Matemáticas e Ingeniería Informática

Hoja 4: Suma directa. Espacio cociente.

1. Sean V_1, V_2, \dots, V_k subespacios vectoriales de un espacio vectorial V sobre un cuerpo \mathbb{K} . Define su suma por

$$\sum_{j=1}^{k} V_j = \left\{ \sum_{j=1}^{k} \mathbf{u}_j : \mathbf{u}_j \in V_j, j = 1, 2, \dots, k \right\}.$$

- (a) Prueba que $\sum_{j=1}^{k} V_j$ es un subespacio vectorial de V.
- (b) Prueba que $\sum_{j=1}^{k} V_j = \langle \bigcup_{j=1}^{k} V_j \rangle$, es decir la suma de subespacios vectoriales coincide con el subespacio vectorial generado por su unión.
- **2.** Sean V_1, V_2, \ldots, V_k subespacios vectoriales de un espacio vectorial V sobre un cuerpo \mathbb{K} . Demostrar que si $n \geq 3$ las siguientes afirmaciones son equivalentes:

(a)
$$V = \bigoplus_{j=1}^{k} V_j$$
.

(b)
$$V = \sum_{j=1}^{k} V_j \text{ y } V_i \cap \left(\sum_{j \neq i} V_j\right) = \{\mathbf{0}\}$$

- **3.** Fijado un cuerpo \mathbb{K} , sean V_1, \ldots, V_k espacios vectoriales sobre \mathbb{K} .
 - (a) Considera el producto cartesiano $V_1 \times V_2$ y en él las operaciones de suma y producto por escalar, definidas de la manera siguiente: si $v_1, v_1' \in V_1, \ v_2, v_2' \in V_2$ y $a \in \mathbb{K}$, entonces

$$(v_1, v_2) + (v'_1, v'_2) \stackrel{\text{def}}{=} (v_1 + v'_1, v_2 + v'_2) , \quad a(v_1, v_2) \stackrel{\text{def}}{=} (av_1, av_2),$$

Demuestra que estas operaciones dan a $V_1 \times V_2$ una estructura de espacio vectorial sobre \mathbb{K} , que llamamos **espacio vectorial producto.**

(b) Da, de manera análoga, la definición del producto $V_1 \times \cdots \times V_k$ de varios espacios vectoriales y demuestra la siguiente "asociatividad":

$$(V_1 \times \cdots \times V_s) \times (V_{s+1} \times \cdots \times V_k) = V_1 \times \cdots \times V_k$$
 como espacios vectoriales.

- (c) Demuestra que si para cada $j \in \{1, ..., k\}$ tenemos un subespacio vectorial $W_j \subseteq V_j$, entonces $W_1 \times \cdots \times W_k$ es un subespacio vectorial de $V_1 \times \cdots \times V_k$.
- (d) Demuestra que $V_1 \times V_2 = (V_1 \times \{\mathbf{0}\}) \oplus (\{\mathbf{0}\} \times V_2)$ y que $\dim(V_1 \times \cdots \times V_k) = \dim V_1 + \cdots + \dim V_k$.
- 4. Sea F el subespacio de $E = \mathbb{R}^4$ definido por

$$F = \left\{ (x, y, z, t) \in \mathbb{R}^4 : \begin{array}{l} x + y = 0 \\ z + t = 0 \end{array} \right\}.$$

(i) Encuentra una base de F, complétala para obtener una de E y utiliza esta última para calcular una base de E/F.

- (ii) Encuentra las cordenadas de los vectores $[(2, -2, 0, 0)], [(3, 4, 0, 0)] \in E/F$ en la base de E/F hallada en el apartado anterior.
- **5.** En cada uno de los apartados siguientes comprueba que los vectores dados con respecto a la base canónica de \mathbb{R}^4 son linealmente independientes y halla una base de \mathbb{R}^4 que los contenga:
 - (a) $\mathbf{v}_1 = (3, 5, 1, 1), \ \mathbf{v}_2 = (0, 1, 2, -2), \ \mathbf{v}_3 = (1, 0 3, 4).$
 - (b) $\mathbf{v}_1 = (0, 0, 1, 1), \ \mathbf{v}_2 = (0, 1, -3, 2).$
- **6.** Considera el subespacio vectorial de \mathbb{R}^4 dado por

$$W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 - x_4 = 0, \ x_1 - x_3 = 0\},\$$

donde las coordenadas están dadas con respecto a la base canónica de \mathbb{R}^4 .

- (a) Describe las ecuaciones paramétricas de un complementario de W.
- (b) Da una base del espacio cociente \mathbb{R}^4/W .
- 7. En \mathbb{R}^3 considera una base $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ y el subespacio vectorial F generado por los vectores $\mathbf{v}_1 = \mathbf{e}_1 + \mathbf{e}_2, \ \mathbf{v}_2 = \mathbf{e}_2 \mathbf{e}_3$. Halla una base del espacio vectorial cociente \mathbb{R}^3/F .
- 8. Sea $\mathcal{P}^3_{\mathbb{R}}[x]=\{a_0+a_1x+a_2x^2+a_3x^3:a_0,a_1,a_2,a_3\in\mathbb{R}.\}$, y considera el subespacio $W=\{(a-b)+2ax+bx^2+(a+2b)x^3:a,b\in\mathbb{R}.\}$. Da ecuaciones para W y para un complementario.
- 9. Sean V un espacio vectorial sobre un cuerpo \mathbb{K} y $F \subseteq V$ un subespacio vectorial. Decimos que los vectores $v_1, v_2, ..., v_k \in V$ son linealmente independientes módulo \mathbf{F} si cumplen lo siguiente:

para cualesquiera
$$x_1, \ldots, x_k \in \mathbb{K}$$
, $x_1 v_1 + x_2 v_2 + \cdots + x_k v_k \in F \implies x_1 = x_2 = \cdots = x_k = 0$.

- a) Sea $F = \langle (1,2,-1) \rangle \subset \mathbb{R}^3$. ¿Son (1,1,0) y (0,1,1) linealmente independientes módulo F? Misma pregunta para (3,7,-1) y (1,4,3).
- b) Demuestra que las condiciones siguientes son equivalentes:
 - (i) v_1, v_2, \ldots, v_k son linealmente independientes módulo F.
 - (ii) $v_1 + F$, $v_2 + F$, ..., $v_k + F$ son vectores de V/F linealmente independientes.
 - (iii) v_1, v_2, \ldots, v_k son linealmente independientes y además $F \cap \langle v_1, \ldots, v_k \rangle = \{0\}$.