Machine learning

Naïve Bayes

Lecture IV

פיתוח: ד"ר יהונתן שלר משה פרידמן

מה נלמד על Naïve Bayes

- מודל גנרטיבי לסיווג
- (train-set-בוסס על התפלגות הנתונים במדגם (ב-train-set ↔
 - * המודל שייך למודלים סטטיסטים בלמידת מכונה
 - ⇔ משתמש בהנחת בייס

Generative vs. discriminative models

מודל גנרטיבי - מודל בו מנסים ללמוד את ההתפלגות משותפת בין המחלקה והמאפיינים. יש ביכולתם ליצר דוגמאות חדשות generate).

מודל דיסקרמינטיבי - מודל בו מחפשים הפרדה בה יש להחליט איפה מתחילה ונגמרת מחלקה אחת ואיפה מתחילה ונגמרת מחלקה שניה.

– Generative vs. discriminative models הגדרה חלופית

מודל גנרטיבי - מודל המתבסס על ההסתברות המותנת של האפיינים בהנתן ערך המחלקה Pr(X|Y=y)

מודל דיסקרמינטיבי -

מודל המתבסס על ההסתברות המותנת של המחלקה בהנתן ערכי המאפיינים. $\Pr(Y \mid X = x)$

שאלת סקר – מודלים דיסקמנטיבים ומודלים גנרטיבים

מה מבין הבאים נכון:

- א. עץ החלטה הוא מודל דיסקרמנטיבי
 - ב. עץ החלטה הוא מודל גנרטיבי

רקע - Naïve Bayes

- ⇒ מבוסס על ידע מוקדם של התפלגות הקטגורית / מחלקות. מתחשב בשאלות
 כמו למשל:
 - איזו קטגוריה יותר נפוצה *
 - בהינתן מאפיין מסוים איזו קטגוריה יותר סבירה
 - 💠
- בסוף נקבל נוסחה שבהתחשב בכל המאפיינים ושבשכיחות הקטגוריה, תגידאיזו קטגוריה סבירה יותר.

התפלגות המחלקות

במגדר, למשל, הנתונים מתפלגים בערך בצורה מאוזנת (balanced).

משתנים אחרים, בהם יתכן ונרצה להתייחס (בבעיות סיווג), אינם מתפלגים בצורה מאוזנת (imbalanced)

Classify according prior knowledge

Num. of observations (train-set) = 50

Prior(Blue) = 20/50

Prior(Red) = 30/50

With only the prior distribution

Classify a new example as "Red"

Bayes classifier

Prior probabilities indicate that our new example may belong to RED

(More RED objects than BLUE)

In the Bayesian analysis, we combine the *prior* and the *likelihood*, to find a *posterior* probability using the Bayes' rule

Naïve Bayes - שאלת סקר

- ?Naïve Bayes איזו מהטענות הבאות נכונה עבור *
- א. במודל Naïve Bayes מחפשים הפרדה בה יש להחליט איפה מתחילה ונגמרת מחלקה אחת ואיפה מתחילה ונגמרת המחלקה שניה
- ב. אלגוריתם Naïve Bayes מתחשב בהטיות סטטיסטיות, כמו, הקטגוריה היותר נפוצה.

מוטיבציה – מכירות

- צופה מתבונן על חנות מחשבים ומגיע ל"אבחנות" הבאות על-פני קבוצת אימון גדולה.
 - 40% מבין הנכנסים לחנות קונים מחשב.
- מבין אלו הקונים מחשב 50% לבושים בחליפה ו-50% אינם לבושים בחליפה.
 - מבין אלו שלא קנו מחשב כולם לבושים בחליפה.
 - "אדם לבוש בחליפה נכנס לחנות"צריך לתת חיזוי האם אדם זה יקנה מחשב או לא.
 - דרך הפתרון:
 - •אנו צריכים לחשב את ההסתברויות הבאות:
 - הסתברות מותנית ש"אדם יקנה מחשב" בהינתן ש"לבוש בחליפה"
 - הסתברות מותנית ש"אדם לא יקנה מחשב" בהינתן ש"לבוש בחליפה"
 - •ניתן חיזוי לפי ההסתברות הגבוהה מבין השתיים.

הרעיון הכללי

ננסה ($x_1, x_2, x_3, \dots, x_n$) – ננסה $x_1, x_2, x_3, \dots, x_n$) את בהינתן ווקטור לסיווג עבור כל סיווג c_i השייך לקבוצה C ולבחור את ההסתברות הגבוהה ביותר.

$$P(c_1 | x_1, x_2, x_3, ..., x_n) *$$

$$P(c_2 | x_1, x_2, x_3, ..., x_n) *$$

$$P(c_3 | x_1, x_2, x_3, ..., x_n) *$$

$$h_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c|X)$$

MAP = Maximum a posteriori (estimation) (will be explained later)

הסתברות - דיאגרמת ואן

 We write P(E) as "the fraction of possible worlds in which E is true"

דיאגרמות ואן

Bayes Classifier

Given a new vector

* We need to calculate

$$P(c_i|x_1,x_2...x_N) \quad \forall c_i$$

And selecting the c_i that gives the maximum probability

– שאלת סקר posterior probability , prior probability

- של posterior probability לבין prior probability א מה ההבדל בין המחלקה?
- , prior probability א. posterior probability היא הסתברות של המאפיינים ו-posterior probability היא הסתברות של המחלקה.
 - , prior probability ב. posterior probability היא הסתברות של המחלקה ו-posterior probability היא הסתברות של המאפיינים.
- ג. prior probability היא הסתברות ראשונית של המחלקה ללא תלות במאפיינים ו- posterior probability היא הסתברות של המחלקה התלויה במאפיינים.
- posterior probability היא הסתברות דסקרימינטיבית ו-prior probability היא הסתברות דסקרימינטיבית ו-prior probability היא הסתברות גנרטיבית.

– שאלת סקר posterior probability , prior probability

- של posterior probability לבין prior probability א מה ההבדל בין המחלקה?
- , prior probability א. posterior probability היא הסתברות של המאפיינים ו-posterior probability היא הסתברות של המחלקה.
 - , prior probability ב. posterior probability היא הסתברות של המחלקה ו-posterior probability היא הסתברות של המאפיינים.
 - ג. prior probability היא הסתברות ראשונית של המחלקה ללא תלות במאפיינים ו-posterior probability היא הסתברות של המחלקה התלויה במאפיינים.
- ד. prior probability היא הסתברות דסקרימינטיבית ו-prior probability היא הסתברות לברות דסקרימינטיבית ו-prior probability

דוגמה 1 - הסתברות מותנית

- * בזריקת קוביה נגדיר את X כתוצאת הזריקה.
 - :גדיר שני מאורעות
 - X=6 הינו המאורע $F \Leftrightarrow$
 - X>4 המאורע E
- F נניח שזרקו מטבע ואמרו לנו שמאורע התרחש. מה ההסתברות שגם מאורע * התרחש?

$$P(F|E) = \frac{P(F \land E)}{P(E)} = \frac{\frac{1}{6}}{\frac{2}{6}} = \frac{1}{2}$$

דוגמה 2 - הסתברות מותנית

- .כבר קרה מאורע A בתנאי שידוע כי מאורע B כבר קרה שיקרה A כבר קרה A
 - "6" בהטלת קוביה ראשונה קיבלנו -A
 - 10 הסכום בשתי הקוביות הוא לפחות -B
 - P(B | A) א חשבו ∗
- P(B) =מתוך 36 אפשרויות סה"כ ולכן (46, 56, 66, 64,65,55) מתוך 36 אפשרויות סה"כ ולכן (46, 56, 66, 64,65,55) אפשריים ל-6/36 = 1/6
 - $P(A) = 1/6 \quad *$
 - {61,62,63,64,65,66} לבד מרחב המדגם הוא: A לפי A לפי

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \left[= \frac{\frac{3}{36}}{\frac{1}{6}} = \frac{1}{2} \right]$$

$$P(B|A) = \frac{3}{6} = \frac{1}{2} \implies P(B|A) = \frac{3}{6} = \frac{1}{2}$$

דוגמה 3 – הסתברות מותנית

$$P(A|B) = \frac{P(A \land B)}{P(B)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$$

- 🌣 נתונה משפחה לה שני ילדים
- נתון לנו שאחד הילדים הוא בן
- ? מהי ההסתברות ששני הילדים הם בנים

- א. שני בנים ∗
- ⇒ ב. יש לפחות בן אחד

Bayes' Rule

Class observation
$$p(c|x) = \frac{P(x|c)P(c)}{P(x)}$$

- P(c) *prior* probability of class c before any vector is seen
- P(x|c) likelihood of the observed data if the class is c
- P(x) evidence probability of the data
- P(c|x) posterior Probability of class c after the data is seen

דוגמה – קנית מחשב

- צופה מתבונן על חנות מחשבים ומגיע ל"אבחנות" הבאות על-פני קבוצת אימון גדולה.
 - 40% מבין הנכנסים לחנות קונים מחשב.
- מבין אלו הקונים מחשב 50% לבושים בחליפה ו-50% אינם לבושים בחליפה.
 - מבין אלו שלא קנו מחשב כולם לבושים בחליפה.
 - "אדם לבוש בחליפה נכנס לחנות"צריך לתת חיזוי האם אדם זה יקנה מחשב או לא.
 - דרך הפתרון:
 - •אנו צריכים לחשב את ההסתברויות הבאות:
 - הסתברות מותנית ש"אדם יקנה מחשב" בהינתן ש"לבוש בחליפה"
 - הסתברות מותנית ש"אדם לא יקנה מחשב" בהינתן ש"לבוש בחליפה"
 - •ניתן חיזוי לפי ההסתברות הגבוהה מבין השתיים.

דוגמה – קנית מחשב – פתרון על ידי כלל בייס

לא קונה מחשב לבוש בחליפה
$$P(\overline{B}|A) = \frac{P(A|\overline{B})P(\overline{B})}{P(A)} = \frac{1 \times 0.6}{0.4 \times 0.5 + 0.6 \times 1} = 0.75$$

מכיוון שקיבלנו הסתברות גבוהה יותר שלא יקנה מחשב – נעדיף את ההערכה הזו וזה החיזוי שלנו

Bayes classifier in a nutshell

- 1. Learn the distribution over inputs for each value Y.
- 2. This gives $P(X_1, X_2, ... X_m / Y = v_i)$.
- 3. Estimate $P(Y=v_i)$. as fraction of records with $Y=v_i$.
- 4. For a new prediction:

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

$$= \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)$$

The Joint Probability Table

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values of your variables (if there are M boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

Example: P(A, B, C)

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Density Estimation

- Our Joint Probability Table (JPT) learner is our first example of something called Density Estimation
- A Density Estimator learns a mapping from a set of attributes to a Probability

Density Estimation

 Compare it against the two other major kinds of models:

Naïve density estimation Independence assumption

אבל... לימוד בצורה כזו של ה- Joint Distribution עלול להיות טריוויאלי ו"מסוכן" מדי בהיבט של overfitting

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed independently of any of the other attributes.

Independently distributed data

- Let x[i] denote the /th field of record x.
- The independently distributed assumption says that for any i, v, u₁ u₂... u_{i-1} u_{i+1}... u_M

$$P(x[i] = v \mid x[1] = u_1, x[2] = u_2, \dots x[i-1] = u_{i-1}, x[i+1] = u_{i+1}, \dots x[M] = u_M)$$
$$= P(x[i] = v)$$

- Or in other words, x[i] is independent of {x[1],x[2],...x[i-1], x[i+1],...x[M]}
- This is often written as

$$x[i] \perp \{x[1], x[2], \dots x[i-1], x[i+1], \dots x[M]\}$$

A note about independent

 Assume A and B are Boolean Random Variables. Then

"A and B are independent" if and only if

$$P(A|B) = P(A)$$

"A and B are independent" is often notated
 as

As vectors are

orthogonal

Independence Theorem

- Assume P(A|B) = P(A)
- Then $P(A^B) =$

$$P(A \land B) =$$

 $P(A|B) \times P(B) =$
 $P(A) \times P(B)$

- Assume P(A|B) = P(A)
- Then P(B|A) =

$$= P(A) P(B)$$

$$= P(B)$$

Independence Theorem

- Assume P(A|B) = P(A)
- Then $P(\sim A|B) =$

- Assume P(A|B) = P(A)
- Then $P(A|\sim B) =$

$$= P(\sim A)$$

= P(A)

Multivalued Independence

For multivalued Random Variables A and B,

$$A \perp B$$

if and only if

$$\forall u, v : P(A = u \mid B = v) = P(A = u)$$

from which you can then prove things like...

$$\forall u, v : P(A = u \land B = v) = P(A = u)P(B = v)$$

$$\forall u, v : P(B = v \mid A = v) = P(B = v)$$

Naïve distribution general case

Suppose x[1], x[2], ... x[M] are independently distributed.

$$P(x[1] = u_1, x[2] = u_2, \dots x[M] = u_M) = \prod_{k=1}^{M} P(x[k] = u_k)$$

- So if we have a Naïve Distribution we can construct any row of the implied Joint Distribution on demand.
- So we can do any inference
- But how do we learn a Naïve Density Estimator?

Naïve Bayes Classifier

Using Bayes rule:

$$P(c|x_1, x_2, \dots, x_D) = \frac{P(c)P(x_1, x_2, \dots, x_D|c)}{P(x_1, x_2, \dots, x_D)}$$

• Select the feature set such that each feature x_i is independent of every other feature x_i .

$$P(x_1, x_2, \dots, x_D | c) = P(x_1 | c) P(x_2 | c) P(x_3 | c) \dots P(x_D | c) = \prod_{i=1}^{D} P(x_i | c)$$

How to build a Bayes classifier

- Assume you want to predict output Y which has arity n_Y and values $V_{1}, V_{2}, \dots V_{n_Y}$
- Assume there are m input attributes called X₁, X₂, ... X_m
- Break dataset into n_{γ} smaller datasets called DS_{1} , DS_{2} , ... $DS_{n_{\gamma}}$
- Define DS_i = Records in which Y=V_i
- For each DS_i, learn Density Estimator M_i to model the input distribution among the Y=V_i records.
- M_i estimates P(X₁, X₂, ... X_m / Y=v_i)
- Idea: When a new set of input values (X₁ = u₁, X₂ = u₂, ..., X_m = u_m) come along to be evaluated predict the value of Y that makes P(X₁, X₂, ... X_m / Y=v_i) most likely

$$Y^{\text{predict}} = \operatorname{argmax} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

דוגמה – קנית מחשב

נכנס גבר מעל גיל 30 לחנות. האם יקנה מחשב או לא?

מעל 30	גבר / אשה	קנה או לא
כן	גבר	קנה
כן	גבר	קנה
לא	גבר	קנה
לא	אשה	קנה
כן	אשה	לא קנה
כן	אשה	לא קנה
כן	אשה	לא קנה
כן	גבר	לא קנה
כן	גבר	לא קנה
כן	גבר	לא קנה

Naïve Bayes – פתרון על ידי – קנית מחשב – פתרון אידי

נחשב קודם כל הסתברות אפריורית של קניה או לא:

קנו 40% = 4/10 קנו 60% = 6/10

מעל 30	גבר / אשה	קנה או לא
כן	גבר	קנה
כן	גבר	קנה
לא	גבר	קנה
לא	אשה	קנה
כן	אשה	לא קנה
כן	אשה	לא קנה
כן	אשה	לא קנה
כן	גבר	לא קנה
כן	גבר	לא קנה
כן	גבר	לא קנה

Naïve Bayes – פתרון על ידי – קנית מחשב

נחשב את הערך של כל מאפיין בהנתן קנה או לא קנה.

קנה:

50%= 2/4 :30 מעל

 $75\% = \frac{3}{4}$:גבר

לא קנה:

מעל :30 | 30 | 30 | מעל

50% = 3/6: 50% = 3/6

מעל 30	גבר / אשה	קנה או לא
כן	גבר	קנה
כן	גבר	קנה
לא	גבר	קנה
לא	אשה	קנה
כן	אשה	לא קנה
כן	אשה	לא קנה
כן	אשה	לא קנה
כן	גבר	לא קנה
כן	גבר	לא קנה
כן	גבר	לא קנה

Naïve Bayes – פתרון על ידי – קנית מחשב – פתרון

נחשב את הערך של כל מאפיין בהנתן קנה או לא קנה.

קנה:

50%= 2/4 :30 מעל

 $75\% = \frac{3}{4}$:גבר:

לא קנה:

מעל :30 = 6/6 מעל

50% = 3/6 :גבר

נחזה עבור גבר מעל 30:

0.15 = 0.75*0.5*0.4

0.3 = 1*0.5*0.6 לא קנה:

מעל 30	גבר / אשה	קנה או לא
כן	גבר	קנה
כן	גבר	קנה
לא	גבר	קנה
לא	אשה	קנה
כן	אשה	לא קנה
כן	אשה	לא קנה
כן	אשה	לא קנה
כן	גבר	לא קנה
כן	גבר	לא קנה
כן	גבר	לא קנה

מסקנה: יותר סביר שלא יקנה

Terminology

• Maximum Likelihood estimation (MLE) Choose value that maximizes the probability of observed data $\widehat{\theta}_{MLE} = \arg\max_{\theta} P(D|\theta)$

• Maximum a posteriori (MAP) estimation Choose value that is most probable given observed data and prior belief $\widehat{\theta}_{MAP} = \arg\max_{\theta} P(\theta|D)$ = $\arg\max_{\theta} P(D|\theta)P(\theta)$

Bayes classifier in a nutshell

- 1. Learn the distribution over inputs for each value Y.
- 2. This gives $P(X_1, X_2, ... X_m / Y = v_i)$.
- 3. Estimate $P(Y=v_i)$. as fraction of records with $Y=v_i$.
- 4. For a new prediction:

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

$$= \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)$$

Naïve Bayes classifier

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)$$

In the case of the naive Bayes Classifier this can be simplified:

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v) \prod_{j=1}^{n_{Y}} P(X_{j} = u_{j} \mid Y = v)$$

$$P(x_{1}, x_{2}, x_{D} | Y = v) =$$

$$P(x_{1} | Y = v) P(x_{2} | Y = v) P(x_{3} | Y = v) ... P(x_{m} | Y = v)$$

$$=$$

$$\prod_{i=1}^{m} P(x_{i} | Y = v)$$

Bayes classifier Pseudo Code

Train Naïve Bayes (given data for X and Y)

for each* value
$$y_k$$

estimate $\pi_k \equiv P(Y=y_k)$
for each* value x_{ij} of each attribute X_i
estimate $\theta_{ijk} \equiv P(X_i=x_{ij}|Y=y_k)$

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

 $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$

^{*} probabilities must sum to 1, so need estimate only n-1 of these...

Underflow Prevention

- אותנו יכול להוביל אותנו (הסתברויות) יכול להוביל אותנו של הרבה איברים שכולם בין 0 ל-1 (הסתברויות) יכול להוביל אותנו של-underflow-ל-
 - ? מה נעשה כאשר יש לנו מאות מאפיינים
- * $log(xy) = log(x) + log(y) \rightarrow summing logs of probabilities rather than multiplying probabilities.$
- Class with highest final un-normalized log probability score is still the most probable.

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} \left(\log P(Y = v) + \sum_{j=1}^{n_{Y}} \log P(X_{j} = u_{j} \mid Y = v) \right)$$

Log computation

$$\left[\log P \left("yes" \right) + \sum_{i \in \text{million}} \log P \left(x_i | "yes" \right) \right] = \\ \log(0.75 \cdot 0.5 \cdot 0.4) = \\ \log(0.75) + \log(0.5) + \log(0.4) \approx -0.823$$

$$\left[\log P \left("no" \right) + \sum_{i \in \text{million}} \log P \left(x_i | "no" \right) \right] = \\ \log(0.75 \cdot 0.5 \cdot 0.6) = \\ \log(0.75 \cdot 0.5 \cdot 0.6) = \\ \log(0.75) + \log(0.5) + \log(0.6) \approx -0.647$$

Why to use Bayesian classifier?

- Combine Prior knowledge and observed data
- It is a generative (model based) approach outputs a probability distribution over all classes
- Tends to work well despite strong assumption of conditional independence.
- Does not perform any search of the hypothesis space.
- Easy to implement
- Be careful when multiple dependent attributes!

שערוך המודל - תזכורת

Confusion matrix:

	Predicted Yes	Predicted No
Actual Yes	True Positive (TP)	False Negative (FN)
Actual No	False Positive (FP)	True Negative (TN)

$$accuracy = \frac{\#correct\ predictions = \#TP + \#TN}{\#test\ instances = \#TP + \#TN + \#FP + \#FN}$$

$$Error = 1 - accuracy = \frac{\#incorrect\ predictions = \#FP + \#FN}{\#test\ instances = \#TP + \#TN + \#FP + \#FN}$$

Precision and Recall

- Precision = How accurate is the classifier in labelling an example as Positive
- Recall What is the coverage on the positive examples

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

$$ext{Recall} = rac{TP}{TP + FN}$$

	Predicted	Predicted
	Yes	No
Actual Yes	9	2
Actual	2	1.0
No	3	16

$$\begin{aligned} & \text{Precision} = \frac{TP}{TP + FP} = \frac{9}{9+3} = 0.75 \\ & \text{Recall} = \frac{TP}{TP + FN} = \frac{9}{9+2} = 0.82 \end{aligned}$$

נאיב בייס - סיכום

יתרונות:

- קל להבנה/"למידה" ₪
 - ♦ קל למימוש
- אינטואיטיבי ומבוסס על סטטיסטיקה וסבירות
- "קל לשימוש/"הפעלת ה"מכונה" על נתונים חדשים"
 - א זול (יחסית) חישובית

חסרונות:

- underflow− מ להזהר מ
- יזכרו את הנחת אי-התלות − במידה ולא נכונה יש לחשוב שוב..

השלמות בשיעור הבא:

- smoothing
- מאפיינים רציפים
 - נתראה בשבוע הבא