Практическая работа № 4

МЕТОДЫ СРАВНИТЕЛЬНОГО АНАЛИЗА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Цель работы: изучить методы сравнительного анализа случайных величин на конкретных примерах.

Целью исследований является проверка определённых предположений; об агротехнических преимуществах новой машины над достоинствах некоторых режимов работы, экспериментальных и теоретических выводов и т.д. Если разница между среднеарифметической параметрами величины среднеарифметическим отклонением σ сравниваемых выборок незначительна, то считают, что различие между ними имеют случайный характер, а выборки принадлежат единому генеральному распределению. Для оценки значимости указанной разницы используют параметрические и непараметрические критерии достоинства.

Первые строятся на основе параметров \overline{X} и σ выборки, вторые основаны на функциях от вариант – выборки с соответствующими частотами.

Параметрические критерии обладают более сильной "разрешающей" способностью, но они применимы лишь в тех случаях, когда исследуемая выборка распределена по закону, не очень сильно отличающемуся от нормального. Из параметрических критериев чаще всего применяется \square - критерий Фишера для сравнения дисперсией и t - критерий Стьюдента при сравнении средних величин.

При сравнении распределений двух выборок в первую очередь сравнивают дисперсии, а затем средние величины. Гипотеза о неравенстве дисперсии двух выборок ($\sigma_A^2 > \sigma_B^2$) подтверждается с помощью одностороннего критерия Фишера.

$$\sigma_A^2/\sigma_B^2 > F_{1-\alpha}$$
,

					Практическая работа № 4			
Изм.	Лист	№ докум.	Подпись	Дата	1			
Разр	аб.				МЕТОДЫ СРАВНИТЕЛЬНОГО	Лит.	Лист	Листов
Пров	ер.	Шишков С.В.			АНАЛИЗА РЕЗУЛЬТАТОВ		1	
Реценз.					<i>ЭКСПЕРИМЕНТАЛЬНЫХ</i>	ГГТУ им. П.О. Сухого гр. С-41		
Н. Контр.					ИССЛЕДОВАНИЙ			
Утве	рд.							

где $F_{1-\alpha}$ -табличное значение критерия Фишера при степенях свободы

$$v_1 = n_A - 1$$
 и $v_2 = n_B - 1$,

 $n_{\scriptscriptstyle A}$, $n_{\scriptscriptstyle B}$ - объём каждой из выборок; α -вероятность риска принять неверное решение .

Гипотеза о равенстве дисперсии $(\sigma_A^2 = \sigma_B^2)$ подтверждается двухсторонним критерием Фишера:

$$\frac{1}{F_1 - \frac{\alpha}{2}} \le \frac{\sigma_A^2}{\sigma_B^2} \le F_1 - \frac{\alpha}{2}$$

Для проверки однородности нескольких дисперсий при равных объёмах выборки используется критерий Кохрена

$$G_P = rac{\sigma_{ ext{max}}^2}{\displaystyle\sum_{i=1}^m \sigma_i^2}$$
 ,

где σ_{\max}^2 -наибольшая из выборочных дисперсий; m - число выборок; $\sum_{i=1}^m \sigma_i^2$ - сумма всех дисперсий, в том числе и σ_{\max}^2 .

Гипотеза односторонности дисперсий принимается, если табличное значение Кохрена $\sigma_T > \sigma_P$. Соблюдение этого условия свидетельствует о том, что результаты опытов относятся к одной генеральной совокупности .

Значимость различия двух средних значений при $\sigma_{\scriptscriptstyle A} = \sigma_{\scriptscriptstyle B}$ оценивается критерием

$$t_{P} = \frac{\left|\overline{X}_{A} - \overline{X}_{B}\right|}{\sqrt{n_{A} \cdot \sigma_{A}^{2} + n_{B} \cdot \sigma_{B}^{2}}} \cdot \sqrt{\frac{n_{A} \cdot n_{B}(n_{A} + n_{B} - 2)}{n_{A} + n_{B}}}$$

Если одна из выборок имеет очень большой объём, например $n_{\scriptscriptstyle A} = \infty$,то в этом случае

$$t_{P}' = \frac{\left|\overline{X}_{A} - \overline{X}_{B}\right|}{\sigma}$$

Изм.	Лист	№ докум.	Подпись	Дата	

Число степеней свободы, используемого для определения табличного значения *tm*

$$v = n_a + n_b - 2$$

В этом случае число степеней свободы определяемой по формуле:

 $\frac{t}{v} = \frac{d^{2}}{n_{a} - 1} + \frac{(1 - d)^{2}}{n_{b} - 1},$ $c = \frac{\frac{\sigma_{a}^{2}}{n_{a}}}{\frac{\sigma_{a}^{2}}{n} + \frac{\sigma_{b}^{2}}{n}}$

где

Если сравнению подвергаются не две, а большее число выборок, связанных между собой и образующих пары, то критерий достоверности различных средних значений:

$$t_p'' = \frac{\overline{d}}{S_d},$$

где \bar{d} - усредненная разность среднеарифметических значений.

$$S_d = \sqrt{\frac{\sum d^2 - \frac{\left(\sum d\right)^2}{n}}{n \cdot (n-1)}}$$

где S_d - ошибка средней разности;

d – разность среднеквадратических значений внутри пар;

n – число независимых, попарно связанных наблюдений (число МИС, где испытывались две жатки; число сезонных испытаний; число агрофонов для сравнительных испытаний двух жаток и т.д.)

Число степеней свободы, используемых для определения табличного значения tr; v = n - 1. Гипотеза о равенстве средних принимается, если

$$t_p < t_p; t_p' < t_p$$
 или $t_p'' < t_p$

Изм.	Лист	№ докум.	Подпись	Дата

Практическая работа № 4

Лист

Если изучаемые признаки имеют закон распределения, существенно отличающихся от нормального, то используют критерии независимые от характера распределения, т.е. непараметрические критерии. В этом случае однородность выборок оценивается равенством характеристик положений и рассеяния конкретного признака. Для решения задачи используется методы квартилей или медиан. При сравнении выборок с попарно не связанными вариантами замеров применяют критерии «Вандер-Вардена» (λ - критерий или «Уайта»(Т - критерий)). Для сравнения выборок с попарно вариантами используется «W - критерий Вилколсона» (критерий знаков).

Практическая часть

Изм.	Лист	№ докум.	Подпись	Дата

Пример расчета

Вариант 0.

Исходные данные

На одном агротехническом фоне работали две жатки Ж1 и Ж2. Значение ширины валка за жатками приведены ниже:

Жатка Ж1: 130,130,135,135,140,140,145,150,155,140

Жатка Ж2: 130,130,140,145,150,155,160,160,165,165

Вариант 1 (-10 к каждому значению)

Вариант 2 (+5 к каждому значению)

Вариант 3 (+10 к каждому значению)

Вариант 4 (-5 к каждому значению)

Оценить значимость различий обеих выборок.

Решение.

Ранее было установлено, что распределение значений ширины валка имеет нормальный характер. Тогда среднеарифметическое значение ширины валка за Ж1 составит

$$\overline{X}_1 = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{(130 + 130 + 135 + 135 + 140 + 140 + 145 + 150 + 155 + 140)}{10} = 140 \text{ cm},$$

а за Ж2 –

$$\overline{X}_2 = \sum_{i=1}^n \frac{x_i}{n} = \frac{(130 + 130 + 140 + 145 + 150 + 155 + 160 + 160 + 165 + 165}{10} = 150 \text{ cm},$$

выборочные дисперсии по ширине валка за обеими жатками

$$\sigma^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} \left(x_i - x \right)^2$$

$$\sigma_1^2 = 66.7 \text{ cm}^2,$$

 $\sigma_2^2 = 177.8 \text{ cm}^2.$

Гипотезу о статистическом равенстве дисперсий проверим с помощью двустороннего критерия Фишера.

При уровне риска (значимости) $\alpha = 0.05$ и степенях свободы обоих распределений

$$\mathcal{G}_1 = \mathcal{G}_2 = n_1 - 1 = 10 - 1 = 9$$
,

табличное значение $F_T = 3,18$. Тогда

						Лист
					Практическая работа № 4	_
Изм.	Лист	№ докум.	Подпись	Дата		5

$$\frac{1}{3,18} \le \frac{177,8}{66,7} < 3,18.$$

Следовательно, гипотеза о равенстве дисперсий подтверждается. Значимость различий между среднеарифметическими значениями оценим с помощью критерия Стьюдента

$$t_P = \frac{\left|140 - 150\right|}{\sqrt{10 \cdot 66, 7 + 10 \cdot 177, 8}} \cdot \sqrt{\frac{10 \cdot 10 \cdot (10 + 10 - 2)}{10 + 10}} = 1,897.$$

Для $\alpha = 0.05$ и числа степеней свободы обоих распределений

$$\mathcal{G} = n_1 + n_2 - 2 = 10 + 10 - 2 = 18$$

критерий Стьюдента $t_T = 2,10 > t_P = 1,897$. Учитывая это соотношение, приходим к выводу, что обе жатки формируют валки одинаковой ширины.

Вывод: изучили методы сравнительного анализа случайных величин на конкретных примерах. Исходя из данных расчетов получили $t_T = 2,10 > t_P = 1,897$, условие выполнилось— обе жатки формируют валки одинаковой ширины.

Изм.	Лист	№ докум.	Подпись	Дата