# 数学建模课程论文

组员 1: 陈铭硕

组员 2: 唐铭泽

组员 3: 尹贝尔

## 人员分工:

唐铭泽 模型设计、绘图、论文编写、排版

罗浩宇 模型设计、论文编写

陈子轩 资料收集、模型设计

# 繁花曲线的分析与绘制

# 摘要

关键字: 疫情防控 图论 网络流 最短路

# 目录

| _ | 、问题 | <b>题重述</b> |              |          | • |   | •   |  | • |   |  | • | • | • |  | • | • | • | • |      |  | • | • |   |   | <br>    | • | 3 |
|---|-----|------------|--------------|----------|---|---|-----|--|---|---|--|---|---|---|--|---|---|---|---|------|--|---|---|---|---|---------|---|---|
|   | 1.1 | 问题的        | 的提出          |          |   |   |     |  |   |   |  |   |   | • |  |   |   |   |   |      |  |   |   |   |   | <br>    |   | 3 |
| = | 、问  | 题分析        |              |          |   |   |     |  |   |   |  |   |   |   |  |   |   |   |   |      |  |   |   |   |   | <br>    |   | 3 |
|   | 2.1 | 总体分        | }析.          |          |   |   |     |  |   |   |  |   |   |   |  |   |   |   |   |      |  |   |   |   |   | <br>    |   | 3 |
|   | 2.2 | 问题-        | 一分析          |          |   |   |     |  |   |   |  |   |   |   |  |   |   |   |   | <br> |  |   |   |   |   | <br>    | • | 3 |
|   | 2.3 | 问题二        | 二分析          |          |   |   |     |  |   |   |  |   |   |   |  |   |   |   |   | <br> |  |   |   |   |   | <br>    |   | 4 |
|   | 2.4 | 问题三        | 三分析          |          |   |   |     |  |   |   |  |   |   | • |  |   |   |   |   |      |  |   |   |   |   | <br>    |   | 4 |
| Ξ | 、模  | 型假设        |              |          |   |   | •   |  |   |   |  |   |   |   |  |   |   |   |   |      |  |   |   |   |   | <br>, , |   | 4 |
| 兀 | 、符· | 号说明        |              |          |   |   |     |  |   |   |  |   |   |   |  |   |   |   |   |      |  |   |   |   | • | <br>    |   | 4 |
| 五 | 、模: | 型建立        | 、求解          | 写与       | 分 | 材 | ŕ · |  |   | • |  |   |   |   |  |   | • |   | • |      |  |   |   |   | • | <br>    | • | 4 |
|   | 5.1 | 问题-        | <del>-</del> |          | • |   |     |  |   |   |  |   |   | • |  |   |   |   |   | <br> |  |   |   |   |   | <br>    |   | 4 |
|   |     | 5.1.1      | 选择一          | _        |   |   |     |  |   |   |  |   |   |   |  |   |   |   |   | <br> |  |   |   | • |   | <br>    |   | 4 |
|   |     | 5.1.2      | 选择           | <u> </u> |   |   |     |  |   |   |  |   |   |   |  |   |   |   |   |      |  |   |   |   |   | <br>    |   | 4 |
|   | 5.2 | 问题二        | <u>.</u>     |          |   |   |     |  |   |   |  |   |   | • |  |   |   |   |   |      |  |   |   |   | • | <br>    |   | 6 |
| 六 | 、模  | 型评价        |              |          |   |   |     |  |   |   |  |   |   |   |  |   |   |   |   | <br> |  |   |   |   |   | <br>    |   | 6 |

## 一、问题重述

#### 1.1 问题的提出

# 二、问题分析

## 2.1 总体分析

一个居民小区通常由一些单元与道路组成。每个单元都有一定数量的人居住,每条 道路都有一定的通过时间。此外,我们可以把道路的交叉点与核酸检测点的候选位置看 作没有人居住的单元。于是我们可以把居民小区抽象为一张无向图,点权为居住人数, 边权为边的通过时间,把核酸检测点的规划转化成图论问题进行求解。

#### 2.2 问题一分析

定义图上两点的花费为两点的最短路径长度乘上起始点的点权。

建立核酸检测点位置要使居民总体方便,那么建立核酸检测点的位置有两种选择: 一种是使得居民到达核酸检测点的总花费最短,另一种是使得到达核酸检测点的最大的 花费最小;并且需要考虑建立的位置是否会给居民的正常生活造成影响。

#### 2.3 问题二分析

#### 2.4 问题三分析

## 三、模型假设

## 四、符号说明

| 符号         | 意义                         |
|------------|----------------------------|
| n          | 图的点数                       |
| m          | 图的边数                       |
| $w_i$      | 第 i 个点的点权                  |
| $e_i$      | 第 i 条边的边权                  |
| $u_i$      | 第 i 条边的起点                  |
| $v_{i}$    | 第 i 条边的终点                  |
| $d_{i,j}$  | 第 i 个点和第 j 个点最短路径长度        |
| $rk_{i,j}$ | 第 $i$ 到其他所有结点中第 $j$ 小的结点编号 |

# 五、模型建立、求解与分析

#### 5.1 问题一

#### 5.1.1 选择一

使得居民到达核酸检测点的总花费最短。

#### 5.1.2 选择二

使得到达核酸检测点的最大的花费最小。

提出一个概念叫图的绝对重心,定义为到所有点的花费距离的最大值最小的点,那我们的核酸检测点应建立在绝对重心上。

接下来考虑如何求解绝对重心。

假设图的绝对重心在边上,枚举每一条边  $(u_k, v_k)$ ,钦定图的绝对重心 c 在这一条边上,假设其距  $u_k$  的距离为  $x(x \le e_k)$ ,那么它距离  $v_k$  的距离为  $e_k - x$ 。

如图绝对重心 c 与一点 i 的关系图:



图 1 图的绝对中心与一点的位置关系 [?]

那么  $d_{c,i} = \min\{w_i \times (d_{u_k,i} + x), w_i \times (d_{v_k,i} + e_k - x)\}$ 。 随着 c 从  $u_k$  到  $v_k$  的移动  $d_{c,i}$  的变化如图可以画到一个平面直角坐标系上:



图 2 图的绝对中心变化的影响 [?]

然后显然可以发现图像会是两条斜率相同的一次函数所构成。 接下来将对于每一个点 *i* 都画像这样的图像就可以得到:



图 3 图的绝对中心变化的影响 [?]

这些折线交点中的最低点, 横坐标就是图的绝对中心的位置。

对于绝对中心在一个点上,那么就枚举一下那个节点,再用与其距离最远的节点更新一下就行了。

对于每一条边,每一个点都这样做一下就可以了。 总结一下过程:

- 1. 使用最短路算法求出  $d_{i,j}$ ;
- 2. 求出  $rk_{i,i}$ ;
- 3. 对于绝对中心在点上更新答案;
- 4. 对于绝对中心在边上, 枚举每一条边更新答案;

如果使用堆优化的 Dijkstra 求解最短路、邻接表存图,时间复杂度为  $\Theta(n^2\log m + nm)$ 

#### 5.2 问题二

我们发现

# 六、模型评价