Adattípus fogalma (1. előadás)

- ♦ Típus-specifikáció
 - Típusértékek
 - ♦ Típusműveletek
- Típus megvalósítás
 - ♦ Típus-reprezentáció
 - ♦ Típus-implementáció

Adattípus fogalma

- Egy adat (változó) típusának definiálásához szükség van a típus specifikációjára és annak megvalósítására.
- ☐ A típus-specifikáció megadja:
 - · az adat által felvehető értékek halmazát
 - a típusértékekkel végezhető műveleteket
- □ A típus-megvalósítás megmutatja:
 - · hogyan ábrázoljuk (reprezentáljuk) a típus értékeit
 - milyen programok helyettesítsék (implementálják) a műveleteket

Ritka mátrixok helytakarékos ábrázolása

- Ritka mátrixok:
 - ♦ Bizonyos elemek mindig nulla értékűek.
 - ♦ A "nem nulla" elemek szabályos elhelyezkedésűek.
- Helytakarékos ábrázolás:
 - Nagy méret esetén érdemes csak azokat a mátrix elemeket tárolni, amelyek nullától különböző értéket (is) felvehetnek.

						_		-
	1	2					n	L
1	X							
2		X						
			X					
				X				
÷					X			
						X		L
n							X	

	1	2					n
1	X						X
2		X				X	
			X		X		
				X			
÷			X		X		
		X				X	
n	X						X

	1	2					n
1	X						
2	X	X					
	X	X	X				
	X	X	X	X			
	X	X	X	X	X		
	X	X	X	X	X	X	
n	X	X	X	X	X	X	X

	1	2						m
1	X		X		X		X	
2		X		X		X		X
	X		X		X		X	
		X		X		X		X
	X		X		X		X	
n		X		X		X		X

Diagonális mátrix

Négyzetes mátrix

Csak a főátlójában szerepelhetnek nullától különböző elemek:

- \Leftrightarrow A[i,j] = 0, \forall 1\le i,j\le n, i\neq j eset\(\'e\)n
- $\Leftrightarrow \ A[i,j] \neq 0, \quad \forall \ 1 {\leq} i,j {\leq} n, \ i {=} j \ eset\acute{e} n$

Tárolás: n méretű egydimenziós tömbben lehetséges:

	1	2					n		
1	X							1	X
2		X						2	X
			X						X
				X					X
٠.					X				X
						X			X
n							X	n	X

index(i,j) = i

Diagonális mátrix

Típus specifikáció (típus értékek, műveletek)

 $\mathsf{Diag}(\mathbb{R}^{\mathsf{n} imes \mathsf{n}})$

c := a+b	(a, b, c : Diag($\mathbb{R}^{n \times n}$))	
c := a·b	(a, b, c : $Diag(\mathbb{R}^{n \times n})$)	
e := a[i,j]	(a:Diag($\mathbb{R}^{n\times n}$), i,j: \mathbb{N} , e: \mathbb{R})	
a[i,j] := e	(a:Diag($\mathbb{R}^{n \times n}$), i,j: \mathbb{N} , e: \mathbb{R})	//ha i=j

Lekérdezés: e := a[i,j] Értékadás: a[i,j] := e ha i=j

Diagonális mátrix

Típus reprezentáció (típus értékek, műveletek)

	Diagoná	lis mátrix típus							
$Diag(\mathbb{R}^{n imes n})$	c := a+b	(a, b, c : $Diag(\mathbb{R}^{n \times n})$)							
	c := a·b	(a, b, c : Diag($\mathbb{R}^{n imes n}$))							
	e := a[i,j]	(a: Diag($\mathbb{R}^{n\times n}$), i,j: \mathbb{N} , e: \mathbb{R})							
	a[i,j] := e	(a: Diag($\mathbb{R}^{n imes n}$), i,j: \mathbb{N} , e: \mathbb{R})	//ha i=j						
$x{:}\mathbb{R}^n$	∀i∈[1n]: c.x[i	i] := a.x[i]+b.x[i]							
	∀i∈[1n]: c.x[i]	:= a.x[i]·b.x[i]							
	ha i=j akkor e := a.x[i] különben e := 0.0								
	ha i=j akkor a.:	x[i] := e							

Osztály diagram:

Diag		 if $i\notin[1 x]$ or $j\notin[1 x]$ then error endif if $i=j$ then return $x[i]$
- x : real[] + Diag(n:int) + Get(i:int, j:int) : real { query } + Set(i:int, j:int, e:real) + Add(a:Diag, b:Diag) : Diag + Mul(a:Diag, b:Diag) : Diag	0000	else return 0.0 endif if $i\notin[1 x]$ or $j\notin[1 x]$ then error endif if $i=j$ then $x[i]:=e$ else error endif if $ a.x \neq b.x $ then error endif $ c=new $ Diag($ a.x $) for $i=1 c.x $ loop $c.x[i]:=a.x[i]+b.x[i]$ return c if $ a.x \neq b.x $ then error endif $ c=new $ Diag($ a.x $) for $i=1 c.x $ loop $ c.x[i]:=a.x[i]+b.x[i]$ return $ c $

Alsó háromszög mátrix

Alsó háromszög mátrix

Valósítsuk meg az alsó háromszög mátrix típust (a mátrixok a főátlójuk felett csak nullát tartalmaznak)! Ilyenkor elegendő csak a főátló és az alatti elemeket reprezentálni egy sorozatban. Implementáljuk a mátrix i-edik sorának j-edik elemét visszaadó műveletet, valamint két mátrix összegét és szorzatát!

Alsó háromszög mátrix

Index függvény

$$ind(i,j) = j + \sum_{k=1}^{i-1} k = j + \frac{i(i-1)}{2}$$
, ha $1 \le j \le i \le n$

Próbák: i=1, j=1 index(1,1)=1 i=4, j=2 index(4,2)=8 i=7, j=7 index(7,7)=28

Alsó háromszög mátrix

Szorzás művelet

5.75	3=30					1.5										
				Α									В			
	1	2	3	4	5	6	7			1	2	3	4	5	6	7
1	X								1	X						
2	X	X							2	X	X					
3	X	X	X						3	X	X	X				
4	X	X	X	X					4	X	X	X	X			
5	X	X	X	X	X				5	X	X	X	X	X		
6	Х	Χ	Х	Χ	Х	Χ			6	X	X	X	X	X	X	
7	Х	X	X	X	X	X	X		7	X	X	X	X	X	X	X
	C[6	3,4]	=													
			A[6	3,1] ³	B [′	1,4]		+								
			A[6	6,2] ³	B[2	2,4]		+								
			A[6	6,3]	*B[3	3,4]		+								
			A[6	6,4] ³	*B[4	4,4]		+								
			A[6	3,5]	*B[5,4]		+								
			A[6	6,6]	*B[6	6,4]		+								
			A[6	3,7]	*B[7	7,4]										

Alsó háromszög mátrix

Szorzás művelet

$$\begin{split} \forall \text{i,j} \in & [\text{1..n}] \text{: ha } \text{i} \geq \text{j akkor} \\ & c. \, x \left[\frac{\text{i}(\text{i}-1)}{2} + \text{j} \right] \coloneqq \sum_{k=\text{j}}^{\text{i}} \text{a.} \, x \left[\frac{\text{i}(\text{i}-1)}{2} + k \right] \cdot \text{b.} \, x \left[\frac{k(k-1)}{2} + \text{j} \right] \end{split}$$

Alsó háromszög mátrix típus

$AHM(\mathbb{R}^{n imes n})$	c := a+b	(a, b, c : AHM($\mathbb{R}^{n \times n}$)) // azonos n-re
	c := a*b	(a, b, c : AHM($\mathbb{R}^{n \times n}$)) // azonos n-re
	e := a[i,j]	(a:AHM($\mathbb{R}^{n imes n}$), i,j: \mathbb{N} , e: \mathbb{R})
	a[i,j] := e	(a:AHM($\mathbb{R}^{n \times n}$), i,j: \mathbb{N} , e: \mathbb{R}) //hai≥j
$\mathbf{x}:\mathbb{R}^{n(n+1)/2}$	∀i∈[1n(n+1)/	'2]: c.x[i] := a.x[i]+b.x[i]
	\forall i,j \in [1n]: ha	i≥j akkor
	c. $x \left[\frac{i(i-1)}{2} + \right]$	$-j$] $\coloneqq \sum_{k=j}^{i} a. x \left[\frac{i(i-1)}{2} + k \right] \cdot b. x \left[\frac{k(k-1)}{2} + j \right]$
	ha i≥j akkor e	$:= a.x \left[\frac{i(i-1)}{2} + j \right] \text{ különben e := 0.0}$
	ha i≥j akkor a	$x\left[\frac{i(i-1)}{2}+j\right] := e$

Logaritmikus keresés

Logaritmikus keresés

- Rendezett sorozatban nagyon hatékony keresést biztosít.
- ♦ Elfelezve a keresés intervallumát, a középső elemmel összehasonlítja a keresett kulcsot, három eset lehetséges: [ah...fh] ind=(ah+fh) div 2 //egész osztás!
 - ♦ Keresett kulcs kisebb bal oldali részben folytatja a keresést: [ah…ind-1]
 - ♦ Keresett kulcs nagyobb jobb oldali részben folytatja a keresést [ind+1...fh]
 - ♦ Egyenlő megtaláltuk, készen vagyunk: ind a keresett elem indexe
 - ♦ Ha leszűkítés után kapott intervallum üres, akkor a keresés véget ért, sikertelen volt

Logaritmikus keresés

Keresett kulcs megtalálható:

Logaritmikus keresés

Keresett kulcs nem található:

	Keres	sük m	eg:	22										
34	1	2	3	4	5	6	7	8	9	10	11	ah	fh	ind
	2	4	5	7	8	11	15	21	23	25	30	1	11	6
-	ah					ind					fh			
	1	2	3	4	5	6	7	8	9	10	11	ah	fh	ind
	2	4	5	7	8	11	15	21	23	25	30	7	11	9
325		(p)				V.	ah		ind	54	fh			
	1	2	3	4	5	6	7	8	9	10	11	ah	fh	ind
	2	4	5	7	8	11	15	21	23	25	30	7	8	7
44							ah	fh						
	1	2	3	4	5	6	7	8	9	10	11	ah	fh	ind
	2	4	5	7	8	11	15	21	23	25	30	8	8	8
								ah,fh						
								ind						
82_	1	2	3	4	5	6	7	8	9	10	11	ah	fh	ind
	2	4	5	7	8	11	15	21	23	25	30	9	8	
_														

Zsák típus

Valósítsuk meg egy adott halmaz (E) elemeit tartalmazó zsák típusát úgy, hogy nincs felső korlát a zsákba bekerülő elemek számára. A szokásos (üres-e, betesz, kivesz, hányszor van benn egy szám) műveletek mellett szükségünk lesz a leggyakoribb elemet lekérdező műveletre is.

```
Bag
                            b := SetEmpty(b)
                                               b:Bag
                                                                  // kiüríti a zsákot
                                               b:Bag, l:L
                            I := Empty(b)
                                                                  // üres-e zsák
azon zsákok halmaza,
                                               b: Bag, e: E, c: N // elem multiplicitása
                            c:= Multipl(b, e)
amelyek elemei (E)
                            b := Insert(b, e)
                                                b:Bag, e:E
                                                                  // elemet tesz be
rendezhetőek
                            b:= Remove(b, e)
                                               b:Bag, e:E
                                                                  // elemet vesz ki
                                                                  // leggyakoribb elem
                            m := Max(b)
                                               b : Bag, m : E
```


- ♦ Logaritmikus keresés, van-e zsákban már "e" érték?
- Igen: count-ot növeljük eggyel, majd ellenőrizzük, hogy kell-e módosítani a leggyakoribb elem indexét.
- Nem: beszúrjuk az elemet a rendezettség szerinti helyére. Ha maxind egy nagyobb indexű elemre mutat, akkor eggyel növelni kell

Elem szerinti keresés [átkerülhet a következő gyakorlat elejére]

```
\begin{split} A &= (\text{seq}: \text{Pair*}, \text{e}: \text{E, I}: \mathbb{L}, \text{ind}: \mathbb{N}) \\ \text{Ef} &= (\text{seq} = \text{seq}_0 \ \land \ \text{e} = \text{e}_0 \ \land \ \forall i \in [1 \ .. \ | \text{seq[i]}. \text{data} < \text{seq[i+1]}. \text{data}) \\ \text{Uf} &= (\text{Ef} \ \land \ | = \ \exists i \in [1 \ .. \ | \text{seq[i]}. \text{data} = \text{e} \ \land \\ & ( \ | \ \rightarrow \ \text{ind} \in [1 \ .. \ | \text{seq[i]} \ \land \ \text{seq[ind]}. \text{data} = \text{e}) \ \land \\ & ( \ \neg \ | \ \rightarrow \ \forall i \in [1.. \text{ind-1]}: \text{seq[i]}. \text{data} < \text{e} \ \land \ \forall i \in [\text{ind..} \ | \text{seq[i]}. \text{data} > \text{e}) \ ) \end{split}
```

I, ind := logSearch (seq, e)

l, a	h, fh := ham	is, 1, seq	I	ah, fh : №							
¬l ∧ ah ≤ fh											
ind := [(ah + fh) / 2]											
\seq[ind].key > key \seq[ind].key = key \seq[ind].key < key											
fh := ind-1											
¬I											
ind := ah —											

b := Remove(b,e)

b:Bag, e:E

I, ind := logSearch(seq, e) // data szerint		
I		
seq[ind].count > 1	seq[ind].count = 1	
seq[ind].count :=	seq := seq[1ind-1]	-
seq[ind].count-1	Φ	
	seq[ind+1 seq]	
seq >0		
max, maxind := $MAX_{i=1 seq }$ (seq[i].count) -		

- ♦ Logaritmikus keresés, van-e zsákban "e" érték?
- ♦ Van, és több mint egy: count-ot csökkentjük eggyel.
- ♦ Van, de csak egy: az adott elmet kihagyjuk a sorozatból.
 - Nincs: hatástalan.
- ♦ Ha volt törlés, a leggyakoribb elem megváltozhatott, frissíteni kell.

Osztály:

```
I, ind := LogSearch(e)
               if I then return seq[ind].count
               else return 0
               endif
                                           if |seq|>0 then return seq[maxind].data endif
                  Bag
                                           I, ind := LogSearch(e)
- seq : Element[]
                     return |seq|=0
                                           if I then
- maxind : int
                                             ++seq[ind].count
+ SetEmpty() o seq := <>
                                             if seq[ind].count > seq[maxind].count then maxind := ind endif
+ Empty() : bool {query}
+ Multipl(e : E) : int {query}
                                             seq := seq[1..ind-1] \oplus <(e,1)> \oplus seq[ind+1..|seq|]
+ Max() : E {query}
                                      o
                                             if |seq|=1 then maxind := 1
+ Insert(e: E)
                                              elsif maxind>ind then ++maxind
+ Remove(e: E)
                                              elseif skip
LogSearch(e:E) : (bool,int) {query} o
                                             endif [I, ind := LogSearch(e)
                                           endif
                                                     if I then
                                                       if seq[ind].count > 1 then
I, ah, fh := false, 1, |seq|
                                                         -- seq[ind].count
while not I and ah ≤ fh loop
                                                       elsif seq[ind].count = 1 then
  ind := (ah + fh) / 2
                                                          seq := seq[1..ind-1] \oplus seq[ind+1..|seq|]
       seq[ind].data > e then fh := ind-1
  elsif seq[ind].data = e then | l := true
                                                       if |seq|>0 then max, maxind := MAX_{i=1..|seq|} (seq[i].count) endif
  elsif seq[ind].data < e then ah := ind+1
                                                     endif
endloop
if not I then ind := ah endif
return (I, ind)
```