

دانشگاه صنعتی شریف دانشکده مهندسی کامپیوتر

پایاننامه کارشناسی ارشد مهندسی نرمافزار

برخوردی صوری به آزمون میکروسرویسها

نگارش

سجاد واحدى فرد

استاد راهنما

دكتر حسن ميريان

خرداد ۱۴۰۲

به نام خدا دانشگاه صنعتی شریف دانشکده مهندسی کامپیوتر

پایاننامه کارشناسی ارشد

این پایاننامه به عنوان تحقق بخشی از شرایط دریافت درجه کارشناسی ارشد است.

عنوان: برخوردی صوری به آزمون میکروسرویسها

نگارش: سجاد واحدی فرد

كميته ممتحنين

استاد راهنما: دكتر حسن ميريان امضاء:

استاد مشاور: استاد مشاور

استاد مدعو: دكتر جعفر حبيبي امضاء:

تاريخ:

سپاس

از استاد بزرگوارم که با کمکها و راهنماییهای بی دریغشان، مرا در به سرانجام رساندن این پایاننامه یاری دادهاند، تشکر و قدردانی میکنم. همچنین از همکاران عزیزی که با راهنماییهای خود در بهبود نگارش این نوشتار سهیم بودهاند، صمیمانه سپاسگزارم.

چکیده

نگارش پایاننامه علاوه بر بخش پژوهش و آماده سازی محتوا، مستلزم رعایت نکات فنی و نگارشی دقیقی است که در تهیه ی یک پایاننامه ی موفق بسیار کلیدی و مؤثر است. از آن جایی که بسیاری از نکات فنی مانند قالب کلی صفحات، شکل و اندازه ی قلم، صفحات عنوان و غیره در تهیه ی پایاننامه ها یکسان است، با استفاده از نرمافزار حروف چینی زی تک و افزونه ی زی پرشین یک قالب استاندار د برای تهیه ی پایاننامه ها رائه گردیده است. این قالب می تواند برای تهیه ی پایاننامه های کارشناسی و کارشناسی ارشد و نیز رساله ی دکتری مورد استفاده قرار گیرد. این نوشتار به طور مختصر نحوه ی استفاده از این قالب را نشان می دهد.

كليدواژهها: پاياننامه، حروفچيني، قالب، زيپرشين

فهرست مطالب

١	۱ مقدمه	١
	۱-۱ تعریف مسئله	١
	۱-۲ اهمیت موضوع	١
	۱ – ۳ ادبیات موضوع	۲
	۱–۲ اهداف پژوهش	۲
	۱ – ۵ ساختار پایاننامه	۲
۲	۲ مفاهیم اولیه	٣
	۱-۲ میکروسرویس	٣
	۲-۱-۲ پروندهها	٣
	۲-۱-۲ عبارات ریاضی	٣
	۲-۱-۳ علائم ریاضی پرکاربرد	۴
	۲-۱-۲ لیستها ۲۰۰۰ سیستها	۵
	۲-۱-۵ درج شکل	۵
	۲-۱-۶ درج جدول	۶
	۲-۱-۷ درج الگوريتم	۶
	۲-۱-۸ محیطهای ویژه	۶
	۲-۲ برخی نکات نگارشی	٧

	۲-۲-۱ فاصله گذاری	٧
	۲-۲-۲ شكل حروف	٧
	۲-۲-۳ جدانویسی	٨
٣	کارهای پیشین کارهای پیشین	١.
	۱-۲ مسائل خوشهبندی	١.
	۲-۲ خوشهبن <i>دی k_مرکز</i>	١٢
	۲-۳ مدل جویبار داده	14
	۴-۲ تقریبپذیری	۱۵
۴	وش پیشنهادی	18
	۱-۱ چارچوب کلی	18
	۲-۲ مدلسازی سیستمهای پیچیده با معماری میکروسرویس با یاول	۱۷
	۳-۲ خودکارسازی ترجمهی مدلهای یاول به الوی	۱۹
	۴-۳-۱ توصیف مدلها در زبان الوی	۱۹
۵	ىتىجەگىرى	۲۱
مراج	Č	**
واژه	امه	74
Ĩ	بطالب تكميلي	46

فهرست جداول

۶												•											•		ن	5 1.	سه	اي	مق	ر	ماي	ئره	ىلگ	عه	١-	۲-	
۱۵								.ی	ىند	مەر	، نثر	خ	,	بائا	س.	s (ς,	زر	ارد	۰	, د	تق	; ,•	٠,_	اد	. د	ان	کہ	· ;	١,	ایے	ها	، نه	نم	۱ –	۳-	

فهرست تصاوير

۵			•		•	•		•	•		•			•			ُن	ی آ	أسو	, ر	ش	ۺ	ِ پو	ا و	ف	گرا	، گ	یک	1-1
۵																													
۱۲					•		•				•		•	•	•		ز	رک	_ ه	۲.	ی	;al'	i	ِ م	، از	ای	نه	نمو	1-1
۱۳																													
۱۷							•				•		•	•		ن	ت	اخ	پرد	ن ،	من	فد	- ر	ري	کا		دشر	گره	1-1
۱۸																L	ار	ىاو	در	ت	خد	دا-	ب	ت	۔ م	خد	لي .	مدا	۲_۲

فصل ۱

مقدمه

نخستین فصل یک پایاننامه به معرفی مسئله، بیان اهمیت موضوع، ادبیات موضوع، اهداف پژوهش و معرفی ساختار پایاننامه میپردازد. در این فصل نمونهی مختصری از مقدمه آورده شده است.

۱-۱ تعریف مسئله

نگارش یک پایاننامه علاوه بر بخشهای پژوهش و آمادهسازی محتوا، مستلزم رعایت نکات دقیق فنی و نگارشی است که در تهیه ی یک پایاننامه ی موفق بسیار کلیدی و مؤثر است. از آن جایی که بسیاری از نکات فنی مانند قالب کلی صفحات، شکل و اندازه ی قلم، صفحات عنوان و غیره در تهیه ی پایاننامهها یکسان است، می توان با ارائه ی یک قالب حروف چینی استاندارد نگارش پایاننامهها را تا حد بسیار زیادی بهبود بخشید.

۱-۲ اهمیت موضوع

وجود قالب استاندارد برای نگارش پایاننامه از جهات مختلف حائز اهمیت است، از جمله:

- ایجاد یکنواختی در قالب کلی صفحات و شکل و اندازهی قلمها
 - تسهیل نگارش پایاننامه با در اختیار گذاشتن یک قالب اولیه
- تولید خودکار صفحات دارای بخشهای تکراری نظیر صفحات ابتدایی و انتهایی پایاننامه

• پیشگیری از برخی خطاهای مرسوم در نگارش پایاننامه

۱-۳ ادبیات موضوع

اکثر دانشگاههای معتبر قالب استانداردی برای تهیهی پایاننامه در اختیار دانشجویان خود قرار میدهند. این قالبها عموما مبتنی بر نرمافزارهای متداول حروفچینی نظیر لاتک و مایکروسافت ورد هستند.

لاتک یک نرمافزار متنباز قوی برای حروفچینی متون علمی است. [۱، ۲] در این نوشتار از نرمافزار حروفچینی زیتک و افزونه ی زیپرشین استفاده شده است.

۱-۲ اهداف پژوهش

کتابخانه ی مرکزی دانشگاه صنعتی شریف دستورالعمل جامعی را در خصوص نحوه ی تهیه ی پایاننامه ی کارشناسی ارشد و رساله ی دکتری ارائه کرده است. در این نوشتار سعی شده است قالب استانداردی برای تهیه ی پایاننامه ها مبتنی بر نرمافزار لاتک و بر اساس دستورالعمل مذکور ارائه شده و نحوه ی استفاده از قالب به طور مختصر توضیح داده شود. این قالب می تواند برای تهیه ی پایاننامه های کارشناسی و کارشناسی ارشد و همچنین رساله های دکتری مورد استفاده قرار گیرد.

۱-۵ ساختار پایاننامه

این پایاننامه در پنج فصل به شرح زیر ارائه می شود. نکات اولیه ی نگارشی و نحوه ی نگارش پایاننامه در محیط لاتک در فصل دوم به اختصار اشاره شده است. فصل سوم به مطالعه و بررسی کارهای پیشین مرتبط با موضوع این پایاننامه می پردازد. در فصل چهارم، نتایج جدیدی که در این پایاننامه به دست آمده است، ارائه می شود. فصل پنجم به جمع بندی کارهای انجام شده در این پژوهش و ارائه ی پیشنهادهایی برای انجام کارهای آتی خواهد پرداخت.

¹LATEX

 $^{^2}$ X $_7$ T $_F$ X

³X₇Persian

فصل ۲

مفاهيم اوليه

در این قسمت مفاهیم مورد استفاده در پایان نامه و همچنین چند اصطلاح رایج در مبحث آزمون نرمافزار نوشته شده است [؟] [؟]

۱-۲ میکروسرویس

۱-۱-۲ يروندهها

پرونده ی اصلی پایاننامه در قالب استاندارد thesis.tex نام دارد. به ازای هر فصل از پایاننامه، یک پرونده در شاخه chapters ایجاد نموده و نام آن را در thesis.tex (در قسمت فصل ها) درج نمایید. برای مشاهده ی خروجی، پرونده ی thesis.tex را با زیلاتک کامپایل کنید. مشخصات اصلی پایاننامه را می توانید در پرونده front/info.tex ویرایش کنید.

۲-۱-۲ عبارات ریاضی

برای درج عبارات ریاضی در داخل متن از ... و برای درج عبارات ریاضی در یک خط مجزا از ... و برای درج عبارات ریاضی در داخل متن و عبارت زیر یا محیط equation استفاده کنید. برای مثال عبارت x + y در داخل متن و عبارت زیر

$$\sum_{k=1}^{n} \binom{n}{k} = \mathbf{Y}^n \tag{1-Y}$$

ا قالب استاندارد از گیتهاب به نشانی github.com/zarrabi/thesis-template قابل دریافت است.

در یک خط مجزا درج شده است. دقت کنید که تمامی عبارات ریاضی، از جمله متغیرهای تک حرفی مانند y و y باید در محیط ریاضی یعنی محصور بین دو علامت y باشند.

۲-۱-۲ علائم ریاضی پرکاربرد

برخی علائم ریاضی پرکاربرد در زیر فهرست شدهاند. برای مشاهدهی دستور معادل پروندهی منبع را ببینید.

- $\mathbb{N}, \mathbb{Z}, \mathbb{Z}^+, \mathbb{Q}, \mathbb{R}, \mathbb{C}$: as a same of $\mathbb{N}, \mathbb{Z}, \mathbb{Z}^+$
 - مجموعه: {1, ۲, ٣}
 - دنباله: (۱,۲,۳)
 - [x], [x] [x]
 - اندازه و متمم: \overline{A} اندازه
- $a \equiv \mathsf{N} \ (n \ \mathsf{yaling})$ يا $a \equiv \mathsf{N} \ (n \ \mathsf{yaling})$ همنهشتى:
 - ضرب و تقسیم: ÷,٠,×
 - سەنقطە: ۱, ۲, . . . , *n*
 - $\frac{n}{k}$, $\binom{n}{k}$: کسر و ترکیب
 - $A \cup (B \cap C)$: اجتماع و اشتراک
 - $\neg p \lor (q \land r)$ عملگرهای منطقی:
 - $\rightarrow,\Rightarrow,\leftarrow,\Leftarrow,\leftrightarrow,\Leftrightarrow$: پیکانها \bullet
 - eq عملگرهای مقایسهای: $eq , \geqslant , \geqslant , \geqslant
 eq$
- عملگرهای مجموعهای: \subsetneq , \searrow , \supset , \supseteq , \supseteq
 - $\sum_{i=1}^n a_i, \prod_{i=1}^n a_i$ جمع و ضرب چندتایی •
 - $\bigcup_{i=1}^n A_i, \bigcap_{i=1}^n A_i$ اجتماع و اشتراک چندتایی:
 - $\infty,\emptyset,\forall,\exists,\triangle,\angle,\ell,\equiv,$ نمادها: ... في نمادها: •

۲-۱-۲ لیستها

برای ایجاد یک لیست می توانید از محیطهای «فقرات» و «شمارش» همانند زیر استفاده کنید.

- مورد اول
- مورد دوم
- مورد سوم ۳. مورد سوم

۲−۱−۲ درج شکل

یکی از روشهای مناسب برای ایجاد شکل استفاده از نرمافزار LaTeX Draw و سپس درج خروجی آن به صورت یک فایل tex درون متن با استفاده از دستور fig یا centerfig است. شکل ۱-۲ نمونهای از اشکال ایجادشده با این ابزار را نشان می دهد.

شکل ۲-۱: یک گراف و پوشش رأسی آن

همچنین می توانید با استفاده از نرمافزار Ipe شکلهای خود را مستقیما به صورت pdf ایجاد نموده و آنها را با دستورات img یا centering درون متن درج کنید. برای نمونه، شکل ۲-۲ را ببینید.

شكل ٢-٢: نمونه شكل ايجادشده توسط نرمافزار Ipe

۲-۱-۶ درج *جدو*ل

برای درج جدول می توانید با استفاده از دستور «جدول» جدول را ایجاد کرده و سپس با دستور «لوح» آن را درون متن درج کنید. برای نمونه جدول ۲-۱ را ببینید.

جدول ۲-۱: عملگرهای مقایسهای

عنوان	عملگر
كوچكتر	<
بزرگتر	>
مساوي	==
نامساوي	<>

۲-۱-۷ درج الگوریتم

برای درج الگوریتم می توانید از محیط «الگوریتم» استفاده کنید. یک نمونه در الگوریتم ۱ آمده است.

الگوريتم ۱ پوشش رأسي حريصانه

G = (V, E) گراف

G خ**روجی:** یک پوشش رأسی از

 $C=\emptyset$ ا: قرار بده: ۱

۲: تا وقتی E تهی نیست:

یال دلخواه $uv \in E$ را انتخاب کن v:

رأسهای u و v را به C اضافه کن v

د: تمام یالهای واقع برu یا v را ازE حذف کن

را برگردان $C:\mathfrak{s}$

۲-۱-۸ محیطهای ویژه

برای درج مثالها، قضیهها، لمها و نتیجهها به ترتیب از محیطهای «مثال»، «قضیه»، «لم» و «نتیجه» استفاده کنید. برای درج اثبات قضیهها و لمها از محیط «اثبات» استفاده کنید.

تعریفهای داخل متن را با استفاده از دستور «مهم» به صورت تیره نشان دهید. تعریفهای پایهای تر را درون محیط «تعریف» قرار دهید.

تعریف ۲-۱ (اصل لانه کبوتری) اگر ۱+۱ کبوتریا بیشتر درون n لانه قرار گیرند، آنگاه لانهای وجود دارد که شامل حداقل دو کبوتر است.

۲-۲ برخی نکات نگارشی

این فصل حاوی برخی نکات ابتدایی ولی بسیار مهم در نگارش متون فارسی است. نکات گردآوری شده در این فصل به هیچ وجه کامل نیست، ولی دربردارنده ی حداقل مواردی است که رعایت آنها در نگارش پایان نامه ضروری به نظر می رسد.

۲-۲-۲ فاصله گذاری

- ۱. علائم سجاوندی مانند نقطه، ویرگول، دونقطه، نقطه ویرگول، علامت سؤال و علامت تعجب بدون فاصله از کلمه ی پیشین خود نوشته می شوند، ولی بعد از آنها باید یک فاصله قرار گیرد. مانند: من، تو، او.
- ۲. علامتهای پرانتز، آکولاد، کروشه، نقل قول و نظایر آنها بدون فاصله با عبارات داخل خود نوشته می شوند، ولی با عبارات اطراف خود یک فاصله دارند. مانند: (این عبارت) یا {آن عبارت}.
- ۳. دو کلمه ی متوالی در یک جمله همواره با یک فاصله از هم جدا می شوند، ولی اجزای یک کلمه ی مرکب باید با نیم فاصله ۲ از هم جدا شوند. مانند: کتاب درس، محبت آمیز، دوبخشی.
 - ۴. اجزای فعلهای مرکب با فاصله از یک دیگر نوشته می شوند، مانند: تحریر کردن، به سر آمدن.

۲-۲-۲ شکل حروف

۱. در متون فارسی به جای حروف «ك» و «ي» عربی باید از حروف «ک» و «ی» فارسی استفاده شود. همچنین به جای اعداد عربی مانند ۵ و 7 باید از اعداد فارسی مانند 2 و 3 استفاده نمود. برای این

۱ «نیم فاصله» فاصلهای مجازی است که در عین جدا کردن اجزای یک کلمه ی مرکب از یک دیگر، آنها را نزدیک به هم نگه می دارد. معمولاً برای تولید این نوع فاصله در صفحه کلیدهای استاندارد از ترکیب Shift+Space استفاده می شود.

- کار، توصیه می شود صفحه کلید فارسی استاندارد^۳ را بر روی سیستم خود نصب کنید.
- ۲. عبارات نقل قول شده یا مؤکد باید درون علامت نقل قول «» قرار گیرند، نه "". مانند: «کشور ایران».
- ۳. کسره ی اضافه ی بعد از «ه» غیرملفوظ به صورت «هی» یا «هٔ» نوشته می شود. مانند: خانه ی علی، دنباله ی فیبوناچی.
 - تبصره: اگر «ه» ملفوظ باشد، نیاز به «ی» ندارد. مانند: فرمانده دلیر، یادشه خوبان.
- ۴. پایههای همزه در کلمات، همیشه «ئه» است، مانند: مسئله و مسئول، مگر در مواردی که همزه ساکن است که در این صورت باید متناسب با اعراب حرف پیش از خود نوشته شود. مانند: رأس، مؤمن.

۲-۲-۳ جدانویسی

- 1. علامت استمرار، «می»، توسط نیمفاصله از جزء بعدی فعل جدا میشود. مانند: میرود، میتوانیم.
- ۲. شناسه های «ام»، «ای»، «ایم»، «اید» و «اند» توسط نیم فاصله، و شناسه ی «است» توسط فاصله از
 کلمه ی پیش از خود جدا می شوند. مانند: گفته ام، گفته ای، گفته است.
 - ۳. علامت جمع «ها» توسط نیمفاصله از کلمه ی پیش از خود جدا می شود. مانند: این ها، کتابها.
- ۴. «به» همیشه جدا از کلمه ی بعد از خود نوشته می شود، مانند: به نام و به آنها، مگر در مواردی که «ب» صفت یا فعل ساخته است. مانند: بسزا، ببینم.
- ۵. «به» همواره با فاصله از کلمه ی بعد از خود نوشته می شود، مگر در مواردی که «به» جزئی از یک اسم
 یا صفت مرکب است. مانند: تناظر یک به یک، سفر به تاریخ.
- علامت صفت برتری، «تر»، و علامت صفت برترین، «ترین»، توسط نیمفاصله از کلمه ی پیش از خود جدا می شوند. مانند: سنگینتر، مهمترین.
 - تبصره: کلمات «بهتر» و «بهترین» را میتوان از این قاعده مستثنی نمود.
- ۷. پیشوندها و پسوندهای جامد، چسبیده به کلمهی پیش یا پس از خود نوشته می شوند. مانند: همسر، دانشگاه.
- تبصره: در مواردی که خواندن کلمه دچار اشکال می شود، می توان پسوند یا پیشوند را جدا کرد. مانند: هم میهن، همارزی.

صفحه كليد فارسى استاندارد براي ويندوز، تهيه شده توسط بهنام اسفهبد

۸. ضمیرهای متصل چسبیده به کلمهی پیش از خود نوشته میشوند. مانند: کتابم، نامت، کلامشان.

فصل ۳

کارهای پیشین

در فصل سوم پایاننامه، کارهای پیشین انجامشده روی مسئله به تفصیل توضیح داده می شود. نمونهای از فصل کارهای پیشین در زیر آمده است. ا

۱-۳ مسائل خوشهبندی

مسئلهی خوشهبندی ^۲ یکی از مهمترین مسائل در زمینهی داده کاوی به حساب میآید. در این مسئله، هدف دستهبندی تعدادی شیء به گونهای است که اشیاء درون یک دسته (خوشه)، نسبت به یکدیگر در برابر دستههای دیگر شبیه تر باشند (معیارهای متفاوتی برای تشابه تعریف میگردد). این مسئله در حوزههای مختلفی از علوم کامپیوتر از جمله داده کاوی، جست وجوی الگو^۳، پردازش تصویر^۴، بازیابی اطلاعات و رایانش زیستی مورد استفاده قرار میگیرد [۳].

تا کنون راه حلهای زیادی برای این مسئله ارائه شده است که از لحاظ معیار تشخیص خوشهها و نحوه ی انتخاب یک خوشه، با یک دیگر تفاوت بسیاری دارند. به همین خاطر مسئله ی خوشه بندی یک مسئله ی بهینه سازی چندهدفه محسوب می شود.

همان طور که در مرجع [۴] ذکر شده است، خوشه در خوشهبندی تعریف واحدی ندارد و یکی از

ا مطالب این فصل نمونه از پایاننامهی آقای بهنام حاتمی گرفته شده است.

Clustering⁷

Pattern recognition

Image analysis*

Information retrieval $^{\delta}$

 $^{{\}rm Bioinformatics}^{\it 9}$

 $[\]operatorname{Multi-objective}^{\mathsf{V}}$

دلایل وجود الگوریتمهای متفاوت، همین تفاوت تعریفها از خوشه است. بنابراین با توجه به مدلی که برای خوشهها ارائه میشود، الگوریتم متفاوتی نیز ارائه میگردد. در ادامه به بررسی تعدادی از معروفترین مدلهای مطرح میپردازیم:

- مدلهای مرکزگرا: در این مدلها، هر دسته با یک مرکز نشان داده می شود. از جمله معروف ترین روشهای خوشه بندی بر اساس این مدل، خوشه بندی k مرکز، خوشه بندی k میانه است.
- مدلهای مبتی بر توزیع نقاط: در این مدل، دسته ها با فرض پیروی از یک توزیع احتمالی مشخص می شوند. از جمله الگوریتم های معروف ارائه شده در این مدل، الگوریتم بیشینه سازی امید ریاضی است.
- مدلهای مبتنی بر تراکم نقاط: در این مدل، خوشه ها متناسب با ناحیه های متراکم نقاط در مجموعه داده مورد استفاده قرار میگیرد.
- مدلهای مبتنی بر گراف: در این مدل، هر خوشه به مجموعه از رئوس گفته می شود که تمام رئوس آن با یک دیگر همسایه باشند. از جمله الگوریتم های معروف این مدل، الگوریتم خوشه بندی HCS است.

الگوریتمهای ارائه شده تنها از نظر نوع مدل با یک دیگر متفاوت نیستند. بلکه، می توان آنها را از لحاظ نحوه ی تخصیص نقاط بین خوشه ها نیز تقسیم بندی کرد:

- تخصیص قطعی داده ها: در این نوع خوشه بندی هر داده دقیقاً به یک خوشه اختصاص داده می شود.
- تخصیص قطعی داده ها با داده ی پرت: در این نوع خوشه بندی ممکن است بعضی از داده ها به هیچ خوشه ای اختصاص می یابد.
- تخصیص قطعی داده: در این نوع خوشه بندی هر داده دقیقاً به یک خوشه اختصاص داده می شود.
- خوشهبندی همپوشان: در این نوع خوشهبندی هر داده می تواند به چند خوشه اختصاص داده شود. در گونهای از این مدل، می توان هر نقطه را با احتمالی به هر خوشه اختصاص می یابد. به این گونه از خوشه بندی، خوشه بندی نرم ۱۲ گفته می شود.

k-Means[^]

k-Median

Expectation-maximization'

Highly Connected Subgraphs'

Soft clustering 'Y

شکل ۳-۱: نمونهای از مسئلهی ۲ مرکز

• خوشهبندی سلسهمراتبی: در این نوع خوشهها، دادهها به گونهای به خوشهها تخصیص داده می شود که دو خوشه یا اشتراک ندارند یا یکی به طور کامل دیگری را می پوشاند. در واقع در بین خوشهها، رابطه ی پدر فرزندی برقرار است.

در بین دسته بندی های ذکر شده، تمرکز اصلی این پایان نامه بر روی مدل مرکزگرا و خوشه بندی قطعی با داده های پرت با مدل k مرکز است. همان طور که ذکر شد علاوه بر مسئله ی k مرکز که به تفصیل مورد بررسی قرار می گیرد، k میانه و k میانگین از جمله معروف ترین خوشه بندی های مدل مرکزگرا هستند. در خوشه بندی k میانه، هدف افراز نقاط به k خوشه است به گونه ای که مجموع مربع فاصله ی هر نقطه از میانه ی نقاط آن خوشه، کمینه گردد. در خوشه بندی k میانگین، هدف افراز نقاط به k خوشه است به گونه ای که مجموع فاصله ی هر نقطه از میانگین نقاط داخل خوشه (یا مرکز آن خوشه) کمینه گردد.

kمرکز خوشهبندی kمرکز

یکی از رویکردهای شناخته شده برای مسئله ی خوشه بندی، مسئله ی k مرکز است. در این مسئله هدف، پیدا کردن k نقطه به عنوان مرکز دسته ها است به طوری که شعاع دسته ها تا حد ممکن کمینه شود. مثالی از مسئله ی k مرکز در شکل k نشان داده شده است. در این پژوهش، مسئله ی k مرکز با متریک های خاص و برای k های کوچک مورد بررسی قرار گرفته است و هر کدام از تعریف رسمی مسئله ی k مرکز در زبر آمده است:

مسئلهی Y-Y (X-A) که از نامساوی مثلثی مثلثی بیروی میکند داده شده است. زیرمجموعه یS=V با اندازه یS=V با اندازه یS=V با اندازه یه داده شده است. زیرمجموعه یS=V با اندازه یS=V با اندازه یه کند:

$$\max_{v \in V} \{ \min_{s \in S} d(v, s) \}$$
 (1-4)

شکل ۳-۲: نمونهای ازمسئلهی ۲ مرکز با دادههای پرت

گونههای مختلفی از مسئله ی k مرکز با محدودیتهای متفاوت توسط پژوهشگران مورد مطالعه قرار گرفته است. از جمله ی این گونهها، می توان به حالتی که در بین دادههای ورودی، دادههای پرت وجود دارد، اشاره کرد. در واقع در این مسئله، قبل از خوشه بندی می توانیم تعدادی از نقاط ورودی را حذف نموده و سپس به خوشه بندی نقاط بپردازیم. سختی این مسئله از آنجاست که نه تنها باید مسئله ی خوشه بندی را حل نمود، بلکه در ابتدا باید تصمیم گرفت که کدام یک از داده ها را به عنوان داده ی پرت در نظر گرفت که بهترین جواب در زمان خوشه بندی به دست آید. در واقع اگر تعداد نقاط پرتی که مجاز به حذف است، برابر صفر باشد، مسئله به مسئله ی k مرکز تبدیل می شود. نمونه ای از مسئله ی k داده ی پرت را در شکل k در نیر آمده است:

مسئلهی Y-Y (V,E) مسئلهی Y-Y با تابع فاصلهی مسئلهی پیرت) یک گراف کامل بدون جهت $Z\subseteq V$ با تابع فاصلهی $Z\subseteq V$ با اندازهی $Z\subseteq V$ و مجموعهی Z با اندازهی $Z\subseteq V$ با اندازهی $Z\subseteq V$ با اندازهی Z داده طوری که عبارت زیر را کمینه کند:

$$\max_{v \in V-Z} \{ \min_{s \in S} d(v, s) \}$$
 (Y-Y)

گونه ی دیگری از مسئله ی k_- مرکز که در سالهای اخیر مورد توجه قرار گرفته است، حالت جویبار داده ی آن است. در این گونه از مسئله ی k_- مرکز، در ابتدا تمام نقاط در دسترس نیستند، بلکه به مرور زمان نقاط در دسترس قرار می گیرند. محدودیت دومی که وجود دارد، محدودیت حافظه است، به طوری که نمی توان تمام نقاط را در حافظه نگه داشت و بعضاً حتی امکان نگه داری در حافظه ی جانبی نیز وجود ندارد و به طور معمول باید مرتبه ی حافظه ای کمتر از مرتبه حافظه ی خطی k_- متناسب با تعداد نقاط استفاده نمود. از این به بعد به چنین مرتبه ای مرتبه ی زیر خطی k_- می گوییم. مدلی که ما در این پژوهش بر روی آن تمرکز داریم مدل جویبار داده تک گذره k_- است. یعنی تنها یک بار می توان از ابتدا تا انتهای داده ها را بررسی کرد و پس

Linear 18

sublinear '*

Single pass \a

از عبور از یک داده، اگر آن داده در حافظه ذخیره نشده باشد، دیگر به آن دسترسی وجود ندارد. علاوه بر این، در هر لحظه باید بتوان به پرسمان (برای تمام نقاطی از جویبار داده که تاکنون به آن دسترسی داشته ایم) پاسخ داد.

مسئلهی T-T (k مرکز در حالت جویبار داده) مجموعه ای از نقاط در فضای k بعدی به مرور زمان داده می شود. در هر لحظه از زمان، به ازای مجموعه ی U از نقاطی که تا کنون وارد شده اند، زیرمجموعه ی $S\subseteq U$ با اندازه ی k را انتخاب کنید به طوری که عبارت زیر کمینه شود:

$$\max_{u \in U} \{ \min_{s \in S} d(u, s) \}$$
 (T-T)

از آنجایی که گونه ی جویبار داده و داده پرت مسئله ی kمرکز به علت بهروز بودن مبحث دادههای حجیم 16 ، به تازگی مورد توجه قرار گرفته است. در این تحقیق سعی شده است که تمرکز بر روی این گونه ی خاص از مسئله باشد. همچنین در این پژوهش سعی می شود گونه های مسئله را برای انواع متریک ها و برای خاص از مسئله باشد. همچنین در این پژوهش سعی می شود گونه های کوچک نیز مورد بررسی قرار داد.

Υ – Υ مدل جویبار داده

همان طور که ذکر شد مسئله ی k_- مرکز در حالت داده های پرت و جویبار داده، گونه های تعمیمیافته از مسئله ی k_- مرکز هستند و در حالت های خاص به مسئله ی k_- مرکز کاهش پیدا می کنند. مسئله ی k_- مرکز در حوزه ی مسائل ان پی سخت ۱۷ قرار می گیرد و با فرض $P \neq NP$ الگوریتم دقیق با زمان چند جمله ای برای آن وجود ندارد [۶]. بنابراین برای حل کارای ۱۸ این مسائل از الگوریتم های تقریبی ۱۹ استفاده می شود.

برای مسئله ی k مرکز، دو الگوریتم تقریبی معروف وجود دارد. در الگوریتم اول، که به روش حریصانه ۲۰ عمل می کند، در هر مرحله بهترین مرکز ممکن را انتخاب می کند به طوری تا حد ممکن از مراکز قبلی دور باشد [۷]. این الگوریتم، الگوریتم تقریبی با ضریب تقریب ۲ ارائه می دهد. در الگوریتم دوم، با استفاده از مسئله ی مجموعه ی غالب کمینه ۲۱، الگوریتمی با ضریب تقریب ۲ ارائه می گردد [۸]. همچنین ثابت شده است، که بهتر از این ضریب تقریب، الگوریتمی نمی توان ارائه داد مگر آن که P = NP باشد.

Big data 19

NP-hard W

Efficient '^

Approximation algorithm '9

Greedy 7.

Dominating set^{*1}

جدول ٣-١: نمونههایی از کران پایین تقریبپذیری مسائل خوشهبندی

كران پايين تقريبپذيري	مسئله
[^]٢	<u>k</u> مرکز
[17] 1/477	مرکز در فضای اقلیدسی k
$\left[\begin{array}{c} 1 \\ \end{array}\right] \frac{1+\sqrt{\gamma}}{\gamma}$	۱ ــ مركز در حالت جويبار داده
[17]٣	مرکز با نقاط پرت و نقاط اجباری $-k$

برای مسئله ی k مرکز در حالت جویبار داده برای ابعاد بالا، بهترین الگوریتم موجود ضریب تقریب k دارد [۹، ۱۰، ۱۰] و ثابت می شود الگوریتمی با ضریب تقریب بهتر از ۲ نمی توان ارائه داد. برای مسئله ی k مرکز با داده ی پرت در حالت جویبار داده نیز، بهترین الگوریتم ارائه شده، الگوریتمی با ضریب تقریب k است که با کران پایین ۳ هنوز اختلاف قابل توجهی دارد [۱۲].

برای kهای کوچک به خصوص، ۲,۲ ها، الگوریتمهای بهتری ارائه شده است. بهترین الگوریتم ارائه شده برای مسئله ۱ مرکز در حالت جویبار داده برای ابعاد بالا، دارای ضریب تقریب ۱/۲۲ است و کران شده برای مسئله ۱ مرکز در حالت جویبار داده پایین $\frac{7}{7}$ نیز برای این مسئله اثبات شده است $\frac{7}{7}$. برای مسئله ۲ مرکز در حالت جویبار داده برای ابعاد بالا، اخیرا راه حلی با ضریب تقریب $\frac{7}{7}$ ارائه شده است $\frac{7}{7}$. برای مسئله ۱ موجود، الگوریتمی با ضریب تقریب $\frac{7}{7}$ است $\frac{7}{7}$.

۳-۳ تقریبپذیری

یکی از راه کارهایی که برای کارآمد کردن راه حل ارائه شده برای یک مسئله وجود دارد، استفاده از الگوریتمهای تقریبی برای حل آن مسئله است. یکی از عمده ترین دغدغههای مطرح در الگوریتمهای تقریبی کاهش ضریب تقریب است. در بعضی از موارد حتی امکان ارائه ی الگوریتم تقریبی با ضریبی ثابت نیز وجود ندارد. به طور مثال، الگوریتم تقریبی با ضریب تقریب کمتر از ۲، برای مسئله ی k مرکز وجود ندارد مگر این که P = NP باشد. برای مسائل مختلف، معمولاً میتوان کران پایینی برای میزان تقریب پذیری آنها ارائه داد. در واقع برای برخی مسائل آن پی سخت، علاوه بر این که الگوریتم کارآمدی وجود ندارد، بعضاً الگوریتم تقریبی با ضریبی تقریب کم و نزدیک به یک نیز وجود ندارد. در جدول N میزان تقریب پذیری مسائل مختلفی که در این پایان نامه مورد استفاده قرار می گیرد را می بینید.

فصل ۴

روش پیشنهادی

۱-۲ چارچوب کلی

چارچوب کلی روش پیشنهادی ما بدین صورت است که در ابتدا گردشهای کاری میان میکروسرویسهای تشکیل دهنده ی نرمافزار را با استفاده از زبان یاول مدل می کنیم و سپس این مدلها را بر اساس روش ترجمه ای اثبات شده، به شکل توصیف صوری در زبان الوی ترجمه می کنیم. بعد از آن بر روی توصیفات صوری از میکروسرویسها و ارتباطات آنها تحلیلهایی انجام می دهیم تا از وجود موقعیتهای ناخواسته و غیرمجاز در نرمافزار در زمان اجرای نرمافزار جلوگیری کنیم. در نهایت از این توصیفات صوری نرمافزار استفاده می کنیم و با معیار RACC موارد آزمون را برای آن تولید می کنیم و در نهایت موارد آزمون به دست آمده را با روشی اجرا می کنیم. تمام این فرآیند، پس از مدلسازی میکروسرویسها در زبان یاول، توسط طراحان نرمافزار، تا ایجاد موارد آزمون و اعمال آنها بر روی مدل صوری به صورت خود کار در ابزار مدلسازی یاول انجام می شود.

در ادامه به تشریح گامهای ذکر شده در روش پیشنهادی می پردازیم. برای روشن تر شدن روش پیشنهادی، نمونه ای واقعی از یک سیستم نرمافزاری با معماری میکروسرویس را بیان میکنیم و در هر گام، روش تشریحی خود را بر روی این نمونه ی واقعی اعمال میکنیم. نمونه ای که روش پیشنهادی را به مرور بر روی آن اعمال میکنیم، خدمت پرداخت با کارت اعتباری است که یک خدمت درشت دانه محسوب می شود و می توان گفت که این خدمت با همکاری چند میکروسرویس ریزدانه تر محقق می شود؛ در این خدمت با آغاز فراروند پرداخت، دو میکروسرویس به صورت موازی به بررسی مورد خرید و کارت اعتباری خریدار می پردازند، اگر هر دوی این میکروسرویس ها مورد بررسی خود را تایید کنند، میکروسرویسی دیگر به میزان ارزش مورد خرید، از اعتبار کارت اعتباری خریدار کم می کند و فراروند پرداخت به اتمام می رسد؛ اما در صورتی که خرید، از اعتبار کارت اعتباری خریدار کم می کند و فراروند پرداخت به اتمام می رسد؛ اما در صورتی که

شکل ۴-۱: گردش کاری خدمت پرداخت

کارت اعتباری یا مورد خرید، تایید نشوند بلافاصله فراروند پرداخت تمام می شود. بدون این که از کارت اعتباری مبلغی کم شود. شکل ۲-۱ نشان دهنده ی گردش کاری این خدمت است.

۲-۴ مدلسازی سیستمهای پیچیده با معماری میکروسرویس با یاول

امروزه خیلی از برنامهها شامل مجموعهای از سرویسها هستند هر میکروسرویس به طور مستقل توسعه یافته، مستقر و مدیریت می شود. همکاری میکروسرویسها با یکدیگر هدف برنامه را محقق میکند؛ هماهنگی و تعامل میان میکروسرویسها با به کارگیری یکی از دو رویکرد Orchestration یا – ography انجام می شود. به دلیل ذات غیرمتمرکز میکروسرویسها به نظر می رسد استفاده از رویکرد Ography برای ترکیب آنها مناسب تر باشد. در ،Choreography هر میکروسرویس به طور مستقل کار می کند، در حالی که، در ارکستراسیون، یک کنترلکننده وجود دارد که تعاملات سرویس را هماهنگ می کند. [۱۸][۱۹]

در این پایاننامه، ما به برنامههایی که از رویکرد Choreography برای ساختن میکروسرویسها استفاده میکنند، میپردازیم و روش خود را برای آنها پیشنهاد میکنیم. استفاده از زبان مدلسازی یاول که یک زبان مدیریت فراروند کسب و کاری است یکی از رویکردها برای مدلسازی از این تعاملات بین میکروسرویسها در یک برنامهی پیچیده است.[۱۸] در روش پیشنهادی ما ابتدا یک برنامه با استفاده از یاول مدل میشود، میکروسرویسها واحدهای مستقلی هستند که هر کدام جزئی از کل کار برنامه را بر عهده دارند و گردش کار بین میکروسرویسها معمولا با رد و بدل شدن پیام بین آنها انجام میپذیرد [۲۰]، در

Composition \
Controller \(^{\tau}\)

شكل ۲-۲: مدل خدمت يرداخت در ياول

Choreography این ارتباط بدون واسطه و مستقیم انجام می شود.

در یاول کوچکترین واحدهای کاری مستقل، وظایف هستند و میتوان آنها را معادل میکروسرویسها در یک برنامه در نظر گرفت. همچنین در یاول ارتباط میان وظایف با جریانها برقرار میشوند، [۲۱] میتوان برای نمایش ارسال پیامها میان میکروسرویسها از جریانها استفاده کرد. از انشعابها و اتصالها برای هدایت گردش کار در یاول استفاده میشود، در آنها با توجه به متغیرهای ورودی و خروجی و شروط اعمال شده بر روی آنها گردش کار توسط وظایف هدایت میشود. مقادیر متغیرها در برنامه را خروجی میکروسرویس بین آنها میکروسرویسها تعیین میکنند و جریان کنترل در برنامه با توجه به خروجی هر میکروسرویس بین آنها گردش میکند. شکل ۲-۲ مدلسازی از برنامهی پرداخت، به زبان یاول است.

در این مثال وظیفه ی "آغاز پرداخت" انشعاب از نوع "و" دارد زیرا بعد از اتمام این وظیفه بلافاصله هر دو وظیفه ی "بررسی کارت اعتباری" و "بررسی موارد خرید" شروع به کار میکنند؛ خروجی این دو میکروسرویس تعیینکننده ی جریان کنترل در برنامه هستند، اگر هر دو میکروسرویس موارد بررسی خود را تایید کنند کنترل به وظیفه ی "شارژ کردن کارت اعتباری" میرسد؛ اما اگر هر دو یا یکی از دو میکروسرویس بررسیکننده، خروجی تایید نداشته باشند کنترل به وظیفه ی "پایان پرداخت" میرسد، در نتیجه انشعاب در دو وظیفه ی بررسیکننده، از نوع "یای انحصاری"" است و اتصال در وظیفه ی "شارژ کردن کارت اعتباری" از نوع "و" است همچنین وظیفه ی "پایان پرداخت" اتصال از نوع "یا" دارد زیرا که یک یا چند جریان ورودی آن می تواند آن را فعال کنند تا شروع به کار کند. در نهایت نیز پس از اتمام وظیفه ی "پایان پرداخت" کار برنامه نیز تمام می شود.

Xor^γ

۴-۳ خود کارسازی ترجمهی مدلهای یاول به الوی

۴-۳-۴ توصیف مدلها در زبان الوی

در این پایاننامه برای ترجمه ی مدلهای یاول به توصیفات صوری در زبان الوی، از روشی که در پژوهش ریواده و همکاران انجام شده است استفاده کردیم؛ در روشی که ریواده و همکاران برای ترجمه ارائه کردهاند، ساختار مدلها در یاول به دو بخش ایستا و پویا تقسیم بندی شده است و برای هر یک از موجودیت ها در هر دسته معادلی در الوی ذکر شده است. همچنین برای ویژگی های ذاتی مدل های گردش کاری در یاول مانند هم بند بودن گراف، در الوی حقیقت همین تعریف شده است. در نهایت روشی برای ترجمه ی مدل ها به دست آمده و سپس با نه قضیه نشان داده است که ترجمه ی به دست آمده از مدل های گردش کاری در یاول به زبان الوی کامل و صحیح هستند.

بخش ایستا در مدلها، همان مفاهیم و مولفههای موجود در زبان یاول هستند. در پژوهش ریواده این بخش شامل وظیفه 9 ، شرط ورودی 9 ، شرط خروجی 8 و شرط است: برای هر کدام از این مولفهها در الوی یک معادل در قالب نشان 9 آورده شده است. همچنین رفتار انواع پیوند 11 ها و انشعاب 11 ها نیز در قالب حقیقتها بیان شده اند. علاوه بر اینها بخش ایستا در ترجمهی تولید شده شامل تعریف حالت 11 در یک گردش کار نیز می شود به تعریف حالت در الوی ترتیب اضافه شده است، این کار اجازه می دهد بتوان تغییر حالتها در زمان را مدل کرد. ترتیب حالتها توسط ماژول کتابخانه util/ordering ارائه می شود. این ماژول عمومی است – یعنی می تواند به مجموعهای از هر نوع ترتیب بدهد – بنابراین وقتی باز می شود باید ماژول عمومی است – یعنی می تواند به مجموعهای از هر نوع ترتیب بدهد – بنابراین وقتی باز می شود باید با یک نوع (در این مورد، حالت) نمونه سازی 11 شود. (منبع کتاب الوی) مجموعهی توکن مجموعهای از گردش کار، توکن در یک یا چند وظیفه وجود دارد و با تغییر حالت، در میان وظیفهها جابجا می شود. در واقع و تغییر حالت متناظر با تغییر مجموعهی توکن است. بخش پویا مرتبط با معماری میکروسرویسی است که تغییر حالت متناظر با تغییر مجموعه ی توکن است. بخش پویا مرتبط با معماری میکروسرویسی است که در یاول مدل شده است.

برای ترجمه ی مدل تعریف شده به الوی، برای هر وظیفه که معادل یک میکروسرویس است، حقیقت

 $[\]mathrm{fact}^{\mathfrak{r}}$

 $[\]mathrm{sound}^{\Diamond}$

 $task^{s}$

input condition

output condition[^]

signature⁴

join'

split''

state

instantiate '

یا حقیقتهایی در الوی تعریف میکنیم و در آن(ها) ویژگیهای وظیفه شامل نام، نوع پیوند، نوع انشعاب و جریانهای خروجی آن را ذکر میکنیم؛ همچنین مسندهایی که در جریانهای خروجی وظیفه تعریف شده اند را نیز بسته به نوع انشعاب، در گزارههای شرطی ذکر میکنیم. بخش پویا در واقع نشان دهنده ی میکروسرویسها و نحوه ی ارتباط آنها با یکدیگر هستند و شامل وظیفه و جریانهای بین آنها میشود. ما در این پایان نامه موارد جدیدی به ترجمه اضافه کردیم که در ادامه به آنها میپردازیم؛ در ترجمهای که از مدلهای یاول تولید میکنیم، شامل توصیف ناحیهی لغو در بخش ایستا نیز میباشد، همچنین در تعریف وظیفهها نیز مجموعهی وظیفههایی که در ناحیهی لغو آن وظیفه وجود دارند تعریف میشود. متغیرهای موجود در مدل گردش کاری که شامل ورودی خروجی وظیفهها و معادل ورودی و خروجی میکروسرویسها هستند، در تعریف حالت ذکر میشوند. مقادیر متغیرها در هر حالت امکان تغییر دارند و رفتار میکروسرویسها در هر حالت بسته به مقدار متغیرها و شرایط درونی میکروسرویس می تواند تغییر و رفتار میکروسرویسها در هر حالت بسته به مقدار متغیرها و شرایط درونی میکروسرویس می تواند تغییر کند. قطعهی کدی که در پیوست ۲-۲ ترجمهی نمونهای است که در شکل ۲-۲ آمده است:

فصل ۵

نتيجهگيري

در این فصل، ضمن جمعبندی نتایج جدید ارائه شده در پایاننامه یا رساله، مسائل باز باقی مانده و همچنین پیشنهادهایی برای ادامه ی کار ارائه می شوند.

Bibliography

- [1] D. E. Knuth. The TeXbook. Addison-Wesley, 1984.
- [2] L. Lamport. \(\mathbb{L}T_{EX} A\) Document Preparation System. Addison-Wesley, 1985.
- [3] M. LLC. MS Windows NT kernel description. Accessed: 2010-09-30.
- [4] M. LLC. MS Windows NT kernel description, 1999.
- [5] J. Han and M. Kamber. Data Mining, Southeast Asia Edition: Concepts and Techniques. Morgan kaufmann, 2006.
- [6] V. Estivill-Castro. Why so many clustering algorithms: a position paper. ACM SIGKDD explorations newsletter, 4(1):65–75, 2002.
- [7] C. C. Aggarwal. *Data streams: models and algorithms*. Springer Science & Business Media, 2007.
- [8] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-completeness. *Freeman & Co.*, 1979.
- [9] N. Megiddo and K. J. Supowit. On the complexity of some common geometric location problems. SIAM Journal on Computing, 13(1):182–196, 1984.
- [10] V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., 2001.
- [11] R. M. McCutchen and S. Khuller. Streaming algorithms for k-center clustering with outliers and with anonymity. In *Proceedings of the 11th International Workshop on Approximation Algorithms*, pages 165–178, 2008.
- [12] S. Guha. Tight results for clustering and summarizing data streams. In *Proceedings* of the 12th International Conference on Database Theory, pages 268–275, 2009.
- [13] H.-K. Ahn, H.-S. Kim, S.-S. Kim, and W. Son. Computing k centers over streaming data for small k. *International Journal of Computational Geometry and Applications*, 24(02):107–123, 2014.

- [14] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facility location problems with outliers. In *Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms*, pages 642–651, 2001.
- [15] P. K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems in high dimensions. In *Proceedings of the 21st ACM-SIAM Symposium on Discrete* Algorithms, pages 1481–1489, 2010.
- [16] T. M. Chan and V. Pathak. Streaming and dynamic algorithms for minimum enclosing balls in high dimensions. *Computational Geometry: Theory and Applications*, 47(2):240–247, 2014.
- [17] S.-S. Kim and H.-K. Ahn. An improved data stream algorithm for clustering. In *Proceedings of the 11th Latin American Symposium on Theoretical Informatics*, pages 273–284. 2014.
- [18] H. Zarrabi-Zadeh and A. Mukhopadhyay. Streaming 1-center with outliers in high dimensions. In *Proceedings of the 21st Canadian Conference on Computational Geometry*, pages 83–86, 2009.
- [19] M. Bern and D. Eppstein. Approximation algorithms for NP-hard problems. chapter Approximation Algorithms for Geometric Problems, pages 296–345. PWS Publishing Co., 1997.
- [20] P. Valderas, V. Torres, and V. Pelechano. A microservice composition approach based on the choreography of bpmn fragments. *Information and Software Tech*nology, 127:106370, 06 2020.
- [21] A. Nadeem and M. Malik. A case for microservices orchestration using workflow engines. pages 6–10, 10 2022.
- [22] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar. Gremlin: Systematic resilience testing of microservices. In 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), pages 57–66, 2016.
- [23] A. Hofstede, W. van der Aalst, M. Adams, and N. Russell. Modern Business Process Automation: YAWL and Its Support Environment. Springer Publishing Company, Incorporated, 1st edition, 2009.

واژهنامه

ت	الف
experimental	heuristicheuristic
تراکمdensity	high dimensions ابعاد بالا
approximation	biasاریب
partition	Threshold
mesh تورى	pigeonhole principle كبوترى
توزیعشدهdistributed	NP-Hardانپی_سخت
	transition انتقال
.	
separable	ب
black box	online
data stream	linear programming
	و بهینه optimum
ح	maximum ييشينه
extreme	
حريصانه greedy	پ
	پرت
خ	query
cluster	پوشش cover
inear خطی	پیچیدگی complexity

ف	د
distance	داده
space	data mining
	outlier data
ق	دوبرابرسازیdoubling
deterministic	binary
determinate	
<i>'</i>	ر
وfficient	vertex
candidate	
minimum	_
حمييه	ز
•	•
f.	sublinear
set	
مجموعه هسته	س
planar	amortized
موازیسازی	سلسهمراتبی hierarchichal
میانگیر	
	ش
ن	pseudocode
inversion	شىء
invariantناوردا	
center pointنقطهی مرکزی	ص
half space	satisfiability
_	غ
هزینهی آشوب (POA) شوب شوب	dominateغلبه
ى	
وdge	

پیوست آ مطالب تکمیلی

پیوستهای خود را در صورت وجود میتوانید در این قسمت قرار دهید.

${\bf Abstract}$

We present a standard template for type setting theses in Persian. The template is based on the X_HPersian package for the L^AT_EX type setting system. This write-up shows a sample usage of this template.

 $\textbf{Keywords:} \ \ \text{Thesis, Type setting, Template, X-Persian}$

Sharif University of Technology Department of Computer Engineering

M.Sc. Thesis

A Standard Template for Typesetting Theses in Persian

By:

Hamid Zarrabi-Zadeh

Supervisor:

Dr. Supervisor

September 2022