Tema 4: Modelo de la máquina elemental Simplez-I³

Dpto. Ingeniería de Sistemas y Automática Escuela Superior de Ingenieros Universidad de Sevilla

Índice

- 1. Modelo estructural
- 2. Modos de direccionamiento
- 3. Modelo funcional
- 4. Convenios simbólicos
- 5. Ejemplos

Bibliografía

REF: Conceptos básicos de arquitectura y sistemas operativos

AUTOR: Gregorio Fernández.

■PÁGs: Capítulo 3

Índice

- 1. Modelo estructural
- 2. Modos de direccionamiento
- 3. Modelo funcional
- 4. Convenios simbólicos
- 5. Ejemplos

Bibliografía

REF: Conceptos básicos de arquitectura y sistemas operativos

AUTOR: Gregorio Fernández.

■PÁGs: Capítulo 3

Modelo estructural

- Diferencias con Símplez:
 - Se añade un registro de 12 bits en la UCP, al que llamaremos registro X (registro de índice).
 - Bus A pasa a tener 12 bits. MP puede tener ahora 4096 palabras (las cuatro últimas, reservadas para la entrada y la salida):

4092: Estado pantalla

4093: Dato pantalla

4094: Estado teclado

4095: Dato teclado

Bit Z:

Z=1 si el resultado de la última operación en la UAL ha sido 0.

Modelo estructural

Índice

- 1. Modelo estructural
- 2. Modos de direccionamiento
- 3. Modelo funcional
- 4. Convenios simbólicos
- 5. Ejemplos

Bibliografía

REF: Conceptos básicos de arquitectura y sistemas operativos

AUTOR: Gregorio Fernández.

■PÁGs: Capítulo 3

- Concepto de dirección efectiva: Dirección de la MP donde está el dato.
- Criterio de notación: Utilizar paréntesis para indicar contenido, sea de un registro o de un campo de un formato o de una posición de memoria.
 - (AC) representará el contenido del acumulador
 - (CD) el contenido del campo CD del formato de instrucciones
 - (4) el contenido de la posición de memoria 4 (equivalente a MP[4])
- Símplez:
 - El direccionamiento es únicamente directo: lo que contenga el campo CD es la dirección de referencia en la MP, o dirección efectiva, DE.
 - LD /4 (la dirección efectiva del dato que quiero cargar en el acumulador es 4): AC ← (4) ó AC ← MP[4]

Formato de las instrucciones en Símplez+I³:

11	9	8	7	6	5		0
C	0	R	J	I	. 1	CD	

- CD sólo tiene seis bits, por lo que directamente sólo pueden direccionarse $2^6 = 64$ palabras de la MP.
- El bit 8 ("R") indica el registro (AC ó X) con el que se opera (si la instrucción no opera con registro, no importa el valor de R):
 - R=1: se opera con registro X
 - R=0: se opera con registro AC
- Los bits 7 y 6 ("J" e "I") indican el modo de direccionamiento:
 - J=0, I=0: direccionamiento directo (igual que en Símplez)
 - J=0, I=1: direccionamiento indirecto
 - J=1, I=0: direccionamiento indexado
 - J=1, I=1: direccionamiento indirecto e indexado

- Direccionmaiento directo:
 - Lo que contenga el campo CD es, directamente, la dirección de referencia en la MP, o dirección efectiva, DE.

- Direccionamiento indirecto:
 - Lo que contenga el campo CD es la dirección de una palabra de la MP que contiene la dirección efectiva (es decir, CD tiene la dirección del puntero al operando).

- Direccionamiento indexado:
 - Para calcular la dirección efectiva hay que sumar el contenido del registro de índice, X.

- Direccionamiento indirecto e indexado:
 - Aplicación conjunta de los dos tipos de direccionamiento. El convenio de orden es postindexación, es decir, primero se acude al puntero para buscar la dirección (direccionamiento indirecto) y luego se suma el contenido de X (direccionamiento indexado).

- Direccionamiento inmediato:
 - Tenemos un operando inmediato.
 - El operando es directamente el contenido del CD
 - Se habla de "direccionamiento inmediato", pero no se direcciona la MP, ya que el operando se extrae de la misma instrucción.

$$Operando = (CD)$$

LD 1 inmediato: LD #1

Operando = DATO = (CD) = 1

- Direccionamiento inmediato:
 - La utilidad de este modo de direccionamiento se encuentra cuando se quiere introducir un valor inicial en el registro AC o en el registro X: evita la necesidad de tener previamente almacenado ese valor en la MP y leerlo de ésta.
 - El valor ha de ser una constante comprendida entre 0 y 63 (que es lo que "da de sí" el campo CD).
 - También se utiliza con la instrucción de resta.

■ Tabla resumen:

JI	modo	DE
00	directo	DE=(CD)
01	indirecto	DE=((CD))
10	indexado	DE=(CD)+(X)
11	indirecto e indexado	DE=((CD))+(X)
фф	inmediato	operando=(CD)

Índice

- 1. Modelo estructural
- 2. Modos de direccionamiento
- 3. Modelo funcional
- 4. Convenios simbólicos
- 5. Ejemplos

Bibliografía

REF: Conceptos básicos de arquitectura y sistemas operativos

AUTOR: Gregorio Fernández.

■PÁGs: Capítulo 3

- Modelo funcional
 - Convenio representación datos e instrucciones
 - Repertorio de instrucciones
- Convenio de representación de datos e instrucciones:
 - Datos (igual que en Símplez)
 - Números enteros no negativos
 - Caracteres
 - Formato de instrucciones:

Formato instrucciones:

11 9	8	7	6	5		0
co	R	J	I		CD	•

- CD sólo tiene seis bits, por lo que directamente sólo pueden direccionarse $2^6 = 64$ palabras de la MP.
- El bit 8 ("R") indica el registro (AC ó X) con el que se opera (si la instrucción no opera con registro, no importa el valor de R):
 - R=1: se opera con registro X
 - R=0: se opera con registro A
- Los bits 7 y 6 ("J" e "I") indican el modo de direccionamiento:
 - J=0, I=0: direccionamiento directo (igual que en Símplez)
 - J=0, I=1: direccionamiento indirecto
 - J=1, I=0: direccionamiento indexado
 - J=1, I=1: direccionamiento indirecto e indexado

- Repertorio de instrucciones:
 - Las instrucciones "CLR" y "DEC" (101 y 110) quedarán sustituidas por otras más potentes: LD# y SUB#.
 - Las demás instrucciones tienen los mismos significados que en Símplez, con las siguientes matizaciones:
 - "ST", "LD" y "ADD" (000, 001 y 010) pueden almacenar, cargar, o sumar a, respectivamente, el acumulador AC o el registro X.
 - La condición para la bifurcación en "BZ" sigue siendo que el resultado de la última operación en la UAL haya sido cero. En Símplez esto es equivalente a decir que el contenido del acumulador sea cero, pero NO EN SÍMPLEZ+I³, porque los resultados pueden ir al acumulador o al registro X.
 - Instrucciones que pueden afectar al bit Z: LD, ADD, LD# y SUB#.
 - Solamente se puede restar en inmediato!!!

Repertorio de instrucciones:

11	9	8	7	6	5			. 0
CO		R	J	I	. 1	ı	CD	•

СО	СО	СО	Significado
(bin.)	(oct.)	(nem.)	
000	0	ST	$(AC) \rightarrow MP[DE], o (X) \rightarrow MP[DE]$
001	1	LD	$(MP[DE]) \rightarrow AC$, o $(MP[DE]) \rightarrow X$
010	2	ADD	$(AC) + (MP[DE]) \rightarrow AC, o$
			$(X) + (MP[DE]) \rightarrow X$
011	3	BR	siguiente instrucción en MP[DE]
100	4	BZ	si cero en UAL, sig. instr. en MP[DE]
101	5	LD #	$(CD) \rightarrow AC$, o $(CD) \rightarrow X$
110	6	SUB #	$(AC) - (CD) \rightarrow AC$, o $(X) - (CD) \rightarrow X$
11100	70, 71	HALT	detiene la ejecución

- Resumen: direcciones VS instrucciones:
 - Si el código de operación es 000, 001 ó 010 (ST, LD o ADD), entonces el modo de direccionamiento para llegar al operando viene dado por la tabla del apartado 2.
 - Si el código de operación es 011 ó 100 (BR o BZ) el valor que tenga el bit 8 es indiferente y el modo de direccionamiento para llegar a la dirección de bifurcación viene dado también con la tabla del apartado 2.
 - Si el código de operación es 101 (LD # cargar literal) ó 110 (SUB # restar literal) el modo de direccionamiento es siempre inmediato.

Índice

- 1. Modelo estructural
- 2. Modos de direccionamiento
- 3. Modelo funcional
- 4. Convenios simbólicos
- 5. Ejemplos

Bibliografía

REF: Conceptos básicos de arquitectura y sistemas operativos

AUTOR: Gregorio Fernández.

■PÁGs: Capítulo 3

- Seguiremos utilizando los convenios simbólicos de Símplez (códigos de operación nemónicos, direcciones en decimal).
- Pero ahora tenemos que ampliar esos convenios para incluir la información sobre:
 - El registro utilizado
 - El modo de direccionamiento

- Registro utilizado:
 - Escribiremos, a continuación del código, ".A" o ".X" para indicar que se opera con AC o con X
 - Después, si la instrucción hace referencia a MP, una coma y finalmente la dirección.

binario	\mathbf{octal}	${f simb\'olico}$
000000000010	0002	ST .A,/2
000100000010	0402	ST .X,/2
001100000111	1407	LD .X,/7

"Cargar en el registro X el contenido de la palabra cuya dirección es 7".

- Modos de direccionamiento:
 - Direccionamiento directo
- Ejemplos de instrucciones con direccionamiento directo:

Binario	o Octa	Simbólico	Efecto
010000100	0000 2040	ADD .A,/32	(AC) + (32) → AC
010100100	0000 2440	ADD .X,/32	$(X) + (32) \rightarrow X$
100000000	0101 4005	BZ /5	Si el último resultado en la UAL fue 0,
			bifurca a la dirección 5

- Modos de direccionamiento:
 - Direccionamiento indirecto: Se indica el direccionamiento indirecto mediante corchetes.

binario	\mathbf{octal}	$\mathbf{simb\'olico}$
$\overline{000001000010}$	0102	ST .A,[/2]
000101000010	0502	ST .X,[/2]
010101000011	2503	ADD .X,[/3]

"Sumar al contenido de X el contenido de la palabra cuya dirección efectiva es MP[3], dejando el resultado en X".

- Modos de direccionamiento:
 - Direccionamiento indirecto

• Ejemplos de direccionamiento indirecto:

Binario	Octal	Simbólico	Efecto
010001100000	2140	ADD .A,[/32]	(AC) + ((32)) → AC
010101100000	2540	ADD .X,[/32]	$(X) + ((32)) \rightarrow X$
100001000101	4105	BZ [/5]	Si el último resultado en la UAL fue 0,
			bifurca a la dirección contenida en la
			palabra de dirección 5

- Modos de direccionamiento:
 - Direccionamiento indexado: Se indica que escribiendo [.X] tras la dirección.

binario	\mathbf{octal}	simbólico
$\overline{000010000010}$	0202	ST .A,/2[.X]
010010000011	2203	ADD $.A,/3[.X]$
000110000010	0602	ST .X,/2[.X]
010110000011	2603	ADD E.X,/3[.X]

"Sumar al contenido de X el contenido de la palabra cuya dirección efectiva es 3+(X), y dejar el resultado en X".

- Modos de direccionamiento:
 - Direcionamiento indexado

• Ejemplos de direccionamiento indexado:

Binario	Octal	Simbólico	Efecto
010010100000	2240	ADD .A,/32[.X]	(AC) + (32 + (X)) → AC
010110100000	2640	ADD $.X,/32[.X]$	$(X) + (32 + (X)) \rightarrow X$ (raro, pero válido)
100010000101	4205	BZ /5[.X]	Si el último resultado en la UAL fue 0,
			bifurca a la dirección 5 + (X)

- Modos de direccionamiento:
 - Direccionamiento indirecto e indexado: Se aplican a la vez los 2 criterios indicados para el direccionamiento indirecto e indexado.

binario	\mathbf{octal}	$\mathbf{simb\'olico}$
000011000010	0302	ST .A,[/2][.X]
010011000011	2303	ADD $.A,[/3][.X]$
000111000010	0702	ST .X,[/2][.X]
010111000011	2703	ADD .X,[/3][.X]

"Sumar al contenido de X el contenido de la palabra cuya dirección efectiva es MP[3]+(X), y dejar el resultado en X".

- Modos de direccionamiento:
 - Direccionamiento indirecto e indexado

• Ejemplos de direccionamiento indirecto-indexado:

Binario	Octal	Simbólico	Efecto
010011100000	2340	ADD .A,[/32][.X]	(AC) + ((32) + (X)) → AC
010111100000	2740	ADD .X,[/32][.X]	$(X) + ((32) + (X)) \rightarrow X$
100011000101	4305	BZ [/5][.X]	(raro, pero válido) Si último resultado en la UAL 0,
			bifurca a la dirección (5) + (X)

- Modos de direccionamiento:
 - Direccionamiento inmediato: Se representa con # delante del operando inmediato. Para cargar utilizamos el mismo nemónico de la carga con direccionamiento (LD) y para la resta SUB.

<u>binario</u>	\mathbf{octal}	${f simb\'olico}$
101000000010	5002	LD .A, #2
101011000010	5302	LD .A, #2
101100001010	5412	T.D X #10
101111001010	5712	LD .X, #10
110000000001	6001	SUB .A, #1
110010000001	6201	SUB .A, #1

"Cargar un 10 en el registro X".

- Modos de direccionamiento:
 - Direccionamiento inmediato

Binario Octal Simbólico Efecto 101000111111 LD .A,#63 $63 \rightarrow AC$ 5077 .A,#63 $63 \rightarrow AC$ 101010111111 5277 LD 101100111111 5477 LD $. X, \#63 \quad 63 \rightarrow X$ LD .X,#63 $63 \rightarrow X$ 101111111111 5777 SUB .A,#1 $(AC) - 1 \rightarrow AC$ 110000000001 6001 110100101000 6450 SUB .X,#40 $(X) - 40 \rightarrow X$

Índice

- 1. Modelo estructural
- 2. Modos de direccionamiento
- 3. Modelo funcional
- 4. Convenios simbólicos
- 5. Ejemplos

Bibliografía

REF: Conceptos básicos de arquitectura y sistemas operativos

AUTOR: Gregorio Fernández.

■PÁGs: Capítulo 3

Ejemplo 1: Sucesión de Fibonacci

- Sumar los 10 primeros términos de la sucesión
 - Pseudocódigo:

```
PEN=0; ULT=1;

SUM=1; CONT=8;

Mientras CONT≠0

SIG=PEN+ULT;

SUM=SUM+SIG;

PEN=ULT;

ULT=SIG;

CONT=CONT-1;

FinMientras
```

Ejemplo 1: Sucesión de Fibonacci

ORG 0

BR /INI

PEN RES 1

ULT RES 1

SIG RES 1

SUM RES 1

INI LD .A, #0

ST .A, /PEN

LD .A, #1

ST .A, /ULT

ST .A, /SUM

LD .X, #8

BUCLE BZ /FIN

LD .A, /PEN

ADD .A, /ULT

ST .A, /SIG

ADD .A, /SUM

ST .A, /SUM

LD .A, /ULT

ST .A, /PEN

LD .A, /SIG

ST .A, /ULT

SUB .X, #1

BR /BUCLE

FIN HALT

- Sumar los 100 números situados entre las posiciones 50 y 149, dejando el resultado en la posición 150.
- 1) Versión indexada. Pseudocódigo:

```
PSUMA = 150;

*PSUMA = 0;

X = 100;

Mientras X≠0

X = X - 1;

*PSUMA = *PSUMA + TAB[X];

FinMientras
```


Ensamblador

ORG 0
BR /INIPRG
PSUMA DATA SUMA
CIEN DATA 100
INIPRG LD .A, #0
ST .A, [/PSUMA]
LD .X, /CIEN

BUCLE BZ /FIN

SUB .X, #1

ADD .A, /TAB[.X]

SUB .X, #0

BR /BUCLE

FIN ST .A, [/PSUMA]

HALT

ORG 50

TAB DATA 23

DATA 31

SUMA RES 1
END

- Sumar los 100 números situados entre las posiciones 50 y 149, dejando el resultado en la posición 150.
- 2) Versión con punteros. Pseudocódigo:

```
PSUMA=150; PTAB=50;

*PSUMA=0;

CONT=100;

Mientras CONT ≠ 0

*PSUMA = *PSUMA + *PTAB;

PTAB = PTAB + 1;

CONT = CONT -1;

FinMientras
```


	D	\frown	\cap
U	ĸ	U	U

BR /INIPRG

PSUMA DATA SUMA

DTAB DATA TAB

PTAB RES 1

CONT RES 1

CIEN DATA 100

INIPRG LD .A, #0

ST .A, [/PSUMA]

LD .A, /DTAB

ST .A, /PTAB

LD .A, /CIEN

ST.A, /CONT

BUCLE BZ /FIN

LD .A, [/PTAB]

ADD .A, [/PSUMA]

ST .A, [/PSUMA]

LD .A, #1

ADD.A, /PTAB

ST .A, /PTAB

LD.A, /CONT

SUB .A, #1

ST .A, /CONT

BR /BUCLE

FIN HALT

ORG 50

TAB DATA 23

•

-

DATA 31 SUMA RES 1

END

- Sumar los 100 números situados entre las posiciones 50 y 149, dejando el resultado en la posición 150.
- 2) Versión con punteros. Pseudocódigo:

```
PSUMA=150; PTAB=149;

*PSUMA=0;

X=100;

Mientras X≠0

*PSUMA = *PSUMA + *PTAB;

PTAB = PTAB -1;

X = X -1;

FinMientras
```


ORG 0 BR /INIPRG PSUMA DATA SUMA DTAB DATA FTAB RES 1 PTAB CIEN **DATA 100** INIPRG LD .A, #0 ST .A, [/PSUMA] LD .A, /DTAB ST .A, /PTAB LD .X, /CIEN

BUCLE BZ /FIN
LD .A, [/PTAB]
ADD .A, [/PSUMA]
ST .A, [/PSUMA]
LD .A, /PTAB
SUB .A, #1
ST .A, /PTAB
SUB .X, #1
BR /BUCLE
FIN HALT

ORG 50

TAB DATA 23

FTAB DATA 31

SUMA RES 1
END

- Realizar resta de dos valores utilizando una rutina:
 - Paso de minuendo y sustraendo por las direcciones fijas de etiqueta MINU y SUSTR respectivamente.
 - El resultado se devuelve por dirección fija a través de la etiqueta RESULT.
- Pseudocódigo:

```
<Principal>
...
E=Resta(B,A);
...
F=Resta(D,C);
...
<Fin>
```

```
<Resta> (MINU,SUSTR)

RESULT=MINU;

Mientras SUSTR≠0

RESULT--;

SUSTR--;

FinMientras

Devuelve RESULT;

<Fin>
```


Principal (direcciones de retorno entre 0 y 63)

. .

LD .A, /B

ST .A, /MINU

LD .A, /A

ST .A, /SUSTR

LD .A, #DRET1

ST .A, /DIRRET

BR /RESTA

DRET1 LD .A, /RESULT

ST .A, /E

. . .

...

LD .A, /D

ST .A, /MINU

LD .A, /C

ST .A, /SUSTR

LD .A, #DRET2

ST .A, /DIRRET

BR /RESTA

DRET2 LD .A, /RESULT

ST .A, /F

...

Principal (direcciones de retorno > 63)

ORG 0

BR /INIPRG

DDRET1 DATA DRET1

...

ORG 62

INIPRG LD .A, /B

ST .A, /MINU

LD .A, /A

ST .A, /SUSTR

LD .A, /DDRET1

ST .A, /DIRRET

BR /RESTA

DRET1 LD .A, /RESULT

ST .A, /E

Subprograma

RESTA BR /INIRUT

MINU RES 1

SUSTR RES 1

RESULT RES 1

DIRRET RES 1

INIRUT LD .A, /MINU

LD .X, /SUSTR

BUCLE BZ /FINRESTA

SUB .A, #1

SUB .X, #1

BR /BUCLE

FINRESTA ST .A, /RESULT

BR [/DIRRET]

Subprograma (salvar y restaurar registros!)

RESTA BR /INIRUT

MINU RES 1

SUSTR RES 1

RESULT RES 1

DIRRET RES 1

RA RES 1

RX RES 1

INIRUT ST .A, /RA

ST .X, /RX

LD .A, /MINU

LD .X, /SUSTR

BUCLE BZ /FINRESTA

SUB .A, #1

SUB .X, #1

BR /BUCLE

FINRESTA ST .A, /RESULT

LD .A, /RA

LD .X, /RX

BR [/DIRRET]

Subprograma (otro modo de pasar los parámetros)

PRUT DATA RESTA

...

LD .X, #1

LD .A, /B

ST .A, [/PRUT][.X]

LD .X, #2

LD .A, /A

ST .A, [/PRUT][.X]

LD .X, #4

LD .A, #DRET1

ST .A, [/PRUT][.X]

BR [/PRUT]

DRET1 LD .X, #3

LD .A, [/PRUT][.X]

ST .A, /E

RESTA BR [/PINIRUT]

(parámetro ent. 1)

(parámetro ent. 2)

(parám. salida)

(dir. retorno)

..

Ejemplo 4: Problema de inicializar con DATA

Ejecuciones sucesivas deben funcionar sin recargar!

BR /INI

VALOR DATA 100

VAR RES 1

CONT DATA 20

INI LD .A, /VALOR

ST .A, /VAR

BUCLE LD .A, /CONT

BZ /FIN

SUB .A, #1

ST .A, /CONT

LD .A, /VAR

SUB .A, #1

ST .A, /VAR

BR /BUCLE

FIN HALT

- En la memoria de un ordenador Símplez+i³ se pretende almacenar un vector. El vector comienza en una dirección cuya etiqueta es DV, y cada uno de los elementos ocupa una palabra de memoria.
- Se pide realizar un programa en ensamblador que introduzca datos en el vector, leyéndolos del teclado por espera activa. Para realizar esto hay que tener en cuenta que por el puerto de entrada aparecerán sucesivamente el índice que indica la posición que ocupa el elemento en el vector y el valor del elemento. La última posición a la que se da valor es la posición 0. El programa parará después de almacenar el valor correspondiente.
- Las direcciones del puerto de entrada tienen como etiquetas ESTADO y DATOS, y se suponen definidas.
- La etiqueta DV se supone definida.
- El programa deberá funcionar independientemente de la posición a que apunten DV, ESTADO y DATOS.
- Se supone que los índices y valores de los elementos del vector son inferiores a 10.

Pseudocódigo:

```
X=0;
PV=DV;
Hacer
  Mientras ESTADO==0
  Fin Mientras
  X = DATOS;
  Mientras ESTADO==0
  Fin Mientras
  VALOR=DATOS;
  PV[X]=VALOR;
Mientras X!=0
```


ORG 0

BR /INI

DDV DATA DV

DDATOS DATA DATOS

DESTADO DATA ESTADO

PV RES 1

INI LD .X, #0

LD .A, /DDV

ST .A, /PV

BUCLE

ESP1 LD .A, [/DESTADO]

BZ /ESP1

LD .X, [/DDATOS]

SUB .X, #48

ESP2 LD .A, [/DESTADO]

BZ /ESP2

LD .A, [/DDATOS]

SUB .A, #48

ST .A, [/PV][.X]

SUB .X, #0

BZ /FIN

BR /BUCLE

FIN HALT

Pseudocódigo:

```
Hacer
    INDICE = LeerTeclado();
    VALOR = LeerTeclado();
    DV[INDICE] = VALOR;
Mientras INDICE!=0
```

			And the second s
DDV	ORG 0 BR /BUCLE DATA DV	BUCLE ESP1	LD .A, [/DESTADO] BZ /ESP1 LD .A, [/DDATOS] SUB .A, #48
DDATOS DESTADO INDICE VALOR	DATA DATOS DATA ESTADO RES 1 RES 1	ESP2	ST .A, /INDICE LD .A, [/DESTADO] BZ /ESP2 LD .A, [/DDATOS] SUB .A, #48 ST .A, /VALOR LD.X, /INDICE LD.A, /VALOR ST .A, [/DDV][.X] SUB .X, #0 BZ /FIN BR /BUCLE
		FTN	ΗΔΙΤ

Ejemplo 6: Subrutina para multiplicar

- Realizar una rutina en ensamblador de Símplez+i³ que multiplica dos números.
- La rutina recibe en el registro AC una dirección de memoria. A partir de dicha dirección se encuentran almacenados (por este orden), el primer factor, el segundo factor y la dirección de retorno; el resultado se devuelve en el registro AC.
- Las instrucciones de la rutina se ensamblarán a partir de la dirección 20; no existe programa principal. Es preciso definir las etiquetas que se utilicen y explicar las operaciones realizadas.

Ejemplo 6: Subrutina para multiplicar

ORG 20

MULTIP BR /INIRUT

F1 RES 1

F2 RES 1

DIR RES 1

DRET RES 1

RX RES 1

INIRUT ST.X, /RX

ST .A /DIR

LD .A, [/DIR]

ST .A, /F1

LD .X, #1

LD .A, [/DIR][.X]

ST .A, /F2

LD .X, #2

LD .A, [/DIR][.X]

ST .A, /DRET

LD .A, #0

LD .X, /F2

BUCLE BZ /FRUT

ADD .A, /F1

SUB .X, #1

BR /BUCLE

FRUT LD .X, /RX

BR [/DRET]

- En un computador Símplez-i³ tenemos almacenada una matriz de datos en la zona alta de memoria a partir de la dirección de etiqueta MAT. El tamaño de la matriz está almacenado en las direcciones de etiqueta NFIL y NCOL en zona baja de memoria.
- La matriz se encuentra almacenada por filas en memoria.
- Se pide realizar un programa en Símplez-i³ que imprima por pantalla 5 elementos de la matriz solicitados por el usuario a través del teclado.
- El programa leerá primero la fila y después la columna especificadas por el usuario e imprimirá por pantalla el elemento de la matriz correspondiente.
- Puede suponer que los índices dados por el usuario son siempre correctos, es decir están en los rangos [0,NFIL-1] y [0,NCOL-1]
- Los índices de la matriz y los valores guardados son menores que 10.

- Almacenamiento de matrices en memoria:
 - Las matrices se almacenan en memoria de forma lineal.
 - Los elementos de la matriz se pueden ordenar de diferentes maneras en memoria.
 - Las formas de almacenamiento más usuales son:
 - Almacenamiento por filas: La matriz se guarda en memoria de modo que se encuentran los datos de una fila a continuación de los de la anterior, empezando por la primera y acabando por la última.
 - Almacenamiento por columnas: La matriz se guarda en memoria de tal modo que se encuentran los datos de una columna a continuación de los de la anterior, empezando por la primera columna y acabando por la última.

Almacenamiento por filas

MAT

a00	a01
a10	a11
a20	a21
a30	a31

Almacenamiento por columnas

MAT	a00	
	a10	
	a20	
	a30	
	a01	
	a11	
	a21	
	a31	

Memoria Principal

Memoria Principal

Almacenamiento por filas

MAT

ORG 2000
MAT DATA 7
DATA 8
DATA 5
DATA 4
DATA 6
DATA 9
DATA 3
DATA 5

Memoria Principal

Pseudocódigo (versión con punteros):

```
CONT = 5;
Mientras (CONT!=0)

FIL = LeerTeclado();

COL = LeerTeclado();

P = MAT + FIL*NCOL + COL;

VAL = *P;

EscribirPantalla(VAL);

CONT = CONT-1;

Fin Mientras
```


	ORG 0
	BR /INI
NFIL	DATA 3
NCOL	DATA 2
DMAT	DATA MAT
DCP	DATA 4092
DDP	DATA 4093
DCT	DATA 4094
DDT	DATA 4095
CONT	RES 1
Р	RES 1
FIL	RES 1
COL	RES 1
VAL	RES 1
INI	LD.A, #1
	ST.A, [/DCP]
	LD.A, #5
	ST.A, /CONT
BUCLE	BZ /FBUCLE

LEE_F	LD.A, [/DCT] BZ /LEE_F
	 LD.A, [/DDT]
	SUB.A, #48
	ST.A, /FIL
LEE_C	LD.A, [/DCT]
	BZ /LEE_C
	LD.A, [/DDT]
	SUB.A, #48
	ST.A, /COL
	LD .A, #0
	LD .X, /FIL
MUL	BZ /FMUL
	ADD .A, /NCOL
	SUB .X, #1
	BR /MUL
FMUL	ADD.A, /DMAT
	ADD.A, /COL
	ST.A, /P

	LD.A, [/P]
	ST.A, /VAL
ESC_P	LD.A, [/DCP]
	BZ /ESC_P
	LD.A, #48
	ADD.A, /VAL
	ST.A, [/DDP]
	LD.A, /CONT
	SUB.A, #1
	ST.A, /CONT
	BR /BUCLE
FBUCLE	HALT
	END

Pseudocódigo (versión con puntero e indexado):

```
CONT = 5;
Mientras (CONT!=0)

FIL = LeerTeclado();
COL = LeerTeclado();

P = MAT + FIL*NCOL;

VAL = P[COL];
EscribirPantalla(VAL);
CONT = CONT-1;

Fin Mientras
```


	ORG 0
	BR /INI
NFIL	DATA 3
NCOL	DATA 2
DMAT	DATA MAT
DCP	DATA 4092
DDP	DATA 4093
DCT	DATA 4094
DDT	DATA 4095
CONT	RES 1
Р	RES 1
FIL	RES 1
COL	RES 1
VAL	RES 1
INI	LD.A, #5
	ST.A, /CONT
BUCLE	BZ /FBUCLE

Marie Control	
LEE_F	LD.A, [/DCT] BZ /LEE_F LD.A, [/DDT] SUB.A, #48 ST.A, /FIL
LEE_C	LD.A, [/DCT] BZ /LEE_C LD.A, [/DDT] SUB.A, #48 ST.A, /COL
MUL	LD .A, #0 LD .X, /FIL BZ /FMUL ADD .A, /NCOL SUB .X, #1
FMUL	BR /MUL ADD.A, /DMAT ST.A, /P

	LD.X, /COL
	LD.A, [/P][.X]
	ST.A, /VAL
ESC_P	LD.A, [/DCP]
	BZ /ESC_P
	LD.A, #48
	ADD.A, /VAL
	ST.A, [/DDP]
	LD.A, /CONT
	SUB.A, #1
	ST.A, /CONT
	BR /BUCLE
FBUCLE	HALT
	END

Ejemplo 8: Modificación de Símplez+I³

C16. Se tiene una máquina Símplez+i³ con las siguientes modificaciones:

- El bus de direcciones es de 14 bits.
- El único modo de direccionamiento posible es el directo.

Se pide responder **RAZONADAMENTE** a las siguientes cuestiones:

- a) ¿Cuál es la máxima capacidad de la memoria principal de esta máquina?
- b) Indicar cuál tiene que ser el formato de las instrucciones para que se pueda aprovechar dicha capacidad máxima.
- c) ¿Cuál sería el ancho de las palabras de memoria?
- d) ¿Cuántos bits debería tener el acumulador? ¿y el registro X?