Linear Algebre 2

Jiaqi Wang

December 14, 2023

1 From Linear Algebra 1

1.1 Field

Definition 1.1.1 – **Field** Sets in which we can compute like in \mathbb{R} .

1.2 Vector Space and Subspace

Definition 1.2.1 — **Vector Space** A set V with two operations, addition and scalar multiplication, such that

- 1. V is an abelian group under addition.
- 2. $\forall \alpha, \beta \in F, \forall \underline{u}, \underline{v} \in V$, we have
 - (a) $\alpha(\underline{u} + \underline{v}) = \alpha \underline{u} + \alpha \underline{v}$.
 - (b) $(\alpha + \beta)\underline{u} = \alpha\underline{u} + \beta\underline{u}$.
 - (c) $(\alpha\beta)\underline{u} = \alpha(\beta\underline{u}).$
 - (d) $1\underline{u} = \underline{u}$.

Definition 1.2.2 – **Subspace** A subset W of a vector space V is a subspace of V if W is a vector space under the same operations as V.

Definition 1.2.3 – **Bases** A set of vectors $\{\underline{v}_1,\underline{v}_2,\cdots,\underline{v}_n\}$ is a basis of a vector space V if

- 1. $\{\underline{v}_1, \underline{v}_2, \cdots, \underline{v}_n\}$ is linearly independent.
- 2. $\{\underline{v}_1, \underline{v}_2, \cdots, \underline{v}_n\}$ spans V.

1.3 Linear Map

Definition 1.3.1 – **Linear Map** A map $A: V \to W$ (V, W vector spaces) is linear if

- 1. $A(\underline{u} + \underline{v}) = A(\underline{u}) + A(\underline{v}).$
- 2. $\mathcal{A}(\lambda \underline{u}) = \lambda \mathcal{A}(\underline{u}).$

Combined we have $\mathcal{A}(\lambda \underline{u} + \mu \underline{v}) = \lambda \mathcal{A}\underline{u} + \mu \mathcal{A}\underline{v}$.

Example 1.3.2

Reflections, rotations, projections, identity map, zero map, etc.

1.4 Multiplication with Matrices

 $A(\underline{v}) = A \cdot \underline{v}$, where A is a matrix.

1.5 Orthogonal projection

Definition 1.5.1 – **Orthogonal projection** Let V be a vector space with inner product $\langle \cdot, \cdot \rangle$. Let W be a subspace of V. The orthogonal projection of V onto W is the linear map $\mathcal{P}_W: V \to W$ such that

- 1. $\mathcal{P}_W(\underline{v}) \in W$.
- 2. $\underline{v} \mathcal{P}_W(\underline{v}) \in W^{\perp}$.

Theorem 1.5.2 – **Addition** For \mathcal{A}, \mathcal{B} linear maps, we define $(\mathcal{A} + \mathcal{B})(\underline{v}) = \mathcal{A}(\underline{v}) + \mathcal{B}(\underline{v})$.

Theorem 1.5.3 – Scalar multiplication For \mathcal{A} linear map, we define $(\lambda \mathcal{A})(\underline{v}) = \lambda \mathcal{A}(\underline{v})$.

Theorem 1.5.4 – Composition For \mathcal{A}, \mathcal{B} linear maps, we define $(\mathcal{A} \circ \mathcal{B})(\underline{v}) = \mathcal{A}(\mathcal{B}(\underline{v}))$.

Theorem 1.5.5 – **Inverse** For \mathcal{A} linear map, we define \mathcal{A}^{-1} such that $\mathcal{A}^{-1} \circ \mathcal{A} = \mathcal{A} \circ \mathcal{A}^{-1} = \mathcal{I}$.

1.5.6 Powers of maps

- 1. $A^2 = AA$
- $2. \ \mathcal{A}^n = \mathcal{A}\mathcal{A}^{n-1}$
- 3. $A^{-n} = (A^{-1})^n$

1.5.7 Null space and range

Definition 1.5.8 – **Null space** The null space of a linear map $\mathcal{A}: V \to W$ is the set of vectors $\underline{v} \in V$ such that $\mathcal{A}(\underline{v}) = \underline{0}$.

Definition 1.5.9 – **Range** The range of a linear map $\mathcal{A}: V \to W$ is the set of vectors $\underline{w} \in W$ such that $\exists \underline{v} \in V$ such that $\mathcal{A}(\underline{v}) = \underline{w}$.

Theorem 1.5.10 – Let $\mathcal{A}: V \to W$ be a linear map. Then \mathcal{A} is injective if and only if $\mathcal{N}(\mathcal{A}) = \{\underline{0}\}.$

Theorem 1.5.11 – Let $\mathcal{A}:V\to W$ be a linear map. Then \mathcal{A} is surjective if and only if $\mathcal{R}(\mathcal{A})=W$.

Theorem 1.5.12 – Let $\mathcal{A}: V \to W$ be a linear map. Then \mathcal{A} is bijective if and only if $\mathcal{N}(\mathcal{A}) = \{\underline{0}\}$ and $\mathcal{R}(\mathcal{A}) = W$.

1.5.13 Null space / Range for matrix multiplication

Theorem 1.5.14 – Let A be an $m \times n$ matrix. Then $\mathcal{N}(A) = \{\underline{v} \in V \mid A\underline{v} = \underline{0}\}$ and $\mathcal{R}(A) = \{\underline{w} \in V \mid \exists \underline{v} \in V \text{ such that } A\underline{v} = \underline{w}\}.$

1.5.15 Quotient spaces

Definition 1.5.16 – **Quotient space** Let V be a vector space and W a subspace of V. The quotient space V/W is the set of cosets of W in V. I.e. $V/W = \{\underline{v} + W \mid \underline{v} \in V\}$.

Theorem 1.5.17 – Noether's fundamental theorem on homomorphisms For any linear map $\mathcal{A}:V\to W$, there exists a linear bijection between its range \mathcal{R} and the quottient space V/\mathcal{N} .

1.5.18 Example

Take $P: \mathbb{R}^3 \to \mathbb{R}^3, (x, a, b) \mapsto (0, a, b)$ and $\mathcal{R}(P) = <(0, a, 0), (0, 0, b) >$

Proof. ... $\bar{\mathcal{A}}: v/\mathcal{N}(\mathcal{A}) \to W, \underline{v} \mapsto \mathcal{A}\underline{v}$ Restrict target space of $\bar{\mathcal{A}}$ to $\mathcal{R}(A)$. Homework: show that $\bar{\mathcal{A}}$ is linear and injective. So $\bar{\mathcal{A}}$ is a linear bijection.

 $\bar{\mathcal{A}}^{-1}$:

2 Transition Matrices

We can find matrices for linear maps $\mathbb{K}^n \to \mathbb{K}^m$ by using the standard basis of \mathbb{K}^n and \mathbb{K}^m . However, working with abstract vector spaces, we do not have a standard basis. For that reason we look at transition matrices.

2.1 Coordinates

Definition 2.1.1 – **coordinates** Let V be an n-dimensional vector space with basis $\alpha = \{\underline{a}_1, \dots, \underline{a}_n\}$. Every vector $\underline{v} \in V$ can be expressed as a linear combination of the basis vectors in exactly one way:

$$\underline{v} = \sum_{i=1}^{n} \lambda_i \underline{a}_i. \tag{1}$$

The coordinates of \underline{v} with respect to α are the numbers $\lambda_1, \lambda_2, \dots, \lambda_n$.

Remark 2.1.2

Clearly, the coordinates depend on the choice of the basis α .

Theorem 2.1.3 – Let V be an n-dimensional vector space with basis $\alpha = \{\underline{a}_1, \dots, \underline{a}_n\}$. We will denote the map sending each vector \underline{v} to its coordinates with respect to α by α . Then α is an invertible linear map from V to \mathbb{K}^n .

With this notation, $\alpha(\underline{v})$ is the coordinate vector of the vector $\underline{v} \in V$ with respect to the basis α .

Definition 2.1.4 – Coordinate transformation (map) Let α and β be bases of an n-dimensional vector space V. The map $\beta\alpha^{-1}: \mathbb{K}^n \to \mathbb{K}^n$ is called the coordinate transformation (map) from α to β .

2.2 Basis transition matrix

Definition 2.2.1 – **Transition matrix** Let α and β be bases of an n-dimensional vector space V. We call the $n \times n$ -matrix associated to the linear map $\beta \alpha^{-1}$ the transition matrix from basis α to basis β and denote it by $_{\beta}S_{\alpha}$.

The following theorem states that multiplication with the matrix $_{\beta}S_{\alpha}$ translates α - into β coordinates, and gives a direct description of how the matrix looks, entry-wise.

Theorem 2.2.2 – Let α and β be bases of an n-dimensional vector space V and let $_{\beta}S_{\alpha}$ be the basis transition matrix, i.e. the matrix of $\beta\alpha^{-1}$. Let $\underline{x} := \alpha(\underline{v})$ be the α -coordinate vector of a vector $\underline{v} \in V$. Then the β -coordinate vector of \underline{v} is equal to the product $_{\beta}S_{\alpha}\underline{x}$. Furthermore, the columns of matrix $_{\beta}S_{\alpha}$ are the β -coordinate vectors of the α -basis vectors.

Remark 2.2.3

$$_{\alpha}S_{\beta\beta}S_{\alpha}=I$$
, so $_{\alpha}S_{\beta}=_{\beta}S_{\alpha}^{-1}$

Theorem 2.2.4 – Let α, β and γ be bases of an n-dimensional vector space V, with respective basis transition matrices $_{\beta}S_{\alpha}$ and $_{\gamma}S_{\beta}$. Then the basis transition matrix from α to γ is $_{\gamma}S_{\alpha} = _{\gamma}S_{\beta\beta}S_{\alpha}$.

Remark 2.2.5

It is important to distinguish between calculating with vectors (so elements of the vectors space V) and calculating with coordinates (so sequences of elements from \mathbb{K}^n).

2.3 Generalizing the map-matrix connection for spaces that aren't \mathbb{K}^n

Definition 2.3.1 – Matrix of a linear map Let V and W be vector spaces with bases α and β respectively. Let $\mathscr{A}: V \to W$ be a linear map. We denote the matrix of the linear map $\beta \mathscr{A} \alpha^{-1}$ by ${}_{\beta} A_{\alpha}$ and call it the matrix of \mathscr{A} with respect to the bases α and β .

Remark 2.3.2

If V = W and $\alpha = \beta$, then we simplify notation by denoting the corresponding matrix by A_{α} . We call it the matrix of \mathscr{A} with respect to the basis α .

Remark 2.3.3 (How does the matrix look?)

The columns of $_{\beta}A\alpha$ are

$$(\beta \mathscr{A} \alpha^{-1})(\underline{e}_i) = \beta (\mathscr{A} \underline{a}_i), \qquad i = 1, \dots, n,$$

meaning the i-th column consists of the β -coordinates of the image $\mathcal{A}\underline{a}_i$ of the i-th basis vector \underline{a}_i .

Remark 2.3.4

To find the image of a vector $\underline{v} \in V$, we can:

1. Determine the coordinate vector $\alpha(\underline{v})$ of \underline{v} ;

- 2. Multiply $\alpha(\underline{v})$ with the representation matrix βA_{α} , yielding the coordinate vector of $\mathscr{A}\underline{v}$;
- 3. Translate the coordinate vector of $\mathcal{A}\underline{v}$ back to the corresponding vector in W.

2.4 How do base changes affect the matrix of a linear map?

Theorem 2.4.1 – Effect of change of basis Choose in a finite-dimensional space V two bases α and β , and suppose $\mathscr{A}: V \to V$ is linear. Then

$$A_{\beta} = {}_{\beta}S_{\alpha}A_{\alpha\alpha}S_{\beta}.$$

3 Eigenvalues and Eigenvectors

3.1 Diagonalization of matrices

Definition 3.1.1 – A square matrix A has diagonal form if all elements a_{ij} with $i \neq j$ are zero.

Theorem 3.1.2 – Let $A: V \to V$ be a linear map and let $\alpha = \{\underline{a}_1, \dots, \underline{a}_n\}$ be a basis of V. The matrix A_{α} has a diagonal form

$$A_{\alpha} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

if and only if $A\underline{a}_1 = \lambda_i \underline{a}_i$ for all $i \in \{1, \dots, n\}$.

3.2 Eigenvalues and eigenvectors

Definition 3.2.1 – **Eigenvector and eigenvalue** Let $\mathcal{A}: V \to V$ be a linear map from a \mathbb{K} -vector space V to itself. A vector $\underline{v} \neq \underline{0} \in V$ is called an *eigenvector* of \mathcal{A} with *eigenvalue* λ if $A\underline{v} = \lambda\underline{v}$. We denote the set of all eigenvalues of \mathcal{A} by $\operatorname{spec}(\mathcal{A})$ and call it the *spectrum* of \mathcal{A} .

Theorem 3.2.2 – Let $\mathcal{A}: V \to V$ be a linear map with representation matrix A_{α} for a basis α . Then A_{α} is in diagonal form if and only if α is a basis of eigenvectors of \mathcal{A} . In this case, the diagonal entries of A_{α} are the eigenvalues of \mathcal{A} .

Definition 3.2.3 – **Eigenspace** Let $\mathcal{A}: V \to V$ be a linear map. For any scalar $\lambda \in \mathbb{K}$, we denote

$$E_{\lambda} := \mathcal{N}(\mathcal{A} - \lambda \mathcal{I})$$

Since null spaces are subspaces, E_{λ} is a subspace, called the eigenspace of \mathcal{A} for λ .

Remark 3.2.4

Eigenspaces indeed are spaces of eigenvectors for a given eigenvalue: E_{λ} is the null space of the linear map $\mathcal{A} - \lambda \mathcal{I}$.

- $\underline{v} \in E_{\lambda} \iff (\mathcal{A} \lambda \mathcal{I})\underline{v} = \underline{0}.$
- $\underline{v} \in E_{\lambda} \iff A\underline{v} \lambda\underline{v} = \underline{0}.$

So any vector \underline{v} lies in E_{λ} if and only if $(A - \lambda \mathcal{I})\underline{v} = \underline{0}$, which is equivalent to $A\underline{v} - \lambda \underline{v} = \underline{0}$.

Remark 3.2.5 (null space as eigenspace)

We can also write the null space of \mathcal{A} as an eigenspace: E_0 consists of vectors that are mapped to 0 times itself, so on $\underline{0}$.

3.3 Computing eigenvalues and eigenspaces

Theorem 3.3.1 – λ is an eigenvalue if and only if $det(A - \lambda \mathcal{I}) = 0$. Let $\alpha = \{\underline{a}_1, \dots, \underline{a}_n\}$ be a basis for V, and let

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{pmatrix}$$

be the matrix of A w.r.t. this basis. Then the eigenvectors for eigenvalue λ , in α -coordinates, are the non-zero solutions of the system

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

3.4 Characteristic polynomial

Definition 3.4.1 – Characteristic polynomial Let $\mathcal{A}: V \to V$ be a linear map and let A_{α} be the matrix of \mathcal{A} w.r.t. a basis α . We call the equation $\det(A_{\alpha} - \lambda \mathcal{I}) = 0$ the *characteristic* equation of A_{α} , and the left-hand side off this equation, $\det(A_{\alpha} - \lambda \mathcal{I})$, the *characteristic* polynomial of A_{α} .

We also call them characteristic equation/polynomial of \mathcal{A} , and denote the characteristic polynomial by $\chi_{\mathcal{A}}$.

Theorem 3.4.2 – Let $\mathcal{A}: V \to V$ be a linear map, α and β be two bases for V and let A_{α}/A_{β} be the matrix of \mathcal{A} w.r.t. a basis α/β . Then $\det(A_{\alpha} - \lambda \mathcal{I}) = \det(A_{\beta} - \lambda \mathcal{I})$.

Remark 3.4.3

The characteristic polynomial is independent of the choice of basis.

Theorem 3.4.4 – Let $\mathcal{A}: V \to V$ be a linear map on a vector space V of dimension n, and

let

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{pmatrix}$$

be the matrix of \mathcal{A} w.r.t. a basis α . Then the characteristic polynomial $\chi_{\mathcal{A}}$ is a polynomial of degree (exactly) n, and of the following shape:

$$\chi_{\mathcal{A}}(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} (a_{11} + a_{22} + \dots + a_{nn}) \lambda^{n-1} + \dots + c_1 \lambda + c_0$$

for some coefficients $c_0, c_1, \dots \in \mathbb{K}$.

Definition 3.4.5 — **Trace** The sum of the diagonal elements of a square matrix A is called the *trace* of the matrix A. We denote it by tr(A).

Theorem 3.4.6 – Let $\mathcal{A}: V \to V$ be a linear map with $\dim(V) < \infty$. For every basis α , the matrix A_{α}

- 1. has the same trace, which we therefore also call the trace of A, and denote it by tr(A).
- 2. has the same determinant, which we therefore also call the *determinant* of \mathcal{A} , and denote it by $\det(\mathcal{A})$. We have the identity $\det(\mathcal{A}) = c_0$, where c_0 is the constant coefficient of the characteristic equation.

Theorem 3.4.7 – Let A be a square matrix with entries in \mathbb{K} , where $\mathbb{K} \in \{\mathbb{C}, \mathbb{C}\}$, with characteristic polynomial $\chi_A(\lambda)$. Then the

- trace of the matrix is the sum of the roots of χ_A ; and the
- determinant of the matrix is the product of the roots of χ_A .

3.5 Linear independence of eigenvectors

Theorem 3.5.1 – Let $\mathcal{A}: V \to V$ be a linear map and let $\underline{v}_1, \dots, \underline{v}_n$ be eigenvectors of \mathcal{A} for mutually different eigenvalues $\lambda_1, \dots, \lambda_n$. Then $\underline{v}_1, \dots, \underline{v}_n$ are linearly independent.

4 Invariant subspaces

4.1 Invariant subspace

Definition 4.1.1 – **Invariant subspace** Let W be a subspace of V. W is called *invariant under linear map* $A: V \to V$ if $A\underline{w} \in W$ for all $\underline{w} \in W$.

Example 4.1.2 (Null space and range) • The null space \mathcal{N} pf a linear map \mathcal{A} is always invariant: if $\underline{x} \in \mathcal{N}$, then $\mathcal{A}\underline{x} = \underline{0}$, and $\underline{0} \in \mathcal{N}$.

• The range \mathcal{R} of a linear map \mathcal{A} is invariant if and only if \mathcal{A} is surjective: if $\underline{y} \in \mathcal{R}$, then $\underline{y} = \mathcal{A}\underline{x}$ for some $\underline{x} \in V$, and $\mathcal{A}\underline{x} \in \mathcal{R}$.

Example 4.1.3 (Counterexample, rotation in two-dimension space)

Let \mathcal{A} be a 90° rotation map. Then let $W = \langle e_1 \rangle$. W is not invariant

Theorem 4.1.4 – Let $\mathcal{A}: V \to V$ be linear and let $W = \langle \underline{a}_1, \dots, \underline{a}_n \rangle$. W is invariant under \mathcal{A} if and only if $\mathcal{A}\underline{a}_i \in W$ for $i = 1, \dots, n$.

4.2 Restriction unto an invariant subspace

Definition 4.2.1 – **Restriction unto an invariant subspace** If W is invariant under \mathcal{A} , then all image vectors $\mathcal{A}\underline{w}$ with $\underline{w} \in W$ are again in W. So if we restrict \mathcal{A} to W, we obtain a well-defined linear map $W \to W$, the restriction of the map \mathcal{A} unto W, which we denote by $\mathcal{A}|_{W}$.

Invariant spaces give us a simpler matrix shape, because the matrix contains a block of the restriction:

Theorem 4.2.2 – Suppose $\alpha = \{\underline{a}_1, \dots, \underline{a}_2\}$ is a basis for V such that $W = <\underline{a}_1, \dots, \underline{a}_m >$ is invariant under A. Then the matrix A_{α} has the following form:

$$\begin{pmatrix} & & * & \dots & * \\ M_1 & \vdots & & \vdots \\ 0 & \dots & 0 & \vdots & & \vdots \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & * & \dots & * \end{pmatrix},$$

The $m \times m$ -matrix M_1 is the matrix of the restriction $\mathcal{A}_{|W}: W \to W$ w.r.t. the basis $\{\underline{a}_1, \dots, \underline{a}_m\}$.

Example 4.2.3 (Proving invariance and analysing a map without even knowing its full map description)

Consider in \mathbb{R}^4 the (independent) vectors

$$\underline{a} = (1, -1, 1, -1)$$
 and $\underline{b} = (1, 1, 1, 1)$.

Say we have a linear map $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^4$ of which we only know that

$$A\underline{a} = (4, -6, 4, -6)$$
 and $A\underline{b} = (4, 6, 4, 6)$.

Even without knowing the full description of \mathcal{A} , we will now show that $W = \langle \underline{a}, \underline{b} \rangle$ is invariant and determine a matrix of the restriction unto $W - \mathcal{A}_{|W} : W \to W$.

To show the invariance of $\langle \underline{a}, \underline{b} \rangle$, we must verify that $\mathcal{A}\underline{a}$ and $\mathcal{A}\underline{b}$ are linear combinations of \underline{a} and \underline{b} . We do this by simultaneously solving the systems of equations with columns $\underline{a}, \underline{b}, \mathcal{A}\underline{a}$ and $\mathcal{A}\underline{b}$:

$$\left(\begin{array}{ccc|c}
1 & 1 & 4 & 4 \\
-1 & 1 & -6 & -6 \\
1 & 1 & 4 & 4 \\
-1 & 1 & -6 & -6
\end{array}\right)$$

After row reduction and deleting zero rows, the system reduces to

$$\left(\begin{array}{cc|c} 1 & 0 & 5 & -1 \\ 0 & 1 & -1 & 5 \end{array}\right),$$

which tells us that $A\underline{a} = 5\underline{a} - \underline{b}$ and $A\underline{b} = -\underline{a} + 5\underline{b}$, so W is invariant under A. This also tells us how the matrix of the restriction $A_{|W}W \to W$ w.r.t. the basis $\{\underline{a},\underline{b}\}$ looks like:

$$\begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix}$$
.

Using the restriction matrix, we can now even determine some eigenvectors without knowing the full map. The characteristic polynomial of the restriction is $\chi_{A_{|W}}(\lambda) = (5-\lambda)^2 - 1 = 25 - 10\lambda + \lambda^2 - 1 = (\lambda - 4)(\lambda - 6)$. We find that the matrix has eigenvalues 4 and 6. In coordinates, we compute the respective $E_4 = <(1,1)>$ and $E_6 = <(1,-1>$. In this basis, the restriction map is simply the diagonal map with the eigenvalues on the diagonal:

$$\begin{pmatrix} 4 & 0 \\ 0 & 6 \end{pmatrix}$$
.

We transform the coordinate vectors back into elements of \mathbb{R}^4 : $\underline{a} + \underline{b} = (2,0,2,0)$ and $\underline{a} - \underline{b} = (0,2,0,2)$. So the eigenvector basis of W is $\{(2,0,2,0),(0,2,0,2)\}$.

We now can simplify the representation of the full map: if we pick any basis α of \mathbb{R}^4 such that the first two basis vectors are the eigenvectors (2,0,2,0) and (0,2,0,2), then the full matrix has the shape

$$A_{\alpha} = \begin{pmatrix} & & * & \dots & * \\ \begin{pmatrix} 4 & 0 \\ 0 & 6 \end{pmatrix} & \vdots & & \vdots \\ 0 \dots 0 & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ 0 \dots 0 & * & \dots & * \end{pmatrix}$$

Remark 4.2.4

The characteristic polynomial of a restriction always divides the characteristic polynomial of the larger map.

Theorem 4.2.5 – If W is an invariant subspace for the linear map $\mathcal{A}V \to V$, then $\chi_{A|W}$, the characteristic polynomial of \mathcal{A} 's restriction unto W, $\mathcal{A}_{|W}: W \to W$, is a factor of $\chi_{\mathcal{A}}$, the characteristic polynomial of the map $\mathcal{A}: V \to V$.

Lemma 4.2.6 – Let A be a $p \times p$ -matrix, and let B be a $q \times q$ -matrix. Then

$$\det\begin{pmatrix} A & * \\ O & B \end{pmatrix} = \det(A) \cdot \det(B),$$

where * stands for na arbitrary $(p \times q)$ -matrix and O for the $q \times p$ -zero matrix.

4.3 Nice results for combinations of invariant subspaces

Theorem 4.3.1 – Let $\alpha = \{\underline{a}_1, \dots, \underline{a}_n\}$ be a basis for V such that $W_1 = <\underline{a}_1, \dots, \underline{a}_m >$ and $W_2 = <\underline{a}_{m+1}, \dots, \underline{a}_n$ are invariant under $A: V \to V$. Then the matrix A_α has the following

form:

$$A_{\alpha} = \begin{pmatrix} & 0 & \dots & 0 \\ M_1 & \vdots & & \vdots \\ & 0 & \dots & 0 \\ 0 \dots 0 & & & \\ \vdots & & M_2 & \\ 0 \dots 0 & & & \end{pmatrix}$$

Here M_1 and M_2 are the $m \times m$ and $(n-m) \times (n-m)$ matrices of the two restrictions $\mathcal{A}_{|W_1}: W_1 \to W_1$ and $\mathcal{A}_{|W_2}: W_2 \to W_2$.

In addition we have that

$$\det(A_{\alpha}) = \det(M_1) \det(M_2),$$

and that the characteristic polynomial of \mathcal{A} is the product of the characteristic polynomials of the two restrictions:

$$\chi_{\mathcal{A}} = \chi_{A_{|W_1}} \chi_{A_{|W_2}}.$$

Remark 4.3.2

We remark that this result can be generalised further such that it holds for an arbitrary number of invariant subspaces: if V can be broken down into invariant subspaces W_1, \ldots, W_p , we can pick a basis α whose i-th section is a basis for W_i . Let $A_i: W_i \to W_i$ denote the restriction of \mathcal{A} unto the subspace W_i .

Then the matrix A_{α} has the form.

$$A_{\alpha} = \begin{pmatrix} M_1 & & \\ & \ddots & \\ & & M_p \end{pmatrix},$$

where M_i is the matrix of the respective restriction A_i w.r.t. the respective basis.

5 Orthogonal and symmetric maps

5.1 Orthogonal maps

Definition 5.1.1 – **Orthogonal map** Let v be a real inner product space. A linear map $A: V \to V$ is called *orthogonal* if

$$\|\mathcal{A}\underline{x}\| = \|\underline{x}\|$$

for all vectors $\underline{x} \in V$. In other words, a linear map $\mathcal{A}: V \to V$ is orthogonal if the *length is invariant* under \mathcal{A} .

Theorem 5.1.2 – Polarization formula In a real inner product space V, we always have

$$(\underline{x},\underline{y}) = \frac{1}{2} \left((\underline{x} + \underline{y}, \underline{x} + \underline{y}) - (\underline{x}, \underline{x}) - (\underline{y}, \underline{y}) \right)$$

As a consequence, we can express inner products between vectors in terms of vector lengths:

$$(\underline{x},\underline{y}) = \frac{1}{2} (||\underline{x} + \underline{y}|| - ||x|| - ||y||).$$

Theorem 5.1.3 – Let V ba a finite real inner product space, and let $A: V \to V$ be linear. Then the following are equivalent:

- 1. \mathcal{A} is orthogonal.
- 2. $\|A\underline{x}\| = \|\underline{x}\|$ for all $\underline{x} \in V$. 3. $(A\underline{x}, A\underline{y}) = (\underline{x}, \underline{y})$ for all $\underline{x}, \underline{y} \in V$.
- 4. For every orthonormal system $\underline{a}_1, \dots, \underline{a}_n$ in V, the system $A\underline{a}_1, \dots, A\underline{a}_n$ is again or-
- 5. For every orthonormal basis α of V, the basis $A\alpha$ is again orthonormal.

Theorem 5.1.4 – Let V be a finite real inner product space, and let $\mathcal{A}:V\to V$ and $\mathcal{B}: v \to V$ be orthogonal linear maps.

- 1. The composition $\mathcal{AB}: V \to V$ is orthogonal.
- 2. \mathcal{A} is invertible and \mathcal{A}^{-1} is orthogonal.

Remark 5.1.5

As a consequence, powers of orthogonal maps are orthogonal. However, in infinite dimensional spaces, there are exist orthogonal maps that are not invertible.

5.2Orthogonal matrices

Corollary 5.2.1 – We now consider \mathbb{R}^n with the standard inner product. A linear map $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if and only if the matrix $\mathcal{A}e_1, \ldots, \mathcal{A}e_n$ is an orthonormal system.

Definition 5.2.2 - Orthogonal matrix A real $n \times n$ -matrix A is called *orthogonal* if the columns of A form an orthonormal system in \mathbb{R}^n .

Theorem 5.2.3 – Let $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map with representation matrix A. The following statements are equivalent:

- 1. \mathcal{A} is orthogonal.
- 2. A is orthogonal.
- 3. $A^{\top}A = \mathcal{I}_n$. In other words, the transpose the inverse.
- 4. The rows of A form an orthonormal system in \mathbb{R}^n .

Lemma 5.2.4 – Let V be an n-dimensional real inner product space, with its inner product denoted as $(\cdot,\cdot)_V$, and α an orthonormal basis of V. Let $\mathcal{A}:V\to V$ be an orthogonal map. We denote $\|\cdot\|_{\mathrm{st}}$ the standard length in \mathbb{R}^n and by $\|\cdot\|_V$ the length implied by V's inner product.

- 1. $\|\alpha \mathcal{A}\underline{v}\|_{\text{st}} = \|\underline{v}\|_{V}$
- 2. $\|\mathcal{A}\alpha^{-1}\underline{x}\| = \|\underline{x}\|_{st}$ 3. $\alpha\mathcal{A}\alpha^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal.
- 4. If $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal, the so is $\alpha^{-1}\mathcal{B}\alpha: V \to V$.

Theorem 5.2.5 – If α, β are two *orthonormal* bases of in a real inner product space, then the transition matrix $\beta S \alpha$ is orthogonal.

Theorem 5.2.6 – If α and β are two orthonormal bases in a real inner product space, then

$$\alpha S\beta = \beta S\alpha^{-1} = \beta S\alpha^{\top}$$

Theorem 5.2.7 – Let α be an orthonormal basis for a finite-dimensional real inner product space V, and let $\mathcal{A}: V \to V$ be a linear map and A_{α} the matrix of \mathcal{A} (with respect to basis α). Then the map \mathcal{A} is orthogonal if and only if its matrix A_{α} is orthogonal.

5.3 Symmetric maps