Semantic similarity and machine learning with ontologies

Robert Hoehndorf and Maxat Kulmanov

Ontologies, machine learning, and Al

- ontologies are ubiquitous
- rich formal characterization (axioms)
- how can they be used for (predictive) data analysis?
 - "fuzzy", similarity-based search
 - predictive analysis and machine learning
 - background knowledge

Learning goals

- machine learning with ontologies as features (or background knowledge)
- unsupervised or supervised:
 - ▶ here: mostly unsupervised *feature* learning
 - "deep" learning
- focus on existing tools and methods
 - Jupyter Notebooks and code examples
- not covered:
 - learning ontologies (axioms, definitions) from data
 - ► (most) natural language processing
 - reasoning with ontologies
 - learning on "knowledge graphs"
 - machine learning theory

Agenda

- Introduction: ontologies and graphs
- Semantic similarity
- Machine learning:
 - syntactic
 - ▶ graph-based
 - ► model-theoretic