

시계열 데이터 분석

판다스 User Guide Computational Tools

<출처: https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html>

Windows

df.expanding()

Return an Expanding object allowing summary functions to be applied cumulatively.

df.rolling(n)

Return a Rolling object allowing summary functions to be applied to windows of length n.

01 Expanding

- 요약 기능을 허용하는 확장 개체를 누적 적용하여 반환
 - 확장된 변형 제공
- 누적된 변경된 값의 정보 제공

Windows

df.expanding()

Return an Expanding object allowing summary functions to be applied cumulatively.

df.rolling(n)

Return a Rolling object allowing summary functions to be applied to windows of length n.

02 Rolling

- 요약 기능을 허용하는 Rolling 객체를 길이 n개의 창에 적용하여 반환
- 이동 평균(Moving Average)을 구할 때 사용

이론 영상 후 실습 영상 제시

데이터시각화_ 기초 그래프 그리기

데이터 시각화 소개

<출처: https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html>

데이터 시각화 소개

- Plot
 - kind : str
 - 'line': line plot (default)
 - 'bar' : vertical bar plot
 - 'barh' : horizontal bar plot
 - 'hist': histogram
 - 'box' : boxplot
 - 'kde': Kernel Density Estimation plot
 - 'density' : same as 'kde'
 - 'area': area plot
 - 'pie' : pie plot
 - 'scatter' : scatter plot
 - 'hexbin' : hexbin plot

데이터 시각화 소개

이론 영상 후 실습 영상 제시

• 막대 그래프(Bar Plot) 그리기

- 표현 값에 비례하여 높이와 길이를 지닌 직사각형 막대로 범주형 데이터를 표현하는 차트나 그래프를 말함
- 막대는 수직으로나 수평으로 그릴 수 있으며, 수직 막대 그래프는

선 그래프 또는 라인 그래프(Line Graph)라고도 함

• 막대 그래프(Bar Plot) 그리기

- df.iloc[5].plot(kind='bar'), df.iloc[5].plot.bar()
- iloc : Index 번호

01

 막대 그래프 그리기 위해서는 plot(kind='bar') 또는 plot.bar() 모듈 사용

• 막대 그래프(Bar Plot) 그리기

df2.plot.bar(stacked=True)

02

• stacked=True 옵션: 누적한 값을 시각화

• 막대 그래프(Bar Plot) 그리기

df2.plot.barh(stacked=True)

03

• barh : Bar horizontally 가로막대 그래프 그리기

이론 영상 후 실습 영상 제시

도수분포표

특정 구간에 속하는 자료의 개수를 표현한 것임

히스토그램

도수분포표를 시각화하여 막대 그래프로 표현 하지만 Bar Plot과는 다름

막대 그래프(Bar Plot)

표현 값에 비례하여 높이와 길이를 지닌 직사각형 막대로 범주형 데이터를 표현하는 차트나 그래프, 합계, 평균 등의 수치를 시각화한 것임

히스토그램(Hist Plot)

구간별 빈도수를 표현한 것임

히스토그램(Hist Plot)

구간별 빈도 수를 표현한 것임

정규분포(Density Plot)

확률 밀도 함수로, 확률 변수의 밀도를 표현한 것임

01 df4.plot.hist(alpha=0.5)

• alpha 값 : 투명도

02 df4.plot.hist(stacked=True, bins=20)

- staked=True, bins=20
 - 누적 합, bin 값이 20개

03 df4['a'].plot.hist(orientation='horizontal', cumulative=True)

- orientation='horizontal', cumulative=True
- 수평 방향, 누적해서 표현

차분 diff 구하고 히스토그램으로 표현하기

01 df4['a'].diff().hist()

차분 diff 구하고 히스토그램으로 표현하기

02 data.hist(by=np.random.randint(0,4,1000), figsize=(6,4))

• Category 별로 구분해서 데이터 시각화

차분 diff 구하고 히스토그램으로 표현하기

이론 영상 후 실습 영상 제시

데이터시각화_ 통계 그래프 그리기

가공하지 않은 자료 그대로를 이용하여 그린 것이 아니라, 자료로부터 얻어낸 통계량인 5가지 요약 수치로 그림

5가지 요약 수치란 기술통계학에서 자료의 정보를 알려주는 아래의 다섯 가지 수치를 의미함

- 최솟값
- 제1사분위수
- 제2사분위수(), 즉 중앙값
- 제3사분위수()
- 최댓값

- 01 df.plot.box(color=color, sym='r+')
 - sym='r+'
 - Symbol은 빨간색 + 형태로 표현하라는 옵션

- o2 df.plot.box(vert=False, positions=[1, 4, 5, 6, 8])
 - vert=False
 - Vertical(수직 방향)이 아니게 표현

03 bp = df.boxplot()

• Grid가 나타나게 그래프를 그려줌

- o4 np.random.seed(1234)
 - Seed 값을 주어 난수가 계속 변하지 않게 값을 고정함

- O5 Df_box.boxplot(by='g'), bp = df_box.groupby('g').boxplot()
 - 'g' 그룹별로 나누어 박스플롯 그래프를 표현

그래프 격자 만들기(Area Plot, Grid 옵션 활용)

01 df.plot.area(grid=True)

- NaN이 있으면 0으로 채움
- grid=True : 격자 표현 옵션

그래프 격자 만들기(Area Plot, Grid 옵션 활용)

o2 df.plot.area(stacked=False, grid=True)

- Area Plot
 - stacked=True가 Default임

그래프 격자 만들기(Area Plot, Grid 옵션 활용)

이론 영상 후 실습 영상 제시

과목명 데이터시각화	주차명 04. 데이터 재형성, 데이터 세트 합치기, 데이터 집계 활용 페이지번호	05_01_05
학습목차	학습평가	화면설명
평가하기 - 학습평가	학습한 내용을 바탕으로 다음 문제를 풀어 보세요.	[학습평가 페이지] - 페이지 퀴즈 컴포넌트 사용하여 페이지 개발
 정리하기 - 학습정리	변호 문제 정답 해설 시계열 분석에 사용되는 판다스 모듈로서 요약 기능을 허용하는 Rolling 객체를 길이 n개의 창에 적용하여 반환하며 이동평균 구할 때 주로 사용하는 것은? 1 ① Expanding ② Rolling ③ Windows ④ Plot df2.plot.bar(stacked=True)에 대한 설명 중 <u>틀린</u> 것은?	
	① 막대 그래프 그리기 위한 코드이다. ② stacked=True 란 누적한 값을 시각화하기 위한 옵션이다. ③ 가로막대 그래프를 그리기 위한 코드이다. ④ Bar 대신 Barh를 하면 그래프 모양이 달라진다.	
	### df2.shift(1) 판다스 명령어를 입력하면 어떠한 현상이 일어나는가? ① 도수분포표는 특정 구간에 속하는 자료의 개수를 표현한다 ② 히스토그램은 도수분포표를 시각화하여 막대 그래프로 표현한 것으로 막대 그래프의 일종이다. ③ 히스토그램은 구간별 빈도수를 표현한다. ④ 정규분포는 확률밀도함수이다. ② 청구분포는 확률밀도함수이다.	