Homework3part1

Henry Surjono

Part A

$$\ell(\mu, \Sigma | x_1, x_2, ... x_n) = -\frac{1}{2} nplog(2\pi) + nlog|\Sigma| + trace(\Sigma^{-1}C(\mu)), C(\mu) = \sum_{i=1}^n [(x_i - \mu)(x_i - \mu)^T].$$

for $\partial \ell(\partial \mu)$

$$\partial \ell(\partial \mu) = trace \sum_{i=1}^{n} \Sigma^{-1} (x_i - \mu)(\partial \mu^T).$$

for $\partial \ell(\partial \sigma)$

$$\begin{split} \partial \ell(\partial \Sigma) &= -\frac{n}{2} trace(\Sigma^{-1}\partial \Sigma) + \frac{1}{2} trace(\Sigma^{-1}(\partial \Sigma)\Sigma^{-1} \sum_{i=1}^{n} (xi - \mu)(xi - \mu)^{T}) \\ &= -\frac{n}{2} trace(\Sigma^{-1}\partial \Sigma) - \frac{1}{n} \Sigma^{-1}(\partial \Sigma)\Sigma^{-1} \sum_{i=1}^{n} (xi - \mu)(xi - \mu)^{T}) \\ &= -\frac{n}{2} trace(\Sigma^{-1}\partial \Sigma) - \frac{1}{n} \Sigma^{-1} \sum_{i=1}^{n} (xi - \mu)(xi - \mu)^{T} \Sigma^{-1}(\partial \Sigma)) \\ &= -\frac{n}{2} trace(\Sigma^{-1}(\Sigma - \frac{1}{n} \sum_{i=1}^{n} (xi - \mu)(xi - \mu)^{T})\Sigma^{-1}\partial \Sigma) \end{split}$$

.

Let
$$A = \Sigma^{-1} (\Sigma - \frac{1}{n} \sum_{i=1}^{n} (xi - \mu)(xi - \mu)^T \Sigma^{-1})$$
. $\partial(\partial \Sigma) = -\frac{n}{2} trace(A) \partial \Sigma$.

for $dl(\partial \mu, \partial \mu)$

$$\partial \partial \ell (\partial \mu \partial \mu) = -ntrace(\Sigma^{-1} \partial \mu \partial \mu^T)$$

for $dl(\partial \mu, \partial \sigma)$

$$\partial \partial \ell(\partial \mu, \partial \Sigma) = trace(-\Sigma^{-1}(\partial \Sigma)\Sigma^{-1} \sum_{i=1}^{n} (x_i - \mu) \partial \mu^T$$

for $\partial(\partial\sigma,\partial\sigma)$

$$\begin{split} \partial \ell(\partial \Sigma \partial \Sigma) &= -\frac{n}{2} trace \big(-\Sigma^{-1}(\partial \Sigma) \Sigma^{-1} \partial \Sigma - \frac{1}{n} [-\Sigma^{-1}(\partial \Sigma) \Sigma^{-1} \partial \Sigma^{-1} (C(\mu) + \Sigma^{-1}(\partial \Sigma) (-\Sigma^{-1})(\partial \Sigma) \Sigma^{-1})] \big) \\ &= ntrace \big[\Sigma^{-1} \big(\Sigma - \frac{C(\mu)}{n} \big) - \frac{1}{2} I \big) \big] \Sigma^{-1}(\partial \Sigma) \Sigma^{-1}(\partial \Sigma) \end{split}$$

for dl/dmu

$$\frac{\partial \ell}{\partial \mu_i} = \left[\Sigma^{-1} \sum_{i=1}^n (x_i - \mu) \right]_{\ell}$$

for $dl/d\sigma_{i=j}$ and i does not equal j

Let
$$A = \Sigma^{-1} \left(\Sigma - \frac{1}{n} \sum_{i=1}^{n} (xi - \mu)(xi - \mu)^T \Sigma^{-1} \right)$$
. $\frac{\partial \ell}{\partial \sigma_{ii}} = -\frac{n}{2} A_{ii} \frac{\partial \ell}{\partial \sigma_{ij}} = -\frac{n}{2} \left[A_{ij} + A_{ji} \right]$

for $dl/d\mu_{ij}d\mu_{i=j}$ and i does not equal j

$$\frac{\partial \partial \ell}{\partial \mu_i \partial \mu_j} = -n \left[\Sigma^{-1} \right]_{ij}$$

for $dl/(d\mu, d\sigma)_{i=j}$ and i does not equal j

when
$$\mathbf{i} = \mathbf{j} \frac{\partial \partial \ell}{\partial \mu_k \partial \sigma_{ii}} = -\sum_{w=1}^p \left[\left[\Sigma^{-1} \right]_{iw} \left[\Sigma^{-1} \right]_{ki} \left[\sum_{z=1}^n (x_z - \mu) \right]_w \right]$$

for $i \neq j \frac{\partial \partial \ell}{\partial \mu_k \partial \sigma_{ij}} = -\sum_{w=1}^p \left[\left[\left[\Sigma^{-1} \right]_{iw} \left[\Sigma^{-1} \right]_{kj} + \left[\Sigma^{-1} \right]_{jw} \left[\Sigma^{-1} \right]_{ki} \right] \sum_{z=1}^n (x_z - \mu) \right]_w \right]$

for $dl/d\sigma_{ij}, d\sigma_{kl}$

Let
$$A = \left[\Sigma^{-1} (\Sigma - \sum_{i=1}^{n} (xi - \mu)(xi - \mu)^T - \frac{1}{2}I)\Sigma^{-1} \right]$$
. Let $i = 1, j = 2, k = 3, l = 4$.

When i=j,k=l)
$$\frac{\partial \partial \ell}{\partial \sigma_{ij}\partial \sigma kl} = nA_{ki}[\Sigma^{-1}]_{ik}$$

When $i \neq j$ and $k \neq l$

$$\frac{\partial \partial \ell}{\partial \sigma_{ij} \partial \sigma kl} = n \left[A_{kj} [\Sigma^{-1}]_{il} + A_{ki} [\Sigma^{-1}]_{jl} + A_{lj} [\Sigma^{-1}]_{ik} + A_{li} [\Sigma^{-1}]_{jk} \right].$$

When
$$i \neq j$$
 and $k = l \frac{\partial \partial \ell}{\partial \sigma_{ij} \partial \sigma k l} = n \left[A_{kj} [\Sigma^{-1}]_{il} + A_{ki} [\Sigma^{-1}]_{jl} \right].$

When
$$i = j$$
 and $k \neq l$ $\frac{\partial \partial \ell}{\partial \sigma_{ij} \partial \sigma kl} = n \left[A_{ki} [\Sigma^{-1}]_{il} + A_{li} [\Sigma^{-1}]_{ik} \right].$

Part B

for $E[dl/d\mu_{ij}d\mu_{i=j}]$ and i does not equal j

Since the expected value of Σ^{-1} is itself.

$$E\left[\frac{\partial \partial \ell}{\partial \mu_i \partial \mu_j}\right] = n\left[\Sigma^{-1}\right]_{ii}$$

$$E\bigg[\tfrac{\partial \partial \ell}{\partial \mu_i \partial \mu_j}\bigg] = n\bigg[\Sigma^{-1}\bigg]_{ij} \text{ Since the expected value of } \Sigma^{-1} \text{ is itself.}$$

for $E[dl/(d\mu, d\sigma)_{i=j}]$ and i does not equal j

Since
$$E((x_i - \mu) = 0)$$
, then when $i = j \frac{\partial \partial \ell}{\partial \mu_k \partial \sigma_{ii}} = -\sum_{w=1}^p \left[\left[\Sigma^{-1} \right]_{iw} \left[\Sigma^{-1} \right]_{ki} \left[\sum_{z=1}^n (x_z - \mu) \right]_w \right]$
Since $E((x_i - \mu) = 0)$, then $E[dl/(d\mu, d\sigma)_{i=j}] = 0$ for $i=j$ and $i \neq j$

for $E[dl/d\sigma_{ij}, d\sigma_{kl}]$

Let A=
$$\left[\Sigma^{-1} (\Sigma - \sum_{i=1}^{n} (xi - \mu)(xi - \mu)^{T} - \frac{1}{2}I)\Sigma^{-1} \right]$$
. Let E[A] = $-\frac{1}{2}\Sigma^{-1}$

When i=j,k=l)
$$E[\frac{\partial \partial \ell}{\partial \sigma_{ij}\partial \sigma kl}] = n\frac{1}{2}\Sigma_{ki}^{-1}[\Sigma^{-1}]_{ik}$$

When $i \neq j$ and $k \neq l$

$$E[\frac{\partial \partial \ell}{\partial \sigma_{ij}\partial \sigma kl}] = n \left[\frac{1}{2} \Sigma_{kj}^{-1} [\Sigma^{-1}]_{il} + \frac{1}{2} \Sigma_{ki}^{-1} [\Sigma^{-1}]_{jl} + \frac{1}{2} \Sigma_{lj}^{-1} [\Sigma^{-1}]_{ik} + \frac{1}{2} \Sigma_{li}^{-1} [\Sigma^{-1}]_{jk} \right].$$

$$\text{When} i \neq j \text{ and } k = l \ E[\tfrac{\partial \partial \ell}{\partial \sigma_{ij} \partial \sigma k l}] = n \bigg[\tfrac{1}{2} \Sigma_{kj}^{-1} [\Sigma^{-1}]_{il} + \tfrac{1}{2} \Sigma_{ki}^{-1} [\Sigma^{-1}]_{jl} \bigg].$$

$$\text{When} i = j \text{ and } k \neq l \ E[\tfrac{\partial \partial \ell}{\partial \sigma_{ij} \partial \sigma k l}] = n \bigg[\tfrac{1}{2} \Sigma_{ki}^{-1} [\Sigma^{-1}]_{il} + \tfrac{1}{2} \Sigma_{li}^{-1} [\Sigma^{-1}]_{ik} \bigg].$$