

Advanced Union-Find

Algorithms: Design and Analysis, Part II

Union by Rank -Analysis

Properties of Ranks

Recall: Lazy Unions.

Invariant (for now): rank[x] = max # of hops from a leaf to x. [Note $max_x rank[x] \approx worst-case running time of FIND.]$

Union by Rank: Make old root with smaller rank child of the root with the larger rank.

[Choose new root arbitrarily in case of a tie, and add 1 to its rank.]

Immediate from Invariant/Rank Maintenance:

- (1) For all objects x, rank[x] only goes up over time
- (2) Only ranks of roots can go up [once x a non-root, rank[x] frozen forevermore]
- (3) Ranks strictly increase along a path to the root

Rank Lemma

Rank Lemma: Consider an arbitrary sequence of UNION (+FIND) operations. For every $r \in \{0, 1, 2, ...\}$, there are at most $n/2^r$ objects with rank r.

Corollary: Max rank always $\leq \log_2 n$

Corollary: Worst-case running time of FIND, UNION is $O(\log n)$. [With Union by Rank.]

Proof of Rank Lemma

Claim 1: If x, y have the same rank r, then their subtrees (objects from which can reach x, y) are disjoint.

Claim 2: The subtree of a rank-r object has size $\geq 2^r$. [Note Claim 1 + Claim 2 imply the Rank Lemma.]

Proof of Claim 1: Will show contrapositive. Suppose subtrees of x, y have object z in common $\Rightarrow \exists$ paths $z \rightarrow x, z \rightarrow y$ \Rightarrow One of x, y is an ancestor of the other \Rightarrow The ancestor has strictly larger rank. [By property (3)] QED (Claim 1)

Proof of Claim 2

Rank $r \Rightarrow$ Subtree size $\geq 2^r$

Base case: Initially all ranks = 0, all subtree sizes = 1

Inductive step: Nothing to prove unless the rank of some object changes (subtree sizes only go up).

Interesting case: UNION(x, y), with s_1 =FIND(x), s_2 =FIND(y), and rank[s_1]=rank[s_2]= $r \Rightarrow s_2$'s new rank = r+1 $\Rightarrow s_2$'s new subtree size = s_2 's old subtree size + s_1 's old subtree size (each at least 2^r by the inductive hypothesis) $\geq 2^{r+1}$. QED!

