Triple Integration

Example

Integrate the following:

$$\iiint_B (8xyz) dV$$
 where $B=[2,3] imes [1,2] imes [0,1]$ $\int_2^3 \int_1^2 \int_0^1 (8xyz) dx dy dz = 15$

Example

Integrate the following:

 $\iiint_E (2x) dV$ where E is the region under the plane 2x+2y+z=6 in the first octant

We now need to determine the region D in the xy-plane. We can get a visualization of the region by pretending to look straight down on the object from above. What we see will be the region D in the xy-plane. So D will be the triangle with vertices at (0,0), (3,0), and (0,2). Here is a sketch of D.

$$\int_{0}^{3} \int_{0}^{rac{-2}{3}x+2} \int_{0}^{6-2x-2y} 2x dz dy dx = 9$$

Example

Evaluation $\iiint_E \sqrt{3x^2+3z^2}dV$ where E is the solid bounded by the plane $y=2x^2+2z^2$ and y=8

$$\int \int \int_{3x^2+3z^2}^8 \sqrt{3x^2+3z^2} dy dx dz \ \int \int \sqrt{3x^2+3z^2} (8-(2x^2+2z^2)) dA \ \sqrt{3} \int_0^{2\pi} \int_0^2 (8r-2r^3) r dr d heta = rac{256\sqrt{3}\pi}{15}$$

Spherical Coordinates

Finding the jacobian of spherical coordinates.

$$\begin{split} \frac{\partial \left(x,y,z\right)}{\partial \left(\rho,\theta,\varphi\right)} &= \begin{vmatrix} \sin\varphi\cos\theta & -\rho\sin\varphi\sin\theta & \rho\cos\varphi\cos\theta \\ \sin\varphi\sin\theta & \rho\sin\varphi\cos\theta & \rho\cos\varphi\sin\theta \\ \cos\varphi & 0 & -\rho\sin\varphi \end{vmatrix} \\ &= -\rho^2\sin^3\varphi\cos^2\theta - \rho^2\sin\varphi\cos^2\varphi\sin^2\theta + 0 \\ &\quad -\rho^2\sin^3\varphi\sin^2\theta - 0 - \rho^2\sin\varphi\cos^2\varphi\cos^2\theta \\ &= -\rho^2\sin^3\varphi\left(\cos^2\theta + \sin^2\theta\right) - \rho^2\sin\varphi\cos^2\varphi\left(\sin^2\theta + \cos^2\theta\right) \\ &= -\rho^2\sin^3\varphi - \rho^2\sin\varphi\cos^2\varphi \\ &= -\rho^2\sin\varphi\left(\sin^2\varphi + \cos^2\varphi\right) \\ &= -\rho^2\sin\varphi \end{aligned}$$

 $dV = \left| -\rho^2 \sin \varphi \right| \, d\rho \, d\theta \, d\varphi = \rho^2 \sin \varphi \, d\rho \, d\theta \, d\varphi$

Example

Evaluate $\iiint_E 16z dV$ where E is the upper half of the sphere $x^2+y^2+z^2=1$

$$\int \int \int 16z dV = \int_0^{\pi\over 2} \int_0^{2\pi} \int_0^1
ho^2 sin(\phi) (16
ho cos(\phi)) d
ho d heta d\phi = 4\pi$$

Example

Evaluate \iiint zx dV where E is inside $x^2+y^2+z^2=4$ and the cone (pointing upward) that makes an angle of $\frac{\pi}{3}$ with the negative z-axis and has $x\leq 0$

$$\int \int \int 16z dV = \int_{rac{\pi}{2}}^{rac{\pi}{2}} \int_{rac{\pi}{2}}^{rac{3\pi}{2}} \int_{0}^{2} (
ho cos(\phi)) (
ho sin(\phi) cos(heta)
ho^{2} sin(\phi) d
ho d heta d\phi = rac{8\sqrt{3}}{5}$$