EE315 - Electronics Laboratory

Experiment - 6 Simulation BJT Differential Amplifier

Name: Emre Nedim Hepsağ Number: 250206012

Submission Date: 21/12/2020 **Preliminary Work**

2.a) Calculate the differential gain $A_d = v_{c2}/v_d$ and the common mode gain $A_{cm} = v_{c2}/v_{cm}$ of the differential amplifier given in Figure 2. Assume that output resistance R_0 of the constant current source is 40 k Ω in your calculations.

Figure 2. Differential amplifier

2.b) Draw the v_{C1} , v_{C2} , and v_{E} (both AC and DC components) versus time plots for the differential and common mode inputs shown below. Calculate the amplitudes (including polarities) of differential and common mode AC signals and write the results in the table provided below.

	differential	common-mode
ν _{c1} (Vpeak)	2.148V	0.0534V
ν _{c2} (Vpeak)	2.148V	0.0534V
ν _e (Vpeak)	0	1V

$$V_{C2} = -V_{C1} = V_O = A_dV_d + A_{cm}V_{cm} = 21.48*V_d - 0.0534*V_{cm}$$

There is some small cracking just like below for every pulse signal period on Vc1 and Vc2. However, we can not see them because they are too small to see in this size of graphs.

Results

2. Build the differential amplifier given in Figure 2 using the current mirror you built in part-1 as the I_Q . current source. Set the amplitudes of input sources ν_d and ν_{cm} to 0 V and check the DC voltages at V_E , V_{C1} , and V_{C2} , comparing with their expected values to make sure that the circuit operates properly.

2.a) Measure the differential gain $A_d = v_{c2}/v_d$ of the differential amplifier. Set the amplitude of common mode input v_{cm} to **0 V** and apply a **20 mVp-p** sinusoidal input as v_d source at the frequency settings given the following table.

v _d frequency	ν _{c2} (Vp-p)	A _d
10 kHz	2.1223199V	106.1155
30 kHz	2.1030266V	105.151
100 kHz	1.8641548V	93.207
300 kHz	1.1862092V 59.31	
1 MHz	384.36376mV 19.218	
3 MHz	129.14455mV 6.457	

2.b) Measure the common mode gain $A_{cm} = v_{c2}/v_{cm}$ of the differential amplifier. Set the amplitude of differential input v_d to **0** V and apply a **4** Vp-p common mode input at the frequency settings given in the following table.

v _{cm} frequency	ν _{c2} (mVp-p)	A _{cm}
10 kHz	31.0677mV	0.007767
30 kHz	31.186223mV	0.007796
100 kHz	32.901516mV	0.008253
300 kHz	42.182279mV 0.010545	
1 MHz	MHz 100.42568mV 0.025106	
3 MHz	289.76051mV	0.072440

2.c) How does the CMRR of the differential amplifier change depending on the frequency? Why?

frequency	CMRR
10 kHz	13662.35
30 kHz	13487.81
100 kHz	11293.71
300 kHz	5624.47
1 MHz	765.47
3 MHz	89.16

Conclusion

>>In this experiment, we learned how to analyze BJT differential amplifier circuit by hand and by simulation. We saw similar results on 1MegHz because in the last experiment, we found Ro as 40k ohm at 1Meg Hz. However, in this lab, our frequency was changing. Thus, we observed change on common mode and differential gain when we change the frequency. So that, we found CMRR directly proportional and dependent to the frequency.