~

Figure B.1/G.107 - GOB (Good or Better) and POW (Poor or Worse) as functions of rating factor R

-ig. 5

	Int'l 1 DCME Int'l 2 DCME	76.8 66.6 R USER SATISFACTION	94 Very Satisfie	CX	Int'l 1 DCME Int'l 2 DCME	59.8	Nearly All Users Diss	20		Int'l 1 DCME Int'l 2 DCME 0
	Int'I 0 DCME	828			Int'I 0 DCME	70.6	-			Int'I 0 DCME
POTS to POTS (P-P)	Nat'l	87.8		POTS to Mobile (P-M)	Nat'l	81.7		Mobile to Mobile (M-M)	_	Nat'l

Limit of acceptability - a hard threshold

Mobile is GSM EFR. POTS is modelled for an analogue set. Nat'l = 8000km, Int'l = 27500km.

What reference calls will be the most demanding quality measure?

analogue set. Nat'l = 8000km, Int'l = 27500km. Limit of acceptability - a hard threshold

(*5R = 0.2 MOS over most of the linear range considered in the statistical noise by many practitioners.)

-ig. 11

Limit of acceptability – a hard threshold

Mobile is GSM EFR, POTS is modelled for an analogue set. Nat'l = 8000km, Int'l = 27500km.

Fig. 12

EO - End Office TO - Tandem Office T2AMG - TDM trunk to AAL-1/2 MG T2IMG - TDM trunk to VoIP MG LIT - Lawful Intercept Tap

ATM Sw national distance (TO equiv.) L2AIMG ECAN

L2AIMG - TDM line to AAL-1/2 & VotP MG LIT - Lawful Intercept Tap

V2AIMG - VoDSL to AAL-1/2 & VoIP MG LIT - Lawful Intercept Tap CLE - Customer Located Equipment

Not recommended, but may be unfortunate reality

CPE - Customer Premises Equipment CLE - Customer Located Equipment PVG - Passport Voice Gateway LIT - Lawful Intercept Tap EO - End Office

MG4K - TDM to AAL-1 MG TO - Tandem Office

CVX1800 - TDM to VoIP MG

15KMSS - Passport 15K ATM Sw

V15K - Versalar 15K IP router

Fig. 18

lumped national model 27,500km - 2*(distance from subs to TO equiv.) lumped national model lumped international model

The E-model calculates a Transmission Rating Factor R, given by $R = R_o - I_s - I_d - I_e + A$

E-Model Parameter Default Values

Parameter	Units	Value
SLR (Send Loudness Rating)	dB	8
RLR (Receive Loudness Rating)	dВ	2
STMR (Sidetone Masking Rating)	dB	15
LSTR (Listener Sidetone Rating)	dB	18
OLR (Overall Loudness Rating)	dB	10
TELR (Talker Echo Loudness Rating)	dВ	65
WEPL (Weighted Echo Path Loss)	dВ	110
T (Mean Intrinsic One-Way Delay)	msec	0
Ta (Absolute Delay)	msec	0
Tr (Round-Trip Delay)	msec	0
QDU (Quantization Distortion Units)	•	1
le (Equipment Impairment Factor)	-	0
A (Expectation Factor)	-	0
Ds (Handset Shape Factor – Send Side)	-	3
Dr (Handset Shape Factor - Receive		3
Side)		
Ps (Room Noise at the Send side)	dB(A)	35
Pr (Room Noise at the Receive side)	dB(A)	35
Nc (Circuit Noise referred to 0 dBr-point)	dBm0p	-70
Nfor (Noise Floor at the Receive Side)	dBmp	-64

1 G.711 G.711 G.729A G.720A G.					le for E-l	le for E-Model Calculations	culations			
[Notes 2, 3] [Notes 1, 2, 3] [Notes 1, 2, 3] [Notes 1, 3] [Notes 1, 3] [Notes 3] [Notes 2, 3] [Notes 3] [Note 3		G.711	G.711	G.711	G.711	G.729A		G.729A	G.729A	G.726
1.125 1.125 1.125 1.0 1.0 1.125 1.125 1.125 1.0 1.0 1.10 20 30 40 1.0 20 1.10 0 0 0 0 1.1 1.1 5 8 10 13 15 7 13 16 19 16 19 1.10 19 22 24 19 23 1.15* 25 26 29* 1.10 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30		[Ref.10]	[Notes 1,	[Notes 1, 2,	[Notes 1, 2,	[Notes 1, 3]	[Ref.10]	[Notes 1, 3]	[Notes 1, 3]	32kb/s
.125 .125 .125 10 10 .10 .20 .125 .125 10 10 .10 .20 .20 .20 .20 .20 .10 .0 .0 .0 .11 .11 .11 .11 .11 .11 .11 .11 .12 .13 .15 .15 .15 .19 .19 .19 .19 .19 .19 .19 .19 .19 .23 .11 .11 .19 .23 .24 .19 .23 .26 .28 .20 .26 .29*		[Notes 2, 3]	2, 3]	3]	3,4]		[Note 3]			note [5]
10 20 30 40 10 20 0 0 0 0 11 11 5 8 10 13 13 15 7 13 16 19 16 19 10 19 22 24 19 23 15 22 26 28 22 26 15 30 32 35 29*	Frame Size	.125	.125	.125	.125	10	10	10	01	.125
10 20 30 40 10 20 0 0 0 0 11 11 5 8 10 13 13 15 7 13 16 19 16 19 10 19 22 24 19 23 15 22 26 28 26 26 15 35 30 32 35 29*	(ms)									
0 0 0 0 11 11 5 8 10 13 13 15 7 13 16 19 16 19 10 19 22 24 19 23 12.5* 22 26 28 22 26 15 25 26 28 25 26	Packet	10	20	30	40	10	20	30	40	20
0 0 0 0 11 11 5 8 10 13 13 15 7 13 16 19 16 19 10 19 22 24 19 23 12.5* 22 26 28 22 26 15 25 26 28 25 26	Payload									
0 0 0 0 11 11 5 8 10 13 13 15 7 13 16 19 16 19 10 19 22 24 19 23 12.5* 22 26 28 22 26 15 25 26 28 25 26	(ms)									
0 0 0 0 11 11 5 8 10 13 13 15 7 13 16 19 16 19 10 19 22 24 19 23 12.5* 22 26 28 22 26 15 30 32 35 29*	Packet Loss									
0 0 0 0 11 11 5 8 10 13 13 15 7 13 16 19 16 19 10 19 22 24 19 23 12.5* 22 26 28 22 26 15 25 26 28 25 26	(%)									
5 8 10 13 13 15 7 13 16 19 16 19 10 19 22 24 19 23 12.5* 22 26 28 22 26 15 35 30 32 35 29*	0	0	0	0	0	11	11	11	11	7
7 13 16 19 16 19 16 10 19 22 24 19 23 12.5* 22 26 28 22 26 15 35 30 32 35 29*	1	S	8	10	13	13	15	17	16	N/A
10 19 22 24 19 23 12.5* 22 26 28 22 26 15 25 20 23 25 26	2	7	13	16	19	16	19	21	24	N/A
12.5* 22 26 28 22 26 15 25 20 23 25 29*	3	10	19	22	24	61	23	25	28	N/A
75 20 27 75 29*	4	12.5*	22	26	28	22	56	29	32	N/A
2 CZ 7C 0C CZ	5	15	25	30	32	25	*67	32	35	N/A

Notes:

- 1) In the absence of any supporting documentation, these are arbitrary values
- 2) All G.711 vocoders are assumed to have PLC (Packet Loss Concealment) algorithms 3) Impairment factors apply for random packet loss conditions
- 4) This is the current capability of the i2004 (in the absence of any download instructions to achieve smaller frame size)
 - 5) There is no PLC algorithm for G.726, therefore its deployment might be limited in lossy network
 - 6) Interpolated values

-64

POTS

-ig. 34

BTS: Base Station BSC: Base Station Controller MSC: Mobile Switching Center

* /VED2275	_	599
Acres 11		130
21/20/20/20		
25000	-	35,
A. A. A. A.		
ల	Cert	316
ပ	C	418
ဗ္ဂ	9	100
ဗ္ဗ		
ဗ္ဗ	n	
2		
2)	mE	
Acc	mE	
Acc	m	
Ace	mE	1
Acc	mE	
S.Acc	m	
s Acc		
s Acc		
ss Acc		
ss Acc		
ess Acc	ndime	
ess Acc	nd me	
less Acc		
less Acc		
less Acc	and me	
eless Acc	and Imp	
eless Acc	and Imp	
eless Acc	sand Imp	
reless Acc	s and Imp	
reless Acc	Sand me	
ireless Acc	ss and Imp	
ireless Acc	ss and Imp	
/ireless Acc	oss and Imp	
Vireless Acc	oss and Imp	
Vireless Acc	oss and Imp	
Wireless Acc	loss and lmr	
Wireless Acc	loss and Imp	
Wireless Acc	loss and lmp	
Wireless Acc	loss and Imp	
Wireless Acc	loss and lmp	
Wireless Acc	7. loss and Impairment Summary	
N Wireless Acc	v. loss and Imp	
N Wireless Acc	v. loss and lmp	
N Wireless Acc	iv. loss and Imp	
N Wireless Acc	ay, loss and lmp	
IN Wireless Acc	av. loss and lmc	7 /
IN Wireless Acc	av. loss and lmc	
TN Wireless Acc	lay, loss and lmc	
TN Wireless Acc	elay, loss and lmc	
STN Wireless Acc	elay, loss and lmc	
STN Wireless Acc	elay, loss and lmc	
STN Wireless Acc	oelay, loss and lmc	
STN Wireless Acc	Jelay, loss and lmc	, ,
PSTN Wireless Acc	Jelay, loss and lmc	
PSTN Wireless Acc	Delay, loss and lmc	
PSTN Wireless Acc	Delay, loss and lmp	
PSTN Wireless Access	Delay, loss and lmc	
PSTN Wireless Acc	Delay, loss and lmc	
PSTN Wireless Acc	Delay, loss and lmc	
PSTN Wireless Acc	Delay, loss and lmc	
PSTN Wireless Acc	Delay, loss and lmc	

	Uplink	Uplink Downlink
Mobile Switching Center (MSC) (ms)	ı	2
Base Station Controller (BSC) (ms)	2.5	40
Base Station (BTS) (ms)	15.8	40.8
Mobile Set (MS) (ms)	72.1	14.3
PSTN Wireless Access Delay (ms)	91.40	97.10
Impairment Factor (Ie)	\$	5

TO-TO-TO-TO

19 — 19 — 15 C —

- TO - TO - TO - TO

ECAN TOMNational Transport

TDMInternational Transport

> 6.711 (TDM/ATM) 6.726 (DCME)

TDMNational ECAN Transport

TDM Core Transport	National (8000km)	uuoo)	International ection Length 27	International (connection Length 27500 km)	km)
		O DCME TOCME 2 DCME 3 DCME	1 DCME	2 DCME	3 DCME
	the spine and the spine and spine and spine and	The state of the s	Melaning of the Market St	-	
National Transmission Time	43	43	43	43	43
T2DCME (G.711/G.726 Conversion+DSI) (ms)	•	0	26	52	78
DCME2T (G.726/G.711 Conversion) (ms)	•	0	2	4	9
International Transmission Time (ms	•	72	72	72	72
National Transmission Time	•	43	43	43	43
				:	
Total one-way delay (ms)	43	158	186	214	242
Impairment Factor (Ie)	0	0	7	14	21

38.98 49.4 International 2 DCME (Trunk, Line, Wireless, DSL, B- side User Access Cable and Enterprise) B- Side Access 19 24 310.22 402.5 International DCME International 1 DCME 59.8 48.54 PSTN Fra Core Transport 12 <u>e</u> 1 Transport

Transport PSTN TDM Core Transport 282.22 374.5 DCME E-Model "R" factor ▼ Total Impairment 9.07 58.3 9/1 9 10 - 10 - 10 - 10 TDM International Transport 346.5 253.2 TDM National Transport 81.7 7247 œ National <u>o</u> 9 Ŋ 231.5 141.6 Cellular (compressed voice) A- Side Wireless Access G.711 (TDM/ATM) G.726 (DCME) Wireless Trunk Total E2E Delay (ms) B-Side

Trunk Access		National		Internal	International 0 DCME	DCME	Internat	International 1 DCME	DCME	Interna	International 2 DCME	DCME
to	T	əl	R	⊥	le	R	⊢	le le	Я	T	le	R
Trunk	46			161.22		82.8	85.8 190.22		8.92	76.8 218.22	14	9.99
Wireless	139.24	5	81.7	253.22	5	9.07	70.6 282.22	12	59.8	59.8 310.22	19	49.4

-ig. 39

Wireless Access		National		Interna	nternational 0 DCME	DCME	Interna	International 1 DCME	DCME	Internat	International 2 DCME	DCME
to	Τ	le	R	L	le	Я	F	el	R	T	le	a a
Trunk	141.6	2	81.7	253.2	5	9'02	282.25	12	29.8	310.22	19	49.4
Wireless	231.5	10	72.7	346.5	10	58.3	374.5	17	48.54	402.5	24	38.98

A- Side User Access (Trunk, Line, Wireless, DSL, Cable and Enterprise)

Core Transport
Network
(TDM,ATM or IP)

B- side User Access (Trunk, Line, Wireless, DSL, Cable and Enterprise)

Trunk Access - ATM Core

Wireless Access - IP Core

A- Side User Access (Trunk, Line, Wireless, DSL, Cable and Enterprise)

Core Transport
Network
(TDM,ATM or IP)

B- side User Access (Trunk, Line, Wireless, DSL, Cable and Enterprise)

Enterprise Multi-Service SW Access

A- Side User Access (Trunk, Line, Wireless, DSL, Cable and Enterprise)

Core Transport
Network
(TDM,ATM or IP)

B- side User Access (Trunk, Line, Wireless, DSL, Cable and Enterprise)

Enterprise IPPBX Access IP Core

Pors
Pors
Firewall
Firewall
Kouter
Router
Switch

Which impairments are being considered in the models?

Trunk Access - ATM Core

Frunk Access to ATM Core (before 4 parameters budget assignment) Delay, loss and Impairment Summary	assignment)
Set delay (Side A) (ms) End Office Delay (Side A) (ms) Tandem Office Delay (Side A) (ms) T2AMG delay (Side A) (ms)	0 1.5 0.75 0.5
Trunk Access delay (ms) Impairment Factor (Ie)	2.75

Wireless Access - IP Core

Succession Wireless to ATM Core - Delay, loss ad Impairment Summary (before 4 parameters budget assignment)

	Uplink	Downlink
Mobile Switching Center (MSC) (ms)		2
Base Station Controller (BSC) (ms)	2.5	40
Base Station (BTS) (ms)	15.8	40.8
Mobile Set (MS) (ms)	72.1	14.3
T2AMG delay (Side A) (ms)	0.5	0.5
Wireless Access delay (ms)	91.40	97.10
Impairment Factor (Ie)	5	2

Cable CPE	Cable CPE	Cable CPE	Note
	Upstream	Downstrea m	
Link Speed	510 Kbps	3000 Kbps	note [1]
Voice packet size (byte)	160	160	note [2]
Voice packet overhead (RTP/UDP/IP)	48	48	
Data packet size (byte)	512	512	
Data packet overhead	48	48	
Voice packet link utilization (%)	10.0%	10.0%	
Data packet link utilization (%)	90.0%	%0.06	
Fixed Delay			
- Serialization delay for voice packet (ms)	3.26	0.55	note [3]
- DSP & CPU processing delay (ms)	12.00	14.00	note [4]
- Packetization Delay (ms)	00.00	N/A	note [5]
Variable Delay			
- Average Voice data contention (ms)	4.57	82.0	note [6]
- Maximum Voice data contention (ms)	9.15	1.55	note [6]
- De-Jitter buffer delay (ms)	N/A	00'0	note [5]
Other Impairments			
- Packet Loss (%)	0.00	00.0	note [5]
Minimum Delay (Fixed Delays) (ms)	15.26	14.55	
Average Delay (Fixed+Average Variable Delays) (ms)	19.84	15.33	
Maximum Delay (Fixed+ Max Variable Delays) (ms)	24.41	16.11	

(Trunk, Line, Wireless, DSL, A- Side User Access Cable and Enterprise)

Core Transport Network

TDM, ATM or IP)

(Trunk, Line, Wireless, DSL, B- side User Access Cable and Enterprise)

National at TMIT an apport Cove

Interestational of TWITz anyport Covee

Interestational at TWI France por Cove evidal DOCME

Total National Transport Distance (km)	8000 km	8000 km	8000 km	Note
	(P)	(ATM)	(TDM)	
Terrestrial Distance (km)	8000	0008	8000	
Terrestrial propagation Delay @ 5us / km (ms)	40	40	40	From G.114
Submarine Distance (km)	•	-	•	
Submarine propagation Delay @ 6us / km (ms)	-	-	•	From G.114
Number of hop	5	8	4	From i.356,
Equipment processing time (ms)	1ms x 5	0.03ms x 8	0.75ms x 4	TIA IS-810 G.114
Jitter (ms)	note [1]	1.5 note [3]	0	I.356 QoS class 1
Total Delay (ms)	45	41.74	43	Note [2]

Internation Core Transport delay	27500	27500	27500	Note
	(I.P.)	(ATM)	(LDM)	
Terrestrial Distance (km)	16000	16000	16000	
Terrestrial Delay @ 5us / km (ms)	80	08	80	
Number of hop	15	19	12	From I.356, TIA
				IS-810
Equipment processing time per hop	1	0.03	0.75	G.114
Equipment processing time (ms)	15	0.57	6	G.115
Submarine Distance (km)	11500	11500	11500	
Submarine Delay @ 6us / km (ms)	69	69	69	
Jitter (ms)	note [1]	3	0	I.356 QoS class
Total Delay (ms)	164	149.57	158	Note [2]

-ig. 50

				,,,								
	i.			DCME	R	29	29	49	64	65	29	64
	Access dess, Di	(agudu		International 2 DCME	le	14	14	19	14	14	14	14
	B. side User Access runk, Line, Wireless, DS	Came and Enter prize)		Interna	Τ	218	216	310	237	232	219	235
	B- side User Access (Trunk, Line, Wireless, DSL,	Cause	sport	DCME	R	77	27	09	75	75	7.7	75
Į	T		e Tran	ional 1	le		7	12	7	7	7	7
/	Packet wrt		ATM Core Transport	International 1 DCME	1	190	188	282	209	204	191	207
	Succession ATM Packet Core Transport	Network		International 0 DCME	R	98	98	71	85	85	98	85
	cession Core	ž)		tional 0	le	0	0	2	0	0	0	0
/	Suc			Interna	1	161	159	253	180	175	162	178
	₹ 0				ጸ	88	88	82	87	88	88	88
	9	runk		National	e 	0	0	2	0	0	0	0
	-E0-T0	A-Side Trunk			L	47	45	139	99	61	48	64
		A-Si				POTS Trunk	POTS Line	Wireless	VoDSL	Cable	Enterprise MSS	Enterprise IPPBX
						_	sse	၁၁	A e	bia	S-8	

comparison of an end-to-end Succession network with the closest benchmark representation of existing networks (PSTN Note: The four parameters: packetization delay, delay jitter, codec and packet loss have been set to zero. Those four parameters will be determined based upon the available margin. The margin is determined based on the benchmark only, mobile to PSTN, or mobile to mobile).

comparison of an end-to-end Succession network with the closest benchmark representation of existing networks (PSTN Note: The four parameters: packetization delay, delay jitter, codec and packet loss have been set to zero. Those four parameters will be determined based upon the available margin. The margin is determined based on the benchmark only, mobile to PSTN, or mobile to mobile).

-ig. 52

							IP Core Transport	Transpo	ort			
		National		Interna	tional 0	International 0 DCME	Interna	nternational 1 DCME	DCME	Interna	International 2 DCME	DCME
	_	ବା	R	1	e 	R	L	el	Z.	1	el	R
POTS Trunk	145	9	98	264	5	74	293	12	63	321	19	53
POTS Line	142	2	98	261	5	74	290	12	64	318	19	53
Wireless	237	10	72	356	10	22	385	17	48	413	24	38
NoDSL	164	2	85	283	2	7.1	312	12	61	340	19	51
Cable	158	2	85	277	2	72	306	12	62	334	19	52
Enterprise MSS	156	2	85	275	2	72	304	12	62	332	19	52
Enterprise IPPBX	172	5	84	291	5	70	320	12	60	348	19	50

B-Side Access

comparison of an end-to-end Succession network with the closest benchmark representation of existing networks (PSTN Note: The four parameters: packetization delay, delay jitter, codec and packet loss have been set to zero. Those four parameters will be determined based upon the available margin. The margin is determined based on the benchmark only, mobile to PSTN, or mobile to mobile).

Fig. 54

25.87 171.5 244.4 19.07 19.07 Delay Budge 110.9 le Budget =

Fig. 57

le Budget =	9.207	16.21	16.21	23.01
Delay Budget =	72.54	133.1	133.1	206

		Inti 2	le Margin	21.3	21.6	19.5	18.7	19.4	21.2	19.0	
		vs PSTN Intl 2	Delay Margin (ms)	196.8	199.0	192.8	177.6	183.1	196.5	179.7	
SS DSL, (e)		Succ 0 DCME vs DCME	R PSTN	49.4	49.4	39.0	49.4	49.4	49.4	49.4	
B-side User Access (Trunk, Line, Wireless, DSL, Cable and Enterprise)		Succ 0	R Succ	7.07	71.0	58.5	68.1	8.89	9.07	68.4	
side Us k, Line, uble and		V Intl 1	le Margin	10.9	11.2	10.0	8.3	9.0	10.8	8.6	
B- (Trun Ca	논	ME vs PSTR DCME	Delay Margin (ms)	91.8	94.0	17.8	72.6	78.1	91.5	74.7	
	ATM Core Transport Network	Succ 0 DCME vs PSTN Intl 1 DCME	R PSTN	59.8	59.8	48.5	59.8	8.63	59.8	59.8	dget
A Pack port k	sport	Succ (R Succ	7.07	71.0	58.5	68.1	8.89	70.6	68.4	lable bu
Succession ATM Packet Core Transport Network Described in section 6.1	re Tran	I Intl 0	le Margin	0.1	0.4	0.2	-2.5	-1.8	0.0	-2.2	est avai
u ccessi C or C	TM Co	cc 0 DCME vs PSTN Intl 0 DCME	Delay Margin (ms)	-0.2	2.0	0.8	-19.4	-13.9	-0.5	-17.3	ne small
	<	DCME vs P DCME	R PSTN	70.6	70.6	58.3	70.6	9.07	70.6	70.6	nario with the smallest available budget
T2A MG		Succ 0	R Succ	7.07	71.0	58.5	68.1	8.89	9.07	89	sce
c Msc		onal	le Margin	0.1	0.1	0.0	-0.5	-0.3	0.1	-0.5	access
BrsBsc - Ms		Succ vs PSTN National	Delay Margin (ms)	-1.2	1.0	-0.2	-20.4	-14.9	-1.6	-18.4	rst case
A A		c vs PS	R PSTN	81.7	81.7	72.7	81.7	81.7	81.7	81.7	the wo
		Suc	R Succ	81.8	81.8	72.7	81.2	81.4	81.8	81.2	ndicates
			-	POTS Trunk	POTS Line	Wireless	VoDSL	Cable	Enterprise MSS	Enterprise IPPBX	Note: In red indicates the worst case access
				·		ssəc	oA əb	!S -8!	•		

249 **26** 51 Delay Budget = le Budget =

le Budget =	12.91	20	20	21
Delay Budget =	112.4	197	197	210

Delay Budget =	3.004	17.34	27.14
le Budget =	21.97	145.8	273.1

Delay Budget = le Budget =

Rank	Codec	E-model Impairment Factor (Ie)	Estimated implementation delay (ms)	Note
1	G.711 at 64 kb/s	0	0.125	PCM
2	G.726 at 32 kb/s with Synch Coding	7	0.250	ADPCM
3	GSM-EFR	5	40	GSM
4	IS-733	*	40	
5	G.728 at 16 kb/s	7	1.250	
9	G.729/G.729A at 8 kb/s	10/11	25	
7	IS-641	9	40	TDMA
&	G.723.1 at 6.3 kb/s (not recommended)	15	30	Soft Phone

Codec	၁ဓ	packetization delay (ms)	max packet loss (%)	le due to packet loss
type	Codec le			
G.711	0	10	%0	0
G.711	0	20	%0	0
G.726(1)	2	10	%0	0

1. This codec is only really suitable for international

Codec	packetization delay (ms)	max packet loss (%)	le due to packet loss
Codec le			
	10	%0	0
	20	%0	0
	40	%0	0
	10	%0	0
	20	%0	0
	40	%0	0
	10	1%	9
	20	1%	5

	· · · ·																		
le due to packet loss		0	0	0	0	0	0	0	0	0	9	9	<u> </u>	7	7	8	2	4	
max packet loss (%)		%0	%0	%0	%0	%0	%0	%0	%0	%0	1%	1%	1%	1%	1%	1%	1%	1%	
packetization delay (ms)		10	20	40	. 10	20	40	10	20	40	10	20	40	10	20	40	10	20	
o e	Codec le	0	0	0	2	2	2	11	11	11	0	0	0		2	2	11	11	
Codec	type	G.711	G.711	G.711	G.726	G.726	G.726	G.729	G.729	G.729	G.711	G.711	G.711	G.726	G.726	G.726	G.729	G.729	

7:5 73