

SEMANTIC LABELING

DSCI 558: Building Knowledge Graphs
Craig Knoblock

Based on slides by Pedro Szekely, Minh Pham, & S.K. Ramnandan

Introduction

Data Integration Approaches

Domain Model

Key Ingredient: Source Mappings

Automatic Source Modeling

What is a Semantic Model?

Source

	name	date	city	state	workplace
1	Fred Collins	Oct 1959	Seattle	WA	Microsoft
2	Tina Peterson	May 1980	New York	NY	Google

Semantic Types

Relationships

Source Modeling Problems

Source Modeling

Semantic Labeling

Learning Semantic Types

- 1- User specifies
- 2- System learns

Learning Semantic Types

Extent		
52.1 x 71.4 cm (20 1/2 x 28 1/8 in.)		
9 3/4 x 7 9/16 in.		
H: 19 x W: 15 1/4 x D: 8 1/4 in.		

Learning Semantic Types

Requirements

- Learn from a small number of examples
- Work on both textual and numeric values
- Learn quickly and highly scalable to large number of semantic types

RULE-BASED APPROACH

Assigning Semantic Labels to Data Sources
Ramnandan, S.K.; Mittal, A.; Knoblock, C. A.; and Szekely, P.

Approach for Textual Data

- Document: each column of data
- Label: each semantic type
- Use Apache Lucene to index the labeled documents
- Compute TF/IDF vectors for documents
- Compare documents using Cosine Similarity between TF/IDF vectors

Dimensions

H: 3.5 in, W: 2.5 in

H: 64 in, W: 51.5 in,

D: .75 in

L: 57 in, center back: 23 in

•••

Approach for Textual Data

Approach for Numeric Data

- Distribution of values in different semantic types is different, e.g., temperature vs. population
- Use Statistical Hypothesis Testing to see which distribution fits best
- Welch's T-test, Mann-Whitney U-test and Kolmogorov-Smirnov Test

Total Population	Number of people
107875	11070
47823	41542
60704	 33039
81034	780058

Approach for Numeric Data

Combined Approach

Training

- Add new example data as training for either textual or numeric types
- If ambiguous, train as both textual and numeric
- Testing
 - If textual, apply tf/idf
 - If numeric apply KS-test
 - If ambiguous and at least 70% numeric apply KS-test, otherwise tf/idf

Return Top-k suggestions based on the confidence scores

Evaluation of Semantic Typing

Combined approach achieves 97% accuracy on the top-4 accuracy

Reduced the training time from 110s to 0.45s

LEARNING-BASED APPROACH: CLASSIFICATION

Semantic labeling: a domain-independent approach Minh Pham, Suresh Alse, Craig Knoblock, Pedro Szekely

General idea

General idea

General idea

Similarity features

Attribute name similarity

Value similarity

Player name

Gary Cahill

Metsul Ozeil

Juan Mata

Similar

Name

Juan Quin

De Gea

Tim Cahill

Not similar

Club name

Chelsea

Real Madrid

Barcelona

Value similarity

Overlapping values is not enough

Value range similarity

Numeric Jaccard Similiarity

Given 2 numeric sets of values A, B ranged in $[a_s, a_e]$ and $[b_s, b_e]$:

$$numJaccardSim(A, B) = \frac{|[a_s, a_e] \cap [b_s, b_e]|}{|[a_s, a_e] \cup [b_s, b_e]|}$$

Distribution similarity

Histogram similarity

Training machine learning model

Predicting new attribute

Evaluation

Data sets:

Domain data	# sources	# semantic types	# attributes
soccer	12	14	97
museum	29	20	217
city	10	52	520
weather	4	11	44
T2D Gold	1748	7983	?

Measurements: Mean Reciprocal Rank (MRR)

Evaluating systems: DSL (our approach), SemanticTyper

(Ramnandan et al, 2015), T2K (Ritze et al, 2015)

Evaluation

Evaluation

Conclusion

	Rule-based Approach	Learning-based Classification
Pros	+ fast + scalable + easy to implement	+ fast + scalable + easy to extend + works in lots of domains
Cons	+ requires heuristics+ difficult to extend+ may not work in every domain	+ no use of relationship + need to train machine learning on a general domain

