

Course code	Course Name vyshnav Course Name	L-T-P Credits	Year of Introduction
CS401	COMPUTER GRAPHICS	4-0-0-4	2016

Course Objectives:

- To introduce concepts of graphics input and display devices.
- To discuss line and circle drawing algorithms.
- To introduce 2D and 3D transformations and projections.
- To introduce fundamentals of image processing.

Syllabus:

Basic Concepts in Computer Graphics. Input devices. Display devices. Line and circle drawing Algorithms. Solid area scan-conversion. Polygon filling. Two dimensional transformations. Windowing, clipping. 3D Graphics, 3D transformations. Projections – Parallel, Perspective. Hidden Line Elimination Algorithms. Image processing – digital image representation – edge detection – Robert, Sobel, Canny edge detectors. Scene segmentation and labeling – region-labeling algorithm – perimeter measurement.

Expected Outcome:

The Students will be able to:

- i. compare various graphics devices
- ii. analyze and implement algorithms for line drawing, circle drawing and polygon filling
- iii. apply geometrical transformation on 2D and 3D objects
- iv. analyze and implement algorithms for clipping
- v. apply various projection techniques on 3D objects
- vi. summarize visible surface detection methods
- vii. interpret various concepts and basic operations of image processing

Text Books:

- 1. Donald Hearn and M. Pauline Baker, Computer Graphics, PHI, 2e, 1996
- 2. E. Gose, R. Johnsonbaugh and S. Jost., Pattern Recognition and Image Analysis, PHI PTR, 1996 (Module VI Image Processing part)
- 3. William M. Newman and Robert F. Sproull, Principles of Interactive Computer Graphics. McGraw Hill, 2e, 1979
- 4. Zhigang Xiang and Roy Plastock, Computer Graphics (Schaum's outline Series), McGraw Hill, 1986.

References:

- 1. David F. Rogers, Procedural Elements for Computer Graphics, Tata McGraw Hill, 2001.
- 2. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision, Thomson India Edition, 2007.
- 3. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Pearson, 2017

	Course Plan		
Module	COMPUTER GRAPHICS 4-0-0-4 Course Objectives : To intr Contents	oduce c	on Eeps ts Sem. Exam Marks
I	Basic concepts in Computer Graphics – Types of Graphic Devices – Interactive Graphic inputs – Raster Scan and Random Scan Displays.	7	15%
II	Line Drawing Algorithm- DDA, Bresenham's algorithm – Circle Generation Algorithms – Mid point circle algorithm, Bresenham's algorithm- Scan Conversion-frame buffers – solid area scan conversion – polygon filling algorithms	8	15%
	FIRST INTERNAL EXAM		
Ш	Two dimensional transformations. Homogeneous coordinate systems – matrix formulation and concatenation of transformations. Windowing concepts – Window to Viewport Transformation- Two dimensional clipping-Line clipping – Cohen Sutherland, Midpoint Subdivision algorithm Polygon clipping-Sutherland Hodgeman algorithm, Weiler-	8	15%
IV	Atherton algorithm, Three dimensional object representation- Polygon surfaces, Quadric surfaces – Basic 3D transformations	8	15%
	SECOND INTERNAL EXAM		
V	Projections – Parallel and perspective projections – vanishing points. Visible surface detection methods– Back face removal- Z-Buffer algorithm, A-buffer algorithm, Depth-sorting method, Scan line algorithm.	9	20%
VI	Image processing – Introduction - Fundamental steps in image processing – digital image representations – relationship between pixels – gray level histogram –spatial convolution and correlation – edge detection – Robert, Prewitt, Sobel. END SEMESTER EXAM	8	20%