Funciones Diferenciables

Para una función de una variable f(x) se define la derivada en x_0 como

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Esto quiere decir que para h pequeño.

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

Si y sólo si $f'(x_0)h \approx f(x_0 + h) - f(x_0)$

Si y sólo si $f(x_0 + h) \approx f(x_0) + f'(x_0)h \approx L_T \ recta \ tangente$

Por tanto, la recta tangente L_T^{\perp} es una buena aproximación de la función cerca del punto $(x_0, f(x_0))$.

Sea
$$E(x_0+h)=f(x_0+h)-f(x_0)-f'(x_0)h$$
 , luego
$$\lim_{h\to 0}\frac{E(x_0+h)}{h}=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)-f'(x_0)h}{h}$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} - \lim_{h \to 0} \frac{f'(x_0)h}{h} = f'(x_0) - f'(x_0) = 0$$

Formalmente

Sea $U\subseteq\mathbb{R}$ abierto, una función $f\colon U\to\mathbb{R}$ se dice que es diferenciable en $x_0\in U$ si y sólo si existe $f'(x_0)\in\mathbb{R}$ tal que

$$\lim_{h\to 0}\frac{E(x_0+h)}{\|h\|}=0 \qquad \text{f es diferenciable si existe su derivada y la diferencia entre la función y la tangente es un infinitésimo.}$$

donde
$$E(x_0 + h) = f(x_0 + h) - f(x_0) - f'(x_0)h$$
 y $||h|| = \sqrt{h^2}$

Observaciones

- 1.- $E(x_0 + h)$ es el error de la aproximación lineal a la recta tangente $f(x_0) + f'(x_0)h$.
- 2.- De manera intuitiva, podemos decir que una función de dos variables x e y es diferenciable en (x_0, y_0) si existe un plano no vertical que contiene al punto $(x_0, y_0, f(x_0, y_0))$ de ecuación

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

que se acerca al gráfico de f en las proximidades del punto $(x_0, y_0, f(x_0, y_0))$

Veremos más adelante que esta ecuación corresponde a la ecuación del plano tangente a la superficie.

Definición

Sea z=f(x,y) una función definida en un conjunto abierto $U\subseteq\mathbb{R}^2$ y $(x_0,y_0)\in U$. Diremos que f es diferenciable en (x_0,y_0) si y sólo si existen

$$\frac{\partial f}{\partial x}(x_0, y_0) \wedge \frac{\partial f}{\partial y}(x_0, y_0)$$

Tal que

$$\lim_{(h,k)\to(0,0)} \frac{E(x_0+h,y_0+k)}{\|(h,k)\|} = 0$$

donde

$$E(x_0+h,y_0+k)$$

$$= f(x_0 + h, y_0 + k) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)h - \frac{\partial f}{\partial y}(x_0, y_0)k$$

$$Y \|(h,k)\| = \sqrt{h^2 + k^2}$$

Propiedades

1.- Si z = f(x, y) es diferenciable en (x_0, y_0) entonces f es continua en (x_0, y_0) .

2.- Si z=f(x,y) es diferenciable en (x_0,y_0) entonces existen $\frac{\partial f}{\partial x}(x_0,y_0)$ y $\frac{\partial f}{\partial y}(x_0,y_0)$.

Observaciones

1.- Si z=f(x,y) no es continua en (x_0,y_0) entonces f no es diferenciable en (x_0,y_0)

2.- Si alguna de las derivadas parciales de z=f(x,y) no existen en (x_0,y_0) entonces f no es diferenciable en el punto.

Ejemplo 1

Pruebe que $f(x,y) = x^2 + y^2$ es una función diferenciable en \mathbb{R}^2 .

Solución

$$\frac{\partial f}{\partial x}(x,y) = 2x \wedge \frac{\partial f}{\partial y}(x,y) = 2y$$

Por tanto, las derivadas parciales de f(x,y) existen $\forall (x,y) \in \mathbb{R}^2$ Ahora

$$E(x+h,y+k)$$

$$= f(x+h,y+k) - f(x,y) - \frac{\partial f}{\partial x}(x,y)h - \frac{\partial f}{\partial y}(x,y)k$$

$$= (x+h)^2 + (y+k)^2 - x^2 - y^2 - 2xh - 2yk$$

$$= x^2 + 2xh + h^2 + y^2 + 2yk + k^2 - x^2 - y^2 - 2xh - 2yk$$

$$= h^2 + k^2$$

Luego

$$\lim_{(h,k)\to(0,0)} \frac{E(x+h,y+k)}{\|(h,k)\|} = \lim_{(h,k)\to(0,0)} \frac{h^2 + k^2}{\sqrt{h^2 + k^2}} =$$
$$= \lim_{(h,k)\to(0,0)} \sqrt{h^2 + k^2} = 0$$

Ejemplo 2

Es la función

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

diferenciable en (0,0)?

Solución

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} \frac{x^3}{x^4 + x^2} = \lim_{x\to 0} \frac{x}{x^2 + 1} = 0$$

$$y = x$$

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} \frac{x^4}{x^4 + x^4} = \lim_{x\to 0} \frac{x^4}{2x^4} = \frac{1}{2}$$

$$y = x^2$$

Por tanto, no existe límite lo que significa que f es discontinua (0,0) y por tanto no es diferenciable en (0,0).

Ejemplo 3

Estudiar la diferenciabilidad de la función

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

en el punto (0,0).

Solución

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{0 - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{0 - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

Por lo tanto, existen las derivadas parciales en (0,0).

Ahora determinemos

$$\lim_{(h,k)\to(0,0)} \frac{E(0+h,0+k)}{\|(h,k)\|}$$

donde

$$E(0 + h, 0 + k)$$

$$= f(0+h, 0+k) - f(0,0) - \frac{\partial f}{\partial x}(0,0)h - \frac{\partial f}{\partial y}(0,0)k$$

Esto es

$$E(0 + h, 0 + k)$$

$$= f(h,k) - 0 - 0h - 0k = f(h,k) = \frac{hk}{\sqrt{h^2 + k^2}}$$

Luego

$$\lim_{(h,k)\to(0,0)} \frac{E(0+h,0+k)}{\|(h,k)\|} = \lim_{(h,k)\to(0,0)} \frac{\frac{hk}{\sqrt{h^2+k^2}}}{\sqrt{h^2+k^2}}$$
$$= \lim_{(h,k)\to(0,0)} \frac{hk}{h^2+k^2}$$

Ahora el límite no existe pues para k=mh , para diferentes m

$$\lim_{(h,k)\to(0,0)} \frac{hk}{h^2 + k^2} = \lim_{(h,k)\to(0,0)} \frac{h^2 m}{h^2 + m^2 h^2}$$
$$= \lim_{(h,k)\to(0,0)} \frac{h^2 m}{h^2 (1+m^2)} = \frac{m}{1+m^2}$$

que depende de m luego no existe límite y por tanto f no es diferenciable en (0,0).

El siguiente resultado prueba que la continuidad de las derivadas parciales de una función en un punto garantiza la diferenciabilidad de una función en ese punto.

Sea $U \subseteq \mathbb{R}^2$ abierto y sean $f: U \to \mathbb{R}$ una función definida en U y $(x_0, y_0) \in U$. Si $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ existen en una vecindad $B\big((x_0, y_0), r\big) \subseteq U$ y son continuas en $P_0 = (x_0, y_0)$, entonces f es diferenciable en P_0 .

Ejemplo 4

Sea $f(x, y) = 4y^3 - x^2 + 10$, determine si f es diferenciable en \mathbb{R}^2 .

Solución

f es continua en \mathbb{R}^2 pues $\forall (x_0, y_0) \in \mathbb{R}^2$;

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = 4y_0^3 - x_0^2 + 10 = f(x_0,y_0)$$

Por otro lado

$$\frac{\partial f}{\partial x} = -2x \wedge \frac{\partial f}{\partial y} = 12y^2$$

Son continuas en \mathbb{R}^2 y por tanto f es diferenciable en \mathbb{R}^2 .

El reciproco del resultado no es cierto pues existen funciones diferenciables cuyas derivadas parciales no son continuas.

Resumiendo

Derivadas parciales continuas ⇒ Diferenciable ⇒ existencia de derivadas parciales

 \Downarrow

Continua

Observación

El concepto de diferenciabilidad puede ser extendido a funciones de 3 o más variables.

En efecto para 3 variables

Sea $f: U \subseteq \mathbb{R}^3 \to \mathbb{R}$, U abierto en \mathbb{R}^3 , y $P_0 = (x_0, y_0, z_0) \in U$, diremos que f es diferenciables en P_0 , si y sólo si las derivadas parciales $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ y $\frac{\partial f}{\partial z}$ existen en P_0 y

$$\lim_{(h,k,s)\to(0,0,0)} \frac{E(x_0+h,y_0+k,z_0+s)}{\|(h,k,s)\|} = 0$$

donde

$$E(x_0 + h, y_0 + k, z_0 + s)$$

$$= f(x_0 + h, y_0 + k, z_0 + s) - f(x_0, y_0, z_0) - \frac{\partial f}{\partial x}(x_0, y_0, z_0)h$$
$$- \frac{\partial f}{\partial y}(x_0, y_0, z_0)k - \frac{\partial f}{\partial z}(x_0, y_0, z_0)s$$

$$Y ||(h, k, s)|| = \sqrt{h^2 + k^2 + s^2}$$

Propiedades más generales:

1.- Sea $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ una función definida en el conjunto abierto U de \mathbb{R}^n . Si las funciones derivadas parciales:

 $\frac{\partial f}{\partial x}$: $\overline{U} \subseteq \mathbb{R}^n \to \mathbb{R}$ con $i = 1, \dots, n$ y $\overline{U} \subseteq U$ son continuas en el punto $x_0 \in \overline{U}$, entonces f es diferenciable en x_0 .

- 2.- Sean $f, g: U \subseteq \mathbb{R}^n \to \mathbb{R}$ dos funciones definidas en el conjunto abierto U de \mathbb{R}^n , diferenciable en $p \in U$, entonces
- i) La suma $f + g: U \subseteq \mathbb{R}^n \to \mathbb{R}$; (f + g)(p) = f(p) + g(p) es una función diferenciable en p.
- ii) El producto $f \cdot g : U \subseteq \mathbb{R}^n \to \mathbb{R}$; $(f \cdot g)(p) = f(p) \cdot g(p)$ es una función diferenciable en p.
- iii) Si $g(p) \neq 0$, el cociente

 $\frac{f}{g}$: $U \subseteq \mathbb{R}^n \to \mathbb{R}$; $\left(\frac{f}{g}\right)(p) = \frac{f(p)}{g(p)}$ es una función diferenciable en el punto p.

3.- Si $f:U\subseteq\mathbb{R}^n\to\mathbb{R}$ es diferenciable en p y $g:\mathbb{R}\to\mathbb{R}$ es diferenciable en f(p) entonces $gof:U\subseteq\mathbb{R}^n\to\mathbb{R}$ es diferenciable en p.

Ejemplo

Sea $f: \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = x \operatorname{sen}\left(\frac{x+y}{1+x^2}\right) + (y^2 - xy + 1) \cos(x^2 + y^2)$$

Es diferenciable en \mathbb{R}^2 , pues está formada por sumas, productos cocientes y composición de funciones diferenciables.

Ejercicio

Sea $f(x,y) = 2xy^2 + 1$ una función. Estudiar la continuidad y la diferenciabilidad de f en el origen, además determinar la diferencial total de f en (0,0).

$$f_{x} = \frac{\partial f(0,0)}{\partial x} = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{2h \cdot 0^{2} + 1 - (0+1)}{h} \qquad f(x,y) = 2xy^{2} + 1$$

$$= \lim_{h \to 0} \frac{1-1}{h} = \lim_{h \to 0} \frac{1}{h} = \lim_{h \to 0} 0 = 0$$

$$f_{y} = \frac{\partial f(0,0)}{\partial y} = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{2 \cdot 0 \cdot h^{2} + 1 - (0+1)}{h}$$

$$= \lim_{h \to 0} \frac{1-1}{h} = \lim_{h \to 0} \frac{1}{h} = \lim_{h \to 0} 0 = 0$$

$$f(0+h,0+k) - f(0,0) - f_{x}(0,0)h - f_{y}(0,0)k$$

$$= f(h,k) - f(0,0) - 0 \cdot h - 0 \cdot k$$

$$= 2hk^{2} + 1 - 1 = 2hk^{2}$$

$$\lim_{(h,k) \to (0,0)} \frac{f(0+h,0+k) - f(0,0) - f_{x}(0,0)h - f_{y}(0,0)k}{|h,k|} =$$

$$\lim_{(h,k) \to (0,0)} \frac{f(0+h,0+k) - f(0,0) - f_{x}(0,0)h - f_{y}(0,0)k}{\sqrt{h^{2} + k^{2}}}$$

$$= \lim_{(h,k) \to (0,0)} \frac{2hk^{2}}{\sqrt{h^{2} + k^{2}}} = \frac{2|h||k|^{2}}{|h|} = 2k^{2}$$

Por tanto,

$$\lim_{(h,k)\to(0,0)} \frac{E(0+h,0+k)}{\|h,k\|} = 0$$

Y por consiguiente f es diferenciable en (0,0).

Como diferenciabilidad \Rightarrow continuidad, entonces f es continua en (0,0)

Finalmente, la diferencial total en (0,0) es

$$df(0,0) = f_x(0,0)dx + f_y(0,0)dy$$
$$= 0 dx + 0 dy = 0$$

Observación

Sea $U\subseteq \mathbb{R}^n$ abierto, una función $f\colon U\to \mathbb{R}$ se dice que es diferenciable en U si es diferenciable en cada $x_0\in U$.

(ver ejemplo 1 página 3)