Esame Di Progettazione di Sistemi Digitali - 14/09/2023

Prof. Pontarelli canale A-L e Teledidattica

Cognome Nome _____ Matricola _____

• Gli studenti DSA devono svolgere i primi 4 esercizi.

Esercizio 1 (6 punti)

Si progetti l'automa e la relativa rete sequenziale che riceve un input x e fornisce in output z. L'output z restituisce 1 se e solo se e solo se il numero naturale dato dagli ultimi 3 bit ricevuti, dà resto 1 quando diviso per 3. Non sono ammesse sovrapposizioni.

Esempio: INPUT: 11011000011110 Output: 00000010010010

	Codifica			
Stato	S_2	S_1	S_0	
R	0	0	0	
S_{0x}	0	0	1	
S_{00}	0	1	0	
S_{01}	0	1	1	
S_{1x}	1	0	0	
S_{10}	1	0	1	
S_{11}	1	1	0	

Tabella di transizione degli stati

PS	S ₂ S ₁ S ₀	X	S2'S1'S0'	Z
R	000	0	001	0
R	000	1	100	0
S_{0x}	001	0	010	0
S_{0x}	001	1	011	0
S_{00}	010	0	010	0
S_{00}	010	1	000	1
S_{01}	011	0	101	0
S_{01}	011	1	110	0
S_{1x}	100	0	101	0
S_{1x}	100	1	110	0
S_{10}	101	0	000	1
S_{10}	101	1	011	0
S_{11}	110	0	101	0
S_{11}	110	1	000	1
-	111	0		-
-	111	1		-

Equazioni del circuito:

$$\begin{split} S'_{0} &= S_{2}S_{1}\overline{S_{0}}\bar{x} + S_{2}\overline{S_{1}}S_{0}x + S_{2}\overline{S_{1}}\overline{S_{0}}\bar{x} + \overline{S_{2}}S_{1}S_{0}\bar{x} + \overline{S_{2}}\overline{S_{1}}S_{0}x + \overline{S_{2}}\overline{S_{1}}\overline{S_{0}}\bar{x} \\ S'_{1} &= S_{2}\overline{S_{1}}S_{0}\bar{x} + S_{2}\overline{S_{1}}\overline{S_{0}}x + \overline{S_{2}}S_{1}S_{0}x + \overline{S_{2}}S_{1}\overline{S_{0}}\bar{x} + \overline{S_{2}}\overline{S_{1}}S_{0}x + \overline{S_{2}}\overline{S_{1}}S_{0}\bar{x} \\ S'_{2} &= S_{2}S_{1}\overline{S_{0}}\bar{x} + S_{2}\overline{S_{1}}\overline{S_{0}}x + S_{2}\overline{S_{1}}\overline{S_{0}}\bar{x} + \overline{S_{2}}S_{1}S_{0}x + \overline{S_{2}}S_{1}S_{0}\bar{x} + \overline{S_{2}}S_{1}S_{0}\bar{x} \\ z &= S_{2}S_{1}\overline{S_{0}}x + S_{2}\overline{S_{1}}S_{0}\bar{x} + \overline{S_{2}}S_{1}\overline{S_{0}}\bar{x} \end{split}$$

Esercizio 2 (5 punti)

La funzione di 4 variabili, f(a,b,c,d), vale 0 quando $a\bar{b}\bar{c}=1$ oppure $ab\bar{d}=1$ altrimenti vale 1. La funzione g(a,b,c,d) vale 1 sia se $a+\bar{b}+\bar{c}=0$ che se cd=1, mentre risulta non specificata se $c+\bar{d}=0$.

Realizzare la tabella della verità, esprimere f e g in forma SOP minima e progettare la rete che realizza le funzioni f utilizzando dei multiplexer del tipo 2:1 e g utilizzando un multiplexer del tipo 4:1.

Tabella della verità

a	b	С	d	f	G
0	0	0	0	1	0
0	0	0	1	1	-
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	0	1	0
0	1	0	1	1	-
0	1	1	0	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	-
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	1	-
1	1	1	0	0	0
1	1	1	1	1	1

matricola_____

f con mux 2-1

g con mux 4-1

matricola	
matricola	

Esercizio 3 (3 punti)

Data l'espressione $f = \bar{a} + bc + \bar{b}\bar{a} + (bc + a\bar{c})\bar{a}$ semplificarla e portarla in forma POS.

Realizzare f con soli operatori NAND e con soli operatori NOR.

$$f = \overline{a} + bc + \overline{b}\overline{a} + (bc + a\overline{c})\overline{a} = \overline{a} + bc + bc\overline{a} = \overline{a} + bc = (\overline{a} + b)(\overline{a} + c)$$

NOR:

$$f = \overline{(\overline{a} + b)(\overline{a} + c)} = \overline{(\overline{a} + b)} + \overline{(\overline{a} + c)} = \overline{(\overline{a} + b)} \ NOR \ \overline{(\overline{a} + c)} = (\overline{a} \ NOR \ b) \ NOR \ (\overline{a} \ NOR \ c)$$

NAND:

$$f = \overline{\overline{a + bc}} = \overline{a \cdot \overline{b \cdot c}} = a \ NAND \ \overline{b \cdot c} = a \ NAND \ (b \ NAND \ c)$$

Esercizio 4 (6 punti)

Analizzare la rete sequenziale mostrata in figura. Stendere la tavola degli stati futuri e di uscita e disegnare l'automa (il diagramma di transizione degli stati). In seguito, disegnare l'automa di Moore equivalente.

$$S'_{0} = \overline{A}$$

$$S'_{1} = A \cdot S_{0}$$

$$S'_{2} = A \cdot (S_{1} + S_{2})$$

$$Q = A \cdot S_{2}$$

$S_2S_1S_0$	A	S2'S1'S0'	Q
000	0	001	0
000	1	000	0
001	0	001	0
001	1	010	0
010	0	001	0
010	1	100	0
011	0	001	0
011	1	110	0
100	0	001	0
100	1	100	1
101	0	001	0
101	1	110	1
110	0	001	0
110	1	100	1
111	0	001	0
111	1	110	1

	Codifica			
Stato	S_2	S_1	S_0	
R	0	0	0	
S_0	0	0	1	
S_1	0	1	0	
S_2	1	0	0	

matricola	
matricola	

S ₂ S ₁ S ₀	A	S2'S1'S0'	Q
R	0	S_0	0
R	1	R	0
S_0	0	S_0	0
S_0	1	S_1	0
S_1	0	S_0	0
S_1	1	S_2	0
S_2	0	S_0	0
S_2	1	S_2	1

matrico	la
111461160	iu

Esercizio 5 (4 punti) Si consideri il numero esadecimale X=D1BD e gli si sottragga in base 16 il numero esadecimale Y=A3D. Si converta poi il risultato Z in una sequenza binaria di 16 bit, da interpretarsi come un numero razionale in formato IEEE 754 half-precision.

Si prenda poi la sequenza binaria di 16 bit W=0100'0110'0000'0000₂, la si interpreti come un numero razionale in formato IEEE 754 half-precision, e si effettui la somma tra questi 2 numeri e si scriva il risultato in formato IEEE 754 half-precision.

Il valore di Z è

D1BD-A3D=C780
$$\rightarrow$$
 <1,10001,1110000000> \rightarrow Z= - 2²*(1.111)₂ =-(111.1)₂ = -7.5

Il valore di W è

$$W = \langle 0,10001,10000000000 \rangle = 2^2*(1.1)_2 = -(110.0)_2 = 6$$

Il valore di Z-W è

$$Z-W=-1.5 = -2^{0*}(1.1)_2 < 1,01111,10000000000 > = 0xBE00$$

Esercizio 6 (6 punti)

Si consideri il circuito in figura e si scriva l'espressione della funzione f

- Trasformare tale espressione, usando assiomi e regole dell'algebra di Boole, in forma normale SOP
- Stendere la tavola di verità di f
- Scrivere l'espressione minimale POS di f

$$f = \left(b\overline{(a\oplus c)} + d(a\oplus c)\right)\overline{(b\oplus c)} + d(b\oplus c) = (\bar{a}b\bar{c} + abc + \bar{a}cd + a\bar{c}d)(\bar{b}\bar{c} + bc) + \bar{b}cd + b\bar{c}d =$$

$$= abc + \bar{a}bcd + a\bar{b}\bar{c}d + \bar{b}cd + b\bar{c}d$$

Tabella della verità

a	b	С	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

CD A	0	01	0	10	
01	0	1	1	1	f = (c+d)(a+b+c)(a+d)(b+d)
11	1	1	1	1	
10	0	0	1	0	