Zadanie 1. Wykonujemy 10 kolejnych, niezależnych rzutów symetryczną monetą. Niech S_n oznacza liczbę orłów otrzymaną w początkowych n rzutach.

Prawdopodobieństwo warunkowe $Pr(S_5 = 3|S_{10} = 7)$ jest równe:

- $(A) \qquad \frac{3}{7}$
- (B) $\frac{5}{12}$
- (C) $\binom{5}{3} \cdot \frac{1}{2^5}$
- (D) $\frac{21}{50}$
- (E) $\frac{\binom{5}{3} \cdot \frac{1}{2^5}}{\binom{10}{3} \cdot \frac{1}{2^{10}}}$

Zadanie 2. Załóżmy, że zmienna losowa X ma rozkład wykładniczy o gęstości:

$$f_X(x) = \begin{cases} \lambda \cdot e^{-\lambda \cdot x} & \text{dla } x > 0 \\ 0 & \text{poza tym} \end{cases}$$

Niech [x] oznacza część całkowitą liczby x (czyli największą liczbę całkowitą n taką, że $n \le x$). Wartość oczekiwana zmiennej losowej N = [X+0.5] wyraża się wzorem:

(C)
$$\left[\frac{1}{\lambda} + \frac{1}{2}\right]$$

(D)
$$\left[\frac{1}{\lambda}\right] + \frac{1}{2}$$

(C)
$$\frac{1}{[\lambda]} + \frac{1}{2}$$

(D)
$$\frac{e^{0.5 \cdot \lambda}}{e^{\lambda} - 1}$$

(E)
$$\frac{1}{e^{\lambda} - 1}$$

Zadanie 3. Każda ze zmiennych losowych X_1, X_2, \ldots, X_n ma taką samą wartość oczekiwaną μ . Wiadomo, że:

$$COV(X_{i}, X_{j}) = \begin{cases} \sigma^{2} & dla & i = j \\ \frac{\sigma^{2}}{2} & dla & i \neq j \end{cases}$$

Niech
$$S^2(c) = c \cdot \sum_{i=1}^n (X_i - \overline{X})^2$$
, gdzie $\overline{X} = \frac{1}{n} \cdot \sum_{i=1}^n X_i$.

 $S^{2}(c)$ jest nieobciążonym estymatorem parametru σ^{2} , jeśli c jest równe:

(A)
$$\frac{2}{n-1}$$

$$(B) \qquad \frac{2}{n-1+\frac{1}{n}}$$

(C)
$$\frac{1}{n}$$

(D)
$$\frac{2}{n}$$

(E)
$$\frac{1}{n-1}$$

Zadanie 4. Zmienne losowe X i Y są niezależne. X ma rozkład normalny o wartości oczekiwanej 0 i wariancji 0.5. Y ma rozkład wykładniczy o wartości oczekiwanej 1. $Pr(Y > X^2)$ wynosi:

- (A) $\frac{1}{2}$
- (B) $\frac{1}{\sqrt{2\pi}}$
- (C) $\sqrt{\frac{e}{\pi}}$
- (D) $\frac{1}{\sqrt{e}}$
- (E) $\frac{\sqrt{2}}{2}$

Zadanie 5. Rozważmy model regresji liniowej:

$$Y_i = a \cdot x_i + \varepsilon_i, \qquad i = 1, 2, 3, 4,$$

gdzie ε_i są niezależnymi zmiennymi losowymi o rozkładzie normalnym z wartością oczekiwaną 0 i nieznaną wariancją σ^2 , zaś x_1, x_2, x_3, x_4 są (nielosowymi) punktami z przedziału [0,3], natomiast a jest nieznanym współczynnikiem. Wariancja estymatora \hat{a} otrzymanego metodą najmniejszych kwadratów jest minimalna, jeśli (x_1, x_2, x_3, x_4) równe są odpowiednio:

- (A) (0, 1, 2, 3)
- (B) (0, 0, 3, 3)
- (C) (0, 3, 3, 3)
- (D) (3, 3, 3, 3)
- (E) $\left(\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}\right)$

Zadanie 6. Przyjmujemy, że liczby wypadków N_1,N_2,\ldots,N_k zgłoszonych w kolejnych k latach są niezależnymi zmiennymi losowymi. Zakładamy, że zmienna N_i ma rozkład Poissona z wartością oczekiwaną równą $\lambda \cdot m_i$, gdzie m_i jest (znaną) liczbą samochodów ubezpieczonych w i-tym roku, zaś λ nieznanym parametrem. Estymator Największej Wiarygodności $\hat{\lambda}$ parametru λ dany jest wzorem:

(A)
$$\hat{\lambda} = \sum_{i=1}^{k} \frac{N_i}{m_i}$$

(B)
$$\hat{\lambda} = \frac{\sum_{i=1}^{k} N_i}{\sum_{i=1}^{k} m_i}$$

(C)
$$\hat{\lambda} = \frac{1}{k} \cdot \sum_{i=1}^{k} N_i$$

(D)
$$\hat{\lambda} = \frac{\sum_{i=1}^{k} N_i \cdot m_i}{\sum_{i=1}^{k} m_i}$$

(E)
$$\hat{\lambda} = \frac{\sum_{i=1}^{k} N_i \cdot m_i}{k}$$

Zadanie 7. Gęstość zmiennej losowej X ma postać:

$$f_{\theta}(x) = \frac{1}{2} \cdot e^{-|x-\theta|}, \quad x \in R,$$

gdzie θ jest nieznanym parametrem. Rozważamy jednostajnie najmocniejszy test hipotezy

$$H_0$$
: $\theta = 0$ przeciw hipotezie alternatywnej:

$$H_1: \theta > 0$$

na poziomie istotności α , gdzie α < 0.5, oparty na pojedynczej obserwacji X. Funkcja mocy tego testu $\beta(\theta)$ osiąga wartość 0.75 dla θ równego:

(A)
$$-\ln \alpha$$

(B)
$$\ln \frac{3}{4} - \ln \alpha$$

(C)
$$-\ln\left(\frac{3}{4}\cdot\alpha\right)$$

(D)
$$-\ln\frac{\alpha}{4}$$

(E)
$$-\ln(2\cdot\alpha)$$

Zadanie 8. Niech X_1, X_2, \ldots, X_8 będzie próbą losową z rozkładu normalnego z wartością oczekiwaną θ i wariancją 1. Nieznany parametr θ jest, z kolei, zmienną losową o rozkładzie normalnym z wartością oczekiwaną 0 i wariancją 1. Rozważamy Bayes'owski przedział ufności dla parametru θ , to znaczy: przedział [a, b], gdzie $a = a(X_1, X_2, \ldots, X_8)$, $b = b(X_1, X_2, \ldots, X_8)$, taki, że:

 $\Pr(\theta < a | X_1, X_2, ..., X_8) = 0.05 = \Pr(\theta > b | X_1, X_2, ..., X_8).$

Jeśli przyjmiemy oznaczenie:
$$\overline{X} = \frac{1}{8} \cdot \sum_{i=1}^{8} X_i$$
, to przedział $[a, b]$ przybiera postać:

(A)
$$\left[\overline{X} - 0.548, \ \overline{X} + 0.548 \right]$$

(B)
$$\left[\overline{X} - 0.427, \ \overline{X} + 0.427 \right]$$

(C)
$$\left[\frac{8}{9}\overline{X} - 0.548, \frac{8}{9}\overline{X} + 0.548\right]$$

(D)
$$\left[\frac{8}{9}\overline{X} - 0.427, \frac{8}{9}\overline{X} + 0.427\right]$$

(E)
$$\left[\overline{X} - 0.427, \ \overline{X} + 0.548 \right]$$

Zadanie 9. Łańcuch Markowa ma przestrzeń stanów $\{e_1, e_2, e_3\}$ i macierz

prawdopodobieństw przejścia:

Zakładamy, że w chwili 0 łańcuch znajduje się w stanie e_1 . Niech T oznacza chwilę, w której łańcuch po raz pierwszy znajdzie się w stanie e_2 . Wartość oczekiwana zmiennej losowej T wynosi:

- (A) 1
- (B) 2
- (C) 3
- (D) ∞
- (E) $\frac{2}{3}$

Zadanie 10. $X_{(1)}, X_{(2)}, \ldots, X_{(400)}$ jest próbą losową z pewnego rozkładu ciągłego o wariancji σ^2 , ustawioną w porządku niemalejącym, tzn. tak, że $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(400)}$. Niech m będzie medianą rozważanego rozkładu. Przybliżona (na podstawie Centralnego Twierdzenia Granicznego), wartość $\Pr(X_{(220)} \leq m)$ wynosi:

- (A) 0.0149
- (B) 0.0049
- (C) 0.0532
- (D) 0.0256
- (E) $\Phi\left(\frac{20}{\sigma}\right)$, gdzie Φ jest dystrybuantą standaryzowanej zmiennej normalnej

Egzamin dla Aktuariuszy z 7 grudnia 1996 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pasal	

Zadanie nr	Odpowiedź	Punktacja*
1	В	
2	D	
3	A	
4	Е	
5	D	
6	В	
7	A	
8	С	
9	C	
10	D	

11

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypelnia Komisja Egzaminacyjna.