

D: \frac{1}{2}a(t) \text{ sin } 0 \leftarrow = 0 \text{ for } 0 = 90

The sife we had only \frac{1}{2} a hannel, \text{ Rx output would}

be 0

With 242 channels, we during have

non-zero out puts @ (c) and for D

(ii) consider PM or FM $x(t) = A \cos(\omega_{10} + q(t))$ $\Rightarrow x_{\Sigma}(t) = A \cos q(t)$ $x_{Q}(t) = A \sin q(t)$ $\Rightarrow (an't - recover q(t) from x_{\Sigma}(t) alme$ or $x_{Q}(t)$ alone $x_{Z}(t) = A \sin q(t)$ $x_{Z}(t) = A \cos q(t)$ $x_{Z}(t) = A$

Advantages

Simple architecture

No image problem (UEF =0)

Highly integrable - no off-chip filters except

for Band-select filter

No IR filter => LNA need not drive 50 n

Easy prefiltering -> only @ DC & 2 NLo

only I PLL required for frequency synthesis

Solutions to isves i) D.C. offsets + High-part filtering - ac compling > corner freq. depends on signal spectrum 2 many signals have peak energy at and around DC } -> Slow settling time (large caps) -> fast variations in Vos are not tracked * Encode Tx signal such that it contains little energy near DC - "DC-free coding" * DC offset correction (calibration)

-> Switable for wide band nignals { loss of a few kHz BW doesn't affect data rate}

2) Flicker no use

1/f no use from devices:

-> worse in CMOS (compared to bipolar)

-> large mixer devices = more (onding on V co

DC - free coding + HPF

3) Linearity

* Design LNA & miner to have high 11/2

* Differential Structures (Symmetry reduces

IM2 power)

4) <u>hain</u>
* Most of goin ocurs @ I freq.
-> Avoiding parasitic feedback is witical (i.e. avoid stability issues)
-> 400d is al ation is important