Exercice 1 (Questions de cours.)

Donner l'énoncé complet ainsi que la démonstration des résultats suivants.

- 1. Expression du projeté orthogonal dans une base orthonormale et inégalité de Bessel.
- 2. Lemme d'Abel.
- 3. Lemme concernant $\sum_n a_n z^n$ et $\sum_n n a_n z_n$. À quoi sert ce lemme ?

Exercice 2 (Exercice préparé.)

On pose, $\forall (A,B) \in M_n(\mathbb{R})^2$, $\langle A,B \rangle = \text{Tr}(A^tB)$. Soit $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques réelles et $\mathcal{A}_n(\mathbb{R})$ celui des matrices antisymétriques.

- 1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $M_n(\mathbb{R})$.
- 2. Montrer que \mathcal{S}_n et \mathcal{A}_n sont supplémentaires orthogonaux de $M_n(\mathbb{R})$.
- 3. Soit $M \in M_n(\mathbb{R})$ une matrice quelconque, calculer la distance de M à \mathcal{S}_n .
- 4. Soit $M = \begin{pmatrix} 0 & 1 & 2 \\ 5 & 4 & 3 \\ 6 & 7 & 8 \end{pmatrix} \in M_3(\mathbb{R})$. Calculer la distance de M à $\mathcal{S}_3(\mathbb{R})$.

Exercice 3

Calculer le rayon de convergence des séries entières suivantes :

$$a) \sum_{n} \frac{1}{\sqrt{n}} x^{n}$$

$$b) \sum_{n} \frac{n!}{(2n)!} x^{n}$$

a)
$$\sum_{n} \frac{1}{\sqrt{n}} x^{n}$$
 b) $\sum_{n} \frac{n!}{(2n)!} x^{n}$ c) $\sum_{n} \frac{n!}{2^{2n} \sqrt{(2n)!}} x^{n}$

$$d) \sum_{n} \ln(n) x^{n}$$

$$e) \sum_{n} \frac{\sqrt{n}x^{2n}}{2^n + 1}$$

d)
$$\sum_{n} \ln(n) x^n$$
 e) $\sum_{n} \frac{\sqrt{n} x^{2n}}{2^n + 1}$ f) $\sum_{n} \frac{(-1)^n}{1 \times 3 \times ... \times (2n - 1)} x^n$

Exercice 4

Soit $(a_n)_n$ une suite.

- 1. Supposons que $\sum_n a_n x^n$ a un rayon de convergence $\rho > 0$. Montrer que $\sum_{n} \frac{a_n}{n!} x^n$ a pour rayon de convergence $+\infty$.
- 2. On suppose maintenant que $\sum_{n} \frac{a_n}{n!} x^n$ a pour rayon de convergence $\rho > 0$. Que peut-on dire du rayon de convergence de $\sum_n a_n x^n$?

Exercice 5

Soit f la somme de la série entière $\sum_n a_n x^n$ de rayon de convergence R > 0. Démontrer que f est paire si et seulement si, pour tout $k \in \mathbb{N}$, $a_{2k+1} = 0$.

Exercice 6

Soit f la somme d'une série entière de rayon de convergence non nul. On suppose qu'il existe $\alpha > 0$ tel que, pour tout $x \in]-\alpha, \alpha[, f(x) = 0]$. Prouver que f est identiquement nulle.

Exercice 7

On note \mathcal{A} l'ensemble des séries entières (à coefficients complexes) de rayon de convergence supérieur ou égal à 1. L'ensemble A, muni de l'addition et du produit de Cauchy, forme un anneau. Prouver que A est intègre.

Exercice 8

Développer en série entière les expressions suivantes :

$$a) \ln(1+2x^2)$$

a)
$$\ln(1+2x^2)$$
 b) $\frac{1}{a-x}$ avec $a \neq 0$ c) $\ln(a+x)$ avec $a > 0$
d) $\frac{e^x}{1-x}$ e) $\ln(1+x-2x^2)$ f) $(4+x^2)^{-3/2}$

c)
$$\ln(a+x)$$
 avec $a>0$

$$d) \frac{e^x}{1-x}$$

e)
$$\ln(1+x-2x^2)$$

$$f)(4+x^2)^{-3/2}$$

Exercice 9

Pour les séries entières suivantes, donner le rayon de convergence et exprimer la somme en terme de fonctions usuelles:

$$a) \sum_{n} \frac{n-1}{n!} x$$

$$b) \sum_{n} \frac{n+2}{n+1} x^{n}$$

a)
$$\sum_{n} \frac{n-1}{n!} x^n$$
 b) $\sum_{n} \frac{n+2}{n+1} x^n$ c) $\sum_{n} \frac{(n+1)(n+2)}{n!} x^n$

d)
$$\sum_{n} \frac{(-1)^{n+1}}{2^n n!} x^{2n}$$
 e) $\sum_{n} \frac{n^3}{n!} x^n$ f) $\sum_{n} \frac{x^{2n}}{2n+1}$

$$e) \sum_{n} \frac{n^3}{n!} x^n$$

$$f) \sum_{n} \frac{x^{2n}}{2n+1}$$

Exercice 10 (Nombre de dérangements)

Pour tous les entiers k et n tels que $n \ge 1$ et $0 \le k \le n$, on note $D_{n,k}$ le nombre de bijections (ou permutations) σ de l'ensemble $\{1, \ldots, n\}$ ayant k points fixes, *i.e.* telles que

Card
$$\{i \in \{1, ..., n\} \mid \sigma(i) = i\} = k$$
.

On pose $D_{0,0} = 1$ et $d_n = D_{n,0}$ le nombre de dérangements, i.e. le nombre de permutations sans point fixe.

- 1. Dresser la liste des permutations de $\{1,2,3\}$ et en déduire $D_{3,0},D_{3,1},D_{3,2},D_{3,3}$
- 2. Montrer que $n! = \sum_{k=0}^{n} D_{n,k}$.
- 3. Montrer que $D_{n,k} = \binom{n}{k} D_{n-k,0}$
- 4. Montrer que la série entière $\sum_{n} \frac{d_{n}}{n!} z^{n}$ a un rayon de convergence supérieur ou égal à 1.
- 5. On pose $f(x) = \sum_{n = 1}^{\infty} \frac{d_n}{n!} x^n$. Montrer que $e^x f(x) = \frac{1}{1-x}$ pour |x| < 1.
- 6. En déduire que $d_n = n! \sum_{k=0}^n \frac{(-1)^n}{k!}$.
- 7. Soit p_n la probabilité qu'une permutation prise au hasard soit un dérangement. Quelle est la limite de p_n quand n tend vers $+\infty$?