Frederik Hvilshøj

May 5, 2021

Data-Intensive Systems Group, Aarhus University

Paper URL

Slides URL

Today (45 minutes):

1. Comparing Generative Models

2. Metrics

3. Fast Fréchet Inception Distance

4. What is it Good For? 🗾

Comparing Generative Models

Which one is better?

"Real"

$$x_1, \ldots, x_n \sim P_{\text{real}}$$

Which one is better?

"Real"

"Fake 1"

$$x_1, \ldots, x_n \sim P_{\text{real}} \mid x_1^{(1)}, \ldots, x_n^{(1)} \sim P_{G_1}$$

Which one is better?

"Real"

"Fake 1"

$$x_1^{(1)}, \ldots, x_n^{(1)} \sim P_{G_1}$$

"Fake 2"

$$x_1, \ldots, x_n \sim P_{\text{real}} \mid x_1^{(1)}, \ldots, x_n^{(1)} \sim P_{G_1} \mid x_1^{(2)}, \ldots, x_n^{(2)} \sim P_{G_2}$$

1. Fast

- 1. Fast
- 2. Diversity

- 1. Fast
- 2. Diversity
- 3. Classifiable

- 1. Fast
- 2. Diversity
- 3. Classifiable
- 4. Translation invariant

Metrics

First Idea: Inception Score ¹

Idea: Use Inception network N(x) = p(y|x) to "analyze" the generated data.

Idea: Use Inception network N(x) = p(y|x) to "analyze" the generated data.

Easily classifiable If N is confident in predictions \Rightarrow better sample quality.

Idea: Use Inception network N(x) = p(y|x) to "analyze" the generated data.

Easily classifiable If *N* is confident in predictions ⇒ better sample quality.

Diversity If all the classes are represented, the samples are diverse.

3

Easily classifiable If N is confident in predictions \Rightarrow better sample quality.

Diversity If all the classes are represented, the samples are diverse.

(1)

(2)

Easily classifiable If N is confident in predictions \Rightarrow better sample quality.

Diversity If all the classes are represented, the samples are diverse.

$$IS(X) = \exp \left\{ \quad \mathbb{E}_{X} \left[\quad \text{KL} \left(p(y \mid X) \| p(y) \right) \quad \right] \quad \right\} \tag{1}$$

(2)

Easily classifiable If N is confident in predictions \Rightarrow better sample quality.

Diversity If all the classes are represented, the samples are diverse.

$$IS(X) = \exp\left\{ \quad \mathbb{E}_{X} \left[\quad \text{KL} \left(p(y \mid X) \| p(y) \right) \quad \right] \quad \right\} \tag{1}$$

$$=\exp\left\{ H(y) - \mathbb{E}_{X} \left[H(y|X) \right] \right\}$$
 (2)

Easily classifiable If N is confident in predictions \Rightarrow better sample quality.

Diversity If all the classes are represented, the samples are diverse.

$$IS(X) = \exp\left\{ \quad \mathbb{E}_{X} \left[\quad \text{KL} \left(p(y \mid X) \| p(y) \right) \quad \right] \quad \right\} \tag{1}$$

$$=\exp\left\{ H(y) - \mathbb{E}_{x} \left[H(y|x) \right] \right\}$$
 (2)

$$IS(X) = \exp\{ H(y) - \mathbb{E}_X[H(y|X)] \}$$

$$IS(X) = \exp\{H(y) - \mathbb{E}_X[H(y|X)]\}$$

$$IS(X) = \exp\{\underbrace{H(y)}_{\text{Maximize}} - \mathbb{E}_{x}[\underbrace{H(y|x)}_{\text{Minimize}}] \}$$
 (2)

Correlates with human judgement but doesn't take P_d into account!

Second Idea: Fréchet Inception Distance ²

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. and Hochreiter, S., 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500.

Idea: Compare Inception network encodings between P_d and P_f .

Idea: Compare Inception network encodings between P_d and P_f .

Given means $\mu_{\rm r}$, $\mu_{\rm f}$ and covariances $\Sigma_{\rm r}$, $\Sigma_{\rm f}$ of Inception encodings, the Fréchet Inception Distance (FID) is defined as

Idea: Compare Inception network encodings between P_d and P_f .

Given means $\mu_{\rm r}$, $\mu_{\rm f}$ and covariances $\Sigma_{\rm r}$, $\Sigma_{\rm f}$ of Inception encodings, the Fréchet Inception Distance (FID) is defined as

$$FID(X_r, X_f) = W_2^2 \left(\mathcal{N}\{\mu_r, \Sigma_r\}, \mathcal{N}\{\mu_f, \Sigma_f\} \right)$$
 (3)

(4)

Idea: Compare Inception network encodings between P_d and P_f .

Given means μ_r , μ_f and covariances Σ_r , Σ_f of Inception encodings, the Fréchet Inception Distance (FID) is defined as

$$FID(X_r, X_f) = W_2^2 \left(\mathcal{N} \{ \mu_r, \Sigma_r \}, \mathcal{N} \{ \mu_f, \Sigma_f \} \right)$$
 (3)

$$= \underbrace{\|\mu_r - \mu_f\|_2^2}_{\mathcal{O}(d)} + -2$$
 (4)

Idea: Compare Inception network encodings between P_d and P_f .

Given means $\mu_{\rm r}$, $\mu_{\rm f}$ and covariances $\Sigma_{\rm r}$, $\Sigma_{\rm f}$ of Inception encodings, the Fréchet Inception Distance (FID) is defined as

$$FID(X_r, X_f) = W_2^2 \left(\mathcal{N} \{ \mu_r, \Sigma_r \}, \mathcal{N} \{ \mu_f, \Sigma_f \} \right)$$
 (3)

$$= \underbrace{\|\mu_r - \mu_f\|_2^2}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_r]}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_f]}_{\mathcal{O}(d)} - 2 \tag{4}$$

Idea: Compare Inception network encodings between P_d and P_f .

Given means μ_r , μ_f and covariances Σ_r , Σ_f of Inception encodings, the Fréchet Inception Distance (FID) is defined as

$$\operatorname{FID}(X_r, X_f) = W_2^2 \left(\mathcal{N}\{\mu_r, \Sigma_r\}, \mathcal{N}\{\mu_f, \Sigma_f\} \right)$$

$$= \underbrace{\|\mu_r - \mu_f\|_2^2}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_r]}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_f]}_{\mathcal{O}(d)} - 2\operatorname{Tr}[\underbrace{\sqrt{\Sigma_r \Sigma_f}}_{\mathcal{O}(d^3)}]$$
(4)

Idea: Compare Inception network encodings between P_d and P_f .

Given means $\mu_{\rm r}$, $\mu_{\rm f}$ and covariances $\Sigma_{\rm r}$, $\Sigma_{\rm f}$ of Inception encodings, the Fréchet Inception Distance (FID) is defined as

$$\operatorname{FID}(X_r, X_f) = W_2^2 \left(\mathcal{N}\{\mu_r, \Sigma_r\}, \mathcal{N}\{\mu_f, \Sigma_f\} \right)$$

$$= \underbrace{\|\mu_r - \mu_f\|_2^2}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_r]}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_f]}_{\mathcal{O}(d)} - 2\operatorname{Tr}[\underbrace{\sqrt{\Sigma_r \Sigma_f}}_{\mathcal{O}(d^3)}]$$
(4)

Today this is state-of-the-art.

Previous method explicitely computes $\sqrt{\Sigma_r \Sigma_f}$ and then computes the trace:

Input : Σ_r , Σ_f

Output: $\operatorname{Tr}[C] = \operatorname{Tr}\left[\sqrt{\sum_{r}\sum_{f}}\right]$

```
Input : \Sigma_r, \Sigma_f

Output: \mathrm{Tr}[\mathcal{C}] = \mathrm{Tr}\left[\sqrt{\Sigma_r\Sigma_f}\right]

1 Q,V \leftarrow SchurDecompose(A); /* QVQ^{\mathsf{T}} = A */
```

Computing $\operatorname{Tr}[\sqrt{\Sigma_r \Sigma_f}]$

Previous method explicitely computes $\sqrt{\Sigma_r \Sigma_f}$ and then computes the trace:

Computing $\operatorname{Tr}[\sqrt{\Sigma_r \Sigma_f}]$

Previous method explicitely computes $\sqrt{\Sigma_r \Sigma_f}$ and then computes the trace:

Line [1-3] each takes cubic time!

Idea 3: Don't compute $\operatorname{Tr}\left[\sqrt{\Sigma_r \Sigma_f}\right]$, use eigenvalues instead.³

Lemma 1
$$\operatorname{Tr}[\sqrt{A}] = \sum_{i} |\sqrt{\lambda_i(A)}|$$
. 4

⁴There are some nuances here, please refer to paper for full details.

Lemma 1

$$\operatorname{Tr}[\sqrt{A}] = \sum_{i} |\sqrt{\lambda_{i}(A)}|.$$
 ⁴

Lemma 2

Computing eigenvalues of $d \times d$ matrix A takes $\mathcal{O}(d^3)$ time. (similar time to compute \sqrt{A})

⁴There are some nuances here, please refer to paper for full details.

Lemma 3

The nonzero eigenvalues of AB are equal to those of BA, as long as the products are square. ⁵

⁵Nakatsukasa, Y., 2019. The low-rank eigenvalue problem. arXiv preprint arXiv:1905.11490.

Lemma 3

The nonzero eigenvalues of AB are equal to those of BA, as long as the products are square. ⁵

⁵Nakatsukasa, Y., 2019. The low-rank eigenvalue problem. arXiv preprint arXiv:1905.11490.

Lemma 3The nonzero eigenvalues of AB are equal to those of BA, as long as the products are square. ⁵

⁵Nakatsukasa, Y., 2019. The low-rank eigenvalue problem. arXiv preprint arXiv:1905.11490.

Lemma 3The nonzero eigenvalues of AB are equal to those of BA, as long as the products are square. ⁵

⁵Nakatsukasa, Y., 2019. The low-rank eigenvalue problem. arXiv preprint arXiv:1905.11490.

High level idea: Construct "small" matric M such that $\lambda_i(M)$ satisfy $\sum_i |\sqrt{\lambda_i(M)}| = \mathrm{Tr}[\sqrt{\Sigma_r \Sigma_f}]$. When M is sufficiently small, computing eigenvalues will be faster than computing $\sqrt{\Sigma_r \Sigma_f}$ explicitly.

Stack the m fake encoded samples into a $d \times m$ matrix X_f .

Stack the m fake encoded samples into a $d \times m$ matrix X_f .

$$\Sigma_f = C_f C_f^{\mathsf{T}} \quad \text{where } C_r = \frac{1}{\sqrt{n-1}} (X_r - \mu_r \mathbf{1}_n)$$
 (5)

Stack the m fake encoded samples into a $d \times m$ matrix X_f .

$$\Sigma_f = C_f C_f^{\mathsf{T}} \quad \text{where } C_r = \frac{1}{\sqrt{n-1}} (X_r - \mu_r \mathbf{1}_n)$$
 (5)

Then

$$\Sigma_r \Sigma_f = \Sigma_r C_f C_f^{\mathsf{T}} \tag{6}$$

$$\Sigma_r \Sigma_f = \Sigma_r C_f C_f^{\mathsf{T}} \tag{6}$$

$$\Sigma_r \Sigma_f = \Sigma_r C_f C_f^{\mathsf{T}} \tag{6}$$

Using Lemma 3:

$$\lambda_i(\underbrace{\sum_{r} C_f C_f^{\mathsf{T}}}) = \lambda_i(\underbrace{C_f^{\mathsf{T}} \sum_{r} C_f})_{m \times m} \tag{7}$$

$$\Sigma_r \Sigma_f = \Sigma_r C_f C_f^{\mathsf{T}} \tag{6}$$

Using Lemma 3:

$$\lambda_i(\underbrace{\boldsymbol{\Sigma}_r \boldsymbol{C}_f \boldsymbol{C}_f^{\mathsf{T}}}) = \lambda_i(\underbrace{\boldsymbol{C}_f^{\mathsf{T}} \boldsymbol{\Sigma}_r \boldsymbol{C}_f})_{m \times m} \tag{7}$$

Eigenvalue computations go from $\mathcal{O}(d^3)$ to $\mathcal{O}(m^3)$ (Lemma 2).

$$\Sigma_r \Sigma_f = \Sigma_r C_f C_f^{\mathsf{T}} \tag{6}$$

Using Lemma 3:

$$\lambda_i(\underbrace{\boldsymbol{\Sigma}_r \boldsymbol{C}_f \boldsymbol{C}_f^{\mathsf{T}}}) = \lambda_i(\underbrace{\boldsymbol{C}_f^{\mathsf{T}} \boldsymbol{\Sigma}_r \boldsymbol{C}_f})_{m \times m} \tag{7}$$

Eigenvalue computations go from $\mathcal{O}(d^3)$ to $\mathcal{O}(m^3)$ (Lemma 2). Finally due to Lemma 1:

$$\operatorname{Tr}\left[\sqrt{\Sigma_r \Sigma_f}\right] = \sum_{i=1}^{m-1} |\sqrt{\lambda_i (C_f^{\mathsf{T}} \Sigma_r C_f)}| \tag{8}$$

Overall, we get runningtime

$$FID = \underbrace{\|\mu_r - \mu_f\|_2^2}_{\mathcal{O}(d)} + \underbrace{Tr[\Sigma_r + \Sigma_f]}_{\mathcal{O}(d)} - 2 \sum_{i=1}^{m-1} |\underbrace{\sqrt{\lambda_i(C_f^{\mathsf{T}}\Sigma_r C_f)}}_{\mathcal{O}(d^2m + m^3)}|$$
(9)

What is it Good For? 🎜

$$FID = \underbrace{\|\mu_r - \mu_f\|_2^2 + Tr[\Sigma_r + \Sigma_f]}_{\mathcal{O}(d)} - 2 \sum_{i=1}^{m-1} |\underbrace{\sqrt{\lambda_i (C_f^{\mathsf{T}} \Sigma_r C_f)}}_{\mathcal{O}(d^2 m + m^3)}| \quad (9)$$

$$FID = \underbrace{\|\mu_r - \mu_f\|_2^2 + Tr[\Sigma_r + \Sigma_f]}_{\mathcal{O}(d)} - 2 \sum_{i=1}^{m-1} |\underbrace{\sqrt{\lambda_i(C_f^{\mathsf{T}} \Sigma_r C_f)}}_{\mathcal{O}(d^2 m + m^3)}| \quad (9)$$

During training, we typically have $n \gg d \gg m$

$$FID = \underbrace{\|\mu_r - \mu_f\|_2^2 + Tr[\Sigma_r + \Sigma_f]}_{\mathcal{O}(d)} - 2 \sum_{i=1}^{m-1} |\underbrace{\sqrt{\lambda_i (C_f^{\mathsf{T}} \Sigma_r C_f)}}_{\mathcal{O}(d^2 m + m^3)}| \quad (9)$$

During training, we typically have $n \gg d \gg m$

Example 4

For GANs on ImageNet, test size (n) is 10 000, encodings (d) are 2048, and batch size (m) is typically 128.

$$FID = \underbrace{\|\mu_r - \mu_f\|_2^2 + Tr[\Sigma_r + \Sigma_f]}_{\mathcal{O}(d)} - 2 \sum_{i=1}^{m-1} |\underbrace{\sqrt{\lambda_i (C_f^{\mathsf{T}} \Sigma_r C_f)}}_{\mathcal{O}(d^2 m + m^3)}| \quad (9)$$

During training, we typically have $n \gg d \gg m$

Example 4

For GANs on ImageNet, test size (n) is 10 000, encodings (d) are 2048, and batch size (m) is typically 128.

Value of the Let's use FID for optimizations!

Performance

Minimizing FID

Minimizing FID

Minimizing FID

Can FID Loss Improve Generated Images?

What will happen if we just optimize for FID?

Can FID Loss Improve Generated Images?

What will happen if we just optimize for FID?

Can FID Loss Improve Generated Images?

What will happen if we just optimize for FID?

$$\frac{\|\mu_{r} - \mu_{f}\|_{2}^{2}}{\text{mean difference}} + \underbrace{\operatorname{Tr}\left[\Sigma_{r}\right] + \operatorname{Tr}\left[\Sigma_{f}\right] - 2\operatorname{Tr}\left[\sqrt{\Sigma_{r}\Sigma_{f}}\right]}_{\text{covariance difference}}$$
(10)