Machine Learning course Lecture 1: intro to ML

MIPT, 2019

Outline

- 1. Machine Learning tasks overview
- 2. General supervised learning problem statement
- 3. Models evaluation and cross validation
- 4. kNN method in classification and regression

Variety of tasks in Machine Learning

- Supervised learning
 - Classification
 - Regression
- Unsupervised learning
 - Clustering
 - Anomaly detection
 - o Dimensionality reduction
- Other cool stuff

ML tasks

Regression task

- Regression task
- Classification task

- Regression task
- Classification task
- Dimensionality reduction task

Supervised learning problem statement

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $(\mathbf{x} \in \mathbb{R}^p, y \in \mathbb{R})$ for regression,
 - \circ $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification,
- ullet Model $f(\mathbf{x})$ that predicts some target for every object,
- Loss function $Q(\mathbf{x}, y, f)$ that should be minimized.

Supervised learning problem statement

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $(\mathbf{x} \in \mathbb{R}^p, y \in \mathbb{R})$ for regression,
 - \circ $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification,
- ullet Model $f(\mathbf{x})$ that predicts some target for every object,
- Loss function $Q(\mathbf{x}, y, f)$ that should be minimized.

In this form the problems will be stated in future as well.

Minimizing loss function is great. But how not to overfit?

Supervised learning problem statement

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $(\mathbf{x} \in \mathbb{R}^p, y \in \mathbb{R})$ for regression,
 - \circ $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification,
- ullet Model $f(\mathbf{x})$ that predicts some target for every object,
- Loss function $Q(\mathbf{x}, y, f)$ that should be minimized.

In this form the problems will be stated in future as well.

Minimizing loss function is great. But how not to overfit?

Stop, what is overfitting?

Overfitting vs. underfitting

Overfitting vs. underfitting

Overfitting vs. underfitting

- We can control overfitting / underfitting by altering model's capacity (ability to fit a wide variety of functions):
- select appropriate hypothesis space
- learning algorithm's effective capacity may be less than the representational capacity of the model family

Is it good enough?

Cross-validation

Measuring the quality in classification

- Accuracy
- ROC-AUC
- Precision
- Recall
- Confusion Matrix
- ..

ROC AUC

Confusion Matrix

Measuring quality in regression

- Mean Absolute Error (MAE)
- Mean Square Error (MSE)
- R2 score
- MAPE
- SMAPE
- ...

kNN - k Nearest Neighbours

k Nearest Neighbors Method

- 1. Calculate the distance to each of the samples in the training set.
- 2. Select samples from the training set with the minimal distance to them.
- 3. The class of the test sample will be the most frequent class among those nearest neighbors.

k Nearest Neighbors Method

- 1. Calculate the distance to each of the samples in the training set.
- 2. Select samples from the training set with the minimal distance to them.
- 3. The class of the test sample will be the most frequent class among those nearest neighbors.

- kNN can be used for regression as well.
- And for clustering it's known as kMeans.

How to make it better?

• The number of neighbors k

kNN classification

kNN classification

$$k = 1$$

$$k = 5$$

How to make it better?

- The number of neighbors k
- The distance measure between samples
 - a. Hamming
 - b. Euclidean
 - c. cosine
 - d. Minkowski distances
 - e. etc.

Original

Different metrics in kNN

Original

Different metrics in kNN

Different metrics in kNN

Different metrics in kNN

1.0

1.5

0.0

0.5

0.6 0.4

0.2 0.0 -0.2 -0.4

-1.0

-0.5

Original

2.0

How to make it better?

- The number of neighbors k
- The distance measure between samples
 - a. Hamming
 - b. Euclidean
 - c. cosine
 - d. Minkowski distances
 - e. etc.
- Weights of neighbors

k = 6

 Weights can be adjusted according to the neighbors order.

$$w(\mathbf{x}_{(i)}) = w_i$$

 Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

 Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

$$= \frac{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

 Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

• or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

$$Z_{\bullet} = \frac{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

$$Z_{\bullet} = \frac{w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

Q&A