Summary Table of Evaluated Kinetic Data for Combustion Modeling: Supplement 1

D. L. BAULCH

School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.

C. J. COBOS

Institut für Physikalische Chemie, Universität Göttingen, D-3400 Göttingen, Germany

R. A. COX

NERC, Polaris House, Swindon, SN2 1EU, U.K.

P. FRANK

DLR, Institut für Physikalische Chemie der Verbrennung, D-7000 Stuttgart 80, Germany

G. HAYMAN

AEA Technology Consultancy Services, Harwell, Didcot OX11 0RA, U.K.

TH. JUST

DLR, Institut für Physikalische Chemie der Verbrennung, D-7000 Stuttgart 80, Germany

J. A. KERR

EAWAG, CH-8600 Dübendorf, Switzerland

T. MURRELLS

AEA Technology Consultancy Services, Harwell, Didcot OX11 0RA, U.K.

M. J. PILLING

School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.

J. TROE

Institut für Physikalische Chemie, Universität Göttingen, D-3400 Göttingen, Germany

R. W. WALKER

School of Chemistry, University of Hull, Hull HU6 7RX, U.K.

and

J. WARNATZ

Institut für Technische Verbrennung, Universität Stuttgart, D-7000 Stuttgart 80, Germany

INTRODUCTION

This publication has been prepared by the CEC Group on Evaluation of Kinetic Data for Combustion Modeling, which was established as one of the projects within the European

Energy Research and Development Programme. The CEC Group has previously published a compilation of critically evaluation kinetic data for combustion modeling in the *Journal of Physical and Chemical Reference Data* 21:411–736 (1992). That compilation has now

been updated and together with material on a number of new reactions the update will be published in the *Journal of Physical and Chemical Reference Data* as Supplement 1 to the original article. Here we present the Summary Table giving the recommended rate constants and assigned error limits for all of the reactions considered in the original article and Supplement 1.

The formal cutoff point for the literature searching on which these evaluations are based was January 1992, but the Group continued to monitor the literature during the preparation of the data sheets and every attempt was made to incorporate the results of more recent studies of importance, in particular, the material presented at the Twenty-Fourth Symposium (International) on Combustion, held in 1992.

The reader is referred to the full article to obtain the data sheets for each reaction which contain a summary of the experimental results on which the recommendations are based.

GUIDE TO THE USE OF THE TABLES

There are three tables. Table 1 summarizes data on bimolecular reactions, Table 2 provides data for decomposition ("unimolecular") reactions and Table 3 for combination ("termolecular") processes.

Reaction Ordering

The reactions are grouped in order using a system widely adopted in publications of the National Institute of Standards and Technology. The grouping is made on the basis of the attacking atom or radical in the order set out in the following list.

O Atom Reactions
O₂ Reactions
H Atom Reactions
H₂ Reactions

OH Radical Reactions

H₂O Reactions

HO₂ Radical Reactions

H₂O₂ Reactions

N Atom Reactions

NH Radical Reactions

NH2 Radical Reactions

NH₃ Reactions

C Atom Reactions

C2 Radical Reactions

CH Radical Reactions

³CH₂ Radical Reactions

¹CH₂ Radical Reactions

CH₃ Radical Reactions

CH₄ Reactions

CHO Radical Reactions

HCHO Reactions

CH2OH Radical Reactions

CH₃O Radical Reactions

CH₃O₂ Radical Reactions

CH₃OH Reactions

CH₃OOH Reactions

CN Radical Reactions

NCO Radical Reactions

C2H Radical Reactions

C₂H₃ Radical Reactions

C2H4 Reactions

C2H5 Radical Reactions

C₂H₆ Reactions

CHCO Radical Reactions

CH₂CHO Radical Reactions

CH₃CO Radical Reactions

CH₃CHO Reactions

C2H5O Radical Reactions

C₂H₅OOH Reactions

C₃H₅ Radical Reactions

i - C₃H₇ Radical Reactions

C₃H₈ Reactions

t - C₄H₉ Radical Reactions

C₆H₅ Radical Reactions

C₆H₆ Reactions

C₆H₅O Radical Reactions

C₆H₅CH₂ Radical Reactions

C₆H₅CH₃ Reactions

p - C₆H₄(CH₃)₂ Reactions

C₆H₅C₂H₅ Radical Reactions

Thus, the reaction

$$CN + CH_4 \rightarrow HCN + CH_3$$

will be found under CN radical reactions. For reactions not classified by this rule, e.g., radical-radical reactions, the rule that species higher on the list take precedence over those lower applies. Thus, the reaction

$$OH + CH_3 + M \rightarrow CH_3OH + M$$

will be found under OH radical reactions. The same rule applies to reactions between species of a non-radical nature. For the purposes of the classification $\rm O_2$ and NO are treated as radicals only in their reactions with non-radical species.

Tabulation of the Rate Constants

It is assumed that all reactions in the complication are elementary reactions.

The relationship between rate and rate constant for a reaction described by a stoichiometric equation such as

$$A + A \rightarrow B + C$$

is given by

Rate =
$$-(1/2)d[A]/dt$$

= $d[B]/dt = d[C]/dt = k[A]^2$.

For bimolecular reactions, the temperature dependence of the rate constant is expressed either as $k = A \exp(-B/T)$ or $AT^n \exp(-C/T)$, whichever is the more appropriate, where

A, n, B, and C are constants. In some cases, the form with C = 0, leading to $k = AT^n$, gives the best representation. The expressions used for pressure dependent combination and dissociation reactions are discussed in detail later.

Many of the reactions in the tables may lead to more than one set of products. For these multichannel reactions the most likely channels are listed and, wherever possible, an expression is given for the rate constant of each channel. The set of products first listed is assigned a rate constant, k_1 , the second set a rate constant, k_2 , and so on. Thus, the entry

H + C₆H₅OH → C₆H₅O + H₂

$$1.9 \times 10^{-10} \exp(-6240/T)$$

→ C₆H₆ + OH
 $3.7 \times 10^{-11} \exp(-3990/T)$

indicates that the rate constant for the reaction $H + C_6H_5OH \rightarrow C_6H_5O + H_2$, i.e., k_1 , is given by the expression 1.9 × $10^{-10}\exp(-6240/T)$ cm³ molecular⁻¹ s⁻¹ and the rate constant, k_2 , for the second channel giving $C_6H_6 + OH$ is given by 3.7 × $10^{-11}\exp(-3990/T)$ cm³ molecule⁻¹ s⁻¹.

In most cases, rate data for individual channels are not available and often only the overall rate constant for removal of reactants (k) has been measured. In such cases the expression refers to k, which is equal to the sum of the rate constants for the individual product channels. Thus the entry,

$$O + HCN \rightarrow NCO + H$$

$$\rightarrow CO + NH$$

$$\rightarrow OH + CN$$

$$2.3 \times 10^{-18} T^{2.1} \exp(-3075/T)$$

indicates that $k = k_1 + k_2 + k_3 = 2.3 \times 10^{-18} T^{2.1} \exp(-3075/T) \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

In many cases the contribution of a particular channel to the overall rate constant is indicated by quoting a branching ratio. This is particularly so when the contribution has only been measured at one temperature, or over a very limited range. Thus, the entry

O +
$$C_2H_5 \rightarrow CH_3CHO + H$$

 1.1×10^{-10}
 $\rightarrow HCHO + CH_3$
 $k_2/k = 0.17 + 0.2 \text{ at } 300 \text{ K}$

gives a value for the overall rate constant (in this case over the range 300-2500 K) for removal of reactants, $k=k_1+k_2$, and indicates the contribution of channel 2 by giving a value for the branching ratio k_2/k at the only temperature at which it has been measured.

Temperature Range and Error Limits

Wherever possible, an attempt has been made to make recommendations for high temperatures even if this requires a considerable extrapolation from the low temperature data and consequent assignment of large error limits. However, in many cases, particularly for reactions likely to have a large activation energy, or where alternative reaction channels may become important, it has not been considered safe to extrapolate much beyond the range of existing measurements.

The preferred values are based almost exclusively on experimental data but in a few cases estimates have been made based on analogous reactions. No attempt has been made to include calculated values of rate parameters but theoretical and empirical estimates have not been ignored. They have often provided valuable background and guidance on whether experimental values are 'reasonable'.

The reliability of a preferred expression for k is expressed in terms of an estimated $\Delta \log k$ at the extremes of the temperature range covered by the recommended expression. Thus a quoted $\Delta \log k = \pm X$ is equivalent to the statement that the range of values of k encompassed by these error limits may be found by multiplication and division of k by a factor F, where $X = \log F$.

No attempt has been made to assign explicit error limits to the temperature coefficient of k. The assignment of error limits in $\Delta \log k$ at the extremes of the temperature range indi-

cates how the quality of the data varies with temperature without attempting to define the form which this variation takes. In the opinion of the evaluators the available data rarely merit a more elaborate assignment of errors over a wide temperature range.

The assignment of error limits in k is a subjective assessment by the evaluators. Modern techniques are capable in favorable circumstances of measuring rate coefficients with the precision represented by a standard deviation as small as 10%. However, data obtained in different laboratories on the same reaction and often by the same technique are rarely concordant to the extent that might be expected from the precision of the measurements; mean values may differ by many standard deviations. This is indicative of systematic errors which are difficult to detect and which cannot be simply incorporated into quoted error limits.

Treatment of Combination and Dissociation Reactions

The rates of combination and the reverse dissociation reactions

$$A + B + M \Rightarrow AB + M$$
.

depend on the temperature, T, the nature, and the concentration of the third body [M]. The rate coefficients of these reactions have to be expressed in a form which is more complicated than those for simple bimolecular reactions. The combination reactions are described by a pseudo-second-order rate law:

$$\frac{d[AB]}{dt} = k[A][B],$$

in which the second-order rate constant depends on [M]. The low pressure third-order limit is characterized by k_0 ,

$$k_0([\mathbf{M}]) = \lim_{[\mathbf{M}] \to 0} k([\mathbf{M}]).$$

The high pressure second-order limit is characterized by k_{∞} ,

$$k_{\infty} = \lim_{[M] \to \infty} k([M]),$$

which is independent of [M]. For a combination reaction in the low-pressure range, the summary table gives a second-order rate constant expressed as the product of a third-order rate constant and the third-body concentration. The transition between the third-order and the second-order range is represented by a reduced fall off expression of k/k_{∞} as a function of

$$k_0[M]/k_{\infty} = [M]/[M]_c$$

where the "center of the fall-off curve" $[M]_c$ indicates the third-body concentration for which the extrapolated $k_0[M]$ would be equal to k_∞ . The dependence of k on [M] in general is complicated and has to be analyzed by unimolecular rate theory. For moderately complex molecules at not too high temperatures, however, a simple approximate relationship holds:

$$k = \frac{k_0 k_{\infty}[M]}{k_0[M] + k_{\infty}} F = k_0[M] \left(\frac{1}{1 + [M]/[M]_c}\right) F$$
$$= k_{\infty} \left(\frac{[M]/[M]_c}{1 + [M]/[M]_c}\right) F,$$

where the first factors on the right-hand side represent the Lindemann-Hinshelwood expression, and the additional broadening factor F, at not too high temperature, is approximately given by

$$\log_{10} F \cong \frac{\log_{10} F_c}{1 + \left| \frac{\log_{10} ([M]/[M]_c)}{N} \right|^2},$$

where $N=0.75-1.27\log_{10}F_c$. The temperature dependence of F_c , which is sometimes significant, can be estimated by the procedure of Troe and colleagues [1–3]. The results can usually be represented [3], approximately by an equation

$$F_c = (1 - a)\exp(-T/T^{***}) +$$

 $a \exp(-T/T^*) + \exp(-T^{**}/T),$

where a, T^* , T^{**} , and T^{***} are constants. The first two terms are of importance for atmospheric conditions, but the last term in most cases becomes relevant only at high temperatures. In this way, the three quantities, k_0 , k_∞ , and F_c , with

$$[\mathbf{M}]_c = \frac{k_{\infty}}{k_0},$$

characterize the falloff curve for the present application. Alternatively, the three quantities k_{∞} , $[M]_c$, and F_c (or k_0 , $[M]_c$, and F_c) can be used

The dependence of k_0 and k_{∞} on the temperature is represented in the T exponent n,

$$k \propto T^{-n}$$

(except for the cases with an established energy barrier in the potential). We have used this form of temperature dependence because it often gives a better fit to the data over a wider range of temperature than does the Arrhenius expression.

In many cases values of all three parameters, k_0 , k_∞ , and F_c cannot be derived from the experimental data. This may not be important for modeling purposes since, if large species are concerned, the reaction may be close enough to its high pressure limit for k_∞ to be used and, correspondingly, for small reactants the low-pressure limiting rate constant, k_0 , may be adequate. However, effects of pressure should always be considered and incorporated wherever possible.

In a few instances, the rate constant for the reaction has been measured under conditions where it is almost certainly pressure dependent but where the measurements cannot be analyzed to give values of k_0 , k_∞ and F_c . In such cases an expression for k only is quoted.

To avoid ambiguity, the subscripts denoting infinite and zero pressure limiting rate constants have, in places, been written as superscripts, e.g., k_1^{∞} or k_1^0 rather than $k_{1\infty}$ and k_{10} .

REFERENCES

- 1. Troe, J., J. Phys. Chem. 83:114 (1979).
- 2. Troe, J., Ber. Bunsenges. Phys. Chem. 87:161 (1983).
- Gilbert, R. G., Luther, K., and Troe, J., Ber. Bunsenges. Phys. Chem. 87:169 (1983).

SUMMARY OF PREFERRED RATE DATA

TABLE 1 Bimolecular Reactions

Reaction	k(cm ³ molecule ⁻¹ s ⁻¹)	Temp (K)	Error limits $(\Delta \log k)$
O Atom Reactions			
$O + H_2 \rightarrow OH + H$	$8.5 \times 10^{-20} T^{2.67} \exp(-3160/T)$	300-2500	± 0.5 at 300 K falling to ± 0.2 for $T > 500$ K
$O + OH \rightarrow O_2 + H$	$2.0 \times 10^{-11} \exp(112/T)$	220-500	± 0.2
0 - 110 - 011 - 0	$2.4 \times 10^{-11} \exp(-353/T)$	1000-2000	±0.1
$O + HO_2 \rightarrow OH + O_2$	5.3×10^{-11}	300-1000	± 0.3 at 300 K rising to ± 0.5 at 1000 K
$O + H_2O_2 \rightarrow OH + HO_2$	$1.1 \times 10^{-12} \exp(-2000/T)$	300-500	± 0.3
$O + N_2 \rightarrow N + NO$	$3.0 \times 10^{-10} \exp(-38300/T)$	1400-4000	± 0.2
$O + NH \rightarrow NO + H$	1.5×10^{-10}	1000-3380	± 0.5
$\rightarrow N + OH \rfloor$ $O + NH_3 \rightarrow OH + NH_2$	$1.6 \times 10^{-11} \exp(-3670/T)$	500-2500	±0.5
$O + CH \rightarrow CO + H$	6.6×10^{-11}	300-2000	±0.5
\rightarrow CHO ⁺ + e	$4.2 \times 10^{-13} \exp(-850/T)$	300-2500	± 0.5
$O + {}^{3}CH_{2} \rightarrow CO + 2H$	2.0×10^{-10}	300-2500	± 0.2 at 300 K rising to
$\rightarrow CO + H_2$	$k_1/k = 0.6 \pm 0.3$ over whole range		\pm 0.7 at 2500 K
$O + CH_3 \rightarrow HCHO + H$	1.4×10^{-10}	300-2500	±0.2
$O + CH_4 \rightarrow OH + CH_3$	$1.2 \times 10^{-15} T^{1.56} \exp(-4270/T)$	300-2500	±0.3 at 300 K falling to
$O + CHO \rightarrow OH + CO$	5.0×10^{-11}	300-2500	±0.15 at 2500 K ±0.3
$\rightarrow CO_2 + H$	5.0×10^{-11}	300-2500	±0.3 ±0.3
$O + HCHO \rightarrow OH + CHO$	$6.9 \times 10^{-13} T^{0.57} \exp(-1390/T)$	250-2200	±0.1 at 250 K rising to
_			± 0.3 at 2200 K
$O + CH_3O \rightarrow O_2 + CH_3$	2.5×10^{-11}	300-1000	±0.3 at 300 K rising to
→ ОН + НСНО	$k_2/k = (0.12 \pm 0.1)$ at 300 K		±0.7 at 1000 K
$\begin{array}{c} O + CH_3OOH \\ \rightarrow OH + CH_3O_2 \\ \rightarrow OH + CH_2OOH \end{array}$	$3.3 \times 10^{-11} \exp(-2390/T)$	300-1000	± 0.3 at 300 K rising to ± 0.5 at 1000 K
$O + CN \rightarrow CO + N(^{4}S)$ $\rightarrow CO + N(^{2}D)$	1.7×10^{-11}	300-5000	± 0.2 at 300 K rising to ± 0.6 at 5000 K
$ \begin{array}{c} O + NCO \rightarrow NO + CO \\ \rightarrow O_2 + CN \end{array} $	7.0×10^{-11}	1450-2600	±0.8
$O + HCN \rightarrow NCO + H$	2.2 × 10=18721- (2075 (T)	450 3500	1 0 2 -4 450 W -i-i A-
	$2.3 \times 10^{-18} T^{2.1} \exp(-3075/T)$	450-2500	±0.2 at 450 K rising to ±0.3 at 2500 K
$O + C_2H \rightarrow CO + H$	1.7×10^{-11}	300-2500	±1.0
$O + C_2H_2 \rightarrow CO + {}^3CH_2$	$1.2 \times 10^{-17} T^{2.1} \exp(-790/T)$	295-2500	± 0.2
→ CHCO + H	$k_2/k = 0.7 \pm 0.2$ over whole range		
$O + C_2H_3 \rightarrow OH + C_2H_2$			
	5×10^{-11}	300-2000	±0.5
$O + C_2H_4 \rightarrow CH_2CHO + H$ $\rightarrow HCO + CH_3$ $\rightarrow HCHO + CH_2$ $\rightarrow CH_2CO + H_2$	$2.25 \times 10^{-17} T^{1.88} \exp(-90/T)$ $k_1/k = 0.35 \pm 0.05$ at p > 3 torr; $k_2/k = 0.6 \pm 0.10$; $k_4/k = 0.05 \pm 0.10$	300-2000	± 0.1 for $T < 1000$ K rising to ± 0.3 at 2000 K
$O + C_2H_5 \rightarrow CH_3CHO + H$ $\rightarrow HCHO + CH_3$	1.1×10^{-10} $k_2/k = 0.17 \pm 0.2$ at 300 K	300-2500	±0.3 from 300 to 1000 K ±0.5 from 1000 to 2500 K
•	2,	200 1200	
$O + C_2H_6 \rightarrow OH + C_2H_5$	$1.66 \times 10^{-15} T^{1.5} \exp(-2920/T)$	300-1200	\pm 0.3 at 300 K falling to \pm 0.15 at 1200 K

TABLE 1—(Continued)

	TABLE 1—(Commuea)		
Reaction	k(cm ³ molecule ⁻¹ s ⁻¹)	Temp (K)	Error limits ($\Delta \log k$)
$O + CHCO \rightarrow 2CO + H$ $O + CH_2CO \rightarrow CH_2O + CO$	1.6×10^{-10}	300-2500	±0.3
→ HCO + H + CO → HCO + HCO	$3.8 \times 10^{-12} \exp(-680/T)$	230-500	±0.3
$O + CH3CO \rightarrow OH + CH2CO$ $\rightarrow CO2 + CH3$	3.2×10^{-10} $k_1/k = 0.2 \pm 0.1$ at 298 K $k_2/k = 0.8 \pm 0.2$ at 298 K	298-1500	±0.3 at 298 K rising to ±1.0 at 1500 K
$O + CH_3CHO \rightarrow OH + CH_3CO$ $\rightarrow OH + CH_2CHO$	$9.7 \times 10^{-12} \exp(-910/T)$	298-1500	± 0.05 at 298 K rising to ± 0.5 at 1500 K
$O + C_2H_5OOH \rightarrow OH + C_2H_4OOH$ $\rightarrow OH + C_2H_5OO$	$3.3 \times 10^{-11} \exp(-2390/T)$ [estimate]	300-1000	± 0.3 at 300 K rising to ± 0.5 at 1000 K
$O + C_3H_5 \rightarrow CH_2CHCHO + H$	3.0×10^{-10}	300-1000	± 0.2 over the range 300-600 K;
\rightarrow HCHO + C ₂ H ₃	$< 3 \times 10^{-11}$	2000	± 0.4 over the range 600-1000 K
$O + C_6H_6 \rightarrow OH + C_6H_5$	$(k_1 + k_2) = 5.9 \times 10^{-23} T^{3.8}$ $\times \exp(-473/T)$	298-2000	±0.3
$\rightarrow C_6 H_6 O$	$k_2 = 3.7 \times 10^{-11} \exp(-2280/T)$	298-1400	±0.3 at 298 K falling to 0.2 at 1400K
$O + C_6H_5OH \rightarrow products$ $O + C_6H_5CH_2 \rightarrow HCO + C_6H_6$	$2.1 \times 10^{-11} \exp(-1460/T)$	290-600	±0.3
$\rightarrow C_6H_5CHO + H$	5.5×10^{-10}	300	±0.3
	No recommendation $5.3 \times 10^{-15} T^{1.21} \exp(-1260/T)$	298-2800	±0.1 at 298 K rising to
$O + C_6H_5CHO \rightarrow OH + C_6H_5CO$ $\rightarrow OH + C_6H_4CHO$ $\rightarrow C_6H_5(O)CHO$	$1.0 \times 10^{-11} \exp(-910/T)$	298-1500	±0.4 at 2800 K ±0.3 at 298 K rising to ±0.7 at 1500 K
-	No recommendation		. 0.0
$O + p - C_6H_4(CH_3)_2 \rightarrow \text{products}$ $O + C_6H_5C_2H_5 \rightarrow \text{products}$ O_2 Reactions	$2.6 \times 10^{-11} \exp(-1630/T)$ $2.8 \times 10^{-11} \exp(-1840/T)$	298-600 298-600	$\pm 0.3 \\ \pm 0.3$
$O_2 + CH_4 \rightarrow HO_2 + CH_3$	$6.6 \times 10^{-11} \exp(-28630/T)$	500-2000	± 0.5 at 500 K rising to ± 1.0 at 2000 K
$O_2 + C_2H_6 \rightarrow HO_2 + C_2H_5$	$1.0 \times 10^{-10} \exp(-26100/T)$	500-2000	±0.5 at 500 K rising to ±1.0 at 2000 K
O_2 + HCHO \rightarrow HO ₂ + HCO	$1.0 \times 10^{-10} \exp(-20460/T)$	700-1000	± 0.5
$O_2 + CH_3CHO \rightarrow HO_2 + CH_3CO$	$5.0 \times 10^{-11} \exp(-19700/T)$	600-1100	±0.5 at 600 K rising to ±1.0 at 1100 K
$O_2 + C_3H_6 \rightarrow HO_2 + CH_2CHCH_2$	$3.2 \times 10^{-12} \exp(-19700/T)$	600-1000	±0.3 at 800 K rising to ±0.5 at 600 K and 1000 K
$O_2 + C_6H_5CH_3 \rightarrow HO_2 + C_6H_5CH_2$ H Atoms Reactions	$3 \times 10^{-12} \exp(-20000/T)$	700-1200	±0.7
$H + O_2 \rightarrow OH + O$	$1.62 \times 10^{-10} \exp(-7470/T)$	300-5000	± 0.1 at 300 K rising to ± 0.5 at 5000 K
$H + O_2 + Ar \rightarrow HO_2 + Ar$	See Table 3		
$H + O_2 + H_2 \rightarrow HO_2 + H_2$	See Table 3		
$H + O_2 + N_2 \rightarrow HO_2 + N_2$	See Table 3		
$H + H + Ar \rightarrow H_2 + Ar$	See Table 3		
$H + H + H_2 \rightarrow H_2 + H_2$	See Table 3		
$H + OH + H_2O \rightarrow H_2O + H_2O$	See Table 3		
$H + OH + Ar \rightarrow H_2O + Ar$	See Table 3		
$H + OH + N_2 \rightarrow H_2O + N_2$	See Table 3 $7.1 \times 10^{-11} \text{evg}(-710 \ /T)$	200, 1000	±0.3
$H + HO_2 \rightarrow H_2 + O_2$	$7.1 \times 10^{-11} \exp(-710/T)$ $2.8 \times 10^{-10} \exp(-440/T)$	300-1000 300-1000	±0.3 ±0.3
	$5.0 \times 10^{-11} \exp(-866/T)$	300-1000	±0.3 ±0.3
$H + H_2O \rightarrow OH + H_2$	$7.5 \times 10^{-16} T^{1.6} \exp(-9270/T)$	300-2500	± 0.2

TABLE 1—(Continued)

Reaction	k(cm ³ molecule ⁻¹ s ⁻¹)	Temp (K)	Error limits ($\Delta \log k$)
$H + H_2O_2 \rightarrow H_2 + HO_2$	$2.8 \times 10^{-12} \exp(-1890/T)$	300-1000	± 0.3
\rightarrow OH + H ₂ O	$1.7 \times 10^{-11} \exp(-1800/T)$	300-1000	± 0.3
$H + NH \rightarrow H_2 + N$	1.7×10^{-11}	1500-2500	± 1.0
$H + NH_2 \rightarrow H_2 + NH$	1.0×10^{-11}	2000-3000	± 1.0
$H + CO + M \rightarrow HCO + M$	See Table 3		
$H + {}^{3}CH_{2} \rightarrow H_{2} + CH$	$1.0 \times 10^{-11} \exp(900/T)$	300-3000	± 0.7
$H + CH_3 \rightarrow H_2 + {}^{1}CH_2$	$1.0 \times 10^{-10} \exp(-7600/T)$	300-2500	± 1.0
\rightarrow CH ₄	See Table 3		
$H + CH_4 \rightarrow H_2 + CH_3$	$2.2 \times 10^{-20} T^{3.0} \exp(-4045/T)$	300-2500	± 0.2 at 300 K and 2500 K reducing to ± 0.05 over range 500-1000 K
$H + CHO \rightarrow H_2 + CO$	1.5×10^{-10}	300-2500	±0.3
$H + HCHO \rightarrow H_2 + HCO$	$2.1 \times 10^{-16} T^{1.62} \exp(-1090/T)$	300-1700	± 0.1 at 300 K rising to
H + CH O > H + HCHO	3.0×10^{-11}	200 1000	±0.3 at 1700 K
$H + CH_3O \rightarrow H_2 + HCHO$		300-1000	± 0.5
$H + HNCO \rightarrow NH_2 + CO$	No recommendation	500 1000	110
\rightarrow H ₂ + NCO	$3.4 \times 10^{-10} T^{-0.27} \exp(-10190/T)$		±1.0
$H + NCO \rightarrow NH + CO$ $\rightarrow HCN + O$	8.7×10^{-11}	1400-1500	±0.5
$H + C_2H_2 \rightarrow H_2 + C_2H$ $\rightarrow C_2H_3$	$1.1 \times 10^{-10} \exp(-14000/T)$ See Table 3	1000-3000	± 1.0
$H + C_2H_3 \rightarrow H_2 + C_2H_2$	2.0×10^{-11}	300-2500	± 0.5
$ \begin{array}{c} $	See Table 3	200 2200	± 0.0
$H + C_2H_4 \rightarrow H_2 + C_2H_3$	$9.0 \times 10^{-10} \exp(-7500/T)$	700-2000	±0.5
$ \begin{array}{c} $	See Table 3	700 2000	10.5
$H + C_2H_5 \rightarrow 2CH_3$	6.0×10^{-11}	300-2000	± 0.3 at 300 K rising to
$\Pi + C_2\Pi_5 \rightarrow 2C\Pi_3$	See Table 3	300° 2000	_
	$2.4 \times 10^{-15} T^{1.5} \exp(-3730/T)$	300-2000	±0.7 at 2000 K ±0.15 at 300 K rising to ±0.3 at 2000 K
$H + CHCO \rightarrow CH_2 + CO$ $\rightarrow H_2 + C_2O$ $\rightarrow HCCOH$	2.5×10^{-10}	300-2500	± 0.4
$H + CH_2CO \rightarrow CH_3 + CO$ $\rightarrow CH_2CHO$	$3.0 \times 10^{-11} \exp(-1700/T)$ k_2/k very small	200-2000	±0.5 at 200 K rising to ±1.0 at 2000 K
$H + CH3CHO \rightarrow H2 + CH3CO$ $\rightarrow H2 + CH2CHO$	$6.8 \times 10^{-15} T^{1.16} \exp(-1210/T)$	300-2000	±0.1 at 300 K rising to ±0.4 at 2000 K
$ \begin{array}{c} $	$(k_1^{\infty} + k_2) = 2.8 \times 10^{-10}$	300-1000	± 0.2 at 300 K rising to ± 0.5 at 1000 K
	0	400 1000	
$\rightarrow \mathbf{H}_2 + \mathbf{C}_3 \mathbf{H}_4$	3×10^{-11}	300-1000	± 0.5
$H + C_6H_5 + M \rightarrow C_6H_6 + M$	See Table 3		
$H + C_6H_6 \rightarrow H_2 + C_6H_5$	No recommendation		
$\rightarrow C_6H_7$	See Table 3		
$H + C_6H_5O + M \rightarrow C_6H_5OH + M$	See Table 3		
$H + C_6H_5OH \rightarrow C_6H_5O + H_2$	$1.9 \times 10^{-10} \exp(-6240/T)$	1000-1150	± 0.3
$\rightarrow C_6H_6 + OH$	$3.7 \times 10^{-11} \exp(-3990/T)$	1000-1150	± 0.3
$H + C_6H_5CH_2 + M$	See Table 3		
	$6.6 \times 10^{-22} T^{3.44} \exp(-1570/T)$	600-2500	±0.3 at 600 K rising to
II + C II OII	Na rasammandatian		± 0.5 at 2500 K
\rightarrow H ₂ + C ₆ H ₄ CH ₃	No recommendation		
$\rightarrow C_6H_6 + CH_3$	No recommendation		
$\rightarrow C_6H_6CH_3$	See Table 3	200	. 0.4
$H + p - C_6H_4(CH_3)_2 \rightarrow products$	5.8×10^{-13}	298	±0.1
$H + C_6H_5C_2H_5 \rightarrow H_2 + C_6H_5C_2H_4$	No recommendation See Table 3		

TABLE 1—(Continued)

	TABLE I—(Commuea)		
Reaction	k(cm ³ molecule ⁻¹ s ⁻¹)	Temp (K)	Error limits $(\Delta \log k)$
H ₂ Reactions			
$H_2 + Ar \rightarrow 2H + Ar$	See Table 2		
$H_2 + H_2 \rightarrow 2H + H_2$	See Table 2		
OH Radical Reactions			
$OH + H_2 \rightarrow H_2O + H$	$1.7 \times 10^{-16} T^{1.6} \exp(-1660/T)$	300-2500	±0.1 at 300 K rising to ±0.3 at 2500 K
$OH + OH \rightarrow H_2O + O$	$2.5 \times 10^{-15} T^{1.14} \exp(-50/T)$	250-2500	±0.3 at 2500 K
$OH + OH + M \rightarrow H_2O_2 + M$	See Table 3	230-2300	IU.2
$OH + HO_2 \rightarrow H_2O + O_2$	$4.8 \times 10^{-11} \exp(250/T)$	300-2000	±0.2 at 300 K rising to
SH + HO ₂	4.0 × 10 CAP(250/1)	300 2000	±0.5 at 2000 K
$OH + H_2O_2 \rightarrow H_2O + HO_2$	$1.3 \times 10^{-11} \exp(-670/T)$	300-1000	± 0.2 at 300 K rising to
	210 / 10 Oup (0/0/1/	200 1000	±0.5 at 1000 K
$OH + NH \rightarrow NO + H.1$			_ 0.5 at 1000 R
$ \begin{array}{c} OH + NH \rightarrow NO + H_2 \\ \rightarrow H_2O + N \end{array} $	8.0×10^{-11}	300-1000	± 0.5
-	2.2 \(40 = 14 \pi 0.405 \) (250 \(\pi \)	500 2500	. 0.7
$OH + NH_2 \rightarrow O + NH_3$	$3.3 \times 10^{-14} T^{0.405} \exp(-250/T)$	500-2500	± 0.5
\rightarrow H ₂ O + NH	No recommendation	200 2000	0.0
$OH + CO \rightarrow H + CO_2$	$1.05 \times 10^{-17} T^{1.5} \exp(250/T)$	300-2000	± 0.2 at 300 K rising to
ou . ou . u . ou			± 0.5 at 2000 K
$OH + CH_3 \rightarrow H + CH_2OH$			
\rightarrow H + CH ₃ O	No recommendation		
\rightarrow H ₂ O + 1 CH ₂	$1.2 \times 10^{-11} \exp(-1400/T)$	300-1000	± 0.5
\rightarrow CH ₃ OH	See Table 3		
$OH + CH_4 \rightarrow H_2O + CH_3$	$2.6 \times 10^{-17} T^{1.83} \exp(-1400/T)$	250-2500	± 0.07 at 250 K rising to
	-		±0.15 at 1200 K
$OH + CHO \rightarrow H_2O + CO$	1.7×10^{-10}	300-2500	± 0.3
$OH + HCHO \rightarrow H_2O + CHO$	$5.7 \times 10^{-15} T^{1.18} \exp(225/T)$	300-3000	± 0.1 at 300 K rising to
			± 0.7 at 3000 K
$OH + CN \rightarrow O + HCN$			
\rightarrow NCO + H	1.0×10^{-10}	1500-3000	± 0.5
$OH + HCN \rightarrow H_2O + CN$	$1.5 \times 10^{-11} \exp(-5400/T)$	1500-2500	± 0.5
\rightarrow HOCN + H	-		
$ \rightarrow HOCN + H \rightarrow HNCO + H $	No recommendation		
$OH + CH_3OOH \rightarrow H_2O + CH_3OO$	$1.2 \times 10^{-12} \exp(130/T)$	300-1000	± 0.2 at 300 K rising to
3 2 3	1 ,		± 0.4 at 1000 K
\rightarrow H ₂ O + CH ₂ OOH	$1.8 \times 10^{-12} \exp(220/T)$	300-1000	± 0.1 at 300 K rising to
2 2	• ,		±0.3 at 1000 K
$OH + C_2H_2 \rightarrow H_2O + C_2H$	10		
\rightarrow H + CH ₂ CO	$1.0 \times 10^{-10} \exp(-6500/T)$	1000-2000	± 1.0
$\rightarrow C_2H_2OH$	See Table 3		
$OH + C_2H_4 \rightarrow H_2O + C_2H_3$	$3.4 \times 10^{-11} \exp(-2990/T)$	650-1500	±0.5
$OH + C_2H_6 \rightarrow H_2O + C_2H_5$	$1.2 \times 10^{-17} T^{2.0} \exp(-435/T)$	250-2000	± 0.07 at 250 K rising to
311 1 32116 1123 1 32115	1.2 × 10 1 exp(155/1)	250 2000	± 0.07 at 2000 K ± 0.15 at 2000 K
OH + CH₂CO → CH₂OH + CO]			_ 0.15 at 2000 it
$OH + CH2CO \rightarrow CH2OH + CO$ $\rightarrow H2CO + HCO$	1.7×10^{-11}	300-2000	± 1.0
-			
OH + CH ₃ CHO	14-0.72		
\rightarrow H ₂ O + CH ₃ CO	$3.9 \times 10^{-14} T^{0.73} \exp(560/T)$	250-1200	± 0.1 at 250 K rising to
\rightarrow H ₂ O + CH ₂ CHO			± 0.3 at 1200 K
$OH + C_2H_5OOH$			
	$3.0 \times 10^{-12} \exp(190/T)$	250-1000	± 0.3 at 250 K rising to
	[estimate]		±0.7 at 1000 K
	-	400 1	
$OH + C_3H_5 \rightarrow H_2O + C_3H_4$	1.0×10^{-11}	300-1000	± 0.5
\rightarrow CH ₂ CHCH ₂ OH	$(k_2^{\infty} + k_3) = 2.5 \times 10^{-11}$	300-1000	± 0.3
→ CH ₂ CHCHO + 2H	$(n_2 + n_3) - 2.3 \times 10$	200-1000	± 0.3
$OH + C_6H_6 \rightarrow H_2O + C_6H_5$	$2.7 \times 10^{-16} T^{1.42} \exp(-730/T)$	400-1500	± 0.3
\rightarrow H + C ₆ H ₅ OH	$2.2 \times 10^{-11} \exp(-5330/T)$	1000-1150	±0.3
$\rightarrow C_6 H_6 OH^3$	See Table 3		
Ų Ū			

TABLE 1—(Continued)

Reaction	k(cm³ molecule ⁻¹ s ⁻¹)	Temp (K)	Error limits ($\Delta \log k$)
Reaction	K(ciii iiioiecule 8)	Temp (K)	Error limits (\Delta \log k)
$\begin{array}{c} OH + C_6H_5OH \to C_6H_5(OH)_2 \\ \to H_2O + C_6H_5O \\ \to H_2O + C_6H_4OH \end{array}$	See Table 3 1.0×10^{-11}	1000-1150	± 0.5
OH + $C_6H_5CH_3 \rightarrow H_2O + C_6H_5CH_2$ $\rightarrow C_6H_5CH_3OH$	$8.6 \times 10^{-15} T \exp(-440/T)$ See Table 3	400-1200	± 0.5 at 400 K reducing to ± 0.3 at 1200 K
$OH + C_6H_5CHO$ $\rightarrow H_2O + C_6H_5CO$ $\rightarrow H_2O + C_6H_4CHO$	1.3×10^{-11}	298-1500	±0.1 at 298 K rising to ±0.5 at 1500 K
OH + $p - C_6H_4(CH_3)_2$ $\rightarrow C_6H_4CH_2CH_3 + H_2O$ $\rightarrow p - C_6H_4(CH_3)_2OH$	$6.4 \times 10^{-11} \text{exp}(-1440/T)$ See Table 3	500-960	± 0.1
$OH + C_6H_5C_2H_5$ $\rightarrow HOC_6H_5C_2H_5$	See Table 3		
$ \rightarrow H_2O + C_6H_5C_2H_4 $ $ \rightarrow H_2O + C_6H_4C_2H_5 $			
	No recommendation		
H_2O Reactions $H_2O + M \rightarrow H + OH + M$ HO_2 Radical Reactions	See Table 2		
$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	$7.0 \times 10^{-10} \exp(-6030/T) + $ $2.2 \times 10^{-13} \exp(820/T)$	550-1250	±0.15 between 550 and 800 K rising to ±0.4 at 1250 K
	$7.0 \times 10^{-10} \exp(-6030/T)$	850-1250	_ 0.4 at 1250 K
$\begin{array}{c} HO_2 + NH_2 \rightarrow NH_3 + O_2 \\ \rightarrow HNO + H_2O \end{array}$		****	
_	$2.6 \times 10^{-11} \\ 3 \times 10^{-11}$	300-400	±0.4
$HO_2 + CH_3 \rightarrow OH + CH_3O$ $\rightarrow O_2 + CH_4$	No recommendation	300-2500	± 0.7
$HO_2 + CH_4 \rightarrow H_2O_2 + CH_3$	$1.5 \times 10^{-11} \exp(-12440/T)$	600-1000	±0.2 at 600 K rising to ±0.3 at 1000 K
$HO_2 + HCHO$ $\rightarrow H_2O_2 + CHO$	$5.0 \times 10^{-12} \exp(-6580/T)$	600-1000	±0.5
$H_2O_2 + CHO$ $HO_2 + CH_3O_2$	3.0 × 10 exp(-0300/1)	000 1000	10.5
$ \rightarrow CH_3OOH + O_2 $ $ \rightarrow HCHO + H_2O + O_2 $	$4.1 \times 10^{-13} \exp(790/T)$	298-700	± 0.1 at 298 K rising to
-	$k_1/k = 1.0 \pm 0.1$ over whole range		to ±0.3 at 700 K
$HO_2 + C_2H_4 \rightarrow OH + C_2H_4O$	$3.7 \times 10^{-12} \exp(-8650/T)$	600-900	± 0.15 at 600 K rising to ± 0.25 at 900 K
$HO_2 + C_2H_6 \rightarrow H_2O_2 + C_2H_5$	$2.2 \times 10^{-11} \exp(-10300/T)$	500-1000	±0.2 at 500 K rising to ±0.3 at 1000 K
$HO_2 + CH_3CHO$ $\rightarrow H_2O_2 + CH_3CO$	$5.0 \times 10^{-12} \exp(-6000/T)$	900-1200	± 0.7
$HO_2 + C_3H_5 \rightarrow C_3H_6 + O_2$	4.4×10^{-12}	300-1000	±0.3 over the range 600-800 K rising to 0.5 at other
→ CO + products	1.1×10^{-11}	500-900	temperatures ± 0.3
$HO_2 + C_6H_5CH_3$ $\rightarrow H_2O_2 + C_6H_5CH_2$	$6.6 \times 10^{-13} \exp(-7080/T)$	600-1000	±0.3 at 750 K rising to ±0.5 at 600 K and 1000 K
$\rightarrow H_2O_2 + C_6H_4CH_3$	$9.1 \times 10^{-12} \exp(-14500/T)$	600-1000	± 1.0
$HO_2 + C_6H_5CH_2CH_3$ $\rightarrow H_2O_2 + C_6H_5CHCH_3$	$4.4 \times 10^{-13} \exp(-5680/T)$	600-1000	± 0.3 at 750 K rising to ± 0.5 at 600 and 1000 K
$ \rightarrow H_2O_2 + C_6H_5CH_2CH_2 $ $ \rightarrow H_2O_2 + C_6H_4CH_2CH_3 $	$5.3 \times 10^{-12} \exp(-9760/T)$ $9 \times 10^{-12} \exp(-14500/T)$	600-1000 600-1000	± 0.5 ± 1.0

TABLE 1—(Continued)

B	3 1 1 1 1 1		
Reaction	k(cm ³ molecule ⁻¹ s ⁻¹)	Temp (K)	Error limits ($\Delta \log k$)
H ₂ O ₂ Reactions			
$H_2O_2 + M \rightarrow 2OH + M$	See Table 2		
N Atom Reactions			
$N + O_2 \rightarrow NO + O$	$1.5 \times 10^{-14} T \exp(-3270/T)$	298-5000	± 0.12 over range 300-1000 K rising
			to ±0.3 over range 1000-5000 K
$N + OH \rightarrow NO + H$	4.7×10^{-11}	300-2500	±0.1 at 300 K rising to ±0.3 at 2500 K
$N + NO \rightarrow N_2 + O$	$7.1 \times 10^{-11} \exp(-790/T)$	1400-4000	± 0.2
$N + CN \rightarrow N_2 + C$	3×10^{-10}	300-2500	± 1.0
$N + NCO \rightarrow NO + CN$	No recommendation		
\rightarrow N ₂ + CO	3.3×10^{-11}	1700	± 0.5
NH Radical Reactions			
$NH + O_2 \rightarrow NO + OH$	$(k_1 + k_2) = 1.3$		
→ HNO + O	$\times 10^{-13} \exp(-770/T)$	270-550	± 0.25
\rightarrow HNO + O	$6.5 \times 10^{-11} \exp(-9000/T)$	2200-3500	± 0.5
$NH + NO \rightarrow N_2O + H$			
$\rightarrow HN_2 + O$	5.0×10^{-11}	270-380	± 0.2
\rightarrow N ₂ + OH	$2.8 \times 10^{-10} \exp(-6400/T)$	2220-3350	±0.5
NH ₂ Radical Reactions			
$NH_2^2 + O_2 \rightarrow products$	$< 3 \times 10^{-18}$	298	
$NH_2 + NO \rightarrow N_2 + H_2O$			
$\rightarrow N_2 + H + OH$	$1.8 \times 10^{-12} \exp(650/T)$	220-2000	± 0.5
$\rightarrow N_2H + OH$	$(k_2 + k_3)/k \approx 0.12$ at 298 K		
$\rightarrow N_2O + H_2$			
NH ₃ Reactions			
$NH_3 + M \rightarrow NH_2 + H$	See Table 2		
\rightarrow NH + H ₂	No recommendation		
C Atom Reactions			
$C + N_2 \rightarrow CN + N$	$8.7 \times 10^{-11} \exp(-22600/T)$	2000-5000	± 0.2
$C + NO \rightarrow CN + O$	2.5×10^{-11}	300	± 0.3
\rightarrow CO + N	8.0×10^{-11}	1500-4050	± 0.3
	$k_1/k_2 = 0.6 \pm 0.25;$		
	$k_1/k = 0.4 \pm 0.25$		
	over range 1500-4050 K		
$^{1}C_{2}$ and $^{3}C_{2}$ Radical Reactions	See data sheets		
CH Radical Reactions			
$ \begin{array}{c} \text{CH} + \text{O}_2 \to \text{CHO} + \text{O} \\ \to \text{CO} + \text{OH} \end{array} $	5.5×10^{-11}	300-2000	± 0.3 at 300 K rising to
→ CO + OH	5.5 × 10	300-2000	±0.5 at 2000 K
$CH + H_2 \rightarrow CH_2 + H$	$2.4 \times 10^{-10} \exp(-1760/T)$	200 1000	.02
\rightarrow CH ₃	$2.4 \times 10^{-1760/1}$	300-1000	± 0.3
$CH + H_2O \rightarrow products$	$9.5 \times 10^{-12} \exp(380/T)$	300-1000	± 1.0
$CH + N_2 \rightarrow HCN + N$	$2.6 \times 10^{-12} \exp(-9030/T)$	2000-4000	±0.3
\rightarrow CHN ₂	at $p < 1$ atm	2000 .000	± 0.0
$CH + NO \rightarrow CO + NH$			
→ CN + OH	2.0×10^{-10}	300-4000	± 0.25
→ HCN + O	2.0 × 10	200 4000	1 0.23
CH + CO → products	$4.6 \times 10^{-13} \exp(860/T)$	300-1000	±1.0
$CH + CO_2 \rightarrow products$	$5.7 \times 10^{-12} \exp(-345/T)$	300-1000	±1.0 ±1.0
$CH + CH_4 \rightarrow products$	$5.0 \times 10^{-11} \exp(200/T)$	200-700	± 1.0
$CH + C_2H_2 \rightarrow products$	$3.5 \times 10^{-10} \exp(61/T)$	200-700	±1.0
$CH + C_2H_4^2 \rightarrow products$	$2.2 \times 10^{-10} \exp(173/T)$	200-700	± 1.0
$CH + C_2H_6 \rightarrow products$	$1.8 \times 10^{-10} \exp(132/T)$	200-700	± 1.0

TABLE 1—(Continued)

Pagation	$\frac{k(cm^3 \text{ molecule}^{-1}s^{-1})}{k(cm^3 molecule}$	Temp (V)	Ferror limits (A log k)
Reaction	K(CIII HIOIECUIE S)	Temp (K)	Error limits $(\Delta \log k)$
$CH + C_3H_8 \rightarrow products$	$1.9 \times 10^{-10} \exp(240/T)$	300-700	± 1.0
$CH + n - C_4H_{10} \rightarrow products$	$4.4 \times 10^{-10} \exp(28/T)$	250-700	± 1.0
$CH + i - C_4H_{10} \rightarrow products$	$2.0 \times 10^{-10} \exp(240/T)$	300-700	± 1.0
$CH + neo - C_5H_{12} \rightarrow products$	$1.6 \times 10^{-10} \exp(340/T)$	300-700	± 1.0
$CH + CH_3C_2H \rightarrow products$	No recommendation		
$CH + CH_2O \rightarrow products$ 3CH_2 Radical Reactions	$1.6 \times 10^{-10} \exp(260/T)$	300-700	± 1.0
-			
3 CH ₂ + O ₂ \rightarrow CO + H + OH \rightarrow CO ₂ + H + H \rightarrow CO + H ₂ O	$4.1 \times 10^{-11} \exp(-750/T)$	300-1000	±0.1 at 300 K rising to ±0.5 at 1000 K
$ \begin{array}{c} $			
${}^{3}\text{CH}_{2} + {}^{3}\text{CH}_{2} \rightarrow {}^{2}\text{C}_{2}\text{H}_{2} + {}^{4}\text{H}_{2}$ $\rightarrow {}^{2}\text{C}_{2}\text{H}_{2} + {}^{2}\text{H}$	$2.0 \times 10^{-10} \exp(-400/T)$ $k_2/k = 0.9 \pm 0.1$ over range	300-3000	± 0.5
-	300-3000 K	200 2000	. 0.4 . 400 FF 11
$^{3}\text{CH}_{2} + \text{CH}_{3} \rightarrow \text{C}_{2}\text{H}_{4} + \text{H}$	7.0×10^{-11}	300-3000	± 0.3 at 300 K rising to ± 0.5 at 3000 K
${}^{3}\text{CH}_{2} + \text{C}_{2}\text{H}_{2} \rightarrow \text{C}_{3}\text{H}_{4}$ ${}^{3}\text{CH}_{2} + \text{C}_{2}\text{H}_{4}$	See Table 3		
$\rightarrow C_2H_4$			
→ c-C ₂ H ₄	See Table 3		
$ \rightarrow C_3H_6 \rightarrow c-C_3H_6 \rightarrow CH_2CHCH_2 + H $	See Tuble 5		
¹ CH ₂ Radical Reactions			
$^{1}CH_{2} + Ar \rightarrow ^{3}CH_{2} + Ar$	6.0×10^{-12}	300-2000	± 0.3
${}^{1}CH_{2} + NO \rightarrow products$	1.6×10^{-10}	290-650	± 0.2
${}^{1}\text{CH}_{2} + \text{N}_{2} \rightarrow {}^{3}\text{CH}_{2} + \text{N}_{2}$	1.0×10^{-11}	300-2000	± 0.3
${}^{1}\text{CH}_{2} + \text{CH}_{4} \rightarrow {}^{3}\text{CH}_{2} + \text{CH}_{4}$	1.2×10^{-11}	300-2000	± 0.4
${}^{1}\text{CH}_{2} + \text{C}_{2}\text{H}_{2} \rightarrow {}^{3}\text{CH}_{2} + \text{C}_{2}\text{H}_{2}$	8.0×10^{-11}	300-2000	±0.4
${}^{1}\text{CH}_{2} + \text{C}_{2}\text{H}_{4} \rightarrow {}^{3}\text{CH}_{2} + \text{C}_{2}\text{H}_{4}$	4.0×10^{-11}	300-2000	±0.4
${}^{1}\text{CH}_{2} + {}^{1}\text{C}_{2}\text{H}_{6} \rightarrow {}^{3}\text{CH}_{2} + {}^{1}\text{C}_{2}\text{H}_{6}$	3.6×10^{-11}	300-2000	± 0.4
$^{1}\text{CH}_{2} + \text{O}_{2} \rightarrow \text{CO} + \text{H} + \text{OH}$	5.2 × 10-11	200 1000	1.0.2 at 200 V minima to
$\rightarrow CO_2 + H_2$	5.2×10^{-11}	300-1000	± 0.3 at 300 K rising to ± 0.5 at 1000 K
			±0.5 at 1000 K
$^{1}\text{CH}_{2} + \text{H}_{2} \rightarrow \text{CH}_{3} + \text{H}$	1.2×10^{-10}	300-1000	±0.1 at 300 K rising to
	1.2 / 10	200 1000	± 0.3 at 1000 K
$^{1}CH_{2} + C_{2}H_{2} \rightarrow CH_{2}CCH_{2}$			
→ CH ₃ CCH	See Table 3		
\rightarrow CH ₂ CCH + H			
\rightarrow $^{3}CH_{2} + C_{2}H_{2}$	See earlier entry		
$^{1}\text{CH}_{2} + \text{C}_{2}\text{H}_{4} \rightarrow \text{C}_{3}\text{H}_{6}$	See Table 3		
$\rightarrow {}^{3}\mathrm{CH}_{2} + \mathrm{C}_{2}\mathrm{H}_{4}$	See earlier entry		
CH ₃ Radical Reactions			
$CH_3 + M \rightarrow CH_2 + H + M$	See Table 2		
$CH_3 + O_2 \rightarrow CH_3O + O$	$2.2 \times 10^{-10} \exp(-15800/T)$	300-2500	± 0.5
→ HCHO + OH	$5.5 \times 10^{-13} \exp(-4500/T)$	1000-2500	± 0.5
$\rightarrow \text{CH}_3\text{O}_2$	See Table 3	200 2500	0.151.41
$CH_3 + H_2 \rightarrow CH_4 + H$	$1.14 \times 10^{-20} T^{2.74} \exp(-4740/T)$	300-2500	± 0.15 in the
			range 300-700 K ± 0.3 in the range
			±0.5 in the range 700−2500 K
$CH_3 + CO + M \rightarrow CH_3CO + M$	See Table 3		700 2300 K
$CH_3 + CH_3 \rightarrow C_2H_5 + H$	$5 \times 10^{-11} \exp(-6800/T)$	1300-2500	± 0.6
$\rightarrow C_2H_4 + H_2$	No recommendation		
2 - 4 2	(see data sheets)		
$\rightarrow C_2H_6$	See Table 3		

TABLE 1—(Continued)

	TABLE I (Communa)		
Reaction	k(cm ³ molecule ⁻¹ s ⁻¹)	Temp (K)	Error limits ($\Delta \log k$)
$CH_3 + HCHO \rightarrow CH_4 + HCO$ $CH_3 + C_2H_2 + M \rightarrow C_3H_5 + M$	$1.3 \times 10^{-31} T^{6.1} \exp(-990/T)$ See Table 3	300-2000	±0.2
	No recommendation $6.9 \times 10^{-12} \exp(-5600/T)$ See Table 3	400-3000	± 0.5
$CH_3 + C_2H_5 \rightarrow CH_4 + C_2H_4$ $\rightarrow C_3H_8$	1.9×10^{-12} See Table 3	300-2000	± 0.4
$CH_3 + C_2H_6 \rightarrow CH_4 + C_2H_5$	$2.5 \times 10^{-31} T^{6.0} \exp(-3043/T)$	300-1500	± 0.1 at 300 K rising to ± 0.2 at 1500 K
CH ₃ + CH ₃ CHO	2.2 10=30/(5.6	200 4250	. 0.2
	$3.3 \times 10^{-30} T^{5.6} \exp(-1240/T)$ No recommendation (see data sheets)	300-1250	±0.3
$CH_3 + C_3H_5 \rightarrow C_2H_5CHCH_2$	See Table 3		
\rightarrow CH ₄ + CH ₂ CCH ₂ CH ₄ Reactions	3.5×10^{-13}	500-1200	± 0.5
$CH_4 + M \rightarrow CH_3 + H + M$ CHO Radical Reactions	See Table 2		
$CHO + Ar \rightarrow H + CO + Ar$	See Table 2		
$CHO + O_2 \rightarrow CO + HO_2$ $\rightarrow OH + CO_2$ $\rightarrow HCO_3$	5.0×10^{-12}	300-2500	±0.3
CHO + CHO → HCHO + CO HCHO Reactions HCHO + M	5.0×10^{-11}	300	±0.3
	See Table 2		
CH_2OH Reactions $CH_2OH + O_2 \rightarrow CH_2O + HO_2$	$2.6 \times 10^{-9} T^{-1.0} + 1.2 \times 10^{-10} \exp(-1800/T)$	300-1200	\pm 0.1 at 300 K rising to \pm 0.3 at 1200 K
CH ₃ O Radical Reactions	a		
$CH_3O + M \rightarrow HCHO + H + M$ $CH_3O + O_2 \rightarrow HCHO + HO_2$	See Table 2 $3.6 \times 10^{-14} \exp(-880/T)$	300-1000	±0.1 at 500 K rising to ±0.3 at 300 K and 1000 K
CH_3O_2 Radical Reactions $CH_3O_2 + CH_3O_2$			
	$9.1 \times 10^{-14} \exp(420/T)$ $k_1/k_2 = 25 \exp(-1170/T)$; $k_3 = 0$ over whole range	298-700	± 0.1 at 298 K increasing to ± 0.3 at 700 K
$CH_3O_2 + C_3H_5$ $\rightarrow CH_3O + CH_2CHCH_2O$ $CH_3OH \ Reactions$	2.0×10^{-11}	500-1200	±0.5
$CH_3OH + Ar \rightarrow CH_3 + OH + Ar$ $\rightarrow CH_2OH + H + Ar$ $\rightarrow {}^1CH_2 + H_2O + Ar$	See Table 2		
CH_3OOH Reactions $CH_3OOH + M$ $\rightarrow CH_3O + OH + M$	See Table 2		
CN Radical Reactions	_		
$CN + O_2 \rightarrow NCO + O$	$1.2 \times 10^{-11} \exp(210/T)$	290-4500	±0.15 over the range 290-4500 K
$CN + H_2 \rightarrow HCN + H$	$3.2 \times 10^{-20} T^{2.87} \exp(-820/T)$	200-3500	±0.2 at 200 K rising to ±0.5 at 3500 K
$\begin{array}{c} \text{CN} + \text{H}_2\text{O} \rightarrow \text{HCN} + \text{OH} \\ \rightarrow \text{HOCN} + \text{H} \end{array}$	$1.3 \times 10^{-11} \exp(-3750/T)$	500-3000	± 0.3 at 500 K rising to ± 0.5 at 3000 K
$CN + CH_4 \rightarrow HCN + CH_3$ NCO Radical Reactions	$1.5 \times 10^{-19} T^{2.64} \exp(150/T)$	290-1500	±0.3
$NCO + M \rightarrow N + CO + M$	See Table 2		

TABLE 1—(Continued)

Reaction	k(cm³ molecule ⁻¹ s ⁻¹)	Temp (K)	Error limits $(\Delta \log k)$
$NCO + NO \rightarrow N_2O + CO$ $\rightarrow N_2 + CO_2$ $\rightarrow N_2 + CO + O$	$2.3 \times 10^{-6} T^{-1.73} \exp(-380/T)$	290-3000	±0.25
C_2H Radical Reactions $C_2H + O_2 \rightarrow CO_2 + CH$ $\rightarrow 2CO + H$ $\rightarrow C_2HO + O$ $\rightarrow CO + HCO$	3.0×10^{-11}	300	±0.5
$C_2H + H_2 \rightarrow C_2H_2 + H$	$1.8 \times 10^{-11} \exp(-1090/T)$	300-2500	± 0.3 at 300 K rising to
CH+CH ¬CH+H	1.5×10^{-10}	300-2700	± 0.5 at 2500 K
$C_2H + C_2H_2 \rightarrow C_4H_2 + H$ $C_2H + CH_4 \rightarrow \text{products}$	3.0×10^{-12}	298	± 0.5 ± 1
$C_2H + C_1H_4 \rightarrow \text{products}$ $C_2H + C_2H_6 \rightarrow \text{products}$ $C_2H_3 \text{ Radical Reactions}$	No recommendation	290	±1
$C_2H_3 + M \rightarrow C_2H_2 + H + M$	See Table 2		
$C_2H_3 + O_2 \rightarrow HO_2 + C_2H_2$ $\rightarrow H_2CO + CHO$ $\rightarrow C_2H_3O + O$ $\rightarrow C_2H_3O_2$	9.0×10^{-12}	300-2000	± 0.3 over range 300-600 K; ± 0.5 over range 600-2000 K
C_2H_4 Reactions $C_2H_4 + M \rightarrow C_2H_2 + H_2 + M \rightarrow C_2H_3 + H + M$	See Table 2		
C ₂ H ₅ Radical Reactions	Coormakio 2		
$C_2H_5 + M \rightarrow C_2H_4 + H + M$	See Table 2	400 <u>-</u> 1200	L 0 3
$C_2H_5 + O_2 \rightarrow C_2H_4 + HO_2$ $C_2H_5 + H_2 \rightarrow C_2H_6 + H$	$1.7 \times 10^{-14} \exp(1100/T)$ 5.1 × 10 ⁻²⁴ $T^{3.6} \exp(-4250/T)$	600-1200 700-1200	±0.3 ±0.2 at 700 K rising to ±0.6 at 1200 K
$C_2H_5 + C_2H_2 \rightarrow C_2H_5CHCH$	$5.6 \times 10^{-14} \exp(-3520/T)$	300-600	± 0.5
$C_2H_5 + C_2H_4 \rightarrow n - C_4H_9$	$1.8 \times 10^{-13} \exp(-3670/T)$	300-600	± 0.5
$C_2H_5 + C_2H_5 \to n - C_4H_{10}$	See Table 3		
$\rightarrow C_2H_6 + C_2H_4$	2.4×10^{-12}	300-1200	± 0.4
$C_2H_5 + C_2H_5CHO$ $\rightarrow C_2H_6 + C_2H_5CO$ $C_2H_5 + C_3H_5$	$2.9 \times 10^{-13} \exp(-3660/T)$	300-700	±0.3
$\rightarrow CH_3CH_2CH_2CHCH_2$	See Table 3		
$\rightarrow C_2H_6 + CH_2CCH_2$	$1.6 \times 10^{-12} \exp(66/T)$	500-1200	± 0.3
$\rightarrow C_2 H_4 + C_3 H_6$	$4.3 \times 10^{-12} \exp(66/T)$	500-1200	± 0.4
C_2H_6 Reactions $C_2H_6 + M \rightarrow CH_3 + CH_3 + M$ CHCO Reactions	See Table 2		
CHCO + $O_2 \rightarrow CO_2 + HCO$ $\rightarrow 2CO + OH$ $\rightarrow C_2O + HO_2$ $\rightarrow CHO_2CO$	$2.7 \times 10^{-12} \exp(-430/T)$ M = He, 2 torr	300-550	±0.7
CH ₂ CHO Radical Reactions CH ₂ CHO + O ₂			
$ \rightarrow HO_2 + CH_2CO \rightarrow HCHO + CO + OH \rightarrow O_2CH_2CHO $	$k_{\infty} = 2.6 \times 10^{-13}$ $k_2 = 3.0 \times 10^{-14}$	250-500 300	±0.2 ±0.3
CH_3CO Radical Reactions $CH_3CO + O_2 + M$ $\rightarrow CH_3CO_3 + M$ CH_3CHO Reactions	See Table 3		
$CH_3CHO Reactions$ $CH_3CHO + M$ $\rightarrow CH_3 + HCO + M$	See Table 2		

TABLE 1—(Continued)

	TABLE 1 (Continueu)		
Reaction	k(cm ³ molecule ⁻¹ s ⁻¹)	Temp (K)	Error limits ($\Delta \log k$)
C_2H_5O Reactions			
$C_2H_5O + M$			
\rightarrow HCHO + CH ₃ + M	See Table 2		
\rightarrow CH ₃ CHO + \dot{H} + M			
$C_2H_5O + O_2$	12		
\rightarrow CH ₃ CHO + HO ₂	$1.0 \times 10^{-13} \exp(-830/T)$	300-1000	± 0.3 at 300 K rising to
C H OOH Pagations			± 0.5 at 1000 K
C_2H_5OOH Reactions $C_2H_5OOH + M$			
$\rightarrow C_2H_5OOH + M$ $\rightarrow C_2H_5O + OH + M$	See Table 2		
C ₃ H ₅ Radical Reactions	dec Table 2		
$C_3H_5 + M \rightarrow CH_2CCH_2 + H + M$	See Table 2		
$C_3H_5 + O_2 \rightarrow CH_2CCH_2 + HO_2$	$1.7 \times 10^{-12} \exp(-11400/T)$	600-1200	± 0.3 at 600 K rising to
			±0.5 at 1200 K
→ CO + products	$7.6 \times 10^{-12} \exp(-9450/T)$	600-1200	± 0.3
$C_3H_5 + H_2 \rightarrow C_3H_6 + H$	$1.8 \times 10^{-19} T^{2.4} \exp(-9550/T)$	300-1100	± 0.7 at 300 K reducing to
	(6 > 10 = 23 m 3 4	200 1200	±0.3 at 1100 K
$C_3H_5 + CH_4 \rightarrow C_3H_6 + CH_3$	$6.6 \times 10^{-23} T^{3.4} \exp(-11670/T)$	300-1200	±0.4
$C_3H_5 + C_2H_4 \rightarrow C_3H_6 + C_2H_3$ $\rightarrow c - C_5H_8 + H$	$6.6 \times 10^{-23} T^{3.4} \exp(-13120/T)$ $1.0 \times 10^{-13} \exp(-9620/T)$	600-1200 600-1200	± 0.5
$C_3H_5 + C_2H_6 \rightarrow C_3H_6 + C_2H_5$	$3.9 \times 10^{-22} T^{3.3} \exp(-9990/T)$	300-1200	$\pm 0.7 \\ \pm 0.4$
$C_3H_5 + C_2H_6 \rightarrow C_3H_6 + C_2H_5$ $C_3H_5 + C_3H_5$	$3.9 \times 10^{-9990/1}$	300-1200	±0.4
→ CH ₂ CHCH ₂ CH ₂ CHCH ₂	See Table 3		
$\rightarrow C_3H_6 + CH_2CCH_2$	$1.0 \times 10^{-13} \exp(132/T)$	300-1000	± 0.7
$C_3H_5 + C_3H_8$	• • • • • • • • • • • • • • • • • • • •		_
\rightarrow C ₃ H ₆ + CH ₃ CH ₂ CH ₂	$3.9 \times 10^{-22} T^{3.3} \exp(-9990/T)$	300-1200	± 0.4 over the range 600 to
\rightarrow C ₃ H ₆ + CH ₃ CHCH ₃	$1.3 \times 10^{-22} T^{3.3} \exp(-8660/T)$	300-1200	1000 K rising to ± 0.7
			at other temperatures
$C_3H_5 + 2 - C_4H_8$	66 × 10=12(9190 /7)	(00, 1000	. 0.5
	$6.6 \times 10^{-12} \exp(-8180/T)$ $3.3 \times 10^{-23} T^{3.4} \exp(-12160/T)$	600-1000 600-1000	±0.5 ±0.5
$\rightarrow CH_2CHCH_2CH(CH_3)CHCH_3$	See Table 3	000-1000	± 0.3 ± 0.4 over the range
$C_3H_5 + i - C_4H_{10}$	See Tuble 5		± 0. Foreit the range
$\rightarrow C_3H_6 + (CH_3)_2CHCH_2$	$5.9 \times 10^{-22} T^{3.3} \exp(-9990/T)$	300-1200	± 0.4 over the range
$\rightarrow C_3H_6 + (CH_3)_3C$	$0.7 \times 10^{-22} T^{3.3} \exp(-7800/T)$	300-1200	600 to 1000 K rising to
	4		± 0.7 at other temperatures
$C_3H_5 + HCHO \rightarrow C_3H_6 + HCO$	$1.2 \times 10^{-16} T^{1.8} \exp(-9155/T)$	300-1000	± 0.4
$C_3H_5 + C_6H_5CH_3$			
$\rightarrow C_3H_6 + C_6H_5CH_2$	$3.3 \times 10^{-12} \exp(-8660/T)$	600-1000	± 0.4
$i - C_3H_7$ Radical Reactions	Saa Tabla 2		
$i - C_3H_7 + M \rightarrow C_3H_6 + H + M$ $i - C_3H_7 + O_2 \rightarrow C_3H_6 + HO_2$	See Table 2 $3.3 \times 10^{-14} \exp(+1290/T)$	600-800	±0.5
$i - C_3H_7 + G_2 + C_3H_6 + HG_2$ $i - C_3H_7 + H_2 \rightarrow C_3H_8 + H$	$1.3 \times 10^{-23} T^{3.28} \exp(-4360/T)$	300-1200	±0.5
$i - C_3H_7 + C_2H_2$			<u> </u>
→ (CH ₃) ₂ CHCHCH	$5.3 \times 10^{-14} \exp(-3470/T)$	300-600	± 0.5
$i - C_3H_7 + C_2H_4$			
\rightarrow (CH ₃) ₂ CHCH ₂ CH ₂	$7.5 \times 10^{-14} \exp(-3470/T)$	300-600	± 0.5
$i - C_3H_7 + i - C_3H_7$	0	200 4000	. 0.4 000 77 . 1.1
$\rightarrow C_6H_{14}$	See Table 3	300-1000	± 0.1 at 300 K rising to
$\rightarrow C_3H_8 + C_3H_6$	4.2×10^{-12}	200_1000	±0.3 at 1000 K
- C3118 + C3116	7.4 ^ 10	300-1000	± 0.1 at 300 K rising to ± 0.5 at 1000 K
$i - C_3H_7 + i - C_3H_7CHO$			_ 0.5 at 1000 K
5 / 5 /			
	$6.6 \times 10^{-14} \exp(-3170/T)$	300-650	± 0.5
$\rightarrow C_3H_8 + CH_2CH(CH_3)CHO$	$5.3 \times 10^{-14} \exp(-4780/T)$	500-650	± 0.5
- C3118 C112C11(C113/C110	5.5 \ 10 CAP(-4700/1)	200 020	⊥0.0

TABLE 1—(Continued)

Reaction	k(cm ³ molecule ⁻¹ s ⁻¹)	Temp (K)	Error limits ($\Delta \log k$)
C_3H_8 Reactions $C_3H_8 + M \rightarrow CH_3 + C_2H_5 + M$ $t - C_4H_9$ Reactions	See Table 2		
$t - C_4H_9 + M$ $\rightarrow i - C_4H_8 + H + M$ $t - C_4H_9 + O_2 \rightarrow i - C_4H_8 + HO_2$ $t - C_4H_9 + H_2 \rightarrow i - C_4H_{10} + H$	See Table 2 $5 \times 10^{-14} \exp(+2115/T)$ $3.1 \times 10^{-26} T^{4.24} \exp(-4510/T)$	600-800 300-1200	±0.5 ±0.5
$t - C_4H_9 + C_2H_2$ $\rightarrow (CH_3)_3CCHCH$	$1.2 \times 10^{-13} \exp(-4320/T)$	300-600	± 0.5
$t - C_4H_9 + C_2H_4$ $\rightarrow (CH_3)_2CCH_2CH_2$	$3.3 \times 10^{-14} \exp(-4020/T)$	300-650	± 0.5
$t - C_4 H_9 + t - C_4 H_9$ $\rightarrow C_8 H_{18}$	See Table 3		
$\rightarrow i - C_4 H_{10} + i - C_4 H_8$	$1.2 \times 10^{-7} T^{-1.73}$	300-1000	±0.15 at 300 K rising to ±0.5 at 1000 K
$t - C_4H_9 + t - C_4H_9CHO$ $\rightarrow t - C_4H_{10} + t - C_4H_9CO$	$1.0 \times 10^{-14} \exp(-3200/T)$	300-700	±0.5
$\rightarrow i - C_4 H_{10} + CH_2 C(CH_3)_2 CHO C_6 H_5 Radical Reactions$	$3.9 \times 10^{-14} \exp(-5540/T)$	500-700	± 0.5
$C_{6}H_{5} + M \rightarrow C_{2}H_{2} + C_{4}H_{3} + M$ $ \rightarrow C_{2}H_{3} + C_{4}H_{2} + M$ $ \rightarrow linear - C_{6}H_{5} + M$	See Table 2		
C_6H_6 Reactions $C_6H_6 + M \rightarrow C_6H_5 + H + M$ $\rightarrow C_4H_4 + C_2H_2 + M$	See Table 2		
C_6H_5O Radical Reactions $C_6H_5O + M \rightarrow C_5H_5 + CO + M$ $C_6H_5CH_2$ Radical Reactions	See Table 2		
$C_{6}H_{5}CH_{2} + M$ $\rightarrow C_{3}H_{3} + 2C_{2}H_{2} + M$ $\rightarrow C_{4}H_{4} + C_{3}H_{3} + M$ $\rightarrow C_{5}H_{5} + C_{2}H_{2} + M$ $\rightarrow C_{7}H_{7} + M$	See Table 2		
$C_6H_5CH_3$ Reactions $C_6H_5CH_3 + M$			
$ \rightarrow C_6H_5CH_2 + H + M \rightarrow C_6H_5 + CH_3 + M $	See Table 2		
$p - C_6H_4(CH_3)_2 Reactions$ $p - C_6H_4(CH_3)_2 + M \rightarrow$ $C_6H_4CH_2CH_3 + H + M$ $C_6H_5C_2H_5 Reactions$ $C_6H_5C_2H_5 + M$	See Table 2		
	See Table 2		

TABLE 2

Decomposition Reactions

	Decomposition Reactions		
	$k_{r}(s^{-1})$		
	k_0 (cm ³ molecule ⁻¹ s ⁻¹)		
	F_c		
D	$k (s^{-1}) = \frac{k_0 k_{\infty}[M]}{k_0[M] + k_{\infty}} F$	D (11)	
Reaction	$\kappa_0[M] + \kappa_{\infty}$	Temp (K)	Error limits $(\Delta \log k)$
$H_2 + Ar \rightarrow 2H + Ar$	$k_0 = 3.7 \times 10^{-10} \exp(-48350/T)$	2500-8000	±0.3
$H_2 + H_2 \rightarrow 2H + H_2$	$k_0 = 1.5 \times 10^{-9} \exp(-48350/T)$	2500-8000	± 0.5
$H_2O + N_2 \rightarrow H + OH + N_2$	$k_0 = 5.8 \times 10^{-9} \exp(-52920/T)$	2000-6000	
$H_2O_2 + M \rightarrow 2OH + M$	$k_0(Ar) = 3 \times 10^{-8} \exp(-21600/T)$	1000-1500	± 0.2
	$k_0(N_2) = 2 \times 10^{-7} \exp(-22900/T)$	700-1500	± 0.2
	$k_{\infty} = 3 \times 10^{14} \exp(-24400/T)$	1000-1500	± 0.5
	$F_c(Ar) = 0.5$	700-1500	$\Delta F_c = \pm 0.1$
$NH_3 + Ar \rightarrow NH_2 + H + Ar$	$k_0 = 7.4 \times 10^{-9} \exp(-41560/T)$	2000-3000	
-	$k_{\infty} = 8.3 \times 10^{15} \exp(-55170/T)$	2000-3000	± 0.4
	$F_c = 0.58 \exp(-T/4581)$		
	$+0.42 \exp(-T/102)$	2000-3000	$\Delta F_c = \pm 0.1$
$CH_3 + M \rightarrow CH_2 + H + M$	$k_0 = 1.7 \times 10^{-8} \exp(-45600/T)$	1500-3000	
$CH_4 + M \rightarrow CH_3 + H + M$	$k_0(Ar) = 7.5 \times 10^{-7} \exp(-45700/T)$	1000-1700	± 0.3
,	$k_0(\text{Ar}) = 7.8 \times 10^{23} T^{-8.2} \exp(-59200/T)$	1700-5000	± 0.3
	$k_0(\text{CH}_4) = 1.4 \times 10^{-6} \exp(-45700/T)$	1000-2000	
	$k_{\infty} = 2.4 \times 10^{16} \exp(-52800/T)$	1000-3000	
	$F_c(Ar) = \exp(-T/1350)$		_
	$+\exp(-7830/T)$	1000-5000	$\Delta F_c = \pm 0.1$
	$F_c(\text{CH}_4) = 0.31 \exp(-T/90)$		
	+0.69(-T/2210)	1000-2000	$\Delta F_c = \pm 0.1$
$HCO + Ar \rightarrow H + CO + Ar$	$k_0 = 2.6 \times 10^{-10} \exp(-7930/T)$	600-2500	± 0.5
$HCHO + M \rightarrow H + CHO + M$	$k_0(Ar) = 2.7$		
$\begin{array}{c} \text{HCHO} + \text{M} \rightarrow \text{H} + \text{CHO} + \text{M} \\ \rightarrow \text{H}_2 + \text{CO} + \text{M} \end{array}$	$\times 10^{12} T^{-5.54} \exp(-48660/T)$	1700-3200	± 0.3
² J	$k_0(2)/k_0 = 0.7 \pm 0.4$	2000-3000	
$CH_3O + M \rightarrow HCHO + H + M$	$k_0 = 9.0 \times 10^{-11} \exp(-6790/T)$	300~1700	± 0.3
CH ₃ OH + Ar		1000-2000	
\rightarrow CH ₃ + OH + Ar	$k_0 = 1.1 \times 10^{-7} \exp(-33080/T)$ $k_x = 1.7 \times 10^{16} \exp(-45740/T)$	1000-2000	
$\rightarrow CH_2OH + H + Ar$			$\Delta F_c = \pm 0.1$
$\rightarrow {}^{1}CH_{2} + H_{2}O + Ar$	$F_c = 0.18 \exp(-T/200) + 0.82 \exp(-T/1438)$	1000 2000	<u> </u>
-	$+0.02 \exp(-1/1430)$		
CH ₃ OOH + M	(21200 (7)	500 000	. 0.0
\rightarrow CH ₃ O + OH + M	$k_{\infty} = 6 \times 10^{14} \exp(-21300/T)$	500-800	± 0.2 at 600 K rising to
NGO LA NELGO LA	1.7 × 10=9 (22500 (77)	1450 2600	± 0.5 at 500 and 800 K
$NCO + Ar \rightarrow N + CO + Ar$	$k_0 = 1.7 \times 10^{-9} \exp(-23500/T)$ $k_0 = 6.9 \times 10^{17} T^{-7.5} \exp(-22900/T)$	1450-2600	
$C_2H_3 + M \rightarrow C_2H_2 + H + M$		500-2500	±0.5
	$k_{\infty} = 2 \times 10^{14} \exp(-20000/T)$	500-2500	±0.5
CH IM CH IH IM	$F_c = 0.35$ $k_0(Ar, Kr) = 5.8$	500-2500	$\Delta F_c = \pm 0.1$
$C_2H_4 + M \rightarrow C_2H_2 + H_2 + M$	$\kappa_0(AI, KI) = 3.8$ $\times 10^{-8} \exp(-36000/T)$	1500_2200	± 0.2
\rightarrow C ₂ H ₃ + H + M	$k_0(Ar) = 4.3 \times 10^{-7} \exp(-48600/T)$	1500-3200 1500-3200	
$C_2H_5 + C_2H_6$	$\kappa_0(AI) = 4.3 \times 10^{-1} \exp(-40000/1)$	1300-3200	I 0.3
$\rightarrow C_2H_4 + H + C_2H_6$	$k_0 = 1.7 \times 10^{-6} \exp(-16800/T)$	700-900	± 0.3
$C_{2}\Pi_{4} + \Pi + C_{2}\Pi_{6}$	$k_{\infty} = 8.2 \times 10^{13} \exp(-20070/T)$	700-100	± 0.3
	$K_{\infty} = 3.2 \times 10^{-6} \text{ exp}(-20070/1)$ $F_{c} = 0.25 \exp(-T/97)$	700-1100	±0.5
	$T_c = 0.25 \exp(-T/37)$ + 0.75 \exp(-T/1379)	700-1100	$\Delta F_c = \pm 0.1$
$C_2H_6 + M \rightarrow 2CH_3 + M$	$k_0(Ar) = 1.1$	700 1100	$\Delta r_c = \pm 0.1$
$C_2\Pi_6 + W_1 \rightarrow 2C\Pi_3 + W_1$	$\times 10^{25} T^{-8.24} \exp(-47090/T)$	300-2000	± 0.5
	$k_0(C_2H_6) = 4.5$	200 2000	T 0.2
	$\times 10^{-2} \exp(-41930/T)$	800-1000	± 0.5
	$k_{\infty} = 1.8$	300 1000	<u> </u>
	$\times 10^{21} T^{-1.24} \exp(-45700/T)$	300-2000	±0.3
	$F_c(Ar) = 0.38 \exp(-T/73)$	200 2000	_ 5.0
	$+0.62 \exp(-T/1180)$	300-2000	$\Delta F_c = \pm 0.1$
	···		c =

TABLE 2—(Continued)

	$k_{\infty}(\mathrm{s}^{-1})$ k_0 (cm ³ molecule ⁻¹ s ⁻¹) F_c		
Reaction	$k (s^{-1}) = \frac{k_0 k_{\infty}[M]}{k_0[M] + k_{\infty}} F$	Temp (K)	Error limits ($\Delta \log k$)
	$F_c(C_2H_6) = 0.54 \exp(-T/1250)$	800-1000	$\Delta F_c = \pm 0.1$
$CH_3CO + M$			
\rightarrow CH ₃ + CO + M	$k_0(\text{He}) = 1.0 \times 10^{-8} \exp(-7080/T)$	400-500	± 0.2
	$k_0(\text{Ar}) = 7.0 \times 10^{-18}$ $k_\infty = 2.8 \times 10^{13} \exp(-8630/T)$	353 300-500	±0.4
	$F_c(\text{He}) = 0.5$	400-500	$ \pm 0.5 $ $ \Delta F_c = \pm 0.1 $
CH₃CHO + M	· (110)	100 500	
\rightarrow CH ₃ + CHO + M	k(1 atm) = 7		
-	$\times 10^{15} \exp(-41100/T)$	750-1200	± 0.4
	(pressure-dependent region)		
$C_2H_5O + M$	1 0 1 1013 (10020 (77)	200 600	. 4.0
\rightarrow HCHO + CH ₃ + M	$k_{\infty} = 8 \times 10^{13} \exp(-10830/T)$	300-600	± 1.0
$C_2H_5OOH + M$	[estimate]		
$\rightarrow C_2H_5O + OH + M$	$k_{\infty} = 4 \times 10^{15} \exp(-21600/T)$	400-800	± 0.3
$C_3H_5 + M$	10 0 mp (21000 y 1 / 21000 y	.00 000	_ 0.0
\rightarrow CH ₂ CCH ₂ + H + M	$k_{\infty} = 1.5 \times 10^{11} T^{0.84} \exp(-30050/T)$	800-1500	± 0.3
$i - C_3H_7 + He$	_		
$\rightarrow C_3H_6 + H + He$	$k_0 = 3.6 \times 10^{-7} \exp(-14200/T)$	750-830	± 0.3
	$k_{\infty} = 8.76$	170 1000	102
	$\times 10^{7} T^{1.76} \exp(-17870/T)$	170-1000	±0.3
CH LAT CH LCH LAT	$F_c(\text{He}) = 0.35$ $k_0 = 1.3 \times 10^{-5} \exp(-32700/T)$	750-830 700-2000	$\Delta F_c = \pm 0.1$
$C_3H_8 + Ar \rightarrow CH_3 + C_2H_5 + Ar$	$k_0 = 1.3 \times 10^{-10} \exp(-32700/T)$ $k_\infty = 1.1 \times 10^{17} \exp(-42470/T)$	700-2000	$\pm 0.5 \\ \pm 0.3$
	$F_c = 0.24 \exp(-T/1946)$	700 2000	10.5
	$+0.76 \exp(T/38)$	700-2000	$\Delta F_c = \pm 0.2$
$t - C_4 H_9 + M$	- ·		·
$\rightarrow i - C_4 H_8 + H + M$	$k_{\infty} = 8.3 \times 10^{13} \exp(-19200/T)$	300-800	± 0.5
$C_6H_5 + M$			
	No recommendation		
\rightarrow linear $-C_6H_5+M$	$4.0 \times 10^{13} \exp(-36700/T)$	1450-1900	± 0.4
$C_6H_6 + M \rightarrow C_6H_5 + H + M$	$9.0 \times 10^{15} \exp(-54060/T)$	1200-2500	± 0.4 at 1200 K
$\rightarrow C_4 H_4 + C_2 H_2 + M$			reducing to ± 0.3 at
CHOLM CHILOCH	$2.5 \times 10^{11} \exp(-22100/T)$	1000 1500	2500 K
$C_6H_5O + M \rightarrow C_5H_5 + CO + M$ $C_6H_5CH_2 + M$	$2.3 \times 10^{-22100/1}$	1000-1580	± 0.2
$\rightarrow C_3H_3 + 2C_2H_2 + M$	- 1013 (
$\rightarrow C_4H_4 + C_3H_3 + M$	$5.1 \times 10^{13} \exp(-36370/T)$	1350-1900	± 0.3 at 1350 K rising
$\rightarrow C_5H_5 + C_2H_2 + M$			to ±0.5 at 1900 K
$\rightarrow C_7 H_7 (BCH) + M$			
$C_6H_5CH_3 + M$	$3.1 \times 10^{15} \exp(-44890/T)$	020-2200	LO 2 of 020 V rising to
$\rightarrow C_6H_5CH_2 + H + M$ $\rightarrow C_6H_5 + CH_3 + M$	No recommendation	920-2200	±0.3 at 920 K rising to ±0.5 at 2200 K
$p-C_6H_4(CH_3) + M \rightarrow$	$4.0 \times 10^{15} \exp(-42600/T)$	1400-1800	± 0.5
$C_6H_4(CH_3)CH_2 + H + M$			
$C_6H_5C_2H_5 + M$		770 1000	1.0.1 -4.770 Ex -1-1-
$\rightarrow C_6H_5CH_2 + CH_3 + M$	$6.1 \times 10^{15} \exp(-37800/T)$	770-1800	±0.1 at 770 K rising to
$\rightarrow C_6H_6 + C_2H_4 + M$			± 0.4 at 1800 K
$\rightarrow C_6H_5CHCH_2 + H_2 + M$	No recommendation		
	110 recommendation		
· C6115 CHCH3 F 11 + W			

TABLE 3

	Combination Reactions		
	k_{∞} (cm ³ molecule ⁻¹ s ⁻¹)		
	k_0 (cm ⁶ molecule ⁻² s ⁻¹)		
	F_c		
Reaction	$k \text{ (cm}^3 \text{ molecule}^{-1} \text{s}^{-1}) = \frac{k_0 k_x [M]}{k_0 [M] + k_\infty} F$	Temp (K)	Error limits $(\Delta \log k)$
$H + O_2 + Ar \rightarrow HO_2 + Ar$	$k_0 = 1.7 \times 10^{-30} T^{-0.8}$	300-2000	±0.5
$H + O_2 + H_2 \rightarrow HO_2 + H_2$	$k_0 = 5.8 \times 10^{-30} T^{-0.8}$	300-2000	±0.5
$H + O_2 + N_2 \rightarrow HO_2 + N_2$	$k_0 = 3.9 \times 10^{-30} T^{-0.8}$	300-2000	± 0.5
$H + H + Ar \rightarrow H_2 + Ar$	$k_0 = 1.8 \times 10^{-30} T^{-1.0}$	300-2500	±0.5
$H + H + H_2 \rightarrow H_2 + H_2$	$k_0 = 2.7 \times 10^{-31} T^{-0.6}$	100-5000	±0.5
$H + OH + H2O \rightarrow H2O + H2O$	$k_0 = 3.9 \times 10^{-25} T^{-2.0}$	300-3000	± 0.5
$H + OH + Ar \rightarrow H_2O + Ar$	$k_0 = 2.3 \times 10^{-26} T^{-2.0}$	300-3000	± 0.3
$H + OH + N_2 \rightarrow H_2O + N_2$	$k_0 = 2.5 \times 10^{-1}$ $k_0 = 6.1 \times 10^{-26} T^{-2.0}$	300-3000	±0.5
$H + CO + Ar \rightarrow HCO + Ar$	$k_0 = 5.3 \times 10^{-34} \exp(-370/T)$	300-3000	±0.5
	$k_0 = 3.5 \times 10^{-24} (-370/1)$ $k_0 (\text{He}) = 1.8 \times 10^{-24} T^{-1.8}$	300-2300	_
$H + CH_3 + M \rightarrow CH_4 + M$	$k_0(\text{He}) = 1.8 \times 10^{-1}$ $k_0(\text{Ar}) = 1.7 \times 10^{-24} T^{-1.8}$		±0.3
	$k_0(AI) = 1.7 \times 10^{-24} I$	300-1000	±0.5
	$k_0(C_2H_6) = 8.6 \times 10^{-24}T^{-1.8}$	300-1000	±0.5
	$k_{\infty} = 3.5 \times 10^{-10}$	300-1000	± 0.3
	$F_c(\text{He, Ar}) = 0.63 \exp(-T/3315)$ + 0.37 \exp(-T/61) $F_c(\text{C}_2\text{H}_6) = 0.71 \exp(-T/3079)$	300-1000	$\Delta F_c = \pm 0.1$
	$+0.29 \exp(-T/54)$	300-1000	$\Delta F_c = \pm 0.1$
$H + C_2H_2 + He \rightarrow C_2H_3 + He$	$k_{\infty} = 1.4 \times 10^{-11} \exp(-1300/T)$	200-400	± 0.3
11 + 62112 + 110 + 62113 + 110	$k_0 = 3.3 \times 10^{-30} \exp(-740/T)$	200-400	± 0.5
	$F_c = 0.44$	200-400	_
$H + C_2H_3 + M \rightarrow C_2H_4 + M$	$r_c = 0.44$ No recommendation	200~400	$\Delta F_c = \pm 0.1$
$H + C_2H_4 + He \rightarrow C_2H_5 + He$	$k_0 = 1.3 \times 10^{-29} \exp(-380/T)$ $k_\infty = 6.6$	300-800	±0.3
	$ \times 10^{-15} T^{1.28} \exp(-650/T) $ $F_c = 0.24 \exp(-T/40) $	200-1100	± 0.3
	$+0.76 \exp(-T/1025)$	300-800	$\Delta F_c = \pm 0.1$
$H + C_2H_5 + M \rightarrow C_2H_6 + M$	No recommendation		· ·
$H + C_3H_5 + M \rightarrow C_3H_6 + M$ $\rightarrow C_2H_3 + CH_3 + M$	$(k_1^{\infty} + k_2) = 2.8 \times 10^{-10}$	300~1000	±0.2 at 300 K rising to ±0.5 at 1000 K
$H + C_6H_5 + M \rightarrow C_6H_6 + M$	$k_{\infty} = 1.3 \times 10^{-10}$	1400-1700	± 0.5
$H + C_6H_6 + M \rightarrow C_6H_7 + M$	$k_{\infty} = 6.7 \times 10^{-11} \exp(-2170/T)$	300~1000	± 0.2
$H + C_6H_5O + M \rightarrow C_6H_5OH + M$ $H + C_6H_5CH_2 + M$	$k_{\infty} = 4.2 \times 10^{-10}$	1000	± 0.3
$\rightarrow C_6H_5CH_3 + M$	$k_{\infty}=5.5\times10^{-10}$	300-2000	± 0.2 at 300 K rising to ± 0.7 at 2000 K
$H + C_6H_5CH_3 + M$	1. 1.2 \(\) 10 = 13	200	. 0.2
$\rightarrow C_6 H_6 CH_3 + M$ $H + C_6 H_5 C_2 H_5 + M$	$k_{\infty}=1.2\times10^{-13}$	298	±0.2
$\rightarrow C_6H_6C_2H_5 + M$	$k_{\infty} = 3.3 \times 10^{-13}$	298	± 0.1
$OH + OH + M \rightarrow H_2O_2 + M$	$k_0(N_2) = 6.1 \times 10^{-29} T^{-0.76}$	250-1400	± 0.4
	$k_0(H_2O) \approx 4 \times 10^{-30}$	300-400	± 0.4
	$k_{\infty} = 1.2 \times 10^{-10} T^{-0.37}$	200-1500	± 0.5
	$F_c(N_2) = 0.5$	200-1500	$\Delta F_c = \pm 0.2$
$OH + CH_3 + M \rightarrow CH_3OH + M$	$k_0(\text{He}) = 2.3 \times 10^{-27}$	300	± 0.3
, <u>, , , , , , , , , , , , , , , , , , </u>	$k_0(Ar) = 4.4 \times 10^{-4} T^{-8.2}$	1000-2000	± 0.5
	$k_{\infty} = 1.0 \times 10^{-10}$	300-2000	±0.3
	$F_c(Ar) = 0.18 \exp(-T/200)$	1000 2000	A.E 0.4
$OH + C_2H_2 + M \rightarrow C_2H_2OH + M$	+0.82(-T/1438) See data sheet	1000-2000	$\Delta F_c = \pm 0.1$

TABLE 3—(Continued)

	k (om³ molecula=le=1)		
	k_{∞} (cm ³ molecule ⁻¹ s ⁻¹) k_0 (cm ⁶ molecule ⁻² s ⁻¹)		
	F_c $\nu_c k$ [M]		
	$k \text{ (cm}^3 \text{ molecule}^{-1} \text{s}^{-1}) = \frac{k_0 k_{\infty}[M]}{k_0[M] + k_{\infty}} F$,	Error limits
Reaction	$k_0[M] + k_\infty$	Temp (K)	$(\Delta \log k)$
$OH + C_3H_5 + M$			
_			
$ \rightarrow CH_2CHCH_2OH + M \rightarrow CH_2CHCHO + 2H + M $	$(k_1^{\infty} + k_2) = 2.5 \times 10^{-11}$	300-1000	± 0.3
$OH + C_6H_6 + M \rightarrow C_6H_6OH + M$	$k_{\infty} = 3.8 \times 10^{-12} \exp(-340/T)$	240-340	± 0.2
$OH + C_6H_5CH_3 + M \rightarrow C_6H_5(OH)_2 + M$	$k_{\infty}=2.8\times10^{-11}$	298	± 0.1
$OH + C_6H_5CH_3 + M \rightarrow HOC_6H_5CH_3 + M$	$k_{\infty} = 3.8 \times 10^{-12} \exp(180/T)$	200-300	±0.4
$OH + C_6H_4(CH_3)_2 + M \rightarrow C_6H_4(CH_3)_2OH + M$	$k_{\infty} = 1.4 \times 10^{-11}$	300	± 0.1
$OH + C_6H_5C_2H_5 + M \rightarrow HOC_6H_5C_2H_5 + M$	$7.5 \times 10^{-12} \text{ at p} \le 1 \text{ atm}$	298	± 0.1
$^{3}\text{CH}_{2} + \text{C}_{2}\text{H}_{2} + \text{M} \rightarrow \text{C}_{3}\text{H}_{4} + \text{M}$	$2.0 \times 10^{-11} \exp(-3330/T)$		
2 2 2 3 4	at $p = \le 10$ torr	300-1000	± 0.3
$^{3}CH_{2} + C_{2}H_{4} + M$	•		
$\rightarrow C_3H_6 + M$			
	$5.3 \times 10^{-12} \exp(-2660/T)$	300-1000	± 0.2 at 300 K rising to
\rightarrow C ₃ H ₅ + H			± 0.3 at 1000 K
$^{1}CH_{2} + C_{2}H_{2} + M$			
\rightarrow CH ₂ CCH ₂ + M			
	2.9×10^{-10} independent of p	300-1000	± 0.3 at 300 K rising to ± 0.7 at 1000 K
${}^{1}\text{CH}_{2} + \text{C}_{2}\text{H}_{4} + \text{M} \rightarrow \text{C}_{3}\text{H}_{6} + \text{M}$	1.6×10^{-10} independent of p	300-1000	±0.2 at 300 K rising to ±0.5 at 1000 K
$CH_3 + O_2 + M \rightarrow CH_3O_2 + M$	$k_0(Ar) = 1.55 \times 10^{-22} T^{-3.3}$	300-800	± 0.3
3 2 3 2	$k_0(N_2) = 1.6 \times 10^{-22} T^{-3.3}$	300-800	± 0.3
	$k_{\infty} = 1.3 \times 10^{-15} T^{1.2}$	300-800	± 0.3
	$F_c = 0.466 - 1.30 \times 10^{-4} T$	300-800	$\Delta F_c = \pm 0.1$
$CH_3 + CO + M \rightarrow CH_3CO + M$	$k_0(\text{He}) = 3.0 \times 10^{-34} \exp(-1910/T)$	400-500	± 0.2
	$k_0(\text{CO}) = 4.2 \times 10^{-36}$	300-350	±0.5
	$k_{\infty} = 8.4 \times 10^{-13} \exp(-3460/T)$	300-500	± 0.5
	$F_c(\text{He}) = 0.5$ $F_c(\text{CO}) = 0.6$	400-500 300-350	$\Delta F_c = \pm 0.1$ $\Delta F_c = \pm 0.1$
$CH_3 + CH_3 + Ar \rightarrow C_2H_6 + Ar$	$k_{\infty} = 6.0 \times 10^{-11}$	300-2000	± 0.3
2226	$k_0 = 3.5 \times 10^{-7} T^{-7.0} \exp(-1390/T)$	300-2000	±0.3
	$F_c = 0.38 \exp(-T/73)$		
	$+0.62 \exp(-T/1180)$	300-2000	$\Delta F_c = \pm 0.1$
$CH_3 + C_2H_2 + M \rightarrow C_3H_5 + M$	$k_{\infty} = 1 \times 10^{-12} \exp(-3900/T)$	300-600	± 0.5
$CH_3 + C_2H_4 + M \rightarrow n - C_3H_7 + M$	$3.5 \times 10^{-13} \exp(-3700/T)$	300-600	± 0.3
$CH_3 + C_2H_5 + M \rightarrow C_3H_8 + M$ $CH_3 + C_3H_5 + M$	$k_{\infty}=5.6\times10^{-11}$	300-2000	±0.3
$\rightarrow C_2H_5CHCH_2 + M$ $C_2H_5 + C_2H_5 + M$	$k_{\infty} = 1.7 \times 10^{-10} T^{-0.32} \exp(66/T)$	500-1200	±0.2
$\rightarrow n - C_4 H_{10} + M$	$k_{\infty} = 1.9 \times 10^{-11}$	300-1200	± 0.3
$C_2H_5 + C_3H_5 + M \rightarrow$	7 22 × 10=11 (66.47)	500 1300	. 0.2
CH ₃ CH ₂ CH ₂ CHCH ₂ + M	$k_{\infty} = 3.3 \times 10^{-11} \exp(66/T)$ 2 × 10 ⁻¹² for $p = 1 - 4$ torr	500-1200	± 0.3
$CH_3CO + O_2 + M \rightarrow CH_3CO_3 + M$	$2 \times 10^{-101} p - 1 - 41011$	300	± 0.3

TABLE 3—(Continued)

	k_{∞} (cm ³ molecule ⁻¹ s ⁻¹) k_0 (cm ⁶ molecule ⁻² s ⁻¹) F_c			
Reaction	$k \text{ (cm}^3 \text{ molecule}^{-1} \text{s}^{-1}) = -\frac{1}{k}$	$\frac{k_0 k_{\infty}[M]}{k_0[M] + k_{\infty}} F$	Temp (K)	Error limits $(\Delta \log k)$
$C_3H_5 + C_3H_5 + M \rightarrow$	$k_{\infty} = 1.7 \times 10^{-11} \exp(132/T)$	')	300-600	±0.2
CH ₂ CHCH ₂ CH ₂ CHCH ₂ + M	$k_{\infty} = 2.0 \times 10^{-11}$		600-1000	± 0.4
$C_3H_5 + 2 - C_4H_8 + M \rightarrow$ $CH_2CHCH_2CH(CH_3)CHCH_3 + M$	$k_{\infty} = 1.0 \times 10^{-13} \exp(-9620$)/T)	600-1200	± 0.7
$i - C_3H_7 + i - C_3H_7 + M \rightarrow (CH_3)_2CHCH_2CH_2 + M$	$k_{\infty}=6.8\times10^{-12}$		300-1000	± 0.1 at 300 K rising to ± 0.3 at 1000 K
$t - C_4 H_9 + t - C_4 H_9 + M \rightarrow C_8 H_{18}$	$k_{\infty} = 5.2 \times 10^{-8} T^{-1.73}$		300-1000	± 0.15 at 300 K rising to ± 0.3 at 1000 K

Received 31 August 1993; revised 4 October 1993