Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 13. Randomized Block Designs

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

Plan

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

Chapter 13. Randomized Block Designs

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

Rationale:

Reducing variability by blocking[†]

† Blocking is the arranging of experimental units in groups (blocks) that are similar to one another.

https://www.slideshare.net/KevinHamill2/ experimental-design-cartoon-part-5-sample-size

a elevation

b soil types

V.S

c complete randomized design

a elevation.

b soil types

V.S

c complete randomized design

- a elevation.
- b soil types.

V.S.

c complete randomized design

a elevation.

b soil types.

V.S

c complete randomized design

a elevation.

b soil types.

v.s.

c complete randomized design

a elevation.

b soil types.

v.s.

c complete randomized design

- a elevation.
- b soil types.

v.s.

c complete randomized design

One-way ANOVA

Two-way ANOVA

a elevation.

b soil types.

v.s.

c complete randomized design

One-way ANOVA

Two-way ANOVA

Plan

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

Chapter 13. Randomized Block Designs

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

Setup Y_{ij} indep. $\sim N(\mu_j + \beta_i, \sigma^2)$, i.e., $Y_{ij} = \mu_j + \beta_i + \epsilon_{ij}$, ϵ_{ij} i.i.d. $\sim N(0, \sigma^2)$

Setup Y_{ij} indep. $\sim N(\mu_j + \beta_i, \sigma^2)$, i.e., $Y_{ij} = \mu_j + \beta_i + \epsilon_{ij}$, ϵ_{ij} i.i.d. $\sim N(0, \sigma^2)$

Setup Y_{ij} indep. $\sim N(\mu_j + \beta_i, \sigma^2)$, i.e., $Y_{ij} = \mu_j + \beta_i + \epsilon_{ij}$, ϵ_{ij} i.i.d. $\sim N(0, \sigma^2)$

Table 13.2.1								
		Treatment Level			Block	Block	True Block	
		1	2		k	Totals	Means	Effects
Blocks	1 2	Y_{11} Y_{21}	Y_{12} Y_{22}		Y_{1k} Y_{2k}	$T_{1.}$ $T_{2.}$	$\frac{\overline{Y}}{\overline{Y}_{2.}}$	$eta_1 \ eta_2$
	: b	\vdots Y_{b1}	Y_{b2}		\vdots Y_{bk}	T_{b}	$\overline{\overline{Y}}_{b}$.	$deta_b$
Sample totals Sample means True means		$rac{T_{.1}}{\overline{Y}_{.1}}$ μ_1	$rac{T_{.2}}{\overline{Y}_{.2}}$ μ_2		$rac{T_{.k}}{\overline{Y}_{.k}}$ μ_k	T	$\overline{Y}_{}$	

Recall For one-way ANOVA,

$$Y_{ij} = \mu_j + \epsilon_{ij}$$

$$\begin{split} \textit{SSTOT} &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{ij} - \overline{Y}_{\cdot j} \right) + \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right) \right]^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot j} \right)^{2} + \text{zero cross term} + \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot j} \right)^{2} + b \sum_{j=1}^{k} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \textit{SSE} + \textit{SSTR} \end{split}$$

a

Recall For one-way ANOVA,

$$Y_{ij} = \mu_j + \epsilon_{ij}$$

$$\begin{split} \textit{SSTOT} &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{ij} - \overline{Y}_{\cdot j} \right) + \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right) \right]^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot j} \right)^{2} + \text{zero cross term} + \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot j} \right)^{2} + b \sum_{j=1}^{k} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \textit{SSE} + \textit{SSTR} \end{split}$$

a

Recall For one-way ANOVA,

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

1

$$\begin{split} \textit{SSTOT} &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{ij} - \overline{Y}_{\cdot j} \right) + \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right) \right]^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot j} \right)^{2} + \text{zero cross term} + \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot j} \right)^{2} + b \sum_{j=1}^{k} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \textit{SSE} + \textit{SSTR} \end{split}$$

a

$$SSTOT = SSE + SSTR$$

$$\downarrow \downarrow$$

$$\frac{SSTOT}{\sigma^2} = \frac{SSE}{\sigma^2} + \frac{SSTR}{\sigma^2}$$

$$\downarrow \downarrow$$

$$\chi^2(bk-1) \qquad \chi^2(bk-k) \perp \chi^2(k-1)$$
Under H_0

$$\downarrow \downarrow$$
Under H_0

$$H_0: \mu_1 = \cdots = \mu_k$$

$$Y_{ii} = \beta_i + \epsilon$$

$$\begin{split} SSTOT &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{ij} - \overline{Y}_{i.} \right) + \left(\overline{Y}_{i.} - \overline{Y}_{..} \right) \right]^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} \right)^{2} + \text{zero cross term} + \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} \right)^{2} + k \sum_{i=1}^{b} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} \\ &= SSE + SSB \end{split}$$

Symmetry If

$$Y_{ij} = \beta_i + \epsilon_i$$

$$\begin{split} SSTOT &= \sum_{l=1}^{b} \sum_{j=1}^{k} \left(Y_{lj} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{l=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{lj} - \overline{Y}_{l\cdot} \right) + \left(\overline{Y}_{l\cdot} - \overline{Y}_{..} \right) \right]^{2} \\ &= \sum_{l=1}^{b} \sum_{j=1}^{k} \left(Y_{lj} - \overline{Y}_{l\cdot} \right)^{2} + \text{zero cross term} + \sum_{l=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{l\cdot} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{l=1}^{b} \sum_{j=1}^{k} \left(Y_{lj} - \overline{Y}_{l\cdot} \right)^{2} + k \sum_{l=1}^{b} \left(\overline{Y}_{l\cdot} - \overline{Y}_{..} \right)^{2} \\ &= SSE + SSB \end{split}$$

Symmetry If

$$Y_{ij} = \beta_i + \epsilon$$

Į

$$\begin{split} \textit{SSTOT} &= \sum_{i=1}^b \sum_{j=1}^k \left(Y_{ij} - \overline{Y}_{\cdot \cdot} \right)^2 \\ &= \sum_{i=1}^b \sum_{j=1}^k \left[\left(Y_{ij} - \overline{Y}_{i \cdot} \right) + \left(\overline{Y}_{i \cdot} - \overline{Y}_{\cdot \cdot} \right) \right]^2 \\ &= \sum_{i=1}^b \sum_{j=1}^k \left(Y_{ij} - \overline{Y}_{i \cdot} \right)^2 + \text{zero cross term} + \sum_{i=1}^b \sum_{j=1}^k \left(\overline{Y}_{i \cdot} - \overline{Y}_{\cdot \cdot} \right)^2 \\ &= \sum_{i=1}^b \sum_{j=1}^k \left(Y_{ij} - \overline{Y}_{i \cdot} \right)^2 + k \sum_{i=1}^b \left(\overline{Y}_{i \cdot} - \overline{Y}_{\cdot \cdot} \right)^2 \\ &= \textit{SSE} + \textit{SSB} \end{split}$$

$$SSTOT = SSE + SSB$$

$$\downarrow \downarrow$$

$$\frac{SSTOT}{\sigma^2} = \frac{SSE}{\sigma^2} + \frac{SSB}{\sigma^2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\chi^2(bk-1) \qquad \chi^2(bk-b) \perp \chi^2(b-1)$$
Under \widetilde{H}_0 \checkmark Under \widetilde{H}_0

$$\widetilde{H}_0: \beta_1 = \cdots = \beta_b$$

$$Y_{ij} = \mu_j + \beta_i + \epsilon_i$$

$$\begin{split} SSTOT &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right) + \left(\overline{Y}_{i.} - \overline{Y}_{..} \right) + \left(\overline{Y}_{.j} - \overline{Y}_{..} \right) \right]^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right)^{2} + \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} \\ &+ \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2} + \text{zero cross terms} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right)^{2} + k \sum_{i=1}^{b} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} + b \sum_{j=1}^{k} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2} \\ &= SSE + SSB + SSTR \end{split}$$

Similarly If

$$Y_{ij} = \mu_i + \beta_i + \epsilon_{ij}$$

$$\begin{split} SSTOT &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right) + \left(\overline{Y}_{i.} - \overline{Y}_{..} \right) + \left(\overline{Y}_{.j} - \overline{Y}_{..} \right) \right]^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right)^{2} + \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} \\ &+ \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2} + \operatorname{zero \ cross \ terms} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right)^{2} + k \sum_{i=1}^{b} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} + b \sum_{j=1}^{k} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2} \\ &= SSE + SSB + SSTR \end{split}$$

Similarly If

$$Y_{ij} = \mu_j + \beta_i + \epsilon_{ij}$$

$$\begin{split} \textit{SSTOT} &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right) + \left(\overline{Y}_{i.} - \overline{Y}_{..} \right) + \left(\overline{Y}_{.j} - \overline{Y}_{..} \right) \right]^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right)^{2} + \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} \\ &+ \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2} + \text{zero cross terms} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right)^{2} + k \sum_{i=1}^{b} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} + b \sum_{j=1}^{k} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2} \\ &= \textit{SSE} + \textit{SSB} + \textit{SSTR} \end{split}$$

$$SSTOT = SSE + SSB + SSTR$$

$$\downarrow \downarrow$$

$$\frac{SSTOT}{\sigma^2} = \frac{SSE}{\sigma^2} + \frac{SSB}{\sigma^2} + \frac{SSTR}{\sigma^2}$$

$$\downarrow \downarrow$$

$$\chi^2(bk-1) \qquad \chi^2((k-1)(b-1)) \perp \chi^2(b-1) \perp \chi^2(k-1)$$
Under H_0 or \widetilde{H}_0 \checkmark under \widetilde{H}_0 under H_0

$$\widetilde{H}_0: \beta_1 = \cdots = \beta_b$$
 and $H_0: \mu_1 \cdots = \mu_k$

$$H_0: \mu_1 \cdots = \mu$$

Table 13.2.2					
Source	df	SS	MS	F	P
Treatments	k — 1	SSTR	SSTR/(k-1)	$\frac{SSTR/(k-1)}{SSE/(b-1)(k-1)}$	$P[F_{k-1,(b-1)(k-1)} \ge \text{obs. } F]$
Blocks	b-1	SSB	SSB/(b-1)	$\frac{SSB/(b-1)}{SSE/(b-1)(k-1)}$	$P[F_{b-1,(b-1)(k-1)} \ge \text{obs. } F]$
Error	(b-1)(k-1)	SSE	SSE/(b-1)(k-1)	222/(2 2/(2 2/	
Total	n-1	SSTOT			

Computing formulas

$$C=\frac{T_{\cdot \cdot}^2}{bk}$$

$$SSTR = b \sum_{j=1}^{k} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right)^2 = b \sum_{j=1}^{k} \overline{Y}_{\cdot j}^2 - bk \overline{Y}_{\cdot \cdot}^2 = \frac{1}{b} \sum_{j=1}^{k} \overline{T}_{\cdot j}^2 - C.$$

$$SSB = k \sum_{i=1}^{b} \left(\overline{Y}_{i\cdot} - \overline{Y}_{\cdot\cdot} \right)^2 = k \sum_{i=1}^{b} \overline{Y}_{i\cdot}^2 - bk \overline{Y}_{\cdot\cdot}^2 = \frac{1}{k} \sum_{j=1}^{k} \overline{T}_{i\cdot}^2 - C.$$

$$SSTOT = \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{..} \right)^{2} = \sum_{i=1}^{b} \sum_{j=1}^{k} Y_{ij}^{2} - bk \overline{Y}_{..}^{2} = \sum_{i=1}^{b} \sum_{j=1}^{k} Y_{ij}^{2} - C.$$

$$SSE = SSTOT - SSTR - SSB$$

E.g. Two methods to test wines: whether these two procedures produce the same measurements?

Test at
$$\alpha = 0.05$$

$$H_0: \mu_{DRS} = \mu_{STD}$$
 v.s. $H_1: \mu_{DRS} \neq \mu_{STD}$

anc

$$\widetilde{H}_0: \mu_{W1} = \mu_{W2} = \mu_{R1} = \mu_{R2}$$
 v.s. $\widetilde{H}_1:$ not equal

E.g. Two methods to test wines: whether these two procedures produce the same measurements?

	DRS-FTIR	Standard
White wine 1	112.9	115.1
White wine 2	123.1	125.6
Red wine 1	135.2	132.4
Red wine 2	140.2	143.7

Test at
$$\alpha = 0.05$$

$$H_0: \mu_{DRS} = \mu_{STD}$$
 v.s. $H_1: \mu_{DRS} \neq \mu_{STD}$

and

$$\widetilde{H}_0: \mu_{W1} = \mu_{W2} = \mu_{R1} = \mu_{R2}$$
 v.s. $\widetilde{H}_1:$ not equal

```
1 > # Case Study 13.2.1
2 > # install .packages("ggpubr")
3 > DIRS <- c(112.9, 123.1, 135.2, 140.2)
4 > STD <- c(115.1, 125.6, 132.4, 143.7)
5 > Wines <- c("W1", "W2", "R1", "R2")
7 > my data <- data.frame(
       method = rep(c("DIRS", "STD"), each = 4),
       types = c(Wines, Wines),
       concentration = c(DIRS, STD)
10 +
11 + )
13 > print (my data)
     method types concentration
       DIRS
              W<sub>1</sub>
                         112.9
       DIRS
               W2
                          123.1
16 2
17 3
       DIRS
                         135.2
18 4
       DIRS
                          140.2
        STD
               W<sub>1</sub>
19 5
                          115.1
20 6
        STD
               W2
                         125.6
        STD
                         132.4
               R1
        STD
                          143.7
22 8
```

	> # Compute t-test with equal variances	> # Compute t-test with unequal variances
	> res <- t. test (concentration ~ method,	> res <- t.test(concentration ~ method,
	+ data = my_data,	+ data = my_data,
	+ var.equal = TRUE)	+ var.equal = FALSE)
	> res	> res
	Two Sample t-test	Welch Two Sample t-test
	data: concentration by method	data: concentration by method
	t = -0.15721, $df = 6$, p-value = 0.8802	t = -0.15721, $df = 5.9968$, p-value = 0.8802
11	alternative hypothesis: true difference in	alternative hypothesis: true difference in
	means is not equal to 0	means is not equal to 0
	95 percent confidence interval:	95 percent confidence interval:
13	-22.362 19.662	-22.3647 19.6647
14	sample estimates:	sample estimates:
	mean in group DIRS mean in group STD	mean in group DIRS mean in group STD
	127.85 129.20	127.85 129.20

- 1 > # The following one-way ANOVA is equivalent
- 2 > # to the two-sample t test
- > library (car)
- 4 > model3 = Im(concentration ~ method,5 + data=my data)
- 6 > Anova(model3)
- Anova Table (Type II tests)
- 9 Response: concentration
 - Sum Sq Df F value Pr(>F)
- method 3.64 1 0.0247 0.8802
- 2 Residuals 884.87 6

1. Classical method

- Welch approximation
- 3. one-way ANOVA

1

The same answe

Concl. Fail to reject H_0

```
1 > # Compute t-test with unequal variances
2 > res <- t. test (concentration ~ method,</p>
                                             2 > res <- t. test (concentration ~ method,
                 data = my data,
                                                              data = my data.
                 var.equal = TRUE)
                                                              var.equal = FALSE)
                                             4 +
5 > res
                                             5 > res
    Two Sample t-test
                                                 Welch Two Sample t-test
  data: concentration by method
                                             9 data: concentration by method
  t = -0.15721, df = 6, p-value = 0.8802
                                            10 t = -0.15721, df = 5.9968, p-value = 0.8802
   alternative hypothesis: true difference in
                                            alternative hypothesis: true difference in
        means is not equal to 0
                                                     means is not equal to 0
95 percent confidence interval:
                                            12 95 percent confidence interval:
  -22 362 19 662
                                            13 -22 3647 19 6647
  sample estimates:
                                            14 sample estimates:
mean in group DIRS mean in group STD
                                            mean in group DIRS mean in group STD
              127 85
                               129 20
                                                 127 85
                                                                    129 20
```

- 1 > # The following one-way ANOVA is equivalent
- 2 > # to the two-sample t test
- 3 > library (car)
- 4 > model3 = Im(concentration ~ method,
 5 + data=my data)
- 6 > Anova(model3)
- Anova Table (Type II tests)
- 9 Response: concentration
 - Sum Sq Df F value Pr(>F)
- method 3.64 1 0.0247 0.8802
 - 2 Residuals 884.87 6

- 1. Classical method
- 2. Welch approximation
 - 3. one-way ANOVA

 \downarrow

The same answe (p-value)

Concl. Fail to reject H_0

```
1 > # Compute t-test with unequal variances
2 > res <- t. test (concentration ~ method,
                                             2 > res <- t. test (concentration ~ method,
                 data = my data,
                                                              data = my data.
                 var.equal = TRUE)
                                                              var.equal = FALSE)
                                             4 +
5 > res
                                             5 > res
    Two Sample t-test
                                                 Welch Two Sample t-test
  data: concentration by method
                                             9 data: concentration by method
  t = -0.15721, df = 6, p-value = 0.8802
                                             10 t = -0.15721, df = 5.9968, p-value = 0.8802
   alternative hypothesis: true difference in
                                            alternative hypothesis: true difference in
                                                     means is not equal to 0
        means is not equal to 0
95 percent confidence interval:
                                             12 95 percent confidence interval:
  -22 362 19 662
                                             13 -22 3647 19 6647
  sample estimates:
                                             14 sample estimates:
mean in group DIRS mean in group STD
                                             mean in group DIRS mean in group STD
              127 85
                               129 20
                                                           127 85
                                                                     129 20
```

- 1 > # The following one-way ANOVA is equivalent
- 2 > # to the two-sample t test
- 3 > library (car)
- 4 > model3 = Im(concentration ~ method, 5 + data=my data)
- 6 > Anova(model3)
- Anova Table (Type II tests)
- 9 Response: concentration
 - Sum Sq Df F value Pr(>F)
- method 3.64 1 0.0247 0.8802
- 2 Residuals 884.87 6

- 1. Classical method
- 2. Welch approximation
- 3. one-way ANOVA

11

The same answer (p-value)

Concl. Fail to reject H_0

```
1 > # Compute t-test with unequal variances
2 > res <- t. test (concentration ~ method,</p>
                                             2 > res <- t. test (concentration ~ method,
                 data = my data,
                                                              data = my data.
                 var.equal = TRUE)
                                                              var.equal = FALSE)
                                             4 +
5 > res
                                             5 > res
    Two Sample t-test
                                                 Welch Two Sample t-test
  data: concentration by method
                                             9 data: concentration by method
  t = -0.15721, df = 6, p-value = 0.8802
                                            10 t = -0.15721, df = 5.9968, p-value = 0.8802
   alternative hypothesis: true difference in
                                            alternative hypothesis: true difference in
        means is not equal to 0
                                                     means is not equal to 0
95 percent confidence interval:
                                            12 95 percent confidence interval:
  -22 362 19 662
                                            13 -22 3647 19 6647
  sample estimates:
                                            14 sample estimates:
mean in group DIRS mean in group STD
                                            mean in group DIRS mean in group STD
              127 85
                               129 20
                                                  127 85
                                                                     129 20
```

- 1 > # The following one-way ANOVA is equivalent
- 2 > # to the two-sample t test
- 3 > library (car)
- 4 > model3 = Im(concentration ~ method, 5 + data=my data)
- 6 > Anova(model3)
- Anova Table (Type II tests)
- 9 Response: concentration
 - Sum Sq Df F value Pr(>F)
- method 3.64 1 0.0247 0.8802
 - 2 Residuals 884.87 6

- 1. Classical method
- 2. Welch approximation
- 3. one-way ANOVA

 \downarrow

The same answer (p-value)

Concl. Fail to reject H_0

```
1 > # Now let's carry out two-way ANOVA
                                                2 > model2 = Im(concentration ~ types,
2 > library (car)
                                                               data=my data)
3 > model = Im(concentration ~ method + types,
                                                4 > Anova(model2)
              data=my data)
                                                  Anova Table (Type II tests)
5 > Anova(model)
6 Anova Table (Type II tests)
                                                  Response: concentration
                                                           Sum Sq Df F value Pr(>F)
  Response: concentration
                                                  types
                                                           872.92 3 74.657 0.0005739 ***
            Sum Sq Df F value Pr(>F)
                                                  Residuals 15.59 4
10 method 3.65 1 0.9154 0.409258
11 types 872.92 3 73.0787 0.002652 **
                                                  Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
12 Residuals 11.94 3
                                                        0.05 '.' 0.1 ' ' 1
```

1. Fail to reject H_0

2. Reject \widetilde{H}_0

```
1 > # Now let's carry out two-way ANOVA
                                                2 > model2 = Im(concentration ~ types,
2 > library (car)
                                                               data=my data)
3 > model = Im(concentration ~ method + types,
                                                4 > Anova(model2)
              data=my data)
                                                  Anova Table (Type II tests)
5 > Anova(model)
  Anova Table (Type II tests)
                                                  Response: concentration
                                                           Sum Sq Df F value Pr(>F)
  Response: concentration
                                                  types
                                                           872.92 3 74.657 0.0005739 ***
            Sum Sq Df F value Pr(>F)
                                                  Residuals 15.59 4
10 method 3.65 1 0.9154 0.409258
11 types 872.92 3 73.0787 0.002652 **
                                                  Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
12 Residuals 11.94 3
                                                        0.05 '.' 0.1 ' ' 1
```

- 1. Fail to reject H_0
- 2. Reject \widetilde{H}_0

E.g. 2 https://rcompanion.org/rcompanion/d_08.html

Test at
$$\alpha = 0.05$$

$$H_0: \mu_{\it F} = \mu_{\it M} \quad \it v.s. \quad H_1: \mu_{\it F}
eq \mu_{\it F}$$
 and

$$\widetilde{\mathcal{H}}_0: \mu_{\mathit{FF}} = \mu_{\mathit{S}} = \mu_{\mathit{SS}} \quad \mathit{v.s.} \quad \widetilde{\mathcal{H}}_1: \mathsf{not} \ \mathsf{all} \ \mathsf{equal}$$

E.g. 2 https://rcompanion.org/rcompanion/d_08.html

Genotype	Female	Male
FF	2.838	1.884
	4.216	2.283
	2.889	4.939
	4.198	3.486
FS	3.550	2.396
	4.556	2.956
	3.087	3.105
	1.943	2.649
SS	3.620	2.801
	3.079	3.421
	3.586	4.275
	2.669	3.110

Test at $\alpha=0.05$

$$\mathcal{H}_0: \mu_{\mathit{F}} = \mu_{\mathit{M}} \quad \mathit{v.s.} \quad \mathcal{H}_1: \mu_{\mathit{F}}
eq \mu_{\mathit{F}}$$
 and

$$\widetilde{\mathcal{H}}_0: \mu_{\mathit{FF}} = \mu_{\mathit{S}} = \mu_{\mathit{SS}}$$
 v.s. $\widetilde{\mathcal{H}}_1:$ not all equal

2 id Sex Genotype Activity 3 1 1 male ff 1.884 4 2 2 male ff 2.283 5 3 3 male fs 2.396 6 4 4 4 female ff 2.838 7 5 5 male fs 2.956 8 6 6 female ff 4.216 9 7 7 7 7 7 7 7 7 7	> [Dat	a			
4 2 2 male ff 2.283 5 3 3 male fs 2.396 6 4 4 female ff 2.838 7 5 5 male fs 2.956 8 6 6 female ff 4.216 9 7 7 female ff 4.216 10 8 8 female ff 2.889 11 9 9 female fs 3.550 12 10 10 male fs 3.105 13 11 11 female fs 4.556 14 12 12 female fs 3.087 15 13 13 male ff 4.939 17 15 15 female ss 3.079		id	Sex	Genotype	Activity	
5 3 3 male fs 2.396 6 4 4 female ff 2.838 7 5 5 male fs 2.956 8 6 6 female ff 4.216 9 7 7 female ss 3.620 10 8 8 female ff 2.889 11 9 9 female fs 3.550 12 10 10 male fs 3.105 13 11 11 female fs 3.087 14 12 12 female fs 3.087 15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079			male	ff	1.884	
6 4 4 female ff 2.838 7 5 5 male fs 2.956 8 6 6 female ff 4.216 9 7 7 female ss 3.620 10 8 8 female ff 2.889 11 9 9 female fs 3.550 12 10 10 male fs 3.105 13 11 11 female fs 4.556 14 12 12 female fs 3.087 15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079	2	2	male	ff	2.283	
7 5 5 male fs 2.956 8 6 6 female ff 4.216 9 7 7 female ss 3.620 10 8 8 female ff 2.889 11 9 9 female fs 3.550 12 10 10 male fs 3.105 13 11 11 female fs 4.556 14 12 12 female fs 3.087 15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079	3	3	male	fs	2.396	
8 6 6 female ff 4.216 9 7 7 female ss 3.620 10 8 8 female ff 2.889 11 9 9 female fs 3.550 12 10 10 male fs 3.105 13 11 11 female fs 4.556 14 12 12 female fs 3.087 15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079	4	4	female	ff	2.838	
9 7 7 female ss 3.620 10 8 8 female ff 2.889 11 9 9 female fs 3.550 12 10 10 male fs 3.105 13 11 11 female fs 4.556 14 12 12 female fs 3.087 15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079	5	5	male	fs	2.956	
10 8 8 female ff 2.889 11 9 9 female fs 3.550 12 10 10 male fs 3.105 13 11 11 female fs 4.556 14 12 12 female fs 3.087 15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079	6	6	female	ff	4.216	
11 9 9 female fs 3.550 12 10 10 male fs 3.105 13 11 11 female fs 4.556 14 12 12 female fs 3.087 15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079	7	7	female	SS	3.620	
12 10 10 male fs 3.105 13 11 11 female fs 4.556 14 12 12 female fs 3.087 15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079	8	8	female	ff	2.889	
13 11 11 female fs 4.556 14 12 12 female fs 3.087 15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079	9	9	female	fs	3.550	
14 12 12 female fs 3.087 15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079	10	10	male	fs	3.105	
15 13 13 male ff 4.939 16 14 14 male ff 3.486 17 15 15 female ss 3.079	11	11	female	fs	4.556	
16 14 14 male ff 3.486 17 15 15 female ss 3.079	12	12	female		3.087	
17 15 15 female ss 3.079	13	13	male	ff	4.939	
	14	14	male	ff	3.486	
10.10 male fo 0.040	15	15	female	SS	3.079	
18 16 16 male fs 2.649	16	16	male	fs	2.649	

17 17 female	fs	1.943
18 19 female	ff	4.198
19 20 female	ff	2.473
20 22 female	ff	2.033
21 24 female	fs	2.200
22 25 female	fs	2.157
23 26 male	SS	2.801
24 28 male	SS	3.421
25 29 female	ff	1.811
26 30 female	fs	4.281
27 32 female	fs	4.772
28 34 female	SS	3.586
29 36 female	ff	3.944
30 38 female	SS	2.669
31 39 female	SS	3.050
32 41 male	SS	4.275
33 43 female	SS	2.963
34 46 female	SS	3.236
35 48 female	SS	3.673
36 49 male	SS	3.110

```
1 > # Two-way ANOVA
2 > model = Im(Activity ~ Sex + Genotype,
              data=Data)
4 > Anova(model, type="||")
  Anova Table (Type II tests)
  Response: Activity
            Sum Sq Df F value Pr(>F)
9 Sex
             0.0681 1 0.0888 0.7676
  Genotype 0.2772 2 0.1808 0.8354
  Residuals 24.5285 32
> model Sex = Im(Activity ~ Sex,
                  data=Data)
15 > Anova(model Sex, type="II")
16 Anova Table (Type II tests)
  Response: Activity
            Sum Sq Df F value Pr(>F)
20 Sex
             0.0681 1 0.0933 0.7619
  Residuals 24.8057 34
> model Genotype = Im(Activity ~ Genotype.
                  data=Data)
25 > Anova(model Genotype, type="||")
  Anova Table (Type II tests)
  Response: Activity
             Sum Sq Df F value Pr(>F)
  Genotype 0.2772 2 0.186 0.8312
  Residuals 24 5965 33
```

Tuckey's pairwise comparison

Replace
$$Q_{\alpha,k,b(k-k)}$$
 by $Q_{\alpha,k,(b-1)(k-1)}$

```
1 > # Tukey's pairwise comparison (One-way)
                                                  1 > # Tukey's pairwise comparison (Two-way)
  > model1 = aov(Activity ~ Genotype,
                                                  2 > model2 = aov(Activity ~ Sex + Genotype,
                         data=Data)
                                                                data=Data)
  > TukeyHSD(model1, "Genotype", ordered =
                                                  4 > TukeyHSD(model2, "Genotype", ordered =
         TRUE)
                                                          TRUE)
     Tukey multiple comparisons of means
                                                      Tukey multiple comparisons of means
       95% family-wise confidence level
                                                        95% family-wise confidence level
       factor, levels, have been ordered
                                                        factor, levels, have been ordered
   Fit: aov(formula = Activity ~ Genotype, data
                                                    Fit: aov(formula = Activity ~ Sex +
         = Data)
                                                          Genotype, data = Data)
   $Genotype
                                                    $Genotype
               diff
                                                                diff
                          lwr
                                  upr
                                                                           lwr
                                                                                    upr
                                                                                           g
                    adi
                                                                     adi
  fs-ff 0.05483333 -0.8100204 0.919687
                                                   fs-ff 0.05483333 -0.8234920 0.9331586
         0.9867505
                                                          0.987114
14 SS-ff 0 20741667 -0 6574370 1 072270
                                                 14 SS-ff 0 20741667 -0 6709086 1 0857420
         0.8272105
                                                          0.831554
15 ss-fs 0.15258333 -0.7122704 1.017437
                                                 15 ss-fs 0.15258333 -0.7257420 1.0309086
         0.9021607
                                                          0.904729
```

 larger p-values: more conservative to reject H₀

2. wider C.I.'s:
more conservative on our estimates

1. larger p-values:

more conservative to reject H_0 .

2. wider C.I.'s

more conservative on our estimates.

 larger p-values: more conservative to reject H₀.

2. wider C.I.'s:
more conservative on our estimates

 larger p-values: more conservative to reject H₀.

2. wider C.I.'s:

more conservative on our estimates.

 larger p-values: more conservative to reject H₀.

2. wider C.I.'s: more conservative on our estimates.

Plan

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

Chapter 13. Randomized Block Designs

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

		Numeriz Al Valnes	Categorizal Values	
	Sample 1	y y . m	C11 C16	
-ples	Sample 2	y y 2m	Cz1 Czp	
જુ ∠	•		; ;	
(Sample 11	y y	Ca. · · · Cap	
		m	P	

Categorical v.s. Continuous

1. Categorical v.s. Continuous

1. Categorical v.s. Continuous

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p \ge 3, m \ge 2,$
 p -way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p \ge 3, m \ge 2,$
 p -way ANOVA

^aMANOVA refers to the multivariate analysis of variance. ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

$$\begin{array}{lll} \text{1.1} & p=1, \, m=1, & & \text{One-way ANOVA} \\ \text{1.2} & p=2, \, m=1, & & \text{Two-way ANOVA} \\ \text{1.3} & p\geq 3, \, m=1, & & p\text{-way ANOVA} \end{array}$$

$$1.4 p = 1, m > 2.$$

1.5
$$p = 2, m \ge 2,$$

1.6
$$p > 3, m > 2$$

One-way MANOVA

IWO-Way WANOVA

p-way ANOVA

"MANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance."

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p \ge 3, m \ge 2,$
 p -way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p \ge 3, m \ge 2,$
 p -way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p \ge 3, m \ge 2,$
 p -way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

	One-way ANOVA
1.2 $p = 2, m = 1,$	Two-way ANOVA
1.3 $p \ge 3, m = 1,$	p-way ANOVA
1.4 $p = 1, m \ge 2,$	One-way MANOVA ^a
1.5 $p = 2, m \ge 2,$	Two-way MANOVA
1.6 $p \ge 3, m \ge 2,$	p-way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p > 3, m > 2,$
 p -way ANOVA

2.1
$$m_{ind}=1, m_{dep}=1,$$
 Simple linear regression 2.2 $m_{ind}\geq 2$ Multiple linear regression 2.3 $m_{dep}\geq 2$ Multivariate linear regression

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

1.4
$$p = 1, m > 2$$

1.5
$$p = 2, m \ge 2,$$

1.6
$$p \ge 3, m \ge 2$$
,

One-way MANOVA^a

Two-way MANOVA

p-way ANOVA

^aMANOVA refers to the multivariate analysis of variance <u>ANOVA refers</u> to the univariate analysis of variance.

2. Continuous v.s. Continuous

2.1
$$m_{ind} = 1$$
, $m_{den} = 1$

$$2.2 \ m_{ind} > 2$$

2.3
$$m_{dep} \ge 2$$

Simple linear regression

Multiple linear regression

Multivariate linear regression

1. Categorical v.s. Continuous

1.4
$$p = 1, m > 2,$$

1.5
$$p = 2, m \ge 2,$$

1.6
$$p > 3, m > 2,$$

One-way MANOVA^a

Two-way MANOVA

p-way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

2. Continuous v.s. Continuous

$$2.1 \ m_{i-1} = 1 \ m_{d-1} = 1$$

2.2
$$m_{ind} > 2$$

2.3
$$m_{dep} \ge 1$$

Simple linear regression

Multiple linear regression

Multivariate linear regression

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p > 3, m > 2,$
 p -way ANOVA

2.1
$$\textit{m}_{\textit{ind}} = 1, \textit{m}_{\textit{dep}} = 1,$$
 Simple linear regression 2.2 $\textit{m}_{\textit{ind}} \geq 2$ Multiple linear regression 2.3 $\textit{m}_{\textit{dep}} > 2$ Multivariate linear regression

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

E.g. One example for MANOVA¹.

http://www.sthda.com/english/wiki/
manova-test-in-r-multivariate-analysis-of-variance

E.g. One example for MANOVA¹.

¹http://www.sthda.com/english/wiki/
manova-test-in-r-multivariate-analysis-of-variance

Iris Versicolor

Iris Setosa

Iris Virginica

> library (datasets)										
> sumn	nary(iris)									
Sepa	I.Length	Sepa	I.Width	Petal	.Length	Petal	. Width			
	Species									
Min.	:4.300	Min.	:2.000	Min.	:1.000	Min.	:0.100	setosa		
	:50									
1st Qı	J.:5.100	1st Qu	J.:2.800	1st Qu	u.:1.600	1st Qu	u.:0.300	versicolor		
	:50									
Media	n :5.800	Media	n :3.000	Media	n :4.350	Media	n :1.300	virginica		
	:50									
Mean	:5.843	Mean	:3.057	Mean	:3.758	Mean	:1.199			
3rd Qı	J.:6.400	3rd Qı	J.:3.300	3rd Qı	J.:5.100	3rd Qı	u.:1.800			
Max.	:7.900	Max.	:4.400	Max.	:6.900	Max.	:2.500			
> my_d	lata <- iri	S								
> my_d	ata									
Sep	oal.Lengtl	h Sepal	l.Width P	etal.Ler	igth Peta	I.Width	Species	6		
	5.1		3.5		.4	0.2	setosa			
2	4.9		3.0		.4	0.2	setosa			
3	4.7		3.2		.3	0.2	setosa			
4	4.6		3.1		.5	0.2	setosa			
5	5.0		3.6		.4	0.2	setosa			
6	5.4		3.9		.7	0.4	setosa			
7	4.6		3.4		.4	0.3	setosa			
8	5.0		3.4		.5	0.2	setosa			
9	4.4		2.9		.4	0.2	setosa			
10	4.9		3.1		.5	0.1	setosa			

```
2 > res.man <- manova(cbind(Sepal.Length, Petal.Length) ~ Species, data = iris)
3 > summary(res.man)
            Df Pillai approx F num Df den Df Pr(>F)
            2 0.9885 71.829 4 294 < 2.2e-16 ***
5 Species
6 Residuals 147
8 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
9 > # Look to see which differ
10 > summary.aov(res.man)
   Response Sepal.Length:
              Df Sum Sq Mean Sq F value Pr(>F)
13 Species 2 63.212 31.606 119.26 < 2.2e-16 ***
   Residuals 147 38.956 0.265
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' 1
   Response Petal.Length:
              Df Sum Sq Mean Sq F value Pr(>F)
20 Species 2 437.10 218.551 1180.2 < 2.2e-16 ***
   Residuals 147 27.22 0.185
23 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1:w
```

Concl.: Two variables are highly significantly different among species.