Elasticity:
(Own) Price Elasticity
of Demand

Previously

- Demand and supply balance the desires of consumers and producers.
- Demand and supply steer the market price toward equilibrium.
- We learned the <u>direction</u> of changes in quantity demanded and quantity supplied as a result of a price change.
- In this chapter, studying elasticity will help us understand the <u>sensitivity</u> of consumers and producers to changes in price.

(Own) Price Elasticity of Demand

- Elasticity
 - Responsiveness of buyers and sellers to changes in market conditions.
- Why is it useful?
 - Prices or other demand and supply determinants could change.
 - -Understanding elasticity will help us improve the predictive power of our basic economic model.
 - Instead of just knowing the <u>direction</u> of a variable change, we can study the <u>size</u> of the change.

(Own) Price Elasticity of Demand

- Recall the law of demand
 - Demand curve is downward-sloping
 - This gives us the <u>direction</u> of the relationship between these two variables.
- Price elasticity of demand
 - A measure of the responsiveness of quantity demanded to a change in price
 - This gives us the <u>sensitivity</u> of the relationship between these two variables.

(Own) Price Elasticity of Demand

- Demand is <u>elastic</u> if
 - Quantity demanded changes significantly as the result of the price change
 - Elastic = "sensitive" or "responsive"

Demand is <u>inelastic</u> if

- Quantity demanded changes a small amount as the result of the price change
- Inelastic = "insensitive" or "unresponsive"

The Determinants of the (Own) Price Elasticity of Demand

1. Existence of substitutes

- Goods with lots of substitutes
 - Canned vegetables, breakfast cereals, many types of products with multiple brands
 - More elastic
- Goods with no good substitutes
 - Broadway theatre, rare coins, autographs, drinking water, electricity, Super Bowl tickets.
 - More inelastic

The Determinants of the (Own) Price Elasticity of Demand

- 2. Share of the budget spent on the good
 - Demand is more elastic for "big ticket" items that make up a large portion of income.
 - Demand is more inelastic for inexpensive items.
 - Which would you react to more?
 - 20% sale on a new vehicle you want
 - 20% sale on candy bar

The Determinants of the (Own) Price Elasticity of Demand

- 3. Time and adjustment process
 - Generally, demand for goods tends to become more elastic over time.
 - Over time, consumers are
 - More able to find substitutes
 - More able to adjust for price changes in other ways

Time Periods of Market Response

Time period name	How long?	Demand

Economics in The Simpsons

Homer misjudges the (own) price elasticity of demand for elephant services

http://www.criticalcommons.org/Members/AdrianFohr/clips/elasticity-necessity-or-luxury

Elasticity:

Computing the (Own)
Price Elasticity of
Demand

Computing the (Own) Price Elasticity of Demand

- Elasticity can help answer questions such as:
 - –Should a firm raise or lower the price of a good to increase revenues?
 - If an excise tax is placed on a good, how much tax revenue will be generated?

The (Own) Price Elasticity of Demand Formula

$$E_d = \frac{\sqrt[9]{_0\Delta Q_d}}{\sqrt[9]{_0\Delta P}}$$
 P & Q For the same good!

 Δ = change

Example

- University parking pass prices increase by 50%.
- As a result, 25% less people demand a parking pass.

$$E_d = \frac{\% \Delta Q_d}{\% \Delta P} = \frac{-25\%}{+50\%} = -0.5$$

Plug in

numbers

Example

$$E_d = \frac{\% \Delta Q_d}{\% \Delta P} = \frac{-25\%}{+50\%} = -0.5$$

- What does the numerical result mean?
 - In this case, the quantity demanded response was relatively small (compared to the price change).
 - -Demand is inelastic for parking.
- Why is it negative?
 - There is an inverse relationship between price and quantity demanded.

The Percent Formula has a problem.

- One issue with using the percent change formula.
 - -Price decreases from \$100 to \$80
 - A 20% change
 - -Price increases from \$80 to \$100
 - A 25% change!
- Thus, the "direction" of the variable change will change our numerical elasticity result.
 How can we fix this?

Midpoint Method

 The Midpoint Method is an alternative way to find elasticity. The formula is more complicated.

$$E_d = \frac{(\Delta Q_d)/(\text{average of } Q_d)}{(\Delta P)/(\text{average of } P)}$$

$$E_d = \frac{(Q_2 - Q_1)/(Q_1 + Q_2)/2}{(P_2 - P_1)/(P_1 + P_2)/2}$$

Midpoint Method

Example:

- "Old" price. P_1 = \$6 results in Q_1 = 15
- "New" price. P_2 = \$4 results in Q_2 = 25

$$E_{d} = \frac{(Q_{2} - Q_{1})/[(Q_{1} + Q_{2})/2]}{(P_{2} - P_{1})/[(P_{1} + P_{2})/2]}$$
Plug in numbers
$$E_{d} = \frac{(25 - 15)/[(15 + 25)/2]}{(4 - 6)/[(6 + 4)/2]}$$

$$E_d = \frac{10/20}{-2/5} = -1.25$$

Economics in Seinfeld

Jerry and George likely have different (own) price elasticity of demand for "The jacket"

https://www.youtube.com/watch? v=E7YF6 ODMdM&feature=youtu.be

Graphing the Price Elasticity of Demand

- If demand is relatively elastic
 - We are relatively sensitive to price changes
 - -The demand curve is relatively flatter
- If demand is relatively inelastic
 - We are relatively insensitive to price changes
 - -The demand curve is relatively steeper

Remembering Own Price Elasticity

- Relatively shallow (flat) demand curves are relatively more elastic.
- Relatively steep demand curves are relatively more inelastic.
- Ways to remember:
 - Steep demand curve looks like the letter "I," so it is "I"nelastic.
 - Steep demand curve has an almost "I"nfinite slope, and is "I"nelastic

Examples

$$E_d = \frac{\% \Delta Q_d}{\% \Delta P}$$

Elasticity	E _d coefficient	Interpretation	Example

Time, Elasticity, and Demand Curve

Slope and Elasticity

- Elasticity and the slope of the demand curve are related, but are NOT the same.
- In fact, with a linear demand curve:
 - -The slope will be the same at all points.
 - Elasticity will be different at all points.
 - Elasticity decreases (gets more inelastic) as we move down and right along a linear demand curve.

Slope ≠ Elasticity

Economics in *Jingle All* the Way

 Which good has the more relatively inelastic demand? Turbo Man or Booster?

https://www.youtube.com/watch?v=JpXKyo-ZeVI&feature=youtu.be

Elasticity:

(Own) Price Elasticity of Demand and Revenue

Demand Elasticity and Total Revenues

- Demand elasticity changes along a linear demand function. Who cares?
- Elasticity is related to total revenues.
 - Firms are interested in increasing total revenues.
 - Firms will need to know whether to increase or decrease price to increase revenues.
- Total revenues = Price × Quantity Purchased
 - Graphically, this is a rectangle connecting the origin and a point on the demand curve.

$$Q_d = 5 - P$$

Example
$$Q_d = 5 - P$$
 $E_d = \frac{\% \Delta Q_d}{\% \Delta P}$

Р	\mathbf{Q}_{d}	TR = (P) × (Q _d)	%ДР	% ΔQ _d	E _d	Interpretation
\$5	0	\$0	-22%	200%	-9.1	Highly elastic
\$4	1	\$4	-29%	67%	-2.3	Relatively elastic
\$3	2	\$6	-40%	40%	-1.0	Unitary
\$2	3	\$6	-67%	29%	-0.4	Relatively inelastic
\$1	4	\$4	-200%	22%	-0.1	Highly inelastic
\$0	5	\$0				

Elasticity and Revenue

- The previous table illustrated that:
 - -Revenue is related to elasticity.
 - Revenue is maximized at the unit elastic point on the linear demand function.
- Graphically, we can also show trade-offs when a firm changes the price of its good.
 - Increase price
 - Higher price per unit, but sell less units
 - Lower price
 - Lower price per unit, but sell more units

Total Revenue Trade-offs

Total Revenue Trade-offs

Total Revenue Trade-offs

Elasticity:
Other Elasticity of
Demand

Income Elasticity

- Changes in price
 - -Cause a movement along a demand curve
 - Affect your consumption of a good
- Changes in income
 - -Shift the demand curve
 - Also affects your consumption of a good
- Income elasticity
 - Responsiveness of the change in quantity
 purchased as a result of a change in income

Income Elasticity

$$E_I = \frac{\% \Delta Q_d}{\% \Delta I}$$

- Is this ratio positive or negative?
 - Income elasticity could be positive or negative, depending on the good.
 - If income elasticity is positive, there is also interest in whether it is a big or small positive number.

Income Elasticities

- Normal goods
 - -Goods we purchase more of when income rises
- Inferior goods
 - -Goods we purchase less of when income rises
- Normal goods fall into two categories:
 - -Luxuries
 - Purchase a lot more when income rises
 - Necessities
 - Purchase a little more when income rises

Income Elasticities $E_I = \frac{\% \Delta Q_d}{\% \Delta I}$

$$E_I = \frac{\% \Delta Q_d}{\% \Delta I}$$

Subcategory	Income elasticity	Example
	Subcategory	Subcategory Income elasticity

Cross-Price Elasticity

- While studying demand determinants, we learned that two goods can be related.
- Recall the intuition of substitute and complement goods.
- Cross-price elasticity
 - Measures the responsiveness of the quantity demanded of one good to a change in the price of another good

$$E_C = \frac{\% \Delta Q_d(A)}{\% \Delta P(B)}$$

Cross-Price Elasticities

Relationship between goods	Cross-price elasticity	Example

Elasticity:Own-Price Elasticity
of Supply

Own-Price Elasticity of Supply

- Producers of different goods have different sensitivities to changes in price.
- If the price of a good increases...
 - Will a firm produce a lot more of that good?
 - –Will a firm increase production by only a small amount?
 - -Why?
- Price elasticity of supply
 - Measure of the responsiveness of the quantity supplied to a change in price

Own-Price Elasticity of Supply Determinants

- Flexibility of producers
 - More production flexibility implies more elastic supply.
 - Firms will be very responsive to changes in price.
 - —A firm will have more production flexibility if it is able to:
 - Have extra capacity
 - Maintain inventory
 - Relocate easily

Own-Price Elasticity of Supply Determinants

- Time and adjustment process
 - -Immediate run
 - Suppliers are stuck with what they have on hand; no adjustment.
 - -Short run, long run
 - The more time that passes, the more the firm is able to adjust to market conditions.
 - Supply becomes more elastic over time.

Supply Elasticity over Time

Own-Price Elasticity of Supply

- Price elasticity of supply mathematically
 - Quantity supplied change as a result of a change in price

$$E_S = \frac{\% \Delta Q_S}{\% \Delta P}$$

- Will this ratio be positive or negative? Why?
 - Price elasticity of supply is positive because of the direct relationship between price and quantity supplied.

Supply Elasticity Examples

$$E_S = \frac{\% \Delta Q_S}{\% \Delta P}$$

Elasticity	Price elasticity of supply	Example

Combining Supply and Demand

- We've previously drawn shifts in demand and supply, and studied the changes in equilibrium price and quantity.
- How will the magnitude of the price and quantity change be affected if we change the demand or supply elasticity?

Oil Price Volatility

Conclusion

- Elasticity is a measure of sensitivity (responsiveness) between two variables.
- The ability to determine whether demand and supply are elastic or inelastic allows economists to calculate the effects of personal, business, and policy decisions.
- Understanding elasticity helps our economic model say much more about the world.