PLANES IN SYMPLECTIC VECTOR SPACES

SIMON KAPFER

Let V be a symplectic vector space of dimension $n \in 2\mathbb{N}$ over a field F with a nondegenerate symplectic form $\omega: \Lambda^2V \to F$. A line is a one-dimensional subspace ov V, a plane is a two-dimensional subspace of V. A plane $P \subset V$ is called isotropic, if $\omega(x,y)=0$ for any $x,y\in P$, otherwise non-isotropic. The symplectic group $\operatorname{Sp} V$ is the set of all linear maps $\phi:V\to V$ with the property $\omega(\phi(x),\phi(y))=\omega(x,y)$ for all $x,y\in V$.

Proposition 0.1. The symplectic group $\operatorname{Sp} V$ acts transitively on the set of non-isotropic planes as well as on the set of isotropic planes.

Proof. Given two planes P_1 and P_2 , we may choose vectors v_1, v_2, w_1, w_2 such that v_1, v_2 span P_1, w_1, w_2 span P_2 and $\omega(u_1, u_2) = \omega(w_1, w_2)$. We complete $\{v_1, v_2\}$ as well as $\{w_1, w_2\}$ to a symplectic basis of V. Then define $\phi(v_1) = w_1$ and $\phi(v_2) = w_2$. It is now easy to see that the definition of ϕ can be extended to the remaining basis elements to give a symplectic morphism.

Remark 0.2. If F is the field with two elements, then the set of planes in V can be identified with the set $\{\{x,y,z\}\mid x,y,z\in V\setminus\{0\},\ x+y+z=0\}$. Observe that for such a $\{x,y,z\}$, $\omega(x,y)=\omega(x,y)=\omega(y,x)$ and this value gives the criterion for isotropy.

From now on we assume that F is finite of cardinality q.

Proposition 0.3.

(1) The number of lines in V is
$$\frac{q^n-1}{q-1}$$
,

(2) the number of planes in V is
$$\frac{(q^n-1)(q^{n-1}-1)}{(q^2-1)(q-1)}$$
,

(3) the number of isotropic planes in V is
$$\frac{(q^n-1)(q^{n-2}-1)}{(q^2-1)(q-1)}$$
,

(4) the number of non-isotropic planes in V is
$$\frac{q^{n-2}(q^n-1)}{q^2-1}$$
.

Proof. A line ℓ in V is determined by a nonzero vector. There are q^n-1 nonzero vectors in V and q-1 nonzero vectors in ℓ . A plane P is determined by a line $\ell_1 \subset V$ and a unique second line $\ell_2 \in V/\ell$. We have $\frac{q^2-1}{q-1}$ lines in P. The number of planes is therefore

$$\frac{\frac{q^n-1}{q-1} \cdot \frac{q^{n-1}-1}{q-1}}{\frac{q^2-1}{q-1}} = \frac{(q^n-1)(q^{n-1}-1)}{(q^2-1)(q-1)}.$$

Date: February 10, 2016.

For an isotropic plane we have to choose the second line from ℓ_1^{\perp} . This is a space of dimension n-2, hence the formula. The number of non-isotropic planes is the difference of the two previous numbers.