Aufgabe 1

		_		ragen sto in folger					_	JIL		(111	- je 1		, 50	,,,10	.,						
		-								Bed		orte											
		_							1	1				ngeb	ot								
							1	1	2	3	1	1 7		6									
				Ange	ebotso	rte	2	2	1	1		6 1		10									
		-					3	3	5	8	1	6 1		10									
		-					Nach	frage	2 7	5	1	D_3 D	4										
				cheinlichl	keitsv	erteil	lunge	n der	Nach	nfrag	gen a	an der	Bed	arfso	rten	3 un	d 4 si	nd					
		wie f	oigt ge	egeben:																			
					ä	ł	1	3 5	5		C	l	0	4									
		-		-	$P(D_3)$	=d	$\frac{1}{3}$	$\frac{1}{3}$ $\frac{1}{3}$	<u></u>	\overline{P}	$P(D_4)$	=d)	$\frac{1}{4}$	3/4									
		-				,	1 3	,	,		,		1 4	4									
	_			Durchfü	_			_									_						
		_		eichen s	ollte, s	so mi	üssen	zum	Ause	gleic	h de	er Diffe	erenz	wei	ere N	Лаßr	nahm	ien					
				erden:																			
				ie Nachf	_		_		_			-				_							
				osten bes												-		_					
			_	ie Koste	n je Ei	nheit	t für o	die Be	edarfs	orte	3 u	nd 4 b	etrag	gen d	ann í	[4€]	ozw.	11					
		€.																					
		• W	enn di	ie Nachf	rage g	ering	ger is	t als o	die Tr	ansı	ort	meng	, mu	ıss di	e üb	erscl	ıüssi	ge					
				gelagert,						_		_						_					
				sowohl i								_	_										
		-												,									
		a) F	ormul	ieren Sie	das Pı	roble	m als	zwei	stufio	es st	och	estisch	es lir	neare	Ont	imie	runo	S					
		1		n. Verwe														0					
		Ī			1				- 1					Ī		1	1						
t. i		<u></u>	1.	044	-						_,		. 0 0		0.4	4	10	\	2				
W	, •	W	rvv	len	10)((5		7 CT	حلا	lw	y Co	ψV	W	a			0				
													\	ן									
	_	-	7	Ship	e /	2.	Sh	nte															
		 '		1				-1-															
	1 4			-					•	0		. 7		_							-		
(Ov	bT	es	•	and	w		V	'W	101	ン	ىرو	٨ ,	-										
					\top				\top														
	A e			(.)	-	\ .			e e		0_												
/	1.3	mje	<u></u>	nbd	الم	W	19.	2 v c	VI.	W S													
		: - 2	> 0		T	(n,	Λ \ Λ	0	-m	m	۵ρ	N.	10	1	77 Q	06	ak	c) (Ł	0	1:	=1	. 2
		$-U^{\dagger}$			+ •	, 6.	795	•			M	V`	3 ()	+		۲	013			,	.		-
							- 1				•			- 1	•								
					n	ac	h	B	ldi	2/4	۱۲-	se E	ı.i			=1	$\mathcal{L}_{\mathcal{C}}$	3, 9	1)				
										`	•		V		U			ľ					
					+				+					+									
						1			- 1														L
					-																		
	1 9	+		E 0	1 1							(0.										

	y-; 20	Fehlbetrug	in Bednets	ort j $(j=3)$	4)
	D3 ≥ 0 D4 ≥ 0	Nachfrage Nachfrage Enfalls vo	in Bedartso	r t 3	(P ₃
		thester fochashaches Xij + Q(XA		1, X13, X24)	len: - Vallifrags
s.t.	clart { Xn:	+ X ₂ 1 + X ₃ + X ₁ 3 + X ₁	A ≥ 7 32 ≥ S A		darfsorte 1 3 4 Angebot 3 11 7 6 1 6 1 10 8 15 9 10
Angebot 2	X5, + X	2 + x23 + x2 32 + x35 + x3 V.	4 = 10 5 = 0		
Q(x13, X14)	1 X23, X24, 1 2 (X13, X14	$(y_3, x_{34}) = 16$ $(y_3, x_{24}, x_{34}) = 16$ $(y_4 + 8y_3^+)$	$(x^{3d}, D) =$	41 X23 , X24 1 X3	3, x34,D)
s.t.		4 K33 + 4 K34 + Kij (Y3		= D4	

des stochastischen Problems. A1) b) Szenario Λ S D3 04 Θ /P(s) Entscheidungs voriable de 2. Strife Yist Überschuss in Bederfoort j Yist Tehlbetrog in Bederfoort j Stevenio s in Sterció s $\min \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} + \frac{1}{12} \cdot (14y_{31}^{-} + 11y_{41}^{-} + 8y_{31}^{+} + 8y_{41}^{+})$ (s = 1) $+ \frac{1}{12} \cdot (14y_{32}^- + 11y_{42}^- + 8y_{32}^+ + 8y_{42}^+)$ (s = 2) $\frac{1}{12} \cdot (14y_{33}^{-} + 11y_{43}^{-} + 8y_{33}^{+} + 8y_{43}^{+})$ (s=3) $\frac{1}{4} \cdot (14y_{34}^{-} + 11y_{44}^{-} + 8y_{34}^{+} + 8y_{44}^{+})$ (s=4) $\frac{1}{4} \cdot \left(14y_{35}^{-} + 11y_{45}^{-} + 8y_{35}^{+} + 8y_{45}^{+}\right)$ (s = 5) $\frac{1}{4} \cdot (14y_{36}^{-} + 11y_{46}^{-} + 8y_{36}^{+} + 8y_{46}^{+})$ (s = 6)s.t. x_{31} x_{11} x_{12} x_{22} x_{32} x_{11} x_{12} x_{13} $+ x_{14}$ \leq 10 x_{22} x_{23} x_{24} x_{21} 10 x_{31} x_{32} x_{33} x_{34} y_{31}^{+} y_{31}^{-} -(s=1)1 x_{13} x_{23} x_{33} y_{41}^{-} -(s = 1) x_{24} x_{34} y_{32}^{-} -(s=2) x_{13} x_{23} x_{33} y_{42}^{-} - $0 \quad (s=2)$ x_{34} x_{14} x_{24} y_{33}^{-} -= 5 (s = 3) x_{33} x_{13} x_{23} y_{43}^{-} x_{24} x_{34} y_{34}^{-} x_{23} x_{33} y_{44}^{-} y_{44}^{+} x_{24} x_{34} y_{35}^{-} $x_{13} +$ y_{35}^{+} x_{23} x_{33} $y_{45}^+ = 4 \quad (s=5)$ $x_{14} +$ y_{45}^{-} x_{24} x_{34} y_{36}^{-} y_{36}^{+} = 5 (s = 6)+ x_{13} x_{23} x_{33} $y_{46}^- - y_{46}^+$ = 4 (s = 6) $x_{14} +$ x_{24} x_{34} \geq 0 i = 1, 2, 3 j = 1, 2, 3, 4 x_{ij} $0 j = 3, 4 s = 1, 2, \dots, 6$ j = 3, 4 $s = 1, 2, \dots, 6$

b) Formulieren Sie unter Berücksichtigung der vollständigen Daten die extensive Form

	gung jeder Tasche erford Schneiden und Färben, I lung verfügbare Zeit im		zeit (in Stundei	ı) in jeder der	vier Abteilungen:		
		Jähan Endhaarl	acituma Ouglit	ätakantualla i	Die in ieder Abtei		_
			_		,		
	0 0		iibjaiii ist begie	nzt. Ane mio	imationen sind in		
	der folgenden Tabelle au	iigeitiirt:					
		Schneiden	Endbear-	Qualitäts-			
		nd Färben Näl		kontrolle	Gewinn (€)		
	Standard			$\frac{1}{10}$	9		
	Deluxe		$\frac{1}{2}$ 1 $\frac{5}{6}$ $\frac{2}{3}$	$\frac{\overline{10}}{\frac{1}{4}}$	10		
	Verfügbare Zeit		$\frac{1}{6}$ $\frac{3}{708}$	$\frac{4}{135}$			
	verrugbare Zeit	030 00	700	100			
	Weiterhin hat das Unter	nehmen kürzlic	h zwei Forschı	ıngsanträge z	um Erhalt von fi-		
	nanzieller Unterstützun			-			
	und umweltfreundliche	_	_				
	Forschungsanträge redu	_	_				
	für die Herstellung der	-		_	_		
	schungsprojekte eingese						
	Hersteller die Erfolgswa		-		_		
	teilungen. Die Informat						
	Ergebnisse der beiden A		_	_			
							_
	Erf	olgs- Scl	hneiden	Endbear	- Qualitäts-		
	wahrsch	einlichkeit und	d Färben Näh	en tung	kontrolle		
	Antrag 1	0.5	50 40	80	10		
	— Antrag 2	0.4	30 50	70	15		
		,					
	Die Produktionsplanung	g für die Handta	schen muss be	reits erfolgen	, bevor das Ergeb-		
	nis der beiden Anträge	bekannt ist. Na	achdem der H	ersteller das	Ergebnis der bei-		
	den Anträge erfahren h	at, hat er jedocl	h noch die folg	genden (koste	enbehafteten) An-		
	passungsmöglichkeiten	für die Produkti	on zur Verfügt	ıng:			
	 Einplanung zusätzlich 	her Produktion	n von Standar	d-Handtasch	nen zu einem redu-		
	zierten Gewinn von 8	€ pro Tasche.					
	T' I I	1 1 1 1 1			T (0)		
	• Einplanung von Übe			_			
	4 € für jede zusätzlicl		_				
	Endbearbeitung bzw.		olle. In der <mark>En</mark>	dbearbeitung	g sind nur bis zu 100		
	Überstunden möglich	1.					
	a) Formulieren Sie das l	Problem als zwe	istufiges stocha	astisches linea	ares Optimierungs-		-
	— problem. Verwender		_				
	gen verfügbare Zeit a						
1.						2	-
W	ie wahlen	wir	けんする	Mull	rgsvoviable	7	
	_ / / CK.\\	e/d.Sh	مله				_
	71.314	10.01	vc) -				
(0)	bt es ano	we 1	Jarias	lan L			
				-			-
			0	101			
	1 totscheider	92000ia	len !	1. Stuf	و :		
	Entscheidun XA ≥ O	U		1			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Anzahl	Moon	rieter	Stondard-F Deluxe - F	tand tax	s dra

Entscheidungsvariablen de 2. Stufe: y = 0 Anzahl zwätzlicher produzieter Standard-Handtauchen J; ≥ O Zusattlide Produktionszeit in Abtelling Lujallsvehter/ Lujallsvariable 3: T; ≥0 Enfells variable fûr die in Abbellung i rer pigbare Produktions zeit TEIRY Intellibrenter alternative Modellie ungen des Enfallsrettors sind möglich Wir nutreu diese Modellieung für ein fadtre Verenbechingungen Ad) a) Frestripges stochashiches lineares Ophinieringsproblem: max 3x1 + 10x2 + Q (x1, x2) = 30 copplet S. €. x1, x2 ≥ 0 2. Stufe Vebenhedingigen! Q(x1, x2) = /ET [Q(x1, x2, T)] mit Q(x,(x2) = max 8y-57,-672-873-474 10 K1 + K2 + 10 Y = T1 + J1 1 2 4 5 1 2y = T2 + T2 X1 + 2 x2 + y & T3 + J3 und Färben Nähen tung kontrolle Gewinn (€) 10x1 + 4x2 + 20 Y = Ty + Jy Verfügbare Zeit J3 = 100

J1, J2, J3 J4 2 0

	ა:	સ્ય	ΛW	رزه		S			1			2			3)			4			-			
	A,	λ (ν	ر مر د	y	1			٨	ا د ر ا	1	/) ov		٨	رور	in			J						
	A	۸۲	^ا لا د	ر ۱	L			٨)ci	<u>n</u>	٨	/س/	1		ე ი	N.) မ	L					
		1,	<u> </u>	<u>, </u>				<u>1</u> ·	3		1	. ? 3	-	1	2 			4	2						
		11)(:	5			<u> </u>	<u>ئ</u> ـــ	٥						ئى ر				<u>۔</u>	•					
								0.3			— ე	اري			ر.2			0	.2						
		E	nb	scl	e	id	W	195	Va	liu.	ble	M		de	J	2	S	ruf	e:						
Y	' δ	≥ ()		Ą,	nte	χh	L	24	sũh	.lu	և _/) ()	dr	2 j`(v K	5	5	pla	rda	lo).	_			
					H	do Ve	1	096	لما	N	<u> </u>	1	7	70M	CA (10									
2	Tis	2	O		H	มผ	h	hid	ھ	Pro	du	lhhi	γό	ડર્વ્ય	大	in	A	દુ-િ	lu	nd i	in	()	7eu	Vijo	
					1	1			- 1	P(s =	1		- 1		- 1		1	1	- 1						
										P(s)															
										P(s)															
						7				P(s =															
				s.t.						O .1	L												•		
						-		$\frac{5}{6}x_2$						600 708		$ au_{21}$					`	= 1) = 1)			
								$\frac{\frac{2}{3}x_2}{\frac{1}{4}x_2}$						708 135		$ au_{31}$ $ au_{41}$						= 1)	7/1	emo	Ni
						10 ² 1	'	4 2 2	'					100	'	741						= 1)			
						$\frac{7}{10}x_1$	+	x_2	+					630	_	50	+	$ au_{12}$				= 2)			
								$\frac{5}{6}x_2$						600		40		$ au_{22}$				= 2)			
								$\frac{2}{3}x_2$						708		80		$ au_{32}$			(s =		7 3	4	
								$\frac{1}{4}x_2$						135				$ au_{42}$			(s =		+		
						-							\leq									= 2)	}		
						$\frac{7}{10}x_1$	+	x_2	+			$\frac{7}{10}y_3$	\leq	630	_	30	+	τ_{13}			(s =	= 3)	$\downarrow \downarrow$		
								$\frac{5}{6}x_{2}$				$\frac{1}{2}y_{3}$	\leq	600	_	50		τ_{23}			(s =	= 3)			
								$\frac{2}{3}x_2$						708		70		$ au_{33}$			(s =	= 3)	} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	22	
						$\frac{1}{10}x_1$	+	$\frac{1}{4}x_2$	+					135	-	15	+	τ_{43}				= 3)			
						7							\leq									= 3)			
						$\frac{7}{10}x_1$		x_2						630				30			(s =				
								$\frac{5}{6}x_2$				_		600				50			(s =		} S	4	
								$\frac{2}{3}x_2$						708				70			(s =		+		
						$\frac{1}{10}x_1$	+	$\frac{1}{4}x_2$	+					135	-	10	_	15	+	$ au_{44}$	(s =		}		
												$ au_{34}$									(s =	= 4)			
										a ·		x_1, x_2													
										g_1	, 92, 9	93, 94	<i>≤</i> ≥	0							, 2, 3,	,			

c) Gehen Sie nun nochmal einen Schritt zurück und geben Sie die zugehörige Erwartungswertformulierung an.

A2	.)	c)		B	Q/Q	_cl	re	u	(بلا	S	E	ru	JCI (٠ ١	ν φ	su)	ભ	+	d	رو	6	if	rl	lsi	J OS (ias	B.
-	1																											
			P																									
			= () ,	3 ·	6.	3 C) +	- (),હ	ی. ر	25	0	+	٥,	2.	60	0 0	+	ථු	2.	S	SC) =	= ,	ک	93	3
	Ī		= 3	56	O			,	7	3	= (် (၁	(0)	1		4	=	1	129	4							
ı	M	ax		ზ :	XA	+ /	(0)	X ₂	+	8	γ .	-	ۍ	JA	-	6	T 2		8	7	3	-	4 ?	ζų				
	۶,	<i>t</i> .												1				+ 7										
																		T + J										
																		3,										
									2	73	٢	/	(0	0														
								K	1,	×2																		
											2 2																	
										J 1																		

Klausur	11	.03.								
Anneldung	bî3	. 0	8.0	3.						