

L2/7 DAM
TR-4

LEHIGH UNIVERSITY INSTITUTE OF RESEARCH

20071012143

Office of Naval Research Contract Nonr-610(06)

Task Order NR 064-476

AD-647239

67-8

Technical Report No. 4

UNIQUENESS OF THE CONCENTRATED-LOAD PROBLEM IN THE LINEAR THEORY OF COUPLE-STRESS ELASTICITY

by

R. J. Hartranft

G. C. Sih

COUNTED IN

TECHNICAL LIBRARY
BLDG. 813
ABERDEEN PROVING GROUND, MD.
STEAP-TL

November, 1966

TR-4
L2/7 DAM

Department of Applied Mechanics
Lehigh University, Bethlehem, Pennsylvania

Office of Naval Research

Contract Nonr-610 (06)

Task Order NR 064-476

Technical Report No. 4

UNIQUENESS OF THE CONCENTRATED-LOAD PROBLEM IN THE LINEAR
THEORY OF COUPLE-STRESS ELASTICITY

by

R. J. Hartranft and G. C. Sih

Department of Applied Mechanics

Lehigh University

Bethlehem, Pennsylvania

November 1966

Reproduction in whole or in part is permitted by the United
States Government. Distribution of this document is unlimited.

TECHNICAL REPORT
DOCUMENT
ABERDEEN PROVING GROUND, MD
STEAP-TL

UNIQUENESS OF THE CONCENTRATED-LOAD PROBLEM IN THE LINEAR THEORY
OF COUPLE-STRESS ELASTICITY¹

by

R. J. Hartranft² and G. C. Sih³

In recent years, considerable attention has been focused on the linear theory of couple-stress elasticity. This Note is concerned with the development of certain conditions for uniqueness of solution in the couple-stress theory involving concentrated surface loads.

Because of the extensiveness of the literature on couple-stress problems, only those references which are relevant to the present investigation will be cited. The influence of couple-stresses on the stress distribution in a semi-infinite plane subjected to concentrated surface loads was studied by Muki and Sternberg [1]⁴, Tiwari [2], and Bert and Appl [3]. In [2,3], the conventional stresses were found to coincide with the Boussinesq solution of classical elasticity, while the couple-stresses were found to possess singularities of order r^{-2} , r being the radial distance measured from the point of application of the load. With the aid of Fourier transforms, Muki and Sternberg [1] solved the same problem but obtained results that disagree seriously with those in [2,3]. For the case of a concentrated load applied normal to the surface of a half-plane, one of the couple-stresses possessed merely a logarithmic singularity and the other remained finite at $r = 0$. In addition, the detailed structure of the singular terms of the conventional stresses is entirely different from that of the classical solution. The disagreement between the singular solutions in [1] and [2,3] could not be settled by the uniqueness theorem of Mindlin and Tiersten [4], since their theorem does not hold in the presence of discontinuous boundary loads. The need for a unique characterization of the concentrated-load problem in couple-stress elasticity is apparent.

¹This work is a result of research sponsored by the Office of Naval Research, U. S. Navy under Contract Nonr-610(06).

²Assistant Professor of Mechanics, Lehigh University, Bethlehem, Pa.

³Professor of Mechanics, Lehigh University, Bethlehem, Pa. Member ASME.

⁴Number in brackets designate References at end of Note.

Within the framework of the classical theory of elasticity, Sternberg and Eubanks [5] extended the classical uniqueness theorem to boundary-value problems with concentrated loads. They replaced the concentrated load by a system of statically equivalent surface tractions which are distributed continuously over a finite surface element around the concentrated-load point. The solution to the original problem is then defined as the limit of the solution to the distributed-loading problem, which is covered by the classical uniqueness theorem, as the surface element is shrunk to the load point. This limit-definition will also be adopted here in an effort to provide a unique formulation of the concentrated-load problem in the couple-stress theory of linear elasticity.

Stored Energy in Cosserat Medium

Before proceeding with the proof of uniqueness of solution in the presence of concentrated loads, the stored-energy expression will be cast into a convenient form. Under the conditions of plane strain [6], the energy density function for a Cosserat medium is

$$2W = \sigma_x \epsilon_x + \sigma_y \epsilon_y + (\tau_{xy} + \tau_{yx}) \epsilon_{xy} + \mu_x \kappa_x + \mu_y \kappa_y , \quad (1)$$

in which the curvatures κ_x , κ_y are proportional to the couple-stresses μ_x , μ_y ⁵:

$$\kappa_x = \frac{1}{4\eta} \mu_x , \quad \kappa_y = \frac{1}{4\eta} \mu_y . \quad (2)$$

The strain and stress relationships are

$$\begin{aligned} \epsilon_x &= \frac{1}{2G} [\sigma_x - \nu(\sigma_x + \sigma_y)] , & \epsilon_y &= \frac{1}{2G} [\sigma_y - \nu(\sigma_x + \sigma_y)] , \\ \epsilon_{xy} &= \frac{1}{4G} (\tau_{xy} + \tau_{yx}) . \end{aligned} \quad (3)$$

Substitution of eqs. (2) and (3) into (1) gives

$$2W = \lambda(\epsilon_x + \epsilon_y)^2 + 2G(\epsilon_x^2 + \epsilon_y^2 + 2\epsilon_{xy}^2) + 4\eta(\kappa_x^2 + \kappa_y^2) , \quad (4)$$

⁵The constant η in eq. (2) corresponds to the modulus of curvature or bending, B , in Mindlin's paper [6].

where λ , G are the Lamé coefficients and they are related to Poisson's ratio ν as

$$\lambda = 2G\nu / (1-2\nu) .$$

In order that W in eq. (4) is positive definite, it is necessary and sufficient to require

$$\lambda > 0 , \quad G > 0 , \quad \eta > 0 .$$

Moreover, knowing that the strains are related to the displacements u_x , u_y by⁶

$$\epsilon_x = u_{x,x} , \quad \epsilon_y = u_{y,y} , \quad 2\epsilon_{xy} = u_{x,y} + u_{y,x} , \quad (5)$$

and the curvatures to the rotation, $2\omega_z = u_{y,x} - u_{x,y}$, by

$$\kappa_x = \omega_{z,x} , \quad \kappa_y = \omega_{z,y} \quad (6)$$

eq. (1) or (4) may also be written in the form

$$2W = (\sigma_{x,x} + \tau_{xy} u_y + \mu_x \omega_z)_{,x} + (\sigma_{y,y} + \tau_{yx} u_x + \mu_y \omega_z)_{,y} . \quad (7)$$

In deriving eq. (7), use has been made of the equations of static equilibrium

$$\sigma_{x,x} + \tau_{yx,y} = 0 , \quad \tau_{xy,x} + \sigma_{y,y} = 0 , \quad \tau_{xy} - \tau_{yx} + \mu_x u_x + \mu_y u_y = 0 . \quad (8)$$

Now, the total energy stored in the Cosserat medium may be obtained by integrating eq. (7) and applying the divergence theorem. The result is

$$2 \iint_R W dA = \int_L [(\sigma_{x,x} + \tau_{xy} u_y + \mu_x \omega_z) dy - (\sigma_{y,y} + \tau_{yx} u_x + \mu_y \omega_z) dx] . \quad (9)$$

Expressing all quantities in eq. (9) in the directions normal and tangent to the boundary L , eq. (9) becomes

$$2 \iint_R W dA = \int_L (\sigma_n u_n + \tau_{ns} u_s + \mu_n \omega_z) ds . \quad (10)$$

Uniqueness Theorem for Concentrated Loads

Based on the positive definiteness of W and eq. (10), the following

⁶A comma is used to indicate differentiation such as $u_{x,x} = \partial u_x / \partial x$, etc.

uniqueness theorem in the couple-stress theory of elasticity may be established:

Let $\sigma_x^{(1)}, \sigma_y^{(1)}, \dots, \omega_z^{(1)}$ and $\sigma_x^{(2)}, \sigma_y^{(2)}, \dots, \omega_z^{(2)}$ be two possible solutions which are continuous and have piecewise continuous first partial derivatives in an open region containing R and its boundary L . Then the difference solution $\Delta\sigma_x = \sigma_x^{(1)} - \sigma_x^{(2)}$, etc. vanishes if and only if

$$\int_L (\Delta\sigma_n \Delta u_n + \Delta\tau_{ns} \Delta u_s + \Delta\mu_n \Delta\omega_z) ds = 0 . \quad (11)$$

The aforementioned theorem can be applied to problems involving singular loads if the points at which stress discontinuities occur are cut out from the region R . The original problem is then recovered by letting the size of the cut vanish. For definiteness sake, let a point O on the boundary L be subjected to concentrated forces p, q and a couple m as shown in Fig. 1(a). Now, consider a small semi-circular indentation of radius ρ removed from R and subject it to a system of finite stresses which are statically equivalent to p, q and m as

$$p = \int_{\mathcal{J}} [\sigma_n^{(i)} \cos\theta - \tau_{ns}^{(i)} \sin\theta] \rho d\theta, \quad q = \int_{\mathcal{J}} [\sigma_n^{(i)} \sin\theta + \tau_{ns}^{(i)} \cos\theta] \rho d\theta , \quad (12)$$

$$m = \int_{\mathcal{J}} [\mu_n^{(i)}] \rho d\theta$$

where $i = 1, 2$ and \mathcal{J} represents the interval $-\pi/2 \leq \theta \leq \pi/2$. The region R_1 in Fig. 1(b) is defined such that $R_1 \rightarrow R$ when ρ approaches zero. The expressions for p, q and m in eq. (12) are required to be integrable in the limit as $\rho \rightarrow 0$. Thus, the order of the stress singularities for $\sigma_n^{(i)}, \tau_{ns}^{(i)}$ and $\mu_n^{(i)}$ can at most be r^{-1} . Taking the difference of the two possible stress states denoted by

$$r^{-1} f_1(\theta) = \Delta\sigma_n \cos\theta - \Delta\tau_{ns} \sin\theta, \quad r^{-1} f_2(\theta) = \Delta\sigma_n \sin\theta + \Delta\tau_{ns} \cos\theta, \quad r^{-1} f_3(\theta) = \Delta\mu_n ,$$

eq. (12) reduces to

$$\int_{\mathcal{J}} f_i(\theta) d\theta = 0 , \quad i = 1, 2, 3 \quad (13)$$

Using eq. (13) and applying eq. (11) to the problem illustrated in Fig. 1(b) render the condition for uniqueness of solution⁷:

$$\int_{\mathcal{L}} [f_1(\theta) g_1(\rho, \theta) + \dots + f_3(\theta) g_3(\rho, \theta)] d\theta = 0 , \quad (14)$$

in which $g_i(\rho, \theta)$ are continuous functions of ρ , θ and are given by

$$g_1(\rho, \theta) = \Delta u_n \cos \theta - \Delta u_s \sin \theta, \quad g_2(\rho, \theta) = \Delta u_n \sin \theta + \Delta u_s \cos \theta, \quad g_3(\rho, \theta) = \Delta \omega_z .$$

Mean-Value Theorem

To establish eq. (14), the generalized first mean-value theorem of the integral calculus will be employed:

Let $f(x)$ and $g(x)$ be two continuous functions in the interval $a \leq x \leq b$, where $f(x) \geq 0$. There exists a number α intermediate between a and b such that

$$\int_a^b f(x) g(x) dx = g(\alpha) \int_a^b f(x) dx$$

Further, if L represents the union of disjoint intervals on each of which $f(x)$ is always positive (or negative), then the extension of the above theorem is

$$\int_{\mathcal{L}} f(x) g(x) dx \leq g(\alpha) \int_{\mathcal{L}} f(x) dx , \quad \alpha \in \mathcal{L} \quad (15)$$

The notation

$$I_i(\rho) = \int_{\mathcal{L}} f_i(\theta) g_i(\rho, \theta) d\theta , \quad i = 1, 2, 3 \text{ (no sum on } i \text{)} \quad (16)$$

which stands for a typical term of eq. (14), will be adopted. Therefore, it suffices to establish the uniqueness of solution by showing that

$I_i(\rho) \rightarrow 0$ as $\rho \rightarrow 0$. Letting $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2$ with the requirements that

⁷The usual boundary conditions are satisfied on $L - \mathcal{L}$ so that

$$\int_{L-\mathcal{L}} [\Delta \sigma_n \Delta u_n + \dots + \Delta \mu_n \Delta \omega_z] ds = 0 .$$

$$f_i(\theta) \geq 0 \quad \text{on } \ell_1, \text{ and} \quad f_i(\theta) \leq 0 \quad \text{on } \ell_2$$

eq. (13) yields

$$\int_{\ell_1} f_i(\theta) d\theta = - \int_{\ell_2} f_i(\theta) d\theta = K > 0 \quad . \quad (17)$$

Making use of eqs. (15) and (17), eq. (16) may be put into the form

$$\begin{aligned} I_i(\rho) &= \int_{\ell_1} f_i(\theta) g_i(\rho, \theta) d\theta + \int_{\ell_2} f_i(\theta) g_i(\rho, \theta) d\theta \\ &\leq K[g_i(\rho, \theta_1) - g_i(\rho, \theta_2)] \end{aligned} \quad (18)$$

Since $g_i(\rho, \theta)$ is continuous on ℓ , there exists a $\delta_1 > 0$ such that when the distance between the points (ρ, θ_1) and (ρ, θ_2) is less than δ_1 , the condition

$$|g_i(\rho, \theta_1) - g_i(\rho, \theta_2)| < \frac{\epsilon}{K}$$

holds for every positive number ϵ . Hence, there is a $\delta > 0$ such that whenever $\rho < \delta$ ⁸,

$$|I_i(\rho)| < \epsilon \quad \text{for } \epsilon > 0$$

and thus

$$\lim_{\rho \rightarrow 0} I_i(\rho) = 0 \quad .$$

This completes the proof of the uniqueness theorem for concentrated-load problems in the linear couple-stress theory of elasticity.

Concluding Remarks

The results of the present investigation provide the following conditions for uniqueness:

(1) Conventional- and couple-stresses must be continuous and have piecewise continuous first partial derivatives at every point of the medium except, perhaps, at the point where the concentrated loads are applied. The same conditions must be satisfied by the displacements and rotation. Geometric discontinuities are to be excluded.

⁸For this problem, $\delta = 1/2 (\delta_1)$.

(2) All quantities such as stresses, displacements, etc. must vanish as $r \rightarrow \infty$ if the boundary extends to infinity.

(3) The conventional- and couple-stress singularities can at most be $O(r^{-1})$, where r is the radial distance measured from the point of application of the concentrated loads.

(4) The stress system on a semi-circular cut about $r = 0$ must be statically equivalent to the applied loads.

(5) At other points of the boundary, the usual boundary conditions such as σ_n , τ_{ns} and μ_n must satisfy their prescribed values.

References

- (1) R. Mukti and E. Sternberg, The Influence of Couple-Stresses on Singular Stress Concentrations in Elastic Solids , Zeitschrift fur angewandte Mathematik und Physik, Vol. 16, 1965, pp. 611-648.
- (2) G. R. Tiwari, Effect of Couple Stress on the Elastic Stress Distribution in a Semi-Infinite Plate under a Concentrated Load , Journal of Science and Engineering Research, India, Vol. 9, No. 1, 1965, pp. 30-38.
- (3) C. W. Bert and F. J. Appl, Two-Dimensional Couple-Stress Elasticity with Application to Two Examples Involving Concentrated Loadings , Proceedings of the Fifth U. S. National Congress of Applied Mechanics, 1966, p. 245.
- (4) R. D. Mindlin and H. F. Tiersten, Effect of Couple-Stresses in Linear Elasticity , Arch. Rational Mech. Analysis, Vol. II, 1962, pp. 415-448.
- (5) E. Sternberg and R. A. Eubanks, On the Concept of Concentrated Loads and an Extension of the Uniqueness Theorem in the Linear Theory of Elasticity , Journal of Rational Mech. and Analysis, Vol. 4, 1955, pp. 135-168.
- (6) R. D. Mindlin, Influence of Couple Stresses on Stress Concentrations , Experimental Mechanics, Vol. 3, 1963, pp. 1-7.

Fig. 1(a) - Concentrated forces and couple.

Fig. 1(b) - Equivalent distributed loads.

PART I - GOVERNMENT

Administrative & Liaison Activities

Chief of Naval Research
Attn: Code 102 (Dr. F. J. Weyl)
423
439
468
(2)

Department of the Navy
Washington, D. C. 20360

Commanding Officer
ONR Branch Office
495 Summer Street
Boston, Massachusetts 02210

Commanding Officer
ONR Branch Office
219 S. Dearborn Street
Chicago, Illinois 60604

Commanding Officer
ONR Branch Office
Box 39, Navy 100
c/o Fleet Post Office
New York, New York 09510
(5)

Commanding Officer
ONR Branch Office
207 West 24th Street
New York, New York 10011

Commanding Officer
ONR Branch Office
1030 E. Green Street
Pasadena, California 91101

Commanding Officer
ONR Branch Office
U.S. Post Office & Courts Bldg.
1076 Mission Street
San Francisco, California 94103

U. S. Naval Research Laboratory
Attn: Technical Information Div.
Washington, D. C. 20390
(6)

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314
(20)

Army

Commanding Officer
U. S. Army Research Off.-Durham
Attn: Mr. J. J. Murray
CRD-AA-IP
Box CM, Duke Station
Durham, North Carolina 27706

Commanding Officer
AMMRR-ATL
U. S. Army Materials Res. Agency.
Watertown, Massachusetts 02172

Redstone Scientific Info. Center
Chief, Document Section
U. S. Army Missile Command
Redstone Arsenal, Alabama 35809

AMSMR-RKP
Attn: Mr. T. H. Duerr
Redstone Arsenal, Alabama 35809

Ballistic Research Laboratories
Attn: Dr. A. S. Elder
Aberdeen Proving Ground
Aberdeen, Maryland 21005

Ballistic Research Laboratories
Attn: Mr. H. P. Gay
AMBR-ID
Aberdeen Proving Ground
Aberdeen, Maryland 21005

Technical Library
Aberdeen Proving Ground
Aberdeen, Maryland 21005

Navy
Commanding Officer and Director
Attn: Code Q42 (Cent. Lib. Br.)
050
700 (Struc. Mech. Lab.)
720
725
740 (Mr. W. J. Sette)
901 (Dr. M. Strassberg)
911 (Dr. R. Liebowitz)
915 (Mr. A. O. Sykes)
960 (Mr. E. F. Noonan)
962 (Dr. E. Buchmann)
David Taylor Model Basin
Washington, D. C. 20007

Navy (cont'd.)

Director
Aeronautical Structures Lab.
Naval Air Engineering Center
Naval Base
Philadelphia, Pennsylvania 19112

Director
Attn: Code 5360
5500
6200
6210
6250
6260

Technical Library
Naval Research Laboratory
Washington, D. C. 20390

Chief, Bureau of Naval Weapons
Attn: Code DLI-3
R-12
RAAD-2
RAAD-24 (Mr. E. M. Ryan)
RM
RMMP-2
RMMP-11 (Mr. I. Silver)
RMMP-22 (Mr. J. C. Ardinger)
RR
RREE
RREE-61 (Mr. W. J. Marciniaik)
RU

Department of the Navy
Washington, D. C. 20360

Chief, Bureau of Ships
Attn: Code 210-L
305
345
421

Department of the Navy
Washington, D. C. 20360

Chief, Bureau of Ships
Attn: Code 210-L
305
345
421
423
430
440
442
443
1500

Department of the Navy
Washington, D. C. 20360

Commander
U. S. Naval Weapons Laboratory
Dahlgren, Virginia 22448

Bureau of Yards & Docks Tech. Lib.
Yards & Docks Annex
Department of the Navy
Washington, D. C. 20390

Air Force

Commander, WADD
Attn: Code WWRMDD
AFFDL (FDD)
Structures Division
AFLC (MCEKA)
Code WWRMDS
AFFDL (FUT)
Code WWRM
APML (MAAM)
Code WCLSY
SED (SEPSD, Mr. Lakin)
Wright-Patterson Air Force Base
Dayton, Ohio 45433

Commander
Chief, Applied Mechanics Group
U. S. Air Force Inst. of Tech.
Wright-Patterson Air Force Base
Dayton, Ohio 45433

Chief, Civil Engineering Branch
MLRC, Research Division
Air Force Weapons Laboratory
Kirtland AFB, New Mexico 87117

Commander
APRPL (RPMC/Dr. F. N. Kelley)
Edwards AFB, California 93523

Commander
Attn: Mr. A. L. Skinner, COMQQC
Hill AFB, Utah 84401

Commander
Mechanics Division
Air Force Office of Scien. Res.
Washington, D. C. 20333

NASA

Structures Research Division
Attn: Mr. R. R. Heldenfels, Chief
National Aeronautics & Space Admin.
Langley Research Center
Langley Station
Hampton, Virginia 23365

Navy (cont'd.)

Undersea Explosion Research Div.
Attn: Mr. D. S. Cohen
Code 780
David Taylor Model Basin
Norfolk Naval Shipyard
Portsmouth, Virginia 23709

Commanding Officer & Director
Code 257, Library
U. S. Navy Marine Engr. Lab.
Annapolis, Maryland 21402

Commander
Technical Library
U. S. Naval Ordnance Test Station
Pasadena Annex
3202 E. Foothill Blvd.
Pasadena, California 91107

U. S. Naval Ordnance Test Station
Attn: Dr. Arnold Adicoff
Code 5056
China Lake, California 93557

Commander
U. S. Naval Ordnance Test Station
Mechanical Engineering Division
Code 556
China Lake, California 93557

Commanding Officer & Director
U. S. Naval Civil Engr. Lab.
Code L31
Port Hueneme, California 93041

Shipyard Technical Library
Code 242L
Portsmouth Naval Shipyard
Portsmouth, New Hampshire 03804

U. S. Naval Electronics Laboratory
Attn: Dr. R. J. Christensen
San Diego, California 92152

U. S. Naval Ordnance Laboratory
Mechanics Division
RFD 1, White Oak
Silver Spring, Maryland 20910

U. S. Naval Ordnance Laboratory
Attn: Mr. H. A. Perry, Jr.
Non-Metallic Materials Division
Silver Spring, Maryland 20910

Supervisor of Shipbuilding
U. S. Navy
Newport News, Virginia 23607

Shipyard Technical Library
Building 746, Code 3031L
Marine Island Naval Shipyard
Vallejo, California 94592

Director
U.S. Navy Underwater Sound Ref. Lab.
Office of Naval Research
P. O. Box 8337
Orlando, Florida 32806

Technical Library
U. S. Naval Propellant Plant
Indian Head, Maryland 20640

U. S. Naval Propellant Plant
Attn: Dr. J. G. Tuono
Research & Development Division
Indian Head, Maryland 20640

Chief of Naval Operations
Attn: Code Op-0360
Op-077
Department of the Navy
Washington, D. C. 20350

Director, Special Projects
Attn: Sp-001
43
2731

Department of the Navy
Washington, D. C. 20360

Executive Secretary PLR RD
Special Projects Office (Sp-00110)
Department of the Navy
Washington, D. C. 20360

U. S. Naval Applied Science Lab.
Code 9832

Technical Library
Building 291, Naval Base
Brooklyn, New York 11251

Director
Aeronautical Materials Lab.
Naval Air Engineering Center
Naval Base
Philadelphia, Pennsylvania 19112

NASA (cont'd.)

National Aeronautics & Space Admin.
Code RV-2
Washington, D. C. 20546

National Aeronautics & Space Admin.
Associate Administrator for Advanced
Research & Technology
Washington, D. C. 20546

Scientific & Tech. Info. Facility
NASA Representative (S-AM/DL)
P. O. Box 5700
Bethesda, Maryland 20014

Other Government Activities

Commandant
Testing & Development Div.
U. S. Coast Guard
1300 E Street, N. W.
Washington, D. C. 20226

Director
Marine Corps Landing Force Devel. Cen.
Marine Corps Schools
Quantico, Virginia 22134

Director
Attn: Mr. B. L. Wilson
National Bureau of Standards
Washington, D. C. 20234

National Science Foundation
Engineering Division
1951 Constitution Avenue, N. W.
Washington, D. C. 20550

Science & Tech. Division
Library of Congress
Washington, D. C. 20540

Director
STBS
Defense Atomic Support Agency
Washington, D. C. 20301

Commander Field Command
Defense Atomic Support Agency
Sandia Base
Albuquerque, New Mexico 87115

Chief, Defense Atomic Support Agy.
Blast & Shock Division
The Pentagon
Washington, D. C. 20301

Director Defense Research & Engr.
Technical Library
Room 3C-128
The Pentagon
Washington, D. C. 20301

Chief, Airframe & Equipment Branch
F5-120
Office of Flight Standards
Federal Aviation Agency
Washington, D. C. 20553

Chief, Division of Ship Design
Maritime Administration
Washington, D. C. 20235

Deputy Chief, Office of Ship Constr.
Attn: Mr. U. L. Russ
Maritime Administration
Washington, D. C. 20235

Executive Secretary
Committee on Undersea Warfare
National Academy of Sciences
2101 Constitution Avenue
Washington, D. C. 20418

Ship Hull Research Committee
Attn: Mr. A. R. Lytle
National Research Council
National Academy of Sciences
2101 Constitution Avenue
Washington, D. C. 20418

PART II - CONTRACTORS AND OTHER
TECHNICAL COLLABORATORS

Universities

Dr. D. C. Drucker
Division of Engineering
Brown University
Providence, Rhode Island 02912

Universities (cont'd.)

Prof. M. E. Gurtin
Brown University
Providence, Rhode Island 02912

Prof. R. S. Rivlin
Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912

Prof. P. J. Blatz
Materials Science Department
California Institute of Technology
Pasadena, California 91109

Prof. Julius Miklowitz
Div. of Engr. & Applied Sciences
California Institute of Technology
Pasadena, California 91109

Prof. George Sih
Department of Mechanics
Lehigh University
Bethlehem, Pennsylvania 18015

Solid Propellant Library
Firestone Flight Science Lab.
California Institute of Technology
Pasadena, California 91109

Prof. Eli Sternberg
Div. of Engr. & Applied Sciences
California Institute of Technology
Pasadena, California 91109

Prof. Paul M. Naghdhi
Div. of Applied Mechanics
Etcheverry Hall
University of California
Berkeley, California 94720

Prof. J. Baltrukonis
Mechanics Division
The Catholic Univ. of America
Washington, D. C. 20017

Prof. A. J. Durelli
Mechanics Division
The Catholic Univ. of America
Washington, D. C. 20017

Prof. H. H. Bleich
Department of Civil Engr.
Columbia University
Amsterdam & 120th Street
New York, New York 10027

Prof. R. D. Mindlin
Department of Civil Engr.
Columbia University
S. W. Mudd Building
New York, New York 10027

Prof. B. A. Boley
Department of Civil Engr.
Columbia University
Amsterdam & 120th Street
New York, New York 10027

Prof. F. L. DiMaggio
Department of Civil Engr.
Columbia University
616 Mudd Building
New York, New York 10027

Prof. A. M. Freudenthal
Dept. of Civil Engr. & Engr. M.
Columbia University
New York, New York 10027

Prof. William A. Nash
Dept. of Engr. Mechanics
University of Florida
Gainesville, Florida 32603

Prof. B. Budiansky
Div. of Engr. & Applied Physics
Pierce Hall
Harvard University
Cambridge, Massachusetts 02138

Prof. P. G. Hodge
Department of Mechanics
Illinois Institute of Technology
Chicago, Illinois 60616

Universities (cont'd.)

Dr. S. L. Koh
School of Aero., Astro. & Engr. Sc.
Purdue University
Lafayette, Indiana 47907

Prof. D. Schapery
Purdue University
Lafayette, Indiana 47907

Prof. E. H. Lee
Div. of Engr. Mechanics
Stanford University
Stanford, California 94305

Dr. Nicholas J. Hoff
Dept. of Aero. & Astro.
Stanford University
Stanford, California 94305

Prof. J. N. Goodier
Div. of Engr. Mechanics
Stanford University
Stanford, California 94305

Prof. Markus Reiner
Technion R & D Foundation, Ltd.
Haifa, Israel

Prof. Tsuyoshi Hayashi
Department of Aeronautics
Faculty of Engineering
University of Tokyo
BUNKYO-KU
Tokyo, Japan

Prof. R. J. H. Bolland
Chairman, Aeronautical Engr. Dept.
207 Guggenheim Hall
University of Washington
Seattle, Washington 98105

Prof. Albert S. Kobayashi
Dept. of Mechanical Engr.
University of Washington
Seattle, Washington 98105

Officer-in-Charge
Post Graduate School for Naval Off.
Webb Institute of Naval Arch.
Crescent Beach Road, Glen Cove
Long Island, New York 11542

Industry and Research Institutes

Mr. K. W. Bills, Jr.
Dept. 4722, Bldg. 0525
Aerojet-General Corporation
P. O. Box 1947
Sacramento, California 95809

Dr. James H. Wiegand
Senior Dept. 4720, Bldg. 0525
Ballistics & Mech. Properties Lab.
Aerojet-General Corporation
P. O. Box 1947
Sacramento, California 95809

Dr. John Zickel
Dept. 4650, Bldg. 0227
Aerojet-General Corporation
P. O. Box 1947
Sacramento, California 95809

Mr. J. S. Wise
Aerospace Corporation
P. O. Box 1308
San Bernardino, California 92402

Dr. Vito Salerno
Applied Technology Assoc., Inc.
29 Church Street
Ramsey, New Jersey 07446

Library Services Department
Report Section, Rdg. 14-14
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, Illinois 60440

Dr. E. M. Kerwin
Bolt, Beranek, & Newman, Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

Dr. M. C. Junger
Cambridge Acoustical Associates
129 Mount Auburn Street
Cambridge, Massachusetts 02138

Dr. F. R. Schwarzl
Central Laboratory T.N.O.
134 Julianalaan
Delft, Holland

Mr. J. Edmund Fitzgerald
Director, Research & Engr.
Lockheed Propulsion Company
P. O. Box 111
Redlands, California 92374

Library
Newport News Shipbuilding &
Dry Dock Company
Newport News, Virginia 23607

Mr. E. A. Alexander
Rocketdyne Division
North American Aviation, Inc.
6633 Canoga Avenue
Canoga Park, California 91304

Mr. Caesar P. Nuguid
Deputy Commissioner
Philippine Atomic Energy Commission
Manila, Philippines

Mr. S. C. Britton
Solid Rocket Division
Rocketdyne
P. O. Box 548
McGregor, Texas 76657

Dr. A. J. Ignatowski
Redstone Arsenal Research Div.
Rohr & Haas Company
Huntsville, Alabama 35807

Dr. M. L. Merritt
Division Sl12
Sandia Corporation
Sandia Base
Albuquerque, New Mexico 87115

Director
Ship Research Institute
Ministry of Transportation
700, SHINKAWA
Mitaka
Tokyo, JAPAN

Dr. H. N. Ahramian
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78206

Dr. M. L. Baron
Paul Wiedlinger, Consulting Engr.
777 Third Ave. - 22nd Floor
New York, New York 10017

Industry & Research Inst. (cont'd.)Industry & Research Inst. (cont'd.)

Dr. R. C. DeHart
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78206

Dr. Thor Smith
Stanford Research Institute
Menlo Park, California 94025