

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No		
FCC ID	: ZAAJDFORCE	
Compiled by (position+printed name+signature)	. File administrators Martin Ao	Morrem
Supervised by (position+printed name+signature)	. Test Engineer Martin Ao	Morrison Dixon
Approved by (position+printed name+signature)	· Manager Dixon Hao	Dixon
Date of issue	: Jan 28, 2015	
Representative Laboratory Name.	: Maxwell International Co., Ltd.	
Address	Room 509,Hongfa center building Guangdong, China	g, Baoan District, Shenzhen,
Testing Laboratory Name	: Shenzhen CTL Testing Techno	ology Co., Ltd.
Address	. Floor 1-A, Baisha Technology Pa `Nanshan,Shenzhen,China	ark, No. 3011, Shahexi Road,
Applicant's name	: Etoway Technology Co., Ltd.	
Address	. Room 1005, Building A, Stars Pla Shenzhen China	aza, #38 Hongli Road, Futian,
Test specification	:	
Standard	: FCC Part 15.247: Operation wi 2483.5 MHz and 5725-5850 MH:	ithin the bands 902-928 MHz, 2400- z
TRF Originator	: Maxwell International Co., Ltd.	
Master TRF	: Dated 2011-05	
Maywell International Co. Ltd. All	rights recorded	

Maxwell International Co., Ltd. All rights reserved.

Test item description.....: Mobile Phone

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Maxwell International Co., Ltd. as copyright owner and source of the material. Maxwell International Co., Ltd. takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

' ·	
Trade Mark	.: Etoway
Manufacturer	∷ ShenZhen Etoway Electronics Co., Ltd.
Model/Type reference	: Force
Listed Models	:/
Modulation Type	: GFSK,8DPSK,π/4DQPSK
Operation Frequency	: From 2402MHz to 2480MHz
Rating	.: DC 3.70V
Hardware version	:: CX26
Software version	D62_IVO_V139_PCB(CX26-MB- V0.1)_ETOWAY_NK_LANGUAGE(YXP)_FLASH(32 32)20141104
Result	:: PASS

Report No.: MWR1501002902 Page 2 of 61

TEST REPORT

Test Report No. :	MWR1501002902	Jan 28, 2015
	WWW. 130 1002302	Date of issue

Equipment under Test Mobile Phone

Model /Type Force

/ Listed Models

Applicant Etoway Technology Co., Ltd.

Room 1005, Building A, Stars Plaza, #38 Hongli Road, Futian, Address

Shenzhen China

Manufacturer ShenZhen Etoway Electronics Co., Ltd.

Room 1005, Building A, Stars Plaza, #38 Hongli Road, Futian, Address

Shenzhen China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 61

Contents

1.	TEST STANDARDS	4
2.	SUMMARY	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Equipment Under Test	5
2.4.	Short description of the Equipment under Test (EUT)	5
2.5.	EUT operation mode	6
2.6.	Internal Identification of AE used during the test	6
2.7.	Related Submittal(s) / Grant (s)	7
2.8.	Modifications	7
2.9.	NOTE	7
3.	TEST ENVIRONMENT	8
3.1.	Address of the test laboratory	8
3.2.	Test Facility	8
3.3.	Environmental conditions	8
3.4.	Test Conditions	8
3.5.	Test Description	9
3.6.	Statement of the measurement uncertainty	9
3.7.	Equipments Used during the Test	10
4.	TEST CONDITIONS AND RESULTS	11
4.1.	AC Power Conducted Emission	11
4.2.	Radiated Emission	13
4.3.	Maximum Peak Output Power	17
4.4.	20dB Bandwidth	18
4.5.	Band Edge	24
4.6.	Frequency Separation	39
4.7.	Number of hopping frequency	42
4.8.	Time Of Occupancy(Dwell Time)	45 52
4.9. 4.10.	Spurious RF Conducted Emission Pseudorandom Frequency Hopping Sequence	52 68
4.11.	Antenna Requirement	69
5.	TEST SETUP PHOTOS OF THE EUT	7 0
	=	

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2009</u>: American National Standard for Testing Unlicensed Wireless Devices

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Jan 10, 2015
Testing commenced on	:	Jan 10, 2015
Testing concluded on	:	Jan 28, 2015

2.2. Product Description

The **Etoway Technology Co., Ltd.**'s Model: Force or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Mobile Phone
Model Number	Force
FCC ID	2AAJDFORCE
Modilation Type	GMSK for GSM/GPRS;
BT Operation frequency	2402MHz-2480MHz
BT Modulation Type	GFSK,8DPSK,π/4DQPSK
Antenna Type	Internal
GSM/EDGE/GPRS	Supported GPRS
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.40VDC to 4.20VDC (nominal: 3.70VDC)
GSM Operation Frequency Band	GSM 850MHz/ PCS 1900MHz
GSM Release Version	R99
GPRS operation mode	Class B
GPRS Multislot Class	12
EGPRS Multislot Class	Not Supported

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 3.70V

2.4. Short description of the Equipment under Test (EUT)

Force is subscriber equipment in the GSM system. The GSM/GPRS frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only GSM850 and PCS1900 bands test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, GSM/GPRS protocol processing, voice, video MMS service etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

2.4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt	Type of Test
N01	356181064231135	CX26	D62_IVO_V139_PCB(CX26-MB- V0.1)_ETOWAY_NK_LANGUAGE(YXP)_FLASH(32	2015- 01-10	Radio

Page 6 of 61 Report No.: MWR1501002902

			32)20141104		
N02	356181064231136	CX26	D62_IVO_V139_PCB(CX26-MB-	2015-	SAR
			V0.1)_ETOWAY_NK_LANGUAGE(YXP)_FLASH(32	01-10	(EMF)
			32) 20141104		

NOTE: We used two Samples only for facilitate testing. All test setup photos are the color difference form External/Internal Photo, But they are the same mode. There are 4 color, they are white, green, yellow and red..

2.5. EUT operation mode

The EUT has been tested under typical operating condition. There are EDR (Enhanced Data Rate) and BDR (Basic Data Rate)mode. The Applicant provides communication tools software to control the EUT for staying in continous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel.

Channel	Frequency(MHz)	Channel	Frequency(MHz)		
00	2402	40	2442		
01	2403	41 244			
02	2404	42 244			
03	2405	43	2445		
04	2406	44	2446		
05	2407	45	2447		
06	2408	46	2448		
07	2409	47	2449		
08	2410	48	2450		
09	2411	49	2451		
10	2412	50	2452		
11	2413	51	2453		
12	2414	52	2454		
13	2415	53	2455		
14	2416	54	2456		
15	2417	55	2457		
16	2418	56	2458		
17	2419	57	2459		
18	2420	58	2460		
19	2421	59	2461		
20	2422	60	2462		
21	2423	61	2463		
22	2424	62	2464		
23	2425	63	2465		
24		2426 64			
25	2427				
26	2428				
27	2429	67	2468 2469		
28	2430	68	2470		
29	2431	69	2471		
30	2432	70	2472		
31	2433	71	2473		
32	2434	72	2474		
33	2435	73	2475		
34	2436	74	2476		
35	2437	75	2477		
36	2438	76	2478		
37	2439	77	2479		
38	2440	78	2480		
39	2441	10	2700		

Page 7 of 61 Report No.: MWR1501002902

2.6. Internal Identification of AE used during the test

AE ID*	Description
AE1	Battery
AE2	Charger

AE1

Model: C663907180T Capacitance: 1000mAh Nominal Voltage: 3.70V

AE2

Model: Force

Input:AC 100-240V 50/60Hz

Output:DC 5V 1A

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AAJDFORCE** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. NOTE

1. The EUT is a Mobile Phone with GSM/GPRS and Bluetooth fuction, The functions of the EUT listed as below:

	Test Standards	Reference Report
GSM/GPRS	FCC Part 22/FCC Part 24	MWR1501002901
Bluetooth-EDR	FCC Part 15 C 15.247	MWR1501002902
USB Port	FCC Part 15 B	MWR1501002903
SAR	FCC Part 2 §2.1093	MWR1501002904

^{*}AE ID: is used to identify the test sample in the lab internally.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

Report No.: MWR1501002902

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, Dec 19, 2013

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Test Conditions

Test Case	Test Conditions			
Test Case	Configuration	Description		
	Meas. Method	ANSI C63.10:2009		
	Test Environment	NTNV		
20dB Emission Bandwidth (EBW)	EUT Conf.	TM1_DH5_Ch00,TM1_DH5_Ch40,TM1_DH5_Ch78,TM2 _2DH5_Ch00,TM2_2DH5_Ch40,TM2_2DH5_Ch78,TM3 _3DH5_Ch00,TM3_3DH5_Ch40,TM3_3DH5_Ch78,		
		TM4_DH5_Ch00,TM4_DH5_Ch19,TM4_DH5_Ch40.		
Carrier Frequency	Meas. Method	ANSI C63.10:2009		
Separation	Test Environment	NTNV		
Coparation	EUT Conf.	TM1_DH5_Hop,TM2_2DH5_Hop,TM3_3DH5_Hop,		
Number of Hopping	Meas. Method	ANSI C63.10:2009		
Channel	Test Environment	NTNV		
Charlie	EUT Conf.	TM1_DH5_Hop,TM2_2DH5_Hop,TM3_3DH5_Hop,		
Time of Occupancy	Meas. Method	ANSI C63.10:2009		
(Dwell Time)	Test Environment	NTNV		
(Bwell Tille)	EUT Conf.	TM1_DH5_Ch40,TM2_2DH5_Ch40,TM3_3DH5_Ch40.		
	Meas. Method	ANSI C63.10:2009		
	Test Environment	NTNV		
Maximum Peak Conducted Output Power	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch40,TM1_DH3_Ch78,TM2 _2DH3_Ch00,TM2_2DH3_Ch40,TM2_2DH3_Ch78,TM3 _3DH3_Ch00,TM3_3DH3_Ch40,TM3_3DH3_Ch78, TM4_DH3_Ch00,TM4_DH3_Ch40,TM4_DH3_Ch78.		
	Meas. Method	ANSI C63.10:2009		
Bandedge spurious	Test Environment	NTNV		
emission (Conducted)	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch78,TM2_2DH3_Ch00,TM 2_2DH3_Ch78, TM3_3DH3_Ch00,TM3_3DH3_Ch78. TM4_DH3_Ch00,TM4_DH3_Ch78.		
Conducted RF Spurious	Meas. Method	ANSI C63.10:2009		

Page 9 of 61 Report No.: MWR1501002902

Emission	Test Environment	NTNV
		TM1_DH5_Ch00, TM1_DH5_Ch40, TM1_DH5_Ch78,
		TM2_2DH5_Ch00, TM2_2DH5_Ch40,
	EUT Conf.	TM2_2DH5_Ch78, TM3_3DH5_Ch00,
		TM3_3DH5_Ch40, TM3_3DH5_Ch78.
		TM4_DH5_Ch00,TM4_DH5_Ch40,TM4_DH5_Ch78.
		ANSI C63.10:2009
		30 MHz to 1 GHz:
		Pre: RBW=100kHz; VBW=300kHz; Det. = Peak.
		Final: RBW=120kHz; Det. = CISPR Quasi-Peak.
	Meas. Method	1 GHz to 26.5GHz:
	Weas. Welflod	Average: RBW=1 MHz; VBW= 10Hz; Det. = Peak;
Radiated Emissions in		Sweep-time= Auto; Trace = Single.
the Restricted Bands		Peak: RBW=1 MHz; VBW= 3 MHz; Det. = Peak; Sweep-
		time= Auto;
		Trace≥ MaxHold * 100.
	Test Environment	NTNV
		30 MHz-1GHz TM1_DH5_Ch00 (Worst Conf.).
	EUT Conf.	1-18 GHz: TM1_DH5_Ch00, TM1_DH5_Ch40,
		TM1_DH5_Ch78, (Worst Conf.).

Test Case	Test Conditions		
rest Case	Configuration	Description	
AC Power Line Conducted Emissions	Measurement Method	AC mains conducted.	
	Test Environment	NTNV	
	EUT Configuration	TM1_DH5_Ch40. (Worst Conf.).	

Note: For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

3.5. Test Description

FCC PART 15 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(1)(i)	20dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS
FCC Part 15.247(b)	Pseudorandom Frequency Hopping Sequence	PASS
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency& Time of Occupancy	PASS
FCC Part 15.247(a)(1)	Frequency Separation	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Remark: The measurement uncertainty is not included in the test result.

3.6. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTL Testing Technology Co., Ltd. is reported:

Page 10 of 61

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-12.75 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 9KHz-30MHz	2.88 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

Report No.: MWR1501002902

3.7. Equipments Used during the Test

AC Po	AC Power Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Artificial Mains	Rohde&Schwarz	ENV216	101316	2014/07/02			
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	103710	2014/07/02			
3	Pulse Limiter	Com-Power	LIT-153	53226	2014/07/01			
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A			
5	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2014/10/19			

Radia	Radiated Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.		
1	Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2014/07/12		
2	EMI TEST Receivcer	Rohde&Schwarz	ESCI3	103710	2014/07/02		
3	EMI TEST Software	Audix	E3	N/A	N/A		
4	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A		
5	HORN ANTENNA	Sunol Sciences Corp.	DRH-118	A062013	2014/07/12		
6	Amplifer	HP	8447D	3113A07663	2014/10/22		
7	Preamplifier	HP	8349B	3155A00882	2014/07/03		
8	Amplifer	Compliance Direction systems	PAP1-4060	129	2014/07/03		
9	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2014/06/29		
10	TURNTABLE	MATURO	TT2.0		N/A		
11	ANTENNA MAST	MATURO	TAM-4.0-P		N/A		
12	Horn Antenna	SCHWARZBECK	BBHA9170	25849	2014/06/21		
13	Spectrum Analyzer	Rohde&Schwarz	FSU26	201148	2014/07/02		
14	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	2014/10/19		
15	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2014/10/19		

	Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF Emission / Spurious RF Conducted Emission							
Item								
1	Spectrum Analyzer Rohde&Schwarz FSU26 201148 2014/07/02							
2	Power Sensor Rohde&Schwarz NRR-Z81 256697 2014/07/02							
3	MXA Signal Analyzer Agilent N9030A MY53420615 2014/05/12							
4	Coaxial Cables	WK CE Cable	N/A	N/A	2014/10/19			

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2009.
- 2. Support equipment, if needed, was placed as per ANSI C63.10-2009
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009
- 4. The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Eroguenes/	Maximum RF Line Voltage (dBμV)					
Frequency (MHz)	CLA	CLASS A		SS B		
(IVITIZ)	Q.P.	Q.P. Ave.		Ave.		
0.15 - 0.50	79	66	66-56*	56-46*		
0.50 - 5.00	73	60	56	46		
5.00 - 30.0	73	60	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

Note: 1.We tested Conducted Emission of GFSK, $\pi/4$ DQPSK and 8DPSK mode from 0.15 KHz to 30MHz (DH1, DH3 and DH5) and all channels (low, middle and high), recorded the worst case data at GFSK DH5 middle channel.

2.:test voltage:120V/60Hz

Page 12 of 61 Report No.: MWR1501002902

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line
0.474000	39.10	10.1	56	16.90	QP	L
1.288500	36.90	10.2	56	19.10	QP	L
23.235000	42.20	10.9	60	17.80	QP	L
0.474000	31.00	10.0	46	15.00	AV	L
4.344000	29.70	10.2	46	16.30	AV	L
23.194500	37.30	10.9	50	12.70	AV	L

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line
0.442500	40.90	10.1	57	16.10	QP	N
1.162500	36.80	10.2	56	19.20	QP	N
23.910000	35.10	10.9	60	24.90	QP	N
0.442500	32.60	10.1	47	14.40	AV	N
3.822000	31.00	10.2	46	15.00	AV	N
23.910000	32.00	10.9	50	18.00	AV	N

4.2. Radiated Emission

TEST CONFIGURATION

Frequency range 9KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

axwell Page 14 of 61 Report No.: MWR1501002902

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360 $^{\circ}$ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768kHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBuV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	-18.1

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The frequency spectrum above 1 GHz for Transmitter was investigated. All emission not reported are much lower than the prescribed limits. Set the RBW=1MHz,VBW=3MHz for Peak Detector while the RBW=1MHz,VBW=10Hz for Average Detector,Readings are both peak and average values. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. The radiated measurement are performed the each channel (low/mid/high) at all Packet type (DH1, DH3 and DH5) also for difference modulation type (GFSK, 8DPSK and π /4 DQPSK), recorded worst case at GFSK_DH5_Low channel (Channel 00) for below 1GHz and GFSK_DH5_Low channel (Channel 00), GFSK_DH5_Middle channel (Channel 40), GFSK_DH5_High channel (Channel 78).
- 2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.

Page 15 of 61 Report No.: MWR1501002902

- 3. HORN ANTENNA for the radiation emission test above 1G.
- 4. We tested both battery powered and powered by adapter charging mode at three orientate ones, recorded worst case at powered by adapter charging mode.
 - 5. "---" means not recorded as emission levels lower than limit.

For 9KHz to 30MHz

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result
12.00	42.91	69.54	26.63	QP	PASS
24.00	44.69	69.54	24.85	QP	PASS

For 30MHz to 1000MHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Ant. Polar. H / V
41.660000	42.30	-11.2	31.10	40.00	8.90	QP	V
55.270000	48.40	-17.8	30.60	40.00	9.40	QP	V
119.420000	44.00	-12.8	31.20	40.00	12.30	QP	Н
142.750000	46.90	-15.4	31.50	40.00	12.00	QP	Н
360.460000	46.50	-9.5	37.00	40.00	9.00	QP	V
699.960000	44.80	-2.8	42.00	40.00	3.30	QP	Н

For 1GHz to 25GHz

Low Channel @ Channel 00 @ 2402 MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
	Frequency	Ems	sion	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction
No.		Lev	⁄el	(dBuV/m)	-	Height	Angle	Value	Factor	Factor	amplifi	Factor
	(MHz)	(dBu\	//m)	(ubu v/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	4804.00	57.22	PK	74.00	16.78	1.00	13	55.14	31.58	7.00	36.5	2.08
2	4804.00	43.69	ΑV	54.00	10.31	1.00	13	41.61	31.58	7.00	36.5	2.08
3	7206.00	59.23	PK	74.00	14.77	1.00	279	48.57	37.06	8.90	35.3	10.66
4	7206.00	41.82	ΑV	54.00	12.18	1.00	279	31.16	37.06	8.90	35.3	10.66

Page 16 of 61 Report No.: MWR1501002902

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
	Eroguenev	Ems	sion	Limit	Margin	Antenna	Table	Raw	Antenna		Pre-	Correction
No.	Frequency	Lev	/el	(dBuV/m)	-	Height	Angle	Value	Factor	Factor	amplifi	Factor
	(MHz)	(dBu\	//m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	4804.00	53.44	PK	74.00	20.56	1.00	266	51.36	31.58	7.00	36.5	2.08
2	4804.00	40.59	ΑV	54.00	13.41	1.00	266	38.51	31.58	7.00	36.5	2.08
3	7206.00	55.16	PK	74.00	18.84	1.00	181	44.50	37.06	8.90	35.3	10.66
4	7206.00	40.22	ΑV	54.00	13.78	1.00	181	29.56	37.06	8.90	35.3	10.66

Middle Channel @ Channel 40 @ 2442 MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
	Fraguenay	Ems	sion	Limit	Morgin	Antenna	Table	Raw	Antenna		Pre-	Correction
No.	Frequency (MHz)	Lev	/el	(dBuV/m)	Margin (dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor
	(IVITZ)	(dBu\	V/m)	(ubu v/III)	(GD)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	4884.00	58.45	PK	74.00	15.55	1.00	100	56.31	31.04	7.60	36.5	2.14
2	4884.00	44.01	ΑV	54.00	9.99	1.00	100	41.87	31.04	7.60	36.5	2.14
3	7326.00	60.23	PK	74.00	13.77	1.00	124	49.09	37.84	8.60	35.3	11.14
4	7326.00	42.07	AV	54.00	11.93	1.00	124	30.93	37.84	8.60	35.3	11.14

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
No.	Frequency (MHz)	Emss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)		Pre- amplifi er	Correction Factor (dB/m)
1	4884.00	53.91	PK	74.00	20.09	1.00	150	51.77	31.04	7.60	36.5	2.14
2	4884.00	40.77	ΑV	54.00	13.23	1.00	150	38.63	31.04	7.60	36.5	2.14
3	7326.00	55.23	PK	74.00	18.77	1.00	244	44.09	37.84	8.60	35.3	11.14
4	7326.00	40.30	AV	54.00	13.70	1.00	244	29.16	37.84	8.60	35.3	11.14

High Channel @ Channel 78 @ 2480 MHz

	Tingir Ghanner & Ghanner 10 & 2+00 minz											
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
	Frequency	Emss	sion	Limit	Margin	Antenna	Table	Raw	Antenna		Pre-	Correction
No.	(MHz)	Lev		(dBuV/m)	_	Height	Angle	Value	Factor	Factor	amplifi	Factor
(IVITZ)	(dBu\	//m)	(ubu v/III)	(UD)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)	
1	4960.00	58.87	PK	74.00	15.13	1.00	124	56.44	31.63	7.00	36.2	2.43
2	4960.00	44.24	ΑV	54.00	9.76	1.00	124	41.81	31.63	7.00	36.2	2.43
3	7340.00	60.33	PK	74.00	13.67	1.00	26	48.73	38.40	8.50	35.3	11.60
4	7340.00	42.12	ΑV	54.00	11.88	1.00	26	30.52	38.40	8.50	35.3	11.60

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
	Erogueney	Emss	sion	Limit	Margin	Antenna	Table	Raw	Antenna		Pre-	Correction
No.	Frequency	Lev	el ((dBuV/m)	_	Height	Angle	Value	Factor	Factor	amplifi	Factor
(MHz)	(dBu\	//m)	(ubu v/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)	
1	4960.00	53.96	PK	74.00	20.04	1.00	313	51.53	31.63	7.00	-36.2	2.43
2	4960.00	40.79	ΑV	54.00	13.21	1.00	313	38.36	31.63	7.00	-36.2	2.43
3	7340.00	55.52	PK	74.00	18.48	1.00	291	43.92	38.40	8.50	-35.3	11.60
4	7340.00	40.36	ΑV	54.00	13.64	1.00	291	28.76	38.40	8.50	-35.3	11.60

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2009 Maximum peak conducted output power:Connent antenna port into power meter and reading Peak values.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Remark: We test maximum peak output power at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH3

4.3.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	4.04	30	PASS
40	2442	4.92	30	PASS
78	2480	5.77	30	PASS

Note: 1.The test results including the cable lose.

4.3.2 π/4 DQPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	3.88	21	PASS
40	2442	4.16	21	PASS
78	2480	5.47	21	PASS

Note: 1.The test results including the cable lose.

4.3.3 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	3.95	21	PASS
40	2442	4.55	21	PASS
78	2480	5.51	21	PASS

Note: 1.The test results including the cable lose.

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

4.4.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	0.9441	Plot 4.4.1 A	/	PASS
40	2442	0.9519	Plot 4.4.1 B	1	PASS
78	2480	0.9719	Plot 4.4.1 C	1	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

(Plot 4.4.1 B: Channel 40: 2442MHz @ GFSK)

(Plot 4.4.1 C: Channel 78: 2480MHz @ GFSK)

4.4.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.291	Plot 4.4.2 A	1	PASS
40	2442	1.293	Plot 4.4.2 B	1	PASS
78	2480	1.292	Plot 4.4.2 C	1	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

(Plot 4.4.2 A: Channel 00: 2402MHz @ 8DPSK)

(Plot 4.4.2 B: Channel 40: 2442MHz @ 8DPSK)

(Plot 4.4.2 C: Channel 78: 2480MHz @ 8DPSK)

4.4.3 π/4DQPSKTest Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.289	Plot 4.4.3 A	1	PASS
40	2442	1.295	Plot 4.4.3 B	1	PASS
78	2480	1.287	Plot 4.4.3 C	1	PASS

Report No.: MWR1501002902

Note: 1.The test results including the cable lose.

B. Test Plots

(Plot 4.4.3 A: Channel 00: 2402MHz @ π/4DQPSK)

(Plot 4.4.3 B: Channel 40: 2442MHz @π/4DQPSK)

(Plot 4.4.3 C: Channel 78: 2480MHz @π/4DQPSK)

Page 24 of 61 Report No.: MWR1501002902

4.5. Band Edge

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

TEST RESULTS

Remark: 1. We test Band Edge at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5. 2. "---" means not recorded as emission levels lower than limit.

4.5.1 For Radiated Bandedge Measurement

Remark: we tested radiated bandedge at both hopping and no-hopping modes at Vertical and Horizontal antenna Polarization, recorded worst case at no-hopping mode.

4.5.1.1 GFSK Test Mode

 Page 25 of 61

Report No.: MWR1501002902

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2390.00	35.63	3.32	27.49	36.12	40.91	74.00	38.37	Hor	Peak
2	2401.99	96.39	3.32	27.49	36.12	101.70	74.00	-22.39	Hor	Peak

Frequency (MHz)

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2390.00	23.12	3.32	27.49	36.12	28.40	54.00	30.88	Hor	Average
2	2402.10	86.32	3.32	27.49	36.12	91.63	54.00	-32.32	Hor	Average

0 2470 Page 26 of 61

Report No.: MWR1501002902

2560

2500

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2479.89	99.15	3.88	27.45	36.55	104.37	74.00	-25.15	Hor	Peak
2	2483.50	60.25	3.88	27.45	36.55	65.47	74.00	13.75	Hor	Peak

Frequency (MHz)

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2480.19	80.07	3.88	27.45	36.55	85.29	54.00	-26.07	Hor	Average
2	2483.50	45.15	3.88	27.45	36.55	50.37	54.00	8.85	Hor	Average

4.5.1.2 8DPSK Test Mode

N	/lark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
	1	2390.00	37.03	3.32	27.49	36.12	42.31	74.00	36.97	Hor	Peak
	2	2401.99	96.30	3.32	27.49	36.12	101.61	74.00	-22.30	Hor	Peak

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2390.00	22.96	3.32	27.49	36.12	28.24	54.00	31.04	Hor	Average
2	2402.05	82.69	3.32	27.49	36.12	88.00	54.00	-28.69	Hor	Average

Page 28 of 61

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2479.87	95.35	3.88	27.45	36.55	100.57	74.00	-21.35	Hor	Peak
2	2483.50	56.27	3.88	27.45	36.55	61.49	74.00	17.73	Hor	Peak

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2480.09	84.63	3.88	27.45	36.55	89.85	54.00	-30.63	Hor	Average
2	2483.50	44.27	3.88	27.45	36.55	49.49	54.00	9.73	Hor	Average

4.5.1.3 m/4DQPSK Test Mode

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2390.00	38.48	3.32	27.49	36.12	43.76	74.00	35.52	Hor	Peak
2	2402.11	98.14	3.32	27.49	36.12	103.45	74.00	-24.14	Hor	Peak

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2390.00	26.02	3.32	27.49	36.12	31.30	54.00	27.98	Hor	Average
2	2402.05	85.99	3.32	27.49	36.12	91.30	54.00	-31.99	Hor	Average

Page 30 of 61

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2480.11	98.68	3.88	27.45	36.55	103.90	74.00	-24.68	Hor	Peak
2	2483.50	59.69	3.88	27.45	36.55	64.91	74.00	14.31	Hor	Peak

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarization	Detector
1	2480.07	83.97	3.88	27.45	36.55	89.19	54.00	-29.97	Hor	Average
2	2483.50	43.79	3.88	27.45	36.55	49.01	54.00	10.21	Hor	Average

4.5.2 For Conducted Bandedge Measurement

4.5.2.1 GFSK Test Mode

A. Test Verdict

Frequency (MHz)	Delta Peak to Band emission (dBc)	Hoping Mode	Detector	Limit (dBc)	Refer to Plot	Verdict
2400.00	-48.46	OFF	Peak	-20	Plot 4.5.2.1 A	PASS
2400.00	-56.41	ON	Peak	-20	Plot 4.5.2.1 B	PASS
2483.50	-55.47	OFF	Peak	-20	Plot 4.5.2.1 C	PASS
2483.50	-55.67	ON	Peak	-20	Plot 4.5.2.1 D	PASS

Report No.: MWR1501002902

B. Test Plots

(Plot 4.5.2.1 A: Channel 00: 2402MHz @ GFSK)

(Plot 4.5.2.1 B: Hopping Mode @ GFSK)

(Plot 4.5.2.1 C: Channel 78: 2480MHz @ GFSK)

Page 33 of 61 Report No.: MWR1501002902

(Plot 4.5.2.1 D: Hopping Mode @ GFSK)

4.5.2.2 8DPSK Test Mode

A. Test Verdict

Frequency (MHz)	Delta Peak to Band emission (dBc)	Hoping Mode	Detector	Limit (dBc)	Refer to Plot	Verdict
2400.00	-50.98	OFF	Peak	-20	Plot 4.5.2.2 A	PASS
2400.00	-53.45	ON	Peak	-20	Plot 4.5.2.2 B	PASS
2483.50	-56.02	OFF	Peak	-20	Plot 4.5.2.2 C	PASS
2483.50	-54.54	ON	Peak	-20	Plot 4.5.2.2 D	PASS

B. Test Plots

(Plot 4.5.2.2 A: Channel 00: 2402MHz @ 8DPSK)

(Plot 4.5.2.2 B: Hopping Mode @ 8DPSK)

(Plot 4.5.2.2 C: Channel 78: 2480MHz @ 8DPSK)

(Plot 4.5.2.2 D: Hopping Mode @ 8DPSK)

4.5.2.3 π/4DQPSK Test Mode

A. Test Verdict

Frequency (MHz)	Delta Peak to Band emission (dBc)	Hoping Mode	Detector	Limit (dBc)	Refer to Plot	Verdict
2400.00	-48.34	OFF	Peak	-20	Plot 4.5.2.3 A	PASS
2400.00	-53.61	ON	Peak	-20	Plot 4.5.2.3 B	PASS
2483.50	-56.64	OFF	Peak	-20	Plot 4.5.2.3 C	PASS
2483.50	-53.47	ON	Peak	-20	Plot 4.5.2.3 D	PASS

Report No.: MWR1501002902

B. Test Plots

(Plot 4.5.2.3 A: Channel 00: 2402MHz @ π/4DQPSK)

(Plot 4.5.2.3 B: Hopping Mode @π/4DQPSK)

(Plot 4.5.2.3 C: Channel 78: 2480MHz @ π/4DQPSK)

(Plot 4.5.2.3 D: Hopping Mode @π/4DQPSK)

4.6. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5) and all test channels, recorded worst case at DH5 and middle channel.

4.6.1 GFSK Test Mode

A. Test Verdict

Chanr	nel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
39		2441	1.000	Plot 4.6.1 A	0.9719	PASS
40		2442	1.000	P101 4.0.1 A	0.97 19	PASS

(Plot 4.6.1 A: Channel 40: 2442MHz @ GFSK)

4.6.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
39	2441	1.000	Diot 462 A	0.862	PASS
40	2442	1.000	Plot 4.6.2 A	0.002	PASS

Report No.: MWR1501002902

B. Test Plots

(Plot 4.6.2 A: Channel 40: 2442MHz @ 8DPSK)

4.6.3 π/4DQPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
39	2441	1.000	Plot 4.6.3 A	0.863	PASS
40	2442	1.000	F101 4.0.3 A	0.003	PASS

(Plot 4.6.3 A: Channel 40: 2442MHz @ π/4DQPSK)

4.7. Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=100 KHz and VBW=300KHz.

LIMIT

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

4.7.1 GFSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.1 A1	≥15	PASS

4.7.2 8DPSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.2 A1	≥15	PASS

Report No.: MWR1501002902

B. Test Plots

(Plot 4.7.2 A1: @ 8DPSK)

4.7.3 π/4DQPSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.3 A1	≥15	PASS

(Plot 4.7.3 A1: @ π/4DQPSK)

Page 45 of 61 Report No.: MWR1501002902

4.8. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.

LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation:0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s] The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];

The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Remark: 1. We test Frequency Separation at all test channels, recorded worst case at middle channel.

4.8.1 GFSK Test Mode

A. Test Verdict

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
DH1	2442	0.405	0.1296	0.4	Plot 4.8.1 A	PASS
ВПІ	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2 ·	÷ 79) ×31.6 Sec	ond	
DH3	2442	1.797	0.2875	0.4	Plot 4.8.1 B	PASS
рпз	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 4 ·	÷ 79) ×31.6 Sec	ond	
DH5	2442	2.900	0.3093	0.4	Plot 4.8.1 C	PASS
סחס	Note: Dwell tin	ne=Pulse Time (ms) × (1600 ÷ 6	÷ 79) ×31.6 Sec	cond	

(Plot 4.8.1.A: Channel 40: 2442MHz @ GFSK @ DH1)

Copyright 2000-2005 Agilent Technologies

(Plot 4.8.1.B: Channel 40: 2442MHz @ GFSK @ DH3)

(Plot 4.8.1.C: Channel 40: 2442MHz @ GFSK @ DH5)

4.8.2 8DPSK Test Mode

A. Test Verdict

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
DH1	2442	0.530	0.1696	0.4	Plot 4.8.2 A	PASS
וחט	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2	÷ 79) ×31.6 Sec	ond	
DH3	2442	1.792	0.2867	0.4	Plot 4.8.2 B	PASS
טחט	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 4	÷ 79) ×31.6 Sec	ond	
DH5	2442	2.950	0.3147	0.4	Plot 4.8.2 C	PASS
פחט	Note: Dwell tin	ne=Pulse Time (ms) × (1600 ÷ 6	÷ 79) ×31.6 Sec	cond	

(Plot 4.8.2.A: Channel 40: 2442MHz @ 8DPSK @ DH1)

(Plot 4.8.2.B: Channel 40: 2442MHz @ 8DPSK @ DH3)

(Plot 4.8.2.C: Channel 40: 2442MHz @ 8DPSK @ DH5)

4.8.3 π/4DQPSK Test Mode

A. Test Verdict

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
DH1	2442	0.440	0.1408	0.4	Plot 4.8.3 A	PASS
וחט	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2	÷ 79) ×31.6 Sec	ond	
DH3	2442	1.700	0.2720	0.4	Plot 4.8.3 B	PASS
סחט	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 4	÷ 79) ×31.6 Sec	ond	
DH5	2442	3.050	0.3253	0.4	Plot 4.8.3 C	PASS
סחט	Note: Dwell tin	ne=Pulse Time (ms) × (1600 ÷ 6	÷ 79) ×31.6 Sec	cond	

(Plot 4.8.3.A: Channel 40: 2442MHz @ π/4DQPSK @ DH1)

(Plot 4.8.3.B: Channel 40: 2442MHz @ π/4DQPSK @ DH3)

(Plot 4.8.3.C: Channel 40: 2442MHz @ π/4DQPSK @ DH5)

Page 52 of 61 Report No.: MWR1501002902

4.9. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2009 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength, and measurement frequency range from 9KHz to 26.5GHz.

LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

Remark: 1. We test conducted emissions at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH3.

4.9.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
00	2402	1GHz-25GHz	Plot 4.9.1 A1	-20	PASS
40	2442	1GHz-25GHz	Plot 4.9.1 B1	-20	PASS
78	2480	1GHz-25GHz	Plot 4.9.1 C1	-20	PASS

Note: 1. The test results including the cable lose.

(Plot 4.9.1 A1: Channel 00: 2402MHz @ GFSK)

(Plot 4.9.1 B1: Channel 40: 2442MHz @ GFSK)

(Plot 4.9.1 C1: Channel 78: 2480MHz @ GFSK)

4.9.2 π/4DQPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
00	2402	1GHz-25GHz	Plot 4.9.2 A3	-20	PASS
40	2442	1GHz-25GHz	Plot 4.9.2 B3	-20	PASS
78	2480	1GHz-25GHz	Plot 4.9.2 C3	-20	PASS

Note: 1. The test results including the cable lose.

(Plot 4.9.2 A1: Channel 00: 2402MHz @ π/4DQPSK)

(Plot 4.9.2 B1: Channel 40: 2442MHz @ π/4DQPSK)

(Plot 4.9.2 C1: Channel 78: 2480MHz @ π/4DQPSK)

4.9.3 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
00	2402	1GHz-25GHz	Plot 4.9.3 A1	-20	PASS
40	2442	1GHz-25GHz	Plot 4.9.3 B1	-20	PASS
78	2480	1GHz-25GHz	Plot 4.9.3 C1	-20	PASS

Note: 1. The test results including the cable lose.

(Plot 4.9.3 A1: Channel 00: 2402MHz @ 8DPSK)

(Plot 4.9.3 B1: Channel 40: 2442MHz @ 8DPSK)

(Plot 4.9.3 C1: Channel 78: 2480MHz @ 8DPSK)

4.10. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE

For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Page 60 of 61 Report No.: MWR1501002902

4.11. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum antenna gain of BT uesed was 0.00 dBi.

Maxwell Page 61 of 61 Report No.: MWR1501002902

5. Test Setup Photos of the EUT

.....End of Report.....