21BDS0340

Abhinav Dinesh Srivatsa

Electronics Lab

Task 2

Exercise No.: 1 Date: 10/03/22

Half wave and Full wave rectifier

Half Wave Rectifier

Circuit Diagram

Components Required

Basic – Resistors

Sources – Power Sources – AC_Power, Ground

Simulate – Instruments – Oscilloscope

Del Average voltage voe =
$$\frac{v_m}{\pi} = \frac{7.72 \text{ v}}{}$$

Pipple factor
$$r = \left(\left(\frac{v_{rms}}{v_{de}} \right)^2 - 1 \right)^{1/2} = 1.21$$

Efficiency
$$\eta = \frac{P_{DL}}{P_{AL}} = \frac{v_{DL}^2}{v_{AL}^2} = \frac{v_{DL}^2}{v_{rms}^2} = \frac{4}{\pi^2} = \frac{40.6.7.}{100.6.7}$$

form factor F.F =
$$\frac{V_{rms}}{V_{olc}} = \frac{\overline{X}}{2} = \frac{1.57}{1.57}$$

Peak factor P.F =
$$\frac{v_m}{v_{rms}} = \frac{2}{v_r}$$

۶. ۲۵.	Parameter	Value
1	Peak voltage (vm)	25.251
2	ems voltage (vrus)	12.13 v
3	DC Voltage (Vdc)	7.72 1
4	Ripple factor (1)	1.21
5	Efficiency (n)	40.6./.
6	Form Factor (F.F.)	1.57
7	Peak Factor (P.F.)	2

Half Wave Rectifier (With Smoothing Capacitor)

Circuit Diagram

Components Required

Basic – Resistors, Capacitors

Sources – Power Sources – AC_Power, Ground

Simulate-Instruments-Oscilloscope

$$\frac{V_{1,1005}}{2\sqrt{3}} = \frac{V_{1}PP}{2\sqrt{3}} = \frac{12.534}{2\sqrt{3}}$$

$$= 3.62 \text{ V}$$

S. NO.	Parameter	Value	
1	RMS Voltage Viras	3.62 v	
2	De voltage Vac	17.99 v	
3	Ripple factor	0.201	

Full Wave Rectifier

Circuit Diagram

Components Required

Basic – Resistors

Sources – Power Sources – AC_Power, Ground

Simulate-Instruments-Oscilloscope

RMS voltage
$$\frac{1}{\sqrt{2}}$$

$$= \frac{16.62}{4}$$

Ripple Factor
$$r = \left(\left(\frac{v_{rms}}{v_{de}} \right)^2 - 1 \right)^{1/2}$$

$$= 0.482$$

Form Factor =
$$\frac{V_{\text{rad}}}{V_{\text{dc}}} = \frac{\pi}{L/2} = \frac{1.11}{L}$$

Peak Factor =
$$\frac{v_m}{v_{rms}} = \frac{(2)}{v_{rms}}$$

5. No.	Parameter	Value
1	· Vm	23.51 V
2	RMS voltage Vins	16.62 V
3	DL voltage Vde	14. 97 v
4	Ripple Factor r	0. 482
5	Efficiency 4	81.2./.
6	Form Factor	1-11
7	Plak Factor	62

Full Wave Rectifier (With Smoothing Capacitor)

Circuit Diagram

Components Required

Basic – Resistors, Capacitors

Sources – Power Sources – AC_Power, Ground

Simulate – Instruments – Oscilloscope

DL voltage
$$V_{dL} = V_{ML} - \left(\frac{V_{IPP}}{2}\right)$$

$$= 20.03 V$$

5. No.	Parameter	Value
1	Rus voltage Vriens	2.014
۷	Di voltage Vae	20.03 V
3	Ripple Factor o	0.1

Verification Message

KRISHNA CHAITHANYA MUNTHA 10:50 21BDS0340-Exp 3 verified

Exercise No.: 2 Date: 17/03/22

Zener Diode as a Voltage Regulator

Line Regulation

Circuit Diagram

Components Required

Basic – Resistors

Sources – Power Sources – Variable DC Power, Ground

Diodes - Zener - 1N4733A

Toolbars – Measurement Components – Ammeter, Voltmeter

Simulated Circuit Diagram

In line regulation, load resistance is constant and input voltage varies. Vs must be sufficiently large to turn the zener diode on.

$$V_L = V_2 = V_{1} \text{min } \times R_L$$

$$(R_S + R_L)$$

50, the minimum torn-on voltage Vinin is:

Taking:

V2 = 5.1 V

Rs = 1000 ohm

RL = 2000 ohm

Graph

Load Regulation

Circuit Diagram

Components Required

Basic – Resistor, Variable Resistor

Sources – Power Sources –DC Power, Ground

Diodes – Zener – 1N4733A

Toolbars – Measurement Components – Ammeter, Voltmeter

Simulated Circuit Diagram

In load regulation, input voltage is constant and load resistance varies. Too small a load, will result in making the zener diode off.

so the minimum load resistance RL:

Plmin =
$$\frac{v_2 \times P_S}{v_1 - v_2}$$

Taking:

Graph

Verification Message

