DataScience for Development and Social Change, 2015

The R Language

What it is, what you can do with it

R

- * Programming language for statistics and graphics
- * Widely used for quick-and-dirty data science
- * Get it from http://www.r-project.org/
- * 3 ways to use:
 - * Terminal window: type "r" (and "q()" to quit)
 - Rstudio: click on Rstudio tool
 - * Run an r file from the command line

Getting help

- * Inside R or Rstudio:
 - help(functionname)
 - example(functionname)
 - e.g. help(sum), example(sum)
- * R community:
 - * R bloggers
 - * R local user groups
 - R mailing lists
 - * Stack overflow

Variables

- * data types:
 - * 2.456
 - 'This is a string'
 - * TRUE, FALSE
- * Variables:
 - * x <- 15
 - * x/4
 - * y <- 'This is also a string!'
 - * print(x)

Vectors

- Vector = same as Python's list
 - * a <- c(1,5,2)
 - note the 'c' function ('combine')
- * NB if you try creating a mixed-variable vector, R will create a vector of strings. Try this:
 - * x <- c(1,'five',2,TRUE)
- * Indices:
 - * x[3]
 - * x[2] <- 'four'
 - * x[2:4]
 - * NB: R indices start at 1 (unlike Python, which start at 0)

Sequences

- * 1:5
- * seq(1,5)
- * seq(1,5,0.3)
- * x[2:4]

Functions

- * sum(1,2,3,7,3,4)
- * a <- c(1,2,3,7,3,4)
- * sum(a)
- * max(a)
- * sqrt(a)

Vector names

- * You can name each entry in your vector:
 - * x <- c(1,'five',2,TRUE)
 - * names(x) = c('1st', '2nd', 'third', 'rainbow')
 - * x['2nd']
 - * x['rainbow'] <- FALSE

Visualisations

- * b <- c(1,3,7,5,3,2)
- * names(b) <- c('jan','feb','mar','apr','may','jun')</pre>
- * barplot(b)

Vector Maths

- * b <- c(1,3,7,5,3,2)
- * b+1
- * b/4
- * sqrt(b)
- * d <- c(3,6,5,4,3,7)
- * b*d
- * b == d

More visualizations

- * b < -c(1,3,7,5,3,2)
- * f <- sqrt(b)
- plot(b,f)

Handling missing values

- * b <- c(1,3,7,NA,3,2)
- * sum(b)
- * sum(b, na.rm=TRUE)

Matrices (two-dimensional arrays)

- * x <- matrix(0, 4, 3)
- * y <- matrix(1:12, 4, 3)
- * y[2,3] <- 15
- * y[,3]
- * y[2,2:3]
- * print(y[1,3])
- * z <- 1:15
- * dim(z) <- c(3,5)
- * print(z)

More visualisation

- * y <- matrix(1:12, 4, 3)
 - * contour(y)
 - * persp(y)

- * R comes with example datasets:
 - contour(volcano)
 - persp(volcano)

Getting Statistics

- * b <- c(1,3,7,5,3,2)
- * mean(b)
- median(b)
- * sd(b)

Adding to visualizations

- * b <- c(1,3,7,5,3,2)
- * names(b) <- c('jan','feb','mar','apr','may','jun')</pre>
- barplot(b)
- * abline(h=2)

Factors

- a <- c('developed', 'transitioning', 'developed', 'developing', 'developed', 'developing', 'developed')
- * classes <- factor(a)</pre>
- * print(classes)
- * print(levels(classes))

DataFrames (tables)

- * refugees = c(23,175,15543,11,338796,1244,63,53)
- * asylumseekers = c(140,77,2872,6,255,91,6,7)
- * origins = c('Burundi','Dem. Rep. of the Congo', 'Eritrea', 'Rwanda', 'Somalia','South Sudan','Sudan','Uganda')
- * countries <- factor(origins)</pre>
- popstats <- data.frame(refugees, asylumseekers, countries)
- print(popstats)
- * print(popstats\$asylumseekers)

Reading CSV files into Dataframes

- List all files:
 - * list.files()
- * Read a CSV into a data frame:
 - * refugees <- read.csv('popstats_clean.csv')</pre>
- * Read a tab-separated file into a data frame:
 - population <- read.table('sp_pop.tsv', sep='\t',
 header=TRUE)</pre>

Exploring a Dataframe

- * refugees <- read.csv('popstats_clean.csv')</pre>
- dim(refugees)
- head(refugees)
- * str(refugees)

Merging dataframes

* merge(x = refugees, y = population, by.x='Country.of.origin', by.y='Country.Name')

- Spaces in headings got converted to dots
- * Use by.x, by.y *unless* you have at least one column with the same name in both files

Science: correlation

- * plot(column1, column2)
- * cor.test(column1, column2)
- * Is the p-value smaller than 0.05? Yes = strong evidence for correlation.

Science: linear models

- * plot(column1, column2)
- * line <- lm(column2 ~ column1)
- * abline(line)

Rlibraries

- * R libraries are called "packages"
- * To install package x, start R and type:
 - * install.packages('x')
- * To get information about a package, type:
 - help(package = 'x')
- You'll probably want these packages:
 - * ggplot2
 - * plyr
 - * xlsx

Using ggplot2

- * refugees = c(23,175,15543,11,338796,1244,63,53)
- * asylumseekers = c(140,77,2872,6,255,91,6,7)
- * origins = c('Burundi','Dem. Rep. of the Congo', 'Eritrea', 'Rwanda', 'Somalia','South Sudan','Sudan','Uganda')
- * countries <- factor(origins)</pre>
- * library(ggplot2)

Running R scripts

- * From inside R or Rstudio:
 - * source(myscript.r)

Continuing your R Journey

- * Websites:
 - http://www.cookbook-r.com/
 - * The community sites from slide 3
- * Books:
 - * Paul Teetor, "The R cookbook"
 - * Examples in O'Neil's "Doing data science"