Environmental and Development Economics Module 6 - Political Economy and the Environment

Raahil Madhok UMN Applied Economics

2024-10-03

Lecture 10

Political Economy and the Environment in LMICs

Housekeeping

- ► Tuesday Oct. 8th class in Ruttan 230
- Reviewers will be assigned tonight
 - Referee report due next Thursday
- Next: work on presentation
 - You will present in alphabetical order
- ► Replication due Oct. 21st
 - ► You can choose **any** env/dev paper, not just ones on syllabus
- Migration readings posted

Why political economy?

- ► There is a wedge between private and social value
 - Agents unlikely to volunteer conservation when benefits accrue elsewhere
 - Landowners cut forest for private value, ignore social value (e.g. biodiversity)

► **Government intervenes** to correct externality (regulation or prices)

- lacksquare Weak governance: De Jure eq De facto deforestation
 - ► What drives actual deforestation?
 - Last time: weak monitoring, weak enforcement, spillovers
 - ► **Today:** political economy (i.e. "non-benevolant'' social planner)

Political economy of the environment

▶ In first-best, low e means low $MWTP_e$ or high MC_e

$$MWTP_e = \frac{\partial c_e}{\partial \Delta e}$$

- ightharpoonup Social planner sets e^* by aggregating over agents
 - Assumption: no preferences of own

Recent Work

- ► Corruption: Burgess et al. (2012), Oliva (2013)
- ▶ Political cycles: Balboni et al. (2021), Mahadevan (2024), Mahadevan and Shenoy (2023)
- Favoritism: Madhok and Gulati (2024), Abman and Carney (2020), Gordon et al. (2024)

Burgess et al. (2013): Political Economy of Deforestation

- ▶ **Question:** How do political incentives affect environmental quality?
 - ▶ What is the role of bureaucrates in natural resource extraction?
- ▶ **Setting:** Deforestation over eight years of institutional change in Indonesia
 - Local bureaucrats can facilitate illegal logging
- ► **Research Design:** Asynchronous district splits
 - changes in election timing and budget allocations
- ► **Results:** new jurisdictions ↑ deforestation and ↓ wood price
 - ▶ Deforestation increases even in places where logging is banned

Setting: Indonesia

- National government sets de jure forest rules
 - ► Rely on local bureaucrats for enforcement
- Central monitoring of local officials is costly
 - Local officials can allow deforestation above sanctioned amount
- ► This generates competition between districts:
 - ▶ Idea: district heads can sell "permits" to deforest in exchange for bribe
 - **▶ Demand:** more permits sold, lower *P* per permit
 - Market: district heads engage in Cournot Competition
 - Strategy: one official in area means high price, few permits, less deforestation
 - ▶ District split: many heads, lower price, many permits, more deforestation

Aside: Cournot Market Structure

- ▶ Oligopoly Setting: Few firms produce homogeneous goods
- ▶ Quantity Competition: Firms choose q simultaneously to max. profits
- ▶ Market Price: Determined by total Q produced; firms account for rivals' output
- ▶ Nash Equilibrium: Each firm's output is optimal, given competitors' output
- ▶ Strategic Substitution: Firms'q are substitutes; increasing output lowers price
- ► **Key Outcome**: Q and P are between monopoly and perfect competition levels
 - Firms have *market power*, leading to P>MC

Model of Bureaucrat Behavior

- Logging firms choose where to log
 - Must obtain (legal or illegal) permit from district
- Districts choose number of permits to sell
 - ► Take # of permits issued by other districts as given
- Bribe is price for permit beyond legal limit
- Generates Cournot competition
 - ightharpoonup More districts ightharpoonup more deforestation ightharpoonup lower wood price

Model Setup: Firms

- ▶ Downward sloping inverse demand for wood, p(Q)
- Firms' profit maximization problem:

$$\max_{q_{fd}} \left[p(Q)q_{fd} - cq_{fd} - b_d q_{fd} \right]$$

- $ightharpoonup q_{fd}$: Quantity of wood logged by firm f in district d
- \triangleright p(Q): Price of wood, depends on total quantity Q in the province
- c: Constant marginal cost per unit of wood
- b_d: Permit cost per unit of wood in district d
- ▶ FOC [q]: WTP for permits: $b_d = p(Q) c$

Model Setup: District Government

▶ Districts sell permits but risk being caught for exceeding legal quotas:

$$\max_{q_d} \left[b(q_d) q_d - \phi(q_d, \bar{q}) r_d \right]$$

- $ightharpoonup q_d$: Total logging permits issued by district d
- lacktriangledown $\phi(q_d,ar{q})$: Prob. of being caught, increasing in illegal logging, $q_d-ar{q}$
- $ightharpoonup r_d$: Rent lost if detected
- ▶ Substitute firms' marginal bribe: $b_d = p(Q) c$

Cournot Equilibrium

► FOC for optimal logging permits:

$$q_d p' + p - c - \phi'(q_d, \bar{q}) r_d = 0$$

With *n* districts in wood market s.t. $Q = nq_d$ yields Cournot equilibrium:

$$\frac{p-c}{p} = \frac{1}{n\epsilon} + \frac{\phi'(Q/n, \bar{q})r}{p}$$

- \triangleright ϵ : Price elasticity of demand for wood
- n: Number of districts
- \triangleright Q: Total quantity of wood logged in the province

Model Implications

$$\frac{p-c}{p} = \frac{1}{n\epsilon} + \frac{\phi'(Q/n, \bar{q})r}{p}$$

- \blacksquare More districts $(\uparrow n)$ leads to \uparrow deforestation, \downarrow wood prices
- Substitution b/w illegal logging and other forms of rents rIf $\phi' > 0$ i.e. $q_d > \bar{q}$, then $\uparrow r$ leads to $\downarrow q_d$

Empirical Analog

▶ Let $p = \frac{\alpha}{q^{\lambda}}$ (CES demand), where $\epsilon = \frac{1}{\lambda}$, then effect of districts splits is:

$$\frac{1}{Q}\frac{dQ}{dn} = \frac{1}{n^2 - n\lambda}$$

Background: Indonesia

- ▶ In 1998, Suharto's regime ends, leading to rapid decentralization of power
 - Number of districts increased from 292 in 1998 to 483 by 2008

- ▶ Natural resource rich regions demand greater control over revenue
 - ► Forest management shifted to district governments

- District forest offices became the key players in both legal and illegal logging
- ▶ Illegal logging, facilitated by district officials, accounts for 60-80% of total logging

Background Continued

▶ District splits determined by: 1) geography, 2) ethnicity, 3) public sector size

- ▶ Timing of splits determined by: lots of bureaucracy and red tape...
 - ► Not determined by pre-trends in deforestation

- Wood markets are localized
 - Raw log exports are banned
 - ► Timber first transported to local mills
 - Prices vary across regions

Political Economy Data

Empirical Strategy

Deforestation Effects

Fixed effects Poisson quasi-maximum likelihood count model:

$$E(deforest_{pit}) = \mu_{pi} exp(\beta NumDistrictsinProv_{pit} + \eta_{it})$$

ightharpoonup deforested pixels in province p, island i, time t

Price Effects

$$In(y_{pt}) = \beta NumDistrictsinProv_{pit} + \mu_{wpi} + \eta_{wit} + \epsilon_{wpit}$$

- \triangleright y_{wpit} : price of wood type w
- $ightharpoonup \mu_{wpi}, \eta_{wit}$: wood-by-province and wood-by-island-year FEs

Results: Deforestation

	(1)	(2) Production/	(3) Conservation/
	All Forest	Conversion	Protection
Panel A			
Number of districts in province	0.0385**	0.0443**	0.0472
_	(0.0160)	(0.0179)	(0.0331)
Observations	608	296	312
Panel B: including lags			
Number of districts in province (sum of L0-L3)	0.0822***	0.0809***	0.101**
	(0.0204)	(0.0193)	(0.0426)
Observations	608	296	312

- ▶ District split increases deforestation rate by 3.85%
- ► Similar impacts where logging is legal (production) or illegal (conservation)!
- ► Large medium run effects

Results: Prices

	(1)	(2)	
	2001–2007		
	All wood observations		
Variables	Log price	Log quantity	
Panel A			
Number of districts in province	-0.017	0.084*	
	(0.012)	(0.044)	
Observations	1003	1003	
Panel B: including lags			
Number of districts in province	-0.0336**	0.135**	
(sum of L0–L3)	(0.0134)	(0.0561)	
Observations	1003	1003	

- ▶ district split decreases prices by 1.7% (not significant)
- ► after three years, prices ↓ by 3.4%
- ▶ slope of demand curve = $\frac{dLnQ}{dlnP}$ = -2.27 (elastic)

Alternative Explanation: Enforcement

- ► New district has less enforcement as it sets up
 - ▶ Initial increase in deforestation, then decline over time

▶ But, we see initial ↑ in deforestation sustained over three years

- ▶ Also, if enforcement driving results, should see ↑ deforestation in new half of district
 - ► If Cournot competition, no differential effects b/w old and new part
 - ► Result: no differential effects!

Are oil and gas revenues substitutes for logging revenue?

- ▶ If detection removes both corruption opportunities, then they are substitutes
 - ▶ If corruption has fixed costs, then they are complements
- ► Share of central oil/gas revenue rebated back to districts
 - ► Half goes to producing districts, other half split equally w/n province
- ► Since, district splits influence oil/gas prices through the sharing formula, control for splits directly and estimate:

$$E(deforest_{dit}) = \mu_{di} exp(\beta PCOilandGas_{dit} + \gamma NumDistricts_{dit} + \eta_{it})$$

- ► *PCOilandGas_{dit}*: per capita oil revenue received by district
- ▶ Could there be other explanations for a significant β ?

Results

	(1)	(2)	(3)
		Production/	Conservation/
Variables	All forest	Conversion	Protection
Panel A			
Oil and gas revenue	-0.00316**	-0.00284*	-0.00597**
per capita	(0.00160)	(0.00165)	(0.00252)
Observations	6464	3064	3400
Panel B: lags			
Oil and gas revenue	-0.00492***	-0.00432**	-0.0113***
per capita	(0.00186)	(0.00190)	(0.00257)
Lag 1	0.000652	8.87e-05	0.00561***
	(0.00103)	(0.00126)	(0.00113)
Lag 2	0.00112	0.00132	0.000731
	(0.00130)	(0.00151)	(0.00138)
Lag 3	0.00519***	0.00530***	0.00574
	(0.00163)	(0.00160)	(0.00372)
Sum of L0-L3	0.00205	0.00240	0.000768
	(0.00134)	(0.00154)	(0.00195)

- ▶ Evidence of substitution: each \$ 1 of oil/gas rents reduce logging by 0.3%
- ▶ Medium-run effect positive! Explanation: illegal rents attract "bad' politicians

Negative Selection into Office

	(1)	(2)	(3)
		Production/	Conservation/
Variables	All forest	Conversion	Protection
Oil and gas revenue per capita	-0.00523***	-0.00457***	-0.0122***
	(0.00143)	(0.00159)	(0.00174)
Postelection	0.0218	0.0240	0.0299
	(0.110)	(0.118)	(0.217)
Oil and gas × Postelection	0.00175*	0.00147	0.00517***
	(0.000989)	(0.000976)	(0.00180)
Oil + Oil * Postelection	-0.00348***	-0.00310**	-0.00698***
	(0.00129)	(0.00140)	(0.00134)
<i>p</i> -value	0.00128	0.0161	< 0.001
Observations	6403	3037	3366

- negative effect of oil/gas rents attenuates once election is held
- ▶ 35% of substitution effect disappears after election
- ► Takeaway: change in political equilibrium reverses substitution effect

Takeaway

- Decentralization Increases Deforestation:
 - ▶ district splits increase competition, ↑ deforestation, ↓ timber prices.

- Substitution of Corruption Opportunities:
 - ► Illegal logging and oil/gas rents act as substitutes.
 - ▶ When alternative rents available, reduce illegal logging, though weakens over time
- Cournot Competition Explains Deforestation Behavior:
 - ▶ The Cournot model explains how bureaucrats incentives drive deforestation.

Discussion

- Do you buy this story?
- ► Model extensions?
- Alternative story?

Back to Political Economy

- ▶ Recall, inefficiency comes from social planner not being "benevolent''
 - Include own utility weights in social welfare function
- ► In Indonesia, this comes in the form of taking bribes
 - ► Fuels competition b/w bureaucrats for (illegal) logging permits
- ▶ In Amazon, this comes in the form of rents from supporting ag. lobby
 - Incentives: monetary returns, electoral returns
 - See Katovich and Moffette (2024)
- ► Test: will removing potential rents curb deforestation?
 - ▶ We saw this already with pollution (Duflo et al., 2013)

Braganca and Dahis (2022): Cutting Special Interests by the Roots

- Research Question: Does conservation policy change political incentives?
- ► **Setting:** Deforestation policy in Amazon
 - ► Test effect of policy on "special interest' farmer politican groups
- Data: politician characteristics, elections, deforestation
- ▶ **Design:** 1) Difference-in-differences, 2) close election RDD
- ▶ **Results:** Corrupt municipalities deforest more before but not after policy
 - **mechanism:** policy reduces rents from illegal deforestation, reducing incentives for farmer politicians to cater to special-interest farmer groups

Background: Brazil Deforestation

- De jure: unauthorized deforestation is punishable crime
 - ightharpoonup De facto: Lack of coordination + high regulatory costs ightarrow limited effectiveness

- Environmental enforcement is a federal responsibility
 - ► In practice: mayors can indirectly influence deforestation
 - e.g. mayor consent needed for land grabbing or illegal logging

- 2004: PPCDAM deforestation policy enacted
 - Satellite based monitoring to identify deforestation hotspots

Background: Political Economy

Bribes/lobbying used to reduce environmental enforcement

▶ Strong farmer lobby: 1/4 of Congress are members of rural caucus

- ► Incentives of "farmer' politicians depends on conservation policy
 - \triangleright w/o policy, high returns to deforestation \rightarrow pro-deforestation lobbying by farmers
 - \blacktriangleright with policy, low returns from deforestation \rightarrow less incentive to allow deforestation

Conceptual framework

- ► Farmer politicians promote deforestation through three mechanisms:
- ▶ **Preferences**:pro-deforestation preferences
 - prediction: electing farmer mayor raises local deforestation
 - policy: will not affect politician preferences
- Monetary Returns: benefit financially from deforestation
 - prediction: electing farmer mayor raises local deforestation
 - policy: increases cost of deforestation, mitigating negative mayor effect
- ► Electoral Returns: gain votes by supporting pro-deforestation policy
 - prediction: electing farmer mayor increases local deforestation
 - policy: unclear, but expect it to decrease electoral returns
 - See model in paper

Data (2001-2016)

- ▶ **Elections:** party, gender, age, occupation, education
 - ► farmer politician = agriculture occuption (18% of sample)
- ▶ **Deforestation:** Global forest change
 - Number of deforestation pixels in municipality-year
- Land use: MapBiomas
 - forest, pasture, crops, non-forest
- ▶ Public finance: revenue and expenditures by type and source
- ► Land conflict: conflicts, murders, and settlements

Empirical Strategy

► Term-specific differences in outcomes b/w farmer and non-farmer places:

$$Y_{it} = \beta_t P_{it} + \gamma_t' X_{it} + \delta_t + \epsilon_{it}$$

- Y_{it} = environmental outcome in municipality i during term t
- $lackbox{P}_{it}=1$ if i is governed by a farmer politician during term t
- Four terms: 2001-04, 2005-08, 2009-12, 2013-16
- ▶ Predictions: $\beta_t > 0$, $\beta_t \beta_{01-04} < 0$
- Note: β_t is a weighted mean of effects on places where mayor type changes between periods (switchers) and where mayor type constant (stayers)
 - Estimate effect of switchers by adding municipality FEs

Identification assumptions

▶ How does this differ from difference-in-differences?

Event Study

▶ Year specific changes in deforesation in farmer vs. non-farmer municipalities:

$$Y_{it} - Y_{i2004} = \sum_{\tau=2001}^{\tau=2016} \beta_{\tau} P_{it} + \sum_{\tau=2001}^{\tau=2016} \gamma_{\tau}' X_{it} + \delta_{t} + \epsilon_{it}$$

- \triangleright β_{τ} : change in environment b/w t and 2004 in farmer vs. non-farmer places
- Prediction: $\beta_t = 0 \quad \forall \tau < 2004, \ \beta_t < 0 \quad \forall \tau > 2004$

Results: Farmer Politicians and Deforestation

	Cross Section	Switchers	Constant Selection	RD
	(1)	(2)	(3)	(4)
Panel A: Deforestation (km ²)				
2001-04	94.80***	31.20**	136.58**	153.19**
	(33.68)	(12.21)	(56.69)	(78.11)
2005-08	5.05	-2.12	26.99*	-18.31
	(13.75)	(10.75)	(14.84)	(44.29)
2009-12	26.74**	-41.37	80.09**	63.76
	(12.90)	(33.96)	(31.70)	(72.70)
2013-16	-19.12	-85.78**	39.69	-14.58
	(16.87)	(42.84)	(45.78)	(59.55)
Δ (2005-08) - (2001-04)	-89.76**	-33.32***	-109.59**	-171.50*
	(35.82)	(12.90)	(54.55)	(89.02)
Δ Post - Pre	-89.19***	-74.29***	-87.66**	-147.61*
	(34.09)	(25.49)	(41.24)	(84.18)

- ▶ Deforestation was $95km^2$ higher in farmer politician places pre-policy
- ▶ Sharp drop in deforestation post-policy $\Delta(2005-08)-(2001-04)$

Close Election RDD Estimates

How do politicians influence deforestation?

	Deforestation	Inside PA	Inside PA To Pasture	
	(1)	(2)	(3)	(4)
Panel A: Cross-Section				
2001-04	94.80***	90.45***	49.67***	0.10
	(33.68)	(33.80)	(14.15)	(0.85)
2005-08	5.05	7.04	10.86	-1.05**
	(13.75)	(12.68)	(8.38)	(0.50)
2009-12	26.74**	22.46**	22.10*	1.29
	(12.90)	(10.58)	(11.57)	(2.58)
2013-16	-19.12	-20.13	18.07	-2.20
	(16.87)	(12.36)	(25.67)	(1.74)
Δ (2005-08) - (2001-04)	-89.76**	-83.40**	-38.81**	-1.15
	(35.82)	(35.42)	(16.18)	(0.95)
Δ Post - Pre	-89.19***	-85.65**	-33.30**	-0.70
	(34.09)	(33.91)	(16.04)	(1.27)

- ▶ Differences b/w farmer and non-farmer area driven by successful PA policy
- Cleared land is converted to (low productivity) pastureland, not cropland

Results: Violence and Conflict

	Homicide Rate	Conflicts	Murders	Settlements
	(1)	(2)	(3)	(4)
Panel A: Cross-section				
2001-04	27.11***	0.08	0.11***	-0.00
	(7.13)	(0.08)	(0.04)	(0.03)
2005-08	6.94	0.04	0.04	-0.03
	(6.53)	(0.10)	(0.04)	(0.02)
2009-12	-6.80	-0.04	0.08	0.02
	(7.51)	(0.11)	(0.05)	(0.03)
2013-16	-9.11			
	(7.74)			
Δ (2005-08) - (2001-04)	-20.17**	-0.05	-0.07	-0.02
	(9.65)	(0.13)	(0.06)	(0.04)
Δ Post - Pre	-28.83***	-0.09	-0.07	-0.00
	(8.24)	(0.10)	(0.05)	(0.03)

- ▶ Violent deaths larger in farmer politician places pre-policy, but not after
- ► Similar (but weaker) for land conflict

Mechanisms: Electoral Outcomes

	% Farmer Cand. Next Term	% Vote Farmer Next Term	Farmer Next Term	Incumbent Reelected
	(1)	(2)	(3)	(4)
Panel A: Cross-Section				
2001-04	12.73***	14.13***	0.20***	0.02
	(3.16)	(3.43)	(0.05)	(0.04)
2005-08	10.54***	10.99***	0.10**	-0.07
	(2.82)	(3.08)	(0.04)	(0.05)
2009-12	6.04**	6.60**	0.07*	-0.10**
	(2.72)	(3.00)	(0.04)	(0.05)
2013-16	4.25	6.56*	0.11**	-0.03
	(3.30)	(3.70)	(0.05)	(0.05)
Δ (2005-08) - (2001-04)	-2.19	-3.14	-0.10	-0.08
	(4.20)	(4.56)	(0.07)	(0.06)
Δ Post - Pre	-5.36	-6.28*	-0.11*	-0.05
	(3.41)	(3.75)	(0.06)	(0.05)

[▶] No evidence evidence that electoral incentives affected farmer politician behavior

Discussion

- ► Limiting illegal rents from helping special interest groups can break the link between local politics and environmental degradation
- Alternative stories?