Vector spaces: spaces of "vectors" that you can add and 66
multiply by scalars (+8 rules for addition and mult.)
Vector spaces can be pretty obstract. For example, the "vectors" could be functions (you can add functions and multiply them by real number scalars.) But for now, the vector spaces we mainly want to look at are subspaces of IRM all vectors with n real number components.
Subspace = set of vectors in IRn such that: () Includes zero vector () (so subspace is non-empty) (2) Closed under addition: If () and () (losed under linear combinations: If (), () () ore in subspace, so is () the ore in subspace, so ore in subspace, so ore in subspace, so ore all cv+dw. (3) Closed under scalar multiplications If () are all cv+dw.
First big example: $C(A) = \text{column space of mxn matrix } A$. $A = \begin{bmatrix} \overline{a_1} & \overline{a_2} &\overline{a_n} \\ \overline{a_1} & \overline{a_2} &\overline{a_n} \end{bmatrix}$ I.e., $C(A) = \text{set of all linear combinations}$ $X_1 \overline{a_1} + X_2 \overline{a_2} + + X_1 \overline{a_n}$ columns of A
A vector \vec{b} in R^m is in $C(A)$ precisely when the system of each column of A equations $A\vec{\lambda} = \vec{b}$ has at least one solution has m components This is because " $\vec{b} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$ " means the same thing as

50 the system $\begin{cases} x+4y=2\\ 2x+5y=1 \end{cases}$ hos a solution. It's (x,y)=(-2,1). (3x+6y=0 what about $\begin{cases} x_1 + 4y = -3 \\ 2x + 5y = -2 \end{cases}$? Same question as: Is $\begin{bmatrix} -3 \\ 2 \end{bmatrix}$ in C(A)? $\begin{pmatrix} 3x + 6y = 1 \end{pmatrix}$ $\begin{cases} x+4y=-3 & \text{In consistent equation,} \\ -3y=4 & \text{No solution } \end{cases}$ So $\begin{bmatrix} -3 \\ -2 \end{bmatrix}$ is not in C(A). strike out of the plane somehow plane somehow Comment: The set of all linear combinations of any subset in IRn is a subspace, called the "span." In our example, $C(A) = span \left(\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \right)$ Important general problem; If S is a subspace, can you find a set of vectors 7, \(\frac{1}{2},--,\frac{1}{2}\)? have to be vectors in the subspace called a "spanning set" Example: S = xy-plane in \mathbb{R}^3 , i.e. $S = all \begin{vmatrix} x \\ y \\ 0 \end{vmatrix}$ Since $\begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 0 \\ 0 \end{bmatrix} + x \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $z = zbou(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) \neq different$ Also, $\begin{bmatrix} x \\ y \end{bmatrix} = \frac{x+x}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{x-x}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, so also 2 = 2 boun $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ abstraction of Nectors

But [1], [2] is not a spanning set for S, Even though [x] = x[1]+y[0]-(x+x)[2]

(DISO in MA)? AO=OV Ver, it is. (2) If x and y are in N(A), what about x+y? A(x+y) = Ax + Ay = 0 + 0 = 0 / So x+y is in N(A) (3) It & is in N(A), what about cx? $A(c\bar{x}) = c(A\bar{x}) = c\bar{o} = \bar{o} \vee soc\bar{x}$ is in N/A). 50 N(A) is a subspace! Some more examples: A=[456] Find all vectors in N(A). Need to solve A = 0: $\begin{bmatrix} 1 & 2 & 3 & 1 & 0 \\ 4 & 5 & 6 & 1 & 0 \end{bmatrix} \frac{\text{Row 2-H Row 1}}{\text{Row 3-7 Row 1}} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 \\ 0 & -3 & -6 & 1 & 0 \end{bmatrix} \frac{\text{Row 3}}{-2 & \text{Row 2}}$ C"free variable" column we can now solve for voriables in the "pivot columns" in terms of the variable in the free column. But first let's do a little more elimination: "pivot columns" $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} Row 1-2 Row 2 \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ This motrix is called a "reduced row $X^1 - X^3 = 0$ echelon form." It is the simplest $x_2 + 2x_3 = 0$ form for reading off solutions. La $x_1 = x_3$ $x_3 =$ free variable, can $x_2 = -2x_3$ take any value All solutions: $\overline{X} = \begin{bmatrix} x_3 \\ 2 - 2x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ one "special solution"

 $N(A) = all multiples (or, linear combinations) of the "special solution" = span <math>(\lceil \frac{1}{2} \rceil) = a \underline{line}$ in \mathbb{R}^3 .

Let's review the full elimination procedure:	- - -
A eliminate lovar U eliminate upper right Voriables create Reflyariables 1 "leading 1's" 1	
triangular "reduced row echelon form"	
Means = all variables above Means = non-zero entries in each roll Lea in with a leading 1" and lead	
leading 1's are eliminated 1's go down from upper left corner	
(If a row has all 0's put it of the borns	<u>Э</u> М.)
Example: What is R for	
$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$?? Row 2-Row 1 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 8 \end{bmatrix}$ Row 3-Row 1 $\begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 8 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$	
支Row3 [11] Row1-Row3 [1(D0) two "leading 1's" oli	read)
1 2 Row 3 [1 1 1 2 Row 1-Row 3 [1 (D 0) Row 1-Row 2 [1 0 0] Row 1-Row 2 [1 0 0] Row 1-Row 2 [1 0 0] [1 0] Row 2-2 Row 3 [0 0 1] Row 2-2 R	
This is R., leading 1's go down diagonal, all variable above leading 1's are eliminated.	es
In this case, R=I! We can now easily determine N(A):	
Solve $A \hat{x} = \hat{0} : [A \hat{0}] = [I \hat{0}] = [I \hat{0}]$	
Elimination operations V don't change \overline{O} . $X_1=0, X_2=0, X_3=0$	=0
There's only one solution: $\hat{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, so N(A) = the zero vector subspace.	ЭΥ
This always works if R=I: A elimination I means N(A) =	
zero subspace- Another way of saying this: the columns of A are "independent."	ţ,

Problem 3.2.1(a) Find R for $A = \begin{bmatrix} 1 & 2 & 2 & 46 \\ 1 & 2 & 3 & 69 \end{bmatrix}$ $\begin{bmatrix}
1 & 2 & 2 & 4 & 6 \\
1 & 2 & 3 & 6 & 9 \\
0 & 0 & 1 & 2 & 3
\end{bmatrix}$ $\begin{bmatrix}
1 & 2 & 2 & 4 & 6 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$ This is U; lower-left Row 1-2 Row2 [12000] This of the control of the con variables are eliminated-Cleading 1's in Colo I and 3 -> these are the "pivot columns" Columns 2,4,5 give free variables. We can easily solve = [A | D] - S[R | D] AZ=P using R $\begin{cases} x_1 + 2x_2 = 0 & \text{solve for } x_1, x_3 \\ x_3 + 2x_4 + 3x_5 = 0 & \text{in terms of} \end{cases} x_1 = -2x_2$ In terms of $X_3 = -2x_4 - 3x_5$ free voriables Cfrom R All solutions: $X = \begin{bmatrix} -2x_2 \\ x_2 \\ -2x_4 - 3x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ Vectors in N(A)= Three free variables, three special solutions For an mxn A, the number of leading 1's in R is important. It is called the rank of the motrix. (Use I for rand of A) since A has m total columns, the number of free variables is N-r (also the number of special solutions in N(A)). Interesting question: What matrices have r=1? Answer: "Outer products" of vectors, $A = \overrightarrow{U}\overrightarrow{\nabla}$ mxn mx1 1xn

Example: $A = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1(3) & 1(1) & 1(4) \\ -1(3) & -1(1) & -1(4) \\ 2(3) & 2(1) & 2(4) \end{bmatrix}$ A Row 2+Row! $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ So Every row is a multiple of the 1st row.

I 1/3 4/3 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = R$ One pivot column, one leading 1

Fun fact: You can write any A as a linear combination of "outer products": $A = U_1V_1^T + U_2V_2^T + \cdots + U_rV_r^T$ The rank r is the minimum number of outer products required to add up to r.