Final Assessment Quiz

PHY-106

The respondent's email address (201370223@gift.edu.pk) was recorded on submission of this form.

1. The pointer of a magnetic compass *

1 point

- is affected only by permanent magnets
- Aligns itself parallel to the applied magnetic field
- vibrates in the magnetic field of the current
- Aligns itself perpendicular to the magnetic field

* 1 point

Given that $\vec{B} = 40\hat{\imath} - 18\hat{k}$. The vector \vec{B} lies in:

- XY Plane
- XZ Plane
- YZ Plane
- None of these

At a given instant, a proton moves in the +x direction in a region where there is magnetic field in the -z direction. The magnetic force on the proton will be the: *	1 point
-y direction	
-y direction	
-z direction	
-z direction	
An electric intensity is a potential gradient, if may expressed in the units of N/C or *	1 point
○ Volt	
O Volt meter	
Volt per meter	
O Joule	
A torch bulb uses a 5 V supply and makes a current of 0.5 A. It is switched on for 1 year. How much electrical energy is used? *	1 point
● 78,840,000J	
78,840,00 J	
78,8400 J	
78,840 J	

 Spherical Closed Surfaces Tangent to the electric lines of force perpendicular to the lines of force which statement describes the electric potential difference between two points in a wire 1 point that carries a current? Hint (use the Power Formula) * The force required to move a unit positive charge between the points The ratio of the energy dissipated between the points to the current The ratio of the power dissipated between the points to the current 	Equipotential surfaces in an electric field are always *	1 point
Tangent to the electric lines of force perpendicular to the lines of force which statement describes the electric potential difference between two points in a wire 1 point that carries a current? Hint (use the Power Formula) * The force required to move a unit positive charge between the points The ratio of the energy dissipated between the points to the current The ratio of the power dissipated between the points to the current	Spherical	
 perpendicular to the lines of force which statement describes the electric potential difference between two points in a wire 1 point that carries a current? Hint (use the Power Formula) * The force required to move a unit positive charge between the points The ratio of the energy dissipated between the points to the current The ratio of the power dissipated between the points to the current 	Closed Surfaces	
which statement describes the electric potential difference between two points in a wire 1 point that carries a current? Hint (use the Power Formula) * The force required to move a unit positive charge between the points The ratio of the energy dissipated between the points to the current The ratio of the power dissipated between the points to the current	Tangent to the electric lines of force	
that carries a current? Hint (use the Power Formula) * The force required to move a unit positive charge between the points The ratio of the energy dissipated between the points to the current The ratio of the power dissipated between the points to the current	perpendicular to the lines of force	
that carries a current? Hint (use the Power Formula) * The force required to move a unit positive charge between the points The ratio of the energy dissipated between the points to the current The ratio of the power dissipated between the points to the current		
 The ratio of the energy dissipated between the points to the current The ratio of the power dissipated between the points to the current 		1 point
The ratio of the power dissipated between the points to the current	The force required to move a unit positive charge between the points	
	The ratio of the energy dissipated between the points to the current	
The ratio of the power dissipated between the points to the charged move	The ratio of the power dissipated between the points to the current	
The fatto of the power dissipated between the points to the sharged move	The ratio of the power dissipated between the points to the charged move	
What can be used as the unit of energy? * 1 point	What can be used as the unit of energy? *	1 point
○ N/m	○ N/m	
○ VA	○ VA	
○ V/C	○ V/C	
● Ws	● Ws	

If a current of 2 A passes through a wire for 20 s, What number of electrons crossed the cross-section in this duration? *	1 point
1.5 X 10^20	
1.5 X 10^21	
1.5 x 10^22	
1.5 x 10^23	
The ratio of Drift velocity and Electric field is: *	1 point
qt/m	
O et/m	
O e/m	
Both qt/m and et/m	
Which of the following field is governed by the Maxwell's equations? *	1 point
Electrodynamics	
Optics	
C Electric circuits	
All of these	

It is often contended that V = iR is a statement of but it is known as	1 point
Ohm's law and equation for Potential Difference	
Ohm's law and equation for Current	
Ohm's law and equation for resistance	
equation for resistance and ohm's law	
What is the value of current in a wire of 100 cm long at right angle to the uniform magnetic field of 0.5 Tesla when the force acting on the wire is 5 N? *	1 point
O 10 A	
O.1 x 10^2 A	
1000 x 10^-2	
All of these	
A long straight wire of radius R=1 m carries a steady current 1 A. What is the magnetic field at the surface of the wire? * *	1 point
O.0002 mT	
O.2 mT	
O.002 mT	
● 0.02 mT	

What is the displacement current if you have an rate of change of electric field dE/dt=1 V/m and cross sectional area A= 3 m^2 . *	1 point
0.0265 nano ampere	
O.265 nano ampere	
26.5 nano ampere	
2.65 nano ampere	
If we increase the value of current as Square root of 4 times Ampere then how much value of voltage we will increase to keep the R constant in this equation R=V/I *	1 point
○ 4 V	
② V	
ono change	
○ 3 V	
The quantity analogue to potential difference is *	1 point
Pressure	
Mass	
○ Energy	
O Inertia	
Other:	

If the number of coulombs per second through a wire of 10 ohm resistance across 12 V line is 12, the current is *	1 point
○ 5 A	
O 10 A	
O 12 A	
● 15 A	
Gauss's Law is most useful in cases where the charge distributions *	1 point
are made up of discrete point charges	
are finite in their spatial extent	
give rise to inverse square law fields	
o posses a certain amount of symmetry	
Electric field intensity at a point is *	1 point
inversely proportional to the square of the distance from the charge	
Oirectly proportional to the square of the distance from the charge	
inversely proportional to the distance from the charge	
None of these	

This form was created inside of gift.edu.pk.

Google Forms