MACT 2123 Spring 2021

Final Exam May 22, 2021

Name:	UID:
Name:	UID:

- The exam consists of FIVE problems.
- Unsupported answers will receive little or no credit.
- Anyone caught writing after time has expired will be given a mark of zero.
- Upload your answers to Gradescope as a pdf only. Make sure to allocate your work to the appropriate question.
- Missing or blank pages will result in an automatic zero for the question.
- Time: 100 minutes.

Problem	Score	Points
1		15
2		10
3		10
4		8
5		20
Total		63

Problem 1. Consider the matrix:

$$A = \left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

(i) (12 pts) Find the eigenvalues and the corresponding eigenspaces of A.

(ii) (3 pts) Is A diagonalizable? why?

Problem 2. Let \mathcal{P}_3 be the space of all polynomials in x of degree ≤ 3 . Define a linear transformation $T: \mathcal{P}_3 \to \mathbb{R}^3$ by

$$T(p(x)) = (p(-1), p(0), p(1)).$$

(i) (5 pts) Determine a basis for the **kernel** of T.

(ii) (3 pts) Is T one-to-one? onto? why?

(iii) (2 pts) Describe the **range** of T.

MACT 2123 Spring 2021

Problem 3. (10 pts) Determine whether the sets S_1 and S_2 span the same subspace of \mathcal{P}_2 (the space of all polynomials in x of degree ≤ 2).

$$S_1 = \{ \mathbf{v}_1 = 1 + 3x - 2x^2, \mathbf{v}_2 = 2x + 2x^2, \mathbf{v}_3 = -2 + 10x^2 \},$$

 $S_2 = \{ \mathbf{v}_4 = 1 + 5x, \mathbf{v}_5 = -2 + x + 11x^2 \}.$

Problem 4. (4 pts each) Let V, \langle , \rangle be an inner product space.

(i) Suppose that \mathbf{u} and \mathbf{v} are two vectors in V such that $\langle \mathbf{u}, \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle$ for all vectors $\mathbf{w} \in V$. Show that $\mathbf{u} = \mathbf{v}$.

(ii) Suppose that $B = \{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$ is an orthonormal basis of V. Find the length of the vector \mathbf{v} if $\mathbf{v} = 2\mathbf{q}_1 - 3\mathbf{q}_2 + 4\mathbf{q}_3$.

MACT 2123	Spring 2021

Problem 5	. (5	pts each) Prove	or dispr	ove the	following	statements

(i) If A is a 2×2 matrix with eigenvalues $\lambda = -1$, 3, then $A^4 = 20 A + 21 I$.

Reason: True False

(ii) If two matrices A and B are row-equivalent, then they have the same eigenvalues.

Reason: True False

False

True

(iii) There are infinitely many unit vectors in \mathbb{R}^3 that are orthogonal to (0, 2, -1).

Reason:

(iv) A linear transformation $T: \mathbb{R}^3 \to \mathcal{P}_2$ is one-to-one if and only if it is onto. Reason: MACT 2123 Spring 2021

Draft: