

Decision Trees

CS229: Machine Learning Carlos Guestrin **Stanford University**

Slides include content developed by and co-developed with Emily Fox

What makes a loan risky?

CS229: Machine Learning ©2021 Carlos Guestrin

Credit history explained

Income

Loan terms

Personal information

Classifier review

This module ... decision trees

Scoring a loan application

Decision tree learning problem

Training data: N observations (x_i, y_i)

Term	Income	у
3 yrs	high	safe
5 yrs	low	risky
3 yrs	high	safe
5 yrs	high	risky
3 yrs	low	risky
5 yrs	low	safe
3 yrs	high	risky
5 yrs	low	safe
3 yrs	high	safe
	3 yrs 5 yrs 3 yrs 5 yrs 5 yrs 5 yrs 3 yrs 5 yrs 5 yrs 5 yrs	3 yrs high 5 yrs low 3 yrs high 5 yrs high 3 yrs low 5 yrs low 3 yrs low 5 yrs low 1 yrs high 1 yrs high 1 yrs high 1 yrs high

13

Quality metric: Classification error

• Error measures fraction of mistakes

Error = # incorrect predictions # examples

– Best possible value : 0.0

– Worst possible value: 1.0

How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard!

Learning the smallest decision tree is an *NP-hard problem* [Hyafil & Rivest '76]

Our training data table

Assume N = 40, 3 features

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe
poor	5 yrs 3 yrs 5 yrs	high low	risky

Start with all the data

Loan status: Safe Risky

(all data) # of Risky loans

of Safe loans

N = 40 examples

Compact visual notation: Root node

Decision stump: Single level tree

20 ©2021 Carlos Guestrin CS229: Machine Learning

Visual notation: Intermediate nodes

Making predictions with a decision stump

For each intermediate node, set \hat{y} = majority value

How do we learn a decision stump?

How do we select the best feature?

How do we measure effectiveness of a split?

Calculating classification error

- Step 1: \hat{y} = class of majority of data in node
- Step 2: Calculate classification error of predicting ŷ for this data

Choice 1: Split on Credit history?

Choice 1: Split on Credit

Split on Credit: Classification error

Choice 1: Split on Credit

Choice 2: Split on Term?

Choice 2: Split on Term

30

Evaluating the split on Term

Choice 2: Split on Term

Error =	
=	

Tree	Classification error
(root)	0.45
Split on credit	0.2
Split on term	0.25

31

©2021 Carlos Guestrin

Choice 1 vs Choice 2: Comparing split on Credit vs Term

Tree	Classification	
	error	
(root)	0.45	
split on credit	0.2	
split on loan term	0.25	

Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - 1. Split data of M according to feature $h_i(x)$
 - 2. Compute classification error of split
- Chose feature h*(x) with lowest classification error

We've learned a decision stump, what next?

Tree learning = Recursive stump learning

Second level

37

Final decision tree

38

Simple greedy decision tree learning

39

Stopping condition 1: All data agrees on y

Stopping condition 2: Already split on all features

Greedy decision tree learning

• Step 1: Start with an empty tree

Is this a good idea?

Proposed stopping condition 3:
Stop if no split reduces the classification error

Stopping condition 3: Don't stop if error doesn't decrease???

Tree	Classification error
(root)	0.5

Consider split on x[1]

©2021 Carlos Guestrin

Tree	Classification error
(root)	0.5
Split on x[1]	0.5

Consider split on x[2]

Final tree with stopping condition 3

CS229: Machine Learning

Tree	Classification error	
with stopping condition 3	0.5	

47

Without stopping condition 3

Condition 3 (stopping when training error doesn't' improve) is not recommended!

x [1]	x [2]	у
False	False	False
False	True	True
True	False	True
True	True	False

Tree	Classification error
with stopping condition 3	0.5
without stopping condition 3	

48 ©2021 Carlos Guestrin CS229: Machine Learning

Decision tree learning: *Real valued features*

2021 Carlos Guestrin

How do we use real values inputs?

Income	Credit	Term	у
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

Threshold split

Finding the best threshold split

CS229: Machine Learning

52

Consider a threshold between points

Same classification error for any threshold split between v_A and v_B

Only need to consider mid-points

Threshold split selection algorithm

- Step 1: Sort the values of a feature h_j(x):
 Let {v₁, v₂, v₃, ... v_N} denote sorted values
- Step 2:
 - For i = 1 ... N-1
 - Consider split $t_i = (v_i + v_{i+1}) / 2$
 - Compute classification error for treshold split $h_j(x) >= t_i$
 - Chose the **t*** with the lowest classification error

Visualizing the threshold split

56

©2021 Carlos Guestrin

Split on Age >= 38

CS229: Machine Learning ©2021 Carlos Guestrin

Depth 2: Split on Income >= \$60K

Threshold split is the line Income = 60K

58

©2021 Carlos Guestrin

Each split partitions the 2-D space

©2021 Carlos Guestrin CS229: Machine Learning

Logistic regression

Feature	Value	Weight Learned
h ₀ (x)	1	0.22
h ₁ (x)	x[1]	1.12
h ₂ (x)	x[2]	-1.07

Depth 1: Split on x[1]

Depth 2

Threshold split caveat

Decision boundaries

Comparing decision boundaries

What you can do now

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions
- Tackle continuous and discrete features