Primitives usuelles

Fonction f	Une primitive F
k	kx
$\frac{1}{x}, x \neq 0$	$\ln x $
$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1}$
$\sin(ax+b), a \neq 0$	$-\frac{1}{a}\cos(ax+b)$
$\cos(ax+b), a \neq 0$	$\frac{1}{a}\sin(ax+b)$
$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	$\tan(x)$
$e^{\lambda x}; \lambda \neq 0$	$\frac{1}{\lambda}e^{\lambda x}$
$\frac{1}{1+x^2}$	$\arctan x$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
$\ln x$	$x \ln x - x$
$\frac{u'}{u}$	$\ln u $
$\begin{array}{c c} u \\ u' \\ \hline u^2 \\ u' \end{array}$	$-\frac{1}{u}$
$\frac{u'}{2\sqrt{u}}$	\sqrt{u}
$u'e^u$	e^u

Avec, u et v deux fonctions dérivables sur un intervalle I. Pour toutes ces formules, il faut bien sûr préciser le domaine de validité.