1. Loading The Dataset

```
import pandas as pd
data = pd.read_csv("data.csv")
data.head()
```

	Time	Temperature (°C)	Pressure (kPa)	Bottom Oil Temperature (°C)	Top Oil Temperature (°C)	BDV (kV)	Health Index (%)	Health Classification
0	4/22/2024	50	112	45	51	65	88	Bad
1	4/22/2024	70	118	51	58	63	71	Bad
2	4/22/2024	48	128	44	49	73	89	Good
3	4/22/2024	49	128	41	47	74	95	Good
4	4/22/2024	55	117	45	58	66	74	Need_Maintenance

2. Understanding The Dataset

```
data.shape
data.info()
data.isnull()
data.isnull().sum()
data.dtypes
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 5000 entries, 0 to 4999
     Data columns (total 8 columns):
      # Column
                                         Non-Null Count Dtype
      0 Time
                                         5000 non-null object
      1 Temperature (°C)
2 Pressure (kPa)
                                         5000 non-null int64
                                         5000 non-null
                                                          int64
      3 Bottom Oil Temperature (°C) 5000 non-null
      4 Top Oil Temperature (°C)
5 BDV (kV)
                                         5000 non-null
                                                          int64
                                         5000 non-null
                                                          int64
      6 Health Index (%)
                                         5000 non-null int64
      7 Health Classification
                                         5000 non-null object
     dtypes: int64(6), object(2)
     memory usage: 312.6+ KB
     Time
                                      object
     Temperature (°C)
                                       int64
     Pressure (kPa)
                                       int64
     Bottom Oil Temperature (°C)
                                       int64
     Top Oil Temperature (°C)
                                       int64
     BDV (kV)
                                       int64
     Health Index (%)
                                       int64
     Health Classification
                                      object
     dtype: object
data = pd.get_dummies(data)
data.columns
      \label{localized}  \mbox{Index(['Temperature (°C)', 'Pressure (kPa)', 'Bottom Oil Temperature (°C)', 'BDV (kV)', 'Health Index (%)', } 
             'Time_4/22/2024', 'Health Classification_Bad',
             'Health Classification_Good', 'Health Classification_Need Maintenance',
             'Health Classification_Need_Maintenance'],
            dtype='object')
```

3. Data Preprocessing

```
data['Temperature (°C)'] = data['Temperature (°C)'].astype('category')
data['Pressure (kPa)'] = data['Pressure (kPa)'].astype('category')
data['Bottom Oil Temperature (°C)'] = data['Bottom Oil Temperature (°C)'].astype('category')
data['Top Oil Temperature (°C)'] = data['Top Oil Temperature (°C)'].astype('category')
data['BDV (kV)'] = data['BDV (kV)'].astype('category')
data['Health Index (%)'] = data['Health Index (%)'].astype('category')
data.dtypes
data.describe().T
```

	count	unique	top	freq
Temperature (°C)	5000	24	47	892
Pressure (kPa)	5000	22	129	398
Bottom Oil Temperature (°C)	5000	14	43	646
Top Oil Temperature (°C)	5000	14	58	1461
BDV (kV)	5000	25	79	459
Health Index (%)	5000.0	41.0	95.0	722.0
Time_4/22/2024	5000	1	True	5000
Health Classification_Bad	5000	2	False	3913
Health Classification_Good	5000	2	False	2573
Health Classification_Need Maintenance	5000	2	False	3962
Health Classification_Need_Maintenance	5000	2	False	4552

4. Data Visualization

0.67

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.relplot(x="Temperature (°C)", y="Health Index (%)", data=df)
plt.title("Temperature (°C) vs. Health Index (%)")
plt.xlabel("Temperature (°C)")
plt.ylabel("Health Index (%)")
plt.show()
sns.relplot(x="Pressure (kPa)", y="Health Index (%)", data=df)
plt.title("Pressure (kPa) vs. Health Index (%)")
plt.xlabel("Pressure (kPa)")
plt.ylabel("Health Index (%)")
plt.show()
\verb|sns.relplot(x="Bottom Oil Temperature (°C)", y="Health Index (%)", data=df||
plt.title("Bottom Oil Temperature (°C) vs. Health Index (%)")
plt.xlabel("Bottom Oil Temperature (°C)")
plt.ylabel("Health Index (%)")
plt.show()
sns.relplot(x="Top Oil Temperature (°C)", y="Health Index (%)", data=df)
plt.title("Top Oil Temperature (°C) vs. Health Index (%)")
plt.xlabel("Top Oil Temperature (°C)")
plt.ylabel("Health Index (%)")
plt.show()
sns.relplot(x="BDV (kV)", y="Health Index (%)", data=df)
plt.title("BDV (kV) vs. Health Index (%)")
plt.xlabel("BDV (kV) (°C)")
plt.ylabel("Health Index (%)")
plt.show()
```


