Clustering and Differential Expression

Introduction to Single Cell RNA-Seq (45)

Timothy Tickle Brian Haas

Agenda (Clustering and Differential Expression)

- Dimensionality Reduction
 - PCA
 - t-SNE
- Differential Expression
 - SCDE
 - MAST

Making Sense of Variation

• Fact 1 : For something to be informative, it needs to exhibit variation

• Fact 2 : Not everything that exhibits variation in real life, is informative

Identifying Relevant, "Highly Variable" Genes

First filter out,

- Lowly expressed genes
- "Housekeeping" genes

Typical practice to identify "highly" variable genes is to create a null model of statistical variation based on housekeeping or spike-in genes

Variable Genes in Seurat

Calculate mean expression.

Calculate disperstion (standard deviation).

Calculate z-score for dispersions within each bin.

Stratifies and controls from the relationship between the variability and mean expression.

Dimensionality Reduction

- •Start with many measurements (high dimensional).
 - Want to reduce to few features (lower-dimensional space).
- •One way is to extract features based on capturing groups of variance.
- Another could be to preferentially select some of the current features.
 - We have already done this.
- •We need this to plot the cells in 2D (or ordinate them)
- •In scRNA-Seq PC1 may be complexity or technical.

Dimensionality Reduction

- Why?: Genes do not act independently, but as coregulatory "modules". E.g. in a
 cell type, the activity of a handful of transcription factors might lead to the coexpression of hundreds of genes defining cell-identity
- Cells occupy a low dimensional manifold in gene-expression space defined by these modules

Principal Component Analysis (PCA) is a **popular linear-method** to identify these modules

PCA: Overview

- Eigenvectors of covariance matrix.
- Find orthogonal groups of variance.
- Given from most to least variance.
 - Components of variation.
 - Linear combinations explaining the variance.

PCA: an Interactive Example

PCA Explained Visually

PCA: in Practice

Things to be aware of-

- Data with different magnitudes will dominate.
 - Zero center and divided by SD.
- •(Standardized).
- Can be affected by outliers.
- Data is often first filtered to remove noise.

PCs

Notice how lower PCs look more and more "spherical" this loss of structure indicates that the variation captured by these PCs mostly reflects noise.

How Many Components Should We Use?

Elbow Plot (Scree Plot)

t-SNE: Collapsing the Visualization to 2D

t-SNE: Nonlinear Dimensionality Reduction

t-SNE: How it Works

Visualizing t-SNE

PCA and t-SNE Together

- •Often t-SNE is performed on PCA components
 - Liberal number of components.
 - Removes mild signal (assumption of noise).
 - Faster, on less data but, hopefully the same signal.

Plotting Metadata on Ordinations

Caution When Interpreting t-SNE

Nonlinear Optimized for local distanct Big clusters can just mean more cells.

Learn More About t-SNE

- Awesome Blog on t-SNE parameterization
 - http://distill.pub/2016/misread-tsne
- Publication
 - https://lvdmaaten.github.io/publications/papers/JMLR 2008.pdf
- Nice YouTube Video
 - https://www.youtube.com/watch?v=RJVL80Gg3IA
- Code
 - https://lvdmaaten.github.io/tsne/
- Interactive Tensorflow
 - http://projector.tensorflow.org/

Defining Clusters Through Graphs

- Smart Local Moving (SLM) algorithm for community (cluster) detection in large networks.
 - Can be applied to 10s of millions cells, 100s of millions of relationships.
 - Evolved from the Louvain algorithm

Local Moving Heuristic

Agenda (Clustering and Differential Expression)

- Dimensionality Reduction
 - PCA
 - t-SNE
- Differential Expression
 - SCDE
 - MAST

Differential Expression

Group A > Group B (p-value < 0.01)

BUT

"Zero inflation" poses a challenge in single-cell data!

Conventional statistical tests (e.g. "Student's t"), which assume a unimodal distribution can be underpowered in detecting true genes

Differential Expression Analysis

Many of the DE methods developed for bulk RNA-seq (e.g. edgeR, DE-seq) have serious limitations when applied to scRNA-seq data because of dropouts, so apply with caution!

	Short name	Method	Software version	Input	Reference
	BPSC	BPSC	BPSC 0.99.0	CPM	[48]
	D3E	D3E	D3E 1.0	raw counts	[49]
	DESeq2	DESeq2	DESeq2 1.14.1	raw counts	[14]
	DESeq2census	DESeq2	DESeq2 1.14.1	census counts	[14]
	DESeq2nofilt	DESeq2 without the built- in independent filtering	DESeq2 1.14.1	raw counts	[14]
	edgeRLRT	edgeR/LRT	edgeR 3.17.5	raw counts	[15, 41, 37]
	edgeRLRTcensus	edgeR/LRT	edgeR 3.17.5	census counts	[15, 41, 37]
	edgeRLRTdeconv	edgeR/LRT with deconvo- lution normalization	edgeR 3.17.5, scran 1.2.0	raw counts	[15, 37, 42]
-	edgeRLRTrobust	edgeR/LRT with robust dispersion estimation	edgeR 3.17.5	raw counts	[15, 41, 37, 40]
	edgeRQLF	edgeR/QLF	edgeR 3.17.5	raw counts	[15, 38, 41]
	limmatrend	limma-trend	limma 3.30.13	raw counts	[57, 16]
	MASTepm	MAST	MAST 1.0.5	log ₂ (CPM+1)	[50]
	MASTcpmDetRate	MAST - accounting for detection rate	MAST 1.0.5	log ₂ (CPM+1)	[50]
	MASTtpm	MAST	MAST 1.0.5	log ₂ (TPM+1)	[50]
	MASTtpmDetRate	MAST - accounting for detection rate	MAST 1.0.5	log ₂ (TPM+1)	[50]
	metagenomeSeq	metagenomeSeq	metagenomeSeq 1.16.0	raw counts	[54]
	monocle	monocle	monocle 2.2.0	TPM	[44]
	monoclecensus	monocle	monocle 2.2.0	census counts	[44, 43]
	NODES	NODES	NODES 0.0.0.9010	raw counts	[47]
	ROTScpm	ROTS	ROTS 1.2.0	CPM	[55, 56]
	ROTStpm	ROTS	ROTS 1.2.0	TPM	[55, 56]
•	ROTSvoom	ROTS	ROTS 1.2.0	voom-transformed raw counts	[55, 56]
	SAMseq	SAMseq	samr 2.0	raw counts	[45]
	SCDE	SCDE	scde 1.99.4	raw counts	[51]
	SeuratBimod	Seurat (bimod test)	Seurat 1.4.0.7	raw counts	[52, 53]
	SeuratBimodnofilt	Seurat (bimod test) with- out the internal filtering	Seurat 1.4.0.7	raw counts	[52, 53]
	SeuratBimodIsExpr2	Seurat (bimod test) with internal expression thresh- old set to 2	Seurat 1.4.0.7	raw counts	[52, 53]
	SeuratTobit	Seurat (tobit test)	Seurat 1.4.0.7	TPM	[52, 44]
	voomlimma	voom-limma	limma 3.30.13	raw counts	[57, 16]
	Wilcoxon	Wilcoxon test	stats (R v 3.3.1)	TMM-normalized TPM	[41, 46]

Soneson and Robinson, 2017

Single Cell Differential Expression (SCDE)

DE genes using conventional methods can include high magnitude outliers or dropout events

SCDE exchanges information between closely related cells to estimate dropout rates for every cell!

$$\begin{cases} r_1 \approx Poisson(\lambda_0) & \text{Dropout in } c_1 \\ f_1 \approx NB(r_2) \\ r_2 \approx NB(r_1) & \text{Amplified} \\ r_2 \approx Poisson(\lambda_0) & \text{Dropout in } c_2 \end{cases}$$

Singe Cell Differential Expression (SCDE)

SCDE is Much More Sensitive and Specific

One of the disadvantages of SCDE is its run-time, which does not scale well for large datasets. Newer methods like MAST (Finak et al., 2016) overcome this!

MAST

Uses hurdle model

- Two part generalized linear model to address both rate of expression (prevalence) and expression.
- GLM means covariates can be used to control for unwanted signal.
- •CDR: Cellular detection rate
 - Cellular complexity
 - Values below a threshold are 0

Final et al. Genome Biology (2015) 16:276 DOI 10.1186/s13059-015-0844-5

Genome Biology

METHOD

Open Access

(III) CinstMaA

MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data

Greg Finak¹¹, Andrew McDavid¹¹, Masanao Yajima¹¹, Jingyuan Deng¹, Wvian Gersuk², Alex K. Shalek^{3,43,8}, Chice K. Siichee¹, Hannah W. Miller¹, M. Juliana McDrath¹, Martin Pelic¹, Peter S. Lindey² and Rachael Gottario⁵ ¹²

Additionally introduces a GSEA method

https://github.com/RGLab/MAST

MAST: Hurdle Models

Dot Plots

Size of circle

- •Gene prevalence in cluster.
 - Color of circle
- More red, more expressed in cluster.
 - Scales well with many cells.

Seurat: Differential Expression

- Default if one cluster again many tests.
 - Can specify an ident.2 test between clusters.
- Adding speed by excluding tests.
 - Min.pct controls for sparsity
 - Min percentage in a group
 - Thresh.test must have this difference in averages.

Seurat: Many Choices of DE

Bimod

- Tests differences in mean and proportions.

Roc

- Uses AUC like definition of separation.

Т

- Student's T-test.

Tobit

- Tobit regression on a smoothed data.

MAST

- Hurdle model for zero inflated data

• • • • •

Section Summary

We motivated dimensionality reduction with the helpfulness of focusing on higher variability.

We explored several methods for dimensionality reduction.

- Contrasted and showed how to leverage together.

Explored differential expression.