 $\arg\left(\frac{z_1}{z_2}\right) = \pm \frac{\pi}{2}$, 这说明 $\frac{z_1}{z_2}$ 是一个纯虚数, 因而 $z_1\bar{z}_2 = \frac{z_1}{z_2}|z_2|^2$ 也是一个纯虚数, 即 $\operatorname{Re}(z_1\bar{z}_2) = 0$.
- (2) 这是因为 z_1 与 z_2 平行就是 z_1 与 z_2 之间的夹角为 $\pm \pi$, 即 $\arg\left(\frac{z_1}{z_2}\right) = \pm \pi$, 这说明 $\frac{z_1}{z_2}$ 是一个实数, 因而 $z_1\bar{z}_2 = \frac{z_1}{z_2}|z_2|^2$ 也是一个实数, 即 $\mathrm{Im}(z_1\bar{z}_2) = 0$.

例题 1.1 在图 1.3的三角形中,AB = AC,PQ = RS,M 和 N 分别是 PR 和 QS 的中点. 证明: $MN \perp BC$.

证明 把 A 取作坐标原点,AB 所在的直线取作 x 轴, 那么 P,Q 的坐标分别为 a 和 a+h. 如果用 $e^{i\theta}$ 记 $\cos\theta+i\sin\theta$, 那么 R 点和 S 点可分别用复数 $re^{i\theta}$ 和 $(r+h)e^{i\theta}$ 表示. 由于 M 和 N 分别是 PR 和 SQ 的中点, 所以 M 和 N 可以分别用复数表示为

$$M: \frac{1}{2}(a+r\mathrm{e}^{\mathrm{i}\theta}),$$

$$N: \frac{1}{2}[(a+h)+(r+h)e^{i\theta}].$$

若记 $z_1 = \overrightarrow{MN}$, 则

$$z_1 = \frac{1}{2}[(a+h) + (r+h)e^{i\theta}] - \frac{1}{2}(a+re^{i\theta}) = \frac{h}{2}(1+e^{i\theta}).$$

如果记 B 的坐标为 b, 因为 AB = AC, 所以 C 的坐标为 $be^{i\theta}$. 若记 $z_2 = \overrightarrow{BC}$, 则

$$z_2 = be^{i\theta} - b = b(e^{i\theta} - 1).$$

现在

$$z_1\bar{z}_2 = \frac{h}{2}(1 + e^{i\theta})b(e^{-i\theta} - 1) = \frac{bh}{2}(e^{-i\theta} - e^{i\theta}) = -ibh\sin\theta,$$

因而 $Re(z_1\bar{z}_2) = 0$. 所以由命题 1.3(1)可知 z_1 垂直 z_2 , 即 $MN \perp BC$.

例题 1.2 证明: 平面上四点 z_1, z_2, z_3, z_4 共圆的充要条件为

$$\operatorname{Im}\left(\frac{z_1 - z_3}{z_1 - z_4} / \frac{z_2 - z_3}{z_2 - z_4}\right) = 0. \tag{1.1}$$

证明 从图 1.4可以看出, z_1 , z_2 , z_3 , z_4 四点共圆的充要条件是向量 z_1-z_3 和 z_1-z_4 的夹角等于向量 z_2-z_3 和 z_2-z_4

的夹角或互补(当 z2 在 z3 与 z4 之间时),此时由命题 1.3(2)立得.即

$$\arg\left(\frac{z_1-z_3}{z_1-z_4}\bigg/\frac{z_2-z_3}{z_2-z_4}\right) = \arg\left(\frac{z_1-z_3}{z_1-z_4}\right) - \arg\left(\frac{z_2-z_3}{z_2-z_4}\right) = 0 \ \vec{\boxtimes} \pm \pi.$$

这说明复数 $\frac{z_1-z_3}{z_1-z_4} / \frac{z_2-z_3}{z_2-z_4}$ 在实轴上, 因而等式(1.1)成立.

定理 1.3 (De Moivre 公式)

对任意整数 n, 都有 $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$.

证明 设 $z_1 = r_1(\cos\theta_1 + i\sin\theta_1), \cdots, z_n = r_n(\cos\theta_n + i\sin\theta_n)$ 是给定的 n 个复数, 容易用数学归纳法证明:

$$z_1 \cdots z_n = r_1 \cdots r_n [\cos(\theta_1 + \cdots + \theta_n) + i\sin(\theta_1 + \cdots + \theta_n)].$$

特别当 $z_1 = \cdots = z_n$ 都是单位向量时, 就有

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta,$

其实,对于负整数,上面的公式也成立:

$$(\cos \theta + i \sin \theta)^{-n} = \frac{1}{(\cos \theta + i \sin \theta)^n} = \frac{1}{\cos n\theta + i \sin n\theta}$$
$$= \cos n\theta - i \sin n\theta = \cos(-n)\theta + i \sin(-n)\theta.$$

命题 1.4

设w是一个复数,则满足方程 $z^n = w$ 的复数根有n个,即

$$z = \sqrt[n]{|w|} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right), \quad k = 0, 1, \dots, n - 1.$$

证明 现在设 $w = r(\cos\theta + i\sin\theta)$ 是给定的, 要求的 $z = \rho(\cos\varphi + i\sin\varphi)$. 由 De Moivre 公式, $z^n = w$ 等价于

$$\rho^{n}(\cos n\varphi + \mathrm{i}\sin n\varphi) = r(\cos\theta + \mathrm{i}\sin\theta).$$

由此即得 $\rho = \sqrt[q]{r}, n\varphi = \theta + 2k\pi, k = 0, 1, \dots, n-1$. 这就是说, 共有 n 个复数满足 $z^n = w$, 它们是

$$z = \sqrt[n]{|w|} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right), \quad k = 0, 1, \dots, n - 1.$$

这n个复数恰好是以原点为中心、 $\sqrt[n]{|w|}$ 为半径的圆的内接正n 边形的顶点. 当w=1 时, 若记 $\omega=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}$,则 $\sqrt[n]{1}$ 的n个值为

$$1, \omega, \omega^2, \cdots, \omega^{n-1}$$

称为n个单位根. 如果用 $\sqrt[4]{w}$ 记 w 的任一n 次根, 那么w 的 n 个 n 次根又可表示为

$$\sqrt[n]{w}$$
, $\sqrt[n]{w}\omega$, \cdots , $\sqrt[n]{w}\omega^{n-1}$.

1.3 扩充平面和复数的球面表示

定义 1.3

为了今后讨论的需要, 我们要在 \mathbb{C} 中引进一个新的数 ∞ , 这个数的模是 ∞ , 辐角没有意义, 它和其他数的运算规则规定为:

$$z \pm \infty = \infty$$
, $z \cdot \infty = \infty \ (z \neq 0)$,

$$\frac{z}{\infty} = 0, \quad \frac{z}{0} = \infty \ (z \neq 0);$$

 $0 \cdot \infty$ 和 $\infty \pm \infty$ 都不规定其意义. 引进了 ∞ 的复数系记为 \mathbb{C}_{∞} , 即 $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$.

在复平面上, 没有一个点和 ∞ 相对应, 但我们想像有一个**无穷远点**和 ∞ 对应, 加上无穷远点的复平面称为**扩充平面**或**闭平面**, 不包括无穷远点的复平面也称为**开平面**.

注 在复平面上, 无穷远点和普通的点是不一样的,Riemann 首先引进了复数的球面表示, 在这种表示中,∞ 和普通的复数没有什么区别.

命题 1.5

证明: 扩充平面和单位球面对等, 即两者之间存在一个双射.

证明 设S是 \mathbb{R}^3 中的单位球面,即

$$S = \{(x_1, x_2, x_3) \in \mathbf{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}.$$

把 C 等同于平面:

$$\mathbf{C} = \{(x_1, x_2, 0) : x_1, x_2 \in \mathbf{R}\}.$$

固定 S 的北极 N, 即 N=(0,0,1), 对于 \mathbf{C} 上的任意点 z, 联结 N 和 z 的直线必和 S 交于一点 $P(\mathbf{N} \ 1.5)$. 若 |z|>1, 则 P 在北半球上; 若 |z|<1, 则 P 在南半球上; 若 |z|=1, 则 P 就是 z. 容易看出, 当 z 趋向 ∞ 时,球面上对应的点 P 趋向于北极 N, 自然地,我们就把 \mathbf{C}_{∞} 中的 ∞ 对应于北极 N. 这样一来, \mathbf{C}_{∞} 中的所有点 (包括无穷远点在内) 都被移植到球面上去了,这样我们就找到了一个扩充平面到单位球面的双射. 而在球面上,N 和其他的点是一视同仁的.

现在给出这种对应的具体表达式. 设 z = x + iy, 容易算出 zN 和球面 S 的交点的坐标为

$$x_1 = \frac{2x}{x^2 + y^2 + 1}, \ x_2 = \frac{2y}{x^2 + y^2 + 1}, \ x_3 = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}.$$

直接用复数 z, 可表示为

$$x_1 = \frac{z + \overline{z}}{1 + |z|^2}, \ x_2 = \frac{z - \overline{z}}{\mathrm{i}(1 + |z|^2)}, \ x_3 = \frac{|z|^2 - 1}{|z|^2 + 1}.$$

这样, 从z 便可算出它在球面上对应点的坐标. 反过来, 从球面上的点 (x_1, x_2, x_3) 也可算出它在平面上的对应点 z. 事实上, 从上面的表达式得

$$\begin{cases} x_1 + ix_2 = \frac{2z}{1 + |z|^2}, \\ 1 - x_3 = \frac{2}{1 + |z|^2}, \end{cases}$$

由此即得

$$z = \frac{x_1 + ix_2}{1 - x_3}.$$

这就是所需的计算公式. 现在我们可以具体地写出扩充平面到单位球面的双射

$$f: C_{\infty} \longrightarrow \mathbf{R}^{3}, z \longmapsto \left(\frac{z + \overline{z}}{1 + |z|^{2}}, \frac{z - \overline{z}}{\mathrm{i}(1 + |z|^{2})}, \frac{|z|^{2} - 1}{|z|^{2} + 1}\right).$$

 $f^{-1}: \mathbf{R}^{3} \longrightarrow C_{\infty}, (x_{1}, x_{2}, x_{3}) \longmapsto \frac{x_{1} + \mathrm{i}x_{2}}{1 - x_{3}}.$

1.4 复数列的极限

定义 1.4

对于 $a \in \mathbb{C}, r > 0$, 称

$$B(a,r) = \{ z \in \mathbb{C} : |z-a| < r \}$$

为以 a 为中心、以 r 为半径的**圆盘**. 特别当 a=0, r=1 时, $B(0,1)=\{z:|z|<1\}$ 称为**单位圆盘**. B(a,r) 也 称为 a 点的一个r 邻域, 或简称为 a 点的邻域. 无穷远点 $z=\infty$ 的邻域是指集合 $\{z\in \mathbb{C}:|z|>R\}$, 记为 $B(\infty,R)$.

定义 1.5

我们说 \mathbb{C} 中的复数列 $\{z_n\}$ 收敛到 \mathbb{C} 中的点 z_0 , 是指对于任给的 $\varepsilon > 0$, 存在正整数 N, 当 n > N 时, $|z_n - z_0| < \varepsilon$, 记作 $\lim z_n = z_0$. 或者从几何上来说, 对任给的 $\varepsilon > 0$, 当 n 充分大时, $z_n \in B(z_0, \varepsilon)$.

我们称复数列 $\{z_n\}$ 收敛到 ∞ , 是指对任给的正数 M>0, 存在正整数 N, 当 n>N 时, $|z_n|>M$, 记为 $\lim z_n=\infty$. 或者从几何上来说, 对任给的 M>0, 当 n 充分大时, $z_n\in B(\infty,M)$.

定理 1.4

设 $z_n = x_n + \mathrm{i} y_n, z_0 = x_0 + \mathrm{i} y_0$, 则 $\lim_{n \to \infty} z_n = z_0$ 的充分必要条件是 $\{z_n\}$ 的实部和虚部分别 $\lim_{n \to \infty} x_n = x_0$ 和 $\lim_{n \to \infty} y_n = y_0$.

证明 设 $z_n = x_n + iy_n, z_0 = x_0 + iy_0$, 从等式

$$|z_n - z_0| = \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2}$$

马上可以得到: $\lim_{n\to\infty} z_n = z_0$ 的充分必要条件是 $\{z_n\}$ 的实部和虚部分别 $\lim_{n\to\infty} x_n = x_0$ 和 $\lim_{n\to\infty} y_n = y_0$.

定义 1.6

复数列 $\{z_n\}$ 称为 Cauchy 列, 如果对任给的 $\varepsilon > 0$, 存在正整数 N, 当 m, n > N 时, 有 $|z_n - z_m| < \varepsilon$.

定理 1.5

 $\{z_n\}$ 是 Cauchy 列的充分必要条件是它的实部 $\{x_n\}$ 和虚部 $\{y_n\}$ 都是实的 Cauchy 列.

证明 设 $z_n = x_n + iy_n, z_m = x_m + iy_m$, 那么从等式

$$|z_n - z_m| = \sqrt{(x_n - x_m)^2 + (y_n - y_m)^2}$$

知道, $\{z_n\}$ 是 Cauchy 列的充分必要条件是它的实部 $\{x_n\}$ 和虚部 $\{y_n\}$ 都是实的 Cauchy 列.

定理 1.6 (复数域的 Cauchy 收敛准则)

 $\{z_n\}$ 收敛的充要条件是 $\{z_n\}$ 为 Cauchy 列.

0

全 笔记 由此知道复数域 C 是完备的.

证明 由定理 1.4和定理 1.5, 再结合实数域中的 Cauchy 收敛准则立刻得到复数域的 Cauchy 收敛准则.

1.5 开集、闭集和紧集

定义 1.7

设E是一平面点集,C中的点对E而言可以分为三类:

- (i) 如果存在 r > 0, 使得 $B(a,r) \subset E$, 就称 $a \to E$ 的**内点**;
- (ii) 如果存在 r > 0, 使得 $B(a,r) \subset E^c$, 就称 $a \to E$ 的外点, 这里, E^c 是由所有不属于 E 的点构成的集, 称为 E 的**余集**或**补集**;
- (iii) 如果对任意 r > 0,B(a,r) 中既有 E 的点,也有 E^c 的点,就称 a 为 E 的**边界点**.

定义 1.8

E 的内点的全体称为 E 的**内部**, 记为 E° ;

E 的外点的全体称为 E 的**外部**, 它就是 E 的余集 E^c 的内部, 即 $(E^c)^\circ$;

E 的边界点的全体称为 E 的**边界**, 记为 ∂E .

 $\widehat{\mathbb{S}}$ 笔记 由上面的定义可知, 集 E 把复平面分成三个互不相交的部分: $\mathbb{C} = E^{\circ} \cup (E^{c})^{\circ} \cup \partial E$, 即

$$(\partial E)^c = E^\circ \cup (E^c)^\circ. \tag{1.2}$$

例题 1.3 邻域的内部和边界 B(a,r) 中的所有点都是它的内点, 即 $B(a,r) = (B(a,r))^{\circ}, B(a,r)$ 的边界 $\partial B = \{z : |z-a|=r\}$, 即是圆周, 满足条件 |z-a|>r 的点 z 都是 B(a,r) 的外点.

定义 1.9

如果 E 的所有点都是它的内点, 即 $E = E^{\circ}$, 就称 E 为开集.

如果 E^c 是开集, 就称 E 为**闭集**.

例题 1.4 B(a,r) 是开集, 闭圆盘 $\{z: |z-a| \le r\}$ 是闭集, B(a,r) 和它的上半圆周的并集既不是开集也不是闭集.

定义 1.10

点 a 称为集 E 的极限点或聚点, 如果对任意 r > 0, B(a,r) 中除 a 外总有 E 中的点.

集E的所有极限点构成的集称为E的**导集**,记为E'.

E 中不属于 E' 的点称为 E 的**孤立点**.

E 和它的导集 E' 的并称为 E 的闭包, 记为 \bar{E} , 即 $\bar{E} = E \cup E'$.

命题 1.6

对于任意集E,有

(i) $a \in \bar{E}$ 的充要条件是对任意 $\varepsilon > 0$, 有

$$B(a,r) \cap E \neq \emptyset, \forall r > 0.$$
 (1.3)

这里,∅表示空集;

(ii)
$$(\overline{E})^c = (E^c)^{\circ}, \overline{E^c} = (E^{\circ})^c.$$

证明 (i) 若 $a \in \overline{E}$, 则 $a \in E$ 或 $a \in E'$, 不论何者发生, 总有 $B(a,r) \cap E \neq \emptyset$. 反之, 若等式(1.3)成立, 这说明 a 或是 E 的极限点, 或是 E 的孤立点, 因而 $a \in \overline{E}$.

(ii) 由 (i) 知, $a \in (\bar{E})^c$ 当且仅当存在 $\varepsilon > 0$,使得 $B(a,r) \cap E = \varnothing$,这说明 $a \notin E^c$ 的内点,即 $a \in (E^c)^\circ$,因而 $(\bar{E})^c = (E^c)^\circ$. 再看第二个等式, $a \in (E^\circ)^c$ 意味着 a 不是 E 的内点,即 $a \notin E$ 的外点或边界点,因而对任意 $\varepsilon > 0$,总有 $B(a,r) \cap E^c \neq \varnothing$,由 (i) 知 $a \in \overline{E^c}$. 因而 $\overline{E^c} = (E^\circ)^c$.

命题 1.7

- (i) E° 是开集, ∂E 和 \bar{E} 是闭集;
- (ii) E 是闭集的充要条件是 $E = \bar{E}$;
- (iii) E 是闭集的充要条件是 E' ⊂ E.

证明 (i) 任取 $a \in E^{\circ}$,则由定义知道,存在 $\varepsilon > 0$,使得 $B(a,\varepsilon) \subset E$.显然, $B(a,\varepsilon)$ 中的每一点都是 E 的内点,因而 $B(a,\varepsilon) \subset E^{\circ}$,即 $a \not\in E^{\circ}$ 的内点.由于 a 是任意取的,所以 E° 是开集.由刚才所证, E° 和 (E^{c})° 都是开集,两个开集的并当然也是开集,由等式(1.2)知 (∂E) c 是开集,因而 ∂E 是闭集.由于 (E^{c})° 是开集,由命题 1.6(ii)知,(\bar{E}) c 是开集,所以 \bar{E} 是闭集.

(ii) 如果 $E = \bar{E}$, 则由 (i) 知 \bar{E} 是闭集, 所以 E 是闭集. 反之, 如果 E 是闭集, 那么 E^c 是开集, 因而 $E^c = (E^c)^\circ$. 另外, 由命题 1.6(ii) 得 (\bar{E}) \bar{E} $\bar{$

定义 1.11

点集 E 的**直径**定义为 E 中任意两点间距离的上确界, 记为 diamE, 即

$$diam E = \sup\{|z_1 - z_2| : z_1, z_2 \in E\}.$$

定理 1.7 (Cantor 闭集套定理)

若非空闭集序列 $\{F_n\}$ 满足

- (i) $F_1 \supset F_2 \supset \cdots \supset F_n \supset \cdots$;
- (ii) $diam F_n \to 0$ (当 $n \to \infty$ 时),

那么
$$\bigcap_{n=1}^{\infty} F_n$$
 是一个独点集.

💡 笔记 这个定理是实数域中的区间套定理在复数域中的推广.

证明 在每一个 F_n 中任取一点 z_n , 我们证明 $\{z_n\}$ 是一个 Cauchy 点列. 由于 $\lim_{n\to\infty}$ diam $F_n=0$, 所以对任意 $\varepsilon>0$, 可取充分大的 N, 使得 diam $F_N<\varepsilon$. 今取 m,n>N, 由条件 (i), $z_m,z_n\in F_N$, 所以 $|z_n-z_m|\leqslant \text{diam} F_N<\varepsilon$. 因而 $\{z_n\}$ 是一 Cauchy 序列, 设其收敛于 z_0 . 我们证明 $z_0\in\bigcap_{n=1}^\infty F_n$. 事实上, 任取 F_k , 则当 n>k 时, z_n 便全部落入 F_k 中, 因

为 F_k 是闭的, 由命题 1.7(iii), $\{z_n\}$ 的极限 $z_0 \in F_k$, 所以 $z_0 \in \bigcap_{n=1}^\infty F_n$. 如果还有另一点 z_1 也属于 $\bigcap_{n=1}^\infty F_n$, 那么必有 $|z_0 - z_1| \le \operatorname{diam} F_n \to 0 (n \to \infty)$, 因而 $z_1 = z_0$.

定义 1.12

设 E 是一个集, $\mathscr{F} = \{G\}$ 是一个**开集族**, 即 \mathscr{F} 中的每一个元素都是开集. 如果 E 中每一点至少属于 \mathscr{F} 中的一个开集, 就说 \mathscr{F} 是 E 的一个**开覆盖**.

例题 1.5 E 是任一点集、 ε 是一个给定的正数、那么

$$\mathscr{F} = \{B(a, \varepsilon) : a \in E\}$$

便是E的一个开覆盖.

定义 1.13

我们说点集 E 具有**有限覆盖性质**, 是指从 E 的任一个开覆盖中必能选出有限个开集 G_1, \dots, G_n , 使得这有 限个开集的并就能覆盖E,即

$$E\subset\bigcup_{j=1}^nG_j$$
.

具有有限覆盖性质的集称为紧集.

例题 1.6 空集和有限集都是紧集,但单位圆盘 $B(0,1) = \{z \in \mathbb{C} : |z| < 1\}$ 却不是紧集,因为 $G_n = \{z : |z| < 1 - \frac{1}{n}\}, n = \{z \in \mathbb{C} : |z| < 1\}$ $2, 3, \dots$, 这一串同心圆构成 B(0, 1) 的一个开覆盖, 但从中找不出有限个集覆盖 B(0, 1).

定义 1.14

集 E 称为是**有界的**, 如果存在 R > 0, 使得 $E \subset B(0, R)$.

定理 1.8 (Heine-Borel 定理)

在 \mathbb{C} 中, \mathbb{E} 是紧集的充要条件为 \mathbb{E} 是有界闭集; 在 \mathbb{C}_{∞} 中, \mathbb{E} 是紧集的充要条件为 \mathbb{E} 是闭集.

证明 我们先证明,如果 $E \in \mathbb{C}_{\infty}$ 中的闭集或 \mathbb{C} 中的有界闭集,那么 E 是紧集,即从 E 的任一开覆盖 \mathscr{F} 中,可以选 出有限个开集覆盖 E. 先设 E 是 C_∞ 中的闭集, 如果 $z = \infty \notin E$, 则因 E 是闭集, 有 $E = \bar{E}$, 即 ∞ $\notin \bar{E}$, 由命题 1.6(i), 存在 R > 0, 使得 $B(\infty, R) \cap E = \emptyset$, 即 $E \subset \overline{B(0, R)}$, 因而 E 是有界闭集. 如果 $z = \infty \in E$, 由开覆盖的定义, ∞ 属于 罗中的某一个开集,而 E 在这个开集之外的部分是一有界闭集,只要再证明这个有界闭集的部分被有限个开集覆 盖即可. 总之, 不论何种情况发生, 只要考虑 E 是有界闭集的情形就够了.

现设 E 是有界闭集, 如果它不是紧集, 那么从 E 的开覆盖 $\mathscr T$ 中不能取出有限个开集来覆盖 E. 因为 E 是有 界的,它一定包含在一个充分大的闭正方形Q中:

$$Q = \{(x, y) : |x| \le M, |y| \le M\}.$$

把这个正方形分成相等的四个小正方形,则其中必有一个小正方形 Q_1 ,使得 $Q_1 \cap E$ 是有界闭集且不具有有限覆 盖性质. 再把 Q_1 分成四个相等的小正方形, 其中必有一个小正方形 Q_2 具有上述同样的性质. 这个过程可以无限 地进行下去,得到一列闭正方形 $\{Q_n\}$. 如果记 $F_n = Q_n \cap E$,那么 F_n 满足下列条件:

- (i) F_n 是有界闭集;
- (ii) $F_n \supset F_{n+1}, n = 1, 2, \cdots$;
- (iii) 不能从 \mathscr{F} 中取出有限个开集来覆盖 F_n ; (iv) 当 $n \to \infty$ 时, $\operatorname{diam} F_n \leqslant \frac{M}{2^n} \sqrt{2} \to 0$.

由 (i),(ii),(iv) 知道 $\{F_n\}$ 满足 Cantor 闭集套定理的条件,因而存在复数 z_0 ,使得 $\bigcap F_n = \{z_0\}$.由于 $z_0 \in F_n \subset E$, 故在 \mathscr{F} 中必有一个开集 G_0 , 使得 $z_0 \in G_0$. 由于 z_0 是 G_0 的内点, 故有 z_0 的邻域 $B(z_0, \varepsilon) \subset G_0$. 由于 $\operatorname{diam} F_n \to 0$, 故当n充分大时 $F_n \subset B(z_0, \varepsilon) \subset G_0$, 这就是说 G_0 覆盖了 F_n , 这与(iii)矛盾. 因而E是紧集.

现在证明必要性. 只要对扩充平面的情形来证明就够了, 因为如果一个集对扩充平面是闭的, 它又不包含无穷 远点,那么它必然是有界的.设 E 是一个紧集,我们要证明它是闭集,只要证明 E^c 是开集即可.为此,任取 $a \in E^c$,

只要证明 a 是 E^c 的内点就行了. 取这样的开集族 \mathscr{F} : 凡是闭包不包含 a 点的开集都属于 \mathscr{F} . 因为 $a \in E^c$, 因此对 E 中每一点 z, 都能找到它的邻域 $B(z,\varepsilon)$, 使得 $a \notin \overline{B(z,\varepsilon)}$, 所以 $B(z,\varepsilon) \in \mathscr{F}$. 这就是说, \mathscr{F} 是 E 的一个开覆盖. 由于 E 是紧集, 故能从 \mathscr{F} 中取出有限个开集 G_1, \cdots, G_n , 使得 $E \subset \bigcup_{i=1}^n G_j$. 但 $a \notin \overline{G_j}$, $j = 1, \cdots, n$, 所以 $a \in \bigcap_{i=1}^n (\overline{G_j})^c$. 显

然, $\bigcap_{j=1}^{n} (\overline{G_j})^c$ 是一个开集, 于是由开集和内点的定义可知, 存在 r>0, 使得 $B(a,r)\subset \bigcap_{j=1}^{n} (\overline{G_j})^c$. 而且从命题 1.6(ii)得

$$B(a,r)\subset\bigcap_{j=1}^n(\overline{G_j})^c=\bigcap_{j=1}^n(G_j^c)^\circ\subset\bigcap_{j=1}^nG_j^c=\left(\bigcup_{j=1}^nG_j\right)^c\subset E^c,$$

这就证明了 $a \in E^c$ 的内点, 即 E^c 是开集.

定义 1.15

设 E,F 是任意两个集,E,F 间的距离定义为

$$d(E, F) = \inf\{|z_1 - z_2| : z_1 \in E, z_2 \in F\}.$$

如果 $E = \{a\}$ 是由一个点所构成的集,那么a和F间的距离为

$$d(a, F) = \inf\{|a - z| : z \in F\}.$$

命题 1.8

- (1) 如果 F 是闭集, $a \notin F$, 那么 d(a, F) > 0.
- (2) 如果 E 是有限点集, 且 $E \cap F = \emptyset$, 当然也有 d(E, F) > 0.

证明

- (1) 此时必有 $\varepsilon > 0$, 使得 $B(a, \varepsilon) \cap F = \emptyset$, 因而 $d(a, F) \geqslant \varepsilon > 0$.
- (2)

定理 19

设 E 是紧集,F 是闭集, 且 $E \cap F = \emptyset$, 则 d(E,F) > 0.

注 若 E 是无穷闭集,F 也是闭集, 但 E 不是紧集, 且 $E \cap F = \emptyset$, 这时 d(E,F) > 0 未必成立.

例如,E 是整个实轴, $F = \{z = x + ie^x : -\infty < x < \infty\}$, 则 E 和 F 都是 \mathbb{C} 中的闭集, 而且 $E \cap F = \emptyset$, 但 d(E,F) = 0.

笔记 从这个定理可以看出,紧集之所以重要,在于它保留了大部分有限集的性质.

证明 任取 $a \in E$, 则 $a \notin F$, 所以 d(a,F) > 0. 今以 a 为中心、 $\frac{1}{2}d(a,F)$ 为半径作一圆盘,当 a 跑遍集 E 时,这些圆盘所组成的开集族就是 E 的一个开覆盖. 因为 E 是紧的,故从这个开覆盖中能选出有限个开集 G_1, \dots, G_n 来覆盖 E, 其中, $G_j = B\left(a_j, \frac{1}{2}d(a_j,F)\right)$, $j = 1, \dots, n$. 记

$$\delta = \min \left\{ \frac{1}{2} d(a_1, F), \cdots, \frac{1}{2} d(a_n, F) \right\}.$$

今任取 $z_1 \in E$, 则必有某个 G_i , 使得 $z_1 \in G_i$, 因而

$$|z_1 - a_j| < \frac{1}{2}d(a_j, F).$$

任取 $z_2 \in F$, 当然 $|z_2 - a_i| \ge d(a_i, F)$, 于是

$$|z_1 - z_2| \geqslant |z_2 - a_j| - |z_1 - a_j| \geqslant d(a_j, F) - \frac{1}{2}d(a_j, F) = \frac{1}{2}d(a_j, F) \geqslant \delta.$$

所以

$$d(E, F) = \inf\{|z_1 - z_2| : z_1 \in E, z_2 \in F\} \ge \delta > 0.$$

定理 1.10 (Bolzano-Weierstrass 定理)

任一无穷点集至少有一个极限点.

 \Diamond

注 这个定理也可以用证明Cantor 闭集套定理的方法给出另一个证明.

证明 设 E 是一个无穷点集, 如果 E 是无界集, 那么无穷远点便是它的极限点. 今设 E 是有界集, 如果它没有极限点, 那么它是一个闭集. 任取 $z \in E$, 由于它不是 E 的极限点, 故必存在 $\varepsilon > 0$, 使得 $B(z,\varepsilon)$ 中除 z 外不再有 E 中的点. z 取遍整个 E, 由这种 $B(z,\varepsilon)$ 构成的开集族便是 E 的一个开覆盖, 由Heine-Borel 定理, 能从中选出有限个来覆盖 E. 因为每个开集只包含 E 的一个点, 这说明 E 是一个有限集, 与 E 是无穷点集的假定矛盾, 因而 E 必有极限点.

1.6 曲线和域

定义 1.16 (连续曲线)

所谓**连续曲线**, 是指定义在闭区间 [a,b] 上的一个复值连续函数 $\gamma:[a,b] \to \mathbb{C}$, 写为

$$z = \gamma(t) = x(t) + iy(t), \ a \le t \le b,$$

这里,x(t),y(t) 都是 [a,b] 上的连续函数.

如果用 γ^* 记 γ 的像点所成的集合:

$$\gamma^* = \{ \gamma(t) : a \leqslant t \leqslant b \},$$

那么 γ^* 是 \mathbb{C} 上的紧集. 曲线 γ 的方向就是参数t增加的方向, 在这个意义下, $\gamma(a)$ 和 $\gamma(b)$ 分别称为 γ 的起点和终点.

如果 $\gamma(a) = \gamma(b)$, 即起点和终点重合, 就称 γ 为**闭曲线**.

如果曲线 γ 仅当 $t_1 = t_2$ 时才有 $\gamma(t_1) = \gamma(t_2)$, 就称 γ 为简单曲线或 **Jordan 曲线**.

如果只有当 $t_1 = a, t_2 = b$ 时才有 $\gamma(t_1) = \gamma(t_2)$, 就称 γ 为简单闭曲线或 Jordan 闭曲线, 或简称围道.

定义 1.17

设 $z = \gamma(t)(a \le t \le b)$ 是一条曲线. 对区间 [a,b] 作分割 $T: a = t_0 < t_1 < \cdots < t_n = b$, 得到以 $z_k = \gamma(t_k)(k = 0, 1, \cdots, n)$ 为顶点的折线 P, 那么 P 的长度为

$$|P| = \sum_{k=1}^{n} |\gamma(t_k) - \gamma(t_{k-1})|.$$

如果不论如何分割区间 [a,b], 所得折线的长度都是有界的, 就称曲线 γ 是**可求长的**, γ 的长度定义为 |P| 的上确界, 即

$$\sup_{T} \sum_{k=1}^{n} |\gamma(t_k) - \gamma(t_{k-1})|.$$

如果 $\gamma'(t) = x'(t) + iy'(t)$ 存在,且 $\gamma'(t) \neq 0$,那么 γ 在每一点都有切线, $\gamma'(t)$ 就是曲线 γ 在 $\gamma(t)$ 处的切向量,它与正实轴的夹角为 $\gamma(t)$ 如果 $\gamma'(t)$ 是连续函数,那么 γ 的切线随 $\gamma(t)$ 无语典线.在这种情况下, $\gamma(t)$ 的长度为

$$\int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \mathrm{d}t = \int_a^b |\gamma'(t)| \mathrm{d}t.$$

曲线 γ 称为**逐段光滑的**, 如果存在 t_0, t_1, \dots, t_n , 使得 $a = t_0 < t_1 < \dots < t_n = b, \gamma$ 在每个参数区间 $[t_{j-1}, t_j]$ 上是光滑的, 在每个分点 t_1, \dots, t_{n-1} 处 γ 的左右导数存在.

定义 1.18

平面点集 E 称为是**连通的**, 如果对任意两个不相交的非空集 E_1 和 E_2 , 满足

$$E = E_1 \cup E_2$$
,

那么 E_1 必含有 E_2 的极限点, 或者 E_2 必含有 E_1 的极限点. 也就是说, $E_1\cap \bar{E_2}$ 和 $\bar{E_1}\cap E_2$ 至少有一个非空.

命题 1.9

 \mathbb{C} 中的开集 E 是连通的充分必要条件是 E 不能表示为两个不相交的非空开集的并.

证明 设开集 E 是连通的, 如果存在不相交的非空开集 E_1 和 E_2 , 使得 $E = E_1 \cup E_2$. 由于 E_1 中的点都是 E_1 的内点, E_2 中的点都是 E_2 的内点, 因此 E_1 中没有 E_2 的极限点, E_2 中也没有 E_1 的极限点, 这与 E 的连通性相矛盾. 这就证明了条件的必要性. 反之, 如果开集 E 是不连通的, 则必存在不相交的非空集 E_1 和 E_2 ,使得 $E = E_1 \cup E_2$,且 E_1 中无 E_2 的极限点, E_2 中无 E_1 的极限点. 由此可见, E_1 和 E_2 均为开集. 这就证明了条件的充分性.

定理 1.11

平面上的非空开集 E 是连通的充分必要条件是:E 中任意两点可用位于 E 中的折线连接起来.

证明 先证必要性. 设 E 是平面上一个非空的连通的开集, 任取 $a \in E$, 定义 E 的子集 E_1, E_2 如下:

 $E_2 = \{z \in E : z \Rightarrow a \text{ 不能用位于} E \text{ 中的折线连接}\}.$

显然, $E = E_1 \cup E_2$, 而且 $E_1 \cap E_2 = \varnothing$. 现在证明 E_1 和 E_2 都是开集. 任取 $z_0 \in E_1$, 因 E 是开集, 故必有 z_0 的 邻域 $B(z_0,\delta) \subset E$. 这一邻域中的所有点当然可用一条线段与 z_0 相连, 因而可用位于 E 中的折线与 a 相连, 即 $B(z_0,\delta) \subset E_1$, 所以 E_1 是开集. 再任取 $z_0' \in E_2$, 则必有 z_0' 的邻域 $B(z_0',\delta') \subset E$, 如果此邻域中有一点能用一条折线与 a 点相连, 那么 z_0' 能用线段与该点相连, 因而 z_0' 能用折线与 a 点相连, 这与 z_0' 的定义矛盾. 因而 $B(z_0',\delta') \subset E_2$, 即 E_2 也是开集. 由 E 的连通性知道, E_1,E_2 中必有一个是空集. 由于 $a \in E_1$, 故 E_2 是空集. 因而 E 中所有点都能用 折线与 a 相连, 而 E 中任意两点可以用经过 a 的折线相连, 这就证明了必要性.

再证条件的充分性. 如果存在两个不相交的非空开集 E_1 , E_2 , 使得 $E=E_1\cup E_2$. 任取 $z_1\in E_1$, $z_2\in E_2$, 由假定, 这两点可用 E 中的折线连接, 因而折线中必有一条线段把 E_1 中的一点与 E_2 中的一点连接起来. 不妨设这条线段连接的就是 z_1 和 z_2 , 该线段的参数表示为

$$z = z_1 + t(z_2 - z_1),$$

其中,t ∈ [0,1]. 今设

$$T_1 = \{t \in (0,1) : z_1 + t(z_2 - z_1) \in E_1\},\$$

$$T_2 = \{t \in (0,1) : z_1 + t(z_2 - z_1) \in E_2\}.$$

则 T_1,T_2 是非空的不相交的开集,而且 $T_1 \cup T_2 = (0,1)$, 这与区间的连通性相矛盾.

定义 1.19

非空的连通开集称为域.

聲 笔记 从定理 1.11知道, 域中任意两点必可用位于域中的折线连接起来.

从几何上来看, 一个域就是平面上连成一片的开集. 例如, 单位圆的内部、上半平面、下半平面等都是域的例子.

定理 1.12 (Jordan 定理)

一条简单闭曲线 γ 把复平面分成两个域, 其中一个是有界的, 称为 γ 的内部; 另一个是无界的, 称为 γ 的外部, 而 γ 是这两个域的共同的边界.

 $\widehat{\mathbf{y}}$ 笔记 单位圆盘 $\{z:|z|<1\}$ 和圆环 $\{z:1<|z|<2\}$ 都是域, 但它们从函数论的角度来看有很大的差别, 原因是前者是单连通的, 而后者则不是.

证明

定义 1.20

域 D 称为是**单连通的**, 如果 D 内任意简单闭曲线的内部仍在 D 内, 不是单连通的域称为是**多连通的**.

定义 1.21

如果域D是由n条简单闭曲线围成的,就称D是n连通的,简单闭曲线中也可以有退化成一条简单曲线或一点的.

例题 1.7 单位圆盘是单连通的, 圆环 $\{z:1<|z|<2\}$ 是二连通的, 除去圆心的单位圆盘也是二连通的, 除去圆心和线段 $\left[\frac{1}{2},\frac{2}{3}\right]$ 的单位圆盘则是一个三连通域.

1.7 复变函数的极限和连续性

定义 1.22

设 E 是复平面上一点集, 如果对每一个 $z \in E$, 按照某一规则有一确定的复数 w 与之对应, 我们就说在 E 上确定了一个**单值复变函数**, 记为 w = f(z) 或 $f: E \to \mathbb{C}.E$ 称为 f 的定义域, 点集 $\{f(z): z \in E\}$ 称为 f 的值域.

如果对于 $z \in E$, 对应的 w 有几个或无穷多个, 则称在 E 上确定了一个**多值函数**.

瑩 笔记 例如, $w = |z|^2$, $w = z^3 + 1$ 都是确定在整个平面上的单值函数; 而 $w = \sqrt[6]{z}$,w = Argz 则是多值函数. 今后若非特别说明, 我们所讲的函数都是指单值函数.

注 复变函数是定义在平面点集上的,它的值域也是一个平面点集,因此复变函数也称为**映射**,它把一个平面点集 映成另一个平面点集. 与 $z \in E$ 对应的点 w = f(z) 称为 z 在映射 f 下的像点,z 就称为 w 的原像. 点集 {f(z) : $z \in E$ } 也称为 E 在映射 f 下的像,记为 f(E). 如果 $f(E) \subset F$,就说 f 把 E 映入 F,或者说 f 是 E 到 F 中的映射. 如果 f(E) = F,就说 f 把 E 映为 F,或者说 f 是 E 到 F 中的映射.

定理 1.13

设z = x + iy, 用 $u \rightarrow v$ 记w = f(z) 的实部和虚部,则有

w = f(z) = u(z) + iv(z) = u(x, y) + iv(x, y).

这就是说,一个复变函数等价于两个二元的实变函数 u = u(x, y) 和 v = v(x, y).

拿 **笔记** 例如 $w = z^2 = (x + iy)^2 = x^2 - y^2 + 2ixy$, 它等价于 $u = x^2 - y^2$ 和 v = 2xy 两个二元函数; 再如 w = |z|, 它等价于 $u = \sqrt{x^2 + y^2}$ 和 v = 0 这两个二元函数.

定义 1.23

设 f 是定义在点集 E 上的一个复变函数, z_0 是 E 的一个极限点,a 是给定的一个复数. 如果对任意的 $\varepsilon > 0$, 存在与 ε 有关的 $\delta > 0$, 使得当 $z \in E$ 且 $0 < |z - z_0| < \delta$ 时有 $|f(z) - a| < \varepsilon$, 就说当 $z \to z_0$ 时 f(z) 有极限 a, 记作 $\lim_{z \to z_0} f(z) = a$.

上述极限的定义也可用邻域的语言叙述为: 对于任给的 $\varepsilon > 0$, 存在与 ε 有关的正数 δ , 使得当 $z \in B(z_0, \delta) \cap$ ε 上 ε ε ε 的情形.

定理 1.14

设 f 是定义在点集 E 上的一个复变函数, z_0 是 E 的一个极限点,a 是给定的一个复数. $\lim_{z\to z_0} f(z) = a$ 的充分必要条件为

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = \alpha, \quad \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = \beta.$$

\$

筆记 由此可知,实变函数中有关极限的一些运算法则在复变函数中也成立,

证明 设 $a = \alpha + i\beta, z_0 = x_0 + iy_0, f(z) = u(x, y) + iv(x, y)$, 由下面的不等式

$$|u(x,y) - \alpha| \le |f(z) - a| \le |u(x,y) - \alpha| + |v(x,y) - \beta|,$$

$$|v(x, y) - \beta| \leqslant |f(z) - a| \leqslant |u(x, y) - \alpha| + |v(x, y) - \beta|$$

知道, $\lim_{z \to z_0} f(z) = a$ 的充分必要条件为

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = \alpha, \quad \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = \beta.$$

定义 1.24

我们说 f 在点 $z_0 \in E$ 连续, 如果

$$\lim_{z \to z_0} f(z) = f(z_0).$$

如果 f 在集 E 中每点都连续, 就说 f 在集 E 上连续.

定理 1.15

复变函数 f(z) = u(x,y) + iv(x,y) 在 $z_0 = x_0 + iy_0$ 处连续的充要条件是 u(x,y) 和 v(x,y) 作为二元函数在 (x_0,y_0) 处连续.

证明 由定理 1.14易得.

定义 1.25

f 在 E 上一致连续, 是指对任意 $\varepsilon > 0$, 存在只与 ε 有关的 $\delta > 0$, 对 E 上任意的 z_1, z_2 , 只要 $|z_1 - z_2| < \delta$, 就 有 $|f(z_1) - f(z_2)| < \varepsilon$.

定理 1.16

设E是 \mathbb{C} 中的紧集, $f:E\to\mathbb{C}$ 在E上连续,那么

- (i) f 在 E 上有界;
- (ii) |f| 在 E 上能取得最大值和最小值, 即存在 $a,b \in E$, 使得对每个 $z \in E$, 都有

$$|f(z)| \le |f(a)|, \quad |f(z)| \ge |f(b)|;$$

(iii) f 在 E 上一致连续.

 \Diamond

证明 (i)

(ii) 记 $M = \sup\{|f(z)| : z \in E\}$, 于是对每一自然数 n, 必有 $z_n \in E$, 使得

$$M - \frac{1}{n} \leqslant |f(z_n)| \leqslant M. \tag{1.4}$$

因为 E 是 \mathbb{C} 中的紧集, 由Heine-Borel 定理, E 为有界闭集. 再由Bolzano-Weierstrass 定理, $\{z_n\}$ 必有极限点, 即有一收敛子列 $\{z_{n_k}\}$, 设其极限为 a, 则 $a \in E$. 把(1.4)式写成

$$M-\frac{1}{n_k} \leq |f(z_{n_k})| \leq M,$$

让 $k \to \infty$, 并注意到 f 在 a 处的连续性, 即得 |f(a)| = M.

同理可证, 存在 $b \in E$, 使得 $|f(b)| = \inf\{|f(z)| : z \in E\}$.

(iii)

第2章 全纯函数

2.1 复变函数的导数

定义 2.1

设 $f: D \to \mathbb{C}$ 是定义在域 D 上的函数, $z_0 \in D$. 如果极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$
 (2.1)

存在, 就说 f 在 z_0 处**复可微**或**可微**, 这个极限称为 f 在 z_0 处的**导数**或**微商**, 记作 $f'(z_0)$. 如果 f 在 D 中每点都可微, 就称 f 是域 D 中的**全纯函数**或**解析函数**. 如果 f 在 z_0 的一个邻域中全纯, 就称 f 在 z_0 处**全纯**.

命题 2.1

若 f 在 z₀ 处可微,则必在 z₀ 处连续.

注 但反过来不成立, 即若 f 在 z_0 处连续, 则 f 未必在 z_0 处可微.

证明 设 f 在 z_0 处可微. 若记 $\Delta z = z - z_0$,则 (2.1) 式可以写成

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = f'(z_0)$$

或者

$$f(z_0 + \Delta z) - f(z_0) = f'(z_0)\Delta z + o(|\Delta z|)$$
(2.2)

由此即得 $\lim_{\Delta z \to 0} f(z_0 + \Delta z) = f(z_0)$, 这说明 f 在 z_0 处连续.

例题 2.1 函数 $f(z) = \overline{z}$ 在 \mathbb{C} 中处处不可微.

笔记 但容易看出这个函数在 \mathbb{C} 中却是处处连续的, 这是一个处处连续、处处不可微的例子. 其实, 在复变函数中这种例子很多, 例如 $f(z) = \operatorname{Rez}_s f(z) = |z|$ 都是. 但在实变函数中, 要举一个这样的例子却是相当困难的. 这说明在复变函数中可微的要求比实变函数中要强得多, 因而得到的结论也强得多, 这在以后的学习中将逐步揭示出来. 证明 对于任意 $z \in \mathbb{C}$. 有

$$\frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{\overline{z + \Delta z} - \overline{z}}{\Delta z} = \frac{\overline{\Delta z}}{\Delta z}$$

如果让 Δz 取实数,则 $\frac{\overline{\Delta z}}{\Delta z}=1$;如果让 Δz 取纯虚数,则 $\frac{\overline{\Delta z}}{\Delta z}=-1$. 因此,当 $\Delta z\to 0$ 时上述极限不存在,因而在 $\mathbb C$ 中处处不可导.

命题 2.2

(1) 若 f 和 g 在域 D 中全纯, 那么 $f \pm g$, fg 也在 D 中全纯, 而且

$$(f(z) \pm g(z))' = f'(z) \pm g'(z),$$

$$(f(z)g(z))' = f'(z)g(z) + f(z)g'(z).$$

如果对每一点 $z \in D, g(z) \neq 0$, 那么 $\frac{f}{g}$ 也是 D 中的全纯函数, 而且

$$\left(\frac{f(z)}{g(z)}\right)' = \frac{f'(z)g(z) - g'(z)f(z)}{(g(z))^2}.$$

(2) 设 D_1, D_2 是 \mathbb{C} 中的两个域,且

$$f:D_1\to D_2,$$

$$g:D_2\to\mathbb{C}$$

都是全纯函数, 那么 $h = g \circ f$ 是 $D_1 \to \mathbb{C}$ 的全纯函数, 而且 h'(z) = g'(f(z))f'(z). 这里, $g \circ f$ 记 f 和 g 的复合函数: $g \circ f(z) = g(f(z))$.

证明

- (1)
- (2)

2.2 Cauchy-Riemann 方程

定义 2.2

设 f(z) = u(x, y) + iv(x, y) 是定义在域 D 上的函数, $z_0 = x_0 + iy_0 \in D$. 我们说 f 在 z_0 处**实可微**, 是指 u 和 v 作为 x, y 的二元函数在 (x_0, y_0) 处可微.

今设 f 在 zo 处实可微,由二元实值函数可微的定义,有

$$u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0) = \frac{\partial u}{\partial x}(x_0, y_0)\Delta x + \frac{\partial u}{\partial y}(x_0, y_0)\Delta y + o(|\Delta z|), \tag{2.3}$$

$$v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0) = \frac{\partial v}{\partial x}(x_0, y_0)\Delta x + \frac{\partial v}{\partial y}(x_0, y_0)\Delta y + o(|\Delta z|), \tag{2.4}$$

这里, $|\Delta z| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$. 于是

$$\begin{split} f(z_0 + \Delta z) - f(z_0) &= u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0) + \mathrm{i}(v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0)) \\ &= \frac{\partial u}{\partial x}(x_0, y_0) \Delta x + \frac{\partial u}{\partial y}(x_0, y_0) \Delta y + o(|\Delta z|) + \mathrm{i}\left(\frac{\partial v}{\partial x}(x_0, y_0) \Delta x + \frac{\partial v}{\partial y}(x_0, y_0) \Delta y + o(|\Delta z|)\right) \\ &= \left(\frac{\partial u}{\partial x}(x_0, y_0) + \mathrm{i}\frac{\partial v}{\partial x}(x_0, y_0)\right) \Delta x + \left(\frac{\partial u}{\partial y}(x_0, y_0) + \mathrm{i}\frac{\partial v}{\partial y}(x_0, y_0)\right) \Delta y + o(|\Delta z|) \\ &= \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y + o(|\Delta z|). \end{split}$$

把 $\Delta x = \frac{1}{2}(\Delta z + \overline{\Delta z}), \Delta y = \frac{1}{2i}(\Delta z - \overline{\Delta z})$ 代入上式, 得

$$f(z_0 + \Delta z) - f(z_0) = \frac{1}{2} \frac{\partial f}{\partial x}(x_0, y_0)(\Delta z + \overline{\Delta z}) - \frac{i}{2} \frac{\partial f}{\partial y}(x_0, y_0)(\Delta z - \overline{\Delta z}) + o(|\Delta z|)$$

$$= \frac{1}{2} \left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right) f(x_0, y_0)\Delta z + \frac{1}{2} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f(x_0, y_0)\overline{\Delta z} + o(|\Delta z|).$$

引进算子

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right),
\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right), \tag{2.5}$$

则上式可写为

$$f(z_0 + \Delta z) - f(z_0) = \frac{\partial f}{\partial z}(z_0)\Delta z + \frac{\partial f}{\partial \overline{z}}(z_0)\overline{\Delta z} + o(|\Delta z|). \tag{2.6}$$

容易看出,(2.6)式和(2.3),(2.4)两式等价.

命题 2.3

设 $f: D \to \mathbb{C}$ 是定义在域 D 上的函数, $z_0 \in D$, 那么 f 在 z_0 处实可微的充分必要条件是 (4) 式成立, 其中, $\frac{\partial}{\partial z}$ 和 $\frac{\partial}{\partial \overline{z}}$ 是由 (3) 式定义的算子.

证明 为什么要像 (3) 式那样来定义算子 $\frac{\partial}{\partial z}$ 和 $\frac{\partial}{\partial \overline{z}}$ 呢? 这是因为如果把复变函数 f(z) 写成

$$f(x, y) = f\left(\frac{z + \overline{z}}{2}, -i\frac{z - \overline{z}}{2}\right),$$

把 z, z 看成独立变量, 分别对 z 和 z 求偏导数, 则得

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right),$$
$$\frac{\partial f}{\partial \overline{z}} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

这就是表达式 (3) 的来源. 这说明在进行微分运算时, 可以把 z, \overline{z} 看成独立的变量. 现在很容易得到 f 在 z0 处可微的条件了.

- 2.3 导数的几何意义
- 2.4 初等全纯函数
- 2.5 分式线性变换