Algoritmos y Estructuras de Datos II

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Trabajo Práctico II

Grupo: 12

Integrante	LU	Correo electrónico
Pondal, Iván	078/14	ivan.pondal@gmail.com
Paz, Maximiliano León	251/14	m4xileon@gmail.com
Mena, Manuel	313/14	manuelmena1993@gmail.com
Demartino, Francisco	348/14	demartino.francisco@gmail.com

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Índice

1.	Mó	Módulo DCNet				
	1.1.	Interfaz	3			
		1.1.1. Operaciones básicas de mapa	3			
	1.2.	Representación	3			
		1.2.1. Representación de dcnet	3			
		1.2.2. Invariante de Representación	3			
		1.2.3. Función de Abstracción	6			
2.	Mó	dulo Red	7			
	2.1.	Interfaz	7			
	2.2.	Representación	8			
		2.2.1. Estructura	8			
		2.2.2. Invariante de Representación	8			
		2.2.3. Función de Abstracción	8			
3.	Mó	dulo Cola de mínima prioridad (α)	9			
	3.1.	Especificación	9			
	3.2.	Interfaz	10			
		3.2.1. Operaciones básicas de Cola de mínima prioridad	10			
	3.3.	Representación	10			
		3.3.1. Representación de colaMinPrior	10			
		3.3.2. Invariante de Representación	10			
		3.3.3. Función de Abstracción	11			
	3.4.	Algoritmos	11			

1. Módulo DCNet

1.1. Interfaz

```
se explica con: DCNET.
géneros: dcnet.
```

1.1.1. Operaciones básicas de mapa

```
CREAR() \rightarrow res : dcnet
Pre \equiv \{true\}
Post \equiv \{res =_{obs} vacio()\}
Complejidad: O(1)
Descripción: crea un mapa nuevo
```

1.2. Representación

1.2.1. Representación de denet

1.2.2. Invariante de Representación

- (I) Las compus de los elementos de vectorCompusDCNet son punteros a todas las compus de la topología
- (II) Las claves de diccCompusDCNet son todos los hostnames de la topología
- (III) Los significados de diccCompusDCNet son punteros que apuntan a las compuDCNet cuyo hostname equivale a su clave en vectorCompusDCNet
- (IV) laQueMásEnvió es un puntero a la compuDCNet en vectorCompusDCNet que más paquetes enviados tiene. Si no hay compus es NULL
- (V) Todos los paquetes en conj Paquetes de cada compu
DCNet tienen id único y tanto su origen como destino existen en la topología
- (VI) El paquete en conjPaquetes tiene que tener en su recorrido a la compuDCNet en la que se encuentra y esta no puede ser igual al destino del recorrido

- (VII) Las claves de diccPaquetesDCNet son los id de los paquetes en conjPaquetes
- (VIII) Los significados de diccPaquetesDCNet contienen un itConj que apunta al paquete con el id equivalente a su clave y en recorrido, un camino mínimo válido para el origen del paquete y la compu en la que se encuentra
 - (IX) La colaPaquetesDCNet es vacía si y sólo si conjPaquetes lo es, si no lo es, su próximo es un puntero a un paqueteDCNet de diccPaquetesDCNet que contiene un itConj cuyo siguiente es uno de los paquetes de conjPaquetes con mayor prioridad
 - (X) La cantidad de enviados de una compuDCNet es igual o mayor a la cantidad de apariciones de esa compu en los caminos recorridos de paquetes en la red

```
Rep : estr \longrightarrow bool
Rep(e) \equiv true \iff
                (\#(\text{computadoras}(e.\text{topologia})) = \log(e.\text{vectorCompusDCNet}) = \#(\text{claves}(e.\text{diccCompusDCNet}))) \land_{\text{L}}
                (\forall c: \text{compu})(c \in \text{computadoras}(e.\text{topologia}) \Rightarrow
                  (\exists cd: compuDCNet) (está?(cd, e.vectorCompusDCNet) \land cd.pc = puntero(c)) \land
                  (\exists s: \text{string})(\text{def}?(s, e.\text{diccCompusDCNet}) \land s = c.\text{ip})
                ) \wedge_{\scriptscriptstyle L}
                (\forall cd: compuDCNet)(está?(cd, e.vectorCompusDCNet)) \Rightarrow_L
                 (\exists s \colon \mathsf{string}) \ (\mathsf{def?}(s, \, e. \mathsf{diccCompusDCNet}) \ \land \\
                 s = cd.pc \rightarrow ip \land_L obtener(s, e.diccCompusDCNet) = puntero(cd))
                ) \wedge_{\scriptscriptstyle L}
                (\exists cd: compuDCNet)(está?(cd, e.vectorCompusDCNet) \land_L
                *(cd.pc) = \text{compuQueM}ásEnvi\acute{o}(e.\text{vectorCompusDCNet}) \land e.\text{laQueM}ásEnvi\acute{o} = \text{puntero}(cd)) \land_{\text{L}}
                (\forall cd_1: compuDCNet)(está?(cd_1, e.vectorCompusDCNet)) \Rightarrow
                 (\forall p_1: paquete)(p_1 \in cd_1.conjPaquetes \Rightarrow
                  (\forall cd_2: compuDCNet)((está?(cd_2, e.vectorCompusDCNet) \land cd_1 \neq cd_2) \Rightarrow
                   (\forall p_2: paquete)(p_2 \in cd_2.conjPaquetes \Rightarrow p_1.id \neq p_2.id)
                ) \wedge_{\scriptscriptstyle L}
                (\forall cd: compuDCNet)(está?(cd, e.vectorCompusDCNet) \Rightarrow
                  (\#(cd.\text{conjPaquetes}) = \#(\text{claves}(cd.\text{diccPaquetesDCNet}))) \land_{\mathsf{L}}
                  (\forall p: paquete)(p \in cd.conjPaquetes \Rightarrow
                    ((p.\text{origen} \in \text{computadoras}(e.\text{topologia}) \land p.\text{destino} \in \text{computadoras}(e.\text{topologia}) \land
                    p.\text{destino} \neq *(cd.\text{pc})) \land_{L}
                    (\exists sc: secu(compu))(sc \in caminosMinimos(e.topologia, p.origen, p.destino) \land está(*(cd.pc), sc))) \land
                    (\exists n: \text{nat}) ((\text{def}?(n, cd.\text{diccPaquetesDCNet}) \land p.\text{id} = n) \land_{L}
                    (Siguiente(obtener(n, e.diccPaquetesDCNet).it) = p \land
                    ((p.\text{origen} = *(cd.\text{pc}) \land \text{obtener}(n, e.\text{diccPaquetesDCNet}).\text{recorrido} = *(cd.\text{pc}) \bullet <>) \lor
                    (p.\text{origen} \neq *(cd.\text{pc}) \land
                    obtener(n, e.diccPaquetesDCNet).recorrido \in caminosMinimos(e.topologia, p.origen, *(cd.pc))))
                  ) \wedge_{\scriptscriptstyle L}
                  (\emptyset?(cd.\text{conjPaquetes}) \Leftrightarrow \text{vac\'ia}?(cd.\text{colaPaquetesDCNet})) \land
                  (\neg \text{vac\'ia}?(cd.\text{colaPaquetesDCNet}) \Rightarrow_{\text{L}}
                   (\exists n: nat)(def?(n, cd.diccPaquetesDCNet) \land_L
                    Siguiente(obtener(n, cd.diccPaquetesDCNet).it) = paqueteMásPrioridad(cd.conjPaquetes) \land
                    proximo(cd.colaPaquetesDCNet) = puntero(obtener(n, cd.diccPaquetesDCNet))
                   ))
                  ) \
                  (cd.enviados \ge enviadosCompu(*(cd.pc), e.vectorCompusDCNet))
```

```
compu<br/>QueMás
Envió : secu(compu<br/>DCNet) scd \ \longrightarrow \ \text{compu}
                                                                                                                          \{\neg vacía?(scd)\}
\maxEnviado : secu(compuDCNet) scd \longrightarrow nat
                                                                                                                          \{\neg vacía?(scd)\}
enviaronK : secu(compuDCNet) \times nat \longrightarrow conj(compu)
                                                                                                                                \{\neg\emptyset?(cp)\}
paqueteMásPrioridad : conj(paquete) cp \longrightarrow paquete
paquetesConPrioridadK : conj(cp) \times nat \longrightarrow conj(paquete)
                                                                                                                                \{\neg\emptyset?(cp)\}
altaPrioridad : conj(paquetes) cp \longrightarrow nat
enviadosCompu : compu \times secu(compuDCNet) \longrightarrow nat
aparicionesCompu: compu \times conj(nat) cn \times dicc(nat \times paqueteDCNet) dp \longrightarrow nat
                                                                                                                      \{\text{claves}(dp) \subseteq cn\}
compuQueMásEnvió(scd) \equiv dameUno(enviaronK(scd, maxEnviado(scd)))
\max \text{Enviado}(scd) \equiv \text{if } \text{vac}(\text{a}(\text{fin}(scd))) \text{ then } \text{prim}(scd).\text{enviados } \text{else } \max(\text{prim}(scd), \max \text{Enviado}(\text{fin}(scd))) \text{ fi}
enviaronK(scd, k) \equiv if vacía?(scd) then
                           else
                               if prim(scd).enviados = k then
                                   Ag(*(prim(scd).pc), enviaronK(fin(scd), k))
                                   enviaronK(fin(scd), k)
                               fi
paqueteMåsPrioridad(dcn, cp) \equiv dameUno(paquetesConPrioridadK(cp, altaPrioridad(cp)))
altaPrioridad(cp) \equiv if \emptyset?(sinUno(cp)) then
                               dameUno(cp).prioridad
                           else
                               \min(\text{dameUno}(cp).\text{prioridad}, \text{altaPrioridad}(\sin \text{Uno}(cp)))
paquetesConPrioridadK(cp, k) \equiv \mathbf{if} \ \emptyset?(cp) \mathbf{then}
                                           else
                                               if dameUno(cp).prioridad = k then
                                                   Ag(dameUno(cp), paquetesConPrioridadK(sinUno(cp), k))
                                                   paquetesConPrioridadK(\sin Uno(cp), k)
                                           fi
enviadosCompu(c, scd) \equiv \mathbf{if} \text{ vacía}?(scd) \mathbf{then}
                                      0
                                  else
                                      if prim(scd) = c then
                                         enviadosCompu(c, fin(scd))
                                      else
                                         aparicionesCompu(c, claves(prim(scd).diccPaquetesDCNet)),
                                          \operatorname{prim}(scd).\operatorname{diccPaquetesDCNet}) + \operatorname{enviadosCompu}(c, \operatorname{fin}(scd))
                                     fi
                                  fi
```

```
\begin{array}{ll} \operatorname{aparicionesCompu}(c,cn,dpd) \; \equiv \; & \mathbf{if} \; \emptyset?(cn) \; \; \mathbf{then} \\ & 0 \\ & \mathbf{else} \\ & \quad \mathbf{if} \; \operatorname{est\'a?}(c,\operatorname{significado}(\operatorname{dameUno}(cn),\,dpd).\operatorname{recorrido}) \; \; \mathbf{then} \\ & 1 + \operatorname{aparicionesCompu}(c,\operatorname{sinUno}(cn),\,dpd) \\ & \quad \mathbf{else} \\ & \quad \operatorname{aparicionesCompu}(c,\operatorname{sinUno}(cn),\,dpd) \\ & \quad \mathbf{fi} \end{array}
```

1.2.3. Función de Abstracción

```
Abs : estr e \rightarrow \text{dcnet} {Rep(e)} Abs(e) =_{\text{obs}} dcn: dcnet | red(dcn) = e.topología \land (\forall cdn: compuDCNet)(está?(cdn, e.\text{vectorCompusDCNet}) \Rightarrow_{\text{L}} enEspera(dcn, *(cdn.\text{pc})) = cdn.\text{conjPaquetes} \land cantidadEnviados(dcn, *(cdn.\text{pc})) = cdn.\text{enviados} \land (\forall p: paquete)(p \in cdn.\text{conjPaquetes} \Rightarrow_{\text{L}} caminoRecorrido(dcn, p) = \text{obtener}(p.\text{id}, cdn.\text{diccPaquetesDCNet}).\text{recorrido} )
```

2. Módulo Red

2.1. Interfaz

```
se explica con: RED.
géneros: red.
INICIARRED() \rightarrow res : red
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{res =_{\mathrm{obs}} \mathrm{iniciarRed}\}\
Complejidad: O(1)
Descripción: Crea una red nueva
AGREGARCOMPUTADORA(in/out \ r : red, in \ c : compu)
\mathbf{Pre} \equiv \{(r = r_0) \land ((\forall c': \mathbf{compu}) \ (c' \in \mathbf{computadoras}(r) \Rightarrow \mathbf{ip}(c) \neq \mathbf{ip}(c'))) \}
\mathbf{Post} \equiv \{r =_{\text{obs}} \operatorname{agregarComputadora}(r_0, c)) \}
Complejidad: O(L+n)
Descripción: Agrega un computadora a la red
CONECTAR(in/out r: red, in c: compu, in c': compu, in i: compu, in i': compu)
\mathbf{Pre} \equiv \{(r = r_0) \land (c \in \mathbf{computadoras}(r)) \land (c' \in \mathbf{computadoras}(r)) \land (\mathbf{ip}(c) \neq \mathbf{ip}(c'))\}
\land (\neg \text{conectadas}?(r, c, c')) \land (\neg \text{usaInterfaz}?(r, c, i) \land \neg \text{usaInterfaz}?(r, c', i')) \}
\mathbf{Post} \equiv \{r =_{obs} \operatorname{conectar}(r_0, c, i, c', i'))\}\
Complejidad: O(L)?
Descripción: Conecta dos computadoras
COMPUTADORAS(in r : red) \rightarrow res : conj(compu)
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{res = \operatorname{computadoras}(r)\}\
Complejidad: O(1)
CONECTADAS?(in r: red, in c: compu, in c': compu) \rightarrow res: bool
\mathbf{Pre} \equiv \{(c \in \operatorname{computadoras}(r)) \land (c' \in \operatorname{computadoras}(r))\}
\mathbf{Post} \equiv \{res = \text{conectadas}?(r, c, c')\}\
Complejidad: O(1)
INTERFAZUSADA(in r: red, in c: compu, in c': compu) \rightarrow res: interfaz
\mathbf{Pre} \equiv \{ \text{conectadas?}(r, c, c') \}
\mathbf{Post} \equiv \{res = \text{interfazUsada}(r, c, c')\}\
Complejidad: O(?)
VECINOS(\mathbf{in}\ r : \mathtt{red},\ \mathbf{in}\ c : \mathtt{compu}) \to res : \mathtt{conj}(\mathtt{compu})
\mathbf{Pre} \equiv \{c \in \operatorname{computadoras}(r)\}\
\mathbf{Post} \equiv \{res = \text{vecinos}(r, c)\}\
Complejidad: O(n)
USAINTERFAZ?(in r: red, in c: compu, in i: interfaz) \rightarrow res: bool
\mathbf{Pre} \equiv \{c \in \operatorname{computadoras}(r)\}\
\mathbf{Post} \equiv \{res = \text{usaInterfaz?}(r, c, i)\}\
Complejidad: O(?)
```

```
CaminosMinimos(in r: red, in c: compu, in c': compu) \rightarrow res: conj(secu(compu))

Pre \equiv \{(c \in \text{computadoras}(r)) \land (c' \in \text{computadoras}(r))\}

Post \equiv \{res = \text{caminosMinimos}(r, c, i)\}

Complejidad: O(L)

HayCamino?(in r: red, in c: compu, in c': compu) \rightarrow res: bool

Pre \equiv \{(c \in \text{computadoras}(r)) \land (c' \in \text{computadoras}(r))\}

Post \equiv \{res = \text{hayCamino}?(r, c, i)\}

Complejidad: O(L)
```

2.2. Representación

2.2.1. Estructura

```
red se representa con estr
```

```
donde estr es tupla(compus: conj(compu) , dns: dicc_{Trie}(ip, nodoRed) ) donde nodoRed es tupla(c: puntero(compu) , caminos: dicc_{Trie}(ip, conj(lista(compu))) , conexiones: dicc_{Lineal}(interfaz, compu) )
```

2.2.2. Invariante de Representación

- (I) Todas las compus deben tener IPs distintas.
- (II) Ninguna compu se conecta con si misma.
- (III) Ninguna compu se conecta a otra a traves de dos interfaces distintas.
- (IV) El trie estr. dns apunta a un nodoRed por cada elemento de compus.
- (V) En cada nodoRed, c tiene que apuntar a un elemento de estr.compus.
- (VI) Para cada nodoRed, caminos tiene como claves todas las IPs de las compus de la red, y los significados corresponden a todos los caminos mínimos desde la compu c hacia la compu cuya IP es clave.
- (VII) nodoRed.conexiones contiene como claves todas las interfaz usaconedas de la compu c (que tienen que estar en c.interfaces)

```
\begin{aligned} \operatorname{Rep} &: \operatorname{estr} &\longrightarrow \operatorname{bool} \\ \operatorname{Rep}(e) &\equiv \operatorname{true} &\Longleftrightarrow \end{aligned}
```

2.2.3. Función de Abstracción

Abs : estr
$$e \longrightarrow \text{red}$$

Abs $(e) =_{\text{obs}} \text{r: red} \mid$

Módulo Cola de mínima prioridad(α) 3.

El módulo cola de mínima prioridad consiste en una cola de prioridad de elementos del tipo α cuya prioridad está determinada por un nat de forma tal que el elemento que se ingrese con el menor nat será el de mayor prioridad.

Especificación 3.1.

TAD COLA DE MÍNIMA PRIORIDAD (α)

igualdad observacional

$$(\forall c, c' : \operatorname{colaMinPrior}(\alpha)) \quad \left(c =_{\operatorname{obs}} c' \Longleftrightarrow \begin{pmatrix} \operatorname{vac\'ia?}(c) =_{\operatorname{obs}} \operatorname{vac\'ia?}(c') \wedge_{\operatorname{L}} \\ (\neg \operatorname{vac\'ia?}(c) \Rightarrow_{\operatorname{L}} (\operatorname{pr\'oximo}(c) =_{\operatorname{obs}} \operatorname{pr\'oximo}(c') \wedge_{\operatorname{L}} \\ (\operatorname{desencolar}(c) \Rightarrow_{\operatorname{L}} (\operatorname{pr\'oximo}(c) =_{\operatorname{obs}} \operatorname{pr\'oximo}(c') \wedge_{\operatorname{L}} \\ (\operatorname{desencolar}(c')) \end{pmatrix} \right)$$

parámetros formales

géneros

operaciones $\bullet < \bullet : \alpha \times \alpha \longrightarrow bool$

Relación de orden total estricto¹

 $colaMinPrior(\alpha)$ géneros

exporta $colaMinPrior(\alpha)$, generadores, observadores

usa Bool

observadores básicos

```
vacía?
                  : colaMinPrior(\alpha)

ightarrow \ {
m bool}
                  : \operatorname{colaMinPrior}(\alpha) c
                                                                                                                                                             \{\neg \operatorname{vacía}?(c)\}
próximo
                                                                                                                                                             \{\neg \text{ vacía}?(c)\}
desencolar : colaMinPrior(\alpha) c
                                                            \longrightarrow colaMinPrior(\alpha)
```

generadores

tamaño

 \longrightarrow colaMinPrior(α) vacía. : $\alpha \times \text{colaMinPrior}(\alpha) \longrightarrow \text{colaMinPrior}(\alpha)$ encolar

otras operaciones

: $colaMinPrior(\alpha)$ $\forall c: \operatorname{colaMinPrior}(\alpha), \forall e: \alpha$ axiomas vacía?(vacía) ≡ true vacía?(encolar(e, c)) \equiv false

próximo(encolar(e, c)) \equiv if vacía? $(c) \vee_{L} \operatorname{proximo}(c) > e$ then e else $\operatorname{próximo}(c)$ fi desencolar(encolar(e, c)) \equiv if vacía?(c) $\vee_{\text{L}} \text{proximo}(c) > e$ then c else encolar(e, desencolar(c)) fi

 \longrightarrow nat

Fin TAD

Antirreflexividad: $\neg a < a$ para todo $a : \alpha$

Antisimetría: $(a < b \Rightarrow \neg b < a)$ para todo $a, b : \alpha, a \neq b$ **Transitividad:** $((a < b \land b < c) \Rightarrow a < c)$ para todo $a, b, c : \alpha$

Totalidad: $(a < b \lor b < a)$ para todo $a,b:\alpha$

¹Una relación es un orden total estricto cuando se cumple:

3.2. Interfaz

```
parámetros formales géneros \alpha se explica con: Cola de Mínima Prioridad(nat). géneros: colaMinPrior(\alpha).
```

3.2.1. Operaciones básicas de Cola de mínima prioridad

```
VACÍA() \rightarrow res : colaMinPrior(\alpha)
\mathbf{Pre} \equiv \{ \text{true} \}
Post \equiv \{res =_{obs} vacía\}
Complejidad: O(1)
Descripción: Crea una cola de prioridad vacía
VACÍA?(\mathbf{in}\ c: colaMinPrior(\alpha)) \rightarrow res: bool
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{ res =_{obs} vacía?(c) \}
Complejidad: O(1)
Descripción: Devuelve true si y sólo si la cola está vacía
DESENCOLAR(in/out c: colaMinPrior(\alpha)) \rightarrow res: \alpha
\mathbf{Pre} \equiv \{\neg \text{vac\'a?}(c) \land c =_{\text{obs}} c_0\}
\mathbf{Post} \equiv \{res =_{obs} \operatorname{proximo}(c_0) \land c =_{obs} \operatorname{desencolar}(c_0)\}\
Complejidad: O(\log(\tan \tilde{a} \tilde{n} o(c)))
Descripción: Quita el elemento más prioritario
Aliasing: Se devuelve el elemento por copia
ENCOLAR(in/out c: colaMinPrior(\alpha), in p: nat, in a: \alpha)
\mathbf{Pre} \equiv \{c =_{\mathrm{obs}} c_0\}
\mathbf{Post} \equiv \{c =_{\mathrm{obs}} \mathrm{encolar}(p, c_0)\}\
Complejidad: O(\log(\tan \tilde{a} \tilde{n} o(c)))
Descripción: Agrega al elemento \alpha con prioridad p a la cola
Aliasing: Se agrega el elemento por copia
```

3.3. Representación

3.3.1. Representación de colaMinPrior

```
colaMinPrior(\alpha) se representa con estr donde estr es dicc_{avl}(nat, nodoEncolados) donde nodoEncolados es tupla(encolados: cola(\alpha), prioridad: nat)
```

3.3.2. Invariante de Representación

- (I) Todos los significados del diccionario tienen como clave el valor de prioridad
- (II) Todos los significados del diccionario no pueden tener una cola vacía

```
\operatorname{Rep} \; : \; \operatorname{estr} \; \; \longrightarrow \; \operatorname{bool}
```

```
 \text{Rep}(e) \equiv \text{true} \iff \\ (\forall n : \text{nat}) \ \text{def?}(n, \, e) \Rightarrow_{\text{L}} ((\text{obtener}(n, \, e).\text{prioridad} = n) \land \neg \text{vac\'a?}(\text{obtener}(n, \, e).\text{encolados}))
```

3.3.3. Función de Abstracción

```
Abs : estr e \longrightarrow \text{colaMinPrior} {Rep(e)}
\text{Abs}(e) =_{\text{obs}} \text{ cmp: colaMinPrior} \mid (\text{vac\'a?}(cmp) \Leftrightarrow (\#\text{claves}(e) = 0)) \land \\ \neg \text{vac\'a?}(cmp) \Rightarrow_{\text{L}} \\ ((\text{pr\'oximo}(cmp) = \text{pr\'oximo}(\text{m\'inimo}(e).\text{encolados})) \land \\ (\text{desencolar}(cmp) = \text{desencolar}(\text{m\'inimo}(e).\text{encolados})))
```

3.4. Algoritmos

```
iVacía\ () \rightarrow res: colaMinPrior(\alpha) res\ \leftarrow\ Vacio\ () \textbf{Complejidad}: O(1)
```

```
iVacía? (in c: colaMinPrior(\alpha)) \rightarrow res: bool {\rm res} \leftarrow (\#{\rm Claves}\,(c)\,=\,0) O(1) {\bf Complejidad}:O(1)
```

```
 \text{iDesencolar}\left(\text{in/out }c\colon \text{colaMinPrior}(\alpha)\right) \to \text{res: }\alpha \\ \text{res} \leftarrow \text{Copiar}\left(\text{Proximo}\left(\text{Minimo}(c).\operatorname{encolados}\right)\right) & \text{O}(\operatorname{copy}(\alpha)) \\ \text{Desencolar}\left(\text{Minimo}(c).\operatorname{encolados}\right) & \text{O}(\log(\operatorname{tama\~no}(c))) \\ \text{if } \operatorname{EsVacia?}\left(\text{Minimo}(c).\operatorname{encolados}\right) & \text{then} & \text{O}(1) \\ \text{Borrar}\left(c, \operatorname{Minimo}(c).\operatorname{prioridad}\right) & \text{O}(\log(\operatorname{tama\~no}(c))) \\ \text{end} & \text{if} \\ \\ \text{\textbf{Complejidad}}: O(\log(\operatorname{tamano}(c)) + O(\operatorname{copy}(\alpha)) \\ \end{aligned}
```

```
iEncolar (in/out c: colaMinPrior(\alpha), in p: nat, in a: \alpha)
if Definido?(p) then
                                                                                       O(\log(\tan(c)))
     Encolar (Significado (c, p). encolados, a)
                                                                            O(\log(\tan(c)) + \cos(\alpha))
else
     nodoEncolados nuevoNodoEncolados
                                                                                                    O(1)
     nuevoNodoEncolados. encolados \leftarrow Vacia()
                                                                                                    O(1)
     nuevoNodoEncolados.prioridad \leftarrow p
                                                                                                    O(1)
     Encolar(nuevoNodoEncolados.encolados, a)
                                                                                              O(copy(a))
     Definir(c, p, nuevoNodoEncolados)
                                                                O(\log(\tan \tilde{a}no(c)) + \cos(nodoEncolados))
end if
Complejidad : O(log(tamano(c)) + O(copy(\alpha))
```