Phase Prediction of High-Entropy Alloys

By Eric Oberholtz, Hao Luu, Aidan Rosen, Matthew Segovia

HEA Alloys

Blanket (with first wall armour tiles)

Divertor

Unique metal alloys ideal for utilization in extreme environments due to their strength, structural stability, and resistance to corrosion and radiation

Nuclear applications: radiation shielding

These alloys are composed of at least 5
elements with concentrations between 5 and
35 percent the atomic percentage, forming
solid state solutions

Motivation

Altering the elemental concentrations distorts the lattice structure, changing alloy resistance properties

- Can be used to an advantage
 - Achieving resistance to high temps

- Experimental process for testing characteristics is extremely time consuming
- Machine Learning models can be used to hasten the process and discover a general trend to identify alloy properties (e.g. phase prediction)

Goals

- To be able to determine crystal structures and the properties that HEAs typically have
- Analyze and figure out techniques for better data cleaning and learning
- Optimize each model with their hyperparameters for better performance
- Benchmark against the untuned versions of each model

Physical Parameters

Each HEA is described by a chemical composition tied to the following features:

 ΔH_{mix} : Thermal Energy of the state

 ΔS_{mix} : Deviation from perfect order of the state

δ: Atomic Size Difference

 Δx : General form of electron cloud

VEC: % e⁻ in Valence Band

Phase: FCC, BCC, IM, FCC+BCC

Phase Determination

For a given composition, the phase is determined by the VEC value.

- BCC when VEC < 6.87
- FCC when VEC > 8.0
- BCC + FCC when VEC between 6.87 and 8.0

Composition	ΔH_{mix}	ΔS_{mix}	δ	Δχ	VEC	Phase
Al _{0.5} NbTaTiV	-8.395062	13.145944	3.7375048	0.0496158	4.55556	ВСС
$Hf_{1.375}Nb_{0.25}Ta_{0.25}Ti_{1.75}Zr_{1.3}$	0.98	11.449449	4.4954539	0.1147168	4.1	ВСС
$HfMo_{0.5}NbTiV_{0.5}Si_{0.5}$	-31.11815	14.53503	9.4420482	0.2565635	4.53191	IM

Data Set

- 1200 alloys in total
- 30 metallic elements
 - Lots of NaN values

Out[8]:

	ΑI	Co	Cr	Fe	Ni	Cu	Mn	Ti	V	Nb	 Pt	Υ	Pd	Au	dHmix	dSmix	δ	Δχ	VEC	Phases
0	0.111	NaN	NaN	NaN	NaN	NaN	NaN	0.222	0.222	0.222	 NaN	NaN	NaN	NaN	-8.395	13.146	3.738	0.050	4.556	1
1	0.158	NaN	NaN	NaN	NaN	NaN	NaN	0.215	0.215	0.215	 NaN	NaN	NaN	NaN	-9.352	13.333	3.863	0.233	4.684	1
2	0.588	NaN	NaN	NaN	NaN	NaN	NaN	0.235	0.235	0.235	 NaN	NaN	NaN	NaN	- 4.042	12.708	4.003	0.243	4.882	1
3	0.588	NaN	NaN	NaN	NaN	NaN	NaN	0.235	0.235	0.235	 NaN	NaN	NaN	NaN	-4.817	12.708	3.832	0.050	4.647	1
4	0.476	NaN	NaN	NaN	NaN	NaN	NaN	0.239	0.239	NaN	 NaN	NaN	NaN	NaN	-3.356	12.569	4.018	0.244	4.905	1

5 rows × 36 columns

- Compiled from: Materials for Design Open Repository. High Entropy Alloys
- IM: 0, BCC: 1, FCC: 2, BCC+FCC: 3

Data Pre-processing

- The data is compiled from multiple sources so some values are NaN
- Data needs to be imputed
 - One technique we used is getting the closest neighbor's values and using the mean
- Feature scaling:
 - We need to minimize the skewing by introducing a cap on data points
 - One solution is to use Z-Score capping, we essentially set a max of 3 standard deviations that a data value can go up to

Example of De-skewing

The 5 Models:

Methodology - K Nearest Neighbors

Hyperparameters:

- K Neighbors: between 1 and 25
- Weight: uniform vs distance
- Metric:
 - Euclidean: straight line distance
 - Manhattan: sum of total difference of each component
 - Chebyshev: max of each components difference
 - Cosine: dot product definition

Methodology - Support Vector Machine

Hyperparameters:

- Regularization parameter: between 1e-3 and 1e3
- Kernel: linear, poly, rbf, sigmoid
- Degree (for poly): between 2 and 5
- Gamma (for poly, rbf, sigmoid): scale, auto

Methodology - Decision Tree

Hyperparameters:

- Max depth: how many levels ("big") the tree is. Need to optimize for over/underfitting
- Minimum Samples Split: Threshold of samples a node has before splitting.
- Minimum Samples Leaf: Counterpart of minimum samples. When splitting stops which is important for dictating size of the tree.

Methodology - Extreme Gradient Boost / Random Forest

Hyperparameter:

- Number of trees
- Criterion: Gini impurity
- Depth: height of the tree
- Min Sample leaf: least number of samples to be leaf node

Results: Confusion Matrix

XGBoost Classification

BCC

Predicted Label

FCC

FCC+BCC

True Label

FCC

FCC+BCC

Model Performance

Summary

- HEA are metallic compounds with useful properties, but discovery of novel compositions is laborious and expensive experimentally
- We can use multi-classifiers to predict the phase structure of HEAs
- We clean and prepare the data by removing NaNs and substituting with synthetic values
- The resulting performance is best for the BCC phase

Next Steps

- Future work will focus on:
 - Reduce the complexity of each model to increase prediction accuracy
 - Increase the range over which hyperparameters are queried when tuning
 - Apply the best model towards compositions outside of the dataset
- Bigger picture:
 - Raise model confidence to discover new alloys and their applications
 - Incorporate more data to expand which phases the model can classify

Reference

Original paper:

• Singh, S., Katiyar, N.K., Goel, S. *et al.* Phase prediction and experimental realisation of a new high entropy alloy using machine learning. *Sci Rep* 13, 4811 (2023). https://doi.org/10.1038/s41598-023-31461-7

Data:

Precker, C.E., Gregores Coto, A., Muíños Landín, S. (2021) Materials for Design Open Repository. High Entropy
 Alloys. (version 0) [Dataset]. Zenodo. https://zenodo.org/records/5155150