

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/11
Paper 1 Pure Mather	matics 1 (P1)		May/June 2017
			1 hour 45 minutes
Candidates answer o	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

\overline{b} .								
				•••••				
•••••		•••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	••••••	•••••
	•••••	•••••	•••••	•••••	•••••			
••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••
•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •			
•••••	•••••	•••••	••••••	••••••	•••••		•••••••	•••••
•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •			
•••••		•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
	•••••	•••••	•••••	•••••	•••••			•••••
	•••••							
	,				,			
••••••	•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••

2	Relative to a	n origin O,	the position	vectors of	points A	and B are	given l	by

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 2 \\ -6 \\ -7 \end{pmatrix}$,

and angle $AOB = 90^{\circ}$.

(i)) Find the value of p .	[2]
The	e point C is such that $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA}$.	
	e point C is such that $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA}$. Find the unit vector in the direction of \overrightarrow{BC} .	[4]
		[4]
		[4]
		[4]
) Find the unit vector in the direction of \overrightarrow{BC} .	
) Find the unit vector in the direction of \overrightarrow{BC} .	
) Find the unit vector in the direction of \overrightarrow{BC} .	
) Find the unit vector in the direction of \overrightarrow{BC} .	
) Find the unit vector in the direction of \overrightarrow{BC} .	

[3	$\sin \theta$	$1 + \cos \theta$	$\sin \theta$	the identity	110,6 11
	•••••	•••••			
	•••••	•••••	•••••		•••••
					•••••
	•••••				
	•••••				
	•••••	•••••	•••••	•••••	•••••
					•••••
	•••••				
	•••••				•••••
	•••••				
	•••••				
	••••				
	•••••				
	•••••				
	•••••				
	•••••				
					•••••

3

	-	sin ₩	$1 + \cos \theta$	$\cos \theta$	$^{\circ} \leqslant \theta \leqslant 360^{\circ}.$	
		•••••				
• • • • • • • • • • • • • • • • • • • •	•••••	•••••				
	•••••	•••••	•••••	•••••	•••••	
•••••						
•••••••	••••••	•••••	•	•••••••••••	•••••	
	•••••	•••••	•••••	••••••	•••••	
		•••••				
	•••••	•••••		••••••	•••••	

	of all the term	ns in the pi	ogiession	•				
					•••••			
•••••	•••••	••••	••••••	••••••	•••••	•••••	•••••	•••••
••••••			•••••	•••••	•••••	•••••	••••••	
••••••	•••••	•••••	••••••		••••••	••••••	••••••	••••••
•••••			••••••	••••••	•••••	•••••	••••••	
••••••				•••••	•••••			
••••••			•••••	•••••	•••••	•••••		
			•••••	•••••	•••••			
••••••	•••••	••••	••••••	••••••	•••••	•••••	•••••	
••••••								
				•••••				
•••••	•••••		••••••	•••••	•••••	•••••	••••••	••••••
•••••			••••••		•••••	•••••	•••••	•••••
	•••••							

increases by 2.5	ool allocates a s % of the amount nount allocated i	allocated the pa	revious year. Ir	n 2005 the scho	
•••••					
•••••					

5	The equation	of a curve	is $y = 2 \cos x$.
---	--------------	------------	---------------------

(i)	Sketch the graph of $y = 2 \cos x$ for $-\pi \le x \le \pi$, stating the coordinates of the point of intersect	io	n
	with the y-axis.	[2	2]

Points P and Q lie on the curve and have x-coordinates of $\frac{1}{3}\pi$ and π respectively.

(ii)	Find the length of PQ correct to 1 decimal place. [2]

The line through P and Q meets the x-axis at H(h, 0) and the y-axis at K(0, k). (iii) Show that $h = \frac{5}{9}\pi$ and find the value of k. [3]

The horizontal base of a solid prism is an equilateral triangle of side x cm. The sides of the prism are vertical. The height of the prism is h cm and the volume of the prism is 2000 cm^3 .

(i) Express h in terms of x and show that the total surface area of the prism, $A \text{ cm}^2$, is given by $A = \frac{\sqrt{3}}{2}x^2 + \frac{24000}{\sqrt{3}}x^{-1}.$

	2	$\sqrt{3}$		
			•••••	
	•••••	•••••	•••••	
	•••••			
	•••••			

	Given that x can vary, find the value of x for which A has a stationary value.
)	Determine, showing all necessary working, the nature of this stationary value.

Find the equation of the o	curve.	

	•••••
	••••
	•••••
	••••••
	•••••
	•••••
ind the set of values of x for which the gradient of the curve is positive.	

In the diagram, OAXB is a sector of a circle with centre O and radius $10 \, \text{cm}$. The length of the chord AB is $12 \, \text{cm}$. The line OX passes through M, the mid-point of AB, and OX is perpendicular to AB. The shaded region is bounded by the chord AB and by the arc of a circle with centre X and radius XA.

(i)	Show that angle <i>AXB</i> is 2.498 radians, correct to 3 decimal places. [3]
(ii)	Find the perimeter of the shaded region. [3]

		•••••
		•••••
		•••••
		•••••
(iii)	Find the area of the shaded region.	[3]
(111)	Thid the area of the shaded region.	
		•••••
		•••••
		•••••

) Find	an expression for f ⁻¹	$^{1}(x)$.				
•••••		••••••	•••••		•••••	•••••
•••••		•••••	•••••	••••••	•••••	· • • • • • • • • • • • • • • • • • • •
•••••		•••••			•••••	
•••••						
•••••						
•••••			•••••			•••••
•••••						
•••••						
						, .
•••••						
•••••		••••••	•••••		•••••	••••••
•••••		••••••	•••••	••••••	•••••	· • • • • • • • • • • • • • • • • • • •
•••••		••••••			•••••	
•••••						

The function g is defined by $g: x \mapsto 4x + a$ for $x \in \mathbb{R}$, where a is a constant.

Find the value of a for which	gf(-1) = 3.	
		•••••
Find the possible values of <i>a</i>	given that the equation $f^{-1}(x) = g^{-1}(x)$ has	two equal roots.
•••••		

10

The diagram shows part of the curve $y = \frac{4}{5 - 3x}$.

(i)	Find the equation of the normal to the curve at the point where $x = 1$ in the form $y = mx + c$, where m and c are constants. [5]

The shaded region is bounded by the curve, the coordinate axes and the line x = 1.

	ough 500	0° about	uic x-axi	13.							
••••	••••••	••••••	••••••	••••••	•••••	•••••	••••••	•••••	••••••	••••••	••••••
• • • •											
••••	•••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		
••••	• • • • • • • • • • • • • • • • • • • •	••••••		•••••	•••••	••••••		•••••	•••••	••••••	•••••
••••		•••••		•••••			•••••				•••••
••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
••••	•••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
••••		••••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••
••••	•••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••					•••••						
••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••
••••	•••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
••••		• • • • • • • • • • • • • • • • • • • •			•••••	•••••	••••••	•••••	•••••		•••••
••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	••••••	••••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.