Utilizing lexicon in our NLU

Why do we want to utilize lexicon?

- Let's take ATIS dataset
- It has finite set of cities in training
- Will the model work for a new city?
- We have a list of all cities, why not use it?
- Another example
- Imagine you need to fill a slot "music artist"
- We have all music artists in the database like musicbrainz.org
- How can we use it?

Let's add lexicon features to input words

- Let's match every n-gram of input text against entries in our lexicon
- Take me to San Francisco
- A match is successful when the n-gram matches the prefix or postfix of an entry and is at least half the length of the entry
 - "San" → "San Antonio"

 "San" → "San Francisco"

 "San Francisco" → "San Francisco"
- When there are multiple overlapping matches:
 - Prefer **exact** matches over partial
 - Prefer longer matches over shorter
 - Prefer earlier matches in the sentence over later

Matches encoding

We will use **BIOES** coding (Begin, Inside, Outside, End, Single)

- B if token matches the beginning of some entity
- B, I if two tokens match as prefix
- I, E if two tokens match as postfix
- S if matched single token entity

•

Example for 4 lexicon dictionaries:

Text	Hayao	Tada	,	commander	of	the	Japanese	North	China	Area	Army
LOC	_	_	_	_	_	В	I	_	S	_	_
MISC	_	_	_	S	В	В	I	S	S	S	S
ORG		_	_	_	_	В	I	В	I	I	E
PERS	В	E	_	_	_	_	_	_	S	_	_

B, I, O, E, S are later encoded as one-hot vectors

Adding these features to our model

Does lexicon help?

CoNLL-2003 Named Entity Recognition task:

Model		CoNLL-2003				
Model	Prec.	Recall	F1			
FFNN + emb + caps + lex	89.54	89.80	89.67 (± 0.24)			
BLSTM	80.14	72.81	$76.29 (\pm 0.29)$			
BLSTM-CNN	83.48	83.28	$83.38 (\pm 0.20)$			
BLSTM-CNN + emb	90.75	91.08	$90.91 (\pm 0.20)$			
BLSTM-CNN + emb + lex	91.39	91.85	91.62 (\pm 0.33)			

Yes, it does!

Training details

- You can **sample** your **lexicon** dictionaries so that your model learns the context of entities as well as lexicon features
- This procedure helps to detect unknown entities at testing
- You can **augment** your dataset replacing slot values with values from the same lexicon:

Take me to San Francisco

Take me to **Washington**

Summary

- You can add lexicon features to further improve your NLU
- In the next video we'll take a look at Dialog Manager (DM)