

SERVIÇO PUBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO FACULDADE DE ENGENHARIA MECÂNICA Coordenação do Curso de Graduação em Engenharia Mecatrônica

PROPOSTA DE PROJETO DE FIM DE CURSO

Nº de Matrícula:	1	1	8	1	1	Е	М	Т	0	0	9	
------------------	---	---	---	---	---	---	---	---	---	---	---	--

1. Nome do Discente: Arthur Reis Bello

2. Nome do Docente Orientador: Pedro Augusto Queiroz de Assis

3. **Título:** Uso de LiDar para execução de manobras autônomas de um veículo aéreo não tripulado

4. Descrição sucinta do projeto:

A distribuição de energia elétrica é realizada por meio de linhas de transmissão que são compostas por diferentes elementos. Por exemplo, isoladores. amortecedores e cabos condutores. A manutenção dessas linhas é um processo de alta complexidade e risco para quem a realiza. Como alternativa, é interessante pensar em soluções que reduzam a participação humana na manutenção em linhas de transmissão. Em particular a utilização de Veículos Aéreos Não Tripulados (VANTs) apresenta-se como uma forte alternativa para o problema descrito. Para atender essa demanda, VANTs já foram desenvolvidos para realizar tarefas de manutenção, como a lavagem de isoladores. Contudo, realizar esse tipo de tarefa controlando o VANT manualmente pode ser inviável, sobretudo na presença de perturbações externas, como rajadas de vento. Neste contexto, o presente trabalho tem como objetivo automatizar o controle de um VANT empregado em manutenção de linhas de transmissão utilizando informações provenientes de um LiDaR. Mais precisamente, deseja-se facilitar as manobras necessárias para posicionar o veículo próximo à cadeia de transmissão conforme a necessidade. O mecanismo a ser desenvolvido deve escanear o espaço ao redor do veículo, permitindo que o operador selecione o ponto de aproximação ou pouso. Então, o veículo deve ir até o ponto selecionado de forma autônoma. Assim, espera-se que o risco e a complexidade da atividade sejam reduzidos.

5. **Objetivos:** Automatizar as manobras de VANT para aproximação de elementos da linha de transmissão utilizando informações provenientes de um sensor LiDaR

6. Metodologia:

Etapas a serem realizadas em ambiente de simulção

- a. Configuração do ambiente de simulação;
- b. Integração da simulação com um joystick;
- c. Estudo da biblioteca MAVSDK para Python;

SERVIÇO PUBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO FACULDADE DE ENGENHARIA MECÂNICA

Coordenação do Curso de Graduação em Engenharia Mecatrônica

- d. Rodar exemplos da biblioteca MAVSDK;
- e. Desenvolver trajetórias de voos simples em ambiente de simulação;
- f. Inserir objetos do mundo real no ambiente de simulação;
- g. Instalar a câmera no veículo simulado;
- h. Aprender a capturar as imagens da câmera e transmitir a matriz de dados via protocolo ssh;
- i. Entender os diferentes eixos de coordenadas de voo;
- j. Enviar comandos de velocidade nos eixos vx, vy e vz do *body frame*, e salvar o log do comportamento do sistema;
- k. Obter modelos matemáticos SISO para cada grau de liberdade;
- I. Instalar LiDar na simulação na parte inferior do veículo;
- m. Colher as informações do lidar transformando em um mapa sob o veículo;
- n. Pegar pixel clicado pelo operador;
- o. Combinar pixel clicado pelo operador com imagem do LiDar;
- p. Desenvolver lei de controle para que o veículo se alinhe e se aproxime do pixel selecionado.

A etapa *p* encerra as atividades em simulação. Então, o mesmo procedimento deve ser realizado experimentalmente.

7. Recursos necessários:

- a. Veículo aéreo não tripulado;
- b. Placa de controle;
- c. Plataforma de controle de VANTs;
- d. Computador de bordo;
- e. Sensor LiDAR.

Vale comentar que esses equipamentos encontram-se disponíveis no LAR – Laboratório de Automação e Robótica.

8. Conhecimentos necessários ao discente:

- a. Algoritmos e Programação de Computadores (FACOM49010);
- b. Geometria Analítica (FAMAT49011);
- c. Cálculo Diferencial e Integral I (FAMAT49010);
- d. Cálculo Diferencial e Integral II (FAMAT49020);
- e. Cinemática (FEMEC41030);
- f. Dinâmica (FEMEC41040);
- g. Controle de Sistemas Lineares (FEMEC42060);
- h. Controle Digital de Sistemas (FEMEC42071);
- Processamento Digital de Sinais (FEELT49080);
- j. Sistemas Digitais para Mecatrônica (FEELT49081);
- k. Robótica (FEMEC42094).

9. Obrigações do discente:

Comparecer às reuniões semanais solicitadas e cumprir as etapas propostas dentro do cronograma.

SERVIÇO PUBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO FACULDADE DE ENGENHARIA MECÂNICA

Coordenação do Curso de Graduação em Engenharia Mecatrônica

10. Cronograma com as etapas de atividades para 12 (doze) meses {Projeto de Fim de Curso I (1º semestre) e Projeto de Fim de Curso II (2º semestre)}.

4	-					•		
1	1	Δ	SS	ın	12	tı	ıra	G.
		 $\boldsymbol{-}$	\cdot			LL.	11 6	

Discente:		
1 // < (PI P		

SERVIÇO PUBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO FACULDADE DE ENGENHARIA MECÂNICA Coordenação do Curso de Graduação em Engenharia Mecatrônica

Uberlândia-MG, 24 de janeiro de 2024.

SERVIÇO PUBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO FACULDADE DE ENGENHARIA MECÂNICA Coordenação do Curso de Graduação em Engenharia Mecatrônica

- I. Caso tenha envolvimento com empresa, carimbar e assinatura de responsável pela empresa. Caso não tenha envolvimento com a empresa, colocar "Não se aplica".
- II. Se não puder citar o nome da empresa que seja citada a empresa fictícia "A". Mas assinando a proposta, pois assim liberam dados e informações que irão constar do relatório final para a defesa, que é publica.
- III. Se puder citar o nome da empresa, a mesma deverá também assinar a proposta, liberando a publicação dos dados e informações que irão constar do relatório final.
- IV. Ao utilizar dados de outros autores ou de outros trabalhos, mesmo que desenvolvidos pelo próprio discente, deverá citar devidamente os autores e trabalhos de acordo com a Lei e com a ética editorial.
- V. Cabe lembrar que o relatório final depois de feitas as correções solicitadas pela banca deverá ir para o Repositório Institucional UFU - DUCERE, que também é publico.
- VI. No cronograma colocar as 12 (doze) colunas, uma para cada mês, mesmo sabendo que o semestre em geral é de 4 (quatro) meses, ou seja semestre letivo com mínimo de 100 (cem) dias.
- VII. Lembrando que no Projeto de Fim de Curso I, o discente vai realizar a revisão bibliográfica e escrever a parte do projeto já realizado, e também iniciar o desenvolvimento da parte prática, se houver. É responsabilidade do docente orientador, no final do semestre do Projeto de Fim de Curso I, atribuir e lançar a nota e faltas do discente na disciplina pelo portal do docente.
- VIII. No segundo semestre, ou seja, no Projeto de Fim de Curso II, o discente finalizará a parte prática, se houver, escreverá a monografia e defenderá até o final do semestre, que o(a) discente estiver matriculado em projeto de fim de curso II. O fechamento do Projeto de Fim de Curso II será realizado pela coordenação após a defesa, a ATA de defesa será encaminhada pela Coordenação à DIRAC/SEAED.
 - IX. Para defesa do Projeto de Fim de Curso II, o discente ou professor orientador deverá enviar um e-mail para a Coordenação do curso com pelo menos 15 (quinze) dias antes da defesa, contendo o documento ANEXO_D_EMT_Agendamento de Defesa de PFC II_Ver_020, devidamente preenchido e assinado.