

Forschungs- und Entwicklungsseminar WS 20/21 Machine Learning in der sich selbst organisierenden Produktion

Referenten: Max Weickert

Max Schwerdtner

Datum: 18.01.2021

Erläuterung der Problemstellung

Die sich selbst organisierende Produktion (SSOP)

Was ist die SSOP?

Erläuterung der Problemstellung

Vorgehensweise zur Lösung der Problemstellung

Vorgehensweise zur Lösung der Problemstellung

Korrelationsanalyse

Korrelation mit der CycleTime

Trainingsdatenaufbereitung

Ausgangspunkt: 12 Simulationen mit 8 Wochen Simulationszeit

Time	Lateness	Assembly	Total	CycleTime	Consumab	Material	InDueTotal
3360	-1045.2	4.89579464	20	1362.05	19534.8314	3051672.43	20
3840	-762.69697	4.57235547	33	1596.36364	19910.4301	3139436.86	33
4320	-705.461538	4.29517014	39	1665.23077	19952.5504	3168375.91	39
4800	-692.181818	4.26197708	44	1652.27273	19894.5694	3142763.03	44
5280	-726.208333	4.10287216	48	1647.29167	19913.3895	3197116.98	48
5760	-787.218182	4.19870226	55	1564.56364	19927.3052	3154002.2	55
6240	-832.854839	4.24175481	62	1525.37097	19834.9173	3143638.93	62
6720	-879.927536	4.21714435	69	1484.04348	19822.6487	3155573.06	69
7200	-908.74359	4.47784931	78	1466.71795	19931.4247	3189310.33	78
7680	-928.360465	4.39522656	86	1457.09302	19802.6569	3195086.34	86
8160	-942.511111	4.32040441	90	1450.78889	19983.0976	3166910.67	90
8640	-933.656863	4.229011	102	1478.06863	19991.8668	3193441.74	102
9120	-924.153153	4.23194956	111	1488.9009	19988.7283	3178404.64	111
9600	-916.491379	4.2226151	116	1489.59483	19952.5657	3188077.54	116
10080	-903.096	4.16746329	125	1507.376	19741.3083	3142459.05	125
10560	-857.035971	4.13860606	139	1568.46043	19932.6636	3181306.85	138
11040	-816.986395	4.10318886	147	1604.27891	19853.8026	3156100.45	145

Trainingsdatenaufbereitung

1. Erstellung weiterer Spalten für vergangene Zeitschritte und die vorherzusagende CycleTime

Lateness (t-2) Assembly (t-2) Total (t-2) CycleTime (t-2) Consumab (t-2) Material (t-2) InDueTotal (t-2) Lateness (t-1) Assembly (t-1)

Material (t-1) InDueTotal (t-1) Lateness (t-0) Assembly (t-0) Total (t-0) Consumab (t-0) Material (t-0) InDueTotal (t-0) CycleTime (t+1)

Trainingsdatenaufbereitung

2. Füllen der Spalten für vergangene Zeitschritte durch Verschiebung

Verschiebung um 1

Verschiebung um 1

InDueTotal (t-1)	Consumab (t-1)	Material (t-1)	Lateness (t-1)	Total (t-1)	Assembly (t-1)	CycleTime (t-1)	InDueTotal (t-0)	Consumab (t-0)	Material (t-0)	Lateness (t-0)	Total (t-0)	Assembly (t-0)	CycleTime (t+1)
							20	19534,8314	3051672,43	-1045,2	20	4,89579464	1362,05
20	19534,8314	3051672,43	-1045,2	20	4,895794643	1362,05	33	19910,43014	3139436,858	-762,6969697	33	4,57235546	1596,363636
33	19910,43014	3139436,858	-762,6969697	33	4,572355469	1596,363636	39	19952,5504	3168375,907	-705,4615385	39	4,29517013	1665,230769
39	19952,5504	3168375,907	-705,4615385	39	4,295170139	1665,230769	44	19894,56938	3142763,032	-692,1818182	44	4,26197708	1652,272727
44	19894,56938	3142763,032	-692,1818182	44	4,261977083	1652,272727	48	19913,38947	3197116,977	-726,2083333	48	4,10287215	1647,291667
48	19913,38947	-	-726,2083333				55	19927,30522		-787,2181818		-	1564,563636
55	-	3154002,203	-				62	19834,9173	-	-832,8548387		-	-
62	19834,9173	3143638,927	-832,8548387	62	4,241754808	1525,370968	69	19822,64871	-	-879,9275362			1484,043478
69	19822,64871	3155573,063	-879,9275362	69	4,217144345	1484,043478		•	-	-		-	
78	19931,42473	3189310,327	-908,7435897	78	4,477849306	1466,717949	78	19931,42473	3189310,327	-908,7435897	78	4,47784930	1466,717949
86	19802,65686	3195086,344	-928,3604651	86	4,395226562	1457,093023	86	19802,65686	3195086,344	-928,3604651	86	4,39522656	1457,093023
90	19983,09765	3166910,666	-942,5111111	90	4,320404412	1450,788889	90	19983,09765	3166910,666	-942,5111111	90	4,320404411	1450,788889
102	19991,86676	3193441,735	-933,6568627	102	4,229010995	1478,068627	102	19991,86676	3193441,735	-933,6568627	102	4,22901099	1478,068627
111	19988,72827	3178404,639	-924,1531532	111	4,231949561	1488,900901	111	19988,72827	3178404,639	-924,1531532	111	4,23194956	1488,900901
116	19952,56574	3188077,541	-916,4913793	116	4,222615104	1489,594828	116	19952,56574	3188077,541	-916,4913793	116	4,22261510	1489,594828

Zielspalte

Trainingsdatenaufbereitung

Weitere Verschiebungen möglich

CycleTime (t-2)	InDueTotal (t-1)	Consumab (t-1)	Material (t-1)	Lateness (t-1)	Total (t-1)	Assembly (t-1)	CycleTime (t-1)	InDueTotal (t-0)	Consur
								20	19
	20	19534,8314	3051672,43	-1045,2	20	4,895794643	1362,05	33	199
1362,05	33	19910,43014	3139436,858	-762,6969697	33	4,572355469	1596,363636	39	19
1596,363636	39	19952,5504	3168375,907	-705,4615385	39	4,295170139	1665,230769		
1665,230769	44	19894,56938	3142763,032	-692,1818182	44	4,261977083	1652,272727		
1652,272727	48	19913,38947	3197116,977	-726,2083333	48	4,102872159	1647,291667		
1647,291667	55	19927,30522	3154002,203	-787,2181818	55	4,198702257	1564,563636		
1564,563636	62	19834,9173	3143638,927	-832,8548387	62	4,241754808	1525,370968	62	
1525,370968	69	19822,64871	3155573,063	-879,9275362	69	4,217144345	1484,043478		
1484,043478	78	19931,42473	3189310,327	-908,7435897	78	4,477849306	1466,717949	78	199
1466,717949	86	19802,65686	3195086,344	-928,3604651	86	4,395226562	1457,093023	86	198
1457,093023	90	19983,09765	3166910,666	-942,5111111	90	4,320404412	1450,788889	90	199
1450,788889	102	19991,86676	3193441,735	-933,6568627	102	4,229010995	1478,068627	400	199
1478,068627	111	19988,72827	3178404,639	-924,1531532	111	4,231949561	1488,900901	111	199
1488,900901	116	19952,56574	3188077,541	-916,4913793	116	4,222615104	1489,594828	28 116	199
1489,594828									

Vorhersage von Werten auf Basis trainierter Regression

Sentiment analysis

Analyze the sentiment of customer reviews using a binary classification algorithm.

★ Product recommendation

Recommend products based on purchase history using a matrix factorization algorithm.

Price prediction

Predict taxi fares based on parameters such as distance traveled using a regression algorithm.

Customer segmentation

Identify groups of customers with similar profiles using a clustering algorithm.

Object detection

Recognize objects in an image using an ONNX deep learning model.

Fraud detection

Detect fraudulent credit card transactions using a binary classification algorithm.

Sales spike detection

Detect spikes and changes in product sales using an anomaly detection model.

Image classification

Classify images (for example, broccoli vs. pizza) using a TensorFlow deep learning model.

Sales forecasting

Forecast future sales for products using a regression algorithm.

Erkennung von Auslastungsspitzen und Anpassung der Durchlaufzeit

Vorhersage von Werten auf Basis vergangener Zeitfenster

Data Preparation

Data Loading

Model Training Model Evaluation Model Consumption

Korrelationsanalyse

Time	0,882839814	Assembling1	-0,00084644
Idle:Assembling	-0,006587485	Assembly	-0,94799926
Lateness	0,997637594	Total	0,89407951
AssemblingOpe	-0,141851475	Idle:Cutting To	0,08510948
Idle:Assembling	0,180313071	Idle:Cutting To	0,05711395
Idle:Drilling Too	0,157674007	Worker2	0,15821874
TotalSetup	-0,159253828	OverDueTotal	0,94504994
Idle:Drilling Too	0,10135359	Cutting1	-0,04896553
InDue	-0,016744137	Worker3	0,21612601
OverDue	0,061861848	Idle:Cutting To	-0,0027869
New	-0,045952598	CycleTime	1
Product	-0,67372162	Idle:Assemblir	0,04596797
AdherenceToDu	-0,137682672	Consumab	0,52701318
Idle:Assembling	0,077733549	Drilling1	-0,08699613
Idle:Assembling	0,185653024	DrillingOperat	-0,1866261
Idle:Drilling Too	0,081013811	Tardiness	0,89631063
TotalWork	0,130598494	Cutting2	0,00811704
Finished	0,004270916	Idle:Cutting To	0,00712345
OEE	0,12990943	Idle:Assemblir	0,2373574
CuttingOperato	-0,060056266	Material	0,66226909
Idle:Assembling	0,236712828	InDueTotal	0,88801836
Idle:Drilling Too	0,195816212	Open	-0,0638786
Assembling2	0,175105947	Worker1	-0,04789451

Herausfiltern der Features

CycleTime (t-2)	InDueTotal (t-1)	Consumab (t-1)	Material (t-1)	Lateness (t-1)	Total (t-1)	Assembly (t-1)	CycleTime (t-1)
	20	19534,8314	3051672,43	-1045,2	20	4,895794643	1362,0
1362,05	33	19910,43014	3139436,858	-762,6969697	33	4,572355469	1596,363636
1596,363636	39	19952,5504	3168375,907	-705,4615385	39	4,295170139	1665,230769
1665,230769	44	19894,56938	3142763,032	-692,1818182	44	4,261977083	1652,27272
1652,272727	48	19913,38947	3197116,977	-726,2083333	48	4,102872159	1647,29166
1647,291667	55	19927,30522	3154002,203	-787,2181818	55	4,198702257	1564,563636
1564,563636	62	19834,9173	3143638,927	-832,8548387	62	4,241754808	1525,370968
1525,370968	69	19822,64871	3155573,063	-879,9275362	69	4,217144345	1484,04347
1484,043478	78	19931,42473	3189310,327	-908,7435897	78	4,477849306	1466,71794
1466,717949	86	19802,65686	3195086,344	-928,3604651	86	4,395226562	1457,09302
1457,093023	90	19983,09765	3166910,666	-942,5111111	90	4,320404412	1450,78888
1450,788889	102	19991,86676	3193441,735	-933,6568627	102	4,229010995	1478,06862
1478,068627	111	19988,72827	3178404,639	-924,1531532	111	4,231949561	1488,90090
1488,900901	116	19952,56574	3188077,541	-916,4913793	116	4,222615104	1489,59482
1489,594828							

Trainingsdatenaufbereitung

Data Preparation

Data Loading

Model Training Model Evaluation

Model Consumption

- Automatisches Training der Daten nach der gewünschte MivzostofteML.Autol

 → CycleTime

 ML.NET AutoML: Optimize automatically locating the
- Evaluierung durch Bildung von Testdatensets
- Ausgabe des für die gegebenen Daten besten Trainers
- → Speicherung des Modells

	======== Training the model =========												
	Runnir	ng AutoML regression experiment for	300 seconds										
۱	l	Trainer	RSquared A	bsolute-loss	Squared-loss	RMS-loss	Duration						
	1	SdcaRegression	0,9854	14,73	647,74	24,45	3,3						
Ē	2	LightGbmRegression	0,9908	10,06	408,83	19,36	2,8						
	3	FastTreeRegression	0,9913	9,30	390,13	18,12	7,3						
•	4	FastTreeTweedieRegression	0,9917	9,81	368,29	18,23	7,7						
	5	FastForestRegression	0,9842	15,14	697,50	25,50	7,4						
ı	6	LbfgsPoissonRegression	0,9873	14,02	564,71	22,90	1,4						
	7	Onlinedradientbescentkegression	0,0409	90,70	14902,19	121,09	۷,۶						
	8	OlsRegression	0,9955	6,30	201,17	13,49	1,0						
	ļα	FastTreeRegression	-26 9449	1070_45	1195622 38	1003 34	1,3						
	10	FastTreeTweedieRegression	-50,6946	1472,71	2211510,38	1487,01	2,1						
	11	OlsRegression	0,9635	27,77	1597,30	39,50	0,9						
	12	FastTreeRegression	0,8382	79,78	6964,27	83,39	4,3						
	13	FastTreeTweedieRegression	-52,7657	1502,21	2300106,26	1516,50	1,2						
	14	OlsRegression	0,9955	6,30	201,17	13,49	0,9						
	15	FastTreeRegression	0,9557	36,25	1926,84	43,64	8,7						
	16	FastTreeTweedieRegression	-52,8925	1504,00	2305530,53	1518,29	1,2						
	17	OlsRegression	0,1631	146,79	36124,99	189,86	0,9						
	18	FastTreeRegression	-9,2789	656,54	439776,02	663,11	43,8						
	19	FastTreeTweedieRegression	-52,8293	1503,11	2302824,67	1517,40	1,4						
	120	OlsRegression	A 9635	27 77	1597 30	39 58	1 4						

Data Preparation

Data Loading

Model Training Model Evaluation

Model Consumption

```
public long PredictThroughput(List<SimulationKpis> valuesForPrediction)
    //Transform collected Kpis to required shape
    var kpisForPredict = getReshapedKpisForPrediction(valuesForPrediction);
    // Load trained Model
    ITransformer trainedModel = mlContext.Model.Load(ModelPath, out var modelInputSchema);
    // Create prediction engine related to the loaded trained model.
    var predEngine = mlContext.Model.CreatePredictionEngine<SimulationKpisReshaped, CycleTimePrediction>(trainedModel);
    // Make prediction based on input Kpis
    var resultPrediction = predEngine.Predict(kpisForPredict);
    return (long)Math.Round(resultPrediction.CycleTime, 0);
```


→ Durchschnittliche Abweichung: 0,92%

Zusammenfassung und Ausblick

Zusammenfassung und Ausblick

Ergebnis des Forschungs- und Entwicklungsseminars

- Teilweise bessere Ergebnisse im Vergleich zur Ausgangssituation
- Erstes Mal Machine Learning in der SSOP
- Aufbau soliden Grundlagenwissens zu Machine Learning

Ausblick

- Modell bei abweichenden Simulationsparametern liefert unzureichende Vorhersagen
 - → Verbesserung der Trainingsdaten für genauere Vorhersagen variabler Parameter
- Gleiche Durchlaufzeit wird für alle Produkte gesetzt
 - → Vorhersage Abhängigkeit der Eigenschaften des Produktionsauftrags
- Testen weiterer Anwendungsfälle / Methoden
 - Schätzung von Losgrößen und Wartezeiten
 - Anomaly Detection
 - Deep Learning @ SSOP mit Keras

Vielen Dank für Ihre Aufmerksamkeit!

...und Danke an unsere Betreuer!