Лабораторное занятие №1 Различные системы счисления

1 Цель и порядок работы

Цель работы: Рассмотреть позиционные системы счисления, а также получить навыки по представлению числовых данных в различных системах счисления.

Порядок выполнения работы:

- 1. Изучить общие понятия, лежащие в основе систем счисления: алфавит, основание.
- 2. Освоить правила перевода чисел из одной системы счисления в другую, а также правила выполнения арифметических операций с двоичными числами.
- 3. Получить навыки представления чисел в машинных двоичных кодах.

2 Краткая теория

2.1 Арифметические основы

Все обрабатываемые данные в персональных компьютерах представлены в виде кодов и чисел в позиционной системе счисления.

Система счисления — это способ представления чисел цифрами, т.е. символами, имеющими количественное значение. По способу представления чисел системы счисления могут быть позиционные и непозиционные. В позиционной системе счисления количественное значение цифры зависит от ее места (позиции) в последовательности цифр, изображающих число, в непозиционной системе — нет. Например, десятичная система счисления — позиционная, римская — нет.

Путь q — основание позиционной системы счисления, а i — номер разряда числа. Любая a_i цифра в q- системе счисления может иметь значение в пределах $0 \le a_i \le q-1$. Значение a_i определяет количество единиц i — разряда числа. Примеры диапазона a_i для различных q даны в таблице 1.

Таблица 1 Примеры диапазона a_i различных q

q	16	15	•••	10	9	8	•••	4	3	2	1
a_i	0-15	0-14	•••	0-9	0-8	0-7	•••	0-3	0-2	0-1	0

Двоичная система счисления имеет минимальное основание позиционной системы счисления, в ней имеются всего 2 цифры: 0 и 1. В шестнадцатеричной системе счисления значения разрядов от 0 - 9 изображаются десятичными цифрами, а значения от 10 до 15 – латинскими буквами: A, B, C, D, E, F.

2.2 Представление чисел в позиционной системе счисления

Запись произвольного числа в позиционной системе счисления можно представить следующим образом:

$$A = \pm a_{m-1}a_{m-2} \dots a_i \dots a_1 a_0, a_{-1}a_{-2} \dots a_{-n}$$

где m –количество целых разрядов, n – дробных;

m+n – разрядность числа;

i – номер разряда (индекс): m-1≥ i ≥ -n.

Значения числа в позиционной системе счисления с основанием q – представляет собой разложение в ряд по степеням q:

$$A_{q} = \pm a_{m-1} \cdot q^{m-1} + \ldots + a_{i} \cdot q^{i} + \ldots + a_{1} \cdot q^{1} + a_{0} \cdot q^{0} + \ldots + a_{-n} \cdot q^{-n} = \pm \sum_{i=-n}^{m-1} a_{i} \cdot q^{i}$$

где i – номер разряда, q^i – вес i разряда, a_i – значение i разряда.

Примеры:

$$A_{10} = 123.459$$

$$A_{10} = 1 \cdot 10^{2} + 2 \cdot 10^{1} + 3 \cdot 10^{0} + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 9 \cdot 10^{-3}$$

$$A_{8} = 123.457$$

$$A_{8} = 1 \cdot 8^{2} + 2 \cdot 8^{1} + 3 \cdot 8^{0} + 4 \cdot 8^{-1} + 5 \cdot 8^{-2} + 7 \cdot 8^{-3}$$

$$A_{2} = 101.1101$$

$$A_{2} = 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 1 \cdot 2^{-4}$$

Диапазон значений числа зависит от q и разрядности чисел m и n. Количество различных чисел M, которое можно представить в q системе счисления с m или n разрядами, можно определить по формуле: $M=q^m$ или $M=q^n$

Примеры значений M для различных q и m приведены в таблице 2.

Из этой таблицы видно, что для представления любой цифры в восьмеричной системе счисления цифрами двоичной системы счисления нужно три двоичных разряда, а для представления любой цифры в шестнадцатеричной системе счисления — 4 двоичных разряда. Для представления любой цифры в десятичной системе счисления также достаточно четырех двоичных разрядов, но используются только 10 различных значений 4 — разрядного двоичного числа.

q	10	10	2	2	2	2
m	3	4	3	4	8	10
M	$10^3 = 1000$	104=10000	$2^3 = 8$	24=16	$2^{8}=256$	2 ¹⁰ =1024

Таблица 2 Примеры значений M для различных q и m.

2.3 Перевод из одной системы счисления в другую

Обозначим основания систем счисления: P = 10, q = 2.

Для перевода целого числа из одной позиционной системы счисления в другую $(P \to q)$ для P > q надо последовательно делить число на q, т. е. на основание той системы счисления, в которую переводится число, до тех пор пока не получится остаток меньше q. Число в новой системе счисления запишется в виде остатков от деления, начиная с младшего разряда результата. Последний остаток от деления даст старший разряд результата.

Пример:

Перевод числа 13 из десятичной системы счисления в двоичную.

- 13 1 младший разряд
 6 0
 3 1
 1 младший разряд
- 1 старший разряд.

Таким образом: $13_{10} = 1101_2$.

Для перевода целого числа из $q \to P \ (2 \to 10)$ надо использовать формулу:

$$A_p = \pm \sum_{i=-n}^{m-1} a_i q^i$$

Пример:

$$1101_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 8 + 4 + 0 + 1 = 13_{10}$$

Особые случаи правил перевода чисел. Если $P = q^k$, где k - целое, для записи числа в q-системе счисления каждая цифра числа в P-системе счисления записывается k разрядами цифр q-системы счисления.

Пример:

$$8 = 2^3$$
, $16 = 2^4$.

Перевод этих чисел в двоичную систему счисления и обратно очень прост. В общем виде A_i - значение разряда P-системы счисления:

$$A_i = a_{k-1} \cdot q^{k-1} + \ldots + a_1 \cdot q^1 + a_0 \cdot q^0$$

Пример:

 $k=3,\ P=8,\ q=2.$ Переведем из $P{\to}q$: так как $P=q^3$, то одной цифре в системе счисления P соответствует три цифры в системе счисления q.

$$A_i = a_2 \cdot q^2 + a_1 \cdot q^1 + a_0 \cdot q^0 = a_2 \cdot 2^2 + a_1 \cdot 2^1 + a_0 \cdot 2^0 = a_2 \cdot 4 + a_1 \cdot 2 + a_0 \cdot 1,$$
 где a_2 , a_1 , a_0 - значения разрядов двоичной системы счисления для представления одного разряда восьмеричной системы счисления.

Для перевода правильной дроби из одной позиционной системы счисления в другую $(P \rightarrow q)$ надо последовательно умножать дробную часть числа в P-системе счисления на q-основание той системы счисления, в которую число переводится. Дробь в q-системе счисления запишется в виде целых частей полученных произведений, начиная со старшего разряда. Целые части произведения в дальнейших операциях не используются.

Пример:

 $0.625 \cdot 2$

Старший разряд: 1,250 • 2

 $0,500 \cdot 2$

Младший разряд: 1,000

Таким образом: $0,625_{10} = 0,101_2$

Таблица 3 Правила перевода чисел из одной системы счисления в другую.

Перевод из числа	Целые	Дробные
10→2	A_p / q	$A_p \cdot q$
2→10	$A_p = \pm \sum_{i=0}^{m-1} a_i q^i$	$A_p = \pm \sum_{i=-n}^{-1} a_i q^i$

Если при умножении получается периодическая дробь в q-системе счисления, то в результате принимают требуемую разрядность числа.

Для перевода правильной дроби из $q \rightarrow P$ надо использовать стандартную формулу перехода.

Пример:

$$0,101_2 = 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} = 1 \cdot 0,5 + 0 \cdot 0,25 + 1 \cdot 0,125 = 0,625_{10}.$$

При переводе неправильных дробей отдельно переводят целую и дробную части и результаты складывают. В таблице 3 приведены правила перевода чисел из одной системы счисления в другую.

Существует также способ взаимного перевода чисел из восьмеричной и шестнадцатеричной системы счисления в двоичную систему счисления, благодаря использованию таблицы соответствия чисел в двоичной, восьмеричной и шестнадцатеричной системах счисления (табл .4).

Таблица 4 Соответствие чисел в двоичной, восьмеричной и шестнадцатеричной системах счисления.

Двоичная (S=2)	Четверичная (S=4)		Восьмеричная (S=8)		Шестнадцатеричная (S=16)	
(8=2)	алфавит	двойки	алфавит	триады	алфавит	тетрады
0	0	00	0	000	0	0000
1	1	01	1	001	1	0001
	2	10	2	010	2	0010
	3	11	3	011	3	0011
			4	100	4	0100
			5	101	5	0101
			6	110	6	0110
			7	111	7	0111
					8	1000
					9	1001
					A	1010
					В	1011
					C	1100
					D	1101
					E	1110
					F	1111

Например, переведем число 162,37₈ из восьмеричной системы счисления в двоичную и шестнадцатеричную системы счисления

$$162,37_8 = \underline{001} \ \underline{110} \ \underline{010}, \ \underline{011} \ \underline{111} \ \underline{2},$$

$$1 \quad 6 \quad 2 \quad 3 \quad 7$$

$$\underline{0111} \ \underline{0010}, \ \underline{0111} \ \underline{1100} \ \underline{2} = 72,7C_{16}$$

$$7 \quad 2 \quad 7 \quad C$$

Получаем, $162,37_8 = 1110010,0111111_2 = 72,7C_{16}$

Для выполнения арифметических операций над числами в ЭВМ используют специальные машинные коды: прямой, обратный и дополнительный. Применение машинных кодов сводит операцию вычитания к алгебраическому суммированию кодов этих чисел, упрощается определение знака результата операции.

В данных машинных кодах перед старшим цифровым разрядом располагается знаковый разряд, в котором записывается нуль для

положительного числа и единица для отрицательного числа. В дальнейшем при написании машинных кодов будем отделять знаковый разряд от цифровых разрядов точкой.

Прямой код двоичного числа содержит цифровые разряды, перед которыми записан знаковый разряд. Прямой код используется для представления отрицательных чисел в запоминающем устройстве ЭВМ.

Например, для двоичных чисел $x = +1010_2$ и $y = -1101_2$ их прямые коды будут иметь следующий вид:

$$x_{np} = 0.1010_2$$
 и $y_{np} = 1.1101_2$.

Обратный код положительного числа полностью совпадает с его прямым кодом. Для отрицательного числа он содержит единицу в знаковом разряде, а значащие цифровые разряды числа заменяются на инверсные, то есть единицы заменяются нулями, а нули — единицами.

Таким образом, для приведенного выше примера имеем:

$$x_{\text{обр}} = x_{\text{пр}} = 0.1010_2$$
 и $y_{\text{обр}} = 1.0010_2$.

Дополнительный код положительного числа полностью совпадает с прямым кодом, а следовательно и с обратным. Для отрицательного числа он образуется из обратного путем прибавления к нему единицы к младшему цифровому разряду.

Следовательно, получаем:

$$x_{\text{доп}} = x_{\text{обр}} = x_{\text{пр}} = 0.1010_2$$
 и $y_{\text{доп}} = 1.0011_2$.

2.4 Формы представления чисел в ПК

В ПК числа могут быть представлены одной из двух форм:

- 1) с фиксированной точкой (запятой) в естественной форме;
- 2) с плавающей точкой нормальная (полулогарифмическая) форма.

В языках программирования целая часть от дробной отделяется точкой. Числа с фиксированной точкой - в естественной форме:

12345 - целое число;

0.00345 - правильная дробь;

1.23456 - неправильная дробь.

Числа с фиксированной точкой состоят из двух частей:

- 1) А < 1: .Х...Х- точка фиксирована слева, число дробное; например: 0.123;
- 2) А > 1: Х...Х. -точка фиксирована справа, число целое; например: 123.4

В примерах буквой X обозначен цифровой разряд. Диапазон чисел рассмотренных случаев:

1)
$$q^{-n} \le |A| \le (1 - q^{-n}),$$

где q^{-n} - минимальное число, отличное от нуля;

n - разрядность дробного числа;

2)
$$1 \le |A| \le (q^m - 1)$$
,

где 1 - минимальное число, отличное от нуля;

m - разрядность целого числа.

Если для представления целого числа в компьютере выделяется 2 байта, один двоичный разряд отводится для представления знака числа, остальные 15 бит - для представления его знаков. Это позволяет хранить значения чисел в пределах: от -32768 до +32767. При нормальной форме число записывается в виде мантиссы и порядка. Например, число 12345 можно записать в виде:

$$1.2345 \cdot 10^4$$
, $12.345 \cdot 10^3$, $123.45 \cdot 10^2$, $123450 \cdot 10^{-1}$

То есть число представляется в виде мантиссы - цифрового значения числа и порядка; p - порядок числа (целое) - это показатель степени, в которую надо возвести q, и для получения значения числа в форме с фиксированной точкой надо мантиссу умножить на q^p . При этом точка мантиссы "плывет" на p разрядов вправо (при p > 0) или влево (при p < 0).

Форма представления чисел с плавающей точкой в общем случае:

 $A = \pm M \cdot q^{\pm p} \to \pm M \pm p$ - форма хранения числа в компьютере,

где M - мантисса числа; обычно |M| < 1;

q - основание системы счисления;

р - порядок числа, целое число.

В компьютере числа с плавающей точкой хранятся в виде нормализованных мантисс и порядка. *Нормализованная мантисса* - это правильная дробь, у которой первая цифра после точки отлична от нуля.

Пример:

Форма хранения Значение числа с фиксированной точкой

$$+0.830-2$$
 $+0.830\cdot10^{-2} \rightarrow 0.0083$

$$+0.123-1$$
 $+0.123\cdot10^{-1} \rightarrow 0.0123$

$$+0.456+3$$
 $+0.456\cdot10^{+3} \rightarrow 456$

Диапазон изменения нормализованной мантиссы для q-системы счисления:

$$q-1 < |M| < 1 - q-n$$

Для
$$q = 10 : 0.1 \le |\mathbf{M}| \le 0.9...9$$
.

Для
$$q = 2$$
: $0.1 \le |M| \le 0.1...1$.

Диапазон чисел с плавающей точкой (форма хранения):

$$q^{-1} \cdot -(q^k - 1) \le |A| \le (1 - q^{-n}) \cdot (q^k - 1)$$

где n - разрядность мантиссы,

k - разрядность порядка.

Для
$$q=10$$
, $n=11$ и $k=2$:

$$0.1 \cdot -99 \le |A| \le 0.99999999999 \cdot +99$$

Таким образом, числа в этом случае могут быть в пределах:

$$0.1 \cdot 10^{-99} \le |A| \le 0.99999999999 \cdot 10^{+99}$$

Для представления чисел с плавающей точкой в компьютерах выделяется 4, 6, 8 или 10 байт. Если для представления числа с плавающей точкой выделяется 6 байт, хранится 11 -разрядная мантисса и порядок в пределах от -39 до +38.

3 Контрольные вопросы

- 1. Что понимают под системой счисления?
- 2. В чем отличие позиционной системы счисления от непозиционной?

- 3. Что понимают под алфавитом системы счисления?
- 4. Что принято считать основанием системы счисления?
- 5. Какие системы счисления используются в информатике?
- 6. Каковы правила перевода чисел из одной системы счисления в другую?
- 7. Каковы правила выполнения арифметических операций с двоичными числами?
- 8. Охарактеризуйте машинные двоичные коды: прямой, обратный и дополнительный?
- 9. Какие формы представления чисел используются в ПК?
- 10. Чем определяется точность представления чисел?

4 Задание

- 1. Изучите теоретический материал, представленный в лабораторной работе.
- 2. Ответьте на теоретические вопросы.
- 3. Выполните задания, предназначенные для работы в аудитории. Сдайте работу преподавателю. (Выполнять задание необходимо на листочке без использования технических средств. На все операции необходимо представить подробное описание.)
- 4. Дома выполните домашнее задание, оформите отчет согласно требованиям и отправьте его преподавателю, как минимум за три дня до следующего занятия.

Вариант определяется по номеру студента в общем списке группы.

5 Задания к лабораторной работе:

5.1 Работа в аудитории

Задание 1. Переведите число из указанной системы счисления в десятичную систему счисления.

Варианты	Задание	Варианты	Задание
1.	242,38	2.	A2F,C ₁₆
3.	132,24	4.	331,24
5.	146,28	6.	22C,8 ₁₆
7.	332,14	8.	172,28
9.	11D,4 ₁₆	10.	1ED,7 ₁₆
11.	214,48	12.	22D,3 ₁₆
13.	161,28	14.	12B,8 ₁₆
15.	221,34	16.	71E,7 ₁₆
17.	103,28	18.	12F,8 ₁₆
19.	A1D,5 ₁₆	20.	81A,F ₁₆

Задание 2. Переведите число из десятичной системы счисления в двоичную систему счисления с точностью 3 знака после запятой.

Варианты	Задание	Варианты	Задание
1.	51,76 ₁₀	2.	57,49 ₁₀
3.	39,5410	4.	64,510
5.	56,4210	6.	61,29 ₁₀
7.	47,2910	8.	54,6110
9.	45,3110	10.	65,5210
11.	36,74 ₁₀	12.	66,3610
13.	76,5210	14.	77,45 ₁₀
15.	43,43 ₁₀	16.	83,6210
17.	37,53 ₁₀	18.	64,43 ₁₀
19.	44,95 ₁₀	20.	29,8810

Задание 3. Переведите число из десятичной системы счисления в шестнадцатеричную систему счисления с точностью 4 знака после запятой.

Варианты	Задание	Варианты	Задание
1.	82,210	2.	71,610
3.	84,910	4.	52,1510
5.	73,8 ₁₀	6.	73,4 ₁₀
7.	67,2 ₁₀	8.	91,310
9.	80,4 ₁₀	10.	86,510
11.	69,5310	12.	77,77 ₁₀
13.	51,5210	14.	57,8510
15.	43,7810	16.	63,9210
17.	38,73 ₁₀	18.	67,55 ₁₀
19.	49,87 ₁₀	20.	94,8310

Задание 4. Выполните указанные действия над двоичными числами:

Варианты	Задание	Варианты	Задание
1.	 a. 11001₂ + 1001₂; b. 1011₂ * 101₂. 	2.	 a. 10001₂ + 111₂; b. 1010₂ * 11₂.
3.	a. 110010 ₂ + 1101 ₂ ; b. 101 ₂ * 101 ₂ .	4.	 a. 10101₂ + 1011₂; b. 100₂ * 11₂.
5.	 a. 101011₂ + 1001₂; b. 1011₂ * 101₂. 	6.	 a. 10001₂ + 10101₂; b. 111₂ * 101₂.
7.	 a. 11010₂ + 1011₂; b. 1000₂ * 11₂. 	8.	 a. 1001₂ + 1001₂; b. 1001₂ * 1001₂.
9.	 a. 10001₂ + 1011₂; b. 1001₂ * 101₂. 	10.	a. 10001₂ + 111₂;b. 10101₂ * 11₂.
11.	a. 110110 ₂ + 1011 ₂ ; b. 101 ₂ * 111 ₂ .	12.	a. 11101 ₂ + 1011 ₂ ; b. 101 ₂ * 11 ₂ .
13.	a. 111001 ₂ + 1001 ₂ ; b. 1011 ₂ * 101 ₂ .	14.	a. 10001 ₂ + 11101 ₂ ; b. 1001 ₂ * 101 ₂ .
15.	a. 10010 ₂ + 1111 ₂ ; b. 1011 ₂ * 11 ₂ .	16.	a. 11001 ₂ + 101101 ₂ ; b. 11001 ₂ * 101 ₂ .
17.	a. 10111 ₂ + 1001 ₂ ; b. 1010 ₂ * 101 ₂ .	18.	a. 10001₂ + 111₂;b. 10101₂ * 11₂.
19.	a. 111110 ₂ + 1110 ₂ ; b. 1011 ₂ * 101 ₂ .	20.	 a. 11101₂ + 1011₂; b. 1011₂ * 101₂.

Задание 5. Переведите число из указанной системы счисления в двоичную, четверичную и восьмеричную (шестнадцатеричную) системы счисления. (Прим. Использовать таблицу 4)

Варианты	Задание	Варианты	Задание
1.	2AC,3B ₁₆	2.	426,358
3.	9A1,F2 ₁₆	4.	173,468
5.	42A,18 ₁₆	6.	532,418
7.	8E1,A ₁₆	8.	D2,A ₁₆
9.	412,738	10.	317,128
11.	5A,19 ₁₆	12.	D3,C ₁₆
13.	$D2B,8_{16}$	14.	661,38
15.	E1A,7 ₁₆	16.	677,58
17.	A2F,8 ₁₆	18.	574,38
19.	B1A,F ₁₆	20.	F1D,5 ₁₆

Задание 6. (Все числа однобайтовые с диапазоном значений от -128 до 127).

Варианты	Задание
1.	Выберите число, которое является минимальным среди следующих чисел: 1000000_2 , 62_8 , 39_{16} , 52_{10} .
2.	Расположите числа в порядке возрастания: 110010_2 , 73_8 , 40_{16} , 61_{10} .
3.	Выберите число, которое является максимальным среди следующих чисел: 100001_2 , 52_8 , $F2_{16}$, 63_{10} .
4.	Расположите числа в порядке убывания: 101001 ₂ , 43 ₈ , 36 ₁₆ , 52 ₁₀ .
5.	Выберите число, которое является минимальным среди следующих чисел: 100110 ₂ , 23 ₈ , 23 ₁₆ , 23 ₁₀ .
6.	Расположите числа в порядке убывания: 110111 ₂ , 76 ₈ , 3A ₁₆ , 54 ₁₀ .
7.	Выберите максимальное число: 110012, 248, 2416, 2410.
8.	Выберите число, которое является минимальным среди следующих чисел: 11001_2 , 23_8 , $C3_{16}$, 23_{10} .
9.	Расположите числа в порядке убывания: 110010 ₂ , 73 ₈ , 2B ₁₆ , 74 ₁₀ .
10.	Расположите числа в порядке возрастания: 100010_2 , 32_8 , 32_{16} , 32_{10} .
11.	Выберите число, которое является минимальным среди следующих чисел: 11111_2 , 35_8 , 75_{16} , 23_{10} .
12.	Расположите числа в порядке возрастания: 110010 ₂ , 73 ₈ , 2B ₁₆ , 74 ₁₀
13.	Выберите число, которое является минимальным среди следующих чисел: 1000001_2 , 63_8 , $A9_{16}$, 62_{10} .
14.	Расположите числа в порядке возрастания: 1101010 ₂ , 73 ₈ , B4 ₁₆ , 61 ₁₀ .
15.	Выберите число, которое является максимальным среди следующих чисел: 100001_2 , 52_8 , $4B_{16}$, 73_{10} .
16.	Расположите числа в порядке убывания: 10111001 ₂ , 43 ₈ , E6 ₁₆ , 48 ₁₀ .
17.	Выберите число, которое является минимальным среди следующих чисел: 1010110_2 , 23_8 , $C3_{16}$, 23_{10} .
18.	Расположите числа в порядке убывания: 110111 ₂ , 76 ₈ , 3A ₁₆ , 54 ₁₀ .
19.	Выберите максимальное число: 11101012, 248, 2416, 5710.
20.	Выберите число, которое является минимальным среди следующих чисел: 1111001_2 , 23_8 , $F3_{16}$, 45_{10} .

Задание 7. Если обратный код целого числа X имеет указанный вид, то чему будет равно его значение в десятичной системе счисления.

Варианты	Задание	Варианты	Задание
1.	111000012	2.	110001102
3.	100001012	4.	111101102
5.	111100012	6.	111110012
7.	111011012	8.	111101012
9.	111100112	10.	100011012
11.	101100012	12.	111101012
13.	111010012	14.	110111102
15.	100101012	16.	110011102
17.	111010012	18.	111011012
19.	110111012	20.	110001012

Задание 8. Задано десятичное число. Переведите это число в двоичную, четверичную, восьмеричную и шестнадцатеричную системы счисления для однобайтового формата с диапазоном значений от -128 до 127. Полученные значения приведите к двухбайтовому формату с диапазоном значений от -32768 до 32767.

Варианты	Задание	Варианты	Задание
1.	-55 ₁₀	2.	-32 ₁₀
3.	-64 ₁₀	4.	-53 ₁₀
5.	-72 ₁₀	6.	-74 ₁₀
7.	-17 ₁₀	8.	-95 ₁₀
9.	-8610	10.	-88 ₁₀
11.	-6710	12.	-73 ₁₀
13.	-2510	14.	-8210
15.	-43 ₁₀	16.	-37 ₁₀
17.	-28 ₁₀	18.	-75 ₁₀
19.	-4610	20.	-91 ₁₀

5.2 Домашнее задание

Для различных переменных в памяти компьютера выделено следующее количество байт:

- a 1 байт, с диапазоном значений от 0 до 255;
- b 1 байт, с диапазоном значений от -128 до 127;
- c-2 байта, с диапазоном значений от 0 до 65535;
- d-2 байта, с диапазоном значений от -32768 до 32767.

Вычислите значение выражения d=(a+d)*b+c, если:

№ варианта	a	b	c	d
1	3324	101100112	FFA1 ₁₆	156748
2	3214	101110112	AF21 ₁₆	257738
3	3224	110110112	BC37 ₁₆	17561 ₈
4	1314	101110112	E47C ₁₆	267548
5	2334	10111011 ₂	C79A ₁₆	167558
6	100100112	2314	102126 ₈	F4A1 ₁₆
7	101100112	3224	1276528	BFA7 ₁₆
8	100111112	3124	116547 ₈	CFC9 ₁₆

9	100011112	2334	1267728	E8A2 ₁₆
10	101100112	2324	1163518	A67C ₁₆
11	3224	10110111 ₂	FCA1 ₁₆	15664 ₈
12	3234	101100112	CF61 ₁₆	26773 ₈
13	3214	110100112	AC37 ₁₆	173718
14	2314	101100112	E48C ₁₆	265348
15	2314	10111001 ₂	C99A ₁₆	16645 ₈
16	100101112	2324	1176518	A4A1 ₁₆
17	101110112	3124	1276218	CFA7 ₁₆
18	100101112	3114	116557 ₈	BFC9 ₁₆
19	100011012	2314	126764 ₈	A8A2 ₁₆
20	101101112	2314	116363 ₈	E67C ₁₆

Порядок выполнения работы:

- 1. Переведите все числа в десятичную систему и вычислите выражение (a+d)*b+c.
- 2. Переведите все числа в любую из систем исчисления (двоичная, четверичная, восьмеричная или шестнадцатеричная, рекомендуется в шестнадцатеричную).
- 3. Определите диапазон результата и приведите числа к указанному формату.
- 4. Пошагово проведите вычисления выражения (a+d)*b+c с последующим присвоением результата переменной d. Вычисления необходимо проводить столбиком с подробным описанием. Новое значение переменной d переведите в десятичную систему счисления.
- 5. В случае расхождений нового значения переменной d с результатом из пункта 1, поясните разницу полученных вычислений. Укажите как можно исправить данную ситуацию.
- 6. Оформите отчет по лабораторной работе.
- 7. Отправьте отчет по лабораторному занятию преподавателю.

Требование к отчету:

- 1. Все вычисления проводить на листочке.
- 2. После проведенных вычислений отсканируйте или сфотографируйте результат работы и вставьте рисунки в вордовский документ.
- 3. В начале документа необходимо указать группу, вариант, ФИО студента.
- 4. В названии документа должно быть указано ФИО студента и № лабораторного занятия.

Пример: Иванов Иван Иванович ЛЗ1.docx