Unique Decoding of Explicit ϵ -balanced Codes near the Gilbert–Varshamov Bound

Fernando Granha Jeronimo joint work with Dylan Quintana, Shashank Srivastava and Madhur Tulsiani

FOCS 2020

Goal of the Talk

Goal

Present an efficient unique decoding algorithm for Ta-Shma's binary codes

Goal of the Talk

Outline

- Notation and Context ($\approx 25\%$)
- Direct Sum and Ta-Shma's Codes ($\approx 25\%$)
- Our Decoding Techniques ($\approx 50\%$)

Code

A binary code is a subset $\mathcal{C} \subseteq \mathbb{F}_2^n$

Code

A binary code is a subset $\mathcal{C} \subseteq \mathbb{F}_2^n$

Two Fundamental Properties

Distance

The distance $\Delta(\mathcal{C})$ of \mathcal{C} is

$$\Delta(\mathcal{C}) := \min_{z,z' \in \mathcal{C}: \ z \neq z'} \Delta(z,z'),$$

where $\Delta(z, z')$ is the (normalized) Hamming distance.

Two Fundamental Properties

Distance

The distance $\Delta(\mathcal{C})$ of \mathcal{C} is

$$\Delta(\mathcal{C}) := \min_{z,z' \in \mathcal{C} \colon z \neq z'} \Delta(z,z'),$$

where $\Delta(z, z')$ is the (normalized) Hamming distance.

Rate

Fraction of information symbols $\frac{\log_2(|\mathcal{C}|)}{n}$ aka the rate $r(\mathcal{C})$ of \mathcal{C}

Question

How large can we take $p \in [0,1)$?

Question

How large can we take $p \in [0,1)$? Information theoretically, any $p \in [0,\Delta(\mathcal{C})/2)$ is valid for unique decoding

Error Model

This adversarial error model was introduced by Hamming in 1950

Figure: Richard W. Hamming (source: mathshistory.st-andrews.ac.uk).

Tension

- Increasing the rate $r(\mathcal{C})$ may reduce the distance $\Delta(\mathcal{C})$
- Increasing the distance $\Delta(\mathcal{C})$ may reduce the rate $r(\mathcal{C})$

Question

What is the best trade-off between rate r(C) and distance $\Delta(C)$?

Gilbert'52, Varshamov'57 (abridged)

For every distance $\rho \in (0, 1/2)$, there exists \mathcal{C} of size $2^n/\text{Vol}(\mathsf{Ball}(\rho))$, or equivalently $r(\mathcal{C}) \approx 1 - H_2(\rho)$

Gilbert'52, Varshamov'57 (abridged)

For every distance $\rho \in (0, 1/2)$, there exists \mathcal{C} of size $2^n/\text{Vol}(\mathsf{Ball}(\rho))$, or equivalently $r(\mathcal{C}) \approx 1 - H_2(\rho)$

Why is the Gilbert-Varshamov bound interesting?

The Gilbert-Varshamov (GV) bound is "nearly" optimal

Gilbert-Varshamov existential bound

McEliece-Rodemich-Rumsey-Welch'77 impossibility bound

For distance $1/2 - \epsilon$

- rate $\Omega(\epsilon^2)$ is achievable (Gilbert-Varshamov bound)
- rate better than $O(\epsilon^2 \log(1/\epsilon))$ is impossible (McEliece et al.)

For distance $1/2 - \epsilon$

- rate $\Omega(\epsilon^2)$ is achievable (Gilbert–Varshamov bound)
- rate better than $O(\epsilon^2 \log(1/\epsilon))$ is impossible (McEliece *et al.*)

Ta-Shma's Codes (60 years later!)

First explicit binary codes near the GV are due to Ta-Shma'17

- ullet these codes have distance $1/2 \epsilon/2$ (actually ϵ -balanced), and
- rate $\Omega(\epsilon^{2+o(1)})$.

Ta-Shma's Codes (60 years later!)

First explicit binary codes near the GV are due to Ta-Shma'17

- these codes have distance $1/2 \epsilon/2$ (actually ϵ -balanced), and
- rate $\Omega(\epsilon^{2+o(1)})$.

Issue

It was an open question whether Ta-Shma's codes admit efficient decoding

Issue

It was an open question whether Ta-Shma's codes admit efficient decoding

Theorem (this work)

Ta-Shma's codes are polynomial time unique decodable

Our Contribution

Theorem (Unique Decoding)

For every $\epsilon>0$, \exists explicit binary linear Ta-Shma codes $\mathcal{C}_{N,\epsilon,\beta}\subseteq\mathbb{F}_2^N$ with

- **1** distance at least $1/2 \epsilon/2$ (actually ϵ -balanced),
- 2 rate $\Omega(\epsilon^{2+\beta})$ where $\beta = O(1/(\log_2(1/\epsilon))^{1/6})$, and
- 3 a unique decoding algorithm with running time $N^{O_{\epsilon,\beta}(1)}$.

Our Contribution

Theorem (Unique Decoding)

For every $\epsilon > 0$, \exists explicit binary linear Ta-Shma codes $\mathcal{C}_{N,\epsilon,\beta} \subseteq \mathbb{F}_2^N$ with

- **1** distance at least $1/2 \epsilon/2$ (actually ϵ -balanced),
- $ext{ are } \Omega(\epsilon^{2+eta}) ext{ where } eta = O(1/(\log_2(1/\epsilon))^{1/6}), ext{ and }$
- **3** a unique decoding algorithm with running time $N^{O_{\epsilon,\beta}(1)}$.

Furthermore, if instead we take $\beta > 0$ to be an arbitrary constant, the running time becomes $(\log(1/\epsilon))^{O(1)} \cdot N^{O_{\beta}(1)}$ (fixed polynomial time).

Our Contribution

Theorem (Gentle List Decoding)

For every $\epsilon>0$, \exists explicit binary linear Ta-Shma codes $\mathcal{C}_{N,\epsilon,\beta}\subseteq\mathbb{F}_2^N$ with

- **1** distance at least $1/2 \epsilon/2$ (actually ϵ -balanced),
- ② rate $\Omega(\epsilon^{2+eta})$ where $eta = O(1/(\log_2(1/\epsilon))^{1/6})$, and
- **3** a list decoding algorithm that decodes within radius $1/2 2^{-\Theta((\log_2(1/\epsilon))^{1/6})}$ in time $N^{O_{\epsilon,\beta}(1)}$.

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami-Indyk'04)

Efficiently decodable **non-explicit** binary codes at the Gilbert–Varshamov bound

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami-Indyk'04)

Efficiently decodable **non-explicit** binary codes at the Gilbert-Varshamov bound

Theorem (Hemenway–Ron-Zewi–Wootters'17)

Near-linear time decodable **non-explicit** binary codes at the Gilbert–Varshamov bound

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami-Rudra'06)

There are explicit binary codes list decodable from radius $1/2-\epsilon$ and rate $\Omega(\epsilon^3)$ (Zyablov bound)

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami-Rudra'06)

There are explicit binary codes list decodable from radius $1/2-\epsilon$ and rate $\Omega(\epsilon^3)$ (Zyablov bound)

GR'06 results can now also be obtained from some later capacity achieving codes

Towards Ta-Shma's Codes

Expander Graphs and Codes

Expanders can amplify the distance of a not so great base code \mathcal{C}_0

Expansion and Distance Amplification

Fix a bipartite graph between [n] and $W(k) \subseteq [n]^k$. Let $z \in \mathcal{C}_0 \subseteq \mathbb{F}_2^n$.

Direct Sum

Expansion and Distance Amplification

Fix a bipartite graph between [n] and $W(k) \subseteq [n]^k$. Let $z \in \mathcal{C}_0 \subseteq \mathbb{F}_2^n$.

Fix a bipartite graph between [n] and $W(k) \subseteq [n]^k$. Let $z \in \mathcal{C}_0 \subseteq \mathbb{F}_2^n$.

Direct Sum

Alon-Naor-Naor-Roth & Alon-Edmonds-Luby style distance amplification

Direct Sum

Let $z \in \mathbb{F}_2^n$ and $W(k) \subseteq [n]^k$. The direct sum of z is $y \in \mathbb{F}_2^{W(k)}$ defined as

$$y_{(i_1,\ldots,i_k)} = \mathbf{z_{i_1}} \oplus \cdots \oplus \mathbf{z_{i_k}},$$

for every $(i_1, \ldots, i_k) \in W(k)$. We denote $y = \operatorname{dsum}_{W(k)}(z)$.

Bias

- Let $z \in \mathbb{F}_2^n$. Define bias $(z) := |\mathbf{E}_{i \in [n]}(-1)^{z_i}|$.
- Let $\mathcal{C} \subseteq \mathbb{F}_2^n$. Define bias $(\mathcal{C}) := \max_{z \in \mathcal{C} \setminus \{0\}} \text{bias}(z)$.

Definition (Parity Sampler, c.f. Ta-Shma'17)

Let $W \subseteq [n]^k$. We say that $dsum_W$ is (ϵ_0, ϵ) -parity sampler iff

$$(\forall z \in \mathbb{F}_2^n) (\mathsf{bias}(z) \le \epsilon_0 \implies \mathsf{bias}(\mathsf{dsum}_W(z)) \le \epsilon).$$

Parity Samplers

Where to look for good parity samplers $W(k) \subseteq [n]^k$?

A Dream Parity Sampler

Let $z \in \mathbb{F}_2^n$ with bias $(z) \leq \beta_0 < 1$. Let $W(k) = [n]^k$. Then

bias
$$(\operatorname{dsum}_{W(k)}(z)) \leq |\mathbf{E}_{i \in [n]}(-1)^{z_i}|^k \leq \beta_0^k$$
.

A Dream Parity Sampler

Let $z \in \mathbb{F}_2^n$ with bias $(z) \le \beta_0 < 1$. Let $W(k) = [n]^k$. Then

bias
$$\left(\operatorname{dsum}_{W(k)}(z)\right) \leq |\mathbf{E}_{i \in [n]}(-1)^{z_i}|^k \leq \beta_0^k$$
.

Issue: Vanishing Rate

W(k) is "too dense" so distance amplified code has rate $\leq 1/n^{k-1}$

Another Dream Parity Sampler

Sample a uniformly random $W(k) \subseteq [n]^k$ of size $\Theta_{\epsilon_0}(n/\epsilon^2)$. Then w.h.p. dsum_W is (ϵ_0, ϵ) -parity sampler.

Another Dream Parity Sampler

Sample a uniformly random $W(k) \subseteq [n]^k$ of size $\Theta_{\epsilon_0}(n/\epsilon^2)$. Then w.h.p. dsum_W is (ϵ_0, ϵ) -parity sampler.

Issue: Non-explicit

Now W(k) has near optimal size but it is non-explicit

Solution 1 (good but not near optimal)

Take $W(k) \subseteq [n]^k$ to be the collection of all length-(k-1) walks on a sparse expander graph G = (V = [n], E)

Solution 1 (good but not near optimal)

Take $W(k) \subseteq [n]^k$ to be the collection of all length-(k-1) walks on a sparse expander graph G = (V = [n], E)

Solution 1 (good but not near optimal)

This solution yields codes of distance $1/2 - \epsilon$ and rate $\Omega(\epsilon^{4+o(1)})$

Solution 1 (good but not near optimal)

Take $W(k) \subseteq [n]^k$ to be the collection of **all** length-(k-1) walks on a sparse expander graph G = (V = [n], E) (suggested by Rozenman–Wigderson and analyzed by Ta-Shma'17)

Solution 1 (good but not near optimal)

This solution yields codes of distance $1/2 - \epsilon$ and rate $\Omega(\epsilon^{4+o(1)})$

Solution 2 (near optimal) Ta-Shma'17

Take $W(k) \subseteq [n]^k$ to be a **carefully chosen** collection of length-(k-1) walks on a sparse expander graph G = (V = [n], E)

Solution 2 (near optimal) Ta-Shma'17

Take $W(k) \subseteq [n]^k$ to be a **carefully chosen** collection of length-(k-1) walks on a sparse expander graph G = (V = [n], E)

Solution 2 (near optimal) Ta-Shma'17

This solution yields codes of distance $1/2 - \epsilon$ and rate $\Omega(\epsilon^{2+o(1)})$

Solution 2 (near optimal) Ta-Shma'17

Take $W(k) \subseteq [n]^k$ to be a **carefully chosen** collection of length-(k-1) walks on a sparse expander graph G = (V = [n], E) (beautiful breakthrough of Ta-Shma'17 based on generalizations of the Zig-Zag product Reingold-Vadhan-Wigderson)

Solution 2 (near optimal) Ta-Shma'17

This solution yields codes of distance $1/2 - \epsilon$ and rate $\Omega(\epsilon^{2+o(1)})$

Decoding Direct Sum

What does decoding look like for direct sum?

Setup

- $\mathcal{C}_0 \subseteq \mathbb{F}_2^n$ an ϵ_0 -balanced code with $\Delta(\mathcal{C}_0) = 1/2 \epsilon_0/2$
- $W = W(k) \subseteq [n]^k$ for direct sum
- $\mathcal{C} = \operatorname{dsum}_W(\mathcal{C}_0)$ an ϵ -balanced code with $\Delta(\mathcal{C}) = 1/2 \epsilon/2$

Suppose $y^* \in \mathcal{C}$ is corrupted into some $\tilde{y} \in \mathbb{F}_2^W$ in the unique decoding ball centered at y^* .

Unique Decoding Scenario: k-XOR

Unique decoding \tilde{y} amounts to solving

$$\underset{z \in \mathcal{C}_0}{\text{arg max}} \, \mathbf{E}_{(i_1, \dots, i_k) \in \mathcal{W}} \mathbf{1}[z_{i_1} \oplus \dots \oplus z_{i_k} = \frac{\tilde{\mathbf{y}}_{(i_1, \dots, i_k)}}{\tilde{\mathbf{y}}_{(i_1, \dots, i_k)}}],$$

which is a MAX k-XOR instance \mathfrak{I} with the additional constraint that the solution z must lie in \mathcal{C}_0 .

Let $z^* \in C_0$ be s.t. $y^* = \operatorname{dsum}_W(z^*)$.

Optimal Value

Since \tilde{y} is in the unique decoding ball centered at y^* , we have

$$\mathbf{E}_{(i_1,\ldots,i_k)\in W}\mathbf{1}[\mathbf{z}^*_{i_1}\oplus\cdots\oplus\mathbf{z}^*_{i_k}\neq\tilde{\mathbf{y}}_{(i_1,\ldots,i_k)}]=\Delta(\mathbf{y}^*,\tilde{\mathbf{y}})<\Delta(\mathcal{C})/2$$

Thus,

$$\mathsf{OPT}(\mathfrak{I}) \geq \mathrm{E}_{(i_1,\ldots,i_k) \in W} \mathbf{1}[\mathbf{z^*}_{i_1} \oplus \cdots \oplus \mathbf{z^*}_{i_k} = \tilde{\mathbf{y}}_{(i_1,\ldots,i_k)}] > 1 - \Delta(\mathcal{C})/2$$

Optimal Solution

Suppose that we can find $\tilde{\mathbf{z}} \in \mathbb{F}_2^n$ (rather than in \mathcal{C}_0) satisfying

$$\mathrm{E}_{(i_1,\dots,i_k)\in W}\mathbf{1}[\tilde{\boldsymbol{z}}_{i_1}\oplus\dots\oplus\tilde{\boldsymbol{z}}_{i_k}=\tilde{\boldsymbol{y}}_{(i_1,\dots,i_k)}]=\mathsf{OPT}(\mathfrak{I})>1-\Delta(\mathcal{C})/2$$

Thus, $\Delta(\operatorname{dsum}_W(\tilde{z}), \tilde{y}) < \Delta(\mathcal{C})/2$

By triangle inequality,

$$\begin{array}{ll} \Delta(\operatorname{dsum}_W(\tilde{z}),\operatorname{dsum}_W(z^*)) & \leq & \Delta(\operatorname{dsum}_W(\tilde{z}),\tilde{y}) + \\ & \Delta(\tilde{y},\operatorname{dsum}_W(z^*)) < \Delta(\mathcal{C}) = 1/2 - \epsilon/2, \end{array}$$

implying

$$\mathsf{bias}(\mathsf{dsum}_W(\tilde{\mathbf{z}}) \oplus \mathsf{dsum}_W(\mathbf{z}^*)) = \mathsf{bias}(\mathsf{dsum}_W(\tilde{\mathbf{z}} \oplus \mathbf{z}^*)) > \epsilon$$

"Nontrivial bias"

Claim

If dsum_W is a "strong enough" parity sampler, then either \tilde{z} or $\tilde{z} \oplus 1$ lie in the unique decoding ball of \mathcal{C}_0 centered at z^* .

Claim

If dsum_W is a $(1/2 + \epsilon_0/2, \epsilon)$ -parity sampler, then either \tilde{z} or $\tilde{z} \oplus 1$ lie in the unique decoding ball of \mathcal{C}_0 centered at z^* .

Moral

- Find solution $\tilde{z} \in \mathbb{F}_2^n$ (rather than in \mathcal{C}_0) is enough
- Use unique decoder of C_0 to correct \tilde{z} into z^*

Need to resolve the following assumption.

Optimal Solution

Suppose that we can find $\tilde{z} \in \mathbb{F}_2^n$ (rather than $\tilde{z} \in \mathcal{C}_0$) satisfying

$$\mathrm{E}_{(i_1,\ldots,i_k)\in W}\mathbf{1}[\widetilde{z}_{i_1}\oplus\cdots\oplus\widetilde{z}_{i_k}=\widetilde{y}_{(i_1,\ldots,i_k)}]=\mathsf{OPT}(\mathfrak{I})$$

Need to resolve the following assumption.

Optimal Solution

Suppose that we can find $ilde{z} \in \mathbb{F}_2^n$ (rather than $ilde{z} \in \mathcal{C}_0$) satisfying

$$\mathrm{E}_{(i_1,\ldots,i_k)\in W}\mathbf{1}[\tilde{\boldsymbol{z}}_{i_1}\oplus\cdots\oplus\tilde{\boldsymbol{z}}_{i_k}=\tilde{\boldsymbol{y}}_{(i_1,\ldots,i_k)}]=\mathsf{OPT}(\mathfrak{I})$$

Possible issue?

MAX k-XOR is NP-hard, right?

Possible issue?

MAX k-XOR is NP-hard, right?

Not an issue

Right, it can be NP-hard in general. However, for some **expanding** instances we can find an **approximate** solution (and that is enough).

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev–J–Quintana–Srivastava–Tulsiani'20)

Let $W(k) \subseteq [n]^k$ be σ -splittable (notion of tuple expansion). Suppose $\mathfrak I$ is a k-XOR instance on W(k). If $\sigma \le \operatorname{poly}(\gamma/2^k)$, then we can find a solution $z \in \mathbb F_2^n$ satisfying

$$OPT(\mathfrak{I}) - \frac{\gamma}{\gamma}$$

fraction of the constraints of \Im in time $n^{\text{poly}(2^k/\gamma)}$.

(building on Alev-J-Tulsiani'19 which builds on Barak-Raghavendra-Steurer'11)

Let
$$W(k) \subseteq [n]^k$$
. Define $W[a,b]$ for $1 \le a \le b \le k$ as
$$W[a,b] = \{(i_a,\ldots,i_b) \mid (i_1,\ldots,i_k) \in W(k)\}.$$

Let
$$W(k) \subseteq [n]^k$$
. Define $W[a, b]$ for $1 \le a \le b \le k$ as

$$W[a, b] = \{(i_a, \ldots, i_b) \mid (i_1, \ldots, i_k) \in W(k)\}.$$

Definition (Splittability (informal))

A collection $W(k) \subseteq [n]^k$ is said to be σ -splittable, if k = 1 (base case) or there exists $k' \in [k-1]$ such that:

- The matrix $S \in \mathbb{R}^{W[1,k'] \times W[k'+1,k]}$ defined by $S(w,w') = \mathbb{1}ww' \in W$ has normalized second singular value at most σ (where ww' denotes the concatenated tuple).
- 2 The collections W[1, k'] and W[k' + 1, k] are σ -splittable.

Lemma (AJQST'20)

The collection $W(k) \subseteq [n]^k$ of **all** walks on σ -two-sided spectral expander graph G = (V = [n], E) is σ -splittable.

What about the code parameters?

What parameters do we get putting these pieces together?

Well... Our parameters in AJQST'20...

With this approach we obtain binary codes with

- distance $1/2 \epsilon$
- rate $\Theta(2^{-(\log(1/\epsilon))^2}) \ll \text{poly}(\epsilon)$
- polynomial time unique decoding algorithm

Leveraging Unique Decoding to List Decoding AJQST'20

Maximizing an entropic function Ψ while "solving" the Sum-of-Squares program of unique decoding yields a list decoding algorithm

(independently used by Raghavendra-Yau & Karmalkar-Klivans-Kothari to ML)

Well... Again our parameters in AJQST'20...

With this entropic approach we obtain binary codes with

- list decoding radius $1/2 \epsilon$
- rate $\Theta(2^{-(\log(1/\epsilon))^2}) \ll \text{poly}(\epsilon)$
- polynomial time list decoding algorithm

On one side

There is this refined near optimal code construction of Ta-Shma

On the other side

There is this far from optimal parameter hungry decoding machinery

What are the techniques?

We will just mention the techniques at a very high-level

Splittability

First, we modify Ta-Shma's direct sum construction W(k) to make it splittable so that our decoding tools can be used

A few extra words about SOS

Sum-of-Squares (SOS)

Sum-of-Squares is a semi-definite programming hierarchy

- It generalizes linear programming
- It captures the state-of-the-art approximation guarantees for many problems (MAX-CUT and other CSPs)
- Roughly speaking, level d of SOS runs in time $n^{O(d)}$ where n is the number of variables

First Hammer Effect

As in AJQST'20, we can only decode explicit binary codes ${\mathcal C}$ satisfying

- $\Delta(\mathcal{C}) \geq 1/2 \epsilon$, and
- rate $r(\mathcal{C}) = 2^{-\text{polylog}(1/\epsilon)} \ll \epsilon^{2+o(1)}$ (not even polynomial rate)

Killing a Fly With a Bazooka

Use list decoding to perform unique decoding! Also considered in some previous work (e.g. Guruswami–Indyk'04).

Second Hammer Effect

Some parameters are better but $r(\mathcal{C})$ still not even polynomial

Ta-Shma's walks admit a recursive structure. In short,

- walks over walks are larger walks,
- walks over larger walks are even larger walks,
- walks over even larger walks are...
- and so on...

Taking advantage of this recursive structure we can define a sequence of codes. Decoding takes places between consecutive levels and requires much weaker parameters now.

Figure: Code cascading: recursive construction of codes.

Remark

Some form of cascading was present in the work of Guruswami-Indyk'01 to the so-called *direct product*. The details here and in their setting are quite different.

Second and Third Hammers Effect

Decode Ta-Shma's codes with nearly optimal rate

That's all.

Thank you!