AILAS IIILEIIIAI flow pred $\sqrt{s} = 13 \text{ TeV}, 126 \text{ fb}^{-1}$ 4b 4b: upper left SR L = 5noise L = 2L = 3L = 4L = 6L = 7L = 8L = 9L = 10L = 14000 5000 — 4000 4000 — 4000 5000 2000 2000 2000 2000 -2500 2000 — 2000 2500 2500 $\log p_{T,H1}$ log p_{T, H1} $\log p_{T,H1}$ $\log p_{T,H1}$ -2.5 $\log p_{T,H1}$ $\log p_{T,H1}$ -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 $\log p_{T, H1}^{0.0}$ $\log p_{T, H1}$ -2.5 -2.5 $\log p_{T,H1}$ $\log p_{T, H1}$ $\log p_{T, H1}$ Entries 5000 2000 -2500 2500 2500 2000 — $\log p_{T,H1}$ $\log p_{T, H1}$ log p_{T, H1} $\log p_{T, H1}$ $\log p_{T, H1}$ -2.5 $\log p_{T,H1}$ $\log p_{T, H1}^{0.0}$ $\log p_{T, H1}$ $\log p_{T, H1}^{0.0}$ $\log p_{T, H1}^{0.0}$ -2.5 -2.5 -2.5 $\log p_{T, H1}$ -2.5 -2.5 -2.5 4000 — 4000 — 4000 4000 2000 2000 — 2000 — 2000 — 2000 2000 — 2000 — $\eta_{H1}^{2.5}$ $\eta_{H1}^{^{2.5}}$ $\eta_{H1}^{^{2.5}}$ η_{H1} $\eta_{H1}^{^{2.5}}$ $\eta_{H1}^{^{2.5}}$ $\eta_{H1}^{^{2.5}}$ $\eta_{H1}^{^{2.5}}$ 0.0 $\eta_{H1}^{2.5}$ $\eta_{H1}^{^{2.5}}$ -2.5 -2.5 0.0 -2.5 0.0 -2.5 0.0 0.0 -2.5 4000 5000 4000 ├─ 2000 -2500 2000 2500 2500 2500 η_{H2} $\eta_{H2}^{2.5}$ 2.5 0 -2.5 0.0 η_{2.5} η_{H2} 0 -2.5 0.0 0.0 η_{H2} 0.0 2.5 0.0 0.0 0.0 ήH2 4000 | η_{H2} η_{H2} η_{H2} η_{H2} Entries 5000 4000 2000 2000 — 2000 2500 2500 — $X_{Wt}^{2.5}$ $X_{Wt}^{2.5}$ -2.5 0.0 0.0 0.0 $X_{Wt}^{2.5}$ 0.0 -2.5 0.0 -2.5 -2.5 0.0 5000 5000 — 4000 2000 — 2000 — 2000 — 2500 2000 — $\overline{\log(\pi - \Delta\phi_{HH})}$ $\log(\pi - \Delta\phi_{HH})$ $\overline{\log(\pi - \Delta\phi_{HH})}$ $\log(\pi - \Delta\phi_{HH})$ $\overline{\log(\pi - \Delta\phi_{HH})}$ $\log(\pi - \Delta\phi_{HH})$ $\log(\pi - \Delta\phi_{HH})$ $\log(\pi - \Delta\phi_{HH})$ $\overline{\log(\pi - \Delta\phi_{HH})}$ $\log(\pi - \Delta\phi_{HH})$ $\log(\pi - \Delta \phi_{HH})$