Homework 3

王一鑫 作业序号 42

2024年12月16日

PROBLEM 1. The Parseval equation.

Let $(u_n)_{n\geq 1}$ be an orthonormal system in the separable Hilbert space X over \mathbb{K} . Show that (u_n) is complete iff

$$\sum_{n\geq 1} |\langle u_n, u \rangle|^2 = ||u||^2 \quad \text{for all } u \in X.$$

SOLUTION.

" \Rightarrow " Recall that u_n is complete if and only if, for all $u \in X$,

$$u = \lim_{m \to \infty} \sum_{n=1}^{m} \langle u_n, u \rangle u_n$$

$$||u||^2 = \langle u, u \rangle = \lim_{m \to \infty} \left\langle \sum_{n=1}^m \langle u_n, u \rangle u_n, \sum_{k=1}^m \langle u_k, u \rangle u_k \right\rangle.$$

Since $\langle u_n, u_k \rangle = \delta_{nk}$,

$$||u||^2 = \lim_{m \to \infty} \sum_{n=1}^m |\langle u_n, u \rangle|^2 = \sum_{n=1}^\infty |\langle u_n, u \rangle|^2.$$

$$||u - S_m||^2 = \sum_{n=1}^{\infty} \left| \langle u_n, u - \sum_{k=1}^{m} \langle u_k, u \rangle u_k \right|^2.$$

$$= \sum_{n=1}^{\infty} \left| \langle u_n, u \rangle - \sum_{k=1}^{m} \langle u_k, u \rangle \langle u_n, u_k \rangle \right|^2.$$

$$= \sum_{n=1}^{\infty} \left| \langle u_n, u \rangle - \langle u_n, u \rangle \right|^2 \to 0 \quad \text{as } m \to \infty.$$

Thus, $u = \lim_{m \to \infty} S_m$, and (u_n) is complete.

PROBLEM 2. A fundamental completeness theorem.

Let $-\infty \le a < b \le \infty$. We are given a measurable function $f:(a,b)\to \mathbb{K}$ (e.g., f is continuous) such that

$$|f(x)| \le Ce^{-\alpha|x|}$$
 for all $x \in \mathbb{R}$ and fixed $\alpha > 0$ and $C > 0$.

Show that the linear hull of the system $\{x^n f(x)\}_{n=0,1,\dots}$ is dense in the Hilbert space $L_2^{\mathbb{K}}(a,b)$.

SOLUTION. We want to show that span $\{x^n f(x)\}$ is dense in $L_2^{\mathbb{K}}(a,b)$. According to **Corollary 3** in **Section 3.3**, we have to show that if $u \in L_2^{\mathbb{K}}(a,b)$ and

$$\langle v_n, u \rangle \equiv \int_a^b x^n f(x) u(x) dx = 0 \text{ for all } n = 0, 1, \dots,$$
 (1)

then u = 0. To this end, let $M = \{k \in \mathbb{R} : |k| < \alpha - 1\}$ and set

$$g(k) := \int_a^b f(x)u(x)e^{-ikx}dx$$
 for all $k \in M$.

Formally,

$$g^{(n)}(k) = \int_{a}^{b} f(x)u(x)(-ix)^{n}e^{-ikx}dx \quad \text{for all } k \in M, \ n = 0, 1, 2, \dots$$
 (2)

For all $x \in \mathbb{R}$ and $k \in M$, we get

$$|f(x)u(x)(-ix)^n e^{-ikx}| \le Ce^{-\alpha|x|}|x|^n e^{|kx|}|u(x)|$$

$$\le Ce^{-|x|}|x|^n|u(x)|$$

$$\le \operatorname{Const}(n)|u(x)|$$
(3)

Since u is an element of $L_2^{\mathbb{K}}(a,b)$,

$$\int_{a}^{b} |u(x)| \, dx < \infty.$$

Thus, the majorant condition (3) justifies formula (2). Consequently, the function g is analytic on the strip M. By (1) and (2),

$$q^{(n)}(0) = 0$$
 for all $n = 0, 1, \dots$

Hence g(k) = 0 for all $k \in M$. By lemma, this implies u(x) = 0 for almost all $x \in [a, b]$.

PROBLEM 3. The completeness of the system of the Laguerre functions.

$$x^n e^{-\frac{x}{2}}, \quad n = 0, 1, \dots, \quad x \in \mathbb{R},$$

the Schmidt orthogonalization method yields a system of functions

$$L_n(x)e^{-\frac{x}{2}}, \quad n = 0, 1, \dots, \quad x \in \mathbb{R}.$$

Show that the following are true:

- (i) System forms a complete orthonormal system in $L_2^{\mathbb{K}}(0,\infty)$.
- (ii) Explicitly,

$$L_n(x) := \frac{(-1)^n}{n!} e^x \frac{d^n}{dx^n} (e^{-x} x^n), \quad n = 0, 1, \dots, \quad x \in \mathbb{R}.$$

SOLUTION.

(i) Since

$$f(x) = e^{-\frac{x}{2}} \le Ce^{-\alpha|x|}$$
 for all $x \in (0, \infty)$

where C = 1 and $\alpha = -\frac{1}{2}$.

Thus, by problem 2, the linear hull of the system $\{x^n e^{-\frac{x}{2}}\}_{n=0,1,\dots}$ is dense in the Hilbert space $L_2^{\mathbb{K}}(0,\infty)$. Moreover, the assertion follows from **Proposition** 2 in **Section** 3.3.

(ii) Since

$$\lim_{x \to \infty} e^{-x} x^n = 0$$

The derivatives of $e^{-x}x^n \to 0$ as $x \to \infty$.

Recall that

$$L_n(x) := \frac{(-1)^n}{n!} e^x \frac{d^n}{dx^n} (e^{-x} x^n), \quad n = 0, 1, \dots, \quad x \in \mathbb{R}.$$

Integrating by parts yields that

$$\int_{0}^{\infty} e^{-x} x^{m} L_{n}(x) = \int_{0}^{\infty} x^{m} \frac{(-1)^{n}}{n!} \frac{d^{n}}{dx^{n}} \left(e^{-x} x^{n} \right)$$

$$= -m \frac{(-1)^{n}}{n!} \int_{0}^{\infty} x^{m-1} \frac{d^{n-1}}{dx^{n-1}} \left(e^{-x} x^{n} \right)$$

$$= m! \frac{(-1)^{m+n}}{n!} \int_{0}^{\infty} \frac{d^{n-m}}{dx^{n-m}} \left(e^{-x} x^{n} \right)$$

$$= \begin{cases} 0 & m < n \\ n! & m = n \end{cases}$$

Since L_m is a polynomial of degree m, let $u_n(x) := L_n(x)e^{-\frac{x}{2}}$, we have

$$\langle u_n, u_m \rangle = \int_0^\infty e^{-x} L_m(x) L_n(x) = 0$$

for all m < n.

If m = n, we have

$$\langle u_n, u_n \rangle = \int_0^\infty e^{-x} L_n^2(x) = \frac{1}{n!} \int_0^\infty e^{-x} x^n L_n(x) = 1$$

PROBLEM 4. The nonhomogeneous stationary Schrödinger equation.

Let $f: \mathbb{R} \to \mathbb{C}$ be a continuous function that vanishes outside a compact interval. Set

$$v(x) := \int_{-\infty}^{\infty} \frac{ie^{ip|x-y|}}{2p} f(y) \, dy.$$

Show that, for each $p \in \mathbb{R}$ with $p \neq 0$, the function v is a C^2 -solution of

$$-v'' - p^2v = f \quad \text{on } \mathbb{R}.$$

SOLUTION. Recall that if

$$F(x) = \int_{\varphi(x)}^{\psi(x)} f(x, y) \, dy$$

then

$$F'(x) = \int_{\varphi(x)}^{\psi(x)} \frac{\partial f(x,y)}{\partial x} \, dy + f(x,\psi(x))\psi'(x) - f(x,\varphi(x))\varphi'(x)$$

Since

$$v(x) := \int_{-\infty}^{\infty} \frac{ie^{ip|x-y|}}{2p} f(y) \, dy = \int_{-\infty}^{x} \frac{ie^{ip(x-y)}}{2p} f(y) \, dy + \int_{x}^{\infty} \frac{ie^{ip(y-x)}}{2p} f(y) \, dy$$

We compute

$$v'(x) = \int_{-\infty}^{x} \frac{-e^{ip(x-y)}}{2} f(y) \, dy + \frac{i}{2p} f(x) + \int_{x}^{\infty} \frac{e^{ip(y-x)}}{2} f(y) \, dy - \frac{i}{2p} f(x)$$

and

$$v''(x) = \int_{-\infty}^{x} \frac{-ipe^{ip(x-y)}}{2} f(y) \, dy - \frac{1}{2} f(x) + \int_{x}^{\infty} \frac{-ipe^{ip(y-x)}}{2} f(y) \, dy - \frac{1}{2} f(x)$$
$$= \int_{-\infty}^{\infty} \frac{-ipe^{ip|x-y|}}{2} f(y) \, dy - f(x)$$

Thus

$$-v'' - p^{2}v = \int_{-\infty}^{\infty} \frac{ipe^{ip|x-y|}}{2} f(y) \, dy + f(x) - p^{2} \int_{-\infty}^{\infty} \frac{ie^{ip|x-y|}}{2p} f(y) \, dy$$
$$= f$$

PROBLEM 5. Graph closed operators.

Let $A:D(A)\subseteq X\to X$ be a linear operator on the Hilbert space X over $\mathbb K$ such that D(A) is dense in X. The set

$$G(A) := \{(u, Au) : u \in D(A)\}$$

is called the graph of A. The operator A is called graph closed iff G(A) is closed in $X \times X$, i.e.,

$$u_n \to u$$
 and $Au_n \to v$ in X as $n \to \infty$

imply Au=v. The linear operator $B:D(B)\subseteq X\to X$ is called the closure of A iff $A\subseteq B$ and

$$\overline{G(A)} = G(B).$$

We write \overline{A} instead of B. Show the following:

(i) The adjoint operator A^* is graph closed.

(ii) The closure \overline{A} exists iff it follows from $u_n \in D(A)$ for all n along with

$$Au_n \to v$$
 and $u_n \to 0$ as $n \to \infty$

(iii) If there exists a linear graph closed operator $C:D(C)\subseteq X\to X$ such that $A\subseteq C$, then the closure \overline{A} exists and

$$\overline{A} \subseteq C$$
.

Hence the closure \overline{A} is the smallest graph closed extension of A. In particular, \overline{A} is uniquely determined by A.

- (iv) If A is symmetric, then the closure \overline{A} exists and is symmetric.
- (v) If \overline{A} exists, then $(\overline{A})^* = A^*$.

that v = 0.

- (vi) If A is self-adjoint, then $\overline{A} = A$.
- (vii) The operator A is graph closed iff D(A) is a Hilbert space over \mathbb{K} equipped with the inner product

$$\langle u, v \rangle_A := \langle u, v \rangle + \langle Au, Av \rangle.$$

SOLUTION.

(i) Recall that $v \in D(A^*)$ iff there exists $A^*v \in X$ such that

$$\langle Au, v \rangle = \langle u, A^*v \rangle$$

Suppose now that $v_n \in D(A^*)$, then

$$\langle Au, v_n \rangle = \langle u, A^*v_n \rangle$$

If $v_n \to v$ and $A^*v_n \to w$, we know

$$\langle Au, v \rangle = \lim_{n \to \infty} \langle Au, v_n \rangle = \lim_{n \to \infty} \langle u, A^*v_n \rangle = \langle u, w \rangle$$

This implies $A^*v = w$, so the adjoint operator A^* is graph closed.

(ii) \Rightarrow If the closure \overline{A} exists, then $\overline{G(A)} = G(\overline{A})$. For all $u_n \in D(A)$, $(u_n, Au_n) \in G(A)$. Since $Au_n \to v$ and $u_n \to 0$ as $n \to \infty$, $(0, v) \in \overline{G(A)} = G(\overline{A})$. Therefore, $v = \overline{A}0 = 0$. \Leftrightarrow To construct the closure \overline{A} , we suppose $(u_n, Au_n) \to (u, v)$ in $X \times X$. Since A is densely defined, $u_n \to u$ implies $u \in \overline{D(A)} = X$. To ensure v is uniquely determined by u, assume another sequence $\{u'_n\} \subseteq D(A)$ with $u'_n \to u$ and $Au'_n \to v'$. Then $w_n = u_n - u'_n \to 0$ and $Aw_n = Au_n - Au'_n \to v - v'$. By the given condition, v - v' = 0, hence v = v'. Thus \overline{A} is well-defined.

Next, we show that \overline{A} is closed. Suppose $u_n \to u$ and $\overline{A}u_n \to v$. Since $(u_n, \overline{A}u_n) \in G(\overline{A}) = \overline{G(A)}$, the limit $(u, v) \in \overline{G(A)}$, implying $v = \overline{A}u$. Thus, \overline{A} is closed, thus the closure \overline{A} exists.

(iii) Suppose that $u_n \in D(A) \subseteq D(C)$. Since C is a linear graph closed operator

$$u_n \to u$$
 and $Cu_n \to v$ in X as $n \to \infty$ imply $Cu = v$. Thus $G(\overline{A}) = \overline{G(A)} \subseteq G(C)$.

(iv) Suppose now $u_n \in D(A)$ for all n along with

$$Au_n \to v$$
 and $u_n \to 0$ as $n \to \infty$

Since A is symmetric, then

$$v^2 = \langle v, v \rangle = \lim_{n \to \infty} \langle v, Au_n \rangle = \lim_{n \to \infty} \langle u_n, Av \rangle = 0$$

then v = 0. By (ii) we show the closure \overline{A} exists.

Moreover, for $u_n \to u$ and $v_n \to v$,

$$\langle \overline{A}u, v \rangle = \lim_{n \to \infty} \langle Au_n, v_n \rangle = \lim_{n \to \infty} \langle u_n, Av_n \rangle = \langle u, \overline{A}v \rangle$$

Thus \overline{A} is symmetric.

(v) **Step 1**: We show $A^* \subseteq (\overline{A})^*$. Since $A \subseteq \overline{A}$, for all $u \in D(A)$ and $v \in D(A^*)$, we have

$$\langle Au, v \rangle = \langle u, A^*v \rangle = \langle \overline{A}u, v \rangle = \langle u, (\overline{A})^*v \rangle.$$

By the definition of A^* , this implies $v \in D((\overline{A})^*)$ and $A^*v = (\overline{A})^*v$. Hence, $A^* \subseteq (\overline{A})^*$.

Step 2: We show $(\overline{A})^* \subseteq A^*$. Since $A \subseteq \overline{A}$, for all $u \in D(A)$ and $v \in D((\overline{A})^*)$, we have

$$\langle \overline{A}u, v \rangle = \langle Au, v \rangle = \langle u, A^*v \rangle = \langle u, (\overline{A})^*v \rangle.$$

By the definition of $(\overline{A})^*$, this implies $v \in D(A^*)$ and $A^*v = (\overline{A})^*v$. Hence, $(\overline{A})^* \subseteq A^*$.

Combining the two inclusions, we conclude that

$$(\overline{A})^* = A^*.$$

(vi) Since A is self-adjoint, by (i) we know that $A=A^*$ is graph closed, that is

$$\overline{G(A)} = G(A)$$

then $A = \overline{A}$.

(vii) \Rightarrow If A is graph closed, i.e.,

$$u_n \to u$$
 and $Au_n \to v$ in X as $n \to \infty$

imply Au = v. Suppose (u_n) is a Cauchy sequence in D(A), that is

$$||u_n - u_m||_A = \langle u_n - u_m, u_n - u_m \rangle_A^{\frac{1}{2}} < \varepsilon$$
 for all $n, m > N_{\varepsilon}$

where

$$\langle u_n - u_m, u_n - u_m \rangle_A = ||u_n - u_m||^2 + ||Au_n - Au_m||^2$$

Thus $\|\cdot\| \leq \|\cdot\|_A$, so $\|u_n - u_m\|_A < \varepsilon$ implies $\|u_n - u_m\| < \varepsilon$ and $\|Au_n - Au_m\| < \varepsilon$. Since X is a Hilbert space with $\|\cdot\|$, we have $u_n \to u$ and $Au_n \to v$ as $n \to \infty$. Moreover, the graph closed operator A shows that Au = v. This implies

$$||u_n - u||_A \to 0$$
 as $n \to \infty$

and $u \in D(A)$. So D(A) is a Hilbert space over \mathbb{K} equipped with the inner product

$$\langle u, v \rangle_A := \langle u, v \rangle + \langle Au, Av \rangle.$$

 \Leftarrow If D(A) is a Hilbert space, we aim to show that A is graph closed. Let $(u_n) \subseteq D(A)$ be a sequence such that $u_n \to u$ in X and $Au_n \to v$ in X. We need to prove that Au = v.

Since $(D(A), \|\cdot\|_A)$ is a Hilbert space, it is complete with respect to the norm $\|\cdot\|_A$. Observe that

$$||u_n - u||_A^2 = ||u_n - u||^2 + ||Au_n - Au||^2.$$

Given $u_n \to u$ in D(A), we have $||u_n - u||_A \to 0$ and $||u_n - u|| \to 0$, thus

$$||Au_n - Au|| \to 0$$

Additionally, since $Au_n \to v$ in X, it follows that $||Au_n - v|| \to 0$. Combining these results,

$$||Au - v|| \le ||Au - Au_n|| + ||Au_n - v|| \to 0$$
 as $n \to \infty$.

This shows that Au = v, so A is graph closed.

Problem 6. The Kato perturbation theorem.

Let $A:D(A)\subseteq X\to X$ be a linear self-adjoint operator on the complex Hilbert space X, and let $B:D(B)\subseteq X\to X$ be a linear symmetric operator such that $D(A)\subseteq D(B)$ and

$$||Bu|| \le a||Au|| + b||u|| \quad \text{for all } u \in D(A)$$

where a and b are fixed real numbers with $0 \le a < 1$ and $b \ge 0$. Show that A + B is self-adjoint.

SOLUTION. Let $\alpha \in \mathbb{R}$ with $\alpha \neq 0$. Since $i\alpha \in \rho(A)$, the operator $(A - i\alpha I)^{-1}: X \to X$ is linear and continuous. We shall show ahead that

$$||B(A - i\alpha I)^{-1}|| < 1 \text{ for all } \alpha \in \mathbb{R} : |\alpha| \ge \alpha_0,$$
 (5)

provided α_0 is sufficiently large. Since

$$(A+B-i\alpha I)(A-i\alpha I)^{-1} = I + B(A-i\alpha I)^{-1},$$

Applying the conclusion of Neumann series, it follows from (5) that

$$R(A+B-i\alpha I)=X$$
 for all $\alpha\in\mathbb{R}: |\alpha|\geq\alpha_0$

Thus, by Problem 5.5(i) in p416, A + B is self-adjoint.

Proof of (5). By Problem 5.4(i),

$$||(A - i\alpha I)^{-1}u|| \le |\alpha|^{-1}||u||$$
 for all $u \in X$.

Furthermore,

$$||Av||^2 + |\alpha|^2 ||v||^2 = (Av - i\alpha v | Av - i\alpha v)$$

= $||Av - i\alpha v||^2$ for all $v \in D(A)$.

Letting $v := (A - i\alpha I)^{-1}u$, this implies

$$||A(A - i\alpha I)^{-1}u||^2 \le ||u||^2$$
 for all $u \in X$.

Thus, it follows from (4) that

$$||B(A - i\alpha I)^{-1}u|| \le a||A(A - i\alpha I)^{-1}u|| + b||(A - i\alpha I)^{-1}u||$$

$$\le (a + b|\alpha|^{-1}) ||u|| \text{ for all } u \in X.$$

This yields (5).

PROBLEM 7. A classical inequality.

Show that, for all $u \in C_0^{\infty}(\mathbb{R}^3)$,

$$\int_{\mathbb{R}^3} \left(u_{\xi}^2 + u_{\eta}^2 + u_{\zeta}^2 \right) dx \ge \int_{\mathbb{R}^3} \frac{u^2}{4r^2} dx,$$

where $x = (\xi, \eta, \zeta)$.

SOLUTION. Set $v = r^{\frac{1}{2}}u$. Since $v = \sqrt{\xi^2 + \eta^2 + \zeta^2}$. We have

$$\begin{split} u_{\xi}^2 + u_{\eta}^2 + u_{\zeta}^2 &= |\nabla u|^2 = |\nabla r^{-\frac{1}{2}}v|^2 \\ &= |-\frac{1}{2}r^{-\frac{3}{2}}v\nabla r + r^{-\frac{1}{2}}\nabla v|^2 \\ &= r^{-1}(v_{\xi}^2 + v_{\eta}^2 + v_{\zeta}^2) - \frac{1}{2}r^{-2}(v^2)_r + (4r^3)^{-1}v^2 \end{split}$$

Since $u \in C_0^{\infty}(\mathbb{R}^3)$, for sufficiently large R,

$$\int_{\mathbb{R}} r^{-2} (v^2)_r = \int_0^{\pi} \int_0^{2\pi} \sin \theta \int_0^R (v^2)_r \, dr \, d\theta \, d\varphi = 0$$

then

$$u_{\xi}^{2} + u_{\eta}^{2} + u_{\zeta}^{2} = r^{-1}(v_{\xi}^{2} + v_{\eta}^{2} + v_{\zeta}^{2}) + (4r^{3})^{-1}v^{2} \ge (4r^{3})^{-1}v^{2} = \frac{u^{2}}{4r^{2}}$$

thus

$$\int_{\mathbb{R}^3} (u_{\xi}^2 + u_{\eta}^2 + u_{\zeta}^2) dx \ge \int_{\mathbb{R}^3} \frac{u^2}{4r^2} dx,$$