Focus 6. Reactions Overview

Focus 6. Reactions Overview

Focus 6. Reactions Overview

Topic 6A. The Nature of Acids and Bases

- 6A. I Brønsted-Lowry Acids and Bases
- 6A.2 Lewis Acids and Bases
- 6A.3 Acidic, Basic, and Amphoteric Oxides
- 6A.4 Proton Exchange Between Water Molecules

- Arrhenius definition (Fundamentals J)
 - Acid: a substance that dissociates in water to form H⁺
 - Base: a substance that dissociates in water to form OH⁻
- Brønsted-Lowry definition
 - Acid: proton donor
 - Base: proton acceptor
 - → general theory for any solvent or even in absence of solvent

Strong/weak acid

• Strong acid: almost all the molecules are deprotonated in solution.

$$HCI (aq) + H_2O (I) \rightarrow H_3O^+ (aq) + CI^- (aq)$$

 Weak acid: only a small fraction of the molecules or ions are deprotonated in solution.

$$HCN (aq) + H2O (I) \leftrightarrow H3O+ (aq) + CN- (aq)$$

Acid/Base reaction in nature

$$HCO_3^-$$
 (aq) + H_2O (I) \leftrightarrow H_3O^+ (aq) + CO_3^{2-} (aq)

Strong/weak base

• Strong base: almost all the molecules are protonated in solution.

$$O^{2-}$$
 (aq) + H_2O (I) $\to 2 OH^-$ (aq)

• Weak base: only a small fraction of the molecules or ions are protonated in solution.

$$NH_3$$
 (aq) + H_2O (l) $\leftrightarrow NH_4^+$ (aq) + OH^- (aq)

- Conjugate acid—base pair in proton transfer reactions.
 - Acid (proton donor) → deprotonation → conjugate base
 - Base (proton acceptor) → protonation → conjugate acid

The Brønsted definitions of acids and bases also apply to species in nonaqueous solvents and even to gas-phase reactions.

 $CH_3COOH (am) + NH_3 (I) \leftrightarrow CH_3CO^{2-} (am) + NH_4^+ (am)$

 $HCI(g) + NH_3(g) \rightarrow NH_4CI(s)$

Lewis Acids and Bases

- Lewis definition
 - Acid: electron pair acceptor
 - Base: electron pair donor
- More general than Brønsted-Lowry definition
 - Ni(CO)₄: Ni atoms (Lewis acid) + CO ligand (Lewis Base)
 - $O^{2-} + H_2O$

• $CO_2 + H_2O$

$$NH_3 + H_2O$$

Lewis Acids and Bases

Arrhenius vs Brønsted vs Lewis

Acidic, Basic, and Amphoteric Oxides

- Acidic oxide: an oxide that reacts with water to form a solution of Brønsted acid.
 - Non-metal molecules (CO₂, SO₃, Cl₂O₇, N₂O₅ ...)
 - Generally, tend to act as Lewis acids and react with water to form a Brønsted acid (→ acidic oxide)
 - React with bases to form a salt and water
 - 2 NaOH (aq) + CO_2 (g) \rightarrow Na_2CO_3 (aq) + H_2O (l)

Acidic, Basic, and Amphoteric Oxides

- Basic oxide: an oxide that accepts protons from water to form a solution of hydroxide ions (Brønsted base).
 - Metal oxides (CaO, Na₂O, MgO ...)
 - Generally, tend to act as Lewis bases and react with water to form a Brønsted base
 - React with acids to form a salt and water
 - CaO (s) + H_2O (l) \rightarrow Ca(OH)₂ (aq) MgO (s) + 2 HCl (aq) \rightarrow MgCl₂ (aq) + H_2O (l)

Acidic, Basic, and Amphoteric Oxides

- Amphoteric oxide: an oxide that exhibits both acid and base characters and react with both acids and bases.
 - Al_2O_3 (s) + 6 HCl (aq) \rightarrow 2 AlCl₃ (aq) + 3 H₂O (l) 2 NaOH (aq) + Al_2O_3 (s) + 3 H₂O (l) \rightarrow 2 Na[Al(OH)₄] (aq)

Proton Exchange between Water Molecules

Amphiprotic

A molecule that can act both as a proton donor and as a proton acceptor.

$$H_2O(I) + H_2O(I) \leftrightarrow H_3O^+(aq) + OH^-(aq)$$

Proton Exchange between Water Molecules

- Authoprotolysis (autoionization)
 - A reaction, in which one molecule transfers a proton to another molecule of the same kind.
 - Amphiprotic species $(H_2O, NH_3 ...)$ act as either a Brønsted acid (proton donor) or a Brønsted base (proton acceptor)

Authoionization constant, Kw

$$K_{\rm w} = \frac{a_{\rm H_3O^+} \cdot a_{\rm OH^-}}{(a_{\rm H_2O})^2} \approx [{\rm H_3O^+}] \cdot [{\rm OH^-}] = 1.0 \times 10^{-14}$$

Proton Exchange between Water Molecules

• K_w is an equilibrium constant The product of the concentrations of H_3O^+ and OH^- ions in any aqueous solution is always equal to K_w .

Topic 6B. The pH Scale

- 6B. I The Interpretation of pH
- 6B.2 The pOH of Solutions

The Interpretation of pH

pH scale: measure of acidity or basicity

$$pH = -log a_{H3O^{+}} = -log [H_{3}O^{+}]$$

For pure water,

$$pH = -log (1.0 \times 10^{-7}) = 7.00$$

The Interpretation of pH

■ Strong acids and bases → reaction goes to almost completion

HBr (aq) +
$$H_2O(I) \rightarrow H_3O^+$$
 (aq) + Br^- (aq)
N H_2^- (aq) + $H_2O(I) \rightarrow NH_3$ (aq) + OH^- (aq)

Thus,

0.1 M HCl (aq) soln.
$$\rightarrow$$
 pH = $-\log [H_3O^+] = I$

I.0 M HCl (aq) soln.
$$\rightarrow$$
 pH = $-\log [H_3O^+] = 0$

0.1 M KOH (aq) soln.
$$\rightarrow$$
 pH = $-\log [H_3O^+] = 13$

1.0 M KOH (aq) soln.
$$\rightarrow$$
 pH = $-\log [H_3O^+] = 14$

The pOH of Solutions

- In general pX = -log X
- pOH = $-\log a_{OH^-} = -\log [OH^-]$
- pK_w and pH-pOH in pure water

$$pK_w = -\log K_w = -\log([H_3O^+][OH^-]) = -\log[H_3O^+] + -\log[OH^-] = pH + pOH = 14$$

Topic 6C. Weak Acids and Bases

- 6C.I Acidity and Basicity Constants
- 6C.2 The Conjugate Seesaw
- 6C.3 Molecular Structure and Acid Strength
- 6C.4 The Strengths of Oxoacids and Carboxylic Acids

Strong vs. weak acids

Weak acid

HA (aq) + H₂O (l)
$$\leftrightarrow$$
 H₃O⁺ (aq) + A⁻ (aq)
 $K = K_{\rm a} = \frac{a_{\rm H_3O^+} \cdot a_{\rm A^-}}{a_{\rm HA} \cdot a_{\rm H2O}} \approx \frac{[{\rm H_3O^+}][{\rm A^-}]}{[{\rm HA}]} = {\rm acidity\ constant}$
 $pK_{\rm a} = -\log K_{\rm a}$

Acid	$K_{\rm a}$	pK_a	Acid	K_{a}	pK_a
trichloroacetic acid, CCl ₃ COOH	3.0×10^{-1}	0.52	formic acid, HCOOH	1.8×10^{-4}	3.75
benzene sulfonic acid, C ₆ H ₅ SO ₃ H	2.0×10^{-1}	0.70	benzoic acid, C ₆ H ₅ COOH	6.5×10^{-5}	4.19
iodic acid, HIO ₃	1.7×10^{-1}	0.77	acetic acid, CH ₃ COOH	1.8×10^{-5}	4.75
sulfurous acid, H ₂ SO ₃	1.5×10^{-2}	1.81	carbonic acid, H ₂ CO ₃	4.3×10^{-7}	6.37
chlorous acid, HClO ₂	1.0×10^{-2}	2.00	hypochlorous acid, HClO	3.0×10^{-8}	7.53
phosphoric acid, H ₃ PO ₄	7.6×10^{-3}	2.12	hypobromous acid, HBrO	2.0×10^{-9}	8.69
chloroacetic acid, CH2ClCOOH	1.4×10^{-3}	2.85	boric acid, B(OH) ₃ [†]	7.2×10^{-10}	9.14
lactic acid, CH ₃ CH(OH)COOH	8.4×10^{-4}	3.08	hydrocyanic acid, HCN	4.9×10^{-10}	9.31
nitrous acid, HNO ₂	4.3×10^{-4}	3.37	phenol, C ₆ H ₅ OH	1.3×10^{-10}	9.89
hydrofluoric acid, HF	3.5×10^{-4}	3.45	hypoiodous acid, HIO	2.3×10^{-11}	10.64

^{*}The values for K_a listed here have been calculated from pK_a values with more significant figures than shown so as to minimize rounding errors. Values for polyprotic acids—those capable of donating more than one proton—refer to the first deprotonation.

[†]The proton transfer equilibrium is $B(OH)_3(aq) + 2 H_2O(1) \rightleftharpoons H_3O^+(aq) + B(OH)_4^-(aq)$

Weak base

B (aq) + H₂O (l)
$$\leftrightarrow$$
 BH⁺ (aq) + OH⁻ (aq)

$$K = K_{\rm b} = \frac{a_{\rm BH}^{+} \cdot a_{\rm OH}^{-}}{a_{\rm B} \cdot a_{\rm H2O}} \approx \frac{[\rm BH^{+}][\rm OH^{-}]}{[\rm B]} = \text{basicity constant}$$

$$pK_{\rm b} = -\log K_{\rm b}$$

Base	K_{b}	pK_b	Base	$K_{ m b}$	pK_t
urea, CO(NH ₂) ₂	1.3×10^{-14}	13.90	ammonia, NH ₃	1.8×10^{-5}	4.75
aniline, C ₆ H ₅ NH ₂	4.3×10^{-10}	9.37	trimethylamine, (CH ₃) ₃ N	6.5×10^{-5}	4.19
pyridine, C ₅ H ₅ N	1.8×10^{-9}	8.75	methylamine, CH ₃ NH ₂	3.6×10^{-4}	3.44
hydroxylamine, NH₂OH	1.1×10^{-8}	7.97	dimethylamine, (CH ₃) ₂ NH	5.4×10^{-4}	3.27
nicotine, C ₁₀ H ₁₄ N ₂	1.0×10^{-6}	5.98	ethylamine, C ₂ H ₅ NH ₂	6.5×10^{-4}	3.19
morphine, C ₁₇ H ₁₉ O ₃ N	1.6×10^{-6}	5.79	triethylamine, (C ₂ H ₅) ₃ N	1.0×10^{-3}	2.99
hydrazine, NH ₂ NH ₂	1.7×10^{-6}	5.77			

- I M of acetic acid in water
 - $K_a = 1.75 \times 10^{-5}$ or pKa = $-\log Ka = 4.757$

What are the equilibrium pressures of the products and reactants?

	AcH	Ac-	H+
Initial	1	0	0
Change	- x	X	X
Equilibrium	I - x	X	X

$$K_a = \frac{[\text{Ac-}][\text{H}^+]}{[\text{AcH}]} = \frac{x^2}{1-x} = 1.75 \times 10^{-5}$$

$$K_a \text{ is small } --> x << 1, 1-x \approx 1$$

$$\therefore x^2 = 1.75 \times 10^{-5}, x = \sqrt{1.75 \times 10^{-5}} = 0.00418 \text{ M}$$

Conjugate Seesaw

Conjugate seesaw

- The stronger the acid, the weaker is its conjugate base.
- The stronger the base, the weaker is its conjugate acid.

$$HA (aq) + H_2O (l) \leftrightarrow H_3O^+ (aq) + A^- (aq)$$
 $K_a(HA) = \frac{[H_3O^+][A^-]}{[HA]}$
 $A^- (aq) + H_2O (l) \leftrightarrow HA (aq) + OH^- (aq)$ $K_b(A^-) = \frac{[HA][OH^-]}{[A^-]}$

$$pK_a(HA) + pK_b(A^-) = pK_w = const.$$

Conjugate Seesaw

pK_a	Acid name	Acid formula	Base formula	Base name	pK_b
	Strong acid			Very weak base	
	hydroiodic acid	HI	I-	iodide ion	
	perchloric acid	$HClO_4$	ClO ₄	perchlorate ion	
	hydrobromic acid	HBr	Br ⁻	bromide ion	
	hydrochloric acid	HCl	Cl ⁻	chloride ion	
	sulfuric acid	H_2SO_4	HSO ₄	hydrogen sulfate ion	
	chloric acid	HClO ₃	ClO ₃	chlorate ion	
	nitric acid	HNO_3	NO ₃	nitrate ion	
	hydronium ion	H_3O^+	H ₂ O	water	
1.92	hydrogen sulfate ion	HSO ₄	SO ₄ ²⁻	sulfate ion	12.0
3.37	nitrous acid	HNO_2	NO ₂	nitrite ion	10.6
3.45	hydrofluoric acid	HF	F-	fluoride ion	10.5
4.75	acetic acid	CH₃COOH	CH ₃ CO ₂	acetate ion	9.2
6.37	carbonic acid	H_2CO_3	HCO ₃	hydrogen carbonate ion	7.6
6.89	hydrosulfuric acid	H_2S	HS ⁻	hydrogen sulfide ion	7.1
9.25	ammonium ion	$\mathrm{NH_4}^+$	NH ₃	ammonia	4.7
9.31	hydrocyanic acid	HCN	CN-	cyanide ion	4.6
0.25	hydrogen carbonate ion	HCO ₃	CO ₃ ²⁻	carbonate ion	3.7
0.56	methylammonium ion	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	methylamine	3.4
	water	H_2O	OH ⁻	hydroxide ion	
	ammonia	NH_3	NH ₂	amide ion	
	hydrogen	H_2	H-	hydride ion	
	methane	CH_4	CH ₃	methide ion	
	hydroxide ion	OH-	O^{2-}	oxide ion	
	Very weak acid			Strong base	

Molecular Structure and Acid Strength

- Relative acidity
 - Gibbs free energy ($\Delta G_r^{\circ} = -RT \ln K$): the breaking of the H-A
 - Solvent: the formation of an H₂O-H⁺
- Strong acids have
 - Unstable HA (aq)
 - Unstable A (aq)
 - Stable A^- (aq)
 - Weak H–A bond
 - Strong Ionic character

Molecular Structure and Acid Strength

• Consider the thermodynamics of $HA \rightarrow H^+ + A^-$

Step	Reaction	Enthalpy change
Removal of HA from solution:	$HA(aq) \rightarrow HA(g)$	$-\Delta H_{\rm solv}({\rm HA})$
Dissociation of gaseous HA:	$HA(g) \rightarrow H(g) + A(g)$	$\Delta H_{\rm B}({\rm H}-{\rm A})$
Ionization of H:	$H(g) \rightarrow H^+(g) + e^-(g)$	I(H)
Electron attachment to A:	$A(g) + e^{-}(g) \rightarrow A^{-}(g)$	$-E_{\rm ea}({\rm A})$
Hydration of H ⁺ :	$H^+(g) + H_2O(l) \rightarrow H_3O^+(aq)$	$\Delta H_{ m hvd}({ m H}^+)$
Hydration of A ⁻ :	$A^{-}(g) \to A^{-}(aq)$	$\Delta H_{ m hyd}({ m A}^-)$

Acid	$\Delta H_{ m solv}({ m HA})$	$\Delta H_{\rm B}({ m H}-{ m A})$	I(H)	$E_{\rm ea}({ m A})$	$\Delta H_{ m hyd}({ m H}^+)$	$\Delta H_{ m hyd}({ m A}^-)$	ΔH
NH_3	-34	453	1312	71	-1103	-500	+125
H_2O	-41	492	1312	178	-1103	-520	+44
HF	-49	565	1312	328	-1103	-510	-15
HCl	? -35	431	1312	349	-1103	-367	-41
HBr	? -35	366	1312	325	-1103	-336	-51
HI	? -35	299	1312	295	-1103	-291	-43

^{*(}All values in kilojoules per mole (kJ·mol⁻¹). Grayed-out values are contributions that are constant for all the acids. The colors are explained in the text. The values preceded with? are estimates. Note that NH₃ is functioning as an acid (a proton donor) in this context.

Molecular Structure and Acid Strength

- Electron affinity
 - In HA, the greater the electron affinity (and therefore the electronegativity) of A, the stronger the acidity.
 - NH₃ < H₂O < HF
- Bond strength
 - Weaker the H–A bond, stronger the acidity.
 - HF << HCl < HBr < HI
 H₂O < H₂S < H₂Se < H₂Te

- Oxoacids: A–O–H (A = halogen)
 - The greater the electronegativity of the halogen, the stronger is the oxoacid
 - Acidity: HCIO > HBrO > HIO

TABLE 6C.5 Correlation of Acid Strength and Electronegativity					
Acid, HAO	Structure*	Electronegativity of atom A	pK _a		
hypochlorous acid, HClO	: сі—і;—н	3.2	7.53		
hypobromous acid, HBrO	:Вr—-Ö—н	3.0	8.69		
hypoiodous acid, HIO	: <u>і</u> — <u>ö</u> —н	2.7	10.64		

- For $A-O_x-H$
 - The greater the number of oxygen atoms attached to the central atom (or the oxidation number of A), the stronger is the acid
 - Acidity: HClO < HClO₂ < HClO₃ < HClO₄

- Carboxylic group
 - Structurally similar to alcohols but they show significant acidity because of resonance stabilization of carboxylate anions, as well as the presence of additional oxygen.

TABLE 6C.7	Correlations of Molecular Structure and Ad	cid Strength*
Acid type	Trend	
binary	The more polar the H—A bond, the stronger the acid.	
	This effect is dominant for acids of the same period.	
	The weaker the H—A bond, the stronger the acid.	
	This effect is dominant for acids of the same group.	
oxoacid	The greater the number of O atoms attached to the central atom (the greater the oxidation number of the central atom), the stronger the acid.	
	For the same number of O atoms attached to the central atom, then the greater the electronegativity of the central atom, the stronger the acid.	
carboxylic	The greater the electronegativities of the groups attached to the carboxyl group, the stronger the acid.	