6. ARİTMETİK LOJİK İŞLEM BİRİMİ

Şekil 6-1 Aritmetik Lojik İşlem Biriminin Çalışması

6.1. Tümleşik Tam Toplayıcı

Şekil 6-2 74LS283 4-bit tam toplayıcı uç tanımları

Tablo 6-1 74LS283 4-bit tam toplayıcının çalışma tablosu.

Çıkışlar									
Girişler									
Girişlei			C0 = L için			C0 = H için			
				C2 = L için			C2 = H için		
A1 /	B1 /	A2 /	B2 /	$\Sigma 1$	Σ^2	C2 /	$\Sigma 1$	Σ^2	C2 /
A3	B3	A4	B4	Σ3	Σ4	C4	Σ3	$\Sigma 4$	C4
L	L	L	L	L	L	L	Н	L	L
Н	L	L	L	Н	L	L	L	Н	L
L	Н	L	L	Н	L	L	L	Н	L
Н	Н	L	L	L	Н	L	Н	Н	L
L	L	Н	L	L	Н	L	Н	Н	L
Н	L	Н	L	Н	Н	L	L	L	Н
L	Н	Н	L	Н	Н	L	L	L	Н
Н	Н	Н	L	L	L	Н	Н	L	Н
L	L	L	Н	L	Н	L	Н	Н	L
Н	L	L	Н	Н	Н	L	L	L	Н
L	Н	L	Н	Н	Н	L	L	L	Н
Н	Н	L	Н	L	L	Н	Н	L	Н
L	L	Н	Н	L	L	Н	Н	L	Н
Н	L	Н	Н	Н	L	Н	L	Н	Н
L	Н	Н	Н	Н	L	Н	L	Н	Н
Н	Н	Н	Н	L	Н	Н	Н	Н	Н

Not : Tabloda $\Sigma 1$ $\Sigma 2$ çıkışları A1 B1 A2 B2 ve C0 girişleri kullanılarak belirlenen ilk 2-bit toplama sonucu ve C2 iç eldedir. $\Sigma 3$ $\Sigma 4$ çıkışları A3 B3 A4 B4 girişleri ve C2 kullanılarak belirlenen son 2-bit toplama sonucu ve C4 elde çıkışıdır.

Bu tam toplayıcının çıkışlarının lojik ifadesi aşağıda verilen şekilde gösterilebilir.

=
$$8(A4+B4) + 4(A3+B3) + 2(A2+B2) + (A1+B1) + C0$$

= $16 C4 + 8 \Sigma 4 + 4 \Sigma 3 + 2 \Sigma 2 + \Sigma 1$

Çalışma tablosunun açıklaması için bir örnek uygulama

Çıkışlar : "C4
$$\Sigma$$
4 Σ 3 Σ 2 Σ 1" = "H L L H H "

Toplayıcı tümleşik devreleriyle, ek bağlantılar ve devreler kullanılarak değişik boyutlarda ve kodlama için toplama, çıkarma, kodlayıcı, çoğunluk kapısı tasarımları gerçekleştirilebilir.

Şekil 6-3 Tümleşik tam toplayıcı uygulama devreleri

6.2. Tümleşik Aritmetik Lojik İşlem Devresi

BO 1 AO 2		24 – V _{CC} 23 – Ā1	Uç Adları	Tanımları
S3 — 3		22 — Ē1	Ā0-Ā3	İşlenen Girişleri (Aktif "0")
S2 — 4		21 — Ā2	B0−B3	İşlenen Girişleri (Aktif "0")
S1 — 5		20 — <u>B</u> 2	S0-S3	Fonksiyon Seçim Girişleri
50 — 6		19 — Ā3	M	Çalışma Şekli Kontrol Girişi
c _n - 7		18 – B3	C _n F0-F3	Elde Girişi Fonksiyon Çıkışları (Aktif "0")
M—8		17 — G	A = B	Karşılaştırma Çıkışı
F0 — 9		16 — C _{n+4}	G	Elde Üretme Çıkışı (Aktif "0")
Ē1 — 10		15 — P	P	Elde Yayılma Çıkışı (Aktif "0")
F2 — 11		14 — A=B	C_{n+4}	Elde Çıkışı
ND — 12	74181	13 — F3		

Tablo 6-2 74LS181 4-bit ALU Çalışma Tablosu Aktif "0" İslenen Girişleri Aktif "1" İslenen Girişleri Fonksiyon Secim Girisleri & Fn Çıkışları & Fn Çıkışları Lojik Aritmetik ** Lojik Aritmetik ** **S3** S₁ SO (M = H) $(M = L)(C_n = L)$ (M = H) $(M = L)(C_n = H)$ S2 Ā Ā A eksi 1 A L L $\overline{\mathsf{AB}}$ $\overline{A + B}$ Н AB eksi 1 A + BAB eksi 1 ĀΒ $A + \overline{B}$ Н $\overline{A + B}$ Н Н eksi 1 Lojik 1 eksi 1 Lojik 0 $\overline{A + B}$ A artı $(A + \overline{B})$ $\overline{\mathsf{AB}}$ A artı AB Н \overline{B} $\overline{\mathsf{B}}$ (A + B) artı AB Н AB artı $(A + \overline{B})$ Н Н Н A ⊕ B A eksi B eksi 1 A eksi B eksi 1 A

B $A + \overline{B}$ $A + \overline{B}$ $A\overline{B}$ Н AB eksi 1 ĀB $\overline{A} + B$ A artı (A + B) Н A artı AB A ⊕ B H Н A

B A artı B A artı B $A\overline{B}$ artı (A + B)Н В В (A + B) artı AB H Н AB AB eksi 1 A + BA + BLojik 0 Н A artı A* Lojik 1 A artı A* Н $A + \overline{B}$ Н Н H $A\overline{B}$ AB artı A (A + B) artı A Н Н AB eksi A (A + B) artı A Н AB A + BН Н Н Н A A A eksi 1 Α

^{*} Her bit bir sonraki en büyük ağırlıklı konumuna ötelenir.

^{**} Aritmetik işlemler 2'ye tümleyen şeklinde açıklanmıştır.

Fonksiyon Seçim Girişleri	Aktif "0" İşlenen Girişleri ve Çıkışları M=H M=L; Aritmetik İşlemler			
S3 S2 S1 S0	Lojik Fonksiyon	Cn=L (elde yok)	Cn=H (elde var)	
LLLL	F= A	F= A EKSİ 1	F= A	
LLLH	F= AB	F= AB EKSİ 1	F= AB	
LLHL	F= A + B	F= AB EKSİ 1	F= AB	
LLHH	F= 1	F =EKSİ 1 (2'ye tümleyen)	F= Sıfır	
LHLL	F= A + B	F= A ARTI (A+B)	F= A ARTI (A+B) ARTI 1	
LHLH	F= B	F= AB ARTI (A+B)	F= AB ARTI (A+B) ARTI 1	
LHHL	F= A ⊕ B	F= A EKSİ B EKSİ 1	F= A EKSİ B	
LHHH	F= A + B	F= A + B	F= (A+B) ARTI 1	
HLLL	F= AB	F= A ARTI (A+B)	F= A ARTI (A+B) ARTI 1	
HLLH	F= A ⊕ B	F= A ARTI B	F= A ARTI B ARTI 1	
HLHL	F= B	F= AB ARTI (A+B)	F= AB ARTI (A+B) ARTI 1	
HLHH	F= A + B	F= A + B	F= (A+B) ARTI 1	
HHLL	F= 0	F= A ARTI A	F= A ARTI A ARTI 1	
HHLH	F= AB	F= AB ARTI A	F= AB ARTI A ARTI 1	
HHHL	F= AB	F= AB ARTI A	F= AB ARTI A ARTI 1	
нннн	F= A	F= A	F= A ARTI 1	

Fonksiyon	Aktif "1" İşlenen Girişleri ve Çıkışları				
Seçim Girişleri	M=H	M=L; Aritmetik İşlemler			
S3 S2 S1 S0	Lojik Fonksiyon	Cn=H (elde yok)	Cn=L (elde var)		
LLLL	F= A	F= A	F= A ARTI 1		
LLLH	F= A + B	F= A + B	F= (A + B) ARTI 1		
LLHL	F= AB	F= A + B	F= (A + B) ARTI 1		
LLHH	F= 0	F =EKSİ 1 (2'ye tümleyen)	F= Sıfır		
LHLL	F= AB	F= A ARTI AB	F= A ARTI AB ARTI 1		
LHLH	F=B	F= (A + B) ARTI AB	F= (A+B) ARTI AB ARTI 1		
LHHL	F= A ⊕ B	F= A EKSİ B EKSİ 1	F= A EKSİ B		
LHHH	F= AB	F= AB EKSi 1	F= AB		
HLLL	F= A + B	F= A ARTI AB	F= A ARTI AB ARTI 1		
HLLH	F= A ⊕ B	F= A ARTI B	F= A ARTI B ARTI 1		
HLHL	F= B	F= (A + B) ARTI AB	F= (A+B) ARTI AB ARTI 1		
HLHH	F= AB	F= AB EKSİ 1	F= AB		
HHLL	F= 1	F= A ARTI A	F= A ARTI A ARTI 1		
HHLH	F= A + B	F= (A + B) ARTI A	F= (A+B) ARTI A ARTI 1		
HHHL	F= A + B	F= (A + B) ARTI A	F= (A+B) ARTI A ARTI 1		
нннн	F= A	F= A EKSİ 1	F= A		

Şekil 6-5 74LS181 4-bit ALU Blok Diyagramları

6.3. Tümleşik ALU Uygulamaları

Şekil 6-6 ALU ile 4-bit iki ikili sayının toplamının 1 fazlasının ikili olarak elde edilmesi.

Şekil 6-7 ALU ile 8-bit iki ikili sayının toplamının 1 fazlasının ikili olarak elde edilmesi.

Şekil 6-8 Elde Üreteci ile 16-bit ALU Tasarımı