

Varianta 039

Subjectul I

a)
$$\sqrt{\frac{2}{5}}$$
 . b) $\frac{6}{\sqrt{14}}$. c) 2y=x+4. d) 3. e) 0 . f) a=cos60, b=sin60.

Subjectul II

1. a) câtul x-1, restul 2. b)
$$\frac{1}{6}$$
 . c) 1. d) 0. e) -3.

2. a)
$$2\cos x + 3e^x$$
. b) $3e-1-2\cos 1$. c) $f''(x)>0$, $\forall x \in (0,\infty)$ d) $2\cos 1 + 3e$. e) $\frac{\ln 2}{4}$.

Subjectul III

a) Prima matrice are numai elemente distincte din multimea {1,2,.....,9}, deci aparține lui M, iar a doua are și elemente egale, deci nu aparține lui M.

b) determinantul este egal cu 0. c)
$$A = \begin{pmatrix} 4 & 1 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$
, $det(A) = -24 \neq 0$

- d) Dacă $B \in M$ și $B^{-1} \in M$, atunci $BB^{-1} = I_3$. Dar B și B^{-1} are numai elemente strict pozitive, deci B B^{-1} va avea numai elemente strict pozitive. Deci B $B^{-1} \neq I_3$ și de aici rezulta că $B^{-1} \notin M$.
- e) Din b) și c) rezultă că mulțimea M conține matrice de rangul 2 și 3. Se arată că M nu conține matrice de rangul 1 deoarece ar avea toate liniile (coloanele) proportionale.
- f) $P_9 = 9!$.
- g) Matricea de la punctual b) are determinantul nul, schimbând liniile între ele obținem 6 matrice cu determinantul nul. Pentru fiecare matrice astfel obținută schimbăm coloanele între ele și obținem pentru fiecare matrice alte 6 matrice cu determinantul nul. Rezultă în total 36 matrice cu determinantul nul.

Subjectul IV

a) Relația $a_n < b_n$ este echivalentă cu $\sqrt[n]{n} < \sqrt[n]{n+2}$ care este evident adevărată.

b)
$$a_2 = \sqrt{2}$$
 şi $b_2 = \sqrt{2+2} = 2$

c) a₄> 1,9 este echivaletă cu
$$\sqrt{2+\sqrt[3]{3+\sqrt[4]{4}}}$$
 > 1,9 sau $2+\sqrt[3]{3+\sqrt{2}}$ > 3,61 sau

$$3+\sqrt{2} > 4{,}173281 \text{ sau } \sqrt{2} > 1{,}173281 \text{ care este evidentă.}$$

d) Pentru n=2 obtinem 8>5 , adevarata. Presupunand ca $2^{n+1} > n+3$ adevarata , avem de aratat ca $2^{n+2} > n+4$.

Avem $2^{n+2} > 2(n+3) > n+4$, deci inegalitatea este adevarata oricare ar fi $n \ge 2$

e) Relația
$$a_n < a_{n+1}$$
 este echivalentă cu $\sqrt[\eta]{n} < \sqrt[\eta]{n+\frac{n+\sqrt{n+1}}{n+1}}$ care este adevărată.

Relația $b_n > b_{n+1}$ este echivalentă cu $\sqrt[n]{n+2} < \sqrt[n]{n+1}\sqrt[n+3]{n+3}$ sau $2 > \sqrt[n+1]{n+3}$ sau $2^{n+1} > n+3$, demonstrată la punctul anterior.

f) Din $a_2 \le a_n < b_n \le b_2$ rezultă că șirurile (a_n) și (b_n) sunt mărginite și monotone, deci convergente.

g) Avem
$$0 < b_n - a_n < \frac{\sqrt[n]{n+2} - \sqrt[n]{n}}{\sqrt[n]{n+2} + \sqrt[n]{n}}, \ \forall n \ge 2.$$

$$\lim_{n\to\infty}\sqrt[n]{n+2}=\lim_{n\to\infty}\sqrt[n]{n}=1, \text{ obținem }\lim_{n\to\infty}\left(b_n-a_n\right)=0 \text{ deci, }\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=a \text{ și }a\in(1,9;2).$$