### **CNN-powered Wheat Disease Detection**



Theo Kim, Yoon Cho, William Zhang
GitHub
May 9, 2025

### The wheat industry

Worth **\$200 billion** USD – and growing.

#### **Wheat Market Report Scope**

| Report Attribute          | Details                         |
|---------------------------|---------------------------------|
| Market size value in 2024 | USD 202.01 billion              |
| Revenue forecast in 2030  | USD 270.88 billion              |
| Growth rate               | CAGR of 4.28% from 2024 to 2030 |

#### The world's food

Wheat is a worldwide source of food.

## Wheat consumption today

With a massive production volume of 750 million tons per year, wheat is now a staple food for around 35% of the world's population. Of this production volume, nearly 70% is used for human consumption, with 20% reserved for animal feed and the rest used for other purposes such as biofuel production. To get to this point, the Green

#### Disease and pests

The cost is enormous.

#### **NIFA AUTHORS**

Lori Tyler Gula, Senior Public Affairs Specialist

Between 20% to 40% of global crop production is lost to pests annually. Each year, plant diseases cost the global economy around \$220 billion, and invasive insects around \$70 billion, according to the Food and Agriculture Organization of the United Nations. Weeds are another significant biotic constraint on global food production.

## Disease and pests



Wheat rust



Aphid bugs

# Billion dollar losses

+ Global food losses =

A very important problem to solve







### Our project: wheat disease detection



#### Treatment recommendations

Based on model output → lookup corresponding treatment in table.

|    | Disease              | Recommended treatments                                                        | Source links                                   |
|----|----------------------|-------------------------------------------------------------------------------|------------------------------------------------|
| 0  | Aphid                | Imidacloprid seed treatment; Foliar insecticid                                | https://onlinelibrary.wiley.com/doi/full/10.10 |
| 1  | Black Rust           | Triazole fungicides (e.g., tebuconazole); Stro                                | https://www.cropscience.bayer.us/articles/cp/w |
| 2  | Blast                | ${\it Tebuconazole + Pyraclostrobin; Azoxystrobin +}$                         | https://ageconsearch.umn.edu/record/312377 l h |
| 3  | Brown Rust           | Tebuconazole; Azoxystrobin + Tebuconazole mixt                                | https://extension.uga.edu/publications/detail  |
| 4  | Common Root Rot      | Seed treatment fungicides (fludioxonil, pyracl                                | https://extensionpubs.unl.edu/publication/g199 |
| 5  | Fusarium Head Blight | Prothioconazole + Tebuconazole (Prosaro); Pydi                                | https://site.extension.uga.edu/turnerab/2022/0 |
| 6  | Leaf Blight          | Chlorothalonil; Mancozeb                                                      | https://hort.extension.wisc.edu/articles/home  |
| 7  | Mildew               | Triadimenol seed treatment; Azoxystrobin folia                                | https://plantpathology.ca.uky.edu/files/ppfs-a |
| 8  | Mite                 | Dimethoate; Pyrethroids (lambda-cyhalothrin)                                  | https://extension.colostate.edu/topic-areas/in |
| 9  | Septoria             | Propiconazole; Azoxystrobin                                                   | https://cropprotectionnetwork.org/encyclopedia |
| 10 | Smut                 | $\label{thm:proposed} \mbox{Tebuconazole seed treatment; Diffenoconazole se}$ | https://eupdate.agronomy.ksu.edu/article_new/u |
| 11 | Stem fly             | No effective chemical control; use cultural pr                                | https://efotg.sc.egov.usda.gov/references/publ |
| 12 | Tan spot             | Tebuconazole; Trifloxystrobin                                                 | https://extensionpubs.unl.edu/publication/g429 |
| 13 | Yellow Rust          | Prothioconazole + Azoxystrobin (Trivapro); Teb                                | https://site.extension.uga.edu/turnerab/2022/0 |



#### Kaggle

Dataset can be found here.



KUSHAGRA3204 AND 2 COLLABORATORS · UPDATED A YEAR AGO







) :

#### **Wheat Plant Diseases**

Classification of various wheat plant diseases with almost 14,000+ images



Data Card

Code (8)

Discussion (3)

Suggestions (0)

#### **About Dataset**

#### Wheat Plant Diseases Dataset -

This dataset is designed to empower researchers and developers in creating robust machine learning models for classifying various wheat plant diseases. It offers a collection of high-resolution images showcasing real-world wheat diseases without the use of artificial augmentation techniques.

#### Usability ①

7.50

#### License

CC0: Public Domain

Expected update frequency

Annually

#### The data



14 disease classes, 1 healthy class.

## We trained 3 CNNs and compared their performance

- ResNet18
- MobileNetV2
- Customized CNN

#### ResNet18

A good baseline for image recognition.

Changed output layer to match our 14 disease classes and 1 healthy class.



Fig. 2 Original ResNet-18 Architecture

#### MobileNetV2

- Used for classification, object detection
- Reduce the number of parameters and computational cost.



#### **Customized CNN**

A homemade CNN from the ground up.

- Uses simple convolutions, no residual connections.
- Standard convolutions increase computational cost per layer.
- Overall relatively fast but less robust for complex patterns.



## Training setups

| Model           | ResNet18      | MobileNetV2   | Customized CNN |  |
|-----------------|---------------|---------------|----------------|--|
| Layers          | 18            | 53            | 8              |  |
| Loss            | Cross-Entropy | Cross-Entropy | Cross-Entropy  |  |
| Optimizer       | Adam          | Adam          | Adam           |  |
| Learning Rate   | 0.0001        | 0.0001        | 0.001          |  |
| Epochs          | 20            | 10            | 30             |  |
| Early Stopping? | Yes           | No            | No             |  |

## Early results

| Model                        | ResNet18 | MobileNetV2 | Customized CNN |
|------------------------------|----------|-------------|----------------|
| Test set accuracy            | 92.40%   | 68.4%       | 90.27%         |
| Average test class precision | 0.952    | 0.677       | 0.917          |
| Average test class recall    | 0.924    | 0.704       | 0.903          |
| Average F1 score             | 0.908    | 0.681       | 0.885          |

## Compare the performance of CNNs

- ResNet18 and the Customized CNN have a better performance on the classification.
- MobileNetV2 has a lower accuracy because it is lightweight with limited capacity, and has a weaker feature extraction ability.
- ResNet18 has more complex patterns and residual blocks, which captures richer and deeper representation.

#### Issues

Model is great at predicting disease – but struggles with healthy wheat

|    | Class                | Accuracy (%) | Correct | Total                                   |
|----|----------------------|--------------|---------|-----------------------------------------|
|    |                      |              |         | 100000000000000000000000000000000000000 |
| 0  | Aphid                | 96.0         | 48      | 50                                      |
| 1  | Black Rust           | 96.0         | 48      | 50                                      |
| 2  | Blast                | 100.0        | 50      | 50                                      |
| 3  | Brown Rust           | 100.0        | 50      | 50                                      |
| 4  | Common Root Rot      | 100.0        | 50      | 50                                      |
| 5  | Fusarium Head Blight | 98.0         | 49      | 50                                      |
| 6  | Healthy              | 10.0         | 5       | 50                                      |
| 7  | Leaf Blight          | 96.0         | 48      | 50                                      |
| 8  | Mildew               | 98.0         | 49      | 50                                      |
| 9  | Mite                 | 96.0         | 48      | 50                                      |
| 10 | Septoria             | 100.0        | 50      | 50                                      |
| 11 | Smut                 | 100.0        | 50      | 50                                      |
| 12 | Stem fly             | 100.0        | 50      | 50                                      |
| 13 | Tan spot             | 96.0         | 48      | 50                                      |
| 14 | Yellow Rust          | 100.0        | 50      | 50                                      |



## Healthy or Disease?

The difference between healthy and diseased wheat is not always clear.



Healthy



Mildew

## Possible Solutions

- 1. Data augmentation
- 2. Class balancing
- Loss Reweighting (higher penalty for incorrect healthy classification)



#### Data augmentation, class rebalancing, custom loss results

It is difficult for image recognition models to detect an absence of disease!

| Class                | Accuracy (%) | Correct | Total | Class                | Accuracy (%) | Correct | Total |
|----------------------|--------------|---------|-------|----------------------|--------------|---------|-------|
| Aphid                | 76.0         | 38      | 50    | Aphid                | 66.0         | 33      | 50    |
| Black Rust           | 56.0         | 28      | 50    | Black Rust           | 46.0         | 23      | 50    |
| Blast                | 88.0         | 44      | 50    | Blast                | 96.0         | 48      | 50    |
| Brown Rust           | 30.0         | 15      | 50    | Brown Rust           | 24.0         | 12      | 50    |
| Common Root Rot      | 90.0         | 45      | 50    | Common Root Rot      | 78.0         | 39      | 50    |
| Fusarium Head Blight | 62.0         | 31      | 50    | Fusarium Head Blight | 42.0         | 21      | 50    |
| Healthy              | 6.0          | 3       | 50    | Healthy              | 6.0          | 3       | 50    |
| Leaf Blight          | 70.0         | 35      | 50    | Leaf Blight          | 48.0         | 24      | 50    |
| Mildew               | 78.0         | 39      | 50    | Mildew               | 54.0         | 27      | 50    |
| Mite                 | 60.0         | 30      | 50    | Mite                 | 30.0         | 15      | 50    |
| Septoria             | 92.0         | 46      | 50    | Septoria             | 84.0         | 42      | 50    |
| Smut                 | 92.0         | 46      | 50    | Smut                 | 78.0         | 39      | 50    |
| Stem Fly             | 78.0         | 39      | 50    | Stem Fly             | 74.0         | 37      | 50    |
| Tan Spot             | 48.0         | 24      | 50    | Tan Spot             | 40.0         | 20      | 50    |
| Yellow Rust          | 100.0        | 50      | 50    | Yellow Rust          | 98.0         | 49      | 50    |

Original

New

## Further research and final thoughts

- More images for healthy wheat
- Powerful architecture ex.
   EfficientNetB3
- Add attention mechanism, focus on disease patterns



Thank you!