

TRANSFER ENTROPY ON FINANCIAL TIME SERIES

Salim Aboudou - Amine Abouseir - Thomas Delrue - Mohamed El Mennaoui - Ilyass Oubaik

INTRODUCTION

In Information theory, **Entropy** quantifies the uncertainty carried by a signal. Introduced in 2000, **Transfer Entropy** is a variation of **Shannon Entropy** meant to detect the direction of information flows between time series.

OBJECTIVES

- Apply Transfer Entropy to 6 ETFs
- Compare 2 approaches of **Transfer Entropy** against **Pearson Correlation**

DEFINITIONS

Let X_t be the "target" time series and Y_t the "source" time series.

Shannon Entropy

$$H(X_t) = -\sum_{x_t \in \Omega_x} p(x_t) \log(p(x_t))$$

Transfer Entropy

$$TE_{Y\to X}(t) = H(X_t \mid X_{t-1}) - H(X_t \mid X_{t-1}, Y_{t-1})$$

$$= \sum_{x_{t-1}, y_{t-1}, x_t} p(x_{t-1}, y_{t-1}, x_t) \log \left(\frac{p(x_t \mid x_{t-1}, y_{t-1})}{p(x_t \mid x_{t-1})} \right)$$

Pearson Correlation

$$P(X,Y) = \frac{\sum (x_t - \overline{x})(y_t - \overline{y})}{\sqrt{\sum (x_t - \overline{x})^2} \sqrt{\sum (y_t - \overline{y})^2}}$$

2 APPROACHES OF TE VS. PEARSON

We consider the time-series of 6 North American sectors indices (Energy, Financial, Industrial, Utilities, Metals, Oil & Gas).

Approach 1: (Re-sampling)

- Re-sample using 1min time period
- Calculate states (up or down)
- Calculate the lag-1 TE

Figure 1: A representation of the lag-1 transfer entropy measure

Approach 2: (No re-sampling)

- Calculate the lag-1 TE
- y_{t-1} corresponds to the most recent Y state before x_t .

Figure 2: A representation of the asynchronous lag-1 transfer entropy measure

Pearson Correlation

Figure 3: A representation of the Pearson correlation measure

REFERENCES

- [1] T. Schreiber, Physical Review Letters, 2000
- [2] J. He, P. Shang, Physica A: Statistical Mechanics and its Applications, 2017
- [3] R. Marschinski, H. Kantz, The European Physical Journal B Condensed Matter and Complex Systemsy, 2002

GRAPHICAL RESULTS

Figure 4: Transfer Entropy matrix for the different time series.

Figure 5: Asynchronous Transfer Entropy matrix for the different time series.

Figure 6: Pearson correlation matrix computed for different industrial ETF time series

Figure 7: Transfer Entropy coefficient represented as a directed graph between all sectors

Asynchrone Transfer Entropy between 6 sectors

Figure 8: Asynchronous Transfer Entropy coefficient represented as a directed graph between all sectors

Figure 9: Pearson Correlation represented as a directed graph between all industries.