Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

КАФЕДРА	ИУК «Информатик ИУК4 «Программн ые технологии»			Л,	
	ЛАБОРАТОР	НАЯ РАБО	ТА	№ 1	
«Сборка и уст	ановка библиотеки Ој Microsoft	pencv. Использо t Visual Studio»	эвани	е библиотеки в сре	:де
дисциплин	А: «Программные информации»	системы рас	позна	авания и обраб	ОТКИ
Выполнил: студ	ент гр. ИУК4-31М	(подпись)	_ (_	Сафронов Н.С,	_)
Проверил:		(подпись)	_ (_	Гагарин Ю.Е. (Ф.И.О.)	_)
Дата сдачи (заш	иты):				
Результаты сдач	ии (защиты): - Балльная	оценка:			
	- Оценка:				

Калуга, 2025

Цель:

Рассмотреть технические этапы подготовки инфраструктуры и продемонстрировать использование базовых функций библиотеки OpenCV на простых практических примерах.

Задачи:

- 1. Сборка и установка библиотеки OpenCV с использованием инсталлятора и из исходных кодов.
- 2. Настройка среды Microsoft Visual Studio с целью использования библиотеки при разработке C/C++ приложений.
- 3. Разработка приложения, демонстрирующего применение некоторых базовых операций обработки изображений

Задание

- 1. Модифицируйте приложение для поиска контуров объекта так, чтобы результирующее изображение сохранялось в файл.
- 2. Модифицируйте приложение для поиска контуров объекта так, чтобы отображалось изображение, конвертированное в оттенки серого, и бинаризованное изображение, т.е. то, что показано на рис. 17.
- 3. Как будет изменяться результат работы приложения для определения контуров, если изменить способ восстановления контуров? Проведите эксперименты со всеми возможными значениями параметра mode в функции findContours.
- 4. Как будет изменяться результат работы приложения для определения контуров, если изменить способ восстановления контуров? Проведите эксперименты со всеми возможными значениями параметра method в функции findContours.

- 5. Модифицируйте результаты задания 2 так, чтобы изображение, конвертированное в оттенки серого, и бинаризованное изображение отображались в одном окне.
- 6. Модифицируйте результаты задания 3 так, чтобы все изображения отображались в одном окне.
- 7. Модифицируйте результаты задания 4 так, чтобы все изображения отображались в одном окне.
- 8. Сохраните результаты задания 7 в файл.

Результаты выполнения работы

Рисунок 1 - Оригинальное изображение

Рисунок 2 - Изображение в оттенках серого и его бинаризация (результат задания 5)

Рисунок 3 - Изображение с контурами

Рисунок 4 - Результат задания 6 (различные параметры mode)

Рисунок 5 - Результат задания 7 (различные параметры method)

Рисунок 6 - Результат задания 8

Вывод: в процессе выполнения лабораторной работы рассмотрены технические этапы подготовки инфраструктуры и продемонстрировано использование базовых функций библиотеки OpenCV на простых практических примерах

Листинг программы

```
# -*- coding: utf-8 -*-
11 11 11
    Программные системы распознавания и обработки информации.
    Лабораторная работа 1.
    Сборка и установка библиотеки opencv.
11 11 11
import cv2
import typing as t
IMAGE_PATH = "../data/apple.jpg"
RESULT_IMAGE_PATH = "../results/task_8.jpg"
RESIZE WIDTH = 300
RESIZE HEIGHT = 300
def load_image(path: str) -> cv2.typing.MatLike:
    """Загрузить изображение из OpenCV."""
    image = cv2.imread(path)
    if image is None:
        raise ValueError('Error occupied when loading image')
    return cv2.resize(image, (RESIZE_WIDTH, RESIZE_HEIGHT))
def display_image(title: str, image: cv2.typing.MatLike):
    """Вывести изображение из OpenCV."""
    cv2.imshow(title, image)
    cv2.waitKey()
def save_image(path: str, image: cv2.typing.MatLike):
    """Сохранить изображение по заданному пути."""
    cv2.imwrite(path, image)
def rgb to gray(image: cv2.typing.MatLike) -> cv2.typing.MatLike:
    """Преобразовать изображение из RGB в градации серого."""
    gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    return gray_image
def binarize image(grayscale image: cv2.typing.MatLike) ->
cv2.typing.MatLike:
    """Бинаризовать изображение."""
    _, thresh = cv2.threshold(grayscale_image, 190, 255,
cv2.THRESH_BINARY_INV)
    return thresh
```

```
def find_contours(
        grayscale_image: cv2.typing.MatLike,
        mode: int = cv2.RETR_EXTERNAL,
        method: int = cv2.CHAIN APPROX SIMPLE,
) -> t.Sequence[cv2.typing.MatLike]:
    """Найти контуры изображения."""
    im = binarize_image(grayscale_image)
    contours, _ = cv2.findContours(im, mode, method)
    return contours
def draw_contours(
        image: cv2.typing.MatLike,
        contours: t.Sequence[cv2.typing.MatLike],
) -> cv2.typing.MatLike:
    """Нарисовать контуру на изображении."""
    res_image = cv2.drawContours(image, contours, -1, (0, 255, 75), 2)
    return res_image
def task_5(image: cv2.typing.MatLike):
    Отобразить в одном окне изображение в оттенках серого и
бинаризованное.
    display_image("Original", image)
    grayscale_image = rgb_to_gray(image)
    h_concat = cv2.hconcat([
        grayscale_image,
        binarize image(grayscale image),
    1)
    display_image("Grayscale and Binarized Image", h_concat)
    contours = find contours(grayscale image)
    contoured_image = draw_contours(image, contours)
    display_image("Contoured Image", contoured_image)
def task_6(image: cv2.typing.MatLike):
    Отобразить все изображения из задачи 3 в одном окне.
    Эксперименты со всеми возможными значениями параметра
    mode в функции findContours.
    11 11 11
    res = list[cv2.typing.MatLike]()
    for i in range(cv2.RETR_EXTERNAL, cv2.RETR_FLOODFILL):
        current = draw_contours(
            image=image,
            contours=find contours(rgb_to_gray(image), mode=i),
```

```
res.append(cv2.resize(current, (RESIZE WIDTH, RESIZE HEIGHT)))
    h_concat = cv2.hconcat(res)
    display_image("Task 6 Results", h_concat)
def task_7(image: cv2.typing.MatLike):
    Отобразить все изображения из задачи 4 в одном окне.
    Эксперименты со всеми возможными значениями параметра
    method в функции findContours.
    11 11 11
    res = []
    for i in range(cv2.CHAIN_APPROX_SIMPLE,
cv2.CHAIN_APPROX_TC89_KCOS, 1):
        img = draw_contours(
            image=image,
            contours=find_contours(
                    grayscale image=rgb to gray(image),
                    method=i,
                ),
        res.append(cv2.resize(img, (RESIZE_WIDTH, RESIZE_HEIGHT)))
    h_concat = cv2.hconcat(res)
    display image("Task 7 Results", h_concat)
    return h_concat
def task_8(image: cv2.typing.MatLike):
    Сохранить результаты задачи 2 в файл.
    11 11 11
    result = task_7(image)
    save image(RESULT IMAGE PATH, result)
if __name__ == '__main__':
    image = load_image(IMAGE_PATH)
    task_5(image)
    task_6(image)
    task_7(image)
    task_8(image)
```