OpenShift Installation & Administration

Tobias Derksen

Über mich ...

Tobias Derksen

- IT Consultant @codecentric
- DevOps Specialist
- OpenShift Trainer
- RedHat Certified Engineer

Vorstellung

Agenda

- Einführung in OpenShift
- Cluster Konzeption
- Installation
- Web Interface & CLI Basics
- Hochverfügbarkeit
- Networking / SDN
- Persistent Storage
- Best Practices
- OpenShift 4
- Hochverfügbarkeit für Applikationen

Einführung in OpenShift

Was ein Chaos ...

OPENSHIFT

Origin

redhat.

kubernetes

OpenShift ist ... kubernetes plus

- Routing
- Metriken
- Logging
- Web Oberfläche
- Builds
- Image Registry
- Sicherheitsmaßnahmen
- SDN
- Templates

Mit Redhat Subscription:

- Trusted Registry
- Security Newsletter
- Support

Begriffe

- Container
- Pod
- Node
- Projekt
- Namespace
- etcd
- Gluster

- Ansible
- Inventory
- Playbook

Cluster Konzeption

Verschiedene Node Typen

Master Nodes

API - Server

ETCD

Web Console

Infrastructure Nodes

Router

Image Registry

Logging Stack

Metriken

Storage Controller

Compute Nodes

Applikationen

Services

Datenbanken

Builds

Andere Workloads

Storage Nodes

Nur beim Elnsatz von Gluster

Nodes mit physischem Speicher

Minimum Cluster Sizing

Master Nodes	Infrastructure Nodes	Compute Nodes		
 Fedora, CentOS oder RHEL 4 (v)CPU 16GB RAM 50GB disk 	 Fedora, CentOS oder RHEL 2 (v)CPU 8 GB RAM 50GB disk 	 Fedora, CentOS oder RHEL 1 (v)CPU 8 GB RAM 35GB disk 		

Recommended Cluster Sizing

Master Nodes	Infrastructure Nodes	Compute Nodes		
 Fedora, CentOS oder RHEL 4 (v)CPU 16GB RAM 100GB disk 	 Fedora, CentOS oder RHEL 4 (v)CPU 16GB RAM 100GB root disk >= 250GB registry storage 	 Fedora, CentOS oder RHEL >= 2 (v)CPU >= 8GB RAM >= 50GB disk 		

Mehr RAM => mehr disk (+25GB disk / 8GB RAM)

Anzahl der Nodes

	Minimal	Development	Production	Production (HA)
Master		4	1	3
Infrastructure	1	ı	1+	2+
Compute		2+	3+	6+

Und wie viele Nodes brauche ich jetzt genau?

Einzelfall abhängig!

Kriterien:

- Erwarteter Workload der Applikationen
- Fest allokierte Ressourcen der Applikationen
- Gewünschte Pods per Node
- Hochverfügbarkeit (HA)
- Cluster Reserven
- Automatische Skalierung
- Mehr Ressourcen sind besser als mehr Nodes

Cluster Limits (OKD 3.11)

Anzahl der Nodes	2.000
Anzahl der Pods	150.000
Pods per Node	250
Namespaces / Projekte	10.000
Pods per Namespace	3.000
Pods per CPU	entfallen

Installation vorbereiten

Bastion Host

- Sprung-Host für SSH
- Zentrale Verwaltung der Konfiguration
- Zentrale Verwaltung der OpenShift-Version
- Keine Ansible / Python Versionsprobleme
- Installer benötigt Abhängigkeiten

Schritt für Schritt zur Installation

- 1. Infrastruktur provisionieren
- 2. System Updates und Abhängigkeiten installieren
- 3. DNS Einträge erstellen und prüfen
- 4. Inventory erstellen
- 5. Playbook: prerequisites.yml
- 6. Playbook: deploy_cluster.yml
- 7. Zusätzliche Aufgaben nach der Installation

Besonderheiten & Abhängigkeiten

- x86_64 Architecture
- Kein Support für IPv6 cluster-intern
- SELinux benötigt (enforcing)
- NetworkManager
- firewalld (recommended)
- rngd (rng-tools)

DNS Einträge

Eintrag	Master (extern)	Master (intern)	Routes	
Beispiel	master.openshift.com	internal.openshift.com	*.apps.openshift.com	
Ziel	Master Nodes (8443)	Master Nodes (8443)	Infra Nodes (80, 443)	
Benutzung	Externer Zugriff auf Master für CLI und Web Oberfläche.	Interne Kommunikation der Nodes mit dem Master	Eintrittspunkt für externen Traffic. Konkrete Routen werden von OpenShift generiert.	


```
[OSEv3:children]
masters
nodes
etcd
[OSEv3:vars]
ansible user=centos
ansible become=true
ansible ssh common args='-o StrictHostKeyChecking=no'
deployment type=origin
openshift deployment type=origin
openshift disable check=docker storage, memory availability
openshift clock enable=true
openshift use dnsmasg=true
os firewall use firewalld=true
osm use cockpit=true
openshift release='v3.11'
openshift master default subdomain='apps.training0.cc-openshift.de'
openshift master cluster hostname='master0.training0.cc-openshift.de'
openshift master cluster public hostname='master0.training0.cc-openshift.de'
openshift master identity providers=[{'name': 'htpasswd auth', 'login': 'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]
openshift master htpasswd users={'admin': '$apr1$zqSjCrLt$1KSuj66CqqeWSv.D.BXOA1', 'user': '$apr1$.qw8w9i1$ln9bfTRiD6OwuNTG5LvW50'}
[masters]
master0.training0.cc-openshift.de openshift node group name='node-config-master-infra' openshift schedulable=true
[etcd]
master0.training0.cc-openshift.de
[nodes]
master0.training0.cc-openshift.de openshift node group name='node-config-master-infra' openshift schedulable=true
app0.training0.cc-openshift.de openshift node group name='node-config-compute' openshift schedulable=true
appl.training0.cc-openshift.de openshift node group name='node-config-compute' openshift schedulable=true
app2.training0.cc-openshift.de openshift node group name='node-config-compute' openshift schedulable=true
```

Node Group Config

- node-config-master
- node-config-infra
- node-config-compute
- node-config-master-infra
- node-config-all-in-one

Nach der Installation

Cluster Administrator ernennen

oc adm policy add-cluster-role-to-user cluster-admin <username>

Wichtige Cluster Komponenten

- Master API
- etcd
- Web Console
- Router
- Registry

Zertifikate

- OpenShift Root CA wird bei Installation generiert
- Zertifikate werden erstellt für:
 - Nodes
 - etcd
 - Router
 - Services (Metriken, Logging, etc)

Achtet auf das Ablaufdatum!!!!!!

Erneuerung der Zertifikate mit Playbook

Nachinstallation von Komponenten

- Einige Komponenten lassen sich einfach nachinstallieren
- Man kann das "deploy_cluster" Playbook nochmal laufen lassen
- Man kann das entsprechende Komponentenplaybook starten

```
openshift_logging_install_logging=true
openshift_metrics_install_metrics=true
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":"true"}
```

Objekte & Ressourcen

Alles nur Objekte

- Der Zustand des Clusters wird mit den verschiedenen Objekten abgebildet.
- Cluster Objekte (z.B. Namespaces, Persistent Volumes)
- Projekt Objekte (z.B. Deployments, Builds)
- Die Objekte werden im <u>etcd</u> gespeichert

Wichtige Objekt Typen

- Clusterroles
- Rolebindings
- Persistent Volumes
- Persistent Volume Claims
- Template
- Pod

- ConfigMap
- Secret
- Deployment
- DeploymentConfig
- Build
- Route
- Service

OpenShift CLI Basics

User Management

OpenShift Identity Provider

Möglichkeiten zur User Verwaltung

н	Т	P	Δ	S	S	W	D
			\neg	v	v	v v	\mathbf{r}

Hard-coded Passwörter im htpasswd Format welche lokal auf den Mastern liegen.

LDAP

Generischer LDAP Authenticator. Kann mit jedem handelsüblichen LDAP Server verbunden werden.

Social Logins

Github

Gitlab Google

OpenID Connect

Generischer OpenID Connect Authenticator. Kann jeden OAuth2 oder OIDC Provider anbinden.

LDAP Anbindung im Inventory

LDAP Gruppen synchronisieren

- Mapping von LDAP Gruppen auf OpenShift Rollen
- Manuelle Konfiguration
- Manuelles Synchronisieren
- https://docs.okd.io/3.11/install_config/syncing_groups_with_ldap.html

```
groupUIDNameMapping:
    "cn=group1,ou=groups,dc=example,dc=com": cluster-admin
    "cn=group2,ou=groups,dc=example,dc=com": cluster-reader
    "cn=group3,ou=groups,dc=example,dc=com": project-admin
```

```
oc adm groups sync --sync-config=config.yaml --confirm
```


Rollen & Rechte

- Cluster Rollen
- Projekt Rollen
- Rechte bestehen aus <u>Verb + Objekttype</u> (Beispiel: get projects)
- Rechte eines Accounts = Summe aller erlaubten Aktionen
- Systemaccounts

Cluster Rollen:

- cluster-admin
- cluster-reader
- self-provisioner

Projekt Rollen:

- admin
- edit
- view

Skalierung & HA

Skalierung

- Master hinzufügen
- Node hinzufügen
- Node entfernen
- Node updaten (System updates)
- Cluster updaten

Hochverfügbarkeit

- min. 3 Master Nodes
- min. 2 Infrastructure Nodes
- Genug Compute Nodes um die Workload zu übernehmen
- Loadbalancer f
 ür Infrastructure Nodes
- Loadbalancer f
 ür Master API
- Vorsicht vor DNS Problemen
- HA im DNS
- HA im Storage System

Zones & Region

- /etc/origin/master/scheduler.json
- Zone: Anti-Affinität
- Region: Affinität
- Custom Configuration:
 - Racks
 - Build Nodes
 - Enforce Labeling

[root@ip-10-1-5-240 master]# oc label node master-1 zone="zone-1" region="frankfurt"

```
"argument": {
        "serviceAntiAffinity":{
           "label": "zone"
        "name": "Zone",
        "weight":2
     "argument":{
        "serviceAffinity":{
           "label": "region"
        "name": "Region",
        "weight":2
```

OpenShift SDN

Network Plugins

- ovs-subnet
- ovs-networkpolicy
- ovs-multitenant
- Unterschiede in Isolationsgrade

os_sdn_network_plugin_name='redhat/openshift-ovs-networkpolicy'

Ingress Network Policy

- Objekttyp: NetworkPolicy
- Kontrolliert eingehenden Traffic per Pod
- Kann einzelne Pods im selben Namespace freischalten
- Kann **ganze** externe Namespaces freischalten

```
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
    name: allow-http-and-https
spec:
    podSelector:
        matchLabels:
        role: frontend
ingress:
    - ports:
        - protocol: TCP
        port: 80
        - protocol: TCP
        port: 443
```

Egress Network Policy

- Objekttyp: EgressNetworkPolicy
- Kontrolliert cluster-externen Traffic
- Ein Policy Objekt pro Namespace
- Kann mit einigen Techniken umgangen werden

```
kind: EgressNetworkPolicy
apiVersion: v1
metadata:
   name: default
spec:
   egress:
   - type: Allow
        to:
        cidrSelector: 1.2.3.0/24
   - type: Allow
        to:
        dnsName: www.foo.com
   - type: Deny
        to:
        cidrSelector: 0.0.0.0/0
```

Third-Party-Plugins

https://docs.okd.io/3.11/architecture/networking/network_plugins.html

Backup & Restore

Backup Möglichkeiten

- 1. Snapshot der Maschinen
- 2. Backup der Konfigurationen und wichtigen Daten (Velero)
- 3. etcd Backup
- 4. Objekt-Export als YAML oder JSON
- 5. Infrastructure-as-Code

etcd Backup

- Backup der etcd Datenbank
- Bringt den Cluster in den **exakt** selben Zustand wie zur Zeit des Backups

DR Szenarien

- 1. Node(s) fällt aus
- 2. Master fällt aus
- 3. Projekt(e) wird gelöscht / verschwindet
- 4. Rechenzentrum fällt aus (mit HA)
- **5**. Cluster fällt aus
- 6. etcd fehlerhaft

Persistent Storage

Persistent Storage Provider

- HostPath
- EmptyDir (Ephemeral Storage)
- GlusterFS / OpenShift Container Storage
- NFS (unsupported)
- iSCSI
- Ceph
- Diverse Cloud Mechanismen (AWS, GCE, Azure, etc)
- Dynamic Provisioning

Best Practices

Externe Image Registry

Vorteile:

- Keine Abhängigkeiten an die interne Registry
- Hochverfügbarkeit wird ausgelagert

Nachteile:

- Wartung
- evt. Lizenzkosten
- Hardware

Best Practices - Cluster betreiben

- Nicht alle Applikationen eignen sich dafür
 - Monolithen -> schlechte Skalierung
 - Datenbanken -> von schneller Storage abhängig
 - Nicht HTTP basierter Traffic
- Infrastructure-as-Code
- "/var/log" läuft schnell voll
- Monitoring der Ressourcen

Best Practices - Security

- SELinux nicht deaktivieren
- Cluster Nodes nur intern (über Bastion) erreichbar
- non-root Container
- Container Scanning nach Sicherheitslücken
- Blocken von offenen Registries (Docker Hub, Quay.io)
- EgressIP für Firewalls / Network Policies
- Traffic Encryption (Service Mesh)
- Regelmäßige Updates im Cluster
- Regelmäßige Updates der Base Images

OpenShift 4

What's new ...

- Neuer Installer
- Over-the-air Updates
- Cluster Autoscaling
- Neues User Interface
- Developer CLI Tools (ODO)
- Service Mesh (Istio)
- Quay
- Operators & Operator Hub

Installation

- Installer provisioned Infrastructure (IPI)
- User provisioned Infrastructure (UPI)
- AWS
- Azure
- VMware
- Bare Metal

HA for Applications

Hochverfügbarkeit done right

TODO

Best Practices

- Ressource Allocation / Quality of Service
- Quotas
- PodDisruptionBudget
- Deployment Strategy

Ende

Upcoming Events

- 30.9. OpenShift Anwendertreffen Frankfurt
- 19. 21.11. kubecon San Diego (USA)

Stay connected

Adresse codecentric AG Köpenicker Straße 31 10179 Berlin - Mitte

Contact Info

E-Mail: tobias.derksen@codecentric.de www.codecentric.de

Telephone
Telefon: +49 (0) 170 2295 733

cc_primary template colours (included in master template)

cc_secondary template colours (you need to build by yourself)

cc_icons

(0) $\langle \times \rangle$ 日中江江江江江东西南南南南 (\mathscr{O}) $\begin{bmatrix} + - \\ \times = \end{bmatrix}$