block name 1

1. Fixed points cardinality

Martin Azpillaga

Let:

$$f: [0,1] \to [0,1] \in C^2([0,1])$$

$$f(1) < 1$$

$$f'' > 0 \in [0,1]$$

Show that:

$$\cdot \# \{x \in [0,1] \mid f(x) = x\} = 1$$

Demonstration:

$$\{x \in [0,1] \mid f(x) = x\} \ge 1$$
:

Case $f(0) = 0$:

0 fixed point

Case $f(0) > 0$:

 $g: [0,1] \longrightarrow [-1,1]$
 $x \longmapsto f(x) - x \in \mathcal{C}^2([0,1])$
 $g(0) = f(0) - 0 > 0$
 $g(1) = f(1) - 1 < 0$

Bolzano's theorem:

 $\exists x \in (0,1)$:

 $g(x) = 0$

f(x) = x

block name 3

$$\{x \in [0,1] \mid f(x) = x\} \le 1$$
:

g'' > 0 over [0, 1]

Rolle's theorem:

$$\# \{x \in (0,1) \mid g'(x) = 0\} \le 1$$

$$\# \{x \in (0,1) \mid g(x) = 0\} \le 2$$

$$\# \{x \in (0,1) \mid f(x) = x\} \le 2$$

$$f'' > 0$$
 over $[0, 1]$

Monotonicity test:

f' increasing in [0,1]

$$\forall \ a < b \in [0,1) \ \ _{\Pi} f(a) = a, f(b) = b$$
:

Mean Value Theorem:

$$\exists c \in (a,b)$$
:

$$f'(c) = \frac{f(b) - f(a)}{b - a} = 1$$

 $\exists d \in (b,1)$:

$$f'(d) = \frac{f(1) - f(b)}{1 - b} < 1$$

$$f'$$
 increasing $\rightarrow f'(c) < f'(b) < f'(d)$

$$1 < f'(b) < 1$$
 absurd

$$\therefore$$
) # { $x \in [0,1] | f(x) = x$ } = 1