Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Vídeo: https://youtu.be/mWYUQ81DtOA

1. Resumen

- Una matriz de tamaño $m \times n$ sobre un cuerpo K es un conjunto de elementos de K ordenados en m filas y n columnas.
- El conjunto de todas las matrices de tamaño $m \times n$ sobre K se denotará $\mathbf{M}_{m \times n}(K)$.
- Si A es una matriz de $\mathbf{M}_{m \times n}(K)$, $i \in \{1, 2, \dots, m\}$ y $j \in \{1, 2, \dots, n\}$ denotaremos A_{ij} al elemento de K que hay en la fila i y columna j de la matriz.
- Dos matrices A y B son iguales si tienen el mismo tamaño y $A_{ij} = B_{ij}$ para todo i y j.
- Las operaciones que se hacen entre elementos del cuerpo inducen operaciones en el conjunto de las matrices. Son las siguientes:
 - 1. Multiplicación de un elemento $\lambda \in K$ por una matriz A. El producto se hará componente a componente, es decir $(\lambda \cdot A)_{ij} = \lambda \cdot A_{ij}$.
 - 2. Suma de matrices. Para sumar dos matrices tienen que tener exactamente el mismo tamaño y la suma se realiza componente a componente, es decir, $(A + B)_{ij} = A_{ij} + B_{ij}$.
 - 3. Producto de matrices. Dos matrices A y B se pueden multiplicar si y solo si el número de columnas de A es igual al número de filas de B. Si A es de tamaño $m \times n$ y B de tamaño $n \times p$, el producto AB será una matriz de tamaño $m \times p$ definida como

$$(AB)_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{in}B_{nj}.$$

- La suma y producto de matrices cumplen que
 - 1. (A+B)+C=A+(B+C) siempre que las matrices A,B y C se puedan sumar.
 - 2. A + B = B + A siempre que las matrices A y B se puedan sumar.
 - 3. Existe 0 tal que A + 0 = A. La matriz 0 es la que tiene todas sus entradas iguales a 0.
 - 4. Para todo A existe -A tal que A + (-A) = 0. Esta matriz -A es igual a $(-1) \cdot A$.
 - 5. (AB)C = A(BC) siempre que las matrices A, B y C se puedan multiplicar en este orden.
 - 7. Existe I tal que AI = A para cualquier matriz A. Esta matriz I se llama matriz identidad y es una matriz cuadrada que tiene 1 cuando los dos índices son iguales (en la diagonal principal) y 0 en caso contrario.
 - 9. (A+B)C = AC + BC siempre que esta operación tenga sentido.
- \blacksquare El producto no cumple en general que AB = BA y no todas las matrices distintas de 0 tienen inversa.
- La **matriz traspuesta** de una matriz A de tamaño $m \times n$ es una matriz que denotaremos A^T , de tamaño $n \times m$ tal que $(A^T)_{ij} = A_{ji}$. Dicho de otro modo, es la matriz que se obtiene de intercambiar filas con columnas.
- La matriz traspuesta cumple que $(AB)^T = B^T A^T$ siempre que A y B se puedan multiplicar.

2. Erratas

(No detectadas)

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

3. Ejercicios

Para este vídeo es recomendable hacer dos o tres de los siguientes ejercicios para tener claros los tamaños que deben tener las matrices para poder operarse. Elegid dos o tres de forma aleatoria y si los resolvéis correctamente, no es necesario hacer más puesto que son todos iguales. El objetivo de poner muchos es para no memorizar la solución y tener que deducirla.

Ejercicio 1. Determina, si es posible, el tama \tilde{n} o de la matriz X para que la siguiente expresión tenga sentido:

$$X^T \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -\frac{3}{4} \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo que el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$X^T \left[\begin{array}{c} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 2 \end{array} \right]$$

el número de columnas de X^T tiene que ser el mismo que el número de filas de $\begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 2 \end{bmatrix}$. De ahí deducimos

que m=4. El resultado de este producto tendrá tamaño $n\times 1$.

Para que ese resultado sea igual a $\left[-\frac{3}{4}\right]$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser 1.

 \Diamond

 \Diamond

Esto prueba que X^T tiene tamaño 1×4 y por lo tanto X tiene tamaño 4×1 .

Ejercicio 2. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X \left| \begin{array}{c} \frac{1}{2} \\ 1 \\ \frac{1}{2} \\ 0 \end{array} \right| + \left[\begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \left[\begin{array}{c} \frac{1}{2} \\ 1 \\ \frac{1}{2} \\ 0 \end{array} \right]$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} \frac{1}{2} \\ 1 \\ \frac{1}{2} \\ 0 \end{bmatrix}$. De ahí deducimos que

n=4. El resultado de este producto tendrá tamaño $m\times 1.$

Para que ese resultado se pueda sumar con $\begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 2.

Esto prueba que X tiene tamaño 2×4 .

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Ejercicio 3. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\begin{bmatrix} -1 & 2 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -1 & 0 & 2 \end{bmatrix} X = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc} -1 & 2 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -1 & 0 & 2 \end{array}\right] X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} -1 & 2 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -1 & 0 & 2 \end{bmatrix}$. De ahí deducimos que m=3. El resultado de este producto tendrá tamaño $2\times n$.

Para que ese resultado sea igual a $\begin{bmatrix} -2 \\ -2 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, pero eso es imposible.

Esto prueba que X no puede existir.

Ejercicio 4. Determina, si es posible, el tama \tilde{n} o de la matriz X para que la siguiente expresión tenga sentido:

$$\begin{bmatrix} -2 & 1 \end{bmatrix} X = \begin{bmatrix} -4 & -1 & -1 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\begin{bmatrix} -2 & 1 \end{bmatrix} X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} -2 & 1 \end{bmatrix}$. De ahí deducimos que m=2. El resultado de este producto tendrá tamaño $1\times n$.

Para que ese resultado sea igual a $\begin{bmatrix} -4 & -1 & -1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser 3.

Esto prueba que X tiene tamaño 2×3 .

Ejercicio 5. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X^{T} \begin{bmatrix} 1 & 2 & -2 \\ -1 & -\frac{1}{2} & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -4 \\ 1 & \frac{1}{2} & -1 \\ 2 & \frac{5}{2} & -3 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo que el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$X^T \left[\begin{array}{rrr} 1 & 2 & -2 \\ -1 & -\frac{1}{2} & 1 \end{array} \right]$$

el número de columnas de X^T tiene que ser el mismo que el número de filas de $\begin{bmatrix} 1 & 2 & -2 \\ -1 & -\frac{1}{2} & 1 \end{bmatrix}$. De ahí deducimos que m=2. El resultado de este producto tendrá tamaño $n\times 3$.

Para que ese resultado sea igual a $\begin{bmatrix} 2 & 4 & -4 \\ 1 & \frac{1}{2} & -1 \\ 2 & \frac{5}{2} & -3 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser 3.

Esto prueba que X^T tiene tamaño 3×2 y por lo tanto X tiene tamaño 2×3 .

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Ejercicio 6. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 $\left[\begin{array}{cc} -1 & 0 \\ -1 & -\frac{1}{2} \end{array}\right] X^T = \left[\begin{array}{cc} 1 & 0 \\ \frac{1}{2} & 0 \end{array}\right]$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{cc} -1 & 0 \\ -1 & -\frac{1}{2} \end{array}\right] X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} -1 & 0 \\ -1 & -\frac{1}{2} \end{bmatrix}$. De ahí deducimos que n=2. El resultado de este producto tendrá tamaño $2\times m$.

Para que ese resultado sea igual a $\begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 0 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 2.

 \Diamond

 \Diamond

Esto prueba que X^T tiene tamaño 2×2 y por lo tanto X tiene tamaño 2×2 .

Ejercicio 7. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\begin{bmatrix} 1 & -2 & 2 & 1 \\ 1 & -\frac{1}{2} & 0 & 2 \\ -1 & -1 & -1 & -\frac{1}{2} \end{bmatrix} X^{T} = \begin{bmatrix} 2 & 1 & 0 \\ 2 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\begin{bmatrix} 1 & -2 & 2 & 1 \\ 1 & -\frac{1}{2} & 0 & 2 \\ -1 & -1 & -1 & -\frac{1}{2} \end{bmatrix} X^{T}$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 1 & -2 & 2 & 1 \\ 1 & -\frac{1}{2} & 0 & 2 \\ -1 & -1 & -1 & -\frac{1}{2} \end{bmatrix}$. De ahí deducimos que n=4. El resultado de este producto tendrá tamaño $3\times m$.

Para que ese resultado sea igual a $\begin{bmatrix} 2 & 1 & 0 \\ 2 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de

filas y columnas, pero eso es imposible. Esto prueba que X no puede existir.

Ejercicio 8. Determina, si es posible, el tama \tilde{n} o de la matriz X para que la siguiente expresión tenga sentido:

$$\left[\begin{array}{ccc} -1 & 0 & 2 \\ 1 & 2 & 0 \end{array}\right] X^T + \left[\begin{array}{cccc} -3 & 3 & 0 \\ -3 & -3 & 2 \end{array}\right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc} -1 & 0 & 2 \\ 1 & 2 & 0 \end{array}\right] X^T$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} -1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$. De ahí deducimos que n=3. El resultado de este producto tendrá tamaño $2\times m$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} -3 & 3 & 0 \\ -3 & -3 & 2 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 3.

Esto prueba que X^T tiene tamaño 3×3 y por lo tanto X tiene tamaño 3×3 .

Ejercicio 9. Determina, si es posible, el tama \tilde{n} o de la matriz X para que la siguiente expresión tenga sentido:

 \Diamond

 \Diamond

 $X \begin{bmatrix} -1 & 0 & 2 \\ -2 & 0 & -1 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + \begin{bmatrix} -\frac{7}{2} & -1 & -5 \\ -3 & 0 & 1 \end{bmatrix}$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \left[\begin{array}{rrr} -1 & 0 & 2 \\ -2 & 0 & -1 \\ 0 & \frac{1}{2} & 1 \end{array} \right]$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} -1 & 0 & 2 \\ -2 & 0 & -1 \\ 0 & \frac{1}{2} & 1 \end{bmatrix}$. De ahí deducimos que n=3. El resultado de este producto tendró tamaño $m\times 3$

deducimos que n=3. El resultado de este producto tendrá tamaño $m\times 3$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} -\frac{7}{2} & -1 & -5 \\ -3 & 0 & 1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 2.

Esto prueba que X tiene tamaño 2×3 .

Ejercicio 10. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} X^T = \begin{bmatrix} -1 & -\frac{1}{2} \\ 0 & -\frac{1}{2} \\ -\frac{1}{2} & -1 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \end{array}\right] X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$. De ahí deducimos que n=3. El resultado de este producto tendrá tamaño $2\times m$.

Para que ese resultado sea igual a $\begin{bmatrix} -1 & -\frac{1}{2} \\ 0 & -\frac{1}{2} \\ -\frac{1}{2} & -1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, pero eso es imposible.

Esto prueba que X no puede existir.

Ejercicio 11. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\begin{bmatrix} 1 & 0 & -1 & -1 \\ 1 & -\frac{1}{2} & -2 & 0 \\ -1 & -2 & 0 & -2 \end{bmatrix} X = \begin{bmatrix} 0 \\ 3 \\ -5 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\begin{bmatrix} 1 & 0 & -1 & -1 \\ 1 & -\frac{1}{2} & -2 & 0 \\ -1 & -2 & 0 & -2 \end{bmatrix} X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 1 & 0 & -1 & -1 \\ 1 & -\frac{1}{2} & -2 & 0 \\ -1 & -2 & 0 & -2 \end{bmatrix}$. De ahí deducimos que m=4. El resultado de este producto tendrá tamaño $3\times n$.

Para que ese resultado sea igual a $\begin{bmatrix} 0 \\ 3 \\ -5 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser $\bar{1}$ \Diamond

Esto prueba que X tiene tamaño 4×1 .

Ejercicio 12. Determina, si es posible, el tamaño de la matriz X para que la siquiente expresión tenga sentido:

$$\begin{bmatrix} -1 & 0 & -1 \\ 0 & -\frac{1}{2} & 2 \\ 0 & 0 & 1 \end{bmatrix} X^T = \begin{bmatrix} \frac{1}{2} & -1 & -1 \\ -2 & -\frac{1}{2} & -\frac{1}{2} \\ -2 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc} -1 & 0 & -1 \\ 0 & -\frac{1}{2} & 2 \\ 0 & 0 & 1 \end{array}\right] X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} -1 & 0 & -1 \\ 0 & -\frac{1}{2} & 2 \\ 0 & 0 & 1 \end{bmatrix}$. De ahí deducimos que n=3. El resultado de este producto tendrá tamaño $3 \times m$.

Para que ese resultado sea igual a $\begin{bmatrix} \frac{1}{2} & -1 & -1 \\ -2 & -\frac{1}{2} & -\frac{1}{2} \\ -2 & -1 & 1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número

de filas y columnas, pero eso es imposible. Esto prueba que X no puede existir.

Ejercicio 13. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 \Diamond

$$X \left[\begin{array}{rrr} 1 & 0 & 2 \\ -1 & 1 & 1 \\ -1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 \end{array} \right] = \left[\begin{array}{rrr} \frac{5}{2} & 0 & 2 \end{array} \right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \left[\begin{array}{rrr} 1 & 0 & 2 \\ -1 & 1 & 1 \\ -1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 \end{array} \right]$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 1 \\ -1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 \end{bmatrix}$. De ahí

deducimos que n=4. El resultado de este producto tendrá tamaño $m\times 3$.

Para que ese resultado sea igual a $\begin{bmatrix} \frac{5}{2} & 0 & 2 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 1.

 \Diamond

 \Diamond

 \Diamond

Esto prueba que X tiene tamaño 1×4 .

Ejercicio 14. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 $X \begin{bmatrix} 2 & 1 & -1 \\ 2 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -2 \\ 1 & \frac{3}{2} & -\frac{3}{2} \\ -4 & -2 & 2 \end{bmatrix}$

Soluci'on: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicaci\'on

$$X \left[\begin{array}{ccc} 2 & 1 & -1 \\ 2 & -1 & 1 \end{array} \right]$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} 2 & 1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$. De ahí deducimos que n=2. El resultado de este producto tendrá tamaño $m\times 3$.

Para que ese resultado sea igual a $\begin{bmatrix} 4 & 2 & -2 \\ 1 & \frac{3}{2} & -\frac{3}{2} \\ -4 & -2 & 2 \end{bmatrix}$, ambas matrices tienen que tener el mismo número

de filas y columnas, eso nos dice que m tiene que ser $\overline{3}$.

Esto prueba que X tiene tamaño 3×2 .

Ejercicio 15. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 $\begin{bmatrix} -2 & -\frac{1}{2} \\ -1 & 2 \\ 2 & -1 \end{bmatrix} X + \begin{bmatrix} -\frac{1}{2} & -\frac{9}{2} & 1 \\ 2 & 0 & \frac{1}{2} \\ -1 & 3 & -1 \end{bmatrix}$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\begin{bmatrix} -2 & -\frac{1}{2} \\ -1 & 2 \\ 2 & -1 \end{bmatrix} X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} -2 & -\frac{1}{2} \\ -1 & 2 \\ 2 & -1 \end{bmatrix}$. De ahí deducimos

que m=2. El resultado de este producto tendrá tamaño $3\times n$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} -\frac{1}{2} & -\frac{9}{2} & 1\\ 2 & 0 & \frac{1}{2}\\ -1 & 3 & -1 \end{bmatrix}$, ambas matrices tienen que tener el mismo

número de filas y columnas, eso nos dice que n tiene que ser 3.

Esto prueba que X tiene tamaño 2×3 .

Ejercicio 16. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X \begin{bmatrix} 0 & -2 \\ 2 & -1 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} 4 & -6 \\ 2 & 3 \\ 0 & 0 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Soluci'on: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicaci\'on

$$X \left[\begin{array}{cc} 0 & -2 \\ 2 & -1 \\ 0 & 2 \end{array} \right]$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} 0 & -2 \\ 2 & -1 \\ 0 & 2 \end{bmatrix}$. De ahí deducimos que n=3. El resultado de este producto tendrá tamaño $m\times 2$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} 4 & -6 \\ 2 & 3 \\ 0 & 0 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 3.

Esto prueba que X tiene tamaño 3×3 .

Ejercicio 17. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 \Diamond

 \Diamond

$$\left[\begin{array}{cccc} 2 & -\frac{1}{2} & -1 & 1 \\ 1 & -1 & 1 & 2 \end{array}\right] X^T = \left[\begin{array}{cccc} -2 & -4 & -1 \\ -1 & -\frac{1}{2} & 4 \end{array}\right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{cccc} 2 & -\frac{1}{2} & -1 & 1 \\ 1 & -1 & 1 & 2 \end{array}\right] X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 2 & -\frac{1}{2} & -1 & 1 \\ 1 & -1 & 1 & 2 \end{bmatrix}$. De ahí deducimos que n=4. El resultado de este producto tendrá tamaño $2\times m$.

deducimos que n=4. El resultado de este producto tendrá tamaño $2\times m$.

Para que ese resultado sea igual a $\begin{bmatrix} -2 & -4 & -1 \\ -1 & -\frac{1}{2} & 4 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 3.

Esto prueba que X^T tiene tamaño 4×3 y por lo tanto X tiene tamaño 3×4 .

Ejercicio 18. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & -\frac{1}{2} & -1 \end{bmatrix} + \begin{bmatrix} \frac{3}{2} & 4 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & -\frac{1}{2} & -1 \end{array} \right]$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & -\frac{1}{2} & -1 \end{bmatrix}$. De ahí deducimos que n=3. El resultado de este producto tendrá tamaño $m\times 3$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} \frac{3}{2} & 4 & 1\\ 1 & 0 & -2 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 2.

Esto prueba que X tiene tamaño 2×3 .

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Ejercicio 19. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\left[\begin{array}{cc} -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{array} \right] X = \left[\begin{array}{cc} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{array} \right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\left[\begin{array}{cc} -\frac{1}{2} & 0\\ \frac{1}{2} & 0 \end{array}\right] X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{bmatrix}$. De ahí deducimos que m=2. El resultado de este producto tendrá tamaño $2\times n$.

Para que ese resultado sea igual a $\begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser 2. \Diamond

Esto prueba que X tiene tamaño 2×2 .

Ejercicio 20. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X \begin{bmatrix} -1\\1\\0\\-2 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \begin{bmatrix} -1 \\ 1 \\ 0 \\ -2 \end{bmatrix}$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} -1\\1\\0\\-2 \end{bmatrix}$. De ahí deducimos

que n=4. El resultado de este producto tendrá tamaño $m\times 1$.

Para que ese resultado sea igual a | 3 |, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 1.

 \Diamond

Esto prueba que X tiene tamaño 1×4 .

Ejercicio 21. Determina, si es posible, el tamaño de la matriz X para que la siquiente expresión tenga sentido:

$$\left[\begin{array}{cc} 4 & 1\\ 0 & 1\\ 4 & 3 \end{array}\right] X = \left[\begin{array}{ccc} 1 & 1 & 4\\ 0 & 1 & 1 \end{array}\right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\left[\begin{array}{cc} 4 & 1\\ 0 & 1\\ 4 & 3 \end{array}\right] X$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 4 & 1 \\ 0 & 1 \\ 4 & 3 \end{bmatrix}$. De ahí deducimos

que m=2. El resultado de este producto tendrá tamaño $2\times n$.

Para que ese resultado sea igual a $\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, pero eso es imposible.

 \Diamond

 \Diamond

 \Diamond

Esto prueba que X no puede existir.

Ejercicio 22. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 $\left[\begin{array}{ccc} 3 & 0 \end{array}\right] X^T = \left[\begin{array}{ccc} 3 & 3 & 2 \\ 4 & 0 & 4 \end{array}\right]$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\begin{bmatrix} 3 & 0 \end{bmatrix} X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 3 & 0 \end{bmatrix}$. De ahí deducimos que n=2. El resultado de este producto tendrá tamaño $1\times m$.

Para que ese resultado sea igual a $\begin{bmatrix} 3 & 3 & 2 \\ 4 & 0 & 4 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, pero eso es imposible.

Esto prueba que X no puede existir.

Ejercicio 23. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 $X^T \left[egin{array}{c} 1 \\ 0 \\ 2 \end{array}
ight] = \left[egin{array}{c} 2 \end{array}
ight]$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo que el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

 $X^T \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right]$

el número de columnas de X^T tiene que ser el mismo que el número de filas de $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$. De ahí deducimos

que m=3. El resultado de este producto tendrá tamaño $n\times 1$.

Para que ese resultado sea igual a [2], ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser 1.

Esto prueba que X^T tiene tamaño 1×3 y por lo tanto X tiene tamaño 3×1 .

Ejercicio 24. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X \begin{vmatrix} 4 \\ 0 \\ 4 \\ 3 \end{vmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \begin{bmatrix} 4 \\ 0 \\ 4 \\ 3 \end{bmatrix}$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} 4 \\ 0 \\ 4 \\ 3 \end{bmatrix}$. De ahí deducimos que

n=4. El resultado de este producto tendrá tamaño $m\times 1.$

Para que ese resultado sea igual a $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 2.

Esto prueba que X tiene tamaño 2×4 .

Ejercicio 25. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\left[\begin{array}{ccc}0&2&2\end{array}\right]X=\left[\begin{array}{cc}3\end{array}\right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\left[\begin{array}{cccc}0&2&2\end{array}\right]X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 0 & 2 & 2 \end{bmatrix}$. De ahí deducimos que m=3. El resultado de este producto tendrá tamaño $1\times n$.

Para que ese resultado sea igual a [3], ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser 1.

Esto prueba que X tiene tamaño 3×1 .

Ejercicio 26. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\begin{bmatrix} 0 & 0 & 0 & 3 \\ 4 & 4 & 1 & 3 \\ 1 & 2 & 1 & 4 \end{bmatrix} X^{T} = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 3 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{cccc}
0 & 0 & 0 & 3 \\
4 & 4 & 1 & 3 \\
1 & 2 & 1 & 4
\end{array}\right] X^{T}$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 0 & 0 & 0 & 3 \\ 4 & 4 & 1 & 3 \\ 1 & 2 & 1 & 4 \end{bmatrix}$. De ahí deducimos que n=4. El resultado de este producto tendrá tamaño $3\times m$.

Para que ese resultado sea igual a $\begin{bmatrix} 1 & 3 & 2 \\ 4 & 3 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas

y columnas, pero eso es imposible.

Esto prueba que X no puede existir.

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Ejercicio 27. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X \left[\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 2 & 2 \\ 2 & 3 & 2 \\ 0 & 2 & 0 \end{array} \right] = \left[\begin{array}{ccc} 3 & 2 & 4 \end{array} \right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \left[\begin{array}{rrr} 3 & 0 & 0 \\ 0 & 2 & 2 \\ 2 & 3 & 2 \\ 0 & 2 & 0 \end{array} \right]$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 2 \\ 2 & 3 & 2 \\ 0 & 2 & 0 \end{bmatrix}$. De ahí deducimos

que n=4. El resultado de este producto tendrá tamaño $m\times 3$.

Para que ese resultado sea igual a $\begin{bmatrix} 3 & 2 & 4 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 1.

 \Diamond

 \Diamond

Esto prueba que X tiene tamaño 1×4 .

Ejercicio 28. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 $X^T \left[\begin{array}{cc} 4 & 3 \\ 0 & 1 \end{array} \right] + \left[\begin{array}{cc} 1 & 4 \\ 2 & 1 \\ 1 & 4 \end{array} \right]$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo que el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$X^T \left[\begin{array}{cc} 4 & 3 \\ 0 & 1 \end{array} \right]$$

el número de columnas de X^T tiene que ser el mismo que el número de filas de $\begin{bmatrix} 4 & 3 \\ 0 & 1 \end{bmatrix}$. De ahí deducimos que m=2. El resultado de este producto tendrá tamaño $n\times 2$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} 1 & 4 \\ 2 & 1 \\ 1 & 4 \end{bmatrix}$, ambas matrices tienen que tener el mismo número

de filas y columnas, eso nos dice que n tiene que ser $\vec{3}$.

Esto prueba que X^T tiene tamaño 3×2 y por lo tanto X tiene tamaño 2×3 .

Ejercicio 29. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\left[\begin{array}{ccc} 2 & 2 & 0 \\ 0 & 3 & 0 \\ 3 & 0 & 1 \end{array}\right] X = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 2 & 1 \end{array}\right]$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
_	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc} 2 & 2 & 0 \\ 0 & 3 & 0 \\ 3 & 0 & 1 \end{array}\right] X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 2 & 2 & 0 \\ 0 & 3 & 0 \\ 3 & 0 & 1 \end{bmatrix}$. De ahí deducimos que m=3. El resultado de este producto tendrá tamaño $2\times n$.

Para que ese resultado sea igual a $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 2 & 1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, pero eso es imposible.

Esto prueba que X no puede existir.

Ejercicio 30. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\begin{bmatrix} 2 & 1 & 4 \\ 1 & 0 & 4 \\ 2 & 4 & 4 \end{bmatrix} X^T = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc} 2 & 1 & 4 \\ 1 & 0 & 4 \\ 2 & 4 & 4 \end{array}\right] X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 2 & 1 & 4 \\ 1 & 0 & 4 \\ 2 & 4 & 4 \end{bmatrix}$. De ahí deducimos que n=3. El resultado de este producto tendrá tamaño $3\times m$.

Para que ese resultado sea igual a $\begin{bmatrix} 2\\1\\1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 1.

Esto prueba que X^T tiene tamaño 3×1 y por lo tanto X tiene tamaño 1×3 .

Ejercicio 31. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\left[\begin{array}{ccc} 2 & 0 & 2 \\ 1 & 1 & 4 \end{array}\right] X = \left[\begin{array}{c} 0 \\ 3 \end{array}\right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc} 2 & 0 & 2 \\ 1 & 1 & 4 \end{array}\right] X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 2 & 0 & 2 \\ 1 & 1 & 4 \end{bmatrix}$. De ahí deducimos que m=3. El resultado de este producto tendrá tamaño $2\times n$.

Para que ese resultado sea igual a $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser 1.

Esto prueba que X tiene tamaño 3×1 .

 \Diamond

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Ejercicio 32. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\begin{bmatrix} 3 & 2 & 3 \\ 1 & 0 & 2 \\ 3 & 1 & 3 \end{bmatrix} X = \begin{bmatrix} 4 & 4 & 4 \\ 0 & 3 & 3 \\ 2 & 3 & 4 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc} 3 & 2 & 3 \\ 1 & 0 & 2 \\ 3 & 1 & 3 \end{array}\right] X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 3 & 2 & 3 \\ 1 & 0 & 2 \\ 3 & 1 & 3 \end{bmatrix}$. De ahí deducimos que m=3. El resultado de este producto tendrá tamaño $3\times n$.

Para que ese resultado sea igual a $\begin{bmatrix} 4 & 4 & 4 \\ 0 & 3 & 3 \\ 2 & 3 & 4 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas

y columnas, eso nos dice que n tiene que ser 3.

Esto prueba que X tiene tamaño 3×3 .

Ejercicio 33. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 \Diamond

 \Diamond

$$\left[\begin{array}{ccc} 2 & 1 & 2 \\ 1 & 4 & 3 \end{array}\right] X^T = \left[\begin{array}{ccc} 0 & 2 & 1 \\ 0 & 0 & 0 \\ 2 & 4 & 4 \end{array}\right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc} 2 & 1 & 2 \\ 1 & 4 & 3 \end{array}\right] X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 2 & 1 & 2 \\ 1 & 4 & 3 \end{bmatrix}$. De ahí deducimos que n=3. El resultado de este producto tendrá tamaño $2\times m$.

Para que ese resultado sea igual a $\begin{bmatrix} 0 & 2 & 1 \\ 0 & 0 & 0 \\ 2 & 4 & 4 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas

y columnas, pero eso es imposible.

Esto prueba que X no puede existir.

Ejercicio 34. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\left[\begin{array}{cc} 1 & 2 \\ 1 & 4 \end{array}\right] X + \left[\begin{array}{c} 4 \\ 4 \end{array}\right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\left[\begin{array}{cc} 1 & 2 \\ 1 & 4 \end{array}\right] X$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}$. De ahí deducimos que m=2. El resultado de este producto tendrá tamaño $2\times n$.

 $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de Para que ese resultado se pueda sumar con filas y columnas, eso nos dice que n tiene que ser $\bar{1}$. \Diamond

Esto prueba que X tiene tamaño 2×1 .

Ejercicio 35. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 $X^T \begin{bmatrix} 3 & 0 & 1 \\ 2 & 2 & 0 \\ 3 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 1 & 4 \\ 1 & 1 & 1 \end{bmatrix}$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo que el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$X^T \left[\begin{array}{rrr} 3 & 0 & 1 \\ 2 & 2 & 0 \\ 3 & 3 & 1 \end{array} \right]$$

el número de columnas de X^T tiene que ser el mismo que el número de filas de $\begin{bmatrix} 3 & 0 & 1 \\ 2 & 2 & 0 \\ 3 & 3 & 1 \end{bmatrix}$. De ahí

deducimos que m=3. El resultado de este producto tendrá tamaño $n\times 3$.

Para que ese resultado sea igual a $\begin{bmatrix} 2 & 4 & 2 \\ 0 & 1 & 4 \\ 1 & 1 & 1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas

y columnas, eso nos dice que n tiene que ser 3.

Esto prueba que X^T tiene tamaño 3×3 y por lo tanto X tiene tamaño 3×3 .

Ejercicio 36. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 \Diamond

 \Diamond

 $\left| \begin{array}{cc|c} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{array} \right| X + \left| \begin{array}{cc|c} 0 \\ 0 \\ 2 \end{array} \right|$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{array}\right] X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$. De ahí deducimos que m=2. El resultado de este producto tendrá tamaño $3\times n$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} \overset{\circ}{0} \\ 2 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de

filas y columnas, eso nos dice que n tiene que ser $\bar{1}$.

Esto prueba que X tiene tamaño 2×1 .

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Ejercicio 37. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X \begin{bmatrix} 2\\2\\1\\2 \end{bmatrix} = \begin{bmatrix} 4\\2\\0 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \left[\begin{array}{c} 2 \\ 2 \\ 1 \\ 2 \end{array} \right]$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} 2\\2\\1\\2 \end{bmatrix}$. De ahí deducimos que

n=4. El resultado de este producto tendrá tamaño $m\times 1$.

Para que ese resultado sea igual a $\begin{bmatrix} 4\\2\\0 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 3.

 \Diamond

 \Diamond

Esto prueba que X tiene tamaño 3×4 .

Ejercicio 38. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X^T \left[\begin{array}{cc} 3 & 0 \\ 2 & 1 \end{array} \right] + \left[\begin{array}{cc} 3 & 2 \\ 1 & 2 \\ 2 & 3 \end{array} \right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo que el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$X^T \left[\begin{array}{cc} 3 & 0 \\ 2 & 1 \end{array} \right]$$

el número de columnas de X^T tiene que ser el mismo que el número de filas de $\begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$. De ahí deducimos que m=2. El resultado de este producto tendrá tamaño $n\times 2$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} 3 & 2 \\ 1 & 2 \\ 2 & 3 \end{bmatrix}$, ambas matrices tienen que tener el mismo número

de filas y columnas, eso nos dice que n tiene que ser $\bar{3}$.

Esto prueba que X^T tiene tamaño 3×2 y por lo tanto X tiene tamaño 2×3 .

Ejercicio 39. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\begin{bmatrix} 1 & 4 & 0 \\ 1 & 2 & 3 \\ 1 & 4 & 2 \end{bmatrix} X^T = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc} 1 & 4 & 0 \\ 1 & 2 & 3 \\ 1 & 4 & 2 \end{array}\right] X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 1 & 4 & 0 \\ 1 & 2 & 3 \\ 1 & 4 & 2 \end{bmatrix}$. De ahí deducimos que n=3. El resultado de este producto tendrá tamaño $3\times m$.

Para que ese resultado sea igual a $\begin{bmatrix} 0\\1\\4 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 1.

Esto prueba que X^T tiene tamaño 3×1 y por lo tanto X tiene tamaño 1×3 .

Ejercicio 40. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 \Diamond

$$\left[\begin{array}{cccc}3&0&0&1\\2&2&4&1\end{array}\right]X^T+\left[\begin{array}{c}0\\2\end{array}\right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{cccc} 3 & 0 & 0 & 1 \\ 2 & 2 & 4 & 1 \end{array}\right] X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 3 & 0 & 0 & 1 \\ 2 & 2 & 4 & 1 \end{bmatrix}$. De ahí deducimos que n=4. El resultado de este producto tendrá tamaño $2\times m$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 1. \Diamond

Esto prueba que X^T tiene tamaño 4×1 y por lo tanto X tiene tamaño 1×4 .

Ejercicio 41. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$\left[\begin{array}{cccc} 0 & 1 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{array} \right] X^T = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{cccc} 0 & 1 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{array}\right] X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{bmatrix}$. De ahí deducimos que n=4. El resultado de este producto tendrá tamaño $3 \times m$.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Para que ese resultado sea igual a $\begin{bmatrix} 1\\2\\0 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y

columnas, eso nos dice que m tiene que ser 1.

Esto prueba que X^T tiene tamaño 4×1 y por lo tanto X tiene tamaño 1×4 .

Ejercicio 42. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 \Diamond

 \Diamond

 \Diamond

 $\left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right] X^T + \left[\begin{array}{c} 1 \\ 1 \end{array}\right]$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo tanto el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right] X^T$$

el número de filas de X^T tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. De ahí deducimos que n=2. El resultado de este producto tendrá tamaño $2\times m$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 1.

Esto prueba que X^T tiene tamaño 2×1 y por lo tanto X tiene tamaño 1×2 .

Ejercicio 43. Determina, si es posible, el tama \tilde{n} o de la matriz X para que la siguiente expresión tenga sentido:

$$\begin{bmatrix} 1 & 0 & 2 \end{bmatrix} X = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$\left[\begin{array}{ccc}1&0&2\end{array}\right]X$$

el número de filas de X tiene que ser el mismo que el número de columnas de $\begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$. De ahí deducimos que m=3. El resultado de este producto tendrá tamaño $1\times n$.

Para que ese resultado sea igual a $\begin{bmatrix} 1 & 2 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser 2.

Esto prueba que X tiene tamaño 3×2 .

Ejercicio 44. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X \begin{bmatrix} 1 \\ 2 \\ 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \left[\begin{array}{c} 1 \\ 2 \\ 0 \\ 2 \end{array} \right]$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
_	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} 1\\2\\0\\2 \end{bmatrix}$. De ahí deducimos que

n=4. El resultado de este producto tendrá tamaño $m\times 1.$

Para que ese resultado se pueda sumar con $\begin{bmatrix} 2\\1 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 2.

Esto prueba que X tiene tamaño 2×4 .

Ejercicio 45. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 $X^T \left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 0 & 1 \end{array} \right] + \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{array} \right]$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo que el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$X^T \left[\begin{array}{rrr} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 0 & 1 \end{array} \right]$$

el número de columnas de X^T tiene que ser el mismo que el número de filas de $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix}$. De ahí deducimos que m=3. El resultado de este producto tendrá tamaño $n\times 3$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser 3.

Esto prueba que X^T tiene tamaño 3×3 y por lo tanto X tiene tamaño 3×3 .

Ejercicio 46. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 \Diamond

 \Diamond

$$X^T \left[\begin{array}{c} 1\\1\\2 \end{array} \right] = \left[\begin{array}{c} 2\\0\\2 \end{array} \right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo que el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$X^T \left[\begin{array}{c} 1\\1\\2 \end{array} \right]$$

el número de columnas de X^T tiene que ser el mismo que el número de filas de $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$. De ahí deducimos que m=3. El resultado de este producto tendrá tamaño $n\times 1$.

Para que ese resultado sea igual a $\begin{bmatrix} 2\\0\\2 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser 3.

Esto prueba que X^T tiene tamaño 3×3 y por lo tanto X tiene tamaño 3×3 .

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Ejercicio 47. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X^T \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right] = \left[\begin{array}{cc} 0 & 2 \\ 1 & 1 \\ 2 & 0 \end{array} \right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo que el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$X^T \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right]$$

el número de columnas de X^T tiene que ser el mismo que el número de filas de $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$. De ahí deducimos que m=2. El resultado de este producto tendrá tamaño $n\times 2$.

Para que ese resultado sea igual a $\begin{bmatrix} 3 & 2 \\ 1 & 1 \\ 2 & 0 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser $\bar{3}$.

Esto prueba que X^T tiene tamaño 3×2 y por lo tanto X tiene tamaño 2×3 .

Ejercicio 48. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

 \Diamond

$$X^T \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$, por lo que el tamaño de su traspuesta X^T será $n \times m$. Para poder hacer la multiplicación

$$X^T \left[\begin{array}{c} 2 \\ 0 \\ 1 \\ 0 \end{array} \right]$$

el número de columnas de X^T tiene que ser el mismo que el número de filas de $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$. De ahí deducimos

que m=4. El resultado de este producto tendrá tamaño $n\times 1$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que n tiene que ser $\vec{2}$. \Diamond

Esto prueba que X^T tiene tamaño 2×4 y por lo tanto X tiene tamaño 4×2 .

Ejercicio 49. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X \left[\begin{array}{cc} 2 & 1 \\ 2 & 1 \\ 0 & 0 \\ 2 & 1 \end{array} \right] + \left[\begin{array}{cc} 0 & 0 \\ 1 & 2 \\ 0 & 0 \end{array} \right]$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Aritmética de Matrices	Clase: 15 min.

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \left[\begin{array}{cc} 2 & 1 \\ 2 & 1 \\ 0 & 0 \\ 2 & 1 \end{array} \right]$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} 2 & 1 \\ 2 & 1 \\ 0 & 0 \\ 2 & 1 \end{bmatrix}$. De ahí deducimos

que n=4. El resultado de este producto tendrá tamaño $m\times 2$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser $\overline{3}$. \Diamond

Esto prueba que X tiene tamaño 3×4 .

Ejercicio 50. Determina, si es posible, el tamaño de la matriz X para que la siguiente expresión tenga sentido:

$$X \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 1 \end{array} \right] + \left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 2 & 0 \end{array} \right]$$

Solución: Digamos que el tamaño de la matriz X es $m \times n$. Para poder hacer la multiplicación

$$X \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 1 \end{array} \right]$$

el número de columnas de X tiene que ser el mismo que el número de filas de $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 1 \end{bmatrix}$. De ahí deducimos que n=3. El resultado de este producto tendrá tamaño $m\times 3$.

Para que ese resultado se pueda sumar con $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix}$, ambas matrices tienen que tener el mismo número de filas y columnas, eso nos dice que m tiene que ser 2. Esto prueba que X tiene tamaño 2×3 . \Diamond