

Lecture 10. Hashing and Hash Tables

SIT221 Data Structures and Algorithms

Hashing: Motivation

Worst case analysis of data structures:

Name	Insert(x)	Remove(x)	Find(x)
Linked Lists	0(1)	0(1)	O(n)
AVL Trees	$O(\log n)$	$O(\log n)$	$O(\log n)$

Can we have constant time insertion and removal, yet have a better find?

Idea: Consider a different use of arrays.

- Do not change array size on Insert or Remove.
- On Remove, simply clear the element at the index.
- Assume we know the index of x.
 - Insert(x) is O(1)
 - Remove(x) is O(1)
 - Find(x) is O(1)

- Associative array S stores elements.
- Each element e in S has a unique key: key(e). Clearly, each key has a unique element.
- It needs an index in S for each possible key.

Operations:

- S.Insert(e: Element): S := S ∪ {e}
- S.Remove(k: Key): $S \coloneqq S \setminus \{e : k = \text{key}(e)\}$
- S.Find(k: Key): if e in S, return e. Else return null.

- Problem: number of possible keys is massive.
- Library example: how many students borrow books? How many student ids are there?

- Let N be the number of potential keys in S
- Let n be the number of elements in S
- Having an associative array S of size N elements is too costly in terms of space.
- Want to have S of size O(n).

Hash Tables: Idea

- Use hash function h to map potential keys to m values, where m < N.
- Let T be a *hash table* of size m.
- Store element e in index $h(\ker(e))$ of T.

Hash Tables: Hash Function

Example hash function:

- $\ker(e)$ are student ids,
- $-h(\ker(e))$ are last two digits of student ids.
- -N is 10^7 , m is 10^2 .

Hash Tables: Hash Function

• A hash function h(key(e)) is usually specified as the composition of two functions:

Hash code:

key(e): keys \rightarrow integers

Compression function:

h(k): integers \rightarrow [0, m-1]

• The hash code is applied first, and the compression function is applied next on the result, i.e.,

$$h(e) = h(\ker(e))$$

 The goal of the hash function is to "disperse" the keys in a random way.

Hash Tables: Hash Codes

Memory address:

- We reinterpret the memory address of the key object as an integer.
- Default hash code of all Java objects.
- Does not work for numeric and string keys.
- Also bad if objects can move (like in C#)!

Integer cast:

- We reinterpret the bits of the key as an integer
- Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in Java/C#)

Component sum:

- We partition the bits of the key into components of fixed length
 (e.g., 16 or 32 bits) and we sum the components, ignoring overflows.
- Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in Java/C#).

Hash Tables: Hash Codes

Polynomial accumulation:

- We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits) as a_0 , a_1 ... a_{n-1} .
- We evaluate the polynomial

$$p(z) = a_0 + a_1 z + a_2 z^2 + ... + a_{n-1} z^{n-1}$$

at a fixed value z, ignoring overflows.

Especially suitable for strings (e.g., the choice z = 33 gives at most 6 collisions on a set of 50,000 English words)

Hash Tables: Compression Function

Division:

- $-h(k) = k \mod m$
- The size m of the hash table is usually chosen to be a prime
- The reason has to do with number theory...

Multiply, Add and Divide (MAD):

- $-h(k) = (a \cdot k + b) \bmod m$
- a and b are nonnegative integers such that $(a \mod m) \neq 0$, otherwise, every integer would map to the same value b.

Hash Tables: Challenge

- Assume that the size of a hash table is a power of two, i.e. m=2,4,16,32,... etc.
- We map a key k into one of the m slots using the hash function $h(k) = k \mod m$.
- Give one reason why this might be a bad selection for the hash function.

Hash Tables: Challenge

- Assume that the size of a hash table is a power of two, i.e. m=2,4,16,32,... etc.
- We map a key k into one of the m slots using the hash function $h(k) = k \mod m$.
- Give one reason why this might be a bad selection for the hash function.

What happens if our keys are all even?

Hash Tables: Operations

Hash Tables follow the Map abstract data structure:

- get(k): if the map M has an entry with key k, return its associated value; else, return null.
- put(k, v): insert entry (k, v) with key k and value v into the map M; if key k is not already in M, then return null; else, return old value associated with k.
- remove(k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null
- size(), isEmpty()
- keys(): return an iterator of the keys in M.
- values(): return an iterator of the values in M.

Hash Tables: Collisions

- We may use smaller tables to store elements, but this means that some elements may get stored in the same index.
- Previous example, a0000000 and a1995400.
- If only one element per table entry, only one element can be stored.

How do we handle collisions?

Think linked lists...

Hashing with Chaining

- Solution: let *T* be a table of linked lists.
- Example: Storing words.

Hashing with Chaining: Limitations

- N = number of potential keys
- m = number of possible hash function values
- n = number of elements
- Thus hash functions will have sets of N/m keys mapped to the same index of T.
- As (usually) n < N/m , it is possible to have all n elements in one table entry.

Hashing with Chaining: Insert(e)

- Insert(e: Element)
 - Get index $h(\ker(e))$.
 - Add e to the end of the list in the table at T[h(key(e))].
- What is the worst case complexity?

Hashing with Chaining: Insert(e)

- Insert(e: Element)
 - Get index $h(\ker(e))$.
 - Add e to the end of the list in the table at T[h(key(e))].
- Hash function's computation is O(1).
- Worst case insert of linked list is O(1).
- Thus Insert(e: Element) is O(1).

^{*} Note that we often have to perform Replace(e) instead of Insert(e) in case e is already presented in the hash table at $T[h(\ker(e))]$. This operation is O(n) as requires to run Find(e) first.

Hashing with Chaining: Find(k)

- Find(*k*: Key)
 - Get index h(k).
 - Search through the list at T[h(k)].
 - If element e with unique key k is in the list, return e. Else return null.
- What is the worst case complexity?

Hashing with Chaining: Find(k)

- Find(*k*: Key)
 - Get index h(k).
 - Search through the list at T[h(k)].
 - If element e with unique key k is in the list, return e. Else return null.
- Hash function is O(1)
- Worst case find of linked list is O(n)
- Thus find(k: Key) is O(n).

Hashing with Chaining: Remove(k)

- Remove(k: Key)
 - Get index h(k).
 - Search through the list at T[h(k)].
 - If element e with unique key k is in the list, remove e.
- What is the worst case complexity?

Hashing with Chaining: Remove(k)

- Remove(k: Key)
 - Get index h(k).
 - Search through the list at T[h(k)].
 - If element e with unique key k is in the list, remove e.
- Hash function is O(1).
- Worst case find of linked list is O(n).
- Worst case remove of linked list is O(1).
- Thus remove(k: Key) is O(n).

Theorem: If n elements are stored in a hash table T with m entries and a random hash function is used, the expected execution time of Remove or Find is $O(1 + \frac{n}{m})$.

Note: a random hash function maps e to all m table entries with the same probability.

Proof:

- Execution time for remove and find is constant time plus the time scanning the list T[h(k)].
- Let the random variable X be the length of the list T[h(k)], and let E[X] be the expected length of the list.

Thus the *expected* execution time is O(1 + E[X]).

Proof (continued):

- Let S be the set of n elements contained in T.
- For each e, let X_e be an indicator variable which indicates whether X hashes to the same value as k, ie:

if
$$h(\text{key}(e)) = h(k)$$
 then $X_e = 1$ else $X_e = 0$.

$$X = \sum_{e \in S} X_e$$
 (i.e. how many elements are in table entry $h(\text{key}(e))$

Proof (continued):

$$E[X] = \sum_{e \in S} E[X_e] = \sum_{e \in S} prob(X_e = 1)$$

$$= \sum_{e \in S} 1/m \quad \text{(As function maps } e \text{ to all } m \text{ with equal probability)}$$

$$= n/m$$
 (Because n elements in S)

Proof (continued):

Expected execution time is O(1 + E[X]), and $E[X] = \frac{n}{m}$.

Thus, the expected execution time for Remove and Find under hashing with chaining is $O(1 + \frac{n}{m})$, and constant if $m = \Theta(n)$.

Hashing: Alternative Approach to Chaining

Hashing with chaining is a closed hashing approach.

- Closed hashing: handles collision by storing all elements with the same hashed key in one table entry.
- Open hashing: handles collision by storing subsequent elements with the same hashed key in different table entries.
 - Each table cell inspected is referred to as a "probe"
 - Colliding items lump together, causing future collisions to cause a longer sequence of probes

Hashing with Linear Probing

- Hashing with Linear Probing is an open hashing approach.
- All unused entries in T are set to \bot .
- When inserting, on a collision insert the element to the next free entry.
- What if the last entry is used?

Hashing with Linear Probing

- Hashing with Linear Probing is an open hashing approach.
- All unused entries in T are set to \bot .
- When inserting, on a collision insert the element to the next free entry.
- Trivial fix: allow more entries (re-hash)
- Make table T size m + m' instead of m. Choose m' < m.
- Is this a good fix? Is there a better way?

Hashing with Linear Probing: Insert(e)

Insert(e : Element)

- 1. Get index i = h(key(e))
- 2. If $T[i] = \perp$ (i.e. null), store e at T[i]
- 3. If T[i] is not empty, increase i by 1 and go to step 2.

Hashing with Linear Probing: Insertion

Hashing with Linear Probing: Find(k)

Find(k: Key)

- 1. Get index i = h(k)
- 2. If $T[i] = \perp$, return not found
- If element e at T[i] has key(e) = k, return found. Else increase i by 1 and go to step 2.

e.g. Find(ABBA)

Hashing with Linear Probing: Remove(k)

- Can not remove the element with key(e) = k and replace it with \bot .
- If we replace element e_1 at T[i] with \bot , how do we find an element e_2 with the same h(k)?
- Instead, first remove the element with key(e) = k and then fix the invariant.

Hashing with Linear Probing: Remove(k)

Remove(k: Key)

1. Get index i = h(k);

Find (*k*)

Repair

```
2. If (T[i] == \perp), return
```

- 3. If (element e at T[i] has $key(e) \neq k$) increase e by 1 and go to step 2;
- 4. Set $T[i] = \perp$;

```
5. Set index j = i + 1;
```

- 6. If $(T[j] == \bot)$ return;
- 7. **If** (h(T[j]) > i), increase j by 1;
- 8. Else set T[i] = T[j] and $T[j] = \perp$;
- 9. Set i = j and go to step 5;

Hashing with Linear Probing: Deletion with Repairing

Remove(Cobra)

0 (letter a) 1 (letter b)

2 (letter c)

3 (letter d)

4 (letter e)

Step 6

Boa

ABBA

Classic

L

Hashing with Linear Probing: Lazy Deletion

 $h(k) = k \mod m$

What should we do instead?

Hashing with Linear Probing: Lazy Deletion

 $h(k) = k \mod m$

But what is the problem now?

Hashing with Linear Probing: Lazy Deletion

- Use a special value **DELETED** instead of **NIL** when marking a slot as empty during deletion.
 - Search should treat DELETED as though the slot holds a key that does not match the one being searched for.
 - Insert should treat DELETED as though the slot were empty, so that it can be reused.
- **Disadvantage:** Search time is no longer dependent on the load factor $\alpha = n/m$.
 - Hence, chaining is more common when keys have to be deleted.

Hashing with Linear Probing: Challenge

Suppose we have a hash table that resolves collisions using open addressing with linear probing. When removing an item from the table, we can either

- repair the table to get rid of possible incorrect search
- or introduce a special marker to skip the entry while searching. Therefore,
 slots with no keys contain either an EMPTY marker or a DELETED marker.

A student tries to reduce the number of DELETED markers. He\she proposes to use the following rules in the delete method:

- If the object in the next slot is EMPTY, then a DELETED marker is not necessary.
- If the object in the next slot has a different initial probe value, then a DELETED marker is not necessary.

Determine whether each of the above rules guarantees that searches return a correct result. Explain your answer.

Hashing: Chaining vs. Linear Probing

Argumentation depends on the intended use and many technical parameters:

Chaining

- + referential integrity
- waste of space

Linear probing

- + use of contiguous memory
- gets slower as table fills up
- A fair comparison must be based on space consumption, not only on the runtime.
- Experimental results: so small differences that implementation details, used compiler, OS, etc. matter.

Hashing: Summary

- In the worst case, searches, insertions and removals on a hash table take $\mathcal{O}(n)$ time.
- The worst case occurs when all the keys inserted into the map collide.
- The load factor $\alpha = n/m$ affects the performance of a hash table.
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is $1/(1-\alpha)$.
- In practice, hashing is very fast provided the load factor is not close to 100%
- When the load gets too high, we can re-hash....
- Applications: very numerous, e.g. computing frequencies.

Other references and things to do

Read chapter 10.2 in Data Structures and Algorithms in Java.
 Michael T. Goodrich, Irvine Roberto Tamassia, and Michael H. Goldwasser, 2014.