A real example for performing two-sample summary-data MR analysis with MRAPSS package

 $Xianghong\ Hu$ 10/09/2020

Introduction

The MR-APSS is a unified approach to Mendelian Randomization accounting for pleiotropy and sample structure using genome-wide summary statistics. Specifically, MR-APSS uses a background-foreground model to characterize the estimated effects of SNPs on exposure and outcome, where the background model accounts for confounding from pleiotropy and sample structure, and the foreground model captures the valid signal for causal inference.

The MRAPSS package implements the MR-APSS approach to infer the causal relationships between an exposure and an outcome. We illustrate how to perform the MR-APSS model analysis using the MRAPSS package by a real example of BMI (exposure) and T2D (outcome). The MR-APSS model analysis comprises the following steps:

- Step 1: Prepare data and estimate nuisance parameters
- Step 2: Fit MR-APSS for causal inference

Step 1 requires the LD score files at link. The users can also use the LD scores calculated by themselves.

Step 0: Installation and load packages

```
#install.packages("devtools")
#install.packages("readr")
devtools::install_github("YangLabHKUST/MR-APSS")

library(MRAPSS)
library(readr)
```

Step 1: Prepare data and estimate nuisance parameters

This step comprises four sub-steps:

- 1.1. Format data:
- 1.2. Harmonize the formatted data sets and estimate nuisance parameters;
- 1.3. LD clumping.

1.1. Format data

To begin, we should set the working directory using setwd(). We then download the the GWAS summary statistics at links for $BMI(Watanabe\ et.al.\ (2019)\ [PMID:\ 31427789])$ and $T2D(Xue\ et\ al.\ (2015)\ [PMID:\ 30054458])$. We renamed the data files as " $BMI_ukb.txt$ " and "T2D.txt". We then read the downloaded data sets into R.

```
BMI_raw <- readr::read_delim("BMI_ukb.txt", "\t", escape_double = FALSE,
                          trim_ws = TRUE, progress = F)
#> Parsed with column specification:
#> cols(
#>
     .default = col_double(),
     SNP = col_character(),
#>
    A1 = col\_character(),
#>
    TEST = col character(),
#>
     A2 = col\ character(),
#>
#>
     SNPID_UKB = col_character(),
    A1_UKB = col_character(),
#>
#>
    A2_UKB = col_character()
#> )
#> See spec(...) for full column specifications.
T2D_raw <- readr::read_delim("T2D.txt", " ",
                              escape_double = FALSE,
                              trim_ws = TRUE, progress = F)
#> Parsed with column specification:
#> cols(
#>
     CHR = col_double(),
#>
     BP = col_double(),
#>
    SNP = col character(),
     A1 = col_character(),
#>
    A2 = col \ character(),
#>
#>
    frq_A1 = col_double(),
#>
    b = col_double(),
#>
     se = col_double(),
#>
    P = col\_double(),
#>
    N = col\_double()
#> )
```

Similar to LDSC, MR-APSS needs the following information from each GWAS data set:

- rs number,
- · effect allele,
- the other allele,
- sample size,
- a signed summary statistic (anything that can be converted to a z-score).

The format_data() function will try to interpret the raw data sets with user specified column names. You can set rs number, effect allele and the other allele using "snp_col", "A1_col" and "A2_col" arguments. A signed summary statistic can be obtained by using one or two of the following columns: "b_col" (effect size), "se_col" (standrd error), "or_col" (odds ratio), "z_col" (z-score), "p_col" (p-value). You can set sample size using "n_col", or "ncase_col" and ""ncontrol_col. If the column for sample size is not available, you can use argument"n" to specify the total sample size. It could be nice if MAF ("freq_col") and INFO ("info_col") are available.

The format_data() function will also conduct the following quality control procedures:

- extract SNPs in the set of HapMap 3 list,
- remove SNPs with minor allele frequency < 0.05 (if freq col column is available),
- remove SNPs with alleles not in (G, C, T, A),

- remove SNPs with ambiguous alleles (G/C or A/T) or other false alleles (A/A, T/T, G/G or C/C),
- remove SNPs with Info < 0.9 (if info_col column is available),
- exclude SNPs in the complex Major Histocompatibility Region (Chromosome 6, 26Mb-34Mb),
- remove SNPs with $\chi^2 > \chi 2_{max}$. The default value for $\chi 2_{max}$ is max(N/1000, 80).

Data sets will be formatted to have the following columns:

- SNP: rs number,
- A1: effect allele,
- A2: the other allele,
- Z: z score,
- chi2: χ^2 statistics,
- P: p-value,
- N: sample size.

Now, we use $format_data()$ to obtain the formatted data sets for BMI and T2D.

```
BMI = format_data(BMI_raw,
                  snp_col = "SNPID_UKB",
                  b_col = "BETA",
                  se_col = "SE",
                  freq_col = "MAF_UKB",
                  A1_{col} = "A1",
                  A2 col = "A2",
                  p_{col} = "P",
                  n_col = "NMISS",
                  info_col = "INFO_UKB")
#> Begin formatting ....
#> The raw dataset has 10599054 dat lines
#> Remove SNPs with imputation info less than 0.9 ..., remaining 10599018 SNPs.
#> Remove ambiguous SNPs ..., remaining 8995068 SNPs.
#> Remove SNPs in MHC region ..., remaining 8944044 SNPs.
#> Remove duplicated SNPs ..., remaining 8944044 SNPs.
#> Merge SNPs with the hapmap3 snplist ..., remaining 1161501 SNPs.
#> Remove SNPs with alleles not matched with the hapmap3 snplist, remaining 1161195 SNPs.
#> Remove SNPs with p value < 0 or p value > 1, remaining 1037824 SNPs.
#> Infer z score from p value and b ...
#> Remove missing values, remaining 1037824 SNPs.
#> Remove SNPs with sample size 5 standard deviations away from the mean, remaining 1037824 SNPs.
#> Remove SNPs with chi2 > chi2_max ... , remaining 1037799 SNPs.
#> The formatted data has 1037799 dat lines.
T2D = format_data(T2D_raw,
                  snp_col = "SNP",
                  b_{col} = "b",
                  se_col = "se",
                  freq_col = "frq_A1",
                  A1_{col} = "A1",
                  A2_{col} = "A2",
                  p_{col} = "P",
                  n_{col} = "N")
```

```
#> Begin formatting ....
#> The raw dataset has 5053015 dat lines
#> Remove ambiguous SNPs ..., remaining 4280791 SNPs.
#> Remove SNPs in MHC region ..., remaining 4274525 SNPs.
#> Remove duplicated SNPs ..., remaining 4274525 SNPs.
#> Merge SNPs with the hapmap3 snplist ..., remaining 1007638 SNPs.
#> Remove SNPs with p value < 0 or p value > 1, remaining 936658 SNPs.
#> Infer z score from p value and b ...
#> Remove missing values, remaining 936658 SNPs.
#> Remove SNPs with sample size 5 standard deviations away from the mean, remaining 936565 SNPs.
#> Remove SNPs with chi2 > chi2_max ..., remaining 936556 SNPs.
#> The formatted data has 936556 dat lines.
```

We can have a look at the formatted data sets:

```
head(BMI)
         SNP A1 A2
                         Z
                              N
                                     chi2
#> 1 rs1000000 A G -0.2879304 385270 0.08290393 0.77340
#> 2 rs10000010 C T -0.7299839 376552 0.53287656 0.46540
#> 3 rs1000002 T C -1.9961279 385336 3.98452670 0.04592
#> 5 rs1000003 G A -1.5813414 383709 2.50064060 0.11380
#> 6 rs10000033 C T 1.4286669 382629 2.04108907 0.15310
head(T2D)
         SNP A1 A2
                         Z
                              N
#> 1 rs1000000 A G -0.2881917 573633 0.08305446 0.77320
#> 2 rs10000010 C T 0.5018117 587226 0.25181496 0.61580
#> 3 rs1000002 T C -2.5639113 579347 6.57364100 0.01035
#> 5 rs1000003 G A -1.6381040 577450 2.68338473 0.10140
#> 6 rs10000033 C T 1.9173774 576206 3.67633619 0.05519
```

1.2. Harmonize the formatted data sets and estimate nuisance parameters

This step is to merge and harmonize the formatted data sets from step 1.1 to make sure effect sizes for the same SNP correspond to the same allele for the exposure and outcome. We then use the Harmonized data to estimate Ω and \mathbf{C} in the background model by LD score regression.

The analysis for this step is accomplished by function *est_paras()*:

```
#> Intercept: 1.1521(0.025).
#> Total Observed scale h2:0.2174(0.0071).
#> Estimate heritability for trait 2 ...
#> Using two-step estimator with cutoff at 30.
#> Mean Chi2:1.7045.
#> Intercept: 1.0911 (0.0167).
#> Total Observed scale h2:0.0485 (0.0028).
#> Estimate genetic covariance ...
#> Using two-step estimator with cutoff at 30.
#> Intercept: 0.1618 (0.0145).
#> Total Observed scale gencov: 0.054 (0.003).
```

Here, the argument "ldscore.dir" specifies the path to LD score files.

Now, we can try the following commands to check the estimates:

```
paras$Omega
#>          [,1]          [,2]
#> [1,] 1.852220e-07 4.599093e-08
#> [2,] 4.599093e-08 4.132106e-08

paras$C
#>          [,1]          [,2]
#> [1,] 1.1520504 0.1617687
#> [2,] 0.1617687 1.0911428
```

Note that the non-diagonal elements of \mathbf{C} is the intercept estimate of cross-trait LD score regression; the diagonal elements of \mathbf{C} are the intercept estimates of single-trait LD score regressions. The diagonal elements can be fixed at 1 by specify "h2.intercept = T" in function est params().

The harmonized data set will be used for LD clumping at the next stage.

```
head(paras$dat)
#>
         SNP A1 A2
                        b.exp
                                   b.out
                                            se.exp
                                                      se.out
#> 1 rs1000000 A G -0.0004638793 -0.0003805085 0.001611081 0.001320331
#> 2 rs10000010 C T -0.0011895996 0.0006548444 0.001629624 0.001304960
#> 3 rs1000002 T C -0.0032156486 -0.00336847772 0.001610943 0.001313804
#> 5 rs1000003 G A -0.0025528462 -0.0021556799 0.001614355 0.001315960
#> 6 rs10000033 C
               T
                  #>
    pval.exp pval.out
                       L2
#> 1 0.77340 0.77320 20.90684
#> 2 0.46540 0.61580 23.52035
#> 3 0.04592 0.01035 46.00095
#> 4 0.01028 0.76390 25.62940
#> 5 0.11380
           0.10140 37.94950
#> 6 0.15310 0.05519 10.62294
```

1.3. LD clumping

We use LD clumping to obtain a subset of nearly independent SNPs as IVs. The analysis for this step is accomplished by function clump(). The p-value threshold for IV selection is specified by argument "IV.Threshold". The PLINK clumping procedure will be used for LD clumping.

By default, clump() performs LD clumping through API, which means that PLINK is not required in your machine (see dependencies in https://github.com/MRCIEU/ieugwasr). Of course, one can perform LD clumping locally using PLINK by specifying the LD reference panel with "bfiles" and the path to local PLINK binary with "plink" bin" (see ?clump()).

Step 2: Fit MR-APSS for causal inference

Now we can fit the MR-APSS model with the selected IVs (MRdat) and the pre-estimated background parameters, i.e., Ω and C.

We can visualize MR-APSS analysis results by MRplot():

```
MRplot(MRres, exposure = "BMI", outcome = "T2D")
```


The figure shows the results of MR-APSS using the default IV threshold 5×10^{-5} . The estimated causal effect is indicated by a red line with its 95% confidence interval indicated by the shaded area in transparent red color. Triangles indicate the observed SNP effect sizes $(\hat{\gamma}_j \text{ and } \hat{\Gamma}_j)$. Error bars indicate their standard errors. The color of triangles indicates the posterior of a valid IV, i.e., the posterior of an IV carrying the foreground signal $(Z_j = 1, \text{ dark blue})$ or not $(Z_j = 0, \text{ light blue})$.

Reference

Watanabe K, Stringer S, Frei O, Umićević Mirkov M, de Leeuw C, Polderman TJC, van der Sluis S, Andreassen OA, Neale BM, Posthuma D. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019 Sep;51(9):1339-1348.

Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, Yengo L, Lloyd-Jones LR, Sidorenko J, Wu Y; eQTLGen Consortium, McRae AF, Visscher PM, Zeng J, Yang J. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018 Jul 27;9(1):2941.