EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos Militares

2000

PROVA ESCRITA DE MATEMÁTICA

Primeira Parte

- As sete questões desta primeira parte são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- **1.** O conjunto dos zeros de uma função g, de domínio \mathbb{R} , é $\{1,2\}$. Seja h a função, de domínio \mathbb{R} , definida por h(x)=g(x). $(x-3)^2$ Quais são os zeros da função h?
 - **(A)** 1, 2 e 3

(B) 1, 4 e 9

(C) $1, \sqrt{3}$ e 4

- **(D)** $-\sqrt{3}$, 1, $\sqrt{3}$ e 2
- **2.** Considere uma função f, de domínio \mathbb{R} , definida por $f(x)=e^{\,x\,+\,a}$, onde a designa um certo número real.

O gráfico de $\,f\,$ intersecta o eixo $\,Oy\,$ no ponto de ordenada $\,2.$ Indique o valor de $\,a.\,$

- **(A)** ln 2
- **(B)** 2
- (C) e^2
- **(D)** $e + \ln 2$

3. De uma certa função g sabe-se que:

$$\lim_{x\to 3^-}g(x)= \ +\infty \qquad \qquad g(3)=1 \qquad \qquad \lim_{x\to 3^+}g(x)=2$$

$$g(3) = 1$$

$$\lim_{x \to 3^+} g(x) = 2$$

Qual das afirmações seguintes é verdadeira?

- (A) O contradomínio da função $\,g\,$ é o intervalo $\,[\,2\,,\,+\infty\,[\,$
- **(B)** 3 não pertence ao domínio da função g
- **(C)** A recta de equação x=3 é assimptota do gráfico da função g
- **(D)** Existe $\lim_{x \to 3} g(x)$
- 4. Na figura está representado um triângulo rectângulo [ABC], cuja hipotenusa mede 2 m.

Qual das expressões seguintes dá a área (em m^2) do triângulo [ABC], em função da amplitude, α , do ângulo ABC ?

(A) $2 \cdot \sin \alpha \cdot \cos \alpha$

(B) $2 \cdot \operatorname{sen} \alpha \cdot \operatorname{tg} \alpha$

(C) $4 \cdot \sin \alpha \cdot \cos \alpha$

- **(D)** $4 \cdot \operatorname{sen} \alpha \cdot \operatorname{tg} \alpha$
- 5. Um frigorífico tem cinco prateleiras.

Pretende-se guardar, nesse frigorífico, um iogurte, um chocolate e um queijo.

De quantas maneiras diferentes se podem guardar os três produtos no frigorífico, sabendo que devem ficar em prateleiras distintas?

- (A) ${}^{5}C_{3}$
- **(B)** ${}^{5}A_{3}$
- (C) 5^3

6. Seja S o conjunto de resultados (com um número finito de elementos) associado a uma certa experiência aleatória.

Sejam $\,A\,$ e $\,B\,$ dois acontecimentos, contidos em $\,S\,$, nenhum deles impossível, nem certo.

Sabe-se que $A \subset B$.

Indique qual das afirmações seguintes é verdadeira (P designa probabilidade e \overline{A} e \overline{B} designam os acontecimentos contrários de A e de B, respectivamente).

(A)
$$P(A) > P(B)$$

(B)
$$P(A \cap B) = 0$$

(C)
$$P(A \cup B) = 1$$

(D)
$$P(\overline{A}) \ge P(\overline{B})$$

7. Seja $z=y\,i$, com $y\in\mathbb{R}\backslash\{0\}$, um número complexo (i designa a unidade imaginária).

Qual dos quatro pontos representados na figura abaixo pode ser a imagem geométrica de $\,z^{\,4}\,$?

(A) O ponto A

(B) O ponto B

(C) O ponto C

(D) O ponto D

Segunda Parte

Nas questões desta segunda parte apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

- **1.** O AUTO-HEXÁGONO é um stand de venda de automóveis.
 - **1.1.** Efectuou-se um estudo sobre as vendas de automóveis neste stand, o qual revelou que:
 - 15% dos clientes compram automóvel com alarme e com rádio;
 - 20% dos clientes compram automóvel sem alarme e sem rádio:
 - 45% dos clientes compram automóvel com alarme (com ou sem rádio).

Um cliente acaba de comprar um automóvel.

- 1.1.1. A Marina, empregada do stand, que nada sabia das preferências desse cliente e não tomou conhecimento do equipamento do automóvel que ele tinha comprado, apostou que esse automóvel estava equipado com rádio, mas não tinha alarme.
 - Qual é a probabilidade de a Marina acertar? Apresente o resultado na forma de percentagem.
- 1.1.2. Alguém informou depois a Marina que o referido automóvel vinha equipado com alarme. Ela apostou, então, que o automóvel também tinha rádio. Qual é a probabilidade de a Marina ganhar esta nova aposta? Apresente o resultado na forma de fracção irredutível.
- **1.2.** Este stand, de forma hexagonal, tem uma montra que se situa num dos lados do hexágono (ver figura).

Pretende-se arrumar seis automóveis diferentes (dois utilitários, dois desportivos e dois comerciais), de tal forma que cada automóvel fique voltado para um vértice do hexágono.

Supondo que se arrumam os seis automóveis ao acaso, qual é a probabilidade de os dois desportivos ficarem voltados para os vértices que se encontram nas extremidades da montra? Apresente o resultado na forma de fracção irredutível.

2. Em Malmequeres de Baixo, povoação com **cinco mil** habitantes, ocorreu um acidente, que foi testemunhado por algumas pessoas.

Admita que, t horas depois do acidente, o número (expresso em **milhares**) de habitantes de Malmequeres de Baixo que sabem do ocorrido é, aproximadamente,

$$f(t) = \frac{5}{1 + 124 e^{-0.3t}} , \quad t \ge 0$$

- **2.1.** Que percentagem da população de Malmequeres de Baixo testemunhou o acidente?
- **2.2.** Recorrendo exclusivamente a processos analíticos, estude a função f quanto à monotonia e quanto à existência de assimptotas ao seu gráfico. Interprete as conclusões a que chegou, no contexto do problema.
- **3.** Considere a função g, de domínio \mathbb{R} , definida por

$$g(x) = \begin{cases} \frac{x+1}{x} & \text{se } x < 0 \\ \frac{1}{2} & \text{se } x = 0 \\ \frac{\sin x}{2x} & \text{se } x > 0 \end{cases}$$

- **3.1.** Utilizando métodos exclusivamente analíticos, resolva as duas alíneas seguintes:
 - **3.1.1.** Estude a função g quanto à continuidade no ponto 0. (Deve indicar, justificando, se a função g é contínua nesse ponto, e no caso de não ser, se se verifica a continuidade à esquerda, ou à direita, nesse mesmo ponto).
 - **3.1.2.** Considere a função h, de domínio $\mathbb{R}\setminus\{0\}$, definida por $h(x)=\frac{1}{3\,x}$ Justifique que, no intervalo $[-1\,,\,1000\,\pi]$, os gráficos de g e de h intersectam-se em 1001 pontos.
- **3.2.** Dos 1001 pontos referidos na alínea anterior, seja A o que tem menor abcissa positiva. Utilizando a sua calculadora, determine as coordenadas desse ponto (apresente os valores na forma de dízima, arredondados às décimas).

4. Na figura junta está representado, no plano complexo, um triângulo equilátero [ABC], inscrito numa circunferência centrada na origem do referencial.

O ponto A é a imagem geométrica de $2\,i.$

- **4.1.** Escreva uma condição em $\ensuremath{\mathbb{C}}$ que defina a referida circunferência.
- **4.2.** Determine, na forma algébrica, o número complexo $\,w\,$ cuja imagem geométrica é o ponto $\,B.$

FIM

COTAÇÕES

rime	ira Parte	63
	Cada resposta certa	
	Cada resposta errada	
	Cada questão não respondida ou anulada	0
	Nota: Um total negativo nesta parte da prova vale 0 (zero) pontos.	
Segur	nda Parte	137
	1	. 32
	1.1. 20	
	1.1.1. 10	
	1.1.2. 10	
	1.2. 12	
	2	. 35
	2.1.	
	2.2.	
	3	49
	3.1. 33	
	3.1.1. 15	
	3.1.2.	
	3.2. 16	
	4	. 21
	4.1. 9	
	4.2.	
ΓΩΤΛ	L	200

Formulário

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\, maior + Base\, menor}{2} \times Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$cos(a+b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \, . \, (\rho' \operatorname{cis} \theta') = \rho \, \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \frac{\theta + 2 k \pi}{n}, k \in \{0, ..., n - 1\}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$

EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos Época Especial

2000

PROVA ESCRITA DE MATEMÁTICA

Primeira Parte

- As sete questões desta primeira parte são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- **1.** O conjunto dos zeros de uma função g, de domínio \mathbb{R} , é $\{1,2\}$. Seja h a função, de domínio \mathbb{R} , definida por $h(x) = g(x) \cdot (x-3)^2$ Quais são os zeros da função h?
 - **(A)** 1, 2 e 3

(B) 1, 4 e 9

(C) 1, $\sqrt{3}$ e 4

- **(D)** $-\sqrt{3}$, 1, $\sqrt{3}$ e 2
- **2.** Indique o valor de $\lim_{x \to 0^+} \frac{\ln x}{\sin x}$
 - (A) $-\infty$
- **(B)** 0
- **(C)** 1
- (D) $+\infty$

- 3. Na figura estão representados, em referencial o. n. Oxyz:
 - ullet o ponto A, de coordenadas (0,0,4)
 - a superfície esférica de equação $x^2 + y^2 + z^2 = 9$
 - a circunferência que resulta da intersecção dessa superfície esférica com o plano $\,xOy\,$

PUm ponto percorre essa circunferência, dando uma completa.

Considere a função f que faz corresponder, à **abcissa** do ponto P, a **distância** de P a A.

Qual dos seguintes é o gráfico da função f?

(A)

(D)

4. Na figura está parte da representação gráfica de uma certa função $\,g\,$, de domínio $\,\mathbb{R}.\,$

Em qual das figuras seguintes está parte da representação gráfica da função $\,h,\,$ definida em \mathbb{R} por h(x) = -g(x) + 1?

(A)

(B)

(C)

(D)

5. Admita que, numa certa escola, a variável «altura das alunas do 12.º ano de escolaridade» segue uma distribuição aproximadamente normal, de média 170 cm.

Escolhe-se, ao acaso, uma aluna do 12.º ano dessa escola.

Relativamente a essa rapariga, qual dos seguintes acontecimentos é o mais provável?

- (A) A sua altura é superior a 180 cm
- (B) A sua altura é inferior a 180 cm
- (C) A sua altura é superior a 155 cm
- (D) A sua altura é inferior a 155 cm
- **6.** Seja S o conjunto de resultados (com um número finito de elementos) associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos, contidos em S, nenhum deles impossível, nem certo.

Sabe-se que $A \subset B$.

Indique qual das afirmações seguintes é verdadeira (P designa probabilidade e \overline{A} e \overline{B} designam os acontecimentos contrários de A e de B, respectivamente).

(A)
$$P(A) > P(B)$$

(B)
$$P(A \cap B) = 0$$

(C)
$$P(A \cup B) = 1$$

(D)
$$P(\overline{A}) \ge P(\overline{B})$$

7. Seja $z=y\,i$, com $y\in\mathbb{R}\backslash\{0\}$, um número complexo (i designa a unidade imaginária).

Qual dos quatro pontos representados na figura junta ($A,\,B,\,C$ ou D) pode ser a imagem geométrica de $\,z^{\,4}$?

(A) O ponto A

(B) O ponto B

(C) O ponto C

(D) O ponto D

Segunda Parte

Nas questões desta segunda parte apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

- **1.** O AUTO-HEXÁGONO é um stand de venda de automóveis.
 - **1.1.** Efectuou-se um estudo sobre as vendas de automóveis neste stand, o qual revelou que:
 - 15% dos clientes compram automóvel com alarme e com rádio;
 - 20% dos clientes compram automóvel sem alarme e sem rádio:
 - 45% dos clientes compram automóvel com alarme (com ou sem rádio).

Um cliente acaba de comprar um automóvel.

- 1.1.1. A Marina, empregada do stand, que nada sabia das preferências desse cliente e não tomou conhecimento do equipamento do automóvel que ele tinha comprado, apostou que esse automóvel estava equipado com rádio, mas não tinha alarme.
 - Qual é a probabilidade de a Marina acertar? Apresente o resultado na forma de percentagem.
- 1.1.2. Alguém informou depois a Marina que o referido automóvel vinha equipado com alarme. Ela apostou, então, que o automóvel também tinha rádio. Qual é a probabilidade de a Marina ganhar esta nova aposta? Apresente o resultado na forma de fracção irredutível.
- **1.2.** Este stand, de forma hexagonal, tem uma montra que se situa num dos lados do hexágono (ver figura).

Pretende-se arrumar seis automóveis diferentes (dois utilitários, dois desportivos e dois comerciais), de tal forma que cada automóvel fique junto de um vértice do hexágono.

Supondo que se arrumam os seis automóveis ao acaso, qual é a probabilidade de os dois desportivos ficarem junto dos vértices que se encontram nas extremidades da montra? Apresente o resultado na forma de fracção irredutível.

2. Em Malmequeres de Baixo, povoação com **cinco mil** habitantes, ocorreu um acidente, que foi testemunhado por algumas pessoas.

Admita que, t horas depois do acidente, o número (expresso em **milhares**) de habitantes de Malmequeres de Baixo que sabem do ocorrido é, aproximadamente,

$$f(t) = \frac{5}{1 + 124 e^{-0.3t}} , \quad t \ge 0$$

- **2.1.** Sabendo que o acidente ocorreu às sete e um quarto da manhã de um certo dia, mostre que, à meia-noite desse mesmo dia, mais de metade da população de Malmequeres de Baixo já sabia do ocorrido.
- **2.2.** Recorrendo exclusivamente a processos analíticos, estude a função f quanto à monotonia e quanto à existência de assimptotas ao seu gráfico. Interprete as conclusões a que chegou, no contexto do problema.
- **3.** Considere a função g, de domínio \mathbb{R} , definida por

$$g(x) = \begin{cases} \frac{x+1}{x} & \text{se } x < 0 \\ \frac{1}{2} & \text{se } x = 0 \\ \frac{\text{sen } x}{2x} & \text{se } x > 0 \end{cases}$$

- 3.1. Utilizando métodos exclusivamente analíticos, resolva as duas alíneas seguintes:
 - **3.1.1.** Estude a função g quanto à continuidade no ponto 0. (Deve indicar, justificando, se a função g é contínua nesse ponto, e no caso de não ser, se se verifica a continuidade à esquerda, ou à direita, nesse mesmo ponto.)
 - **3.1.2.** Considere a função h, de domínio $\mathbb{R}\setminus\{0\}$, definida por $h(x)=\frac{1}{3\,x}$ Mostre que, no intervalo $[-1\,,\,1000\,\pi]$, os gráficos de g e de h se intersectam em 1001 pontos.
- **3.2.** Dos 1001 pontos referidos na alínea anterior, seja A o que tem menor **abcissa positiva**. Utilizando a sua calculadora, determine as coordenadas desse ponto (apresente os valores na forma de dízima, arredondados às décimas).

4. Em \mathbb{C} , conjunto dos números complexos, considere

$$z_{\scriptscriptstyle 1} = 7 + 24\,i$$
 (i designa a unidade imaginária)

- **4.1.** Um certo ponto P é a imagem geométrica, no plano complexo, de uma das raízes quadradas de $z_{\rm l}$. Sabendo que o ponto P tem abcissa 4, determine a sua ordenada.
- **4.2.** Seja $z_2=cis\,\alpha$ com $\alpha\in\left]\frac{3\,\pi}{4}\,,\,\pi\right[$ Indique, justificando, em que quadrante se situa a imagem geométrica de $z_1\times z_2$

FIM

COTAÇÕES

Primeira	Parte	63
C	ada resposta certaada resposta erradaada questão não respondida ou anulada	- 3
N	ota: Um total negativo nesta parte da prova vale 0 (zero) pontos.	
Segunda	Parte	137
1		32
	1.1.	
	1.2. 12	
2		35
	2.1.	
3	•	49
	3.1.	
	3.2. 16	
4	•	21
	4.1.	
TOTAL		200

Formulário

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$
 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$cos(a+b) = cos a \cdot cos b - sen a \cdot sen b$$

$$\operatorname{tg}\left(a+b\right) = \frac{\operatorname{tg}a + \operatorname{tg}b}{1 - \operatorname{tg}a \cdot \operatorname{tg}b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \cdot (\rho' \operatorname{cis} \theta') = \rho \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} \, = \, \sqrt[n]{\rho} \, \cos \frac{\theta {+} 2 \, k \, \pi}{n} \ , \, k \in \{0,..., \, n-1\}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$