

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТ	ET «Информатика, искусственный интелект и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе № 9 по курсу «Функциональное и логическое программирование»

Тема	Использование правил в программе на Prolog
Студе	ент Волков Г.В.
Групг	иа ИУ7-61Б
- 0	
Оцени	ка (баллы)
Препо	одаватель <u>Толпинская Н. Б.</u>

Задание 1

Создать базу знаний «Предки», позволяющую наиболее эффективным способом (за меньшее количество шагов, что обеспечивается меньшим количеством предложений БЗ - правил), и используя разные варианты (примеры) простого вопроса, (указать: какой вопрос для какого варианта) определить:

- 1. По имени субъекта определить всех его бабушек (предки 2-го колена).
- 2. По имени субъекта определить всех его дедушек (предки 2-го колена).
- 3. По имени субъекта определить всех его бабушек и дедушек (предки 2-го колена).
- 4. По имени субъекта определить его бабушку по материнской линии (предки 2-го колена).
- 5. По имени субъекта определить его бабушку и дедушку по материнской линии (предки 2-го колена).

Минимизировать количество правил и количество вариантов вопросов. Использовать конъюнктивные правила и простой вопрос. Для одного из вариантов ВОПРОСА задания 1 составить таблицу, отражающую конкретный порядок работы системы.

```
1 domains
    name = string.
3
    gender = string.
5 predicates
    nondeterm parent (name, name, gender).
6
7
    nondeterm grandParent(name, name, gender, gender).
8
9 clauses
10
    parent("A", "B", "Male").
    parent("A", "C", "Female").
11
    parent("B", "D", "Male").
12
    parent("B", "E", "Female").
13
    parent("C", "F", "Male").
14
```

```
parent("C", "G", "Female").
15
16
17
     grandParent (ChildName, GrandParentName, ParentGender,
        GrandParentGender):-
     parent(ParentName, GrandParentName, GrandParentGender),
18
     parent (ChildName, ParentName, ParentGender).
19
20
21 goal
    \label{lem:condition} \mbox{\ensuremath{\mbox{$\%$}} grandParent("A" \,, \ \ GrandParentName \,, \ \ \_, \ \ "Female") \,.}
22
     %grandParent("A", GrandParentName, _, "Male").
23
    grandParent("A", GrandParentName, _, _).
24
     %grandParent("A", GrandParentName, "Female", "Female").
25
     grandParent("A", GrandParentName, "Female", _).
26
```

Задание 2

Дополнить базу знаний правилами, позволяющими найти:

- 1. Максимум из двух чисел без использования отсечения.
- 2. Максимум из двух чисел с использованием отсечения.
- 3. Максимум из трёх чисел без использования отсечения.
- 4. Максимум из трёх чисел с использованием отсечения.

Убедиться в правильности результатов. Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов ВО-ПРОСА и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы.

Для одного из вариантов ВОПРОСА и конкретной БЗ составить таблицу, отражающую конкретный порядок работы системы, с объяснениями: очередная проблема на каждом шаге и метод ее решения; каково новое текущее состояние резольвенты, как получено; какие дальнейшие действия? (Запускается ли алгоритм унификации? Каких термов? Почему этих?); вывод по результатам очередного шага и дальнейшие действия.

```
domains
2
    number = integer.
3
4 predicates
    nondeterm two max(number, number, number).
5
    nondeterm two max cut(number, number, number).
6
7
    nondeterm three max(number, number, number, number).
8
    nondeterm three max cut(number, number, number, number).
9
10 clauses
    two max(First, Second, First):- First >= Second.
11
    two max(First, Second, Second):- First < Second.
12
13
    two max cut(First, Second, First):- First \geq Second, !.
14
    two_max_cut(_, Second, Second).
15
16
```

```
three max(First, Second, Third, First):- First >= Second, First
17
       >= Third.
    three max(First, Second, Third, Second):- Second >= First, Second
18
       >= Third.
19
    three max(First, Second, Third, Third): - Third >= First, Third
       >= Second.
20
    three max cut(First, Second, Third, First):- First >= Second,
21
        First >= Third, !.
22
    three max cut(, Second, Third, Second):— Second \geq Third, !.
    three_max_cut(_, _, Third, Third).
23
24
25
26
  goal
27
    %two \max(1, 2, Max).
28
    %two max(2, 1, Max).
29
    %two max_cut(1, 2, Max).
    \frac{\text{wtwo}_{\text{max}_{\text{cut}}(2, 1, Max)}}{\text{.}}
30
    %three max(1, 2, 3, Max).
31
    %three max(1, 3, 2, Max).
32
    %three max(3, 2, 1, Max).
33
    %three max cut(1, 2, 3, Max).
34
    %three max_cut(1, 3, 2, Max).
35
    %three max cut(3, 2, 1, Max).
36
```