Дослід Франка Герца

ФФ-93 Недождій Олексій

Формули для похибок:
$$\delta f_{\rm ct} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (f_i - \vec{f})^2}$$

$$\delta f_{\rm cuc} = \sqrt{\sum_{i=1}^{N} (\frac{\partial f}{\partial x_i} \cdot \delta x_i)}$$

$$\delta f_{\rm 3ar} = \sqrt{\delta^2 f_{\rm ccu} + \delta^2 f_{\rm ct}}$$

Данні Експерименту

Табл. 1: Експериментальні данні з осцилографа

_ · · · I·		r 1
\overline{U} , B	δU , B	
2.125	0.101	перегин
4.300	0.050	махимум
8.100	0.158	перегин
10.425	0.062	махимум
12.425	0.101	перегин
15.525	0.135	махимум
18.925	0.135	перегин
22.075	0.135	махимум
25.250	0.090	перегин
29.700	0.112	махимум
31.850	0.071	перегин
34.375	0.090	махимум

$$\delta U = \sqrt{0.05^2 + (\frac{1}{4} \sum_{i=1}^{4} (U_i - \overline{U})^2)^2}.$$

Табл. 2: Експериментальні данні з аналізатора в кГц

\overline{max}_{left}	\overline{max}_{right}
0.0255	0.0143
0.0425	0.0348
0.0635	0.0563
0.0848	0.0783
0.1050	0.0973
0.1440	0.1398
0.1850	0.1830

Табл. 3: Середнє між max_{left} та max_{right} в к Γ ц

$\overline{\nu}$	$\delta \nu$
19.875	6.920
38.625	5.592
59.875	5.421
81.500	5.257
101.125	5.592
141.875	4.557
184.000	4.153

В похибку був врахований ефект дрейфу нуля. В формулу для похибки додали центральне значення частоти.

$$\delta\nu = \sqrt{0.0005^2 + 0.004^2 + \frac{1}{8} \sum_{i=1}^{8} (\nu_i - \overline{\nu})^2}.$$

Осцилограф

$$\Delta E_1 = e(U_m ax2 - U_{max1}) = 11.2.$$

Визначперегинення енергії переходу

З даних, отриманих на аналізаторі (середні значення): Щоб визначити енергію з досліду з аналізатором, скористаємось співвідношенням:

$$E_x = \frac{E_0 \nu_0}{\nu_x} \tag{1}$$

де $E_0=42~{\rm eB}$ — енергія живлення, їй відповідає частота $\nu_0=19~\Gamma$ ц. Інструментальна похибка $\sigma_{\nu}=4~\Gamma$ ц;

Похибка для енергії
$$\sigma_{E_1} = \delta_E \cdot E = \frac{E_0 \nu_0}{\nu_x} \frac{\sigma_{\nu}}{nu}, \ \sigma_{E_2} = \frac{E_0}{\nu_x} \sigma_{\nu},$$

$$\sigma_E = \sqrt{(\sigma_{E_1})^2 + (\sigma_{E_2})^2}.$$

Отже, моємо такі значення:

u, Гц σ_{ν} , Гц E, eB σ_{E} , eB

E	ν
Перша енергія збудження	31.2941
Друга енергія збудження	18.7765
Третя енергія збудження	12.5669
Четверта енергія збудження	9.4104
П'ята енергія збудження	7.6
Шоста енергія збудження	5.5417
Сьома енергія збудження	4.3135