Refinement for Symbolic Trajectory Evaluation

Authors

Chalmers

Abstract. Model refinement such that it preserves symbolic trajectory evalutions.

Keywords: STE · Refinement · ?

1 Introduction to STE

1.1 Original STE

Symbolic trajectory evaluation [5] (STE) is a high-performance model checking technique based on symbolic simulation extended with a temporal next-time operator to describe circuit behaviour over time. In its simplest form, STE tests the validity of an assertion of the form $A \Rightarrow C$, where both the antecedent A and consequent C are formulas in the following logic:

$$f ::= p \mid f \land f \mid P \rightarrow f \mid \mathbf{N} f$$

Here, p is a simple predicate over "values" in a circuit and P is a Boolean propositional formula, and the operators \land , \rightarrow and \mathbf{N} are conjunction, domain restriction and the next-time operator, respectively.

If the circuit contains Boolean signals, p is typically drawn from the following two predicates: n is 1 and n is 0, where n ranges over the signals (or nodes) in a circuit. For example, suppose we have a unit-delayed, two-input AND-gate, then it is reasonable to assume that the assertion $(in_1$ is $1 \wedge in_2$ is $1) \Rightarrow \mathbf{N}(out$ is 1) is true. Indeed, STE efficiently validates such statements for us.

While the truth semantics of an assertion in STE is defined as the satisfaction of its "defining" trajectory (bounded sequence of states) relative to a model structure of the circuit, what the STE algorithm computes is exactly the solution of a data-flow equation [1] in the classic format [4]....

1.2 Lattice-theoretic STE

Consider an arbitrary, but fixed, digital circuit M operating in discrete time. A configuration of M, denoted by C, is non-empty and finite set that represents a snapshot of M at a discrete point in time. If the circuit M has m boolean signals, then its set of configurations is typically represented as a sequence \mathbb{B}^m , where $\mathbb{B} = \{0, 1\}$ is the set of boolean values.

Circuit Model A simple conceptual model of M is a transition relation, $M_R \subseteq C \times C$, where $(c, c') \in M_R$ means that M can move from c to c' in one step¹. The power set of C, denoted by $\mathcal{P}(C)$, can be viewed as a the set of predicates on configurations, where \cap , \cup , and \subseteq correspond to conjunction, disjunction and implication, respectively. Furthermore, for any $Q \subseteq \mathcal{P}(C)$, we denote by $\cap Q$ and $\cup Q$ the intersection and union of all members of Q.

 M_R induces a predicate transformer $M_F \in \mathcal{P}(C) \to \mathcal{P}(C)$ using the relational image operation:

$$M_F(p) = \{c' \in C \mid \exists c \in p : (c, c') \in M_R\}$$

It is intuitively obvious that if M is in one of the configurations in $p \in \mathcal{P}(C)$, then in one time step it must be in one of the configurations in $M_F(p)$, or in other words, $(c, c') \in M_R \Leftrightarrow c' \in M_F(\{c\})$. We adopt this functional model of M and drop its subscript.

Since the value of input signals is controlled by the external environment, a circuits model itself does not impose any constraint on them. For non-input signals, the model is a montonic function where imposed constraints are determined by the circuit topology and functionality. For instance, if assume our circuit is the earlier example of a unit-delayed, two-input AND gate, we could give its model the type $M \in \mathcal{P}(\mathbb{B}^3) \to \mathcal{P}(\mathbb{B}^3)$ and define it as:

$$M(p) = \{ \langle b_1, b_2, i_1 \wedge i_2 \rangle \in \mathbb{B}^3 \mid \langle i_1, i_2, o \rangle \in p \}$$

Here i_1 and i_2 refer to the two inputs of the AND gate and o the ignored previous output; b_1 and b_2 are unconstrained inputs in the new configuration.

Ternary lattices Manipulating subsets of \mathbb{B}^m is however impractical for even moderately large m, which leads us to one of the key insights of STE. Namely, instead of manipulating subsets of \mathbb{B}^m directly, one can use sequences of ternary values $\mathbb{T} = \mathbb{B} \cup \{X\}$ to approximate them, whose sizes are only linear in m. Here the 1 and 0 from \mathbb{B} denotes specific, defined values whereas X denotes an "unknown" value that could be either 1 or 0. This intuition induces a partial order \sqsubseteq on \mathbb{T} , where $0 \sqsubseteq X$ and $1 \sqsubseteq X^2$. For any $m \in \mathbb{N}$, this ordering on \mathbb{T} is lifted component-wise to \mathbb{T}^m and, as an example, we have that both $\langle 1, 1, 0 \rangle, \langle 1, 0, 0 \rangle \in \mathbb{T}^3$ are bounded by $\langle 1, X, 0 \rangle$.

Let (\hat{P}, \sqsubseteq) be a finite, complete lattice of abstract predicates in which the meet \sqcap and join \sqcup of any subset $Q \subseteq \hat{P}$ exists. Similar to the previous set operations for power sets, \sqcap , \sqcup and \sqsubseteq correspond to conjunction, disjunction and implication for abstract predicates, respectively. Furthermore, for any $Q \subseteq \hat{P}$, we denote by $\sqcap Q$ and $\sqcup Q$ the meet and join of all members of Q.

Note that \mathbb{T}^m does not quite form a complete lattice because it lacks a bottom: both $0 \sqsubseteq X$ and $1 \sqsubseteq X$ but 0 and 1 are equally defined. A special bottom element \bot is therefore introduced, such that $\bot \sqsubseteq t$ and $\bot \neq t$ for all $t \in \mathbb{T}^m$.

¹ Mention how this affects circuits with zero-delays?

² We use the reverse ordering of what is originally used in STE.

The extended $\mathbb{T}^m_{\perp} = \mathbb{T}^m \cup \{\perp\}$ then becomes a complete lattice. We denote its top element $\langle X, \ldots, X \rangle$ by \top .

Abstract model Let there also be Galois connection $\ll \in \subseteq \mathcal{P}(C) \times \hat{P}$, relating concrete and abstract predicates such that for all $Q \subseteq \mathcal{P}(C)$ and $\hat{Q} \subseteq \hat{P}$:

$$Q \ll \hat{Q} \Leftrightarrow \cup Q \ll \sqcap \hat{Q}$$

where $Q \ll \hat{Q} \Leftrightarrow \forall p \in Q : \forall \hat{p} \in \hat{Q} : p \ll \hat{p}$. In other words, $p \ll \hat{p}$ states that p can be "approximated" as \hat{p} and \ll is thus an extension of the partial orders of $\mathcal{P}(C)$ and \hat{P} to an ordering between $\mathcal{P}(C)$ and \hat{P} . As an illustration of this property, consider that $\{\langle 1, 1, 0 \rangle, \langle 1, 0, 0 \rangle\} \in \mathbb{B}^3 \ll \{\langle 1, X, 0 \rangle\} \in \mathbb{T}^3$.

It is sometimes convenient, or more intuitive, to define a Galois connection in terms of an abstraction $\alpha \in \mathcal{P}(C) \to \hat{P}$ and a concretisation $\gamma \in \hat{P} \to \mathcal{P}(C)$ function, from which one can derive \ll as follows: $p \ll \hat{p} \Leftrightarrow p \subseteq \gamma(\hat{p})$ or $p \ll \hat{p} \Leftrightarrow \alpha(p) \sqsubseteq \hat{p}$. For example, a Galois connection from $\mathcal{P}(\mathbb{B}^m)$ to \mathbb{T}^m_{\perp} for any $m \in \mathbb{N}$ can be defined in a natural way by specifying its concretisation function $\Gamma \in \mathbb{T}^m_{\perp} \to \mathcal{P}(\mathbb{B}^m)$:

$$\Gamma(\langle t_0, \dots, t_{m-1} \rangle) = \{ \langle b_0, \dots, b_{m-1} \rangle \in \mathbb{B}^m \mid \forall i < m : t_i \neq X \Rightarrow b_i = t_i \}$$
$$\Gamma(\bot) = \emptyset$$

Listing each boolean sequence approximated by the given ternary sequence.

An abstract predicate transformer $\hat{M} \in \hat{P} \to \hat{P}$ is an abstract interpretation [2] of $M \in \mathcal{P}(C) \to \mathcal{P}(C)$ iff it preserves \bot , $\hat{M}(\bot) = \bot$; is monotonic, $\hat{p} \sqsubseteq \hat{q} \Rightarrow \hat{M}(\hat{p}) \sqsubseteq \hat{M}(\hat{q})$ for all $\hat{p}, \hat{q} \in \hat{P}$; and \ll is a simulation relation from $\mathcal{P}(C)$ to $\hat{P}, p \ll \hat{p} \Rightarrow M(p) \ll \hat{M}(\hat{p})$ for all $p \in \mathcal{P}(C)$ and $\hat{p} \in \hat{P}$.

Example of how \hat{M} and M relate in practice.

Assertions and satisfaction A trajectory assertion for \hat{M} is a quintuple $\hat{A} = (S, s_0, R, \pi_a, \pi_c)$, where S is a finite set of states, $s_0 \in S$ is an initial state, $R \subseteq S \times S$ is a transition relation, $\pi_a \in S \to \hat{P}$ and $\pi_c \in S \to \hat{P}$ label each state s with an antecedent $\pi_a(s)$ and a consequent $\pi_c(s)$. Furthermore, we assume that $(s, s_0) \notin S$ for all $s \in S$ without any loss of generality.

For all $\Phi \in S \to \hat{P}$ and $s \in S$, define $F \in S \to (\hat{P} \to \hat{P})$ and $F \in (S \to \hat{P}) \to (S \to \hat{P})$ as follows:

$$F(s)(\hat{p}) = \hat{M}(\pi_a(s) \sqcap \hat{p}) \tag{1}$$

$$\mathcal{F}(\Phi)(s) = \mathbf{if} \ (s = s_0) \ \mathbf{then} \ \top \ \mathbf{else} \ \sqcup \{ F(s')(\Phi(s')) \mid (s', s) \in R \}$$
 (2)

F preserves \bot and both F and \mathcal{F} are monotonic, where two $\Phi, \Phi' \in S \to \hat{P}$ are ordered as $\Phi \sqsubseteq \Phi' \Leftrightarrow \forall s \in S : \Phi(s) \sqsubseteq \Phi'(s)$. Let $\Phi_* \in S \to \hat{P}$ be the least fixpoint of the equation $\Phi = \mathcal{F}(\Phi)$ [3]. Since both S and \hat{P} are finite, Φ_* is given by $\dim \Phi_n(s)$ where Φ_n is defined as follows:

$$\Phi_n = \mathbf{if} \ (n=0) \ \mathbf{then} \ (\lambda s \in S : \bot) \ \mathbf{else} \ \mathcal{F}(\Phi_{n-1})$$
 (3)

We say that the abstract circuit \hat{M} satisfies a lattice-based, abstract trajectory assertion A, denoted by $M \models A$, iff:

$$\forall s \in S : \Phi_*(s) \sqcap \pi_\alpha(s) \sqsubseteq \pi_c(s) \tag{4}$$

 $\hat{M} \models \hat{A}$ implies that a concretisation of \hat{A} can also be satisfied by the original, set-based model M [1].

$\mathbf{2}$ System refinement (WIP)

Consider another fixed, but arbitrary, circuit N such that configurations of Mand N have the same externally visible elements but can differ internally. Let $\hat{N} \in \hat{Q} \to \hat{Q}$ be an abstract predicate transformer of N, we then we say that \hat{M} refines \hat{N} if every externally visible behaviour allowed by \hat{M} is also allowed by N, regardless of any initial configurations.

Example?

Drivers Let the externally visible parts of an abstract predicate \hat{P} be the subsets given by two projections, i and o, identifying the "inputs" and "outputs" of \hat{P} , respectively. Further, let $\llbracket \cdot \rrbracket \in P \to O$ be a mapping that takes each $\hat{p} \in P$ to its visible outputs $[\hat{p}] \in \hat{O}$; $[\cdot]$ is extended to sequences component-wise. With a slight abuse of notation, we overload both projections and the mapping to also accept predicates from \hat{Q} . Further, in order to compare inputs and outputs, we assume that $i(\hat{P}) = i(\hat{Q}) = \hat{I}$ and $o(\hat{P}) = o(\hat{Q}) = \hat{O}$.

A driver of \hat{M} and \hat{N} is a nonempty sequence of inputs, $\delta \in \hat{I}^+$, and induces a trajectory τ in M (resp. N) where $\tau[0] = \top$ and $\forall i \in \mathbb{N} : i < |\delta| \Rightarrow \tau[i+1] =$ $M(\delta[i] | T[i])$; the trajectory induced by a driver δ in M is denoted by $Traj(M)(\delta)$. Intuitively, if \hat{M} produces the same, or at least more specified, outputs than \hat{N} for all possible drivers, then every visible behaviour of M is covered by N. We thus say that \hat{M} refines \hat{N} , denoted by $\hat{M} \leq \hat{N}$, iff:

Footnote that "Traj" comes from trajectories in prev. papers?

We have to use = for our trajectories since \sqsubseteq allows one to pick bad states for unconstrained wires.

$$\forall \delta \in \hat{I}^+ : \llbracket \mathit{Traj}(\hat{M})(\delta) \rrbracket \sqsubseteq \llbracket \mathit{Traj}(\hat{N})(\delta) \rrbracket$$

Example!

Simulation Let $\leq \hat{P} \times \hat{Q}$ be a simulation relation such that $\hat{p} \leq \hat{q}$ implies (1) $\|\hat{p}\| \subseteq \|\hat{q}\|$ and (2) $\hat{M}(\hat{\iota} \cap \hat{p}) \leq \hat{N}(\hat{\iota} \cap \hat{q})$ for all inputs $\hat{\iota} \in \hat{I}$. We extend this relation to \hat{M} and \hat{N} such that $\hat{M} \leq \hat{N}$ iff their top elements are related, $(\top \in \hat{P}) \preceq (\top \in \hat{Q}).$

This relation is equivalent to the earlier notion of refinement: $\hat{M} \leq \hat{N} \Leftrightarrow \hat{M} \prec \hat{N}$.

We can have trajectories defined by the simulation relation as well.

Reference proof in appendix.

Explain difference with Bryant's version?

Let $G \in S \to (\hat{Q} \to \hat{Q})$ and $\mathcal{G} \in (S \to \hat{Q}) \to (S \to \hat{Q})$ be the duals of F and \mathcal{F} in \hat{N} , respectively. Further, let Ψ_* be the least fix point of $\Psi = \mathcal{G}(\Psi)$ and the dual of Φ_* in \hat{N} .

Lemma 1. $\forall s \in S : \Psi_*(s) \leq \Phi_*(s)$

Trajectory A trajectory assertion $\hat{A} = (S, s_0, R, \pi_a, \pi_c)$ for \hat{N} where antecedents only mention inputs, $\pi_a \in S \to \hat{I}$, and consequents only mention outputs, $\pi_c \in S \to \hat{O}$, is referred to as an *external trajectory assertion*. Intuitively, a satisfied external trajectory assertion is property of N that must hold regardless of its internal state.

Given that $\Phi_*(s) \leq \Psi_*(s)$, and thus $\llbracket \Phi_*(s) \rrbracket \sqsubseteq \llbracket \Psi_*(s) \rrbracket$, for all $s \in S$, it follows that $\Phi_*(s) \sqcap \pi_a(s) \sqsubseteq \pi_c(s) \Rightarrow \Psi_*(s) \sqcap \pi_a(s) \sqsubseteq \pi_c(s)$.

Theorem 1. Given two abstract predicate transformers, \hat{M} and \hat{N} , and an external trajectory assertion \hat{A} for \hat{N} . If $\hat{M} \leq \hat{N}$, then $\hat{N} \models \hat{A}$ implies that $\hat{M} \models \hat{A}$.

Corollary 1. Given two abstract predicate transformer, \hat{M} and $\hat{N} = \prod \hat{n}_i$, and a trajectory assertion \hat{A} for \hat{N} . Let $\hat{N}[\hat{n}_i = \hat{M}]$ be \hat{N} where \hat{n}_i is replaced with \hat{M} . If $\hat{M} \leq \hat{n}_i$ for some index i, then $\hat{N} \models \hat{A}$ implies that $\hat{N}[\hat{n}_i = \hat{M}] \models \hat{A}$.

A Proofs

A.1 Lemma: $\hat{M} \prec \hat{N} \Leftrightarrow \hat{M} < \hat{N}$

Recall that $\hat{p} \preceq \hat{q}$ implies (1) $[\![\hat{p}]\!] \sqsubseteq [\![\hat{q}]\!]$ and (2) $\forall \hat{\iota} \in \hat{I} : \hat{M}(\hat{\iota} \sqcap \hat{p}) \preceq \hat{N}(\hat{\iota} \sqcap \hat{q})$. Further $\hat{M} \preceq \hat{N}$ implies that $(\top \in \hat{P}) \preceq (\top \in \hat{Q})$. The trajectory τ induced by a driver δ is defined as follows: $\tau[0] = \top$ and $\forall i \in \mathbb{N} : i < |\delta| \Rightarrow \tau[i+1] = \hat{M}(\delta[i] \sqcap \tau[i])$. That $\hat{M} \leq \hat{N}$ iff:

$$\forall \delta \in \hat{I}^+ : \llbracket \mathit{Traj}(\hat{M})(\delta) \rrbracket \sqsubseteq \llbracket \mathit{Traj}(\hat{N})(\delta) \rrbracket$$

We prove the two directions of $\hat{M} \leq \hat{N} \Leftrightarrow \hat{M} \leq \hat{N}$ separately.

 $\hat{M} \preceq \hat{N} \Rightarrow \hat{M} \leq \hat{N}$: For any $\delta \in \hat{I}^+$, let $\tau = \langle \hat{p}_0, \hat{p}_1, \ldots \rangle \in \hat{P}^+$ and $v = \langle \hat{q}_0, \hat{q}_1, \ldots \rangle \in \hat{Q}^+$ be the induced trajectories $Traj(\hat{M})(\delta)$ and $Traj(\hat{N})(\delta)$, respectively. We prove that $p_n \preceq q_n$, and thus $[\![p_n]\!] \sqsubseteq [\![q_n]\!]$, for every $n \in \mathbb{N} : n < |\delta + 1|$ and δ by induction on n. For the base case, we have $p_0 = \bot \in \hat{P}$ and $q_0 = \bot \in \hat{Q}$. That $p_0 \preceq q_0$, and thus $[\![\hat{p}_0]\!] \sqsubseteq [\![\hat{q}_0]\!]$, follows immediately from the definition of $\hat{M} \preceq \hat{N}$. For the inductive step, assume that $\hat{p}_n \preceq \hat{q}_n$. Following the definition of τ and v, we know that $\hat{p}_{n+1} = \hat{M}(\hat{\iota} \sqcap \hat{p}_n)$ and $\hat{q}_{n+1} = \hat{N}(\hat{\iota} \sqcap \hat{q}_n)$ for some $\hat{\iota} \in \hat{I}$. But property (2) of $\hat{p}_n \preceq \hat{q}_n$ states that $\hat{M}(\hat{\iota} \sqcap \hat{p}_n) \preceq \hat{N}(\hat{\iota} \sqcap \hat{q}_n)$ for any $\hat{\iota} \in \hat{I}$, so we must have that $\hat{p}_{n+1} \preceq \hat{q}_{n+1}$ and thus $[\![\hat{p}_{n+1}]\!] \sqsubseteq [\![\hat{q}_{n+1}]\!]$.

 $\hat{M} \preceq \hat{N} \Leftarrow \hat{M} \leq \hat{N}$: Define $\preceq \in \hat{P} \times \hat{Q}$ as follows:

$$\bigcup_{\delta \in I^+} \{ (\mathit{Traj}(\hat{M})(\delta)[i], \mathit{Traj}(\hat{N})(\delta)[i]) \mid i \in \mathbb{N}, i < |\delta + 1| \}$$

Here $\operatorname{Traj}(\hat{M})(\delta)[i]$ is the i-th predicate of the trajectory induced by a driver δ , that is, for any $\hat{p} \preceq \hat{q}$, we must have that \hat{p} and \hat{q} are a pair of i-th predicates induced by a common δ . By definition $\hat{M} \leq \hat{N}$ then, we must have that $[\![\hat{p}]\!] \sqsubseteq [\![\hat{q}]\!]$ for any pair $\hat{p} \preceq \hat{q}$. Furthermore, as $\delta \in \hat{I}^+$, then so must $\delta \cap \hat{\iota} \in \hat{I}^+$ (δ followed by $\hat{\iota}$) for any $\hat{\iota} \in \hat{I}$. This definition of \preceq thus satisfies both of its desired properties. Finally, that $\hat{M} \preceq \hat{N}$ follows from how $[\![\top \in \hat{P}]\!] \sqsubseteq [\![\top \in \hat{Q}]\!]$ is obviously true and $\hat{M}(\hat{\iota} \sqcap \top) \preceq \hat{N}(\hat{\iota} \sqcap \top)$ for all $\hat{\iota} \in \hat{I}$ because $\langle \hat{\iota} \rangle \in \hat{I}^+$.

A.2 $\hat{M} \leq \hat{N} \Rightarrow \forall s \in S : \Phi(s) \leq \Psi(s)$

Recall that $\hat{p} \preceq \hat{q}$ implies (1) $[\![\hat{p}]\!] \sqsubseteq [\![\hat{q}]\!]$ and (2) $\forall \hat{\iota} \in \hat{I} : \hat{M}(\hat{\iota} \sqcap \hat{p}) \preceq \hat{N}(\hat{\iota} \sqcap \hat{q})$. Further $\hat{M} \preceq \hat{N}$ implies that $(\top \in \hat{P}) \preceq (\top \in \hat{Q})$.

$$F(s)(\hat{p}) = \hat{M}(\pi_a(s) \sqcap \hat{p})$$

$$\mathcal{F}(\Phi)(s) = \mathbf{if} \ (s = s_0) \ \mathbf{then} \ \top \ \mathbf{else} \ \sqcup \{F(s')(\Phi(s')) \mid (s', s) \in R\}$$

$$\Phi_n = \mathbf{if} \ (n = 0) \ \mathbf{then} \ (\lambda s \in S : \bot) \ \mathbf{else} \ \mathcal{F}(\Phi_{n-1})$$

$$\hat{M} \models \hat{A} \Rightarrow \forall s \in S : \Phi_*(s) \sqcap \pi_{\alpha}(s) \sqsubseteq \pi_{c}(s)$$

We first prove a few intermediate lemmas.

Lemma (B): $(\bot \in \hat{P}) \preceq (\bot \in \hat{Q})$. Prop. (1) follows immediately as $\llbracket \bot \in \hat{P} \rrbracket = \bot \in \hat{O} = \llbracket \bot \in \hat{Q} \rrbracket$. Because \hat{M} and \hat{N} both preserve bottom, we have that $\hat{M}(\hat{\imath} \sqcap \bot) = \bot \in \hat{P}$ and $\hat{N}(\hat{\imath} \sqcap \bot) = \bot \in \hat{Q}$ for all $\hat{\imath} \in \hat{I}$. That is, any path that gets to \bot must stay there, regardless of inputs. Prop. (2) then follows as well.

Lemma (FG): $\hat{p} \preceq \hat{q} \Rightarrow \forall s \in S : F(s)(\hat{p}) \preceq G(s)(\hat{q})$. First, we note that $F(s)(\hat{p}) = \hat{M}(\pi_a(s) \sqcap \hat{p})$ and that $G(s)(\hat{q}) = \hat{N}(\pi_a(s) \sqcap \hat{q})$ for some $\pi_a(s) \in \hat{I}$. That $\hat{M}(\pi_a(s) \sqcap \hat{p}) \preceq \hat{N}(\pi_a(s) \sqcap \hat{q})$ then follows directly from prop. (2) of $\hat{p} \preceq \hat{q}$.

Lemma (M): $(\hat{p} \leq \hat{q}) \wedge (\hat{p}' \leq \hat{q}') \Rightarrow (\hat{p} \sqcup \hat{p}') \leq (\hat{q} \sqcup \hat{q}')$. Let $\tau = \hat{p}_0, \hat{p}_1, \ldots$ be the trajectory starting from $\hat{p}_0 = \hat{p}$ and driven by $\delta = \langle \hat{\iota}_0, \hat{\iota}_1, \ldots \rangle \in \hat{I}^*$, that is, $\hat{p}_{n+1} = \hat{M}(\hat{\iota}_n \sqcap \hat{p}_n)$ for all $n \in \mathcal{N} : n < |\delta|$. Similarly, let τ' , v and v' be trajectories driven by the same δ but starting in \hat{p}' , \hat{q} and \hat{q}' , respectively. We show by induction on n that, if $\tau \sqsubseteq v$ and $\tau' \sqsubseteq v'$, the trajectories starting from $\hat{p} \sqcup \hat{p}'$ and $\hat{q} \sqcup \hat{q}'$ satisfy output inequality of \preceq for all δ , and thus also that $(\hat{p} \sqcup \hat{p}') \preceq (\hat{q} \sqcup \hat{q}')$. For the base case, we have that $\hat{p}_0 \preceq \hat{q}_0$ and $\hat{p}'_0 \preceq \hat{q}_0$. By prop. (1) of \preceq , we also have that $[\hat{p}_0] \sqsubseteq [\hat{q}_0 \sqcup \hat{q}'_0]$ and therefore also that $[\hat{p}_0 \sqcup \hat{p}'_0] \sqsubseteq [\hat{q}_0 \sqcup \hat{q}'_0]$. For the inductive step, we have that $\hat{M}(\hat{\iota}_n \sqcap \hat{p}_n) \preceq \hat{N}(\hat{\iota}_n \sqcap \hat{q}_n)$ and $\hat{M}(\hat{\iota}_n \sqcap \hat{p}'_n) \preceq \hat{N}(\hat{\iota}_n \sqcap \hat{q}'_n)$, and thus by prop. (1) of \preceq also that $[\hat{M}(\hat{\iota}_n \sqcap \hat{p}_n)] \sqsubseteq [\hat{N}(\hat{\iota}_n \sqcap \hat{q}_n)]$ and $[\hat{M}(\hat{\iota}_n \sqcap \hat{p}'_n)] \sqsubseteq [\hat{N}(\hat{\iota}_n \sqcap \hat{q}'_n)] \sqsubseteq [\hat{N}(\hat{\iota}_n \sqcap \hat{q}'_n)]$. Similarly, because \hat{M} is monotonic as well, and by definition of \sqcap and \sqcup , we have

that $[\![\hat{M}(\hat{\iota}_n \sqcap \hat{p}_n)]\!] \subseteq [\![\hat{N}(\hat{\iota} \sqcap (\hat{p}_n \sqcup \hat{p}'_n))]\!]$ and the least such bound. Combining these two results, we must have that $[\![\hat{M}(\hat{\iota}_n \sqcap (\hat{p}_n \sqcup \hat{p}'_n))]\!] \subseteq [\![\hat{M}(\hat{\iota}_n \sqcap (\hat{q}_n \sqcup \hat{q}'_n))]\!]$.

Lemma (UM): Let $R \subseteq S$ then $\hat{M} \preceq \hat{N} \land \forall s \in R : \hat{p}(s) \preceq \hat{q}(s) \Rightarrow \sqcup \{F(s)(\hat{p}(s)) s \in R\} \preceq \sqcup \{G(s)(\hat{q}(s)) \mid s \in R\}$. By the assumption and lemma (FG) we know that $F(s)(\hat{p}(s) \preceq G(s)(\hat{q}(s)))$ for each $s \in R$. Using induction on the size of R, we show that the join of such sets pairwise encoded predicates also produces an encoded predicate. In the base case, |R| = 0, we have that $(\top \in \hat{P}) \preceq (\top \in \hat{Q})$ by the assumption that $\hat{M} \preceq \hat{N}$. For the inductive step, |R| = n, let $\hat{p}' = \sqcup \{F(s)(\hat{p}(s)) \mid s \in R\}$ and $\hat{q}' = \sqcup \{G(s)(\hat{q}(s)) \mid s \in R\}$, we assume that $\hat{p}' \preceq \hat{q}'$. We extend R with s and know from our assumption $\forall s \in R : \hat{p}(s) \preceq \hat{q}(s)$ and lemma (FG) that $F(s)(\hat{p}(s)) \preceq G(s)(\hat{q}(s))$. That $\hat{p}' \sqcup F(s)(\hat{p}(s)) \preceq \hat{q}' \sqcup G(s)(\hat{q}(s))$ then follows from lemma (M).

Uses the phrase encoded.

Since $\Phi_*(s) = \lim \Phi_n(s)$ and $\Psi_*(s) = \lim \Psi_n(s)$, it suffices to prove that $\Phi_n(s) \preceq \Psi_n(s)$ for all $s \in S$ and $n \in \mathbb{N}$. We do so by induction on n. The base case, where $\Phi_0(s) = \bot \in \hat{P}$ and $\Psi_0(s) = \bot \in \hat{Q}$, follows from lemma X. For the inductive step, assme that $\Phi_n(s) \preceq \Psi_n(s)$ for all $s \in S$. For $s = s_0$, we have that $\Phi_{n+1}(s_0) = \top \in \hat{P}$ and $\Psi_{n+1}(s_0) = \top \in \hat{Q}$, which follows from how $\hat{M} \preceq \hat{N}$ implies that $(\top \in \hat{P}) \preceq (\top \in \hat{Q})$. For any $s \neq s_0$, we have that $\Phi_{n+1}(s) = \mathcal{F}(\Phi_n)(s) = \sqcup \{F(s')(\Phi_n(s')) \mid (s',s) \in R\} \preceq \sqcup \{F(s')(\Psi_n(s')) \mid (s',s) \in R\} \preceq \sqcup \{G(s')(\Psi_n(s')) \mid (s',s) \in R\} = \mathcal{G}(\Psi_n)(s) = \Psi_{n+1}(s)$.

References

- Chou, C.T.: The mathematical foundation of symbolic trajectory evaluation. In: International Conference on Computer Aided Verification. pp. 196–207. Springer (1999)
- Cousot, P.: Abstract interpretation. ACM Computing Surveys (CSUR) 28(2), 324–328 (1996)
- 3. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge university press (2002)
- 4. Muchnick, S., et al.: Advanced compiler design implementation. Morgan kaufmann (1997)
- 5. Seger, C.J.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-ordered trajectories. Formal Methods in System Design **6**(2), 147–189 (1995)