Álgebra Superior I: Tarea 01

Rendón Ávila Jesús Mateo February 19, 2025

Universidad Nacional Autónoma de México Facultad de Ciencias Profesora: Cristina Angélica Núñez Rodríguez 1. Encuentra una proposición adecuada para describir a cada uno de los siguientes conjuntos.

a)
$$A = \{30, 31, 32, ...\}$$

 $A = \{x \in \mathbb{N} \mid x \ge 30\}$

b)
$$B = \{-1, 2, -3, 4, -5, 6, -7, ...\}$$

 $B = \{x \in \mathbb{N} - \{0\} \mid \text{ si } x \mod 2 \neq 0 \Rightarrow -1(x)\}$

c)
$$C = \{-1, 3, -5, 7, -9, 11, ...\}$$

 $C = \{x \mid \forall n \in \mathbb{N} \text{ se cumple } x = (-1)[(-1)^n(2n+1)]\}$

d)
$$D = \{4, 7, 12, 19, ...\}$$

 $D = \{x \mid x = 4 + (n-1)^2, \forall n \in \mathbb{N}\}$

2. Describe los siguientes conjuntos listando todos sus elementos.

a)
$$\{x \in \mathbb{N} \mid x^2 - 3x = 0\}$$

 $\{3\}$

b)
$$\{n^3 + n^2 \mid n \in \{0, 1, 2, 3, 4\}\}\$$

 $\{0, 2, 12, 36, 80\}$

c)
$$\left\{ \frac{1}{n^2+n} \mid n \text{ es un positivo impar y } n \in \{1, 2, 3, 4, 5, 7\} \right\}$$
 $\left\{ \frac{1}{2}, \frac{1}{12}, \frac{1}{30}, \frac{1}{56} \right\}$

d)
$$\{l \in \mathbb{Z} \mid l = 2n - 1 \text{ y } -3 \le n \le 9\}$$

 $\{-7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15, 17\}$

3. Sea \mathbb{N} el conjunto de los números naturales. Determinar $A \cup B$, $A \cap B$ y A^c en:

a)
$$A = \{n \mid n \text{ es par}\} \text{ y } B = \{n \mid n < 14\}$$

 $A \cup B = \{2, 4, 6, 8, 10, ...\}$
 $A \cap B = \{2, 4, 6, 8, 10, 12\}$
 $A^c = \{1, 3, 5, 7, 9, 11, ...\}$

b)
$$A = \{n \mid n^2 > 2n - 1\}, B = \{n \mid n^2 = 2n + 3\}$$

 $A \cup B = \{2, 3, 4, 5, 6, ...\}$
 $A \cap B = \{9\}$
 $A^c = \{0, 1\}$

4. Dibuja el diagrama de Venn para el siguiente problema:

Un grupo de jóvenes fue entrevistado acerca de sus preferencias por diferentes medios de transporte: bicicleta, motocicleta y automóvil. Los datos de las encuestas fueron los siguientes:

- Motocilceta solamente 5.
- Motocicleta 38.
- No gustan del automóvil 27.
- Motocicleta y bicicleta pero no automóvil 3.
- Motocicleta y automóvil pero no bicicleta 20.

- No gustan de la bicicleta 90.
- No gustan de las tres cosas 19.
- No gustan de la motocicleta 79.

Si tomamos al Conjunto A como los que gustan de motocicleta, al B los que gustan de bicicleta y al C los que gustan de automóvil, entonces el diagrama de Venn es:

Determinar:

- a) ¿Cuál fue el número de personas entrevistadas? 117 personas
- b) ¿A cuántos les gusta la bicicleta solamente? a ninguna persona
- c) ¿A cuántos les gusta el automóvil solamente? 46 personas
- d) ¿A cuántos les gustan las tres cosas? 10 personas
- e) ¿A cuántos les gusta la bicicleta y el automóvil pero no la motocicleta? 60 personas
- **5.** Sean A y B conjuntos. Prueba que:
- a) $A B = B^c A^c$ Demostraremos por propiedad de conjuntos:

$$A - B = A \cap B^c$$
 (por propiedad de diferencia.)
= $B^c \cap A$ (por conmutatividad de intersección.)
= $B^c - A^c$ (por propiedad de diferencia.)

$$Hipotesis. \ B \subseteq A$$

 $\Longrightarrow) \subseteq) \ P.D. \ (A - B) \cup B \subseteq A$

b) $B \subseteq A \iff (A - B) \cup B = A$

Sea $x \in (A - B) \cup B \Longrightarrow x \in A - B \lor x \in B$

Si $x \in A - B \Longrightarrow x \in A \land x \notin B$

Como sabemos por hipotesis que $B\subseteq A$ entonces $x\in B$

De lo anterior debe ser $B \subseteq A$

Si fuera $x \in B$ por hipotesis $x \in A$

 $(A - B) \cup B \subseteq A$

 \supseteq) P.D. $A \subseteq (A - B) \cup B$

Sea una $x \in A$ por hipotesis $B \subseteq A$ entonces $x \in B$

 $\implies x \notin A - B$

 $\implies x \in (A - B) \cup B$

 $A \subseteq (A - B) \cup B$

 \iff

 $Hipotesis\ (A-B)\cup B=A$

P.D. $B \subseteq A$

Si $x \in B$ suponemos enot
nces dos casos:

i) $x \in A$

 $\implies x \notin (A - B)$

Pero sabemos que $x \in B \Longrightarrow x \in (A-B) \cup B = A$

 $\therefore B \subseteq A$

ii) $x \notin A$

 $\implies x \notin (A - B)$

Pero sabemos que $x \in B \Longrightarrow x \in (A-B) \cup B = A$

Como se contradice nuestra suposición, entonces debe ser $x \in A$

$$\therefore B \subseteq A$$

Por lo tanto si $(A - B) \cup B = A$ entonces $B \subseteq A$
 $\therefore B \subseteq A \iff (A - B) \cup B = A$

- **6.** Sean A, B y C tres conjuntos cualesquiera. Demuestra que:
- a) $(A B) C = A (B \cup C)$ Demostraremos por propiedades de conjuntos:

$$(A - B) - C = (A \cap B^c) - C$$

$$= (A \cap B^c) \cap C^c \text{ (por propiedad de diferencia.)}$$

$$= A \cap (B^c \cap C^c) \text{ (por leyes De Morgan)}$$

$$= A \cap (B \cup C)^c \text{ (por propiedad de diferencia.)}$$

$$= A - (B \cup C)$$

b) Si
$$A \subseteq B \Longrightarrow (A - C) \subseteq (B - C)$$

Hipótesis. $A \subseteq B$, entonces $x \in A \Longrightarrow x \in B$

$$PD. \ (A-C) \subseteq (B-C)$$

Sea $x \in A-C \Longrightarrow x \in A \land x \notin C$
por hipotesis sabemos que $x \in B$ y por el paso anterior $x \notin C$
así, $x \in B-C$
de nuevo por nuestra hipótesis $A \subseteq B \Longrightarrow (A-C) \subseteq (B-C)$
 \therefore si $A \subseteq B$ entonces $(A-C) \subseteq (B-C)$

- 7. Sean A y B dos conjuntos. Definimos $A \triangle B = (A B) \cup (B A)$. Demuestra que:
- a) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$ \subseteq) $P.D. \ A \cap (B \triangle C) \subseteq (A \cap B) \triangle (A \cap C)$ sea $x \in A \cap (B \triangle C) \Longrightarrow x \in A \wedge x \in (B \triangle C)$ por definición de \triangle tenemos que $x \in A$ y $x \in (B - C) \cup (C - B)$ ahora, si $x \in (B - C) \cup (C - B) \Longrightarrow x \in B - C \vee x \in C - B$

como tenemos una unión, entonces tenemos dos casos:

i)
$$x \in B - C \Longrightarrow x \in B \land x \notin C$$

ii) $x \in C - B \Longrightarrow x \in C \land x \notin B$

Si fuera i), entonces $x \in A$ y $x \in B$ y $x \notin C$ $\implies x \in A \cap B$ y $x \notin A \cap C$ entonces $x \in (A \cap B) - (A \cap C)$ con ello $x \in (A \cap B) \triangle (A \cap C)$

Si fuera ii), entonces
$$x \in A$$
 y $x \in C$ y $x \notin B$ $\implies x \in A \cap C$ y $x \notin A \cap B$

entonces $x \in (A \cap C) - (A \cap B)$ con ello, por definición de \triangle , tenemos $x \in (A \cap B) \triangle (A \cap C)$

Como en ambos casos $x \in (A \cap B) \triangle (A \cap C)$ entonces $A \cap (B \triangle C) \subseteq (A \cap B) \triangle (A \cap C)$

 \supseteq) $P.D. (A \cap B) \triangle (A \cap C) \subseteq A \cap (B \triangle C)$

Sea $x \in (A \cap B) \triangle (A \cap C) \Longrightarrow x \in (A \cap B) - (A \cap C)$ o $x \in (A \cap C) - (A \cap B)$

Si $x \in (A \cap B) - (A \cap C) \Longrightarrow x \in A \ y \ x \in B \ y \ x \notin C$

Si $x \in (A \cap C) - (A \cap B) \Longrightarrow x \in A \ y \ x \in C \ y \ x \notin B$

En ambos casos $\Longrightarrow x \in A$ y $x \in B \triangle C$

$$\implies x \in A \cap (B \triangle C)$$

 $\therefore (A \cap B) \triangle (A \cap C) \subseteq A \cap (B \triangle C)$

- b) Sean $A = \{a, b, c, d\}, B = \{3, 5, 7, c\}$ y $C = \{a, 1, 3, c\}$, encuentra:
 - (a) $A \triangle B$ $A \triangle B = (A - B) \cup (B - A) = \{a, b, d, 3, 5, 7\}$
 - (b) $A \cap (B \triangle C)$ $B \triangle C = \{a, 1, 5, 7\}$ $A \cap (B \triangle C) = \{a\}$
 - (c) $B \triangle A$ $B \triangle A = (B - A) \cup (A - B) = \{a, b, d, 3, 5, 7\}$
- 8. Sean $A, B, C \subseteq \mathcal{U}$:
- a) Expresa $(A B)^c$ en terminos de \cup y -: $(\mathcal{U} A) \cup B$
- b) Demuestra que: $A (B \cap C) = (A B) \cup (A C)$ Demostraremos por propiedades de conjuntos:

$$A - (B \cap C) = A \cap (B \cap C)^{c} \text{ (por propiedad de la diferencia)}$$

$$= A \cap (B^{c} \cup C^{c}) \text{ (por leyes De Morgan)}$$

$$= A - (B^{c} \cup C^{c})^{c} \text{ (por propiedad de diferencia.)}$$

$$= A - (B \cap C) \text{ (por leyes De Morgan)}$$

$$= (A - B) \cup (A - C) \text{ (por leyes De Morgan)}$$

9. Da un contraejemplo para probar la falsedad de los siguientes enunciados:

a)
$$A \cap (B \cup C) = A \cap C \Longrightarrow A \cap C = \emptyset$$

Proponemos los conjuntos:

$$A = \{1, 2, 3, 4\}, B = \{7, 8, 9\} \text{ y } C = \{2, 5, 6, 7\}$$

Primero determinaremos $B \cup C$, que es el conjunto $\{2, 5, 6, 7, 8, 9\}$. Ahora, $A \cap (B \cup C) = \{2\}$, notemos que:

$$A \cap C = \{2\} \neq \emptyset$$

cumpliendo la igualdad $A \cap (B \cup C) = A \cap C$ con $A \cap C \neq \emptyset$. Por lo tanto hemos exibido un elemento que no cumple la proposición.

b)
$$A - (B - C) = (A - B) - C$$

Proponemos los conjuntos:

$$A = \{3, 4, 5, 9, 10, 11, 12\}, B = \{3, 4, 5, 6, a, b, c\} \text{ y } C = \{5, 6, 7, 8, 9\}$$

Primero realizamos el conjunto B-C, que resulta ser $\{3,4,a,b,c\}$. con el podemos realizar el conjunto $A-(B-C)=\{5,9,10,11,12\}$.

Ahora podemos realizar el conjunto $A-B=\{9,10,11,12\}$, de aquí podemos formar el conjunto $(A-B)-C=\{10,11,12\}$

Como es evidente $A - (B - C) \neq (A - B) - C$, los conjuntos propuestos prueban la falsedad de la proposición.

10. Sean A y B dos conjuntos. Demuestra que:

a)
$$A \subset B \iff \mathcal{P}(A) \subset \mathcal{P}(B)$$

Hipotesis. $A \subset B$, enotnces $\forall x \in A \Longrightarrow x \in B$

Si tuvieramos $x \in A$, por nuestra hipotesis será $x \in B$.

Por la definición de $\mathcal{P}(A)$ tenemos que $\mathcal{P}(A) = \{x \mid x \subseteq A\}$, y como sabemos $A \subset B$ entonces todo subconjunto de A es tambien subconjunto de A, así:

$$\mathcal{P}(A) \subset \mathcal{P}(B)$$

b) Si
$$A \cap B = \emptyset \Longrightarrow \mathcal{P}(A - B) = [\mathcal{P}(A) - \mathcal{P}(B)] \cup \{\emptyset\}$$

Si $A \cap B = \emptyset$ entonces $\forall x \in A \Longrightarrow x \notin B \text{ y } \forall z \in B \Longrightarrow z \notin A$

$$\subseteq$$
)
 $P.D \ \mathcal{P}(A-B) \subseteq [\mathcal{P}(A) - \mathcal{P}(B)] \cup \{\emptyset\}$

Como $A \cap B = \emptyset$, por la definición de diferencia de conjuntos sabemos que se cumple A - B = A. De lo anterior afirmamos que $\mathcal{P}(A - B) = \mathcal{P}(A)$

Como A y B son conjuntos disjuntos, entonces sus potencias $\mathcal{P}(A)$ y $\mathcal{P}(B)$ sólo comparten un elemento que es el conjunto vacío \emptyset . Así:

$$\mathcal{P}(A) - \mathcal{P}(B) = \mathcal{P}(A) - \{\emptyset\}$$

De lo anterior tenemos $\mathcal{P}(A-B) \subseteq [\mathcal{P}(A)-\mathcal{P}(B)] \cup \{\varnothing\}$

$$\supseteq)$$
 $P.D \ [\mathcal{P}(A) - \mathcal{P}(B)] \cup \{\emptyset\} \subseteq \mathcal{P}(A - B)$

Como sabemos por hipotesis que $A \cap B = \emptyset$ podemos deducir que A - B = A.

De lo anteriro podemos decir:

$$\mathcal{P}(A) - \mathcal{P}(B) = \mathcal{P}(A) - \{\emptyset\}$$
$$(\mathcal{P}(A) - \{\emptyset\}) \cup \emptyset = \mathcal{P}(A)$$

De nuevo por hipótesis sabemos que A - B = A, entonces $\mathcal{P}(A) = \mathcal{P}(A - B)$

Así hemos demostrado que $[\mathcal{P}(A) - \mathcal{P}(B)] \cup \{\emptyset\} \subseteq \mathcal{P}(A - B)$

$$\therefore$$
 si $A \cap B = \emptyset \Longrightarrow \mathcal{P}(A - B) = [\mathcal{P}(A) - \mathcal{P}(B)] \cup \{\emptyset\}$

11. Se define la siguiente operación $A*B=A^c\cup B^c$. Demuestra que:

a)
$$(A*B)*(A*B) = A \cap B$$

$$(A*B)*(A*B) = (A^c \cup B^c)^c \cup (A^c \cup B^c)^c$$

$$= [(A^c)^c \cap (B^c)^c] \cup [(A^c)^c \cap (B^c)^c] \text{ (por leyes De Morgan)}$$

$$= (A \cap B) \cup (A \cap B) \text{ (por propiedad de complemento)}$$

$$= A \cap B$$

b)
$$(A*A)*(B*B) = A \cup B$$

$$(A*B)*(A*B) = (A^c \cup A^c)^c \cup (B^c \cup B^c)^c$$

$$= [(A^c)^c \cap (A^c)^c] \cup [(B^c)^c \cap (B^c)^c] \text{ (por leyes De Morgan)}$$

$$= (A \cap A) \cup (B \cap B) \text{ (por propiedad de complemento)}$$

$$= A \cup B$$

12. Sean A, B y C conjuntos no vacíos. Demuestra las siguientes propiedades:

a) Si
$$A \subseteq B$$
 y $C \subseteq D \Longrightarrow (A \times C) \subseteq (B \times D)$

Hipotesis. $A \subseteq B$ y $C \subseteq D$

P.D.
$$(A \times C) \subseteq (B \times D)$$

Sean $x \in A$ y $y \in C$, por hipotesis $x \in B$ y $y \in D$

$$\implies (x,y) \in A \times C$$
 y

$$\implies (x,y) \in B \times D$$

$$(A \times C) \subseteq (B \times D)$$

b)
$$(A \times B) - (C \times C) = [(A - C) \times B] \cup [A \times (B - C)]$$

$$\subseteq$$
) P.D. $(A \times B) - (C \times C) \subseteq [(A - C) \times B] \cup [A \times (B - C)]$

Sea
$$(a,b) \in (A \times B) - (C \times C)$$

$$\implies (a,b) \in A \times B \text{ y } (a,b) \notin C \times C$$

 $\implies a \in A, b \in B$ para c procedemos por casos:

i)
$$a \notin C$$
 y $b \in C$

ii)
$$a \in C$$
 y $b \notin C$

iii)
$$a \notin C$$
 y $b \notin C$

Procedemos con i
: tenemos $a \in A, b \in B$ y $a \notin C, b \in C$

$$\implies a \in A - C \text{ y } b \notin B - C$$

$$\implies (a,b) \in (A-C) \times B \text{ y } (a,b) \notin A \times (B-C)$$

$$\Longrightarrow (a,b) \in [(A-C) \times B] \cup [A \times (B-C)]$$

Procedemos con ii: $a \in A, b \in B$ y $a \in C, b \not\in C$

$$\Longrightarrow a \not\in A - C \text{ y } b \in B - C$$

$$\implies$$
 $(a,b) \notin (A-C) \times B \text{ y } (a,b) \in A \times (B-C)$

$$\implies (a,b) \in [(A-C) \times B] \cup [A \times (B-C)]$$

Procedemos con iii: $a \in A, b \in B$ y $a \not\in C, b \not\in C$

$$\implies a \in A - C \text{ y } b \in B - C$$

$$\implies$$
 $(a,b) \in (A-C) \times B \text{ y } (a,b) \in A \times (B-C)$

$$\implies$$
 $(a,b) \in [(A-C) \times B] \cup [A \times (B-C)]$

Por lo tanto $(A \times B) - (C \times C) \subseteq [(A - C) \times B] \cup [A \times (B - C)]$

$$\supseteq) \text{ P.D. } [(A-C)\times B] \cup [A\times (B-C)] \subseteq (A\times B) - (C\times C)$$

Sea
$$(a, b)$$
 en $[(A - C) \times B] \cup [A \times (B - C)]$

$$\implies (a,b) \in (A-C) \times B \circ (a,b) \in A \times (B-C)$$

i)
$$(a,b) \in (A-C) \times B$$

$$\implies a \in A - C \ y \ b \in B$$

$$\implies a \in A, b \in B \text{ y } a \notin C$$

$$\implies (a,b) \in A \times B \text{ y } (a,b) \notin C \times C$$

ii)
$$(a,b) \in A \times (B-C)$$

$$\implies a \in A \text{ y } b \in B - C$$

$$\implies a \in A, b \in B \text{ y } b \notin C$$

$$\implies (a,b) \in A \times B \ y \ (a,b) \notin C \times C$$

por lo tanto
$$[(A-C)\times B]\cup [A\times (B-C)]\subseteq (A\times B)-(C\times C)$$

- 13. Determina cuáles de las siguientes oraciones son proposiciones:
- a) Algunos números enteros son negativos. Es una proposición pues podemos determinar su veracidad, tiene valor de verdad V.
- b) El número 15 es un número par. Es una proposición con valor de verdad F.
- c) ¿Qué hora es?

 No es una proposición pues no se puede determinar veracidad.
- d) En los números enteros, $11 + 6 \neq 12$ Si es proposición con valor de verdad V.

- e) La tierra es casi una esfera. Si es una proposición con valor de verdad V.
- 14. Si P y R representan proposiciones verdaderas y Q y S representan proposiciones falsas, encuentra el valor de verdad de las proposiciones compuestas dadas a continuación:

a)
$$\neg P \wedge R$$

 $F \wedge V = F$

b)
$$\neg [\neg P \land (\neg Q \land P)]$$

 $\neg [F \land (V \land V)] = \neg [F \land V] = \neg F = V$

c)
$$(P \wedge R) \vee \neg Q$$

 $(V \wedge V) \vee V = V \vee V = V$

d)
$$P \Longrightarrow (Q \Longrightarrow R)$$

 $V \Longrightarrow (F \Longrightarrow V) = V \Longrightarrow V = V$

e)
$$[(P \land \neg Q) \Longrightarrow (Q \land R)] \Longrightarrow (S \lor \neg Q)$$

 $[(V \land V) \Longrightarrow (F \land V)] \Longrightarrow (F \lor V) = [V \Longrightarrow F] \Longrightarrow V = F \Longrightarrow V = V$

15. Responde:

a) Si la proposición Q es verdadera, determine todas las asiganciones de valores de verdad para las proposiciones P, R y S para la proposición:

$${Q \Longrightarrow [(\neg P \lor R) \land (\neg S)]} \land {\neg S \Longrightarrow (\neg R \land Q)}$$

Vamos a realizar una sola tabla para ahorra espacio:

Q	P	R	S	\implies	$\neg P$	V	R	\land	$\neg S$		$\neg S$	\implies	$\neg R$	\wedge	Q
V	V	V	V	F	F	V	V	F	F	F	F	V	F	F	V
V	V	V	F	$\parallel { m V} \parallel$	F	V	$\mid V \mid$	V	$\mid V \mid$	$\parallel \mathrm{F} \parallel$	$\parallel { m V} \parallel$	F	F	F	V
V	V	F	V	\parallel F	F	F	$\mid F \mid$	F	F	$\parallel \mathrm{F} \parallel$	F	$\mid V \mid$	V	V	V
V	V	F	F	\parallel F \parallel	F	F	$\mid F \mid$	F	$\mid V \mid$	$\parallel \mathrm{F} \parallel$	$\parallel { m V} \parallel$	$\mid V \mid$	V	V	V
V	F	V	V	\parallel F \parallel	V	V	$\mid V \mid$	F	F	$\parallel \mathrm{F} \parallel$	F		F	F	V
V	F	V	F	$\parallel { m V} \parallel$	V	V	$\mid V \mid$	V	$\mid V \mid$	$\parallel \mathrm{F} \parallel$	$\parallel { m V} \parallel$	F	F	F	V
V	F	F	V	\parallel F \parallel	V	V	F	F	F	$\parallel \mathrm{F} \parallel$	F	$\mid V \mid$	V	V	V
V	F	F	F	$\parallel { m V} \parallel$	V	V	$\mid F \mid$	V	V	$\parallel \mathrm{V} \parallel$	$\parallel V \parallel$	$\mid V \mid$	V	V	V
F	V	V	V	$\parallel { m V} \parallel$	F	V	$\mid V \mid$	F	F	$\parallel \mathrm{V} \parallel$	F		F	F	F
F	V	V	F	$\parallel V \parallel$	F	V	$\mid V \mid$	V	$\mid V \mid$	$\parallel F \parallel$	$\parallel V \parallel$	F	F	F	F
F	V	F	V	$\parallel { m V} \parallel$	F	F	F	F	F	$\parallel \mathrm{V} \parallel$	F		V	F	F
F	V	F	F	$\parallel V \parallel$	F	F	F	F	$\mid V \mid$	$\parallel F \parallel$	$\parallel V \parallel$	F	V	F	F
F	F	V	V	$\parallel \mathrm{V} \parallel$	V	V	$\mid V \mid$	F	F	$\parallel \mathrm{V} \parallel$	F	$\mid V \mid$	F	F	F
F	F	V	F	$\parallel \mathrm{V} \parallel$	V	V	$\mid V \mid$	V	V	$\parallel \mathrm{F} \parallel$		F	F	F	F
F	F	F	V	$\parallel { m V} \parallel$	V	V	$\mid F \mid$	F	F	$\parallel \mathrm{V} \parallel$	F		V	F	F
F	F	F	F	V	V	V	F	V	V	$\parallel F \parallel$	V	F	V	F	F

Table 1: Tabla de valor de las variables