

WAREHOUSE AUTOMATION

PRESENTED BY –

NEERAJ SAHASRABUDHE

JITESH SONKUSARE

PROBLEM STATEMENT

Automating warehouse operations through the utilization of various Reinforcement Learning (RL) techniques for optimizing a robot's pathfinding process, and subsequently, comparing this performance with conventional algorithms such as A* to determine the most efficient path

METHODS USED

- Monte Carlo Methods
- Temporal Difference (TD)
 Learning Q-Learning
- Deep Q-Learning
- A Star Search

ENVIRONMENT

- Created a custom
 environment using gym API
- Conceptualized reward
 function for task completion
- Rendered environment using matplotlib.pyplot

COMPARISON METRICS

A - Star

Visualization of the world

Q - Learning

Monte Carlo

Deep Q - Learning

MONTE CARLO FOR 1000 EPISODES

TESTING FOR VARIED ENVIRONMENTAL CONDITIONS

RESULTS

Returns vs Number of Episodes

Monte Carlo

Q-Learning

RESULTS

Loss vs Epoch for DQN

CONCLUSION

- Reinforcement Learning algorithms can be used to automate robotic warehouse environments
- Optimal policies obtained from RL algorithms provide similar optimal paths as those obtained from A* Search
- As RL algorithms do not require a map of the environment, the implementation in larger environments is simpler and more efficient

FUTURE WORK

- Multi Robot Agent
- Dynamic Obstacles

THANK YOU

GitHub Link:

https://github.com/jitesh302

3/Reinforcement-Learning-

Final-Project.git