

Application of Deep Hierarchical VAE for ECG Reconstruction

Mithun Manivannan, MSc (c)

Schulich Heart Program Sunnybrook Health Sciences Centre

July 9th, 2025

Clinical Problem: Sleep-Cardiac Monitoring Gap

Established, but not well understood

- 80% of sleep apnea patients have undiagnosed cardiac arrhythmias
- 45% increase in cardiac events during specific sleep stages

Current Diagnostic Limitations

PSG studies lack continuous cardiac monitoring

Treatment Optimization Barriers

- CPAP therapy cardiac impact poorly quantified
- Sleep medication cardiac effects undermonitored
- Individual treatment response highly variable
- No personalized risk stratification tools

Workflow Inefficiencies

- Limited simultaneous PSG-ECG monitoring
- 3x cost increase for comprehensive assessment

Need: Integrated sleep-cardiac monitoring solution for comprehensive patient assessment

Technical Challenges in Cross-Modal Modeling

Why PSG-to-ECG Reconstruction is Challenging

Signal Processing

- PSG-ECG signals have different temporal dynamics during sleep transitions
- Sleep phenomena span microseconds to hours

Individual Variability

- Physiological Coupling
- Comorbidity Effects
- Medication Interactions
- Demographic Factors

Goal: Develop robust cross-modal models that work across diverse patients and clinical environments

Existing Methods

- Transition from GAN-based ECG generators to Variational Autoencoders (VAEs)
- cNVAE-ECG (Sviridov & Egorov, 2025): conditional hierarchical VAE
- Multi-scale latent hierarchy disentangles
 - beat-level morphology (P, QRS, T)
 pathology-level context
- Explicit likelihood and latent traversals ⇒ clinical interpretability & uncertainty quantification
- +2 % AUROC vs. state-of-the-art GANs. on PTB-XI

Proposed cNVAE-ECG architecture.

Dataset & Cross-Modal Framework

Multi-Modal Sleep Dataset

- **63** 63 sleep study participants (Aug–Oct 2024)
- 103,705 synchronized 30-second windows
- 8 channels (EEG, EOG, EMG, respiratory, ECG)
- Clinical Variables: 47 sleep architecture & physiological metrics
- 256 Hz sampling, SNR > 15 dB preprocessing

Data Splits (Patient-Level)

Proposed Architecture: Original cNVAE-ECG + Novel PSG Conditioning

Original cNVAE-ECG Framework

- Hierarchical VAE architecture (Sviridov & Egorov)
- Noise-to-ECG generation with class conditioning
- 12-lead ECG output with cardiac pathology labels
- Proven superior performance vs. GAN methods

Our Novel Contributions

T-CAIREM

- PSG signal input instead of random noise
- Sleep clinical variable conditioning framework
- Cross-modal PSG-to-ECG reconstruction paradigm
- Feasibility study for sleep-cardiac monitoring

Our Cross-Modal Adaptation Methodology

Mathematical Framework for PSG-to-ECG Reconstruction

Original cNVAE-ECG Model:

$$p(x_{ECG}|c_{pathology}) = \int p(x_{ECG}|z)p(z|c_{pathology})dz$$
 (1)

Our Adaptation for Cross-Modal Reconstruction:

$$p(x_{ECG}|x_{PSG}, c_{sleep}, s) = \int p(x_{ECG}|z)p(z|x_{PSG}, c_{sleep}, s)dz$$
 (2)

Novel Loss Function Extension:

$$\mathcal{L}_{our} = \underbrace{\mathcal{L}_{recon}}_{\text{ECG Fidelity (Original)}} + \underbrace{\mathcal{L}_{KL}}_{\text{Regularization (Original)}} + \underbrace{\mathcal{L}_{sleep-cond}}_{\text{Sleep Conditioning (Novel)}}$$
(3)

where $x_{PSG} \in \mathbb{R}^{7 \times T}$ (EEG, EOG, EMG, respiratory), $c_{sleep} \in \mathbb{R}^{47}$ (clinical variables), s (sleep stage)

7 / 9

Core Research Questions

Can we successfully replace random noise input with PSG signals in the cNVAE-ECG architecture?

Do basic sleep clinical variables (AHI, sleep stages) improve reconstruction quality over PSG signals alone?

What are the fundamental limitations preventing higher reconstruction quality?

Acknowledgements

Special Thanks

Dr. Christopher Cheung

Principal Investigator & Research Supervisor Schulich Heart Program, Sunnybrook Health Sciences Centre

T-CAIREM

Funding & institutional support for advancing Al-driven sleep-cardiac research

Sleep Laboratory Team @ Sunnybrook

Collaborative support for cross-modal dataset development

