3D Printing Optimization

Julian Hame

1 Introduction

Resource Cost and Topology

RESOURCES REQUIRED FOR 3D PRINTING

Filament

Differs in material and cost, ranging from metal to

Time

A print can take from 30 minutes to several days, depending on the polylactic acid. size and detail.

Energy

The average printer uses one cent per hour, making energy a negligible factor.

WHAT IS TOPOLOGY OPTIMIZATION?

- The method of finding the most efficient layout of material for manufacturing 3D objects.
- Objective is to get the best balance between strength, weight and affordability.
- Can reduce weight and cost to make 3D printed objects without sacrificing their structural integrity.

2 Factors in 3D Printing

Shell Thickness, Infill Percentage and Material

STANDARD MATERIAL OPTIONS

	PLA	ABS	PETG
Full Name	Polylactic Acid	Acrylonitrile Butadiene Styrene	Polyethylene Terephthalate Glycol
Pros	Low PrintTemperatureCheap	ResistantCan distort and bend	Food-safeImpact and heat resistant
Cons	Low heat resistanceBrittle	Warps easily during printsReleases fumes	Most expensiveStrings easily during prints

INFILL

PERCENTAGE

The "fullness" of a 3D printed object. This determines its overall strength, weight, print time and material usage.

PATTERN

The shape of an object's interior. This determines its overall strength, weight, flexibility, material usage and print time.

SHELL THICKNESS

The thickness of an object's shell is the amount of layers that its surface sides contain. This determines its outer strength, cost per piece and time to print.

3 Optimal Approaches

The best material, infill and shell options.

MATERIAL OPTIONS

PLA

Best for creating objects that don't have any that will see a functional requirements that need to be met.

ABS

Best used for functional items lot of wear or require a lot of durability.

PETG

Great for durable, functional objects, especially ones that come in contact with foods and drinks.

OPTIMAL INFILL PERCENTAGE

Increase in tensile strength is often negligible past 60%.

For non-functional prints, anything between 15% and 50% will work fine.

OPTIMAL INFILL PATTERNS

Lines ///

Best for producing quick, lightweight objects.

Tri-Hexagon 🂢

Great for items that need to be very strong in two dimensions.

Grid ___

Best for light objects with moderate strength requirements.

Cubic

Perfect for objects to be strong in all three dimensions.

Honeycomb (

Best for fast prints with little material and some strength.

Gyroid 🗀

Strikes a good balance between strength, material use and print time.

OPTIMAL SHELL THICKNESS

This often varies depending upon the material you use and the functional requirements of the item being printed.

However, 1.5-2.0 mm is typically a good range to prevent deformations and breaks both during and after the printing process.

4 Conclusion

Recap and works cited

RECAP

Introduction

Topology
optimization is
used to reduce
the material
usage, time and
cost of 3D
printing
something.

Printing Options

The strength and cost of a print is directly tied to factors such as shell thickness, infill percentage, infill pattern and the material.

Optimal Procedure

While there are certain rules to follow when optimizing an object, this varies depending on what you want from a specific piece.

Thanks!

ANY QUESTIONS?

CREDITS

Sources

- https://all3dp.com/2/infill-3d-printing-what-it-means-and-how-t o-use-it/
- https://all3dp.com/2/pla-vs-abs-vs-petg-differences-compared/
- https://all3dp.com/2/3d-printing-shells-all-you-need-to-know/
- https://www.fictiv.com/articles/recommended-wall-thickness-for-3d-printing#:~:text=A%20good%20minimum%20wall%20thickness%20for %203D%20printing%20PLA%20is%201.5%20mm.
- https://www.3dnatives.com/en/topology-optimisation140820184/#!
- https://www.3d-pros.com/optimizing-strength-of-3d-printed-parts
- https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.638.9 434&rep=rep1&type=pdf