МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики Кафедра математического моделирования и анализа данных

Корреляционный и регрессионный анализ данных

Отчет по лабораторной работе №2 студентки 3 курса 7 группы **Летецкой М.С.**

Преподаватель Малюгин В.И.

1. Постановка задачи

- 1) Корреляционный и регрессионный анализ однородных данных Указание:
- 1) использовать выборку значений переменных (1, 2, 3) без засорений для одного вида ириса (3), в регрессионной модели зависимой является первая переменная;
- 2) Исследовать эффекты засорений на результаты корреляционного и регрессионного анализа, использовать выборку значений переменных (1, 2, 3) с засорением (переменная 1) для одного вида ириса (3)

2. Выполнение задания без засорений данных Корреляционный анализ.

В ходе выполнения работы были построены диаграммы рассеяния для каждой пары параметров, заданных в условии (рис.1).

Была построена матрица диаграмм рассеивания (рис.2).

По результатам построения диаграмм рассеивания можно заметить, что между параметрами 'petallen' и 'sepallen' прослеживается четкая связь.

Была найдена ковариация между параметром 'sepallen' и 'petallen', 'sepalwid' (по условию 'sepallen' – зависимая переменная):

ковариация sepallen и sepalwid: 0.09376326530612239 ковариация sepallen и petallen: 0.3032897959183673

Ковариация - мера совместной вариативности (линейной зависимости) случайных Если обе величин. величины демонстрируют двух однонаправленное изменение, TO ковариация положительная, разнонаправленное — отрицательная. Если ковариация близка к нулю, то величины независимы. По полученным результатам можно сделать вывод о том, что переменная 'sepallen' в той или иной мере зависима от 'sepalwid' и 'petallen'.

Была найдена корреляция между данными параметрами двумя способами:

• Вручную

```
def covariance(xs, ys):
    dx = xs - xs.mean()
    dy = ys - ys.mean()
    return (dx * dy).sum() / (dx.count() - 1)
def variance(xs):
    x_hat = xs.mean()
    n = xs.count()
    n = n - 1 if n in range( 1, 30 ) else n
    return sum((xs - x_hat) ** 2) / n
def standard_deviation(xs):
    return np.sqrt(variance(xs))
def correlation(xs, ys):
    return covariance(xs, ys) / (standard_deviation(xs) * standard_deviation(ys))
print ("Корреляция sepallen и sepalwid",correlation (df_data['sepallen'], df_data['sepalwid']))
print ("Корреляция sepallen и petallen",correlation (df_data['sepallen'], df_data['petallen']))
Корреляция sepallen и sepalwid 0.46655899632052344
Корреляция sepallen и petallen 0.8818619723832409
```

При помощи стандартной функции библиотеки

```
print ("Корреляция sepallen и sepalwid",df_data['sepallen'].corr( df_data['sepalwid']))
print ("Корреляция sepallen и petallen",df_data['sepallen'].corr(df_data['petallen']))

Корреляция sepallen и sepalwid 0.45722781639411275
Корреляция sepallen и petallen 0.8642247329355761
```

По полученным результатам видно, что корреляция между 'sepallen' и 'sepalwid' умеренная, между 'sepallen' и 'petallen' – высокая.

Регрессионный анализ.

Были построены диаграммы рассеивания для 'sepallen' и 'sepalwid', 'petallen' (рис.3).

Рис.3

Была построена регрессионная модель:

Results: Ordinary least squares

Model:	(DLS			Adj.	R-square	ed:	0.	750
Dependent Vari	able: s	sepa	allen		AIC:			31	.1539
Date:	2	2024	4-11-26 2	2:00	BIC:			38	.8020
No. Observation	ns: 5	50			Log-I	Likelihoo	od:	-1	1.577
Df Model:	3	3			F-sta	atistic:		49	.98
Df Residuals:	4	16			Prob	(F-stati	stic):	1.	62e-14
R-squared:	(0.76	65		Scale	2:		0.	10112
	Coef		Std.Err.		t	P> t	[0.0	25	0.975]
Intercept	0.699			_	.3116				
sepalwid	0.330	93	0.1743	1	.8949	0.0644	-0.02	06	0.6812
petallen	0.949	55	0.0907	10	.4223	0.0000	0.76	29	1.1281
petalwid	-0.169	98	0.1981	-0	.8570	0.3959	-0.56	85	0.2289
Omnibus:			.056		unhin	 -Watson:			1.922
Prob(Omnibus):			.973			-Bera (JE	·):		0.039
Skew:			.032		rob(Ji				0.981
Kurtosis:		2	.879	C	ondit:	ion No.:			81

Есть два фактора, у которых расчетный уровень значимости P>|t| превышает 0.05. Удаляем тот фактор, у которого расчетный уровень значимости больше (petalwid):

Results: Ordinary lea	ast so	uares
-----------------------	--------	-------

========		========						
Model:		OLS	A	Adj.	R-squar	ed:	0.7	751
Dependent Variable:		sepallen	A	AIC:			29.	9460
Date:		2024-11-26	22:00 E	BIC:			35.6821	
No. Observa	ations:	50	L	Log-l	ikeliho	od:	-11.973	
Df Model:		2	F	F-sta	tistic:		75.02	
Df Residual	ls:	47	F	Prob	(F-stat	istic):	2.36e-15	
R-squared:		0.761	9	Scale	::		0.1	10055
		Std.Err.						-
Intercept		0.5249						
petallen	0.9348	0.0896	10.433	30	0.0000	0.75	46	1.1151
sepalwid	0.2600	0.1533	1.699	53	0.0966	-0.04	35	0.5684
Omnibus:		0.061	Dι	urbir	n-Watson	:		1.834
Prob(Omnibu	us):	0.970	Ja	Jarque-Bera (JB):				0.197
Skew:		-0.073	Pr	rob(J	IB):			0.906
Kurtosis:		2.729	Co	ondit	ion No.	:		76

У 'sepalwid' расчетный уровень значимости P>|t| превышает 0.05, убираем его из модели:

	Re	sults: Ordin	nary le	east s	squares			
	======							=
Model:		OLS	Adj.	R-squared	i:	0.742		
Dependent Variable:		sepallen		AIC:			30.9137	
Date:		2024-11-26 22:00		BIC:			34.7377	
No. Observat	ions:	50		Log-l	ikelihood	i:	-13.457	
Df Model:		1		F-sta	atistic:			
Df Residuals	:	48		Prob	(F-statis	stic):	6.30e-1	6
R-squared:		0.747		Scale:			0.10448	
		Std.Err.				-		_
Intercept								
petallen								
Omnibus:		0.060		urhin.	 -Watson:		1.76	-
	١.							
Prob(Omnibus):	0.970		arque-	0.25	_		
Skew:		0.015	Pi	rob(JE	3):		0.88	10
Kurtosis:		2.651	Co	onditi	ion No.:		59	
=========								=

Была построена модель, у которой все параметры значительно влияют на отклик.

Для предварительного анализа качества модели был проведен анализ остатков (разностей фактических значений отклика и значений, предсказанных по уравнению регрессии).

Был построен график остатков (рис.4).

Точки не имеют системности, значит остатки не зависят от предсказанных значений.

Была проведена проверка некоторых критериев на нормальность распределения:

• Критерий Шапиро-Уилка:

ShapiroResult(statistic=np.float64(0.9831871348860054), pvalue=np.float64(0.6917523626039768))

pvalue = 0.69 > 0.05, значит не можем отвергать нулевую гипотезу (нет док-в, что выборка не соответствует нормальному распределению).

• Критерий Д'Агостино:

NormaltestResult(statistic=np.float64(0.06036675211158883), pvalue=np.float64(0.9702675933896836))

pvalue = 0.97> 0.05, значит не можем отвергать нулевую гипотезу (нет док-в, что выборка не соответствует нормальному распределению)

Для остатков была построена столбчатая диаграмма, график «квантиль-квантиль» и «ящик с усами» (рис.5).

Вывод: остатки имеют нормальное распределение.

```
f_oneway(df_data['sepallen'], df_data['petallen'])
```

F_onewayResult(statistic=np.float64(75.69824052323709), pvalue=np.float64(7.947332254531585e-14))

Уровень значимости p-value < 0.05, можно утверждать, что потроенная модель приемлема.

3. Выполнение задания для данных с засорением

Была построена матрица диаграмм рассеивания для каждого параметра (рис.6).

По рис.6 видно, что данные имеют аномальные значения. Коэффициенты корреляции:

```
Koppeляция sepallen и sepalwid без засорения 0.9165979465328571
Koppeляция sepallen и petallen без засорения 0.9804659927178373
Koppeляция sepallen и sepalwid с засорением 0.9165979465328571
Koppeляция sepallen и petallen с засорением 0.9804659927178373
```

Коэффициенты ковариации:

```
ковариация sepallen и sepalwid без засорения: 1.1643476621417799 ковариация sepallen и petallen без засорения: 2.272752639517346 ковариация sepallen и sepalwid с засорением: 1.1643476621417799 ковариация sepallen и petallen с засорением: 2.272752639517346
```

Можно заметить, что полученные значения для выборки с засорением не значительно отличаются от данных выборки без засорения.

Была построена регрессионная модель:

Results: Ordinary least squares

Model:	0	LS	Ad	j. R-squar	red:	0.963
Dependent Varia	able: s	epallen	AI	C:		30.6517
Date:	2	025-01-21	10:55 BI	C:		38.4567
No. Observations:		2	Lo	g-Likeliho	ood:	-11.326
Df Model:	3		F-	statistic:	:	444.4
Df Residuals:	4	8	Pr	ob (F-stat	tistic):	5.31e-35
R-squared:	0	.965	Sc	ale:		0.098055
		Std.Er	r. t	P> t	[0.02	25 0.975]
Intercept	0.304	5 0.19	00 1.60	27 0.1156	-0.077	75 0.6865
sepalwid	0.367	2 0.16	40 2.23	94 0.0298	0.037	75 0.6968
petallen	0.986	8 0.07	63 12.93	25 0.0000	0.833	33 1.1402
petalwid	-0.141	4 0.19	41 -0.72	85 0.4699	9 -0.531	18 0.2489
Omnibus:		0.203	Durb	in-Watson:		2.008
Prob(Omnibus):		0.903	Jarq	ue-Bera (3	JΒ):	0.027
Skew:		0.056	Prob	(JB):		0.986
Kurtosis:		2.998	Cond	ition No.:	:	38

Удаляем тот фактор(среди тех, у которых расчетный уровень значимости P>|t| превышает 0.05), у которого расчетный уровень значимости больше (petalwid): Results: Ordinary least squares

========									
Model:		OLS		Adj.	R-square	d:	0.9	63	
Dependent Variable:		sepallen		AIC:			29.	2235	
Date:		2025-01-21	10:55	BIC:	C:			35.0772	
No. Observa	tions:	52		Log-l	ikelihoo	d:	-11	.612	
Df Model:		2		F-sta	atistic:		672.8		
Df Residual	s:	49		Prob	(F-stati	stic):	2.3	5e-36	
R-squared:		0.965		Scale	e:		0.0	97116	
	Coef.	Std.Err.	t		P> t	[0.0	25	0.975]	
Intercept	0.2894	0.1879	1.53	96	0.1301	-0.08	83	0.6670	
sepalwid	0.2998	0.1347	2.22	50	0.0307	0.029	90	0.5706	
petallen	0.9738	0.0738	13.18	78	0.0000	0.82	54	1.1222	
Omnibus:		0.070	D	urbir	n-Watson:			1.952	
Prob(Omnibu	s):	0.966	0.966 Jarque-Bera (JB)			B):): 0.033		
Skew:		-0.035	P	rob(3	JB):			0.984	
Kurtosis:		2.898	C	ondit	tion No.:			31	
========									

Перестроенная модель:

Results: Ordinary least squares

								=====
Model:		OLS		Adj.	R-square	d:	0.9	61
Dependent Variable:		sepallen		AIC:			32.	2284
Date:		2025-01-21	10:55	BIC:			36.	1309
No. Observat	tions:	52		Log-l	Likelihoo	d:	-14	.114
Df Model:		1		F-sta	atistic:		1242.	
Df Residuals	s:	50		Prob	(F-stati	stic):	5.5	9e-37
R-squared:		0.961		Scale	e:		0.1	0479
		Std.Err.				-		-
Intercept								
petallen								1.1872
Omnibus:		0.177	Du	urbin.	-Watson:			1.823
Prob(Omnibus):		0.915	Ja	Jarque-Bera (JB):				0.246
Skew:		0.129	Pi	rob(JE	B):			0.884
Kurtosis:		2.783	Co	onditi	ion No.:			27
								=====

Данные с засорением не имеют нормального распределения. Был проведен анализ остатков.

По графику остатков видно, что есть «выбросы», но закономерность не прослеживается.

Результаты проверки критериев:

- Критерий Шапиро-Уилка: pvalue = 0.770587169726827
- Критерий Д'Агостино: pvalue = 0.9150987003968815

Оба критерия не дают оснований отвергать гипотезу о нормальном распределении остатков.

Для остатков была построена столбчатая диаграмма, график «квантиль-квантиль» и «ящик с усами»:

Вывод: остатки построенной модели имеют нормальное распределение.

Построение регрессионной модели для "чистых" данных — это более простая задача, которая позволяет получить точные и интерпретируемые результаты. При работе с "засоренными" данными важно учитывать влияние шума и выбросов, тщательно проводить предобработку данных.