FCC RF Test Report

APPLICANT : Senga Na Lenga Limited Liability Company

EQUIPMENT : Tablet : SR87CV MODEL NAME

FCC ID : 2ACBF-6708

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION : (NII) Unlicensed National Information Infrastructure

The testing was completed on Jun. 03, 2015. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

Report No. : FR520216-01D Report Version : Rev. 02

: 1 of 34 Report Template No.: BU5-FR15EWL Version 1.0

Page Number

TABLE OF CONTENTS

SU	MMA	RY OF TEST RESULT	4
1	GEN	IERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6	Applicant Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location Applicable Standards	5 5 5
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Carrier Frequency Channel Pre-Scanned RF Power Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup Measurement Results Explanation Example	8 10 11
3	TES	T RESULT	12
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	26dB & 99% Occupied Bandwidth Measurement Maximum Conducted Output Power Measurement Power Spectral Density Measurement Unwanted Radiated Emission Measurement AC Conducted Emission Measurement Frequency Stability Measurement Automatically Discontinue Transmission Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENTS	33
5	UNC	ERTAINTY OF EVALUATION	34
ΑP	PEND	DIX A. CONDUCTED TEST RESULTS	

APPENDIX B. RADIATED TEST RESULTS

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 2 of 34

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR520216-01D	Rev. 01	Initial issue of report	May 29, 2015
FR520216-01D	Rev. 02	Adding test data of duty cycle in section 3.4.7 and Automatically Discontinue Transmission in section 3.7.3.	Jun. 03, 2015

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 3 of 34

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	2.1049 15.403(i)	26dB & 99% Bandwidth	-	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	FCC ≤ 24 dBm (depend on band)	Pass	-
3.3	15.407(a)	Power Spectral Density	FCC ≤ 11 dBm (depend on band)	Pass	-
3.4	15.407(b)	Unwanted Emissions	≤ -17, -27 dBm (depend on band)&15.209(a)	Pass	Under limit 0.50 dB at 5149.850 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 11.50 dB at 1.014 MHz and 1.278 MHz
3.6	15.407(g)	Frequency Stability	Within Operation Band	Pass	-
3.7	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
0	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 4 of 34

1 General Description

1.1 Applicant

Senga Na Lenga Limited Liability Company

3900 N. Causeway Blvd.

Suite 1200

Metairie, Louisiana 70002

1.2 Feature of Equipment Under Test

Product Feature & Specification							
Equipment	Tablet						
Model Name	SR87CV						
FCC ID	2ACBF-6708						
	WLAN 11b/g/n HT20						
EUT supports Radios application	WLAN 11a/n HT20/HT40						
EOT Supports Radios application	WLAN 11ac VHT20/VHT40/VHT80						
	Bluetooth v4.1 EDR/LE						

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.3 Product Specification of Equipment Under Test

Product Specification subjective to this standard						
Tx/Rx Frequency Range	5180 MHz ~ 5240 MHz					
	802.11a: 15.38 dBm / 0.0345 W					
	802.11n HT20 : 15.28 dBm / 0.0337 W					
Maximum Output Bawar to Antonna	802.11n HT40 : 15.49 dBm / 0.0354 W					
Maximum Output Power to Antenna	802.11ac VHT20 : 13.97 dBm / 0.0249 W					
	802.11ac VHT40 : 13.84 dBm / 0.0242 W					
	802.11ac VHT80 : 13.24 dBm / 0.0211 W					
Antenna Type / Gain	Fixed internal Antenna with gain 2.40 dBi					
	802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)					
Type of Modulation	802.11ac : OFDM (BPSK / QPSK / 16QAM / 64QAM /					
	256QAM)					

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 5 of 34

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.					
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,					
Took Site Legation	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.					
Test Site Location	TEL: +886-3-327-3456					
	FAX: +886-3-328-4978					
Tool Cita No	Sporton Site No.					
Test Site No.	TH05-HY	CO05-HY				

Note: The test site complies with ANSI C63.4 2009 requirement.

Test Site	SPORTON INTERNATIONAL INC.					
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd.					
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.					
	TEL: +886-3-327-0855					
Tool Cita No	Sporton Site No.					
Test Site No.	03CH11-HY					

Note: The test site complies with ANSI C63.4 2009 requirement.

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01
- FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01
- ANSI C63.10-2009

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. FCC permits the use of the 1.5 meter table as an alternative in C63.10-2013 through inquiry tracking number 961829.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 6 of 34

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5150-5250 MHz	38	5190	46	5230
Band 1 (U-NII-1)	40	5200	48	5240
(3 1411 1)	42	5210		

Note: The above Frequency and Channel in boldface were 802.11n HT40.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 7 of 34

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test in the following tables. Final Output Power equals to Measured Output Power adds the duty factor.

5GHz 802.11a mode										
Data Rate (MHz) 6M bps		6M bps	9M bps		24M bps	36M bps	48M bps	54M bps		
Avg. Power (dBm)		<mark>15.38</mark>	15.20	15.17	15.21	15.14	15.08	14.87	15.18	

5GHz 802.11n HT20 mode									
Data Rate (MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
Avg. Power (dBm)	<mark>15.28</mark>	14.75	14.88	14.88	14.96	14.97	14.95	15.24	

5GHz 802.11n HT40 mode									
Data Rate (MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
Avg. Power (dBm)	<mark>15.49</mark>	14.89	15.19	15.28	15.38	15.48	15.37	15.34	

5GHz 802.11ac VHT20 mode											
Data Rate (MHz)	MCS 0	MCS 1	MCS 2	MCS 3	MCS 4	MCS 5	MCS 6	MCS 7	MCS 8		
Avg. Power (dBm)	<mark>13.97</mark>	13.59	13.55	13.47	13.31	13.74	13.50	13.67	13.82		

5GHz 802.11ac VHT40 mode										
Data Rate (MHz) MCS 0 MCS 1 MCS 2 MCS 3 MCS 4 MCS 5 MCS 6 MCS 7 MCS 8 MCS 9					MCS 9					
Avg. Power (dBm)	<mark>13.84</mark>	13.14	13.10	13.22	13.47	13.64	13.69	13.75	13.83	13.81

5GHz 802.11ac VHT80 mode										
Data Rate (MHz)	MCS 0	MCS 1	MCS 2	MCS 3	MCS 4	MCS 5	MCS 6	MCS 7	MCS 8	MCS 9
Avg. Power (dBm)	<mark>13.24</mark>	12.76	13.00	13.09	12.94	12.86	12.85	13.17	12.94	13.17

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 8 of 34

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

Test Cases					
AC Conducted	Mode 1 : WLAN (5GHz) Link + Bluetooth Link + Earphone + MPEG4 + SD Card + USB				
Emission	Cable (Charging from Adapter)				

	Ch. # 802.11a		Band I: 5150-5250 MHz	
'			802.11n HT20	802.11n HT40
L	Low	36	36	38
М	Middle	44	44	-
Н	High	48	48	46

Ch. #		Band I:5150-5250 MHz					
	Cn. #	802.11ac VHT20	802.11ac VHT40	802.11ac VHT80			
L	Low	36	38	-			
М	Middle	44	-	42			
Н	High	48	46	-			

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 9 of 34

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 10 of 34

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.6 EUT Operation Test Setup

For WLAN function, programmed RF utility make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 11 of 34

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.
 Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1MHz and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 8. Measure and record the results in the test report.

3.1.4 Test Setup

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 12 of 34

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth Plots

Please refer to Appendix A.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 13 of 34

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 14 of 34

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- The testing follows Method SA-2 of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.
 - · Measure the duty cycle.
 - Set span to encompass the entire emission bandwidth (EBW) of the signal.
 - Set RBW = 1 MHz.
 - Set VBW ≥ 3 MHz.
 - Number of points in sweep ≥ 2 Span / RBW.
 - Sweep time = auto.
 - Detector = RMS
 - Trace average at least 100 traces in power averaging mode.
 - Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 15 of 34

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Note: Average Power Density (dB) = Measured value+ Duty Factor

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 16 of 34

3.4 Unwanted Radiated Emission Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

(3) KDB789033 v01 G)2)c) As specified in 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in 15.407(b)(4)). However, an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak emission limit.

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 17 of 34

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.
 Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(µs)	1/T(kHz)	VBW Setting
802.11a	97.62	4100	0.24	300Hz
802.11n HT20	96.92	3780	0.26	300Hz
802.11n HT40	94.39	1850	0.54	1kHz
802.11n VHT20	97.45	3820	0.26	300Hz
802.11n VHT40	94.39	1850	0.54	1kHz
802.11n VHT80	88.89	880	1.14	3kHz

- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 18 of 34

- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.4.4 Test Setup

For radiated emissions below 30MHz

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 19 of 34

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 20 of 34

3.4.6 Test Result of Radiated Band Edges

Please refer to Appendix A.

3.4.7 Duty Cycle

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 21 of 34

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 22 of 34

3.4.8 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 23 of 34

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBμV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 24 of 34

3.5.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment EUT = Equipment under test

ISN = Impedance stabilization network

Report No. : FR520216-01D Report Version : Rev. 02 Page Number : 25 of 34

3.5.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	24~26℃		
Test Engineer :	Eric Jeng	Relative Humidity :	48~50%		
Test Voltage :	120Vac / 60Hz	Phase :	Line		
Function Tone	WLAN (5GHz) Link + Bluetooth Link + Earphone + MPEG4 + SD Card + US				

Function Type: | WLAN (5GHz) Link + Bluetooth Link + Earphone + MPEG4 + SD Card + US| Cable (Charging from Adapter)

Final Result : QuasiPeak

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	40.0	Off	L1	19.5	26.0	66.0
0.174000	44.8	Off	L1	19.4	20.0	64.8
0.462000	41.9	Off	L1	19.4	14.8	56.7
1.078000	40.3	Off	L1	19.5	15.7	56.0
1.294000	38.4	Off	L1	19.6	17.6	56.0
1.550000	36.7	Off	L1	19.5	19.3	56.0
4.094000	34.9	Off	L1	19.7	21.1	56.0
5.710000	38.5	Off	L1	19.8	21.5	60.0

Final Result : Average

•	mar Nesult : Average									
	Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)			
	0.150000	26.7	Off	L1	19.5	29.3	56.0			
	0.174000	33.5	Off	L1	19.4	21.3	54.8			
	0.462000	34.9	Off	L1	19.4	11.8	46.7			
	1.078000	33.2	Off	L1	19.5	12.8	46.0			
	1.294000	32.6	Off	L1	19.6	13.4	46.0			
	1.550000	29.6	Off	L1	19.5	16.4	46.0			
	4.094000	25.7	Off	L1	19.7	20.3	46.0			
	5.710000	28.1	Off	L1	19.8	21.9	50.0			

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 26 of 34

Test Mode :	Mode 1	Temperature :	24~26 ℃		
Test Engineer :	Eric Jeng	Relative Humidity :	48~50%		
Test Voltage :	120Vac / 60Hz	Phase :	Neutral		
Function Type :	WLAN (5GHz) Link + Bluetooth Link + Earphone + MPEG4 + SD Card + USB				
	Cable (Charging from Adapter)				

Final Result : QuasiPeak

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.190000	43.0	Off	N	19.5	21.0	64.0
0.462000	42.5	Off	N	19.4	14.2	56.7
1.014000	42.0	Off	N	19.5	14.0	56.0
1.070000	41.7	Off	N	19.5	14.3	56.0
1.278000	40.3	Off	N	19.6	15.7	56.0
1.462000	40.3	Off	N	19.5	15.7	56.0
1.526000	41.2	Off	N	19.5	14.8	56.0
2.582000	38.1	Off	N	19.6	17.9	56.0
2.654000	38.9	Off	N	19.6	17.1	56.0
3.750000	37.9	Off	N	19.7	18.1	56.0
4.022000	38.1	Off	N	19.7	17.9	56.0
5.710000	41.1	Off	N	19.7	18.9	60.0
6.310000	39.1	Off	N	19.7	20.9	60.0

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 27 of 34

Test Mode :	Mode 1	Temperature :	24~26 ℃		
Test Engineer :	Eric Jeng	Relative Humidity :	48~50%		
Test Voltage :	120Vac / 60Hz	Phase :	Neutral		
Eurotion Type	WLAN (5GHz) Link + Bluetooth Link + Earphone + MPEG4 + SD Card + U				

Function Type: WLAN (5GHz) Link + Bluetooth Link + Earphone + MPEG4 + SD Card + USE Cable (Charging from Adapter)

Final Result : Average

mar Result : Average									
Frequency	Average	Filter	Line	Corr.	Margin	Limit			
(MHz)	(dBµV)	Filter	Line	(dB)	(dB)	(dBµV)			
0.190000	32.5	Off	N	19.5	21.5	54.0			
0.462000	35.1	Off	N	19.4	11.6	46.7			
1.014000	34.5	Off	N	19.5	11.5	46.0			
1.070000	33.9	Off	N	19.5	12.1	46.0			
1.278000	34.5	Off	N	19.6	11.5	46.0			
1.462000	33.3	Off	N	19.5	12.7	46.0			
1.526000	33.2	Off	N	19.5	12.8	46.0			
2.582000	30.6	Off	N	19.6	15.4	46.0			
2.654000	30.7	Off	N	19.6	15.3	46.0			
3.750000	30.4	Off	N	19.7	15.6	46.0			
4.022000	29.6	Off	N	19.7	16.4	46.0			
5.710000	31.8	Off	N	19.7	18.2	50.0			
6.310000	30.1	Off	N	19.7	19.9	50.0			

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 28 of 34

3.6 Frequency Stability Measurement

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Please refer to Appendix A.

The frequency band 5180-5240MHz which was verified by testing against other standard is less than 20 ppm which is sufficient to maintain the signal within the 5150-5250MHz band.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 29 of 34

3.7 Automatically Discontinue Transmission

3.7.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to

transmit or operational failure. These provisions are not intended to preclude the transmission of

control or signaling information or the use of repetitive codes used by certain digital technologies to

complete frame or burst intervals. Applicants shall include in their application for equipment

authorization to describe how this requirement is met.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Result of Automatically Discontinue Transmission

EUT is verified this characteristic during the function check of normal sample associated with an

access point:

A. Information start: make EUT supply information to the access point.

B. Information stop: stop supplying information to the access point.

While the EUT is not transmitting any information, the EUT can automatically discontinue

transmission and become standby mode for power saving.

C. Information start: make EUT supply information to the access point again.

The EUT can detect the controlling signal of ACK message transmitting from remote device and verify

whether it shall resend or discontinue transmission. While the EUT is not transmitting any information,

the EUT can automatically discontinue transmission and become standby mode for power saving.

The EUT can detect the controlling signal of ACK message transmitting from remote device and verify

whether it shall resend or discontinue transmission.

Note: The control / signalling information during the period B is precluded.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 31 of 34

3.8 Antenna Requirements

3.8.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2) ,if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.8.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.8.3 Antenna Gain

The antenna gain is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 32 of 34

4 List of Measuring Equipments

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	1218006	300MHz~40GHz	Oct. 18, 2014	May 12, 2015~ Jun. 03, 2015	Oct. 17, 2015	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GHz	Aug. 09, 2014	May 12, 2015~ Jun. 03, 2015	Aug. 08, 2015	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Oct. 17, 2014	May 12, 2015~ Jun. 03, 2015	Oct. 16, 2015	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jul. 28, 2014	May 10, 2015~ May 17, 2015	Jul. 27, 2015	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917058 4	18GHz- 40GHz	Nov. 03, 2014	May 10, 2015~ May 17, 2015	Nov. 02, 2015	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Nov. 24, 2014	May 10, 2015~ May 17, 2015	Nov. 23, 2015	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D	35414	30MHz~1GHz	Oct. 24, 2014	May 10, 2015~ May 17, 2015	Oct. 23, 2015	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1326	1GHz ~ 18GHz	Oct. 03, 2014	May 10, 2015~ May 17, 2015	Oct. 02, 2015	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 20, 2014	May 10, 2015~ May 17, 2015	Nov. 19, 2015	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz ~ 44GHZ	Sep. 24, 2014	May 10, 2015~ May 17, 2015	Sep. 23, 2015	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	May 10, 2015~ May 17, 2015	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0-360 degree	N/A	May 10, 2015~ May 17, 2015	N/A	Radiation (03CH11-HY)
Preamplifier	MITEQ	JS44-1800400 0-33-8P	1840917	18GHz ~ 40GHz	Jun. 09, 2014	May 10, 2015~ May 17, 2015	Jun. 08, 2015	Radiation (03CH11-HY)
EMI Test Receiver	Rohde & Schwarz	ESCS 30	100356	9kHz – 2.75GHz	Dec. 01, 2014	May 07, 2015	Nov. 30, 2015	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2014	May 07, 2015	Dec. 01, 2015	Conduction (CO05-HY)
LISN (for auxiliary equipment)	Rohde &		Dec. 08, 2014	May 07, 2015	Dec. 07, 2015	Conduction (CO05-HY)		
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 07, 2015	N/A	Conduction (CO05-HY)

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 33 of 34

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.26
Confidence of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	4.90
Confidence of 95% (U = 2Uc(y))	4.90

Report No. : FR520216-01D
Report Version : Rev. 02
Page Number : 34 of 34

Report Number : FR520216-01D

Appendix A. Conducted Test Results

Test Engineer:	Derek Hsu	Temperature:	21~25	°C
Test Date:	2015/5/7~2015/5/25	Relative Humidity:	51~54	%

Report Number : FR520216-01D

TEST RESULTS DATA 26dB and 99% OBW

	Band I									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)	IC 99% Bandwidth Power Limit (dBm)	IC 99% Bandwidth EIRP Limit (dBm)		
11a	6Mbps	1	36	5180	17.25	21.55	-	22.37		
11a	6Mbps	1	44	5220	17.35	21.70	-	22.39		
11a	6Mbps	1	48	5240	17.40	21.50	-	22.41		
HT20	MCS0	1	36	5180	18.10	21.90	-	22.58		
HT20	MCS0	1	44	5220	18.15	22.10	-	22.59		
HT20	MCS0	1	48	5240	18.05	22.05	-	22.56		
HT40	MCS0	1	38	5190	36.20	41.49	-	23.01		
HT40	MCS0	1	46	5230	36.30	41.49	-	23.01		
VHT20	MCS0	1	36	5180	18.10	21.60	-	22.58		
VHT20	MCS0	1	44	5220	18.05	21.60	-	22.56		
VHT20	MCS0	1	48	5240	18.05	21.70	-	22.56		
VHT40	MCS0	1	38	5190	36.20	41.76	-	23.01		
VHT40	MCS0	1	46	5230	36.20	41.67	-	23.01		
VHT80	MCS0	1	42	5210	75.36	81.44	-	23.01		

Report Number : FR520216-01D

TEST RESULTS DATA Average Power Table

						FCC Ba	and I		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	Pass/Fail
11a	6Mbps	1	36	5180	0.10	15.32	24.00	2.40	Pass
11a	6Mbps	1	44	5220	0.10	15.29	24.00	2.40	Pass
11a	6Mbps	1	48	5240	0.10	15.38	24.00	2.40	Pass
HT20	MCS0	1	36	5180	0.14	15.25	24.00	2.40	Pass
HT20	MCS0	1	44	5220	0.14	15.19	24.00	2.40	Pass
HT20	MCS0	1	48	5240	0.14	15.28	24.00	2.40	Pass
HT40	MCS0	1	38	5190	0.25	15.08	24.00	2.40	Pass
HT40	MCS0	1	46	5230	0.25	15.49	24.00	2.40	Pass
VHT20	MCS0	1	36	5180	0.11	13.88	24.00	2.40	Pass
VHT20	MCS0	1	44	5220	0.11	13.92	24.00	2.40	Pass
VHT20	MCS0	1	48	5240	0.11	13.97	24.00	2.40	Pass
VHT40	MCS0	1	38	5190	0.25	13.74	24.00	2.40	Pass
VHT40	MCS0	1	46	5230	0.25	13.84	24.00	2.40	Pass
VHT80	MCS0	1	42	5210	0.51	13.24	24.00	2.40	Pass

Report Number : FR520216-01D

TEST RESULTS DATA Power Spectral Density

						FCC Ba	and I			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Power Density (dBm/MHz)	Average PSD Limit (dBm/MHz)	DG (dBi)	-	Pass/Fail
11a	6Mbps	1	36	5180	0.10	3.31	11.00	2.40		Pass
11a	6Mbps	1	44	5220	0.10	3.55	11.00	2.40		Pass
11a	6Mbps	1	48	5240	0.10	3.50	11.00	2.40		Pass
HT20	MCS0	1	36	5180	0.14	3.07	11.00	2.40		Pass
HT20	MCS0	1	44	5220	0.14	3.38	11.00	2.40		Pass
HT20	MCS0	1	48	5240	0.14	3.18	11.00	2.40		Pass
HT40	MCS0	1	38	5190	0.25	0.43	11.00	2.40		Pass
HT40	MCS0	1	46	5230	0.25	0.25	11.00	2.40		Pass
VHT20	MCS0	1	36	5180	0.11	2.03	11.00	2.40		Pass
VHT20	MCS0	1	44	5220	0.11	2.37	11.00	2.40		Pass
VHT20	MCS0	1	48	5240	0.11	2.36	11.00	2.40		Pass
VHT40	MCS0	1	38	5190	0.25	-0.90	11.00	2.40		Pass
VHT40	MCS0	1	46	5230	0.25	-1.05	11.00	2.40		Pass
VHT80	MCS0	1	42	5210	0.51	-4.63	11.00	2.40		Pass

Report Number : FR520216-01D

TEST RESULTS DATA Frequency Stability

						Band	П			
Mod.	Rate NTX CH. (MF		Freq. (MHz)	Center Frequency (MHz)	Frequency Deviation (MHz)	Frequency Stablility (ppm)	Temperature (°C)	Voltage (V)	Note	
11a	6Mbps	1	36	5180	5180.000	0.000	0.00	25	3.4	
11a	6Mbps	1	36	5180	5180.000	0.000	0.00	25	4.2	
11a	6Mbps	1	36	5180	5180.000	0.000	0.00	25	3.7	
11a	6Mbps	1	36	5180	5180.050	0.050	9.65	0	3.7	
11a	6Mbps	1	36	5180	5180.000	0.000	0.00	35	3.7	

Appendix B. Radiated Spurious Emission

Test Engineer :	Jesse Wang and Derreck Chen	Temperature :	23~24°C
rest Engineer.		Relative Humidity :	46~48%

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		, ,
		5145.95	56.53	-17.47	74	49.4	31.72	8.95	33.54	105	152	Р	Н
		5149.7	47.54	-6.46	54	40.41	31.72	8.95	33.54	105	152	Α	Н
	*	5181	107.63	-	-	100.45	31.75	8.97	33.54	105	152	Р	Н
	*	5181	100.33	-	-	93.15	31.75	8.97	33.54	105	152	Α	Н
802.11a													Н
CH 36													Н
5180MHz		5146.55	63.55	-10.45	74	56.42	31.72	8.95	33.54	192	134	Р	V
310011112		5149.85	53.04	-0.96	54	45.91	31.72	8.95	33.54	192	134	Α	V
	*	5180	111.48	-	-	104.3	31.75	8.97	33.54	192	134	Р	V
	*	5180	104.88	-	-	97.7	31.75	8.97	33.54	192	134	Α	V
													V
													V
		5126.15	51.84	-22.16	74	44.72	31.71	8.95	33.54	100	152	Р	Н
		5125.85	43.53	-10.47	54	36.41	31.71	8.95	33.54	100	152	Α	Н
	*	5220	105.72	-	-	98.51	31.77	8.98	33.54	100	152	Р	Н
	*	5220	100.47	-	-	93.26	31.77	8.98	33.54	100	152	Α	П
000 44		5419.52	52.09	-21.91	74	44.54	31.93	9.17	33.55	100	152	Р	Η
802.11a CH 44		5451.31	43.74	-10.26	54	36.11	31.96	9.22	33.55	100	152	Α	Η
5220MHz		5116.7	56.58	-17.42	74	49.5	31.69	8.92	33.53	345	121	Р	٧
3220WII 12		5029.55	48.17	-5.83	54	41.21	31.63	8.86	33.53	345	121	Α	V
	*	5224	109.84	-	-	102.63	31.77	8.98	33.54	345	121	Р	V
	*	5224	103.96	-	-	96.75	31.77	8.98	33.54	345	121	Α	٧
		5450.43	54.5	-19.5	74	46.87	31.96	9.22	33.55	345	121	Р	V
		5446.69	45.68	-8.32	54	38.05	31.96	9.22	33.55	345	121	Α	٧

Page Number : B1 of B18

	*	5241	107.36	-	-	100.13	31.79	8.98	33.54	140	153	Р	Н
802.11a	*	5241	101.74	-	-	94.51	31.79	8.98	33.54	140	153	Α	Н
		5428.87	50.1	-23.9	74	42.53	31.95	9.17	33.55	140	153	Р	Н
		5457.25	42.49	-11.51	54	34.86	31.96	9.22	33.55	140	153	Α	Н
902 446													Н
													Н
5240MHz	*	5240	110.75	-	-	103.52	31.79	8.98	33.54	360	143	Р	V
	*	5240	104.96	-	-	97.73	31.79	8.98	33.54	360	143	Α	V
		5351.32	52.63	-21.37	74	45.21	31.88	9.08	33.54	360	143	Р	V
		5350.55	45.17	-8.83	54	37.75	31.88	9.08	33.54	360	143	Α	V
													V
													V

Page Number

: B2 of B18

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		10360	46.87	-27.13	74	27.98	39.94	13.09	34.14	100	0	Р	Н
		15540	45.86	-28.14	74	26.76	38.33	16.55	35.78	100	0	Р	Н
000 44 -													Н
802.11a													Н
CH 36 5180MHz		10360	45.74	-28.26	74	26.85	39.94	13.09	34.14	100	0	Р	V
STRUMEZ		15540	45.92	-28.08	74	26.82	38.33	16.55	35.78	100	0	Р	V
													V
													V
		10440	46.18	-27.82	74	27.19	40.02	13.11	34.14	100	0	Р	Н
		15660	43.77	-30.23	74	24.92	38.09	16.56	35.8	100	0	Р	Н
													Н
802.11a													Н
CH 44		10440	46.71	-27.29	74	27.72	40.02	13.11	34.14	100	0	Р	V
5220MHz		15660	44.36	-29.64	74	25.51	38.09	16.56	35.8	100	0	Р	V
													V
													V
		10480	46.27	-27.73	74	27.22	40.08	13.11	34.14	100	0	Р	Н
		15720	43.86	-30.14	74	25.14	37.95	16.57	35.8	100	0	Р	Н
													Н
802.11a													Н
CH 48		10480	46.08	-27.92	74	27.03	40.08	13.11	34.14	100	0	Р	V
5240MHz		15720	45.36	-28.64	74	26.64	37.95	16.57	35.8	100	0	Р	V
													V
												 	V

Page Number : B3 of B18

Band 1 5150~5250MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		(NA 11)	(15)(()	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(110.0
1		(MHz) 5150	(dBµV/m) 61.18	(dB) -12.82	(dBµV/m)	(dBµV)	(dB/m) 31.72	(dB) 8.95	(dB)	(cm) 104	(deg) 154	(P/A)	(H/V) H
						54.05			33.54			•	
		5150	47.41	-6.59	54	40.28	31.72	8.95	33.54	104	154	Α	Н
	*	5183	106.53	-	-	99.35	31.75	8.97	33.54	104	154	Р	Н
	*	5183	100.15	-	-	92.97	31.75	8.97	33.54	104	154	Α	Н
802.11n													Н
HT20													Н
CH 36		5148.2	62.65	-11.35	74	55.52	31.72	8.95	33.54	324	145	Р	V
5180MHz		5149.7	53.02	-0.98	54	45.89	31.72	8.95	33.54	324	145	Α	V
	*	5179	111.36	-	-	104.18	31.75	8.97	33.54	324	145	Р	٧
	*	5179	104.67	-	-	97.49	31.75	8.97	33.54	324	145	Α	V
													V
													V
		5141.15	52.91	-21.09	74	45.78	31.72	8.95	33.54	228	112	Р	Н
		5141.15	44.27	-9.73	54	37.14	31.72	8.95	33.54	228	112	Α	Н
	*	5219	108.07	-	-	100.86	31.77	8.98	33.54	228	112	Р	Н
	*	5219	101.77	-	-	94.56	31.77	8.98	33.54	228	112	Α	Н
802.11n		5438.77	53.53	-20.47	74	45.96	31.95	9.17	33.55	228	112	Р	Н
HT20		5433.93	46.19	-7.81	54	38.62	31.95	9.17	33.55	228	112	Α	Н
CH 44		5034.8	56.55	-17.45	74	49.59	31.63	8.86	33.53	335	146	Р	V
5220MHz		5002.85	48.3	-5.7	54	41.37	31.6	8.86	33.53	335	146	Α	V
	*	5219	111.63	-	-	104.42	31.77	8.98	33.54	335	146	Р	V
	*	5219	104.91	-	-	97.7	31.77	8.98	33.54	335	146	Α	V
		5372	52.03	-21.97	74	44.55	31.89	9.13	33.54	335	146	Р	V
		5353.08	44.73	-9.27	54	37.31	31.88	9.08	33.54	335	146	Α	V

Page Number : B4 of B18

	*	5241	108.51	-	-	101.28	31.79	8.98	33.54	223	114	Р	Н
	*	5241	101.82	-	-	94.59	31.79	8.98	33.54	223	114	Α	Н
		5451.64	54.49	-19.51	74	46.86	31.96	9.22	33.55	223	114	Р	Н
		5446.91	46.15	-7.85	54	38.52	31.96	9.22	33.55	223	114	Α	Н
802.11n													Н
HT20													Н
CH 48	*	5239	113.21	-	-	105.98	31.79	8.98	33.54	238	132	Р	V
5240MHz	*	5239	106.44	-	-	99.21	31.79	8.98	33.54	238	132	Α	V
		5356.38	55.37	-18.63	74	47.95	31.88	9.08	33.54	238	132	Р	V
		5447.68	47.41	-6.59	54	39.78	31.96	9.22	33.55	238	132	Α	V
													V
													V
		I.	1	1	ı	1	l .	1	1	1	1	1	

Page Number

: B5 of B18

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)			
		10360	45.57	-28.43	74	26.68	39.94	13.09	34.14	100	0	Р	Н
		15540	44.06	-29.94	74	24.96	38.33	16.55	35.78	100	0	Р	Н
802.11n													Н
HT20													Н
CH 36		10360	46.05	-27.95	74	27.16	39.94	13.09	34.14	100	0	Р	V
5180MHz		15540	44.59	-29.41	74	25.49	38.33	16.55	35.78	100	0	Р	V
													V
													V
		10440	45.92	-28.08	74	26.93	40.02	13.11	34.14	100	0	Р	Н
		15660	44.36	-29.64	74	25.51	38.09	16.56	35.8	100	0	Р	Н
802.11n													Н
HT20													Н
CH 44		10440	46.1	-27.9	74	27.11	40.02	13.11	34.14	100	0	Р	V
5220MHz		15660	44.67	-29.33	74	25.82	38.09	16.56	35.8	100	0	Р	V
													V
													V
		10480	46.11	-27.89	74	27.06	40.08	13.11	34.14	100	0	Р	Н
		15720	44.67	-29.33	74	25.95	37.95	16.57	35.8	100	0	Р	Н
802.11n													Н
HT20													Н
CH 48		10480	46.71	-27.29	74	27.66	40.08	13.11	34.14	100	0	Р	V
5240MHz		15720	44.54	-29.46	74	25.82	37.95	16.57	35.8	100	0	Р	V
													V
												-	V

All results are PASS against Peak and Average limit line.

Page Number : B6 of B18

Band 1 5150~5250MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V
		5148.05	61.18	-12.82	74	54.05	31.72	8.95	33.54	100	131	P	Н
		5149.7	50.16	-3.84	54	43.03	31.72	8.95	33.54	100	131	Α	Н
	*	5190	102.82	-	-	95.64	31.75	8.97	33.54	100	131	Р	Н
	*	5190	95.52	-	-	88.34	31.75	8.97	33.54	100	131	Α	Н
802.11n		5393.34	50.73	-23.27	74	43.24	31.91	9.13	33.55	100	131	Р	Н
HT40		5368.04	42.84	-11.16	54	35.36	31.89	9.13	33.54	100	131	Α	Н
CH 38		5145.5	61.06	-12.94	74	53.93	31.72	8.95	33.54	219	119	Р	V
5190MHz		5149.7	53.01	-0.99	54	45.88	31.72	8.95	33.54	219	119	Α	V
	*	5190	104.46	-	-	97.28	31.75	8.97	33.54	219	119	Р	V
-	*	5190	98.37	-	-	91.19	31.75	8.97	33.54	219	119	Α	V
		5355.06	53.86	-20.14	74	46.44	31.88	9.08	33.54	219	119	Р	V
		5411.27	44.72	-9.28	54	37.18	31.92	9.17	33.55	219	119	Α	V
		5108.6	52.35	-21.65	74	45.27	31.69	8.92	33.53	223	111	Р	Н
		5144.15	44.17	-9.83	54	37.04	31.72	8.95	33.54	223	111	Α	Н
	*	5230	102.44	-	-	95.21	31.79	8.98	33.54	223	111	Р	Н
	*	5230	96.95	-	-	89.72	31.79	8.98	33.54	223	111	Α	Н
802.11n		5405.88	52.69	-21.31	74	45.15	31.92	9.17	33.55	223	111	Р	Н
HT40		5442.84	45.25	-8.75	54	37.63	31.95	9.22	33.55	223	111	Α	Н
CH 46		5124.05	56.23	-17.77	74	49.11	31.71	8.95	33.54	211	133	Р	V
5230MHz		5147	48	-6	54	40.87	31.72	8.95	33.54	211	133	Α	V
	*	5226	108.15	-	-	100.92	31.79	8.98	33.54	211	133	Р	V
	*	5226	102.04	-	-	94.81	31.79	8.98	33.54	211	133	Α	V
		5354.95	55.32	-18.68	74	47.9	31.88	9.08	33.54	211	133	Р	V
		5417.32	47.15	-6.85	54	39.6	31.93	9.17	33.55	211	133	Α	V

2. All results are PASS against Peak and Average limit line.

Page Number : B7 of B18

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		10380	47.1	-26.9	74	28.19	39.96	13.09	34.14	100	0	Р	Н
		15570	44.12	-29.88	74	25.1	38.26	16.55	35.79	100	0	Р	Н
802.11n													Н
HT40													Н
CH 38		10380	48.8	-25.2	74	29.89	39.96	13.09	34.14	100	0	Р	V
5190MHz		15570	44.12	-29.88	74	25.1	38.26	16.55	35.79	100	0	Р	V
													٧
													V
		10460	48.08	-25.92	74	29.07	40.04	13.11	34.14	100	0	Р	Н
		15690	43.94	-30.06	74	25.16	38.02	16.56	35.8	100	0	Р	Н
802.11n													Н
HT40													Н
CH 46		10460	47.52	-26.48	74	28.51	40.04	13.11	34.14	100	0	Р	V
5230MHz		15690	45.42	-28.58	74	26.64	38.02	16.56	35.8	100	0	Р	V
													V
													V
Remark	1. No	other spurious	s found.										
	2. All	results are PA	SS against F	eak and	Average lim	it line.							

Page Number : B8 of B18

Band 1 5150~5250MHz
WIFI 802.11ac VHT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		/ 		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		5147.3	55.24	-18.76	74	48.11	31.72	8.95	33.54	110	89	Р	Н
		5149.7	45.54	-8.46	54	38.41	31.72	8.95	33.54	110	89	Α	Н
	*	5180	107.1	-	-	99.92	31.75	8.97	33.54	110	89	Р	Н
	*	5180	99.54	-	-	92.36	31.75	8.97	33.54	110	89	Α	Н
802.11ac													Н
VHT20													Н
CH 36		5149.85	61.34	-12.66	74	54.21	31.72	8.95	33.54	234	130	Р	٧
5180MHz		5149.7	50.97	-3.03	54	43.84	31.72	8.95	33.54	234	130	Α	V
	*	5180	111.69	-	-	104.51	31.75	8.97	33.54	234	130	Р	V
	*	5180	104.66	-	-	97.48	31.75	8.97	33.54	234	130	Α	V
													V
													V
		5086.25	52.71	-21.29	74	45.65	31.67	8.92	33.53	100	295	Р	Н
		5025.8	44.81	-9.19	54	37.85	31.63	8.86	33.53	100	295	Α	Н
	*	5220	107.31	-	-	100.1	31.77	8.98	33.54	100	295	Р	Н
	*	5220	100.24	-	-	93.03	31.77	8.98	33.54	100	295	Α	Н
802.11ac		5446.14	52.93	-21.07	74	45.3	31.96	9.22	33.55	100	295	Р	Н
VHT20		5447.9	44.34	-9.66	54	36.71	31.96	9.22	33.55	100	295	Α	Н
CH 44		5037.05	56.78	-17.22	74	49.82	31.63	8.86	33.53	244	132	Р	V
5220MHz		5012.45	48.77	-5.23	54	41.83	31.61	8.86	33.53	244	132	Α	V
	*	5218	112.79	-	-	105.58	31.77	8.98	33.54	244	132	Р	V
	*	5218	106.13	-	-	98.92	31.77	8.98	33.54	244	132	Α	V
		5390.92	54.4	-19.6	74	46.91	31.91	9.13	33.55	244	132	Р	V
		5422.82	46.62	-7.38	54	39.07	31.93	9.17	33.55	244	132	Α	V

Page Number : B9 of B18

*	5238		1			I	1	1	1	ı	1	1
	0200	107.18	-	-	99.95	31.79	8.98	33.54	100	296	Р	Н
*	5238	100.64	-	-	93.41	31.79	8.98	33.54	100	296	Α	Н
	5451.09	51.64	-22.36	74	44.01	31.96	9.22	33.55	100	296	Р	Н
	5447.9	44.18	-9.82	54	36.55	31.96	9.22	33.55	100	296	Α	Н
												Н
												Н
*	5242	113.52	-	-	106.27	31.8	8.99	33.54	238	131	Р	V
*	5242	106.66	-	-	99.41	31.8	8.99	33.54	238	131	Α	V
	5354.07	54.72	-19.28	74	47.3	31.88	9.08	33.54	238	131	Р	V
	5409.84	47.12	-6.88	54	39.58	31.92	9.17	33.55	238	131	Α	V
												V
												V
	*	* 5242 * 5242 * 5242 5354.07 5409.84	* 5242 113.52 * 5242 106.66 5354.07 54.72 5409.84 47.12	5451.09 51.64 -22.36 5447.9 44.18 -9.82 * 5242 113.52 - * 5242 106.66 - 5354.07 54.72 -19.28 5409.84 47.12 -6.88	5451.09 51.64 -22.36 74 5447.9 44.18 -9.82 54 * 5242 113.52 - - * 5242 106.66 - - - 5354.07 54.72 -19.28 74 5409.84 47.12 -6.88 54	5451.09 51.64 -22.36 74 44.01 5447.9 44.18 -9.82 54 36.55 * 5242 113.52 - - 106.27 * 5242 106.66 - - 99.41 5354.07 54.72 -19.28 74 47.3	5451.09 51.64 -22.36 74 44.01 31.96 5447.9 44.18 -9.82 54 36.55 31.96 * 5242 113.52 - - 106.27 31.8 * 5242 106.66 - - 99.41 31.8 5354.07 54.72 -19.28 74 47.3 31.88 5409.84 47.12 -6.88 54 39.58 31.92	5451.09 51.64 -22.36 74 44.01 31.96 9.22 5447.9 44.18 -9.82 54 36.55 31.96 9.22 * 5242 113.52 - - 106.27 31.8 8.99 * 5242 106.66 - - 99.41 31.8 8.99 5354.07 54.72 -19.28 74 47.3 31.88 9.08 5409.84 47.12 -6.88 54 39.58 31.92 9.17	5451.09 51.64 -22.36 74 44.01 31.96 9.22 33.55 5447.9 44.18 -9.82 54 36.55 31.96 9.22 33.55 * 5242 113.52 - - 106.27 31.8 8.99 33.54 * 5242 106.66 - - 99.41 31.8 8.99 33.54 5354.07 54.72 -19.28 74 47.3 31.88 9.08 33.54 5409.84 47.12 -6.88 54 39.58 31.92 9.17 33.55	5451.09 51.64 -22.36 74 44.01 31.96 9.22 33.55 100 5447.9 44.18 -9.82 54 36.55 31.96 9.22 33.55 100 * 5242 113.52 - - 106.27 31.8 8.99 33.54 238 * 5242 106.66 - - 99.41 31.8 8.99 33.54 238 5354.07 54.72 -19.28 74 47.3 31.88 9.08 33.54 238 5409.84 47.12 -6.88 54 39.58 31.92 9.17 33.55 238	5451.09 51.64 -22.36 74 44.01 31.96 9.22 33.55 100 296 5447.9 44.18 -9.82 54 36.55 31.96 9.22 33.55 100 296 * 5242 113.52 - - 106.27 31.8 8.99 33.54 238 131 * 5242 106.66 - - 99.41 31.8 8.99 33.54 238 131 5354.07 54.72 -19.28 74 47.3 31.88 9.08 33.54 238 131 5409.84 47.12 -6.88 54 39.58 31.92 9.17 33.55 238 131	5451.09 51.64 -22.36 74 44.01 31.96 9.22 33.55 100 296 P 5447.9 44.18 -9.82 54 36.55 31.96 9.22 33.55 100 296 A * 5242 113.52 - - 106.27 31.8 8.99 33.54 238 131 P * 5242 106.66 - - 99.41 31.8 8.99 33.54 238 131 A 5354.07 54.72 -19.28 74 47.3 31.88 9.08 33.54 238 131 P 5409.84 47.12 -6.88 54 39.58 31.92 9.17 33.55 238 131 A

Page Number

: B10 of B18

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11ac VHT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		10360	46.68	-27.32	74	27.79	39.94	13.09	34.14	100	0	Р	Н
		15540	46	-28	74	26.9	38.33	16.55	35.78	100	0	Р	Н
802.11ac													Н
VHT20													Н
CH 36		10360	47.86	-26.14	74	28.97	39.94	13.09	34.14	100	0	Р	V
5180MHz		15540	44.98	-29.02	74	25.88	38.33	16.55	35.78	100	0	Р	V
													V
													V
		10440	47.23	-26.77	74	28.24	40.02	13.11	34.14	100	0	Р	Н
		15660	44.48	-29.52	74	25.63	38.09	16.56	35.8	100	0	Р	Н
802.11ac													Н
VHT20													Н
CH 44		10440	47.08	-26.92	74	28.09	40.02	13.11	34.14	100	0	Р	V
5220MHz		15660	44.77	-29.23	74	25.92	38.09	16.56	35.8	100	0	Р	V
													V
													V
		10480	47.57	-26.43	74	28.52	40.08	13.11	34.14	100	0	Р	Н
		15720	45.47	-28.53	74	26.75	37.95	16.57	35.8	100	0	Р	Н
802.11ac													Н
VHT20													Н
CH 48		10480	46.64	-27.36	74	27.59	40.08	13.11	34.14	100	0	Р	V
5240MHz		15720	45.4	-28.6	74	26.68	37.95	16.57	35.8	100	0	Р	V
													V
													V

Remark

2. All results are PASS against Peak and Average limit line.

Page Number : B11 of B18

Band 1 5150~5250MHz
WIFI 802.11ac VHT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		5148.2	56.03	-17.97	74	48.9	31.72	8.95	33.54	100	296	Р	Н
		5149.1	47.85	-6.15	54	40.72	31.72	8.95	33.54	100	296	Α	Н
	*	5194	99.97	-	-	92.78	31.76	8.97	33.54	100	296	Р	Н
	*	5194	93.61	-	-	86.42	31.76	8.97	33.54	100	296	Α	Н
802.11ac		5395.76	50.62	-23.38	74	43.12	31.92	9.13	33.55	100	296	Р	Н
VHT40		5391.36	43.01	-10.99	54	35.52	31.91	9.13	33.55	100	296	Α	Н
CH 38		5147.6	60.41	-13.59	74	53.28	31.72	8.95	33.54	271	131	Р	V
5190MHz		5149.85	53.5	-0.5	54	46.37	31.72	8.95	33.54	271	131	Α	V
	*	5186	105.71	-	-	98.53	31.75	8.97	33.54	271	131	Р	V
	*	5186	99.13	-	-	91.95	31.75	8.97	33.54	271	131	Α	V
		5447.02	53.07	-20.93	74	45.44	31.96	9.22	33.55	271	131	Р	V
		5394.88	45.07	-8.93	54	37.57	31.92	9.13	33.55	271	131	Α	V
		5028.8	52.41	-21.59	74	45.45	31.63	8.86	33.53	100	295	Р	Н
		5029.55	44.61	-9.39	54	37.65	31.63	8.86	33.53	100	295	Α	Н
	*	5231	103.45	-	-	96.22	31.79	8.98	33.54	100	295	Р	Н
	*	5231	96.43	-	-	89.2	31.79	8.98	33.54	100	295	Α	Н
802.11ac		5441.52	52.05	-21.95	74	44.48	31.95	9.17	33.55	100	295	Р	Н
VHT40		5448.45	44.39	-9.61	54	36.76	31.96	9.22	33.55	100	295	Α	Н
CH 46		5113.85	56.53	-17.47	74	49.45	31.69	8.92	33.53	225	133	Р	V
5230MHz		5149.85	48.31	-5.69	54	41.18	31.72	8.95	33.54	225	133	Α	V
	*	5232	109.52	-	-	102.29	31.79	8.98	33.54	225	133	Р	V
	*	5232	102.5	-	-	95.27	31.79	8.98	33.54	225	133	Α	V
		5449.22	54.23	-19.77	74	46.6	31.96	9.22	33.55	225	133	Р	V
		5430.3	46.71	-7.29	54	39.14	31.95	9.17	33.55	225	133	Α	V
Remark	1. No	other spurious	s found.	I	1	I			1	I	I		1

2. All results are PASS against Peak and Average limit line.

Page Number : B12 of B18

WIFI 802.11ac VHT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		10380	46.23	-27.77	74	27.32	39.96	13.09	34.14	100	0	Р	Н
		15570	45.07	-28.93	74	26.05	38.26	16.55	35.79	100	0	Р	Н
802.11ac													Н
VHT40													Н
CH 38		10380	46.43	-27.57	74	27.52	39.96	13.09	34.14	100	0	Р	V
5190MHz		15570	44.05	-29.95	74	25.03	38.26	16.55	35.79	100	0	Р	V
													V
													V
		10460	46.27	-27.73	74	27.26	40.04	13.11	34.14	100	0	Р	Н
		15690	44.78	-29.22	74	26	38.02	16.56	35.8	100	0	Р	Н
802.11ac													Н
VHT40													Н
CH 46		10460	47.91	-26.09	74	28.9	40.04	13.11	34.14	100	0	Р	V
5230MHz		15690	44.52	-29.48	74	25.74	38.02	16.56	35.8	100	0	Р	٧
													٧
													V

Page Number : B13 of B18

Band 1 5150~5250MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5147.75	56.21	-17.79	74	49.08	31.72	8.95	33.54	106	134	Р	Н
		5147.75	48.59	-5.41	54	41.46	31.72	8.95	33.54	106	134	Α	Н
	*	5213	94.83	-	-	87.62	31.77	8.98	33.54	106	134	Р	Н
	*	5213	88.03	1	-	80.82	31.77	8.98	33.54	106	134	Α	Н
802.11ac		5431.18	50.01	-23.99	74	42.44	31.95	9.17	33.55	106	134	Р	Н
VHT80		5434.04	42.05	-11.95	54	34.48	31.95	9.17	33.55	106	134	Α	Н
CH 42		5142.05	58.53	-15.47	74	51.4	31.72	8.95	33.54	185	98	Р	٧
5210MHz		5148.5	53.15	-0.85	54	46.02	31.72	8.95	33.54	185	98	Α	V
	*	5210	101.03	-	-	93.82	31.77	8.98	33.54	185	98	Р	V
	*	5210	93.91	-	-	86.7	31.77	8.98	33.54	185	98	Α	V
		5356.27	52.16	-21.84	74	44.74	31.88	9.08	33.54	185	98	Р	V
		5429.09	45.21	-8.79	54	37.64	31.95	9.17	33.55	185	98	Α	V

^{2.} All results are PASS against Peak and Average limit line.

Page Number : B14 of B18

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		11550	46.86	-27.14	74	27.73	39.92	13.97	34.76	100	0	Р	Н
		17328	48.64	-25.36	74	26.02	41.6	17	35.98	100	0	Р	Н
802.11ac													Н
VHT80													Н
CH 42		11550	47.12	-26.88	74	27.99	39.92	13.97	34.76	100	0	Р	V
5210MHz		17328	49.55	-24.45	74	26.93	41.6	17	35.98	100	0	Р	V
													V
													V
	1 No	other sourious	s found										

Remark

Page Number : B15 of B18

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Emission below 1GHz

WIFI 802.11ac VHT40 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	(H/V)
•		67.53	14.79	-25.21	40	40.56	4.98	1.04	31.79	(OIII)	(deg)	P	H
		154.74	26.69	-16.81	43.5	47.2	9.81	1.46	31.78	169	25	Р	Н
		265.17	17.19	-28.81	46	34.23	12.79	1.94	31.77			Р	Н
		463.1	17.6	-28.4	46	30.2	16.69	2.57	31.86			Р	Н
		760.6	22	-24	46	31.02	19.7	3.25	31.97			Р	Н
		936.3	25.14	-20.86	46	32.22	20.39	3.68	31.15			Р	Н
													Н
													Н
													Н
													Н
902 11 00													Н
802.11ac VHT40													Н
LF		48.9	27.01	-12.99	40	49.68	8.09	1.04	31.8	218	66	Р	V
		154.2	20.4	-23.1	43.5	40.89	9.83	1.46	31.78			Р	V
		232.23	14.15	-31.85	46	34.36	9.77	1.79	31.77			Р	V
		430.2	16.99	-29.01	46	29.91	16.5	2.41	31.83			Р	V
		746.6	21.51	-24.49	46	30.44	19.8	3.25	31.98			Р	V
		902.7	26.73	-19.27	46	34.49	20.1	3.55	31.41			Р	V
													V
													V
													V
													V
													V
													V
Remark		other spurious		mit line.									

Page Number : B16 of B18

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Page Number : B17 of B18

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Page Number : B18 of B18