# "Analiza danych batymetrycznych z obszaru Morza Bałtyckiego i Śródziemnomorskiego"

Marcin Samojluk, Gabriel Rączkowski

December 12, 2024

#### Plan prezentacji

Wstęp

Mapa topograficzna

Mapa azymutów (Dip Direction)

Grupowanie trójkątów -  $X_N, Y_N, Z_N$ 

Grupowanie trójkątów - X\_D, Y\_D, Z\_D

Tabele punktów skupień

Kod filtrowania i wizualizacji w R

Przefiltrowane punkty

Mapa geomorfonów

Mapa geomorfonów

Podsumowanie i wnioski

Slajd przejściowy

Przedstawienie danych

Interpolacja wysokościowa

Anomalie na krawędzi danych2

Bez anomalii

Mapa azymutów

Mapa azymutów2



#### Wstęp

- Celem projektu jest analiza danych przestrzennych na wybranym obszarze.
- Dane pochodzą z narzędzi:
  - QGIS analiza danych przestrzennych.
  - GEBCO podkład topograficzny.
  - ParaView wizualizacja i analiza trójwymiarowa.
- Analizowane parametry:
  - Tworzenie mapy Azymutów .
  - Grupowanie trójkątów w przestrzeni za pomocą algorytmu k-średnich.

## Mapa topograficzna

- Podkład topograficzny przygotowano za pomocą wtyczki OpenLayersPlugin w QGIS.
- Obszar danych został zaznaczony w GEBCO, a następnie naniesiony na mapę.



Figure: Mapa topograficzna z zaznaczonym obszarem.

#### Mapa azymutów

- Przygotowano w QGIS z użyciem danych interpolowanych.
- Analizowano nachylenie, ekspozycję oraz azymuty powierzchni.



Figure: Ekspozycja (Exposure).



Figure: Interpolowane dane powierzchniowe.



Figure: Nachylenie powierzchni (Dip Angle).

## Grupowanie trójkątów - X\_N, Y\_N, Z\_N

- Grupowanie przeprowadzono za pomocą algorytmu k-średnich.
- Analiza dla kolumn X<sub>N</sub>, Y<sub>N</sub>, Z<sub>N</sub>.
- Wyniki wizualizowane w stereonete z zaznaczonymi środkami skupień.



Figure: Stereonet z zaznaczonymi środkami skupień dla  $X_N$ ,  $Y_N$ ,  $Z_N$ .

## Grupowanie trójkątów - X\_D, Y\_D, Z\_D

- lacktriangle Grupowanie przeprowadzono analogicznie jak dla  $X_N,\ Y_N,\ Z_N.$
- ightharpoonup Analiza dla kolumn  $X_D$ ,  $Y_D$ ,  $Z_D$ .



Figure: Stereonet z zaznaczonymi środkami skupień dla  $X_D$ ,  $Y_D$ ,  $Z_D$ .

#### Tabele punktów skupień

► Tabele przedstawiają wartości punktów skupień wyznaczonych w analizie.

|          |       |        |       | No.      | Trend | Plunge | Label |  |
|----------|-------|--------|-------|----------|-------|--------|-------|--|
| No.      | Trend | Plunge | Label | 1        | 016,6 | 02,0   |       |  |
| 1        | 016,6 | 02,0   |       | <b>2</b> | 145,0 | 02,0   |       |  |
| 2        | 145,0 | 02,0   |       | ☑ 3      | 254,9 | 02,0   |       |  |
| <b>3</b> | 254,9 | 02,0   |       |          |       |        |       |  |
|          |       |        |       |          |       |        |       |  |

Figure: Tabela punktów skupień:  $X_N$  (lewo) i  $X_D$  (prawo).

# Kod filtrowania i wizualizacji w R

#### Filtrowanie danych

```
filter_tab1 <- dplyr::filter(tab1, Dip_ang > 0 & Dip_ang < 91, X_N > -0.05 & X_N < 0.05, Y_N > -0.05 & Y_N < 0.05)
```

#### Kod ggplot dla oryginalnych danych

```
ggplot(data=tab1, aes(x = Y_C, y = X_C, color =
Dip_ang )) + geom_point()
```

#### Kod ggplot dla przefiltrowanych danych

```
ggplot(data=filter_tab1, aes(x = Y_C, y = X_C, color =
Dip_ang )) + geom_point()
```

- Filtrowanie danych pozwala na wybór punktów spełniających określone kryteria.
- Wizualizacja umożliwia analizę rozkładu danych przed i po przefiltrowaniu.



## Przefiltrowane punkty

- Wykresy przedstawiają dane przed i po przefiltrowaniu.
- Kolor punktów odpowiada wartości kąta nachylenia (Dip Angle).



# Mapa geomorfonów - Opis

- ► Mapa geomorfonów przedstawia klasyfikację geomorficzną analizowanego obszaru.
- Wartości geomorfonów zostały przypisane na podstawie analizy zmienności terenu, uwzględniając nachylenie, azymut i krzywiznę powierzchni.
- Kolorystyka na mapie pokazuje różne typy ukształtowania terenu, w tym wzgórza, doliny oraz płaskie obszary.
- Analiza geomorfonów jest przydatna w badaniach geomorfologicznych, planowaniu przestrzennym i analizach środowiskowych.

# Mapa geomorfonów - Wizualizacja



Figure: Mapa geomorfonów - Klasyfikacja geomorficzna obszaru.

#### Podsumowanie i wnioski

- Przeanalizowano dane przestrzenne i dokonano wizualizacji za pomocą stereonetu.
- Wyniki wskazują na różnice w rozkładzie azymutów dla różnych grup trójkątów.
- Możliwe rozszerzenia analizy:
  - Dalsza integracja z modelami 3D w ParaView.
  - Analiza błędów i ich wpływu na wyniki.
- Wnioski mogą być przydatne w analizach geologicznych i geomorfologicznych.

# Dane dotyczące Bałtyku

#### Dane

Dane z dna Morza Bałtyckiego na północ od Polski - UTM 34N.



➤ W tym regionie jest prowadzony niezwykle intensywnie transport drogą morską, aż 15% światowego transportu. Badanie tego terenu jest korzystne dla transportu w wielu wymiarach.

# Interpolacja wysokościowa





#### Anomalie na krawędzi

6160000

 Na brzegu badanego obszaru możemy zauważyć wartości odstające - chcemy się ich pozbyć



#### Dane bez anomalii



Bardzo małe kąty - między 0 a 5 stopni

# Mapa azymutów

QGIS i Paraview









## Grupowanie trójkątów - X\_N, Y\_N, Z\_N

Wizualizacja pogrupowania trójkątów za pomocą algorytmu k-średnich dla k=3 w programie Stereonet



# Grupowanie trójkątów - X\_D, Y\_D, Z\_D

Wizualizacja pogrupowania trójkątów za pomocą algorytmu k-średnich dla k=3 w programie Stereonet





# Bibliografia

- ► GEBCO https://www.gebco.net/
- ▶ QGIS https://qgis.org/
- ParaView https://www.paraview.org/
- Dokumentacja Stereonet dostępna w programie.
- Submarine Cable Map https://www.submarinecablemap.com/
- https://pl.wikipedia.org/wiki/
- https://www.infona.pl/resource/bwmeta1.element.desklightd5218c20-778b-4cdb-8ed4-5708cc7680e9