# 18.404/6.840 Lecture 5

### Last time:

- Context free grammars (CFGs)
- Context free languages (CFLs)
- Pushdown automata (PDA)
- Converting CFGs to PDAs

### **Today:**

- Proving languages not Context Free
- Turing machines
- T-recognizable and T-decidable languages

### **Posted:**

- Solutions to PSet 1
- PSet 2

### Equivalence of CFGs and PDAs

**Recall Theorem:** A is a CFL iff some PDA recognizes A

→ Done.

✓ Need to know the fact, not the proof

### **Corollaries:**

- 1) Every regular language is a CFL.
- 2) If A is a CFL and B is regular then  $A \cap B$  is a CFL.

### Proof sketch of (2):

While reading the input, the finite control of the PDA for A simulates the DFA for B.

**Note 1:** If A and B are CFLs then  $A \cap B$  may not be a CFL (will show today). Therefore the class of CFLs is not closed under  $\cap$ .

**Note 2:** The class of CFLs is closed under  $\cup$ ,  $\circ$ , \* (see Pset 2).

# Proving languages not Context Free

Let  $B = \{0^k 1^k 2^k | k \ge 0\}$ . We will show that B isn't a CFL.

**Pumping Lemma for CFLs:** For every CFL A, there is a p such that if  $s \in A$  and  $|s| \ge p$  then s = uvxyz where

- 1)  $uv^ixy^iz \in A$  for all  $i \ge 0$
- 2)  $vy \neq \varepsilon$
- 3)  $|vxy| \le p$

Informally: All long strings in A are pumpable and stay in A.



# Pumping Lemma – Proof

**Pumping Lemma for CFLs:** For every CFL A, there is a p such that if  $s \in A$  and  $|s| \ge p$  then s = uvxyz where

long

- 1)  $uv^i x y^i z \in A$  for all  $i \ge 0$
- 2)  $vy \neq \varepsilon$
- 3)  $|vxy| \le p$



tall parse tree

### Pumping Lemma – Proof details

For  $s \in A$  where  $|s| \ge p$ , we have s = uvxyz where:

- 1)  $uv^i x y^i z \in A$  for all  $i \ge 0$
- 2)  $vy \neq \varepsilon$
- 3)  $|vxy| \leq p$

Let b =the length of the longest right hand side of a rule (E  $\rightarrow$  E+T)

= the max branching of the parse tree  $\frac{E}{\sqrt{\Gamma}}$ 

Let h = the height of the parse tree for s.

A tree of height h and max branching b has at most  $b^h$  leaves. So  $|s| \le b^h$ .

Let  $p = b^{|V|} + 1$  where |V| = # variables in the grammar.

So if  $|s| \ge p > b^{|V|}$  then  $|s| > b^{|V|}$  and so h > |V|.

Thus at least |V| + 1 variables occur in the longest path. So some variable R must repeat on a path.



# Example 1 of Proving Non-CF

**Pumping Lemma for CFLs:** For every CFL A, there is a p such that if  $s \in A$  and  $|s| \ge p$  then s = uvxyz where

- 1)  $uv^i x y^i z \in A$  for all  $i \ge 0$
- 2)  $vy \neq \varepsilon$
- 3)  $|vxy| \leq p$

Let 
$$B = \{0^k 1^k 2^k | k \ge 0\}$$

**Show:** *B* is not a CFL

### Check-in 5.1

Let  $A_1 = \{0^k 1^k 2^l \mid k, l \ge 0\}$  (equal #s of 0s and 1s) Let  $A_2 = \{0^l 1^k 2^k \mid k, l \ge 0\}$  (equal #s of 1s and 2s) Observe that PDAs can recognize  $A_1$  and  $A_2$ . What can we now conclude?

- a) The class of CFLs is not closed under intersection.
- b) The Pumping Lemma shows that  $A_1 \cup A_2$  is not a CFL.
- c) The class of CFLs is closed under complement.

$$S = 00 \cdots 0011 \cdots 1122 \cdots 22$$

$$u \mid v \mid x \mid y \mid z$$

$$\leftarrow \leq p \rightarrow$$

# Example 2 of Proving Non-CF

**Pumping Lemma for CFLs:** For every CFL A, there is a p such that if  $s \in A$  and  $|s| \ge p$  then s = uvxyz where

- 1)  $uv^i x y^i z \in A$  for all  $i \ge 0$
- 2)  $vy \neq \varepsilon$
- 3)  $|vxy| \leq p$

Let 
$$F = \{ww | w \in \Sigma^*\}$$
.  $\Sigma = \{0,1\}$ .

**Show:** *F* is not a CFL.

Assume (for contradiction) that F is a CFL.

The CFL pumping lemma gives p as above. Need to choose  $s \in F$ . Which s?

Try 
$$s_1 = 0^p 10^p 1 \in F$$
.

Try 
$$s_2 = 0^p 1^p 0^p 1^p \in F$$
.

Show  $s_2$  cannot be pumped  $s_2 = uvxyz$  satisfying the 3 conditions.

Condition 3 implies that vxy does not overlap two runs of 0s or two runs of 1s.

Therefore, in  $uv^2xy^2z$ , two runs of 0s or two runs of 1s have unequal length.

So  $uv^2xy^2z \notin F$  violating Condition 1. Contradiction! Thus F is not a CFL.

$$s_1 = \underbrace{000 \cdots 001000 \cdots 001}_{u \quad v \mid x \mid y \mid z}$$

$$\leftarrow \leq p \rightarrow$$

$$s_2 = \underbrace{0 \cdots 01 \cdots 10 \cdots 01 \cdots 1}_{u \quad v \quad x \quad y \quad z}$$

$$\leftarrow \leq p \rightarrow$$



# Turing Machines (TMs)



- 1) Head can read and write
- 2) Head is two way (can move left or right)
- 3) Tape is infinite (to the right)
- 4) Infinitely many blanks "—" follow input
- 5) Can accept or reject any time (not only at end of input)

### TM – example

### TM recognizing $B = \{a^k b^k c^k | k \ge 0\}$

- 1) Scan right until while checking if input is in a\*b\*c\*, reject if not.
- 2) Return head to left end.
- → 3) Scan right, crossing off single a, b, and c.
  - 4) If the last one of each symbol, accept.
  - 5) If the last one of some symbol but not others, reject.
  - 6) If all symbols remain, return to left end and repeat from (3).



### Check-in 5.2

How do we get the effect of "crossing off" with a Turing machine?

- a) We add that feature to the model.
- b) We use a tape alphabet  $\Gamma = \{a, b, c, \cancel{a}, \cancel{b}, \cancel{c}, \}$ .
- c) All Turing machines come with an eraser.

### TM – Formal Definition

Defn: A <u>Turing Machine</u> (TM) is a 7-tuple  $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ 

- $\Sigma$  input alphabet
- $\Gamma$  tape alphabet  $(\Sigma \subseteq \Gamma)$
- δ: Q × Γ → Q × Γ × {L, R} (L = Left, R = Right) δ(q, a) = (r, b, R)

On input w a TM M may halt (enter  $q_{\rm acc}$  or  $q_{\rm rej}$ ) or M may run forever ("loop").

So *M* has 3 possible outcomes for each input *w*:

- 1. Accept w (enter  $q_{acc}$ )
- 2. Reject w by halting (enter  $q_{rej}$ )
- 3. *Reject* w by looping (running forever)

### Check-in 5.3

This Turing machine model is deterministic. How would we change it to be nondeterministic?

- a) Add a second transition function.
- b) Change  $\delta$  to be  $\delta$ :  $Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$
- c) Change the tape alphabet  $\Gamma$  to be infinite.

# TM Recognizers and Deciders

Let M be a TM. Then  $L(M) = \{w \mid M \text{ accepts } w\}$ .

Say that M recognizes A if A = L(M).

**Defn:** A is <u>Turing-recognizable</u> if A = L(M) for some TM M.

**Defn:** TM M is a <u>decider</u> if M halts on all inputs.

Say that M decides A if A = L(M) and M is a decider.

**Defn:** A is <u>Turing-decidable</u> if A = L(M) for some TM decider M.



# Quick review of today

- 1. Proved the CFL Pumping Lemma as a tool for showing that languages are not context free.
- 2. Defined Turing machines (TMs).
- 3. Defined TM deciders (halt on all inputs).
- 4. T-recognizable and T-decidable languages.