

Spectroscopie de résonance magnétique nucléaire (RMN)

27-09-2023

Lecture 4

III.3 Couplage spin-spin III.3.2 Origine du couplage spin-spin

Il est important de remarquer que le couplage spin-spin existe en général entre des protons portés par des carbones adjacents (on parle de couplage vicinal ou ³ J).

Découplage observé

Pas de découplage

Le couplage entre des protons portés par le même atome de carbone existe (couplage géminal ou ²J) mais il est beaucoup moins fréquent.

III.3 Couplage spin-spin III.3.2 Origine du couplage spin-spin

Les protons H_a qui ont pour voisin un H_b aligné parallèlement au champ, se trouvent exposés non seulement au champ \vec{B}_0 , mais également à une contribution supplémentaire locale provenant du spin α de H_b .

Le champ global étant renforcé ($\vec{B}_{global} + \vec{b}$), on a un effet de déblindage.

Les protons H_a qui ont pour voisin un proton H_b aligné antiparallèlement au champ \vec{B}_0 (spin β) se trouvent exposés à \vec{B}_{global} - \vec{b} , d'où un effet de blindage.

III.3 Couplage spin-spin III.3.2 Origine du couplage spin-spin

Étant donné qu'il y a approximativement un nombre égal de molécules avec un H_b avec un état de spin α qu'avec un état de spin β (la différence d'énergie entre ces 2 états est faible), on observe 2 absorptions pour H_a d'égales intensités.

III.3 Couplage spin-spin III.3.2 Origine du couplage spin-spin

III.3 Couplage spin-spin III.3.2 Origine du couplage spin-spin

trois environnements électroniques possibles

quadruplet

III.3 Couplage spin-spin III.3.2 Origine du couplage spin-spin

Les constantes de couplage de protons qui sont couplés entre eux sont identiques.

III.3 Couplage spin-spin III.3.2 Origine du couplage spin-spin

Les signaux RMN de noyaux adjacents à n voisins équivalents se fragmentent en n+1 pics. Les rapports relatifs de ces pics sont donnés par le triangle de Pascal.

III.3 Couplage spin-spin III.3.1 Principe - Définition

Pour chaque type de proton, le nombre de pics obtenus sera égal au nombre de protons voisins + 1 (règle « N+1 »).

Le couplage spin-spin révèle combien d'hydrogènes sont présents sur les carbones adjacents en considérant la multiplicité de l'absorption.

III.3 Couplage spin-spin III.3.3 Cas plus complexes

Combien de pics pour H_b?

III.3 Couplage spin-spin III.3.3 Cas plus complexes

Combien de pics pour H_b?

Trois cas de figure

III.3 Couplage spin-spin

III.3.3 Cas plus complexes

Si
$$J_{ab} = J_{bc}$$

Il y a 6 pics!

III.3 Couplage spin-spin III.3.3 Cas plus complexes

Si
$$J_{ab} = J_{bc}$$

2 spins viennent de H_a3 spins viennent de H_c

III.3 Couplage spin-spin

III.3.3 Cas plus complexes

Si $J_{ab} < J_{bc}$

Il y a 12 pics!

III.3 Couplage spin-spin III.3.3 Cas plus complexes

Ces 12 pics correspondent à 4 triplets

III.3 Couplage spin-spin

III.3.3 Cas plus complexes

Dans ce cas, nous avons 3 quadruplets

Couplage spin-spin

Chloroacétate d'éthyle

RMN 60 MHz

III.3 Couplage spin-spin III.3.4 Échec de la règle (N+1)

Quand on a affaire à des protons voisins portés par des atomes différents, la règle (N+1) est en général non respectée. Il est difficile de prévoir à l'avance ; seul le signal du spectre peut donner la solution.

$$c = c \begin{pmatrix} H_a \\ H_b \end{pmatrix}$$

Cas des protons d'alcènes : Les protons portés par le même carbone mais avec une rotation libre empêchée, ne sont pas équivalents.

Protons diastéréotopiques (par exemple $\mathrm{CH_2}$ en α d'un carbone asymétrique)

III.3 Couplage spin-spin III.3.5 Composés aromatiques

Cas général (y compris cycles monosubstitués) : dans un cycle

aromatique, on peut avoir les couplages suivants :

H_c méta

J_{HaHb}: couplage ortho (3*J*), 7-10 Hz

J_{HaHc}: couplage méta à longue distance (4J), 2-3 Hz

J_{HaHd}: couplage para à longue distance (5J), 0-1 Hz (généralement nul)

Exemple d'utilisation de la RMN

Exemple d'application

Polymérisation par ouverture de cycle

n est le degré de polymérisation

^{*} nécessite l'utilisation d'un catalyseur

Attribuez chacun des pics

Donnez les valeurs d'intégrales

ε-caprolactone

Attribuez chacun des pics

Donnez les valeurs d'intégrales

Attribuez chacun des pics

Il est possible de savoir si il reste des monomères dans la solution

Effet de la rigidité du cycle sur le couplage spin-spin

