NAME:

STUDENT ID NUMBER:

Check your tutorial:

○ TUT5101	○ TUT5102	○ TUT5103
TA: Boris	TA: James	TA: Nan

Part A: (2 marks) Present the definition of $\int_C F_1 dx + F_2 dy + F_3 dz$, where $\mathbf{F} = (F_1, F_2, F_3)$ is a vector field on \mathbb{R}^3 and C is a curve in \mathbb{R}^3 .

$$=\int_{C} (F_{1},F_{2},F_{3}) \cdot (dx, dy, dz)$$

$$(i) = \int_{C} \vec{F} \cdot d\vec{X}$$

$$0 = \int_a^b \vec{f}(\vec{g}(t)) \cdot \vec{g}(t) dt, \text{ where } g \text{ is a } C' \text{ parametrization}$$
of C .

Part B: (3 marks) Let C be the unit circle centered at the origin. Calculate the line integral $\int_C y dx + x dy$.

①
$$x = \omega st$$
, $y = sint$, $dx = -sint dt$, $dy = \omega st dt$

1)
$$\int_{C} y \, dx + x \, dy = \int_{0}^{2\pi} - \omega st \, sint + sint \, \omega st \, dt = 0$$

Part C: (5 marks) Prove that for a vector field in \mathbb{R}^n , $|\int_a^b \mathbf{F} dt| \leq \int_a^b |\mathbf{F}| dt$.

Let
$$\vec{u}$$
 be a unit vector in the direction of $\int_{a}^{b} \vec{F} dt$

Then
$$\left| \int_{a}^{b} \vec{F} \, dt \right| = \left| \int_{a}^{b} \vec{F} \, dt \cdot \vec{U} \right| = \left| \int_{a}^{b} \vec{F} \cdot \vec{U} \, dt \right| \leq \int_{a}^{b} \left| \vec{F} \cdot \vec{U} \right| \, dt$$

norm
$$absolute value$$

$$\leq \int_{a}^{b} \left| \vec{F} \right| \cdot \left| u \right| \, dt = \int_{a}^{b} \left| \vec{F} \right| \, dt.$$