Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER:NJM14558

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

SPice Model


```
* PART NUMBER: NJM14558
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (C) Bee Technologies Inc. 2007
.Subckt NJM14558 OUT1 -IN1 +IN1 V- +IN2 -IN2 OUT2 V+
       +IN1 -IN1 V+ V- OUT1 NJM14558_ME
X_U2
      +IN2 -IN2 V+ V- OUT2 NJM14558_ME
.ends NJM14558
.subckt NJM14558 ME 1 2 3 4 5
c1 11 12 7.5056E-12
 c2 6 7 26.000E-12
dc 5 53 dy
de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 4.2440E6 -1E3 1E3 4E6 -4E6
 ga 6 0 11 12 959.48E-6
 gcm 0 6 10 99 30.341E-9
 iee 3 10 dc 66.141E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 1.0610E3
 rc2 4 12 1.0610E3
 re1 13 10 276.68
 re2 14 10 276.68
 ree 10 99 3.0238E6
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 200.26
 vb 9 0 dc 0
 vc 3 53 dc 1.7384
 ve 54 4 dc 2.2384
vlim 7 8 dc 0
vlp 91 0 dc 2.1500
vln 0 92 dc 2.1500
.model dx D(Is=800.00E-18)
.model dy D(ls=800.00E-18 Rs=1m Cjo=10p)
.model gx1 PNP(Is=800.00E-18 Bf=445.64)
.model qx2 PNP(ls=898.3900E-18 Bf=492.91)
.ends
*$
```

Output Voltage Swing

Simulation result

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	4.000	3.976	-0.600
-Vout(V)	3.500	3.483	-0.486

Input Offset Voltage

Simulation result

Vos(mV)	Measurement	Simulation	Error
	0.5	0.5	0

Slew Rate

Simulation result

Slew Rate(v/us)	Measurement	Simulation	%Error
Siew Nate(v/us)	2.500	2.507	0.280

Input current

Simulation result

	Measurement	Simulation	%Error
lb(nA)	70.000	70.2	0.286
lbos(nA)	5.000	4.79	-4.200

Open Loop Voltage Gain vs. Frequency

Simulation result

	Measurement	Simulation	%Error
f-0dB(MHz)	5.000	5.047	0.940
Av-dc(dB)	100.000	99.813	-0.187

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

Common Mode Reject Ratio=100115/3.224=31053

_	Measurement	Simulation	%Error
CMRR	90.000	89.800	-0.222

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency Before

Remark Common-Mode Rejection Voltage gain

Before

