SISTEMAS DIGITAIS DE CONTROLE DISTRIBUIDO - SDCD

Redes industriais

PEDRO URBANO B. DE ALBUQUERQUE

NOÇÕES DE REDES DIGITAIS

Características para protocolos industriais

- **Determinísmo:** capacidade para transmissão de dados em tempo real;
- Interoperabilidade: capacidade que os sistemas abertos possuem de troca de informações entre eles, mesmo que sejam fornecidos por fabricantes diferentes;
- **Modularidade**: aspectos que caracterizam as facilidades de alteração e crescimento de um sistema;
- **Interconectividade:** maneira através da qual se podem conectar computadores de fabricantes distintos;
- **Portabilidade**: capacidade de um *software* de rodar em plataformas diferentes.

O REDES INDUSTRIAIS - BARRAMENTOS DE **CAMPO**

PRINCIPAIS PROTOCOLOS PARA FIELDBUS

HART

PNET

LON

Interbuses

FIP

BIT-BUS

Protocolos para BARRAMENTOS DE CAMPO

- MODBUS MODICON
- PROFIBUS. SIEMENS/PROFIBUS User Organization
- MAP (Manufacturing Automation Protocol) OSI
- EPA (Enhanced Performace Architeture) -> MAP2.2
- WorldFIP (Factory Information Protocol) AB +
- ISP(Interoperable Systems Projet) SIEMENS
- SP50 ISA (International Standards Association)
- FOUNDATION

4

PROTOCOLOS DE COMUNICAÇÃO PREDIAIS:

- **EIB** EIBA (European Installation Bus Association)
- LonWork (LonMark Interoperability Association)

BACnet - A Data Communication Protocol for Building
 Automation and Control Networks - ANSI/ASHRAE (American society of heating, refrigerating and air conditioning engineers)

5

- → PROPRIETÁRIOS: Protocolos não abertos
- **→ METASYS JOHNSON CONTROLS**
- **→ DeviceNET/ControlNET/DH+/DF1 ROCKWELL/ALLEN BRADLEY**
- → SMART DISTRIBUTED SYSTEM HONEYWELL

A organização que promove a DeviceNet é a ODVA, Open Device Vendor Association, que tem sede nos EUA. www.odva.org.

Fieldbus - categorias

nível mais baixo - Redes de dispositivos simples tais como sensores/atuadores em nível de BIT (do tipo entrada/saída). Ex: ASI; SERIPLEX; Interbus-S; Profibus-PA; HART;

nível médio - Redes de controladores (comunicação serial entre dispositivos - CLP) de campo. Ex: CAN; Lonworks; DeviceNET; Profibus-DP e

alto nível - Redes de controladores (mestres) para controles, e instrumentação mais sofisticada (inteligentes). Ex: SP50-H2; ETHERNET industrial; Profibus-FMS.

7

Fieldbus - Faixas de aplicação

Fieldbus Systems Range of Application

MODBUS

- Mestre-Escravo
- Modo Pergunta/resposta

Modos de mensagem

- ASCII (American Standard Code for Information Interchange) cada byte em uma mensagem será emitido como dois caracteres
- Modo RTU (Remote Terminal Unit) cada byte na mensagem contém dois caracteres hexadecimais de quatro bit cada

○ CRC-16 (*Cyclic Redundancy Check*)

START	ADDRESS	FUNCTION	DATA	CRC CHECK	END
T1-T2-T3-T4	8 BITS	8 BITS	AX 8 BITS	16 BITS	T1-T2-T3-T4

12

The PROFIBUS Family

EN 50170 Volume 2 and DIN 19245 Part 1 to 4

Factory Automation

PROFIBUS-DP

(Decentraliced Periphery)

fast

- plug and play
- efficient and cost effective

Automation for General Purposes

PROFIBUS-FMS

(Fieldbus Message Specification)

universal

- large variety of applications
- multi-master communication

Process Automation

PROFIBUS-PA

(Process Automation)

application oriented

- buspowered (option)
- intrinsic safety (option)

Device Profiles

Application Profiles

 Sistema aberto, independente de fabricante garantido pela normalização técnica européia EN 50 170 e garantida pela PROFIBUS User Organazation

PROFIBUS PA

- Voltado para automação de processo em áreas que necessitam de segurança intrínseca.
- Comunicação de dados e alimentação do equipamento usando tecnologia de dois fios de acordo com a norma internacional IEC 61158-2.
- Topologia barramento, arvore e estrela com 32 estações e taxa fixa de 31,25kbps
- FDE (fail disconection equipament).
- Derivação máxima de 30m em aplicações IS;
- Fonte e cabos dimensionados pelo nº de dispositivos (10mA por transmissor);

O PROFIBUS DP

- Otimizado para alta velocidade;
- Voltado especialmente para comunicações entre sistemas de automação e I/O distribuídos;
- Camadas 1 e 2 do modelo OSI + interface com o usuário;
- Funções diagnósticos

PROFIBUS-FMS

- Realizar a tarefa de comunicação a nível de célula.
- Grande flexibilidade com diversa funções disponíveis;
- 7 Camadas modelo OSI;
- Usado para tarefas de comunicação extensas e complexas;
- habilita comunicação incluindo tecnologia token passing, garantindo comunicação entre MESTRES da rede e permitindo tempos de acessos curtos.

31/03/16 15

OBS:

 O PROFIBUS DP e PA são voltados para aplicações de campo e possui protocolo Mestre/Escravo (DP: 32 por seguimento e máximo 126 escravos);

O O DP:

- podem coexistir diversos mestres na rede porém somente um mestre pode escrever em um escravo específico.
- Comunicação multiponto: broadcast (todos) e multicast (alguns);
 Comunicação cíclica e não cíclicas (alarmes);
- pode-se ativar/desativar escravos ciclicamente;
- Verificar configuração de escravos;
- Watch dog nos escravos;
- 246 bytes de I/O;

O Profibus-DP

- O Podemos utilizar para conectar: CLP's, IHM's, válvulas, conversores etc...
- O Graças ao seu rápido tempo de resposta, é uma rede bem conceituada no mercado.
- O Profibus-DP oferece alguns níveis de performance:
- DPV0: troca contínua de dados entre o mestre e os escravos;
- DPV1: troca de dados de tempos em tempos, ou seja, de acordo com a necessidade do usuário. Utilizado para parametrizar, controlar, monitorar etc.
- DPV2: troca de dados com alta precisão de tempo ex. motion control; e troca de dados entre escravos.

31/03/16 17

Mensagem

High-speed solution with DP/PA Link

- Interface module IM 153-2 High Feature (redundant)
- DP/PA coupler (max. 5 per IM)
- · Slave at PROFIBUS DP master at PROFIBUS PA
- Max. 64 PA devices (244 bytes I/O data)

Low-cost solution with direct addressing

DP/PA coupler

- Transparent for communication
- Ex-Version 13.5 V / 110 mA
- Non-Ex-Version 31 V / 1000 mA

20

Protocolos **PROFIBUS**

Protocolos **PROFIBUS**

PROFIBUS – Velocidade x distância

Data transmission rate	Max. segment length	
9.6 kbit/s	1000 m	
19.2 kbit/s	1000 m	
45.45 kbit/s	1000 m	
93.75 kbit/s	1000 m	
187.5 kbit/s	1000 m	
500 kbit/s	400 m	
1500 kbit/s	200 m	
3000 kbit/s	100 m	
6000 kbit/s	100 m	
12000 kbit/s	100 m	

PLCs and accessories

RW / July 97

PROFIBUS application-fields

31/03/16 27 _{RW / July 97}

FOUNDATION

○1994 - ISP + WorldFIP = FOUNDATION

- Compatível com os padrões SP50 (ISA)
- Especificações do IEC

FOUNDATION

FIELDBUS FUNDATION ®

4 a 20 mAcc X FIELDBUS

FOUNDATION

- A Data Link Layer (DLL) controla também o acesso ao meio através do Link Active Scheduler (LAS).
- O LAS é usado para programar as transmissões de mensagens, determinando e autorizando a troca dos dados entre dispositivos.
- O A Data Link do FOUNDATION fornece:
 - Método de controle de acesso bem dinâmico,
 - Serviços para vários modelos de dados, incluindo suporte a client/server, publisher/subscriber e distribuidor de pacotes de dados.
 - Suporta redes multi-segmentadas, transportando dados com total segurança e sincronismo.
 - Permite supervisão e configuração on-line dos dispositivos, e também manutenção on-line.

FOUNDATION

- User Layer dividida em Blocos e denomina-se Function Block Application Process (FBAP):
 - Resource Blocks determina os parâmetros específicos que pertence aos processos aplicativos (e.g., manufacturing ID, Tipos de dispositivos, etc.).
 - Function Blocks estabelece o controle das funções (e.g., controlador PID, entrada analógica, etc.
 - Transducer Blocks representa uma interface para sensores como os de temperatura, pressão e fluxo.
 - System Management
 - Network Management
 - Device Description Technology.

FOUNDATION – vantagens

- * Allen-Bradley
- * Chiyoda Corporation
- * Fischer Rosemount Systems
- * Fuji Eletric Co. Ltd.
- * Hitachi Ltd.
- * Honeywell Inc.
- * Institute for Automation
- * Instrumentation & Process Control Engineers Association
- * Smar
- * The Foxboro Company

AS-i

31/0

AS-i

REDE AS-i ACTUADOR SENSOR INTERFACE

- Fabricantes de sensores e atuadores formaram um consórcio para desenvolver um rede de baixo custo que vinha de encontro com as necessidades de aplicações no mais baixo nível de rede.
- 1996 criada a AS International Associations.
- Em um par de fios, caminharem junto a alimentação dos sensores ou atuadores em 24Vcc e a informação do estado dos mesmos.
- A configuração máxima da rede é de 31 participantes (escravos) ciclicamente por um mestre no nível de controle superior.

31/03/16 37

REDE AS-i ACTUADOR SENSOR INTERFACE

- Cada escravo é capaz de transferir 4 entradas e 4 saídas
- A conexão dos elementos pode ser feita em estrutura de árvore, estrela, barra ou em uma combinação das anteriores
- Módulos com grau de proteção IP67
- conectores M12 padrões para conexão de sensores

AS-i – módulo IP67

AS-i - Comparação

31/03/16

Comprimento do cabo

	Versão 2.0	Versão 2.1	
Número de escravos	Max 31	Max 62	
Número de E/S	124E + 124S	248E + 186S	
Sinais	Dados e energia até 7A	Dados e energia até 7A	
Meio	Cabo normal	2x1,5mm ²	
Máx. tempo de ciclo	5ms	10ms	
Transmissão de valor analógico	Via Função Block (FB no CLP)	Integrada no mestre	
Número de valores analógicos			
Procedimento de acesso	edimento de acesso Mestre/Escravo		
		4.0	

100m repetidores máx. 500m

100m repetidores máx. 500m

LONWORKS

LonWorks technology - LonMark Interoperability Association

- Local Operating Network (LON) Adequado principalmente para automação predial
- Produtos LONWORKS podem ser facilmente conectados à IEC's ICELAN-G™

O Principais componentes da LONWORKS são:

- LonTalk protocol
- Neuron chips
- LONWORKS transceivers
- Network management and applications software

LONWORKS

- LonTalk protocol Utiliza todas as camadas do modelo de referência OSI da ISO (International Organization for Standardization)
- O Capacidade da rede:
 - Subnets per domain: 255
 - Nodes per subnet: 127
 - Nodes per domain: 32,385
 - Groups per domain: 255
 - Number of domains: 281.474.976.710.656
 - Each node has a 48-bit ID

O

LONWORKS

Neuron chips

- VLSI device (Motorola e Toshiba)
- Três processadores de 8-bit`s

LONWORKS transceivers

- 78 kbps Twisted Pair Transceiver -1400m (Pior caso)
- 1.25 Mbps Twisted Pair Transceiver 130m
- Power Line Transceivers
- Radio Frequency Transceiver RF transceivers 400-470 MHz and 900 MHz.

CAN: Controller Area Network

- Controle em tempo real com alto nível de segurança;
- Robusto, criado para aplicações que necessite de simplicidade e confiabilidade (padronizado para industria automotiva);
- Leve em conta condições severas de temperatura, vibração e radiação eletromagnética.

31/03/16

CAN:

CAN

O Características principais:

- Normalizada (ISO 11519-1 e ISO 11898),
- Multimestre;
- Noção de prioridade de mensagem com distinção entre erros permanentes e temporários;
- Mensagens com até to 8 bytes protegida com CRC de 16 bits;
- CSMA/CD;
- Transmissão em modo diferencial de até 1 Mbits/s.

O

46

HART - Highway Addressable Remote Transducer

O Características principais :

Criado pela Rosemount - 1980's;

31/03/16

- Dois modos de comunicação simultaneamente: digital e analógico 4-20mA;
- Aplicados na integração de variáveis de processos remotos, com acesso a dados do processo, parâmetros e diagnósticos;
- Utiliza 3 camadas do modelo OSI: Física, enlace e aplicação.

47

PROTOCOLO HART®

Simultaneous Analog + Digital Communication

FSK freq: 1200 Hz 2200 Hz

Logical: "1" "0"

Chaveamento por deslocamento de frequência para sobrepor o sinal digital ao de 4-20mA

HART

Características principais :

- Tipo de comunicação Sinal
- Tradicional Analógico 4-20mA
- Digital FSK, baseado no padrão comunicação telefônica 2 da Bell
- Frequência Lógica "0" 2.200 Hz
- Frequência Lógica "1" 1.200 Hz

Sinal digital sobreposto ao sinal analógico

PROTOCOLO HART®

- Comunicação multi-mestre
- •256 variáveis por dispositivo
- •Formato de ponto flutuante EEE 754 (32 bits) com unidades de engenharia
- Topologia Ponto-a-ponto simultâneo analógico e digital
- Cadeia Multidrop somente digital (até 15 dispositivos)
- Comprimento do cabo em torno de 3000m

HART

C	SI Layer	Function	HART		
7 A	pplication	Provides the User with Network Capable Applications	Provides the User with Network Capable Applications		
6 P	resentation	Converts Application Data Between Network and Local Machine Formats			
5 S	ession	Connection Management Services for Applications			
4 Tı	ransport	Provides Network Independent, Transparent Message Transfer			
3 N	etwork	End to End Routing of Packets. Resolving Network Addresses			
2 D	ata Link	Establishes Data Packet Structure, Framing, Error Detection, Bus Arbitration	A Binary, Byte Oriented, Token Passing, Master / Slave Protocol.		
1 P	hysical	Mechanical / Electrical Connection. Transmits Raw Bit Stream	Simultaneous Analog & Digital Signaling. Normal 4-20mA Copper Wiring		

PROTOCOLO HART®

Dois "mestres" se comunicando com um "escravo"

9. PROTOCOLOS DE COMUNICAÇÃO DIGITAL

INTERBUS-S

ODispositivos de E/S

OProtocolo aberto

- Dispositivos de E/S de fabricantes diferentes podem trocar informações sem necessidade de software adicional.
- Desenvolvimento rápido da aplicação, já que as funções dos dispositivos se comunicam de forma idêntica.
- Suporte e treinamento simplificado quando todos os dispositivos operam identicamente.
- Software incorporado a funcionalidade dos dispositivos para promover maior facilidade de uso.

INTERBUS-S

INTERBUS-S

OSI	Interbus-S			
Layer	Basic	PCP		
	Implementation	Implementation		
7		PMS Layer		
6	Not Used			
5	140t O Sett	N ot U sed		
4		14 01 0 564		
3				
2	Data Link Layer			
1	Physical Layer			

- 010 / 100 Mbps
- OUso em gerenciamento
- OUso em conjunto com PROFIBUS
- OFacilidade e praticidade
- OPar trançado, cabo coaxial, fibra ótica.

ltens	Produtos para Ethernet Comercial	Produtos para Ethernet Industrial		
Temperatura de Operação	5°C a 40°C	0°C a 60°C		
Placa Multi Layer para a imunidade a ruído	Não	Sim		
Conectores	RJ-45	Parafuso, DB9, RJ-45 e Fibra Óptica		
Redundância	Não	Sim		
Encupsulamento industrial	Não	Sim		
Alimentação	110Vac	24Vdc		
Compatibilidade até 10 anos 31/03/16	Não	58 Sim		

- 10 / 100 Mbps
- Uso em gerenciamento
- Uso em conjunto com PROFIBUS
- O Facilidade e praticidade
- Par trançado, cabo coaxial, fibra ótica.

59

- Vantagens do Ethernet:
- grande popularidade da tecnologia com levado número de pessoal técnico qualificado
- baixo custo de implementação, treinamento e manutenção;
- alta velocidade;
- capacilidade de interconectividade e acesso remoto;
- capacidade de alavancar tecnologia comercialmente barata;
- os principais fabricantes de CLP ou SDCD suportam sistemas de fieldbus específicos, mas todos suportam Ethernet;
- capacidade de transportar elevado fluxo de informações entre o processo industrial e a corporação;
- O Habilidade de prover diagnóstico e atuação remotamente;

ODesvantagens para padrão de campo:

- OAusência de interoperabilidade pela falta da camada de aplicação (por si só, apresenta definições apenas para as camadas 1 e 2 do modelo ISO);
- Ofalta de determinismo;
- Otempo de resposta insuficiente para algumas aplicações;
- Odificuldades de sincronismo em nível de ms;
- ^{ଡା}fata de solução para segurança 1

X10

X10

X-10 Transmitte	V 40 5 \ \		
Estes módulos transmitem um sinal de baixa	X -10 ->		
tensão codificado que é sobreposto aos 220 volts			
da rede. Um transmissor é capaz de enviar até	X-10 Transmitte		
256 endereços pela instalação.			
X-10 2-Way	× 10 C		
Estes módulos, podem enviar e receber	X -10 ←▶ ()		
comandos para os 256 endereços, podendo			
ainda ser interligado a um controlador.	X-10 2-Way		
X-10 Receiver	V 10 . A .		
Com estes aparelhos pode-se receber sinal,	X -10 ∢		
enviados pelo transmissor. São codificados e	X-10 Receiver		
respondem de acordo com o sinal recebido.	X IU Receiver		
X-10 Wireless	X -10		
Capta um sinal de rádio de uma unidade RF e	λ -10		
insere o sinal X-10 na rede onde está instalado.	X-10 Wireless		
	7 20 771101033		

63

SDCD

• FIELDBUSES - Comparação entre os principais

	MODBUS	PROFIBUS-DP	PROF	IBUS-PA F	oundation H1 F	oundation H2
Mestres	1	1-32	1-32	N/A	N/A	
Componentes	124/3	32 -/	/32			
Topologia	Barramen	to Barrament	0	Barramento	Barra - 2 fios	Barra - 4fios
Distância Máxima	5 00 m	100 m		1900 m	1900 m	750 m
Máx Baud Rate	1 Mbps	12 Mbps		31,25 Kbps	31,25 Kbps	2,5 Mbps

Conclusão - outros

- BitBUS antigo protocolo da INTEL utilizando o microcontrolador 8044;
- SERCOS ganhou popularidade basicamente em controle/acionadores de motores elétricos;
- P-NET (Pascal NET) usado somente em alguns países da Europa nas indústrias de alimentos;
- ControlNET criado pela ALLEN-BRADLEY baseado no CAN, além de baseado no DeviceNET, DH+ e DH485;
- SDS (Smart Distributed System) criado pela HONEYWELL baseado no CAN, porém, assim como o DeviceNET, não possui interoperabilidade entre eles.
- WorldFIP protocolo de comunicação de campo de uso geral que foi muito aplicado até o final dos anos 90. Padronizado pela porma européia EM 50170.

FIM