S1 TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI INFORMASI

NIM	:	
NAMA	:	

UNIVERSITAS KRISTEN SATYA WACANA

UJIAN TENGAH SEMESTER

Nama Matakuliah : Teknik Optimalisasi

Waktu : Take Home Test

Dosen : Hendry, PhD

Sifat : Open Book

PETUNJUK PENGERJAAN:

- Berdoalah sebelum Anda mulai mengerjakan.
- Kerjakanlah soal berikut ini dengan cermat dan teliti!

Selesaikan permasalahan kontinu berikut menggunakan metode algoritma genetik dan differential evolution. Mahasiswa bisa mengembangkan dari metode dasar yang sudah dipelajari dalam materi mata kuliah.

No	Nama Fungsi	Ecomolo fungsi objectif	Ukuran	Search
No	Nama rungsi	Formula fungsi objectif	Dimensi	Space
1	Sphere	r	10	[-10, 10] ⁿ
	function	$f_a = \sum_{i=1}^n x_i^2$		
2	Schewel's	$f = \sum_{n=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} $	10	[-10, 10] ⁿ
	function 2.22	$f_b = \sum_{i=1}^{n} x_i + \prod_{i=1}^{n} x_i $		
3	Generalized	$\int_{0}^{n-1} \int_{0}^{n-1} \int_{0$	10	[-30, 30] ⁿ
	Rosenbrock	$f_c = \sum_{i=1}^{\infty} [100(x_{i+1} - x_i^2)^2]$		
	function	$+(x_i-1)^2$		
4	Rastrigin's	$f = \sum_{n=0}^{\infty} [n^2 + 10\cos(2\pi n)]$	10	[-5.12 ,
function		$f_d = \sum_{i=1}^{n} [x_i^2 - 10\cos(2\pi x_i)]$		5.12] ⁿ
		+ 10]		

Lakukan eksperimen dengan kriteria

1. jumlah maksimum evaluasi fungsi objective adalah 1.000.

Contoh:

a. misal populasinya 10, dan setiap iterasi menghasilkan 10 solusi baru, maka jumlah maksimum iterasi untuk kasus tersebut adalah

max it =
$$(1000-P)/10 = (1000-10)/10 = 99$$

b. misal populasinya 10, dan setiap iterasi menghasilkan 2 solusi baru, maka jumlah maksimum iterasi untuk kasus tersebut adalah

max it =
$$(1000-P)/2 = (1000-10)/2 = 495$$

2. Setiap fungsi di run 30 kali, kemudian tentukan nilai terbaik, nilai rata-rata dan standar deviasinya

Hasil eksperimen kemudian dituliskan dalam bentuk laporan yang berisi:

- 1. Penjelasan metode metaheuristik yang dipakai untuk menyelesaikan permasalahan diatas. (representasi penyelesaian, tuning parameter, dll)
- 2. Hasil Experimen dan Analisisnya

Fungsi	A	Algoritma gene	tik	Differential evoluion		
	mean	stdev	min	mean	stdev	min
1 Sphere	3.29E-11	9.42E-11	1.61E-14	1.67E-09	2.70E-09	6.52E-11
2 Schewel's	1.23E-06	7.97E-07	1.53E-07	1.80E-05	1.57E-05	3.95E-06
3 Rosenbrock	3.89E+02	1.47E+02	1.44E+02	6.83E_02	2.64E+02	2.89E+02
4 Rastrigin's	1.25E+01	3.08E+00	7.02E+00	1.14E+01	3.86E+00	4.47E+00

Contoh menampilkan hasil dalam bentuk tabel

Contoh grafik konvergensi

Laporan dan Source dikumpulkan di Flearn.