Photogrammetry & Robotics Lab Machine Learning for Robotics and Computer Vision Tutorial

Segmentation with CNNs

Jens Behley

Exam Dates

- Oral Exam via Zoom in English
- Webcam must be on all the time and alone in room
- No other windows besides Zoom open.
- Possible dates (we make also a Doodle):
 - 1. Wed, 11.08.2021
 - 2. Wed, 25.08.2021
 - 3. Wed, 01.09.2021
- Are there any hard constraints that make one of the dates unsuitable?

This week's lecture

- Fine-grained scene understanding:
 - Semantic Segmentation
 - Instance Segmentation
 - Panoptic Segmentation
- Discussed common, popular approaches for segmentation in these domains.

Semantic Segmentation

• Goal: Provide label $y_{i,j} \in \{1,\ldots,K\}$ for each pixel in the image.

Common Strategies

- Main paradigm for semantic segmentation: Encoder-Decoder architecture
- Encoder: Capture context, Decoder: Upsampling

Evaluation Metric: mIoU

$$IoU_c = \frac{TP_c}{TP_c + FP_c + FN_c}$$
 $mIoU = \frac{1}{K} \sum_c IoU_c$

- For each class, determine pixe-wise intersectionover-union (IoU)
- Mean over class-wise IoUs gives mean Intersection-over-union (mIoU)

Instance Segmentation

Semantic Segmentation

Instance Segmentation

- Semantic segmentation provides only class labels
- Instance segmentation aims at distinguishing different instances of the same object class

Top-down vs. Bottom-up Instance Segmentation

Top-down Approach (Mask R-CNN)

Bottom-up Approach (Embeddings)

- Top-down: Instances are first determined and then foreground/background mask estimated
- Bottom-up: Determine per-pixel properties that are then used to cluster instances

Panoptic Segmentation

- Panoptic Segmentation unifies semantic and instance segmentation
- Distinguish stuff (e.g., vegetation, road, ...) and thing classes (e.g., car, pedestrian, ...)

9

Panoptic Segmentation
Approaches

- Shared Encoder-Separate Decoder Architectures
- 1 decoder produces semantics, the other instances

Metric: Panoptic Quality

Class-wise PQ is defined as:

$$PQ_c = \frac{\sum_{(p,g)\in TP_c} IoU(p,g)}{|TP_c| + \frac{1}{2}|FP_c| + \frac{1}{2}|FN_c|}$$

Overall panoptic quality (PQ)

$$PQ = \frac{1}{K} \sum_{c} PQ_{c}$$

Pytorch Vision Models

- A good start for baselines already included in Pytorch (see torchvision.models):
 - Detection: Faster-RCNN, RetineNet, SSD
 - Semantic Segmentation: FCN, DeepLabV3, LR-ASPP with different backbones: ResNet-50, ResNet-101, MobileNetV3
 - Instance Segmentation: Mask R-CNN

Other Resources

- Detection
 - https://github.com/facebookresearch/detectron2
 - https://github.com/ultralytics/yolov5
- Semantic Segmentation
 - https://github.com/open-mmlab/mmsegmentation
- Panoptic-Deeplab
 - https://github.com/facebookresearch/detectron2/tree/master/projects/Panoptic-DeepLab

See you next week!