Generated on 2023-11-21 15:36:12 by gEcon version 1.2.1 (2023-01-18)

Model name: RSW_RP

1 HIGHREGIME

1.1 Optimisation problem

s.t.:

$$yH_{t-1} = yH_t - \sigma (iH_{t-1} - pH_t) + (1 - pH) (-yH_t + yL_t) + \sigma (1 - pH) (-pH_t + pL_t) - \left(\lambda_t^{\text{HIGHREGIME}^2}\right)$$
(1.3)

1.2 First order conditions

$$-p\!i\!H + p\!i\!t\!C\!B - p\!i\!H_t + \lambda_t^{\mathrm{HIGHREGIME}^1} \left(\beta - \beta \left(1 - p\!H\right)\right) + \lambda_t^{\mathrm{HIGHREGIME}^2} \left(\sigma - \sigma \left(1 - p\!H\right)\right) - \left(\beta - \beta \left(1 - p\!H\right)\right) \mathrm{E}_t \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^1}\right] = 0 \quad (p\!i\!H_t) \tag{1.4}$$

$$pH\lambda_{t}^{\mathrm{HIGHREGIME^{2}}} + \left(\beta - \beta\left(1 - pH\right)\right)\left(\kappa \mathbf{E}_{t}\left[\lambda_{t+1}^{\mathrm{HIGHREGIME^{1}}}\right] - \mathbf{E}_{t}\left[\lambda_{t+1}^{\mathrm{HIGHREGIME^{2}}}\right]\right) - \kappa\theta^{-1}yH_{t} = 0 \quad (yH_{t}) \tag{1.5}$$

$$-\sigma \left(\beta - \beta \left(1 - pH\right)\right) E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{2}}\right] = 0 \quad (iH_{t})$$

$$(1.6)$$

2 LOWREGIME

2.1 Optimisation problem

$$\max_{p\!i\!L_t, y\!L_t, i\!L_t} U\!L_t = -0.5 \left(-p\!i\!t\!C\!B + p\!i\!t\!L + p\!i\!L_t \right)^2 + \beta \mathbf{E}_t \left[U\!L_{t+1} \right] + \beta \left(1 - p\!L \right) \left(\mathbf{E}_t \left[U\!H_{t+1} \right] - \mathbf{E}_t \left[U\!L_{t+1} \right] \right) - 0.5\kappa\theta^{-1}y\!L_t^{\ 2} \tag{2.1}$$

s.t.:

$$pL_{t-1} = \log dqp_{t-1} + \kappa yL_{t-1} + \beta pLpL_t + \beta (1 - pL) (pH_t - pL_t) \quad \left(\lambda_t^{\text{LOWREGIME}^1}\right)$$
(2.2)

$$yL_{t-1} = yL_t - \sigma \left(iL_{t-1} - pL\right) + \left(1 - pL\right) \left(yH_t - yL_t\right) + \sigma \left(1 - pL\right) \left(piH_t - piL_t\right) \quad \left(\lambda_t^{\text{LOWREGIME}^2}\right)$$

$$(2.3)$$

2.2 First order conditions

$$\textit{pitCB} - \textit{pitL} - \textit{piL}_t + \lambda_t^{\text{LOWREGIME}^1} \left(\beta \textit{pL} - \beta \left(1 - \textit{pL}\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma - \sigma \left(1 - \textit{pL}\right)\right) - \left(\beta - \beta \left(1 - \textit{pL}\right)\right) \\ \text{E}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] = 0 \quad \left(\textit{piL}_t\right) \quad (2.4)$$

$$pL\lambda_{t}^{\text{LOWREGIME}^{2}} + (\beta - \beta (1 - pL)) \left(\kappa E_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{1}} \right] - E_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{2}} \right] \right) - \kappa \theta^{-1} yL_{t} = 0 \quad (yL_{t})$$
(2.5)

$$-\sigma \left(\beta - \beta \left(1 - pL\right)\right) E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right] = 0 \quad (iL_t)$$
(2.6)

3 EXOG

3.1 Identities

$$e tapi_t = e^{\epsilon_t^{\pi} + \phi \log e tapi_{t-1}} \tag{3.1}$$

4 Equilibrium relationships (after reduction)

$$-\operatorname{dispi}_{t} + e^{\epsilon_{t}^{\pi} + \phi \log \operatorname{dispi}_{t-1}} = 0 \tag{4.1}$$

$$pH\lambda_{t}^{\text{HIGHREGIME}^{2}} + (\beta - \beta (1 - pH)) \left(\kappa E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{1}}\right] - E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{2}}\right]\right) - \kappa \theta^{-1} yH_{t} = 0$$

$$(4.2)$$

$$pL\lambda_{t}^{\text{LOWREGIME}^{2}} + (\beta - \beta (1 - pL)) \left(\kappa E_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{1}}\right] - E_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{2}}\right]\right) - \kappa \theta^{-1} yL_{t} = 0$$

$$(4.3)$$

$$-piH_{t-1} + \log etapi_{t-1} + \beta piH_t + \kappa yH_{t-1} + \beta (1 - pH) (-piH_t + piL_t) = 0$$
(4.4)

$$-piL_{t-1} + \log e^{t}qpi_{t-1} + \kappa yL_{t-1} + \beta pLpiL_t + \beta (1 - pL)(piH_t - piL_t) = 0$$
(4.5)

$$-yH_{t-1} + yH_t - \sigma(iH_{t-1} - piH_t) + (1 - pH)(-yH_t + yL_t) + \sigma(1 - pH)(-piH_t + piL_t) = 0$$

$$(4.6)$$

$$-yL_{t-1} + yL_t - \sigma (iL_{t-1} - piL_t) + (1 - pL)(yH_t - yL_t) + \sigma (1 - pL)(piH_t - piL_t) = 0$$

$$(4.7)$$

$$UH_{t} + 0.5 \left(pitH - pitCB + piH_{t}\right)^{2} - \beta E_{t} \left[UH_{t+1}\right] - \beta \left(1 - pH\right) \left(-E_{t} \left[UH_{t+1}\right] + E_{t} \left[UL_{t+1}\right]\right) + 0.5\kappa\theta^{-1}yH_{t}^{2} = 0 \tag{4.8}$$

$$UL_{t} + 0.5\left(-pitCB + pitL + piL_{t}\right)^{2} - \beta E_{t}\left[UL_{t+1}\right] - \beta\left(1 - pL\right)\left(E_{t}\left[UH_{t+1}\right] - E_{t}\left[UL_{t+1}\right]\right) + 0.5\kappa\theta^{-1}yL_{t}^{2} = 0 \tag{4.9}$$

$$-\textit{piH} + \textit{piCB} - \textit{piH}_t + \lambda_t^{\mathrm{HIGHREGIME}^1} \left(\beta - \beta \left(1 - \textit{pH}\right)\right) + \lambda_t^{\mathrm{HIGHREGIME}^2} \left(\sigma - \sigma \left(1 - \textit{pH}\right)\right) - \left(\beta - \beta \left(1 - \textit{pH}\right)\right) \\ \mathrm{E}_t \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^1}\right] = 0 \tag{4.10}$$

$$\textit{pitCB} - \textit{pitL} - \textit{piL}_t + \lambda_t^{\text{LOWREGIME}^1} \left(\beta \textit{pL} - \beta \left(1 - \textit{pL}\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma - \sigma \left(1 - \textit{pL}\right)\right) - \left(\beta - \beta \left(1 - \textit{pL}\right)\right) \operatorname{E}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] = 0 \tag{4.11}$$

$$-\sigma \left(\beta - \beta \left(1 - pH\right)\right) E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2}\right] = 0 \tag{4.12}$$

$$-\sigma \left(\beta - \beta \left(1 - pL\right)\right) E_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{2}}\right] = 0 \tag{4.13}$$

 \sim

5 Steady state relationships (after reduction)

$$-\epsilon t q p i_{ss} + e^{\phi \log \epsilon t q p i_{ss}} = 0 \tag{5.1}$$

$$p H \lambda_{ss}^{\text{HIGHREGIME}^2} + (\beta - \beta (1 - pH)) \left(-\lambda_{ss}^{\text{HIGHREGIME}^2} + \kappa \lambda_{ss}^{\text{HIGHREGIME}^1} \right) - \kappa \theta^{-1} y H_{ss} = 0 \tag{5.2}$$

$$p L \lambda_{ss}^{\text{LOWREGIME}^2} + (\beta - \beta (1 - pL)) \left(-\lambda_{ss}^{\text{LOWREGIME}^2} + \kappa \lambda_{ss}^{\text{LOWREGIME}^1} \right) - \kappa \theta^{-1} y L_{ss} = 0 \tag{5.3}$$

$$-p i H_{ss} + \log \epsilon t q p i_{ss} + \beta p i H_{ss} + \kappa y H_{ss} + \beta (1 - pH) \left(-p i H_{ss} + p i L_{ss} \right) = 0 \tag{5.4}$$

$$-p i L_{ss} + \log \epsilon t q p i_{ss} + \kappa y L_{ss} + \beta p L p i L_{ss} + \beta (1 - pL) \left(p i H_{ss} - p i L_{ss} \right) = 0 \tag{5.5}$$

$$(1 - pH) \left(-y H_{ss} + y L_{ss} \right) - \sigma \left(i H_{ss} - p i H_{ss} \right) + \sigma \left(1 - p H \right) \left(-p i H_{ss} + p i L_{ss} \right) = 0 \tag{5.6}$$

$$(1 - pL) \left(y H_{ss} - y L_{ss} \right) - \sigma \left(i L_{ss} - p i L_{ss} \right) + \sigma \left(1 - p L \right) \left(p i H_{ss} - p i L_{ss} \right) = 0 \tag{5.7}$$

$$U H_{ss} + 0.5 \left(p i t H - p i t C B + p i H_{ss} \right)^2 - \beta U H_{ss} - \beta \left(1 - p H \right) \left(-U H_{ss} + U L_{ss} \right) + 0.5 \kappa \theta^{-1} y H_{ss}^2 = 0 \tag{5.8}$$

$$UL_{ss} + 0.5 \left(-pitCB + pitL + piL_{ss} \right)^{2} - \beta UL_{ss} - \beta \left(1 - pL \right) \left(UH_{ss} - UL_{ss} \right) + 0.5\kappa \theta^{-1} yL_{ss}^{2} = 0$$

$$-pitH + pitCB - piH_{ss} + \lambda_{ss}^{HIGHREGIME^{2}} \left(\sigma - \sigma \left(1 - pH \right) \right) = 0$$
(5.10)

$$ptCB - ptL - pL_{ss} - \lambda_{ss}^{LOWREGIME^{1}} \left(\beta - \beta \left(1 - pL\right)\right) + \lambda_{ss}^{LOWREGIME^{1}} \left(\beta pL - \beta \left(1 - pL\right)\right) + \lambda_{ss}^{LOWREGIME^{2}} \left(\sigma - \sigma \left(1 - pL\right)\right) = 0$$

$$(5.11)$$

$$-\sigma \lambda_{\rm ss}^{\rm HIGHREGIME^2} \left(\beta - \beta \left(1 - pH\right)\right) = 0 \tag{5.12}$$

$$-\sigma \lambda_{\rm ss}^{\rm LOWREGIME^2} \left(\beta - \beta \left(1 - pL\right)\right) = 0 \tag{5.13}$$

6 Parameter settings

ಬ

$$\beta = 0.99 \tag{6.1}$$

$$\kappa = 0.2465 \tag{6.2}$$

$$\phi = 0.95 \tag{6.3}$$

$$pitH = 0 (6.4)$$

$$pitCB = 0 (6.5)$$

$$piL = 2 (6.6)$$

$$pH = 0.99 \tag{6.7}$$

$$pL = 0.99 \tag{6.8}$$

$$\sigma = 1 \tag{6.9}$$

$$\theta = 6 \tag{6.10}$$

7 Steady-state values

	Steady-state value
etapi	1
$i\!H$	-0.0232
$i\!L$	-1.9764
$\lambda^{ m HIGHREGIME^1}$	0.0137
$\lambda^{ m HIGHREGIME^2}$	0
$\lambda^{\mathrm{LOWREGIME}^1}$	-0.0411
$\lambda^{ m LOWREGIME^2}$	0
$p\!i\!H$	0
$p\!i\!L$	-1.9996
$y\!H$	0.0803
yL	-0.2417
UH	-0.0487
UL	-0.0846

8 The solution of the 1st order perturbation

Matrix P

	$etapi_{t-1}$	iH_{t-1}	iL_{t-1}	$p\!i\!H_{t-1}$	$p\!i\!L_{t-1}$	$y\!H_{t-1}$	yL_{t-1}
$etapi_t$	/ 0.95	0	0	0	0	0	0
$i\!H_t$	-561.3689	-1.9645	1.8946	253.8981	-6.2527	-11.8214	0.4181
$i\!L_t$	-6.6986	0.0003	-1.9791	-0.0376	6.1014	0.0017	-0.4239
piH_t	-1.01	0	0	1.0204	-0.0208	-0.0202	0.0006
piL_t	-0.5103	0	0	-0.0052	1.0308	0.0001	-0.0307
yH_t	12.5765	0.292	-0.2511	-12.7062	0.2593	1.2617	-0.0384
yL_t	4.2212	-0.001	8.2592	0.0431	-8.5268	-0.0042	1.2643

Matrix Q

$$\begin{array}{c} \epsilon^{\pi} \\ \text{etapi} \\ iH \\ iL \\ piH \\ piL \\ yH \\ 0 \\ 0 \\ \end{array} \begin{pmatrix} 1 \\ -326.9451 \\ -3.8787 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$$

$\mathbf{Matrix}\ R$

Matrix S

$$\begin{array}{c} & \epsilon^{\pi} \\ \lambda^{\rm HIGHREGIME^{1}} \\ \lambda^{\rm HIGHREGIME^{2}} \\ \lambda^{\rm LOWREGIME^{1}} \\ \lambda^{\rm LOWREGIME^{2}} \\ UH \\ UL \\ \end{array} \begin{pmatrix} -196.1864 \\ 0.5245 \\ -67.1917 \\ 0.5353 \\ 2.3741 \\ -6.7143 \\ \end{pmatrix}$$

9 Model statistics

9.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
etapi	1	0.1303	0.017	Y
$i\!H$	-0.0232	33.249	1105.4967	Y
iL	-1.9764	0.3951	0.1561	Y
$\lambda^{ m HIGHREGIME^1}$	0.0137	21.6808	470.0577	Y
$\lambda^{ m HIGHREGIME^2}$	0	0.0506	0.0026	N
$\lambda^{ ext{LOWREGIME}^1}$	-0.0411	7.4029	54.8026	Y
$\lambda^{ m LOWREGIME^2}$	0	0.0516	0.0027	N
$pi\!H$	0	0.0985	0.0097	N
piL	-1.9996	0.0498	0.0025	Y
$y\!H$	0.0803	8.625	74.3904	Y
yL	-0.2417	2.8859	8.3285	Y
UH	-0.0487	0.3247	0.1055	Y
UL	-0.0846	0.8996	0.8093	Y

9.2 Correlation matrix

	etapi	$i\!H$	iL	$\lambda^{ m HIGHREGIME^1}$	$\lambda^{ m HIGHREGIME^2}$	$\lambda^{ ext{LOWREGIME}^1}$	$\lambda^{ ext{LOWREGIME}^2}$	piH	piL
etapi	1	-0.301	-0.298	-0.825	0.436	-0.821	0.436	-0.491	-0.48
$i\!H$		1	1	0.567	-0.977	0.573	-0.977	-0.323	-0.3
iL			1	0.564	-0.976	0.57	-0.976	-0.327	-0.33
$\lambda^{\mathrm{HIGHREGIME^1}}$				1	-0.725	1	-0.725	0.567	0.56
$\lambda^{ m HIGHREGIME^2}$					1	-0.73	1	0.116	0.11
$\lambda^{ ext{LOWREGIME}^1}$						1	-0.73	0.563	0.56
$\lambda^{ ext{LOWREGIME}^2}$							1	0.116	0.11
piH								1	1
piL									1
$y\!H$									
yL									
UH									
UL									

9.3 Cross correlations with the reference variable (iH)

					`	,					
	$\sigma[\cdot]$ rel. to $\sigma[iH]$	iH_{t-5}	iH_{t-4}	iH_{t-3}	iH_{t-2}	iH_{t-1}	iH_t	iH_{t+1}	iH_{t+2}	iH_{t+3}	iH_{t+4}
$etapi_t$	0.004	0.098	0.131	0.177	0.258	0.444	-0.301	-0.254	-0.21	-0.169	-0.132
$i\!H_t$	1	-0.028	-0.035	-0.051	-0.093	-0.219	1	-0.219	-0.093	-0.051	-0.035
$i\!L_t$	0.012	-0.027	-0.035	-0.05	-0.092	-0.218	1	-0.222	-0.094	-0.051	-0.035
$\lambda_t^{ ext{HIGHREGIME}^1}$	0.652	-0.078	-0.1	-0.134	-0.204	-0.385	0.567	0.47	0.151	0.043	0.003
$\lambda_t^{ ext{HIGHREGIME}^2}$	0.002	0.04	0.051	0.071	0.122	0.269	-0.977	0.043	0.043	0.041	0.038
$\lambda_t^{ ext{LOWREGIME}^1}$	0.223	-0.078	-0.099	-0.133	-0.203	-0.384	0.573	0.469	0.149	0.041	0.001
$\lambda_t^{ m LOWREGIME^2}$	0.002	0.04	0.051	0.071	0.122	0.269	-0.977	0.043	0.043	0.041	0.038
$p\!i\!H_t$	0.003	-0.046	-0.056	-0.071	-0.096	-0.156	-0.323	0.852	0.236	0.04	-0.022
$p\!i\!L_t$	0.001	-0.045	-0.056	-0.07	-0.095	-0.154	-0.32	0.855	0.233	0.037	-0.024
$y\!H_t$	0.259	-0.069	-0.092	-0.121	-0.164	-0.245	-0.443	0.551	0.273	0.164	0.111
yL_t	0.087	-0.069	-0.092	-0.121	-0.163	-0.244	-0.442	0.555	0.273	0.163	0.11
UH_t	0.01	0.098	0.13	0.175	0.255	0.438	-0.258	-0.313	-0.22	-0.165	-0.125
UL_t	0.027	-0.098	-0.13	-0.176	-0.256	-0.44	0.276	0.292	0.216	0.166	0.127

9.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
etapi	0.713	0.471	0.271	0.11	-0.016
iH	-0.219	-0.093	-0.051	-0.035	-0.028
iL	-0.221	-0.093	-0.05	-0.035	-0.027
$\lambda^{ m HIGHREGIME^1}$	0.51	0.081	-0.065	-0.117	-0.134
$\lambda^{ m HIGHREGIME^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
$\lambda^{ ext{LOWREGIME}^1}$	0.506	0.077	-0.068	-0.118	-0.134
$\lambda^{ ext{LOWREGIME}^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
piH	0.22	-0.024	-0.095	-0.11	-0.107
$p\!i\!L$	0.217	-0.025	-0.096	-0.11	-0.107
$y\!H$	0.504	0.261	0.116	0.017	-0.055
yL	0.5	0.257	0.113	0.015	-0.055
UH	0.735	0.449	0.243	0.087	-0.031
UL	0.727	0.456	0.253	0.095	-0.026

10 Impulse response functions

Figure 1: Impulse responses $(i\!H,i\!L,p\!i\!H,p\!i\!L,y\!H)$ to ϵ^π shock

Figure 2: Impulse response $(y\!L)$ to ϵ^π shock