Programmable Logic Devices

Ayoush Johari
Assistant Professor
Department of Electronics and Communication Engineering
Lakshmi Narain College of Technology and Science, Bhopal

- Text Book:
 - Rapid prototyping of digital systems SOPC edition by James O. Hamblen, Tyson S. Hall and Michael D. Furman
- Reference Books:
 - Xilinx and altera logic design handbooks

Implementation Options for Digital Logic

- Assembly of SSI and MSI parts on PC boards.
 - Mostly obsolete; still useful when just a few parts needed
- Programmable Logic Devices (PLD)
 - Variety of types, with different size and performance characteristics; largest have over 10⁶ gate "equivalents"
 - CAD tools enable simulation and automate device programming

Implementation Options for Digital Logic (Cont.)

- Application Specific Integrated Circuits (ASIC)
 - design methods similar to PLDs
 - HDLs and simulation with synthesis using standard cell library
 - plus physical design placement of logic components and routing
 - can augment with custom design of critical components
 - higher performance, greater logic density
 - custom IC fabrication -- suitable for high production volumes

Programmable Logic Devices

- Simple logic arrays
 - Implement 2 level logic circuits (AND/OR)
 - Based on regular array structure
 - Several types
 - Read Only Memories (ROMs and PROMs)
 - Programmable Logic Array (PLA)
 - Programmable Array Logic (PAL)
- Complex Programmable Logic Devices (CPLD)
 - Collection of individual PLDs (e.g. PALs, PLAs) on a single chip.
 - Programmable interconnects.

Programmable Logic Devices (Cont.)

- Field Programmable Gate Arrays (FPGA)
 - many copies of common building block
 - each block can be configured for different logic functions and typically includes a flip flop and a 4 input function generator
 - programmable interconnect
 - often includes SRAM blocks
 - largest FPGAs have about 100K flip flops, 100K function generators and 10 MB of SRAM

Classifying Three Basic PLDs

Programmable Array Logic (PAL) Devices

PAL: trademark of AMD, use PAL as an adjective or expect to receive a letter from AMD's lawyers

Read-Only Memory

- "Permanent" binary information is stored
- Non-volatile memory
 - Power off does not erase the information stored.

Implementation of ROM

Programming the 32x8 ROM

Example: Lookup Table

• Design a square lookup table for $\underline{F(X)} = \underline{X^2}$ using ROM

Х	$F(X) = X^2$
0	0
1	1
2	4
3	9
4	16
5	25
6	36
7	49

X	$F(X) = X^2$
000	000000
001	000001
010	000100
011	001001
100	010000
101	011001
110	100100
111	110001

Square Lookup Table using ROM

F(X)=X ²
000000
000001
000100
001001
010000
011001
100100
110001

Square Lookup Table using ROM

Х	$F(X)=X^2$
000	000000
001	000001
010	000100
011	001001
100	010000
101	011001
110	100100
111	110001

Square Lookup Table using ROM

Programmable Logic Arrays

- PLAs have configurable "AND-plane" & "OR-plane"
- Can implement any 2-level AND-OR circuit.

Example using PLA

• Functions to implement are

$$F_1(A, B, C) = \sum m(0,1,2,4)$$

$$F_2(A, B, C) = \sum m(0,5,6,7)$$

Example using PLA (Cont.)

• Minimum product terms are

Example using PLA (Cont.)

Programmable Array Logic

- PAL is similar to PLA but fixed OR-plane.
- Simpler to program and cheaper implementation.
- Faster than PLA as OR-plane is hard wired.
- Limited number of terms in each output.

Comparison of PROMs, PLAs & PALs

- Can view PROMs and PALs as restricted forms of PLA.
 - PROMs are logically equivalent to PLA with AND-plane that generates all minterms and configurable OR-plane
 - PAL is logically equivalent to PLA with fixed OR-plane in which each output is the OR of a subset of the ANDs
- Most parts include flip flops, for implementing sequential circuits.

Why CPLD?

- <u>16V8 PLD</u> (20 Pins)
 - can have 16 inputs (max) and/or 8 outputs
 - has 32 inputs to each of the AND gates
- <u>22V10 PLD</u> (24 pins)
 - can have 22 inputs and/or 10 outputs (max)
 - has 44 inputs to each of the AND gates
- How about a "128V64" for larger applications?
 - It will be much slower and will more wasted silicon space
 - Solution? Use **CPLDs**

Top Level CPLD Architecture Logic block I/O block **PLD PLD PLD PLD** Interconnects **PLD PLD PLD PLD**

Field Programmable Gate Arrays

- FPGAs can be used to construct more complex circuits.
- Chip contains a large number (tens of thousands) of configurable logic building blocks.
 - Typically each block includes a 4 input function generator, a flip flop and some "glue" logic.
 - CAD tools map high level circuit to basic blocks, configuring function generators & other configurable elements as needed.

Field Programmable Gate Arrays (Cont.)

- Programmable interconnect used to wire logic blocks.
 - Wire segments connected to logic blocks and to other wire segments by configurable switches.
 - CAD tools determine switch configuration needed to provide right connectivity.
- CAD tools perform mapping, placement, routing.
 - Routing information used in timing analysis & simulation.

Top Level FPGA Architecture

Top Level FPGA Architecture (Cont.)

- CLBs can be connected to "passing" wires.
- Wire segments connected by switch matrix.
- Long wire segments used to connect distant CLBs.
- Configuration information stored in SRAM bits that are loaded when power turns on.