

X2-Class HiPerFET™ **Power MOSFET**

IXFH80N65X2 IXFK80N65X2

650V **A08** $38m\Omega$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25°C to 150°C	650	V	
$\mathbf{V}_{\mathtt{DGR}}$	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	650	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _C = 25°C	80	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	160	Α	
I _A	T _c = 25°C	20	Α	
E _{as}	$T_{c} = 25^{\circ}C$	3	J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, \ V_{_{DD}} \le V_{_{DSS}}, \ T_{_{J}} \le 150^{\circ}C$	50	V/ns	
P_{D}	T _c = 25°C	890	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T_{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque	1.13 / 10	Nm/lb.in	
Weight	TO-247 TO-264	6 10	g g	

TO-264 (IXFK)	
G D S	D (Tab)
G = Gate S = Source	D = Drain Tab = Drain

Fe	at	111	ē	s
	aι	uı	_	3

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

		cteristic Typ.	ic Values Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	650			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.5		5.0	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125$ °C				μA mA
R _{DS(on)}	$V_{GS} = 10V$, $I_{D} = 0.5 \bullet I_{D2S}$, Note 1			38	mΩ

Symbol	Test Conditions	Characteristic Values		
$(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Mir		Min.	Тур.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$	33	55	S
R_{Gi}	Gate Input Resistance		0.6	Ω
C _{iss})		8300	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		5010	pF
C _{rss}	J		1.6	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		280	pF
$\mathbf{C}_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1160	pF
t _{d(on)}	Resistive Switching Times		32	ns
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		24	ns
$\mathbf{t}_{d(off)}$	$R_{c} = 3\Omega$ (External)		70	ns
t _f) II _G = 052 (External)		11	ns
$\mathbf{Q}_{g(on)}$)		140	nC
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		50	nC
\mathbf{Q}_{gd}	J		40	nC
R _{thJC}				0.14 °C/W
R_{thCS}	TO-247		0.21	°C/W
	TO-264		0.15	°C/W

Source-Drain Diode

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Typ.	Values Max		
l _s	$V_{GS} = 0V$			80	Α
SM	Repetitive, pulse Width Limited by $T_{_{JM}}$			320	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \ \mathbf{Q}_{RM} & \ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 40A$, -di/dt = 100A/ μ s $V_R = 100V$		200 1.7 16.7		ns µC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

IXFH80N65X2 IXFK80N65X2