10.5.2018 HackerRank

PRACTICE

COMPETE

JOBS

LEADERBOARD

Q Search

Practice > Algorithms > Implementation > The Bomberman Game

The Bomberman Game ☆

Problem	Submissions	Leaderboard	Discussions	Editoria
Bomberman li at all.	ves in a rectangular grid.	Each cell in the grid eith	ner contains a bomb o	rnothing
3 seconds. One neighboring control $(i,j\pm 1)$	n be planted in any cell on the abomb detonates, it's ells. This means that if a but are cleared. If there is a shout detonating, so there	destroyed — along with bomb detonates in cell abomb in a neighboring	h anything in its four i,j , any valid cells $(i\pm$	(1,j)
Bomberman is does:	immune to bombs, so h	e can move freely throu	ughout the grid. Here's	what he
1. Initially, Bo	mberman arbitrarily plan	ts bombs in some of th	e cells, the initial state.	
2. After one se	econd, Bomberman does	nothing.		
	nore second, Bomberman	•		s filling
	nore second, any bombs n stands back and obser	,	econds ago will detona	te. Here,
5. Bomberma	n then repeats steps 3 ar	nd 4 indefinitely.		
	ng every second Bomber y (i.e., at the exact same i	·	·	time will
	al configuration of the gri	d with the locations of I	Bomberman's first bate	ch of
planted bomb	s, determine the state of	the grid after $m{N}$ second	ds.	
For example, it	f the initial grid looks like	:		
it looks the sar	ne after the first second.	After the second secon	d, Bomberman has pla	aced all
000 000 000				
At the third se	cond, the bomb in the mi	iddle blows up, emptyin	ng all surrounding cells:	

Author	kevinsogo
Difficulty	Medium
Max Score	40
Submitted By	8041

NEED HELP?

- View discussions
- **View editorial**
- **P** View top submissions

RATE THIS CHALLENGE

MORE DETAILS

- **ل** Download problem statement
- **ل** Download sample test cases
- Suggest Edits

https://www.hackerrank.com/challenges/bomber-man/problem

10.5.2018 HackerRank

The first line contains three space-separated integers r, c, and n, The number of rows, columns and seconds to simulate.

Each of the next $m{r}$ lines contains a row of the matrix as a single string of $m{c}$ characters. The $\ .$ character denotes an empty cell, and the O character (ascii 79) denotes a bomb.

Constraints

- $1 \le r, c \le 200$
- $1 \le n \le 10^9$

Subtask

• $1 \le n \le 200$ for 40% of the maximum score.

Output Format

Print the grid's final state. This means $m{R}$ lines where each line contains $m{C}$ characters, and each character is either a . or an O (ascii 79). This grid must represent the state of the grid after n seconds.

Sample Input

6 7 3

...0...

....0...

00....

00....

Sample Output

000.000 00...00

000...0

..00.00

...0000

...0000

Explanation

The initial state of the grid is:

.0...

....0..

00....

00....

Bomberman spends the first second doing nothing, so this is the state after 1 second:

...0...

....0..

.

00....

00....

Bomberman plants bombs in all the empty cells during his second second, so this is the state after 2 seconds:

0000000

0000000

10.5.2018 HackerRank

```
K N (S)
 Current Buffer (saved locally, editable) ್ಬ್ ್ರ
                                              Java 7
  1 ▼ import java.io.*;
  2 import java.util.*;
  3 import java.text.*;
  4 import java.math.*;
  5 import java.util.regex.*;
  6
  7 ▼ public class Solution {
  8
          static String[] bomberMan(int n, String[] grid) {
  9 ▼
 10
              // Complete this function
 11
 12
 13 ▼
          public static void main(String[] args) {
 14
              Scanner in = new Scanner(System.in);
 15
              int r = in.nextInt();
 16
              int c = in.nextInt();
 17
              int n = in.nextInt();
 18 ▼
              String[] grid = new String[r];
              for(int grid_i = 0; grid_i < r; grid_i++){</pre>
 19 🔻
                   grid[grid_i] = in.next();
 20 ▼
 21
              }
              String[] result = bomberMan(n, grid);
 22
              for (int i = 0; i < result.length; i++) {</pre>
 23 ▼
                   System.out.print(result[i] + (i != result.length - 1 ? "\n"
 24 ▼
      : ""));
 25
 26
               System.out.println("");
 27
 28
 29
               in.close();
          }
 30
      }
 31
 32
                                                                     Line: 1 Col: 1
1 Upload Code as File
                   Test against custom input
                                                    Run Code
                                                                    Submit Code
```

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature