Agile Trajectory Generation for Tensile Perching with Aerial Robots

Progress Update

- Returned to PyBullet utilising demo trajectory
 - Repackaged the C++ Bullet Engine to get the joint type that I wanted.
 - Changed to dimensions/weights used in the previous experiment
 - Demo
 - Currently with 25 segments looks reasonably realistic and works quite well.
 - I can collect data with 100 segments but the graphics don't display well and cause a lot of lag.
 - But works well with GUI disabled for training purposes.

Overall Plans

- Drone Dynamics Model (25th Feb) (1/4 Weeks)
 - Towards the end of this when I had originally planned.
 - Will require refinement with further dynamics data when available.
- Demonstration Data Collection (10th March) main item I have to discuss today.
- Learning from Demonstrations Model (21st April)

Plans Until Next

- Over the next two weeks until Exam Break (8th March 23rd March)
 - Start intergrating existing demonstration data algorithms along with the analytical solutions previously calculated to learn from this model.

Questions

• Demonstration Data Collection.