Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

2. ispitni rok iz predmeta **"Elektronika 2"** 04.07.2017.

Zadatak 1 – 10 bodova

Za diferencijsko pojačalo sa slike zadano je $U_{CC}=U_{EE}=12~{\rm V}$, $R_g=5~{\rm k}\Omega$, $R_C=500~{\rm \Omega}$, $R_E=5~{\rm k}\Omega$ i $R_T=100~{\rm \Omega}$. Tranzistori T_1 i T_2 imaju jednake parametre $\beta\approx h_{fe}=100~{\rm i}$ $U_\gamma=0,7~{\rm V}$. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25~{\rm mV}$.

a) Izračunati struje I_{CQ} i napone U_{CEQ} za oba tranzistora u statičkoj radnoj točki (**3 boda**).

- b) Odrediti strujna pojačanja zajedničkog i diferencijskog signala $A_{lz} = i_{iz} / i_z$ i $A_{ld} = i_{iz} / i_d$, te faktor potiskivanja ρ (5 bodova).
- c) Izračunati izlaznu struju ako je struja $i_g = 10 \cdot \sin \omega t \, \mu A$ (2 boda).

Zadatak 2 – 10 bodova

Za pojačalo na slici zadano je $U_{DD}=12~{\rm V}$, $R_g=1~{\rm k}\Omega$, $C_G=15~{\rm nF}$, $R_1=10~{\rm M}\Omega$, $R_2=10~{\rm M}\Omega$, $R_S=2~{\rm k}\Omega$, $C_S=2~{\rm \mu}{\rm F}$ i $R_T=6~{\rm k}\Omega$. Parametri FET-a su $K=4~{\rm mA/V}^2$ i $U_{GS0}=1~{\rm V}$. Zanemariti porast struje odvoda s naponom u_{DS} u području zasićenja.

- a) Izračunati statičku radnu točku (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu (**2 boda**).
- c) Izračunati pojačanje $A_{Vg} = U_{iz}/U_g$ na srednjim frekvencijama (2 boda).
- d) Izračunati donju graničnu frekvenciju pojačanja A_{Vg} (4 boda).

Zadatak 3 – 10 bodova

Za pojačalo na slici zadano je:

$$U_{CC} = 12 \text{ V}, R_g = 10 \text{ k}\Omega,$$

$$C_B = 2 \mu F, R_1 = 300 k\Omega,$$

$$R_2 = 200 \text{ k}\Omega$$
, $R_C = 2 \text{ k}\Omega$,

$$R_E = 200 \Omega$$
, $C_E = 50 \mu F$,

$$C_C = 2 \,\mu\text{F}$$
 i $R_T = 500 \,\Omega$. Parametri

tranzistora su $\beta \approx h_{fe} = 100$,

$$U_{\gamma} = 0.7 \text{ V}, \ r_{bb'} = 20 \ \Omega,$$

$$C_{b'e} = 20 \text{ pF i } C_{b'c} = 2 \text{ pF}.$$

Zanemariti porast struje kolektora s

 R_1

 R_2

 i_{ul} C_B

- a) Izračunati statičku radnu točku (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_{Ig} = I_{iz} / I_g$ na srednjim frekvencijama (2 boda).
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Ig} (4 boda).

Zadatak 4 – 12 bodova

Za pojačalo na slici zadano je $U_{DD}=15~{\rm V}$, $R_G=1~{\rm M}\Omega$, $R_D=350~{\Omega}$, $R_S=250~{\Omega}$, $R_C=5~{\rm k}\Omega$ i $R_T=6~{\rm k}\Omega$. Parametri tranzistora su $I_{DSS}=8~{\rm mA}$, $U_P=-2~{\rm V}$, $\beta\approx h_{fe}=100~{\rm i}~U_\gamma=0,7~{\rm V}$. Zanemariti serijski otpor baze $r_{bb'}$, te poraste struje kolektora s naponom u_{CE} u normalnom aktivnom području i struje odvoda s naponom u_{DS} u području zasićenja. Naponski ekvivalent temperature $U_T=25~{\rm mV}$.

*O U*_{CC}

 R_C

 R_E

- a) Izračunati statičku radnu točku (2 boda).
- b) Odrediti tip povratne veze i nacrtati A-granu pojačala bez povratne veze za mali signal (2 boda).
- c) Odrediti pojačanje A-grane (4 boda).
- d) Odrediti koeficijent povratne veze β (2 boda).
- e) Odrediti pojačanje $A_{Vf} = u_{iz}/u_g$ i ulazni otpor R_{ulf} pojačala s povratnom vezom (2 boda).

Zadatak 5 – 8 bodova

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze su

$$A(j\omega) = \frac{-10^4 \left(1 + j\omega/10^6\right)}{\left(1 + j\omega/10^4\right) \left(1 + j\omega/10^5\right)} , \qquad \beta(j\omega) = \frac{\beta_0}{1 + j\omega/10^4} .$$

Grafičkim postupkom crtanjem aproksimativnog Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s amplitudnim osiguranjem A.O. = -13 dB. Koliko je pri tome fazno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram – 4 boda, određivanje β – 2 boda, F.O. – 2 boda)

Popis složenijih formula:

$$i_D = \frac{K}{2} (u_{GS} - U_{GS0})^2 (1 + \lambda u_{DS})$$

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2 \left(1 + \lambda u_{DS} \right)$$