Box Wrapper Project Requirements

Motor Driving and Motor Cabling Sensors, Actuators, and Cabling PLC I/O Circuit Breakers

1 - Two Motors

- a) Up/Down for the wrapping stretch.
- b) Box Rotation

2 - Two Limit Switches

- a) High Limit
- b) Low Limit
- 3 Stretch Blade: to stretch after wrapping.
- 4 Rotation Count Proximity Sensor
- 5 Stretch Wrap empty Proximity sensor.

Motor Driving and Motor Cabling

UP/DOWN Motor

- 0.37 kw | 380VAC | 3-Phases I =W / (V * 0.7 * 1.73) = 0.8A
- Speed Control Req: VFD 0.37kW
- Overload not reg.
- Distance = 1m
- Cable 1*1.5mm

Rotation Motor

- 0.55 kW | 380VAC | 3-Phase I =W / (V * 0.7 * 1.73) = 1.2A
- Speed Control Reg: VFD 0.55kW
- Overload not req.
- Distance = 1m
- Cable 1*1.5mm

Total Power Consumption: 0.37 + 0.55 = 0.92 kw

Cable Extensions from motor to the electrical panel terminal blocks: 6m of 1*1.5mm.

Sensors, Actuators, and Cabling

Sensors:

- 1. **High Limit Switch** 24VDC NO | Distance = 2m | 2x0.75mm.
- 2. Low Limit Switch 24VDC NO | Distance = 1m | 2x0.75mm.
- 3. **Stretch Proximity Sensor** 24VDC | Distance = 2m | 3x0.75mm.
- 4. Count Proximity Sensor 24VDC | Distance = 1m | 3x0.75mm.

Current Consumption:

12mA per PLC input = 12mA x 4 = **48mA**. Power = 48mA x 24VDC = 1.1W

Cabling from the sensor to the terminal blocks

3m of 2x0.75 3m of 3x0.75

Actuators

- 1. VFD Rotation 24VDC Relay | 1x0.75mm | 24VDC Relay.
- 2. VFD UP_DOWN 24VDC Relay | 1x0.75mm | 24VDC Relay.
- 3. VFD UP_DOWN 24VDC Relay | 1x0.75mm | 24VDC Relay.
- 4. Spare 24VDC Relay | 1x0.75mm | 24VDC Relay.

Total Current Consumption:

12mA per PLC output (AVG) + 9mA per Relay coil. 12mA x 4 + 9mA x 4 = 84 mA (For Power Supply current rating)

Power = $24VDC \times 84mA = 2W$

PLC I/O

Digital Outputs:

- 1. Rotation Motor.
- 2. Up Down Motor.
- 3. Up Down Motor.
- 4. Spare 2

Digital Input:

- 1. High Limit Switch
- 2. Low Limit Switch

- 3. Stretch Proximity
- 4. Count Proximity
- 5. Motor1 OVLD
- 6. Motor2 OVLD
- 7. EMGC Stop
- 8. Spare 1
- 9. Spare 2

Analog Output:

- 1. VFD1 Frequency
- 2. VFD2 Frequency

HMI Choice: PLC that supports Profinet or Modbus or control over remote PC (PLC with Ethernet port)

DC Power Consumption and Power Supply:

Digital Outputs: $12mA \times 4 = 48mA$ Digital Inputs: $12mA \times 9 = 108mA$ Analog Outputs: $12mA \times 2 = 24mA$

Relays: $9mA \times 4 = 36mA$

PLC Internal or Power Consumption: 20mA

VFD Internal or Power Consumption: 5mA x 2 = 10mA

Total: 246mA

1mA 24VDC with short circuit protection industrial Power Supply

Circuit Breakers

Total Motors Power Consumption = 0.92kW = 920W

PLC I/O + PLC Power + Relays ~ 5W

Total Power 920W + 5W + 20% = 1.1kWTotal Current $1.1kW / (380 \times 0.7 \times 1.73) = 2.4A$

Note: Add 20% to the total power consumption for any further add-on.

VoltageDrop% = 1.73 x Current x Cable_Impedence_per_Meter x Cable Length x 100 / Voltage_Source_Rate.

BoxWrapperProj = $1.73 \times 24 \times 0.0138 \times 10 \times 100 / 380 = 1.5\%$ (Less than 3%) a 25A is needed. So, Main MCB rated at 25A Type C (to account for the InRush Current).

Note: Check table to voltage, cable, power

MCBs:

- 1. 24VDC Power Supply: MCB of 1A 1-Pole MCB Switching.
- 2. PLC: 1A ControlCircuit MCB 1A 1-Pole MCB Switching.
- 3. VFD $0.55kW : 0.55kW / (380 \times 1.73 \times 0.7) = 1.2A Switching$.
 - a. 2A 3-Pole MCB Type C (5-10 Times)
- 4. VFD $0.37kW : 0.37kW / (380 \times 1.73 \times 0.7) = 0.8A$ Switching.
 - a. 1A 3-Pole MCB Type C (5-10 Times)

Note: MCBs are used for switching only. Any MCB rating higher than the device max rating is enough.

Internal Electrical Panel Cabling:

- 1. DC Control (Relays, PLC): 0.75mm
- 2. VFDx2: 1.5mm
- 3. Main Circuit Breaker Input 1.5mm

24VDC = brown 0VDC = blue Phases = black Analog Output = white Digital Input = red Digital Output Brown/yellow

Note: Check country code standards.

Fuses:

Total current consumption = 250mA, so a 500mA fuse is enough