Could albedo changes explain Neoproterozoic glaciations? (Pierrehumbert et al. 2011)

Increasing land and ocean albedo can cause a snowball

So can increasing ice albedo.

A volcanic mechanism to increase albedo

Volcanoes put particulates into stratosphere that increase albedo

τ is Optical Depth, $\alpha_{st}(\tau, x_s)$ is Stratospheric Albedo

Adapted equation from Budyko (1969)

$$\frac{Q_0}{4}S(x_s)(1-\alpha_{st}(x_s,\tau))(1-\alpha_{su}(x_s)) = A + BT(x_s) + C(T(x_s) - \bar{T})$$

Assumption: Uniform effect over surface.

$$1 - e^{-\tau m(x)} = \alpha_{st}(x, \tau) = \alpha_{st}(\tau) = 1 - e^{-\tau}$$

Allowing us to calculate a new planetary albedo (surface + stratosphere)

$$\alpha_p' = \int_0^1 S(x) [\alpha_{st}(\tau) + \alpha_{su}(x_s) - \alpha_{st}(\tau) \alpha_{su}(x_s)] dx,$$

Resulting in a new equation to solve (Roe and Baker 2010)

$$\frac{Q}{4}S(x_s)(1-\alpha_{su})(1-\alpha_{st})+\frac{QC}{4B}(1-\alpha_p')=k$$

Increasing au or $lpha_{st}$

Increasing $CO_2 \approx$ increasing B

Ice sheets block the ocean sink for CO2

Increasing CO2 increases \bar{T} , increasing OLR or B in the Budyko model.

7/11

Increasing $CO_2 \rightarrow \text{can get us back to a partial-ice world.}$

CO2 sink reactivates, causing hysteresis

CO2 sink reactivates, causing hysteresis

Could albedo changes explain Neoproterozoic glaciations?

