DSC210 HW1

Mansi Sharma

October 2023

Question 1: Property of triangular matrices

Given: L_1 and L_2 are two lower triangular matrices of size $n \times n$. Solution:

1. Proof for L_1L_2 being a lower triangular matrix:

A matrix is said to be a lower triangular matrix if all its entries above the main diagonal are zero. Let's denote the entry in the *i*-th row and *j*-th column of a matrix M as M_{ij} .

Given that both L_1 and L_2 are lower triangular matrices, we have: For i < j:

$$L_{1_{ij}} = 0$$
 and $L_{2_{ij}} = 0$

Now, for the product matrix L_1L_2 , the entry at *i*-th row and *j*-th column is given by:

$$(L_1L_2)_{ij} = \sum_{k=1}^n L_{1_{ik}} \times L_{2_{kj}}$$

For i < j, since L_{1ik} is zero for all $k \ge i$ and L_{2kj} is zero for all $k \le j$, the sum becomes zero. Thus, all entries above the main diagonal in L_1L_2 are zero, which makes L_1L_2 a lower triangular matrix.

2. Proof by induction for the multiplication of m lower triangular matrices:

Base Step: We have already shown that the product of two lower triangular matrices L_1 and L_2 is a lower triangular matrix.

Inductive Step: Assume the statement is true for k matrices, i.e., the product of k lower triangular matrices is also a lower triangular matrix. We need to prove it for k+1 matrices.

Let the product of the first k matrices be denoted by L'. From the inductive hypothesis, L' is a lower triangular matrix. Now, the product of k+1 matrices is $L' \times L_{k+1}$. Using the result from the first part, the product of two lower triangular matrices is also a lower triangular matrix. Thus, $L' \times L_{k+1}$ is also a lower triangular matrix.

This completes the induction, and we have shown that the multiplication of any $m \ (m > 2)$ lower triangular matrices results in a lower triangular matrix.

Question 2: Matrix operations

Given: Let B be a 4×4 matrix undergoing the specified operations to yield matrix D.

Solution:

- (a) Express each operation as a matrix and the final matrix ${\cal D}$ as a product of 8 matrices.
 - (i) **Double column 1:** The elementary matrix for this operation is:

$$E_1 = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(ii) Halve row 3: The elementary matrix for this operation is:

$$E_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(iii) Add row 3 to row 1: The elementary matrix for this operation is:

$$E_3 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(iv) Interchange columns 1 and 4: The elementary matrix for this operation is:

$$E_4 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

(v) Subtract row 2 from each of the other rows: The elementary matrix for this operation is:

$$E_5 = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

(vi) **Replace column 4 by column 3:** The elementary matrix for this operation is:

$$E_6 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(vii) **Delete column 1:** To represent this, we use an auxiliary 4×3 matrix E_{7a} :

$$E_{7a} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

2

Thus, the matrix D is represented as:

$$D = E_{7a}E_{6}E_{5}E_{4}E_{3}E_{2}E_{1}B$$

(b) Write the final result again as a product of ABC

We group the matrices as:

$$A = E_{7a}$$

$$B = E_6 \times E_5 \times E_4$$

$$C = E_3 \times E_2 \times E_1$$

Thus, matrix D is represented as:

$$D = A \times B \times C$$

Where:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 0 & 0.5 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Question 3: Matrix properties

Given: A matrix A is both triangular and unitary.

Solution:

A matrix is said to be unitary if $A^*A = I$, where A^* is the conjugate transpose (or adjoint) of A and I is the identity matrix.

Given that A is both lower triangular and unitary, the matrix A can be represented as:

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

The conjugate transpose A^* is:

$$A^* = \begin{bmatrix} \bar{a}_{11} & \bar{a}_{21} & \cdots & \bar{a}_{n1} \\ 0 & \bar{a}_{22} & \cdots & \bar{a}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \bar{a}_{nn} \end{bmatrix}$$

Given $A^*A = I$, the (1,1)-entry of A^*A is:

$$\bar{a}_{11}a_{11} + 0 + \dots + 0 = |\bar{a}_{11}|^2$$

For the (i,j)-entry of A^*A where $i \neq j$, the product contains terms from non-diagonal elements of A multiplied by diagonal elements of A^* and vice-versa. As A is lower triangular, these terms are zero for i < j.

For A^*A to be the identity matrix I, all diagonal elements must be 1 and off-diagonal elements must be 0. This implies:

1. All diagonal elements of A have a magnitude of 1, i.e., $|a_{ii}| = 1$ for all i. 2. All off-diagonal elements of A are 0.

Thus, if A is both lower triangular and unitary, it must be a diagonal matrix with diagonal entries of magnitude 1.

Question 4: p-norm inequalities

Given x is a real m-vector, we have to verify the following inequalities:

(a)
$$||x||_{\infty} \le ||x||_2$$
 (b) $||x||_2 \le \sqrt{m} \cdot ||x||_{\infty}$

Solution:

(a) **Proof of** $||x||_{\infty} \le ||x||_2$

By definition, the infinity-norm is the maximum absolute value of the components of the vector:

$$||x||_{\infty} = \max_{i} |x_i|$$

The 2-norm of x is:

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_m^2}$$

Since each term x_i^2 is non-negative and $|x_i| \leq ||x||_{\infty}$ for all i, we have:

$$x_i^2 \le \|x\|_{\infty}^2$$

Summing over all i:

$$x_1^2 + x_2^2 + \ldots + x_m^2 \le m \cdot ||x||_{\infty}^2$$

Taking the square root of both sides:

$$\sqrt{x_1^2 + x_2^2 + \ldots + x_m^2} \le \sqrt{m} \cdot ||x||_{\infty}$$

However, since $\sqrt{m} \ge 1$ (because m is positive),

$$||x||_2 \le ||x||_{\infty}$$

For equality to hold, all components of x must be equal. For example, consider x = [1, 1, ..., 1].

(b) **Proof of** $||x||_2 \leq \sqrt{m} \cdot ||x||_{\infty}$

From the above proof, we already derived that:

$$||x||_2 \leq \sqrt{m} \cdot ||x||_{\infty}$$

For equality to hold, one component of x must be equal to $||x||_{\infty}$ and all other components must be zero. For example, consider $x = [0, 0, \dots, 0, ||x||_{\infty}, 0, \dots, 0]$.