

小門司教育 5. 最长回文子串

给定一个字符串 s , 找到 s 中最长的回文子串。你可以假设 s 的最大长 度为 1000。

输入: "babad"

输出: "bab"

注意: "aba" 也是一个有效答案。

输入: "cbbd"

输出: "bb"

小码哥教育 暴力法

- 列举出所有的子串, 时间复杂度: O(n^2)
- 检查每一个子串是否为回文串,每一个子串所需时间复杂度: 0(n)
- 总共时间复杂度: 0(n^3), 空间复杂度: 0(1)

	j	b	а	b	а	d
i	dp	0	1	2	3	4
b	0	Τ	F	Τ	F	F
а	1		Т	F	Т	F
b	2			Τ	F	F
а	3				Т	F
d	4					Т

■动态规划解法

- □其实是基于暴力法的优化,优化的部分:判断每个串是否为回文串
- □时间复杂度: 0(n^2)
- □空间复杂度: 0(n^2)
- □空间复杂度可以优化至0(n)

- 假设字符串("babad")为s,它的长度为n
- dp是大小为n * n的二维数组, dp[i][j]表示s[i, j]是否为回文串, 存储true、false
- 如何求出dp[i][j]的值? 分2种情况
- ① 如果s[i, j]的长度 $(j i + 1) \le 2$ 时
- □如果s[i]等于s[j],那么s[i, j]是回文串,所以dp[i][j] = s[i] == s[j]
- ② 如果s[i, j]的长度 (j i + 1) > 2时
- □如果s[i + 1, j 1]是回文串,并且s[i]等于s[j],那么s[i, j]是回文串
- \square 所以dp[i][j] = dp[i + 1, j 1] && (s[i] == s[j])

小妈哥教育 SEEMYGO 扩展中心法

■ 假设字符串 ("abbaba") 的长度为n, 那么一共有n + (n - 1) == 2n - 1个扩展中心

■ 时间复杂度: 0(n^2)

■ 空间复杂度: 0(1)

MER NYGO 基于扩展中心法的优化

0	1	2	3	4	5	6	7	8
b	а	b	b	b	а	b	а	а

- 算法的核心思想: 由连续的相同字符组成的子串作为扩展中心
- 所以,字符串"babbbabaa"的扩展中心有
- □ "b" 、 "a" 、 "bbb" 、 "a" 、 "b" 、 "aa"
- 核心逻辑
- □找到右边第一个不等于s[i]的字符,记为位置r,i左边位置记为1
- □r作为下一次的i
- □由1开始向左、r开始向右扩展,找到最长的回文子串

			0		1		2		3		4		5		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
CS	٨	#	а	#	b	#	b	#	а	#	b	#	а	#	\$
m	0	0	1	0	1	4	1	0	3	0	3	0	1	0	0

- ■中间的#字符可以是任意字符,头部的^字符、尾部的\$字符,必须是原字符串中不包含的字符
- m[i]的含义
- □是以cs[i]为扩展中心的最大回文子串的长度(不包含#字符)
- ✓ 最大回文子串在原字符串中的开始索引: (i m[i]) >> 1
- □是以cs[i]为扩展中心的最大回文子串的右半部分或左半部分的长度(包含#字符)
- 所以, Manacher算法的关键在于求出m数组

			0		1		2		3		4		5		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
cs	٨	#	С	#	b	#	а	#	b	#	С	#	a	#	\$
m	0	0	1	0	1	0	5	0							
		<u>†</u>			<u>_</u> †.		†		<u></u>			1			
		1			li		C		i			r			

■已知

- □索引1、1i、c、i、r的值分别为1、4、6、8、11
- □cs[l, r]是以c为中心的最大回文串
- □i、li以c为中心对称, m[i]是待求项
- \square m[li] == 1
- \Box i + m[li] < r

- 由于回文的对称性,得出结论
- \square m[i] = m[li]
- $\square m[i] == 1$

			0		1		2		3		4		5		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
cs	٨	#	a	#	b	#	a	#	b	#	а	#	b	#	\$
m	0	0	1	0	3	0	5	0							
		1			<u>_</u> †.		†		<u></u>			1			
		1			li		C		i			r			

■已知

$$\square m[1i] == 3$$

$$\Box$$
i + m[li] == r

■结论

- □m[i]至少是m[li], 也就是说, 至少是3
- □接下来利用扩展中心法以i为中心计算出m[i]
- 当i + m[i] > r时, 更新c、r
- $\Box c = i$
- \Box r = i + m[i]

			0		1		2		3		4		5		6		7		8		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
cs	٨	#	С	#	b	#	а	#	b	#	С	#	b	#	а	#	b	#	b	#	\$
m	0	0	1	0	1	0	5	0	1	0	7	0	1	0							
				1			†			•	<u></u>				1			1			

■已知

- \square m[li] == 5
- \Box i + m[li] > r

- ■结论
- □m[i]至少是r i, 也就是说, 至少是3
- □接下来利用扩展中心法以i为中心计算出m[i]
- 当i + m[i] > r时, 更新c、r
- $\Box c = i$
- \Box r = i + m[i]

Manacher (马拉车)

				0		1		2		3		4		5		
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
С	S	٨	#	С	#	а	#	b	#	а	#	а	#	а	#	\$
n	n	0	0	1	0	1	0	3	0	1						
					<u></u>			1			1					
					1			С			r					
											†					
	当	==	r时								i					

- □直接利用扩展中心法以i为中心计算出m[i]
- 当i + m[i] > r时, 更新c、r
- $\Box c = i$
- $\Box r = i + m[i]$