Math 241 Homework 2

Lance Remigio

February 14, 2025

Remark. In the first two problems of this homework, whenever I state $x_i^{(k)} \to x_i$, I mean whenever we let $k \to \infty$.

Problem 1. Prove that $(\mathbb{R}^n, d_{\infty})$ is complete.

Proof. Let $(\vec{x_k})$ be a Cauchy sequence in \mathbb{R}^n . Note that $1 \leq i \leq n$ denotes the *i*th component of elements in \mathbb{R}^n and $k \in \mathbb{N}$ is the index for each sequence in \mathbb{R}^n . By a result found in quiz 1, it follows that $(x_i^{(k)})$ for $1 \leq i \leq n$ is also Cauchy. Since \mathbb{R} is a complete metric space with respect to the standard metric on \mathbb{R} , we find that each $x_i^{(k)}$ is also a convergent sequence. By another result in quiz 1, it follows that $(\vec{x_k})$ is a convergent sequence; that is, for each $1 \leq i \leq n$, $x_i^{(k)} \to x_i$ where $x_i \in \mathbb{R}$. Clearly, we have

$$\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$

Hence, \mathbb{R}^n with respect to the d_{∞} metric is complete.

Problem 2. (i) Let $\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Prove that $\pi_i : \mathbb{R}^n \to \mathbb{R}$ defined by $\pi_i(\vec{x}) = x_i$ are continuous maps with respect to d_{∞} on \mathbb{R}^n and the standard metric on \mathbb{R} .

- (ii) Prove that π_i in (i) are continuous maps with respect to d_{euclid} on \mathbb{R}^n and the standard metric on \mathbb{R} .
- **Proof.** (i) Our goal is to show that π_i is a continuous map with respect to d_{∞} on \mathbb{R}^n ; we will do this via the sequential criterion of continuity. Suppose $\vec{x_k} \to \vec{x}$ for some \vec{x} in \mathbb{R}^n . By a result found in quiz 1, we can see that $x_i^{(k)} \to x_i$ for $1 \le i \le n$. By definition of π_i , we find that as $k \to \infty$, we get

$$\pi_i(\vec{x_k}) = x_i^{(k)} \to x_i = \pi_i(\vec{x}).$$

Hence, we have that π_i is a continuous map with respect to d_{∞} and the standard metric on \mathbb{R} .

(ii) Our goal is to show that $\pi_i : \mathbb{R}^n \to \mathbb{R}$ is continuous with respect to d_{euclid} . Let $(\vec{x_k})$ be a sequence in \mathbb{R}^n such that $\vec{x_k} \to \vec{x}$. Since π_i is continuous on \mathbb{R}^n with respect to the d_{∞} metric, we have $d_{\infty}(\vec{x_k}, \vec{x}) \to 0$. Notice that

$$0 \le d_{\text{euclid}}(\vec{x_k}, \vec{x}) \le (n)^{1/2} d_{\infty}(\vec{x_k}, \vec{x}). \tag{1}$$

Now, $d_{\infty}(\vec{x_k}, \vec{x}) \to 0$ implies that $d_{\text{euclid}}(\vec{x_k}, \vec{x}) \to 0$ as $k \to \infty$ by applying the squeeze theorem

to (1). Thus, we can see that

$$|\pi_i(\vec{x_k}) - \pi_i(\vec{x})| = \left(|\pi_i(\vec{x_k}) - \pi_i(\vec{x})|^2\right)^{1/2}$$

$$= \left(|x_i^{(k)} - x_i|^2\right)^{1/2}$$

$$\leq \left(\sum_{i=1}^n |x_i^{(k)} - x_i|^2\right)^{1/2}$$

$$= d_{\infty}(\vec{x_k}, \vec{x}) \to 0.$$

Hence, we conclude that

$$|\pi_i(\vec{x_k}) - \pi_i(\vec{x})| \to 0$$

and so π_i is continuous map with respect to d_{∞} and the standard metric on \mathbb{R} .

Problem 3. (i) Define $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by $d(x,y) = |e^x - e^y|$. Prove that d is a metric on \mathbb{R} .

(ii) Prove or disprove: (\mathbb{R}, d) is complete.

Proof. (i) (I) It follows immediately that d(x,y) > 0 by the way d is defined. Let $x,y \in \mathbb{R}$. Then

$$d(x,y) = 0 \iff |e^x - e^y| = 0$$

$$\iff e^x = e^y \qquad \text{(standard metric on } \mathbb{R}\text{)}$$

$$\iff \ln(e^x) = \ln(e^y)$$

$$\iff x = y.$$

Hence, property (i) is satisfied.

(II) We have

$$d(x, y) = |e^x - e^y| = |e^y - e^x| = d(y, x).$$

Hence, property (ii) is satisfied.

(III) Let $x, y, z \in \mathbb{R}$. Then we have

$$|e^{x} - e^{y}| = |e^{x} - e^{z} + e^{z} - e^{y}|$$

$$\leq |e^{x} - e^{z}| + |e^{z} - e^{y}|$$

$$= d(x, z) + d(z, y).$$

Hence, we have $d(x, y) \le d(x, z) + d(z, y)$.

From the properties above, we conclude that $d(x,y) = |e^x - e^y|$ does indeed define a metric on \mathbb{R} .

(ii) We claim that the metric defined above does NOT make \mathbb{R} complete. Define the sequence $x_n = \ln\left(\frac{1}{n}\right)$. It follows immediately with respect to d that (x_n) is a Cauchy sequence in \mathbb{R} . Indeed, let $\varepsilon > 0$. Since 1/n is a Cauchy sequence in \mathbb{R} with respect to the standard metric, there exists an $N \in \mathbb{N}$ such that for any $n, m \geq N$, we have

$$d(x_n, x_m) = |e^{\ln(1/n)} - e^{\ln(1/m)}| = \left|\frac{1}{n} - \frac{1}{m}\right| < \varepsilon.$$

Since \mathbb{R} is complete with respect to the standard metric, we can see that $\frac{1}{n} \to 0$, but there does not exists an $x \in \mathbb{R}$ such that $x = \ln(0)$. Hence, \mathbb{R} cannot be complete with the metric defined above.

Problem 4. Let $X = \mathbb{N}$ be the set of positive integers.

- (i) Let d(m, n) = |m n|. Prove that (X, d) is complete.
- (ii) Let $d(m,n) = \left| \frac{1}{m} \frac{1}{n} \right|$. Prove that (X,d) is not complete.

Proof. (i) Let (x_n) be a Cauchy sequence in \mathbb{N} . Let $\varepsilon > 0$. Our goal is to find an $N \in \mathbb{N}$ such that for any $n \geq N$, we have

$$|x_n - x| < \varepsilon$$

where $x \in \mathbb{N}$. Let $\varepsilon > 0$. Since (x_n) is a Cauchy sequence in \mathbb{N} , there exists an $\hat{N} \in \mathbb{N}$ such that for any $n, m > \hat{N}$

$$|x_n - x_m| < \varepsilon$$
.

Note that since $x_n, x_m \in \mathbb{N}$, we can use \hat{N} as the same N we were looking for. Indeed, if we fix $m > \hat{N}$ and suppose that for any $n \ge \hat{N}$, we have

$$|x_n - x_m| < \varepsilon.$$

Then clearly, $x_n \to x$ (where $x = x_m \in \mathbb{N}$, in this case). Hence, we conclude that $(x_n) \to x$.

We claim that (X,d) is not complete with respect to $d(m,n) = \lfloor \frac{1}{m} - \frac{1}{n} \rfloor$. Consider the sequence $x_n = n$. With respect to the metric above, we can see that (x_n) is a Cauchy sequence in $\mathbb N$. Indeed, let $\varepsilon > 0$. Using the Archimedean Property, we can find an \hat{N} such that

$$\frac{1}{\hat{N}} < \frac{\varepsilon}{2}.$$

If we let $n, m \ge \hat{N}$, we have

$$\frac{1}{n} \le \frac{1}{\hat{N}} < \frac{\varepsilon}{2} \tag{1}$$

$$\frac{1}{m} \le \frac{1}{\hat{N}} < \frac{\varepsilon}{2}.\tag{2}$$

Using (1) and (2) along with the triangle inequality, we can see that

$$\left|\frac{1}{n} - \frac{1}{m}\right| \le \left|\frac{1}{n}\right| + \left|\frac{1}{m}\right| < \frac{2}{\hat{N}} < \varepsilon.$$

Hence, (x_n) is a Cauchy sequence, but $x_n \to 0$ (with respect to the metric above) where 0 is clearly not in \mathbb{N} . Hence, \mathbb{N} cannot be complete with the above metric.

Problem 5. Let $X = \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}.$

- (i) Define $d(f,g) = \int_0^1 |f(t) g(t)| dt$. Prove that d is a metric on X. Prove that d is a metric on X.
- (ii) Prove that (X, d) is not complete.

Proof. (i) Our goal is to show that d is a metric on X.

(I) Let $f, g \in X$. Using the fact that the standard metric $|\cdot|$ is a nonnegative continuous function on [0, 1] along with the fact given to us, it follows that

$$\int_0^1 |f(t) - g(t)| \ dt = 0 \iff |f(t) - g(t)| = 0.$$

3

Thus, we have that

$$\begin{split} d(f,g) &= 0 \Longleftrightarrow \int_0^1 |f(t) - g(t)| \ dt \\ &\iff |f(t) - g(t)| = 0 \\ &\iff f(t) = g(t) \end{split} \qquad (|\cdot| \text{ is a metric on } \mathbb{R}) \end{split}$$

(II) Observe that for any $f, g \in X$, we see that

$$d(f,g) = \int_0^1 |f(t) - g(t)| \ dt = \int_0^1 |g(t) - f(t)| \ dt = d(g,f).$$

(III) Let $f, g, h \in X$. Then by the triangle inequality of the standard metric of \mathbb{R} and the linearity of integral, we have

$$d(f,g) = \int_0^1 |f(t) - g(t)| dt$$

$$\leq \int_0^1 \left(|f(t) - h(t)| + |h(t) - g(t)| \right) dt$$

$$= \int_0^1 |f(t) - h(t)| dt + \int_0^1 |h(t) - g(t)| dt$$

$$= d(f,h) + d(h,g).$$

Hence, property (III) is satisfied.

Thus, we conclude that d does indeed define a metric on X.

(ii) Our goal is to construct a sequence (x_n) that is Cauchy in X, but it does not converge in X. Based on the area of the triangle, which is represented by $d(x_m, x_n)$, found in figure 10 of the book, we can define $N = \frac{1}{\varepsilon}$ such that for any $m, n \ge N$, we have

$$d(x_n, x_m) < \varepsilon$$
.

As a consequence, we can see that (x_n) is a Cauchy sequence. Now, we want to show that (x_n) does not converge in X. Suppose for sake of contradiction that (x_n) does converge in X. Suppose $x \in X$. Indeed, if we define

$$x_m(t) = 0 \text{ if } t \in [0, 1/2]$$

and

$$x_m(t) = 1 \text{ if } t \in [a_m, 1]$$

where $a_m = \frac{1}{2} + \frac{1}{m}$, we see that

$$d(x_m, x) = \int_0^1 |x_m(t) - x(t)| dt$$

$$= \int_0^{1/2} |x(t)| dt + \int_{1/2}^{a_m} |x_m(t) - x(t)| dt + \int_{a_m}^1 |1 - x(t)| dt.$$

By our integration properties, we can see that

$$d(x_m, x) = \int_0^{1/2} |x(t)| dt + \int_{1/2}^{a_m} |x_m(t) - x(t)| dt + \int_{a_m}^1 |1 - x(t)| dt.$$

Since each corresponding integrand above is nonnegative, we can see that each integral on the right-hand side is nonnegative. Since $d(x_m, x) \to 0$ (by assumption), we can see that each

integral on the right-hand side above approaches zero. Since x(t) is a continuous function for all $t \in [0, 1]$, we have that

$$x(t) = \begin{cases} 0 & \text{if } t \in [0, 1/2) \\ 1 & \text{if } t \in (1/2, 1]. \end{cases}$$

But note that x(t) cannot be continuous; that is, $x \notin X$. The reason is as follows: if we take a sequence (t_n) in the interval [0,1/2) (that is, take a sequence from the left side), then we see that $x(t_n) \to 0$. However, if we take a sequence (r_n) in the interval (1/2,1] (that is, take the right-handed limit), then $x(r_n) \to 1$. By the sequential criterion of continuity, we see immediately that x(t) cannot be continuous. Hence, we have $x_m(t)$ converges to a limit that does not belong to X. Hence, we conclude that X cannot be a complete metric space with the metric d defined above.