Consommation électrique d'un data center

Ulysse Tanguy-Bompard

Candidat n° 15937

2022-2023

Ancrage au thème et motivation

- Plus de la moitié des data center français sont en zone urbaine
- ➤ 3 % de la consommation mondiale d'électricité
- Objectif : réduire leur consommation

Figure: Global Security Mag https://www.globalsecuritymag.fr/IMG/pdf/CARTE_700x500.pdf

Plan

- 1. Modélisation d'un data center
- 2. Grandeurs caractéristiques
- 3. Puissance consommée
- 4. Simulation d'un data center
- 5. Répartition minimisant la puissance consommée en régime stationnaire avec l'algorithme du gradient

Modélisation d'un data center

- Modèle non retenu : ordinateur de bureau
 - ► Dangereux (230 V)
 - ► Grande inertie thermique
- ► Modèle retenu : Raspberry Pi
 - ► Peu dangereux
 - Réponse rapide aux perturbations

- Masse volumique moyenne ρ :
 - ightharpoonup Dimensions 85,60 mm imes 53,98 mm imes 17,00 mm
 - ► Masse 90,9 g
 - $ho = 1.16 \times 10^3 \, \mathrm{kg \cdot m^{-3}}$
- Capacité thermique massique moyenne c
 - Expérience avec calorimètre
 - $c = 4.5 \, \text{kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$
- lacktriangle Conductivité thermique moyenne λ

Conductivité moyenne

Protocole

- 1. Plaque chauffante
- 2. Mesure de la température aux deux extrémités
- 3. Diffusion thermique : lien entre les températures et la conductivité

Conductivité moyenne

$$\sigma = \frac{\Delta T}{\sqrt{3}\sqrt{n}} = 0.09\,^{\circ}\text{C}$$

Conductivité moyenne

On détermine D grâce à l'équation de la diffusion

$$D = 3.1 \times 10^{-5} \, \mathrm{m^2/s}$$
 $\lambda = D \rho c = 1.6 \times 10^2 \, \mathrm{W \cdot m^{-1} \cdot K^{-1}}$

Définition de la quantité de calcul

K est le nombre de calculs par seconde

```
from time import time, sleep
def calculs(n):
   a, b = 60986.5150141834, 2831540.2372984355 # arbitraires
   for i in range(n):
       c = a ** (-b)
K = 100_000 # calculs par seconde
while True:
   t_i = time()
   calculs(K)
   sleep(1 - (time() - t_i))
```

Dispositif expérimental

- 1. On impose les conditions extérieures en température
- 2. On impose la quantité de calculs
- 3. On attend le régime stationnaire
- 4. On mesure la température au processeur et l'intensité moyenne consommée

Raspberry Pi

Lampe de chantier

Glace

Résultats expérimentaux

Résultats expérimentaux

On suppose qu'on peut faire un développement limité à l'ordre 1 $P = a \times T + b(K)$

Régression linéaire

Régression linéaire

► Allure de plan

$$P = a \times T + b \times K + c$$

- Régression linéaire avec np.linalg.lstsq
 - $a = 1.8 \times 10^{-3} \, \text{W/K}$
 - $b = 3.6 \times 10^{-1} \, \text{W/millions}$ de calculs par seconde
 - c = 0.94 W

Simulation d'un data center Hypothèses

- ► Carcasse de l'ordinateur : pavé uniforme
- Source thermique
 - Pavé centré sur la carcasse
 - Puissance volumique uniforme
- Air ambiant
 - On néglige la convection
 - Diffusion thermique uniquement
- Murs à température constante

On s'attend à une convergence vers un régime stationnaire.

Simulation d'un data center

Principe de l'algorithme

- ► Temps et espace (1D) discrétisés
- ► Température : tableau numpy T[x, t]
- Équation aux dérivées partielles

$$\frac{\partial T}{\partial t} = D(x) \frac{\partial^2 T}{\partial x^2} + P_c(x, T) \quad \text{où} \quad P_c(x, T) = \frac{P(K, T)}{C_{\text{processeur}}} \text{ ou } 0$$

Simulation d'un data center Champ de température

Simulation d'un data center

Températures aux processeurs

Régime stationnaire atteint au bout de quelques heures.

Simulation d'un data center

Puissances consommées

Régime stationnaire atteint au bout de quelques heures.

Algorithme de descente du gradient

lci la fonction f est la puissance consommée en régime stationnaire.

Algorithme de descente du gradient

lci la fonction f est la puissance consommée en régime stationnaire.

Pour trouver un minimum d'une fonction f:

- ► Calcul du gradient au point M, $\nabla f(M)$
- ▶ Test d'arrêt : fin si $||\nabla f(M)|| < \varepsilon$
- ▶ Nouveau point $M \leftarrow M \alpha \times \nabla f(M)$

Algorithme de descente du gradient

lci la fonction f est la puissance consommée en régime stationnaire.

Pour trouver un minimum d'une fonction f:

- ► Calcul du gradient au point M, $\nabla f(M)$
- ▶ Test d'arrêt : fin si $||\nabla f(M)|| < \varepsilon$
- ▶ Nouveau point $M \leftarrow M \alpha \times \nabla f(M)$

On note L la longueur de la pièce et K la quantité de calculs totale. Coordonnées réduites : $\frac{K_i}{L}$ et $\frac{K_i}{K}$ pour avoir $f:[0,1]^{2n} \to \mathbb{R}$

Répartition optimale

Algorithme du gradient

```
def ieme_derive_partielle(point, i):
   pnew = np.copy(point)
   pnew[i] =point[i] +pas
   return (f(pnew) -f(point)) /pas
def gradient(point):
   return np.array([
       ieme_derive_partielle(point, i)
       for i in range(len(point))])
point = point_initial
while True:
   nablaf =gradient(f, point)
   if norme(nablaf) <epsilon:</pre>
       break # sortie de l'algorithme
   point =point -pas * nablaf
print(point) # point final
```

Minimum pour 4 ordinateurs

Puissance totale en régime stationnaire $P=6,22\,\mathrm{W}$ Environ 10 % des calculs par ordinateur « intérieur » et 40 % par ordinateur « extérieur »

Maximum pour 4 ordinateurs

Quasi-équirépartition des calculs $P = 6.47 \,\mathrm{W}$, économie de 4 %

Répartition minimisant la puissance Résultats qualitatifs

Pour une consommation minimale :

- ► Ne pas regrouper tous les ordinateurs
- ► Éloigner les ordinateurs du centre de la pièce
- Donner plus de calculs aux ordinateurs proches des murs
- Bien maintenir les murs à température constante

Conclusion

- Avantages concrets
 - Économies d'énergie de l'ordre de 4 %
 - Enjeu économique majeur
- Pistes d'approfondissement
 - Mesures plus précises des grandeurs caractéristiques
 - ► Simulation à 2D

Capacité thermique

Calorimètre Raspberry Pi (dans le calorimètre) Ampèremètre

Grandeurs caractéristiques Capacité thermique

- 0. Mesure de la masse en eau du calorimètre $m_{\rm calo} = 37 \, {\rm g}$
- 1. Avant calculs (19,0 °C) intensité moyenne de 288 mA
- 2. Lancement des calculs à 1 min
- 3. Fin des calculs à 6 min. Pendant les calculs, on a
 - tension 5,0 V
 - intensité moyenne 381 mA
 - travail électrique 612 J
- 4. Thermalisation : sur les 100 dernières secondes, 20.6 °C

Capacité thermique

- 0. Mesure de la masse en eau du calorimètre $m_{calo} = 37 \,\mathrm{g}$
- 1. Avant calculs (19,0 °C) intensité moyenne de 288 mA
- 2. Lancement des calculs à 1 min
- Fin des calculs à 6 min. Pendant les calculs, on a
 - tension 5,0 V
 - ▶ intensité moyenne 381 mA
 - travail électrique 612 J
- 4. Thermalisation : sur les 100 dernières secondes, 20,6 °C

```
(1^{er} \text{ principe})

\Delta U = W = C\Delta T
```

- Capacité thermiqueC = 204 J/K
- Capacité thermique massique $c = 4.5 \text{ kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$
- Valeur surévaluée car on a négligé les pertes

Mesures de la puissance

Erreurs de mesure

Conductivité moyenne Données brutes

Conductivité moyenne Écart-type par Monte-Carlo

