Работа № 3

Составление и использование функций пользователя

- 1. Колонка функции пользователя содержит формулы для составления простейших собственных функций.
- 2. Колонка **вычисляемые выражения** содержит формулы, которые необходимо вычислить в основной программе, используя функции пользователя, описанные в п.1.

Вариант	Вычисляемые выражения	Функции пользователя
1	Заданы стороны треугольника В ABC . Определить углы $\angle A, \angle B, \angle C$	$\cos \alpha = \frac{a^2 + b^2 - c^2}{2ab} = x;$ $\alpha = \arccos x = \frac{\pi}{2} - \arcsin x$ $\arcsin x = \arctan \frac{x}{\sqrt{1 - x^2}}$ $(-1 < x < 1)$ или $\alpha = \arctan \frac{\sqrt{1 - x^2}}{x}$
2	$y = \frac{2^{3x+2} + 3^{4x}}{\left(\frac{1}{2}\right)^x + \left(\frac{1}{3}\right)^{2x}}$ $z = \sin\frac{x}{2} + (x+2)^{x+1}$	$a^{x} = e^{x \ln a}$ $a > 0$
3	$y = \frac{2tg\frac{x}{2} + 3ctg\frac{x}{2}}{4 + tg\frac{x}{4}}$ $z = \frac{x^2 + 3.4 \cdot 10^{-3}}{x^3 + tgx}$	$tgx = \frac{\sin(x)}{\cos(x)}$ $ctgx = \frac{\cos(x)}{\sin(x)}$ $\left(x \neq \frac{\pi}{2}; x \neq 0; x = \pi\right)$
4	Для произвольно заданного радиуса окружности (R) определить площади правильных 10-угольника; 50-угольника; 100-угольника и площадь круга.	Правильный пугольник вписан в окружность с радиусом R $a=2R\sin\frac{180^{\circ}}{n}$ $r=R\cos\frac{180^{\circ}}{n}$ Площадь п-угольника $S=\frac{1}{2}\Pr$, где $P=an$ (периметр)

Вариант	Вычисляемые выражения	Функции пользователя
5	Вычислить площадь зашгрихова нной фигуры при $R_1 = 25 \ cm$; $R_2 = 15 \ cm$;	Площадь круга $S = \pi R^2$
6	$R_3 = 5 \ cm$. Определить углы β и γ между векторами $\frac{\beta}{5}$ $\frac{\beta}{3}$ $\frac{\beta}{6}$ $\frac{\beta}{7}$ $\frac{\beta}{9}$ $\frac{\gamma}{8}$	$x = \cos \alpha = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}};$ $\frac{y_1}{\sqrt{y_1}} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_2^2 + y_2^2}};$ $\alpha = \arccos x = \frac{\pi}{2} - \arcsin x;$ $\arcsin x = \arctan \frac{x}{\sqrt{1 - x^2}} (-1 < x < 1)$
7	Определить площадь многоугольника 25 28 50 33	или $\alpha = arctg \frac{\sqrt{1-x^2}}{x}$ $S = \sqrt{p(p-a)(p-b)(p-c)}, \text{где}$ $P = \frac{a+b+c}{2}$
8	$y = \frac{\sin \frac{4\pi}{3} + 7\sin \frac{5\pi}{2}}{5\sin \frac{8\pi}{5} + \sin \frac{7\pi}{3}}$ $z = \frac{y^2 + \sin \frac{\pi}{2}}{1 + y}$	$f(n,k) = \sin \frac{\pi \cdot n}{k}$
9	Определить длину границы для фигуры из варианта 5	Длина окружности $C = 2\pi R$

10	$y = \frac{2 + \cos\frac{3\pi}{5} + \cos\frac{4\pi}{7}}{8 + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{11}}$ $z = \frac{\cos\frac{8\pi}{7} + \cos\frac{7\pi}{8}}{1 + \cos\frac{5\pi}{6}}$	$f(m,n) = \cos \frac{\pi \cdot m}{n}$
11	Определить площадь участка	Площадь прямоугольника $S(a,b) = a \cdot b$
	5 M 7 M 2 M 4 M	
12	$2.5x^2 + 3.4x + 8.1$	$f(a,b,c,x) = ax^2 + bx + c$
	$y = \frac{2,5x^2 + 3,4x + 8,1}{3,6x^2 - 1,8x - 5,2}$	
	$z = \frac{3x^2 - 2x + 1}{3x^2 - 2x + 2\pi}$	
	$2-\frac{3x^2-2x+2\pi}{3}$	
13	Определить длину периметра	
	? 2 ? 2 5 7 ?	$c = \sqrt{a^2 + b^2}$
14	$y = 4\sin x + \frac{5\sin x + 3\cos x}{8\sin x + 4\cos x}$	$f(a,b,x) = a\sin x + b\cos x$
	$y = tgx + \frac{1.3 \sin x + 1.8 \cos x}{2.5 \sin x - 4.5 \cos x}$	
15	$2.5 \sin x - 4.5 \cos x$	$f(a,n,x) = a \cdot x^n$
	$P(x) = \frac{6x + 7,5x - 4}{53x^3 + x + 3}$	$\int (u, n, x) - u \cdot x$
	$5x^5 + 3$	
	$P(x) = \frac{8x^4 + 7.5x^2 - 4}{5.3x^3 + x + 3}$ $Q(x) = \frac{5x^5 + 3}{x^2 + 1}$	
16	Определить площадь	
	четырехугольника	$S = \frac{x \cdot y}{2}$
	1	x 2
	$\left(\begin{array}{c c} \sqrt{3} & 7 \end{array}\right)$	у
	3	

17	Определить длину	Длина половины окружности $C = \pi R$
	2.5	
18	$y = 2 + \sqrt[3]{\left(\frac{1+x+x^2}{1+3x}\right)^2}$ $z = \frac{1}{2} \sqrt[5]{\left(\frac{x^8 + x^7 + 3}{x+1}\right)^3}$	$f(n,m,x) = \sqrt[n]{x^m}$
19	Определить площадь кольца $r = 2.87 \ cm$, $R = 8.51 \ cm$	Площадь круга $S=\pi\cdot R^2$
20	Определить заштрихованную площадь	$S = \sqrt{p(p-x)(p-y)(p-z)}$, где $P = \frac{x+y+z}{2}$
21	Определить периметр правильного пугольника при $R=3$, $n=50$; $n=100$	Периметр $P = 2R \cdot n \cdot \sin \frac{180^{\circ}}{n}$ (см. задание к варианту 4)
22	Определить площадь фигур,	Площадь круга $S = \pi \cdot R^2$
	используемых при изображении чебурашки: радиус уха — 1,5; радиус головы — 2; радиус лица - 1; радиус глаза и носа — 0,1.	

23	$y = \frac{\sin(2x+1) + \sin(3x+0.5)}{1 + \sin\frac{\pi}{8}}$ $z = \frac{1 + \sin(3x)}{2 + \sin\left(3x + \frac{\pi}{9}\right)}$	$f(a,b,x) = \sin(ax+b)$
24	Определить площадь фигуры	a b b Площадь трапеции $S = \frac{a+b}{2}h$
25	$y_1 = \frac{x^3 + (1+x)^3}{3x^3 + (1+2x+x^2)^3}$ $y_2 = \sqrt{2 + (2x+1)^3}$	$f(x) = x^3 = x \cdot x \cdot x$