Recall We defined: for M, N: $IR^{oP} \times IR \rightarrow Vec$ $d_{I}(M,N) := \inf\{azo: M, N \text{ are arinterleaved }\}.$ An extended pseudo metra.

- Remark (7) M.N are 4-interleaved, then for all 6/74.
 M.N are 4-interleaved.
 - (i) Let $M := I^{[0,1] \times [0,1]}$, $N := I^{[0,1] \times [0,1]}$ Then $M := M^{[0,1] \times [0,1]}$, $N := I^{[0,1] \times [0,1]}$ and hence $J := M^{[0,1] \times [0,1]}$ and hence $J := M^{[0,1] \times [0,1]}$
 - (iii) let $M = I^{(-\infty,\infty)} \times (-\infty,\infty)$ and N = 0. Then, there is no interleaving pair, implying $J_{I}(M,N) = 00$.

Reall (Zigzag persistent hamdogy)

Recall that dogm $(Ho(\hat{\mathcal{L}}(8))) = \frac{3}{2} [a,d],(b,c)$

Thus makes sense because $\sqrt[3]{(-\infty,b)}$ is hompoty equivalent to $\sqrt[3]{(0)}$ and $\sqrt[3]{(0,\infty)}$ is also hie to $\sqrt[3]{(d)}$.

(See Edelsbrunner and etall, "Zigzag persistent homology and real-valued functions") for details.

Kernels & Cokernels of Morphisms between 1P-indexed modules

Recall For a linear map $f: V \rightarrow W$ between vector spaces V, W, We have $\ker(f)$ and $\operatorname{coker}(f) = W/\operatorname{Im}(f)$.

The Smaller ker(f) is, The more faithful the action of f is.

The smaller coker(f) is, the more "full" the image of f in W.

Specifically, $\ker(f)=0$ & $\ker(f)=0$ $\bigvee \cong W$.

We will define the Kernel and whermel of a morphoun between IP-indexed modules. These notions again will tell us the "quality" of the marphoun as a dissimilarity measure.

Def let $M, N: \mathbb{P} \to \mathbb{Vec}$. Let $f: M \to \mathbb{N}$ be a morphism. We detrive $\ker(f)$; $\operatorname{coker}(f): \mathbb{P} \to \operatorname{Vec}$.

O ker(f); $\forall a \leq b$ in P, $\ker(f)_a := \ker(f_a) \leq Ma$.

 $\ker(f)_a \to \ker(f)_b$ is defined as a restriction $M(a \le b)$ | $\ker(f_a)$:

@ coker(f); Yasb in IP

Coker(f)a := Coker(fa) = Na/Im(fa).

coker(f)a -> coker(f)b is defined by [V] -> [N(asb)(V)].

Z

In order to show these IP-indexed mountes are well-defined, well to check the tollowing:

- \bigcirc $\forall \alpha \leq b$, $M(\alpha \leq b) [\ker(f \alpha)] \leq \ker(f b)$
- @ Yasb, N(asb)[Im(fa)] < Im(fb).

Use the fact that f is a natural transformation.

Remark/example.

- (1) $f:M\to N$ is an isomorphism Kor(f)=0 & Lokar(f)=0.
- (2) For the Zero morphism $O: M \rightarrow N$, $\ker(f) = M$, $(\operatorname{oker}(f) = N)$, $(H \operatorname{doesn't} tell us anything about Strutural Gimilarity between <math>M \ge N$)
- (3). Only morphism from I'R to DIRr is the zero marphism.

 Guggestive moral: Existence of "good rnouphisms between IP-induced modules M, N

 would mean structural similarity between M & N.

(Def A R-indexed module or (R°XR)-indexed module M is called a-trival if $\forall \alpha \in \mathbb{R}$, $M(\alpha \in \alpha + \alpha)$ (or $M(\alpha \in \alpha + \alpha)$) is zero map.

(Remark (M: R-vec is antitrial) (Maximal length of intervals in dymin) $\in \mathbb{R}$ (d_I(M,O) = d_B(d_{am}(M), d_{am}(O)) $\leq \frac{\alpha}{2}$

, ((ROKR)-indexed case) (1) let f:M>N(a) be on a-interbound genorphorn.

Then ker(f), coker(f) are 24-traval.

(ii) For f: M-> N(E), if ker(f), coker(f) one su-trival, then
f is a suf-interleaving morphem.

(Co) limits of (Dagrams)

Motivative example Given a coccuence (on) new in IR. Let x = inf(an) new B = sup(an) new These values somethan summarise the seavence (on) new.

Considering n+ an as a functor F: IN. (discrete) -> (IR, <),

W = gim F is the limit (or the left root) of F

& B = limp is the colored (or the right root) of F.

Universal property of \times & B (this justifies why \times is represents/summarise (an)).

Q α ≤ an forall neiN & FrER[r≤an, YneiN → r≤α]

@ BZan, " & Freir[rzan, Ynein => rzB]

Remark Inf(empty set) = $+\infty$ by mothermatical logics. Sup(empty set) = $-\infty$

We will generalize the notion of limit and limit for arbitrary functors F.

Det (Initral & Terminal objects)

Anobject χ in C is intial if $\forall y \in Ob(C)$, $\exists ! y \rightarrow \chi$.

Herminal if $\exists ! \chi \rightarrow y$.

ex). He zero spuce in Vec & both mitial & terminal,

Def (Diagram) Suppose I is a small contegory (i.e. ob(I) is a set)
and C is an arbitrary category. A diagram is simply a functor Filter

t ((ocone) let F: Is I be a diagram. A cocone on F is an object C ∈ Ob(C) together with a collection of morphisms for : Fix> C, for each object of EOb(I), such that for each morphism g: x=>y in I,

(C, {on: 201?) a Cocone on F

lig. Consider the following diagnam in Vee:

Commutes and hence, $(R, \{1_i: R_i \rightarrow R\}_{i\neq j}^2)$ R_i T_i T_i

Commutes and hence,

Ref (The cotegory (ocone (F) of cones of F)

- · Objects: cocones (C, {\$\pi: F(x) → C }nes)
- · Arrows: An arraw (C, 3 da: F(a) > C3 nes) -> (C', 3 da: F(a) > C' Ines) constats of an arrow u: C -> C' in & much that.

Moder = or for all attob(I).

