Electromagnetismo I

S10 - Corriente y Resistencia

Josue Meneses Díaz

Universidad de Santiago de Chile

Corriente eléctrica y Resistencias

Corriente eléctrica

La corriente eléctrica se define como la velocidad con la que fluyen las cargas a través de una sección transversal: Si una cantidad de carga ΔQ pasa a través de una superficie en un intervalo de tiempo Δt , entonces la corriente promedio I_{prom} viene dada por

$$I_{prom} = \frac{\Delta Q}{\Delta t} \xrightarrow{\Delta t \to 0} \frac{dQ}{dt}$$

 $I: \mathsf{Amperios}$

$$[I] = A\left[\frac{C}{s}\right]$$

Es convencional asignar a la corriente la misma dirección que el **flujo de carga positiva** por un error histórico.

Densidad de corriente

Para relacionar la corriente, una cantidad macroscópica, con el movimiento microscópico de las cargas, examinemos un conductor de área de sección transversal A. Definimos la corriente eléctrica a nivel microscópico como

$$I = \iint \vec{J} \cdot d\vec{A} \qquad [J] = [A/m^2] \quad (1)$$

donde \vec{J} es la densidad de corriente.

Modelo de Drude

Suposiciones

Un tratamiento completo de los electrones en un metal, incluida la razón del movimiento a alta velocidad en todas las direcciones, requiere mecánica cuántica, pero el modelo clásico simple de Drude nos permite comprender la mayoría de los aspectos importantes de los circuitos a nivel microscópico.

En el modelo se hacen las siguientes suposiciones:

- 1. El movimiento del electrón después de una colisión es independiente de su movimiento antes de la colisión.
- 2. La energía adquirida en exceso por los electrones en el campo eléctrico se pierde en los átomos del conductor cuando chocan electrones y átomos.

Velocidad de deriva

La velocidad promedio de un electrón en este movimiento de inicio-parada se llama velocidad de "deriva" v_d , y decimos que el electrón "se desplaza" a través del metal. En realidad, el movimiento de deriva es lenta y superpone un movimiento de alta velocidad de los electrones en todas las direcciones dentro del metal y, en promedio, la velocidad del electrón es lento, dado por:

$$v_d = \mu E \qquad \mu : \mathsf{Movilidad}$$

$$\begin{split} \langle \vec{v}_f \rangle &= \langle \vec{v}_i \rangle + a \langle t \rangle \\ &= \langle \vec{v}_i \rangle + \frac{F_E}{m} \langle t \rangle \\ &= \langle \vec{v}_i \rangle + \frac{q \vec{E}}{m_e} \langle t \rangle \\ &= \frac{q \vec{E}}{m_e} \tau \qquad \tau : \text{Tiempo caracteristico} \\ v_d &= \mu E \end{split}$$

Utilizando la Ecuación 1 que relaciona la intesidad de la corriente I y la densidad de corriente \vec{J} . Definimos n como el número de portadoras de carga por unidad de volumen.

$$I = \frac{\Delta Q}{\Delta t} = nqv_d A \tag{2}$$

$$\begin{split} \vec{J} &= nq\vec{v_d} \\ &= -ne\vec{v_d} = -ne\left(-\frac{e\vec{E}}{m_e}\tau\right) \\ &= \frac{ne^2\tau\vec{E}}{m_e} \end{split} \tag{3}$$

Ejemplo

Por un cable de cobre se mide una corriente de I=0.544 [A]. El diámetro del cable es de 1 mm y la densidad de electrones móviles en el cobre es de 8.4×10^{28} $[m^{-3}]$ $(q=1.6\times10^{-19}$ [C]).

- (a) ¿Cuál es la velocidad de deriva de los electrones?
- (b) ¿Aproximadamente cuántos minutos tardaría un electrón que viaja a esta velocidad en desplazarse de un extremo al otro de un alambre de 30 cm de largo?

Ley de Ohm

Ley de Ohm (microscópica)

En muchos materiales, la densidad de corriente \vec{J} depende linealmente del campo eléctrico externo \vec{E} de la forma

$$\vec{J} = \sigma \vec{E} \tag{4}$$

Donde σ es la conductividad del material. La Ecuación 4 es conocida como la ley de Ohm microscópica. Si un material obedece esta relación, entonces decimos que un material es **ohmico**

Relacionado la Ecuación 3 con la Ecuación 4 encontramos que la conductividad σ y resistividad ρ :

$$\sigma = \frac{ne^2\tau}{m_e} = \frac{1}{\rho}$$

Ley de Ohm (macroscópica)

Consideremos el segmento mostrado en la figura, donde en los extremos aplicamos una diferencia de potencial ΔV_{ab} . Si \vec{E} es uniforme dentro del conductor:

$$\Delta V_{ab} = -\int \vec{E} \cdot d\vec{s} = El$$
$$|\vec{J}| = \sigma |\vec{E}| = \sigma \left(\frac{\Delta V}{l}\right)$$
$$\frac{I}{A} = \frac{\sigma \Delta V}{l}$$
$$\Rightarrow R = \frac{\Delta V}{l} = \frac{l}{\sigma^A}$$

La Ecuación 4 es la versión macroscópica de la lye de Ohm.

$$\Delta V = IR \qquad [R] = [\Omega] \tag{5}$$

Resitencias

La resistencia o resistor es uno de los componentes más frecuentes en los circuitos electrónicos. Es utilizado para **regular la corriente** o generar una **caída de voltaje**. Los resistores se fabrican principalmente con carbono o película de metal. En el caso del carbono, se envuelve una línea alrededor de un núcleo de cerámica, y se conectan dos cables de cobre.

Ejemplo

Calcular la densidad de corriente, la resistencia y el campo eléctrico de un cable de cobre de 5 [m] de longitud con un diámetro de 2.053 [mm] (calibre 12) que transporta una corriente de I=10 [mA].

Ejemplo (Resistencia cable coaxial)

Consisten en dos conductores cilíndricos concéntricos separados por polietileno. La fuga de corriente a través del polietileno, en dirección radial, es no deseada. Aunque el cable está diseñado para conducir corriente a lo largo de su longitud, en este caso consideraremos la corriente a través del polietileno.

- a) Calcular la resistencia del polietileno entre los dos conductores.
- b) Compare esta resistencia con la del conductor de cobre interno del cable a lo largo de la longitud de 15.0 [cm].

$$\begin{split} r_a &= 0.500 \text{ [cm] y } r_b = 1.75 \text{ [cm],} \\ L &= 15.0 \text{ [cm],} \ \rho_{polietileno} = 1.0 \times 10^{13} \\ \left[\Omega \cdot \text{ m}\right] \ \rho_{cu} &= 1.7 \times 10^{-8} \text{ [}\Omega \cdot \text{ m}\text{]} \end{split}$$

Potencia eléctrica

Considere un circuito que consta de una batería ideal y una resistencia R. Si $\Delta V=Vb-Va>0$ entonces una carga dq se mueve a través de la batería con energía potencial eléctrica igual a

$$dU = d(Q\Delta V)$$

A medida que la carga se mueve a través de la resistencia, la energía potencial disminuye debido a las colisiones con los átomos de la resistencia. Si despresiamos la resistencia interna de la batería y los cables de conexión, el cambio en la energía potencial de dq es cero. La tasa de pérdida de energía a través de la resistencia viene dada por

$$\begin{split} P &= \frac{dU}{dt} = \frac{d}{dt}(Q\Delta V) = \frac{dQ}{dt}\Delta V \\ &= I\Delta V = I^2R = \Delta V^2/R \end{split}$$

Resistencia y temperatura

La resistividad de un material realmente varía con la temperatura T. Para metales, la variación es lineal en un amplio rango de T de la forma:

$$\rho = \rho_0 \left(1 + \alpha (T - T_0) \right)$$

Como la resistencia es proporcional a la resistividad, entonces

$$R=R_0\left(1+\alpha(T-T_0)\right).$$

donde α es el coeficiente de temperatura de resistividad. Los valores típicos de , y (a 20°C) para diferentes tipos de materiales se muestran en la Tabla 1.

Tabla 1: Algunos materiales con sus resistividades, conductividad y coeficiente de temperatura

Material Resistividad ρ $[\Omega \cdot m]$	Conductividad $\sigma \; [\Omega^{-1} \cdot m^{-1}]$	Coeficiente α
Plata 1.59×10^{-8}	6.29×10^{7}	0.0038
Cobre 1.72×10^{-8}	5.81×10^7	0.0039
Aluminu 2.82×10^{-8}	3.55×10^7	0.0039
Tungster $\cos 60 \times 10^{-8}$	1.8×10^7	0.0045
Acero 10.0×10^{-8}	1.0×10^7	0.0050
Platino 10.6×10^{-8}	1.0×10^7	0.0039

Ejemplo

Un termómetro de resistencias esta compuesto por platino. A 20°C, su resistencia es de 50 Ω . El termómetro es sumergirlo en indio fundido y su resistencia cambia a 76.8 Ω .

Encontrar el punto de fusión del indio.

Resumen

Resumen

1. Ley de Ohm (microscópica):

$$\vec{J} = \sigma \vec{E}$$

2. Ley de Ohm (macroscópica):

$$\Delta V = IR$$

3. Variación de la resistividad con la temperatura:

$$\rho = \rho_0 \left(1 + \alpha (T - T_0) \right)$$

Donde ρ es la resistividad a una temperatura T, ρ_0 es la resistividad a una temperatura de referencia T_0 , y α es el coeficiente de temperatura de resistividad.

Referencias

Referencias

- Chabay, Ruth W., y Bruce A. Sherwood. 2018. *Matter and Interactions, Volume 2: Electric and Magnetic Interactions. 17.5 ELECTRON CURRENT AND CONVENTIONAL CURRENT.* John Wiley & Sons.
- Ling, Samuel J., y William Moebs. 2021. «CAPÍTULO 9 Corriente y Resistencia». En *Física Universitaria Volumen 2.* Vol. 2. OpenStax.
- Serway, Raymond A., y John W. Jewett. 2005. «27 Corriente y Resistencias. 27.1 Corriente Eléctrica. 27.2 Resistencia. 27.3 Modelo de Conducción Eléctrica. 27.4 Resistencia y Temperatura». En *Física Para Ciencias e Ingeniería Con Física Moderna*, 7ma ed. Vol. 2. CENGAGE learning.