Instructions

For best viewing, download this PDF file to your computer and view as a **single page**.

Click on the words in a bubble to see more detailed information about the topic.

Gray text implies there is no information for that particular item.

Bubbles marked with a \star are final nodes and have no additional child nodes.

Empirical Studies PPDAC* **Empirical Studies** Statistical Inference Data Analysis Cause and Effect* Statistical Models and Model Descriptive \ Checking Statistics

Empirical Studies

- ► A study is one in which we learn by observation or experiment.
- Populations and processes
- Units, variates, and attributes
- Types of studies

Empirical Studies/ PPDAC PPDAC* **Empirical Studies** Statistical Inference Data Analysis Cause and Effect* Statistical Models and Model Descriptive Checking Statistics

PPDAC

- ► Steps: Problem, Plan, Data, Analysis, Conclusion
- Types of problems
- Target and study population/processes
- Sample and sampling protocol
- ► Types of error (study, sample, and measurement)

Empirical Studies/

Cause and Effect

- Association does not imply causation
- Importance of experimental studies, controlling variates, and randomization
- ► Simpson's Paradox

Descriptive Numerical Summaries* **Statistics** Graphical Summaries*

Descriptive Statistics

Summaries of a data set which illustrate the main features of the data.

Numerical Summaries

- Measures of location, variability, and shape
- Sample quantiles
- ► Sample correlation
- ► Two-way tables
- ► Relative risk

Graphical Summaries Descriptive Numerical **Statistics** Summaries* Graphical Summaries*

Graphical Summaries

- Histograms
- Empirical cumulative distribution function
- Boxplots
- Qqplots
- Scatterplots

Statistical Inference

► The process of drawing conclusions based on data.

Point Estimation

- Point estimates
- Point estimators and sampling distributions
- Sampling distributions
 - χ^2 distribution
 - ► t distribution

Method of Maximum Likelihood

- Likelihood function
- Maximum likelihood estimate
- ► Relative likelihood function

Interval Estimation

- Likelihood intervals
- Likelihood ratio statistic
- ► Confidence intervals
- Pivotal quantities (exact and approximate)
- ► Sample size calculation

Tests of Hypotheses

- ► Null and alternative hypotheses
- ► Test statistic
- ▶ p-Value
- Practical versus statistical significance
- Relationship between confidence intervals and test of hypotheses

Statistical Models and Model Checking

- Statistical models are used to describe populations and processes.
- Models need to be checked to see how well they describe the population or process.

Goodness of Fit Tests

- Multinomial models
- Likelihood ratio goodness of fit test
- ► Tests for independence in two-way tables

Graphical Checks

- Relative frequency histograms and probability density functions (p.d.f.) for assumed model
- ► Empirical cumulative distribution functions (c.d.f.) and c.d.f.'s for assumed model
- Qqplots
- ► Residual plots

Statistical Models

Used to describe populations and processes, estimate attributes, and quantify uncertainty.

Discrete Models

- ightharpoonup Binomial (n, θ)
- ightharpoonup Poisson(θ)
- ightharpoonup Geometric(θ)
- ▶ Negative Binomial (k, θ)
- Multinomial $(n, \theta_1, \theta_2, \dots \theta_k)$
- Point estimates, interval estimates, and tests of hypotheses for θ

Gaussian Models

Gaussian Models

► Models of the form:

$$Y_i \sim G(\mu(x_i), \sigma(x_i))$$

 $i=1,2,\ldots,n$ independently, where x_1,x_2,\ldots,x_n are known constants

One-Sample Gaussian

- $Y_i \backsim G(\mu, \sigma),$ $i = 1, 2, \ldots, n$ independently
- Qqplots for model checking
- Point estimates, interval estimates, and test of hypotheses for μ and σ

Simple Linear Regression

Simple Linear Regression

- $\begin{array}{l} \blacktriangleright \ \, Y_i \sim G(\alpha + \beta x_i, \sigma) \\ i = 1, 2, \ldots, n \ \, \text{independently,} \\ x_1, x_2 \ldots, x_n \ \, \text{known constants} \end{array}$
- Residual plots for model checking
- Least squares estimates of α and β
- Hypothesis of no relationship $(H_0: \beta = 0)$
- ► Confidence intervals for β and $\mu(x) = \alpha + \beta x$
- Prediction interval for response
 Y at x

Two Independent Gaussian Samples

- $Y_{1i} \sim G(\mu, \sigma),$ $i = 1, 2, \dots, n_1$ independently
- $Y_{2i} \sim G(\mu, \sigma),$ $i = 1, 2, \dots, n_2$ independently
- Qaplots for model checking
- ▶ Point estimates of μ_1, μ_2, σ
- ▶ Confidence interval for $\mu_1 \mu_2$:
 - (i) assuming common σ
 - (ii) different σ , but large n_1, n_2
- ▶ Test of hypothesis: $H_0: \mu_1 = \mu_2$
- Confidence interval for common variance σ^2

Paired Experiment

back to Statistical Models

Paired Experiment

- ▶ $Y_i = Y_{1i} Y_{2i} \sim G(\mu, \sigma),$ $i = 1, 2, \dots, n$ independently $(\mu = \mu_1 - \mu_2),$ and analyse as one-sample Gaussian
- Importance of paired experiments