工程热力学大作业

作者: 能动B2104 杨牧天 2212212998

项目背景

水作为地球上分布做广泛的液态流体具有十分重要的研究意义,它被用作动力循环中的工作流体,为工业化国家提供了大量的电力。

在化工行业,水是最常见的溶剂。而在生物领域,水占人体的60%~70%, 其重要意义显而易见。

除了在常规领域,水在一些特殊应用中也发挥了重大的价值,例如超临界水氧化,超临界水氧化技术对处理有毒有害的废水和污泥具有非常好的效果,其在化工工业,制药工业,食品工业,电子工业都有所应用。

因此在实际生产中,明确水的物性至关重要,在以往的探索中,人们积累了大量实验数据,但由于现代工业对水的物性的精度不断提升,应用更加普遍,开发一个计算水及其蒸汽的物性的计算方法显得尤为重要。水和蒸汽性质国际协会(IAPWS)于2007年8月26-31日在瑞士卢塞恩举行会议,拟定发布了适用于工业用途的计算方法,称为IAPWS水和蒸汽热力学能性能工业方案1997,简称IAPWS-IF97

本项目基于Python科学计算模块 (Sympy, Scipy, Numpy, Pandas) 以及可视化模块Qt5 for Python (PyQt5) 进行对IAPWS-IF97的编程实现并制作可视化界面。

算法简介

算法可用范围:

 $\begin{array}{lll} 273.15 \; k \leq t \leq 1073.15 \; k & p \leq 100 \; Mpa \\ 1073.15 \; k \leq t \leq 2273.15 \; k & p \leq 50 \; Mpa \end{array}$

依据IAPWS-IF97,将整个有效范围划分为五个区域,其中,每个区域都有决定其性质的方程,根据此方程,我们可以通过数学运算将比体积,焓,熵等性质计算出来。

例: 1区域的计算公式

$$rac{g(p,T)}{RT} = \sum_{i=1}^{34} n_i (7.1 - \pi)^{I_i} (au - 1.222)^{J_i}$$

其中, $\pi=p/p^*, \ \tau=T^*/T$, $p^*=16.53Mpa, \ T^*=1386K$

由此,如果已知上述正则方程式所拟合而成系数 n_i, I_i, J_i ,那么便可以求出**无量纲吉布斯自由能**的表达式

再根据如下关系:

$$egin{aligned} v &= (rac{\delta g}{\delta p})_T \ &s &= -(rac{\delta g}{\delta T})_p \ &h &= g - T(rac{\delta g}{\delta T})_p \end{aligned}$$

即可以求出比体积,比焓,比熵等热力学性质。

系数具体数值如下表:

i	Ii	Ji	ni
1	0	-2	0.14633
2	0	-1	-0.84548
3	0	0	-3.756360
4	0	1	3.39E+00
5	0	2	-0.95792

i	Ii	Ji	ni	
6	0	3	0.15772	
7	0	4	-1.66E-02	
8	0	5	8.12E-04	
9	1	-9	2.83E-04	
10	1	-7	-6.07E-04	
11	1	-1	-1.90E-02	
12	1	0	-3.25E-02	
13	1	1	-2.18E-02	
14	1	3	-5.28E-05	
15	2	-3	-4.72E-04	
16	2	0	-3.00E-04	
17	2	1	4.77E-05	
18	2	3	-4.41E-06	
19	2	17	-7.27E-16	
20	3	-4	-3.17E-05	
21	3	0	-2.83E-06	
22	3	6	-8.52E-10	
23	4	-5	-2.24E-06	
24	4	-2	-6.52E-07	
25	4	10	-1.43E-13	
26	5	-8	-4.05E-07	
27	8	-11	-1.27E-09	
28	8	-6	-1.74E-10	
29	21	-29	-6.88E-19	
30	23	-31	1.45E-20	
31	29	-38	2.63E-23	
32	30	-39	-1.19E-23	
33	31	-40	1.82E-24	
34	32	-41	-9.35E-26	

可视化

通过使用Qt5 For Python进行可视化界面的设计可视化界面共分为如下几个功能:

1. 单次计算: 即根据输入的p, T的数值计算出对应状态下的v, h, s

- 2. 批量计算:通过读取输入的csv文件计算对应热力学值,并通过tab表格显示出来xiang
- 3. 结果绘图: 将计算出来的热力学性质数据连同p, T绘制在三维立体图上, 并添加绘制等压线, 等温线等功能, 并提供绘图风格选择

可视化成果展示及使用说明

主界面及图标

左上角为作者昵称, 封面为蒸汽, 与软件功能相扣; 中间偏左区域为一个 简短的功能说明以及参考资料来源

图标模仿某知名游戏平台

点击Start进入功能界面

data que	eries		sed to perfo			
the ta of data	able modu	ıle suppor	ts inputting	a large	amount	
e wish	ou a ple	easant exp	erience!			
Calcula	tion	Plot				
T(K)		Plot isothermal maps				
		Plot	isobaric dia	gram		
p (Mpa)		☐ Mapping water vapor properties				
		Drawing	style			
		© class	ic 🔾 dark_	back 🔘 se	eaborn	
Calculate			Plot			
		.)	Se:	lect File		
ìle Inpu	ıt: (.csv	')				
'ile Inpo Data	ıt: (.csv	')				
	ıt: (.esv 1		2		3 ^	

软件共分为四个功能区域

- 1. 最上方区域为使用说明区域,说明软件的使用方法以及注意事项
- 2. **左中区域**为单次查询区域,输入T与p点击Calculate即可得到计算结果
- 3. **右中区域**为绘图区域,仅在存在输入文件时可以使用,共有三个功能可以使用
 - 。 绘制等压面
 - 。 绘制等温面
 - 。 在整个范围内绘制特性曲面

此外,还提供三种绘图风格,及经典模式,暗背景模式,seaborn模式

4. **最下方区域**为文件输入与显示区域,**该部分仅支持输入csv文件**,输入文件后可在下方tab表格中显示

单次计算功能介绍

如图输入T为300K, p为3Mpa, 点击Calculate得到结果如下:

(界面有些简陋不要介意)

如此我们计算出了300K温度和3Mpa压强下的比体积,比焓,比熵的数值

批量计算功能介绍

点击Select File按钮进入文件选择界面:

选择测试文件1.csv

得到如下结果:

可见软件已经自动将对应的熵值计算了出来

绘图功能介绍

接着上述操作,直接点击Plot按钮

得到如下包含三个散点的散点图

勾选Plot isobaric dirgram,

Plot					
Plot isothermal maps					
☑ Plot isobaric diagram					
Mapping water vapor properties					
Drawing style					
● classic ○ dark_back ○ seaborn					
Plot					

再次点击Plot按钮:

得到包含等压面的三维图像

同理勾选Plot isothermal maps,点击Plot按钮:

得到包含等温面的三维图像

勾选Mapping water vapor properties,点击Plot:

得到完整的热力学性质图,也就是说,**所有的散点都应落在该曲面上**接下来,换不同的绘图风格做出包含等压面的图像如下:

缺点及不足之处

- 1. 没有考虑区域边界的连续性
- 2. 模型系数精确度不高,产生一定的误差
- 3. 软件仍然存在许多bug

感谢您的观看!