Logika R

Weronika Jakimowicz

Zima 2025/26

Weronika Jakimowicz

Spis treści

1	Formalizacj	a matematyki	1
	02.10.2025	Uproszczony model rzeczywistości matematycznej: struktura I rzędu .	1
	1.	Model języka i język struktury modelu	1
	2.	Zdania w języku	3
	3.	Tautologie	6

1. Formalizacja matematyki

02.10.2025 Uproszczony model rzeczywistości matematycznej: struktura I rzędu

1. Model języka i język struktury modelu

Definicja 1.1: model

Model to struktura matematyczna składająca się z

- niepustego zbioru będącego *uniwersum* (dziedzina) $A \neq \emptyset$,
- funkcji $f_1, ..., f_k$ o arności n_i (tzn. $f_i: A^{n_i} \rightarrow A$),
- relacji (orzeczników, predykatów) w A, P_1 , ..., P_n , $gdzie P_i \subseteq A^{n_i}$,
- *stałych* z $A c_1, ..., c_l \in A$.

Zapisujemy

$$\mathfrak{M} = (A; f_1, ..., f_k; P_1, ..., P_n; c_1, ..., c_l)$$

gdzie k, n, l to liczby kardynalne, zazwyczaj skończone (tzn. k, n, $l \in \mathbb{N}$).

Konwencja

$$(\mathfrak{M} :=)|\mathfrak{M}| := A$$

Przykłady

1. Jeśli n=0, czyli nie mamy relacji, to $\mathfrak M$ jest strukturą algebraiczną (algebrą ogólną). Weźmy na przykład grupę. Grupa jest zdefiniowana jako zbiór G z wyróżnionym elementem neutralnym e, operacją mnożenia · oraz brania elementu odwrotnego $^{-1}$. Operacje to funkcje, a element neutralny to stała. Sam zbiór G to z kolei uniwersum, czyli mamy model:

$$(G; \cdot, ^{-1}; ; e)$$

2. Rodzina zbiorów V z relacją należenia \in jest modelem z jedną relacją, ale bez funkcji i bez stałych:

$$(V; ; \in;)$$

Taką strukturę nazywamy strukturą relacyjną.

Symbole oznaczające funkcje, relacje, stałe będziemy od ich znaczenia odróżniać przez podkreślenie:

- <u>f</u>_i, <u>P</u>_j, <u>c</u>_t to symbole,
- natomiast f_i , P_J , c_t to funkcja, relacja, stała.

Definicja 1.2: język

Język

$$L = \{\underline{f}_1, ..., \underline{f}_k; \underline{P}_1, ..., \underline{P}_n; \underline{c}_1, ..., \underline{c}_l\}$$

składa się z symboli: funkcyjnych, relacyjnych, stałych wraz z przypisanymi tym symbolom arnościami, tzn. f_i to symbol funkcji n_i -argumentowej etc.

Język jak wyżej jest nazywany językiem struktury \mathfrak{M} , typem podobieństwa \mathfrak{M} , sygnaturą \mathfrak{M} . Z kolei \mathfrak{M} jest modelem dla L.

Konwencja

Szerzej będziemy dla $\mathfrak M$ - modelu dla L - pisać

$$(\mathfrak{M}; \underline{f_1}^{\mathfrak{M}}, ..., \underline{f_k}^{\mathfrak{M}}; \underline{P_1}^{\mathfrak{M}}, ..., \underline{P_n}^{\mathfrak{M}}; \underline{c_1}^{\mathfrak{M}}, ..., \underline{c_l}^{\mathfrak{M}})$$

gdzie $\underline{f_i}^{\mathfrak{M}}$ oznacza interpretację symbolu $\underline{f_1}^{\mathfrak{M}}$ w kontekście modelu \mathfrak{M} .

Uwaga 1.3

Dla dowolnego języka L istnieje wiele struktur $\mathfrak{M}.$

Przykład

Język grup

Mając dany język L mówimy/piszemy w nim przy pomocy

- · symbolów języka,
- symboli logicznych \land , \lor , \neg , \rightarrow , \leftrightarrow (!!! \implies oraz \iff będą dla nas elementami metajęzyka !!!), \forall , \exists , =,

- zmiennych, np. x_i dla $i \in \mathbb{N}$, y, z,
- oraz symboli pomocniczych takich jak nawiasy, przecinki etc.

Uwaga 1.4

Spójniki można ograniczyć do \land , \neg i kwantyfikatora \exists . Całą resztę spójników można zdefiniować jako macra przy pomocy tych trzech, np.

$$p \lor q := \neg(\neg p \land \neq q)$$

Wyrażenia języka L:

- a) wyrażenia nazwowe (termy) należą do \mathcal{T}_L (Term_L) i są definiowane rekurencyjnie:
 - ullet zmienna, symbol stałej należą do \mathcal{T}_L i nazywają się termami atomowymi
 - jeśli τ_1 , ..., $\tau_n \in \mathcal{T}_L$, a \underline{f} jest symbolem n-argumentowej funkcji z L, to $\underline{f}(\tau_1, ..., \tau_n) \in \mathcal{T}_L$ i nazywa się termem złożonym.
- b) formuły oznaczamy \mathcal{F}_L (Form_L) i definiujemy rekurencyjnie w następujący sposób
 - dla wszystkich termów $\tau_1,...,\tau_n$ zachodzi $(\tau_1=\tau_2)\in\mathcal{F}_L$ oraz dla n-argumentowego symbolu relacji \underline{P}_i : $\underline{P}_i(\tau_1,...,\tau_n)\in\mathcal{F}_L$ to są formuły atomowe,
 - φ , $\psi \in \mathcal{F}_L \implies (\neg \varphi)$, $(\varphi \land \psi) \in \mathcal{F}_L$ $\varphi \in \mathcal{F}_L \implies (\exists \ r \ \varphi)$, $(\forall \ r\varphi) \in \mathcal{F}_L \ (r \ \text{występujące w wyrażeniach nazywamy zmiennymi})$

Formuły z tego punktu nazywamy formuły złożone.

Hierarchia symboli logicznych umożliwia pomijanie nawiasów:

- 1. symbole matematyczne
- 2. kwantyfikatory
- 3. negacja ¬
- **4.** ∧, ∨
- 5. \rightarrow , \leftrightarrow

2. Zdania w języku

Niech $\varphi \in \mathcal{F}_L$ będzie formułą w której występuje, co najmniej raz, zmienna v. Jeśli pewne wystąpienie v w φ jest w zasięgu pewnego kwantyfikatora $Q_v \in \{\forall, \exists\}$, to spośród wszystkich wystąpień Q_v w φ w których zasięgu jest v wybieramy to najbardziej na prawo i mówimy,

że to Q_v wiąże dane wystąpienie v w φ . Na przykład

$$\forall x \exists y (x \in y \land \forall x (x \in y \rightarrow x = y))$$
wiąże

Jeśli nie ma kwantyfikatora Q_v jak wyżej, to wystąpienie v w φ jest wolne. Popatrzmy na przykład na formułę

$$\exists y \ x \in y \land \forall x \ (x \in y \rightarrow x = y).$$

Kwantyfikator z czerwonym y wiąże czerwony y, a niebieskie y pozostają wolne. Dodając nawias pierwszy kwantyfikator wiąże już wszystkie występienia y:

$$\exists y \ (x \in y \land \forall x \ (x \in y \rightarrow x = y)).$$

Konwencja

Zapis $\varphi(v_1,...,v_n)$ oznacza, że wszystkie wolne zmienne w φ są wśród v_1 , ..., v_n (ale niekoniecznie wszystkie v_i są zmiennymi wolnymi).

Definicja 1.5: zdanie

Formalne zdanie w języku L to formuła niezawierająca zmiennych wolnych.

Tarski podał na początku XX wieku definicję prawdy. Nieco później udowodnił twierdzenie, że nie da się prawdy zdefiniować.

Powstaje pytanie co to znaczy, że formuła z L jest prawdziwa w strukturze M dla L?

Niech \mathfrak{M} będzie modelem dla $L = \{\underline{f_i}, ..., \underline{P_j}, ..., \underline{c_t}, ...\}$ oraz $\{\underline{a} : a \in \mathfrak{M}\}$ niech będzie zbiorem nowych symboli stałych. Rozważmy nowy, większy język

$$L(\mathfrak{M}) = L \cup \{\underline{a} : a \in |\mathfrak{M}|\},$$

którego modelem nadal jest \mathfrak{M} ($\underline{a}^{\mathfrak{M}} := a$).

Termy stałe $\sigma^{\mathfrak{M}}\in |\mathfrak{M}|$ z $L(\mathfrak{M})$ interpretujemy w \mathfrak{M} w następujący sposób:

- jeśli $\underline{\tau}$ jest symbolem stałym $\underline{c_i}$ w L, to $\tau^\mathfrak{M}\in\mathfrak{M}$ jest interpretacją $\underline{c_i^\mathfrak{M}}$
- jeśli $\tau = \underline{f}_i(\underline{\tau}_1, ..., \underline{\tau}_n)$ jest termem złożonym, to $\sigma^{\mathfrak{M}} = \underline{f}_i^{\mathfrak{M}}(\underline{\tau}_1^{\mathfrak{M}}, ..., \underline{\tau}_n^{\mathfrak{M}})$.

Konwencja

 $\mathfrak{M} \models \varphi$ oznacza, że φ jest prawdziwe/spełniane w \mathfrak{M} .

- a) zdania atomowe:
 - $\mathfrak{M} \models \tau_1 = \tau_2 \iff \tau_1^{\mathfrak{M}} = \tau_2^{\mathfrak{M}}$

•
$$\mathfrak{M} \models \underline{P}_{j}(\tau_{1},...,\tau_{n}) \iff (\tau_{1}^{\mathfrak{M}},...,\tau_{n}^{\mathfrak{M}}) \in \underline{P}_{j}^{\mathfrak{M}}$$

b) zdania złożone:

- $\mathfrak{M} \models \varphi \land \varphi \iff \mathfrak{M} \models \varphi \text{ oraz } \mathfrak{M} \models \psi$
- $\mathfrak{M} \models \neg \varphi \iff \mathsf{nieprawda}, \dot{\mathsf{ze}} \, \mathfrak{M} \models \varphi \, (\mathsf{oznaczamy} \, \mathfrak{M} \not\models \varphi)$
- $\mathfrak{M}\models\exists\ v\ \varphi$ (jest tym samym co $\exists\ v\ \varphi(v)$, bo zakładamy, że nie ma innych zmiennych wolnych w φ , bo to jest zdanie) $\iff \mathfrak{M}\models\varphi(v/\underline{a})$ dla pewnego $a\in|\mathfrak{M}|$, $=\varphi(\underline{a})$ gdzie $\varphi(\underline{a})$ jest formułą powstającą z φ przez zastąpnienie każdego wolnego wystąpienia v w φ przez a.

To daje nam, że $\mathfrak{M} \models \varphi$ dla każdego $\varphi \in \mathcal{F}_I$.

Kwantyfikatujemy po zmiennych, nie po podzbiorach uniwersum, bo to jest logika I rzędu. Zbiory tworzymy w umyśle, postrzegamy indywidua. Teorie wyższych rzędów nie są absolutne.

Atomizm logiczny - każde zdanie można zredukować do zdań atomowych, których już dalej się rozbić nie da. Nie obchodzi nas tutaj nadmiernie spełnianie zdań.

Konwencja

arphi jest fałszywe, gdy $\mathfrak{M}
ot\models arphi$

Można tutaj od razu udowodnić, że zachodzi prawo wyłączonego środka.

Spełnianie dla formuł $\varphi(v_1, ..., v_n)$ języka L:

- $(a_1,...,a_n) \subseteq |\mathfrak{M}|$ spełnia φ jak wyżej w \mathfrak{M} , jeśli $\mathfrak{M} \models \varphi(\underline{a}_1,...,\underline{a}_n)$
- uniwersalne domknięcie $\varphi(v_1,...,v_n)$ to formuła

$$\overline{\varphi} = \forall v_1, ..., \forall v_n \varphi(v_1, ..., v_n)$$

z dokładnością do równoważności formuł jest jednoznacznie zdefiniowane $\mathfrak{M}\models \varphi\iff \mathfrak{M}\models \overline{\varphi}$

Powyższe zagadnienia mówią, że domyślny kwantyfikator to kwantyfikator \forall . To ma spełnienie w naturalnej matematyce, np. przemienność dodawania $(\mathbb{R}, +) \models x + y = y + x$ gdzie pomijamy $\forall x \forall y$.

3. Tautologie

Definicja 1.6: tautologia

Niech $\varphi \in \mathcal{F}_L$. Wtedy φ jest **tautologią** klasycznego rachunku logicznego, gdy jest zawsze prawdziwe. Zapisujemy to $\models \varphi$, co oznacza $\forall \mathfrak{M}$ modelu $L\mathfrak{M} \models \varphi$.

Jak rozpoznać, czy $\models \varphi$ **?** Ogólnie jest to pytanie nierozstrzygalne (twierdzenie Gödla).

Niektóre tautologie łatwo rozpoznać.

Przykłady

- 1. x = x
- 2. = jest relacją równoważności
- a) formuly zdaniowe (schematy)

Niech $Z = \{p_0, p_1, ..., p_n, r, q, ...\}$ będzie zbiorem zmiennych zdaniowych. Zbiór formuł zdaniowych $S = S_Z$ nad Z definiujemy w następujący sposób:

- $v \in Z \implies v \in S$
- $\alpha, \beta \in S \implies \neg \alpha, \alpha \land \beta \in S$
- skrótowo: \lor , \rightarrow , $\leftrightarrow \in S$

Wartościowanie logiczne formuł zdaniowych to dowolna funkcja $v:S\to\{0,1\}$ taka, że dla każdych α , $\beta\in S$

- $\mathbf{v}(\neg \alpha) = 1 \mathbf{v}(\alpha)$
- $v(\alpha \land \beta) = \min\{v(\alpha), v(\beta)\}$

Powiemy, że $\alpha \in S$ jest **tautologią** ($\models \alpha$) gdy dla każdego wartościowania v zachodzi $v(\alpha) = 1$.

Na przykład: $\models \neg(\alpha \land \neg \alpha)$ dla każdego $\alpha \in S$

Istnieje algorytm rozstrzygający, czy $\models \alpha$ dla $\alpha \in S$ (metoda 0-1): wartość $v(\alpha)$ zależy tylko od v(x) dla zmiennych zdaniowych x w α .

Definicja 1.7

Załóżmy, że $\alpha \in S$ jest zbudowany ze zmiennych $p_1, ..., p_n \in Z$ oraz $\varphi_1, ..., \varphi_n \in \mathcal{F}_L$ i $\varphi \in \mathcal{F}_L$ powstaje z α przez zastąpienie p_i przez φ_i wszędzie w α (zapisujemy

 $\varphi = \alpha(p_1/\varphi_1,...,p_n/\varphi_n)$. Mówimy, że φ jest jest przykładem formuły α .

Twierdzenie 1.8

Jeśli $\models \alpha$ i φ jest przykładem α to $\models \varphi$.

Dowód

Ćwiczenie

Definicja 1.9

Reguła wnioskowania składa się z:

- przesłanek φ_1 ,, $\varphi_n \in \mathcal{F}_L$
- tezy φ .

Zapisujemy

$$\frac{\varphi_1,...,\varphi_n}{\varphi}$$

Reguła wnioskowania jest poprawna, kiedy nie prowadzi nas na manowce.

- 1. $\frac{\varphi_1,...,\varphi_n}{\varphi}$ jest **poprawna**, jeśli dla każdego modelu $\mathfrak M$ dla $L\,\mathfrak M\models\varphi_1\,\wedge...\wedge\,\varphi_n\implies \mathfrak M\models\varphi$
- 2. $\frac{\alpha_1,...,\alpha_n}{\alpha}$ jest poprawna, jeśli dla każdego wartościowania v

Przykłady

1. Modus Ponens (regula odrywania, cut rule)

$$\frac{\alpha \text{, }\alpha \rightarrow \beta}{\beta}$$

2. reguła generalizacji (∀ -rule)

$$\frac{\varphi}{\forall \ \mathbf{v} \ \varphi(\mathbf{v})}$$

KRL - φ etc, KRZ - α , β etc

Aksjomatyczne ujęcie KRL:

(A0) przykład dowolnej tautologii KRZ

- (A1) \forall v $(\varphi \to \psi) \to (\varphi \to \forall v \psi)$, gdy v nie jest wolna w φ
- (A2) $\forall \ v \ \varphi \to \varphi(v/t)$ (to jest poprawny zapis, ale dla pewności: $(\forall \ v \ \varphi) \to \varphi(v/t)$) t to jest term podstawiany za każde wolne wystąpienie v w φ pod warunkiem, że żadne z takich wystąpień nie jest w zasięgu kwantyfikatora wiążącego zmienną występującą w termie t.

Zastrzeżenie jest istotne: φ : \exists y x \neq y, t = y, wtedy φ (x/t) = \exists y y \neq y i mamy

$$\not\models \forall \ x\varphi \rightarrow \varphi(x/t) = \forall \ \exists \ y \ x \neq y \rightarrow \exists \ y \ y \neq y$$

Aksjomaty równości (v_i - wolne zmienne):

- $v_1 = v_1$
- $v_1 = v_2 \rightarrow t(...v_1...) = t(...v_1/v_2...)$
- $v_1 = v_2 \rightarrow (\varphi(...v_1...) \rightarrow \varphi(...v_2...))$ gdzie v_1 to wolne wystąpienie w φ niebędące w zasięgu kwantyfikatora wiążącego v_2 .

Definicja 1.10

Dowodliwość w KRL: dla $X \subseteq \mathcal{F}_L$ oraz $\varphi \in \mathcal{F}_L$

 $X \vdash \varphi \iff$ istnieje ciąg formuł (dowód formalny) α_1 , ..., $\alpha_n = \varphi$ takie, że dla każdego i < n

- 1. $\alpha_1 \in X \vee \alpha_i$ jest aksjomatem KRL
- 2. α_i wynika z $\{\alpha_1,...,\alpha_{i-1}\}$ na mocy Morus Ponens lub \forall -rule, tzn. $\exists j,t < i \alpha_t = \alpha_j \rightarrow \alpha_i$

$$\frac{\alpha_{j}, \alpha_{j} \to \alpha_{i}}{\alpha_{i}}$$

$$\mathsf{lub} \; \exists \; j < i \; \alpha_i = \forall \; \mathsf{v} \; \alpha_j$$

$$\frac{\alpha_j}{\forall \ \mathbf{v}\alpha_i}$$

Konwencja

$$\vdash \varphi \operatorname{gdy} \emptyset \vdash \varphi$$

Takie φ nazywamy **tezą** KRL

Uwaga 1.11

$$X \vdash \varphi \iff \exists X_0 \subseteq X \text{ skończony } X_0 \vdash \varphi$$

Przykład

Pokażemy, że $\vdash \forall \ x \ \varphi \rightarrow \exists \ x \ \varphi$, to znaczy

$$\vdash \forall \ x \ \varphi \rightarrow \neg \ \forall \ x \ \neg \varphi$$

- 1. $\alpha_1 : \forall x \varphi \rightarrow \varphi(x/y)$ (A2)
- 2. $\alpha_2 : \forall x \neg \varphi \rightarrow \neg \varphi(x/y)$ (A2)
- 3. $\alpha_3:\alpha_2\to (\varphi(\mathbf{x}/\mathbf{y})\to \neg\forall\ \mathbf{x}\ \neg\varphi)$ (A0 $(\mathbf{p}\to \neg\mathbf{q})\to (\mathbf{q}\to \neg\mathbf{p})$)
- 4. $\alpha_4: \varphi(\mathbf{x}/\mathbf{y}) \to \neg \forall \ \mathbf{x} \ \neg \varphi \ (\alpha_2, 3 \ \text{oraz Modus Ponens})$
- 5. $\alpha_5:\alpha_1\to(\alpha_4\to\beta)$, gdzie $\beta=\forall~x~arphi\to\neg\forall~x~\negarphi$ (A0, przechodność)
- 6. α_6 : β (Modus Ponens)

Przykład

$$\varphi: \mathbf{x} = \mathbf{x}$$

$$\vdash \forall x x = x \rightarrow \exists x x = x$$

jest fałszywe w dziedzinie pustej, czyli modelu

$$(\emptyset; f_1, ..., f_n; P_1, ..., P_j;)$$

gdzie nie ma stałych. Czyli coś z aksjomatów musi zawodzić w dziedzinie pustej - pytanie co?

Od tej pory modele są niepuste

Uwaga 1.12

Poprawność (soundness) KRL

$$\vdash \varphi \implies \models \varphi$$

Dowód

Ćwiczenie

Twierdzenie 1.13: Gödela o pełności KRL

$$\models \varphi \implies \vdash \varphi$$

Definicja 1.14

Dla $X \subseteq \mathcal{F}_L$ zbiór konsekwencji X to $Cn(X) = \{ \varphi \in \mathcal{F}_L : X \vdash \varphi \}$

- X jest teorią, gdy X = Cn(X)
- A jest zbiorem aksjomatów teorii X, gdy X = Cn(A)
- zbiory X, Y są równoważne, gdy Cn(X) = Cn(Y) co równoważnie można powiedzieć: $X \vdash Y$ i $Y \vdash X$

Fakt 1.15

 φ oraz $\overline{\varphi}$ są równoważne

Dowód

 $\varphi \vdash \overline{\varphi}$ to \forall -regula zastosowana tyle razy ile użyliśmy kwantyfikatorów w φ

 $\overline{\varphi} \vdash \varphi$ to z twierdzenia o dedukcji (zadanie) $\overline{\varphi} \vdash \varphi \iff \vdash \overline{\varphi} \to \varphi$ (drugie to wynik z A2)

Wniosek:

 $X \subseteq F_I$

X oraz $\{\overline{\varphi} : \varphi \in X\}$ są równoważne

Definicja 1.16

X jest sprzeczny, jeżeli $X \vdash \varphi$ oraz $X \vdash \neg \varphi$ dla pewnego zdania $\varphi \in \mathcal{F}_I$

W przeciwnym razie X jest niesprzeczny.

Definicja 1.17 –

- 1. $\mathfrak{M} \models X \iff \forall \varphi \in X \mathfrak{M} \models \varphi \text{ (Mijest modelem } X\text{)}$
- 2. *X* jest zupełny $\iff \forall$ zdania φ ($X \vdash \varphi$ lub $x \vdash \neg \varphi$)
- 3. X jest rozstrzygalny \iff istnieje algorytm rozstrzygający, czy $X \vdash \varphi$

Przykłady

- 1. teoria $\mathfrak{M}(\mathfrak{M}) := \{ \varphi : M \models \varphi \}$ jest niesprzeczna i zupełna
- 2. ∅ jest niesprzeczny

Twierdzenie 1.18: Gödela o istnieniu modelu

Jeśli S jest niesprzecznym zbiorem zdań, to S ma model.

Dowód

(by Leon Henkin)

Dla przypadków, gdy L i S są przeliczalne, ogólny dowód jest bez większej idei, ale używa "ble ble kombinatoryczne z liczb kardynalnych".

 $L' = L \cup \{c_n : n \in \mathbb{N}\}$, gdzie c_n to nowe w stosunku do L symbole stałe

 $\{\varphi_n \ : \ n \in \mathbb{N}\}$ to numeracja formuł $\mathcal{F}_L(x)$ z co najwyżej jedną wolną zmienną x

Niech $f:\omega\to\omega$ (czyli $\mathbb{N}\to\mathbb{N}$) rosnąca taka, że $c_{f(n)}$ nie występuje w formułach $\varphi_0(x)$, ..., $\varphi_n(x)$

 $S_n = S \cup \{\exists \ x \ \varphi_i(x) \to \varphi_i(x/c_{f(i)} \ : \ i < n\}$ (aksjomat postaci jaka w $\{\}$ nazywa się aksjomatem Henkina

 $S = S_0 \subseteq S_1 \subseteq ...$ to ciag rosnacy

 $S_{\omega} = \bigcup S_n$

FAKT: zbiór S_{ω} jest niesprzeczny

Dowód nie wprost: gdyby był sprzeczny, to sprzeczność wynikałaby ze skończonego podzbioru, czyli pewne S_n jest sprzeczne, czyli możemy wybrać n najmniejsze takie, że $S_{n+1} = S_n \cup \{\exists \ x \ \varphi_n(x) \to \varphi_n(x/c_{f(n)})\}$ jest sprzeczne

ponieważ n jest najmniejsze, to S_n nie jest sprzeczne

H niech będzie zdaniem w {}

$$S_n \cup \{H\} \vdash \alpha \land \neg \alpha$$

dla pewnego α z tego wiemy, że

$$S_n \vdash (\exists x \varphi_n(x) \rightarrow \varphi_n(c_{f(n)}) \rightarrow \alpha \land \neg \alpha$$

A0 daje nam, że

$$S_n \vdash \neg(\exists \ x \ \varphi_n(x) \to \varphi_n(c_{f(n)}))$$

Logika R Weronika Jakimowicz

znowu korzystając z A0 dostajemy

$$S_n \vdash \exists x \varphi_n(x) \land \neg \varphi_n(c_{f(n)})$$

$$S_n \vdash \exists x \varphi_n(x) i \S_n \vdash \neg \varphi_n(c_{f(n)})$$

w dowodzie po prawej od i $c_{f(n)}$ zastępujemy nową zmienną y

po tej zamianie powstaje dowód $S_n \vdash \neg \varphi_n(y)$, korzystamy z \forall żeby dostać $S_n \vdash \forall \ y \neq \varphi_n(y)$ z A2 dla t = x dostajemy $S_n \vdash \neg \varphi_n(x)$, z \forall -reguły mamy $S_n \vdash \forall \ x \neg \varphi_n(x)$, ale nadal prawdą jest, że $\S_n \vdash \exists \ x \varphi_n(x)$

Mamy skońcozny dowód, że S_{ω} jest niesprzeczny

Twierdzenie Lidenbauma (???) jeśli mamy niesprzeczny zbiór formuł/zdań to możemy go rozszerzyć do maksymalnego niesprzecznego zbioru formuł/zdań, który jest zupełny i niesprzeczny zbiór formuł/zdań

Korzystamy, żeby dostać $S'\supseteq S_{\omega}$, który jest zupełny i niesprzecznym zbiorem zdań w L'

S' opisuje strukturę modelu na $\{c_n : n < \omega\}$

mamy relację równoważności na zbiorze $C = \{c_n : n < \omega\}: c_n \sim c_m \iff S' \vdash c_n = c_m$

• symetria: aksjomat równości

Niech $\mathfrak{M}=\{c_{\mathsf{n}}/\sim:\ \mathsf{n}\in\omega\}=\mathsf{C}/\sim\mathsf{L'}$ - struktura na M

1.
$$P_i^{\mathfrak{M}}(c_{i_1}/\sim,...,c_{i_n}/\sim) \iff S' \vdash P_i(c_{i_1},...,c_{i_n})$$

2.
$$f_i^{\mathfrak{M}}(c_{i_1}/\sim,...,c_{i_{\nu}}/\sim)=c_{i_0}/\sim\iff S'\vdash f_i(c_{i_1},...,c_{i_{\nu}})=c_{i_0}$$

TUTAJ MAM DOŚĆ NEWELA