

TMA4183 Opt. II Spring 2017

Exercise set 1

Norwegian University of Science and Technology Department of Mathematical Sciences

Reading material: Chapter 1 & Section 2.1–2.2 from [Tröltsch].

1 We consider a(n artificial) finite-dimensional optimal control problem for $y \in \mathbb{R}^2$ with a control parameter $u \in \mathbb{R}$.

The state equation is:

$$y_1 + y_2 = u,$$
 (1)

and the const functional is

$$J(y,u) = \frac{1}{2}[(y_1 - 1)^2 + (y_2 - 2)^2] + \frac{\lambda}{2}u^2,$$
 (2)

where $\lambda > 0$.

a) Derive the explicit expressions for the reduced cost functional and its gradient.

Solution: The control-to-state operator y = Su is obtained by solving the state equations yielding $S = [-1, 2]^T$. The reduced cost function and its gradient are:

$$f(u) = J(Su, u) = \frac{5+\lambda}{2}u^2 - 3u + \frac{5}{2},$$

$$f'(u) = (5+\lambda)u - 3.$$

b) Formulate the adjoint problem and compute the reduced gradient with the help of the adjoint state.

Solution: The state equation in the matrix-vector form can be stated as

$$\underbrace{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}_{=:A} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 \\ 2 \end{pmatrix}}_{=:B} u.$$

He adjoint system is then $A^T p = \nabla_y J$, or

$$p_1 = y_1 - 1,$$

$$p_1 + p_2 = y_2 - 2,$$

thus $p_2 = -y_1 + y_2 - 1$. Finally, the reduced gradient is

$$f'(u) = B^T p + \nabla_u J = 1(y_1 - 1) + 2(-y_1 + y_2 - 1) + \lambda u$$

= $-u - 1 + 2(u + 2u - 1) + \lambda u = (5 + \lambda)u - 3.$

c) Assuming $U_{\text{ad}} = \mathbb{R}$ state the first order necessary optimality conditions for this problem.

Solution: In the absense of restrictions on the control the first order necessary optimality conditions are

$$Ay = Bu$$

$$A^{T} p = \nabla_{y} J$$

$$\underbrace{B^{T} p + \nabla_{u} J}_{=f'(u)} = 0.$$

These can even be solved, namely $u = 3/(5 + \lambda)$ etc.

2 Let V be a normed space and V^* be its dual. Verify the fact that the expression

$$||f||_{V^*} = \sup_{x \in V \setminus \{0\}} \frac{|f(x)|}{||x||_V}$$

defines a norm on V^* .

Solution: (a): separation. If $||f||_{V^*} = 0$ then $\forall x \in V \setminus \{0\}$: |f(x)| = 0. Since f is linear, it means that f(0) = f(x-x) = f(x) - f(x) = 0. Therefore $\forall x \in V : f(x) = 0$, or f = 0 in V'.

- (b): absolute homogeneity. For any $f \in V'$, any $\alpha \in \mathbb{R}$, and any $x \in V$ we have: $|(\alpha f)(x)| = |\alpha f(x)| = |\alpha||f(x)|$. As a result, $||\alpha f||_{V'} = |\alpha||f||_{V'}$.
- (c): triangle inequality. For any $x \in V \setminus \{0\}$, and any $f, g \in V'$ we can write $|(f+g)(x)| = |f(x)+g(x)| \le |f(x)|+|g(x)|$. Therefore we can take the supremum on both sides of this inequality:

$$\sup_{x \in V \setminus \{0\}} \frac{|(f+g)(x)|}{\|x\|_V} \le \sup_{x \in V \setminus \{0\}} \left[\frac{|f(x)|}{\|x\|_V} + \frac{|g(x)|}{\|x\|_V} \right]$$

Finally

$$\begin{split} \sup_{x \in V \setminus \{0\}} \left[\frac{|f(x)|}{\|x\|_V} + \frac{|g(x)|}{\|x\|_V} \right] &= \sup_{x = y \in V \setminus \{0\}} \left[\frac{|f(x)|}{\|x\|_V} + \frac{|g(y)|}{\|y\|_V} \right] \leq \sup_{x,y \in V \setminus \{0\}} \left[\frac{|f(x)|}{\|x\|_V} + \frac{|g(y)|}{\|y\|_V} \right] \\ &= \sup_{x \in V \setminus \{0\}} \frac{|f(x)|}{\|x\|_V} + \sup_{y \in V \setminus \{0\}} \frac{|g(y)|}{\|y\|_V} \end{split}$$

where the inequality holds because we take supremum over a larger set on the right (we drop the requirement x = y).

3 Let H be a Hilbert space, and consider an arbitrary $y \in H$. Show that the function f(x) = (x, y) defines a bounded linear functional.

Solution: f is linear because the inner product is bilinear. f is bounded owing to Cauchy-Schwarz inequality: $|f(x)| = |(x,y)| \le ||x||_H ||y||_H$. As a result, $||f||_{H'} \le ||y||_H$.

In fact $|f(y)| = ||y||_H^2$. Therefore from the definition of $||f||_H'$ one can easily see that $||f||_{H'} = ||y||_H$. The map $R: H \to H'$ given by $y \mapsto f(\cdot) = (x, \cdot)$ is called the Riesz map.

- 4 Let H be a Hilbert space, and consider an arbitrary $f \in H^* \setminus \{0\}$. Let us define $C = \{x \in H \mid f(x) = 1\}$.
 - a) Show that C is a non-empty closed convex set.

Solution: (i) Since $f \neq 0$ it follows that there is $\hat{x} \in H$: $f(\hat{x}) \neq 0$. Then $f(\hat{x}/f(\hat{x})) = f(\hat{x})/f(\hat{x}) = 1$, and therefore $\hat{y} = \hat{x}/f(\hat{x}) \in C$.

- (ii) Let $\{x_k\}_{k=1}^{\infty} \in C$ be a Cauchy sequence. Since H is complete, the sequence has a limit $\hat{x} \in H$. $|1-f(\hat{x})| = |f(x_k)-f(\hat{x})| = |f(x_k-\hat{x})| \le ||f||_{H'} ||x_k-\hat{x}||_H \to 0$ as $k \to \infty$. As a consequence $f(\hat{x}) = 1$, $\hat{x} \in C$, and C is closed.
- (iii) Let $x, y \in C$ and $0 \le \lambda \le 1$. $f(\lambda x + (1 \lambda)y) = \lambda f(x) + (1 \lambda)f(y) = \lambda + (1 \lambda) = 1$, and $\lambda x + (1 \lambda)y \in C$. Thus C is convex.
- **b)** Let $\hat{y} \in H$ be an arbitrary vector in C. Show that $C = \hat{y} + \ker f$, where $\ker f = \{x \in H \mid f(x) = 0\}$.

Solution: Take an arbitrary $x \in C$. Then $f(x - \hat{y}) = f(x) - f(\hat{y}) = 1 - 1 = 0$ and $x - \hat{y} \in \ker f$. Therefore $C - \hat{y} \subset \ker f$.

Similarly, take any $z \in \ker f$. Then $f(\hat{y} + z) = f(\hat{y}) + f(z) = 1 + 0 = 1$. Therefore $\hat{y} + \ker f \subset C$.

c) Let $\bar{y} \in H$ be the shortest vector in C, that is, $\bar{y} = \arg\min_{y \in C} ||y||_H^2$. Show that $\bar{y} \perp \ker f$, that is, $(\bar{y}, z) = 0$ for all $z \in \ker f$. Hint: consider perturbations of $\bar{y} \pm \delta z$, where $\delta \in \mathbb{R}$ and $z \in \ker f$. Use the optimality of \bar{y} .

Solution: Take any $z \in \ker f$ and $\delta > 0$. Then $\pm \delta z \in \ker f$ as well. Owing to the previous point (superposition principle) $\bar{y} \pm \delta z \in C$, and therefore $\|\bar{y} \pm \delta z\|_H^2 = (\bar{y} \pm \delta z, \bar{y} \pm \delta z) = \|\bar{y}\|_H^2 \pm 2\delta(\bar{y}, z) + \delta^2 \|z\|_H^2 \ge \|\bar{y}\|_H^2$, as \bar{y} is the shortest vector in C. We end up with the inequality

$$\pm 2(\bar{y}, z) + \delta ||z||_H^2 \ge 0.$$

By letting $\delta \to 0$ we can see that the only possibility for this inequality to hold is for $(\bar{y}, z) = 0$.

d) Show that $f(x) = (\tilde{y}, x)$, where $\tilde{y} = \bar{y}/\|\bar{y}\|^2$. Hint: consider two cases: $x \in \ker f$ and $x \notin \ker f$. In the latter case $x/f(x) \in C$, to which the result from **b**) can be applied.

Solution: First of all note that $\bar{y} \neq 0$ because $f(\bar{y}) = 1$ and f is linear.

Let \tilde{y} be as above. If $x \in \ker f$ then $(\bar{y}, x) = 0$ by **c**) and therefore $0 = f(x) = (\bar{y}, x)/\|\bar{y}\|_H^2$.

If $x \notin \ker f$ then $x/f(x) \in C$, owing to the linearity of f. Therefore $x/f(x) = \bar{y} + z$, where $z \in \ker f$. As a consequence we have $(\tilde{y}, x) = (\bar{y}/\|\bar{y}\|_H^2, f(x)\bar{y} + f(x)z) = f(x)(\bar{y}, \bar{y})/\|\bar{y}\|_H^2 + f(x)(\bar{y}, z)/\|\bar{y}\|_H^2 = f(x) \cdot 1 + f(x) \cdot 0 = f(x)$.

e) Show that $||f||_{H^*} = ||\tilde{y}||_H$.

Solution:

$$\|\tilde{y}\|_{H} = \frac{|(\tilde{y}, \tilde{y})|}{\|\tilde{y}\|_{H}} \le \sup_{x \in H \setminus \{0\}} \frac{|(\tilde{y}, x)|}{\|x\|_{H}} \le \sup_{x \in H \setminus \{0\}} \frac{\|\tilde{y}\|_{H} \|x\|_{H}}{\|x\|_{H}} = \|\tilde{y}\|_{H},$$

where the second inequality is owing to Cauchy–Schwarz.

The last exercise is known as the Riesz representation theorem, which constructs an isometry from H^* into H.