

Integración de sistemas CMOS

Agenda

- Sensores ópticos
- Sensores de radiación ionizante
- Bandgap
- Osciladores

Fotodiodo PN

$$x_d(V) = \sqrt{\frac{2\epsilon_s(\phi_B - V)(N_a + N_d)}{qN_aN_d}}$$

IVs fotodiodo

$$I_{TOTAL} = I_{SAT} \left(e^{\frac{qV_A}{k_B T}} - 1 \right) - I_P$$

Coeficiente de absorción

The absorption coefficient determines how far into a material light of a particular wavelength can penetrate before it is absorbed. In a material with a low absorption coefficient, light is only poorly absorbed, and if the material is thin enough, it will appear transparent to that wavelength.

Fabricación de un fotodiodo en una tecnología CMOS

Fig. 1. Schematic drawings of the three photodiode structures—(a) n^+/p -sub, (b) n-well/p-sub, and (c) p^+/n -well/p-sub. Note the larger depletion region and the deeper junction in (b) and (c) and the pinned detector surface in (c). Fabrication design rules require larger minimum sizes and separation for n-wells. Thus, n^+/p -sub photodiodes can be more compact than the other two structures.

Which Photodiode to Use: A Comparison of CMOS-Compatible Structures

Kartikeya Murari, Student Member, IEEE, Ralph Etienne-Cummings, Senior Member, IEEE, Nitish Thakor, Fellow, IEEE, and Gert Cauwenberghs, Senior Member, IEEE

Respuesta de un fotodiodo en una tecnología CMOS

Respuesta de un fotodiodo en una tecnología CMOS

PHOTODIODE DARK CURRENT COMPARISON

Photodiode type	Dark current (nA/cm ²)	DTOP (nW/cm ²)
n^+/p -sub	96.2	0.14
n-well/ p -sub	363.4	0.15
p^+/n -well/ p -sub	90.3	0.05

Active Pixel Sensor (APS)

Celda APS (Active Pixel Sensor) de tres transistores (3T):

- Fotodiodo
- Reset transistor
- Buffer transistor
- Select transistor

Los transistores reducen la eficiencia en área del sensor (Fill factor).

Operación del APS

Sensor de imagen CMOS

Layout

Tiempo de integración

- El tiempo de integración puede definirse externamente o de forma automática
- Tiempos de integración pequeños permiten realizar lecturas cuando la intensidad de luz es alta. El límite es impuesto por la velocidad de operación de los circuitos.
- Tiempo de integración grandes permiten realizar lecturas cuando la intensidad de luz es baja. El límite es impuesto por la corriente de oscuridad y el ruido eléctrico del sistema de lectura.

Datos:

Potencia lumínica: P₁ = 0,6 uW/cm²

Longitud de onda $\lambda = 640 \text{ nm}$ (Rojo)

Eficiencia cuántica: $\eta_c = 0.3$

Lado del fotodiodo (cuadrado): L = 25 um

Datos:

Potencia lumínica: P₁ = 0,6 uW/cm²

Longitud de onda $\lambda = 640 \text{ nm}$ (Rojo)

Eficiencia cuántica: $\eta_c = 0.3$

Lado del fotodiodo (cuadrado): L = 25 um

Cálculos:

Energía de un fotón de 640 nm:

$$E_{foton} = \frac{h \cdot C}{\lambda} = 3,11 \cdot 10^{-19} J \equiv 1,94 \, eV$$

Cantidad de fotones incidentes:

$$N_f = \frac{P_L \cdot Area}{E_{foton}} = 1,25 \cdot 10^6 \, \text{s}^{-1}$$

Fotocorriente:

$$I_f = N_f \cdot \eta_c \cdot q = 6 \cdot 10^{-14} A \equiv 60 \, fF$$

Datos:

Potencia lumínica: P₁ = 0,6 uW/cm²

Longitud de onda $\lambda = 640 \text{ nm}$ (Rojo)

Eficiencia cuántica: $\eta_c = 0.3$

Lado del fotodiodo (cuadrado): L = 25 um

Cálculos:

Energía de un fotón de 640 nm:

$$E_{foton} = \frac{h \cdot C}{\lambda} = 3,11 \cdot 10^{-19} J \equiv 1,94 \, eV$$

Cantidad de fotones incidentes:

$$N_f = \frac{P_L \cdot Area}{E_{foton}} = 1,25 \cdot 10^6 \, \text{s}^{-1}$$

Fotocorriente:

$$I_f = N_f \cdot \eta_c \cdot q = 6 \cdot 10^{-14} A \equiv 60 \, fF$$

Datos capacidad juntura:

Capacidad área: $C_s = 421 \text{ aF/um}^2$

Capacidad fringe: C_f = 358 aF/um

Capacidad fotodiodo:

 $C_{fd} = C_S \cdot Area + C_f \cdot Perim = 638 \cdot 10^{-15} F$

Datos:

Potencia lumínica: P₁ = 0,6 uW/cm²

Longitud de onda $\lambda = 640 \text{ nm}$ (Rojo)

Eficiencia cuántica: $\eta_c = 0.3$

Lado del fotodiodo (cuadrado): L = 25 um

Cálculos:

Energía de un fotón de 640 nm:

$$E_{foton} = \frac{h \cdot C}{\lambda} = 3,11 \cdot 10^{-19} J \equiv 1,94 \, eV$$

Cantidad de fotones incidentes:

$$N_f = \frac{P_L \cdot Area}{E_{foton}} = 1,25 \cdot 10^6 \, \text{s}^{-1}$$

Fotocorriente:

$$I_f = N_f \cdot \eta_c \cdot q = 6 \cdot 10^{-14} A \equiv 60 \, fF$$

Datos capacidad juntura:

Capacidad área: $C_s = 421 \text{ aF/um}^2$

Capacidad fringe: C_r = 358 aF/um

Capacidad fotodiodo:

$$C_{fd} = C_S \cdot Area + C_f \cdot Perim = 638 \cdot 10^{-15} F$$

Tiempo de integración:

$$I = \frac{C \cdot dV}{dt}$$

$$\Delta T = \frac{C \cdot \Delta V}{I}$$

$$638 \, fF \cdot 0.1$$

$$\Delta T = \frac{638 \, fF \cdot 0.1 \, V}{60 \, fA} = 10.6 \, ms$$

CDS (correlated double sampling)

- Permite eliminar las diferencias por fabricación entre los píxeles y corregir el efecto de la corriente de oscuridad.
- Consiste en tomar una muestra inmediatamente luego de la señal de RST y otra luego de un tiempo T (periodo de integración). La diferencia entre ambas muestras se toma como la lectura del pixel.

Sensores MOS de radiación ionizante

El estudio de los efectos de radiación es de interés en:

-Aplicaciones espaciales

Van Allen Belts: partículas atrapadas en el campo magnético de la Tierra. Contiene protones y electrones de alta energía (importante en LEO y MEO). Solar flares: principalmente protones e iones de cientos de MeV. (importante en GEO, puede generar 10¹⁰ cm⁻² por evento).

Rayos cósmicos: Diferentes tipos de iones de altísimas energías (TeV o más).

-Aplicaciones Médicas: radioterapia y radiodiagnóstico.

 -Aplicaciones en experimentos de física de alta energía (LHC).

- -Industria nuclear (energía y radioisótopos).
- -Partículas a nivel terrestre para tecnologías CMOS actuales.

Sensores MOS de radiación ionizante

Efectos de radiación ionizante en dispositivos electrónicos

Acumulativos:

Total Ionizing Dose (TID)
Debido principalmente a carga
atrapada en aislantes. Provoca
una degradación lenta de los
dispositivos.

Instantáneos:

Single Event Effects (SEE)
Debido a la generación de cargaeléctrica en regiones sensibles
de los circuitos CMOS. Provoca
errores en sistemas digitales o
incluso la destrucción del
circuito.

[Schwank 2008]

Mecanismos físicos sobre la estructura MOS

Mecanismos físicos sobre la estructura MOS

Consecuencias sobre los dispositivos:

- Desplazamiento de la tensión umbral (VT)
- · Incremento de corrientes de fuga
- Reducción de la transconductancia

Efectos de radiación ionizante en transistores

Efectos eléctricos en los MOSFETs

Efectos de radiación ionizante en transistores

Efectos eléctricos en los MOSFETs

Captura de carga positiva + creación de estados de interfaz:

- Se modifican las características I-V de los dispositivos
- Se afecta el desempeño de los circuitos

Calibración para dosimetría

La variación de la tensión umbral se puede tomar como parámetro dosimétrico. La sensibilidad del dispositivo puede definirse como:

$$S = \frac{\partial V_T}{\partial D}$$

Con unidades de V/Gy

Sensor MOS de óxido grueso en CMOS: FOXFET

Fabricación en CMOS 0,6 µm

[Lipovetzky 2013]

Caracterización FOXFET para dosimetría

Circuitos diferenciales para dosimetría

Circuitos diferenciales para dosimetría

[Garcia-Inza 2016]

Operational Amplifiers

> CMOS Switches

Control Logic

Principios básicos de referencias compensadas en temp

Principle

 $V_{REF}(T) = V_{PTAT}(T) + K \cdot V_{CTAT}(T)$ where

 $V_{PTAT}(T)$ is a voltage that is proportional to absolute temperature (PTAT)

 $V_{CTAT}(T)$ is a voltage that is *complimentary* to absolute temperature (CTAT)

OBS: En general las implementaciones de estas referencias requieren un circuito de startup.

Tensión PTAT

Implementation of a PTAT voltage:

$$V_{DD} \longrightarrow V_{DD}$$

$$I_{1} \longrightarrow I_{2} \longrightarrow I_$$

Therefore, if $A_2 = 10A_1$, ΔV_D at room temperature becomes,

$$\Delta V_D = \left[\frac{k}{q} \ln \left(\frac{A_2}{A_1}\right)\right] T = \left[\frac{1.381 \times 10^{-23} \text{J/}^{\circ} \text{K}}{1.6 \times 10^{-19} \text{ Coul}} \ln(10)\right] T = (+0.086 \text{mV/}^{\circ} \text{C}) T$$

$$\therefore V_{\text{PTAT}} = V_t \ln \left(\frac{A_2}{A_1} \right)$$

Corriente PTAT

Psuedo-PTAT current generator using only MOSFETs and pn junctions.

Psuedo-PTAT current generator using MOSFETs, an op amp and pn junctions.

In these circuits, $I_1 = I_2$ and the voltage across D_1 is made equal to the voltage across the series combination of R and D_2 to create the pseudo-PTAT current,

$$I_{PTAT}' = \frac{V_{D1} - V_{D2}}{R} = \frac{kT}{Rq} \ln \left(\frac{A_2}{A_1}\right)$$

Tensión CTAT

This becomes more challenging because a true CTAT voltage does not exist. The best approach is to examine the pn junction (can be a diode or BJT).

The diode voltage can be written as

$$v_D = V_t \ln \left(\frac{i_D}{I_s}\right) = V_t \ln(i_D) - V_t \ln(I_s)$$

where

$$I_s = AT^{\gamma} \exp\left(\frac{-V_{BG}}{V_t}\right)$$
 and $i_D = BT^{\alpha}$

and where A and B are temperature independent constants, γ is the temperature coefficient for I_s ($\gamma \approx 3$), α is the temperature coefficient for i_D ($\alpha = 1$ for PTAT), and V_{BG} is the bandgap voltage of silicon (1.205V at 27°C).

The diode voltage as a function of temperature is,

$$v_D(T) = V_{CTAT} = V_t \ln(BT^{\alpha}) - V_t \ln\left[AT^{\gamma} \exp\left(-\frac{V_{BG}}{V_t}\right)\right] = V_{BG} - V_t(\gamma - \alpha) \ln(T) - V_t \ln(A/B)$$

Note that the term $V_t(\gamma - \alpha) \ln(T)$ is not linear with temperature and cannot completely cancel the perfectly linear PTAT voltage.

Corriente CTAT

Generation of a pseudo CTAT current using a bipolar transistor.

Generation of a pseudo CTAT current using a diode.

Generation of a pseudo CTAT current using MOSFETs, an op amp and pn junctions.

120326-01

The negative feedback loop shown causes the current designated as I_{CTAT} ' to be,

$$I_{\text{CTAT}}' = \frac{V_{BE}}{R} = \frac{V_D}{R}$$

Estrategias circuitales serie y paralelo

Compensación serie

$$\begin{split} V_{R1} &= V_{EB2} - V_{EB1} = V_t \ln \left(\frac{J_2}{J_{s2}} \right) - V_t \ln \left(\frac{J_1}{J_{s1}} \right) \\ &= V_t \ln \left(\frac{I_2 A_{E1}}{I_1 A_{E2}} \right) = V_t \ln \left(\frac{R_2 A_{E1}}{R_3 A_{E2}} \right) \end{split}$$

The op amp forces the relationship $I_1R_2 = I_2R_3$

$$\therefore V_{REF} = V_{EB2} + I_2 R_3 = V_{EB2} + V_{R1} \left(\frac{R_2}{R_1}\right) = V_{EB2} + \left(\frac{R_2}{R_1}\right) V_t ln \left(\frac{R_2 A_{E1}}{R_3 A_{E2}}\right) = V_{CTAT} + \left(\frac{R_2}{R_1}\right) ln \left(\frac{R_2 A_{E1}}{R_3 A_{E2}}\right) V_t ln \left(\frac{R_2 A_{E1}}{R_1}\right) ln$$

Differentiating the above with respect to temperature and setting the result to zero, gives

$$\left(\frac{R_2}{R_1}\right) ln \left(\frac{R_2 A_{E1}}{R_3 A_{E2}}\right) = \frac{V_{GO} - V_{CTAT} + (\gamma - \alpha) V_{t0}}{V_t}$$

If $V_{OS} \neq 0$, then V_{REF} becomes,

$$V_{REF} = V_{EB2} - \left(1 + \frac{R_2}{R_1}\right)V_{OS} + \frac{R_2}{R_1}V_t \ln \left[\frac{R_2A_{E1}}{R_3A_{E2}}\left(1 - \frac{V_{OS}}{I_1R_2}\right)\right]$$

Ejemplo

Assume that $A_{E1} = 10 A_{E2}$, $V_{EB2} = 0.7 \text{ V}$, $R_2 = R_3$, and $V_t = 0.026 \text{ V}$ at room temperature for temperature independent reference on the previous slide. Find R_2/R_1 to give a zero temperature coefficient at room temperature. If $V_{os} = 10 \text{ mV}$, find the change in V_{REF} . Note that $I_1R_2 = V_{REF} - V_{EB2} - V_{OS}$.

Evaluating the temperature independent constant gives

$$\left(\frac{R_2}{R_1}\right) \ln \left(\frac{R_2 A_{E1}}{R_3 A_{E2}}\right) = \frac{V_{GO} - V_{CTAT} + (\gamma - \alpha) V_{t0}}{V_{PTAT}} = \frac{1.205 - 0.7 + (2.2)(0.026)}{0.026} = 21.62$$

Therefore, $R_2/R_1 = 9.39$. In order to use the equation for V_{REF} with $V_{OS} \neq 0$, we must know the approximate value of V_{REF} and iterate if necessary because I_1 is a function of V_{REF} . Assuming V_{REF} to be 1.262, we obtain from

$$V_{REF} = V_{EB2} - \left(1 + \frac{R_2}{R_1}\right)V_{OS} + \frac{R_2}{R_1}V_t \ln \left[\frac{R_2A_{E1}}{R_1A_{E2}}\left(1 - \frac{V_{OS}}{V_{REF} - V_{EB2} - V_{OS}}\right)\right]$$

a new value $V_{REF} = 1.153$ V. The second iteration makes little difference on the result because V_{REF} is in the argument of the logarithm

Estrategia compensación serie sin OpAmp 1

The references shown do not use an op amp and avoid the issues of loop stability and PSRR.

$$I_{1} = I_{\text{PTAT}}' = \frac{V_{BE2} - V_{BE1}}{R_{2}} = \frac{V_{t}}{R_{2}} \left[\ln \left(\frac{I_{2}}{I_{s2}} \right) - \ln \left(\frac{I_{1}}{I_{s1}} \right) \right]$$

$$= \frac{V_{t}}{R_{2}} \ln \left(\frac{I_{s1}}{I_{s2}} \right) = \frac{V_{t}}{R_{2}} \ln \left(\frac{A_{E1}}{A_{E2}} \right)$$
Since $I_{1} = I_{2}$, $V_{REF} = V_{BE2} + I_{1}R_{1} = V_{BE2} + \left(\frac{R_{1}}{R_{2}} \ln \left(\frac{A_{E1}}{A_{E2}} \right) \right) V_{t}$

$$= V_{\text{CTAT}} + \left(\frac{R_{1}}{R_{2}} \right) V_{\text{PTAT}}$$

Estrategia compensación serie sin OpAmp 2

The references shown do not use an op amp and avoid the issues of loop stability and PSRR.

$$V_{D1} = I_2 R_1 + V_{D2}$$

 $I_3 = I_2 = I_{PTAT}' = \frac{V_t}{R_1} \ln(n)$
Let $R_1 = R$ and $R_2 = kR$,
 $V_{REF} = V_{D3} + I_3(kR) = V_{D3} + kV_t \ln(n)$
 $= V_{CTAT} + kV_{PTAT}$

Compensación paralelo

$$V_{\text{REF}} = \left(\frac{R_3}{R_1}\right) V_{\text{PTAT}} + \left(\frac{R_3}{R_2}\right) V_{\text{CTAT}}$$

Referencia de corriente ZTC + Bandgap

Use a MOSFET under ZTC operation and design the parallel form of the bandgap voltage reference to give a value of VZTC.

Comments:

- Ability of the ZTC point not to drift with temperature restricts the temperature range
- The reference voltage must be equal to the ZTC voltage
- The voltage VREF will suffer the bandgap curvature problem which can be translated into IREF.

Problema de curvatura de bandgap

Unfortunately, the $\frac{\gamma kT}{q} \ln \left(\frac{T_0}{T}\right)$ term of the pnjunction contributed a nonlinearity to the CTAT realization. This is illustrated by the dashed lines in the plot shown.

The result is shown below where the reference voltage is not constant with temperature.

 $V_{CTAT}(T_0) +$ $K \cdot V_{PTAT}(T_0)$

 $V_{CTAT}(T_0)$

 m_{CTAT}

 $K \cdot V_{PTAT}(T)$

Comments:

- True temperature independence is only achieved over a small range of temperatures
- References that do not correct this problem have a temperature dependence of 10 ppm°/C to 50 ppm/°C over 0°C to 70°C.

Técnicas de corrección de curvatura

 Squared PTAT Correction: Temperature coefficient ≈ 1-20 ppm/°C

• VBE loop

M. Gunaway, et. al., "A Curvature-Corrected Low-Voltage Bandgap Reference," *IEEE Journal of Solid-State Circuits*, vol. 28, no. 6, pp. 667-June 1993.

Nonlinear cancellation

G.M. Meijer et. al., "A New Curvature-Corrected Bandgap Reference," IEEE Journal of Solid-State Circuits, vol. 17, no. 6, pp. 1139-1143, December 1982.

Oscilador en anillo

Cantidad impar de inversores en realimentación con limitación de corriente en cada etapa.

Oscilador en anillo

Linealización

Oscilador de relajación

$$f = \frac{I_C}{2C_T (V_{\text{max}} - V_{\text{min}})}$$

Oscilador de relajación: FFSR

Flip Flop SR

Oscilador de relajación: comparador

Requerimientos para el comparador:

- Rápido
- ICMR compatible
- bajo offset

Comparación osciladores

Type	Crystal	RC - Relaxation	RC - Ring
Typical Implementation	off-chip	on-chip	on-chip
Frequency	1 KHz - 1 MHz	1KHz – 800MHz [13]	10MHz – 11GHz [12]
Frequency Variation vs. Temperature	1 – 100ppm	± 1%	± 5%
Current Consumption	$10\mu A - 100mA$	$1\mu A - 7mA$	10μA – 28mA
Size	10mm ² - 50mm ²	$0.04 \text{mm}^2 - 0.07 \text{mm}^2$	$0.09 \text{mm}^2 - 1.6 \text{mm}^2$
Start-up Time	1ms – 10ms	10μs – 100μs	1μs – 10μs

Tarea para: vie 18-abr

- Implementar un oscilador de relajación para la frecuencia requerida en el proyecto
- Simular: V_out, I_sup, V_ct, V_q
- Presentar esquemático a nivel transistor
- Detallar en una tabla W y L de cada MOSFET utilizado
- Considerar generadores ideales: V_min, V_max, I_refN, I_refP

Bibliografía

- Allen-Holberg CMOS Analog Circuit Design 3ed ed. OXFORD UNIVERSITY PRESS 2012.
- Baker CMOS Circuit Design, Layout and Simulation 3rd Edition Wiley-IEEE -2010.
- Ni Low-Power CMOS Relaxation Oscillator Design with an On-Chip Circuit for Combined
 Temperature-Compensated Reference Voltage and Current Generation Master of Science Thesis 2013.
- Murari -Which Photodiode to Use: A Comparison of CMOS-Compatible Structures IEEE SENSORS JOURNAL 2009.
- Yadid-Etienne CMOS Imagers 2004.
- J. R. Schwank et al., "Radiation Effects in MOS Oxides," in IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 1833-1853, Aug. 2008, IEEE TNS.
- J. Lipovetzky, M. Garcia-Inza, S. Carbonetto, M. Carra, E. Redin, L. Sambuco Salomone, A. Faigon, "Field Oxide n-channel MOS Dosimeters Fabricated in CMOS Processes," IEEE TNS, 2013.
- M. Garcia-Inza, S. Carbonetto, G. Salaya, I. Martinez Vazquez, A. Faigon, "Integration of Structures and Circuits for Dosimetry in a Single CMOS Chip", RADECS, 19-23 Sep, 2016, Bremen, Alemania.