PATENT SPECIFICATION

(11)

1 577 933

(22) Filed 11 Feb. 1976 (21) Application No. 5376/76 (23) Complete Specification Filed 9 Feb. 1977

(44) Complete Specification Published 29 Oct. 1980

(51) INT. CL.³ C11C 3/10

10

(52) Index at Acceptance C5C 3A9 9B9C1 9B9D

(72) Inventors: MICHAEL HERDER COLEMAN ALASDAIR ROBIN MACRAE

15 .:

25

30

35

40

45

(54) FAT PROCESS AND COMPOSITION

(71) We, UNILEVER LIMITED, a company organised under the laws of Great Britain, of Unilever House, Blackfriars, London E.C.4, England, do hereby declare the invention for which we pray that a patent may be granted to us and the method by which it is to be performed, to be particularly described in and by the following statement:

This invention relates to fats particularly for edible purposes and their preparation by

interesterification. The rearrangement by interesterification of fatty acid radicals among triglyceride

molecules is widely applied to meet the requirements, particularly the melting requirements, for fats, including glyceride oils, particularly for such edible applications as margarine and bakery applications.

The present invention proposes the use as the catalyst in interesterification reactions of a

The invention comprises an interesterification process in which fatty acid moieties of a lipase enzyme. reactant composition comprising a fat are rearranged in liquid phase by interesterification in the presence of a lipase enzyme interesterification catalyst and an amount of water to

The process of the invention is carried out at moderate temperatures, at which the activate the enzyme. enzyme is active and under mild conditions which avoid the need for strongly acidic or alkaline or other extreme conditions. Preferred temperatures are between 20 and 60°C particularly up to 50°C, according to the capacity of the enzyme adopted to withstand elevated temperatures. The reaction is in the liquid phase and may be facilitated by dissolving the reactants in an organic solvent, preferably low-boiling alkanes, e.g. petroleum ether (60-80°C B range). The solvent should not affect the enzyme.

In contrast to conventional interesterification processes where even 0.1% water is undesirable requiring additional amounts of the catalysts a small amount.

undesirable, requiring additional amounts of the catalyst, a small amount, usually up to 10% but preferably 0.2 to 1% water or buffer solution is necessary for the enzyme to function and excessive precautions to dry the fat or other materials used in the process are therefore not required since any moisture they contain may contribute to the water required in the reaction. More than 1% water or buffer is less desirable in the present invention as 30 the reverse hydrolysis reaction is thereby promoted, with the formation of partial

The water required in the reaction may be incorporated into the reaction medium adsorbed in a support agent such as kieselguhr, which may be used to aid dispersion also of the enzyme and, as explained later, preferably combined with the enzyme. Quantities are based on the weight of fatty reactants. The purpose of the buffer is to maintain the reactants

at a pH at which the lipase is reactive.

The process of the invention can be applied to achieve the results of conventional

interesterification processes. Free fatty acid may be added to glyceride mixtures to contribute to the formation of glycerides in the rearrangement, together with other fatty acids liberated from the triglycerides themselves in the course of the reaction. Preferably a molar ratio of 0.3:1 to 7:1 acids to glycerides is used according to the extent of reaction required. A further advantage which the present invention provides is due to the specific reactivity of certain lipase enzymes. Whereas some will rearrange the fatty acid radicals on any position of the triglyceride molecule, others react only to change the radicals occupying specified positions,

15

while yet others are reactive only to specific fatty acid species. For example, Candida cylindracae lipase is non-specific and provides a true randomisation of all fatty acid radicals on all the glyceride positions, whereas Rhizopus enzymes are specific to the 1,3 terminal acid radicals, giving very little change in any 2-position acid radicals. Geotrichum Candidum lipase on the other hand is specific to acids with a double bond in the 9-position, e.g. oleic and linoleic acids, regardless of their position on the glyceride radical.

Again, since the process of the invention usually takes from 20 to 72 hours to complete, according to conditions, less with fixed catalyst beds, it is possible to halt reaction at any stage before a reaction is complete thus giving a further control in the modification of fats which has not hitherto been available in more rapid interesterification reactions.

A widely ranging facility is therefore provided by combining the variables applicable to

the invention, for obtaining a wide range of products with the advantages outlined.

The invention may be used to upgrade fats for a wide variety of purposes. For example more highly unsaturated acids may be replaced in glycerides by less unsaturated or saturated acids and vice versa, according to requirements. Again, the exchange may be effected in specific positions of the glyceride residue and/or by specific acids by using enzymes of specific reactivity. Combinations of these various aspects of the invention may be adopted to achieve particular products with a notable decrease in the production of less desired glyceride fractions, thereby simplifying the separation of the required glyceride

species from the product mixture and increasing their yield.

An important application of the upgrading of fats and glyceride oils by selective replacement of fatty acid residues in their glyceride molecules in accordance with the invention is in the provision of replacement fats for cocoabutter in the confectionary trade from less expensive vegetable oils and fats. Cocoabutter itself contains substantial quantities of 2-oleyl glycerides of palmitic and stearic acid and these confer the valuable melting characteristics for which the fat is so highly prized, providing in chocolate confectionary a sharp melting in the region of body temperature, from a hard solid resisting melting by handling to a mobile fluid flowing easily and quickly from the tongue. A few alternative sources of vegetable butters, notably shea fat and illipe are of similar constitution, but are themselves expensive and being largely uncultivated are of variable quality. Palm oil is much cheaper and contains significant amounts of dipalmityl 2-unsaturated glycerides and these are recovered by fractionation. The bulk of the glycerides of most vegetable oils however are unsaturated in at least one of the alpha-positions in addition to the beta or 2-position. Attempts to upgrade these glyceride oils for the production of chocolate fats therefore require the specific replacement of 1,3 outer, unsaturated fatty acid radicals by saturated acids to harden the product, particularly stearic acid, and where necessary also of any highly unsaturated acid radicals on the inner, 2-position by the oleyl radical. Both hydrogentaion and conventional interesterification processes which may be used for this purpose in hardening processes are however non-selective in affecting all the glyceride positions. Moreover, hydrogenation processes are invariably accompanied by isomerication of any unsaturated acid radicals remaining in are invariably accompanied by isomerisation of any unsaturated acid radicals remaining in the product from the natural cis-form to the trans-form, for example oleic acid to its isomer elaidic acid. This isomerisation confers a different melting point on a glyceride containing a trans-acid radical, the amount formed varying according to the catalyst and the reaction conditions, greatly adding to the complexity of the reaction and the uncertainty of the characteristics of the product. By the use of selective lipase the present invention provides selectively interesterified fats and a hardening process which is free from these defects, enabling unsaturated acids or short-chain saturated acids in the 1- and 3-positions to be replaced by saturated acids conferring improved melting characteristics on the product. The invention therefore provides as products hardened but still unsaturated fats which are nevertheless free from elaidinisation, comprising glycerides of fatty acids, preferably from C_{12} to C_{22} and more particularly C_{16} and C_{18} saturated fatty acids. The hardened fats of the invention are good cocoabutter replacements and preferably have an Iodine Value of 25 to 40, reflecting a composition corresponding to an average in each glyceride molecule of a single monoethylenically-unsaturated acid residue. This is in the 2-position and the preferred hardened but unelaidinised and still unsaturated fats of the invention are

therefore substantially free from saturated acids in the 2-position. The invention is moreover applicable to upgrading fats by increasing the degree of unsaturation. This may be desirable for dietetic reasons, fully unsaturated fats being prized for their dietetic value. The replacement for this purpose may be particularly by linoleic acid and by the use of positionally-selective lipase catalysts, may be confined to either the outer or inner glyceride positions.

The upgrading of fats in accordance with the invention, whether by hardening or by increasing polyunsaturated acid content, is valuable for confectionary, margarine and culinary fats. In the former, preferably hardened fats contain at most 42% total unsaturated 10

5

15

20

30

35

50

55

60

50

	fatty acids more than 85% of those which are in the 2-position being unsaturated. The enzyme catalyst may be from animal, vegetable or microbial sources, preferably the	
5	latter. Commercially available enzyme composition and sugar materials and salts in addition to varying powdered solids, incorporating protein and sugar materials and salts in addition to varying powdered solids, incorporating protein and sugar materials and salts in addition to varying powdered solids, incorporating protein and sugar materials and salts in addition to varying powdered solids, incorporating protein and sugar materials and salts in addition to varying powdered solids, incorporating protein and sugar materials and salts in addition to varying powdered solids, incorporating protein and sugar materials and salts in addition to varying powdered solids, incorporating protein and sugar materials and salts in addition to varying powdered solids, incorporating protein and sugar materials and salts in addition to varying powdered solids, incorporating protein and sugar materials and salts in addition to varying powdered solids, incorporating protein and sugar materials and salts in addition to varying protein and sugar materials and salts in addition to varying protein and sugar materials and salts in addition to varying protein addition to varying protein addition to varying protein addition to varyi	5
3	activity/mg, based on the standard generally activity/mg, based on	
10	arabic containing 50 mW calcium chiorists, the properties of these enzyme compositions are used by temperature 37°C. Preferably from 0.02 to 7% of these enzyme compositions are used by	10
	weight of fatty reactants. The reagents comprising fatty reactants including glyceride, water including buffer if desired, and enzyme, are preferably agitated together throughout the reaction to maintain desired, and enzyme dispersed, preferably in a closed vessel to prevent the ingress of moisture. the enzyme dispersed, preferably in a closed vessel to prevent the ingress of moisture.	15
15	Dispersion of the water and charging had such as e.g. kieselguhr which adsorbs the adsorbent, inert powder, for example a filter aid such as e.g. kieselguhr which adsorbs the adsorbent, and attaches to the enzyme, preferably in an amount from 1% to 10% of the fatty water and attaches to the enzyme, preferably in an amount from 1% to 10% of the fatty	
20	In many cases a small amount of free fatty acid and partial glycerides may be formed by hydrolysis. These may be removed, together with any surplus free fatty acid by hydrolysis. These may be removed, together with any surplus free fatty acid by hydrolysis including liquid-liquid extraction, alkali neutralisation or vacuum or conventional means including liquid-liquid extraction, alkali neutralisation or vacuum or molecular distillation. Silicic acid chromatography is also suitable. Partial glycerides may	20
25	The purified glyceride product may be subjected to solvent fractionation or other conventional processes to recover preferred components as required. The economy of the conventional processes to recover preferred components as required.	25
	materials, usually in finely-divided form, for recovery and re-use are well known. Such materials, usually in finely-divided form, for recovery and re-use are well known. Such materials include carbon, cellulose, glass, Celite (Registered Trade Mark), alumina and materials include carbon, cellulose, glass, Celite (Registered Trade Mark), alumina and synthetic	30
30	also be stabilised for re-use in an insoluble form. Such techniques are well known in enzyme technology, for example in amino acid manufacture and in the production of fructose syrup	
35	from glucose. The invention may be applied to rearrangement of fatty acids commonly occurring in fats, e.g. acids of comparatively short chain length from C_6 to C_{14} , or of longer chain acids fats, e.g. acids of comparatively short chain length from C_6 to C_{14} , or of longer chain acids fats, e.g. acids of comparatively short chain length from C_6 to C_{14} , or of longer chain acids fats, e.g. acids of comparatively short chain length from C_6 to C_{14} , or of longer chain acids fats.	35
40	The fatty reagents of the invention comprise these acids whether in freeform or combined in glycerides. The invention may be applied to glycerides in animal, marine and vegetable in glycerides. The invention may be applied to glycerides in animal, marine and vegetable in glycerides.	40
	fats and oils. These chiefly comprise glycerides of C ₁₆ and C ₁₈ latty acted, or examples of shorter and longer chain acids, for example lauric fats, crucifera oils. Particular examples of shorter and longer chain acids, for example lauric fats, crucifera oils. Particular examples of vegetable oils include palm, cottonseed, olive, soyabean and sunflower oils and their derivatives. Vegetable butters are also suitable including in particular shea and illipe.	45
45		
50	Example 1 25 gms each of coconut oil and olive oil were stirred in a closed vessel at 40°C for 66 hours with 5% of their weight of Celite and approximately 2.5% of their weight of Candida with 5% of their weight of Celite and approximately 2.5% of their weight of Candida cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 uni	50
50	buffer solution of N-trishydroxymethyl methyl-2-ainhoemand supported buffer solution of N-trishydroxymethyl methyl-2-ainhoemand supported buffer appears a pellet. The reaction mixture obtained was centrifuged and the oil layer decanted, leaving a pellet which was washed with 80 vol. % of the original oil mixture, using a petroleum ether of boiling range 40 to 60°C; washings being added to the oil layer. After removing the solvent by evaporation a reaction product was obtained in 96% yield	55
55	of the original oil mixture. A portion of the reaction product was analysed by application to a silicic acid thin layer. A portion of the reaction product was analysed by application to a silicic acid thin layer.	· .
	(40-60°C traction), 40 parts of diethyr ether with 16.5% of diglyceride, 0.5% monoglyceride a triglyceride range was obtained together with 16.5% of diglyceride, 0.5% monoglyceride	60
60	and 10.3% free fatty acid. The composition of the triglyceride fraction was determined by gas liquid chromatography and is compared in Table 1 with that of the original coconut oil/olive oil mixture and the same mixture when interesterified in the presence of a conventional alkali metal catalyst.	

TABLE 1

	•				•			
				Wt	% triglyco	eride		
carbo	yceride on no. .glycerol ue)	In oil	:	In by enzy	teresterific me	ed oil by alka catalyst	li metal	
26 28		0.1 0.3		0.1 0.2		0.3 0.5	:	
30		1.1	}	0.5	}	0.7	}	•
32		5.0	}	1.4	{ ·	2.1	{ ·	· . ·
34		6.7	28.8	2.1	14.9	2.1	15.4	
36	•	8.4	{	4.2	{	4.0	{	
38		7.6	}	6.7	}	6.5	<u> </u>	
40		4.5	}	7.2	}	6.6	}	
42		3.4	\	13.1	}	12.6	}	
44		1.9	12.0	11.6) 60.9	11.4	§ 60.9	
46		1.2	{	11.6	}	11.7	}	٠.
48		1.0	<u> </u>	17.4	<u>) </u>	18.0)	- :
50		4.7	}	6.8	}	7.4	}	,
52		21.2) 58.7	7.4) 23.9	7.2	23.5	•
54	•	31.8	}	9.3	}	8.4	}	
56		1.0)	0.4)	0.5)	
Tota	al	99.9		100		100		
high the this	abstantial cher and lowe enzyme-cata Example sh fatty acid rereas on the	r carbon no alysed and low the eff	alkali-met	al-catalysed	processes on particula	The partic arly well, si	cular oils nce on the	selected e one han fatty acid
2. 0.00	mple 2 5 parts of r 04 parts of R sel with 8 p	nid-fraction Inizopus de arts of pet	n of palm <i>lemar</i> lipas roleum eth	oil, 1.5 par se (200 units ner of boilin	ts of steari /mgm), we	ic acid, 0.25 re all stirred 0 to 80°C a	parts of together nd 0.02 j	Celite and close parts of the Kogyo
buti	fer described after 48 hou ing range 40	irs the mix	ture obtai	ned was dil	uted with	10 parts of removed by	petroleu evapora triglyceri	im ether tion and the de fraction
resi	fatty acid c	d as before	of which	yer chiomat	ined by g	as liquid ch	romatogr	aphy and
resi the com was inco mol	fatty acid c ipared with also subjorporated st lecules. articulars of duct in Tabl	d as before omposition that of the ected to the earate residents	palm mid reatment idues were	was determ -fraction sta with pance present in	rting mate eatic lipa: the 1- an	erial in Tablese. showing d 3-position	e 2. The that 9 is of the cition and	triglyceric 8% of the triglyceric triglyceric

	which Example	2 was repeated	using a suj	pported en	izyme, A.	niger in Ex	cample 3, R.	
<i>š</i>	The procedu	re for preparing to U/gm) of the lipas	the support e were diss	ted enzym olved in 20	ne was as i	follows:- istilled water dad over 5	er and 5 parts	5
	at 20°C under	reduced pressure the Celite lipase	(1028U/g	001 F				
10	otherwise was The origins	of the lipase mat	erial used	were as f	ollows:-			10
	A. niger R. arrhizus	So	nano Phar c. Rapidas gase & C	e. France;	Co., Japa apan.	n;		15
15	R. japonicus		- •	BLE 2				. 13
	· · · · ·				Fatty A	cid		- - 30
20	Triglyceride	Lipase	14:0	16:0	18:0	18:1	18:2	- 20 -
	PMF		0.8	58.7	6.6	31.2	2.7	25
25	Example 2 3	R. delemar A. niger	1.0 0.3 (0.0	37.4 34.8 16.1	29.6 30.9 2.7	30.0 31.5 77.6	2.0 2.5 3.6)	23
30	4 5	R. arrhizus R. japonicus	`0.3	37.4 37.2	30.5 32.3	29.8 28.6	2.0 1.6	- 30
	The mailtean	increase in steari	acid conte	ent of the t	riglyceride	products pr	ovided by eac	ch nt 35
35	decrease in particular the data in the dat	palmitic acid content of parenthesis for the amount of the	ent is also Example 3 ount of inc	evident. 3 refers to lividual tri	analysis o	f the acids pecies in t	occupying the triglycerics (I A O.C.	ne de S.
40	37 18 (1960) and are com	vered was calculate & 40 242 (1963) at pared with corres	ponding d	ata for pa	lm mid-fra	ction.	peur m. 1401	
;;; ;45	Triglyceride	species	TA PM	ABLE 3 F	Interesterifi	ed triglyce	ride	45
					٠.	18.7	• •	
50	POP POSt StOSt Other glyce	rides .	57 13 1 29	en e		36.7 17.0 27.6		50
	St = Stea	rvl			•	·	· ·d stoomin o	cid 55
55	occure in the	le 3 it is evident the 2-oleyl symmetric palmitostearyl 2-o	at disatore	6.7		•		
60	Analysis of showed that substantially	palmitostearyl 2-of of the 2-position of 1 95-97% stearic a 7 no removal of 0 3 was repeated at bined stearic acid	acid radica bleic acid to 50° and 6	ls incorpor radicals fro 0°C, yieldi	+ba 7-n	ocition		00
65		3 was repeated	•		yme powde	er was also	recovered	and 65

re-incubated several times with fresh starting materials. These were 2.5 parts each stearic acid and palm oil with water instead of buffer.

			TA				
· ·			W	/t % fatty	acid		
Fatty	in palm	in inter	esterified t	riglyceride			
acid	oil	Incubat	ion 2	3	4	5	6 .
14:0 16:0 18:0 18:1 18:2	1.0 45.1 5.1 39.3 9.5	0.5 24.0 38.1 29.8 7.6	0.5 24.8 38.3 29.2 7.2	0.3 24.7 40.3 28.1 6.6	0.4 28.1 34.8 29.6 7.1	0.3 29.5 31.5 31.0 7.7	0.5 29.8 30.9 31.1 7.7
Incubat time (d		2	2	3	2	2	3
Parts o		0.020	0.020	0.015	0.015	0.010	0.015
Example 2.5 p and arrangitation Example	le 7 arts palm mid achidic acid, on with 0.25; le 2 and previo	fraction we dissolved in parts Asp. busly wetter	ere reacted in 10 parts niger lipas d by shakin	for 2 days a petroleum e/kieselguhi g for 30 mir	at 40°C with ether (60 powder, outes with 0	0.75 parts 0-80°C boil prepared a .02 parts w	each of steari ing range) by s described in ater in a sealed
Example 2.5 p and are agitation Example tube.	le 7 arts palm mid achidic acid, in with 0.25 le 2 and previo	fraction we dissolved in our transfer of the community wetter the community were	ere reacted in 10 parts niger lipas d by shaking posed of 47	for 2 days a petroleum elkieselguhig for 30 min	at 40°C with the ether (60°C powder, 100°C with 00°C ride, 11%.	0.75 parts 0-80°C boil prepared a .02 parts widiglyceride	each of stearic ing range) by s described in ater in a sealed and 42% free saturated acids
Example 2.5 p and arragitation Example tube. The fatty ac C ₁₄ 0.3 acids ir arachid	le 7 arts palm mid achidic acid, on with 0.25 ple 2 and previous id with less th c; C ₁₆ 31.3; C on the 2-positic lic residues in	fraction we dissolved in the parts Asp. busly wetter an 1% mon an 19.5; C ₂₀ no by pance corporated	ere reacted in 10 parts niger lipased by shaking posed of 47 loglyceride 15.2 and 2 eatic lipase into the tr	for 2 days a petroleum elkieselguh; g for 30 mir 7% triglyce The triglyce 30.0 oleic a treatment iglyceride paggo Com	at 40°C with the ether (60°c powder, autes with 00°c powder, autes with 00°c powder, and 3.7 line showed the product occupany Limit	0.75 parts 1-80°C boil prepared a 02 parts widiglyceride ained as % 1-leic acid. A at 97% of upied 1- ar	each of stearicing range) by s described in a sealed and 42% free saturated acide. Analysis of the stearic and 3-positions.
Examp. 2.5 p and arragitation Examp tube. The fatty ac C ₁₄ 0.3 acids ir arachid Examp Cana acetone parts li reacted lipase a Examp	le 7 arts palm mid achidic acid, on with 0.25 ple 2 and previous fatty products id with less th c; C ₁₆ 31.3; C n the 2-positic lic residues in le 8 dida cylindrace e onto kieselge noleic acid w i with agitatic and 0.113 part ole 7. After re	fraction we dissolved in the parts Asp. busly wetter an 1% mon as 19.5; Can by pancreorporated are lipase each by the rere dissolven for 2 days kieselguh covery the	posed of 47 and the true of true o	for 2 days a petroleum elkieselguh; g for 30 mir 19% triglyce The triglyce 30.0 oleic a treatment iglyceride purpose Companyo Com	at 40°C with the ether (60°C with the ether (60°C with 00°C with 0	0.75 parts 1-80°C boil prepared a 02 parts w diglyceride ained as % leic acid. A at 97% of upied 1- ar ted was pro 5 parts of com ether ar 37 parts of ts of water acid comp	each of stearing range) by a described in a sealed and 42% free saturated acid Analysis of the stearic and 3-positions decipitated with blive oil and 1 and the solution the supported as described in glyceride, 39% position of the
Examp. 2.5 p and arragitation Examp tube. The fatty ac C ₁₄ 0.3 acids ir arachid Examp Cana acetone parts li reacted lipase a Examp	le 7 arts palm mid achidic acid, on with 0.25 le 2 and previo fatty products id with less th ; C ₁₆ 31.3; C on the 2-positio lic residues in le 8 dida cylindrace e onto kieselge noleic acid w if with agitatio and 0.113 part	fraction we dissolved in the parts Asp. busly wetter an 1% mon as 19.5; Can by pancreorporated are lipase each by the rere dissolven for 2 days kieselguh covery the	posed of 47 and to the true of true of true of the true of tru	for 2 days a petroleum elkieselguh; g for 30 mir 7% triglyce The triglyce 30.0 oleic a treatment iglyceride purpose of 60-80 with a mix y wetted witained 50% glyceride.	at 40°C with the ether (60°C with the ether (60°C with 00°C with 0	0.75 parts 1-80°C boil prepared a 02 parts w diglyceride ained as % leic acid. A at 97% of upied 1- ar ted was pro 5 parts of com ether ar 37 parts of ts of water acid comp	each of stearicing range) by s described in a sealed and 42% free saturated acids. Analysis of the stearic and 3-positions decipitated with olive oil and 1 and the solution the supporter as described in glyceride, 39% position of the
Examp. 2.5 p and arragitatio Examp tube. The fatty ac C ₁₄ 0.3 acids ir arachid Examp Cana acetone parts li reacted lipase a Examp	le 7 arts palm mid achidic acid, on with 0.25 ple 2 and previous fatty products id with less th c; C ₁₆ 31.3; C n the 2-positic lic residues in le 8 dida cylindrace e onto kieselge noleic acid w i with agitatic and 0.113 part ole 7. After re	fraction we dissolved in the parts Asp. busly wetter an 1% mon as 19.5; Can by pancreorporated are lipase each by the rere dissolven for 2 days kieselguh covery the	ere reacted in 10 parts niger lipas of the posed of 47 toglyceride of 15.2 and it eatic lipase into the true x Meito Sanethod desced in 8 party at 40°C r. previous product con 1% monoompared in TA	for 2 days a petroleum elkieselguh; g for 30 mir 19% triglyce The triglyce 30.0 oleic a treatment iglyceride purpose Companyo Com	at 40°C with the ether (60°C powder, autes with 0 ride, 11%. The eride contained 3.7 line showed the product occupany Limit tample 2. 2. C petroleuture of 0.11 ith 0.02 par 5 triglyceri. The fatty with the o	0.75 parts 1-80°C boil prepared a 02 parts w diglyceride ained as % leic acid. A at 97% of upied 1- ar ted was pro 5 parts of com ether ar 37 parts of ts of water acid comp	each of stearing range) by a described in a sealed and 42% free saturated acid Analysis of the stearic and 3-positions decipitated with blive oil and 1 and the solution the supported as described in glyceride, 39% position of the
Examp. 2.5 p and arragitation Examp tube. The fatty ac C ₁₄ 0.3 acids ir arachid Examp Cana acetone parts li reacted lipase a Examp	le 7 arts palm mid achidic acid, on with 0.25 ple 2 and previous fatty products id with less th c; C ₁₆ 31.3; C n the 2-positic lic residues in le 8 dida cylindrace e onto kieselge noleic acid w i with agitatic and 0.113 part ole 7. After re	fraction we dissolved is constant. Asp. busly wetter an 1% mon an 19.5; C2 in by pancrorporated are lipase eathr by the rere dissolven for 2 days kieselguh covery the less than ceride is constant.	ere reacted in 10 parts niger lipas. d by shaking posed of 47 loglyceride. In 15.2 and it is a method desced in 8 party at 40°C r. previous product con 1% monoompared in TA Fatty	for 2 days a petroleum elkieselguhig for 30 mir 7% triglyce The triglyce 30.0 oleic a treatment iglyceride pringyo Comeribed in Exts of 60-80 with a mix y wetted with a Table 5 MBLE 5	at 40°C with the ether (60°C with the ether (60°C with 00°C with the o	0.75 parts 1-80°C boil prepared a 02 parts w diglyceride ained as % leic acid. A at 97% of upied 1- ar ted was pro 5 parts of com ether ar 37 parts of ts of water acid comp	each of stearicing range) by s described in a sealed and 42% free saturated acide. Analysis of the stearic and 3-positions. The supporter as described in glyceride, 39% position of the soul but the supporter as described in glyceride, 39% position of the supporter as described in glyceride as described in glyceride as described in gly
Examp. 2.5 p and arragitatio Examp tube. The fatty ac C ₁₄ 0.3 acids ir arachid Examp Cana aceton parts li reacted lipase a Examp	le 7 arts palm mid achidic acid, on with 0.25 ple 2 and previous fatty products id with less th c; C ₁₆ 31.3; C n the 2-positic lic residues in le 8 dida cylindrace e onto kieselge noleic acid w i with agitatic and 0.113 part ole 7. After re	fraction we dissolved in the control of the control	ere reacted in 10 parts niger lipas of the posed of 47 toglyceride of 15.2 and it eatic lipase into the true x Meito Sanethod desced in 8 party at 40°C r. previous product con 1% monoompared in TA	for 2 days a petroleum elkieselguhig for 30 mir 7% triglyce The triglyce 30.0 oleic a treatment iglyceride pringyo Comeribed in Exts of 60-80 with a mix y wetted with a Table 5 MBLE 5	at 40°C with the ether (60°C with the ether (60°C with 00°C with the o	0.75 parts 1-80°C boil 1-80°C	each of stearicing range) by s described in a sealed and 42% free saturated acids. Analysis of the stearic and 3-positions decipitated with olive oil and 1 and the solution the supporter as described in glyceride, 39% position of the

65

7 ·	1 377 933	
<u>·</u>	77% of the incorporated linoleate residues of the triglyceride product were found by	
	analysis to occupy the 1- and 3-positions, compared with 35 30% analysis to occupy the 1- and 3-positions, compared with 35 30% analysis to occupy the 1- and 3-positions, compared with 35 30% analysis to occupy the 1- and 3-positions, compared with 35 30% analysis to occupy the 1- and 3-positions, compared with 35 30% analysis to occupy the 1- and 3-positions, compared with 35 30% analysis to occupy the 1- and 3-positions, compared with 35 30% analysis to occupy the 1- and 3-positions, compared with 35 30% analysis to occupy the 1- and 3-positions, compared with 35 30% analysis to occupy the 1- and 3-positions, compared with 35 30% analysis to occupy the 1- and 3-positions, compared with 35 30% and 3-positi	٠.
5	incorporation into the 1- and 3-positions.	5
	Example, 9 A mixture of equal parts of shea butter and palm mid fraction was dissolved in its own weight of 60-80° petroleum ether and reacted for 2 days at 40°C with 0.25 parts of an A. weight of 60-80° petroleum ether and reacted for 2 days at 40°C with 0.25 parts of an A. weight of 60-80° petroleum ether and reacted for 2 days at 40°C with 0.25 parts of an A. weight of the standard of the standard for the s	10
10	with 0.02 parts of water as described in Example 7.18% to 18%, of triglycerides of carbon of the product exhibited a substantial drop, from 37.8% to 18%, of triglycerides of carbon number 52, number 50, and a corresponding increase, from 18.5 to 43.7, of those of carbon number 54.	
15	Little change in carbon number occurred below of a total of 91.1% unsaturated acid in the the fatty acid compositions showed that from a total of 91.1% unsaturated acid in the 2-position of the starting triglyceride, a decrease only to 87.3% was observed in the 2-position of the starting triglyceride, a decrease only to 87.3% that this position had	15
20	corresponding position of the interesterification, and hence the highly specific nature of participated scarcely at all in the interesterification, and hence the highly specific nature of participated scarcely at all in the interesterification, and hence the highly specific nature of participated specific nature of the enzyme. Comparison with the change in carbon number indicates a substantial shift in the enzyme. Comparison with the corresponding 2-oleyl palmityl stearyl glyceride. This was confirmed by the composition the corresponding 2-oleyl palmityl stearyl glyceride. This was confirmed by the composition of the various triglyceride species, calculated by the above-mentioned hypothesis and the various triglyceride species.	.20
25	compared with the starting material. Change in trigity reflect from starting materials. Change in trigity reflect from starting materials. POP 26-13. POSt 9-22. StOSt 17-9. others 48-56. all percentages.	25
30	Example 10 2½ parts of olive oil and 1 of erucic acid, dissolved in 2 parts of 60-80 petroleum ether were reacted for 3 days at 30°C with 0.25 parts of the A. niger lipase precipitated and wetted as before with 0.02 parts of water. From the product 55% triglyceride, 11% diglyceride, 34% free fatty acid and traces of monoglyceride were recovered and separated. Pancreatic lipase analysis of the 2-position showed that 95% of the erucate residues present were in the lipase analysis of the 2-position showed that 95% of the erucate residues present were in the	.;30
· 35	lipase analysis of the 2-position showed that 95% of the crucale results became a showed that 95% of the crucale results became a showed that 95% of the crucale results became a showed from nil in 1- and 3-positions. The amount of monounsaturated C_{20} and C_{22} acids increased from nil in the olive oil to 0.8 and 24.8 respectively in the triglyceride product, the principal additional changes being a decrease from 77.2 to 56.3 in the amount of oleic acid present and from 11.5 to 7.8% in the palmitic acid present.	35
¹°40	Example 11 Example 8 was repeated using as the lipase Geotrichum Candidum. This was grown on a medium containing as its principal ingredients yeast extract and olive oil. G. Candidum lipase powder was isolated from the resultant broth by ultrafiltration and freeze-drying and then precipitated onto kieselguhr with acetone by the method previously described.	. 40
45	then precipitated onto kieselguhr with acetone by the method previously ether. 2½ parts of olive oil and 0.75 parts of linoleic acid, dissolved in 4 parts of 60-80° petroleum ether, was reacted for 3 days at 40°C with 0.25 parts of the G. Candidum bound lipase, previously wetted as described in the above Examples. In further tests the Example was repeated using either the same amount of stearic acid or the same amount of both acids together. Substantial linoleic acid incorporation took place both in the presence and absence of stearic acid which however itself remained	45
· 50	both in the presence and absence of steam and ansence of steam and another and another and another and another another and another another another and another another and another an	50
55	traces of monoglyceride and unidentified material, probably guin, terpene esters uni-	. 55
60	etcetera amounting to 3%. Analysis of the triglyceride product, recovered by molecular distillation, showed an Analysis of the triglyceride product, recovered by molecular distillation, showed an increase in stearic acid residues of approximately 15%, substantially all (97%) of which (10%)	6 0

65

Example 13 600 gms each of palm oil and commercial stearic acid containing 95.8% C 18:0 were dissolved in 2880 gms of commercial hexane and stirred in a closed vessel to exclude air for

5

10

20

25

5

20

25

48 hours at 40°C with 100 gms of kieselguhr powder on which 60 gms of A. niger lipase was previously precipitated as described, the composition being previously wetted with 4.8 mls
of water. The powder was removed from the reaction mass by filtration and the hexane evaporated
to give 1175 gms of crude interesterified fat mixture. From a portion subjected to molecular distillation at 185°C and 4 × 10 ⁻² atmospheres,

From a portion subjected to molecular distillation at 185° C and 4×10^{-2} atmospheres, 595.5 gms of a distillate was recovered containing free fatty acid and traces of glycerides, the residue containing 324.8 gms of triglyceride essentially free from fatty acid and 90.6 gms of diglycerides. The fatty acid analysis of the triglyceride fraction of the residue is compared with that of palm oil and the mid-fraction subsequently obtained, in Table 6, in which its

triglyceride analysis also appears.

325 gms of the glyceride mixture was fractionated twice by crystallisation from acetone. In the first fractionation the mixture was dissolved in 1216 gms of actone which was then cooled to 0°C and held there for an hour, giving a crystallised mass which after filtration and washing twice with 875 mls of acetone each time at 0°C, weighed 201.7 gms. This was recrystallised from 1000.8 gms of acetone at 18°C and the filtrate combined with 2 washes, each of 88.2 gms of acetone at 18°C and evaporated to remove acetone from 113.5 gms of mid-fraction, consisting of 91% triglyceride and 9% diglyceride. The latter was removed by molecular distillation and the triglyceride component of the mid-fraction recovered in 80% will be molecular distillation for fatty acid analysis as given in Table 6.

molecular distillation and the triglyceride and 970 digiyeeride. The latter was removed by molecular distillation and the triglyceride component of the mid-fraction recovered in 80% yield by molecular distillation for fatty acid analysis as given in Table 6.

The results show the enrichment of the 1- and 3-positions with stearic acid occurs in the reaction mixture and that solvent-fractionation yields a mid-fraction which, compared with palm mid-fraction itself is enriched in stearic acid and consequently in the valuable POSt and StOSt glycerides.

TABLE 6

		Composition wt %				
	Reaction	Reaction product				
Fatty Acid	Triglyceride residue	mid-fraction	Palm Oil			
16:0 18:0 18:1 18:2	23.2 38.2 30.6 8.0	20.5 44.5 30.3 4.7	44 5 40 10			
Triglycerides		•				
S - Saturated U - Unsaturated L - Linoleic O - Oleic						
SSS SSO SLS SUU Others	13.4 4.5 12.5 22.5 3.7					
P - Palmitic St - Stearic						
StOSt POSt POP	17.5 20.1 5.8		•			

Process according to Claim 9 or 10 in which from 1 to 10% support agent is present. Process according to Claim 9, 10 or 11 in which the agent comprises diatomaceous

Process according to any of the preceding claims in which the enzyme is recovered

earth, activated charcoal, alumina, glass, carboxymethylcellulose or hydroxylaptite.

use in the process.

65 ·

	and re-used in the process.	
	14. Process according to any of the preceding claims in which the enzyme is distributed	
	in a colution in an inert organic colvent of the ISI.	
	15. Process according to Claim 14 in which the solvent comprises an alkane or	z
5	netroleum oil fraction	Š
	16. Process according to Claim 1 in which a fatty acid is present in a molar ratio of fat to	
	fatty acid from 0.3:1 to 7:1.	
	17 Process according to Claim 16 in which the acid comprises stearic acid.	
	19 Process according to Claim 16 in which the acid comprises linoleic acid.	4.6
10	10 Process according to any of the preceding claims in which the lat comprises onve,	10
	nalm cottonseed soughean or sunflower oil of a derivative thereof.	
	20 Process according to Claim 10 in which the 1st comprises a mid-iraction of Daim oil.	
	21. Process according to any of Claims 1 to 18 in which the fat comprises a vegetable	
	hutter	15
15	22. Process for the preparation of 1,3-disaturated-2-unsaturated glycerides from	13
	glycerides containing at least two unsaturated fatty acid moieties by an interesterification	
	process according to any of the preceding claims in the presence of a saturated free fatty	
•	acid using as catalyst a lipase enzyme which is specific in reactivity with respect to the	
	1,3-positions of the glycerides interesterified and separating a fraction comprising the	20
20	resulting 1,3-disaturated-2-unsaturated glyceride from the free fatty acid.	20
	23. Interesterification process substantially as hereinbefore described with reference to	
	the accompanying Examples.	
	24. Fats including glyceride oils whenever interesterified by a process as claimed in any	
~~	of the preceding claims. 25. Fats, including glyceride oils, interesterified selectively with respect to the	25
25	25. Fats, including glyceride ons, interestermed selectively with respect to the	
	glycerides interesterified. 26. A hardened, unsaturated and unelaidinised fat substantially free from saturated	
	fatty acid radicals in the 2-position of the unsaturated glycerides thereof.	
	27. A hardened fat as claimed in Claim 26 comprising at most 42% unsaturated acid	
30	andicals in which more than \$5% of the acid radicals in the 2-position are unsaturated.	30
30	28. A hardened fat as claimed in Claim 26 or 27 having an Iodine Value from 25 to 40.	
	20. A natural tat as claimed in Chain 50 of 2.	

D. LITHERLAND, Chartered Patent Agent.

Printed for Her Majesty's Stationery Office, by Croydon Printing Company Limited, Croydon, Surrey, 1980.
Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from
which copies may be obtained.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.