Algorithmics	Student information	Date	Number of session
	UO: UO269412		4
	Surname: Carrillo	Escuela de Ingeniería	
	Name: lavier		

Activity 1. Salesman

Greedy1

This algorithm calculates the path by finding the smallest path between the closest nodes, to find the path and calculate the smallest cost that way. This approach includes a boolean array to identify if a node is already included in the path or not. Due to using a two for loop approach, we can consider the complexity of the method as $O(n^2)$.

Greedy2

Since I didn't finish the method because I didn't exactly know how to program it, I can't determine the complexity of the program. If we consider the first test case, which for the implementation I did works (since no more than 1 element is created), the complexity there is $O(n^2)$.

Activity 2. SalesmanTimes

nTimes = 1000	Greedy1	
N	Time	
1280	4	
2560	14	
5120	45	
10240	150	
20480	527	

Since Greedy2 wasn't finished, I didn't record the times.

Greedy1 works fine, but it is not a really optimal solution because getting a node as a target, may lead to, such node as a source may have very high cost paths to all nodes but to other that we've already visited, thus increasing the cost a lot. To see if the times follow the complexity trend, we calculate the theorical times t2. For n2 = 2560, n1 = 1280 and t1 = 4, the obtained t2 is 14, and the theorical t2 Is 16. To the n2 = 10240, n1 = 5120, t1 = 45, the obtained t2 = 150, close to the theorical t2 180. Thus, we can conclude that the complexity is indeed $O(n^2)$