Lifting The Exponent Lemma (LTE)

Version 6 - Amir Hossein Parvardi April 7, 2011

Lifting The Exponent Lemma是求解指数丢番图方程(不定方程)的有效方法。它在奥林匹克民间传说中非常有名(例如,参见[3]),尽管其起源很难追溯。在数学上,它是数论中经典Hensel引理(见[2])的近亲(在证明的陈述和观点中)。在本文中,我们分析了这种方法并介绍了它的一些应用。

在涉及指数方程的许多问题中,我们可以使用Lifting The Exponent Lemma(这是一个长名称,我们称之为LTE!),特别是我们可以找到某些质因子的时候。有时LTE引理甚至能秒杀一道题。这个引理显示了如何找到素数p的最大幂——通常 \geqslant 3——a^n \pm b^n型——本文中定理和引理的证明没有任何复杂难理解之处,所有这些都使用了初等数学。理解定理的用法及其含义对于你来说比记住它的详细证明更重要。

我要感谢Fedja, darijgrinberg (Darij Grinberg), makar和ZetaX (Daniel) 对这篇文章的帮助。我特别感 谢JBL (Joel) 和Fedja对TeX的帮助。

1 定义和符号

对于两个整数a和b,我们说a可被b整除并写入b | a且仅当存在某个整数q时a =qb。

我们将 $v_p(x)$ 定义为素数p除以x的最大幂; 特别是,当 $v_p(x) = \alpha$, $p^{\alpha} \mid x$ 但是 $p^{\alpha+1} \nmid x$. 我们也会写成 $p^{\alpha} \mid x$,当且仅当 if $v_p(x) = \alpha$. 所以我们有 $v_p(xy) = v_p(x) + v_p(y)$ 和 $v_p(x+y) \geq \min \{v_p(x), v_p(y)\}$.

例子. 除以 63 的3的最大幂 是 3^2 . 因为 $3^2=9\mid 63$ 但是 $3^3=27\nmid 63$.特别的, $3^2 \| 63$ 或 $v_3(63)=2$.

例子. 显然,我们看到如果p和q是两个不同的素数,那么 $v_p(p^\alpha q^\beta) = \alpha, \text{ or } p^\alpha \| p^\alpha q^\beta.$

注意. 对于所有素数p $v_p(0) = \infty$.

2 两个重要且有用的引理

引理**1.**令x和y为(不必为正)整数,并使n为正整数。 给定任意素数p(p = **2**是特别的情况),使得gcd(n, p) = **1**, p | x-y并且x和y都不能被p整除(即,płx和pły)。 我们有

$$v_p(x^n - y^n) = v_p(x - y).$$

证明. 我们有

$$x^{n} - y^{n} = (x - y)(x^{n-1} + x^{n-2}y + x^{n-3}y^{2} + \dots + y^{n-1})$$

现在,如果我们证明了 $p \nmid x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \cdots + y^{n-1}$,那么我们就做完了. 表明这一点,我们使用假设 $p \mid x - y$ 。 所以我们有 $x - y \equiv 0 \pmod p$),或 $x \equiv y \pmod p$)。 从而

$$x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + y^{n-1}$$

$$\equiv x^{n-1} + x^{n-2} \cdot x + x^{n-3} \cdot x^2 + \dots + x \cdot x^{n-2} + x^{n-1}$$

$$\equiv nx^{n-1}$$

$$\not\equiv 0 \pmod{p}.$$

这样就完成了证明。

引理 $\mathbf{2}$.设 \mathbf{x} 和 \mathbf{y} 为(不必为正)整数,令 \mathbf{n} 为奇数正整数。 给定任意素数 \mathbf{p} (\mathbf{p} = $\mathbf{2}$ 是特别的情况),使得 \mathbf{g} cd(\mathbf{n} , \mathbf{p})= $\mathbf{1}$, \mathbf{p} | \mathbf{x} + \mathbf{y} 并且 \mathbf{x} 和 \mathbf{y} 都不能被 \mathbf{p} 整除,我们有

$$v_{\mathcal{P}}(x^n + y^n) = v_{\mathcal{P}}(x + y).$$

证明: 由于x和v可以是负数, 因此使用引理1得到

$$v_p(x^n - (-y)^n) = v_p(x - (-y)) \implies v_p(x^n + y^n) = v_p(x + y).$$

注意,由于n是奇数正整数,我们可以用 $(-y)^n$ 替换 $-y^n$.

3 Lifting The Exponent Lemma (LTE)

定理1(LTE的第一种形式)。

设x和y为(不必为正)整数,令n为正整数,令p为奇数素数,使得 $p \mid x-y$ 并且x和y都不能被p整除(即,p4x和p4y)。 我们有

$$v_p(x^n - y^n) = v_p(x - y) + v_p(n).$$

证明:我们对 $v_p(n)$ 使用归纳法.首先,让我们证明以下:

$$v_p(x^p - y^p) = v_p(x - y) + 1. (1)$$

为了证明这个,我们要证明以下

$$p \mid x^{p-1} + x^{p-2}y + \dots + xy^{p-2} + y^{p-1}$$
 (2)

和

$$p^2 \nmid x^{p-1} + x^{p-2}y + \dots + xy^{p-2} + y^{p-1}.$$
 (3)

对于 (2), 我们注意到

$$x^{p-1} + x^{p-2}y + \dots + xy^{p-2} + y^{p-1} \equiv px^{p-1} \equiv 0 \pmod{p}.$$

现在,令 y=x+kp, k是整数.对于一个整数 $1 \le t < p$ 我们有 $y^t x^{p-1-t} \equiv (x+kp)^t x^{p-1-t}$

$$\equiv x^{p-1-t} \left(x^t + t(kp)(x^{t-1}) + \frac{t(t-1)}{2} (kp)^2 (x^{t-2}) + \cdots \right)$$

$$\equiv x^{p-1-t} \left(x^t + t(kp)(x^{t-1}) \right)$$

$$\equiv x^{p-1} + tkpx^{p-2} \pmod{p^2},$$

这意味着

$$y^t x^{p-1-t} \equiv x^{p-1} + tkpx^{p-2} \pmod{p^2}, \quad t = 1, 2, 3, 4, \dots, p-1.$$

由此可得

$$x^{p-1} + x^{p-2}y + \dots + xy^{p-2} + y^{p-1}$$

$$\equiv x^{p-1} + (x^{p-1} + kpx^{p-2}) + (x^{p-1} + 2kpx^{p-2}) + \dots + (x^{p-1} + (p-1)kpx^{p-2})$$

$$\equiv px^{p-1} + (1 + 2 + \dots + p-1)kpx^{p-2}$$

$$\equiv px^{p-1} + \binom{p(p-1)}{2}kpx^{p-2}$$

$$\equiv px^{p-1} + \binom{p-1}{2}kp^2x^{p-1}$$

$$\equiv px^{p-1} \neq 0 \pmod{p^2}.$$

所以我们证明了(3)并且(1)的证明是完整的。 现在让我们回到我们的问 题。 我们想证明这一点

$$v_p(x^n - y^n) = v_p(x - y) + v_p(n).$$

假设 $n = p^{\alpha}b$ 其中 gcd(p, b) = 1. 然后

$$\begin{split} v_p(x^n - y^n) &= v_p((x^{p^{\alpha}})^b - (y^{p^{\alpha}})^b) \\ &= v_p(x^{p^{\alpha}} - y^{p^{\alpha}}) = v_p((x^{p^{\alpha-1}})^p - (y^{p^{\alpha-1}})^p) \\ &= v_p(x^{p^{\alpha-1}} - y^{p^{\alpha-1}}) + 1 = v_p((x^{p^{\alpha-2}})^p - (y^{p^{\alpha-2}})^p) + 1 \\ &= v_p(x^{p^{\alpha-2}} - y^{p^{\alpha-2}}) + 2 \\ &\vdots \\ &= v_p((x^{p^1})^1 - (y^{p^1})^1) + \alpha - 1 = v_p(x - y) + \alpha \\ &= v_p(x - y) + v_p(n). \end{split}$$

注意到我们使用了当 $p \mid x-y$,则 $p \mid xk-yk$,因为我们有 $x-y \mid xk-yk$ 表示所有正整数k。 证明完成了。

定理2(LTE的第二种形式)。 令x,y为两个整数,n为奇数正整数,p为奇数 素数,使得 $p \mid x + y$ 并且x和y都不能被p整除。 我们有

$$v_p(x^n + y^n) = v_p(x + y) + v_p(n).$$

证明。 使用定理1这是显而易见的。请参阅我们在引理2的证明中使用的技巧。

p = 2的情况呢?

问题:为什么我们假设p是奇素数,即 $p \neq 2$?为什么我们不能在我们的证明中假设p = 2?

提示 .请你注意到 $\frac{p-1}{2}$ 是整数仅当 p>2.

定理 $\mathbf{3}$ (对于情况 $p = \mathbf{2}$ 的 \mathbf{LTE})。 设 \mathbf{x} 和 \mathbf{y} 为两个奇数整数,使得 $\mathbf{4} \mid \mathbf{x} - \mathbf{y}$ 。 然后

$$v_2(x^n - y^n) = v_2(x - y) + v_2(n).$$

证明。 我们证明了对于任何素数p, gcd (p, n) = 1, $p \mid x$ - y并且x和y都不能被p整除,我们有

$$v_p(x^n - y^n) = v_p(x - y)$$

因此,它可以表明这一点:

$$v_2(x^{2^n} - y^{2^n}) = v_2(x - y) + n.$$

因式分解得到

$$x^{2^{n}} - y^{2^{n}} = (x^{2^{n-1}} + y^{2^{n-1}})(x^{2^{n-2}} + y^{2^{n-2}}) \cdots (x^{2} + y^{2})(x+y)(x-y)$$

现在,因为 $\mathbf{x} \equiv \mathbf{y} \equiv \pm 1 \pmod{4}$,我们对所有正整数k都有 $x^{2^k} \equiv y^{2^k} \equiv 1 \pmod{4}$ 而且 $x^{2^k} + y^{2^k} \equiv 2 \pmod{4}, k = 1, 2, 3, \ldots$ 此外,由于 \mathbf{x} 和y是奇数而4 | \mathbf{x} - \mathbf{y} ,我们有 \mathbf{x} + $\mathbf{y} \equiv 2 \pmod{4}$ 。这意味着上述的所有因子(除了 x - y)的2的幂为1.

定理4.令x和y为两个奇数整数,令n为偶数正整数。 然后

$$v_2(x^n - y^n) = v_2(x - y) + v_2(x + y) + v_2(n) - 1.$$

证明。 我们知道奇数的平方是4k + 1的形式。 所以对于奇数x和y我们有 $4 \mid x^2 - y^2$. 现在让m为奇整数,k为正整数,使得 $n = m \cdot 2^k$. 然后

$$v_2(x^n - y^n) = v_2(x^{m \cdot 2^k} - y^{m \cdot 2^k})$$

$$= v_2((x^2)^{2^{k-1}} - (y^2)^{2^{k-1}})$$

$$\vdots$$

$$= v_2(x^2 - y^2) + k - 1$$

$$= v_2(x - y) + v_2(x + y) + v_2(n) - 1.$$

5 摘要

设p是素数,让x和y为两个(不是必需的正数)整数,它们不能被p整除。 然后:

- a) 对于一个正整数n
- 如果 $p \neq 2$ 且 $p \mid x y$,那么

$$v_p(x^n - y^n) = v_p(x - y) + v_p(n).$$

• 如果 p = 2 且 $4 \mid x - y$, 那么

$$v_2(x^n - y^n) = v_2(x - y) + v_2(n).$$

• 如果p = 2, n is 偶数, 且 $2 \mid x - y$, 那么

$$v_2(x^n - y^n) = v_2(x - y) + v_2(x + y) + v_2(n) - 1.$$

b) 对于奇数正整数n, 如果 $p \mid x + y$, 那么

$$v_p(x^n + y^n) = v_p(x+y) + v_p(n).$$

c) 对于具有gcd(p, n) = 1的正整数 $n, 如果p \mid x - y, 有$

$$v_p(x^n - y^n) = v_p(x - y).$$

如果n是奇数,则gcd(p, n) = 1,并且 $p \mid x + y$,有

$$v_p(x^n + y^n) = v_p(x + y).$$

注意。使用LTE时最常见的错误是当你不检查 $p \mid x \pm y$ 的条件,所以要记得检查它。 否则你的解决方案将完全错误.

6 一些问题及答案详解

Problem 1 (Russia 1996). Find all positive integers n for which there exist positive integers x, y and k such that gcd(x, y) = 1, k > 1 and $3^n = x^k + y^k$.

Solution. k should be an odd integer (otherwise, if k is even, then x^k and y^k are perfect squares, and it is well known that for integers a, b we have $3 \mid a^2 + b^2$ if and only if $3 \mid a$ and $3 \mid b$, which is in contradiction with $\gcd(x,y) = 1$.). Suppose that there exists a prime p such that $p \mid x + y$. This prime should be odd. So $v_p(3^n) = v_p(x^k + y^k)$, and using **Theorem 2** we have $v_p(3^n) = v_p(x^k + y^k) = v_p(k) + v_p(x + y)$. But $p \mid x + y$ means that $v_p(x + y) \ge 1 > 0$ and so $v_p(3^n) = v_p(k) + v_p(x + y) > 0$ and so $p \mid 3^n$. Thus p = 3. This means $x + y = 3^m$ for some positive integer m. Note that $n = v_3(k) + m$. There are two cases:

• m > 1. We can prove by induction that $3^a \ge a + 2$ for all integers $a \ge 1$, and so we have $v_3(k) \le k - 2$ (why?). Let $M = \max(x, y)$. Since $x + y = 3^m \ge 9$, we have $M \ge 5$. Then

$$x^{k} + y^{k} \ge M^{k} = \underbrace{M}_{\ge \frac{x+y}{2} = \frac{1}{2} \cdot 3^{m}} \cdot \underbrace{M^{k-1}}_{\ge 5^{k-1}} > \frac{1}{2} 3^{m} \cdot 5^{k-1}$$
$$> 3^{m} \cdot 5^{k-2} \ge 3^{m+k-2} \ge 3^{m+v_{3}(k)} = 3^{n}$$

which is a contradiction.

• m=1. Then x+y=3, so x=1,y=2 (or x=2,y=1). Thus $3^{1+v_3(k)}=1+2^k$. But note that $3^{v_3(k)}\mid k$ so $3^{v_3(k)}\leq k$. Thus

$$1 + 2^k = 3^{v_3(k)+1} = 3 \cdot \underbrace{3^{v_3(k)}}_{\leq k} \leq 3k \implies 2^k + 1 \leq 3k.$$

And one can check that the only odd value of k > 1 that satisfies the above inequality is k = 3. So (x, y, n, k) = (1, 2, 2, 3), (2, 1, 2, 3) in this case.

Thus, the final answer is n=2.

Problem 2 (Balkan 1993). Let p be a prime number and m > 1 be a positive integer. Show that if for some positive integers x > 1, y > 1 we have

$$\frac{x^p + y^p}{2} = \left(\frac{x + y}{2}\right)^m,$$

then m = p.

Solution. One can prove by induction on p that $\frac{x^p+y^p}{2} \ge \left(\frac{x+y}{2}\right)^p$ for all positive integers p. Now since $\frac{x^p+y^p}{2} = \left(\frac{x+y}{2}\right)^m$, we should have $m \ge p$. Let $d = \gcd(x,y)$, so there exist positive integers x_1,y_1 with $\gcd(x_1,y_1) = 1$ such that $x = dx_1, y = dy_1$ and $2^{m-1}(x_1^p + y_1^p) = d^{m-p}(x_1 + y_1)^m$. There are two cases:

Assume that p is odd. Take any prime divisor q of x_1+y_1 and let $v=v_q(x_1+y_1)$. If q is odd, we see that $v_q(x_1^p+y_1^p)=v+v_q(p)$ and $v_q(d^{m-p}(x_1+y_1)^m)\geq mv$ (because q may also be a factor of d). Thus $m\leq 2$ and $p\leq 2$, giving an immediate contradiction. If q=2, then $m-1+v\geq mv$, so $v\leq 1$ and $x_1+y_1=2$, i.e., x=y, which immediately implies m=p.

Assume that p=2. We notice that for $x+y \ge 4$ we have $\frac{x^2+y^2}{2} < 2\left(\frac{x+y}{2}\right)^2 \le \left(\frac{x+y}{2}\right)^3$, so m=2. It remains to check that the remaining cases (x,y)=(1,2),(2,1) are impossible.

Problem 3. Find all positive integers a, b that are greater than 1 and satisfy

$$b^a|a^b-1$$
.

Solution. Let p be the least prime divisor of b. Let m be the least positive integer for which $p|a^m-1$. Then m|b and $m\mid p-1$, so any prime divisor of m divides b and is less than p. Thus, not to run into a contradiction, we must have m=1. Now, if p is odd, we have $av_p(b)\leq v_p(a-1)+v_p(b)$, so $a-1\leq (a-1)v_p(b)\leq v_p(a-1)$, which is impossible. Thus p=2, b is even, a is odd and $av_2(b)\leq v_2(a-1)+v_2(a+1)+v_2(b)-1$ whence $a\leq (a-1)v_2(b)+1\leq v_2(a-1)+v_2(a+1)$, which is possible only if a=3, $v_2(b)=1$. Put b=2B with odd B and rewrite the condition as $2^3B^3\mid 3^{2B}-1$. Let q be the least prime divisor of B (now, surely, odd). Let p be the least positive integer such that p0 and p1 and p2 and p3 and p4 and p5 and p6 and p6 and p7 and p8 and p9 and

Problem 4. Find all positive integer solutions of the equation $x^{2009} + y^{2009} = 7^z$

Solution. Factor 2009. We have $2009 = 7^2 \cdot 41$. Since $x + y \mid x^{2009} + y^{2009}$ and x + y > 1, we must have $7 \mid x + y$. Removing the highest possible power of 7 from x, y, we get $v_7(x^{2009} + y^{2009}) = v_7(x + y) + v_7(2009) = v_7(x + y) + 2$, so $x^{2009} + y^{2009} = 49 \cdot k \cdot (x + y)$ where $7 \nmid k$. But we have $x^{2009} + y^{2009} = 7^z$, which means the only prime factor of $x^{2009} + y^{2009}$ is 7, so x = 1. Thus $x^{2009} + y^{2009} = 49(x + y)$. But in this equation the left hand side is much larger than the right hand one if $\max(x, y) > 1$, and, clearly, (x, y) = (1, 1) is not a solution. Thus the given equation does not have any solutions in the set of positive integers.

7 问题挑战

1. Let k be a positive integer. Find all positive integers n such that $3^k \mid 2^n - 1$.

2 (UNESCO Competition 1995). Let a, n be two positive integers and let p be an odd prime number such that

$$a^p \equiv 1 \pmod{p^n}$$
.

Prove that

$$a \equiv 1 \pmod{p^{n-1}}.$$

3 (Iran Second Round 2008). Show that the only positive integer value of a for which $4(a^n + 1)$ is a perfect cube for all positive integers n, is 1.

4. Let k>1 be an integer. Show that there exists infinitely many positive integers n such that

$$n|1^n + 2^n + 3^n + \dots + k^n$$
.

5 (Ireland 1996). Let p be a prime number, and a and n positive integers. Prove that if

$$2^p + 3^p = a^n$$

then n=1.

6 (Russia 1996). Let x, y, p, n, k be positive integers such that n is odd and p is an odd prime. Prove that if $x^n + y^n = p^k$, then n is a power of p.

7. Find the sum of all the divisors d of $N=19^{88}-1$ which are of the form $d=2^a3^b$ with $a,b\in\mathbb{N}$.

8. Let p be a prime number. Solve the equation $a^p - 1 = p^k$ in the set of positive integers.

9. Find all solutions of the equation

$$(n-1)! + 1 = n^m$$

in positive integers.

10 (Bulgaria 1997). For some positive integer n, the number $3^n - 2^n$ is a perfect power of a prime. Prove that n is a prime.

11. Let m, n, b be three positive integers with $m \neq n$ and b > 1. Show that if prime divisors of the numbers $b^n - 1$ and $b^m - 1$ be the same, then b + 1 is a perfect power of 2.

12 (IMO ShortList 1991). Find the highest degree k of 1991 for which 1991^k divides the number

$$1990^{1991^{1992}} + 1992^{1991^{1990}}$$

13. Prove that the number $a^{a-1} - 1$ is never square-free for all integers a > 2.

- **14** (Czech Slovakia 1996). Find all positive integers x, y such that $p^x y^p = 1$, where p is a prime.
- **15.** Let x and y be two positive rational numbers such that for infinitely many positive integers n, the number $x^n y^n$ is a positive integer. Show that x and y are both positive integers.
- **16** (IMO 2000). Does there exist a positive integer n such that n has exactly 2000 prime divisors and n divides $2^n + 1$?
- 17 (China Western Mathematical Olympiad 2010). Suppose that m and k are non-negative integers, and $p = 2^{2^m} + 1$ is a prime number. Prove that
 - $2^{2^{m+1}p^k} \equiv 1 \pmod{p^{k+1}}$;
 - $2^{m+1}p^k$ is the smallest positive integer n satisfying the congruence equation $2^n \equiv 1 \pmod{p^{k+1}}$.
- 18. Let $p \geq 5$ be a prime. Find the maximum value of positive integer k such that

$$p^{k}|(p-2)^{2(p-1)}-(p-4)^{p-1}$$
.

19. Let a, b be distinct real numbers such that the numbers

$$a-b, a^2-b^2, a^3-b^3, \dots$$

are all integers. Prove that a, b are both integers.

- **20** (MOSP 2001). Find all quadruples of positive integers (x, r, p, n) such that p is a prime number, n, r > 1 and $x^r 1 = p^n$.
- **21** (China TST 2009). Let a > b > 1 be positive integers and b be an odd number, let n be a positive integer. If $b^n \mid a^n 1$, then show that $a^b > \frac{3^n}{n}$.
- **22** (Romanian Junior Balkan TST 2008). Let p be a prime number, $p \neq 3$, and integers a, b such that $p \mid a + b$ and $p^2 \mid a^3 + b^3$. Prove that $p^2 \mid a + b$ or $p^3 \mid a^3 + b^3$.
- **23.** Let m and n be positive integers. Prove that for each odd positive integer b there are infinitely many primes p such that $p^n \equiv 1 \pmod{b^m}$ implies $p^{m-1} \mid n$.
- **24** (IMO 1990). Determine all integers n > 1 such that

$$\frac{2^n+1}{n^2}$$

is an integer.

25. Find all positive integers n such that

$$\frac{2^{n-1}+1}{n}$$
.

is an integer.

- **26.** Find all primes p,q such that $\frac{(5^p-2^p)(5^q-2^q)}{pq}$ is an integer.
- **27.** For some natural number n let a be the greatest natural number for which $5^n 3^n$ is divisible by 2^a . Also let b be the greatest natural number such that $2^b \le n$. Prove that $a \le b + 3$.
- **28.** Determine all sets of non-negative integers x,y and z which satisfy the equation

$$2^x + 3^y = z^2.$$

- **29** (IMO ShortList 2007). Find all surjective functions $f: \mathbb{N} \to \mathbb{N}$ such that for every $m, n \in \mathbb{N}$ and every prime p, the number f(m+n) is divisible by p if and only if f(m) + f(n) is divisible by p.
- **30** (Romania TST 1994). Let n be an odd positive integer. Prove that $((n-1)^n+1)^2$ divides $n(n-1)^{(n-1)^n+1}+n$.
- **31.** Find all positive integers n such that $3^n 1$ is divisible by 2^n
- **32** (Romania TST 2009). Let $a, n \ge 2$ be two integers, which have the following property: there exists an integer $k \ge 2$, such that n divides $(a-1)^k$. Prove that n also divides $a^{n-1} + a^{n-2} + \cdots + a + 1$.
- **33.** Find all the positive integers a such that $\frac{5^a+1}{3^a}$ is a positive integer.

8 选定问题的提示和解答

- **1.** Answer: $n = 2 \cdot 3^{k-1}s$ for some $s \in \mathbb{N}$.
- **2.** Show that $v_p(a-1) = v_p(a^p 1) 1 \ge n 1$.
- **3.** If a > 1, $a^2 + 1$ is not a power of 2 (because it is > 2 and either 1 or 2 modulo 4). Choose some odd prime $p|a^2 + 1$. Now, take some n = 2m with odd m and notice that $v_p(4(a^n + 1)) = v_p(a^2 + 1) + v_p(m)$ but $v_p(m)$ can be anything we want modulo 3.
- **5.** $2^p + 3^p$ is not a square, and use the fact that $v_5(2^p + 3^p) = 1 + v_5(p) \le 2$.
- **8.** Consider two cases : p = 2 and p is an odd prime. The latter does not give any solutions.
- **9.** (n,m)=(2,1) is a solution. In other cases, show that n is an odd prime and m is even. The other solution is (n,m)=(5,2).
- **12.** Answer: $\max(k) = 1991$.
- **13.** Take any odd prime p such that $p \mid a-1$. It's clear that $p^2 \mid a^{a-1}-1$.
- **14.** Answer: (p, x, y) = (2, 1, 1), (3, 2, 1).
- 18. Let $p-1=2^s m$ and show that $v_p(2^{s-1}m)=0$. The maximum of k is 1.
- 19. Try to prove Problem 15 first.
- **20.** Show that p=2 and r is an even positive integer.
- **22.** If $p \mid a, p \mid b$, then $p^3 \mid a^3 + b^3$. Otherwise LTE applies and $v_p(a+b) = v_p(a^3 + b^3) \ge 2$.
- **24.** The answer is n = 1 or n = 3.
- **26.** Answer: (p,q) = (3,3), (3,13).
- **27.** If *n* is odd, then a = 1. If *n* is even, then $a = v_2(5^n 3^n) = v_2(5 3) + v_2(5 + 3) + v_2(n) 1 = 3 + v_2(n)$. But, clearly, $b \ge v_2(n)$.
- **30.** $n \mid (n-1)^n + 1$, so for every $p \mid (n-1)^n + 1$, we have

$$v_p((n-1)^{(n-1)^n+1}+1) = v_p((n-1)^n+1) + v_p\left(\frac{(n-1)^{n+1}+1}{n}\right)$$
$$= 2v_p((n-1)^n+1) - v_p(n)$$

which completes the proof.

- **31.** $n \le v_2(3^n 1) \le 3 + v_2(n)$, so $n \le 4$.
- **33.** a must be odd (otherwise the numerator is $2 \mod 3$). Then $a \le v_3(5^a+1) = 1 + v_3(a)$ giving a = 1 as the only solution.

参考:

- [1] Sepehr Ghazi Nezami, **Leme Do Khat** (in English: Lifting The Exponent Lemma) published on October 2009.
 - [2] Kurt Hensel, **Hensel's lemma**, WikiPedia.
- [3] Santiago Cuellar, Jose Alejandro Samper, A nice and tricky lemma (lifting the exponent), Mathematical Reflections 3 2007.
- [4] Amir Hossein Parvardi, Fedja et al., AoPS **topic** #393335, *Lifting The Exponent Lemma (Containing PDF file)*.
- [5] Orlando Doehring et al., AoPS **topic** #214717, Number $\mod(f(m+n), p) = 0$ iff $\mod(f(m) + f(n), p) = 0$.
 - [6] Fang-jh et al., AoPS topic #268964, China TST, Quiz 6, Problem 1.
- [7] Valentin Vornicu et al., AoPS **topic** #57607, exactly 2000 prime divisors (IMO 2000 P5).
- [8] Orlando Doehring et al., AoPS **topic** #220915, Highest degree for 3-layer power tower.
- [9] Sorush Oraki, Johan Gunardi, AoPS **topic** #368210, Prove that a=1 if $4(a^n+1)$ is a cube for all n.