

Spectral evolution of Very Massive Stars on the Main Sequence

Joris Josiek

Rio de Janeiro, June 2024

Zentrum für Astronomie der Universität Heidelberg (ZAH) / Astronomisches Rechen-Institut (ARI)

Very Massive Stars

 $M \gtrsim 100 M_{\odot}$

 $L \gtrsim 10^6 L_{\odot}$

 $T_{eff} \gtrsim 10~000~K$

R136 spectrum + VMS contribution Crowther et al. (2016)

Evolution modeling — a broad overview

Codes: MESA, GENEC, BEC, PARSEC, ...

Procedure

- Solve stellar structure equations
- 2. Evolve over a small timestep (mass loss, nuclear reactions, ...)

Simplified radiative transfer

→ Mean opacities from tables

Simplified boundary conditions

- → Grey atmosphere approximation (no wind!)
- \rightarrow In outer 2% of the star (by mass):
 - no convection
 - no nuclear reactions
 - no hydrostatic equilibrium

Modeling stellar evolution of VMS

Dedicated mass-loss scheme (Sabhahit et al. 2022)

Initial masses: 100–350 M_o

Metallicity: Solar

Rotation: 0; 10% V_{crit}

Evolution grid

Rotating (Main sequence only)

Atmosphere models on evolution tracks

Atmosphere modeling

For preliminary modeling:

cut @ TAUMAX=20 (spectral line formation happens above this)

only include H, He, C, N, O, Fe

hydrostatic integration + beta-law

stellar parameters taken from GENEC models

Spectral evolution of a non-rotating 150 ${\rm M}_{\odot}$ star

Acceleration structure

Acceleration structure

Acceleration structure

Does the atmosphere depth change spectra? YES!

Structure comparison

Shallow cutoff: TAUMAX = 20

Deep cutoff: TAUMAX = 2000

Stellar evolution parameters

km/s

 $M_{ini} = 150 M_{\odot}$ $M = 135 M_{\odot}$ logL = 6.39 $R_{deep} = 18.68 R_{\odot}$ $t_{evol} = 0.85 Myr$ $log \dot{M} = -4.63$ $v_{\infty} = 3992$

Structure comparison

Shallow cutoff: TAUMAX = 20Deep cutoff: TAUMAX = 911

Stellar evolution parameters

 $M_{ini} = 150 M_{\odot}$ $M = 135 M_{\odot}$ logL = 6.39 $R_{deep} = 18.68 R_{\odot}$ $t_{evol} = 0.85 Myr$ $log \dot{M} = -4.63$ $v_{\infty} = 3992$ km/s

Joris Josiek, Universität Heidelberg

Further work...

evolution of VMS atmosphere structure

deep vs. shallow atmosphere models

connection to stellar structure models

physical origin of VMS features in spectra

spectral classification of VMS from evolution codes

Summary

- 1 GENEC stellar evolution grid with new mass-loss scheme for 100-350 Msol
- $oldsymbol{2}$ PoWR atmosphere models on 150 M $_{\odot}$, connect at different optical depths (To be applied to the whole grid in the future)
- 3 Connection depth significantly impacts atmosphere structure + spectra e.g. spectral classification at 0.85 Myr unclear (WR or O?)
- 4 Quantitative analysis + interpretation to be done in future

