MA5233 Computational Mathematics

Lecture 1: Machine Numbers

Simon Etter

2019/2020

What is a computer?

▶ Memory: vector $mem \in \{0,1\}^{M}$

▶ Processor: read, compute, write

Binary numbers

$$d_{n-1} \dots d_0 = \sum_{k=0}^{n-1} d_k \, 2^k$$
 with $d_k \in \{0,1\}$.

Examples

Fixed-size variables

Problem

- ▶ We distinguish "10, 11" from "1011" using spaces.
- ▶ mem allows only 0 & 1, no spaces.

Solution: fix number of digits in numbers.

$$10 \rightarrow 0010 \qquad 101 \rightarrow 0101$$

Example

- Assume number of digits per number is fixed to four.
- ► Then "00100101" unambiguously represents the two numbers "0010" and "0101".

Consequences of fixed-size variables

- ► There is a largest representable integer.
- ▶ Wrap-around behaviour: 11 + 01 = 00, 00 01 = 11.

Example

- ▶ Julia UInt64 type represents unsigned 64-bit integer.
- ▶ Largest representable number: $2^{64} 1 \approx 1.8 \times 10^{19}$

Negative integers (two's complement)

Flip sign of leading digit:

$$d_{n-1} \dots d_0 = -d_{n-1} \times 2^{n-1} + \sum_{k=0}^{n-2} d_k 2^k$$

Rationale: signed and unsigned +,-,* map bits identically.

Examples

Note: wrap-around behaviour remains!

Example

- ▶ Julia Int64 type represents signed 64-bit integer.
- ▶ Range of representable numbers: -2^{63} to $2^{63} 1$.

IEEE floating-point numbers

$$s \times f \times 2^e$$
 where $egin{cases} s \in \{-1,1\} & \text{sign} \\ f := 1.f_0f_1\dots f_p & \text{significand/mantissa/fraction} \\ e \in \{e_{\textit{min}},\dots,e_{\textit{max}}\} & \text{exponent} \end{cases}$

Example: -1.01×2^2 represents $-1.25 \times 4 = -5$

Name	Julia	р	2 ^{-p}	e _{min}	e _{max}	2 ^{e_{max}}
single	Float32	23	1.2×10^{-7}	-126	127	1.7×10^{38}
double	Float64	52	2.2×10^{-16}	-1022	1023	9.0×10^{307}

Special values

- ► f = 0, $e = e_{min} 1$: ± 0
- ▶ f = 0, $e = e_{max} + 1$: $\pm Inf$
- ightharpoonup f
 eq 0, $e=e_{\max}+1$: NaN

Remarks on floating-point numbers

- ▶ Signed zero ± 0 is useful for branch cuts:
 - ▶ sqrt(-1.0 + 0.0im) -> +1.0im
 - ► sqrt(-1.0 0.0im) -> -1.0im
- ▶ ±Inf represents well-defined limit:
 - ▶ 1.0 / 0.0 -> Inf
 - ▶ 1.0 / -0.0 -> -Inf
 - ▶ 1 + Inf -> Inf
 - ▶ 2 * Inf -> Inf
 - ► Tnf + Tnf -> Tnf
 - ► Tnf * Tnf -> Tnf
 - ► Inf == Inf -> true
- ► NaN represents ill-defined limit:
 - ▶ 0.0/0.0 -> NaN
 - ► Inf Inf -> NaN
 - ▶ 0*Inf -> NaN
 - NaN == NaN -> false (use isnan())

Remarks on floating-point numbers

- Accuracy is relative!
 - x = 1.0; nextfloat(x) x -> 2.2e-16
 - x = 1e16; nextfloat(x) x -> 2
- ▶ There is an eps(T) > 0 such that 1 + x == 1 for all x < eps(T).
- Floating-point numbers don't represent this

but this

- Floats represent numbers which ints don't, and vice versa.
 - \triangleright x = 2.0⁶⁴; Int(x) -> InexactError()
 - $x = 2^62-2^8$; Int(Float64(x)) x -> 256

Remarks on floating-point numbers

- +,-,*,/,sqrt are all approximate.
- Many mathematical identities are violated:
 - (a+b)+c != a+(b+c)
 - ► (a+b)*c != a*c + b*c
 - ▶ b/a != 1/a*b

Fixed-point numbers (FixedPointNumbers.jl)

 $a \times 2^{-p}$ where a::Int and p some fixed number.

- Accuracy is absolute.
- ▶ +,- are exact (up to overflow).
- ► Hardly used in practice, but there are applications:
 - bank accounts,
 - time keeping.

Maiden launch of Ariane 5 rocket

- ► Ariane 5: more powerful successor to Ariane 4.
- ► Largely same software as Ariane 4.
- Horizontal velocity vx was stored as Float64, but occasionally converted to Int16.
- ► Flight trajectory of Ariane 5 led to vx exceeding the range of Int16.
- ▶ This resulted in software failure and loss of vehicle.
- https://youtu.be/gp_D8r-2hwk

Lessons to be learnt

- Think carefully about machine numbers!
- Always test your code!

References and further reading

- ► IEEE standard https://doi.org/10.1109/IEEESTD.2008.4610935
- Doubles
 https:
 //en.wikipedia.org/wiki/Double-precision_floating-point_format
- ► Two's complement https://en.wikipedia.org/wiki/Two%27s_complement
- ► Ariane 5 explosion
 http://www-users.math.umn.edu/~arnold/disasters/ariane.html