Práctica 2: Automatización con Drones

Autor: Daniel Calderón

Fecha de Entrega: 27 de septiembre de 2024 **Asignatura:** Automatización con Drones

1. Introducción

En esta práctica, se utilizará el Dron Phantom 4 advanced para capturar imágenes aéreas y procesarlas para generar un orto-mosaico, un modelo digital de superficie (DSM), y una reconstrucción 3D. También se realizará el cálculo del Tamaño del Pixel en la Tierra (GSD) utilizando las características geométricas de la cámara del dron y se comparará con el valor calculado por la aplicación PIX4D Capture.

2. Características Geométricas de la Cámara

Las características geométricas de la cámara del Dron Phantom 4 advanced utilizado son las siguientes:

Ancho de imagen (Image Width): 5472pixeles

Altura de imagen (Image Height): 3648pixeles

Ancho del sensor (Sensor Width): 13.2mm

Altura del sensor (Sensor Height): 8mm

Distancia focal (Focal Length): 8.8mm

3. Cálculo del Tamaño del Pixel en la Tierra (GSD)

El Tamaño del Pixel en la Tierra o Ground Sample Distance (GSD) se calcula con la siguiente fórmula:

Fórmula del GSD:

$$\mathit{GSD} = \frac{\mathit{SensorWidth} * \mathit{AlturadelVuelo}}{\mathit{FocalLength} * \mathit{IamgeWidth}}$$

El calculo del GSD desde la aplicación de PIX4D capture se realiza a una altura de 60 metros según la aplicación es:

$$GSD = \frac{13.2(mm) * 60000(mm)}{8.8(mm) * 5472(Pixeles)} = 16.44 \left(\frac{mm}{pixel}\right) = 1.644 \left(\frac{cm}{pixel}\right)$$

$$AlturadeVuelo = \frac{FocalLength*IamgeWidth*GSD}{SensorWidth}$$

La altura de vuelo según PIX4D Matic

$$AlturadeVuelo = \frac{8.8(mm) * 5472(Pixeles) * 16(\frac{mm}{pixel})}{13.2(mm)} = 58368(mm) = 58.368(m)$$

El valor 58.368m es la distancia el cual el Dron realizó las fotos y la referencia es el piso el dato de 1.6(cm/píxel) se obtiene desde el archivo de exportación que genera el PIX4D, el cuál lo indica en cm/pixel, pero se convierte fácilmente en mm/pixel multiplicando x10 para ingresarlo en la formula

Hay un desface de 1.632 metros de diferencia entre el valor calculado por la aplicación de PIXD4 Capture y el PIXD4 Matic en base a la altura y de 0.044cm/pixel para el GSD.

4. Resultados

4.1 Imagen del Ortomosaico

 Descripción: La imagen del ortomosaico se obtiene en la carpeta de exportación del proyecto realizado en PIX4D Matic, ubicada en la sección de "Mis Documentos"

ortomosaico

Resolución: 1.6 cm/px Resolución de imagen: 681 x 733 px

4.2 Imagen del Modelo Digital de Superficie (DSM)

• **Descripción:** Descripción: La imagen del DSM se obtiene en la carpeta de exportación del proyecto realizado en PIX4D Matic, ubicada en la sección de "Mis Documentos".

4.3 Proyección Isométrica de la Reconstrucción 3D en Nube de Puntos

 Descripción: La proyección isométrica de la reconstrucción 3D en Nube de Puntos se puede visualizar en el programa PIX4D, ya que no se incluye en el archivo de exportación

4.4 Proyección Isométrica de la Reconstrucción 3D en Malla

• **Descripción:** Al igual que la nube de puntos, la proyección isométrica de la reconstrucción 3D en Malla se obtiene directamente desde el programa PIX4D.

Nota: Se hizo una comparación de estos resultados en Python dando datos de coincidencia muy cercanos se trabaja con el GSD mas alto

GSD: 16.459703947368418 mm/pixel en horizontal

GSD: 14.963367224880383 mm/pixel en vertical

GSD: 1.6459703947368418 cm/pixel GSD: 0.01645970394736842 m/pixel

Altura de vuelo: 60045.0 mm Altura de vuelo: 6004.5 cm Altura de vuelo: 60.045 m

5. Conclusiones

- El GSD manual calculado fue muy cercano al valor proporcionado por PIX4D Capture, con una diferencia de 0.044 cm/píxel. La diferencia de altura de vuelo fue de 1.632 metros, lo que puede deberse a variaciones en los métodos de cálculo o condiciones del entorno.
- Las imágenes del ortomosaico, DSM, nube de puntos y malla 3D mostraron un buen nivel de detalle. Cada una proporcionó información valiosa para el análisis del terreno y la reconstrucción espacial
- El Phantom 4 Advanced y PIX4D mostraron alta precisión en la captura y procesamiento de datos, aunque las pequeñas diferencias en los cálculos destacan la importancia de validar los resultados en aplicaciones críticas

6. Referencias

- PIX4D Capture Manual https://support.pix4d.com/hc/en-us/articles/360019848872
- DJI Phantom 4 Advanced Camera Specifications https://www.dji.com/global/support/product/phantom-4-adv
- Documentación del Software PIX4D Matic"
 https://www.pix4d.com/es/producto/pix4dmatic-software-fotogrametria-a-granescala/"