Изучение функциональных методов решения задач математической физички с обобщёнными решениями

Васильченко Д.Д.

1 Свойства пространства финитных бесконечно дифференцируемых функций и определение обобщённой производной произвольного порядка

Пусть задано открытое ограниченное множество $\Omega \subset \mathbb{R}^n$. Пространство $D(\Omega)$ состоит из всех бесконечное число раз дифференцируемых функций $v: \Omega \to \mathbb{R}^1$ с компактными носителями. Будем говорить, что последовательность функций v_1, v_2, \ldots из $D(\Omega)$ сходится к функции $V \in D(\Omega)$, если при каждом $\alpha = (\alpha_1, \ldots, \alpha_n)$ последовательность $D^{\alpha}v_k(x)$ равномерно на Ω сходится к функции $D^{\alpha}v(x)$.

Рассмотрим множество $C^m(\overline{\Omega})$ всех непрерывных в $\overline{\Omega}$ функций, имеющить в области Ω все производные до порядка m, непрерывные в $\overline{\Omega}$. В множесте $C^m(\overline{\Omega})$ можно ввести норму

$$||f||_{C^m(\overline{\Omega})} = \max_{|\alpha| \le m} \max_{x \in \overline{\Omega}} |D^{\alpha} f(x)| = \max_{0 \le k \le m} ||f||_{C^k(\overline{\Omega})}.$$

Множество $C^m(\overline{\Omega})$ является сепарабельным банаховым пространством.

Функция $D^{\alpha}f(x) \in L_{p}(\Omega)$ называется обобщённой производной порядка α в области Ω функции $f(x) \in L_{p}(\Omega)$, если для любой функции $\varphi(x) \in D(\Omega)$ выполняется тождество

$$\int_{\Omega} D^{\alpha} f(x) \varphi(x) dx = (-1)^{|\alpha|} \int_{\Omega} f(x) D^{\alpha} \varphi(x) dx$$

2 Примеры классических функций с обобщёнными производными и без них

Пример 1. Функция $f(x) = |x_1|$ в шаре $\Omega = \{x \in \mathbb{R}^n | \ |x| < 1\}$ имеет первые обобщённые производные $\frac{\partial f}{\partial x_1} = \mathrm{sign} x_1, \ \frac{\partial f}{\partial x_i} = 0, \ i = 2, 3, \dots, n$ из $L_p(\Omega)$ при любом p таком, что $1 \le p \le \infty$. B самом деле, расписывая $(\alpha = (1, 0, \dots, 0))$

$$\int\limits_{\Omega} f(x) D^{\alpha} \varphi(x) dx = + \int\limits_{\Omega \cap \{x_1 \geq 0\}} x_1 D^{\alpha} \varphi(x) dx - \int\limits_{\Omega \cap \{x_1 \leq 0\}} x_1 D^{\alpha} \varphi(x) dx = + \int\limits_{\Omega \cap \{x_1 \geq 0\}} \varphi(x) dx - \int\limits_{\Omega \cap \{x_1 \leq 0\}} \varphi(x) dx = + \int\limits_{\Omega \cap \{x_1 \leq$$

Пример 2. Функция $f(x) = \operatorname{sign} x_1$ в шаре $\Omega = \{x \in \mathbb{R}^n | |x| < 1\}$ не имеет обобщённой производной $\frac{\partial f}{\partial x_1}$. Это следует из того, что функция V(x), удовлетворяющая

$$\int_{\Omega} \operatorname{sign} x_1 D^{\alpha} \varphi(x) dx = \int_{\Omega} V(x) \varphi(x) dx$$

является сингулярной.

3 Определение и свойства пространств Соболева

Для всякого целого $m \geq 0$ и действительного числа p, такого, что $1 \leq p \leq \infty$, определим пространство Соболева $W^m_p(\Omega)$, состоящее из тех функций $u\in L_p(\Omega)$, для которых все частные производные $D^{\alpha}u(x)$ (в смысле обобщённых производных) при $|\alpha| \le m$ принадлежат пространству $L_p(\Omega)$.

Можно ввести норму

$$||u||_{m,p,\Omega} = ||u||_{W_p^m(\Omega)} = \left(\sum_{s=0}^m |u|_{s,p,\Omega}^p\right)^{1/p}$$
$$|u|_{m,p,\Omega} \equiv |u|_{W_p^m(\Omega)} = \left(\sum_{|\alpha|=m} ||D^\alpha u||_{0,p,\Omega}^p\right)^{1/p}.$$

Относительно такой нормы пространство $W_p^m(\Omega)$ является банаховым пространством.

Есть и другой способ получения пространства Соболева. Пространство W_p^0 (Ω) является замыканием множества $D(\Omega)$ в норме пространства $W_p^m(\Omega)$. Очевидно, что $W_p^m(\Omega) \subset W_p^m(\Omega)$. Докажем, что в пространстве $W_p^{0m}(\Omega)$ полунорма $|*|_{m,\Omega}$ эквивалентна норме $||*||_{m,\Omega}$. В случае m=1 доказательство опирается на широко известное неравенство Фридрихса

$$|u|^2 1, \Omega = \int\limits_{\Omega} |\mathrm{grad} u|^2 dx \ge \gamma \int\limits_{\Omega} u^2 dx = \gamma ||u||_{0,\Omega}^2,$$

где $\gamma = na^{-1}$, причем a - длина стороны n-мерного куба, содержащего область Ω . Докажем это неравенство для случая, когда $\Omega\subset\mathbb{R}^2$. Предположим, что область Ω можно заключить в квадрат $\Pi = \{x: \ 0 < x_1 < a, \ 0 < x_2 < a\}$. Так как пространство $W_p^m(\Omega)$ есть замыкание множества $D(\Omega)$ в норме W_2^1 , то достаточно доказать неравенство лишь для функций из класса $D(\Omega)$.

Предположим, что $u(x) \in D(\Omega)$. Продолжим функцию u(x) на всю плоскость \mathbb{R}^2 нулём. При таком продолжении фукиция будет принадлежать $D(\Pi)$. Пусть $(x_1,x_2) \in \Pi$; тогда, учитывая, что $u(0,x_2) = 0$, имеем

$$u(x_1, x_2) = \int_0^{x_1} \frac{\partial u}{\partial \xi_1}(\xi_1, x_2) d\xi$$

. Применяя неравенство Коши-Буняковского, получим

$$u^{2}(x_{1}, x_{2}) \leq x_{1} \int_{0}^{x_{2}} \left(\frac{\partial u}{\partial \xi_{1}}(\xi_{1}, x_{2}) d\xi_{1} \right)^{2} \leq a \int_{0}^{a} \left(\frac{\partial u}{\partial \xi_{1}}(\xi_{1}, x_{2}) d\xi_{1} \right)^{2}.$$

Проинтегрировав это неравенство в пределах $0 < x_1 < a, \ 0 < x_2 < a,$ имеем

$$\int_{\Pi} u^{2}(x)dx \le a^{2} \int_{\Pi} \left(\frac{\partial u}{\partial x_{1}}(x)\right)^{2} dx.$$

Аналогично можем получить неравенство для производной по второй переменной, далее просуммируем эти неравенства и получим требуемое.

Таким образом получили, что для любой $u\in \stackrel{0}{W_{n}^{m}}(\Omega)$ выполнены оценки

$$(1+\gamma)^{1/2}||u||_{1,\Omega} \le |u|_{1,\Omega} \le ||u||_{1,\Omega},$$

которые показывают эквивалентность $|u|_{1,\Omega}$ норме $||u||_{1,\Omega}$.

Пример 3. Пусть n = 1 и $\Omega = \{x : 0 < x < 1\}$. В Ω рассмотрим функцию

$$f(x) = \begin{cases} 1, & x < 0.5, \\ 0, & x \ge 0.5. \end{cases}$$

Покажем, что $f(x) \in W_p^{\lambda}(\Omega)$ при любом λ , таком, что $0 < \lambda < 1/p, \ 1 < p < \infty$. Действительно,

$$\int\limits_{0}^{1}\int\limits_{0}^{1}\frac{|f(x)-f(y)|^{p}}{|x-y|^{1+\lambda p}}dxdy=2\int\limits_{0}^{1}\int\limits_{0}^{0.5}\frac{dy}{(x-y)^{1+\lambda p}}dx\leq \frac{2}{\lambda p}\int\limits_{0.5}^{1}(x-0.5)^{-\lambda p}dx<\infty, ecnu\ \lambda p<1.$$

Пример 4. Пусть $\Omega = \{x \in \mathbb{R}^n | |x_i| < 1, i = 1, ..., n\}$ и

$$f(x) = \begin{cases} 1, & |x_i| < 0.5, i = 1, \dots, n \\ 0, & ocmanum \ mounds \ \Omega. \end{cases}$$

Hетрудно показать, что $f(x) \in W_2^{\lambda}(\Omega)$ при любом λ , удовлетворяющем условию $0 < \lambda < 0.5$.

4 Теоремы вложения

Теорема 1. Пусть граница Γ области Ω принадлежит классу C^m . Если $u \in W_p^m(\Omega)$, то след $v = u|_{\Gamma}$ принадлежит пространству $W_p^{m-1/p}(\Gamma)$ и выполняется оценка

$$||v||_{m-1/p,p,\Gamma} \le K_1 ||u||_{m,p,\Omega}.$$

Обратно, если $v \in W_p^{m-1/p}(\Gamma)$, то существует функция $u \in W_p^m(\Omega)$ такая, что $v = u|_{\Gamma}$, и выполнена оценка

$$||u||_{m-1,2,\Omega} \le K_2 ||v||_{m-1/p,p,\Gamma}$$

Теорема 2. (теорема вложения Соболева)

Пусть Ω - открытая область в \mathbb{R}^n с непрерывной по Липшицу границей и пусть Ω^k - k-мерная область, полученная пересечением Ω с k-мерной гиперплоскотсью в \mathbb{R}^n , $1 \le k \le n$. Пусть, далее, m - неотрицательное действительное число и $1 \le p \le \infty$. Тогда выполнены следующие вложения:

1. $ecnu \ mp < n \ u \ n - mp < k \le n, \ mo$

$$W_p^m \subset L_q(\Omega^k), \ p \le q \le kp/(n-mp);$$

B частности $npu \ k = n \ cnpaвeдливо$

$$||u||_{0,1,\Omega} \le C||u||_{m,p,\Omega}, \ p \le q \le np/(n-mp);$$

2. если mp = n, то для любого $k: 1 \le k \le n$

$$W_p^m(\Omega) \subset L_q(\Omega^k), \ p \le q < \infty;$$

B частности при k=n справедливо

$$||u||_{0,q,\Omega} \leq C||u||_{m,p,\Omega}, \ p \leq q < \infty;$$

Если p=1 и m=n, то вложение имеет место и для $q=\infty$.

3. Если mp > n, то

$$W_n^m(\Omega) \subset L_\infty(\Omega);$$

если mp > n > (m-1)p, то

$$W_p^m(\Omega) \subset C^{0,\lambda}(\overline{\Omega}), \ 0 < \lambda \le m - \frac{n}{p};$$

ecлu n = (m-1)p, mo

$$W_p^m(\Omega)\subset C^{0,\lambda}(\overline{\Omega}),\ 0<\lambda<1.$$

Теорема 3. (Упрощённый вариант теоремы вложения) Пусть $u \in W_2^1(a,b)$. Тогда $u \in C[a,b]$.

Доказатель ство. Рассмотрим функцию $u \in W_2^1(a,b)$. Это означает, что u и её первая производная u' принадлежат $L^2(a,b)$. Для любых $x,y \in [a,b]$ с x < y имеем:

$$u(y) - u(x) = \int_{x}^{y} u'(t) dt.$$

Применяя неравенство Коши-Буняковского, получаем:

$$|u(y) - u(x)| = \left| \int_{T}^{y} u'(t) dt \right| \le \int_{T}^{y} |u'(t)| dt.$$

Используя неравенство Коши-Буняковского для интеграла, получаем:

$$\int_{x}^{y} |u'(t)| dt \le \left(\int_{x}^{y} 1^{2} dt\right)^{1/2} \left(\int_{x}^{y} |u'(t)|^{2} dt\right)^{1/2}.$$

Учитывая, что $\int_{x}^{y} 1^{2} dt = y - x$, получаем:

$$|u(y) - u(x)| \le (y - x)^{1/2} \left(\int_a^b |u'(t)|^2 dt \right)^{1/2}.$$

Так как $u' \in L^2(a,b)$, интеграл $\int_a^b |u'(t)|^2 dt$ конечен. Пусть $C = \left(\int_a^b |u'(t)|^2 dt\right)^{1/2}$. Тогда:

$$|u(y) - u(x)| \le C(y - x)^{1/2}$$
.

Это показывает, что u является равномерно непрерывной функцией на [a,b]. Следовательно, $u \in C[a,b]$.

5 Лемма Брэмбла-Гильберта

Лемма 1. (Брэмбла-Гильберта)

Пусть Ω - открытая выпуклая ограниченная область в \mathbb{R}^n с диаметром d.Пусть, далее, линейный функционал l(u) ограничен в пространстве $W_2^m(\Omega)$, где $0 < m = \overline{m} + \lambda$, \overline{m} - целое неотрицательное чилсло, $0 < \lambda < 1$, m.e.

$$|l(u)| \le M \left(\sum_{j=0}^{\overline{m}} d^{2j} |u|_{j,\Omega}^2 + d^{2m} |u|_{m,\Omega}^2 \right)^{1/2}.$$

Если l(u) обращается в нуль на многочленах степени \overline{m} по переменным x_1, \ldots, x_n , то существует постоянная \overline{M} , зависящая от Ω , но не зависящая от u(x), такая, что выполнено неравенство

$$|l(u)| \leq M\overline{M}d^m|u|_{m,\Omega}.$$

Пример 5. Применим лемму Брэмбла-Гильберта для оценки погрешности приближенного интегрирования

$$l(u) = \int_{0}^{h} u(x)dx - \frac{h}{2}(u(0) + u(h)), \ u \in W_2^2.$$

Чтобы применить оценки теоремы вложения сделаем замену переменной t=x/h и положим $\tilde{u}(t)=u(th)$, тогда

$$l(\tilde{u}) = \frac{h}{2} \left[2 \int_{0}^{1} \tilde{u}(t)dt - \tilde{u}(0) - \tilde{u}(1) \right].$$

Τακ κακ

$$\max_{t \in [0,1]} |\tilde{u}(t)| \le \sqrt{2} \left(\int_{0}^{1} \left(\tilde{u}^{2} + \tilde{u'}^{2} \right) dt \right)^{1/2} \le \sqrt{2} ||\tilde{u}||_{W_{2}^{2}(0,1)},$$

mo

$$|l(\tilde{u})| \leq \frac{5}{2} h \|\tilde{u}\|_{W_2^2(0,1)}.$$

 $l(ilde{u})=0$ на многочленах первой степени, поэтому по лемме Брэмбла-Гильберта

$$|l(u)| \le Mh \|\tilde{u}\|_{W_2^2(0,1)} = Mh^{5/2} \|u\|_{W_2^2(0,h)}.$$

Теперь оценим ошибку квадратурной формулы трапеций на [0,1] с шагом h=1/N на функциях из класса $W_2^2([0,1])$:

$$l(f) = \int_{0}^{1} f(x)dx - \frac{h}{2} \sum_{i=1}^{N} (f(x_{i-1}) + f(x_i)), \ x_i = ih.$$

Перепишем в виде

$$l(f) = \sum_{i=1}^{N} \left\{ \int_{x_{i-1}}^{x_i} f(x)dx - \frac{h}{2} \left[f(x_{i-1}) + f(x_i) \right] \right\}$$

для каждого слагаемого в скобке применим оценку, полученную выше.

$$\int_{x_{i-1}}^{x_i} f(x)dx - \frac{h}{2} \left[f(x_{i-1}) + f(x_i) \right] \le Mh^{5/2} ||f||_{W_2^2(x_{i-1}, x_i)},$$

суммируя получим

$$|l(f)| \le Mh^{5/2} \sum_{i=1}^{N} ||f||_{W_2^2(x_{i-1},x_i)} \le Mh^2 ||f||_{W_2^2(0,1)}.$$

6 Определение обобщённого решения задачи Дирихле для эллиптического оператора

Пусть в конечной области Ω пространства \mathbb{R}^n с границей Γ задано самосопряженное эллиптическое уравнение второго порядка

$$Lu = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + q(x)u = f(x), \ x \in Q,$$
(1)

коэффициенты которого удовлетворяют следующим условиям:

$$a_{ij} = a_{ji} \in C^1(\overline{\Omega}), \ f(x) \in C(\overline{\Omega}), q(x) \in C(\overline{\Omega}),$$
 (2)

$$\sum_{i,i=1}^{n} a_{ij}(x)\xi_{i}\xi_{j} \ge \gamma \sum_{i=1}^{n} \xi_{i}^{2}, \ \gamma = \text{const} > 0$$
 (3)

для любого $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ (равномерная эллиптичность).

Функция $u(x) \in C^2(\Omega) \cap C^1(\overline{\Omega})$ называется решением (классическим решением) первой краевой задачи (или задачи Дирихле) для выше укзанного уравнения, если в Ω она удовлетворяет этому уравнению, а на границе Γ - условию

$$u(x) = \mu(x), \ x \in \Gamma, \tag{4}$$

где $\mu(x)$ - заданная функция.

Теорема 4. Пусть коэффициенты $a_i j(x)$ и q(x) оператора L принадлежат $C^{m-1,\alpha}(\overline{\Omega}), \ a_{ij}$ удовлетворяют неравенству (3), $q(x) \geq 0$, а граница Γ принадлежит классу $C^{m,\alpha}$. Тогда для любых $f \in C^{m-2,\alpha}(\overline{\Omega})$ и $\mu \in C^{m,\alpha}(\Gamma)$ задача (1)-(4) имеет единственное решение из класса $C^{m,\alpha}(\overline{\Omega}), \ m \geq 2$.

7 Точная интегро-дифференциальная схема

8 Точная разностная схема для задачи Штурма-Лиувилля

Рассмотрим краевую задачу

$$L(k,q)u \equiv \frac{d}{dx}(k(x)\frac{du}{dx}) - q(x)u(x) = -f(x), \ x \in (0,1) \equiv \Omega$$

$$\tag{1}$$

$$u(0) = u(1) = 0. (2)$$

Пусть
$$0 < M_1 \le k(x) \le M_2 < \infty, k(x)$$
 - измеримая функция; (3)

$$q(x) = Q'(x), Q(x) \in W_p^{\lambda}(\Omega), p \ge 2, 0 < \lambda \le 1,$$
 (4)

причем $\int\limits_0^1 Q(x)v'(x)dx\geq 0$ для любой функции $v\in \stackrel{0}{W_1^2}(\Omega)$ такой, что $v(x)\geq 0.$

$$f(x) = F'(x), F(x) \in W_r^{\theta}(\Omega), r \ge 2, 0 < \theta \le 1.$$
 (5).

На отрезке [0, 1] введем равномерную сетку

$$\omega = \{x = i/h, i = 1, \dots, N-1, h = 1/N\}, x_0 = 0, x_N = 1$$

и построим разностную схему, заменяющую задачу (1)-(2)

$$y(x_i) = A_i y(x_{i+1}) + B_i y(x_{i-1}) + F_i \ (i = 1, 2, \dots, N-1),$$

$$y(0) = y(1) = 0,$$
(6)

где A_i , B_i и F_i - некоторые функционалы от коэффициентов k(x), q(x) и f(x) исходного уравнения. Трехточечную разностую схему вида (6) назовем точной для задачи

$$\int_{0}^{1} \left[k(\xi)u'(\xi)\eta'(\xi) - Q(\xi)(u(\xi)\eta(\xi))' \right] d\xi = -\int_{0}^{1} F(\xi)\eta'(\xi)d\xi, \tag{7}$$

если выполняются условия

- 1. $A_i = A_i(k(*), q(*)), \ B_i = B_i(k(*), q(*)), F_i = F_i(k(*), q(*), f(*)),$ где F_i линейный функционал от 3 переменной.
- 2. $y(x) = u(x), x \in \omega$.

Пемма 2. Пусть выполнены условия (3)-(5). Тогда для задачи (1)-(2) существует хотя бы одна точная трехточечная разностная схема.