

ENSAYO DE GRUPO ELECTROGENO LABORATORIO DE MÁQUINAS

Alumno: Carlos Aguilar Pinto

Asignatura: ICM557-3

Fecha: 16/10/2020

Profesores: Cristóbal Galleguillos Ketterer

Tomas Herrera Muñoz

Contenido

TABLA DE CONTENIDO	
INTRODUCCIÓN	III
OBJETIVOS.	IV
INFORMACIÓN PARA EL ENSAYO	V
ESQUEMA GENERAL.	V
Parámetros	VI
Procedimiento	VI
FORMULAS Y ECUACIONES EMPÍRICAS	
TABLA DE VALORES FABRICANTE Y OBTENIDOS MEDIANTE ENSAYO	VIII
DESARROLLO	ıx
CONCLUSIÓN.	XIII
REFERENCIAS	YIV

Tabla de contenido.

Ilustración 1: Esquema obtención potencia motor	V
Ilustración 2:Esquema de un generador tipo fuente	
Ilustración 3: Tabla valores fabricante	
Ilustración 4: Tabla valores Obtenidos	VIII
Ilustración 5:Tabla con valores fabricante	IX
Ilustración 6: Tabla Valores calculados con fórmulas dadas	IX
Ilustración 7:RPM funcionamiento	IX
Ilustración 8:Grafico comparación valores ensayo vs fabrica	X
Ilustración 9: Grafico Costo en KWh vs carga en unidad de corriente	
Ilustración 10: Datos generales grupo electrógeno HYUNDAI	

Introducción.

Mediante el ensayo de un grupo electrógeno, se observará el comportamiento del sistema como un generador de energía eléctrica, con el fin de poder comparar la eficiencia y conveniencia del sistema en relación de consumo-costo.

Objetivos.

- Analizar el comportamiento de un motor de combustión interna en aplicación a un grupo electrógeno.
- Determinar el costo del KWh generado.
- Determinar el punto de funcionamiento óptimo.

Información para el ensayo.

Esquema general.

La obtención de potencia del motor se realiza de acuerdo con el esquema presentado en la siguiente ilustración.

Ilustración 1: Esquema obtención potencia motor.

El diagrama del generador se presenta en:

Ilustración 2:Esquema de un generador tipo fuente.

Parámetros

- Pel = Potencia eléctrica en los bornes del alternador.
- bel = Consumo específico en los bornes del alternador.
- *Qcb* = Caudal volumétrico de combustible.
- *CkWh* = Costo del *kWh* generado.

Procedimiento

- Poner en marcha el motor y llevarlo a la velocidad de 52 [Hz].
- Poner la resistencia hidráulica a fondo.
- Conectar la carga.
- Verificar la frecuencia y reajustar alrededor de los 52 [Hz] si está bajo los 48 [Hz].
 Continuar con este criterio durante todo el ensayo.
- Tomar la primera serie de valores de acuerdo con la tabla. Los valores de lectura instantánea, tomarlo una vez que se haya consumido la mitad del combustible de la probeta en uso.
- Terminada la medición de tiempo de consumo, rellenar probeta e inmediatamente iniciar la segunda lectura con el incremento de carga que se logrará en forma automática por la disminución de la resistencia por aumento de la temperatura del agua. Consumida la mitad de la probeta leer valores instantáneos.
- Seguir con el procedimiento análogo al descrito hasta que se llegue a plena carga la ebullición del agua en la resistencia hidráulica muy violenta.

Formulas y ecuaciones empíricas.

• Corriente media:

$$I_m = I1 + I2 + I3 [A]$$

Tensión Media:

$$V_m = V1 + V2 + V3 [V]$$

• Potencia Eléctrica:

$$P_{el} = \ 0.00173 * V_m * I_m \ [W]$$

• Potencia Efectiva:

$$Pe = 1,63 * P_{el} [CV]$$

Consumo especifico en bornes alternador:

$$b_{el} = \rho * Q_{cb}P_{el} [Kg/KWh]$$

Costo KWh generado:

$$C_{KWh} = Q_{cb} * \frac{c}{P_{el}} \left[\frac{\$}{KWh} \right]$$

Tabla de valores fabricante y obtenidos mediante ensayo.

Medi	corrie	corrie	corrie	volta	volta	volta	frecue	vol.	tiempo
cione	nte 1	nte 2	nte 3	je 1	je 2	je 3	ncia	Comb	consumo
S	[A]	[A]	[A]	[V]	[V]	[V]	[Hz]	[cm^3]	combustible
1	22,3	22,5	21,7	330	370	390	52,5	375	2'50,19"
2	24	22,4	23,6	350	360	397	52,5	375	2'47,56"
3	26,3	26,9	26,1	391	382	410	52,5	375	2'45,24"
4	29,1	29,5	28,7	399	394	409, 2	52	375	2'39,63"
5	31,9	32,4	31,3	389, 4	392, 3	407, 2	52	375	2'33,05"
6	38,4	35,7	34,6	359, 5	390, 9	405, 8	51,5	375	2'25,74"
7	38	38,8	37,7	388, 8	387, 9	399, 4	51	375	2'18,84"
8	41,2	42,2	40,8	393, 7	385, 2	381, 7	50,5	375	2'11,56"
9	44,5	45,6	43,9	389, 2	381, 9	393, 1	50	375	2'02,72"
10	48	49,2	47,6	372, 7	375, 1	397, 2	49,8	375	1'56,88"
11	46,9	58,6	56,7	403, 6	409, 7	403, 4	53,5	375	1'33,42"
12	60,9	63,7	61,5	394, 2	382, 6	415, 3	52,5	375	1'26,84"
13	65,3	66,9	64,5	378, 9	391, 5	413, 9	52	375	1'19,56"
14	69,2	71,1	68,9	391, 7	386, 4	411, 2	51	375	1'13,77"
15	73,1	74,7	72,3	370, 1	382, 7	403, 7	50	375	1'06,93"

Ilustración 3: Tabla valores fabricante.

	Valores medidos / obtenidos por software / etc.								
	Variables eléctricas							Combustibl e	
#	I1 [A]	I2 [A]	I3 [A]	V2 [V]	V2 [V]	V3 [V]	f [Hz]	Vol [cm3]	t [s]
1	26	26	27	404	404	404	51,5	375	150
2	28	29	29	402	402	402	51	375	146
3	39	39	37	400	400	400	50,5	375	132
4	42,5	42,6	40,9	400	400	400	50	375	125
5	46,4	46,5	44,6	399,9	399,9	399,9	50	375	120

Ilustración 4: Tabla valores Obtenidos.

Desarrollo

				Densidad	I [Kg/m3]	850		
#	lm [A]	Vmed [V]	Pel [W]	Pel [KW]	Pe [CV]	Vc [cm3/h]	Vc [m3/h]	Bel
1	22,16666667	363,3333333	13,93322778	0,0139332	22,711161	7932,3109	0,007932311	483,9125874
2	23,33333333	369	14,8953	0,0148953	24,279339	8056,8155	0,008056815	459,7620154
3	26,43333333	394,3333333	18,03273189	0,0180327	29,393353	8169,9346	0,008169935	385,1021846
4	29,1	400,7333333	20,1741182	0,0201741	32,883813	8457,0569	0,008457057	356,3228058
5	31,86666667	396,3	21,8477548	0,0218478	35,61184	8820,6468	0,008820647	343,1725543
6	36,23333333	385,4	24,15828513	0,0241583	39,378005	9263,0712	0,009263071	325,9176095
7	38,16666667	392,0333333	25,88530761	0,0258853	42,193051	9723,4226	0,009723423	319,2895898
8	41,4	386,8666667	27,7081644	0,0277082	45,164308	10261,478	0,010261478	314,7901059
9	44,66666667	388,0666667	29,98720489	0,0299872	48,879144	11000,652	0,011000652	311,8181285
10	48,26666667	381,6666667	31,86967556	0,0318697	51,947571	11550,308	0,011550308	308,0596723
11	54,06666667	405,5666667	37,93481336	0,0379348	61,833746	14450,867	0,014450867	323,7985351
12	62,03333333	397,3666667	42,64446348	0,0426445	69,510475	15545,831	0,015545831	309,8633591
13	65,56666667	394,7666667	44,77851459	0,0447785	72,988979	16968,326	0,016968326	322,0981548
14	69,73333333	396,4333333	47,82518876	0,0478252	77,955058	18300,122	0,018300122	325,2491857
15	73,36666667	385,5	48,9293305	0,0489293	79,754809	20170,327	0,020170327	350,3987884

Ilustración 5:Tabla con valores fabricante.

	Precio combustible al 21-		782,2	2,2 Densidad [Kg/m3]		850			
	09-2	020							
#	lm [A]	Vmed [V]	Pel [W]	Pel [KW]	Pe [CV]	Vc [cm3/h]	Vc [m3/h]	Bel[Kg/KWh]	Ckwh
1	26,333333	404	18,404893	0,0184049	29,999976	9000	0,009	415,6503307	382,4961
2	28,666667	402	19,93652	0,0199365	32,496528	9246,5753	0,0092466	394,2307404	362,78504
3	38,333333	400	26,526667	0,0265267	43,238467	10227,273	0,0102273	327,714821	301,57474
4	42	400	29,064	0,029064	47,37432	10800	0,0108	315,8546656	290,66061
5	45,833333	399,9	31,708738	0,0317087	51,685242	11250	0,01125	301,5730286	277,51814

Ilustración 6: Tabla Valores calculados con fórmulas dadas.

• ¿Existe alguna fórmula que relacione las *RPM* con la frecuencia, de ser así a cuantas *RPM* funciono el motor?

Ahora bien, se tiene que $1 \ [Hz]$ es una revolución por segundo, usando esta conversión sencilla obtenemos las revoluciones a las que funciono el motor y así tener una RPM por medición y establecer una RPM promedio.

#	RPM
1	3090
2	3060
3	3030
4	3000
5	3000

Ilustración 7:RPM funcionamiento

Podemos decir que el motor funciono a unas revoluciones cercanas a 3000 RPM.

- Identifique las constantes que se presentan en la guía.
 - 1. Volt: unidad básica de voltaje de unidades $\frac{J}{c}$.
 - 2. Ampere: unidad básica de corriente de unidades $\frac{c}{s}$.
 - 3. $\cos \varphi$: Angulo de desfase potencia.
 - 4. ρ_c : densidad específica del combustible.
 - 5. c: costo en unidad monetaria sobre unidad cubica del combustible a usar generalmente usados USD/Litros.
 - 6. Como extra ya que no es constante b_{el} : el consumo específico del combustible.
- Trazar las curvas de consumo específico del motor y del grupo en función de la carga(corriente).

Ilustración 8:Grafico comparación valores ensayo vs fabrica.

Trazar la curva de costo del KWh generado en función de la carga.

Ilustración 9: Grafico Costo en KWh vs carga en unidad de corriente.

Determinar el punto de funcionamiento óptimo.

Con la toma de datos hecha y haciendo un análisis a los gráficos anteriormente obtenidos, tenemos que nuestro punto más optimo es cuando generemos la mayor energía con el menor costo posible, es decir obteniendo la máxima ganancia posible.

El funcionamiento óptimo lo consideraremos cuando se tenga el menor consumo especifico con los datos tomados. En este punto el precio del *KWh* es el mínimo posible con unas *RPM* de 3000.

Minimo costo KWh grupo electrogeno	
277,5181446	

Ahora bien, comparando este costo con el precio del *KWh* que ofrece Chilquinta tipo BT-1A:

Costo KWh Chilquinta
89,156

Observamos una clara diferencia de precios en los costes de la energía.

Es muy poco rentable obtener energía por grupos electrógenos que la ofrecida vía cableado ofrecida por Chilquinta.

Estos valores obtenidos del ensayo están hechos con un motor relativamente viejo para la época, entonces que pasaría si se compara con uno más actual.

Para ellos tomaremos unos de la marca HYUNDAI que tienes valores base similares con el analizado en el ensayo.

1. DATOS GENERALES

CARACTERÍSTICA	UNIDAD DE MEDIDA	VALOR		
Potencia Prime	KW/KVA	20	25	
Potencia Standby	KW/KVA	22	28	
Frecuencia	Hz/rpm	50	1.500	
Voltaje	V	400	230	
Corriente	A	36		
Conexión	1	3P 4W/Y		
Factor de Potencia NominaL	1	0.8		
Abierto (LxAxA)	mm	1.800x850x1.330		
Abierto (Peso)	Kg	730		
Cerrado (LxAxA)	mm	2.300x1.100x1.290		
Cerrado (Peso)	Kg	1.050		

Ilustración 10: Datos generales grupo electrógeno HYUNDAI

Como bien podemos observar en los datos lo que más podemos destacar es que este nuevo grupo electrógeno puede obtener una potencia similar al primer motor, pero a la mitad de las RPM.

Junto con añadir que tiene una mejor corrección de la potencia.

Con todo esto analizado podemos ver que la eficiencia y costos han mejorado sustancialmente permitiendo reducir costos obteniendo la misma potencia requerida.

Si se tuviera que decir sin hacer un ensayo de este motor con los valores observados se podría considerar una reducción del costo del *KWh* de un aproximado del 40-50% lo cual es bastante significativo. Pudiendo incluso llegar cada vez mas cerca de lo ofrecido por chilquinta, aun así, hay que tomar en cuenta que la empresa Chilquinta también va mejorando su empresa y eficiencia lo que también va manteniendo la distancia en los costos.

Con todo esto ya dicho podemos ver una clara relación entre la eficiencia del consumo del combustible con respecto al precio que este va obteniendo.

Conclusión.

De lo concluido con este ensayo, haciendo mediciones de la corriente y las tensiones pudimos analizar el comportamiento del motor utilizado.

Considerando los valores obtenidos, pudimos comparar con el grafico del consumo especifico vs la corriente que se sigue manteniendo fiel a lo expresado cuando recién salió de fábrica.

Dentro de lo mas destacable es que es un equipo que no resulta rentable para uso donde se pueda llegar con tendido eléctrico, resulta mucho mas caro en comparación, aun así, al ser una maquina fácil de transportar su uso resulta ser lo mejor para aquellos lugares de difícil acceso donde no llega el tendido eléctrico.

Referencias.

https://www.chilquinta.cl/tarifas

http://www.emb.cl/electroindustria/articulo.mvc?xid=2757&ni=la-tecnologia-al-servicio-degeneradores-mas-eficientes-para-la-industria

https://www.emasa.cl/emasa/archivos/Documentos/HY28CH.pdf