Artificial Intelligence II (CS4442 & CS9542)

Unsupervised Learning: Dimensionality Reduction

Boyu Wang Department of Computer Science University of Western Ontario

Unsupervised Learning

Unsupervised learning

- In supervised learning, data is in the form of pairs (x, y), and the goal is to learn a model h such that h(x) can approximate y well.
- ► In unsupervised learning, the data just contains *x*!
- The goal of unsupervised learning is to summarize or discover patterns or structure in the data

Unsupervised learning

- ▶ In supervised learning, data is in the form of pairs (x, y), and the goal is to learn a model h such that h(x) can approximate y well.
- ► In unsupervised learning, the data just contains *x*!
- The goal of unsupervised learning is to summarize or discover patterns or structure in the data
- A variety of problems and uses:
 - Dimensionality reduction: compression, visualization, feature extraction
 - Clustering: discover the group structure of data, divide the data into different regions
 - 3. Density estimation: outlier detection, change point detection

Unsupervised learning

- In supervised learning, data is in the form of pairs (x, y), and the goal is to learn a model h such that h(x) can approximate y well.
- ► In unsupervised learning, the data just contains *x*!
- The goal of unsupervised learning is to summarize or discover patterns or structure in the data
- A variety of problems and uses:
 - Dimensionality reduction: compression, visualization, feature extraction
 - Clustering: discover the group structure of data, divide the data into different regions
 - 3. Density estimation: outlier detection, change point detection
- ► The definition of "ground truth" is often not clear: we don't have the label *y*
- Can also be used as a pre-processing step for supervised learning

Dimensionality Reduction

High-dimensional data

High-Dimensions = Lot of Features

Document classification

Features per document = thousands of words/unigrams millions of bigrams, contextual information

Surveys - Netflix

480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	?	?	1	3	?
George	?	?	3	1	2	5
Susan	4	3	1	?	5	1
Beth	4	3	?	2	4	2

Figure credit: Maria-Florina Balcan

High-dimensional data

High-Dimensions = Lot of Features

Figure credit: Maria-Florina Balcan

What is dimensionality reduction?

Take data in a high dimensional space and map it into a new space whose dimensionality is much smaller (even 2D or 3D for visualization).

What is dimensionality reduction?

Take data in a high dimensional space and map it into a new space whose dimensionality is much smaller (even 2D or 3D for visualization).

- Principles to follow
 - 1. Do not loss too much information
 - Approximately preserve similarity/distance relationships between instances.
- Motivations
 - Computational: compress the data as a pre-processing step to speedup subsequent operations on the data
 - Visualization: visualize the data for exploratory analysis by mapping the input data into 2D or 3D spaces
 - Feature extraction: to generate a smaller and more effective or useful set of features.

Dimensionality reduction techniques

- Linear methods
 - Principal component analysis (PCA)
 - Independent component analysis (ICA)
 - Canonical correlation analysis (CCA)
 - ...
- Nonlinear methods
 - Kernel PCA
 - Isomap
 - Locally linear embedding (LLE)
 - Autoencoders
 - ...

Dimensionality reduction techniques

- Linear methods
 - Principal component analysis (PCA)
 - Independent component analysis (ICA)
 - Canonical correlation analysis (CCA)
 - ...
- Nonlinear methods
 - Kernel PCA
 - Isomap
 - Locally linear embedding (LLE)
 - Autoencoders
 - ...

Remarks

- All dimensionality reduction techniques are based on an implicit assumption that the data lies along some low-dimensional manifold
- This is the case for the first three examples, which lie along a 1D manifold despite being plotted in 2D
- ► In the last example, the data has been generated randomly in 2D, so no dimensionality reduction is possible without losing information
- ► The first example is easier than the second and third examples

Principal Component Analysis

PCA motivations

- ▶ Given: m data points $\{x_i\}_{i=1}^m, x_i \in \mathbb{R}^n$. For convenience assume $\sum_{i=1}^m x_i = 0$.
- Suppose we want a 1-dimensional representation of that data, instead of n-dimensional

PCA motivations

- ▶ Given: m data points $\{x_i\}_{i=1}^m, x_i \in \mathbb{R}^n$. For convenience assume $\sum_{i=1}^m x_i = 0$.
- Suppose we want a 1-dimensional representation of that data, instead
 of n-dimensional
- Specifically, we will:
 - 1. Choose a line in \mathbb{R}^n that best represents the data.
 - 2. Project the data points to along the line.

Minimize the reconstruction error

- ► Every line can be represented as $b + \alpha v$, where $b, v \in \mathbb{R}^n$, and $\alpha \in \mathbb{R}$. For convenience assume $||v||_2^2 = 1$.
- **b** can be viewed as the position of the line, v determines the direction of the line, and α is the distance between b and a point on the line (i.e., different α 's define different points on the line).
- ► Each instance x_i is associated with a point on the line $\hat{x}_i = b + \alpha_i v$
- ▶ We want to choose b, v, and α_i to minimize the total reconstruction error over all data points, measured by Euclidean distance:

$$R = \sum_{i=1}^{m} ||x_i - \hat{x}_i||_2^2$$

where *R* is the reconstruction error

Constrained optimization problem (I)

$$\min_{b,v,\{\alpha_i\}_{i=1}^m} \sum_{i=1}^m ||x_i - (b + \alpha_i v)||_2^2$$

s.t. $||v||_2^2 = 1$

- Suppose we fix a v satisfying the condition, and find the best b and α_i given v
- Then, we solve:

$$\min R = \min_{b, \{\alpha_i\}_{i=1}^m} \sum_{i=1}^m ||x_i - (b + \alpha_i v)||_2^2$$

Compute the gradient of R with respect to α_i and set it to 0 (note that $||v||_2^2 = 1$):

$$\frac{\partial R}{\partial \alpha_i} = 2\alpha_i - 2\mathbf{v}^\top \mathbf{x}_i + 2\mathbf{v}^\top \mathbf{b} = 0 \Rightarrow \alpha_i = \mathbf{v}^\top (\mathbf{x}_i - \mathbf{b})$$

Constrained optimization problem (II)

$$\min R = \min_{b, \{\alpha_i\}_{i=1}^m} \sum_{i=1}^m ||x_i - (b + \alpha_i v)||_2^2$$

Compute the gradient of R with respect to b and set it to 0:

$$\nabla_b R = 2mb - 2\sum_{i=1}^m x_i + 2\left(\sum_{i=1}^m \alpha_i\right)v = 0$$

$$\Rightarrow \left(\sum_{i=1}^m \alpha_i\right)v = \sum_{i=1}^m x_i - mb$$

$$\Rightarrow v^\top \left(\sum_{i=1}^m x_i - mb\right)v = \sum_{i=1}^m x_i - mb$$

This is satisfied when:

$$\sum_{i=1}^{m} x_i - mb = 0 \Rightarrow b = \frac{1}{m} \sum_{i=1}^{m} x_i = 0$$

▶ By substituting α_i , we get $\hat{x}_i = b + v^\top (x_i - b)v = vv^\top x_i$, which means that instances are projected orthogonally on the line to get \hat{x}_i .

Example of PCA projection

Find the direction of the line

$$\min_{b,v,\{\alpha_i\}_{i=1}^m} \sum_{i=1}^m ||x_i - (b + \alpha_i v)||_2^2$$
s.t. $||v||_2^2 = 1$

▶ Substituting $\alpha_i = v^{\top}(x_i - b)$ and b = 0 gives

$$\max_{v} \sum_{i=1}^{m} v^{\top} x_i x_i^{\top} v$$
s.t. $||v||_2^2 = 1$

Let $X = [x_1, \dots x_m]^{\top} \in \mathbb{R}^{m \times n}$, then (1) is equivalent to $\max v^{\top} X^{\top} X v$

s.t.
$$||v||_2^2 = 1$$

- ► The Lagrangian is: $L(v, \lambda) = v^{\top} X^{\top} X v \lambda ||v||_2^2$
- ► The solution to the problem, obtained by setting $\nabla_{v}L = 0$, is: $X^{T}Xv = \lambda v$

Optimal choice of v

$$X^{\top}Xv = \lambda v$$

- ► Recall: an eigenvector v of a matrix A satisfies $Av = \lambda v$, where $\lambda \in \mathbb{R}$ is the eigenvalue
- ► Fact: X^TX has n non-negative eigenvalues and n orthogonal eigenvectors.
- ightharpoonup v should be the eigenvector of $X^{T}X$ associated with the largest eigenvalue!
- As X^TX is the sample correlation/covariance matrix, v essentially finds a direction along which the variance of data points is maximized!

Two equivalent views of PCA

1. Project data onto a low dimension space while keep as much information as possible (minimize the reconstruction error):

$$R = \sum_{i=1}^{m} ||x_i - \hat{x}_i||_2^2$$

If $\sum_{i=1}^{m} x_i = 0$, we show that it is equivalent to

$$\min_{v} \sum_{i=1}^{m} ||x_i - vv^{\top} x_i||, \quad \text{s.t. } ||v||_2^2 = 1$$
 (2)

2. Then, we show that (2) is equivalent to

$$\max_{v} v^{\top} X^{\top} X v, \qquad \text{s.t. } ||v||_{2}^{2} = 1$$
 (3)

which can be solved by eigenvalue decomposition

3. X^TX is the sample correlation/covariance matrix \Rightarrow minimize the reconstruction error = maximize the sample covariance of the data!

Two equivalent views of PCA

http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/

Remarks

- ▶ The first principal component v_1 is the the eigenvector of the sample covariance matrix X^TX associated with the largest eigenvalue
- ▶ The second principal component v_1 is the the eigenvector of the sample covariance matrix X^TX associated with the second largest eigenvalue
- And so on...
- $\mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = \mathbf{0}$, principal components are orthogonal to each other

How many principal components shall we keep?

▶ When the eigenvalues are sorted in decreasing order, the proportion of the variance captured by the first *d* components is:

$$\frac{\lambda_1 + \dots, +\lambda_d}{\lambda_1 + \dots, +\lambda_d + \lambda_{d+1} + \dots, \lambda_n}$$

- So if a "big" drop occurs in the eigenvalues at some point, that suggests a good dimension cutoff
- Might lose some info, but if eigenvalues are small, do not lose much

Eigenface example

- A set of faces on the left and the corresponding eigenfaces (principal components) on the right
- ► The faces have to be centred and scaled ahead of time
- ► The components are in the same space as the instances (images) and can be used to reconstruct the images

Eigenface example

Top left image is a linear combination of rest

Kernel PCA

Motivations

- PCA cannot distinguish non-linear structure
- We can use a similar idea as in support vector machine: instead of using the points x, we go to some feature mapping: x → φ(x)
- In the higher dimensional space, we can then do PCA
- The result will be non-linear in the original data space!

Kernel PCA (I)

- ▶ Suppose that the mean of the data in feature space is 0: $\sum_{i=1}^{m} \phi(x_i) = 0$
- The sample covariance matrix is:

$$C = \sum_{i=1}^{m} \phi(x_i) \phi(x_i)^{\top}$$

The corresponding eigen-decomposition problem is

$$Cv_j = \lambda_j v_j$$

We want to avoid explicitly going to feature space - instead we want to work with kernels:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j)$$

Kernel PCA (II)

Re-write the PCA equation:

$$\sum_{i=1}^m \phi(\mathbf{x}_i) \phi(\mathbf{x}_i)^\top \mathbf{v}_j = \lambda_j \mathbf{v}_j$$

Assume that the eigenvectors can be written as a linear combination for features:

$$v_j = \sum_{i=1}^m a_{ji} \phi(x_i)$$

By substituting this back into the equation we get:

$$\sum_{i=1}^{m} \phi(x_i) \phi(x_i)^{\top} \left(\sum_{k=1}^{m} a_{jk} \phi(x_k) \right) = \lambda_j \sum_{k=1}^{m} a_{jk} \phi(x_k)$$

$$\Rightarrow \sum_{i=1}^{m} \phi(x_i) \left(\sum_{k=1}^{m} a_{jk} K(x_i, x_k) \right) = \lambda_j \sum_{k=1}^{m} a_{jk} \phi(x_k)$$

Kernel PCA (IV)

▶ multiply the equation by $\phi(x_l)^{\top}$ to the left:

$$\sum_{i=1}^{m} \phi(x_i)^{\top} \phi(x_i) \left(\sum_{k=1}^{m} a_{jk} K(x_i, x_k) \right) = \lambda_j \sum_{k=1}^{m} a_{jk} \phi(x_i)^{\top} \phi(x_k)$$

$$\Rightarrow \sum_{i=1}^{m} K(x_i, x_i) \left(\sum_{k=1}^{m} a_{jk} K(x_i, x_k) \right) = \lambda_j \sum_{k=1}^{m} a_{jk} K(x_i, x_k)$$

By rearranging we get:

$$K^2 a_j = \lambda_j K a_j,$$

where $a_j = [a_{j1}, \ldots, a_{jm}]^{\top} \in \mathbb{R}^n$

We can remove a factor of K from both sides of the matrix

$$Ka_i = \lambda_i a_i$$

► For a new data point *x* its projection onto the principal components is:

$$\phi(x)^{\top}v = \sum_{i=1}^{m} a_{ji}\phi(x)^{\top}\phi(x_i) = \sum_{i=1}^{m} a_{ji}K(x,x_i)$$

Kernel PCA example

Figure credit: Christopher Bishop

Summary

- Unsupervised learning: discover patterns and structure from data without label information
- Dimensionality reduction: compress and visualize data
- ► PCA: find a linear projection such that the reconstruction error is minimized

 the variance of the data points is maximized
- Kernel PCA: a nonlinear extension of PCA using the kernel trick