

Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates

Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett

UC Berkeley & Cornell University

Published in International Conference on Machine Learning. ICML, 2018

Citation:201

Presenter:

Xin Fan

2021/03/31

Algorithm 1 A General Framework for Byzantine-resilient Distributed SGD

- 1: **for** $t = 1, 2, \dots$ **do**
- 2: Server:
- 3: Send the global optimization variable to all nodes
- 4: **Node**:
- 5: Receive the global optimization variable from the server
- 6: Calculate gradient with respect to the local training set
- 7: Send the local gradient to the server
- 8: **Server**:
- 9: Receive local gradients from all nodes
- 10: Screen the received gradients for Byzantine resilience and aggregate them
- 11: Update the global variable by taking a gradient step using the aggregated gradient
- 12: end for

How to design and analyze a Byzantine resilience algorithm?

- ◆ Problem Setup
- ◆ Related Work
- ◆ Robust Distributed Gradient Descent
- ◆ Robust One-round Algorithm
- Experiments
- **♦** Conclusion
- Our Discussions

- **♦** Problem Setup
- ◆ Related Work
- ◆ Robust Distributed Gradient Descent
- ◆ Robust One-round Algorithm
- Experiments
- **♦** Conclusion
- Our Discussions

Problem Setup

- One master machine and m worker machines.
- Each worker machine stores n data points, i.i.d. from D.
- Sometimes $n \gtrsim m$.
- αm worker machines are Byzantine $(0 \le \alpha < \frac{1}{2})$.
- Normal worker machines communicate with the master machine using some predefined protocol.
- Byzantine machines may send arbitrary or even adversarial messages to the master machine.

Problem Setup

- Goal: minimize population risk $F(w) = \mathbb{E}_{z \sim D} f(w; z), w \in W \subseteq \mathbb{R}^d$.
- Focus: achieving the optimal statistical error rate w.r.t.:
 - n (the number of data points on each worker machine)
 - m (the number of worker machines)
 - α (the fraction of Byzantine machines)

$$\|\mathbf{w}^T - \mathbf{w}^*\|_2 \le \widetilde{\Omega} \left(\frac{\alpha}{\sqrt{n}} + \frac{1}{\sqrt{nm}} \right) = \widetilde{\Omega} \left(\frac{1}{\sqrt{n}} \left(\alpha + \frac{1}{\sqrt{m}} \right) \right)$$

- ◆ Problem Setup
- **♦** Related Work
- ◆ Robust Distributed Gradient Descent
- ◆ Robust One-round Algorithm
- Experiments
- **♦** Conclusion
- Our Discussions

Related Work

Byzantine distributed learning:

Feng et al. 2014: $\frac{1}{\sqrt{n}}$ rate, not decaying with α .

Blanchard et al. 2017: no explicit statistical rates.

Chen et al. 2017:
$$O\left(\frac{\sqrt{\alpha}}{\sqrt{n}} + \frac{1}{\sqrt{nm}}\right)$$
.

- ◆ Problem Setup
- ◆ Related Work
- **♦** Robust Distributed Gradient Descent
- ◆ Robust One-round Algorithm
- Experiments
- Conclusion
- Our Discussions

Algorithm 1 Robust Distributed Gradient Descent

Require: Initialize parameter vector $\mathbf{w}^0 \in \mathcal{W}$, algorithm parameters β (for Option II), η and T.

for $t = 0, 1, 2, \dots, T - 1$ do

Master machine: send \mathbf{w}^t to all the worker machines.

for all $i \in [m]$ do in parallel

<u>Worker machine i</u>: compute local gradient

$$\mathbf{g}^{i}(\mathbf{w}^{t}) \leftarrow \begin{cases} \nabla F_{i}(\mathbf{w}^{t}) & \text{normal worker machines,} \\ * & \text{Byzantine machines,} \end{cases}$$

send $\mathbf{g}^{i}(\mathbf{w}^{t})$ to master machine.

end for

Master machine: compute aggregate gradient

$$\mathbf{g}(\mathbf{w}^t) \leftarrow \begin{cases} \mathsf{med}\{\mathbf{g}^i(\mathbf{w}^t) : i \in [m]\} & \text{Option I} \\ \mathsf{trmean}_{\beta}\{\mathbf{g}^i(\mathbf{w}^t) : i \in [m]\} & \text{Option II} \end{cases}$$

update model parameter $\mathbf{w}^{t+1} \leftarrow \Pi_{\mathcal{W}}(\mathbf{w}^t - \eta \mathbf{g}(\mathbf{w}^t)).$

end for

- Robust gradient aggregation: $g(w) = \mathcal{R}(g_1, g_2, ..., g_m)$
- Coordinate-wise median: $g(w) = \text{med}(g_1, g_2, ..., g_m)$ Take the one-dimensional median on each coordinate.
- Coordinate-wise β -trimmed mean: $g(w) = \operatorname{trmean}_{\beta}(g_1, g_2, ..., g_m)$ Trimmed mean: remove the largest and smallest β fraction of the elements and then average.

- Definition
- Variance of a random vector x:

$$var(x) = \mathbb{E}||x - \mathbb{E}x||^2$$

Absolute skewness of a random variable X:

$$\gamma(X) = \frac{\mathbb{E}|X - \mathbb{E}X|^3}{\operatorname{var}(X)^{3/2}}$$

v-sub-exponential random variable X:

$$\mathbb{E}e^{\lambda(X-\mathbb{E}X)} \le e^{\frac{1}{2}v^2\lambda^2}, \quad \forall |\lambda| < \frac{1}{v}$$

- Definition
- Variance of a random vector x:

$$var(x) = \mathbb{E}||x - \mathbb{E}x||^2$$

Absolute skewness of a random variable X:

$$\gamma(X) = \frac{\mathbb{E}|X - \mathbb{E}X|^3}{\operatorname{var}(X)^{3/2}}$$

v-sub-exponential random variable X:

$$\mathbb{E}e^{\lambda(X-\mathbb{E}X)} \leq e^{\frac{1}{2}v^2\lambda^2}, \quad \forall |\lambda| < \frac{1}{v}$$

- Smoothness: Population loss function F(w) is L_F-smooth, and for every z, each partial derivative ∂_kf(w; z) is L_k-Lipschitz.
- Bounded parameter space: $\forall w, w' \in W, ||w w'||_2 \leq D$.
- Minimizer (convex loss): $w^* = \operatorname{argmin}_{w \in W} F(w)$, $\nabla F(w^*) = 0$.

Median-based Gradient Descent

- $\operatorname{var}(\nabla F(w)) \leq V^2, \forall w \in W.$
- $\gamma(\partial_k f(w;z)) \le S, \forall k \in [d], w \in W.$
- $\alpha + \tilde{O}\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}}\right) \leq \frac{1}{2} \epsilon$.
- Step size $\eta = 1/L_F$.
- Strongly convex loss function
- **Theorem 1** Suppose that F(w) is λ_F -strongly convex. Then, w.h.p., after $O\left(\frac{L_F}{\lambda_F}\log\left(\frac{\lambda_F}{\Delta}||w^0-w^*||_2\right)\right)$ parallel iterations, the median-based

gradient descent algorithm outputs
$$\widehat{w}$$
 with

$$\|\widehat{w} - w^*\|_2 \leq O\left(\frac{\Delta}{\lambda_F}\right),$$
 where $\Delta = \widetilde{O}\left(V\left(\frac{\alpha}{\sqrt{n}} + \sqrt{\frac{d}{nm}} + \frac{s}{n}\right)\right)$.

$$n \gtrsim m$$

$$\widetilde{\Omega}\left(\frac{\alpha}{\sqrt{n}} + \frac{1}{\sqrt{nm}}\right) = \widetilde{\Omega}\left(\frac{1}{\sqrt{n}}\left(\alpha + \frac{1}{\sqrt{m}}\right)\right)$$

Median-based Gradient Descent

- Non-strongly convex loss function
- Theorem 2 Suppose that F(w) is convex. Then, w.h.p., after $O\left(\frac{L_F}{\Delta}||w^0-w^*||_2\right)$ parallel iterations, the median-based gradient descent algorithm outputs \widehat{w} with

$$F(\widehat{w}) - F(w^*) \le O(\Delta ||w^0 - w^*||_2),$$
 where $\Delta = \widetilde{O}\left(V\left(\frac{\alpha}{\sqrt{n}} + \sqrt{\frac{d}{nm}} + \frac{s}{n}\right)\right).$

Median-based Gradient Descent

- Non-convex loss function
- Theorem 3 W.h.p., after $O\left(\frac{L_F}{\Delta^2}\left(F(w^0) F(w^*)\right)\right)$ parallel iterations, the median-based gradient descent algorithm outputs \widehat{w} with $\|\nabla F(\widehat{w})\|_2 \leq O(\Delta)$,

where
$$\Delta = \tilde{O}\left(V\left(\frac{\alpha}{\sqrt{n}} + \sqrt{\frac{d}{nm}} + \frac{S}{n}\right)\right)$$
.

Trimmed-mean-based Gradient Descent

- $\forall k \in [d], w \in W, \partial_k f(w; z)$ is v-sub-exponential.
- $\alpha \leq \beta \leq \frac{1}{2} \epsilon$.
- Step size η = 1/L_F.
- Strongly convex loss function
- Theorem 4 Suppose that F(w) is λ_F -strongly convex. Then, w.h.p., after $O\left(\frac{L_F}{\lambda_F}\log\left(\frac{\lambda_F}{\Delta'}\|w^0-w^*\|_2\right)\right)$ parallel iterations, the median-based gradient descent algorithm outputs \widehat{w} with

$$\|\widehat{w} - w^*\|_2 \leq O\left(\frac{\Delta'}{\lambda_F}\right),$$
 where $\Delta' = \widetilde{O}\left(vd\left(\frac{\beta}{\sqrt{n}} + \sqrt{\frac{1}{nm}}\right)\right)$.

Trimmed-mean-based Gradient Descent

- Non-strongly convex loss function
- Theorem 5 Suppose that F(w) is convex. Then, w.h.p., after $O\left(\frac{L_F}{\Delta'}||w^0-w^*||_2\right)$ parallel iterations, the median-based gradient descent algorithm outputs \widehat{w} with

$$F(\widehat{w}) - F(w^*) \le O(\Delta' ||w^0 - w^*||_2),$$
 where $\Delta' = \widetilde{O}\left(vd\left(\frac{\beta}{\sqrt{n}} + \sqrt{\frac{1}{nm}}\right)\right).$

Trimmed-mean-based Gradient Descent

- Non-convex loss function
- Theorem 6 W.h.p., after $O\left(\frac{L_F}{\Delta'^2}\left(F(w^0) F(w^*)\right)\right)$ parallel iterations, the median-based gradient descent algorithm outputs \widehat{w} with $\|\nabla F(\widehat{w})\|_2 \leq O(\Delta')$,

where
$$\Delta' = \tilde{O}\left(vd\left(\frac{\beta}{\sqrt{n}} + \sqrt{\frac{1}{nm}}\right)\right)$$
.

Comparison

	median GD	trimmed mean GD
Statistical error rate	$\widetilde{\mathcal{O}}(\frac{\alpha}{\sqrt{n}} + \frac{1}{\sqrt{nm}} + \frac{1}{n})$	$\widetilde{\mathcal{O}}(\frac{\alpha}{\sqrt{n}} + \frac{1}{\sqrt{nm}})$
Distribution of $\partial_k f(\mathbf{w}; \mathbf{z})$	Bounded skewness	Sub-exponential
α known?	No	Yes

Proof Sketch

Statistics part

- Bound the error of robust gradient estimation for a fixed w ∈ W.
- For median, use Berry-Esseen-type inequality to bound the asymptotic convergence rate to normal distribution.
- For trimmed mean, use standard Bernstein-type inequality.
- Due to complicated probabilistic dependence, we need careful covering net argument to prove a uniform bound ∀ w ∈ W.

Optimization part

- Convert the problem to gradient descent with bounded adversarial noise:
- $w \leftarrow w \eta g(w)$ with $||g(w) \nabla F(w)|| \le \Delta$, $\forall w \in W$.

- ◆ Problem Setup
- ◆ Related Work
- ◆ Robust Distributed Gradient Descent
- **♦** Robust One-round Algorithm
- Experiments
- **♦** Conclusion
- Our Discussions

Robust One-round Algorithm

Quadratic loss function:

$$f(w; z) = \frac{1}{2}w^{T}Hw + p^{T}w + c$$
$$F(w) = \frac{1}{2}w^{T}H_{F}w + p_{F}^{T}w + c_{F}$$

• **Theorem 7** Suppose that $\alpha + \tilde{O}\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}}\right) \leq \frac{1}{2} - \epsilon$. Then, for strongly convex quadratic loss function, w.h.p., the output of the robust oneround algorithm satisfies

$$\|\widehat{w} - w^*\|_2 \le \widetilde{O}\left(\frac{\alpha}{\sqrt{n}} + \frac{1}{\sqrt{nm}} + \frac{1}{n}\right).$$

- ◆ Problem Setup
- ◆ Related Work
- ◆ Robust Distributed Gradient Descent
- ◆ Robust One-round Algorithm
- **◆** Experiments
- **♦** Conclusion
- Our Discussions

Experiments

- Byzantine: replace every training label y on these machines with 9 y, e.g., 0 is replaced with 9, 1 is replaced with 8, etc, and the Byzantine machines simply compute gradients based on these data.
 - Robust gradient descent (MNIST)
 - Logistic regression, m = 40:

α	0	0.05				0	
Algorithm	mean	mean	median	trimmed mean			
Test accuracy (%)	88.0	76.8	87.2	86.9			

• CNN, m = 10:

α	0	0.1			
Algorithm	mean	mean	median	trimmed mean	
Test accuracy (%)	94.3	77.3	87.4	90.7	

Experiments

Experiments

- Robust one-round algorithm
- Logistic regression, m=10:

α	0	0.1	
Algorithm	mean	mean	median
Test accuracy (%)	91.8	83.7	89.0

- ◆ Problem Setup
- ◆ Related Work
- ◆ Robust Distributed Gradient Descent
- ◆ Robust One-round Algorithm
- Experiments
- Conclusion
- Our Discussions

Conclusion

- Median-based gradient descent achieves order optimal rate if $n \geq m$.
- Trimmed-mean-based gradient descent achieves order optimal rate under stronger probabilistic assumptions.
- Median-based one-round algorithm achieves order optimal rate for quadratic loss functions if n ≥ m.

- ◆ Problem Setup
- ◆ Related Work
- ◆ Robust Distributed Gradient Descent
- ◆ Robust One-round Algorithm
- Experiments
- **♦** Conclusion
- **♦** Our Discussions

Our Discussions

SUMMARY OF SOME RECENT RESULTS CONCERNING BYZANTINE-RESILIENT DISTRIBUTED MACHINE LEARNING

Algorithm	Convergence Rate	Statistical Learning Rate	Condition on (M,b)
Coordinate-wise Median (CM) [15]	$\mathcal{O}\left(c^{t}\right)$	$\mathcal{O}\left(\frac{b}{M\sqrt{N}} + \frac{1}{\sqrt{MN}} + \frac{1}{N}\right)$	$M \ge 2b + 1$
Coordinate-wise Trimmed Mean (CTM) [15]	$\mathcal{O}\left(c^{t}\right)$	$\mathcal{O}\left(\frac{b}{M\sqrt{N}} + \frac{1}{\sqrt{MN}}\right)$	$M \ge 2b + 1$
GeoMed [16]	$\mathcal{O}\left(c^{t} ight)$	$\mathcal{O}\left(\frac{\sqrt{b}}{\sqrt{MN}}\right)$	$M \ge 2b + 1$
Krum [17]	N/A	N/A	$M \ge 2b + 3$
Multi-Krum [17]	N/A	N/A	$M \ge 2b + m + 2$
Bulyan [18]	N/A	N/A	$M \ge 4b + 3$
Zeno/Zeno++ [20], [21]	$\mathcal{O}\left(c^{t}\right) + \mathcal{O}\left(1\right)$	N/A	$M \ge b + 1$
RSA [23]	$\mathcal{O}\left(\frac{1}{t}\right) + \mathcal{O}\left(1\right)$	N/A	$M \ge b + 1$
signSGD [24]	_	N/A	$M \ge 2b + 1$

Algorithm	CM, CTM, Zeno/Zeno++	GeoMed	Krum, Multi-Krum	Bulyan
Screening Complexity	$\mathcal{O}(Md)$	$\mathcal{O}\left(Md + bd\log^3(\frac{1}{\gamma})\right)^*$	$\mathcal{O}(M^2d)$	$\mathcal{O}(M^2d + Md)$

Screening computational complexity for GeoMed is for computing $(1 + \gamma)$ -approximate geometric median [16].

Our Discussions

- GeoMed algorithm
 - > uses the geometric median of local gradients as the screening and aggregation rule.
- Krum algorithm,
 - ➤ finds the local gradient that has the smallest distance to its M −b−2 closest gradients and uses this gradient for the update step.
- Multi-Krum
 - \gt finds $m \in \{1, ..., M\}$ local gradients using the Krum principle and uses an average of these gradients for update.
- The Bulyan algorithm
 - ➤ a two-stage algorithm. First, it recursively uses vector median methods such as Geometric median and Krum to select M 2b local gradients. And then eliminate 2b values that are farthest from the coordinate-wise median.
- Zeno/Zeno++
 - > has a ground truth dataset (the true gradient)
- RSA
 - > add a regularization term.
- SignSGD
 - > voted mechanism

