Esame LFC 2023-09

Esercizio 1

"Se una grammatica è LR(1) allora è anche LALR(1)." se la frase è vera scrivere **VERO** altrimenti **FALSO**.

Esercizio 2

Sia $r = a|(\varepsilon|b)(\varepsilon|b)^*a$ un espressione regolare e \mathcal{D} il DFA minimo tale che $L(r) = L(\mathcal{D})$, quanti stati ha \mathcal{D} ? Quanti di questi sono finali?

Esercizio 3

Sia \mathcal{N} un NFA con stato iniziale A e stati finali $\{A, C, D\}$.

		a	
	A	$\{B, E\}$	
	В	$\{C, F\}$	
\mathcal{N} :	С	Ø	
	D	{B, E}	
	E	{C, F}	
	F	Ø	

Dire quanti stati ha il DFA ottenuto con subset construction da \mathcal{N} , quanti di questi stati sono finali?

Esercizio 4

$$\mathcal{G}_{235}: \left\{ \begin{array}{c} S \to aS|B|\varepsilon \\ B \to bB|S \end{array} \right.$$

Scrivere la riga della tabella di parsing LL(1) per il non terminale S.

Esercizio 5

Sia \mathcal{D} un DFA con stato iniziale A e stato finale B.

		a	b
\mathcal{D} :	A	В	С
	В	D	С
	С	D	Ø
	D	С	В

Scrivere "MINIMO" se \mathcal{D} è già minimo, altrimenti scrivere quanti stati ha il DFA minimo e quanti di questi sono finali.

Esercizio 6

Sia \mathcal{A} l'automa caratteristico per il paringLR(1) di \mathcal{G}_{235} , I lo stato iniziale di \mathcal{A} , T la tabella di parsing LR(1) per \mathcal{G}_{235} . Se T non contiene alcun conflitto nello stato $I\llbracket aaS \rrbracket$, rispondere "NO CONFLICT". Altrimenti, per ciascuna X tale che $T[I\llbracket aaS \rrbracket, X]$ contiene un conflitto, dire, specificando quale X si fa riferimento: (i) di che tipo di conflitto si tratta; (ii) quale/i riduzione/i sono coinvolte.

Esercizio 7

Se \mathcal{G}_{235} è una grammatica LALR(1) scrivere "LALR" altrimenti scrivere "NON LALR".

Esercizio 8

$$S_{235}: \begin{cases} S \to B & \{S.v = B.v\} \\ B \to t & \{B.v = true\} \\ B \to f & \{B.v = false\} \\ B \to B_1 \ i \ B_2 & \{B.v = (not \ B_1.v) \ or \ B_2.v\} \\ B \to B_1 \ a \ B_2 & \{B.v = B_1.v \ and \ B_2.v\} \\ B \to n \ B_1 & \{B.v = not \ B_1.v\} \end{cases}$$

Il praser LALR(1) per S_{235} ha 6 conflitti in $[P[\![n\ B]\!], i]$, $[P[\![n\ B]\!], a]$, $[P[\![B\ i\ B]\!], i]$, $[P[\![B\ i\ B]\!], i]$, $[P[\![B\ i\ B]\!], i]$, Per rendere l'operatore a associativo a sinistra che conflitto/i devo risolvere? Con che operazione?

Esercizio 9

$$\begin{cases} S \rightarrow id = E & \{gen(table.get(id) \ ' = ' E.addr)\} \\ L \rightarrow id \ [E] \end{cases}$$

Completare la grammatica con le regole da associare alla seconda produzione, la grammatica è l'esempio visto in classe per l'indirzzamento di array in row major order.

Esercizio 10

$$\begin{cases} R \rightarrow S & \{eval(S.n)\} \\ S \rightarrow a \ A \ B & \{S.n = newNode(1,A.n,B.n)\} \\ S \rightarrow a \ d \ S_1 & \{S.n = newNode(2,null,S_1.n)\} \\ A \rightarrow C \ a & \{A.n = newNode(3,C.n,null)\} \\ B \rightarrow C \ b & \{B.n = newNode(4,null,C.n)\} \\ C \rightarrow \varepsilon & \{C.n = newNode(5,null,null)\} \end{cases}$$

La funzione newNode(val, sx, dx) crea un nodo il valore è val e sx, dx sono rispettivamente i figli destro e sinistro. La funzione eval(N) è definita come:

```
\begin{array}{l} \operatorname{eval}(N) \{ \\ \text{if } (N.\,\mathrm{d}x \neq \operatorname{null}) \ \operatorname{eval}(N.\,\mathrm{d}x) \\ \operatorname{print}(N.\,\operatorname{val}) \\ \text{if } (N.\,\operatorname{sx} \neq \operatorname{null}) \ \operatorname{eval}(N.\,\operatorname{sx}) \} \end{array}
```

Se la parola *adaab* non appartiene al linguaggio scrivere "**ERRORE**" altrimenti scrivere cosa ritorna la funzine eval.