Answers: Logarithms

Zoë Gemmell

Summary

Answers to questions relating to the study guide on logarithms.

These are answers to: Questions: Logarithms.

Please attempt the questions before reading these answers!

Throughout this answer sheet, the natural logarithm $\log_e(x)$ is written as $\ln(x)$.

Q1

- 1.1. $\log_7(x) = 1$ rearranged gives $7^1 = x$ so x = 7.
- 1.2. $\log_8(x) = 3$ rearranged gives $8^3 = x$ so x = 512.
- 1.3. $\log_{12}(x) = 0$ rearranged gives $12^0 = x$ so x = 1.
- 1.4. $\log_{10}(100) = x$ rearranged gives $10^x = 100$ so x = 2.
- 1.5. $\log_2(64) = x$ rearranged gives $2^x = 64$ so x = 6.
- $1.6. \quad \log_4(2) = x \text{ rearranged gives } 4^x = 2 \text{ so } x = \frac{1}{2}.$
- $1.7. \quad \log_3(27) = x \text{ rearranged gives } 3^x = 27 \text{ so } x = 3.$
- $1.8. \quad \log_{10}(1) = x \text{ rearranged gives } 10^x = 1 \text{ so } x = 0.$
- 1.9. $\log_x(16) = 4$ rearranged gives $x^4 = 16$ so $x = \sqrt[4]{16} = 2$.
- 1.10. $\log_x(49)=2$ rearranged gives $x^2=49$ so $x=\sqrt{49}=7$.
- 1.11. $\log_x(13) = 4$ rearranged gives $x^4 = 13$ so $x = \sqrt[4]{13}$.
- 1.12. $\log_{2x}(12) = -1$ rearranged gives $(2x)^{-1} = 12$ so $x = \frac{1}{24}$.

1

Q2

The product rule: $\log_a(M\cdot N) = \log_a(M) + \log_a(N)$

The quotient rule: $\log_a \left(\frac{M}{N}\right) = \log_a(M) - \log_a(N)$

The power rule: $\log_a(M^k) = k \cdot \log_a(M)$

The zero rule: $\log_a(1) = 0$

The identity rule: $\log_a(a) = 1$

- 2.1. The solution to $\log_3(\frac{1}{27}) = x$ is x = -1/3.
- 2.2. The solution to $4\log_4(2) = x$ is x = 2.
- 2.3. The solution to $\log_5(10) + \log_5\left(\frac{5}{2}\right) = x$ is x=2.
- 2.4. The solution to $3\log_7\left(a^{1/3}\right) \frac{1}{2}\log_7(a^2) = x$ is x=0 .
- 2.5. The solution to $\log_x(YZ)=M$ is $x=\sqrt[M]{YZ}.$
- 2.6. The solution to $\log_a{(y)} \log_a(x) = 11$ is $x = ya^{-11}.$

Q3

- 3.1. $\log_3(25)$ is equal to $\frac{2}{\log_5(3)}.$
- 3.2. $\log_8(3)$ is equal to $\frac{4\log_{16}(3)}{3}.$
- 3.3. $\log_e(10)$ is equal to $\frac{1}{\log_{1000}(e^3)}.$
- 3.4. $\ln(27)$ is equal to $\frac{3}{\log_3(e)}.$
- 3.5. $\log_4(8x)$ is equal to $\frac{3}{2} + \log_2\left(\sqrt{2}\right)$.

Version history and licensing

v1.0: initial version created 08/23 by Zoë Gemmell as part of a University of St Andrews STEP project.

• v1.1: edited 05/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.