Tlamati Sabiduría

Biofertilizantes comercializados en México

Andrea Guadalupe Dionicio-Ocampo¹
Rubén Ricardo Nava-Franco¹
Angela Yaquelin Solís-López¹
Ketzalli Abigail Victoriano-Herrera¹
Alejandro Bolaños-Dircio²
Yanet Romero-Ramírez^{2*}

¹Programa Educativo de Biotecnología, Facultad de Ciencias Químico Biológicas. Universidad Autónoma de Guerrero. Av. Lázaro Cárdenas, S/N Ciudad Universitaria, 39070. Chilpancingo, Guerrero, México.
 ²Laboratorio de Microbiología Molecular y Biotecnología Ambiental. Facultad de Ciencias Químico Biológicas. Universidad Autónoma de Guerrero. Av. Lázaro Cárdenas, S/N Ciudad Universitaria, 39070. Chilpancingo, Guerrero, México.

*Autor de correspondencia yanetromero7@gmail.com.

Resumen

Los biofertilizantes son insumos que contienen microorganismos (bacterias y hongos principalmente) que aplicados a las plantas promueven su crecimiento y ayudan a la regeneración del suelo. Sin embargo, en México esta tecnología aún no ha sido transferida y la mayoría de los productores la desconoce. Por ello, el presente trabajo tuvo como objetivo conocer la variedad de los biofertilizantes comercializados en el territorio mexicano. Se generó un listado que muestra los productos actualmente disponibles para contribuir en la difusión de los beneficios de su uso a los agricultores, de manera que en el futuro se puedan llevar a cabo prácticas agrícolas más sostenibles a un menor costo.

Palabras clave: Biofertilizantes, Cultivos, Microorganismos, Hongos, Bacterias.

Información del Artículo

Cómo citar el artículo:

Dionicio-Ocampo A. G., Nava-Franco R.R., Solís-López A. Y., Victoriano-Herrera K.A., Bolaños-Dircio A., Romero-Ramírez Y. (2023). Biofertilizantes comercializados en México. *Tlamati Sabiduría*, 15, 57-63.

Editores Invitados: Dr. Carlos Ortuño-Pineda; Dra. Mayrut Osdely Urióstegui-Acosta

Recibido en la versión aceptada por los editores invitados: 19 de marzo 2023; Publicado: 18 de agosto 2023

© 2023 Universidad Autónoma de Guerrero

Abstract

Biofertilizers are inputs that contain microorganisms (mainly bacteria and fungi) that, when applied to plants, promote their growth and help regenerate the soil. However, in Mexico this technology has not yet been transferred and most producers are unaware of it. Therefore, the present work aimed to know the variety of biofertilizers marketed in the Mexican territory. A list was generated that shows the products currently available to help spread the benefits of their use to farmers, so that in the future more sustainable agricultural practices can be carried out at a lower cost.

Keywords: Biofertilizers, Crops, Microorganisms, Fungi, Bacteria

Introducción

En las décadas recientes se ha tomado conciencia del agotamiento de los elementos naturales debido a la explotación intensiva de los mismos (Rueda-Puente et al., 2015). Los fertilizantes químicos son un derivado del petróleo. que han registrado desmesurados en sus precios, afectando con seriedad la estructura de los costos de productos agrícolas y, por otro lado, a los productores y consumidores en general (Mia et al., 2010). Otro problema es que millones de hectáreas han quedado sin potencial agrícola; se ha agudizado uno de los grandes problemas nacionales: la erosión y la pérdida del suelo (Vanwalleghem et al., 2017). La agricultura en México es potencializada por el uso de fertilizantes químicos. Sin embargo, el uso desmedido ha provocado el deterioro de la fertilidad del suelo, procesos de eutrofización, cambios climáticos y daños al ambiente y a la salud humana (Song et al., 2020). Esto ha inducido que la agricultura se enfoque en buscar soluciones adecuadas a estos problemas. Las nuevas tecnologías deber estar orientadas a mantener la sostenibilidad del sistema mediante la explotación racional de los recursos naturales y la aplicación microorganismos para satisfacer las necesidades nutricionales que fertilicen el suelo a través de los biofertilizantes (Pereira y Castro, 2014). En ese sentido, los biofertilizantes son de gran importancia económica, pues podrían sustituir y/o minimizar productos químicos que son costosos. Por lo tanto, el objetivo del trabajo se enfocó en la búsqueda de biofertilizantes comercializados en el país para conducir a un desarrollo económico sostenible para los agricultores.

Los biofertilizantes

Los microorganismos han sido utilizados en la agricultura desde tiempos remotos y han formado parte de los ecosistemas terrestres (Remy et al., 1994). Los microorganismos del suelo utilizados en la agricultura han adquirido diferentes nombres que describen su función en las plantas como: inoculantes, fertilizantes bacterianos y, recientemente, biofertilizantes (Kapulnik y Okon, 2002). Los biofertilizantes son insumos que contienen células vivas 0 latentes microorganismos eficientes que aceleran los procesos microbianos del suelo mejorando la asimilación de nutrientes por parte de las plantas (Vassey, 2003). Para aplicaciones agrícolas, los microorganismos más utilizados son las bacterias, los hongos, las algas y los actinomicetos (Mahanty et al., 2016). Así mismo, resultan una herramienta excelente para el manejo integrado, pues garantizan la sostenibilidad de la producción agrícola en casi todos los tipos de suelo, pero con mayor respuesta en suelos de baja fertilidad (Ahmad et al., 2013). Estos insumos pueden ser aplicados a las semillas, área foliar o al suelo para colonizar la rizosfera o el interior de la planta e inducir el crecimiento vegetal (Afanador, 2017). Una de las ventajas que ofrecen estos insumos radica en que son más económicos y de fácil transportación para los productores, en comparación con los fertilizantes de origen químico (Kumar *et al.*, 2018).

Bacterias promotoras de crecimiento vegetal

Las bacterias promotoras de crecimiento vegetal son aquellas especies bacterianas que tienen la capacidad de promover el crecimiento y la salud vegetal de las plantas (Rout y Callaway, 2012; Zhou et al., 2015). Los efectos de estimulación de estas bacterias pueden ocurrir de forma directa producción mediante la de compuestos fitoestimuladores (giberelinas y auxinas), fijación de nitrógeno y solubilización de fosfatos (Saleem et al., 2007; Ahemad y Kibret, 2014; Beltrán, 2014) o indirecta mediante la síntesis de compuestos con actividad antibiótica antifúngica que inhiben el crecimiento de fitopatógenos, lo que permite el desarrollo de las plantas hospederas (Ahmad et al., 2008; Singh y Jha, 2015). Por estas características metabólicas versátiles, las BPCV tienen un potencial biotecnológico para la formulación de inoculantes; entre los que destacan los biofertilizantes (Saravan et al., 2008). Las bacterias como Rhizobium, Azotobacter y Bacillus se reproducen in vitro y se impregnan en sustratos idóneos como turba, carbón vegetal, bagazo de caña, entre otros, para su comercialización. Los biofertilizantes a base de BPCV contienen millones de bacterias vivas o latentes por gramo o por mililitro (en caso de ser acuoso). Una vez que las semillas germinan y las raíces empiezan a desarrollarse, se multiplicarán y colonizarán las raíces.

Hongos micorrízicos

Los hongos micorrízicos representan un grupo de microorganismos edáficos que establecen simbiosis con varias especies vegetales de interés agrícola (Siddiqui y Futai, 2008). Entre los beneficios de esta asociación destacan: los efectos directos en la nutrición mineral, la inducción de tolerancia frente a condiciones de estrés biótico y abiótico, su participación en los procesos de fitorremediación y su contribución a la estabilidad del suelo (Gosling et al., 2006). Por otro lado, el hongo del género *Trichoderma* es habitante

común en la rizosfera, tiene varios mecanismos a través de los cuales influye en el desarrollo de las plantas, tales como la producción de reguladores de crecimiento, la solubilización y absorción de P, Cu, Fe, Zn y Mn (Gagreda et al., 2012). Además, activan mecanismos de defensa de la planta a nivel genético e incrementan la resistencia a enfermedades (Martínez-García y Pugnaire, 2011). En particular, esta característica ha sido ampliamente utilizada como control biológico contra diversos hongos fitopatógenos. La composición y dinámica de los hongos micorrízicos tiene un impacto sobre la estructura, diversidad y productividad de las comunidades vegetales con las que se asocia.

Biofertilizantes comercializados en México

La sustentabilidad de los sistemas agrícolas a largo plazo debe fomentar el uso y manejo adecuado de los recursos internos de los agroecosistemas (MacPherson et al., 2022). En este sentido, los biofertilizantes son una herramienta vital de los sistemas que constituyen un medio ecológicamente aceptable de reducir insumos externos y de mejorar la cantidad y calidad de los recursos internos (Mahapatra et al., 2022). En la tabla 1 se enlistan los diferentes biofertilizantes y los microorganismos que lo constituyen, se especifican características como los cultivos en los que se recomienda aplicar, los beneficios de los productos, la empresa que los produce, desde dónde operan y si son certificados. En México contamos con trece empresas (en su mayoría microempresas) que venden productos a precios accesibles a través de Internet o en instalaciones físicas pequeñas, entre un rango de \$74.00 MXN hasta \$899.00 MXN en productos de 1 kg (sujeto a cambios, de acuerdo con el peso del producto). Entre los géneros bacterianos que destacan son: Azospirillum, Azotobacter, Pseudomonas y Bacillus. Cada país debe tener como tarea fundamental la formación y el entrenamiento del personal especializado, para que sea capaz de responder a las crecientes demandas de alimentos que se enfrentan con los modernos esquemas de producción agrícola que se basan en la sustentabilidad y la protección ambiental (Saeed et al., 2021). Sin embargo, la

Nombre	Compañía	Cer tific ado	Microorganismos	Cultivos recomendados	Beneficios	Contacto
AzoFer	Biofábrica SIGLO XXI	Sí	Azospirillum brasilense	Leguminosas	Recuperación de la fertilidad del suelo a largo plazo	https://biofabrica.com. mx/azofer-plus/
MaxiFer	Biofábrica SIGLO XXI	Sí	Azospirillum brasilense	Todo tipo de cultivos: agrícolas, frutales y ornamentales	Incrementa la rentabilidad y la sanidad del cultivo	https://biofabrica.com. mx/maxifer/
RhizoFer	Biofábrica SIGLO XXI	Sí	Rhizobium etli	Todo tipo de leguminosas	Fija nitrógeno a las raíces	https://biofabrica.com. mx/rhizofer/
Micorrizafer Plus	Biofábrica SIGLO XXI	Sí	Rhizaphagus (antes Glomus intraradices)	Todo tipo de cultivos agrícolas	Incrementa la materia orgánica del suelo. Incrementa la sanidad del cultivo	https://biofabrica.com. mx/micorrizafer/
BIOCOMPOSTA	Biofábrica SIGLO XXI	Sí	Azospirillum brasilense y Glomus	Para todo tipo de cultivos	Aumenta el desarrollo de la raíz, recupera la fertilidad y la estructura del suelo	https://biocompost.net/
MYCO FUNGI	Mutainside orgánicos, México	Sí	Glomus intraradices / Rhizophagus irregularis	Ideal para todo tipo de cultivo	Estimulan el desarrollo de otros microorganismos benéficos del suelo, lo que permite recuperar la actividad biológica	Pelhate (1973)
BOKASHI:	GreenCorp, México	Sí	Bacillus y microorganismos eficientes	Ideal para todo tipo de cultivo agrícola	Restaura la comunidad microbiana en agroecosistemas degradados y mejora la productividad general de los cultivos	https://greencorp.mx/p roducto/biofertilizante s/
ProPlant Root	GreenCorp, México	Sí	Pseudomonas flourecen, Trichoderma harzianum, Trichoderma viride, Bacillus subtilis, Bacillus megaterium, Streptomyces lydicus, Streptomyces griseus, Rhodospirillum rubrum, Rhodopseudomona s palustris	Ideal para todo tipo de cultivo agrícola.	Suprime patógenos fúngicos comunes, mejora de forma natural la vitalidad y el crecimiento de las plantas	https://mountainsideor ganicos.com/products/ proplant-uptake- microorganismos- eficientes-soluble-en- dextrosa
TRIBUS ORGANIAL	GreenCorp, México	Sí	Bacillus subtilis, B. amyloliquefaciens, B. pumilus	Ideal para todo tipo de cultivo agrícola	Asegura resultados	https://mountainsideor ganicos.com/products/ tribus-biostimulant- impello-biosciences
Azoton AA Plus	GreenCorp, México	Sí	Azospirillum spp. Azotobacter spp	Ideal para cultivos extensivos, hortalizas, frutales y ornamentales	Favorecen la fijación de nitrógeno y la disponibilidad de fósforo	https://greencorp.mx/p roducto/biofertilizante s/azoton-aa/
Fosfinn Biol	GreenCorp, México	Sí	Hongos solubilizadores de fósforo	Para hortalizas, frutales, granos, cereales y cultivos industriales	Favorecen la disponibilidad de calcio, zinc, hierro y fósforo. El producto actúa tanto en condiciones de pH alcalinos como ácidos	https://greencorp.mx/p roducto/biofertilizante s/fosfinn-biol/
Biomatrix TS HE	GreenCorp, México	Sí	Beauveria y Metarhizium, Azotobacter, Azospirillum, Pseudomonas y Bacillis	Semillas de maíz, sorgo, trigo, avena, cebada y triticale	Coadyuva a la protección de las raíces y disminuye la presión y población de hongos fitopatógenos y plagas en el suelo	https://greencorp.mx/p roducto/biofertilizante s/biomatrix-tshe/

MMB 10	Symborg, España	ND	Azospirillum brasilense, Agrobacterium pusense, Ochrobactrum pseudogrignonense y Meyeroryma guilliermondii	Para cultivos hortícolas de invernadero.	Optimiza el aporte de fertilizantes y de agua a las plantas, evita la degradación de suelos, incrementa la actividad biológica en la rizosfera, favorece el crecimiento y rendimiento de los cultivos agrícolas	https://symborg.com/cl /biofertilizantes/mbb- 10/
BlueN	Symborg, España	ND	Methylobacterium symbioticum SB23	Arroz, colza, algodón, soja, sorgo	Fija el nitrógeno atmosférico convirtiéndolo en amonio	https://symborg.com/ mx/biofertilizantes/blu en/
BACTISHOK	Jardínes Sostenibles, México	ND	Bacillus subtilis BsJS09	Recomendado para todo tipo de plantas	Secreta proteínas y metabolitos que inhiben el desarrollo de hongos fitopatógenos, descomponen la materia orgánica transformándola en compuestos ricos en fósforo	https://articulo.mercad olibre.com.mx/MLM- 840788717-bacillus- subtilis-biofertilizante- y-fungicida-biologico- 900gJM
BioVIGORS	SIL AGRO, México	ND	Glomus intraradices, G. brasilanum, G. etunicatum, Gigospopra margarita, Trichoderma harzianum, Gliocladium virens, Bacillus subtilus, B. polymyxa, Pseudomonas fluorescens	Ideal para cualquier tipo de cultivo	Estimula el crecimiento de la raíz: no es tóxico y no irrita la piel	https://www.silagro.co m.mx/producto/biovig or-s-de-silagro/
Silico 1K + Micorriza Suppra	Suppra, México	Sí	Glomus, Paraglomus, Aucalospora, Entrophospora	Ideal para jardinería, huerto en casa, agrícola, pastos, hortalizas, ornamentales. Es compatible con el 98% de los cultivos en México	Ayuda a superar toxicidad por metales como Al, Cd, As; previene la compactación del suelo; disminuye estrés por calor; genera flavonoides y fitoalexinas, reduce el crecimiento y reproducción de insectos; promueve la resistencia vegetal a altas y bajas temperaturas	https://micorrizassuppr a.mercadoshops.com. mx/MLM-936839516- silicio-1k-micorriza- suppra-2k-tierra- diatomeasenraizante- _JM
Glumix	COMERCIA LIZADORA AGRILAP, México	Sí	Azospirillum brasilense, Glomus spp, Trichoderma spp, Bacillus subtilis, Pseudomonas fluorescens, Bacillus mucilaginosus	Apto para todo tipo de cultivo	Alta asimilación de fósforo; nitrógeno, potasio, calcio y microelementos; reduce el estrés causado por sequía, mayor resistencia a enfermedades y plagas	https://www.biokrone. com/biofortificantes/gl umix-polvo/
Micorrizas.	Semvid. Grow Depot México	Sí	Azospirillum brasilense, Glomus spp, Trichoderma spp, Bacillus subtilis, Pseudomonas fluorescens, Bacillus mucilaginosus	Apto para todo tipo de cultivo	Incrementa la actividad fisiológica de las plantas, desde la germinación, incrementa los rendimientos y la calidad de la cosecha, reduce el ataque de patógenos, inducen tolerancia a condiciones de estrés	https://growdepotmexi co.com/
FERFOMAX+BIO	ORO VERDE, México	ND	Trichoderma, Micorrizas y Bacillus	Árboles frutales, ornamentales, para esquejes, granos y hortalizas	Impulsa el desarrollo de raíces y engrosamiento de tallos. Favorece la germinación de las semillas	https://listado.mercado libre.com.mx/ferfomax -bio

Terrasabvia	Mani Dharma Biotech Pvt. Ltd., EAU (Emiratos Árabes Unidos)	Sí	Rhizobium	Frijol de soya	Fijador de nitrógeno	http://mx- terrasabvia.com/
AgriLife Nitrofix®-GD	Bannari Amman Sugars Limited, India	ND	Gluconacetobacter diazotrophicus	Apto para todo tipo de cultivo	Fija el nitrógeno atmosférico, secreta fitohormonas (auxinas y giberelinas) que ayudan en el crecimiento de los cultivos	https://www.agrilife.in /products/agrilife_nitro fix_gd.php
Biofertilizantes	Biojal, México	Sí	Azospirillum brasilense	Ideal para todo tipo de cultivo agrícola	Fija el nitrógeno atmosférico, mejora el vigor y la salud de las plantas	http://www.biojal.com

Tabla 1. Relación de biofertilizantes en México. Fuente: Recopilado de una búsqueda en plataformas de venta de productos agrícolas.

tarea de educar y entrenar a los productores agrícolas para que conozcan acerca de los beneficios que pueden lograr y cómo deben realizar las aplicaciones de los biofertilizantes es difícil debido a que en varios lugares del país no existe la demanda necesaria de especialistas ni el interés por los aspectos prácticos de la utilización de estos insumos.

Conclusiones

El uso de biofertilizantes a gran escala traería grandes beneficios para cualquier sistema de producción agrícola, sin tener efectos negativos sobre el ambiente. Es importante sumar esfuerzos para la difusión de este campo de la biotecnología, con el fin de desarrollar prácticas de agricultura más sustentables.

Referencias

Afanador, B.L.N. (2017). Biofertilizantes: conceptos, beneficios y su aplicación en Colombia. Ingeciencia, 2, 69.

Ahemad, M., Kibret, M., (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science, 26, 1-20.

Ahmad, F., Ahmad, I., Khan, M. (2008). Screening of free-living rhizospheric bacteria for the is multiple plant growth promoting activities. Microbiological Research, 163, 173-181.

Ahmad, F., Uddin, S., Ahmad, N., Islam, R. (2013). Phosphorus-microbes interaction on growth: yield and phosphorus-use efficiency of irrigated cotton. Archives of Agronomy and Soil Science, 59, 341-351.

Beltrán, P.M.E. (2014). La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Corpoica Ciencia y Tecnología Agropecuaria, 15, 101-113.

Gagreda, O.A., Díaz, A., Peña, J.J., Vera, J.A. (2012). Impacto de los biofertilizantes en la agricultura. Revista Mexicana de Ciencias Agrícolas, 3, 1261-1274.

Gosling, P., Hodge, A., Goodlass, G., Bending, G.D. (2006). Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystem & Environment, 113, 17-35.

Kapulnik, Y., Okon, Y. (2002). Plant growth promoting by rhizosphere bacteria. *In* Y. Waisel, A. Eshel, T.Beeckman, U. Kafkafi. Plant roots: The Hidden Half, Taylor and Francis Group, 869-895.

Kumar, S., Reddy, C., Phogat, M., Korav, S. (2018). Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7, 1915-1921.

MacPherson, J., Voglhuber-Slavinsky, A., Olbrisch, M., Schöbel, P., Dönitz, E., Mouratiadou, I., Helming, K. (2022). Future agricultural systems and the role of digitalization for achieving sustainability goals.

- A review. Agronomy for Sustainable Development, 42, 70.
- Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., Tribedi, P. (2016). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24, 3315-3335.
- Mahapatra, D.M., Satapathy, K.C., Panda, B. (2022). Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Science of the Total Environment, 803, 149990.
- Martínez-García, L.B., Pugnaire, F.I. (2011). Arbuscular mycorrhizal fungi host preference and site effects in two plant species in a semiarid environment. Applied Soil Ecology, 48, 313-317.
- Mia, M.A.B., Shamsuddin, Z.H., Mahmood, M. (2010). Use of plant growth promoting bacteria in banana: a new insight for sustainable banana production. International Journal of Agriculture and Biology, 12, 459-467.
- Pelhate, J. (1973). Annales Technologie Agricole, 22, 647-661.
- Pereira, S.I., Castro, P.M. (2014). Phosphate-solubilizing rhizobacteria enhance *Zea mays* growth in agricultural P-deficient soils. Ecological Engineering, 73, 526-535.
- Remy, W., Taylor, T.N., Hass, H., Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhiza. Proceedings of the National Academy of Science, 91, 11841-11843.
- Rout, M. E., Callaway, R.M. (2012). Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that everything is not everywhere. Annals of Botany, 110, 213-222.
- Rueda-Puente, E.O., Ortega-García, J., Barrón-Hoyos, J.M., López-Elías, J., Murillo-Amador, B., Hernández-Montiel, L.G. (2015). Los fertilizantes biológicos en la agricultura. Invurnus, 10,10-17.
- Saeed, Q., Xiukang, W., Haider, F.U., Kučerik, J., Mumtaz, M.Z., Holatko, J., Naseem, M., Kintl, A., Ejaz, M., Naveed, M., Brtnicky, M., Mustafa, A. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and

- bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International Journal of Molecular Sciences, 22, 10529.
- Saleem, M., Arshad, M., Hussain, S., Bathti, A.S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology and Biotechnology, 34, 635-648.
- Saravanan, V.S., Madhaiyan, M., Osborne, J., Thangaraju, M., Sa, T.M. (2008). Ecological occurrence of Gluconacetobacter diaztrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promoting. Microbial Ecology, 55, 130-140.
- Siddiqui, Z.A., Futai, K. (2008). Mycorrhizae: an overview. *In*: Siddiqui, Z.A., Akhtar, M.S., Futay, K. (Eds) Mycorrhizae Sustainable Agriculture and Forestry. 1st. Ed. Springer. Dordrecht, 1-35.
- Singh, R.P., Jha, P.N. (2015). Molecular identification and characterization of rhizospheric bacteria for plant growth promoting ability. International Journal of Current Biotechnology, 3, 12-18.
- Song, L., Drewer, J., Zhu, B., Zhou, M., Cowan, N., Levy, P., Skiba, U. (2020). The impact of atmospheric N deposition and N fertilizer type on soil nitric oxide and nitrous oxide fluxes from agricultural and forest Eutric Regosols. Biology and Fertility of Soils, 56, 1077-1090.
- Vanwalleghem, T., Gómez, J.A., Infante-Amate, J., González de Molina, M., Vanderlinden, K., Guzmán, G., Laguna, A., Giráldez, J.V. (2017). Impact of historical land use and soil management on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene, 17, 13-29.
- Vassey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571-586.
- Zhou, D., Huang, X.F., Chaparro, J.M., Badri, D.V., Manter, D.K., Vivanco, J.M., Gou, J. (2015). Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant and Soil, 401, 259-272.