Lattice Checker

Lattice Theory Project

By:

Anupam Saini - CS17BTECH11003 Vijay Tadikamalla - CS17BTECH11040

Goal

The goal of this project is to check if the given Directed graph is a Lattice or not.

So, we wrote a C++ program that takes a directed graph as input and outputs the verdict

Procedure

Definition: A lattice element y is said to cover another element x, if y > x, but there does not exist a z such that y > z > x.

- We take the directed graph as input and store it in the form of a adjacency list, i.e, for each node in the graph, we maintain a set of elements that cover it.
- We then check this for cycles in this graph. If no cycles are found, then we can say that this graph is a **DAG** (**Directed acyclic graph**)

Procedure (continued)

• Now, we arrange all the nodes in the decreasing topological order, i.e,

$$\circ$$
 $x_1,...,x_n$, where $i < j$ implies $x_i \ge x_j$

- We also check that the first element in the topological sequence is the unique supremum of the lattice and the last element is the unique infimum of the lattice.
- Then \forall i = 1, ..., n, we attempt to compute $x_i \lor x_j$ for all j < i.
- And we finally return TRUE if all attempts were successful.

Procedure (continued)

To compute $x_i \vee x_j$, we use the following procedure:

- Let u₁,...,u_m be the elements covering x_i.
- Set $a \leftarrow x_j Vu_1$.
- \forall i = 2,..., m, check whether $x_j \lor u_i \le a$ and if so, set $a \leftarrow x_j \lor u_i$.
- Verify that $a \le x_j \lor u_i$ (i.e., that $a \lor (x_j \lor u_i) = x_j \lor u_i) \lor i = 1,..., m$.
- If verification was successful, return a.

Reasoning

The procedure used to check if the given Directed graph is a Lattice is correct because we know that a join-semilattice of finite length with a universal lower bound is a lattice.

Results

Input:

Output:

Graph is a lattice.

Results (continued)

Input:

Output:

Graph is not a lattice.

