A Deterministic Streaming Sketch for Ridge Regression Supplementary Materials

A OTHER VARIANCE BOUNDS FOR RISK

We provide two different bounds for variance $\mathcal{V}(\hat{\mathbf{x}}_{\gamma})$ that are not strictly comparable with the one provided in Lemma 3.

Lemma 6. Considering the data generation model and the risk described in Lemma 3. The variance of the approximate solution $\hat{\mathbf{x}}_{\gamma} = (\mathbf{C}^{\top}\mathbf{C} + \gamma \mathbf{I})^{-1}\mathbf{A}^{\top}\mathbf{b}$ satisfy

$$\mathcal{V}(\hat{\mathbf{x}}_{\gamma}) \leq \left(1 + \frac{1}{\gamma} \|\mathbf{A}\|_{2}^{2} \|\mathbf{A}^{\top}\mathbf{A} - \mathbf{C}^{\top}\mathbf{C}\|_{2}^{2} \|\mathbf{A}^{\dagger}\|_{2}^{2}\right) \mathcal{V}(\mathbf{x}_{\gamma})$$

Proof.

$$\begin{split} \mathcal{V}(\hat{\mathbf{x}}_{\gamma}) = & \mathbb{E}_{\boldsymbol{Z}} \left[\| \mathbf{A} \left(\hat{\mathbf{x}}_{\gamma} - \mathbb{E}_{\boldsymbol{Z}} [\hat{\mathbf{x}}_{\gamma}] \right) \|^{2} \right] \\ = & \mathbb{E}_{\boldsymbol{Z}} \left[\| \mathbf{A} \left(\left(\mathbf{C}^{\top} \mathbf{C} + \gamma \mathbf{I} \right)^{-1} \mathbf{A}^{\top} s \boldsymbol{Z} \right) \|^{2} \right] \\ = & s^{2} \| \mathbf{A} \left(\mathbf{C}^{\top} \mathbf{C} + \gamma \mathbf{I} \right)^{-1} \mathbf{A}^{\top} \|_{F}^{2} \\ = & s^{2} \| \mathbf{A} \left((\hat{\mathbf{K}} + \gamma \mathbf{I})^{-1} - (\mathbf{K} + \gamma \mathbf{I})^{-1} + (\mathbf{K} + \gamma \mathbf{I})^{-1} \right) \mathbf{A}^{\top} \|_{F}^{2} \\ = & s^{2} \| \mathbf{A} \left((\hat{\mathbf{K}} + \gamma \mathbf{I})^{-1} (\mathbf{K} - \hat{\mathbf{K}}) (\mathbf{K} + \gamma \mathbf{I})^{-1} + (\mathbf{K} + \gamma \mathbf{I})^{-1} \right) \mathbf{A}^{\top} \|_{F}^{2} \\ = & s^{2} \| \mathbf{A} \left((\hat{\mathbf{K}} + \gamma \mathbf{I})^{-1} (\mathbf{K} - \hat{\mathbf{K}}) + \mathbf{I} \right) (\mathbf{K} + \gamma \mathbf{I})^{-1} \mathbf{A}^{\top} \|_{F}^{2} \\ = & s^{2} \| \mathbf{A} \left((\hat{\mathbf{K}} + \gamma \mathbf{I})^{-1} (\mathbf{K} - \hat{\mathbf{K}}) + \mathbf{I} \right) \mathbf{A}^{+} \mathbf{A} (\mathbf{K} + \gamma \mathbf{I})^{-1} \mathbf{A}^{\top} \|_{F}^{2} \\ \leq & s^{2} \| \mathbf{A} \left((\hat{\mathbf{K}} + \gamma \mathbf{I})^{-1} (\mathbf{K} - \hat{\mathbf{K}}) + \mathbf{I} \right) \mathbf{A}^{+} \|_{2}^{2} \| \mathbf{A} (\mathbf{K} + \gamma \mathbf{I})^{-1} \mathbf{A}^{\top} \|_{F}^{2} \\ = & \| \mathbf{A} (\hat{\mathbf{K}} + \gamma \mathbf{I})^{-1} (\mathbf{A}^{\top} \mathbf{A} - \mathbf{C}^{\top} \mathbf{C}) \mathbf{A}^{+} + \mathbf{I} \|_{2}^{2} \mathcal{V}(\mathbf{x}_{\gamma}) \\ \leq & \left(1 + \frac{1}{\gamma} \| \mathbf{A} \|_{2}^{2} \| \mathbf{A}^{\top} \mathbf{A} - \mathbf{C}^{\top} \mathbf{C} \|_{2}^{2} \| \mathbf{A}^{\dagger} \|_{2}^{2} \right) \mathcal{V}(\mathbf{x}_{\gamma}) \end{split}$$

Lemma 7. Considering the data generation model and the risk described in Lemma 3. The variance of the approximate solution $\hat{\mathbf{x}}_{\gamma} = (\mathbf{C}^{\top}\mathbf{C} + \gamma \mathbf{I})^{-1}\mathbf{A}^{\top}\mathbf{b}$ satisfy

$$\mathcal{V}(\hat{\mathbf{x}}_{\gamma}) \leq \frac{1}{1 - \|\mathbf{A}^{+}\|^{2} \|(\mathbf{C}^{\top}\mathbf{C} - \mathbf{A}^{\top}\mathbf{A})\|_{2}} \mathcal{V}(\mathbf{x}_{\gamma})$$

Proof. The proof Follows the strategy used by Wang et al. (2018) for the Hessian Sketch variance bound.

$$\begin{split} \mathcal{V}(\hat{\mathbf{x}}_{\gamma}) = & \mathbb{E}_{\boldsymbol{Z}} \left[\| \mathbf{A} \left(\hat{\mathbf{x}}_{\gamma} - \mathbb{E}_{\boldsymbol{Z}} [\hat{\mathbf{x}}_{\gamma}] \right) \|^{2} \right] \\ = & \mathbb{E}_{\boldsymbol{Z}} \left[\| \mathbf{A} \left((\mathbf{C}^{\top} \mathbf{C} + \gamma \mathbf{I})^{-1} \mathbf{A}^{\top} s \boldsymbol{Z} \right) \|^{2} \right] \\ = & s^{2} \| \mathbf{A} (\mathbf{C}^{\top} \mathbf{C} + \gamma \mathbf{I})^{-1} \mathbf{A}^{\top} \|_{F}^{2} \\ = & s^{2} \| (\mathbf{A}^{+\top} \mathbf{C}^{\top} \mathbf{C} \mathbf{A}^{+} + \gamma (\mathbf{A}^{\top} \mathbf{A})^{-1})^{-1} \|_{F}^{2} \\ \leq & \frac{1}{1 - \| \mathbf{A}^{+} \|^{2} \| (\mathbf{C}^{\top} \mathbf{C} - \mathbf{A}^{\top} \mathbf{A}) \|_{2}} s^{2} \| (\mathbf{I} + \gamma (\mathbf{A}^{\top} \mathbf{A})^{-1})^{-1} \|_{F}^{2} \\ = & \frac{1}{1 - \| \mathbf{A}^{+} \|^{2} \| (\mathbf{C}^{\top} \mathbf{C} - \mathbf{A}^{\top} \mathbf{A}) \|_{2}} s^{2} \| \mathbf{A} (\mathbf{A}^{\top} \mathbf{A} + \gamma \mathbf{I})^{-1} \mathbf{A}^{\top} \|_{F}^{2} \\ = & \frac{1}{1 - \| \mathbf{A}^{+} \|^{2} \| (\mathbf{C}^{\top} \mathbf{C} - \mathbf{A}^{\top} \mathbf{A}) \|_{2}} \mathcal{V}(\mathbf{x}_{\gamma}). \end{split}$$

The inequality follows

$$\begin{aligned} &\|\mathbf{A}^{+\top}\mathbf{C}^{\top}\mathbf{C}\mathbf{A}^{+} - \mathbf{I}\|_{2} \\ &= &\|\mathbf{A}^{+\top}\mathbf{C}^{\top}\mathbf{C}\mathbf{A}^{+} - \mathbf{A}^{+\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{A}^{+}\|_{2} \\ &= &\|\mathbf{A}^{+\top}(\mathbf{C}^{\top}\mathbf{C} - \mathbf{A}^{\top}\mathbf{A})\mathbf{A}^{+}\|_{2} \\ &\leq &\|\mathbf{A}^{+}\|^{2} \|(\mathbf{C}^{\top}\mathbf{C} - \mathbf{A}^{\top}\mathbf{A})\|_{2}. \end{aligned}$$