Synthetic Biology Open Language

Presenter: Ernst Oberortner (DOE JGI)

NonaTalks, July 17th, 2016 Chicago, IL

Editors: Bryan Bartley (UW), Jacob Beal (Raytheon), Robert Sidney Cox III (Kobe University),

Raik Gruenberg (KAUST), James McLaughlin (Newcastle University)

Chair: Anil Wipat (Newcastle University)

SBOL Development Group: 120 members from more than 50 academic and industrial organizations.

- Three foundational principles of synthetic biology based on engineering practice (Endy 2005):
 - Standardization
 - Abstraction
 - Decoupling
- Synthetic biology was born with the broad goal of engineering or 'wiring' biological circuitry — be it genetic, protein, viral, pathway or genomic — for manifesting logical forms of cellular control. (Collins 2010)
- Biology has long surpassed its mainly descriptive stage, and the questions now asked are increasingly amenable to experimental approaches and theoretical concepts taken from the physical and engineering sciences. (Scwhille 2011)

Standards are a foundational principle of synthetic biology

What is SBOL?

SBOL actually consists of 2 standards:

- SBOL Data model
 - a formalized representation of data objects
- SBOL Visual
 - a standardized set of schematic symbols for genetic design

To guarantee interoperability between tools and standards, SBOL leverages **ontologies**, such as the Sequence Ontology (SO), Systems Biology Ontology (SBO).

Milestones in the history of SBOL

Apr, 2008

Kick-off at a computational synthetic biology workshop at the University of Washington

Jun, 2011

Sep, 2011

Mar, 2013

Jul, 2015

Jun, 2016

The **SBOL Developers Group** was officially established with adoption of formal rules of governance and election of editors First version of the **SBOL data model** was released (BB FRFC 84)

First version of the **SBOL Visual** standard was released (BBF RFC 93)

SBOL Version 2.0 was officially released (BBF RFC 108)

ACS Synthetic Biology adopts SBOL as publication standard

Evolution of standards for Bioinformatics

FASTA

ACTGTGCCGTTAAACGTGATTAAATCCGTACTGATAT...

Raw sequence information

GenBank

Contains sequence features

SBOL 1.1

Represents sequence features hierarchically

SBOL 2.0

- Represents additional molecule types
- Represents modules with inputs and outputs

SBOL Data Model

SBOL Visual v1.0.0

promoter	O origin of replication
cds	-> primer binding site
ribosome entry site	blunt restriction site
terminator	sticky restriction site
operator	== 5'overhang
insulator	= 3'overhang
ribonuclease site	= assembly scar
rna stability element	× signature
Y protease site	user defined
protein stability element	

Quinn et al., PLoS Biology (2015)

Relation between SBOL Visual and SBOL Data Model

SBOL is serialized in RDF/XML Format

- XML allows data to be structured in hierarchical trees, is well-supported and well-understood by software developers
- RDF makes data integration across networks easier

Computer Aided Manufacturing (CAM)

SBOL helps synthetic biologists to collaborate across different stages of (automated) workflows

Share and re-use biological parts with repositories

- Search for parts through a web interface or programmatically
- Journal integration for "one-click" private review
- Import SBOL/FASTA/GenBank, Export SBOL

StackFrontend frontend = new StackFrontend(stackURI);
ComponentDefinition def = frontend.fetchComponent(componentURI);

The SBOL Stack: A Platform for Storing, Publishing, and Sharing Synthetic Biology Designs

Curtis Madsen, James Alastair McLaughlin, Göksel Mısırlı, Matthew Pocock, Keith Flanagan, Jennifer Hallinan, and Anil Wipat ACS Synthetic Biology **2016** *5* (6), 487-497

DOI: 10.1021/acssynbio.5b00210

<u>Computer Aided Engineering (CAE)</u> Forward-engineering Biological Systems

iBioSim

- Graphical design of reaction networks
- Simulate ordinary differential equations (ODEs), SSA (Stochastic Simulation Algorithm)

 Import or export both SBML and SBOL 2.0 www.async.ece.utah.edu/ibiosim/

Computer Aided Design (CAD) Sequence assembly without cutting and pasting

SBOLDesigner

- Connect to parts repositories in the cloud
- Design hierarchical sequences
- Switch between nucleotide and schematic representations

www.async.ece.utah.edu/SBOLDesigner/

Computer Aided Manufacturing (CAM) Design sequences for DNA synthesis

https://boost.jgi.doe.gov

Build-Optimization Software Tools (BOOST)

Scans a sequence

constraints (eq,

hairpins)

Makes necessary corrections (if desired)

repeats, %GC content,

- Partitions sequences into synthesizable building blocks
- Import/Export as FASTA, GenBank, or **SBOL**

Quality Control (QC)

Automated screening and failure analysis of DNA constructs

SBOL-QC

 Python package for creating automated quality control reports https://github.com/SynBioDex/SBOL-QC

https://github.com/SynBioDex/dnaplotlib

Open Source Libraries

Software libraries which import and export SBOL files are freely available at the <u>Synthetic Biology Data Exchange</u> on GitHub under the Apache 2.0 license. Libraries are implemented in:

- Java
- Javascript
- C/C++
- Python

Developer support includes (see http://sbolstandard.org/software/libsbol)

- Online documentation
- Getting started tutorials
- Sample projects
- Code examples

ACS Synthetic Biology has officially adopted SBOL as publication standard

- SBOL Visual is the recommended graphical notation for depicting genetic constructs
- **SBOL 2.0 Data Model** is the preferred format for nucleic acid sequences.
- Manuscript submission, review, and production process is linked to SBOL-enabled repositories
- Joint Bioenergy Institute (JBEI) has set up an initial repository to be integrated.

Read all about it in the ACS Synthetic Biology viewpoint article:

Improving Synthetic Biology Communication: Recommended Practices for Visual

Depiction and Digital Submission of Genetic Designs, or

listen to the interview with Jake Beal and Nathan Hillson.

Read more about SBOL (feel free to contact authors for an unedited manuscript)

"Improving Synthetic Biology: Recommended Practices for Visual Depiction and Digital Submission of Genetic Designs", *ACS Synthetic Biology*, vol. 5, no. 6, pp. 449-451, Jun. 2016.doi: 10.1021/acssynbio.6b00146

"Sharing structure and function in biological design with SBOL 2.0," ACS Synthetic Biology, vol. 5, no. 6, pp. 498-506, Apr. 2016.doi: 10.1021/acssynbio.5b00215

"libSBOLj 2.0: A Java Library to Support SBOL 2.0," *IEEE Life Sciences Letters*, vol. 1, no. 4, pp. 34-37, Mar. 2016. doi:10.1109/LLS.2016.2546546

"SBOL Visual: A Graphical Language for Genetic Designs," *PLoS Biol*, vol. 13, no. 12, Dec. 2015. doi:10.1371/journal.pbio.1002310

Visit us at sbolstandard.org

Join SBOL!

To join our group contact the editors at:

sbol-editors@googlegroups.com

There will be a one-day workshop to introduce software developers to SBOL on August 15th, 2016. The workshop will be held immediately before the International Workshop for Bio-design Automation (IWBDA) at Newcastle University, Newcastle-upon-Tyne, UK.

The next official SBOL workshop will be held concurrent with the COMBINE workshop in Newcastle-upon-Tyne, UK in September 19 -23, 2016. http://co.mbine.org/events/COMBINE_2016

Acknowledgments

iBioSim

SBOLDesigner

