Algèbre de Lie Semisimple

Cassandre SAIZ et Ezzahra ZLIGUI SAILLIER

Encadrée par Stéphane BASEILHAC

05/2020

Table des matières

Introduction

Chapitre 1

Notions préliminaires

Dans tout le rapport \mathbb{K} sera un corps commutatif et V un \mathbb{K} -espace vectoriel.

1.1 Définitions et exemples

Définition 1

Une \mathbb{K} -algèbre de Lie est un \mathbb{K} -espace vectoriel L muni d'une opération :

$$[.,.]:L\times L\to L,\quad (x,y)\to [x,y]$$

appelée crochet de Lie et vérifiant :

- (L1) [.,.] est bilinéaire.
- (L2) [x,x] = 0 pour tout $x \in L$.
- (L3) Identité de Jacobi : $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, \forall x, y, z \in L.$

Remarque:

(L1) et (L2) appliqué à [x+y,x+y] implique l'anticommutative, i.e. [x,y]=-[y,x]. De plus, si $car(\mathbb{K})\neq 2$ on a équivalence entre (L2) et [x,y]=-[y,x], $\forall x,y\in L$.

Exemples:

- 1. Tout espace vectoriel muni du crochet nul, i.e. [x,y] = 0, $\forall x,y \in L$, est une algèbre de Lie. Elle est appelée algèbre abélienne ou commutatif.
- 2. Si V est un \mathbb{K} -espace vectoriel, alors $(End(V), +, \circ)$ muni du crochet :

$$[x, y] = x \circ y - y \circ x, \ \forall (x, y) \in V \times V$$

est une algèbre de Lie, on la note $\mathfrak{gl}(V)$.

3. Si $n \in \mathbb{N}$, alors $(\mathbb{M}_n(\mathbb{K}), +, \times)$ muni du même crochet que ci-dessus est une algèbre de Lie que l'on note $\mathfrak{gl}(n, \mathbb{K})$.

Définition 2

Soit L une algèbre de Lie. On dit que K est une sous-algèbre de Lie de L, si K est un sous-espace vectoriel de L et si pour tous $x, y \in K$, $[x, y] \in K$.

1.1.1 Algèbre linéaire de Lie

Considérons V un espace vectoriel de dimension n. Nous allons approfondir l'exemple $\mathfrak{gl}(V)$, en étudiant certains de ses sous-algèbres de Lie. Nous pouvons identifier $\mathfrak{gl}(V)$ avec l'ensemble des matrices $n \times n$ sur \mathbb{K} que nous notons $\mathfrak{gl}(n,\mathbb{K})$. Cette procédure est pratique, surtout pour les calculs explicites. Comme pour le calcul de la dimension de $\mathfrak{gl}(V)$:

$$dim \ \mathfrak{gl}(V) = dim \ M_n(\mathbb{K}) = n^2$$

Nous pouvons aussi définir une base de $\mathfrak{gl}(n,\mathbb{K})$: $\{e_{ij}\}$, où e_{ij} est la matrice dont le seul coefficient non nul est sur la i^{ime} ligne et la j^{ime} colonne.

Nous avons donc $\mathfrak{gl}(n,\mathbb{K}) = vect\{e_{ij} , 1 \leq i,j \leq n\}$. Regardons l'effet du crochet de Lie sur deux éléments de la base :

$$[e_{ij}, e_{kl}] = e_{ij}e_{kl} - e_{kl}e_{ij} = \delta_{jk}e_{il} - \delta_{li}e_{kj}, \text{ avec } \delta_{ij} = \begin{cases} 1 & si \quad i = j\\ 0 & sinon \end{cases}$$

Toute sous-algèbre de Lie de $\mathfrak{gl}(V)$ est appelée **algèbre linéaire de Lie**. Nous allons voir 4 exemples importants $A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}$.

 A_{ℓ} : dans ce cas $\dim V = \ell + 1$, nous noterons $\mathfrak{sl}(V)$ ou $\mathfrak{sl}(\ell + 1, \mathbb{K})$ l'ensemble des endomorphismes de V dont la trace est nulle.

Rappelons que la trace d'une matrice est la somme de ses éléments diagonaux et qu'elle est indépendante du choix de la base. Comme nous pouvons identifier les matrice au endomorphisme, la trace a du sens pour les endomorphismes de V.

Montrons que $\mathfrak{sl}(V)$ est bien une sous-algèbre de Lie. Comme tr(xy) = tr(yx) et tr(x+y) = tr(x) + tr(y), pour tous $x,y \in End(V)$ alors tr([x,y]) = tr(xy-yx) = tr(xy) - tr(yx) = 0, donc $[x,y] \in \mathfrak{sl}(V)$. D'où $\mathfrak{sl}(V)$ est bien une sous-algèbre de Lie, appelée l'algèbre linéaire spéciale. Calculons la dimension de $\mathfrak{sl}(V)$:

$$\begin{cases} e_{ij} & 1 \leq i \neq j \leq \ell \\ e_{ii} - e_{i+1;i+1} & 1 \leq i \leq \ell - 1. \end{cases}$$
 est une base de $\mathfrak{sl}(\ell + 1, \mathbb{K})$.

Donc $\dim \mathfrak{sl}(V) = \ell^2 - 1$. Regardons le cas où $\ell = 1$, c'est à dire $\mathfrak{sl}(2, \mathbb{K})$. Dans ce cas nous avons la base suivante :

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad z = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Avant de commencer l'exemple C_{ℓ} , rappelons les définitions suivantes :

Définition 3

Une forme bilinéaire B d'un espace vectoriel V sur \mathbb{K} est une application bilinéaire de $V \times V \to \mathbb{K}$. On dit que B est :

- Symétrique si $B(x,y) = B(y,x), \forall x,y \in V$.
- Antisymétrique si $B(x,y) = -B(y,x), \forall x,y \in V$.
- Non-dégénérée $si \{v \in V \mid B(v, w) = 0, \forall w \in V\} = \{0\}.$

Remarque:

Dans les espaces vectoriels de dimension paire, si B est une forme bilinéaire antisymétrique et non dégénérée, alors il existe une base dans laquelle, $[B]_{\mathcal{B}} = \begin{pmatrix} 0 & I_{\ell} \\ -I_{\ell} & 0 \end{pmatrix}$.

 C_{ℓ} : dans ce cas $\dim V = 2\ell$. Définisons l'algébre sympléctique, notée $\mathfrak{sp}(2\ell, \mathbb{K})$, comme l'ensemble des endomorphismes $x \in \mathfrak{gl}(V)$ qui satisfont f(x(v), w) = -f(v, x(w)) pour f une forme bilinéaire antisymétrique non-dégénérée.

Montrons que $\mathfrak{sp}(2\ell, \mathbb{K})$ est bien une sous-algèbre de $\mathfrak{gl}(V)$. Soit $x, y \in \mathfrak{sp}(V)$:

$$f([x, v]v, w) = f(xy(v), w) - f(yx(v), w)$$

$$= f(v, yx(w) - f(v, xy(w))$$

$$= -(f(v, xy - yx(w)))$$

$$= -f(v, [x, y]x)$$

En terme matriciel:

$$\mathfrak{sp}(2\ell,\mathbb{K}) = \left\{ x \in \mathfrak{gl}(2\ell,\mathbb{K}) \mid sx = -x^t s, \quad s = \begin{pmatrix} 0 & I_\ell \\ -I_\ell & 0 \end{pmatrix} \right\}.$$

Cherchons maintenant une base de $\mathfrak{sp}(2\ell, \mathbb{K})$, pour cela nous allons décrire de façon plus précise les matrices symplectiques.

Soit $x=\begin{pmatrix} m & n \\ p & q \end{pmatrix}$ avec $m,n,p,q\in\mathfrak{gl}(\ell,\mathbb{K})$. Après calcul nous trouvons le système suivant :

$$\begin{cases} n^t = n \\ p^t = p \\ m^t = -q \end{cases}$$

Il est alors facile de déduire des bases pour les espaces de n, p et q, qui sont respectivement : $\left\{ \begin{array}{cc} e_{i,i+\ell} & 1 \leq i \leq \ell \\ e_{i,j+\ell} + e_{j,i+\ell} & 1 \leq i < j \leq \ell \end{array} \right\}, \left\{ \begin{array}{cc} e_{i+\ell,i} & 1 \leq i \leq \ell \\ e_{i+\ell,j} + e_{j+\ell,i} & 1 \leq i < j \leq \ell \end{array} \right\}$ et $\left\{ \begin{array}{cc} e_{i,j} - e_{j+\ell,i+\ell} & 1 \leq i, j \leq \ell \end{array} \right\}.$

Donc $\dim \mathfrak{sp}(2\ell, \mathbb{K}) = 2\ell(\ell+1)/2 + \ell^2 = 2\ell^2 + 1.$

 B_{ℓ} : dans ce cas $\dim V = 2\ell + 1$ et $car(\mathbb{K}) \neq 2$. On nomme **algèbre orthogonale** impair, notée $\mathfrak{o}(2\ell + 1, \mathbb{K})$, l'ensemble des $x \in \mathfrak{gl}(V)$ tels que f(x(v), w) = -f(v, x(w)) pour f une forme bilinéaire symétrique non-dégénérée.

On reprend la même idée que pour C_l :

$$\mathfrak{o}(2\ell+1,\mathbb{K}) = \left\{ x \in \mathfrak{gl}(2\ell+1,\mathbb{K}) \mid sx = -x^T s, \quad s = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & I_{\ell} \\ 0 & I_{\ell} & 0 \end{pmatrix} \right\}.$$

Soit $x \in \mathfrak{o}(2\ell+1,\mathbb{K})$, il sera alors de la forme : $x = \begin{pmatrix} a & b_1 & b_2 \\ c_1 & m & n \\ c_2 & p & q \end{pmatrix}$, avec $a \in \mathbb{K}$,

 $b_i^t, c_i \in \mathbb{K}^{\ell} \text{ et } m, n, p, q \in \mathfrak{gl}(\ell, \mathbb{K}).$

En appliquant la conditions a x, on déduit le système suivant :

$$\begin{cases} a = -a \\ c_1 = -b_2^t \\ c_2 = -b_1^t \\ q = -m^t \\ p = -p^t \\ n = -n^t \end{cases}$$

On peut donc déduire qu'une base de $\mathfrak{o}(2\ell+1,\mathbb{K})$ est :

$$\begin{cases}
e_{i,j} - e_{i+\ell,j+\ell} & 2 \le i, j \le \ell + 1 \\
e_{1,i+\ell} - e_{i,1} & 2 \le i \le \ell + 1 \\
e_{1,i} - e_{i+\ell,1} & 2 \le i \le \ell + 1 \\
e_{i,j+\ell} - e_{j,i+\ell} & 2 \le i < j \le \ell + 1 \\
e_{i+\ell,j} - e_{j+\ell,i} & 2 \le i < j \le \ell + 1
\end{cases}$$

Alors dim $\mathfrak{o}(2\ell+1,\mathbb{K})=2\ell^2+\ell$

 D_l : dans ce cas $dim\ V=2\ell$ et $car(\mathbb{K})\neq 2$. On nomme l' $alg\grave{e}bre\ orthogonale$ pair, notée $\mathfrak{o}(2\ell,\mathbb{K})$, l'ensemble $\left\{x\in\mathfrak{gl}(2\ell+1,\mathbb{K})\mid sx=-x^Ts,\ s=\begin{pmatrix}0&I_\ell\\I_\ell&0\end{pmatrix}\right\}$.

Les calcules de bases et de dimensions se font de manière similaire à B_{ℓ} . Nous donnerons donc le dimension de $\mathfrak{o}(2\ell,\mathbb{K})$ sans plus de précision, $\dim \mathfrak{o}(2\ell,\mathbb{K}) = 2\ell^2 - \ell$.

Nous pouvons aussi cité comme sous-algèbre de Lie de $\mathfrak{gl}(V)$:

- Les matrices triangulaires supérieures $\mathfrak{t}(n,\mathbb{K}):(a_{ij})=0$ si i>j.
- Les matrices strictement triangulaires $\mathfrak{n}(n,\mathbb{K}):(a_{ij})=0$ si $i\geq j$.
- Les matrices diagonales $\mathfrak{d}(n,\mathbb{K}):(a_{ij})=0$ si $i\neq j$. et on a $\mathfrak{t}(n,\mathbb{K})=\mathfrak{d}(n,\mathbb{K})\oplus\mathfrak{n}(n,\mathbb{K})$.

1.1.2 Algèbres de Lie de dérivation

Définition 4

Une \mathbb{K} -algèbre est un \mathbb{K} -espace vectoriel, muni d'une opération bilinéaire $A \times A \to A$

Remarque:

Une \mathbb{K} -algèbre n'est pas nécessairement associative.

Exemples:

- 1. A = End(V) $x.y = x \circ y$.
- 2. A = L une algèbre de Lie avec x.y = [xy].
- 3. $A = \mathfrak{gl}(V)$, dans ce cas A peut être une \mathbb{K} -Algèbre avec deux manières différentes : avec x.y = [xy] ou $x.y = x \circ y$.

Définition 5

Une dérivation δ d'une \mathbb{K} -algèbre A est une application linéaire qui satisfait la formule de Leibniz :

$$\delta(a.b) = a.\delta(b) + \delta(a).b.$$

Notation:

On note $Der(A) = \{toute \ les \ dérivations \ de \ A\}$

Proposition 1.1

Der(A) est un sous-espace vectoriel de End(A). De plus si A est une algèbre de Lie, alors Der(A) est une sous-algèbre de Lie.

Preuve:

 $a\ faire\ \Box$

Exemples:

Soit L une algèbre de Lie. On appel adjoint de $x \in L$ l'application :

$$\begin{array}{c} ad \ x: L \longrightarrow L \\ y \longmapsto [x,y] \end{array}$$

Montrons que l'adjoint est une dérivation. Soient $x, y, z \in L$ par l'identité de Jacobi on obtient :

$$[x, [y, z]] = -[y, [z, x]] - [z, [x, y]] = [y, [x, z]] + [[x, y], z].$$

Pour simplifier l'écriture posons a.b = [a, b], on a donc :

$$ad x(y.z) = y.ad x(z) + ad x(y).z.$$

Ainsi ad x est bien une dérivation.

1.2 Idéal et homomorphismes

1.2.1 Ideaux

Définition 6

Soit L une algèbre de Lie. Soit K_1 et K_2 deux sous-algèbres de L. Le crochet $[K_1, K_2]$ est le sous-espace engendré par tous les commutateurs $[k_1, k_2]$, avec $k_1 \in K_1$ et $k_2 \in K_2$.

Définition 7

Soit L une algèbre de Lie. On appel l'algèbre dérivée de L est le sous espace [L,L]

Définition 8

Un sous-ensemble I de L est un **idéal** de L si I est un sous-espace vectoriel de L et si pour tous $x \in I$, $y \in L$, on ai $[x, y] \in I$.

Exemples:

- 1. $\{0\}$, L et [L, L] sont des idéaux de L.
- 2. $Z(L) = \{z \in L \mid [x, z] = 0 \quad \forall x \in L\}$ est appelé le **centre** de L est un idéal de L.
- 3. Si I et J deux idéaux de L, alors $I + J := \{i + j, i \in I, j \in J\}$ et [I, J] sont des idéaux de L.

 $En\ effet:$

- $[x, i+j] = [x, i] + [x, j] \in I + J$
- $[x, [i, j]] = -[i, [j, x]] [j, [x, i]] = -[j, j'] [j, i'] \in [I, J]$ (Jacobi) (On a noté par [i, j] les éléments de [I, J] pour simplifier le calcul.)

Définition 9

Toute algèbre de Lie L non abélienne est dite **simple** si ses seuls idéaux sont $\{O\}$ et L.

Exemples:

Soit $L = \mathfrak{sl}(2, \mathbb{K})$ avec $car(\mathbb{K}) \neq 2$. On prend la base canonique de $\mathfrak{sl}(2, \mathbb{K})$:

$$\left\{x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad , h = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

Par un simple calcul on trouve que : [x, y] = h, [h, x] = 2x, [h, y] = -2y.

Soient $I \neq \{0\}$ un idéal de L et ax + by + ch un élément non nul de I. En appliquant ad x deux fois, on obtient $-2bx \in I$, de même en applique ad y deux fois, on obtient $-2ay \in I$. Donc si $a \neq 0$ et $b \neq 0$, alors $x \in I$ ou $y \in I$. Ainsi I = L.

Sinon, si a = b = 0 alors $ch \in I$, donc $h \in I$. On conclu I = L, donc L est simple.

La construction de l'algèbre L/I est formellement le même que le quotion d'anneaux :

Définition 10

Soient L une algèbre de Lie et I un idéal propre et non nul de L. L'algèbre quotient L/I est l'espace quotient muni de la multiplication de Lie définie par :

$$[x+I, y+I] = [x, y] + I, \quad \forall (x, y) \in L \times L$$

Remarque:

Dans le cas où L n'est pas une algèbre de Lie simple et dim > 1, il est possible de factoriser par un idéal propre non nul. On obtient ainsi une algèbre de Lie de dimension plus petite.

Pour un usage ultérieur, nous allons introduire quelques notions connexes, analogue à celles de la théorie des groupes.

Définition 11

• Le normalisateur d'un sous-espace K de L est l'ensemble :

$$N_L(K) = \{x \in L \mid [x, K] \subset K\}$$

Si $K = N_L(K)$ on dit que K est un auto-normalisateur.

ullet Le centralisateur d'un sous-ensemble S de L est :

$$C_L(S) = \{x \in L \mid [x, S] = 0\}.$$

Remarque:

Par l'identité de Jacobi $N_L(K)$ et $C_L(S)$ sont des sous-algèbres de L.

Dans le cas où K est une sous-algèbre, $N_L(K)$ est la plus grande sous-algèbre de L tel que K soit un idéal.

1.2.2 Homomorphisme et représentation

Définition 12

Soient L_1 , L_2 deux algèbres de Lie et $\phi: L_1 \to L_2$ une application linéaire, on dit que ϕ est un morphisme d'algèbres de Lie (ou homomorphisme) si :

$$\forall (x,y) \in L_1 \times L_1, \quad \phi([x,y]) = [\phi(x), \phi(y)].$$

De plus ϕ est:

- $un\ monomorphisme\ si\ ker\ \phi = \{0\}.$
- un épimorphisme si $Im \phi = L_2$.
- un isomorphisme $si \phi$ est un épimorphisme et un monomorphisme.

 L_1 et L_2 sont dites **isomorphes** s'il existe un isomorphisme d'algèbres de $Lie \phi: L_1 \to L_2$.

Exemples:

1. Le morphisme nul :

$$\theta: L \longmapsto \mathbb{K}$$
$$x \longmapsto 0$$

Montrons que θ est un morphisme d'algèbre de Lie.

 $\theta([x,y]) = 0 = [0,0] = [\theta(x),\theta(y)], donc \theta \text{ est bien un morphisme.}$

2. La trace d'un endomorphisme est définie par :

$$tr: \mathfrak{gl}(n,F) \longrightarrow \mathbb{K}.$$

Montrons que tr est un morphisme d'algèbre de Lie.

Soient $x, y \in \mathfrak{gl}(n, \mathbb{K})$. On a tr([x, y]) = tr(xy - yx) = tr(xy) - tr(yx) = 0 et [tr(x), tr(y)] = tr(x)tr(y) - tr(y)tr(x) = 0.

Donc la trace est bien un morphisme d'algèbre de Lie avec ker $tr = \mathfrak{sl}(n, \mathbb{K})$.

3. Le morphisme canonique est défini par :

$$\pi: L \longmapsto L/I$$
$$x \longmapsto x+I$$

Montrons que π est un épimorphisme d'algèbre de Lie.

On a $\pi([x,y]) = [x,y] + I$ et $[\pi(x), \pi(y)] = [x+I,y+I] = [x,y] + I$. Donc $\pi([x,y]) = [\pi(x), \pi(y)]$. De plus, on a par définition de π : Im $\pi = L/I$ et $\ker \pi = I$.

Donc π est bien un épimorphisme.

Remarque:

Soit L_1 et L_2 des algèbre de Lie, si ϕ est un morphisme de L_1 dans L_2 , alors :

- $ker \phi$ est un idéale de L_1 .
- $Im \ \phi \ est \ une \ sous-algèbre \ de \ L_2$.

Nous allons maintenant énoncé le théorème standard d'isomorphisme.

Théorème 1.1

Soit $\phi: L_1 \to L_2$ un homomorphisme d'algèbre de Lie. Et soient I et J deux idéaux de L_1 . Alors :

- (a) $L/\ker \phi \cong Im \phi$.
- (b) Si $I \subset \ker \phi$, alors il existe un unique homomorphisme $\psi : L_1/I \to L_2$ tel que $\psi \circ \pi = \phi$.
- (c) Si $I \subset J$ alors J/I est un idéal de L/I et $(L_1/I)/(J/I) \cong L_1/J$.
- (d) $(I+J)/J \cong I/(I \cap J)$.

Définition 13

Une représentation d'algèbre de Lie L est un homomorphisme $\phi: L \to \mathfrak{gl}(V)$, où V est un \mathbb{K} -espace vectoriel.

 $Si \phi$ est injectif, on dit que c'est une représentation fidèle.

Bien que nous ayons besoin que L soit de dimension finie, il est utile de permettre à V d'être de dimension quelconque, $\mathfrak{gl}(V)$ à du sens en toute dimension.

Exemples:

- 1. La représentation triviale de L dans V est l'application ϕ définie par $\forall x \in L, \phi(x) = 0$.
- 2. La représentation adjointe est l'application : $ad : L \longrightarrow \mathfrak{gl}(V)$ $x \longmapsto ad \ x : y \longmapsto [x, y]$ Il est clair qu'elle est linéaire, montrons qu'elle préserve le crochet :

$$[ad x, ad y](z) = ad xad y(z) - ad yad x(z)$$

$$= ad x([yz]) - ad y([xz])$$

$$= [x[yz]] - [y[xz]]$$

$$= [x[yz]] + [[xz]y]$$

$$= [[xy]z]$$

$$= ad [xy](z)$$

Soit $x \in L$ tel que ad x = 0, donc ker ad = Z(L).

Cette constatation nous permet de déduire :

Si L est simple alors $ad: L \longrightarrow \mathfrak{gl}(L)$ est un monomorphisme, ainsi toute algèbre de Lie simple est isomorphe à une algèbre de Lie linéaire.

1.3 Algèbre de Lie solvable et nilpotente

1.3.1 Solvabilité

Il est naturel pour étudier les algèbres de Lie d'étudier ses idéaux. En premier on définit une suite d'idéaux de L, que l'on appel série dérivée, par :

$$L^{(0)} = L$$
, $L^{(1)} = [L, L]$, $L^{(2)} = [L^{(1)}, L^{(1)}] \cdots L^{(i)} = [L^{(i-1)}, L^{(i-1)}]$.

Définition 14

Une algèbre de Lie L est dite **solvable** si : $\exists n \in \mathbb{N}$ tel que $L^{(n)} = 0$.

Remarque:

- $L \ ab\'{e}lien \Rightarrow L \ solvable \ car \ [L, L] = 0.$
- $L \ simple \Rightarrow L \ n'est \ pas \ solvable, \ car \ L = [L, L].$

Exemples:

Regardons l'algèbre des matrices triangulaires supérieures $\mathfrak{t}(n,\mathbb{K})$. Une base de $\mathfrak{t}(n,\mathbb{K})$ est e_{ij} $1 \leq i \leq j \leq n$.

Pour montrer que $L = \mathfrak{t}(n, \mathbb{K})$ est solvable on commute explicitement ses séries dérivées en utilisant la formule $[e_{ij}, e_{kl}] = \delta_{ik}e_{il} - \delta_{li}e_{kj}$. A FAIRE

Proposition 1.2

Soit L une algèbre de Lie :

- (a) Si L est solvable, alors toutes ses sous-algèbres et les images de ses homomorphismes sont solvables.
- (b) Si I est un idéal solvable de L tel que L/I est solvable alors L aussi est solvable.
- (c) Si I, J deux idéaux solvables de L, alors I + J est solvable.

Preuve:

- (a) Par définition, si K est une sous algèbre de L, alors $K^{(i)} \subset L^{(i)}$, de même si $\phi: L \to M$ est épimorphisme une récurrence sur i montre que $\phi\left(L^{(i)}\right) = M^{(i)}$.
- (b) Posons $(L/I)^{(n)} = 0$, on applique le résultat (a) sur le morphisme canonique : $\pi: L \to L/I$, on a $\pi\left(L^{(n)}\right) = 0$, ou $L^{(n)} \subset I = \ker \pi$. Maintenant si $I^{(m)} = 0$ le fait évident que $\left(L^{(i)}\right)^{(j)} = L^{(i+j)}$ implique que $L^{(n+m)} = 0$.
- (c) Le (d) du théorème (??) donne un isomorphisme entre (I+J)/J et $I/(I\cap J)$ comme image d'homomorphisme de I, (I+J)/J est solvable donc d'après (b) (I+J) est solvable.

Définition 15

On dit que I est un idéal **solvable maximal** si il n'est inclut dans aucun idéal solvable. Cet idéal est unique et appelée **radical** de L, noté Rad(L)

Définition 16

 $Si\ RadL = 0$ on dit que L est **semisimple**.

Exemples:

- 1. Une algèbre de Lie simple est semisimple. En effet : L est simple donc il n'a que deux idéaux 0 et L. Or L n'est pas solvable donc RadL = 0.
- 2. L = 0 est semisimple.

Notons que pour une algèbre de Lie arbitraire L on a L/(RadL) est semisimple (d'après la proposition $(\ref{eq:loop})$ (b))

1.3.2 Nilpotence

On définit la suite **centrale descendante** de L par récurrence :

$$L^1 = L$$
, $L^2 = [L, L] = [L, L^1]$, $L^3 = [L, L^2]$, ..., $L^i = [L, L^{i-1}]$.

Ainsi, L est abélienne si et seulement si $L^2 = 0$.

Définition 17

L'algèbre de Lie L est dite **nilpotente** si $L^n = 0$ pour un certain $n \in \mathbb{N}^*$.

Exemples:

Toute algèbre abélienne est nilpotente.

On clairement $L^{(i)} \subset L^i \ \forall i, \ donc \ les \ algèbres \ nilpotentes \ sont \ solvables.$ Le contraire est faux (exemple a mettre après).

Proposition 1.3

Soit L une algèbre de Lie. Alors :

- (a) Si L est nilpotente, alors ses sous-algèbres et les images de ses homomorphismes sont aussi nilpotentes.
- (b) Si L/Z(L), alors L est nilpotente.
- (c) Si L est nilpotente et non nulle alors $Z(L) \neq 0$.

Preuve:

- (a) Pareil que la preuve de la solvabilité.
- (b) Supposons que $L^n \subset Z(L)$, alors $L^{n+1} = [LL^n] \subset [L, Z(L)] = 0$.
- (c) Le dernier terme non nul dans la série centrale descendante est le centre.

Remarque:

La condition de nilpotence de L, peut être reformuler comme suit :

Soit $n \in \mathbb{N}$ (qui dépend pas de L) ad x_1 ad $x_2 \dots$ ad $x_n(y) = 0 \ \forall \ x_i, \ y \in L$. En particulier: $(x_1)^n = 0, \ \forall x \in L$.

Théorème d'Engel

Nous avons vu dans le chapitre précédent la notion d'algèbre nilpotente, que nous pouvons compléter avec la définition suivante :

Définition 18

Soit L une algèbre de Lie et $x \in L$. On dit que x est ad-nilpotent si ad x est un endomorphisme nilpotent.

Proposition 2.1

Soit L une algèbre de Lie nilpotente, alors $\forall x \in L$, x est ad-nilpotent.

Preuve:

A faire \Box

La réciproque de cette proposition est le Théorème d'Engel:

Théorème 2.1 (Théorème d'Engel)

Soit L une algèbre de Lie. Si tous les éléments de L sont ad-nilpotent, alors L est nilpotente.

2.1 Les Outils

Avant de démontrer ce théorème nous avons besoin d'introduire quelques résultats supplémentaires.

Lemme 2.1

Soit $x \in \mathfrak{gl}(V)$ un endomorphisme nilpotent. Alors ad x est aussi nilpotent.

Preuve:

Nous pouvons associer à l'endomorphisme x, les endomorphismes de End V suivant $\lambda_x(y) = xy$ et $\rho_x(y) = yx$, qui sont respectivement les translations à droite et à gauche de x. Ces deux endomorphismes sont nilpotents car x l'est par hypothèse.

De plus, λ_x et ρ_x commutent. Dans tout anneau, la somme ou la différence de deux éléments nilpotents qui commutent sont nilpotentes. Comme on peut écrire : ad $x(y) = [xy] = xy - yx = \lambda_x - \rho_x$.

On peut conclure que ad x est nilpotent. \square

Remarque:

Une matrice peut être ad-nilpotente sans être nilpotente. C'est le cas de la matrice identités.

Nous allons déduire le Théorème d'Engel du résultat qui va suivre. Mais avant rappelons qu'une application linéaire nilpotente à toujours au moins un vecteur propre, associé à son unique valeur propre 0. C'est le cas $dim\ L=1$ du théorème qui suit :

Théorème 2.2

Soit L une sous-algèbre de Lie de $\mathfrak{gl}(V)$, avec dim $V < +\infty$. Si tous les éléments de L sont nilpotents et $V \neq 0$, alors il existe un vecteur $v \in V$ non nul tel que L.v = 0.

Démonstration:

On procédé par récurrence sur la dimension de L.

Les cas dim L = 0 ou 1 sont évident.

Supponsons que $K \neq 0$ est une sous-algèbre de Lie de L. Par le Lemme (??) K agit (via ad) comme une algèbre de Lie, d'application linéaire nilpotente, dans l'espace vectoriel L, d'où sur l'espace vectoriel L/K. Comme dim $K < \dim L$, l'hypothèse de récurrence assure l'existence d'un vecteur $x + K \neq K$ dans L/K, qui est tué par l'image de K dans $\mathfrak{gl}(L/K)$, c.à.d $[yx] \in K, \forall K$, tandis que $x \notin K$. En d'autre mot, K est un espace propre de $N_L(K)$.

Maintenant prenons K la sous algèbre propre maximal de L. L'argument précédent force $N_L(K) = L$, i.e K est un idéal de L. Si dim L/K est supérieur à 1 alors il existe $\overline{H} \subset L/K$ de dimension 1. Par passage à l'image inverse, on a $H \subset L$, H est une sous algèbre propre de L, mais par maximalisé de K, on a $H \subset K$. Contradiction!

On déduit alors que K est de codimension 1. On peut donc écrire $L=K+\mathbb{K}z$ pour $z\in L-K$. Par récurrence, $W=\{v\in V\mid K.v=0\}$ est non nul puisque K est un idéal. W est stable dans L:

$$x + L, y \in K, w \in W, \quad yx.w = xy.w - [xy]w = 0.$$

On choisi $z \in L - K$ comme ci-dessus, donc l'endomorphisme nilpotent z (dans le sous-espace W) a un vecteur propre, i.e. il existe un vecteur $v \in V$ non nul pour lequel z.v = 0.

On a finalement, L.v = 0 comme désiré. \square

2.2 Démonstration et conséquences

Nous avons maintenant tout ce qu'il faut pour démontrer le Théorème d'Engel.

Démonstration : (Théorème d'Engel)

Soit L une algèbre de Lie dont tous les éléments sont ad-nilpotent, par conséquent ad $L \subset \mathfrak{gl}(V)$ qui satisfait les hypothèses du théorème (??) (on peut supposer que $L \neq 0$).

Conclusion, il existe $x \neq 0$ dans L pour lequel [Lx] = 0, i.e. $Z(L) \neq 0$. Maintenant L/Z(L) contient évidement des éléments ad-nilpotent et dim $L/Z(L) < \dim L$.

Par récurrence sur la dimension de L, on trouve que L/Z(L) est nilpotent. Par le (b) de la proposition $(\ref{eq:local_partial})$, on a que L est aussi nilpotent. \square

Nous pouvons maintenant déduire un Corollaire très utile, cet énonce est même équivalent à celui du théorème d'Engel. Mais avant nous avons besoin d'introduire la définition suivante :

Définition 19

Soit V un espace vectoriel de dimension fini, un **drapeau de** V est une chaîne de sous-espace vectoriel : $0 = V_0 \subset V_1 \subset \cdots \subset V_n = V$, avec dim $V_i = i$. Si $x \in End\ V$, on dit que x est **stable** si on obtient, avec le drapeau précédent, $x.V_i \subset V_i$, $\forall i$.

Corollaire 2.1

Soit L une algèbre de Lie dont tous les éléments sont nilpotent. Il existe un drapeau $(V_i)_i$ de V stable dans L, avec $x.V_i \subset V_i$. En d'autre mots il existe une base de V dans laquelle les matrices de L appartienne à $\mathfrak{n}(n,\mathbb{K})$.

Preuve:

On commence avec un vecteur $v \in V$ non nul tuer par L, son existence est assurée par le théorème (??). Posons $V_1 = \mathbb{K}v$. Soit $W = V/V_1$ et on observe l'action induite de L dans W est un endomorphisme nilpotent.

Par récurrence sur la dimension de V, W a un drapeau stabilisé par L, par passage à l'image inverse on obtient le résultat voulu. \square

Pour finir ce chapitre, évoquons une application typique du Théorème (??), dont nous aurons besoin plus tard :

Lemme 2.2

Soit L une algèbre de Lie nilpotente, K un idéal de L. Alors si $K \neq 0$, $K \cap Z(L) \neq .$ En particulier, $Z(L) \neq 0$.

Preuve:

L agit sur L, via la représentation adjointe, donc le Théorème (??) donne $x \in K$ non nul tuer par L, i.e. [Lx] = 0. Ainsi $x \in K \cap Z(L)$. \square

Théorème de Lie

Dans les chapitres précédent nous avons regardé les algèbres de Lie sur un corps \mathbb{K} quelconque. Dans la suite nous avons besoin que \mathbb{K} soit de caractéristique 0. En outre pour avoir à disposition les valeurs propres de $ad\ x$ pour un x quelconque, et non seulement pour $ad\ x$ nilpotent. Nous supposerons aussi que \mathbb{K} est algébriquement clos, si tel n'ai pas le cas nous le préciserons.

L'essence du Théorème d'Engel est l'existence d'un vecteur propre commun pour les endomorphismes nilpotents, pour les algèbres de Lie cela consiste en un endomorphisme nilpotent.

Le théorème qui va suivre est de nature similaire. Cependant il nécessite une clôture algébrique afin d'assuré que \mathbb{K} contient toutes les valeurs propres. De même il est nécessaire d'avoir $car \mathbb{K} = 0$.

Théorème 3.1

Soit L une sous algèbre de Lie solvable de $\mathfrak{gl}(V)$, avec dim $V < +\infty$. Si $V \neq 0$, alors V contient un vecteur propre commun pour tous les endomorphismes de L.

Démonstration:

On utilise une récurrence sur la dimension de L. Le cas dim L=0 est trivial. On tentera d'imité la preuve du théorème $(\ref{eq:constration})$. La démonstration suivra la schéma suivant :

- (1) Localiser un idéal K de codimension 1.
- (2) Monter par récurrence qu'un vecteur propre commun existe pour K.
- (3) Vérifier que L stabilise un espace composé de tels vecteurs propres.
- (4) Trouver dans cet espace un vecteur propre qui pour $z \in L$ satisfait $L = K + \mathbb{K}z$.

Commençons maintenant la démonstration :

- (1) Puisque L est solvable, de dimension positive $(\neq 0)$, L contient entièrement [LL]. Ainsi L/[LL] est abélien, d'où tout sous-espace est automatiquement un idéal. On prend un sous-espace de codimension 1, alors sont image inverse K est un idéal de codimension 1 de L (qui contient [LL]).
- (2) On utilise une récurrence pour trouver un vecteur propre commun $v \in V$ pour K. K est bien sur solvable, si K = 0, alors L est abélien de dimension 1 et un vecteur propre pour une base de L fini le preuve. Dans le cas ou $K \neq 0$,

on a pour $x \in K$, $x.v = \lambda(x)v$, avec $\lambda : K \to \mathbb{K}$ une application linéaire. On fixe λ , et on note W le sous-espace :

$$W = \{ w \in V \mid x.w = \lambda(x)w, \, \forall x \in K \}$$

On a bien que $W \neq 0$.

(3) Montrons que L laisse W invariant. Soit $w \in W$ et $x \in L$. Pour déterminer si x.w vie dans W, prenons $w \in W$ et examinons :

$$yx.w = xy.w - [x, y].w = \lambda(y)x.y - \lambda([x, y])w$$

Ainsi il faut montrer que $\lambda([x,y]) = 0$. Pour cela fixons $w \in W$ et $x \in L$. Soit n > 0 le plus petit entier pour lequel $w, x.w, \dots, x^n.w$ est linéairement indépendant. Notons W_i le sous espace généré par $w, \dots, x^{i-1}.w$, donc dim $W_n = n$ et $W_n = W_{n+i}$ ($i \geq 0$) et x est une application de W_n dans W_n . Il est facile de vérifier que chaque $y \in K$ laisse chacun des W_i invariant. Relativement à la base $w, x.w, \dots, x^n.w$, on affirme que $y \in K$ est représenté par une matrice triangulaire supérieur dont les éléments diagonaux sont égaux à $\lambda(y)$. Il suit immédiatement la congruence :

$$(\star) \quad yx^i.w = \lambda(y)x^i \pmod{W_i}$$

Qu'on prouve par récurrence sur i, le cas i = 0 est évidant. Écrivons :

$$yx^{i}.w = yxx^{i-1}.w = xyx^{i-1}.w - [x, y]x^{i-1}.w$$

Par récurrence, $yx^{i-1}.w = \lambda(y)x^{i-1}.w + w'$ ($w' \in W_{i-1}$). Puisque x est une application de W_{i-1} dans W_i , par construction, (\star) est donc vrais pour tous i.

De notre description de l'action de $y \in K$ sur W_n on a $tr_{W_n}(y) = n\lambda(y)$. En particulier, ceci est vrais pour les éléments de K de la forme [x,y]. Comme x, y stabilise W_n , on a que [x,y] agit sur W_n comme le commutateur de deux endomorphismes de W_n . Leurs trace est par conséquence nulle. On conclu que $n\lambda([x,y]) = 0$. Du fait que car $\mathbb{K} = 0$, on a $\lambda([x,y]) = 0$, comme demandé.

(4) On écrit $L = K + \mathbb{K}z$ et on utilise le fait que \mathbb{K} est une clôture algébrique pour trouver un vecteur propre $v_0 \in W$ de z (pour une des valeurs propres de z). Alors v_0 est évidement un vecteur propre pour L et λ peut être étendu en une application linéaire de L telle que $x.v_0 = \lambda(x)v_0$, $x \in L$. \square

Corollaire 3.1 (Théorème de Lie)

Soit L une sous-algèbre de Lie solvable de $\mathfrak{gl}(V)$, avec dim $V = n \in \mathbb{N}$. Alors L stabilise un drapeau de V. En d'autre mot, les matrices de L, dans une base de V bien choisi, sont triangulaire supérieur.

Preuve:

On utilise le théorème (??), ainsi qu'une récurrence sur la dimention de V. \square

Plus généralement, si on considère L une algèbre de Lie solvable, et $\phi: L \to \mathfrak{gl}(V)$ une représentation de dimension finie de L. Alors $\phi(L)$ est solvable, par la proposition $(\ref{eq:local_sol})$ donc stabilise un drapeau de V par le corollaire $(\ref{eq:local_sol})$.

De plus, si ϕ la représentation adjointe, un drapeau de sous-espaces stables par L, est juste une chaîne d'idéal de L, chacuns de codimension 1.

On en déduit le corollaire suivant :

Corollaire 3.2

Soit L solvable. Alors il existe une chaîne d'idéal de L, $\{0\} = L_0 \subset L_1 \subset \cdots \subset L_n = L$, telle que dim $L_i = i$.

Corollaire 3.3

Soit L une algèbre de Lie solvable. Alors $x \in [LL]$ implique que ad_L x est nilpotent. En particulier, [LL] est nilpotente.

Preuve: (Corollaire??)

On trouve un drapeau d'idéal comme dans le corollaire (??). On considère la base x_1, \dots, x_n de L, telle que x_1, \dots, x_i engendre L_i . Dans cette base la matrice de ad L vie dans $\mathfrak{t}(n,\mathbb{K})$. Par conséquence les matrices de [ad L,ad L] sont dans $\mathfrak{n}(n,\mathbb{K})$, l'algèbre dérivée de $\mathfrak{t}(n,\mathbb{K})$. Il en suit que ad_L x est nilpotent pour $x \in [LL]$, a fortiori $ad_{[LL]}$ x est nilpotent, alors [LL] est nilpotent par le théorème d'Engel (??). \square

Critère de Cartan

Il serait utile d'avoir un critère pour étudier la solvabilité d'une algèbre de Lie. C'est exactement ce qui va nous intéresser dans cette partie.

4.1 Les outils

4.1.1 La décomposition de Jordan-Chevalley

Dans cette sous-section uniquement on considère $car \mathbb{K}$ quelconque. Nous sortons un peut du cadre des algèbre de Lie pour introduire un outils très utile dans l'étude est application linéaire. Rappelons la forme de Jordan pour un endomorphisme x sur un corps algébriquement clos. Sous forme matricielle c'est une matrice diagonal par bloc avec des bloc de la forme :

$$\begin{pmatrix} a & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 \\ 0 & \cdots & \cdots & a \end{pmatrix} \text{ avec } a \text{ valeur propre de } x.$$

Puisque $diag(a, \dots, a)$ commute avec une matrice nilpotente qui a des 1 sur la surdiagonale et des 0 partout ailleurs, x est la "somme" de matrices diagonales et de matrices nilpotentes. Nous pouvons rendre cette décomposition plus précise, comme suit.

Définition 20

Soit V un \mathbb{K} -espace vectoriel de dimension finie. On appel $x \in End(V)$ semisimple si les racines de son polynôme minimal sur \mathbb{K} sont toutes distinctes.

Proposition 4.1

 $x \in End(V)$ semisimple \iff x est diagonalisable.

Remarque:

La somme ou la différence de deux endomorphismes semisimple est encore semisimple. De même que la restriction à un sous-espace sera encore semisimple.

Proposition 4.2

Soient V un espace vectoriel de dimension finie sur \mathbb{K} et $x \in End(V)$:

- (a) Il existe un unique couple $x_s, x_n \in End(V)$ qui satisfait :
 - $x = x_s + x_n$ avec x_s semisimple, x_n nilpotent et x_s, x_n commute.
- (b) Il existe deux polynômes p(T), q(T) de $\mathbb{K}[T]$, sans terme constant, tels que $x_s = p(x)$, $x_n = q(x)$.
 - En particulier, x_s et x_n commute avec tout endomorphisme qui commute avec x.
- (c) Si $A \subset B \subset V$ des sous-espace, et x une application de B dans A, alors x_s et x_n sont également des applications de B dans A.

Définition 21

La décomposition $x = x_s + x_n$ est appelé décomposition de Jordan-Chevalley de x, ou juste décomposition de Jordan. x_s et x_n sont respectivement appelé partie semisimple et partie nilpotente de x.

Preuve:

Soient a_1, \dots, a_k (avec multiplicité m_1, \dots, m_k) les valeurs propres distinctes de x, donc le polynôme caractéristique est $\prod_{i=0}^k (T-a_i)^{m_i}$. Si $V_i = \ker (x-a_i.I_n)^{m_i}$, alors V est la somme direct des sous-espaces V_1, \dots, V_k , qui sont tous stable par x. Dans V_i, x a clairement $(T-a_i)^{m_i}$ comme polynôme caractéristique. Maintenant on applique le théorème des restes Chinois (pour l'anneau $\mathbb{K}[t]$) pour trouver le polynôme p(T) qui satisfait les congruences suivantes : $\begin{cases} p(T) \equiv a_i \pmod{(T-a_i)^{m_i}} & (\star) \\ p(T) \equiv 0 \pmod{T} \end{cases}$

Notons que le dernière condition est superflu si 0 est valeur propre de x, alors qu'autrement T est premier avec les autres modulos.

Fixons q(T) = T - p(T). Il est évidant que p(T) et q(T) n'ont pas de termes constants, puisque $p(T) \equiv 0 \pmod{T}$.

Nomons $x_s = p(x)$ et $x_n = q(x)$. Puisque les polynômes en x, x_s et x_n commutent avec les autres polynômes, ils commutent aussi avec les endomorphismes qui commutent avec x. Ils stabilisent aussi tout les sous-espaces de V stable par x, en particulier les V_i . Les congruences (\star) montre que la restriction de $x_s - a_i.I_n$ a V_i est $0 \ \forall i$, par conséquence x_s est diagonal sur V_i avec pour valeurs propres a_i .

Par définition, $x_n = x - x_s$, il est donc clair que x_n est nilpotent. Du fait que p(T) et q(T) n'ont pas de termes constants (c) est évident à ce stade.

Il reste a prouver l'unicité de l'assertion (a). Soit x = s + n une autre décomposition, on a $x_s - s = n - x_n$. Par (b), tout les endomorphismes en vue commute. Comme une somme d'endomorphismes semisimples (resp. nilpotents) qui commutent est encore semisimples (resp. nilpotents). On déduit que $x_s - s = n - x_n = 0$, car il n'y a que l'endomorphisme nulle qui soit à la fois semisimple et nilpotent. Ainsi $x_s = s$ et $n = x_n$. \square

Pour préciser pourquoi la décomposition de Jordan est un outils précieux, regardons un cas particulier :

Exemples:

Considérons la représentation adjointe de l'algèbre de Lie $\mathfrak{gl}(V)$, dim $V < +\infty$. Si $x \in \mathfrak{gl}(V)$ est nilpotent alors ad x aussi (lemme $(\ref{eq:sigma})$).

 $Similairement,\ si\ x\ est\ semisimple,\ alors\ ad\ x\ l'est\ aussi.\ V\'erifions\ cela\ dans\ la\ suite:$

Choisissons une base (v_1, \dots, v_n) de V telle que la matrice de x soit $diag(a_1, \dots, a_n)$. Soit $\{e_{ij}\}$ la base canonique de $\mathfrak{gl}(V)$ par à notre base de V, i.e. $e_{ij}(v_k) = \delta_{jk}v_i$. Alors un calcule rapide (voir formule (\star) dans ref a mettre ou calcule a faire) montre que ad $x(e_{ij}) = (a_i - a_j)e_{ij}$, donc ad x est une matrice diagonale, dans une base bien choisi de $\mathfrak{gl}(V)$.

Lemme 4.1

Soit $x \in End\ V\ (dim\ V < +\infty)$, $x = x_s + x_n$ la décomposition de Jordan. Alors ad $x = ad\ x_s + ad\ x_n$ est la décomposition de Jordan de ad x dans $End(End\ V)$.

Preuve:

Nous avons vu que ad x_s et ad x_n sont respectivement semisimple et nilpotent. Ils commute, puisque $[ad \ x_s, ad \ x_n] = ad \ [x_s, x_n] = 0$. Alors le (a) de la proposition (??) s'applique.

4.1.2 Critère de nilpotence d'un endomorphisme

Nous pouvons obtenir un critère puissant en ce basant sur la trace de certains endomorphismes de L. Il est évidant que L va être solvable si [LL] est nilpotente, c'est un conséquence du corollaire (??).

Le théorème d'Engel (??) nous dit que [LL] est nilpotente si (et seulement si) tout $ad_{[LL]}$ $x, x \in [LL]$, est nilpotent. Nous commencerons avec un critère sur la "trace" pour la nilpotence d'un endomorphisme.

Lemme 4.2

Soit $A \subset B$ deux sous espace de $\mathfrak{gl}(V)$ (dim $V < +\infty$). Soit $M = \{x \in \mathfrak{gl}(V) \mid [x,B] \subset A\}$. Supposons que $x \in M$ satisfait tr(xy) = 0, $\forall y \in M$. Alors x est nilpotent.

Preuve:

Soit x = s + n la décomposition de Jordan pour x. On fixe une base (v_1, \dots, v_m) de V telle que la matrice de s soit $diag(a_1, \dots, a_m)$. Soit E le sous-espace vectoriel de \mathbb{K} (par rapport à son sous coprs premier \mathbb{Q}) engendré par les valeurs propres a_1, \dots, a_m de s. On a à monter que s = 0, ou par équivalence, que E = 0. Puisque E est de dimension finie sur \mathbb{Q} (par construction), il est suffisant de montrer que l'espace dual $E^* = 0$, i.e. que toutes applications linéaires $f: E \to \mathbb{Q}$ sont nulles.

On se donne $f \in E^*$, soit $y \in \mathfrak{gl}(V)$ dont la matrice dans la base précédente est diag $((f(a_1), \dots, f(a_m))$. Si $\{e_{ij}\}$ est la base correspondante de $\mathfrak{gl}(V)$, on a vu dans l'exemple précedent que :

ad
$$s(e_{ij}) = (a_i - a_j)e_{ij}$$
 et $y(e_{ij}) = (f(a_i) - f(a_j))e_{ij}$.

Maintenant soit $r(T) \in \mathbb{K}[T]$ un polynôme sans terme constant qui satisfait $r(a_i - a_j) = f(a_i) - f(a_j) \ \forall (i,j)$. L'existence d'un tel polynôme est donner par l'interpolation de Lagrange, il n'y pas d'ambigument sur les variables d'assignations puisque $a_i - a_j = a_k - a_l$ implique (par la linéarité de f) que $f(a_i) - f(a_j) = f(a_k) - f(a_l)$. On a donc ad $y = r(ad \ s)$.

Maintenant, ad s est la partie semisimple de ad x, par le lemme (??), donc on peut l'écrire comme un polynôme en ad x sans terme constant par la propriété (??). Ainsi ad y est aussi un polynôme en ad x sans terme constant. Par hypothèse, ad x est une application de B dans A, donc on a aussi ad $y(B) \subset A$, i.e. $y \in M$.

On utilise l'hypothèse tr(xy) = 0, on a $\sum a_i f(a_i) = 0$. Le côté gauche est une combinaison \mathbb{Q} -linéaire d'éléments de E, en appliquant f on obtient : $\sum f(a_i)^2 = 0$. Comme les $f(a_i) \in \mathbb{Q}$, on a $f(a_i) = 0$, $\forall i$. Finalement f doit être identiquement nulle, parce que les a_i engendre E. Ce qui conclu cette preuve. \square

4.2 Critère de Cartan et conséquences

Avant d'énoncer le Critère de Cartan, critère de solvabilité, rappelons une identité qui nous sera utile dans la suite :

Si x, y, z des endomorphismes d'espace vectoriel de dimension finie, alors $tr([x, y]z) = tr(x[y, z]) (\star)$

Théorème 4.1 (Critère de Cartan)

Soit L une sous-algèbre de $\mathfrak{gl}(V)$, avec dim $V<+\infty$. On suppose que $tr(xy)=0, \ \forall x\in [LL], \ \forall y\in L.$

Alors L est solvable.

Démonstration:

Comme remarquer au début du $(\ref{eq:comme})$, il est suffisant de montrer que [LL] est nilpotent, ou juste que tout $x \in [LL]$ est un endomorphisme nilpotent (lemme $(\ref{eq:comme})$) et théorème d'Engel). Pour cela nous appliquons le lemme $(\ref{eq:comme})$ à la situation : V comme donné, A = [LL], B = L.

Soit $M = \{x \in \mathfrak{gl}(V) \mid [x, L] \subset [LL]\}$. Il est évident que $L \subset M$. Notre hypothèse est que $Tr(xy) = 0 \ \forall x \in [LL], \ \forall y \in L$, alors que pour conclure avec le lemme (??) on a besoin d'un argument plus fort : tr(xy) = 0 pour $x \in [LL], y \in M$.

Maintenant si [x,y] est le générateur de [LL] et si $z\in M$, alors l'identité (\star) montre que :

$$tr([x,y]z) = tr(x[yz]) = tr([yz]x)$$

 $Par\ d\'efinition\ de\ M,\ [y,z]\in [LL],\ d'o\`u\ tr([y,z]x)=0\ par\ hypoth\`ese.\ \ \Box$

Corollaire 4.1

Soit L une algèbre de Lie telle que $tr(ad\ x\ ad\ y) = 0, \ \forall x \in [LL], \ \forall y \in L.$ Alors L est solvable.

Preuve:

on applique le théorème à le représentation adjointe de L, et on obtient que ad L est solvable. Puisque Ker ad = Z(L) est solvable, L est lui-même est solvable (proposition $(\ref{eq:condition})$. \square