Chapter 1: Exercises

Exercise 1: caches

Given: a L₁ cache of 32 Kbyte, 8-way set associative, cache line size of 64 Byte. Consider a matrix-vector multiplication A * x (algorithm A) of a 256 x 256 matrix using double precision elements. The matrix is stored in column-major format. The matrix is not preloaded in cache memory.

Exercise 2: caches

Given: a L₁ cache of 32 Kbyte, 8-way set associative, cache line size of 64 Byte. Consider a matrix-vector multiplication A * x (algorithm A) of a 256 x 255 matrix using double precision elements. The matrix is stored in column-major format. The matrix is not preloaded in cache memory.

Exercise 3: caches

Given: a L_1 cache of 32 Kbyte, 8-way set associative, cache line size of 64 Byte. Consider a matrix-vector multiplication A * x (algorithm A) of a 255 x 256 matrix using double precision elements. The matrix is stored in column-major format. The matrix is not preloaded in cache memory.

Exercise 4: caches

Given: a L₁ cache of 32 Kbyte, 8-way set associative, cache line size of 64 Byte. Consider a matrix-vector multiplication A * x (algorithm A) of a 64 x 64 matrix using double precision elements. The matrix is stored in column-major format. The matrix is not preloaded in cache memory.

Chapter 2: Exercises

Allreduce algorithm

Q: Develop an algorithm for the allreduce routine. Derive the time complexity for that algorithm. Assume a fully non-blocking (duplex) network.

Solution 1: butterfly communication scheme

$$T_{sol1} = (\alpha + \beta n + \gamma n) \log_2 P$$
 (assume $P = 2^i$)

Solution 2: reduce-scatter + allgather

 $T_{sol2} = \alpha log_2 P + (\beta n + \gamma n)(1-1/P) + ...$

Solution 2: reduce-scatter + allgather (cont'd)

(modified) allgather operation

$$T_{sol2} = 2\alpha \log_2 P + (2\beta n + \gamma n)(1-1/P)$$
 (assume P = 2ⁱ)

Exercise 2: Sendrecv

How would you implement MPI_Sendrecv so that it will never deadlock? What other benefits might you expect compared to using a blocking send / receive?

Exercise 3: Speedup and efficiency

```
Given: T_1(N) = N^2; T_P(N) = N^2/P + log_2P
```

- What is the speedup?
- What is the efficiency?
- For fixed N, what is the limit for large P?
- For fixed P, what is the limit for large N?

Exercise 4: Isoefficiency

Given:
$$T_1(N) = N$$
; $T_P(N) = N/P + log_2P$

If we increase the P by a factor of k, by what factor do we need to increase N in order to maintain constant efficiency?

Exercise 5: Amdahl's law

The financial cost C_f for renting compute power on a cluster is proportional to the product of the wall clock time T_P and the number of CPU cores allocated, i.e. $C_f = P \cdot T_P$

Derive an expression for the optimum number of CPUs (P_{opt}) that minimizes the cost function $C = C_f \cdot T_P$ Assume that T_P can be expressed by Amdahl's law.

What is the optimum P for s = 1% and s = 5%?

What about efficiency?

Optimal number of CPUs

Exercise 6: Message Passing Interface

Write an MPI program that outputs data (e.g. writing data to disc) in rank order (pseudocode)

Exercise 7: Mesh networks

Given a square mesh network organized as VP x VP machines Each machine can communicate to one of its four neighbors

What is the bisection bandwidth? What is the diameter?

Exercise 8: Mesh networks

Same mesh network. Derive a broadcast algorithm and derive time complexity.