Lingo软件快速入门

第二节 模型的数据部分

第三节 模型的初始部分

第四节 Lingo函数

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44 ▶▶

第1页共42页

返 回

全屏显示

关 闭

LINGO是用来求解线性和非线性优化问题的简易工具。LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

第2页共42页

返回

全屏显示

关 闭

当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:

外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。在主窗口内的标题为LINGOModel-LINGO1的窗口是LINGO的默认模型窗口,建立的模型都要在该窗口内编码实现。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

4

第 3 页 共 42 页

返 回

全屏显示

关 闭

• 例:在LINGO中求解如下的LP问题:

min
$$2x_1 + 3x_2$$

s.t.
 $x_1 + x_2 \ge 350$
 $x_1 \ge 100$
 $2x_1 + x_2 \le 600$
 $x_1, x_2 \ge 0$

在模型窗口中输入如下代码:

model:

$$min = 2 * x1 + 3 * x2;$$

$$x1 + x2 >= 350;$$

$$x1 >= 100;$$

$$2 * x1 + x2 \le 600$$
;

end

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

第 4 页 共 42 页

返 回

全屏显示

关 闭

例:使用LINGO软件计算6个发点8个收点的最小费用运输问题。产销单位运价如下表。

销地 产地	В.	B ₂	B₅	Bı	Bs	B ₆	Вт	В	产量
Aı	6	2	6	7	4	2	5	9	60
A2	4	9	5	3	8	5	8	2	55
A ₅	5	2	1	9	7	4	3	3	51
Aı	7	6	7	3	9	2	7,	1	43
As	2	3	9	5	7	2	6	5	41
A ₆	5	5	2	2	8	1	4	3	52
销量	35	37	22	32	41	32	43	38	

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44

>>

◀

第5页共42页

返 回

全屏显示

关 闭

```
model:
16 发点 8 收点运输问题;
sets:
 warehouses/wh1..wh6/: capacity;
 vendors/v1..v8/: demand;
 links(warehouses, vendors): cost, volume;
endsets
!目标函数;
 min=@sum(links: cost*volume);
!需求约束;
 @for(vendors(J):
   @sum(warehouses(I): volume(I,J)) = demand(J));
!产量约束;
 @for(warehouses(I):
   @sum(vendors(J): volume(I,J))<=capacity(I));</pre>
!这里是数据;
data:
 capacity=60 55 51 43 41 52;
 demand=35 37 22 32 41 32 43 38;
 cost=6 2 6 7 4 2 9 5
      49538582
       6739271
     2 3 9 5 7 2 6 5
     5 5 2 2 8 1 4 3;
enddata
end
```


Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

▶

第6页共42页

返 回

全屏显示

关 闭

1 Lingo中的集

对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等。LINGO允许把这些相联系的对象聚合成集(sets)。

集是LINGO建模语言的基础,是程序设计最强有力的基本构件。借助于集,能够用一个单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44 ∣

ı **|** →

>>

第7页共42页

返 回

全屏显示

关 闭

• 什么是集

集是一群相联系的对象,这些对象也称为集的成员。一个集可能是一系列产品、卡车或雇员。每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。属性值可以预先给定,也可以是未知的,有待于LINGO求解。例如,产品集中的每个产品可以有一个价格属性;卡车集中的每辆卡车可以有一个牵引力属性;雇员集中的每位雇员可以有一个薪水属性,也可以有一个生日属性等等。LINGO有两种类型的集:原始集和派生集。

一个原始集是由一些最基本的对象组成的。一个派生集是 用一个或多个其它集来定义的,也就是说,它的成员来自于 其它已存在的集。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44 >>

| ▶

第8页共42页

返 回

全屏显示

关 闭

• 原始集的定义

为了定义一个原始集,必须详细声明:

- ① 集的名字
- ②集的成员(可选)
- ③ 集成员的属性(可选)

定义一个原始集,用下面的语法:

setname[/member list/][: attribute list];

注意:用"[]"表示该部分内容可选。下同,不再赘述。

Setname是你选择的来标记集的名字,最好具有较强的可读性。集名字必须严格符合标准命名规则:以拉丁字母或下划线为首字符,其后由拉丁字母(A-Z)、下划线、阿拉伯数字($0,1,\cdots,9$)组成的总长度不超过32个字符的字符串,且不区公人基本

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44 | >>

← | →

第 9 页 共 42 页

返 回

全屏显示

关 闭

退出

分大小写。

member list是集成员列表。如果集成员放在集定义中,那么对它们可采取显式罗列和隐式罗列两种方式。如果集成员不放在集定义中,那么可以在随后的数据部分定义它们。

- ① 显式罗列:为每个成员输入一个不同的名字,中间用空格或逗号隔开.允许混合使用。
 - 例1: 定义一个名为students的原始集。

sets:

students/John Jill, Rose Mike/: sex, age; endsets

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44

| ▶

第 10 页 共 42 页

返 回

全屏显示

关 闭

② 隐式罗列

 $setname/member 1..member N/[:attribute\ list];$

这里的member1是集的第一个成员名,memberN是集的最 末一个成员名。

LINGO将自动产生中间的所有成员名。LINGO也接受一些特定的首成员名和末成员名,用于创建一些特殊的集。

隐式成员列表格式	示例	所产生集成员		
1 n	15	1, 2, 3, 4, 5		
StringM.StringN	Car2car14	Car2, Car3, Car4, …, Car14		
DayM DayN	MonFri	Mon, Tue, Wed, Thu, Fri		
MonthMMonthN	OctJan	Oct, Nov, Dec, Jan		
MonthYearMMonthYearN	Oct2001Jan2002	Oct2001, Nov2001, Dec2001, Jan2002		

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44

| |

第 11 页 共 42 页

返 回

全屏显示

关 闭

③ 集成员不放在集定义中,而在随后的数据部分来定义。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

第 12 页 共 42 页

返 回

全屏显示

关 闭

• 派生集的定义

为了定义一个派生集,必须详细声明:

- ① 集的名字
- ② 父集的名字
- ③集的成员(可选)
- ④ 集成员的属性(可选)

可用下面的语法定义一个派生集:

 $set name (parent\ set\ list) [/member\ list/] [:\ attribute\ list];$

parent set list是已定义的集的列表,多个时必须用逗号隔开。如果没有指定成员列表,那么LINGO会自动创建父集成员的所有组合作为派生集的成员。派生集的父集既可以是原始集,也可以是其它的派生集。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44

>>

第 13 页 共 42 页

返回

全屏显示

关 闭

• 例2

```
sets:
product/A B/;
machine/M N/;
week/1..2/;
allowed(product,machine,week):x;
endsets
```

成员列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集。如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集。同原始集一样,派生集成员的声明也可以放在数据部分。一个派生集的成员列表有两种方式生成:①显式罗列;②设置成员资格过滤器。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44

>>

第 14 页 共 42 页

返 回

全屏显示

关 闭

在处理模型的数据时,需要为集指派一些成员,并且在LINGO求解模型之前为集的某些属性指定值。为此,LINGO为用户提供了两个可选部分:输入集成员和数据的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section)。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44

>>

第 15 页 共 42 页

返 回

全屏显示

关 闭

2

模型的数据部分

数据部分以关键字"data:"开始,以关键字"enddata"结束。在这里,可以指定集成员、集的属性。其语法如下:

 $object\ list = value\ list;$

对象列(object list)包含要指定值的属性名、要设置集成员的集名,用逗号或空格隔开。一个对象列中至多有一个集名,而属性名可以有任意多。如果对象列中有多个属性名,那么它们的类型必须一致。如果对象列中有一个集名,那么对象列中所有的属性的类型就是这个集。

数值列(value list)包含要分配给对象列中的对象的值,用逗号或空格隔开。注意属性值的个数必须等于集成员的个数。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

•

第 16 页 共 42 页

返 回

全屏显示

关 闭

• 例3

sets:
set1/A,B,C/: X,Y;
endsets
data:
X=1,2,3;
Y=4,5,6;
enddata

在集set1中定义了两个属性X和Y。X的三个值是1、2和3, Y的三个值是4、5和6, 也可采用如下例4中的复合数据声明(data statement)实现同样的功能。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44 >>

ı **|** →

第 17 页 共 42 页

返 回

全屏显示

关 闭

• 例4

sets:

set1/A,B,C/: X,Y;

endsets

data:

X,Y=14

2 5

3 6;

enddata

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

返回

全屏显示

关 闭

• 定义参数

```
data:
interestrate = .085;
enddata
```

data:
interestrate,inflationrate = .085 .03;
enddata

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

第 19 页 共 42 页

返 回

全屏显示

关 闭

• 实时数据处理

在某些情况,对于模型中的某些数据并不是定值。譬如模型中有一个通货膨胀率的参数,我们想在2%至6%范围内,对不同的值求解模型,来观察模型的结果对通货膨胀的依赖有多么敏感。我们把这种情况称为实时数据处理。LINGO有一个特征可方便地做到这件事一在本该放数的地方输入一个问号(?)。

data:

interestrate,inflationrate = .085 ?;
enddata

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

>>

第 20 页 共 42 页

返 回

全屏显示

关 闭

• 指定属性为一个值

```
sets:
days /MO,TU,WE,TH,FR,SA,SU/:needs;
endsets
data:
needs = 20;
enddata
```


Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

••

第 21 页 共 42 页

返 回

全屏显示

关 闭

• 数据部分的未知数值

```
sets:
years/1..5/: capacity;
endsets
data:
capacity = ,34,20,,;
enddata
```


Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44 | **>>**

ा ▶

第 22 页 共 42 页

返 回

全屏显示

关 闭

3

模型的初始部分

对实际问题的建模时,初始部分并不起到描述模型的作用,在初始部分输入的值仅被LINGO求解器当作初始点来用,并且仅仅对非线性模型有用。和数据部分指定变量的值不同,LINGO求解器可以自由改变初始部分初始化的变量的值。

一个初始部分以"init:"开始,以"endinit"结束。初始部分的初始声明规则和数据部分的数据声明规则相同。也就是说,我们可以在声明的左边同时初始化多个集属性,可以把集属性初始化为一个值,可以用问号实现实时数据处理,还可以用逗号指定未知数值。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44

□

>>

第 23 页 共 42 页

返回

全屏显示

关 闭

• 例5

init:

$$X, Y = 0, .1;$$

endinit

$$Y = @log(X);$$

$$X^2 + Y^2 <= 1;$$

好的初始点会减少模型的求解时间。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

第 24 页 共 42 页

返 回

全屏显示

关 闭

4 LINGO函数

LINGO有9种类型的函数:

- 1. 基本运算符:包括算术运算符、逻辑运算符和关系运算符
- 2. 数学函数: 三角函数和常规的数学函数
- 3. 金融函数: LINGO提供的两种金融函数
- 4. 概率函数: LINGO提供了大量概率相关的函数
- 5. 变量界定函数: 这类函数用来定义变量的取值范围
- 6. 集操作函数: 这类函数为对集的操作提供帮助
- 7. 集循环函数: 遍历集的元素, 执行一定的操作的函数
- 8. 数据输入输出函数: 这类函数允许模型和外部数据源相联
- 系,进行数据的输入输出
- 9. 辅助函数: 各种杂类函数

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44 >>>

◆

第 25 页 共 42 页

返 回

全屏显示

关 闭

• 基本运算符

① 算术运算符

高 - (取反)

- ^
- * /

低十一

② 逻辑运算符

高 #not# #eq# #ne# #gt# #ge# #lt# #le#

③ 关系运算符

<= >= =

低 #and# #or#

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

第 26 页 共 42 页

返 回

全屏显示

关 闭

• 数学运算符

- @abs(x): 返回x的绝对值
- @sin(x): 返回x的正弦值, x采用弧度制
- @cos(x): 返回x的余弦值
- @tan(x): 返回x的正切值
- @exp(x): 返回常数e的x次方
- @log(x): 返回x的自然对数
- @lgm(x): 返回x的gamma函数的自然对数
- @sign(x): 如果x < 0返回-1; 否则, 返回1
- ②floor(x): 返回x的整数部分。当 $x \ge 0$ 时,返回不超过x的最大整数;当x < 0时,返回不低于x的最大整数。
- $@smax(x1,x2,\cdots,xn)$: 返回 $x1,x2,\cdots,xn$ 中的最大值
 - $@smin(x1, x2, \dots, xn)$: 返回 $x1, x2, \dots, xn$ 中的最小值

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

第 27 页 共 42 页

返 回

全屏显示

关 闭

• 变量界定函数

变量界定函数实现对变量取值范围的附加限制, 共4种:

- @bin(x): 限制×为0或1
- @bnd(L, x, U): 限制 $L \le x \le U$
- @free(x): 取消对变量 \times 的默认下界为0的限制,即 \times 可以取任意实数
 - @gin(x): 限制×为整数

在默认情况下,LINGO规定变量是非负的,也就是说下界为0,上界为 $+\infty$ 。@free取消了默认的下界为0的限制,使变量也可以取负值。@bnd用于设定一个变量的上下界,它也可以取消默认下界为0的约束。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44

第 28 页 共 42 页

返 回

全屏显示

关 闭

• 集循环函数

集循环函数遍历整个集进行操作。其语法为

 $@function(setname[(set\ index\ list)[|conditional\ qualifier]]:$ expression list);

@function相应于下面罗列的四个集循环函数之 一: setname是要遍历的集: set index list是集索引列 表; conditional qualifier是用来限制集循环函数的范 围. 当集循环函数遍历集的每个成员时, LINGO都要 对conditional qualifier进行评价,若结果为真,则对该 成员执行@function操作,否则跳过,继续执行下一次循 环。expression list是被应用到每个集成员的表达式列表, 当用的是@for函数时,expression list可以包含多个表达 式,其间用逗号隔开。

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44

第 29 页 共 42 页

返回

全屏显示

关 闭

\bigcirc 0 for

该函数用来产生对集成员的约束。基于建模语言的标量需要显式输入每个约束,不过@for函数允许只输入一个约束,然后LINGO自动产生每个集成员的约束。

● 例6: 产生序列{1,4,9,16,25}。

model:

sets:

end

number/1..5/:x;

endsets

@for(number(I):x(I)=I*I);

TO THE STATE OF TH

Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44 |

•

第 30 页 共 42 页

返 回

全屏显示

关 闭

2 @sum

该函数返回遍历指定的集成员的一个表达式的和。

```
● 例7: 求向量[5, 1, 3, 4, 6, 10]前5个数的和。
 model:
 data:
 N=6;
 enddata
 sets:
 number/1..N/:x;
 endsets
 data:
 x = 5 1 3 4 6 10;
 enddata
 s = @sum(number(I)|I#le#5:x);
 end
```


Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

44 | >>

. ____

`__|

第 31 页 共 42 页

返 回

全屏显示

关 闭

③ @min和@max

返回指定的集成员的一个表达式的最小值或最大值。

● 例8: 向量[5, 1, 3, 4, 6, 10]前5个数的最小值,后3个数的最大值。

```
model:
data:
N=6;
enddata
sets:
number/1..N/:x;
endsets
data:
x = 5 1 3 4 6 10;
enddata
minv = @min(number(I)|I#le#5:x);
maxv = @max(number(I)|I#ge#N - 2:x);
end
```


Lingo中的集

模型的数据部分

模型的初始部分

LINGO函数

灵敏度分析

访问主页

标 题 页

第 32 页 共 42 页

返 回

全屏显示

关 闭