# Persistent cohomology and an application in neuroscience

TDA+Neuro (CSE 5339), Lecture 6

Ling Zhou



Place cells

'You are here'













An online lecture for head direction cells, grid cells, and others: https://www.youtube.com/watch?v=CQPswbluCkk&ab\_channel=MITCBMM

## Firing fields for place cells (place fields)

#### Recall from Lecture 1:

- Place fields form a good cover of the arena
- Nerve lemma => the topology of the nerve complex associated to place fields is the same as that of the arena

**Theorem.** If  $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$  is an open cover of a compact space X such that every non-empty intersection of finitely many sets in  $\mathcal{U}$  is contractible, then X and (the geometric realization of)  $\mathcal{N}(\mathcal{U})$  are homotopy equivalent.



## Firing fields for grid cells

- Grid cell fires at multiple locations, typically in a grid-like triangular lattice
- Firing fields have different modules (depending on scales and orientations), [Stensola et al., 2012].





## Firing fields for grid cells

- Grid cell fires at multiple locations, typically in a grid-like triangular lattice
- Firing fields have different modules (depending on scales and orientations), [Stensola et al., 2012].
- Firing fields do NOT form a good cover for the whole arena (intersections are not always contractible)
- Firing fields form a good cover for a hexagon-shape fundamental domain, [Curto, 2017].



A torus

#### Firing fields for head-direction cells

- Head direction cell fires when the head is pointing to a certain direction (independent of the location).
- Firing field for head-direction cells is a circle.















Figure 1

## Generate neural recordings and assemble datasets

## Animal trajectory

- Arena: a circular enclosure of diameter 1.8 m
- Animal trajectory: use 1,000s of data from a trajectory extracted from an experimental animal, [Hafting et al. 2005, Burak & Fiete, 2009]
- Time bin: 0.2s (=> 5000 timepoints)
- Obtain data for positions and directions by taking average over each time bin.

The neural recordings will be simulated from the positions and the directions obtained from this trajectory.



#### Generate neural activities for periodic neural populations

Tuning curve: a function of position and/or direction for each neuron

• For grid cell: 
$$s_{grid}(x; b) = f\left(\frac{1}{0.45l} \|A\langle A^{-1}x - b\rangle_{1/2}\|\right)$$
position
offsets

- For head direction cell:  $s_{\rm dir}\left(\theta;c\right)=f\left(4\langle\theta-c\rangle_{\pi}\right)$  .
- For conjunctive cell:  $s_{\text{conj}}(\mathbf{x}, \theta; \mathbf{b}, c) = s_{\text{grid}}(\mathbf{x}; \mathbf{b}) s_{\text{dir}}(\theta; c)$ .

$$f(z) = \begin{cases} \frac{1+\cos \pi z}{2} & |z| < 1\\ 0 & |z| \ge 1. \end{cases}$$

$$\mathsf{A} = l \begin{pmatrix} \cos \phi & \cos \left(\phi + \frac{\pi}{3}\right)\\ \sin \phi & \sin \left(\phi + \frac{\pi}{3}\right) \end{pmatrix}$$

$$l = 40 \text{ cm and } \phi = 0$$

$$\langle a \rangle_m \equiv (a + m \text{ mod } 2m) - m$$

#### Assemble datasets & reduce size of data (5000 -> 1000)



- 1. Remove timepoints when all neurons are not active enough:
- 2. Geometric subsampling:
  - pick the first point at random
  - iteratively add a point that is the furthest from the chosen points

The above steps do not lose important information (due to stability).

## Persistent cohomology and circular coordinates

#### Homology

p-chain: linear combination of p-simplices

 $C_p(X)$ : set of p-chains

 $\partial_{p}$ : boundary map

$$\partial_2 \left( \underbrace{ \bigwedge_{i_0}^{N_2}}_{N_i} \right) = + \underbrace{ \bigvee_{i_1}^{N_2}}_{N_i} - \underbrace{ \bigvee_{i_0}^{N_2}}_{N_0} + \underbrace{ \bigvee_{i_0}^{N_2}}_{N_i} \right)$$

$$0 \leftarrow C_0(X) \xleftarrow{\partial_1} C_1(X) \xleftarrow{\partial_2} C_2(X) \leftarrow \cdots$$

$$H_p = \ker \partial_p / \operatorname{Im} \partial_{p+1}$$

#### Cohomology

p-cochain: map from  $C_p(X)$  to the coefficients

C<sup>p</sup>(X): set of p-cochains

 $\delta^{p}$ : coboundary map

$$0 \longrightarrow C^{\circ}(X) \xrightarrow{S^{\circ}} C'(X) \xrightarrow{S^{1}} C^{2}(X) \longrightarrow \cdots$$

$$H^p = \ker \delta^p / \operatorname{Im} \delta^{p-1}$$

#### Persistent cohomology

For a point cloud P, its Vietoris-Rips complex at scale r is

$$\operatorname{VR}(P,r) = \{ \sigma \subseteq P \mid ||p-q|| \le r \forall p,q \in \sigma \}.$$

Apply cohomology to the Vietoris-Rips filtration, we obtain

$$\mathrm{H}^{k}\left(\mathrm{VR}\left(P,r_{1}\right)\right)\leftarrow\mathrm{H}^{k}(\mathrm{VR}\left(P,r_{2}\right)\leftarrow\mathrm{H}^{k}\left(\mathrm{VR}\left(P,r_{3}\right)\right)\leftarrow\ldots$$

- Persistent homology and persistent cohomology have the same barcode.
- Persistent cohomology is faster to compute than persistent homology.

#### Circular coordinates

Dimension reduction algorithm: for a dataset X sampled from a high-dimensional manifold  $M \subset \mathbb{R}^N$ , find coordinate mappings  $(f_1, ..., f_n): X \to \mathbb{R}$  for n<N, which faithfully preserves the 'intrinsic' structure of X.

#### Popular methods:

- Linear dimension reduction: principal components analysis, linear regression, etc;
- Non-linear dimension reduction: Isomap, Locally Linear Embedding, etc.

Problem: the above methods can lose significant information in some case. For example, think about embedding a circle (a 1-dimensional manifold) to R.

Reference [de Silva et al., 2011a] proposes to enlarge the class of coordinate functions to include circle-valued coordinates





#### Circular coordinates

The first cohomology provides the choices of circular coordinates:

$$[X, S^1] = \mathrm{H}^1(X; \mathbb{Z}).$$

The circular coordinate pipeline:

- Construct a filtered Vietoris-Rips complex to approximate the underlying manifold.
- Compute persistent cohomology over a finite field to identify significant 1-cocycles.
- Lift the 1-cocycles to obtain integer-valued 1-cocycles.
- Replace the integer-valued 1-cocycles by some smoothed real-valued 1-cocycles.
- Integrate the smoothed 1-cocycles to obtain circle-valued functions  $\theta: X \to S^1$ .

Choices of circular coordinates are not unique.

## Apply persistent cohomology

#### Detecting grid cells

Goal: verify that the given cells are grid cells.

#### Method:

- Compute persistent cohomology of the Vietoris-Rips filtration of datasets and pick cocycles above a threshold.
- 'Success', if there are two 1-cocycles for grid cells.
- Experiment 100 times and compute 'success rate'.

#### Conclusion:

longer memory higher success rates more neurons



Figure 3

#### Detecting grid cells with mixed signal

Goal: verify that the given cells are grid cells.

Variant: assuming multi-neuron units, obtained by

- linearly combining spike trains of grid cells;
- coefficients are drawn from a uniform random distribution and the normalized

Method: compute the success rate of having two significant 1-cocycle

#### Conclusion:

- Figure 4.A: multi-neuron units have different behavior from sing neurons
- Figure 4.B: the toroidal topology can still be discovered and success rate is independent of the number of grid cells in each unit.



#### Detecting grid cells with spiking noise

Goal: verify that the given cells are grid cells.

Variant: presence of spiking noise

$$s_{
m noisy} = F \cdot X, \quad X ext{-}{
m Pois}(\lambda/F)\,.$$
 Fano factor of the Rescaled firing rate random process

Method: compute the success rate of having two significant 1-cocycles.

Conclusion: more neurons are required for higher Fano factors.



#### Cell detection with mixtures of neural populations

Goal: detect the types of grid cells or conjunctive cells, when mixed with other types of neurons.

Method: compute the success rate of having two significant 1-cocycles for grid cells, or having three significant 1-cocycles for conjunctive cells.

#### Conclusion:

# other cells # grid cells < 2 > reliable discovery of grid cells;

Detection of conjunctive cells requires more neurons.



Figure 6

#### Cell detection with mixtures of neural populations

Goal: detect conjunctive cells under different ways of mixture.

Conclusion: detection is the best when there is no dominating population.



Figure 7

#### Cell detection with mixtures of neural populations

Goal: detect mixed grid cells from multiple modules (e.g. mixing 2 modules results into a 4-torus).

Conclusion: larger environments are needed to fully sample the 4-torus structure.



## Reconstruct animal trajectory



Figure 5

#### Reconstruct animal trajectory



Figure 5

#### Conclusion:

- Figure 5.D: the organization of grid cells in topological space recovers the organization of them in physical space;
- Figure 5.E: persistent cohomology decode the trajectories in the physical space.

#### Summary

- Firing field itself can have non-trivial topology! For example, the grid cells, head direction cells and conjunctive cells.
- Persistent cohomology detects types of cells with non-trivial firing fields successfully.
- Dataset parameters (such as, noise or mixture with other cells) affect the performance of persistent cohomology.

#### References

[Burak & Fiete, 2009] Burak, Y., & Fiete, I. R. (2009). <u>Accurate path integration in continuous attractor network models of grid cells</u>. *PLoS computational biology*, *5*(2), e1000291.

[Curto, 2017] Curto, C. (2017). What can topology tell us about the neural code? Bulletin of the American Mathematical Society, 54(1), 63-78.

[de Silva et al., 2011a] De Silva, V., Morozov, D., & Vejdemo-Johansson, M. (2011). Persistent cohomology and circular coordinates. Discrete & computational geometry, 45(4), 737-759.

[de Silva et al., 2011b] De Silva, V., Morozov, D., & Vejdemo-Johansson, M. (2011). <u>Dualities in persistent</u> (co) homology. *Inverse Problems*, 27(12), 124003.

[Hafting et al., 2005] Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. *Nature*, 436(7052), 801-806.

[Kang et al., 2021] Kang, L., Xu, B., & Morozov, D. (2021). <u>Evaluating state space discovery by persistent cohomology in the spatial representation system.</u> *Frontiers in computational neuroscience*, *15*, 28.

[Stensola et al., 2012] Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M. B., & Moser, E. I. (2012). The entorhinal grid map is discretized. *Nature*, 492(7427), 72-78.

## Thank you!