FU08 - Automata and Languages Exercise 4

 $\begin{array}{c} {\rm NGUYEN~Tuan~Dung} \\ {\rm s}1312004 \end{array}$

December 16, 2024

Question 1: Answer the following question

For $\Sigma = \{0, 1\}$, construct an NFA accepting the following language:

The set of all strings such that some two 0's are separated by a string whose length is 4i, for some $i \ge 0$.

Solution:

• State definition:

We call the length of the interim string between the two 0's n. We want the following language to be accepted: $(0 \lor 1)^* \ 0 \ (0 \lor 1)^{4i} \ 0 \ (0 \lor 1)^*$

- q₀: The string does not contain anything.
- q_1 : The string contains the first 0, and n%4 = 0.
- q_2 : The string contains the first 0, and n%4 = 1.
- q₃: The string contains the first 0, and n%4 = 2.
- q₄: The string contains the first 0, and n%4 = 3.
- q_5 : The string contains the first 0, n = 4i (or n%4 = 0), and a second 0. $q_5 \in \mathbb{F}$.

Question 2: Answer the following question

Construct two DFA's equivalent to the NFA's

- (a) $M_1 = (\{p, q, r, s\}, \{0, 1\}, \delta_1, p, \{s\})$
- (b) $M_2 = (\{p, q, r, s\}, \{0, 1\}, \delta_2, p, \{q, s\})$

where δ_1 and δ_2 are given by the following tables

δ_1	0	1
ν_1	U	1
р	{p,q}	{p}
q	{r}	{r}
r	{s}	-
s	{s}	{s}

Table 1: Transition Table δ_1

δ_2	0	1
р	{q,s}	{q}
q	{r}	${q,r}$
r	{s}	{p}
s	-	{p}

Table 2: Transition Table δ_2

Solution:

- a. We define a DFA $N_1=(Q', \sum, \delta_1', q_1', \mathbb{F}')$:
- 1. $Q' = \mathcal{P}(Q) = \{\emptyset, \{p\}, \{q\}, \{r\}, \{s\}, \{p, q, r, s\}, \{p, q\}, \{p, r\}, \{p, s\}, \{q, r\}, \{q, s\}, \{r, s\}, \{p, q, r\}, \{p, r, s\}, \{q, r, s\}\}.$
- 2. $\Sigma = \{0, 1\}.$
- 3. $q'_1 = \{p\}$.
- 4. $\mathbf{F}' = \{\{s\}, \{p, q, r, s\}, \{p, s\}, \{q, s\}, \{r, s\}, \{p, r, s\}, \{p, q, s\}, \{q, r, s\}\}.$

Since we know that $\delta_1'(R,a) = \{q \in Q | q \in \delta(r,a) \text{ for } r \in R\}$. Hence, we obtain the following state transitions.

```
for a = 0
                                                                                               for a = 1
\delta'_1(\emptyset,0) = \emptyset
                                                                                               \delta'_1(\emptyset,1) = \emptyset
\delta'_1(\{p\}, 0) = \{p, q\}
                                                                                               \delta'_1(\{p\}, 1) = \{p\}
\delta'_1(\{q\},0) = \{r\}
                                                                                               \delta_1'(\{q\}, 1) = \{r\}
\delta'_1(\{r\}, 0) = \{s\}
                                                                                               \delta_1'(\{r\},1) = \emptyset
\delta_1'(\{s\}, 0) = \{s\}
                                                                                               \delta'_1(\{s\}, 1) = \{s\}
\delta_1'(\{p,q,r,s\},0) = \{p,q\} \cup \{r\} \cup \{s\} \cup \{s\} = \{p,q,r,s\}
                                                                                               \delta_1'(\{p,q,r,s\},1) = \{p\} \cup \{r\} \cup \{s\} \cup \emptyset = \{p,r,s\}
\delta_1'(\{p,q\},0) = \{p,q\} \cup \{r\} = \{p,q,r\}
                                                                                               \delta_1'(\{p,q\},1) = \{p\} \cup \{r\} = \{p,r\}
                                                                                               \delta'_1(\{p,r\},1) = \{p\} \cup \emptyset = \{p\}
\delta_1'(\{p,r\},0) = \{p,q\} \cup \{s\} = \{p,q,s\}
                                                                                               \delta_1'(\{p,s\},1) = \{p\} \cup \{s\} = \{p,s\}
\delta_1'(\{p,s\},0) = \{p,q\} \cup \{s\} = \{p,q,s\}
\delta_1'(\{q,r\},0) = \{r\} \cup \{s\} = \{r,s\}
                                                                                               \delta'_1(\{q,r\},1) = \{r\} \cup \emptyset = \{r\}
\delta_1'(\{q,s\},0) = \{r\} \cup \{s\} = \{r,s\}
                                                                                               \delta_1'(\{q,s\},1) = \{r\} \cup \{s\} = \{r,s\}
                                                                                               \delta'_1(\{r,s\},1) = \emptyset \cup \{s\} = \{s\}
\delta'_1(\{r,s\},0) = \{s\} \cup \{s\} = \{s\}
                                                                                               \delta_1^{\bar{r}}(\{p,q,r\},1) = \{p\} \cup \{r\} \cup \emptyset = \{p,r\}
\delta_1'(\{p,q,r\},0) = \{p,q\} \cup \{r\} \cup \{s\} = \{p,q,r,s\}
\delta_1'(\{p,r,s\},0) = \{p,q\} \cup \{s\} \cup \{s\} = \{p,q,s\}
                                                                                               \delta'_1(\{p,r,s\},1) = \{p\} \cup \{s\} \cup \emptyset = \{p,s\}
                                                                                               \delta_1^{\bar{r}}(\{p,q,s\},1) = \{p\} \cup \{r\} \cup \{s\} = \{p,r,s\}
\delta_1'(\{p,q,s\},0) = \{p,q\} \cup \{r\} \cup \{s\} = \{p,q,r,s\}
\delta_1^r(\{q,r,s\},0) = \{r\} \cup \{s\} \cup \{s\} = \{r,s\}
                                                                                               \delta_1'(\{q,r,s\},1) = \{r\} \cup \emptyset \cup \{s\} = \{r,s\}
```

Now, we construct the state transition table. (next page)

State transition table

δ'_1	0	1
{ <i>p</i> }	{p,q}	{ <i>p</i> }
<i>{q}</i>	{r}	{ <i>r</i> }
{ <i>r</i> }	{s}	Ø
{s}	{s}	{s}
{ <i>p</i> , <i>q</i> }	{p,q,r}	{ <i>p</i> , <i>r</i> }
{ <i>p</i> , <i>r</i> }	$\{p,q,s\}$	{ <i>p</i> }
{ <i>p</i> , <i>s</i> }	{ <i>p</i> , <i>q</i> , <i>s</i> }	{ <i>p</i> , <i>s</i> }
{q,r}	{ <i>r</i> , <i>s</i> }	{ <i>r</i> }
{q,s}	{ <i>r</i> , <i>s</i> }	$\{r,s\}$
{ <i>r</i> , <i>s</i> }	{s}	{s}
$\{p,q,r\}$	$\{p,q,r,s\}$	{ <i>p</i> , <i>r</i> }
{ <i>p</i> , <i>r</i> , <i>s</i> }	{p,q,s}	{ <i>p</i> , <i>s</i> }
{ <i>p</i> , <i>q</i> , <i>s</i> }	$\{p,q,r,s\}$	$\{p,r,s\}$
$\{q,r,s\}$	{r,s}	{r,s}
$\{p,q,r,s\}$	$\{p,q,r,s\}$	{ <i>p</i> , <i>r</i> , <i>s</i> }

Now, we construct a DFA for this state transition table.

• with p

\bullet without p


```
b. We define a DFA N_2 = (Q', \sum, \delta'_2, q'_2, \mathbb{F}'):

1. Q' = \mathcal{P}(Q) = \{\emptyset, \{p\}, \{q\}, \{r\}, \{s\}, \{p,q,r,s\}, \{p,q\}, \{p,r\}, \{p,s\}, \{q,r\}, \{q,s\}, \{r,s\}, \{p,q,r\}, \{p,r,s\}, \{q,r,s\}\}\}.

2. \sum = \{0,1\}.

3. q'_2 = \{p\}.

4. \mathbb{F}' = \{\{p,q,r,s\}, \{q,s\}, \{p,q,s\}, \{q,r,s\}, \{q\}, \{s\}, \{p,q\}, \{p,s\}, \{q,r\}, \{r,s\}, \{p,q,r\}, \{p,r,s\}\}.

Since we know that \delta'_2(R,a) = \{q \in Q | q \in \delta(r,a) \text{ for } r \in R\}. Hence, we obtain the following state transitions.
```

```
for a = 0
                                                                                                    for a = 1
\delta_2'(\emptyset,0) = \emptyset
                                                                                                    \delta_2'(\emptyset, 1) = \emptyset
\delta_2^{\bar{i}}(\{p\},0) = \{q,s\}
                                                                                                    \delta_2^{\bar{i}}(\{p\}, 1) = \{q\}
\delta_2'(\{q\}, 0) = \{r\}
                                                                                                    \delta_2'(\{q\}, 1) = \{q, r\}
\delta_2^{\bar{r}}(\{r\},0) = \{s\}
                                                                                                    \delta_2^{\bar{r}}(\{r\},1) = \{p\}
\delta_2^{\bar{i}}(\{s\},0) = \{\emptyset\}
                                                                                                    \delta_2'(\{s\}, 1) = \{p\}
                                                                                                    \delta_{2}^{\overline{r}}(\{p,q,r,s\},1) = \{q\} \cup \{q,r\} \cup \{p\} \cup \{p\} = \{p,q,r\}
\delta_2'(\{p,q,r,s\},0) = \{q,s\} \cup \{r\} \cup \{s\} \cup \emptyset = \{q,r,s\}
\delta_2'(\{p,q\},0) = \{q,s\} \cup \{r\} = \{q,r,s\}
                                                                                                    \delta_2'(\{p,q\},1) = \{q\} \cup \{q,r\} = \{q,r\}
\delta_2^{\bar{r}}(\{p,r\},0) = \{q,s\} \cup \{s\} = \{q,s\}
                                                                                                    \delta_2^{\bar{r}}(\{p,r\},1) = \{q\} \cup \{p\} = \{p,q\}
\delta_2'(\{p,s\},0) = \{q,s\} \cup \emptyset = \{q,s\}
                                                                                                    \delta_2'(\{p,s\},1) = \{q\} \cup \{p\} = \{p,q\}
\delta_2'(\{q,r\},0) = \{r\} \cup \{s\} = \{r,s\}
                                                                                                    \delta_2'(\{q,r\},1) = \{q,r\} \cup \{p\} = \{p,q,r\}
\delta_2'(\{q, s\}, 0) = \{r\} \cup \emptyset = \{r\}
                                                                                                    \delta_2'(\{q,s\},1) = \{q,r\} \cup \{p\} = \{p,q,r\}
\delta_2'(\{r,s\},0) = \{s\} \cup \emptyset = \{s\}
                                                                                                    \delta_2'(\{r,s\},1) = \{p\} \cup \{p\} = \{p\}
\delta_2'(\{p,q,r\},0) = \{q,s\} \cup \{r\} \cup \{s\} = \{q,r,s\}
                                                                                                    \delta_2'(\{p,q,r\},1) = \{q\} \cup \{q,r\} \cup \{p\} = \{p,q,r\}
\delta_2^{\bar{r}}(\{p,r,s\},0) = \{q,s\} \cup \{s\} \cup \emptyset = \{q,s\}
                                                                                                    \delta_2^{\bar{r}}(\{p,r,s\},1) = \{q\} \cup \{p\} \cup \{p\} = \{p,q\}
\delta_2^{\bar{r}}(\{p,q,s\},0) = \{q,s\} \cup \{r\} \cup \emptyset = \{q,r,s\}
                                                                                                    \delta_2^{\bar{r}}(\{p,q,s\},1) = \{q\} \cup \{q,r\} \cup \{p\} = \{p,q,r\}
\delta_2'(\{q,r,s\},0) = \{r\} \cup \{s\} \cup \emptyset = \{r,s\}
                                                                                                    \delta_2^{\bar{r}}(\{q,r,s\},1) = \{q,r\} \cup \{p\} \cup \{p\} = \{p,q,r\}
```

Now, we construct the state transition table.

• State transition table

δ_2'	0	1
{ <i>p</i> }	{q,s}	{q}
{q}	{r}	$\{q,r\}$
{r}	{s}	{ <i>p</i> }
{s}	Ø	{ <i>p</i> }
{p,q}	{q,r,s}	{q,r}
{ <i>p</i> , <i>r</i> }	{q,s}	{p,q}
{ <i>p</i> , <i>s</i> }	{q,s}	{p,q}
$\{q,r\}$	{r,s}	$\{p,q,r\}$
$\{q,s\}$	{r}	$\{p,q,r\}$
{ <i>r</i> , <i>s</i> }	{s}	{ <i>p</i> }
$\{p,q,r\}$	{q,r,s}	$\{p,q,r\}$
$\{p,r,s\}$	{q,s}	{p,q}
$\{p,q,s\}$	{q,r,s}	$\{p,q,r\}$
$\{q,r,s\}$	{ <i>r</i> , <i>s</i> }	$\{p,q,r\}$
$\{p,q,r,s\}$	{q,r,s}	$\{p,q,r\}$

Now, we construct a DFA for this transition table. (next page)

Since the graph is messy and I could not find a way to draw it efficiently. Please refer to the state transition table to check.

• State transition table

δ_2'	0	1
{ <i>p</i> }	{q,s}	{q}
<i>{q}</i>	{r}	{q,r}
{r}	{s}	{ <i>p</i> }
{s}	Ø	{ <i>p</i> }
{ <i>p</i> , <i>q</i> }	{q,r,s}	{q,r}
{ <i>p</i> , <i>r</i> }	{q,s}	{p,q}
{ <i>p</i> , <i>s</i> }	{q,s}	{p,q}
{q,r}	{ <i>r</i> , <i>s</i> }	$\{p,q,r\}$
{q,s}	{r}	$\{p,q,r\}$
{ <i>r</i> , <i>s</i> }	{s}	{ <i>p</i> }
$\{p,q,r\}$	{q,r,s}	$\{p,q,r\}$
$\{p,r,s\}$	{q,s}	{p,q}
{p,q,s}	{q,r,s}	{p,q,r}
$\{q,r,s\}$	{r,s}	{p,q,r}
$\{p,q,r,s\}$	{q,r,s}	$\{p,q,r\}$