UNIT - I CO2 - Partial differentiation

$$1.f(x, y) = x^2 + xyz + z$$
 Find f_X at $(1,1,1)$

- a) 0 b) 1 c) 3

2.f(x, y) =
$$\sin(xy) + x^2 \ln(y)$$
 Find f_{yx} at $(0, \frac{\pi}{2})$
a) 33 b) 0 c) 3 d) 1

3.f(x, y) =
$$x^2 + y^3$$
; X = $t^2 + t^3$; y = $t^3 + t^9$ Find $\frac{df}{dt}$ at t=1.

4.f(x, y) =
$$\sin(x) + \cos(y) + xy^2$$
; x = $\cos(t)$; y = $\sin(t)$ Find $\frac{df}{dt}$ at t = $\frac{\pi}{2}$ a) 2 b)-2 c) 1 d) 0

$$5.f(x,\,y,\,z,\,t) = xy + zt + x^2\ yzt;\, x = k^3\ ;\, y = k^2;\, z = k;\, t = \sqrt{k}$$

- Find $\frac{df}{dt}$ at k = 1
- a) 34
- b) 16
- c) 32
- d) 61

$$6.f(x, y) = \sin(y + yx^2) / 1 + x^2$$
 Value of f_{Xy} at (0,1) is

- a) 0

- a) z should be homogeneous and of order n
- b) z should not be homogeneous but of order n
- c) z should be implicit
- d) z should be the function of x and y only

8.If
$$u = x^2 tan^{-1}(y/x) - y^2 tan^{-1}(x/y)$$
 then $\frac{\partial^2 u}{\partial x \partial y}$ is

a)
$$\frac{x^2+y^2}{x^2-y^2}$$

a)
$$\frac{x^2+y^2}{x^2-y^2}$$
 b) $\frac{x^2-y^2}{x^2+y^2}$ c) $\frac{x^2}{x^2+y^2}$ d) $\frac{y^2}{x^2+y^2}$

$$\frac{x^2}{2+y^2}$$

$$d)\frac{y^2}{x^2+y^2}$$

9.If
$$f(x,y)$$
 is a function satisfying euler's theorem then?
a) $x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = n(n-1)f$
b) $\frac{1}{x^2} \frac{\partial^2 f}{\partial x^2} + \frac{2}{xy} \frac{\partial^2 f}{\partial x \partial y} + \frac{1}{y^2} \frac{\partial^2 f}{\partial y^2} = n(n-1)f$
c) $x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = nf$

b)
$$\frac{1}{x^2} \frac{\partial^2 f}{\partial x^2} + \frac{2}{xy} \frac{\partial^2 f}{\partial x \partial y} + \frac{1}{y^2} \frac{\partial^2 f}{\partial y^2} = n(n-1)f$$

c)
$$x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = nf$$

$$d)y^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2xy \frac{\partial^{2} f}{\partial x \partial y} + x^{2} \frac{\partial^{2} f}{\partial y^{2}} = n(n-1)f$$

10.In euler theorem $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$, here 'n' indicates?

- a) order of z b) degree of z c) neither order nor degree d) constant of z
- 11. For homogeneous function with no saddle points we must have the minimum value as
- a) 90
- b) 1 c) equal to degree
- d) 0

13. $f(x, y) = x^3 + xy^2 + 901$ satisfies the Euler's theorem. a) True b) False 14. If $z = x^n f(\frac{y}{x})$ then? a) $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = nz$ b) $\frac{1}{y} \frac{\partial z}{\partial x} + \frac{1}{x} \frac{\partial z}{\partial y} = nz$ c) $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$ d) $\frac{1}{x} \frac{\partial z}{\partial x} + \frac{1}{y} \frac{\partial z}{\partial y} = nz$ 15. If $z = e^{\frac{x^2 + y^2}{x + y}}$ then, $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is? c) $z^2 \ln (z)$ b) zln(z)d) z 16.Relative error in x is? c) $\delta x_{x} * 100$ b) δx_{y} d) 0 21.If $u=x+3y^2-z^3$, $v=4x^2$ yz, $w=2z^2$ -xy then $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at (1,1,1). 23. If $u + v = e^x \cos y$ and $u - v = e^x \sin y$ the value of $J\left(\frac{u,v}{x,y}\right)$ is _____ b) $\frac{e^2x}{2}$ c) $\frac{-e^2x}{2}$ d) 0 24. Which among the following is the definition of Jacobian of u and v w.r.t x and y? a) $J\left(\frac{x,y}{u,v}\right)$ b) $J\left(\frac{u,v}{x,y}\right)$ c) $\frac{\partial(x,y)}{\partial(u,v)}$ d) $\frac{\partial(u,v)}{\partial(x,y)}$ 25. Given $f(x,y)=e^X$ cosy, what is the value of the fifth term in Taylor's series near $(1,\frac{\pi}{4})$ where it is expanded in increasing order of degree & by following algebraic identity rule?

b) $-\sqrt{2}e(x-1)\left(y-\frac{\pi}{4}\right)$

d) $\frac{e\left(y-\frac{\pi}{4}\right)^2}{\sqrt{2}}$

d) -12

 $12.f(x, y) = \sin(y/x)x^3 + x^2y$ find the value of $f_X + f_Y$ at (x,y)=(4,4). c) 4^2 . $3(\sin(1) + 1)$

b) 78

a) 0

a) $\frac{-e(x-1)\left(y-\frac{\pi}{4}\right)}{\sqrt{2}}$

c) $\frac{e(x-1)^2}{\sqrt{2}}$

26. Consider the function. a) independent c) $a \in (0, +\infty)$		real number e	ues of a do we have critical points for the except zero
27.f(x, y) = sin(x).cos(y) Which of the following is a critical point? a) $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ b) $\left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$ c) $\left(0, \frac{\pi}{4}\right)$ d) $(0, 0)$			
28.The point (0 a) Saddle	b) Minima	$f(x, y) = \sin(xy)$ c) Maxim	
29.Maximize th	the function $x + y - z = b$		et to the constraint xy=36. d) No Maxima exists
30.A partial differential equation requires a) exactly one independent variable c) two or more independent variables d) equal number of dependent and independent variables			
	cosy — ysiny),then b)u c)eu	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = \dots$ d)non	ie e
32.If $x = uv$, $y = u/v$ then $\frac{\partial(x,y)}{\partial(u,v)}$ is, a) $-2u/v$ b) $-2v/u$ c)0 d)1			
- (,5 /	$\int_{0}^{\infty} J_{2} = \frac{\partial(x,y)}{\partial(u,v)} \text{then } J_{1}J_{2}$	2is c)1	d)none
34.If $u = x^y$, the a)0 b	then $\frac{\partial u}{\partial x}$ is $(x)yx^{y-1}$	$c)x^y logx$	d)none
35. If $u = x^y$, the a)0 b	then $\frac{\partial u}{\partial y}$ is $y = \frac{\partial u}{\partial y}$	$c)x^y logx$	d)none
	y^3 , then $\frac{\partial^2 u}{\partial x \partial y}$ is equal $(x^3)^3$	1 to c)0	d)3x+3y
	$2xy + y^2 + x + y$ th b)u		is equal to d)none
-	$\frac{\partial^2}{\partial x} \text{then } x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \text{is eq}$	qual to c)u	d)1
39.If $A = f_{xx}(a, b)$, $B = f_{xy}(a, b)$, $C = f_{yy}(a, b)$ then $f(x, y)$ will have a maximum at (a,b) if $a)f_x = 0$, $f_y = 0$, $AC < B^2$ and $A < 0$ $b)f_x = 0$, $f_y = 0$, $AC = B^2$ and $A > 0$ $c)f_x = 0$, $f_y = 0$, $AC > B^2$ and $A > 0$ $d)f_x = 0$, $f_y = 0$, $AC > B^2$ and $A < 0$			

40.If
$$z = sin^{-1} \frac{\sqrt{x^2 + y^2}}{x + y}$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to
a)0 b)1/2 c)1 d)2
41.If $u = sin^{-1}(x/y) + tan^{-1}(y/x)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to
a)u b)2u c)3u d)0

42.If an error of 1% is made in measuring its length and breadth, the percentage error in the area of a rectangle is

- b)0.02% c)2%d)1%
- 43. $\frac{\sqrt{x} \sqrt{y}}{\sqrt{x} + \sqrt{y}}$ is a homogeneous function of degree.....
- 44. If u and v are functions of r, s where r, s are functions of x, y then $\frac{\partial(u,v)}{\partial(r,s)} \cdot \frac{\partial(r,s)}{\partial(x,v)} = \dots$
- a) $\frac{\partial(u,v)}{\partial(x,v)}$ b) $\frac{\partial(u,v)}{\partial(r,s)}$ c) $\frac{\partial(r,s)}{\partial(r,v)}$ d)none
- 45. The necessary conditions for a function f(x, y) to have an extreme at (a,b) are.....
- $a)f_x > 0, f_y > 0$ $b)f_x < 0, f_y > 0$ $c)f_x = 0, f_y = 0$ $d)f_x < 0, f_y < 0$

46.If
$$u = (x - y)^4 + (y - z)^4 + (z - x)^4$$
, then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$ is a)1 b)u c)4u d)0

47.If
$$u = cos^{-1}(x/y) + tan^{-1}(y/x)$$
then $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy}$ is a)u b)2u c)0 d)1

48.If
$$u = f(x + ay) + g(x - ay)$$
 then $\frac{\partial^2 u}{\partial y^2}$ equals
a) $\frac{\partial^2 u}{\partial x^2}$ b) $a \frac{\partial^2 u}{\partial x^2}$ c) $a^2 \frac{\partial^2 u}{\partial x^2}$ d) $\frac{\partial^2 u}{\partial x \partial y}$

49.If
$$u = x^4 + y^4 + 3x^2y^2$$
, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is

50.If
$$u = f(y/x)$$
 then
a) $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$ b) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$
c) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$ d) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$

Answers: 1)c 2)d 3.)d 4)b 5)b 6)a 7)a 8.)b 9)a 10)a 11)d 12)c 13)b 14)c 15)b 16)b 17)a 18)a 19)b 20)a 21)a 22)c 23)c 24)b 25)a 26)a 27)c 28)d 29)d 30) 31)a 32)b 33)c 34)b 35)c 36)c 37)d 38) 39)d 40)a 41)a 42)d 43)c 44)a 45)c 46)d 47)c 48)c 49.)c 50)b