Noregs teknisk-naturvitskaplege universitet Institutt for matematiske fag

Side 1 av 3 Inklusive Laplacetabell

Fagleg kontakt under eksamen:

Lisa Lorentzen tlf. 73 59 35 48 Espen R. Jakobsen tlf. 73 59 35 12

EKSAMEN I TMA4120 MATEMATIKK 4K

Nynorsk Mandag 13. August 2007 kl. 9–13

Hjelpemiddel (kode C): Enkel kalkulator (HP 30S)

Rottmann: Matematisk formelsamling

Sensurdato: 3.9.2007

Grunngi alle svar. Det skal vere med så mykje mellomrekning at framgangsmåten framgår tydeleg av besvarelsen.

Oppgåve 1 La y(t) vere løysinga av initialverdiproblemet

$$y'' - y' - 6y = 100 \left(\sin t - u(t - \pi/2) \sin(t - \pi/2) \right), \quad y(0) = y'(0) = 0,$$

der u(t) er Heavisidefunksjonen (einings-trappefunksjonen, the unit step function).

Vis at den Laplacetransformerte av y(t) er gitt ved

$$Y(s) = \left(\frac{2}{s-3} - \frac{4}{s+2} + \frac{2s-14}{s^2+1}\right) \left(1 - e^{-s\pi/2}\right).$$

Finn løysinga y(t) av initialverdiproblemet gitt ovanfor.

Oppgåve 2

a) Finn Fouriersinusrekka og finn Fouriercosinusrekka til funksjonen

$$f(x) = \sin \pi x$$
 for $0 \le x \le 1$.

b) Finn alle løysingar på forma u(x,y) = F(x)G(y) av randverdiproblemet

(1)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = u \quad \text{for } 0 \le x \le 1, \ 0 \le y \le 1,$$

(2)
$$u_x(0,y) = u_x(1,y) = 0$$
 for $0 < y < 1$.

c) Finn den løysinga av randverdiproblemet i b) som og tilfredsstiller krava

$$u(x, 0) = 0$$
, $u(x, 1) = \sin \pi x$ for $0 < x < 1$.

Oppgåve 3

a) Rekn ut integralet

$$\oint_C \frac{dz}{z^2 - 4iz - 1}$$

der C er einingssirkelen |z|=1 i positiv omløpsretning (orientert mot klokka).

b) Rekn ut det reelle integralet

$$\int_{-2\pi}^{2\pi} \frac{d\theta}{2 - \sin \theta} \, .$$

NB! Legg merke til integrasjonsgrensene.

Oppgåve 4 Funksjonen f(z) er analytisk for alle z bortsett frå i nokre enkle polar. Ei av Laurentrekkene til f(z) om z=0 er rekka gitt ved

$$\sum_{n=-\infty}^{2} (2^n - 1)z^n.$$

Rekn ut f(2) og f(1/4).

Table of Laplace transforms

f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n \ (n=0,1,2,\dots)$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh at$	$\frac{s}{s^2 - a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2 + \omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$