Explorer des réseaux dans un carnet interactif avec ipysigma

Béatrice Mazoyer, Guillaume Plique, médialab SciencesPo

Atelier Digit_Hum 2023

Où retrouver ces slides?

Au format page web :

https://medialab.github.io/ipysigma/presentations/digithum-2023

• Au format pdf:

https://github.com/medialab/ipysigma/blob/master/presentations/pdf/digithum-2023.pdf

Qui sommes nous?

Guillaume Plique et **Béatrice Mazoyer**, ingénieur·e·s de recherche au <u>médialab</u> de Sciences Po.

Un laboratoire de sciences sociales fondé par Bruno Latour il y a dix ans, qui fait dialoguer plusieurs disciplines :

- la sociologie
- le design
- l'ingénierie

Qu'est-ce qu'un réseau / un graphe

Un ensemble de nœuds et de liens, et les métadonnées associées.

L'analyse visuelle de réseaux

Une approche statistique des graphes

- Diamètre
- Densité
- Distribution des degrés
- Plus court chemin
- Centralité
- Valeurs propres
- Algèbre linéaire (un graphe est une matrice, une matrice est un graphe)
- Pagerank
- etc.

Que nous apporte la visualisation de graphes?

Que nous apporte la visualisation de graphes?

Les sociogrammes de Moreno

id	Prénom	Premier vœu	Second vœu
1	Amélie	4	3
2	Jean	1	3
3	Kareem	2	26
4	Lydia	45	12
5	Michael	7	28
6	Guillaume	18	3

Moreno, J. L. (1934). Who shall survive?: A new approach to the problem of human interrelations.

Les sociogrammes de Moreno

Sociogramme d'une classe d'élèves de 11-12 ans

(critère : s'asseoir à côté des élèves choisis - 2 choix au maximum)

Les lignes barrées indiquent les choix réciproques.

Source: Moreno [1934, annexes, planche XII].

Les variables visuelles de Bertin

Détection de communautés, spatialisation, etc.

Logiciels et outils d'analyse visuelle de réseaux

Pajek

Gephi

Sigma

MiniVaN

Nansi

Retina

Gephi Lite

Une app pour les chercheurs en Sciences Sociales utilisant Python

Un processus itératif

Problèmes rencontrés lors du design de Nansi

Deux besoins contradictoires:

- 1. Un outil à l'usage des étudiants
- 2. Un outil adapté à notre propre processus de traitement/exploration/analyse de données

Pourquoi ne pas faire l'analyse visuelle de réseaux directement dans un Jupyter Notebook?

ipysigma

```
pip install jupyterlab
pip install networkx # or igraph
pip install ipysigma
```


Demo time! (En espérant que ça fonctionne)

Un trésor de variables visuelles

nœuds

- color, saturation
- size
- label, label size, label color, label font
- border size, border ratio, border color
- o pictogram, pictogram color, shape
- halo size, halo color

liens

- color
- type
- size
- curveness
- label

Petits multiples

Exports

Développements futurs

- Représentations spécialisées, telles que :
 - Réseaux temporels
 - Réseaux biparti
 - o etc.
- Meilleur support pour différentes instances de Jupyter :
 - notebook
 - lab
 - colab
 - vscode
 - etc.

Un logiciel libre

- GitHub: https://github.com/medialab/ipysigma
- Slides: https://medialab.github.io/ipysigma/presentations/digithum-2023
- Demo: https://medialab.github.io/ipysigma/demo.html

Dépendences

- graphology: https://graphology.github.io/
- Sigma.js: https://www.sigmajs.org/

Merci pour votre attention!

