第1页

系别	班号	姓名	同组姓名	
实验日期			教师评定	

I.弦上驻波的初步研究

Ⅱ.目的要求

A.观察在两端被固定的弦线上形成的驻波现象; 了解弦线达到共振和形成稳定驻波的条件.

B.测定弦线上横波的传播速度.

C. 用实验的方法确定弦线作受迫震动时的共振频率与驻波波长, 张力和弦线线密度之间的关系.

D.对实验结果用对数坐标纸作图, 用最小二乘法作线性拟合和处理数据, 并给出结论.

III.仪器用具

弦音计装置一套 (包括驱动线圈和探测线圈各一个, 1kg砝码和6根不同线密度的吉他弦), 信号 (功率函数)发生器一台,数字示波器一台,千分尺一把,水平仪一个.

IV.实验原理

A.横波的波速

$$v = \sqrt{\frac{T}{\mu}} \tag{0.1}$$

其中T为弦上张力, μ为弦线的线密度.

B.两端固定弦上的驻波

考虑两列振幅, 频率相同, 有固定相位差, 传播方向相反的简谐波的叠加

$$u_1(x,t) = A\cos(kx - \omega t - \varphi)$$

$$u_2(x,t) = A\cos(kx + \omega t)$$

它们的合成运动为:

$$u(x,t) = 2A\cos(kx - \frac{\varphi}{2})\cos(\omega t + \frac{\varphi}{2}) \tag{0.2}$$

可见空间部分和时间部分是分离的,某个x点的振幅不随时间改变,为:

第2页

系别	班号	姓名	同组姓名	
			教师评定	

$$A(x) = \left| 2A\cos(kx - \frac{\varphi}{2}) \right|$$

在 $\left|\cos(kx-\frac{\varphi}{2})\right|=1$ 的那些点,振幅最大,是波腹;

在
$$\left|\cos(kx-\frac{\varphi}{2})\right|=0$$
 的那些点,没有振动,是波节.

上述运动状态为驻波.

对于长度为L的两端固定弦, 任何时刻都有:

$$u\big|_{x=0} = u\big|_{x=L} = 0$$

由此可得:

$$\varphi = \pi$$
$$kL = n\pi$$

所以驻波的频率为:

$$f = n\frac{v}{2L} = \frac{n}{2L}\sqrt{\frac{T}{\mu}} = nf_1 \tag{0.3}$$

其中fi称为基频,n对应的f称为n次谐波.

C.共振条件

通常当波长满足 $\lambda = 2\frac{L}{n}$ 时, 共振现象发生.

V.实验内容

A.认识和调节仪器.

B.固定弦上的张力,调节信号发生器的输出频率,观察在两端被固定的弦线上形成的稳定的具有n个波腹的驻波.

C.测定弦音计上弦线的线密度.

第3页

系别	班号	姓名	同组姓名
实验日期			教师评定

D.测定弦线上横波的传播速度.

E.确定弦线作受迫振动时的共振频率 (只取基频) 与弦线有效长度以及与张力之间的关系.

VI.实验数据

A.测定弦音计上弦线的线密度.

 $m_0 = 1.57g \ l = 71.0cm \ d_0 = 0.652mm \ d = 0.611mm$

 $\mu = 1.95 g/m$

1.频率f-级数n关系

T = 3mg = 29.40N L = 60.0cm

n	f _{理论} /Hz	f/Hz	σ	V _{理论} /ms ⁻¹	V
1	102.32	106.28	3.9%	122.8	127.5
2	204.65	212.98	4.1%	122.8	127.8
3	306.97	319.16	4.0%	122.8	127.7
4	409.29	425.5	4.0%	122.8	127.7
5	511.62	531.82	3.9%	122.8	127.6
6	613.94	639.25	4.1%	122.8	127.9

第4页

系别	班号	姓名	同组姓名

实验日期 ______ 教师评定 _____

2.f-T关系

n = 1 L = 60.0cm

T/N	f _{理论} /Hz	f/Hz	σ	ln(T)	ln(f)	
9.8	59.08	63.79	8.0%	2.28	4.16	
19.6	83.55	88.16	5.5%	2.98	4.48	
29.4	102.32	106.58	4.2%	3.38	4.67	
39.2	118.15	123.48	4.5%	3.67	4.82	
49.0	132.10	137.91	4.4%	3.89	4.93	

第5页

系别	班号	姓名	同组姓名	
实验日期			教师评定	

3.f-L关系

n = 1 T = 29.40N

L/cm	$f_{ ext{#}i}/Hz$	f/Hz	σ	ln(L)	ln(f)
40.0	153.49	159.52	3.9%	3.69	5.07
45.0	136.43	142.10	4.2%	3.81	4.96
50.0	122.79	125.72	2.4%	3.91	4.83
55.0	111.63	117.05	4.9%	4.01	4.76
60.0	102.32	106.28	3.9%	4.09	4.67
65.0	94.45	98.36	4.1%	4.17	4.59
70.0	87.71	92.10	5.0%	4.25	4.52

第6页

系别	班号	姓名	同组姓名	
实验日期			教师评定	

总起来看,有f ∝ nT^{0.4783}L^{-0.9839}

VII.分析讨论

怀疑张力不同线密度不同,会导致张力频率关系里各组数据同理论值的相对差有较大不同,但实际测量了一下直径同张力关系,发现不是这个原因。

T	d1	d2	d3	d4	d5	δ	d
9.8	0.611	0.600	0.622	0.608	0.608	-0.004	0.614
19.6	0.612	0.612	0.611	0.611	0.611	0.002	0.609
29.4	0.608	0.612	0.615	0.615	0.612	0.002	0.610
49.0	0.608	0.612	0.620	0.618	0.602	0.002	0.610

可见d同T不显著相关。老师说理论同实践的差别大一个重要原因是拉力计量不准确,如果给张力一个固定大小的增量,

那么当增量为1.617N的时候拟合得到:

ln(f) = 0.5171ln(T + 1.617) + 2.8967 $R^2 = 0.9999$

这样有f∝nT^{0.5171}L^{-0.9839}

第7页

系别	_ 班号	姓名	同组姓名 _	
实验日期			教师评定	

经过计算,各组相对误差分别成为: 0.04%, 1.42%, 1.41%, 2.42%, 2.72%

同样的模型,用于第一组和第三组的修正,误差依次为

1.12%, 1.32%, 1.22%, 1.21%, 1.20%, 1.37%

1.19%, 1.40%, -0.32%, 2.09%, 1.12%, 1.39%, 2.24%

可见这个修正还是比较有意义的。

还有一个复杂的修正计算: 首先发现前面在T-f, L-f关系里面求得的比例系数同理论值有相当大的差别, 假定理论是正确的, 那么我们的修正应该尽量让求得的比例系数同理论差别变小。同时, 修正应该让所有的σ的平方和最小。于是定义

$$s_1 = \frac{\exp({\it \xi} {\it F} {\it i} {\it H} {\it c} {\it l} {\it n} (T + \Delta T - {\it l} {\it n} {\it f}) {\it h} {\it r} {\it b} {\it i} {\it i} {\it o} {\it o} - \sqrt{\frac{1}{4(\mu + \Delta \mu)(L + \Delta L)^2}}}{\sqrt{\frac{1}{4(\mu + \Delta \mu)(L + \Delta L)^2}}}$$

$$s_1 = \frac{\exp({\it \xi} {\it F} {\it i} {\it l} {\it h} {\it c} {\it l} {\it n} {\it L} + \Delta L - {\it l} {\it n} {\it f}) {\it h} {\it r} {\it b} {\it i} {\it o} {\it o} - \sqrt{\frac{T + \Delta T}{4(\mu + \Delta \mu)}}}{\sqrt{\frac{(T + \Delta T)}{4(\mu + \Delta \mu)}}}$$

$$S(\Delta T, \Delta L, \Delta \mu) = \sqrt{sum(\sigma_i^2) + s_1^2 + s_2^2}$$
,

通过规划求解,求f的最小值,得到 S_{min} = 2.43% , 对应的有 ΔT = 0.8131 , ΔL = 0.8576 , $\Delta \mu$ = -0.159E-3 ,这时候,经过计算,有拟合公式:

$$f \propto nT^{0.4981}L^{-0.9999}$$

可见如果假定对T, L, μ的测量有系统误差,那么可以得到跟理论相当符合的结果。T的误差来源于对杆的质量的忽略,L的误差来源于两个夹子不是完全竖直,μ的误差来源于样品和实际用弦的线密度不是简单的d²正比关系,因为这种吉他弦,是绕出来的,不是一根整体的弦,外面的绕层的质量跟芯线的半径关系比较复杂。