AI AND DEV PROJECT

June 9, 2025

1 LOADING THE DATASET

Here I will load my dataset and access some properties, like the shape, certain columns, duplicates, null values, redundant columns, e.t.c.

```
[63]: import pandas as pd
[64]: df = pd.read_csv("behaviour_simulation_train.xlsx - Sheet1.csv")
[65]:
     df.isnull().sum()
                           0
[65]: id
      date
                           0
      likes
                           0
      content
                           0
                           0
      username
                           0
      media
      inferred company
                           0
      dtype: int64
[66]: df.duplicated().sum()
[66]: np.int64(0)
[67]: df.dtypes
[67]: id
                            int64
                           object
      date
                            int64
      likes
                           object
      content
                           object
      username
      media
                           object
      inferred company
                           object
      dtype: object
[68]: df.shape
[68]: (17331, 7)
```

```
[69]: df
[69]:
                 id
                                     date
                                           likes
                                                 \
      0
                  1
                     2020-12-12 00:47:00
                                               1
      1
                  2
                     2018-06-30 10:04:20
                                            2750
      2
                     2020-09-29 19:47:28
                                              57
      3
                     2020-10-01 11:40:09
                                             152
                     2018-10-19 14:30:46
      4
                                              41
             17327
      17326
                     2020-12-12 03:15:00
                                              56
      17327
             17328
                     2018-02-09 21:47:11
                                               2
      17328
             17329
                     2018-05-03 14:26:09
                                             181
      17329
             17330
                                               0
                     2020-01-27 11:52:03
      17330
             17331
                     2020-03-10 02:58:14
                                             112
                                                          content
                                                                          username
                                                                                    \
      0
             Spend your weekend morning with a Ham, Egg, an...
                                                                    TimHortonsPH
      1
             Watch rapper <mention> freestyle for over an H...
                                                                       IndyMusic
      2
             Canadian Armenian community demands ban on mil...
                                                                       CBCCanada
      3
              1st in Europe to be devastated by COVID-19, It...
                                                                 MKWilliamsRome
      4
             Congratulations to Pauletha Butts of <mention>...
                                                                           BGISD
      17326
             After 66 years together, this couple died of #...
                                                                       cbcnewsbc
             Where to add wireless measurements & amp; amp; a...
      17327
                                                                 EMR_Automation
             This is what happened outside a Bromley pollin...
      17328
                                                                     Independent
      17329
             Int'l Day Of Education: CSO Sensitises Childre...
                                                                 IndependentNGR
      17330
             Happy Tuesday \nWelcome to #TheMorningFlava\nW...
                                                                       METROFMSA
                                                            media inferred company
      0
              [Photo(previewUrl='https://pbs.twimg.com/media...
                                                                      tim hortons
      1
              [Photo(previewUrl='https://pbs.twimg.com/media...
                                                                      independent
      2
              [Photo(previewUrl='https://pbs.twimg.com/media...
                                                                              cbc
      3
              [Photo(previewUrl='https://pbs.twimg.com/media...
                                                                         williams
      4
              [Photo(previewUrl='https://pbs.twimg.com/media...
                                                                      independent
      17326
              [Video(thumbnailUrl='https://pbs.twimg.com/amp...
                                                                              cbc
      17327
              [Photo(previewUrl='https://pbs.twimg.com/media...
                                                                          emerson
      17328
              [Video(thumbnailUrl='https://pbs.twimg.com/ext...
                                                                      independent
              [Photo(previewUrl='https://pbs.twimg.com/media...
      17329
                                                                      independent
      17330
              [Photo(previewUrl='https://pbs.twimg.com/media...
                                                                             sabc
      [17331 rows x 7 columns]
[70]: for column in df.columns:
        print(column)
```

id

```
date
     likes
     content
     username
     media
     inferred company
[71]: for col in df.columns:
        print(f"Column '{col}': {df[col].nunique()} unique values")
     Column 'id': 17331 unique values
     Column 'date': 17292 unique values
     Column 'likes': 2589 unique values
     Column 'content': 17126 unique values
     Column 'username': 1325 unique values
     Column 'media': 17307 unique values
     Column 'inferred company': 194 unique values
[72]: df.describe()
[72]:
                       id
                                    likes
      count 17331.000000
                            17331.000000
              8666.000000
                              718.392130
      mean
              5003.173093
                             3866.475948
      std
     min
                 1.000000
                                0.000000
      25%
              4333.500000
                                3.000000
      50%
              8666.000000
                               73.000000
      75%
             12998.500000
                              352.000000
             17331.000000
                           254931.000000
     max
```

2 LIGHT PREPROCESSING (FOR EDA AND DEV READINESS)

I will clean my dataset, of redundant columns, change the format of the date column to DateTime format and extract some features, and I will add some more features to the data frame which will help us in exploratory data analysis.

```
[76]: from datetime import time
      df['Release_Time_Year'] = df['Release Time'].dt.year
      df['Release_Time_Month'] = df['Release Time'].dt.month
      df['Release_Time_Day'] = df['Release Time'].dt.day
      df['Release_Time_hour'] = df['Release Time'].dt.hour
      df['Release_Time_minute'] = df['Release Time'].dt.minute
      df['Release Time second'] = df['Release Time'].dt.second
      df['Release_Time_Of_Day'] = df.apply(lambda row: time(row['Release_Time_hour'],_
       orow['Release_Time_minute'], row['Release_Time_second']), axis=1)
      df.drop(columns = "Release Time", inplace = True)
[77]: df['Has_Mention'] = df['Content'].str.contains('<mention>')
      import re
      def emoji_count(text):
          emoji_pattern = re.compile(
              "\U0001F600-\U0001F64F"
              "\U0001F300-\U0001F5FF"
              "\U0001F680-\U0001F6FF"
              "\U0001F700-\U0001F77F"
              "\U0001F780-\U0001F7FF"
              "\U0001F800-\U0001F8FF"
              "\U0001F900-\U0001F9FF"
              "\U0001FA00-\U0001FA6F"
              "\U0001FA70-\U0001FAFF"
              "\U00002702-\U000027B0"
              "\U000024C2-\U0001F251"
              "]+"
          return len(emoji_pattern.findall(text))
      df['Emoji Count'] = df['Content'].apply(emoji count)
      df['Has_Hashtag'] = df['Content'].str.contains(r'#\w+', na=False)
      df['Has_Url'] = df['Content'].str.contains(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.
       4 + ||[!*\(\),]|(?:\%[0-9a-fA-F][0-9a-fA-F]))+', na=False
      df['Is_Weekend'] = pd.to_datetime({'year': df['Release_Time_Year'],
                                         'month': df['Release_Time_Month'],
                                         'day': df['Release Time Day'],
                                         'hour': df['Release Time hour'],
                                         'minute': df['Release_Time_minute'],
                                         'second': df['Release_Time_second']}).dt.
       ⇒dayofweek >= 5
[78]: from sklearn.preprocessing import LabelEncoder
      label_encoder = LabelEncoder()
      df['Inferred_Company_Encoded'] = label_encoder.

ofit_transform(df['Inferred_Company'])
      df['Has_Media'] = label_encoder.fit_transform(df['Has_Media'])
```

```
[79]: from textblob import TextBlob
      df['Content_Length'] = df['Content'].str.len()
      df['Word_Count'] = df['Content'].str.split().str.len()
      user_agg_data = df.groupby('Username')['Likes'].agg(['count', 'sum']).

¬reset_index()
      user agg data.columns = ['Username', 'User Post Count', 'Total Likes']
      user_agg_data['Average_Likes_Post'] = user_agg_data['Total_Likes'] / ___
       Guser_agg_data['User_Post_Count']
      df = df.merge(user_agg_data[['Username', 'User_Post_Count',__

¬'Average_Likes_Post']], on='Username', how='left')
      df['Sentiment'] = df['Content'].apply(lambda x: TextBlob(x).sentiment.polarity)
      new_column_order = ['Username', 'User_Post_Count', 'Average_Likes_Post',_
       'Word_Count', 'Content_Length', 'Has_Media', 'Has_Mention', u

¬'Release_Time_Year',
                           'Release_Time_Month', 'Release_Time_Day', __

¬'Release_Time_Of_Day',
                          'Is_Weekend', 'Inferred_Company_Encoded', 'Sentiment', __

        'Likes']

      df = df[new_column_order]
```

[80]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17331 entries, 0 to 17330
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype	
0	Username	17331 non-null	object	
1	User_Post_Count	17331 non-null	int64	
2	Average_Likes_Post	17331 non-null	float64	
3	Content	17331 non-null	object	
4	Word_Count	17331 non-null	int64	
5	Content_Length	17331 non-null	int64	
6	Has_Media	17331 non-null	int64	
7	Has_Mention	17331 non-null	int64	
8	Release_Time_Year	17331 non-null	int32	
9	Release_Time_Month	17331 non-null	int32	
10	Release_Time_Day	17331 non-null	int32	
11	Release_Time_Of_Day	17331 non-null	object	

```
12 Is_Weekend 17331 non-null int64
13 Inferred_Company_Encoded 17331 non-null int64
14 Sentiment 17331 non-null float64
15 Likes 17331 non-null int64
dtypes: float64(2), int32(3), int64(8), object(3)
```

memory usage: 1.9+ MB

[81]: df.describe()

[81]:	df.des	f.describe()										
[81]:		User_Post_C	ount	Average	Likes_	Post	Word	d_Count	Conten	t_Length	\	
	count	17331.0		1	7331.00			.000000		1.000000		
	mean	310.1			718.39			501356		7.868617		
	std	597.9			2151.11			842720		1.690684		
	min		0000			00000		.000000		0.000000		
	25%	16.0)4651		.000000		8.000000		
	50%	49.0			161.63			.000000		6.000000		
	75%	162.0			603.56			.000000		2.000000		
	max	1927.0	0000	7	1375.50	00000	63.	.000000	323	3.000000		
		Has_Media	Has_M	<pre>fention</pre>	Releas	se_Tim	e_Year	Releas	e_Time_l	Month \		
	count	17331.0	17331.	000000	1	7331.	000000		17331.0	00000		
	mean	0.0	0.	280249		2019.	085108		6.5	22647		
	std	0.0	0.	449134		0.	816360		3.4	62951		
	min	0.0		000000			000000			00000		
	25%	0.0		000000			000000			00000		
	50%	0.0		000000			000000			00000		
	75%	0.0		000000			000000			00000		
	max	0.0	1.	000000	000000		000000	12.0		000000		
		Release_Time	e_Day	Is_W	leekend	Infe	rred_Co	ompany_E	ncoded	Senti	ment	\
	count	17331.0	00000	17331.	000000			17331.	000000	17331.00	0000	
	mean	15.6	32534	0.	221049			83.	462235	0.15	2969	
	std	8.7	77625	0.	414965			54.	537641	0.26	6508	
	min		00000		000000				000000	-1.00		
	25%		00000		000000				000000		0000	
	50%		00000		000000				000000		3333	
	75%		00000		000000				000000		0000	
	max	31.0	00000	1.	000000			193.	000000	1.00	0000	
		Lik	es									
	count	17331.0000	00									
	mean	718.3921	30									
	std	3866.4759	48									
	min	0.0000	00									
	25%	3.0000	00									
	50%	73.0000	00									
	75%	352.0000	00									

max 254931.000000

```
[82]: for col in df.columns:
        print(f"Column '{col}': {df[col].nunique()} unique values")
     Column 'Username': 1325 unique values
     Column 'User_Post_Count': 93 unique values
     Column 'Average_Likes_Post': 1094 unique values
     Column 'Content': 17124 unique values
     Column 'Word_Count': 60 unique values
     Column 'Content_Length': 288 unique values
     Column 'Has_Media': 1 unique values
     Column 'Has_Mention': 2 unique values
     Column 'Release_Time_Year': 3 unique values
     Column 'Release Time Month': 12 unique values
     Column 'Release_Time_Day': 31 unique values
     Column 'Release_Time_Of_Day': 13183 unique values
     Column 'Is_Weekend': 2 unique values
     Column 'Inferred_Company_Encoded': 194 unique values
     Column 'Sentiment': 2142 unique values
     Column 'Likes': 2589 unique values
[83]: import numpy as np
      df['Log_Likes'] = np.log(df['Likes'] + 1)
[84]: df['Has_Media'].value_counts()
[84]: Has_Media
           17331
      Name: count, dtype: int64
[85]: df.drop(columns = ['Has_Media'], inplace = True)
[86]: df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 17331 entries, 0 to 17330
     Data columns (total 16 columns):
          Column
                                     Non-Null Count Dtype
          _____
      0
          Username
                                     17331 non-null object
          User_Post_Count
      1
                                     17331 non-null int64
      2
          Average_Likes_Post
                                     17331 non-null float64
      3
          Content
                                     17331 non-null object
      4
          Word_Count
                                     17331 non-null int64
          {\tt Content\_Length}
      5
                                    17331 non-null int64
      6
          Has_Mention
                                    17331 non-null int64
          Release_Time_Year
                                    17331 non-null int32
```

```
8
          Release_Time_Month
                                   17331 non-null int32
      9
          Release_Time_Day
                                   17331 non-null int32
      10 Release_Time_Of_Day
                                   17331 non-null object
      11 Is_Weekend
                                   17331 non-null int64
      12 Inferred_Company_Encoded 17331 non-null int64
      13 Sentiment
                                   17331 non-null float64
      14 Likes
                                   17331 non-null int64
      15 Log_Likes
                                   17331 non-null float64
     dtypes: float64(3), int32(3), int64(7), object(3)
     memory usage: 1.9+ MB
[87]: df.to_excel('Cleaned_Dataset.xlsx', index=False)
```

3 EXPLORATORY DATA ANALYSIS

Here I will explore the dataset, by plotting some bar graphs, histograms, line charts and more, to compare the number of likes to the features in my data.

```
[88]: import matplotlib.pyplot as plt
      import seaborn as sns
      plt.figure(figsize=(10, 6))
      sns.scatterplot(x='Sentiment', y='Likes', data=df, alpha=0.5)
      plt.title('Likes vs. Sentiment')
      plt.xlabel('Sentiment Polarity')
      plt.ylabel('Likes')
      plt.show()
      sentiment bins = pd.cut(df['Sentiment'], bins=10)
      avg_likes_by_sentiment = df.groupby(sentiment_bins)['Likes'].mean().
       →reset_index()
      plt.figure(figsize=(10, 6))
      sns.barplot(x='Sentiment', y='Likes', data=avg_likes_by_sentiment)
      plt.title('Average Likes by Sentiment Bin')
      plt.xlabel('Sentiment Polarity Bins')
      plt.ylabel('Average Likes')
      plt.xticks(rotation=45, ha='right')
      plt.tight_layout()
      plt.show()
```


<ipython-input-88-6ae54d6689bd>:10: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future
default and silence this warning.

avg_likes_by_sentiment =
df.groupby(sentiment_bins)['Likes'].mean().reset_index()


```
[89]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='Content_Length', y='Likes', data=df, alpha=0.6)
    plt.title('Likes vs Content Length')
    plt.xlabel('Content Length')
    plt.ylabel('Likes')
    plt.show()
    plt.figure(figsize=(10, 6))
    sns.scatterplot(x='Word_Count', y='Likes', data=df, alpha=0.6)
    plt.title('Likes vs Word Count')
    plt.xlabel('Word Count')
    plt.ylabel('Likes')
    plt.show()
```



```
[90]: plt.figure(figsize=(8, 6))
sns.boxplot(x='Is_Weekend', y='Likes', data=df)
```

```
plt.title('Likes vs. Is Weekend')
plt.xlabel('Is Weekend')
plt.ylabel('Likes')
plt.show()
```



```
[91]: df['release_year_date'] = pd.to_datetime(df['Release_Time_Year'].astype(str) +_\( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex
```



```
[92]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='Likes', y='Average_Likes_Post', data=df, alpha=0.6)
    plt.title('Likes vs Average Likes per Post')
    plt.xlabel('Likes')
    plt.ylabel('Average Likes per Post')
    plt.show()
```



```
[93]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='User_Post_Count', y='Likes', data=df, alpha=0.6)
    plt.title('Likes vs User Post Count')
    plt.xlabel('User Post Count')
    plt.ylabel('Likes')
    plt.show()
```



```
[95]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='Inferred_Company_Encoded', y='Likes', data=df, alpha=0.6)
    plt.title('Likes vs Inferred Company Encoded')
    plt.xlabel('Inferred Company Encoded')
    plt.ylabel('Likes')
    plt.show()
```



```
[96]: plt.figure(figsize=(8, 6))
    sns.boxplot(x='Has_Mention', y='Likes', data=df)
    plt.title('Likes vs. Mentions')
    plt.xlabel('Has Mention')
    plt.ylabel('Likes')
    plt.show()
```



```
[97]: correlation_matrix = df.select_dtypes(include=np.number).corr()['Log_Likes'].

drop('Log_Likes')

print("Correlation Matrix of Log_Likes vs remaining numerical columns:")

print(correlation_matrix)

plt.figure(figsize=(8, 6))

sns.heatmap(correlation_matrix.to_frame(), annot=True, cmap='coolwarm', fmt=".

d2f")

plt.title('Correlation of Log_Likes with Other Numerical Features')

plt.show()
```

Correlation Matrix of Log_Likes vs remaining numerical columns:
User_Post_Count -0.423433

Average_Likes_Post	0.433754
Word_Count	0.138015
Content_Length	0.089585
Has_Mention	0.074083
Release_Time_Year	-0.063429
Release_Time_Month	0.028296
Release_Time_Day	-0.003694
Is_Weekend	0.052465
<pre>Inferred_Company_Encoded</pre>	0.110186
Sentiment	0.011674
Likes	0.336056

Name: Log_Likes, dtype: float64

4 TRAINING AND STORING THE MODEL

Here I will train my model using various model types, like linear regression, gradient boosting, neural networks and many more. Then I will choose the model that yields the best results and save it.

4.1 DATA PREPARATION

I will prepare my data, first split the dataset with 75% training data and 25% testing data. Next I will split the columns with likes representing the y column (The value to be predicted) and the remaining columns representing the independent variables.

```
[98]: y = df['Log_Likes']
x = df.drop(columns=['Log_Likes'], axis = 1)
numerical_cols = [
         'Average_Likes_Post',
         'User_Post_Count',
         'Word_Count',
         'Inferred_Company_Encoded',
         'Content_Length',
         'Has_Mention',
         'Is_Weekend',
         'Release_Time_Year'
]
```

```
[99]: from sklearn.model_selection import train_test_split  
x_train, x_test, y_train, y_test = train_test_split(x , y, test_size=0.25,__
arandom_state=42)
```

4.2 TESTING ALGORITHMS

First I will normalize my data, then I will test various algorithms, test their accuracy, and choose the best one.

4.2.1 NORMALIZED DATA

4.2.2 LINEAR REGRESSION

```
[101]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error, r2_score
    lr_model = LinearRegression()
    lr_model.fit(x_train_normalized[numerical_cols], y_train)
    y_pred_lr = lr_model.predict(x_test_normalized[numerical_cols])
    mse_lr = mean_squared_error(y_test, y_pred_lr)
    r2_lr = r2_score(y_test, y_pred_lr)
    print("Linear Regression Model Evaluation:")
    print(f"Mean Squared Error (MSE): {mse_lr:.2f}")
    print(f"R-squared (R2): {r2_lr:.2f}")
```

Linear Regression Model Evaluation: Mean Squared Error (MSE): 4.38

4.2.3 RANDOM FOREST

```
[102]: from sklearn.ensemble import RandomForestRegressor
    rf_model = RandomForestRegressor(n_estimators=1000, random_state=42)
    rf_model.fit(x_train[numerical_cols], y_train)
    y_pred_rf = rf_model.predict(x_test[numerical_cols])
    mse_rf = mean_squared_error(y_test, y_pred_rf)
    r2_rf = r2_score(y_test, y_pred_rf)
    print("Random Forest Regressor Model Evaluation:")
    print(f"Mean Squared Error (RMSE): {rmse_rf:.2f}")
    print(f"R-squared (R2): {r2_rf:.2f}")
```

Random Forest Regressor Model Evaluation: Mean Squared Error (RMSE): 0.85 R-squared (R2): 0.89

4.2.4 GRADIENT BOOSTING

Gradient Boosting Regressor Model Evaluation: Mean Squared Error (RMSE): 0.72 R-squared (R2): 0.90

4.2.5 NEURAL NETWORKS

```
[104]: from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense, Dropout
    from tensorflow.keras.optimizers import Adam
    from tensorflow.keras.callbacks import EarlyStopping
    model = Sequential()
    model.add(Dense(128, input_dim=len(numerical_cols), activation='relu'))
    model.add(Dropout(0.3))
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(0.3))
    model.add(Dense(32, activation='relu'))
```

```
model.add(Dense(1, activation='linear'))
optimizer = Adam(learning rate=0.001)
model.compile(loss='mse', optimizer=optimizer)
early_stopping = EarlyStopping(monitor='val_loss', patience=10,__
 →restore_best_weights=True)
history = model.fit(x train normalized[numerical cols], y train,
                    validation_split=0.2,
                    epochs=200,
                    batch_size=32,
                    callbacks=[early_stopping],
                    verbose=0)
loss_nn = model.evaluate(x_test_normalized[numerical_cols], y_test, verbose=0)
y_pred_nn = model.predict(x_test_normalized[numerical_cols])
from sklearn.metrics import r2_score
r2_nn = r2_score(y_test, y_pred_nn)
print("\nNeural Network Model Evaluation:")
print(f"Mean Squared Error (MSE): {loss nn:.2f}")
print(f"R-squared (R2): {r2_nn:.2f}")
```

/usr/local/lib/python3.11/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Neural Network Model Evaluation: Mean Squared Error (MSE): 0.87 R-squared (R2): 0.87

4.2.6 TABULAR TRANSFORMS

```
X_train_tab = x_train[features].copy()
X_test_tab = x_test[features].copy()
y_train_tab = y_train.copy()
y_test_tab = y_test.copy()
full_data = pd.concat([X_train_tab, X_test_tab], axis=0)
for col in categorical_features:
   le = LabelEncoder()
   le.fit(full data[col])
   X train tab[col] = le.transform(X train tab[col])
   X_test_tab[col] = le.transform(X_test_tab[col])
scaler = StandardScaler()
X_train_tab[numerical_features] = scaler.

¬fit_transform(X_train_tab[numerical_features])
X_test_tab[numerical_features] = scaler.
categorical_dims = [full_data[col].nunique() for col in categorical_features]
cat_idxs = [X_train_tab.columns.get_loc(col) for col in categorical_features]
cat_{emb_dim} = [min(50, (dim // 2) + 1) for dim in categorical_dims]
tabnet model = TabNetRegressor(
    cat_idxs=cat_idxs,
    cat_dims=categorical_dims,
   cat_emb_dim=cat_emb_dim,
   optimizer_fn=torch.optim.Adam,
   optimizer_params=dict(lr=2e-2),
    scheduler_params={"step_size":50, "gamma":0.9},
    scheduler_fn=torch.optim.lr_scheduler.StepLR,
   mask type='sparsemax'
X_train_np = X_train_tab.values
X_test_np = X_test_tab.values
y_train_np = y_train_tab.values.reshape(-1, 1)
y_test_np = y_test_tab.values.reshape(-1, 1)
tabnet_model.fit(
   X_train=X_train_np, y_train=y_train_np,
    eval_set=[(X_test_np, y_test_np)],
   eval_metric=['mse'],
   max_epochs=1000,
   patience=50,
   batch_size=1024,
   virtual_batch_size=128,
   num_workers=0,
   drop_last=False
y_pred = tabnet_model.predict(X_test_np)
mse = mean_squared_error(y_test_np, y_pred)
r2 = r2_score(y_test_np, y_pred)
print("\n TabNet Evaluation Metrics:")
```

```
print(f" Mean Squared Error (MSE): {mse:.2f}")
print(f" R-squared Score (R2): {r2:.2f}")
/usr/local/lib/python3.11/dist-packages/pytorch_tabnet/abstract_model.py:82:
UserWarning: Device used : cpu
  warnings.warn(f"Device used : {self.device}")
epoch 0 | loss: 9.75228 | val_0_mse: 6.12401 |
                                                  0:00:01s
        | loss: 3.88997 | val_0_mse: 3.60637 |
                                                  0:00:02s
        | loss: 2.33639 | val_0_mse: 2.31334 |
                                                  0:00:04s
epoch 3 | loss: 1.76371 | val_0_mse: 2.18949 |
                                                  0:00:05s
        | loss: 1.48418 | val_0_mse: 2.19788 |
                                                  0:00:06s
        | loss: 1.41963 | val 0 mse: 1.76547 |
epoch 5
                                                  0:00:07s
                                                  0:00:08s
epoch 6 | loss: 1.2089 | val_0_mse: 1.68687 |
epoch 7
        | loss: 1.13192 | val 0 mse: 1.65949 |
                                                  0:00:10s
epoch 8 | loss: 1.14151 | val_0_mse: 1.87577 |
                                                  0:00:11s
epoch 9 | loss: 1.07076 | val_0_mse: 2.13436 |
                                                  0:00:12s
epoch 10 | loss: 1.02675 | val_0_mse: 2.01621 |
                                                  0:00:13s
epoch 11 | loss: 1.00357 | val_0_mse: 2.12656 |
                                                  0:00:14s
epoch 12 | loss: 0.96451 | val_0_mse: 2.22933 |
                                                  0:00:16s
epoch 13 | loss: 0.96879 | val_0_mse: 2.18295 |
                                                  0:00:17s
epoch 14 | loss: 0.93097 | val_0_mse: 2.3286 |
                                                  0:00:18s
epoch 15 | loss: 0.96641 | val_0_mse: 2.58664 |
                                                  0:00:19s
epoch 16 | loss: 0.94833 | val_0_mse: 2.21851 |
                                                  0:00:21s
epoch 17 | loss: 0.90919 | val_0_mse: 2.44424 |
                                                  0:00:22s
epoch 18 | loss: 0.88916 | val_0_mse: 2.57193 |
                                                  0:00:23s
epoch 19 | loss: 0.88298 | val_0_mse: 2.47697 |
                                                  0:00:24s
                        | val 0 mse: 2.42987 |
epoch 20 | loss: 0.8891
                                                  0:00:25s
epoch 21 | loss: 0.86997 | val_0_mse: 2.16433 |
                                                  0:00:26s
epoch 22 | loss: 0.85731 | val 0 mse: 2.29604 |
                                                  0:00:28s
                                                  0:00:29s
epoch 23 | loss: 0.8567 | val 0 mse: 2.60008 |
epoch 24 | loss: 0.85175 | val_0_mse: 2.19688 |
                                                  0:00:30s
epoch 25 | loss: 0.85123 | val_0_mse: 2.44118 |
                                                  0:00:32s
epoch 26 | loss: 0.84882 | val_0_mse: 2.44374 |
                                                  0:00:33s
epoch 27 | loss: 0.83815 | val_0_mse: 2.49265 |
                                                  0:00:34s
epoch 28 | loss: 0.84959 | val_0_mse: 2.32262 |
                                                  0:00:36s
epoch 29 | loss: 0.83337 | val_0_mse: 2.83712 |
                                                  0:00:37s
epoch 30 | loss: 0.84123 | val_0_mse: 2.43408 |
                                                  0:00:38s
epoch 31 | loss: 0.81752 | val_0_mse: 2.68674 |
                                                  0:00:40s
epoch 32 | loss: 0.80226 | val_0_mse: 2.46007 |
                                                  0:00:41s
epoch 33 | loss: 0.81454 | val_0_mse: 2.56528 |
                                                  0:00:42s
epoch 34 | loss: 0.83645 | val_0_mse: 2.62813 |
                                                  0:00:44s
epoch 35 | loss: 0.79475 | val 0 mse: 2.49275 |
                                                  0:00:45s
epoch 36 | loss: 0.79939 | val_0_mse: 2.62527 |
                                                  0:00:46s
epoch 37 | loss: 0.78978 | val_0_mse: 2.52993 |
                                                  0:00:47s
epoch 38 | loss: 0.78976 | val_0_mse: 2.34232 |
                                                  0:00:48s
epoch 39 | loss: 0.77692 | val_0_mse: 2.39903 |
                                                  0:00:50s
epoch 40 | loss: 0.78118 | val_0_mse: 2.12774 |
                                                  0:00:51s
```

```
epoch 41 | loss: 0.77044 | val_0_mse: 2.52479 |
                                                 0:00:53s
epoch 42 | loss: 0.77226 | val_0_mse: 2.38104 |
                                                 0:00:54s
epoch 43 | loss: 0.77112 | val_0_mse: 2.23012 |
                                                 0:00:56s
epoch 44 | loss: 0.78709 | val_0_mse: 2.59802 |
                                                 0:00:57s
epoch 45 | loss: 0.76443 | val 0 mse: 2.34259 |
                                                 0:00:58s
epoch 46 | loss: 0.76328 | val_0_mse: 2.49213 |
                                                 0:00:59s
epoch 47 | loss: 0.7466 | val 0 mse: 2.37579 |
                                                 0:01:01s
epoch 48 | loss: 0.74064 | val_0_mse: 2.48786 |
                                                 0:01:02s
epoch 49 | loss: 0.83332 | val_0_mse: 2.57736 |
                                                 0:01:03s
epoch 50 | loss: 0.75772 | val_0_mse: 2.40985 |
                                                 0:01:04s
epoch 51 | loss: 0.75148 | val_0_mse: 2.27749 |
                                                 0:01:06s
epoch 52 | loss: 0.73494 | val_0_mse: 2.33586 |
                                                 0:01:08s
epoch 53 | loss: 0.75015 | val_0_mse: 2.45475 |
                                                 0:01:09s
epoch 54 | loss: 0.75592 | val_0_mse: 2.48834 |
                                                 0:01:10s
epoch 55 | loss: 0.72318 | val_0_mse: 2.39644 |
                                                 0:01:11s
epoch 56 | loss: 0.7332 | val_0_mse: 2.30514 |
                                                 0:01:12s
epoch 57 | loss: 0.73288 | val_0_mse: 2.44882 |
                                                 0:01:14s
Early stopping occurred at epoch 57 with best_epoch = 7 and best_val_0_mse =
1.65949
/usr/local/lib/python3.11/dist-packages/pytorch_tabnet/callbacks.py:172:
UserWarning: Best weights from best epoch are automatically used!
  warnings.warn(wrn_msg)
 TabNet Evaluation Metrics:
 Mean Squared Error (MSE): 1.66
 R-squared Score (R2): 0.76
```

4.3 STORING THE MODEL

I will store the best-performing model, Gradient Boosting Regressor, in my case, and implement it in future algorithms.

```
[106]: import joblib
    joblib.dump(gbr_model, 'like_predictor.pkl')

[106]: ['like_predictor.pkl']
```