

Homework for the Lecture

Algebra and Dynamics of Quantum Systems

Stefan Waldmann

Winter Term 2023/2024

$\underset{\mathrm{revision: }2023\text{-}10\text{-}27}{Homework} \underset{12:42:57}{Sheet} \underset{+0200}{No} \ 3$

Last changes by Stefan@JMU on 2023-10-27 Git revision of algdyn-ws2324: 4e24dc2 (HEAD -> master)

31.10.2023

(27 Points. Submission deadline 7.11.2023)

Homework 3-1: Sums of squares and the Motzkin polynomial

We consider the *-algebra $\mathscr{C}^{\infty}(\mathbb{R}^2)$ of complex-valued smooth functions on the plane.

i.) (4 Points) Show that the polynomial $p \in \mathbb{C}[x,y] \subseteq \mathscr{C}^{\infty}(\mathbb{R}^2)$

$$p(x,y) = 1 + x^4y^2 + x^2y^4 - 3x^2y^2$$
(3.1)

is non-negative on \mathbb{R}^2 but not a sum of squares of polynomials. This an explicit example to the 17th Hilbert problem due to Motzkin [1].

Hint: Use the AM-GM inequality to check that p is actually pointwise non-negative.

ii.) (2 Points) Show that p is not even a sum of squares inside the bigger algebra $\mathscr{C}^{\infty}(\mathbb{R}^2)$.

Hint: Write $p = \sum_{i=1}^n \overline{f}_i f_i$ with smooth functions $f_i \in \mathscr{C}^{\infty}(\mathbb{R}^2)$ and use Taylor expansions of the f_i around 0.

Homework 3-2: Uncertainty, characters and eigenvectors

Let \mathscr{A} be a unital *-algebra and let $\omega \colon \mathscr{A} \longrightarrow \mathbb{C}$ be a state.

i.) (2 Points) Let $a, b \in \mathcal{A}$ be given. Show that

$$\left|\omega(a^*b) - \omega(a^*)\omega(b)\right|^2 \le \operatorname{Var}_{\omega}(a)\operatorname{Var}_{\omega}(b) \tag{3.2}$$

holds.

ii.) (2 Points) Show the uncertainty relation

$$4\operatorname{Var}_{\omega}(a)\operatorname{Var}_{\omega}(b) \ge \left|\omega([a,b])\right|^2. \tag{3.3}$$

for Hermitian $a, b \in \mathcal{A}$.

- iii.) (2 Points) Show that $\omega \colon \mathcal{A} \longrightarrow \mathbb{C}$ is a unital *-homomorphism if and only if ω is a state that fulfills $\operatorname{Var}_{\omega}(a) = 0$ for all $a \in \mathcal{A}$.
- iv.) (2 Points) Finally, let \mathcal{H} be a pre-Hilbert space and $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ a unital *-subalgebra of all adjointable endomorphisms of \mathcal{H} . Given $A \in \mathcal{A}$ and $\phi \in \mathcal{H}$ with $\langle \phi, \phi \rangle = 1$, then show that the positive linear functional

$$\omega_{\phi} \colon \mathcal{A} \ni B \mapsto \omega_{\phi}(B) = \langle \phi, B\phi \rangle \in \mathbb{C}$$
 (3.4)

fulfills $\operatorname{Var}_{\omega_{\phi}}(A) = 0$ if and only if ϕ is an eigenvector of A to the eigenvalue $\omega_{\phi}(A)$.

Homework 3-3: Functorial properties of the GNS construction

Let $\Phi: \mathscr{A} \longrightarrow \mathscr{B}$ be a morphism of *-algebras \mathscr{A} and \mathscr{B} as well as $\omega: \mathscr{B} \longrightarrow \mathbb{C}$ be a positive linear functional.

- i.) (1 Point) Verify that the pull-back $\Phi^*\omega = \omega \circ \Phi$ is a positive linear functional on \mathscr{A} .
- ii.) (2 Points) Prove that for the Gel'fand ideals we have

$$\Phi(\mathcal{J}_{\Phi^*\omega}) \subseteq \mathcal{J}_{\omega}. \tag{3.5}$$

Conclude that Φ descends to a well-defined linear map $U_{\phi} \colon \mathcal{H}_{\Phi^*\omega} \longrightarrow \mathcal{H}_{\omega}$.

- iii.) (1 Point) Show that the map U_{Φ} is isometric. Note that it may well happen that U_{Φ} is not adjointable.
- iv.) (1 Point) Prove that the isometry U_{Φ} is a intertwiner along Φ , i.e. for all $a \in A$ we have

$$\pi_{\omega}(\Phi(a))U_{\Phi} = U_{\Phi}\pi_{\Phi^*\omega}(a) \tag{3.6}$$

as maps between the corresponding GNS representations of \mathcal{A} and \mathcal{B} .

- v.) (1 Point) Suppose now in addition that Φ is surjective. Show that in this case the intertwiner U_{Φ} is unitary.
- vi.) (2 Points) If $\Psi: \mathscr{C} \longrightarrow \mathscr{A}$ is yet another *-homomorphism, what can we say about the relations of U_{Ψ} , U_{Φ} and $U_{\Psi \circ \Phi}$? What is $U_{\mathrm{id}_{\mathscr{A}}}$?

Homework 3-4: Unitary group representations

Let G be a group and let \mathscr{A} be a *-algebra over \mathbb{C} . Moreover, assume that $\Phi \colon G \longrightarrow *-\operatorname{Aut}(\mathscr{A})$ is a group morphism, i.e. G acts on \mathscr{A} by *-automorphisms.

- i.) (1 Point) Show that the properties of Φ are equivalent to a map $\Phi \colon G \ni g \mapsto \Phi_g \in {}^*\text{-}\operatorname{Aut}(\mathscr{A})$ with $\Phi_e = \operatorname{id}_{\mathscr{A}}$ and $\Phi_g \circ \Phi_h = \Phi_{gh}$ for all $g, h \in G$.
- ii.) (3 Points) Suppose now that $\omega \colon \mathcal{A} \longrightarrow \mathbb{C}$ is a positive functional on \mathcal{A} which is G-invariant, i.e. $\Phi_g^* \omega = \omega$ for all $g \in G$. Show that the construction of $U_g = U_{\Phi_g}$ form Homework 3-3 yields a unitary representation of G on the GNS pre-Hilbert space \mathcal{H}_{ω} .
- iii.) (1 Point) Show that the GNS representation π_{ω} of \mathscr{A} is G-covariant in the sense that

$$\pi_{\omega}(\Phi_{q}(a)) = U_{q}\pi_{\omega}(a)U_{q}^{*} \tag{3.7}$$

holds for all $g \in G$ and $a \in \mathcal{A}$.

References [1] MOTZKIN, T. S.: The arithmetic-geometric inequality. In: Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965), 205–224. Academic Press, New York, 1967. 1