TALLER 2 OPTIMIZACIÓN APLICADA A SISTEMAS DE POTENCIA 28/09/2020

PROBLEMA DE LA DIETA

Se requiere un modelo matemático de programación lineal para elegir de forma óptima, el menú del almuerzo de un día en un hospital. Cada almuerzo debe contener al menos una porción de alimento de las siguientes categorías: ACOMPAÑANTE, CARNE Y POSTRE. Además se debe cumplir como mínimo, con el siguiente requisito de nutrientes:

NUTRIENTES	CANTIDAD [Gramos]
Carbohidratos	50
Vitaminas	100
Proteínas	100
Grasas	20

Los costos y contenidos de nutrientes de cada alimento es el siguiente:

ACOMPAÑANTE					
PORCION	CARBOHIDRATOS	VITAMINAS	PROTEINAS	GRASAS	COSTO
	[gr]	[gr]	[gr]	[gr]	[\$/porción]
Garbanzos	10	30	10	0	1000
Frijoles	10	50	20	0	1200
Lentejas	10	50	10	0	1300
Maiz	20	60	10	20	900
Arvejas	40	20	10	10	1000
Arroz	50	10	10	10	700

CARNE					
PORCION	CARBOHIDRATOS	VITAMINAS	PROTEINAS	GRASAS	COSTO
	[gr]	[gr]	[gr]	[gr]	[\$/porción]
Pollo	20	10	30	10	4000
Res	30	80	50	20	5000
Pescado	30	60	60	10	3500

POSTRE					
PORCION	CARBOHIDRATOS	VITAMINAS	PROTEINAS	GRASAS	COSTO
	[gr]	[gr]	[gr]	[gr]	[\$/porción]
Cuajada	10	30	10	5	500
DulceMora	10	20	0	0	800
Flan	10	0	0	5	300
Gelatina	10	0	15	3	200

- 1. Entender el problema.
- 2. Definir variable de decisión, índices, conjuntos y datos de entrada.
- 3. Programar el modelo en PYTHON-PYOMO leyendo los datos desde un archivo de Excel, csv o texto.
- 4. Ejecutar el modelo con CBC.
- 5. Analizar resultados. ¿Cuánto vale el almuerzo óptimo?, ¿De qué alimentos está compuesto el plato?
- 6. Proponer una formulación para programar de forma óptima los almuerzos de 5 días, sin repetir los alimentos usados el día anterior. Además, el menú de la semana debe tener todas las opciones de Carne.