5

5

5

Bachelor of Science (B.Sc.) (I.T.) Semester–II (C.B.S.) Examination APPLIED MATHEMATICS–II

Paper—VI

Time: Three Hours] [Maximum Marks: 50

N.B.:— (1) All questions are compulsory and carry equal marks.

(2) Assume suitable data wherever necessary.

EITHER

1. (A) Prove that

$$A - B = A \cap \overline{B}$$

for the set A and B.

(B) Let $A = \{a, b, c, d\}$ and let R be the relation on A that has the matrix

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Construct the diagraph of R and list in-degrees and out-degrees of all vertices.

OR

(C) Show that

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

for the set A and B.

- (D) Define:
 - (i) Partial order relations
 - (ii) Equivalence relations.

EITHER

2. (A) Using mathematical induction, prove that

$$1 + 2^{n} < 3^{n}, n \ge 2.$$

(B) Write the permutation

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 6 & 5 & 2 & 1 & 8 & 7 \end{pmatrix}$$

of the set $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ as a product of disjoint cycles.

OR

- (C) Use backtrack to find explicit formula for the sequence defined by recurrence relation $b_n = 2b_{n-1} + 1$ with the initial condition $b_1 = 7$.
- (D) Prove that:

If $A = (a_1, a_2, ..., a_n)$ is finite set with n elements, $n \ge 2$ then there are $\frac{n!}{2}$ even permutations

and
$$\frac{n!}{2}$$
 odd permutations.

EITHER

- 3. (A) Let L be a distributive lattice. Show that if there exists an a with a \wedge x = a \wedge y and aVx = aVy, then x = y.
 - (B) Prove that if H and K are two normal subgroups of group G, then $H \cap K$ is normal subgroup of G.

OR

- (C) Define the following:
 - (i) Binary operation
 - (ii) Semigroup
 - (iii) Monoid
 - (iv) Isomorphism.
- (D) Let L be a bounded distributive lattice. Show that if a complement exists then it is unique. 5

EITHER

- 4. (A) Define:
 - (i) Graph
 - (ii) Connected graph
 - (iii) Digraph
 - (iv) Complete graph.

5

(B) Prove that:

A tree with n vertices has n - 1 edges.

5

5

OR

(C) Find the Hamiltonian circuit for the graph

5

- (D) Show that if a graph G has more than two vertices of odd degree then there can be no Euler path in G.
- 5. Attempt **all**:
 - (A) Define:
 - (i) Power set
 - (ii) Symmetric difference.

 $2\frac{1}{2}$

(B) Let $A = \{1, 2, 3, 4, 5, 6\}$

Compute : $(4, 1, 3, 5) \circ (5, 6, 3)$

 $2\frac{1}{2}$

- (C) Let G be a group and let a, b and c be elements of G. Then prove that ab = ac implies that b = c.
- (D) Let (T, V_0) be a rooted tree. Prove that there are no cycles in tree T. $2\frac{1}{2}$