CLAIM AMENDMENTS

1. (Currently Amended) A compound of formula

$$E \xrightarrow{A_1} T \xrightarrow{A_2} W \xrightarrow{A_3} Q \xrightarrow{R_1} X_1 \times X_2 \times X_2 \times X_2 \times X_3 \times X_4 \times X_2 \times X_4 \times X_5 \times X_4 \times X_4$$

wherein

 X_1 and X_2 are each independently of the other fluorine, chlorine or bromine;

A₁ and A₂ are each independently of the other a bond or a C₁-C₆alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C₃-C₈cycloalkyl;

A₃ is a C₁-C₆alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C₃-C₈cycloalkyl;

 R_1 and R_2 are each independently of the other halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkyl-carbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_3 - C_6 alkynyloxy, C_2 - C_6 haloalkyl, C_1 - C_6 alkyl, C_1 - $C_$

 R_3 is H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkyl-carbonyl, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, C_3 - C_6

 $-S(=O)_2-C_1-C_6$ alkyl, C_1-C_6 alkoxycarbonyl or C_2-C_6 haloalkynyloxy; the substituents R_3 being independent of one another when m is 2;

 R_4 and R_5 are each independently of the other H, halogen, cyano, nitro, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_3 alkyl-carbonyl, C_1 - C_3 haloalkylcarbonyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl or C_3 - C_8 cycloalkylcarbonyl;

m is 1 or 2;

Y is O, NR_6 , S, SO or SO_2 ;

Q is O, NR_7 , S, SO or SO_2 ;

W is a bond, O, NR₇, S, SO, $\bigoplus_2 SO_2$, -C(=O)-O-, -O-C(=O)-, -C(R₈)=N-O-, -C(=O)-NR₉- or -NR₉-C(=O)-;

T is a bond, O, NR₇, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-,

 $-C(=O)-NR_9-$ or $-NR_9-C(=O)-$ or $-C(R_8)=N-O-$;

 R_6 and R_7 are each independently of the other H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_6 alkyl-carbonyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl or C_3 - C_8 cycloalkylcarbonyl;

R₈ is H, C₁-C₆alkyl, C₁-C₃haloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl or C₃-C₈cycloalkyl;
R₉ is H, C₁-C₆alkyl, C₁-C₃haloalkyl, C₁-C₆alkyl-carbonyl, C₁-C₃haloalkylcarbonyl,
C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxycarbonyl or C₃-C₈cycloalkyl; and
E is aryl unsubstituted or substituted from one to five times or heterocyclyl unsubstituted or, depending upon the possibilities of substitution on the ring, substituted from one to four times; and, where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form.

- 2. (Original) A compound according to claim 1 in free form.
- 3. (Previously Presented) A compound according to claim 1, wherein X_1 and X_2 are chlorine or bromine.
- 4. (Previously Presented) A compound according to claim 1, wherein Q is oxygen.
- 5. (Previously Presented) A compound according to claim 1, wherein A₃ is methylene.
- 6. (Previously Presented) A compound according to claim 1, wherein W is a bond.
- 7. (Previously Presented) A pesticidal composition which comprises as active ingredient at least one compound defined in claim 1, in free form or in agrochemically acceptable salt form, and at least one adjuvant.
- 8. (Original) A method of controlling pests which comprises applying a pesticidal composition as defined in claim 7 to the pests or to the locus thereof.