Multimedia Communication Services

Docente: Prof. Riccardo Leonardi

Esercitatore: Dott. Marco Dalai

Digital Video

Sampling:

- A digital video is obtained by sampling both in space and time a real sequence
- It is thus a sequence of matrices
- Different formats are used (number of rows/ columns, number of bits/sample etc.)
- We will only consider the most used ones

Digital video

H.261 Common Intermediate Format

Format	Luminance resolution (horiz. × vert.)
Sub-QCIF	128 × 96
Quarter CIF (QCIF)	176×144
CIF	352×288
4CIF	704×576

Color space

Red Green Blue (RGB)

RGB

Usually 8 bits for each component

	Nominal Range	White	Yellow	Cyan	Green	Magenta	Red	Blue	Black
R	0 to 255	255	255	0	0	255	255	0	0
G	0 to 255	255	255	255	255	0	0	0	0
В	0 to 255	255	0	255	0	255	0	255	0

RGB

- All components have the same importance (not really true but approximately)
- Componets are highly "correlated"
- Originally not easily handled because not compatible with black and white TV
- Usually better to first consider a gray scale image and then add colors

Luminance

Chrominances

$$Y = k_r R + (1 - k_b - k_r)G + k_b B$$

$$Cb = \frac{0.5}{1 - k_b}(B - Y)$$

$$Cr = \frac{0.5}{1 - k_r}(R - Y)$$

$$R = Y + \frac{1 - k_r}{0.5}Cr$$

$$G = Y - \frac{2k_b(1 - k_b)}{1 - k_b - k_r}Cb - \frac{2k_r(1 - k_r)}{1 - k_b - k_r}Cr$$

$$B = Y + \frac{1 - k_b}{0.5}Cb$$

- The gray scale version is readily available without processing
- Chrominance components usually contain less information
- The human visual system is less sensitive to chrominance details than to luminance ones

- Each component is represented with 8 bits
- Chrominance components are often decimated in space (subsampled)
- Different formats: 4:4:4, 4:2:2, 4:2:0, 4:4:1, depending on the type of decimation (vertical/horizontal factors, see next)
- The most used one is the 4:2:0 format

YCbCr 4:4:4

24 bits per pixel

YCbCr 4:2:2

16 bits per pixel

YCbCr 4:2:0

12 bits per pixel

YCbCr 4:2:0 interalaced

Example

