

DataDrip

Water Pumps functionality prediction (Sprint 2)

Shakeel Ahmed Amey Chitnis

Overview

- Features processing (Implemented using Pipeline structure)
- Baseline model
- Model results
- Performance metrics

Features processing

Built in Transformers:

- •MinMaxScaler():For feature normalization between 0 and 1
- OneHotEncoder():For categorical variables

•

Customized Transformers:

- •IQRCapper(): Interquartile range is used to remove outliers and replace them with mean median, clipping
- •YearExtractor(): For the date column
- •StringConverter(): To treat each category in categorical feature as label even if it's a number. Gives consistent one behavior
- •ConstructionYearTransformer(): To replace the 0 values in the construction year with median

Baseline model

Decision Tree = One tree makes the decision.

Important Questions

- Which feature to start with
- Split value of feature

Objective: Minimize Impurity or Uncertainty

Random Forest = A forest of trees votes on the decision, and the majority wins.

ML Model

Baseline: random forest, decision tree, xgboost

Additional feature processing:

- GeoContextImputer()
- SMOTE()

Random forest selected

- n_estimators = 300
- Class_weight = 'balanced'

Model Optimization

GridSearchCV: Smaller parameter grid

```
Best parameters: {'classifier_max_depth': None, 'classifier_min_samples_split': 2, 'classifier_n_estimators': 300} Best cross-validation score: 0.8002244668911336
```

RandomizedSearchOV: Larger parameter grid

Best parameters: {'classifier_bootstrap': True, 'classifier_max_depth': 40, 'classifier_max_features': 'sqrt', 'classifier_min_samples_le af': 1, 'classifier_min_samples_split': 10, 'classifier_n_estimators': 620}
Best cross-validation score: 0.7018965084294856

Model Evaluation

from sklearn.metrics import accuracy_score
print(accuracy_score(y_test_encoded, y_pred))
0.8080808080808081

from sklearn.model_selection import cross_val_score
scores = cross_val_score(full_pipeline, X_train, y_train_encoded, cv=5, scoring='accuracy')
print("Average CV accuracy:", scores.mean())

Average CV accuracy: 0.7964272353161241

- Accuracy: 0.8080808080808081
- Precision (macro): 0.7258044989981768
- @ Recall (macro): 0.7065642188214794
- @ F1 Score (macro): 0.7152602896554855
- F1 Score (weighted): 0.8063079188461421
- Cohen's Kappa: 0.6479878133792702
- Log Loss: 0.5432239553263184
- ROC AUC Score (OvR): 0.8986106308429666

Classification Report:

	precision	recall	f1-score	support
functional	0.82	0.87	0.85	3226
functional needs repair	0.52	0.46	0.49	432
non functional	0.83	0.79	0.81	2282
accuracy			0.81	5940
macro avg	0.73	0.71	0.72	5940
weighted avg	0.81	0.81	0.81	5940

Conclusion

Feature processing with pipelines

Random Forest Classifier

Model optimization

Cross Validation accuracy, ROC AUC, Confusion matrix to evaluate