# Formal Language & Automata Theory

Prof. Sankhadeep Chatterjee

## Regular Expressions

- Regular expressions are an algebraic way to describe languages.
- They describe exactly the regular languages.
- If E is a regular expression, then L(E) is the language it defines.
- We'll describe RE's and their languages recursively.

## The Operators of Regular Expressions

- The Union of two languages L and M, denoted  $L \cup M$ , is the set of strings that are in either L or M, or both.
  - For example, if  $L = \{001, 10, 111\}$  and  $M = \{\epsilon, 001\}$  then  $L \cup M = \{\epsilon, 001, 10, 111\}$
- The Concatenation of languages L and M is the set of strings that can be formed by taking any string in L and concatenating it with any string in M.
  - For example, if  $L = \{001, 10, 111\}$  and  $M = \{\epsilon, 001\}$  then  $L.M = \{001, 10, 111, 001001, 10001, 111001\}$

## The Operators of Regular Expressions

- The Closure (or star or Kleene closure) of a language L is denoted L\* represents the set of those strings that can be formed by taking any number of strings from L.
- If  $L = \{0, 1\}$ , then L\* denotes all strings of 0's and 1's.
- Note: Formally,  $L^* = \bigcup_{i \ge 0} L^i$  which is an infinite set
- Can you give an example of a language whose closure is not infinite?
  - $\phi^* = \{\epsilon\}$  as  $\phi^0 = \{\epsilon\}$  and  $\phi^i$  is empty for  $i \ge 1$

#### Building Regular Expressions

- Basis 1: If a is any symbol, then  $\mathbf{a}$  is a RE, and  $L(\mathbf{a}) = \{a\}$ .
  - Note: {a} is the language containing one string, and that string is of length 1.
- Basis 2:  $\epsilon$  is a RE, and L( $\epsilon$ ) = { $\epsilon$ }.

• Basis 3:  $\emptyset$  is a RE, and  $L(\emptyset) = \emptyset$ .

#### Building Regular Expressions

- Induction 1: If  $E_1$  and  $E_2$  are regular expressions, then  $E_1 + E_2$  is a regular expression, and  $L(E_1 + E_2) = L(E_1) \cup L(E_2)$ .
- Induction 2: If  $E_1$  and  $E_2$  are regular expressions, then  $E_1E_2$  is a regular expression, and  $L(E_1E_2) = L(E_1)L(E_2)$ .
  - Concatenation : the set of strings wx such that w is in  $L(E_1)$  and x is in  $L(E_2)$ .
- Induction 3: If E is a RE, then E\* is a RE, and L(E\*) = (L(E))\*.
  - Closure, or "Kleene closure" = set of strings  $w_1w_2...w_n$ , for some  $n \ge 0$ , where each  $w_i$  is in L(E).
  - Note: when n=0, the string is  $\epsilon$ .

## Precedence of Operators

 Parentheses may be used wherever needed to influence the grouping of operators.

• Order of precedence is \* (highest), then concatenation, then + (lowest).

- Examples:
  - $L(01+0) = \{01, 0\}.$
  - $L(0(1+0)) = \{01, 00\}.$

## Regular expressions

- Identities & Annihilators
- ø is the identity for +.
  - $R + \emptyset = R$ .
- ε is the identity for concatenation.
  - $\varepsilon R = R\varepsilon = R$ .
- ø is the annihilator for concatenation.
  - $\emptyset R = R\emptyset = \emptyset$ .
- Examples of Language of Regular Expressions:
  - $L(01) = \{01\}.$
  - $L(\mathbf{0}^*) = \{\epsilon, 0, 00, 000, \dots \}.$
  - $L((\mathbf{0}+\mathbf{10})^*(\epsilon+\mathbf{1})) = \text{all strings of 0's and 1's without two consecutive 1's.}$

#### Examples

- L = {w | length of w = 2} over Σ = {a, b}
   (a + b)<sup>2</sup>
- L = {w | length of w  $\geq$  2} over  $\Sigma = \{a, b\}$ 
  - $(a+b)^2(a+b)^*$
- L = {w | length of w is even} over  $\Sigma = \{a, b\}$ 
  - $((a+b).(a+b))^*$
- L = {w | no. of a's in w = 2} over  $\Sigma = \{a, b\}$ 
  - $b^*ab^*ab^*$
- L = {w | no. of a's in w  $\geq$  2} over  $\Sigma = \{a, b\}$ 
  - $b^*ab^*a(a+b)^*$
- L = {w | no. of a's in w is even} over  $\Sigma = \{a, b\}$ 
  - $(b^*ab^*ab^*)^*+b^*$

# Regular Expression to $\epsilon$ -NFA

• Symbol **a**:



• 83



• Ø:





#### RE to €-NFA: Induction 1 — Union



For  $E_1 \cup E_2$ 

#### RE to €-NFA: Induction 2 — Concatenation



#### RE to €-NFA: Induction 3 — Closure



# RE to €-NFA: Example

• Convert the regular expression (0+1)\*1(0+1)\* to an  $\epsilon$ -NFA



# RE to €-NFA: Example

• Convert the regular expression (0+1)\*1(0+1)\* to an  $\epsilon$ -NFA



#### DFA to Regular Expression

- States of the DFA are assumed to be 1,2,...,n.
- We construct RE's for the labels of restricted sets of paths.
  - Basis: single arcs or no arc at all.
  - Induction: paths that are allowed to traverse next state in order.

#### DFA to Regular Expression

- A k-path is a path through the graph of the DFA that goes though no state numbered higher than k.
- Endpoints are not restricted; they can be any state.

#### DFA to Regular Expression



0-paths from 2 to 3: RE for labels =  $\mathbf{0}$ .

1-paths from 2 to 3: RE for labels = 0+11.

2-paths from 2 to 3: RE for labels = (10)\*0+1(01)\*1

3-paths from 2 to 3: RE for labels = ??

#### k-Path Induction

- Let R<sub>ij</sub><sup>k</sup> be the regular expression for the set of labels of k-paths from state i to state j.
- Basis: k=0.  $R_{ii}^0 = sum of labels of arc from i to j.$ 
  - Ø if no such arc.
  - But add ∈ if i=j.
- Example
- $R_{12}^{0} = \mathbf{0}$ .
- $R_{11}^0 = \emptyset + \epsilon = \epsilon$ .



#### k-Path Induction

- A k-path from i to j either:
  - 1. Never goes through state k, or
  - 2. Goes through k one or more times.

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}(R_{kk}^{k-1}) R_{kj}^{k-1}$$
.

 $A_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}(R_{kk}^{k-1}) R_{kj}^{k-1}$ .

 $A_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}(R_{kk}^{k-1}) R_{ij}^{k-1}$ 
 $A_{ij}^{k} = R_{ij}^{k-1} + R_{ij}^{$ 

#### k-Path Induction



## Final Step: DFA to Regular Expression

- The RE with the same language as the DFA is the sum (union) of R<sub>ii</sub><sup>n</sup>, where:
  - 1. n is the number of states; i.e., paths are unconstrained.
  - 2. i is the start state.
  - 3. j is one of the final states.

# Example: DFA to Regular Expression





|                |                      |                    | By direct substitution                                        | Simplified         |
|----------------|----------------------|--------------------|---------------------------------------------------------------|--------------------|
| $R_{11}^{(0)}$ | $\epsilon + 1$       | $R_{11}^{(1)}$     | $\epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^*(\epsilon + 1)$ | $1^*$              |
| $R_{12}^{(0)}$ | 0                    | $R_{12}^{(1)}$     | $0 + (\epsilon + 1)(\epsilon + 1)^*0$                         | $1^{*}0$           |
| $R_{21}^{(0)}$ | Ø                    | $R_{21}^{(ar{1})}$ | $\emptyset + \emptyset(\epsilon + 1)^*(\epsilon + 1)$         | Ø                  |
| $R_{22}^{(0)}$ | $(\epsilon + 0 + 1)$ | $R_{22}^{(1)}$     | $\epsilon + 0 + 1 + \emptyset(\epsilon + 1)^*0$               | $\epsilon + 0 + 1$ |

|                |                      |                | By direct substitution                                                                                 | Simplified         |
|----------------|----------------------|----------------|--------------------------------------------------------------------------------------------------------|--------------------|
| $R_{11}^{(0)}$ | $\epsilon + 1$       | $R_{11}^{(1)}$ | $\epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^*(\epsilon + 1)$                                          | 1*                 |
| $R_{12}^{(0)}$ | 0                    | $R_{12}^{(1)}$ | $\epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^*(\epsilon + 1)$<br>$0 + (\epsilon + 1)(\epsilon + 1)^*0$ | $1^*0$             |
| $R_{21}^{(0)}$ | Ø                    |                | $\emptyset + \emptyset(\epsilon + 1)^*(\epsilon + 1)$                                                  | Ø                  |
| $R_{22}^{(0)}$ | $(\epsilon + 0 + 1)$ | $R_{22}^{(1)}$ | $\epsilon + 0 + 1 + \emptyset(\epsilon + 1)^*0$                                                        | $\epsilon + 0 + 1$ |

|                           | By direct substitution                                                        | Simplified                    |
|---------------------------|-------------------------------------------------------------------------------|-------------------------------|
| $R_{11}^{(2)}$            | $1^* + 1^* 0 (\epsilon + 0 + 1)^* \emptyset$                                  | 1*                            |
| $R_{12}^{(2)}$            | $1^*0 + 1^*0(\epsilon + 0 + 1)^*(\epsilon + 0 + 1)$                           | ${f 1}^*{f 0}({f 0}+{f 1})^*$ |
| $R_{21}^{\overline{(2)}}$ | $\emptyset + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*\emptyset$                 | Ø                             |
| $R_{22}^{(2)}$            | $\epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1)$ | $({f 0} + {f 1})^*$           |

# Mealy Machine

- In a Mealy machine, the output produced by each transition depends on the internal state prior to the transition and the input symbol used in the transition.
- A Mealy machine is defined by the six tuple M =  $(Q, \Sigma, \Gamma, \delta, \theta, q0)$
- where
  - Q is a finite set of internal states,
  - Σ is the input alphabet,
  - Γ is the output alphabet,
  - $\delta: Q \times \Sigma \rightarrow Q$  is the transition function,
  - $\theta: Q \times \Sigma \rightarrow \Gamma$  is the output function,
  - $q0 \in Q$  is the initial state of M.

# Mealy Machine

• The mealy machine with Q = {q0, q1},  $\Sigma$ = {0, 1},  $\Gamma$ = {a, b, c}, initial state q0, and

• 
$$\delta(q0, 0) = q1$$
,

• 
$$\delta(q0, 1) = q0$$
,

• 
$$\delta(q1, 0) = q0$$
,

• 
$$\delta(q1, 1) = q1$$
,

• 
$$\theta(q0, 0) = a$$
,

• 
$$\theta(q0, 1) = c$$
,

• 
$$\theta(q1, 0) = b$$
,

• 
$$\theta(q1, 1) = a$$



#### Moore Machine

- In a Moore machine every state is associated with an element of the output alphabet
- Whenever the state is entered, this output symbol is printed.
- A Moore machine is defined by the six tuple  $M = (Q, \Sigma, \Gamma, \delta, \theta, q0)$ .
  - Q is a finite set of internal states,
  - Σ is the input alphabet,
  - Γ is the output alphabet,
  - $\delta: Q \times \Sigma \rightarrow Q$  is the transition function,
  - $\theta : Q \rightarrow \Gamma$  is the output function,
  - $q0 \in Q$  is the initial state.

## Moore Machine



# Mealy to Moore Conversion

For different output associated with states, split them into separate states.

| Present<br>State | Next<br>State | Output | Next<br>State | Output |
|------------------|---------------|--------|---------------|--------|
|                  | input = 0     | Output | input = 1     | Output |
| q1               | q3            | 0      | q2            | 0      |
| q2               | q1            | 1      | q4            | 0      |
| q3               | q2            | 1      | q1            | 1      |
| q4               | q4            | 1      | q3            | 0      |

| Drosont State | Next State | Output | Next State | Outout |
|---------------|------------|--------|------------|--------|
| Present State | input = 0  | Output | input = 1  | Output |
|               |            |        |            |        |
|               |            |        |            |        |
|               |            |        |            |        |
|               |            |        |            |        |
|               |            |        |            |        |
|               |            |        |            |        |

#### Mealy to Moore Conversion

For different output associated with states, split them into separate states.

| Present<br>State | Next<br>State | Next<br>State<br>Output |           | Output |
|------------------|---------------|-------------------------|-----------|--------|
|                  | input = 0     | Output                  | input = 1 | Output |
| q1               | q3            | 0                       | q2        | 0      |
| q2               | q1            | 1                       | q4        | 0      |
| q3               | q2            | 1                       | q1        | 1      |
| q4               | q4            | 1                       | q3        | 0      |

| Drocont State | Next State | Output | Next State | Output |
|---------------|------------|--------|------------|--------|
| Present State | input = 0  | Output | input = 1  | Output |
| q1            | q3         | 0      | q20        | 0      |
| q20           | q1         | 1      | q40        | 0      |
| q21           | q1         | 1      | q40        | 0      |
| q3            | q21        | 1      | q1         | 1      |
| q40           | q41        | 1      | q3         | 0      |
| q41           | q41        | 1      | q3         | 0      |

#### Mealy to Moore Conversion

Merge the output columns to obtain the Moore machine. Output depends on present state only.

| Present State  | Next State | Quitout | Next State | Output |  |
|----------------|------------|---------|------------|--------|--|
| rieseiit state | input = 0  | Output  | input = 1  | Output |  |
| q1             | q3         | 0       | q20        | 0      |  |
| q20            | q1         | 1       | q40        | 0      |  |
| q21            | q1         | 1       | q40        | 0      |  |
| q3             | q21        | 1       | q1         | 1      |  |
| q40            | q41        | 1       | q3         | 0      |  |
| q41            | q41        | 1       | q3         | 0      |  |

| Drocont State | Next State | Next State | Output |
|---------------|------------|------------|--------|
| Present State | input = 0  | input = 1  | Output |
| q1            | q3         | q20        | 1      |
| q20           | q1         | q40        | 0      |
| q21           | q1         | q40        | 1      |
| q3            | q21        | q1         | 0      |
| q40           | q41        | q3         | 0      |
| q41           | q41        | q3         | 1      |

# Moore to Mealy machine

Separate output columns for each input value. Output is decided based on present state only.

| Present | Next | Output |        |
|---------|------|--------|--------|
| State   | 0    | 1      | Output |
| q0      | q3   | q1     | 0      |
| q1      | q1   | q2     | 1      |
| q2      | q2   | q3     | 0      |
| q3      | q3   | q0     | 0      |

| Present | Next<br>State | Output | Next<br>State | Output |
|---------|---------------|--------|---------------|--------|
| State   | input = 0     | -      | input = 1     | Output |
| q0      |               |        |               |        |
| q1      |               |        |               |        |
| q2      |               |        |               |        |
| q3      |               |        |               |        |

## Moore to Mealy machine

Separate output columns for each input value. Output is decided based on present state only.

| Present | Next | Output |        |
|---------|------|--------|--------|
| State   | 0    | 1      | Output |
| q0      | q3   | q1     | 0      |
| q1      | q1   | q2     | 1      |
| q2      | q2   | q3     | 0      |
| q3      | q3   | q0     | 0      |

| Present<br>State | Next<br>State | Output | Next<br>State | Output |
|------------------|---------------|--------|---------------|--------|
|                  | input = 0     |        | input = 1     |        |
| q0               | q3            | 0      | q1            | 1      |
| q1               | q1            | 1      | q2            | 0      |
| q2               | q2            | 0      | q3            | 0      |
| q3               | q3            | 0      | q0            | 0      |