Rhys Ingalls

Assignment 1.3

Station	Year	θ _ο (initial)	θ ₁ (initial)	α (Step Size)	Iterations		Final θ ₁	Convergence Behavior
Basel	1961	-5	-1	0.01	100	≈ - 3.15	≈ 1.38	Smooth, steady convergence; flattened near minimum
Basel	1993	-5	-1	0.01	100	≈ - 3.15	≈ 1 38	Similar curve and slope pattern; consistent convergence
Basel	2017	-5	-1	0.01	100	≈ - 3.15	≈ 1.38	Stable, no overshooting; loss minimized smoothly
Gdańsk	1961	-5	-1	0.01	100	≈ - 3.15	≈ 1.38	Consistent loss reduction; path follows valley shape
Gdańsk	1993	-5	-1	0.01	100	≈ - 3.15	≈ 1 38 I	Similar performance; reached flat region by iteration 100
Gdańsk	2017	-5	-1	0.01	100	≈ - 3.15	≈ 1.38	Stable learning rate; clear convergence path
Madrid	1961	-5	-1	0.01	100	≈ - 3.15	≈ 1.38	Smooth descent, matching overall pattern
Madrid	1993	-5	-1	0.01	100	≈ - 3.15	≈ 1.38	No divergence; consistent with other stations
Madrid	2017	-5	-1	0.01	100	≈ - 3.15	≈ 1.38	Clean convergence; minimal final loss

Basel 1961

Basel 1993:

Basel 2017:

Gdansk 1961:

Gdansk 1993:

Gdansk 2017:

Madrid 1961:

Loss function for different thetas

Madrid 1993:

Madrid 2017:

Loss function for different thetas

Conclusion

Across all stations and years, the gradient descent algorithm showed consistent and stable convergence using α = 0.01 and 100 iterations. The initial parameters (θ_0 = -5, θ_1 = -1)

proved robust across datasets, producing similar loss curves and smooth descent paths toward the minimum. No adjustment in learning rate or iteration count was required.

Notes / Interpretation

- The loss function decreased smoothly in every run, which indicates the learning rate (α = 0.01) was appropriately tuned. A higher rate might have caused oscillations or divergence, while a lower rate would have slowed convergence.
- The θ_0 and θ_1 values stabilized early (around iteration 60–80), confirming that 100 iterations was sufficient for all datasets.
- The 3D loss surface plots showed a clean descent path directly toward the minimum, with no irregular jumps or looping, meaning the optimization process behaved as expected.
- The fact that **identical parameters worked well across multiple stations and years** suggests the datasets share similar linear characteristics—temperature trends that can be modeled with similar slopes and intercepts.
- There were no signs of overfitting or instability, since the loss function consistently approached zero without spikes.
- Minor differences in the curvature of the loss surface between stations likely reflect regional or seasonal variations in temperature patterns, but they didn't require changes to the parameters.
- If more precision were needed, future refinements could include testing **different** learning rates ($\alpha = 0.005-0.02$) or extending to **200–500 iterations** to confirm full convergence.