

Fahrzeugtests (*	1)
------------------	----

Aufgabennummer: B_045		
Technologieeinsatz:	möglich □	erforderlich ⊠

Die Firma Cargo-Car führt in der Entwicklungsphase eines neuen Transporters Tests durch.

a) In Testreihen wurde der Kraftstoffverbrauch – abhängig von der Ladung – erhoben. In der folgenden Tabelle ist für 8 Testfahrten die Reichweite pro Liter Kraftstoffverbrauch bei einer vorgegebenen Ladung in Tonnen angegeben:

Reichweite in km	12,46	12,10	11,81	11,32	10,94	10,81	10,79	10,23
Ladung in t	1	1,05	1,3	1,4	1,52	1,7	1,9	2,1

- Geben Sie an, welche Variable hier als unabhängig und welche als abhängig anzunehmen ist.
- Ermitteln Sie die lineare Ausgleichsfunktion und stellen Sie diese in einem Datendiagramm dar.
- Beschreiben Sie die Methode der kleinsten Quadrate zur Ermittlung einer Regressionsgeraden.
- b) Bei der Auswertung einer Testreihe ergab sich folgende Regressionsgerade y:

Ein Mitarbeiter möchte die geschätzte CO₂-Emission bei einer Ladung von 1,5 Tonnen und bei einer Ladung von 2,5 Tonnen ermitteln.

- Berechnen Sie die gesuchten Werte.
- Erklären Sie, welche der Berechnungen eine Interpolation und welche eine Extrapolation darstellt.
- Interpretieren Sie den in der Grafik angegebenen Korrelationskoeffizienten r.

c) Tests zur Haltbarkeit neuer Bremsbeläge haben ergeben, dass deren Zuverlässigkeit *R* mithilfe einer Funktion *R* folgender Form beschrieben werden kann:

$$R(t) = e^{-\left(\frac{t}{T}\right)^b}$$

R(t) ... Anteil der Bremsbeläge, der nach der Benützungsdauer t noch intakt ist t ... Benützungsdauer

T, b ... materialabhängige Parameter

Der Parameter T wird charakteristische Lebensdauer genannt.

- Weisen Sie nach, dass nach der charakteristischen Lebensdauer der Anteil der intakten Bremsbeläge unabhängig vom Wert des Parameters b ca. 36,8 % beträgt.
- Ermitteln Sie die fehlerhafte Zeile in folgender Umformung der Formel $R(t) = e^{-\left(\frac{t}{T}\right)^b}$ nach der Benützungsdauer t.
- Formen Sie die fehlerhafte Zeile so um, dass diese mathematisch richtig ist.

1.
$$R(t) = e^{-\left(\frac{t}{T}\right)^b}$$

2.
$$ln(R) = b \cdot ln(e^{-\left(\frac{t}{T}\right)})$$

3.
$$\frac{\ln(R)}{b} = -\frac{t}{T}$$

4.
$$t = -T \cdot \frac{\ln(R)}{b}$$

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Möglicher Lösungsweg

a) Es wird die Abhängigkeit der Reichweite von einer vorgegebenen Ladung untersucht. Die Ladung ist daher die unabhängige Variable *x*, die Reichweite ist die abhängige Variable *y*.

Methode der kleinsten Quadrate:

Die Regressionsgerade wird so ermittelt, dass die Summe aller quadrierten Differenzen zwischen dem tatsächlichen y-Wert y_i und dem mithilfe der Regressionsgeraden ermittelten Wert $y(x_i)$ ein Minimum wird.

(Auch die Erklärung mithilfe einer Skizze ist als richtig zu werten.)

b) Die geschätzte Emission bei einer Ladung von 1,5 t beträgt 224,2... g/km ≈ 224 g/km. Die geschätzte Emission bei einer Ladung von 2,5 t beträgt 280,6... g/km ≈ 281 g/km.

Die Berechnung der geschätzten Emission bei einer Ladung von 1,5 t ist eine *Interpolation*. Darunter versteht man die Berechnung eines zusätzlichen Werts im Bereich der vorhandenen Daten.

Unter *Extrapolation* versteht man die Prognose für einen Wert, der außerhalb des vorhandenen Datenbereichs liegt. Daher ist die Berechnung der geschätzten Emission bei einer Ladung von 2,5 t eine Extrapolation.

Der Korrelationskoeffizient r = 0.995 liegt sehr nahe bei 1. Das bedeutet, dass der Zusammenhang sehr gut durch eine lineare Funktion beschrieben werden kann.

c)
$$R(t) = e^{-\left(\frac{t}{T}\right)^{b}}$$

 $R(T) = e^{-\left(\frac{T}{T}\right)^{b}}$
 $R(T) = e^{-1} = 0,3678... \approx 36,8 \%$
 $R(t) = e^{-\left(\frac{t}{T}\right)^{b}} \Rightarrow \ln(R) = b \cdot \ln(e^{-\left(\frac{t}{T}\right)})$

Der Ausdruck $b \cdot \ln(e^{-\left(\frac{t}{T}\right)})$ ist falsch (2. Zeile). (Begründung: Die Potenz wurde falsch interpretiert bzw. das Logarithmusgesetz falsch angewendet.)

Korrekte Umformung:

Robbinstate of morning
$$R(t) = e^{-\left(\frac{t}{T}\right)^{b}}$$

$$\ln(R) = \ln(e^{-\left(\frac{t}{T}\right)^{b}})$$

$$\ln(R) = -\left(\frac{t}{T}\right)^{b}$$

$$-\ln(R) = \left(\frac{t}{T}\right)^{b}$$

$$\int_{-\ln(R)}^{b} = -\frac{t}{T}$$

$$t = T \cdot \sqrt[b]{-\ln(R)}$$

Klassifikation

☐ Teil A ☐ Teil B

Wesentlicher Bereich der Inhaltsdimension:

- a) 5 Stochastik
- b) 5 Stochastik
- c) 2 Algebra und Geometrie

Nebeninhaltsdimension:

- a) –
- b) 3 Funktionale Zusammenhänge
- c) —

Wesentlicher Bereich der Handlungsdimension:

- a) B Operieren und Technologieeinsatz
- b) D Argumentieren und Kommunizieren
- c) B Operieren und Technologieeinsatz

Nebenhandlungsdimension:

- a) D Argumentieren und Kommunizieren, C Interpretieren und Dokumentieren
- b) B Operieren und Technologieeinsatz, C Interpretieren und Dokumentieren
- c) —

Schwierigkeitsgrad:

a) mittel

b) mittel

c) mittel

Punkteanzahl:

- a) 3
- b) 3
- c) 3

Thema: Messreihen

Quellen: -