Functions

Cunsheng Ding

HKUST, Hong Kong

September 18, 2015

1/22

Contents

- Basic Definitions
- One-to-one Functions
- Onto Functions
- One-to-one Correspondences
- 5 Functions of More Arguments
- The Inverse of Functions
- The Composition of Functions

What is a Function?

Definition 1

- **③** A <u>function</u> from a set *A* to a set *B* is a binary relation *f* from *A* to *B* with the property, for every $a \in A$, there is exactly one $b \in B$ such that $(a, b) \in f$. In this case, we write f(a) = b.
- ② A is called the <u>domain</u> of f, and B is called the <u>codomain</u> of f. The <u>range</u> of f is defined as

Range
$$(f) = \{b \in B \mid b = f(a) \text{ for some } a \in A\}$$

Example 2

Let $A = \{1,2,3\}$ and $B = \{x,y\}$. Then $f = \{(1,x),(2,y),(3,x)\}$ is a function from A to B. The arrow diagram is given on the right-hand side.

Comments on the Definition of Functions

- For every $a \in A$, f(a) must be defined.
- **2** For every $a \in A$, f(a) must be in B, the codomain.
- **3** For every $a \in A$, f(a) must be unique.

Example 3

Let $A = \{1,2,3,4\}$ and $B = \{x,y\}$. The binary relation $f = \{(1,x),(2,y),(3,x)\}$ is not a function, as f(4) is not defined.

Example 4

Let $A = B = \{1, 2, 3, 4\}$. Define f(x) = x + 1. Then f is not a function, as $f(4) = 5 \notin B$.

Example 5

Let $A = \{1,2,3\}$ and $B = \{\Delta,\Gamma\}$. Define a binary relation g as

$$g = \{(1, \Delta), (1, \Gamma), (2, \Delta), (3, \Delta)\}$$

Then g is not a function, as g(1) is not unique.

Descriptions of Functions

Remarks

- Functions are also called mappings.
- Let f be a function from A to B. f(a) is called the image of a.
- $(a,b) \in f$ means that b = f(a). In this case, a is called the preimage of b with respect to *f*.
- $igoplus Write f: A \rightarrow B$ to mean that f is a function from A to B.

f(a) = b means that

Ways to describe functions

In terms of ordered pairs.

$$f = \{(\),(\),\ldots,(\)\}$$

- Using arrow diagram.
- \odot Using " \mapsto ".

$$f : x_1 \mapsto y_1$$
$$x_2 \mapsto y_2$$
$$\vdots$$
$$x_n \mapsto y_n$$

Using mathematical formulas.

$$f(x) = x^2 + x - 6$$

 $f: a \mapsto b$.

Equality of Two Functions

Definition 6

Two functions f and g are said equal iff they have the same domain and codomain and f(a) = g(a) for each a in the domain.

Example 7

Define functions f and g from \mathbb{R} to \mathbb{R} by the formulas: for all $x \in \mathbb{R}$,

$$f(x) = 2x$$
 and $g(x) = \frac{2x^3 + 2x}{x^2 + 1}$

Show that f = g.

Proof.

We need to prove that f(x) - g(x) = 0 for all $x \in \mathbb{R}$. Note that for all $x \in \mathbb{R}$,

$$f(x) - g(x) = 0/(x^2 + 1) = 0.$$

One-to-one Functions (1)

Definition 8

A function $f: A \rightarrow B$ is <u>one-to-one</u> or <u>injective</u> iff

$$f(a_1) = f(a_2)$$
 implies that $a_1 = a_2$

Example 9

Let $A = B = \mathbb{Z}$ and define

$$f(a) = 2a$$
 for all $a \in A$

Then f is a one-to-one function.

Proof.

Note that f(a) - f(b) = 2(a - b). Hence f(a) = f(b) if and only if a = b. By definition, f is one-to-one.

One-to-one Functions (2)

Question 1

Let A and B be two finite sets with m and n elements, respectively, where m and n are positive integers with $m \le n$. What is the total number of one-to-one functions from A to B?

Onto Functions

Definition 10

A function $f: A \rightarrow B$ is <u>onto</u> or <u>surjective</u> if Range(f) = B; ie iff

 $b \in B$ means that b = f(a) for some $a \in A$

Example 11

Let $A = B = \mathbb{R}$. Define f(a) = 4a - 3. Then f is onto.

Proof.

For any $b \in \mathbb{R}$, we need to find an element $a \in \mathbb{R}$ such that

$$f(a) = b$$
 iff $4a - 3 = b$ iff $a = \frac{b+3}{4}$.

Hence for any $b \in B$ there is an $a \in A$ such that f(a) = b.

Onto Functions (2)

Recall of definition

A function $f: A \rightarrow B$ is <u>onto</u> or surjective if Range(f) = B; ie iff

 $b \in B$ means that b = f(a) for some $a \in A$

Example 12

Let $A = B = \mathbb{R}$. Define $f(x) = x^2$. Then f is not onto.

Proof.

Let $b=-1 \in B$. Clearly, there is no $a \in A$ such that $f(a)=a^2=-1=b$. By definition, f is not onto.

Any Relationship between One-to-one and Onto Functions?

Answer

No.

Example 13

One-to-one, but not onto: let $A = B = \mathbb{Z}$ and define f(x) = 2x.

Example 14

Onto, but not one-to-one: let $A = \mathbb{Z}$, $B = \{0, 1\}$ and define $f(x) = x \mod 2$.

Example 15

Onto and one-to-one: let $A = B = \mathbb{Z}$ and define f(x) = x - 10.

One-to-one Correspondences

Definition 16

A function f is called a <u>one-to-one correspondence</u> or <u>bijection</u> if it is both one-to-one and onto.

Example 17

Let $A = B = \mathbb{R}$. Define f(x) = 101x + 1. Then f is a bijection.

Proof.

It is easy to prove that it is both onto and one-to-one.

Functions of More Arguments

Definition 18

Recall that a function $f: A \to B$ is a special binary relation from A to B. If $A = A_1 \times A_2 \times \cdots A_n$, we say that f is a function of n arguments.

Example 19

f(n,m)=2n+3m is a function of two arguments from $\mathbb{N}\times\mathbb{N}$ to \mathbb{N} .

The Inverse of Functions (1)

Proposition 20

Let $f: A \to B$ be a bijection. Then the <u>inverse relation</u> f^{-1} is a function from B to A.

Proof.

Recall

$$f^{-1} = \{(b, a) \mid (a, b) \in f\}$$

Since f is onto, for any $b \in B$, there is at least on $a \in A$ such that f(a) = b. Since f is one-to-one, there is only one such $a \in A$. Hence for any $b \in B$, there is only one $a \in A$ such that $(b,a) \in f^{-1}$. Therefore f^{-1} is a function from B to A.

The Inverse of Functions (2)

Definition 21

Let $f: A \to B$ be a bijection. The inverse relation f^{-1} is called the <u>inverse</u> function of f.

Example 22

Let $A = \{1,2,3,4\}$ and $B = \{x,y,z,t\}$, then

$$f = \{(1,x),(2,y),(3,z),(4,t)\}$$

is a bijection from A to B. And

$$f^{-1} = \{(x,1), (y,2), (z,3), (t,4)\}$$

is the inverse of f.

The Composition of Functions (1)

Definition 23

If $f: B \to A$ and $g: B \to C$ are functions, then the <u>composition</u> of f and g is the function $g \circ f: A \to C$ defined by

$$(g \circ f)(a) = g(f(a)), \forall a \in A$$

Example 24

If f and g are the functions $\mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x - 3, $g(x) = x^2 + 1$, then both $g \circ f$ and $f \circ g$ are defined. We have

$$(g \circ f)(x) = g(f(x)) = g(2x-3) = (2x-3)^2 + 1$$

and

$$(f \circ g)(x) = f(g(x)) = f(x^2 + 1) = 2(x^2 + 1) - 3$$

The Composition of Functions (2)

Remarks

- The composition of functions is the same as that of binary relations.
- ② Even if both $f \circ g$ and $g \circ f$ are defined, $f \circ g$ may equal to $g \circ f$. See Example 24

The Composition of Functions (3)

Proposition 25

The composition of functions is an associative operation on functions.

Proof.

Let

$$h: A \rightarrow B$$
, $g: B \rightarrow C$, $f: C \rightarrow D$

be functions. We want to prove that

$$(f \circ g) \circ h = f \circ (g \circ h).$$

By definition,

$$((f \circ g) \circ h)(a) = (f \circ g)(h(a)) = f(g(h(a)))$$

$$(f \circ (g \circ h))(a) = f((g \circ h)(a)) = f(g(h(a))).$$

The desired conclusion then follows.

The Composition of Functions (4)

Definition 26

Let A be any set. The identity function on A, denoted by i_A is defined by

$$i_A(a) = a, \forall a \in A$$

The Composition of Functions (5)

Proposition 27

If $f: A \to A$ is any function and i_A denotes the identity function on A, then $f \circ i_A = i_A \circ f$.

Proof.

On one hand, for any $a \in A$ we have

$$(f \circ i_A)(a) = f(i_A(a)) = f(a).$$

On the other hand, for any $a \in A$ we have

$$(i_A \circ f)(a) = i_A(f(a)) = f(a).$$

The desired conclusion then follows from the definition of the equality of two functions.

The Composition of Functions (6)

Proposition 28

Functions $f:A\to B$ and $g:B\to A$ are inverses iff

$$g \circ f = i_A$$
 and $f \circ g = i_B$

i.e. iff

$$g(f(a)) = a$$
 and $f(g(b)) = b$

for all $a \in A$ and $b \in B$.

Proof.

Left as an exercise.

The Composition of Functions (7)

Example 29

Show that the function $f:(0,\infty)\to(0,\infty)$ defined by $f(x)=\frac{1}{x}$ is the inverse of itself.

Proof.

$$(f \circ f)(a) = f\left(\frac{1}{a}\right) = a, \forall a \in A.$$

The conclusion then follows from Proposition 28.

