8th International Conference on Cyber-Physical Systems and Internet-of-Things (CPS&IoT'2020)

Budva, Montenegro, June 2020

Abdelhakim Baouya, Salim Chehida, Saddek Bensalem and Marius Bozga Univ. Grenoble-Alpes, FR

FOG COMPUTING AND BLOCKCHAIN TECHNOLOGY FOR MASSIVE IOT DEPLOYMENT

INTRODUCTION

SYSTEM ARCHITECTURE

PROOF-OF-CONCEPT EVALUATION

CONCLUSION

INTRODUCTION

The Economist, 2015:The trust machine..... will reshape the world that we know

Crowdfunding

Record Industry

INTRODUCTION

- P. cui & al: Data integrity and reliable access tracking for IoT devices to resolve the device counterfeit problem,
- X. Wang & al, M. A. Ferrag & al : Establish trust in IoT.
- G. Rathee & al: Trace each worker's activity.
- M. Debe & al: Compute device credibility and reputation for a fog node coming after each vote from IoT device.

TOWARDS AN IOT REFERENCE ARCHITECTURE

Resource: an executable code available at the device

Service: a standardized interface for interacting with devices

Application: are those available at the fog or the cloud

Smart Gateway: implementing functionalities for orchestrating software-software and software-hardware communication.

Spill gate level management

IOT REFERENCE ARCHITECTURE

Virtual entities : are digital representations of device entity.

Communication layer : provides connectivity for transaction flow

The contract layer includes smart contracts and consensus mechanisms

The communication layer includes all protocols for transaction flow

The hardware layer includes devices and gateways

FogID: ID of the interested Fog node.

R: The list of the configuration list sent by the administrator.

deviceList = queryAllDevicesInFog(FogID)
for ioTdevice in deviceList do

for config *in* R do

if ioTdevice.DeviceID==config.DeviceID

then

ioTdevice.status = config.request;

event(ioTdevice);

end

config= R.next();

end

ioTdevice= deviceList.next();

end

DeviceID: ID of the interested device.

SensedData: Sensed Data of the interested device.

FogID: ID of the interested Fog node. deviceList = queryAllDevicesInFog(FogID)

for ioTdevice in deviceList do

if ioTdevice.DeviceID==DeviceID then
 if ioTdevice.status=='READ' then

ioTdevice.value = SensedData;

else

if ioTdevice.status=='WRITE' then
 event(ioTdevice, type.write);

else

if ioTdevice.status=='Enable' then
 event(ioTdevice, type.enable);

else

event(ioTdevice, type.disable);

end

DeviceID: ID of the interested device. **SensedData**: Sensed Data of the interested device.

device.

FogID: ID of the interested Fog node.

deviceList = queryAllDevicesInFog(FogID)

for ioTdevice in deviceList do

if ioTdevice.DeviceID==DeviceID then

if ioTdevice.status=='READ' then

ioTdevice.value = SensedData;

else

if ioTdevice.status=='WRITE' then

event(ioTdevice, type.write);

else

if ioTdevice.status=='Enable' then

event(ioTdevice, type.enable);

else

event(ioTdevice, type.disable);

end

DeviceID: ID of the interested device.

SensedData: Sensed Data of the interested device.

FogID: ID of the interested Fog node. deviceList = queryAllDevicesInFog(FogID)

for ioTdevice *in* devicel ist **do**

if ioTdevice.DeviceID==DeviceID then if ioTdevice.status=='READ' then

ioTdevice.value = SensedData;

else

if ioTdevice.status=='WRITE' then event(ioTdevice, type.write);

else

if ioTdevice.status=='Enable' then event(ioTdevice, type.enable);

else

event(ioTdevice, type.disable);

end

DeviceID: ID of the interested device. **SensedData**: Sensed Data of the interested device.

end

PROOF-OF-CONCEPT EVALUATION

Network utilization

Average	Min	Max
2.36 Bps	3.01 Bps	3.54 Bps

Energy consumption

Average	Min	Max
16.35 J	33.14 J	38.52 J

PROOF-OF-CONCEPT EVALUATION: MASSIVE IOT DEPLOYMENT

Experiment:

- 1. 5 Groups with sizes from 20 to 100 IoT devices,
- 2. The average total processing time is measured as the average time for the administrator requests/replies to all devices in the group.

PROOF-OF-CONCEPT EVALUATION: MASSIVE IOT DEPLOYMENT

The average total processing time

PROOF-OF-CONCEPT EVALUATION: MASSIVE IOT DEPLOYMENT

The average total processing time

CONCLUSION

- A Blockchain-based architecture is proposed to enrich a classical fog/cloud architecture,
- Fog node is endowed with an instance of Blockchain in charge of data persistence and continuous ensuring of data veracity,
- IoT reference architecture encompassing Blockchain IoT idiosyncrasy is presented,
- Experimental results indicate that the resource utilization of IoT devices is negligible.

BAOUYA ABDELHAKIM

RESEARCHER

UNIVERSITY GRENOBLE ALPES, FRANCE

abdelhakim.baouya@univ-grenoble-alpes.fr

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 780089.

