[13. 20] Show why the ff diagram equalities in Fig 12.18 hold

(a)
$$\epsilon^{a\cdot c} \epsilon_{f\cdot \cdot h} = \frac{11\cdot \cdot \cdot \cdot /}{11\cdot \cdot \cdot /} = \frac{11\cdot \cdot /}{11\cdot \cdot \cdot /} = \frac{11\cdot \cdot /}{11\cdot \cdot /} = \frac{11$$

(b)
$$\epsilon^{a\cdots cd\cdots f} \epsilon_{a\cdots cn\cdots t} = \frac{a\cdots ca\cdots t}{a\cdots ca\cdots f} = (n-p)! + \frac{a\cdots ca\cdots f}{a\cdots ca\cdots f} = (n-p)! + \frac{a\cdots ca\cdots f}{a\cdots ca\cdots f}$$

Proof of (a): Let TT_0 be the permutation $(TT_0(d), \dots, TT_0(f)) = (a, \dots, c)$.

LHS = Dign (T_0) . The terms in the summation of RHS are got except for $\delta_q^q \dots \delta_c^q$. $\delta_q^q \dots \delta_c^q$. $\delta_q^q \dots \delta_c^q \dots \delta_q^q \dots \delta_c^q \dots \delta_q^q \dots$

= LHS

Proof of (b); Let To be the permutation (To(d), ..., To(f)) = (v, ..., t). (i) Earicant = sign (TTo) EaricTo(d) ... To (f) Earichent = sign(tto) equicant Equicant = sign(tto) Let $B = \{T: Tis a permutation of (a, ..., c)\}$ LHS = \(\int \epsilon \pi(a) \cdots \pi(a) = \(\xi \in \alpha \cdots \equivare \(\xi \) (same number of permutations for \(\in \alpha \) and \(\xi \)) (1) (n-p)! sign (TTO) (P has (n-p)! terms) RHS = (n-p). P! (p!) \(\frac{1}{p!} \) \(\Strict{\pi} \) \(\frac{5}{7} \ldots \frac{\pi}{t} = (n-p)! sign (TTO) & Told) ... & TTO(f) = (n-p)! sign (TTO) 87 ... 82 = (n-p)! sign (TTO)