Case study: Materials selection for Power Electronics Packaging

Prepared for ME1000@IIITDM by Satish Gunturi Adapted from refs:

- M. Ciappa / Microelectronics Reliability 42 (2002) 653–667
- A. Hamidi, J.H Fabian & S. Gunturi, "Packaging related failure mechanisms of high power IGBT modules" IPEC-Niigata, 2005

Power electronics products

- deal with power conversion from one from to another form using Inductors, Capacitors, Semiconductor devices (Diode, Thyristor, MOSFET, IGBT etc.).
- The power may range from mW to MW (Power Systems).
- Mainly used for energy conversion
 - DC → AC
 - AC → DC
 - $AC(V_1, \omega_1, \varphi_1) \rightarrow AC(V_2, \omega_2, \varphi_2)$
 - $DC(V_1) \rightarrow DC(V_2)$

Power Semiconductor products

Electronics Packaging

- An enclosure for a single element, integrated circuit or a hybrid circuit. Provides
 - hermetic or non-hermetic protection
 - Form factor
 - Serves as first level interconnection externally for the device through package terminals
- Functions of a PE package
 - Power and signal distribution
 - HV insulation
 - Heat dissipation
 - Protection

Power Semiconductors – Applications

Power Semiconductor Limitations

state-of-art safe-operating area of power semiconductors:

0.5 - 1 MW/cm²

typical average operating power: 50 kW/cm²

Semiconductor performance is not the limiting factor in power electronic systems

Power Semiconductor Limitations

Origin of Losses in semiconductor packages

- Conduction losses ohmic
- Blocking losses leakage
- Switching losses

Wire Bonded Modules

Insulated module construction

Little cooling possible from topside due to poor conductivity of insulating mtls Efficient cooling and thermal mismatch imp for performance without failures

Materials for HV insulation

Voltage Insulation - Key components / characteristics

Silicone gel

 Good adhesion to substrate and base plate

HV insulation and encapsulation

- High CTI class material
- Clearance distances

AIN ceramic substrate

- HV insulation and
- connection to heat sink (low thermal resistance required)

Partial discharge (PD) at AIN-Cu-Silicone triple points

partial discharges at border of Cu layer.

In order to minimize PD, the heel structure has to be smooth, the gel has to adhere well and no voids and bubbles should be enclosed at this critical region to avoid regions of high field concentration.

Materials for Thermal conduction

Packaging Materials properties

Material	CTE	E	λ	Application
	[ppm/K]	[GPa]	[W/mK]	
Si	2.6	128-	150	current power device material
		185		
SiC	3.7	460	390	future power device material
Diamond	1-1.2	1000	2000	HV isolation, excellent thermal properties,
				heat spreaders for laser diodes
Al_2O_3	5.5	370	30	HV isolation, cost effective
AlN	3.1	340	190	HV isolation, good thermal properties
Mo	4.8	310	130	CTE matching material in contact with die
Al	23	70	240	heat sink and bond wire material, low cost
Cu	16	120	390	high specific heat, not suited for liquid heat
				sinks
Silver	19	80	420	excellent current conductor, soft material
				used as plating for soldering and high
				current contacts
AlSiC	6.5-12	230	180-220	low CTE material for heat sinks, good
				thermal properties, CTE tailoring possible
FR 4	13	17	0.4	circuit boards, bus bar support
Au ₉₇ Si ₃	13	80	27	eutectic solder, used for dye attach
Pb ₆₃ Sn ₃₇	25	30	50	eutectic soft solder
thermal	-	-	0.4 – 1	used to increase thermal contact
grease				between dry surfaces

Thermal expansion mismatch

Al-SiC metal matrix composite plates and microstructure

Packaging Materials Properties

Thermal Expansion Coefficient

Thermal Conductivity

Al-SiC metal matrix composite plates and microstructure

Temperature swing in modules

M. Ciappa | Microelectronics Reliability 42 (2002) 653-667

- Black bars: Ceramic insulation material Al₂O₃ (30w/mK), Cu (~400w/mK) baseplate
- White bars: Ceramic insulation material AIN (190w/mK), AISiC (190w/mK) baseplate
- AIN and AISiC with higher thermal conductivity reduce the thermal swing and the thermal resistance of the module → lower failure probability

Temp effect on wire bonds and solder interconnects

Packaging of high power IGBT modules - Present Technology

Several hundreds of Al wires

Providing electrical interconnection between the large number of chips in

parallel.

Chip Chip DCB AlN substrate DCB solder Loopper ground plate

Several materials and interfaces

- AIN or AI2O3 DCB ceramics for HV insulation.
- •Copper base-plate as mechanical support and heat-spreader.
- •Solder layers between chips / DCB / Cu base-plate.

Other wire mtls used: Au, Ag, Cu based on properties & cost

Bonding by ultrasonic vibration – localized deformation causes bonding

Thermo-mechanical Fatigue – Wire Bonds

- Failure Mechanism-1
 - Thermal expansion coefficient mismatch between Al (23 W/m.K) and Si (2.6 W/m.K)
 - High stress at bond interface during thermal cycling of the IGBTs.

Crack propagation in bond interface

Appears as increase in Vce

Wire lift-off

Wire Bond Lift-off Mechanism

- Mechanism 2: Reconstruction of Al metallization due to CTE mismatch with the Si chip.
- Remedy: Conformal coatings improve wire bond lifetime by
 - inducing compressive forces on wire improving bond strength and
 - Reducing reconstruction of metallization (Al) on chip

Wire Bond Life Time Enhancement

 Conformal polymeric coatings on the wire bonds result in significantly improved life time under thermo-mechanical fatigue conditions

Wire bonds -summary

- Material selection: Al, Au, Ag or copper based on chip metallization and cost factors
- Process: Ultrasonic wire bonding
- Failures due to interface cracking and surface reconstruction due to CTE mismatch
 - Improve life/performance of wire bond further by application of polymer coating on wire bonds.

Solders

- Solders are either lead solders or lead free solders
- Soft lead solder helps to buffer strain due to expansion mismatch of components
- However cyclic stresses cause progressive delamination of solder layer.
 - As the area of delamination increases, the area of contact with the heatsink reduces → higher thermal resistance and failure of chips above the delaminated area
- Remedy: Choose materials with closer CTE match

Thermo-mechanical Fatigue – Solder Joints

- Failure mechanism
 - Thermal expansion mismatch between ceramic (3.1ppm/K) and Cu baseplate (16 ppm/K).
 - Thermal cycling gives rise to stresses in solder layer leading to failure
 - Chips above debonded interface experience high thermal resistance / higher junction temp
 →degradation failures

- AlSiC baseplate (6.5-9 ppm/K)
 - Reduces thermal expansion mismatch.
 - Enhances thermal cycling life time

Solder tilt- effect on reliability

Issues with lead-free soldering

Branched

Initiating from Hillock

Tin whiskers

Tin whisker shorts

[Irina Boguslavsky, NEMI Sn whisker project,

Warpage of PCBs due to higher soldering temp

Popcorning of PCBs due to absorbed moisture

Tin whisker growth & mitigation

N. Vo, Motorola

Whiskers form due to compressive force on Sn during

- -Intermetallic formation
- -Applied stress

Mitigation

- Diffusion barrier coatings Ni/Ti
- -Avoiding compressive stress

Summary of failures and remedies by materials & design

Insulation failures:

- Partial discharges leading to treeing.
- Remedy:Avoid defects in insulation contamination, sharp features that enhance electric fields

Wirebond failures

- Thermal expansion mismatch → thermo-mechanical fatigue → heal cracks in interface & ageing of chip metallisation (rough pattern) → V increase
- Remedy: conformal coatings increase life time

Solder failures

- Thermal cycling of Substrate solder → delamination of solder interfaces → Rth/Tj increase
 - Remedy: Use low CTE base plates like composite AlSiC
- Tin whisker growth in platings and solders

 fail by short-circuits
 - Remedy: Barrier coatings, avoid compressive stress, non-tin solders