Hochschule Deggendorf Prof. Dr. Peter Jüttner	
Vorlesung: Grundlagen der Informatik	WS 2012
Übung 5	Termin 30.10.12

Aussagenlogik - Musterlösung

1. Wahrheitstabellen

Stellen Sie die Wahrheitstabelle folgender aussagenlogischer Formeln auf.

a.)
$$(A \lor B) \Rightarrow C$$

Α	В	С	(A∨B) ⇒ C
F	F	F	Т
F	Æ	T	T
F	T	F	F
F	T	Т	T
Т	F	F	F
Т	F	Т	Т
Т	T	F	F
Т	T	T	Т

b.)
$$(A \land B) \Rightarrow C$$

A	В	С	(A∧B) ⇒ C
F	F	F	T
F	F	Т	Т
F	Т	F	Т
F	Т	Т	Т
Т	F	F	Т
Т	F	Т	T
Т	Т	F	F
Т	Т	Т	Т

2. Tautologien

Stellen Sie fest, ob die folgenden aussagenlogischen Formeln Tautologien sind:

a.)
$$(A \land \neg A) \Rightarrow (B \lor C)$$

(A\\¬A) ist immer falsch, daher wird die Implikation immer wahr, d.h. es ist eine

Tautologie (Alternative: Wahrheitstabelle)

b.)
$$(A \land B) \Leftrightarrow (A \lor B)$$

Keine Tautologie, da Belegung A = wahr und B = falsch zum Wert falsch führt.

3. Kontradiktion

Stellen Sie fest, ob die folgenden Aussagenlogischen Formeln Kontradiktionen sind:

Kontradition, da für alle Belegungen falsch

b.)
$$(A \land \neg B) \Leftrightarrow (\neg A \lor B)$$

Kontradition, da für alle Belegungen falsch

4. Konjunktive Normalform

Überführen Sie die folgende Aussagenlogische Formel in die konjunktive Normalform:

$$(A \Rightarrow B) \Rightarrow C$$

Α	В	С	(A⇒B) ⇒
			C
F	F	F	F
F	F	Т	Т
F	Т	F	F
F	Т	Т	Т
Т	F	F	T
Т	F	Т	Т
Т	T	F	F
Т	T	T	T

Die Auswertung der Wahrheitstabelle für die Gesamtwerte **F** ergibt: $(A \Rightarrow B) \Rightarrow C$ ist äquivalent zu folgender Konjunktiver Normalform

$$\neg ((\neg A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (A \land B \land \neg C)) = \\ \neg (\neg A \land \neg B \land \neg C) \land \neg (\neg A \land B \land \neg C) \land \neg (A \land B \land \neg C)) = \\ (A \lor B \lor C) \land (A \lor \neg B \lor C) \land (\neg A \lor \neg B \lor C))$$

5. Disjunktive Normalform

Überführen Sie die folgende Aussagenlogische Formel in die disjunktive Normalform:

$$(A \Leftrightarrow B) \Rightarrow C$$

Α	В	С	(A⇔ B) ⇒ C
F	F	F	F

F	F	Т	Т
F	Т	F	_
F	Т	Т	Т
Т	F	F	Т
Т	F	Т	Т
Т	Т	F	F
Т	Т	Т	Т

Die Auswertung der Wahrheitstabelle für die Gesamtwerte T ergibt: $(A \Leftrightarrow B) \Rightarrow C$ ist äquivalent zu folgender Disjunktiver Normalform

$$(\neg A \land \neg B \land C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land B \land C) \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land C) \lor (A \land B \land C)$$

6. Umsetzung in einem C-Programm

Schreiben Sie ein C-Programm, das drei Wahrheitswerte A, B und C einliest, mit folgenden aussagenlogischen Operatoren verknüpft und das Ergebnis ausgibt:

Aaus der Disjunktiven Normalform lässt sich ableiten:

b.)
$$A \Rightarrow B$$

Abgeleitet aus Konjunktiver Normalform

c.)
$$(A \Rightarrow B) \Rightarrow C$$

Abgeleitet aus Disjunktiver Normalform: ... if (A || B || C) && (A || !B || C) && (!A || !B || C))...

Hinweise:

In C gibt es keinen Typ für Wahrheitswerte. Ersatzdarstellung ist ein Zahlentyp (z.B. int), bei dem 0 als False, 1 (bzw. alle Werte ungleich 0) als True interpretiert werden. Verwenden Sie zu Umsetzung geeignete if-else-Konstrukte bzw. die in der Programmiersprache C vorhandenen booleschen Operatoren (&&, ||, !)