A Presentation on Presenting

Daniel Kreisman

How to give a presentation: Key tips

1. You're selling yourself.

- Show your passion.
- They need to remember you as "that candidate interested in XYZ".

How to give a presentation: Key tips

1. You're selling yourself.

- Show your passion.
- They need to remember you as "that candidate interested in XYZ".

2. Presenting is 1/2 entertaining and 1/2 teaching, 0% showing off.

- Keep people engaged and they'll remember you.
- Teach them something new and they'll leave feeling good.
- Be technical, complex and speak to a narrow audience; people will tune out.

How to give a presentation: Key tips

1. You're selling yourself.

- Show your passion.
- They need to remember you as "that candidate interested in XYZ".

2. Presenting is 1/2 entertaining and 1/2 teaching, 0% showing off.

- Keep people engaged and they'll remember you.
- Teach them something new and they'll leave feeling good.
- Be technical, complex and speak to a narrow audience; people will tune out.

3. Talk to the person least familiar with your topic.

- That person is most likely to tune out, and least likely to argue for you.
- At every point, I should never ask, why do I care about this?

Let's talk about the Power of Stories.

You're going to present more than anyone can remember.

- Present only what they need.
- Think like a storyteller...

You're going to present more than anyone can remember.

- Present only what they need.
- Think like a storyteller...

Humans remember things in context -

• Memorizing independent facts is nearly impossible, or at least ineffective.

You're going to present more than anyone can remember.

- Present only what they need.
- Think like a storyteller...

Humans remember things in context -

 Memorizing independent facts is nearly impossible, or at least ineffective.

You do that in a talk 3 ways:

- 1 Limiting information less is more.
- 2 Priming listeners for what you will tell them.
- 3 Creating a narrative (story).

You're going to present more than anyone can remember.

- Present only what they need.
- Think like a storyteller...

Humans remember things in context -

 Memorizing independent facts is nearly impossible, or at least ineffective.

You do that in a talk 3 ways:

- 1 Limiting information less is more.
- 2 Priming listeners for what you will tell them.
- 3 Creating a narrative (story).

Let's talk about what slides are for.

Why do we have slides?

Reason 1: Prompts for you.

- Don't put anything you're not going to read.
- People can't read and listen to two different things.

Why do we have slides?

Reason 1: Prompts for you.

- Don't put anything you're not going to read.
- People can't read and listen to two different things.

Reason 2: Visual aids for them.

- Figures are better than tables, if you do them right.
- The text is not for them!

Why do we have slides?

Reason 1: Prompts for you.

- Don't put anything you're not going to read.
- People can't read and listen to two different things.

Reason 2: Visual aids for them.

- Figures are better than tables, if you do them right.
- The text is not for them!

I have a 3x3 rule I try to follow to make sure I do this. Let's see...

1. Each slide should convey only one point:

• People can only remember so much.

1. Each slide should convey only one point:

• People can only remember so much.

2. Each slide has 3 parts:

- 1 Start with a set-up, should flow from last slide.
- 2 Then present your key piece of information.
- 3 Follow this with some set-up for next slide (priming).

1. Each slide should convey only one point:

• People can only remember so much.

2. Each slide has 3 parts:

- 1 Start with a set-up, should flow from last slide.
- 2 Then present your key piece of information.
- 3 Follow this with some set-up for next slide (priming).

3. Try for 3 lines, with 1-2 bullets each at most:

- Keeps things clean and easy to read.
- A great practice is to write a lot, and then cut. Watch.

1. Convey only one point

2. Slides have 3 parts

- 1 Transition.
- 2 Key information.
- 3 Priming.

3. 3 lines, 1-2 bullets

Now, let's talk about flow and appeal \rightarrow

Flow: (not like this)

The first five minutes are the most important:

- Title slide: talk about yourself, who you are, create your brand.
- Open with a big picture question why do we care about this?

The first five minutes are the most important:

- Title slide: talk about yourself, who you are, create your brand.
- Open with a big picture question why do we care about this?

Talk about two contributions:

- Narrow contribution (to the literature).
- Broad contribution (to the world).

The first five minutes are the most important:

- Title slide: talk about yourself, who you are, create your brand.
- Open with a big picture question why do we care about this?

Talk about two contributions:

- Narrow contribution (to the literature).
- Broad contribution (to the world).

Common mistakes:

- Get into the details too fast.
- Frame talk around earlier work.
- Show no enthusiasm.

Next: The right amount of background (not too little, not too much).

2. The Background section

Keep this brief:

• You're talking to too narrow an audience. Assume no one knows the lit.

2. The Background section

Keep this brief:

• You're talking to too narrow an audience. Assume no one knows the lit.

Tips:

• Summarize what we know and don't.

2. The Background section

Keep this brief:

You're talking to too narrow an audience. Assume no one knows the lit.

Tips:

Summarize what we know and don't.

Common mistakes:

- · Listing a gazillion papers.
- Be careful not to misinterpret or omit too much. It's a fine line!
- Now let's talk about presenting data...

3. How to present the Data

Why do we present summary statistics?

3. How to present the Data

Why do we present summary statistics?

- Key definitions.
- To show differences in treatment/control?
- To show representativeness of the data?
- To give moments of key variables.

What often goes wrong?

3. How to present the Data

Why do we present summary statistics?

- Key definitions.
- To show differences in treatment/control?
- To show representativeness of the data?
- To give moments of key variables.

What often goes wrong?

- Show a huge table, discuss random values.
- Spend forever on definitions and choices.

3. How to present the Data

Why do we present summary statistics?

- Key definitions.
- To show differences in treatment/control?
- To show representativeness of the data?
- To give moments of key variables.

What often goes wrong?

- Show a huge table, discuss random values.
- Spend forever on definitions and choices.

Good practices?

- Consider 3 points about the data.
- If you do something neat, don't be humble here!

Next... how to present tables.

Why do we show regression tables?

You have too many tables, and too many coefficients:

- Don't show coefficients you're not going to talk about.
- Show columns one by one (can't read and listen).
- Plots are even better!

You have too many tables, and too many coefficients:

- Don't show coefficients you're not going to talk about.
- Show columns one by one (can't read and listen).
- Plots are even better!

Tell them 3 times:

- 1 Tell them what you're going to show them and how they should interpret it.
- 2 Show them & walk through it.
- 3 Tell them again what you showed them and what they should take away.

You have too many tables, and too many coefficients:

- Don't show coefficients you're not going to talk about.
- Show columns one by one (can't read and listen).
- Plots are even better!

Tell them 3 times:

- 1 Tell them what you're going to show them and how they should interpret it.
- 2 Show them & walk through it.
- 3 Tell them again what you showed them and what they should take away.

Let's try an example of an IV where we care about the effect of X on Y...

• Priming again, always prime for tables, they have the highest cognitive load.

Example: Start with intuition

Were interested in the effect of X on Y:

- This is hard to test because X is endogenous!
- You should have discussed why we are interested in this (theme), why it's
 difficult to figure out (conflict), and how you solve this (plot).

Example: Start with intuition

Were interested in the effect of X on Y:

- This is hard to test because X is endogenous!
- You should have discussed why we are interested in this (theme), why it's
 difficult to figure out (conflict), and how you solve this (plot).

To get around this, we're going to use **Z** as an instrument:

• This uses only variation in X that is due to Z.

Example: Start with intuition

Were interested in the effect of X on Y:

- This is hard to test because X is endogenous!
- You should have discussed why we are interested in this (theme), why it's
 difficult to figure out (conflict), and how you solve this (plot).

To get around this, we're going to use **Z** as an instrument:

• This uses only variation in X that is due to Z.

Our model requires a few new innovations or maybe assumptions:

- We're going to have to account for some strange timing issue,
- The model we present next shows how we deal with that.

Example

First stage model:

$$X = Z\alpha + \gamma W + \eta$$

Second stage model:

$$Y = \hat{X}\beta + \gamma W + \epsilon$$

Example

First stage model:

$$X = Z\alpha + \gamma W + \eta$$

Second stage model:

$$Y = \hat{X}\beta + \gamma W + \epsilon$$

We interpret results as the percentage point effect of X on Y.

- If $\beta=0.1$, a 1 unit Δ in X would =10 %-pt point Δ in Y.
- Mean of Y is 0.5, so that would be a 20% change.

Example

First stage model:

$$X = Z\alpha + \gamma W + \eta$$

Second stage model:

$$Y = \hat{X}\beta + \gamma W + \epsilon$$

We interpret results as the percentage point effect of X on Y.

- If $\beta=0.1$, a 1 unit Δ in X would = 10 %-pt point Δ in Y.
- Mean of Y is 0.5, so that would be a 20% change.

Next slide will show results from naive OLS, 1st and 2nd stage:

- We think the OLS should be biased upwards.
- Comparison of OLS and IV results (cols 1 and 3) will tell us magnitude.

Main Table: OLS and IV Estimates of X on Y.			
х			
Ŷ			
z			
F-Stat More controls! Some controls			
Obs.			

Main Table: OLS and IV Estimates of X on Y.

	OLS	
	(1)	
X	0.10***	
	(0.01)	
Ŷ		
Z		
2		
F-Stat		
More controls!		
Some controls	×	
Obs.	10,000	

Main Table: OLS and IV Estimates of X on Y.

	OLS (1)	1st stg. (2)	
X	0.10***		
^	(0.01)		
Ŷ			
Z		0.50***	
		(0.01)	
F-Stat		100	
More controls!			
Some controls	×	X	
Obs.	10,000	10,000	

Main Table: OLS and IV Estimates of X on Y.

OLS (1)	1st stg. (2)	IV (3)	
0.10***			
(0.01)			
		0.05***	
		(0.01)	
	(0.01)		
	100		
X	X	X	
10,000	10,000	10,000	
	(1) 0.10*** (0.01)	(1) (2) 0.10*** (0.01) 0.50*** (0.01) 100 × ×	(1) (2) (3) 0.10*** (0.01) 0.05*** (0.01) 0.50*** (0.01) 100 × × × ×

 $\label{eq:Main_Table} \textbf{Main Table} \colon \mathsf{OLS} \ \mathsf{and} \ \mathsf{IV} \ \mathsf{Estimates} \ \mathsf{of} \ \mathsf{X} \ \mathsf{on} \ \mathsf{Y}.$

	OLS (1)	1st stg. (2)	IV (3)	IV (4)
X	0.10***			
	(0.01)			
Ŷ			0.05***	0.04***
			(0.01)	(0.01)
Z		0.50***		
		(0.01)		
F-Stat		100		×
More controls!				X
Some controls	Х	X	X	X
Obs.	10,000	10,000	10,000	10,000

Here is the code for that table...

```
\setbeamercovered{transparent}
\begin{frame}\frametitle{Does X affect Y?}
\begin{table} \small
\caption{OLS and IV Estimates, \hspace*{3.5in}}
\begin{tabular}
<{\onslide<2->}c
<{\onslide<3->}c
<{\onslide<4->}c
<{\onslide<5->\c
<{\onslide}c
\toprule
\toprule
  & OLS & 1st stg. & IV & IV \\
  & (1)& (2) & (3) & (4) \\
  \midrule
           & 0.10***&
           & (0.01) &
                          & 0.05*** & 0.04*** \\
$\hat{X}$
           &
                          & (0.01) & (0.01) \\
z
                     & 0.50***
                                           11
                     & (0.01)
                                 &
                                      &
                                           11
\midrule
W Controls
              & x & x & x&
                & x & x & x & x \\
More Controls
\midrule
Obs. & 10.000 & 10.000 & 10.000 &10.000 \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
```

- 1. Tell them that a figure is coming, what it is, what to expect:
 - This is key priming.

- 1. Tell them that a figure is coming, what it is, what to expect:
 - This is key priming.

- 2. Begin the figure with a blank plot, with axes and legend labeled:
 - Keeps attention on you.

- 1. Tell them that a figure is coming, what it is, what to expect:
 - This is key priming.

- 2. Begin the figure with a blank plot, with axes and legend labeled:
 - Keeps attention on you.

- 3. Tell them what they should learn, follow up with a summary:
 - They should take home no more than 1-2 points.
 - Here's my example... (note the transition)

How to present a figure

I wonder if union members earn more (or less) than non-union members?

Theory has lots to say about this!

How to present a figure

I wonder if union members earn more (or less) than non-union members?

Theory has lots to say about this!

I plot hourly wages for union and non-union members, by job tenure:

- We'll look for wage gaps when tenure=0 to consider advantages at hire.
- And at the evolution of the gap over time to see if advantages or disadvantages persist.

Limit to one robustness table:

- Set up with, we might be concerned about X, Y and Z. So I'm going to...
- Or even better, just say that you checked these!

Limit to one robustness table:

- Set up with, we might be concerned about X, Y and Z. So I'm going to...
- Or even better, just say that you checked these!

Go into policy and contribution:

- Circle back to the lit review first (your narrow contribution).
- Then to your motivation (your broad contribution).

Limit to one robustness table:

- Set up with, we might be concerned about X, Y and Z. So I'm going to...
- Or even better, just say that you checked these!

Go into policy and contribution:

- Circle back to the lit review first (your narrow contribution).
- Then to your motivation (your broad contribution).

Start a broader discussion:

- Talk about implications for policy outside of economics.
- Good place to talk about your research agenda!

Flow (remember this?)

Flow (remember this?)

Dealing with the audience

Avoid extended discussions (Bear Huggers):

"I see where you're going with that. That's a really good point. Can we follow up right after the talk? I want to make sure I have what you're saying correct."

Dealing with the audience

Avoid extended discussions (Bear Huggers):

"I see where you're going with that. That's a really good point. Can we follow up right after the talk? I want to make sure I have what you're saying correct."

People who give ton's of "what about's":

"You're right, if XYZ is true that would bias my results upwards, that's a good point. Unfortunately, there's no way to test that. But I should be concerned."

Dealing with the audience

Avoid extended discussions (Bear Huggers):

"I see where you're going with that. That's a really good point. Can we follow up right after the talk? I want to make sure I have what you're saying correct."

People who give ton's of "what about's":

"You're right, if XYZ is true that would bias my results upwards, that's a good point. Unfortunately, there's no way to test that. But I should be concerned."

Presenting online? EXTRA ENTHUSIASM!!!

- Use arrows or boxes over figures or tables to highlight important stuff.
- Have places to pause for questions.

Some final advice

The year before you graduate:

• Pretend like you're on the market. "Apply" for a job.

Some final advice

The year before you graduate:

• Pretend like you're on the market. "Apply" for a job.

Play the lottery:

• Every hand you shake, seminar, or presentation is a lottery ticket.

Some final advice

The year before you graduate:

• Pretend like you're on the market. "Apply" for a job.

Play the lottery:

Every hand you shake, seminar, or presentation is a lottery ticket.

You do good work and you will find the right fit.

- If you think too narrowly, you're not gonna enjoy it and it's gonna show.
- Remember why you got into this and that you're really at the top!
- Before your talk, queue up music, look at pictures of your loved ones.

