Fundamentos do Ethernet

Cabrillo College

Rick raziani
Cabrillo College

Tradução e Adaptação: Nídia

Ethernet Local Area Networks (LANs)

- LAN (Local Area Network) um grupo de computadores e dispositivos associados (impressoras, etc) conectados através de mídia física cabeada ou wireless por meio de dispositivos de núcleo de rede (hub, switches, roteadores) e administrada por uma única organização.
- Ethernet o protocolo usado para comunicação pelos comutadores, dispositivos associados e equipamentos de núcleo de rede.

Network Interface Card (NIC) - Placa de Rede

Network Interface Card (NIC) - Placa de Rede

Cabrillo College

Network Interface Card (NIC)

- Camada 2, Camada de enlace de dados, dispositivo
- Conecta o dispositivo (computador) a LAN
- REsponsável pelo endereço de camada 2 (local)
- Placas de Rede Comuns:
 - Ethernet
 - Token Ring
- Larguras de Banda Comuns
 - 10 Mbps, 10/100 Mbps, 10/100/1000 Mbps

Rastreando a Conexão Física da NIC (Network Interface Card) – Placa de Rede

Conectando a Placa de Rede ao Hub ou Switch

Da Porta Ethernet ao Patch Panel...

Cabrillo College

Back View

Front View

Do Patch Panel o Switch (ou hub)

Tudo isso é a mesma coisa que isto!

Cabrillo College **Ethernet Hub** 9000000990 Ethernet Cables "Twisted Pair" **Adapter Card** inside PC PC PC **File Server**

Nosso Foco!

- Nós vamos estudar um protocolo de camada 2 de LANs chamado
 Ethernet.
- Esse protocolo diz respeito somente como a informação de host Ethernet alcança outro host Ethernet.
- Em nossos exemplos, nós iremos ver como o Ethernet é usado para transmitir informação de um computador para outro comutador, via um ou mais dispositivos de rede Ethernet como hubs (repetidores) e switches (bridges pontes).

Ethernet e IEEE 802.3

- O Institute of Electrical and Electronic Engineers (IEEE) é uma de muitas organizações profissionais que definem padrões de rede.
- **IEEE 802.3** "Ethernet" é o padrão para LANs predominante e mais conhecido, junto com o 802.11 (WLAN).
- Esse padrão inclui o <u>protocolo</u> usado para "enquadrar (frame)" as informações que um host Ethernet.

"Dados" Ethernet

O endereço MAC

- Parte do protocolo Ethernet inclui o MAC (Media Access Control)
- Toda placa Ethernet tem um unico endereço MAC.
- Endereços MAC provêm uma forma para que os computadores identifiquem eles mesmos.
- Isso dá a cada host um nome único e permanente.

O Endereço MAC

- Endereços MAC são:
 - 48 bits em tamanho.
 - Expressos como <u>12 dígitos hexadecimais</u>.
 - Os primeiros 6 dígitos hexadecimais, os quais são administrador pelo IEEE, identificam o fabricante e formam o *Organizational Unique Identifier (OUI)*.
 - Os 6 dígitos restantes hexadecimal formam o inúmero de série da interface, ou outro valor administrado pelo fabricante específico.
- Endereços MAC algumas vezes são referenciados como burned-in addresses (BIAs) porque são gravados em memória de somente leitura (ROM) e são copiados para a memória de acesso aleatório (RAM) quando as placas de rede inicializam

- O protocolo Ethernet usa o endereço MAC para identificar a <u>fonte</u> (source) do frame Ethernet e o seu <u>destino</u> (destination).
- Sempre que um computador envia um frame Ethernet, ele inclui o endereço MAC da sua placa de rede no campo "Source Address" do frame.

Decimal, Binário, Hex

<u>Dec</u> <u>Bin</u> <u>Hex</u>	Dec Bin Hex
0 = 0000 = 0	8 = 1000 = 8
1 = 0001 = 1	9 = 1001 = 9
2 = 0010 = 2	10 = 1010 = A
3 = 0011 = 3	11 = 1011 = B
4 = 0100 = 4	12 = 1100 = C
5 = 0101 = 5	13 = 1101 = D
6 = 0110 = 6	14 = 1110 = E
7 = 0111 = 7	15 = 1111 = F

Formato do Endereço MAC

Dec Bin Hex	Dec Bin Hex
0 = 0000 = 0	8 = 1000 = 8
1 = 0001 = 1	9 = 1001 = 9
2 = 0010 = 2	10 = 1010 = A
3 = 0011 = 3	11 = 1011 = B
4 = 0100 = 4	12 = 1100 = C
5 = 0101 = 5	13 = 1101 = D
6 = 0110 = 6	14 = 1110 = E
7 = 0111 = 7	15 = 1111 = F

OUI unique

- Um endereço MAC da Intel: 00-20-E0-6B-17-62
- 0000 0000 0010 0000 1110 0000 0110 1011 0001 0111 0110 0010
- IEEE OUI FAQs: http://standards.ieee.org/faqs/OUI.html

Qual o endereço MAC da minha placa de rede?

Endereços MAC são lineares

- Endereços MAC provêm um meio de computadores identificarem eles próprios.
- Eles dão aos hosts um nome permanente e único.
- O número de endereços MAC possíveis é de 16^12 (ou mais de 2 trilhões!).
- Endereços MAC tem uma grande desvantagem:
 - Eles não têm estrutura e são considereados endereços de espaço linear.
 - Como se para envia uma carta bastasse só o CPF da pessoa ao invés do endereço estrurado em Rua, número bairro, cidade, etc...

Endereço MAC X Endereço IP

- Endereço MAC não armazena informações de rede: apenas identificam o fabricante e o hardware da placa de rede
- Endereços MAC servem para localizar computadores em uma rede local
- Endereços IP dão às nossas redes uma noção de localização, e os nós da rede uma noção de pertencer a esta localização.
- Endereço IP é composto por bits que identificam a rede e bits que identificam o host.
 - Exemplo: 192.168.100.0/24 endereço de rede
 - Quais endereços abaixo pertencem a essa rede?
 - 172.16.1.1 192.168.101.1 192.168.100.254 192.168.102.3 200.17.33.1 10.10.0.1

ARP: Address Resolution Protocol

Cabrillo College

Pergunta: como obter o endereço MAC a partir do endereço IP?

- Cada nó IP (Host, Roteador) de uma LAN possui tabela ARP
- Tabela ARP: mapeamento de endereços IP/MAC para alguns nós da LAN
 - < endereço IP; endereço MAC; TTL>
 - TTL (*Time To Live*): tempo a partir do qual o mapeamento de endereços será esquecido (valor típico de 20 min)

Protocolo ARP: Mesma LAN (rede)

- A deseja enviar datagrama para
 B, e o endereço MAC de B não está na tabela ARP.
- A difunde o pacote de solicitação ARP, que contém o endereço IP de B
 - Endereço MAC destino = FF-FF-FF-FF-FF
 - todas as máquinas na LAN recebem a consulta do ARP
- B recebe o pacote ARP, responde a A com o seu (de B) endereço MAC
 - Quadro enviado para o endereço MAC (unicast) de A

- Uma cache (salva) o par de endereços IP-para-MAC na sua tabela ARP até que a informação fique antiquada (expire)
 - 'soft state': informação que expira (vai embora) a menos que seja renovada
- ARP é "plug-and-play":
 - os nós criam suas tabelas ARP sem a intervenção do administrador da rede

Roteando um pacote para outra LAN

Cabrillo College

passo a passo: envio de datagrama de A para B via R assuma que A conhece o endereço IP de B

Duas tabelas ARP no roteador R, uma para cada rede IP (LAN)

Camada 1 do Modelo OSI – Camada Física

Cabrillo College
 A camada física define as

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link

- A camada física define as especificações elétricas, mecânicas, procedurais e funcionais para ativação, manutenção e desativação do enlace físico entre sistemas finais
- Sinais, mídia física da rede (cables, wireless, ...), dispositivos da camada
- Dispositivos da camada 1 incluem :
 - Repetidores
 - Hubs

1 Physical →

Binary Transmission

Wires, connectors, voltages, data rates

Frame de Enlace de Dados Genérico

- A mensagem é "enquadrada (framed)" (camada 2) e transmitida no cabo pela placa de rede EThernet.
- O Enquadramento provê ordem ou estrutura para o stream (fluxo) de bits - bitstream.

Enviando e recebendo frames Ethernet frames via hub

Cabrillo College

- Somente um dispositivo deve se comunicar por vez, se não, ocorrerá colisões.
- 10/100/1000 Mbps são comuns.
- O hub age como se fôsse um "barramento".

Incomming

O Repetidor

- Repetidores são equipamentos de rede da camada 1 usados para combater a atenuação.
- Repetidores:
 - Pegam sinais fracos
 - Limpam (ruídos)
 - Regeneram
 - E enviam esses sinais pelo caminho na rede

Repetidores: Equipamento de Camada 1

- Repetidores são dispositivos de <u>Camada 1</u>.
- Eles NÃO olham endereços da camada 2, de enlace de dados (MAC, Ethernet) ou endereços de camada 3 (IP).

Hub

- Hub é nada mais que um repetidor multiporta.
- Hubs são dispositivos de Camada 1.
- Dados que chegam a uma porta são enviados por todas outras portas, exceto por aquela na qual chegou.

Hubs são chamados às vezes de

- Concentradores Ethernet
- Repetidores multiporta
- Em redes Token Rings, Multi-station Access Units (MAU or MSAU)

Hub: Dispositivo de Camada 1

- Hubs são dispositivos de camada 1.
- Eles NÃO olham para endereços da camada 2, Enlace de dados (MAC, Ethernet) ou endereços da camada 3 (IP).

Rick Graziani graziani@cabrillo.edu

Cabrillo College

Preamble Destination Address Source Address Type Data Pad CRC

3333 1111

- O hub irá inundar todas as outras portas exceto a porta a qual o sinal está entrando
- Hub is a layer 1 device.
- Um hub NÃO olha para endereços da camada 2, logo é rápido para transmitir dados.
- Desvantagem: Um hub ou vários hubs cascateado, em série forma um único domínio de colisão
- Uma colisão ocorre quando dois ou mais dispositivos transmitem ao mesmo tempo em um domínio de colisão.

Half-duplex (Introdução)

- Hubs operam somente no modo <u>Half-duplex</u>.
- Half-duplex significa que somente uma ponta (fim, nó) pode enviar por vez
- A outra ponta do link (placa Ethernet ou outro Hub, Swicth) deve operar em modo Half-duplex
- Com placas de redes Half-duplex, um host só pode transmitir ou só pode receber, não ambos de uma vez, senão uma colisão pode ocorrer.
- Usa CSMA/CD.
- Se a portadora é detectada, então a placa de rede não irá transmitir.
- Hubs Ethernet e repetidores só podem operar em modo half-duplex.

Modo Half-Duplex

- Todas as placas de rede Ethernet e portas dos hubs estão operando em modo Half-Duplex.
- Quando vários dispositivos estão conectados a um hub ou vários hubs, somente um equipamento deve transmitir.

Camada 2 do Modelo OSI- Camada de Enlace

Cabrillo College

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

- A camada de enlace de dados prover o trânsito confiável de dados sobre um link físico. A camada de enlace se preocupa com o endereçamento físico, com a topologia da rede, com o acesso da rede, notificações de erro, com a entrega ordenada de frames e controle de fluxo.
- Frames (quadros) e protocolos da camadar 2
- Dispositivos de Camada 2:
 - Switches
 - Bridges (Pontes)

Direct Link Control, Access to Media

- Provides reliable transfer of data across media
- Physical addressing, network topology, error notification, flow control

Enviando e recebendo frames Ethernet via switch

- Equipamento de camada 2 (também inclui a camada 1) que examina e baseia suas decisões em informações de frames da camada 2
- As portas de switches tipicamente operam em <u>full-</u> <u>duplex</u>.
- Vários dispositivos conectados ao switch podem se comunicar sem que colisões ocorram.
- Portas de <u>10/100/1000 Mbps</u>
 são udada nos switches.

Full-duplex

- Full-duplex permite a comunicação simultânea entre um par de estações (hosts) ou dispositivos.
- Full-duplex permite que os dispositivos enviem e recebam ao mesmo tempo.
- Os dois finais (as pontas, os dois equipamentos) conectados ao enlace devem está no modo full-duplex.
- Se um hub está conectado ao switch, essa porta do switch deve ser halfduplex.
 - O domínio de colisão terminará nessa porta do switch.

Switches: Algoritmos de comutação

- De que forma o comutador sabe qual porta destino encaminhar o quadro?
 - Tabelas de encaminhamento
 - MAC/interface/timestamp
- Técnicas*
 - Filtering Filtragem
 - Forwarding Encaminhamento
 - Flooding Inundação
 - Learning Aprendizagem
 - Aging Envelhecimento

```
(* http://computer.howstuffworks.com/lan-switch11.htm)
```

Filtering/Forwarding/Flooding

Cabrillo College

Quando um switch recebe um quadro:

```
Verifica a sua tabela MAC:

if endereço MAC destino está na tabela

then{
    if a interface é a mesma por onde o frame veio
        then descarta o quadro //filtragem
        else encaminha o quadro na interface indicada
    }

else {
        adiciona uma entrada na tabela
        usa inundação
    }
```

Encaminha o quadro para todas as demais interfaces exceto aquela em que o quadro foi recebido

Learning

- Um switch possui uma tabela de encaminhamento
- entrada na tabela de encaminhamento:
 - (Endereço MAC, Interface, timestamp)
- switch aprende quais hosts podem ser alcançados através de determinada porta
 - quando um quadro é recebido, o switch "aprende" a localização do transmissor: segmento de LAN (porta) de onde ele veio (origem)
 - e adiciona uma entrada em sua tabela com o MAC e a porta de onde o frame veio

Aging

- Para cada entrada na tabela, um timestamp
- Para cada pacote recebido em um nó, o timestamp é atualizado
- O switch possui um timer configurável pelo usuário que apaga as entradas depois de um certo período de tempo de inatividade
- Resultado
 - Otimização da memória disponível

Exemplo com Switch

- Switch recebe o quadro vindo de C às 09:30:36
 - anota na tabela de comutação que C está na interface 1
 - dado que D não se encontra na tabela, encaminha o quadro para as demais interfaces: 2 e 3
- quadro é recebido por D

Exemplo com Switch

Suponha que D responde com um quadro para C.

A 1 9:30:30
B 1 9:30:32
9:30:33
G 3 9:30:34
C 1 9:30:36

- Switch recebe o quadro vindo de D às 9:30:37
 - anota na tabela de comutação que D está na interface 2
 - dado que C está na tabela, encaminha o quadro apenas na interface 1
- quadro é recebido por C

Arquitetura de LAN 802.11

- hospedeiro sem fio se comunica com estação-base
 - estação-base = ponto de acesso (AP)
 - Basic Service Set (BSS) (ou "célula") no modo de infraestrutura contém:
 - hospedeiros sem fio
 - o ponto de acesso (AP): estação-base
 - modo ad hoc: apenas hosts

Características de padrões de enlace

sem fio selecionados

802.11: Canais, associação

- 802.11b: espectro de 2,4 GHz-2,485 GHz dividido em 11 canais em diferentes frequências
 - Admin. do AP escolhe frequência para AP
 - possível interferência: canal pode ser o mesmo daquele escolhido pelo AP vizinho!
- hospedeiro: precisa associar-se a um AP
 - varre canais, escutando quadros de sinalização contendo nome do AP (SSID) e endereço MAC
 - seleciona AP para associar-se
 - pode realizar autenticação
 - normalmente rodará DHCP para obter endereço IP na sub-rede do AP

802.11: varredura passiva/ativa

Cabrillo College

Varredura passiva:

- (1) quadros de sinalização enviados dos APs
- (2) quadro de solicitação de associação enviado: H1 para AP selecionado
- (3) quadro de resposta de associação enviado: H1 para AP selecionado

Varredura ativa:

- (1) Broadcast de quadro de solicitação de investigação de H1
- (2) Quadro de resposta de investigações enviado de APs
- (3) Quadro de resposta de associação enviado: H1 para AP selecionado
- (4) Quadro de resposta de associação enviado: AP selecionado para H1