Department of Electrical and Computer Engineering

The University of Texas at Austin

EE 460N, Fall 2016 Problem Set 4 Solutions Yale N. Patt, Instructor Siavash Zangeneh, Ali Fakhrzadehgan, Steven Flolid, Matthew Normyle, TAs

Problem Set 4 Solutions

- 1. 1.-3.25
 - 2. 1.25 x 2^(-128)
 - 3. Negative Infinity

2.

3. Multiplicand is 0011011110.

Cycle	Multiplier	Temp register
0	0001110010	0000000000
1	00011100	000110111100
2	000111	00000110111100
3	0010	1111001111011100
4	00	000110001011011100
5		00000110001011011100

The result is 00000110001011011100.

- 4. The exponent field has a value 63. Therefore the exponent is 63-63=0. The value is 1.0000001111111111 * 2^0. This value is 1.0156.
- 5. The bias for the 1-8-23 IEEE format is 127.

Adjusting exponents, we get

```
1.11 * 2^(-2)
0.01 * 2^(-2)
```

Since the exponents are now the same, we can add the two fractions. The result has the same exponent as the operands. The result is: $10.00 \times 2^{(-2)}$. When normalized to IEEE format, this becomes $1.00 \times 2^{(-1)}$,

6.Model 0.001: 1-7-8

```
This model has (8+1) binary bits of precision. Since 1024 (2^10) is approximately 1000 (10^3); 10 binary bits of precision correspond to about 3 decimal digits of precision. Hence, this model has 9 * (3/10) = 2.7 decimal digits of precision

Model 0.002: 1-5-10

Smallest positive normalized number is 0 00001 0000000000 = 1.0 * 2^1-15 = 2^1-14

Largest postive normalized number is 0 11110 1111111111 = 1.11111111111 * 2^1-15 = 1.11111111111 * 2^1-15
```

This model has (10+1) binary bits of precision. Hence, this model has 11 * (3/10) = 3.3 decimal digits of precision

The model chosen would depend on the application - if a higher range is desired, then model 0.001 is better; if precision is more important, then model 0.002 will be preferred.

7. a. 5 bits

b. 1

c.

48	0	110	10000
19.5	0	101	00111
5/16	0	000	01010
0	0	000	00000
-1	1	001	00000
infinity	1	111	00000

8. The truth table to implement the logic is as follows

4LSB of Multiplier	1st stage LSHF	operation performed	2nd stage LSHF	Borrow-Out	Total Bits processed
0000	0	N/A	4	0	4
0001	0	ADD	4	0	4
0010	1	ADD	3	0	4
0011	0	SUB	2	1	2
0100	2	ADD	2	0	4
0101	0	ADD	2	0	2
0110	1	SUB	2	1	3
0111	0	SUB	3	1	3
1000	3	ADD	1	0	4
1001	0	ADD	3	0	3
1010	1	ADD	2	0	3
1011	0	SUB	2	1	2
1100	2	SUB	2	1	4
1101	0	ADD	2	0	2
1110	1	SUB	3	1	4
1111	0	SUB	4	1	4

Average number of bits processed in a cycle = (4+4+4+2+4+2+3+3+4+3+3+2+4+2+4+4)/16 = 3.25

9. Assume an ADD operation is executed like this in the pipeline:

1 2 3 4 5 6 7 F D A A A A A S

and a MUL operation is executed like this in the pipeline:

1 2 3 4 5 6 7 8 9 F D M M M M M M M S

F: Fetch, D: Decode, A: Execute stage (for ADD), M: Execute stage for MUL, S: Store result (Write-back)

- a. ADDs require 7 cycles (fetch, decode, 4 execute, store), and MULs require 9 cycles (fetch, decode, 6 execute, store). For 3 ADD instructions and 3 MUL instructions, the execution time is 3 x 7 + 3 x 9 = 48 cycles.
- b. Pipeline with scoreboarding and five adders and five multipliers (assuming one instruction fetched per cycle):
 - i. No data forwarding: the destination register is marked valid in the S stage (a dependent instruction starts executing after the S stage of the instruction it depends on)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
F	D	M	M	M	M	M	M	S																	
	F	D	D	D	D	D	D	D	A	A	A	A	S												
		F	F	F	F	F	F	F	D	Α	Α	Α	Α	S											
									F	D	M	M	M	M	M	M	S								

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
										F	D	D	D	D	D	D	D	A	A	A	A	S			
											F	F	F	F	F	F	F	D	M	M	M	M	M	M	S

Execution time: 26 cycles

ii. With forwarding:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
F	D	M	M	M	M	M	M	S															
	F	D	D	D	D	D	D	A	A	A	A	S											
		F	F	F	F	F	F	D	Α	Α	Α	Α	S										
								F	D	M	M	M	M	M	M	S							
									F	D	D	D	D	D	D	A	A	A	A	S			
										F	F	F	F	F	F	D	M	M	M	M	M	M	S

Execution time: 24 cycles

- c. Pipeline with scoreboarding and one adder and one multiplier (assuming one instruction fetched per cycle):
 - i. The adder and multiplier are not pipelined and there is no data forwarding:

1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
F	7	D	M	M	M	M	M	M	S																				
		F	D	D	D	D	D	D	D	Α	Α	Α	Α	S															
			F	F	F	F	F	F	F	D	D	D	D	Α	Α	Α	Α	S											
										F	F	F	F	D	M	M	M	M	M	M	S								
														F	D	D	D	D	D	D	D	Α	Α	Α	Α	S			
															F	F	F	F	F	F	F	D	M	M	M	M	M	M	S

Execution time: 29 cycles

ii. The adder and multiplier are not pipelined and there is data forwarding:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
F	D	M	M	M	M	M	M	S																		
	F	D	D	D	D	D	D	Α	A	Α	Α	S														
		F	F	F	F	F	F	D	D	D	D	Α	Α	Α	A	S										
									F	F	F	D	M	M	M	M	M	M	S							
												F	D	D	D	D	D	D	Α	Α	Α	Α	S			
													F	F	F	F	F	F	D	M	M	M	M	M	M	S

Execution time: 27 cycles

iii. The adder and multiplier are pipelined and there is no data forwarding:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
F	D	M	M	M	M	M	M	S																	
	F	D	D	D	D	D	D	D	Α	Α	Α	Α	S												
		F	F	F	F	F	F	F	D	Α	Α	Α	Α	S											
									F	D	M	M	M	M	M	M	S								
										F	D	D	D	D	D	D	D	Α	Α	Α	Α	S			
											F	F	F	F	F	F	F	D	M	M	M	M	M	M	S

Execution time: 26 cycles

iv. The adder and multiplier are pipelined and there is data forwarding:

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
D	M	M	M	M	M	M	S															
F	D	D	D	D	D	D	Α	Α	Α	Α	S											
	F	F	F	F	F	F	D	Α	A	Α	A	S										
							F	D	M	M	M	M	M	M	S							
								F	D	D	D	D	D	D	Α	Α	Α	Α	S			
									F	F	F	F	F	F	D	M	M	M	M	M	M	S
	D	D M F D	D M M F D D	D M M M F D D D	D M M M M F D D D D	D M M M M M F D D D D D	D M M M M M M F D D D D D	D M M M M M M M S F D D D D D D A F F F F F F D	D M M M M M M M S F D D D D D A A F F F F F F D A F D D D D D D D	D M M M M M M M S F D D D D D A A A F F F F F D A A F D M F D M	D M M M M M M S F D D D D A A A A F F F F F D A A A F D M M M F D D	D M M M M M M M S F D D D D D A A A A S F F F F D A	D M M M M M M M S F D D D D A A A A A S F F F F F D A A A A A S F D M M M M M M M M	D M M M M M M M M S F D D D D D A A A A S F F F F D A A A A S F F D D D D D D D	D M M M M M M M S F D D D D A A A A A S F F F F D A A A A S F D M M M M M M M M M M M M D	D M M M M M M M S F D D D D D A A A A S F F F F D A A A A S F F D D D D D D D D A	D M M M M M M M S F D D D D A A A A S F F F F D A A A A S F D D D D D D D D A A	D M M M M M M M S F D D D D A A A A S F F F F F D A A A A S F D M M M M M M M S F D D D D D D D A A	D M M M M M M M S F D D D D A A A A S F F F F F D A A A A S F D D D D D D D D A A	D M M M M M M M S F D D D D A A A A S F F F F F D A A A A S F D D D D D D A A A A	D M M M M M M M S F D D D D D A A A A S F F F F F F D A A A A S F D D D D D D A A A A S	F D D D D D A A A A S F F F F F D A A A S F D D D D D A A A A S F D D D D D A A A A S

Execution time: 24 cycles

- 10. Assumptions:
 - There are enough ports to the register file.

- o There are enough ports to the memory.
- There are separate execution units for ADD, AND, STW, and BR instructions (They can all be in the execute stage at the same time.)
- a. Pipeline diagram:

Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			Sta	rt of	first	iter	atior	ı (R	1 is e	even)				
STW	F	D	Е	Е	Е	S									
ADD		F	D	Е	Е	Е	S								
AND			F	D	Е	Е	S								
BRz				F	D	D	Е	S							
ADD								F	D	Е	Е	Е	S		
ADD									F	D	Е	Е	Е	S	
BRp										F	D	D	D	Е	S
		Eı	nd of	the	first	itera	tion	(R1	is c	dd n	ow)				
STW															F

The loop takes the same number of cycles to execute for even and odd values of R1. Each iteration takes 14 cycles in the steady state. There are 5 iterations for even values of R1 and 4 iterations for odd values of R1. The total number of cycles is:

$$(14 \times 5) + (14 \times 4) + 1 = 127$$

The extra 1 cycle comes from the last iteration (Store result stage of the BRp instruction).

b. Pipeline diagram: Note that predicted branches are decoded immediately, and then stalled in EXECUTE stage until branch dependey is resolved.

Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				St	art of	first i	terati	ion (R	1 is e	ven)						
STW	F	D	E1	E2	E3	S										
ADD		F	D	E1	E2	E3	S									
AND			F	D	E1	E2	S									
BRz				F	D	E1	E1	S								
ADD					F	D	E1	E2	E3	S						
ADD						F	D	E1	E2	E3	S					
BRp							F	D	E1	E1	E1	S				
	End of the first iteration (R1 is odd now)															
STW								F	D	E1	E2	E3	S			

The loop takes the same number of cycles to execute for even and odd values of R1. Each iteration takes 12 cycles but 5 cycles can be overlapped with the next iteration. The total number of cycles is:

$$(7 \times 9) + 5 = 68$$

c. BRz instruction will always be predicted not taken. It is taken when R1 is even. So it will be mispredicted when R1 is even and correctly predicted when R1 is odd. The following diagram shows three consecutive iterations of the loop. In the first iteration, BRz is mispredicted, in the second iteration it is correctly predicted.

The first BRp instruction is always predicted taken. It is always predicted correctly. The second BRp instruction is also always predicted taken. It is mispredicted only once in the last iteration of the loop.

```
4 5
                          6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3
STW
       F | D | E | E | E | S
ADD
         F | D | E | E | E | S
              F | D | E | E | S
AND
BRz
                  F | D |
                            | E | S (Mispredicted)
                   F | D | E | Flushed
ADD R1, R1, #3
ADD R5, R5, #-1
                          F | D | Flushed
BRp DOIT
                             F | Flushed
                                  F | D | E | E | E | S
ADD R1, R1, #1
                                      F | D | E | E | E | S | F | D | | | E | S (Correctly predicted)
ADD R7, R7, #-1
BRp DOIT
                                                                                       ----- Start of second it
STW
                                              F | D | E | E | E | S
ADD
                                                  F | D | E | E | E | S
AND
                                                      F | D | E | E | S
                                                          F | D |
                                                                   | E | S (Correctly predicted)
BR7
                                                             F | D | E | E | E | S
F | D | E | E | E | S
ADD R1, R1, #3
ADD R5, R5, #-1
BRp DOIT
                                                                     F | D |
                                                                                   | E | S (Correctly predicted)
                                                                                             ----- Third iteration (R1
STW
                                                                         F | D | E | E | E | S
ADD
                                                                             F | D | E | E | E | S
                                                                                 F | D | E | E | S
AND
                                                                                     F | D |
BRz
                                                                                              | E | S (Mispredicted)
                                                                                           | D | E | Flushed
ADD R1, R1, #3
ADD R5, R5, #-1
                                                                                             F | D | Flushed
BRp DOIT
                                                                                                 F | Flushed
                                                                                                     F | D | E | E | E | S
ADD R1, R1, #1
```

Loop steady state is shown above. It takes 17 cycles and it is repeated 4 times. The beginning of the loop (until the steady state) takes 10 cycles as shown above. The end of the loop (part of the last iteration which is not in steady state) takes 5 more cycles to execute. The total number of cycles is:

$10 + (4 \times 17) + 5 = 83$

Prediction accuracies for each branch are:

- BRz = 4/9 (Correctly predicted when R1 is odd, R1 is odd for 4 iterations of the loop)
- first BRp = 4/4
- second BRp = 4/5 (Mispredicted only in the last iteration Note that this misprediction does not affect the number of cycles it takes to execute the loop)

Combined branch prediction accuracy = 12/18 = 67%

11. 1.

•		
1	ADD R7, R6, R7	
2	ADD R3, R6, R7	
3	MUL R0, R3, R6	
4	MUL R2, R6, R6	
5	ADD R2, R0, R2	

2..

-	Z	10	1	Z	11
1	Z	10	0	a	11
0	x	4	0	у	6

1 z 10 1 z 10

3

	V	tag	value
R0	0	Х	4
R1	1	Z	5
R2	0	С	6
R3	0	Ь	7
R4	1	Z	8
R5	1	Z	9
R6	1	Z	10
R7	0	a	11

12. Assume the destination register is indicated first, followed by the source(s).

(As stated in the question, cycle counts assume a 16-way interleaved memory so that a new access can be started each cycle. Also, the adder and multiplier are pipelined.)

1. Scalar processor (one of the possible solutions)

	MOVI	R0,	0		(1 cycle)
	LEA	R4,	A		(1 cycle)
	LEA	R5,	В		(1 cycle)
	LEA	R6,	С		(1 cycle)
	LEA	R7,	D		(1 cycle)
LOOP	LD	R1,	R5,	R0	(11 cycles)
	LD	R2,	R6,	R0	(11 cycles)
	LD	R3,	R7,	R0	(11 cycles)
	MUL	R1,	R1,	R2	(6 cycles)
	ADD	R1,	R1,	R3	(4 cycles)
	RSHFA	R1,	R1,	1	(1 cycle)
	ST	R1,	R4,	R0	(11 cycles)
	ADD	R0,	R0,	1	(4 cycles)
	ADD	R1,	RO,	-100	(4 cycles)
	BNZ	LOO	P		(1 cycle)

 $5 \times 1 + 100 \times (11 + 11 + 11 + 6 + 4 + 1 + 11 + 4 + 4 + 1) = 6405$ cycles

2. Vector Processor:

The loop could be split into two parts as 64 and 36. Assume the vector code looks as follows: (This solution assumes that the addressing mode VLD V0, B+64 exists - if it doesn't, then you would need 4 + 3 cycles using a pipelined adder to add 64 to A,B,C,D)

```
LD Vln, #64 (1 cycle)

LD Vst, #1 (1 cycle)

VLD V0, B (11 + 63 cycles)

VLD V1, C (11 + 63 cycles)

Vmul V2, V0, V1 (6 + 63 cycles)

VLD V3, D (11 + 63 cycles)

Vadd V4, V2, V3 (4 + 63 cycles)

Vrshfa V5, V4, 1 (1 + 63 cycles)

VST V5, A (11 + 63 cycles)

VLD V1, #36 (1 cycle)

VLD V0, B+64 (11 + 35 cycles)

Vmul V2, V0, V1 (6 + 35 cycles)

VLD V3, D+64 (11 + 35 cycles)

VLD V3, D+64 (11 + 35 cycles)

VLD V3, D+64 (11 + 35 cycles)

Vadd V4, V2, V3 (4 + 35 cycles)

Vrshfa V5, V4, 1 (1 + 35 cycles)

VST V5, A+64 (11 + 35 cycles)
```

1. Vector processor without chaining (vector instructions done serially)

First part:

```
|-1-|-1-|--63---|-11--|--63---|-11--|--63---|-11--|
```

Second part:

```
|-1-|--11--|--35--|-11--|--35--|-11--|--35--|-1-|--35--|-1-|--35--|-1-|--35--|-1-|--35--|-1-|--35--|
```

$2 + (74 \times 4 + 69 + 67 + 64) + 1 + (46 \times 4 + 41 + 39 + 36) = 799$ cycles

2. Vector processor with chaining, 1 port to memory.

Chaining means the machine begins the next operation as soon as the operands are ready.

Chaining, in this instance, hides the VMULT, VADD, and VSHL operations. Memory becomes the primary bottleneck.

482 cycles

3. Vector processor with chaining; 2 loads, 1 store per cycle.

```
|-1-|-1-|--11--|---63---|
                      VLD V0, B
      |--11--|---63---|
                       VLD V1, C
           |-6-|---63---|
                |--11--|------63------| VLD V3, D Needs to wait until
                      |-4-|---63---|
                         |-1-|---63---|
                            |-1-|--11--|---35---| VLD V0, B+64 (this finishes soc
                                            |--11--|---35----| VLD V1, C+6
                                                 |-6-|---35----|
                                                     |--11--|--35--|
                                                          1-4-1--35--1
                                                             |-1-|--35--|
                                                                |--11--|--35--|
```

cycles = 1 + 1 + (11 + 63) + 11 + 4 + 1 + 1 + 1 + (11 + 35) + 11 + 6 + 11 + 4 + 1 + (11 + 35) = 219 cycles

Another solution is to split the loop into two equal parts as 50 and 50.

```
Vln, #50
T<sub>1</sub>D
                                        (1 cycle)
LD
          Vst, #1
                                       (1 cycle)
          V0, B
VID
                                       (11 + 49 \text{ cycles})
VLD
          V1, C
                                     (11 + 49 cycles)
                                   (6 + 49 cycles)
(11 + 49 cycles)
Vmul
          V2, V0, V1
        V3, D
V4, V2, V3

a V5, V4, 1
V5, A
V0, B+50
V1, C+50
V2, V0, V1
V3, D+50
(11 + 49 cycles)
V1, C+50
(11 + 49 cycles)
V2, V0, V1
(6 + 49 cycles)
V3, D+50
(11 + 49 cycles)
          V3, D
VT<sub>1</sub>D
Vadd
Vrshfa V5, V4, 1
VST
VLD
VLD
Vmul
VT<sub>1</sub>D
                                 (4 + 49 cycles)
Vadd
        V4, V2, V3
                                       (1 + 49 \text{ cycles})
Vrshfa V5, V4, 1
VST
          V5, A+50
                                       (11 + 49 \text{ cycles})
```

1. Vector processor without chaining (vector instructions done serially)

First part:

Second part:

$2 + (74 \times 4 + 69 + 67 + 64) + (46 \times 4 + 41 + 39 + 36) = 798$ cycles

- 2. Vector processor with chaining, 1 port to memory. This part for solution B will be the same as solution B. Total = 482 cycles
- 3. Vector processor with chaining; 2 loads, 1 store per cycle

1 + 1 + (11 + 49) + 11 + 4 + 1 + 1 + (11 + 49) + 11 + 4 + 1 + (11 + 49) = 215 cycles

- 13. 1. X is the Vector Index Register, which holds the pointer to the element that is being processed by the vector instruction.
 - 2. The two control signals are RESET.VINDEX and INCREMENT.VINDEX

 $4. \ The \ following \ solution \ assumes \ a \ change \ to \ the \ microsequencer \ to \ branch \ according \ to \ the \ Z \ condition \ code.$

- . This problem has been postponed to problem set 5
- 15. This problem has been postponed to problem set 5
- . This problem has been postponed to problem set 5