Image Segmentation

Outline

- Thresholding
- K-Means Clustering
- Mean-Shift Clustering

Acknowledgement :

Images in the slides were taken from UCF CVRC and CS131, Stanford University.

Images are matrix.

Values in matrix = how much light

Image = cv2.imread(FileName, Flag)

Histogram

- Histogram captures the distribution of gray levels in the image.
- · How frequently each gray level occurs in the image

Count: 10192 Min: 9
Mean: 133.711 Max: 255
StdDev: 55.391 Mode: 178 (180)

Count: 10192 Min: 11 Mean: 104.637 Max: 254 StdDev: 89.862 Mode: 23 (440)

Thresholding

Threshold Value

- > Peak on the left of the histogram corresponds to dark objects.
- > Peak on the right of the histogram corresponds to brighter objects

DIFFICULTIES

- 1. The valley may be so broad that it is difficult to locate a significant minimum
- 2. Number of minima due to type of details in the image
- 3. Noise
- 4. No visible valley
- 5. Histogram may be multi-moda

A K Q J IO

Original Image

Thresholded Image

Threshold Too Low

Threshold Too High

Threshold Value

- > Otsu's
- > Adaptive Thresholding
- > Niblack's
- > Sauvola's
- > Triangle Binarization

Image Segmentation

- Goal: identify groups of pixels that go together
- Thresholding is the simplest image segmentation

Segmentation by Human

Image Human segmentation

Segmentation as a result

Rother et al. 2004

Visual Similarity can be based on

- Brightness
- Color
- Position

K-means

- Most well-known and popular clustering algorithm:
- Start with some initial **cluster** centers
- Iterate:
 - Assign/cluster each example to closest center
 - Recalculate centers as the mean of the points
 in a cluster

Iterate:

Assign/cluster each example to closest center

iterate over each point:

- get distance to each cluster center
- assign to closest center (hard cluster)

Recalculate centers as the mean of the points in a cluster

K-means: pros and cons

Pros

- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

Cons/issues

- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed

Mean shift algorithm

 The mean shift algorithm seeks modes or local maxima of density in the feature space

image

Feature space
(L*u*v* color values)

Real Modality Analysis

Slide by Y. Ukrainitz & B. Sarel

windows

parallel

Real Modality Analysis

The blue data points were traversed by the windows towards the mode.

Slide by Y. Ukrainitz & B. Sarel

Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Mean shift segmentation results

Mean shift

• Pros:

- Does not assume shape on clusters
- One parameter choice (window size)
- Generic technique
- Find multiple modes

• Cons:

- Selection of window size
- Does not scale well with dimension of feature space

Q & A

Thank You!

