Nome e Cognome:	□LUN Data:	□MER	□GIO	14)
-----------------	---------------	------	------	-----

Circuito risonante RLC

Il circuito di figura, composto da un resistore di resistenza R, da un induttore (bobina) di induttanza L e resistenza interna r, e un capacitore di capacità C, si comporta come un oscillatore forzato (e smorzato). In questa scheda si fa riferimento all'induttore con i due avvolgimenti in serie, ma potete anche scegliere diversamente.

1. Determinate l'espressione della funzione di trasferimento T(f) (complessa) che lega il fasore $V_{\omega,out}$ con $V_{\omega,in}$ in funzione della frequenza f. Determinate inoltre l'espressione di A(f) = |T(f)| e quella di $\tan(\Delta \phi) = \operatorname{Im} \{T(f)\}/\operatorname{Re} \{T(f)\}$. Infine determinate l'espressione della frequenza propria f_0 dell'oscillatore e lo sfasamento $\Delta \phi_0$ che ci si attende a risonanza. Si consiglia di non trascurare le resistenze interne di induttore e generatore (gli effetti della resistenza interna dell'oscilloscopio possono invece essere considerati trascurabili).

Espressioni funzionali	$tan(\Delta \varphi) =$
T(f) =	$f_0 =$
A(f) =	$\Delta \phi_0 =$

2. Montate il circuito scegliendo valori di R e C che consentano di avere una frequenza propria f_0 dell'ordine delle centinaia di Hz e una larghezza della curva di risonanza tale da consentirne un'agevole ricostruzione sperimentale. Misurate R e anche r in continua (con il tester) Determinate il valore della frequenza propria attesa $f_{0,\rm att}$, supponendo $L \sim 0.5$ H (nel caso di avvolgimenti in serie). Questo valore va considerato come nominale: se necessario, potete attribuirgli una tolleranza \pm 5%.

R []	r []
C []	f _{0,att} []

- 3. Determinate sperimentalmente il valore della frequenza di risonanza \bar{f}_0 . A tale scopo siete fortemente consigliati di utilizzare il metodo basato sull'osservazione dei segnali V_{out} e V_{in} con l'oscilloscopio <u>in modalità Y-X</u>. Spiegate brevemente nel riquadro cosa succede a risonanza nell'osservazione Y-X e chiaritene il perché.
- 4. Determinate sperimentalmente i valori delle frequenze f_{-} e f_{+} in corrispondenza delle quali il rapporto tra le ampiezze V_{out}/V_{in} vale la metà del valore a risonanza. Determinate inoltre il corrispondente valore della larghezza fwhm della curva di risonanza, $\Delta f_{\text{fwhm}} = f_{+} f_{-}$ e il <u>fattore di qualità</u> dell'oscillatore, $Qf = \sqrt{3} f_{0}/\Delta f_{\text{fwhm}}$.
- risonanza, Δf_{fwhm} = f₊ -f₋ e il <u>fattore di qualità</u> dell'oscillatore, Qf = √3 f₀/Δf_{fwhm}.

 5. Controllate che siano verificate entro l'incertezza le "proprietà" della "curva di risonanza": f₋f₊ = f₀² e Δf_{fwhm} ~ √3 (R+r)/(2πL) (ovvero Δf_{fwhm} ~ 2π√3 (R+r)Cf₀²), confrontando i valori ottenuti dalle misure con quelli attesi sulla base dei valori di R, r, L, C.

Misure		Breve spiegazione della misura in modalità Y-X:
$f_0 =$	[]	
$f_{-} =$	[]	
$f_+ =$	[]	
$\Delta f_{\text{fwhm}} =$	[]	$\Delta f_{\mathrm{fwhm,att}} = $ [] Valori attesi
Qf =		
$ff_+=$	[]	$(ff_+)_{\rm att} = (f_{0,{\rm att}})^2 =$ [] Page 1 of 3

6.	Ora dovete ricostruire, tramite (tante) misure fatte "a mano", la "curva di risonanza", cioè il grafico della	
	funzione $A(f)$. A questo scopo dovete misurare il rapporto tra le ampiezze $A = V_{out}/V_{in}$ a diverse frequenze f	(14
	del generatore e riportarlo nella tabella. Scegliete l'intervallo di frequenze da esplorare in modo opportuno: è	
	necessario che la "campana" della risonanza risulti adeguatamente ricostruita, dunque dovete cominciare con	
	frequenze ben minori di f_{\perp} e finire con frequenze ben maggiori di f_{\perp} .	

j	f []	V _{out} []	V _{in} []	j	f []	V _{out} []	V _{in} []
1				11			
2				12			
3				13			
4				14			
5				15			
6				16			
7				17			
8				18			
9				19			
10				20			

7. Fate quindi un grafico per punti della funzione A(f) e valutate la congruenza con le attese, soprattutto per quanto riguarda la larghezza Δf_{fwhm} , commentando al proposito nel riquadro dei commenti. Fate anche un best-fit dei dati, riportando <u>tutte</u> le informazioni necessarie nel riquadro dei commenti.

Commenti (stima dal grafico di Δf_{fwhm} , funzione di fit, congruenza con valori attesi, valore dei parametri, chi-quadro, covarianza, true, etc.):	, opzione false/
_l	Page 2 of 3

Nome e Cognome:	□LUN Data:	□MER	□GIO	(14')
-----------------	---------------	------	------	-------

Ora modificate il circuito in modo da ottenere lo schema di figura (si consiglia di mantenere gli stessi valori di prima per R e C). Questo circuito è un oscillatore risonante "in parallelo", che è atteso presentare un comportamento "anti-risonante". Caratterizzate qualitativamente il suo comportamento, verificando rapidamente come varia l'ampiezza V _{out} in funzione della frequenza f del generatore. Inoltre individuate sperimentalmente la frequenza di risonanza f ₀ e la larghezza della "curva di risonanza" M _{fwhm} definita come in precedenza. Riportate il tutto (valori delle misure e descrizione del comportamento) nel riquadro dei commenti, aggiungendo obbligatoriamente anche una breve interpretazione qualitativa (su basi fisiche) del funzionamento del circuito. Misure e commenti vari:	to CH1 osc. V_{in}	to CH2 osc. R
		Page 3 of 3