lecture 4

Combinational logic 2

- ROM

- arithmetic circuits

- arithmetic logic unit (ALU)

Last lecture: truth tables, logic gates & circuits

NOR
$$A \longrightarrow b \longrightarrow A + B$$

Recall multiplexor (selector)

$$Y = \overline{S} \cdot A + S \cdot B$$

"Read-only Memory"

(leftover topic from last lecture)

Sometimes we can think of a circuit as a "hardwired" memory (read only).

Note: the order of the A₁ A₀ variables matters.

address data

Recall: binary arithmetic

$$C_{N-1} \dots C_2 C_1 C_0$$

$$A_{N-1} \dots A_2 A_1 A_0$$

$$+ B_{N-1} \dots B_2 B_1 B_0$$

$$S_{N-1} \dots S_2 S_1 S_0$$

Notes:

- Co = 0
- A, B could represent signed or unsigned numbers

Let's build an "adder" circuit.

$$C_{n-1} \dots C_{2} C_{1}$$

$$A_{n-1} \dots A_{2} A_{1} A_{0}$$

$$B_{n-1} \dots B_{2} B_{1} B_{0}$$

$$S_{n-1} \dots S_{2} S_{1} S_{0}$$

A. B.	5 o C
00	0 0 0

Half Adder

$$S = A \oplus B$$

$$C = A \cdot B$$

$$C_{n-1} \dots C_{2}C_{1}C_{0}$$

$$A_{n-1} \dots A_{2}A_{1}A_{0}$$

$$B_{n-1} \dots B_{2}B_{1}B_{0}$$

$$S_{n-1} \dots S_{2}S_{1}S_{0}$$

full adder

							_
A.	k_	BK	Ck	SK	C	K+[
C)	\bigcirc	\bigcirc)	\bigcirc	
ح		\bigcirc				0	
C			0				
		\					
		0	\bigcirc		l	6	
	(Q			\bigcirc		
)	(\bigcirc		\bigcirc		
	,		\				

Ripple Adder

If n = 32, then we can have a long delay as carries propagate through the circuit. We'll return to this later.

$$C_{n-1} \dots C_2 C_1 C_0$$

$$A_{n-1} \dots A_2 A_1 A_0$$

$$+ B_{n-1} \dots B_2 B_1 B_0$$

$$S_{n-1} \dots S_2 S_1 S_0$$

As I mentioned before.... the *interpretation* of the S bit string depends on whether the A and B bit strings are signed or unsigned.

However, the full adder circuit does not depend on whether A and B are signed or unsigned.

Overflow

We still might want to know if we have "overflowed":

- e.g. if the sum of two positive numbers yields a negative
 - if the sum of two negative numbers yields a positive

How can we detect these two cases ? (see Exercises 2)

TODO TODAY

- encoder
- decoder
- n-bit multiplexor
- fast adder
- ALU

Encoder

Encoder Example 1

This assumes only one button can be pressed at any time.

This allows two buttons to be pressed at the same time (and encodes the one with the highest index).

Encoder Example 2

panel with ten buttons

display e.g. on a digital watch, calculator, etc.

lights buttons See Exercises

Each light Li is turned on (1) by some set of button presses.

Each button bk turns on (1) some set of lights.

Decoder

code word (in this

example, it specifies which output is 1)

2-bit multiplexor

Notation:

More general example (2-bit multiplexor)

Selects from four n-bit inputs. For each Ai, Bi, Ci, Di, we replicate the circuit on the previous slide, but use the same decoder circuit.

n-bit multiplexor

We will next look at some examples of how multiplexors are used.

Recall the ripple adder.

The main problem is that it is slow.

$$\begin{array}{c|c} C_{31} \\ A_{31} \\ \hline \\ B_{31} \end{array}$$

How to speed up the adder?

Instead of one 32 bit adder, think of two 16 bit adders.

We can compute the result of each, in half the time. (However, if C16 = 1, then we have to wait for it to ripple through.)

Fast Adder

Tradeoffs: we chop the time in half (almost, why?) but it increases the number of gates by more than 50% (why?). Note we can repeat this idea (recursion).

Subtraction

$$\frac{A_{n-1} \cdots A_2 A_1 A_0}{B_{n-1} \cdots B_2 B_1 B_0}$$

$$\frac{S_{n-1} \cdots S_2 S_1 S_0}{S_n - 1 \cdots S_2 S_1 S_0}$$

Invert bits and add 1.

Invert bits and add 1.

When B_{invert} is 1, this adds 1 by setting C₀ to 1.

$$A_{n-1}$$
 ... $A_{2}A_{1}A_{0}$
 B_{n-1} ... $B_{2}B_{1}B_{0}$
 S_{n-1} ... $S_{2}S_{1}S_{0}$

n = 32

A.	B31	531	over	flow
Binvert				
) N	

See Exercises 2

Let's include a bitwise AND and OR.

Arithmetic Logic Unit (ALU)

