

Ken

Omar

WSDM-2024 Tutorial:

Some Useful Things to Know When Combining IR and NLP: The Easy, the Hard and the Ugly

Omar Alonso, Amazon, Palo Alto, CA, USA Kenneth Church, Northeastern University, San Jose, CA, USA

Disclaimer

The views, opinions, positions, or strategies expressed in this talk are mine (Omar) and do not necessarily reflect the official policy or position of Amazon.

Tutorial agenda

Introduction

Hard

Easy

Medium

Ugly

Conclusions

Introduction

- High level overview of information access (search, QA, etc.)
- What are the components that we need?
 - IR stack (indexing, crawling, ranking, query understanding, etc.)
 - NLP stack (POS, NER, specific tasks, embeddings, transformers, etc.)
- HEMU dimensions
 - Hard
 - Easy
 - Medium
 - Ugly

Information seeking

- The user has an information need
- Expressed as a query (or question)
- Examine search results or answer(s)
- Re-formulate if needed
- Systems
 - Information retrieval/Search engine,
 - Q&A systems
 - Chatbots
 - ChatGPT-like
 - Forums
 - Social networks

The back-end side

- IR finds content in a collection (usually text) that satisfies an information need
- Many NLP components and techniques in the tech stack
- Classical IR systems don't answer a question directly
- 10-blue links
- Question Answering systems need experts curated data set
- Pre-trained language models can produce prose that looks like an answer
- Combination of IR and LLMs

Typical search session

- Two queries of two words ...
 - ... looking each time to at most two pages
 - ... and doing two clicks per page
- IR engine needs to guess what the user wants
- Query intent
 - Navigational, informational, transactional
- Query understanding
 - Normalization, spell correction, annotation, term expansion, query re-writing
- Current search systems
 - Index, retrieve, and rank
 - Not many changes

Quick terminology recap – document retrieval

- Classic search model
 - Documents and queries as vectors; cosine similarity as proxy for relevance
 - TF-IDF, BM25
- Web search
 - Link structure as a large-scale voting system; PageRank
- Learning to rank (LTR)
 - Use behavioral data to learn a ranking function
- Neural-based ranking models
 - Use NNs to score or rank documents
- Representation learning
 - Encode queries and documents into vector representations
 - Retrieval using nearest neighbor search

Quick terminology recap – Question Answering

- Classic systems
 - Limited large-scale success
 - Answers are list of snippets from documents or provided by a human
- NN approaches
 - Instead of ranking QA pairs, extract answer spans within passages
- Open-domain
 - Retrieve relevant passages -> machine reading comprehension -> answer
- Generative systems

Information needs and queries

- Relevance to what?
- In Web
 - Two queries of two terms ...
 - ... looking each time to at most two pages and doing two clicks per page
 - Not a lot of data to guess correctly
- Relevance to the query
 - Problematic
 - Short queries
- Information need
- User intent

Users and information needs

- Keyword queries
 - Free text queries
- Keyword++
 - Queries with filters or facets
- Natural language
 - Natural language queries, questions
- Zero queries
 - You are the query

How do we know if users are happy?

- Search returns relevant results to users
 - How do you assess this at scale?
- Search results get clicked a lot
 - Misleading titles/summaries can cause users to click
- Users buy after using the search engine
 - Users spend a lot of \$ after using the search engine
- Repeat visitors/buyers
 - Do users leave soon after searching?
 - Do they come back within a week/month/...?

Information seeking architectures

- At a high level, more or less the same
- Indexing and retrieval
- Query understanding
 - Normalization
 - Spelling correction
 - Segmentation
 - Annotation (NER, POS, etc.)
 - Term expansion
 - Query-rewriting
- Ranking
 - Many models to chose from
- Answer generation/snippets
- SERP construction
 - Web: 10-blue links
- ChatGPT-like
 - Answer

This tutorial

- Lots of technology changes recently
- Are things really that new or just another iteration?
- It is very easy to build prototypes and test new solutions
- Have we solved all problems?
- IR, NLP, ML are converging
 - How can we combine all these new tech to solve new problems?
 - Where should we focus on?

HEMU dimensions

- Computing resources
 - laptop < cloud access < cluster (1K machines is a typical industry cluster)
- Data
 - Small, medium, big
 - Public, sensitive
- Algorithmic complexity
 - Hashing/indexing, PageRank, Deep Learning
- Skills
 - Some things require the worlds' expert, and other things can be done by a software engineer
 - Things can be done by a non-programmer

HEMU dimensions - II

Size of team

- You
- Pizza team
- The number of authors per paper has been growing suggesting that you need more and more people to do certain things

Cost

- Includes all of the above
- As well as externalities such as power

Value

- Some things are super expensive and not worth doing
- Think about time scales... some things are good for years/decades, and other things age quickly
- How easy is it for the competition to do a fast follow?

Organization

- Is your team or company ready for your idea?
- Immediate, medium, and long-term success