Tutorial Sheet-Unit IV Quantum Computing

1. A state, in terms of three orthonormal basis vectors $|\phi_1\rangle$, $|\phi_2\rangle$ and $|\phi_3\rangle$ is given by

$$| \psi \rangle = \frac{1}{\sqrt{15}} | \phi_1 \rangle + \frac{1}{\sqrt{3}} | \phi_2 \rangle + \frac{1}{\sqrt{5}} | \phi_3 \rangle$$

Determine its normalization constant.

- 2. Find the constant "a" so that the states $|\psi\rangle = a|\phi_1\rangle + 5|\phi_2\rangle$ and $|\chi\rangle = 3a|\phi_1\rangle$ $-4 |\phi_2>$ are orthogonal; consider $|\phi_1>$, and $|\phi_2>$ to be orthonormal.
- 3. Consider two states $|\psi\rangle = i |\phi_1\rangle + 3i |\phi_2\rangle |\phi_3\rangle$ and $|\chi\rangle = |\phi_1\rangle i |\phi_2\rangle$ $+5i \mid \phi_3 > \text{where } \mid \phi_1 >, \mid \phi_2 > and \mid \phi_3 > \text{are orthonormal.}$

(a)
$$<\psi | \psi >$$
 (b) $<\chi | \chi >$ (c) $<\psi | \chi >$ (d) $<\chi | \psi >$

(a)
$$<\psi | \psi >$$
 (b) $<\chi | \chi >$ (c) $<\psi | \chi >$ (d) $<\chi | \psi >$
4. If $|\psi > = \begin{bmatrix} 5i \\ 2 \\ -i \end{bmatrix}$ and $|\phi > = \begin{bmatrix} 3 \\ 8i \\ -9i \end{bmatrix}$

- (a) $|\psi>^*$ and $<\psi|$
- (b) Is $|\psi\rangle$ is normalized? If not, calculate its normalization constant.
- (c) Are $|\psi\rangle$ and $|\phi\rangle$ orthogonal?
- 5. If $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, determine the following:
 - (a) I |0> and I |1>
 - (b) X |0> and X |1>
 - (c) Y |0> and Y |1>
 - (d) Z | 0 > and Z | 1 >
- 6. Two qubits are passed through a CNOT. The first qubit is the control qubit. What is the output for the following initial states?
 - (a) |00>
 - (b) |01>
 - (c) |11>
- 7. Obtain the state produced by these quantum circuits.

b.

0>