Varianta 18

Subjectul I.

- **a)** $|(3+4i)^4| = 625$
- **b**) 0.
- c) $\vec{v} \cdot \vec{w} = 0$.
- **d**) $AB = \sqrt{2}$.
- **e)** $S_{ABC} = \frac{3}{2}$.
- **f**) a = -7 şi b = 24

Subjectul II.

- 1.
- **a**) $a_4 = 24$.
- **b)** Probabilitatea cerută este $\frac{2}{5}$.
- **c**) g(1) = 0.
- **d**) $x \in \{-1, 1\}.$
- **e)** $x_1 + x_2 + x_3 = 0$.
- 2
- a) f'(x) = 0. Se deduce că funcția f este constantă pe \mathbf{R} .

Mai mult, deoarece $f(1) = \frac{\pi}{2}$, rezultă $f(x) = \frac{\pi}{2}$, $\forall x \in \mathbf{R}$.

b)
$$\int_{0}^{1} f(x) dx = \frac{\pi}{2}$$
.

- c) Asimptota orizontală spre $+\infty$ la graficul funcției este dreapta de ecuație $y = \frac{\pi}{2}$.
- **d**) $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = 0$.
- $e) \lim_{x\to-\infty} f(x) = \frac{\pi}{2}.$

Subjectul III.

- a) $det(A)=1 \neq 0$, deci rang(A)=2.
- **b**) $f(O_2) = O_2$, $f(I_2) = O_2$.
- c) Calcul direct.
- d) Calcul direct.

e)
$$B = \{E_1, E_2, E_3, E_4\}$$
, cu $B_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $B_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

este o bază

f) Deoarece $f(O_2) = f(I_2)$, funcția f nu este injectivă.

Dacă $X = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in M_2(\mathbf{R})$, atunci suma elementelor de pe diagonala principală a

lui f(X) este 0, deci $\forall X \in M_2(\mathbf{R}), f(X) \neq I_2$, adică f nu este surjectivă.

g) Dacă $X,Y \in M_2(\mathbf{R})$, din **d**) avem: $f(X)+f(Y)=f(X+Y) \neq I_2$.

Subjectul IV.

a) Se verifică prin calcul direct.

b) Punând $a = -\sqrt[4]{x}$ în egalitatea de la **a)** se obține concluzia.

c) Pentru
$$n \in \mathbb{N}^*$$
 şi $x \in [0,1]$, avem $1 + \sqrt[4]{x} \ge 1 \iff 0 < \frac{1}{1 + \sqrt[4]{x}} \le 1$

și înmulțind ultima inegalitate cu $\left(\sqrt[4]{x}\right)^{n+1} \ge 0$ obținem $0 \le \frac{\left(\sqrt[4]{x}\right)^{n+1}}{1+\sqrt[4]{x}} \le \left(\sqrt[4]{x}\right)^{n+1}$.

d) Pentru $b \in [0,1]$, integrând pe intervalul [0,b] inegalitatea de la **c**) și folosind

faptul că avem
$$\lim_{n \to \infty} \frac{b^{\frac{n+1}{4}+1}}{\frac{n+1}{4}+1} = 0$$
, deducem $\lim_{n \to \infty} \int_{0}^{b} \frac{\left(\sqrt[4]{x}\right)^{n+1}}{1+\sqrt[4]{x}} dx = 0$.

e) Făcând schimbarea de variabilă $1+\sqrt[4]{x}=y>0$, se calculează mai întâi o primitivă a funcției f pe intervalul (0,b] și apoi se prelungește prin continuitate la [0,b]. Obținem că o primitivă pe [0,b] a funcției f este:

Obţinem că o primitivă pe
$$[0, b]$$
 a funcției f este:
$$F(x) = \begin{cases} 4 \cdot \left(\frac{(1 + \sqrt[4]{x})^3}{3} - 3 \cdot \frac{(1 + \sqrt[4]{x})^2}{2} + 3(1 + \sqrt[4]{x}) - \ln(1 + \sqrt[4]{x}) \right), x \in (0, b] \\ \frac{22}{3}, & x = 0 \end{cases}$$

Folosind teorema Leibniz-Newton, obţinem:

$$\int_{0}^{b} \frac{1}{1 + \sqrt[4]{x}} dx = F(b) - F(0) = \frac{4}{3} \cdot \sqrt[4]{b^{3}} - 2\sqrt{b} + 4\sqrt[4]{b} - 4 \cdot \ln\left(1 + \sqrt[4]{b}\right).$$

f) Din h) avem

$$\frac{1}{1+\sqrt[4]{t}} = 1 - \sqrt[4]{t} + \left(\sqrt[4]{t}\right)^2 + \dots + \left(-1\right)^n \left(\sqrt[4]{t}\right)^n + \left(-1\right)^{n+1} \frac{\left(\sqrt[4]{t}\right)^{n+1}}{1+\sqrt[4]{t}} , \quad \forall \ t \in [0,1], \ \forall \ n \in \mathbf{N} \ .$$

Pentru $x \in [0,1]$, integrând pe intervalul [0,x] această egalitate, se obține

$$x + \frac{(-1)^{1} x^{\frac{1}{4}+1}}{\frac{1}{4}+1} + \frac{(-1)^{2} x^{\frac{2}{4}+1}}{\frac{2}{4}+1} + \dots + \frac{(-1)^{n} x^{\frac{n}{4}+1}}{\frac{n}{4}+1} + (-1)^{n+1} \cdot \int_{0}^{x} \frac{\left(\sqrt[4]{t}\right)^{n+1}}{1+\sqrt[4]{t}} dt = \int_{0}^{x} \frac{1}{1+\sqrt[4]{t}} dt$$
 (2)

Din **d**) obținem că
$$\lim_{n \to \infty} (-1)^{n+1} \cdot \int_{0}^{b} \frac{\left(\sqrt[4]{x}\right)^{n+1}}{1 + \sqrt[4]{x}} dx = 0$$
.

Trecând la limită în (2) obținem concluzia.

g) Concluzia subpunctului înseamnă că există $x \in (0,1)$ astfel încât $g(x) = \int_0^x \frac{1}{1 + \sqrt[4]{t}} dt \in \mathbf{Q}$.

Deoarece funcția g are proprietatea lui Darboux pe (0,1), afirmația anterioară este evidentă.