Linear Algebra, Math 2101-002 Homework set #12

1. Consider the following two vectors in \mathbb{R}^4 (the same as in homewrok 11)

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 0 \end{bmatrix}$$
. Find a vector (in \mathbb{R}^4) which is orthogonal to both v_1 and v_2 .

- **2.** Let $v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$.
- (a) Let $S = span\{v_1, v_2\}$, i.e., the subspace generated by v_1 and v_2 . Construct an orthonormal basis for S.
- (b) Let W be the set of all vectors which are orthogonal to both v_1 and v_2 , i.e., $W = S^{\perp}$. Find a basis for W.
- (c) Show that $w = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ does not lie in S. Show that w does not lie in W either. Explain why this

is possible.

- (d) Find the orthogonal projection P onto S, and Q, the orthogonal projection onto W. Check that PQ = QP = 0.
- (e) Compute Pw and Qw and check that: 1. $Pw \in S$, 2. $Qw \in W$, 3. $(Pw)^T(Qw) = 0$, 4. w = Pw + Qw.