(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-251328 (P2002-251328A)

(43)公開日 平成14年9月6日(2002.9.6)

(51) Int.Cl.7		識別記号		FΙ			τ̈́	7]ト*(参考)
G06F	12/14	320		C06F	12/14		320F	5 B 0 1.7
	12/00	5 3 7			12/00		537M	5B082
		5 4 5					545M	5 C 0 6 4
	13/00	5 4 7			13/00		547T	
H 0 4 H	1/00			H 0 4 H	1/00		С	
			審查請求	未請求 請求	ネ項の数 13	OL	(全 40 頁)	最終頁に続く

(21)出願番号 特願2001-336697(P2001-336697)

(22)出顧日 平成13年11月1日(2001.11.1)

(31)優先権主張番号 特願2000-340394(P2000-340394) (32)優先日 平成12年11月2日(2000.11.2)

(33)優先権主張国 日本(JP) (71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 原田 宏美

東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所放送・通信システム推

進事業部内

(72)発明者 小西 薫

東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所放送・通信システム推

進事業部内

(74)代理人 10010/010

弁理士 橋爪 健

最終頁に続く

(54) 【発明の名称】 コンテンツ蓄積管理方法

(57)【要約】

【課題】 ユーザーへのコンテンツ提示方法、利用条件 等の制御を可能とし、コンテンツの権利保護、ユーザー 個人の権利保護等が可能なサービスを提供する。

【解決手段】 コンテンツに関する詳細情報について記 述したメタデータを定義することで、コンテンツに対す る様々な制御をメタデータで行うことが可能となる。放 送サイドで視聴者へのコンテンツ提示方法、利用条件、 暗号化状態でのコンテンツ蓄積、端末に対する限定受 信、個人に対する限定受信等を定義可能とし、定義した 内容をコンテンツと共に受信側に配信し、これらの定義 に基づき視聴者の視聴制御、蓄積制御、コピー制御、暗 号/復号制御等を行うことで著作権等のコンテンツの権 利保護が可能なサービスを提供する。

【特許請求の範囲】

【請求項1】通信回線又はメディア媒体を用いてコンテンツの配信を行い、送出側で暗号化したコンテンツを受信側で暗号化状態のまま蓄積し、コンテンツ利用時にコンテンツと共に送出側より配信されるコンテンツの提示方法・利用条件・コンテンツの暗号鍵の各情報を含むコンテンツの関連情報を格納したメタデータにより、受信側でコンテンツの利用に関する判断をすることによりコンテンツに対する課金制御及び/又は権利保護を可能とするコンテンツ蓄積管理方法において、

受信端末がコンテンツ及びメタデータを蓄積する際に、 受信時に配信される伝送路上のテーブルに含まれるプログラム特定情報(PSI)、メタデータ内に含まれる識別情報を含む情報を利用し、コンテンツ及びメタデータの実体であるエレメントに対し、蓄積するデータの論理位置と蓄積媒体内の物理位置を含むヘッダー情報を作成し、

受信端末は、コンテンツ及びメタデータを受信端末内又 はメディア媒体に、該ヘッダー情報を添付して蓄積する ことで蓄積後のデータ管理を可能とするようにしたコン テンツ蓄積管理方法。

【請求項2】請求項1に記載のコンテンツ蓄積管理方法 において.

受信端末内の蓄積媒体上の論理位置を取得するための位 置解決(LR)機能をさらに含み、

前記LR機能は、

PSI受信処理により取得した、伝送路の情報と放送サービスを関連付けて、ネットワーク全体の構成を示すネットワーク情報テーブル(NIT)より、ネットワーク 識別子を取得するステップと、

PSI受信処理により取得した、各トランスポートストリーム(TS)内の放送番組に関連するPMTを伝送するTSパケットを指定するプログラム関連テーブル(PAT)より、TS識別子を取得するステップと、

放送番組を構成する各符号化信号を伝送するTSパケットを指定するプログラムマップテーブル(PMT)より、サービス識別子及びコンポーネントタグを取得するステップと、

コンテンツ受信処理により取得した蓄積再生用メタデータストリームによりメタデータに対するモジュール識別子、取得した蓄積再生用メタデータによりメタデータ識別子及びコンテンツ識別子及びエレメント名を取得するステップと、

コンテンツ配信用ストリームよりコンテンツを構成する エレメントに対するモジュール識別子及びエレメント名 を取得し、各エレメントと論理位置を結びつけるステッ プとを含むコンテンツ蓄積管理方法。

【請求項3】請求項2に記載のコンテンツ蓄積管理方法 において、

前記位置解決(LR)機能は、さらに、

受信端末が、ブラウザが提示中にエレメントの切り替わりを表す提示要求を検出した場合、提示中エレメントのコンテンツIDと提示要求されたエレメントのコンテンツIDの確認を行う確認ステップと、

前記確認ステップにより、提示要求されたエレメントのコンテンツIDが提示中のコンテンツIDと同じ値である場合は、コンテンツ内のリンクを行ない提示要求されたエレメントを提示するコンテンツ内リンク処理ステップと、

一方、前記確認ステップにより、提示要求されたエレメントのコンテンツ I Dが提示中コンテンツ I Dと異なる場合は、コンテンツ外のリンクを行なうコンテンツ外リンク処理ステップとを含み、前記コンテンツ外リンク処理ステップは、

ブラウザより受け渡されたコンテンツIDがLR機能内で管理されているコンテンツIDかどうか識別する識別ステップと、

前記識別ステップによりコンテンツIDがLR機能内で 管理されたIDであれば蓄積媒体内に蓄積されたコンテ ンツと判断し、蓄積媒体内の該当するメタデータの確認 を行なう確認ステップと、

一方、前記識別ステップによりLR機能内で管理された コンテンツID内に該当するIDが無い場合は、蓄積媒体内に該当するコンテンツが蓄積されてないと判断し、 コンテンツの位置確認を行なう位置確認ステップとを含むコンテンツ蓄積管理方法

【請求項4】請求項1に記載のコンテンツ蓄積管理方法 において、

送出側より配信される伝送路上のテーブルは、

ネットワーク内のTS構成を示すNITと、

NITのTS識別子により間接指定され、各TS内で配 信されるPATと、

PATのサービス識別子により間接指定され、サービス 内で存在するストリームに関する情報が記述されたPM Tとを含み、

PMTではコンポーネントタグにより、事前契約用メタデータデフォルト エレメンタリ ストリームES、E PG用メタデータデフォルトES、蓄積再生用メタデータデフォルトES、コンテンツ配信用ストリームのいずれかのストリームの種別の識別、それぞれのストリームの配信場所を指定するようにしたコンテンツ蓄積管理方法

【請求項5】請求項1に記載のコンテンツ蓄積管理方法 において、

伝送路上でのコンテンツの名前空間は、

放送のネットワークを識別するためのネットワーク識別 子により識別され、

サービスが伝送されるトランスポートストリーム(TS)を識別するためのTS識別子と、トランスポートストリーム内のチャンネルを識別するためのサービス識別

子と、チャンネル内のコンテンツをユニークに識別する ためのコンテンツ識別子とにより各コンテンツがユニー クに識別され、

さらに、ストリームの種別を識別するためのコンポーネントタグと、

ストリームの伝送形式がカルーセル伝送の場合は各エレメントが格納されたモジュール識別子と、各エレメントの名前であるエレメント名又はメタデータ識別子で識別されるようにしたコンテンツ蓄積管理方法。

【請求項6】請求項1に記載のコンテンツ蓄積管理方法 において

配信時のデータを識別するために必要とした識別子及び 名称を利用することで指定する階層化されたツリー構造 で蓄積媒体内の論理位置イメージを構成し、前記論理位 置イメージは、

PSI情報を利用することにより、データが配信されてきた伝送路を識別するためのネットワーク識別子と、ネットワーク内のどのTSで配信されてきたかを識別するためのTS識別子と、TS内のどのチャンネルで配信されたかを識別するためのサービス識別子とで論理位置を示し、

さらに、メタデータリスト及び/又はメタデータを利用することにより、コンテンツ識別子で論理位置を示し、コンテンツ識別子以降の論理位置指定は、

PSI情報を利用して、各カルーセルストリームに割振られたコンポーネントタグと、カルーセル内のモジュールを識別するモジュール識別子とで論理位置を指定するようにしたコンテンツ蓄積管理方法。

【請求項7】請求項6に記載のコンテンツ蓄積管理方法 において、

さらに、メタデータ内に格納された情報を利用して、 蓄積再生用メタデータの場合はメタデータ識別子により 各データの実体を結びつけ、又は、

ファイル型コンテンツを構成するエレメントの場合は各 エレメントの名前であるエレメント名により各データの 実体を結びつけ、又は、

ストリーム型コンテンツを構成するエレメントを蓄積媒体に格納する場合は、PSI情報により各ストリームに割り振られたコンポーネントタグにより論理位置を指定し、その後メタデータに格納されたエレメントの名前であるエレメント名により各データの実体を結びつけるようにしたコンテンツ蓄積管理方法。

【請求項8】請求項1に記載のコンテンツ蓄積管理方法 において、

送出側で受信側のユーザーに対するメタデータを配信する際に、MPEG2システムに規定されたPSI情報を拡張することにより受信側に配信可能とし、受信側ではメタデータを利用することによりコンテンツの制御を行うことを特徴とするコンテンツ蓄積管理方法。

【請求項9】請求項8に記載のコンテンツ蓄積管理方法

において、

PSI情報であるNITにシステム鍵更新用メタデータの配信位置が格納されたシステム鍵更新用TS記述子を配置することで、受信端末側でシステム鍵更新用メタデータを他のメタデータより優先的に取得可能とすることを特徴とするコンテンツ蓄積管理方法。

【請求項10】請求項8に記載のコンテンツ蓄積管理方法において、

PSI情報であるNITに配置されるサービスリスト記述子に既存の放送方式と区別を行うための情報を新たに追加することにより、受信端末側で既存方式、本発明による新サービスによる受信処理の区別を行うことを可能とし、既存のネットワークにおいて本発明によるメタデータを利用する総合データ配信サービスを混在させることを特徴とするコンテンツ蓄積管理方法。

【請求項11】請求項8に記載のコンテンツ蓄積管理方法において、

PSI情報であるPMT上で配信されるストリームの識別番号を与えるタグ値を利用することで受信端末側でのメタデータ取得動作の優先順位を識別することを特徴とするコンテンツ蓄積管理方法。

【請求項12】請求項1に記載のコンテンツ蓄積管理方法において、

コンテンツに割り当てられる識別子をネットワーク内で一意するために、予めネットワーク内で一意となるよう管理された各放送局もしくはコンテンツプロバイダを識別する番号を用意し、その後続に各放送局、コンテンツプロバイダ内で順に割り振られた制作順の番号をつけることでコンテンツ識別子の一意性を可能とすることを特徴とするコンテンツ蓄積管理方法。

【請求項13】請求項1に記載のコンテンツ蓄積管理方法において、

論理位置としてデータが配信されてきた伝送路又はネットワークを識別するための情報と、ネットワーク内で一意となるコンテンツを識別するための情報を記述することで他のコンテンツとの識別を可能とし、誤って他のコンテンツを構成するデータの上書き等を防止することと共に受信端末に蓄積されたコンテンツ、伝送路にて配信中のコンテンツの区別なく位置情報を統一的に表現可能とすることを特徴とするコンテンツ蓄積管理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、コンテンツ蓄積管理方法に係り、特に、総合データ配信サービスにおけるコンテンツ蓄積管理方法に関する。コンテンツに関する詳細情報について記述したメタデータを定義することで、コンテンツに対する様々な制御をメタデータで行うことが可能となる。これよりユーザーへのコンテンツ提示方法、利用条件等の制御が可能となり、コンテンツの権利保護、ユーザー個人の権利保護等が可能なサービス

を提供することが可能となる。

[0002]

【従来の技術】BSデジタル放送では、コンテンツに関する情報としてSI(Service Information サービス情報)が定義されている。この情報はコンテンツの関連情報ではあるが、EPG(Electric Program Guide 電子番組ガイド)に特化しており、様々なコンテンツに対応したコンテンツ関連情報ではない。様々なコンテンツに関する詳細な情報を定義可能な手段は、放送規格においては現状定義されていないため、コンテンツ毎の制御に基づいた木目細かいサービスを行うことができない。また、既存型の放送はコンテンツをリアルタイムで視聴することを念頭においたサービスであるため、コンテンツの蓄積制御、コピー制御を行うための情報が乏しい。

[0003]

【発明が解決しようとする課題】以上のように、コンテンツに関する情報を定義するための手段として、EPG(電子番組ガイド)用情報のみしか現状の衛星デジタル放送の規格においては存在しないため、番組毎の情報よりも詳細な情報を定義することができない。これにより番組よりも詳細なコンテンツの定義を行うことが出来ないため、コンテンツ毎の制御やコンテンツに関する詳細な情報を用いてのコンテンツ制御サービスは行うことが出来ない。

【0004】また、データ配信サービスを行うために は、直接家庭等にコンテンツを配信し、家庭内等でデジ タルのまま蓄積/コピー/再生を行うことを目的とするこ とより、データの改ざん、私的利用を超えるコピー、再 生等の著作権等の権利に関わる課題が生じる。そのため コンテンツの著作権者、放送事業者、視聴者など各々の 権利を保護、管理する必要がある。従来のデジタル放送 は、リアルタイムの視聴が主なため、放送を受信するこ とが可能な端末の限定を行う限定受信による伝送路での コンテンツ暗号化や、外部機器に対するコピーコントロ ール程度のコンテンツ保護である。従来では、コンテン ツ保護のために伝送路での暗号に関する鍵を一定時間で 切り替えるようにしているので、もし伝送路の暗号化さ れたコンテンツを蓄積させるならば、全ての鍵、PSI/SI 等のテーブルを蓄積する必要があり、テーブルの重複、 コンテンツに対するセキュリティに関する課題等が起こ る。

【0005】本発明は、コンテンツ毎に送出側でコンテンツの利用可能範囲等を定義したメタデータを添付し、受信側にコンテンツと共に配信することにより受信側でメタデータに定義された範囲のコンテンツ利用方法、ユーザーへのコンテンツ提示方法等の木目細かな制御を可能とすることを目的とする。よって、本発明は、コンテンツの権利保護、ユーザーの個人の権利保護等が可能なサービスを提供することを目的とする。

[0006]

【課題を解決するための手段】本発明の解決手段による と、通信回線又はメディア媒体を用いてコンテンツの配 信を行い、送出側で暗号化したコンテンツを受信側で暗 号化状態のまま蓄積し、コンテンツ利用時にコンテンツ と共に送出側より配信されるコンテンツの提示方法・利 用条件・コンテンツの暗号鍵の各情報を含むコンテンツ の関連情報を格納したメタデータにより、受信側でコン テンツの利用に関する判断をすることによりコンテンツ に対する課金制御及び/又は権利保護を可能とするコン テンツ蓄積管理方法において、受信端末がコンテンツ及 びメタデータを蓄積する際に、受信時に配信される伝送 路上のテーブルに含まれるプログラム特定情報(PS I)、メタデータ内に含まれる識別情報を含む情報を利 用し、コンテンツ及びメタデータの実体であるエレメン トに対し、蓄積するデータの論理位置と蓄積媒体内の物 理位置を含むヘッダー情報を作成し、受信端末は、コン テンツ及びメタデータを受信端末内又はメディア媒体 に、該ヘッダー情報を添付して蓄積することで蓄積後の データ管理を可能とするようにしたコンテンツ蓄積管理 方法が提供される。

[0007]

【発明の実施の形態】1. 概要

(サービス概要) 本総合データ配信サービスとは、見た いコンテンツを見たい時に見たい場所で見られる情報 (データ)配信サービスであり、従来のリアルタイム型 (放送しているものを視聴する) デジタル放送とは異な り、リアルタイム型に限らず蓄積型の情報配信をも行う サービスである。これにより視聴者が、何時でも好きな ときに蓄積されたコンテンツの中から好みのコンテンツ を選んで視聴することが可能なニアビデオオンデマンド (NVOD: Near Video On Demand) 的なサービスが提供さ れる。また、リムーバブルメディア、本サービスを受信 する受信端末に接続される外部機器に直接コンテンツを 蓄積させるもしくは、コピーすることによりユーザーの 好きな場所でのコンテンツ視聴をも提供する。さらに従 来のデジタル放送サービスでは端末単位での契約等の狭 い範囲でのコンテンツ利用契約形態のみであったが、本 サービスではユーザー個人単位での契約等も可能な広範 囲のコンテンツ利用契約形態を提供する。

【0008】図1に、総合データ配信サービスのサービス構成図を示す。以下に、本総合データ配信サービスの概要として、蓄積型テレビ放送について図1を用い説明する。従来のテレビ放送では、放送サイド(放送局)から送られてくるコンテンツ1(番組)をアンテナ2(ケーブルでの配信、パッケージでの配信の場合もある)、受信端末3で受信しテレビ9などのモニタ装置にて配信されてくるその瞬間から視聴を行う(リアルタイム型視聴6)。本実施の形態における蓄積型テレビ放送とは、リアルタイム型視聴6に加え、従来のビデオデッキ等と同様に一度配信されてきたコンテンツを蓄積媒体4(ハ

ードディスク等の大容量蓄積媒体)に蓄積後視聴する蓄積型視聴8(DVD-RAM等の可搬性に富んだリムーバブルメディア5を蓄積媒体として使用することもある)、蓄積されたコンテンツと配信中のリアルタイム視聴型のコンテンツを合わせて視聴するリアルタイム型+蓄積型視聴7などのサービスを可能とする情報配信サービスである。

【0009】(システム概要)図2に、総合データ配信 サービスシステムの全体構成図を示す。本総合データ配 信サービスを行うシステムとしては、衛星放送、地上波 放送など電波によるインフラの他にケーブルテレビ、イ ンターネットなどの通信線を利用したインフラでのサー ビスが可能であるが本発明では図2のような衛星を利用 したデジタル衛星放送をインフラとした場合について述 べる。総合データ配信サービスが提供されるシステムの 概要について図2を用い説明する。本総合データ配信サ ービスのシステムは送出側100、受信側200、送出 側と受信側を結ぶ伝送路である衛星を利用した衛星回線 10、地上回線11、流通網12、携帯電話網13に大 きく分けられる。ここでいう受信側200とは、必ずし も家庭201に設置される受信端末3のみでなく、自動 販売機のような公衆端末202、コンビニエンスストア 等の店舗203に設置される端末、移動体である自動車 等に搭載される車載端末204、携帯端末205等も想 定する。送出側100では、コンテンツ1及び制御情報 等を制作、管理し受信側200へ配信する配信センタ、 コンテンツの暗号化等に使用する鍵を生成管理する鍵管 理センタ、受信側のユーザーの情報を管理する顧客管理 センタ、受信側のユーザーからのリクエスト、視聴履歴 収集等の地上回線11、携帯電話206を利用した通信 を管理する地上回線管理センタ、ユーザー、販売店等に 対してDVD等のパッケージメディアによるコンテンツの 配信(配達)を行う物流管理センタ等から構成される。 【0010】(サービス内容)次に図2のシステムにお

【0010】(サービス内容)次に図2のシステムにおいて行われるサービスについて説明する。本総合データ配信サービスにおいては、例えば次のような各サービスを可能とする。

- ・衛星デジタル回線10を主に利用しデジタル情報としての、ビデオ、音楽、電子雑誌、ゲーム等の映像、音声、データによる総合データを家庭に設置される受信端末3に向けて配信する家庭向けサービス300、
- ・家庭向けサービスと同様に自動販売機202、販売店203に対しデータを配信し、家庭内で容量的に蓄積しきれないデータ、蓄積をしていないデータのバックアップ、自動販売機、販売店のみで販売可能なデータ等を扱い、例えば販売店でのみ販売可能な電子雑誌を購入し、家庭の受信端末3で視聴を行う自動販売機/販売店向けサービス301、
- ・車載機器204、携帯端末205などの外部機器に対し家庭内の受信端末3、もしくは自動販売機202、販

売店203などからコンテンツを携帯し家庭外で視聴を行うことを可能とし、例えば家庭の受信端末に配信された地図データをDVD等のリムーバブルメディア、ICカードを利用することにより車載機器204に持ち出し車の中で利用したり、音楽データをメモリカード等のリムーバブルメディア、ICカードを利用することにより持ち出し携帯端末205により再生等を行う移動体向けサービス302、

・流通網12を利用し衛星回線10で配信出来ないコンテンツ等をCD-ROM、DVD-ROM等のパッケージメディアにより配信を行い、例えばドラマ等のコンテンツを受信端末より予約すると、送出側よりDVD-ROM等で家庭に対しコンテンツを宅配便等で配信するパッケージデリバリサービス303、

・携帯電話206等の通信手段を有する外部機器を利用し、送出側を介し家庭内の受信端末をコントロールすることにより例えば、携帯電話206の画面上のEPG(電子番組ガイド)より外出先から家庭の受信端末に対して番組予約等を行う携帯電話向けサービス304

【 0 0 1 1 】本発明では特に家庭向けサービスに対する データ配信方式ついて説明する。

(権利保護方式)本総合データ配信サービスとは、直接家庭などにコンテンツを配信し、家庭内等でデジタルデータでの蓄積/コピー/再生を行うことを目的としたサービスであり、これに伴いデータの改ざん、私的利用を超えるコピー、再生等の著作権等の権利に関わる問題が生じるため、コンテンツの著作権、放送事業者、視聴者など各々の権利を保護、管理する必要がある。

【0012】図3に、総合データ配信サービスにおける 権利保護方式の説明図を示す。以下に、本総合データ配 信サービスにおける権利保護方式について図3を用いて 説明する。総合データ配信サービスにおける権利保護方 式とは、送出側でコンテンツに対し定義した視聴者への コンテンツの提示方法、利用条件、コンテンツの暗号鍵 等の情報が格納されたメタデータ18を暗号化したコン テンツ17、その他PSI/SI (Program Specific Informa tion/Service Information) 等19と共に配信し、受信 端末3側の権利保護機能16 (RMP (Rights Management & Protection)機能) によりメタデータ18を解釈し、 コンテンツ17の受信端末3への受信制御、蓄積媒体 4、リムーバブルメディア5に対する蓄積制御、コピー 制御、暗号/復号制御、TV9などのモニタ装置に対す る提示制御、外部機器14に対する認証制御、個人を識 別するためのICカード15に対する認証/課金制御等を 行う方式である。

【0013】次に送出側より配信されるPSI/SI19、コンテンツ17、メタデータ18及び受信端末内のRMP機能について説明する。第1に、PSI/SIとは、従来のデジタル放送と同様に、配信中ストリームより必要なデータを取得するためのデータであり、本総合データ配信サー

ビスでは、メタデータ、暗号化コンテンツ等を取得する ために利用する。

【0014】第2に、本総合データ配信サービスにおけるコンテンツとは、データの改ざん、不正使用を防ぐために蓄積媒体4、リムーバブルメディア5等に蓄積されるコンテンツ17は基本的に暗号化されたままの状態で蓄積される。また総合データ配信サービスにおけるコンテンツ17とは、概念的なものであり一定の物理量を示す単位ではなく、送出側の意図する単位で指定可能であり、指定した物理量をメタデータに記すことにより受信端末はコンテンツを認識可能となる。コンテンツは、従来のデジタル放送と同様なチャンネルを指定すれば瞬時に視聴可能となるリアルタイムに視聴することを主眼とした動画等のストリーム系コンテンツ、受信端末内に一時蓄積もしくは蓄積したのち視聴を行うことを主眼としたファイル系のコンテンツに分けられる。

【0015】図29に、それぞれのコンテンツを構成するデータの一例の説明図を示す。本総合データ配信サービスでは、コンテンツを構成するデータ群の各データをエレメントと呼ぶ。よってコンテンツとは前述の通り実体そのものではなく実体の集合を指し、その実体が1つあるいは複数エレメントとなる。また本総合データ配信サービスでは、このエレメントの集合単位であるコンテンツに対して、サービスが行なわれるネットワーク内で、例えばCSデジタル放送内でコンテンツ毎に異なるIDを定義することにより他のコンテンツとの識別を行なう。本総合データ配信サービスでは図示のように、配信する形態によりストリーム系コンテンツ、ファイル系コンテンツに分類される。ストリーム系コンテンツを構成するエレメント、ファイル系コンテンツを構成するエレメントの内容は図に示した通りである。

【0016】第3に、本総合データ配信サービスにおけるメタデータとは、送出側である放送事業者の意図する単位で指定されたコンテンツに対して付与されるコンテンツの内容、構成等の検索等に利用される一般的な情報、著作権者及び関連する権利の保護を送出側で定義した視聴者へのコンテンツ提示方法、利用条件等の情報を含み、これらの情報により端末を制御し、権利保護を可能とする。よって、メタデータにはコンテンツと同様、保護すべき情報が含まれるため、一部を暗号化して配信を行い、蓄積時も暗号化されたままの状態で蓄積される。また、メタデータは配信タイミング、内容により分類される。本総合データ配信サービスにおいて、例えば次のような各メタデータに分類される。

・有料放送事業者毎に固有の鍵である事業者鍵や、契約 した事業者の放送する番組の全てが視聴可能か、一部が 視聴可能か等を受信端末側で解釈するための契約コード 等が格納されユーザー個人宛にコンテンツの配信とは非 同期に配信される事前契約用メタデータ、

・受信端末側で配信予定のコンテンツの確認、視聴/蓄

積予約を行うために必要となるコンテンツの名称、内容、放送予定日などの情報が格納され、受信端末を使用するユーザーの区別なく対象となるコンテンツの配信以前に全受信端末に向け配信され、主に受信端末のEPG表示、視聴/蓄積予約等を行うためのEPG用メタデータ、

・コンテンツの受信、蓄積、コンテンツに対する視聴契 約を行うための情報が格納され、受信端末を使用するユ ーザーの区別なく全受信端末に向け対象となるコンテン ツの配信と同期させ配信される蓄積/再生用メタデー タ、

・コンテンツの暗号化を行った鍵の情報が格納され、蓄 積/再生用メタデータと同様に対象となるコンテンツの 配信と同期させ配信される鍵配信用メタデータ、

・PSI/SIと共に利用することにより蓄積したEPG用メタデータの更新を行うための情報、配信中ストリーム群より必要なデータを取得するための情報が格納され、受信端末を使用するユーザーの区別なく全受信端末に向け常時配信されるメタデータリスト、

・端末内に子め格納されているシステム全体で共通の鍵等のシステム全体で共通的な情報をを更新するための情報が格納され、受信端末を使用するユーザーの区別なく全受信端末に向けコンテンツの配信とは非同期に配信されるシステム鍵更新用メタデータ

【0017】第4に、RMP機能16とは、受信端末内での著作権者、放送事業者、ユーザー等の権利に関連する情報を制御、管理する機能である。図30に、RMP機能概略についての説明図を示す。基本的にメタデータ内の情報をもとに制御を行い、放送サイドで定義した範囲で(許可した範囲)、コンテンツの復号、画面への提示、蓄積、コピー、外部への出力等の動作を行うRMPの機能概略の説明を図示している。各機能としては、受信制御機能、蓄積制御機能、コピー制御機能、提示制御機能、視聴契約制御機能、課金制御機能、個人認証制御機能、視聴契約制御機能、課金制御機能、時刻管理機能、アプリケーション認証制御機能、外部機器認証制御機能、アプリケーション認証制御機能、外部機器認証制御機能、通信回線制御機能等がある。

【0018】2. PSI/SI詳細

次に本総合データ配信サービスにおいて送出側100より受信側200に衛星回線10を用いて配信されるPSI/SI19、メタデータ18、コンテンツ17の詳細について説明する。本総合データ配信サービスにおけるPSIとは、伝送路上の各データを伝送するTS(トランスポートストリーム)構成等を格納したデータであるため、メタデータ18、コンテンツ177を配信電波より取得するために使用する。SIとはコンテンツの内容を示す情報、簡易な権利情報を格納したデータであり、既存型放送においてEPGを表現するためのデータであるため、EPG用メタデータによりEPGを表現する本総合データ配信サービスでは基本的には使用を行わないことも可能である。本総合データ配信サービスにて使用するPSI内のデ

ータとしては各TS(Transport stream)内の放送番組に関連するPMT(Program Map Table)を伝送するTSパケットのPID(packt id)を指定するPAT(Program Association Table)、変調周波数等の伝送路の情報と放送サービスを関連付ける情報を伝送し、ネットワーク全体の構成を示すNIT(Network Information Table)、放送番組を構成する各符号化信号を伝送するTSパケットのPIDを指定するPMT(Program MapTable)、カルーセル内のモジュール構成等を指定するDII(Download Info Indicator)、ファイル型のデータを格納するDDB(Download Data Block)より構成されるDSM-CCセクション(Digital Storage Media Command and Control)が挙げられる。本総合データ配信サービスにおけるそれぞれのデータ構造の詳細について次に説明する。

【0019】(PAT)図4に、PATのデータ構造、記述内 容の説明図を示す。以下に、PAT20の構造について図 4を用いて説明する。PATはPIDOx0000のTSパケットによ り伝送され、各TS毎に存在し、TS内で配信されるサービ スの構成を示すデータである。PAT20に含まれるデー タは、受信端末側でPATを識別するためのtable_id (0x0 0)、データ長を示す情報、配信されるtransport strea m (TS) のID、TS内に配信されるサービスを識別するた めのprogram_number (service_id) 、program_numberに 該当するサービス内の情報を格納したPMTを伝送するTS パケットのPID等により構成される。PATはコンテンツや メタデータを受信するために必要となるデータであり、 コンテンツ、メタデータを受信した後は不要となるため 受信端末上の不揮発メモリ (RAM) 等に一時蓄積される ことはあるが基本的には蓄積を行わないデータである。 本総合データ配信サービスを実現させる上で現在BSデジ タル放送規格等で規定されているPAT 2 O に特に拡張を 行わない。

【0020】(NIT)図5に、NITのデータ構造、記 述内容の説明図を示す。以下に、NIT21の構造につい て図5を用いて説明する。NITはPID0x0010のTSパケット により伝送され、各TS毎に共通的に存在する総合データ 配信サービスが行われるネットワーク全体に対する情報 を示すデータである。NIT21に含まれるデータは、受 信端末側でNITを識別するためのtable_id、データ長を 示す情報、どのネットワークに対し記述されているかを 示すnetwork_id、ネットワークの名称を記述するネット ワーク記述子、CA_EMM_TS記述子、ネットワークで伝送 されているデータが放送によるものか非放送によるもの かを識別するためのシステム管理記述子、システム鍵更 新用メタデータを伝送するTSを識別するためのシステム 鍵更新用 TS記述子、ネットワークに含まれるTSの構成 を示すtransport_stream_id、各TS内のサービス構成、 サービスの形式を示すサービスリスト記述子、受信端末 側が各TSを取得するために必要となる電波の偏波面、周 波数、利用する衛星の軌道位置、変調方式等のパラメー タが含まれる衛星分配システム記述子等により構成される.

【0021】NIT21は更新が稀にしか行われないデー 夕であるので、受信端末の処理速度向上のため受信端末 内に蓄積されることもあるデータであるが、本総合デー 夕配信サービスを実現させる上ではPATと同様に特に蓄 積を必要としない。本総合データ配信サービスを行う上 で現在規定されるNIT21に対し拡張を行う部分として はシステム鍵更新用_TS記述子22の追加と、サービス リスト記述子23内のデータの一部分である。システム 鍵更新用_TS記述子は、前述の通り受信端末内にある総 合データ配信システム全体で共通的な情報を更新する際 に利用するシステム鍵更新用メタデータを伝送するTSを 指定する情報であり、システム鍵更新用メタデータは受 信端末側に優先的に取得させる必要がある情報であるた め、各TSで共通に配信されるNIT 21に格納することに よりネットワーク内のどのサービスを受信中にでもシス テム鍵更新用メタデータの受信要求を送信側から行うこ とが可能となる。システム鍵更新用TS記述子の構成とし ては、システム鍵更新用メタデータの配信されるTS_i d、対象となるネットワークのID等の情報により構成さ れる。NIT21内にシステム鍵更新用_TS記述子が存在し ない場合はシステム鍵更新用メタデータが配信されてい ないことを意味する。サービスリスト記述子の拡張部分 とは、サービスリスト内で指定されるサービスのタイプ に新規に総合データ配信サービスの特徴である蓄積型サ ービスを示す情報を追加する点である。これによりどの ネットワーク例えばBSデジタル放送ネットワーク、地上 波デジタル放送ネットワーク、CSデジタル放送ネットワ ークにおいて既存型放送サービスに総合データ配信サー ビスを混在させることが可能となる。また受信端末側で チャンネル(service_id)を指定した際に総合データ配信 サービスであることが認識可能となり、総合データ配信 サービスの受信処理と、既存型例えばBSデジタル放送で 行われるサービスの受信処理とどちらを行ばえば良いの か識別可能となり既存型サービス、総合データ配信サー ビスのどちらも受信可能な受信端末を実現させる上での 処理の切り分け、既存型サービス、総合データ配信サー ビスとの整合性を図ることが可能となる。

【0022】図31に、現在規定されているサービスのタイプの説明図を示す。拡張部分としては現在未定義、もしくは事業者定義である0x03-0x7F、0x80-0xA0、0xA9-0xBF、0xC1-0xFF部分に新規に蓄積型サービス(権利保護機能付き)を定義することとする。

【0023】(PMT)図6に、PMTのデータ構造、記述内容の説明図を示す。以下に、PMT24の構造について図6を用いて説明する。PMT24はPAT20内で指定されるPIDで識別されるTSパケットにより伝送され、各TS内で配信されるサービス数のテーブルが存在し、各サービス内の放送番組を構成する各符号化信号を伝送するTSパケ

ットのPIDを指定する。PMT24は、その特徴上、各サー ビス毎に情報が異なるデータであり、配信中のサービス についての情報を示すデータである。PMT24に含まれ るデータは、受信端末側でPMTを識別するためのtable_i d、データ長を示す情報、どのサービスに対して記述さ れた情報かを識別するためのprogram number (service) id)、番組全体に対するECMを伝送するTSパケットのPID を指定するための限定受信方式記述子、番組全体に対す るコピー制御情報の指定を行うデジタルコピー制御記述 子、緊急放送番組の配信場所の指定を行う緊急情報記述 子、配信中サービスを構成する各ストリームの形式を指 定するsteam_type、各ストリームが格納されたTSパケッ トを識別するためのES_PID、各ストリームに対するタグ 付けを行うためのストリーム識別記述子、階層化したス トリーム間の関係を指定する階層伝送記述子、各ストリ ームに対するコピー制御情報の指定を行うデジタルコピ 一制御記述子、ESを取得可能な地域を指定する対象地域 記述子、ビデオコードの指定を行うビデオデコードコン トロール記述子、データ信号形式の指定を行うデータ符 号化方式記述子、各ストリームに対するECMのPIDを指定 する限定受信方式記述子等により構成される。PMTはサ ービスの配信される時間枠毎に内容が異なるため基本的 に蓄積を行わず、PMTの情報が必要となった場合に直接 配信中の電波より情報をその都度取得する。本総合デー 夕配信サービスを行う上でPMT24で拡張を行う部分と しては、デジタルコピー制御記述子25、stream_type 26、ストリーム識別記述子27内のデータ定義部分で ある。図32に、デジタルコピー制御記述子25により 制御される情報についての説明図を示す。本総合データ 配信サービスではメタデータを利用しコンテンツの様々 なコピー制御等を行うため、デジタルコピー制御方式記 述子25のコピー制御形式にもしくはその他予約領域部 分に新しくメタデータを参照する定義を指定することに より、メタデータを利用したコピー制御、既存型サービ スのデジタルコピー制御記述子のみを利用したコピー制 御等との切り分け、総合データ配信サービス、既存型サ ービスとの整合性を可能とする。

【0024】図33に、現在規定されるストリームの形式についての説明図を示す。Stream_type26部分の拡張とは現在規定されているストリームに対し新規形式のストリームを総合データ配信サービスで使用する場合に未定義部分、もしくはユーザ領域などに新規形式を追加することである。これにより総合データ配信サービスを受信する受信端末側で新しく定義されたストリームの形式を認識可能とさせる。

【0025】図34に、現在規定されているタグ値についての説明図を示す。ストリーム識別記述子27の拡張部分としては、ストリームに対しタグ付けを行うcomponent_tag部分に新規タグを追加することである。受信端末側ではこのタグの値を認識することによりタグ付けさ

れたストリームが映像を伝送するストリーム、音声を伝送するストリーム、データを伝送するストリーム、最初に提示するストリームであるデフォルトストリーム等を識別し動作する。

【0026】図35に、本総合データ配信サービスで定 義した場合の一例の説明図を示す。本総合データ配信サ ービスでは図34における予約領域に新たな定義を行 い、そのタグ値を元に動作する受信端末を放送側より制 御可能とする。既存型サービスで定義されたタグ値はリ アルタイムで視聴を行うための意味付けであるため、本 総合データ配信サービスの特徴である蓄積が可能なコン テンツを配信する場合は図35で定義したタグ値を使用 することにより、権利保護機能の付いていない既存型の 受信端末ではコンテンツを配信するストリームを認識出 来なくなる一方、本総合データ配信サービスを受信可能 な受信端末では蓄積型のストリームの認識が可能とな り、既存型サービスと総合データ配信サービスとの切り 分け、整合性の確保が可能となる。総合データ配信サー ビス用受信端末は、直接コンテンツの取得動作を行う既 存型の受信端末との処理が異なり、各メタデータを示す タグ値が指定されている場合にはメタデータを最初に取 得し、メタデータの内容により処理を制御する構造とす る。メタデータを示すタグ値、蓄積用のタグ値が指定さ れていない場合は既存型の受信端末と同様に直接コンテ ンツの取得動作を行う。受信端末側の取得動作のタグ値 による優先順位は事前契約用メタデータ>蓄積再生用メ タデータ>各コンテンツに対するタグ値とし、システム 鍵更新用メタデータ、EPG用メタデータの優先順位はPMT 内で行わずシステム鍵更新用メタデータは前述の通りNI T内で行う。EPG用メタデータについては特に優先順位を 付けずに、受信端末起動時、有る一定周期で確認を行う ことで取得可能とする。

【0027】(DSM-CCセクション)次にメタデータ、フ ァイル系コンテンツを構成する各エレメントを伝送する カルーセルストリームを構成するDII、DDBについて説明 する。MPEG2の伝送規格におけるカルーセル伝送方式で は、DDIのカルーセルストリーム内にデータに関する情 報と取得時における制御情報を埋め込んでいる。この情 報を取得してから受信動作が行われることより、配信の 周期が非常に短い設定となっている。実際のファイルは DDBというブロック単位の塊に分割して配信し、このDDB のブロックのストリームに、DIIの塊を配信周期に合わ せて挿入する。またDDBのある集合体をモジュールとい う中間の集合体として規定している。この中間の集合体 は、送出側で規定可能な集合体であり任意の単位として 存在する。メタデータも1つのファイルとして配信する。 ためDDBに分割し同様に送られる。このメタデータファ イルに関する情報は、DIIに簡単な情報は規定されるも のの、詳細な情報はメタデータリストとして1つのファ イルとして規定する。このメタデータリストは同様に1

つのファイルとして定義されるので、DDBに分割して配信させる。ただし、本実施の形態では、一例として、メタデータリストは受信動作において、最初に必要な情報であるためモジュールOとして、最初に受信動作で組み立てを行うブロックとして規定する。

【0028】(DII)図7に、DIIのデータ構造、記述内 容の説明図を示す。以下に、DIIの構造について図7を 用いて説明する。DII28はPMT24内で指定されるstre am_typeがカルーセルであるストリームのES_PIDで識別 されるTSパケットにより伝送される。DII28は、カル ーセル内モジュール構成を示す情報であり各カルーセル ストリームに存在するデータである。DII28に含まれ るデータは、受信端末側でDIIを識別するためのtable_i d、他のカルーセルとの識別を行うためのdownload_id、 DDBの各ブロックサイズを指定するためのBlock_size、 カルーセルのダウンロード開始より終了までのタイムア ウト値を指定するtCDownloadScenario、カルーセル内の モジュールの総数を示すnumber of Modules、各モジュ ールを識別するmodule_id、各モジュールのサイズを指 定するmodule_size、各モジュールの更新を識別するmod ule_version、各moduleに対する情報を指定するmodule_ info_byte等により構成される。

【0029】図36に、Module_info_Byte内で指定され る情報についての説明図を示す。受信端末側ではカルー セル内のmodule idが0x00で指定されるモジュールを必 ず最初に取得することとする以外に本総合データ配信サ ービスにおいてデータ構造自体に拡張は必要としない。 【0030】(DDB)図8に、DDBのデータ構造、記述内 容の説明図を示す。以下に、DDB29の構造について図 8を用いて説明する。DDB29はDII28と同様にPMT2 4内で指定されるstream_typeがカルーセルであるスト リームのES_PIDで識別されるTSパケットにより伝送され るためDIIと同じPIDのTSパケットにより伝送され、DII により定義されたモジュールをブロック分けし伝送する ため1カルーセルないに複数存在するデータである。DD B29に含まれるデータは受信端末側がDDB29を識別す るためのtable_id、どのモジュールをブロック分けした DDBかを指定するためのmodule_id、モジュールの更新番 号であるmodule_version、指定されモジュールを構成す るブロックの位置を示すBlock_number、モジュールをブ ロック分けしたデータそのものを格納するBlock_data等 により構成される。データ構造自体は本総合データ配信 サービスにおいて特に拡張する必要はない。

【0031】3. メタデータ

次に送出側で生成し、受信端末に対して配信されるメタデータについて説明する。本総合データ配信サービスにおけるメタデータの記述方式は、XML等のテキスト形式での記述、PSI/SIのようなバイナリ形式での記述が可能である。ただし、暗号化が必要な部分については受信端末内での記述内容解釈処理の向上の点で特にバイナリ形

式での記述を行うが、受信端末の処理性能が高い場合は、非暗号化部分と同様にテキスト形式での記述による 運用も可能である。メタデータは記述する内容、配信するタイミングにより分類される。

【0032】図37に、メタデータの分類についての説明図を示す。図37に示される各メタデータの構造、記述内容について次に説明する。

(事前契約用メタデータ)図9に、事前契約用メタデー タの構造、記述内容の説明図を示す。事前契約用メタデ ータ30とは、本総合データ配信サービスにおいて主に コンテンツの限定受信を行う際の判定材料に利用される データであり、有料放送事業者毎に異なる事業者鍵Kw や、契約形態に関するティア/フラットコード等に関す る契約コード等の内容を含み、端末購入時に行う初期契 約時、契約更新時、事業者鍵Kw更新時等に配信される メタデータである。端末ID、個人ID等の受信端末が端末 を利用するユーザー宛に送られたデータかを識別するた めのユーザー識別情報31、メタデータの暗号方式、暗 号化部分、暗号鍵を示すID (端末ID) 等のメタデータに かけられた暗号に関する暗号化情報32、ユーザーの名 前、電話番号、住所、決済能力、決済先、パスワード等 のユーザー自身の個人情報33、ユーザーが契約を行う 契約事業者のID、事業者鍵Kw、契約の有効期限、契約コ ード、契約ポイント等の契約情報34を含む。暗号化部 分については、各ユーザーの決済先等の情報が格納され る個人情報33、事業者鍵Kw等の情報が格納される契約 情報34が該当し、ユーザーの利用する端末固有の鍵す なわち端末毎に異なるKmc35により送出側で暗号化さ れ、受信端末に配信される。暗号化情報32については 特に暗号化が必要ではないが改ざん防止が必要な情報で あるためハッシュ関数等を利用し改ざん防止処理を行な う。暗号化に使用する暗号鍵については運用により各ユ ーザーに対し配布されるICカード固有、すなわち総合デ ータ配信サービスを受信するユーザー毎に異なる個人鍵 Kmを使用することも可能である。また、運用により事前 契約用メタデータに上記の情報以外に後述するメタデー 夕属性情報が格納されることも可能である。

【0033】(EPG用メタデータ)次に図10に、EPG用メタデータ36の構造、記述内容の説明図を示す。EPG用メタデータ36とは、本総合データ配信サービスにおいて、主にユーザーが配信予定コンテンツの確認、配信予定コンテンツの視聴/蓄積予約を行うためのメタデータであり、EPG用メタデータの配信時が蓄積/再生用メタデータ、鍵配信用メタデータの配信時と重なる。EPG用メタデータる6は、そのため、各メタデータを識別するためのメタデータID、メタデータのタイプ、メタデータのサイズ、更新番号であるバージョンナンバー等のメタデータ属性情報37、事前契約用メタデータと同様にメタデータの暗号部分に関する暗号化情報32、番組のID、放送予定日時、番組の内容、ジャンル、コンテンツ

の構成、番組のサイズ等の番組に関する番組情報38、 コンテンツのID、コンテンツの内容、エレメントの構成 等のコンテンツ情報39、コンテンツを利用するユーザ ー、コンテンツ自体に対する制限情報である年齢制限、 コピー制限、蓄積制限等のユーザーが予約可能かを受信 端末が判断するための判断材料となる利用制限情報40 を含む。暗号化部分については予約の可否判断材料とな る利用制限情報40が該当し、全ユーザーのメタデータ の利用を可能とするため、全受信端末共通のシステム鍵 Ksy 1 _ 4 1 により送出側で暗号化され配信される。暗 **号化情報32については特に暗号化が必要ではないが改** ざん防止が必要な情報であるためハッシュ関数等を利用 し改ざん防止処理を行なう。コンテンツ情報39につい ては、総合データ配信サービスにおけるEPGの運用レベ ルにより格納せずに配信することも可能とする。利用制 限情報についても同様に格納せずに運用を行う場合もあ り、保護すべき情報がないEPG用メタデータは暗号化せ ずに配信されることも可能である。また本総合データ配 信サービスにおけるEPG用メタデータ内に格納されるコ ンテンツの配信位置 (Locator) は、ネットワークの識 別、TSの識別、サービス(チャンネル)の識別、コンテ ンツの識別及び放送予定日時程度の情報が区別可能とす

【0034】(蓄積再生用メタデータ)次に図11に、 蓄積再生用メタデータの構造、記述内容の説明図を示 す。蓄積/再生用メタデータ42とは、コンテンツの受 信、蓄積、再生に必要な情報を含むメタデータであり、 蓄積済みコンテンツの検索時に利用される他、ユーザー のコンテンツ利用方法を制御するためのメタデータであ る。蓄積/再生用メタデータ42は、EPG用メタデータと 同様にメタデータ自体を識別するためのメタデータ属性 情報37、暗号化情報32、番組情報38、コンテンツ 情報39、利用制限情報40、蓄積/再生用メタデータ が示すコンテンツの暗号化方式、暗号鍵ID、鍵の位置等 のコンテンツ暗号化情報43、コンテンツを視聴するた めの契約に関する、契約形態、契約による利用可能期間 等の契約情報44、契約による課金料金、課金タイミン グ等の課金情報45を含む。暗号化部分については利用 制限情報40、コンテンツの暗号化方式、暗号鍵ID等の 情報が含まれるコンテンツ暗号化情報43、使用制限期 間等の情報が含まれる契約情報44、課金時の料金、タ イミング等が含まれる課金情報45が該当し、コンテン ツを暗号化した鍵と同じコンテンツ鍵Kk46により送出 側で暗号化され配信される。また、蓄積/再生用メタデ ータにおけるコンテンツ情報39については、EPG用メ タデータ内に格納されるコンテンツ情報にコンテンツの 配信位置等の情報が追加される。ここでいう詳細な情報 とはカルーセルを利用するデータ系コンテンツであれば コンテンツの識別の後に、配信されるストリームを識別 するためのコンポーネントの識別、カルーセル内のモジ ュールの識別、各エレメントを識別可能な情報であり、PESストリームを利用する映像系コンテンツであればコンテンツの識別の後に、配信されるストリームを識別するためのコンポーネントの識別、ストリームで配信されたエレメントの識別等の情報である。本総合データ配信サービスではサービスを実現可能な最小限の項目を蓄積再生用メタデータに記述し、もしその他の付加情報、例えばコンテンツ内の各シーン名等の記述を行うなど豊富な情報を添付するのであれば別途メタデータを定義し配信する。この際の元の蓄積用メタデータと拡張したメタデータの識別は、メタデータのIDとは別に例えばメタデータの対応のよくタデータを識別可能とすることによりコンテンツIDと蓄積再生用メタデータIDとの1対1での対応の保持を崩さないようにする。

【0035】(鍵配信用メタデータ)次に図12に、鍵 配信用メタデータの構造、記述内容の説明図を示す。鍵 配信用メタデータ47とは、コンテンツの暗号鍵に関す る情報を配信するためのメタデータであり、コンテンツ が有料放送の場合は放送する事業者に契約したユーザー のみ受信可能とする限定受信を行うための情報が含まれ るメタデータである。鍵配信用メタデータ47は、他の メタデータより区別するためのメタデータ属性情報3 7、メタデータ自体の暗号化に関する暗号化情報32、 コンテンツのID、コンテンツの暗号鍵Kk46等のコンテ ンツ鍵情報48を含む。暗号化部分に関してはコンテン ツ鍵Kk46等のコンテンツ鍵情報48が送出側で暗号化 され配信される。暗号化情報32については特に暗号化 が必要ではないが改ざん防止が必要な情報であるためハ ッシュ関数等を利用し改ざん防止処理を行う。暗号鍵に ついては、鍵配信用メタデータ47が有料コンテンツに 対するメタデータであり、事業者に契約したユーザーの み受信可能な限定受信を行う場合は、事業者毎に固有の 事業者鍵Kw49が使用され、契約者以外のユーザーも視 聴可能な無料コンテンツに対するメタデータの場合は、 全受信端末に共通なシステム鍵Ksy1 4 1が使用され る。また、限定受信を実現させるための事業者ID、対象 契約コード等の情報はコンテンツ鍵情報48に格納され 暗号化されて配信される。

【0036】また本発明ではコンテンツの暗号化に使用するコンテンツ鍵Kk、蓄積再生用メタデータの暗号化に使用するコンテンツ鍵Kkは同じ値として説明するが、意識的に別の鍵値としてもよい。この場合、例えば、コンテンツ鍵Kkに2つの値をかけ合わせる等の特定アルゴリズムにおいて配信時刻等の不安定な値をかけることにより生成するコンテンツ鍵KK1、コンテンツ鍵KK2を生成し、コンテンツはコンテンツ鍵KK1、蓄積再生用メタデータはコンテンツ鍵KK2により暗号化させる。そして、鍵配信用メタデータ、蓄積/再生用メタデータにコンテンツ鍵KKおよび、コンテンツ鍵KK1、コンテンツ鍵KK2を生成する際に使用した値を格納させ、受信端末側で所有

する送出側と同様のアルゴリズムによりコンテンツ鍵KK 1、コンテンツ鍵KK2を導きだし、復号を行うことも可能である。

【0037】(メタデータリスト)次に図13に、メタデータリストの分類の説明図を示す。メタデータリスト50とは、配信中カルーセルストリーム内におけるEPG用メタデータ、蓄積再生用メタデータ、鍵配信用メタデータ、事前契約用メタデータの配信位置を示したテーブルであり、メタデータ、コンテンツの受信処理に必要となる情報である。基本的に各メタデータを配信する複数ES内のデフォルトESにおけるスタートアップモジュール(module_idが0x00であるモジュール)に格納され配信される。EPG用メタデータの配信位置を記述するEPG用メタデータリスト51、蓄積再生用メタデータ、対応する鍵配信用メタデータの配信位置を記述する蓄積再生用メタデータリスト52、事前契約用メタデータの配信位置を記述する事前契約用メタデータリスト53に分類される。

【0038】(EPG用メタデータリスト、蓄積再生用メ タデータリスト)図14に、EPG用メタデータリスト、 蓄積再生用メタデータリストの構造、記述内容の説明図 を示す。EPG用メタデータリスト51、蓄積再生用メタ データリスト52とはどちらもコンテンツに対するメタ データの配信位置を記述するため同様な記述内容、構造 である。コンテンツ、メタデータを取得するためのPSI を補完する情報も持ち、受信端末内に蓄積したメタデー タに対し配信ストリーム中のメタデータが更新した場合 における差分メタデータ蓄積のための情報をも含む。受 信端末側で情報の更新を識別するためのバージョン等の メタデータリスト属性情報54、各コンテンツに対する コンテンツID、各サービスにおいて最初に提示すべきか を識別する情報、対応するメタデータID、配信位置であ るcomponent_tag、module_id、メタデータのバージョン 等のリスト情報55を含む。EPG用メタデータリスト5 1は、EPG表示に利用されるその特徴上、他のTSで配信 されるコンテンツに対する情報、運用により一定期間例 えば1週間分の情報を含む。一方蓄積再生用メタデータ リスト52は、選択TS内で配信中コンテンツに対する情 報、及び運用により次に配信されるコンテンツに対する 情報程度に対する記述を行う。蓄積再生用メタデータリ ストについては上記TS内に1存在する場合に加え、選択 したTS内で配信中PMT単位、すなわち番組単位に配信す ることも可能である。またどちらのメタデータリストも 受信端末の受信処理にかならず必要な情報かつ保護を必 要とする情報を含まないため基本的には暗号化を行わず 配信する。

【0039】(事前契約用メタデータリスト)次に図15に、事前契約用メタデータリストの構造、記述内容の説明図を示す。事前契約用メタデータリストとはサービスを受信するユーザーに対し添付される事前契約用メタ

データの配信位置に対する情報であるため前記EPG用メタデータリスト51、蓄積再生用メタデータリスト52と一部記述内容が異なる。同様な情報としてはメタデータリスト自体のバージョン等を示すメタデータリスト54が含まれ、異なる情報としては事前契約用メタデータが対象とする個人ID、端末ID、事前契約用メタデータのバージョン、配信位置等により構成されるリスト情報56部分が含まれる。事前契約用メタデータリストは配信するTS内でサービスを行う事業者に対する各ユーザー毎の事前契約用メタデータについての記述のみが行われる。

【0040】(システム鍵更新用メタデータ)次に図1 6に、システム鍵更新用メタデータの構造、記述内容の 説明図を示す。システム鍵更新用メタデータ57とは、 受信端末内に格納されている全受信端末共通の鍵である システム鍵Ksy1を更新するためのメタデータであり、他 のメタデータと区別するためのメタデータ属性情報3 7、メタデータ自体の暗号化に関する暗号化情報32、 更新対象となるシステム鍵に対応するシステムID、変更 後のシステムID、システム鍵、更新タイミング等の情報 が含まれるシステム鍵情報58を含む。暗号化部分は、 更新後のシステム鍵Ksy3、変更タイミング等の情報が含 まれるシステム鍵情報58が該当し、暗号鍵は受信端末 内に予め予備用のシステム鍵として登録されているシス テム鍵Ksy2 59を使用する。システム鍵更新用メタデ ータ57は全TSに共通して配信される情報であり、一度 に複数のメタデータが存在しない。よって受信端末側で はシステム鍵更新用メタデータ57の受信にメタデータ リストを必要としないため、システム鍵更新用メタデー タ57のみがカルーセルで伝送される。但し、システム 鍵更新用メタデータ57についてはカルセールではなく PESストリームにての配信が可能であるが、本発明では 一例として、カルーセルとして配信されるものとし説明 する。以上が送出側より配信されるデータである。

【0041】4. 配信方式

次に本総合データ配信サービスにおける前述した各デー タの配信方式について説明する。

(ストリーム構成)図17に、ネットワーク内で配信されるデータストリームの構成の説明図を示す。本総合データ配信サービスコンテンツが配信されるネットワーク全体のストリーム構成を図17を用いて説明する。図17は本総合データ配信サービスを行うネットワーク60をCS衛星を利用したCSデジタル放送とした場合の例である。ネットワーク60は前述の通り複数のTS61すなわち放送局に対応するTSを含む。図17におけるTSn62はコンテンツを伝送する放送局ではなく受信端末のソフトウェア等のバグフィックス、全放送局で共通的に利用される情報を配信するための専用TS(エンジニアリングスロット)として説明する。衛星デジタル放送において全てのデータはTSパケットのペイロード(データ格納部

分)に格納され配信される。TSパケットは格納されるデータによりパケットのヘッダー部分に格納されているPID値が異なる。衛星デジタル放送では複数のPIDよりなるTSパケットを多重化し配信する方式である。図17に示したストリーム群とは同じPID値をもつTSPを時間方向につなげたES(エレメンタリストリーム)が複数存在することを示している。TS61とは複数のTSパケットにより多重化されたときのグルーピングを示す情報であり、1放送局等の単位にグルーピングされる単位である。運用により複数放送局によりTSを構成する場合もあるが本発明では1放送局毎にグルーピングされた単位として説明する。ネットワーク60とは複数のTSより構成される同様なサービスを伝送する単位であり、例えばBSデジタル放送であったり、CSデジタル放送であったりと伝送路全体に対し付与される単位である。

【0042】総合データ配信サービスコンテンツの配信を行う放送局である各TSで配信されるストリームの構成はPSIの各テーブルを配信するPSIストリーム群63、事前契約用メタデータ、事前契約用メタデータリストを配信する事前契約用ストリーム群64、蓄積再生用メタデータ、鍵配信用メタデータ、蓄積再生用メタデータリストを配信する蓄積再生用メタデータストリーム群65、EPG用メタデータ、EPG用メタデータリストを配信するEPG用メタデータストリーム群66、コンテンツを配信するコンテンツ配信用ストリーム群67を含む。専用スロットTS n_62は、PSIストリーム群、システム鍵更新用メタデータを配信するシステム鍵更新用メタデータを配信するシステム鍵更新用メタデータストリーム群68を含む。

【0043】(PSIストリーム群)次に図18に、PSIス トリーム群63内の詳細なストリーム構成の説明図を示 す。PSIストリーム群63は前述したPSIテーブルである PATテーブルを格納したPATストリーム69、NITテーブ ルを格納したNITストリーム70、PMTを格納したPMTス トリーム71を含む。放送局すなわちTS内に複数のチャ ンネルが存在する場合はPMTも複数存在するため、PMTス トリーム71も複数ストリームで構成される。また、各 TSで既存型の放送サービスであるBSデジタル放送と同様 なサービスを行い有料放送を行う場合には既存型の限定 受信方式を利用するため、CATストリーム、EMMストリー ム、ECMストリームが存在する場合もある。さらにBSデ ジタル放送、CSデジタル放送の共用受信端末等、複数ネ ットワークを利用可能とする場合、NITストリーム70 内には各ネットワークの情報を示すNITテーブルが複数 存在する場合もある。

【0044】(事前契約用メタデータストリーム群)図 19に、事前契約用メタデータストリーム群内の詳細な ストリーム構成の説明図を示す。次に事前契約用メタデ ータストリーム群64について図19を用いて説明す る。事前契約用メタデータストリーム群64は事前契約 用メタデータを配信する場合にのみTS内に存在するが、

事前契約用メタデータを利用しない無料放送サービスの みを配信するTSでは事前契約用メタデータストリーム群 64は存在しない。事前契約用メタデータストリーム群 は基本的に事前契約用メタデータデフォルトES72の1 ストリームのみで構成されるが、1カルーセル内の事前 契約用メタデータ30の数が増加し受信端末側の事前契 約用メタデータ30の取得処理が遅くなると判断した際 に、複数存在する事前契約用メタデータ30を分散して 複数ストリームにて配信することも可能である。但し、 複数ストリームにより運用を行う場合、1ストリームに て運用を行う場合共に事前契約用メタデータリスト53 はTS内で配信中の全事前契約用メタデータに対する記述 のため事前契約用メタデータデフォルトES7 2内のスタ ートアップモジュール74に格納され配信される。よっ てデフォルトES以外の事前契約用メタデータES73には 事前契約用メタデータ30のみが格納され配信されるこ となる。デフォルトESとその他のESとの識別は基本的に 予め固定的なPIDの運用により行うこととするが、前述 の通りPMT内のストリーム識別記述子におけるcomponent _tagのタグ値により識別も可能とする。この場合は、各 ストリームを伝送するTSパケットのPIDの指定について はPMT内のES_PIDにて指定することとなる。

【0045】(蓄積再生用メタデータストリーム群)図 20に、蓄積再生用メタデータストリーム群内の詳細な ストリーム構成の説明図を示す。次に蓄積再生用メタデ ータストリーム群65について図20を用いて説明す る。蓄積再生用メタデータストリーム群65はTS内もし くはサービス内で総合データ配信サービスコンテンツを 配信する場合にのみ存在し、既存型サービスコンテンツ のみ配信時には存在しない。蓄積再生用メタデータスト リーム群65は配信中コンテンツに対する蓄積再生用メ タデータ42、鍵配信用メタデータ47のみ配信する場 合は基本的に蓄積再生用メタデータデフォルトES75の 1ストリームのみで構成される。また、蓄積再生用メタ データストリーム群65は、次回配信予定コンテンツに 対する蓄積再生用メタデータ42、鍵配信用メタデータ 47を配信する場合など、1カルーセル内で配信するメ タデータ数が増加し受信端末側のメタデータ取得処理が 遅くなると判断される場合に、次回配信予定コンテンツ に対するメタデータを別ESである蓄積再生用メタデー 夕ES76として配信することも可能とする。蓄積再生用 メタデータデフォルトESは、運用により各TS内に対して 1ストリーム存在する場合と、各サービスであるPMT単 位に存在し、TS内で複数ストリームが存在する場合があ る。但し、複数ストリームにより運用を行う場合、1ス トリームにて運用する場合共に、蓄積再生用メタデータ リスト52はTS内もしくはサービス内で配信中全コンテ ンツに対するメタデータの配信位置、次回配信予定コン テンツに対するメタデータの配信位置を記述するため蓄 積再生用メタデータデフォルトES75内のスタートアッ

ない。デフォルトESと他のESとの識別は基本的に予め固 定的なPIDの運用により行なうこととするが、前述の通 りPMT内のストリーム識別記述子におけるcomponent tag のタグ値により識別も可能とする。この場合は、各スト リームを伝送するTSパケットのPIDの指定についてはPMT 内のES_PIDにて指定することとなる。蓄積再生用メタデ ータ42、鍵配信用メタデータ47のストリームへの格 納は、同一コンテンツに対する蓄積用メタデータ42、 鍵配信用メタデータ47を1モジュール内(例えば図2 0におけるモジュール1)に格納しモジュール内の蓄積 再生用メタデータ、鍵配信用メタデータのデータ区分け はモジュール内に挿入されるリソースリストに示すこと により受信端末側で蓄積用メタデータ42、鍵配信用メ タデータ47の同時取得を可能とする。この際蓄積再生 用メタデータ、鍵配信用メタデータのメタデータIDは同 じ値を取るものとし、蓄積再生用メタデータ、鍵配信用 メタデータの違いはメタデータの種別 (図11、図12 におけるメタデータ属性情報内のType)により行う。 【0046】(EPG用メタデータストリーム群)図21 に、EPG用メタデータストリーム群内の詳細なストリー ム構成の説明図を示す。次にEPG用メタデータストリー ム群66について図21を用いて説明する。EPG用メタ データストリーム群66はTS内で総合データ配信サービ スコンテンツを配信するサービスを行う場合に存在し、 既存型サービスコンテンツのみ配信を行うTSでは存在し ない。EPG用メタデータストリーム群66は選択してい るTS内のコンテンツに対するEPG用メタデータ81だけ でなく他のTSで配信するコンテンツに対するEPG用メタ データ82や運用により規定される例えば1週間分の配 信予定コンテンツに対するEPG用メタデータ、事業者に より規定される1週間分以上の配信予定コンテンツに対 するEPG用メタデータ等を配信するため単一ストリーム ではなく複数ストリームにて構成される。但し、受信端 末のEPG用メタデータの配信位置の認識処理の向上を行 うため、EPG用メタデータリスト51は複数ストリーム の中で受信端末が最初に取得するEPG用メタデータデフ ォルトES77内のスタートアップモジュール74内に格 納させ配信を行う。またEPG用メタデータの対象とする コンテンツの配信予定日、配信場所を考慮し図21に示 す例のように自TS内で配信予定コンテンツの1週間分を EPG用メタデータデフォルトES77、他TSで配信予定コ ンテンツ1週間分をEPG用メタデータES78、自TS内で 配信予定コンテンツの1週間以降分をEPG用メタデータE S79、他TSで配信予定コンテンツの1週間以降分をEPG 用メタデータES8 Oと切り分け運用することが可能であ る。デフォルトESと他の各ESとの識別は前述の通りPMT 内のストリーム識別記述子におけるcomponent_tagのタ

プモジュール74に格納され配信される。よってデフォ

ルトES以外の蓄積再生用メタデータES76にはメタデー

タのみが格納されメタデータリストが格納されることは

グ値あるいは運用により固定的なPID値により識別する。また各ストリームを伝送するTSパケットのPIDの指定は受信端末起動時、ある一定周期毎にEPG用メタデータリスト51を取得することを考慮し、PMT受信前に受信端末がPIDを識別可能とするため運用規則により固定とすることとし、EPG用メタデータリスト51の取得性能を向上させることが可能となる。

【0047】(システム鍵更新用メタデータストリーム 群) 図22に、システム鍵更新用メタデータストリーム 群内の詳細なストリーム構成の説明図を示す。次に専用 TS内でのみ配信されるシステム鍵更新用ストリーム群6 8について図22を用いて説明する。システム鍵更新用 ストリーム群68はシステム鍵の更新要求が発生しネッ トワーク内でシステム鍵更新用メタデータ57が配信さ れる場合に専用スロット内にのみ存在するストリームで ある。基本的に一度に配信されるシステム鍵更新用メタ データは1つであるため単一のシステム鍵更新用メタデ ータデフォルトES83のみの存在であるが、運用により 予備用のシステム鍵更新用メタデータを配信する場合は 別ES84にて配信を行うことも可能とする。システム鍵 更新用メタデータ57を格納するモジュールは各ES内の スタートアップモジュール74にて配信されるが、シス テム鍵更新用メタデータ57の容量が膨大となり1モジ ュール内に格納可能な容量を越える場合は複数のモジュ ールに分割し配信することとなる。この場合は前述した DII内のモジュールリンク記述子を利用する。デフォル トESと他の各ESとの識別は前述の通りPMT内のストリー ム識別記述子におけるcomponent_tagのタグ値あるいは 運用により固定的なPID値により識別する。Component_t agのタグ値により識別を行なう場合は、各ストリームを 伝送するTSパケットのPIDの指定はNIT内に記述するシス テム鍵更新用_TS記述子内でTSを指定し、指定した専用T S内で伝送するPMT内のES_PIDにより間接的に指定する。 【0048】(コンテンツ配信用ストリーム群)図23 に、コンテンツ配信用ストリーム群の説明図を示す。次 にコンテンツ配信用ストリーム群67について図23を 用いて説明する。コンテンツ配信用ストリーム群は配信 するコンテンツを構成するエレメントの数量および種類 により単一、複数ストリームにより構成される。配信用 ストリームの形式はコンテンツを構成するエレメントの 種別によりストリームの形式が異なる。ストリーム系の コンテンツ85を構成するエレメントはPES (paketized elementary stream) 形式のストリームにて配信され、 ファイル系コンテンツを構成するエレメントはメタデー タと同様にデータカルーセル93にて配信される。PES 形式のストリームはさらにMPEG2-Video、MPEG1-Video等 の映像エレメントを配信する映像ES87、MPEG2-AA C、MPEG2-BC等の音声エレメントを配信する音声ES8 8、字幕データ等の他ストリームと同期が必要な同期型 ES90、文字スーパー等の他ストリームと同期を取る必 要のない非同期型ES91、イベントメッセージを配信する際のES92等に分類され各ESの種別はPMT内のstream_typeにて定義され、各データを伝送するTSパケットのPIDもPMT内のES_PIDにて指定される。総合データ配信サービスコンテンツはこれらのESを1ストリームあるいは複数ストリーム組み合わせることにより構成する。ファイル系コンテンツを配信するデータカルーセルはメタデータにコンテンツ内のエレメント構成を定義するため複数のコンテンツを格納することが可能となる。以上が送出側より受信端末に対し配信されるデータ、配信方式である。

【0049】5. 受信処理

次に前述した配信方式により配信されたデータの受信側での受信処理について説明する。

(PSI受信処理) 図24に、受信端末におけるPSI受信処 理フローの説明図を示す。PSI受信処理とは受信端末が 起動時にデフォルトのチャンネルをテレビに映し出す場 合、ユーザーがEPGにより配信中コンテンツ、チャンネ ルを選択する場合、リモコンによりチャンネルを直接指 定する場合等に行われる受信端末側がデータを受信する 際の基本処理である。よってPSI受信処理の始まりで あるSTART400は、受信端末の起動時、ユーザーの配 信中コンテンツ、チャンネル選択時に開始され、受信端 末内のチューナー部分ではデフォルトのTSを受信するた めの受信周波数等のパラメータ設定が行われた状態であ る。PAT受信401では選択されたチャンネル、コンテ ンツに対するデータがデフォルト設定されているTS内で 配信されているか確認を行うため、PIDが0x0000で送ら れるTSパケット(PATストリーム)を受信しPATを組み立 てる。Service_id検索402では、組み立てられたPAT 内に選択されたチャンネル、コンテンツに対する情報、 すなわち設定されたTS内で選択されたチャンネル、コン テンツが配信されているかを識別する。受信端末起動時 は、図4中Program-numberを参照すると、デフォルトの チャンネルを選択するため基本的にPAT内に選択したチ ャンネルであるseivice_idが存在する。よって選択され たチャンネルが存在する場合は、そのチャンネルの情報 が記述されたPMTを受信407するため、PAT内で指定さ れるPMTを伝送するTSパケットのPID情報によりPMT受信 407動作を行う。

【0050】一方、Service_id検索402で、選択されたチャンネルに対する情報がPATに存在しない場合は、設定されたTS内で選択されたチャンネルのサービスが行われていないと受信端末側は判断し、どのTSで選択されたチャンネルが配信されているかを認識するためNIT受信403を行う。運用によりこのNIT受信前の動作を省略する場合も可能である。NITはPIDが0x0010のTSパケットで全TSで共通に配信されているため、受信端末は設定されているTS内でPIDが0x0010のTSパケットを受信し、NITを組み立てる。この際NITに、図5に示されるよう

に、システム鍵更新用TS記述子22が存在する場合40 4、受信端末は優先的にシステム鍵更新用メタデータを 取得する必要があるためシステム鍵更新用メタデータ受 信処理410を行う。システム鍵更新用TS記述子がNIT に存在しない場合は、選択されたチャンネルがどのTSで 配信されているかをNIT内の図5に示されるように、サ ービスリスト記述子23により識別する。またこの時に サービスリスト記述子23により、選択されたチャンネ ルで行われているサービスの形式 (Service Type) も識 別可能であり、本総合データ配信サービスの特徴である 蓄積型のサービス以外のサービス形式が指定されている 場合は現在規格で規定されている既存型の受信処理40 9を行う。蓄積型のサービスが設定されている場合は、 本総合データ配信サービスにおける受信処理を行い、NI T内のサービスリスト記述子23により識別されたサー ビス配信TSの情報、衛星分配システム記述子により設定 されているTSを、サービス配信TSに変更するためのパラ メータ情報を取得し、受信端末のチューナーに対しパラ メータを設定する。受信端末のチューナーがサービス配 信TSに設定されたら、PAT受信401の動作と同じく設 定されているTS内でPIDが0x0000で配信されているTSパ ケットを受信し、設定されているTS内のPATを受信する 406。PATを受信したら、図4に示されるように、PAT 内に格納されている選択されたチャンネルに対応するPM T PIDにより指定されたPIDのTSパケットを受信し、選択 されたチャンネルの情報が記述されているPMTを組み立 てる407。最後に、図6に示されるように、組み立て られたPMTを解析408することにより受信端末側は次 に行うべき受信処理フローの選択を行う。以上が本総合 データ配信サービスにおけるPSI受信処理である。

に、事前契約用メタデータ受信処理のフロー説明図を示 す。次に事前契約用メタデータ受信処理について図25 を用いて説明する。事前契約用メタデータ受信処理とは PSI受信処理を行った後、PMTの解析408により事前契 約用メタデータデフォルトESを示すcomponent_tag(OxA 0)が図6に示されるPMT内のストリーム識別記述子27 により指定された場合に他の処理より優先的に行われる 処理である。よってPMT解析 408ではまず事前契約用 メタデータデフォルトESが存在するかを識別する41 1。事前契約用メタデータデフォルトESが存在しない場 合は事前契約用メタデータ受信処理を終了(END41 6)し、後続のコンテンツ受信処理を行う。事前契約用 メタデータデフォルトESが存在する場合はPMT内に指定 される事前契約用デフォルトESのPIDにより該当するPID にて配信されているTSパケットの取得、すなわち事前契 約用メタデータデフォルトESの取得412を行う。事前 契約用メタデータデフォルトESは、カルーセル形式にて 配信される(カルーセル形式の指定はPMT内で行われ る) ため受信端末はまずスタートアップモジュールであ

【0051】(事前契約用メタデータ受信処理)図25

るモジュール (module_id = 0) の取得を行う。送出側 では前述の通り事前契約用メタデータデフォルトES内の スタートアップモジュールに事前契約用メタデータリス トを格納し配信するため、受信端末側は結果的にスター トアップモジュールを取得することで事前契約用メタデ ータリストを取得413することとなる。 事前契約用メ タデータリストを取得した受信端末はメタデータリスト 内のリスト情報に自端末宛の情報、すなわち受信端末内 に予め所有する端末IDがメタデータリストに存在するか を識別する414。所有する端末IDが存在しない場合 は、自端末宛の事前契約用メタデータが配信されていな いことを受信端末は認識し事前契約用メタデータ受信処 理を終了(END416)し、コンテンツ受信処理等の他 の処理を行う。所有する端末IDが存在する場合は、自端 末宛の事前契約用メタデータが配信中であることを受信 端末が認識することとなり、メタデータリスト内のリス ト情報の所有する端末IDに対応する部分より事前契約用 メタデータの配信位置、バージョン等を取得し、事前契 約用メタデータの取得が必要とされたならば配信位置情 報により事前契約用メタデータの配信されているストリ ーム、モジュールIDを抽出し、該当する事前契約用メタ データの取得415を行う。前述したように運用により 事前契約用メタデータデフォルトES等のPIDを固定とす る場合は、受信中TS内に事前契約用メタデータデフォル トESを示すPIDが存在するかをPSI処理とは別に判断可能 となるため、受信端末の起動時、チャンネル切り替え動 作時、一定周期毎等にTS内のPIDを確認することにより 事前契約用メタデータ取得処理が開始され、図25にお けるPMT解析408を除いた、事前契約用メタデータス トリームの有無確認411より同様な処理が行われる。 以上が本総合データ配信サービスにおける事前契約用メ タデータ受信処理である。

【0052】(EPG用メタデータ受信処理)図26に、E PG用メタデータ受信処理のフロー説明図を示す。次にEP G用メタデータ受信処理について図26を用いて説明す る。EPG用メタデータ受信処理とは、PSI処理とは別処理 として、受信端末起動時、ある一定周期毎等に行われる 処理である。よってEPG用メタデータ受信処理の開始で あるSTART417トリガは受信端末起動時、運用で決め られたある一定周期毎となる。EPG用メタデータはPSI処 理と別に取得が行われるため、受信端末は運用で規定さ れたPIDにより配信されるTSパケットを直接受信するこ とによりEPG用メタデータデフォルトESの取得418を 行う。EPG用メタデータデフォルトESはカールセル形式 のストリームであるため、受信端末はカルーセル内のス タートアップモジュールであるモジュールの取得を最初 に行う。送出側では前述の通り、EPG用メタデータデフ ォルトES内のスタートアップモジュールにEPG用メタデ ータリストを格納させ配信を行うため、スタートアップ モジュールを取得した受信端末は結果的にEPG用メタデ

ータリストを取得419することとなる。EPG用メタデ ータリストを取得した受信端末は以前に取得し、蓄積さ れているEPG用メタデータリストとのバージョン番号を 照合し、現在配信中のEPG用メタデータに受信端末内に 蓄積されているEPG用メタデータに対し更新部分がある かを識別する420。この際、受信端末購入後等によ り、受信端末内EPG用メタデータリストが存在しない場 合はバージョン番号不一致と同様な扱いとし全てのEPG 用メタデータが更新されたものとし動作を行う。EPG用 メタデータリストのバージョン番号が一致する場合は以 前取得したEPG用メタデータから更新がない場合である ためEPG用メタデータ受信処理を終了(END423)す る。バージョン番号が不一致の場合は、以前に取得した EPG用メタデータより更新されたEPG用メタデータが存在 すると認識され取得したEPG用メタデータリストのリス ト情報に記述されるEPG用メタデータのID、各EPG用メタ データのバージョン番号と、蓄積されているEPG用メタ データリストの該当部分を照合し、バージョン番号が更 新されたEPG用メタデータ、すなわち時間変更、内容変 更のため差し替えが必要なEPG用メタデータ、新規にID が存在する追加されるEPG用メタデータを抽出し、リス ト情報内に格納されている配信位置情報により更新、追 加が必要なEPG用メタデータが配信されているストリー ム、モジュールID等の情報を認識可能となる421。配 信位置を認識した受信端末は該当するEPG用メタデータ を配信ストリーム群より取得可能となる422。このと き受信端末は取得したEPG用メタデータを蓄積すると共 に、EPG用メタデータリストも取得蓄積することによ り、次回EPG用メタデータ受信処理時に受信端末内の最 新のEPG用メタデータ状況を示す情報とする。以上が本 総合データ配信サービスにおけるEPG用メタデータ受信 処理である。

【0053】(コンテンツ受信処理)図27に、コンテ ンツ受信処理のフロー説明図を示す。次にコンテンツ受 信処理について図27を用いて説明する。 コンテンツ受 信処理とは前述したPSI処理、事前契約用メタデータ受 信処理の後に行われる処理であり、具体的には蓄積再生 用メタデータ、鍵配信用メタデータ、コンテンツの受信 を行う処理である。よってコンテンツ受信処理の開始 (START 4 2 4)は、PSI 受信処理、事前契約用メタデー タ受信処理後となる。まず、選択されたコンテンツ、チ ャンネルに対するPMT内に蓄積再生用メタデータデフォ ルトESが存在するかを識別する425。例えば、図6に 示されたPMT 24内のストリーム形式の指定情報であるs tream_type 26によりそれを識別する。 蓄積再生用メタ データデフォルトESが存在しない場合は、選択されたチ ャンネル内には本総合データ配信サービスの特徴である 蓄積型サービスに対応するコンテンツが配信されていな いことを意味するため、現在規定されている既存型の受 信処理409を受信端末は行う。蓄積再生用メタデータ

デフォルトESが存在する場合、その存在を示すcomponen t_tag (0x80) が図6に示されたPMT24内のストリーム 識別記述子27により指定されている場合は、受信端末 は、対応するES_PIDにより指定されるTSパケットの受 信、すなわち蓄積再生用メタデータデフォルトESの取得 を行う426。図20に示される蓄積再生用メタデータ デフォルトESは前述の通りカルーセル形式(ストリーム の形式指定はPMT内にて行われる)にて配信されるた め、受信端末は最初にスタートアップモジュールの取得 を行う。送出側では蓄積再生用メタデータデフォルトES のスタートアップモジュールに蓄積用再生用メタデータ リストを格納させ配信するため、受信端末は結果的に蓄 積再生用メタデータリストの取得を行ったこととなる4 27。図20に示されるように、Module 0_75により蓄 積再生用メタデータリスト52の取得を行った受信端末 は、Module 1~nのいずれかにより選択されたコンテン ツに対する蓄積再生用メタデータ42、鍵配信用メタデ ータ47の取得を行うため、選択されたコンテンツID (content_id) に対応する情報の検索を行う428。こ のとき直接チャンネル指定を行った場合、受信端末起動 時などのデフォルトチャンネルのみの指定の場合等、チ ャンネル指定 (service_id指定) のみでコンテンツが指 定されていない場合は各チャンネル内のデフォルトコン テンツを指定したものとし受信端末は動作する。図11 に示されるように、蓄積再生用メタデータ42内に選択 されたコンテンツID、もしくはデフォルトコンテンツが 存在しない場合は放送休止中とみなしコンテンツ受信処 理を終了(END432)する。選択されたコンテンツI D、もしくはデフォルトコンテンツが存在する場合は、 受信端末は蓄積再生用メタデータリストの図14に示す ようなリスト情報内に記述された該当するコンテンツに 対応したメタデータの配信位置 (Locator) により必要 とするメタデータの配信されるストリーム、モジュール が認識可能となり、モジュールIDを取得して該当するモ ジュールの取得を行う429。送出側では各モジュール に蓄積再生用メタデータ、鍵配信用メタデータを格納さ せ配信を行うため、受信端末側はこの時点で蓄積再生用 メタデータ、鍵配信用メタデータを取得することとな る。モジュール内の蓄積再生用メタデータ、鍵配信用メ タデータのデータ区切りはモジュール内のリソースリス トにて行う。次に受信端末は取得した蓄積再生用メタデ ータ、鍵配信用メタデータを受信端末内のRMP機能にて 処理し、コンテンツの受信に対する許可の判断を行う4 30。例えば、RMP機能は、図12に示すような鍵配信 用メタデータを、システム鍵Ksy1 (無料放送の場合) 又 は事業者鍵Kw(有料放送の場合)で暗号化して、コンテ ンツ鍵Kkを得る。その後RMP機能は、図11に示すよう なで蓄積/再生用メタデータをコンテンツ鍵Kkで暗号化 して、利用制限情報、契約情報、課金情報等によりコン テンツ受信の許可判断を行う。コンテンツの受信がRMP

機能により拒否された場合、ユーザーが選択されたコンテンツに対する視聴権を持っていない場合であるためコンテンツの受信処理は終了(END432)される。RMP機能にてコンテンツ受信が可能(許可された場合)と判断された場合、蓄積再生用メタデータ内に記述されるコンテンツを構成する各エレメントの配信位置情報、デフォルトエレメントの指定情報(コンテンツ選択時に最初に提示されるべきデータ位置)、PMT内で指定されるES_PIDの情報を元にエレメントの受信すなわちコンテンツの受信が行われる431。以上が本総合データ配信サービスにおけるコンテンツ受信処理である。

【0054】(システム鍵更新用メタデータ受信処理) 図28に、システム鍵更新用メタデータ受信処理のフロ 一説明図を示す。次にシステム鍵更新用メタデータ受信 処理について図28を用いて説明する。システム鍵更新 用メタデータ受信処理とは、図5に示されるようなNIT 内にシステム鍵更新用TS記述子22が存在する場合に受 信端末側で優先的に行われる処理である。よってシステ ム鍵更新用メタデータの受信処理の開始(START43 3)は前述したPSI処理中のNIT受信処理においてシステ ム鍵更新用TS記述子を認識した時点で開始される。シス テム鍵更新用TS記述子を認識した受信端末は、システム 鍵更新用TS記述子内に格納されたシステム鍵更新用メタ データを配信する専用スロットのTS_ID、NIT内の衛星分 配システム記述子内に記述された該当TSへチューナーの 設定を行うためのパラメータ情報を抽出し、チューナー に対しシステム鍵更新用メタデータを配信するTSのパラ メータを設定する434。受信端末は設定されたTS内で PIDが0x0000で配信されるTSパケットを受信、すなわちP ATを受信し、図4に示されるようなPAT内に格納されたP. MT_PIDによりシステム鍵更新用メタデータの配信される ストリームのPIDを識別するためのPMTを取得する。その 後、図6に示されるようなPMT内のストリーム識別記述 子27により定義されるcomponent_tag (0x80) である システム鍵更新用メタデータデフォルトESを認識し、対 応するES_PIDにより配信されるTSパケットの受信、すな わちシステム鍵更新用メタデータデフォルトESの取得を 行うという一連のPSI処理435、PMT解析処理436、 システム鍵更新用メタデータデフォルトESの取得処理4 37を行う。システム鍵更新用メタデータはカルーセル 形式(ストリームの形式はPMT内で指定される)にて伝 送されるため受信端末は最初にスタートアップモジュー ルの取得を行う。送出側ではシステム鍵更新用メタデー タデフォルトESのスタートアップモジュール内にシステ ム鍵更新用メタデータを格納させ配信するため、この時 点で受信端末側ではシステム鍵更新用メタデータを取得 することとなる。以上が本総合データ配信サービスにお けるシステム鍵更新用メタデータの受信処理である。よ ってこれらの受信処理を行うことにより、本総合データ 配信サービスにおいて権利保護を行うために定義された 各メタデータ、コンテンツの受信蓄積が可能となる。 【0055】6.位置解決機能LR (Location Resolution)

(伝送路上のテーブル構成)図38に、伝送路上のテー ブル構成図を示す。次に送出側より配信されるテーブル の構成について説明する。送出側より配信されるテーブ ルとは、ネットワーク内のTS構成を示すNIT21、各TS 内で配信されるPAT20、PATにより間接指定されるサー ビス内で存在するストリームに関する情報が記述された PMT 2 4 を含む。PMT 2 4 ではcomponent_tagにより事前 契約用メタデータデフォルトES72、EPG用メタデータ デフォルトES77、蓄積再生用メタデータデフォルトES 75、コンテンツ配信用ストリーム89等の存在するス トリームの種別の識別、それぞれのストリームの配信場 所を指定する。また蓄積再生用メタデータデフォルトES 75はカルーセル形式で伝送されるため蓄積再生用メタ データデフォルトESを構成する蓄積再生用メタデータス トリーム_DII440によりストリーム内のモジュールと モジュールに格納される情報の関係の指定を行う。本例 ではモジュール〇にメタデータリスト52、モジュール 1にメタデータ1が格納された場合を示す。 コンテンツ 配信用ストリーム89がデータISである場合も同様にコ ンテンツ配信用メタデータストリーム_DII 4 4 1 により モジュールとモジュールに格納される情報であるエレメ ントを関係付ける。本例ではモジュールOに映画.mpeg2 -video、モジュール1に映画.mpeg2-aacが格納される場 合を示す。以上が伝送路上のテーブル構成である。

【0056】(蓄積)図39に、受信端末内での蓄積媒 体へのデータ蓄積方法を説明した図を示す。次に送出側 100より配信されたメタデータ18、コンテンツ1等 を蓄積する場合の受信端末3側でのデータ管理について 図29を用いて説明する。送出側より配信されるデータ とは、前述の通りコンテンツ1を構成する各エレメント 207、メタデータ18、PSI19等である。伝送路上 における各エレメントはデータの実体であり、エレメン ト自体にコンテンツID等が格納されていないため、受信 端末3は伝送路上より取得したデータのみを蓄積媒体4 内に格納してしまうと個々のデータの識別が困難とな る。本総合データ配信サービスの受信端末3では、デー タを受信した際にメタデータ18、PSI19等に含まれ る各種ID、データサイズ等を利用しエレメント207に 対しヘッダー208情報を生成し、蓄積媒体4に蓄積時 にヘッダー情報を添付し蓄積を行い、そのヘッダー情報 を元に受信端末内のデータ管理機能、本発明ではLR (Lo cation Resolution:位置解決機能) 209と呼ぶ機能 が蓄積媒体内の各データを管理することで、必要時に各 データ自体を識別すると共に各データの蓄積場所を識別 可能とする。LR機能209はPSI、メタデータに格納さ れたID値、名前等の情報を元に蓄積媒体内における各デ ータの論理位置を指定し、論理位置と蓄積媒体内の物理 位置を関連付けるために各エレメント207、メタデータ19等のデータに対しデータの実体を示すコンテンツ ID、メタデータID、エレメントの名称、データサイズ、データの属性、蓄積媒体内の物理位置等の情報により構成されるヘッダー情報208を生成添付し蓄積媒体内に格納する。これにより蓄積媒体内の各データのデータ管理が可能となる。

【0057】(伝送路上での名前空間)図40に、伝送 路上での名前空間についての図を示す。次に前述のテー ブル構成から導かれる伝送路上でのコンテンツの名前空 間について説明する。伝送路上でのコンテンツの名前空 間はまずCS放送、BS放送等のネットワークを識別するた めのNetwork_id211により識別され、次にサービスが 伝送されるトランスポートストリームを識別するための TS_id212、トランスポートストリーム内のチャンネ ルを識別するためのService_id213 (program_number と呼ぶ場合もある)、チャンネル内のコンテンツをユニ ークに識別するためのContent_id214により全てのコ ンテンツの名前がユニークに識別される。コンテンツ内 の各エレメントに対する伝送路上での名前空間はストリ ームの種別を識別するためのComponent_tag215、ス トリームの伝送形式がカルーセル伝送の場合は各エレメ ントが格納されたModule_id216、各エレメントの名 前であるElement_Name218で識別される。またエレメ ントがメタデータである場合はMetadata ID217のよ うにメタデータを識別するIDが名前に用いられる。エレ メントに対する名前の指定はDII内のModule_info_Byte で定義されるName記述子(図36を参照)もしくは蓄積 再生用メタデータ内で定義されるエレメント名により指 定される。以上が伝送路上での名前空間である。

【0058】(論理位置)図41に、蓄積媒体内でのデ ータ管理方法を説明した図を示す。次にLR機能209が 管理する各データの論理位置のイメージを説明する。基 本的にLR機能209が管理する論理位置とは配信時のデ ータを識別するために必要としたID、名称を利用するこ とで指定する階層化されたツリー構造である。まずはPS I情報のみを利用しデータが配信されてきた伝送路を識 別するためのnetwork_id211、ネットワーク内のどの TSで配信されてきたかを識別するためのTS_id212、T S内のどのチャンネルで配信されたかを識別するためのS ervice_id213で論理位置を示し、さらにメタデータ リスト、メタデータを利用することによりcontent_id2 14で論理位置を示す。content_id214は前述の通り ネットワーク内で一意な値を取るため、このcontent_id により論理位置を区別することで他のコンテンツ内に同 様なID、名前がふられたエレメントが存在してもデータ の違いを識別可能となり誤って他のコンテンツを構成す るエレメントを上書きすることを避けられる。Content_ id214以降の論理位置指定は格納するデータにより指 定方法が異なる。まず蓄積再生用メタデータを蓄積する

場合219、ファイル型コンテンツを構成するエレメン トを蓄積する場合220は、カルーセルによりデータが 配信されるためPSI情報、DIIを利用し各カルーセルスト リームに割振られたcomponent_tag216、カルーセル 内のモジュールを識別するmodule_id216で論理位置 を指定し、その後メタデータ内に格納された情報を利用 し蓄積再生用メタデータの場合はmetadata_id217、 ファイル型コンテンツを構成するエレメントの場合は各 エレメントの名前であるelement_Name 2 1 8 により実体 を結びつける。ストリーム型コンテンツを構成するエレ メントを蓄積媒体に格納する場合221は、PSI情報に より各ストリームに割り振られたcomponent_tag 2 1 5 により論理位置を指定し、その後メタデータに格納され たエレメントの名前であるelemennt_Name 218により 各データの実体を結びつける。これにより受信端末側で は各データを一意に識別可能となり、意図しないデータ の上書きを防ぐことが可能となる。また受信端末内に蓄 積されたコンテンツを構成する各エレメントの蓄積場所 (論理位置)が配信時のストリーム中の位置と同じであ るため送出側で蓄積時のデータ位置が認識可能となるた めコンテンツ内のリンク、コンテンツ外のリンク、配信 中コンテンツと蓄積媒体に蓄積されたコンテンツ間のリ ンク等多彩なリンクを容易に行うコンテンツの制作が可 能となる。

【0059】(LR機能による蓄積手順)図42に、LR機 能による蓄積手順の説明図を示す。次に受信端末内のLR 機能209が蓄積媒体上の論理位置を取得する手順を説 明する。LR機能はPSI受信処理により取得したNIT21よ りNetwork_id211を取得する。次に同様にPSI受信処 理により取得したPAT20よりTS_id212、PMT24よ りService_id213、Component_tag215を取得す る。さらにコンテンツ受信処理により取得する蓄積再生 用メタデータストリームのDII440によりメタデータ に対するModule_id216、取得した蓄積再生用メタデ ータによりMetadata_id217、Content_id214、エ レメント名218をそれぞれ取得し、コンテンツ配信用 ストリームのDII441よりコンテンツを構成するエレ メントに対するModule_id、エレメント名を取得し各エ レメントと論理位置を結びつける。またコンテンツ配信 用ストリームがカルーセル形式でない場合は蓄積再生用 メタデータ内よりmetadata_id、content_id、エレメン ト名を取得した段階でコンテンツ配信用ストリームによ り配信されるエレメントを結びつける。これによりLR機 能はコンテンツを構成する各エレメントに対する論理位 置が認識可能となる。

【0060】(コンテンツのリンク記述)次に本総合データ配信サービスにおける実際の受信端末内でのデータ位置解決手段について一例を挙げ説明する。図43に、コンテンツ内、外へのリンクの例を説明した図を示す。まず具体例としてコンテンツ内外へのリンク記述、コン

テンツに対する蓄積再生用メタデータの一部を説明す る。コンテンツ1_222は蓄積媒体に蓄積済みのコン テンツであり現在受信端末で提示中のコンテンツであ り、コンテンツ2 223は配信中コンテンツとする。 コンテンツ1はA1.bml_224、B1.bml_225の2個 のエレメントにより構成されるコンテンツであり提示中 のA1.bml上のリンクボタン1_227をユーザーが受信 端末上で選択することによりB1.bml 225に提示が切 り替わり、リンクボタン2_228を選択するとコンテ ンツ2_223を構成するエレメントであるZ8.bml_2 26に提示が切り替わるものとする。Metadata1_22 9、Metadata2_230はコンテンツ1、コンテンツ2に 対する蓄積再生用メタデータであり配信時のコンテンツ 内の構成に関する情報が格納されている。またLink// - 260、261はそれぞれコンテンツ内、外へのリン クの指定方法であるが本総合データ配信サービスではリ ンクを指定する際にコンテンツの内外を問わずコンテン ツID、エレメントの名前以外の伝送路に依存する情報は 省略可能であり、コンテンツ制作時点において伝送路の 状態を考慮せずにリンクの指定を行うことが可能であ り、BSデジタル放送等の従来の伝送路を意識したコンテ ンツ制作に比べ容易にコンテンツのリンクを行うことが 可能である。

【0061】(リンク処理イメージ)図44に、リンク 先のエレメントの提示方法を説明した図を示す。次に図 43におけるリンクボタンを押した際の動作イメージを 説明する。受信端末内のコンテンツ提示部であるブラウ ザ231はリンクボタンが押されるとリンク先のエレメ ントを提示するためLR機能に対しリンク先のエレメント を指定したcontent_id、elementNameを受け渡し該当工 レメントを要求する。 図43におけるリンクボタン1_ 227を選択した場合はそれに伴うcontent 1/B1. bml 2 60を、リンクボタン2_228を選択した場合はそれ に伴うcontent2/Z8.bml 2 6 1をLR機能に受け渡す。LR 機能では管理する情報内に該当するコンテンツIDが存在 すれば蓄積媒体4より情報を取得し、コンテンツIDが存 在しない場合は蓄積媒体に存在しないものとし配信中ス トリームより取得232するための動作を行う。図43 におけるB1.bml _ 225を提示する場合は、提示中のコ ンテンツに対しコンテンツIDの変化が無いため同じコン テンツ内のエレメントと判断され、対応する蓄積再生用 メタデータ229より位置情報であるcomponent_tag値0 x91、module_ID=1、elementName=B1.bm1等の情報を取得 し、もしくはLRに管理された情報に基づきLR機能209 は蓄積媒体内に蓄積されたB1.bml 225をブラウザ2 31に受け渡す。

【0062】(位置解決処理)図45に、受信端末内でのデータ位置解決処理を説明した図を示す。次にこれらのリンクによる提示エレメント切り替え時に必要となるデータの位置解決処理を説明する。位置解決処理(機

能) は前述の通りブラウザが提示中エレメントの切り替 わりを検出するリンク検出237により開始される。リ ンク検出によりブラウザからエレメントの提示要求が起 こった場合、受信端末では提示中エレメントのコンテン ツIDと提示要求されたエレメントのコンテンツIDの確認 処理238を行う。提示要求されたコンテンツIDが提示 中のコンテンツIDと同じ値である場合はコンテンツ内の リンクと判断されコンテンツ内リンク処理241が行わ れ、提示中コンテンツIDと異なる場合はコンテンツ外の リンクと判断されコンテンツ外リンク処理242が行わ れる。このときリンクの指定記述においてコンテンツの IDを省略しエレメントの名前のみでリンク記述がされ、 ブラウザよりエレメントの名前のみで提示要求がされる 場合があるがこの場合は、同一コンテンツ内のリンクと 判断しコンテンツ内リンク処理241を行う。コンテン ツのIDが異なるコンテンツ外リンク処理242と、コン テンツ内リンク処理241の大きな違いは、コンテンツ 外リンク処理では本総合データ配信サービスの特徴であ る権利保護を行うため、メタデータを利用しユーザーの アクセス判定が必要となる点である。コンテンツ外リン ク処理242ではまずブラウザより受け渡されたコンテ ンツIDがLR機能内で管理されているコンテンツIDか識別 する239。この処理によりコンテンツIDがLR機能内で 管理されたIDであれば蓄積媒体内に蓄積されたコンテン ツと判断され蓄積媒体内の該当するメタデータの確認処 理240が行われ、管理されたコンテンツID内に該当す るIDが無い場合は、蓄積媒体内に該当するコンテンツが 蓄積されてないと判断されコンテンツの位置確認処理2 43が行われる。

【0063】(コンテンツ内リンク処理)図46に、コ ンテンツ内リンク処理を説明した図を示す。次にコンテ ンツ内リンク処理241について説明する。コンテンツ 内のリンク処理では提示中コンテンツの切り替わりがな いため、ブラウザより要求されたエレメントを提示する ためにメタデータを利用し、RMPによるユーザーアクセ ス判定が不要なため直接LR機能に対しリンク指定である コンテンツID、エレメント名を受け渡す。LR機能では受 け渡されたコンテンツIDが管理する情報に含まれている かを判定し244、管理された情報内にコンテンツIDが 存在すれば蓄積済みと判断され、現在提示中コンテンツ に対する蓄積再生用メタデータ内の位置情報、自身の管 理する位置情報により蓄積媒体内のエレメント格納位置 を判断し、該当エレメントをブラウザに受け渡し提示2 48する。LR機能の管理する情報内にコンテンツIDが存 在しない場合は、蓄積媒体に蓄積されていないコンテン ツをリアルタイム提示中と判断し、現在提示中コンテン ツに対する蓄積再生用メタデータの確認245を行い、 該当エレメントの配信位置を確認247する。受信端末 は蓄積再生用メタデータより得られた配信位置情報を元 に前述のコンテンツ受信処理を行い配信中の該当エレメ

ントを取得247し、ブラウザに受け渡し提示248する。以上がコンテンツ内リンク時における一連の受信端 末内の処理フローである。

【0064】(コンテンツ位置確認処理)図47に、コ ンテンツ位置確認処理を説明した図を示す。次にコンテ ンツ外リンク処理242において該当エレメントが蓄積 媒体上に存在しない場合のコンテンツ位置確認処理24 3について図35を用いて説明する。コンテンツ位置確 認処理ではコンテンツ自体が受信端末内の蓄積媒体内に 存在しないため、受信端末では蓄積媒体内に蓄積された 最新のEPG用メタデータリストを利用し249、リスト 内にブラウザ要求するコンテンツIDが存在するか判定を 行う250。リスト内にコンテンツIDが存在しない場 合、受信端末は配信中、配信予定コンテンツではないと 判断しブラウザのエレメント要求に対し該当するデータ が存在しない254とエラーメッセージを返す。 リスト 内にコンテンツIDが存在する場合は、次にEPG用メタデ ータリスト内の放送予定日時情報により配信中のコンテ ンツであるか判定を行う251。配信予定コンテンツで あればブラウザのエレメント要求に対し、リスト内にコ ンテンツIDが存在しない場合と同様に該当データが現在 未配信であり存在しないとエラーメッセージを返し、配 信中コンテンツであれば該当するEPG用メタデータ内に 格納された簡易な配信位置情報であるnetwork_id、serv ice id等の情報より前述したコンテンツ取得処理と同様 に該当する蓄積再生用メタデータ、鍵配信用メタデータ を配信ストリーム中より取得する252。受信端末側で は配信ストリーム中より取得した蓄積再生用メタデー タ、鍵配信用メタデータを前述したRMP機能に受け渡し ユーザーアクセス判定256を行う。RMP機能によりユ ーザーアクセスの許可があれば蓄積再生用メタデータに 格納されたブラウザより提示要求の行われたエレメント の配信位置により該当するエレメントを配信中ストリー ムより取得253し、取得したエレメントをブラウザに 受け渡し提示248を行う。RMP機能よりユーザーアク セスが許可されない場合は年齢制限等でユーザーの視聴 が許可されないコンテンツ、もしくは視聴契約が必要な コンテンツと判断されそれぞれに対するエラーメッセー ジをブラウザに返す257。以上がコンテンツ外のリン クにおいて配信ストリーム中にリンクが張れている場合 の受信端末内の処理である。

【0065】(メタデータ確認処理)図48に、メタデータ確認処理を説明した図を示す。次にコンテンツ外リンク処理242において該当するコンテンツが蓄積媒体内に存在する場合のメタデータ確認処理240について説明する。メタデータ確認処理ではLR機能の管理する情報によりブラウザより要求されたコンテンツに対応する蓄積再生用メタデータを蓄積媒体より取得255し、RMP機能に蓄積再生用メタデータを受け渡しユーザーアクセス可能なコンテンツか判定を行う256。RMP機能よ

りユーザーのアクセスが許可されたならば蓄積媒体内に 格納済みの該当するエレメントをブラウザ機能に受け渡 し提示を行う248。RMP機能によりアクセスが許可さ れない場合は、年齢制限等でユーザーの視聴が許可され ないコンテンツ、もしくは視聴契約が必要なコンテンツ と判断されそれぞれに対するエラーメッセージをブラウ ザに返す257。以上がリンク指定されたエレメントを 受信端末が提示する際の位置解決処理である。受信端末 内に蓄積されたコンテンツを検索し提示する場合も同様 にLR機能、蓄積再生用メタデータ等を利用することによ り実現可能であり、本総合データ配信サービスの特徴で あるコンテンツの蓄積はこの受信端末内のLR機能の持つ 位置解決機能により実現される。

【発明の効果】本発明によると、以上のように、コンテンツ毎に送出側でコンテンツの利用可能範囲等を定義したメタデータを添付し、受信側にコンテンツと共に配信することにより、受信側でメタデータに定義された範囲のコンテンツ利用方法、ユーザーへのコンテンツ提示方法等の木目細かな制御が可能となる。よって、本発明によると、コンテンツの権利保護、ユーザーの個人の権利保護等が可能なサービスを提供することが可能となる。

【図面の簡単な説明】

- 【図1】総合データ配信サービスのサービス構成図。
- 【図2】総合データ配信サービスシステムの全体構成図。
- 【図3】総合データ配信サービスにおける権利保護方式の説明図。
- 【図4】PATのデータ構造、記述内容の説明図。
- 【図5】NITのデータ構造、記述内容の説明図。
- 【図6】PMTのデータ構造、記述内容の説明図。
- 【図7】DIIのデータ構造、記述内容の説明図。
- 【図8】DDBのデータ構造、記述内容の説明図。
- 【図9】事前契約用メタデータのデータ構造、記述内容の説明図。
- 【図10】EPG用メタデータのデータ構造、記述内容の説明図。
- 【図11】蓄積再生用メタデータのデータ構造、記述内容の説明図。
- 【図12】鍵配信用メタデータのデータ構造、記述内容の説明図。
- 【図13】メタデータリストの分類の説明図。
- 【図14】EPG用メタデータリスト、蓄積再生用メタデータリストの説明図。
- 【図15】事前契約用メタデータリストの説明図。
- 【図16】システム鍵更新用メタデータのデータ構造、 記述内容の説明図。
- 【図17】ネットワーク内で配信されるデータストリームの構成の説明図。
- 【図18】PSIストリーム群内の詳細なストリーム構成の説明図。

- 【図19】事前契約用メタデータストリーム群内の詳細なストリーム構成の説明図。
- 【図20】蓄積再生用メタデータストリーム群内の詳細なストリーム構成の説明図。
- 【図21】EPG用メタデータストリーム群内の詳細なストリーム構成の説明図。
- 【図22】システム鍵更新用メタデータストリーム群内の詳細なストリーム構成の説明図。
- 【図23】コンテンツ配信用ストリーム群の説明図。
- 【図24】PSI受信処理のフロー説明図。
- 【図25】事前契約用メタデータ受信処理のフロー説明図。
- 【図26】EPG用メタデータ受信処理のフロー説明図。
- 【図27】コンテンツ受信処理のフロー説明図。
- 【図28】システム鍵更新用メタデータ受信処理のフロー説明図。
- 【図29】コンテンツを構成するデータの一例の説明 図
- 【図30】RMP機能概略についての説明図。
- 【図31】現在規定されているサービスのタイプの説明 図
- 【図32】デジタルコピー制御記述子25により制御される情報についての説明図。
- 【図33】現在規定されるストリームの形式についての 説明図。
- 【図34】現在規定されているタグ値についての説明 🖾
- 【図35】本総合データ配信サービスで定義した場合の 一例の説明図。
- 【図36】Module_info_Byte内で指定される情報についての説明図。
- 【図37】メタデータの分類についての説明図。
- 【図38】伝送路上のテーブル構成図。
- 【図39】受信端末内での蓄積媒体へのデータ蓄積方法 を説明した図。
- 【図40】伝送路上での名前空間についての図。
- 【図41】蓄積媒体内でのデータ管理方法を説明した図。
- 【図42】LR機能による蓄積手順の説明図。
- 【図43】コンテンツ内、外へのリンクの例を説明した図。
- 【図44】リンク先のエレメントの提示方法を説明した図。
- 【図45】受信端末内でのデータ位置解決処理を説明した図。
- 【図46】コンテンツ内リンク処理を説明した図。
- 【図47】コンテンツ位置確認処理を説明した図。
- 【図48】メタデータ確認処理を説明した図。

【符号の説明】

1…コンテンツ、2…受信アンテナ、3…受信端末、4

…蓄積媒体、5…リムーバブルメディア、6…リアルタ イム型視聴、7…リアルタイム型+蓄積型視聴、8…蓄 積型視聴、9…テレビ、10…衛星、11…地上回線、 12…流通網、13…携帯電話網、14…外部機器、1 5…ICカード、16…RMP機能、17…暗号化コンテン ツ、18…暗号化メタデータ、19…PSI/SI、20…PA T、21…NIT、22…システム鍵更新用TS記述子、23 …サービスリスト記述子、24…PMT、25…デジタル コピー制御記述子、26…stream_type、27…ストリ ーム識別記述子、28…DII、29…DDB、30…事前契 約用メタデータ、31…ユーザー識別情報、32…暗号 化情報、33…個人情報、34…契約情報、35…端末 鍵Kmc、36…EPG用メタデータ、37…メタデータ属性 情報、38…番組情報、39…コンテンツ情報、40… 利用制限情報、41…システム鍵Ksy1、42…蓄積再生 用メタデータ、43…コンテンツ暗号化情報、44…契 約情報、45…課金情報、46…コンテンツ鍵Kk、47 …鍵配信用メタデータ、48…コンテンツ鍵情報、49 …事業者鍵Kw、50…メタデータリスト、51…EPG用 メタデータリスト、52…蓄積再生用メタデータリス ト、53…事前契約用メタデータリスト、54…メタデ ータリスト属性情報、55…リスト情報(コンテンツに 対する)、56…リスト情報(ユーザーに対する)、5 7…システム鍵更新用メタデータ、58…システム鍵情 報、59…予備用システム鍵Ksy2、60…ネットワー ク、61…TS、62…専用TS、63…PSIストリーム 群、64…事前契約用メタデータストリーム群、65… 蓄積再生用メタデータストリーム群、66…EPG用メタ データストリーム群、67…コンテンツ配信用ストリー ム群、68…システム鍵更新用ストリーム群、69…PA Tストリーム、70…NITストリーム、71…PMTストリ ーム、72…事前契約用メタデータデフォルトES、73 …事前契約用メタデータES、74…スタートアップモジ ュール、75…蓄積再生用メタデータデフォルトES、7 6…蓄積再生用メタデータ、77…EPG用メタデータデ フォルトES、78…EPG用メタデータES1、79…EPG用 メタデータES2、80…EPG用メタデータES3、81…自T Sで配信される1週間分EPG用メタデータ、82…他TSで 配信される1週間分EPG用メタデータ、83…システム 鍵更新用メタデータデフォルトES、84…システム鍵更 新用メタデータES、85…ストリーム系コンテンツ、8 6…ファイル系コンテンツ、87…映像四、88…音声 ES、89…データES、90…同期型PES、91…非同期 型PES、92…イベントメッセージ、93…データカル ーセル、100…送出側、200…受信側、201…家 庭、202…自動販売機、203…販売店、204…移 動体端末、205…携帯端末、206…携帯電話、20 7…エレメント、208…ヘッダー、209…LR機能、 210…蓄積媒体内の論理位置イメージ、211…Netw ork_id、212...TS_id、213...Service_id、214

···Content_id、215···Component_tag、216···Modul e_id、217...Metadata_id、218...Element_Name、 219…蓄積再生用メタデータ型、220…ファイル 型、221…ストリーム型、222…コンテンツ1、2 23…コンテンツ2、224…A1.bml、225…B1.bm 1、226…Z8.bml、227…リンクボタン1、228 ···リンクボタン2、229···メタデータ1、230···メ タデータ2、231…ブラウザ、232…エアー上より 取得、233…Component_0x80、234…Module_1、2 35···Component_tag、236···Module_id、237···リ ンク検出、238…提示中Content_id確認、239…LR 内Content_id検索、240…メタデータ確認処理、24 1…コンテンツ内リンク処理、242…コンテンツ外リ ンク処理、243…コンテンツ位置確認処理、244… LR内Content_id、245…蓄積再生用メタデータ確認、 246…配信位置確認、247…element取得、248 …element提示、249…EPG用メタデータリスト、25 0…リスト内Content_id検索、251…配信中Content の確認、252…メタデータ取得、253…element取 得、254…該当データなし、255…該当蓄積再生用 メタデータ取得、256…ユーザーアクセス判定、25 7…提示不可もしくは必要契約後に提示、300…家庭 向けサービス、301…自動販売機/販売店向けサービ ス、302…移動体向けサービス、303…パッケージ デリバリサービス、304…携帯電話向けサービス、4 00···START、401···PAT受信、402···service_id検 索、403…NIT受信、404…システム鍵更新用TS記 述子の有無、405…service_type/TS識別、406…P AT受信、407…PMT受信、408…PMT解析、409… 既存型受信処理、410…システム鍵更新用メタデータ 受信処理、411…事前契約用メタデータデフォルトES の有無確認、412…事前契約用メタデータデフォルト ES取得、413…事前契約用メタデータリスト取得、4 14…端末ID/個人IDの検索、415…該当事前契約用 メタデータを取得、416…END、417…START、41 8…EPG用メタデータデフォルトES取得、419…EPG用 メタデータリスト取得、420…メタデータリストのve rsion No.確認、421…更新部分の識別、422…EPG 用メタデータ取得、423…END、424…START、42 5…蓄積再生用メタデータデフォルトESの有無確認、4 26…蓄積再生用メタデータデフォルトES取得、427 …蓄積再生用メタデータリスト取得、428…content_ idに対応する情報検索、429…該当するモジュール取 得、430…コンテンツの受信許可を確認、431…コ ンテンツ受信、432…END、433…START、434… システム鍵更新用TS記述子によりTS選択、435…PSI 処理、436…PMT解析、437…システム鍵更新用メ タデータデフォルトES、438…システム鍵更新用メタ データ取得、439…END、440 蓄積再生用メタデ ータストリーム_DII、441 コンテンツ配信用メタ

【図1】

【図3】

【図4】 【図9】

【図5】

【図6】

【図7】

【図8】

【図12】

(214) (218)

Sevice_type	内容			
0x00	未定義			
0x01	デジタル TV サービス			
0x02	デジタル音声サービス			
0x03 - 0x7F	·未定説 * テラ: *** チェー・* * ・ * * * * * * * * * * * * * * *			
0x80 0xA0	事業者定義			
OxA1	随時映像 サービス			
0xA2	臨時音声サービス			
OxA3	臨時データサービス			
OxA4	エンジニアリングダウンロードサービス			
OxA5	プロモーション映像サービス			
0xA6	プロモーション音声サービス			
OxA7	プロモーションデータサービス			
8Ax0	事前蓄積用データサービス			
OxA9 - OxBF	未定義(標準化期間定義領域)			
0xC0	データサービス			
0xC1 - 0xFF	(朱定義): 27 (((*********************************			

注) 網掛け部分に蓄積型サービスの項目を追加する。

【図21】

【図32】 【図33】

制御種別	内容
コピー制御形式	00;未定義
(copy control_type)	01:シリアル I/F に暗号化を行って出力する
	10: 未定義
	11:シリアル I/F に暗号化を行わないで出力する
デジタルコピー制御情報	<pre><copy_control_type=11></copy_control_type=11></pre>
(digital_recording_con	00:制約条件なしにコピー可
trol data)	01:使用しない
	10:1世代のみコピー可
	11:コピー禁止
	<pre><copy_control_type=01></copy_control_type=01></pre>
	00:制約条件なしにコピー可
	01:コピー禁止
	10:1世代のみコピー可
	11:コピー禁止
アナログ出力制御情報	00: 制約条件なしにコピー町
(APS_control_data)	01:擬似シンクパルス有り
	10:振似シンクバルス+2ライン反転分割バースト挿入
	11:擬似シンクパルス+4ライン反転分割パースト挿入

Stream_type	内容
0x00	未定義
0x 0 1	ISO/IEC 11172 映像: MPEG1 Video
0x02	ITU-T 勧告 H. 262 映像:ME'EG2 Video
0x03	ISO/IEC 11172 音声
0x04	ISO/IEC 13818-3 音声
0x05	セクション
0x06	PES パケット: MPEG2 Systems (字幕・文字スーパー)
0x07	ISO/IEC 13522 MHEG
0x08	ITU-T 勧告 H. 222.0 付属寺 A DSM-CC
0x09	ITU-T 勧告 H. 222. 1
0x0A - 0x0D	ISO/IEC 13818-6 (タイプ A-D) : 0x0D:カルーセル
Ox0E	上記勧告以外で ITU-T 勧告 H. 222.0 で規定されるデータタイプ
0x0F	ISO/IEC 13818-7 音声
0x10 - 0x7F	未定義
0x80 - 0xFF	ユーザー領域

【図24】

【図30】

機能	内容
受信制御	- 菩積/再生用メタデータ、縁配信用メタデータ、受信婚
	末内で事前契約用メタデータより生成される個人情報
	を格納したプロファイルより受信可能なコンテンツか
	を判断し、コンテンツの受信を制御する機能
警 發制御	- NOP 内部で発生するコンテンツ、メタデータ等の書稿媒
	体への蓄積動作を EPG 用メタデータ、蓄積/再生用メタ
	データ、メタデータリスト等により制御する機能
コピー制御	・視聴契約等のユーザーリクエスト等により発生するリ
	ムーパブルメディア等へのコピー要求を警積/再生用メ
	タデータの情報により制御する機能
提示制御	・ユーザーの視聴要求に対し蓄積/再生用メタデータの情
	報、視聴契約により生成された許諾情報をもとにコンテ
	ンツの再生を制御する機能
視聴契約制御	・蓄積/再生用メタデーダ、IC カード内の個人契約情報を
	もとにコンテンツの視聴に対する許諾信報を生成する
	機能
謀金制御	・蓄積/再生用メタデータに格納されたポイント情報等
	と、ICカード内の個人契約情報をもと行われる課金処理
	を制御する機能
個人製証制御	・各メタデータ内にユーザーを制限する情報がある場合
	に、プロファイル、IC カード内の個人契約情報をもとに
	行われる認証処理を制御する機能
鞋 管理	・受信端末内の鍵を管理する機能
プロファイル管理	→ 事前契約用メタデータから生成される各個人、端未のプ
	ロファイルを管理する機能
時刻管理	・受信端末における時刻情報を管理する機能
アプリケーション認証	・Plug in アプリケーションに対する認証を制御する機能
制御	
外部機器配配制御	受信端末に接続される外部機器に対する認証を制御す
	る機能
通信回線制御	・視聴履歴、課金情報等の権利保護が必要な情報を通信回
	無を利用し送出側に送信する際に通信路の安全性に関
	する制御を行う機能

【図36】

タグ値	記述子	機能
0x01	Type 記述子	・1ファイル(エレメント/リソース)
l .	1	を1モジュールとして伝送する場合
		のファイルの型を指定
		- RFC1521、RFC1590 に準拠した形式で
		配進
0x02	Name 記述子	・1ファイル(エレメント/リソース)
		を1モジュールとして伝送する場合
		のファイルの名前を指定
		・module_link を行う場合は先頭のモ
		ジュールにのみ指定
0x03	Info 記述子	・モジュールに関する情報を記述
0x04	Module_link 記述子	・1 モジュール 256Mbyte の制限を超え
		るファイルを伝送する際の複数でジ
		ュール間のリンクを記述
0x05	CRC32 記述子	・モジュール全体の CRC 値を配述
0x06	-	将来使用のため予約
0x07	ダウンロード推定時間配	・モジュールのダウンロード推定時間
	途子	を記述
0x08 0x7F	-	将来使用のため予約
0x80 — 0xBF	-	事業告定義の記述子のタグ値として避
		択可能な範囲
0x00	Expire 記述子	・モジュールの有効期限を記述
		・絶対時間、ダウンロード後の経過時
		間で指定可能
OxC1	Activation Time 配達子	・モジュールの内容が有効化される時
1		対を記述
İ		・絶対時刻、WY、番組開始からの相対
n an		時間等で指定可能
0xC2	Compression 把述子	・モジュールの圧縮方式の配途
l		- 圧縮アルゴリズム、圧縮前のサイズ
	1	を指定
0xC3	Centrol 記述子	・モジュールの解釈、制御に必要な情
-		報を配述
0xC4 0xEF	<u>-</u>	将来使用のため予約
OxPO OxPE	_	符号化方式ごとにプライベート領域に
L	J	挿入する記述アタグのために予約

【図35】

Component_tag	内容
0x80	著積/再生用メタデータデフォルト ES
0x81 - 0x8F	蓄積/再生用メタデータ ES(予約領域含む)
0x90	EPG 用メタデータデフォルト ES
0x91 - 0x9F	EPG 用メタデータ ES(予約領域含む)
0xx0	事前契約用メタデータデフォルト ES
OxA1 - OxA7	事前契約用メタデータ ES(予約領域含む)
0xA8	システム競更新用メタデータデフォルト 欧
OxA9 — OxAF	システム健更新用メタデータ ES(予約領域含む)
0xB0 — 0xBF	著稿用映像 ES
0xC0 — 0xCF	蓄積用音声 ES
0xD0 - 0xD7	善積用字幕
0xD8 - 0xDF	蓄積用文字スーパー
0xE0 - 0xEF	蓄積用データ ES
0xF0 — 0xFF	予約

【図37】

種別	内容
事前契約用	・有料放送事業者の事業者(Kw) や、ティア/フラット等
メタデータ	の契約コード、ポイント情報個人に関する情報等の内容
	を含むメタデータ
	・ユーザー個人単位に生成されコンテンツと非同期に配信
EPG 用	・配信予定の番組/コンテンツの EPG 表示、検索、視聴/書
メタデータ#1	積予約を行うための内容を含むメタデータ
	・自 TS、他 TS のコンテンツに対するメタデータが存在
	・コンテンツの配信される時刻により basic schedule b、
	extended schedule 等のグループに分けられる。
	・運用により、複数カルーセルにて伝送される場合がある。
蓄積再生用	- コンテンツの受信、蓄積、再生に必要な内容を含むメタ
メタデータ	データ
	・自 TS 内の配信中、次に配信されるコンテンツに対して派
	付されるメタデータ
難配信用	・コンテンツの暗号鍵(Kk)の情報を含むメタデータ
メタデータ	・自TS内の配信中ユンテンツに対して條付されるメタデー
	<u> </u>
メタデータリスト	・カルーセル内のメタデータ格納位置に関する情報を含む
	メタデータ
	・事前契約用、薔薇再生用、EPG 用のメタデータリストが存
	在
	・メタデータリストは各メタデータのデフォルト ES におけ
	る startup モジュール (module_id=0) により伝送される
システム離更新用	・端末内に予め格納されているシステム全体で共通の鍵を
メタデータ	更新するための内容を含むメタブータ
	・ネットワーク全体で共通的に使用され、緊急を要する内
	容を含むため、各TS 毎、もしくは専用スロットにて伝送
	される

*1:全局 DPG を運用しない場合は自 TS のコンテンツに対する EPG 用メタデータのみ存在 となる。

【図38】

【図39】

【図40】

【図41】 【図42】

【図45】

【図46】

【図47】

フロントページの続き

H 0 4 H 1/00 F H 0 4 N 7/173 6 4 0 H 0 4 N 7/173 6 4 0 A

(72)発明者 山崎 伊織

東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所放送・通信システム推 進事業部内 (72)発明者 大橋 哲也

東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所放送・通信システム推 進事業部内 F ターム(参考) 5B017 AA07 BA07 BB10 CA16 5B082 EA11 5C064 BA01 BB01 BC17 CB01 CC04