Introduction to Machine Learning

Optimization

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu Slides Adapted from Varun Chandola

Outline

Machine Learning as Optimization Convex Optimization Gradient Descent Issues with Gradient Descent Stochastic Gradient Descent

2 / 14

Machine Learning as Optimization Problem¹

Learning is optimization

Mingchen Gao

- ► Faster optimization methods for faster learning
- ▶ Let $w \in \mathbb{R}^d$ and $f_0(w), f_1(w), \dots, f_m(w)$ be real-valued functions.
- Standard optimization formulation is:

minimize
$$f_0(w)$$

subject to $f_i(w) \leq 0, i = 1, ..., m$.

CSE 4/574

3 / 14

¹Adapted from http://ttic.uchicago.edu/~gregory/courses/ml2012/lectures/tutorial_optimization.pdf. Also see, http://www.stanford.edu/~boyd/cvxbook/ and http://scipy-lectures.github.io/advanced/mathematical_optimization/.

Solving Optimization Problems

- Methods for general optimization problems
 - Simulated annealing, genetic algorithms
- Exploiting structure in the optimization problem
 - Convexity, Lipschitz continuity, smoothness

Convexity

Convex Sets

Convex Function

► Convex function

Convex Optimization

Optimality Criterion

minimize
$$f_0(w)$$

subject to $f_i(w) \le 0, i = 1,..., m$.

where all $f_i(w)$ are **convex functions**.

- w_0 is feasible if $w_0 \in Dom f_0$ and all constraints are satisfied
- ▶ A feasible w^* is optimal if $f_0(w^*) \le f_0(w)$ for all w satisfying the constraints

Gradient of a Function

 Denotes the direction of steepest ascent

$$abla E(\mathbf{w}) = \left[egin{array}{c} rac{\partial E}{\partial w_0} \ rac{\partial E}{\partial w_1} \ dots \ rac{\partial E}{\partial w_d} \end{array}
ight]$$

Finding Extremes of a Single Variable Function

- Set derivative to 0
- Second derivative for minima or maxima

Finding Extremes of a Multiple Variable Function - Gradient Descent

- 1. Start from any point in variable space
- 2. Move along the direction of the steepest descent (or ascent)
 - ▶ By how much?
 - ▶ A learning rate (η)
 - What is the direction of steepest descent?
 - ► Gradient of E at w

Training Rule for Gradient Descent

$$\mathbf{w} = \mathbf{w} - \eta \nabla E(\mathbf{w})$$

For each weight component:

$$w_j = w_j - \eta \frac{\partial E}{\partial w_j}$$

10 / 14

CSE 4/574

Convergence Guaranteed?

- Error surface contains only one global minimum
- ► Algorithm *will* converge
 - Examples need not be linearly separable
- $ightharpoonup \eta$ should be *small enough*
- ▶ Impact of too large η ?
- ▶ Too small η ?

Issues with Gradient Descent

- ► Slow convergence
- Stuck in local minima

Stochastic Gradient Descent [1]

- Update weights after every training example or a batch of examples.
- ▶ For sufficiently small η , closely approximates Gradient Descent.

Gradient Descent	Stochastic Gradient Descent
Weights updated after summing er-	Weights updated after examining a
ror over all examples	batch of examples
More computations per weight up-	Significantly lesser computations
date step	
Risk of local minima	Reduce the risk of local minima but
	can't avoid it

References

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Comput., 1(4):541-551, Dec. 1989.