

Faculdade de Engenharia da Universidade do Porto Master in Data Science and Engineering Artificial Intelligence Joaquim Carneiro, João Patrício, João Pedro Pêgo

Introduction

Qualification Round of Google Hash Code 2020.

• Maximize **total score** obtained from **scanning** B **Books** from L **Libraries** over a **period of** D **days**.

- Key decisions:
 - Libraries to be considered for scanning and in what order;
 - Books of a given library shipped for scanning and in what order.

Solve in 4 hours!

Scheduling Problem

Solution Representation

Search Space

$$S = L! \cdot \prod_{j=0}^{L-1} N_j!$$

Random books list

$$S_{red} = L! \cdot \prod_{j=0}^{L-1} N_j$$

Sorted books list

NASA estimates the **universe age** at 13.77x10⁹ years or **4.34x10²⁰ms**

https://wmap.gsfc.nasa.gov/universe/uni_age.html

Deterministic Solutions

Libraries sorted by:

1) ↓ "total score" / "signup period"

2) 个 "signup period"

Books sorted by score.

File	Sorted by "books score / signup period"	Sorted by "1/signup period"
а	21	21
b	5 822 900	5 822 900
С	5 645 747	5 467 966
d	4 815 395	4 815 395
е	3 714 416	3 977 298
f	5 227 905	2 703 359

Maximum score: 25 489 266

Benchmark!

Simulated Annealing Algorithm

Metropolis Criteria

- Temperature Schedule
- Initial temperature
- Nr of iterations
- Average neighbour score difference

Key Implementation Details

- Neighbours at varying distances
- Adaptive repetitions

Neighbours

- Library rotation
- Book rotation
- Library swapping
- ...all at once!

L1	L2	L3	L1
20	13	99	20
13	44	81	13
7	9		7

L1	L2	L3
20	13	99
13	44	81
7	9	

L1	L3	L2
20	99	13
13	81	44
7		9

Simulated Annealing Algorithm

Best Score: 4 615 200 Max Neigh Distance: 30 Schedule: Fast Max Repetitions: 10

Init Solution: Random 1

Best Score: 5 318 300 Max Neigh Distance: 100 Init Solution: Random 1

Schedule: Slow (alpha = 0.998)

Max Repetitions: 10

Best Score: 4 763 800 Max Neigh Distance: 30 Init Solution: Random 1

Schedule: Slow (alpha = 0.998)

Max Repetitions: 10

Best Score: 5 822 900 Max Neigh Distance: 100 Schedule: Slow (alpha = 0.998)

Max Repetitions: 10

Init Solution: Best Det Solution (5822900)

Tabu Search Algorithm

Tabu Search Algorithm

Genetic Algorithm

Genetic Algorithm

Low Diversity Steps

Population Size: 5 Selection: Tournament

Crossover Rate: 0,2

Best Score: 4478800

Generations Size: 20000 Selection Rate: 50%

Mutation Rate: 0,1

High Diversity Steps

Population Size: 5 Selection: Tournament Crossover Rate: 0,9 Best Score: 4485000 Generations Size: 20000 Selection Rate: 50% Mutation Rate: 0,8

Medium Diversity Steps

Population Size: 5
Selection: Tournament

Crossover Rate: 0,5

Best Score: 4486200 Generations Size: 20000 Selection Rate: 50%

Mutation Rate: 0,4

Next Steps

- Apply different crossover and mutation strategies;
- Apply Elitism.

12

Comparative Analysis

File: b_read_on

Deterministic solution: 5 822 900

Key considerations:

- Time to compute not comparable.
- Random solutions (GA > SA > TS).
- Neighbour distance (avoid stuck in local maximum).
- All results bellow deterministic solution.

Algorithm	Solutions tested	Iterations to optimum	Time to compute [s]	Best Score
SA	20 000	2 431	368	5 318 300
TS	20 000	19 483	431	5 819 200
GA	20 000	78	2 915	4 486 200

Conclusions & Future Work

- Data understanding is key to define which algorithm strategy to be adopted.
- A more aggressive search strategy is necessary to find better neighbours.
- Although stuck in a local maximum, GA converges quickly to a good solution.
- GA crossover admits that children perform better than parents, which is not necessarily true.
- Memory issues with TS.

Thank you!

f_libraries_of_the_world

Breaking the ceiling

f | init_sol = score/signup

e | init_sol = score/signup

e | init_sol = signup