

UBER Analysis

In [1]: import numpy as np import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

```
In [2]: db=pd.read_csv("UberDb.csv")
    db.head()
```

Out[2]:

	START_DATE	END_DATE	CATEGORY	START	STOP	MILES	PURPOSE
0	1/1/2016 21:11	1/1/2016 21:17	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain
1	1/2/2016 1:25	1/2/2016 1:37	Business	Fort Pierce	Fort Pierce	5.0	NaN
2	1/2/2016 20:25	1/2/2016 20:38	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies
3	1/5/2016 17:31	1/5/2016 17:45	Business	Fort Pierce	Fort Pierce	4.7	Meeting
4	1/6/2016 14:42	1/6/2016 15:49	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit

In [3]: db.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1156 entries, 0 to 1155
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype
0	START_DATE	1156 non-null	object
1	END_DATE	1155 non-null	object
2	CATEGORY	1155 non-null	object
3	START	1155 non-null	object
4	STOP	1155 non-null	object
5	MILES	1156 non-null	float64
6	PURPOSE	653 non-null	object
المرابع المالم	Cl+C4/	1) -1-11(6)	

dtypes: float64(1), object(6)

memory usage: 63.3+ KB

```
In [4]: print('-There are 1156 entries\n- All columns are non-null(Except Purpose)\n')
```

- -There are 1156 entries
- All columns are non-null(Except Purpose)

Data Preprocessing

```
In [5]: db['PURPOSE'].isna().sum()
Out[5]: 503
In [6]: print('-Their are 503 Null data in Purpose column')
```

-Their are 503 Null data in Purpose column

```
In [7]: db['PURPOSE'] = db['PURPOSE'].fillna('Unknown')
 In [8]: db.dtypes
 Out[8]: START_DATE
                        object
         END_DATE
                        object
         CATEGORY
                         object
                         object
         START
         STOP
                         object
                        float64
         MILES
         PURPOSE
                         object
         dtype: object
 In [9]: print("-Datatype of 'START_DATE' and 'END_DATE' are in object we would convert
         -Datatype of 'START DATE' and 'END DATE' are in object we would convert it in
         to datetime format
In [10]: db['START DATE']=pd.to datetime(db['START DATE'],errors='coerce')
In [11]: db['END DATE']=pd.to datetime(db['END DATE'],errors='coerce')
In [12]: |db.dtypes
Out[12]: START_DATE
                       datetime64[ns]
                        datetime64[ns]
         END_DATE
         CATEGORY
                                object
                                object
         START
         STOP
                                object
         MILES
                               float64
         PURPOSE
                                object
         dtype: object
In [13]: print("Creating 2 new columns of Starting Date and Time")
         Creating 2 new columns of Starting Date and Time
In [14]: | db['DATE'] = db['START_DATE'].dt.date
         db['Time']=db['START_DATE'].dt.hour
```

In [15]: db.head()

Out[15]:

	START_DATE	END_DATE	CATEGORY	START	STOP	MILES	PURPOSE	DATE	Time
0	2016-01-01 21:11:00	2016-01-01 21:17:00	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain	2016- 01-01	21.0
1	2016-01-02 01:25:00	2016-01-02 01:37:00	Business	Fort Pierce	Fort Pierce	5.0	Unknown	2016- 01-02	1.0
2	2016-01-02 20:25:00	2016-01-02 20:38:00	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies	2016- 01-02	20.0
3	2016-01 - 05 17:31:00	2016-01-05 17:45:00	Business	Fort Pierce	Fort Pierce	4.7	Meeting	2016- 01-05	17.0
4	2016-01-06 14:42:00	2016-01-06 15:49:00	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit	2016- 01-06	14.0

We Will create a new column to categories time on the basis of morning, afternoon, evening, Night

Using 'CUT' Function we are going to divide the data into interval

In [16]: db['Day-Night']=pd.cut(x=db['Time'],bins=[0,10,15,19,24],labels=['Morning','Af

In [17]: db.head()

Out[17]:

	START_DATE	END_DATE	CATEGORY	START	STOP	MILES	PURPOSE	DATE	Time	
0	2016-01-01 21:11:00	2016-01-01 21:17:00	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain	2016- 01-01	21.0	
1	2016-01-02 01:25:00	2016-01-02 01:37:00	Business	Fort Pierce	Fort Pierce	5.0	Unknown	2016- 01-02	1.0	
2	2016-01-02 20:25:00	2016-01-02 20:38:00	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies	2016- 01-02	20.0	
3	2016-01-05 17:31:00	2016-01-05 17:45:00	Business	Fort Pierce	Fort Pierce	4.7	Meeting	2016- 01-05	17.0	
4	2016-01-06 14:42:00	2016-01-06 15:49:00	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit	2016- 01-06	14.0	Α
4										•

In [19]: db.head()

Out[19]:

	START_DATE	END_DATE	CATEGORY	START	STOP	MILES	PURPOSE	DATE	Time
0	2016-01-01 21:11:00	2016-01-01 21:17:00	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain	2016- 01-01	21.0
1	2016-01-02 01:25:00	2016-01-02 01:37:00	Business	Fort Pierce	Fort Pierce	5.0	Unknown	2016- 01-02	1.0
2	2016-01-02 20:25:00	2016-01-02 20:38:00	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies	2016- 01-02	20.0
3	2016-01-05 17:31:00	2016-01-05 17:45:00	Business	Fort Pierce	Fort Pierce	4.7	Meeting	2016- 01-05	17.0
4	2016-01-06 14:42:00	2016-01-06 15:49:00	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit	2016- 01-06	14.0 A
4									•

In [20]: db.shape

Out[20]: (1156, 10)

In Which Category do people book the most uber rides?

In [21]: category_counts = db['CATEGORY'].value_counts()

Q)For What purpose Do people book Uber rides the most?

```
In [23]: sns.countplot(y=db['PURPOSE'])
    plt.xticks(rotation=90)
    plt.xlabel('Purpose', fontsize=12)
    plt.ylabel('Number of Rides', fontsize=12)
    plt.title('Number of Uber Rides by Purpose', fontsize=14)
```

Out[23]: Text(0.5, 1.0, 'Number of Uber Rides by Purpose')

Q)In which month do people book cabs the most from uber?

```
In [24]: db['Month']=db['START_DATE'].dt.month

In [25]: month_map = {
        1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec' }

db['Month'] = db['Month'].map(month_map)
```

In [26]: sns.countplot(y=db['Month'])

Out[26]: <Axes: xlabel='count', ylabel='Month'>

In [27]: db.head()

Out[27]:

	START_DATE	END_DATE	CATEGORY	START	STOP	MILES	PURPOSE	DATE	Time	
0	2016-01-01 21:11:00	2016-01-01 21:17:00	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain	2016- 01-01	21.0	
1	2016-01-02 01:25:00	2016-01-02 01:37:00	Business	Fort Pierce	Fort Pierce	5.0	Unknown	2016- 01-02	1.0	
2	2016-01-02 20:25:00	2016-01-02 20:38:00	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies	2016 - 01-02	20.0	
3	2016-01-05 17:31:00	2016-01-05 17:45:00	Business	Fort Pierce	Fort Pierce	4.7	Meeting	2016- 01-05	17.0	
4	2016-01-06 14:42:00	2016-01-06 15:49:00	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit	2016- 01-06	14.0	Α
4									ļ	•

In Which days of the week do people book uber rides the most?

In [32]: db.head()

Out[32]:

	START_DATE	END_DATE	CATEGORY	START	STOP	MILES	PURPOSE	DATE	Time	
0	2016-01-01 21:11:00	2016-01-01 21:17:00	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain	2016- 01-01	21.0	
1	2016-01-02 01:25:00	2016-01-02 01:37:00	Business	Fort Pierce	Fort Pierce	5.0	Unknown	2016- 01-02	1.0	
2	2016-01-02 20:25:00	2016-01-02 20:38:00	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies	2016- 01-02	20.0	
3	2016-01-05 17:31:00	2016-01-05 17:45:00	Business	Fort Pierce	Fort Pierce	4.7	Meeting	2016- 01-05	17.0	
4	2016-01-06 14:42:00	2016-01-06 15:49:00	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit	2016- 01-06	14.0	Α
4										•

How many miles do people usually book a cab for through uber?

In [41]: sns.distplot(db[db['MILES']<40]['MILES'])</pre>

C:\Users\91981\AppData\Local\Temp\ipykernel_12548\497687722.py:1: UserWarnin
g:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(db[db['MILES']<40]['MILES'])</pre>

Out[41]: <Axes: xlabel='MILES', ylabel='Density'>

Conclusion

Most Popular Category: Business trips dominate Uber bookings.

Top Purpose for Rides: Meetings are the most common reason for booking Uber rides. (Excluding Unknowns)

Peak Booking Month: December sees the highest number of Uber bookings.

Time of Day Analysis: Rides are categorized into Morning, Afternoon, Evening, and Night, with most rides happening in the evening.

In []:	
---------	--